

Everybody knows Bradley's scope is wide. So is the scope of the 189 sampling oscilloscope.
For a start, it's dual channel, and is intended for all sampling applications up to 1 GHz . The basic Y sensitivity is $2 \mathrm{mV} / \mathrm{cm}$ to $1 \mathrm{~V} / \mathrm{cm}$, which can be increased to $0.8 \mathrm{mV} / \mathrm{cm}$. It has signal delay on both channels. And an important feature, you can achieve independent timebase delay on each channel.
Wide timebase ranges cover $10 \mathrm{nS} / \mathrm{cm}$ to $10 \mu \mathrm{~S} / \mathrm{cm}$ with expansion to $100 \mathrm{pS} / \mathrm{cm}$. On the faster timebase ranges expansion is brought in
automatically which means you get direct timebase scaling when the expansion facilities are being used.
What else does the 189 offer ? Timebase scanning modes give automatic, manual and external drive facilities, with a choice of channel display giving A or B, A and B alternately, A plus B, or A / B shown as an X / Y function.
Add to this a bright $8 \times 10 \mathrm{~cm}$ CRT display driven at 8 kV and you begin to see the scope of the Bradley 189.
If you'd like to sample it, please let us know.

All Bradley instruments can be supplied with a British Calibration Service Certificate from our own B.C.S. approved standards laboratory.

G \& E BRADLEY LIMITED
Electral House, Neasden Lane,
London NW10 1 RR
Tel : 01-450 7811 Telex : 25583
A Lucas Company

BRADLEY
electronics

Wireless World

Electronics, Television, Radio, Audio

Our cover picture shows some of the eight 42-ft paraboloids being built by Marconi for the new $£ 2 \mathrm{M}$ tadio telescope at the Mullard Radio Astronomy Observatory at Cambridge University. Spaced over a distance of three miles four of the aerials are fixed and four are mounted on a railway track. Photographer - Paul Brierley

Contents

153 Exhibltions - general or specialized?
154 Hand-portable Transceiver by D. A Tong
160 H.F. Predictions
161 The Electronic Retina by N. A. Singer
166 Conferences \& Exhibitions
167 Sound Pressure-level Meter by J. L. Linsley Hood
168 Announcements
169 Recording Level Meter and A.G.C. by James M. Bryant
170 News of the Month
173. How to Simplify Logic Circuits by N. Darwood

175 Letters to the Editor
177 Books Received
178 Electronic Building Bricks - 22 by J. Franklin
F.M. Tuner Design - $\mathbf{1 2}$ Months Later by L. Nelson-Jones

About People
185 Circuit İdeas
187 Stereo Cassette Tape Decks: 2 by B. Crank
192 Sixty Years Ago
193 World of Amateur Radio
194 Miniature Automatic Telephone Exchange Modifications by P. F. Gasgoyne
195 April Meetings
196 New Products
201 Literature Received
202 Real \& Imaginary by 'Vector'
A91 APPOINTMENTS VACANT
A102 INDEX TO ADVERTISERS

IN OUR NEXT ISSUE

The transmission-line loudspeaker enclosure is re-examined and a simpler and better method of construction offered. Suitable drive units and crossover circuits are also specified.
Oscilloscope trace quadrupler. Provides four traces on a single-beam oscilloscope without sacrificing sensitivity or d.c. coupling. Frequency response is from d.c. to 5 MHz (3 dB down at 8 MHz); sensitivity is $50 \mathrm{mV} / \mathrm{cm}$ when used with a $100 \mathrm{mV} / \mathrm{cm}$ 'scope.

ibpa

Press Assoctares
I.P.C. Electrical-Electronic Press Ltd

Managing Director: George Fowkes
Publishing \& Development Director:
George H. Mansell
Advertisement Director: Roy N. Gibb, M.I.E.E.
© I.P.C. Business Press Ltd, 1972
Brief extracts or comments are allowed provided acknowledgement to the journal is given.

[^0]

To each hisown.

Not everybody needs a concert grand piano, nor does everybody need the Shure V-15 Type II, the most sophisticated cartridge in the world, to enjoy his kind of music in his kind of hi-fi system. For many, the M75 Type 2 Series, widely acclaimed as second only to the V-15, will be more than adequate. Within more circumscribed budgets the M55, M44 Series or M3D, each offering optimum performance in successively lower price ranges, may be an excellent choice. Send us the coupon for our recommendations.Please send me the full details of Shure cartridges.
\square Please recommend the appropriate model for use : with my equipment.

Arm or Unit \qquad
Amplifier \qquad
Name \qquad
Address \qquad

Shure Electronics Limited
84 Blackfriars Road
London SE1, 8HA Telephone (01) 9283424
WW- 068 FOR FURTERER DETAILS

Editor:

H. W. BARNARD

Technical Editor:

T. E. IVALL, M.I.E.R.E.

Deputy Editor:
B. S. CRANK

Assistant Editors:

J. GREENBANK, B.A.
G. B. SHORTER, B.Sc.

Drawing Office:

L. DARRAH

Production:

D. R. BRAY

Advertisements:
G. BENTON ROWELL (Manager) G. J. STICHBURY A. PETTERS (Classified Advertisements) Telephone: 01-928 3333 Ext. 533

Exhibitions - general or specialized

During the past 20 years or so, there has been a growing tendency for exhibitions, both in this country and abroad, to get bigger and bigger and more and more diverse in content. Instead of the Components Exhibition, for example, being concerned with components as it was originally in the days of the Grosvenor House show (of happy memory) it has grown into another all-embracing exhibition of components, instruments, electronics and automation. Shows of such size and diversity have, of course, a very useful function in that they provide the would-be buyer with a shop window stretching right across the industry. Many exhibitors and visitors, however, feel that they have become so diverse that they lack the impact of the more specialized exhibition. As an exhibition gains in popularity and grows in stature it almost inevitably attracts exhibitors with peripheral interests and in a few years it has very largely lost its identity as a specialized show. The progress of fragmentation then starts all over again and, as will have been noticed from our news pages and the list of exhibitions we publish each month, there has recently been a swing from generalization to specialization. A note in 'News of the Month' (p.172) gives details of the semiconductor exhibition - SEMINEX - to be held this month in a London hotel. It will be recalled that most, if not all, the semiconductor manufacturers withheld their support from last year's Components Exhibition and are not in the advanced list of exhibitors at this year's I.E.A. show. Other recent or forthcoming specialized exhibitions in the U.K. cover electro-optics, electronic packaging, audio, public address, communications etc. This may well be the future trend in exhibitions, brought about mainly for two reasons. First, the cost of exhibiting at a comparatively small specialized exhibition can be minimal because stands are limited in size and are not elaborate. Secondly, the specialized exhibition can be, and frequently is, linked with a conference, seminar or what have you, including papers dealing with a very limited field of interest.

Having said this about small specialized exhibitions we regret to find that the Physics Exhibition, which has had a character all its own for so many years, is possibly taking the reverse step. The regret is not so much in that it is joining forces with another show - the Labex (laboratory equipment) at Earls Court - but that the particular identity of this non-commercial, research-centred, exhibition may be lost.

It is interesting to note that contrary to the move to specialized exhibitions in this country the well-established gargantuan exhibitions on the Continent continue to grow in size and in popularity.

Despite Wireless World's diverse interests we prefer specialized exhibitions; they provide a better opportunity for a 'state of the art' report rather than the 'all things to all men' type of report, which ranges from microcircuits and discrete components through instruments and control equipment to complete systems.

We may be accused of being biased towards small specialized exhibitions because it makes our job of reporting easier. It is not so much the ease with which we can cover an exhibition - even one like SONEX with 60 or 70 exhibitors can take many man hours to cover factually - but we believe our readers prefer a true assessment of a particular field rather than a wide-ranging, disjointed catalogue of exhibits.

Hand-portable Transceiver

A design for $144-6 \mathrm{MHz}$ with battery-saving and squelch facilities

by D. A. Tong, B.Sc., Ph.D. (G8ENN)

Rather than build fixed station equipment, which could on occasion be taken outside, it was the author's intention to build portable equipment, which would also be suitable for fixed station use. A general view of the two-metre transceiver to be described is shown with its mains power supply and charging unit. Including batteries, loudspeaker and telescopic aerial, the overall size of the unit is $15 \times$ $11 \times 6 \mathrm{~cm}$ and it weighs about 1 kg . A highly sensitive receiver is included and the transmitter radiates an a.m. signal of about $1,5 \mathrm{~W}$ carrier power. In order to go 'on the air', all one has to do is pull out the whip aerial and switch on.

Front panel space is at a high premium in miniature equipment, so wherever possible non-critical circuitry has been used, so that operator adjustment is not required. In order to obtain a reasonable period of operation between battery recharges, some limitation on power output must obviously be accepted. The batteries used by the author are rated at 900 mAh and are able to provide a good day's operating at normal transmit-receive ratios. To conserve power, a front panel switch is fitted, which reduces the output
power from 1.5 W to 400 mW , which is ample for most local contacts. Long periods of monitoring a particular unoccupied receiving channel are also catered for by the inclusion of a sampling device in the receiver, which reduces the battery drain by a factor of ten. The ideal of 'instant operating' can be met only if care is taken in construction. Poor soldered joints and unanchored components can play havoc with reliability, but care is also essential in the design of the outer case.

General circuit design

An overall block diagram of the transceiver is shown in Fig. 1. In the receive mode the unit functions as a dualconversion superheterodyne in which most of the functions in the so-called 'tunable i.f.' are located in the Mullard i.c. type TAD 100 . The first intermediate frequency covers 10.7 to 12.7 MHz with a first local oscillator on 133.333 MHz . The second intermediate frequency is 470 MHz . While not ideal, these frequencies were chosen for the following reasons: (a) a miniature block filter is available from Mullard Ltd at a

The transceiver and its main power unit and battery charger.
reasonable price (type LP1175 at 65p); (b) the tunable i.f. needs to be high enough for good first image rejection, but low enough to give good second image rejection and'adequate v.f.o. stability.

In the crucial first stages of the receiver a cascode f.e.t. r.f. stage is followed by a f.e.t. mixer. This arrangement gives an excellent weak signal performance and is also relatively free from cross-modulation. The TAD 100 includes driver transistors for a complementary pair of audio output transistors. Using the devices specified by Mullard (AC187 and AC 188), up to three watts of audio power are available, and the receiver audio stages are therefore also used as a modulator in the transmit mode. Selection of either loudspeaker or modulation transformer as load is accomplished using a transistor gate circuit ${ }^{1}$. Audio input switching is carried out by a f.e.t. gate which also functions as a squelch gate, as indeed does the loudspeaker gate.

It is not necessary to interrupt any high current path during send-receive switching and this enables small-signal transistors to be used as combined switches and voltage stabilizers, to route stabilized supply voltages to the appropriate, low-level stages in the transceiver. In conjunction with a diode aerial switch, which is r.f. energized, these features reduce the send-receive switch to a single contact closure in the hand-microphone, and no relays are necessary.

In order to be able to operate in the stand-by mode for long periods without draining the battery, the inclusion of squelch (muting in the absence of a received signal) is doubly necessary, since the battery saver circuit requires some definite indication that a signal has been received during its periodic sampling of the monitored channel. When such a signal is received two things happen. First the muting of the receiver is lifted and secondly the sampling ceases and the receiver is continuously energized. Sampling resumes only after a delay of about thirty seconds after the received signal disappears. The sampling process is inhibited if an external power source is used, since it is then unnecessary.

The transmitter is relatively straightforward and uses a crystal controlled oscillator at half the output frequency. Modulation is applied to the driver and

Fig. 2. Circuit diagram of the radio frequency parts of the receiver, except for the second mixer and main i.f. amplifier which are in the TAD100 i.c.
output stages and the receiver audio section is used as the modulator. The power output switch controls the amount of drive supplied by the second stage to the driver stage.

The receiver

The complete circuit diagram of the receiver is given in Figs. 2, 3 and 4, but this also includes most of the send-receive switching components. The cascode r.f. stage $\left(T r_{1}, T r_{3}\right)$ is straightforward to set up and the neutralizing adjustment $\left(L_{2}\right)$ is non-critical. The two transistors are not operated in series with respect to the power supply, because the latter should be larger than the sum of the two pinch-off voltages which could be up to 12 V . The basic circuit has previously been used by D. J. Taylor ${ }^{2}$. In the present receiver however the a.g.c. arrangement is a little unconventional and uses a separate transistor, $T r_{2}$, as a variable source resistance for $T r_{1}$. At point D a positive
voltage decreasing with signal strength is required and this is obtained from the squelch amplifier (Tr_{19}, Fig. 4). The first mixer, $T r_{4}$, is a conventional f.e.t. mixer with source injection from a frequency doubler, $T r_{7}$, which is in turn driven by a crystal-controlled overtone oscillator, Tr_{6}, at 66.666 MHz .
In dual-conversion receivers of this type, the most serious spurious response is at the second image frequency, that is, the frequency spaced by twice the last i.f. $(470 \mathrm{kHz})$ from the second local oscillator (10.235 to 12.235 MHz). It is particularly serious, because it falls within the twometre band itself and there is the likelihood therefore of strong signals being in its vicinity. The only cure, given a final i.f. of 470 kHz , is to have good selectivity at the first i.f. In this receiver two loosely coupled tuned circuits at this frequency $\left(L_{7}, L_{8}\right)$ are ganged with the second local oscillator. The coupling is inductive; the two coils being spaced about 13 mm
apart inside a double i.f. transformer can. The basic coupling can then be adjusted by fitting a single-turn loop around both coils and phased so as either to aid or oppose the existing coupling. A large increase in selectivity at the first i.f. was obtained in this receiver by adding a Q multiplier $\left(\operatorname{Tr}_{5}\right)$ to the second tuned circuit (L_{8}). The Q-multiplication varies inversely with the value of R_{6} and the amount used is determined in practice by the accuracy of tracking of this tuned circuit with the v.f.o.

The frequency stability of an a.m. receiver should be such that the total drift under all conditions is small compared with the receiver bandwidth and this is achieved here with the v.f.o. circuit shown ($T r_{8}, \quad T r_{9}$). It is basically a Seiler oscillator ${ }^{3}$ and $T r_{9}$ is used as a buffer stage.

The second mixer is located in the TAD100 i.c. and its output emerges from pin 14 to the input of the block filter at

Fig. 3. Circuit diagram of the part of the receiver which is built around the TAD100 i.c. The squelch and loudspeaker gates are also shown.

Fig. 4. Circuit diagram of the parts of the receiver involved with squelch, battery saving and send-receive switching of the power supply.

470 kHz , which provides the main selectivity in the receiver. In turn, the output from the filter re-enters the i.c. at pins 10 and 11 to be amplified. After amplification the signal is rectified by an active detector within the i.c. and the audio output appears at pin 8 in the form of a positive voltage which goes more positive as the signal level increases. Following smoothing by R_{24} and C_{37} the output is used for the i.f. stage a.g.c. Transistor $T r_{17}$ limits any noise signal (impulses) on pin 8.
The i.c. contains all of the receiver audio amplifier except for a complementary output pair, Tr_{11} and $T r_{12}$, and since the amplifier is also used as the modulator the i.c. needs to be continuously energized. The maximum permissible voltage at pins 2 and 9 is quoted as 9 V in the data sheet,
therefore, the transmit and receive h.t. lines, which are stabilized at 9.5 V , are used to supply the i.c. This avoids wasting power in a further zener stabilizer. Diodes D_{1} and D_{2} eliminate mutual interaction of the two supply lines. The first audio stage involves a differential pair and the action of the circuit (as d.c. negative feedback is concerned) is to maintain pins 4 5 at the same average potential. By appropriate choice of the resistor biasing components ($R_{18,19,32,33}$ and $R_{35,34}$) thisaction ensures that the quiescent voltage at the emitters of $T r_{11}$ and $T r_{12}$ remains at one half of the supply voltage. This is why pin 4 is fed from 'raw' h.t. and not from the stablilized line.

The audio output (up to 3 W) is connected permanently to the primary of the modulation transformer, T_{1}. Isolation
of the loudspeaker when transmitting is carried out by the gate circuit comprising $T r_{13,}$ 14. 15, 16 Transistors $T r_{14}$ and $T r_{15}$ are the gate, the other two transistors being used to control the base currents. The magnitude of this base current determines the peak currents, which can be passed by the complete gate in its on state and this determines the peak audio power passed to the loudspeaker.

Reverse voltage breakdown in the emitter-base junctions of $T r_{14}$ and $T r_{15}$ during audio peaks causes a faint sidetone to appear in the loudspeaker, indicating correct functioning to the operator. Diodes D_{6} and D_{7} stop these breakdown currents from energizing the d.c. control transistors Tr_{16} and Tr_{13}. In addition the loudspeaker gate is used as a squelch gate, with the control

input connected to point L, and also it cuts out any clicks in the loudspeaker which might occur during sampling when the whole receiver is being switched on and off repetitively. Details of the power supply arrangements are shown in Fig. 3.

Squelch, battery-saver, send-receive switching

Some of the circuitry in Fig. 4 could be omitted and one would still be left with a usable transceiver. The arrangement of $T r_{19}, \quad D_{9}, \quad D_{10}, \quad T r_{20}$ provides noise compensation for the squelch ${ }^{4}$.

In the battery-saving circuit ${ }^{7} \operatorname{Tr}_{30}$ and D_{18} act as a voltage stabilizer for the complete receiver, and $T r_{32}$ and D_{20} do the same for the low-level transmitter circuits. Both of these transistors should have a low saturation voltage, so as not to waste battery voltage. If the current to D_{18} is interrupted, the receiver will be off and there are two reasons why this should happen. The first is if the transmitter is energized. Thus, if the microphone switch is operated (i.e. pin 5 of P_{2} connected to chassis), Tr_{32} is on, D_{20} passes current, and Tr_{31} applies stabilized h.t. to the transmitter.

This means that D_{19} no longer passes its breakdown current and $T r_{29}$ switches off, thereby turning off Tr_{30} and the receiver. The second reason is if the receiver is in the sampling mode and this is controlled by the gated multivibrator formed by Tr_{26} and the Darlington pair $T r_{27}$ and $T r_{28}$. Transistors $T r_{25}$ and $T r_{29}$ form AND gates with $T r_{26}$ and $T r_{28}$ respectively. If $T r_{25}$ is off, Tr_{28} (and hence the receiver) stays on continuously; if Tr_{29} is off, the receiver stays off. Sampling can thus be inhibited if Tr_{25} is off (or indeed if S_{2} is switched to the 'external power' position). This happens either when a signal is being received, as indicated by the squelch threshold being exceeded and hence by $T r_{22}$ collector being at about +5 V , or when transmitting. In either case D_{13} or D_{25} passes current into Tr_{23} base and in turn $T r_{24}$ is off and so is $T r_{25}$. Moreover, Tr_{24} remains off for about thirty seconds after the squelch output ceases because of the time constant of C_{51} with the reverse leakage resistance of D_{15}.

The transceiver with its cover plate removed showing the p.c. board, which carries the complete receiver, loudspeaker and tuning drive.

Fast rise and fall times are required for the receiver switched supply line if spurious effects are to be avoided, and D_{17} ensures this fast fall. The function of the components R_{51} and C_{50} is to make sure that $T r_{22}$ does not switch on momentarily as the receiver supply voltage falls to zero. If it did, C_{31} would be immediately recharged and sampling would never get under way. When C_{51} has recharged 'sufficiently to let Tr_{24} conduct slightly, regenerative action via D_{16} ensures a rapid transition by reducing the potential at the source of Tr_{24}.

Transmitter

The radio-frequency parts of the transmitter ${ }^{5,6}$ are shown in Fig. 5. Four stages are used beginning with an overtone oscillator, Tr_{33}, at one-half the operating frequency (see Fig. 1). The second stage, $T r_{34}$, is the frequency doubler and this feeds the power output stage ${ }^{-} T r_{36}$, via the driver, $T r_{35}$.

The 'output switch' is unusual and gives smooth control of the radiated power, without degrading the modulation characteristic. With S_{8} closed the dynamic impedance of D_{22} depends on the setting of R_{75} and a variable loss is introduced into the drive network for ${T r_{35}}$. With S_{8} open, D_{22} has no effect and full power is obtained. Tuning-up is best carried out with each stage in turn beginning with the

Fig. 6. Circuit of the microphone pre-amplifier.
oscillator and with an absorption wavemeter loosely coupled to the coil concerned. A 75Ω dummy load should be connected to the output socket, P_{3}, during this process, with a simple diode rectifier connected across it to give a comparative indication on a meter of the r.f. power output.
It is essential to realise that the tuning adjustments, which give maximum power output ${ }^{2.5}$ will also give severe modulation distortion and hence serious, sideband 'splatter'. If at all possible an oscilloscope should be connected across the monitoring rectifier so as to be able to view the actual modulation waveform. Trimmers C_{72}, C_{73}, and to a lesser extent, C_{68}, C_{69}, should then be varied slightly from the settings which give maximum output, until good modulation linearity is achieved. The output carrier level will drop from about 2 to 1.5 W , but the recovered audio voltage in a receiver will increase considerably.

The telescopic whip aerial is quoted as being $\frac{1}{3} \lambda$ in length rather than the usual $\frac{1}{4} 1$ since this gives a better match to the nominally 75Ω transmitter output impedance. It is assumed that the transmitter is initially tuned up as described above and with the whip aerial retracted.

The parallel tuned circuit formed by L_{25} and C_{79}, which is in series with the aerial lead is broadly tuned to 11 MHz to help to dẹcrease pick-up of signals at the first intermediate frequency.

The microphone pre-amplifier is shown in Fig. 6 and uses a complementary non-inverting feedback amplifier. In the author's equipment a surplus dynamic microphone (ex-Pye equipment) is used and the overall gain is such that full modulation (about 98\%) is obtained when speaking about four inches from the micnophone. If necessary the gain may be reduced by connecting a resistor in series with C_{83}. Great care is necessary in this type of equipment to avoid rectification of the intense radiated signal in the early audio stages. If this happens, highfrequency oscillations occur in the modulator and the transmitter is useless. The two r.f. chokes, together with C_{80} and
 or the metal case.
C_{81} help to avoid this possibility, the choke in the collector lead to Tr_{38} being particularly effective. It is a wise precaution to build this pre-amplifier on a separate subchassis or even into a screened box.

Construction

With equipment of this complexity and compactness, it is considered superfluous and also too difficult, to give highly detailed constructional information. Potential constructors would no doubt have their own ideas on circuit modification and layout and this section therefore deals with the more general points.

The prototype was originally intended to have a variable frequency transmitter and therefore the packing density used in the actual transmitter p.c. board is far less than on the receiver. Two main boards are used, each measuring $14 \times 6 \mathrm{~cm}$. and the microphone pre-amplifier uses a separate small board. One of the large boards contains all the circuitry in Fig. 5, while the other contains the circuitry of Figs. 2, 3 and 4 together with the receiver tuning dial assembly and loudspeaker. Epoxy-fibre-glass board was used with copper layers on both sides. One surface remains almost intact except for 2 mm diameter discs removed around each component hole and is used as an earth plane. All components with one lead going to the negative supply line are soldered directly to this upper copper surface. The - advantages over a single-layer board are as follows. (a) Very low inductance earth paths are obtained. (b) The wiring on the reverse side of the board is not too crowded. (c) The wiring is shielded from the components and vice versa. In order to save space, components are mounted with their axis perpendicular to the board and advantage is taken of coil 'cans' and large decoupling capacitors to shield critical components from each other. Plastic encapsulated transistors are more suited to compact forms of construction than the metal cased types and best of all for their small size are the Ferranti E-line devices.

Accessories

In order that the transceiver should live up to its design goal of being 'ever-ready'; two
other pieces of equipment are needed: a mains power supply and charger, and a similar unit for use in a car. Fig. 7 shows the circuit of the mains unit. Overcurrent protection is afforded by R_{90} and $T r_{41}$; with R_{90} equal to 0.5Ω the short-circuit current is limited to about 1A. A fairly high voltage is used for the transformer so that a resistor, R_{89}, can be used to supply a constant current of 100 mA to the Deacs (Leclanché primary cells are not suitable) for charging purposes. This does mean however that a heat-sink is required for $T r_{40}$. Diode D_{27} is included to avoid discharge of the Deacs if for any reason the mains supply to the charger is switched off with S_{7} still in the charge position.
The mobile power supply is shown in Fig. 8 and is used both to filter out noise on the car electrical system and also to limit the supply voltage to the transceiver to 13.6 V . If a higher voltage than this is used the audio output pair are liable to be destroyed by thermal runaway; these are the only vulnerable parts of the unit however. If the car battery voltage is less than $13.6 \mathrm{~V}, T r_{43,}$ is fully on and only about 0.2 V is lost. This low voltage drop
is the main reason for specifying a germanium transistor for Tr_{43}. In order to provide charging facilities for the Deacs, $T r_{42}$ acts as a constant current source supplying 100 mA to the Deacs whenever the car battery voltage is above the Deac voltage.

Conclusion

In terms of the initial design goal of a miniature complete two-metre station, the transceiver described in this article has proved very successful. It has given the author and his wife (G8ENO) many enjoyable contacts with stations in most parts of England and some in Europe when operated with a beam aerial on the house. With the whip aerial, ranges are less but distances up to 50 miles have been obtained.

Components list

If diodes or transistors have no type numbers indicated, almost any silicon planar types of appropriate power rating and gain will do. Thus for low power n-p-n transistors, the BC109 or ZTX302 families are appropriate and for $\mathrm{p}-\mathrm{n}-\mathrm{p}$,

Fig. 8. Power supply and charging circuit for use with a 12 V car battery.
the BCY70 or ZTX502 families. Suitable
diodes are the OA202 or 1N914 types
Transistors

1, 3, 4-2N5245	30, 31-2N744
5-E300	33-2N918
6, 7, 8, 9-ME3002	34-BFY90
10-2N3820	35-2N3553
11-AC187	36-BLY33
12-AC188	40-2N3054
24-2N3819	43-AD149
Diodes	
23, 24-FD 101 32	bridge rectifier 41A

Integrated circuit

1-TAD100 (Mullard)

Resistors

$1-10 \mathrm{k}$	$33-120$	$65-10 \mathrm{k}$
$2-100$	$34-6.8 \mathrm{k}$	$66-1 \mathrm{k}$
$3-100$	$35-18 \mathrm{k}$	$67-47 \mathrm{k}$
$4-10 \mathrm{k}$	$36-10 \mathrm{k}$	$68-100 \mathrm{k}$
$5-3.3 \mathrm{k}$	$37-560$	$69-5.6 \mathrm{k}$
$6-6.8 \mathrm{k}$	$38-2.7 \mathrm{k}$	$70-1.8 \mathrm{k}$
$7-22 \mathrm{k}$	$39-680$	$71-12 \mathrm{k}$
$8-10 \mathrm{k}$	$40-100 \mathrm{k}$	$72-470 \mathrm{k}$
$9-5.6 \mathrm{k}$	$41-10 \mathrm{k}$	$73-100$
$10-2.2 \mathrm{k}$	$42-1.5 \mathrm{k}$	$74-560$
$11-1 \mathrm{k}$	$43-15 \mathrm{k}$	$75-1 \mathrm{k}$ preset
$12-5.6 \mathrm{k}$	$44-56 \mathrm{k}$	$76-10$
$13-1.5 \mathrm{k}$	$45-10 \mathrm{k}$	$77-10$
$14-770$	$46-22 \mathrm{k}$	$78-15 \mathrm{k}$
$15-560$	$47-12 \mathrm{k}$	$79-4.7 \mathrm{k}$
$16-820$	$48-4.7 \mathrm{k}$	$80-1 \mathrm{k}$
$17-150$	$49-68 \mathrm{k}$	$81-4.7 \mathrm{k}$
$18-39 \mathrm{k}$	$50-39 \mathrm{k}$	$82-4.7 \mathrm{k}$
$19-27 \mathrm{k}$	$51-1 \mathrm{k}$	$83-4.7 \mathrm{k}$
$20-150$	$52-22 \mathrm{k}$	$84-1.5 \mathrm{M}$
$21-220 \mathrm{k}$	$53-22 \mathrm{k}$	$85-5 \mathrm{k} 1 \mathrm{lin}$
$22-150 \mathrm{k}$	$54-6.8 \mathrm{k}$	$86-750$
$23-8.2 \mathrm{k}$	$55-7 \mathrm{k}$	$87-22$
$24-8.2 \mathrm{k}$	$56-2 \mathrm{k}$	$88-270$
$25-390$	$57-18 \mathrm{k}$	$89-$ See Fig. 7.
$26-1.5 \mathrm{k}$	$58-39 \mathrm{k}$	$90-0.5$
$27-6.8 \mathrm{k}$	$59-39 \mathrm{k}$	$91-$ See Fig. 7.
$28-6.8 \mathrm{k}$	$60-68 \mathrm{k}$	$92-10 \mathrm{k}$ lin
$29-820$	$61-1.5 \mathrm{M}$	$93-10$
$30-180 \mathrm{k}$	$62-10 \mathrm{k}$	$94-820$
$31-100 \mathrm{k}$	$63-1 \mathrm{k}$	$95-$ See Fig. 8.
$32-12 \mathrm{k}$	$64-100 \mathrm{k}$	$96-82 \mathrm{k}$

Capacitors

$1-5 \mu$	$48-1 \mu$
$2-470 \mu$	$49-1 \mu$
$3-470 \mu$	$50-2.5 \mu$
$4-470 \mu$	$51-10 \mathrm{n}$
$5-470 \mu$	$52-6.4 \mu / 10 \mathrm{~V}$
$6-5 \mu$	$53-2.5 \mu / 10 \mathrm{~V}$
$7-10 \mu$	$54-2.5 \mu$
$8-2000 \mu$	$55-10 \mathrm{n}$
$9-22 \mu$ (poly)	$56-10 \mathrm{n}$
$10-1000 \mu$	$57-1 \mu$
$11,12,13-3 / \mathrm{CG} 80-03$	$58-1000 \mu$
(Wingrove and Rogers)	$59-82 \mu$
$14-3$ to 10μ	$60-33 \mu$
$15-10 \mathrm{n}$	$61-470 \mu$
$16-15 \mu$ (poly)	$62-1000 \mu$
$17-50 \mathrm{n}$	$63-3$ to 15μ
$18-47 \mathrm{n}$	$64-3$ to 15μ
$19-10 \mathrm{n}$	$65-470 \mu$
$20-30 \mu$ (poly)	$66-470 \mu$
$21-470 \mu$ (poly)	$67-10 \mathrm{n}$
$22-470 \mu$ (poly)	$68-3$ to 15μ
$23-10 \mathrm{n}$	$69-3$ to 15μ

$24-470 \mu$	$70-470 \mu$
$25-100 \mu$	$71-10 \mathrm{n}$
$26-47 \mu$	$72-3$ to 15μ
$27-1000 \mu$	$73-3$ to 15μ
$28-10 \mu$	$74-470 \mu$
$29-470 \mu$	$75-47 \mathrm{p}$
$30-470 \mu$	$76-10 \mu$
$31-0.1 \mu$	$77-470 \mu$
$32-10 \mathrm{n}$	$78-1 \mu$
$33-50 \mathrm{n}$	$79-1 \mu / 10 \mathrm{~V}$
$34-4 \mu / 10 \mathrm{~V}$	$80-70 \mu$
$35-0.47 \mu$	$81-470 \mu$
$36-1 \mathrm{n}$	$82-1 \mu$
$37-10 \mu / 10 \mathrm{~V}$	$83-2.5 \mu / 6 \mathrm{~V}$
$38-50 \mathrm{n}$	$84-0.1 \mu$
$39-50 \mathrm{n}$	$85-1 \mu$
$40-3.3 \mu / 10 \mathrm{~V}$	$86-3000 \mu / 50 \mathrm{~V}$
$41-1 \mu / 30 \mathrm{~V}$	$87-200 \mu / 50 \mathrm{~V}$
$42-0.1 \mu$	$88-0.1 \mu$
$43-10 \mu / 10 \mathrm{~V}$	$89-100 \mu / 25 \mathrm{~V}$
$44-300 \mu / 6 \mathrm{~V}$	$90-0.1 \mu$
$45-300 \mu / 6 \mathrm{~V}$	$91-0.1 \mu$
	(disc ceramic)
$46-10 \mathrm{n}$	$92-100 \mu / 25 \mathrm{~V}$
$47-10 \mu / 10 \mathrm{~V}$	$93-50 \mu / 25 \mathrm{~V}$
Inductors	

If no reference numbers are indicated, the inductors are r.f. chokes consisting of two turns of enamelled copper wire (gauge unimportant) wound on a ferrite bead type FX1115 (Mullard). All others are 5 mm internal diameter with appropriate ferrite core.

1. $5 \frac{1}{2} t$, tap 1 t from earthy end
2. 12 t
3. $7 \frac{1}{2} \mathrm{t}$
4. 6 t
5. $5 \frac{1}{2} \mathrm{t}$, tap 1 l from earthy end
6. $3 \frac{1}{2} \mathrm{t}$
7. 45.7 cm of 38 s.w.g., close wound
8. as 7 but centre-tapped and with 4 turn link wound at earthy end
9. $25.4 \mathrm{~cm}, 38$ s.w.g. close wound

Transformers

1. not critical. e.g. laminations $2.5 \times$ 2.5 cm of 8 mm thickness. Primary 150 t, secondary 370 t using 32 s.w.g.
2. not critical (240 V r.m.s. to 18 V r.m.s.)

Crystal oscillators

$1-66.66 \mathrm{MHz}$ overtone type $\mathrm{HC}-18 \mathrm{U}$

References

1. Loudspeaker transmit/receive switch, D.A. Tong, Wireless World, October 1970, p. 476. 2. The G8ARV two watt, two metre transistor transmitter, D. J. Taylor, Radio Communication, Vol. 45, 1969, pp.840-5. The G8ARV two-metre portable receiver, D. J. Taylor, Radio Communication, Vol. 46, 1970, pp.664669.
2. Variable frequency oscillator, E. O. Seiler, OST, November 1941.
3. Mobile 166 MHz a.m. communications receiver, D. Singh, Mullard Technical Communications, Vol. 10, 1968, pp.14-29.
4. V.h.f. transistor transmitters for a.m. and f.m. operating directly from vehicle batteries, L.M. Cash, Mullard Technical Communications, Vol. 10, 1968, pp. 2-13.
5. Parasitic oscillations in v.h.f. power amplifiers, G. S. M. Teale, Mullard Technical Communications, Vol. 10, 1968, pp.279-284. 7. A battery-saving circuit for portable communications recerivers, D. A. Tong, Wireless World, March 1972, pp.124-125.

The charts here are based on an ionospheric index of 46 , giving conditions similar to 1966. There are indications the index could be $10-12 \%$ higher than this, but with a similar situation last year the measured value was 10% lower than predicted. A higher index would be noticeably beneficial to the North Atlantic route. Seasonal ionospheric changes and longer days in the northern hemisphere flatten the Far East curve considerably. Evening fading is expected to be troublesome on all routes and a period of several subnormal days at the middle of the month looks likely.

The Electronic Retina

One approach to optical character recognition

by N. A. Singer

With the advent of high speed computers novel methods of data input have been developed. One of these that has been working successfully is optical character recognition (o.c.r.), whereby 'raw' office documents may be used directly as input data. An o.c.r. system which was described in 1967 gave a tenfold improvement in error rate over a punched card system used to feed in a similar volume of data ${ }^{1}$. Modern systems have a worst case error rate of one character in 10^{3}, for characters well below the E.C.M.A. (European Computer Manufacturers' Association) standard ${ }^{2}$, and of one in 10^{6} or higher for characters meeting this standard. Reading speeds of up to 2400 characters per second are possible, and there are systems which can handle multiple printing 'founts' and even hand printed characters.

One of the basic methods of recognizing characters by reading machinery in the field today is called pattern detection. Pattern detection, or 'mask matching', can be thought of as an electronic extension of the mechanical process shown in Fig.1. Image information is compared simultaneously against all sets and values representing the patterns the machine can recognize. These stored sets of values are often called 'masks' because of this analogy.

In the design of o.c.r. systems, there are two main avenues of approach: the flying spot scanner technique; and the 'electronic retina'* In the flying spot scanner, the character is scanned using a spot of light in order to gather information about the outline of the character (Fig.2). The spot size and number of sweeps per character determine the number of data sampling points. At selected instants in time the reflectance is measured to determine whether the spot is viewing a black or white area. The basis upon which this decision is made varies from the simple to the very sophisticated. An example' of the former is found in a simple reading machine, wherein a fixed voltage level is set as a threshold. Any point which is found to indicate less light than is fixed by this threshold is considered to be black. Perhaps the most sophisticated system of

[^1]

Fig.1. Basic process of pattern detection by 'mask matching'. Information from a scanner or electronic retina is compared simultaneously with all the sets of values representing the patterns the system can recognize. These stored sets of rules are often called masks because of this analogy.
this type to date is one which defocuses the spot and measures the average reflectance near the spot so that this value may be compared with that at the highly focused spot itself and a black-or-white decision made on a localized basis.

As soon as the black/white decision has been made, the scanner continues to the next point to make a similar decision. This process continues, covering an area roughly equivalent in width to that of the characters being read and a height of twice that of the character. (The extra height is made available to allow the character to be misplaced with respect to other characters in the line.) Each of the black/ white decisions made is stored in a memory (usually consisting of digital shift register elements). The memory is then periodically examined by some form of recognition circuitry to identify the character.

The most general approach to determine the time at which the examination should be made is to look for a complete vertical column of sampling points that contain

Fig.2. Flying-spot scanner principle. In practice much higher definition is used.
no black elements, indicating the white border circumscribing a character. This does, of course, force on the user of the scanner a requirement for high quality printing. For example, many typewriters, printing twelve characters to the inch with a fabric ribbon, cause most of the characters to touch. The scanner manufacturer's philosophy is that this constraint can be overcome by typing or printing only ten characters per inch and using 'one time' ribbons. This form of input usually implies the use of an electric typewriter.

Another approach is to set up a precise timing arrangement relying on the characters being spaced precisely ten to the inch and locating each character as a function of its distance in time from the first one.

Scanning techniques such as those described above will generally result in recognition rates varying from 200 to 2,000 characters per second, depending upon the complication (and thereby cost) of the equipment utilized. Non stylized characters such as those found on the usual office typewriter or high speed line printer are generally read with reject rates approximating to one character in 1,000 and error rates approximating one character in 10,000 . These rates can generally be improved upon through the use of highly stylized characters. If one goes to the extreme case of the characters normally used for magnetic ink character recognition, E13B (as employed on British bank cheques) or CMC7 (devised in France by Compagnie Des Machines Bull and sponsored by E.C.M.A.), advanced scanners operating on them may achieve one-tenth of the error and reject rates respectively.

To understand, at least in part, the reasons for the scanner's rather unsatisfactory reading characteristics we must consider a television receiver. In this instance, a high resolution scanning spot is generated that is of constant size and continually forms a picture of unchanging dimensions. Yet, even with such extremely simple circuit requirements, the receiver is rarely able to display a circle as a circle. Extrapolating this to the scanner, usually a low resolution system, the nonstylized letter ' I ' is readily distorted to the number ' 1 ', the ' O ' to ' D ', the ' B ' to an ' 8 ' and so forth. The degree of distortion determines whether the character becomes a reject or a substitution. As a result of the scanner's rather unsatisfactory characteristics it was concluded, by a leading authority in the o.c.r. field in 1961, that the best approach would be to emulate nature and copy the human eye. The rod and cone sensor structure of the retina of the human eye would be analogous to a matrix of photocells, onto which the character could be focused. The cells being held physically constrained, their dimensions with respect to each other would be held constant, thus character distortion could not occur. Until the introduction of solid state devices, the large number of circuits required to build such a machine would have cost far more

Fig. 3. The retina and associated optical and electronic components.
than the savings it could offer to the user. However in 1963, the first viable machine of this design was delivered on a production line basis to an insurance company in the U.S.A. The device was trade named the Electronic Retina and is generally referred to as the Retina, the entire recognition system of which the retina is but part being named the Electronic Retina Computing Reader.

The basic operation of the retina is simple. Its matrix, like the scanner, is slightly wider than one character width (Fig. 3). However, because it is not subject to distortion its height can be increased virtually at will. Current machines manufactured on this principle have a retina of 576 silicon photo-

Fig. 4. Electronic retina, showing its construction from seven sections, one containing only two solumns of cells forming the 'line finder'.
transistors arranged in a matrix 12 devices wide by 48 devices high. The optically projected and magnified character image is arranged to cover part of the matrix approximately 10 devices wide by 14 devices high. This design allows for vertical misalignment of characters up to one character height up or down.
The retina could use the techniques employed by a scanner making black and white decisions..In a simple case the output of each cell could be compared against the standard voltage and a black-or-white decision made. However, since structural data from the entire character are available simultaneously, the system was designed, without substantial cost increase, such that an absolute black/white decision was unnecessary. In this system the signals from the 576 phototransistors are amplified, each photocell signal by its discrete video amplifier, part of the amplifier's function being to provide a.g.c. and black level reference. The amplifier outputs are of analogue form.

From these outputs four decisions have to be made in the following order:
1 Where the character image is on the retina (vertical position).
2 If the character image is centred on the retina (horizontal position).
3 Which character of the recognition system vocabulary most closely matches the character image on the retina.
4 Whether there is sufficient difference between the best match (3) above and the next best match in the system's vocabulary (establish 'confidence level' of correct decision).

A working system

Eight o.c.r. systems based on the electronic retina principle described above have been installed in the U.K. An o.c.r. bureau system has been chosen as the subject for the following description because it gives the greatest insight into both the capabilities and the problems associated with a large system of this type. The equipment was installed in November 1970 and its use now extends over a twelve hour day, reading a vast array of printed or typewritten documents and pages ranging from card stock to airline tickets in thickness.

The recognition circuitry is basically a pattern detection system which looks for black and white in the correct cells of the electronic retina onto which the character under examination is projected. This is compared with stored patterns in its memory (or 'mask' bank). So long as the detected pattern is sufficiently like a stored one and different enough from the remainder a definite decision is reached. Those readers who have printing experience will have found difficulty in differentiating between, say, the character ' O ' of one font and the ' 0 ' (zero) of another. In a similar fashion the accuracy of an o.c.r. system is improved by using only selected fonts and enabling only those fonts which are required under programme control from the controlling computer. This becomes even more critical when reading lower case or hand printed characters and punctuation as in
publishing work. Indeed it is perhaps the hall mark of an o.c.r. system that it can successfully read data for publication in a non-stylized font because of the reciuced difference between (a) lower case characters, for example ' e ' and ' a ', and (b) punctuation characters, for example full stop and comma.

The system described here has 'masks' for the following fonts:
IBM 1403
IBM 1403 modified
OCR B
XO4 upper and lower case for publication work
E13B (the font on bank cheques).
$\left.{ }_{7 B}^{407 E}\right\}$ fonts used on credit cards
(A hana-print option is available but is not fitted to this system.)

The first three of the above are nonstylized fonts and common typewriter fonts.

The remainder are special fonts for particular applications. It is a common occurrence for fonts to be intermixed on a particular document. A vertical bar (a black vertical line of particular width) or a code character may be used to switch fonts, again under programme control.

The o.c.r. system includes: a programmed controller (computer working on line) complete with magnetic tape transports, a line printer and other peripherals; a paper transport system; a document carrier for small items being read, and a page carrier for larger items, capable of handling a large range of intermixed sizes and weights of paper; a Retina and associated amplifier circuitry (Fig. 4); and a recognition unit with the 'masks', coding and other circuitry (Fig. 5).

The Electronic Retina, as already mentioned, consists of an array of 567 phototransistors (Fig. 6) arranged in a rec-
tangular pattern 48 units high (rows a to z and $a a$ to $x x$) by 12 units wide. In addition it has a line finding extension of 8 units (rows) high by 2 units wide. The retina is slightly concave to ensure sharp focus of the image across it. Each n-p-n phototransistor is connected in the common emitter configuration, and its leakage is increased by light falling on it. In each of the 576 associated video amplifiers a nominal 526 kHz carrier signal is amplitude modulated by the output of the phototransistor. After passing through the a.g.c. stage the signalis demodulated and fed to video switches and character analysers, as shown in Fig. 5. The video switches (a diode switching matrix), under control of a six-bit 'centre' code received from the 'centre' storage and 'jitter' logic allow only a band of video outputs from the retina (16 high), to be fed to the amplitude correlators. The remaining outputs are unused.

Fig. 5. Block diagram of recognition system based on the electronic retina.

In the character analyser each line of cells in the retina is examined for any black content. As a character passes across the retina (inverted by the lens system), approximately 16 out of 48 rows will have a black level signal present in them. Outputs from all 48 rows of the retina are now examined by the character top and character bottom analysers. The 45 AND gates which constitute top analysers give an output when the row under examination is black, the one below it is also black, and the one above it is white. This indicates that the top of a character is in that particular row of the retina. For instance the gate which analyses a top in row q of the retina will give a high output when there is a top in row q since all of its inputs will be high at this time, showing that row p is white, row q is black, and row r is black. Hence the criteria for a top of a character are a minimum of two adjacent black rows and at least one white row immediately above, except for row b which requires a minimum of three black rows with at least one white row above.

Bottom analysis of a character is provided by 44 AND gates and is similar to top analysis. The criteria for a character bottom are at least one black row and a minimum of three white rows immediately below it on the retina, with the exceptions that a bottom in w only requires two white rows below and a bottom in $w w$ only requires one white row below. It should be noted here that only the highest top and the highest bottom are selected within the logic and various conditions such as the character appearing too high or too low on the retina inhibit further processing of the video signals.

Fig. 6. Physical layout of the electronic retina.

Fig. 7. Part of a Swedish bank giro form (read by an o.c.r. system) showing, enlarged, a comparison of a good and a deteriorated characterdemonstrating the need to darken voids and whiten smudges.

The gate output (one of 45) indicating a character top in that row is now converted to a six-bit binary code and fed to the centre calculation circuitry. Similarly the line indicating the character bottom is also converted to a six-bit code and fed to the centre calculation circuitry. Here the two six-bit codes are added and shifted right one place, giving a centre code, corresponding to the centre of the character under examination of the retina. This six-bit code is now applied to the jitter control circuitry where, under normal operation the centre code is modified alternately one line up and one down. This technique gives a higher reading accuracy and will be described more fully later. The centre code is decoded to one energized line (out of 96) and applied to the video switches which gate only the selected area of the retina containing the character under examination to the recognition circuitry.

Recognition circuitry. Now 192 analogue signals (16 by 12 matrix), which correspond to the image of the character on the retina, are fed to the amplitude correlator circuitry, which compares each cell output to the surrounding 20 and modifies the apparent signal from each particular cell depending upon what is occurring in the cells surrounding it. This circuitry helps to whiten smudges on the paper and also to darken any voids contained in the character under examination (Fig. 7).

A complete pattern cannot appear around the cells near the edge of the retina but a phantom line voltage simulates, as required, the total output from the missing cells in these patterns. A total of 192 separate summing matrices obtain algebraic sums of the 20 cell patterns. That is, 192 identical patterns of 20 cells each (some of the cells are phantom) are summed and averaged. All phantom cells are considered

Fig. 8. A character image passing across the retina. The line finder extension can be seen at the top. Note that the character, a '2', is inverted by the lens system.
to be white. Further developments of this technique have been discussed. ${ }^{3}$ The amplitude correlators give both a black and white d.c. output of approximately complement form for each cell in the selected area of the retina. These 192 black and 192 white d.c. signal lines are connected to the character masks. Two 'masks,' one black and one white, are related to each character. The white 'masks' contain resistors in the expected white areas of the character to which the 'mask' relates. The black 'masks' contain resistors in the expected black areas of the character. White amplitude correlator outputs are connected to black mask inputs and black amplitude correlator outputs to white mask inputs. This corresponds to placing a positive or negative grid of the character over the mask, much as a photographic negative might be matched with a print made from it. The black inputs correspond to a positive, the white inputs to a negative (see Fig 1).

If the character on the retina exactly overlays the mask, the sum of the outputs in that case is such to indicate a zero mis-match for that character mask. Any black detected in the white area of a mask, or any white detected in the black area of a mask results in a decreased d.c. output from the mask. Therefore, if a character does not exactly overlay the mask, a lower output voltage is obtained from the mask. Thus the character mask which least mismatches the character on the retina delivers the highest output voltage. More weight is placed on certain areas of a character by connecting these cell outputs to mask resistors of lower values (for example the tail of the letter Q). Each output line from its associated character mask (up to 360) is now applied to its unique output matrix amplifier (o.m.a.). If very high accuracy in reading is required only certain o.m.as are energized. For example, these may be alphabetical, numerical or a particular fent required under control of the programmed controller.

When the output from a particular o.m.a. rises above a threshold level, character presence is detected, and a staircase generator is primed and, after a delay, activated. The circuitry which actuaily decides which character is present on the retina is termed 'best null detector and flip flop' circuitry (b.n.d.a.f.f.).

A uniquely coded pair of b.n.d.a.f.fs (out of a total of 30) is set for a particular character, by an o.m.a. peak incremented by the staircase generator. Although the staircase generator may have been primed by a different o.m.a. signal, a larger peak following will be stepped up by the staircase and will set the two associated flip flops indicating the presence of a particular character. After these two flip flops have set, the staircase generator proceeds to count four more steps, in order to check if more flip flops are about to set.

If more than two b.n.d.a.f.fs set then an error indication is generated, showing that there is insufficient difference between the outputs of two masks to ensure a reliable character decision. The outputs from the 30 flip flops are fed to the character coding

Fig. 9. Method of setting flip flops of 'best null detector and flip flop' unit (b.n.d.a.f.f.).
circuitry which supplies a b.c.d. code to the programmed controller.

A space is detected by allowing a time, equal to 170% of the time taken for a character to transverse the retina, to elapse after the previous character has been detected.

The code representing the character recognized by the recognition circuitry is fed to the programmed controller which stores it and after any required editing of a number of characters, this information is transferred to magnetic tape. Because characters are appearing on the retina at 500 microsecond intervals (for characters at 10 per inch) the computer must be interrupted during any edit routine by a signal indicating that a character has been recognized. This is a real time programming problem and the ways of overcoming this and other difficulties are beyond the scope of this article.

The line finder. The line finder extension of the retina (8 units high by 2 units wide) is employed only when the retina is used to read pages on the page carrier. This extension (seen in Fig. 8) is employed to detect a next line top below the line being read. When an end of line is detected a code
generated by the next line top logic which causes the page to shift to a new position. This ensures that the begining of the next line will be in the reading area of the retina. Jitter is a technique which basically moves the 'window' on the retina, through which the character is viewed, one row of cells up and one down about the calculated centre. It has the effect of moving the character mask's up and down over the unknown character while a decision is being made for the character under examination. The application of jitter in this system has been previously described, but its, main advantage is the increase in reading accuracy. On badly formed characters this increase may be as great as 20%.

Setting the b.n.d.a.f.f. Fig. 9 shows the method of setting the b.n.d.a.f.f. flip flop, where the output is the sum of the o.m.a. peak plus the staircase input. Initially C_{1} is discharged, hence when the associated o.m.a. output rises, D_{1} is forward biased and C_{1} begins to charge. When the o.m.a. output has passed its peak and is falling away D_{1} is reverse biased, causing the peak value of the associated o.m.a. voltage to be stored on capacitor C_{1}. The peak o.m.a. signal primes the staircase generator which is triggered after a delay and this 'pumps up' the staircase input terminal, causing the output to rise in steps.

Referring now to Fig. 10, both the o.m.a. and the staircase input are buffered, before being applied to the summing circuitry previously described. The capacitor C_{1} (shown with the asterisk beside) is the capacitor which stores the peak o.m.a. value, and has the staircase input added to it. When the threshold of +6 V together with the forward volt drops of D_{2} and the emitter-base junction of Tr_{3} are exceeded, a negative pulse is generated as $T r_{3}$ turns on passing through C_{2} to turn off transistor $T r_{4}$, setting the flip flop. The buffered outputs of this flip flop are available to drive associated coding circuitry. As previously stated, two b.n.d.a.f.f. flip flops are set for any particular character. The o.m.a. peak storage capacitor is reset after

Character reading system with electronic retina in tall central cabinet. On the left is a document carrier, and on the right a page carrier. The concertina-like structures shroud the character image from extraneous light.

Fig. 10. Circuit diagram of a 'best null detector and fip flop' (b.n.d.a.f.f.).
a delay from the commencement of the staircase generation. This is achieved by applying a positive pulse to the capacitor reset input, which causes transistor $\operatorname{Tr}_{\text {, }}$ to turn off. As transistor $T r_{9}$ turns off $T r_{8}$ is turned on, causing capacitor C^{1} to discharge through R_{1}, D_{3}, D_{4} and $T r_{8}$ to approximately 5 volts. The output code to the programmed controller representing the character recognized is left available until another sample is taken. Immediately prior to this the b.n.d.a.f.f. flip flop is reset by applying a negative-going pulse to the flip flop reset input, which causes transistor $T r_{4}$ to conduct and $T r_{5}$ to be cut off, so resetting the flip flop.

