

Thenew Bradley 200 is a qualify 100 WHz

 gencral purpese oscilloscopeit costs just $\mathbf{f 5} 55$That's remar<able value for money. Considerablyless than you could pay for the same ferformance, accuracy, sensitivity and zersatility. Not that we set out to undzrcut the competition

All we wane to do was to produce the best 100 MHz general purpose oscilloscope on the market But because we started from scratch, we ivere able to use the latest engineerirg techniques and adtanced
circuitry sincluding many i.c.'s). And t7is meant we could price the 200 very competit vely.
The 201 ncorporates all the features you would expect in a first-class modular instrument plus several new ideas. To find out about t rese, please telephone Ash cy Stokes on 01-4507811, Extension 113. Or write to רim at this address:
G. $\mathcal{G} \equiv$ BRADLEY LIMITED, Electral House, Neasden Lane, London NW10 1 RR
Telex : 25583
A Luzas Company
BRADLIN electronics

PORTABLE INSTRUMENTS

VOLTAGE UP TO 150V. LEAKAGE DOWN TO 0.5nA.

Tests bipolar transistors, diodes and zener diodes. Measures leakage down to 0.5 nA at 2 V to 150V. Current gains are checked from $1 \mu \mathrm{~A}$ to 100 mA . Breakdown voltages up to 100 V are measured at $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and 1 mA . Collector to emitter saturation voltage is measured at 1 mA , $10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA for I_{c} / I_{B} ratios of 10,20 and 30 . The instrument is powered by a 9 V battery and a transistor D.C. to D.C. converter to produce 150 V .

TRANSISTOR RANGES (PNP OR NPN)
$I_{\text {cbo }}$ \& $I_{\text {Ebo }}$:
$10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$ \& s. d. acc $\pm 2 \%$ f.s.d. $\pm 1 \%$ at voltages of $2 \mathrm{~V}, 5 \mathrm{~V}, 10 \mathrm{~V}$, $20 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}, 60 \mathrm{~V}, 80 \mathrm{~V}, 100 \mathrm{~V}, 120 \mathrm{~V}$, and 150 V acc. $\pm 3 \% \pm 100 \mathrm{mV}$ up to $10 \mu \mathrm{~A}$ with fall at $100 \mu \mathrm{~A}<5 \%+250 \mathrm{mV}$. Short circuit current limit 1 mA .
$B V_{C B O} \quad 10 \mathrm{~V}$ or 100 V f.s.d.acc $\pm 2 \% \mathrm{f} . \mathrm{s} . \mathrm{d} . \pm 1 \%$ at currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and $1 \mathrm{~mA} \pm 20 \%$. Open circuit voltage limit 150 V .
$\mathrm{I}_{\mathrm{B}}: \quad 10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A} \ldots 10 \mathrm{~mA}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at fixed I_{E} of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, and 100 mA acc. $+1 \%$. $V_{C E}=2 \mathrm{~V}$ approx.
$h_{\text {FE }}: \quad 3$ inverse scales óf 2000 to 100,400 to 30 and 100 to 10 convert I B into $h_{F E}$ readings. Acc. is $\pm(2+200 \div \%$ of f.s.d. $) \%$ i.e. $\pm 4 \%$ at f.s.d.
$V_{\mathrm{BE}}: \quad 1 \mathrm{~V} . \mathrm{s.d}$ acc. $\pm 20 \mathrm{mV}$ measured at conditions on $h_{\text {FE }}$ test.
$V_{C E(s a t)}: \quad 1 \mathrm{~V}$ f.s.d. acc. $\pm 20 \mathrm{mV}$ at collector currents of $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA with $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ selected at 10,20 or 30 acc. $\pm 20 \%$.

DIODE \& ZENER DIODE RANGES
IDR: As $I_{E B O}$ transistor ranges.
V_{Z} : Breakdown ranges as $B V_{C B O}$ for transistors
$V_{D F}: \quad 1 \mathrm{Vf.s.d}$ acc. $\pm 20 \mathrm{mV}$ at I_{DF} of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$, $100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA acc. $\pm 1 \%$.
POWER SUPPLY
One type PP9 battery, or A.C. mains when a LEVELL Power Unit is fitted
SIZE \& WEIGHT
$7^{\prime \prime} \times 10 \frac{1}{4}{ }^{\prime \prime} \times 5 \frac{1}{2}{ }^{\prime \prime} .8 \mathrm{lbs}$

Send for literature covering our full range of portable instruments.
LEVELGEMEGTRONTGTTV. Moxon Street, High Barnet, Herts. EN5 5SD

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4.WAY MIXER USING F.E.T.S.

This is a high fidelity amplifier (0.3% intermodulation distortion) using the circuit of our 100% reliable 100 Watt Amplifier with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer Amplifier, again fully protected against overload and completely free from radio breakthrough.

The mixer is arranged for $2-30 / 60 \Omega$ balanced line microphones, 1 - HiZ gram input and 1-auxiliary input followed by bass and treble controls. 100 volt balanced line output or $5 / 15 \Omega$ and 100 volt line.

Abstract

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 5-WAY MIXER USING F.E.T.s This is similar to the 4 -way version but with 5 inputs and bass cut controls on each of the three low impedance balanced line microphone stages, and a high impedance (10 meg) gram stage with bass and treble controls plus the usual line or tape input. All the input stages are protected against overload by back to back low noise, low intermodulation distortion and freedom from radio breakthrough. A voltage stabilised supply is used for the pre-amplifiers making it independent of mains supply fluctuations and another stabilised supply for the driver stages is arranged to cut off when the output is overloaded or over temperature. The output is 75% efficient and 100 V balanced line or $8-16 \Omega$ output are selected by means of a rear panel switch which has a locking plate indicating the output impedance selected. The Mixer section has an additional emitter follower output for driving a slave amplifier, phones or tape recorder, output . 3 V out on 600 ohms upwards.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms -15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.

THE 100 WATT MIXER AMPLIFIER with specification as above is here combined with a 4 -channel F.E.T. mixer, $2-30 / 60 \Omega$ balanced microphone inputs. $1-\mathrm{HiZ}$ gram input and 1 -auxiliary input with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voitage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Bass and treble controls fitted.

Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.
200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s}$ $\pm 1 \mathrm{~dB}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 ${ }^{w}$ watt on continuous sine wave. Input 1 mW 600 ohms. Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 dB and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1-low mic. balanced and 1 auxiliary input.

Eidurstone Radio

BEAT VAT with AKG

There is no tax on microphones or headphones until Ist April 1973.

A must for RadFo Hams

AKG D190

Professional dynamic microphone. Directional characteristic. Smooth frequency response. Frequency range; $30-16,000 \mathrm{~Hz}$. No wonder this is one of the top selling professional mikes in this country.
RRP £20.50 to $£ 24.90$ according to type.

AKG K 60.
Another widely used product both professionally and by thousands of hi-fi enthusiasts all over the country.
Lightweight - double headband soft - detachable ear cushions. Excellent noise excluding properties.
Frequency range; $16-20,000 \mathrm{~Hz}$ RRP £15.00.

AKG PRODUCTS ARE MADE BY AKG AUSTRIA (NOT SUBJ ECT TO IMPORT DUTY AND ARE DISTRIBUTED BY AKG EQUIPMENT LTD, A COMPANY WITHIN THE SAME GROUP
For further details write or telephone;

182-184 CAMPDEN HILL. ROAD . LONDON . W.8. 7AS
A COMPANY WITHTN, THE A.K.G. GROUP
Telephone; 01-229 3695.

AnDers menns meters...

SOLICONTROLLER 36 MOVING COIL RELAY

- Indication/control of volts and amps at preset levels.
- Dial can be scaled in watts, frequency, RPM liquid level, etc.
- Changeover relay or voltage output at each alarm position
\square Restyled model of instrument proved in the field over many years
E High and/or low adjustable control pointers
Reliable and accurate photo-electric system utilised

Anders provide what is probably the largest range of meters available from a single source in Europe: MC/MI, dynamometer, vibrating reed, electrostatic, etc. in over 100 case styles and sizes, a few of which are shown below.

Popular models and ranges are stocked in depth while a specially equipped instrument department enables swift production of non-standard ranges and scales, to suit individual customer requirements, in large or small quantities.

Oxford Long Scale 240° 2 models, $5 \cdot 5^{\prime \prime}, 8^{\prime \prime}$ scales. DC moving coil and AC moving coil rectified.

Profile Miniature Edgewise Meters. 3 models, $1^{\prime \prime}, 1 \cdot 2^{\prime \prime}, 2^{\prime \prime}$ scales. DC moving coil and $A C$ moving coil rectified.

Vulcan Moving Iron. 4 models, $1 \cdot 5^{\prime \prime}, 1 \cdot 8^{\prime \prime}, 2 \cdot 7^{\prime \prime}$, $3 \cdot 7^{\prime \prime}$ scales. Voltmeters, ammeters and motor starting meters.

Kestrel Clear Front. 7 models, $1 \cdot 3^{\prime \prime}-5 \cdot 25^{\prime \prime}$ scales. DC moving coil, AC moving coil rectified, $A C$ moving iron.

Crescent Long Scale 180°. 3 models, $4^{\prime \prime}, 5^{\prime \prime}, 6 \cdot 25^{\prime \prime}$ scales. DC moving coil and AC moving coil rectified. Clear plastic.

Stafford Long Scale 240° 6 models, $3.5^{\prime \prime}-11.5^{\prime \prime}$ scales. DC moving coil, AC moving coil rectified, AC moving iron. Also 98 scale.

Regal Range 100° flattened arc. 2 models $2.5^{\prime \prime}$ and $3.2^{\prime \prime}$ scales. Taut band. DC moving coil and AC moving coil rectified.

Lancaster Long Scale 240°. 2 models, $4^{\prime \prime}, 5 \cdot 5^{\prime \prime}$ scales. DC moving coil and AC moving coil rectified.

wanaper mave crans TO SPEED UPA BUSINESS ON THE MOVE

- nication systems will
give any business a move on Firstly, Burndept have the planning skill.
With 50 years' experience in radio communications, they'll plan a system according to your needs.
Secondly, Burndept has the equipment.
Burndept's new Personal Radio-telephone is the most versatile unit yet designed. It's small and light, and has a wide range of accessories. So it can be used simply by anybody anywhere - airline mechanics, construction workers, oil refinery men - all find a use for it. The Burndept Mobile Radio-telephone is a complete UHF transmitter/receiver suitable for lorries, cars, cranes and fork lift trucks.

But Burndept go one better.
They back up their systems planning with a most efficient after-sales service.

So you'll always get the best out of Burndept - and speed up your business on the move.

With us, service comes first. Burndept Electronics (E.R.) Ltd.
St. Fidelis Road, Erith, Kent. Tel. Erith 39121.

The smaller weget the bigger we grow

From miniature to standard, simple to complex, prototype to production, Gardners have the expertise the electronics industry demands.

We grow bigger by making
smaller components, it's true. But we also grow by our understanding of customer problems and the solutions our technical experience provides.

Most of our business involves
'specials'. But even so, we've still the largest stocks in the country of 'off the shelf' transformers for most applications.

Why not try us next time?

GARDNERS

चப미자
 SOUND SYSTEMS AND ELECTRONICS

The Model A80 Audio Amplifier illustrated is representative of the range of integrated amplifiers designed and manufactured by Audix for commercial applications such as factories, hotels, conference centres etc. Facilities for two low impedance balanced microphones and one switchable input for medium impedance microphone, tape recorder or gramophone are incorporated in this 60 watt r.m.s. amplifier. Outputs at 100 V and 8 ohms are provided and are protected electrically against damage by short circuit, open circuit, inductive and capacative loads.
Power amplifiers having continuous r.m.s. ratings of 15,30 , 60,120 and 175 watts are also available and can incorporate a wide variety of input mixing modules to satisfy the different requirements of individual clients.

चபロlix

10 Action Packed Instrument kits from Heath at money-saving prices

(C)

(E)

(G)

(H)

FREE
HEATHKIT CATALOGUE
Contains something for
everyone: Hi-Fi Stereo, Testers \& Instruments SWL Metal Detectors ...even a Battery charger Kit. Mail the coupon... Today! Heath (Gloucester) Limited, Gloucester GL2 6EE.

(I)

(A) Decade Resistance Box 1 ohm to 999,999 ohms in 10 hm steps. 1/2\% accuracy, 1 watt. Kit K/IN-17 £14.80 Carr. 40p
(B) Decade Capacitor Box

100 pF to $0.111 \mu \mathrm{~F}$ in 100 pF Increments (11) 350 VDC continuous, 500 VDC intermittent Kit K/IN-27 $£ 9.80$ Carr. 40p
(C) Resistance Substitution Box 15 ohms to 10 megohms in common values. Accuracy $\pm 10 \%$. Rating 1 watt all values. Kit K/IN-37 £4.80 Carr. 30p
(D) Service Oscilloscope

2 Hz to 3 M Hz vertical band width. 250 mV pk-10-pk. Sensitivity T/Base 20 Hz to 200 kHz in four ranges.
Kit K/OS-2 £29.50 Carr. 80p
(E) Popular VVM
$0-1.5,5,15,50,150,500,1500 \mathrm{VDC}$ and AC (RMS) Full Scale. Resistance 10 ohm centre scale $\times 1, \times 10 \times 100 \times 1000$ $\times 10 \mathrm{k}, \times 100 \mathrm{k}, \times 1 \mathrm{MEG}$.
Kit K/IM-18D £15.80 Carr. 40p
(F) Capacitor Substitution Box

18 position switch selects any of 18 standard values. Range $0.0001 \mu \mathrm{~F}$ through $0.22 \mu \mathrm{~F}$ Kit K/IN-47 £3.90 Carr. 30p

(G) Portable Solid-State VVM $4 \mathrm{DC}, 4$ AC, 4 ohm ranges. 11 Mohm input DC, 1 Mohm input AC. Large $4 \frac{1}{2}{ }^{\prime \prime}$ $200 \mu \mathrm{~A}$ Meter. Battery powered. Rugged polypropylene case. Test leads supplied Kit K/IM-17U $£ 13.80$ Carr. 40 p
(H) In-Circuit Transistor Tester Tests DC gain in or out of circuit. Iceo or Icbo leakage. Identifies NPN/PNP types. Large $4 \frac{1}{2}$ " $200 \mu \mathrm{~A}$ Meter, Portable battery powered. Rugged polypropylene case.
Kit K/IT-18 £13.80 Carr. 40p
(I) RF Signal Generator

Covers 100 kHz to 200 M Hz in 6 bands. Modulated or unmodulated RF output. Factory wired/aligned coil and band switch assembly. Large accuratelycalibrated dial scales.
Kit K/RFIU £ 19.50 Carr. 40p
(J) Portable Transistor/Diode

Checker

Checks high low power transistors PNP/NPN types. Shorts, leakage, open element and current gain. Checks forward, reverse current. Operates on internal 1.5 volt cells.
Kit K/IT-27 £3.90 Carr. 30p
 SNA TERMS ONEPOSIT > MONTHLYSTRUMENTS. \sum TERMS AVAILABET
(Mail order prices and specifications subject to change without notice)

colour TV goes on growing

Durham to help you meet it...

most modern in the world, performs all the stages in the manufacture of colourtubes, from the delicate assembly of tube guns to the laying of over one million phosphor dots on the screen, making use of glass from Mullard's own glass factory at Simonstone.

Mullard ColourScreen tubes are designed for British
transmission standards, helping setmakers to offer viewers a superb picture from the finest sets.

With its square corners, flat faceplate, constant colour registration and high light output, ColourScreen is not only the best, but will continue to be the biggest selling home produced tube. With investments like Durham supplementing the huge production at

Simonstone, and also enabling Mullard to increase its a ready impressive exportperformance.

Mullard Durham started volume production of ColourScreen tubes ahead of schedule and will further increase its output in the months to come.

Helping you meet the huge demand for the finest colour TV sets in the world.

Mullard

Racal receivers step smoothly ahead

The RA. 1770 series of solid-state synthesized Communications Receivers combines the company's intemationally recognized reputation and experience with the most advanced design and production techniques.

The RA. 1772 is a synthesized tunable receiver designed for operator control and suitable for all forms of reception and monitoring over the wide frequency range $15 \mathrm{kHz}-30 \mathrm{MHz}$. The unique system of single knob frequency control allows rapid tuning across a complete 1 MHz band in 10 Hz increments with the "feel" and smoothness of a VFO but the accuracy and stability of the frequency standard.

The RA. 1771 is designed for point-to-point operation where frequency selection is by in-line decadic controls.

The electrical design embodies the latest techniques in mixer and signal path development to produce a performance with respect to dynamic range, intermodulation products, reciprocal mixing, cross modulation, blocking and spurious responses far exceeding that found in any receiver of its type.
(RA.1772-Single knob synthesizer controlLED display.
*RA.1771-Decadic switch frequency selection.

* $15 \mathrm{kHz}-30 \mathrm{MHz}$ in 10 Hz increments.
- Intermodulation products better than - 90 dB
- Unsurpassed signal path performance.
- Optional RF tuning-Choice of frequency standards.
- Operator proven control layout.
- High MTBF-Low MTTR.
- RA. 1772 - Approved Nato No. 5820-99-624-5397.

Contact Racal today for further details

RACAL COMMUNICATIONS LIMITTED

Western Road, Bracknell, Berks RGl2 1RG, England. Tel: Bracknell 3244. Telex 848166. Grams Racal Bracknell.

The Electronics Group

is this the price you pay?

Probarly, if you're still using an ordinary soldering iron. Ordinary soldering irons can cause damage to transistors and integrated circuits - damage which wastes time and costs monev. Now, with the unique ANTEX $\times 25$ and CCN Iow leakage soldering irons no harm can come to the most delicate equipment, even when soldered 'Live'
(You could be making quite a saving).

Getting valves is getting tricky.

Ever spent hours trying to get a valve, only to find that putting it in circuit makes no difference?

Everybody has.
With VCM 163 you can check exactly which valves are OK and which aren't. And spend time getting only the valves that really need replacing.

As valve testers go and let's face it, most of them have - Avo VCM 163 is a very sophisticated instrument. It even has a NATO stock number.

And what's more there's a new Avo Valve Data Manual (19th edition) free with each VCM 163. It
includes obsolete types and 84 pages of equivalents, and could save a fortune in wasted time. The manual is also available separately at just $£ 5.25$ (U.K. Trade).

So write or telephone for more details of VCM 163 now. Send us a cheque for $£ 5.25$, and we'll send you a 19th edition Valve Data Manual too. Trust Avo to look after you. Avo Ltd., Dover, Kent. Telephone: Dover 2626.

(1) © PTM

WW- 016 FOR FURTHER DETAILS

MOWIT'S THE AMGRON DC 300

 and as ever, still the bestof its kind in the world

In the Amcron DC. 300 you will recognise what was formerly the Crown International DC.300. No other power amplifier in the world has such remarkable specificatiors. The change to Amcron was simply to avoid possible confusion of name identification. Nothing else has been altered. It might be that the DC. 300 you order still shows 'Crown' on the front. It is of no significance. The Amcron remains the same thoroughbred in electronic engineering. Only the name has been changed and if you value perfection. it won't take long to remember.

- brief specifications

POWER At clip point 340 watts RMS per channel into 4 ohms. 190 watts into 8 ohms per ch. Mono - more than 500
POWER RESPONSE $\pm 1 \mathrm{~dB}$ from zero to 20 KHz at 150 watts RMS into
THD
I.M. DISTORTION

HUM \& NOISE
DAMPING FACTOR
PROTECTION
INPUT SENSITIVITY
SIZE
8 ohms per ch.
0.02% at 300 watts RMS per ch. into 4 ohms .
0.02% at 300 watts RMS per ch. into 4 ohms.
less than 0.1% from 0.01 watts to 150 watts RMS into less than 0.1%
8 ohms per ch.
8 ohms per ch.
100 dB below 150 watts RMS into 8 ohms per ch. 100 dB below 150 watts RM.
Greater than 200 up to 1 KHz . against short or open circuit and mis-matching $1.7 \mathrm{~V} \pm 2 \%$ at 10 KHz for 150 watts RMS into 8 ohms. $19^{\prime \prime} \times 7^{\prime \prime}$ high $\times 9 \frac{3}{4}^{\prime \prime \prime}$ deep with front panel, suitable for rack mounting.

LEAFLET WITH FULLER DETAILS ON APPLICATION

EMI Colorline CATV

The multi-channel VHF system with 40-270 MHz bandwidth, lower distortion • Increased Cascadeability

EMI Colorline Mark II Push-Pull CATV equipment offers full channel capacity, lower distortion and greater system reach.
The push-pull amplifiers and their associated passive units have a band-width of $40-270 \mathrm{MHz}$ and are designed for systems distributing up to twenty channels, where single octave operation is not acceptable
VHF bands, 1,11, and 111 and areas of the VHF spectrum outside the normal broadcast bands can be used.
Mark II Colorline permits the planning and installation of networks having extremely low cross-modulation, intermodulation and harmonic distortion. All amplifiers have full AC line power facilities
Amplifier/power units are readily interchangeable without disturbing cable connections and are also mechanically compatible with EMI Mark I amplifiers. If you're planning a CATV system, you should know more about Colorline. Contact EMI today

GMI

 and Entertainment
EMI Telecommunications

Telecommunications Group,
EMI Sound \& Vision Equipment Limited, 252 Blyth Road, Hayes, Middlesex, England Telephone: 01-573 3888 Telex 22417
Cables: EMISOUND LONDON

Whatever your electrical measurement problem, there's a Bradley instrument to solve it - instantly, accurately, compactly and at a realistic price.

For DC voltages, there's the Model 173B, a digital package that measures only $215 \mathrm{~mm} \times 110 \mathrm{~mm} \times 290 \mathrm{~mm}$; this means that you can mount two side by side on a standard 19 in . rack. The 173B will tackle DC voltages of either polarity with a first-class resolution of $10 \mu \mathrm{~V}$. Its five full-scale ranges each having a 15,000 bit length, cover from $10 \mu \mathrm{~V}$ to 1500.0 V with an accuracy of 0.01% of reading, ± 1 digit

The Bradley 173B costs only $£ 320$ in the UK.
For a little more, you can buy the Model 188 which incorporates all the features and performance of the 173B on DC plus true high performance and accuracy for AC measurements. In the AC mode, it offers four ranges covering from $100 \mu \mathrm{~V}$ to 1200.0 V r.m.s. with a mid-band accuracy of 0.1\% of reading ± 1 digit. The frequency range is 20 Hz to 100 kHz . Five digit readout can be triggered internally or externally in either automatic or manual modes. In addition, 'Hold' or 'One-Shot' facilities are provided. And,
as with the 173B, there's a calibration position on the range switch which brings an unsaturated standard cell into use as an internal reference. The Bradley 188 AC/DC DVM costs $£ 405$ in the UK.
Finally, there's the Model 196 Digital Multimeter. In addition to measuring $A C / D C$ voltages with the same accuracy and high standards as the 173B and 188, the 196 will also tackle resistance measurements over the range 0.01Ω to $15 \mathrm{M} \Omega$. The Bradley 196 costs $£ 435$ in the UK
Our own BCS Certificate is available.

To find out more, please telephone Ashley Stokes on $01-4507811$, extension 113
Or write to him at the address below.
G. \& E. BRAD LEY LIMITED,

Electral House,
Neasden Lane,
London NW10 1 RR
Telephone: 01-450 7811
Telex: 25583
A Lucas Company

A sound choice

This new and exciting range of speakers is the outcome of many years research and development into all aspects of drive unit and enclosure design.

Results include permanent sealing of enclosures but retaining ease of access, elimination of crossover networks and attendant problems, superb performance and distinctive styling at new, lower prices.

Power capacities range from 4 watts right up to 35 watts, with cabinet finishes in teak, walnut or white.

You must see and hear this exciting new range for yourself. But start by writing for further information to the following address.

Modern Engineering \& Technology Ltd,
4 Station Road West, Canterbury, Kent. Tel: 0227 60431/2
Main distributors for Canterbury Audio.
WW-022 FOR FURTHER DETAILS

brandenburg

 solid state$H V$ modules to power cathode ray tubes, etc.

-ready to connect

Many companies looking for HV supply modules have been driven to making their own - in spite of the cost and time involved. But now there is no need to. Brandenburg the British high voltage specialists, can supply standard, compact, reliable, fully tested modules with outputs up to 15 kV at up to $500 \mu \mathrm{~A}$ to meet the most exacting demands at a very economical price. For requirements outside this range, Brandenburg are always prepared to quote for batch or quantity production of custom-engineered designs to meet particular applications.

\star Prototypes test proven under extreme electrical and environmental siress conditions.

* Designed and packaged to operate in a wide range of environments.
* Additional low voltage and output in the order of 500 V suitable for various applications including focus supply.
* Capable of withstanding overloads, flashovers and short circuit conditions.

Brandenburg Limited

939 London Road, Tho:m0n Heath, Surrey. CR4 6JE. England. Tel: 01-6890441 Te ex 946149
Germany: Herr. G. E. Wolfe (BRANDENBURG), 6 Frankfurt am Main-Niederrad, Hahnstr 46. Tel: 67.72-05
Agents or distributors in principal countries.

Anywhere.

Take it into the test bay - it's rack mountable. Take it into the field - it works as well from its rechargeable NiCd batteries as it does from AC mains.
The new Dymar 1581 is an RF power meter intended primarily for testing the transmitters of $\mathrm{HF}, \mathrm{VHF}$ and

UHF portable, mobile and base radiotelephones.
The technical specification includes a wide power measuring range from 30 mW to 100 W and a frequency range of from DC to 500 MHz . 'True' power is measured, regardless of harmonic or sideband content, by a UHF thermocouple. Large linearscales in 1-3-10 sequence make for easy accurate reading. VSWR is $1: 1.3$ at 500 MHZ and accuracy is 5% of fsd to 200 MHz and 10% to 500 MHz .

With performance like that, the 1581 , like many other Dymar instruments, will turn up, too, in a good many laboratories. Not to mention on the premises of some of our rival RT manufacturers.
Dymar instruments are like that. A lot of people take them to a lot of places. They're good, versatile and available.
Use the Reader Enquiry Service for more details, or contact Dymar direct.

Our manufacturing resources could contribute to your success, too! We've chalked up many years of service to ministries, government departments, armed forces, and a formidable list of significant names in industry. They all come to Whiteley for the specialist knowhow and resources we have developed. Can we help you? We can build to your drawings and specification, or put our design departments at your service, as needed. From a small component to a complete system, in audio work, relay switching circuits, control systems, and many other spheres-our facilities are ready. The Whiteley organisation is self-contained. The manufacturing resources are backed by our own toolroom, sheet metal working and press shops, plating and finishing lines, coil and transformer winding shop, plastics moulding shop and a modern new cabinet factory. Capitalise on all these Whiteley facilities-call us in for a look at your next electronics need. You'll be in good company!

Whiteley versatility...

ELECTRONIC \& ELECTRICAL DESIGN

CABINET MAKING
SHEET METAL FORMING/FINSHING

PLASTICS MOULDNG
ENCAPSULATION
WHITELEY ELECTRICAL RADIO CO. LTD
Mansfield, Notts, England. Tel. Mansfield 24762
London Office: 109 Kingsway, W.C.2. Tel. 01-405 3074

What makes you think that we think you are thinking about edje connectors?

WE AREN'T YOU KNOW!

 Actually, we were thinking that you might be thinking of Sub Miniatures or other Multi-way Connectors, or even Rocker Switches, Metal Pressings or Plastic Components. And we were thinking that, even if you only wanted a few of any or each of these. it would be a pleasureto do business withyou.And you might find it a pleasure to do business with us, especially as we can solve so many of your supply problems.

For instance, suppose you did want just a few of these or any other Cinch, Dot or FT components very quickly, we could, as stock holders, have them on the way to you the day we got your order.

Perhaps you'd like to put this promise to the test.

UNITED-CARR SUPPLIES
 The single source that simplifies.

We have a remarkably comprehensive catalogue and if you can make good use of it. we shall be glad to send you one, but please state possible requirements.

Quneh

001
-
STOCKISTS
United-Carr Supplies Ltd
Clifton Works, Frederick Road.
UNITED-CARTR SUPPLIE

Adding Lightness

The Model 3009 Series II Improved precision pick-up arm has a non-detachable shell. The weight reduction this design affords is important and its use is recommended whenever possible. With modern cartridges special requirements are usually covered by interchanging stylus assemblies in a single cartridge. Where the interchange of shells is demanded however an alternative version the Model 3009/S2 Improved having a detachable shell is also available.

Both arms have horizontal cable entry and are of new compact design for greater versatility and ease of installation.

The best pick-up arm in the world

Write to SME Limited • Steyning • Sussex • England Telephone Steyning (0903) 814321

WW-028 FOR FURTHER DETAILS

The magnificent seven.

Linstead are the best British-made electronic instruments at their price on the market today.
G1. Nuffield Ref. 181.10 Hz to S3. Nuffield Ref. 15.0 to +300 v a 100 kHz . $0-6 \mathrm{v}$. r.m.s. Sine wave. 0 to 60 mA .0 to -30 v , at 0 to 60 mA $0-9 \mathrm{v}$. peak to peak Square wave. $0-1$ watt into 3 ohms .
G2. Nuffield Ref. 181.10 Hz to 100 kHz . Sine Wave $0-6 \mathrm{v}$ and 1 watt into low impedance. Square wave $\frac{1}{2}$ microsecond rise time. Step attenuator

M2A. 12 A.C. ranges 100 microvolts to 400 volts. Frequency $10 \mathrm{~Hz} \cdot 1 \mathrm{MHz}$ 8 D.C. ranges 0 to 400 v . Impedance 10 megohms.

S2. Nuffield Ref. 14. $0-6 \mathrm{kv} .1 \mathrm{~mA}$ at 5 kv . Metered. 6.3 v at 3 A . insulated for operation at E.H.T.

2 insulated outpetsat $6.3 \mathrm{v}, 2 \mathrm{~A}$.

S7. $0-30 \mathrm{~V}, 0-14$, per section. Fully protected against overload and short circuit. Outputs floating and can be series or parallel connected.

S4A. Nuffield Fief. 59. 0 to 25 v . A.C and D.C. 0 to $8 A$ iv. steps. Thermal magnetic cut-out
SU2. For use with S4A. Pi-filter 0-4A.
Please send for further details about the Magnificent Seven

Lrrजtetd meansagooddeal

in electroniss
Linstead Electronics, Roslyn Works, Roslyn Road, London N15 5JB

NEW from Goodmans for constructors

Din 20 Kit

20 watt, high fidelity loudspeaker kit contains all parts necessary to complete the system, except timber and other material for the cabinet itself, with detailed, illustrated instructions.
Specification: 20 Watts DIN,
4 ohms impedance, 8 ins

Axent 100

Dome HF Radiator with integral crossover. Capable of high frequency sound reproduction with negligible distortion in systems rated up to 30 Watts DIN. this 'state of the art' drive unit has an integral crossover which cuts frequencies below 3 kHz at a rate of $12 \mathrm{~dB} /$ Octave.

Audiom 100

12 inch high fidelity bass loudspeaker.
For use as a bass unit in two-way systems, the sensitivity and high frequency roll-off of the Audiom 100 has been tailored to match the Axent 100.

Goodmans Sound reasoning.

THORN A member of the Thorn Group

INTRODUCING NTERLAB from LYONS INSTRUMENTS

a new series of versatile, low cost, instruments for laboratory, test and education

SINE/SQUARE OSCILLATOR

- $10 \mathrm{~Hz}-1 \mathrm{MHz}$
- 10 V p-p output
- 0.1\% typical distortion
- 50Ω source impedance
TYPE SO10 £57

DISTORTION METER

- Range 0.1-10\%

类 $10 \mathrm{~Hz}-100 \mathrm{kHz}$

- Intrinsic distortion
less than 0.05\%
TYPE D10 £68

FREQUENCY METER

and of course a PULSE GENERATOR

series from

A Claude Lyons Company
Also available from authorised distributors:-
ITT Electronic Services, Harlow; Electroplan, Royston (SO10).

10-12 Watts - 25 kVA
 DRAKE TRANSFORMERS

INCORPORATING

Mains Transformers
Chokes
Audio Output Transformers
Audio Input Transformers
Saturable Reactors

Current Transformers

Transistor Transformers

 Inverter Transformers Screened Microphone Transformers Wide Band R.F. Transformers Resin Cast Transformers DRAKE TRANSFORMERS LTD., BILLERICAY, ESSEX Billericay 5ll55
i.c. breadboards low cost, high performance units

All our i.c. breadboarding units are now even better value for money.
Our second-generation CK2 0020 I.C. Patchboard unit, still selling for only $£ 50$, has been completely redesigned and now has many additional features. Light-emitting diodes are used as logic indicators and a manual pulse generator and busbars have been added to ease your patching a little.
A cheaper "extension" unit, selling at only $£ 36$, will accommodate a further eighteen integrated circuits or can be used on its own for linear work.
For further information on these and other breadboarding units from Limrose, please telephone 061-928 8063 or contact

LIMROSE ELECTRONICS LIMITED,

.

VARIABLE AUTOTRANSFORMER LATR-2M

Bench mountedfullyshrouded. Input: 120. 220 and 250 V . Output: 0-260V. Max. load 2 Amps.

6 decades of 0.1-1-10-100-1000-10.000 steps. All decades and their respective wipers are brought out to separate terminals.
All-metal construction, fully screened.
Capacity: 0.3 A for 0.1 and 1Ω decades; 0.1 A for 10Ω decade. 0.03 A for 100 decade; 0.01A for 1000 decade and 0.003Afor 10.000 decade.
£65.00

SUB-STANDARD MULTI-RANGE AC/DC VOLTMETER

Mirror scale 175 mm long. Knife edge pointer. 48 ranges from 75 mV to 750 V and from $300 \mu \mathrm{~A}$ to 7.5 A . Accuracy 0.5\% DC: 1% AC. Transistorized relay protects movement and circuits.
Push button range selection.

SIX DECADE 0.02 CLASS ACCURACY RESISTANCE BOX TYPE P236

6 decades 0.1-1-10-100 1000-10,000 Ω.
Four terminals enable the box to be used also as a potential divider.
Rated power 0.25 W per step with full accuracy or 1.00 W per step with reduced accuracy.
£45.00
PLEASE WRITE FOR FULL TEST EQUIPMENT CATALOGUE
Z \& I AERO SERVICES LTD.
44A WESTBOURNE GROVE, LONDON W. 2
Telex 261306

2OOW DC SERVO SYSTEMS

Bi-directional.

Designed around stock items. Immediate Delivery. Systems tailored to individual requirements.

Accurate positioning and variable speed drive functions in the fractional horsepower range for industrial, medical and other professional applications can now be achieved by use of DC Servo Systems designed around stock items and available for immediate delivery.
The well-known McLennan modular construction concept almost completely eliminates design time from servo-system production and yet systems can be supplied to exactly the degree of sophistication required for specific applications.

BI-DIRECTIONAL CONTROL AMPLIFIER TYPE EM73 Differential input. Automatic current limiting Automatic dynamic braking Uses linear devices throughout.

POWER UNIT TYPE EM75 Will supply up to three servo units depending upon load factors. Operates from 115 V ,

SERVOMOTOR
Complete with reduction gearhead, positional feed back potentiometer and tachogenerator.
Several versions available.

TYPICAL APPLICATIONS

- Machine Tool Drives
- Positioning in Radiology
- Fast Panning of Heavy Cameras
- Jacking Systems
- Stable Variable Speed Drives for Research and Production

Other McLennan products include:
Digital Syringes, Precision Peristaltic Pumps, Digital and Analogue Servo Systems, Process and Machine Tool Control Equipment, Precision Potentiometer Drives, Custom-built Gearheads and Actuator Mechanisms.

McLennan Engineering Ltd.
 CONTROL SYSTEMS AND COMPONENTS

Kings Road Crowthorne Berkshire Telephone : Crowthorne 5757/8

FITMETRS WRITE FOR THE BOOK THAT CAN CHANGE YOUR WHOLE FUTURE

The B.I.E.T. guide to success should be read by every ambitious engineer. Do you want promotion, a better job, higher pay ? "New Opportunities" shows you how to get them through a low-cost B.I.E.T. home study course. There are no books to buy and you can pay-as-you-learn.
Send for this helpful 76 page FREE book now. No obligation and nobody will call on you. It could be the best thing you ever did.

CHOOSEANEW FUTURENOW!

MECHANICAL A.M.S.E. (Mech) C\&GEng. Crafts Diesel Eng. Inst. Eng. \& Tech. Inst. Motor Ind. Maintenance Eng Mechanical Eng. Sheet Me
Welding ELECTRICAL ELECTRICAL \& ELECTRONIC
A.M.S.E. (Elec C \& G Elec. Eng. C \& GElec Tech Computer Elec. Electronic Eng Electrical Eng Install. \& Wiring MANAGEMENT PRODUCTION Computer Prog. Electronic Data Estimating Foremanship Inst. Cost \& Works Inst. Marcountants Inst. Marketing Management
Motor Irade Man Motor Trade Man.
Network Planning Network Plannin Personnel Man. Production Eng Salesmanship Storekeeping

Work Study Works DRA
SHIP A.M.IED A.M.I.E.D.
Electrical Draughtsmanship Gen. Draughtsmanship Jig \& Tool Design Technical Drawing RADIO \& TELE. COMMUNICATIONS C \& G Radio/TV/ Electronics C \& G Telecomm. Technicians Prac. Radio \& Elec. Radio Amateurs Radio Amateurs Radio Servicing \& Transistor Course Transistor Course
TV Main. \& Serv. AUTD AERO AUTO \& AERO Aero Eng. A.M.I.M.I. A.R.B. Cert.
Auto Engineering Auto Repair C \& G Auto Eng Garage MAA/IMI Diploma Motor Vehicle

CONSTRUCTIONA A.M.S.E. (Civil)

Architecture
Building
Carpentry \& Joinery Civil \& Municipal Eng Constructional Eng. Construction Surveyors
Clerk of Works Council Eng. Council Eng.
Health Eng. Heat \& Vent. Hydraulics
inst. of Builders inst. Clerk of Works nst. Works \& Highway Painting \& Decorating Structural.Eng. Surveying
GENERAL
Agricultural Eng. Council of Eng. Inst. General Education Pract. Slide Rule Pure \& Applied Maths Refrigeration Rubber Technology Sales Engineers University Ent.
G.C.E. 58 ' 0^{\prime} \& 'A' LEVEL SUBJEGTS. Over 10,000 Group Passes Institute Institute

SEND FOR YOUR FREE BOOK BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY ALDERMASTON COURT ALDEDING RG7 4PF

To B.I.E.T. Dept. BWWI Aldermaston Court Reading RG7 4PF
Please send me
details of your courses in:

Before you listen to us, listen to a few communication transmitters.

Because the chances are they'll have our TT21 already fitted.

Because it's the best beam tetrode you can buy. Best in its class. Best for the money.

So, if you require a communication transmitter tube at the lowest possible cost per what, sorry, watt, here's the address to find out more. unites the activities of The M-O Valve Co. Ltd., and English Electric Valve Co. Ltd. WW- 038 FOR FURTHER DETALLS

6

GABRAPHONE Integrated Amplifier -Tape Players

Saida de Luxe A stereo amplifier of the highest quality performance with built-in 8-track cartridge player, housed in 1 $8^{\prime \prime}$ cabinet. A unique feature is the electronic switching between signal sources, completely eliminating switch-contact noise and unwanted coupling between signal circuits. Input connection facilities for magnetic pick-up, radio tuner or other auxiliary signal source, together with a record/replay socket for external tape-deck. Dual loudspeaker circuits, with front-panel switching. The headphone socket has its own, independent, volume control. Modular construction is employed throughout, providing ready interchangeability of units. Output power is 25 watts RMS per channel into 8 ohms distortion less than 0.02% at full power, and the frequency response 25 Hz to $25 \mathrm{kHz} \pm \mathrm{I} \mathrm{db}$. Outstanding styling - finish in perspex White, Black or Grey.
Saida Minor Multi-input stereo amplifier with built-in 8-track stereo cartridge player for continuous entertainment.
Inputs for magnetic pick-up and auxiliary signal source. Electronic switching between inputs, output 12 watrs RMS per channel into 8 ohms. Available in perspex White, Black or Grey. Modular construction ensures ready interchangeability of units. Amelia de Luxe Tape player - add-on unit. Provides playing facilities for 8 -track stereo cartridges when combined with any stereo amplifier. Incorporates equalisation for tape replay characteristic and front-panel attenuator control to adjust output to suit amplifier used. Individual volume and tone control. Elegantly styled in Black, White or Grey perspex - marching the amplifiers and other units in Gabraphone range. Output 150 mV max into 2,000 ohms.
Write for full information.

now

 ${ }_{\text {Hithl }}$If you
are in
the market
for a VHF
marine radiotelephone
there are quite a few features about the Becker Alcor that
it would pay you to know about
For instance, the transmitter/receiver unit is remotely mounted, leaving the control unit free to fit into the most confined spaces. The toudspeaker and hand set can then be sited in the most convenient locations. Here are some more facts:-- Power output to aerial 20 watts - Frequency 156-162 MHz - Transmitter bandwidth 2 or 6 MHz - Fully transistorized - 14 or 24 channels at choice out of all avalable VHF maritime channels

- Simplex. semi-duplex or full duplex - Squelch
(

-

sensitivity 0.2 uV

- Reduced power switch (1 watt O/P) - 25 KHz channel spacing - Supply: $12 / 24$. 110/220V DC and 110. 127 and 220V AC - Approved by the British. Dutch and German authorities.
Becker Alcor Radiotelephones and the Mizar

Receiver manufactured in Holland are marketed throughout the U.K.
Hatfield Instruments (Radio Division) also manufacture 200 and 400 watt H.F. SSB Radiotelephones. Send for full particulars today.

forward thinking in electronics
HATFIELD INSTRUMENTS LIMITED.
Burrington Way, Plymouth PL5 3LZ. Devon.
Tel. Plymouth (0752) 72773/4 Grams: Sigjen. Plymouth Telex: 45592 South-East Asia: for prompt service and deliveries. contact.
Hatfield Instruments (NZ) Lid.. PO Box 561. Napier. New Zealand

meet an AM-FM

 SIGNAL GENERATOR
with synthesised

frequency
coverage from $10_{\text {kHz (300Hz) }}$

100_{mHz}

A product of Schomandl KG, the decade Signal Generator Type MS 100 m is a multi-purpose precision generator whose output frequency of $10 \mathrm{kHz}(300 \mathrm{~Hz})$ to 100 Mhz is adjustable in least increments of $\mathbf{1} \mathbf{~ H z}$.
This continuous frequency adjustment allows interpolation within decade Δ^{f} ranges from $\pm 5 \mathrm{~Hz}$ to $\pm 5 \mathrm{MHz}$ which can be effected manually, either by an analogue $D C$ signal or by swereping
The frequency generating system of the MS 100 M is provided with a synchronized oscillator in each frequency selection stage and produces output signals of high spectral purity whilst using only a minimum of frequency-dependent elements. Since the set is immune to RF leakage, even low output voltages can be accurately adjusted. The output level can be continuously adjusted over 10 dB (meter indication in V and dB) and in least increments of 1 dB down to -130 dB

MS 100 M

- Four models offer frequency selection in staps of 1,10,100 Hz or 1 kHz and output can be swept from $\pm 5 \mathrm{~Hz}$ to $\pm 5 \mathrm{MHz}$. - Frequency selection manual or remote control.
- 1 volt output adjustable via stepped and variable attenuators to $-130 \mathrm{~dB}(0.3 \mu \mathrm{v})$.
-Quality signal (noise level $-120 \mathrm{~dB} / \mathrm{Hz}$ referred to signal output level).
要Technical data with full specifications for the Rohde \& Schwarz MS 100 M and its recommended extras, the Rohde \& Schwarz Programmed Controller type PSM and Remote Controlled Attenuator Set type DPHP, will be sent in response to enquiries against this advertisement.

aveley
 electriciti

Rocbuck Road,
Chessingtòn, Surrey.

Telex: Avel London 928479

Kemo
 Filters, Networks, Instruments 42 Chancery Lane Beckenham Kent BR3 2NR Tel: 01-658 6197
 Variable Filters

$0.001 \mathrm{~Hz}-100 \mathrm{KHz}$

CONTINUOUSLY VARIABLE OR DECADE TUNED

$£ 160-£ 1,300$
filters
Active (TRC) and Passive (LC). 0.001 Hz to 100 KHz . Butterworth, Tchebveheff, Linear Phase, Bessel, Eliptic and General Parameter L.P., H.P., B.P., B.S. and Knotch.
variable filters
0.001 Hz to 100 KHz H.P., L.P., B.P. and B.S. Infinitely Variable or Decade tuned, manual or remote.
COMMUTATING FILTERS
Driven Filters (usable as Tracking Filters) up to 10 KHz with selectable bandwidth. filter sets
Banks of similar filters rack mounted, $1 / 6 \mathrm{th}, 1 / 3$ rd, $1 / 214$, octave and constant bandwidth filter sets.
SPECTRUM SHAPERS AND ANALYSERS
Filter sets arranged as shapers with patch board selection and real time analysers with full readout facilities.
SIGNAL CONDITIONING AND INSTRUMENTATION
Amplifiers, banks of amplifiers, Oscillators, Phase Meters, Signal Generators, Impedance converters.

WW- 044 FOR FURTHER DETALLS

nombrex

MODEL 41 R.F.SIGNAL GENERATOR Price $£ \mathbf{\$ 3} \mathbf{0 0}$.

* $150 \mathrm{KHz}-220 \mathrm{MHz}$ on fundamentals.
* 8 clear scales - Total length 130 mm .
* Spin-Wheel Slow Motion Drive 11 - 1 ratio.
* Overall Accuracy - $2 \frac{1}{2} \%$.
* Modulation, Variable depth and frequency
* Internal Crystal Oscillator providing calibration checks throughout al
ranges.
* Mechanical scale adjustment for accurate alignment against internal 1 MHz crystal oscillator
* Powered by 9V Battery

Trade and Export enquirles welcome. Send for full technical leaflets Post and Packing 35p. extra
NOMBREX (1969) LTD., EXMOUTH, DEVON.
Tel: 03-952 3515

50 Years Progress 1821-1571

\author{

- AND NOW THE
}

S00Saries

ST YLED TO GIVE AN ELEGANT

APPEARANCE ON ALL PANELS

AN ALL BRITISH PRODUCTION

ELECTRICAL INSTRUMENTS LTD

CHILTERN WORKS HICH WYCOMBE日ucks
Phone 30931

Would you spend anhour aday to earn moremoney in Electronics, Television,Radio?

If you're willing to give up one hour or more a day we can help you get into the lucrative growth industries of electronics, television, radio.

And if you're already in, we can help you get on!
With our know-how and our wide experience in teaching, plus your determination to study, we can turn your interest into the technical knowledge you need for success. Once you've got the qualifications you need, you'll be in a good position to take full adrantage of the opportunities which exist today in all fields of electronics - in television (colour and black white) and in radio. (We teach you the theory and practice of valve and transistor portable circuits while you build your own 5 valve receiver, transistor portable and high grade test instruments).

With ICS you study at home - at your own pace, when you choose, in the time you've got available. Your ICS tutor will give you all the help and encouragement you need to pass any exams you want to take.

Don't waste another day. Take your first step now towards a better paid, more assured future. Send for your lREE Carcerṣ Guide today.

[^0]
Name

Address

Occupation

Switchcraft Audio Connectors

 Complete range of Switcheraft audio conmectors now available for all studio and ancillary equipments.
 Versatile
 Streamlined 3. 4.5 or 6 contaces; wide variety of plugs and recept ready interchangeability with other leading makes.
 Safe simple positive snap-in connection: cable clamping and lach lock.
 - self-polatisations: captive insert screw provides rigid assembly and electrical continuity: pin and contact insulation elininates hum and noise problems.

Write now for fre descriptive literalure

Sole U.K. Agent for Switcherafi QG Comectors

F. W.O. BAUCH LIMITED

49 Theobald Street Boreham Wood HertsWD6 4RZ Tel: 01-9530091 Telex: 27502

WW-047 FOR FURTHER DETAILS

Give me a really good oscillator at a budget price...

The new Brookdeal 472 is your best buy. A sensibly priced oscillator that still offers outstanding performance in a soundly engineered instrument. Frequency control is linear, having a two decade sweep on each range, covering 0.1 Hz to 1.1 MHz with manual or external programming The output has complete freedom from amplitude bounce and low harmonic distortion (typically 0.1%) Waveform may be either sine or square. Amplitude is continuously variable from 5 Vrms to $<500 \mu \mathrm{Vrms}$, calibrated to an accuracy of - 1%. The second output gives a square wave of $3.5 \mathrm{Vp}-$ p for triggering etc.

Brookdeal

Brookdeal Electronics Lid, Market Street, Bracknell, Berks
Telephone Bracknell, (STD 0344) 23931 Telex 847164.

DIXONS TECHNICAL ANNOUNCE THER MOST OLD-FASHIONED PRODUCT:

There ale some very good leasulis for gumy to Dixuls lechmical.
You'll find they have the widest range of audio visual
You'll find they have the widest range of audio visual equipment available in Britain. Every leading make. At lowest possible prices.
into a very favourable hire purchase agreement: or you can choice outright. or you can enter into a very favourabie hire purchase agreement: or you can tent (very irtportant if you need Very good reasons for going to
Rut there's an even better reason Dons Technical
in these take-it-or-leave-it days. Dixons Technical is a civilised oasis in a hard-sell desert. For example. they have permanent technical staff who will take time to help you tailor your purchase to fit your needs, and to fit your pocket.
They will advise not only on the equipment you buy, but also on its use and, where necessary, its installation.

And when vou've bought your equipment. Dixons Technical involvement doesn't stop there After-sales service is neurotic in its attention to detail and speed.

Service: the most old-fashoned product to be found at Dixons Techrical.
It costs you nothng.
Phone Mr. Frankfurt
Phone Mr. Frankfurt or Mr. Richards at 01-4378811. Service starts with them. Ask them Ot send in the coupon
To: Dixons Technical Lid. 3 Soho Square, London W1 Please send me full details of

Name

Address
Dixanss

~1 meteronic Portable Service Oscilloscope

TYPE 101 f80
DC- 8 MHz
$50 \mathrm{mV} / \mathrm{Div}$.
$45 \mathrm{mV} /$ Div, with 155 Active Probe) $50 \mathrm{nS} / \mathrm{Div}$. Wt. 5 lb .

IDEAL FOR COLOUR TV SERVICING

$113 \mathrm{DC} /$ Battery version of 101
(Mains and battery packs extra)
155 Active Probe (Gain $\times 10, \times 1, \div 10 @ 10 \mathrm{M}$ Ohms)
310 Logic Probe (Shows Hi, Lo and Bad on 2 LEDS)
320 Short Pulse Detector (Shows pulses down to 40 nS)
Meteronic Ltd., 114/116 Shipbourne Road,
Tonbridge, Kent. Tel: Tonbridge 61448

MAKE BIG REDUCTIONS WITH JACKSON

CATALOGUE NO. 5870
The Jackson Friction Ball Drive Reduction Unit is unique. Simply because it's the only one of it's type and size available in the United Kingdom. It has sealed lubrication, with a hardened steel shaft and bearings to give it extra long life. Arrd it's low in price. The unit has a 10:1 reduction ratio, with an output torque of 8 oz . ins. minimum.

Our skilled personnel can produce custom made components to suit your individual needs. And with 45 years of experience your guarantee is our reliability.

Write for fully illustrated catalogue:

JACKSON BROTHERS (LONDON) LIMITED

KINGSWAY, WADDON, CROYDON, CR9 4DG TEL:01-681 2754/7U.S.OFFICE:M.SWEDGAL, 258 BROADWAY. NEW YORK. N.Y. 10007 NOW! ON TELEX NO. 946849

Celestion Loudspeaker Engineering advances the state of the art to a new plateau.

Ditton 66 Studio Monitor

 iweeter. 2.) *ew design 'pressure mic sange tnit. 3.) Ulira tre $\mathrm{I}^{12 \prime \text { : Bass }}$ drive unit. 4.) A.B.R. ensures ccntcled bass down to 16 He .
5.) Precision emossover for perfect systen

A new Loudspeaker of advanced design suitable for studio use and for home installations of the highest quality. UNITS: HF 2000 (dame 'pressure' cype) MF 500 (Mid-range Dome "pressure' type) Ulera linear $12^{\prime \prime}$ bass driver and $12^{\prime \prime}$ $A B R$. The crossover has resulted from considerable research and crossover points are at 500 Hz and 5000 Hz 80 Watts Maximum, $4-8 \mathrm{ohm}$. This monitor louds peaker system has an exceptionally wide and flat frequency response. Very low order harmonic and inser-modulation distortion. Precise response to transients. Beautifully maintained polar response ensures absence of unwanted directional effects and provides a highly satisfactory steneo image throughout the listening area. Matched pairs.
SIZE $40 \times 15 \times 11 \frac{1}{4}$ Natural Teak or Walnut Cabinet
Celestion \uparrow
Loudspeakers for the Perfectionist ROLA CELESTION LTD. DITTON WORKS, FOXHALL ROAO. IPSWICH, SUFFOLK IP3 8JP

- 侖 (o) T MO Precision

313 EDGWARE ROAD, LONDON W2 3BR.
telephone: 017232231 Cable: Omrontrols London.
OMRON telephone: 017232231 telex 28514

TIMERS SWITCHES

TRANSFORMERS

 VOLTAGE CONTROLS FOR IMMEDIATE DELIVERY
VARIABLE TRANSFORMERS

 FAMOUS "SLIDUP"' SLIDTRANS" MODELS
1 amp E7.00 C. \&P. 37p $\begin{array}{llll}1 \mathrm{amp} & \text { f7.00 C. } 8 \mathrm{P} . & 37 \mathrm{p} \\ 2.5 \mathrm{amp} & \text { f8.05 } & . & 57 \mathrm{p}\end{array}$ $5 \mathrm{amp} £ 11.75$ 10 amp f 22.50 12 amp $£ 23.60$ $20 \mathrm{amp} £ 49.00$
'OFF THE SHELF" delivery of all types *Fully shrouded. *Bench Mounting. *Panel Mounting. *Low Price. *Input 240VAC. Output: 0-260VAC.

PANEL MOUNTING "SYS" SYNCHRONOUS TIMER

OMRON brand Synchronous Motordrive timer with
instantaneous
single
and two timed change over contacts. MINIMUM guarantaed ellectrical and mechanical 10,000
tions.

ELECTRONIC PLUG-IN SWITCH FOR LIQUID LEVEL \& ICE

ANK CONTROLS "61FGP"

Electronic switch senses change in resistance using Stainless Steel probe assambles or other conductive probes.
Proven use in sewage, water beer, milk ice in vending effluent, boilers and other industries.
$£ 5.85$ for "one off" $£ 3.50$ in quantity
STAINLESS STEEL PROBE ASSEMBLY "PS31"

Length 1 metre, for use on differential and alarm entrol of conductive liquids with "61FGP" (illus control of cond
f 1.60 "one off" f 1 in quantity.
ELECTRONIC RECYCLING TIMER FOR CONTINUOUS ON/OFF OPERATION "TDA"

Electronic twin timer for continous recycling operations. Dn/Off time control, 0-6secs with 2% repeat accuracy switch $\times 10$.

Dual voltage 110/240VAC £28.60 but down to $\mathbf{£ 1 3}$ each in quantity.

PANEL MOUNTING "NS

SYNCHRONOUS TIMER
"New Square Dial"
 The OMRON timer type NSY features the attractive package has two time limit changeover contatts.
Stock ranga $110 / 240$ VAC up to 28 hrs $£ 12.50$ 'one off" to $£ 8$ in quantity
OMRON MICROSWITCHES
*Interchangeable with
\& Continental Manufacturers
Approvals from: CSA: MIL; UL; SEVC: SAA DEMKO ETC

VIC WITH AMP TERMINAL Single Pole Changeover 15 Famp
switch $0 . \mathrm{F}$. switch 0.F. 400 gm R.F. 114 gm
M.D.0. 4 mm . $£ 19$ per $100 ; \mathbf{f 1 5 0}$ per $100 ; £ 700$ per 5000
VV-15-1A WITH SOLDER TERMS
Single Pole Changeover 15 amp Switch O.F. 230 gm . R.F. 50 gm M.D. 1 mm . $\mathbf{f 1 9}$ per 100: f 150 per 1000; $\mathbf{5} 650$ per 5000.
SIA SUBminiature switch Cheaper than all its competitors Single pole changeover 5amp switch O.F. 200 gm . R.F. 40 gm . M.D. O. 1 mm . E23 per 100;
f850 per 5000
SIAL WITH LEAF SPRING Subminiature 5amp microswitch of $56-180 \mathrm{gm}$ R.F. 14 gm M.F.
$0.8 \mathrm{~mm} . \mathrm{f} 27$ per $100 ; \mathrm{f} 220$ per
 SIAL 2 WITh rolleractuator Subminiature Samp microswitch. O.F. $56-180 \mathrm{gms}$ R.F. 14 gms . M.D 0.8 mm . £ 33 р рөr 100 ; $£ 270$ pe 1000; f 1250 per 5000 . cer-5 LOW TORQUE SWItch Low cost microswitch for coin operated or air vane applications. $0 . T .10 \mathrm{gm}$. R.I. 13 gm . M.D. 15°. £31 per 100: f190 per 1000 : f900 per 5000 .
VAQ4 PUSHBUTTON MICRO. SWITCH.
15amp Microswitch with push button actuator low operating force and buttons in various colours. £49 per 100; £360 per 1000; $\mathbf{f 1 7 5 0}$ per 5000 .
 at 110 VAC or 240 VAC .
Up to 72 mins $£ 7.90$ "one off" and $£ 4$ in quantity. Long time ranges around $\mathbf{£ 8}$
PFO3 SUBMINIA-/1SAT4 SUBMINIA. TURE PUSHBUTTON TURE TOGGLE MIG.

Full range available with 15 amp switching capacity.
Approved by CSA Authorities \& guaranteed for twelve months.
 Voltage Stabiliser stil only $£ 12.50$ each. FEATURES: *200 watt rating - Input 240 vaC $\pm 20 \%$ \pm Output $240 \mathrm{VAC} \pm 1 \%$

AT LAST OMRON FRONT CONNECTION SOCKETS-
NOW SUPPLIED FROM STOCK

These new miniature sackets with screw terminal connections are only available through I.M.O. or authorised stockists. Moulding is UL how" brings all the advanceu features of a modern product lots. \quad on 01-723 2231.

WORLD'S SMALLEST SYNCHRONOUS

 MOTOR PLUG-IN TIMER STPNHAT LAST! $\pm \frac{1}{2} \%$ REPEAT ACCURACY IN A MINIATURE PLUG-IN TIMER UP TO 28HRS.
Only OMRON could provide a timer of such unrivalled superiority over all its competitors, anywhere in the world.
The STPNH is a synchronous motor driven timer with automatic reset function. Both instantaneous and time limit contacts are fitted and the timer is mounted on an international 8 pin octal base.
Time ranges start 0.6 secs and finish $0-28$ hrs with operating voltage

Reflactive and "slot" type photoelectric switchas. Will sense any material passing the light beam up to 3 mm and provide an output signal of 02AMPS at 240VAC. Reflective distance up to 25 mm on reflective surfaces, far longer with external light.
VP05C (5AMP) $£ 9.90$ "one off" $£ 6$ in quantity. VPIOC (10AMP) £16.90 "one off" $£ 10$ in quantity
PHOTOELECTBIC SUITCHES approved and OMRON "know YL-2-GPA (DC) $£ 9.50$ each. PFO83 (8 pin) 44p each 1000 TECHNICAL LITERATURE
lots.
PF113 (11 pin) 58p each 1000 Full literature is available on all the products

ALL THE PRODUCTS ILLUSTRATED HERE ARE ALSO AVAILABLE FROM THE FOLLOWING I.M.O. FRANCHISED DISTRIBUTORS.

BIRMINGHAM blackburn BRISTOL
LEICESTER
LEEDS
LONDON (STH.)
NEWCASTLE
SHEFFIELD
SLOUGH
I.M.O. TERMS OF TRADING

CASH WITH ORDER UNLESS A NETT MONTHLY ACCOUNT HAS BEEN ESTABLISHED. TELEPHONE: 01-723 2231.

Custom Tailoring...

. . . but at off-the-peg prices.
That's the GEC range of miniature magnetrons. Seven versatile versions of one proven, lightweight design. All built to conform to the most rugged and demanding military and civil specifications. Custom tailored for all potential applications, from low-cost marine radars to ultra-sophisticated airborne and military systems.

Little bigger than a latch key, a GEC magnetron weighs about 250 gms , operates at 800 V anode voltage and 0.5 to 2 A anode current and gives up to 300 watts peak power. Options include fast warm up- 90% output power is available within two seconds of initial switch on of heater.

And you can choose models with nominated fixed frequencies over the range 9 to 17 GHz or with limited tuning capabilities. Interline noise and r.f. leakage are exceptionally low and sophisticated construction eliminates missing pulses.

To find out more about these versatile GEC magnetrons, please contact the address below.

AUDIO MEASURING INSTRUMENTS

Two instruments having a superior performance than any others of this type regardless of price. Now accepted as standard equipment by Broadcasting Authorities, recording studios, magazine equipment test laboratories, and audio research and development laboratories all over the world.

LOW DISTORTION OSCILLATOR

An instrument of high stability providing very pure sine waves, and square waves, in the range of 5 Hz to 500 kHz . Hybrid design using valves and semiconductors.

Frequency

Output Impedance:
Output Voltage
Output Attenuation: Sine Wave Distortion:
$5 \mathrm{~Hz}-500 \mathrm{kHz}$ (5 ranges) Ohms.
0 Volts r.m.s. max.
$0-110 \mathrm{~dB}$ continuously variable. 0.005% from 200 Hz to 20 kHz increasing to 0.015% at 10 Hz and 100 kHz
Square wave Rise Time: Monitor Output Meter: Mains Input:
Size:
Weight
Scaled $0-3$ microseconds.
Scaled $0-3,0-10$, and dBm .
$100 \mathrm{~V} .-250 \mathrm{~V} .50 / 60 \mathrm{~Hz}$.
$17 \frac{1}{4} \times 11 \times 8$ in
25 lb.
f 150

DISTORTION MEASURING SET

A sensitive instrument for the measurement of total harmonic distortion, designed for speedy and accurate use. Capable of measuring distortion products as low as 0.002%. Direct reading from calibrated meter scale.

specification

Frequency Range:
Distortion Range:
Mensitivity:
Input Resistance
High Pass Filter:
Frequency Response:
Power Requirements :
Size:
Weight
$20 \mathrm{~Hz}-20 \mathrm{kHz}$ (6 ranges).
$0.01 \%-100 \%$ f.s.d. (9 ranges)
$100 \mathrm{mV} .-100 \mathrm{~V}$. (3 ranges)
100 kOhms.
3 dB down at 350 Hz .
30 dB down at 45 Hz .
$\pm 1 \mathrm{~dB}$ from second harmonic of rejaction frequency to 250 kHz .
Included battery.
$174 \times 11 \times 8 \mathrm{in}$.
f120.
Descriptive technical leaflets are available on request

RADFORD LABORATORY INSTRUMENTS LTD.

 BRISTOL BS3 2HZTelephone: 0272, 662301

Not from Farnell. For example, the TM 6. A highly sensitive precision millivoltmeter for use at frequencies up to 1.5 GHz . It displays with reliable accuracy, r.m.s. voltages from 1 mV to 300 V f.s.d., the readings on the lower ranges being about as near to true r.m.s. as you can get.

It's solid state with linear I/Cs, F.E.Ts, photo-choppers and full wave diode probe to ensure maximum reliability and freedom from microphony. It operates from mains or batteries and will also feed a pen recorder.

Supplied complete with probe, earthing clip, X 100 multiplier and instruction manual it costs just $£ 220$. Accessories for optimum performance above 20 MHz include a ' T ' connector, $£ 14$: ' N ' adaptor, $£ 8$; and $50 \Omega 2$ load, $£ 5$.

There's more. Our new modular r.f. signal generator is a brilliant conception and you're really missing out if you haven't studied this data. There's also a 100 MHz frequency meter and an r.f. power meter - all excellent instruments and inexpensive.

Telecommunications Division

FARNELL INSTRUMENTS LIMITED, SANDBECK WAY, WETHERBY, YORKSHIRE LS22 4DH. TEL: 09373541 or 01-802 5359 (LONDON OFFICE) TELEX: 557294

The P.E.Triffid Radio

A high quality low cost AM receiver based on thelatest I.C. development-the Ferranti $2 N 414$ radio chip

A $21^{\prime \prime} \times 15 \frac{1^{\prime \prime}}{}$

 wall chart detailing the major characteristics of the more important types of fixed capacitors used by constructors.

A fascinating and impressive instrument for the musician, composer, and all keen experimenters in sound and electronics. Comprehensive, yet easy to build due to modular design. The first part of this important series appears in this issue.

WW-059 FOR IURTHER DETAILS

TheCCS2gives you acool250 watts.

Our CCS2 beam tetrode is especially easy to design into co-axial circuits.

That's because we've designed a special beryllia ceramic flange which separates the heatsink from any active part of the envelope.

The alternative version, the CCSI, has an anode block, the face of which is bolted directly to the heatsink.

So, if you find air blowers an embarrassment to your design, get the facts on these conduction cooled beam tetrodes.

Today's sophisticated communications equipment calls for crystals that meet the most exacting standards of the art. Standards that were acceptable a few years ago cannot meet the requirements of design engineers today. Today's tight tolerances demand quartz blanks with precision selected angles of cut, and Hy-Q use X.ray diffraction equipment to determine this most important factor.
Long term stability is assured by close engineering control of all processing in an air-conditioned environment. The blanks are checked to determine the frequency change over the temperature range and the crystal is then precision calibrated to frequency using a crystal impedance meter which simulates the manufacturer's oscillator specifications.
Hy-Q crystals are custom manufactured to meet all these exacting requirements. It is for these reasons that Hy-Q crystals have been readily accepted as a standard by the Communications Industry.
Australla's largest crystal manufacturers. Write for details.

audio radio \& vhf bridges

Each design is based on the transformer ratio-arm principle and enables accurate and highly stable impedance or admittance measurements to be made on both balanced and unbalanced systems.

At low frequencies small values of capacitance or high values of resistance can be measured at the end of very long cables.

At all frequencies three terminal measurements can be made using the guard facility of a transformer bridge to isolate one component from a complex network.

The complete range of WAYNE KERR bridges includes single frequency bridges designed for special purposes such as component batch selection and production process control.

Automatic Balancing Bridges

B421	1 kHz	
B541C	1 kHz	
B642	$1591.6 \mathrm{~Hz} \quad$ (Manual 200 Hz to 20 kHz)	
B700	1 kHz	(Manual 200 Hz to 20 kHz)

For more information call Bognor Regis (02433) 4501 or write to the address below:

WAYNE KERR

Durban Road, Bognor Regis, Sussex PO22 9RL A member of the Wilmot Breeden group

Manual Bridges

B500 $2 \times$ line freq and 1 kHz
B224 . 200 Hz to 50 kHz
B201 $\quad 100 \mathrm{kHz}$ to 5 MHz
B601 $\quad 15 \mathrm{kHz}$ to 5 MHz
B602 $\quad 100 \mathrm{kHz}$ to 10 MHz
$\mathrm{B} 801 \mathrm{~B} \quad 1 \mathrm{MHz}$ to 100 MHz

anew 50MHz oscilloscope

Telequipment's D83 is not just another 50 MHz scope. It's a brilliant combination of performance and plug-in versatility

at the incomparabied $\mathbf{2} 450$

Look what you get -
A $6 \frac{1}{2}$ in CRT operating at 15 kV which provides brighter traces and 50% more viewing area than $8 \times 10 \mathrm{~cm}$ CRT's.

Dual trace operation in alternate and chopped modes with $5 \mathrm{mV} /$ div sensitivity all the way up to 50 MHz .

Choice of a High Gain Differential Amplifier operating down to $50 \mu \mathrm{~V} /$ div sensitivity.

Easier and faster measurements of complex waveforms with the MIXED SWEEP feature built into the DELAYED SWEEP TIME BASE. Think of the advantages of two selectable sweep speeds on a single trace.

Stability of a high order due to the adoption of the latest solid-state circuit technology, ensuring trouble-free operation over long periods.

These are only some of the advantages offered by the D83 - find out the rest by sending for full details now.

Telequipment \ll

TEKTRONIX UK LTD.
Beaverton House, P.O. Box 69, Harpenden, Herts.
Telephone: 61251 Telex: 25559.

Wireless World

Electronics, Television, Radio, Audio

 tions in the Intensive Care Unit of Northwich Park Hospital, Harrow, is the subject of this month's front cover. The system, installed by S.E. Laboratories, provides bedside monitoring and recording for each patient with a central monitoring console.

In our next issue

Digital multimeter project. The first part of a three-part article which describes the design and construction of a versatile digital multimeter using integrated circuits. Frequency, period, voltage, current, resistance and capacitance measurements are presented on a $3 \frac{1}{2}$-digit, seven-segment display.
The design and production technology of modern audio tape heads will be outlined, against the background of increasing demands for higher fidelity.

Contents

News of the Month

Radio-paging by telephone
"Two-eyed" TV tube
U.K. amateur radio frequencies

85 Circards - 5: Audio Circuits by J. Carruthers, J. H. Evants, J. Kinsler \& P. Williams

87 Versatile Triangle Wave Generator by D. T. Smith
89 Announcements
90 About People
91 Experiments with Operational Amplifiers - 7 (Cont.) by G. B. Clayton
93 Books Received
93

101 New Products
105 World of Antateur Radio
106 Real \& Imaginary by "Vector"
A87 APPOINTMENTS VACANT
Al06 INDEX TO ADVERTISERS

ibpa

Mitimazional Busnes
Piess
Assoctales

I.P.C. Electrical-Electronic Press Ltd

Managing Director: George Fowkes
Administration Director: George H. Mansell
Publisher: Gordon Henderson

C I.P.C. Business Press Ltd, 1973
Brief extracts or comments are allowed provided acknowledgement to the journal is given.

Price 20p. (Back numbers 40p.)
Editorial \& Advertising offices: Dorset House, Stamford Street, London SE1 9LU.
Telephones: Editorial 01-261 8620; Advertising 01-261 8339
Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London S.E.1."
Subscription rates: Home, £4.35 a year. Overseas, 1 year £4.35; 3 years $£ 11.10$ (U.S.A. \& Canada 1 year \$11,
3 years $\$ 27.75$). Student rates: Home and Overseas 1 year $£ 2.18,3$ years $£ 5.55$ (USS.A. \& Canada 1 year $\$ 5.75$, 3 years $\$ 14.50$).
Disiribution: 40 Bowling Green Lane, London ECIR ONE. Telephone 01-837 3636
Subscriptions: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RH16 3DH. Telephone (1)44453281 Subscribers are requested to notify a change of address four weeks in advance and to return envel pe bearing previous address.

Video-from Bell \& Howell

In the United Kingdom Bell \& Howell Video means:-

Electrohome
Grass Valley JVC Nivico

Thomson CSF Tamron Viscount

Monitors
Signal processing equipment $1 / 2 \mathrm{in}$. EIAJ1 Video tape recorders and cameras
Specialised cameras and systems Prime and zoom lenses Routing and faders and of course (in England and Wales)IVC 1 in . colour and monochrome video recorders and cameras

JVC Nivico EIAJI
This equipment, together with the Bell \& Howell team of video engineers, can provide a video system to meet your needs.
For further information write to:-
Video Systems Division, Bell \& Howell A-V Ltd.
Freepost, Wembley, Middlesex, HAO 1BR
(no stamp required if you use this address).
Or telephone: 01-902 8812.

(I BelleHowell

Bell \& Howell have a team of engineers and a world of equipment at their fingertips.

Broadcast and Cable Television

Editor:

H. W. BARNARD

Technical Editor:

T. E. IVALL, M.I.E.R.E.

Assistant Editors:

G. B. SHORTER, B.Sc.
W. E. ANDERTON, B.Sc. B. LANE

Drawing Office:
L. DARRAH.

Production:
D. R, BRAY

Advertisements:

G. BENTON ROWELL (Manager)

Phone 01-261 8339

G. J. STICHBURY

Phone 01-261 8037
A. PETTERS (Classified Advertisements)

Phone 01-261 8508 or 01-928 4597

It was hoped that, coming after nearly two years' deliberations, the recently issued first report of the Television Advisory Committee would provide a workable premise on which the Minister of Posts and Telecommunications could formulate future plans. In fact it says little, if anything, that was not already known. The main conclusions, if such they can be called, are concerned with television frequencies, the continued use of dual standard receivers and the duplication of programmes, the redeployment of bands I and III, satellite broadcasting which "could become technically feasible on an experimental basis in the 1980s", distribution by wire and, finally, reproduction on domestic receivers of recorded material.
Despite the fact that some 20% of the 14 pages of the report is devoted to distribution by wire, its conclusions are strongly criticized by the Cable Television Association (formerly the Relay Services Association) for not taking a more positive attitude to the "contribution that cable can make in the immediate future, to the value and usefulness of the television set". The Association's outgoing chairman, Barry King, of British Relay, says it "limply concludes that the status quo must be maintained at least for 13 years". Indeed, status quo is writ large over the whole report. It may be unfair to judge this report in isolation for it does state that the five reports of the T.A.C.'s Technical Sub-committee will be published later and it may well be that these will give some worthwhile technical information on which the Minister can base his decisions.

We will confine ourselves in this leader to the question of cable television, variously called - relay, wire broadcasting (a misnomer, if ever there was one) and telediffusion.

What is the present position in this $£ 100 \mathrm{M}$ industry in this country? The franchise to operate the various relay services conducted mainly by four major groups will terminate in 1976 when the B.B.C. and I.B.A. licences come up for renewal. Until recently the relay companies were not allowed to originate material of any nature to feed into their networks and the television programmes relayed had to be those normally received on a domestic aerial in that locality. There was, however, a recent change of heart on the part of the Ministry and permission has been given for an experimental period until June 1976 for local programming. Pilot schemes are to be conducted in Sheffield (British Relay), Bristol (Rediffusion) and Swindon (Radio Rentals and EMI) in addition to the Greenwich scheme which has been operating for some months. The companies involved in these experiments are not allowed to operate them on a profit-making basis. Recalling the fiasco of the pay-television experiment of a few years ago in which British Relay (the only company which in the event took up the challenge) is thought to have lost nearly $£ 1 \mathrm{M}$, the companies feel that they are again being hamstrung by the Minister's terms of operation. Obviously, with such heavy capital investment the relay companies are anxious to know that the future holds. Will the cable systems eventually be taken over by the Post Office as part of a national cable information service? What part is cable likely to play in the extension of the television service? Perhaps a glimpse into the future was given recently in a paper at the I.E.E. by Charles Sowton (director of radio technology at the M.P.T.) who is chairman of the T.A.C.'s Technical Sub-committee. He said "While cable systems for the distribution of television and sound programmes have, so far, been provided separately from the telephone system, if we are to have a nation-wide cable television system in the future there would seem to be merit in considering whether there might not be advantages in combining it with other existing and future communication requirements. In the extreme one can envisage a wideband 2 -way, switched communications network capable of meeting all requirements, including telephone and viewphone, meter reading, electronic mail delivery, facsimile reproduction of newspapers, information retrieval, and many others, besides television and sound programmes for entertainment and for educational purposes".

Incidentally, the hand of international bureaucracy is also meddling in this area. The Commission of the European Communities has asked the design office of Innovation, Communication Structures to carry out a study on cable TV. The Commission's bulletin "Industry Research and Technology" recently stressed the desirability of preventing this "new mears of communication from developing on similar lines to TV and with similar consequences, i.e., on separate and insufficiently co-ordinated bases".

Distortion Reducer

Added to audio power amplifiers reduces t.h.d. and i.d. without loss of gain

by D. Bollen

Many audio power amplifiers in general use today have harmonic distortion levels of more than 0.5% somewhere in their useful frequency range or at maximum rated output, the chief offenders being those in the low price, i.c., and high power "pop" categories. This article describes an active feedback system which can be added to such amplifiers to clean up their sound by reducing total harmonic and intermodulation distortion without loss of gain. The
principle employed is similar to an error feedback loop in a servo system. Valve amplifiers, transformer transistor amplifiers, and amplifiers prone to instability may not function satisfactorily with the reducer circuit.

Modern transistor audio power amplifiers of the transformerless type can offer a very flat gain characteristic and unvarying phase relationship between input and output over a wide frequency range, and this

Fig. 1. Distortion reducer with inverting power amplifier. D, equivalent amplifier input distortion; $G D$, distortion at amplifier output ; D_{f}, distortion feedback signal.

Fig. 2. Distortion reducer with non-inverting power amplifier.
makes possible a straightforward method of extracting a distortion feedback signal without recourse to frequency dependent filters. Briefly, operational amplifier techniques are used to subtract the input signal from an attenuated version of the power amplifier output signal, thus leaving a difference signal consisting of distortion and noise. This difference signal can be fed back in anti-phase to the power amplifier input to reduce the unwanted error, with an attendant lowering of hum and output impedance, a slight decrease in stability, and some modification of frequency response due to phase differences between the power amplifier and reducer circuit.

In a typical case, t.h.d. and i.d. at 1 kHz can be reduced by ten, or down to 0.1%, whichever is greater, and by about five at 30 Hz and 20 kHz , with comparable increases in damping factor. Hum is reduced about seven times. The reducer circuit contributes its own distortion and wideband noise while, at the same time, working to lower power amplifier distortion and noise, with the result that final noise level is maintained at a level of about -70 dB . Frequency response can be within 2 dB of the original from $20 \mathrm{~Hz}-40 \mathrm{kHz}$.

With the above amount of distortion reduction, and a resistive amplifier load with $2 \mu \mathrm{~F}$ in parallel, overshoot or ringing on a 10 kHz square wave will be increased approximately by a factor of five.

In the block diagram of the reducer Fig. 1, op-amps A, B, and C form a distortion selective feedback loop shown by the thickened line. Each op-amp has unity gain inputs and is inverting (i.e. 180° phase difference between input and output, signified by a minus sign). The power amplifier also inverts and has a gain $-G$.

Distortion, in its several forms, is a complex function only loosely related to signal amplitude, and for this reason the description which follows is simplified for convenience. It is assumed, for example, that harmonic distortion can be considered as a constant equivalent input signal D-with a negative sign in the case of inverting power amplifiers-and that the measured distortion at the power amplifier output is D multiplied by amplifier gain G.

The operations performed upon signals by the circuit of Fig. 1 are as follows. Input S from the pre-amplifier is inverted by amplifier A and passed to the power amplifier as
$-S$. The power amplifier adds $-D$ to $-S$ and multiplies both terms by $-G$ to give an output $G S+G D$. A potentiometer set for a coefficient $1 / G$ then cancels out G to leave $S+D$ at one of the summing inputs of amplifier C. At the other amplifier C input is $-S$, which has previously been taken from the pre-amplifier and inverted by amplifiers B. Functions $S+D$ and $-S$ are summed and inverted by amplifier C to leave $-D_{f}$, the distortion feedback signal. Finally, after inversion by amplifier A and summation with the original input signal, D_{f} is presented to the power amplifier input, clearly in anti-phase with the equivalent input distortion signal $-D$.
The net effect of the unity gain distortion feedback loop in Fig. 1 is to halve distortion while leaving the amplitude of the output signal $G S$ unchanged. If now a gain G_{2} is given to the D_{f} input of amplifier A the amount of distortion reduction obtained will be, ideally,

$$
\frac{1}{1-\left(-G \times \frac{1}{G} \times G_{2}\right)}=\frac{1}{1+G_{2}}
$$

but to this must be added any distortion contributed by the reducer circuit itself. Obviously, all forms of distortion and noise, in short anything which is not present in the input signal S, will tend to be reduced in the above manner.

In the case of a non-inverting power amplifier A, B, and C amplifiers are rearranged as shown in Fig. 2, to feed an appropriate anti-phase error signal back to the input. Bridge output power amplifiers consist of two separate amplifiers fed by a phase splitter, so this application will demand two reducers, one for each output terminal, with error signals fed back to the power amplifier halves after the phase splitter, as in Fig. 3.

Circuit considerations

When compared with the cost of replacing or redesigning a power amplifier and its power supply for lower distortion, the price of the reducer circuit is negligible. Nevertheless it was considered desirable to aim for simplicity and economy consistent with a useful amount of distortion reduction and reasonable noise level.
The op-amps used in the reducer circuit could hardly be simpler, based as they are on single transistors of the BC109 type. Power amplifier sensitivities of 100 mV to IV can be accommodated without modification or loss of gain, and unlimited power
outputs by adjustment of a single resistor value. The complete circuit of Fig. 4, for use with inverting power amplifiers, is optimized for distortion versus noise at around 500 mV input r.m.s. At high power amplifier sensitivities noise becomes a problem which can be solved by accepting some gain loss, while at low sensitivities minimum attainable distortion can rise to 0.2%.
Op-amp A in Fig. 4 has adder inputs R_{1} and R_{2}, with R_{1} handling the input signal at unity gain and R_{2} adjusting distortion feedback loop gain starting at times three. Capacitor C_{2} provides compensation to offset high frequency instability. Emitter

Fig. 4. Circuit of distortion reducer, for use with inverting power amplifiers.

Fig. 5. Circuit of distortion reducer, for use with non-inverting power amplifiers.

Fig. 6. Distortion/frequency curves of test amplifier.

Fig. 7. Distortion/power curves of lest amplifier.
follower $T r_{2}$ is capable of driving power amplifier input impedances of down to $1 \mathrm{k} \Omega$ at 500 mV without increased distortion. Op-amp B is a simple unity gain inverter which feeds op-amp C input R_{14}. Resistors R_{2} and R_{13} are adjusted for a null at the distortion product terminal.
In Fig. 4, an output taken from across the loudspeaker load is passed via R_{X} to R_{13}, and thence to op-amp C input R_{15}. Resistor R_{X} is selected on the following basis: $R_{X}=(\sqrt{W R} / S)-2$, where R_{X} is in kilohms, \boldsymbol{W} the power amplifier output in watts given by an input signal S in volts r.m.s., and R the loudspeaker impedance. There is sufficient latitude in the value of R_{X} for the above calculation to be based on manufacturer's power amplifier data.

Capacitors C_{1}, C_{3}, and C_{4} in Fig. 4 are chosen to give a steep cut below 20 Hz , and this discourages low frequency instability. If desired, the l.f. roll-off can be modified by adjusting the value of C_{1} (see Fig. 8).

A second version of the distortion reducer circuit, for use with non-inverting power amplifiers, is shown in Fig. 5. The only differences between Fig. 4 and Fig. 5 are connections to op-amp inputs and outputs and the positions of C_{3} and C_{4}.

Results

Apart from random checks with various amplifiers, a pair of low cost power amplifiers of 10 watt rating were built for detailed tests with the reducer, from an anonymous circuit which claimed "less than 1% distortion".

Alone, one power amplifier oscillated freely with a $2 \mu \mathrm{~F}$ load, while the other showed one cycle of ringing on a 10 kHz square wave. This disparity was thought to be due to gain variations in the transistors
used, since the layouts were identical. Wideband noise, excluding hum, was -60 dB for the unstable amplifier and a good -80 dB for the other, which gave a "lop sided" hiss in stereo headphones. The distortion characteristics of the power amplifiers were similar, and not untypical, with claimed distortion being exceeded at 8 watts, and beyond the limits of $40 \mathrm{~Hz}-8 \mathrm{kHz}$ at 3 watts. The lowest t.h.d. obtained was 0.15% at 100 mW and 1 kHz . With an unregulated power supply of generous 3A rating at 30 V , and $10,000 \mu \mathrm{~F}$ smoothing, power amplifier hum was an inaudible $<0.5 \mathrm{mV}$, but 3 mV hum could be simulated by removing a smoothing capacitor. Apart from noise, listening tests with normal loads revealed no discernible difference between the two power amplifiers.

When a pair of distortion reducers was coupled to the power amplifiers noise was equalized at -70 dB , giving "centre of the head" hiss in the stereo headphones, and the 3 mV hum level was reduced to less than 0.5 mV . With single loudspeaker and crossover network loads there was virtually no overshoot or ringing on a 10 kHz square wave.

Distortion curves, with and without reducers, are shown in Fig. 6 and Fig. 7. A single spot check of intermodulation distortion indicated a similar reduction factor. In the frequency response curve of Fig. 8, there is a general loss of 1 dB gain attributed to circuit tolerances, and slightly disconcerting, though small, kinks at $20-30 \mathrm{~Hz}$ and $80-100 \mathrm{kHz}$.

As might be expected from Fig. 6 and Fig. 7, the subjective improvement in power amplifier sound was most noticeable at low and high frequencies, and at maximum output. Over an extended period of use no

Fig. 8. Frequency response of test amplifier.
vices appeared, and the distortion reducer circuits remained in alignment.

Construction and alignment

Component layout is not particularly critical. A distortion reducer in breadboard form, coupled to a power amplifier by six feet of microphone cable, operated well at up to six times distortion reduction, but with slightly enhanced wideband noise and hum. A compact and screened layout, with the reducer situated close to the power amplifier will ensure optimum results, and a stereo pair of reducers can be assembled on a circuit board which is small enough to fit inside a 2 oz tobacco tin.
The simple voltage regulator of Fig. 9 will serve to power a couple of reducers from a positive power amplifier supply rail of $30-60 \mathrm{~V}$. Alternatively, the reducer circuit of Fig. 4 or Fig. 5 could be modified for negative supply rail operation by substituting, say, $\mathrm{BCl} 59 \mathrm{p}-\mathrm{n}-\mathrm{p}$ transistors for the n-p-n BC109, and an OC29 for the 2N3053 of Fig. 9 , with the zener polarity reversed.
An oscilloscope of $10-30 \mathrm{mV} / \mathrm{cm}$ sensitivity and an audio signal generator are needed to align the reducer circuit.

Remove the power amplifier load, set R_{2} and R_{3} to mid resistance, and C_{2} to approximately half capacitance, connect the 'scope to the distortion product output terminal and switch on. Inject a 1 kHz signal of sufficient amplitude to give a clear trace without overloading the power amplifier and adjust R_{3} for a null. If there is any evidence of high frequency insiability its

* fitted with push fit $50^{\circ} \mathrm{C} / \mathrm{W}$ heat sink

Fig. 9. Simple regulator for power supply for distortion reducer.
source should be traced before connecting a load to the power amplifier.

Next, with the usual loudspeaker load connected, trim R_{2} and R_{3} for minimum trace amplitude on the 'scope until high frequency blurring of the trace occurs just past the null position of R_{3}, then screw down C_{2}. There is some interdependence between the settings of R_{2} and R_{3}. Also, a change of load impedance, say from 8 to 16 ohms, may require a re-trim of R_{3}.
Finally, connect the 'scope to the power amplifier output and check the frequency response. If there is excessive peaking at 20 Hz , reduce the value of C_{1}.

It should perhaps be stressed that the distortion reducer's alignment will be upset if there is a subsequent change of power amplifier gain, and for this reason all gain and tone controls should be situated in front of the reducer, including stereo balance. If the reducer gives excessive noise with sensitive power amplifiers a pre-set pot of $5-25 \mathrm{k} \Omega$ can be wired to the power amplifier input, and this should be adjusted for the required sensitivity prior to reducer alignment.

Components

Resistors (all 5\% hi-stab or oxide, unless shown otherwise)
1-330k
$2-100 \mathrm{k}$ min. horizontal pre-set
3-100k
$4-6.8 \mathrm{k}$
$5-100 \quad 14-330 \mathrm{k}$

6-470k
15-330k
$7-1 \mathrm{k}$
8-330k
9-100k
10-- 100 $16-100 \mathrm{k}$ 17-470k
$18-6.8 \mathrm{k}$ 19-100
$11-6.8 k$
$12-100$
$R_{X}-$ see text
$13-2 \mathrm{k}$ min. hor. pre-set
Capacitors (all 250 V polyester, unless shown otherwise)
$1-47 n$
2-40p mica compression trimmer
3-47n
4-22n
$5-100 n$
Transistors
1,2,3,4-BC109
5-2N3053

Diode

1-BZY88C20 (400mW, 20V, 5\%)

Sixty Years Ago

This letter to the editor of The Marconigraph for February, 1913, was written by a thunderstruck wireless operator. Wireless telephony was, obviously, in its experimental phase, using arc transmitters and rotary r.f. generators for the production of continuous waves. Modulation was a problem (no valves) and was accomplished by the use of water-cooled microphones in the aerial circuit.

A Strange Occurrence

SIR, - On December 17th, 1912, about 4 p.m., as the ss. "Keemun" was coming out of the harbour, Yokohama, I put on my receivers, and after "listening-in" for a few moments, I was very much surprised to hear, in place of the customary Morse buzz, a faint unusual sound of varying pitch, which on "tuning-in", I recognised to be a human voice singing! For a few minutes the tune was drowned by the sending of a neighbouring station, but between the breaks, however, the voice was faintly but distinctly audible. When this station ceased transmitting the tune and the words became easily distinguishable, and they proved to be those of the "Village Blacksmith".

Two verses were heard, and towards the end the voice became clearer - possibly due to some readjustment of the transmitter being used. and the final words "Like chaff from a threshing floor", were as distinct as though from a gramophone.

Later in the evening I called up the Japanese Government station, Chosi, and asked him if he could suggest who was likely to have been experimenting in wireless telephony, and he replied probably the Department of Communications at their laboratory in Tokyo. My receiving set is of the ordinary ship type, and as detector I then had a piece of silicon in use.
Yours, etc.,
Herbert S. Peet.

Correction

The B.B.C. has pointed out an error in the article "High-standard Low-frequency Source" (January issue) regarding the accuracy of frequency of the Radio 2 transmitter at Droitwich. The carrier frequency is in fact maintained to an accuracy of ± 2 parts in 10^{11} and not ± 5 parts in 10^{10} as stated.

Binding of Wireless World

Readers may like to know that our publishers will undertake to bind their copies of Wireless World. The inclusive cost is $£ 2.25$ (plus VAT after April 1st). Copies should be sent to IPC Business Press Ltd, Binding Department, c/o 4 Iliffe Yard, Walworth, I ondon S.E.17, with a note of the sender's name and address. A separate note, confirming despatch and enclosing the remittance, should be sent to IPC Business Press (Sales \& Distribution), 40 Bowling Green Lane, London EC1P 1AN.

For those who wish to bind their own copies cloth binding cases are available from the latter address at an inclusive price of 50 p (plus VAT after April 1st). Readers will have noticed that the index for volume 77 (1971) was included in the December issue. Copies of the index are available price $12 \frac{1}{2} \mathrm{p}$.

News of the Month

Radio-paging by telephone

The U.K's first public telephone radio-paging communication service has been introduced by the Post Office. Centred in Reading on a 500 sq. mile area of the Thames Valley, the service will provide contact with people carrying pocket radio receivers whenever they are in range, simply by dialling a telephone number. A capacity of 3,540 customers under this system can be provided with radio-paging pocket "bleepers", each being identified by its own exclusive 10 -digit number. Dialling this number instructs v.h.f. transmitting equipment to send out a radio signal to activate a high-pitched 10 -second "bleep-bleep" signal.

A preliminary reaction to the service is expected after the initial six months of operation and if successful, this could be the first step towards a national radio paging service operated by the Post Office with development of refinements such as a variation in the bleep to permit up to three different signals to be received, allowing users a wider choice of action. At present, communication is one-way only, so the users must prearrange the action to be taken on receipt of a radio-paging call. A call to a receiver is first accepted by the service's computer-controlled equipment and a recorded announcement informs the caller of acceptance. A radio signal is then transmitted to activate the bleeper. The receivers will work inside buildings, in cars
and on trains and Post Office engineers expect to achieve better than 95% successful penetration of radio signals during the trial. A store is provided in the receiver if the person carrying it does not wish to be disturbed. Switched on later, the bleeper will emit its signal if a call has been received during the store period. Five radio transmitters are covering the area around Reading, Stokenchurch, Bagshot, Slough and Maidenhead.

The paging receivers measure $11.4 \times$ $3.3 \times 2.0 \mathrm{~cm}$. and weight 113 g . Equipped with a 1.5 V alkaline battery, each receiver will operate for 925 hours, which represents approximately three months of average use. Battery economy has been obtained by the use of c.m.o.s. circuitry and by the use of a battery saver clock, which continually switches the receiver on and off for 0.28 and 1.3 seconds respectively. The receiver is basically a double superhet constructed out of six i.c. modules. Reception is in the 150 MHz band and signal pick-up is by means of a " U " shaped metal cover. The coded signal, which is an audio tone frequency modulating the carrier, contains one of 60 frequencies in the range 288.5 to $1,433.4 \mathrm{~Hz}$ and a two-tone sequence is used. When the first tone is transmitted for 2.7 seconds, only the receivers responding to this first tone will stay on, ready to decode the second tone which is transmitted for 0.8 seconds. Once recognized, the called receiver sounds a

2 kHz "bleep" note of 80 dB s.p.1. at 30 cm . This will persist for several seconds but may be arrested by depressing the single control switch, which has three positions, "on", "off" and "memory". An accompanying block diagram outlines the system employed for converting the identifying digits, which reach the computer-control equipment as Strowger pulses, into a binary-coded format which is suitable for handling by the control equipment. There is complete flexibility in the association of paging numbers and paging codes, the association being made by means of instructions entered into the computer from a control teleprinter. The mini-computer used in the terminal is the Digital Equipment Corporation type PDPII with a basic storage capacity of 192,000 bits. Calls are queued and released in batches at 15 -second intervals. The tone combination for each pager code is generated in turn from instructions passed to a frequency synthesizer.

Radio-paging receivers cost $£ 5$ a month to rent, with an initial payment of $£ 5$. Calls to a receiver will be free during the introductory period.

Licence evasion

Continuing reduction in the number of licence evaders is forecast by the Ministry of Posts and Telecommunications in a statement on the computerization of television licence records. Development of a new system has now been completed by the Post Office (acting as the Minister's agent in the collection of TV licence fees) and this will eventually hold details of over 18 million television licences on a central computer file.

Following pilot schemes at a number of London offices, national implementation of the computer system is to be provided. The larger provincial centres including Leeds, Bradford, Huddersfield, Birmingham, Liverpool, Manchester and Bristol will be first to go on the computer after London and the whole country should have been converted to the computer system by July 1976 when Lerwick in the Shetland Isles is finally included. The computer file will issue reminders and check the notifications that dealers are bound by law to supply about the disposal of television sets.

Anti-collision braking system

A set of equations describing the action of a car anti-collision automatic braking system has been worked out by a General Motors Corporation Research Laboratories engineer in the United States. The principle of the system is similar to the anti-collision device described in October 1972 News of the Month and incorporates a programmed, on-board computer that receives information from a radar mounted on the front of the car. The radar would determine vehicle speed, distance to the object ahead and the relative speed between the object and the vehicle. These

parameters would be transmitted to the computer, which would then determine the proper application of brakes and signal the braking system to stop the vehicle before a collision could occur. Simply stated, the formulae compare what can be controlled (speed, distance and closing rate) with what can't be controlled (gravity and friction) and determine the conditions for keeping the vehicle on the safe side of the comparison.

Conference of the Electronics Industry 1973

The administration of the Conference of the Electronics Industry is now being carried out by the Electronic Engineering Association, under the chairmanship of Dr. B. J. O'Kane, president of the E.E.A. The Conference of the Electronics Industry is a consultative organization and provides a forum for consultation between leaders of the industry and its associations, and for reaching agreement on matters which require representation at the highest level, in particular to the government. Now that Britain has joined the E.E.C., the need for a more broadly based organization capable of speaking for the industry as a whole becomes increasingly important. The recent Devlin Report advocated a big reduction in the number of independent secondary associations and outlined various methods which could be adopted to bring this about. In view of this aim, the Conference of the Electronics Industry (C.L.I.) assumes greater importance as it broadly combines all the major associations representing the electronics industry in the U.K.

"Two-eyed" television tube

A TV camera tube with two "eyes", or targets, that is expected to enhance the performance and lower the cost of single tube colour TV cameras has been developed by RCA. Called a Bivicon tube, it was designed originally for the RCA HoloTape video recording system and is particularly well suited for generating colour pictures from two-frame holographic or photographic films in which the luminance (black and white) portion of the picture is projected onto one target and the chroma (colour) information, in suitable encooed form, onto the second target. The tube is claimed to provide excellent registration between the luminance and chroma information without additional auxiliary coils because the beams generated by its two electron guns are controlled by a single magnetic focus and deflection system. These beams "read" out the stored picture information from the two targets and provide simultaneous output signals that can be superimposed with precision.

This 38 mm camera tube, designated type C23244, can also be used to replace single target vidicons in single-tube colour cameras that separate the luminance and chroma signals by optical filtering. It has
an advantage over the vidicon in such an application because its second target can process the colour signals independently. In addition, the tube can be used in other TV applications in cameras designed to produce simultaneous optical images that can be played back on separate monitors or superimposed on a single monitor. The double-beam, double-target feature provides a desirable degree of redundancy for use in unattended cameras. A TV surveillance camera with two fixed lenses might be electronically switched from one "eye" to the other to provide close-up and wide angle shots of an area under surveillance.

Ion implantation of chargecoupled devices

Shift registers, for large memories, composed of l.s.i./i.cs are readily assembled from charge-coupled m.o.s. devices. A problem is posed, however, by the possible falsification of stored information when transfer losses occur between one device and the next. A novel implantation technique, developed by Siemens, reduces the disturbing influence of the potential thresholds encountered in the gaps between m.o.s. devices to such an extent that the charges can be transferred from one device to the next almost without loss.

In their simplest form, charge-coupled devices consist of a series of closely spaced m.o.s. capacitors, each composed of a metal gate electrode, an insulating film - the gate oxide - and a homogeneous semiconductor substrate. The charges representing the information are transferred by means of electric boundary fields between the electrodes of the m.o.s. devices. The efficiency depends on the potential thresholds in the gaps between the electrodes, part of the charge to be transferred being unable to pass a potential threshold in the gap. Siemens have introduced an implantation step in which boron ions are implanted in the gaps between the devices, thereby reducing the potential thresholds to a level favourable for charge transfer. Potential thresholds could hitherto only be reduced by way of the stray electric fields of the devices, which necessitated very narrow gap widths (less than $3 \mu \mathrm{~m}$). This technique allows a larger gap to be used between the metal electrodes without endangering charge transport, and since gaps of $7 \mu \mathrm{~m}$ are allowed, quantity production is possible. Experiments conducted with charge-coupled devices having 150 electrodes showed that the transfer loss remains below 0.2% even with relatively large gap widths. Before the introduction of ion implantation, the information loss for a gap width of $7 \mu \mathrm{~m}$ was almost 100%.

Computers for fire fighting

Glasgow Corporation's Fire Department has unveiled plans to link the majority of its fleet of fire appliances directly to a central computer system in a move to fight the City's fire menace. Small

Small linear structures (the thumbprint gives an impression of the size) are l.s.i. charge-coupled devices for which Siemens have introduced an ion implantation technique, making possible the transfer of charge from one device to the next in a shift register (right in photograph), almost without loss.
facsimile printers installed in the drivers' cabs of between 30 and 40 fire engines will be used to print out detailed information on buildings and fire hazards supplied from the computer system via a radio link as soon as an alarm has been raised. Contracts for the $£ 72,000$ computer system have been signed with Honeywell Information Systems and it is due to come into operation during June and July.

The computer system, a duplex Model 316, will hold information initially on 4,500 properties, mounting up to 10,000 within two years. The information, from forms filled in by fire officers going their normal rounds, covers the plans of buildings and details of all known fire hazards. This information will be kept up to date on a daily basis. In addition, a special file will be held of 1000 different hazardous substances and how to handle them in the event of fire. This file relates directly to the fireman's "black book" of hazardous substances.
Telephone numbers of all public call boxes in Glasgow, giving their addresses, and a street number and name index covering 5,500 streets, will also be maintained on the computer as an aid to pinpointing the whereabouts of a fire.
Several developments to the computer
system are already being planned to come into operation within two years. One of these is an "unmanned watchroom" whereby the automatic fire alarms in Glasgow would be linked directly to the computer system using analogue-to-digital interface equipment. The computer system, which will also hold records of the location of fire appliances, would then automatically send the right fire appliance to the right site without anyone but the fire crew concerned knowing what has happened.

Electronic warship

Radar, weapons and communications systems, totalling more than $£ 3 \mathrm{M}$, are carried by H.M.S. Bristol, the Royal Navy's latest guided missile destroyer. Marconi Radar Systems have provided the
surveillance and tracking radars in the ship, both to seek out aircraft and surface targets, and also to guide the Sea Dart missiles to their targets. Radar information on ship and aircraft movements is fed to the ship's tactical nerve centre, the Operations Room, by the type 992Q target indication radar. This provides accurate air and surface target positions for the ship's missiles and guns. The main communications on the ship are centred on a sophisticated m.f. /h.f. integrated communications system ICS2 which is a Royal Navy concept, designed around a number of basic modules which can be assembled in a variety of ways to suit operational needs. Operation has been simplified by applying self-tuning techniques. Provision has been made on the ship for the satellite communication

U.K. amateur radio frequencies

The following table and footnotes provide alterations to the frequencies available to the U.K. radio amateur service, which came into force on 1st January 1973. As a result of the replanning of the $420-450 \mathrm{MHz}$ band, amateur use is restricted to $430-440 \mathrm{MHz}$. The classes of emission and power for the band $432-440 \mathrm{MHz}$ remain as at present but there are limitations on the use of $430-432 \mathrm{MHz}$, which is not available for use within the area bounded by $53^{\circ} \mathrm{N} 02^{\circ} \mathrm{E}, 55^{\circ}$ $\mathrm{N} 02^{\circ} \mathrm{E}, 55^{\circ} \mathrm{N} 03^{\circ} \mathrm{W}, 53^{\circ} \mathrm{N} 03^{\circ} \mathrm{W}$. Emission classes A1, A2, A3, F1, F2 and F3, only are permitted and power is limited to 10 watts effective radiated power.

The present band $21-22 \mathrm{GHz}$ will be withdrawn and replaced by $24-24.05 \mathrm{GHz}$ which may be used by both the amateur service and amateur satellite service. A new band 24.05 24.25 GHz will be available for use by the amateur service (not amateur satellite service) on a secondary basis. The Ministry of Posts and Telecommunications has decided that steps must be taken to contain the health hazard which exists from radio-frequency radiation and as a result no amateur will be allowed to operate on the $24-24.25 \mathrm{GHz}$ band without first obtaining permission from the Ministry.

U.K. amateur service allocations (\dagger indicates change)

Frequency ${ }^{1}$ (MHz)	Max. d.c. input power ${ }^{23}(W)$	R.F. output power ${ }^{3}$ (W)	Emission class ${ }^{4}$	Footnote reference
1.8 to 2.0	10	$26 \frac{2}{3}$]		5. 6
3.5 to 3.8	150	400		
7.0 to 7.1	150	400	A1.A2	
14 to 14.35	150	400	A3.A3A	
21 to 21.45	150	400	A3H.A3J	
28 to 29.7	150	400	F1.F2	
70.025 to 70.7	50	$133 \frac{1}{3}$	\& F3	5. 8
144 to 145	150	400		5. 9
145 to 146	150	400		
$\dagger 430$ to 432	-	- J	$\begin{aligned} & \mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3, \\ & \mathrm{~F} 1, \mathrm{~F} 2 \& \mathrm{~F} 3 \end{aligned}$	5. 10
+432 to 440	150	400		
1.215 to 1.325 GHz	150	400		
2.3 to 2.45 GHz	150	400		
3.4 to 3.475 GHz	150	400	$\left\{\begin{array}{l}\text { A1,A2,A3 } \\ \text { A3A, A3H, } 3 \text { J, }\end{array}\right.$	5
5.650 to 5.850 GHz	150	400	$\left\{\begin{array}{l}\text { A1,A,A } \\ \text { F1,F2, \& F3 }\end{array}\right.$	5
10.000 to 10.500 GHz	150	400		
$\dagger 24 \text { to } 24.05 \mathrm{GHz}$ $\dagger 24.05 \text { to } 24.25 \mathrm{GHz}$	-	-		7. 111 5. 11
		-	P1D.P2D.	5. 12
5.7 to 5.8 GHz	$\{25$ mean $\}$	-	\{P2E.P3D	5. 12
10.05 to 10.45 GHz	2.5k pk $\}$	-	P3E	5. 12

[^1]system SCOT, developed, and now in production, for the Royal Navy by Marconi Space and Defence Systems. It employs two 1 m . diameter dishes mounted on either side of the superstructure. Designed to operate with both the British Ministry of Defence Skynet satellite system, and with the American Defence Satellite system, it will give the ship secure external communications on a world-wide basis.

Brain drain

The Register of Retired Chartered Engineers inaugurated in April 1971 is now well established as a free reference service for industry, commerce associations and institutions. The enrolled engineers are all Members of the 15 institutions which make up the Council of Engineering Institutions, each of which is prepared to offer advice and assistance based on an accumulation of knowledge and experience. Sponsored by the Engineers Guild Ltd, and supported by the United Kingdom Association of Professional Engineers, the Register is operated on an honorary basis, being dependent upon donations from satisfied users. Over 200 retired engineers registered in the first few months of operation; they are willing to make their services available in Britain and overseas. The register is located at The Engineering and Building Centre, Broad Street, Birmingham 1.

Briefly

Heraldic recognition

Pye of Cambridge Ltd, has been granted armorial bearings under letters patent presented to the company. The grant has been made by a King of Arms under the warrant of the Earl Marshal of England (the Duke of Norfolk) in recognition of the company's contribution to national life. In addition to the armorial bearings, the company has been granted the use of seven heraldic badges.

Works of art

Seven of Bang \& Olufsen's audio products have been chosen by New York's Museum of Modern Art for their permanent design collection.

Defective detective

One of our readers has pointed out a cutting concerning TV detector vans from the Portsmouth News which reads, "Signals transmitted by the receivers are picked up by the detectors, which are so accurate that they can even determine to which station the receiver is tuned". Here's the crunch, "A receiver continues to transmit even after it has been turned off".

New technology?

"Access helps you listen in. In stereo" - a technological discovery made by the new credit card system. Let us know if you find any more electronic nuances for "Briefly".

A review of the theory and application of microwaves

1: solid-state oscillators

by M. W. Hosking, M.Sc.

Since its rapid development for radar during the second world war, the science and application of microwave energy has steadily increased. Less widely publicized, perhaps, than other fields of science, microwave systems play an ever more important role in our modern world. Our holiday air flight is tracked overland by numerous radar stations, guided on its way by microwave beacons and helped on to the runway by microwave landing systems. Live television coverage of international events is beamed to us by satellite using microwaves and so also were the dramatic events of the Apollo lunar missions. Accurate descent control of the lunar module was made possible by a radar altimeter.

Both the radar and communications systems are built up from numerous subunits, many of which are fields of science on their own. This series of articles presents a review of some of these fields, followed by a description of some complete systems.
The microwave frequency band can be arbitrarily defined as lying between 1 GHz and 300 GHz . It is a region where the components used are of the same order of size as the operating wavelength. This means that devices are no longer lumped-element as they are in general a.c. circuitry, nor are they "large" as in diffraction optics, and this makes for unique design problems. At the lower frequencies normal a.c. circuit theory is an approximation, albeit a very good one, and becomes invalid for microwaves, where terms like voltage and current have little practical significance and circuit problems must be solved in terms of field theory and boundary conditions.

In 1964 Wireless World contained a series of basic articles \dagger on microwave techniques. Much has happened in the intervening eight years and this present series will up-date the topic of microwave power generation and describe areas not previously covered. These include aerials and radomes, miniature hybrid components, solid-state components, radar and communication systems.

The past eight years has seen immense strides made in the solid-state generation of microwaves. From virtually nothing,

[^2]there is now a host of devices, including two fundamentally new types: the impatt diode and Gunn-effect device. Transistors now oscillate above 40 GHz and can provide more than 100 W peak at 1 GHz and 5 W c.w. at 4 GHz . With some of the other devices, frequencies above 300 GHz can be generated and kilowatts of pulse power achieved. The oscillators discussed are: the impatt diode, the Gunn-effect device operating in different modes, the different types of varactor diode and the tunnel diode.

The impatt diode

First demonstrated in 1965, the impatt diode has progressed extremely rapidly and the device is presently the most powerful c.w. solid-state source of high-frequency microwave power. Over IW c.w. at 50 GHz has been achieved, with nearly 50 W pulse power at 10 GHz . Highest frequency generated to date has been about 300 GHz . The word impatt is an acronym based on the mechanisms of operation and derives from: Impact Avalanche and Transit Time.

Any oscillator can be considered to have a negative resistance, which can be produced by causing the output current to be 180° out of phase with the terminal voltage. With the invariable d.c. bias applied to oscillators, conditions are thus right for the conversion of energy from the d.c. to the a.c. field. This happens when the d.c. field causes the charge carriers to move in the opposite direction to that in which the a.c. field wants them to go. Work is thus done and the d.c. field loses energy, which is absorbed by the a.c. field. This is obviously only true for half a cycle and in a practical device the charge carriers must be prevented from giving their acquired energy back to the d.c. field on the opposite half cycle.

To explain how the diode works, it is assumed to have the impurity profile shown in Fig. 1, first proposed by W. T. Read. Many types of semiconductor material may be used, but for thermal reasons silicon is usually preferred. (The ${ }^{+}$sign denotes heavy doping.) The idea is to generate a bunch of charge by avalanche breakdown and cause it to drift uniformly across the device, thereby inducing a current in the external circuit. As the reverse bias voltage is increased, the resulting electric field is

Fig. 1. Classical impatt diode Read structure. Device is reverse biased, with + indicating heavy doping.
sufficient to sweep the region between n^{+} and p^{+}clear of carriers to form a depletion layer. Thus at the abrupt $\mathrm{n}^{+}-\mathrm{p}$ interface a high electric field is formed. When this field reaches about $350 \mathrm{kV} / \mathrm{cm}$, avalanche breakdown occurs and electron-hole pairs are generated. Once above this field value, the rate of charge build-up is exponential and so is rapid.

In this particular structure, the electrons enter the n^{+}region and can be neglected, while the charge of holes enters the depletion layer. The electric field in this layer is very much less than the avalanche field -several thousand volts per cm . A basic semiconductor property is that the charge carrier velocity gradually approaches a limiting value, due to scattering effects, as the electric field is increased. This occurs at about $5 \mathrm{kV} / \mathrm{cm}$ and in silicon the saturated velocity is near enough $10^{7} \mathrm{~cm} / \mathrm{s}$. This means that the time taken for the charge carriers to cross the depletion region can be made independent of bias voltage.

We are now in a position to understand the energy-conversion process and the production of microwave oscillations. Assume that the bias voltage is increased until the electric field intensity is just below that required for avalanche breakdown. At this point there will be sufficient energy in one of the ever-present, random noise carriers to trigger off the avalanche process. For clarity, Fig. 2(a) assumes the steady-state condition where oscillations have already built up. During the first half of the a.c. cycle, the field is increased, avalanche multiplication commences and charge carriers build up at an exponential rate. When the alternating voltage falls below zero, the process decays exponentially.

The result is shown in Fig. 2(b) where,
on a linear scale, the charge density is seen to be a sharply defined spike and in particular the peak charge now lags the peak alternating voltage by 90°. Under the influence of the d.c. bias, this bunch of charge now drifts across the depletion region at constant velocity and therefore induces a constant current in some external circuit. If the diode depletion width is such that the carrier transit time corresponds to one half-cycle of the alternating voltage, then the induced current will be 180° out of phase. This is a negative resistance effect and conditions are right for the a.c. field to absorb energy from the d.c. bias.

Thus, the frequency of oscillation is approximately $V_{s} 2 w$, where V_{s} is the saturated carrier velocity of $10^{-7} \mathrm{~cm} / \mathrm{s}$ and w is the depletion width. For a frequency of $10 \mathrm{GHz}, w=5 \times 10^{-3} \mathrm{~cm}$. Also, at this frequency, the junction area is about $5 \times$ $10^{-4} \mathrm{~cm}^{2}$ giving rise to bias current densities of around $10 \mathrm{kA} \mathrm{cm}^{-2}$. Good heat sinking is therefore essential and for this reason, among others, the semiconductor chip is usually mounted in a sealed package. A typical result is shown in Fig. 3(a), this being a standard microwave encapsulation.

Having done this, the various parasitic reactances associated with the package must be taken into account when designing the overall oscillator circuit. Although complex, the general effect of the package is to introduce a shunt capacitance across the device terminals and an inductance in series with them. The first is due to the physical separation of anode and cathode terminals and the second is due to the length of the package itself. A simplified yet practical equivalent circuit is shown in Fig. 3(b). The relative values of the main device parameters may best be demonstrated by taking a top-quality currently available commercial device as an example. Designed to operate in the vicinity of 10 GHz and produce a c.w. output power of one watt, the equivalent circuit values are
diode capacitance at breakdown 1.2 pF
diode negative resistance at full output power 2Ω
package inductance 0.6 nH
package capacitance 0.3 pF
A simple circuit analysis is sufficient to show that the effect of the package is to alter the terminal impedance from $-2-\mathrm{j} 13$ ohm to $-7+\mathrm{j} 46 \mathrm{ohm}$. The operating conditions would be
d.c. bias voltage 80 V
bias current 200 mA
avalanche breakdown voltage 65 V efficiency 7\%
The low efficiency requires that 15 watts of bias power be dissipated from a semiconductor chip about 0.016 -in diameter and 0.0002 -in thick. Maximum theoretical efficiency is also relatively low, at 15% for Si and 23% for GaAs and much of the current device technology is aimed at reducing the overall thermal resistance.

Trapatt diode

Another acronym, this one stands for Trapped Plasma Avalanche Triggered Transit and was first reported in 1967. The ordinary impatt diode can be made to oscillate in this mode, which is characterized by a lower fundamental frequency and

Fig. 2. Field profiles for the Read diode. Note the narrow avalanche region with peak current delayed 90° on peak voltage.

(b)

Fig. 3. (a) Typical package used up to 20GHz, $10 \times$ full size. (b) Simplified equivalent circuit: overall effect of L_{p} and C_{p} degrades performance of the chip semiconductor

Fig. 4. Trapatt diode coaxial oscillator circuit. Tuning slugs form a variable low-pass filter which appears as a short circuit to Impatt-mode frequencies.
much higher efficiency. Some results achieved to date are: 300 W pulse power with 75% efficiency at 550 MHz and 20 W pulse power with 45% efficiency at 3 GHz . By stacking five diodes together, a peak power output of 1.2 kW with 25% efficiency has been achieved at 1100 MHz .

A simple explanation of this device can be given by considering the impatt structure of Fig. 1. With the bias voltage increased to the point where avalanche breakdown occurs, then oscillations will commence as previously described. If the microwave circuit into which the diode radiates is made to present a short circuit to these oscillations, the power will be reflected back into the diode. With the proper phase relationship, the result can be a very large voltage swing in the avalanche region of the diode. This causes a massive quantity of charge to be generated by ionization and can neutralize the electric field behind the original avalanche charge build-up, causing it to drop to zero.

At the same time, the field at the front of this charge bundle is sufficiently high to produce ionization throughout the remainder of the diode. Thus, what we have is an avalanche shock-front which propagates rapidly through the material, leaving trapped behind it a dense hole-electron plasma; trapped because the carrier density is great enough to reduce the bias field almost to zero. Gradually, however, the field intensity will recover due to the steady influence of the bias voltage and a large current will fiow; holes drifting to the right and electrons to the left in our model.

This recovery period is much slower than the normal impatt transit time, due to the fact that the electric field is, for most of the time, below the $5 \mathrm{kV} / \mathrm{cm}$ or so required for a saturated velocity. The situation will then revert to the starting point of a locally high electric field and very little current fiow. Direct-to-alternating energy conversion is basically the same as in the impatt case; here it may be considered as occurring at one of the impatt subharmonics. Note that the conditions for high efficiency are more pronounced in the trapatt mode. That is, high current at low voltage and vice versa.

A simplified circuit suitable for supporting trapatt oscillations is shown in Fig. 4. The diode itself is mounted at one end of a coaxial line and radiates into a low-pass filter. The diagram shows the form that such a filter might take in practice.

Thus, at harmonics of the trapatt fundamental, this filter looks like a short circuit, while at the trapatt frequency, it looks like an open circuit. By altering the relative position of diode and filter, it is possible to vary the frequency, as the diode oscillates with a wavelength given approximately by $2 L$.

Both the impatt and trapatt diodes are the subject of much theoretical and technical study at present as their potential application is widespread and they bid fair to replace the low-power klystron and medium power travelling wave tube for many applications.

Gunn-effect device

Named after its discoverer and also called
the transferred electron device, its microwave oscillations were first demonstrated in 1965. Unlike the impatt effect, which can be obtained from virtually any semiconductor with a carefully doped profile, the Gunneffect is a bulk phenomenon, particular to only a few semiconductors having a certain energy band structure. These are known as two-valley semiconductors as in their conduction bands there are two different energy levels which can be occupied. In the lower energy band, electrons have a low effective mass and high mobility, while in the higher energy band they have high mass and low mobility. This arrangement is crucial to the Gunn-effect and is exhibited in materials such as indium phosphide, cadmium telluride, zinc selenide, indium arsenide and gallium arsenide

At present, all commercial devices are made from n-type GaAs; not because this is necessarily the best, but because the GaAs material technology is more advanced. The energy band structure for n-type GaAs is shown in Fig. 5 (a); note the large difference in carrier mobility - hence drift velocity and resistivity - between the two states.

A Gunn-effect device consists of a chip of uniformly doped n-type GaAs with an ohmic contact at each end. With no d.c. bias, nearly all of the electrons occupy the low-mass, high-mobility energy band. If a voltage is applied across the sample and steadily increased, the electron kinetic energy also increases. At the point where about 0.36 eV has been gained, the electrons jump abruptly into the higher band. Here they are much heavier and slow down very quickly. As the bias voltage is increased, the electrons slow down still further and thus exhibit a negative differential mobility i.e. a negative resistance effect. Fig. 5 (b) shows the velocity versus electric field curve caused by the above effect. The overall result of this energy transfer is to build up a travelling bunch of charge, as in the impatt diode. However, the process is completely different and can be visualized as follows.

With bias applied, then the electrons travel from the bias supply to the ohmic contact at their normal high velocity. On entering the semiconductor, they are abruptly slowed down and near the cathode, there results a sort of electron traffic jam-a local accumulation of charge. This domain, as it is called, continues to grow until it effectively neutralizes the field at the contact and causes it to fall below the critical value for energy band transfer. Thus, no further bunch of charge will accumulate and the domain propagates across the semiconductor as a sharp spike at near the saturation velocity of $10^{7} \mathrm{~cm} / \mathrm{s}$.

On reaching the anode the domain disappears giving rise to a pulse of current and at the same time the field at the cathode rises again and so continues the process. Thusthe natural oscillating frequency is given by the domain velocity divided by the device length and results in the semiconductor being about twice as thick as for the impatt diode, i.e. 0.001 cm for 10 GHz oscillation.

To obtain good efficiency from the Gunn-effect device, it must be operated in a resonant circuit. The current pulses

Fig. 5. (a) Energy band diagram for GaAs. The $0.36-\mathrm{eV}$ level represents the quantum energy step between the two levels. (b) Velocity'versus electric field for GaAs. Peak indicates the stage at which electrons jump from one level to the other and start to slow down.
described above will then shock-excite the circuit into resonance, thereby producing an alternating voltage and hence microwave output power. When mounted in this way, the resonant frequency and operating bandwidth are primarily determined by the circuit itself and the device can be made to operate in any of several energy transfer modes.
The efficiency of these devices is relatively low, the theoretical maximum being about 13% and 27% depending on the mode of operation. Power output is generally lower than for the impatt diode due to more severe thermal limitations. A typical commercially available device might have the following parameters
package reactances as in Fig. 3.

operating frequency	10 GHz
output power	200 mW
bias voltage	9 V
bias current	900 mA
efficiency	2.5%

An advantage of the Gunn-effect device is that it operates at more usual power supply voltages which is useful in small portable or airborne radar systems.

LSA device

The external resonant circuit has a large effect in controlling the Gunn-effect. In particular, if the resonant alternating voltage is large enough, it can subtract sufficiently from the bias field to cause quenching or delayed starting of the Gunn domain. Thus, if the circuit is designed to have a resonant frequency several times that of the Gunneffect frequency, then the domains will not have sufficient time to form before they are quenched by the voltage swing. With the right circuit conditions, the complete semiconductor length is thus biased into the negative resistance region and held there. The rapid a.c. field thus absorbs
energy continuously from the d.c. field and the frequency is independent of sample length.
This is termed the "limited space-charge accumulation" (l.s.a.) mode and holds promise of very high powers at high frequency. Because the effect is not a transit time one the sample can be made much longer, improving its power handling. The main technical problem at present is obtaining pure enough GaAs , as impurities can give rise to spurious domains being formed, leading to thermal runaway. However, to give an idea of its capabilities, the following results have been obtained: 150 watt peak power at 18 GHz with 6% efficiency, 200 W peak at 7 GHz with 5% efficiency and 6 kW peak at 1750 MHz with 15% efficiency. We are still talking about devices the same order of size as a pin-head. The above represents the highest output powers ever achieved from a single semiconductor device.

Tunnel diode

Since its discovery in 1958 a lot of attention, both theoretical and practical, has been devoted to this device and many claims made for its application. In spite of this the tunnel diode has never really caught on significantly in the microwave field. This is largely due to its poor power handling capabilities, leading to very low oscillator outputs. Typical results might be: 10 mW at 5 GHz and 0.2 mW at 50 GHz with about 2% efficiency, now greatly overshadowed by the Gunn and impatt devices. The upper frequency limit of the diode is, however, very high and frequencies in excess of 100 GHz have been generated. Future applications are probably limited to low-noise microwave amplifiers and high-speed logic elements.

The diode gets its name from the manner in which current flow occurs, leading to the production of a negative resistance region of operation. Consider the situation when a p -n junction is formed: charge carriers in the vicinity of the junction tend to drift across, thereby forming a potential barrier either side of a space-charge or depletion region. Thus, a state of equilibrium is reached wherein there is no net current flow and both classical physics and intuition tell us that to get an electron across this barrier to the opposite side of the junction, it must be given an additional energy equal to the barrier potential.
However, when quantum physics is applied, then the position of any electron at any instant of time is a question of probability Further, under certain junction conditions, it turns out that an electron on one side of the barrier can have a very high probability of suddenly finding itself on the opposite side. One presumes that the early experimenters shied from the idea of the electron scaling the potential barrier and gave it the more devious attribute of tunnelling beneath it.

Although a number of semiconductor materials can be used, tunnel diodes are usually fabricated from Geor GaAs andtake the form of a very heavily doped p -n junction. A typical doping density is $10^{19} / \mathrm{cm}^{3}$, giving very narrow depletion layer widths of around $10^{-6} \mathrm{~cm}$. The tunnelling probability decreases exponentially with increasing
depletion width, so very small values are required and this represents the main restriction on operating power level.

Fig. 6(a) demonstrates the $V-I$ characteristic of the tunnel diode and may be understood with the aid of Fig. 6(b). As drawn, this represents the condition at zero bias, corresponding to point 1 in Fig. 6(a). The doping is sufficiently high to partially fill the conduction energy band with electrons and leave a lot of unfilled levels in the valence band. With the application of a small forward bias, conduction band electrons are given more energy and the band will be raised. So these electrons "face" corres ponding empty levels in the valence band, but are separated by the potential barrier of the depletion layer. A tunnelling current flows under these conditions and is represented by the portion of the curve up to point 2 ; this current is proportional to the amount of overlap of the energy bands. As the bias voltage is further increased, raising the conduction band still higher, the amount of overlap will start to decrease with voltage. This leads to a corresponding decrease in tunnel current and gives the negative resistance part of the curve, down to point 3. After this stage is reached, the bias is sufficiently great to cause the normal forward diffusion current to flow.

For use as an oscillator, the diode is mounted in a resonant circuit and coupled to the load. Usually a resistance is placed in series with the diodes as a stabilizer to suppress unwanted oscillations. Two important factors affecting oscillator and amplifier stability can be deduced from the equivalent circuit of Fig.6(c). From the expression for input impedance it can be seen that there is a particular frequency for which the resistive part of the impedance becomes zero and another for which the reactive part becomes zero. These aretermed the resistive and reactivecut-off frequencies, f_{R} and f_{x}

At frequencies above f_{R}, the resistive part of the input impedance becomes positive and the diode is no longer angactive device. Below f_{x}, the diode is inductive and changes, through self-resonance at f_{x}, to capacitive at frequencies above f_{x}

Compared with Gunn and impatt devices, the tunnel diode would seem to offer little competition in output power. Unlike these devices, though, tunnelling is not a transit-time effect, so the diode can operate at very high frequencies, above 100 GHz , before being limited by the various parasitic reactances. The tunnel diode also has a very low noise figure, about 5.5 dB at 10 GHz , and can compete in some circumstances with mixer diodes and thereby find application as an amplifier in receiver front ends. In a slightly different form, it is also a very sensitive r.f. detector, when it is usually called a backward diode.

Varactor diode

Unlike the devices so far reviewed, the variable reactance (varactor) diode is not a fundamental oscillator but instead multiplies an input frequency by generating its required harmonic. Such harmonics can be generated by an oscillating signal acting on any non-linear impedance. However, for

Fig. 6. (a) Typical I-V curve for the tunnel diode. (b) Valence and conduction bands for a p-n junction. Tunnelling current is a function of the amount of overlap of these bands. (c) Equivalent circuit of a packaged tunnel diode.
the case of a variable resistance diode, such as the conventional mixer, the efficiency cannot be greater than I / N^{2}, where N is the harmonic number. Whereas the varactor diode, which makes use of a non-linear capacitance, has a theoretical efficiency of 100% and can be up to 80% in some circuits.

Varactor diodes are generally made from silicon or GaAs and take the form of a p-n junction with the non-linear element being provided by the junction depletion layer capacitance. This capacitance can be made to have a strong dependence on the applied voltage, where values might range from many tens of pF at 0 V to 1 pF or less at the reverse breakdown voltage. The capacitance is $C_{o} /(1+V / \phi)^{m}$ where C_{o} is the capacitance at $0 \mathrm{~V}, V$ is the applied bias, ϕ is the barrier potential and is typically 0.5 V for Si and 1.1 V for GaAs , m depends on the junction doping profile, being $1 / 2$ for an abrupt junction and $1 / 3$ for a linearly graded one.

If an alternating waveform is impressed across the varactor, an infinite series of harmonic frequencies will be generated. By the design of suitable resonators to give impedance matching and filtering, the extraction of power at the required harmonic can be obtained. Basically the nonlinear action can be considered as firstly doubling the input frequency and producing
harmonics and intermediate harmonics and secondly, acting as a mixer to produce the further range of output frequencies.

These intermediate harmonics are known as idlers and, in the case of the abrupt junction varactor, currents at the idler frequencies must be allowed to flow if more than a doubling action is required. While not essential to the graded junction varactor, idlers are often introduced to increase the efficiency. Although higher harmonics can be produced, the varactor is usually designed as a doubler, tripler or quadrupler. Above this, the circuit becomes very complex and power handling is reduced. Higher frequencies and powers are produced by coupling together chains of varactor multipliers.

For the generation of high-order harmonics from a single device, there exists a variation on the varactor called the steprecovery diode (s.r.d.). By suitable doping of the p-n junction profile and choice of material (usually Si), the incident r.f. waveform can switch the s.r.d. rapidly between a high-capacitance, forward-biased state and a low-capacitance, reverse-biased state. If the diode is now made to form the C part of an $L-C$ circuit, the inductance will store the capacitance discharge energy and produce a train of voltage impulses occurring once per input cycle across a resistive load. A Fourier analysis of this impulse would reveal it as an harmonic-rich transient. To form a multiplier, the output from this impulse generator is coupled to a resonant circuit having a loaded Q of $n \pi / 2$. The resonator is shock-excited and responds by producing a damped, ringing waveform at a frequency n times the input frequency. Sidebands are present in this output, so the usual technique is to feed it through a band-pass filter to obtain the final output signal.

Harmonic generation using the s.r.d. offers the advantage of simplicity and higher efficiency over chains of varactor diodes. The s.r.d. is generally used for orders of multiplication greater than about 6 and can easily produce a $\times 20$ output from a single device.

A third method of producing frequency multiplication is to use the varactor nonlinear capacitance as a mixer to generate the sum of two input frequencies. This is generally referred to as an up-converter as the output frequency is made the sum of an input signal frequency and a pump frequency. This latter is analogous to the local oscillator of the conventional diode mixer which is a down-converter. In addition, the varactor or parametric up-converter has gain and finds application in low noise $(1.5 \mathrm{~dB})$ receiver front ends.

Subsequent parts in this series will cover hybrid and lumped-element circuits, aerials and radomes, and radar systems.

Further reading

Impatt, trapatt, Gunn and l.s.a. devices: Hot Electron Microwave Generators by J. E. Carroll, Arnold 1970.
Tunnel diode: Principles of Tunnel Diode Circuits by Woo F. Chow, Wiley 1964. Varactor diode: Varactor Applications by P. Penfield and R. P. Rafuse, M.I.T. Press 1962.

The Semiconductor Story

2: Search for the best transistor: continuing a four part series of articles commemorating the 25th anniversary of the transistor

by K. J. Dean ${ }^{*}$, M.Sc.,Ph.D., and G. White \dagger, M.Phil.,B.Sc.

At the start of the 1950s the transistor was a novelty. Industry needed to be convinced of its advantages over valves and electromechanical devices such as relays and magnetic amplifiers. Besides, there were a number of types being developed--which was the best? Even the textbooks of the period hedged their bets, taking as much space over point contacts as over junction transistors. But the electronics industry, at least, was just beginning to take notice. In 1952 the Post Office Research Station at Dollis Hill had demonstrated the first line amplifier to be made in the U.K. which used junction transistors, while a year later in America, Texas Instruments produced their first pocket transistor radio.

1953 was an important year for the U.K. semiconductor industry. One might almost say that was its birth, for in that year a number of companies set up manufacturing plants, among them G.E.C., Mullard, Ferran'ti and Pye, who were not then in the Philips group. One of the problems at that time was that the available germanium transistors did not have worthwhile gain at radio frequencies. Naturally, therefore, one of the first commercial applications that they chose to exploit was that of transistor amplifiers for hearing aids. The Post Office was the authority for National Health hearing aids and under its guidance Mullard developed the OC56 and OC57 junction transistors specifically for this market. At the same time, Pye at Cambridge had interested Acousticon Ltd, manufacturers of valve-operated hearing aids, in transistors and the first 300 were delivered at the end of 1955. Some of these early devices were packaged in glass cases which were filled with silicone grease and were then painted to prevent the photoelectric effect (amplified by the transistor) making the other current changes due to transistor action. Many an engineer carefully scratched the paint away to use them as sensitive photocells until the manufacturers foiled this dodge by using metal cans. Some of the first metal cases were sealed with solder, leading to examples of flux contamination. The Post Office was not satisfied with these types of encapsulation and insisted on hermetic sealing.
So difficult was the technology of junction devices to master that one manufac-

[^3]turer in those early days recorded that the yield in the first week of production was one device and another calculated that his first working transistor represented an investment of $£ 1$ million.

One seldom stops to think why the U.K. semiconductor industry developed as it did. Where did the money come from? Who made the decisions that got it all started? Many companies owed their place in transistor research to the encouragement of C.V.D. (Commercial Valve Development!) This government committee, on which the services, the Post Office and our national research establishments were represented, placed contracts for the development of transistors. It is always popular to blame government for wrong decisions or for no decisions at all, but without C.V.D. help few U.K. companies would have got started. One exception was Mullard, owned by the Dutch Philips Group, whose research was funded from the profits of selling valves. In fact their early transistors used valve nomenclature: A for diodes, B for double diodes and C for triodes. The first symbol of the type number was reserved for the heater voltage, zero for transistors of course. So the OC70 was clearly a triode with no heater.

Difficulties with germanium

The first transistors were germanium devices but for a long time the material which would eventually be best was in doubt. Supplies of germanium were limited as

Fig. 1. Slab of n-type germanium with two indium-doped pellets alloyed to it so that it will be modified to p-type immediately below them after heating. The resulting alloy junction transistor was illustrated by a phoiomicrograph in Part 1 of this series.
there were only three known ores. Two sources were in Zaire (then Belgian Congo) not a particularly stable part of the world; a third ore, germanite, came originally from South Africa, but the mines were exhausted there so that its chief source was from ores imported into Germany before World War I. In addition certain coals contain germanium and at that time the principal supplier in the U.K. was Johnson Matthey who indicated that their main source was from flue dust. Hence, the price of pure germanium was high-about $£ 100$ per lb. Meanwhile in Japan the Tokyo Gas Company was extracting germanium from waste coal-gas liquid-one of the first signs of competition from the Far East. It was estimated that one ton of germanium would make 200 million transistors and that in a few years 40 tons per annum would be needed for the world market, against the current production of three tons per annum, including the germanium needed for other purposes. Something had to be done.

Silicon was the obvious contender. Like germanium it is a group IV element; also, after oxygen it is the most common element in the earth's crust, but its melting point is $1420^{\circ} \mathrm{C}$ compared with $937^{\circ} \mathrm{C}$ for germanium. The purification of germanium requires a heating and cooling cycle of seven hours, one hour of which was at $1050^{\circ} \mathrm{C}$ in an atmosphere of pure dried hydrogen. The temperatures for silicon are correspondingly higher. Large quantities of expensive argon are used, which had to be reclaimed, and there were difficulties with phosphorus and boron impurities. Also the quartz (that is, silica) of the crucibles used tended to dissolve in the silicon. As late as 1955, S.T.C. (Standard Telephones and Cables) reported that their own attempts to purify silicon to the extremely high standard of purity required had not been successful. "No further work was done," the report adds, "due to the loss of the man doing it." Nowadays a large proportion of manufacturers are content to buy-in purified semiconductor material in slices for them to process.

Successes with silicon

Texas Instruments were first in the field with silicon transistors in 1952 and had a virtual monopoly for three years. At first the ${ }^{\text {cour- }}$ rent gain was low and the frequency response was poor due to the lower mobility of charges compared with germanium.

There were difficulties in controlling the technology, but leakage currents, always a difficulty with germanium, were much less. Ferranti, which had not until now been in semiconductors, decided to work solely with silicon (except for a small production of germanium tunnel diodes) on entering the field.

Difficulties with materials were by no means the only problems: there were insistent demands for higher frequency operation and higher power also. Receivers at that time were even being designed with valve "front ends" and transistor audio stages operating earphones. In 1954 S.T.C. had joined the semiconductor club, much of the work being done in germanium at the Brimar Valve Company's Engineering Division at Footscray, the basic research going on at Enfield and IIminster. Their first junction device was the $3 \mathrm{X} / 300 \mathrm{~N}$, later renamed TS1. It had a rating of 50 mW while Philips cautiously rated their transistors at only 6 mW , although after 15 months of life tests they were upgraded to 25 mW . Pye moved their semiconductor plant to Newmarket primarily to develop a solid-state radio which was marketed by Pam in 1956. Meanwhile in Japan, Sony had started manufacturing transistors in 1953. A year later, they produced their first transistor radio and so started a virtual monopoly of short-wave and f.m. transistorized receivers, which was to last a decade. At this time, the best that the U.K. could offer was the V6/R2 of Newmarket Transistors and OC44 of Mullard, both of which had $f_{T}=6 \mathrm{MHz}$.

New types of transistors

The first junction transistors had grown junctions, produced by overdoping, in which the predominant impurity of the melt was interchanged at regular intervals as the crystal was drawn from it. The method was unsuitable for quantity production. The characteristics of these transistors left much to be desired-with light doping at the start and heavy doping with correspondingly lower resistivities at the end of the pull. Consequently, the alternative method of alloying which had been known since 1948 was the one which was principally developed and which resulted in most of the devices described earlier. In this process, small pellets of impurity material are fused to one side of the gernanium slice and somewhat larger ones to the other side to form emitters and collectors respectively. For p-n-p transistors indium was used and lead-antimony pellets for n-p-n types. Subsequently, the slice was cut up intochips. It was an adaptation of this process which seemed to offer the best solution to higher frequency operation. This was the alloy diffused process developed simultaneously in Holland and in the U.K. (by Julian Beale) by Mullard.

The alloy for one of the pellets was a mixture of two impurities. There was a fast diffusing n-type impurity to define the base, with a slower diffusing p-type material. Hence, on heating, the first diffuser goes ahead of the alloy front. This process produced a graded base in which carriers crossed the base region more quickly than in the simple alloy types. Furthermore, the
process lent itself to mass production. The OC170 was developed first in 1959 for operation at 100 MHz , and later the AF114 and u.h.f. transistors like the AF186 with $f_{T}=$ 600 MHz , so that from 1961 to 1967,30 million alloy diffused transistors were sold.
Germanium was also used for power transistors, the V30/10P for example, capable of $3 W$ dissipation, produced by Newmarket in 1956 and the Mullard OC28 in 1963, the collector current of which was 15 mA . The essence of the art of making power transistors was to keep the thermal resistance between the active region of the

Fig. 2. Cross-section of a p-n-p alloy diffused transistor. Two $100 \mu \mathrm{~m}$ wires are soldered to two lead-antimony pellets. The left-hand pellet also contains a small quantity of aluminium, applied as a paint after an initial alloying cycle. After subsequent heating to complete the alloy the left-hand pellet forms the emitter. The other lead is for the base. (Photo: Mullard Ltd)

Header of an OC28 power transistor. The semiconductor chip is towards the left of the header. The longer strap connects to the emitter. The base strap (at the bottom) carries the chip which is about 4.5 mm square.
junction and the case as low as possible so that heat could be dissipated easily by a heat sink on which the transistor was bolted. However, it was clear that for most applications silicon would be the best material. It is perhaps ironic that at this time large contracts were being given to manufacturers in the States by the U.S. Government to set up substantial production facilities to support projects such as Minuteman and other defence programmes, whilst at precisely the same time the U.K. Government was abandoning the idea of a U.K. based nuclear deterrent so that similar British projects were not forthcoming and manufacturers in this country were not so actively encouraged to establish manufacturing plants. These American plants were large, because at that time the yield of good transistors from semiconductor chips was small, calling for a number of parallel production lines. As yields became greater, the manufacturing potential of the plants rose. Thus the U.S. production scene prospered whilst development at this critical time in Britain was much slower.

Of course all this resulted, in time, in a substantial cut-back in prices. The Financial Times of 27 th March 1958 stated that a typical price for a transistor in 1956 was $£ 3$, $£ 1.75$ in 1957 and $£ 1.4$ in 1958 (expressing the figures in new currency). A letter of about the same time from Pye to the Radar Research Station, then at Tolworth Rise, Surbiton, gave the price of an audio transistor, for large quantities, as 80 p . All this was but a foretaste of things to come ten years later.

Risks of the game

The end of the 1950s left manufacturers still looking for higher frequency and power, but some of them were by now particularly conscious that the major outlet for transistors would be in data processing. Hence these companies concentrated on faster switching transistors and, incidentally, changed the whole outlook of the electronics industry from being dependent on the fortunes of the communications industry, as had been the case prior to 1939, to being dependent on the ups and downs of the computer industry as is predominantly the case today. Patents covering transistors had been filed on behalf of the Bell Telephone Labs. and any structure which looked as though it would not be an infringement of these patents was particularly attractive, since there was such a large market potential. A number of these cases have been before the courts since.

No discussion of switching transistors can omit reference to gold doping. The use of gold as a dopant had been known from experience with diodes. The presence of gold reduces the lifetime of minority carriers in the collector region and thus reduces the turn off time of the transistor. However, its presence can reduce lifetime in any region of the transistor, including the base region where it is not wanted. The process which is used for most switching transistors is one of diffusion followed by rapid quenching. The diffusion parameters are somewhat critical, hence the yield of devices tends to be reduced by gold doping.

Research being carried out by W. E Bradley of the Philco Corporation under a U.S. Navy contract had resulted in a fundamentally new type of transistor-the surface barrier transistor. It depended on the properties of the surface of a uniform germanium crystal being different from that of the bulk material. The production method consisted of etching a germanium slice from both sides with a metal salt solution through which current was passing. Then by reversing the current flow, electrodes could be plated on to the germanium. These electrodes not only made contact with the n-type germanium but provided a suitably high density of holes for the device to operate Bradley's original paper, in late 1953, mentions a frequency of 60 MHz and, if this was not enough, it was whispered that this owed nothing to Bell Labs patents. Thus the surface barrier transistor seemed at that time to be a highly saleable commodity.

Philco was a company of some repute and the second-largest U.S. radio manufacturer pre-1939. Their interest in semiconductors had extended to taking part in the Bell Symposium in 1952 which was the first opportunity companies had to "buy-in" on the results of Bell's research. Records for 1955 show that Philco was one of the top three U.S. transistor manufacturers with 70% of

Fig. 3. Microalloy diffused transistor etched by liquid directed at both sides of the slab. By reversing the polarity of the etching current a suitable impurity could be plated, so that the transistor was produced with precise control of physical dimensions, such as the base width.
the American h.f. transistor market. But Philco were looking for a partner and the company with whom they linked was Plessey. Thus in 1959 the jointly-owned company, Semiconductors Ltd, was set up at Swindon. In addition to the new transistor, Philco brought to the partnership an automated production line and the knowhow to run it-and this at a time when other companies were still talking about "green fingers". Plessey were soon disenchanted with the process and found that it was only automated when graduate-controlled-an expensive operation, However, they bought out the Philco interest and adapted the electrochemical process to plate, not just electrodes, but p-type collector and emitter regions to the etched base; the transistor was sold as the M.A.D.T.-Micro-Alloy Diffused Transistor. By 1967, Plessey's interests were growing in other processes using silicon. They decided to cease manufacture of discrete transistors, the company was closed
and the whole process abandoned. Philco stayed solely in the germanium market and made no efforts to develop a silicon process. Each year sales and profits fell, until the company was taken over by Ford in 1961 as Philco-Ford. It was finally closed in 1969, much of its production and test equipment being sold to General Instrument Microelectronics. The disappearance or virtual disappearance of companies like Philco, who were leaders just after World War II, shows the heavy cost of bad management decisions or technological mistakes, often leading to an inability to attract and keep good researchers and other key staff.

Silicon takes over

If 1953 was the "Year of the Transistor" as the American magazine Fortune proclaimed in an article recently, 1960 was the year of silicon. The Post Office had carried out a study on the accelerated ageing of germanium transistors, and, as a result of this, it was definitely decided that future C.V.D. contracts should concentrate on the use of silicon. S.T.C., Mullard and Ferranti were making silicon transistors. Research was going on at the Services Electronic Research Laboratory at Baldock to make silicon mesa transistors.

In this process, an n-type silicon slice had a p-type layer diffused on to one face. Part of the face was then protected with a photoresist and an n-type layer diffused into the p-type region to give an n-p-n transistor. Finally, the active region of the slice was covered with resist and the uncovered parts of the diffused layers etched away, so that when the resist was removed the transistor was raised up above the remainder of the slice. Hence the name, mesa, after the shape of the hills around Mesa in Arizona, U.S.A., which this profile somewhat resembles.

The process was attractive since it was entirely carried out on one side of a silicon slice. It was soon seen, however, that this was no more than a further step on the road to success. The final etching to make the mesa which controlled the dimensions of the transistor was eliminated leaving the device with an entirely flat surface-the planar transistor.

Ferranti were making the ZT20 in 1960, the first European-made silicon transistors, and S.T.C. following in 1961. The ZT20 was made on lin silicon slices, later diced into 0.4 mm square chips of which 0.13 mm was the length of the active area. Transistors like this were made in batches of about 2000 on a slice. A process well suited to mass production was now available.

Epitaxy

The fact that the diffusion of planar transistors was entirely carried out on one face of the silicon slice was at the same time an important advantage and a drawback of the process. Whilst it made mass production a reality, it also meant that collector material of high resistivity had to be used so that there was the resistance of an appreciable mass of silicon between the collector contact and the active collector region near the base. This was a drawback for operation at high power and also resulted in a poorer high frequency performance than had been

Fig. 4. Mesa transistor, produced by selective masking, diffusion und etching, carried out entirely on one side of the semiconductor slab.

Silicon mesa transistor designed for high speed switching applications, with a current rating of 200 mA and a maximum dissipation of $1 W$. The chip is 0.4 mm square.

Fig. 5. Planar transistor, like the mesa, produced in one side of a slab of silicon, but with greater control of parameters. The process of epitaxy although first applied to mesa transistors was more fully developed with planar devices.
hoped. Thus even in 1962 S. T.C. could continue to sell germanium tunnel diodes and similar devices as high speed logic elements capable of 50 MHz operation, despite all their inherent disadvantages. The solution to this problem was the use of epitaxy.
In the epitaxial process a layer of high resistivity silicon, perhaps 1Ω, was first of all laid down on a much lower resistivity substrate material, perhaps $0.001 \Omega \mathrm{~cm}$. The transistor was then diffused with selective masking by photo-resist into this epitaxial layer. Such devices are sometimes referred to as triple-diffused. Although the epitaxial layer had to be sufficiently thick to contain the successive diffusions of the transistor, clearly the bulk of the substrate material is now of much lower resistivity. Faster switching transistors of this kind first made their appearance in the U.K. in 1962.
Perhaps the impact of these advances can

February Meetings

Tickets are required for some meetings: readers are advised

 therefore to communicate with the society concerned
LONDON

6th. IEE - "Stability of non-linear feedback systems" by A. Mces and Prof. Sir J. Lighthill at 17.30 at Savoy PI.. WC2.

6th. IEE/IEETE - Discussion on "Teaching techniques" at 17.30 at Savoy PL., WC2.

7th. IERE/IEE - "A brief review of techniques in foctal. infant and child audioiogy" by Dr. R. J. Bench at 18.00 at 9 Bedford Sq_{I}. WC 1 .

7th. BKSTS - "Video and film special effects" by William Fitzwater and A. B. Palmer at 20.30 at the National Film Theatre. South Bank, Waterloo, SE1.

12th. IEE - "DICE - a digital equipment for converting between North American and European television standards" by J. L. E. Baldwin, J. A. Coffey. R. L. Greenfield, A. D. Stalley and J. H. Taylor at 17.30 at Savoy PI., WC2.

13th. IERE/IEE - Colloquium on "The 25th anniversary of the transistor' at 10.00 at the Royal Society. 6 Carlon House Terrace, SWI.

13th. AES - "Loudspeaker evaluation using a digital Fourier analyser" by R. V. Leedham and L. R. Fincham at 19.15 at the IEE, Savoy PI., WC2.

14th. IEE/IERE - "The invention of the transistor: an example of creative-failure methodology" by Prof. W. Shockley at 17.30 at Savoy Pl., WC2.

15ih. IEE - Symposium on "Electro-magnetic interference" at 9.30 at the Royal Aeronautical Society, 4 Hamilton Pl., W 1 .

15th. IEE/IERE - Discussion on "What next in semiconductors?" at 10.30 at Savoy Pl.. WC2.

15 th . IEE - "The influence of the transistor in our society and economy" by Prof. W. E. J. Farvis at 15.30 al Savoy PI.. WC2.

15th. IEE - Faraday lecture on "Navigation: land sea. air and space" by Dr. A. Stration at 18.00 at Central Hall. Westminster. SW 1.

15th. RTS - "Tape or film - marriage or divorce?" by G. Cook and D. Kentish at 19.00 at I.B.A., 70 Brompton Rd., SW3.

16th. IEE/IERE - Colloquia on "Computer memories: The expected impact of semiconductor memories" at 10.00 and "Future bulk storage technologies ${ }^{31}$ at 14.00 at Savoy PI., WC2.
16th. IEE Grads. - Faraday lecture on "Navigation: land, sea, air and space" by Dr. A. Siratton at 18.30 at Central Hall. Westminster, SW1.

16th. R. Institution - Discourse on "Lasers: present and future" by Prof A. L. Schawlow at 20.50 at The Royal Institution, 21 Albemarle St., WI.
19th. IEE - "Space instrumentation" by R. Young and B. R. Kendall at 17.30 at Savoy PI., WC2.
21st. I.Phys - One-day meeting on "Semiconductor low light level detectors" at 11.00 at Imperial College. SW7.

2Ist. IERE - "Electronagnetic interference in ships" by T. Morgan at 18.00 at 9 Bedford S 4 ., WC1.

26th. IEE - Colloquium on "Interactic graphics in circuit design" at 10.30 at Savoy Pl.. WC2.

28th. IEE - "Seeing in the dark" by Dr. P. Schagen and Dr. A. J. Goss. E. D. Henry and R. D. Nixon at 16.00 at Savoy Pl.. WC2.

28th. IERE - "Digital phase lock loops" by K. Throwet and P. Atkinson at 18.00 at 9 Bedford Sq., WCI.

ABERDEEN

20h. IEE Grads. - "Microelectronics" by Dr. E. Price at 19.30 at Robert Gordon's Institute of Technology. Schoolhill.

BELFAST

20rh. IERE - Discussion on "Reliability in electronics. fact or fiction" at 19.00 at Cregagh Technical College, Montgomery Rd.

BLANDFORD

21st. IEE - "Current needs and applications of h.f. propagation" by W. R. Piggott at 18.30 at Blandford Camp.

BIRMINGHAM

14th. RTS - "Television service fit for artists" by Dr. Boris Townsend at 19.00 at ATV, Broad St.

19th. IERE -- "Modern dynamic measurement techniques" by Dr. J. D. Lamb and Dr. P. A. Payne at 18.00 at the Dept. of Engineering Production, The University.

26th. IEE - "The development and application of a computer-based colour c.r.t. display system" by A. J. H. Wilkins at 18.00 at MEB, Summer Lane.

BRIGHTON

20th. IEE - "Tomorrow's world in telecommunications" by W. J. Bray at 18.30 at The Polytechnic.

BRISTOL

12th. IEE - "Solid state devices useful for engincering" by A. A. Buck at 18.00 at Queen's Bldg., The University.

CAMBRIDGE

22nd. IEE/IERE - " 5 km radio telescopes" by Sir Martin Ryle at 18.30 at the University Engineering Laboratories, Trumpington Street.

CARDIFF

14th. IERE - "A short-hop radio-relay system at 20 GHz " by R. R. Walker at 18.30 at UWIST.

CHELMSFORD

7th. IERE/IEE - "Feed forward: yesterdays techniques applied to tomorrow's amplifiers" by Dr. T. J. Bennett at 18.30 at the Civic Centre.

CROYDON

7th. IEE Grads. - "Viewphone and confravision" by J. R. Taylor at 18.30 at Croydon Technical College, Fairfield.

EASTBOURNE

6th. IEE - "Audio systems for the average home" by H. Mayo at 18.30 at Seeboard Offices, Willingdon Road.

EVESHAM

13th. IERE - "How high is hi-fi?" by D. Aldous at 19.30 at B.B.C. Evesham Club.

HULL

22nd. IEE/IERE - "Developments in radio telephone communications" at 18.30 at Y.E.B.

LEEDS

15th. IEE/IERE - "Induction motor speed control by use of permanent magnetic materials" by W. Shepherd at 19.00 at the University

LIVERPOOL

7th. IERE - "Self organizing control systems" by Dr. D. W. Russell at 19.00 at the Electrical Engineering and Electronics Dept., The University.

19th. IEE - "Modems in transmission lines" by A. Galpin at 18.30 at Electrical Engineering Bldg.. The University, Brownlow Hill.

LOUGHBOROUGH

13th. IERE - "25 Years with the transistor" by Dr. K. J. Dean at 18.45 at Edward Herbert Building, The University.

20th. IERE - "Modern dynamic measurement techniques" by Dr. J. D. Lamb and Dr. P. A. Payne at 19.00 at Edward Herbert Building, The University.

MANCHESTER

12th. IEE - "Some aspects of electromagnetic field theory" by Dr. J. Rawcliffe at 18.15 at Renold BIdg., UMIST.
15th. IERE - "Noise reduction techniques" by D. P. Robinson at 18.15 at Renold Building, UMIST.

NEWCASTLE-ON-TYNE

5th. IEE - "Optical communications" by F. F. Roberts at 18.30 at Room M421, The University.

14th. IERE - "Electronics and crime prevention" by A. T. Torlesse at 18.00 at Ellison Building, The Polytechnic.

NEWPORT, I.o.W.

9th. IERE - "Acoustic surface wave devices and applications" by Dr. J. Heiway at 19.00 at the Technical College.

PLYMOUTH

Ist. IEE/IERE - "Marine satellite communication system" by Dr. W. P. Williams at 19.00 at The Polytechnic.

PORTSMOUTH

14th. IEE/IERE - "Design of British scientific satellite" by D. J. McLauchlin at 18.30 at the Polytechnic.

PRESTON

20th. IEE Grads. - "Colour television" by A. Gee at 19.30 at Harris College.

READING

15th. IERE - "Digital communications in the mobile environment" by B. D. Parker at 19.30 at the J. J. Thomson Laboratory, The University.

RUGBY

20th. IEE - "European communications satellite proposals" by J. L. Crauder at 18.15 at Lanchester Polytechnic

SALFORD

21st. IERE - Modern dynamic measurement techniques" by Dr. J. D. Lamb and P. A. Payne, at 14.30 at Maxwell Buildings, The University.

SHEFFIELD

13th. IEE Grads. - "Electronics in motor vehicle testing and servicing" by B. M. Forster at 19.30 at the University

21 st. IEE - " 25 years of semiconductor devices" by K. J. Dean at 18.30 at Telephone House, Charter Square.

SOUTHAMPTON

28th. IERE - "Port of Southampton Signal and Radar Station" by D. J. Doughty, J. C. Gunner and J. R. Laver at 18.30 at the Geography Lecture Room GI, The University.

STONE, Staffs.

26th. IEE - "High fidelity sound reproduction" by R. L. West at 19.00 at Post Office Technical Training College, Duncan Hall.

TAUNTON

15th. IEE Gads. "Technical aspects of TV programmes" by E. Benn at 19.45 at County Hotel.

Fundamental properties, and the quantities used to measure them

by "Cathode Ray"

My last treatise, on magnetism*, though it went to a length that no doubt you thought was excessive enough, said no more about permanent magnetism or magnets than a half-promise to deal with the matter later. The Editor having made some encouraging noises with reference to that proposition, here we are. Some justification for giving it special attention can be found in the odd fact that although permanent magnets are nowadays encountered by readers of Wireless World much more than electromagnets, in such things as loudspeakers, pickups, microphones, meters and recorder tape, most of the books that explain the principles of electromagnets are much less forthcoming on permanent magnets.

All magnetic effects are due to electric currents. Electric currents are movements of electric charges. We are familiar withelectric currents flowing around circuits, but every atom and molecule of every substance is made up largely of electric charges (electrons and protons) which are continually moving. In gases and liquids and the great majority of solids the molecular structure is such that these tiny currents normally cancel out. If a magnetic field is brought to bear on them, very complicated things happen \dagger. For practical purposes the net magnetic results in most materials are negligible, and we are going to neglect them and consider only the small group of materials classed as ferro-magnetic. This word comes from ferrum, Latin for iron, because iron was the first and still is an important substance found to respond very strongly to a magnetic field. But many modern permanent magnets are made of alloys of such metals as aluminium and copper and contain no iron, and others (ferrites) are not even metallic.

The molecules of ferromagnetic substances form groups, known as domains, but unlike the proud kingly ones in history they are microscopically small. In each domain the molecules are so aligned that as a whole it is a tiny magnet. In the natural state of the material the domains are randomly aligned, so their magnetic effects tend to cancel out and there is little or no external magnetism. But when placed in a gradually increasing magnetic field more

[^4]and more domains come into line with that field, in effect multiplying its strength. The multiplying factor is relative permeability, μ_{r}. (In SI units the permeability of empty space, μ_{0}, is not 1 but $4 \pi \times 10^{-7}$. The multiplying value of ferromagnetic materials, μ_{r}. is therefore μ / μ_{0}.)
This μ_{r} is a very valuable property, for such things as transformers. At audio and power frequencies, at least, the strength of magnetic field needed to generate the required voltage in the secondary winding would call for an excessively large magnetizing current in the primary if a ferromagnetic core were not used. Ideally the core material would provide a large and constant value of μ_{r}. This would be shown as a steep linear slope of a graph of magnetic flux density (B) against magnetizing force (H), as in Fig. 1. But the domain-aligning process is far from linear. Very small values of H have a comparatively small effect, yielding only moderate μ_{r}. As H is increased, domains swing into line faster, and μ_{r} increases. When most of them have already responded, large increases of H are needed to persuade the remainder; and finally there are none left, so the curve levels off at what is called saturation value, Fig. 2. For such purposes as transformer cores the working H has to be limited to the steep (high- μ_{r}) part

You may be wondering why in Fig. 2 I have shown only the $+H+B$ quarter (or quadrant) and in particular not the $-H-B$ quadrant that is equally important in a.c. applications, where there are negative as well as positive half-cycles. The reason is that there is a second departure from the ideal. Fig. 1 implies that after the first positive half-cycle has reached its peak and is declining, the domains get jumbled up again exactly in proportion to the decline in current, so that the magnetization continues to be proportional to the current, throughout the cycle. This is shown by the graph passing through the origin O on its way to and from the negative quadrant.

No ferromagnetic material behaves in this way. Soft annealed iron, usually improved by a small proportion of silicon to increase its resistance to eddy currents, is about the best that can be found, and transformer core stampings are commonly made of some such material. But just as it is usually easier to get people into a pub than to get them out again, there is a tendency for the domains to stay put until H has been

Fig. 1. Ideal magnetization curve for transformer core material, one of its advantages being complete absence of permanent magnetism.

Fig. 2. Typical actual magnetization curve of ferromagnetic material, with H held at its maximum value.
reduced well below the level that was needed to bring the material up to that B in the first place. If H is carried through a complete cycle from zero, the first positive magnetization curve is as in the steep part of Fig. 2, shown dotted in Fig. 3. During the falling phase of the positive half-cycle, the fall in B lags behind that of H, so by the time H is back to zero B still has a positive value, represented by OR. B reaches zero only when H is appreciably negative, by the amount OC. The negative half-cycle is of course similar

For many years I have raised my feeble protest against the many unsatisfactory technical terms in our art. Here we have another example. In the old days, when electric bells, relays, etc. began to be used, it was soon found that there was a tendency for the armature to remain stuck to the pole
of the electromagnet after the current had been cut off-as one would expect from consideration of Fig. 3. This effect became known as residual magnetism, and as far as I know it still is. At a rather more sophisticated stage, when $B H$ curves came into vogue, the value of B represented in Fig. 3 by OR was called residual magnetization or residual flux density or residual induction. In some books this is alternatively called remanence. In other books this term is reserved for the highest possible value of residual magnetization, which is obtained after the material has been magnetized to saturation. In yet another book, remanence is defined for a magnetic circuit, whereas it is normally applied to magnetic materials, explicitly or (more usually) implicitly in the form of a continuous ring, with no gap or variation in cross-sectional area. In view of this ambiguity I propose that remanence be abolished. There is yet another word, retentivity. A word ending in -ivity signifies a property of a material under standard conditions. The value of residual magnetization in general depends on the amplitude of H if less than saturation, but if the material has been taken to saturation it should be the same every time. So retentivity figures enable materials to be compared. On the same principle OC is called (in general) coercive force, and its highest possible value, following saturation, has the special name coercivity.
The one-way traffic circulation system shown in Fig. 3 is an example of the wellknown hysteresis curve. The fact that the up and down lines are comparatively close together shows that it refers to a fairly lowhysteresis material such as could be used for transformer cores. The reason it is important to use a material in which the area enclosed by the hysteresis loop is as small as possible is that this area represents power lost due to hysteresis. If you insist on a proof of this statement you can find it in textbooks on electrical engineering.

The usefulness of a magnet, electro or permanent, usually depends on its forming part of a magnetic circuit. It may be needed to set up a certain flux density (B) in an air gap, as in loudspeakers and meters, in order to make a coil therein move in accord with the current it carries. Or it may be needed to magnetize a piece of iron, to produce an attractive force governed by the principle that opposite poles attract and like poles repel. Pieces of high $-\mu_{r}$ material, called polepieces, are often used to serve the same sort of purpose as connecting wires in electric circuits, to connect the magnet to its "load" with the least possible reluctance.

Last time we saw (I hope) that magnetic circuits can be calculated in the same way as electric circuits with their Ohm's law. But Ohm's law is based on the discovery by Dr. Ohm that the resistance of ordinary circuit materials does not depend on the current flowing (if heating effects are disregarded). Electronics deals with circuit components that are not ordinary in this sense; their ratios of V to I are not constant, so Ohm's law cannot be applied. Instead, I is plotted against V as a characteristic curve. Suppose we have a diode, complete with characteristic curve (Fig. 4), and want to find the

Fig. 3. For comparison with Fig. 1, a typical magnetization curve of transformer core material, taken from zero to maximum (dotted) and then over a complete cycle.

Fig. 4. Example of a load-line diagram for an electric circuit consisting of a diode in series with a linear resistor.

Fig. 5. For comparison with Fig. 3, a typical magnetization curve of a permanent magnet material.
resistance (R) is series with it which will pass a certain current (I_{0}) through both when the voltage applied is V_{T}. All we have to do is mark V_{T} on the V scale of the graph, and point P on the curve, level with I_{0}, and join the two points by a straight line. The slope of this line is equal to I_{0} / V_{R}, which is the conductance of the resistor in series with the diode, so V_{R} / I_{0} is its resistance. Which is what we wanted. The same thing can be done in reverse, to find I_{0} or V_{T}, given R. If R is zero its line is vertically upwards from V_{T}, so I_{0} is large; if R is infinite (open circuit) its line is horizontal, so I_{0} is nil.
Precisely the same method is used for magnetic circuits containing ferromagnetic and therefore non-linear material (call it "iron" for short). Corresponding to V_{T} is the total magnetomotive force (call it F_{T}), and corresponding to I_{0} is $\Phi . F_{D}$ is the m.m.f. needed for the iron and F_{R} the m.m.f. needed for an air gap in series.
In an electromagnet circuit F_{T} is provided by the current in the coil, and in SI units is equal to it (every turn of the coil being counted as a separate current). It is obvious that with a diode having a curve as in Fig. 4, typical of semiconductors, if V_{T} were zero there would be no current, no matter what R was. Readers in the higher age groups and with good memories will recall that there used to be such things as thermionic diodes, whose curves began to the left of O , so current flowed through a resistance even if it was connected straight across the diode, with no V_{T}. We have just noted that ferromagnetic characteristic curves always extend to the left of O , as in Fig. 3, provided that the material has been magnetized. So if we use an electric current to raise H to a high value, and then switch the current off, we still have some B (and therefore Φ). (Our curves are B against H, but B is simply Φ per square metre and H if F per metre.) If the iron having the curve shown in Fig. 3 was a completely closed circuit, without even the smallest gap in series, then the value of B would be represented by R. There is no such thing as a perfect magnetic open circuit, but if the air gap was large its reluctance line would be nearly horizontal and the working point close to C , so almost no flux. This would obviously not be useful, neither for most purposes would the largest possible flux density (R) because it would all be inside the iron and so not directly available. As with the diode, practical "load" lines come somewhere between these extremes. Where?

Now that we have at last got on to permanent magnets it is time we took leave of Fig. 3, which illustrates a type of material in which permanent magnetism has been deliberately minimized, and looked at Fig. 5, typical of permanent magnet materials and obviously far more rewarding for that purpose. Having taken in the contrast between it and Fig. 3, we move rather swiftly to Fig. 6, in which the only quadrant that now matters has been repeated in the left-hand half, leaving the other half free for answering the question that has just been posed.

We shall take as a typical permanent magnet circuit the magnet itself in series with an air gap. Loudspeakers and meter
magnet circuits are of this type. The magnets employed to hold papers on boards or keep the fridge door shut may appear not to be, but in one there is a paper gap and in the other probably a rubber gap, and even when there is no intentional gap there is almost bound to be an unintentional one with appreciable reluctance. Allowance has to be made for polepieces where used, but their reluctance is small compared with a gap even when its length is many times less. The biggest practical departures from theory lie in what is called leakage flux. But theory is enough to be getting on with just now. And to make things as basic and simple as possible we shall assume that a magnet l_{m} in length and A_{m} in constant cross-sectional area is "feeding" a gap l_{a} long and A_{a} in area.

Neglecting leakage flux, as we are doing, we must accept that the flux Φ is the same in both:

$$
\begin{align*}
& \qquad \Phi=B_{m} A_{m}=B_{a} A_{a} \\
& \text { Therefore } \quad A_{m}=A_{a} \frac{B_{a}}{B_{m}} \tag{1}
\end{align*}
$$

And the magnetic "potential drop" must be the same across both, being equal and opposite as in Kirchhoff's voltage law for electric circuits:

$$
\begin{aligned}
H_{m} l_{m}+H_{a} l_{u} & =0 \\
\text { Therefore } \quad l_{m} & =l_{a} \frac{H_{a}}{-H_{m}}
\end{aligned}
$$

and because $H_{a}=B_{a} / \mu_{r}$, and μ_{r} for air is practically the same as for vacuum, $4 \pi / 10^{7}$, this becomes

$$
\begin{equation*}
l_{m}=\frac{B_{u} \times 10^{7}}{4 \pi\left(-H_{m}\right)} \tag{2}
\end{equation*}
$$

Multiplying (1) and (2) together we get the volume of the magnet:

$$
\begin{equation*}
A_{m} l_{m}=A_{a} l_{a} \frac{B_{a}^{2} \times 10^{7}}{4 \pi\left(-H_{m} B_{m}\right)} \tag{3}
\end{equation*}
$$

So the volume of magnet material required is directly proportional to the volume of the gap and to the square of the flux density therein. And for given values of these it is least when $-H_{m} B_{m}$ is most. So our question is answered by finding the point on the second quadrant of the demagnetization curve that corresponds to the highest value of $-H B$. This can be found by selecting a number of points on the curve, multiplying their co-ordinates, and plotting these products to a scale of $-H B$ to the right of O , as shown dotted. The maximum value of $-H B$ is of course where the resulting curve sticks out most, and by drawing a horizontal line from here to the magnet curve we find P, the working point for the smallest magnet to do the job. The gap "load" line can be drawn to it from O .

If we are too lazy or short of time to plot the $-H B$ curve we can usually get very near it very quickly by completing the rectangle with ROC as its corners and drawing the diagonal from O to cut the curve at a point that turns out to be a good approximation to P. Even this reduced effort on our part is rendered superfluous by the magnet makers, who thoughtfully mention the optimum B

Fig. 6. The left-hand half is a "load-line" diagram for a permanent magnet material in series with an air gap, analogous to Fig. 4; the dotted lines are a construction for finding the best working point, P.

Fig. 7. What happens when a permanent magnet originally working at point P is demagnetized to point X. The recovery is to point Y.

Fig. 8. One of the many ferrite ring cores in a computer magnetic store, encircling one each of the network of X and Y magnetizing wires. A third wire (not shown) is used to sense changes in the core magnetization.
and $-H$ and their product $(-H B)$ among their data. This value of $(-H B)_{\text {max }}$, however found, is the one to use in place of $\left(-H_{m} B_{m}\right)$ in (3) above.

These data figures enable fair comparisons to be made between different materials, and help one to choose the best material for a job. But I hope I've made clear that designing an actual magnetic circuit is not nearly so simple and demands a lot of experience. But again, the makers are ready to put their experience at your command, if an order is likely to be forthcoming.

There are however some points to be remembered when using magnets. Sometimes permanent magnet circuits are exposed to intentional or unintentional magnetic fields. These shift the working point to right or left from the original point, P in Fig. 6. If it is to the left (a demagnetizing field) the working point continues along the demagnetization curve from P to say X in Fig. 7. If now this external field is withdrawn, the working point finds itself in a one-way street (remember the arrows in Fig. 5?) and is bound by hysteresis to follow another track, to Y say. The strength of the magnet has been reduced. In a meter this would definitely be a bad thing. So such magnets are aged by submitting them in advance to fields stronger than they are likely to experience after calibration.

This also shows why it is not a good idea to take a permanent magnet circuit to pieces. Doing so generally introduces a relatively large reluctance in series, which makes the gap line move close to the horizontal, bringing the working point low down so that the value of B is much reduced. When the system is reassembled, much of the original magnetism is likely to have been lost. If possible, the magnet should first be shortcircuited, but that needs care, for if the iron shorting piece is drawn against the magnet violently the resulting shake-up is likely to demagnetize it considerably.

Ceramic magnets, although short on retentivity, have exceptionally large values of coercivity. So they are relatively immune to external fields, and because of the shapes of their curves they are especially suitable for high-reluctance circuits.
An application of permanent magnetism not yet mentioned is in computer memories -the ferrite-core store. Here the permanent magnets are small (down to 0.35 mm) closed rings, as in Fig. 8, and they are magnetized by current passed through straight wires threading the cores and acting thereon as one-turn coils. There are large numbers of X and Y wires forming a network or matrix, with a core around each point where they cross. Because there are no gaps in the cores, only a moderate current is needed even through the single turn to reverse the magnetization, from R to $-S$ in Fig. 5. After the current ceases the core is then at $-R$ instead of R. This large change of flux induces a pulse in a third wire (not shown in Fig. 8). If the core had been at $-R$ before the current, there would have been only a small change, from $-R$ to $-S$ and back, insufficient to induce an effective signals The currents actually passed through the X and Y wires are made only half as much as needed to reverse the magnetization, so the
only core to be reversed is the one encircling the particular X and Y wires selected, where the currents add up. So any core in the whole matrix can be selected for storing a 1 digit, corresponding to state $-R$, all in state R being 0 digits. That core can be interrogated by $+H$ currents in that particular pair of X and Y wires; if the encircling core was previously in the $-R$ state a signal is induced in the third wire; if in the R state, it is not.

Some of the newer ferrites have such enormous coercivities (such as 10 times greater than for the most effective magnet alloys) that even when powdered and embedded in rubber they are still strongly magnetic, with the added attraction of being able to surprise the uninitiated by their flexibility.

The principles we have been studying apply also to recorder tape in spite of the fact that the signals to be recorded are usually a.c. Because the tape is being drawn past the recorder head, any one line of magnetic material coating across the tape (call it L) is exposed to only one phase of one cycle of the signal; so as far as L is concerned the magnetizing force begins at zero, before L reaches the head, rises to a certain amount depending on the phase of the signal in the head coil at the moment L crosses the head gap, and then declines to zero again.

Good retentivity is needed to ensure that the coating retains enough magnetism to provide the playback head with an adequate signal. And coercivity should be enough to resist stray fields but not enough to necessitate an unreasonable erasing current. In connection with Fig. 3 I mentioned that the area inside the loop was a measure of the power loss in the core. To be more precise, it indicates the energy loss per unit volume per cycle. Now that we are thinking about materials for permanent magnets we look on this area from quite a different point of view and want it to be as large as possible. It still represents energy, but now it is the energy usefully stored in the material. Some recorder tape is described as "high-energy" tape, which one can correctly guess is tape coated with material having higher retentivity or coercivity or both compared with the usual sort which consists of ferric oxide. By treating this oxide with cobalt the retentivity and coercivity can be about doubled. This permits better signal/noise ratio (largely because of a small improvement at the highfrequency end) and signal level. Somewhat similar results are obtainable using chromium dioxide instead of ferric oxide. But unless the recording signal current and erase current are increased to the right extent, not only will benefits not appear but previous recordings will not be completely erased.

Of course the whole thing is complicated in ways we cannot go into here by h.f. "bias". Incidentally, have you ever considered that the magnetic detector used in the early days of wireless was a magnetic recorder in reverse, the incoming signals playing the part of what is now known as bias?

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Seeing in the dark

Though neither broadcaster nor camera manufacturer, may I be allowed to jump on the coat which Mr R. C. Whitehead trailed in your January issue?

He makes statements about the operating range of a television camera and the acuity of the human eye with which l, for one, will not quibble.

He goes on to suggest that modification should be made to camera channel characteristics when the camera is allowed to view scenes of low luminance in order, as he says, that the viewer should not be presented with information which a direct viewer of the scene would not perceive.

No doubt, as an engineer, Mr Whitehead resents the idea of unnatural reproduction but he must surely realize that the whole art of television broadcasting is the portrayal of an illusion, and I suggest that in his more relaxed moments he would find little to enjoy if he were presented with a truly accurate rendering of the scene in front of the camera.

The dark alleyway he mentions was probably anything but dark in the studio and it would have been inconvenient for it to be so. However, careful adjustment of the amount of light available to the camera tube together with adjustment of black level by the vision operator ensured that the illusion of gloom was successfully portrayed.

If a sports fan, would Mr Whitehead relish a true and accurate reproduction of the murky visibility of a football field or the low colour perception of a November handicap?

Some broadcasts from stately homes and gardens have inevitably been recorded under less than good lighting conditions. Should we not be grateful for the ability of the broadcaster to paint the lily and let us see something better than nature would have it be?

Mr Whitehead has not been fallacious but merely forgetful that there is more to broadcasting than the engineer's need to be faithful.
Gwilym Dann,
Chipstead,
Surrey.

If one is viewing under average ambient light, i.e. in the home, the "d.c." level about which the eye will operate on the $10-10$ range will be different to that when the eye is subjected to low ambient conditions.

Thus when the broadcaster wishes to present to the viewer a scene shot under low luminance conditions he knows that his pictures are not going to contribute much to setting the "d.c." fevel about which the eye is operating at the time. The eye will probably be set at a much higher level than that coming off the screen.

Therefore some of the realism must be sacrificed for the sake of clarity, otherwise we would have to turn down the ambient lighting every time a night scene came up so that the eye could shift its "d.c." level down to that point which it would be if it were actually viewing the scene.

This brings me to the role of the programme director. It is his job to present via the TV medium a programme that the viewer can watch satisfactorily and understand. If he wishes to shoot some night scenes he must ensure that the viewer will understand the action or detail in that scene immediately because the viewer cannot get up out of his chair and inspect the scene more closely or at a different angle as one would if one were actually in the situation depicted.

This is the situation at the moment and if one were to degrade the pictures to the extent that Mr Whitehead suggests for the sake of more realism I'm sure that the viewer would find it very difficult to follow the action.

I cannot see why Mr Whitehead only picks on these points to say that the reproduction is unnatural because until we get 3D television of lifelike dimensions it will always appear unreal to the realist.
Stephen Waring,
Worcester Park,
Surrey.

Doppler effect in loudspeakers

In his letter in the January 1973 issue Mr Harwood draws attention to the large difference between my figure of 0.001% for the "just audible" Doppler distortion and the B.B.C. figure of 0.2% derived from the Stott and Axon investigations in the B.B.C. Research Dept in 1955.

He rightly points out that the two values cannot be compared because mine were obtained using pure tones, whereas the B.B.C. data was the result of group listening tests using ordinary programme material. This is an explanation with which I would entirely agree. In fact the
listening conditions in my tests were even more critical than would appear from the simple statement above. In a semi-live room the distortion components produce their own standing wave system with the result that relatively large differences in the audible distortion thresholds may result from small head movements. In my tests the "just detectable" point was always determined with the head in the most sensitive position. In addition the Doppler distortion could be varied by a simple control so the minimum detectable value could be the result of several trials.

I would, however, comment on one aspect of the Stott and Axon data that appears to be outside the range of my experience. They suggest that wow and flutter values as high as 0.2% are acceptable on listening tests using programme material. My own experience using expert listening panels, first generationtapes and machines having known (measured) values of wow and flutter, suggest that criticism begins to appear at about the 0.05% level and that there is strong criticism of a machine with wow and flutter values around $0 \cdot 1 \%$. Simple single figures are being quoted as an indication of the wow but the frequency spectrum of the wow has a significant effect on the annoyance that is aroused, as Mr Harwood notes.
James Moir,
Chipperfield,
Herts.
Mr Harwood's summary of the subject of Doppler distortion, coming from such a source, is very valuable, but it immediately raised a question in my mind which may be puzzling others beside myself. So perhaps he could be persuaded to elucidate.

He himself emphasizes the enormous difference (29 dB) between the levels of frequency modulation (such as Doppler effect) that are subjectively perceptible with continuous tones and with programme material. But what about programme material which for significant periods takes the form of continuous tones? It can happen for several seconds at a time in the reproduction of musical slow movements, in which (for example) a flute-stop organ note is held over a pedal note. The fact that these tones may not be quite so pure as from a good audio generator would seem inadequate to account for a difference of 29 dB .

There is another curious aspect. I understand that Stott and Axon found that the kind of programme to which the ear was most sensitive was not that which most closely resembled continuous tones (as one would expect from what Mr Harwood said) but piano music, which being percussive is one of the least similar. Is there any acceptable explanation for this remarkable finding?

Could it be that the tape flutter tests of Stott and Axon are in some way not entirely valid for Doppler effect in loudspeakers?
M. G. Scroggie,

Bexhill,
Sussex.

In praise of horn loudspeakers

Mr Kelly's November 1972 article "Loudspeaker Enclosure Survey" inevitably raises queries and, in this lay reader at least, grouses as well - all of a general nature and not directed at Mr Kelly! But I was disappointed to read so small mention of the hornloaded loudspeaker, an omission too remarkable to escape comment. As one who has laboured long, and with love not entirely unrequited, in designing and making loudspeaker mountings of every possible sort with sole purpose of gaining from records and radio best loudspeaker quality in order to extend pleasure in music, I have found that the hornloaded system makes an incomparably better approach to realism than any other. It is obvious that hornloading of an l.s. motor produces virtues of many sorts and that the end product assumes a grandeur - there is no other term possible - which no other method seems capable of emulating. Nor can the old bogey of too large bulk be legitimately levelled at possession of such superlative means to heaven. A very agreeable and exciting quality is obtainable from comparatively small installations and a sample is a cabinet 16 in $\times 16$ in $\times 30$ in high, which surely cannot be objectionable to any except those who look for doublebass likeness from little bookcase boxes. Moreover, it can be shown that a well designed and made horn will yield a satisfactorily wide frequency range and prove to possess an efficiency rating substantially better than 30%.
But there is another matter of great importance to consider. Let us be reminded that there is not one musical instrument but it generates very individually beautiful sounds and that these sounds all possess extremely vibrant resounding "reedy" quality which reflects their complex nature and complexity of waveform. No proper realization of this "reedy" vibrant quality emerges from any available loudspeaker even if some make better effort than others. This subtraction is replaced with, amongst other defects, a "glitter and gloss" effect and often by a hardness. None of these ever appear in the sound of any musical instrument and the cause must surely lie, in the main, in motor slip of the speech coil within the magnet gap, aided and abetted by too much compliance of diaphragm perimeter suspension. The result is a weakened realization of the signal content applied and which signal we must accept as being much better informed about the quality of the original sound than ever we recreate from it. There is similarly an ineffective end product from electrostatic and electroquartz mechanisms and great lack of power too, in both, which makes for still further subtractions. It is significant I believe that the hornloaded loudspeaker, because of its more effective loading, "hardens" the sloppy moving coil movement and that this in turn provides no "glitter and gloss" effects.

There is another subtraction caused by use of electronic crossovers, which invariably cause loss of musicality. This is
never regained and the matter can be proved by demonstration of a hornloaded system which uses none of these items, with resultant excitingly more musical likeness and incidentally a balanced frequency range second to none.

It seems a pity we can't conduct a survey of l.s. motors concerned with merits and demerits, as no loudspeaker mounting can be used without a drive unit and these have such fundamental effect upon the quality of any mounting that it would be most helpful to learn of all information available. The number of i.s. motors decreases every year and this is greatly to be deplored as many better samples have completely disappeared.

All in all and despite apparent sophistication our loudspeakers remain primitive affairs awaiting creative work by some dedicated and big-hearted human who will produce an improved moving coil action or a still better motor which will make the diaphragm very aware of how it has to behave in giving absolutely "electrical" attention to the demands of the signal. When that advanced apparatus comes about it is likely that the diaphragm will be quite small and unlikely to be made of paper and quite firmly though pliably held around its perimeter. The only possible loading will be a horn and the efficiency of it will be very high - maybe as much as 80% or even more. The end product will be the most amazing advance in gramophonic history. This is no idle dream or chatter. Something of the proof of it already exists.
Gilbert Telfer,
Kelso,
Roxburghshire.

Tree effects in TV reception

I have observed effects similar to those described by Mr M. G. Scroggie (W.W. Oct. 1972, p.478) and later correspondents, but my situation was more favourable and, unlike them, I was able to effect a cure. I am situated approximately $9 \frac{1}{2}$ miles from the Crystal Palace transmitter and during clear weather in winter its masts can be seen through a row of tall trees in the front garden of the house. The TV set was connected to an existing loft aerial system which was duplexed with Band 1 and Band 3 aerials. There was a variation in the colour saturation which was more marked on windy nights and in rain but, strangely, the BBC2 colour channel was not affected. The set installers said that the signal strength was off-scale on their meter and blamed the trees for the interference. However, it seemed difficult to equate this with the perfect reception of BBC2 and this suggested that there may be a pattern of standing waves set up by other objects in the loft. This view was reinforced when it was found that movement of the arms of the Band 1 aerial was the apparent reason for the improvement in one of the other TV channels at the expense of BBC2. The loft is not a congenial place to work and so the arms of the Bands 1 and 3
aerials were folded up and disconnected.
The u.h.f. aerial was resited a foot or so behind the tiles and facing the transmitter and it was connected directly to the set on the ground floor through the same downlead but without the duplexing arrangement. The aerial was also pointed slightly skywards to minimize signal fluctuation caused by traffic passing along the road in front of the house. The effect of these changes was to produce a perfect picture on all three programmes.

Simultaneous observation of the trees and the TV screen on a windy night showed that the slow changes in colour corresponded with the swaying of the tree tops. A clear explanation of the effect is not possible because too many variables were changed at one time, but it would appear to be connected with the formation of standing waves, the pattern of which would be changed by a variation of a few inches in the path-length of the reflected signal. Under multi-path conditions the subcarrier conveying the colour information would also have a pattern of standing waves which would not be the same as that of the main carrier, and the relative positions of the two would vary with the path-length. The effective pathlength can also be varied by the passage of the wave in a straight line through media having a dielectric constant greater than that of air since the velocity of propagation is lower. Doppler effects should also be considered.

The observations discussed were made in February last year when the trees were not in leaf but reception was perfect throughout the summer and is still so.

B. Dudley Sully,

Ewell,
Surrey.

Nelson-Jones f.m. tuner

Constructors of the Nelson-Jones f.m. tuner may be interested in two of my experimental findings.
First, the u.h.f. instability which has plagued a few constructors seems to be associated with gate 2 of both of the m.o.s.f.e.ts. "Decoupling" the potential divider on gate 2 of the first device seems in fact to close a feedback loop which permits oscillation to occur. Despite the use of the recommended ferrite bead next to gate 2 of f.e.t. 2 , my own tuner initially exhibited the instability at the high frequency end of the band. A resistor of 470Ω inserted between gate 2 of f.e.t. 1 and the decoupling capacitor removed all trace of instability in the tuner. Possibly removing the capacitor is the simplest answer, though I have not tried this. The unusually high drain current associated with unstable conditions and mentioned by Nelson-Jones in his recap article on the tuner seems not to be an intrinsic quiescent property of the f.e.t. but an indication of internal instability. When oscillation is suppressed, as above, the drain current resumes a value akin to the data sheet value at a relatively lower level.
I have repeated this exercise in an
attempt to re-vamp a now out of date Radford F.M.T. 3 tuner front end of similar double m.o.s.f.e.t. design, with the same appearance of instability and the same cure (and, incidentally, most worthwhile results).

In both this latter case and in the construction of the Nelson-Jones tuner, I have used the Texas 3 N 201 m.o.s.f.e.t. which has an extended u.h.f. gain, thus presenting the most severe test of stabilization.

The ferrite bead used to suppress instability at gate 2 of the second m.o.s.f.e.t. of the Nelson-Jones tuner should be retained, as a resistor used here will alter the pulling of the oscillator and affect tuning.

It does certainly look as though some research should be done to ascertain the precise nature of the unstable feedback mechanism involved in the above cases so that the dual gate m.o.s.f.e.t. can be used to best advantage in such circuits.

My second finding is that, not unexpectedly, the oscillator coil is microphonic. If it is stuffed with foam plastic and then has some hot candle wax dropped on to it, the microphony is suppressed. The Q of the coil does not seem to be affected by this procedure.
N. J. Phillips,

University of Technology,
Loughborough,
Leics.

Mr Nelson-Jones replies:

I would disagree slightly with the comment that the instability that has plagued a few constructors is entirely due to g2 of the m.os.f.e.ts. It may well be that this is true with some cases, but in my experience the addition of a 22 ohm resistor in the tap feeding gl of the r.f. amplifier (Trl) is a complete cure in the vast majority of cases (Letters to the Editor July 1972 pp.318, 319), since the u.h.f. oscillation is due to long wire multiple resonance on the aerial feeder. It is probably true that the decoupling circuit of g 2 is part of this oscillatory circuit and therefore decoupling changes will affect the oscillation. All one is doing in adding a resistor in the ways described is to add a loss to the circuit, hopefully in a way that does not appreciably reduce gain at the desired frequency, but which greatly reduces gain at the frequency of spurious oscillation.

I note that Mr Phillips used the Texas 2N301, a transistor which on paper is nearly identical to the 40673 or 40822 normally used in the tuner. My experience with this device is that it does have a rather higher slope, and a much higher cut-off frequency, probably above 1 GHz . The device is therefore in my experience much more prone to "take-off" at u.h.f. than the other similar devices. The 2N301 is a very good device but needs greater care in use.

I am a little concerned at the thought of putting in a resistor as high as 470 ohms as suggested in that even at 100 MHz this is a relatively high impedance compared to the circuit and stray capaci-
tances and will, I feel, reduce gain at $100 \mathrm{MHz} \quad(10 \mathrm{pF}=1.6 \mathrm{k}$ at 100 MHz$) ;$ I would have thought a value of around 47 ohms more appropriate.

Finally I would also be unhappy about the microphony cure suggested in that I would expect it to have a very adverse effect on the temperature drift of the tuner. I have not myself experienced any problem with microphony in this way, indeed the tuner on the " $W W$ " stand at the Audio Fair was fitted with an internal 3 watt amplifier and an 8×5 in speaker within about 6 in of the oscillator coil and even at the maximum output level no problem is experienced. This leaves me wondering if the oscillator coil in question has a slight construction fault, or is rather too near the body of the tuning capacitor, where it will have a rising distance versus frequency effect, due to eddy current and capacitive effects.

Power supply units

I note a letter from Mr Roy Whitehead on the subject of low cost power supply meters and the inadequacy of the one meter type units (January issue).

I would like to point out to Mr Whitehead that there are available in the United Kingdom power supply units that do more than meet his requirements, in as much that these units have two meters, one monitoring voltage, the other continuously monitoring output current. These units are available with output currents of up to 2 amps from this company.
C. A. Hill,
B. Hepworth \& Co. Ltd.,

Kidderminster,

Worcs.

I was interested to read the letter on the problems encountered by users of stabilized power units.

I would suggest two alternative solutions to this problem, one of which I have adopted as standard practice. The first is the cheapest solution; always (i.e. without fail) turn the voltage control switches or potentiometer to zero before connecting or switching-on any load. The second may be considered a little extravagant. It consists of utilizing an electronic circuit to cause the meter movement to read a left-hand zero for VOLTS and a right-hand zero for AMPS. Thus the effect would be that if the meter switch is left at AMPS, the meter races to f.s.d. on switching-on, even with no load, and the operator's reaction would be to reduce the voltage control setting to zero in double quick time. The effect on the meter reading would be negligible but the voltage controls would have been adjusted in a safe direction until it was realized that the meter was reading current.

Either solution would achieve the desired result although if I were a power supply manufacturer, I know which I would suggest.
L. Write,

Portchester,
Hants.

Solid State Teleprinter Demodulator

by R. W. Addie, G8LT

Abstract

The article describes a modern radio teleprinter terminal unit using the operational amplifier technique and illustrating the practical problems for which these devices provide admirable solutions. The author describes his approach to an American design, providing various options such as auto-start and anti-space circuitry which may be excluded should the constructor require a simpler project.

In the world of amateur, radio the use of machine telegraphy in addition to the more common modes of telephony and c.w. morse, has increased in popularity during the last ten years. Generally referred to as RTTY*, the technique has advanced to the point where good copy can be received in limiting conditions of signal strength and noise by the same order as c.w. but with speeds of 60 w.p.m. and higher. It represents about the most economical use of channel space of all the modes of communication. It is not surprising therefore, that many, not involved in transmitting activities, have been interesting themselves in receiving RTTY transmissions.

The unit to be described represents probably the best practice in amateur use today and no originality is claimed by the author whose object is to create interest and show a unit that can be made by anyone with an understanding of the principles involved.

Principles

RTTY is a stop-start system of machine communication where the receiving printer is kept in synchronism with the transmitting machine by means of two signals, one at the beginning of a character to start the machines scanning the elements of that character and one at the completion of it to halt both machines in readiness for the following one. In the Murray code used in RTTY, seven units are used, two for stop-start and five for transmitting the character. It follows that, when a radio link is used, only two significant signals are sent, i.e. stop and start or, as they are usually called, mark and space, respectively. These two signals are sent by shifting the carrier frequency by an exact number of hertz, moving it from the mark or resting state, to the space or starting condition. Early practice used a shift of 850 Hz , but because of channel space and the prevalence of interference in the overcrowded amateur bands a 170 Hz shift is rapidly becoming the norm. The latter en-
ables better receiver selectivity to be employed but increases the stability problems. At v.h.f. it is common practice to use tone modulated a.m. transmission where the tone frequencies correspond to the amount of shift used in frequency shift keying systems.

The purpose of the demodulator is to accept two discrete audio tones representing mark and space from the output of the receiver and to process them so that the output signal from the demodulator is capable of driving the operating magnet of a teleprinter. The tones are obtained by the use of the beat frequency oscillator or envelope detector in the receiver and certain frequencies have become established as standard. For 850 Hz shift, mark is 2125 Hz and space is 2975 Hz . For 170 Hz shift, mark is 2125 Hz and space is 2295 Hz . Since precise frequencies are used, part of the function of the unit is to discriminate to the greatest possible degree against all frequencies other than those for mark and space. It must also cope with a wide dynamic range of signal and, because of selective fading, a large disparity at times between the two signals at its input.

A number of devices are used to achieve a clean and constant output to the printer. The design includes two bandpass filters (one for each shift), an effective limiter, sharp frequency filters for mark and space on both shifts, also an automatic threshold corrector which balances the mark and space signals to enable the slicer which follows to operate at the correct changeover point.

A number of other features have been designed-in which will appeal especially to the enthusiast. The first of these is the 'antispace' circuit. This comes into use should an unwanted signal appear on the space channel which would normally allow the printer to run free. The second is the 'autostart' circuit by means of which the receiving station can be left on a frequency so that as soon as an RTTY signal is recognized the receiving printer starts and, after a predetermined delay, copy can be printed. When the signal disappears, the process is reversed so that all signals appearing on a given channel
can be copied without the printer motor being left running. Also, misprints caused by non-RTTY signals or interference are automatically eliminated.
The design evolved from two earlier versions using valve techniques and incorporates all solid state devices including some nine of the more readily obtained op-amp i.cs.

The unit constructed by the author and illustrated in the photographs uses SN72709 op-amps and the circuit diagram shows pin numbers referring to this type. Another suitable type is the 709 -C the pin numbers for which are shown in Fig. 2. Both types are readily available, relatively inexpensive and enable the whole unit to be concentrated into a very small space.
For those who want the simplest arrangement, it is possible to feed the signal directly to the limiter stage but the use of a separate bandpass input filter for each shift is well worth the extra trouble. The circuit shows the latter method and the photographs illustrate the terminal unit complete with both filters.

Circuit

Referring to the circuit diagram (Fig. 1), limiting is carried out in the op-amps $I C_{1}$ and $I C_{2}$ and as little as $200 \mu \mathrm{~V}$ will cause limiting to occur. The signal diodes at the input are to protect the amplifier from overload. While the amplifiers operate openloop to give limiting, reception without limiting is available when a $47 \mathrm{k} \Omega$ resistor is switched-in by $S_{1} a / b$ to control the amplification.
Bandpass filters are of the three-pole Butterworth type using a dual winding, 88 mH toroid commonly used in telephone practice and therefore easily obtained. The wide filter (850 Hz shift) has a bandwidth of about 1 kHz and the narrow one $(170 \mathrm{~Hz}$ shift) is about 275 Hz wide. In the first case the two halves of each toroid are connected in series to give 88 mH and in the second they are in parallel, giving 22 mH . By this means the terminal impedances for each filter are made about the same.

The mark and space channel filters for the different shifts are quite separate. No attempt at switching the space filter components is made. Earlier demodulators have used up to three stage passive filters for this purpose but the present design of discriminator filter uses only one active filter in each

Fig. 1. Circuit diagram. (Partition lines show the limits of printed circuit boards, when used.)
channel. The adjustment of these is critical and will be described later in the article but, provided they are set up with care, results are entirely satisfactory. The two diodes D_{5} and D_{6} provide a control voltage on both mark and space for the operation of the autostart and tuning meter system.
Full-wave detection is used in both channels (D_{23} to D_{30}) and germanium diodes are used because of their lower forward voltage drop compared with silicon types.
The low-pass filters $I C_{3}$ and $I C_{4}$ use amplifiers with frequency selective feedback applied. Fig. 1 shows the pin connection numbers for the dual-in-line package. The alternative TO5 type package may be used in which case the pin connections shown in Fig. 2 can be directly transposed into the circuit. Mechanical pin layouts for the different packages are shown in Fig. 3.
There are conditions in which better copy is obtained when a.m. detection is used without the limiter; a method of balancing the mark/space signals from the low-pass filter is necessary. This ensures that the change-over point of the slicer $I C_{6}$ occurs at the right signal transition point. The 'automatic threshold control' $I C_{5}$ uses diodes D_{31}, D_{32}, D_{33} and D_{34}, the output signal being symmetrical about earth. Switch S_{2} simply reverses the polarity of the signal feed to the slicer if the transmitted frequencies of the mark and space signals are reversed.

The slicer is operated at full gain and as steps have been taken in the design to keep the output of the low-pass filter as clean as possible, it is extremely sensitive and Irvin Hoff's original model* could be changed at the slicer from full mark to full space with the input to the limiter changing as little as $1 \mathrm{~Hz}-$ even with the 850 Hz channel filter in use. The author's version exhibits similar characteristics and has proved to be one of the most attractive features of the unit.
The output of $I C_{6}$ at pin 10 , swings from about +11 V on mark to -11 V on space. This drives the keyer transistor Tr_{1} with about 5 mA forward base current, via resistor R_{73} on mark signals. For space signals D_{35} blocks negative potentials yet allows a small negative current to be applied via the reverse resistance of the diode and R_{72} to assist the transistor in switching-off The keyer is rated such that the magnet of a single current operated machine can be driven directly from the collector which requires up to 60 mA . In the author's version the unit had to run a Creed machine using double current operation for which this keyer stage was unsuitable. This was overcome by making the keyer drive a highspeed mercury-wetted, reed relay which had the added advantage of providing keying for two quite separate loops. Furthermore the keyer current could be limited to a much lower value, considerably under running the 2N5655. The changes to revert to double

[^5]

Fig. 2. Alternative circuit connections for TO5 package.

Fig. 3. Pin connections (top view).

Fig. 4. Typical mechanically biased keying relay (Clare type HGSM, 2000 2 coil, or similar).
current operation are simple and do not require any changes to the printed circuit boards. Two examples of additional keying relays are shown in Figs. 4 and 5. In the former, a mechanically biased reed or similar relay is used and the coil should be energized to make the mark contact and deenergized to make the space. The relay current should be set to the recommended value by R_{1}. In Fig. 5, a Carpenter or similar type of polarized relay is used with the two coils connected as shown so that the current flowing through L_{2} / R_{2} provides electrical bias towards the space contact. Resistor R_{1} is selected to give twice as much current through L_{1} as is flowing through L_{2} when the keying transistor $T r_{1}$ is conducting, thus allowing the mark contact to be made. The mark and space contacts on either of these relays would drive a double current printer magnet in the conventional way.

Fig. 5. Typical electrically biased keying relay (Carpenter type 3SE1, 2502 coils or similar).

There are two separate power supplies, one being a differential supply giving +12 V and -12 V regulated as well as positive and negative unregulated. The second is the loop supply for driving the printer and gives 180 V as well as shift voltage for transmitter keying if required. The regulated supplies use transistor stabilization in conjunction with zener diodes.
So far, only the signal circuits have been described but as mentioned earlier there are a number of other features built into the design, the first being the 'anti-space' circuit.

For a 60 w.p.m. RTTY signal, the character which contains the most space units is the one that is controlled by the blank key, and does not exceed 132 milliseconds. It follows that any space signal longer than this will not be an RTTY signal and may well be an unwanted one which, without steps being taken to suppress it, would put the keyer to space and let the machine run loose. The anti-space device continually monitors the space signal and when this exceeds the 132 ms by a significant amount, it overrides the incoming signal and places a mark voltage on the keyer stage until the condition ceases. At the same time it places the autostart circuit to the no-signal state. The first mark signal that arrives when the printer is thus held discharges the antispace circuit instantly and copy is resumed. All this is achieved by transistor Tr_{7} tied to the output of $I C_{6}$ and followed by $I C_{9}$. The output of $I C_{9}$ runs from -10.8 V on mark to +10.8 V on space. The space voltage is then fed to the base of $T r_{1}$ putting it into mark-hold after the time predetermined by the circuit constants R_{109}, R_{110} and C_{81}. This feature is very necessary when unattended operation is used as it effectively prevents the printer running wild and producing sheets of useless spoiled copy due to the presence of an unwanted signal on the space channel.

It is now appropriate to turn attention to the associated autostart circuit included in this design. Basically, its purpose is to discriminate between a genuine RTTY signal from which copy can be taken and other signals, be they morse code or voice transmissions. Advantage is taken of the fact that a morse signal probably consists of no more than 50% key-down time; voice has an even lower duty cycle whilst RTTY, in the form of a frequency shift signal, represents 100% duty cycle when both mark and space signals are considered. The autostart circuit therefore is designed so that a high duty cycle will actuate it while a lower one will
not. It samples both mark and space signals simultaneously, combining them into one control voltage which, in turn, charges a capacitor and, after a predetermined time, trips a relay. This relay turns on the printer motor, at the same time removes the markhold bias and allows printing to take place. The delay time is largely determined by C_{70} / C_{71} and can be selected to give a turnon delay to suit the user. Should the signal stop, a network quickly discharges this capacitor and restarts the count-down in the relay control circuit. If it does not reappear then the motor is allowed to shut-off and the system is ready for the start-up cycle again. The finite delay for turn-on is essential if transient signals are not to cause the printer to start for the wrong reasons. When operating into an autostart net, the sending operator starts his transmission with a 3-4 second mark signal or a few preliminary letters to ensure that the delay is overcome and the receiving machine readied for use. The turn-off delay is kept just long enough to prevent accidental operation in the event of a sudden fade of signal and in practice will allow two or three characters to be printed at random after the signal disappears.

The circuit uses two diodes D_{5} and D_{6} which sample the mark and space channels and combine output voltages; the product is applied to the input of $I C_{7}$. If the signal is properly tuned, the two voltages should be similar and the combined positive voltages exercise steady control of the amplifier. Resistors R_{78} and R_{79} reduce the control voltage for the op-amps, which will not accept more than about 5 volts. At the onset of a signal therefore the following sequence takes place to put the printer in operation. A voltage of about +7.5 V appears at $T P 2$ which in turn produces about +3.8 V at the inverting input of $I C_{7}$. There is a fixed bias on the non-inverting input, preset by R_{81}, which determines the trigger point of the amplifier. This bias is overcome by the positive sample voltage and causes the amplifier output to go negative. Diode D_{13} will not conduct so that the positive voltage which previously existed on C_{70} / C_{71} disappears and this capacitor discharges via R_{86} and R_{87}. When it reaches about 2.2 V , the fixed bias on $I C_{8}$ takes charge, causing the output to change from positive to negative. At this point the holding bias on the keyer stage via D_{15} disappears and the printer becomes active while C_{76} charges fast, via R_{93}. This puts $\operatorname{Tr}_{3}, T r_{4}$ and T_{5} in the conduct state and this operates the motor relay, the coil of which is in the collector of $T r_{5}$. The function of $T r_{6}$ is really nothing to do with this sequence save that, as $T r_{5}$ starts to conduct, $T r_{6}$ is shut-off and as $T r_{5}$ passes about 50 mA , the load on the power supply is kept virtually constant.
A remote stand-by connection is provided which overrides the autostart feature, keeping the motor running but placing the unit in the stand-by condition so that under manual control the unit can be made to print without delay of any kind.
Two further facilities are included which, though optional, are well worth building-in as they are independent of the printed circuit boards and take little room. The first is
a tuning meter which can be seen on the front panel in the photograph and which is also used as a check on the current in the printer loop. It simply indicates the combined mark and space voltage generated at TP2, using an MPS-3394 transistor to drive a $0-1 \mathrm{~mA}$ meter movement. If the tuning is not exactly centred on the two channel filters then the mark and space voltages will be unequal and as the meter reads the sum of the two, the indication will be less than would be the case when both channels are generating full signal volts. Thus the indication for correct tuning is simply to maximize the meter reading. Switch S_{9} transfers the meter to shunt a resistor in the d.c. printer loop of the keyer transistor, to measure the current in the loop. The second is the inclusion of two indicator lamps $L P_{1}$ and $L P_{2}$ which show the state of readiness of the unit. Controlled by the autostart circuit, $L P_{2}$ shows the stand-by condition in the absence of signal whilst $L P_{1}$ indicates when it is ready for receiving. Both lamps are illuminated when the unit is put into the stand-by state either by the remote stand-by or local stand-by $\left(S_{3}\right)$ switches. This is a useful indication showing when the equipment is under the control of the signal as distinct from the operator. Low-consumption lamps are used as they each have to be
driven by a transistor. Those which will operate with currents of about 30 mA at $12-18 \mathrm{~V}$ were chosen. They are fed from the unregulated supply. One of the newer gallium phosphide light-emitting diodes would also fit this application and would dispense with the MPS-6518 and MPS-3395 driver transistors. These diodes operate on about 2 V at 10 mA .