Acknowledgement

Photographs are reproduced by kind permission of Optimation Services Ltd., Bromley, Kent.

References

1. "Optical Character Recognition" Data Processing, May-June, 1967.
2. E.C.M.A. Standard for Printing Specifications for Optical Character Recognition (May 1968). European Computer Manufacturers' Association, 114 Rue du Rhône, 1204 Geneva, Switzerland.
3. "Simulation of an Alphanumeric Character Recognition System for Unsegmented Low Quality Print" by J. R. Parks, J. Rosemary Elliott and G. Cowing. I.E.E.-N.P.L. Conference on Pattern Recognition, Teddington, 1968. I.E.E. Conference Publication 42.

Conferences \& Exhibitions

LONDON

Apr. 11-13

Finnish Embassy
Finnish Electronics Show
(Commercial Section, Embassy of Finland, 53/54 Haymarket, London S.W.1.)
Apr. 17-21
The Criterion SEMINEX - Semiconductors Exhibition and Seminar
(E. Steadman, 17 Dungannon Dr., Thorpe Bay, Essex

GUILDFORD

Apr. 11-13
University of Surrey
Industrial Measurement and Control by Radiation
Techniques
(I.E.E., Savoy PI., London WC2R 0BL)

LOUGHBOROUGH

Apr. 11-13
University of Technology
Digital Processing of Signals in Communications
(I.E.R.E., 8-9 Bedford Sq., London WC1B 3RG)

NOTTINGHAM

Apr. 20 \& 21
The University
Ion Movement in Anodic Films
(Inst. Physics, 47 Belgrave Sq., London SWIX 8QX)

SHEFFIELD

Apr. 18-20 The University
On-line Computer Control Systems
(I.E.E., Savoy Pl., London WC2R 0BL)

SOUTHAMPTON

Apr. 18 \& 19
The University Electrostatics Seminar
(Inst. Physics, 47 Belgrave Sq., London SWIX 8QX)

Apr. 25-28
The University
Computer Aided Design
(I.E.E., Savoy PI., London WC2R OBL)

TEDDINGTON

Apr. 12-14
N.P.L.

Machine Perception of Patterns and Pictures
(Inst. Physics, 47 Belgrave Sq., London SW1X 8QX)

YORK
Apr. 10-13 The University
Thin Films Interfacial and Surface Phenomena
(Inst. Physics, 47 Belgrave Sq., London SW1X 8QX)
OVERSEAS
Apr. 4-6
New York
Computer-communications Networks and Tele-
traffic
(Polytechnic Institute of Brooklyn, 333 Jay Street,
Brooklyn, New York 11201)
Apr. 6-11
Paris
Components Show
(Société pour la Diffusion des Sciences et des Arts,
14, rue de Presles, 75 - Paris XV')
Apr. $10-12$
Santa Barbara
Acoustical Holography
(I.E.E.E., 345 East 47 th St., New York, N.Y. 10017)

Apr. 10-13
Kyoto
Intermag: Magnetics Conference
(Intermag 72 Secretariat, KDD Research \&
Development Lab., 1-23 Nakameguro 2-chome, Meguro-ku, Tokyo)
Apr. 19-21
San Diego
Microelectronics: Systems and Applications
(Dr. D. C. Kalbfell, c/o Instruments, Inc., P.O. Box 10764, San Diego, CA 92110)
Apr. 24-26
Boston
Speech Communications and Processing
(C. Teacher, Philco-Ford Corp. 3900 Welsh

Road, Willow Grove, Penna. 19090)

A simple battery-operated instrument using a crystal microphone cartridge to obtain flat response in the range 20 Hz to 5 kHz

by J. L. Linsley Hood

Many readers with an interest in the reproduction of recorded music must have attempted the construction of their own loudspeaker enclosures at some time or other. When this attempt is successful, it can be very gratifying, particularly if the enclosure design contains some elements of novelty, since the constructor can be reasonably certain that nothing quite like it exists anywhere else.

Unfortunately the matching of enclosures to the characteristics of driver units can present considerable difficulties even to the experienced. A complex design of enclosure, and the use of multiple drivers with electrical crossover networks makes the task of obtaining a clean sound even more difficult. While the ear is remarkably tolerant of non-uniformities in frequency response, provided that these are not too large in magnitude or steep in slope, the presence of unwanted large magnitude peaks in the frequency response curve is the undoubted cause of the 'booms', 'honks' and 'squawks' which can make unsuccessful systems so tiring to listen to. If these can be eliminated or lessened by the judicious use of some strategically placed damping material, or some adjustment to the dimensions of the enclosure, a great improvement can of ten be made to the quality of the sound.

Room acoustics play a very important part in the final performance of most loudspeaker systems, to the extent that an alteration in the position of the reproducer in relation to the walls and other large objects of furniture can sometimes alter the performance significantly.

Use of impedance measurements

If the loudspeaker system is driven from a source which has an impedance higher than that of the loudspeaker, and is fed with a variable frequency signal from an a.f. signal generator or a test record, the frequencies of the cone, enclosure and sometimes even room resonances can often be identified by noting the frequencies at which peaks occur in the a.c. voltage developed across the loudspeaker terminals.

However, from personal observations, audible peaks in the sound output do not always show up as corresponding peaks in the speaker impedance curve, and humps in the impedance curve do not always

Fig. 1. Circuit of sound pressure-level meter.
result in an increase in sound output level at that frequency, when the loudspeaker is driven from an amplifier having a low output impedance.

For these reasons it is very helpful to the would-be loudspeaker constructor if he has a 'flat-response' sound measuring instrument to check the performance of his designs.

Design of sound pressure-level meter

The measurement of sound levels is a complex task even with elaborate equipment and carefully designed anechoic environments, and any simple instrument used in uncontrolled surroundings is likely

Fig. 2. Response of sound pressure-level meter using Acos MIC 43-3 crystal microphone.
to give imprecise and possibly misleading results. (However, measurement made out of doors with the speaker supported some feet above a lawn may not be too far removed from the anechoic ideal.)

We are concerned to measure the flatness of the speaker's output when it is fed with a constant amplitude sine wave. For this test the measuring instrument should have as flat a response as possible.

Pressure sensitive crystal and ceramic piezo-electric microphone units are relatively cheap and robust, and can provide a flat frequency response coupled with an excellent low-frequency sensitivity. They have a relatively limited high-frequency performance, but a flat response over the range $15 \mathrm{~Hz}-5 \mathrm{kHz}$ is considered adequate for sensible test purposes outside the laboratory.

The instrument's circuit is given in Fig. 1. An Acos MIC43-3 crystal microphone unit is used with an f.e.t. amplifier. In order to avoid shunting the drain load-resistor of the f.e.t. a p-n-p Darlington transistor is used as the following amplifier stage. The measuring section is a negative feedback a.c.

Fig. 3. Response curve, in the range $30 \mathrm{~Hz}-2 \mathrm{kHz}$, of experimental column loaded loudspeaker system before and after modifications.
millivoltmeter circuit. A d.c. feedback path is provided to the positive end of C_{1} to ensure stability of the d.c. working point. A five position wafer switch is used to give an 'off' position and four sensitivity ranges. To minimize switch-on meter 'kicks' the least sensitive range is used as the position adjacent to the 'off' position. Sensitivities are arranged in the ratio 1:3.2:10:32, which gives a decibel scale continuity of $+30,+20,+10$ and 0 dB .

A 1 mA f.s.d. meter is used for readout and the values of the feedback resistors chosen to give full-scale deflection sensitivities of $10,32,100$ and 320 mV at the gate of the f.e.t.

The ' $O \mathrm{~dB}$ ' point was chosen arbitrarily as half-scale deflection on the most sensitive range, and the scale was then marked out with the range +6 dB to -20 dB (5% deflection). The microphone elements will inevitably vary somewhat in sensitivity, but with two of the three different units of this type tried the half-scale deflection of the meter corresponded on average to normal conversation at about six feet distance. (The third unit was about 50% less sensitive but had a rather better h.f. response.) This sound level is probably of

The completed sound pressure-level meter.
the order of +55 dB with reference to the normal 1 kHz ' 0 dB ' level of the Fletcher Munson curve, and this gives the instrument a usable range of approximately $35-92 \mathrm{~dB}$ in sound pressure level.

The frequency response of the instrument was determined by the use of a high-quality headphone element in close proximity to the microphone, but separated from it by a $\frac{1}{4}$ in layer of open-pore polyurethane foam to minimize air column resonances. The curve is shown in Fig. 2. This is in agreement with the response curve for the microphone capsule published by the manufacturers.

Finally, as an example of one of the uses to which such an instrument can be put, the response curve of an experimental column loaded loudspeaker enclosure, using a Wharfedale 'Golden' 10 in RS /DD bass driver unit is shown in Fig. 3. The upper curve is the original performance following optimization by input impedance determinations, and the lower curve shows the response of the system after some modification to the column dimensions and the addition of suitable damping material. Although the final frequency response is still not as flat as desired in the two lower octaves, the large and unsuspected trough in the $200-400 \mathrm{~Hz}$ region has gone, and the series of column resonance absorption slots filled in, with an audible improvement in the system performance. The penalty paid was an approximate 10 dB reduction in overall sensitivity.

Announcements

The Science Research Council has awarded a grant of $£ 59,160$ for research into galactic and extra-galactic radioemissions and other problems in radio astronomy under Professor Sir Bernard Lovell at Manchester University.

Two short courses in detection, estimation, and modulation theory will be presented by Professor Harry Van Trees in Brussels, Belgium; Part I, June 26-30; Part II, July 3-7. Further details are available from Dr. Harry L. Van Trees, 27 Grove Hill Avenue, Newtonville, Mass. 02160 , U.S.A.

The 1973 German International Radio and TV Exhibition will be held in Berlin from August 31st to September 9th.

Thomson-CSF Electronic Tubes Lid; Bilton House, Uxbridge Road, London W5 2TT, has been recently formed to promote the sales of Thomson-CSF professional electronic tubes in the United Kingdom. Mr. George W. Bailey is to take charge of sales activities.

GEC-AEI Telecommunications Ltd, P.O. Box 53, Telephone Works, Coventry CV3 1HJ, have changed the name of the company to GEC Telecommunications Ltd.

Airtech Ltd, Haddenham, Bucks, have completed negotiations with Standard Telephones and Cables Ltd, to take over all activities previously carried out by the Avionics Division of S.T.C. in respect of commutated aerial direction finder equipments.

Synergistic Products Inc., Santa Ana, California, manufacturers and distributors of numerically controlled wire wrap, dual in-line package insertion and printed circuit board drilling systems have formed an associate U.K. company, Cavitron (Europe) Ltd, 37 Thame Road, Haddenham, Nr. Aylesbury, Bucks, to market Synergistic products in the U.K. and to provide a contract numerically-controlled wire wrapping service. It will also be responsible for the installation (including operator training), and after-sales servicing of Synergistic equipment throughout Europe.

The Industrial Electronic Division of Thorn Bendix Ltd, based at Nottingham, has been merged with Thorn Automation of Rugeley to form a single company under the name of Thorn Automation Ltd.

Electrocomponents Associated Ltd, have formed a new company, Electroplan Ltd, 13-17 Epworth Street, London E.C.2, to distribute equipment and accessories in the instrumentation, 'process control and allied fields.

Photo Controls Ltd, Randalls Road, Leatherhead, Surrey, have been appointed U.K. distributors for photocell-lamps manufactured by Moririca Electronics Ltd, of Japan.
The Electronics and Instruments Division of Bell \& Howell Ltd, has acquired the sole U.K. marketing rights for the Anadex Instruments Inc. (California) range of industrial analogue and digital measuring, indicating and controlling equipment.

Martron Associates of Marlow, Bucks, has been appointed U.K. and Eire distributor for the Yokogawa Electric Works (Japan) range of instruments, including chart, $\mathrm{X}-\mathrm{Y}$ and photorecorders, electrical standards, panel meters, and digital and industrial instruments.

Techmation Ltd, 58 Edgware Way, Edgware, Middx. HA8 8JP, have been appointed exclusive agents in the British Isles for the range of lasers made by Hughes Aircraft Company and the Santa Barbara Research Centre's range of infra-red detectors.

ITT Components Group, Electromechanical Product Division, West Road, Harlow, Essex, are now responsible for the marketing and servicing of ITT Metrix (France) range of instruments in Britain.

British Enkalon announce that they are to acquire Akzo's right to a 60% interest in Brand-Rex Ltd, a company formed to develop, manufacture and sell wire and cable in Western Europe.

Arrangements have been made by Perfection Parts Ltd, of 59 Union Street, London S.E. 1 for the marketing of a range of modular etching equipment, which is manufactured by Transaco of Stockholm.
J.E. Sugden \& Co. Ltd, have moved from Bradfoid Rd, to Carr Street, Cleckheaton, Yorkshire, BD 19 5LA. Tel: Cleckheaton 2501.

Semiconductor Production Equipment Co. Ltd, (Centronic), have moved to premises at 100 High Road, Byfleet, Surrey. Tel: Byfleet 48031.

Hamlin Electonics have moved from London to 14 New Road, Southampton SO2 OAA. Tel: 0703 32832.

The London sales office of General Instrument Microelectronics Ltd, is now at $57 / 61$ Mortimer St, London WIN 7TD. Tel: 01-636 2022.

Recording Level Meter and A.G.C.

by James M. Bryant

When developing a signal level meter for a tape recorder it was realized that the circuit could easily be made to function as an automatic level controller as well. Automatic level control is a valuable asset to any tape recorder particularly when recording speech under adverse conditions. When it comes to recording music, automatic level control is a disadvantage because it restricts the dynamic range available. For instance on sustained low-level signals only a small control voltage will be available and the gain of the recording system will increase. The result is that the quiet passages will be louder than they should be. On long, loud, passages the gain of the recording system will be reduced and so will the level of the recorded signal on the tape.

When used as a recording level meter the circuit monitors the audio input voltage to the tape recorder. The a.g.c. voltage is made to vary as the logarithm of the input voltage so that the linear moving-coil meter indicates in dB (VU).

A switch allows the gain controlled amplifier to be put in series with the signal source and the tape recorder, see Fig. 1. The normal recording level control on the tape recorder can now be preset, as described later, and the amplitude of signals reaching the tape recorder will be automatically controlled.

The a.g.c. generator (SL620C) and the amplifier (SL630C) are fully described in data sheets which are available from the manufacturers, Plessey Microelectronics, at Cheney Manor, Swindon, Wiltshire. The amplifier system described will respond quickly (20 ms) to an input signal, it will track a rising or fading signal at up to $20 \mathrm{~dB} / \mathrm{s}$, it will preserve the a.g.c. level during a break in the signal, and will suppress short noise bursts without affecting the overall a.g.c. level. If the pause or break exceeds a preset time the a.g.c. is removed and the system reverts to full gain in about 200 ms .

Referring to the circuit, the output of the SL630C is fed to the SL620C which in turn applies sufficient a.g.c. to ensure that the output of the SL630C remains around 80 mV r.m.s. The a.g.c. is also applied, via R_{3}, to a milliammeter. The negative side of the milliammeter is connected to pin nine of the SL630C, which is a 0.8 V reference point for biasing a manual gain control potentiometer. The meter resistance, R_{3}, should be $0.7 / I \mathrm{k} \Omega$, where I is the meter f.s.d. current in mA . The meter
should not have an f.s.d. of more than 2 mA , and if its internal resistance is an appreciable part of R_{3}, then R_{3} should be reduced accordingly. When there is no a.g.c. signal a small reverse current will flow in the meter, but the pointer stops will prevent it moving in response and the current will not be large enough to cause damage. A diode cannot be used to prevent this reverse current flowing as its threshold voltage would affect the meter circuit.

The gain of the tape recorder amplifier should be adjusted so that just over $100 \mathrm{mV} \mathrm{r.m.s}$. overload it. The pre-amplifier should be adjusted so that it will provide this signal level, and also ensure that the pre-amplifier will drive the $1 \mathrm{k} \Omega$ input impedance of the unit in parallel with the input impedance of the record amplifier without loss of quality or voltage.

When 100 mV r.m.s. is present at the input of the circuit the meter should be at mid-scale. This point should be calibrated 0 dB ; the positions with inputs of 1 V $(+20 \mathrm{~dB})$ and $10 \mathrm{mV}(-20 \mathrm{~dB})$ should also be marked. Intermediate points may also be calibrated if desired and the meter scale between 0 dB and +20 dB should be painted red to indicate that overload occurs in this region. Under normal recording conditions the pointer should never enter the red part of the scale.
When a.g.c. is being used the pointer
may be in any position but for optimum a.g.c. range ($\pm 20 \mathrm{~dB}$ about nominal) the input to the circuit should be set so that with an average input signal the meter pointer is at 0 dB . Input signals between 10 mV and 1 V r.m.s. will result in an input to the recorder of $80 \mathrm{mV} \pm 1 \mathrm{~dB}$.

Additional notes

Few constructional details are necessary ras the circuit is very simple. The following points must, however, be considered. It is assumed in the circuit diagram that both the pre-amplifier which feeds the a.g.c. circuit and the output and the record amplifier input are at earth potential with respect to d.c. levels. If not a $5 \mu \mathrm{~F}$ capacitor should be connected in series with R_{1}, and careful attention paid to the polarity of C_{9}.

The upper 3 dB frequency of the SL630C is determined by C_{1} according to the formula: $\left(1.3 \times 10^{7}\right) / C_{1}(\mathrm{pF})$.

The signal input and output of the SL630C must be kept apart to prevent h.f. instability.

To preserve 1.f. stability and prevent motor-boating C_{3}, C_{5} and R_{4} must not have their values altered by more than 30% from those given in the circuit.

The power supply should be between 6 V and 9 V and must have either a low source impedance at both h.f. and l.f. or be decoupled by not less than $1,000 \mu \mathrm{~F}$ in parallel with $0.01 \mu \mathrm{~F}$.

Pins six and seven of the SL630C and pin seven of the SL620C are not used, since they have internal connections it is important that they be isolated and this is most easily done by cutting them off as close to the can as possible.

The duration of the pause before the amplifier reverts to full gain after cessation of signal is controlled by C_{8}, the value of which, in hundreds of microfarads, should equal the required delay in seconds.

The integrated circuits may be obtained from Farnell Electronic Components Ltd, Canal Road, Leeds, LS12 2TU, or S.D.S. (Portsmouth) Ltd, Hilsea Industrial Estate, Portsmouth, PO3 5JW.

Fig. 1. An input signal of about 100 mV is required to drive the circuit so a pre-amplifier would normally be required.

News of the Month

Jupiter fly-by

A spacecraft, Pioneer-F, is undertaking what is probably the most hazardous journey to be conceived by man. It will take the spacecraft close to Jupiter and then out of the solar system altogether, to carry on, as far as we know, for ever. The vehicle escaped from the influence of earth at $51,800 \mathrm{~km} / \mathrm{s}(32,000 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.$) and$ became the fastest travelling object made by man; the orbit of the moon was passed only 11 hours after lift off. Four months after lift off the asteroid belt will be encountered and it has been calculated that the spacecraft has a good chance of getting through unscathed. So far it has been estimated that there might be 50,000 asteroids in the belt ranging from 770 km (480 miles) to 1 km (0.6 mile) in diameter though the danger presented by these is negligible. More hazardous is the unknown quantity of dust travelling at high velocity. It is thought that an area as large as the U.S.A., if placed in the asteroid belt, would receive impacts by eight particles with a mass of 1 g or greater every second or a particle with a mass of $1 \mu \mathrm{~g}$. would pass through $1 \mathrm{~m}^{2}$ every month. The largest danger is formed by particles
with a mass of between 0.1 and 0.001 g of which there are an unknown number. A particle with a mass of 0.01 g (which travels at $54,000 \mathrm{~km} / \mathrm{hr}$ ($33,600 \mathrm{~m} . \mathrm{p.h}$.) can perforate a sheet of aluminium 1 cm thick and could therefore seriously damage the spacecraft.

A bout 300 days after launch Pioneer-F will pass behind the sun and communication difficulties will be experienced due to radio noise generated by the sun.

In just under two years' time Pioneer-F will have travelled about $10^{\circ} \mathrm{km}(620 \mathrm{M}$ miles) and will be in close proximity to Jupiter, the object of the mission, and the period of greatest danger. It is planned that the trajectory will pass at one Jupiter diameter, which is about $140,000 \mathrm{~km}$ (87,000 miles), distance from Jupiter through a region of intense radiation. High-energy protons (hydrogen nuclei) and electrons in the belts could penetrate the spacecraft and destroy transistors and it is thought that the spacecraft could be crippled or data transmission could be cut off. However, one of the major objects of the mission is to assess the hazard

The first spacecraft to employ a nuclear power source, Pioneer-F, is now on its way to Jupiter.
presented by Jupiter's radiation belts as this is a significant factor in planning future flights, not necessarily to Jupiter.

As the spacecraft is attracted by Jupiter's gravity velocity will increase to $128,000 \mathrm{~km} / \mathrm{hr}(78,000 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.$) at$ periapsis. During the Jupiter fly-by, if the spacecraft is still operational, an imaging photopolarimeter will alternate between taking polarization and intensity measurements, and taking pictures.

Signals from Pioneer-F during this phase will be received by N.A.S.A's deep space tracking network equipped with $64 \mathrm{~m}(210 \mathrm{ft})$ paraboloid aerials. The power of the signal received on earth from Pioneer's 8 W transmitter will be about $10^{-17} \mathrm{~W}$ and will take 45 minutes to reach earth. This time delay means that spacecraft control signals from earth will have to be sent 45 minutes in advance as Pioneer is controlled by earthbound computers and not on-board control systems.

About 30 kg (651b) of Pioneer's total weight of 260 kg (5701 lb) is taken up with 13 experiments which will measure various aspects of interstellar space and the nature of the Jovian atmosphere; equipment is also included to investigate the asteroid meteoroids, celestial mechanics and S-band occultation.

Pioneer-F is the first spacecraft to be powered by a nuclear (plutonium 238 dioxide) generators. The four generators provided 155 W at launch reducing to 140W at Jupiter and 100W in five years time.

The aerial system on the spacecraft employs a high-gain paraboloid, a medium-gain horn and a low-gain helix. Each of the aerials is always connected to at least one of the two receivers and can be switched to either by command from earth or automatically in the event of a receiver failure. It is of interest to note that although the spacecraft's travelling-wave tube transmitters produce only 8 W in the S band the 64 m (210 ft) ground stations can radiate up to 400 MW to ensure that the command signals reach the spacecraft at sufficient strength. The huge disparity between these powers is, of course, due to the difference in efficiency between the spacecraft's and the ground station's aerials and receivers and the need to keep the power consumption on board to a minimum.

Communications to Pioneer-F will be on $2,110 \mathrm{MHz}$ and from the spacecraft on $2,292 \mathrm{MHz}$. The telemetry system is capable of 2,048 bits per second reducing to half this at Jupiter range.

As Pioneer-F swings by Jupiter (the trajectory will bend due to Jupiter's gravitational pull) velocity will increase to $79,200 \mathrm{~km} / \mathrm{hr}(49,320 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.) reaching the orbit of Saturn in five years' time and Uranus in eight years' time; distance from the sun will then be $2.9 \times 10^{9} \mathrm{~km}(1.8 \times$ 10^{9} miles). If Pioneer survives its encounter with Jupiter it will be possible to communicate with it although the transit time required for a signal will lengthen to hours and received signals will become so weak as to be unusable before the spacecraft crosses the orbit of Saturn.

After leaving interplanetary space and far out into interstellar space Pioneer-F should settle on a straight course heading away from the sun at a permanent $41,400 \mathrm{~km} / \mathrm{hr}(25,700 \mathrm{~m}$. p.h.).
N.A.S.A. have allowed funds to cover the cost of the spacecraft and monitor and control functions up to three months after the Jupiter fly-by. But this period will be extended if useful information is still being received. The cost of the project is $\$ 100 \mathrm{M}$

No more British i.cs?

The closing down of the British integrated circuit manufacturing industry, following large losses over the past three years. is now being considered, to judge from a report in the National Electronics Review for January-February 1972. At a meeting of the National Electronics Council, attended by John Davies, Secretary of State for Trade and Industry, it was agreed "to invite the leaders of those branches of the electronics industry concerned with the development and production of integrated circuits to set up a Working Party to consider the implications to this country of the continuance or not of an integrated circuit capability . . ." This decision followed statements that Ferranti had lost $£ 400,000$ on i.c. production in 1971 and expected to lose $£ 300,000$ in 1972, and that the General Electric Company had lost $£ 1 \mathrm{M}$ over the past three years. It may be recalled that in 1970 the managing director of Mullard stated that his company was then losing $£ 1 \mathrm{M}$ a year on this manufacturing activity (see leader in W.W., Sept. 1970 issue). One speaker at the meeting said that the British ic. manufacturers ought to have financial support from the Government to enable the industry to survive. If the Government holds to its avowed policy of not helping "lame dog" industries (though this policy is said by some commentators to have collapsed as a result of the Clyde shipbuilding and Rolls-Royce settlements), this support will not be forthcoming and the British i.c. manufacturers may well have to cease production.

Audio video dubbing

Sound facilities of a standard normally associated more with modern recording studios than 'on location' television work were recently used by Thames Television during the production of a series of 13 half-hour shows featuring Tony Bennett at the Talk of the Town, London. One objective was to make sound tapes suitable for issue later as stereo or mono discs.

A special sound mobile control room was used in conjunction with a new sound dubbing system 'Medway' developed at Thames to allow pictures recorded on v.t.r. machines at Teddington studios to be synchronized with sound recorded on location.

The new Thames mobile sound control room has a balancing area 17 ft long with acoustic treatment and monitoring to full studio standard. Two Rupert Neve sound consoles provide 36 channels, and a new type of AKG spring-coil artificial reverberation unit provides echo on two channels.

The 'Medway' system allows separate music, effects and dialogue tracks to be recorded on the Scully eight-track machine for later dubbing, balancing and transfer to 2 -inch quadruplex v.t.r. tapes. During sound dubbing use is made of a Sony helical scan v.t.r. to maintain atmosphere. The audio machine is interlocked first to the helical-scan machine and later to the quadruplex machine by means of a ten-bit binary address code. Dolby noise-reduction techniques were used during recording and balancing.
Technical controller of the series which will be shown also in the United States - was John Tasker of Thames Television.

Improving cinema sound

The Dolby noise reduction technique is now being applied to cinema sound. The effect of applying this technique to film is to make the sound quality of optical tracks comparable to that from magnetic tracks. Although background noise in modern films may go largely unnoticed partly because of the visual 'distraction' from the sound and partly because of tailoring the reproduced sound - it is certainly obvious when you have been made aware of it, especially when the visual content is not so engaging or during 'quiet' passages. Because of the noise inherent in the optical sound track, a rapid reduction in amplitude with increasing frequency is the norm in cinemas, severely limiting realistic sound reproduction.

The noise arises basically from the granular structure of the film and from scratches and dust on the film.

To minimize the perceptibility of this noise the 'Academy'* amplitudefrequency reproduction curve, which starts to roll-off at around 3 kHz and at 8 kHz is 15 dB down, is widely used. In practice this attenuation can be as high as 25 dB at 9 kHz , provided partly by the screen (speakers are invariably mounted behind it), by a filter in the amplifer and, in some cases, by the slit size in the light beam passing through the sound track. Improving sound quality therefore means decreasing the h.f. attenuation as well as adopting a noise reduction technique. So
as well as installing noise reduction 'decoders' in cinemas Rank Film Equipment -- who are worldwide distributors (excluding U.S.A.) of the Dolby cinema unit - also survey and improve the cinema equipment, for example removing filters, installing additional h.f. loudspeakers where necessary, and where existing h.f. units are behind the screen bringing them to the front. This last expedient decreases attenuation by 10 dB for a screen in good condition and more for treated or nicotine-stained screens. After modifications, amplitude response should extend up to around 9 kHz (or at least as far as the optics allow).

The Dolby unit installed, model 364, is an A-type playback unit, specially designed for cinema use. To get best effect, the film sound track must be 'encoded' using conventional Dolby A-type units, models 360 or 361 , which increase the recorded level of low-amplitude signals. Although there are no films on release at present using the technique (at least in their entirety), this need not worry the film exhibitor because the cinema unit, which does the converse of the 'encoding' unit, will reduce noise on ordinary films. This is especially useful on old films, the noise level being reduced by 6 dB . (Low-level signals are attenuated together with the noise but high-level signals are unaffected.) When operating with 'encoded' film, a reduction of 10 dB obtains up to 5 kHz , increasing at higher frequencies to a maximum of 15 dB . If desired the Academy curve can be switched in on the 364 .

Rank are adopting a rental rather than a leasing basis in offering this installation service to U.K. cinemas. Charge for the 364 is $£ 2.74$ per week, with an additional rental where extra speakers are used, subject to a minimum rental period of two years.

- Academy of Motion Picture Arts and Sciences

European communications satellite contract

A six-month study contract has been awarded to the Star consortium for a 'configuration definition study' concerned with telephone traffic between European countries and the transmission of television between members of the European Broadcasting Union via the proposed European communications satellite. The British Aircraft Corporation is the prime contractor and Lockheed Missiles and Space Company (California) are consultants to Star for the contract. The contract follows an earlier feasibility study. The Star consortium consists of: B.A.C. (U.K.), Contraves (Switzerland), Dornier (W. Germany), Ericsson (Sweden), CGE Fiat (Italy), Fokker (Netherlands), Montedel (Italy), - Sener (Spain) and Thomson CSF (France).

At the same time the Cosmos space
consortium will be carrying out a 'configuration definition study' for the satellite. It is expected that the satellite will weigh about 400 kg and will be capable of handling two colour television channels and several thousand telephone conversations. Marconi Space and Defence Systems are the prime contractors.

The Cosmos consortium consists of: GEC-Marconi (U.K.), Etudes Techniques et Constructions Aerospatiales (Belgium), Société Nationale Industrielle Aerospatiale and Société Anonyme de Telecommunications (France), Messerschmitt-BolkowBlohm and Siemens (W. Germany) and Selenia (Italy).

Mullard awards to schools

Fourteen pupils from five schools, four of them in the Southampton area, received cash awards on behalf of their schools from Mullard Ltd at a ceremony held at the company's semiconductor plant at Southampton. The awards were made under the auspices of the Southern Science and Technology Forum by Dr Max Smollett, chief development engineer at Mullard Southampton, and were for the planning and content of technical or scientific projects which will be undertaken by the pupils concerned.

The idea of setting up Science and Technology Forums in various areas of the country originally came from Prince Philip in his capacity as chairman of the Schools Science and Technology Committee. The aim of the forums is to help teachers interest their pupils in the application of pure scientific knowledge to technology. The Mullard Awards were for those projects with an electrical or electronic basis.

Details of the first three of the ten awards are as follows: $£ 20$ for a logic display board and visual computer. Andrew Hicks (17) and Christopher Mullen (17) Barton Peverill School, Southampton; £20 for 'Poole Grammar School Computer'. Robert Cheetham (16) and Martin Hoyle (17) Poole Grammar School; and $£ 10$ for a wind gauge without moving parts. Peter Knight (18) Richard Taunton College, Southampton.

Those pips

Some readers may have been puzzled by the recent change in the six-pip signal transmitted by the B.B.C. which has remained unchanged since it was first broadcast on February 25th 1924. The signal now consists of five short pips (100 ms) followed by a longer pip (500 ms). The start of the last pip marks the
beginning of an hour to plus or minus 20 ms and the whole sequence is controlled by one of the atomic clocks at the Royal Greenwich Observatory.

The change was made on January 1st when Greenwich mean time was brought in step with atomic time. G.M.T. is based on the earth's rotation which is not constant, while atomic time does not vary. It will be necessary to occasionally alter G.M.T. by a positive or a negative leap second to bring it in line with atomic time. For convenience the Greenwich Observatory has decided to insert leap seconds on the last second of the last day in a month (preferably December or June).

In the case of a positive leap second 23 h 59 m and 60 s will be followed one second later by Oh 0 m and Os. When a negative leap second is necessary 23 h 59 m 58 s will be followed one second later by Oh 0m Os.

Semiconductor plant expands

In phase two of a development programme a further 90,000 sq.ft. has been added to Mullard's power and microwave semiconductor plant at Bramhall Moor Lane near Stockport. The total area now available to Mullard at Stockport plant is 160,000 sq.ft. and as a result a factory a mile away is to be closed. Mullard do not intend to take on more staff in the area at the moment. Of the 700 staff (40% women) more than 20% are qualified to H.N.C. or degree standard.

Time-in-sync clock

The research institute of AEG-Telefunken has developed a clock (called the Telechron) that would seem to render obsolete all present clocks intended for domestic or even professional purposes. It is relatively inexpensive, it is portable, it can have the accuracy of an atomic clock and if switched off for a period and then switched on again will indicate the correct time within two seconds without resetting.

The clock relies on the fact that full information about every second, minute and hour can be transmitted in only 30 Hz of bandwidth by existing television and radio transmitters in pulse coded form. No additional filters are needed at either the transmission or the receiving end. A clock would consist of a simple receiver, a shift register, a storage register, a digital display and some logic.

In the case of TV transmitters the time information would be inserted at the end of a frame.

Communication '72

Communication ' 72 , the conference and exhibition to be held in Brighton from the 13 th to the 15 th June, is to be opened by Earl Mountbatten. The oonference, which covers military and civil radio communications (point-to-point, mobile and data) and associated test equipment has been jointly organized by Electronics Weekly and Wireless World. The conference programme and application forms for tickets for the exhibition (free) and the conference ($£ 25$) will be available from the exhibition organizers E. T. V. Cybernetics Ltd., 21 Victoria Road, Surbiton, Surrey, in April.

Seminex

A series of seminars and an exhibition devoted entirely to semiconductors is to be held in London at the Criterion (Piccadilly Circus) between the 17 th and 21 st of April.

The exhibition will be a simple affair, each company being restricted to a maximum of 30 ft of table space on which to display their wares; there will be no large stands.

The seminars have been divided into sessions by subject as follows: 17th a.m. linear i.cs, p.m. hybrids; 18th m.o.s. all day; 19th memories all day; 20th a.m. digital i.cs, p.m. opto-electronics; 21 st discrete semiconductors. Tickets for the seminars cost $£ 5 /$ day and are available from E. Steadman, Seminex Booking Office, 17 Dungannon Drive, Thorpe Bay, Essex. (Tickets for the exhibition alone cost 40p.)

Companies taking part include: Emihus, Fairchild, Ferranti, General Electric, General Instrument, Intersil, ITT, Lucas, Microwave Associates, Microsystems International, Mullard, Plessey, RCA, Signetics, Texas Instruments, Toshiba, Welwyn Electric, and Westinghouse.

Intercon '72

Nineteen U.K. electronics companies have registered for the I.E.E.E. '72 Intercon Exhibition and Conference to be held at the New York Coliseum from March 20th to 23 rd. This will be the fifth year in succession that the Electronic Engineering Association, in co-operation with the Department of Trade and Industry, have organized a U.K. representation at the exhibition. U.K. companies taking part are: Avdel Marketing, Auto Precision, Birch Stolec, Bryans Southern Instruments, Cossor, Dek Printing Machines, Electrolube, EMI, Ferranti, FieldTech, Gordos, Jermyn, London Electrical Manufacturing, Marconi, Plessey, Vickers, Wayne Kerr and SDC Electronics.

How to Simplify Logic Circuits

Introducing the decision-accounts table

by N. Darwood*

The theory of logical circuits is sometimes called switching logic. This is because the function of a combination of switches, such as is shown in Fig. 1(a), is easily described. Whether the components of which it is finally built are NAND, AND or OR gates or switches, the description of a logical circuit is the same. To explain: two switches in series make an AND gate, Fig. 2(a); two switches in parallel make an OR gate, Fig. 2(b). A switch which is shortcircuit when 'on' and open-circuit when 'off' makes a logical inverter, Fig. 2(c).
Although the individual switches of a circuit may switch at electronic speeds, the function, i.e. the logic of the circuit, is described as though it is static and such that there is continuity across the circuit; the circuit is then said to be 'on'. For

(a)

(b)

Fig. 1. All the possible switch states in these two (equivalent) combinations are shown in the truth table (first two tables in the text).
example, the logic of Fig. $1(a)$ is: either (A and B) or (A and C) which is written in shorthand as $A B+A C$. An instance of the usefulness of switching theory is to factorize $\mathrm{AB}+\mathrm{AC}$ into $\mathrm{A}(\mathrm{B}+\mathrm{C})$, which is simpler to construct-Fig. 1(b).

In the paper and pencil analysis of a logic circuit, it is sometimes useful to consider all the possible combinations of states of the switches. In the circuit of Fig. 1(b) there are three switches, A, B and C. All the possible states are shown below. Also shown is the condition of the circuit in Figs 1 (a) and (b).
$\left.\begin{array}{lll}A & B & C\end{array}\right] A B+A C$

The first step would be to derive a logical expression by extracting the states of the switches A, B and C that will produce an 'on' condition. From the table the circuiton conditions are

$$
\text { states: } 1 \text { or } 2 \text { or } 4 \text { or } 5 \text { or } 6
$$

logical expression: $\quad \mathrm{A} \overline{\mathrm{B}} \bar{C}+\overline{\mathrm{A} B} \bar{C}+\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{C}+$ $\mathrm{A} \overline{\mathrm{B}} \mathrm{C}+\overline{\mathrm{ABC}}$
Armed with this expression we can draw the logic diagram. There are five terms in the expression, hence five AND gates which feed into a five input OR gate are needed. The logic diagram is shown in Fig. 3. The logic diagram may now be converted into some other type of logic using, say, NAND

[^2]

Fig. 2. In writing the logic diagram equivalent of switch diagrams, the notation shown is used.

Fig. 3. To draw a logic circuit, the 'on' condition is normally written from the desired truth table. Truth table 2 gives an expression with five 'on' terms, realised by the logic gates shown.
gates. The conversion technique is a separate branch of logic circuit theory.

Returning to the logic diagram of Fig. 3 , the circuit uses six logical elements. Using the truth-table or the rules of Boolean algebra (for example $\mathrm{AB}+\mathrm{AC}=$ $\mathrm{A}(\mathrm{B}+\mathrm{C}) ; \mathrm{A}+\overline{\mathrm{A}}=1, \mathrm{~A}+\mathrm{A}=\mathrm{A})$ the full expression can be simplified, for example, to $A B+\bar{A} C+\bar{A} B \bar{C}+\bar{B} C$. The logic diagram of this expression, logically equivalent to Fig. 3, is shown in Fig. 4. Thus we can have two different, but logically equivalent, expressions one of which is simpler to construct than the other.

The question can be asked-are there other different ways a logical circuit can be built? Many methods exist for finding if a
simpler logical expression is possible, e.g. the Harvard method ${ }^{2}$; but they require a knowledge and a skill of Boolean algebra which usually only professional logic designers, or logicians, attain through constant practice.

Decision-accounts table

However, a new approach to the problem is being made, whereby not only are simpler expressions derived but also all the other equivalent expressions can be listed. This gives a complete analysis of the circuit. A table lists all the states to which a particular ${ }^{\text {bogic }}$ term, such as $\overline{A C}$, applies-in this instance states 4 and 6. (See logic tables opposite for three factors.) The table does not contain the states to which expressions apply, found by looking up the states for each term. To illustrate: the expression derived for Fig. 4 is

$$
\mathrm{A} \overline{\mathrm{~B}}+\overline{\mathrm{A}} \mathrm{C}+\overline{\mathrm{A}} \mathrm{~B} \overline{\mathrm{C}}+\overline{\mathrm{B}} \mathrm{C}
$$

Enter the tables at the section for three factors A, B and C, with each term, and extract the corresponding state, thus

$$
\begin{aligned}
\mathrm{A} \overline{\mathrm{~B}} & =1,5 \\
\overline{\mathrm{~A} C} & =4,6 \\
\overline{\mathrm{ABC}} & =2 \\
\overline{\mathrm{BC}} & =4,5
\end{aligned}
$$

Therefore the expression, when implemented in hardware, will be on for states $1,2,4$, 5 or 6, see Fig. 3.

Having found the states that apply to the circuit, to find logically equivalent expressions reverse the procedure by entering the tables with the states $1,2,4,5$ and 6 , and extract all the terms that apply, as shown below.

Decision-accounts table 1

State no.

$$
\begin{array}{llllll}
1 & 2 & 4 & 5 & 6 & \text { term found } \\
\hline & & & & & \\
\hline & & & \checkmark & & \bar{A} B \\
& \checkmark & & & \checkmark & \bar{A} \mathbf{B} \\
& & \checkmark & \checkmark & & \bar{B} \mathbf{C} \\
& & \checkmark & & \checkmark & \bar{A} \mathbf{C}
\end{array}
$$

Now as long as we take a combination of these terms that account for all the required states, then that combination will suffice. For example, the three terms $A \bar{B}, \bar{A} B$ and $\overline{\mathrm{BC}}$ suffice. The circuit, Fig. 5, uses less hardware than Fig. 4.

The above table is called a decision-

Fig. 4. The logic circuit of Fig. 3 could be simplified by using the rules of Boolean algebra on the logic expression of truth table 2 , resulting in five instead of six gates.

Fig. 5. To find other equivalent expressions or logic circuits of Fig. 3, a 'decisionaccounts' table is compiled using logic tables which show all the terms that account for the required states. This allows the simpler circuit shown to be drawn.
accounts-table. In conjunction with the logic table, they form a Boolean expression simplification method ${ }^{3}$. The tables are easily derived ${ }^{4}$. This same decision procedure is useful also to programmers and systems analysts who have to formulate and programme complex logical decisions.

By extending the method we look for other expressions, perhaps simpler or perhaps just as simple but different, that will produce the same output for the same combinations of switch states. Because this is a new procedure it may be a little difficult to grasp. One logical law need be used to perform the manipulation. The law is $\mathrm{X}+\mathrm{XY}$ $=X$, which allows us to eliminate a term if it is ORed with a factor of itself. The logic diagram of this law is shown in Fig. 6, in terms of switches and gates. If, for clarity, we label the rows of the decision-accounts table $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S , then a more complex instance of the absorption law, as it is called, could be

$$
\mathrm{PQS}+\mathrm{PQ}=\mathrm{PQ}
$$

Having drawn up the accounts table, we can now calculate the different ways of constructing the logic of Fig. 3. (The example is purposely obvious to show the reasoning). The accounts table, re-labelled, is

	State					
Row	1	2	4	5	6	
	\checkmark					
P		\checkmark				
Q			\checkmark		\checkmark	
R			\checkmark	\checkmark		
S			\checkmark		\checkmark	

The first column is accounted for by row P, the second by Q
the third by R or $\mathrm{S}(=\mathbf{R}+\mathrm{S})$
the fourth by $P+R$
and the fifth by $\mathrm{Q}+\mathrm{S}$.
Also we have to account for the first column and the second and the third, and so on. Hence an expression for this particular decision-accounts table could be

$$
P \cdot Q \cdot(R+S)(P+R)(Q+S)
$$

which can be expanded to
$(P Q R+P Q S)(P Q+P S+R Q+R S)=$
$\mathrm{PQR}+\mathrm{PQRS}+\mathrm{PQR}+\mathrm{PQRS}+\mathrm{PQS}$ $+\mathrm{PQS}+\mathrm{PQRS}+\mathrm{PQRS}$ $=P Q R+P Q S$ (by application of the absorption law, $\mathrm{X}+\mathrm{XY}=\mathrm{X}$). The final expression $\mathrm{PQR}+\mathrm{PQS}$ shows that either rows P, Q and R or rows P, Q and S may be used to construct the initial logic expression.

Because $\mathbf{P}=\mathrm{A} \overline{\mathrm{B}}, \mathrm{Q}=\overline{\mathrm{A}} \mathrm{B}$ and $\mathrm{R}=\overline{\mathrm{B}} \mathrm{C}$, then one expression that could be used is

$$
\mathrm{A} \overline{\mathrm{~B}}+\overline{\mathrm{A}} \mathrm{~B}+\overline{\mathrm{B}} \mathrm{C}
$$

or, alternatively, because $S=\overline{A C}$, the following expression could be used

$$
\mathrm{A} \overline{\mathrm{~B}}+\overline{\mathrm{A}} \mathrm{~B}+\overline{\mathrm{A}} \mathrm{C}
$$

That the alternatives are equivalent to the original may be proved by the truth table,

Fig. 6. In extending the decision-accounts technique the basic Boolean absorptive law $X+X Y=X$ is used, which allows elimination of a term which is ORed with a factor of itself.

Fig. 7. In finding equivalent expressions for this circuit, the decision-accounts table 2 shows it can be achieved in either of two ways with one gate less.
or by showing via the logic tables that the three expressions produce the same states, which is the same thing.

Further example

Suppose the example is the circuit shown in Fig. 7; the Boolean expression is derived from the circuit as

$$
\mathrm{A} \overline{\mathrm{C}}+\mathrm{A} \overline{\mathrm{~B}}+\mathrm{B} \overline{\mathrm{C}}+\overline{\mathrm{AB}}
$$

Enter the logic tables at the section for three factors A, B and C to extract the states to which each term applies

$$
\begin{aligned}
& \mathrm{AC}=1,3 \\
& \mathrm{AB}=1,5 \\
& \mathrm{BC}=2,3 \\
& \overline{\mathrm{~A} B}=2,6
\end{aligned}
$$

Therefore the expression is ON for states $1,2,3,5$ or 6 . Next draw up an accounts table. To ease the working the rows are labelled $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S .

Logic tables

two factors	
$0=\bar{A} \bar{B}$	$0,1=\overline{\mathbf{B}}$
$1=\mathrm{A} \overline{\mathrm{B}}$	$0,2=\bar{\lambda}$
$2=\overline{\mathrm{A}} \mathrm{B}$	1,3 $=\mathrm{A}$
$3=\mathrm{AB}$	$2,3=B$
three factors	
$0,1=\overline{\mathrm{B}} \overline{\mathrm{C}}^{\text {c }}$	$2,6=\overline{\mathrm{A}} \mathrm{B}$
$0,2=\bar{A} \bar{C}$	$3,7=A B$
$0,4=\overline{\text { A }} \overline{\mathrm{B}}$	$4,5=\mathrm{B} C$
$1,3=\mathrm{A} \overline{\mathrm{C}}$	$4,6=\bar{A} C$
1,5 $=\mathrm{A} \overline{\mathrm{B}}$	$5,7=A C$
$2,3=\mathrm{B} \bar{C}$	$6,7=B C$
$0=\bar{A} \bar{B} \bar{C}$	$0,1,2,3=\bar{C}$
$1=\mathrm{AB} \bar{C}$	$0,1,4,5=\stackrel{\rightharpoonup}{\mathrm{B}}$
$2=\bar{A} B \bar{C}$	0, 2, 4, $6=\overline{\text { A }}$
$3=\mathrm{AB} \bar{C}$	1,3,5,7 $=\mathrm{A}$
$4=\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{C}$	$2,3,6,7=B$
$5=\mathrm{ABC}$	$4,5,6,7=C$
$6=\bar{A} B C$	
$7=A B C$	

Decision-accounts table 2

State

Row	1	2	3	5	6	Term
\mathbf{P}	\checkmark		\checkmark			$\mathrm{A} \overline{\mathrm{C}}$
\mathbf{Q}	\vee			\checkmark		$\mathrm{A} \overline{\mathrm{B}}$
R		\checkmark	\checkmark			BC
\mathbf{S}		\checkmark	\cdot		\checkmark	$\overline{\mathrm{AB}}$

The accounts table expression is

$$
\begin{aligned}
& (\mathrm{P}+\mathrm{Q})(\mathrm{R}+\mathrm{S})(\mathrm{P}+\mathrm{R}) \mathrm{QS} \\
= & (\mathrm{R}+\mathrm{S}) \mathrm{QS}(\mathrm{P}+\mathrm{QR}) \\
= & \mathrm{QS}(\mathrm{P}+\mathrm{QR})=\mathrm{QSP}+\mathrm{QRS}
\end{aligned}
$$

The final expressions show we can construct the circuit by either rows Q, R or S, i.e.

$$
\mathrm{A} \overline{\mathrm{~B}}+\mathrm{B} \overline{\mathrm{C}}+\overline{\mathrm{A}} \mathrm{~B}
$$

or, alternatively, from rows Q, S and P, i.e.

$$
\mathrm{A} \overline{\mathrm{~B}}+\mathrm{A} \overline{\mathrm{C}}+\overline{\mathrm{A}} \mathrm{~B}
$$

On looking back at the accounts table, it is intuitive that to account for each column ('on' state of the switches) at least once, then rows Q and S are essential (called prime-implicants in the literature). Rows Q and S account for states (columns) 1,5,2 and 6 , leaving state 3 outstanding. With the prime implicants we may choose either row P or row R. Hence $Q \& S$ \& $(P$ or $S)$ is the choice of decisions.

Readers may like to simplify and/or find alternative expressions for the following
$\mathrm{AB}+\overline{\mathrm{A} C}+\mathrm{BC}$
$\mathrm{AB}+\mathrm{B} \overline{\mathrm{C}}+\overline{\mathrm{B}} \mathrm{C}+\overline{\mathrm{A}} \mathrm{B}$
$\mathrm{A}+\overline{\mathrm{B}}+\overline{\bar{A}} \mathrm{~B}$
$\bar{A} B C+A \bar{B} C+A B C$

References

1. Boole, G. Mathematical Analysis of Logic (1847). Blackwell, 1965.

Bowran, A. P., Boolean Algebra, Macmillan 1965.
2. Hohn, F. E. Applied Boolean Algebra, Macmillan, 1966.
3. Darwood, N., Representation of Logic Tables, Electronic Engineering, Jan. 1971.
4. Darwood, N., Simplification of Decision Tables, Computer Weekly, 29 July 1971.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Universal meter amplifier

A. J. Ewins's universal meter amplifier (February page 61) seems to be one of the more attractive of such designs. However, there are one or two points which worry me.

I am puzzled by his use of a half-rectifier / half-resistor bridge, instead of a full rectifier bridge, for the meter movement circuit. He has certainly reduced to a half the pedestal voltage to be overcome in the diodes, but to achieve this he has reduced the effective sensitivity of the movement to nearly a third. Thus, to achieve the same degree of accuracy at the lower end of the scale the open loop gain has to be half as much again as with a full bridge. This amounts to almost 5 dB . (And to clinch the argument, suitable diodes, when bought in quantity, are much cheaper than resistors!)

It is true that his development of this part of the circuit in Fig. 4 (i.e. the insertion of $1 \mathrm{k} \Omega$ between the two diodes) gains him more with a hybrid bridge than it would with a full bridge, but with the values given he is in fact only just regaining that 5 dB anyway!

The full bridge circuit has other useful advantages. One of the weaknesses of the overall design is that the circuit cannot isolate a.c. from d.c. (a feature which is occasionally of great value). A two-pole three-way, switch inserted as shown at the centre of a full rectifier bridge circuit overcomes this difficulty together with that of polarity indication. Its positions represent d.c. + , a.c., d.c. - , and the need for a further diode, normally short-circuited, is obviated. The same switch assembly can cope with the switching for d.c. isolation shown in the
author's Fig. 5. The net result is very much more versatile for very little extra.

A further thought occurs to me. Surely what Mr Ewins is doing is simply to design, around a basic i.c., a high quality op-amp. Is it not possible that a standard package i.c. op-amp, with a couple of source followers tacked on the front, would do the job as well at considerable saving of money, space, and circuitry? If one were prepared to accept a minimum viable reading of 50 mV at 100 kHz (and 5 mV at 10 kHz) a simple 741 could be used as the centre of the circuits of Figs 4 and 6. Other i.cs might, however, be more satisfactory.
Giles Hibbert,
Oxford.

The author replies:

I am glad of the opportunity Mr Hibbert's letter gives me to comment on one or two further points of possible interest in connection with my universal meter amplifier design.

First, let me explain my thinking behind the use of the half-diode/half-resistor bridge. The amplifier was specifically designed around the Avo Model 9 meter movement which needs a $10 \mathrm{k} \Omega$ shunt in order to achieve the required damping and sensitivity of $50 \mu \mathrm{~A}$. Tapping the $10 \mathrm{k} \Omega$ resistor at the centre only reduces the current sensitivity of the meter by half to $100 \mu \mathrm{~A}$. Admittedly, in terms of the meter's basic sensitivity of $37.5 \mu \mathrm{~A}$, the sensitivity of the circuit is decreased by a factor of $100 / 37.5$, i.e. 2.67 , and if any other meter movement were used the circuit arrangement would not be as attractive. However, there is another point worth considering. Mr Hibbert says that by decreasing the sensitivity of the meter circuit the open loop gain of the amplifier has to be half as much again to achieve the same degree of accuracy at the lower end of the scale. In this he is not altogether correct since in this case it is voltage gain that is important and not current gain. By replacing two diodes with two resistors I have admittedly reduced the current sensitivity of the meter circuit, but I have effectively increased the voltage sensitivity, which is more important. (I am aware that the basic meter movement shunted by the $10 \mathrm{k} \Omega$ resistor, tapped in the centre, has a decreased voltage sensitivity of $37.5 \mu \mathrm{~A}$

Fig. 1.
$\times 8333$ ohms, which is approximately equal to 312 mV , as opposed to its basic voltage sensitivity of 125 mV . However, the removal of a diode and its associated, approximate, 600 mV drop has the greater effect.) I am able further to effectively increase the voltage sensitivity of the circuit by forward biasing the two diodes in the circuit. It would not be possible to forward bias all four diodes in a full-bridge rectifier.

Mr Hibbert's suggestion for making the circuit give indications of d.c. -, a.c. and d.c. + is a good one. The use of the half-diode/half-resistor bridge does not preclude this possiblity, see Fig. 1.

Mr Hibbert is quite correct in his assumption that the circuit is basically a high-quality operational amplifier, but the substitution of a standard package i.c. opamp is not so straightforward. Apart from the fact that at the time of designing the circuit I had not had occasion to use a standard op-amp there is the point that they are awkward to balance for openand short-circuit conditions, which is the requirement of the circuit of Fig. 3 of my article. A further, most important, point is that their output impedances are normally low and it is a requirement of both my final circuits that, for good linearity, the output impedances should be as high as possible before the application of negative feedback. However, since designing my original circuits I have given some thought to the possible use of standard op-amps.

Provided source-followers are used in front of the op-amp, giving high input impedances and eliminating the zero balancing problem, the appended circuits of Figs. 2 to 4 can be used for increasing the output impedance of the standard opamp.

The circuit of Fig. 4 is the simplest because the TAA 861 op-amp requires an external load resistor and it is a simple matter to make this a constant-current source. All three output stages will considerably increase the open loop voltage gain of the final circuits and it should be possible to increase the basic sensitivity of the amplifiers as Mr Hibbert suggests. I have recently constructed a millivoltmeter of 50 mV sensitivity using the high output impedance circuit of Fig. 2 and a $709 \mathrm{op}-\mathrm{amp}$. With a 1 mA meter and a full-diode bridge the frequency response was from d.c. to 20 kHz and the linearity excellent. Zero drift was no problem at all. A. J. Ewens

Imported equipment

Recent years have witnessed a large influx of foreign electronic equipment into this country especially in the audio field. While most of this equipment functions well most of the time, occasionally one comes across rather woebegone individuals who, in good faith, have purchased imported equipment which has, through no fault of their own, deteriorated and in many cases ceased to function.

Out of sympathy and understanding one offers to help find the cause of the trouble in the malfunctioning equipment, or to suggest that a recommended electronic repair firm would surely put the item back into good working order. This latter idea is usually greeted with varying degrees of derision, several attempts having been made in this direction. One learns that the estimates have been prohibitive to the extent that it would be cheaper to buy another unit or that the firm contacted have no knowledge of the brand concerned and hence will not undertake the repairs needed.

One returns to the former offer of help,

Fig. 2

Fig. 3

Figs. 2-4 are possible high-impedance output stages using a standard op-amp at the front
and is immediately confronted with a piece of equipment which certainly has an accompanying basic circuit diagram, but strangely no testing information or data. Closer examination reveals individual component brand names which are not unknown but on the other hand not easily obtained even via foreign component distributors.

What is one to do then? The first task is to discover working tolerances, especially with regard to the transistors used. Many foreign transistor manufacturers have agencies from where it might be reasonably expected to acquire information. One writes or telephones and discovers that only the types of transistor (which are limited) used in their own equipment are obtainable and information about even those types is far from complete. No, the types that one mentioned are not marketed in this country and no information is available other than from the parent company. How long must one wait before an answer of some description is received? Perhaps three months one is told. Net result, return to square one.

Substitution manuals are consulted next and the characteristics of the proposed substitution component carefully studied. All may be well but there is always the underlying feeling that this procedure is quite unsatisfactory.

Finally, through the good offices of the embassy or trade delegation one obtains the address of the company which manufactures the equipment. A letter is posted indicating what information is required and also mentioning that reasonable cost incurred by the company for a reply will be borne. One waits, and waits. A fortnight, a month goes by, two months, three months and yet four months and still no reply!

Is it that the exporters have so many very closely guarded secrets or that the foreign exporters could not care less about their equipment once it has left their shores?
S. Braidford,

Wotton-under-Edge, Gloucester.

TV standards abroad

I would like to bring to the notice of your English readers who are contemplating emigrating to New Zealand the matter of television receivers. I have had quite a number of sets brought to me for conversion to N.Z. standards which have been sold, as suitable for our conditions, by English firms. Unfortunately this is often not easy or cheap and the owner generally has a set which is as dear as one on the market here and no spares available.

So for the information of your readers I'd like to pass on the details of our standards. We use 625 lines but only on v.h.f. Channel 1 (44 to 51 MHz), Channel 2 (54 to 61 MHz) and Channel 3 (61 to 68 MHz). Channels 4 to 9 are between 174 and 216 MHz so that a BBC2 u.h.f.
set is useless here. There are some European models which are usable and need minor adjustments to the three lower channels (for Channels 2, 3 and 4 European) but in our Channels 4 to 9 the channel switch only has to be set to the next highest channel to get satisfactory reception, e.g. EU7 is NZ6. Our sound i.f. is 5.5 MHz .

I am surprised that so little is known of the New Zealand situation in the U.K. and I have as mentioned come across people who have been told because the set operates on 625 lines in the U.K. it will work on 625 lines in N.Z. A similar situation would prevail for anyone going to Australia as they have the 625 -line and 5.5 MHz system but have 13 channels some of these being in the v.h.f. f.m. band. Many of their channels are close to the N.Z. ones and sometimes cause interference even over 1200 miles. I have a very well known English TV in my "junk box' which was bought in London for $£ 50$ and the only thing 625 on it is the label on the systems change knob. The 625 adaptor was not even in the receiver! Unforunately when this was pointed out to the firm they just said they didn't accept responsibility as the 'salesman had left'!! B. E. Graham Goodger, Lower Hutt,
New Zealand.

Automatic telephone exchange

In the February issue I read with great interest the article on the design of a 'Miniature automatic telephone exchange' by G. F. Goddard, and was most impressed with its simplicity.

However, as all relays in use are P.O. type 3000 , with open springsets, I would suggest that the method of switching on the mains power unit is changed as the existing arrangement is potentially dangerous.

Across the springsets of relays RL.A and RLB both 245 V a.c. and 50 V d.c. are to be found. In addition to the life of these contacts, RLA/1 and RLB/1 (live side 245 V) being reduced unless heavy-duty

Stereo decoder

Readers who have built the phase locked
Readers who have built the phase locked
stereo decoder (Sept. 1970) may have noticed the decoder will 'blink' while the

material is used, there is a very real danger of intending constructors receiving a nasty shock at mains voltage when working on the exchange, or alternatively shorting the 245 V a.c. with the 50 V d.c., due to the close proximity of this type of springset.

Although my suggested circuit modification requires the use of two additional relays (MSA and MSB) I feel the additional cost is more than offset by the improved safety factor as it is possible to mount these relays remote from the telephone switching relays. The type of relays used could be either heavy duty octal types, or mercury wetted contact relays, both having protective covers over their contacts, and a coil resistance of $3.3 \mathrm{k} \Omega$ or more.

Also, the circuit diagram in Fig. 3 shows contact RLJ/3 as a normally open type. This would have to be normally closed otherwise on lifting the handset of any of the telephones, uniselector Ul would continually drive as the coil of relay RLC has no path to -50 V to operate on finding the calling extension.
N. Monk,

Kettering,
Northants.

Incremental computer

The object of designing a hybrid computer is to improve the methods of processing information.

Accurate processing presupposes accurate input data - may we therefore point out that the development for which a grant has been given by S.R.C., to which you refer on p. 112 of the March issue, is being carried out jointly by the University of Surrey (not Sussex as you stated) and Cranfield Institute of Technology.
W. F. Lovering \& R. E. H. Bywater, University of Surrey, Guildford.

Books Received

Radio Data Reference Book (3rd edition) by G. R. Jessop contains data presented in the form of graphs, tables and charts with only sufficient text to permit its effective use. The aim is to provide as wide a range of material as possible, which if sought by the normal means would involve a lengthy search through many volumes. It has been assumed that the reader will have sufficient fundamental knowledge for the direct application of data and where theoretical information on any subject is required the reader is referred to the appropriate reference books. A section contains a comprehensive list of frequencies allocated to radio and TV broadcasting stations in the United Kingdom, channel information on world television systems and amateur frequency allocations in the U.K. Pp.150. Price £1. Radio Society of Great Britain. 35 Doughty Street, London WCIN 2 AE .

Radio, Television and Audio Test Instruments (2nd edition) by Gordon J. King is essentially a practical guide and is written with the emphasis on application and testing methods. In some cases it has also been necessary to consider various design and circuit features, so that the reader may fully appreciate the scope and diversity of application of the instrument. Chapter subjects include d.c.. a.c. and electronic meters, signal generators, oscilloscopes, and component testing. There is also a comprehensive section on instruments for colour television and audio measurements (new to this edition). Most chapters have been modified from the first edition and some have been rewritten. Pp.199. Price $£ 3.80$. The Butterworth Group, 88 Kingsway, London WC2B 6AB.

The Arlington Dictionary of Electronics takes a middle line between oversimplified definitions and definitions which, while complete are highly technical. The terms included cover a wide range of electronic systems and networks (active and passive networks, control and telemetry systems, analogue and digital computers and communication systems) and also touch on applications in fields such as data processing, acoustics and medicine. Mathematical descriptions are provided where helpful and there are numerous pictorial representations and circuit diagrams. Pp. 171. Price $£ 3$. Arlington Books (Publishers) Ltd., 38 Bury Street, St. James's, London, S.W.1.

Electronic Building Bricks

21. The closed-loop follower

by James Franklin

In industrial and domestic equipment we sometimes wish to make an output variable automatically 'follow' an input variable - to go through the same pattern of change with time in strict proportionality (i.e. with a constant ratio of output value to input value). To illustrate the idea some examples of followers* are shown in Fig. 1. In a servomechanism (a), the output variable could be mechanical displacement providing high power (e.g. moving a large load), which is following an input displacement of low power, such as a manually-operated lever. At (b) is an

Fig. 1. Examples of followers.
electronic controller as used in industrial process control. Here the output variable 'follows' the input variable in that it stays fixed in a constant ratio to the adjustable electrical input value. If the input variable is re-set, usually by hand, to some new desired value the output variable changes correspondingly and remains constant at the new value. At (c) is an electronic amplifier as used in radio and television: the high power output signal must accurately follow the low power input signal, otherwise distortion of the signal waveshape will occur. Finally at (d) is a
*Not to be confused with certain electronic circuits with this name, e.g. emitter follower, cathode follower, source follower.

Fig. 2. Basic principle of the closed-loop follower.
voltage stabilizer for the power supply of electronic equipment. This is similar to (b) in that its output variable 'follows' the input variable, a fixed reference voltage, by staying constant at a voltage proportional to that reference voltage.

How can the engineer be certain that the output variable is indeed accurately following the input variable? For example, in an electronic amplifier, as described in Part 9, if there is'a non-linear relationship between the power changes in the high-power circuit and the power changes in the low-power circuit the output variable will certainly not follow the input variable - the amplifier will introduce distortion. A basic method adopted to ensure accurate following is shown in Fig. 2. This is to compare continuously the output variable, or a proportion of it, with the input variable, subtract the output value from the input value (see Part 14) and use the difference value as the input to the active device. (By active device we mean a motor, linear actuator, flow valve, electronic amplifier etc. according to the nature of the

Fig. 3. The permanent difference value required in a closed-loop follower: (a) the input variable and (b) the output variable.
follower.) Consider now what happens if the output variable does not follow the input variable. If for a given increase of the input variable, the output variable increases disportionately, the magnitude of the fraction sent back to the subtractor is also increased and so the difference value is reduced in magnitude. Since the active device is controlled by the difference value, the magnitude of the output variable is reduced. Thus an automatic correction has taken place. Conversely if the output variable decreases disproportionately for a given input variable decrease, the fraction sent back to the subtractor will also be decreased, the difference value will be increased and the magnitude of the output variable will be increased - again an automatic correction.

It might be thought that the system should operate to make the difference value become zero, since this would show that the output was exactly the same as the input. In fact this cannot be, first because permanent zero input to the active device would mean permanent zero output, which would be useless. Hence a small difference value must always be maintained, and this is illustrated in Fig. 3. The smaller the difference value the more accurate the follower, so to permit an extremely small difference with the required output value the active device must be designed to magnify its input as much as possible. Another reason for the presence of a difference value is that in a practical. system, such as an electromechanical positioner, information takes

(a)

(b)

Fig. 4. Two possible transient errors (b) when a closed-loop follower responds to a sudden change in the input variable (a).
time to travel through the active device and back to the subtracting device. Some of this delay could be caused by components which have electrical or mechanical reactance (see Part 7) and this causes a transient error when the follower is responding to a sudden change in the input variable. Two possible examples of this are shown in Fig. 4 (b), one being a gradual build-up of the output variable and the other a series of overshoots.

Because in Fig. 2 information flows from the output back to the input a loop is formed, and the method is known as closed-loop control. It goes under various names in particular apparatus (sometimes depending on what the input and output variables are), such as error-correcting, null-seeking, self-balancing, servomechanism, automatic regulator, phase-locked loop, automatic gain control, automatic frequency control, and negative feedback (the word 'negative' being derived from the subtraction process mentioned above).

F.M. Tuner Design -- 12 Months Later

by L. Nelson-Jones, F.I.E.R.E.

The author of the articles on the stereo f.m. tuner design (April, May 1971) looks back on the 12 months since the design was published and gives some hints on getting the best from the design. Cures are listed for the small number of troubles - out of nearly 2,000 tuners for which parts have been sold - experienced by readers. Test voltages are also given as well as dial mechanism and stereo decoder mourting details. A solid-state tuning indicator is described separately on pages 182 and 183.

This tuner has been made by many of the readers of Wireless World and, inevitably. a few of these tuners have given trouble. Most of these troubles have been traced to component faults, or errors in construction, but two faults in particular have recurred in a number of cases. One of these is concerned with oscillator tracking, and the other an instability, apparently in the r.f. section, but which is very difficult to track down.

Oscillator tracking

In many cases it has not been possible to get the oscillator to quite reach $108-\mathrm{MHz}$
coverage while at the same time covering down to 87.5 MHz , because the oscillator coil could not be closed up enough without shorting. The first attempt to increase the inductance of the oscillator coil was to reverse the direction of winding thus giving about an extra half turn. This proved to be too big an increase resulting in the coil not being able to be reduced in inductance sufficiently even with the turns highly extended. The next move was to increase the diameter of the coil some 15%, but this too proved non-effective due to the close proximity of the tuning capacitor body, and in

Fig. 1. For those who cannot tune to 108 MHz , inductance of oscillator coil can be increased by moving it further away from the printed hoard.

Fig. 2. In some cases unwanted oscillation at around 500 MHz has caused odd effects, and has been cured by adding a ferrite bead as shown (see also photograph).
fact an appreciable drop in inductance was noted. Finally it was found that the very small increase in inductance needed could easily be obtained by standing the coil further away from the printed circuit board. Instead of mounting the coil so that the turns are 2.5 mm clear of the board, as described in the original article, it should be mounted with 5 to $6-\mathrm{mm}$ clearance. The coil should now track easily with the turns spaced from one another by about half a wire diameter. The r.f. coils both track normally with the turns spaced by approximately one wire diameter. In each case this is about the 'natural' length of the coils.

In existing tuners it will be necessary to remove the oscillator coil and fit a new one to effict this cure as it is unlikely that the existing coil will have sufficient surplus lead length: Take great care when removing the leads from the board. The simplest way in my experience is to cut the coil off leaving a reasonable lead length, and then to remove each lead separately, being very careful to pull the lead through the board from the component side (never from the copper circuit side). This minimizes the risk of 'pad lifting'. The holes are then cleared of solder, being careful not to increase the hole diameters, and a new coil fitted in the normal manner but with the increased clearance. Fig. 1 shows the amended mounting details for the coil.

Instability

This fault has proved a very elusive one which nearly always shows up only at the upper end of the frequency coverage. It can also show up as an excessive noise level, with more than a reasonable number of. spurious responses, but with the tuner working quite normally on strong signals. Most readers deduced that the mixer was unstable, others that it was the r.f. stage, and some that the oscillator was squegging, which can give a similar effect. In fact it seems likely that all three stages are involved, as the oscillation is almost certainly not at the normal carrier frequencies for which the receiver was designed but around 500 MHz .

It is extremely hard to track down the exact mechanism, but it appears that it is usually associated with f.e.ts having higher than average gain in this u.h.f. region. An f.e.t. differs from a bipolar device in that the drop off in gain with frequency is much
more sudden. A device such as those used in the tuner r.f. and mixer stages can have barely reduced gain up to say 450 MHz , above which the gain rapidly reduces so that little gain exists at say 600 MHz . For this reason I believe that only a few tuners have this trouble, and this is confirmed by the fact that of those with the trouble that I have examined, all had f.e.ts in the r.f. stage with higher than usual $I_{\text {dss }}$ currents, and with these devices one would usually expect a higher gain at u.h.f.

The path for the feedback appears to be via the $g_{2}-g_{1}$ capacitance of the mixer, via the oscillator layout to the r.f. stage input, through this stage back to g_{1} of the mixer and thus full circle. This view of the mode of oscillation is backed by a number of facts, such as the fact that the oscillation frequency is unaffected by the receiver tuning but is affected by the voltage applied to the 'varicap' diode, and that a ferrite bead in series with the oscillator feed to g_{2} of the mixer effectively suppresses the oscillation. I suspect that the inductor forming the u.h.f. resonant circuit is formed by the earth plane of the printed board.

The cure for this problem is thus a very simple one and the location of the ferrite bead is shown in Fig. 2. It is mounted on the lead of the $330-\mathrm{pF}$ oscillator feed capacitor. It may be mounted on either end of the capacitor, but is more easily mounted on the end shown. To mount the ferrite bead (Mullard FX1115 or Radiospares antiparasitic beads) on a tuner already constructed, the end of the capacitor is unsoldered from the board, a tinned copper wire is soldered in place of the capacitor lead in the board, and the ferrite bead placed on this lead. The capacitor is then soldered to the wire above the bead (Fig. 2).

Oscillator temperature coefficient

A small number of readers have complained of excessive drift of the tuner, even with the a.f.c. switched on. It is suspected that the oscillator may have had a faulty component in these cases, but a tuner subjected to a

Unwanted

 oscillation at u.h.f. may be cured with a ferrite bead over the lead of the oscillator output capacitor.
large change in temperature on warmingup (for instance a tuner in use in the same cabinet as a valve amplifier) may give rise to some problems. The main component causing the drift is the oscillator trimmer capacitor which has a temperature coefficient of up to -1000 p.p.m./deg C. Most of the oscillator components have measurable temperature coefficients, but the trimmer is much the highest.

It must not be forgotten that the tuner must be operated from a stable supply as the tuner has quite a high voltage-versusfrequency coefficient $-330 \mathrm{kHz} / \mathrm{V}$ without a.f.c., and $60 \mathrm{kHz} / \mathrm{V}$ with.

Fig. 3. New dial mounting system applicable when using stereo decoder (a) and front panel cut-outs for tuning meters (b).

Measurements have been made on a tuner fitted with a trimmer having a lower temperature coefficient of N470 (i.e. -470 p.p.m./deg C). This trimmer gives rather better drift figures: $-6 \mathrm{kHz} / \mathrm{deg} \mathrm{C}$ with a.f.c. and $-16 \mathrm{kHz} / \mathrm{deg} \mathrm{C}$ without a.f.c. These figures are quite acceptable in normal circumstances.

Thus for readers having trouble with drift the change to the N470 device, which is of the same type as that used at present but of 3.5 to 13 pF range, will make a considerable improvement.

For those requiring a still greater freedom from drift the use of an air dielectric or p.t.f.e. trimmer will give an improvement. Jackson type $5440 / \mathrm{PC} / \mathrm{PT} / 14.0$ should be adaptable to the task although its pins will need spreading slightly, and the stator and rotor connections will be reversed so that on tuning with a screwdriver the placing of the screwdriver in the slot will pull the oscillator off tune and the screwdriver must be removed before re-checking the alignment.

My advice is therefore to leave well alone unless drift is a problem, in which case an investigation should be made to ascertain the component responsible in case there is a faulty item. Should the trimmer be the cause as indicated then a change to a type having a better temperature coefficient may be the cure. The most useful tool to ascertain approximately the relative temperature coefficients of the various components is a miniature soldering iron, which may be held close to components to heat them up, in conjunction with a tuning meter of approximately $2-0-2 \mathrm{~V}$ f.s.d. The drift of the tuner is easily seen on such a meter which has a deflection constant of approximately $100 \mathrm{kHz} / \mathrm{V}$. A 'freezer' aerosol is not

Fig. 4. Wiring diagram for connecting decoder and tuning indicators.
satisfactory as the large amount of condensation produced causes erroneous results due to the effect of the moisture on the stray capacitances.

Mounting the tuner and decoder

In the original article I suggested a method of mounting the tuner which is quite satisfactory. However, many readers will want to take advantage of the increasing amount of stereo broadcasting now available, and to receive these transmissions a decoder is needed. The design by Portus and Haywood (September 1970 issue) works well with the tuner, and I have therefore designed a new dial mounting system for use with this decoder and either a moving-coil meter or solid-state tuning meter. This chassis system is shown in Fig. 3.
The interconnection of the tuner and decoder is a simple matter provided the decoder has been assembled for single polarity supplies. Using supplies of +6 V and -6 V would mean having three separate supplies for tuner and decoder together. The connections are shown in Fig. 4. This also shows the connections needed to mute the decoder in the event of excessive noise on stereo transmissions, thus gaining the 20 dB or so extra signal-to-noise ratio of a mono signal. There are two possibilities for muting the decoder, (a) the decoded outputs may be shorted together or (b) the decoder may be disabled by reconnecting the junction of R_{46} and R_{48} of the Portus and Haywood decoder to 0V (connection C) instead of to the collector of Tr_{13}. This point of the circuit is easily accessible and the resistor junction is disconnected from $T r_{13}$ by removing a link on the board adjacent to $R V_{3}$, replacing it with two leads
to each end of the previous link. A third lead is connected to the short link adjacent to the positive end of D_{4}, and next to the link removed. These connections are shown in Fig. 4.
Either a three- or four-way switch may be used for a.f.c. and decoder muting, depending whether muting is required with or

Test voltages for f.m. tuner

test point	voltage relative to o-V line (V)	comments
Tr , gate I	0	
gate 2	4	
source	1	approx. 0.7 to 1.5 V spread
drain	11.5	
Tr_{2} gate 1	0	
gate 2	1.7	approx. 1.0 to 2.0 V spread
source	1	approx. 0.7 to 1.5 V spread
drain	11.7	
$\mathrm{T}_{\mathrm{r}_{3}}$ emitter	5.4	
base	6	
collector	12	
Tr_{4} emitter	6.6	
base	6	
collector	0.75	
IC_{1} pin 1	no connection	
2	3.6	
3	0	
4	2.9	
5	7	
6	9.7	
7	11.5	
8	no connection	
$1 C_{2} \operatorname{pin} 1$	$\begin{aligned} & 5.8 \\ & \text { (nominai) } \end{aligned}$	depends on tuning (4 to 7.5 V)
2	3.5	
364	0	
5,6\&7	1.35	
8	0.13	
9,10 \& 11	0	
12	3.5	,
13	11.5	
14	$\begin{aligned} & 5.2 \\ & \text { (nominal) } \end{aligned}$	depends on tuning (3 to 7.5 V)
a.f.c. reference	5.2	

Measurements assume a meter of $20 \mathrm{k} \Omega / \mathrm{V}$ and a $+12-\mathrm{V}$ supply.
without a.f.c. This is the last position of the four-way switch, and is not strictly necessary. However, for completeness the fourway switch is shown.

All parts for this dial system and the stereo decoder mounting are available from Integrex Ltd, P.O. Box 45, Derby, TEl ITW, including a set of printed scales. The ferrite bead is also available.

Finally, a list of alterations and corrections to the original article, some of which have already been published.

- A capacitance of 15 pF is now recommended for the oscillator base capacitor, not 47 pF .
- Decoupling of r.f. stage is lnF, not 47 nF (top of L_{2}).
- Fig. 2 caption last line should, of course, read ' 4.7 nF at pin 1 of $I C_{2}$ ', not pin 2.
- In Fig. 2, the $2.2 \mathrm{k} \Omega$ resistor at pin 5 of $I C_{1}$ should go directly to the +12 V supply, and not via the $100-\Omega$ resistor.
- In Fig. 6(c) the coil (L_{5}) should have 10 turns.
- The components list should have listed lnF, nine off, and 47 nF , nine off, disc ceramic capacitors.
- Type 3N201 m.o.s.f.e.t. can be used in place of the 40673.
- Texas types TI409 or TIS64 can be used in place of the 40244 transistor, now obsolete.
- Ferranti transistor type ZTX500 can be used in place of BC213L.
- ITT diode type BA110 can be used in place of TIV307.

Fitting a moving-coil or solid-state tuning indicator

Fitting a tuning indicator to the f.m. tuner is a simple matter using a centre-zero meter of $100-0-100 \mu \mathrm{~A}$ sensitivity (Fig. 1). With a correctly-aligned tuner the d.c. output level and a.f.c. reference voltages are equal when the tuner is on tune, and differ when it is off tune. Thus as a station is tuned in the meter first deflects to one side as the station is reached, then deflects back through zero as the station's frequency is passed, finally falling back close to zero when well off tune again. If a.f.c. is switched on the above effect is modified. On tuning towards a station the meter suddenly snaps to a reading as the a.f.c. captures the carrier. This reading may be either side of zero depending on how fast one tunes to the station. It is then only necessary to set the meter to zero for correct tuning, as the tuning cannot remain on any section of the S-shaped demodulator characteristic except the correct central portion, due to a.f.c. action. On tuning off the station with a.f.c. connected,
the meter will deflect to a maximum in the appropriate direction and then snap near to zero as the a.f.c. 'loses' the station.

In designing the tuner I deliberately did not use a very strong a.f.c. control loop so that tuning could be done with or without a.f.c. In normal use it is often easiest to leave the a.f.c. permanently on, as tuning with moderate a.f.c. is so simple, especially for the less-skilled members of the family.

The cut-out for the dial panel is shown in

Fig. 2.

Solid-state indicator

The recent improvement in the availability of light-emitting diodes at acceptable prices makes their use for indicators in electronic equipment very attractive. Fig. 3 shows a simple circuit using these diodes. Correct tuning (i.e. equality of output and a.f.c. reference voltages), is indicated by equality of the light output from the diodes D_{1} and D_{2}. The diode D_{3} and its associated resistors are for use as a stereo indicator lamp. The values chosen produce the approximate equivalent of a $6-\mathrm{V} 40-\mathrm{mA}$ lamp, and were chosen to match the requirements of the stereo decoder by Portus and Haywood (September 1970 issue).

The action of the circuit of Fig. 3 needs little explanation. It is a long-tailed pair which with equal voltages at the two bases will pass equal currents through the two diodes. When the base voltages differ the current through the long-tail resistor divides unequally between the two transistors, so that when the input to $T r_{1}$ is approximately 1 V below the input to Tr_{2} then most of the current flows through Tr_{2} and D_{2}. When the input to $T r_{1}$ is approximately $1 V$ above the input to Tr_{2} then most of the current flows through $T r_{1}$ and D_{1}.

Fig. 4 shows the relationship between the potential difference of the bases of Tr_{1} and $T r_{2}$ and the current through the two diodes as measured in the circuit of Fig. 3. The difference in peak currents off tune is of no practical importance as the visual difference
is not great, and in any case there is no basis for comparison as either one light is on, or the other. In use the correct tuning point is easily found. Because the input impedance loads the output of the tuner, it is important to ensure that the input impedance of this tuning indicator is sufficiently high and linear, over a range of
approximately $\pm 1 \mathrm{~V}$ about the centre. Full $\pm 75-\mathrm{kHz}$ deviation is equivalent at the tuner output to $\pm 0.7 \mathrm{~V}$. This requirement for reasonable input impedance linearity has been achieved in this circuit by degeneration in the emitters of $T r_{1}$ and $T r_{2}$, the resistor values being chosen to obtain the correct sensitivity.

The input resistance of the circuit is
$\beta_{1}\left[r_{e 1}+R_{2}+\frac{\left(R_{4}+r_{e 2}+R_{5} / \beta_{2}\right) R_{3}}{R_{4}+r_{e 2}+R_{5} / \beta_{2}+R_{3}}\right]+R_{1}$.
Assuming minimum current gain for the

Fig. 1. Adding a moving-coil indicator is simple. With a.f.c. on and with a station tuned in, one merely sets the meter for zero indication.

Fig. 2. Cut-outs for the two alternative tuning indicators.

Fig. 3. Author's suggested circuit for solid-state indicator gives both tuning and stereo indication. Diode cathode is identified by the short lead and orange spot.

1 and 2: Mounting of solid-state indicator p.c. board. 3: Diodes mounted on p.c. board. 4: Front panel with moving-coil indicator.

Fig. 4. Difference in off-tune current between the two diodes is not important as the lamps are never both fully on.

Fig. 5. The two diodes with most nearly equal brilliance can be selected for the tuning indicator when operated in series.
transistors of 220 and the values of Fig. 3 we get values of $47.35 \mathrm{k} \Omega$ for $V_{\text {in }} 0.7 \mathrm{~V}$ above a.f.c. reference, and $46.50 \mathrm{k} \Omega$ for $V_{\text {in }} 0.7 \mathrm{~V}$ below. The attenuation ratio formed by the output impedance of the tuner ($2.2 \mathrm{k} \Omega$) and the tuning indicator circuit therefore varies by less than 0.08% over this span. Even if it were not for the need to linearize and raise the input impedance of the tuning indicator, R_{2} and R_{4} would still be needed, because with these two resistors effectively removed (by connecting together the two emitters of $T r_{1}$ and $T r_{2}$), the complete span from D_{1} full on to D_{2} full on is only $\pm 0.2 \mathrm{~V}$. This sensitivity is too high for easy tuning and considerable flicker of the diodes is caused by the modulation of the carrier.
The resistors R_{1} and R_{5} are chosen to equalize the resistance seen by the two transistors, to minimize offset due to base current. These base resistors also ensure that the circuit does not become a resonant line oscillator when long leads are connected to the circuit. With modern planar transistors it is all too easy to get such effects if precautions are not taken.

Construction

The prototype tuning indicator is shown above, with the board mounted behind the tuning dial of a tuner. (A photograph shows the unit removed from the dial to show the
mounting of the diodes.) The board is designed to take the type of diode having two pins on $2.5 \mathrm{~mm}(0.1 \mathrm{in})$ centres, and these are mounted on the circuit side. If desired, the board can be mounted remote from the diodes with leads from the board to the diodes.

Lamp matching. As there is some variation of brilliance of the diodes with identical currents from one lamp to another, it is desirable that the two lamps D_{1} and D_{2} be approximately matched for brilliance. This is easily done by temporarily connecting the lamps in series and passing a current through all three lamps at once (Fig. 5). The two lamps having most nearly equal brilliance are used for D_{1} and D_{2}.

Avoid excessive heat or mechanical force on the leads of these lamps as they are easily damaged by heat, by the nature of the materials used and of their small size.

Components. Resistors should be $\frac{1}{8}$-watt, 5% tolerance and of the carbon film type. Transistors should have a $V_{c b} \geqslant 20 \mathrm{~V}$ and an $h_{F E} \geqslant 220$ at I_{C} of 5 mA , e.g. BC109, BC169, BC184L. Diodes are Hewlett Packard 50824440. All parts for the tuner, decoder, and indicator are available from Integrex Ltd, P.O. Box 45, Derby, DE1 ITW.

About People

'For his outstanding contributions to electronic engineering, particularly in the development of microwave radar, and for his contributions to engineering education and training', the I.E.E. has elected G. S. C. Lucas, O.B.E., Hon.D.Tech., F.C.G.I., an honorary fellow. Mr. Lucas retired from A.E.I. Electronics, of which he was director and group general manager, in 1966. He started his career with the British ThomsonHouston Company in 1915 and after serving his apprenticeship studied at the City and Guilds (Engineering) College, London. In 1925 he went into the B.T.-H. research laboratory where he became responsible for developments in the audio engineering field. For his contribution to the development during the war of centimetric fire-control radar Mr . Lucas was awarded an O.B.E. When, in 1945, the B.T.-H. Electronics Engineering Dept. was set up he became manager and in 1952 chief engineer.

The fiftieth award by the I.E.E. of the Faraday Medal has been made to Professor F. C. Williams, C.B.E., D.Sc., D.Phil., F.R.S. 'for his outstanding contributions to the theory and design of electronic circuits; his leadership of the team which developed the best computers to be sold commercially; his contributions to the theory of alternating-current motors; and his leadership of the team which made important contributions to the design of electric motors and generators'. Professor Williams, who is 60 , was a member of Watson-Watt's radar research team at Bawdsey from 1939. In recognition of his work on the development of I.F.F. (identification, friend or foe) he received the American John Scott award. In 1947 Dr Williams joined the staff of Manchester University where he is professor of electrical engineering.

Douglas Stevenson, aged 45, assistant general manager of ITT Components Group Europe for the past two years, has been appointed general manager. of the Group.

Educated in Edinburgh, Mr. Stevenson joined Standard. Telephones and Cables Ltd, a subsidiary of ITT, in 1955, later becoming manager of ITT's Capacitor Division at Paignton. In 1961 he moved to Brussels as manager of the Components Division of ITT Standard. Returning to the U.K. in 1963, he became manager of the then Components Marketing Division of S.T.C. at Footscray, Kent. At the beginning of 1970 he became assistant general manager of the Brussels-based ITT Components Group Europe with factories in Germany, the U.K., France, Portugal, Switzerland, Italy and Spain.
R. B. Coulson, B.E., B.Sc., M.I.E.E., has been elected to the board of the English Electric Valve Co. and appointed general manager. Born in Australia, and a graduate of the University of Sydney, Mr Coulson came to England in 1949, and joined E.E.V. in 1950 taking charge of the development and production of travelling-wave tubes. In 1958 he was promoted sales manager. E.E.V. has also announced the appointment of F. C. Thompson, B.Sc., Ph.D., F.I.E.E., as deputy general manager. Dr. Thompson graduated from Liverpool University, and served with A.A. Command before becoming a senior scientific officer at the Telecommunications Research Establishment, Malvern, in 1942. He joined E.E.v. in 1945 as engineer in charge of microwave tubes, and was made manager of the Radar Tube Division in 1956. He was appointed assistant general manager in 1962, and elected to the board in 1969.

Ivan J. P. James, B.Sc., F.I.E.E., F.I.E.R.E., who has been with EMI since 1937, has been appointed scientific adviser to the company's Central Research Laboratories while still retaining his present position of technical director of EMI's Sound and Vision Equipment Division. Mr. James led the team which designed the 2001 colour television camera.

EMI have also announced the appointment of two assistant directors in the Central Research Laboratories. They are J. A. Lodge, who has become assistant director, audio and television research, and R. J. Froggatt, assistant director, systems research. Mr. Lodge assumes responsibility for work in audio frequency techniques, mechanics and optics, sound recording and reproduction, and television. Mr. Froggatt takes charge of research on all other systems including cognitive, display and microwave systems, and automation.

Michael Moore, M.I.E.R.E., is appointed technical manager responsible for design and development and the manufacturing activity of the electronics division of Benney-Geartech Ltd., of Chandler's Ford, Hants. Mr. Moore has spent the last six years as a senior engineer with C.E.R.N., the European organization for nuclear research.

Bert Horlock, M.I.E.E., M.I.E.R.E., chief engineer of Granada TV Rental has been appointed to the board of the company. He joined the Granada organization in 1961 at the Manchester TV Centre and in 1965 transferred to the television rental company as chief engineer responsible for research and development and also technical training and standards.

Cyril G. T. Withers, chief experimental radio officer at the Aeroplane and Armament Research Establishment, Boscombe Down, retires on the 31st March, after nearly 26 years service in the Navigation and Radio Division. Mr. Withers joined the Air Ministry Research Establishment (later T.R.E.) in 1940 and worked on the development and the operation of the C.H.L. and G.C.I. radar systems. For part of this period he was attached to R.A.F. 60 Group, Leighton Buzzard. In 1943 he was granted an honorary commission in the R.A.F. for special ground and airborne radar duties overseas. At the end of the war he was attached to ' T ' Force in Germany which was formed to investigate the activities and progress of German scientists. He was later transferred to A. \& A.E.E. to take over the Airborne Radar Trials Section. In 1960 he was appointed head of the radio side of the Division from which he is now retiring.

Richard J. Constantine has joined Farnell Instruments Ltd. as internal sales engineer at the Wetherby Office of the company. He was formerly a radio and electronics officer with I.T.T. Marine Radio Co. Ltd. He was radio officer on the last commercial trip of the Queen

Elizabeth and spent some time on the Royal Research Ship Discovery where he also started transmitting as one of the few Maritime Mobile amateurs (call sign G3UGF/MM). Farnell Instruments Ltd have their own amateur radio society which uses the call sign G4ADQ.
M. J. Tattam has joined GEC-Elliott Process Automation Ltd as sales manager of its Telemetry Systems Division at New Parks, Leicester. He was export manager of the Industrial Instrument Division of Smith's Industries Ltd from 1969 having previously been sales manager, telemetry and data acquisition systems of the instrument division.

Roger Appleton, who was named chief engineer (designate) of London Weekend Television last September, when Brian Pover, controller of engineeering, left the company, has been appointed chief engineer. Mr. Appleton, who was London Weekend Television's head of production engineering prior to his new appointment. began his career in television in 1954, when he joined the B.B.C. In 1958, after a spell at Granada Television, he went to Rediffusion. When London Weekend took over Wembley Studios from Rediffusion in 1968, Mr. Appleton became supervisory engineer. In February 1970 he was appointed head of production engineering responsible for the technical staff and facilities at Wembley Studios. As L.W.T's chief engineer, Mr. Appleton is responsible for the installation of technical facilities at its new South Bank Television Centre, which is expected to come into service in April. Mr. Pover, who is being retained by L.W.T. as a consultant, has joined Prowest Ltd, manufacturers of television monitors and other professional equipment, as managing director.

Plessey Telecommunications has appointed T. H. Pritchard as manufacturing executive. Major Systems Division; R. C. Lawson as general manufacturing manager; and A. E. Brothers as manufacturing manager. Mr. Pritchard, who will be at the company's headquarters in Liverpool, joined the Plessey Company at Swindon in 1952 as a quality manager, later becoming divisional manager. Since 1962 he has been responsible for the Garrard manufacturing operation. Mr. Lawson, general manufacturing manager, Strowger Major Systems Division, who is 51 , was educated at the Royal Naval College, Dartmouth, joining the Plessey Company in 1946 as a production operator. Mr. Brothers, manufacturing manager at the Company's Edge Lane, Liverpool, factory is also 51, and was previously manufacturing manager at the Plessey installation in Brazil.

Circuit Ideas

Active zener with slow run up

The active zener circuit ('Highperformance Low-cost "Active Zener" Regulators', Joachim Preis, Oct, 1969) can be combined with the slow run up circuit of P. Lacey (Circuit Ideas May 1971) with one transistor doing both functions.

The active zener can operate with very low current, provided that R_{1} and R_{2} are large and the load current is low. This makes it possible to use a low, non-electrolytic capacitor as the timing capacitor C . J. Skjelstad, Norway.

Low distortion

f.m. demodulator

A t.t.l. one-shot monostable may be used as a high-linearity f.m. demodulator by connecting it in the circuit shown. Due to
the constant width of the output pulse the duty cycle, and hence the voltage at the output of the integrator network $R_{1} C_{1}$, are directly proportional to the i.f. Capacitor C_{2} is chosen to give a pulse width of 47 ns , (the period of one half-cycle at 10.7 MHz), this value giving optimum linearity, and as the i.c. includes a Schmitt trigger on the input the circuit need not be driven from a limiter. A demodulator of this type produces high-level noise output in the absence of a proper signal due to random triggering of the one-shot by noise and thus a mute circuit is mandatory. Muting is achieved here by feeding the inhibit terminals of the Schmitt trigger from the collector of the half-wave rectifier stage $T r_{1} . R_{1}$ and C_{1} also serve as de-emphasis components and therefore the load impedance should be kept as large as possible in order to avoid degradation of the frequency response. Harmonic distortion at $\pm 75 \mathrm{kHz}$ deviation is less than 0.5%.
P. Keenan,

Dunstable,
Beds.

Zero marking of a.c. waveforms

It was found that in certain conditions the current of a simple experimental d.c. motor could be negative for part of a revolution. It was easy to show this using a c.r.o. which had a d.c. amplifier - if a double-beam c.r.o. is available, one trace

can be used to indicate zero level. However, when conditions for negative current were being investigated, it was more convenient to mark the waveform of armature current to show the points at which it passed through zero. This could be done by using two diodes as shown in Fig. 1. Current through R_{1}, a low-value resistor, develops a voltage proportional to the armature current. Because of the voltage drop across a conducting diode, the relation between the voltage applied to Y_{1} and that applied to Y_{2} is as shown in Fig. 2. If the voltage under examination becomes very large in relation to the voltage drop across a conducting diode, the 'flats' tend to disappear. If the voltage is less, at positive or negative maxima,

Fig. 1:

Fig. 2.
than the forward diode voltage drop, the output is zero for the respective period. It should be possible to choose R_{1} so that it lies between the two limits corresponding to these conditions.

T. Palmer,

Kew.

Constant-current battery charger

The circuit consists of a rectified and smoothed d.c. supply of about 20 V , which is applied in series with a constantcurrent regulator to the battery. The current is derived from switched resistors, R_{1} to R_{5}, held at a constant voltage by the zener diode and transistors $T r_{1}$ and $T r_{2}$ which form a Darlington pair. Germanium power transistors such as OC28, OC35, OC36, 2 N 1021 , or similar types are used.

The unit which is used for charging batteries up to 12 V has several advantages over conventional battery chargers in that the output terminals may be accidentally short-circuited withoutdamage to components. Also, an ammeter is not necessary, since the current is determined by the selection of switched resistors,

14.. Lalibrated current which does hot aher during charging. Currents from 0.1 to 3.1 A may be selected by closing the appropriate switches and the value of current supplied is approximately given; by $4.8 / R$. where R is the appropriate iwitched resistor. The charging current may be increased to 10A by uprating the components and selecting different values of R.
David Allen.
Manchester:

Low-pass active filter

This circuit utilizes a unity gain amplifier configuration. which is stable using a minimum number of components. A wide rarge of transistors can be used for this annlifer but low-noise devices are preferable (e.g. 2N 2926 for the $n-p-n$ and ? $\mathrm{N}=354$ for the $p-n-p$). A gain of unity is obtained by choosing R_{1} so that R. $-h_{h_{n}} \quad \beta_{2}$. Resistor R_{E} was chosen to be $2.7 \mathrm{k} \Omega$. $\mathrm{I}_{s}(+)$ was 10 V and $V_{S}(-)$ was $15:$ for the correct d.c. conditions for the transisturs.

Fir a ripple of 0.1 dB in the pass band and a lall off of $20 \mathrm{~dB} /$ octave after cut-off frequency f_{l}, choose a convenient value of R and calculate.
$C_{i 3}-\frac{1}{2 \pi} \overline{\int_{10} R_{0}}$

Now refer to the table below and calculate C_{1}, C_{2} and C_{3} by multiplying the appropriate factor by C_{o} :

For	C_{1}	C_{2}	C_{3}
Multiply C_{0} by	2.06	0.29	1.03

The capacitors are chosen to be within 1% of these calculated values.

This circuit allows the possibility of using several stages in cascade without emitter following: a 7th order circuit works very well at about $70 \mathrm{~dB} /$ octave, but different multiplying factors must be considered.

A high-pass filter of the same order can be designed by inverting the elements R and C in each stage.

S. J. Morris,

University Hospital of Wales, . Cardiff.

Variable-gain volume control

Large overload capability is not often provided by commercial amplifiers, but can easily be obtained by using a variable-gain volume-control stage at the input of the pre-amplifier. Inverting

amplifier circuits can easily be designed which will give overload factors of greater than 40 dB at normal listening levels. The circuit shown has a maximum voltage gain of $\times 22$ but this is reduced to nearly zero at the minimum setting of the potentiometer. Sensitivity may be altered by increasing the value of R_{1} - e.g. $22 \mathrm{k} \Omega$ gives a gain of $\times 10$. The inverting amplifier basically has one stage which provides a high open-loop gain ($\approx x$ 2000) by employing a d.c. bootstrap circuit, and applied negative feedback reduces stage distortion to a very low level. Signal-to-noise ratio for the circuit shown is greater than 73 dB on a 10 mV input. For low noise and distortion the BC184C should be selected to have a current gain of greater than 400 , and the field effect transistor (MPF102) should have an IDSS of 5 mA or greater. The circuit is tolerant of hum and noise on the supply line and so may be run from a poorly stabilized supply. Total harmonic distortion at a gain of $\times 22$ and IV r.m.s. output measured 0.025% at 1 kHz and 0.05% at 10 kHz . Equivalent input noise is less than $2 \mu \mathrm{~V}$, in the bandwidth 20 kHz with input shorted to earth; and upper break frequency (-3 dB) above 100 kHz , with gain $\times 22$.
A. Jenkins,

Taunton.
(The symbol shown for Tr_{2}-the Motorola Darlington transistor type MPSA65 - was originally suggested by J. L. Linsley Hood in his article 'The Liniac', published in Wireless World in September 1971.Ed.)

Overtone oscillator

The circuit works well with low activity crystals and is suited to either overtone or fundamental operation. The ratio of the series capacitors controls the amount

of feedback and the inductor, L, resonates with the series capacitors at the desired output frequency, giving an output which may be taken directly from the emitter resistor or by means of link coupling. The transistor Tr_{1} is a 2 N 706 (or similar type) and the circuit operates from a 12 V supply.
L. V. Gibbs,

Wellington,
New Zealand.

A survey of
 Stereo Cassette Tape Decks

2: More test reports, a listening test and advice on getting the best from a cassette

by Brian Crank*

Last month, in part one of this article, we described in detail how the various measurements were carried out and the reader is advised to read this account before interpreting the test results given here. Briefly, we made a set of curves using standard (ferrous oxide) tape on each recorder and, if the machine was equipped with a chromium dioxide tape equalization switch, we repeated the measurements using chromium dioxide tape.

In every case the top amplitude/frequency curve is the left channel at OVU (full recording level). The next two curves below this are the left and right channels at -10 VU (for assessing channel, balance etc.) and the lowest curve is crosstalk relative to the top OVU curve.

A constant 3 kHz signal was recorded on the tape and played back through a spectrum analyser. The results are given int the curves mounted below the amplitude/frequency curves. The major peak is the 3 kHz fundamental. The spectrum analyser automatically switched ranges at 6.3 kHz so the gap in the response at this point occurs just before the second harmonic. The major harmonic distortion occurs at the third harmonic (9 kHz) and is the peak on the right of each trace.

All the measurements given in the test reports are as measured by us. The harmonic distortion figute is high because it includes everything (hum, tape noise etc.) outside a narrow band centred on 1 kHz .

National R-275-U
Total harmonic distortion 2\%: Signal-to-noise ratio, NFD out $44 \mathrm{~dB}, \mathrm{NFD}$ in 50 dB : Wow and flutter 0.22% : Bias oscillator frequency 106 kHz : Input for OVU, phono L-27mV'R-28mV, DIN L-1.6mV' R-1.65mV', microphone (not measured): Output DIN and phono L-740mV R-860mV: Rewind 1m 42s: Dimensions 440 $\times \mathbf{3 0 0} \times 120 \mathrm{~mm}$. Price $£ 139.95$.

Six oblong push buttons switching internal solenoids are used to control the tape transport mechanism in this machine. This method is convenient, easy to operate and the best we have tested. It is a pity that the wow and flutter is so high. There is a small red light which lights up when the tape is travelling at $1 \frac{7}{8}$ i.p.s. during play and record. In addition when the white record button is pressed the button lights up but the tape does not move until the play button is pressed to give the user a chance to set the recording level. If at the start of a recording, even in the middle of the tape, the tape position counter is set to zero and a switch marked memory is set to on, then at the end of the recording if the rewind button is pressed, the tape will rewind to the start of the recording and switch off automatically.

The machine has twin rotary type recording level controls which make fading a stereo signal a difficult task. The top control panel of the machine is unnecessarily cluttered with a pair of rotary output level controls. When it is considered that the machine will be used in conjunction with a high-quality amplifier incorporating a volume control it makes sense to use preset output level controls on the recorder tucked away at the back of the machine out of sight and out of the way.

Three toggle switches are used to switch on the memory system, to alter the equalization between 'SG' (special grade?) and normal, and to switch the NFD (noise free device) in and out. We are not sure what is meant by special grade and normal tape but gather that SG out to be used when recording on low noise tape. The machine we tested was not built for the British market and we understand that this switch will be used for conventional chrome/standard equalization switching when the machine is introduced into this country. The NFD was discussed in part 1 in the section on noise reduction systems but it does not compare favourably with the Dolby system. The control panel is completed by an on/off switch and a cassette eject button. A headphone output socket is fitted to the front of the machine.

On the rear of the machine, set in a recess, are the DIN and phono input/output sockets, twin miniature microphone input jacks and a socket for controlling the machine remotely.

We cannot comment on the instruction book, it was written in Japanese! (not being intended for this country).

The sample of the National R-275-U we tested, judged on our measurements, did not compare well with the other machines.

Sansui SC-700

Total harmonic distortion 1.6\%: Signal-to-noise ratio, Dolby out 47 dB , Dolby in 52 dB : Wow and flutter 0.14% : Bias oscillator frequency $106.7 \mathrm{kHz}: \mathrm{CrO}_{2}$ erase 52 dB : Input for OVU, phono L-66mV', DIN L-14mV, microphone $L-0.5 \mathrm{mV}$, centre -0.5 mV : Output, phono high L-0.95V, phono low L-300mV', DIN L-0.95V: Rewind 2 m : Dimensions $385 \times 255 \times 103 \mathrm{~mm}$: Price $£ 191.65$.

This is another product of Nakamichi Research (look at the frequency response); however, it is somewhat different from the other Nakamichi machines tested in styling and in the facilities it offers. The tape transport is standard and the usual indicator lamp is provided for record. Unfortunately an output level control (dual concentric) is provided on the top control panel. This should have been banished to the back of the machine and the space occupied by a mono/stereo switch which the machine lacks. The recording level controls are also of the rotary dual-concentric type and the friction between the two knobs is such that, once the balance has been set both knobs turn together. This system is quite acceptable. A third rotary level control is used for the centre microphone. This machine is the only one tested which can be used with three microphones simultaneously. The effect of using three microphones, according to the instruction manual, is to 'prevent the shortage of centre sound when recording in a large room with the normal left and right microphones widely separated and to enhance the sound effect in vocal recordings'. The three microphone jacks share the front of the machine with a headphone output jack. Three push-buttons on the top of the machine are used for switching in the Dolby system (with an associated indicator light), chrome/standard tape equalization and a power switch.

The two VU meters are situated on top of the machine to the

Sansui SC-700

rear on a sloping panel. They are very large (68 mm) and light up like Christmas trees in green, red and white; each meter is lit by two 6.5 V 0.25 A lamps run at 5.4 V . The meters are easy to read at a distance which is a better solution to the problem of accidental overload than the flashing lights used on some other machines. Unfortunately the right-hand meter on the test machine did not work (so most of our measurements were made only in the left channel); however, it is only fair to mention that the machine had been flown specially from Japan for our tests and had also undergone two road journeys without having a pre-delivery check. It was the first machine of its type in the country.

On the rear of the machine there is a voltage selection panel (100 to $240 \mathrm{~V}, 50$ or 60 Hz), a fuse, high- and low-level phono input sockets, phono output sockets and a DIN input/output socket. The machine incorporates 48 transistors (including two f.e.ts), 16 diodes and two thermistors.