Construction and alignment

Construction of the demodulator presents no major problems provided that care is taken to position the circuit boards carefully in relation to the front panel controls.
The photograph shows the front panel layout used in the author's version. The shift and limiter rotary switches S_{8} and S_{1} are the most critical in their placing. They should be kept as close as possible to the channel filter boards and the bandpass filters when these are used. The two lowconsumption lamps already mentioned are at the right, $L P_{1}$ above $L P_{2}$, while the mark and space neons are central above the tuning meter. A word about the group of four switches to the right of the meter may be appropriate at this stage. The top left-hand one S_{4}, when put in the slow position and all other switches set to auto, puts the unit in readiness for unattended autostart. As
described, this leaves the motor off but brings it on after a few seconds delay as soon as an RTTY signal is passed by the filters. The lower left switch, S_{6}, overrides the motor relay but leaves all other autostart characteristics as for unattended operation. The auto/off switch, S_{5}, disables the autostart circuit and also overrides the motor relay so as to keep the motor running. This applies in both slow and fast positions of S_{4}. Finally, the stand-by switch, S_{3}, at bottom right, puts the unit into the mark-hold condition while also disabling the autostart facility. The remote stand-by control parallels this switch.
The front panel measures $19 \times 5 \frac{1}{4}$ in although if space were at a premium both these dimensions could be reduced. The view of the rear of the instrument gives a fairly clear idea of the general arrangement of the printed boards. From right to left these are:

$2 / 850$	850 Hz channel filters.
$1 / 850$	850 Hz bandpass input filter.
$1 / 170$	170 Hz bandpass input filter.
$2 / 170$	170 Hz channel filters.
3	Low-pass filter, slicer and keyer
4	stage.
5	Autostart and antispace circuitry.
5	Power supplies.

The reason for the above nomenclature is because no attempt is made to switch parts of an active channel filter or a bandpass filter from 170 to 850 Hz . Instead, entirely separate filters are used and mounted on separate boards which are themselves switched as a completely assembly. Thus on 170 Hz shift, for example, the boards in use will be $1 / 170,2 / 170,3,4$, and 5 . Only the first two are changed for operation on the wider shift. These boards are carried on edge connectors and are slid into guides which, though optional, provide enough support to obviate the use of any other staying method. The connectors themselves are insufficient. At the left will be seen the mains transformer which is mounted across the two brass rails which also carry the edge connectors and run the length of the unit. To the right of the transformer is the motor control relay. At the extreme left and rear can be seen the assembly containing the mercury wetted keying relay used by the author and its contact suppression components which are essential if the relay life is to be prolonged.
The rear panel carries, from left to right : mains input, main supply fuse, loop series resistance R_{115} (for adjusting the loop current), multi-way outlet socket for double loop keying circuits plus connections to an external shift monitor and the remote stand-by control. Next to the right is the connection to the motor relay, the shift control (when the units shift voltage is being used to key a transmitter), two jack sockets for the transmitter f.s.k. line and one for a morse key. The latter gives the facility for identification by shifting the carrier by an amount so that the keyer stage is not driven from mark to space. The right-hand socket carries the input signal from the receiver.

If the layout illustrated is followed it should not be essential to use screened cable but the author, taking no chances, used some between the channel switch, the
limiter on/off switch and the boards. If this is done, longer leads can be used which enables the whole board assembly to be swung-up clear of the chassis by the simple expedient of releasing all the rail fastening screws with the exception of the top one on each side. This is very useful when testing, as with the boards up and forward of the vertical, access is acquired to the interconnection wiring. One other small board which carries the drive transistors for the receive/stand-by lights and the tuning meter, is conveniently mounted on the rear of the meter itself.

The mechanical construction should not present any problems but it should be remembered that the op-amps used have considerable gain and attention to earthing between boards and boards to chassis will avoid a number of troubles. Apart from the points mentioned above, no additional screening is required.

Undoubtedly the most difficult part of the construction programme is the making and tuning correctly of the bandpass and channel filters and a detailed description of this may prove helpful.

All the inductances used are standard toroids commonly used in telephone practice and are wound on the core with two equal and separate windings. This gives the facility of obtaining 88 mH when series connected or 22 mH when in parallel. Both connections are used in this design. Care must be taken to ensure that connections are made in the correct direction of winding. The start of each winding is easily found as it has a short length of sleeving which the ending does not. For 88 mH the start of one winding must be connected to the finish of the other. For 22 mH both starts and finishes are paralleled. Mounting the toroids presents no difficulty. A good method is to sandwich them between two plastic cheek pieces and put a brass screw down the middle and through the board. If one of the proprietary printed boards is used, the positioning will be self evident but if not, they can be laid out much in line with the circuit diagram. A good ground rail is important as all the inductances and all but two of the capacitors are joined to it. Mylar capacitors should be used for both the bandpass and channel filters; ceramic, electrolytic and paper types should be avoided.
The input filters are the least critical and are relatively easy to tune by the following method. A good audio oscillator and a valve voltmeter or oscilloscope are needed; the latter is probably the easiest to use for the purpose. The test arrangement is shown in Fig. 6 and the isolating resistor, which may be of the order of $100 \mathrm{k} \Omega$, ensures that the low impedance audio source exerts little influence upon the tuned circuit under test. If the accuracy of the audio source is at all suspect then a counter should be employed because tolerances of the order of 6 Hz for the 850 Hz filter and 3 Hz for the 170 Hz filter are important.

Reference to Table 1 will show the frequencies to which each of the three sections of the input filters is to be tuned. To tune L_{1} for example, the source is placed across it while L_{2} and L_{3} are shorted. It will probably be found that resonance occurs at a

Table 1

TO TUNE	SHORT-CIRCUIT	ADJUST	f_{0}
L_{1}	L_{2}, L_{3}	C_{3}	$2,400 \mathrm{~Hz}$
L_{2}	L_{1}, L_{3}	C_{10}, C_{12}	$2,300 \mathrm{~Hz}$
L_{3}	L_{1}, L_{2}	C_{8}	$2,400 \mathrm{~Hz}$
L_{4}	L_{5}, L_{6}	C_{15}	$2,195 \mathrm{~Hz}$
L_{5}	L_{4}, L_{6}	C_{21}, C_{23}	$2,195 \mathrm{~Hz}$
L_{6}	L_{4}, L_{5}	C_{19}	$2,195 \mathrm{~Hz}$

somewhat higher frequency than 2400 Hz in the first place and additional capacitance $\left(C_{3}\right)$ is added until this frequency is achieved. Inductor L_{2} is treated in a similar manner with L_{1} and L_{3} shorted, tuned to 2300 Hz and so on. If by chance the frequency is low, the value of the parallel capacitors can be reduced or turns may be removed from the inductors. When doing this be careful to remove turns equally from each half. A tolerance of $15 / 20 \mathrm{~Hz}$ is acceptable for these filters.

The discriminator filters however must be held to a tighter tolerance; 6 Hz for the 850 Hz and 3 Hz for the 170 Hz filter. Time taken with this operation will be well repaid by improved performance and a good deal of trial and error may be required before each filter peaks at the proper frequency. Series connection of the inductances is used in both filters. For 850 Hz operation the mark frequency is 2125 Hz and space 2975 Hz For 170 Hz these are 2125 Hz and 2295 Hz respectively.
If p.c. boards are used, it is best to mount all components first and carry out a rough alignment with the board on the bench. Use the arrangement shown for the test gear and peak each filter to the frequencies given above for mark and space on each assembly. Experience shows that, when inserted in the connectors the final frequency may prove to be low and the last operation is to carry out a trimming procedure when the whole demodulator is running. As a rough guide it will be found that each turn removed from a toroid will raise the resonant frequency in these filters by about 3 Hz and as the Q is high, the resonant point is very sharp and adjustments can be made to one or two hertz in practice. In this first phase, the filters may be left a few hertz on the high side since this will turn out to be lower when finally assembled.

Remember that most capacitors have a value tolerance of 10 or 20% and when substituting different values it pays to try several of the same marked value as the

Fig. 6. Resonance testing circuit.
tolerance between one and another may be sufficient to provide the needed value.
Once the filter tuning has been completed, there remain a few simple checks on the power supplies before the final alignment of the demodulator is carried out. Check both +12 V and -12 V regulated and unregulated supplies. This is best attempted by checking all the interconnections between the seven edge connectors, if used, with none of the boards plugged in. Make sure that common earth connection is a good one and is in turn well grounded to chassis since unless this is done properly, some instability in the very high gain op-amps may be experienced. Next insert No. 5 board, which has the power supplies, while leaving the rest for the time being. Apply power and make the voltage checks. If a complete kit of components including the boards is obtained from the sources listed at the end, a manual is also provided which sets out a complete table of these measurements and which is useful in ensuring that the interconnections give correct voltages on the right pins.
With the above completed satisfactorily, plug in the remaining boards and apply power, at which stage the input limiters may be aligned. A valve voltmeter is best used for this and the author employed a Heath IM-16 which is ideal for the purpose and can be used for the rest of the alignment checks as well. Short-circuit the input to the unit and, with the shift switch S_{8} to 170 and the voltmeter connected to TP1, adjust the trimming potentiometer R_{18} to give zero volts. Not all 72709 amplifiers will do so and it may help to swop it with one of the others if this cannot be done. The adjustment is not exact and the zero may drift slightly but the best position should be chosen. Switch to 850 and do the same adjustment using R_{12}. The two discriminators can now be adjusted. For this the audio generator used in setting the filters is required. As described earlier the filters being active must be adjusted finally when in the circuit and it is at this point that the final trimming is done. With the generator connected to the input, feed in first mark and then space frequencies and adjust each toroid by the method described so that the tuning meter peaks at the correct point. There is really no shortcut to this method which necessitates the removal of the board for each adjustment, but when complete it is never touched again.

When this has been done, feed in mark frequency (2125 Hz) and adjust the potentiometer R_{29} to give a reading in the region of 0.7 mA . Then feed in the space frequency (2975 Hz) and adjust the potentiometer R_{35} on the discriminator board to give the same reading. Note that these adjustments are done on the 850 Hz filter board. On the 170 Hz filter board, note the meter reading for mark (2125 Hz) and adjust the potentiometer R_{38} on the discriminator board to give the same value on space $(2295 \mathrm{~Hz})$. Do not alter the potentiometer on the meter board. The readings may not be as high on the 170 Hz shift but the method is the same

The final adjustment is the sensitivity of the autostart circuit. Connect the valve voltmeter to TP4 and, with the autostart switches in the auto position, feed 2125 Hz
to the input with the shift switch in the position most likely to be used. In the author's case this is unquestionably the 170 position. Detune the oscillator to give 80% of the meter reading shown at peak and adjust the trimming pot R_{81} until the voltage at TP4 flickers around zero. A degree of personal preference may be used here because adjustment close to peak frequency means that the autostart will only operate at exact shifts whereas the other direction will cause the circuit to respond to noise and other unwanted signals. Resetting after some experience is recommended.

The whole unit may now be tested. An oscilloscope connected to TP1 on the two input filter boards will show the response as the generator is tuned over the passband. Check the limiter which should show almost constant amplitude with frequency as limiting occurs at very low levels indeed.
The anti-space circuit may be checked by feeding in 2125 Hz so that the mark lamp is on. If the reverse switch S_{2} is operated, the space lamp should light for a second and then return to mark. This shows that the anti-space is working as otherwise the unit would remain in the space mode when the switch is moved. The motor control relay is tested by applying mark frequency which should cause the motor relay to close after about a second's delay. Next switch off the signal, the unit should place itself on mark condition and, after a time determined by the time constant in the circuit, the relay should drop out (20 to 40 seconds).

All the bench checks are now complete and it remains only to connect the printer and a suitable receiver to take printed copy.

A few hints may be helpful to the newcomer. The remote stand-by switch, if used, will cause both receive and stand-by lamps to light, which acts as a warning that the unit is at stand-by and cannot be put into operation except manually. When under auto control, the lights change from standby to receive under the control of the incoming signal. With the auto control off, the unit responds to all signals and the antispace circuit is also disabled.

The best place to mount the lamp/meter board, which is quite small, is near the meter. In the case illustrated, it is fixed to the rear lugs of the meter itself. It may be found that the brightness of the two lamps $L P_{1} / L P_{2}$ is not quite equal but should be accepted.
It is well worth while giving each board a very careful visual check after the parts have been soldered and before testing. Some of the conductors are very closely spaced and it is easy to get spots of solder not easily seen by the naked eye but sufficient to cause short circuits. A watchmaker's glass with an old veterinary hypodermic needle are all that is needed to clear faults which can be detected if a light is shone behind the board.

In use, the demodulator has proved to be capable of printing signals that were barely readable by ear. It can cope with greatly differing signal levels and discriminate against unwanted signals to a very marked degree. The autostart facility has proved itself consistently and with the tuning meter and the rec/stand-by lamps, is well worth including if time and money allow.
Grateful acknowledgement is made to

Fig. 7. Alternative high voltage supply circuit.

Irvin M. Hoff, W6FFC, of Los Altos Hills, California, who has been responsible for a number of the best designs of demodulator unit for RTTY and whose ST-6 formed the basis of the described work.

Kits of parts and p.c. bs: HAL Devices, P.O. Box 365, Urbana, Illinois 61801, U.S.A., or Spacemark Ltd, Thornfield House, Delamer Road, Altrincham, Cheshire, can supply kits or boards and toroids separately. The power supply transformer T_{1} is not readily available in the U.K. Therefore, a modification has been made to replace T_{1} with two miniature transformers both having secondary windings of $24 \mathrm{~V}-0-24 \mathrm{~V}$. This does not affect the low-voltage supply but circuit changes for the high-voltage supply are shown in Fig. 7.

Components list

Resistors

$10 \Omega 2 \mathrm{~W}$	$R 118,119,124,129$
47Ω	$R 22,23,24,25,48,49,50,51,63$,
100Ω	$65,66,81,82,90,91,104,105$
$150 \Omega \frac{1}{2} \mathrm{~W}$	$R 20,21$
220Ω	$R 113,114$
330Ω	$R 69$
470Ω	$R 109$
$470 \Omega \mathrm{lW}$	$R 74$
$500 \Omega 5 \mathrm{~W}$ w.w.	$R 116,117$
$500 \Omega 5 \mathrm{~W}$	$R 115$
$\mathrm{w} . \mathrm{w} \cdot \mathrm{pot}$.	$R 115$
620Ω	$R 2,7$
820Ω	$R 130$
$1 \mathrm{k} \Omega$	$R 5,10,77$
$1.5 \mathrm{k} \Omega$	$R 26,27,53,55,64,67,83,92,103$
$2.2 \mathrm{k} \Omega$	$R 8,73,89,93$
$2.5 \mathrm{k} \Omega 2.5 \mathrm{~W}$	$R 125$
$\mathrm{w} \cdot \mathrm{W} \cdot \mathrm{pot}$.	
$2.7 \mathrm{k} \Omega$	$R 86,107$
$3.3 \mathrm{k} \Omega$	$R 3$
$3.6 \mathrm{k} \Omega$	$R 85$
$3.9 \mathrm{k} \Omega$	$R 99$
$4.7 \mathrm{k} \Omega$	$R 34,97,98,100$
$5 \mathrm{k} \Omega$ skeleton	$R 12,18,35,38,132$
pot. (linear)	
$5 \mathrm{k} \Omega 5 \mathrm{~W}$ w.w.	$R 126$
$5.1 \mathrm{k} \Omega$	$R 87$
$5.6 \mathrm{k} \Omega$	$R 29$
$6.8 \mathrm{k} \Omega$	$R 36,37,39$
$8.2 \mathrm{k} \Omega 1 \mathrm{~W}$	$R 120$
$10 \mathrm{k} \Omega$	$R 11,13,17,19,76,88,95,96$,
$10 \mathrm{k} \Omega$ linear pot.	$R 28$
$11 \mathrm{k} \Omega$	$R 80,133$
$12 \mathrm{k} \Omega 1 \mathrm{~W}$	$R 121$
$15 \mathrm{k} \Omega 2 \mathrm{~W}$	$R 122,123$

$16 \mathrm{k} \Omega$	$R 56,57$
$22 \mathrm{k} \Omega$	$R 70,71$
$27 \mathrm{k} \Omega$	$R 1$
$33 \mathrm{k} \Omega$	$R 40,58,72,84,102,110$
$47 \mathrm{k} \Omega$	$R 4,6,9,15,16$
$56 \mathrm{k} \Omega$	$R 108$
$68 \mathrm{k} \Omega$	$R 78,79$
$100 \mathrm{k} \Omega$	$R 41,42,43,44,45,46,47,75,128$
$150 \mathrm{k} \Omega$	$R 14,131$
$180 \mathrm{k} \Omega$	$R 52,127$
$220 \mathrm{k} \Omega$	$R 59,60,61,62$
$270 \mathrm{k} \Omega$	$R 54$
$1 \mathrm{M} \Omega$	$R 30,31,32,33,94$

All fixed resistors are $\frac{1}{4} \mathrm{~W}$, unless stated otherwise.

Capacitors

3 pF	$C 30,31$
47 pF	$C 28,29$
220 pF	$C 51,52,60,62,69,75,80$
270 pF	$C 32$
$0.0047 \mu \mathrm{~F}$	$C 49,50,59,61,68,74,79$
$0.01 \mu \mathrm{~F}$	$C 87$
$0.047 \mu \mathrm{~F}$	$C 41,42$
$0.1 \mu \mathrm{~F}$	$C 24,25,26,27,45,46,47,48,53$,
	$54,55,56,65,66,67,72,73,77,78$
$0.22 \mu \mathrm{~F}$	$C 58$
$0.68 \mu \mathrm{~F}$	$C 57$
$10 \mu \mathrm{~F}, 15 \mathrm{~V}$	$C 63,64,81$
$20 \mu \mathrm{~F}, 15 \mathrm{~V}$	$C 76$
$100 \mu \mathrm{~F}, 15 \mathrm{~V}$	$C 83,85,86$
$100 \mu \mathrm{~F}, 250 \mathrm{~V}$	$C 88$
$150 \mu \mathrm{~F}, 15 \mathrm{~V}$	$C 71$
$350 \mu \mathrm{~F}, 9 \mathrm{~V}$	$C 70$
$1000 \mu \mathrm{~F}, 25 \mathrm{~V}$	$C 82,84$
All above capacitors are $\pm 20 \%$ tolerance.	

$0.0047 \mu \mathrm{~F} \quad C 10,12$
$0.01 \mu \mathrm{~F} \quad C 9,11$
$0.022 \mu \mathrm{~F} \quad C 4,5,20,22,44$
$0.033 \mu \mathrm{~F} \quad C 1,2,6,7,35,43$
$0.056 \mu \mathrm{~F} \quad C 39$
$0.068 \mu \mathrm{~F} \quad C 33,37$
$0.10 \mu \mathrm{~F} \quad C 13,14,17,18$
see text $\quad C 3,8,15,19,21,23,34,36,38,40$
$C 16$ is made up of $0.100+0.068+0.010 \mu \mathrm{~F}$
$C 39$ is made up of $0.033+0.022 \mu \mathrm{~F}$
All above capacitors are $\pm 10 \%$ Mylar.

Inductors

Semiconductors

1 N914/916 or similar	$D 1$ to $D 22$
1 N270	$D 23$ to $D 35$
1 N753	$D 36$ to $D 39$
1 N4005 or similar	$D 40,41$
(600 p.i.v.)	
1 N4002 or similar	$D 42$ to $D 45$
(100 p.i.v.)	
2N5655/5656	$\operatorname{Tr} 1,8$
2N697	$\operatorname{Tr5,6}$
MPS3703	$\operatorname{Tr2,3,4}$
MPS3394	$\operatorname{Tr} 7,10$
MPS6518	$\operatorname{Tr} 11$
MPS3395	$\operatorname{Tr} 12$
MJE370	$\operatorname{Tr} 9$
SN72709	$I C 1$ to $I C 9$

Circuit Ideas

Digital counter display

When working on circuits involving digital counter chains, lack of a multi-beam oscilloscope makes determination of counter behaviour difficult, especially with closed-loop systems. The resistor matrix shown, when connected to the b.c.d. outputs of a counter, and the $0.1 \mathrm{~V} / \mathrm{cm}$ input of an oscilloscope, provides an easily-read step-function of

Good-tempered LC oscillator

Transistor oscillator circuits are prone to the vices of squegging, operating at the wrong frequency, or just failing to oscillate if used in conjunction with "unsuitable" inductors or capacitors in the tuned circuit. The arrangement illustrated was derived from the Colpitts circuit to provide a simple way of checking the inductance of a collection of iron-cored inductors, but it can be used as a general-purpose oscillator circuit up to about 10 MHz . Feedback is negative at all frequencies at which the $L C$ network does not provide phase inversion and voltage step-up, and the only time-constant is the inevitable one introduced by the tuning components and associated resistances. Capacitances C_{1} and C_{2} are effectively in series, and it is possible to make C_{2} much greater than C_{1} and so avoid curtailment of the tuning range. If waveform is un-

about 0.5 V pk-pk. The nth step of the function then represents the counter output n. It has proved easy to read off counter outputs and as the step from 5 to 6 is set to about half the height of the other steps and easily recognized, poor sync on simple oscilloscopes can be coped with.
John A. Stephenson.
Spalding.

important R_{2} and the regeneration control R_{3} may be replaced by one $10 \mathrm{k} \Omega$ fixed resistance.
G. W. Short, South Croydon, Surrey.

Noise-immune monostable circuit

A common-emitter monostable circuit may be falsely triggered by a transient reduction of power supply voltage. While it is possible to attenuate this transient, its elimination may prove difficult due either to capacitor and conductor inductances, transient energy content, or both. It is better to design for immunity from a given amplitude of power supply "noise" voltage. This is possible without the use of additional components but at the cost of a reduced maximum "shot" time duty cycle.

The first diagram shows a basic monostable in the quiescent state with $T r_{1}$ off and Tr_{2} on. For the initial argument it is assumed that, for $T r_{2}$, both $V_{b e}$ and the required I_{b} are zero and that during a quiescent period capacitor C_{1} charges to $V_{c c}$. The effect of power supply noise is to turn off the conducting transistor. If $T r_{2}$ cannot be turned off, $T r_{1}$ will not be turned on. Hence eliminating the non-participating components and transposing C_{1} and R_{1} the second diagram may be drawn. Resistors R_{1} and R_{2} form a potential divider to $T r_{2}$ base and
the emitter-base junction of $T r_{2}$ cannot be reverse biased (and hence the ideal transistor turned off) if:

$$
\frac{R_{1}}{R_{2}} \geqslant \frac{V_{n}}{V_{c \mathrm{c}}-V_{n}} \quad \text { or } \quad \frac{R_{1}}{R_{1}+R_{2}} \geqslant \frac{V_{n}}{V_{c c}}
$$

where V_{n} is the voltage by which $V_{c c}$ is transiently reduced.

If immunity from a 25% reduction of $V_{c c}$ is required, R_{1} must be greater than or equal to $R_{2} / 3$. As the shot time approximately equals $0.7 C_{1} R_{2}$ and the recovery time (to $0.98 V_{\text {cc }}$ on C_{1}) is $4 C_{1} R_{1}$, the maximum shot time for the chosen noise immunity may not exceed 0.34 of any period.

Although the noise immunity predicted by the above equation may be closely approached in practice particularly with a high gain Tr_{2} a worst-case design should consider both the required base current and base-emitter voltage of that transistor. This

will cause a further deterioration in permitted duty cycle. If it is taken that for maximum power supply noise $T r_{2}$ shall remain in saturation, for immunity.

$$
\frac{R_{1}}{R_{1}+\frac{N_{1}}{N_{1}-1} \cdot R_{2}} \text { must be } \geqslant \frac{V_{n}}{V_{c c}-V_{b e}}
$$

where $N_{1}=\left(h_{\text {FE }} \min I_{b}\right) / I_{c}$ for T_{2} at the trough of the noise input and $V_{b e}$ is the maximum base-emitter or base to $0-\mathrm{V}$ voltage for $T r_{2}$ in the on state.

As a further example, say $V_{c c}$ is $5 \mathrm{~V}, V_{n}$ is 1.25 V (i.e. 25%), $V_{b e}$ is 0.5 V and N_{1} is 2 . Substituting in the second equation, noise immunity is provided when R_{1} is greater than or equal to $0.77 R_{\mathbf{2}}$. Using the equations for shot time and recovery time previously stated, the maximum shot time may not now exceed 22.5% of any period.
A. Bishop,

London NW8.

Circards - 5 Audio Circuits

Pre-amps, mixers, filters and tone controls

by J. Carruthers, J. H. Evans, J. Kinsler and P. Williams*

Cinemascope or the Magic Lantern? The breadth of choice available to the user of equipment reproducing audio signals is just as great. We are here seeking the happy medium and sidestepping such difficulties as to whether the medium should be disc or tape - or for Menuhin fans, the message.

The starting point is the assumption that the signals though complex can be represented as a mixture of sinusoidal waves of different amplitudes with frequencies lying between certain limits, say 20 Hz to 20 kHz . Generally the aim of good audio equipment is to produce at the ear of the listener a pattern of sound most closely resembling that which he would have heard as a direct listener to the original sound source. The system has to take account of the characteristics of the transducers at both ends of the chain as well as any intervening media used for storing or transmitting this signal.

If the input transducer had a linear amplitude response and gave the same output voltage for a given sound intensity regardless of frequency, then the following amplifiers could themselves have a linear response. The design of such amplifiers, with the aid of modern technology in the form of operational amplifiers is by now routine. There are three distinct departures from this idealized existence.

- The output voltage for constant signal strength may be frequency dependent in some controlled manner e.g.: tape-head e.m.f. proportional to frequency for constant amplitude recorded signal.
- The signal may have been recorded and /or processed by some preceding stage with some characteristic defined according to some standard (R.I.A.A., B.S., C.C.I.R. etc).

Imperfections in some other part of the system may have resulted in anomalies in the desired response e.g.: resonance effects in transducers.

Any one of these would call for correcting action in the amplifying chain, though in some cases as in the design of loudspeakers, resonance effects in the speaker itself can be dealt with by careful design of the enclosure. As each transducer is a very complicated mechanism involving the interaction of several" electrical and mechanical properties it is common to operate them with amplifiers whose impedance characteristics are closely controlled, thus
eliminating one possible source of variation in performance. This article considers only the input transducers, such as microphones, tape-heads, and assumes that any succeeding power amplifier/loudspeaker combination can have its imperfections accounted for by tone controls.

The matching problem at the input reduces the design of amplifiers whose input impedance is either equal to, much less than, or much greater than that of the source. Equal source and input impedances are used in line amplifiers where, for example, input, output and attenuator resistances might be 600Ω. This allows for easy calculation of power levels at all points in a system, and for the interconnection of multiple elements in a system. On the other hand, even within such a system the power output amplifier might be designed to have an output resistance $\ll 600$ ohms so that several such loads might be paralleled without diminishing the power fed to each.

A second important feature of the matchec impedance condition is that it maximizes power transfer from a source of given e.m.f., and internal resistance. In most modern circuits using heavy negative feedback, the natural impedances tend to be either very high or very low and there is then no advantage from a power transfer standpoint of artificially modifying their terminal impedances to some arbitrary value. To do so simply throws away power in the passive network added for this purpose.

In the case of very small signals where noise is a severe problem, matching of

How to obtain Circards

Order Circards by sending remittance (£1 per set, postage included) to "Circards", Wireless World, Dorset House, Stamford Street, London SE1 9 LU , indicating which sets you are buying. Availability of new Circards is indicated by articles in the journal introducing the selected topic. The first four topics were

1 Basic active filters
2 Comparators, Schmitts and levelsensing circuits
3 Waveform generators
4 A.C. measurement
The Circard concept was outlined in the October 1972 issue, pp. 469/70.
impedances plays an important part. A moving-coil microphone having a low internal impedance (e.g. 200 Ω) generates a low e.m.f. of, say, $100 \mu \mathrm{~V}$ r.m.s. Fed directly to a semiconductor amplifier, the input noise voltage would be relatively large, while it would be possible to have a high input impedance using series negative feedback. A step-up transformer of large turns-ratio would greatly increase the signal e.m.f. at the amplifier input and would dominate the noise voltage. However the effective source impedance seen by the amplifier would also be raised by the transformer action and with it the contribution to noise due to the amplifier's input noise current. The optimum condition is when the contributions due to noise voltage and current generation are comparable. Other parameters such as amplitude response are also affected but the condition chosen is often close to the matched condition.

For microphones, the mechanical properties are normally designed so that they are self-equalized, i.e. that they give an output e.m.f. that depends only on the sound intensity and not on frequency. The most common microphones are magnetic in some form, variants including moving-coil, moving-iron and ribbon microphones. Reduction of the moving mass to extend response tends to reduce both sensitivity and impedance with the problems described above. Crystal microphones are used for low-cost applications such as simple cassette recorders and require a high input impedance pre-amplifier to avoid attenuation at low frequencies where the capacitive reactance of the microphone increases. The pre-amplifier design is similar to that for crystal / ceramic pickups, i.e. a flat response and generally an impedance in excess of $1 \mathrm{M} \Omega$, possibly up to $10 \mathrm{M} \Omega$ or more for low capacitance units with extended low-frequency amplitude response. Alternatively, the feedback may contain a capacitance whose change in reactance compensates for that of the transducer.

These ceramic elements could in principle be designed to give a frequency-independent output when used for record reproduction, but another factor enters the argument. During recording, signals are first passed through frequency-dependent amplifiers. These have strictly controlled characteristics, usually referred to as R.I.A.A. and further defined in BS 1928. If all signals were recorded with a so-called constant-velocity characteristic it would be found in practice that the amplitude at low frequencies would result in breakthrough between neighbouring sections of the groove. This is because constant velocity fixes the velocity at the zero-crossing point of the signal.

At low frequencies the longer period would allow proportionately larger excursions. Hence low-frequency signals are recorded with amplitude proportional to signal e.m.f. (whereas a velocityproportional recording would otherwise have merits since a magnetic playback element would re-convert that velocity
back into e.m.f. proportionately). This constant amplitude characteristic merges into a constant-velocity region at around 1 kHz , but at still higher frequencies the recording again changes to constant amplitude. The reason is different. The majority of the noise in any system is concentrated in the higher octaves as in most cases noise is proportional to bandwidth. By emphasizing high frequency signals during the recording process and reversing the procedure on playback, the overall amplitude response remains linear, but any noise due to the record surface and playback pre-amplifier is diminished as it is relative to a much larger signal. Noise accompanying the original signal emerges from the system at an unchanged ratio.
This recording characteristic of BS1928 accommodates the larger low-frequency amplitudes common in music, and does not lead to distortion at high frequencies as the signal amplitudes are relatively small. The playback transfer function is
$T_{0}=k \frac{\left(1+\mathrm{j} \omega T_{2}\right)}{\left(1+\mathrm{j} \omega T_{1}\right)\left(1+\mathrm{j} \omega T_{3}\right)}$
Where $T_{1}=75, T_{2}=318$ and $T_{3}=$ $3180 \mu \mathrm{~s}$. To achieve this with a magnetic cartridge, the preamplifier input resistance should be higher than that of the cartridge at all frequencies of interest, or should have a fixed value that can be allowed for in tailoring the cartridge response in terms of its electro-mechanical properties. A typical value is $50 \mathrm{k} \Omega$. The voltage gain must fall between 50 Hz and 500 Hz at 6 dB /octave, passing through a point of inflection at 1 kHz , and falling again at 6 dB /octave beyond 2.2 kHz . These three time-constants may be defined by three separate $C R$ circuits; in some cases two of the time constants are achieved using a single capacitor in a suitable network of resistors.

With ceramic cartridges, equalization is not a result of circuit design but of the transducer itself. The various parameters such as compliance as well as resonances are carefully combined to provide a good approximation to the desired equalization subject to correct loading as outlined above. Where an amplifier has in-built equalization (i.e. for magnetic cartridge) then a separate network may be inserted between the ceramic cartridge and that inpitt to remove the effect of that equalization - a cumbersome process that might be called re-de-equalization.

Tape-recorded signals followed a C.C.I.R. characteristic recently re-defined and extended in BS1568 part 1. There is a low-frequency time constant identical to that in the R.I.A.A. curves, i.e. a time constant of $3180 \mu \mathrm{~s}$, with one further time-constant depending on tape speed, but giving a response that is constant above a particular frequency. These characteristics are quite independent of any imperfections in particular combinations of heads and tapes though intended to optimize their operating conditions. Feedback networks are then similar to those for magnetic cartridge pre-amps equalized as above though requiring only

Table 1: proposed classification for loudspeakers.

Frequency
range (Hz)
Title

$10-30$	grunter
$30-100$	boomer
$100-300$	roarer
$300-1 \mathrm{k}$	crooner
$1 \mathrm{k}-\quad 3 \mathrm{k}$	howler
$3 \mathrm{k}-10 \mathrm{k}$	screamer
$10 \mathrm{k}-\quad 30 \mathrm{k}$	screecher

two $C R$ time constants in the ideal case. In practice the imperfections of the system may force for example the addition of some treble boost on playback, operating in the 5 to 20 kHz region. This is not covered by any standard, but may readily be incorporated by a further decrease in feedback factor in these regions.

Once these preamplifiers have converted the transducer outputs into voltages bearing a nominally linear relationship to the original sound intensity, it might be thought possible simply to amplify the signals further and apply them directly to an output transducer. Such trusting simplicity exposes one to ridicule for ignorance of that recent discovery. Finagle's axiom on reproducing circuitry and equipment - FARCE for short viz "All signals are equalized but some are more equalized than others". Most audio systems use one or more circuits to modify the amplitude response of the signals passing through them to correct for this effect.

Where unwanted material occurs at the extremes of the spectrum then low-pass or high-pass filters are used for sharp attenuation of these unwanted signals with minimum attenuation of the desired signals. These filters when used in audio equipment are generally called scratch and rumble filters respectively but the basic principles underlying them are the same (see Circards series 1). Second- or third-order filters are used, and as the ultimate judgement of these audio systems is rightly the subjective one of a listening test, the choice of filter characteristic is often empirical.

During such a listening test, the parameters of the room housing the loudspeaker plays a large part, while sound sources including commercial recordings are not above suspicion in respect of the linearity of amplitude response. Even if all such sources reached the impeccable standards which the engineers concerned strive so successfully to meet, there would remain the personal preferences of the user. It takes a brave man to refrain from just-a-touch on the tone controls when demonstrating the superiority of his latest equipment to a fellow enthusiast (competitor?). Of all the tone controls proposed, the most generally accepted is due to P. J. Baxandall, basing itself on a feedback rather than a passive network. This allows for true boost or cut to either low or high frequencies relative to an unchanging centre frequency, generally 1 kHz . Two potentiometers are used, adjusting the feedback in the two frequency regions separately around a virtual earth amplifier such that the gain in these regions varies typically from 0.1 up to 10 i.e. 20 dB . The higher the quality of the sources and other links in the chain the smaller the range covered by these tone controls need be.

More complex tone controls may be used to sub-divide the frequency spectrum still further; though purists will reject this approach as it smacks of gimmickry, there can be a case for it for various forms of electronic musical instruments and in sound effects. One possibility is the use of parallel channels each consisting of a low- Q band-pass filter using sufficient channels that the mixed signal has very little ripple in its overall amplifier response characteristic when all controls are level. It is convenient for producing relatively small amounts of boost and cut at selected regions in the spectrum and may be augmented by active filters with higher Q if stronger effects are needed.

The mixer circuits used in such a system, as when mixing inputs from tape, disc, radio, are now frequently based on the see-saw amplifier feeding to the virtual earth through appropriately scaled resistors. If it is desired to obtain significant voltage gain from the mixer as well as having multiple inputs, the bandwidth restrictions are more severe, being in effect determined by the total gain used, i.e. the sum of the gains with respect to various inputs. Phase shift in the operational amplifier at all frequencies above 10 Hz is such as to make the virtual earth point have a largely inductive impedance, i.e. one that rises proportional to frequency.

As a final comment on the possibility of multi-band operation of audio systems it can be argued that limiting the number of loudspeaker drive units to two (a woofer and a tweeter) with the occasional addition of a mid-range squawker is too restrictive. Accordingly we suggest a new classification scheme of dividing the spectrum from 10 Hz to 30 kHz into seven bands each to be handled by a separate loudspeaker, see table. Combined with quadraphonic operation surely an export boom must be the result?

Versatile Triangle Wave Generator

A constructional project which forms a 'building brick' for more complex test systems

by D.T. Smith*

This article describes a triangle wave generator whose frequency can be controlled in a variety of ways. Its frequency can be made to vary linearly with a potentiometer setting; the period can be made to vary linearly with a resistor and frequency can be varied exponentially over several decades, or swept with an input voltage. It uses cheap non-critical components, and is suitable for use from well below 1 Hz to the MHz region. If required the triangle can be shaped to a sinewave, so that the oscillator can be used as a wide range or swept sinewave generator that avoids the problems associated with the direct generation of sinewaves at low frequencies. Also, a square wave output is available if required.

Principle of operation

A block diagram of the oscillator is shown in Fig. 1. The output of a constant current generator is fed through an electronic switch either directly to the capacitor C_{1},
*Clarendon Laboratory, Oxford

Fig. 1. A block diagram of the oscillator.
or via a "current mirror" circuit to C_{1}. This current mirror gives an output current equal in size but opposite in direction to its input current. Thus the capacitor voltage sweeps linearly-up or down as controlled by the switch. When the switch is feeding current to the current mirror, the capacitor voltage will sweep in the positive direction until the output exceeds the bias of the upper level comparator. Then the comparator triggers the bistable so that the switch
reverses and the capacitor voltage sweeps in a negative direction. This continues until the output falls below the bias of the lower level comparator, when the bistable is triggered back to its original state and the cycle is repeated.

If the buffer has unit gain, and there is a difference, V, between the comparator bias levels, the capacitor voltage must change by 2 V per cycle. Hence the frequency of oscillation is

$$
f=\frac{1}{2 C_{1} V}
$$

Circuit details

Fig. 2 shows the circuit diagram of the oscillator (except for the current generator which is described later). The emitter coupled pair $T r_{3}, T r_{4}$ switch the input current, and the switch is controlled by 200 mV signals from the bistable. In the current mirror $T r_{1}, T r_{2}$, the voltage drop caused by the input current flowing in R_{1} and the emitter junction of $T r_{1}$ equals the

Fig. 2. Circuit diagram of the oscillator.

(a)

(b)

Fig. 3. (a) Current generator for the direct calibration of frequency. (b) Current generator for the direct calibration of period. (c) Current generator for a very wide frequency range.

Fig. 4. The oscillator performance using the current generator shown in Fig. 4(a) demonstrating a linear frequency calibration.

The output waveform at 1 kHz .

Fig. 5. Oscillator performance with current generator $4(b)$ demonstrating linear period calibration.

Fig. 6. Performance of the oscillator using the very wide frequency current generator.

Fig. 7. A sine wave shaping circuit.
drop caused by the output current in R_{2} and the emitter junction of $T r_{2}$. Thus, if R_{1} and R_{2} are equal, and the transistors are similar, the output current will equal the input current, and with the values shown the circuit operates for currents ranging from below $\ln \mathrm{A}$ to about $500 \mu \mathrm{~A}$.

The capacitor voltage is buffered by a source follower $T r_{5}$. The output is taken to the comparator $\operatorname{Tr}_{6}, T r_{7}$ and compared with a fixed bias of +10 V . When the output exceeds $+10 \mathrm{~V}, T r_{7}$ conducts and triggers the bistable circuit $\operatorname{Tr}_{10}, \operatorname{Tr}_{11}$. The output is also fed to a second comparator $\operatorname{Tr}_{8}, \operatorname{Tr}_{9}$ and compared with a +5 V bias, so that the bistable is reset when the output falls below +5 V . The output is thus a triangle wave between the limits +5 and +10 V . A photograph of the output waveform is shown on the left.

Constant current generator

The versatility of this oscillator stems largeily from the fact that its frequency is controlled by a single current generator, and this generator can be adapted to meet a variety of needs. If only a single frequency is required, this generator can be a simple resistor to the negative line. Fig.3(a) shows a current generator suitable for use when an oscillator with a linear frequency calibration is wanted, as the frequency varies linearly with the potentiometer setting. If C_{1} is 10 nF and a ten turn helipot is used with the dial set to read from 1 to 11 turns, the trimmer potentiometers can be set to give maximum and minimum frequencies of 1100 and 100 Hz . The oscillator frequency can then be read straight from the helipot dial, as is shown in Fig. 4. By switching the capacitor in decade steps, a useful test oscillator can be built to cover a wide range of frequencies.

If voltage control of frequency is required, a control voltage can be fed directly into the base of T_{2} in place of the voltage from the potentiometer. When an oscillator calibrated in period is required, the current generator shown in Fig. 3(b) is suitable. This gives a period proportional to R, as shown in Fig. 5. The exponential relation between collector current and base-emitter voltage in a transistor can be used to give a very wide frequency range in one band, as was previously described for use with multivibrators ${ }^{1}$. Fig. 3(c) shows a suitable generator and its measured performance is shown in Fig. 6. When this circuit is used R_{1} and R_{2} should be changed to 470Ω to allow the current mirror to work up to 10 mA .

Conversion to sine waves

A triangle wave with its reasonably low harmonic content can be used in many applications where a sinewave has been traditionally used. However, when a low harmonic content is necessary, the nonlinear characteristics of a junction f.e.t. can be used to shape the triangle into a sinewave ${ }^{2}$. A suitable circuit is shown in Fig. 7. The d.c. output of the emitter follower is set to zero using R_{1} and the amplitude set with R_{2}. The emitter follower is necessary to
give a low impedance drive to the shaping circuit.

Some care in setting up is necessary here for good results. The V_{p} and $I_{d s s}$ of the f.e.t. should be measured (i.e., the gate bias where the drain current falls to zero, and the saturation current at zero gate bias), and the peak-to-peak input level set to about $2.7 V_{p}$ with R_{a} and R_{b} set to about $\frac{V_{p}}{2 I_{d s s}}$. The input level is then adjusted for minimum 3rd harmonic and R_{b} set for minimum 2 nd harmonic, using a wave analyser if available. A total harmonic content of less than 0.5% r.m.s. can be obtained with this circuit.

References

1. D. T. Smith, "Multivibrators with sevendecade range in period", Wireless World, Vol. 78, No. 1436, 1972, pp. 85-6.
2. R. D. Middlebrook and I. Richer, "Nonreactive filter converts triangular waves to sines', Electronics, Vol. 38, No. 5, 1965, pp. 96-101.

Components List (Figs. 2, 4)

Resistors	
R_{1}	10 k
R_{2}	10 k
R_{3}	22 k
R_{4}	4.7 k
R_{5}	10 k
R_{6}	10 k
R_{7}	10 k
R_{8}	10 k
R_{9}	6.8 k
R_{10}	100
R_{11}	10 k
R_{12}	10 k
R_{13}	6.8 k
R_{14}	100

Capacitors

C_{1}	see text
C_{2}	$0.1 \mu \mathrm{~F}$
C_{3}	$0.1 \mu \mathrm{~F}$
C_{4}	4.7 pF
C_{5}	4.7 pF

Semiconductors

$$
\begin{array}{ll}
T r_{1}, T r_{2}, T r_{6}, T r_{7}, T r_{8}, T r_{9} & \text { All 2N4061 } \\
T r_{3}, T r_{4}, T r_{10}, T r_{11}, T r_{12} & \text { All 2N5172 } \\
T r_{5} & \text { 2N3819 }
\end{array}
$$

Components List (Fig. 8)

Resistors	
R_{1}	22 k pot.
R_{2}	10 k
R_{3}	100 k pot.
R_{4}	100 k
R_{5}	4.7 k
R_{6}	1 M
R_{7}	1 M
R_{a}	see text
R_{b}	see text
Semiconductors	
D_{1}	12 V zener
D_{2}	1 S 44
D_{3}	1 S 44
$T r_{1}$	2 N 4061
$T r_{2}$	2 N 5172
$T r_{3}$	2 N 3819

Announcements

A one-day standards course is to be heid by the British Standards Institution at Hampden House, 61 Green Street, London W.I, on 23rd February. The course is intended primarily for firms new to standards work and deals with preparation of an individual stanđard to inter-relationship between British, international and European standards in the Common Market. Applications to the Secretary, Standards Associates Section, British Standards Institution. 2 Park Street, London W1A 2BS.

A three-day course, "Minicomputers in industrial process control", is to be held at the Polytechnic of Central London, 115 New Cavendish Street, London WIM 8JS, from 21st to 23 rd March. The course is intended for managers, engineers and scientists interested in appraising state-of-the art minicomputer technology.

The management control of the Science Research Council's Astrophysics Research Unit has been transferred to the Radio and Space Research Station, Slough, Bucks. The unit will continue its activities for the present at the Culham Laboratory, Abingdon, Berks.

ESPA - the European Selective Paging Manufacturers Association - has been formed by AEG Telefunken, Autophon, Hasler, Multitone, N.I.R.A., Philips, Svenska Radio AB and Telekontroll AB with headquarters in Eindhoven, Holland. The main purpose is to produce a standardization of regulations and technical specifications throughout Western Europe.

Submissions for the 1973 MacRobert Award for technological innovation are invited by the Council of Engineering Institutions. Entries should reach the C.E.I. by the 30th April 1973. Copies of the rules and conditions can be obtained from The MacRobert Award Office, Council of Engineering Institutions, 2 Little Smith Street, London S.W.I.

Siliconix Ltd. the Swansea based semiconductor manufacturers, have opened a sales office at Shirley Lodge, 470 London Road. Slough, Bucks.

Murphy Telecommunication Systems Ltd has opened additional premises at Brockenhurst Film Studios, Fibbards Road, Brockenhurst, Kent. The company's offices and works at Warrington and Trowbridge remain fully operative.

Welwyn Electric Ltd have announced that their Strain Measurement and Equipment Division, based at Teddington, Middlesex, has opened an office in Sweden. The address is Uppfartsvagen 13, 17132 Solna, Sweden,

Italtel s.p.a., of Milan, Italy, export commissioner of SIT Siemens s.p.a. of the IRI-STET group, has been awarded a contract worth approximately $£ 0.9 \mathrm{M}$ for the construction of three microwave radio relay links in Ethiopia and their respective multiplex equipments.
Radar video recording equipment has been ordered from EMI to assist in flight testing new radars being developed for Europe's multi-role combat aircraft (M.R.C.A.). The contract has been placed with EMI Electronics' Systems \& Weapons Division, Wells, Somerset, by Panavia GmbH - the Munich firm developing the M.R.C.A. project.

Under contract to the Spanish Army. Racal-Mobilcal Ltd, 464 Basingstoke Road, Reading, Berks RG12 ORY, is to supply a rangs of h.f. radio communications systems worth approximately $£ 500,000$.

An agreement has been reached between Jermyn Distribution, Vestry Estate, Sevenoaks, Kent, and Weir Electronics Ltd, whereby Jermyn will stock printed circuit board power supplies manufactured by Weir.

Lauriestone Electronics Ltd, I Stepfield, Witham, Essex CM8 3TH. has signed an agreement with the Marconi Co., for the manufacture and sale under licence of the Marconi Meniscometer - an instrument for measurement of solder "wettability" of components or p.es.
V.A. Howe and Co. Ltd, 88 Peterborough Road, London S.W.6. have been appointed sole U.K. agent for Denton Vacuum Inc., who manufacture equipment for electron microscopy.

Electrocomponents Associates Ltd, P.O. Box 19, Orchard Road, Royston, Herts. SG8 5HH, have taken over Pact International Electronics Ltd, who marketed test equipment and specialized instruments.

Data Laboratories Ltd, Wates Way, Mitcham, Surrey, has developed a range of digital peripheral interfaces for the DL905 transient recorder, to permit direct connection to a digital computer as a high-speed signal acquisition device.

Memorex Ltd, an American audio tapes company based at Freight House, Long Lane, Stanwell. Middlesex, has introduced a cassette storage system consisting of an aluminium library rack, six cassette album cases and a link piece for further additions.

The address of both the Electronic Components Board and the Radio and Electronic Component Manufacturers' Federation is now 6th Floor, Liberty House, 222 Regent Street, London WIR 5EE. Tel. 01-437 4127.
The Marconi International Marine Co. Ltd., Marconi House, Chelmsford, Essex, a GEC-Marconi Electronics company, has formed an Oil Industry Division which, in liaison with the specialist departments within the company, will be responsible for all sales, installation and service functions of Marconi Marine U.K. offshore oil industry activities. Electrocomponents Associated Limited, $13 / 17$ Epworth Street, London EC2P 2HA, the public company that includes RS Components, has taken over The Radio Resistor Co. Ltd, of Harrow, Middlesex.
Reslosound Ltd, Reslo Works. Spring Gardens, London Road, Romford, RM7 9LJ, a subsidiary of Derritron, have been appointed U.K. and European marketers for Broadcast NC, of Maryland. U.S.A., manufacturers of the Spotmaster range of radio station cartridge systems.
A.D.L. Technicare, 3C The Industrial Estate, Cores End Road, Bourne End, Bucks., an electronic repair and calibration company, have acquired the business of M.C.R. Avionics Ltd, of Elstree Aerodrome, Hertfordshire. The company will carry on trading under the name of Technicare Avionics and will specialize in the installation, maintenance and repair of communication and navigational equipment. primarily in the aviation field.
EMI Television Equipment, a division of EMI Sound and Vision Equipment Ltd. Hayes, Middlesex, has provided two monochrome television outside broadcast vehicles with power generators to the Nigerian Broadcasting Corporation for its Channel Ten service based in Lagos.
The Decca Navigator Company Ltd, Decca House, 9 Albert Embankment, London S.E.I., has been awarded a contract worth over $£ 100,000$ to supply Mk. 19 Decca navigator airborne receivers, Danac computers and pictorial displays to the fleet of ten Sikorsky S-6I air/sea rescue helicoptors of the Royal Danish Air Force.
B.A.C. is to install additional navigation aids in Jet Provosts operated by the R.A.F. Work valued at about $£ 2 \mathrm{M}$ will include installation of direction and distance measuring equipment.
Royal Air Force Strike Command has taken delivery of the MATELO (Maritime Air-Radio Telegraph Organization) ground-to-air, high-frequency communication network supplied to the Ministry of Defence (Air) by Marconi Communication Systems Ltd, Marconi House, Chelmsford, CM1 1PI.
Marconi Communication Systems Ltd, Marconi House, Chelmsford, CM1 1PL, are to install a tropospheric scatter communications link between Dacca, the capital of Bagladesh, and Chittagong, the country's main port, a distance of 200 km . This order has been placed at the request of the Bangladesh Ministry of Posts, Telegraph and Telephones through Global Imex, the Marconi representative in Bangladesh.

About People

Paul Rhodes has joined the senior technical staff of Nelson Tansley to work on hospital nurse-call and ENTAL railway communications systems. He is well qualified for the position, having explored both fields of activity in his recent experience. Work on the commissioning of British Rail's trackside communications. during which he obtained a knowledge of worldwide codes of practice. was followed by eight years' service with Multitone, where he was engaged in marketing, installation and servicing of hospital communications in Europe and the Middle East.

Aubrey Buxton, M.C., took office as president of The Royal Television Society for a two-year term on January lst 1973. Mr. Buxton. who is executive director of Anglia Television and producer of Anglia's "Survival" films, was educated at Ampleforth and Trinity College, Cambridge and served in The Royal Artillery from 1939-45. In 1968 Mr . Buxton was awarded the Royal Television Society's Silver Medal for outstanding artistic achievement.
J. Stevenson, has been appointed director of operations for one of the five divisions of E.M.I. Sound and Vision Equipment Ltd., E.M.I. Industrial Components. He will be responsible for the administration of the Treorchy, Glamorganshire, factory and for component marketing at Hayes.

Three employees of Standard Telephones \& Cables and Standard Telecommunication Laboratories have been successful in the 1972 Telecommunication Engineering and Manufacturing Association T.E.M.A. Awards competition. Kevin Kelly, of S.T.L. Harlow, gained first prize in the Technologist Class for his essay "The Doppler Microwave Landing Svstem" and in the same class, Derek Glanville, also of Harlow, was awarded second prize for an essay on "The Spectrum of Round-Off Noise in a Digital Filter". Roger Faulks, who is in the Transmission Division at
S.T.C., Basildon, won first prize in the Technician Class for his specially commended essay "Model Automatic Location Store".
D. I. Williams, B.Sc., has been appointed a director of Electroplan Limited, the instrument distribution company of the Electrocomponents Associated Group. Mr. Williams, who is 37 , has been

general manager of Electroplan since its inception in April 1972.
Farnell Electronic Components Ltd, of Leeds, announce the appointment of Ken Gledhill as sales and marketing director and of Ian Johnstone to the position of executive director.
H. C. Maguire, a director and general manager of Marconi Marine, retired on December 31st after 45 years with the company. Mr. Maguire served at sea as a radio officer from 1927 to 1936, when he joined the shore technical staff in Glasgow, work which was interrupted by a three-year wartime appointment in Montevideo. In 1948, he became contracts representative for southern Scotland, moving in 1950 to Liverpool, where he was later promoted to depot manager. Mr. Maguire was appointed manager of the export sales division at Chelmsford, becoming general manager in 1962. He also relinquishes his directorships of Norsk Marconikompani A/S, Oslo, and Coastal Radio.

Richard Slatter, B.Sc., has been appointed systems engineer by

Perex, the Reading-based firm specializing in peripheral interfacing, off-line data handling and system design. Mr. Slatter received his honours degree in Electrical Engineering at Newcastle-upon-Tyne, and went to A.E.I. Scientific Apparatus to work on data-acquisition and analysis systems. He was subsequently employed by I.C.L., West Gorton, where until joining Perex, he was a design engineer on test equipment for large computers.
K. G. Smith has been appointed engineering consultant to the Electronic Components Board to assist Sir Richard Melville, K.C.B., the director. Mr. Smith has been one of the R.E.C.M.F. representatives on the Board since 1968, having been chairman (1958-59) and vice-president (1960-64) of the R.E.C.M.F. He was also chairman of the R.E.C.M.F. Technical Committee from 1962-1966. Before his retirement in 1971, Mr. Smith had been joint managing director of N.S.F. Limited and a director of Simms Motor and Electronic Corporation Ltd. He was leader of the representatives of the passive components makers to the "Burghard" Committee.
M. A. Gates has become deputy divisional manager (Lincoln) and manager of the Gas Tube Department of the English Electric Valve Company Limited. Coming to E.E.V. from the Sunderland c.r.t. factory of A.E.I. in 1958. Mr. Gates was head of the Chelmsford c.r.t. section until 1960, when he was appointed assistant manager of the Large Valves Section, becoming manager in 1966.

NEW YEAR HONOURS

Among recipients of honours in the New Year list were the following:

Knight Bachelor

Dr. E. Eastwood, F.P.S., director of research, General Electric Company.

C.B.

C. P. Fogg, B.A., deputy controller of electronics, Ministry of Defence. C.B.E
P. A. Allaway, C.Eng. chairman and managing director, E:M.l. (Electronics) Ltd.
A. Deutsch, technical director, Thorn Electronic Industries Ltd.
G. C. Gaut, M.A., B.Sc., director of the Plessey Company Ltd.
G. G. Gouriet, F.I.E.E., chief engineer, research and development, B.B.C.
Prof. N. Kurti, F.R.S., professor of physics, Clarendon Laboratory, Oxford.
O.B.E.
J. W. H. Cheesbrough, M.I.E.R.E., regional engineer, Midlands Telecommunications region, Post Office.
W. G. D. Gunn, for services to sound broadcasting and television, S.E. Asia.
J. R. Pickin, B.A. (Hons.), general manager, engineering, Ferranti Ltd.

M.B.E.

W. W. Beebee, lately radio officer/purser, Coastal Relieving Duties, Glen Line.
P. J. Darby, M.I.E.R.E. head of technical quality control, Independent Broadcasting Authority.
K. G. Eve, officer-in-charge, Radio Communications Branch, Lancashire Constabulary.
H. Hirst, chief electronics engineer, Naval guided weapons division, Hawker Siddeley Dynamics Ltd.
P. H. Rice, electronics engineer. Marconi Space and Defence Systems, Stanmore.
V. Rubenstein, head of reception department, monitoring service, External Broadcasting, B.B.C.
C. H. Snell, senior production controller, Radar and Equipment Division, E.M.I. Electronics Ltd.

Obituary

Philip R. Berkeley, M.I.E.E. headof engineering for Thames Television, died suddenly on loth January, aged 54 . Mr. Berkeley spent twentyfive years with Marconi's, working on many aspects of television, including transmitters, the Mk III camera and early outside-broadcast vehicles. He was responsible for the planning and installation of television studios in all parts of the world, including I.T.V's firststudios, and was more recently concerned with the planning of Channel TV, Hong Kong Television Broadcasting, Thames studios at Teddington and television for South Africa. Mr. Berkeley was vice-president of the British Kinematograph Sound and Television Society.
W. H. George, Ph.D., F.Inst.P., well known as a physicist in the field of acoustics, died in December, aged 75. He graduated at University College Nottingham, where he received his doctorate in 1925. Amongst the appointments he held was that of Royal Society Moseley Research Student, working under Sir W. H. Bragg in the Davy Faraday Laboratory at the Royal Institution, London. Later he lectured at Leeds and Sheffield Universities and at Southampton University College, finally being appointed Head of the Physics Dept. Chelsea College of Science and Technology. Dr. George was especially interested in music, in all its aspects. He published a number of research papers, including " A sound reversal technique applied to the study of tone quality" and "Science and Music". Dr. George become more widely known in the 50 s and 60 s with his series of lectures, broadcast on the Third Programme, dealing with musical instrument acoustics. He frequently lectured on these subjects at Morley College and elsewhere and read papers to the B.S.R.A. and the B.K.S.T.S.

Experiments with Operational Amplifiers

7 (concluded). Log circuits for multiplication, division and the generation of powers

by G. B. Clayton ${ }^{*}$, B.Sc., F.Inst.P.

Operational amplifier log and antilog converters may be combined in order to generate many non linear functions. The circuits are connected together in such a way that they perform the operations normally involved in logarithmic computation. Examples of such computations are described by the equations:

$$
\begin{aligned}
\operatorname{antilog}(n \log x) & =x^{n} \\
\text { antilog }(\log x+\log y) & =x y \\
\text { antilog }(\log x-\log y) & =x / y
\end{aligned}
$$

Thus in order to generate an output signal proportional to the nth power of an input signal, a log converter is used to generate the \log term, a resistive divider network is used to multiply the log term by a constant n and an antilog converter is then used to form the output signal. The action of such a system may be investigated using the circuit illustrated in Fig. 7.8. The circuit consists essentially of a combination of the temperature compensated log converter and temperature compensated antilog converter previously described
Referring to Fig. 7.8 the output of amplifier A_{1} is, from eq. 7.4 (Jan. issue), given by

$$
e_{o 1}=-\left[\frac{R_{5}+R_{6}}{R_{6}}\right] E_{o} \log _{10} \frac{I_{c 1}}{I_{c 2}} \frac{I_{o 2}}{I_{o 1}}
$$

Using eq. 7.1 the collector current of transistor Tr_{4} is determined by

$$
V_{E B 4}=-E_{0} \log _{10} \frac{I_{c 4}}{I_{o 4}}
$$

where

$$
\begin{equation*}
V_{E B 4}=V_{E B 3}+e_{o 1} \frac{R_{8}}{R_{7}+R_{8}} \tag{7.6}
\end{equation*}
$$

and

$$
V_{E B 3}=-E_{o} \log _{10} \frac{I_{c 3}}{I_{o 3}}
$$

Substituting for $V_{E B 4}, V_{E B 3}$ and $e_{o 1}$ in eq. 7.6 gives

$$
\begin{array}{r}
E_{o} \log \frac{I_{c 3}}{I_{o 3}}+\frac{R_{8}}{R_{7}+R_{8}} \frac{R_{5}+R_{6}}{R_{6}} E_{o} \log \frac{I_{11}}{I_{c 2}} \frac{I_{o 2}}{I_{o 1}}= \\
E_{o} \log \frac{I_{c 4}}{I_{o 4}}
\end{array}
$$

ture the E_{o} terms cancel, and by rearrangement we obtain:

$$
\begin{aligned}
\log \frac{I_{c 4}}{I_{c 3}} \frac{I_{o 3}}{I_{o 4}} & =n \log \frac{I_{c 1}}{I_{c 2}} \frac{I_{o 2}}{I_{o 1}} \\
n & =\frac{R_{8}}{R_{6}} \cdot \frac{R_{5}+R_{6}}{R_{7}+R_{8}}
\end{aligned}
$$

If we assume that the I_{o} terms cancel

$$
\frac{I_{c 4}}{I_{c 3}}=\left[\frac{I_{c 1}}{I_{c 2}}\right]^{n}
$$

Now $I_{c 4}=\frac{e_{o}}{R_{4}}, I_{c 3}=\frac{e_{3}}{R_{3}}, I_{c 2}=\frac{e_{2}}{R_{2}}$ and
$I_{c 1}=\frac{e_{1}}{R_{1}}$
Thus

$$
\begin{equation*}
e_{o}=\frac{e_{3}}{R_{3}} R_{4}\left[\frac{R_{2}}{e_{2} R_{1}}\right]^{n} e_{i}^{n} \tag{7.7}
\end{equation*}
$$

In the circuit of Fig. 7.8 component values
*Department of Physics, Liverpool Polytechnic.
are chosen so as to make the scaling factor unity and the power $n=3$. It is suggested that e_{3} be made variable so as to allow for mismatch in the I_{o} terms. The setting up procedure for the circuit then consists of applying an input signal of exactly one volt and adjusting the value of e_{3} so as to obtain an output signal of exactly one volt.

Experimental results obtained with the circuit are shown graphically in Fig. 7.9. The second set of results in Fig. 7.9 were obtained with resistor values R_{5}, R_{6}, R_{7} and R_{8} chosen so as to make $n=\frac{1}{2}$. The following values were used: $R_{6}=R_{8}=$ $1 \mathrm{k} \Omega, R_{5}=5.6 \mathrm{k} \Omega, R_{7}=12 \mathrm{k} \Omega$.

In Fig. 7.9 the lines show the calculated functions, $e_{o}=e_{i}{ }^{3}$ and $e_{o}=e_{i}{ }^{\frac{1}{2}}$ respectively and the plotted points indicate experimentally obtained data. The resistor values used to set powers were of 5% tolerance. Greater conversion accuracy would, of course, be assured by selecting resistor values to precisely fix the power n. Accuracy at low signal levels would be improved by balancing offsets of amplifiers A_{1} and A_{4}.

Fig. 7.9. Experimental results (marked points) obtained with power generator.

Fig. 7.10. Multiplier/divider.

Multiplier/divider

Examination of eq. 7.7 shows that if the power n is made unity the response of the circuit in Fig. 7.8 is given by the equation

$$
\begin{equation*}
e_{o}=\frac{R_{4}}{R_{3}} \frac{R_{2}}{R_{1}} \frac{e_{3} e_{1}}{e_{2}} \tag{7.8}
\end{equation*}
$$

The power n may be set to unity by appropriate choice of log scaling resistors, or log scaling resistors may be simply omitted from the circuit.
In the circuit shown in Fig. 7.10 the log output at the base of transistor $T r_{2}$ is connected directly to the antilog circuit at the base of transistor Tr_{3}. The circuit response is described by eq. 7.8 and the circuit may be used for either multiplication or division. The circuit allows only single quadrant operation, that is, all signals are of the same polarity (positive).

When using the circuit in Fig. 7.10 for multiplication the signals to be multiplied are applied to inputs e_{1} and e_{3}. Scaling is determined according to eq. 7.8 by resistor values R_{1}, R_{2}, R_{3} and R_{4} and by the signal e_{2}. In practice, because of mismatch in transistor I_{o} terms, it is normally necessary to make one of the scaling parameters adjustable. A convenient procedure is to fix resistor values, apply measured values of e_{1} and e_{3} and adjust the value of e_{2} to give the output product multiplied by a desired scaling factor.

When using the circuit for division the variables are applied to e_{1} and e_{2}, and e_{3} may be adjusted for a desired scaling factor.

Practical notes

The circuits shown were all connected using "bread board" techniques. Capacitor values were chosen so as to achieve closed loop stability. The values required for this purpose are to some extent dependent upon the actual circuit layout, so that it is always advisable to check for closed loop stability by oscilloscope monitoring of amplifier outputs. Frequency compensating capacitor values may be increased if necessary in order to achieve closed loop stability. Increase in capacitor values slows down the circuit response, particularly at low signal levels, although this is no real disadvantage for experimental purposes.

Temperature differentials between logging transistors should be avoided if temperature compensation is to be effective. In the systems employing a combination of log and antilog circuits E_{o} terms cancel and it is not necessary to use a temperature sensitive resistor to compensate for the temperature dependence of E_{o}.

If the widest possible dynamic range is to be achieved with the circuits the offsets of the input operational amplifier should be balanced. Performance limits are then determined by amplifier bias current and offset voltage drift. A further increase in dynamic range will require the use of an operational amplifier type with smaller values of bias current and input offset voltage. If log converters are to perform accurately at very low signal levels considerable care must be taken to avoid leakage currents. Possible leakage through

Fig. 7.11. Measurement of transistor $h_{F E}$ variations using divider circuit.
circuit boards or capacitors requires consideration, and amplifier input circuitry may require guarding.

Application of log circuits

Log circuits may be applied in performing functional operations. They are also very useful in obtaining a wide dynamic range in signal processing systems. In linear systems there is a marked loss of accuracy when the input signal is small compared with full scale. In the case of \log amplifiers the accuracy is a percentage of signal rather than a percentage of full scale over most of the dynamic range.

A comparatively simple application of log multiplier/divider circuits is for the measurement of the current gain of a transistor over a range of operating currents. A practical arrangement for this purpose is illustrated in Fig. 7.11.

The multiplier/divider circuit of Fig. 7.10 is used to measure the current gain of a p-n-p transistor. The collector current of the transistor provides the input current to amplifier A_{1}, the base current provides the input current to amplifier A_{2}. Resistors R_{1} and R_{2} are not required in the circuit and are omitted.

The output of the divider circuit is proportional to I_{C} / I_{B}. Scaling may be set by adjustment of e_{3}. The operating current of the transistor is determined by a resistor connecting its emitter to a positive supply.

Books Received

1-2-3-4 Servicing Stereo Amplifiers by Forest H. Belt follows the philosophy that it is easier to service electronic equipment if it can be visualized as being made up of divisions that the author calls sections, stages, circuits and parts. In servicing a defective piece of equipment, using this method, trouble is localized first to the offending section, then to the stage, then to the circuit and finally to the defective part. The advantages of this methodical procedure are outlined in the first chapter. Following chapters acquaint the reader with types of stereo systems, specifications and measurements. transistor circuit operation and various stages in transistor amplifiers. Remaining chapters show how to apply the servicing method to stereo amplifiers. Pp.240. Price £2.50. W. Foulsham \& Co. Ltd., Yeovil Road, Slough SL1 4JH.

50 Photoelectric Circuits \& Systems by P.S. Smith contains design details of circuits incorporating over one hundred basic applications. Since requirements vary widely for different applications, many of the circuits are intended as a starting point for further experiment, although all circuits are complete and operable as described. Details are given of all components so that alternatives can be selected if necessary. Applications of photoelectric cells include simple light measuring instruments. switching circuits for operating lights and control equipment, counting units capable of distinguishing between containers of various colours and smoke-detecting elements for use with fire alarms. Pp.83. Price $£ 2.30$ (hardback), £1.30 (limp edition). Butterworth \& Co. Ltd., 88 Kingsway, London WC2B 6AB.

110 Thyristor Projects using SCRs and TRIACS by R.M. Marston describes projects making use of thyristor devices capable of handling mains voltages that can control currents of tens or hundreds of amperes. Triacs and s.c.rs can be used in applications such as control of electric lamps, motors, heaters and alarm systems and can be used to replace mechanical switches and relays in many a.c. and d.c. control systems. The projects described, which range from simple electronic alarms to sophisticated self-regulating electric heater power controllers, should be of equal interest to the electronics amateur, student and engineer. Pp.138. Price £2.40. Butterworth \& Co. Ltd., 88 Kingsway, London WC2B 6AB.

Modern Data Communication, concepts,

 language and media, hy William P. Davenport. provides a fundamental knowledge of how business and technical information is transmitted and received through electrical and electronic systems. The basic requirements of a telecommunications network, with an outline of the way in which these requirements are met, is a major aspect of the book. Review questions on the topics covered are found at the end of each chapter, and technical terms are defined in an extensive glossary. Space is provided for the reader to write in data of particular interest.The contents include an introduction to data transmission and the language of data, coding for communications, characteristics of transmission media, efficiency and error
control. modulation and multiplexing commercial communications channels and services, switching and network concepts and data-set uses and characteristics. Pitman Publishing, 39 Parker Street, London WC2B 5PB. Pp.198. Price $£ 2.75$ (hardback).

Pulse Code Modulation by P. T. Wakling describes the basic features of p.c.m. systems, the principles of which have been known for over thirty years, but whose technique has only come into widespread use during the last ten years, following the development of transistor circuits. The subjects of terminals, sampling, quantizing, companding, coding and sychronization are simply described, together with timing extraction, jitter and transmission codes. The advantages and disadvantages, applications and future developments of p.c.m. systems are also discussed. Price 51.50 . Pp.72. Mills \& Boon Ltd, 17019 Foley Street, London W1A IDR.

Ham Radio - A Beginner*s Guide, by R. H. Warring, introduces in simple terms the technicalities of the subject and the "language" of amateur radio communication. Pp. 152. Price $£ 1.60$. Lutterworth Press, Luke House, Farnham Road, Guildford. Surrey.

Collins Radio Diaries 1973 contain much valuable information for radio engineers and amateurs. Price 63p (69 p with pencil). Collins Stationery, Diary Division, P.O. Box 30, 144 Cathedral Street, Glasgow C.4.

Hi-Fi Stereo Hints and Tips, by John Borwick, deals with the initial setting up of equipment, routine care and maintenance. Pp.48. Price 32p. Bib Sales, P.O. Box 78, Hemel Hempsiead, Herts.

Conferences and Exhibitions

Further details are obtainable from the addresses in parentheses

LONDON

Feb. 26-Mar. $2^{\text {a }}$ Bloomsbury Centre
Seminex
(Evan Steadman and Partners, 4 Lyewood Common, Withyham, Hartfield, Sussex)

TEDDINGTON

Feb. 20 \& 21
National Physical Lab.
Precision and Accuracy in Pressure and Force
Measurement
(Inst. Physics, 47 Belgrave Sq, London SWIX 8QX)

OVERSEAS

Feb.14-16
Philadelphia
International Solid-State Circuits
(I.E.E.E., 345 East 47th St, New York, N.Y. 10017) Feb. 19-25

Paris
International Sound Festival
(Société pour la Diffusion des Sciences et des Arts, 14 rue de Presles, Paris 15.)
Feb. 20-22
Rotterdam
A.E.S. Convention
(Herman A. O. Wilms, Zevenbunderslaan 109, B-1190 Vorst-Brussels)

Literature Received

For further information on any item include the WW number on the reader reply card

ACTIVE DEVICES

A quick-reference, colour wall chart providing pin numbers, common parameters and logic diagrams for each of 47 current devices in the Motorola family of m.o.s. integrated circuits available from Motorola Semiconductors Ltd., York House, Empire Way, Wembley, Middlesex.

.WW401

The MI 14007 series of impatt diode, microwave power amplifiers covering the band $6-8.5 \mathrm{GHz}$ with nominal power outputs of up to 3.0 W is the subject of bulletin L/0014 received from Microwave Associates Ltd., Dunstable, Beds LUS 4SX. .WW402

A 40-page brochure containing the latest prices for integrated circuits, discrete semiconductors and opto electronic devices now totalling nearly 1600 , received from Ferranti Lid, Electronic Components Division, Gem Mill, Chadderton, Oldham OL9 8NP ...WW403

Thyristor product matrix TPM-510 providing reference information about more than 300 triacs and s.c.rs in terms of electrical ratings and package data. RCA/Solid State Ltd., Sunbury-on-Thames, Middlesex TW16 7HW.WW404

A leaflet describing the CE1000 range of low cost single decade counters for totals counting or select counting application, with or without count display or store facility, and operating speeds of up to 10 MHz , can be obtained from Chesford Enterprises, 11 Atherton Heights, Bridgwater Road. Wembley, Middlesex.

An information brochure about the Norm series $\mathrm{N}-35$ electronic timing units having timing periods from 40 ms to 600 s in various ranges and including modes of operation such as delay on energization, delay on de-energization, dwell, recycling, pulsing and blinking. Thricis Electronics Ltd., 46 The Ridgeway, Watford, WD 1 3TN \qquad WW4II

Push-button, bell-push, pendant, torpedo, chord and chain, toggle, slide and rocker are all types of electric switch described in a brochure available from Castelco (GB) Ltd., Castle Works, High Street, Old Woking, Surrey. \qquad ...WW412
A six-page brochure describing the design capability in precision potentiometer manufacture covering special packaging and applications, custom design, special dials, trimmers and miniature switches, available from Spectrol Reliance Ltd., Drakes Way, Swindon, Wilts.
....WW4 13
A 30 -page booklet illustrating the large range of spring loaded test probes used for making electrical connections to p.c. boards and electronic equipment by means of mechanical pressure. The range covers single element and coaxial probes as well as test fixtures and fittings. Ultra Electronics (Components) Ltd., Fassetts Road, Loudwater, Bucks. ...WW414
Data sheet SD410-30 issue 872, giving details of type CX62, d.c. operated, a.c. contactor intended for motor switching functions in industrial and lift control equipment, received from Dewhurst and Partners Ltd., Melbourne Works, Inverness Road, Hounslow, Middlesex.
.WW415
A range of encapsulated, high-stability modules covering analogue multipliers and dividers, D-A and A-D converters, sample and hold units and miniature power supplies, is described in a catalogue from Guest International, Nicholas House. Brigstock Road, Thornton Heath, Surrey CR4 7JA \qquad
A folder containing complete product specification and application data ranging from high speed s.c.rs for military application to a broad range of C -line s.c.rs intended for industrial use, is available from Unitrode Corporation, 580 Pleasant Street, Watertown, Massachusetts, U.S.A.WW407

A copy of the latest leaflet describing vidicon monochrome and colour TV camera tubes for both magnetic and electrostatic focusing and providing graphical information about photosurface and resolution characteristics with an equivalents index, is available from English Electric Valve Co. Ltd., Chelmsford. Essex CM1 2QU.WW408
A data sheet describing an extensive range of plug-in solid state chopper units for applications such as d.c. amplifiers, voltage to current converters and self-balance recorders. They all make use of f.e.t. switches and are designed to be direct replacements for vibrating reed types. Measurement Technology Lid., 26-30 John Street, Luton, Beds. LU1 2JE.
...WW409

PASSIVE DEVICES

Right-angle card connector blocks moulded to mate with 0.100 or 0.150 inch grids in single or double rows of 0.025 inch, square wire-wrapping pins are described in bulletin 112 from Berg Electronics NV, Helftheuvelweg 1, P.O. Box 2060, 's-Hertogenbosch, Holland.WW4I0

Catalogue M-111 describes high-power microwave ferrite circulators and isolators covering the frequency range 0.45 to 12.0 GHz designed in both coaxial and waveguide configurations. Merrimac Industries Inc., 41 Fairfield Place, West Caldwell, New Jersey 07006, U.S.A. \qquad .WW4 16

A leaflet gives the specification of series T 7000 panel mounted, integrated circuit electronic tachometers, the meter output of which is linearly proportional to an input signal rate generated at a magnetic pick-up shaft encoder. Meter f.s.ds are selectable in nine standard ranges from 50 Hz to 20 kHz with custom specified scale legends. Dynalco Corporation, 4107 N.E. 6th Avenue, Ft. Lauderdale, Florida 33308, U.S.A.WW417

EQUIPMENT

A technical paper discussing the conflicting requirements of bandwidth, tuning range, sensitivity and linearity in radio receiver design. Dealing with such criteria as gain distribution, filtering, local oscillator rejection and equipment shielding, the paper is illustrated by charts, diagrams and examples and is available from C.T. (London) Electronics Ltd., Sutherland House, Sutherland Road, Walthamstow, London EI7 6BU

WW418
A leaflet describing the "Naked Mini 8", an 8 -bit minicomputer having a basic 4 k core memory, which is expansible up to 32 k and a 115 basic instruction capability leading to a claimed increased memory efficiency over other comparable computers.

Computer Automation Inc. Ltd., 95A High Street, Rickmansworth, Herts. WD3 IRB WW419

Technical bulletin K107, an eight-page illustrated booklet providing technical and applications detail of "Series Seven" alarm annunciator system for use in industrial plant and process control environments, is available from Rotraco Systems Ltd., Gordon Street, Darlington, Durham.WW420
A short-form catalogue describing low-frequency ($10 \mathrm{~Hz}-5 \mathrm{MHz}$) and high frequency ($10 \mathrm{kHz}-100 \mathrm{MHz}$) solid-state noise source modules, solid-state noise generator plug-in cards ($10 \mathrm{~Hz}-5 \mathrm{MHz}$) and a range of general purpose bench-type noise generators throughout the range d.c. to 100 MHz , received from Lyons Instruments Ltd, Hoddesdon, Herts. ..WW421

A brochure describing the RTS2 tape recorder audio test unit which has many measurement features such as frequency response, signal/noise ratio, distortion, crosstalk, wow and flutter, drift, erasure, sensitivity, gain and power output, is available from the Ferrograph Co. Ltd., Auriema House, 442 Bath Road, Cippenham, Slough, Bucks, SLJ 6BB.

Model 471, dynamic strain gauge amplifier offering a IV f.s.d. output for six input ranges covering 10 microstrain to 30 millistrain with single ended gauge excitation from a precision current source (normally a bridge technique), is the subject of a leaflet from Techmation Ltd., 58 Edgware Way, Edgware, Middlesex HA8 8JP.
..WW423

APPLICATION NOTES

Two RCA application notes dealing with linear and digital integrated circuits are:

AN6026, describing a series of hybrid circuit d.c. voltage regulators supplying $5 \mathrm{~V}, 12 \mathrm{~V}$ or 15 V at up to 4 A

ICAN6080, illustrating the use of the CD4007A, c.o.s./m.o.s. dual complementary pair and inverter, as the digital-to-analogue switch and output stage in a digital-to-analogue converter.
..WW425
RCA/Solid State Europe, Sunbury-on-Thames, Middlesex.

GENERAL INFORMATION

More than 4800 components and prices covering a product range of semiconductors, passive components, electromechanical products and production aids are listed in the "Electronic components stock catalogue" from Celdis Lid., 37/39 Loverock Road, Reading, Berks. RG3 IED. \qquad .WW426

Three data catalogues dealing with products used over the ultraviolet, visible and infrared regions are:
"The Infrared Handbook" discusses and illustrates the range of infrared filters which span the spectrum of wavelengths 0.8 to 15.0 microns ..WW427
"Multilayer Antireflection Coatings" characterizes a number of substrate coatings which produce low reflection over the ultraviolet and visible wavelength of between 0.3-0.8 microns as well as specialized wideband materials extending out to 15 microns
...WW428
Brochure 0970 covers the general range of products available and includes elements such as solar cell covers, mirrors and reflectors, beam splitters, lenses, prisms, instrument glasses and laser optics.WW429
Ocli Optical Coatings Lid, Hillend Industrial Estate, Dunfermline, Fife.
"Method of measurement of speed fluctuation in sound recording and reproducing equipment" is the title of Standard BS4847 detailing a method of measurement using the weighted peak technique and is applicable to all types of sound recording and reproducing equipment. B.S.I. Sales Branch, 101 Pentonville Road, London Ni 9ND. Price £1.05

A catalogue of "Circuitape draughting aids" which are matt acetate self-adhesive labels, precision printed to an accuracy of plus or minus two thousandths of an inch is available from Circuitape Ltd., 33 New Street, Aylesbury, Bucks.WW430

Vocal Master of Ceremonies

There are precious few ceremonies, functions, meetings or entertainment events that Shure Vocal Master Sound Systems can't cover - regardless of room size or apparent acoustic difficulties. The Vocal Master is designed to project the voice with intelligibility and authority to the rear of large areas without overwhelming the listeners up front It's versatile, easy to operate, and totally reliable. It's the system that earned its reputation for superb sound amplification by meeting the standards of professional entertainers and is now used in hotels, churches, schools, executive meeting rooms and entertainment facilities from Land's End to John O'Groats in preference to built-in "custom" systems costing many times more.
Shure Electronics Limited
84 Blackfriars Road
London SE1 8HA, Telephone (01) 9283424

WW- 066 FOR FURTHER DETALLS

a new family. of portable oscilloscopes

High standards of performance, versatility, laboratory grade accuracy and Tektronix quality make these instruments not only the finest field oscilloscopes available, but also an excellent choice for the less mobile design and development engineer.

The new dual-trace Tektronix 475 and 465 oscilloscopes

supersede the world's most travelled and widely used general purpose oscilloscopes

the Tektronix 453A and 454 A . They have significantly more bandwidth, twice the sweep speed, a bright 25% larger (full $8 \times 1 \mathrm{~cm}$) display and additional user conveniences, and all of this in a shorter, thinner, lighter and much lower-priced package.

The 200 MHz Tektronix 475 Oscilloscope at $2 \mathrm{mV} / \mathrm{div}$ and $\mathrm{lns} /$ div sweep speed contains the highest gain bandwidth and sweep speed now available in a general-purpose portable oscilloscope and for only $£ \mathrm{I}, \mathrm{I} 73$. Add to this many user conveniences including push-button trigger view, knob skirt sensitivity readout, ground reference button on the probe tip, simple to interpret vertical and horizontal mode push buttons and many more . . .
The new Tektronix 465 with 100 MHz at 5 mV /div and $5 \mathrm{~ns} /$ div sweep speed has the same user conveniences and service features as the 475 and is an outstanding price/performance package at only $£ 795$.

The dual-trace, $350 \mathbf{M H z}$ Tektronix $\mathbf{4}_{\mathbf{8}} \mathbf{5}$ oscilloscope

 is the performance leader in the Tektronix portable oscilloscope family. Many features of earlier Tektronixportables are retained, many others are expanded and many new ones added. The result is a new product which significantly extends the performance spectrum of portable scopes. Following are some of the features of the 485 , an oscilloscope which measures with laboratory precision and carries with small-package ease .. 350 MHz bandwidth at $5 \mathrm{mV} /$ div; more dual-trace high frequency measurement capability at $5 \mathrm{mV} /$ div than any other laboratory-quality scope, portable or cabinet; IM Ω and 50Ω selectable inputs, scope circuitry automatically disconnects the 50Ω inputs when signals exceed 5 V RMS or 0.5 watts to protect your equipment; time resolution to ins/div, more time resolution than any other portable, and it's direct reading. A-External Trigger; just press this button to display the external trigger signal and quickly verify your trigger source or check timing
 reference. Alternate sweep switching, to view intensified waveforms and delayed waveforms at the same time. When you move the intensified zone you always know precisely where you are, and still see the delayed waveform. It saves time and adds operation convenience. The price of the 485 is $£ 2,05 \mathrm{I}$.

[^6]
Portable Oscilloscopes

A review of the performance and facilities offered by currently available instruments on the U.K. market

If you asked a man fifteen years out of touch with electronics to use the three basic instruments (signal generator, various types of electronic meter and oscilloscope) you would probably find that, after a few minutes to collect his wits together, he would be able to drive the first two with every appearance of competence. In the case of the average, modern oscilloscope, however, a quick glance at the front panel would probably have him reaching for his hat and coat.

He would, for instance, find no timebase frequency control. There is the delaying and delayed timebase, sometimes mixed, and an assortment of dual-trace switching modes. Sampling and storage controls would have little relevance to his experience and he might well be a little shaken by the astronomic frequency-handling capabilities and sensitivity of quite ordinary instruments. In fact, he would rapidly come to the conclusion that the oscilloscope of today is a different animal altogether from the instruments in use fifteen years ago.

The rapidly expanding use of highspeed digital circuitry forced the development of oscilloscopes in both x and y directions; dual-trace operation, with a comprehensive selection of timebase modes, was required at higher and higher sweep speeds, and the phenomenal transition times of integrated digital circuits meant that y amplifier bandwidth must now be measured in terms of at least tens of megahertz if the true picture of events is to be observed.

On the other hand, there is still the need for simpler instruments, to be used for the servicing of less-sophisticated equipment, but even here the performance is often equal to that of a highly expensive oscilloscope of a few years ago.

In a sense, oscilloscopes have always been portable. Even the early Cossors and the big Tektronix valve instruments could be carried, but whether one was then well enough to do any work with the 'scope was another matter. Happily, the introduction of semiconductors on printed-circuit boards (a slower
process than in some fields) has meant that truly portable instruments are now common, with all-up weights of 12 kg or less and conceding little, if anything, in performance to the more monumental variety.

To obtain the full benefit of portability, instruments should ideally be independent of mains supplies, at least for limited periods. Many oscilloscopes are equipped with internal batteries and chargers, or are designed to work on low-voltage d.c. supplies; such instruments are truly portable and can be used literally "in the field". On the other hand, many other instruments are termed "portable" because they are small and light, and these too are included in the survey, subject to a weight limit of about 12.5 kg .

It is not possible, in a review of this nature, to provide a critical appraisal of the performance of available instruments. To do so would require access to each instrument and to a great deal of test equipment. The aim, therefore, is to provide a picture of the type of equipment that is currently on the market and to give as much information on each as is practicable.

It seems likely that professional readers will already be in possession of much of the information which will be set out, and that readers of this review will include many who are not completely up-to-date with current practice. For their benefit, it seems a good idea to describe at the outset some of the features to be found in a modern oscilloscope.

The " y " axis

This is the signal-handling part of the oscilloscope and is the section that decides which class of oscilloscope one is discussing. Relevant features are the bandwidth and rise-time of the y amplifier, and its sensitivity.

Bandwidth and rise-time are related parameters in an amplifier whose frequency-response is not specially shaped, and are connected by the expression $t_{r} f=350$, where t_{r} is the risetime of the amplifier in nanoseconds and
f is the bandwidth at -3 dB in megahertz. An amplifier with a -3 dB bandwidth of 10 MHz and a gaussian rolloff would therefore exhibit a rise-time of 35 nanoseconds. To decide on the bandwidth required for a particular application, the expression $t_{r d}{ }^{2}=t_{r a}{ }^{2}+t_{r s}{ }^{2}$ must be called into play, where $t_{r d}$ is the displayed, apparent rise-time, $t_{r a}$ is the amplifier rise-time and $t_{r s}$ is the actual rise-time of the transition under examination. Assume, for example, that a pulse whose rise-time is 100 ns is to be examined, but that the apparent rise-time displayed must not be artificially lengthened by more than 5%,
then $t_{r a}=\sqrt{105^{2}-100^{2}}$

: 32 nanoseconds.

From this it is seen that to perform the task, an amplifier with a rise-time of 32 ns or less, or bandwidth of 11 MHz or over is needed. Its sensitivity must also be adequate, and a common figure for maximum sensitivity is between 1 and $5 \mathrm{mV} / \mathrm{cm}$ spot deflection. It is sometimes found that an extra position of the sensitivity switch, or a separate switch, is provided to give a 5 or 10 times increase in gain, possibly at a reduced bandwidth.

Input impedance is virtually standard at $1 \mathrm{M} \Omega$ and $30-50 \mathrm{pF}$ in parallel. This is a very high impedance for bipolar transistors and the input stage of the y amplifier was the last position to use semiconductors. Nowadays, this position is usually filled by a field-effect transistor, but valves are still seen in some instruments by virtue of their more easily controlled drift performance; a degree of microphony is sometimes "traded" for stability. Higher input impedances are obtained by the use of resistive, frequency-compensated probes, which consist simply of a 9 M 0) resistor in series, so that for a ten times increase in impedance, the signal is reduced ten times.

In the specification tables, it will be seen that the y amplifier bandwidth is something like $0(3 \mathrm{~Hz})-10 \mathrm{MHz}$. This simply means that in the second case, the signal is coupled to the amplifier by way of a large capacitor, so that the d.c. component of the signal is eliminated. It is a method of
overcoming the impossibility of displaying for example, 5 mV of ripple on a 250 V power rail without the use of an external backing-off voltage. Normally, the signal is directly coupled, so that waveforms can be studied at their correct potentials relative to each other.

Displays which provide two traces are known by different names, depending on the technique employed. The simplest method is to use two completely separate electron guns, giving true double-beam operation as in the Philips PM3231. This is an expensive, but effective technique, although precise gun alignment must be ensured if the time axis is not to be in error. It has the advantage that each beam can be controlled in brightness independently of the other.

Single-gun methods are of two kinds, the split-beam being the least complicated. The beam emerges from the gun and is divided in two by a splitter plate in the beam. Of recent years, this method has been improved considerably, and its former drawback of low brightness has been overcome. Only one brightness control is possible with both the single-gun methods, differing spot speeds giving uncontrollably different brightnesses.

The third, most commonly used, method is to use electronic switching, sharing the single beam between two y amplifiers. It is common practice to switch the amplifiers in several different ways, the sequence employed depending on the timebase speed and the nature of the signal, and is selected by a front-panel switch.

The beam can be switched at high speed, around 100 kHz , so that the traces consist of short segments of the relevant signal, continuity being afforded by the lack of phase relationship between the chopping frequency and most signals, by the high chopping trequency and by persistence of vision. As the timebase speed is increased, the display becomes inconvenient and each amplifier is switched in on alternate sweeps. Additionally, it is usually made possible to allow each channel to operate separately or algebraically added.

When the timebase is triggered by the y signal, a finite time must elapse before the sweep gets under way and unblanking is applied, and the initial part of the trace would, without precautions, be lost. This state of affairs is avoided by delaying the y signal applied to the later stages of the y amplifier (after the out put to the trigger amplifier) in a delay-line in the form of a delay cable of $100-200 \mathrm{~ns}$. In this way the signal does not arrive at the deflection plates until the sweep is away.

The " x " axis

Except in special cases - $x-y$ displays, frequency-response indicators and spectrum analysers - the x axis is concerned with time and, together with the y axis, forms a voltage-time graph.

It is taken for granted now that any commercial oscilloscope possesses a liniar timebase, and that its calibrated speed is correct to within 5% or so.

The modern instrument is not simply a way of illustrating wave shape, but is essentially a tool for the measurement of waveforms in both axes. With digital circuits changing state at the rates we are now accustomed to, the timebase generator in a modern oscilloscope has no mean task to perform.

The function of the timebase is, of course, to draw out the y signal in graphical form. Signals being of an extremely diverse nature, a range of sweep speeds is needed and the fact that the same circuit is sometimes capable, with a few switchable components, of sweeping at either $0.01 \mu \mathrm{~s} / \mathrm{cm}$ or $1 \mathrm{~s} / \mathrm{cm}$ - a range of 10^{8} - is really quite remarkable.

When assessing the speed range of a timebase, it should be considered in relation to the rise-time of the y amplifier. It would be very little use having an amplifier able to swing from maximum positive to maximum negative in 20 ms if the transient were compressed into 1 mm of timebase. It is essential that the y rise-time should be displayed over a respectable length of trace - preferably three or four millimetres or more. Whether this maximum speed is achieved by the generation of a fast sweep or by amplification of a slower sweep to give an apparent speed increase is not of great importance, so long as the amplified (or "magnified") sweep is still calibrated. In the specifications, the amount of timebase covered in the rise-time of the y amplifier is referred to as " y extension".

The use of two timebase generators is now common in even low-cost instruments. A mode of operation called the delayedsweep mode is thereby obtained wherein one sweep triggers the other or, in some instruments, enables the y-derived trigger to the second. In this mode, small phenomena at any part of a long, uneventful, cycle can easily be observed at full sweep speed. The setting-up of this display is in two stages. Initially, the delaying sweep is displayed with a section of it, corresponding to the second, delayed, sweep brightened. The brightened portion is centred, by front-panel controls, on the section of the delaying sweep of interest whereupon the delayed sweep is switched in, filling the screen with the part of the original sweep that was brightened. Two exceptions to this procedure are exemplified by the Tektronix 485 and the Dynamco 7200. In the first, both delayed and delaying sweeps are effectively simultaneous, being switched on alternate sweeps and, in the Dynamco, they are displayed, mixed, on the same sweep.

Triggering is of considerable importance in a modern oscilloscope. The old type of free-running timebase, calibrated in frequency, passed from favour many years ago, to be supplanted by timebases which sweep at a number of fixed, calibrated speeds. In normal operation, the sweep does not run in the absence of a triggering signal, although a position marked
"AUTO" is usually provided, whereby the sweep does free-run at constant speed to give a base line in the absence of a signal, and automatically locks to signals over a given level and below a certain frequency.

Triggering is applied through either a.c. or d.c. coupling to the trigger amplifier and sweep generator from a variety of sources, which can include the y signal, a built-in television sync separator or external signals applied to a front-panel socket. Positive or negative-going parts of the triggering signal can be selected as trigger points by a "SLOPE" control and the exact point on the signal at which the sweep fires is selected by the "LEVEL" adjustment.

A fairly recent development, which is similar in some respects to a delayed timebase, is trigger hold-off. It is often the case that the waveform to be examined contains several points at which triggering could take place before the correct point is reached. To eliminate spurious triggering at these points, the triggering signals are inhibited or "held-off" for an adjustable period, being enabled just before the desired point is reached.

As has been mentioned, the timebase is used to measure and is therefore calibrated. Over the years, many methods of doing this have been tried, from time-marker pips to slide-back techniques using calibrated potentiometers in the x amplifier, but it is now almost universally conceded that accurate, preset timebase speeds used in conjunction with a graticule on the tube face offer the most convenient and reliable form of calibration, accurate to around 3%.

Two further facilities sometimes offered are the provision of the sweep waveform at an output socket, for use with swept oscillators, and the switched selection of one y amplifier in place of the timebase generator to give an $x-y$ display with little phase shift between x and y axes.

The display

The end result of timebase generation and signal amplification must eventually be a display and, although reports have emerged from time to time of revolutionary new methods of display, the cathode-ray tube is still the only viable display device. In essence, it is virtually unchanged, but recent developments in post-deflection acceleration spirals and mesh lenses have produced brighter, bigger displays with greater deflection sensitivity, running often at lower p.d.a. potentials. In general, the higher the figure for p.d.a., the brighter the trace is likely to be.

The calibration grid or graticule, which is often illuminated, is gradually becoming a part of the tube itself, in order to avoid the effects of parallax. In these cases, it is inscribed on the inside of the screen, where it is completely co-planar with the image, and parallax vanishes.

The specifications

The review consists of an abridged specification and short description of all the instruments we have found and been able
to obtain information upon. A short description is included to bring out salient points not in the specification, but it must be emphasized that the review is basic and that only the manufacturers can provide full information. Lack of space prohibits the inclusion of much interesting information on circuitry and on some of the more exotic facilities afforded by the highly sophisticated (and expensive!) end of the range.

ADVANCE

OS250 (dual-trace): bandwidth 10 MHz , sensitivity $5 \mathrm{cmV} / \mathrm{cm}$, modes single, chopped, alt., timebase $1.25 \mathrm{~s} / \mathrm{cm}$ to $1 \mu \mathrm{~s} /$ cm , magnification $\times 10$, y ext. 3.5 mm ., trigger source, coupling, slope, level, auto, t.v., e.h.t. 3.6 kV , display $10 \times 8 \mathrm{~cm}$, power a.c., dimensions $17.8 \mathrm{~cm} . \mathrm{W}$, $28.6 \mathrm{cmH}, 49.4 \mathrm{~cm} . \mathrm{D}$, weight 6.8 kg , price £135.
A general-purpose, dual-trace oscilloscope, intended for both laboratory and servicing work. A calibrating square wave of 1 V at supply frequency is provided and there is a timebase ramp output. The dualtrace switching mode, chopped or alternate, is automatically selected by the sweep-speed switch, which also has a position for $x-y$ operation.

OS1000A (dual-trace): bandwidth 20 MHz , sens. $5 \mathrm{mV} / \mathrm{cm}$, signal delay 50 ns , timebase $2.5 \mathrm{~s} / \mathrm{cm}$ to $0.5 \mathrm{~s} / \mathrm{cm}$, mag. $\times 10$, y ext. 5 mm , trigger source, coupling, slope level, auto, t.v., e.h.t. 4 kV , display $10 \times 8 \mathrm{~cm}$, power a.c., dimensions $29.2 \mathrm{~cm} . \mathrm{W}$, $18.1 \mathrm{~cm} . \mathrm{H}, 42.3 \mathrm{~cm} . \mathrm{D}$, weight 9.1 kg , price £205.

A simple dual-trace instrument for slightly more complicated servicing and development work. A signal delay is incorporated in the y amplifiers, which may be cascaded to give a single-channel sensitivity of $1 \mathrm{mV} / \mathrm{cm}$ at a bandwidth of $5 \mathrm{~Hz}-5 \mathrm{MHz}$. Y extension is ample, and a cal. waveform and ramp output are available. The automatic y mode selection is again provid as is $x-y$ operation.

OS3000 (dual-trace): bandwidth 40 MHz , sens. $5 \mathrm{mV} /$, mag. $\times 5(0-10 \mathrm{MHz})$, modes single, chopped, alt., summed, sig. delay 20 ns , delaying sweep $5 \mathrm{~s}-200 \mathrm{~ns} / \mathrm{cm}$, mag. $\times 10$, delayed sweep $2.5 \mathrm{~s} / \mathrm{cm}-200 \mathrm{~ns} /$ cm , mag. $\times 10$, y ext. 4.5 mm , trigger source, coupling. level, slope, auto, t.v., e.h.t. 10 kV , display $10 \times 8 \mathrm{~cm}$, power a.c., dimensions $18 \mathrm{~cm} . \mathrm{W}, 29 \mathrm{~cm} . \mathrm{H}, 42 \mathrm{~cm} . \mathrm{D}$, weight 12 kg , price $£ 360$.

The highest-performance Advance portable instrument, which is sufficiently advanced for work on computing equipment as well as more routine servicing and development

Advance OS250

Advance OS3000

Cossor 4100

Dynamco 7200
work. The twin timebase allows the examination of any part of a waveform, and the mixing of delaying and delayed sweeps in one scan is a considerable aid to location. Each timebase is independently triggered as a means of eliminating jitter in the delayed sweep. X-yoperation is made possible by the provision of a y output socket. The front panel is exceptionally well laid out, with clear separation between the tube controls and x and y functions. The 3001 is a single-timebase version.

COSSOR

4100 (dual-trace): bandwidth 75 MHz (20 MHz at $1 \mathrm{mV} / \mathrm{cm}$), sensitivity $5 \mathrm{mV} / \mathrm{cm}$, mag. $\times 5$, modes single, chopped, alt., summed, timebase (delaying) $0.5 \mathrm{~s} / \mathrm{cm}$ to $5 \mathrm{~ns} / \mathrm{cm}$, trigger source, level, auto, singlesweep, variable hold-off, timebase (delayed) $0.25 \mathrm{~s} / \mathrm{cm}$ to $5 \mathrm{~ns} / \mathrm{cm}$, trigger source, level, modes B after A,B triggered after A. A intensified by B., mixed, y ext. 1 cm , e.h.t. 20 kV , display $10 \times 8 \mathrm{~cm}$, power a.c., dimensions $35.8 \mathrm{~cm} . \mathrm{W}, 17.8 \mathrm{~cm} . \mathrm{H}, 46.3 \mathrm{~cm} . \mathrm{D}$, weight 12.7 kg . price $£ 750$.