The instruction book is excellent and is well illustrated. The machine comes complete with a full circuit diagram, a cleaning cloth and an angled head 'felt tipped pen' for cleaning the record and replay heads.

Apart from the few shortcomings discussed this is a good machine which can be recommended from the performance point of view but one has to pay highly for the few extra facilities it offers over other Nakamichi machines.

Teac A-350
Total harmonic distortion 2.3\%: Signal-to-noise ratio, Dolby out 50 dB , Dolby in 53 dB : Wow and flutter 0.15% : Cr_{2} erase 50 dB : Input for OVU, DIN L-0.2mV R-0.2mV, phono L-85mV R-85mV: Output DIN and phono L-550mV R-550mV: Rewind 1 m 46 s : dimensions $430 \times 247 \times 200 \mathrm{~mm}$: Price f 144 .

This machine was lent to us by an independent laboratory who had been evaluating it. If this laboratory found something out of adjustment they put it right. The machine is, therefore, not necessarily representative of production items which will be sold in this country.

The six tape transport control keys have a not-very-pleasant 'loose then stiff' feel although the mechanism itself seems to perform well enough and returns a fairly respectable wow and flutter figure. A long narrow amber lens is illuminated by a spot of light which travels down the length of the lens when the tape is moving in either the record or playback modes. Below the lens is a Perspex light guide and a small lamp. The light path between the lamp and guide is interrupted by a slotted disc. The idea is a good one in that one can see from a distance if a cassette has jammed. The top control panel has two long slider type record level controls and two slider output level controls which are a waste of panel space as discussed earlier. Three toggle switches are used for chrome/standard tape equalization, microphone and DIN or line

input selection. and Dolby in /out with the usual associated Dolby warning light. Between the reasonably sized and fairly well illuminated VU meters is an unnecessary peak level warning lamp. One would have thought the only reason for an indicator of this sort was to be able to see, from a distance, if overload was occurring. As the lamp on the Teac is set at the bottom of a tube one would need to hang from the ceiling to see it from any distance. On the front of the machine are jack sockets for two microphones and a pair of headphones. The DIN and phono input and output sockets are set in a recess at the back of the machine. A fuse is fitted underneath.

The frequency response is 'Nakamichi-like' and the matching between channels is very good indeed. The machine has a good, average, all-round performance. We cannot comment on the instruction book as an English version is not yet available.

Uher compact report stereo 124

Total harmonic distortion 3\%: signal-to-noise ratio 50 dB : Wow and flutter 0.18% : Bias oscillator frequency $\mathbf{1 0 0 . 8 k H z}$: Input for 0 VU (all DIN), radio $\mathrm{L}-3.7 \mathrm{mV}^{\prime} \mathrm{R}-4 \mathrm{mV}$, line (phono) $\mathrm{L}-150 \mathrm{mV}{ }^{\prime}$ $\mathrm{R}-161 \mathrm{mV}$, car radio (d.c. isolated) $\mathrm{L}-56 \mathrm{mV} \mathrm{V}^{\prime} \mathrm{R}-56 \mathrm{mV} \mathrm{V}^{\prime}$, external microphone L- $0.2 \mathrm{mV}{ }^{\prime} \mathrm{R} 0.2 \mathrm{mV}$: outputs, radio L-0.8V'R-0.8V, car radio $\mathrm{L}-45 \mathrm{mV}$ R-45mV, speaker 2 V across 4Ω : Rewind (mains power) 2 m : Dimensions $185 \times 180 \times 57 \mathrm{~mm}$. Price $£ 185$.

The Uher 124 differs considerably from the other machines tested and is designed to function both as a portable recorder and as an adjunct to a high-quality audio system. It is the smallest machine we tested (by a long way) it is the only one to contain an internal loudspeaker and the only one capable of operating from a variety of power sources.

The 124 can be powered by six small pen-cells, a lead acid accumulator, a nickel cadmium battery, a 12 V car battery or from the mains ($100-130 \mathrm{~V}, 200-240 \mathrm{~V}, 50$ or 60 Hz) using a mains power unit. An accumulator or the batteries slip into a compartment at the rear of the machine and, if desired, the mains power unit can be plugged in as well. The machine will then run from the mains and the accumulator will be recharged. The mains power unit is the same size as the accumulators and can be slid into the battery compartment for continuous mains operation if required. We noticed a fairly high level of hum when the mains power supply was fitted inside the machine.

The cassette is loaded into a slot in the front of the machine 'thin end first'. The tape transport mechanism has two main controls, a three-position (forward, reverse and neutral) fast wind lever and a five position 'joy stick' type switch. With this switch up the machine is switched off. When the lever is moved to the central position the machine is switched on provided that a cassette is in position. Moving the lever to the left or right selects play in the forward or reverse direction (the machine has a four element head so there is no need to turn the cassette over to play the other "side"). Moving the switch down puts the machine in the pause condition. A small moving-coil indicator shows which 'side' of the cassette is selected. When playing back, on reaching the end of the tape the machine automatically reverses and plays back the other 'side'. One can record only in one direction.

Other front panel controls include four push-buttons which switch the internal speaker off, select internal or external microphone, automatic level control on /off and select record. The internal microphone is fitted to the front panel and is a low-voltage capacitor type. When automatic level control is selected the time constant in use is determined by which input socket is being employed. A manual rotary record/playback level control and a single VU/battery-level meter completes the front panel. No means is provided for adjusting the stereo balance and a mono/stereo switch is not included.

On the rear of the machine are two sockets, one for connection to a car radio and the other for connection to the mains power supply unit when it is being used separated from the machine.

Three sockets on the side allow the connection of headphones or loudspeakers, line in and line out, and a variety of accessories including remote control units. Access is provided to the unused record sections of the record/playback head and another pin allows the motor speed to be varied remotely.

Considering that it has not a noise reduction system the signal-to-noise ratio is very good indeed and has been achieved by using specially designed high-inductance heads. Unfortunately the price which has been paid for this noise reduction is a fairly poor crosstalk performance. All other aspects of the performance are good and Uher are to be congratulated for packing so much into such a small space.

The tape transport mechanism seems to be very choosy when it comes to cassettes, and cassettes which run smoothly on other machines will not necessarily be accepted by the 124 .

As soon as the equalization standard for chromium dioxide tape is decided Uher intend to fit a chrome equalization circuit which will be selected automatically when a chrome cassette is put into the machine.

Wharfedale DC9

Total harmonic distortion 2.2% : Signal-to-noise ratio, Dolby out 49 dB , Dolby in 54 dB : Wow and flutter 0.18% : Bias oscillator frequency $102.2 \mathrm{kHz}: \mathrm{CrO}_{2}$ erase 50 dB : Input for 0 VU, DIN and phono L-39mV R-39mV, microphone L-0.2mV R-0.2mV: Output DIN and phono L-1V R-1.1V: Rewind 2 m 11s: Dimensions $279 \times 216 \times 89 \mathrm{~mm}$: Price 1110 .
Taking into account normal production and adjustment tolerances the machine is identical to the Bell \& Howell DES 1700 as far ac

Wharfedale DC9

performance is concerned and is in fact another product of Nakamichi Research. The DC9 is smaller than the 1700 and its top mounted controls are perhaps more convenient to use with the exception of the two rotary recording level controls. To properly fade a stereo signal one has to use two hands, not a good point. Three push-button switches are employed for Dolby in /out, chrome/standard tape equalization and power on/off; there is not a mono/stereo switch. Like the Bell \& Howell there are three indicator lamps (power, record, Dolby). Microphone input is by front panel jack sockets and DIN and phono output/input sockets are provided on the rear of the machine. There is also an output level control on the rear of the machine.

The instruction book is fairly good but it can be a little difficult to follow because it is written in three languages badly laid out.

The choice between Wharfedale and Bell \& Howell must be made purely on small points which are a matter of personal preference; styling, size, rotary or slider recording level controls, mono/stereo switching, and input/output socket arrangements. The frequency response of the machine is good.

Listening test

Last month we mentioned that we had carried out a listening test in which we compared an open-reel tape recorder with one of the cassette recorders we had tested. The object was to assess what one lost in performance, if anything, if one bought a cassette recorder. To do this we assembled two listening panels. The first panel was made up from both males and females who had no special technical or musical knowledge. The second panel, all male, was chosen for either technical or musical ability (in some cases both) and comprised members of the editorial staffs of our associated publications: Electrical and Electronic Trader, Electrical and Radio Trading, Electrical Review and Electronics Weekly together with the technical staff of Wireless World and two music critics.

Acoustically the room used for the tests did not differ widely from conditions one would find in a large living room. The equipment, with the exception of the loudspeakers, was situated in an adjacent room so that the listeners did not know which machine they were hearing.

Material from disc records was used as a standard against which the recorders were compared. For disc reproduction we employed a Garrard Zero 100s turntable fitted with a Shure V15 Mk 2 cartridge, a Bang and Olufsen 3000 tuner amplifier and a pair of the folded horn loudspeakers designed by John Greenbank and described in the January 1972 issue of Wireless World.

The cassette tape deck was the Bell \& Howell DES 1700 (reviewed last month) and the open-reel tape deck was a Tandberg 3000 X . Both these machines cost about the same (within a few pence).

We then had a difficult problem to resolve. The Tandberg was a three-speed machine ($1 \frac{7}{8}, 3 \frac{3}{4}$ and $7 \frac{1}{2}$ i.p.s.). At what speed should we run it for the comparison tests? A good argument could be put forward for using each of these speeds. In the end it was decided
to use the Tandberg at its best at $7 \frac{1}{2}$ i.p.s. It should be pointed out that at this speed the Tandberg is much more expensive to run in terms of tape cost than the cassette machine.

As we were using the open-reel machine at its best we did the same for the cassette recorder and operated it with the Dolby noise reduction system switched in and with a chromium dioxide tape cassette. The open-reel machine was used with the reel of low-noise Tandberg ferrous oxide tape that came with it.

To the user, although both machines cost the same, they have different advantages and disadvantages. The cassette machine was the easiest to operate, it had a noise reduction system and had all the advantages one normally associates with cassettes from the handling point of view. The Tandberg did not have a noise reduction system, it had three speeds and offered such facilities as sound-on-sound, sound-with-sound, off tape monitoring (because of the three heads) etc.

In the listening tests the Tandberg came out slightly better than the Bell \& Howell on signal-to-noise ratio. We feel, however, that this may not have been the case if the machines had been in the same room as the listeners because the mechanical noise from the Tandberg was much higher than that from the Bell \& Howell. In a smallish room this could have swayed the listeners in favour of the Bell \& Howell on this point.

We chose extracts from four discs and these were recorded on the cassette and open-reel machines.

The inexperienced panel listened first to the disc and then to the two recorders and were asked to say how good the recordings were when compared to the disc. They were given four choices: the same as, slightly worse than, much worse than and very much worse than. They were asked to make their judgment after assessing background noise, 'tonal quality' and 'clarity'.

When analysing the results, if a person thought the cassette recorder was slightly worse than the disc and the open-reel recorder was much worse than the disc one point was scored in favour of the cassette machine. If a listener thought that the machines both sounded slightly worse than the disc or both sounded much worse than the disc a zero was scored. In other words, one point was scored for each category difference between the two machines. Țhe results are summarized in Fig. 11(a). It can be seen that seven listeners thought that the cassette machine sounded one category better than the open-reel machine, one thought the open-reel machine sounded better and one said that both machines sounded the same. One must conclude that as far as our inexperienced panel was concerned the cassette tape recorder was to be preferred.
(a)

Fig. 11 (a) Inexperienced listeners thought the cassette best while, (b), the panel of experts preferred the reel-to-reel machine.

The experienced panel was asked to compare the recorders with the disc on the following points: bass response, treble response, signal-to-noise ratio, distortion, and wow and flutter. They were also asked to give an overall assessment of performance. For most of these points they were asked to place a recorder into one of six categories on a scale similar to that already detailed for the inexperienced listeners. Again a recorder scored one point for each category it was judged better than the other machine in relation to the disc. If both machines were given the same rating a zero was scored. The results are summarized in Fig. 11(b). The total score is given in the bottom right-hand corner of each 'block".

The bass response of both machines was judged to be very similar with 6 points for the cassette, 7 for the open-reel and 6 listeners saying there was no difference. All the listeners thought the recorders were not as good as the disc on this point by a fairly large amount.

The open-reel machine was judged to have a much better treble response than the cassette by 14 points to 4 , with one listener saying there was no difference. In general the reel-to-reel machine was thought to be only slightly worse than the disc.

The open-reel machine had the edge on signal-to-noise ratio but, as already stated, was mechanically noisier.

The sample of the Tandberg we used suffered from highfrequency distortion, which is reflected in the results. The cassette machine was rated much better than the open-reel by 15 points to 5 and slightly worse than the disc.

Both machines were rated the same for wow and flutter and no different from the disc. Two of the listeners complained that the material we used was unsuitable for this test.

Overall the experienced listeners preferred the Tandberg by 9 points to 5 , a ratio of about $2: 1$. If one takes the difference between the scores for each aspect of performance and adds them up, this $2: 1$ ratio appears again. It is probably fair to assume that the distortion of the high frequencies on the Tandberg was an isolated case and does not occur on all machines of this type. If this was indeed so then the open-reel machine must be classed as being much better than the cassette recorder.

One possible explanation for the differing views of the two panels is that some members of the inexperienced panel may have grown accustomed to listening to small radio sets and mediumpriced radiograms and had come to prefer this kind of sound.

It would appear that when one buys a cassette recorder one trades performance and versatility for convenience in use. However the cassette recorder we tested, while not performing as well as its reel-to-reel counterpart, put up a creditable performance and many people would think that the trade-off was worthwhile.

Caring for, and using, a cassette recorder

If you buy a cassette recorder there are two other essential purchases you must make besides a supply of blank cassettes. These are a small bottle of isopropyl alcohol and some 'cotton wool buds' (small balls of cotton wool attached to short wooden sticks often used in baby care). Both items cost only a few pence from a chemist.

Cassette recorders employ heads with an extremely narrow gap that soon becomes clogged with oxide from the tape which lifts the tape away from the heads causing poor erase and useless recordings. The oxide also builds up on other parts which come into contact with the tape; in particular the pinch wheel. The wow and flutter figure of one of the recorders tested dropped by 50% after the pinch wheel and tape path had been cleaned.

The rule is to clean the heads and the tape path after five or ten cassettes of playback time and before every recording is made. This is no great hardship as the task takes only a few seconds.

The average machine has a very large number of internal preset adjustments which will probably require periodic attention, and mechanical parts will require cleaning and lubricating at intervals. These are jobs for the manufacturer and we feel that it would be reasonable to return the machine every six months to a year for overhaul. Some manufacturers in fact recommend this.

Cassettes should be stored in a cool place and the surface of the tape should not be touched with the fingers. It is a good practice after playing back a recording not to wind back the tape if the cassette is to be stored. This is because fast wind spooling is not
as even as spooling during record or playback so there will not be as much stress stored in the tape and, consequently, there will be less tendency for the coils of tape to adhere to one another during storage.

It is false economy to buy cheap cassettes as these could contain abrasive tape that will soon wear out expensive heads. There may also be a tendency for such cassettes to stick or jam.

When recording it is usually better to err on the side of under-recording rather than the converse.

All of the machines had some means of switching the drive motor off automatically should the tape stop moving for any reason. In addition some machines had a solenoid which operated under these conditions to disconnect the complete drive system, having the same effect as pressing the stop button.

If a recorder is not fitted with the automatic drive disconnect mechanism it is essential not to leave the machine with the play button pressed and the motor not running. If you do, a flat on the pinch wheel will develop which will cause wow and flutter.

The ideal machine?

We are of the opinion that not one of the machines tested was ideal, either from user or performance point of view. If features of the different machines were to be combined to produce an ideal machine we would choose:

The National tape transport controls with the Advent or the Nakamichi mechanism. The frequency response of the Akai. The versatility of the Uher. The Sansui VU meters. The machine would also have slider type recording level controls (or perhaps the Advent level system), a mono/stereo switch, a choice between chrome and standard tape equalization, a Dolby noise reduction system with a calibration oscillator, a preset output level control, a choice of phono or DIN input/output sockets, a headphone monitoring jack, and twin microphone jacks. Such a machine would probably be very expensive. In the reports we have already stated our opinion regarding output level controls. Another point which we found very annoying was the absence on some machines of a mono /stereo switch. This switch is usually only a single-pole on /off type that parallels the two channels at the input for mono operation. Without it, when recording from a mono source, all the information is in one channel only and half of one's audio system is being wasted. A part from all the sound coming from one corner of the room one loses the impression of spaciousness normally associated with playing a mono signal through a stereo system. A stereo /mono switch can easily be added externally but this is not very convenient.

Finally, a number of the machines came equipped with a non-standard mains plug (Japanese) which we think is bad practice.

Sixty Years Ago

April 1912. The Marconigraph contained an article by H. Riall Sankey 'Mechanical Analogies Applied to Wireless' which describes the action of a tuned circuit in a manner that would probably be welcomed by many newcomers to the art today. "If a weight is dropped into still water concentric wavelets will be formed. If the weight is too large or the height from which it is dropped is too great, not only will waves be formed, but there will be splashing, and this splashing corresponds to the brush discharge already referred to. If the weight be fixed to a horizontal spring, and a force is momentarily applied to the weight, it will oscillate in a well-known manner. It will hit the water, and each time it does so will produce waves in the manner already pointed out, and if the energy is too great there will be splashing as well as waves. A smaller weight placed underneath the big one held up by a horizontal spring, will also form an oscillatory system, and will be put into motion by the large weight first hitting the small weight, which, in its turn, will hit the water and produce the waves. Matters can be so arranged that the energy imparted to the small weight at each impact is sufficient $\varphi \rho$ produce the maximum amount of wave without any splashing .
"It is obvious that a necessary condition to carry out this effect is that the small weight shall always be just at the top of its path as the big weight comes down to hit it - that is to say, both oscillatory systems must have the same time-period, or, in other words, they must be tuned."

This analogy explained the action of a transmitter of the time which consisted of a tuned transformer (large weight) to set the frequency of the spark and provide a means of feeding energy into the system. The small weight represents the aerial coupling transformer.

World of Amateur Radio

"Top band" season

The latest $160-\mathrm{m}$ bulletin issued by Stew Perry, W1BB, confirms impressions that the band is opening earlier and closing later this year, in line with lower sunspot activity, producing DX that would have been unthinkable a few years ago on this m.f. band. Scotland to West Australia, Eire to Hong Kong, Alaska to Hong Kong, Europe to South America are among the many contacts reportec. ZP8AY, Ascension Island, made several hundred contacts with Europe, United States, West Indies, Brazil, etc before closing towards the end of 1971. There is hope that another station on the island, ZD8CS, may open on the band soon. The Czech top-band station, OK IATP, has made more than 200 contacts with the United States since 1968. Stew Perry himself made 12 transatlantic contacts during the tests of January 9th. He rates long-wire Beverage aerials as 'No 1 for receiving only' listing other effective top-band aerials as verticals (quarterwave, or less with top loading) providing they are used with multiple ground radials: inverted-vee sloping dipoles, inverted-vee dipoles, dipoles and long-wire types. One American station, W4BRB, is reported to be using 300 sq ft of aluminium foil in thin strips to increase ground capacity.

New look at mechanical TV

In a recent letter to Michael Hallett, manager of the I.T.A's Television Gallery, Chris Long, of East Hawthorn, Victoria, Australia, reported that a new low-definition television system which he has developed is being used by a fast-growing group of Australian amateurs on 1.8 MHz , as a 'moving image ${ }^{\text {a }}$ alternative to slow-scan TV. The system, with a standard of 48 lines, 4 fields, uses mechanical scanning with a Nipkow disc but with direct scanning rather than flying-spot techniques to allow scenes illuminated in natural light to be transmitted. A member of the Australian group has developed means of adapting almost any oscilloscope to provide a suitable monitor. The restricted bandwidth permits transmission on h.f. and the Australians are hoping that the idea will
spread internationally. Chris Long has also built a 30 -line scanning unit as part of a demonstration he is giving of mechanical television systems and has acquired a tape of video signals taken from the I.T.A's 'Phonovision' 30-line video disc.

In the U.K. amateur TV licences have risen to 214 , and there are also numbers of enthusiasts who confine their activity to closed-circuit operation. The British Amateur Television Club's next convention is to be held on Saturday, September 16 at I.T.A. headquarters in Knightsbridge, London. CQ-TV, the bulletin of the club, has started a series of articles on 625 -line PAL colour.

One of Europe's keenest exponents of slow-scan TV, Professor Franco Fanti, IlLCF of Bologna, Italy, has just published two new booklets 'Slow scan TV monitor' (Italian text) and 'Slow scan flying spot scanner' (Italian text plus English summary) giving full construction details of these two essential items of slow-scan equipment.

John Tanner, G6NDT /T, is now active from Andover with 100 watts vision in the $70-\mathrm{cm}$ band.

Local activities

Probably nobody knows just how many active local societies, clubs and groups devoted to amateur radio exist in the U.K. There are over 330 (including a number overseas) affiliated to the R.S.G.B. but almost certainly there are many less formally constituted groups. Some have permanent club rooms, some meet in members' homes weekly or monthly. Some wax and wane in a short space of time, some maintain successful activity over many years, others vanish almost without trace. Popular activities include junk sales, morse classes, club 'project' evenings, and 'natter nites' (sic). But the mainstay is the informal lecture, and these reflect current interests to a remarkable degree. The current crop of lectures includes such topics as slow-scan TV, crystal-controlled clocks, s.h.f. and v.h.f. equipment, problems of r.t.t.y., ham radio in the South Pacific, aerial circus, early days of amateur radio, video tape methods, converting business radio
equipment for v.h.f. use, test equipment and even nuclear physics - with such variety clearly the spell of local meetings has by no means vanished!

Two popular annual events covering a wider area loom up. The 18th annual v.h.f. /u.h.f. convention at the Winning Post Hotel, Whitton, near Twickenham, Middlesex, is on Saturday, April 22nd. The Northern Radio Societies Association convention /exhibition is at Belle Vue, Manchester, on Sunday, May 7th.

The 1972 Affiliated Societies Contest was won by G3SSO, the station of the Government Communications Headquarters' amateur radio society at Cheltenham. Runner-up was G3BEA, club station of British European Airways. More than 50 societies entered.

U.S.S.R. " 50 " stations

Since February 23rd, the Radio Sport Federation of the U.S.S.R. has been operating five special stations as part of a 'radio expedition' to commemorate the 50th anniversary of the founding of the Union of Soviet Socialist Republics in 1922. In the first week, the stations used the call signs UA50 (UA fifty) A to E, with the second letter of the prefix changing each week until June 7th. To judge by the strong signal and snappy procedure of UA50B when I worked the station on 3.5 MHz , this group of stations intends to register many thousands of contacts.

In brief

To encourage more s.s.b./c.w. activity on v.h.f. bands, Tom Douglas, G3BA, suggests that between the hours of 19.00 and 23.00 local time, stations should send CQ calls every hour on the hour. . . . The Australian Ionsopheric Prediction Service (whose interest in transequatorial propagation was noted in the February 'W.o.A.R.') has invited co-operation from amateurs in studies of transequatorial openings and v.h.f. propagation bet ween Australia and the Antarctic. . . The 21st anniversary of the University of Keele will include special operation of its amateur radio society's station G3UOK on April 22 on 3.5, 14 and 144 $\mathrm{MHz} .$. . Violent ionospheric storms were reported in the third and fourth weeks of February. . . . The White Rose Mobile Rally on Easter Sunday, April 2, will be at Lawnswood High School, Leeds 6 (details, R. Short, G3YEE, Bradford 664220).

North Midlands mobile rally is on April 16 at Drayton Manor Park, near Tamworth. . . . Dr John Saxton, who was R.S.G.B. president in 1970, is being invited to be president in the Society's Diamond Jubilee year of 1973. . . . Royal Signals Amateur Radio Society is to operate GB3RCS, from May 14 to 22 to mark the 75th anniversary of Marconi's experiments over distances of up to eight miles in May 1897 when the Royal Engineers (from which Royal Signals was formed) assisted.

Pat Hawker, G3VA

Miniature Automatic Telephone Exchange Modifications

The writer built a telephone exchange similar to the one described by G. F. Goddard and suggests some modifications

by P. F. Gascoyne

I was pleased to read the article 'Miniature Automatic Telephone Exchange' by G. F. Goddard in the February issue if only to find out that I am not the only reader of Wireless World who has his own telephone exchange at home. I was surprised that his did not contain more electronics, although I must confess that mine, now about 12 years old, has none. There are many points of similarity between the two systems. U1, U2 and relays RLC, D, E and J all have their counterparts. Perhaps the comments below may be of use to readers.

Relays

Post Office 3000 relays with slugs are not so common as those without, so other methods of slugging relays could be useful. For instance, for RLB one could use a freewheel diode across the coil (connect the anode to the negative side of the coil). For RLE try using a $1 \mathrm{k} \Omega$ coil shunted by a $820 \Omega 3 \mathrm{~W}$ resistor (this is used in my system). Relays RLD, F, G and H can be slugged with either a freewheel diode or, if longer delays are required, an electrolytic capacitor (with a 470Ω series current-limiting resistor) across the coil. The slug on RLJ is, I believe, to stop the relay chattering to the 50 Hz ring current. In this case a freewheel diode would not work. Some possibilities are: an electrolytic straight across the B coil (include some current-limiting resistance in the lead from RLJ/1); use a frequency much higher than 50 Hz for the calling signal (see below) so that slugging is unnecessary; take a leaf out of the G.P.O.'s book and provide the slugging action by using a contact of RLJ to short circuit the holding (B) coil until it operated (Figs 1(a) and (b) illustrate possible methods using this idea). In Fig. 1(a) the 47Ω resistor saves damage occurring if RLJ / 1 should make before RLJ / 4 breaks. In Fig. l(b) an extra contact is saved.

Of course, relays RLF, G and H would ideally be replaced by one relay and a transistor multivibrator.

Normally in an exchange, the dial pulses are received by a fairly standard 3000 type relay. However, exchanges also have two relays associated with each line, a 'line' relay to detect when the hand-set is lifted to make a call, and a 'cut off' relay to disconnect the line relay once the
equivalent of $U 1$ has found the calling line. Thus the calling line is then connected directly to the 'impulsing' relay with nothing in shunt. Mr. Goddard's circuit saves the use of the 'line' and 'cut off' relays but at the expense of having $5.6 \mathrm{k} \Omega \mathrm{in}$ shunt with the impulsing relay. This could slug a 3000 type relay so that it would not respond correctly to the dial pulses. This effect is negligible with a high speed relay because of its much smaller inductance. However, double pole high speed relays are not as common as single pole types. A possible alternative is to use a P.O. type 23 (this is a modern miniature plug-in relay about 25 mm high with a transparent

Fig. I. Alternative ways of slugging relay RLJ/B

Fig. 2. Ringing circuit used by the writer which does away with the bell. The calling note is produced by the earpiece.
cover), or one of its commercial equivalents. Typically one with a coil resistance of $2.5 \mathrm{k} \Omega$ has an inductance of around 24 H when operated. If this were used, when the dial contacts broke during an impulse, the relay current would decay with a time constant of about 3 ms . Since the release current is around 30% of the normal current, the release will be delayed by a similar time giving a total release time of the order of 14 ms , i.e. about the same as an un-slugged 3000 type. (A dial returning at normal speed gives 10 impulses per sec. with a 66% break ratio. i.e. each pulse is 66 ms break, 34ms make.) For RLC's other function, that of stopping U1, there should be no problems.

Ringing

To provide a better sound when operating the bells on 50 Hz I would advise the following adjustments. Slacken the screw holding the central magnet and adjust so that the armature is just touching one pole piece and there is an 0.008 in gap at the other. Set the clapper so that when it is moved slowly from side-to-side it just fails to reach the bell gongs.

High frequency ring current

Some years before the G.P.O. brought out their 'Trimphone' some of the telephones on my exchange were smaller than a 'Trimphone', and emitted a squawking noise to signal a call. How? By scrapping the bell and feeding a high-frequency ring current (produced by a buzzing high speed relay) to the earphone of the handset, via a $0.1 \mu \mathrm{~F}$ capacitor connected across the cradle switch. The relay produces a 600 Hz sawtooth waveform of 40 V peak-to-peak (a square wave from a multivibrator would probably be just as effective and certainly more reliable). In my exchange the ring tone is produceu, from the ring current, by bridging a small capacitor across the equivalent of the break section of contact RLH/3. The circuit of G.P.O. telephones includes a transformer with three windings (some non-G.P.O. telephones of similar external appearance do not) and some other components which match the microphone and earphone to the line. These components form a semi-balanced bridge circuit which prevents the speaker hearing
himself too loudly. These complications improve efficiency, but are not essential if all the lines are short in length; thus, for my telephones, I used the circuit in Fig 2. The 100 nF capacitor has been increased to 250 nF and forms part of a spark quench circuit for the dial as well. It is supposed to be bad to put d.c. through the

Fig. 3. Similar to Fig. 2 but for use with modern balanced armature earpieces.
earpiece. I have had no trouble with moving-iron type earpieces, but for the modern balanced armature types, it could cause the armature to be driven up against one pole. For these types, therefore, I would suggest a circuit like Fig. 3. The electrolytic need be only a few volts working but watch the line polarity. The auxiliary dial contact short circuits the dial during pulsing, to avoid unpleasant clicks in the earpiece. There are actually two sets of auxiliary contacts; one set is permanently connected to the pulsing contacts and the other, being spare, is bent clear and used as the cradle switch contact.

Power supply

Although there is something to be said for switching a series resistor into the main supply, since otherwise, on no load, the reservoir capacitor will charge up to the peak transformer voltage, I am not sure that the use of an auxiliary battery supply is worth while. If the mains supply is left 'on' permanently the extra power consumed in the idle condition is small, while turning it 'off does not really increase the safety, since at any time a telephone can be lifted turning it 'on' again. Talking of safety, though, it would be advisable to adopt the recommencations given in Mr N . Monk's letter in this issue. I would also advise connecting a 0.25 A thermal cutout in place of, or in series with, FS2. This will protect the uniselector coils from overheating if any fault should cause them to be permanently energized (when their current will rise to 0.75 A as opposed to an average of 125 mA when stepping).

Finally there is a couple of mistakes on the original circuit diagram. RLJ $/ 3$ should be a normally closed contact, and the zener diode, D_{5}, should be reversed.

April Meetings

Tickets are required for some meetings: readers are advised, therefore, to communicate with the society concerned

LONDON

6ih. IERE - "Visual telecommunication systems a review of some technical problems" by I. Macdiarmid at 18.00 at the Engineering Lecture Theatre. University College, Torrington PI., W.C.1.

10th. IEE - "B.B.C's television management information systems" by C. Lashmar and G. D Cook at 17.30 at Savoy PI., W.C.2.
11th. IEE - Discussion on "Magnetic bubbles" at 17.30 at Savoy PI., W.C.2.
llth. IEE Grads - "Minicomputers and automation" by J. Woodcock at 18.30 at Savoy PI. W.C.2.

1lth. AES - "The control of acoustic feedback by room equalization - some recent investigations" by J. H. Kogen at 19.15 at the Mechanical Engineering Dept., Imperial College. Exhibition Rd., S.W. 7.

12th. IEE - "Computer programming as an engineering discipline" by Professor C. A. R. Hoare at 17.30 at Savoy PI., W.C.2.

12th. SERT - "The Philips video cassette recorder" by R. Smith at 19.00 at I.T.A., 70 Brompton Rd., S.W. 3 .

13th. IEE - Discussion on "The electrical and electronic systems in Concorde" at 18.00 at Savoy PI.. W.C. 2 .
13th. RTS - Fleming memorial lecture "A television service fit for artists" by Dr. G. B. Townsend at 19.00 at the Royal Institution, Albemarle St., W.I

17th. IEETE - Panel meeting on "Electronics" at 18.00 at IEE Lecture Theatre. Savoy PI.. W.C.2.

18th. IERE - "Modern dynamic measurement techniques" by J. D. Lamb and P. A. Payne at 18.00 at the Engineering Lecture Theatre, University College London. Torrington PI., W.C.I.

19th. Inst. Nav. - "Long haul airlines and satellite communications" by J. O. Clark at 17.00 at the Royal Aeronautical Society, 4 Hamilton PI., W.I.

19th. IERE - "The consequences of innovation on society" by R. Loveridge at 18.00 at the Engineering Lecture Theatre. University College, Torrington Pl., W.C.I.

20th. IEE - Colloquium on "Microwave mixers and mixer diodes" at 14.00 at Savoy Pl., W.C.2.

24th. IEE - Discussion on "Aesthetic aspects of aerial design and siting" at 17.30 at Savoy Pl., W.C.2.

25th. IEE - Colloquium on "Developments in oscilloscopes" at 10.00 at Savoy Pl., W.C. 2 .

25th. IERE/Inst. Nav. - Colloquium on "Fligh deck displays and instrumentation for future civil short-field aircraft" at 10.30 at Mullard House, Torrington PI., W.C.I.

26th. IEE - Discussion on "Coaxial digital transmission at 120 M biss" at 17.30 at Savoy PI. W.C. 2 .

27th. IEE - Kelvin lecture on "Crystals" by Prof. F. C. Frank, at 17.30 at Savoy PI., W.C.2.

BIRMINGHAM

6th. SERT - Colour television forum demonstrations and lectures by British television manufacturers at 19.30 at The Byng Kendrick Suite, University of Aston, Gosta Green.
20th. IEE Grads - "Electronic organs" by J. D Ward at 19.30 at the MEB Offices, Summer Lane.

BRISTOL

20th. SERT - "Thorn 8000 colour television receiver" by A. E. Cullum at 19.30 at Cabot House, Bristol Polytechnic, Ashley Down Road.

CAMBRIDGE

6th. SERT - "Pulse code modulation" by C. G. Williams at 19.30 at Cambridge College of Technology, Collier Road.

CARDIFF

25th. IEE Grads -- "Communications: tomorrows wortd" by T. Rowbotham at 19.00 at U.W.I.S.T.

CARLISLE

12 th. IEETE - "Colour television" by A. D. Campion at 19.30 at the Technical College, Victoria Place.

CARMARTHEN

19th. IEETE - "Communication by satellite" by V. C. Meller at 19.30 at the Carmarthen Technical and Agricultural College.

CHELMSFORD

25th. IERE/IEE - "History of the television camera tube" by W. Turk at 18.30 at the Civic Centre.

DUNDEE

18th. IEE Grads - "The planning and development of v.h.f. networks for television" by T. Sykes at 19.30 at Fulton Bldg., Dundee University;

EVESHAM

18th. IEE Grads -- "From cylinder to stereo" by G. Garside at 19.30 at BBC Club.

IPSWICH

19th. IEE - "Electronics in medicine" by M. F. Docker at 18.30 at Civic College.

LIVERPOOL

26th. IERE - "The engineer doctor relationship" by H. S. Wolff at 19.00 at the Department of Electrical Engineering and Electronics, the University.

LYNEHAM

11th. IEETE - "Micro-electronics" at 19.30 at Royal Air Force Station.

MALVERN

13th. IERE - "Development of television relay stations" by B. C. Taylor at 19.00 at The Abbey Hotel.

MANCHESTER

20th. IERE - "U.H.F. mobile radio telephones" by W. H. Wheel at 18.15 at Renold Building, U.M.I.S.T.

20th. SERT - "Disc recording" at 19.30 at Renold Building, U.M.I.S.T.

NEWCASTLE-UPON-TYNE

5th. IEE - "Satellite television broadcast reception" by K. G. Freeman at 18.30 at the Polytechnic.

12th. IERE -- "Recent developments in colour television cameras" by K. G. Johnson at 18.00 at Ellison Building, Polytechnic, Ellison PI.

READING

12th. IERE - "Thick film hybrid circuits" by G. Brooke and W. E. B. Baldwin at 19.30 at the J. J. Thomson Laboratory, University of Reading, Whiteknights Park.

SWANSEA

13th. IERE/IEE - "Measurement of oceanographic variables" by Dr. W. R. Parker at 18.15 at the Department of Applied Science, University College.

WOLVERHAMPTON

12th. IERE - "An outline of loudspeaker design" by R. H. Fisher at 19.15 at the Polytechnic.
26ih. IERE - "The Industrial Relations Act and the chartered engineer" at 19.15 at the Polytechnic.

New Products

Polycarbonate capacitors

Housed in flame-proof nylon cases, type CSK polycarbonate capacitors from Seatronics (UK) are designed for high density packaging on printed-circuit boards. Capacitance range is 0.01 to $10 \mu \mathrm{~F}$ with $\pm 10 \%$ and $\pm 5 \%$ tolerance over the working voltage range of 63 to 400 V d.c. Tan delta is less than 0.003 at 1 kHz and the capacitors wilt withstand a 50% increase in the working voltage for 30 seconds. The normal operating temperature range is -55° to $+85^{\circ} \mathrm{C}$. Seatronics (UK) Ltd, 22-25 Finsbury Square, London EC2A 1DT.
WW305 for further details

$\mathbf{2 5 0 M H z}$ timer/counter

A resolution of 1 Hz is achievable at maximum frequency on the nine-digit timer/counter by Advance Electronics. Known as the TC14/15, it uses Motorola MECL3 emitter-coupled logic. Input sensitivity is 10 mV at an input impedance of $1 \mathrm{~m} \Omega$ in parallel with 18 pF , reducing to 12 pF for a sensitivity of 100 or 500 mV . The full track version, TC15, will accept plug-in units, one extending the range to 500 MHz with a new Plessey i.c. divider and especially useful in mobile communications. (This unit has an input impedance of 50Ω.) A fast warm-up 10 MHz crystal oscillator
gives a stability of ± 1 in 10^{7} from 0 to $50^{\circ} \mathrm{C}$, and an alternate oscillator is available with a stability of ± 5 in 10^{8} (after 45 min warm up). Accurate triggering is claimed with 'difficult' waveforms. Trigger level is continuously variable over a range ± 10 times the sensitivity. Advance Electronics Ltd, Raynham Road, Bishop's Stortford, Herts.
WW331 for further details

Analogue multimeter

A linear resistance measurement scale and overload protection permitting a.c. mains voltage to be applied to any input range, or any combination of inputs without damaging the instrument, are features of the Philips PM 2404 analogue multimeter introduced in the U.K. by Pye Unicam. The instrument covers both a.c. and d.c. voltages from 100 mV to 1000 V f.s.d., with an input impedance of $10 \mathrm{M} \Omega$, in nine ranges with a $1: 3: 10$ switching sequence plus currents of from 1 mA to 10 A f.s.d. in a similar range switching sequence. On resistance measurements a constant current circuit is employed to obtain the linear resistance ranges. With both current and voltage parameters, polarity is indicated automatically by a small moving-coil meter built into the main unit. The overload protection facility permits a.c. or d.c. voltages up to 250 V to be connected

Low-cost sine/square oscillator

Lyons Instruments are producing a new series of low-cost instruments. First in the new 'Interlab' series is the SQ10, a signal source with low sine-wave distortion and fast square-wave rise time together with 50Ω source impedance and high output amplitude. Frequency range is $10 \mathrm{~Hz}-$ 1 MHz , and signal amplitude 10 V p-p (3.5 V r.m.s. sine) into 250Ω or greater, 5 V p-p into 100Ω, and 2.5 V p-p into 50Ω. The

attenuator gives $0-40 \mathrm{~dB}$ in 20 dB steps and vernier. Sine-wave distortion is typically $0.05 \%, 50 \mathrm{~Hz}-100 \mathrm{kHz}$, less than 0.15% at 10 Hz , and 0.5% at 1 MHz . Rise time is typically 50 ns . Price $£ 57$. Lyons Instruments Ltd, Hoddesdon, Herts.
WW318 for further details

Digital voltmeters

A complete range of 12 digital voltmeters, all of the same size, appearance and panel layout but with different specifications and prices, has been introduced by Solartron. Called the Master Series, they do not offer any advance on present-day specifications but, rather, a wide range of user options within the same basic package. Between the 12 models the measurement options available are d.c. voltage $(0-10 \mathrm{mV}$ to 1.2 kV); a.c. voltage mean sensing $(0-100 \mathrm{mV}$ to $0-1.2 \mathrm{kV})$; a.c. voltage r.m.s. ($0-1 \mathrm{~V}$ to $0-1.2 \mathrm{kV}$); d.c. ratio; $2 / 4$ terminal resistance; normal speed ($10 / \mathrm{s}$) or high speed operation ($100 / \mathrm{s}$); isolated outputs and programming; and mains locked integration. Maximum voltage sensitivities are either $1 \mu \mathrm{~V}$ (ten models) or $10 \mu \mathrm{~V}$, and
maximum current sensitivity 100 pA . Eight models have 6-digit and four models 5-digit displays. Protection against wrong range selection is included, and all inputs are floating. Auxiliary modules available are for a.c. and d.c. current measurement; off-limit detection; pre-selected programming of measurements; linearization, a.c./a.c. ratio, Ω / Ω ratio; and outpat encoding for paper tape punches, teleprinters etc. Prices for ten models range from $£ 495$ to $£ 1,190$ with those for two models to be announced. The Solartron Electronic Group Ltd, Farnborough, Hants.
WW333 for further details

Digital multimeter

Digitest 501 from Dynamco is a small, general-purpose multimeter employing a simple grid selection of function and range. It measures from $100 \mu \mathrm{~V}$ to 1 kV d.c., $100 \mu \mathrm{~V}$

to 420 V a.c. $100 \mathrm{~m} \Omega$ to $1.5 \mathrm{M} \Omega$, and 100 nA to 1.5 A (with shunt option) a.c. and d.c. It has a scale accuracy of 0.3% to 1.5% according to the function selected. Price £89. Dynamco, The Street, Shalford, Guildford, Surrey.
WW308 for further details

Audio modules

A range of printed-circuit plug-in modules intended for use in studios, public address and discotheque sound systems is made by Chadacre Electronics. The range includes a tone control/equalizer, line output amplifier (600 ohm), disc input and microphone pre-amplifiers, VU meter driver, mixing. amplifier, headphone amplifier, line-up oscillator, ring modulator, v.c.o., envelope shaper, noise generator, 'phasing' circuit and four-channel pan pot. As well, there is a compressor module, six-channel mixer.. a band-pass filter with variable Q, noise generator and spring reverberation unit. all available in cases, but without power supplies. Most units require a 24 V power supply. Chadacre Electronics Ltd, 43 Chadacre Avenue, Clayhall, Ilford, Essex. WW334 for further details

Wafer switch kits

The N.S.F. model MK rotary wafer switch is now available from Celdis in kit form. The switches have $1 \frac{1}{2}$ in diameter moulded wafers with up to 12 switching positions

with one, two or four poles per wafer. Contact rating is 5 A continuous at 300 V a.c./d.c. Switching capability is 60 mA at 250 V d.c., 150 mA at 250 V a.c. (r.m.s.). Shaft assemblies have a standard index mechanism with an operating torque of 25 oz . in and are available in 1,2 and 3 in lengths. Celdis Ltd, 37/39 Loverock Road, Reading, Berks. RG3 1ED.
WW322 for further details

High-voltage pulse generator

A kilovolt pulse generator providing pulse widths between 3 and 100 ns with rise and fall times of 1 ns has been announced by Instrument Technology. The amplitude of the pulses is continuously variable between 1 kV and 9 kV , and a pulse repetition rate of up to 100 Hz is possible. The unit has a delay trigger circuit giving 20 ns delay with lns jitter. Switch selection of either signal shot (push button) or repetitive shot is provided, with the repetitive application requiring a 5 V positive external trigger. Instrument Technology Ltd, 67 Lower Road, Kenley, Surrey.
WW309 for further details

Null balance voltage calibrator

A portable battery-powered d.c. voltage calibrator which incorporates a null balance indicator, is available from Time Electronics. Sensitivity is better than $2 \mu \mathrm{~V}$ per division allowing voltages down to 1 mV to be measured to better than 0.1% accuracy

with the convenience of direct digital real out. The basic accuracy of the instrument is $\pm 0.05 \%$ of reading with the option of a $\pm 0.02 \%$ version. Voltages from $1_{\mu} \mathrm{V}$ to 10 V can be measured on five ranges. The circuit uses a Muirhead standard cell ab the basic reference source. A chopper stabilized amplifier ${ }^{-}$provides voltage accuracy better than 25 p.p.m. $/{ }^{\circ} \mathrm{C}$ and $100 \mathrm{p} . \mathrm{pm}$. per annum. When used for calibration purposes the instrument can supply up to 25 mA without loss of accuracy. Time Electronics Ltd, Elliott Road, Bromley, Kent BR29PA. WW303 for further details

Push-button tuner

Sydney S. Bird \& Sons have introduced a new push-button tuner for car radto receivers with the special alvantage of enabling manufacturers to design sets down to 42 mm high while still being suitable for receivers up to 51 mm high and wh U.K. and Continental spindle centre, of

130 mm and 138 mm . The AWI60 serice tuner can be supplied win 2. 3. 4. \because, coils giving a.m. and f.m. operations. and the five buttons may be sequenced in any combination of medium-wave. long-wave. or f.m. Sydney S. Bird \& Sons Ltd. Cyldon Works, Fleets Lane. Poole. Dorset.
WW319 for further details

Microwave IMPATT diodes

New diodes from Hewlett-Packard are claimed to be the first silicon IMPATTs to achieve microwave power levels higher than IW.

Characteristics

Frequency range

C.W. output power (minimum)

Maximum junction temp. rise at rated power
Operating voltage (typical)
Operating current (typical)
Efficiency (typical)
Thermal resistance (typical)
Junction capacitance at breakdown (typical)
The larger junction area needed is achieved by paralleling four diodes on a single c'ip. Hewlett-Packard Ltd, 224 Bath Road, Slough Bucks. SL1 4DS.
WW321 for further details

Low-noise professional tape

A matt-backed a.f. tape for professional use and with the high-performance properties of untreated tape has been developed and introduced by EMI. The tape (type 816) is claimed to be superior to other matt-backed tapes in terms of both modulation noise and print through. (The advantage of matt-backed tapes is the higher 'spooling' speed and uniform wind.) A recently developed method of measuring modulation noise, which gives better agreement between noise and its subjective effect, is used in assessing the new tape. Ratio of $1-\mathrm{kHz}$ maximum replay level to a.m. noise is -38.5 dB , to d.c. noise is -49 dB and to bias noise is -74 dB $(6.55 \mathrm{~mm}$ track width, $38 \mathrm{~cm} / \mathrm{s})$. The tape is available in the four standard widths and is intended for operation at 38 or $19 \mathrm{~cm} / \mathrm{s}$. EMI Tape Ltd, Hayes, Middx.

WW301 for further details

Fault locator for long cables

The Takeda TR-4902 digital cable-fault locator from Euro Electronic Instruments, gives a direct reading of fault position or cable length for submarine, underground, communications, or aerial cables. Using an electronic counter to measure the interval

$5082-0424$	$5082-0425$	$5082-0426$	
$5.3-8$	$8-10$	$10-13.5$	GHz
1.5	1.25	1.0	W
175	175	175	${ }^{\circ} \mathrm{C}$
125	100	80	V
220	210	200	mA
6.5	7.0	7.0	$\%$
5.0	7.0	9.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
1.7	1.4	1.5	pF

between transmitted and reflected pulses, which are displayed on a built-in monitor oscilloscope, the system achieves an accuracy of 0.1%, with a resolution of 1 metre over its distance measuring range of 20 to 19,999 metres. Front panel controls are provided for setting the propagation constant of the cable under test and for varying the pulse width when required. The distance to the fault or to the end of the cable is given in metres as a directreading 5 -digit display. Euro Electronic Instruments Ltd, Shirley House, 27 Camden Road, London N.W.1:
WW306 for further details

TV camera for low light levels

The Esicon (TX538), a sensitive pick-up tube from Thomson-CSF, uses lin vidicontype hardware. The principle of operation is that within an image section electrons emitted by the photocathode are acceler-

ated, focused, and then strike one side of an electron multiplier target, where they are then multiplied while penetrating the target material. On the readout side, the 'charge

pattern' is analyzed by means of a low velocity vidicon-type electron beam. The purely dielectric nature of the target permits long lasting charge accumulation: faint images can be extracted out of the photon noise and enhanced through integration. Lag is very low, allowing non-smeared pictures with fast moving objects. As the Esicon photocathode is deposited on a fibre optic faceplate, an image intensifier stage can easily be coupled in front of the pick-up tube. As such the Super-Esicon (TX540) is capable of live pick-up for example in the low light level conditions of an overcast, moonless night (10^{-4} to 10^{-5} lux). If an appropriate scintillator crystal is attached in front of the photocathode of the Esicon (or of the image intensifier stage) the device becomes sensitive to X , gamma or neutron radiation. Thomson-CSF Electronic Tubes Ltd, Bilton House, Uxbridge Road, Ealing, London W5 2TT.
WW327 for further details

Mains input filters

Waycom Semiconductors are marketing the Schaffner FN series of encapsulated mains input filters handling up to 15A. The series provides high attenuation of frequencies up to 300 MHz , and units are available in either plastic or metal cases. Waycom Semiconductors Ltd, Wokingham Road, Bracknell, Berks.
WW326 for further details

High-current silicon transistors

Two TO3 encapsulated transistors, types 2N3771 and 2N3772, with a maximum dissipation rating of 150 W and a current rating of 30 A are available from Mullard. Both are n-p-n devices. Characteristics:

	2 N 3771	2 N 3772	
Max. $V_{C B O}$	50	100	V
Max. $V_{C E O}$	40	60	V
Max. $I_{C M}$	30	30	A
Max. dissipation,			
$P_{\text {tot }}$	150	150	W
Max. junction			
temperature	200	200	${ }^{\circ} \mathrm{C}$
$h_{F E}$			
$V_{C E}=4 \mathrm{~V}$,		15 to 60	
$I_{C}=10 \mathrm{~A}$	-	15	
$V_{C E}=4 \mathrm{~V}$,			
$I_{C}=15 \mathrm{~A}$	15 to 60	-	

Mullard Ltd, Mullard House, Torrington Place, London WC1E 7HD.
WW310 for further details

Logic-card range

A new type of logic card has been introduced by Viking Industries (UK) to accept 14- and 16 -pin i.c. sockets and wire-wrap posts for discrete components in any

combination. Two card sizes are available ($4.5 \times 4.5 \mathrm{in}$ and $9.25 \times 4.5 \mathrm{in}$) giving an almost unlimited number of configurations. Both sizes have 35 -way double-sided goldplated contacts for standard p.c. connectors. Cards with pins already inserted to customer requirements can be supplied. Viking Industries (UK) Ltd, Barton Industrial Estate, Faldo Road, Barton-leClay, Beds.
WW311 for further details

Insulating washers

Insulating washers for semiconductors in TO-3, TO-66 (2 and 9pin), SO-55, DO-4, DO-5 and 'thermatab' packages are now available from Jermyn. Manufactured from I.C.I. 'Melinex' polyester film the washers

are 0.002 in thick, tough, and flexible. The thermal performance is good.- for the TO-3 washer it is typically $0.8^{\circ} \mathrm{C} / \mathrm{W}$ including the two interfaces. Jermyn Industries, Vestry Estate, Sevenoaks, Kent. WW315 for further details

Low cost diacs

Hutson Industries type D-30 diac, from Claude Lyons, is suitable for use as a trigger for triacs and s.c.rs. The breakover voltage is $32 \mathrm{~V} \pm 4 \mathrm{~V}$, and breakover symmetry $\pm 3 \mathrm{~V}$. The diode is DO-7 encapsulated. Prices start at 22 p for 1-24. Claude Lyons Ltd, Hoddesdon, Herts.
WW320 for further details

40MHz oscilloscope

A dual-beam, 40 MHz oscilloscope made by Advance Electronics has a deflection factor of $5 \mathrm{mV} / \mathrm{cm}$ at full bandwidth. The solid-state oscilloscope, type OS3000, has an alternate deflection factor of $1 \mathrm{mV} / \mathrm{cm}$
up to 10 MHz . A dual timebase with calibrated delay fives a choice of timebase A only, A bright-up by B, B delayed by A, or A and B mixed, this last a feature new to oscilloscopes of the same cost. (Ranges extend from $2 \mathrm{~s} / \mathrm{cm}$ to $200 \mathrm{~ns} / \mathrm{cm}$, and down to $20 \mathrm{~ns} / \mathrm{cm}$ with 8×10 expansion.) It is designed for easy customer repair the timebase, power supply and e.h.t. units for instance are easily removed and extension leads allow oscilloscope operation with the units removed. A useful feature is

a Y-amplifier output which permits cascade operation of the two Y -amplifiers to give a deflection factor of $200 \mu \mathrm{~V} / \mathrm{cm}$. The Y-amplifier output can also of course be used to feed the X -input. Rise time of the Y amplifiers is less than 9ns. Overshoot is constant with varying attenuation. Display area is $10 \times 8 \mathrm{~cm}$. Price $£ 360$. Advance Electronics Ltd, Raynham Road, Bishop's Stortford, Herts.
WW329 for further details

D.C. millivoltmeter

A wide-range millivoltmeter from Noronix, type NVM 1, has 11 voltage ranges from 100 V full-scale down to a maximum sensitivity of 1 mV full-scale, giving $10 \mu \mathrm{~V}$ resolution. Input resistance is $1 \mathrm{M} \Omega / \mathrm{V}$. For transducer applications a full-scale reading may be obtained with a signal anywhere in the range $300 \mu \mathrm{~V}$ to 100 V . The case is nylon-coated steel with recessed plastic-fronted meter. The meter will with-

stand high electrical overloads. The battery power supply is stabilized, and the 'sampling-chopper' d.c. amplifier gives good rejection of interfering a.c. signals. Price £36. Noronix Ltd, Love Lane, Woolwich, London SE 18 6HL.
WW328 for further details

Electrolytic capacitors

Single or multiple section electrolytic capacitors, type 35D from Sprague, are available in the range $6.3-450 \mathrm{~V}$. The largest capacitance available for standard units is $2 \times 23,500 \mu \mathrm{~F}$ at 6.3 V d.c. The capacitors can be operated over a temperature range of -40 to $+85^{\circ} \mathrm{C}$, and can tolerate high ripple current. A pressure-type safety vent is standard. Sprague Electric (UK) Ltd, 159 High Street, Yiewsley, West Drayton, Middx.
WW323 for further details

Miniature light-emitters

Light-emitting diodes types 183CQY and 185 CQY from Mullard, are miniature gallium arsenide phosphide devices that emit bright red light through a wide angle. The 183 CQY is intended to replace conventional indicator lamps in systems that use solidstate circuits. It operates with a power supply of 2 V at 20 mA to produce a radiation with an intensity of $170 \mathrm{~cd} / \mathrm{m}^{2}$, and has an impedance of about 100Ω. The 185 CQY can display the numbers 0 to 9 and the decimal point. It operates with a power supply of 2 V at 5 mA and emits radiation with an intensity of $684 \mathrm{~cd} / \mathrm{m}^{2}$. The numbers, which measure only $2 \times 3 \mathrm{~mm}$ are formed as a standard 7 -segment display. Mullard Ltd, Mullard House, Torrington Place, London WC1E 7HD. WW314 for further details

High-voltage pulse transformer

A 30 kV pulse transformer model 355-30, manufactured by Hartley Measurements, is designed to trigger spark gaps, flash tubes, etc, It can be operated by a low-cost thyristor circuit or, for high-speed applications by a thyratron. It measures $96 \times 25 \times$ 25 mm approx. and is suitable for printedcircuit board mounting. Output is 30 kV for a 300 V input pulse; rise time less than $1 \mu \mathrm{~s}$. Hartley Measurements Ltd, Kent House, High Street, Hartley Wintney, Hants.
WW307 for further details

High-resolution digital voltmeter

Model 701 digital voltmeter from Fenlow has a resolution of 1 part in 20,000 , sensitivity of $10 \mu \mathrm{~V}$, input resistance of $20,000 \mathrm{M} \Omega$ and accuracy of 0.01%. A new

conversion technique employed avoids switching at low levels. Series mode rejection is 80 dB . The instrument measures $210 \times 75 \times 140 \mathrm{~mm}$ approx. Price $£ 198$. Fenlow Electronics Ltd, Whittet's Eyot, Jessamy Road, Weybridge, Surrey.
WW313 for further details

Low-power audio amplifier i.c.

An integrated circuit audio amplifier, type TBA915, from Mullard, is intended for use in portable receivers and miniature transmitter-receivers where small battery size is important. Under typical operating conditions, the circuit normally takes a current of 2.5 mA when quiescent, but a squelch facility can reduce this to $400 \mu \mathrm{~A}$. Output is up to 500 mW . The highfrequency response of the TBA915 can be adjusted by means of capacitance in the feedback path. An input of 10 mV will produce full output; signal-to-noise ratio at this power level is 75 dB . Encapsulation is TO-74. Mullard Ltd., Mullard House, Torrington Place, London WC1E 7HD. WW330 for further details

Quadraphonic pan pot

Intended for studio use, the quadraphonic panoramic potentiometer made by Sigma Products claims to be cheaper than its competitors. Movement of a single control knob gives proportional control of four potentiometers. The potentiometers are high-resolution, low-noise wirewound types
with a value of $3.9 \mathrm{k} \Omega$ and a linear law (The law can be modified with external resistors.) Unit price is $£ 15.75$. Sigma Products Ltd, 72 St. Andrews Road, Northampton. WW302 for further details

Bistable relay

Magnetic Devices have announced a bistable relay with coils for d.c. working. With each successive operation the solenoid actuates a cam into either high or low positions. Thus the contacts are operated every alternate time the relay is energized. Contact arrangements are built

up as required from single pole to a maximum of four poles. Provision is made for alternative contacts which can be operated direct from the solenoid if required. Coils can be wound for up to 230 V d.c. Magnetic Devices Ltd, Exning Road, Newmarket, Suffolk.
WW312 for further details

Solid-state microwave signal source

Microwave signal source, type 6070 from Marconi Instruments covers the frequencies 400 to 1200 MHz in a single range. It has mechanical/digital readout. The instrument contains an i.c. power supply, square-wave generator and modulator drive circuit assembled on to a single printed-circuit board fitted with an edge connector. Frequency stability is typically 0.001%. A transistor cavity-controlled oscillator gives a minimum power output over the whole frequency band in excess of 50 mW with a typical maximum power of 250 mW . The r.f. output line incorporates a p-i-n
diode modulator and low-pass filter. External amplitude and modulation can be applied through a front panel B.N.C. socket. Optional accessories include a levelling amplifier and a wideband detector. Marconi Instruments Ltd, St. Albans, Herts.
WW324 for further details

Encapsulated bridge rectifiers

Two silicon single-phase bridge rectifier assemblies from Westinghouse, types SxPF3 and SxPF4, have voltage ratings of $80-1000 \mathrm{~V}_{\text {RRM }}$. Current ratings are 9 A (225A overload) and 13A (300A overload) for the SxPF3 and SxPF4 respectively. Prices are $£ 108$ per 100 for the S1PF3 (100V) and $£ 127$ per 100 for S1PF4 (100V). Westinghouse Brake and Signal Co. Ltd, 82 York Way, King's Cross, London N1 9AJ.
WW325 for further details

Pulse generator

Model TT100 the first of a new range of pulse generators from K.S.M. Electronics provides a p.r.f. of $1 \mathrm{~Hz}-7 \mathrm{MHz}$, delay of $50 \mathrm{~ns}-1 \mathrm{~s}$, pulse width of $50 \mathrm{~ns}-1 \mathrm{~s}$, and a positive and negative pulse obtained from separate sockets, each pulse being variable from zero to 10 V into 50Ω. The instrument measures $89 \times 140 \times 324 \mathrm{~mm}$. K.S.M. Electronics Ltd, Bradmore Works, Brookmans Park, Hatfield, Herts.
WW317 for further details

Versatile multimeter

The Normatest 2000, made by Norma of Vienna and available in the U.K. from Croydon Precision Instrument Co, has 41 ranges with facilities for the measurement of a.c. and d.c. voltage and current, resistance, temperature and gain. It has an internal resistance of $20,000 \Omega / \mathrm{V}$ d.c. and $4,000 \Omega / \mathrm{V}$ a.c. The moving-coil system is

a taut-band suspension with a short-term overload capacity of 1,000 to 1 and a builtin fuse to ensure maximum overload protection. The instrument is contained in a plastic case and accessories such as temperature feelers, range multipliers and clip-on transformers are available. Price complete with carrying case and test leads is $£ 17.50$. Croydon Precision Instrument Co., Hampton Road, Croydon CR9 2RU. WW304 for further details

Literature Received

For further information on any item include the appropriate $W W$ number on the reader reply card

active devices

The 1972 catalogue from Chromasonic Electronics, 56 Fortis Green Road, London N 10 3HN, gives prices and specifications of all their components (active and passive)

WW401
A data sheet is available on the MM1101, 11011, MM1101A1 and 1101A2 256-bit fully decoded static random access memory i.cs and an application note on the use of MM5260. National Semiconductor (U.K.) Ltd, Larkfield Industrial Estate, Greenock, Scotland

WW402
Specifications of a 30A (Io) power thyristor 31RCS. are given in a data sheet from International Rectifier, Hurst Green, Oxted, Surrey
...WW403
James Millen Manufacturing Co. Inc, 150 Exchange Street, Malden, Massachusetts 02148 , have sent us a booklet containing details of their components, grid dip meters, amateur radio equipment, module oscilloscopes, magnetic shields and delay lines

We have a booklet describing Signetics range of linear and operational amplifiers, comparators, phase locked loops and m.o.s. products. Quarndon Electronics Ltd, Slack Lane, Derby . \qquad .WW444

PASSIVE COMPONENTS

Celdis Ltd, Loverock Road, Reading - distributor for London Electrical Manufacturing Co. Ltd have produced a wall chart for comparison of dielectrics
...WW404
A brochure 'Aerials and Accessories' gives technical details of equipment from J. Beam Aerials Ltd, Rothersthorpe Crescent, NorthamptonWW405

A catalogue contains details of the range of quartz crystal filters manufactured by Salford Electrical Instruments Ltd. Peel Works. Eccles. Manchester M30 OHL
.WW406
Two publications about Cambion Electronic Products Ltd, Cambion Works, Castleton, Nr. Sheffield, S30 2WR are:

Multilanguage Catalogue 102A on terminals, r.f. chokes and connectorsWW407
'Product News'
.WW408
A data sheet is available covering all switches from Birch-Stolec Ltd, Ponswood Industrial Estate, Windmill Road, Hastings, Sussex \qquad WW411

APPLICATIONS

Technical Publication No. 4 from Waycom Semiconductors Ltd, Wokingham Road, Bracknell, Berks, is called 'Mains Filters for Equipment using Digital Integrated Circuits' \qquad ...WW412
'Detecting Sources of Vibration and Noise using H.P. Fourier Analyzers' is note $140-1$ from Hewlett-Packard Ltd, 224 Bath Road, Slough, Bucks ...WW413

EQUIPMENT

A leaflet is available on modular 35 MHz oscilloscope 3100. Cossor Electronics Ltd, The Pinnacles, Elizabeth Way, Harlow, EssexWW414
'Abridged catalogue of process instrumentations' is a booklet giving general information on products from Honeywell Ltd, Charles Square, Bracknell, Berkshire
.WW415
We have received two publications from Foxboro-Yoxail Ltd, Redhill, Surrey.
'Process Control Information: with explanatory notes'..WW416 Details of the extended process computer range, FOX2 ..WW417

Data sheets on recent Rhode \& Schwarz instruments are available. Aveley Electric Ltd, Arisdale Avenue, South Ockendon, Essex RM15 5SRWW418

Aero Electronics (AEL) Ltd, Gatwick House, Horley, Surrey, have several data sheets describing a range of radio communications equipment, which includes the h.f. s.s.b. transceiver AEL 3015A
..WW419
Catalogue No. 8172 ('Electronics Catalogue 1972') from Eagle International, Precision Centre, Heather Park Drive, Wembley, Middx, describes their range of audio equipment, electronic components and accessories
.WW420
Digital measuring instruments from Farnell Instruments Ltd, Sandbeck Way, Wetherby, Yorkshire LS22 4DH, are described in Publication T1

WW421
We have a leaflet describing a range of audible circuit and voltage testers produced by Coventry Controls Ltd, Godiva House, 49 Allesley Old Road, Coventry CV5 8BU

WW422
Specification sheets of the range of Audix products are contained in a booklet.. Audio Sound Systems and Electronics, Stansted, EssexWW423

A booklet on sound control consoles gives general facilities and performance specifications. Cadac (London) Ltd, Stansted, EssexWW424

Data sheets on the products of At Yu Electronics cover oscilloscopes, phase meters and power supplies. B. Hepworth \& Co. Ltd, P.O. Box 10, Bank Buildings, Kidderminster, Worcs.WW425

Tally Corporation, 8301 South 180th Street, Kent, Washington 98031, have sent us a leaflet describing their on- and off-line print stationWW 426

The Soundcraftsmen RP10-12 professional recording/playback equalizer is described in a news sheet. The unit is for tape, disc and p.a. use. Soundcraftsmen: 1310 E. Wakenham Avenue, Santa Ana, California 92705
.WW427
We have a leaflet describing the Series IT7000 ignition tachometer. The meter is for use with capacitor electronic ignition systems. Dynalco Corporation, 4107 N.E. 6th Avenue, Ft. Lauderdale, Florida 33308
.WW428
LI Newsletter' contains product news from Lyons Instruments Ltd, Hoddesdon, HertsWW429

Computer Automation Incorporated Ltd, 95a High Street, Rickmansworth, Herts, have sent us a leaflet on CAPABLE - a minicomputer-based logic circuit testing system.
..WW430
A news sheet describes model 3720A spectrum display, which provides frequency and time analysis of electrical signals when combined with digital correlator 3721A. Hewlett-Packard Ltd, 224 Bath Road, Slough, Bucks, SL1 4DS
.WW431
A series of electronic units from Ortofon for disc recording studios includes a cutting head amplifier (GO 701), which can transfer a sine wave power of 500 W . The amplifier and its power supply (GE 701) are described in a leaflet. Ortofon A/S, 5 Trommesalen, DK-1614 Copenhagen V, Denmark
..WW445
GENERAL INFORMATION
'General Conditions of Contract 1972: Parts I \& II' is a revised version applicable from 1st March 1972. Crown Agents (for overseas governments and administrations), CS Department, 4 Millbank, London SWIP 3JDWW433

Portescap (U.K.) Ltd, 204 Elgar Road, Reading, RG2 ODD, have produced the ESCAP 26P series of high-performance d.c. micromotors, which are described in a leafletWW435

We have received details of the new electronic maintenance and calibration service for test and measuring equipment offered by EMI Service, The Installation and Maintenance Division of EMI Electronics Ltd, Blyth Road, Hayes, Middx..WW436

Five publications from the British Standards Institution. 2 Park Street. London WIA 2BS are:

BS9027: 1972 'Rules for the preparation of detail specifications for forward travelling - wave power tubes of assessed quality'Price $£ 1$ BS9610:1972 'Quartz crystal units of assessed quality for oscillator applications: Generic data and methods of test'Price £2 BS 9000 'General requirements for electronic components of assessed quality Part 2:1972 Data on generic and detail specifications’Price $£ 1.10$ BS800 Part 1:1972 'Radio interference limits and measurements. Equipment embodying small motors' ..Price 90p BS800 Part 3:1972 'Radio interference limits and measurements. Semiconductor control devices'

We have received two leaflets from the British Broadcasting Corporation, Engineering Information Department, Broadcasting House, London W1A 1AA.
'How to receive B.B.C. T.V. 625 lines and colour' 'V.H.F. radio transmitting stations'

Studio 99 Video Ltd, 81 Fairfax Road, Swiss Cottage, London N.W.6, have sent us a new list of video tape prices and 'Fact Sheet No. 2' containing information on new products and using microphones and TV cameras in poor light
.WW439
'Multirange' units for use with Interscale educational instruments are described in a leaflet. White Electrical Instrument Co. Ltd, Spring Lane North, Malvern Link, Worcs, WR14 1BLWW440
'Special Metals' is a leaflet (German or English versions), which summarizes available metals and applications. There is also a sheet on rhodium and iridium crucibles for the production of monocrystals. Degussa Public Relations Department, D6000 Frankfurt am Main 1, Postfach 3993WW44

Butterworths, 88 Kingsway, London WC2B 6AB, have produced two leaflets describing books available on radio and television WW442

Information on educational literature from Mullard Ltd, New Road, Mitcham, Surrey CR4 4XY is contained in the 'Educational Service Bulletin'
.WW409
Details and prices of new films (On to Mach-2, Learning Metric, Intirumi, Insight, Momentum of Electrons, Looking at Ourselves) are given in a leaflet from the Central Film Library, Government Building, Bromyard Avenue, Acton, London W3 7JB

WW4 10

Real and Imaginary

by "Vector"

'It will not last the night __,

Burning the candle at both ends, although an expressive metaphor, is something I find difficult to do literally; as a consequence this is being written with the aid of the conventional single-ended guttering flame - at the time of putting pen to paper we are still in the powercut era.

During the past few years we have had more than a basinful of national strikes; the postmen, the power-station engineers and now the miners have all made their respective points. The two last-mentioned have given those of us who live in all-electric homes, or rely upon electrically-operated fuel pumps, a sharp taste of what it must have been like to winter in the Flintstone era. Come to think about it though, the Flintstones had the edge over us with a crackling wood fire at the cave mouth.
'But our shivering won't have been in vain if it has made us reflect upon where our boasted technologies have got us.
This is the age of the specialist, in which the individual is quite helpless to provide at first hand the fundamentals of life for his family. More diabolical still, he can't even provide them at second hand unless he has the tacit approval of a handful of key men. In short, neither our own electronics industry nor any other is the discrete watertight compartment which in less troubled times we imagine it to be. We are inextricably linked one to the other, with main arteries feeding us with raw materials. A blockage of one of those sources and the country suffers a thrombosis.

Don't misunderstand me; I'm not knocking the miners. My own personal views about them (for what the thoughts are worth) are governed by the amount of money I would want for risking death by crushing, explosion, fire, gas or silicosis. No, it's the insane principle whereby 56 million people can be hi-jacked by a handful - however just their cause might be - which is the point at issue.

The basic trouble lies in that incredible computer which is the human brain; it's so fearfully adept at devising new technologies but so woefully inept at providing the wisdom with which to apply them properly. While lip-service is paid to easing the lot of the community the prime mover in technological innovation is profit; as a consequence we are exhausting world supplies of raw materials at a lunatic rate, destroying the balance of nature and
spreading pollution over the earth and the waters that cover the face of the earth. The last man on this planet will die alongside a huge pile of gold and diamonds and empty food and water pots.

When I first read Samuel Butler's 'Erewhon', well, frankly, I thought poor old Samuel wasn't in full possession of his marbles. You know the bit I'm referring to - where his hero finds that the Erewhonians had virtually no machinery in their country. At some stage in their history they had realised where the cult of technology was taking them and they had called a halt, relegating the machines to museums where they provided an admonitory lesson to the young. At the time of first reading I thought this concept incredibly stupid; only much later did I realise that the stupidity lay in me.

An old timer's lament

You'll have seen in the March issue (page 113) that broadcasting in this country celebrates its fiftieth anniversary this year. The first station was 2MT, Writtle, and the second, 2 LO , London.
The following lines were discovered on the body of an old-time radio engineer who died from an overdose of pop music: -
'I remember, I remember . . .' (With apologies to Thomas Hood)

I remember, I remember,
The, callsign 2MT
And 'Wr-r-r-rittle calling!' through the night
And P. P. Eckersley.
That half an hour just once a week Passed all too soon away
So we demanded then to have
A half an hour each day.
I remember, I remember,
The callsign 2LO
One hour per day we now received
We moaned 'That ration's low!' -
Today our punishment fits our crime
By greed we are undone -
We're lumbered now by day and night With squawking Radio One!

Mention of P. P. Eckersley, who was the first chief engineer of the B.B.C., reminds me that if you're interested in the beginning of things, try and get hold of a copy of his book 'The Power behind the Microphone' published in 1941 (Jonathan Cape) which gives an eminently readable
account of the start of broadcasting in this country. Writing of 2 MT Writtle he tells how (after dining at the 'local') he began that irreverent approach to the microphone which was to endear him to his audience. He continues:-
"We signed off with a theme song. I sang it in a high tenor voice to the tune of Tosti's 'Goodbye"

Dearest, the concert's ended, sad wails the heterodyne,

You must soon switch off your valves, I must soon switch off mine,

Write back and say you heard me, your 'hook-up' and where and how,

Quick! for the engine's failing; goodbye you old low-brow!"

His account in his book of how he applied for his first job is something which every young reader of W.W., keen to make electronics a career, would do well to remember. Eckersley says:-
"My simple dream on leaving Bedales [school] in 1911 was to figure as a leading man of science, a great wireless inventor. . . . It is a thousand pities that everyone, keen as I was, . . . cannot have the advice given me by the genial Mr. Andrew Gray, so many years Chief Engineer of Marconi's Wireless Telegraph Company. When Mr. Gray interviewed me he asked questions about wireless . . . to all of which he got intelligent and correct answers. He then switched to questions on electrical engineering. . . . It soon became clear that I knew little or nothing about electrical engineering. Mr. Gray delivered a little lecture, the gist of which was 'Wireless is only a branch of electrical engineering and electrical engineering is founded upon the principles of electricity and magnetism. First learn about these so that you will readily understand electrical engineering and then take up wireless, when you can rise, if you have ability, to the top of the profession. Otherwise you will be bound to stick somewhere short.' "
"Actually I think the tune was 'Parted'.

Snap, crackle and pop

Most readers have heard of shot noise, flicker noise, current (or i / f) noise and those noises which carry the familiar names of Johnson and Barkhausen, but who has heard of popcorn noise? Not many, I dare say. Nevertheless I came across this description, somewhat unexpectedly, in a Japanese technical journal. It turns out there is no distinguished Japanese researcher called Popcorn, nor is popcorn noise one of the unfortunate side effects of making transistors out of maize, but just a new name for what has previously been called burst or pulse noise - because it occurs as peaks of energy (typically several milliseconds apart) of much greater amplitude than the general noise waveform. I understand that one of the first people to study this type of noise, actually in 1956 in point contact germanium diodes, was Rex G. Pay for his M.Sc. thesis at Birmingham University.

the choice is yours

 ANALOGUE or DIGITAL

 ANALOGUE or DIGITAL 1Hz to 1MHz R.C. oscillators

 1Hz to 1MHz R.C. oscillators}

FREQUENCY
SINE OUTPUT

DISTORTION

SQUARE OUTPUT
SYNC. OUTPUT, SYNC. INPUT

> METER SCALES

SIZE \& WEIGHT TG200 TG200D TG200M TG200DM
$£ 42 \quad £ 45 \quad £ 52 \quad £ 55$
Sine O/P Sine \& Sq. O/P. Sine O/P Sine \& Sq. O/P + meter. + meter.

FREQUENCY ACCURACY

SINE OUTPUT DISTORTION

METER SCALES
SIZE \& WEIGHT
TG66B
f120
Batteries only,
0.2 Hz to 1.22 MHz on four decade controls.
$\pm 0.02 \mathrm{~Hz}$ below 6 Hz ,
$\pm 0.3 \%$ from 6 Hz to 100 kHz , $\pm 1 \%$ from 100 kHz to 300 kHz 。 $\pm 3 \%$ above 300 kHz .
5 V r.m.s. down to $30 \mu \mathrm{~V}$ with $\mathrm{Rs}=600 \Omega$ < 0.15% from 15 Hz to 15 kHz . $<0.5 \%$ at 1.5 Hz and 150 kHz . 2 Expanded voltage \& $-2 /+4 \mathrm{dBm}$. 7 "high $\times 10 \frac{1}{4}$ " wide $\times 7$ " deep. 12 lbs .

TG66A C1E
Mains unit \& batteries incl.

PORTABLE INSTRUMENTS

Prices include batteries with 400 hour life.
Mains power units $£ 10$ extra. Leather cases $£ 6$ extra.

R.C. OSCILLATORS

Levell Electronics Ltd., Park Road, High Barnet, Herts. Tel : 01-4495028 Send for literature covering our full range of portable instruments.

Shortwave Success Always With TRID's 9R-59D5

TRIO have the complete communications receiver in the 9R-59DS. A true example of the best in professional test equipment, the intrepid amateur can confidently operate this instrument with a 1.5 watt power output. With 8 vacuum tubes and 7 diodes, the 9R-59DS has a power consumption of 45 watts. Rely on full speaker range with the 9R-59DS with its $2 \pi y . y$ sensitivity and optimum selectivity of -50 dB . The most modern communications refinements are incorporated in every feature. Total reliability.

SSB COMMUNICATIONS RECEIVER JR-310

SPECIFICATIONS:

- Frequency Ranges: Band A $550-1600 \mathrm{KHz}$, B $1.6-4.8 \mathrm{MHz}, \mathrm{C} 4.8-14.5 \mathrm{MHz}, \mathrm{D} 10.5-30 \mathrm{MHz}$ - Sensitivity: $2 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ Ratio (at 10 MHz) Selectivity $\pm 5 \mathrm{KHz}$ at $-50 \mathrm{~dB} \bullet$ Power Consumption: 45 watts - Audio Power Output: 1.5 watts \bullet Tube \& Diode Complement: $6 \mathrm{BA} 6 \times 3,6 \mathrm{BE} 6 \times 2,6 \mathrm{AQ} 8 \times 2,6 \mathrm{AQ} 5,5 \mathrm{~S}-055 \times 2, \mathrm{SW}-05 \times 2$, IN 60×2 - Dimensions: Width $15^{\prime \prime}$, Height $7^{\prime \prime \prime}$, Depth $10^{\prime \prime}$.

TRIO ELECTRONICS; INC. 6-5, 1-chome, Shibuya, Shibuya-ku, Tokyo, Japan

Most ranges available from stock.
Write for descriptive leaflet or demonstration.

[^3] with the Thorens TD 150 turntable.
The SME Model 2000 Plinth System includes pre-cut pick-up mounting boards and motor boards which make this a simple matter.

Alternatively, existing items can usually be adapted.

Full details are given in information sheet No. 7, a copy of. which we will send you on request.

The best pick-up arm in the world
SME Limited • Steyning • Sussex • England Telephorie Steyning (0903) 814321

SSB Transmitters tailor-made to suit your needs.

A range of modern HF SSB transmitters with manual or automatic control and various frequency band options. Full technical details on request

1. Brooklands Road, Weybridge, Surrey Telephone: BYFLEET 44261-4, Telex: 261780 Cables: Ansound, Weybridge

Giveus just2minutes

and we'll show you what our new clip-on can do!

The TF2002 Series HF Signal Generators go digital with a new clip-on synchroniser that cuts the warm-up time taken to reach frequency stability from 2-3 hours to 2-3 minutes.

Flat!

And don't confuse it with a lock box. In function it couldn't be less like one. The required frequency is simply set up on the decade dials (within 10 Hz). The signal generator then only needs to be tuned approximately to this frequency until the synchroniser indicates that it is 'locked-in'. And locked-in it stays. The frequency

stability is 1×10^{-6} which will hold from 10° to $35^{\circ} \mathrm{C}$. Indefinitely. And simply by switching the synchroniser decade dials, bandwidth measurement can be made within 1% of the working frequency.

Attached to the TF2002AS, the TF2170 offers a stability performance comparable to a frequency synthesiser at a saving of about $£ 1,000$. And this with no risk of generating spurious outputs at low levels. The TF2:170 can be supplied separately or complete with the TF2002AS which still retains its existing features including fréquency $\overline{\text { WW-0 }} 09$ FOR FURTHER DETALIS

coverage from 10 k Hz to 72 MHz a.m./f.m.

Have you got 2 minutes?
Contact us at St. Albans for a working demonstration. At our place or yours. Just 2 minutes - 3 at the outside.
Promise.

MARCONI INSTRUMENTS LIMITED A GEC-Marconi Electronics Compan:. Longecres, St. Albans, Herts, England. Tel: St. Albans 59292. Telex : 23350.

Most
 manufacturers call these extras

We call them standard

21 active columns plus 19 floating decimal points Serial or parallel entry options Automatic column suppression Multiple space printing Roll or fanfold paper Red or black print-out

Buying a digital printer without these extras is like buying a car without a heater and screen washers. So we put extras in our new DP21 as standard. It works out cheaper and we pass the savings on to you.

But the basic spec. is far from standard. The DP21 prints 21 columns (19 data plus 2 symbol) with 15 characters per column at 3 line/s.

The floating decimal point can be commanded to print together with a numerical character to save column space. DP21 accepts true or complimentary parallel-entry t.t.I./d.t.I.
binary coded logic. If required, the printer can be supplied in kit form for custom building.

Make a straight comparison with with any other machine. By adding extras you might end up with a printer nearly as good. But not at the same low price.

Write or 'phone Ian Byatt (Extension 3188) for information.

Illustrated above is the Ditton 66 showing the beautiful appearance of the acoustic enclosure

Celestion Ditton Series

Section of the new Celestion mid-range unit giving superb power handling and detail.
Loudspeakers for the Perfectionist
ROLA CELESTION LIMITED DITTON WORKS, FOXHALL ROAD, IPSWICH, SUFFOLK

In just 30 mimutes from now Racal will be on the air

Easy to set up. Simple to commission. And just as easy to dismantle. Racal transportable radio stations make it possible to provide reliable sophisticated communications facilities, at any time, anywhere.

Compact, self-contained and extremely robust, these stations are designed for transportation by land, sea or air. Racal transportables are comprehensively equipped and may be fully engineered to a customer's individual requirements. The company's extensive experience and proven expertise in
communication systems planning is available to advise on the most effective installation for any particular application including the associated antenna systems.

Racal transportables can be supplied to meet such diverse applications as HF/VHF communication centres, radio beacons, mobile signalling centres, radio monitoring and mobile military command posts.
Find out more about some of the world's finest transportable communications systems. Communicate with Racal -today.

Racal...the communications people.
R/A/C/A/L
The Electronics Group

RACAL COMMUNICATTONS LTD
Western Road, Bracknell,
Berks, England.
Tel: Bracknell 3244
Telex: 84166 ,
Cables, Racal Bracknell

CN. $240 / 2$ Miniature soldering iron 15 watt 240 volts, fitted with nickel plated $3 / 32^{\prime \prime}$ bit and packed in transparent display box. Also avallable for 220 volts. Price £ 1.70

CN. 240 Minlature soldering iron 15 watt 240 volts, fitted with iron coated $3 / 32^{\circ}$ bit. Up to 18 interchangeable spare bits obtainable. This iron can also be supplied for 220 , 110,50 or 24 volts. Price $\mathbf{E} 1.70$ (Supplied in standard pack)
G. 240 Miniature soldering iron 18 watt 240 volts extensivelv used by H.M. Forces. Suitable for high speed soldering and fitted with iron coated $3 / 32^{\prime \prime}$ bit. Also avallable for 220 volts. Spare bits $1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}$ and $1 / 4^{\prime \prime}$ are obtainable. Price $\mathbf{E 1 . 8 3}$ (Supplied in standard pack)

CCN. 240 New model 15 watt 240 volts miniature soldering iron with ceramic shaft to ensure perfect insulation $(4,000$ v A.C.). Will solder five transistors in perfect safety, fitted with $3 / 32^{\prime \prime}$ iron coated bit. Spare bits $1 / 8^{\prime \prime}$. $3 / 16^{\prime \prime}$ and $1 / 4^{\prime \prime}$ available. Can also be supplied for 220 vol ts. Price $\mathbf{E 1 . 8 0}$
CCN.240/7 The same soldering iron fitted with our new 7 -star high efficiency bit for very high speed soldering The bits are iron coated, nickel and chromium plated. Price £1.95
E. 240
 with $14^{\prime \prime}$ iron coated bit. Spare bits $3 / 32^{\prime \prime} .1 / 8^{\prime \prime}$ and $3 / 16^{\circ}$ available. Can also be supplied for 220 and 110 volts. Prics E1.80.
ES. 24025 watt 240 volts soldering iron fitted with $1 / 8^{\prime \prime}$ iron coated bit. Spare bits $3 / 32^{\prime \prime}, 3 / 16^{\prime \prime}$ and $1 / 2^{\prime \prime}$ available. Can also be supplled for 220 and 110 volts. Price £ 1.83

MES. 12
A battery operated 12 volts 25 watt soldering iron complete. with 15^{\prime} lead, two crocodile clips for connection to car battery and a booklet "How.to Solder" packed in a strong plastic wallet. Price $£ 1.95$

SK. 1
SOLDERING KIT
The kit contains a 15 watt 240 volts soldering iron fitted with a $3 / 16^{\prime \prime}$ bit, nickel plated spare bits of $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$, a reel of solder, heat sink.
Price £2.75 cleaning pad, stand and booklet "How to Soider:"AAlso available for 220 volts.

SK. 2 SOLDERING KIT

This kit contains a 15 watt 240 volts soldering iron fitted with a $3 / 16^{\prime \prime}$ bit, nickel plated soare bits of $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$, a reel of solder, Heat Sink 1 amp fuse and booklet
 "How to Solder"

GSS Desoldering Tool
ESS Desoldering Tool -Model GSS with $\frac{3}{2}$ " $"$ tip diameter. Model ESS with $\frac{5}{32}$ " tip diameter

De-soldering tool working on compressed air for industrial use with an air line or occasional use with foot pump. Efficient, self-cleaning operation on Venturi principle. Split-second action. Press valve control.
£4.67

Model ESS or GSS complete with foot pump
£5-65

Ienclose cheque P.O./Cash (Giro No. 2581000)

Name
Address \qquad

Farnell frequency measurement

-100MHz [6Digit Display [Cood Sensitivity ${ }^{[}$[340

The Farnell 100 MHz counter type DMF $600 \mathrm{P} / \mathrm{DHF} 160$ is direct counting and provides 6 digit display of frequencies from 0.1 Hz to 100 MHz . Accuracy is 5 PPM. sensitivity typically 10 mV and drift less.than 3.5 parts in 100 per week. At f340, it's very good value for money.

It's based on a modular design - the main frame accepts any one of nine plug-in modules so the instrument cen messure d.c. volts down to $1 \mu \mathrm{~V}$. a.c. volts, frequency, time, resistance 0.001Ω to $1000 \mathrm{M} \Omega$, capacitance 1 pF to $10,000 \mu \mathrm{~F}$ and so on. AH these additional functions are available at a fraction of the cost of
separate instruments - you only purchase the display section and power supplies once, when you buy the main frame. Even if you only need a good counter at the moment. it is worth remembering this bonus. It could save you an awful lot of money.
full Detalls From

Farnell instruments Litd.
Sandbeck Way. Wetherby, LS224DH
Tol: 0937 3541. Telex: 557294
London Tel: 01-8025359

In just 2 minutes, find out how you can qualify for promotion or a better job in Engineering...

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher páy and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast makes learning easier and something you look forward to. If you'd like to know how just a few hours a week of your spare time, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

Mechanical A.M.S.E. (Mech.) Inst, of Engincers Mechanical Eng. Maintenance Eng. Welding General Diesel Eng. Sheet Metal Work Eng. Inspection Eng. Metallurgy C. \& G. Eng. Crafts C. \& G. Fabrication
Draughtsmanship A.M.I.E.D. Gen. Draughtsmanship Dic \& Press Tools Elec. Draughtsmanship Jig \& Tool Design Design of Elcc. Machines Technical Drawing Building
Electrical \& Electronic A.M.S.E. (Elec.) C. \& G. Elec. Eng. Gencral Elec. Eng, Installations \& Wiring Electrical Maths. Electrical Science Computer Electronics Electronic Eng.
Radio \& Telecomms. C. \& G. Telecomms. C. \& G. Radio Scrvicing Radio Amateurs' Exam. Radio Operators' Cert. Radio \& TV Enginçering Radio Servicing Practical Television TV Servicing Colour TV Electronics (with kit)

Auto \& Acro

A.M.I.M.I:

MAA/MI Diploma C. \& G. Auto Eng. General Auto Eng. A.R.B. Certs. Gen. Acro Eng.

Management \&
Production Compuier Programming Inst. of Marketing A.C.W.A. Works Management Work Study Production Eng Storekecping Estimating Personnel Management Quality Control Electronic Data Processing Numerical Control Planning Engincering Materials Handling Operational Rescarch Metrication
Constructional A.M.S.E. (Civ.) C. \& G. Structural Road Engineering Civil Engineering Building
Air Conditioning Heating \& Ventilating Carpentry \& Joinery Clerk of Works Building Drawing Surveying Painting and Decorating. Architecture Builders' Quantities

General

C.E.I.

Petroicum Tech
Practical Maths,
Refrigerator
Servicing.
Rubber Technology ${ }^{\circ}$
Sales Engineer
Timber Trade
Farm Science
Agricutural Eng
General Plastics
General Certificate
of Education
Choose from 42
'O' and 'A' Levcl
subiects including:
English
Chemisiry
Gencral
Physics
Mathematics
Technical Draving
French
German:
Russiani
Spanish
Biology
B.I.E.T. and its
issociated schools have recorded zell over 10,000 G.C.E. successes at ' O ' and ' A ' level.
WE COVER A WIDE Range of technical AND PROFESSIONAL EXAMINATIONS.

Over 3,000.of our Students,
have obtained City \& Guilds
Certificates. Thousands of
other exam successes.

THEY DID ITSO COULD YOU

"My income has almost trebled . . . my life is fuller and happier." - Case History G/321.
"In addition to having my salary doubled, my future is assured."- Cąse History H/493.
"Completing your Course meant going trom a job'I detested to a job I love." - Case History B/461.

FIND OUT FOR YOURSELF

These letters-and there are many more on file at Aldermaston Court-speak - of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you.

7ree!

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

BRIISH IISTIUUTEF

Dept B7, Aldermaston

 Court, Reading RG7 4PF.Accredited by the Councll for the Accreditation of Corresponidence Colleges.

(Write if.you prefer nod tocus this pag̀e)

How much handwidthdo jounneed?

Whatever your requirementy youcan make anecanomical choicefrom the five Gardnerrs Ranges of Top Periormance line Matching Transformers

SUPER FIDELITY

The Super Fidelity Series, with a frequency response of 10 Hz to $80 \mathrm{kHz}-0.5 \mathrm{~dB}$, gives the widest possible bandwidth. For high accuracy instrumentation and recording applications.

WIDE \& EXTRA WIDE-BAND

The Wide and Extra Wide-band, too, are outstanding performers with a frequency range $30 \mathrm{~Hz}-20 \mathrm{kHz}$ or more - for the 0.5 dB points. Used extensively by Broadcasting and Recording companies throughout the World.

MINIATURE \& STANDARD

Even the smallest units provide excellent bandwidth for most purposes, $30 \mathrm{~Hz}-22 \mathrm{kHz}$ for the 1.0 dB points.

All Gardners Line Matching Transformers (excepting the very smallest in the range) are fully magnetically shielded, giving very high hum rejection ratios. Some of the available types are so well balanced that they can be employed in two wire to four wire hybrids with rejection ratios better than 55 dB .

Prices start from $£ 2.61$ (recommended retail price) and all types are usually available from Stock. Complete technical information is given in brochure GT. 5 'Audio Frequency Transformers' which we will gladly send you on request.

GARDNERS TRANSFORMERS LIMITED Christchurch Hampshire BH23 3PN Tel: Christchurch 2284 (STD 02015 2284) Telex 41276 GARDNERS XCH

SUB-STANDARD MULTI-RANGE VOLTAMMETER
 TYPE U4311

Sensitivity $333 \Omega / \mathrm{N}$ on AC and DC ranges Accuracy 0.5% DC and 1% AC
13 DC Voltage ranges $75 \mathrm{~m} V$ to 750 V .
14 DC Current ranges $300 \mu \mathrm{~A}$ to 7.5 A .
10 AC Voltage ranges 750 mV to 750 V .
${ }^{11} \mathrm{AC}$ Current ranges 3 mA to 7.5 A .
Overload protection by transistorized relay. cut-out. Scale length 165 mm .

PRICE $£ 49.00$

FULL INFORMATION ON REQUEST

FOR IMMEDIATE DELIVERY

OSCILLOSCOPES

SYNCHROSCOPE C1-5
3 -in. tube. Built-in time base calibrator. Voltage measurement scale. $10 \mathrm{mc} / \mathrm{s}$ passband. Sensitivity 10 mV per mm. Nine pre-set triggered sweep rates from 1 to $3000 \mu \mathrm{sec}$. Free-running time base 20 Hz to 200 kHz . Input attenuator 1-10-100 times. PRICE

double beam oscilloscope ci-16
Double gun rectangular tube giving display size of $40 \% 100 \mathrm{~mm}$. Passband $5 \mathrm{mc} / \mathrm{s}$ for 3 db down. Sensitivity 20 mV per cm . 18 pre-set calibrated sweep durations from $0.2 \mu \mathrm{sec} / \mathrm{cm}$ to 100 m sec per cm . Free running time base 50 Hz to 1 mc . Built-in amplitude calibrator. Crystal time base marker. PRICE
£87

SINGLE BEAM D.C. OSCILLOSCOPE C1-19

$5 \frac{1}{2}$-in. tube giving display size of $80 \times 50 \mathrm{~mm}$.

Passband DC to 1 mHz .

Sensitivity $5 \mathrm{~mm} / \mathrm{mV}$.
Sweep range $100 \mu \mathrm{sec}$ to 10 sec per stroke:
Internal time-base and amplitude calibrators.
Long afterglow screen.
Input attenuator 1-10-100-1000 times

PRICE $£ 98$.

FULL SERVICING FACILITIES

Telex 261306
NOTE: THE ABOVE EQUIPMENT IS OF USSR MANUFACTURE

Build with

LEKTROKIT the simple as $A \cdot B \cdot C$ construction system for electronic

 engineersWith imagination and a box of bricks you can build anything: bridges: towers: castles.
With LEKTROKIT and a screwdriver you can build anything you need: chassis; racks; trolleys; panels; shelves; consoles; etc. Keep LEKTROKIT in stock for ECONOMY and SPEED -ready for instant action.

FANE HIGH FIDELITY LOUDSPEAKERS. We are the sole U.K. distributors to the wholesale and retail trades and would suggest the very reasole U.K. distributors to the 10.000 Gauss 10 watt dual cone models for use with our 505 or 606 amplifiers.

TECHNICAL DETAILS

Bass Control ± 12 d.b. at 40 Hz , Treble Control $\pm 12 \mathrm{~d} . \mathrm{b}$. at 14 KHz . Sonsitivities Mag P.U. $3.5 \mathrm{~m} . \mathrm{k}$ into
47 K . ohm R $35 \mathrm{~m} . \mathrm{v}$. into R 100 K ohm. Ceramic P.U. $100 \mathrm{~m} . \mathrm{v}$. into 100 K . Radio Amp. $400 \mathrm{~m} . \mathrm{v}$. into 100 K . Radio Tuner Crosstalk $53 \mathrm{~d} . \mathrm{b}$.
Hum and Nolse -75 d.b. min. vol Toral H. max. vol.
Total Harmonic Distortion 0.1\% at 1 w into 15 ohms. Output (per channel) 6.5 watts
LH.F.M.

* Individual Bass and Treble Controls.
\star Frequency Response $\pm 1 \frac{1}{2} \mathrm{~d} . \mathrm{b} .20 \mathrm{~Hz}$ to 65 KHz
\star, Outputs for Speaker impedances between 3 and 15 ohms. \star Stereo/Mono Switch. \star Input Selector Switch. \star Solid State Circuitry. * Attractive silver finished metal facia and matching control knobs.
0.200-230-250v. 50 Hz A.C. mains operation.
Inputs for magnetic or Ceramic Pickup.
Tape or Radio Tuner

A modestly priced solid state unit.
The Silver Facia with black lettering enhanced by matching control knobs, provides a high standard of appearance. Suitable for crystal or ceramic Gram. Pickup cartridges and Radio input
A wide range of tone variation is provided by the separate Bass and Treble 'lift' and 'cut' controls.
A selector switch permits instantaneous selection of Gram or Radio.
Speaker impedances between 3 and 15 ohms are suitable Wholesale and Retail enquiries to the Manufacturers

TECHNICAL DETAILS
 Frequency Range

20 Hz to 20 KHz
Output (per channel)
5 watts I.H.F.M
Bass Control
± 12 d.b. at 60 Hz
Treble Control
$\pm 14 \mathrm{~d} . \mathrm{b}$. at 14 KHz
PRINTED CIRCUIT CONSTRUCTION

LINEAR

ALL LINEAR AMPLIFIERS $-200-250 \mathrm{v} .50 \mathrm{~Hz}$ A.C. mains operation
ALL LINEAR AMPLIFIERS GUARANTEED FOR 12 MONTHS
ALL Armley, Leeds. LS12 3SA Tel 630126 , Electron Works, Armley, Leeds. LS12 3SA Tel. 630126

Hear how, see how, know-how

Communications are a vital element in the management and administration of people in every field of activity. Audio and visual communications systems - to educate, warn, entertain, inform, locate-demand the application of specialist skills and the availability of reliable, purpose-designed equipment. EMI has the skills
and the equipment to meet any requirement for audio or visual communications with a costeffective, proven system-whether public address, sound reinforcement, CCTV -or any combination. EMI has the know-how in audio and visual communications. Please ask for full details of our comprehensive range of products.

Sound and Vision Systems

A member of the EMI Group of Companies. International leaders in Electronics, Records and Entertainment.

Magnetic shielding problems?

TELCON OFFER THREE SIMPLE ANSWERS

Standard shields

Telcon Metals offer an extensive standard range of high efficiency Mumetal shields, which fit most cathode ray, photo multiplier and radar tubes, together with a selection of boxes and cans for microphones pick-ups, transistors and transformers. These are normally supplied stove enamelled in hammer grey externally and matt black internally. Other finishes can bA supplied by arrangement.

Fabricated shields

Telcon Metals offer complete facilities for fabricating special shields in Mumetal and composite shields in Mumetal/Radiometal to customers' individual requirements. All Telcon shields are made to close tolerances and have excellent finish and appearance: For the highest efficiency and extra close fitting tolerances, the 'Telform' technique is recommended. These shields can be produced in complex shapes with a minimum of welded seams and very close uniformity throughout batches. A comprehensive design/advice service is available to assist all customers.

'Telshield' wrap-around foil

Telshield' is an easy to use, feromagnetic
 shielding foil, which can be cut with scissors, wound into cylinders, cones, etc., and fixed with adhesive tape, clips or spot welds, to provide a permanent efficient shield. It is economical to use, especially for research, development and short-run applications which do not merit the tooling involved in the production of fully fabricated shields. 'Telshield' is supplied in a standard thickness of 0.05 mm , in widths of 150,50 and 25 mm in convenient packs costing approximately $£ 5$. Other thicknesses and widths are available by arrangement.

Please send for further information to

Telcon Metals Ltd.,
Manor Royal, Crawley, Sussex,
(Crawley 28800)

When you've got components that call for encapsulation bring them along to Whiteley. With efficient potting, your components will be totally insulated and environmentally protected - and Whiteley experience in developing this advanced plastics technique will ensure that it is ap plied to full advantage.
We can encapsulate in epoxy resin or polyurethanehot setting or cold setting as required. Where fillers offer advantages, we can apply them, expertly. We are ready to handle small quantities or volume production for you. It's one more way in which you can capitalise on our produçtion resources. For electrical and electronic work-right through from design to final assemblyyou can safely follow the example of many famous names-and call in Whiteley.

ELEĊTRONIC \& ELECTRIĊAL DESIGN

CABINET MAKING
PRODUCTION CAPABILITY
SHEET METAL FORMING/FINISHING

PLASTICS MOULOING

ENCAPSULATION

WHITELEY ELECTRICAL RADIO CO. LTD.
Mansfield, Notts, England. Tel. Mansfield 24762
London Office: 109 Kingsway, W.C.2. Tel. 01-405 3074

If you can use a soldering iron and follow simple instructions，you can assemble any of these high performance products in a fewhours．And save a lot of money．

Heathkit have the world＇s widest range of top quality electronic products designed specifically for home assembly．
Of which we show just 4 above．
The AD1 10 is our new stereo cassette recorder．It gives you cassette convenience， reel
performance and Heathkit quality．Designed to complement various other Heathkit Hi Fi products，it costs only $£ 74.80+$ £8．45 for twin matched stereo mikes．
Another new product，the Tiger transistor radio kit
costs $£ 10 \cdot 90$ ．It gives long life from every large PP9 battery，weighs just 3 lbs ，and gives really good reception on Long \＆Medium wavebands．

And，as you can see，it looks pretty good too．
Costing just $£ 18.45$ complete with speaker and aerial，the CRl car radio gives unsurpassed reception．A 6 transistor， 2 diode circuit gives 4 watts output，pre－ assembled and aligned tuning unit makes assembly easy，and push－button controls give instant selection．
The AAl4 30 watt stereo amplifier is an established

You can make it if you try．
Please send me the FREE New 1972 Heathkit catalogue．wwo4／72
Name．
Address．．．
HEATH（Gloucester）Ltd．，Gloucester GL2 6EE
product，proven in use by thousands of satisfied customers．Featuring a 17 transistor， 6 diode circuit， it costs $£ 30 \cdot 00$ less cabinet．
These products and all the others in the Heathkit range are easily assembled by anyone who can use a soldering iron and follow our superbly clear， step－by－step instructions． Furthermore，in the unlikely event that you get stuck，we guarantee to help you out．
Find out more．Send for our free 1972 catalogue． Now．

Eidiystone

DIECAST BOXES

WORLD-WIDE AVAILABILITY

Diecast in aluminium alloy, BS 1490 LM2

SIX SIZES

Cat. No. 7969P(Illustrated) Cat. No. 7134P-
$3 \frac{5}{8} \times 1 \frac{1}{2} \times 17 / 32$ in $92.1 \times 38.1 \times 31 \mathrm{~mm}$
$4 \frac{3}{8} \times 2 \frac{3}{8} \times 17 / 32$ in $111.1 \times 60.3 \times 31 \mathrm{~mm}$
Cat. No. 6908P-
$4^{11} / 16 \times 3^{11} / 16 \times 2^{7 / 32}$ in $119.1 \times 93.6 \times 56.4 \mathrm{~mm}$
Cat. No. 6827P$7^{25}{ }_{64} \times 4^{45} / 64{ }^{4}{ }^{5} 2^{7} / 32$ in $187.3 \times 119.1 \times 56.4 \mathrm{~mm}$
Cat. No. 6357P $-\quad 725,64 \times 455 / 64 \times 37 / 32$ in $187.3 \times 119.1 \times 81.8 \mathrm{~mm}$
Cat. No. 7970P— $7 \frac{3}{8} \times 7 \frac{3}{8} \times 2^{21} / 32$ in $187.3 \times 187.3 \times 67.5 \mathrm{~mm}$
(Nominal outside dimensions)
Rugged. Corroșion resistant.
Self adhesive plastic strip available for mounting PCB's internally.
Easily Machined. Good Surface Finish.

Iflustrated brochure and information on your local Distributor from:

Eddystone Radio Limited

Alvechurch Road, Birmingham B31 3PP, England Telephọne: 021-475 2231. Telëx: 337081

A Member of Marconi Communication Systems Limited

Abeurate and direat mersurament of spead without coupling to moving parts

 FRAHIIN resonant reed TACHOMETERS
for hand use or permanent mounting
Ranges and combinations of ranges from 900 to 100,000 r.p.m. Descriptive Literature on Frahm Resonant Reed Tachometers and Frequency Meters available from the sole U.K. Distributors. Manufacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largest stocks in the U.K. for off-the-shelf dellvery.

Anders means meters
quders eletranils limited
48/56 Bayham Place, Bayham Street, London NW1. Tel: 01-3879092 WW- 025 FOR FURTHER DETALS

nombrex

MODEL 45
DIRECT READING FREQUENCY METER
PRICE 27.50

- MEASURES FREQUENCY FROM 10 Hz TO 100 kHz .
- MEASUREMENT INDEPENDENT OF SIGNAL WAVE FORM.
- ACCEPTS INPUT LEVELS FROM 10 mV TO 5V.
- FOUR DECADE SWITCH RANGES.
- SENSITIVITY CONTROL.
- calibration control.
- POWERED BY 9 VOLT BATTERY.

Trade and Export enquiries walcome.
Send for full technical leaflets.
Post and Packing 35p. extra.
NOMBREX (1969) LTD., EXMOUTH, DEVON
Tel: 03-952 3515

Stereosound is one of the best technical tricks of the century, and Tannoy Monitor Gold loudspeakers help the illusion along. The piano won't seem eighteen feet wide, you won't hear the violins left, right and centre, in fact the illusion will be as good as the recording engineer can make it. (He probably used Tannoy monitors in the studio.).

our own contribution to the magictwo into one will go!

Frequency h́esponse: $30-20,000 \mathrm{~Hz}$. Power Handling Capacity: $15^{*} 50$ watts, ' 12 " 35 'watts. IIILZ 25 watts: Impedance: 812 nominal, $5 \Omega 2$ minimum.
Available from the best dealers in a wide range of enclosures including the NEW CHATSWORTH

Cuterat

ETC/1 ELECTRONICALLY CONTROLLED

SOLDERING SYSTEM

This equipment has been designed to provide the most outstanding thermal performance and control yet achieved with a Soldering Iron, combined with the total avoidance of electrical interference.
At the same time, it overcomes the problems of repair costs and complications associated with common temperature controlled Irons, and offers a standard of reliability unattainable with other designs.