An advanced instrument, with all facilities required for work on fast digital circuitry, such as mixed delayed and delaying sweeps, trigger hold-off and a very fast sweep, sufficient to display the 5 ns amplifier rise-time over 1 cm of screen. Push-buttons are used for amplifier switching and sweep mode selection, with slide switches for trigger control, giving a neat, uncluttered appearance.

DYNAMCO

7200 (dual-trace): $\mathbf{7 2 1 2}$ y plug-in bandwidth 15 MHz , sensitivity $10 \mathrm{mV} / \mathrm{div}$. (each div. 0.7 mm), mag. channel 1 has $\times 10$ provision, modes single, chopped, alt. or summed, sig. delay $180 \mathrm{~ns} ; 7201$ timebase plug-in $0.5 \mathrm{~s} / \mathrm{div}$ to $0.5 \mu \mathrm{~s} / \mathrm{div}$, mag. $\times 10$, y ext. 3.3 mm , trigger source, slope, level, auto; 7202 timebase A sweep $0.5 \mathrm{~s} /$ div. to $0.5 \mu \mathrm{~s} /$ div to $0.5 \mu \mathrm{~s} /$ div, mag. $\times 10, \mathrm{y}$ ext. 3.3 mm , trigger source, slope, level, auto, B sweep (delayed) $2.5 \mathrm{~ms} / \mathrm{div}$ to $0.5 \mu \mathrm{~s} / \mathrm{div}$, mag. $\times 10$, trigger source, slope, level, modes A, B intensifies A, B after A or triggered after A , mixed, e.h.t. 6 kV , display 10×6 divs. $(0.7 \mathrm{~cm})$, power a.c., d.c $(22-30 \mathrm{~V})$ clip-on battery pack, dimensions 29 cm. W, $13.2 \mathrm{~cm} . \mathrm{H}, 36.2 \mathrm{~cm} . \mathrm{D}$, weight 8.1 kg , price (with 7201) $£ 435$ (with 7202) $£ 485$.
Adopted by the Post Office as their Type 14 A , the 7200 is intended for the servicing of digital equipment. It offers the mixedsweep type of delayed timebase, with separate triggering for the delayed sweep. The battery pack renders the instrument truly portable, while tube brightness does not suffer from the low supply power ased, the tube being a high beam current, mesh p.d.a. type, working at 6 kV . Its graticule is internal.

GRUNDIG

G10/13Z (dual-trace): bandwidth 10 MHz , sens. $2 \mathrm{mV} / \mathrm{cm}$, modes single, chopped, summed $(A+B, A-B)$ alt. with trig. from chan. A or separate, timebase $0.5 \mathrm{~s} / \mathrm{cm}$ to $0.1 \mu \mathrm{~s} / \mathrm{cm}$, y ext. 3.5 mm , trigger source, slope, level, auto, e.h.t. 2 kV , display $10 \times$ 8 cm , power a.c. or d.c. $(21.5 \mathrm{~V}$ to 32 V at 1.5 A), dimensions $30 \mathrm{~cm} . \mathrm{W}, \quad 27 \mathrm{~cm} . \mathrm{H}$, $41 \mathrm{~cm} . \mathrm{D}$, weight 9.8 kg , price $£ 262.96$.

A general-purpose instrument, rather more comprehensive than its single-trace companion, the G10/13. It has a full range of dual-trace switching modes, and is claimed to be suitable for "data-processing, colour television and stereo engineering". Frontpanel layout is clear and logical - in particular the push-button trigger controls.

HEWLETT-PACKARD

1200 seriés (1200, 1205, 1206, 1217) (dual-trace) (1202) (single trace): bandwidth $500 \mathrm{kHz}(1217-7 \mathrm{MHz})$, sens. $0.1 \mathrm{mV} /$ cm or $5 \mathrm{mV} / \mathrm{cm}$, dual-trace modes single, chop, alt. $\mathrm{A}+\mathrm{B}$ versus x input, $\mathrm{A}+\mathrm{B}$ as $x y$, timebase $12.5 \mathrm{~s} / \mathrm{cm}$ to $1 \mu \mathrm{~s} / \mathrm{cm}$, mag. $\times 10$, y ext. (1217) 5 mm , trigger source, coupling, level, slope, auto, e.h.t. 3 kV , display $10 \times 8 \mathrm{~cm}$, power a.c., dimensions $21 \mathrm{~cm} . \mathrm{W}, 30 \mathrm{~cm} . \mathrm{H}, 47.5 \mathrm{~cm} . \mathrm{D}$, weight 9.5 kg to 11.4 kg , prices $£ 335-£ 1009$.
Very sensitive, low-frequency instruments, with a common-mode rejection of up to 100 dB . Optional automatic triggering (free-running-locked to a signal) makes for simple operation, as does the beam finder button. The controls are well separated into functional groups and to avoid parallax, the screen graticule is internal.

1700 series (dual-trace): bandwidth 35 MHz or 75 MHz , sensitivity $10 \mathrm{mV} / \mathrm{cm}$, modes single, chopped, alt. or summed, sig. delay included but not specified, timebase (delayed) $0.5 \mathrm{~s} / \mathrm{cm}$ to $0.1 \mu \mathrm{~s} / \mathrm{cm}, \mathrm{mag} . \times 10$, y ext. 1 cm or 4.7 mm , timebase (delaying) $5 \mathrm{~s} / \mathrm{cm}$ to $0.1 \mu \mathrm{~s} / \mathrm{cm}$, mag. $\times 10$, trigger (both) source, coupling, level, slope, auto, e.h.t. 8.3 kV or 22 kV , display $6 \times 10 \mathrm{~cm}$, power a.c. or d.c. $(11.5-36 \mathrm{~V}$ at around 25 W) or int. battery pack (6 hours), dimensions $\quad 19.8 \mathrm{~cm} . \mathrm{H}, \quad 32.5 \mathrm{~cm} . \mathrm{W}$, $39.7 \mathrm{~cm} . \mathrm{D}$, weight 10.8 kg , prices $£ 746$ $£ 758$.
A very advanced range of instruments, which are expressly designed for field servicing of electronic data-processing and fast digital equipment of all kinds, where it can be expected that fast, low p.r.f. pulses will be encountered. Unusual in a battery-powered instrument, the c.r.t. accelerating voltage is 22 kV , with a mesh electrode. Most of the facilities required in servicing complex equipment are present in one or other of the range, including

Grundig G10/13Z

Hewlett-Packard 1703A

Philips PM3200
variable-persistence and storage. The 1710A incorporates a 50 ! or 1 M switchable input impedance. The delayed timebase, which is extremely fast, can be triggered via a hold-off circuit.

PHIILIPS

PM3110 (dual-trace): bandwidth 10 MHz , sensitivity $50 \mathrm{mV} / \mathrm{cm}$, mag. $\times 10$, modes single, chopped, alternate, timebase 50 ms / cm to $0.5 \mu \mathrm{~s} / \mathrm{cm}$, mag. $\times 5, \mathrm{y}$ ext. 3.5 mm , trigger source, coupling, slope, e.h.t. 2 kV , display $10 \times 8 \mathrm{~cm}$, power a.c., dimensions $30.5 \mathrm{~cm} . \mathrm{W}, 19.5 \mathrm{~cm} . \mathrm{H}, 55.5 \mathrm{~cm} . \mathrm{D}$, weight 8.5 kg , price $£ 125$.

This instrument is designed to be simpler than usual to operate, particularly in
triggering. The level control is absent, and the timebase free-runs when no signal is present. Dual-trace switching mode is linked to the sweep-speed selector, and selection of line or frame sync. pulses is automatic when triggering from a television signal. Feedback in the y amplifiers avoids the necessity for d.c. balance and gain controls. This approach has produced a remarkably uncluttered front panel.

PM3200 (single trace): bandwidth 10 MHz , sensitivity $2 \mathrm{mV} / \mathrm{div}$, timebase $0.5 \mathrm{~s} / \mathrm{div}$ to $0.1 \mu \mathrm{~s} / \mathrm{div}, \mathbf{y}$ ext. 2.6 mm , trigger automatic, with selection of source, slope, peak or mean level, e.h.t. 1.5 kV , display 10×8 divs (each 7.5 mm), power a.c. or d.c. $(22-30 \mathrm{~V}, 0.6 \mathrm{~A})$ or detachable battery pack (4.5 hours), dimensions $21 \mathrm{~cm} . W$, $17.5 \mathrm{~cm} . \mathrm{H}, 33 \mathrm{~cm} . \mathrm{D}$, weight 5.3 kg . price $£ 135$.
A mains-battery powered teaching or service-technician's instrument, with the automatic triggering facility for normal and television signals. Philips have not used x magnification in this case, preferring to provide a faster sweep. The avoidance of magnification is said to give a brighter trace (e.h.t. is 1.5 kV), but does result in a small y extension. This must be one of the simplest instruments to operate now in production.

PM3230/31 (dual-beam) (3231 spec . in brackets): bandwidth $10 \mathrm{MHz}(15 \mathrm{MHz})$, sensitivity $20 \mathrm{mV} /$ div. ($10 \mathrm{mV} /$ div.), mag. $\times 10$ at $2 \mathrm{MHz}(5 \mathrm{MHz})$, signal delay (200 ns), timebase $0.5 \mathrm{~s} / \mathrm{div}$ to $0.5 \mu \mathrm{~s} / \mathrm{div}$. ($0.2 \mu \mathrm{~s} / \mathrm{div}$), mag. $\times 5$, y ext. 2.8 mm (4.7 mm), trigger source, coupling, level, slope, auto, t.v., e.h.t. 4 kV , display 10 $\times 8$ divs (each 0.8 mm), power a.c., dimensions $21 \mathrm{~cm} . \mathrm{W}, 30 \mathrm{~cm} . \mathrm{H}, 45 \mathrm{~cm} . \mathrm{D}$, weight 11 kg , price $£ 198$ ($£ 180$).
Two general-purpose units, using doublegun tubes to give complete control over each beam with no switching. The guns are side by side, giving full vertical coverage of the tube. The 3231 offers an improvement in drift control over the earlier 3230. A lV calibration waveform is provided.

PM3232/3 (split beam) (3233 spec. in brackets): bandwidth 10 MHz , sensitivity $2 \mathrm{mV} / \mathrm{cm}$, sig. delay (150 ns), timebase $0.5 \mathrm{~s} / \mathrm{cm}$ to $0.2 \mu \mathrm{~s} / \mathrm{cm}$, mag. $\times 5, \mathrm{y}$ ext. 8.75 mm , trigger source, slope, level, coupling, auto. t.v., e.h.t. 10 kV , display $10 \times 8 \mathrm{~cm}$, power a.c. or d.c. $(22-30 \mathrm{~V}$, 0.85 A), dimensions $32.6 \mathrm{~cm} . \mathrm{W}, 18.5 \mathrm{~cm} . \mathrm{H}$, $50.3 \mathrm{~cm} . \mathrm{D}$, weight 9.5 kg , price $£ 170$ ($£ 185$).
One of the newest instruments, intended for general use, but sufficiently advanced for development work on complex equipment. Triggering is comprehensive, and signal delay is incorporated. A form of split-beam tube is used, using one gun, which is claimed to avoid the problems of spurious, out-of-phase triggering that can
occasionally occur with beam-switching. A mesh-type, 10 kV p.d.a. tube is used, giving a high light output. The bandwidth of the y amplifiers could be higher to take advantage of the fast timebase.

PM3210 (dual-trace): bandwidth 25 MHz , sensitivity $1 \mathrm{mV} / \mathrm{cm}$, modes A, chopped, alt. summed $\mathrm{A}+\mathrm{B}, \mathrm{A}-\mathrm{B}, \mathrm{B}-\mathrm{A},-\mathrm{A}$ -B , sig. delay 170 ns , timebase $0.5 \mathrm{~s} / \mathrm{cm}$ to $0.1 \mu \mathrm{~s} / \mathrm{cm}$, mag. $\times 5, \mathbf{y}$ ext. 7 mm , trigger source, slope, coupling, auto, e.h.t. 10 kV , display $10 \times 8 \mathrm{~cm}$, power a.c, dimensions $30 \mathrm{~cm} . \mathrm{W}, 20 \mathrm{~cm} . \mathrm{H}, 43 \mathrm{~cm} . \mathrm{D}$, weight 12.5 kg , price $£ 395$.
Unusually, the 3210 possesses identical delay lines in both y channels before the beam switch, to facilitate the use of one y channel as the x co-ordinate with identical characteristics. The phase error between x and y is thereby kept to less than 2°. High sensitivity and ample bandwidth are well matched by a very fast sweep.

RACAL/BWD

BWD 509B (in brackets): BWD 539A bandwidth $10 \mathrm{MHz}(7 \mathrm{MHz})$, sensitivity $10 \mathrm{mV} / \mathrm{cm}$, modes (539) B, chopped or alt, timebase $2.5 \mathrm{~s} / \mathrm{cm}$ to $1 \mu \mathrm{~s} / \mathrm{cm}$, mag. $\times 5$, y ext. $1.75 \mathrm{~mm}(2.5 \mathrm{~mm})$, trigger source, slope, level, auto, t.v, e.h.t. $3 \mathrm{kV}(1.6 \mathrm{~V})$, display $10 \times 8 \mathrm{~cm}$, power a.c, dimensions $19 \mathrm{~cm} . \mathrm{W}, 24 \mathrm{~cm} . \mathrm{H}, 42 \mathrm{~cm} . \mathrm{D}$, weight 7 kg , price $£ 199$ ($£ 125$).

Two very small, lightweight, instruments of Australian origin for general use, one of them dual-trace. Panel layouts are clear and uncluttered, and the solid-state circuitry is drift-free, no front-panel balance or gain pre-sets being required. The timebase speed is a little low in comparison to the y bandwidth.

S.E. LABORATORIES

EM102D (dual-beam mainframe and y plug-ins): EM102D (mainframe): timebase (delayed) $0.5 \mathrm{~s} / \mathrm{cm}$ to $0.1 \mu \mathrm{~s} / \mathrm{cm}$, mag. $\times 5$, timebase (delaying) $10 \mathrm{~ms} / \mathrm{cm}$ to $1 \mu \mathrm{~s} /$ cm, y ext. (delayed sweep, EM530) 5.9 mm , trigger (applied to either timebase) source, coupling, level, slope, auto, t.v, e.h.t. 10 kV , display $10 \times 6 \mathrm{~cm}$, power a.c. or d.c. (11$16 \mathrm{~V}, 25-35 \mathrm{~W}$) or internal batteries and charger, dimensions $35.6 \mathrm{~cm} . \mathrm{W}, 18.1 \mathrm{~cm} . \mathrm{H}$, $47 \mathrm{~cm} . \mathrm{D}$, weight 12.7 kg , price $£ 290$.

EM515 (2 channel y plug-in): bandwidth 15 MHz , sensitivity 10 mV , mag. $\times 10$, modes normal or A - B differential, y ext. 11.5 mm , price $£ 70$.

EM505 (2 channel \boldsymbol{y} plug-in): One channel same as EM515, other differential. Spec. refers to diff. channel. bandwidth 500 kHz , $50 \mathrm{kHz}, 5 \mathrm{kHz}, 500 \mathrm{~Hz}$ or 50 Hz , sensitivity $50 \mu \mathrm{~V} / \mathrm{cm}$, drift $\quad 100 \mu \mathrm{~V} / \mathrm{h}, \quad 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, noise $30 \mu \mathrm{~V}$, CMRR 100 dB at 1 kHz , price $£ 120$.

EM530 (2-channel \boldsymbol{y} plug in): bandwidth 30 MHz (15 MHz at ImV , single-channel), sensitivity $10 \mathrm{mV} / \mathrm{cm}$, modes normal or A - B differential, price $£ 95$.

The EM102 system is an extremely comprehensive collection of units, particularly as the instrument is, or can be, batterypowered. The instrument is a little heavier than usual at 12.7 kg , but is of the flat, portable shape. Maximum p.r.f. is obtainable from the delaying sweep by virtue of the fact that it terminates directly after the delayed sweep, without staying to run its allotted course. True double-beam operation is provided by a split-beam tube, with full beam overlap.

Racal/BWD BWD539A

S.E. Laboratories EMIO2D with EM530 plug-in

S.E. Laboratories SM113

SM113 (dual trace): bandwidth 35 MHz (8 MHz at $2 \mathrm{mV} / \mathrm{cm}$), sensitivity $20 \mathrm{mV} / \mathrm{cm}$, sig. delay 170 ns , modes single, chopped, alt. or summed, timebase $2.5 \mathrm{~s} / \mathrm{cm}$ to $0.2 \mu \mathrm{~s} /$ cm , mag. $\times 10$, y ext. 5 mm , trigger source, coupling, slope, level, auto, e.h.t. 10 kV , display $10 \times 8 \mathrm{~cm}$, power a.c. or d.c. $(24 \mathrm{~V}$ at 1.3 A), dimensions $25.4 \mathrm{~cm} . \mathrm{W}, 25.4 \mathrm{~cm} . \mathrm{H}$, $35.5 \mathrm{~cm} . \mathrm{D}$, weight 11 kg , price $£ 295$ (SM111£270).
This is a developed version of the SM1I1, which is a Ministry-approved test instrument at around the same cost. It is described as a "general work-horse", and can be supplied with line and frame television sync. triggering facilities. A battery pack is available to provide 4 hours of operation. A high-impedance input to the x amplifier is provided, and the calibration waveform is accurate over the Ministry working temperature range of $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. The graticule is internal. Marconi Instruments Ltd. market the SM1I1 under the name TF2204.

HAMEG HM312 (single-trace): bandwidth 10 MHz , sensitivity $50 \mathrm{mV} / \mathrm{cm}$, mag. $\times 10$, timebase $0.3 \mathrm{~s} / \mathrm{cm}$ to $0.3 \mu \mathrm{~s} / \mathrm{cm}$, mag. $\times 3$, y ext 3.5 mm , trigger source, coupling, slope, auto, e.h.t. 1 kV , display $10 \times 8 \mathrm{~cm}$, power a.c., dimensions $21.6 \mathrm{~cm} . \mathrm{W}$, $28.9 \mathrm{~cm} . \mathrm{H}, 36.5 \mathrm{~cm} . \mathrm{D}$, weight 10 kg , price $£ 138$.

The HM 312 and its $8 \mathrm{MHz}, 50 \mathrm{mV} / \mathrm{cm}$ companion, the HM207, are low-cost, simple instruments for servicing and production-line testing. No unnecessary features are incorporated.

HZ36 A single-to-dual channel adapter, converting any single-trace oscilloscope to dual-trace. It is battery-powered, and simple to operate. Bandwidth $2 \mathrm{~Hz}-30 \mathrm{MHz}$, input 50 mV to 30 V , mode chopped, at $80 \mathrm{~Hz}, 800 \mathrm{~Hz}$ or 80 kHz , price $£ 45$.

TEKTRONIX

211 (single-trace): bandwidth 500 kHz $(100 \mathrm{kHz}$ at $1 \mathrm{mV} / \mathrm{div}$), sensitivity $1 \mathrm{mV} / \mathrm{div}$, timebase $0.2 \mathrm{~s} / \mathrm{div}$ to $5 \mu \mathrm{~s} / \mathrm{div}$, mag. $\times 5$, y ext. 3.6 mm , trigger source, slope, level, auto, e.h.t. 1 kV , display 6×10 divs. (each 5 mm), power a.c. or int. batteries (5 hours), dimensions $13.3 \mathrm{~cm} . \mathrm{W}, 7.6 \mathrm{~cm} . \mathrm{H}, 22.6 \mathrm{~cm} . \mathrm{D}$, weight 1.4 kg , price $£ 266+£ 26.80$.

This must surely be the smallest and lightest oscilloscope currently available. Intended for audio and low-frequency industrial work, it features an extremely rapid turn-on from cold - one second for a useful display. The tube graticule is internal. All controls are on the side of the instrument, giving a total frontal area which is less than that of the average tube face and surround.

324 (single-trace): bandwidth 10 MHz . (8 MHz at $2 \mathrm{mV} /$ div.), sensitivity $10 \mathrm{mV} /$ div, mag. $\times 5$, timebase $0.5 \mathrm{~s} /$ div to $1 \mu \mathrm{~s} / \mathrm{div}$,
mag. $\times 5$, y ext. 1.1 mm , trigger source, coupting, slope, level, auto, display 10×6 divs (each 6.3 mm), power a.c. or d.c. $(6.5 \mathrm{~V}$ to 16 V at 8.5 W) or internal batteries with charger, dimensions $21.6 \mathrm{~cm} . \mathrm{W}, 10.8 \mathrm{~cm} . \mathrm{H}$, $27 \mathrm{~cm} . \mathrm{D}$, weight 3.6 kg , price $£ 567+$ £57.10.

The flat, easily portable shape has been adopted for this and the 3234 MHz instrument. Front-panel space is conserved by the placing of input and output sockets at the side. The low-power c.r.t. cathode is again used, giving a two-second turn-on. The maximum sweep speed is a little slow.

326 (dual-trace): bandwidth $10 \mathrm{MHz}(5 \mathrm{MHz}$ at $1 \mathrm{mV} /$ div.), sensitivity $10 \mathrm{mV} /$ div., mag. $\times 10$, modes single, chopped, alt. summed, sig. delay included but unspecified, timebase $2.5 \mathrm{~s} /$ div to $1 \mu \mathrm{~s} /$ div, mag. $\times 10$, y ext. 2.2 mm , trigger source, coupling, slope, level, display 10×8 div (each 6.3 mm), power a.c., d.c. $(7.2-32 \mathrm{~V}$ at 12 W) or int. batteries with charger, dimensions $22 \mathrm{~cm} . \mathrm{W}, 10.1 \mathrm{~cm} . \mathrm{H}, 31 \mathrm{~cm} . \mathrm{D}$, weight 4.5 kg , price $£ 763+£ 77$.

One of the smallest, lightest, dual-trace instruments extant, with a full-scale performance, and many of the facilities associated with much bulkier oscilloscopes. It is suitable for field work on most equipment not needing a delayed-sweep facility.

422 (dual-trace): bandwidth 15 MHz (5 MHz at $1 \mathrm{mV} /$ div.), sensitivity $10 \mathrm{mV} /$ div, mag. $\times 10$, modes single, chopped, alt., summed, sig. delay included, but unspecified, timebase $1.25 \mathrm{~s} / \mathrm{div}$ to $0.5 \mu \mathrm{~s} / \mathrm{div}$, mag. $\times 10$, y ext. 3.7 mm , trigger source, coupling, slope, level, auto, e.h.t. 6 kV , display 10×8 div (each 8 mm), power a.c. or d.c. $(11.5-33 \mathrm{~V}$ at 23 W), or battery pack (5 hours), dimensions $48.3 \mathrm{~cm} . \mathrm{W}$, $17.8 \mathrm{~cm} . \mathrm{H}, 31.8 \mathrm{~cm} . \mathrm{D}$, weight 10.6 kg , price £781 $+£ 78.80$.

Two models are available, one as above and a mains-powered version. A rackmounting model of the a.c.-only instrument is also offered - the R422. The illuminated, internal graticule gives parallax-free measurement.

432/434 (dual-trace) (434 storage type): bandwidth 25 MHz (15 MHz at $1 \mathrm{mV} / \mathrm{cm}$), sensitivity $1 \mathrm{mV} / \mathrm{cm}$, modes single, chopped, alt, summed, sig.delay included but unspecified, timebase $12.5 \mathrm{~s} / \mathrm{cm}$ to $0.2 \mu \mathrm{~s} / \mathrm{cm}$, mag. fastest sweep $20 \mathrm{~ns} / \mathrm{cm}$, y ext. 7 mm , trigger source, coupling, slope, level, auto, e.h.t. 4 kV , display $10 \times 8 \mathrm{~cm}$, power a.c. or d.c. $(105-250 \mathrm{~V}$ d.c.), dimensions $33 \mathrm{~cm} . \mathrm{W}$, $14.5 \mathrm{~cm} . \mathrm{H}, 47.5 \mathrm{~cm} . D$, Weight 9.4 kg , price $£ 774+£ 78$ (432) £995 (434).

Two instruments with identical specifications, except that the 434 possesses a storage c.r.t., giving a stored display of transient events for as long as four hours. The tube operates with either full-screen storage, or in a split-screen mode, with one half storing, the other being used normally. Either half can perform either function.

Tektronix 485

Tektronix 475

Tektronix 326

Telonic 9526A
465/475 (dual-trace) (spec. refers to 475): bandwidth 200 MHz , sensitivity $2 \mathrm{mV} / \mathrm{cm}$. ($400 \mathrm{~V} / \mathrm{cm}$ at 50 MHz cascaded), modes single, chopped, alt, summed, $x-y$, sig. delay included, unspecified, timebases $\mathrm{A}+\mathrm{B} 1.25 \mathrm{~s} / \mathrm{cm}$ to $10 \mathrm{~ns} / \mathrm{cm}$, mag. $\times 10$, y ext. 1.75 cm , modes A, A intensified by B, B delayed, mixed, trigger source, level, slope, delayed trig. for B., single sweep, e.h.t. 18 kV , display $10 \times 8 \mathrm{~cm}$, power a.c. or d.c., dimensions $32.8 \mathrm{~cm} . \mathrm{W}$, $15.7 \mathrm{~cm} . \mathrm{H}, 46 \mathrm{~cm} . \mathrm{D}$, weight 10.3 kg , price £795 (465) £1173 (475).
An extremely fast, sensitive pair of instruments. The 465 is reduced in bandwidth and sensitivity to 100 MHz at $5 \mathrm{mV} / \mathrm{cm}$ (50 MHz at $1 \mathrm{mV} / \mathrm{cm}$ cascaded). A large number of features are presented, including single-point-trigger selection, mixed-sweep, beam finder, trigger hold-off, and the provision for viewing the triggering signal in use by an overriding push-button. The mental calculation of sensitivity with
$\times 1$ or $\times 10$ probes is eliminated by an automatic indicator on the front panel. The 18 kV p.d.a. provides a readily viewable signal at the speeds possible with this oscilloscope.

485 (dual-trace): bandwidth 300 MHz , sensitivity $5 \mathrm{mV} /$ div, modes single, chopped, alt, summed, $x-y$, timebase A and B $1.25 \mathrm{~s} /$ div to $1 \mathrm{~ns} /$ div, y ext. 9.3 mm , modes all usual delaying modes plus trig. hold-off and "B ends A", trigger all facilities, e.h.t. 21 kV , display 10×8 div (each 0.8 cm), power a.c., dimensions $32 \mathrm{~cm} . \mathrm{W}, 16.7 \mathrm{~cm} . \mathrm{H}$, $47 \mathrm{~cm} . \mathrm{D}$, weight 10.5 kg , price $£ 2051+$ £206.80.

Without question the most advanced portable oscilloscope on the market, in both performance and flexibility. The features, included are too numerous to mention, but include all that the other Tektronix instruments possess and more. To compress an instrument of this nature into a case that will fit into a desk drawer is a remarkable feat.

TELONIC

9526A (dual-trace): bandwidth 10 MHz , sensitivity $20 \mathrm{mV} / \mathrm{cm}$, mag. $\times 10$, modes single, chopped, alt., summed, timebase $1.25 \mathrm{~s} / \mathrm{cm}$ to $0.5 \mu \mathrm{~s} / \mathrm{cm}$, mag. $\times 5$, y ext. 3.5 mm , trigger source, coupling, slope, level, e.h.t. 2.2 kV , display $10 \times 8 \mathrm{~cm}$, power a.c., dimensions $28.5 \mathrm{~cm} . \mathrm{W}, 20 \mathrm{~cm} . \mathrm{H}$, $41 \mathrm{~cm} . \mathrm{D}$, weight 7.5 kg , price $£ 240$.
A small, lightweight instrument, using a high beam-current tube to improve brightness, while retaining a small spot size. "Auto-fix" triggering retains the trigger point at a given proportion of the y signal, ensuring that stable triggering is obtained when the input varies. The unit can be used for $2 \mathrm{mV} / \mathrm{cm}$ dual-trace $x-y$ operation, with $x-y$ phase errors of less than 3°.

Manufacturers

Advance Electronics Ltd., Raynham Road, Bishop's Stortford, Herts.
Cossor Electronics Ltd., The Pinnacles, Harlow, Essex.
Dynamco Division of D.C.A., East Mains Industrial Estate, Broxburn, West Lothian, Scotland.
Grundig (Great Britain) Ltd., Newlands Park, London S.E. 26.
Hewlett-Packard Ltd., 224 Bath Road, Slough, SL1 4DS, Bucks.
Philips. Pye Unicam Ltd., York Street, Cambridge, CB1 2PX.
Racal Instruments Ltd., Duke Street, Windsor, Berks.
S.E. Laboratories (Engineering) Ltd., North Feltham Trading Estate, Feltham, Middx.
Tektronix U.K. Ltd., Beaverton House, 36-38 Coldharbour Lane, (P.O. Box 69), Harpenden, Herts.
Telonic Industries U.K., The Summit, 2 Castle Hill Terrace, Maidenhead, Berks. SL6 4JR.

New Products

Audio frequency millivoltmeter

A Rogers a.f. millivoltmeter designed for voltage measurements in the audio and low r.f. range is now exclusively available from Pact International Electronics. The AM324 is particularly suitable for measuring low level signals in high impedance circuits. An additional application is as a pre-amplifier in conjunction with the Rogers distortion factor meter DM344A for the measurement of distortion of millivolt signals.

The high input impedance of $10 \mathrm{M} \Omega$, together with the low input capacitance, ensures that the instrument does not load the circuit in which the measurement is being made. Measurements can be made from $300 \mu \mathrm{~V}$ to 300 V and this, coupled with the wide bandwidth, 10 Hz to 500 kHz , means that measurements can be made on tape recorder bias oscillators, and low r.f. equipment. Long term calibration accuracy has been achieved by designing the amplifiers with considerable feedback so that the gain accuracy of the amplifiers and calibration accuracy of the instrument is dependent only on the stability of high quality metal film feedback resistors, and not on the stability of the semiconductors and other components.

A high grade taut-band meter movement is incorporated to obtain good resolution. As the common negative rail has a low capacitance to case, the instrument may be used as a floating meter when the

earth link is removed. Under these conditions the amplifier output will also be floating. The use of batteries as a power source greatly reduces the problems of "hum" and earth loop currents which may invalidate readings when very small voltages are being measured. A battery check facility is incorporated. For routine laboratory/bench use a regulated mains power unit is available as an optional extra.

Three designs of bench housing cases are available, $\mathrm{H} 2 \mathrm{~B}, \mathrm{H} 4 \mathrm{~B}$ and H 6 B accommodation units, having respective modular widths of 2,4 and 6 .

Basic technical specifications include: Voltage range: 1 mV to 300 V f.s.d. in twelve ranges: -70 dB to +40 dB referred to 1 V .
Frequency response:

10 Hz to $500 \mathrm{kHz} \pm 3 \%$ of f.s.d.
Input impedance: $10 \mathrm{M} \Omega$ and 20 pF for all ranges.
Oscilloscope output:

Residual noise:
Overload:
Dimensions:
Nominal IV, output impedance $5 \mathrm{k} \Omega$, derived from pre-amplifier, giving linear response. Less than $10 \mu \mathrm{~V}$.
300 V d.c. plus peak a.c. any range.
Front panel 8.5×5.6 in (standard module $\times 2$) Chassis depth (behind panel) $6 \frac{1}{4}$ in
Bench case (including feet) $6 \frac{1}{2}$ in $\times 9 \frac{3}{4} \times 9 \frac{1}{2} \mathrm{in}$. Pact International Electronics Ltd., Pact House, Church Lane, Wallington, Surrey. WW336 for further details

150W and 300W inverters

Jermyn Distribution have introduced an inverter unit for providing a 250 V supply at 50 Hz from a car battery. Available in two models, for 150 W and 300 W operation, the former version operates from a 12 V battery, while the higher-power unit requires a 24 V power source.

A feature of the inverters is that they have been specially designed to charge the $12 / 24 \mathrm{~V}$ batteries (up to 10 A) when plugged into any household power socket. Should the mains supply fail for any

reason, then the unit automatically goes into its invert mode, thus providing a 240 V emergency supply immediately. It is an interesting thought that if the main household power switch remains operated, the inverter would try to supply the neighbourhood and so it is just as well that in the event that the inverter is accidentally overloaded, the unit's drive is adjusted so that the output voltage falls to zero, thus protecting the unit. Additional circuitry ensures that the unit's 15A fuse will blow if the battery leads are connected incorrectly, thus giving added protection to the inverter. Indicator lights are illuminated if the unit is charging the battery or if it is providing a 240 V 50 Hz output.

Both versions of the inverter are available from Jermyn Distribution as a kit of parts or built up units. Prices are as follows: 150 W kit- $£ 25.00$, 150 W built up unit- $£ 29.00,300 \mathrm{~W}-£ 34.00,300 \mathrm{~W}$ built up unit- $£ 39.00$. Jermyn Distribution, Vestry Estate, Sevenoaks, Kent. WW303 for further details

Sound level meter

Castle Associates have introduced a new sound level meter, the CS17A. This unit, while being in the price range usually reserved for general level indicators, is a general purpose sound level meter which fully complies with the appropriate British Standard, BS 3489. The CA17A has both " A " and " C " weighting with provision for

the connection of recorders and oscilloscopes or even a noise dosemeter. The meter can make measurements from 24 dB to 140 dB s.p.l. using the same microphone type as is fitted to most British units and thus microphone accessories are interchangeable. The CS17A is priced at $£ 68$ complete. Custom Electronic Associates Ltd, Castle Associates Division, Redbourne House, North Street, Scarborough, Yorks. YO11 1DE.
WW334 for further details

Low cost digital multimeter

A digital, battery operated, multimeter is the first instrument designed for the professional electronics market from Sinclair Radionics Ltd. Measuring $190 \times 130 \times$ 50 mm and 0.62 kg (1.51 b) in weight, the instrument is powered from a single 9 V dry cell with a typical current drain of 12 mA inclusive of the $3 \frac{1}{2}$ digit, Nixie tube display driven by what is claimed to be a "unique measuring technique".

Containing over 300 discrete devices, the circuit is operated with a switched scaler unit bringing all inputs to within a 0-1V range which is then converted into a pulse train, the length of which is proportional to the input voltage. An analogue technique using "cup and bucket" circuitry is then employed to decode this pulse train

directly into decimal notation suitable for driving the Nixie tube display.

The available ranges cover f.s.ds from $1.0 \mathrm{~V}-1000 \mathrm{~V}$ d.c. and a.c. (resolution 1 mV), $1.0 \mu \mathrm{~A}-1.0 \mathrm{~A}$ d.c. (resolution lnA), $1.0 \mathrm{~mA}-$ 1.0 A a.c. (resolution $1 \mu \mathrm{~A}$) and $1.0 \mathrm{k} \Omega$ $1 \mathrm{M} \Omega$ resistance (resolution 1Ω). The input resistance is up to $1000 \mathrm{M} \Omega$ on the higher ranges and unlike analogue instruments, the resolution is superior to the overall accuracy, the latter being typically between ± 0.4 and ${ }^{\prime} 0.5 \%$ on the d.c. ranges and $\pm 1.0 \%$ on the a.c. ranges.

The instrument is contained in a light polypropylene case with integral test leads. Sinclair Radionics Ltd., London Road, St. Ives, Huntingdonshire PE17 4HJ. WW311 for further details

Decade inductance

J. J. Lloyd Instruments announce further additions to their range of aids to precision measurement.
The " 100 " series precision decade inductances are adjustable, working standards featuring a precision of 0.3%.

Design is based on inductors wound on ferrite cores incorporating incremental trimmers to allow compensation of any slight long-term deviations due to ageing effects. Particular care has been taken with winding, layout and switch systems to keep stray capacitance to a minimum and maintain a high Q factor.

Decade setting concentrates on operator convenience. Easy-to-turn
positive-action controls have large scales with sensible size numbers giving clear indication, even from a distance, of individual decade settings and consequent total inductance at the terminals.

The decades are presented in plastic-coated steel cases combining mechanical strength and electrical shielding. Two models are currently available: L300 features three decades with a range of $0-1 \mathrm{H}$; L400 features four decades with a range of $0-10 \mathrm{H}$. Both models are rated at 0.3% accuracy. J. J. Lloyd Instruments Ltd., Brook Avenue, Warsash, Southampton S03 6HP.
WW 330 for further details

Circuit breakers

For resettable overload protection a new range of panel mounting thermal bi-metallic circuit breakers is available from R. S. Components. These are mounted in grey moulded flame retardant plastic case with a reset button and single-hole panel fixing for easy mounting. Breakdown voltage is 900 V . The contacts are rated at 259 V a.c. $/$ d.c.

Available in the following current ratings: $0.5 \mathrm{~A}, 2 \mathrm{~A}, 2.5 \mathrm{~A}, 3 \mathrm{~A}, 4 \mathrm{~A}$. Price 65p from R.S. Components Ltd., P.O. Box 427, 13-17 Epworth Street, London EC2P 2HA.
WW 332 for further details

Wide range signal generator

The G5 is a stable solid state signal generator covering a wide frequency range with high accuracy, manufactured by Linstead Electronics. The output may be attenuated at 600Ω or driven into low impedance loads giving substantial power.

The frequency range is 10 Hz to 1 MHz $\pm 2 \% \pm 1 \mathrm{~Hz}$ and to achieve accuracy this is covered in five decades controlled by switched close tolerance resistors and a variable capacitor. The dial is 10.5 cm diameter and geared for 330° rotation giving a total scale length of 130 cm . The calibration is approximately logarithmic giving an open scale and equal divisions of frequency with rotation. The sine wave output is available at two source impedances: (a) 0 to 6 V r.m.s. continously variable at low impedance, which will drive loads of 30Ω over the whole frequiency range. From 10 Hz to 100 kHz output power is sufficient to give 2 W into 5Ω with low distortion and up to 3 W with 10% distortion. This output will drive loudspeakers or a vibration generator such as the Linstead VI for examination of mechanical vibrations; (b) 0 to 6 V r.m.s. via 600Ω continuously variable and through a step attenuator of $\times 1, \times .1$, $\times 0.01, \times 0.001$. A square wave output is also provided with signals of 0 to 9 V peak

This new digital multimeter from Sinclair costs only£49

Wide range	The new $31 / 2$ digit Sinclair DM1 Multimeter provides a total of 23 ranges to give you a really versatile instrument. An added bonus is the convenience of push- button range selection.	On all but the 1000 V range, automatic overranging to
1900 is provided.		

Lightweight With a weight of only 0.6 kg and dimensions of $190 \times 130 \times 58 \mathrm{~mm}$ the Sinc!air and compact DM1 brings true portability to the world of digital multimeters.

Good Typical accuracies of the Sinclair DM1 are $\pm 0.5 \%$ of reading (± 2 digits) on the accuracy DC and resistance ranges, and $\pm 1.0 \%$ of reading (± 2 digits) on the AC ranges (measured at 50 Hz).
High Input $1000 \mathrm{M} \Omega$ is a very conservative specification for the input resistance of the resistance Sinclair DM1 on its most sensitive range, thanks to the clever design of the input circuits, which draw only 50pA.

Robust
construction
The high strength polypropylene casing has been designed to take the knocks that will inevitably occur during use. The flush fitting push-button range selection switches are moulded integrally with the case to provide an even greater degree of robustness.
Complete A total current drain of between 10 mA and 12 mA provides over 80 hours of freedom from useful life from the throwaway dry battery, giving total freedom of movement the mains
over weeks of use. Only Sinclair expertise can give you this. Accuracy is maintained at all battery voltages during discharging.

Better accuracies than this are are not available at anywhere near £49.
The loading problems which beset measurements with normal analog instruments are now a thing of the past.
This push-button design, with a lifetime in excess of 1 million operations, is yet another first for the Sinclair DM1.
The Nixie tube display automatically extinguishes before accuracies deteriorate.

	Range of full scale	Maximum resolution
AC \& DC Voltage	1 V to 1000 V	1 mV
DC Current	$1 \mu \mathrm{~A}$ to 1 A	1 nA
AC Current	1 mA to 1 A	$1 \mu \mathrm{~A}$
Resistance	$1 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$	1Ω

Fill in the coupon below to order your new Sinclair DM1 multimeter.
Your money will be refunded in full if you are not satisfied with the instrument's performance, and return it in its original packing

Send the coupon to Multimeter Sales, Sinclair Radionics L.td..
London Road, St Ives, Hunts.
Tel (0480) 64311.

Tick whichever is applicable \square
I enclose a cheque for $£ 49$ for a Sinclair DM1 digital multimeter. lunderstand that unless I am completely satisfied with the performance of this instrument if I return it in its original packing within 14 days of receipt, I shall receive a full refund. \square
Please send me a descriptive leaflet on the Sinclair DM1
Name
Position
Company
Address
Tel no

Areyou a resistor man?

Then the area of greatest attraction for you will be our reputation for reliability of product, reliability of supply, reliability of expertise, and wide, wide range. Electrosil resistors are almost universally first choice where dependability is paramount under conditions of environmental stress. This is due to their unique fused glass-tin-oxide method of manufacture. The range includes the most comprehensive series yet approved to BS 9000, and also embraces the C3, smallest available in the UK, the FP range (flameproof), the TR range (triple rated) and the NC range for supreme precision. And we produce millions every week!

Electrosil

have the experience

Wherever your interests lie...
(1) Resistors (2) Potentiometers
(3) Capacitors (4) Cordip (5) Switches
(6) Pick-a-back (7) ETM.

Use the Reader Reply Service in this publication for full details, indicating the product range(s) in your field.
Electrosil Limited, P.O. Box 37, Pallion, Sunderland, Co. Durham,

SR4 6SU.

to peak up to 100 kHz . Rise time at high frequencies less than $0.5 \mu \mathrm{~s}$, and the circuit is d.c. coupled to avoid droop at low frequencies. The output is via 600Ω continuously variable and through a step attenuator of $\times 1, \times 0.1, \times 0.01, \times 0.001$. Supply $\quad 220-240 \mathrm{~V}, 40-60 \mathrm{~Hz} .20 \mathrm{~V} . \mathrm{A}$. Dimensions $13 \times 13 \times 21 \mathrm{~cm}$ high
Weight $\quad 2.7 \mathrm{~kg}$
Price $\quad £ 32.00$.
Linstead Electronics, Roslyn Works, Roslyn Road, London N15 5JB.
WW309 for further details

D.I.L. insertion and extraction tools

Two accessories for use with d.i.l. circuits have been introduced by Guest International. The "Dip-a-Dip" insertion tool is claimed to make easy work of assembling $14 / 16$-pin i.cs into printed circuit boards. The i.c. is gripped by the jaws of the tool and the pins are held in position while a plunger mechanism inserts the i.c. into its correct position.

The "Clip-a-Dip" extraction tool has jaws which clamp under the pins of an i.c. and ensure a positive grip on the device during de-soldering operations. Both "Dip-a-Dip" and "Clip-a-Dip" are also available for d.i.l. i.cs with up to forty pins. Industrial Electronic Components Division, Guest International Ltd., Nicholas House, Brigstock Road, Thornton Heath, Surrey, CR4 7JA.
WW 329 for further details

Professional loudspeakers

A new series of loudspeakers for professional use has been developed by Feldon Audio Ltd, distributors for James B. Lansing Sound Inc. These units are available in a variety of configurations and use JBL components throughout. The design is based upon the 4326 Studio Monitor, also developed by Feldon and in association with EMI Research.

The new units have two bass drivers of 15 in diameter with 4 in voice coils which are edge wound. The power rating of each of these is 180W. Midrange frequencies from 800 Hz to 7000 Hz are handled by a phenolic diaphragm com-

pression driver loaded by an exponential horn with an acoustic lens to give a dispersion pattern 40° by 110°. All frequencies above the 7000 Hz point are fed to a horn loaded ring radiator with a -5 dB point at 21 kHz . Crossover is effected by a $12 \mathrm{~dB} /$ octave constant impedance passive circuit. The enclosures themselves are a 9 cubic ft distributed port reflex which, it is claimed, gives an improved linearity at low frequencies.

Specifications for the basic system are as follows: power requirements, $60-400 \mathrm{~W}$ r.m.s. (8Ω); efficiency, 1 W gives 89 dB at 15 ft referred to $2 \times 10^{-5} \mathrm{~N} / \mathrm{m}^{2}$ max. useful output, in excess of 115 dB referred as above; frequency range, $30-20,000 \mathrm{~Hz}$ $(-10 \mathrm{~dB}$ at 26 Hz$)$, variable crossovers, which can be active amplifier types if required; size, $48 \times 26 \times 20 \mathrm{in}$. Feldon Audio Ltd., 126 Gt. Portland St., London W1N 5PH.

WW 301 for further details

Cordless soldering iron

Electroplan Ltd have been exclusively appointed to handle U.K. distribution of a new cordless soldering iron. Known as the Iso-Tip, the iron is light, weighing only $60 z$, easy to handle, and requires no mains power source during operation. The Iso-Tip operates from long-life nickel cadmium rechargeable cells and can perform more than 60 average soldering joints before recharging is necessary. Heating the tip is achieved by operating a

push button. Soldering temperature is reached in 3-5 seconds. A light is incorporated near the tip which is usefu! when soldering in dark and awkward corners.

The iron comes complete with a fine tip for printed circuit and other light work, or a heavier tip is available as an optional extra. A recharging stand is included which will charge the Iso-Tip from dead to full charge overnight. Price $£ 9.25$ (complete kit with fine tip and recharging stand). Ordering code 15-38. This unique advance in soldering is available from Electroplan Ltd., P.O. Box 19, Orchard Road, Royston, Herts.
WW 307 for further details

Radar Doppler units

A new range of r.f. X-band Doppler radar units combining Gunn oscillator and mixer detector diodes in one cavity is announced by Micro Metalsmiths. The models cover U.K. and Continental frequency bandwidths. The single cavity design allows for a similarity of radiated and received signal patterns. The unit is small and light for use in miniature

equipment and can be supplied with or without horns depending on the range and sensitivity requirements of the customer. In any event the bodies and horns, where appropriate, are one piece light alloy castings.

The Doppler radar units are suitable for burglar detection systems and for speed measurement and are supplied complete with diodes electrically tested by Micro Metalsmiths Ltd, Kirkbymoorside, York. WW328 for further details

Three-pole mains connector

The new 3-pole mains input connector by Belling-Lee is designed to meet the requirements of C.E.E. Publication 22 and I.E.C. 320. Coded L1949, the free socket is moulded on to 2 metres of 3 core black p.v.c., sheathed, 6A mains cable to BS 6500. The L1950 fixed receptacle, with pin contacts, is fully shrouded to BS 415 , and is polarized. Current rating is 6 A , contact resistance is less than $5 \mathrm{M} \Omega$ and the temperature range is $-55^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. A non-polarized 2 -pole version is also available. Belling and Lee Ltd., Great Cambridge Road, Enfield, Middx.EN13RY. WW 308 for further details

Variable cermet resistors

A new range of variable cermet trimmer resistors is now available from Neltronic UK. The resistance range is from 100Ω to $500 \mathrm{k} \Omega$. The resistance tolerance is $\pm 30 \%$ (standard), $\pm 20 \%$ (special). The resistance varies linearly, with a 100 maximum end resistance. The power rating is 0.5 W at $70^{\circ} \mathrm{C}$, operating temperature range $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, maximum working voltage 250 V d.c., mechanical adjustment $220^{\circ} \pm 10^{\circ}$, rotation torque 50 to 350 g cm , contact resistance 6% maximum, noise during adjustment 3% maximum and temperature coefficient ± 250 p.p.m. Weight is approximately 1g. Neltronic UK Ltd., 442 Bath Road. Slough SL1 6BB.
WW 310 for further details

Four channel panpot

The panpot illustrated is made by Audiotek and is basically a six element device, the contacts of which are of the stud type (specially designed for minimum noise) the law being determined by fixed resistors. The number of contacts provided enable any one of one hundred and twenty-one positions to be selected or continuously panned. Three basic law configurations are available which provide either a $3 \mathrm{~dB}, 4 \mathrm{~dB}$ or 6 dB insertion loss in each pan direction with the joystick centrally positioned. Alternatively, resistors can be fitted to

customer specification to meet a particular requirement. Specifications for standard versions are as follows: $Z_{i}=$ output impedance of preceding stages is not to exceed $100 \Omega . Z_{o}=$ load impedance of following stages is not to be less than $15,000 \Omega$. Insertion loss with joystick in centre (input to any output) $=2 \times$ element value. Audiotek, Farringdon House, St. Albans Road East, Hatfield, Herts.
WW 304 for further details

Solid State Devices

The new silicon photodiodes BPX 90, BPX 91 and BPX 92 from Siemens are planar structures, making it possible to use these modules both as photocells and as photodiodes. The photosensitivity is as high as $50 \mathrm{nA} / 1 \mathrm{x}$. The photodiodes with their two wire leads can be combined to form complex sensing systems for card readers, angular encoders and other complex reading devices. The silicon photodiode BPX 79 has been improved by increasing its sensitivity in the short-wavelength part of the spectrum. The photosensitive surface has an area of $20 \mathrm{~mm}^{2}$ and the device has a sensitivity of up to $135 \mathrm{nA} / 1 \mathrm{x}$.

As a supplement to the phototransistor arrays BPX 80 to BPX 89 , there is now a series of i.r. emission GaAs l.e.ds designated LD 260 to LD 269, with identical layout permitting up to ten systems per linear array. GaAs light emitters in combination with phototransistors have become known as optoelectronic coupling elements. They permit the transmission of electrical signals with absolute galvanic separation and high electrical breakdown strength. Siemens now offer their first optoelectronic couplers in two versions. Type CNY 17 has a six-legged plastic case and permits an insulation voltage of 2.5 kV between the transmitter and the receiver. The transmission efficiency is subdivided into four groups, from 40 to 320%. Type CNY 18 is a coupler in a metal case for a maximum permissible insulation voltage of 500 V and its coupling efficiency ranges from 10 to 80%. Seimens (UK) Ltd., Gt. West Rd., Brentford, Middlesex.

Photodiodes WW 324

I.R. emission l.e.d. WW 325

Opto-couplers WW 326
Suitable for use in l.s.i. computer circuits are samples of a new c.o.s./m.o.s. device, type CD4057A made available by RCA Ltd. This is a low power arithmetic array giving up to 4^{n} combinations of wired connections in a 28 lead d.i.l. package. A second digital device introduced is the c.o.s./m.o.s. 8 stage static bidirectional shift register designated type CD4058A.

Designed for class C v.h.f. /u.h.f. use, two high gain transistors types 40964 and 40965 are now available. These are high gain devices suitable for tripling up to 470 MHz and are packaged in TO-39 metal cans. A high current (300A) array of six 50A high power transistors is announced by RCA, available in a metal and plastic package with the collectors connected in common to the metal flange. Two additional external leads connected to either side of the unit provide common connections to all six bases and emitters respectively. External connecting bars can be broken to rearrange the package
circuitry to give either completely separate operation or other multi-parallel combinations. Finally, a dual Darlington driver for inductive loads, type TA8590 is introduced. This device contains two amplifiers each capable of delivering 5A at a current gain of 500 or 3 A at a current gain of 600 . RCA Ltd., Sunbury on Thames, Middlesex.
Arithmetic array WW 319
Static register WW 320
Class C transistors WW321
300A transistor array WW 322
Darlington driver WW 323
Hewlett Packard Ltd have introduced a number of devices including a series of microwave mixer Schottky diodes, two for the 1 to 4 GHz range designated 5082-2213 and 5082-2215, and two for the 4 to 12 GHz range, types $5082-2217$ and 5082-2219. A $\mathrm{n}-\mathrm{p}-\mathrm{n}$ stripline transistor has also been added to the range of microwave small signal devices operating in the 2 to 4 GHz region and is assigned the type number 35876 E . An optically coupled isolator type 5082-4360 with t.t.l.-d.t.l. compatibility completes the product range from this company. Hewlett Packard Ltd., 224 Bath Rd., Slough, Bucks SL1 4DS.
Schottky diodes WW 316

Microwave transistor WW 317

Coupled isolator WW 318
From G. E. Electronics (London) Ltd, five products are announced. This company distributes, among others, products of Unitrode, who have introduced a PIC500 series of dual Darlingtons in 8 pin TO- 3 packages. Also from Unitrode is a hybrid package designed to switch high power loads for precisely tuned intervals. Called the Power Pulser, it will operate with pulse widths from 0.5 ms to 50 ms .

Crystalonics have produced an n-channel power f.e.t. type CP643 giving a dynamic range of 135 dB which they claim is a considerable improvement over previous types available. Specified for operation from 0.5 to 100 MHz , it is also usable to 450 MHz . Photo-sensitive f.e.ts are also included in the products from Crystalonics, these being a range with operating voltages from 15 to 30 V and called Fotofets.

A dual 4 -input NAND gate made by Inselek is also released. This is constructed with s.o.s./m.o.s. n-channel and p-channel enhancement mode devices giving low power dissipation with high operating speed. Eardley House, 182/4 Campden Hill Rd., London W8 7AS.
Unitrode dual Darlington WW 331
Power Pulser WW 312
Power f.e.t. WW 313
Fotofets WW 314
NAND gate WW 315

World of Amateur Radio

Amateurs lose frequencies

As forecast in this section in the November 1972 issue, the Ministry of Posts \& Telecommunications introduced its new schedule of amateur frequencies on January 1. The main changes are a drastic reduction of the $432-450 \mathrm{MHz}$ band and the replacement of a 1000 MHz wide allocation between 21 and 22 GHz with 250 MHz between 24000 and 24250 MHz . The revised 432 MHz band is now 432 to 440 MHz . In addition, 430 to 432 MHz is available to British amateurs operating outside the area bounded by $53^{\circ} \mathrm{N} \quad 02^{\circ} \mathrm{E}, \quad 55^{\circ} \mathrm{N} \quad 02^{\circ} \mathrm{W}, \quad 55^{\circ} \mathrm{N}$ $03^{\circ} \mathrm{W}$ and $53^{\circ} \mathrm{N} \quad 03^{\circ} \mathrm{W}$ (representing roughly most of Yorkshire and parts of Lincolnshire, Derbyshire and Nottinghamshire) with a maximum e.r.p. of only 10 watts. Any operation on the new 24 GHz band requires prior written consent of M.P.T. who can stipulate the power which may be used. Pulse operation on a number of other microwave bands continues to require similar written consent. All amateur allocations above 30 MHz , except 24000 to 24050 MHz (which is a "shared" band) are available to amateurs only on a secondary, non-interference basis.

Amidst the general gloom at this latest loss of frequencies, the only bright spot appears to be the relaxation on the use of artificial satellites, now extended to the 7 , 14,21 and 28 MHz h.f. bands, 435 to 438 MHz , and 24000 to 24050 MHz .

Slow-scan television and facsimile

As a result of a request from Richard Thurlow, G3WW, the M.P.T. has now amended the official British specification for amateur slow-scan television (s.s.t.v.) operation so that it now includes both 120 -line and 128 -line operation. The 128 -line system is used in the Robot s.s.t.v. equipment which also differs from the earlier specification in its vertical sync pulses. M.P.T. has granted G3WW a two-year s.s.t.v. permit covering the 7,14 , 21, 28 and 144 MHz bands. Since receiving permission to use the new specification he has had many two-way s.s.t.v. contacts with the United States, Puerto Rico, Israel, Australia, South Africa, Portugal, Germany and France, and has had one 7 MHz contact with a British station.
The Ministry's s.s.t.v. specification is now: number of lines per picture 128 ± 8
lines; aspect ratio $1: 1$; horizontal frequency (frame) $16 \frac{2}{3} \pm 1 \mathrm{~Hz}$; vertical period 7.68 s (limits 6.79 to 8.68 s); horizontal sync pulse 5 ms ; vertical sync pulse 30 ms (nominally); f.m. sub-carrier sync 1200 Hz , black 1500 Hz , white 2300 Hz .

In the United States enthusiasm is apparently running high not only for s.s.t.v. but also for facsimile operation (FAX or F4). We have yet to learn of any British amateur being granted permission to use F 4 in h.f. bands.

Slow-scan pictures have been successfully sent through Oscar 6 by American amateurs.

Oscar 6

The amateur satellite Oscar 6 is continuing to function and several British amateurs have already contacted about 20 different countries (including the United States and Canada) through the 910 -mile high, 145.95 MHz to 29.5 MHz repeater. However, there appears to have been some falling off in activity due to the problem of knowing in advance when the repeater is likely to be working and when switched off to restore batteries. AMSAT (Radio Amateur Satellite Corporation) appears to be endeavouring to keep the repeater active on Fridays, Saturdays and Sundays. It remains essential that excessive power should not be used by the 144 MHz stations working through the satellite. AMSAT (PO Box 27, Washington DC, 20044, U.S.A.) is anxious to have reports of any contacts made through the satellite over terrestrial distances exceeding 4900 statute miles.

Notes and news

The 1973 Diamond Jubilee president of the R.S.G.B. - Dr J. A. Saxton - was formally installed in office on January 5 in the presence of Sir John Eden, Minister of Posts \& Telecommunications; it is believed this is the first time the Minister has attended an R.S.G.B. presidential installation. During the evening the Society's "Calcutta Trophy" was presented to Lt.-Col. Per Anders Kinnman, SM5ZD, former chairman of the I.A.R.U. Region 1 executive committee.

Amateur Radio continues to figure quite frequently in events in the public eye - the most recent example being the use of amateur stations to give first news of the bad earthquake in Nicaragua.

Shortly before the loss of the 21 GHz band in the U.K., a new "world record" for the band was established by British amateurs L. W. G. Sharrock, G3BNL, and A. Wakeman, G3EEZ, working between Cleeve Common, near Cheltenham, and Clee Hill, in Shropshire - a distance of 45 miles $(72 \mathrm{~km})$. Both transmitters had an output of about 10 mW using n.b.f.m. and 10 inch dish aerials. These two enthusiasts have spent many months developing advanced solid-state microwave transceivers capable of working on no less than five amateur bands ($13,9,6$ and 3 cm and 15 mm).
A recent United States ruling on third party traffic (prohibited in the U.K.) forbids "third party traffic involving material compensations, either tangible or intangible, direct or indirect, to a third party, a station licensee, a control operator or any other person". Another new U.S. ruling prohibits "radio communication in connection with any activity which is contrary to Federal, State or local laws".
After 18 months of building, testing and modification Dick Norman, VK2BDN, operating portable in the Lower Blue Mountains of New South Wales made a new Australian microwave record by contacting Bill Cox, VK2ZAC, over a distance of 28.5 miles on 2304 MHz . Power output of the portable transmitter was 0.75 W .

In brief

Each edition of the "World Radio Club" 15 -minute programme now goes out on the B.B.C. World Service four, instead of three, times weekly: 13.30 G.M.T. Wednesdays, 20.30 Thursdays, 23.45 Fridays (including 1088 kHz), and 08.15 Sundays. . . . The Derby and District Amateur Radio Society now has a licensed membership of 186 ; the Society has recently started meetings for members interested in radio-controlled models. . . . Short Wave Magazine complains that timebase interference from colour TV sets makes weak-signal reception on 1.8 MHz impossible in urban areas, adding "nothing is being done about this either by M.P.T. or set manufacturers" - its effect is often to modulate any signal with a characteristic low-frequency buzz and the magazine believes this accounts for a recent falling off of activity on 1.8 MHz New regulations affect noncitizens of the United States wishing to operate in the U.S.A. as permanent resident aliens. . . . A reunion of the Radio Amateurs Old Timers Association is being held on Friday May 18 at The Bonnington Hotel, Southampton Row, London WC1. R.A.O.T.A. is open to amateurs who have held a U.K. licence for not less than 25 years (details Miss May Gadsden, 79 New River Crescent, London N13 5RQ). . . . The U.K. FM Group (London) is holding a convention on February 24 at Brooklands Technical College, Weybridge, Surrey.

Pat Hawker, G3VA

Real and Imaginary

by "Vector"

The Post-horn Syndrome

As I write this, Christmas cards are still plopping apologetically through the letter-box; one such took fourteen days to travel half a mile: The non-arrival of the piano-top decor stirred the British public to fury. Aided and abetted by the newspapers they elected the Post Office's Bill Ryland as sacrificial lamb, and (to mix the metaphor) took him to the cleaners. And, if that wasn't enough to fill his cup to overflowing (to mix it up even more), Her Majesty's Government, with that superb sense of timing for which it is renowned, created him a knight bachelor right at the peak of the argy-bargy.

When two disasters befall, says tradition, shut your eyes tight and await the third. True to form it came when The Sunday Times, ostensibly to celebrate our entry into the Common Market, put in trial calls to the eight other E.E.C. capitals. Oh yes - they got their eight calls all right; after 128 tries, that is. On their ninth attempt to contact Luxembourg, they reported, they found themselves speaking to the startled proprietor of a fish shop in Sheffield.

It's all too easy to mock the afflicted and the comics have had a field day. And as far as that hoary old institution the Post Office is concerned, fair enough, but I honestly don't think that Sir Bill Ryland deserved all the vituperation he got, although others may argue that in his kind of job the chopper is an occupational hazard.

The fact is that most of his problems were inherited and, although the Christmas fiasco will be old hat by the time you read this, the problem won't be. And they will continue to multiply just so long as the Post Office retains its Rowland Hill mentality.

When the postal service was introduced, the amount of mail carried was of easily manageable proportions and the system was straightforward to operate; the labour force took what money was offered, touched its forelock and was duly grateful. In Rowland Hill's day the service was a compact entity and as such, was vastly different from today's with its amoeba growth and diversifications, and its mammoth distribution and labour problems. Yet, within sight of the twenty-first century, the sound of the post-horn is still clearly heard within the Post Office structure.

One major reason for this is that it has always discouraged revolutionaries. Its promotion system has always opted for sound, capable, solid Establishment chaps. Vertical thinkers all, with none of this lateral nonsense. And in particular, never in its entire history has it put a revolutionary into high engineering office. Never has it had anyone who seriously questioned whether it was a sensible proposition to manhandle countless tons of paper around the country every day; whole mountains of paper, most of which would be thrown away the day after.

Even by 1945, the task had become a colossal problem. Then out of the evil of war, came good; a chance to take stock and to rebuild. That, above all, was the time when the Post Office missed the boat. If only some visionary had come to authority then; one who saw clearly that grand-dad's methods were no longer valid and who had the courage to charge his engineers to find something far better.

Facsimile, possibly. Even this could scarcely be termed a new-fangled device, for it was invented about 1847 and by the 1870s a facsimile system was operating commercially in France. By the 1940s it had been enormously improved. If only whole-hearted experimental mailtransmitting facsimile had been introduced then, the archaic paper-carrying system we endure today could have been reduced to minimal size, being used only for the transport of original documents in the rare cases where only this would suffice.

The system, backed by teleprinters and of course supplemented by the telephone service, could have been introduced gradually; first between two main cities perhaps, and then, in the light of experience, extended. The costs would have been spread over the years and significantly off-set by the commensurate run-down of the paper-carrying industry. Above all, advantage would have been taken of the huge re-housing schemes and planning of new towns to ensure that coaxial cable was piped in as a matter of course with the other services; not necessarily for immediate use, but against the day.

Snags? Of course there would have been snags. Lots of them. But none that made the project technically unfeasible, given the will.

Today, even given the necessary presiding genius, the job would be immensely -- indescribably - more difficult and the cost fantastic. Unless. of course, it was done on a piecemeal scale over a great number of years. In that event, the main question is this; can the present system continue to creak along for another quarter or half a century?

The replacement of the present domestic and office telephone by a combined telephone/facsimile unit doesn't present any insurmountable technical difficulties. But even if a kind fairy waved a magic wand and completed such installations overnight, nothing but chaos would result, because the lines couldn't cope. The bandwidth limitations of the ordinary telephone line slows the facsimile speed to an impracticable point; for example, it would take about 4-6 minutes to transmit one page of W.W. and although further technical advances will probably reduce this to about $1 \frac{1}{2}$ minutes, it's still too long.

What is needed is at least 50 kHz lines, such as are in long-distance operation in the U.S.A., in order to make the process much nearer to the instantaneous. And that demands all-coaxial linkage between subscriber and subscriber; unfortunately such lines between the exchange and the home or office just don't exist, while the present trunk coaxial lines have insufficient total capacity anyway. Neither could the present exchanges cope.
"Bury your head in the sand and the enemy isn't there any more" is the mythical ostrich policy. For half a century the Post Office has done just that and every year of procrastination has seen a worsening of the postal service and a monumental increase in the price which ultimately will have to be paid.

So is there a genius in the house?
(Vector's mention of "lateral" thinking refers to a process advocated by Edward de Bono for problem solving. The idea is that sometimes it may be advantageous to "move sideways" mentally to some new, arbitrary starting point, so that the problem is seen and tackled from a different direction. - Ed.)

The largest rangein Europe:
 your spec could make it even larger.

The EEV range of vacuum capacitors is wider than ever. EEV manufactures more than 100 types at competitive prices. And if we haven't got the one you want, send us your specification. We can probably make it for you.

We have all the experience and knowhow to solve your vac cap problems fast. Write for data sheets stating type, capacitances and voltage ratings which interest you. Of if you have a specific problem, phone us at Cheimsford and ask for extension 428.

Variable Capacitors
 Glass Types

Capacitances from 4 to 4000pF
Voltage ratings from 2 to 30 kV
Current ratings from 20 to 75 amps Ceramic Types
Capacitances from 10 to 5000 pF
Voltage ratings from 5 to 30 kV
Current ratings from 70 to 200 amps

Fixed Capacitors

Glass Types
Capacitances from 6.25 to 900 pF Voltage ratings from 3 to 20 kV Current ratings from 7 to 50 amps Ceramic Types
Capacitances from 6.5 to 3000 pF Voltage ratings from 7 to 30 kV Current ratings from 80 to 140 amps

Sinclair Project 60

Stereo 60

8uilt and
tested
post free
£9.98

pre-amplifier/control unit

The versatility of Project 60 high-fidelity modules is well demonstrated in this excellent unit. It provides the facilities essential to good stereo and will enhance the quality of any system it is used with, whether Project 60 or any any other top line power amplifiers. Compact, yet robustly constructed, the unit is easily panel mounted and will operate satisfactorily from 18 to 35 volts supply. Silicon epitaxial transistors are used throughout to achieve a very high signal to noise ratio with excellent separation between channels. Distortion at maximum output is barely 0.02% with magnetic p.u. input. Accurate equalisation is provided for all inputs, which are selected by push buttons. For maximum effectiveness, the Sinclair A.F.U. is recommended for use with the Stereo 60 pre-amp/control unit. A comprehensive manual supplied with Project 60 modules makes installing and connecting easy and ensures best possible results from your system.

Super IC. 12

Integrated circuit
high fidelity amplifier

SPECIFICATIONS
Input sensitivities: Radio-up to 3 mV . Mag. p.u. 3 mV correct to R.I.A.A. curve Mag. p.u. mv correct to R.l.A.A. curve
$\pm 1 \mathrm{~dB}, 20$ to 25.000 Hz . Ceramic p.u. - up $\pm 1 \mathrm{~dB}$. 20 to 25.000 Hz . Ceramic p.u. - up
to 3 mV : Aux - up to 3 mV . Output: 250 mV . Signal to noise ratio: better than 70 dB . Channel matching : within 1 dB .
Tone controls: TREBLE ± 12 to -12 dB at $10 \mathrm{KHz}: B A S S+12$ to -12 dB at 100 Hz . Front panel: brushed aluminium with black knobs and controls.
Size: $66 \times 40 \times 207 \mathrm{~mm}$.

Having introduced Integrated Circuits to hi-fi constructors with the $1 C .10$, the first time an IC had ever been made available for such purposes, we have followed it with an even more efficient version, the Super IC. 12 , a most exciting advance over our original unit. This needs very few external resistors and capacitors to make an astonishingiy good high fidelity amplifier for use with pick-up F.M. radio or small P.A. set up, etc The free 40 page manual supplied details many The free 40 page manual supplied. detals many other applications which this remarkable
make possible. It is the equivalent of a 22 tran
sistor circuit contained within a 16 lead DIL package. and the finned heat sink is sufficient for package. and the finned heat Sink is sufficient for all requirements. The Super IC. 12 is compatibie with Project 60 modules which would be used
with the $Z .50$ and $Z .30$ amplifiers. Complete with free manual and printed circuit board.

SPECIFICATIONS

Output power: 6 watts RMS continuous (12 watts peak). $6-8 \Omega$. Frequency Response: 5 Hz to $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$. Total Harmonic Distortion: Less than 1%. (Typical 0.1%) at all output Less than 1%. (Typica 0.1%) at all output powers and frequencies in the audio band (28 V).
Load Impedance: 3 to 15 ohms. Input Im Load Impedance: 3 to 15 ohms. Input Im=
pedance: 250 Kohms nominal. Power Gain: pedance: 250 Kohms nominal. Power Gain:
90dB (1.000.000.000 times) after feedback. Supply Voltage: 6 to 28 V . Quiescent current: 8 mA at 28 V . Size: $22 \times .45 \times 28 \mathrm{~mm}$ including pins and heat sink.
Manual available separately $15 p$ post free.
With FREE printed circuit board and 40 page manual.
£2.98 Post free

Project 605
 The easy way to buy and build

 Project 60
 Project 605 is one pack containing: one PZ5. two Z30's, one Stereo 60 and one Masterlink This new module contains all the input sockets and output components needed together with all necessary leads cut to length and fitted with nea little clips to plug straight on to the moduies. Thus allisoldering and hunting for the odd part is liminated You will be able to add further Projec 60 modules as they become available adapted to the Project 605 method of connecting.
 Complete Project 605 pack with
 comprehensive manual, post free
 £29.95
 Everything you need to assemble a superb 30 watt high fidelity stereo amplifier without having to solder.

Sinclair Radionics Ltd, London Road, St. Ives, Huntingdonshire PE17 4HJ. Tel: St. Ives 64311

the world's most advanced high fidelity modules

Z.30 \& Z.50 power amplifiers

The $Z .30$ and $Z .50$ are of advanced design using silicon epitaxial planar transistors to provide unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at $15 \mathrm{w}(8 \Omega)$ and all lower outputs. Whether you use $Z .30$ or $Z .50$ amplifiers in your Project 60 system will depend on personal preference, but they are the same size and are intended for use principally with other units in the Project 60 range. Their performance and design are such, however, that $Z .50$ s and $Z, 30$ may be used in a far wider range of applications.
SPECIFICATIONS (2.50 units are interchangeable with Z. 30 s in all applications).- Power Outputs : Z. 3015 watts R.M.S. into 8 ohms using 35 volts: 20 watts R.M.S. into 3 ohms using 30 volts.
Z. 6040 watts R.M.S. into 3 ohms using 40 volts: 30 watts R.M.S. into 8 ohms using 50 volts.

Frequency response : 30 to $300.000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$. Distortion: 0.02% into 8 ohms . Signal to noise ratio: better than 70 dB unweighted, Input sensitivity: 250 mV into 100 Kohms (for 15 w into 8Ω). For speakers from 3 to 15
 ohms impedance. Size: $14 \times 80 \times 57 \mathrm{~mm}$.

Project 60 Stereo F.M. Tuner

The phase lock loop principle was used for receiving signals fiom space craft because of its vastiy improved signal to noise ratio. Now. Sinclair have applied the principle to an F.M. tuner with fantastically good results. Other advanced features include varicap diode tuning, printed circuit coils, an I.C. in the specially designed stero decoder and switchable squelch circuit for silent tuning between stations. In terms of high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically, a panel indicator lighting up as the stereo signal is tuned in. This tuner can also be used to advantage with most other high fidelity systems.
 SPECIFICATIONS—Number of transistors: 16 plus 20 in IC. Tuning range : 87.5 to 108 MHz . Sensitivity: $7 \mu \vee$ for lock-in over full deviation. Squelch level: Typically $20 \mu \mathrm{~V}$. Signal to noise ratio: $>65 \mathrm{~dB}$. Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{KHz}$ ($\pm 1 \mathrm{~dB}$). Total harmonic distortion: 0.15% for 30% modulation Stereo decoder operating level: $2 \mu \mathrm{~V}$. Cross talk: 40 dB . Output voltage: $2 \times 150 \mathrm{mV}$ R.M.S maximum Operating voltage: 25-30VDC. Indicators: Stereo on; tuning. Size : $93 \times 40 \times 207 \mathrm{~mm}$

A.F.U. High \& Low Pass Filter Unit

Built, tested and guaranteed.
$£ 5.98$
For use between Stereo 60 unit and two $Z .30$ s or $Z .50$ s. The unit is very easily mounted and is unique in that the cut-off frequencies are continuously variable. As attenuation in the rejected band is rapid ($12 \mathrm{~dB} /$ octave), there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The A.F.U is suitable for use with any other amplifier system There are two filter sections - rumble (high pass) and scratch (low pass). H.F. cut-off (-3dB) variable from 28 KHz to 5 KHz . L.F. cut-off (-3 dB) variable from 25 Hz to 100 Hz . Distortion at 1 KHz (35 V . supply) 0.02% at rated output. Operating voltage from 15 to 35 V . Current 3 mA . Size: $66 \times 40 \times 90 \mathrm{~mm}$.

Power Supply Units

Designed specifically for use with the Project 60 system of your choice. Use PZ.5 for normal Z.30 assemblies and PZ. 6 or PZ. 8 where a stabilised supply is essential.
Typical Project 60 applications

System	The Units to use	together with	Units cost
Simple battery record player	2.30	Crystal P.U., 12 V battery volume control, etc.	£4.48
Mains powered record player	Z.30, PZ. 5	Crystal or ceramic P.U. volume control, etc.	£9.45
12W. RMS continuous sine wave stereo amp. for average needs	$\begin{aligned} & 2 \times Z .30 \mathrm{~s}, \text { Stereo } \\ & 60 ; \text { PZ.5 } \end{aligned}$	Crystal, ceramic or mag P.U.. F.M. Tuner, etc.	£23.90
25 W . RMS continuous sine wave stereo amp. using low efficiency (high performance) speakers	$\begin{aligned} & 2 \times 2.30 \mathrm{~s}, \text { Stereo } \\ & 60 ; \text { PZ. } 6 \end{aligned}$	High quality ceramic or magnetic P.U.. F.M. Tuner. Tape Deck, etc.	¢26.90
80W. (3 ohms) RMS continuous sine wave de Iuxe stereo amplifier. (60W . RMS into 8 ohms)	2×2.50 s, Stereo 60; PZ.8, mains transformer	As above	£34.88
Indoor P.A.	Z.50, PZ.8, mains transformer	Mic., guitar, speakers, etc. controls	£19.43
F.M. Stereo Tuner (£25) \& A.F.U. (£5.98) may be added as required.			

P2.5 30 volis unstabilised $£ 4.98$ PZ. 635 volts stabilised $£ 7.98$ PZ. 845 volts stabilised P2. 845 volts stabllised
(less mains transformer (less mains transformer
PZ.8 mains transformer
$£ 7.98$
$£ 5.98$ £5.98

Guarantee

If, within 3 months of purchasing any product direct from Sinclair Radionics Ltd., you are dissatisfied with it, you money will be refunded at once. Many Sinclair appointed Stockists also offer this same guarantee in co-operation with Sinclair Radionics Ltd.
Each Project 60 module is tested before leaving our factory and is guaranteed to work perfectly. Should any defect arise and is guaranteed to work perfectly. Should any defect aris In normal use we will service it at once and without any charge to you. It it is returned within two years from the date
of purchase. Outside this period of guarantee a small charge of purchase. Outside this period of guarantee a small charge
(typically $£ 1.00$) will be made. No charge is made for postage by surface mail. Air Mail is charged at cost.

Please send 1enclose cash/cheque/money order. Name

Address
WW273

CLANSMAN

ALDID EQUIPMENT BY SGBROWN COMMUNICATIONS

Clansman Headset for radio manpacks

Introducing the range of CLANSMAN headsets, microphones and ancillary audio equipment. Headset for radio manpacks•Respirator microphone. Single sided headset-Clansman Audio Equipment Test Set
Send for literature to:
R/ACA/L
The Electronics Group
E E BOMN COMMUNICATIDNE LTD.
King George's Avenue Watford Hertfordshire England
Telephone: Watford 23301 Telex: 23412 Telegrams: Radiolink Watford.

LOW COST BRIDGE RECTIFIERS

DCoutput		Type Nos.
Amps	Volts	
10 when mounted	$\begin{array}{r} 60 \\ 125 \\ 250 \\ 375 \end{array}$	PM7A1 PM7A2 PM7A4 PM7A6
15 when mounted	$\begin{array}{r} 60 \\ 125 \\ 250 \\ 375 \end{array}$	PM7A1Q PM7A20 PM7A4O PM7A60

AMP tags electrically isolated from mounting bracket. Mount them on a chassis, the equipment box, transformer housing etc.
avalable ATE
EXSTOCK ETMMPMTITTIR AEI Semiconductors Limited GEmINNDHIIG Carholme Road Lincoln WW- 074 FOR FURTHER DETAILS

SHEARER SHETAL FOLDMGG MACHNES

$36^{*} \times 18$ gauge capacity................ . $\mathbf{\$ 3 5} .00$ $24^{\prime \prime} \times 16$ gauge capacity. 632.00 Carriage Free
Also the well-known vice models of
36×18 gauge capacity
$24^{*} \times 18$ gauge capacity
$£ 17.00$
$18^{\prime \prime} \times 16$ gauge capacity................. $£ 12.00$
Carriage Free

Forms channels and angles down to 45 degrees which can be flattened to give safe edge. Depth of fold according to height of bench.

One year's guarantee. Money back if not satisfied.

Send for details:
A. B. PARKER

FOLDING MACHINE WORKS, UPPER GEORGE STREET, HECKMONDWIKE, YORKS

Telephone 3997

Stereo radio from your existing tuner.
 A complete set of parts

 from Jermyn to build a stereo decoder module that will convert your existing mono tuner for stereo reception whilst maintaining a high standard of reproduction.

The distortion is very low (typically 0.3% at 560 mV RMS composite input signal) with 40 dB channel separation.

The stereo switching is automatic and there is a light emitting diode which acts as a stereo beacon

The kit requires no coil and there are no alignment problems.
Fitting. The module requires a 10-16 volt power supply which can normally be tapped off the existing tuner. The signal input is taken off before the de-emphasis circuit which in practice means disconnecting one, or at the most, two capacitors. Any radio engineer will be able to spot these capacitors, but if you're really stuck send the circuit with a SAE to us and one of our engineers will indicate the output point. (This is the full extent of our involvement, no hardware please).

Of course, if you have a modern mono tuner with a multiplex output our module simply plugs in.

The outputs go via a screened twin cable to the tuner inputs of your stereo amplifier.
And the cost? $£ 4.90$ for the Kit' with 100% tested integrated circuit.
Alsotavailableiassembled and aligned, checked and ready for use at $£ 6.90$ (includes 12 month guarantee). Beat that!
To Jérmyn Īndustries - please rush mē $\bar{\square} \overline{\mathrm{Kit}}(\overline{\mathrm{s})}$, $\bar{\square}$ made up $\overline{\mathrm{St}}$-ereo decoders 28 Vestry Estate I enclose cheque/postal order for $£$
Sevenoaks
Kent
Name
Block Capitals Please
WW-078 FOR FURTHER DETAILS

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:
HARRIS ELECTRONICS
(London)

138 GRAYS INN ROAD, W.C. 1
Phone: 01/837/7937

列
TRANSISTORS
\& DIODES
2N457
2N15....
$.75 p$
$50 p$

BRIDGERECTIFIERS
$95 p$
$\begin{array}{ll}\text { 2N457 } & \text { 1B4OKO5 50v 4a } \\ \text { 2N1545 } & \text { R }\end{array}$
2N1547.

GEX 541B1P2

f6. 88
GEX541B1P1 $£ 3.50$
GEX541D2P1 £3.50
GEX541NB1PIF £6.00
GEX541HP3F $\quad £ 6.00$
SX751N1B1P1F E6.00
SWITCHES
Edwards High Vacuum "Speedivac" model VSK1B. ranae $25-760$ torr contact ratings 250 v 5 a. volume $4.2 \mathrm{~cm}^{3}$ max working pressure $15 \mathrm{lb} / \mathrm{in}^{2}$ gauge net weight 17 ozs 6.2 Belling Delay hand reset L415. £6.20
f 1.10 Stackpole min. rocker 125 v 10 a . 250v 5a. ... 20p
 .60 p Securex 5000 press button 250 v ac $£ 1.20$

TELEPRINTERS

Creed model $75-5$ w Mk 3a \& 4 new unused
complete with connectors handbook and wiring diagram
£ 35.00 cárr. £ 1.00

TRIACS \& DIACS

40842450 v 6 a .
£ 1.05
Trigger circuit for above Diac 40583
BTW16-100 100V 10a.............00
INTEGRATED CIRCUITS
MC3544
f 1.10
MC353G
f 2.00
MC358AG
$f 5.00$
MC365G
CA3020
CA302 1
CA3055 93p

CD4035A
f1.15
CD4035AE
£ 1.91

THYRISTORS

VARIACS

Zenith Duratrak Type V6M Inp. 135v \& 115 v Outp. 135v at 6a£6.00 Zenith opentype Inp. 220 v Outp. O-253v at 0.5 a 50 Philips ing. 220 V Outp. $0-270 \mathrm{v}$ at
23 a
E 25.00 carr £ 1.00
£15.00 carr. $35 p$
£27.00 carr. 50 p ICT Numerical Type 81 CR7811-69 PERIPHERALS
Data Recording Magnetic Tape Handler Type VI 7 Track $\frac{1}{2}$ " complete with Read/ Write Heads suitable as replacement and spares for most ICL Computer Systems ICL System 4 - Line Printer 4555. RCA Tape Handlers $4 / 50$ \& $70 / 445-2$, RCA Type 150780 column Card Reader Plessey RAB/3 'M' (003) 32 K word 25 Bit 2 Microsecond Memory System. Teletype Corp. Hi Speed tape punch (BRPE) P.O.A.

CAPACITORS

Daly Electrolytic 9000 uf 40v 50p: Daly Electrolvtic 10.000 uf 70 v 50 p ; Dubilier Metallised Paper Type 426 100uf 150v DC 50p: R.IC type $12971.8 u f 440 \mathrm{v}$ AC 35p.

MOTORS

Crompton Parkinson 240 v 1 ph 50 c 0.125 hp 1400 rpm
$£ 5.00$ carr. 67p
CeC tran Parkinson 240 v ph 50 c 0.125 hp 1400 rpm
$£ 3.50$ carr. 67 p E.E. $\frac{1}{2}$ hp 230 v 50 c 1 ph 50 c .1440 rpm
$£ 10.00$ carr $£ 1.00$

FANS, CENTRIFUGALBLOWERS

\& STARTERS
Woods Aerofoil short casing type " S ' $2700 \mathrm{rpm} 220 / 250 \mathrm{v} 1 \mathrm{ph} 50 \mathrm{c} 6^{\prime \prime}$ plastic impeller incl. p.p. $£ 11.50$
Airmax Type M1/Y3954 (3 blades) Cast Aluminium alloy impeller \& casing (corresponds to current type $39657 \frac{1}{2}^{\prime \prime}$) 230 v 10h 50c 2900rpm Class "A" insulation 425 cfm free air weight $9 \frac{1}{2} \mathrm{lbs}$. incl. p.p. £21.00.
Woods Aerofoil Code 7.5 280K 200/250v 1.0a $9 \mathrm{ph} 50 \mathrm{c} 2700 \mathrm{rpm} 7 \frac{1}{2}$
impeller 14 blades incl. p.p. £13.50.
Service Electric Hi-Velocity Fans, suitable for Gas combustion Systems. Steam exhausting. Pneumatic conveying. Cooling Electronic equipment. Air blast for Oil burners. Secomak Model 365 (corresponds to 575) Airblast Fan. 440 v 3 ph 50 c 0.75 hp 2850 rpm . continuous 160 cfm 12 in w.g. nett weight 44 lbs price incl. carr. £41.00. Secomak model $350250 \mathrm{v} 1 \mathrm{ph} 50 \mathrm{c} 0.166 \mathrm{hp}, 2800 \mathrm{rpm}$ continuous 50 cfm 2 in . w.g. net weight 34lbs, price incl. carr £26.00
Air Controls type VBL4 200/250v 1ph 50c. 110cfm free air weight $7 \frac{1}{2}$ bss. priceincl. p.p. $£ 14.50$.

Alan West Direct-On SCF Starters 240v 1 ph 50 c ho. $0.5 \& 025$, new. unused $£ 5.75$ p.p. 29 p.
Where p.p. not advised add 10 p per $£$ handling \& post (in UK). Cash with order. Personal callers weicome. Open Mon.-Wed. 9.30-5.30 Fri.-Sat. 9. 30-6.00 Free Car Park adjacent

FM TUNER
 NELSON-JONES

Approved parte for this outetanding design (W.W. Appll 1971/2), Featuring $0.75 \quad u V$ eeneltivity. Moefet front end.

THOUSANDS NOW IN USE
Ceramic I,f, strip. Triple gang tuning, iV r.m.e.
output level, eultable for phaes locked decoder, as below. Deelgner'e own P.C.E.

FURTHER PRICE REDUCTIONE

Baelc Tunep Parto with Screening Box.
NOW LESS THAN £19.50. Please eend S.A.E. Hete.
NEW ALIGNMENT SERVICE
Detalle on pequent.

SOLID STATE TUNING INDICATOR

(W.W. Aprll '72). Tuning is Indleated by the balance of two llght emitting diodes. The kl
 lamp-eae decoder).

DIAL CHASEIS KIT
Now avallable-Includes all dial drive components, dial plate, decoder mounting bracket tuning scales, decoder-tuner tagstrips, etc., 4-way $2 / 3$ pole rotary switch and Instruction booklet Price E2. 15 plus P. \& P. 17 p (Note: may be purchased wlthout dial drlve components.)
PHASE-LOCKED STEREO DECODER KIT
Now with free LED "stereo on" light-complementing thls, superb decoder (W.W. Sept. '70). Complete kit ONLY \&7.88, P. \& P. 18p.

NEW IC Stabllsed PSU. S/C, overload protected, low rlpple. $£ \mathbf{3} \mathbf{5 5}$. P. \& P. 19 p .

LIGHT EMITTING DIODES (Red)

Improved efficlency type, mech. Identlcal to HP LED, pand or PCB mounting with free mounting clip-clear or black-please atate. Order LEDiA. Please add postage. Monsanto minlature PCB mounting with radial leads.
Order LED2. Plesare add postage.
NOW ONLY 35p each with connection deta
7 SEGMENT LED Displays. Lowest cost.
0.325^{n} characters with RH dec. point
ONLY E2.48 ath

AERIALS-3 ELEMENT VHF/FM (Outdoor)
A good aerlal le eseential for optimum Stereo Rado reception. ONLY E2.60. P. \& P. 40p.
Coax 5p/metre. (Maste and Fixing kits available).

ELECTRONIC CALCULATORS

Both of our Pocket slze calculators feature:-
MOS LSI Calculating Chip with 8 DIgit Led Display, Overflow and Neqative Number Indicators. Leading Zero Suppression.
Full 4 Function-wlit perform Addition, Subtraction, Multiplication and Divialon Including Chain or Mlxed Multipilication or Division well as true credlt balance.

RAPIDMAN 800. Calculates in 10 digite and displays to two decimal placen, Carrying case c1.45. Malns adaptor E.2. Size $5.4 \mathrm{in} . \times 3.1 \mathrm{In} . \times 0.9 \mathrm{in}$. Weight: 702 s. PRICE on application

MODEL BCB0s. Calculates in 12 diglts. Declmal polnt may be elther 2, 4 , of 6 places or Fully Floailng, Last entry cancel. In addition there is a CONSTANT KEY for Input converslon, E59. OUR PRICE E46.00. P. \&P. 25 p . Malna adaptor $\mathbf{~ 4 . 5 0}$

All calcuiators are fully guaranteed and complete with batteries

Transducer and Recorder amplifiers and systems

reliable high performance \& practical controls individually powered modules-mains or dc option single cases and up to 17 modules in standard 19" crates small size-low weight —realistic prices.

ELECTRONIC LABORATORIES LIMITED
16 Oakham Court Preston PR1 3XP Telephone 077257560

Audio Connectors

Broadcast pattern jackfields, jackcords, plugs and jacks
Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut
Hirschmann Banana plugs and test probes XLR compatible in-line attenuators and reversers
Low cost slide: ıaders by Ruf
Future Film Developments Ltd.
90 Wardour Street.
London WIV 3LE
01-437 1892/3
WW- 083 FOR FURTHER IELAILS

J E S AUDIO INSTRUMENTATION

Illustrated the Si 452 Distortion Measuring Unit -low cost distortion measurement down to .01\%
$\mathbf{£ 3 0 . 0 0}$
£40.00

Si451	$\mathbf{£ 3 5 . 0 0}$.453	$£ 40.00$
Comprehensive	Millivaltméter	Low distortion Oscillator	
$\mathbf{3 5 0} \boldsymbol{\mu}$ Volts	20 range	sine	Square RIAA

J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (09762) 2501

CARR STREET, CLECKHEATON, YORKSHIRE.

Do you count with us?-These people do ... g.p.O., DECCA. SHELL, GOVERNMENT DEPARTMENTS, CRYSTAL MANUFACTURERS, UNIVERSITIES, TECHNICAL COLLEGES, DISCERNING CLIENTS AND MANY OTHERS THROUGHOUT THE WORLD

- to within 1 cycle in 5 million

WW- 085 FOR FURTHER DETALLS

Contil Mod 3 cases come in six sizes and offer the manufactures of small instruments an artractive low cost case available ax stock Made in blue PVC coated steel, hese casss
otter strength and rigitivy end come other strength and nigitity end come.
complete with front and rear panals. PCB and PSU mounting systems are also avail able.

West hyde developments lito ryefield chescent. ndrthwodo hills, middx hag inn

WW- 086 FOR FURTHER DETAILS

aluminium front and rear paneis.
The design of these cases pesmits the instrument tobe
built up or serviced without the axternal. Price includas all stainless steel assembly screws, rubber Yeet and one or two chassis according to size.
Delivery ex stock: wood grain finish: types D. G, E, H

WEST HYDE W(1)

WEST HYDE DEVELOPMENTS LIMITED, RYEFIELD CRESCENT, NORTHWOOD HILS, NORTHWGOD, MIDDX, HA6 INN
Telaphone: Northwood $24941 / 26732$.
Telex: 92323

BENTLEY ACOUSTIC CORPORATION LTD.
 7A GLOUCESTER ROAD, LITTLEHAMPTON, SUSSEX. TeI. 6743 the valve specialists

\qquad

 0.38
0.23
0.45
 0.38
0.38
0.38
 an goods are unused and aubject to the manuiacturers' guarantee. Ve do not handle manuand unreliable life. Busiiness hours Mor. Fri. 9-5.30 p.m.
orms of business. Cash or cheque with order. Post/packing 3 p per item, subject to a minimum
of 9 p per order. Orders over \&5 sent free. All orders cleared amme day by frst claea mail.

DESIGNER APPROVED KIT

by POWERTRAN ELECTRONICS
Details on request

The only approved kit for design published in HI-FI NEWS Nov. 1972 - Feb. 1973

COMPONENTS FOR W.W. AMPLIFIER DESIGNS
I00W AMPLIFIER (FEB. 1972)
Designer approved kit.
Semiconductor set
Resistors. capacitors, pots
F/Glass PCB
POWER SUPPLY (For 100W Amp.)
Designer approved kit.
Semiconductors, Resistors, capacitors, pots, transformers, F/Glass PCB 4.70

30W BLOMLEY (New approach to class B) Semiconductor set
Resistors, capacitors, pots
30W BAILEY (Single power rail)
Transistor set
et acitors, pot
F/Glass PCB
LINSLEY-HOOD CLASS A (Dec., 1970, circuit)
Designer approved kit
2N3055 pair, BC212L, 2N171।
Resistors, capacitors, pot
F/Glass PCB

LINSLEY-HOOD 20W CLASS AB
M/481/491, MJE521, BC182L, BC212L, zener
Resistors, capacitors, pots
F/Glass PCB
F/Glass PCB
Please state 8Ω or 5Ω
REGULATED 60 V PO
REGULATED 60V POWER SUPPLY
A 5 transistor series stabiliser, suitable for a pair of
Bailey or Blomley amplifiers featuring yery
Sailey or protection. All Semi/C's, R's, C's, F/Glass PCB
P/C proters Pupplies for other amplifiers also available BAILEY/BURROWS PRE-AMP (Aug., 1971)
Component Set: Mono
Component set: Stereo
Each component set comprises of all specified resistors
capacitors, transistors pots, including special balance
control for stereo sets.
STEUART TAPE RECORDER
Set of stereo f/glass PCBs
Components sets on price ist.

METALWORK SYSTEM

Designed to house Bailey, Blomley or Linsley Hood Class $A B$ amplifiers with simple or regulated power supplies and Bailey Burrows pre-amp. Options of standard or hum reducing toroidal mains transformer.

TOROIDAL TRANSFORMER 60 volt 2 amp .
Max. height 2 in . Suitable for our regulated
power supply
Simple clamp
Magnetically screening clamp
67.40
0.75

MTITYTEXASINSTRUMENTSDESIGNED \& APPROVED FULL KIT
 $£ 28-50$ includes teak case
 SLIDER POTENTIOMETERS

Single: log or lin $1 \mathrm{~K}, 2 \mathrm{~K} 2,4 \mathrm{K7}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}$ 470K, IM
Dual: \log or lin $1 \mathrm{~K}, 2 \mathrm{~K} 2,4 \mathrm{~K} 7,10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}$, 470K, IM
Balance: special dual track IOK..
Black/Chrome knob: type A or B
For FREE I//ustrated List please write to:
22 The Pantiles, Bexleyheath, Kent UK PoSt free

OVERSEAS AT COST
MAIL ORDER ONLY

SEMICONDUCTORS

2N699	0.25	BCI84L	0.11
$2 \mathrm{~N} / 613$	0.20	BC212L	0.12
2N1711	0.25	BC2/4L	0.14
2N2926G	0.10	BCY72	0.13
2N3053	0.15	BF257	0.40
2N3055	0.45	BF259	0.47
2N3442	1.20	BFR 39	0.25
2N3702	0.11	BFR79	0.25
2N3703	0.10	BFY50	0.20
2N3704	0.10	BFY51	0.20
2N3705	0.10	BFY52	0.20
2N3706	0.09	MJ481 MJ49	1.20 1.30
2N3707	0.10	MJE521	0.60
2N3708	0.07	MPSA05	0.30
2N3709	0.09	MPSA12	0.55
2N3710	0.09	MPSA14	0.35
2N3711	0.09	MPSA55	0.35 0.35
2N3819	0.23	MPSA65	0.35 0.40
2N3904	0.17	MPSU05	0.60
2N3906	0.20	MPSU55	0.70
2N4058	0.12	SN72741P	0.58
2N4062	0.11	SN72748P	0.58
2N4302	0.60	THBII	1.10 0.50
2N5087	0.42	TIP30A	0.60
2N5210	0.54	TIP31A	0.60
2N5457	0.30	TIP32A	0.70
2N5830	0.30	TIP33A	1.00
40361	0.40	TIP34A	1.50
40362	0.45	TIP41A	0.74 0.90
BC107	0.08	TIP42A	0.90 0.60
BCIO8	0.08	I B08T20	0.50
BC109	0.08	1840K20	1.40
BC125	0.15	IN914	0.07
BC126	0.15	IN916	0.07
BCI 82 K	0.10	1544	0.05 0.10
BC2I2K	0.12	\| 53062	0.25
BCI82L	0.10	5805	1.20

Increase efficiency of Office, Shop and Workshop with this DELUXE TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. Just moisten the suction pad and stick it to one side of the telephone. A useful office aid. On/Off switch. Volume control. Operates on one 9 v battery. Size 3in. $x 4 \mathrm{in}$. Ready to operate. Add $14 p$ extra for battery. $P \& P 22 p$.

This NEW, versatile De Luxe 4Station Transistorieed Intercom wall Master and 3 Subs) for desk or munication problems instantly. Effective range 300 ft . Call/talk $/ \mathrm{listen}$ from Master to Subs and Subs to Master. With Selector switch. Ideally suitable for office, shop, home or surgery. three 68 ft . connecting wires and accessories. On/Off switch volume control. P. \& P. 40p.

MICROPHONES PRESSURE UNITS And a wide range of associated eqpt. Further information from

VITA VOX LTD

Westmoreland Road, London NW9 9RJ Telephone: 01-204 4234

TELEPRINTER EQUIPMENT LIMITED
 Sales . . . Rentals . . . New . . . Refurbished . . . Installation . . .

Maintenance . . . Overhauls . . . Spare Parts . . . Prompt Deliveries
TELEPRINTERS Models 7B, 54, 75, 444

CREED EQUIPMENT

TELETYPE CORP.
EQUIPMENT
SIEMENS EQUIPMENT OTHER
EQUIPMENT

SPECIAL EQUIPMENT

PERFORATORS 7PN, 85/86, PR75, 25
TAPE READERS 6S4, 6 S5, 6S6, 6 S6M, $92,35,71,72,74$ HIGH-SPEED TAPE WINDERS 80-0-80V POWER SUPPLY UNITS, etc.

TELEPRINTERS $15,19,20,28,32,33,35$
all configurations
PERFORATORS $14,19,28$ LPR, RECEIVE \& MONITOR GROUP CABINETS TAPE TRANSMITTERS $14,20,28$ LBXD \& LXD TRANSMIT GROUPS, etc.
TELEPRINTERS T100 and T-68 in various configurations PERFORATORS T-LOCH 12, T-LOCH 15, A, B, D \& F, etc.
KLEINSCHMIDT, OLIVETTI, LORENZ, COCQUELET, BRITISH, AMERICAN, CONTINENTAL, ARABIC and other layouts, 5-8 track.
SOLID STATE MOTOR CONTROLS, MODEM INTERFACE UNITS, TARRIFF J INTERFACE UNITS, TEST EQUIPMENT, COMPUTER INTERFACE UNITS, DEC. PDP8 and others. SILENCE COVERS AND CABINETS, TELEPRINTER TABLES, SIGNALLING RECTIFIERS AND CONVERTORS, TAPE HOLDERS.

COMMUNICATION ACCESSORIES \& EQUIPMENT LIMITED
 G.P.O. TYPE COMPONENTS FOR PROMPT DELIVERY

JACK PLUGS-201, 310, 316, 309, 404, 420, 609, 610, 1603 - 3201
JACK STRIPS-310, 320, 510, 520, 810
JACK SOCKETS-300,500, 800, B3 and B6 mountings, 19, 84A and 95A
PATCH PANELS \& RACKS-made to specifications
LAMPS, SWITCHBOARD NO. 2, BALLAST PO 11, LAMP STRIPS, 10-way PO 19, 20 -way PO 17, Lamp Caps, Holder No. 12
CORDS (PATCHING \& SWITCHBOARD)—made to specifications
TERMINAL BLOCKS (DISTRIBUTION) - 20 -way up to 250 -way
LOW PASS FILTERS-type 4B and PANELS, TELEGRAPH 71 ($15 \times 4 \mathrm{~B}$)
POLARISED TELEGRAPH RELAYS AND UNISELECTORS—various types and manufactures both P.O. and miniature
LINE TRANSFORMERS/RETARDATION COILS-type $48 \mathrm{~A}, 48 \mathrm{H}, 49 \mathrm{H}, 149 \mathrm{H}, 3 / 16,3 / 216,3 / 48 \mathrm{~A}, 3 / 43 \mathrm{~A}, 48 \mathrm{~J}$, etc. FUSE \& PROTECTOR MOUNTINGS-8064 A/B 4028, H15B, H40 and individual $1 / \frac{2}{2}$
COILS-39A, 40A, 40E, etc.
P.O.-TYPE KEYS-1000 and PLUNGER TYPES 228, 279, etc.

EQUIPMENT RACKS AND CONSOLES-made to specifications
RELAY ADJUSTING TOOLS, TOOL BAGS FOR MECHANICS, TENSION GAUGES, ARMATURE ADJUSTERS, SPRING BENDERS ETC, VARIOUS SWITCHBOARD EQUIPMENT.