Please write or ring for leaflets 5/1017/9

LIGHT SOLDERING DEVELOPMENTS LTD. 28 Sydenham Road, Croydon CR9 2LL.
 Tel: 01-688 8589/4559

This is a high fidelity amplifier with bass cut controls on each of the three low impedance balanced line microphone stages and a high impedance (1.5 meg .) gram stage with bass and treble controls, plus the usual line or tape input. All the input stages are protected against overload by back to back low self capacity diodes and all use F:E.Ts for low noise, low intermodulation distortion and freedom from radio breakthrough.
 A voltage stabilised supply is used for the pre-amplifiers making it independent of mains supply fluctuations and another stabilised supply for the driver stages is arranged to cut off when the output is overloaded or over temperature. The output is 75% efficient and 100 V balanced line or $8-16$ ohms output are selected by means of a rear panel switch which has a locking plate indicating the output impedance selected. The mixer section has an additional emitter follower output for driving a slave amplifier, phones or tape recorder, output .3 V out on 600 ohms upwards.

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4-WAY MIXER (0.3% intermodulation distortion) using the circuit of our 100% reliable 100 Watt Amplifer with'its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer Amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for $2-30 / 60 \Omega$ balanced line microphones, 1 -HiZ gram input and 1 -auxiliary input followed by bass and treble controls. 100 volt balanced line output or $5 / 15 \Omega$ and 100 volt line.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms -15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.

THE 100 WATT MIXER AMPLIFIER with specification as above is here combined with a 4 channel F.E.T. mixer, $2-30 / 60 \Omega$ balanced microphone inputs, $1-\mathrm{HiZ}$ gram input and 1 -auxiliary input with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms -15 ohms and 100 volt line. Bass and treble controls fitted.
Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 dB and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1 -low mic. balanced input and HiZ gram. Outputs available $8 / 15$ ohms OR 100 volt line.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{~dB}$, Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available.
F.E.T. MIXERS and PPMs. Various types of mixers available. 3, 4, 6 and 8 channel with Peak Programme Meter. $4,6,8$ and 10 Way Mixers. Twin 3,4 , and 5 channel Stereo, also twin 4 and 5 channel Stereo with 2 PPMs.

Another reason why Enthoven is No. 1 in solder

Superspeed solder wire
Enthoven's Superspeed soldering wire features an activated-rosin flux core and is ideal for those applications where a wide variety of different jobs must be handled with a single solder.

But don't forget the rest of the Enthoven range. It gives you a wide choic̣e of high-quality products developed for use with modern techniques. It includes Flux Cored Solder Wires, Solder Pre-forms, Solid Solders, Selective Fluxes, solder specialities, materials for printed circuitry and for soldering aluminium.

And behind every Enthoven product stands a comprehensive advisory service that can solve your knottiest soldering problems.

Enthoven. Solders Limited

Dominion Buildings, South Place London EC2M 2RE.
Tel: 01-628 8030 Telex : 885737
Cables: ENTHOVENLONDONEC2M2RE

MODEL 8 MK. III

REPAIR SERVICE 7-14 DAYS

We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS. 89 .
Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments
LEDON INSTRUMENTS LTD 76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8 Tel.: 01-692 2689
G.P.O. APPROVED

CONTRACTOR TO H.M. GOVT.

WW-032 FOR FURTHER DETALIS

For electronic valves (a really comprehensive range), neon indicator tubes, semi-conductors (a wide variety). integrated circuits.
Teonax offers mare than 3.000 devices. They are competitively priced and they are supetlative in pextormance, because the company umposes strict ritality control Teorex concentrates entirely on export and now operates in more than sixly countries, on Government or private contract All populat types if the teonex range are nearly always available for mmedrate delivery. Write now for techncal specifications and prices to Teonex Limmed, 2 a Westb6urne Grove Mews, London W11, England. Cables: Tosuply Londor W1 1. Telex 262256.
 TEOMEX
sounds intemational

THE WORLD OF ROHDE \& SCHWARZ is full of TV Test Equipment

GATALOGUE CONTENTS

Rohde \& Schwarz have a world wide reputation as manufacturers of electronic measuring instruments for use in research, development, and production. A major area of involvement is Television measurements.
It is the purpose of TV measurements to ensure the stability of required transmission quality between the TV camera and the home receiver through continuous monitoring. To this end, camera monitors, test equipment at the central distribution points and test assemblies for TV transmitters are employed, in addition, propagation measurements for transmitter network plans must be made.

1. Transmission network measurements (active)
2. Transmission network measurements (passive)
3. In-service testing
4. TV equipment
5. Test assemblies for use in production
6. Peripheral equipment (e.g. field-strength meters)

VIDEOSKOP SWOF III

A fully transistorized combination unit of video sweep generator, selective receiver and display unit (a sweep and analysis system). THE VIDEOSKOP III TYPE SWOF operates in the 10 kHz to 20 MHz frequency range. Shown here with the sideband adapter it is possible to carry out measurements on TV transmitters to a range extending up to 1000 MHz .

AMF

The new fully transistorized TV DEMODULATOR TYPE AMF is a vestigial-sideband receiver with Nyquist slope, used for the demodulation of monochrome \& colour signals (NTSC, PAL, SECAM) and of TV sound signals. It is equally suitable for measurements and monitoring in the RF and IF ranges.

SPAF

The COLOUR GAIN AND DELAY TEST TYPE SPAF is a combination unit which may be used with the SPIF Pulse and Bar Signal Generator.

SPEF

A V.I.T. INSERTER with up to eight independent insertion channels, can be used with SWOF for investigation of passband and vestigial sideband characteristics during transmission.

aveley electric เтд

Check our check list

Meters available in over 100 case sizes, Edgewise, Rectangular, Round and Square, Bakelite, Clear plastic and Metal cases.

- Clip-on Volt/Ammeters.
- Contact Meters, Moving Coil Relays, Solid State,Desk Stands.
Digital Panel Meters.
\square Edgewise Meters.
- Educational Instruments.Electrostatic Voltmeters.
Frequency Meters-DeflectionalFrequency Meters-with Contact Arms Solid State.
- Frequency Meters-Vibrating Reed.
\square Galvanometers.
Hour Meters, Elapsed Time Indicators A.C. \& D.C.
Hermetically Sealed Meters.Instrument Rectifiers.
Long Scale, 180° and 240° Meters.
\square Maximum Demand Indicators.
Motammeters Moving Iron with overload scale.
\square Moving Coil Meters.Moving Iron Meters.Multi-range Meters.Pedestal Pattern Meters.Phase Switches.Portable Instruments.Portable Instrument Cases.
P.P.M. Meters.Resistors or Multipliers.Shunts.
Sub-Standard Instruments.
- Switchboard Meters.Tachometer-Indicators.
- Tachometer-Generators.Tachometer-Resonant Reed.
\square Test Equipment.
\square Test Sets, A.C./D.C. (Precision).Thermocouple Meters.Thermo Junctions
- Transducers-Wattmeter

Transducers-Frequency

- Transformers-Current.
- Transformers-Split Core
- Transformers-Potential.
V.U. Meters

Wattmeters-Panel Mounting.Wattmeters-Portable (Precision).

- Waterproof Pattern Meters.

. . . interested? Give us a ring.

K.M. SERIES with clear front Shadowless front Shadowless Dials. Available in most
ranges of Moving Coil and Moving Iron. Eight case sizes. Scale lengths from $0.75^{\prime \prime}$ 6.25 .

Circular Scale 240° Meters, Models CS60 and CS80. Nominal scale lengths $4^{\prime \prime}, 5.5$:" $^{\prime \prime}$ scale lengths $4^{\prime \prime}, 5.5^{\prime \prime}$.
Available in sensitivities Available in sensitiviti
from 200 microamps Moving Coil.

Vulcan Short Scale Meters Models V1, V2. V3 and V4. Nominal scale lengths $1.625^{\prime \prime}$. scale lengths $2^{\prime \prime}, 2.85^{\prime \prime}, 3.5^{\prime \prime}$ $2^{\prime \prime}, 2.85^{\prime \prime}, 3.5^{\prime \prime}$
Available in all ranges of Moving Iron normal or overload scale.

Models KE1 and KE2 Miniature Edgewise Meters. Nominal scale lengths $12^{\prime \prime}$ and $2^{\prime \prime}$ Available in sensitivities Available in sensitivitie
from 50 microamps Moving Coil.

Now it's longer!

We've made these four new additions to our already large range of meters. They are well designed and pleasing to look at. And they are competitively priced.

We also offer a fast delivery of non-standard instruménts. in small or large quantities. And many requirements can be supplied off the shelf. Ask for details of our special dial drawing and metric conversion service to customers individual specifications.

Send for Technical Literature to
W. GREENWOOD ELECTRONIC LIMITED 21 Germain St, Chesham, Bucks; England. Tel: Chesham 4808/9. Telex 83647. Cables: Greenelec, Chesham. WW- 036 FOR FURTHER DETALS

PI Connectors

NO SOLDERING NO SCREWS NO MESSING INTERCHANGEABLE PINS MATCH ANY CONFIGURATION 2.3.5 PIN STEREO PRICE 28p

Jack Plugs, 201, 310, 316, 309, 404
Jack Strips $310,320,510,520,810$.
Line Transformers
Resistor Lamps and Holders
Jack sockets 300 , 500, 800
Resistor Bobbins, coils and spools

Bells and Bell Transformers 6 V or 12 V
Low Pass Filters
U Links and Sockets
Fuse mountings 4028 and Mounting H.15B.
Mountings Protector Strip H. 40
Patching and switchboard Cords
Patch Panels
Terminal Blocks and Strips
Uniselectors and Miniature Uniseléctors
Ringing Generators

Large stock of GPO Type Components available for prompt delivery
COMMUNICATION ACCESSORIES and EQUIPMENT LIMITED
77, AKEMAN STREET, TRING, HERTS.
TELEPHONE: TRING 3476.
TELEX: 82362.

WW-038 FOR FURTHER DETAILS Sweep Alignment
of RM. Receivers
}

Apart from the larger transmitter types the Model $45 D$ Valve Tester is ready to test just about every electronic valve. Add an adapter and you've got yourself a CRT tester, too. Rapidly detects any normal fault. All told the $45 D$ is invaluable.

\section*{Radio and

Radio and TM. Receivers

 TM. Receivers}The Model 68AN Signal Generator covers the frequency range 100 kHz to 240 MHz entirely on fundamentals and includes a variable level 400 Hz signal. Robust and sìmple to use. Specially designed fór radio and TV. eng̈ineers.

The 62A AM/FM Signal Generator offers swift, accurate and complete facilities for the sweep alignment of r.f., i.f. and discriminator or ratio detector stäges of a.m. and f.m. receivers. And that's just one of the many uses of this highly versatile, inexpensive instrument.

RECORDER AMPLIFIERS
 AND INSTRUMENTATION SYSTEMS

150

series DIFFERENTIAL DC AMPLIFIERS
Wide dynamic range -
high common mode rejection
Low noise, low drift performance
Modular or cased presentation
also

MINI-AMP FE-251-GA

differential dc pre-amplifier
Compatible modules and cards ensure ease of application and great flexibility.
FYLDE
16 OAKHAM COURT, PRESTON (0772) 57560

RESISTANCE BOXES
 TYPE RBB

A range of robust resistance decades for use in AC or DC networks and measuring systems. They all incorporate the "CROPICO" type SP1 low contact resistance switch and the coils âre wound in "Manganin". Standard models áre ávailable from stock with 1, 4, 5 or 6 dials.

ACCURACY

$\pm 0.1 \%$ at the full rated current
Temperature Co-efficient
20 p p m per Degree C
Range
0.0001 ohm to 10 Megohms.

Request full details from:
CROYOON PRECISION ÍNSTRUMENT COMPANY
Hampton Road, CROYDON (Postal Code: CR9 2RU) Telephone: 01-684 4025 and 4094

Linstead are the best British made electronic instruments at their price on the market today. G1. Nuffield Ref: $181,10 \mathrm{~Hz}$ "to 100 kHz . 0.6 v . r.m.s. Sine wave. watt into 3 ohms. G2. Nuffield Ref. 181. 10 Hz to 100 kHz . Sine Wave $0-6 \mathrm{v}$ and 1 watt into low impedance. Square Wave $\frac{1}{2}$ microsecond rise time. Step attenuator M2A. 12 A.C. ranges 100 microvölts to 400 volts. Frequency $10 \mathrm{~Hz}-1 \mathrm{M} \mathrm{Hz}$. 8 D.C. ranges 0 to 400 v . Impedance 10 megohms.
52. Nuffield fef. 14. 0-6kv. 1 mA at 5 kv . Metered. 6.3v at 3A. insulated for operation at E.H.T.
S3. Nuffield Ref. 15. 0 to +300 v . to -25 v . at D to 60 mA .2 insulated outputs at $6,3 \mathrm{v}, 2 \mathrm{~A}$.
s7. 0-30V, 0-1A. per section. Fully protected against overload and shört circuit Outputs floating and can be series or parallel connected.

S4A. Nuffield Ref. 59. 0 to $25 v$. A.C. and D.C. 0 to 8 A 1 v . steps. Thermalmagnetic cut-out
SU2. For use with S4A. Pi-filter
Sénd me Catalogue about

- the Magnificent Seven.

Linstead Electronics,
Roslyn Works, Rosivn Road, London Ni5 5JB Teleplione: 01.802 5144
NAME
COMPANY
-ADDRESS

Telford range of Oscilloscope Cameras

Modular system with range of film backs, lenses, viewing systems and adaptors to meet virtually all requirements

WW- 044 FOR FURTHER DETALLS

METER PROBLEMS?

A very wide range of modern design instruments is available for 10/14 days' delivery.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.G. 1 Phone: 01/837/7937

The unequiled aminifiers!

Every lab has at least one amplifier need that only Brookdeal performance really measures up to. Which is yours? 'The '? ? lincup is no ordinary family, but a unique array of amplifier talent - exceptional in lincarity, low in noise. Two new models extend the frontiers of circuit design even further. Together, the

Brookdeal lineup provides the ideal match to a vast range of signal sources. Tell us the signal rom need to :implify - we'll send performance details.
Browkdeal Electronics I.td., Market Strect, Brackncll, Berks, England. Telephone 034423931 Telex S47i64.

Brookdeal - 450 Versatile low-noise lab amplifier
 Really flexible, with switch selected

 high and low pass filters plus external filter facility. Noise figure very low over wide range of source resistances and frequencies (typ. $4 \mathrm{nVrms} / \mathrm{Hz}$ at xkHz). Frequency range tHz to 300 kHz , gain 18 dB to 100 dB . Dual input impedance $100 \mathrm{k} \Omega$ and $50 \mathrm{M} \Omega$.
452 Even higher

 performance, lower noise Extreme versatility for almost any lab job. Non-linearity typically 0.001%, and lower noise especially at flicker frequencies - typically 13 nV rms $/ / \mathrm{Hz}$ at 10 Hz . Variable high and low pass filters to $\mathrm{I}^{\circ}{ }_{0}$ accuracy, and instant overload recovery. Frequency range 1 Hz to IMHz , gain 19 dB to $100 \mathrm{~dB}, 100 \mathrm{M} \Omega$ input impedance.453 High performance lab preamplifier
With intermodulation products typically $0.001 \%, 453$ is the perfect instrument for extending the sensitivity of wave and spectrum analysers, tracking filters and oscilloscopes. Set the gain and forget about it Extremely low noise typically $19 \mathrm{nVrms} / \mathrm{Hz}$ at 10 Hz . Frequency range 1 Hz to 1 MHz , gain 19 dB to $80 \mathrm{~dB} .100 \mathrm{M} \Omega$ in put impedance.

431 Preamplifies nanovolt

 signalsDesigned to noise-match very low source resistances - 10Ω to $1 \mathrm{k} \Omega$. Two input modes, frequency range of 1 Hz to 100 kHz , and 60 dB gain 431 amplifier is battery powered.

[^4]

MAKE BIG REDUCTIONS WITH JACKSON

CATALOGUE NO. 5870
The Jackson Friction Ball Drive Reduction Unit is unique. Simply because it's the only one of it's type and size available in the United Kingdom. It has sealed lubrication, with a hardened steel shaft and bearings to give it extra long life. And it's low in price. The unit has a 10:1 reduction ratio, with an output torque of 8 oz . ins. minimum.

Our skilled personnel can produce custom made components to suit your individual needs. And with 45 years of experience your guarantee is our reliability.

WW-047 FOR FURTHER DETALLS

BRITISH PATENT No. 738422. USA PATENT No. 2828372

List Number S.502/Reser List Number S 506/RB

List Numbet S. 720

SUb miniature types

List Number S. 800 Las Number S.800/L Lit Number $5.801 / 2$ OPEN BLADE TYPE

List Number S. 690 - S. $691 \quad$ List Number $\mathbf{S} .735-$ S. 73

VE have undeniable evidence from two famous manufacturers that Bulgin Micro Switches incorporating the original "Rolling Spring Action" were selected for use in their equipment after life tests had been made on all other makes. Reliability was of utmost importance.

We are constantly receiving firms who standardised our switches over 20 years ago.

THE use of just one component which fails at a critical moment can cost a lot of money in servicing and have most serious consequences.

NE do take every care by most exacting tests of every individual switch so that the chances of failure are reduced to a minimum

0UR components might cost a little more, but realistic companies know from experience the constant quality control we keep on all components made by the House of Bulgin.
CUSTOWERS GAN ALWAYS RELY ON
'THE HOUSE of bulegn' for gervice, ouIGK despatch
ando guaranteeo supples for years to gome

TECHNICAL LITERATURE AVAILABLE ON REQUEST. QUOTE WW/4/72

A. F. BULGIN \& CO LTD

ELECTRONIC COMPONENT MANUFACTURERS BYE-PASS ROAD • BARKING • ESSEX TEL.: 01-594 5588 '(12 lines) TELEX 897255 WW-048 FOR FURTHER DETAILS

OMRONS MIGHTY MIDGETS
 Process Control

Panel Mounting Timer Exclusive plug-in connection. Times up to 24 hours.

WL-10-FNJ
Limit switch
Sealed coil spring Full range available.

STPNH
Plug-in Timer
Smallest electromechanica type available. Times up. to 24 hours.

VAQ4
Pushbutton Switch
Attractive button and reliable switch. New low prices

TDA
Automatic Recycling Timer Fully solid state. Variable ON/OFF. Times to 60 secs.

C5G3
Rotary Microswitch for coin-op mechanisms.

61 FGP
Plug-in Floatless Switch
Fully solid state with relay output. Lowest cost unit available in United Kingdom.

S1A
One of the smallest microswitches available.
EX-STOCK DELIVERY ALWAYS
PRICES
Average prices STPYMH 87.00 WL-10-FNJ $£ 3.50$

VARIABLE TRANSFORMERS ARE ALWAYS AVAILABLE FROM STOCK AT THE LOWEST PRICES

SOLID STATE
PROXIMITY SWITCH
low cost : high performance ex-stock delivery : DC operation OMRON proximity switch type TL-2-GPA senses all ferrous and non-ferrous metals and provides output of 4 A .
Detects presence of metals up to 5.5 mm from the protruding head. Works direct from 24VDC supply to switch AC or DC loads. No ancillary components are necessary for metal sensing
PRICE EACH $£ 9.50$ FROM STOCK

Fully shrouded variable
transformers - input 240VAC output 0-260VAC
$\begin{array}{rrr}\mathbf{1} \mathrm{amp} & \mathbf{£ 7 . 0 0} & \mathbf{1 0} \mathrm{amp} £ \mathbf{£ 2 . 5 0} \\ 2.5 \mathrm{amp} & \mathbf{£ 8 . 0 5} & 12 \mathrm{amp} \mathbf{£ 2 3 . 6 0} \\ \mathbf{5} \mathrm{amp} \mathbf{£ 1 1 . 7 5} & 20 \mathrm{amp} £ 49.00\end{array}$
$5 \mathrm{amp} £ 11.75$
$8 \mathrm{amp} £ 15.90$
Supplied complete with mounting brackets for bench and panel mounting

New solid state variable voltage control
input 240 VAC
output.25-240VAC
$5 \mathrm{amp} £ 9.50$
$10 \mathrm{amp} £ 15.20$
Substantial quantity discounts available

ThreeNew races from DTNANCO

NEW 7060

Precision T.V. waveform monitor.
Combined waveform and picture monitor.
All line standards (including CCTV).
Odd \& Even field selection.

- Pulse \& Bar overlay (same field).
$\square 75$ and 1 M : switched attenuators.
. Post Office TV test set Type 13:

\square
East Mains Industrial Estate, Broxhurn, West Lothian, Scotland
DYNAMCO Telephone: Broxburn 2631 Telex: 72174

NEW 72 SERIES
The On-Site commissioning/servicing scope. Light/Rugged/Compact.
High Brightness for Low Occupance Signals.

- Dual Channel 15 MHz/Signal delay.
- Full delayed sweep/delay gate timebase with two trigger inputs.
- Post Office Oscilloscope Type 14A.

NEW 7130
Wideband extension of 71 Series Oscilloscopes.
50 MHz Dual Channel plug - on amplifier.

- 100 MHz High writing speed display unit.

Full delayed sweep/Gate timebase module.
True dual trigger inputs/Unrestricted trigger source selection.

- Complete compatability with all 71 Series modules.

WW-050 FOR FURTHIER DETALS

ENCAPSULATION -

low tool cost method for cylindrical coils and potting. Enquiries also for-

REED RELAYS

 SOLENOIDS COIL WINDING TRANSFORMERS to 10 k.V.A.Solenoid SRM. 7 lbs to 14 lbs at $1 \frac{1^{\prime \prime}}{}$
 Knapps Lane, Bristol 5. 0272657228

WW-051 FOR FURTHER DETALLS

cut contact wear and tear with

 arimulit contact lubricants
PARKER SHEETMETAL FUL DN MASHNES

$36^{\prime \prime} \times 18$ gauge capacity 35.00
$24^{\prime \prime} \times 16$ gauge capacity
Carriage Free
Also the well-known vice models of
$36^{\circ} \times 18$ gauge capacity.
$24^{\circ \prime} \times 18$ gauge capacity.................. 415.00
$18^{\prime \prime} \times 16$ gauge capacity................... $\mathbf{~} 12 \cdot 00$
Carriage Free

Forms channels and angles down to 45 degrees which can be flattened to give safe edge. Depth of fold according to height of bench.

One year's guarantee.

 Money back if not satisfied.Send for details:
A. B. PARKER

FOLDING MACHINE WORKS, UPPER GEORGE STREET, HECKMONDWIKE, YORKS
Telephone 3997

WW-52 FOR FURTHER DETAILS the trouble shooterrange electrical contacts is greatly extended with Electrolube lubricants-specially developed to loosen tarnish, inhibit arcing and maintain reliable contact performance. In aerosols, bulk containers, and other convenient packaging. Also Contact Cleaning Strips, Freezer, Silicone Grease, Printed Circuit Lacquer, Preclène. Write for technical data sheet. Electrolube Ltd.

E55 connectaris

For the want of a nail

for the want of a connector

. . . a contract was lost!

Transradio care about delivery
We can supply ex-stock from a. large variety of R.F. con-nectors-and cables.
Quality
We regard quality as our No. 1 aim, our quality control is second to none.

Problems

We have a design team that can deal with your special requirements, from mini lines to large connectors of up to 2 MW .

Prices

We have just reduced our R.F. cable prices considerably and are constantly reviewing connector prices.
Quantity prices can be negotiated.

You can rely on Transradio
We have been 30 years in the business and know a thing or two.
A wide range of connectors is always available.
When your need is for precision connectors you cannot do better than come to us.
If you haven't yet received our catalogues drop us a line and we will put one in the post.
Suppliers to all the important people.
Aren't you important too?
Just pick up the phone - we're waiting to help you
Contractors to the Industry, the Post Office, Armed Services, Broadcasting \& Television Authorities.

THE

VALUE FOR MONEY PRODUCTS

FOR PROMPT DELIVERY

HIGH EFFICIENCY

HIGH DAMPING

HIGH FIDELTY

SPEAKER ENCLOSURES

- FREQUENCY RESPONSE 29-21000HZ
- POWER HANDLING UP TO 25 WATTS

SONEX 72 SPECIAL OFFER FROM MARCH 22 TO MAY 1 ONLY 25% DISCOUNT
on complete set as advertised with either pair of speakers
$31^{\prime \prime} \times 11 \frac{1}{2}^{\prime \prime} \times 13 \frac{1}{4}^{\prime \prime}$
£39.60 EACH
$31^{\prime \prime} \times 13 \frac{1}{2}^{\prime \prime} \times 13 \frac{1}{4}^{\prime \prime}$
£39.60 EACH
$21^{\prime \prime} \times 11 \frac{1^{\prime \prime}}{}{ }^{\prime \prime} \times 13 \frac{1}{4}^{\prime \prime}$
$\mathbf{£ 1 9 . 6 0}$ EACH
$21^{\prime \prime} \times 13 \frac{1}{2}^{\prime \prime} \times 13 \frac{1}{4}^{\prime \prime}$
$£ 19.60$ ЕАСН
PURCHASE TAX INCLUDED IF APPLICABLE

FINISH IN TEAK OR WHITE

PROFESSIONAL MODULAR CONSTRUCTION STEREO AMPLIFIER

 ASSEMBLY CA STEREO 80MK. II FREQUENCY 20 to $20,000 \mathrm{HZ}$ including rumble, scratch and noise

- EXCEPTIONALLY
low background noises, and hum. Power output up to 40 watts per channel into 4Ω load.

Stabilised power supplies £6.95 10 watts per channel.

- READY FOR USE

Mk. I - same as above, but with input selector on pre-amplifier board with the power supply $£ 38.90$. Mk. II with the power supply - $£ 40.40$.

CAN YOU RERD THIS RD แITHOUT TURIIIT THE PACE?

TRIANGLE DIGITAL SERVICES

13, PARK ROAD, LONDON N.W. 4.

COUNTER-TIMER-FREQUENCY METER TRIPLE POWER SUPPLY, $+12 \mathrm{~V}+5 \mathrm{~V}-12 \mathrm{~V}$ (1 AMP) $£ 49$ MILLIVOLTMETER £19
ELECTRONIC THERMOMETER £21

Customised instruments and test systems will be quoted without any implied obligation.

Si451 Millivoltmater
$\star 20$ ranges also with variable control permitting easy low cost distortion measurement down to $.01 \%$ with reading of relative frequency response

JES AUDIO INSTRUMENTATION

Illustrated the Si453 Audio Oscillator

 SPECIAL FEATURES:* very low distortion content-less than .05\%
* an output conforming to RIAA recording characteristic
* battery operation for no ripple or hum loop
* square wave output of fast rise time
also available

CONITRCT
 colourV RECIVER
 Starting in the April issue of Television this outstanding series
 gives full constructional details of a modern single-standard full PAL specification colour receiver.

In addition to complete constructional details, arrangements have been made for easy supply of all components required, including printed circuit boards. Special features of this 22in. set include: \square Strong simply-made cabinet. \square Printed circuit board construction. \square Front pull-out draw containing all convergence controls for easy adjustment. \square Optional buili-in crosshatch generator. \square Choice of varactor or conventional tuner. \square Automatic frequency control. \square RGB tube drive. \square Latest 22 in. Mazda flat-face square-corner tube. \square Delay-line PAL decoder. \square Fully integrated sound channel (using two i.c.s.), intercarrier amplifier and audio output.

MAKE SURE YOU DON'T MISS IT . . IT'S THE FIRST CONSTRUCTIONAL SINGLE-STANDARD COLOUR TELEVISION RECEIVER USING RGB DRIVE TO BE PUBLISHED IN A MAGAZINE

TE
 U . s

APRIL ISSUE (on sale March 20) 20p Order from your newsagent TODAY!

THE POINT FIVE-TWO C STUDIO CONSOLETTE

THE COMPLETE, FOUR CHANNEL, HALF INCH TAPE RECORDER Table-top mounting, fully remoteable, solenoid actuation. Balanced inputs, $600 \mathrm{ohm}, 0 \mathrm{dbm}$. Balanced or unbalanced outputs, $600 \mathrm{ohm}, 0 \mathrm{dbm}$ with reserve to +19 db . Cannon connectors throughout. 20 to $18,000 \mathrm{cps}$, NAB equalisation (DIN or CCIR on special order). Sel-sync with switch, patching. Full $\mathrm{A}-\mathrm{B}$ monitoring. Plug-in circuitry, heads, relays, solid state controls, motors. Employs the JSR . 52 Tape Transport with reel diameters to 11.5 inches. Available for $\frac{1}{4}$ inch tape, for monaural and stereo broadcast and for master tapes.

Prices and literature from:-

JOHN STEED RESEARCH LTD.,
220 Edgware Road,
London, W.2, England. Phone: 01-723 5066

WW-060 FOR FURTHER DETAILS
 TELEPRINTERS •PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUPMENT
 \author{ SALE OR HIRE

}

2-5-6-7-8 TRACK AND

 MULTIWIRE EQUIPMENT

TELEGRAPH AUTOM ATION AND COMPUTER PERIPHERALACCESSORIES DATEL MODEM TERMINALS, TELEPRINTER SWITCHBOARDS
Picture Telegraph, Desk-Fax, Morse Equipment: Converters and Stabilised Rectifiers; Line Transformers and Noise Suppressors; Tape Holders, Pullers and Fast Winders; Governed, Synchronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass Filters; Teleprinter, Morse, Teledeltos Paper, Tape and Ribbons; Polarised and specialised Relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment; Racks and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Connectors, Wires, Cables, Jack and Lamp strips, and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.

TELEPRINTER EOUIPMENT LTD.

Gaiety Works, Akeman Strent, Tring. Herts
Tel: Tring 3476 (STD 044282) Cables: RAHNO TRING
Telex:.82362, A/B BATEY TRING
WW-062 FOR FURTHER DETAILS

240° of shadowless readings. That's the Taylor Fyneline 'Wide Angle’ range.

Meet Taylor's new range of 'Wide Angle' panel meters. The 240° circular scale offers scale lengths of approximately twice that of simila 90° movements.

Model 38, illustrated here, is the smallest in the range with the scale length of $4 \frac{3}{8}$ in. and a panel width of little more than $2 \frac{1}{2}$ in. Find out more about the complete Fyneline range including our 'Standard' and 'Picture Frame' models. Write for data sheet now.

Mrdid Dich

Colbert Pana-Vise WORK POSITIONERS are specially designed to quickly and easily achieve the most CONVENIENT, COMFORTABLE and TIME-SAVING work position. Available with vacuum clamp or screw-on base. They can be ROTATED, TIPPED, TILTED.

Distributors:

Special Products Distributors Limited
 81 Piccadilly, London, W.1. Tel : 01-629 9556

Cables: Speciprod London
(made in U.S:A.)
WW-064 FOR FURTHER DETAILS

If you think closed circuit television is complicated, come to Dixons
 As distributors of every famous name in TV When you've chosen the system best sulted to

 equipment. Dixons can offer you totally unbiased advice on every problem connected with CCTV.The service we offer is complete : consultation, quotation, supply and installation.
Come to our showrooms and we'll show you the very latest equipment in this field. From TC mini-CCTV at f50,000. your requirements, we can offer you a choice between outright purchase, contract hire, hire purchase and short term rental.
Our full-time staff technicians will check the equipment you buy before installation and give you unbeatable after sales service. So don't make a move in CCTV without us. Call in or send us the coupon for more informa tion or a particular quotation. Or phone us at 01-4378811.

JAMES

CロT

SALE OF SURPLUS ELECTRONIC EQUIPMENT
The following items are available for immediate delivery at very competitive prices -
A more comprehensive list is available on application
NEWMARKET PACKAGED AUDIO AMPLIFIERS
IN MANUFACTURER'S BOXES.
PC7 Supply voltage 9 Volts D.C. Output power 1 Watt

PC9 High to Low Impedance Matching Preamplifier. Supply Vottage 9 volts D.C. Input Impedance $1 \mathrm{M} \Omega$ Frequency response $20 \mathrm{~Hz}-20 \mathrm{KHZ}$ Distortion $\begin{gathered}\text { TYypical) } \\ \text { Price } £ 0.50\end{gathered}$

CWMARKET MODULAR POWER SUPPLIES
BRAND NEW IN MANUFACTURER'S BOXES
PC101 Supply Voltage $220-250 \mathrm{~V}$ A.C. Outpint Voltage
9 Volts D.C. at 100 MA
Price $£ 1.15$ each

PC102̀ Śupply Voltage $\mathbf{2 2 0} \mathbf{- 2 5 0 V}$ A.C. Output Voitages: 1 Volts D.C. at 330 MA

Price $£ 2.00^{\circ}$
 The required work position is firmly secured with a patented ONE KNOB CONTROL, a unique feature of COLBERT POSITIONERS. A series of special holders is available for various types of work. Full details available on request.

Enhancing
 In 1969 Telequipment introduced the D53S which was universally acclaimed as the world's first realistically-priced true dual-beam storage oscilloscope. Now Telequipment announce the DM53A - with all the features of the D53S and the added advantages of variable enhancement and the remote control of Erase and single shot time base Reset.

The tube circuitry provides five alternative conditions of operation:
(a) Normal: P31 characteristics as in a conventional non-storage oscilloscope.
(b) Variable Persistence:'Provides continuous control from 0.2 second to more than 1 minute,
(c) Storage (without enhancement): As a storage oscilloscope, it is capable of storing traces. for periods of up to 10 minutes.
(d) Store (with variable enhancement): The writing speed may be increased up to about ten times.
(e) Hold: Retention time of image written in the store condition is prolonged up to one hour

A choice of differential, ultra high gain, or wide band with Signal Delay plug-in Y amplifiers, makes the DM53A capable of meeting almost any measurement requirement.
Send for full details now and see just how great is the value offered in the Telequipment DM53A. U.K. Prices: f490-f556.
depending on choice of amplifiers.
TEKTRONIX U.K. Ltd. Telequipment Sales, Beaverton House P.O. Box 69 Harpenden, Herts. Tel: Harpenden 61251 Telex: 25559

Wireless World

Electronics, Television, Radio, Audio

Our cover picture shows some of the eight 42-ft paraboloids being built by Marconi for the new $£ 2 \mathrm{M}$ tadio telescope at the Mullard Radio Astronomy Observatory at Cambridge University. Spaced over a distance of three miles four of the aerials are fixed and four are mounted on a railway track.

Photographer - Paul Brierley

IN OUR NEXT ISSUE

The transmission-line loudspeaker enclosure is re-examined and a simpler and better method of construction offered. Suitable drive units and cirossover circuits are also specified.
Ossilloscope trace quadrupler. Provides four traces on a single-beam oscilloscope without sacrificing sensitivity or d.c. coupling. Frequency response is from d.c. to 5 MHz (3 dB down at 8 MHz); sensitivity is $50 \mathrm{mV} / \mathrm{cm}$ when used with a $100 \mathrm{mV} / \mathrm{cm}$ 'scope.

Contents

153 Exhibltions - general or specialized?
154 Hand-portable Transceiver by D. A Tong
160 H.F. Predictions
161 The Electronic Retina by N. A. Singer
166 Conferences \& Exhibitions
167. Sound Pressure-level Meter by J. L. Linsley Hood

168 Announcements
169 Recording Level Meter and A.G.C. by James M. Bryant
170 News of the Month
173 How to Simplify Logic Circuits by N. Darwood
175 Letters to the Editor
177 Books Received
178 Electronic Building Bricks - 22 by J. Franklin
179 F.M. Tuner Design - $\mathbf{1 2}$ Months Later by L. Nelson-Jones
184 About People
185 Circuit Ideas
187 Stereo Cassette Tape Decks: 2 by B. Crank
192 Sixty Years Ago
193 World of Amateur Radio
194 Miniature Automatic Telephone Exchange Modifications by P. F. Gasgoyne
April Meetings
196 New Products
201 Literature Received
202 Real \& Imaginary by 'Vector'
A91 APPOINTMENTS VACANT
A 102 INDEX TO ADVERTISERS

ibpa

Inie naliona Busmes
Press Associres
I.P.C. Electrical-Electronic Press Ltd

Managing Director: George Fowkes Publishing \& Development Director: George H. Mansell
Advertisement Director: Roy N. Gibb, M.I.E.E.
(C) I.P.C. Business Press Ltd, 1972

Brief extracts or comments are allowed provided acknowledgement to the journal is given.

Published monthly on 3rd Monday of preceding month, 20p
Editorial \& Advertising offices: Dorset House, Stamford Street, London SE1 9LU. Telephone 01-928 3333. Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London S.E.1."
Subscription \& Distribution offices: 40 Bowling Green Lane, London ECIR ONE. Telephone 01-837 3636. Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.
Subscription rates: Home, $£ 4.35$ a year. Overseas, 1 year $£ 4.35 ; 3$ years $£ 11.10$ (U.S.A. \& Canada 1 year $\$ 11$, 3 years \$27.75).

To each hisown.

Not everybody needs a concert grand piano, nor does everybody need the Shure V-15 Type II, the most sophisticated cartridge in the world, to enjoy his kind of music in his kind of hi-fi system. For many, the M75 Type. 2 Series, widely acclaimed as second only to the V-15, will be more than adequate. Within more circumscribed budgets the M55, M44 Series or M3D, each offering optimum performance in successively lower price ranges, may be an excellent choice. Send us the coupon for our recommendations.

Shure Electronics Limited
84 Blackfriars Road
London SE1, 8HA Telephone (01) 9283424
\square Please send me the full details of Shure cartridges.
\square Please recommend the appropriate model for use : with my equipment.

Arm or Unit \qquad
Amplifier \qquad
Name \qquad
Address \qquad

HIGH-PERFORMANCE MF/HF RECEIVERS
for * P \& T Stations

* Civil Aviation Networks
* Naval \& Military Forces * Maritime Mobile Service

Three high-grade receiver designs with a choice of tuning wide enough to span the whole world of MF/HF communications.

Here is simply unbeatable performance. Outstanding frequency stability. Unyielding front-end protection. Unrivalled AGC. Plus exceptional dynamic range and blocking characteristics. From this great threesome :

R550 Selection of continuously variable or full frequency synthesis tuning $100 \mathrm{kHz}-30 \mathrm{M} \mathrm{Hz}$. Adopted by the Royal Navy for use in British warships.
R499 10 switched channels, $255-525 \mathrm{kHz}, 1.5-30 \mathrm{MHz}$. Optional filters, BFO and carrier reinsertion to provide any or all of CW, MCW, USB, LSB, ISB and DSB services with choice of bandwidths.
R551 Mercantile Marine version of R550, $15 \mathrm{kHz}-30 \mathrm{MHz}$. Type approved by British Ministry of P \& T and overseas administrations and in use by leading shipowners.

BSR make more turntables than everyone else in the world put together.

Our range includes high-quality sensibly priced models, both single play and automatic.

The MP60 player, already immensely popular, costs only $£ 15 \cdot 20$, complete with low mass, fully counterbalanced square section pick up arm, slide in cartridge holder, bias compensator, viscous cueing, $3 \frac{1}{2} 1 \mathrm{~b}$ die cast turntable, 4-pole motor and immaculate BSR styling.

For a few pounds more, you can buy the HT70, boasting the same super features but with three more refinements. A deep-rim die cast turntable, which is one pound heavier than the MP60. A rotating stub spindle to reduce record friction and a dynamically balanced synchronous motor, which compensates for normal fluctuation in mains voltage.

With these models, and our range of automatics, you get the flexibility of price you need to build your whole Hi-fi set up.

You can choose your own speakers and your own amplifier, to suit your pocket, from
the many excellent examples on the market. And if you're not too sure about the ins and outs of Hi-fi, your dealer will be only too pleased to help and advise you. But make sure you ask him to show you the range of BSR turntables. For a preview, just return the coupon below, and we'll.send you our illustrated brochures.

BSR Ltd., McDonald Division, Monarch Works, Cradley Heath, Warley, Worcs. Telephone: Cradley Heath 69272.

Please send me your illustrated brochures of the complete BSR McDonald range of turntables.
Name \qquad
Address

$w / 2$

New from Ferrograph

For the maintenance of professional recording equipment.

Now, for the first time, all the major parameters of a magnetic recording system can be measured on a single, inexpensive instrument. The Ferrograph RTS1 Recorder Test Set.

Consisting of 4 basic sections-variable frequency audio generator, millivoltmeter with associated attenuator, peak-to-peak wow and flutter meter, and distortion measuring network-this instrument will measure frequency response, distortion, crosstalk, erasure, input sensitivity, output power and signal/noise ratio.

Completely solid state and lightweight, it may be used in the field as well as the laboratory,
operating on voltages of 100-120, 200-250 volts at 50 or 60 hz .

It is developed specially for those people who have to operate, maintain or service all types of tape recorders, sound-on-film equipmeņt and audio apparatus.

The Ferrograph RTS1.

Made to stand the test.
Why not write for further details?

FERROGRAPH SOUNDS GOOD

DYMAR -for Radiotelephone testing

Dymar one of Britains largest producers of VHF radiotelephones manufacture a range of very economically priced instrumants specifically designed for use in the design, production and servicing of Radio Telephone Equipments. The type 785 Modulation Meter for example, is a solid state instrument for the measurement of depth of modulation in amplitude transmitters or the frequency deviation in the case of F.M. transmitters. It is specifically designed for narrow deviation transmitters in today's mobile and portable VHF radiotelephones, the most sensitive deviation range being 3 kHz f.s.d.

OTHER DYMAR INSTRUMENTS
585 -Portable A.F.Power Meter
701 Wideband Millivoltmeter
705 A.F. Microvoltmeter
711 VHF Millivoltmeter

745 Two-Tone Signal Generator 761 Noise Factor Meter 765A Distortion Factor Meter 771 A A.F. Wave Analyser

Carrier Frequency Range
F.M. Deviation
A.M. Modulation Depth Sensitivity

3 kHz f.s.d. -100 kHz 3\% f.s.d. -100% Better than 2 millivolts over the whole frequency range

Full details from :-
DYMAR ELECTRONICS LIMITED
Colonial Way, Radlett Road, Watford, Herts. Telephone: Watford 21297

Meeting amplification

 needs
'Toa' PA-III Meeting Amplifier A modern, compact, portable unit that brings clarity and 'life' to meetings, lectures, demonstrations, and other gatheringswhere a voice must carry effectively. Ideal for conferences, exhibitions, schools and stores.
Complete with built-in speaker and neck-slung/hand mike. Operates off Mains or Batt. (No need to waste time searching for an electric socket!) Unit takes extra mike, and has input for record-player or tape.

Goldring

'Our Testmatic TM60 gave us a 70\% saving in year one Next year it will be more.'
 David Evans, Satchwells Controls Systems Ltdl., Slough

Wayne Kerr's Testmatic TM60 is designed to do routine fault-finding on circuit boards, sub-assemblies, and cableforms. But its real end product is money: immediate definable, measurable savings far above the cost of its purchase.

Satchwells' experience is a case in point. When they saw the prototype TM60 they were so impressed with its potential for them that they put in an order and took the first production model that Wayne Kerr ever made.

They immediately applied it to the unit that represented their largest production batch - a circuit board that goes into a control for central heating systems.

By rapid fault finding and correction, they could afford to make fewer boards. They reduced rejects at final test from 25% to less than 10% of production.

They not only saved money in production, they saved the time of a skilled man. With the

Testmatic doing in 20 seconds what used to take 20 minutes, the chief troubleshooter was much less burdened with merely routine work.
Then, too, they saved the capital represented by boards waiting to be tested and repaired.

And all this has been only a beginning. Next year their TM60 will be put to work testing other types of boards in addition to the one it now lests. The more it works, and the more diversely it works, the more it will save.
Stop Press! Satchwells' have now taken delivery of another TM60.

[^5]For the attention of Mr .
Company Name
and Address.
Post to Wayne Kerr (TM60) Tolworth Close,Tolworth, Surbiton, Surrey,'KT6 7ER or call 01-399-6751.

Wayne Kerr is a member of the Wilmot Breeden Group.

50 MHz for $£ 975{ }^{*}$

with Tektronix 7403N

One mainframe - and up to 25 plug-in options for outstanding versatility and performance. Up to 65 MHz bandwidth; sensitivity to $10 \mu \mathrm{~V} / \mathrm{div}$. Large $6 \frac{1}{2}$ in screen, versatile trigger source selection, mode switching, push button controls, colour- keyed panels. Standard package* includes 7403 N mainframe, 7 A 18 Opt 1 $50 \mathrm{MHz}(5 \mathrm{mV} /$ div) amplifier and $7 \mathrm{~B} 53 \mathrm{~N} 5 \mathrm{~ns} /$ div timebase.

committed to techyical

Tektronix U.K. Ltd.,
Beaverton House, P.O. Box 69,
Harpenden, Herts.
Tel: Harpenden 61251 Telex: 25559

Northern Region:
Beaverton House, 181A Mauldeth Rd, Manchester 19
Tel: 061-224 0446 Telex: 668409

Scottish Region:
7 Shiel House, Craigshill, Livingston, West Lothian, Scotland.
Tel: Livingston 32.766/7

Read the experts'verdict on the Garrard Zero-100

Now and again, in the world of audio, there comes a piece of equipment that is not only different enough to catch public imagination but also technically sound enough to allay the suspicions of the ultra-conservative. Such a device is the Garrard Zero-100. Records and Recording (UK),

September 1971

(H W Hellyer)

'A simple list of all the Zero-100 features should serve to spotlight the changes that have been incorporated in this model. .
*15-deg. vertical tracking angle adjustment.
Sliding-weight stylus-force adjustment - easy to adjust as little as one-tenth of a gramme.
Magnetic anti-skating control.
Spring-loaded tonearm safety restrictor (lock)
Long-taper variable speed control Illuminated stroboscope, with two bands of lines, one for each speed. Rotating manual spindle.
Proven Synchro-Lab motor combination of induction and synchronous types.
Full-diameter platter
*Safe 2-point record support.
Handsome combination of chrome.
brass and plexiglas for tonearm mounting.
Audio (USA), July 1971
'The most striking feature of the pickup arm. of course, is the auxiliary rod to the right of the straight, rectangular cross-section aluminium arm. This is pivoted at both ends and its effect is to rotate the cartridge

The pivoting head at the start and end of a playing cycle.
housing directly above the stylus tip so that at all points, as the pickup tracks across the record, the plane of stylus motion remains truly at right angles to the groove. This causes the reproducing stylus to imitate the motion of the cutting stylus very accurately in tracking the recorded waveform, and is in contrast to the normal pivoted arm which tracks in an arc across the record. The angular error is a small, but important, source of harmonic distortion.'
The Gramophone (UK), August 1971
(John Borwick)

The required playing weight is applied by means of a stylus force weight which slides along the underside of the pickup arm. The scale, from 0 to 3 grammes, is about $3 \frac{3}{8}$ inches long so that very precise setting of the weight is possible.

The Gramophone (UK) August 1971 (John Borwick)
'Wow and flutter are good. To measure less than 0.08% on a turntable of this type and cost is phenomenal - 1 may have had a particularly good one. A colleague widely separated from me reports W\&F as low as 0.05%, so I can only applaud Garrard for having made the best of the Synchro Lab motor, now proven on several recent models.' Records and Recording (UK).September 1971 (H W Hellyer)
'Garrard's Zero-100, in basic performance, easily ranks with the inest *automatic turntables on the market. Its novel arm - which really works as claimed - and its other unique design features suggest that a great deal of development time, plus sheep imagination, went into its creation. In our view, the results were well worth the effort.
Stereo Review (USA), July 1971 (Hirsch-Houck Laboratories)
*The references to the automatic Zero-100 occur because, at the time of the reviews, only the automatic version was available. The Zero-100 is now available in single-play form, with facility for 'fluid damped' autoplay of single records
1 Brass counterbalance weight
2 Magnetic bias compensation
3 Rigid acrylic pickup arm housing
4 Gimballed pivots
5 Stylus force adjustment (under arm)
6 Low resonance pickup arm
7 Control arm
8 Control link pivot
9 Pickup head pivot
10 Vertical cartridge
angle adjustment
(on auto player only)
If you'd like to read our full facts on the Zero-100 write now for colour brochure.

Carrard
A PLESSEY QUALITY PRODUC
Garrard, Newcastle Street,
Swindon, Wiltshire, England.
(7) ZF $380 / 238 \mathrm{k} / 2 \cdot 72 \mathrm{~K}$
Printed in England

Super IC-12

Highfidelity Monolithic Integrated Circuit Amplifier

Two years ago Sinclair Radionics announced the World's first monolithic integrated circuit $\mathrm{Hi}-\mathrm{Fi}$ amplifier, the IC.10. Now we are delighted to be able to introduce its successor, the Super IC.12. This 22 transistor unit has all the virtues of the original 1 C .10 plus the following advantages:

1. Higher power
2. Fower external components
3. Lower quiescent consumption
4. Compatible with Project 60 modules.
5. Specially designed built-in heat sink. No other heat sink needed.
6. Full output into $3,4,5$ or 8 ohms
7. Works on any voltage from 6 to 28 volts without adjustment.
8. NEW 22 transistor circuit.
[^6]Output power 6 watts RMS continuous (12 watts peak).
Frequency Response 5 Hz to $\cdot 100 \mathrm{KHz} \pm$ 1 dB .
Total Harmonic Distortion Less than 1%. (Typical 0.1%) at all output powers and all frequencies in the audio band.
Load Impedance 3 to 15 ohms.
Input Impedance 250 Kohms nominal.
Power Gain 90dB (1.000,000.000 times) after feedback.
Supply Voltage 6 to 28 volts (Sinclair PZ- 5 or PZ-6 power supplies ideal).
Quiescent current 8 mA at 28 volts; low enough to make the IC. 12 ideal also for battery operation.
Size $22 \times 45 \times 28 \mathrm{~mm}$ including pins and heat sink.

With the addition of only a very few external resistors and capacitors the Super IC. 12 makes a complete high fidelity audio ámplifier suitable for usewith pick-up. F.M. tuner etc. Alternatively, for more elaborate systems, modules in the Project-60 range such as the Stereo 60 and A.F.U. may be added.

FREE 44 page instruction manual now included with all units. Available free on request to present IC. 12 users. Gives full circuit and wiring diagrams for many applications including car-radios, oscillators, etc.

Price, inc. FREE prínted circuit board for mounting and manual.
£2.98
Post free

Sinclair Project 60

Project 605

The easy way to buy and build
Project 60

Project 605 is one pack containing : one PZ5 two Z30's, one Stereo 60 and one Masterlink. This new module contains all the input sockets and output components needed together with all necessary leads cut to length and fitted with neat little clips to plug straight on to the modules. Thus all soldering and hunting for the odd part is eliminated. You will be able to add further Project 60 modules as they become available adapted to the Project 605 method of connecting.

Complete Project 605 pack with comprehensive manual, post free
$£ 29.95$
All you need for a superb. 30 watt high fidelity stereo amplifier.

Sinclair Radionics Ltd, London Road, St. Ives, Huntingdonshire PE17 4HJ. Tel: St. Ives 64311

Project 60 offers more advantage to the constructor and user of high fidelity equipment than any other system in the world.
Performance characteristics are so good they hold their own with any other available system irrespective of price or size.
Project 60 modules are more versatile - using them you can have anything from a simple record player or car radio amplifier to a sophisticated and powerful stereo tuner-amplifier. Either power amplifier can be used in a wide variety of applications as well as high fidelity. The Stereo 60 pre-amplifier control unit may also be used with any other power amplifier system as can the AFU filter unit. The stereo FM tuner operates on the unique phase lock loop principle to provide the best ever standards of audio quality. Project 60 modules are very easily connected together by following the 48 page manual supplied free with Project 60 equipment. The modules are great space savers too and are sold individually boxed in distinctive white and black cartons. With all these wonderful advantages, there remains the most attractive of all - price. When you choose Project 60 you know you are going to get the best high fidelity in the world, yet thanks to Sinclair's vast manufacturing resources (the largest in Europe) prices are fantastically low and everything you buy is covered by the famous Sinclair guarantee of reliability and satisfaction.

Typical Project 60 applications

System	The Units to use	together with	Units cost
Simple battery record player	2.30	Crystal P.U.. 12 V battery volume control, etc.	¢4.48
Mains powered record player	Z.30.PZ.5	Crystal or ceramic P.U. volume control etc.	¢9.45
12 W. RMS continuous sine wave stereo amp. for average needs	$\begin{aligned} & 2 \times 2.30 \text { s, Stereo } 60, \\ & \text { PZ. } \end{aligned}$	Crystal, ceramic or mag. P.U., F.M. Tuner, etc.	£23.90
25 W. RMS continuous sine wave stereo amp. using low efficiency (high performance) speakers	$\begin{aligned} & 2 \times 2.30 \mathrm{~s}, \text { Stereo } 60, \\ & \text { PZ. } 6 \end{aligned}$	High quality ceramic or magnetic P.U., F.M. Tuner. Tape Deck, etc.	£26.90
80 W . (3 ohms) RMS continuous sine wave de luxe stereo amplifier. (60 W . RMS into 8 ohms)	$\begin{aligned} & 2 \times 2.50 \mathrm{~s} \text {, Stereo } 60 \\ & \text { PZ.8, mains } \\ & \text { transformer } \end{aligned}$	As above	£34.88
Indoor P.A.	Z.50, PZ.8, mains transformer	Mic., guitar, speakers, etc., controls	£19.43

The phase lock loop ptinciple was used for receiving signals from space craft because of its vastly improved signal to noise ratio. Now, Sinclair have applied the principle to an F.M. tuner with fantastically good results. Other original features include varicap diode tuning, printed circuit coils; an I.C. in the specially designed stereo decoder and squelch circuit for silent tuning between stations. In terms of a high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically as the tuning control is rotated, a panel indicator lighting up as the stereo signal is tuned in. This tuner can also be used to advantage with most other high fidelity systems.
SPECIFICATIONS-Number of transistors: 16 plus 20 iń I.C. Tuning range: 87.5 to 108 MHz . Capture ratio: 1.5 dB . Sensitivity: $7 \mu \mathrm{~V}$ for lock-in over full deviation. Squelch level: $20 \mu \mathrm{~V}$. Signal to noise ratio: $>65 \mathrm{~dB}$. Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{KHz}$ ($\pm 1 \mathrm{~dB}$). Total harmonic distortion: 0.15% for 30% modulation. Stereo decoder operating level: $2 \mu \mathrm{~V}$, Cross talk: 40 dB . Output voltage: $2 \times 150 \mathrm{mV}$ R.M.S. Operating voltage: $25-30 \mathrm{VOC}$.
Indicators: Stereo on: tuning. Size: $93 \times 40 \times 207 \mathrm{~mm}$

Stereo 60 Pre-amp/control unit

Designed for Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout, achieving a really high signal-to-noise ratio and excellent tracking between channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs.
SPECIFICATIONS-input sensitivities: Radio - up to 3 mV . Mag. p.u. 3 mV : correct to R.I.A.A curve $\pm 1 \mathrm{~dB}: 20$ to $25,000 \mathrm{~Hz}$. Ceramic p.u. - up to 3 mV : Aux - up to 3 mV . Output: 250 mV . Signal to noise ratio: better than 70 dB . Channel matching: within 1dB. Tone controls: TREBLE +12 to -12 dB at $10 \mathrm{KHz}: \mathrm{BASS}+12$ to -12 dB at 100 Hz . Front panel : brushed aluminium with black knobs and controls. Size: $66 \times 40 \times 207 \mathrm{~mm}$.

A.F.U. High \& Low Pass Filter Unit

For use between Stereo 60 unit and two 2.30 s or $\mathrm{Z.50}$ s, and is easily mounted. It is unique in that the cut-off frequencies are continuously variable, and as attenuation in the rejected band is rapid (12dB/octave), there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The A.F.U. is suitable for use with any other amplifier system. Two filter stages - rumble (high pass) and scratch (low pass). Supply voltage - 15 to 35 V . Current 3 mA . H.F. cut-off (-3dB) variable from 28 KHz to 5 KHz . L. F. cut-off (-3 dB) variable from 25 Hz to 100 Hz . Distortion at 1 KHz (35 V . supply) 0.02% at rated output. Size : $66 \times 40 \times 90 \mathrm{~mm}$.
Z. 30 \& Z.50 power amplifiers

Buit, tested and guaranteed with circuits and instructlons manual. $\mathbf{Z . 3 0} £ 4.48$ Z.50 £5.48

The $Z .30$ and $Z .50$ are of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at $15 \mathrm{w}(8 \Omega)$ and all lower outputs. Whether you SPECIFICATIONS ($Z .50$ units are interchangeabla Power Ourputs
Z. $30 \cdot 15$ watts R.M.S. into 8 ohms using 35 volts : 20 watts R.M.S. into 3 ohms using 30 volts.
Z.50 40 watts R.M.S. into 3 ohms using 40 volts:
2.50
30
watts R.M.S. into 8 ohms using 50 volts.
50

Frequency response: 30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
use $\mathbf{Z . 3 0}$ or $\mathbf{Z . 5 0}$ amplifiers in your Project 60 system will depend on personal preference, but they are the same size and may be used with other units in the Project 60 range equally well.

with Z.30s in all applications/

Distortion : 0.02% into 8 ohms.

Signal to noise ratio: better than 70 dB unweighted. Input sensitivity: 250 mV into 100 Kohms (for 15 w into 8Ω)
For speakers from 3 to 15 ohms impedance. Size: $14 \times 80 \times 57 \mathrm{~mm}$.

Power Supply Units

Designed special for use with the Project 60 system of your choice. Use PZ. 5 for normal Z.30 assemblies and PZ. 6 where a stabilised supply is essential.

P2.5 30 volts unstabilised $£ 4.98$
P2.6 35 volts stabilised $£ 7.98$
PZ. 845 volts stabilised
(less mains transformer) $£ 7.98$
P2.8 mains transformer $£ 5.98$

Guarantee

If within 3 months of purchasing Project 60 modules directly from us, you are dissatisfied with them, we will refund your money at once. Each module is guaranteed to work perfectly and should any defect arise in normal use we will service it at once and without any cost to you whatsoever provided that it is returned to us within 2 years of the purchase date. There will be a small charge for service thereafter. No charge for postage by surface mail. Air-mail charged at cost.

TO: SINCLAIR RADIONICS LTD LONDON ROAD ST. IVES HUNTINGDONSHIRE PE17 4HJ

Please send	$\left.\left.\begin{array}{ll}\text { Name } \\ \hline \text { I enclose cash/cheque/money order. } & \text { Address } \\ \hline\end{array}\right] \begin{array}{l}\text { wwa }\end{array}\right]$

 Opportunities

 Opportunities Unlimited in RADIO,TELEVISION, ELECTRONICS

> City \& Guilds Telecommunication Technicians' Certificate Ministry of Post \& Telegraphs Certificate

Which one would qualify you for higher pay?

International Correspondence Schools provide specialized training courses for all these certificates (tuition for individual subjects also provided) and with the help of the Schools' experienced tutors you can be sure of early success. You will have the advantage of building on your practical experience and ensuring that you have the technical knowledge so essential for success in electronics.

And the result? You'll soon be qualified in your field of electronics, and in a position to choose your opportunity.
Find out how ICS can help you. Send for our free prospectus right away.

ALL EXAMINATION STUDENTS ARE COACHED UNTIL SUCCESSFUL

NOW-COLOUR TV SERVICING COURSES

 As the demand for colour TV increases, so does today's demand for trained servicing engineers. You can learn the techniques of servicing colour and monochrome TV sets through new home study courses specially prepared for the practical TV engineer.SELF-BUILD RADIO COURSES
We'll teach you both the theory and practice of valve and transistor circuits, as well as how to service them, while you build your own 5 valve receiver, transistor portable and high grade test instruments. You build equipment of real practical use!

Accredited by the Council for the Accreditation of Correspondence Colleges
Member of the Assoçiation of British Correspondence Colleges

UNBEATABLE UNREPEATABLE OFFER

SHIBADEN SV700E 625 \& 405 LINE $\frac{1}{2}$ " VIDEO TAPERECORDER at under HALF PRICE

SAVE f200 ON EX-DISTRIBUTORS REDUNDANT STOCK ONLY $f 198$ each

GUARANTEED FULL WORKING ORDER AND COMPATIBLE WITH LATEST MACHINES. ORDER NOW WHILE LIMITTED STOCKS LAST. (TRADE ENQUIRIES WELCOME) AUDIO ADVERTISING (DEPT IVS) 43 MALDEN WAY, NEW MALDEN, SURREY 01-942 9635/6

 ㅇHMIC

Hot moulded carbon resistors and potentiometers. Modular op amps Send for literature

Bourns (Trimpot) Ltd.,
Hodford House, 17/27 High Street,
Hounslow, Middlesex.
Telephone: 01-572-0111 Telex: 264485.

International Instruments, Electronics, Automation Exhibition Olympia London 8-12 May 1972

Keeping up with developments in this fast moving industry can be difficult. That's why the IEA Exhibition was born and why you should seize this opportunity to visit the only international show this year to cover the field.

25\% of the exhibitors come from 18 overseas countries and for the first time there will be special sections: one for process control instrumentation and one for electronic components.

Equipment and techniques need to be examined carefully, especially when they change radically and relentlessly.

The Intelsat project is a classic

example. This project is big business - it costs $\$ 30,000,000$ per match to blue touchpaper. 82 countries are involved and U.K. is the second largest contributor. The IEA Exhibition means business.

See you there.

The IEA Exhibition is sponsored by the 5 trade associations of the industry. Tickets available only from exhibitors or at 30 p at the door.

Open : 10.00-18.00 daily (except Wed. and Thurs. open until 20.00)

QUASI-DIFFERENTIAL сHPP部 AMPlifer

BRITISH MADE

IMMEDIATE DELIVERY

This amplifier can be used for differential applications where the common mode voltage is limited to $\pm 1 \mathrm{v}$ d.c. There is no 50 Hz c.m.r.r. and an external capacitor allows for optimisation of the frequency response versus chopper ripple :

TYPICAL CHARACTERISTICS

offset voltage	$0.15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
noise voltage	$1 \mu \mathrm{Vp-p}$
bandwidth	dc .100 Hz (adjustable)
slew rate	adjustable
metal case	$1.5^{\prime \prime}$ square
	$\times 0.62^{\prime \prime}$ deep

ancom limited devonshire street cheltenham 53861
WW-081 FOR FURTHER DETAILS

TRANSFORMERS

COILS
CHOKES
TRADE ENQUIRIES WELCOMED
SPECIALISTS IN
FINE WIRE WINDINGS MINIATURE TRANSFORMERS RELAY AND INSTRUMENT COILS VACUUM IMPREGNATION TO APPROVED STANDARDS

ELEGTRO-WINDS LTD.
CONTRACTORS TO G.P.O., L.E.B., B.B.C.
123 PARCHMORE ROAD, THORNTON HEATH, SURREY
01-653 2261
CR4BL Z
EST. 1933
WW-082 FOR FURTHER DETALS

VITA VOX HIGH QUALITY

MICROPHONES PRESSURE UNITS

LOUDSPEAKERS
H.F. HORNS And a wide range of associated eqpt. Further information from

VITA VOX LTD
Westmoreland Road, London NW9 9RJ Telephone: 01-204 4234

WW- 083 FOR FURTHER DETAILS

BRIDGE RECTIFIER FROM SSDI (MACHINED ALUMINIUM CASE)

TUNE IN TO OXLEY

WITH OUR ESTABLISHED AND MOST . RECENTLY DEVELOPED TRIMMER CAPACITORS

P.T.F.E. tubular trimmers.
\star Quartz tubular trimmers.
\star Plastic base P.T.F.E. and air dielectric trimmers.
\star 'Ceramic trimmers.

* Temperature compensating trimmers.
\star Ceramic base P.T.F.E. and air dielectric trimmers.
* Maximum capacitance values from 2 pF to 100 pF .

We feel sure we can meet your most exacting requirements for precision trimmer capacitors.

For further details please contact the manufacturers:
OXLEY DEVELOPMENTS CO. LTD
PRIORY PARK, ULVERSTON, N. LANCS.
TEL: ULVERSTON 2621. TELEX 6541.
CABLES: OXLEY ULVERSTON

WW- 085 FOR FURTHER DETAILS

For a Professional Finish To your Quality Kit

CURRENT RANGE
Universal Metalwork - Wooden Case -Stereo Bailey 30w Front Plate - Bailey 30w kits with fibreglass PCB's and edge connector mtg. Bailey 20 w kits, Bailey Pre amp. Linsley Hood Class A. Sugden Class A (Reprint now available.) Stuart tape circuits, full set of fibreglass PCB's and all parts for primary design. Readywound inductors and Bogen heads for $\frac{110}{4}$ tape and cassettes in stock.
NEW FOR THIS MONTH - Large heavy duty Mains transformer for Linstey Hood Class A designs Secondary tapped at 25,30,35 and $40 v 2.5 A$ to suit the different versions of this amplifier. Size $3 \frac{3}{4} \times 3 \frac{1}{4} \times 4 \frac{1}{4}$ high. Tagboard terminations. Fully impregnated and built for continuous use. Our type No. $750 £ 4.20$ post free. Replaces parts 750a. 750 b and 750 c .
P.S. Anybody want fully wound mains transformers for the bench, Power Supply in February W.W.?
For free list, please send foolscap (9×4 ") s. a.e.
ALLU.K. ORDERS ARE-POST FREE.

Overseas at cost.

HART ELECTRONICS
PENYLAN MILL, MORDA, OSWESTRY, SALOP. Personal callers are always welcome, but please note we are closed all day Saturday.

TRANSFORMERS

MAINS ISOLATING SERIES
ol ALSO AVAILABLE WITH $115 / 120 Y$ SECONDARY WINDING

and two $115 V$ outlet sockets, 67.85 . P \& P transformer, complete with mains lead Also available a 20 Wate version, $11 \cdot 67$, P \& P 22p.

LOW VOLTAGE SERIES (ISOLATED)
PRIMARY 200-250 VOLTS 12 AND/OR 24 VOLT RANGE

		Weighe	Size cm.	Secondary Windings		P
No.	12 V 24 V	16 oz			6	p
111	0.50 .25	12	$7.6 \times 5.7 \times 4.4$	0.12 V at $0.25 \mathrm{~A} \times 2$	0.85	22
213	1.00 .5	0	$8.3 \times 5.1 \times 5.1$ $7.0 \times 6.4 \times 5.7$	0-12V at 1A $\times 2$	1.33	22
71	2.1		$8.0 \times 6.4 \times 8.0$	$0-12 V$ at $2 A \times 2$	1.86	36
18	$4{ }^{2}$		$10.2 \times 7.6 \times 8.6$	$0 \cdot 12 V$ at $3 A \times 2$	$2 \cdot 24$	42
70	${ }_{8}^{6} 4$	54	$10.0 \times 8.3 \times 8.2$	$0-12 V$ at 4 A $\times 2$	2-48	52
108	8		$7.9 \times 10.8 \times 10.2$	0.12 V at 5A $\times 2$	2.94	52
72	10		$12.1 \times 9.5 \times 10.2$	$0-12 \mathrm{~V}$ at BA $\times 2$	4.54	
15	$16 \quad 8$		$12.1 \times 11.4 \times 10.2$	$0-12 \mathrm{~V}$ ae 10A $\times 2$	5.78	67
+115	$\begin{array}{ll}20 & 10 \\ 30\end{array}$	1612	12.3 $\times 12.1 \times 12.1$	$0-12 \mathrm{Vat} 15 \mathrm{~A} \times 2$	10.67	82
226	$60 \quad 30$		$17.0 \times 14.5 \times 12.5$	$0-12 \mathrm{~V}$ ar 30A $\times 2$	19.61	
			Size cm.	30 VOLT RANGE Secondary Taps		$P_{\&} P$
						p
112	0.5		$8.3 \times 3.7 \times 4.9$	0-12-15-20-24		28
79		20	$7.0 \times 6.4 \times 6.0$		2.01	36
3	2.0	32	$8.9 \times 7.0 \times 7.6$			
20	3.0		$10.2 \times 8.9 \times 8.6$	" \quad "	2.94	52
	4.0	6	$10.2 \times 10.0 \times 8.6$	" 0	3.66	52
51	5.0	68	$12.1 \times 10.0 \times 8.6$	" 0	4.36	52
17	6.0		$12.1 \times 10.0 \times 10.2$		5.64	67
	0		-0 $\times 11.7 \times 10.0$			67
89	10.0	122	$14.0 \times 10.2 \times 11.4$	" 'r	$7 \cdot 14$	
	Amps.	eight	Size cm.	50 VOLT RANGE		P \& P
102	0.5	111	$7.0 \times 7.0 \times 5.7$	0-19-25-33-40-50V	1.33	36
103	1.0	210	8.3 $\times 7.3 \times 7.0$	"		42
104	2.0		$10.2 \times 8.9 \times 8.6$	"	${ }^{2} .65$	52
105	3.0	60	$10.2 \times 10.2 \times 8.3$	".	4.83	52
106	0		$12.1 \times 1.4 \times 10.2$		7.14	67
107	6.0	12.	$12.1 \times 11.1 \times 13.3$ $13.3 \times 13.3 \times 12.1$	"\% "̈	9.14	97
118	8.0	18.9	$13.3 \times 13.3 \times 12.1$ $16.5 \times 11.4 \times 15.9$	". \quad "		
119	10.0		16	" ${ }^{\text {a }}$		
	ps	Weight	Size cm.	60, VOLT RANGE		8
		${ }^{\circ} \mathrm{oz}$	$8.3 \times 9.5 \times 6.7$	0-24-30-40-48-60V	1.35	36
	1.0	$\frac{2}{3} 0$	$8.9 \times 7.6 \times 7.6$		$1 \cdot 88$	36
7	2.0	58	$10.2 \times 8.9 \times 8.6$	- .	$2 \cdot 94$	42
	3.0	88	$11.9 \times 9.5 \times 10.0$		4.48	52
3	4.0		$11.4 \times 9.5 \times 11.4$.. \quad	5.78	67
120	6.0	1612	$13.3 \times 12.1 \times 12.1$		8.37	82
122	10.0	232	$16.5 \times 12.7 \times 16.5$	"	13.85	
PRIMARY 200-250 VOLT BATMERY CHARGER TYPES						
RefNo458814650	Amps.	Weight	Size cm.			
					34	0
	1.5				2.03	42
	4.0	311 5	$10.2 \times 8.0 \times 8.3$ $10.2 \times 8.9 \times 8.3$	Please note, ehese	3.07	52
		64	$8.9 \times 10.2 \times 10.2$	clude rectifiers	3.19	
	12.5	1114	$13.3 \times 10.8 \times 12.1$		$5 \cdot 20$	

All ratings are continuous. Standard construction: open with solder tags and wax impregnation. Enclosed slyles to order

TRANSISTORS
TO MANUFACTURERS' FULL SPECIFICATIONS BC107/108/1099.0p each
with mica and bushes AD $161 / 16260$ ppair
with mica and bushes $8 C 107 / 108 / 1$
$25+7.5 p$
$100+6.5 p$
$500+6.0 p$
Minimum ord
Minimum o
ehis range.
$25+55$ and bushes $25+55 p$
$100+50 \mathrm{p}$
\star Quantity prices on application
Also stocked: SEMICONDUCTORS • VALVES MULTIMETERS • MAINS KEYNECTOR ELECTROSIL METAL OXIDE RESISTORS

BARill electronics
 11 MOSCOW ROAD, QUEENSWAY LONDON W2 4AH Tel:01-229 6681/2
 NEAREST TUBE STATIONS: BAVSWATER, QUEENSWAY

THE WORLD'S FINEST
POWER AMPLIFIER! DC300

OC-coupled throughout, the OC3OD offers unequalled reproduction of frequencies from OC to $20,000 \mathrm{~Hz}$. Users in the U.K. include The Post Office, CEGB, CERL National Physical Lab., Hoad Research Lab., Queen Mary College, Universities at Bath, Salford. Manchester, and Southampton, and the Institute of Sound \& Vibration. Laboratory uses include driving Vibrators, Stimulators and Motors, Servo loops, and many more. Full dàta available on request.


```
Power Response
Power at Clip Poim
Total Output (1HF) Typically 420 watts RMS into 8 ohms, 800 wars RMS into 4 ohms.
T.M.D.
    I.M. Ostortion
    (60-7KHz 4:1)
    Hum and Noise
    Mumand Noise
    Slewing Rate
    Dimensions
    Weight
\(\pm 1 \mathrm{db}\) Zero-20KHz at 150 watts RMS into 8 ohms.
Typically 420 watts RMS into 8 ohmz, 800 warts RMS imto 4 oh ms.
Better than \(0.03 \%\) at 1 KHz at 190 watts level
Less than \(0.1 \%\) from 0.01 watt to 150 watts RMS into 8 ohms. trpically below Greater than 200 IZero to
100 dt below 150 watis RMS output (ummeighted wats RMS).
8 volts per micro second. S-R is the maximum value of the first derivative of the output signal.
19in standard rack mount (W.E hole spacing), 7in height, 9 ifin. deep (from mounting surface).
40 pounds net weight 40 pounds net weight
access door, and chassis
```


PRICE £360

Sole Agents: MACINNES LABORATORIES LTD.
71 Oakley Rd., Chinnor, Oxon. Tel. Kingston Blount (0844) 52061

DABAR AUDIO MIXER MODULES

A RECENT ADDITION TO OUR VERY POPULAR RANGE OF MIXER MODULES
FOR STUDIO. P.A. \& DISCOTHEQUE USE IS OUR SERIES UMF MODULES. THE MODULES. CONSTRUCTED ON GLASS-FIBRE PRINTED CIRCUIT MATERIAL ARE COMPLETE WITH A BLACK ANODISED FACIA PLATE WHICH CARRIES THE PRE-AMP CARD WITH THE FOUR CONTROLS: LF.. H.F., ECHO SEND \& P.F.L. TOGETHER WITH A SLIDER FADER AS THE MAIN
CHANNEL OUTPUT LEVEL CONTROI CHANNEL OUTPUT LEVEL CONTROL
A TEN CHANNEL MIXER/LINE AMPLIFIER WITH VU METER IS AVAILABLE ON A MATCHING FACIA PLATE AND HAS AN EXPANDER INPUT AND PRESET ADJUSTMENT FACILITIES FOR VU ADJUSTMENT. THE LINE AMPLIFIER WILL DELIVER UP TO + 20dBM.
INPUT MODULES UMF SERIES
UMF1 200-600 ohm Mic (unbalanced)
UMF2 50 k Mic (unbalanced)
UMF3 1.5 mV Mag P/U R.I.A.A.
UMF4 5 mV Mag P/U R I A A
UMF4 5 mV Mag P/U R.I.A.
UMF5 Crystal P/U 500 mV
UMF6 High level Tape/Tuner 5 mV
MIXER/LINE AMPLIFIER MODULES
MX/LNTA-F-VU mixer/line amp with VU meter
MX/LNTA-F-S mixer/line amp less VU meter
,BPF1 Blanking Plate. PU11/30 30 v Power unit for above modules
FACIA DIMENSIONS: $11.2^{\prime \prime} \times 2.75^{\circ}$
PRICES: UMF1-6 £15.00 each. MX/LNTA-F-VU £18.00 each. MX/LNTA-F-S £16.00 each. BPF1 $\mathbf{£ 2} .00$ each. PU11/30 £8.00 each.

TRADE ENOUIRIES WELCOME.
MANUAL SHOWING MIXING ARRANGEMENTS 25p. S.A.E. ENQUIRIES.
DABAR ELECTRONIC PRODUCTS
LICHFIELD STREET, WALSALL. STAFFS. WS1 1 uz .
WALSALL 34365

wwemminear POWERTRAN ELLCTRONICS SERVICE

COMPONENTS FOR W.W. AMPLIFIER DESIGNS
30W BLOMLEY (New approach to class B)
Semiconductor se
Resistors, capacitors, pots
F/Glass PCB
30W BAILEY' (Single power rail)
Transistor set ...
Resistors, capacitors, pots
Resistors, ca
F/Glass PCB
LINSLEY-HOOOD CLASS A (Deec., 1970, circuit)
2N3055 pair, BC212L, 2N1711
Resistors, capacitors, pot
F/GIass PCB
MJ481/491, MJE521, BC182L, BC212L, zener
M)481/491, MJE52I, BCI82
Resistors, capacitors, pots

Resistors, capacitors, pots
Please state 8Ω or 15Ω
REGULATED 6OV POWER SUPPLY
A 5 transistor series stabiliser, suitable for a pair of S/C protection. All components, including mech. parts heat sink, fuses, etc. . $\because \ddot{\text { Por }}$. $\quad . \quad$ also available

I00W AMPLIFIER (Oct., 1970, Hardcastle \& Lane) Designer, Texas Instruments approved kit has now undergone various improvements including facilities Amplifier kit 19.75 Power supply .. 13.50
Single: $\quad \begin{aligned} & 23 \mathrm{~mm} \text { Linear values: } 100,220,470, \text { IK, 2K2, 4K7, IOK }\end{aligned}$
Linear values: $100,220,470$, K K, $2 \mathrm{~K} 2,4 \mathrm{~K} 7,10 \mathrm{~K}$,
$22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M2}$ Log values: $4 \mathrm{K7}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}$, Dual: Linear values: $10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}$ Balance: Purpose designed; better than Log, $1 \mathrm{M} 2 \ldots \mathrm{l} .35$ urpose designed; better than Log./A Log
No attenuation at mid point. IOK only

Part of metal work system. is in. by $4 z^{\circ} \mathrm{in}$. silk screen printed, brushed 16 g . aluminium. Hole spacing is compatible with Linsley-Hood and Bailey/Burrows preamp PCBs on which the pots are directly mounted. PRE-AMPS
Each component set comprises of all specified resistors, Eapacitors, transistors, pots, including special balance control
BAILEY/B URROWS (Aug., 1971) Stereo F/Glass PCB Component Set: Mono Component set: Stereo
LINSLEY-HOOD SIMPLË PRE-AMP Stereo F/Glass PCB
(includes accommodation for mag. PU circuit but components for this are not supplied with the sets) Component set: Mono
Component set: Stereo
BURROWS SIMPLE PRE-AMP
Mono F/Glass PCB
(suitable for +'ve and -'ve voltage systems)
Component set: Mono

SEMICONDUCTORS

2N699	0.30	BFY50	0.20
2NI613	0.20	MJ48I	1.20
2N1711	0.25	MI49I	1.30
2N3053	0.20	MJE521	0.70
2N3055	0.55	MPSAO5	0.30
2N3702	0.11	MPSAI2	0.55
2N3703	0.10	MPSAI4	0.35
2N3704	0.11	MPSA55	0.35
2N3705	0.10	MPSA66	0.40
2N3706	0.09	MPSH05	0.20
2N3707	0.11	MPSU05	0.60
2N3708	0.07	MPSU55	0.70
2N3709	0.09	TIP29A	0.50
2N3710	0.09	TIP30A	0.60
2N37II	0.09	TIP3IA	0.60
2N38I9	0.23	TIP32A	0.70
2N3904	0.25	TIP33A	1.00
2N3906	0.25	TIP34A	1.50
2N4058	0.12	TIP3055	0.60
2N4062	0.12	IB08T20	0.50
2N4302	0.60	IB40K20	1.40
40361	0.47	IN916	0.07
40362	0.57	IS44	0.05
BCI07	0.10	IS920	0.10
BCI09	0.10	IS2047	0.15
BCI25	0.15	IS2056	0.15
BCI26	0.22	IS2062	0.15
BCI82K	0.10	IS2082	0.15
BC2I2K	0.12	IS2100	0.15
BCI82L	0.10	IS2150	0.15
BCI84L	0.11	IS2200	0.15
BC212L	0.12	IS3062	0.25
BF259	0.60	OA47	0.07
MATCHING	8	MICA	WASHERS

For further detalls please write for free list
22 THE PANTILES, BEXLEYHEATH, KENT

NEW SLIDER POTENTIOMETERS

As used on only the most exclusive of Audio Amplifiers and Mixers.
made, high quality moulded construction, suitable for both panel and PCB mounting.
DIMENSIONS (SINGLE AND DUAL)
LENGTH . $\quad . .87 \mathrm{~mm}$. IOK LOG SINGLE
WIDTH $\quad \because 87 \mathrm{~mm}$. 10 mm . 10 LOG DUAL $\quad \because \quad 0.40$ $\begin{array}{llllll}\text { WIDTH } & \cdots & \cdots & 10 \mathrm{~mm} . & \text { IOK LOG DUAL } & 0.60 \\ \text { TRAVEL } & \therefore & . .55 \mathrm{~mm} . & \text { BLACK/CHROME KNOBB } & 0.12\end{array}$

Contil Mod-2 instrument cases are ideal for development and cheaper for production. Made with PVC coated materials there is no paint to scratch, the surface is scuff resistant and easy to clean. Coated aluminium front and back panels gives easy cutting with rigidity and coated stoel top. bottom and sides gives strength and ease of assembly. Thres heights of cases, four widths and woses, two depths give 48 diferent cases. Mod-2 ow cost, off the shelf delivery.
Kit of Sinclair hardware inc. capaciors. pluys, sockets, screws, wire heat sinkt
fuse. fuse halder, ate. $\mathbf{\{ 3 . 4 0} \mathrm{P} \& \mathrm{P} 22 \mathrm{p}$
Sinctair puncthed case and chassis. Mod 2 type G in wood grain. $£ 4.25$
Type G is now available in 'simulated teak in wood grain finish and ideally suited for domestic equipment. Also available ready punched for Sinclair Project 60, with or without A.F.U. It is available with a set of fitting plugs, sockets, fuses, etc. NORTHWOOD, MIDOX., HA6 1NN. Telephone: Northwood.24941/26732. Telex:923231 WW- 089 FOR FURTHER DETAILS

NEW GOOD LOOKS

A drastically reduced number of parts and the smart look of anodised aluminlum and black P.V.C. coated steel, combine to create a beautiful new case with a marked reduction in cost. Of standard $19^{\prime \prime}$ rack size, the Bright case can be used freestanding, or one on top of another, or racked, using separate mounting brackets.

The Brightcase improves the appearance of any equipmeme. The Brightcase is stable on any face. The front hanale protrusion
protects knobs. meters. elce. Protusion at the rear protects connectors, cables, etc.
13) The Brightcase can be stacked vertically.
(4) The Brightase top and bottom panels are of textured black PVC coated steel.
15] The Brightcase is ideel for modular systems.
(6) The Brightcase arrives completely assembled, in its special pack
 BC22 (34* Half Rack)

New simple construction

WEST HYOE DEVELDPMENTS LTD.. RYEFIELD CRESCENT, NORTHWODD HILLS, NORTHWODD, MIODX., HAB INN Teleplimene: Nortiwnod 24941/26732

VALVE		ECFP8	EF183	0.3	EZ81 0.2	OB_{4}	D	PY83 ${ }^{\text {PY }}$	OCH81 0.40	18	0.40			6 O 5 G	1.00	7	${ }^{80} 00.55$
A231	DY802 0.35	ECH35 1-00		0.35	$90 \quad 0.35$	$\begin{array}{ll}\text { OZ4 } 4 & 0.40\end{array}$	0.75	PY500 1.00	UCL82 0.3	185	$0 \cdot 3$	6BR	$0 \cdot 80$	6V6	0.40	30 Cl 5	$807 \quad 0.50$
AZ41	EABC80	ECH81				PC			83	17	. 30					300	
CBL31 1.00	0.35	ECH83 0.45	EL34	1.50	GY501												
L33 1.30	EAP420.55	ECH84 0.45	ELa3	2.05	$\begin{array}{lll}\text { G730 } & 0.40\end{array}$	PCC84	PL81 0.60	8P41 0.75	UF89 $0 \cdot 40$	3 V	0.48	6C4	0.33	7B6	0.70	0.8	rub
CY31-0.43	EAF8010.50	FECL80 0.45	EL41	$0 \cdot 6$	$\begin{array}{ll}\text { GZ32 } & 0.48\end{array}$	PCO89 ${ }^{\text {P }}$	$\begin{array}{ll}\text { PL81 } & 0.50 \\ \text { PL82 } & 0.45\end{array}$	${ }_{\text {8P61 }}$						$7 \mathrm{B7}$			
DAF910.30	EBC33 0.50	ECL82 0.6	EL42	0.85	GZ34 $0 \cdot 6$	PCC189 0.55	$\begin{array}{ll}\text { PL83 } & 0.45\end{array}$	U25	U06 (UY8)	54	0.45	cc	0.80	7 Cb	1.	$30 \mathrm{FL14} 0.8$	2AP1
DAF96 0.45	EBC41 0.55	ECLS66 0.40	EL84	0.25	H63 0.90	PCF80 0-30	PLS4 0	U26 0.80	1.0	SY3GT	0.40	6J5at	0.30	7 H 7	0.5	$\begin{array}{lll}30 \mathrm{L17} & 0.80\end{array}$	$\begin{array}{ll}\text { 3DP1 } & 8.50\end{array}$
DCC90 1-35	EBC81 0.30	ECLL800	EL91	0.35	HLald	PCP86 0.60	PL500 0.80	U37 $2 \cdot 10$	UU7 (UU8)	57,40	0.40	6iJ7GT	0.45	787	2.2		${ }_{\text {3EA1 }}$
DF91 0.30	EBF80 0.40	65	EL95	0.35	0.88	PCF8010.50	PL504 0.80	 191$\quad 0.75$	1.05	8/30L2	0.80	6K6CT	0.80	$7 \mathrm{Y}_{4}$	0.85	$\begin{array}{lll}30 \mathrm{P} 19 & 0.85\end{array}$	${ }_{3 F P 7} 1.50$
DF96 0.45	EBF83 0.40	Ep37A 1-20	EL360	1.20	HN309 1.50	PCF8020.50	PL508 0.90	U404 0.60	UU8 1.05	6AL5	0.20	6 K 7 GT	0.35	12AC6	0.50	30PL1 0.75	$\begin{array}{lll}3 G P 1 & 2.50\end{array}$
DK91 0.40	EBF89 0.30	EF39 0.50	ELLs0	1.00	KT61 1.50	PCP8050.80	PLL $09{ }^{\text {1-10 }}$	U801 1.18	UY41 0.48	6AQ5	0.38	$6 \mathrm{K8GT}$	0.50	12 AD 6	0.55	30 PL13 0.93	58P1. 4.00
DK92 0.55	EBL31 1.50	EF41 0.65	EM80	0.45	KT66 $\quad 2.05$	PCF8060.70	PL801 0.80	UABC8	UY85 0.4	6A87	0.85	6 P 25	1-50	12AEG	0.55	30PL14 0.80	5CP1 5.0
DK96 DK92 0.50 0.35	ECC40 1.00	$\begin{array}{ll}\text { EF80 } & 0.25 \\ \text { FF85 } & 0.36\end{array}$	EM81	0.60 0.25	KT81 ${ }_{\text {(7C5 }}$	PCF808 0 -85	P1.802 0.95	0.40	VP4B 1.25	6AT6	0.35	6q7at	0.43	12AT6	0.30	3516GT0.50	${ }_{5} 5$ FP7
${ }^{\text {DL92 }} 0.35$	ECC81 0.35	$\begin{array}{ll}\text { EF85 } & 0.36\end{array}$	EM84	$0 \cdot 35$	$1 \cdot 13$	PCL82 0.35	PX4 2.50	UAF42 0.55	VR75/30	6aU6	0.25	6867M	0.40	12at7	0.35	$35 \mathrm{~W} 4 \quad 0.35$	881
DL94 0.48	ECC82 0.30	EF86 0.30	EY51	$0 \cdot 40$	KT88 ${ }^{2} \mathbf{2 . 0 0}$	PCL83 0 0.85	PX25 2.50	UBC41 0.50	0.4	6AV6	0.30	68J76T	0.30	$12 A T 6$	0.35	$35 \mathrm{Z3} \quad 0.70$	CV429 17.5
DL96 0.45	ECC83 0.30	EP89 0.28	EY86	$0 \cdot 40$	KTW6il ${ }^{\text {deo }}$	PCL84 0.45	PY32 0.63	UBF80 0.40	30	6BA 6	0.25	$68 L 70 T$		12AU7	$0 \cdot 30$	35Z4GT0.80	CV960 $5 \cdot 00$
DM70	ECC85 0.40	EF91 0.33	EZ40	$0 \cdot 50$	KTW62100	PCL85 0.40	PY33 0.63	UBF89 0.35		6BE6	0.30	68N7CT		12 AX 7	$0 \cdot 30$	50C5 0.50	R138
DY86	$\begin{array}{ll}\text { ECC88 } & 0.40\end{array}$	EF92 0 0.35	EZ41	0.50	N78 1.50	PCL86 0.45	$\begin{array}{ll}\text { PY81 } & 0.30\end{array}$	$\begin{array}{ll}\text { UCC85 } & 0.40\end{array}$	30	6BH6	0.75		0.35	12BA6	0.40	50CD6	
$\begin{array}{ll}\text { DY87 } & 0.33\end{array}$	ECF80 0.35	EF98 0.75	EZ80	0.27	OA8 $\quad 0.38$	PD500 1-30	PY82 0-3	UCH42 0-7	0.3	- ${ }^{\text {der }}$	0.5	BU4CTO		128E6		1.20	
TR	S	N3709 0.10	AFI16	0.2	BF195	CRS 3140	G77M 0.37	KT128	NKT403	OAP5	0.07	0 O 26		0.071		0084	
1 N 21	2N708	37100.10			196				0.7	OA2	0-0	0 C 2	0.80	0 C 7	0.20	0 C	ORA61 0.42
$1 \mathrm{~N} 23 \quad 0.20$	2N1302 0.18	2N3819 0.35	AF'2	$1 \cdot 0$	BF861 0.88	$\begin{array}{ll}\text { C81 } \\ \text { CVI } & 3.18 \\ 0.18\end{array}$	LAT101	0.25		${ }_{0} \mathrm{OA202}$	-0.10	${ }_{0} \mathrm{OC29}$		0 C			
1850010.08	2N1303 0 -18	2N 42860.15	BC107	$0 \cdot 10$	BF8988 0.28	CV1133 0.18		NKT213	NKT7130.25	OA211	0.20	0 C 3	0.50	0 O	0.25	0 C140 0.35	$\begin{array}{ll}\text { SX642 } & 0.80 \\ \mathbf{8 X 6 4 3} & 0.70\end{array}$
1N40020.08	2N13n40.22	2N $42890 \cdot 15$	BCl08	0.10	BFY50 0.28	CV233 1:00	1.25	0.25	OA5 0.20	OAZ20	0.42	${ }^{\text {OC36 }}$	0.60	OC76	0.25		$\begin{array}{ll}\text { SX643 } & 0.70 \\ \text { ZS21 } & 0.15\end{array}$
1N4003 $0 \cdot 10$	2N1305 0.22	AC126 0.20	BC109	0.10	BFY 51020	CV2154 1.83	M	NKT21 $40 \cdot 15$	OA6 0.12	OAz21	0-32	0 C 41	0.25	0 C 78	0.40	OC170 0.25	$\begin{array}{ll}\text { z821 } & 0.15 \\ \text { Z822 } & 0.45\end{array}$
1 N4004 0.10	2N1306 0.25	$\begin{array}{ll}\text { Ac127 } & 0.25\end{array}$	BC115	0.20	BFY52 0.22	CV2155 1.83	0.30	NKT216	OA7 0.15	OAZ21		OC42	0.30	0 C 78	0.20	$0 \mathrm{Cl71} 000$	zS170
$1 \mathrm{~N}_{40065}^{0.15}$	${ }_{2}$ 2N1307 0.25	${ }^{\text {AC128 }} 0.20$	RC116	0.25	BTY791	CVI 1084.00	MJE3700.97	0.37	OA9 0.10	OAz2	0-23	OC43	0.40	0C78D	0.20	$\begin{array}{ll}\text { OC2n0 } & 0.40\end{array}$	$\begin{array}{lll}\text { ZS178 } & 0.40\end{array}$
181110.13	2N2147 0.75	107760.20	BC117	50	100E 0.75	CVi 1093.75	MJE 5200.87	NKT217.	OA10 0.25	OAZ2	-22	OC4	0.17	OC79	0.22	$0 \mathrm{C201}$	Z8271
181310.13	${ }_{2}^{2 N 22180 \% ~}$	AC187 0.25	RC169C	0-15	BY1000.15	DDino 0-15	MJE2955	0.35	0447 0.10	OAz24	0.23	OC4M	0.17	0 0c81	0.20	$\begin{array}{ll}0 C 202 & 0.80\end{array}$	2721
181320.13	2N2444 1.91	AC188 0.25	BCY34	0.30	BY126 0.15	DDo06 0.18	13)	NKT218	OA70 0.10	OC16	0.50	OC45	0-12	Ocsid	$0 \cdot 20$	$\begin{array}{ll}\text { OC203 } & 0.40\end{array}$	ZT×1070.15
$262200^{0.63}$	${ }_{2}^{2 N 2646} 0.45$	ACY17 0.80	${ }_{\text {BD121 }}$	0.85	BY127 0.17	GE'T1020-30	55	- ${ }^{1.13}$	$\begin{array}{ll}0.71 & 0.10\end{array}$	OC16T	0.38	0C45M	0.18	OC81M	0.20	OC204 0.40	ZTX1080.12
$\begin{array}{ll}29302 & 0.22\end{array}$	${ }_{2}{ }^{2 N} 37026.10$.	ADI40 AD149 0.50	${ }_{\text {BF115 }}$	0.80	BYz8id	GETT1030.22	MPF102 ${ }^{0.88}$	301	$\begin{array}{ll}\text { OA79 } & 0.10 \\ 0.81 \\ 0.08\end{array}$	$0 \mathrm{OC19}$ OC20	0.37	${ }_{0}^{\text {OC4 }}$	0.27 0.60	0C81D		OC205 OC206 O. 0	ZTX3000.12
2N696 0.15	2N3703 n -10	AD161 0.37	BF173	0.25	CRSY/05	GNT8750.25	0.42	NKT304	$\begin{array}{ll}\text { OABS } & 0.12\end{array}$	OC20 0.22	0.50	${ }_{0}^{0} 0658$	0.60 0.60	0c812		OC206	$\times 3040.25$
2N697 0.15	2N37040.12	AD162 0 0-37	BF180	0.35	0.25	O1EX661.25	MPF1030-35	0.75	$\begin{array}{ll}0.866 & 0.15\end{array}$	OC23	0.60	Oc59	0.65				$5000 \cdot 18$ $\mathbf{5 0 3 0 . 1 7}$ 8.25
2N706 0.10	2N47050.10	AF114 0.25	BF181	$0 \cdot 35$	CRE1,40	GEX548	F104	NKT401	0 OA90 0.08	OC24	0.80	OC66	0-50	0C82D	0.20	$\begin{array}{lll}\text { OCP71 } & 0.97\end{array}$	ZTX5030.17
2N706A	2N37070.12	AFl15 0.25	BF194	0.17	0.47	0.7	0.37	0.87	0.4910 .07	0С25	0.37	$0<70$	$0 \cdot 12$	$0 \mathrm{C83}$	0.25	ORP12 0.50	
VALVES		${ }^{\text {baK5 }}$	29 Cl		6E	65	1320	CV261	CV1	CV		E83F		GTE		M8232	45
183GT	3R28	6 6M6	${ }^{7581}$			6405W	1890.	CV284	CV1482	CV4016		E880C		GTR120		M8237	QS180/15
1824	3829	6ANS	${ }_{7501}$		891 R	$6021{ }^{6}$	A1834	CV286	CV1832 CV1835	CV4017		${ }_{\text {E900L }}$		GTR18		M8245	Q8150130
1 B 35 A	3022	6AN8	83 Al		954	6057	A2134	CV315	CV1994	CV4018		${ }_{\text {E9 }}$		GU20/2			Q8150/36 Q8150/40
$1 \mathrm{B634}$	3 C 23	6AR5	8541		955	6058	ACT9	CV329	CV2000	CV4019		E9200		GU50		ME1403	
1 N21	3024/240	${ }^{6}$ ABG	8542		956	6059	B10 1E	CV337	cv2131	CV4020		E180cc		axul		ME1404	Q8150/80
1 N 218	3 C 45 $3 \mathrm{CX10}$	6AUU4GTA	90AG		${ }^{67}$	6060 6061	B890	CV342	cV2154	CV4022		E180F		GXU2		ME1500	QS1200
1 N 23 CR	3 E 29	${ }^{6 \times 4 U 6}$	9 goct		1625 2050	6061 6062	B815	CV345	CV2155	CV4023		${ }_{\text {E18182CC }}$		GxU3		ME1801	Q81202
$1 \times 2 \mathrm{~A}$	3J/121E	6avseta	poca		2050 W	6063	BT35	CV759	${ }_{\text {CV2179 }}$	CV4025		${ }_{\text {E1 }}^{\text {E186F }}$		GXU4		$\mathrm{OAP}^{\text {OA3 }}$	Q81203
$1 \mathrm{X} 2{ }^{\text {B }}$	$3 \mathrm{~J} / 160 \mathrm{E}$	6AW8A	90cy		2051	6064	BT 45	CY360	CV2235	CV4028		E1880		KT66		$\mathrm{OA}_{\text {A }}$	Q81205
2 A 3	$3 \mathrm{~J} / 170 \mathrm{E}$	6AX5GT	$95 \mathrm{A1}$		4003 A	6065	BT79	CV371	CV2237	CV4033		EA50		KT67		OB^{2}	
24815 2026	$3 \mathrm{Q} / 150 \mathrm{E}$	$6 \mathrm{B4G}$	100 TH		4212D or E	6067	BT8	CV372	CV2238	CV4035		EA52		KT88		OB3	QV04-7
${ }_{2}^{2026}$	$38 / 19$ 384	6BA8A	${ }_{15083}^{15082}$		4242 A 4313 C	6072 6073	${ }_{\text {C1K }}$	CV378	${ }^{\text {CV } 2253}$	CV 4038		EA76		M8079		OD3	QV05-25
2 C 34	$3 \mathrm{~V} / 340 \mathrm{~B}$	6BK7A	1500 Cl		4328 A	6073 6074	CAA3	CV391	${ }_{\text {CV2289 }}$	CV4039 CV4040		ECC33		M8080		${ }_{0}^{083}$	Qvo6-20
$2 \mathrm{C39A}$	3V/390A	68L7GTA	150 C 2		4687	6080	CVS	CV397	${ }_{\text {CV2361 }}$	CV4043		${ }_{\text {ECF }}$		M8081 M8082			QY 3 - 125 A A
${ }_{2}^{2 \mathrm{C} 43}$	${ }^{3 \mathrm{c}}$ 3V/3908	$6 \mathrm{BN6}$	150C3		5544	60970	CV25	CV 404.	CV2466	CV4044		EFSO		M8083		PT15	QY4-400
${ }_{2}^{2 \mathrm{D} 21} \mathrm{~W}$	${ }_{4}^{4-250 \mathrm{~A}}$	68887	150C4		5345 5642	6130 6136	CV26	CV418	$\mathrm{CV}^{\text {CV2516 }}$	CV4046		EF54		M8091		Qasatio	R10
2 E 26	4-400 A	$6 \mathrm{BX7GT}$	${ }_{328}$		5644	${ }_{6189} 6136$	CV28	CV416	CV2518	CV4053		EFS5		M8096 $M 8097$		QA2403	R17
2 J31	4832	${ }^{68286}$	329		5651	6197	CV53	CV428	${ }_{\text {CV2522 }}$	CV4059		EPP60		M8097		Qa2404	R18
${ }_{2}^{2 J 33}$	${ }_{4}^{4 \mathrm{Cx} 25} 250 \mathrm{~B}$	${ }_{68 \mathrm{CB6}}$	631-P1		5670	6201	CV73	OV 434	CV2721	CV4060		EN30		M8100		QA2407	STY280/80
2 l	${ }_{4}^{4 \mathrm{E} 27}$	${ }_{6}^{6 \mathrm{CH}} 6$	705 A 715 A		${ }_{5676} 86$.	6202 6203	CV74	CV447	CV2901	CV4063		EN31		M8136		Q83/300	SU41
2156 A	4 J 52	6CW4	715 B		687	${ }_{6205}^{6203}$	CV718	CV449	cV3523 CV3929	CV4079 CV4501		EN32		M8137 M 8140			SU42
2 K 25	4 J 52 A	$6 \mathrm{DK6}$	$723 \mathrm{~A} / \mathrm{B}$		8696	6360	CV121	CV469	CV3988	${ }^{\text {CVF4502 }}$		EN914		M81 M 8141		$\mathrm{QB4}^{\text {QP4 }} 1100$	${ }_{\text {TT15 }}$
2 K 26 2 K 28	${ }_{4}^{4 J 53}$	$6 \mathrm{DQ6B}$	725.		5702	6442	CY124	CV488	Cv3988	CV4503		EsU76		M8142		QF45	TT21
${ }_{2}^{2 \mathrm{~K} 28}$	${ }^{4 \times 150 A}$	${ }_{6}^{6 E A 8}$	801 803		5718 5719	6463 6550	CY128	${ }_{\text {CVF491 }}^{\text {CV4 }}$	CV3991	CV4507		E8U77		M8144		QQV02-6	TTR31M
2 X 2	4 4 250 B	6H6 (metal)	805		${ }_{57251}$	6550 6807	${ }_{\text {CV131 }}$	CV492	CV3998	CV4508		F6057 F6060		M8149 M 8157		QQV03-10	TZ40
$2 \times 2 \mathrm{~A}$.	58/251M	$6 \mathrm{K7GT}$	807		$6 \mathrm{AB6W}$	6923	CV13	CV717	CV4002	CV6008				M8157		eqvo3-20	U17
3A/107A	$5 \mathrm{~B} / 252 \mathrm{M}$	6 UBA			$5726{ }^{\text {5 }}$	6939	CV135	CV808	CV4003	CV6045		F6063		M8162			$\begin{array}{r} \mathrm{U} 19 \\ \mathrm{U} 27 \end{array}$
$3 A / 108 A$ 3 A 108 B	5B/254M	${ }^{6} \mathbf{6}$ VGT	811		${ }_{5}^{64 L 5 W}$	7193	CV136	CV1072	CV4004.	DA41		FX219		M8163		$\begin{aligned} & \text { QQV04-15 } \\ & \text { QQV06-40 } \end{aligned}$	VL8631
$\begin{aligned} & 3 \mathrm{~A} / 108 \mathrm{~B} \\ & 3 \mathrm{~A} 109 \mathrm{~B} \end{aligned}$	5B/255M	1183	811.1		57271	7203	CV137	CV1076	CV4005	E55L		FX225		M8167		Qevo6-40	23n0T
$3 \mathrm{~A} / 110 \mathrm{~A}$	5B/256M	112AY7	${ }_{813}^{8124}$		${ }_{5749}^{2016}$	7360 8013	CV138	CV1092	CV40	Esocc		FX227		M8179		QQv07-40	
3A/1108	5022	12B4A	815		5750 5750	${ }_{8025} 8$	CV144	CV1219	CV40	${ }_{\text {EROP }}$		G1/371K		M8190		Q870/20	2803U
$3 \mathrm{~A} / 146 \mathrm{~J}$	5_{501}	12BY7A	828		5751	${ }_{8001} 8$.	CV160	CV1475	CV4009	W80		$\mathrm{Gl}_{\text {G150/28 }}^{\text {G120 }}$		M8196 M8204		Q875/20 0875/40	
3A/167M 3A5	5R4GY 5 U 4 GB	${ }_{12 \mathrm{E} 14}$	${ }_{8}^{8298}$		5802	9002	CV173	CV1476	CV4010	E80T		9180/2M		M8212		Q875/60	
385/240M	5043 573	${ }_{13 \mathrm{Bl1}}^{12 \mathrm{El}}$			${ }_{5823}^{5814}$		CV187	CV1477	CV4011	E8100		9240/2D		M8214		Q883/3	
$38 / 241 \mathrm{M}$ 3 B 24	(${ }_{\text {BZ4F4A }}$	13 DI $\begin{aligned} & 13 \mathrm{El} \\ & \text { 28D7 }\end{aligned}$	860 866		58	$\begin{aligned} & 9004 \\ & 9005 \end{aligned}$						GN4 $\mathrm{GN}^{\text {a }}$		M8223		Q892/10	
${ }^{3 B 24}$	BAF4A	28177	${ }_{8664}$		6840	9005	CV220	$\begin{aligned} & \text { CV1 } 479 \\ & \text { CV1480 } \end{aligned}$	$\begin{aligned} & \text { CV } 4013 \\ & \text { C44014 } \\ & \hline \end{aligned}$	E83CC E830C		GN4C		M8224		Qs95/10 08105/45	
AC/DC MULTIMETER AND TRANSISTOR TESTER TYPE U434\|* $27 \mathrm{AC} / \mathrm{DC}$ ranges $0.3-900 \mathrm{v} \mathrm{DC}, 1 \cdot 50750 \mathrm{v} \mathrm{AC}: 0.06-600 \mathrm{~mA} \mathrm{DC}$, $0.3-300 \mathrm{~mA} A C$; Resistapce $0.8-500 \mathrm{k}$ ohms. Transistor collector cut-off current 60 microamps. DC current gain 10-350. gensitivity 16700 o.p.v. DC and 3300 o.p.v. AC. Price complete with probes, leads and steel carrying case, $\mathbf{2 1 0 - 5 0}$. *Made in Ressia. TYPE * 4312-low sensit\|vity (667 o.p.r.) extremely sturdy instrument for general electrical use. D.C. ranges: $0 \cdot 3-1 \cdot 5-7 \cdot 5-30-60-150-300-600-900 \mathrm{~V}$ and 75 mV $300 \mu \mathrm{~s}-1-5-6-15-60-150-600 \mathrm{~mA} 1 \cdot 5-6 \mathrm{~A}$. A.C. ranges: $0 \cdot 3-1 \cdot 5-7 \cdot 5-30-60-150-300-600 \cdot 900 \mathrm{~V}$. $1 \cdot 5-6-15-60-$ $150-600 \mathrm{~mA} .1-\mathrm{B}-6 \mathrm{~A}$. Resistance: $0.2-3-30 \mathrm{k} \Omega$. Accuracy: D.C. 1%; A.C. 1.5%. Price with carrying case and leads 89.75 . TYPE 4318-high sensitivity for general electronic and TV-radio repair applications. Sensitivity : 20,000 o.p.v. D.C. and 2,000 o.p.v. A.C. D.C. ranges: $75 \mathrm{mV} \mathrm{V} \cdot \mathrm{F} \cdot 5.3-7 \cdot 5-15.30-60-150-300-600 \mathrm{~V}$. $60-120-$ $600 \mu \mathrm{~A}-3 \cdot 15-60-300 \mathrm{~mA}-1 \cdot 5 \mathrm{Amp}$. A.C. ranges: $1 \cdot 5-3-7 \cdot 5-15-30-60-150-300-600 \mathrm{~V}$. $600 \mu \mathrm{~A}-3-18-60$ $300 \mathrm{~mA}-1-5 \mathrm{~A}$. Resistance: 0.5-5-50-500k Ω. Capacity and Transmission level acales. Accuracy: 1.5\% D.C.;-2.5\% A.C. Price, with carrying case and leads $\$ 10: 50$. Both instruments have knife edge pointers and mirror acales. Cost of postage: 25 p per meter.																	