MORSE EQUIPMENT LIMITED

The GNT Range of Automatic Morse Equipment is now manufactured in the U.K. and comprises complete equipment for Morse Training Schools and for Automatic Morse Transmission. Models available include:

$$
\begin{aligned}
& \text { KEYBOARD PERFORATORS for offline tape preparation } \\
& \text { AUTOMATIC TAPE TRANSMITTERS with speeds up to } 250 \text { w.p.m. } \\
& \text { MORSEINKERS specially designed for training, producing dots and dashes on tape } \\
& \text { HEAVY DUTY MORSE KEYS } \\
& \text { UNDULATORS for automatic record and W/T signals up to } 300 \text { w.p.m. } \\
& \text { CODE CONVERTERS converting from } 5 \text {-unit tape to Morse and vice versa } \\
& \text { MORSE REPERFORATORS operating up to } 200 \text { w.p.m. } \\
& \text { TONE GENERATORS and all Students' requirements } \\
& \text { CREED, MORSE EQUIPMENT, PERFORATORS, REPERFORATORS, TRANS- } \\
& \text { MITTERS, PRINTERS, MARCONI UG6 UNDULATORS, BUZZERS, ALDIS } \\
& \text { LAMPS, etc. }
\end{aligned}
$$

77 AKEMAN STREET, TRING, HERTS., U.K.

Telephone: Tring 3476/8, STD: 0442-82 Telex 82362, Answerback: Batelcom Tring

R.S.T. VALVE MAIL ORDER CO. . Blackwood Hall, 16 A Wellfield Road, R.S.T.

\begin{tabular}{|c|}
\hline VALY \& ES \& \& \& EF988 \& 0.75
0.30 \& \begin{tabular}{ll}
ERB0 \& 0.87 \\
E781 \& 0.29 \\
\& 0.25
\end{tabular} \& \(\begin{array}{ll}\text { OA2 } \& 0.38 \\ \text { OB2 } \& 0.35\end{array}\) \& PD500 1.30
PEN45DD \& \begin{tabular}{ll}
P182 \& 0.35 \\
PY83 \& 0.38
\end{tabular} \& UCH 420.70 \& \(1 / \mathrm{T}\)
384 \& 0.30
0.35 \& \({ }_{6}^{6 B \mathrm{BR}} \mathbf{6} 6\) \& 0.80
0.85 \& 6U5G \& \& \begin{tabular}{ll}
12 BH 7 \& 0.45 \\
\\
\\
\hline 0 Cl 5 \& 0.80
\end{tabular} \& \& \\
\hline \& \& DY802 0.35 \& \({ }_{\text {ECHE }}\) \& EF184 \& 0.35 \& \begin{tabular}{ll}
E781 \\
EZ90 \& 0.29 \\
\hline
\end{tabular} \& \(\begin{array}{ll}\text { OB2 } \& 0.35 \\ \mathrm{OZ4} \& 0.40\end{array}\) \& \[
0 D
\] \& \& UCH81 0.40 \& \({ }^{384}\) 3V4 \& \[
\begin{aligned}
\& 0.35 \\
\& 0.48
\end{aligned}
\] \& \begin{tabular}{l}
6BW6 \\
6 BW 7
\end{tabular} \& 0.85
0.80 \& \({ }_{6 \times 4}^{6064}\) \& 0.40
0.35 \& \(\begin{array}{ll}30 \mathrm{Cl15} \& 0.80 \\ 30 \mathrm{Cl7} \& 0.90\end{array}\) \& 807
6080 \& \\
\hline \({ }_{\text {A } 241}\) \& 0.60 \& EABC80 \& ECH81 0.30 \& EH90 \& 0.40 \& FW \(4 / 500\) \& PC86 0.60 \& PFL2000.65 \& \(\begin{array}{lll}\text { PY800 } \& 0.40\end{array}\) \& UCL82 0.35 \& 5R4GY \& 0.75 \& 6 C 4 \& 0.33 \& 6X50T \& 0.40 \& \begin{tabular}{lll}
30 Cl \\
\hline
\end{tabular}\(\quad 0.80\) \& 6148 \& 1.60 \\
\hline CBL31 \& 1.00 \& 0.35 \& ECE83 0.45 \& EL33 \& 1.75 \& 0.75 \& PC88 0.80 \& PL36 0.55 \& PY801 0.50 \& UCL83 0.60 \& 5U4G \& 0.35 \& 6CD6G \& 1.25 \& 786 \& 0.70 \& \(30 \mathrm{Fs} \quad 0.85\) \& TUB \& Es \\
\hline CL33 \& 1.30 \& EAF42 0.55 \& ECE84 0.45 \& EL34 \& 0.50 \& GY501 0.80 \& PC900 0.48 \& PL38 \(2 \cdot 25\) \& SP41 3.00 \& UF41 0 \& 5V4a \& 0.45 \& 6CE6 \& 0.60 \& 7B7 \& 0.50 \& 30 FL 10.75 \& 1 CP 31 \& \\
\hline CY31 \& 0.43 \& EAF8010.50 \& ECL 800.45 \& EL37 \& 2.05 \& GZ30 0.40 \& PCC84 0.40 \& PLs1 0.50 \& \(\begin{array}{lll}\text { SP61 } \& 0.76\end{array}\) \& UF89 0 0.40 \& 5Y3GT \& 0.40 \& \({ }^{655}\) \& 100 \& 7 C 5 \& 1.13 \& 30 FLl 40.85 \& \({ }^{2 A P 1}\) \& 4.00 \\
\hline Daf91 \& \(0 \cdot 30\) \& EBC33 0.50 \& ECL82 0.35 \& EL41 \& 0.60 \& GZ32 0.48 \& PCC89 0.50 \& PL82 0.45 \& T4l 1.00 \& UL41 0.65 \& 524G \& 0.40 \& \(6 \mathrm{~F}^{2} 2\) \& 0.85 \& \(7 \mathrm{C6}\) \& 0.75 \& \(30 \mathrm{L15} 0.85\) \& \({ }^{3 B P 1}\) \& - \\
\hline DAF96 \& 0.45 \& EBC41 0.65 \& ECL86 0.40 \& EL42 \& 0.85 \& QZ34 0.60 \& PCC189 0.55 \& PL83 0.45 \& U25 \(\quad 0.80\) \& UL84 0.40 \& 6/30L2 \& 0.80 \& 6J5CT \& 0.30 \& \(7 \mathrm{H7}\) \& 0.50 \& \(30 \mathrm{L17} \quad 0.80\) \& 3DP1 \& 2.50 \\
\hline DCC90 \& 1.35 \& EBC81 0.30 \& ECLL800 \& EL84 \& 0.25 \& E63 0.90 \& PCF80 0.30 \& PL84 0.40 \& U26 0.80 \& \(\begin{array}{ll}\text { UY } 41 \& 0.48\end{array}\) \& 6 AL5 \& 0.20 \& \(6 J 7 \mathrm{GT}\) \& 0.45 \& 787 \& 2.25 \& \(30 \mathrm{P12} 0.80\) \& 3EA1 \& \(3 \cdot 25\) \\
\hline DF91 \& \(0 \cdot 30\) \& EBF80 0-40 \& \({ }^{1.65}\) \& EL91 \& 0.35 \& HL41DD \& PCF88 0.60 \& PL500 0.80 \& U37 \(\quad 2 \cdot 10\) \& UY85 0.40 \& 6AQ5 \& 0.38 \& 6 K 6 GT \& 0.60 \& 7 Y 4 \& 0.85 \& 30 Pl 190.85 \& 3FP7 \& 1.50 \\
\hline DF96 \& 0.45 \& EBF83 0.40 \& EF37A 1.20 \& EL96 \& 0.35 \& 0.88 \& PCF3010.50 \& \({ }^{\text {PLL504 }} 0.80\) \& 41910.75 \& VP4B 1.25 \& 6A87 \& 0.85 \& 6 K 7 GT \& 0.35 \& \(12 \mathrm{AC6}\) \& 0.50 \& \(30 \mathrm{PL1} 0.75\) \& \(3 \mathrm{CP1}\) \& 2.50 \\
\hline DK91 \& 0.40 \& EBF89 0-30 \& EF39 0.60 \& EL360 \& 1.20 \& EN309 1.50 \& PCF 8020.50 \& PL508 0.90 \& U404 \(\quad 0.60\) \& - R75/30 \& 6AT6 \& \(0 \cdot 35\) \& \(6 \mathrm{K8CT}\) \& 0.50 \& 12AD6 \& 0.55 \& \(30 \mathrm{PL13} 0 \cdot 83\) \& 5BP1 \& 4.00 \\
\hline DK92 \& 0.55 \& EBL31 1.50 \& \({ }_{\text {EF4 }}{ }^{\text {E }}\) 0.65 \& ELL80 \& 1.00 \& KT61 1.75 \& PCF805 0.80 \& PL509 1.10 \& \(\mathrm{U}^{4} 801{ }^{1-18}\) \& 0.45 \& \({ }^{64} \mathbf{A} 6\) \& 0.25 \& \({ }^{6 P} 25\) \& 1.78 \& 12AE6 \& 0.55 \& \(30 \mathrm{PL14} 0.90\) \& \({ }^{5 C P 1}\) \& 5.00 \\
\hline DK96 \& 0.50 \& ECC40 1.00 \& EF52 1.25 \& EM80 \& 0.45 \& KT66 2.05 \& PCF806 0.70 \& PL801 0.80 \& UABC80 \& VR105/30 \& 6AV6 \& 0.30 \& 6Q7GT \& 0.43 \& 12AT6 \& 0.30 \& 35L6GT0.50 \& 5FP7 \& 2.00 \\
\hline DL92 \& 0.85 \& ECC81 0.36 \& EF80 0.25 \& EM81 \& 0.60 \& KT81 (7C5) \& PCF8080.85 \& PL802 0.95 \& 0.40 \& 0.38 \& \(6 \mathrm{BA6}\) \& 0.25 \& 6897M \& 0.40 \& 12AT7 \& 0.35 \& 35 W 40.86 \& 885 \& \\
\hline DL94 \& 0.48 \& ECC82 0.30 \& EF85 0.85 \& EM84 \& 0-35 \& 1.13 \& PCL82 0.35 \& PX4 2.50 \& UAF42 0.55 \& VR150/30 \& 6BE6 \& 0.80 \& 68J7GT \& 0.30 \& 12AU6 \& 0.35 \& \({ }^{35 z 3} \quad 0.70\) \& CV429 \& 7-50 \\
\hline DL96 \& 0.45 \& ECC83 0.30 \& EF86 0.30 \& EY51 \& \(0 \cdot 40\) \& KT888 \({ }^{2.00}\) \& PCL83 0.65 \& \(\begin{array}{ll}\text { PX25 } \& 2.50 \\ \text { PY } 22 \& \\ 0\end{array}\) \& UBC41 0.50 \& 0.35 \& 6RH6 \& 0.75 \& 6SL7GT \& T0.35 \& 12AU7 \& \[
0.30
\] \& 35Z4GT0.60 \& CV960 \& \\
\hline DM70 \& 0.45
0.33 \& ECC85 0.40 \& \(\begin{array}{ll}\text { EF89 } \& 0.28 \\ \text { EF91 } \& 0.33\end{array}\) \& EY86 \& \[
\begin{aligned}
\& 0.40 \\
\& 0.50
\end{aligned}
\] \& KTW611.00
KTW621.00 \& \begin{tabular}{l}
\(\begin{array}{ll}\text { PCL84 } \& 0.45\end{array}\) \\
\(\begin{array}{ll}\text { PCL85 } \& 0.40\end{array}\)
\end{tabular} \& \[
\begin{array}{ll}
\text { PY } 32 \& 0.63 \\
\mathrm{PY} 33 \& 0.63
\end{array}
\] \& \begin{tabular}{l}
UBF80 0.40 \\
UBF89 0.35
\end{tabular} \& \[
\begin{array}{ll}
\text { Y63 } \& 1.25 \\
1 R 5 \& 0.40
\end{array}
\] \& 6BJ6 \& 0.50 \& 68 N 7 GT \& \[
0.35
\] \& \[
\begin{aligned}
\& 12 \mathrm{AX} 7 \\
\& 12 \mathrm{BA} 6
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.30 \\
\& 0.40
\end{aligned}
\] \& \[
\begin{aligned}
\& 50 \mathrm{CD} 50^{0.50} \\
\& 50 \mathrm{C}
\end{aligned}
\] \& VCR13 \& \\
\hline \[
\begin{aligned}
\& \text { DY86 } \\
\& \text { DY87 }
\end{aligned}
\] \& 0.33
0.33 \& \(\begin{array}{ll}\text { ECC88 } \& 0.40 \\ \text { ECF80 } \& 0.35\end{array}\) \& \[
\begin{array}{ll}
\text { EF91 } \& 0.33 \\
\text { EF92 } \& 0.35 \\
\hline
\end{array}
\] \& \[
\begin{gathered}
\text { EZ40 } \\
\text { EZ441 }
\end{gathered}
\] \& \[
\begin{aligned}
\& 0.50 \\
\& 0.50
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { KTW621.00 } \\
\& \text { N78 } \\
\& \hline
\end{aligned}
\] \& \(\begin{array}{ll}\text { PCL85 } \& 0.40 \\ \text { PCLA86 } \& 0.45\end{array}\) \& \[
\begin{array}{ll}
\text { PY33 } \& 0.63 \\
\text { PYY1 } \& 0.30 \\
\hline
\end{array}
\] \& \(\begin{array}{ll}\text { UBF89 } \& 0.35 \\ \text { UCC85 } \& 0.40\end{array}\) \& \[
\begin{array}{ll}
\text { 1R5 } \& 040 \\
185 \& 0.30 \\
\hline
\end{array}
\] \& 6BJ6
6 BO P A \& 0.45 \& 6U \& 0.35
0.65 \& \[
\begin{aligned}
\& 12 \mathrm{BA} 6 \\
\& 12 \mathrm{BE} 6
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.40 \\
\& 0.40
\end{aligned}
\] \& 50CD6
\[
1.20
\] \& \& \\
\hline TRAN \& ISIS \& ORS \& \(2 \mathrm{~N} 37090 \cdot 10\) \& AF116 \& 0.05 \& BF195 0.15 \& CRS \(/ 40\) \& 6J7M 037 \& NKT128 \& NKT403 \& 0 O 95 \& 0.07 \& OC26 \& 0.26 \& 0 O 71 \& 0.12 \& 008480.25 \& OR \& 40 \\
\hline \& \& \& 2N3710 0.10 \& AF117 \& 0.25 \& BF196 0-15 \& 0.50 \& K8100A0.80 \& 0.35 \& 0.75 \& OA200 \& 0.07 \& OC28 \& 0.80 \& 0 C 72 \& 0.20 \& \(0 \mathrm{Cl23} 0.65\) \& ORP \& 0.42 \\
\hline 1N21 \& \& 2N708 0. \& 2N37110.10 \& AF139 \& 0.30 \& BF197 0.15 \& C8108 3.13 \& \& \& NKT4 \& OA202 \& \(0 \cdot 10\) \& OC29 \& \(0 \cdot 60\) \& \(0 \mathrm{OC74}\) \& 0.30 \& 0 OCl 380.2 \& \& \\
\hline 1N23 \& 0.20 \& 2N1302 0-18 \& 2 N 3819 0.35 \& AFZ12 \& 1.00 \& BF861

BF \& CV1192
CV103
0 \& MaT120 ${ }^{0.30}$ \& NKT213 ${ }^{0.25}$ \& NKT7130.25 \& OA210 \& 0.25
0.20 \& OC30
OC35 \& 0.40

0.50 \& OC74 \& $$
0.30
$$ \& $\begin{array}{lll}\text { OCl } & 0.85 \\ \text { OCl41 } & 0.80\end{array}$ \& ${ }_{8 \times 643}$ \&

\hline IN4001 \& 0.07 \& 2N1303 0.18 \& 2N 428680.15
$2 N 4289$
0 \& ${ }_{\text {BC108 }}$ \& 0.10

0.10 \& | BF898 | 0.28 |
| :--- | :--- |
| BFY 50 | 0.28 | \& cV103

CV253 \& MAT120 ${ }_{1.25}$ \& NKT213 0.25 \& NKT7130.25
OA5
0.20 \& $\mathrm{OA}_{\mathrm{O} 212}$ \& - 0.42 \& ${ }_{0}^{\text {OC3 }} \mathrm{O} 36$ \& 0.50
0.60 \& ${ }_{0}^{0 C 75}$ \& 0.25

0.25 \& $$
\begin{array}{lll}
\text { OC141 } & 0.60 \\
\text { OC169 } & 0.20
\end{array}
$$ \& 8X643 \& 0.70

0.15

\hline 1N4003 \& 0.10 \& 2N13050.22 \& $\begin{array}{ll}\text { AC120 } & 0.20\end{array}$ \& BC109 \& 0.10 \& BFY510.80 \& CV2154 1.63 \& MAT121 \& NKT2140-15 \& OAB 0.18 \& OAZ2100 \& $0 \cdot 32$ \& OC41 \& 0.25 \& $0 ¢ 77$ \& 0-40 \& 0 Cl 700.25 \& 2822 \& 0.45

\hline 1N4004 \& $0 \cdot 10$ \& 2N1306 $0 \cdot 25$ \& AC127 0.25 \& BC115 \& 0.20 \& BFY620.22 \& CV21551.63 \& 0.30 \& NKT210 \& $\mathrm{OA}^{\text {a }}$ - 0.15 \& oazzil \& 10.32 \& OC_{4} \& 0.30 \& 0078 \& 0.20 \& $0 \mathrm{Cl71} 0.30$ \& z8170 \&

\hline 1N4006 \& 0.15 \& 2N13070.25 \& ${ }^{\text {ACl2 }} \mathbf{0} 80.20$ \& BC116 \& 0.25 \& BTY79/ \& CVi1084.00 \& MJE3700.97 \& 0.87 \& OA9 0-10 \& OAZ2420 \& 0.23 \& 0 OC 43 \& 0.40 \& OC78D \& 0.20 \& $\begin{array}{lll}\text { OC200 } & 0.40\end{array}$ \& 28178 \& $0 \cdot 40$

\hline 18111 \& $0 \cdot 18$ \& 2N21470.75 \& | AC176 |
| :--- |
| 0.20 | \& BC117 \& 0.50 \& 100 R 0.75 \& CV71093.75 \& MJE6200.87 \& NKT217 \& 0 AlO \& OAZ2440 \& 10.22 \& OC44 \& 0.17 \& OC79 \& 0.22 \& OC201 0.70 \& Z8271 \&

\hline 18131 \& 0.13 \& 2 N 22180.20 \& $\begin{array}{ll}\text { AC187 } & 0.25\end{array}$ \& BC169C \& $0 \cdot 15$ \& BY100 0.15 \& DDu00 0.15 \& MJE2955 \& 0.85 \& OA47 0.10 \& OAZ2460 \& $0 \cdot 23$ \& $0 \mathrm{C4} 4 \mathrm{M}$ \& 0.17 \& 0081 \& 0.20 \& OC202 0.80 \& ZT21 \& 0.25

\hline 18132 \& 0.13 \& 2N2444 1 -91 \& $\begin{array}{lll}\text { AC188 } & 0.25\end{array}$ \& BCY34 \& $0 \cdot 30$ \& BY126 0.15 \& DDU06 0.18 \& 1.37 \& NKT218 \& 0a70 0.10 \& 0 O 16 \& 0.50 \& OC45 \& 0.12 \& $0 \mathrm{C81D}$ \& 0.20 \& $0{ }^{0} 2030.40$ \& ZTX10 \& 0.15

\hline 2G220 \& 0.83 \& 2N2646 0.45 \& AOY17 0.30 \& BD121 \& 0.65 \& BY127 0.17 \& GE'T1020-30 \& MJE305S \& 113 \& 0A71 0 0-10 \& 0C16T \& $0 \cdot 38$ \& OC453 \& 0.18 \& OC81M \& \& 0 C 2040.40 \& ZTX10 \& 30.12

\hline 2G301 \& 0.20 \& 2N2926 0.10 \& AD140 0.50 \& BD123 \& 0.80 \& BYZ88C \& GET1030.22 \& 0.87 \& NKT301 \& OA79 0.10 \& OC19 \& 0.37 \& ${ }^{\text {OC4 }}$ \& 0.27 \& OC81DM \& \& OC205 0.76 \& ZTX 30 \& 0-12

\hline 2G302 \& 0.22 \& 2N37020.10 \& AD149 0.50 \& BF115 \& 0.25 \& serics 0.15 \& GET 160.50 \& MPF102 \& 0.04 \& 0 O881 0.08 \& 0 OC 20 \& 0.85 \& OC57 \& 0.60 \& \& 0.18 \& 002060.90 \& ETX 30 \& 0.25

\hline 2N696 \& 0.15 \& 2N3703 0-10 \& | AD161 |
| :--- | \& BF173 \& 0.25 \& CR3I/05 \& GHT8750-25 \& 0.42 \& NKT304 \& OA85 0.12 \& $0 \mathrm{O}_{2} 2$ \& 0.50 \& OC58 \& 0.60 \& $0 \mathrm{C812}$ \& 0.40 \& 002070.90 \& ZTX50 \& 0-16

\hline 2N647 \& 0.15 \& 2N3704 0-12 \& AD162 0.37 \& BF180 \& $0 \cdot 35$ \& 0.25 \& G13 661.25 \& MPF1030.35 \& $0{ }^{0.75}$ \& OA86 0.15 \& 0 O 23 \& 0.60 \& ${ }^{\text {OC59 }}$ \& 0.65 \& 0 C 82 \& 0.25 \& OCP70 0.42 \& ZTX 50 \& 30-17

\hline 2N706 \& $0 \cdot 10$ \& 2N3705 0.10 \& AF114 0.25 \& BF181 \& 0.35 \& CRS1/40 \& GEX541 \& MPF104 \& NKT40 \& OA90 0.08 \& 0 C 24 \& 0.60 \& OC66 \& 0.50 \& 0 Cr 2 D \& 0.20 \& OCP71 0.97 \& ZTX 53 \& 0.25

\hline 2N706A \& 0.12 \& 2N37070.12 \& AF115 0.25 \& BF194 \& 0.17 \& 0.47 \& 0.75 \& 0.37 \& 0.87 \& 0 A 910.07 \& OC25 \& 0.37 \& OC70 \& 0.12 \& OC83 \& 0.25 \& ORP12 0.50 \& \&

\hline VALY \& ES \& \& 6AM6 \& 75B1 \& \& 884 R \& ${ }^{64 Q}$ WW \& A1834 \& CV1:30 \& CV1478 \& CV4012 \& \& E8UL \& \& 9180 \& \& M 8212 \& 837 \&

\hline 183GT \& \& 3 C 22 \& 6AN8 \& 83A1 \& \& ${ }_{954}^{881 \mathrm{R}}$ \& 6057 \& ${ }_{\text {A }}$ \& CV261 \& CV1480 \& ${ }^{\text {CV4 }} 4014$ \& \& E81CC \& \& 9400/1 \& \& M8214 \& Qs92/1 \&

\hline 1824 \& \& 3 C 23 \& 6ars \& 85 Al \& \& 955 \& 6058 \& A2293 \& CV273 \& CV1481 \& CV4015 \& \& E81L \& \& GN4 \& \& M8224 \& O895 \&

\hline 1 B 35 A \& \& 3C24/24G \& 6A86 \& 85 A 2 \& \& 956 \& 6059 \& A2426 \& CV284 \& CV1482 \& CV4016 \& \& E82CC \& \& GT1C \& \& M8225 \& Q8105/ \&

\hline 1 B 63 A \& \& 3 C 45 \& 6aUagta \& 90 AG \& \& 957 \& 6060 \& A2521 \& CV286 \& CV1832 \& CV4017 \& \& E830C \& \& GTE175 \& \& M 8232 \& Q8108/ \&

\hline 1 N 21 \& \& 3 Cx 100 A 5 \& 6AUBGT \& 90 AV \& \& 1625 \& 6061 \& A2900 \& CV287 \& CV1835 \& CV1833 \& \& E83F \& \& GTR120 \& \& M8237 \& Q81501 \&

\hline 1 N 21 B \& \& 3 E 29 \& 6AU6 \& 90 Cl \& \& 2050 \& 6062 \& ACT9 \& CV315 \& CV1994 \& CV4018 \& \& E88CC \& \& OTR150 \& M/8 \& Mat5 \& Q81501 \&

\hline 1 N 23 B \& \& $3 \mathrm{~J} / 121 \mathrm{E}$ \& 6av5GTa \& 90 Ca \& \& 2050 W \& 6063 \& ${ }_{\text {B1C }} 1 \mathrm{E}$ \& CV329 \& CV2000 \& CV4019 \& \& E90CC \& \& GU18 \& \& ME1400 \& Q81501 \&

\hline 1 N 23 CR \& \& $3 \mathrm{~J} / 160 \mathrm{E}$ \& 6AW8A \& 90 CV \& \& 2051 \& 6064 \& BS90 \& CV337 \& CV2131 \& CV4020 \& \& E90L \& \& GU20/21 \& \& ME1401 \& Q8150/ \&

\hline $1 \times 2 \mathrm{~A}$ \& \& $3 \mathrm{~J} / 170 \mathrm{E}$ \& 6AX5GT \& 95 Al \& \& 4003A \& 6065 \& B8156 \& CV342 \& CV2154 \& $\mathrm{CV}^{4} 4022$ \& \& ${ }_{\text {E91 }}$ \& \& GU50 \& \& ME1403 \& Q8150/ \&

\hline 1 X 2 B \& \& 3Q/150E \& $6 \mathrm{B4G}$ \& 100TH \& \& 4212 D or E \& 6067 \& BT5 \& CV345 \& CV2155 \& $\mathrm{CV}^{\text {CV } 4023}$ \& \& $\mathrm{ESO2CC}^{\text {c }}$ \& \& axul \& \& ME1404 \& Q8150/ \&

\hline 2A3 \& \& $3 \mathrm{Q} / 195 \mathrm{E}$ \& $6 \mathrm{BA} \mathrm{B}^{\text {a }}$ \& 150B2 \& \& 4242 A \& 6072 \& BT35 \& CV354 \& CV2160 \& ${ }_{\text {CV } 4024}$ \& \& E18000 \& \& 6xU2 \& \& ME1500 \& Q81200 \&

\hline 2A815 \& \& 384 \& 6BK4 \& 15083 \& \& 4313C \& ${ }_{6074}^{6073}$ \& BT45
BT79 \& CV359 \& CV2179 \& CV4026 \& \& ${ }_{\text {E181CC }}$ \& \& ${ }_{6 \times U 4}$ \& \& ME1501 \& Q81202 \&

\hline 2 C 26 A \& \& 3V/340B \& 6BK7A \& 150 Cl \& \& 4328A \& 6074
6080 \& ${ }_{\text {BT83 }}$ \& CV360 \& CV2235 \& CV4028
CV 4033 \& \& E181CC \& \& GXU4 ${ }^{\text {GX }}$ \& \& OA2 \& Q81203 \&

\hline \& \& $3 \mathbf{3 V} / 390 \mathrm{~A}$
$3 \mathrm{~V} / 390 \mathrm{~B}$ \& 6BL7GTA
6BN6 \& 150 C 2
150 C 3 \& \& 4687
5544 \& 6080
6097 \& ${ }_{\text {Cl83 }}$ \& CV371 \& $\mathrm{CV}_{\text {CV2238 }}$ \& CV4033
CV 4035 \& \& $\underset{\text { E186F }}{\text { E182C }}$ \& \& ${ }_{\text {GXU6 }}$ \& \& $\mathrm{OAS}_{\mathrm{OA} 4}$ \& Q81205 \&

\hline ${ }_{20}^{2 \mathrm{C} 43}{ }^{\text {a }}$ \& \& ${ }_{\substack{3 V \\ 4 \cdot 12508}}$ \& 6BN6 \& ${ }_{150 \mathrm{C}}^{15}$ \& \& 5544
5545 \& ${ }_{6097}^{60}$ \& ${ }_{\mathrm{Cl}} \mathrm{Cl}$ \& ${ }_{\text {CV378 }}$ \& ${ }_{\text {CV2253 }}$ \& CV4035 \& \& E188CC \& \& KT67 \& \& ${ }_{\text {OR2 }} \mathrm{OA} 4$ \& QU37 \&

\hline 2 D 21 \& \& 4-250A \& 61337 \& 250 TH \& \& 5642 \& 6136 \& CAA322 \& CV391 \& CV2289 \& CV4039 \& \& EA50 \& \& KT88 \& \& OB3 \& QV04.7 \&

\hline 2D21 W \& \& 4-400A \& 6BX7GT \& 328 \& \& 5644 \& 6189 \& CV5 \& CV395 \& CV2325 \& CV4040 \& \& EA52 \& \& M8079 \& \& OD3 \& QV05-2 \&

\hline 2 E 26 \& \& 4 B 32 \& 6BZ6 \& 329 \& \& 6651 \& 6197 \& CV25 \& CV397 \& CV2361 \& CV4043 \& \& \& \& M8080 \& \& OG3 \& QV06-2 \&

\hline 2 J 31 \& \& $4 \mathrm{CX} \mathrm{250B}$ \& 6CB6 \& 631-P1 \& \& 5670 \& 6201 \& CV26 \& CV404 \& CV2466 \& CV4044 \& \& ECC35 \& \& M8081 \& \& $\mathrm{OZ4}^{\mathbf{O}}$ \& QY3-120 \&

\hline 2 J 33 \& \& 4E27 \& 6 CH 6 \& 705A \& \& 5672 \& 6202 \& CV28 \& CV415 \& CV2616 \& CV4046 \& \& ECF804 \& \& M8882 \& \& OZ4A \& QY4-250 \&

\hline $2{ }^{2} 50$ \& \& 4 J 50 \& ${ }^{6 C L} 6$ \& ${ }^{715} \mathrm{~A}$ \& \& 5676 \& ${ }_{6} 6203$ \& CV31 \& CV416 \& CV2519 \& $\mathrm{CV}^{\text {c }} 4053$ \& \& EF50 \& \& M8883 \& \& PT15 \& QY4-400 \&

\hline 2 J 54 \& \& 4 J 52 \& 6 CW 4 \& 715 B \& \& 5487 \& 6205 \& CV53 \& $\mathrm{CV}^{\text {CV428 }}$ \& $\mathrm{CV}^{\text {CY } 2520}$ \& CV4058 \& \& EF64 \& \& M8091 \& \& QA2400 \& R10 \&

\hline ${ }_{2 \mathrm{Cl}}^{25}$ \& \& ${ }_{4}^{4 J 53} 5$ \& \& ${ }_{725 A} 723 \mathrm{~B}$ \& \& 5696
5702 \& 6360
6442 \& $\mathrm{CV73}_{\text {CV74 }}$ \& CV428 \& ${ }_{\text {CV2 }}$ \& CV4059
CV 4060 \& \& $\mathrm{EFP5}_{\text {EF4 }}$ \& \& M8096
M8097 \& \& QA2403 \& R17 \&

\hline 2 K 26 \& \& $4 \times 150 \mathrm{~A}$ \& 6EA8 \& 801 \& \& 5718 \& 6463 \& CV85 \& CV447 \& CV2901 \& CV4063 \& \& EFP'tio \& \& M8038 \& \& QA2406 \& 8130 \&

\hline 2 K 28 \& \& $4 \times 150 \mathrm{D}$ \& 6 F 33 \& 803 \& \& 5719 \& 6550 \& CV118 \& CV449 \& CV3523 \& CV4079 \& \& EN30 \& \& M8100 \& \& QA2407 \& 8130P \&

\hline 2 K 45 \& \& 4 x 250 B \& 6E6 (metal) \& 805 \& \& 5725/ \& 6807 \& CV121 \& CV 466 \& CV3929 \& CV4501 \& \& EN31 \& \& M8136 \& \& QB3/300 \& 8TV28 \&

\hline 2 X 2 A \& \& 5B/251M \& $6 \mathrm{K7GT}$ \& 807 \& \& ${ }^{6486 W}$ \& 6923 \& CV124 \& CV469 \& CV3986 \& CV4502 \& \& EN32 \& \& M8137 \& \& QB3-5-750 \& 8TV28 \&

\hline 3A/107A \& \& 5B/252M \& 648A \& 808 \& \& 5726/ \& 6939 \& CV128 \& CV488 \& CV3988 \& CV4503 \& \& EN91 \& \& M8140 \& \& QB4-1100 \& 8U41 \&

\hline 3A/108A \& \& 5B/254M \& 6V6GT \& 811 \& \& 6ALSW \& 7193 \& CV131 \& CV481 \& CV3991 \& CV4514 \& \& ${ }_{\text {EsU74 }}$ \& \& M8141 \& \& $\mathrm{QFF}^{\text {QF45 }}$ \& $8{ }^{812}$ \&

\hline $3 \mathrm{~A} / 108 \mathrm{~B}$ \& \& 5B/255M \& 11 E 3 \& 811 A \& \& ${ }^{5727 / J}$ 2 ${ }^{\text {d }}$ \& 7203 \& CV138 \& CV492 \& CV3998 \& CV4507 \& \& EsU76. \& \& M8142 \& \& QF45 \& TD03.10 \&

\hline 3A/109B \& \& $5 \mathrm{~B} / 256 \mathrm{M}$
$5 \mathrm{~B} / 257 \mathrm{M}$ \& ${ }_{12 \mathrm{E}}^{113} 1$ \& ${ }_{813}^{812}{ }^{\text {A }}$ \& \& ${ }_{5749}^{2 \mathrm{D} 21 \mathrm{~W}}$ \& 7360
7586 \& CV133 \& CV493 \& CV4001
CV 4002 \& CV4508
CV 6004 \& \& \& \& M8144
M8149 \& \& QQV02-6 \& TT15 \&

\hline 3A/110 \& \& ${ }_{5 \mathrm{C} 22} 3 \mathrm{~B} / 25 \mathrm{M}$ \& 12BAA \& 8815 \& \& 5750
5750 \& 88013 \& CV136 \& CV808 \& CV4003 \& CV6008 \& \& F6060 \& \& M8157 \& \& QQV03-20 \& TTR31 \&

\hline 3A/146J \& \& 5 D 21 \& 128Y7A \& 828 \& \& 5751 \& 8025 A \& CV137 \& CV1072 \& CV4004 \& CV6045 \& \& F6061 \& \& M8161 \& \& QQV03-20A \& TZ40 \&

\hline $3 \mathrm{~A} / 167 \mathrm{M}$ \& \& 5R4GY \& 12E1 \& 829B \& \& 5802 \& 9001 \& CV138 \& CV1076 \& CV4005 \& DA41 \& \& F6063 \& \& M8162 \& \& QQV04-15 \& U17 \&

\hline 3 AS \& \& 5 SUGB \& 12E14 \& 830 B \& \& 5814 \& 9002 \& CV140 \& CV1092 \& CV4006 \& DA100 \& \& FX 219 \& \& M8163 \& \& QQV06-40 \& 419 \&

\hline $3 \mathrm{~B} / 240 \mathrm{M}$ \& \& $5 \mathrm{Z3}$ \& 13D1 \& 860 \& \& 5823 \& 9003 \& OV144 \& CV1219 \& CV4007 \& DET22 \& \& FX 2225 \& \& M8187 \& \& QQV06-40A \& U27 \&

\hline ${ }_{\text {3B24 }}{ }^{\text {3B/241M }}$ \& \& ${ }_{6}^{5 \mathrm{EF} 4 \mathrm{~F} 4 \mathrm{~A}}$ \& ${ }_{28 \mathrm{D}} \mathbf{7}$ \& ${ }_{866}^{866}$ \& \& 5840
5963 \& 9004
9005 \& CV160 \& CV1343 \& CV4008
CV4009 \& E550CC \& \& ${ }_{\text {FX } 227}$ \& \& M8179
$\mathrm{M8190}$ \& \& QQV07.40
Q870/20 \& \&

\hline 3 B 28 \& \& 6AK5 \& ${ }_{29 \mathrm{Cl}}^{28 \mathrm{D}}$ \& 866E \& \& ${ }^{5965}$ \& 9006 \& CV187 \& CV1476 \& CV4010 \& E80FC \& \& G120/1B \& \& M8196 \& \& Q876/20 \& ${ }_{2759}$ \&

\hline 3B29 \& \& 6AM5 \& 63 KU \& 872A \& \& 6005/ \& 13201 A \& CV188 \& CV1477 \& CV4011 \& w80F \& \& G150/2B \& \& M8204 \& \& Q875/40 \& 2803 U \&

\hline \multicolumn{3}{|l|}{INTEGRATED} \& 7410 \& 0.20 \& \& 7437 \& 0.85 \& 7478 \& 0.45 \& 74107 -. \& \multicolumn{2}{|l|}{$$
0.50
$$} \& \multicolumn{2}{|l|}{\[

74157

\]} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 1.80 \\
& 4.10 \\
& 0
\end{aligned}
$$
\]}} \& \multicolumn{3}{|l|}{}

\hline \multicolumn{3}{|l|}{\multirow{3}{*}{CIRCUITS}} \& 7412 \& 0.42 \& \& 7440 \& 0.20 \& 7482 \& 0.87 \& 74111 \& 1.95 \& \& 74174 \& \& \& \& \multicolumn{3}{|l|}{\multirow[t]{3}{*}{LOW PROFILE SOCKETS}}

\hline \& \& \& 7413 \& 0.30 \& \& 7441AN \& 0.75 \& 7483 \& 1.00 \& 74118 \& 1.00 \& \& 74175 \& \& 1.35 \& \& \& \&

\hline \& \& \& 7418 \& 0.30 \& \& 7442 \& 0.75 \& 7484 \& 0.90 \& 74119 \& 1.90 \& \& 74176 \& \& $1 \cdot 60$ \& \& \& \&

\hline 7400 \& \& 0.80 \& 7417 .. \& 0.80 \& \& 7450 \& 0.20 \& 7486 \& 0.45 \& 74121 \& 0.80 \& \& 74190 \& \& 1.95 \& \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{14 pin DIL, 15 p. 16 pin, DIL, 17 p .}}

\hline 7401 \& \& 0.20 \& 7420 . \& 0.80 \& \& 7451 \& 0.20 \& 7490 \& 0.75 \& 74122 \& 1.35 \& \& 74191 \& \& 1.95 \& \& \& \&

\hline 7402
7403 \& \& 0.20 \& 7422 \& 0.48
0.48 \& \& 7453
7454 \& 0.20
0.20 \& 7491 AN \& 1.00
0.75 \& 74123
74141 \& 2.70
1.00 \& \& 74192
74193 \& \because \& 2.00
2.00 \& \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}}

\hline 7403
7404 \& \& 0.20
0.20 \& 7423
7425 \& 0.48
0.48 \& \& 7484
7460 \& 0.20
0.20 \& 7492
7493 \& 0.78 \& 74141
74145 \& 1.60 \& \& 74194 \& \& 8.50 \& \& \& \&

\hline 7405 \& \& 0.20 \& 7427 \& 0.42 \& \& 7470 \& 0.80 \& 7494 \& 0.80 \& 74150 \& $3 \cdot 35$ \& \& 74195 \& \& 1.86 \& \& \multicolumn{3}{|l|}{\multirow[t]{5}{*}{Electric, Ferranti, M.O. Valve Co., Mullard, S.T.C.}}

\hline 7406 \& \& 0.80 \& 7428 .. \& 0.50 \& \& 7472 \& 0.30 \& 7495 \& 0.80 \& 74151 \& 1.10 \& \& 74196 \& \& 1.50 \& \& \& \&

\hline 7407 \& \& 0.80 \& 7430 \& 0.20 \& \& 7473 \& 0.40 \& 7496 \& 1.00 \& 74154 \& 2.00 \& \& 74197 \& \cdots \& ${ }^{1} 4.50$ \& \& \& \&

\hline 7408 \& \& 0.20 \& 7432 \& 0.42 \& \& 7474 \& 0.40 \& 7497 \& 6.25
8.50 \& 74155 \& 1.65 \& \& 74198 \& \& ${ }^{4.80}$ \& \& \& \&

\hline 7409 \& \& 0.45 \& 7433 \& 0.70 \& \& 7475 \& 0.65 \& 74100 \& $2 \cdot 50$ \& 74156 \& 1-55 \& \& 74199 \& \& $4 \cdot 60$ \& \& \& \&

\hline
\end{tabular}

Torms of Eusiness: Mon. to Sat. Open to callers 9 a.m. to 5 p.m. Closed Sat. $1 \mathrm{p} . \mathrm{m}$. to 3 p. M. Express postage 5 p. for one valve; Ip. each additional valve

MODEL
U-50DX

USED THROUGHOUT THE WORLD SANWA'S
EXPERIENCE OF 30 YEARS ENSURES ACCURACY,
RELIABILITY VERSATILITY UNSURPASSED TESTER RELIABILITY, VERSATILITY, UNSURPASSED TESTER $\begin{array}{llll}\mathbf{6} \text { Months Guarantee } & \text { Excellent Renair Sprvice } \\ \text { Model P-2-B } & \mathbf{E} 5.77 & \text { Model AT-45 } & \mathbf{E 1 8 . 6 4}\end{array}$ Model JP.5D £6.93 Model 380-CE $\quad £ 19.92$ $\begin{array}{llll}\text { Model 360-YTR } & £ 9.79 & \text { Model N-101 } & £ 22.00 \\ \text { Model U-50DX } & £ 9.90 & \text { Model 460-ED } & £ 25.74\end{array}$ $\begin{array}{lrll}\text { Model U-50DX } & £ 9.90 & \text { Model 460-ED } & £ 25.74 \\ \text { Model A-303TRD } & £ 13.03 & \text { Model EM-700 } & £ 50.56\end{array}$ Model K-30THD $£ 14.90$ Model R 1000CB $\mathbf{£ 6 5 . 1 7}$ Madel F-8OTRD £16.22

Electrolube Ltd. Slough, Bucks, England. Tel: Slough (STD 0753) 25574 WW--096 FOR FURTHER DETAILS

ELECTRONIC OMGAN DIVIDER BOARDS buitt to
high Industrial/computet spoc. 5 octave set fis. high industrial/computer spec. 5 octave set E16.
Complete with connection data and oscillator details. ,
COPPER LAMINATE P.C. BOARD
$8 \frac{1}{2} \times 5 \frac{1}{2} \times 1 / 18$ in. $12 \frac{1}{2} p$ sheet, 5 for 50 p $11 \times 8 \times 1 / 16$ in $20 p$ sheet, 3 for $50 p$ Offcut pack (smallest $4 \times 2 \mathrm{in}$.) 80 p 300 sq . in.
P\&P single sheet 4p. Bargain packs 10p

SPEAKER\& AND CABINETS

E.M.I. 13×8 in. (10 watt) with two tweeters and cross over $3 / 8 / 15$ ohm models. E3.75. P.P. 25p.
E.M.I. 13×8 in. base units (10 watt) $3 / 8 / 15$ ohm models $\mathbf{\text { 22.25. P.P. } 2 6 0 .}$
E.M.I. $6 \frac{1}{2} \mathrm{In}$. ind. 10 watt Woofers. 8 ohm. 13.000 gss E2-2E. P.P. 15p.
E.M.I. 20 watt ($13 \times 8 \mathrm{in}$) with single iweeter and
 11,000gss.
P.P. 40 p .
CABINETS for $13 \times 8 \mathrm{in}$. speakers manufactured in 1 in . teak-finished blockboard. Size $14 \times 10 \frac{1}{4} \times 9 \mathrm{in}$.

20W. CABINET. $18 \times 11 \times 10 \mathrm{in}$ £6. P.P. 50p.

PRECISION A.C. MILLIVOLTMETER (Solartion) $1.5 \mathrm{~m} . \mathrm{v}$. to $15 \mathrm{v}: 60 \mathrm{db}$ to
£22.E0. P.P. £1-50.
V.H.F. POWER TRANSISTORS TYPE PT4176D (2 N 4128). 24 watt 175 MHz . $£ 1 \cdot 50$ ea. S.A.E. for spec MINIATURE UNISELECTOFS (A.E.I. 2203A.), 3 bank 12 position, non-bridging wipers. $£ 4.25$ ea. Brand new Complete with baso
TEN TURN POTENTIOMETERS (Colvern) 5000 ohm £1.50 complete with 10 T dial.
VACUUM PUMPS (Metrovac GS 24). Complete with t h.p. 240 v . A.C. motor. New condition. £35. (S.A.E Literature.)

PAINTON WINKLER SWITCHES. 1 pole 15 way 2 bank. (G.P. contacts and wipers), $£ 1.25$ ea.

BULK COMPONENT OFFER. Resistors/Capacitors, All types and values. All new modern components. Over 500 you will re-order
BERCO WIRE-WOUND POTS. New individually boxed, 200 ohm 25 watt 80p: 725 ohm 50 watt $75 \mathrm{p}: 300 \mathrm{ohm}$
100 watt $\mathbf{~} 1$ ea.

HIGH-SPEEDMAGNETIG COUNTERS. 4 digit (non reset) 24 or 48 v . (state which) $4 \times 1 \times 1 \mathrm{ln}$. 35p. P.P. 50.
5 digit (non resei) 6v. d.c. ($2 \frac{1}{2} \times$
$1 \frac{1}{2} \times 1 \frac{1}{2}$ in.). 7 Ep. P.P. 5 p . $1 \frac{1}{2} \times 1 \frac{1}{2} \mathrm{in}$). 78p. P.P. $5 p$.
3 digit (Reset) $48 \mathrm{v} .4 \times 1 \times 1 \mathrm{i}$
E1.75. P.P. 5p

HIGH CAPACITY ELECTROLYTICS

$2,200 \mu \mathrm{f}, 100 \mathrm{v}$. ($1 \pm \times 4 \mathrm{in}$.) $60 \mathrm{p} .3,150 \mu \mathrm{f}, 40 \mathrm{v},(1 t \times 4 \mathrm{in}$. $60 \mathrm{p} .10,000 \mu \mathrm{f}$. $25 \mathrm{v} .\left(1 \frac{1}{2} \times 4 \frac{1}{2} \mathrm{in}\right.$.) 60 p . $10,000 \mu \mathrm{f}$. 100 v .
 $16 \mathrm{v} .\left(2 \times 4 \mathrm{ln}\right.$.) $60 \mathrm{p} .21,000 \mu \mathrm{f}$. 40 v . ($2 \frac{1}{2} \times 4 \mathrm{in}$.) $£ 1$. Post and packing 5 p .

LIGHT DIMMERS (2000 watt) Trlac Controlled. $3 \frac{1}{2} \times 2 \times 1 \frac{1}{4}$ In. £E.7s ea. P.P. 25 p.
TRANSFORMERS
L.T. TRANSFORMER. (Shrouded) Prim. 200/250v
Sec. 20/40/60v. 2 amp. $£ 2$ ea, P.P. 40p
L.T. TRANSFORMER (CONSTANT VOLTAOE)
Prim. 200/240v. Sec. 1. 50v, at 2 amp . Sec. 2. 50v, al
$\begin{aligned} & 100 \mathrm{~m} / \mathrm{a} \text { £3. P.P. } 50 \mathrm{D} \text {. } \\ & \text { L.T. TRANSFORMER. Pilm. } 240 \mathrm{v} \text {. Sec. } 0 / 25 / 50 \mathrm{v}\end{aligned}$
$\begin{aligned} & 2 \text { amp. E1-75. P.P. 25p. Prim 220/240v. Sec. } 13 \mathrm{v} \\ & \text { L.T. TRANSFORMER. Pr }\end{aligned}$
1.5 amp . 65p. P.P. 15 p .
L.T. TRANFORMER. Prim. $115 / 240 \mathrm{v}$. Sec. 10.5 v
at 1 amp. c.t $28-0-28 \mathrm{v}$. at 2 amp . Shrouded type. $\mathbf{£ 2}$
$\begin{aligned} & \text { P.P. } 40 \mathrm{p} \\ & 2500 \mathrm{w}\end{aligned}$
2500 Watt. ISOLATION TRANSFOFMER (CON
STANT VOLTAGE). Prim. 190-260v. 50 Hz . Sec
230 v . at 10.9 amps. £30. Canr. 2 .
H.D.STEP-DOWN TRANSFORMER. Prim. 200/240v
$\begin{aligned} & \text { Sec. } 117 \mathrm{v} \text { at } 19.8 \text { amps. (} 2,300 \text { watt). £22.50. Carr. E2 } \\ & \text { H.T. TRANSFORMERS. }\end{aligned}$
$\begin{aligned} & \text { H.T. TRANSFORMERS. Prim. } 200 / 240 \mathrm{v} \text {. Sec } \\ & 300-\mathrm{o}-300 \mathrm{v} .80 \mathrm{~m} . \mathrm{a} .6 .3 \mathrm{v} \text {. c.t. } 2 \mathrm{amp} \text {. } £ 1.50 \text { P.P. } 40 \mathrm{p} \text {. }\end{aligned}$
$350-0-350 \mathrm{v} .60$ m.a. 6.3 v . c.t. 2 amp. £1. P.P. 25 p .
STEP-DOWN TRANSFORMERS: Prim. 22/240V.
Sec. 115 v . Double wound 500 w . £5. P.P. £1. 700 w .
(with filters) £10. P.P. E1. 500w. (metal cased with
socket output) and overioad protection. £6-50.
AUTO-WOUND. 75W. £1. P.P. 25p. 300W. £1-50.
P.P. 50p 750W. £6. P.P.f1.
L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v} . \operatorname{Sec} .0 / 24 / 40 \mathrm{v}$
$\begin{aligned} & 1.5 A . \text { (Shrouded type). £1-50. P.P. 25p. } \\ & \text { HT/LT TRANSFORMER Prim. } 240 v\end{aligned}$
$\begin{aligned} & \text { HT/LT TRANSFORMER Prim. } 240 \mathrm{v} \text {. (tapped) Sec. } 1 \\ & 500-0-500 \mathrm{v} .150 \mathrm{~m} / \mathrm{a} \text {. Sec. } 2.31 \mathrm{v} .5 \mathrm{amp} . ~ £ 2.75\end{aligned}$
HEAVY DOD. DUTY E.H.T. TRANSFORMER. Prim
$0 / 110 / 240 \mathrm{~V}$. Sec. 1800 V . 3.1 K.V.A. £28. Carr. $£ 2$ 4K.V.A
$\begin{aligned} & \text { model £33. Cari } \mathbf{£ 2} \text {. }\end{aligned}$

PRECISION CAPACITANCE JIGS. Beautifuliy made with Moore r-Wright Micrometer Gauge. Type 1. 18.5pt. to $1,220 \mathrm{pff} 10$ each re ! 9.5 pl . to 11.5 pf . E6 each. MULTICORE CABLE (P V C.).
6 core (6 colours) 3 screened, 14/0048. 18p. yd. 100 yds . £12.50.
12 core (12 colours) 15 p . yd. 100 yds . $\mathbf{£ 1 2 \cdot 5 0} \mathbf{2 4}$.
24 core (24 colours) 20 p . yd. 100 yds. £17.50.
30 core (15 colours) $22 \mathrm{fp} . \mathrm{yd} .100 \mathrm{yds}$. $188 \cdot 50$.
34 core (17 colours) 28p. vd. 100 yds. $£ 20$.

TELEPHONE DIALS (New) £1 ea.

RELAYS (G.P.O. '3000'). All types. Brand EXTENSION TELEPHONES (TyPD 706) Now/Boxed. EE. 50p.
RATCHET RELAYS. (310 ohm) Varlous TYDOS 88P. P.P SD.
75 ohm 75 ohm. 8 bank $\frac{1}{3}$ wipe £3.25. 10 bank
$\frac{1}{2}$ wipe $£ 3 \cdot 75$. Other types from $£ 2 \cdot 25$.

BLOWER FANS (Snall type) Type 1 : Hausing da. $3 \frac{1}{\frac{1}{2}} \mathrm{in}$. Alt outlet $1 \frac{1}{2} \times 1$ In. $\mathbf{£ 2} \mathbf{2 5}$. P.P. 25p. Type 2: Housing dia.
6 in. Alt outlet $2 \frac{1}{2} \times 2 \frac{1}{2}$ In. £4. P.P. 50p. Both types 118 / 6 in . Alr outtet $2 \frac{1}{2} \times 2 \frac{1}{2}$ In. £4. P.P. 50p. 8oth types $115 /$ POT CORES LA1/LA2/LA3 EOp each

RELAYS

SIEMENS/VARLEY PLUG-IN. Complate with transparont dust covers and bases. 2 pole c/o contacts 35p ea ; 6 make contacts 40 pea .; 4 pole c/o contacts 50p ea. 6-12-24-48v types In stock.
12 VOLT H.D. RELAYS ($3 \times 2 \times 1 \mathrm{in}$.) with 10 amp . silver 3 VOLT H.D. MELAYS $\left(2 \times 2 \times \frac{z}{4}\right.$ in.) 10 amp. contacts. 4 pole c/o. 40p ea. P.P. 5p.
240v. A.C. RELAYS. (Plug-in type). 3 change-over 10 amp contacts. 75p (with base). P.P. 5p.
SUB-miniature reed felays ($1 \mathrm{in} . \times \mathfrak{i n}$.) Wt t oz. 1 make $3 / 12 \mathrm{v} .40 \mathrm{p}$. ea
SILICON BRIDGES. 100 P.I.V. 1 amp. $\left(\frac{1}{2} \times \frac{t}{} \times i\right.$ in.) 30 p 200 P.I.V. 2 amp. 60p.
CIFCUIT BAEAKERS (3 pole) 15 amp. Dorman 4 Long Loadmasters' $£ 1$.50. P.P. 25p.

< 0 (ELECTRONICS) LTD.
9 \& 10 CHAPEL ST., LONDON, N.W.I 01-723-7851

CURRENT RANGE OF BRAND NEW L.T. TRANS. FORMERE. FULLY SHROUOED (excepted) TERMINAL PLOCK CONNECTIONB. ALL PRIMARIE 220/240V.						
No.	Sec. $\mathrm{Ta}_{\text {a }}$			Amps	Price:	Cart ${ }^{\circ}$
1 A	25-33-40-50.	15	¢1200	${ }^{65 p}$
18	25-33-40-50..	10	69.00	50 D
1 C	25-33-40-50..			6	67.50	50 p
1 D	25-33-40-50.	..	.	3	E550	40 D
24	4-16-24-32..	..	.	12	67.75	45 p
2 B	4-16-24-32	8	c. 50	45 p
${ }^{2} \mathrm{C}$	4-16-24-32	4	63.90	40 p
2 D	4-16-24-32	2	¢2.75	30 p
$3{ }^{*}$	25-30-35	\cdots	\because	20	c12.00	65 p
3 C	25-30-35	..	.	10	C 7.50	60 p
3 D	25-30-35	\cdots	\cdots	5	E5.75	45 p
3 E	25-30-35			2	4.3 .25	45 p
$4 A^{\circ}$	12-20-24	'	.	30	613.00	75 p
48	12-20-24	.		20	9.00	50 p
4 C	12-20-24	.,	,	10	c. 5.75	50 p
5 D	12-20-24	.		5	c.4.00	45 p
4 A	3-12-18	\cdots	\cdots	30	160.50	45 p
58	3-12-18	.	.	20	c.7.75	50 p
${ }_{5}{ }^{\text {C }}$	3-12-18	..	,	10	c.4.75	45 p
5 D	3-12-18	.	.	5	6.3.75	40 p
dA	48-56-60		,	2	c.3.75	40 p
68	48-56-60			1	c.2.75	35 p
74*	6-12..	.	\cdots	50	¢12.50	55 p
78	6-12 ..		.	20	c5.50	45 p
${ }_{7}{ }^{\text {c }}$	0-12..		.	10	E.3.75	35 p
7 D	6-12..	.	\cdots	5	C2.50	${ }^{35 p}$
8 A	12-24.. ..			1	E1.75	35 p
9 9	17-32..			8	c. 5.50	35 p
10A*	9-15... ..			2	E4.50	35 p
11 A	$8 \cdot 3$.	15	c.3.75	35 p
12A	30-25-0-25-30	.	.	2	${ }_{6} \times 3.75$	35 p
13A*	12-0-12	.	.	8	c. 3.90	35p

Nate: By uaing
can be obtulned.
Example: No. 1 .. 7-8-10-15-17-25-33-40-50v No. $2:$.
UNSHROUD TERMINAL BLOCK CONMECTIONS.

STEP DOWN 240/110V. AUTO TRANSFORMERS FOR
AMERICAN EQUIPMENT. FItted With 2 or 3 pin American sockets. All sizes from 80 to 2 kkva, available Send s.a.e. for sockets. Alisan sockets, plugs, adaptors also available.
H.T. TRANSFORMERSBY
FAMOUS MANUFACTURERS

 WODEN. All prlmarles $220-240 \mathrm{v}$. Type $1 .$.
Soc. $890-710-0-710-890 \mathrm{v}$.
$120 \mathrm{~m} / \mathrm{a}$. Sec. $880-710-0-710-890 \mathrm{v}$. $120 \mathrm{~m} / \mathrm{a}$. un-
 Sec. tapped $150-185 \mathrm{~F}$. amps unshrouded
tabie top conections $£ 3.75$. P.P. 75D.
 and $6.3 \mathrm{v}, 1 \mathrm{a}$. unshrouded table top con-
nections 8250 . Carr. 50 .

REDCLIFFE L.T. TRANSFORMERS All primaries. CORE TYPE 220.240 v . Type 1.

 E. P. 25p.
P.

GRESHAM SMOOTHING CHOKES

 R2.50P.P. 45 p . $130 \mathrm{~m} / \mathrm{h} .1 .5 \mathrm{a}$. E1.50 P.P. 25 p

$\mathrm{Ma} / \mathrm{ns}$ fliter chokes $10 \mathrm{~m} / \mathrm{h} .2 \mathrm{a} .50 \mathrm{p}$. P.P. | 20p. All above chokes $\mathrm{i}-1 \mathrm{ohm}$ res. |
| :--- |
| WODEN. 'C' core. $50 \mathrm{~m} / \mathrm{h} .2 .5 \mathrm{a}$. E1.5 |

 Swinging. Type. $34 \mathrm{~h} .80 \mathrm{~m} / \mathrm{a} .17 \mathrm{~h}, 35 \mathrm{~m} / \mathrm{a}$.
2.8 KV . D.C. wkg. 35 p . P.P. 35 p .
H.T. TRANSFORMERS PARMEKO. Pri. 240v. Sec. $250-0$
$250 \mathrm{v} .50 \mathrm{~m} / \mathrm{la}$. . 3 v .1 a . E1 23. P.P. 35 p . size $\times 3 \times 2 \times 1 \mathrm{n}$
GARONERS.

ADVANCE L.V. CIV TRANSFORMERS Sec. 28v. 8a. ODen frame type. E4.75 carr

 190-260v. enclosed type, output 240 v .
30 watts. $£ 2.00$ carr. 50 p .

Contact 40 P .2 M . 1 B . 1 CO normal Co 40 p . 75Ω. 40 . P.P. on all relays 10 p .

EERCO INST POTS
200Ω watts 31 Ins. dia. 50p. P.P. 10 p TCC. BLOCK CAPACITORS

 P.P. 15p.

 Type 3 M459 $\ddagger \operatorname{In}$. 3,600 feet. Suppiled new in maker's cartons. At a fraction
maker's prico. $\mathrm{EH}^{7} \mathbf{7 5}$. P.P. 25p.

SPECIAL OFFER OF MULTI TAPPED L.T. TRANSFORMERS VERY CONSERVATIVELY RATED
 times. ' C ' Core. Table Top connections

 $\overline{\text { PrI. } 200-220-240 \mathrm{v} .} \mathrm{Sec} . \quad 20-21-22-23-24-25 \mathrm{v}$. $22,23 v, 2 a, 11-12-13-14-15-18 \mathrm{i}, 0.5 \mathrm{a}$, twice
$100-0,100 \mathrm{v}, 150 \mathrm{~m} / \mathrm{a}^{\prime} \mathrm{C}^{\prime}$ Core. T. Top connections. ce. 50 carr. 75p.
Pri. 200-220-240v. Sec. tapped 63-68-74v 3a. and $8 \mathrm{bv}, 4 \mathrm{a}$. Open frame terminal block $\frac{\text { connections e2.50 P. P. } 200-220-240 \mathrm{v} . ~ S e c . ~}{37-40-43 \mathrm{v} .} 5 \mathrm{sa}$.
 $\frac{\text { Ef.00 carr. 75. }}{\text { Pri. 200-220-240v. Sec. } 39 \mathrm{v}, ~ 8.6 \mathrm{a} .,} 38 \mathrm{v}$
 115 v .0 .5 a . 'C' Core T. Top Connections
£2.00 P.P. 25 p .

type T . top connectione 63.75 carr. 75 p .
Waden Pri. $220-240 \mathrm{v}$. Sec. 10 v . 2a, fully

 C' core T. top connections 75 p P.P. 25p
REDCLIFFE Pri. $200-220-240 \mathrm{v}$. SeC. 12-0-
 Pri. 220-240v. Sec. 24y. 3a. 'C' core T. top prl. 220-220-240v. Sec. $11 \mathrm{v} .{ }^{9 \mathrm{aa}}{ }^{2} \mathrm{C}^{\prime}$ core
 Tv. ${ }^{1.35 \mathrm{a} .}{ }^{\text {' } \mathrm{C}}$ ' core T . top connections
Ei.25 P.P. 25p.
 Pri. $110-240-440 \mathrm{v}$. Sec. tapped $24-26 \mathrm{v} .8 \mathrm{aa}$. GV. 1a. open trame type E 3.50 carr. 50 .
 Spen frame ter
E5.50 carr. 50 p .
Pri. 200-220-240v. Sec. tapped 56-58-60v.3a

pen frame. Terminal block connectlons. | open |
| :---: |
| C2.75 P.P. |
| 50 p |

P A - (Electronics) Ltd

THE HY41

The HY41 supersedes the popular HY40 introduced by ILP last year. This highly improved module achieves true High Fidelity with a dramatic reduction in distortion (typically 0.05% at 1 KHz into 8 ohms!) and is electronically and mechanically compatible with the HY40.

With this important improvement the HY41 retains all of the quality characteristics found in the earlier version and P.C. board, Resistor, Capacitors, Hardware Mountings and comprehensive manual are included in the basic kit. No further components are required to construct a complete power amplifier of extremely high performance sufficiently versatile to provide power not merely for Hi-Fi but also for public address systems and industry.

The free manual gives a full circuit diagram of the HY41 and its various applications including a complete stereo amplifier.

Like its predecessor the HY41 is based on conventional and proven circuit techniques developed over recent years.
OUTPUT POWER: British Rating 40 WATTS PEAK, 20 watts
R.M.S. continuous.

LOAD IMPEDANCE: 4-16 ohms.
INPUT IMPEDANCE: 30 K ohms at 1 KHz .
VOLTAGE GAIN: 30 db at 1 KHz
TOTAL HARMONIC DISTORTION: less than 0.15% (typical 0.05%)
at 1 KHz .
FREQUENCY RESPONSE: $5 \mathrm{~Hz}-50 \mathrm{KHz} \pm 1 \mathrm{db}$.
SUPPLY VOLTAGE: ± 22.5 volts D.C.
SUPPLY CURRENT: $\overline{0} .8 \mathrm{amps}$ maximum.
PRICE: inc. comprehensive manual, P.C. board, five extra components and P. \& P.:MONO: $£ 4.90$

UNIQUE HYBRID PRE-AMPLIFIER

The HY5 has rapidly established a position in the WORLD as the sole hybrid preamplifier to contain all feedback and equalization networks within an integrated preamplifier circuit.

Supplied with the HY5 are two stabilizing capacitors and by the addition of volume, treble and bass potentiometers it is ready for use.

Internally the HY5 provides equalization for almost every conceivable input, the desired function is achieved by use of a multi-way switch or by direct interconnection,

Two distinctive features of the HY5 are its inbuilt stabilization circuit, allowing it, to be run off any unregulated power supply from 16-25 Volts and a balance circuit which, wher linked by a balance control to a second HY5, forms a complete stereo preamplifier.

Specifically and critically designed to meet exacting Hi-Fi standards, the HY5 combines extremelv low noise with a high overload capability. When used in conjunction with the HY41 and PSU45 forms a completely intergrated system.
inputs
Magnetic Pick-up (within $\pm 1 \mathrm{db}$ RIAA curve) $2 \mathrm{mV} .47 \mathrm{~K} \Omega$
Tape Replay lextemal components to suit headl. $4 \mathrm{mV} .47 \mathrm{~K} \Omega$
Microphone (flat) $10 \mathrm{mV} .47 \mathrm{~K} \Omega$
Ceramic Pick-up (equalized and compensatablel $20-2000 \mathrm{mV}$. variable.
Tuner (flat) 250 mV . $100 \mathrm{~K} \Omega$
Auxiliary $1250 \mathrm{mV} 47 \mathrm{~K} \Omega$
Auxiliary $2 \approx-20 \mathrm{mV}$. $100 \mathrm{~K} \Omega$

ACTIVE TONE CONTROLS (Bexendall)
Treble $\pm 12 \mathrm{db}$.
Bass $+{ }^{-12 d b}$.
INTERNAL STABILIZATION
Enables the HY5 to share an unregulated
supply with the Power Amplifier.
SUPPLY VCLTAGE
16-25 volts
PRICE: MONO: $£ 3.60$
STEREO: $£ 7.20$

POWER SUPPLY PSU45

The versatile P.S.U. 45 is designed to supply your HY41's + HY5's in stereo or mono format.

Specification

Input: 200-240 Volts.
Output: ± 22.5 Volts at 2 amps .
Overall Dimensions: L. $7^{\prime \prime}$; D. 3.8'; H. 3.1"
PRICE: $\mathbf{£ 4 . 5 0}$ inc. \mathbf{P}. \& P.

CROSSLAND HOUSE • NACKINGTON.CANTERBURY•KENT

CANTERBURY 63218

The largest selection

BRAND NEW FULLY GUARANTEED DEVICES

-the lowest prices!

74 Series T.T.L. I.C'S

BI-PAK 8 TILI LOWEST IN PRICE FULL SPECIFICATION GUARANTEED. ALL FAMOUS MANUFACTURERS

	${ }_{0}^{1} 15$	${ }^{25}$	$100+$	8N-450	$\stackrel{1}{0.15}$	${ }_{0.14}^{25}$	$100+$	8N74123	${ }^{1}$	$\underset{22.70}{25}$
SN7401	0.15	0.14	0.12	SN7451	0.15	0.14	0.12	BN74141	0.67	0.64
SN7402	0.15	0.14	$0 \cdot 12$	SN7468	$0 \cdot 15$	0.14	$0 \cdot 12$	SN74145	21.50	21.40
SN7403	0.15	$0 \cdot 14$	$0 \cdot 12$	8×7454	0.15	0.14	$0 \cdot 12$	SN74150	23.00	42.70
gN7404	0.15	0.84	$0 \cdot 12$	SN7460	0.15	0.14	$0 \cdot 12$	8N74151	21.00	0.95
gN7405	0.15	0.14	$0 \cdot 12$	8N7470	0.29	0.26	0.24	8N74153	21.20	21.10
SN7406	0.35	0.31	0.28	8N7472	0.28	0.28	0.24	SN74154	${ }^{2} 1.80$	21.70
8N7407	0.35	0.31	$0 \cdot 28$	8×7473	$0 \cdot 37$	0.35	0.32	SN74155	81.40	21.30
8N7408	0.18	$0 \cdot 17$	0.16	SN7474	0.37	0.35	0.32	8N74158	21.40	$21 \cdot 30$
SN7409	0.18	0.17	$0 \cdot 16$	gง7476	0.45	$0 \cdot 43$	0.42	gN74157	81.90	21.80
8×7410	0.15	0.14	0.12	8N7476	0.40	0.39	$0 \cdot 38$	SN74160	$\underline{21.80}$	21.70
SN7411	0.25	0.24	0.23	8N7480	0.67	0.64	0.58	SN74161	21.80	41.70
gx7412	0.35	0.31	0.28	gN7481	21.20	21.15	11.10	gN74162	24.00	28.75
8N7413	$0 \cdot 29$	0.28	0.24	gN7482	0.87	0.86	0.85	8N74163	24.00	83.75
SN7416	$0 \cdot 43$	0.40	0.38	gN7483	21.10	21.05	0.85	SN74164	£2. 20	22.15
SN7417	0.43	0.40	0.38	9ヘ7484	81.00	0.95	$0 \cdot 90$	SN74165	22.25	22.20
8N7420	0.15	0.14	0.12	8N7485	43.80	43.50	\$3.40	SN74166	23.50	23.25
8N7422	0.50	0.48	0.45	8N7486	0.32	0.31	0.30	8N74174	22.30	12.20
857423	0:50	0.48	0.45	S×7489	25.50	25.25	25.00	SN74175	21.60	21.50
8N7426	0.50	0.48	0.45	8.87490	0.67	0.64	0.58	SN74176	22.50	22.40
8N7427	0.45	0.42	0.40	8N7491	21.00	0.95	0.90	8×7417	22.50	22.40
8N7428	0.70	0.65	$0 \cdot 60$	8. 7492	0.67	0.64	0.58	8NT4180	22.00	81.60
SN7430	0.15	0.14	$0 \cdot 12$	8×7483	0.67	$0 \cdot 64$	0.58	8N74181	26.50	25.00
8N7432	0.45	0.42	0.40	8N7494	0.77	0.74	0.88	SN74192	22.00	41.80
8N743:3	0.80	0.75	0.70	8×7485	0.77	0.74	$0 \cdot 88$	SN74184	23.50	23.25
8N7437	0.64	0.62	0.60	8N7496	0.87	0.84	0.78	8N74190	81.95	¢1. 90
8N7438	$0 \cdot 64$	0.62	$0 \cdot 60$	S. 74100	81.65	21.60	21.55	8N74191	E1.90	21.85
8N7440	0.15	0.14	0.12	SN74104	0.97	0.94	0.88	SN74192	21.95	21.90
8 NT 441	0.87	0.64	0.58	SN74105	0.97	0.94	0.88	EN74193	22.00	21.80
8N7442	0.87	0.64	0.58	SN74107	0.40	0.38	$0 \cdot 38$	SN74194	22.70	22.60
SN7433	81.30	21.25	${ }^{21} 1.20$	8N74110	0.55	0.58	0.50	SN74195	12.00	41.90
SN7444	21.30	11.25	21.20	gN74111	21.25	21.15	21.10	BN74196	21.80	41.70
SN:446	21.80	81.77	81.75	8N7418	E1. 00	0.95	0.90	SN74197	81.80	41.70
$8 \mathrm{8N7446}$	0.97	0.94	0.88	8N7419	21.35	81.25	81.10	SN74198	85.50	25.00
SN7447 SN74	${ }_{1}^{11.00}$	0.97 0.97	0.85 0.85	SN74121 SN74122	0.40 81.40	0.37 81.30	0.34 81.10	SN74198 SN74199	80-50	25.00 25.00
NUMEMEATMES										
	MODEL				CD66		GR116	3015 F Minitron	All indleator $0 \cdot 9+$ Decima point. Alt slde viewing. Ful data for al on request.	
	Anode voltage (Vdc)				170 m		175 mln	5		
	Cathode Current (mA)				$2 \cdot 3$		14	8		
	Numertcal Height (mm)				16		13	9		
	Tube Helght (mm)				47		32	22		
	Tube Dlameter (mmi)				19		13	12 wide		
	I.C. Driver Rec.				$\underset{141}{\mathrm{BP}_{1} 41 / 1}$		$\underset{141}{\mathrm{BP} 41 \text { or }}$	BP47		
	PRICE EACH				81.70		21.55	21.80		

INTEGRATED CRRCUIT PAKS
Manufacturers "Fall Outs" which include Functional and Part-Functional Units. These are classed as "out-ofPak No he maker a very rigid ajpechications. but are ideal for learning abo $\mathrm{UICOO}=12 \pm 7400$
UIC01 $=12 \times 7401$ UIC02 $=12 \times 7402$ $\mathrm{UIC0}=12 \times 7403$

$\mathrm{UICO4}=12 \times 7404$ UICOS $=12 \times 7405$ | $\mathrm{U} 1 \mathrm{C} 07=8 \times 7406$ |
| :--- |
| V | UIC10 $=12 \times 7410$ UIC1 $3=8 \times 7413$ UIC $30=12 \times 7420$ UIC40 $=12 \times 7440$ UIC42 $=5 \times 7441$ UIC44 $=5 \times 744$

\section*{NEW COMPDNENT PAK BARGAINS

NEW COMPDNENT PAK BARGAINS
 NEW COMPONENT PAK BARGAINS

No. Qty.
Qty. \qquad
Resistorn mixed values approx. count by weight
Capacitors mired $\begin{aligned} & \text { alues approx. count by welght }\end{aligned}$
Precision Resistors 1%, mlxed values
th W Resistors mixed preferred values
Pleces assorted Ferrite Rods
Tuning Gangs, Mw/Lw/VHF
Pack Wire 50 metres aseorted colours
Reed Suitches
Assorted Pots \& Pre.Bets
Jack Sockets $3 \times 3 \cdot 5 \mathrm{~mm} 2 \times$ Etandard 8 witch Type
40 Paper Condensers preferred types mixed values
Electrolytics Trans. types
ack
Mains Toggle 8witches, 2 Amp D/
10 Assorted Control Knobs
Rotary Wave Change Switch
Relays 6-24V Operating
sheets Copper Laminite approx. $10^{\circ} \times$
C19, C20.

RTL MICROLOGIC CIRCUITS

Price arch
$25-98$
Epoxy TO-б care uL900
Bufter
uLg14 Dual 21/p gate
uL923 J.K flip-fop
Data and Circuita Booklet for IC's Price \%

 BPS 14
BPS 16

\square
\square

The AL50 HI-FI AUDIO AMPL 50W pk 25w (RMS)
0.1% DISTORTIONI HI-FI AUDIO AMPLIFIER
Frequency Response 15 Hz to $100,000-1 \mathrm{~dB}$. Lleadortion-better than 0.1% at 1 kHz . - Signal to noise ratio 80 dB .

Overall alze $63 \mathrm{~mm} \times 105 \mathrm{~mm} \times 13 \mathrm{~mm}$.
qually made to the most stringent specifications using top circultry components and incorporating the lateat the need for all sour A.F. amplle cation needs. BRIIISH MADE. only $£ \mathbf{~} \mathbf{3} \mathbf{2 5}$ each

STABILISED POWER

MODULE SPM80
£2.95
desigud to power 2 of the ALDO Ampliflers, up to 1s watt (r.m.s.) per channel simultaneously. Thin module embodlea the clrcuit protectlon. With the addition of the Mains Transformer MT T80 the unit will provide outputs of up to 1.5 amps at 35 volts. Slze: syatems of the highest quality at a hitherto unobtainable priee. Also ideal for many other applications including: Dlsco 8rstems, Public TRANSFORMER BMT80 £1.95 p. \& p. 25p

STEREO PRE-AMPLIFIER TYPE PA100

Built to a speclfication and NOT a price, and yet stlll the greatest vaiue on the market, the PAl00 stereo pre-amplifier has been concelved from the latent circuit techniquen.
Dealgned for use with the AL50 power amplifier bystem, this quality made unit ncorporates no leas than eight uilicon planar transietors, two of these are apeclally Thres $10 w$ nolge NPN devicen for use In the input atages. fiters are features of the
 ariable bese and treble control

SPECIFICATION:

Frequency reaponse	20 H
Harmonle diatortlon	better than $0 \cdot 1$
puts: 1. Tape head	1.25 mV lnto 50
2. Radio, Tun	35 mV into $50 \mathrm{~K} \Omega$
3. Magnetic P.U.	1.5 mV into $50 \mathrm{~K} \Omega$

Bess control
Treble control
Filters: Rumble (high pasa)
$\pm 15 \mathrm{~dB}$ at 20 Hz
Filters: Rumble (high pass) Slgnal/nolse ratio
Input overload
Supply
Dimensions
Tape and P.U. imputs equallied to RLAA carve Dimensions
within $\pm 1 \mathrm{~dB}$ from 20 Hz to 20 kHz .
SPECIAL COMPLETE KIT COMPRISING 2 AL50'm,
I SPM80, I BMT80 \& I PAIO0 ONLY E23.00 FREE p.
only $£ 11.95$

The STEREO 20

The 'stereo 20 ' amplier is mounted, ready wired and tested on a one-plece chasis measurlng $20 \mathrm{cmi} \times 14 \mathrm{~cm} \times 5.5 \mathrm{om}$
This compact unit comes complete with on $/ 0$ oft switch, volume control, balance, basa and treble controls. Attractively printed front panel and matching control knobs. The 'Stereo 20° has
been deaigned to fit into most turntable plinths without
 arate cabinet.
Output power 20 w peak \quad Input 1 (Cer.) 300 mV into 1 M $\begin{array}{ll}\text { Freq. res. } 20 \mathrm{~Hz} 26 \mathrm{k}, \mathrm{Hz} & \text { Input 2 (Aux.) } 4 \mathrm{mV} \text { into } 30 \mathrm{~K} \\ \text { Harmonic distortion } & \mathrm{Bass} \text { control }+12 \mathrm{~dB} \text { at } 60 \mathrm{~Hz}\end{array}$ £12.25 free p. \& p.

ATTRACTIVE DISCOUNTS
 ON VERY MANY ITEMS WHEN YOU BUY FROM US

electrovilue Electronic Component Specialists

SEMI-CONDUCTORS

Brand new, guaranteed to spec.
No seconds or surplus.
Insulating sets free with power types

SIEMENS CAPACITORS
POLYCARBONATE 5\% TOLERANCE
$2501 ;$ up to $0.1 \mu F: 100 V \cdot 10.14 F$ and above
$0.01 ; 0.012 ; 0.015 ; 0.018 ; 0.022 ; 0.027 ; 0.033 ; 0.047 ; 0.056 ;$ each 4D. $0.068 ; 0.082 ; 0.1 ; 0.12 ; 0.15$ each 4p. 0.18;0.22; each 5 p.
 ELECTROLYTIC
(Values in $\mu \mathrm{F} / \mathrm{V}$)
$0.47 / 100 ; 1 / 100 ; 2.2 / 63 ; 4.7 / 35 ; 10 / 25 ; 22 / 16 ; 47 / 10$: 47/25; 100110 $220 / 3$ each 5 p .
$10 ; 53 ; 22: 35 ; 47 / 35 ; 100: 16 ; 100 / 25 ; 220 / 6 ; 220 / 10 ; 220 / 16 ; 470$ each 78
170/60: 47/63: 100/35; 220/16 each 8p. 100/50: 220/35 each 10 p $17 \mathrm{p} .100 / 25$ 20p. $470 / 63$ each 12p. 220/63: 470/35: 1000/16; each . $\left.\begin{array}{c}\text { 200/25 20p. 470/63; 1000/35 each 23p. } 2200 / 25 \text { 36p. } 1000 / 6 \\ 4700 / 16 \text { each 40p. }\end{array}\right]$ SOLDER

FSOLDERSTAT | SOLRER |
| :---: |
| IRONS |

It's more a catalogue

- and we give $25 p$ REFUND VOUCHER with it

SIEMENS than just you a

The Electrovalue Catalogue No. 6 (4th printing - 96 pages) is as much a manual of aluable technical information as in is a comprehensive. up-to-date catalogue of semi conductors, components, accessories. materials. tools, etc. Ail items are brand new and to makers' specifications. Prices are competitive, there are attractive additional discount offered, and now we include a refund voucher for $25 p$ available for spending on orders for f 5 or more. Send 25p for latest Electrovalue Catalogue now, post free.

- Hundreds of to-day's most wanted Slide and rotary potentiometers transistors, with data and outlines Resistors \& capaci-
- Diodes, thyristors

Resistors \& capaci-
tors in very wide tri-acs fully detailed ranges
s tables

- Switches, relays connectors
- S-Dec. T-Dec.
and connection diagrams

 108 HENCONNER ORNERS TO: 13. Terms C.W.O. or C.O.D Postage 25p extra Trade supplled. S.A.E. With enquiriee. EXPORT ENQUIRILS WELCOMED MAND OPERATE A D-DAY WEEK WCASTLERS NOT TO BE SENT TO SHOP8 MOTting (Clesed Wed.) Tel. 21469 NOTTINGHAM 19 Market St. (Closed Thurs.) SHEFFIELD 13 Exchange St. (Closed Thurs.) STOCKPORT ${ }^{8}$ Llttle Underbank Tel, 480077
SUNDERLAND 5 Market Square (Closed Wed: R.S.C. G66 MkII 6 + 6 WATT STEREO AMPLIFIFIER High Quality Output. Rating I.H.F.M. Ind. Ganged Controis Bass, Treble, Vol. and Balance. solld state consta. employlng 10 Trans:
plus diodes. Range $20-20,000 \mathrm{~Hz}$. Bass control $\pm 12 \mathrm{~dB}$ Treble $\pm 13 \mathrm{~dB}$. Selector switch P. U. or Tape/Radir. Output for 3-15 ohm Apeakers. Standard 2000250v, 50 Hz mains operation. Attractive
COMPLETE KIT OF PARTS INC. $\mathbf{1} 11.50$ OR FACTORY BUILT IN
FULLY WIRED PRINTED CIRCUIT
$\mathbf{F} 14 \cdot 99$ R.S.C.SUPER 30 MKIII HIGH FIDELITYSTEREOAMPIIFIER
 FANS ULTRA HIGH POWER LOUDSPEAKERS

R.S.C.AIO 30 WATT HI-FI AMPLIFIER
 Separate Bass and Treble Controls. Valves EFensit, EF86, ECC83, GZ34, EL34, EL34. plek-aps. Deslgned to high Adelity standards for CLUBS, BCHOOLS, THEATRES, DANCE Electronic Organ, Bass or , etc. For use with Gram Radlo or Tape. For 3 or 15 nhm speakers.

 BS.C.MANS TRANSFORMERS TOLLY GUABAMTEED. Intorleaved and Imprez. Where necousary. Primarien $200-250$ y. 60 Hu. Sc

 For Mullard 510 Amplifier.
$350-0-350 \mathrm{v} .100 \mathrm{~mA} ., 6.3 \mathrm{v}, 4 \mathrm{sa}, 0.5-6.3 \mathrm{v}, 3 \mathrm{a}$.
 $425-0-425 \mathrm{v} .200 \mathrm{~mA}, 8.3 \mathrm{v} .4 \mathrm{a} ., 6.3 \mathrm{v} .3 \mathrm{~s}, 5 \mathrm{~F} .3 \mathrm{a}$

 $250-0-250 \mathrm{v}, 100 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a},, 6.3 \mathrm{v}$.
$350-0.350$ $350-0-350 \mathrm{v} .80 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a} ., 0-5-6.3 \mathrm{v} .2 \mathrm{~s}$. $250-0-250 \mathrm{v} .100 \mathrm{~mA}, 8.3 \mathrm{v} .4 \mathrm{a}, 0-5-6.3 \mathrm{v} .3 \mathrm{a}$
$300-0-300 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}, 0$
$0.5-6.3 \mathrm{v}$

$350-0.350 \mathrm{v} .100 \mathrm{~mA} ., 6.3 \mathrm{v}, 4 \mathrm{~B}, 0-\mathrm{x}-6.3 \mathrm{vv}$.

 $150 \mathrm{w} ., 180 \mathrm{p}$; $250 \mathrm{w} ., 275 \mathrm{p}$; $500 \mathrm{w} ., 575 \mathrm{D}$. 1 OUTPUT TRANSFORMERS
Puah-Pull Pentode $5,000 \Omega$ to $7,000 \Omega$ to 3Ω Push-Pull 10 watta 6V6 ECL86 to 3, 5 , 8
Puah-Pull ELis4 to 3 or 15 a $10-12$ watts
Pukh-Pull Ulitra Linear for Mullard 510 , etc.
Puah-Pull $15-18$ watts, gectional
6 L 6 KT 66, etc., for 3 or 150.
Pash-Pull 20 watt high quality sectionally

R.S.C. BM1 battery elimina
tor completely replaces $1 \cdot 5 \mathrm{v}$
and 90 v . Radio batteries
where normal $200-250 \mathrm{v}$. AC
maing is
$\$ 3.25$ Ready
$£ 3.75$

FANE SPEAKERS 'F OP' ${ }_{12}$ 25/2 25 WATT
HI-FI SPEAKER ENCLOSURES
Teak veneer. flats. Pleasithg desigu.
sE10 outstanding pertormance with H1-P]

 FANE 807T HIGH FIDELITY SPEAKER 8" 10 WATT A full range uait to provide excellent sound quality in suitable enclosure. Roll P.V.C. c.nne surfound and long throw rolce c*ill to achleve very low fundamental resonance of 30 Hz . Tweeter cone extends high note response. Frequency rauge $25-15,000 \mathrm{~Hz}$. Imp 3 or $8 / 15 \mathrm{a}$. (state requirement.) MODEL $803 \mathrm{~T} 8^{\prime \prime} 15 \mathrm{~F}$. with parastic Tweeter keppones 26 Hz to 15 KHz . Gaubs $\mathbf{£ 4 . 9 5}$ $13,000 \mathrm{Imp} 3$ or $8-15$ ohrus. ONLY

 FAAE MOOE DNE SPLAKER KIT Inc. $9038^{\prime \prime}$ unit. 303 Pres- 8ure Tweeter, Printed cs sure Tweeter, Printed elr- cult, inductive capacitive crogeover, panels, screws, $\underset{30-23,000 \mathrm{~Hz}}{\text { Response }}$
 $\$ 9.95$

HIGH FIDELITY SPEAKERS

HI-FI SPEAKER SYSTEMS

TRANSFORMERS

MAINS ISOLATING SERIES
ILPpe (IITH) End Ear Shielded

ALSO AVAILABLE WITH $115 / 120 \mathrm{~V}$ SECONDARY WINDING | Ref. |
| :--- |
| No. (Watts) 16 |
| 07 |
| 100 |
| 61 |
| 30 |
| 62 |
| 55 |
| 63 |
| 92 |
| 128 |
| 129 |
| 190 |
| 100 |

440 V 300 VA ISOLATOR, Primary 440 V Secondary 240V, Centre Tapped
Ref.
No.
113
64
4
66
67
84
93
95
73

VA	Weight Ib oz	Size cm.	Auto Taps		4
(Watts)					
20	11	$7.3 \times 4.3 \times 4.4$	0-115-210	240	0.85
75	114	$7.0 \times 6.4 \times 6.0$	0.115 .210		1.66
150	30	$8.9 \times 6.4 \times 7.6$	0.115 .20	220-240	2.00
300	60	$10.2 \times 10.2 \times 9.5$.	'	3.89
500	128	$14.0 \times 10.2 \times 11.4$.,	"	5.78
1000	160	$11.4 \times 14.0 \times 14.0$	",	",	10.49
1500	289	$13.5 \times 14.9 \times 16.5$.,	"	15.20
2000	400	$17.8 \times 16.5 \times 21.6$	-	"'	19.84
3000	45 B	$17.4 \times 18.1 \times 21.3$	\cdots	"	'26.99

and two Watt totally enclosed auto transformer, complete with mains lead and two 115 V outlet sockets, $67-85$. P \& P 67 P
Also available a 20 Watt version. El .67 . P \& P 22 p .

PRIMARY 200-250 VOLTS I2 ANDIOR

Ref.	mp	Weight	Size cm.	Secondary Windings		
No.	12 V 24 V	16 oz			1.	
111	$\begin{array}{ll}0.5 & 0.25\end{array}$	12	$7.6 \times 5.7 \times 4.4$	$0-12 \mathrm{~V}$ ar $0.25 \mathrm{~A} \times 2$	0.85	22
213	1.00 .5	0	$8.3 \times 5.1 \times 5.1$	0.12 V at 0.5A $\times 2$	1.01	
71	21	12	$7.0 \times 6.4 \times 5.7$	$0-12 V$ ar $1 A \times 2$	1.33	
18	4	24	$8.3 \times 7.0 \times 7.0$	$0-12 V$ at $2 A \times 2$	1.86	
70	6	312	$10.2 \times 7.6 \times 8.6$	$0-12 \mathrm{~V}$ ar 3A $\times 2$	$2 \cdot 24$	4
108	8	4	$10.0 \times 8.3 \times 8.2$	0.12 V at $4 \mathrm{~A} \times 2$	$2 \cdot 48$	
72	10	63	$7.9 \times 10.8 \times 10.2$	$0-12 \mathrm{~V}$ ar 5A $\times 2$	2.94	
17	16 8	78	$12.1 \times 9.5 \times 10.2$	$0-12 \mathrm{~V}$ at 8A $\times 2$	4.54	
115	$20 \quad 10$	1113	$12.1 \times 11.4 \times 10.2$	$0-12 \mathrm{Vat} 10 \mathrm{~A} \times 2$	5.78	
187	$30 \quad 15$	1612	$13.3 \times 12.1 \times 12.1$	$0-12 \mathrm{~V}$ at 15A $\times 2$	10.67	
226	$60 \quad 30$	34	$17.0 \times 14.5 \times 12.5$	$0-12 \mathrm{~V}$ at 30A $\times 2$	19.61	
Re	Amps.	Weight	Size cm.	30 VOLT RANGE Secondary Taps		
112	0.5	4	$8.3 \times 3.7 \times 4.9$	0-12-15-20-24-30V	1.01	
79	1.0	0	$7.0 \times 6.4 \times 6.0$, , .	1.35	
3	2.0	32	$8.9 \times 7.0 \times 7.6$., ",	2.01	
20	3.0	6	$10.2 \times 8.9 \times 8.6$	". ${ }^{\text {, }}$	2.48	
21	4.0	0	$10.2 \times 10.0 \times 8.6$, ".	2.94	
51	5.0	8	$12.1 \times 10.0 \times 8.6$. .	3.66	
117	6.0	78	$12.1 \times 10.0 \times 10.2$.*	4.36	
88	8.0	10	$14.0 \times 11.7 \times 10.0$	" ${ }^{\text {- }}$	5.64	
89	10.0	122	$14.0 \times 10.2 \times 11.4$	\cdots..	$7 \cdot 14$	
Rer.	Amps.		Size cm.	50 VOLT RANGE Secondary Taps		
No.		is oz				
102	0.5	111	$7.0 \times 7.0 \times 5.7$	0-19-25-33-40-50V	1.33	
103	1.0	210	$8.3 \times 7.3 \times 7.0$, , ${ }^{\text {a }}$	1.94 2.69	
104	2.0	50	$10.2 \times 8.9 \times 8.6$., ..	2.69	
105	3.0		$10.2 \times 10.2 \times 8.3$	". ${ }^{\prime}$	3.65	
106	4.0	94	$12.1 \times 11.4 \times 10.2$	",	4.83	
107	6.0	124	$12.1 \times 11.1 \times 13.3$.,	$7 \cdot 14$	
118	8.0	189	$13.3 \times 13.3 \times 12.1$	" ${ }^{\prime}$	9.32	
119	10.0		$16.5 \times 11.4 \times 15.9$	". ${ }^{\text {\% }}$	11.68	
Ref.	Amps.	Weight	Size cm.	60 VOLT RANGE		
${ }_{124}$	0.5		$8.3 \times 9.5 \times 6.7$	0-24-30-40-48-60V	1.35	
126	1.0	30	$8.9 \times 7.6 \times 7.6$		1.88	
127	2.0	56	$10.2 \times 8.9 \times 8.6$, ,	2.94	
125	3.0	88	$11.9 \times 9.5 \times 10.0$, ",	4.48	
123	4.0	10.6	$11.4 \times 9.5 \times 11.4$	\because	5.78	
120	6.0	1612	$13.3 \times 12.1 \times 12.1$	" ${ }^{\text {" }}$	8.37	
122	10.0	232	$16.5 \times 12.7 \times 16.5$	"	13.85	

PRIMARY 200-250VOLTID BATTERYCHARGER TYPES

All ratings are confinuous. Standard construction: open with solder tags and wax impregnation. Enclosed styles to order

TRANSISTORS
TO MANUFACTURERS' FULL SPECIFICATIONS
 $100+\quad 6.0 \mathrm{p}$
Minimum ord $100+45 p$
$500+40 \mathrm{p}$ $25+55 p$
$100+50 p$
$500+45 p$
$000+40 p$
\star Quantity prices on application
Also stocked: SEMICONDUCTORS • VALVES MULTIMETERS • MAINS KEYNECTOR ELECTROSIL METAL OXIDE RESISTORS

RS

BABRIE electronics
11 MOSCOW RQAD, QUEENSWAY LONDON W2 4AH Tel: 01-229 6681/2 NEAREST TUBE STATIONS: BAYSWATER, QUEENSWAY

2 HZ to $\mathbf{2 0} \mathrm{MHZ}$ SOLID STATE BEAM SWITCH

Completely assembled P.C. Board, ready to use on any standard commercial oscilloscope. Size $4 \frac{3}{4}{ }^{\prime \prime} \times 3 \frac{1}{4}^{\prime \prime}$. £9. 25 each. P \& P 25p. Completely encased with attenuators and BNC connectors $£ 25.00$ each.

20 HZ to 200KHZ SINE WAVE GENERATOR

In four ranges. Wien bridge oscillator, thermistor stabilised, amplitude control. 3 V peak to peak. Completely assembled P.C. board, ready to use. 9 to 15 V supply required. $£ 4.85$ each P \& P 25p. SINE AND SQUARE WAVE version of above $£ 6.85$ each. P \& P 25p.

TRANSISTOR INVERTOR

12 V to $1.5 \mathrm{KV} 2 \mathrm{MA} A C$. Size $1 \frac{1}{2}^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime} \times$ $4^{\prime \prime} . £ 2.95$ each P \& P 25 p.

STABILISED POWER UNIT

for BC 221 Frequency meter. Slide-in and connect. $£ 3.75$ each. P \& P 75p.

LARGE RANGE OF OSCILLOSCOPES ALWAYS AVAILABLE WRITE FOR LISTS

MODERN INSTRUMENTS CASES

All aluminium construction, etched chassis with removable blue vinyl cover Small case

Large case
Size $4 \frac{1}{2}^{\prime \prime}$ wide, $1 \frac{1}{2}^{\prime \prime}$ high, $4 \frac{1}{4}^{\prime \prime}$ deep Size $8^{\prime \prime}$ wide, $3^{\prime \prime}$ high, $7 \frac{1}{2}{ }^{\prime \prime}$ deep. with 2 position tilted hinged rest. 95 p each P \& $P 15 p$.

The advertised Beam Switch \& Sine Wave Generator will fit the smaller case

WOBBULATOR

For displaying response of 10.7 MHZ (FM receiver I.F.'s) and $30-40 \mathrm{MHZ}$ (TV I.F. alignment). Requires $6.3 \mathrm{~V} A C$ and any general purpose oscilloscope. Instructions supplied. Completely assembled P.C. Board. £9.00 each P \& P 25p

TRANNIES
R. Hadley
Harlow (02796) 37739

24 WOODHILL, HARLOW, ESSEX (No callers please)

BARGAIN PACKS	
Plastic BCIOS (fully tested) 5p each	
$\begin{aligned} & \text { Unmarked but } \\ & \text { fully tested. } \\ & \text { 2N2926G } \\ & 5 p \text { each } \end{aligned}$	$\begin{aligned} & \text { Minitron } \\ & 7 \text { segment indi- } \\ & \text { cator Type } 3015 \mathrm{~F} \\ & £ 1.50 \text { each } \end{aligned}$
$\begin{aligned} & \text { Unmarked but } \\ & \text { fully tested. } \\ & 2 N 3055 \end{aligned}$	Pack of 25 IN4I48
$\begin{aligned} & 1=9 \\ & 10 \text { plus 22p each } \end{aligned}$	${ }^{50} \mathrm{p}$

LASKYS - NEW DOLBY SYSTEM NOISE REDUCTION UNIT

The new Lasky's NOISE REDUCTION UNIT uses the famous DOLBY 'B' system to provide users o reducing tape hiss by 3 dB , 600 Hz rising to 6 dB , 1200 Hz pertorman at low tape speeds by 3000 Hz . The unit is 3 a at 600 Hz rising to 6 dB at 1200 Hz and 10 dB for all frequencies above DOLEY ' B ' format. Controls are provided for input tavels and cassettes now being issued in the 2 meters are fitted for instant checking of DOL BY level Off tape monitoring is provided by the replay input button when used with 3 head machines. Brief specification. Frequency respnnse: 20Hz in 15 KHz $\pm 1 \mathrm{~dB} 19 \mathrm{KHz} 35 \mathrm{~dB}$. Channel separation: 50 dB at 1 KHz . LASKYS
Signal to noise: better than 70 dB (ref 580 mV . Power
requiraments: $200 / 250 \mathrm{~V}$. AC $40 / 60 \mathrm{~Hz}$. Size $15 \frac{2}{2} \times 9 \times 3 \mathrm{tin}$. PR/CE

Audiotronic 6 Pole
 Quadraphonic
 Decoder
 This new Audioronic Decoder is a fuly transistorised
 and 4 -channel discrete sources. It performs the CBS
 SO matrix decoding function on SQ encoded programme material ladopted by the malority of the world

 manufacturers). from disc. tape or FM radio. The four signals, when reproduced through four amplifiers and four speakers, will be presented as left. right and front, left and right back information. Switehing is provided for: SQ recording and FM Broadcasts. Ambient for enhanced 2 -channel sound by synthesizing foup channels. normai stereo: 2 and 4 -channel record and playback. The master volume contro 40 K ohms Output Imp 300 phms. Frea control for front to back balancing. BRiEf SPEC. Input Imp Power Req. UutpurLASKYS PRICE $\mathbf{E 2 2 . 5 0}$

Be far-seing. protect contacts with EIETTROLIDE

The leading lubricants for electrical contacts. Also Contact Cleaning Strips, Preclene, Silicone Grease, Freezer, Printed Circuit Lacquer. Ask for technical data - call Technical Advisory Department if you have a problem.
Electrolube Limited Slough, Bucks., England Tel : Slough (STD 0753) 25574

WW-061 FOR FURTHER DETAILS
DIGITAL DISPLAY MODULES NEW RANGE

A versatile range of display, counting and storage modules. supplied singly or in multi-digit assemblies complete with colour filters four versions presently available ars :-800-200 OISPLAY
(Illustrated approx. full size)
B00-210 COUNTER/DISPLAY
$800-2204$ - 8 ST STORE/DISPLAY
$800-230$ COUNTERSTORE/DISPLA
All modules have gold-plited edge connectors.

Send for full details.
CAVERN ELECTRONICS (Dept. 201) 29 CLAREFIELD ROAD, LEICESTER LE3 6FB

留"TEXAN

$20+20$ WATT INTEGRATED I.C. STEREO AMPLIFIER * FREE TEAK CABINET $\begin{gathered}\text { with com. } \\ \text { plote kitai }\end{gathered}$
 Speclai Gardeners low fleld slim Iline transtormer解 panel. Compiete HIGH OUALITY \& STABILITY ARE PREDOMINATE FEATURES RELIABILITY AND EASE OF CONSTRUCTION. FACILITIES. On/off switch indicator, headph separate treble, bass, volume and balance controls, scratch and
Radio Tuner, Aux. Can be altered for Mic, Tape, Tape-head, etc. COMPLETE WITH FREE TEAK EABINET

$\mathrm{f} 28.50^{\mathrm{P} \& \mathrm{P}}$ $45 p$
\star SLIM
DESIGN WITH
SILVER TRIM
DESIGN WITH
Overall chassis size
14!"
NET

(As festured In "Practical Wireless", M May to August 1972)

INTEGRATED CIRCUITS

Why buy alternatives when you can buy the genuine article from us at competitive prices from stock?

CATALOGUE

in electronics?
THIS IS A MUST!

fully detalled and trated covering every aspect of $\begin{aligned} & \text { Electronlcs- } \\ & \text { plus data, } \\ & \text { circults and }\end{aligned}$
and $\begin{array}{ll}\text { plus data, clicults and } \\ \text { Information. } & 10,000 \\ \text { Stock }\end{array}$ innes at Special Low Prices

price 55p pas
PLUS!
FIVE10p VOUCHERS

Send to this address-HENRY'S RADIO LTD. (Dept WW) postonly. All ther

BRANDED

 PRICES OF 7400 SERIES ARE CALCULATED ON THE TOTAL NUMBER ORDERED REGARDLESS OF

Type	1/11	12/24	$25 / 99$	pe	1/11	12/24	25/99	
SN7400	20 p	18p	16 p	8N7451	20p	18p	18p	
SN7401	20p	18D	16p	8N745.3	20p	18p	18p	
8N7402	20 p	18p	180	8N7454	20 p	18p	16.	
8N7403	20 D	18p	16 p	SN7460	20p	18p	${ }^{16 p}$	
8 S 7404	20 p	18p	16 p	SN7470	30 D	270	25 p	SN
8N7405	20p	18p	16p	8N742	30 p	27p	25 D	
8N7406	30p	27 p	25p	8N7473	40 p	37 D	${ }^{35 \mathrm{p}}$	
8N7. 407	30 p	27p	25p	SN7474	40p	${ }^{37}$	${ }^{350}$	
8N7408	20 D	19p	18p	SN7475	55\%	52p	${ }^{50 \mathrm{p}}$	
4N7409	45p	42D	35D	8N7476	45 p	${ }^{42 p}$	${ }^{39} \mathrm{p}$	
8N7410	20 p	18p	16p	8N7480	80 p	750	67 p	
8N74il	23p	22D	20p	SN7481	¢1.25	¢1.15	12.10	
8N7412	42p	40 p	35p	8N7482	87p	80 p	70 p	
8N7413	30 p	27p	25p	SN7483	21.00	${ }^{80 \mathrm{p}}$	85 p	
8N7416	30 p	27 D	25 p	SN7484	${ }^{90} \mathrm{p}$	85p	80 p	
BN7417	30p	270	25 p	SN7486	45p	41p	38p	
SN7420	20p	18p	16p	8N7490	75p	70 p	${ }^{65 p}$	
8N7422	48p	44 p	40p	BNT491AN	11.00	${ }^{95 p}$	90 p	
SN7423	48p	44 p	40p	8N7492	75 D	${ }^{70}$	${ }^{65} \mathrm{p}$	
8N7425	48 p	40D	35 p	8N7483	75 p	70 D	${ }^{65 p}$	
SN7427	42p	38 p	35 p	SN7494	80 p	${ }^{750}$	70 p	
8N7428	50 p	45D	42p	SN7495	80 p	${ }^{750}$	70p	
SN7430	20p	18p	16 p	SN7496	21.00	97 D	95 p	
SN7432	42p	38	35p	SN7497	28.25	25. 80	25.00	En7
8N7433	70p	${ }^{61}$	44D	BN74100	22.50	¢2.30	22.00	
8N7437	${ }_{655}$	${ }^{60} \mathrm{D}$	50 p	8N74104	81.45	¢1.35	21.20	gN
8N7438	${ }^{865}$	${ }^{60}{ }^{\text {D }}$	60p	8N74105	21.45	R1.35	21-20	
8N7440	20p	18D	16p	SN74107	60p	450	40 p	8N
SN7441AN	76 p	72D	70p	8N74110	80 p	70p	60p	
SN7442	75 p	72p	70p	SN74118	${ }^{2} 1.00$	${ }^{95} \mathrm{p}$	90 p	8N
8N7448	21.00	95 D	${ }^{90} \mathrm{p}$	SN74119	$21 \cdot 90$	21.78	21.65	8N7
8N7445	22.00	¢1.75	21.60	8N74121	${ }^{60 p}$	${ }^{85 p}$	sop	8N
8N7446	22.00	¢1.75	$21 \cdot 60$	9N74122	81.35	21-25	21.10	SN
SN7447	21.75	11.60	21.45	SN74123	22.70	£2-bS	22.47	8 N
8N7448	21.75	21.60	21.45	gNit141	81.00	95p	${ }^{90} \mathrm{p}$	
8N7430	20D	18D	${ }^{18 p}$	EN74145	21.80	1-40	21.30	
PRICES OF 7400 gerieg are calculated on the TOTAL NUMBER ORDERED HEGARDLESS OF MIX.								
LARGER QUANTITY PRICES PHONE $01-402$ 4891. POST								

 Mains unit (optional) Model PS900 £2.47. Post 20p.

Mains unit for Tuner and Decoder PS6/12 $£ 3 \cdot 25$. Post 20p.		Mains unit for Tuner and Decoder PS6/12 £.3.25. Post 20p.

SILICON	SL4030D PLESSEY	BZY M ${ }_{\text {B }}$ Miature Range
RECTIFIERS	3 WATT R.M.S. I.C.	$\xrightarrow{\text { All voltagei }}$
WIRE ENDED	Complete with 8 pase Data	
Type P.I.V. 1-11		${ }_{\text {cose }}^{100+}$
	Sink 14p). Stereo bop, heat	Any one type.
(N4002 100 7p	Also SInclair IC12 $81 \cdot \mathrm{Bd}$	
		1. Watt 5\%
N4005 600010 P		Miral
	Data/Clircults for above	All voltages
	No.	${ }^{80100}$ each ${ }^{\text {a }}$
${ }^{1} .5 \mathrm{smp}$ minlature		
PL4002 $100{ }^{\text {Pr }}$		
	FREE	Any one type.
PL4005 ${ }^{600}$	Stock List	
PL4007 $1000{ }^{\text {Prem }}$	${ }_{36}^{\text {Ref. }} \mathrm{Re}^{\text {No. }}$	2 Watt 5%
INEAR		${ }^{25 p}$ each.
(0/P AMPS)		
$702 \mathrm{CTO5}$ 75p		
	TRA	EEZ ran
723 C TO99 81.00	DGES. SCR's ZEN	${ }^{88100}$ each.
${ }^{723 C}$ D.1.L. ${ }^{\text {95P }}$	DRS	30p each.
	This advert. contains jus	
	small selection of the thou-	10 W
	Sand for Stock List Today	
	(Quantity prices Phone:	6.8 -100 Vol
72748 P D.IL.L. 60p	01-402 4891.	${ }^{\text {40p each. }}$

Anti-Feedback Quality Mic.,
DJ500 50 watt P A Amplifle
\qquad GROUP 30015 watt rms "Group"' Valve Amplifier ${ }^{154460.00 .}$ FPOFS. DIMMAERS-STANDS. MIXERS.
Everything fír PA-DIsco-Lighting.

- PORTABLE DISCOS-DETAILS ON REQUEST.
\qquad
MINIATURE AMPLIFIER
ransistor. 300 mW olp. Fitted
sensitivity control, 9 volt

5 transistar. 300 mW olp. Fitted volume
and sensitivity control, 9 volt operated
$£ 1.75$ each Plp $15 p$

TRIACS STUD WITH ACCESSORIES			
	Volls	Price	
3 AMP RANGE			
SC35A			
SC35B	200	79p	
SC35D $400 \quad 85 \mathrm{D}$			
6 AMP RANGE (TO48)			
	100		
SC40B 200 90p			
SC40D	400	£1.00	
SC40E 500 £1.20 3 Amp			
SC45A	100	95	T048
SC45B 200 E!.00			
SC45D	400	¢1. 25	
SC50A		c1. 25	
SC50B 200 E1.35			
	400 500	¢1. 65 ¢1.85	
TRIACS-			
Additional Type			
40669 (Piastic) £1.00			
4 4486 (TO5) 80			
NEW BRIDGE RECTIFIERS			
SmALL SIZE ANO LOW COST			
Type Voits Price			
HALF AMP			
B05/05	50	20p	
TUBULAR			
$81 / 05$	50	25p	
B1/10	100	${ }^{25 p}$	
B1/20	200	30 p	
ONE AMP (G.1.)			
W005 ${ }_{\text {TUBLA }}{ }^{\text {W0 }}$			
W01	100	35p	
W02	200	40 p	
W06	600	45p	
TWO AMPS			
B2/100	100	40 p	
B2j200	200	45p	
B2/600	600	50p	
B2/1000 1	1000	60p	
FOUR AMPS			
$14100{ }^{100}$ 60p			
$\begin{array}{lll}84 / 200 & 200 & 65 \mathrm{p} \\ 84 / 400 & 400 & 70 \mathrm{p}\end{array}$			
B4/600 600 75p			
B4/800 AS1X APSA			
861200 200 75 80			
86/400 400 90p			
$86 / 600 \quad 800$			
SILICON CONTROLLED			
RECTIFIERS			
Type	Volts		
Type	P.I.V.	1.11	
ONE AMP			
CRS 1105	50	25p	
CRS 1/10	- 100	30 p	
CRS 1/20	200	30 p	
CRS $1 / 40$	-400	35 p	
THREE AMP (TO48)			
CRS 3105	50	30 p	
CRS $3 / 10$	O 100	30 p	
CRS 3120	200	35 p	1 Amp
CRS $3 / 40$	-400	45p	
CRS $3 / 60$	- 600	55p	T05
FIVE AMP (TO66)			
CRS 51400	00 400	60p	
SEVEN AMP (TO48)			
CRS $71100{ }^{\text {a }} 100$ 60p			
CRS 71200200 65p गT			
CRS 7/400 400 70p			
CRS 7/600 600 95p			
SCR 16100 100 65p			
SCR 16/200 200 70p 3 Amp			
SCR 161400SCR 151600	400400	sop	048
	600600	£1'00	

G. F. MILWARD

Wholesale/Retail:

Special Offer!!!

MULLARD ELECTROLYTIC CAPACITORS

A further 10% discount on lots of 100 of any one type. Please caiculate the weight of your order and include appropriate postage.

RECTIFIERS 1 N4007 1200 peak volts, 30 amps peak current, 1 amp mean current. 100 for $£ 7 \cdot 50,1,000 £ 50$.

Special offer to clearl-5p each; 50p dozen; £3.50 per 100.				
$0.056 \mu \mathrm{t} 50$ volt	0.15 Hf 35 volt	$2.7 \mu \mathrm{f} 15$ volt	$5.6 \mu \mathrm{f} 50 \mathrm{volt}$	27 Hf 20 volt
$0.033 \mu 420$ volt	$0.22 \mu \mathrm{t} 50 \mathrm{volt}$	$2.7 \mu+35$ volt	6.84 t 20 volt	27 ft 35 volt
$0.056 \mu 550$ volt	${ }^{0} .33 \mu \mathrm{f} ~ 50$ voit	$2 \cdot 7 \mu \mathrm{f} 50$ volt	$6-8 \mu+50$ volt	$47 \mu \mathrm{f} 50 \mathrm{volt}$
$0.068 \mu \mathrm{t} 35$ volt	$0.47 \mu 450$	$3.0 \mu \mathrm{f} 12 \mathrm{volt}$	6.8 f 75 volt	$56 \mu \mathrm{f} 15$ volt
$0.688 \mu \mathrm{f} 50$ volt	0.68 仿 35 volt	$3 \cdot 3 \mu \mathrm{t} 5$ volt	$12 \mu+50$ volt	$56 \mu \mathrm{f} 20 \mathrm{volt}$
$0.07 \mathrm{\mu f} 20$ volt	0.68 ¢f 50 volt	4.7 L 35 volt	$22 \mu \mathrm{t} 5$ volt	$82 \mu \mathrm{t} 20$ volt
		$56 \mu \mathrm{f}$ volt	$22 \mu \mathrm{f} 75$ volt	150رf 6 volt
$0.12 \mu \mathrm{t} 35 \mathrm{voit}$	$1.5 \mu \mathrm{f} 20$ volt	$5.6 \mu \mathrm{f} 35$ volt	$18 \mu \mathrm{t} 35$ volt	$270 \mu \mathrm{f} 6$ volt

An aerosol spray providing a convenlent means of producing any number of coples of a Method: Spray copper laminate board with light sensitive spray. Cover with transparent film upon which circuit has been drawn. Expose to light. (No need to use ultra-violet.) Spray with Light sensitive aerosol spray
Developer and Etchant 51.0
Sop
NEWER THAN NEWIII
Fibre Glass Board pre-treated with light-sensitive lacquer enabling you to produce
prototype printed circuits within five minutes. 75 mm
$\times 100 \mathrm{~mm}$
$150 \mathrm{~mm} \times 100 \mathrm{~mm}$
$150 \mathrm{~mm} \times 200 \mathrm{~mm}$
Epoxy-Res/n

$75 \mathrm{~mm} \times 100 \mathrm{~mm}$
$100 \mathrm{~mm} \times 150 \mathrm{~mm}$
150

Plain Fibre Glass Board, copper-clad one side
Bakellte Laminate Board, 4.57 mm thlek
1 sq. foot

£1

£1
Prackes ${ }^{\text {a }}$
£1

MULLARD POLYESTER CAPACITORS

 20p dozen; $£ 1-100 ; £ 6 \cdot 50-1,000 ; £ 50-10,900$ VEROBOARD

 $\times 0.151 n 74 p$
$\times 0.1 \mathrm{in}^{21 p}$ $0.15) 36$ for 18 p. Speclai
Cutter-50p. Terminal Pins (0.1 or 0.15)
ards and a Spot Face Cutt

$$
\begin{aligned}
& \text { Poclai } \\
& \text { :ODDS \& }
\end{aligned}
$$

(Comaes, Dlamond Needie, £4.75. ACOS 101 (Com-
patble, Crystal) £1, ACOS GP $93 /$ (Stereo,
(Stereo, Crystal, Dlamond) \&1.63. ACOS
ACOS GP 9411 D (Stero, Ceramic, Dlamond) ACOS GP 94/1D (Stereo, Ceramic, Dlamo
two L.P./Siereo needlea) $£ 1 / 25$.
NTEGRATED CIRCUITS TEGRATED CIRCUITS
\qquad

\qquad $£ 1$
\qquad
Microwave Mixer
\qquad . $£ 20$
Microwave Gunn Effect Oscillator
Microwave Gunn Effect Oscillator
CL 8370
CL 8380
\qquad
Microwave Tunnel Dlodes
$\begin{array}{ccc}\text { Microwave Tunnel Dlodes } \\ \text { AEY } 13 & . & \cdots \\ \text { AEY } 16 & \cdots & . . \\ \text { R. } & . .\end{array}$
R.F. Transistors

180
194
124

25 p
\qquad 10p
10p

COY 11 A mitters ${ }^{84}$
OCP 70 20p

f1 masortewuse TR Witetested BCIOA ETC.

1 TRANSISTORISED
SIGNAL TRACERKIT ITRANSISTORISED
SIGNALINJECTOR KIT

Type SD. $480 \times 46 \mathrm{~mm} \times 59.5 \mathrm{~mm}$ Fronts			
$50 \mu \mathrm{~A}$	12.40	500 mA	22.15
$50-\mathrm{a}-50 \mu \mathrm{~A}$	22.35	1 smp .	22.15
$100 \mu \mathrm{~A}$	22.35	5 amp .	22.15
100-0-100 A	22.35	${ }_{5} 10 \mathrm{amp} \mathrm{P}^{\text {d }}$	${ }_{2}^{22.15}$
$200 \mu \mathrm{~A}$	22.35	10 V D. C	${ }_{22} 15$
500 ma	22.20	20V. D.C.	22.15
1 mA	22.15	50 V . D.C.	22.15
5 ma	22. 15	300V. D.C	22.15
10 mA	22.15	15 V A.C.	22.30
50 mA	28.15	300 V . A.C	22.30
100 mA	22.15	VU Meter	22.55

* MOVING IRONALL OTHERS MOVING COIL

 CLEAR PLASTIC PANEL
POWER RHEOSTATS

figb quallty ceramle construction. Windinga embedded in vireous enamel. Heavy duty brush wiper. Continuous rating. Wide range avallable ex-stock Single hole finng, zin. dia. shaits. Buik quantitles avalable. 90 p. P. \& P. 10 p
25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1000 / 1500 / 2500$ or 5000 ohras. 90

"YAMABISHI" VARIABLE VOLTAGE TRANSFORMERS
Excellent quallty - Low price - Immediate delivery

MODEL A-260

MODEL $\$ 260$ B Panel Mounting

1
2.5

 INPUT 230 VOLTS. output varlable 0.260 volts

Special discountr for quantity

AUTO TRANSFORMERS
/115/230x. $80 \mathrm{~W} \quad 22.10$ P. \& P. 18 p
$300 \mathrm{~W} \quad 2270$ P. \& P. 18p
$500 \mathrm{~W} \quad 25.25$ P. \& P. 33p
$1000 \mathrm{~W} \quad 87.50$ P. \& P. 38p
$1500 \mathrm{~W} \quad 210.20$ P. \& P. 43p
2250 W \&17.25 P. \& P. 50p

230 VOLT A.C. 50 CYCLES

RELAYS Brand new. 3 sets
contacts at 5 amprating. 50 p each
Post 10 p (100 lots $£ 40$). Quantities available.

METERS

EDGWISE METERS

Tspe P.E.70. 3 17/32in. $\times 115 / 32 \mathrm{in} . \times 21$ in. deep

'SEW" BAKELITE PANEL METERS

240° WIDE ANGLE I mA METERS $\begin{array}{ll}\text { MW1.6 } & 60 \mathrm{~mm} \text {. } \\ \text { MW1. } & \text { square } \\ 23.97 \\ \text { M }\end{array}$

RP214 REGULATED POWER SUPPLY Solid state. Variable output 0-24V DC up
to 1 amp. Dual Bcale meter to monltor

PS.I000B REGULATED P.S.U.

Solid state. Output 6. 9 or 12 V. D.C. up to monitor current. In
put $220 / 240 \mathrm{~V}$. A.C. Bize $4^{*} \times 31^{*} \times \times . \times 12$.
£11.97. Post 25p.

LB4 TRANSISTOR TESTER
Teats PNP or NPN tranalstora
Audlo indlcatlon. Operates on tro 1.5 v batteries. Compiete with all instructions etc. $£ 4.50$. Post 20 p.

[^7]

Industrial quality in rohust metal cases. Batter operation. Volume and 8quelch controls. Ca
button and press to talk button. Telescopic aerial. Complete with carrying case

HOMER INTERCOMS Ideal for home
office, stores, factorles offce, stores, factorles with batteries, cable
and free instructions 2 Station £2. 97 . Post 15p 4 Station 256 62. Poot 17p

Send SAE for list of Semi Conductors and Valves

G. W. SMITH
 \& Co. (Radio) Ltd.

Also see next three pages

MULTIMETERS for GUERY puppose?

MODEL 1092 Testmete 5,000 O.P.V.
$0 / 3 / 15 / 150 / 300 / 1200$ V. D.C $0 / 300 \mu \mathrm{~A} / 300 \mathrm{MA}$ $0 / 10 \mathrm{~K} / 1 \mathrm{meg} \Omega$ Dectbels -10 to +16 db
$\mathbf{2} 2.75$ each. Post 15 p .

 20.000 O.P. V. Overlogd protec-
t10n $5 / 25 / 100 / 500 / 1000$ VDC. thon $10 / 50 / 250 / 1000$ VAC. $80 \mu \mathrm{~A} / 250$

HIOEI MODEL 730工

30,000 O.P.V. Overload pro-
tection, $6 / 30 / 60 / 300 / 600 / 1200$

$\begin{array}{ll}\text { 20,000 } \\ \text { MODEL } \\ \text { O.P. TE } & \text { TE/ } 12 \\ 0 / 0 \cdot 6 / 6\end{array}$ $6001,200 / 3,000 / 6,000 \mathrm{v}$. D.C $0 / 6 / 30 / 120 / 800 / 1,200 \mathrm{v}$ $\begin{array}{ll}0 / 60 \mu \mathrm{~A} / 6 / 60 / 600 \mathrm{~mA} . & 0 / 6 \mathrm{~K} \\ 800 \mathrm{~K} / 7 \mathrm{Meg} .60 \mathrm{Meg} . \Omega & 50 \mathrm{pF}\end{array}$ 0.2 mFd . E5. 87 . Poet 17

MODEL TE-200 lood protection. 0/5/25/125/1,000 D.C. $0 / 10 / 50 / 250 / 1,000 \mathrm{~F}$, A.C. $0 / 50$
$\mu \mathrm{~A} / 250 \mathrm{~mA} .0 / 60 \mathrm{~K} / 6 \mathrm{meg}$. $\mu \mathrm{A} / 250 \mathrm{~mA} .0 / 60 \mathrm{~K} / 6$ mega.
to +62 db .88 .65. Post 15 p.

MODEL 50080,000 O.P.V with overload, protection,
mirrur scale. $0 / .5 / 2.5 / 10 / 25 /$ mirpor seale. 0/.5/2.5/10/25/
$100 / 250 / 500 / 1,000$ v.
$0 / 2.6 / 10 / 25 / 100 / 250 / 500 / 1,000$ $0 / 2.6 / 10 / 25 / 100 / 250 / 50011,000$
$\mathrm{\nabla}$ A. $0.0 / 50 \mathrm{HA} / 5 / 50 / 500 \mathrm{~mA}$.
 60 meg Ω. 28.87. Post pald.

Our Price 45 -97. Post 25 p
Our Price 45 -97. Post 25 p
Our Price 45 -97. Post 25 p

ROUND SCALE TYPE PENCIL TESTER MOLEL TS. 68

Cormpletely portable, simple to use pocket uized tester. Ravger: $0 / 3 / 30 / 300 \mathrm{Y}$ A.C. and D.C. at Pout I3p.

LT801

MOLTMETER
Now style 20,000
opp. pocket
multmeter. 250 /

2500 V . D.C.
$10 / 50 / 100 / 500 / 1000 \mathrm{~V}$. A.C
$50 \mu \mathrm{~A} / 250 \mathrm{~mA}$. $6 \mathrm{~K} / 6 \mathrm{meg}$ ohms. -20 to +22 db
$\ddagger 375$. Post 20 p .
 MODEL TH-12
20,000 Op.w, Overload pro-
tection. Bilde swltch aelector. tection. Bilde switch selector. D.C. $0 / 50 \mu \mathrm{~A} / 25 / 250 \mathrm{~mA}$ D.C.
$0 / 3 \mathrm{~K} / 30 \mathrm{E} / 300 \mathrm{~K} / 3 \mathrm{meg}$.

MODEL C-7080 EN
Giant
Bin. mirror bcale. Grant Bin. Inirror scale.
20.000 o.p....
$0 / 25 / 1 / 2 \cdot 5 / 10 / 50 / 250 / 1000 /$ 5000 V . D.C.
$0 / 2.5 / 10 / 50 / 250 / 1000 /$
5000 V . A.C. $0 / 50 \mu \mathbf{A} / 1 / 10 / 100 / 500 \mathrm{~mA} /$ 10 mmp. D.C.
$0 / 2 \mathrm{~K} / 200 \mathrm{~K} / 20 \mathrm{meg}$.
+50 db .

U4312 MULTIMETER

Selected TEST EQUIPMENT

 $0 / 10 \mathrm{~K} / 1 \mathrm{MEG} / 100 \mathrm{MEG}$.
Translstor teater measures Alpha, beta and Ico. Complete with batteries, instructiona and leads. . Pobt 25p.

cho 0-5000uA. 220/240V. A.C. operation.
17\%-50. Post 25 p .
RF-300 AF/RF SIGNAL

All tranalstorsed, com-
AF alne wave 18 Hz . to
220 KHz .
AF gquare wave 18 Hz .
to 100 KHz .
Output sine $/$ ig quare 10 v . Output elne/rquare 10 v .
P-P. HF 100 KHz . 200 MHz . Output 1 V
maximum. Operation $220 / 240 \mathrm{v}$. A.C.
 Post 50p.

Accurste wide range aignal
generator covering $120 \mathrm{Kc} / \mathrm{s} \cdot$
$500 \mathrm{Me} / \mathrm{B}$ on 6 baids. Direcly

 Xtal sooket for calibration.
$220 / 240 \%$. A. Brand new 220/240V. A.O. Brand new
with Intructions. 215 . Carr.
37p. Slze $140 \times 215 \times 170$ mm .

MODEL L-EE FET V.O.M.
 Input impedance 10 meg

h/38. $2 / 2 / 6 / 30 / 120 / 600$ V. D.C
$0 / 3 / 1 \cdot 2 / 6 / 307120 / 600$.
$0 / 3 / 12 / 80 / 120 / 600$ V. A.C
$0 / 20 \mathrm{uA} / 120 \mathrm{~mA}$. D.C.
$0 / 122 \mu \mathrm{~A} / 12 \mathrm{~mA} . \mathrm{D} . \mathrm{C}$.
$0 / 1 \mathrm{~K} / 100 \mathrm{~K} / 10$ meg
ohms. 815.97 . Poot 25 p .

For perio tronl AMP Sens VRM AMP Sens V trig

CI- P PULSE
OSOLLOSCOP
display of pulsed and perlodic waveforme in elec-
conic circulta. VERT. AMP, Bandwidith 10 MHz . Sensitivity at 100 KHz
RMM/mm. $1.25, \mathrm{HOR}$.
AMP. Bundwidth 600 KHz .
ensititivy
triggered ${ }_{\text {axeep }} \quad 1$ Preat 3,000 usec.; free running $20-200,000 \mathrm{~Hz}$ in nine ranges. Callbrator plps. $220-360 \times 430 \mathrm{~mm}$.
$115-230 \mathrm{~V}$. A.C. TO-3 PORTABLE OSCILLOSCOPE. 3" TUBE y amp. Senaltivity. IV
$\mathrm{p}-\mathrm{p} / \mathrm{CM}$. Bandwldth 1.5 cps

 $\begin{array}{ccc}\text { bandwldth } & 1.5 \mathrm{Gr} & \mathrm{p}-\mathrm{p} / \mathrm{CM} \\ \text { eps-800 }\end{array}$ KHZ. Input imp. 2 meg Ω 10 cpe - 300 KHZ . Kyn
chronizaton. Internal/ex chronizatlon. Internal/ex $140 \times 215 \times 330 \mathrm{~mm}$. Wheight 15 tlbs . $220 / 240 \mathrm{~V}$, A.C. supplied brand new with handbook
\& 40.00 . Carr. 50p. $£ 40.00$. Carr. 50 p .
RUSSLAN CL-16 DOUBLE
BEAM OSCILLOSCOPE BEAM OSCILLOSCOPE
me/s Pasa Band. Separate Y 1 and $Y 2$ ampligers. Rec.
tannular
Cin. tangular 5 in. \times 4in. C.R.T.
Callibrated triggered *weep
from-2 per cm. Free running time time base callibrator and plled complete with all

gigna Tranditorised $40 \mathrm{kHz}-80 \mathrm{mHz}, \quad$ An
Inexpenalve instrument Inexpenalve instrument
for the handyman for the handyman.
Operates on 9 g buttery.
Wite Whe ensy to reand acale 800 kHz modulation Complete $\times 3$ ifh iningtr
ilone and lende.
RY. Compiete Mith ingtruo-
tione and leads. 87.87.
Post 25 p .

TRANSISTORISED L.C.R. A.C MEASURING

bridge offering er
cellent range and
accuracy at low cont. Ranges at low cont
 RinEs. ${ }^{6}$ Rangen-
2% C. $10 \mathrm{PF} \pm$ \pm 2\%. TURNS Ratio $11: 1 / 1000-1: 11100$ 6 Ranges $\pm 1 \%$. Bridge voltage at $1,000 \mathrm{CPB}$ Attractive 2 tone metal case. Size $71^{\circ} \times 5^{\circ} \times 2^{*}$.
220. Post 250 £20. Post 25p

BELCO AF-5A SOLID STATE SINE SQUARE WAYE C.R. OSCILLATOR
 (10 K ohms). Opers.
tion internal batteries. Atrractive 2 -tone case
$74 \mathrm{in} . \times 8 \ln . \times 2 \ln$. Price 217.50
Cart.

MODEL MG-100

 GINE SQUAREWAVE AUDIO
GENERATOR

 $\times \quad 90 \mathrm{~mm}$. Operation $220 / 240 \mathrm{v}$ A. O .
417. 50 . Pont 37p.

MODEL ATRO1 DECADE Frequenoy range:
$0-200 \mathrm{KHz}$. Attenuator: $0-111 \mathrm{db}$. 0.1 db . $\begin{aligned} & \text { tep. } \\ & \text { Impedance } \\ & 800 \\ & \text { ohms. }\end{aligned}$
Max. Max. input
30 dbm.
Size $180 \times 80 \times 55 \mathrm{~mm} .812 \cdot 60$, Post 87 p

MODEL U4311 MOLTI-RANGE
VOLT AMMETER Sensitivity 330 ohms/
Volt A.C. and D.C. Accuracy $\cdot 5 \%$ D.C.
1% A.C. Scale length 185 mm $0 / 300 / 7504 \mathrm{~A} / 1 \cdot 5 / 3 /$
$75 / 15 / 30 / 75 / 150 / 300 /$ $750 \mathrm{~mA} / 1 \cdot 5 / 3 / 7 \cdot 5 / \mathrm{AMP}$. D.C.
$0 / 3 / 7 \cdot 5 / 15 / 30 / 75 / 150 / 300 / 750 \mathrm{~m} / 1 \cdot 5 / 3 / 7 \cdot 5 \quad$ AMP. A.C. $75 / 150 / 300 / 750 \mathrm{mV} / 1 \cdot 5 / 3 / 7 \cdot 5 / 15 / 30 / 75 / 150 / 300 /$ T50 V
$0 / 750 \mathrm{mV}$ V $/ 1 \cdot 5 / 3 / 7 \cdot 5 / 15 / 30 / 75 / 150 / 300 / 650 \mathrm{~V} . ~ A . C . ~$ Automatic cut out. gupplied complete with test
leade, manual and test certificates. \$49. Poet 50 p.

G. W. SMITH
 \& Co. (Radio) Ltd.

Also see opposite page
and next two pages

UNR 30 RECEIVER
Bande covering $550 \mathrm{xc} / \mathrm{B}, 30 \mathrm{mc} / \mathrm{s}$. B.F.O. Built in Speaker 220/240v AO.
thons. $\mathbf{~ 1 1 5 \% \% 5 . ~ C a r r . ~ 3 7 p . ~}$

UR-1A BOLID STATE COMMUNICATION 4 Banda covering $550 \mathrm{kc} / \mathrm{a}-30 \mathrm{me} / \mathrm{p}$. FET, S Meter. spread, Bensitivity Control. 220/240v. A.C. or
12 v D.C. $12 z^{*} x+\mathrm{y}^{\prime \prime} \times 7^{\prime \prime}$. Brand new with in-

SKYWOOD CX203 COMMUNICATION RECEIVER

0000000.

Solid state. Coverage on 5 bands, $200-420 \mathrm{KHz}$ and 55 to 30 MHz . 11 uminated slide rule dial. " F meter. AM/CW/BS B. Intcgrated Apcaker snd phone 日ucket. Operation 220/240v Ac or ine $325 \times 266 \times 150 \mathrm{~mm}$. Complete whth instructions and circuit. £28.50. Carr. 50 p.

LAFAYETTE HA-600 sOLDD STATE
RECEIVER

variable B.F.O., noise limiter, 8 Meter, Band. spread. RF Gain. $15^{*} \times 91^{\circ} \times 82^{*}$. 18 Ib. $220 / 240 \mathrm{v}$
A.C. or 12 V 1). Brand new with inatructions. \&50. Carr. 50 p.

Spare movements for Model 8 or 9. (Fitted with Mpare movements sar bailel or for any multimeter.
Mrand gew and boxed. 23.50 . Poot 25p.
honeywell
DIGITAL
vOLTMETER
VT. 100
Can be panel or bench mounted. Basic meter
mensure 1 volt DC, but can be used to measure a wide range of AC and DC vole, current and ohma with optional plug in cards. 8pecifcation: Accuracy: $\pm 0.2_{2} \frac{t}{3} 1$ digit. Resolution: 1 mV . Overrange: $\mathbf{1 0 0} \%$ (up to 1 -g99). Input tmpedance: 1000 Meg ohm. Measuring cycle: 1 per zecond. Adjustment: Automstic zeroing, full scale adjustment against an internal reference voltage. ($\mathbf{3}$ poles). Input power: 110 -230v. A.C. $60 / 60 \mathrm{csclec}$.
 GUATLABLE
635.50 Carr. 50p.

SINCLAR IC-12

Litt price $82 \cdot 98$ our price \& 1.80 Poot 10 p .

SPECIAL OFFER OOODMANS AXIOM 301 Hi Fi l2in. 20 watt twin cone
full range apeaker. 30 . $16,000 \mathrm{~Hz}$. 16,500 gaues. 8
him impedancc. Brant new
 Carr 50 p

EMI LOUDSPEAKERS Model 350. $13^{*} \times 8^{7 \prime}$ with single tweeter/crossorer. $\mathbf{H z}$. 5 watt RMS. Available $8{ }^{8} \mathbf{8 7} .25$ each. Post 37 g. Model 450. $3^{\prime \prime}$ x 8° with twin
tweeters/crossover. $55-13,000$ Hz. 8 watt RMs. Available ${ }_{8}^{8}$ or 15 ohris 62 each. Post $25 p$.

TE 1018 DE-LUXE MONO HIGB IMPEDANCE HEADSET
Sensitive, soft earpads,
adjustable headband. Mag. adjustable headband. Mag*
netic,
impedance 2,500

SPECIAL OFFER! STEREO SPEAKERS Matched pair of stereo
bookhtely speakers. De luxe teak veneered fnish. luxe teak veneered
gize $141 \mathrm{ln} . \times \times 9 . \times$
7 tin. 8 ohms $\quad 8$ watt 7 tin. 8 ohms 8 watt
RMS. 16 watt peak.
Coruplete with DIN lead. Conplete with DIN
$\mathbf{8 1 2 . 9 5}$ pr. Carr. 50 p .

MW/LW

CAR RADIO
Fully transistorised
dual wavehand. Size
61 in . $\times 44 \mathrm{in} . \times 21 \mathrm{n}$
${ }^{\text {12v. }}$ Pos. I.C. Carth. Complet

leads.
ONLY 4750. Post 20p.
SUPER BARGAIN!

B-TRACK CAR STEREO

 TAPE PLAYER

Tone, volume and balance controls. Track
selector. Complete with matched pair of stereo speakers, connections and fittings.
ONLY 215.95 . Post 30 p.
B.S.R.TD8S

8-TRACK
STEREO
TAPE PLAYER
DECK

Integrated preamps (output 125 mV) to feed into any stereo amplitier. Automatic and manual programme selector.
$210 / 240 \mathrm{~V}$ A.C. OUR PRIC
Csirt 50 p . B8R TD83V $£ 18.05$ CgT, 50 p .

GENUINE BARGAIN!

zoss sp .3 xC GTEADPBONES
Response $10-15.000 \mathrm{~Hz}$,
Impedance
$4-6$ Brand new, hoxed and fully ${ }^{\text {fal }}$ giaranteed. (LISt
OUR
PRICE ${ }_{86}^{89} .50$. Post 25 p .

1081 btereo ligtenina station

For balaicing and gain
selection of loud. speakers with of lditional.
tacility for
atereo Cacillty for tereo head
plone swithhing. 2 gain
controle Sontrols, speaker on-oft
Blide switeh, tereo head
phonc sockets. $6^{\prime \prime} \times 4^{*} \times 2 t^{*}$. 22.25 . Post 15 p .

Special offer: ROTEL RH700
STEREO HEADPGONES $20-20,000 \mathrm{~Hz}$. 8.1 B . ${ }^{\text {ohm }}$. £675. Poat 251.

HA-40 STEREO AMPLIFIER

ates from magnetic
Ceramic or tuner inputs with twin stereo head-
phone outputs and separate volume controls for

Hosiden de-08s De-LUXE stereo head-

KAMODEN HMG-500
INSULAT
Range 0.1000 Meg
Ohme,
500
${ }^{\text {ohminf, }}$ Battery ${ }^{500}$ operated. Wide range clear
 Complete with de
luxe carrying case,

Pugt 30p.

NEW GARRARD MODULES

Popular range of Garrard decks with Shure arnage ated in de laxe phinth with hinged lid
 Zero 100S Module/M93E Carr. 50p extra any item.

TRANSISTORISED FM TUNER

Trangistor
HIGH
QUALITY HIGH QUALITY
TUNER SIZE
ONLY 0 NLY $\mathrm{Yin}. \times 4 \mathrm{in} . x$
21 n .3 I.F. stages. Double tuned discriminator. A mple
output to feed mont smplisers. Operates
$88-108 \mathrm{Mc} / \mathrm{s}$. Ready on 9 volt battery. Coverage as- Fantastic value for money. buit resay for
\&6. $\mathbf{3 7}$ 1'0st 12 p
STEREO MULTIPLEX ADAPTORS, £4.97

FANTASTIC OFFER!

NIKKO TRM 50 STEREO AMPLIFIER

$17+17$ watts rms stereo amplifier with inputs for Magnetic and Crystal
phono, Tuner, Tape, Aux. and Tape Monitor. Outputs for two pairs of stereo speakery and Tape. Stereo headphone socket. Full range of controls
including loudness control, scratch flter etc. Size 13 in. $\times 9$ in. $\times 3$ in nelliding loldness control, scratch
Unrepeatable offer-limited stocks!

DELTA 30 SYSTEM
Leak Delta 30 stereo amplifier, Goldrlag GLzs plinth, cover and G800 cartridge. Pair of Leak 150 speakers and all leads.

AMSTRAD
8000 II SYSTEM
Amstrad 8000 II
$7+7$ watt ampli-
fier. BER MP60

 cartridge, pair of
Apolo syeakers anit all leads.
Amplifier Amplifer only,
ع14:50. Carr. 50 p .

OUR

 AUDIOTRONIC
 LA. 1700 SYSTEM

${ }_{\text {stereo }}^{17}+\underset{\text { amplifier. }}{17}$ wat Garrard AP76 with cartridge, teak ver. eered plinth with Wharfedale Linton 2 apeakers in match
$\underset{\text { PRICE }}{\text { OUR }} \mathbf{£ 9 2 . 9 5}$
Matching LTT1700 AM/FM Stereo Tuner $\mathbf{2 3 8 . 0 0}$
SUPER MONEY
SAVING OFFER!

CREDIT TERMS NOW AVAILABLE FOR MAIL ORDER CUSTOMERS ON PURCHASES OF E100 AND OVER. Minimum deposit 20% Balance over 12, 18, 24 or 36 months.

WHARFEDALE LINTON SYSTEM

MONOTONE 6750 SYSTEM

Monowno AM/FM +4 watt stereo tuner 2025 T/C, plinth and cover, stereo matching speakers and all leade.
OUR PRICE
$.50 \underset{\substack{\begin{subarray}{c}{\text { cerrion } \\ \text { sion }} }} \\{\hline}\end{subarray}}{ }$

Amplifier only, 222.95 . Post 50 p
TRIO
KA 2000A SYSTEM

Trto KA 2000A $16+16$ watt amp-
iffer. BSR MP60, lifier. BSR MP60, plinth and cover,
Goldring G800 cartridge, pair of Denton 2 speakers
${ }_{\text {PRICE }}^{\text {OUR }} \mathbf{~} \mathbf{7 9 . 9 5}$: Matching Trio KT 1000A $\triangle M / F M$ atereo tuner, 550.95 extra if required.

SPECIAL PURCHASE!

$10+10$ atts rms. Five pusa buttons with sepa-
rate scales for pre-tuning to desired FM station. Housed in a handisoning to whesired FMut finished cabinet with B8R P128/MP60 recorc deck with Goldring
G800H stereo magnetic carrialge. Offered complete with cover and a pair of matching Medway peakers, size 18×1
ODAY's Value OUR \& 5 $\begin{array}{cc}\text { TT LFAST } \\ \& 125! & \text { PRIC: }\end{array}$

AI-FI EQUIPMMENT SAVE UPTO 33 $\frac{1}{3} \%$ OR MORE

SEND S.A.E. FOR FULL DISCOUNT PRICE LISTS AND PACKAGE OFFERS

SAVE EEEs

TRANSCRILIPS GA308

LEAK BARGAINS

ROTEL BARGAINS!

RA210 Amp.
RA310 Amp.
RA610 Amp.
RX150 Receiver
RX200 Receiver

Smproves the performance of cassette and semiprofessional recorders. Reduces talpe hiss by
3 dB at $600 \mathrm{~Hz}, 6 \mathrm{~dB}$ at 1200 Hz and 10 dB for all frequencies above 300 Hz . Controls for innut
levele and noise reduction on record and levels and noise reduction on record and replay.
2 meters for Dolley level. Off tape monitoring.
 $19 \mathrm{kHz}-35 \mathrm{~dB}$. Aize $15 \mathrm{H}^{\prime} \times 9^{\prime} \times 34^{\prime \prime}$. A.O. $200 /$
250 V .
$\underset{\text { RRICE }}{\text { OUR }} \mathbf{£ 3 2 . 5 0}$
AKAI BARGAINS!

MODEL AA6300 AM/FM STEREO TUNER AMPLIFIER $20+20$ watts rms. Inputs for magnetic and 20-40,018. Bass, treble, volurne aud loudnes controls. Frequency range FM $88-108 \mathrm{MHz}$
AM $53 \overline{2}-1605 \mathrm{kHz}$. Headphone socket. Output for
two pairs of sueakers. two pairs of ${ }^{8}$
Price $\dot{x} 123.85$.
$\underset{\text { PRICE }}{ } \mathbf{f 8 2 . 5 0} \underset{\substack{\text { Post } \\ 50 \mathrm{p}}}{ }$
AKAI AA8030 Receiver $2111 \cdot 50$ Post 50 p. AEAI AA8080 Receiver $£ 149 \cdot 95$ Post 50 p

RECORD DECK PACKAGES
(Post 50p).
Decks supplied with
stereo cartridge ready
wired in plinth ready
cover.
Garrard 2025TC/9TAHOD
Garrard 2025TC/9TA 10
Garrard sp25 III/M75-
Carrard SP25 III/M44-15

Garrard AP76/M75-6
Garrard AP76/M65E
Garrard AP76/M75E.J
Garard AP76/M44E
Garrard AP76/M75
B. S.R. Mel) onald MP60/G800
B.S.R. Melonald MP60/M44-7
B.S.R. MeDonald MP60/M4.4-K

Goldring GL75/G800

SPECIAL PURCHASE! NEAT G3OJ STATIC
BALANCE PICK-UP ARMS

\Rightarrow

Identical sivecification to NWAT G30 arm but
svith two-tone chrome and black finish. Complete with head shell, pick up rest aud plag in phono leads. 13 RAND NEW-FULLY GUARANTEED. ONLY \&8.95. Poat 25 p.

RECORD DECKS (Post 50p.)	
B.S.R. MeDONALD	
C114 Mint $\mathrm{Ef4}^{4} 97$	
Cl29 Mono. . 26.50	
C137....... 88.35	
MP60 89.75	
${ }^{610} \ldots \ldots \ldots$. . $212 \cdot 65$	
	TD100 Teak. . 255.85
$210 / T P D 3$ MP60/G800	TD100 Teak... 568.86 TDI00 White 808.25
M P60/TPD1. \&10.05	Goldrina
M1'60/TPD1/	GL69/2 818.60
6800 818.50	${ }^{\text {GL72 }}$. 820.95
MP60/TPD2 ${ }^{\text {c }} 14.35$	
${ }^{610 / T P D 1}$... 818.95	Plinth 69/72.. 87.02
$510 / \mathrm{TPD1}$. . 817.98	Lld $72 . . .{ }^{\text {a }}$. 23.25
HT70 . . 213.98	¢L75 …)... £28.95
HT70/G800, . 817.25	9L75P …). $\mathrm{E} 35^{25}$
HT70/TPD1. 220.35	P'linth $75 . . .887 .36$
HT70/TPD1/	LID $75 . . . \mid$ 83 80
08800 - 823 90	G99 $210 \cdot 25$
810 Piinth/	GL85P/C 258.95
	Q101P/C.... 220.50
CONNOISEEUR	LEAE
BD1 Klt..... $\mathfrak{f 1 0 . 9 0}$	Deltar T'table 262.50
BD1 Chassis. . $213 \cdot 60$	MICRO-SEIKI
BDI/8AU2/	MR111..... 228 S0
$\underset{\text { Plinth/C. }}{ }$	MR111 Plinth
BD2/SAU2/ Chassis.... 225.95	\& Cover... 80.60
BD2/GAU2/	PEILIP8
Plinth/C .. 233.85	GA105 818.95
GARRARD	GA160 Teak . 227.00
2025 T/C Ster. 88.50	GA308 Tcak. 224.50
40B stereo .. 28.25	${ }_{\text {GA Teak }}$
M75-6 815.95	PIONEER
$8 \mathrm{SP}^{25}$ III	PL12D 234.60
Module/	PL150 261.35
M75-6 ... \&23.50	PLA35 288.65
SL65B 113.75	PL50 8111.88
AP76	PL41D 2118.50
A P76 Module/	PL61 8118.85
81728 221.95	TD125 II ... 268.60
	TD125ABII. ${ }_{\text {T }}$
	TX25...... ${ }^{\text {28-95 }}$
Zero 1008... 836.95	TD160C 256.95
Zero 1008	TD150A II... 836.96
Mod./M93-E 262.60	WHARFEDALE
AP96 Module/ $\begin{gathered} \text { M75-6 }238 .75 \end{gathered}$	Linton Turn-
	talle $£ 26 \cdot 05$

```
        PLINTHS & COVERS
-H
Budget SP25 etc. %
l



OVER 300,000 IN STOCK!
Multiway and R.F. Connectors by twenty different companies!
Send us your detailed requirements quoting Nato numbers if known.
G.P.O.5-DIGIT COUNTER50V. Brand new. T.151A-E1.(P.Pd.)

4-DiGiT 78 f ( \(\mathrm{P}, \mathrm{Pd}\) )
VEEDER ROOT S.DIGIT COUNTER 20v. D.C. with manual DESSYN POSITION TRANSMITTERS AND RECEIVERS For \(24 \mathrm{v}\). . D.C. operatlon. We have avallable varlous types of
Trenamittere and Blank Dlal Recelvers. Please advise us of your approximate requlrements and we wlli be pleased to quote. GRELCO 8-WAY CONNECTOR BLOCKS
or \(\mathrm{E1} \cdot 25\). (P.Pd.)
SANGAMO-WESTON MOVING.COIL RELAYS
\(1650+20\) ohm- \(22.25(\mathrm{P} . \mathrm{Pd}\) ) 2200 Ohm- 22.25 . (P.Pd.) ENOLISH ELECTRIC VACUUM CAPACITORS ENOLISH EEECTRIC VACUUM CAPACITORS
Variable. 7 -150pF. Type UB.150- \(15-40-\) E26.50. (P.Pd.)
\begin{tabular}{lll} 
MAINS TO & MANCJ27V & E.3.75 \\
27V 500mA & DCPOWER & EACHH \\
STABILISED & SUPPLY & (P.PdU.K.)
\end{tabular}
A.C. MAINS to \(27 V\) D.C. POWER SUPPLY UNITS. These interesting 27 v 0.5 A units (will happlly provide 700 mA Indefinitely) are bullt into an attractive grey-finished instrument case, provislon belng made for base or side mounting. Cable entry grommets are mounted in the base of the unit.
The choke capacity smoothed output is solld state stabillsed agalnst varlation in Input voltage and output current, and input and output fuses with spares are fitted. The output operates a bullt-In S.P.C.O. relay to switch for Instance an
alarm circuit. Input voltage is \(200-250 \mathrm{~V}\) A.C. In 10 v steps. while the transformer secondary carries iwo taps. All termatlons to a Grelco block. There Is adequate room for
other equipment withln the ventilated case, which is \(12^{n} \times x\)
 \(10^{*} \times \mathbf{6 m}^{\prime \prime}\) deep. Our prlce, brand new in carton with circult
only \(\mathrm{ES75}\) (P.Pd. U.K.).

MIL SYNCHROS AVAILABLE EX-STOCK In slizes \(08,11,15,16,18\) and 23 for 50,60 and 400 Hz operation Synchro Control Tranamitters

Synchro Control Differentlal Transmitters Synchro Resolvers

TANTALUM CAPACITORS We hold large stocks by S.T.C., T.C.C., Dubller, Kemet, Plessey, G.E., etc., send fo ETHER ELECTROMETHODS LOW INERTIA
ETHER ELECTROMETHODS LOW INERTIA
Avallable ex-stock at extremely low prices. For 1-5, 6, 12 and 24V ooeration in stock.
AERIAL DIRECTION INDICATING KIT Thls aet comprises a palr of Magsilps to provide remote IndicaIlon of aerlel azimuth and comprises a transmitter and recalverecelver can be mounted at the control point, to provide Immediate and continuous indication of aerial position. Supply voltage required is 50 v 50 Hz and the price \(£ 5.75\). (P.Pd.) Items would Include a malns operated, geared motor to drlve the aerlal, controlled from the positlon to which Is fed back position information by the magsilp link. Transtormers to provide 50 v 50 Hz from 240 V A.C. \(\varepsilon 1 \cdot 95\) each. (P.PQ.) PLANNAIR. AxIal Flow Fans (wlth mounting) Type \(\frac{\text { boxed-E18 (C.Pd. U.K.). }}{\text { DOWTY ROTOLVALVES 07402Y B33. We have luat recelved }}\) fow of these difflcult to obtaln liems. P.O.A. VACTRIC BIZE 23 PULSE GENERATORS (Shaft DIgitizers), Fuli details and price on application.
STAINLESS STEEL VACUUM CONTAINERS FOR LiquiDS. Capactity \({ }^{2}\) U.S. galls. fitted with delivery taps. Brand new in cartons-E22.50 (C.Pd. U.K.).
400 HZ INVERTERS, 27.5 V 150A input, 115 V 400 Hz 2500 VA output. Not new but in excellent condition; fitted with control ment clifcults. These are extremely smail for thelr capacity only 181 I long and 13 in high overali Including the control box which also carrles the clrcuit diagram. £28 (C.Pd. U.K. Mainid.) core \(£ 22\) per 100 yds, 12 core \(£ 18\) per 100 yds, 8 core \(£ 12\) per core \(£ 22\) per 100 yds, 12 core \(£ 18\) per 100 yds, 8 core \(£ 12\) per
100 yds 4 core 10 per 200 yds, 2 core \(£ 3\) per 100 yds. (All C. Pd. U.K. Mainland).

HEAVY DUTY PVC INSLTD. FLEXIBLE CABLE to DEF 120 Type 3 In following colours: vlolet, yellow, white, grey,
green, orange, pink, red and brown \(70 / 0076^{\prime \prime}\) conductors 83.25 per \(100 \mathrm{yds}(\mathrm{P} . \mathrm{Pd}\).\() also with 40 / 0076^{\circ}\) conductors
white, pink and red at \(£ 2.50\) per 100 yde (P.Pd.).

SPECIALIST STOCKISTS OF SERVOMOTORS, SYNCHROS, MAGSLIPS \& PLUGS \& SOCKETS Servo and Electronic Sales Ltd

Regd. Office: 45a HIGH STREET, ORPINGTON, KENT. Phone: Orpington 31066
Post Orders and Technical enquiries to: "BAYS", HIGH ST., LYDD. KENT. Lydd 20252 (STD 0679) Or 67 LONDON ROAD, CROYDON, SURREY (Retail and Instrument Repairs). Phone: 01-688 1512

TRANSFORMER/RECTIFER UNIT Comprising a \(380-\) \(440 v 3\) phase, 50 Hz input transformer and stud mounted sillicon
rectifiers. Output is 2200 D.C. 15 amps. Ideal for operation of D.C. moiors etc. E27.50 (including carriage U.K. Malniand). SPECIAL OFFER OF PROFESSIONAL HIGHEST GRADE POWER SUPPLIESI
Two types of rack mounting supplles are avallable both in absolutely mint condition complete with all valves, spare Cat. W. 25489 Ed.B. Dual outputs: 275 v at 250 mA D.C. and 6.3v at 10 A.C. Fitted \(8 w l\) itched \(2^{\prime \prime} 89\). panel meter to monitor
output voltage and current. The unit carrles A.C. Input and H.T. output panel fuses. The H.T. cupply Is derlved from tapped Input transformer wlith output taps at \(310-450 \mathrm{~V}\) In 10 V steps and the L.V. supply from a separate transiormer with
tapped primary and secondarles of 6.4 V 10 A (C.T.) \(5 \mathrm{~V} 8 \mathrm{~A}(\mathrm{C} . \mathrm{T}\).)
 \((2 \times 8 \mathrm{H}+2 \times 8 \mu \mathrm{~F})\). A bridge metal rectiffer ls employed Provision is made for remote switchlng while a panel mounted H.T. Swilich Is fitted. Besutifully finished in grey hammer stove enamel. Dimenslons: Front panel 19"wide \(10{ }^{\text {t" }}\) high \(133^{\prime \prime \prime}\) deep
behind F.P. Welght 68 lbs. Price E 13.00 C.P. England and Wales plus \(£ 1\) extra carrlage Scotland and N.I. Cat. W. 25495 Ed.B. Dual outputs: \(: 275 \mathrm{v}\) at 250 mA STABILISED
and 6.3 v 10 A A.C. FItted swltched \(2^{\prime \prime}\) square panel meter to monltor output voltage and current and 9 valve anode voltages. The unlt carries A.C. Input and H.T. output panel tuses. The H.T. supply os derlved from a tapped input transtormer with a separate transformer with tapped primary and second from of 6.4 V 10 A (C.T.) 5 V 6 A (C.T.) and 4 V 8 A . The H.T. output Is series stabllised by \({ }^{4} \times\) KT66 valves. A bridge metal rectifier is employed. Separate H.T. swliching is provided from the
front panel. Fltted with fuli cover and beautifully finithed in grey hammer stove enamel. Dimenslons: Front panel 19" wide
 E19.50 C.P. England and Wales plus extra £1 carriage Scotland TIME SWITCH Smiths type TT. \(10 / \mathrm{KD}\). \(0 / 10 \mathrm{mln}\) 位es. Contacts 2-pole
\(240 \mathrm{v} .50 \mathrm{~Hz}, 1\) r.p.m. 2 Ibs . \(/ \mathrm{In}\). -65.25 . (C.Pd.)
240 v .50 Hz .1 r.p.m. \(2 \mathrm{Ibs} . / \mathrm{In},-£ 5.25\). (C.Pd.)
Ditto. \(110 \mathrm{v} .-\mathrm{\varepsilon} 4.75\). (C.Pd.)
DRY REED INSERTS

Overall length \(1.85^{\prime \prime}\) (Bady length \(1 \cdot 1^{\prime \prime}\) ) Diameter \(0.14^{\prime \prime}\) to switch up to 500 mA at up to 250v D.C. Gold clad contacts. 63p per doz. \(£ 3.75\) per \(100 ; £ 27.50\) per 1,\(000 ; £ 250\) per daz. \(£ 3 \cdot 75\) per \(100 ; ~ £ 27 \cdot 50\)
10,000 . All carriage paid.
Heavy duty type (body length 2") diameter \(0 \cdot 22^{\prime \prime}\) to switch up to IA. at up to 250 V. A.C. Gold clad contacts, \(\mathbb{C l} \cdot 25\) per doz., \(\mathbf{~} 6.25\) per 100; \(\mathbf{4 4 7} \cdot 50\) per 1000 ; \(£ 450\) per 10,000 . Changeover type \(\mathbf{£ 2} \mathbf{5 0}\) per daz. All carriage paid.
Operating Magnets 55p per doz. £4 per 100 ; £35 per 1000. All carriage paid.

\section*{The revolutionary new Supertester (80R. Buy.it for whatitis. Or buyiff for what it can be. \\ The Supertester 680R is a completely new concept in measuring instruments. In itself a high quality test meter with eighty ranges on a 128 mm mirror backed scale, it is also the basis of a complete measurement system. With the addition of the appropriate accessories it can measure a wide range of values including light, temperature, gauss and phase sequence. And there are other accessories to greatly extend the 680R's range. The 680R System offers many advantages over conventional test meters including tremendous versatility and economy Amperclamp For measuring a.c. currents from 250 mA
500 amps . C11.95 \\ Gauss
Meter \\  \\ Signal Temperature Probe \\ Covering the
range -30 to \\ njector \\ Producing
1 KHz and
500 KHz \\ \(+200^{\circ} \mathrm{C}\) £11.9 \\  \\ Phase Sequence Indicator To indicate
the phase
sequence of \\  \\ \(\qquad\) of 11 Mohms 1.6 Mohms shunted by 10 pF
tor a.c. £18.00 OTHER ACCESSORIES AVAILABLE SHUNTS D.C. 25,50 and 100 amps. © 4.50 \\  \\ SUPE
TEST
GB0R \\ 680R
SPECIFI. \\ SPECIF-
CATION: \\ 13 D.C. ranges \\ trom 0.1
2000 V \\ \begin{tabular}{ll} 
ranges \\
\(50 \mu \mathrm{~A}\) & trom \\
\(20.000 \Omega\) \\
\hline A
\end{tabular} \\ Transi \\ Acturacy i\% \\ diodes \\ E11.95 \\ \(\square\) \\ ELECTRONIC BROKERS ITD}

\title{
HI-FI NEWS 75 WATT AMPLIFIER BY J. L. LINSLEY-HOOD
}

\author{
* THE ONLY \\ DESIGNER APPROVED KIT
}


\section*{POWERTRAN STOCK} NOT ONLY complete kits BUT ALSO basic component sets

SLIMLINE STYLE CHASSIS DIMENSIONS: \(17.0^{\circ \prime} \times 2.0^{\prime \prime} \times 12.0^{\prime \prime}\)
This slimline unit has been made practical by the use of a specially designed TOROIDAL TRANSFORMER and highly compact printed circuit boards. These and the overall layout differ from the more bulky version in the article but have been fully tested and approved by Mr. Linsley-Hood.

\section*{FREE TEAK CASE}

\section*{WITH ALL ORDERS FOR COMPLETE AMPLIFIER KITS}

Total cost of individually purchased packs:
£63.95
Cost of complete kit : £56.60
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{COMPONENT PACKS} \\
\hline Pack & & \\
\hline 1 & Fibre glass printed circuit board for power amp. & £0.75 \\
\hline 2 & Set of resistors, capacitors, pre-sets for power amp. & £1. 50 \\
\hline 3 & Set of semiconductors for power amp. (highest voltage version) & £5.50 \\
\hline 4 & Pair of 2 drilled, finned heat sinks & ¢0.80 \\
\hline 5 & Fibre glass printed circuit board for pre-amp. & £1.10 \\
\hline 6 & Set of low noise resistors, capacitors, pre-sets for pre-amp. & £2.70 \\
\hline 7 & Set of low noise. high gain semiconductors for pre-amp. & £2.10 \\
\hline 8 & Set of potentiometers (including mains switch) & £1.55 \\
\hline 9 & Set of 4 push button switches, rotary mode switch & £3.10 \\
\hline 10 & Toroidal transformer complete with magnetic screen/ housing primary: \(0-117-234 \mathrm{~V}\), secondaries: 33-0. \(33 \vee 24-0-24 \vee\) & £9.15 \\
\hline 11 & Fibre glass printed circuit board for power supply & ¢0. 55 \\
\hline 12 & Set of resistors. capacitors, secondary fuses. semiconductors for power supply & £3.50 \\
\hline 13 & Set of miscellaneous parts including DIN skts, mains input skt. fuse holder, interconnecting cable, control & \\
\hline & s & £3.25 \\
\hline 14 & Set of metal workparts including silk screen printed fascia panel and all brackets, fixing parts. etc. & £6.30 \\
\hline 15 & Handbook & £0.30 \\
\hline 16 & Teak cabinet & £7.35 \\
\hline & 2 each of packs 1-7 inclusive are required for complete stereo system. & \\
\hline 3 a & Set of semiconductors for power amp. (30 W version) & £3.40 \\
\hline 3b & Set of semiconductors for power amp. ( 50 W version) & £5.30 \\
\hline
\end{tabular}

For those who require the kit without the cabinet, metal work, toroidal transformer and miscellaneous extras such as heat sinks, capacitor clips, potentiometers, switches, control knobs, fuse holders, fuses, input and output sockets, mains cable and plug and socket, inter-connecting cable P.C.B. mounting parts, output transistor insulating covers etc. , etc.

We are offering all the semiconductors (inc. power supply). glass fibre P. C. Boards (inc. power supply) ready drilled (designed for a practical system), all the capacitors including the new tantalum types and electrolytic, resistors, and presets too, all to true Hi -Fi standards and all fully approved by the designer for:-
\(\mathbf{£ 2 7 . 1 5}\) for 30 Watt version
\(\mathbf{£ 3 0 . 9 5}\) for 50 Watt version
\(\mathbf{£ 3 1 . 3 5}\) for 75 Watt version
Handbook Included


FOR FURTHER DETAILS ON THIS AND Other kits please Write to:

\section*{POWERTRAN ELECTRONICS}

22 THE PANTILES : BEXLEYHEATH : KENT


MAINS MOTOR
Precision made-as used in record
decka and tape recorders-ideal albo
for

 MINIATURE WAFER SWITCHES



15A ELECTRICAL PROGRAMMER

 Clock by famoua maker with 15 electrical pron programmer. independent 60 minute memory logger. A beautiful unit.
Prive Q1. Q5 +20 p . \& p. or with glass front chrome berel 75p ex
How RESETTABLE FUSE yoursell when next one blow. Then reckoning your
time at tl per hour see how quckly our resetable fine ate auto circult breaker) will pay for itself. Price
only
ol each or \(£ 11\) per dozen. specify 5 . 10 or

\section*{FLUORESCENT CONTROL KITS} Eacil kit comprises seyen citems-choke, \({ }^{2}\) tube ende,
starter, bolder and 2 tube clips, with wiring instructions gultable for normal fluorescent tubes or the new' "Grolux'






MAINS TRANSISTOR POWER PACK

 mains transtormer rectifier, amoorting and
condensers and Instructions. Real snip at only \(£ 1\).
THERMOSTATS
Type "A" 15 amp. for controlling room heaters, green. Quickly zd lustable from \(30-38\) deg. F . 48 p .
Type " \(B\) ". 10 amp. This 18 a a in. 10ng rod type made by the
Wh Interral screw alters the setitig so this could

immersion heater or to make farme-atat or fre alarm, 50 p plus
pots and insurance. post and insurance.
Type "ci, Blinply champ
caping. IBreak temperature
to tank. Pipe, heathink, casing. Breal
adjustable by callbrated knob 75 .
Type "D". We coll this the tce-stat as It cuts In and out which woold be to keep the loft plpes from (reezing, if a
and

 liquid-particularly those in glase tanks, vate or sinkswire clip-ldeal for Ash tanks--developers and chemical rire clip -ideal for Agh tanke over range 50 deg. to 150 deg. F. Price 90 p pluy 10 p post and ineurance.

\section*{SPARTAN Portable RADIO}

 tant stations. A real bargain com\({ }^{25 p}\) THE ROA And ins.
 medium wave pocket loud speaker
radio. Loud and with good tone will make wondertul Chrigt mas present.
Buy while stocks laat. Full
nioney mack guarantee. \&1:88 Onis.

\section*{DOOR INTERCOM}

Know who is calling and apeak to them without learing bed, or chair
Outfit comprises microphone with call push button. connectors and
 enpecial.
postage.

HIGH ACCURACY THERMOSTAT Usee difirerential Comparator 1.C. with thermalator as probe Dealgner claims temperature control to mite
degree. Complete kit with power pack \(\$ 5 \cdot 50\)

THERMOSTAT


Continuously variable \(30^{\circ} \cdot 90^{\circ} \mathrm{C}\). Has sensor
bulb conncter bulb connected by 33 in. of dexible tubing.
On operation a 15 amp . 250 V amitch is opened and in addituon a plunger moves
through approx. in. This could through approx.
be used to in. Thls could
to be used to open valve on venti-
lator etc. \(\mathbf{~} 1.50\) plua 23 p nad Ins.


\section*{BATTERY MOTORS}

A bargain parcel oi 7 motory for 81 . Some not as large as a postage stamp and only \(\mathbf{i}^{\prime \prime}\) thick, largest is \(1 \mathbf{1}^{\prime \prime} \times\) \(14^{*}\) dia. Some work off 1tv. some high as 18 v These motors are used in racing cars, power toya etc. The largest is so powerful that it will drive a Min drill, model lathe, or similar. This is a 4 pole motor, optimum working 16.5 v . but very powerful eve as low as 4iv. Don't miss this wonderful anip.


\section*{HORSTMANN "TIME \& SET" SWITCH}
 time or you can use the buitch to give a boost on pertod of up to
3 hours. Equally suitable to control proceselink. Regular 3 hours. Equally suitable to control proceseling. Regular price
probably around E5. Special snip price 21.50 . Post and ins. 23p.

\section*{THIS MONTH'S SNIP}

\section*{10 AMP DIMMER/CONTROLLER}

For the control of lighting of stage or studio or portable equipment in workshops etc. This has socket outlets each controlled by 5 AMP Solid State regulator. Also fitted with master switch fuse and neon indicator and terminating with 6 feet of flex. Overall length I7in. \(x\) terminating with
3 tin. \(\times 1+i n\). deep. \(£ 7.50\), plus 25 p P. \& P.


All in module form, each ready bult complete with sinks and connection tags, data supplied. Model 1153 500 mW 'power output 85 p .
 \(10 \%\) discount if 10 or more ordered.


\section*{STAGE PERMEABILITY TUNER}

> Made originally for Ratiomoble car radios. This is a medium1 wave tuner with a frequency coverage \(1 \mathrm{kc}-52 \mathrm{kcc}\). Aerial, RF and obecillator Beetions (long wave coil available) smalli size, only \(2 \ell \times 2 \times \geqslant \mathrm{In}\). Can be uned with
 to make a
\(10 \%\) for 10

\section*{THYRISTOR LIGHT DIMMER}

For any lamp up to 100 watt. Mounted on awitch plate to At in place of
standerd smitch. Virtually no radio interference. Price 28.95 plue 20 p

\section*{5 AMP VARIAC FOR 6}

This beading is not unite accurate because it's a solid state device which we are offering, not a course ls very much smaller. Made by Ultra Electronics, this variable powier controller can he fitted into an ordinary Mk. suitch iox. Just engrave a circle on the front plate and mark voltmeter, you vill theh have a power controller which will do the same as a 5 Amp variac costing \(£ 12\) or more. A limite
Price \(£ 3\) each- 10 for \(£ 27\).


CENTRIFUGAL BLOWER/EXTRACTOR
Mlutature mains driven blower centrifugal type blower unit
by Woods, powerful but apecially built for quiet runningby Woods, powerful but apecially built for quiet running
Iriven by cuabioned induction motor with specially built low noise bearings. Overall size of hlower la approx. It" \(x\)
\(44^{\prime \prime} \times 4^{\prime \prime}\). When mounted by its fange air is blown into the 41" \(\times 4^{* *}\). When mounted by its fange air is blown into the
equipment but to suck air out mount it rom the centre using a clamp, ideal for cooling electrical equipment, or fitting into a cooker hood, alm drying cablnet or for removing
when soldering etc., etc. A real bargain at \(\& 1.85\).


\section*{MULLARD I.F. MODULE}

This it a fully acreened intermediate frequency module for
amplification and detection of f.m. eignals at 10.7 MHz and a.m. signalsat 470 kHz . The first stage is used as an i.f. amplifier lor fim. and a self-oscillating mixer for a.m. operation, in con-
in with an external oscillator coil. \(85 p\) each, 10 for \(£ 7.85\). unction with an external oscillator coi.
100 for \(\mathbf{E} 62.50\). With connection dig.


\section*{I HOUR MINUTE TIMER}

Made by jamous Smiths company, these bave a large clear Made by iamous Smiths company, these have a large clear 1 hour. After preset perlod the bell rings. Ideal for procesaing a memory jogger or, by adding simple lever, would operate a memory jogger o
micro-switch. \(21 \cdot 15\).

LIGHT CEL


POCKET CIRCUIT TESTER
Teat continuity for any low re

electrics. Tests polarity of car
deal aize for conversion to signal inje and rectifters. Als 30 D or 2 for 50 D . Post paid
AMPLIFIER IN CASE WITH SPEAKER in a yery neat looking cay under the name Luxistor. Thls is in a very neat looking cabtnet and is ideal around the home qulck lash up. Stze approx 9 n \(^{\prime \prime} x\) Via a matching trangiformer and volume control and amplifier may be powered by an internal \(9_{\text {v. . battery or or an ex }}\) ternal 110 v , source. Soeaker is an \(\mathrm{R}-\mathrm{A}\) elliptical \(6^{*} \times 31\)
 insurance 20p.

\section*{BAKELITE INSTRUMENT} CASE
size approx. \(6 t^{*} \times 34^{*} \times 2^{*}\) deep with
brase ingetts in lout corners and balkelite brass ingetts in fout corners and bakelit
panel. Tha in a very dttong case suitable pane. This in a very strong case suitabl
to house lastruments and special rigs, etc Price 45p each. Lids 10p. extra. ONLY
TELEPHONES ONL
 Complete at Hastrated, 1 Seve your lega, time and tem-
per simply by putting to
teme per simply by putting in some
telephones. Ex. G.P. not
new-but guaranteed in good
condition and serviceable. supcondition and serviceable. sup-
plled with diagram and jnconnect as extenslons, in prructions showing how
intercoms. Price 81 each plus. 50 p post or 2 for 22.50 post pald
ROCKER SWITCH
13 amp self-fixing into an oblong hole.
Gize approximately \(\mathrm{lin} . \times\) fin., 8 y each

\(\left\{\begin{array}{l}0 \\ 0 \\ 0\end{array}\right.\)
 200 v lamp. 7 p esch, 10 tor 63 p .
Dito as above but for printed eircuit 6D each
10 for 54 p . Sub Miniature sHda switch. DPDT 19 mm (!
approx.) between fixing centrea. 12 each or 10 for 21.08 .

EDUCATIONAL KITS

balance kitit. Price of
kite plece
bip.
KA2 Lena Eit. Eleven parts, including candle, one concave lens, one convex lens, stage and sitit frame, etc. Waten ight
rays bend as they pasa through different lenses. KA3 Water Pump Fit. Thirteen parts. Top of pump is
transparent so thai operating parts may be observed. tranaparent so thai operatng parts may be observed.
Small parts are brightly coloured to be aeen easily while working. Three types of pump may be made. Lift Pump.
Force Pump and Force Pump with reservoir and nozzle Force Pump and Force Pump with reservoir and nozzle.
EAA Bazzer Eit. Eleven parts. Transparent coyers allow KA4 Bazzer Kit. Eleven parts. Trangparent covers allow how electromagnetism with an automatle awitch results in an operating buzzer.
EA \(A\) 2-Pole
Yotor Kit. Twenty-four parts Including rom 1t volt battery. Illustrates and teaches how electro magnetism operates a ruotor, Makes wish ectro-magers, of wire. Picks up tacks, nall and any amall parts showing how magnetism works KA8 Currant and Reaiskance Kit. Twenty-nlne parts. In cluding bench and light bulb. Conduct interesting and LAW" and see the difference in current and resistance with different types and lengths of wire. hammer is triggered to make the bell ring.
KA10 \#iforse Key Buzzer and Bell Kit. 25 part kit, easy to CAPACITOR DISCHARGE CARIGNITION
 model with prepared circuit board e6.95. When orderin please state whether for positive or ne
TAPE HEADS
Miniature alze \(t^{\prime \prime}\) gquare front \(\times\) in \(^{*}\) deep. Understand
made for Truvox. Double wound, maybe wired in series made for Truvox. Double wound, maybe wired in series piled with matching erase head. 2 track
75 p pair. Less \(10 \% 10\) or more pairs.
TOGGLE SWITCHES
 \(10 \%\) for ten of eane type.

\section*{EXTRACTOR FAN}

Cleans the air at the rate of 10,000 cubic ft . per hour. Sultable for kitchens, bathrooms.
factories, changing rooms, etc., it's so quiet factories, changing rooms, etc., it's so quete
it can hardy be heard. Compact, 5 tin.
casing with 5 in. fan blades. Kit comprises motor, fan blades, sheet steel casing, pull
switeh, mains connector, and fixing brackets, swite, mains connector,
22 plus 36 p post and in
TYPE 25 RELAYS These are miniature relays. Size approx
 with a plastlc cover. Coll operates approx.
250 Mv . D.C. Available with the following

coils:
28 obm for \(1 \cdot 2 \cdot 5 \mathrm{v} .45\) ohm for \(4-7 \cdot 5 \mathrm{v}, 52\) ohm for \(4 \cdot 9 \cdot 6 \mathrm{v}\)
90 ohm for \(5 \cdot 5-11 \cdot 5 \mathrm{v}\). 130 ohm for \(10-15 \mathrm{v}\). 530 ohm for 90 ohm for \(5 \cdot 5-11 \cdot 5 \mathrm{~F} .130\) ohm for \(10-15 \mathrm{v}\). 530 ohm for
\(17-36 \mathrm{v}\). 1250 ohm for 27.44 t , 2500 ohm for \(31-65\). 5800


Where postage is not stated then orders over 65 are post free. Below f5 add 20p. S.A.E. with enquiries


\title{
 \\ \\ SUPPLIERS OF SEMICONDUCTORS TO THE WORLD
} \\ \\ SUPPLIERS OF SEMICONDUCTORS TO THE WORLD
}


COMPLETE TELEPHONES
NORMALHOUSEHOLD TYPE AS SUPPLIED TOTHE POSTOFFICE EX G.P.O.
ONLY 95p
Pa P 35 P EACH
TELEPHONE DIALS
Standard Post Office type Guaranteed in working order ONLY 25p

TESTED AND GUARANTEED PAKS
\begin{tabular}{|c|c|c|c|}
\hline 82 & 4 & Photo Cells. Sun Batterles. \(0.3100 .5 \mathrm{~V} \cdot 0.5\) to 2 mA & \(p\) \\
\hline \(\overline{878}\) & 4 & IN4007 SII. Rec diodes, 1.000 PIV Iamp plastic & 50p \\
\hline ¢81 & 10 & Roed'Switches. Reed Relay inserts \(1 \frac{1}{4}\) " long & 50p \\
\hline \({ }^{881}\) & 200 & Mixed Capectrors. Approx. quantity. counted by welght & Op \\
\hline H4 & 250 & Mixed Resistors. Approx. quantity. counted by welght & 0 p \\
\hline H7 & 40 & Wirewound Aesistore. Mixed types and values & p \\
\hline H40 & 20 & BFY6O/2, 2N698, 2N 1813 NPN Sillicon uncoded TO-5 & \(50 p\) \\
\hline нө & 2 & OCP71 Light Senative Photo Tranalstor & \\
\hline \({ }^{438}\) & 10 & Integrated circuits. 6 Gatas 8MC 962, 4 Filp Flops 8MC 845 & \\
\hline H30 & 20 & \begin{tabular}{l}
I Wett Zener Dlodes. \\
Mixed Voltages 6.8-43V.
\end{tabular} & p \\
\hline нз6 & 100 & MIxad Dlodea. Gorm. Gold bonded etc. Marked and Unmarked. & p \\
\hline H21 & 20 & OC200/1/2/3 PNP SIllicon uncoded TO E can & Op \\
\hline н3в & 30 & shom load Tranalatore. NPN Silicon Planar typas. & \(p\) \\
\hline \multicolumn{4}{|c|}{UNMARKED UNTESTED PAKS} \\
\hline -806 & 150 & Germanium Diodes Min. glas: type & p \\
\hline 88 & 200 & Trans manufacturare' rejacta all types NPN, PNP, SII, and Ge & \\
\hline 明 & 10 & Silicon Dlodes DO. 7 ginan equiv. to OA200, OA2O2 & 50p \\
\hline 188 & 100 & Sil. Dlodes mub. min. IN914 and IN9 16 types & 50p \\
\hline B88 & & Sii. Trans. NPN. PNP equiv. to OC200/1 2N706A, BSY95A. & \\
\hline 8 i & 50 & Germantum Transistors PNP, AF, and RF. & 50p \\
\hline нв & 4 & 250mW Zener Dlodes D0.7 Min. Glass Type & 50p \\
\hline H34 & 15 & Power Transistors. PNP. Germ. silicon T0-3 Can. P \& P Ep ext & \\
\hline H17 & 20 & 3 Amp. Silicon Stud Rectifiers. Mixed volts & 50p \\
\hline 415 & 30 & Top Hat Sillicon Rectiflers. 750 mA Mixed volts & 50p \\
\hline \({ }^{16}\) & 15 & Experimenters' Psk of integrated Circults, De & \\
\hline
\end{tabular}

\section*{OVER 1,000,000 TRANSISTORS IN STOCK}

We hold a very large range of fully marked, tested and guaranteed Transistors, Power Transistors, Diodes and Rectifiers at very cqmpetitive prices. Please send for Free Catalogue.

600,000SLLICON PMANAR PLASTIC TRANSISTORS, UNMARKED, UN. TRANSISTOAS, UNMARKED, UN-
TESTED, FACTORY CLEARANCE.
a ranoom sampling showed these to be of remarkably high Quality.
AUDIO PNP, similar to \(Z T \times 500\), 2 N3702/3
AUDIO NPN, similar to \(2 T X 300\), 2 N3708/9
PLEASE STATE TYPE OF TRANSISTORS REQUIRED WHEN ORDERING
ALL TYPES:-
P\&P 10p per 1.000
500 for \(£ 3.00\)
.000 for \(£ 5.00\)
OUR VERY POPULAR 3p TRANSISTORS
fully tested \& guaranteeo
TYPE "A" PNP Silicon alloy, TO. 5 can.
TYPE "B"PNP Silicon, plastic encepsul
TYPE "E" PNP Germanium AF or RF
TYPE "F". NPN Sllicon plastic encepsulation.
TYPE " \(G\) " NPN Silicon, similar ZTX300 range
TYPE "H" PNP Sillicon. similar ZTX500 range

POWER TRANSISTOR
PRICE BREAKTHROUGH!
PLASTIC CASED SILICON POWER TRANSISTORS OF LATE
DESIGN. 40 WATTS ANO 90 WATTS. PNP \& NPN'
DESIGN. 40 WATTS AND 90 WATTS. PNP \& NPN'
TYPE8. ALL. TYPES AVALLABLE AT THE MOST
TYPES. ALL TYPES AVALLABLE AT THE MOST ARE FUILY TESTED, MARKED AND CUARANTELO
\(\begin{array}{lllll}\text { ARE FULL TESTED, MARKED AND GUARANTEEOL } \\ \text { 40W NPN } & 1.12 & 13.25 & 26.50 \\ \text { 200 } & 180 & 18 \mathrm{p}\end{array}\)
4OW PNP
\(\begin{array}{ll}1.12 & 13.25 \\ 20 p & 18 p \\ 21 p & 19 p \\ 24 p & 22 p\end{array}\) \(\qquad\)
gow NP
AKS of complimentary pairs
MP40 \(40 W+40 W\) 50p 48p \(48 p\)
MP90 90W + 90W 80p 88p E6p
State whether NPNNPN or NPN PPNP required.
NPNNPN will be s.CPE if not athemis

\section*{A CROSS HATCH}

\section*{GENERATOR FOR £ \(\mathbf{~} 3.50\)}

YES, a complate kit of parts including Printed Circuit Board. A four position switch gives X -hatch, Dots. Vertical or Horizontal lines. Integrated Circuit design for easy construction and reliability. This is dasign easy Serumber edition of Practical Television.

This complete kit of parts
costs \(£ 3.50\), post paid.
A MUST for Colour T.V. Alignment.
Our famous P1 Pak is still leading in value for money.
MAKE A REV COUNTER FOR YOUR CAR
The 'TACHO BLOCK. This oncapsulated block will turn any
\(0-1 \mathrm{~mA}\) meter into a linear and accurate rev counter for any car with normal coil ignition system.
£1 each
\(\qquad\) Full of Short Lead Semiconductors \& Electronic Components, approx. 170. We guarantee at least 30 really high quality factory marked Transistors
PNP \& NPN and a host of Diodes \& Rectifiers PNP \& NPN, and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.

Please ask for Pak P.1. Only 50 p
\(10 p\) P \& \(P\) on this Pak.

\section*{Consider our point of view}


Manufacturing CRTs for radar displays is an everyday operation for M-OV. We've a whole armoury of tubes, all precision engineered to meet the highest, most stringent environmental and performance specs (including BS 9000 , CV and MIL). And all quality built for the whole range of land, sea and airborne applications.

Screen sizes begin at 14 cm and run right up to 41 cm . Advanced design features include a unique-to-M-OV transistor protection device which helps safeguard vital equipment by limiting energy dissipation in the event of a voltage flashover. And you can specify a colour tube, too, which allows different information to be displayed simultaneously in at least three distinctive colours.

There's an army of other advanced, technical features to our CRTs. They are all in our comprehensive catalogue. It contains details of tubes for instrumentation, data display and TV studio applications. Please write, phone or telex for a copy.

\section*{A BRIEF SELECTION FROM THE RADAR CRT RANGE}
\begin{tabular}{l|c|c|c|c|c}
\multicolumn{1}{c}{ TYPE } & \begin{tabular}{c} 
SCREEN SIZE \\
cm
\end{tabular} & \begin{tabular}{c} 
FINAL ANODE \\
VOLTAGE kV
\end{tabular} & FOCuS & \begin{tabular}{c} 
DEFLECTION \\
ANGLE \\
degrees
\end{tabular} & \begin{tabular}{c} 
LENGTH \\
mm
\end{tabular} \\
\hline \(\mathbf{1 4 0 0 E}\) & \begin{tabular}{c}
14 \\
rectangular \\
15
\end{tabular} & 15 & Electrostatic & 50 & 268 \\
\(\mathbf{1 5 0 0 B}\) & 9 & Electrostatic & 53 & 238 \\
F16-10 & 16 & 14 & Electrostatic & 37 & 370 \\
7ABP & 18 & 7 & Electrostatic & 50 & 342.5 \\
F21-10 & 21 & 14 & Electrostatic & 41 & 460 \\
2200P & 22 & 12 & Electrostatic & 58 & 408 \\
3000R & 31 & 16 & Electrostatic & 40 & 572 \\
30000 & 31 & 12 & Electrostatic & 50 & 485 \\
4100A & 41 & 12 & Electrostatic & 50 & 610 \\
MF41-10 & 41 & 12 & Magnetic & 70 & 518 \\
\hline
\end{tabular}

\title{
Simple Digital Computing Examples
}
M. S. Gregory, DEng, BE, BA, PhD, FICE, FIE (Aust)
The book deals with the basic facts of machine computation and contains a series of problems of graded complexity which demonstrate the computer's ability to do many calculations quickly. It is unique in its elementary approach and will enable the reader to undertake operations on a computer with understanding and confidence. An invaluable introduction for scientists, engineers and students, who now have the opportunity of using a computer to solve problems arising in their work. 040870126970 pages illustrated 1971
\(\mathbf{f 1 . 0 0}\)

\section*{Basic Engineering \\ Craft Studies- \\ General (01)}

\section*{Edited by}
P. H. M. Bourbousson, CIMarE, and R. Ashworth, CEng, MIMechE, MIProdE

Written for students studying for the City and Guilds of London Institute 500 Courses on Basic Engineering Craft Studies (Part I), this book together with a companion volume covers all the topics required for each of the courses. The General 01 volume contains basic material and should be used in conjunction with the appropriate complementary volume covering the syllabus relating to the required craft or trade bias. 0408000619182 pages illustrated 1971
\(\mathbf{f 1} \cdot 50\)

\section*{F.M. Radio Servicing Handbook /2nd Edition}

\section*{Gordon J. King, RTech Eng, MIPRE, FSRE, MRTS, FISTC}

This handbook has been written by an experienced radio engineer with the aim of providing the theoretical and practical knowledge of FM radio receivers in a form helpful to all concerned with service work. The book is intended not only for professional service engineers, however, but also for amateur enthusiasts interested in the construction of FM equipment and for radio students. The style is straightforward and, as far as possible, non-mathematical.
0408000236206 pages illustrated 1970
£3.00

\section*{Semiconductors: Basic Theory and Devices}

\section*{Ian Kampel}

Although this book covers a wider range of devices than is usually dealt with on any one course, it nevertheless provides a useful introductory text for students. All topics are explained in straightforward graphical terms without complicated formulae. It begins with an explanation of elementary atomic theory and gradually progresses through diodes, transistors and the more sophisticated devices that are available today.
0408000406272 pages illustrated 1971
£2.50

\title{
Electroacoustics: Microphones, Earphones and Loudspeakers
}

\author{
(An STC Monograph) \\ M. L. Gayford, BSc., CEng, MIEE, ACGI, DIC
}

This book gives a unique insight into the audio and electroacoustics field dealing in particular with the theory, design and practical realisation of the various types of microphones, earphones and loudspeakers used in sound reproduction, telephony, broadcasting and acoustic measurements. It will be of special value to students, engineers and research workers engaged in telecommunications, broadcasting and sound reproduction.
0408000260300 pages illustrated 1970 £4.50

\section*{Colour Television Servicing}

Gordon J. King, RTechEng, MIPRE, FSRE, MRTS, FISTC

This comprehensive book deals straightforwardly with the servicing of PAL receivers, using a minimum of mathematics. It is divided into three sections: the first surveys the colour TV system as a whole, the second studies the elements involved (e.g. picture tubes, conveyance systems, chroma channels) and the third is devoted exclusively to servicing.
0408000449328 pages illustrated 1971
£4.40

\section*{Solid-State Devices and Applications}

\section*{Rhys Lewis, BScTech, CEng, MIEE}

Since the first appearance of the transistor in 1948, the field of solid-state devices has expanded so rapidly that it has become increasingly difficult to keep abreast of new developments. This book presents a concise summary of currently available devices, their theory, manufacture and applications.
0408000503 cased 264 pages illustrated \(1971 \quad \mathbf{£ 3 . 0 0}\)
0408000511 limp
£2.00

\section*{A Simplified Approach to Solid State Physics}
M. N. Rudden, BSc, PhD, AlnstP, and J. Wilson, BSc, PhD, AlnstP

This book provides a broad survey of some of the more important concepts of solid state physics and will be suitable for first year university or technical college students. The approach throughout is essentially qualitative and the aim of the authors is to establish the fundamentals of the subject in as easy a manner as possible. To this end, frequent reference is made to experimental evidence in support of the theoretical concepts.
0408700033 cased 196 pages illustrated \(1971 \mathbf{£ 2 . 9 0}\)
0408700203 limp
£1.70


MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. \(35 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}\) n 8 ranges. Incremental: \(\pm 1 \%\) at \(1 \mathrm{Mc} / \mathrm{s}\). Output: continuously variable 1 micro volt to 1 volt. Output Impedance : 1 microvolt to 100 millivolts, 10 ohms \(100 \mathrm{mV}-1\) volt - 52.5 ohms. Internal Modulation: \(400 \mathrm{c} / \mathrm{s}\) sinewave \(75^{\circ} \%\) depth. External
Modulation: Direct or via internal amplifier. A.C. mains \(200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}\) Consumption approx. 40 watts. Measurements \(29 \times 124 \times 10 \mathrm{in}\). Secondhand condition. \(\mathbf{6} 27.50\) each, Carr. \(£ 1.50\)
SIGNAL GENERATOR TYPE 902: (P.R.D.). A portable, general-purpose, broadband, microwave signal generator designed for testing and maintenance of arcraft radio and radar receivers libed in dbm . The frequency dial is calibrated in Mc/s. Provision is made for external modulation. Power Supply- \(115 \mathrm{~V}, \pm 10 \%\) A.C., \(50 \mathrm{c} / \mathrm{s}\). Freq.- \(3650-7300 \mathrm{Mc} / \mathrm{s}\). Internal Transmission-CW, Pulse, FM External Transmission-Square Wave, Pulse. Power O/put-0.2 milliwatts. O/put Attenuator: -7 to -127 dbm . Load-50 . Price: \(£ 135\) each \(+\underset{\sim}{2}\) carr.
TEST SET TS-147C: Combined signal generator, frequency meter and power meter for \(8500-9600 \mathrm{Mc} / \mathrm{s}\). CW or FM signals of known freq. and power or measure ment of same. Signal Generator: O/put - 7 to Deviation- \(0-40 \mathrm{Mc} / \mathrm{s}\) per sec
 RF Trigger for Sawtooth Sweep-5-500 watts peak. \(0.2-6\) microsec. duration 0.5 microsec pulse rise time. Video Trigger for Sawtooth Sweep-Positive polarity \(10-50 \mathrm{~V}\) peak. \(0.5-20\) microsec duration at \(10 \%\) max. amplitude, less than 0.5 microsec rise time between \(90 \%\) and \(10^{\circ}\) max amplitude points. Frequencv Meter Freq. \(8470-9360 \mathrm{Mc} / \mathrm{s}\). Accuracy- \(+2.5 \mathrm{Mc} / \mathrm{s}\) per sec . absolute, \(+1.0 \mathrm{Mc} / \mathrm{s}\) per sec. for freq. increments of less than \(60 \mathrm{Mc} / \mathrm{s}\) relative, \(\pm 1.0 \mathrm{Mc} / \mathrm{s}\) per sec. a \(9310 \mathrm{Mc} / \mathrm{s}\) per sec. calibration point. Accuracy measured at \(25^{\circ} \mathrm{C}\) and 60 humidity Power Meter: Input: +7 to +30 dbm . Output -7 to -85 dbm . Price: \(£ 75\) each \(+f_{1} 1\) carr
SIGNAL GENERATOR TS-403B/U) or URM-61A): (Hewlett Packard) A portable, self-contained, general-purpose test equipment designed for use with radio and radar receivers and for other applications requiring small amounts of RF power such as measuring standing-wave ratios, antenna and transmission line characteristics, conversion gain, etc. Both the output freq. and power are indicated on direct-reading dials. \(115 \mathrm{~V}, \mathrm{AC}, 50 \mathrm{c} / \mathrm{s}\). Freq. \(-1800-4000 \mathrm{Mc} / \mathrm{s}\). CW, FM Modulated Pulse - 40-4000 pulses per sec. Pulse Width - 0.5-10 microsecs. Timing -Undelayed or delayed from 3-300 microsecs from external or internal pulse O/put-1 milliwatt max., 0 to -127 db variable. O/put Impedance-50 5 . Pric
£ 120 used, excellent condition. Unused as new condition \(£ 150+\) carr. \(£ 2\).

TS-382/U AUDIO OSCILLATOR: 20 to \(200,000 \mathrm{c} / \mathrm{s}\). in four ranges. Freq meter check \(60 \mathrm{c} / \mathrm{s}\). and \(400 \mathrm{c} / \mathrm{s}\). Emission CW. O/put voltage: 1 uv to \(10 \mathrm{~V} \pm 3 \%\) in seven ranges. Power req. 115 V AC single phase. Price \(£ 20\) each, used good condition. Unused condition \(£ \mathbf{3 0}+\) carr. \(£ 1.50\)
CT150 Portable valve-tester suitable for testing a wide range of valves. Manufactured by Avo. \(£ 55\) each \(+£_{2}\) carr
FREQUENCY METER BC-221: \(125-20,000 \mathrm{Kc} / \mathrm{s}\), complete with origina calibration charts. Checked out, working order. \(£ 18 \cdot 50+f 1\) carr.; OR BC-22 (as received from Ministry), good condition, less charts, \(£ 8 \cdot 50+61\) carr
CANADIAN HEADSET ASSEMBLY: Moving coil headphones \(100 \Omega\) with chamois leather earmuffs. Small hand microphone complete with switch and moving coil insert. New condition, \(£ 2\) each +25 p post
HEADSET ASSEMBLY TYPE NO. 10: Moving coil headphones and microphone. (Similar to above) new cond. \(\mathbf{£ 1 . 7 5}+\mathbf{2 5 p}\) post; or secondhand cond \(\mathbf{C 1 \cdot 2 5}+25 \mathrm{p}\) post
HEADSET ASSEMBLY: with lightweight boom microphone. Good secondhand cond. \(£ 3\) a pair, 25 p post
DLR HEADPHONES: \(2 \times\) balanced armature earpieces. Low resistance
£1-50 a pair +25 p post.
MOVING COIL INSERT: Ideal for small speakers or microphones. Box of 3 \(f 1+23\) p post.
HAND MICROPHONE: (recent design) with protective rubber mouthpiece. \(\mathrm{E} 2+25\) p post
NO. 16 HAND MICROPHONE: With carbon insert, lead and plug. \(£ 1+25\) p post.
CT. 52 MINIATURE OSCILLOSCOPE: Portable. Operates from 115V or
\(250 \mathrm{~V} 50-60 \mathrm{c} / \mathrm{s}\); or \(180 \mathrm{~V} 500 \mathrm{c} / \mathrm{s}\). A small compact tropicalised instrument
designed to meet requirements of radar and communication engineers and
general electronic service. Measures \(9 \mathrm{in} . \times 8 \mathrm{in} . \times 6 \frac{1}{\mathrm{in}}\). Time base \(10 \mathrm{c} / \mathrm{s}-\)
\(40 \mathrm{Kc} / \mathrm{s}\). Y plate sensitivity 40 V per cm . Tube 2 in. Frequency compensated
\(\begin{aligned} & \text { amplifier up to } 38 \mathrm{~dB} \text { gain. Bandwidth up to } 1 \mathrm{Mc} / \mathrm{s} \text {. Single sweep facilities } \\ & \text { Complete with test leads, metal transit case. As new } £ 27.50 \text { each. Carr. \&1. }\end{aligned}\)

TRANSFORMER HV: 228 V input \(19,500-0-19,5004.5 \mathrm{KVA}\), Wt. 220 lbs e30 each. Carr. C 4
MODUL.ATOR UNIT: complete with transformer and \(2 \times 807\) valves mounted in 19 in . chassis \(\times 8 \mathrm{in}\). high \(\times 8 \mathrm{in}\). deep. \(\mathbf{£ 4 . 5 0}\) secondhand cond., or \(\mathbf{£ 6} \cdot \mathbf{5 0}\) new cond. Carriage \(£ 1\)
RF UNIT: suitable for use with the above unit. Complete with \(2 \times 3 \mathrm{E} 29\) valves. Ideal for conversion to 4 metres. \(\& 5\) secondhand cond., or \(\mathbf{x 7} \mathbf{5 0}\) new cond. Carriage \(£ 1\).

POWER SUPPLY UNIT PN-12A: 230V a.c. input 50-60 c/s. 513 V and 1025 V @ 420 mA output. With 2 smoothing chokes \(9 \mathrm{H}, 2\) Capacitors, 10 Mrd 1500 V and 10 Mfd 600 V . Filament Transformer 230 V a.c. input. 4 Rectifying Valves type \(5 \mathrm{Z3}\) \(2 \times 5 \mathrm{~V}\) windings @ 3 Amps each, and 5 V @ 6 Amp and \(4 \mathrm{~V} @ 0.25 \mathrm{Amp}\). Mounted

AUTO TRANSFORMER: \(230-115 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}, 1000\) watts, mounted in a stron steel case \(5^{\prime \prime} \times 6 \frac{1^{\prime \prime}}{} \times 7^{\prime \prime}\). Bitumen impregnated. £7 each, Carr. 75p. 230-115V \(50-60 \mathrm{c} / \mathrm{s}, 500\) watts. \(7^{\prime \prime} \times 5^{\prime \prime} \times 5^{\prime \prime}\). Mounted in steel ventilated case. £4.00 each Carr. 75p.
MODULATOR UNIT: 50 watt, part of BC-640, complete with \(2 \times 811\) valves, microphone and modulator transformers etc. £7•50 each, 75p carr
CATHODE RAY TUBE UNIT: With 3 in . tube, Type 3EGl (CV1526) colour reen, medium persistence complete with nu-metal screen, \(£ 3.50\) each, post 50 p
TS 622/URM 44 SIGNAL GENERATOR: Freq. range -7 to 11 GHz . O/put 10 to 127 dbm ; CW, FM, Pulse. Direct reading. \(115 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}\). \(£ 185.00\) each plus \(£ 2 \cdot 00\) carriage
APN-1 INDICATOR METER, \(270^{\circ}\) Movement. Ideal for making rev. counter 1.25, post 30 p

AIRCRAFT SOLENOID UNIT S.P.S.T.: 24 V , 200 Amps , \(\mathbf{2} 2\) each, 30 p post DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each, 0.9 ohms. Tolerance \(\pm 1 \%\) £3 each, 25 p post. 90 ohms per step. 10 positions,
total value 900 ohms. 3 Gang. Tolerance \(\pm 1 \%\) \& 3.50 each, post 30 p .

CRYSTAL TEST SET TYPE 193: Used for checking crystals in freq. range \(3000-10,000 \mathrm{Kc} / \mathrm{s}\). Mains \(230 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}\). Measures crystal current under oscillatory onditions and the equivalent parallel resistance. Crystal freq. can be tested in conjunction with a freq. meter. \(£ 12 \cdot 50\) each, \(£ 1\) carr
VARIAC TRANSFORMERS: Input 115 V , output \(0-135 \mathrm{~V}\) at 2 Amps . £3 each 75 p post. input 115 V , output 135 V at 5 Amps . £5 each, 75 p post
RACK CABINETS: (totally enclosed) for Std. 19 in . Panels. Size 6 ft . high \(\times 21\) n. wide \(\times 16\) in deep, with rear door. \(£ 12\) each, \(£ 250\) Carr. OR 4 ft high \(\times 23\) in. wide \(\times 19\) in. deep, with rear door \(£ 8 \cdot 50\) each, \(£ 2\) Carr.
FUEL INDICATOR Type 113R: 24V complete with 2 magnetic counters \(0-9999\), with locking and reset controls mounted in 3 in. diameter case. Price £2 ach, 30 p post

TS-418/URM49 SIGNAL GENERATOR: Covers \(400-1000 \mathrm{MHz}\) range. CW Pulse or AM emission. Fower Range \(0-120 \mathrm{dbm}\). \(\$ 125\) each. Carr. £1.50.
TN/130/APR. 9 UHF TUNING UNIT: Freq; \(4300-7350 \mathrm{MHz}\). IF Output 160 MHz with bandwidth of 20 MHz and is electrically tuned by a d.c. reversible motor. £27-50 each. Carr. £1.
APR-4 AM RADIO RECEIVER: \(90-1000 \mathrm{MHz}\). This receiver is suitable for monitoring and measuring frequencies as well as relative signal strength. Power monitoring and measuring frequencies a
R-361 RECEIVER: \(225-400 \mathrm{MHz}\). 1 preset channel crystal controlled. Superheterodyne, voice and CW. \(230 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}\) input. £35 each. Carr. £1-50.
TS-130 TEST SET: Complete with RF Probe type 1019 Freq. \(0.9-12.5 \mathrm{KHz}\), and FFrobe type 1020 Freq. 0.3-1 KHz. Also slotted line attenuator \(1 \mathrm{M}-34 / \mathrm{U}\). Freq. \(0 \cdot 3-4 \mathrm{KHz}\); and connectors. \(\mathbf{£ 4 5}\) each. £1 carr.
CLASS "D" WAVEMETER NO. 2: Crystal controlled heterodyne frequency meter covering \(2-8 \mathrm{MHz}\). Power supply 6 V d.c. Good secondhand cond. \(£ 7.50\) each ost 60p.
RCA TE-149 HETERODYNE WAVEMETER: V-cut, 1 MHz crystal ( \(0.005 \%\) ) Accuracy better than \(0.02 \%\). Dial directly calibrated every 1 KHz from \(2.5-5 \mathrm{MHz}\). Useful harmonics up to 20 MHz . Provision for fitting internal dry batteries. "As new" complete with Manual and Spares. £14 each. Carr. 75p.
POWER UNIT TYPE 24: (for R. 216 Receiver) A.C. operated \(100-125 \mathrm{~V}\) or 200-250V, 50c/s. "As new" \(£ 10\) each. Carr. 75p
FILTER VARIABLE BAND PASS NO. 1: Dual channel unit, each channel has variable slot frequency of \(500-900 \mathrm{~Hz}, 1200-1600 \mathrm{~Hz}\) and band pass facility. \(600 \Omega\) aput/output, monitor input and high impedance output jacks. Standard rack nounting
ROTARY INVERTERS: TYPE PE.218E-input \(24-28 \mathrm{~V}\) d.c., 80 Amps . \(4,800 \mathrm{rpm}\). Output 115 V a.c. \(13 \mathrm{Amp} 400 \mathrm{c} / \mathrm{s}\). 1 Ph. P.F.9. £17.50 each. Carr. \(£ 1 \cdot 50\). POWER SUPPLY: 230 V a.c. input; 3000V @ 2.5 mA ; 4v @ 1 Amp, 300-0-300 \(200 \mathrm{~mA} ; 6 \mathrm{~V} @ 7 \mathrm{Amp} ; 6 \mathrm{~V} @ 3 \mathrm{Amp}\). With smoothing capacitors etc. \(\mathrm{f} 10 \cdot 00\) each. \(€ 1.50\) carr.

GEARED MOTOR: 24 c . D.C., current 150 mA , output \(1 \mathrm{rpm}, ~ £ 1.50\) each, 30p post. ASSEMBLY UNIT with Letcherbar Tuning Mechanism and potentiometer, 3 rpm, \(£ 2\) each 30 p post. SYNCHROS: and other special purpose motors available. List 3p.
ACTUATOR UNIT: With 115 V d.c. geared motor; o/put 12.5 rpm ; torque 16 ins . oz; reversible; microswitches and potentiometer. £3.50 ea. +40 p post. DALMOTORS: \(24-28 \mathrm{~V}\) d.c. at 45 Amps, 750 watts (approx. 1 hp ) \(12,000 \mathrm{rpm}\). \(£ 5\) each, 60 p post
GEARED MOTOR: 28 V d.c. 150 rpm (suitable for opening garage doors). £4 each, 60p post
MOTOR: 240 V single phase, \(2,400 \mathrm{rpm} .1 / 40 \mathrm{H} . \mathrm{P}\). approx. Price \(£ 1.75\) each, 30p post.

CONDENSERS: 30 mfd 600 v wkg. d.c., \(£ 3 \cdot 50\) each, post 50 p .15 mfd 330 v a.c. wkg., 75 p each, post 25 p . 10 mfd 600 v . 43 p each, 25 p post. 8 mfd 2500 v . \&5 each, carr. 63 p. 8 mfd 600 v. 43 p each, post 15 p. \(8 \mathrm{mfd} .1 \% 300 \mathrm{v}\). D.C. £1-25, post 25 p, 4 mfd 3000 v . wkg. £3 each, post 37 p .4 mfd 2000 v . £2 each, post 25 p \(4 \mathrm{mfd} 600 \mathrm{v}, 2\) for \(£ 1.0 \cdot 25 \mathrm{mfd}, 2 \mathrm{Kv}, 20 \mathrm{p}\) each, post 10 p .0 .01 mfd MICA 2.5 Kv £1 for 5, post 10 p . Capacitor \(0 \cdot 125 \mathrm{mfd}, 27,000 \mathrm{v}\). wkg. \(£ 3.75\) each, 50 p post 2.25 mfd 25 Kv . wkg. £20 each, £3 carr

CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps , 22.50 each, carr. 75 p . OHMITE VARIABLE RESISTOR: 5 ohms, \(5 \frac{1}{2}\) amps; or 40 ohms at 2.6 amps ; 500 ohms, 0.55 amps . Price (either type) \(\mathbf{£ 2} 2 \mathrm{each}, 30 \mathrm{p}\) post each TX DRIVER UNIT: Freq. \(100-156 \mathrm{Mc} / \mathrm{s}\). Valves \(3 \times 3 \mathrm{C} 24\) 's ; complete with
filament transformer 230 v . A.C. Mounted in 19in. panel, f 4.50 each, carr. 75 p . AR88 RECEIVER: List of spares, 5p. AELEPRINTER EQUIPMENT, REPERFORA


Regulated and stabilised transistor power supply units. A high-grade module variable between \(10-15 \mathrm{v}\). at 1 amp. Offered
as new. Size only \(8 \times 5 \times 4\) in. Only \(E 6.00\) as new. Size only \(8 \times 5 \times 4 \mathrm{in}\). Only \(£ 6.00\)
each. P. \& P. 50 p.
POLARAD SPECTRUM ANALYSER Model SA84. Frequency range 10 MHz 40.8 GHz . Supplied in above average condition. A good reliable instrument. Price upon application.

MARCONI SPECTRUM ANAL.YSER TYPE OA1094A/S. With L.F. exten\begin{tabular}{l}
\(\begin{array}{l}\text { sion. } \\
\text { new. }\end{array}\) \\
\hline
\end{tabular}

HEWLETT PACKARD
Oscilloscope main frame and 178IB and 1755A plug ins fully transistorised laboratory instrument. As New.
Roband Type R050 Oscilloscope, with type 5 G double beam plug in.
Frequency response D Frequency response D.C. to 33 MHz ,
fine condition with our usual guarantee. fine condition with our usual guarantee
Price \(£ 175\). Price \(£ 175\).
AUDIO OSCILLATOR HP MODEL 200 CD . Frequency range 5 Hz -600K Hz in
5 bands OP 10 V across 600 hm load Distortion \(0.2 \%\). No frequency change with load variation, small size rack or cabinet model. As New. Price 675 .
LF FUNCTION GENERATOR HP MODEL202A. Mode sine/square/triangular. Range 0.0008 to 1200 Hz output 30 V Cabinet model. Price \(£ 135\).

\section*{VARIACS (DURATRAC)}

3 amp type motorised version. 240
AC. As new. Only \(£ 8.50\). P. \& p. 50 p . AC. As new. Only 18.50 . P. \& p. 50 p .
Variac Zenith 15 amp model. As new condition. Price 617.50 .
Also motorised version of above,
with Drayton RQ morors
E22.50,
HELICAL POTENTIOMETERS HEELCAL POTUENTTOMETERS
STC Rectcon, 1O-turn, TYpe No. HEL/
\(07 /-10 / 1001 / \mathrm{A}\). Following values supplied ex-stock.
Res. \(500 \mathrm{hm} \pm 1 \% \quad 5 \mathrm{~K}\) ohm 20 K ohm All above Helicals are brand new srock Quantities available. Price \(£ 1.25\) each. P. \& P. 5p for one.

Beckman Type A Helical pots. 5 Watt. 10 turn. Resistances available. 30 Kohms and \(50 \mathrm{Kohms}\). . Brand new and boxed. Price \(£ 1.75\) each.
Bournes Helical pots. Miniature type. Resistance lOKohms. Brand new. Price £ 1.50.
types and values from stock many other quotation.
\(\begin{aligned} & \text { *Heterodyne frequency mete } \\ & \text { stock from } 10 \mathrm{MHz}-10 \mathrm{GHz} \text {. }\end{aligned}\)
\(\begin{aligned} & \text { *Digital Measurements DVM Type } \\ & \text { DM2003 DC/AC to IKV } £ 105 \cdot 00 .\end{aligned}\)
* Hewlett-Packard Peak Power Cali-
brator type 8900B. \(£ 125.00\).
* Cossor Milli-micrasecond Pulse Gen
*Marconi type TFIl02 Amplitude
modulator.
\(\begin{aligned} & \text { olarad Spectrum Analyser 2992A } \\ & 0.01 \mathrm{GHz} 91 \mathrm{GHz} \text {. P.U.R. }\end{aligned}\)

SINE, COSINE POTENTIOMETERS Resistance value 24 K ohms. Complete with reduction drive and servo mounting (for \(2 \frac{1}{2}\) in. servo motor). Potentiometer may be easily removed for a varieyy of purposes. Brand new units. Price \(\mathbf{£ 2 . 2 5}\)
p. p. 20 p. p.p. 20p.

TRAFFIC SPEED INDICATOR Micro-wave radar type. \(12 V\) DC opera-
tion-clips for car batteries. Supplied tion-clips for car batteries. Supplied
complete with indicator unit \(\begin{aligned} & \text { (20-100 }\end{aligned}\) mph ). Portable, carrying case, leads etc. Price \(£ 85\). 00 .
AERIAL CHANGE/OVER RELAYS of current manufacture designed espec-
ially for mobile equipments, coil voltage 12 v , frequency up to 250 MHz at 50 watts. Small size only, 2 in. \(\times \frac{1}{5}\) in. Offered brand new, boxed. Price EISO, inc. P.\&P.
MINIATURE AEI UNISELECTORS 12 position \(\times 3\) bank 250 ohm coils, 1 bridging and 2 non-bridging wipers availcomplete with bases. Price \(£ 4\) p.p. 25p

MUIRHEAD PRECISION DECADE OSCILLATOR TYPES 650A \(\%\) B Frequency range: \(1 \mathrm{~Hz}-1111-11 \mathrm{KHz}\). Prices E4LUNEAD Modulator Type D-978-A
Price
PILS MUICe Enables user to read direct indication of phase angle and the difference in level
between two sinusoidal voltages, both between two sinusoidal voltages, both
voltages may also be measured. Supplied voltages may also be measured. Supplied
in as new condition. Price \(\quad . \quad \mathbf{E 2 7 5}\)

\section*{DIGITAL READOUT MULTIMETER-DIGITEST 500 \\ \(D C\) Volts- \(100 \mu \mathrm{~V}\) to 999 V .
AC Volts- 100 K to 420 V . \\ \(D C\) and \(A C\) Current range down to \(100 \mu \mathrm{~A}\). \\ Resistance 0.1 ohms to 999 K ohms. \\ Auto zero setting, polarity indicator, overange indicator, measuring rate1 per sec., readout three nixi tubes plus indicators. Accuracy from \(0.2 \%\) to \(0.5 \%\) according to range. \\ High reliability, all LSI MTOS ICS.
For 240 V AC- 115 V AC, or 12 V DC operation. (Batteries not supplied.) Price For 240 AC-ilsV AC, or 12}

\section*{OSCILLOSCOPES}

Tektronix 585 A .80 MHz . Sweep delay dual trace plug-in unit type 82.
Tektronix 551 with L z G plug-in's or CA type.
Tektronix 545B with CA plug-in, \(\mathrm{c} / \mathrm{w}\) handbook.
Tekeronix 561 A with rypes 3 B 3 and \(3 A 6\) plug-in's. As new.
Tektronic 661 sampling 'scope, with 452 and 5 TIA units.
All these quality oscilloscopes have been carefully tested and calibrated and carry a six months' guarantee. Large savings up to \(50 \%\) can be made on the manufacturers' list prices; or if you are considering up-grading your equipment, we can offer you a fair price for any used Tektronix scope or plug-in unit.
Cossor
Marconi 1331. Double-beam version of above. \(\mathbf{£ 9 5 . 0 0}\).

\section*{RF SIGNAL GENERATORS}

Marconi TF801D/I. Range 10 to 485 MHz
Marconi TF762C. Range 300 to 600 MHz
Hewlett-Packard 616 A .1780 to 4000 MHz
Airmec 201. \(30 \mathrm{KHz}-30 \mathrm{MHz}\)
Airmec 257.0.003-30Hz
Saunders/Marconi CT480. Range \(7-12 \mathrm{G} \mathrm{Hz}\)
Saunders/Marconi CT478.1.3-4.5GHz
Marconi TF867. \(15 \mathrm{KHz}-30 \mathrm{MHz}\)
Marconi 1F94. \(20-80 \mathrm{MHz}\) in two bands
Advance C.2H. 12 spot frequencies between \(145-\mathrm{I} .64 \mathrm{MHz}\). Push-bution Advance EI. \(100 \mathrm{KHz}-60 \mathrm{MHz}\)
Rohde \& Schwarz U.H.F. Range 990 - 1900 MHz
ROHDE \& SCHWARZ Model SMAF, AM-FM Signal Generator
AVO No. 2 AM/FM Sig. Gen.


FREQUENCY COUNTERS, TIMERS ETC.
Marconi Instrument: type TF 1417 Timer/counter/Frequency meter with 550 MHz convertor. Seven digit readout. All solid-state. Condition as new. \(£ 400.00\).
Hewlett-Packard Timer/Counter/Frequercy meter model \(1524 \mathrm{C} . \mathrm{DC}-110 \mathrm{MHz}\). 8 Digit readout in excellent condition. E125.00. ment. Six digit readout. For mains or 6 V . DC operation. \(£ 60.00\).
Venner, frequency and time measuring unit type TSA3. Five digit readour Mains or 12 v . DC operation. \(£ 35.00\).
Honeywell Model CF252 Frequency counter/timer. DC-100MHz. Five digit auto ranging display. BCD outputs, positive logic. Supplied brand-new and cased. Dimensions \(11 \times 9 \times 4\) inches. Current list price \(£ 375\). Our price only \(\mathbf{£ 2 3 5 . 0 0}\).
Honeywell Model CFB50. 6 Digit readout Frequency counter. 5 5 Hz - 12 MHz with
memory display BCD outpurs. Brand new memory display BCD outputs. Brand new current equipment. List price \(£ 329\). Our price \(£ 195.00\).
Honeywell Digital frequency meter/tachometer. Freq. range 99.990 KHz . or 99,999 RPM (Tacho). Memorised display \& coded outputs: Crystal time base etc. Brand
new. List \(£ 17\). Our price \(£ 90\).

SODECO FOUR CIGIT RE-SET TABLE COUNTERS. 48 V DC. Count-
ing speed 10 I.P.S. Price \(\mathbf{E I} \cdot \mathbf{2 5}\). Carr. 10 p .

\section*{SOUTHERN INSTRUMENTS X.Y. PLOTTER}

With associated equipment in really first-class condition with cables, two input cabinets, relevant data etc.
Special price \(£ 100.00\).

\section*{BOXER INSTRUMENT FANS} Dimensions 1.5 ins. deep \(\times 4.5 \times 4.5\) Very silent running precision fan specially designed for cooling electronic
equipment, amplifiers etc. for 110 V a.c. equipment, amplifiers etc. for 110 V a.c. current practice is to run fan from split primary of mains transformer or use list price over \(\mathrm{fl0}\). Our price \(£ 2.75\) list price
P.P. 20p.

\section*{ROBAND STABILISED P.S.U.}

4 decade voltage selection from \(0-500\) 4 decade voltage selection from \(0-500\)
at 0.5 amp output adjustable in 5000 steps. Voltage and zurrent clearly indicated on quality meters. Fuse/
Protected late equipment. Price \(£ 85\).

\section*{UNISELECTOR SWITCHES}

Standard BPO Type, 3 bank, 25 positions ( +4 position auxiliary bank), bridging wipers, fitted spark suppression. Brand new and boxed, famous manufacturer. Price only \(£ 2.75\). P. \& P. 25 p .
BPO Type, 16 banks, 50 positions, full wipe non-bridging contacts. 100 ohms. Coil operating voltage 48 V . Otered in
good used condition ot only \(£ 5\) each. good used condition at only \(\mathbf{6 5}\) each. BPO Type, 8 banks, 25 positions, 48 V . operation. Offered in gocid used condition
for \(£ 2\) each. P. \& P. 25 p.

COMMUNICATIONS RECEIVERS Hallicrafters \(527-\mathrm{C} .125-210 \mathrm{MHz}\). V.H.F. Good. E45-00. Hammarlund SP600 \(540 \mathrm{KHz}-54 \mathrm{MHz}\). Perfect condition \(£ 135.00\) Eddystone Model \(770 U\). \(150-500 \mathrm{MHz}\). \(7-165\) E \(40 \cdot 00\). Eddystone Model 770 R electrics. 650.00 .

HEWLETT-PACKARD 8491A COAXIAL ATTENUATORS. 'N' type. Frequency response \(D C-12.4 \mathrm{GHz}\). 6db attenuation. Max. input power 2 watts
average. 300 W . peak. Supplied brand average. 300 W. peak. Supp
new at \(£ 7 \cdot 00\). (List price \(£ 22\) ).

MILLIOHM METER 47̇A. Current model in as new condition. Electronic cype. Measures resistance in the very low range of 1,200 ohms down to 50 micro ohms. Direct reading instrument. Safe and easily operated. List price \(£ 163\).
Our price \(£ 63.00\).

CAMBRIDGE PORTABLE POTEN-
CAMBRIDGE PORTABLE POTEN-
TIOMETER type 4428. Brand new TIOME
\(\pm 75.00\).

INSTRUMENT CASES with large scale 5 inch \(50 \mu\) meter by famous manufacturer. Dimensions of case \(10 \times 6 \times 6\). Ready sprayed blue case tilt feet and back
Surplus to requirements. Only \(\mathbf{£ 4 . 0 0}\). Surplus to requirements. Only \(\mathbf{E 4 . 0 0}\). Carriage 50 p .

VARIAC TRANSFORMERS ZENITH YARIAC TRANSFORMERS ZENITH
MODEL \(0-260\) vac output 2 A for panel mounting. Used, excellent condipane mounting.
tion. Price only \(£ 4 \cdot 00\). P. \& P. 50 p.

MUIRHEAD SCREENED
ATTENUATOR TYPE A \(304 B\)
Impedance 600 ohms. H1ldb in steps of
0.1 db . (H-section.) Price \(£ 50\).
P.F. RALFE

10 CHAPEL ST. LONDON N.W. 1 Phone 01-723 8753

BARGAIN OFFER-LOW VOLTAGE STABILISED

POWER SUPPLI
* Current Range to 6 Am
*Full over-voltage and Current pro tection.
*AC Ripple content better than \(5 m V\). These PSUs are constructed to exacting standards and incorporate the design for long life and reliability Employs Silicon transistors, thryistors, C-Core transiormer etc. Offered in perfect condition, carefully checked before despatch. List price over \(£ 125\) Our price only \(£ \mathbf{2 6} \cdot \mathbf{5 0}\). Carriage fl . 9 Amp model
\(€ 30\)
MARCONI INSTRUMENTS TYPE TFI330 OSCILLOSCOPE. Bandwidth \(D C-15 \mathrm{MHz}\). 5 in . C.R.T Supplied in first-class condition
Also TFi331 double-b
Also \(\mathbf{6 9 5} .00\),

CANNON XLR AUDIO SERIES
\(\times 1\) 3-11 Plugs and Sockets L3-11 3 -pole socket (free, line
mounting). \(\times\) L3-32 3 -pole plug (chassis mounting). \(£ 1 \cdot 25\) per pair XL6-32 6-pole plug (chassis mount ing). XL6-11 6-pole socket (free line mounting). \(\in 1.50\) per pair XL3-32 3-pole plug. 75p each

Instrument wire, size \(7 / 0076\) on 500 yds
reels. By famous maker. Price \(£ 3 \cdot 25\) reel. 30p p.p.

SIX Level A.E.I. Uniselectors miniature plug in type 2216A coil 125 ohms. nonbridging wipers with index. 12 position 6 bank. Absolutely brand new in maker's cartons sold complete with base.. \(£ 6 \cdot 50\)

\section*{LUCAS POWER DIODES}
P.I.V. 400 max. 35 DD 716

The plated) P. \& p. 10 p .

\section*{MAGNETIC AB (SWEEDEN) \\ NOISE FIGURE METERS \\ As new. With Plug-in Amplifiers}

10 MULLARD GET 113 TRANSISTORS +10 diodes resistors etc. Size \(6 \times 5\) ins. Brand new board p. \& p. inclusive

Marconitype II52A/I R.F. Power Meters Impedance 50 ohms. Frequency range \(\mathrm{DC}-500 \mathrm{MHz}\). Power ranges \(0.5-10\) and
\(5-25\) watts. P.O.A.

AVAILABLE NOW. Base and ceramic chimney for the \(4 \times 250\) series valves PTFE insulation and mounting clips Prand new and boxed at price \(\mathbf{E 3 . 2 5}\) each. Post free U.K

AIRMEC UHF WATTMETER type 319. Measures C.W. power, sideband power and modulation depth in the fre \(0-100 \mathrm{~mW}\) and 0300 mW small portable instrument. Price \(\notin 55 \cdot 00\).

CAMBRIDGE AC TEST SET 44371/3. DC voltage overs, cry wide rats in irst class calibrated condition ranges. \(\mathbf{6 5 . 0 0}\).

CAMBRIDGE decade WHEATSTONE BRIDGE. Built galvanometer. May be used as decade resistance box 11.1 M. ohms. down to 0001 ohm. Used but
good condition. Price \(£ 35 \cdot 00\). P. \& P. \(£ 1\)

\section*{Cossor Electronic Invertors type} CRA 200. A high quality device for producing a \(115 v 400 \mathrm{HZ}\) single phase output. Incorporating the following fectures: Input 23-28V D.C
* Full overload protection.

Sine wave output.
- Completely colrol facilities

Completely Solid State (Silico Built to Air
- 180 VA of output specifications.

May be run in series operation for 3 phase requirements. Offered brand new boxed units. Price \(£ 17.50\) Carriage 50p
Constant Voitage DC Power Supplies Model DC'8
A stabilised unit supplying 48 vdc at 4 amps input \(200-245 \mathrm{vac}\) stabilied within

\section*{SERVICE TRADING CO}


LTAGE TRANSFORMERS INPUT 23』 v．A．C．50／60 OUTPUT VARIABLE O／260 v．A．C． Carriage，Paid BRAND NEW．All types． 50 0－260 v．at 1 amp ． \(0-260\) v．at 2.5 amps
\(0-260\) v．at 5 amps \(0-260\) v．at 10 amps \(0-260 \mathrm{v}\) ．at 15 amps \(0-260\) v．at 20 amps \(0-260 \mathrm{v}\) ．at 25 amps \(0-260 \mathrm{v}\) ．at 37.5 amps
Speci di amps

\section*{50 in 1 ELECTRONIC PROJECT KIT} required the Kit is．No soldering，no sperial Transformer，plus a host of other components and a 56 page instruction leaflet Some examples of the 50 possible Projects are：Sound level Meter， 2 Transistor Radio

\section*{STRDBEI STRDEE STROBE}
＊FOUR EASY TO BUILD KITS USING XENON WHITE
＊TRIGGERING CIRCUITS，PROVISION FOR EX
＊EXPERIMENTERS＂ECONOMY＂KI
Adjustable t to 30 Flash per sec．All electronic com
Xenon Tube＋instructions
NEW INDUSTRIAL KIT
deally suitable for schools，laboratories etc．Roller Adjustable 1－80 f．p．s．，approx．\(\frac{1}{4}\) output of Hy－Lyght． Price £ 11 －00．incl．P．\＆P．
HY－LIGHT STROBE
Designed for use in large rooms，halls and the photo graphic field and utilizes a silica tube，orinted circui Light output greater than many（so called 4 Joule） strobes，Price £12．50．incl．
＇SUPER＇HY－LIGHT KIT
SUPER＇HY－LIGHT KIT
Approx． 4 times the light output of our well prove
Incorporating．Heavy duty power suppl／
Variable speed trom 1－13 flash per sec．
Reactor control circuit producing an intense white
 ATTRACTIVE，ROBUST，FULLY VENTILA TED METAL CASE speclally designed for the Super FOR HY－LYGHT STROBE incl．reflector，£4．45 I－INCH POLISHED REFLECTOR．Ideally suited
 \(\star \star \star\) RAINBOW STROBE FOUR LIGHT CONTROL

Will operate four of our Hy－Lyght or Super Hy－Lyght Strobes in either 1，2，3， 4 sequence； \(2+\) ；or all together．\(\not\) Thoroughty tested and reliable．complete with \({ }^{\text {connection intructions．Price：}} \mathbf{5 1 8} \mathbf{7 5}\) incl．\(P\) ．\＆ Send S．A．E．for detal

\section*{\(\star\) COLOUR WHEEL PROJECTOR}
＊Complete with oil filled
\(\star\) colour wheel． 100 watr lamp．
\(\pm 200 / 240 \mathrm{~V}\) AC．Features ex－
\(\star\) tremely efficient optical
\(\#\) system． \(\mathcal{E} 18 \cdot 85\) ，incl．P．\＆P．
6 INCH COLOURWHEEL
As used forDiscolighting effec
etc．Price \(\mathbf{6 5} 75\) inc． p ． p ．

\section*{解} Enamel，heavy duty brush assembly designed for continuous duty．AVAILABLE FREGOM 100 WATT I ohm loa．， 5 ohm 4．7a．， 10 ohm 3a．， 100 WATT 1 ohm l0a．， 5 ohm 4．7a．， 10 ohm 3a．，
25 ohm 2 a ．， 50 ohm l． 4 a ．， 100 ohm la．， 250 ohm
 230 mA ．， 2.5 k ohm 2 Za ．， 5 k ohm 140 mA ．，Diameter \({ }^{3 \frac{1}{2} \mathrm{in} \text { ．} 5 \text { haft length }{ }^{3} \mathrm{in} \text { ．dia．fis in．，} £ 1 \cdot 73 \text { ，incl．P．\＆P．}}\) 50 WATT 1．12／10／25／50／100／250／500／1K／1．5K／2．5K／ 5 K ohm．All at \(\mathrm{El} \cdot \mathbf{2 3}\) ，incl． \(\mathbf{P}\) \＆ P ． 25 WATT \(10 / 25 / 50 / 100 / 250 / 500 / \mathrm{IK} / 1 \cdot 5 \mathrm{~K} / 2 \cdot 5 \mathrm{~K} / 3 \cdot 5 \mathrm{~K}\) ohm．
Black Silver Skirted knob calibrated in Nos．I－9．I \(\frac{1}{2}\) in．dia brass bush．Ideal for above Rheostats，I8p ea．
UNISELECTOR SWITCHES－NEW 4 BANK 25 WAY FULL WIPER
25 ohm coil， 24 v ．D．C．operation
6 BANK 25 WAY FULL WIPER
25 ohm coil， 24 v．D．C．
8 BANK 25 WAY FUL WIPER
operation． \(\mathbf{6} 6.75\) ，inc．P．\＆P．


24 v．D．C．operatlon．\(£ 7.88\) ，inc．P．\＆P
＇HONEYWELL＇PUSH BUTTON，PANEL MOUNTING MICRO SWITCH ASSEMBLY
Each bank comprises of a change－over
rated at 10 amps 240 volt A．C．Black knob 1 in．dia．Fixing hole \(\frac{5}{5}\) in．Prices：
1－bank 30 p ， 2 －bank 40 p ． 3 －bank 55 p ． 1－bank \({ }^{30 \mathrm{p},}{ }^{2-\text { bank }}{ }^{40 \mathrm{p}_{1}}{ }^{3 \text {－bank }}\) 55p．


VERY SPECIAL OFFER MICRO SWITCH 5 amp．clo contacts．Fitted with remov－
able metal plate Ex P．O． 20 for \(\& 1 \cdot 00\) inc．
post（min．order 20）．

\section*{＇HONEYWELL＇LEVER} OPERATED MICROSWITCH 45 amps 250 volt A．C．clo contacts． TYPES：N39，No1s，Nioo，
NEW In maker＇s carton
 black light fluorescent u．v．tubes bi－pin fluorescent fittings）．MiNi 9 inch 6 watt black light \(t\)丸 \(\star \star \star\) HONEYWELL PROGRAMME TIMERS 240V．A．C． 5 r．p．m．motor．Each cam
uperating a clo micro switch．Cams are individually variable，allowing
numerable combinations．Ideally
 animated displays，etc．
15 cam model \(£ 6.00\) incl．P．\＆P． 10 cam model \(£ 5.00\) incl．P．\＆P．
2 cam model with \(15 \mathrm{r} . \mathrm{p} . \mathrm{m}\) ．motor \(£ 2.00 \mathrm{incl}\) ．P．\＆\(P\) ．

SIMPLE 12 CAM PROGRAMMER with 4 adjustable cams and 8 that may be profiled to individual requirements．Avail－
able with 15 or 13 r ．p．m．motor \(£ 3-75 \mathrm{incl}\) ．P．\＆P．

Postage iucluded in prices
below are inland only．For below are inland only．
Overseas please ask
For



INSULATED TERMINAL8 Available in black，red，White，
yellow，blue and green．New 10p each
order 6.
METER BARGAINS
BALANCE／LEVEL METERS
Price only 75p including \(P\) ．\＆ \(\mathrm{P} P\) ．
AMMETERS NEW！ \(2 \frac{1}{2} \mathrm{i} \mathrm{in}\) ．FLUSH ROUND \(\times \frac{1}{\mathrm{~b}} \mathrm{in}\) ． availabie as D．C．Amps \(1,5,15,20\) or A．C．Amps
\(1,5,10,1,20\) ．Both types \(£ 1.75\) incl．P．\＆P． \(0-300 \mathrm{~V}\)

\section*{RELAYS}

MINIATURE RELAYS AT COMPETITIVE PRICES
\[
\begin{aligned}
& \text { Trice sets clo contacts rated at } 5 \text { amps. } \\
& \text { Prop. incl. P. \& P. } 100 \text { lots } £ 40.00
\end{aligned}
\]

30 VOLT AC RELAVS
\[
\begin{aligned}
& \text { One set c/o contacts rated at } 7.5 \text { amps. } \text { 日oxed. Price } 45 \mathrm{p} \text {. } \\
& \text { incl. P. \& P. (100 lots } £ 32-00 \text { incl. P. \& P.) }
\end{aligned}
\] miNIATUPE RELAYS
\({ }^{9-12}\) volt D．C．operation． 2 c／o 500 M．A．contacts．Size only
 \(\frac{\text { coil．Size only } 1 \times \frac{1}{6} \times \frac{i 3}{6} \text { in．} 43 \mathrm{p} \text { post paid．}}{\text { MINIATURE LATCHING RELAY }}\)
Mfg．by Clare－Elliott Ltd．（Type F）2 clo permanent latching
in either direction．Coil 1150 ohm． \(15-30\) v．D．C．New 73 p ，

INSULATION TESTERS（NEW） Test tol．E．E．Spec．Rugged metal con－
struction，suitable for bench or field struction，suitable for bench or field
work．constant speed clutch．Size L． 8 in．，W． 4 in．， H .6 in．，weight \(6 \mathrm{lb} .\),
500 VOLTS， 500 megohms \(£ 28\) 1，000 VOLTS，

\(230 V / 240 V\) COMPACT SYNCHRONOUS GEARED MOTORS

\section*{Manufactured by either Sangamo，Haydon}
or Smith．Built－in gearbox．
5RPM A／cw
2RPH A／cw
2RPH CW



VENNER ELECTRIC TIME SWITCH 2001250 volf．Ex－GPO．Tested，perfect con－
dition．Two ON，two OFF，every 24 hrs，at any manually pre－set time．Price： 15 amp,
\(£ 3.45\) ． 20 amp ，\(£ 3.95\) ．Incl．\(P\) ．\＆P．Also avail £3．45． 20 amp ，£3－95．Incl．P．\＆P．Also avail－
able with Solar Dlal ON at dusk，OFF at dawn．

SERVICE TRADING CO．

REVERSIBLE SPLIT PHASE MOTOR 250 r．p．m． \(100-115 / 210-240 \mathrm{~V}\) AC． 2 in．\(\times 1\) in．Ideal for rim－drive models，display etc．Extremely powerful for
size including small capacitor． 75 p．post paid． PARVALUX
Type：SDI．S／86896／0S \(230 / 250 \mathrm{v}\) ．A．C． 50 r．p．m． 7 lofins．
Continuously rated．Less base \(£ 6.30\) TYPE：SDI．S／89400／OM
 230／250v．A．C． 50 r．p．m． \(22 \mathrm{Ib} / \mathrm{lns}\) ．
Continuousiy rated．Incl．，base \(£ 7.30\) incl
The above motors are new and unused．
PARVALUX TYPES SDI9 230／250 VOLT AC REVERSIBLE GEARED MOTORS
30 r．p．m． 40 lb ．ins．Position of drive spindle adjustable to 3
different angles．Mounted on different angles．Mounted on
substantial cast aluminium base．Ex－equipment．Tested and in first－class running order．A really powerful motor offered at a fraction of maker＇s price． \(\mathbf{£ 6 \cdot 8 0}\) ，

PARVALUX TYPE SD2．200／250 VOLT A．C．D．C．HIGH SPEED MOTOR Speed 9,000 r．p．m．approx．or 3,200 r．p．m
if used with built－in governor，or variable
speed over a wide speed over a wide range if used in conjunction
with our Dimmer Switch，illustrated below．
PRIC：


600 WATT DIMMER SWITCH
（1） Easily fitted．Fully guaranteed by makers．
Will control up to 600 watts of all lights
except fluorescent at mains voltage．Complete
with simple instrin

MODERN TELEPHONES type 706. Two tone grey, 53.75 ea The same but black, \(\mathbf{E 2}^{2} 75\) ea. P. \& P. 25 p ea.
AS NEW type 706 BLUE, \(£ 5\) ea. P. \&P. \(25 p\).
Also TOPAZE YELLOW \(£ 4.50\) ea. P. \&P. 25 p .
STANDARD GPO DIAL TELEPHONE (black) with internal bell, 87p ea. P. \& P. 50p. Two tor \(£ 1 \cdot 50\). P. \& P. 75 p . All telephones complete with bell and dial.
PHOTOMULTIPLIERS. Type 931 A-£2. 25 ea.
SINE TO SQUARE WAVE CONVERTOR. 20 Hz to 250 KHz , 9 volt operation. Sine wave input 1 to 2 volts, output \(0-2\) volts
peak to peak. Completely assembled fibre glass board. \(£ 2 \cdot 25\) ea. peak to peak.

\section*{RELAYS}
G.E.C. Sealed Relays High Speed 24 V . 2 m 2b-17p ea.
S.T.C. Sealed 2 pole c/o 700 ohms (24V), 15p ea.
S.T.C. Sealed 2 pole c/o 700 ohms ( 24 V ), 15 p .
S.T.C. Brand New 2 pole c/o 6800 ohm coil-15p ea.

CARPENTERS polarised Single pole c/o 20 and 65 ohm coil as new, complete with base 37p ea.

33 p ea.
VP4 Plastlc covers 4 pole c/o \(5 \mathrm{~K}-30 \mathrm{p}\) ea. \(15 \mathrm{~K}-33 \mathrm{p}\) ea. POLARISED Relay 2 pole c/o 250 ohm and 250 ohm coils.-

POTTER \& BRUMFIELD 24 V 4 pole \(\mathrm{c} / \mathrm{om} \mathrm{m} / \mathrm{h}\) relays. Clear POTENTIOMETERS
COLVERN 3 watt. Brand new, 5 ; 10; 25; 500 ohms; \(1 ; 2.5\); 5 10; 25; 50k all at 13p ea.
MORGANITE Special Brand new, 2.5; 10; 100; 250; 500K; 2.5 meg .1 in . sealed, 17p ea.

BERCO 2 ? Watt. Brand new, 5; 10; 50; 250; 500 ohms; 1; 2.5 ; 15p ea.
STANDARD 2 meg. log pots. Current type 15p ea.
INSTRUMENT 3 in . Colvern 5 ohm 35p ea.; 50 k and 100 K 50p ea.
BOURNS TRIMPOT POTENTIOMETERS. 10; 20; 50; 100; 200; 500 ohms ; \(1 ; 2 ; 2 \cdot 5 ; 5 ; 10 ; 25 \mathrm{~K}\) at 35 p ea. ALL BRAND NEW. RELIANCE P.C.B. mounting: 270; \(470 ; 500\) ohms; 10 K at 35 p ea. ALL BRAND N \(=W\).
ALMA precision reslstors \(100 \mathrm{~K} ; 400 \mathrm{~K} ; 497 \mathrm{~K}\); 998K; 1 meg\(0.1 \%\) 27p ea.; \(3.25 \mathrm{k}, 5.6 \mathrm{k}, 13 \mathrm{k}-0.1 \% 20 \mathrm{p}\) ea.

VISCONOL EHT CAPACITORS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Size \(1 \times 2 \frac{1}{4}\) ins.} & \multicolumn{3}{|r|}{Size \(11 \times 5 \frac{1}{1} \mathrm{ins}\)} \\
\hline 0.05 mfd & 2.5 kV & 50p ea. & 0.01 mfd & 10 kV & \\
\hline 0.01 mfd & 5 kV & 40p ea. & 0.002 mid & 15 kV & \\
\hline 0.001 mfd & 10 kV & 50p ea. & 0.0005 mid & 20 kV & \\
\hline Size & 1 \(\times 61\) & & 0.1 mid & 4 kV & \\
\hline 0.05 mid & 8 kV & 50p ea. & & & \\
\hline
\end{tabular}

\section*{MULLARD ELECTROLYTICS}

2200MFD 100 V
\(10 \mathrm{~A}\left(50^{\circ} \mathrm{C}\right)\)
70p each
BRAND NEW BOXED
10 off - 60p each
100 off - 45p each

47000 MFD 25 V 28A

\section*{60p each}

P \& P 10p

\section*{LARGER REDUCTION FOR QUANTITY}

PHOTOCELL equivaient OCP 79, 13p ea.
Photo-resist type Clare 703. (TO5 Case). Two for 50p.
BURGESS Micro Switches V3 5930. Brand new 13p ea

\section*{TRANSFORMERS. All standard inputs.}

STEP DOWN ISOLATING trans. Standard \(240 \mathrm{~V} A C\) to \(55-0-55 \mathrm{~V} 300 \mathrm{~W}, £ 3 \mathrm{ea}\). P. \& P. 35 p .

Neptune serles 460-435-0 etc. 230 MA and \(600-570-540-0\) etc. 250 MA. E. 3.50 incl. post.
Gard/Parm/Part. 450-400-0-400-450. \(180 \mathrm{MA} .2 \times 6.3 \mathrm{v} . £ 3\) ea.
Transformer 250-80MA; 13V-1.2A and 6.3V-5A. £1.50. P. \& P. 25p. Neptune series \(350-0-350 \mathrm{~V}\) at 55 MA , separate winding \(500-0\) 500 V at \(250 \mathrm{MA} . £ 2 \cdot 00\) ea. Carr. \(£ 1\) extra.
CHOKES. \(5 \mathrm{H} ; 10 \mathrm{H} ; 15 \mathrm{H}\), up to \(120 \mathrm{~mA}, 42 \mathrm{p}\) ea. P. \& P. 17 p Up to 250 mA . 63 p . P. \& P. 35p.

\section*{HARTLEY TYPE 13A ONLY \(£ 18.00\)}

\section*{double beam oscilloscope}

TB \(2 \mathrm{c} / \mathrm{s}-750 \mathrm{kc} / \mathrm{s}\). Band width \(5.5 \mathrm{Mc} / \mathrm{s}\). Sensitivity \(33 \mathrm{Mv} / \mathrm{cm}\). Calibration markers \(100 \mathrm{kc} / \mathrm{s}\) and \(1 \mathrm{Mc} / \mathrm{s}\). A completely reliatle general purpose oscllloscope. Supplled with CIRCUIT DIAGRAM and Mains lead. Carr. \(£ 1.50\). As above. Complete with all accessories. \(£ 25 \mathbf{0 0}\). Carr.
\(£ 1.50\).

\section*{ToLARTRON}

\section*{OSCILLOSCOPES}

SOLARTRON \(711 \mathrm{~S} .2 \mathrm{D} . \mathrm{B} . \mathrm{DC}-9 \mathrm{mc} / \mathrm{s}\). In fine condition
SOLARTRON 643 DC- \(15 \mathrm{mc} / \mathrm{s}\).
\[
\begin{aligned}
& \text { I } 643 D C-15 \mathrm{mc} / \mathrm{s} . \\
& \text { Good condition } £ 50
\end{aligned}
\]

SOLARTRON DC-10 mc/s. CD513-£40. \(\mathrm{DC}-10 \mathrm{mc} / \mathrm{s} . \operatorname{CD513-£40.}\)
\(\mathrm{CD} 513.2-\mathrm{E42} \cdot \mathbf{5 0} . \mathrm{CD} 523 \mathrm{~S}-\mathrm{f45}\).
SOLARTRON CT316 (D300 range) DC-6 megs. \(£ 20\). COSSOR 1049 Mk. IV. DB. £35.
All carefuliy checked and tested. Carriage \(\mathbf{£ 1 . 5 0}\) extra.

\section*{MARCONI}

Noise Gen. TF110s. £40, Carr. \(\mathbf{\Sigma 1 . 5 0}\)
Vacuum tube Voltmeter TFi04tA, £35; 1041B, £45 Wide Range Oscillator TF 1370 and TF 1370A, \(10 \mathrm{c} / \mathrm{s}-10\) \(\mathrm{mc/s}\) from \(£ 140\).
Devlation Meter TF934/2, £50 ea. Carr. \(£ 1-50\). Deviation type 719, £30, ea. Carr. 75. 75 .
TF 1 C26 Frequency Meter \(£ 12.50\). Carr.
TF 1 C26 Frequency Meter \(£ 12.50\). Carr. 75p.
TF 329 Magnification Meter. As new condition \(£ 60\).
TF 195 Audio Generator \(£ 10\). Carr. \(£ 1.50\). TF 195 Audio Generator \(£ 10\). Carr. \(£ 1.50\). TF 8 Cl A Signal generator \(£ 45\) ea. Carr. \(£ 1.50\)
TF 886 Magnification Meter \(£ 45\). Carr. \(£ 1\). TF 936 N .5 Impedance Brldge from \(£ 50\) ea. Carr. \(£ 1 \cdot 50\).
 exceptional condition \(£ 25\). Carr. \(£ 1.50\). TF 885 Video Osclllator SinelSquare \(£ 35\). Carr. \(£ 150\). TF 885/1 £55. Carr. \(£ 1\)-54

\section*{SOLARTRON}

Stabilised P.U. SRS 151. £15. Carr. £1.50.
Stabilised P.U. SRS 152. £10. Carr. £1-50.
Stabilised P.U. SRS 152. £10. Carr. E1.50.
Precision Milivoltmeter VP252. £25. Carr
Oscl|lator type OS 101. £ \(£ 30\). Carr. \(£ 1 \cdot 50\).

Electronic Testmeter CT 38. Complete £20. Carr. \(£ 1\).

\section*{AIRMEC}

Signal Generator type 70t. £25. Carr. £1.50.
AIRMEC Generator type 210 £120. Carr. \(\mathbf{£ 1} \cdot \mathbf{5 0}\).
Test Gear listed is only a very small selection of our stockplease enquire regarding other items.

\begin{tabular}{l} 
BECKMAN MODEL A. Ten turn pot complete wlth \\
dial. \(100 \mathrm{k} 3 \%\) Tol \(0.25 \%\)-only \(\mathbf{E 2 . 1 3}\) ea. \\
\hline
\end{tabular}
E.H.T. Base BgA in Polystyrene holder with cover. Brand new. 13p ea.

FIBRE GLASS PRINTED CIRCUIT BOARD. Brand new. Single zided up to \(21^{\prime \prime}\) wide \(\times 15^{\prime \prime} \frac{1}{1 p}\) per sq. In. Larger pieces
ip per sq. in. Double sided. Any size \(1 p\) per sq. In. Postage \({ }_{10 p}\) per order.

PANEL mounting lamp holders. Red or green. 9p ea. Minlature PANEF mounting lamp with holders-10V 15MA 5p ea.

Standard 240V MOTORS by CITENCO reduction gearbox to 19 r.p.m. reversible, \(\mathbf{\Sigma 5}\) ea.
Also 57 r.p.m. and 114 r.p.m.

GYROS Large clear plastlc topped. Type A £4 ea. P. \& P. 75p.
Single pole 3 -way \(250 \vee\) AC 15 amp switch. 8p ea. P. \& P. 5p.
Large discount for quantity.

CLAJDE LYONS Main Stabilizer. Type TS-1L-5SO. Inpu \(119-135\) volts \(47 / 65\) cs. Output \(127+1-0.25 \% 16\) amps. \(£ 30\) Carr. \(£\)

\section*{\(\underset{\substack{\text { MAGNETRONS } \\ \text { © } \\ \text { TYPE CV370. Brand }}}{ }\) new. Boxed.}

KELVIN \& HUGHES 4-channel multi-speed recorders com-
plete with amplifiers. £45.
EVERSHED \& VIGNOLES Recording paper. Brand new boxed. JL900H4 \(7^{\prime \prime}\) wide, \(\frac{12^{\prime \prime}}{}{ }^{\text {² }}\) dia.25p roll

ELECTRONICS TIMER UNITS --watl or bench mount-ing-2 Hybrid timer boards may be removed leaving
excellent 12 Volt battery charger: DC Power supply etc information supplied. Price ONLY \(£ 3.25\) incl. carriage

\section*{SPECIAL OFFER}

SELECTED B.C. 221 Recalibrated to Ministry Specification SELECTED Carr. \(£ 1 \cdot 50\).
TV MONITORS 14 inch by Epsyion. All valves and componente readily available. Tested, guaranteed working. £20 ea. Carr. readily
£1.50.
TEKTRONIX SCOPE TUBES. Brand New Boxed. Type T5330. Part No. 154-0980-00. 5 inch round flat face. Spiral PDA Circuit included. Price \(£ 12\) ea, P, \& P, £1-25.
E.H.T. POWER UNITS type \(532 / 1617,0-3 \mathrm{kV}\). \(\mathbf{f 1 5}\) ea. Carr. £1.50.
E.H.T. TRANSFORMERS (Standard Mains) 3 KV 600 MA
\(£ 20.00\) ea. Carr. \(£ 1 \cdot 50\).
CAPACITORS
\(0 \cdot 1 \mathrm{MFD} 50 \mathrm{KV}\) working. \(£ 10\) ea. Carr, \(£ 1 \cdot 50\).
\(0 \cdot 1 \mathrm{MFD} 100 \mathrm{KV}\) working. \(£ 16 \mathrm{ea}\). Carr, \(£ 1.50\)
INTERGRATED CIRCUIT test ctip by AP Inc. Gold Plated
clip-on. Brand New individually boxed. \(£ 1.00\) ea. P. \& P. 10 p .

4 DIGIT RESETTABLE COUNTERS. 1000 ohm coil.
Slze \(1 \frac{1}{2} \times \frac{3}{2} \times 4 \frac{1}{2} \mathrm{In}\). As new, by Sodeco of Geneva. \(£ 250 \mathrm{ea}\),
As above but 350 ohm. \(£ 3 \cdot 50\) ea.

DECADE DIAL UP SWITCH-5 DIGIT. Complete with escutheon. Black with white figures. Size \(4^{\prime \prime}\) long \(\times 1^{\prime \prime}\) high \(\times 1 \frac{12}{}\)
deep. Ex-Plessey. \(£ 2.50\) ea. P. \&P. 15p.

\section*{LIGHT EMITTING DIODES \\ (RED)}
from Hewlett-Packard Brand new 38 p each

Holder-Ip ea. Information-5p
SANGO 50 micro amp meter. \(21^{n}\) diameter. Ex brand new SANGO 50 micro amp meter. \(21^{n}\)
radiation equip. \(\& 1\) ea. P. \& P. 17 p .

\section*{SEEING IS BELIEVING}

COLVERN TEN TURN POTS-ex eq. 50 K at 60p ea Complete with dlal \(£ 1.50\) ea, P. \& P. 15p.
C.R.T.'s \(5^{\prime \prime}\) type CV1385/ACR13. Brand new with spec shoet. 63p ea. P. \& P. 35p.
BASES for above 20p ea. P. \& P. 15p
VEEDER-ROOT 6 digit 48 V resettable counters. 55p ea
incl. \(P\) \& \(P\).
Genuine
Genuine MULLARD Transistors/Diodes. Tested and guaranteed. OC
CAPACITOR PACK-50 Brand new components only 50p. P. \& P. 17p.
POTS-10 different values. Brand new.-50p. P. \& P. 17p COMPONENT PACK consisting of \(2-2\) pole 2 amp push on/on swi 1 , was, resisiors 50 p per pack. P. \& P. 170 COMPLETE Pint
COMPLETE Printed Circuit TRANSISTOR I.F. Strip
\(470 \mathrm{kc} / \mathrm{s}\), audio out. Size \(1 \frac{1}{4} \times 4 \frac{1}{18} \times \frac{7}{5} \mathrm{in}\). ONLY 75 p . P. \& P . 10 p .
3000 rubbish) \(£ 1 \cdot 00\). P. \& P. 37p
DELIVERED TO YOUR DOOR 1 cwt . of Electronlc Scrap chassis, boards, etc. No Rubbish. FOR ONLY £3-50 N . Ireland £2 extra LOOSE LEAF BINDERS. Blue plastic cover. 4 ring
Standard size. 4 for £1. P. \& P. 35p. 25 for \(£ 5\). Carr. £1. TRIMMER PACK-2 Twin 50/200 pi ceramic; 2 Twin \(10 / 60 \mathrm{pf}\) ceramic; 2 min strips with 4 preset 5/20pt on each; 3 air spaced preset \(30 / 100\) pl on
NEW 25p the LOT. P. \& P. 10p.

Panel switches DPDT ex eq. 10p ea.; DPST Brand new, 17p ea. DPST twice, brand new 25p
HEAVY DUTY 6 amp. 2 pole c/o-20p ea
GRATICULES. 12 cm . by 14 cm . in High Quality plastic. 30p ea. P. \& P. 5p.
LISTS AVALLABLE: Valves; tubes; test gear; general

Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order
FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd units, etc., at 'Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day.
CHILTMIEAD LTD

7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College) Tel.: Reading 582605/65916 are our normal selling prices. Read down the list, find the item you want and it's yours for HALF THE PRICE SHOWN. They are available to personal callers only, so come early to avoid disappointment. Open 6 days a week, Mon-Sat incl. 9am-5pm
\begin{tabular}{|c|c|c|c|c|c|}
\hline LABORATORY POTENTIOMETERS & \multicolumn{5}{|l|}{Eight Pen} \\
\hline Cambridge L215558 & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Kelvin Hughes quick response recorder D.C to 100 Hy multi speeds.}} \\
\hline 6145 & & & & & \\
\hline A544 \(\mathbf{6 6 5}^{\text {4 }}\) & & & & & Twelve Pen \\
\hline \multirow[t]{2}{*}{Daran D.C. Potentiometer Built in light spor galvo.} & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{TEMPERATURE RECORDERS}} \\
\hline & & & & & \\
\hline Muirhead A-2.A slide wire resistance 0.05- & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Cambridge 50-300 C on 10 ins diam. 24 hr . chart. Complete wish temperature sensor and}} \\
\hline 1.05 ohms max current \(500 \mathrm{MA} \quad \mathbf{5 5 . 5 0}\) & & & & & \\
\hline D. 72 - A ¢45 & \multicolumn{5}{|l|}{6 ft . of capilliary tubing. \(\mathrm{E25}\)} \\
\hline Pye 7565 range 0.1 .75 V resofution & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Ethor Xactrol chart width 7 ins. Ranges \(0-200\) C. 0.600 C .}} \\
\hline micro volt. \(\mathbf{8 4 5}\) & & & & & \\
\hline Pye 7568 range \(0.1-1.8 \mathrm{~V}\) resolution & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Electroflo Pyrograph 0-1000 C chart width bins. 835}} \\
\hline microvolt
£55 & & & & & \\
\hline Tinsley 4363 vernler type f65 & \multicolumn{5}{|l|}{Etliott 515680 to \(\pm 60 \mathrm{C}\)} \\
\hline Tinsley 4524A slide wire 565 & \multicolumn{5}{|l|}{Fielden Servograph RL41. 0-60 micro A on} \\
\hline Tinsley 52058 precision \(\mathbf{E 5 5}\) & \multicolumn{5}{|l|}{} \\
\hline Tinsley A.C. coordinate 3150 ¢65 & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Negretti \& Zambrs Marsteel 2 channel 0.200 C 24 hour circular chart. Complete with two}} \\
\hline RECORDERS & temperature sensors and capilliary tubing. & & & & \\
\hline Single Pon & & & & & \\
\hline Elliott \(8 \frac{1^{\prime \prime}}{2}\) 0-: MA right hand zero. Chart speeds \(1 \& 6 \mathrm{ins} /\) hour. & \multicolumn{5}{|l|}{Rototherm \(50-300 \mathrm{C}\) on 7 day circular char.} \\
\hline Record \(3^{\prime \prime}\) O-IMA right hand zero. Chart & \multicolumn{5}{|l|}{MISC. RECORDERS} \\
\hline Elliott Emrec 400 0-10MA chart width 4" speed \(1 \mathrm{in} /\) hour. & \multicolumn{5}{|l|}{Dawe 1406A high speed A.F. level recorder chart speads 1,10 and \(50 \mathrm{~min} / \mathrm{sec}\).} \\
\hline Evershed \& Vignoles recording wammeter max & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Everett Edgecumbe Event recorders 20
channels. Event markers operated by 24 V}} \\
\hline current 38 ampt. Chart deive 8 day clockwork & & & & & \\
\hline speed \({ }^{\text {i }}\) in/hour. E25 & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{D.C. \({ }^{\text {E75 }}\)}} \\
\hline Evershed \& Vignoies Recording Ammeter A C. & & & & & \\
\hline 0.5 amps. Chart width 4 lins speeds & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Holgate event recorder 8 channels on
teleseltos paper. Chart speedis 1 and 10
ins/sec.
e25}} \\
\hline \(\mathrm{ins} / \mathrm{min}\) \& \(1 \mathrm{ins} / \mathrm{hr}\). \(\mathrm{C}^{\text {a }}\) & & & & & \\
\hline Kelvin Hughes fraq. range D.C. 10 100Hy & \multicolumn{5}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
U.V Recordara \\
N.E.P. 1160 i2 channels. Chart speads \\
2, 6. 20 and \(60 \mathrm{ing} / \mathrm{sec}\). \\
c95
\end{tabular}}} \\
\hline chart width 2 ins . speads 6 and \(24 \mathrm{ins} / \mathrm{min}\). & & & & & \\
\hline £25 & & & & & \\
\hline Evershed \& Vignoles true KVA (A.C.) range & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{N.E.P. 10506 channel chart speeds 2, 6.}} \\
\hline O-1500kVA chart width \(4 \frac{1}{2}{ }^{*}\) speeds \(1 \mathrm{ins} /\) & & & & & \\
\hline min. and 1 in /hr. E28 & \multicolumn{5}{|l|}{20 and 60 insisec. Chart width \(4 \frac{1}{2}\) ins. \(\mathbf{£ 9 5}\) Honeywall 906s. 14 channels on 7 ins wide} \\
\hline Evershed \& Vignoles D.C. milliameter & \multicolumn{5}{|l|}{paper. Chart speads 4.2, 8.3. 17 and 21} \\
\hline 0-5MA. Chart width: \(4 \frac{1}{2}{ }^{\prime \prime}\) speeds \(1 \mathrm{in} / \mathrm{min}\). \& & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{ins/sec. Complete with 6.240 Hy galvos. £ 115 Photographic Recordar}} \\
\hline \(1 \mathrm{in} / \mathrm{hr}\) & & & & & \\
\hline Honeywefl potentiometric -5.5 to 14.5MV & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{N.E.P. \(: 0006\) channels on 6 ins photographic
paper. Chart speeds 0.4 .1 .2 .4 and \(12 \mathrm{ins} / \mathrm{sec}\)}} \\
\hline response time 25 sec . Chart width 11 ins & & & & & \\
\hline speeds 1, 13.2, 3. \(4 \mathrm{ins} / \mathrm{hr}\). £45 & & & & & ¢55 \\
\hline WELMEC 7 AND 8 HOLE ELECT & \multicolumn{5}{|l|}{POV} \\
\hline MECHANICAL PUNCHES 8 & & & & Tvo & Price \\
\hline Models S110 and R82C. 17 char. per sec. & Vols & \[
\begin{aligned}
& 0 / f \\
& a_{m p s}
\end{aligned}
\] & Manut & Tvi & \\
\hline \multirow[b]{2}{*}{Two Pen} & & & & & \\
\hline & 6 & \multirow[t]{2}{*}{\[
500 \mathrm{MA}
\]} & Advance & 0C2 & £6 \\
\hline Bristol 2PG 560 0-5MV eesponse time 12 & 2-7.6 & & Robarat & T98 & \(£ 12\) \\
\hline secs chart width 11 ins. speeds it and & \multicolumn{2}{|l|}{+ +1} & fdiswan & R2030 & ¢15 \\
\hline \(6 \mathrm{in} / \mathrm{hr}\). 5.58 & \(0.80 C\) & 5 & Ediswaf & R2030 & 29. \\
\hline Evershed \& Vignoles D.C. ammeter O.10MA. & \multicolumn{2}{|l|}{0.8 AC} & \multicolumn{3}{|l|}{Ediswan} \\
\hline Chart width 8 ins ( 4 ins per pen) speeds & \multicolumn{2}{|l|}{\(2-85\) 508\#} & Mobe & 198 & £12 \\
\hline various. \(£ 35\) & \multirow[t]{2}{*}{8.7} & 10 & \(1 ¢\) & DS369 & ¢19.50 \\
\hline Evershed \& Vignoles D.C. voltmeter \(0-10 \mathrm{~V}\) & & 500 ma & Roband & 198 & \(\mathrm{fl}_{12}\) \\
\hline chart width 8" (4 ins per pen) speeds & 9 & 10 & farmell & \$126 & 524 \\
\hline various \(£ 35\) & 0-10 & 2 & 8 Pt & 086 & c9 \\
\hline Kent T/8145/C -2.3MV to 8.6MV response & 12 Twin & 1 m & Coutzat & KD100 & 36 \\
\hline 20 secs. Chart width \(10^{\prime \prime}\) speeds \(\frac{1}{2}\), and & \(\pm 12\) & 3 & Plessuy & \(\checkmark 3174\) & ¢22 50 \\
\hline \(3 \mathrm{ins} / \mathrm{hr}\). 552 & 12 & 3 & 1.8 M & 4117312 & 118 \\
\hline Record 3" Duplex 0.1MA chart width 3 ins & 12 & 4 & \(1 . \mathrm{Bm}\) & 4117312 & f20 \\
\hline per channel. Speeds 1 and \(6 \mathrm{ins} / \mathrm{hr}\). Drive & \multirow[t]{2}{*}{\({ }_{1.2}^{1.6 .12}\)} & 10 & Rotand & \(6 \times 6 \times 13\) & f35 \\
\hline 30 day clock. E75 & & 20 & 1.8 M & 473381 & ¢24 \\
\hline Four Pen & \[
\begin{aligned}
& 12 \\
& 12
\end{aligned}
\] & 28 & 18.M & 730480 & f26 \\
\hline Kelvin Hughes quick response recorders D.C. & 14 & 2 & Raband & 1100/14 & f18.50 \\
\hline to 100 Hy . Multi speeds. complate with & \({ }^{4 \times 15}\) & 1.5 & & & 627.50 \\
\hline amplifiers. \(\quad \mathbf{4 4 3}\) & \multirow[t]{2}{*}{\({ }_{17}^{12.15}\)} & 5 & Advance & 日C.612/2 & \\
\hline Five Pen & & * & farnel! & 55V176 & f24 \\
\hline Sefram RP5 1 RX5 0.6MA D.C. - 14 Hy . & 4.5 & 4 & Lower Elect & 110 & £25 \\
\hline 9 chart speeds from \(1 \mathrm{~min} / \mathrm{sec}\) to \(50 \mathrm{~min} / \mathrm{sec}\). & -10 & 4 & Lower Elert & SP110 & £25 \\
\hline Chart wiath \(4 \mathrm{~cm} / \mathrm{channel}\). two 24 V event & 20 & 45 & Lower Elect & \$P110 & £25 \\
\hline makers. £75 & +10 & 300MA & Lower Elect & \$P110 & £25 \\
\hline
\end{tabular}
\(1 \sim 2\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline 20 & 9 & Lower Elect & SP135 & £27.50 & COUNTERS \\
\hline 10 & 4 & Lowet Elect & SP135 & ¢27.50 & Memory Core Stores \\
\hline 10 & 300MA & Lowel Elect & SP135 & £27.50 & Plessey ferrite memory stores many types \\
\hline +12 & 500MA & Livingstana & IM050 & ¢9.50 & availabie from stock 8K. 16 K bits etc. \(\mathbf{8 4 5}\) \\
\hline 24 & 500 ma & Lisungstone & Im050 & f9.50 & I.C.T. Memory planes complete with logic. \\
\hline \(1 \cdot 22\) & 40 Whits & APT & 1717 & ¢9.50 & each plane contains 40 words. A word has 52 \\
\hline 100 & 5 & Solation & AS755 & ¢35 & cones 3 wire system. write row wire 210 \\
\hline 175-260 8 & 80 ma & SSmith & CH) 48065 & \(¢_{\text {¢ }}{ }^{5}\) & MA turns. digit sugment 210 MA turns. read \\
\hline \(240 \cdot 320\) & 502 & Solstion & AS7552 & ¢49 & row wire 5.5 MA turns. Pulse length to write \\
\hline 6.3C.T. & 5 & Solatron & \({ }_{\text {A }}{ }_{\text {A }}\) & 640
\(¢ 10\) & 2 microseconds. \\
\hline 3350 C & & Famell & PU335 & \(¢ 10\) & \\
\hline 200-400 & 200ma & Efiswan & 91103A & c29.50 & Uhtra sonic cleaning tanks f15 \\
\hline \(0-500\) & 50 ma & Elioth & 8700/775 & ¢40 & \\
\hline 200.500 & 250 MA & APt & 501 & ¢35 & \\
\hline \(0-500\) & 259 MA & APT & 504 & ¢45 & MODULATORS \\
\hline \(200-500\) & 350MA & APf & 506 & ¢ \(¢ 47.50\) & Muirhead D-652-A L.F. Freq. Range 2-20Hy. \\
\hline \(0-500\) & 350MA & APT & 508 & ¢49 & Accuracy \(\pm 0.1 \mathrm{Hy}\). Input volts \(1 \mathrm{MV}-3 \mathrm{~V}\) \\
\hline 0.500 & 500 Ma & APT & 512 & ¢49 & output volts 10 MV for extending the range \\
\hline 1000 & 250 MA & APT & 7249 & \({ }_{\text {f } 42}\) & of the D-489-G wave analyser. \(£ 25\) \\
\hline 24 & & A.PT & TSU1030 & ¢25 & Wayne Kerr SA400 modulator/Demodulator \\
\hline 24 & 5 & Advance & \(0 \mathrm{C6}\) & £28.50 & for use with Wayne Kerr Bridges. \(\quad \mathbf{6 5}\) \\
\hline 24 & 5 & Advance & 0 C 22 & c28.50 & \\
\hline 25 & 7 & Yoband & T100'25 & ¢20 & \\
\hline 28 & & APT & TSU1012 & 526 & \\
\hline -28V & 2 & & & \(\underline{426}\) & \\
\hline 12 & 2 & & & f26 & STOPPRESS \\
\hline 12 & 600 MA & & & f26 & \\
\hline 20 & 300 MA & B.PL & & ¢32.50 & \\
\hline +30 & 300 MA & & & ¢32.50 & \\
\hline +6 & 1 & Coutan: & & f38 & \\
\hline 28 & 2.5 & & & £38 & items have arrived. All at \\
\hline \(\pm 12\) & 5 & qubzat & \({ }^{\text {P198 }}\) & ¢35 & \(\frac{1}{2}\) price or less \\
\hline -18 & 20 & foband & P198 & £35 & \\
\hline \(\pm 30\) & 100MA & Rotand & P198 & ¢35 & \\
\hline 0.30 & 500 MA & Startromic & 119.5 & ¢37 & \\
\hline 0.30 & 1 & APT & 5994 & £35 & AMPLE AR8 \\
\hline 0-30 & 1 & Advance & PP3 & ¢45 & munication receiver List \\
\hline \(0 \cdot 30\) & 1 & Advance & PP3 & ¢45 & 80. Less 50\% discoun \\
\hline 0-30 & 2 & Coutam & & \({ }^{\text {E 3 }}\) & \\
\hline 0.30 & 3 & Solation & As 870 & ¢38 & \\
\hline 30 & 7 & IBM. & 210080 & ¢19 & \\
\hline 32 & 2 & APT & 10459/14 & ¢23 & \\
\hline 25-33 & 1 & Roband & T109 & ¢27 & \\
\hline 40 & \({ }^{8}\) & Advante & 0 C 188 & 527.50 & SIGNAL GENERATORS \\
\hline 48 & 2 & Advance & 0C122 & £27.50 & SIGNAL GENERATORS \\
\hline \(55-60\) & \(\dagger\) & Rotand & & ¢25 & \& OSCILLATORS \\
\hline 48 & 4 & Alvance & OC8 & \({ }^{\text {f29.50 }}\) & MARCONI TELEGRAPH TEST GENERATOR \\
\hline 150 & 100 MA & farnell & SPU150 & ¢14 & type TF1167. Frequency range 3.1 MHz to \\
\hline 150 & 2009 MA & Famell & SPU150 & \(¢ 15\) & 9.3 MHz in 3 ranges. Stability better than \\
\hline 150 Ma & 220.250 & Roband & B101/200 & \(f 19.50\) & \(0.001 \%\). Sine wave AM up to. \(\mathbf{1 0 0 \%}\). £65 \\
\hline 220 & & Solation & AS755 & f35 & MARCONI PULSE GENERATOR type CT395. \\
\hline \(\pm\)... & & Solation & AS11042 & f35 & Pulse repetition rate: \(4 \mathrm{~ms}-12 \mathrm{~s}\) in 8 ranges. \\
\hline \(280-320\) & 500 & Soltrion & AS755.2 & f40 & E65 \\
\hline 6.3. & c. 10 & Solation & As755. 2 & E40 & MARCONI ULTRA SHORTWAVE SIGNAL \\
\hline 6.3AC & & Farneil & PU335 & f10 &  \\
\hline 0.500. & 200MA & Solation & SRS 1522 & ¢47.50 & AIRMEC SIGNAL GENERATOR type 701 \\
\hline \[
\begin{aligned}
& 1 \mathrm{~K} .24 \\
& 0-500
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{K} 18 \mathrm{MA} \\
& 250 \mathrm{MA}
\end{aligned}
\] & \begin{tabular}{l}
Aismac \\
APT
\end{tabular} & \[
6988
\] & \[
E 45
\] & Frequency range 30 KHz to 30 MHz in 7 \\
\hline \(0-500\)
\(0-500\) & 250ma & APT & 505 & ¢35 & ranges. Modulation facilities. \(£ 55\) \\
\hline 200-500 & 350mA & APT & 507 & ¢47.50 & SANDERS UHF OSCILLATOR type CLC 7.12. \\
\hline 0.500 & 350 Ma & apt & 509 & f5250 & Frequency range 7 to 13 K MHz . \(\mathbf{5 5 5}\) \\
\hline 500 & 250MA & APT & 1249 & \(\mathrm{f}_{42}\) & muirhead decade oscillator type \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{7 TRACK}} & \multicolumn{3}{|l|}{} & 0-695-A. Units \(0-11\), tens 1-11, hundreds
0.10 \\
\hline & & \multicolumn{3}{|l|}{DIGITAL MAGNETIC TAPE
STORAGE DECK} & S.T.C. SWEEP OSCILLATOR type CLS 4232 F . \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{These machines originalify ex-computer, are multi-rack recording units. ideal for data}} & Variable. £65 \\
\hline & & & & & S.t.C. SHF OSCILLATOR type 16-LXU-13A. \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{storage. Record and Replay heads encased}} & ¢65 \\
\hline & & & & & DAWE PULSE GENERATOR type 412A. ¢35 \\
\hline \multicolumn{5}{|l|}{Frequency response approximately \(30 \mathrm{kc} / \mathrm{s}\).} & COSSOR MILLIMICROSECOND PULSE \\
\hline \multicolumn{5}{|l|}{to \(50 \mathrm{Kc} / \mathrm{s}\). Bit density \(557 \mathrm{bp.i} \frac{1}{2} \frac{1}{2} \mathrm{in} .10 \frac{1}{4}\)} & GENERATOR type \(1097 . \quad \mathbf{£ 6 5}\) \\
\hline \multicolumn{5}{|l|}{in. spools 230 V . to 380 V A.C. Capstan} & tinsley tuning fork oscillator type \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Motor speed 1.500 r.p.m. 48 V . D.C. Rewind}} & 3086. \\
\hline & & & & & MUIRHEAO ANALYSER OSCILLATOR type \\
\hline \multicolumn{5}{|l|}{Finished in brush aluminium and matt-black.} & D-888-A. \(\quad\) ¢55 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Size \(27 \mathrm{in}. \times 26 \mathrm{in}. \times 8 \mathrm{in}\). Weight 90 lb .
Price \(\mathbf{f 7 2 . 5 0}\).}} & S.T.C. NDISE GENERATOR type 7412A. \(\mathbf{\text { f55}}\) \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{SALE NOW IN FULL SWING}

MARCONI \(X\) BAND SIGNAL GENERATOR type TF1343/2.
MARCONI \(\times\) BAND SIGNAL GENERATOR MARCONI \(X\) BAND SIGNAL GENERATOR S.T:C. SIGNAL GENERATOR type 202.LXU8 A . Frequency range 3.55 .4 .2 K MHz . \(\quad \mathbf{5 5 5}\) B.C.C. SIGNAL GENERATOR type CT53. SOUTHERN INSTRUMENTS GAUGE OSCILLATOR type M700L
Automatic Typewriters. Friden Flexowriters programmatic automatic typewriters for automatic letter writing, data preparation, invoice format. edgepunching cards. cutting reading and copving paper tapes. Prices from

\section*{METERS}

Ernest Turner AC/DC voltmeter ranges 0-150 and \(0-300 \mathrm{~V}\) sensitivity 200 ohms/volt on A.C. and 220 ohms/volt on D.C. contained in a stout wooden case. voltmeter range. \(0-120.50\)
\(20 \mathrm{ohms} /\) volt. BS Grade 5 ranges sensitivity 20 ohms/volt. BS Grade
89.
\(\mathbf{~} 12.50\) E12.50 AC/DC voltmeter ranges \(0-300\) volts in 3 ranges.

\section*{Without Certificate Digital Voltmeters}

Solatron LM902-2 4 digits to 1599 range 0.1000 in seven ranges. Input \(Z\) better than 100 K accuracy \(0.1 \%\). Solatron LM903 A.C. Co
LM902-2 above to read A.C Dynamco 2022S scate 39999 Range \(0-2 \mathrm{KV}\) resolution 1 part in 40.000 . Input \(z\) better Gloster B1E 21233 digits AC/OC O.C. ranges 10 MV to 400 V in 4 ranges. AC ranges 100 MV feb

\section*{to 250 V . \\ MILLIVOLTMETERS}

Airmec 264 rarges 0 - 1 V in 6 ranges. Cas Marconi TF 899 value millivolimeter, ranges Philips GM6017 Pange 0.300 V in 10 E25 Preq 6 matile 2 Hy to 200 KHy in 10 rangas.


\section*{SIGNAL GEMERATORS}

\section*{\& OSCILLATORS}

EDISWAN LOW FREOUENCY OSCILLATOR 5500 Hz in 7 ranges. Output vothage 50 Hz to 10 K . ADVANCE A. F. GENERATOR type J model 1. requency range 4KHz to 1000 Hz in 3 ranges. 15 Hz to FURZEHILL R. C. OSCILLATOR type G432. Frequency range 25 Hz to 250 Hz . Sine and Square wave output. 0 to 5 V sine. 0 to 8 V Square P.p.
SOLARTRON OSCILLATOR Type
CO546. Frequency range 25 Hz to 5000 KHz , Voitage Output IOV RMS. SIGNAL GENERATOR E48 TF937/CT218. Frequency range 85 KHz to 30 MHz in 8 bands. Voltage output 1 mV \(\begin{array}{lll}100 \mathrm{mV} \text {. } \\ \text { SOLARTRON SIGNAL GENERATOR } & \mathbf{~ t y p e}\end{array}\) D0905. Stabilised amplitude. Frequency range 350 KHz to 50 MHz in 6 ranges. Switched
\(\mathbf{f 6 5}\) MEFERS
Chase Sensitive Voltmeters (Resolved Component Indicators).
Solatron VP250 Freq. Range 2 Hy to 100 KHy sensitivity Ref. channe \(15 \mathrm{MV}-20 \mathrm{~V}\) signal channet 15 mV - 15 V in 7 ranges. \(\mathbf{£ 1 1 5}\) Smith \& Son 32 TE sensitivity. \(50 \mathrm{MV}-150 \mathrm{~V}\)
\(\mathbf{£ 2 5}\)
8 ranges. in 8 ranges. Solatron VP 253-2A frea. range 0.5 Hy to 1 KHy . Sensitivity. Reference voltage 10 V
signal voltage 50 MV to 150 V in 8 ranges. signal voltage 50 MV to 150 V in 8 ranges. Smith \& Son 199XTE sensitivity \(50 \mathrm{MV}-50 \mathrm{~V}\) 4 ranges.
Solatron VF 252 . Sensitivity 0-5. 0-15V. £55 Value Vohmetars
Marconi TF 1041 B range \(50 \mathrm{MV}-300 \mathrm{~V}\). Freq. range \(50 \mathrm{MV}-300 \mathrm{~V}\). Freq. Range 20 HV 700 MHy . DC \(20 \mathrm{MV}-1 \mathrm{KV}\). Resistance 0.2 ohms to 500 M . Marconi TF 1100 range 100 micro \(V\) to 300 V


Philips GM 6020 Range \(\uparrow \mathrm{MV} \cdot 1000 \mathrm{~V}\) in 4
anges. ranges.

5
Wattmeters
Crompton Pa
\(E 15\)
S.T.C. R502 Freq. Range 100 KHy to 48 NHy .

Ex-Services W1185/A freq. range 20 MHy to OOMHy.

\section*{SIGNAL GENERATORS}

\section*{\& OSCILLATORS}

\section*{MARCON VIDEO OSCILLATOR type} TF885A/1. Frequency range Sine 250 Hz to 12 MHz in 3 ranges. Square wave 50 Hz to 150 KHz in 2 ranges. Sine output 31.6 V to 316 V . Square wave output 32 V peak. E45
WAYNE KERR A F. OSCILLATOR type S 121. Wrequency range 10 Hz to 120 KHz Solat Frequency range
output \(220 / 250 \mathrm{~V}\). MARCONI VIDEO OSCILLATOR type TFE85 Frequency range 25 Hz to 5 MHz in 2 raraes. Sine and square wave. Output voltage 31.6 V into 1000 ohms. \(\mathbf{E 4 5}\) PYE-LING POWER OSCILLATOR type 5 V A Frequency range 5 Hz to 50 KHz . E35 SOLARTRON OSCILLATOR type OSYO1. Frequency range 25 Hz to 250 KHz , £49.50 MUIRHEAD WIGAN LOW FREQUEWCY DECADE OSCILLATOR type D638A. Frequmncy range 0.1 Hz to 111.1 KHz in 2 ranges. Max
output 2 W . Output 2W. WIDE RANGE OSCILLATOR type 400 C . Frequency range 1 Hz to 1 KHz . Ourput COntrol 1-10
GOODMANS POWER OSCILLATOR Frequency range 5 Hz to 50 KHz in 4 ranges. GOODMANS POWER OSCILLATOR type D5. requency range 10 Hz to 10 KHz in 3 farges Voliage ontput O-5VAMS. PNAX EQUIPMENT PULSE GENERA-OR type R100A, 0 to 1000 p.p.s. Votrage orcput O.50V. Triangular or square wave. E35
BEME TONE GENERATOR BEME TONE GENERATOR type X9: 27.
frequency range 3.00 to 7.2 KHz in 10 ipot trequencies. E65 MARCONI TELEVISION SWEEP GENERA OR type TF923. Frequency range 44 to 90 A Hz Aenge 1-10 sweep widit. Useful for 105 line T.V. sets only.
S.T.C SWEEP OSCILLATOR TYPE 16 LXU 52 A mark II. Frequency rarge \(0-20 \mathrm{NHz}\) Sweep and auto tracking facilities. 75
DAYSTROM T.V. ALIGNMENT GENERATOR DAYSTROM T.V. ALIGNMENT GENERAEOR type HFW 1: Frequency range 3.6 MH to to
220 MHz . Output impedence 80 ohms.
E15 MEMORY PLANES
Ferrite core memory planes with wired Ferrite cores. Used for buitding your own comfute or ss on interesting exhibit br the deraon suration of a computer. Mounted on plestic materiaf. frame \(5 \times 8 \mathrm{in}\). Consisting of matricas \(40 \times 25 \times 4\) cores each on individually addressable and divided into 2 hatves with independent sense and in nitit wires.
Tetaprimeers, esc
Creed type 78 page printar 24 V power supphy.
Creed tyoa 78 page printer (G.P.O \(£ 22\)
with \(110 / 250 \mathrm{~V}\) d.c. motor \(\quad\) E19
Creed type 25 paper tape punch. Punchess up
to 33 characters per \(\mathbf{~} \mathbf{£ 1 9 c}\).
33 characters per sec
619.50
4 row

Creed type \(54 / \mathrm{N} 4\) teleprinter with 4 row
alpha/numeric keyboard.
\(\mathbf{E 6 5}\) alpha/numeric keyboard. Creed type 7P/N3 reperforator Creed type 85 Na reperfora Creed type 85 reperforator
Creed type \(6 \mathrm{~S} / 4\) auto transmitt Creed type \(6 \mathrm{~S} / 4 \mathrm{M}\) auto transmitter Creed type 6S/6 auto transmitter Creed type \(6 \mathrm{~S} / 6 \mathrm{M}\) auto transmitter Welmec 7 \& 8 hoie punches
Rebuilt models \(\$ 110\) amd R82C. \(\mathbf{£ 2 5}\)
\(\mathbf{£ 1 9}\) ¢ 29.50
\(\mathbf{8 1 5}\) Magnetic Tape Decks
RCA \(30^{\prime}\) model 381 . 7 tracks on \(\frac{1}{2}\) in tape. A recording density of 333 characters per inch gives a nominal read/write rate of inch gives a nominal read/write rate of speed of \(30 \mathrm{in} / \mathrm{sec}\). 8 in reels. tape
E20 Ex-Computer Tape on \(\frac{\mathbf{E}_{2}^{2}}{2}\) in tape. Low resistance reads with frea. response
 Tape

845
\(\mathbf{f 1 0 0 , 0 0 0}\) worth of electronic and computer parts must be cleared regardless of cost. Many more items in addition to those shown here.


\section*{ANALOGUE \& HYBRID COMPUTERS}

\section*{C180 Features include:}

18 Integrated Circuit operationa amplifiers.
\(1 \%\) accuracy
3 - Four quadrant multipliers
Automatic Function Selection
All solid state.
Individual Pot Set facilities.
Meter switching to all pots and amplifiers
Compute period: 35 m . S. to infinity.
16 Integrators. 2 Non linear amplifiers
Built-in stabilised power supplies.
\(3 \frac{1}{2}\) digit D.V.M optional extra
Price \(£ 740.00\) complete with patching leads and instruction book
Phone for details of our range of Analogue. Digital \& Hybrid apparatus
PHYSICAL \& ELECTRONIC LABORATORIES LTD.
MANUFACTURERS OF ANALOGUE AND HYBRID COMPUTERS
28 Athenaeum Road. Whetstone. London, N. 20
Tel: 01-445 7683

\section*{Thermistors}
F. J. Hyde, DSc, MSc, BSc.

The aim of this book is to give for the first time a comprehensive account of the properties and applications of both positive and negative temperature coefficient (NTC and PTC) types o thermistors. In order that their potential usefulness in a wide range of instrumentation and measurement may be made evident. It will prove to be an indispensable reference book for all those interested in the application of this extremely useful circuit component
0592028070208 pages illustrated 1971 £3.20 Available from leading booksellers or
The Butterworth Group 88 Kingsway London WC2B 6AB
Showrooms and Trade Counter 4-5 Bell Yard London WC2


MARCONI
TEST EQUIPMENT


TF 1066 B/2 F.M. SIGNAL GENERATOR Frequency range
Crystal callbration: \(100-555 \mathrm{MHz}\) in one band
10 MHz Output: calston attenuator \(0.11 \mathrm{~V} V-100 \mathrm{mV}\) at 50 ohms. Int. mod. freq. 1 to 10 kHz , ext.
mod. frea. 100 Hz to 100 kHz . Freq. dev. up to mod. freq. 100 Hz to 100 kHz . F
300 kHz . \(£ 250\). Carriage \(£ 1.50\).
TF 1258A VHF SPECTRUM ANALYSER or analent. Frequency range 190 to 230 MHz wlth crystal check points. Sweep width 0.5 to 5 MHz , output puise delay (a) \(85-175 \mathrm{uSec}\).
(o) \(0.7-1 ; 4 \mathrm{mSec}\) with \(\times 1\) and \(\times 2 \mathrm{multiplier}\) and \(-2, \times 1\). \(\times 2\) multiplier. Output \(2 \mu v\) to
20 m
with \(\times 10\) multiplier. \(£ 250\). Carriage cost.
MUIRHEAD PHASEMETER. Type D729/ manual, leads, as new \(\in 200\). TF 1400S DOUBLE PULSE GENERATOR
WITH TM \(6600 / S\) SECONDARY PULSE UNIT. For testing radar, nucleanics, scopes,
counters, filters etc. SPEC. TF 1400 . Rep. frequ. 10 Hz to 100 kHz , pulse width 0.9 to
100 s sec., delay -1.5 to +3000 u sec., ris me < 30 N sec
SPEC. TM \(6600 / \mathrm{S}\). As for TF1400S except
pulse width \(0.5025 \mu \mathrm{sec}\), delay 0 to \(+300 \mu\) pulse width
sec. \(\mathbf{E} 200\).


Open 9-12.30, 1.30-5.30 p.m. except Thursday 9-1 p.m.

 UBF80
UBF89
UCC85
UCF80
UCH42
UCH81
UCL82
UCL83
UV41
UF80
UF89
UL41
UL84
UU5
UY41
UY85
VR105/3
 \begin{tabular}{l|l}
40 & \\
35 & 2 \\
40 & 2 \\
75 & 2 \\
73 & 1 \\
35 & 1 \\
60 & 1 \\
50 & 1 \\
36 & 1 \\
40 & 1 \\
63 & 2 \\
40 & 3 \\
55 & 3 \\
43 & 3 \\
40 & 3 \\
35 & 3
\end{tabular} VR150/
Z801U
Z803A
Z900T
\(1 L 4\)
\(1 R 5\)
184
185
1 T 4
1 X 2 A
1 X 2 B
2 K 25
3 A 4
3 D 6
3



 TRAN


 N



 A8Y67
BAW19
BC107
BC108
BC113
BC118
BCY72
BF115
BF173
BFY51
BFY52
BS
B82
B8Y29
BU100
BYZ
BYZ16
CRS1/10
CRS1/20
CR81/30
CRSI
CRS1/35
CRS3/05
CRS3/20
CRS3/30
CRS25/02




 ~

 COMMR
the valve with a guarantee


BC 624 RECEIVER \({ }^{100-156 ~ m C s, ~ n o ~ v a l v e s . ~}\)
requires separate PSU for 28 V . \(£ 2.50\). Carriage 50. H.F. AB8ORPTION WATTMET ER TF range \(£ 25.00\) Carrlage 0.75 .

\section*{TEKTRONIX
OSCILLOSCOPES.
\(541 A-33 M H z\), plug-in
Y}

 differential, sampling, spectrum ana
lyser:
pLic in units lyser: \(\mathrm{CA}-24 \mathrm{MHz}\) dual trace \(50 \mathrm{MV}-20 \mathrm{~V}\)
\(\mathrm{G}-20 \mathrm{MHz}\) differential \(50 \mathrm{MV}-20 \mathrm{~V}\) G-20 MHz differential \(50 \mathrm{MV}-20 \mathrm{~V}\)
\(\mathrm{~L}-30 \mathrm{MHz}\) fast rise time \(5 \mathrm{MV}-20 \mathrm{~V}\)
D-HIgh gain differential \(1 \mathrm{MV}-50 \mathrm{~V}\) D 600 MHz sampling \(10 \mathrm{mV}-\mathrm{cm}\).
N \(\mathbf{R}\) Tranststor measurement.
\(\mathbf{P}\) type callibration P type callibration,
3A1-Dual trace \(10 \mathrm{~m} V\)-10V. 3A1-Dual race
3B3 Delayed sweep time base.
134-P6021 probe and current 323 -p6021 probe and current probe
i3mplifier, \(1 \mathrm{~mA}-15 \mathrm{~A}\) p. \& p., new and ampifier,
boxed EA
EQUIPMENT

 \(350 \mathrm{kHz}-50 \mathrm{MHz}, 40 \mathrm{mV}-10 \mathrm{~V}\) p.-p. outpuit ع135.
162 wa
162 wave form generato
163 Pulse generator

M.O. for ET 4336 TX (see description Previous issues
\(12,50,55 \mathrm{pF}\) each \(20,000 \mathrm{v} £ 1 \cdot 50\). P. \& P. 20p. ARBS SPARES. We hold the largest stock MODULATION TRANSFORMERS MAde
 Aud
25 p.

\section*{HEWLETT-PACKARD OSCILLO.
\(185 A 800\) MHZ SAMPLING OSC
SCOPE WITH 18EA DUAL TRACE SCOPE WITH 188 D DUAL TRACE
PLUG-IN. Full spec. and P.O. 5248 COUNTER FREGUENCY Accuracy \(\frac{1}{2} 1\) count. Automatic posi-
tionling of decimal point. Period measurement: 0 -10kHz, reads in seconds: milliseconds or microseconds, dectmai point automatically positioned, Display
on \(\mathbf{6}\) neon lamp decades and 2 meters. Complete with manual and following plumplins 525 F 10 to 100 MH , 525 B 100
to \(220 \mathrm{MHz}, 525 \mathrm{~A}\) video amplifier. Pri*e 540B TRANSFER OSCILLATOR. Extends range of 524 and 5245 series
counters to 18 gHz or on its own, measures trequ
\(0.5 \%\) accuracy. \\ 430C MICROWAVE POWER METER. tunable bolo. BM16 waveguide, £125. 205AG AUDIO OSCILLATOR. Low and attenuated inputs and outputs enabling a very wide range of measure-
ments to be made on ampliffers, filters, ments to
etc. E 145 . \\ 200CD WIDE RANGE OSCILLATOR.
5 Hz to \(600 \mathrm{kHz}, £ 60\).}

PLEASE NOTE ALL EQUIPMENT
ordered from us is completely over hauled mechanically and electrically
in our own laboratories

\section*{FOR EXPORT ONLY}

TRANSMITTERS
BC 610 Hallicratters.
RCA ET 4336 also modified verston of increased output to 700 w .
COLLINS TYPE 231 D
\(4 / 5 \mathrm{kw}\)., 10 channel, authotone and manual tunlng. All above TRANSCEIVERS
19, \(19 \mathrm{HP}, 38,62\).
C-11 TRANSMITTERS
C-13 TRANSMITTERS
\begin{tabular}{l}
\hline MARCONI CR100 RECEIVERS. To \\
clear, complete, untested, as seen \\
\& 8
\end{tabular} V.H.F. Q-METER TYPE TF EBEB. Fre quency range: 20 to 260 MHz in tranges.
Q Range: 5 to 1,200. Precision tost circuit.
capacitor calibrated at \(0,02 \mu \mathrm{FF}\) intervals. capacitor calibrater
£65. Carriage \(£ 2\).
HARNESS "A" a "B" control unlts,
Junction boxes, headphones, mierophones,
R.F. METER 0-8 amp. 21** (U.S.A.) E2-25

\section*{TELEQUIPMENT}

Separate Y amps 0.1 to \(500 \mathrm{~V} / \mathrm{cm}\), time base \(1 \$ / \mathrm{sec}-500 \mathrm{~m} / \mathrm{sec}\).
S 51 T
0.1 to 50 v per cm . Time base \(1 \mathrm{u} / \mathrm{sec}\) -
\(100 \mathrm{~m} / \mathrm{sec}\). Price on application.

METERS \(\begin{aligned} & \text { Fuli List of our very large } \\ & \text { stock of meters on request. }\end{aligned}\) INTEGRATED CIRCUITS Texas TR 1143 TRANSMITTER RECEIVER \(100 / 126 \mathrm{mcs}\), requires separate PSU for 28 V Price \(\mathbf{T 1 2 . 0 0}\). Carriage \(\mathbf{2 1 . 5 0}\) TX/RX No. 26. Frequency 15 mcs-232 mes continuous, new, complete, with built-in
PSU tor mains and separate for 12 V DC. £12.00. Carriage £1.50. TELEPHONE TYPE "J"' (Troplcalised)
10 line MAGNETO TELEPHONE SWITCHBOARD
200 Ilne AUTOMATIC PRIVATE TELEPHONE SWITCHBOARD 50 IINe AUTOMATIC PRIVATE TELEPHONE SWITCHBOARD Price of each of the above on applicatlon. RADAR SCANNER ASSEMBLY TYPE
 wlth motor for
Carriage \(£ 20\).
COLOMOR (ELECTRONICS) I70 Goldhawk Rd., London, W. 12 Tel. 01-7430899
TELEPHONE ENQUIRIES 年elating to TEST EQUIPMENT sould
To view TEST EQUIPMENT please phone for appointment

\section*{This book will make you a lot of money}
. . . because it's the most comprehensive guide to the hi-fi scene going. And we re telling enthusiasts about it with big advertisements in the top audio and music journals. Which means there will be big demand. So order and display big, like you're in the book business. You won't regret it - but hang on to your personal copy!

\section*{HI-FI YEAR BOOK 1973}

1-5 copies: \(£ 1.50\) each plus 25 p postage and packing
\(6+\) copies: \(£ 1.00\) each post free.


Company Registered
in England.
Registered number 522305
Registered Office:
16I/166 Fleet Street,
London, \(\mathrm{EC}_{4} \mathrm{P} 4 \mathrm{AA}\).


Do you read Electrical Review over someone's shoulder? Or hope to borrow a copy sometime? Or depend on the office copy being passed on to you? If you have any of these bad habits our serious advice is to cut it out - for your own good.
Comprehensive news coverage of projects, people and products . . . the latest in research and development ... business trends, business opportunities . . recruitment - you need to know about all these things - and refer to them. And each month there is a special survey in which experts provide in-depth analysis of an important area of electricity supply and electrical equipment. Here are two examples of our surveys: Fire Protection and Alarm Systems - February 16:

Industrial Control and Instrumentation - March 16.
Electrical Review isn't cheap but it's very good value for money indeed. Make sure you never miss a vital issue...
 subscription ( 51 issues) of Electrical Review. Please send it to me at the address below.
NAME

\section*{electrical review}



\section*{FULLY GUARANTEED}

\section*{Allerlx \\ FIRST QUALITY VALVES}
\(\qquad\)








 \begin{tabular}{l|l} 
\\
\hline
\end{tabular}






等

\begin{tabular}{|l|l|}
\hline & \\
UBF80 & 0.40 \\
UBF89 & 0.40
\end{tabular} 185890.40
0.40 0.40
0.70 \begin{tabular}{ll|ll|ll} 
PCF88 & 0.10 & PY800 & 0.47 & UBF89 & 0.40 \\
PCF87 & 1.10 & PY80 \\
PCF200 & P5 & PY801 & 0550 & UBL1 & 0.70
\end{tabular}
 \begin{tabular}{|r|r|ll|}
\hline\(P C F 8010.50\) & 2.25 & UC92 & 0.45 \\
PCF8020.50 & \(Q Q V 03-10\) & UC88 & 0.45 \\
\hline PCF805 0.80 & 1.25 & UCF80 & 0.70 \\
\hline
\end{tabular} \begin{tabular}{ll|ll} 
\\
TBC81 & 0.45 & Z803U & 1.3 \\
\hline
\end{tabular}

PLEASE NOTE THAT VALVES LISTED ABOVE ARE NOT NECESSARILY OF U.K. ORIGIN
Head Office:

44a WESTBOURNE GROVE, LONDON, W. 2
Tel.: 727 5641/2/3
Cables: ZAERO LONDON
Retail branch (personal callers only) 85 TOTTEN HAM COURT RD.,
LONDON W.2.Tel: 5808403
A.R.B. Approved for inspection and release of electronic valves, tubes

\section*{WE WANT TO BUY:}
special purpose valves. please offer us YOUR SURPLUS STOCK. MUST BE UNUSED.

\section*{APPOINTMENTS VACANT}

\section*{Electronics Engineer}

The major expansion of our Research Department which began last year and will be continuing during 1973 has created a need for an electronics engineer for trouble-shooting, maintenance and some development work.

Responsible to the Laboratory Manager, he will provide a service to all of the departments in our new research laboratories where the electronic equipment includes infra-red, ultra-violet, N.M.R. and mass spectrometers as well as chromatographic equipment, calculators and recorders. To these we have recently added a Fourier transform N.M.R. instrument incorporating a small computer.

The man we are looking for will be in his late twenties or thirties, qualified to the H.N.C. or possibly degree level and he will have had some experience of service and development work preferably in a multidisciplinary academic or industrial research laboratory. Specific experience in the field of N.M.R. electronics would be an advantage. The person we appoint will be working largely without direct supervision and he should therefore be capable of accepting this degree of responsibility.

Roche Products Limited is part of one of the world's largest and most successful pharmaceutical companies and is itself one of the leading companies in the industry in the U.K. Working conditions are excellent and the conditions of service include some valuable fringe benefits.

Please apply in writing, quoting reference R50 to Mr. N. Michell, Personnel Officer.

Roche Products Limited
Welwyn Garden City Hertfordshire

\section*{SENOR ENGINEER}
required to work on the design of military communication equipments. A knowledge of 'worst-case' design and the use of C.A.D. is preferable; experience in solid state circuit design in the UHF and VHF frequency band is essential. Candidates should possess a degree or membership of the appropriate institution with a minimum of 5 years development experience.
Good salary to the right man. Immediate entry to the Company Pension and Life Assurance scheme. Assistance with removal expenses may be considered
Please write, in confidence, quoting Ref. ILF/305 and giving full details of qualifications and experience to Mr. R. V. Ross, The Plessey Company Limited, Ilford, Essex.

ELECTRONIC SERVICE ENGINEER
Required to assist in the Servicing, Maintenance and Development of electronic and electro magnetic equipment in a progressive printing company.
Formal technical qualifications are not essential. but applicants should have wide experience of press register and drive controls, complex relay logic, computer peripheral equipment etc A certain amount of light mechanical work is involved
The engineer will be engaged on shift working and enjoy 4 weeks annual holiday. Company pension and sickness scheme.
An attractive salary will be paid commensurate with experience.
Apply to: Personnel Officer.
Hazells Offset Limited
Leigh Road, Slough. Bucks
Tel. Slough 31431
A member of the British Printing Corporation Limited.

\section*{Development Engineers}

We are permanently engaged in producing some of the finest sound reproduction equipment in the country for the U.K. and Overseas Markets.

We now need more Development Engineers to assist in extending the Company's range of products.

Those appointed will be experienced in RF/AF techniques and be qualified to Degree or H.N.C. standard.

Self motivation and a determination to succeed in a rapidly
expanding company is of equal importance to formal qualifications. Salary will be commensurate with experience.

Please contact R.C. Jones
Technical Director
SNS Communications Ltd 851 Ringwood Road, West Howe, Bournemouth, Hants
Telephone: Northbourne 5331


\section*{Television Service Engineer}

The Stock Exchange, London require an additional Television Service Engineer to maintain information display systems.

Applicants must possess appropriate television and radio servicing certificates and must be able to prove their ability as competent Service Engineers by a suitable trade test.

An attractive starting salary is offered. In addition, there is a non-contributory pension scheme, 3 weeks holiday in a full year and Luncheon Vouchers.

Applications giving brief details of qualifications and experience should be sent to:

Personnel Officer, Council of the Stock Exchange, The Stock Exchange Building, London EC2N 1 HP .

\section*{TELEVISIONSERVICE ENGINEER}

We are an expanding Television Rental and Retail Company with a vacancy for an additional qualified service engineer. Suitable applicant will preferable have some colour experience, be responsible to the Service Manager, have a clean driving licence and be eligible for a spacious rent free flat.
Apply:
Hydes of Chertsey Ltd. 56/60 Guildiord Street, Chertsey, Surrey. Phone: Chertsey 63243

\section*{PRIMCPAL DEVELOPMENT EMGINEER}
experienced on computer controlled or tape sequential automated test systems for a wide range of avionics, communications and electronic products.

Candidates should possess a degree or membership of the appropriate institution with a minimum of 5 years development experience.

Attractive salary for the right man Immediate entry to the Company Pension and Life Assurance scheme.

Assistance with removal expenses may be offered.

Please write, in confidence, quoting Ref. [LC/3(4) and giving full details of qualifications to:

Mr. R. V. Ross
The Plessey Company Limited,
Ilford, Essex.
[231]

Experienced and Trainee Technical Authors with Electronics or Radio background required. Engineering and Technical Publications Lid., 45 Friar Gate, Derby, DE1 1DA. Tel. 033241261.

\section*{EAST BIRMINGHAM HOSPITAL}

\section*{TECHNICIANS GRADE IV}

\footnotetext{
required for East Birmingham Group electronics section of the Medical Engineering Department. Applicants must be experienced in the maintenance of electronic and electromechanical apparatus. Minimum qualifications required O.N.C. electrical or electronic engineering or equivalent. Experience or knowledge of digital computer techniques and use of solid state logic would be an advantage. Basic salary for the posts commences at \(\mathbf{6 1 , 3 1 7}\) rising to 61,692 p.a
Apply for application form to the Group Engineer, East Birmingham Hospital Management Committee, Group Administrative Offices, 45 Bordesley Green East, Birmingham B9 5ST
}


\section*{LOW LIGHT LEVEL TELEVISION}

An engineer is required to join a small but enthusiastic team to develop C.C.T.V. cameras for low light level systems. Whilst a knowledge of low light level techniques will be very advantageous, it is essential to have experience with cameras and C.C.T.V. equipment. Good starting salary will be offered commensurate with experience and qualifications.
Please write with details of qualifications, experience and other relevant information to:
Administrative Manager,
J. O. Grant \& Taylor (London) Ltd., Arlingham House,
South Mimms, Potters Bar, Hertfordshire EN6 3PH.
[2328

> Experienced Service Engineers required for bench repair of printed circuit boards. Good Salary and L.V.'s.
> Apply to :-
> Mr. V. Knight,
> Automatic Business Machines Ltd.,
> Wyfold Road,
> Fulham, S.W.6.
> Tel: 385 3311.

\section*{FIELD SERVICE SUPERVISOR}

A man accustomed to organising and controlling staff in the field is required to supervise our Southern Service Area.
He will probably be between 25 and 40 years of age and must have previous experience of audio and public address equipment. He will be based at Leatherhead and a company vehicle is provided.


Please write to
The Personnel Manager, B.V.C. Ltd., Ermyn Way, Leatherhead, Surrey.

\section*{MARCONI INSTRUMENTS LIMITED}

\title{
ELECTRONIC TECHNICIANS
}
are required to work on calibration. fault-finding and testing of telecommunications measuring instruments. The work is varied and will enable technicians with experience of r.f. circuits tc broaden their knowledge of the latest techniques employed in the electronics and telecommunications industries by bringing them into contact with a wide range of the most advanced measuring instruments embracing all frequencies up to u.h.f.

Entrants may be graded as Test Technicians. Senior Test Technicians or Technician Engineers according to experience and qualifications. Our servicing and production programme, geared to our recognised export achievement. provides employment combined with prospects of advancement, not only within these grades, but into other technical and supervisory posts within the Company at Luton and St. Albans

Salaries are attractive and conditions excellent. A Pension Scheme includes substantial life assurance cover provided by the Company. Assistance with removal may also be given in appropriate cases. Please wirite or telephone, quoting reference WW 173, for application form to:

mis
Mr. M. Leavens, Works Manager Telephone: Luton 33866. or Mr P Elsip. Personnel Officer Marconi Instruments Ltd Longacres, St. Albans. Herts Telephone: St. Albans 59292


Member of GEC-Marconi Electronics

\section*{Telephone Technician £3400}
for Roan Consolidated Mines Limited at one of its mines on the Copperbelt of Zambia.

Applicants should hold an ONC or a City and Guilds Telecommunications Technician's Certificate and have had at least five years' experience subsequent to training in the installation and maintenance of non-director telephone switching systems.

Employment will be on a contract initially for a period of three years. Starting salary will depend on experience and qualifications, but total annual emoluments, including basic salary, allowances, bonus and gratuity will be \(£ 3400\) - at current rates of exchange.

Additional benefits include \(\pm\) paid leave which accrues at the rate of 49 days p.a. paid return passage for successful applicant and family baggage and settling-in allowances furnished accommodation at low rental free life assurance \(■\) children's education allowance.

Please write (or telephone 01-6064839-24-hour automatic answering service) for application form and information booklet, quoting reference \(Z H .510\), to :

The Manager,
Overseas Appointments,
RST International Metals Limited,

\section*{Development Engineers Solid State Circuit Design}

\section*{SOUTH AFRICA}

A leading international Radio and TV manufacturer requires three Design Engineers to join the Headquarters staff of its South African operations. They will be responsible to the Director of Engineering and Development, for
developing new circuitry (using the latest techniques and methods)
- improving the performance of radios, amplifiers and other company products
- assessing new components and materials in the light of their product improvement or cost reduction potential.

Candidates MUST have at least seven years' practical development experience of solid state radio receiving equipment and linear
amplifiers ; and including FM/VHF development work. Experience in the Radio and Television industry would be ideal. An Electrical Engineering degree or Institute Membership is desirable, but not an absolute requirement. The upper age limit is 30 .
An attractive salary will be negotiated, and there are generous employee benefits. Successful candidates wili be expected to emigrate.
Applications, which should give full career details, will be forwarded to our client. It is appreciated that there may be certain companies to which you do NOT wish your application to be forwarded. Please list their names in a separate covering note. Please write, quotirg reference ZH.302, to: I. R. Lloydat

MSL ADVERTISING SERVICES LIMITED
17 Stratton Street, London, W1X 6DB

\section*{TEIICOMMUNICAIIONS IECHNCLIAN}
to carry out systematic sampling throughout the static transmission system serving the British Army of the Rhine and advise on the correct levels of exchanges and circuits to be provided.
Candidates must possess an ONC in Engineering, including a pass in Electrical Engineering \(A\). OR have at least 5 years' relevant experience. All applicants should have experience in telecommunications traffic analysis and practical experience of at least one of the following: lines and transmission systems; auto and manual exchanges; subscriber apparatus and \(P B X\) s; radio station practice involving microwave relay equipment.
Starting salary \(£ 2.291\) rising to \(\mathbf{~} 2.797\) (plus foreign service allowance of up to \(\mathbf{£ 7 3 5}\) p.a.). Prospects of promotion. Non-contributory pension scheme.
For full details and an application form (to be returned by 27 February 1973) write to Civil Service Commission. Alencon Link, Basingstoke, Hants, RG21 IJB, or telephone BASINGSTOKE 29222 ext. 500 or LONDON 01-839 1992 ( 24 -hour answering service), quoting \(T / 8150\).

MINISTRY OF DEFENCE_PROCUREMENT EXECUTIVE

\section*{Telecommunications Technicians}

The Global Communications Division of RCA Limited requires additional technicians to help in its expansion programme.
Ideal candidates will have a background of teleprinter maintenance and assembly and should have experience of Solid State selectors message heading generators, frequency division multiplexing etc. They must be willing to travel in the UK and abroad and to undertake shift work.

If you are interested in these vacancies,
please telephone me for an application form
D. J. Llewellyn.

RCA International
Limited, 50 Curzon
St.. London W1

\section*{ATV NETWORK LIMITED \\ has a vacancy in \\ BIRMINGHAM}
for an

\section*{ENGINEER}

Applicants should possess knowledge of vision and sound distribution and switching techniques, including the G.P.O. distribution network. The successful applicant will be required to carry out engineering / operational duties in CAR/MCR/ST4 and will have engineering knowleoge to enable him to use test equipment and to assess the results obtained. He should also be able to communicate clearly both by speech and handwritten reports.

Application Forms may be obtained by writing to :-
```

head of staff relations,
ATV NETWORK LIMITED,
ATV CENTRE,
BIRMINGHAM BI 2JP.

```

Please quote vacancy number 111
12287

\section*{Electronic Organ Service Engineer}
required for expanding organ business in Sussex Good salary and prospects.
Apply in writing to
SOUTHERN ORGANS (Horsham) LTD. HONEYWOOD HOUSE,
ROWHOOK, HORSHAM, SUUSSEX.
12309

\section*{PRODUCTION ORGANISER AND CONTROLLER}
for small but busy and fast-growing audio equipment manufacturers-one accustomed to staff and stock control, with all-round technical knowledge. Good salary to person with right qualifications and experience. Apply:

> Mr. J. Batiste,

ALLEN \& HEATH LTD.,
Pembroke House, Campsbourne Road, London, N. 8
Telephone: 01-340 3291

\section*{AUDIO \\ MAINTENANCE ENGINEER}
required for large recording studio.
Applicants must be familiar with and able to service and maintain professional sound recording equipment.
Applications stating qualifications and previous experience to :-

THE CHIEF ENGINEER,
ENGINEERS WAY, WEMBLEY, MIDDLESEX.

\section*{INTO THE COMMON MARKET WITH MOTOROLA \\ WE HAVE AN IMMEDIATE REQUIREMENT FOR FINAL TEST TECHNICIANS TO BE BASED AT WIESBADEN - GERMANY}

Experience in Phasing. Analysing and Testing of Twoway Radios in the Frequency Range of \(66-470 \mathrm{MHZ}\).

MINIMUM QUALIFICATIONS:-
1) Ability to troubleshoot Radio and T.V. sets or similar electronic equipment.
2) Experience and knowledge of Transistor Techniques.

Excellent remuneration and working conditions with fringe benefits.

Knowledge of the German language is not essential as full training course provided.

This is an excellent opportunity to join one of the world's leading communications companies.

Please apply in writing, giving details of qualifications and a résumé of career to:-

BRIAN S. MUDGE, SERVICE MANAGER, MOTOROLA LTD., 444 BATH ROAD, SLOUGH, BUCKS.


BRENTFORD ELECTRIC LIMITED

\section*{ELECTRONIC ENGINEER}

Required to augment an enthusiastic team engaged on a variety of Electronic Control Projects associated with Power Regulation equipment.
Applicants should be Graduate Electronic Engineers with several years' Industrial experience, preferably with closed loop controls, logic circuits, operational amplifiers, and Thyristor design engineering. Apply to:
Personnel Services Brentford Electric Limited, Manor Royal, Crawley, Sussex. Telephone No.: Crawley 27755

SPANISH
COMMUNICAIIONS
EQUIPMENT
MANUFACTURER

Applications are inviled from qualified design engineers specialized on:
a) Ground/Air Communications
b) TV Colour Transmitters
c) Side Band Transmitters

At least 5 years experience desirable. Company located in Madrid. Salary open.

Send resumé to:
NORTRON
Fernando el Católico, 63
Madrid 15
SPAIN
required by a large company in SEl area, to service Broadcast Vidicon CCTV, tape recorders (inc. 1 and \(\frac{1}{2}\) inch Video), cine, overhead and slide projectors and film editing equipment. Some relevant experience necessary and City and Guilds Radio and TV Servicing Certificate desirable. Mon.-Fri. Free lunches. Engagement on a 2 -year non-pensionable contract, dependent upon experience, in a range \(£ 1,275-£ 1,600\) pa including London allowance.

Write giving age and details of previous experience to Box No. 5F/712, c/o Mathers \& Bensons Advertising Limited, 12 Sutton Row. London WIV 5FH.


\title{
3rd ASSISTANT ENGINEER (TELECOMMUNICATIONS)
}

\section*{TRANSMISSION DEPARTMENT DURLEY PARK}

Applications are invited for the above post at Grid Control Centre, Durley Park, Keynsham near Bristol.
Applicants should already be experienced radio engineers with sufficient relevant experience to enable him to make an immediate contribution to the development and subsequent control of a large VHF and UHF radio system.
N. J. B. Conditions of employment apply and the salary will be either Scale 9. Grade \(10 £ 2,196-£ 2,712\) or Scale 10. Grade \(9 £ 2,331-£ 2,901\). In addition a \(£ 60\) p.a. allowance is paid under the above agreement.

Applications on Form SF/1 obtainable from the Personnel Manager, 15-23 Oakfield Grove, Clifton, Bristol BS8 2AS, should be completed and returned to him by not later than 1st March 1973.

\section*{Kingston Polytechnic}

\section*{CCTV \\ STUDIO SUPERVISOR}
to assist in programme production both on the studio floor and in the control room of a newly established educationa! TV studio. The person appointed will have had training or experience in studio practice and must also be prepared to play his or her part in the practical tasks associated with studio organisation. An imaginative approach and a flare for presentation are essential.

Ability to service TV equipment would also be a requirement.

Salary will be in the range \(£ 1,416\) £2,205 plus qualification allowance if applicable.

Further details and application forms are available from the Assistant Registrar, Kingston Polytechnic, Penrhyn Road, Kingston upon Thames KTl 2EE. 01-549 1366.
[2308

\section*{REPAIR/CALIBRATION ENGINEERS \(\mathbf{£ 1 8 5 0}\) to \(\mathbf{£ 2 0 0 0}\)}

If you are an enthusiastic Electronics Test or Service Engineer in a rut come and talk to Jerry Cook about the wide range of Test Equipment you could help us repair and calibrate.
Contact:
J. D. COOK,

CALIBRATION SYSTEMS LTD.,
CAMBERLEY, SURREY.
Tel: Camberley 28121
[2325


\section*{Sales Engineer}

ELECTRONIC COMPONENTS
This vacancy is a key position within a rapidly expanding company engaged in selling electro-mechanical and electronic components.
The man appointed will act as "link man" between our sales force and our internal operations. He will also conduct telephone selling and answer customers' technical enquiries. It is planned that the man appointed will progress to Field Sales Engineer, Knowledge of basic electrical engineering of electronics essential.
Please write with full details to: The Sales Director,
RADIATRON CGMPONENTS LTD., 76 Crown Road,
Twickenham TW1 3ET

\title{
A CHANCE TO EARN OVER £100 p.w. AND ALL FOUND
}

\section*{ELECTRONIC TECHNICIANS}
are required by a world wide U.K. Company to service advanced equipment in use in U.K. and abroad. Tnaining will be given but successful candidases will probably have theoretical knowledge of electronics up to O.N.C. level and experience in trouble shooting on digital control systems.
A willingness to work hard and travel is essential.
Applicants should apply in writing to:
PERSONNEL OFFICER,
B.I.X. LTD.,
P.O. Box 3,

Dolphin House,
Stanbridge Road,
Leighton Buzzard, Beds.

\section*{UNIVERSITY OF LIVERPOOL}

\section*{Electronics Service Engineer}

Electronics Service Engineer required to service a wide range of electronic equipment used in the Department of Electrical Engineering and Electronics.
Applicants should hold C. \& G. Certificate in Radio and Television servicing or Electronics Servicing, or must have equivalent training and experience.
nnnum accordingin a range up to \(£ 2028\) per ence.
Application forms may be obtained from the Registrar, The University, P.O. Box 147, Liverpool L69 3BX. Quote Ref. RV/14190 WW.
[ 2304

\section*{AUDIO MAINTENANCE ENGINEER}
for P.A. Disco and background equipment. Applicant must have experience in field work

A responsible position for a top man. Ł \(1700-£ 2000\) p.a.
SATURN SOUND, A.E.M. LTD. Telephone 01.3527788.


Jobs galore! 144,000 new computer personnel needed by 1977. With our revolutionary, direct -from-America, course. you train as a Computer Operator in only 4 weeks!

Pay prospects? \(£ 2500+\) p.a.
After training, our exclusive appointments bureau - one of the world's leaders of its kind - introduces you FREE to world-wide opportunities. Write or phone TODAY, without obligation

London Computer Operators Training Centre P14. Oxford House. 9-15. Oxford Street. W. 1
27. The Piazza Dept P13. Piccatily Plaza Manchester elephone: 061-2362935

\section*{SUMLOCK COMPTOMETER LTD.}

\section*{Experienced Electronic Service Engineers Electro/Mechanical Service Engineers}

Vacancies exist for men experienced in Triumph/Adier and/or IBM input/output typewriters, readers and punches to join our Central Technical Services. This unit has been established to support an extensive Field Service Operation dealing with
ANITA Electronic Desk Calculators Programmable Calcılators Visible Record Computers Peripherals.
After an initial training period of a few months at our Hemel Hempstead address, the successful applicants will be based at our main establishment at Uxbridge. Middlesex.

For further information, please contact
Mr D. D. Davies,
Contral Systems Ltd.,
1, Frogmare Road, Apsley, Hemel Hempstead, Herts. Tel: 044261771.

\section*{APPOINTMENTS}

\title{
Shore \\ jobs for Radio Officers.
}

If you'd like a job ashore, at a United Kingdom Coast Station, the Post Office will start you off on \(£ 1,350\) \(-£ 1,710\), depending on age, with annual rises up to \(£ 2,310\) (compulsory pension contributions are included in these amounts). In addition you would receive payments that can be as much as \(£ 300\) or more a year for attendances during evenings, nights, Saturday afternoons and Sundays. Opportunities also exist for overtime.

There are good prospects for promotion to higher posts.

You will need to be 21 or over, with a 1 st Class Certificate of Competence in Radiotelegraphy issued by the Postmaster General, or the Ministry of Posts and Telecommunications, or a

Radiocommunication Operator's General Certificate issued by the Ministry of Posts and Telecommunications, or an equivalent certificate issued by a Commonwealth administration or the Irish Republic.

Find out more by writing to:
The Inspector of Wireless Telegraphy, IMTR, Wireless Telegraph Section, Union House, St. Martins-le-Grand, London, EC1A 1 AR

\section*{モபロIx}

\section*{MARKETING MANAGER}

Required by rapidly expanding manufacturing company specialising in commercial audio equipment for the public address broadcast and recording studio industries.
The successful applicant must have a basic knowledge of audio systems and be experienced in the use of advertising, public relations and the organisation of a sales office. This position offers a unique opportunity to control all aspects of marketing and to be wholly responsible for the promotion of company products.
Please write giving details of qualifications and experience to:-
AUDIX LIMITED
STANSTED
ESSEX.

\section*{ELECTRONIC DESIGN ENGINEER}

A rapidly expanding Electronics Company requires an enthusiastic Electronics Engineer to join its design and development department. Experience of electronic musical instruments and synthesized sounds will be an advantage. The successful applicant wiwl have a proven ability in designing for mass production and a broad interest in a variety of electronic applications.
Salary range \(£ 3-£ 4,000\) p.a.

\section*{INIDUSTRIAL ENGINEER}

The Company also requires an Industrial Engineer with a proven record of success in the application of modern work study and production engineering techniques. Experience of light electrical assembly is essential and a knowledge of tool design and mechanisation principles an advantage.

Applicants for the above posts should write giving full particulars of experience and qualifications to:-

The Technical Director, Dubreq Studios Ltd., 249/289 Cricklewood Broadway, London, NW2 6NX.

\title{
ASSISTANT ENGINEERS
}

GRADE I/II BOTSWANA UP TO £3070 + GRATUITY
Required by the POSTS \& TELECOMMUNICATIONS Department to install open-wire carrier and VFT systems, VHF/UHF and microwave systems up to 300 channel capacity at 2 GHz .
Candidates for the GRADE I post must possess the City \& Guilds Telecommunications Final Certificate and for the GRADE II post, the Intermediate Certificate, or equivalent qualifications. For either post candidates must be aged 25-45 years and have had five years experience, excluding training, of the above-mentioned equipment. Experience of single channel HF and VHF systems is also required.
* Gratuity \(25 \%\) total basic salary * Low taxation
* Subsidised Accommodation * Holiday visit passages
* 24-36 month tour * Education allowances
* Appointment Grant \(£ 100-200\) * Free family passages normally payable
The post described is partly financed by Britain's programme of aid to the developing countries administered by the Overseas Development Administration of the Foreign and Commonwealth Office.

\section*{Apply to:}

CROWN AGENTS,
M. Division, 4, Millbank, London, SW1P 3JD for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference number M2/K/720470/WF.

\section*{GOODMANS LOUDSPEAKERS LIMITED INTEND TO APPOINT A}

\section*{LOUDSPEAKER ENGINEER}

The successful applicant should possess formal engineering qualifications and be between 28-40 years, with a minimum of 5 years experience in the design and development of loudspeakers.
A realistic salary will be paid which will be negotiable dependent on experience, with excellent monthly staff conditions.
Write stating age and curriculum vitae to the Personnel Manager, Goodmans Loudspeakers Ltd., Downley Road, Havant, Hampshire.

\section*{RADIO \& AUDIO DEVELOPMENT FOR EUROPE}

The formation of Rank Radio International Limited. incorporating the brand names of Bush. Murphy, Dansette. Leak. Wharfedale. Arena, and Heco. presents excellent career opportunities for qualified and post-qualified engineers. We are looking for the following men to join the Radio \& Audio Product Group, based at Chiswick.

\section*{Development Manager \\ up to \(\mathbf{£ 4 , 0 0 0} \mathbf{~ p a}\) (Ref: WW1)}

Reporting to the Engineering Manager, he will control and progress the activities of the development teams with responsibility for technical design. The Development programme must be maintained, necessitating the management of total resources of the laboratory at optimum efficiency. Previous experience of team management is essential, ideally in a mass production, consumer durables industry.

\section*{Senior Engineer \\ up to \(£ 3,000\) pa (Ref: WW2)}

He will be responsible for the design and development of domestic radio and audio systems, from initiation of the project through to production stage. He will have 3-5 years' experience in the development of these products for a mass production operation, supported by I.E.R.E. or I.E.E. or equivalent, and will demonstrate a potential for project management.

\section*{Engineer}
\(\mathbf{c} \mathbf{£} \mathbf{2 , 0 0 0}\) pa (Ref: WW3)
We need to recruit three engineers to work as members of a project team, under the control of a Team Leader or Senior Engineer. Proven ability in the field of circuit design and printed circuit board layouts is essential
Please write or telephone for an application form, quoting reference number, to:


David Smith, Personnel Manager
Rank Radio International Ltd
PO Box 596. Power Road London W4 5PW. Tel: 01-994 6491
RANK RADIO INTERNATIONAL

\section*{h.m. GOVERNMENT COMMUNICATIONS CENTRE has vacancies for COMMUNICATION OPERATORS}

Posts are avallable entaling watchkeeplng on a rota basis providing
are prospects of service abroad. It is essential to be able to drive a car.
QUALIFICATIONS. Selected candidates will be invited to interview and test and will be required to
(a) Send and recelve morse at 25 W.D.m.

Display knowledge of radio theory, maintenance and repair to the equivalent standard of
or if The Maritime Radiocommun
or iil City and Guilds Course 49 .
The ability to touch-type on a standard teleprinter keyboard is desirable.
AGE. Candidates should generally be aged 30 or under.
SALARY. Starting salary according to age and experience
APPLICATIONS. With personal details, qualification and experlence to

\section*{GIPSY HILL COLLEGE}

\section*{Chief Technician}

\section*{£1,908—£2,205}

To head a team in the Educational Aids Department which serves the needs of the whole College. Good knowiedge of electronic equipment, including c.c.t.v. servicing, and relevant qualifications, will be expected.
There is considerable responsibility attached to this key appointment. Salary within scale according to qualifications.
Details rom Senior Administrative Officer, Gipsy Hill College,
Kenry House, Kingston Hill, Kingston upon Thames. Tel. 01-549

JAPANESE Radio importers require experienced or Full Time. Tel.: \(01-6286157\). radios, etc. Par

PLYMOUTH GENERAL HOSPITAL: A Medical P Physics Technician IV is required in Medical established section of medical eiectronics in the Department of Medical Physics. Duties will include assistance with the maintenance of electronic equip ment in the Intensive Care Unit at Freedom Field Hospital and also maintenance and development of other medical electronic equipment in several othe departments of the Hospital Qualifications-ONC or equivalent. Salary \(£ 1,422\) - \(£ 1,827\). Detailed applications, naming two referees (one of whom must be familiar with the applicant's technical ability) to the Terrace, Plymouth PL4 8QQ.

TRAINEE FOR TELEVISION retail business of the highest standing, Good opportunity for keen young Ltd., 57 Heath Street, London, N.W.3. 12294

WIRELESS TECHNICIANS. There are vacancie at the Home Office Central Communications Establishment and London Region Depot both of which are situated at Headstone Drive. Wealdstone Harrow, Middlesex for Wireless Technicians to assist with the installation and maintenance of VHF and UHF Systems. Pay \(£ 1155\) (at 17) and \(£ 1715\) at 25
rising to \(£ 2025\). Good promotion prospects Oualificarising to \(£ 2025\). Good promotion prospects. Qualifications: City and Guilds Intermediate Telecommunica tions Certificate ir equivalent. For further details Office, 60 Rochester Row, London SWIP 1JX. \({ }_{2371}\)

\section*{STTUATIONS WANTED}

CNGINEER WITH WORKSHOP and delivery己acilities seeks electronic asssembly or repair work salary or contract. Suit small runs or modifications Corbett, Ivy Cottage, Barham Green, Ipswich. [2319

\section*{ARTICLES FOR SALE}

A ARVAK ELECTRONICS. 3-channel sound-light A converters, \(£ 17\). Strobes, f16. Rainbow Strobes, £132.-74 Bedford Avenue, Barnet, Herts. 01-449
1268.

A GTOMATIC Soiid state teletype message or code A Generators to any standard. For details write to N. A. Walker, Garden Cottage, Chalkpit Lane, Monx ton, Hampshire
[2362

COLOUR, UHF and TV SERVICE SPARES. Colour and UHF lists available on request. Varicap/Varactor UHF Tuners ELC1043 £4.50, VHF Salvaged Varicap Tuners \(£ 1.50\), incl. Connection Data, P/P 25p. Delay Lines DL20 £3-50, DL1 f1.95, P/P 25 p . Luminance Delay Line \(50 \mathrm{p} . \mathrm{P} / \mathrm{P} \quad 15 \mathrm{p}\). Philips G6 Decoder Panel incl. DL1E, Crystal, etc. £6.50, P/P 30p. Also quantity, Colour TV Camera panels and asstd. manufacturers' surplus Colour receiver panels. Plessey Colour scan coils \(£ 5.75 \mathrm{P} / \mathrm{P} 35 \mathrm{p}\), Convergence coils \(£ 3.80 \mathrm{P} / \mathrm{P} \quad 25 \mathrm{p}\), Blue lateral \(£ 1.25\) P/P 10 p (or complete set \(10 \mathrm{P} / \mathrm{P}\) 50p). Mu:lar type colour Scan coils plus latest convergence coils
for electronic control of static convergence
65.25 \(\mathrm{P} / \mathrm{P}\) 35p. Leading Brit. maker Colour LOPT assy. incl. EHT output and focus control \(£ 3.50\) P/P 35 p Integrated transistd. decoder unit incl. circuits \(£ 1.25\) \(\mathrm{P} / \mathrm{P}\) 10p. B9D valve bases for colour valves and PL500 series \(10 \mathrm{p} \quad \mathrm{P} / \mathrm{P} 5 \mathrm{p}\). UHF tuners transistd £2.85, incl. slow motion drive, indicator \(£ 3.95\) Transistd. push button 66.25 . Knobs 40 p . UHF/VHF basic integrated tuner \(£ 3.95\). Cyldon UHF valve tuners \(£ 1.50\); all tuners \(\mathbf{P} / \mathbf{P} 25 \mathrm{p}\). Transistd. UHF VHF 1 F panels. \(£ 4.75\) (or salvaged \(£ 2.50\) ) P/P 25p. kits incl tuner drive assy 625 IF kits incl. tuner, drive ass,., 65 ampliner, 7 Yaves 50 p . SOBELL /GEC 405/625 Dual standard switchable IF amplifier and output chassis incl. cct. \(£ 1.50 \mathrm{P} / \mathrm{P}\) 30p. THORN 850 Dual standard time base panel \(£ 1.00\) P/P 30p. PHILIPS 625 IF amplifier panel incl. cct \({ }_{\ell} 1.00 \mathrm{P} / \mathbf{P} \mathbf{~ 2 5 p}\). VHF turret tuners AT7650 incl. valves for KB Featherlight, Philips 19TG170, GEC 2010 etc. \(£ 2 \cdot 50\). PYE miniature incremental for 110 to 830 , Pam and Invicta \(\mathrm{El}^{1.95}\), A.B. miniature with UHF injection suitable KB, Baird, Ferguson, 75 p , Ekco, Ferranti, Plessey push button with UHF injection \(\mathrm{EL}_{\mathrm{E} .00}\), all tuners \(\mathbf{P} / \mathbf{P} 25 \mathrm{p}\). New fireball tuners Ferguson, HMV, Marconi \(£ 1.90\) P/P 25 p . Large selection LOPTs, Scan coils, FOPTs available for most UHF Booster \(£ 5.25\), Power unit \(£ 4.25\) Labgear "Tri UHF Booster
set
3 outlet UHF
UHF \(/ \mathrm{VHF}\) distributor amplifier, mains set" 3 outlet UHF/VHF distributor amplifier, mains
operated \({ }^{6} 6.50\) P/P 25 . MANOR SUPPLIES, 172 WEST END LANE, LONDON, N.W. 6 (No. 28. S9, 159 Buses or W. Hampstead Bakerloo and Brit. Rail). MA: ORDER: 64 GOLDERS MANOR DRIVE. LONDON. N.W.11. Tel. 01-794 8751.

BAIRD TELEVISORS. Got one? Want to see it Dork? Interested in reviving low-definition T.V.? Nottingham.
[2375

BUILD IT in a DEWBOX quality plastic cabinet \(B_{2}\) in. \(x 2 \frac{1}{2}\) in. \(x\) any length. D.E.W. Ltd. (W.), Ringwood Rd., Fernwood, Dorset. S.A.E. for leaflet.
Write now-Right now.

CD7115 oscilloscope \& trolley \(\mathbf{~ f 4 7 . 5 0 , ~ T F 1 4 4 G ~ r . f . ~}\) - generator \(£ 22.50\). 10 Ivy Close, St. Leonards, Nr. Ringwood, Hants. Tel. Ringwood 5873. \({ }_{[2342}\)

GOR SALE.-2 Revox A77HS; 2 Newmann Condenser Microphones + Power supply; 2 Mixers type EM 104; 2 Shure 365 microphones; 1 Akai Stereo portable tape recorder. Please phone M. Sear at CIAV, Durham Road. Boreham Wood, Herts. 01-953 0291 for further details.

CLASS FIBRE P.C. BOARD large supplies available. \(1 / 16\) in single sided one ounce copper 2 p per 3 sq . inches (under 1 it ). 75 p per sq. ft. (over 1 ft ). \(1 / 16\) in double sided one ounce copper p per sq. inch (under 1 ft ). fl per sq. ft. (over 1 ft ). Please add 10 p per sq. foot postage and packing. We can cut to your size at lp per cut. Solid State Lighting, The Firs, Smallworth Lane, Garboldisham, Diss, Norfolk.
[16

HEWLETT PACKARD 185 B Sampling Oscilloscope W/188A Plug In 545 .-G. W. Merriman, 190 Wandsworth Road, London, S.W.8. Merriman,

ADDERS, \(20 \mathrm{ft} ., \mathrm{£7} \cdot 80\), carr. 80p. Leaflet. Callers welcome-(Dept. W.W.W.), Home Sales, Baldwin Road, Stourport, Worcs. Tel. 02-993 5222 order

ENSES, prisms, mirrors, beamsplitters, telescopes, binoculars, microscopes. 31 p stamp brings you our 48 page lists. H. W. English, 469 Rayleigh Road, Hutton, Brentwood, Essex. [2147

ME0402 PNP SIL. Planar New 360mW 300 MHZ 1 600wA, BVc60 60 BVceo \(50,6 \mathrm{p}\) each, 250 p per 50 Post \(5 p\), Box No. WW 2315.

PRINTED Circuit Board in 6 widths: 2 in., \(2 \frac{1}{2}\) in., 3 in., \(3 \frac{1}{2}\) in., 4 in. and 5 in. \(x\) any length; \(1 / 16\) in. single-sided fibreglass, \(2 p\) per 3 sq. in. Doublequotations for other sizes and quantity discounts.J. Knopp, 11 Connaught Gardens, Braintree, Essex, CM7 6LY. Tel. Braintree 25254. P.O. Type 3000 relays, uniselectors, multi-pin
plugs, MTG plates, racks, etc., 50 v D.C., large quantity second hand, no reasonable offer refused. quantity second hand, no reasonable offer refused.「el. Forton 791484.

Pair Dynatron L4038 loud speakers. Teak finish. 1 First class condition. \(£ 60\) the pair. Kingsbridge 2538.
[2360

SCOPE, Cossor double beam, excellent condition, £25. Raynor, 35 Derek Avenue, Hove, Sussex.
[2329

SOLARTON RESISTOR DIGITAL Test Set mint condition with handbook \(£ 40\). MPE504 pop transistors 170 w hfe 50 min and 15 amps ideal for invertors. Send S.A.E. for lists of component and (Electronic), 29 Lawford Crescent, Yateley, Camberley, Surrey. Lawn Crescent, Yateley, [2314

TEST GEAR: FARNELL, P.S.U.'s MSA, SSB 1 etc. 20 V 1 A variable or fixed, stabilised and with current overload protection. Nearly new £10. Hartley CT 436 , twin-beam 6 MHz 10 mv sensitivity \(£ 70\), Orbit f counter 200khz £150. DYTEK, U.S.A., Square wave generator 10 MHz , output plus trigger. NORD-MENDE, Distortion Meter \(£ 100\), BeamSwitch £20, A.F. Signal Generator £70, Electronic Millivoltmeter/Multimeter \(£ 65\), Wobbulators \(8-58 \mathrm{MHz}\)
\(£ 35\). Hameg, beam-switch \(15 \mathrm{MHz} £ 15\), Riken-Denshi £35. Hameg, beam-switch \(15 \mathrm{MHz} £ 15\), Riken-Denshi
XY Recorder \(£ 250\), Green Tx analyser \(£ 200\). Above XY Recorder \(£ 250\), Green Tx anaiyser \(£ 200\). Above
are either new or ex-demo equipment and working. Carriage extra. DOWNLAND ELECTRICS LTD., 1 Church Road, Hayling Isl., Hants.

\section*{Test Engineers enjoy more variety at Redifion}
... and one of the best-equipped electronics test depart ments in Britain
You'll be working on a vast variety of solid-state devices, including - high-power transmitters, communications receivers, military pack-sets, MF beacons, mobile HF, marine VHF and teleprinter terminal equipment.
The job involves a wide area of testing operations-from GO/NO GO sub-assembly testing through to fault-diagnosis on complex systems.

Interesting work with one of the U.K. leaders in electronics expertise-located in London.

To qualify, you'll need to be thoroughly experienced in the field-with considerable knowledge of semi-conductor or logic circuitry.

We pay well-from \(£ 1,450-£ 1,750\) p.a. (depending on experience) for a \(37 \frac{1}{4}\) hour week with ample opportunities for overtime. Additional benefits include an excellent company pension scheme and generous sickness allowances.

Please write, including full details of your past experience, to:
L. Porter, Chief of Test (Dept. P),

Redifon Telecommunications Ltd.,
Broomhill Road, Wandsworth, SW18 4JQ.

\section*{RADIO OFFICERS}

\section*{DO PMG 1 POSSESSION OF ONE OF THESE YOU HAVE \\ PMG 11 \\ MPT \\ 2 YEARS OPERATING EXPERIENCE OUALIFIES YOU FOR CONSIDERATION - FOR A RADIO OFFICER POST WITH THE COMPOSITE SIGNALS ORGANISATION}

On satisfactory completion of a 7 -month specialist training course, success ful applicants are paid on scale rising to \(£ 2.365\) p.a.: commencing salary according to age -25 years and over \(£ 1,664\) p.a. During training salary also by age. 25 and over \(£ 1.238\) p.a. with free accommodation.

The future holds good opportunities for established status, service overseas and promotion.

Training courses commence at intervals throughout the year. Earliest possible application advised.

Applications only from British-born UK residents up to 35 years of age ( 40 years if exceptionally well qualified) will be considered.

Full details from:
Recruitment Officer (TRO.2.)
Government Communications Headquarters
Room A/1105
Oakley Priors Road
CHELTENHAM GIos GL52 5AJ
Telephone: Cheltenham 21491 Ext 2270
\(\star\) * ARTICLES FOR SALE \(\star\) *


\section*{CASED AMPLIFIERS £3}

Chassis \(12 \times 5 \times 3 \mathrm{in}\). with \(2 \times\) ECC83, EL84, EZ80 in polished cabinet \(14 \times 13 \times 9\) in. with \(7 \times 4\) in. 3 ohm speaker and single motor solenoid operated non-standard tape deck. Low Z \(20 \mu \mathrm{~V}\) i/p for \(2 \mathrm{~W} \mathrm{~W} / \mathrm{p}\). Mains operated, tested with circuit. E3 (f1). COMPUTER PANELS: Loads of transistors inc power types, diodes. R's, C's etc. Some boards broken, bu good value at 31 lb for \(£ 1\) (25p). 7lb \(£ 2\) (35p). Resistor packs \(3005 \% 60 \mathrm{p}\) (15p): \(2005 \%\) hi-stabs 60p (12p); \(100182 \%\) 60p (8p): 100 Metal oxide 60p (8p): any 4 packs £2 (25p) CROFON light guide type 1610, 64 filament in sheath. \(\mathbf{E}\) per meter, \(5+80\) p. \(10+70\) p. 8 assorted panel meters \(£ 2.75\) (25p). TEST GEAR: Advance CV Transformer, \(190-260 \mathrm{~V}\) \(50 \mathrm{~Hz} \mathrm{i} / \mathrm{p} .230 \mathrm{~V} \pm 1 \% 150 \mathrm{Wo}\) op. f 12 (75p). Advance Voltstat \(0-260 \mathrm{~V}\), also \(230 \mathrm{~V} \pm 1 \%\) 100W f 18 (f1). Rotary Xfmr, 23 V i/p. \(530 \mathrm{~V} 450 \mathrm{~mA} 0 / \mathrm{p} £ 3\) (75p) Wee Megger in case \(£ 12\) (25p) Decade resistance box \(0-9999\) ohms \(£ 3\) (35p). AVD 7 f 12 \((50 \mathrm{p})\). TF144G Sig. gen. \(85 \mathrm{kHz}-25 \mathrm{MHz}\). From f12. BC107-8-9 8p, 14 for \(\mathrm{f} 1.2 \mathrm{~N} 305535 \mathrm{p}, 2 \mathrm{~N} 1613\) 12p. 709C 25p. 741C 25 p 723C 40p. \(5 \%\) carbon fiton R's, E12. 1p. 75 p/100. REED UNITS 31 reeds mounted round drum, magnet inside. also plugs R's etc \(\mathrm{f} 1(25 \mathrm{p}) 2\) for \(\mathbf{£ 1 . 6 5 ( 3 5 p ) \text { . Lots of odd units at shop }}\) for callers, inc. scopes, oscillators, PSU's etc, etc. Post in brackets, small parts 3p. SAE List.
GREENWELD ELECTRONICS (W10) 24 Goodhart Way. West Wickham, Kent. OI-7772001 Shop at 21 Deptford Broadway SE8. Tel 01-692 2009.

\section*{RANK-KALEE}

WOW \& FLUTTER METERS
Exceltent condition
One or two available at \(\mathbf{8 8 5 . 0 0}\) each BURGESS LANE \& CO. LTD Thornton Works, Thornton Avenue hiswick, London, W. 4

\section*{PRECISION}

\section*{POLYCARBONATE CAPACITORS}

\section*{Fresh stock Fully tested} Close tolerance capacitors by well-known manufacturer.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 0.47 LF : & \(\pm 5 \%\) & 30p; & \(\pm 2 \%\) & 40p; & \(\pm 1 \%\) & p \\
\hline \(1.0 \mu \mathrm{~F}\); & \(\pm 5 \%\) & 40p; & \(\pm 2 \%\) & 50p; & \(\pm 1 \%\) & P \\
\hline 2.24 F & \(\pm 5 \%\) & 50p; & \(\pm 2 \%\) & 60p; & \(\pm 1 \%\) & 75p \\
\hline 4.7нF: & \(\pm 5 \%\) & 70p; & \(\pm 2 \%\) & 90p; & \(\pm 1 \%\) & 115 p \\
\hline \(6.8 \mu \mathrm{~F}\) : & 土 \(5 \%\) & 95 p & \(\pm 2 \%\) & 115p; & \(\pm 1 \%\) & 150 p \\
\hline 10ヶFF: & \(\pm 5 \%\) & 110p; & \(\pm 2 \%\) & \({ }^{140}\) p; & \(\pm 1 \%\) & \({ }^{180}\) \\
\hline 15uF: & \(\pm 5 \%\) & 160p; & - \(2 \%\) & 210p; & \(\pm 1 \%\) & 270p \\
\hline
\end{tabular} NEW! TRANSISTORS. BC 107, BC 108, BC 109. All a 9p each; 6 or \(50 p_{i}\) ia ify for lower price. AF178 at 42p each 3 for \(£ 1.00\).
POPULAR DIODES. IN914 at 7 p each; 8 for \(50 \mathrm{p} ; 18\) fo POPULAR DIODES. IN914 at 7p each; 8 for 50p; 18 for
E1.00. IN916 at 9p each: 6 for 50 p : 14 for \(£ 1.00 .1544\) at 5 p each; 11 for \(50 \mathrm{p} ; 24\) for \(£ 1.00\). All brand new and marked. SPECIAL OFFER-400 MW ZENERS. Values availabie \(4.7,5 \cdot 6,6-8,7-5,8-2,9-1,10,11,12,13.5,15 \mathrm{~V}\). Tolerance
\(5 \%\) at 5 mA . All new and marked. Price 10 p each; 6 for \(50 \mathrm{p} \cdot 14\) for \(£ 1.00\)
RESISTORS-Carbon film \(\frac{1}{2}\) watt \(5 \%\). Range trom \(2-2 \Omega\) to
\(47,56,68,82\) and their decades. High stability. Iow noise Al at 1 p each; 8 p tor 10 of any one value. 70 p for 100 of any one value. Special development p
value \(2.2 \Omega\) to \(2.2 \mathrm{M} \Omega(730\) resistors) \(£ 5.00\).
TANTALUM BEAD CAPACITORS-Values available \(0.0 .22,0.47,1.0,2 \cdot 2,4.7,6.8 \mu \mathrm{~F}\) at 3 V , \(10 \mathrm{VF} 25 \mathrm{~V}, 15 \mu \mathrm{~F} 20 \mathrm{~V}\) 6 for 50 p; 14 for \(£ 1.00\). Special pack- 6 off each value ( 78 for 50 p ; \({ }^{14}\) for
 75 pac
SILICON PLASTIC RECTIFIERS \(1-5\) AMP-Brand new wire-ended 0 for \(34 \mathrm{p}: 800 \mathrm{PIV}\) at 14 p each or 4 for 50 p P.E. SCORPIO-1uF 440 V a.c capacitor listed above as recommended by the Author for use in place of \(2 x\) \(0.47 \mu \mathrm{~F} 1000 \mathrm{~V}\) d.c. discharge capacitors C 66 and C 7 Improved reliability. Alternatively, \(2 \times 0.47 \mathrm{FF}\). 440 V a.c
may be supplied at 35 p each. These capacitors are also suitable for systems recently published in P.W. and \(\mathbf{W}\). \(\mathbf{W}\)

5 p post and packing on all orders below \(£ 5\).
MARCO TRADING (Formerly V. Attwood) DEPT E4, P.O. BOX 8, ALRESFORD, HANTS

\section*{Trompes elegtrain}

All Brand
Senice.
digital indicators sV 1 sita D-9 DP socket \& fyous 7 segment CAICulater sated filter f1.39 LED type f3 £39.50.
LIGHT EMIT DIDDE with panel clip \& diab 35p \begin{tabular}{l} 
LIST \\
\({ }^{2}\). \\
\hline
\end{tabular}
\({ }^{\text {E } 2, ~} \mathrm{GA}\)

\section*{detector \(f 2\)}

\section*{steren hi.fi}

OUAD AUDIO 4 chan trom 2 chan matrixing IC (not Xoverl) \(\mathbf{5 2 . 6 7}\) AO MAGNETIC CARTRIOGE. 20-20 KHZ. 5 mV Diamond f4. 19.
 complete 4 digit kit with case f21.
INTEGRATED CIACUITS
741 DIL 28p. 709 To5 19p. Dit 28 p. 710.33 p. 748 33p. 72359 p. VOLTAGE REGULATOR: \(1 \frac{1}{2} A 5\) to 20 V E1.67. PHOTO deteciorlamp 37p. 74N TL. Gates \(740 \mathrm{~N} / 23 / 4 / 5 / 10 / 20 / 30 / 40 / 5015 \mathrm{p} .7413\) 29p. \(7470 / 72\) (2133 7490 63p.7402 67p. 7412149 p 74141 C
SEMICONDUCTORS
 BC 107 8p. BC108 7p. BC109 8p. FET2N3819 28p. AC125/67/78 AC127/8 AC 1878. AF117 all 14p. AD161/2 35p. 8C177/8.9 16p. BC182/3/4 1/p. BC212/3/4 12p. BCY70 16p. BFY50-1/2 17p. IIS43UJT 29p. 2N706 12p. \(2 \mathrm{~N} 2926 \mathrm{Y} \mathrm{gp}_{\mathrm{p} .}\) 2N3053 18p. \(2 \mathrm{~N} 3702 / 3 / 4 / 5 / 6 / 7 \quad 11 \mathrm{p}\). \(2 \mathrm{~N} 3708 / 9 / 10 / 11 \mathrm{~g}_{\mathrm{p}}\) CAPACITARS: \(25 \mathrm{~V} 10 / 50 / 100 / 200 \mu \mathrm{~F} 5 \mathrm{p} .1000 \mu \mathrm{~F}\) 13p. 22pF io \(1 \mu \mathrm{~F} 3 \mathrm{p}\). free catalogue sae pip 7p. C.w.o. discount 10 - \(10 \%\)
P.D. BOX 29, BRACKMELL, BERKS
\begin{tabular}{|c|c|c|}
\hline ENAMELLED & COPPER & WIRE \\
\hline S.W.G. & 11 b Reel & \(\frac{1}{2} / b\) Reel \\
\hline 10-14 & E1.15 & \({ }^{65 p}\) \\
\hline \(15-19\)
\(20-24\) & ¢1-15 & 65 p \\
\hline 25-29 & ¢1.
£1.25 & \({ }^{685}\) \\
\hline 30-34 & E1-30 & 80 p \\
\hline 35-40 & £1-40 & \({ }^{85 p}\) \\
\hline The above prices co INDUST & P.\&P.in U.K
IAL SUPP & polled by \\
\hline 102 Parrswood Roa & Withington. 061-224-3553 & \[
\text { hester } \begin{aligned}
& 20 \\
& 33
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{ThMILLON MEsol NEW- Guraranteed
\& hoxed E IV valves IPRICE BARRIER SMASHED:}

\section*{Cheapest Available Anywhere}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{EF 80} & & & & & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { OUR ASSTD. } \\
& \text { BOX } 100
\end{aligned}
\]} \\
\hline EY \({ }^{86}\) '87 & & PC 900 & & PFL 200 & & \\
\hline DY 86'87 & 250 & PY 800'81 & 25 & PL 36 & 30 & \\
\hline EF 184 & & PC 86 & - & 30 PL 13 & Up & OF TOP \\
\hline ECC 82
ECC 83 & EACH & \({ }^{\text {PC }} 88\) & \({ }_{\text {each }}\) & & each & TWENTY \\
\hline ECC 83
PCF 80 & \({ }_{50}^{\text {Plus }}\) P.\&P. & \({ }^{\text {PCLC }} 89595\) & plus & 30 FL 1 &  & INCLUDES \\
\hline PCF 80
PCL 84
PCC 84 &  & PCC 189
PCL 82 & Sp p.tp.
over & MANY OTHERS & OVER 2 & VALVES \\
\hline PCC 84 &  & PCL 82
PCF 808 & POST
FREE & IF NOT LISTED
SEND 30 P P. & \(\underset{\text { POSI }}{\text { pre }}\) & FROM \\
\hline EH 90 & frek & PCF 805 & FREE & SEND 30P P.O. & & \(A, B\), and \(C\). \\
\hline
\end{tabular}

SEND PO, CHEQUE or MO to

```

Warehouse Must be Cleared
2-pin Crystals Bargain Offers
Mixed

```

``` asorted, \(£ 5\); Offer No. 2: 25 assorted, \(£ 9\); Offer No. 3: 50 ditto, \(£ 15\).
RACAL type MA 168. Transistorised Diversity Switch. Allows reception of MCW, SSB, RT, CW, receives on 1 or 2 receivers separately or together, tuning, phone output, unused in makers' packing \(\$ 50\) only.
500 watt constant voltage transformers, \(£ 18\); ditto 125 watt, \(£ 8\). Triodiac (Variac) Oil cooled
```



``` AVO Valve tester portable CTi60, 845 . AVO Electronic Multimeters CT38, \(\in 18\). Untested bargains, all clean, IF144/G, \(T F 428 \mathrm{~B}\), 1 ; CTS3, \&10; TF428B/1, \(66 ;\) CT54, \(£ 10 ; \mathrm{BC221,£12}\).
Enclose exera for carriage, s.a.e., surplus list. CASEY BROS., 72 Eccleston St., Prescot, Lancs.

\section*{ESSENTIAL BOOKS}
HOW TO MAKE WALKIE-TALKIES FOR LICENSED
OPERATION. Only 40p incl. postage.
GOVERNMENT SURPLUS WIRELESS EQUIPMENT MANDBOOK. Contains circuits, data, illustrations for modifications to sets and test equlpment. Latest impression \(\pm 3.25\) incl. postage
MOBILE RADIO TELEPHONES. Important reference book for users of commercial communications equipment.
Includes chapters on installation, operation and maintenance. Price 22.60 incl . postage. THE SCATTERING \& DIFFRACTION OF WAVES. A goldmine of information tor the experimenter, amateur \& scientist. L'seful to the student \(\&\) technician. Profusely
illustrated. Published by Oxford University Press. \(£ 1.60\) post free. Fortnightly World Radio Bulletin (ask for sample copy) \(£ 3 \cdot 13\). Available trom
GERALD MYERS (WW)
18 Shaftesbury Street, Leeds LS12 3BT Extra postage for abroad.

74N SERIES TTL. FULL SPEC DEVICES

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{ECONOMISE ON SEMICONDUCTOR} \\
\hline 709 Cop Amp & & T099 Can & \(1-9\) & 10 & \\
\hline \({ }_{709 \mathrm{C}} \mathrm{Op}\) Amp & & 3 or 14 pin Dil & 30 p & \({ }_{28}\) & \(26 p\) \\
\hline \({ }^{723 C} \mathrm{C}\) Reculator & & 14 pin DLL & 700 & 65 p & 62 p \\
\hline 741 C Op Amp & & \({ }_{8}^{8}\) pin DiL & \({ }^{32 \mathrm{p}}\) & \({ }_{34 \mathrm{p}}^{29}\) & \({ }^{288}\) \\
\hline \({ }^{748 C O p}\) Op Amp & & 8 pin DIL & 7p & \({ }^{34} \mathrm{p}\) & 32p \\
\hline 7400, 02, Ј3 1 & 17p & 7441 & 90p & 7476 & \({ }^{48}\) \\
\hline 7404, 051 & 18 p & 7473 & \({ }^{40} 0\) & 7486 & 41 p \\
\hline 7410, 20, 301 & \({ }^{17 \mathrm{p}}\) & 7474 & 36 p & 7490, 92, 93 & p \\
\hline \({ }^{\text {BC107 }}\) & & \({ }_{8}^{8 C 183 L}\) & \({ }^{100}\) & IN 4001 & p \\
\hline BC108 & & \({ }^{\text {BF2 } 244 \mathrm{~B}}\) & \({ }^{25 p}\) & & 10 D \\
\hline \({ }^{\text {BC109 }}\) & & \({ }^{2} \mathrm{~N} 29295\) & 10 p & \(\xrightarrow{\text { BZYY8C- }}\) & 0p \\
\hline \multicolumn{6}{|l|}{BC17} \\
\hline \multicolumn{6}{|l|}{P. \& P. 5p. Return of Post Service. All goods new, full spec.} \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Data with ail linear ICs. Quotations for quantities. \\
SILICON SEMICONDUCTOR SERVICES \\
41 Cunstable Road, Caddington, Luton, LU1 4AL
\end{tabular}}} \\
\hline & & & & & \\
\hline
\end{tabular}

NEW \& EX EQUIPT VALVES \& TRANSISTORS TO CLEAR
 BCY31. EiFY77, BC211, 2N711. \(\mathbf{£ 0} .206205,5703\) EL34. EF55 EF94, 5542, 584, 5Y3. 6AS7, 6H6, 607, 6V6. \(6 \times 4.6 \mathrm{KF}\),

 2-254. 6AV5. E1.00 \(25 \mathrm{~T}, 8020\) 6533. 5675. 1 N23E £1.50 E876. 2C53. 5876. ©2.00 2 AS 15. GL6299. £0.50 5784. 5718. CRC83. 1N82A. Amperite Ballast Types 9-4. 3-14. 1C1-4C. Helipots ST 5K. 5686. 5840, 6AN5. 6844-A. \(\mathbf{~} \mathbf{3} .00 \mathbf{6 2 8 0}\). Reflex Klystron VA203B/6975 \(8.5 \cdot 9.6 \mathrm{MHZ}\) :
 P. \& P. \(5 p\) per single vaive and ip for each additional.
Enquiries
invited Enquiries invited to clear complete stock.

WAYNE KERR CT 492 L.C.R. COMPONENT BRIDGE, Solid State
£90.50
avo ct 446 TRANSIStor analyser, Battery Power
 Brand New. Ever Ready Case Leads
edgCumbe peebles 500v MegGer, Solid State, Leather Case Probes.
£17.00
MARCONI MASTER OSCILLATOR N 7021. 1 MHZ and 100 KMH Output Frequency Std. 230 w 50 Hz \(£ 85.00\) MARCON TWO-TONE KEYER UNIT N7030 230 v 50 Hz £ 38.00 teleprinter station b40/41, RX Redifon Solid State Telegraph Terminal Unit 54, Creed Receiver Printer/Paper
f125.00
DECCA TM 45 RADAR 3 CM Complete-Spare R.E
Units and RX/Scanner £225.00
All Test Gear includes Securicor delivery U.K. Other Items - Carriage - \(£ 5.00\)
Please send S.A.E. for lists of many interesting items. ELECTRONIC DEVICES
33 New road. brixham, S. devon Telephone 0485-3107 or Robophone 51202

\section*{}

Thorn 850 Chassis with UHF Tuner, Ex-rental sets sold complete but unserviced, with repolished cabinets. Rush
E 7.50 Cash with Order.

\section*{U.H.F. TUNERS}

Chassluson 850,900 Chassis, but adaptable for most D/STD Chassis. \(\mathbf{\Sigma 2} 50\) each, C.W.O., postage included. Send S.A.E. for list of TVs, Tubes, Valves, etc. Allow 10-14

TRADE DISPOSALS
Midlands \& North: 1043 Leeds Road, Bradford 3 Burnbank Road, Hamilton
Cornwall: Pencoys, Four Lanes, Redruth

High Stab. CARBON FILM RESISTORS
High Stab. \(\frac{1}{8}\) W Or 1 W \(5 \%\) 1p, \(55 \mathrm{p} / 100\), £411000 (222-2M2) E12 RESISTOR KITS 10ת-1M E12 SERIES
 FREE CATALOGUE ON REQUEST Metal Film 1W \(5 \%\), 1这; \(£ 1 / 100 ; £ 7-50 / 100\)
C.W.O. P. \& P. 10p on orders under \(£ 5\). Overseas extra.

BH COMPONENT FACTORS LTD.
Dept. WW., 61 Cheddington Road, PITSTONE,
Leighton Buzzard, Beds., LU7 9AQ.
V.A.T. will be charged by the government from April 1 st on all purchases of AUDIO MIXER UNITS, MODULES and P.C.B.'s both in kit form or ready to use. We regret this is now causing delays on delivery which will increase as the time approaches. PARTRIDGE ELECTRONICS will not charge V.A.T. on any order received before this date, and executed afterwards. If you are not familiar with our latest range of products, and would like our 1973 catalogue, write to us at:-23-25 HART ROAD, BENFLEET, ESSEX

\section*{Service Sheets - Manuals • Books}

Service Sheets \(30 \mathrm{p}+\) Postage \(\quad\) Service Sheets Catalogue 20 p Over 12.000 Service Sheets and Manuals in Stock on Radios, T.V., Record Players, etc. Please send S.A.E. with enquiry

\section*{BELLS TELEVISION SERVICES}

ALBERT PLACE, HARROGATE, YORKS. Tel: 042386844

\section*{TRAIN FOR SUCGESS WITH ICS}

Study at home for a progressive post in Radio, TV \& Electronics. Expert tuition for C \& G (Telecoms Techn's Cert and Radio Amateurs') RTEB, etc. Many non-exam courses including Colour TV Servicing, Numerical Control and Computers. Also self-build kit courses-valve and transistor.
Write for FREE prospectus and find out how ICS can help you in your career. ICS, (Dept 734 DI) Intertext House, London SW8.

TV Line out-put transformers
Replacement types ex-stock.
For "By-return" service, contact: London: 019483702
Tidman Mail Order Ltd., Dept. W.W. 236 Sandy combe Rd., Richmond, Surrey TW9 2 EO Valves, Tubes, Condensers, Resistors, Rectifiers and
Frame out-put Transtormers also stocked. [Callers welcome 190

\section*{PPM}

STUDIO SOUND JAN 73 \(-0.5 \mathrm{~dB} 20 \mathrm{~Hz}-20 \mathrm{KHz}\)
6 cermet trimpots \(65 \%\) zeners 4 BC109C- 1741 Gold edge con. 8 way Gold edge con. 8 way …......... Bumplete Kit and aligned \(£ 88.00\) Surrey Electronics, 24 High Street, Merstham, Surrey

TRANSISTORED UHF Tuners 11.00 inc. P. \& P Gace. for literature Johnssons (Radio), St. Martins
Gorcester. WR1 2DT.

VIDEO TAPE RECORDER. National NV-1020E \(V_{405 / 625} \mathrm{f} 165\) National WV-350N Camera, Built in Monitor f 150 . Rediffusion \(23^{\prime \prime}\) Video/Audio Monitor \(£ 60\). Above as new. L. G. Fulcher, 11 Mount Pleasant, Framlingham (723590), Woodbridge, Suffolk
[2254

VISIT auto traction, thousands of bargains in surplus radio equip. meters, motors, relays, TR/TX telephone equip., aircraft equip. S.A.E. enquiries 27A Arragon Road, Twickenham, Middx 8929489.

VHE RADIO TELEPHONE EQUIPMENT Vanguard \(12 \%\) kc's Working condition. High and low band \(£ 35\) to \(£ 45\). Export inquiries welcome. Spa-Radio, 337 High Street, Cheltenham, Glos. Phone 54303.

C KHz MSF Rugby and 75 KHz Neuchatel Radio (UReceivers. Signal and Audio outputs. Smail compact units. Two available versions \(£ 35\) and \(£ 60\) Toolex. Bristol Road, Sherborne (321i), Dorset. [21

37,000 \(100 \mathrm{~K} \quad 5 \%\) watt Mullard Resistors E BRILI LT 110 NR 60 OAZ 229 Offer S.W.II. Tel. 01-228 ' 8960

\section*{[2317]}
C. P. Trading, 15 Cavour Road, Sheerness, Kent.
[2175

VACUUM is our speciality. New and second-hand rotary pumps, diffusion outfits, accessories, coaters, etc. Silicone rubber or varnish outgassing 1 Mayo Road, Croydon. 01-684 9917.

VHF KIT 80-180 mHZ receiver, tuner, convertor. Transistorised, remarkable performance. \(£ 4\) or

\section*{}

12372

COURSES

\section*{* \(\star\)}

\section*{ELECTRICAL ENGINEERING DEPARTMENT M.S.C.Course in Electrical Engineering}

\author{
October 1973
}

\author{
Full Time-Sandwich•Block Release•PartTime Day
}

The course leads to a Masters Degree in Electrical Engineering. One third of the lecture work will cover mathematics, computing and electrical engineering materials. The remaining time will be devoted to one specialist option selected from the following:
Communication Systems; Control Systems; Electrical Machines; Measurement and Instrumentation; Power Systems; The Design of Pulse and Digital Circuits and Systems.
The Science Research Council has accepted the course as suitable for tenure of its Advanced Course Studentships. The course is open to applicants who will have graduated in Science or Engineering. or who will hold equivalent professional qualifications. by October 1973.

\section*{RESEARCH IN \\ ELECTRICAL ENGINEERING}

Applications are also invited from similarly qualified persons who wish to pursue a course of research leading to the Degree of M.Sc. or Ph.D. in any of the above topics.
Application forms and further particulars may be obtained from:
The Head of the Department of Electrical Engineering (Ref: M.Sc.5). The University of Aston in Birmingham
The Sumpner Building
19 Coleshill Street.
Birmingham B4 7PB
THE UNIVERSTTY
OF ASTON
IN BRMINGHAM

learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence

\footnotetext{
Free Brochure, without obligation to
BRITISH NATIONAL RADIO \& ELECTRONICS
SCHOOL P.O.BOX 156, JERSEY, CHANNELISLANDS
NAME:
ADDRESS:
BLOCK CAPS please
}

\section*{ARTICLES WANTED}

A Vo 8 WANTED. Any condition. Any quantity. A Send for packing INS. Huggett's Ltd., 2 Pawsons Road, W. Croydon, SY.

COIL WINDING MACHINE, Motorised, AutoC. traverse, for small transformers, in working order (E.G. Avo Type 3)-Kenney, 16 Gippeswyk Avenue,
Ipswich.
[2312

OIGINAL
delivery. Phone 998 any quantities cash paid on
\([2361\)
[2361
PC or kit W.W. F.M. Tuner, June 1969. Details, Millwood, 8 Whiteshott, Basildon, Essex. [2364

Plugs, sockets, Valves, Motors, Meters, Instruments, Semiconductors. Have Cash Will Travel Anywhere. S.E.S., 67 London Road, Croydon. \(01-688\)
1512.

Wanted urgently bleeper system preferably with aerial transmitter for minimum one mile radius operation, to handle up to 12 bleepers. Any make Yorkshire LS2] 1 HX . Tel, 094344531 .

WANTED, all types of communications receivers Electronics, Ltd. Ashville Old Hall, Ashville Rd.

\(W^{\text {ANTED, televisions, tape recorders, radiograms, }}\) High St., West Bromwich, Staffs. Tel. Wes. 0186. \({ }^{3}\). 73

WaNTED Oscilloscope, 50 MHz Bandwidth ferably 50 mV beam. D.C. amplifier, Sensitivity prePhone details to: 5720933 .

\section*{300KS}

WORLD RADIO TV HANDBOOK 1973, published

\section*{EUSINESS OPPORTUNITIES}
R.S.M.C. Radio Scan Marine Company. This is R a firm based in Scotland interested in Sales/Service Agencies for Marine Radio, Radar and Echo
Sounding Equipment of Foreign Manufacture aimed at the "Small Boat Market". Box No WW 2248 .

\section*{CAPACITY AVAILABLE}

A IRTRONICS LTD., for Coil Winding-large or A small production runs. Also PC Boards Assemenquiries sppliers to P.O.B. M.O.D., etc. Expor SE13 TPE. Tel. 01-852 1706.

B ATCH Production Wiring and Assembly to Sample or drawings. Deane Electricals, 19 B \begin{tabular}{l}
Station Parade, Eating Common, London, W.5. Tel: \\
\(01-992\) 8976. \\
\hline 20
\end{tabular}

CONTRACT SERVICE and installation facilities for C V.H.F. mobile communications equipment, fully equipped workshop and scrvice vans West London. -Box No. WW 2377.

> Capacity
> available to the Electronic Industry. Precision turned parts, engraving, milling and grinding both in metals and plastics. Limited capacity available on Mathey SP33 JIG BORER. Write for lists of full plant capacity to C.B. Industrial \(\begin{array}{lll}\text { Engineering } & \text { Ltd., } 1 & 1 \\ \text { Tel. } 01-985 & 7057 .\end{array}\)

> DESIGN, development, repair, test and small production of electronic equipment. Specialist in roductronic, 54 Lerd Road Lond. NOWG \(01-2670201\).

> PRECISION injection moulding electronic industry C. short run specialists. Contact Jack Balzano Senior, C. B. Ind
6AB. Ring
01-985
[185

\section*{NEW GRAM AND SOUND EQUIPMENT}

A TWIN DECK Discotheque Console from \(£ 49\) Write SP. 25 's, preamp, Monitoring, Slide-Faders, etc. Leigh, Lancs.
[232i
GLASGOW.-Recorders bought, sold, exchanged; versa.-Victor Morris, 343 for recorders or vice versa.-Victor Morris, 343 Argyle St., Glasgow, C.2.

\section*{TUITION.}

R ADIO and Radar M.P.T. and C.G.L.I. Courses FY7 Write: Principal, Nautical College, Fleetwood

\section*{RECEIVERS AND AMPLIFIERS \({ }^{\text {H }}\) SURPLUS AND SECONDHAND}

NORDMENDE Universal sweep generator UW342/ U2 3.9 mHZ to 860 mHZ . Brand new and boxed list price \(£ 355, £ 160\). Danbridge non-destructive insulation tester JP 3030 or 15 KV. Brand new. List price D53A 220 Telequipment double beam oscilloscope Essex. Grays Thurrock 72066 Station Approach, Grays ssex. Grays Thurrock 72066.

HRO Rx5s, etc., AR88, CR100, BRT400, G209. Ltd., Ashville Old Hall, Ashville Rd. \& I. Electronics, Ley. 4986.

SCRATCHED TUBES. Our experienced polishing service can make your colour or monochrome tubes as new again for only \(£ 2.75\), plus carriage 50 p. With absolute confidence sent to Retube Ltd., North Somercote, Louth, Lincs, ö 'phone 0507-85 300. [30

SERVICE Sheets (1925-1971) for TV's, Radios, \(\omega\) Transistors, Tape Recorders, Record Players, etc.; over 8,000 models avaitable. S.A.E. enquiries: Hamilton Radio, 47 Bohemia Road, St. Leonards

\section*{117}

SIGNAL generators, oscilloscopes, output meters, wave voltmeters, frequency meters, multi-range Ltd., Ashvill etc., in stock.-R. T. \& I. Electronics Ley. 4986.

164

\section*{TAPE RECORDING ETC}

TF quality, durability matter, consult Britain's oldest apes. (Excellent Quality records from your suitable Modern studio facilities with Steinway Grand - Sound News, 18 Blenheim Road, London, W 4. 01-995 1661
[1954

YOUR TAPES TO DISC-Mono/Stereo. From £1.50. 4 Day Service-Vinyl Pressings. S.A.E. eaflet. Deroy Studios, High Bank, Hawk Street, Carnforth, Lancs. 2273.
[70

\section*{For Classified Advertising}

\section*{Ring ALLAN PETTERS 01-261 8508 or 01-928 4597}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{DISPLAYED APPOINTMENTS VACANT} \\
\hline Per single column inch & \(£ 9.00\) \\
\hline \(\frac{1}{4}\) page & \(£ 52.00\) \\
\hline \(\frac{1}{2}\) page & £103.00 \\
\hline Full page & £200.00 \\
\hline
\end{tabular}

50p per line (approx. 7 words) minimum 2 lines
Box Numbers 25p extra

\section*{Radio and Line Transmission, Vol. 2-2nd Edition}

\section*{George L. Danielson MScTech, BSc, CEng, MIEE and Ronald S. Walker CEng, MIERE}

The second in a series of three books written to meet the needs of the technician specialising in Radiocommunication in the City and Guilds Telecommunication Technicians' Course. The volume covers the revised syllabus of Radio and Line Transmission B, and is suitable for third-year students on a part-time course or for second-year full-time students. Though written primarily for students on technician courses, the work will provide a background for those engaged in more advanced studies.

\section*{304pp illustrated \\ 0592000672 \\ 1972 (2nd Impression 1972) \\ f1. 60}

\section*{Radio and Electronic Laboratory Handbook-8th Edition}
M. G. Scroggie BSc, CEng, FIEE

This completely revised edition of a book which has been a standard work of reference within its field for over thirty years contains much useful new information. There are new or extended sections on microelectronics, integrated circuits and operational amplifiers and a fuller treatment of the use of transistors in instrumentation. SI units are now used throughout the book

\section*{628pp illustrated 0592059502071 (2nd Impression 1972) \(\quad\) £5.25}

\section*{110 Integrated Circuit Projects for the Home Constructor}

\author{
R. M. Marston
}

Integrated circuits are the most important new semiconductor devices to have been developed within the last decade. They are compact, easy to use and less expensive than their discrete transistor-resistor equivalents. This work gives an entirely practical introduction to these devices by describing one hundred and ten constructional projects in which they can be used. The book will be of great value to and a fruitful source of ideas for the professional engineer, the student and the amateur constructor. Like the author's other books, such as the successful 20 Solid State Projects for the Home and 20 Solid State Projects for the Car and Garage, this volume is written in a clear and straightforward manner which makes this important subject accessible even to those with little technical knowledge.
138pp illustrated \(\quad 059200063 \times\) cased \(1971 \quad \mathbf{£ 1 . 8 0} \quad 0592000583 \operatorname{limp} \quad \mathbf{~ 1 . 2 0}\)

\section*{Operational Amplifiers}

\section*{G. B. Clayton BSc, FInstP}

This text is designed to provide an insight into the capabilities and applications of the modern operational amplifier. As it is simpler and potentially more reliable to work with operational amplifiers than using only the traditional discrete components, the nonspecialist should find it easier to design his own measurement systems if he makes use of them, either in modular or in integrated circuit form. Practising instrumentation engineers and research workers using electronic instrumentation techniques will all find the insights afforded by the text of great practical, help in their respective programmes.
\(\begin{array}{lllll}244 \text { pp illustrated } & 0 & 408 & 702028 & 1971\end{array} \mathbf{£ 3 . 5 0}\)
Available from leading booksellers or
The Butterworth Group
88 Kingsway, London WC2B 6AB. Showrooms and Trade Counter, 4-5 Bell Yard, LondonWC2

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK

\section*{CONNECTING WIRES}

Large quantities of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes. Wholesale and Export only.

\section*{J. Black}

OFFICE: 44 GREEN LANE, HENDON, NW4 2AH
Tel: 01-203 1855. 01-203 3033
STORE: LESWIN ROAD, N. 16
Tel: 01-249 2260

SOWTER TRANSFORMERS
for all purposes in
ING AND REPRODUC
SOUND RECORDING AND REPRODUCING EQUIPMENT We are suppliers to many well-known companies, studios and broadcasting authorities and were established in 1941. Early deliveries. Competitive prices. Large or small quantities. Let us quote.

Transformer Manufacturers and Designers
7 Dedham Place, Fore Street, Ipswich IP4 IJP

Thanksto a bulk purchase we can offer
BRAND NEW P.V.C. POLYESTER AND MYLAR RECORDING TAPES
Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polythene and have fitted leaders, etc. Their quality is as good as any other on the tapes faulty and are not to be confused with imported, used or sub-standard tapes. 24-hour despatch service.
despatch service. price and postage will be refunded.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{(3in 160\%t. 10 p 5in. 600ft.} \\
\hline & \{ \(3^{2} \mathrm{in}\). & 900 ft . & \({ }^{40} \mathrm{p}\) & & & & \\
\hline & 3 3in. & 1,2200ft. & & Sin. & & & \\
\hline & & 350 ft. & 22 \({ }^{\text {P }}\) & 5 in . & & 200 ft . & S0 \\
\hline & \[
\left\{\operatorname{sinin}_{\mathbf{p}_{i}}\right.
\] & 1,800ft. & \[
80 \mathrm{p}
\] & & & & . 00 \\
\hline & \multicolumn{7}{|l|}{COMPACT TAPE CASSETTES AT HALF PRICE} \\
\hline
\end{tabular}

60,90 , and 120 minutes playing time, in original plastic library boxes.
MC 6045 p each. MC \(9062 \frac{1}{2}\) p each. MC 12092 p each

\section*{STARMAN TAPES}

28 LINKSCROFT AVENUE, ASHFORD, MIDDX. Ashford 52136
WW-103 FOR FURTHER DETAILS

\section*{DIMIMIT}

\section*{range of light dimmers}
\(\star\) professional modules for industrial use on heaters, lamps, motors, etc
\(\star\) commercial modules for studio, stage disco and clubs, etc.
* attractive standard wall mounting models for home and office, etc
Rotary and slider control versions Ratings available: \(400 \mathrm{~W}, 1000 \mathrm{~W}, 2000 \mathrm{~W}\). Send \(10 p\) for complete catalogue and price list. Discount for quantities.

\section*{YOUNG ELECTRONICS}

54 Lawford Road, London, NW5 2LN 01-267 0201

\section*{Construction Pipeline Forestry Firefighting Public Safety Mining Weather CAI makes \\ single sideband systems for every communications job imaginable.}

Equipment ranges from comıpact highly portable solid state SSB transceivers to systems offering forty or more frequency synthesized channels. Power levels up to 3 kilowatts. The unit shown . . . the CA-26A ... is. an exceptionally rugged four channel transistorized SSB transceiver offering 100 watts output for mobile, fixed or portable applications.
The next time you have an important HF single sideband requirement where reliability is essential let CAI show you what we can do! CAI . . . an investment in performance dependability!

COMMUNICATION ASSOCIATES, INC.
200 McKay Rd., Huntington Station, N.Y. 11746 Tel: 516-271-0800

TWX: 510-226-6998

\section*{COMPATIBILITY \& TESTIMGof ELECTRONIC COMPONENTS}

66
by C. E. Jowett
Postage 15p CIRCUITS by MULIARD \& RADIO CIRCUITS by MULLARD EI .80

Postage 12p
110 THYRISTOR PROJECTS USING SCRs \& TRIACS by R. M. Marston \(\mathbf{f 1} \cdot 40\) Postage 12p
50 PHOTOELECTRIC CIRCUITS \& SYSTEMS by P. S. Smith El 30 Postage 10 p HI FI YEAR BOOK 1973 by IPC \(£ 1 \cdot 50\) Postage 20p
ELECTRONIC CIRCUITS MANUAL by John Markus \(\mathbf{5 9 . 5 0}\) Postage 25p
INTEGRATED CIRCUIT POCKET BOOK by R. G. Hibberd \(\mathbf{£ 2} 50\) Postage 12p FIELD EFFECT TRANSISTORS by MULLARD \(£ 1.80 \quad\) Postage 12p VIDEO RECORDING RECORD \& REPLAY SYSTEMS by G. White \(\mathbf{6 3 . 2 5}\) Postage 15p
TRANSISTOR CIRCUIT DESIGN by L. G. Cowles E 6 Postage SCR MANUAL 5th Ed. by General Electric \(\mathrm{El} \cdot \mathbf{5 5}\) Postage 15p

\section*{THE MODERN BOOK CO.}

SPECIALISTS IN SCIENTIFIC
\& TECHNICAL BOOKS
19-21 PRAED STREET,
LONDON, W2 1NP
Phone 7234185
Closed Sat. 1 p.m.

\section*{TOMON CENTRES Leado STORES}
 coded. 7 Ip per yd. Special quite for unantity.
RECORD STORAGE ONITS, Branil new. Anti-warp. Compact
 stores 1100 recorils. \&5.g7. P.P. 70p. Leatcta ivailable. S.A.E
ELLECTRICITY SLOT METERS (5p in slot) for A.C. maine Fixed
tarift tariff to your requirements, \$uitahle for hotela, ett. \(200 / 250 \mathrm{v}\).
\(10 \mathrm{~A} . £ 5 \cdot 50.15 \mathrm{~A} . £ 6 \cdot 00.20 \mathrm{~A} . £ 6.50\). P.P. 60 p . Other amper. ages arailable. Reconditioned as new 2 years, guarantee. MODEEN DESK PEONES, red, green, blue or topaz, 2 tone grey
or hack, with Internal lell and handset with \(0-1\) dial \(£ 4: 50\)
 ilte case with junction box handset. Thorouyhly overhauled 10-WAT PRESS-BUTTON INTER-COM TELEPHONES in liakelite case with junction box handset. Thoroughly overbauled.
Guaranneed. \(£ 6.75\) per uult. Wiring diagram on request, send
\({ }^{\text {B.A.C. }}\) 20-WAY PRESS-BUTTON INTER-COM TELEPBONES in Bake lite case with junction box. Thoroughly overhanled. Guaranteed.

 operateency from a dry hattery H.T./L.T. Ci+1.3 Y. IE R Reden off; 1T 4,4 ofit 185.1 off; 1AB. 2 off. 85.00 phue
23 IISIE ST. (2359) IONDON W.C. 2 Open all day Saturday

\section*{WANTED}

\section*{RELAYS}

GEC 12v 180 , 4 K , Type M!574.
3. \(350 \Omega+350 \Omega\) flying lug-in base B9A
4. 12 v I60 , flat \(4 \mathrm{M}, 0 \mathrm{l}\) - -9903 .
5. Miniature Elliott or Plessey \(7 v 60 \Omega\).
?. STC 24v 700 , unsealed, \(2 C O\).
7. STC \(24 \mathrm{v} 700 \Omega\), sealed, 2 CO .
B. Plessey or Ericsson cylindrical type
(a) \(12 \mathrm{v} 105 \Omega\), \(\mathrm{HD}, 2 \mathrm{M} 2 \mathrm{~B}\) or 4 CO (a) \(12 v 105 \Omega, \mathrm{HD}, 2 \mathrm{M} 2 \mathrm{~B}\) or 4 CO . (b) \(24 \mathrm{v} 440 \Omega, \mathrm{HD}, 4 \mathrm{CO}\).
(c) \(48 \mathrm{v} 1650 \Omega, 4 \mathrm{CO}\). (c) \(48 \mathrm{v} 1650 \Omega, 4 \mathrm{CO}\).
(d) \(48 \mathrm{v} 1650 \Omega, 2 \mathrm{CO} 2 \mathrm{~K}\).

All relays must be new and unused
Phone any time: 021-454 8305

\section*{EXCLUSIVEOFFERS}

INSTRUMENTATION TAPE RECORDERREPRODUCERS

AMPEX
FR-100A
(1" 14 tracks 6 speeds FR-100IS Fk- \(1^{\prime \prime}\) It tractis 6 speeds FR-600
\(1^{\prime \prime} 14\) tracks 4 speeds MINCOM CMP-100
\(\frac{1}{4}^{\prime \prime} \frac{1^{\prime \prime}}{}{ }^{\prime \prime} 1^{\prime \prime} 7\) tracks 6 speeds E.M.I.
T)-1

4 tracks 7 speeds
THERMIONIC
SERIEN IV
Several other smabler Full details on

Prices of above are
 from \(£ 150\) to \(£ 700\).
HIGHEST QUALITY 19" RACK MOUNTING CABINETS \& RACKS CAbinets
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{,} \\
\hline Our & Height & Winth & Depth & Rack Pan & \\
\hline Ref. & in inches & in inches & in inches & Space in in & M. Price \\
\hline CA & 76 & 22 & 18 & 71 & £15.00 \\
\hline CB & 76 & 22 & 20 & 70 & 218.00 \\
\hline c & 80 & 24 & 26 & 71 & ¢12.50 \\
\hline OD & 69 & 21 & 1:1 & 68 & 210.00 \\
\hline CE & 82 & 22 & 24 & 77 & 214.00 \\
\hline OF & 87 & \(2: 3\) & \(2{ }^{6}\) & 80 & 212.50 \\
\hline CH & 83 & 24 & 30 & 75 & £14.00 \\
\hline CJ & 43 & 24 & 24 & 75 & 213.00 \\
\hline CK & 83 & 24 & 12 & 75 & 210.00 \\
\hline CL & 30 & 60 & 36 & 42 & 812.50 \\
\hline CM & 19 & 22 & 18 & 17 & 25.00 \\
\hline CP & 69 & 24 & 26 & \({ }_{61}\) & 113.00 \\
\hline \({ }^{\text {OR }}\) & 69 & 30 & 20 & & 224.00 \\
\hline \({ }_{\text {CT }}\) & 70 & 69 & 27 & 60 & \$4.5.00 \\
\hline CU & 87 & 26 & 17 & & \(£ 20.00\) \\
\hline CX & 73 & 23 & 24 & 66 & 818.00 \\
\hline CY & 59 & 24 & 24 & 52 & ¢20.00 \\
\hline CZ & \({ }^{64}\) & 22 & 26 & 58 & ¢14.00 \\
\hline DA & 88 & 22 & 26 & so & 21500 \\
\hline D13 & 53 & 22 & 22 & 17 & £15.00 \\
\hline nc & 194 & 22 & 27 & 57 & 217.00 \\
\hline DE & 52 & 40 & 24 & 91 & \(\pm 30.00\) \\
\hline DF & 75 & 22 & 26 & fis & £18.00 \\
\hline DII & 70 & \(2:\) & 24 & 122 & £20.00 \\
\hline DK & 85 & 24 & 26 & 7 & \(\pm 20.00\) \\
\hline 1) & 54 & 24 & 19 & 49 & 21800 \\
\hline \(10^{\circ}\) & 74 & 24 & 24 & tif & £18.00 \\
\hline DR & 14 & 21 & 12 & 1 F & 88.00 \\
\hline \multicolumn{6}{|c|}{Also Consolem, twin and mutiowny Cihinets.} \\
\hline \multicolumn{6}{|c|}{OPEN RACKS} \\
\hline Our Ref. & Height in & Channel & Rack Panal & & \\
\hline RR & 108 & Depth & space & Base & Price \\
\hline RD & 108
80 & ¢ & 104 & Bolts & £ \(0 \cdot 0\) \\
\hline RA & 72 & 3 & 66 & & 810.00 \\
\hline RC & 66 & 5 & 63 & Butis & 210.00 \\
\hline RE & 78 & 71 & 71 & Bolte & ¢\%.00 \\
\hline
\end{tabular}

Full details of all above on request.

COMMERCIAL TYPE Lattice steel AERIAL MASTS All masts are nectional and have mating ends for joining to make sizes and is0 feet for the larger sizes. Details and prices lielow are for 10 poot gections. All are
galiantsed tinish. Top and base fitings are extra. Top Type A Lightweight in \(^{*}\) nidea Type B Mediumweight \(\begin{gathered}\text { Aidar } \\ \text { sides triangular } \\ \text { 2 } \\ \text { 2 }\end{gathered}\) Type C Mediumweight \(16^{*}\)

Full retails of all above available on request.
```

FREE
40-page liat of over 1,000 difterent ttemg in stook
available-keep one by you.

```

\section*{We have a large quantity of "bits and pieces" \\ We cannot liti-please send us your requatrement}

\section*{P. HARRIS \\ ORGANFORD - DORSET BHI6 GER \\ BOURNEMOUTH 65051}

\section*{Electronic Instrument Cases}

The cases are all alloy construction with 14 s.w.g. removable cover anodised black with 16 s.w.g. alloy chassis anodised in natural satin.
\begin{tabular}{lrrrc}
Type & Width & Height & Depth & Price \\
CS-7 & \(6^{\prime \prime}\) & \(3 \frac{1}{2}{ }^{\prime \prime}\) & \(9^{\prime \prime}\) & \(£ 1.95\) \\
CS-8 & \(9^{\prime \prime}\) & \(3 \frac{1}{2}{ }^{\prime \prime}\) & \(9^{\prime \prime}\) & \(£ 2.45\) \\
CS-9 & \(12^{\prime \prime}\) & \(3 \frac{1}{2}\) & \(9^{\prime \prime}\) & \(£ 2.95\) \\
CS-10 & \(6^{\prime \prime}\) & \(5 \frac{1}{4}\) & \(9^{\prime \prime}\) & \(£ 2.25\) \\
CS-11 & \(9^{\prime \prime}\) & \(5 \frac{1}{4}\) & \(9^{\prime \prime}\) & \(£ 2.75\) \\
CS-12 & \(12^{\prime \prime}\) & \(5 \frac{1}{4}{ }^{\prime \prime}\) & \(9^{\prime \prime}\) & \(£ 3.25\)
\end{tabular}

Postage and packing 25p.

\section*{Case Systems}

20 HUNT LANE CHADDERTON LANCASHIRE

TELEPHONE 061-652-1580

\section*{Vary the strength} of your lighting with a

The DIMMASWITCH is an attractive and efficient dimmer unit which fits in place of the normal light switch and is connected up in exactly the same way. The white mounting plate of the DIMMASWITCH matches modern electric fittings. Two models are available, with the bright chrome knob controlling up to 300 w or 600 w of all lights except fluorescent at mains voltages from \(200-250 \mathrm{~V}, 50 \mathrm{~Hz}\). The DIMMASWITCH has builtin radio interference suppression.
Price: \(600 \mathbf{w}-\mathbf{£ 3 . 2 0}\). Kit form- \(\mathbf{£ 2 . 7 0}\). 300w \(\mathbf{£ 2 . 7 0 .}\). Kit form- \(\mathbf{£ 2 . 2 0}\) All plus 10 p post and packing.
Please send C.W.O. to

\section*{DEXTER AND COMPANY}

4, ULVER HOUSE, 19 KING STREET,
CHESTER CH 1 2AH TEL: 0244-25883
As supplied to H.M. Government Departments, Hospitals, Local Authorities, etc.

QUARTZ CRYSTAL UNITS from
- 1.0-60.0 M HZ
- fast delivery
- high Stability
- TD DEF 5271-A

THE TEXAN - \(10-20\) -

HI Fl AMPLIFIER BY TEXAS COMPLETE DESIGNER APPROVED KIT £28.50 INSTRUCTIONS, INCLUDING BREAKDOWN PRICE LIST OF PARTS 35 p
TELERADIO ELECTRONICS 325, FORE ST. EDMONTON, LONDON N 9. 01-807-3719

\section*{WE PURCHASE ALL FORMS} OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC.

CHILTMEAD LTD.
7, 9, 11 Arthur Road, Reading, Berks.

Tel: 582605

CASH IMMEDIATELY AVAILABLE
for redundant and surplus stocks of radio, television, telephone and electronic equipment, or in component form such as meters, plugs and sockets, valves, transistors, semi conductors, capacitors resistors, cables, copper wire, screws and nuts, speakers, etc.
The larger the quantity the better we like it.

\section*{BROADFIELDS \& MAYCO} DISPOSALS
21 Lodge Lane, London, N12.
Telephone: 01-445 2713 01-445 0749 Evenings: 01-958 7624

\section*{PCCXITCABIESTRIPPERS \\ FOR FAST ACCURATE WORK}

Very useful for electricians. TV. Radio and handymen. the \(A B\) Engineering range of pocket strippers covers all cable sizes from \(0^{-" .} 25\) up to \(2^{\circ "}\) old Cable simply goes into spring loaded grip and the tool is rotated round cable for clean, neat separation of insulation. Blade is turned through \(90^{\circ}\) and the tool is pulled through to the end of the cable to give a lengthwise cut. These handy tools make the job easy and save time, temper and money.

Three models are available
MK. 0 Capacity \(\frac{1^{\prime \prime}}{4}\) to \(\frac{5}{8}{ }^{\prime \prime} £ 3.50\)

MK. 02 Capacity \(\frac{3^{\prime \prime}}{4}{ }^{\prime \prime}\) to \(2^{\prime \prime} £ 7.95\)
Cash with order add \(15 p \mathrm{P}\) \& \(P\)
Spare Blades: MK. \(0 \& 01\) 75p. MK. 02 £ 1.00

\section*{"W.W." HI-FI KITS \\ \(\star\) LINSLEY HOOD 15-20W AMPLIFIER}

July 1970 latest and ultimate design. Our kit \(0 / \mathrm{P}\) Tr's matched for spec'd performance. Metalwork now available ensures simple construction of amps. and power supply.
\(\star\) BAILEY PRE-AMP (AUG. 1971)
Superbly engineered kit of this established low noise pre-amp. Uses RH \& LH fibreglass PCBs enabling a stereo version to be built in \(8 \times 2 \frac{1}{2} \times\) Especially recommended to drive \(15-20 \mathrm{~W} A B\) amp.

AFTER-SALES SERYICE at reasonable cost.
REPRINTS of any "WW" article] Inc'g p.p. at 30p
DETAILED PRICE LISTS at 5p accepted) Inc'g above and other designs.
*REFUND GUARANTEED ON ALL PARTS

\section*{SPECIAL OFFER}

2N3055 30p each 4 for \(£ 1\) 2N3054 20p each 3 for 50p
Unmarked, Tested and Guaranteed. Post and packing 10 p per order. Send S.A.E. for list of other devices. See July 1972 advert.
PERSONAL CALLERS WELCOME-AT OUR
RETAIL SHOP NOW OPEN

\section*{A. 1 FACTORS}

245, North Sherwood St.,
Nottingham NG1 4EO
Telephone: Nottingham (0602) 4605I Sole proprietor: Douglas de Havilland (10 a.m.-12 Midnight 7 days/week)

\section*{LOUDSPEAKER BARGAINS}

\section*{Fane Pop 100 watt \(18^{\prime \prime} 8 / 15\) ohms \\ £ 19.50}

Fane Pop 60 watt \(15^{\prime \prime} 8 / 15\) ohms.
Fane Pop 50 watt \(12^{\prime \prime} 8 / 15\) ohms. Fane Pop \(25 / 212^{\prime \prime} 25\) watt \(8 / 15\) ohms Fane Pop I5 \(12^{\prime \prime} 10 w^{\prime \prime}\) watt \(8 / 15\) ohms
Baker Group \(2512^{\prime \prime} 3,8\) or 15 ohm Baker Group \(3512^{\prime \prime} 3^{\prime} 8\) or 15 ohms Celestion PSS for Unilex.
EMI \(13 \times 8,3,8\) or 15 ohms
EMI \(13 \times 8,3,8\) or 15 ohms
EMI \(13 \times 8\) twin tweeter 3,8 or 15 ohms EMI \(13 \times 8\) type 35015 watt 8 ohms. Richard Allan \(8^{\prime \prime} 3,8\) or 15 ohms Richard Allan \(12^{\prime \prime}\) dual cone 3 or 15 ohms Fane \(8^{\prime \prime}\) d/cone 808T 8 or 15 ohms
Fane \(8^{\prime \prime}\) d/cone, roll surround, 807 T 8 or
15 ohms
lac \(9 \times 5\),59RM109 15 ohms
Elac \(9 \times 5,59\) RMII 148 ohms
Elac \(6 \frac{1_{2}^{\prime \prime}}{}\) d/cone 8 ohms
Elac \(4^{\prime \prime}\) tweeter 8 ohms
Crossover for above (P \& P
Goodmans 8P 8 or 15 ohms.
Goodmans IOP 8 or 15 ohms
Goodmans 12P 8 or 15 ohms
Goodmans 15P 8 or 15 ohms
Goodmans 18P 8 or 15 ohms.
Philips \(5^{\prime \prime} 3^{\prime \prime} 80\) ohms
\(7 \times 4\) or \(8^{\prime \prime} \times 5^{\prime \prime}, 3\) or 8 ohms
\(\times 40^{\prime \prime} \times 6^{\prime \prime} 3,8\) or 15 or 8 oh
69. 25

REE WITH ORDERS OVER \&6-"HiF OUDSPEAKER ENCLOSURES" BOOK

All units guaranteed new and perfect
Prompt despatch, P \& P 25p per speaker
Send for our free booklet "Choosing a speaker"

\section*{WILMSLOW AUDIO}
(Dept. WW)
10 Swan Street, Wilmslow, SK9 IHF Cheshire

\section*{CLASSIFIED ADVERTISEMENTS}

\section*{Use this Form for your Sales and Wants}

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.I

\section*{PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW}

Rate: 50p (10/-) PER LINE. Average seven words per line. Minimum two lines.
- Name and address to be included in charge if used in advertisement.
Box No. Allow two words plus 25p (5/-).
- Cheques etc., payable to "Wireless World" and crossed " \& Co."
- Press Day February 16, 1973 for March, 1973 issue.

NAME..

ADDRESS
P-

\title{
Need a counter-fast? We hold the pick of the world's digital counters, on 24-hour standby. Oh yes, and oscilloscopes, voltmeters, signal generators, meters, test sets, recorders, power units. \\ You name it, we rent it out ... fast ... on very reasonable terms Try us, or start by sending for the Labhire brochure. SOUTH Cores End Road. \\ NORTH Shearer House, \\ Dunham Rd, Altrincham, Cheshire. \\ 06-285 23106 \\ 061-928 0800
}

\section*{INDEX TO ADVERTISERS}

\section*{Appointments Vacant Advertisements appear on pages 87-101}
\begin{tabular}{|c|c|}
\hline & 105 \\
\hline A. 1 Factors & \\
\hline A.B. Engincering & 48 \\
\hline AEI Somi-Conductors Lid. & 4 \\
\hline AKG Equipment Lid. & 22 \\
\hline Aerialite Aerials Lid. & 5, 16 \\
\hline Anders Electronics Lid. & \\
\hline A.N.T.E.X. Lid.
Audix B.B. Ltd. & - 8 \\
\hline Aveley Electric Ltd. & 28 \\
\hline Avo Ltd & 14 \\
\hline Barric Electronics & 61 \\
\hline Bauch, F. W. O. & 30 \\
\hline Bell \& Howell Ltd. & \\
\hline Bentley Acoustic & \\
\hline B.I.E.T. & \\
\hline Bi-Pak Semiconductors & 58, 59 \\
\hline Bi-Pre-Pak Ltd. & \\
\hline Bird Electronics Ltd. & \\
\hline Black. J. & \\
\hline Bradley, G. \& E. Ltd. & Cover 14, 17 \\
\hline Brandenburg Lid. & \\
\hline Brookdeal Elcetronics Lid. & ... 31 \\
\hline Brown, S G. Ltd. & \\
\hline Bull, J. (Electrical). Lid. & \\
\hline Burndept Electrooics (E.R.) Ltd. & \\
\hline Case Systems & 10 \\
\hline Cavern Electronics & \\
\hline Chiltmead Lid. & 62, 81, 104 \\
\hline Colomor (Electronics) Lid. & 84 \\
\hline Commpunication Associates, Inc. & \\
\hline Consumer Association & Loose Insen \\
\hline Crichton, John & 52 \\
\hline C.T. Electronics Litd. & 73 \\
\hline Dexter \& Co. & \\
\hline Dixons Technical (CCTV) Lid. & 31 \\
\hline Douglas Electronic Industries Lid. & 104 \\
\hline Drake Transformers Lid. & \\
\hline Dymar Electronics Litd. & - 19 \\
\hline Eddystume Radio Ltd. & \\
\hline Electrical \& Mechanical Sub-Assembly & Co. Ltd. 104 \\
\hline Electronic Hobbies & 82, 83 \\
\hline Electrical \& Wircless Supply Co. & 103 \\
\hline Electronic Brokers & 70,102 \\
\hline Electrolube & 55, 63 \\
\hline Electroplan Lid. & 52 \\
\hline Electrosil L.td. & 44 \\
\hline Ekectrovalue & 60 \\
\hline EMI Sound \& Vision Equipment Lid. & .. 15 \\
\hline English Electric Valve Co. Ltd. . . . & .. 45 \\
\hline
\end{tabular}

Farnell Instruments Ltd

\section*{Ferranti Ltd.}

Future Film Developments
Fylde Electronic Laboratories Ltd
\(\begin{array}{ll}\text { Gardners Transformers Ltd. } & 73\end{array}\)
\(\begin{array}{ll}\text { Goodmans Loudspeakers Lid. ... } & 23 \\ \text { Grampian Reproducers Lid. }\end{array}\)
102
Harris Electronics (London) Lid. 49
Harris, \(P\).
Hart Electronics
Hatfield Instruments Ltd.
Heath (Gloucester) Ltd.
Henry's Radio Ltd.
Henson, R.. Ltd
Henson, R.. Ltd.
Hy-Q Electronics Pty. Lid.
I.C.S. Ltd.

IL.P. Electronics Ltd.
1.M.O. Precision Controis Ltd

Integrex Lid
Integrex
Ivoryet
J.E.F. Electronics

Jackson Bros. (London) Ltd
Jermyn Industries
Kemo (Consultants) Ltd.
Labhire Ltd. 106
Lasky's Radio Ltd. 63
Ledon Instruments Lid. .. 30
Limrosé Electronies Ltd.
Linstead Electronics
London Central Radio Stores
Lyons Instruments
103
16,28
9
64
64
104
36
30
57
33

Sinchair Radiooics Ltd. 43, 66,
S.M.E. Ltd. (Radio), Ltd.66.676. 68, 69
Smith. G. W.

Smith. G. W. (Radio), Ltd. 66. 67, 68, \({ }^{69}\)
Solartron Inseri
Sowter Lid
Starman Tapes 102
Strumech Eng. Ltd
Sugden, J. E.. Ltd

Tektronic (U.K.) Ltd.

Teleradio, The (Edmonton) Ltd.
Trannies …...................
Turner, E.. Electrical Insts. Ltd.
United-Carr Supplies Ltd
Macfarlane. W. \& B. 49

MacInnes Laboratories Ltd. 14
Marconi Instruments Cover ii
\(\begin{array}{ll}\text { Marshatl, A. \& Sons (London) Ltd. } & 78 \\ 104\end{array}\)
\(\begin{array}{lll}\text { McKnight Crystal Co. } & 104 \\ 25\end{array}\)
McLennan Eng. Ltd.
Meterionic Lid.
Metcrionic
Mills.
\(\begin{array}{lll}\text { Vilradio Ltd. .. } & 24 \\ \text { Vitavox Ltd. }\end{array}\)
Watts, Cecil E.. Lid. 102
Wayn. Kerr The Co., Ltd. \(\quad 37\)
West Hyde Developments Led
37
51
Mills. W,
Milward, G. F.
Co. 65
Modern Book Co. 103
Modern Engincering \& Technology Ltd..... 18. 27
Mo Valve Co.Ltd.
Mullard Instruments Ltd. 10, 11
Multicore Solders Ltd. Cover iv
Nombrex L.td.
29

Service Trading Co....
Sho \& Electronic Sales Ltd.
Shure Electronics Ltd.
Sinclair Radiooics Ltd
Parker. A. B.48
56
Pattrick \& Kinnie 83
71
Powertran Electronics 30
Quality Electronics Ltd. 55
Racal Communications Lid.Ralfe, P. F12
Ralfe, \(P\). \(F\).35
79RCS Electronics
Rola Celestion Lid
Rola Celestion Lid.
R.S.C. Hi-Fi Centres Ltd.51
32R.S.T. Valves Lid.55
Samsons (Electronics) Ltd 56
4880
7041

26
50
02

50

53
West London Direct Supplies 20
Whiteley Electrical Radio Co. Ltd. 20
Whiteley Efcetrical Radion L. (Croydon) Ltd. 83
Wilmslow Audio

Young Electronics 102

\section*{Advice to anyone about to design (their own PCM test equipment: donit}

We've already had four years experience It's yours for the asking.

When the British Post Office put Europe's first PCM system into operation, it gave them a 4 -year lead. And problems.
They had ne system or instruments capable of testing it. Which is where M.I. came in. Working closely with Post Office engineers we solved the measurement problems - and designed the original test equipment.

But we didn't stop there. 'The second generation' now being produced is almost certainly the most advanced in the world. And the most comprehensive. With more countries adopting PCM systems - for data and telephone transmissions - the five instruments we offer have been so designed that they can be modified to meet any known requirement. If you are thinking of designing your own - a word with us could save you an awful let of bother. And money. We have the experience and the expertise. And we are
more than willing to discuss any problems that may arise - and offer a solution.
Phone, write or call. We'll meet you anywhere you suggest.

MARCONI INSTRUMENTS LIMITED Longacres, St. Albans, Herts., England. Tel: St. Albans 59292 Telex: 23350 A GEC-Marconi Electronics Company

\section*{ersa Multicore solore specified by the world's leading electronics manufacturers...}

The life and efficiency of any piece of electronic equipment can rest entirely on the solder used in its assembly. If in Britain or overseas you make or service any type of equipment incorporating soldered joints, and do not already use Ersin Multicore Solder, it must be to your advantage to investigate the wide range of specifications which are available. Besides achieving better joints - always - your labour costs will be reduced and substantial savings in overall costs of solder may be possible. Solder Tape, Rings, Preforms, and Pellets - Cored or Solid - and an entirely new type of cored disc, can assist you in high speed repetitive soldering processes.

\section*{Ersin Multicore solder}

Contains 5 cores of non-corrosive high speed Ersin flux. Removes surface oxides and prevents their formation during soldering. Complies with B.S. 219, B.S. 441, DTD 599A, Din 1707, U.S. Spec. QQ-S-571d.

Savbit, an exclusive Multicore Alloy which is saturated with copper to prevent absorption of copper from copper wires, circuit boards and soldering iron bits. Ministry approved under Ref: DTD 900/4535.

Solder Tape, Rings Preforms and Washers, Cored or Solid, are available in a wide range of specifications.
STANDARD ALLOYS INCLUDE
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ TIN/LEAB } & B.S. GRADE & \multicolumn{2}{|c|}{ LIQUIDUS MELTING TEMP. } \\
\hline & & C & F \\
60,40 & K & 188 & 370 \\
Savbit No. 1 & - & 215 & 419 \\
50,50 & F & 212 & 414 \\
\(45 / 55\) & R & 224 & 435 \\
\(40 / 60\) & \(G\) & 234 & 453 \\
\(30 / 70\) & J & 255 & 491 \\
\(20 / 80\) & V & 276 & 529 \\
\hline
\end{tabular}

Over 400 specifications used in more than 80 countries

\section*{SOLDERING HANDBOOK}

The most comprehensive book on soldering for industrial use, containing 120 pages with 100 illustrations and invaluable reference charts. Features practical methods of soldering in electronics and allied industries, and is divided into three headings; Published by lliffe Books and available from Technical Bookshops.

\section*{EVEARUSOIE}

The first oxide free high purity extruded solder. Available in 1 lb . and 2 lb . bars, also Extrusol pellets for use in printed circuit soldering
 machines, baths and pots, polythene protected.

7 LB. REELS Available in standard wire gauge from 10-22 swg., on strong plastic reels.

1 LB. REELS Available in all standard wire gauges from 10-34 swg., on unbreakable plastic reels. (From \(24-34 \mathrm{swg}\). only \(\frac{1}{2} \mathrm{lb}\). is wound on one reel).

\section*{GALLON CONTAINERS}

All liquid chemicals and fluxes supplied in 1 gallon polythene 'easy pouring' containers, with carrying handle.

SOLDER TAPE, RINGS, PREFORMS, WASHERS, DISCS \& PELLETS
Made in a wide range solid or cored alloys. Tape, rings and pellets are the most econo-

\section*{HIGH \& LOW MELTING POINT ALLOYS}
\begin{tabular}{|l|l|c|c|}
\hline ALLOY & DESCRIPTION & MELTING TEMP. \\
\hline T.L.C. & \begin{tabular}{l}
Tin/Lead/Cadmium \\
with very low melting point
\end{tabular} & 145 & 293 \\
L.M.P. & \begin{tabular}{l}
Contains 2\% Silver for soldering \\
silver coated surfaces
\end{tabular} & 179 & 354 \\
P.T. & \begin{tabular}{l}
Made from Pure Tin for use when \\
a lead free solder is essential
\end{tabular} & 232 & 450 \\
H.M.P. & \begin{tabular}{l}
High melting point solder \\
to B.S. Grade 5S
\end{tabular} & \(296-\) & \(565-\) \\
\hline
\end{tabular}

Should you have any soldering problems, or require details on any of our products, please write on your company's note paper to: MULTICORE SOLDERS LTD. Hemel Hempstead,Herts.HP2 7EP Tel:H.Hempstead 3636 Telex 82363```

[^0]: Tick or state subject of interest and post to: International Correspondence Schools, Dept. 734D Intertext House, Stewarts Road, London SW' +C J.

 Subject of interest
 Society of lingineers (iraduateship (Electrical Engineering) C \& (C Telecommunications Technicians Cerrificates C $\mathbb{\&}$ G Electrical Installation Work
 C \& G Certificate in Technical Communication Techniques
 MPГ General Certifirate in Radio Telegraphy
 Audio, Radio \& TV igineering \& Servicing
 Electronic Engin ng, Maintenance, Engineering systems, Insirumentation \& Control systems
 Computer Engineering and Technology
 Electrical Enginecring, Installations, Contracting, Appliances
 Self-build radio courses

[^1]: Footnotes

 1. Artificial satellites may be used in the amateur service in the bands $7-7.1,14-14.25,21-21.45,28-29.7$, $144-6,435-8 \mathrm{MHz}$ and $24-24.05 \mathrm{GHz}$ on condition of no interference to other services.
 2. D.C. input power is the total power input to the anode circuit of the valves or any other device energizing the aerial.
 3. For A3A and A3J s.s.b. transmission power is determined as the peak envelope power under linear operation and limited to 2.667 times the d.c. input power appropriate to the frequency band.
 4. For emission designation see symbols assigned in the Telecommunication Convention.
 5. Allocated on a secondary basis on condition that interference is not caused to other services.
 6. Do not use radio teletype in this band.
 7. Shared by other services.
 8. Available until further notice provided use ceases on demand of a Government official.
 9. Avoid following spot aeronautical frequencies: $144.0,144.09,144.18,144.27,144.36,144.45,144.54,144.63$, $144.72,144.81,144.9 \mathrm{MHz}$.
 10. Do not use in area bounded by maximum power 10 W effective radiated power. $53^{\circ} \mathrm{N} 02^{\circ} \mathrm{E}, 55^{\circ} \mathrm{N} 02^{\circ} \mathrm{E}$, $55^{\circ} \mathrm{N} 03^{\circ} \mathrm{W}$ and $53^{\circ} \mathrm{N} 03^{\circ} \mathrm{W}$.
 11. Available only with prior written consent, which will indicate the power which may be used.
 12. Available only with prior written consent.
[^2]: \dagger "An introduction to microwave techniques" by K. E. Hancock was published in five parts over the period August to December 1964.

[^3]: *South East London Technical College
 †Twickenham College of Technology.

[^4]: *January 1973 issue, p. 23
 \dagger See The Electron in Electronics, M. G. Scroggie, Chapter 9

[^5]: *"Mainline Solid State Demodulators" by Irvin M Hoff, W6FFC, RTTY Journal, Sept., Oct., Nov., 1970.

[^6]: Learn more about this family of portables, contact Tektronix for detailed information or to arrange a demonstration of these new instruments.

 Tektronix U.K. Limited
 Beaverton House, P.O. Box 69, Harpenden, Herts. Telephone: Harpenden 61251 Telex: 25559

[^7]: Lb3 TRANSISTOR TESTER Tests ICO and B. PNP/ NPN. Operates from 9v. hattery. Complete with al instructlon
 Post 20p.