WW- 090 FOR FURTHER DETAILS

 O．望

[^7]

SIEMENS QUALITY PLUS BARGAIN PRICES PLUS LST SERVICE－ A－full design range of high quality officially Appointed Siemens Distributors

惫量
 훈

Description
 74121 Monostable multivibrator

 74193 As counter－binary counter
⿹ㅗㄴ온은

1. Marconi Carrier EQUIPMENT
2. Marconi Carrier Deviation Meter TF.791B $\mathbf{E 5 5}$ Freq. Range: ${ }^{4} 250 \mathrm{MHz}$ in 4 ranges
3. Pre Wheatstone Bridge, 7435. Immaculate 3. Marconi Universal L.C,R,Bridge TF.868/1 660

Capacitance $1 \mu \mu-100 \mu \mathrm{~F}$
Resistance

4. Tinslay AC Stabiliser Type 5105B. Output:
5. Marconi Sensitive Valve Voltmeter TF.ilion Measures $A C$ volts: $1 \mathrm{mV}-300 \mathrm{~V}$ in 12 ranges
6. Marconi Distortion Factor Meter TF. I42F ≤ 85
7. Marconi Dange: $100-8,000 \mathrm{~Hz}$ in 4 ranges . 142 E E45

Freq. Range: $100-8,000 \mathrm{~Hz}$ in 4 ranges
8. Solartron Pulse Generator Type CT395.
 flashes/min..
10. Ediswan L.F Oscillator R. 666

Freq. Range: $1.4 \mathrm{~Hz}-5.5 \mathrm{KHz}$ in 7 ranges
Solartron O scillator OS .101
Solartron Oscillator OS. 101
ranges Freq. Range: 25 Hz -250 KHz in 4 ra
Output: $0-10 \mathrm{~V} \cdot 1 \mathrm{~dB}$ steps. 600Ω
12. Solartron Oscillator Co.546..

Frëq. Range: $25 \mathrm{~Hz}-500 \mathrm{KHz}$ in 5 ranges 635 Freq. Range: 25 Hz-500KHz in 5 ranges
Output: $0-10 \mathrm{~V}$ in I dB steps. 75Ω and 600Ω
13. Solartron Digital Voltmeter L.M902.2 ... C80 Muirhead Phasemeter Type D.729-AM plus Advance Transistorised Measuring Counter Philips V.T.V.M. GM60i7. o-300 in io ranges Preq. 2-200 KHz.................................. 126
Pye Scalaple Delay Line 417 S. 680Ω Cambridge Instruments Versatile Galvano
 Elliott Bros. Precision Portable Watt meter. 0.750 Sangamo-Weston AC Voltmeter Model To B.S. 89 standard. Two ranges: $10 \mathrm{~V}, 200 \mathrm{~V}$ Marconi Madulatlon Meter $3-72 \mathrm{MHz}$. Tinsley Vernier Potentiometer Model Marconi Q Magnification Meter TF. 329 G $£ 45$
26. Solartron, Voltmeter LM903.
27. Mareoni Pulse Generater TF675E. Freq range $100-50 \mathrm{KHz}$. Pulse length $0.15 \mu \mathrm{~S}-50 \mu \mathrm{~S}$ in 5
28. Tinsley Universal Shunt Type 3000 55 Range $15 \mathrm{~Hz}-350 \mathrm{KHz}$
30. Ernest Turner Precision Voltmeter $\subset 12$ AC volts in 5 ranges. 5/10/25/50/250V F.S.D.
. Dawe Wide Range L.F. Oscillator. 400C.
$0.1 \mathrm{~Hz}-1 \mathrm{KHz}$ in 4 ranges................................ Genal Generator
General Radio. U.H.F. Signal Generator
Avo Testmeser. CT 38.................... 818
Avo Valve Voltmeter CT. 208........... $\leqslant 12$
3unts Capacitor Analyser and, Resistance
Advance R.F. Signai Generator a.i....... $£ 35$ Freq. $13-250 \mathrm{MHz}$ in 5 ranges
..ア. $1 \mu-100 \mathrm{~m}$-Mod KHz Sine/Sa
38. Freq. 100 KHz-100 MHz in 6 ranges
Advance R.F. Signal Generator P.I Freq. $100 \mathrm{KHz}_{2}-100 \mathrm{MHz}$ in 6 ranges O.P. $1 \mu V-100 \mathrm{mV}$. A/F Mod.
40. Solartron L.F. Phase Sense Voltmeter

41. Taylor R.F. Signal Generators Freq. range $100 \mathrm{KHz}-240 \mathrm{MHz}$ in 8 ranges Model 67A.
.435
.430
42. Advance Timer Counter TC̈ IA
. Airmec Modulation Meter Type 2ió. P.o.A. 4. Cossor Model 1428 Oscilloscope Camera complete with Drive Unit
Film speeds
$4 / 12 / 36$ inches $/ \mathrm{sec}$.
4S. Advance P.P. 3 Power Supply. $2 \times 30 \mathrm{~V}$. IA d.c......

Tektroni
\& 30 Low level Differential Calibrated AC Pre-amp.
4. E.M.I. Plug-in Modules Set of 3. Brand new. $\mathbf{6 8 0}$ 882 Spike Generator
884 Black-White Generator
48. D.M.A.C. X X Y Plotter QDE $2243 \ldots . .$. P.o.A.
49. Electronic Associates Led. Veriplotter P.o.A.
50. Combrid Associates Ltd. Veriplotter P.o.A
50. Cambridge Pen Recorder.
$30 \mathrm{kHz}-30 \mathrm{MHz}$
2. Kelvin Hughes Chart Recorder........P.o.A.
53. Pye Portable Wheatstone Bridge 7384. E42
54. Muirhead Phase Meter D729AM...........A.
55. Consolidated Electric Recording Oscillo graph
56. Solartron T.F.A. Convertor $\mathbf{1} \times 541 \mathrm{~A}$ 58. Pye Galvo Modulator SLE 103
58. Elliott Recorder CT93
590.- Turner Yoltmeter 102S 000 P.S.I. .

OSCILLOSCOPES
E.M.I. WMI6. Complete with Dual Trace Plug-in Amp./Differential Plug-in Amp./Trolley . $E 175$
Solartron CD. 1220 . With Wide Band unit. $\leqslant 190$ Solatron CD. 1220. With Dual Trace unit....E220 Solartron CD.1220. With Differential Amp Cawkell Remscope so.il. Storage One itilloE.M.I. WM2. Complete with Amp Type 5. E.M.I. WM8

Solartron CD. 6435
Solartron CD. 7115
Mullard L101
Molartron CD. 643 .
Mullard L. 203 D.B.
Solartron CD. 513
Marconi TF. 1330

MINIATURE GEARED MOTORS

240 V AC. $1 \mathrm{rpm}, 1 / 5 \mathrm{rpm}, 240 \mathrm{~V}$ AC Haydon 6 digit minutes counter 2.40 P.P. 15 p 240 V AC. $12 \mathrm{rpm}$. 24 V DC. $1 \mathrm{rpm} . .$. .80p P.P. 10 p

SOLENOIDS

12 V DC Operation. $2 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime \prime}$ dia... 50 p each. P.P. $10 p$
Rank Taylor C. CAMERA LENSES
Rank Taylor Habson Vidital Lenses 625 each E.M.I. T.V. Camera

Assemblies
$£ 10$ each
WIRE-WOUND POTENTIOMETERS
Colvern, Reliance. All values from $1 \Omega-100 \mathrm{~K} \Omega$ 19p each. P.P. 5 p
360° wire-wound pots. Colvern $\$ 1.50$ each
 360° Precision Servo Potentiometers. Ether each 60° Precision Servo Potentiomerers. Ether type
$4004 / 17.500 \Omega .3^{\prime \prime}$ dia., $t^{\prime \prime}$ spindle; ${ }^{1 / \prime \prime}$ spindle
$£ 4.00$ each

MULTITURN TRIMPOTS

Mec, Bourne, Painton, Reliance
$10,50,100,250,500,1 \mathrm{~K}, 2 \mathrm{~K}, 2 \mathrm{~K} 5,5 \mathrm{~K}, 10 \mathrm{~K}, 20 \mathrm{~K}$. 60 p each. P.P. $5 p$ RELAYS
12V d.c. 2p make contacts. 15A. Magnetic device G.P.O. Relays. 2000Ω 2p c/o. H/D contacts Latching Relays. B. \& R. Type H02/T.498 2 p.P. 8 p 380』..................................98p. eachP.P. $8 p$ PHOTOMULTIPLIERS
EMI Type 9524H............................. 15 each D.C. TACHOGENERATOR 10 each 30 MIN. PROCESS TJMER
SAlA Type Kod I el
$68 \cdot 50$ each
Motor 220 V .50 Hz

SEMICONDUCTOR BARGAINS
(For a limited period only)

VIBRATORS

Plessey Type 12 I.4.SD.
Plessey Type 12 1.4.SD.
12 V . sep. drive, non-synchronous 30 p P.P. 10 p
Plessey Type 614
$6 V$. Non-synchronou
24 V . Type XC 354.
30p P.P. 10 p
75 p P.P. 10 p

PAINTON METAL FILM RESISTORS
Type PMF60 $\frac{1}{4}$ W. 1% Tol. 50 p.p.m. $94 \Omega, 140 \Omega, 150 \Omega, 180 \Omega, 200 \Omega, 240 \Omega, 300 \Omega$, $330 \Omega, 360 \Omega, 470 \Omega, 560 \Omega, 620 \Omega, 720 \Omega, 820 \Omega$ $2 \mathrm{~K}, 3 \mathrm{~K}, 39 \mathrm{~K}, 40 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}, 200 \mathrm{~K}, 240 \mathrm{~K}, 300 \mathrm{~K}$, 24K, $39 \mathrm{~K}, \mathrm{Type} \mathrm{PMF.}^{25} \frac{\mathrm{t}}{2} \mathrm{~W}$. 1% Tol. 50 p.p.n., IK, $500 \mathrm{~K}, 750 \mathrm{~K}, \mathrm{IM}$.
Price I off $6 p$ each. 25 off 3p each. P.P. 5p under fi, over fl free.

MINIATURE EPOXY ENCAPSULATED PHOTORESISTOR AND' LAMP

Size: $\mathbf{I N}^{\prime \prime} \times \mathbf{t}^{\prime \prime} \times \mathbf{5}^{\prime \prime}$
Max. Lamp Voltage: 20 V d.c.
Cadmium sulphide photoconductive. device Mullard Type RPY. 58
Max. power dissipation: 200 mW
Max. cell voltage (d.c. and repetitive pk.): 50 V Initial dark resistance: $200 \mathrm{~K} \Omega$ (min.) nitial dark resistance: $200 \mathrm{~K} \Omega$ (min.)
Initial illuminated resistance (IV applied voltage 50 lux illumination): $0.35 \mathrm{~K} \Omega \min ,-1.4 \mathrm{~K} \Omega \max$ Dozens of applieations including: a.g.e. clrcuits autofade, tremelos, compressor limiters, etc., ete Available in either clear epoxy encapsulation 75 or black tight-tight encapsulation..85p P.P. IOp

Size	VEROBOARD Drilled Printed Circuit with Copper Strips $0.1^{\prime \prime}$ matrix $0.15^{\prime \prime}$ matrix		Plain Drilled Uncoppered $0.15^{\prime \prime}$ matrix
$2 \frac{17}{17} \times 5^{\prime \prime}$	30p	30p	18p
21" ${ }^{\prime \prime} \times 3{ }^{\prime \prime}$	$25 p$	17 p	15p
$3{ }^{\prime \prime} \times 5^{\prime \prime}$	35 p	35p	
37"× $3^{\text {a }}$	30p	30p	
$17^{\prime \prime} \times 21^{\prime \prime}$	82 p	70p	50p
$17^{\prime \prime} \times 3{ }^{\text {a }}$	97 p	85p	72p
$17^{\prime \prime} \times 5^{\prime \prime}$			$85 p$
VEROBOARD ACCESSORIES			
Vero Spot Face Cutter................ . . . 52p			
Vero Pin	Insertion		
Vero Pins			
0.1" mat	28p p. pack 36; 22.85 p. pack 1000		
	$0.15^{\prime \prime}$ mat. 28p p. pack 36; 22.98 p. pack 1000		
EDGE CONNECTORS$0.1^{\prime \prime}$ Pitch 24 way...........32p Pitch 24 way...........20p			
36 way..	16 way.	. 24p
p. 24 way.........33p			
P.P.	Under Cl	; over fl	00 free

C. T. ELEGTRONICS

267 ACTON LANE, LONDON, W. 4 01-994 6275
Nearest Underground-Chiswick Park (District Line); Acton Town (Piccadilly Line). Bus Routes: E3, 88, 207, 15, 7, 260.
Please Note: As yet we do not have a catalogue available. Any queries please phone or call at the above address Business Hours: MONDAY to SATURDAY $9.30 \mathrm{a} . \mathrm{m}$. to $6 \mathrm{p} . \mathrm{m}$. WEDNESDAY $9.30 \mathrm{a} . \mathrm{m}$. to 1 p.m. WANTED. SURPLUS OR REDUNDANT COMPONENTS AND TEST EQUIPMENT

FM TUNER

NELSON-JONES

Approved parts for this outstanding design (W.W. April 1971). Featuring $0.75 \quad \mu \mathrm{~V}$ sensitivity. Mosfot front end. Ceramic I.F. strip. Triple gang tuning, $\frac{1}{2} \mathrm{~V}$ r.m.s. output level, suitable for phase locked decoder. as below. Designer's own P.C.B.

All parts including P.C.B. S.A.E. please lists.
 PHASE LOCKED STEREO DECODER PORTUS AND MAYWOOD

Approved kit for this superb decoder (W.W. Sept. 1970). Featuring 40 dB separation up to 10 kHz . NO COILS. Negligible spurious tones (birdies). Simple setting up. Suitable for wide variety of tuners including the NELSON-JONES TUNER as above
Complete decoder kit $£ 8 \cdot 97$, p.p. \& ins. $16 p$
New IC: Stabilised PSU. S/C, overload protected, Iow ripple. $\mathbf{5} 3$.55, p.p. 19p

LIGHT EMITTING DIODES (Red)

Hewlett Packard panel or PCB mounting with free mounting clip-clear or black. Order LED1.
Monsanto miniature PCB mounting with radial leads. Order LED2. Please add postage.
NOW ONLY 39p each with connection data
RESISTORS. $\frac{1}{4}$ W 5\% Low Noise Carbon Film. 10 ohms-4•7ḾM E12
1-9 1p., 10-99 0.9p. each. Please add postage.

INTEGREX LIMITED P.O. BOX 45 DERBY DE1 1TW

Train for television
 Course commences 6th September, 1972

This is your opportunity to train as a television and radio engineer on our full-time Two-Year College Diploma Course specially designed to cover the examinations of the City and Guilds Radio, Television and Electronics Technicians' Certificate. Full theoretical and practical instruction on all types of modern receivers - including the latest colour sets.

Minimum entrance requirements are Senior. Cambridge or 'O' Level; or equivalent in Mathematics and English.

MULTI-RANGE PORTABLE ACIDC RECORDING
VOLTMETER TYPE H390

Specification:

Measurement ranges :
5-15-50-150-250. $500 \mathrm{~mA}-1 \cdot 5-5 \mathrm{amps}$.

Accuracy. ${ }^{\text {Frequency Range }} .45$ to $1,000 \mathrm{c} / \mathrm{s}$
Frequency Range . . 45 to 1,000 e/s
Damping Time..
Chart width. 100 mm .
Chart Speeds. $20-60-180-600-1,800-$
Chart Drive $220-250 \mathrm{~m} / \mathrm{hr}$ AC $5 \mathrm{c} / \mathrm{s}$
Cuverall Dimensions $170 \times 265 \times 305 \mathrm{~mm}$.
Weights.
Supplied brand new complete with instrucone bottle of ink, pen filler, 2 sets change gears, scale and connecting leads. $£ 78.00$

TEN CHANNELEVENT RECORDER

TYPE H30

A robust instrument designed for panel mounting or portable use. Each channel consists of a 12 -volt rotary relay to which a syphon pen large ink reservoir is fitted. Current consumption is approx. 120 mA per pen
Chart Speeds. $20-60-180-600-1,800$ Chart Width 5.500 mm /hour
Chart Width.
.100 mm.
Chart Drive.........
$.220-250 \mathrm{~V}$
Overall Dimensions . $160 \times 160 \times 255 \mathrm{~mm}$.

Supplied brand new with instruction manual, chart paper, two bottles of ink, pen blower, pen fller, two spare movements with pens and two sets of change gears.

MULTIMETER TYPE C. 1085 Specification:

DC volts $\ldots \cdot \frac{6-1 \cdot 2-3-12-60-120-300-}{1 \cdot 2 \mathrm{KV}^{-}}$

$$
1 \cdot 2 \mathrm{KV}
$$

AC volts. .. 3-12-60-300-600-1.2KV DC Current $30 \mu \mathrm{~A}-6-60-300 \mathrm{~mA}-12 \mathrm{amps}$ Resistance. $1-100-1 \mathrm{~K}-10 \mathrm{~K}$ ohms Sensitivity. . DC 100,000 ohms per volt AC 10,000 ohms per volt
Price $\mathbf{£ 1 4 . 0 0}$

A solld state thyristor controlled light dimmer
designed for aimply fitting into a standard plaster designed for simply fiting into 2 atandard plaster
depth box in place of the ewitch. Use for dimming the light for wate oring telewilison. In child ren's bed.
rooms or can be bult into a pox and used as a rooms or can be buill into a box and
variable speed device for electric drills. GMALL QUANTITY ONLY CANNOT BE REPEATED

AC/DC MULTIMETER \&
TRANSISTOR TESTER
TYPE U4341
specification:
DC Voltage . . . 0.3-1 $\cdot 5-6-30-60-150-300-900 \mathrm{y}$
AC Voltage . . . $1 \cdot 5 \cdot 7 \cdot 5 \cdot 30 \cdot 150 \cdot 300-750 \mathrm{~V}$
DC Current . . $0.06-0 \cdot 6-6-60-600 \mathrm{~mA}$
AC Current. . . $0 \cdot 3 \cdot 3-30-300 \mathrm{ma}$
Resistance. ...0.5-5-50-500K ohms. Range may be extended to 5
megomms with the use of an
external power supply $35-40 \mathrm{~V}$

Accuracy - DC ranges 2.5%
Accuracy - AC ranges $\begin{gathered}2.6 \% \\ \text { AC ranges } \\ 4.0 \%\end{gathered}$
Sensitivity.... DC 16,700 ohmh per volt
Voltage drop
at the
at the
terminal.
DC C Cirrent $0.80 V$
AC Current
1.5 V
Supplied brand new complete withoperator".
Supplied brand new complete withoperator"s
manual. probers, leads, and carrying case.
$\mathbf{£ 1 0 . 5 0}$

ELECTRONIC BROK-ERS LIMITED 49-53 Pancras Road, London NW1 2QB Tel. 01.837 7781 , Telex 267307

MARSHALL＇S INTEGRATED CIRCUITS

 NEW LOW PRICES ．LARGEST RANGE．BRAND NEW，FULLY GUARANTEED SEE OPPOSITE PAGE FOR OPTOELECTRONICS AND SPECIAL OFFER ON NIXIE TUBES

A．MARSHALL \＆SON LTD．

TELEPHONE DIALS

Standard Post Office type Guaranteed in working order

ONLY 50p

COMPLETETELEPHONES

NORMAL HOUSEHOLD TYPE
SUPPLIED TOTHEPOSTOFFICE
AS SUPPLIED TOTHEPOSTOFFICE No

	NOW at only 95 p p\& P З 5 PEACH		
ted and guaranteed paks			
${ }^{82}$	4	Phot Cells, Sun Batteries, 0.3 to $0.5 \mathrm{~V}, 0.5$ to 2 mA	50p
879	4	in 4007 Sil. Rec. diodes. 1,000 PIV lamp plastic	Op
${ }^{891}$	10	Reed Switches, mixed types large and smal	50p
${ }^{\text {¢99 }}$	200	Mixed Capacitors. Approx. quantity, counted by weight	50p
H4	250	Mixed Resistors. Approx quantity, counted by weigh	50 p
¢7	40	Wirewound Resistors. Mbxed types and values	50p
нв	4	BY 127 Sil. Recs.	50p
ня	2	OCP71 Light Sensitive Pholo Transistor	50p
. ${ }^{1 / 2}$	50	NKT 155/259 Germ. diodes.	$50 p$
H18	10	OC71/75 uncoded black glass type PNP Germ.	50p
${ }^{419}$	10	OC81/810 uncoded white glass type PNP Germ	50p
H28	20	OC2001/1/3/3 PNP Silicon	50p
H29	20	OA47 gold bonded diodes	50p

$$
\begin{aligned}
& \text { NEW UNMARKED UNTESTED PAKS }
\end{aligned}
$$

> | 81 | 50 |
| :--- | :--- |

MAKE A REV COUNTER FOR YOUR CAR
The 'TACHO BLOCK. This encapsulated block will turn any 0.1 mA meter into a linear and accurate rev. counter for any
car with normal coil ignition car with
systern.

OUR VERY POPULAR 3p TRANSISTORS FULLY TESTED \& GUARANTEED TYPE "A" PNP Silicon alloy, TO-5 can.
TYPE "B" PNP Silicon, plastic encapsulation
TYPE ' ${ }^{\text {E"' PNP Germanium AF or RF. }}$
TYPE "E" PNP Germanium AF or RF.
TYPE "FF" NPN Sillcon plastic encapsulation.
FULLY TESTED AND MARKED SEMI-CONDUCTORS

SEMI-CONDUCTORS			
	f p		£p
AC107	0.15	OC170	0.23
AC126	0.15	OC171	0.23
AC127	0.17	OC200	0.25
AC128	0.15	OC201	0.25
AC176	0.20	2 G 301	0.13
ACYけ?	0.20	2 G 303	0.13
AF239	0.30	2N711	0.50
AF186	0.20	2N1302-3	0,15
AF139,	0.30	2N1304-5	0.17
8C154	0.20	2N1306.7	0.20
BC107	0.10	2N1308-9	0.22
BC108	0.10	2N3819FET	0.45
BC109	0.10	Power	
BF194	0.15	Transistors	
BF274	0.20	OC20	0.50
BFY50.	0.15	OC23	0.30
BSY25	0.13	OC25	0.25
BSY26	0.13	0 C 26	0.25
BSY27	0.13	OC28	0.30
BSY28	0.13	OC35	0.25
BSY29	0.13	OC36	0.37
BSY95A	0.10	AD149	0.30
OC41	0.15	AUY10	1.25
OC44	0.13	25034	0.25
OC45	0.10	2 N 3055.	0.50
OC71	0.10	Diodes	
OC72	0.10	AAY42	0.10
OC81	0.13	OA95	0.09
OC81D	0.13	OA79	0.09
$0 \mathrm{CB3}$	0.18	0481	0.09
OC139	0.13	1N9114	0.07
0 C 140	0.15		

F.E.T. PRICE BREAKTHROUGH!!

This field effect transistor is the 2 N3823 in a plastic encapsulation coded as 3823D. It is also an excel lent replacement for the 2N3819

Data sheet supplied with device.
1-10 30p each, $10-50$ 25p each. $50+20 p$ each.

BULK BUYING CORNER

NPN/PNP Silicon Planar Transistors, mixed, untested, similar
to $2 N 708 / 6 A / 8$, BSY26-29, BSY95A. BCY70, etc. $£ 4.25$ per to 500 ; $\mathbf{E} 8$ per 1,000 .
Silicon Planar NPN Plastic Transistors, untested, similar to 2 N3707-11. etc. £4.25 per 500: $£ 8$ per 1,000 .
Silicon Planar Diodes, DO-7 Glass, similar to OA200/202. BAY31-36, E4.50 per 1.000

NPN/PNP Silicon Planar Transistors. Plastic TO-18, similar to $\mathrm{BC} 113 / 4, \mathrm{BC153/4}$; BF153/160, etc., $£ 4.25$ per 500 : E8 per 1.000 .
OC44. OC55 Transistors fully marked and tested, $500+$ at $8 p$ each: $1,000+$ at $6 p$ each.
OC71 Transistors. fully marked and tested. $500+$ at $6 p$ OC71 Transistors. fully
each; $1,000+$ at $5 p$ each.

3823E Field effect Transistors. This is the 2 N 3823 in Plastic Case. $500+13$ p each; $1,000+10 p$ each.

1 amp Miniature Plastic Diodes:
1 N4001, $500+$ at $4 p$ each. $1.000+$ at $3 p$ each
in $4004,500+$ at $5 p$ each, $1.000+$ at $4 p$ each.
1 N4006. $500+$ at $6 p$ each, $1.000+$ at $5 p$ each. in4007. $500+$ at $8 p$ each, $1.000+$ at $7 p$ each

£1 each

TELEPHOME: SOUTHEND (0702) 46344

SEMI－CONDUCTRRS／VALVES all devices brand newand fully guaranteed

Abstract

M్ Mis 20308° $2 G 309$ $2 G 371$ G374 2G381 N388A N 2N388A 9N404 2N696 2N697 2N698 2N 699 2N70 2N700A 2N708 2N709 2N718 2N718A 2N726 2N727 2N914 2N916 2N918 2N929 2N930 2N987 2N1090 2N1091 2N1131 2N1132 2N1302 2N1303 2N1304 2N1305 2N1306 2N1307 2N1308 $2 N 1309$ 䊾 สs 後戀 สuzan สสสส | 2 G301 | 20D | 2 2N 3606 | 27 D | 40330 |
| :--- | :--- | :--- | :--- | :--- |
| $2 G 302$ | 20 p | 2 N 3607 | 28 p | 40311 | NISTORS

TRANSISTOR DISCOUNTS：－ $12+10 \% ; 25+15 \% ; 100+20 \%$ ，ANY ONE TYPE POSTAGE ON ALL SEMI－CONDUCTORS 7P EXTRA．

INTEGRATED CIRCUITS

CA3000	81.8	FJH101	25 p	13	307
CA3005	11．17	FJH111	700	SN7420	200
CA3007	82.82	FJH121	250	SN7430	
CA3011	75p	FJH131	25p	SN744	20
CA3012	8 p	FJH441	25 p	8N7441	
CA3013	21.05	FJH151	25p	SN7442	${ }^{75 p}$
CA3014	£1．24	FJH161	70 D	3N7446	21.00
CA3018	84p	FJH171	25 p	8N744	21．35
CA3018A	$1 \cdot 10$	FJH181	250	8N7448	\＆1．25
CA3018	84p	FJH221	25 p	SN7450	20 D
CA3020	81.26	FJH231	25 p	8N7451	20 D
CA3020A	$81 \cdot 60$	FJH241	250	SN7453	200
CA3021	E1．56	FJ H 251	25 p	8N7454	
CA3022	21.30	FJJ101	50 D	SN7460	0 p
CA3023	81.26	FJJ111	50p	8N7472	
CA3026	21．00	FJJ121	600	SN7473	Op
CA3028A	74p	FJJ131		SN7474	0 p
CA3028B	1.05	FJJ141	21.28	SN7473	
CA3029	87p	FJJ181	${ }^{75 p}$	8N7476	45 p
CA3029	81.85	FJJ191	65p	RN7483	87p
CA3030	21－37	FJJ2r1	12.25	SN7486	3p
CA3035	21.22	FJJ251	21－25	SN74	
CA3036	72 p	FJL101	21．25	SN74	7 p
CA3039	2p	FJY101	25 p	SN7493	p
CA3041	21.09	TC10	\＄2．50	8N7	，
CA3042	¢1．09	JCl2	22.50	gn74	87 p
CA3043	21.37	L900	40p	8N74107	
CA3044	21.20	L914	40 p	SN74153	1－35
CA3045	£1－22	1．923	40 p	gN74154	
CA3046	81 p	Lм380	$21 \cdot 22$	SN74160	
OA3047	21．87	MC724P	${ }^{60}{ }^{\text {p }}$	gN74161	
CA 3048	22.04	MC7801	92．47	8N7416	
CA 3049	21．80	MC788P	$21 \cdot 46$	8N741	22．25
CA3050	21．84	MC790P	21.24	8N74192	
CA3051	21.34	MC792P	86p	2N74193	81．76
CA3052	21.85	MC799P	88p	TAA241	
CA 3053	48p	MC1303		TAA242	24．25
CA3054	21.09	MC130	22.25	TAA243	
CA3355	82.40	MC1305P		TAA263	5
CA3059	21.85 81.20	MC		TAA293	
CA3064	81－20	MC1435P	23.45	TAA300	
	81.05	${ }^{\mathrm{MCl}}$ M 52 G	44．61	TAA320	
FCE121	21.05	MC1709C	Cat 94p	TAA350	ع175
FCE131	500	PA2		TA4435	81.47
FCH141	81.05			TAA521	11.32
FCH151	81.05	PA230 PA234		TAA522	
FCH171	81.05	${ }^{\text {PRA234 }}$	22．10	TA	${ }^{24.95}$
FCH181	ع1．05	PR237		TAA811	4.45
FCH191	81.05	PA24	28．35	TAB101	${ }^{87}$
FCH201	81.30		\＄2．90	TAD100	
FCH211	81.30	${ }_{\text {PA264 }}$	\＆2．00	TAD110	81.50
FCH221	21－30	PN7400	20p	${ }^{\text {SL }} 4030 \mathrm{D}$	81.50
FCH231	${ }_{\substack{81.50 \\ \pm 1.60}}$	SN7400 SN7401	200	SL702C	81．47
FCJ101	81.60	SN7401	${ }^{200}$	UA702A	22．80
FCd 111	81．50	8N7402 SN7403	200	UA702C	77 p
FCJ121	82.76	SN7403	00	UA703C	21．37
FCA 131	22．75	SN7404	20 p	UA7090	45D
FCJ141	25.25	SN7400	20 p	Ca710	81.25
PCJ201	81.80	8N7406	80 p	UA716	11.87
FCJ211	22．75	SN7408	20 p	UA723C	
FCK101	24－30	SN7409		Uatz3	81．60
PCL101 FCY101	$\begin{aligned} & 22.80 \\ & 21.02 \end{aligned}$	$\begin{aligned} & \text { gN7410 } \\ & \text { gN7411 } \end{aligned}$	$20 p$ 230	UA74	60
BRIDGE RECTIFIERS PLASTIC ENCAPSULATED					
600 PIV	1A	sop	200	PIV 4A	
50 Pry	2 A	45 p	400	PIV 4A	85D
100 PIV	2A	50p	800 P	PIV 4A	70p
200 PIV	2A	55p	50	PIV 6A	5 p
400 PIV	2A	${ }^{80 \mathrm{D}}$	100	PIV fa	5 p
50 PIV		40p	200	PIV 6A	85p
100 PIV 4A		50p		PIV 6A	5 D
			600 P	PIV 6A	5p

SILICON RECTIFIERS MINIATURE
WIREENDEDPLASTIC

SILICON RECTIFIERS

$50+$ lesB 15\％： $100+$ leas 20%				
DIODES AND				

ZENER DIODES		
W	1.5 matt	
33 Volt	$2 \cdot 4 \cdot 100 \mathrm{~V}$	
	15\％；	8s 20%

PS．1000B REGULATED

PS． 200 REGULATED POWER

RECORD DECKS B．S．R． Mini Monoł Mini M
M29\％

MP60 | 21 P 60 |
| :--- |
| 610 |
| 810 |
| 310 |
| 810 |
| MP60 | MP60 TPD1 MP60 TPD2

610 T．P．P． 1
510 T．P．D． 1 10．T．70ckage H．T． 70 Packag THORENS TD125 TD ${ }^{\text {TX }} 25$ TD150A TX115ABII
GARRARD 2025 T／
30000°

 2025 T3000°
$3500{ }^{\circ}$

Mono Btereo Cartildge

 arrard 8 P25 5111 with Goldring G800 Garrard AP76／Shure M75－6 S8R MP60 6 with Goldring G800． B8A MP60 with Audio Technlca AT toldring GL75 with Goldring G800．

1021 STEREO LISTENTNG STATION

Relection of loud apeakers with additional
tacility for stereo head－ phone switching． 2 gajn phone sockets， $6^{\prime \prime} \times 4^{\prime} \times 21^{\prime}$ ．£2． 25 ，＇P．\＆P． 15 p． SINCLAIR EQUIPMENT

O日⿹勹巳寸

 power supply， $\mathbf{2 1 8 . 8 5 \text { ．Carr．} 9 7 \% \text { ．} 2 \times 2 5 0 \mathrm { ampl } \text {－}}$ art．371p．Transformer 4 PZ8，$£ 2.972$ extra．

 amplifler $£ 23.75$ ．Carr． $37 \mathrm{pp} .3,000$ Amplifer

NS－I600W STEREO AMPLIFIER
 con transistor．
Handsome Wal． nutcase． 8 witched
input
gelector separate balance，valume，treble，bass controls．
Output $2 \times 6 \mathrm{~W}$ RMs．Inputs Mas，Tape，Xtal， Output $2 \times 6 \mathrm{~W}$ RMs．Inputs Mag，Tape，Xtal，

LATEST CATALOGUE

New
comprehensive range of HI－FI EQUIPMENT
COMPONENTS．TEST EOUIPMENT

TELETON SAQ－206B STEREO

Latest exciting release．Brand new model．beautl－ fulty styled with wrinut case． $6+6+6$ watis rmon ． porates rolume，bass，treble and allding balance Rec．List $\& 32 \cdot 50$ ．Our Price $£ 19.95$ ．Car． 17 P Suggested aystem．8AQ 206B amplifier，SAP25 ITP． plinith and cover，${ }^{2} 800$ cart，pair，of Apollo
speakers．Total Rec．List 881 ．Our Price e52．50． speakers．Total Rec．List $£ 81$ ．Our Price $£ 52 \cdot 50$ ．
Carrs．$£ 1.50$ ．

TELETON SPECIAL OFFER ！

CR10T AM／FM STERREO TUNER AMPLIFIER WITR MATCHING PAIB OF SPEAKER
SYSTEMS Output 4 watta per channel．Excellent reception AFC，built－in MPX，Cer／XTAL Inpat．
Totel List 250.25 ．OUR PRICE $£ 22.75$ ． 621 p ．
Also，available with Garrard $2025 \mathrm{~T} / \mathrm{C}$ ，Record
Changer，Plinthi，cover and stereo cartridge．
Ready wired．$£ 36.50$ ．Carr．E1．
TELETON F． 2000 AMM／FM STEREO TUNER／

Probably the most popular budget Tuner／ 5 watts rms．per channel．Tape／Cer．phono tmputs．AFC／Built－tn MPX．List $\mathrm{E51}$ ．Our Prico
e228．75．Cart． 50 p ．

LAFAYETTE LA． 324 STEREO AMPLIFIER

$12 \cdot 5$
R．M．S．Mag／Cer

Tuner／ape Inpute
Exellent perforn Excellent perform－
ance．Compares with amplifers up
OUR PRICE £24．Cart．37jp． \qquad

> Top quality in plastic libra
> C90 $60 \mathrm{~min} 300 \mathrm{~B}, 3$ for 82 p

TMK MODEL 117
ELECTRONIC VOLTMETER Battery operated， 11 meg
tnput． 26 rangeb．Large

 DG Current 112 －12MA． Resistance up to 2000 M ohm．Decibels－ 20 to
+51 db．Complete with ieads $/$ Instructions ${ }^{+617} 50$ ．P．\＆P． 20 p ．

E．H．T．

TESTE －30KV．

Completely
self－contained with built－in voltneter．Fasy to read，very accurate，robust construction．An
ensential for colour television servicing．enc．size
360 mm ．long． 50 mm ．dis． 48.95 ．P． P ． 25 ． 2stife 230 VOLT A．C． 50 CYCLES RELAYS Brand new． 9 sets contacta at 5 amp rating 50 peach contacts at 5 amp rating． 50 peach
P．\＆P． 10 p （100 lots itO ）Quan

HOMER NTTERCOMS Ideal for home，
office，stores，tactories， etc．supplled complete and iree instructions． 2 Station 82.9% P．\＆P．15p． Station 25.25, P．\＆P． 15 p ．
4 8tation $\$ 6.62$, P．\＆P． 17 p ．

EMI LOUDSPEAKERS Model $350.13^{*} \times 8^{\circ}$ with single
tweeter／crossover． $20-20,000$ tweeter／crossover． $20-20,000$
Hz， 15 watt RME．Avalleble
8 or 15 ohms． 87.50 each．
 tweetera／crossover．
Hz． 8 watt RMR．Available 8.0 or 15 ．ohms．$£ 3.50$ each．
P．\＆P． 25 p．

TE 1018 DE－LUXE MOHO HEADSET
Sensitive，soft earpads，
adjustable headban adjustable headband．Mag， ahms．
$£ 197$, P．\＆P．15p．

MP7 MIXER PREAMPLIFIER

CT－5 PULSE OSCILLOSCOPE

MCA． 220 AUTO．

MATIC VOLTAGE STABILISER
Input $88-125$ VAC or 176 －
205 VAC ．
or 240 VAC ． 200 VA rating． \＆11．97．Cart． 50 p ．

SPECIAR OFFER！ SINCLAIR PROJECT 60 STEREO．FM TUNER

The first tuner in the world to use the phase lock
loop principle－as used for recelving signala from loop principle－as used for recelving signals from space cratit because of its vaaty improved signal difficult areas．Tuning range 87.5 to 108 MHz ． Automatic stereo indicator，Sensitfivity： $2 u \mathrm{~V}$ ．
AFC range $\pm 200 \mathrm{KHz}$ ．Signal to voise ratio AFC range $\pm 200 \mathrm{KHz}$ ．Signal to noise ratio： voltage 25.30 V DC． 8 ize $93 \times 40 \times 207 \mathrm{marm}$.
REC．LIST PRICE
£25．

OUR PRICE 116.95 P．\＆ 25 p
ONLY
Unrepeatable offer－buy now and save over $£ 8$ ．
PE－2 PHOTO ELECTRIC RELAY

Inexpenalve warning counting system con．
siiting of an enciter and
relay unit．Relay unit relay unit．Relay unit
has variable seasitivity
control and switch for control and switch for
intermaltent alarm operation．Enciter unit has
removable infra red plter and A．C．outlet removibile ilfra red bliter and A．C．outlet socket to operate bells，counters，etc． 240 V AC．Complete
with cablea and instructions．$£ \theta^{\circ} 97$ ．P．\＆P． 25 p

UR－IA SOLID STATE
COMMUNICATION RECEIVER
 spread，Sensitlvity Control，220／240ヶ AC．or 12∇
DC． $12 q^{\prime} \times 48^{\circ} \times 7^{*}$ ．Brand new with instructlons． DC． $\left.129^{\circ} \times 4\right\}^{\circ} \times 7^{\prime \prime}$ ．Brand new with instructlons．
£25．Carr． $37 \dagger p$ ．

LAFAYETTE HA－600 RECEIVER

variable B．F．O．，nolse limiter， g Meter，Band
 Carriage 50 ．

TE－IGA TRANSISTORISED
 SIGNAL GENERATOR

RUSSLAN C1－16 DOUBLE

POWER RHEOSTATS

High quality ceramice construction．Windings embedded in vitreous enamel

＂YAMABISHI＂VARIABLE VOLTAGE TRANSFORMERS

Excellent quallty Low price Immediate dellver		
MODEL \％ 260	MODEL 8－260 B Panel Mounting	
General Purpose		
Bench Mounting	2.5 Amp ．．\quad ¢8．05	
2．5 Amp ．．${ }^{187 \% 00}$	Please add postage	
${ }_{5}^{2.5} \mathrm{Amp}$ Amp \ldots ．${ }^{\text {¢8．}}$	ALL MODELS	
${ }_{8}^{5}$ Amp Amp ．．	INPUT 230 VOLTS，	
	OUTPUT VARTABLE ${ }^{\text {S0／60 }}$ CYCLES	
12 Amp ．．$£ 23 \cdot 60$	0－260 VOL	
$20 \mathrm{Amp} \mathrm{.} 249-$.		

MODERN TELEPHONES type 706. Two tone grey $63 \cdot 50$ ea. The same but black $62 \cdot 75$ ea. P. \& P. 25 p ea BRA ND NEW, two tone grey 66 ea, P. \& P. 25 p ea. PHOTOMULTIPLIERS. EMI 6097X at $£ 8 \cdot 50$ ea. 6097B \& 6097C- 55 ea. Type 931A- 2.25 ea.
TRANSISTOR OSCILLATOR. Variable frequency $40 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{kc} / \mathrm{s} .5$ volt square wave o/p, for 6 to 12 v DC input. Size $1 \$ \times 1 \$ \times 1 \downarrow$ in. Not encapsulated. Brand
new. 57 p ea.

RELAYS

G.E.C. Sealed Relays High Speed 24V. $2 \mathrm{~m} 2 \mathrm{~b}-23 \mathrm{p}$ ea S.T.C. Sealed 2 pole c/o 700 ohms (24V). 15p ea.
12 v 35 p ea. $2,500 \mathrm{ohm}(\mathrm{k} a \mathrm{y} 24 \mathrm{v})-13 \mathrm{p}$ ea,
(okay 24v)-13p ea.
CARPENTERS polarised Single pole c/o 20 and 65 ohm coin as new, complete with base 37p ea.
coil 33 p ea 14 ohm coil 33p ea; Single pole c/o 45 ohm Varley VP4 Plastic covers 4 pole c/o 5K-30p ea. 15 K 33D ea.
POLARISED Relay 2 pole c/o 250 ohm and 250 ohm colls-25p ea.

POTENTIOMETERS
COLVERN 3 watt. Brand new, 5; 10; 25; 100; MORGANITE Special Brand new. $2 \cdot 5: 10 ; 100$;
$250 ; 500 \mathrm{~K} ; 2.5 \mathrm{meg} .1 \mathrm{in}$. sealed. 17 p ea. BERCO 21 Watt. Brand new. $5 ; 10 ; 50: 250 ; 500$ ohms;
1: $25: 5 ; 10: 25 ; 50 \mathrm{~K}$ at 20 p ea. STANDARD 2 ,
STANDARD 2 meg. log pots. Current type 15p ea. INSTRUMENT 3 in . Colvern $5 \mathrm{ohm} \mathrm{35p} \mathrm{ea;} \mathrm{50k} \mathrm{and}$ 100K 50p ea.
BOURNE TRIM POTS. $10 ; 20 ; 50 ; 100 ; 200 ; 500$ ohms; 1: 2:.2:5; 5; 10; 25 K at 35p ea

ERJE feed through ceramicons $1000 \mathrm{pf}-4 \mathrm{p}$ ea.
Sub-min. TRIMMER square. 8. 5pf. Brand new 13p ea. VISCONOL EHT CAPACITORS

E.H.T. POWER UNITS type 1033, 0.3kV carr. $£ 1.50$.
E.H.T. TRA NSFORMERS (Standard Mains)

Carriage at cost. Chokes and Capacitors for above
available.
available.
DECADE DIAL UP SWITCHES. Finger-tip. En graved $0 / 9$. Gold plated contacts. Size $2 \frac{1}{2}$ high. $2 \pm^{*}$ deep ${ }^{2}$ " wide. 75 p ea. Bank of 4 with escutcheon plates, etc wide 62.50

LIGHT EMITTING DIODES (RED)
 from Hewlett-Packard Brand new 38p each Holder-lp ea. Information-5p

PHOTOCELL equivalent OCP 71 13p ea.
Photo-resist type Clare 703. (TO5 Case). Two for 50 p .
BURGESS Micro Switches V3 5930. Brand new

> 4 DIGIT RESETTABLE COUNTERS. 1000 ohm coil. Size $1 \frac{\times}{} \times 4 \ddagger \mathrm{in}$. As new, by Sodeco of Genevs.
> As above but 350 ohm. $\$ 3.50 \mathrm{ea}$

TRANSFORMERS. All standard inputs.
STEP DOWN ISOLATING trans. Standard 240 v AC to $55-0-55 \mathrm{~V} 300 \mathrm{~W} . £ 3$ ea. P . \& P. 35p. etc. $250 \mathrm{MA} . £ 3.50$ incl. post.
Multi 6.3 Volts to give 48 V 3.5 Amps etc. $£ 3.50$ incl. post. Multi 6.3 Volts to give 48 V 3.5 Amps etc. $£ 3.50 \mathrm{incl}$. post.
Gard/Parm/Part. $450-400-0-400-450$. $180 \mathrm{MA} .2 \times 6.3 \mathrm{v}$. Transformer $250-80 \mathrm{MA} ; 13 \mathrm{~V}-1 \cdot 2 \mathrm{~A}$ and 6.3 V 5 A . $\mathrm{El} \cdot 50$. Pransformer
Neptune serles, multi, 6.3 V to give 38 V at 6 amps.
$£ 2.50$ ea, Carr, $£ 1$. 2250 ea. Carr, 11.
$500-0-500 \mathrm{~V}$ at 250 MA - 350 V at 55 MA , separate winding
 75 p ea. P. \& P. 25 p.

CHOKES. $5 \mathrm{H} ; 10 \mathrm{H} ; 15 \mathrm{H}$, up to $120 \mathrm{~mA}, 42 \mathrm{p}$ ea Large quantity LT, HT, EHT transformers.

HARTLEY TYPE 13A dOUBLE BEAM OSCILLOSCOPE

TB $2 \mathrm{c} / \mathrm{s}-750 \mathrm{kc} / \mathrm{s}$. Band width $5.5 \mathrm{Mc} / \mathrm{s}$. Sensitivity $33 \mathrm{Mv} / \mathrm{cm}$. Calibration markers $100 \mathrm{kc} / \mathrm{s}$ and $1 \mathrm{Mc} / \mathrm{s}$. Cathode follower probe for H.F. testing. A completely reliable general purpose oscilloscone complete with all accessorles, probe etc. $\mathbf{£ 2 5} 00$ ea. Carr. $£ 1 \cdot 50$ As above. No accessories BUT CIRCUIT DIA. GRAM Only $£ 18 \cdot 00$. Carr. $£ 1-50$.

SOLARTRONCILLOSCOPES
SOLARTRON $711 \mathrm{~S} .2 \mathrm{D} . \mathrm{B}: \mathrm{DC}-9 \mathrm{mc} / \mathrm{g}$. In fine SOLARTRON condition $643 \mathrm{DC}-15 \mathrm{me} / \mathrm{s}$
SOLARTRON Good condition 550. COL CD513.2- $\mathrm{Ec} / \mathrm{s} 2.50$. CD5 $23 \mathrm{~S}-\mathrm{L}$ SOLARTRON CT316 (D300 range) DC-is megs. COSSOR $1049 \mathrm{Mk} .3 . \mathrm{DB} .425$
All carefully checkerl and tested. Carriage $£ 1 \cdot 50$ extra.

MARCONI

Noise Gen. TF1106. $£ 40$. Carr. $£ 1.50$
Vacuum tube Voltmeter TFF1041A, $£ 35 ; 1041 \mathrm{~B}, £ 45$, Wide Range Oscillator TF 1370 and TF 1370 A . $10 \mathrm{c} / \mathrm{s}-10 \mathrm{mc} / \mathrm{s}$ from $\kappa 140$. Deviation Meter TF934/2, 650 ea. Cart. £1-50. TF 1026 Frequency Meter $£ 12 \cdot 50$. Carr. 75p.
TF 329 Magnification Meter. As. new condition 660 . TF 195 Audio Generator € 10 . Carr. $£ 1.50$. TF 801 A Signal generator $£ 35$. Carr. £1-50. Better grade 655 ea. Carr. $£ 1.50$.
TF 860 N. 5 Impedance Bridge from $£ 50$ ea. Carr ع1. 50.
TF 144 C
TF 144G Signal Generator. Serviceable. Clean £15. In exceptional condition £25. Carr. £1-50. TF885/1 $£ 55$. Carr. £1-54.

SOLARTRON

Stabilised P.U. SRS $151 A$. $£ 15$. Carr. $£ 1 \cdot 50$.
Stabilised P.U. SRS 152 . EIO. Carr. £1.50.
Precision Millivoltmeter VP252 ET5. Cer,
Precision Millivoltmeter VP252, E25. Carr. £1.
Oscillator type OS 101. £30. Carr. £1 50.

AVO

Electronic Testmeter CT 38. Complete 120 Carr. £1 CINTEL
Square and Pulse gen. PW 0.05 to 0.3 micro secs. 15 mV to 50 V ; rep rate 5 hz to 250 kz C 20 . Cart. £1.

AIRMEC

Signal Generator type 701. £25. Carr. £1.50.
AIRMEC Generator type 210 \& 120 . Carr $£ 1.50$
$\begin{aligned} & \text { E.M.I. Oscilloscope type WM16. Main frame } \mathrm{f} 125 . \\ & \text { Choice of Plug in } 7 / 2 \mathrm{DC}-24 \mathrm{mc} / \mathrm{s} \times 2 \mathrm{e} 35 ; 7 / 1 \mathrm{DC}-\end{aligned}$
Choice of Plug in $7 / 2 \mathrm{DC}-24 \mathrm{mc} / \mathrm{/} \mathrm{x} 2 \mathrm{E} 35 ; 7 / 1 \mathrm{DC}$ -
$\begin{aligned} & 40 \text { megs } £ 25 \text {. Differential unit svailable from } \mathcal{E} 40 \text {. } \\ & \text { E.M.I. WM8. } D C \text { to } 15 \mathrm{mc} / \mathrm{s} \text {. Complete with plug }\end{aligned}$
$\begin{aligned} & \text { E.M.I. WM8, DC to } 1 \\ & \text { in pre.anip, from } 840 \text {. }\end{aligned}$

BECKMAN MODEL A. Ten turn pot complete
with dial. $100 \mathrm{k} 3 \%$ Tol 0.25% only $\mathrm{E} \cdot \mathbf{1 3}$ ea.
E.H.T. Base B9A in Polystyrene holder with cover.

FIBRE GLASS PRINTED CIRCUIT BOARD. Brand new. Single sided up to $21^{\prime \prime}$ wide $\times 15^{\circ}$. 1 p per sq. in. Larger pieces Ip per sq. in. Double sided. Any size. Ip
per sq. in. Postage 10p per order.

PANEL mounting lamp holders. Red or green. 9p ea Miniature PA NEL mounting lamp holders-10V 15MA p ea

Standard $240 V$ MOTORS by CITENCO reduction gearbox to $19 \mathrm{r} . \mathrm{p.m.m}$ reversible. $\mathbf{E 5}$ ea

GYROS Large clear plastic topped. Type A \& ea
Single pole 3 -way 250 V AC 15 anp switch. 8p ea.
P. \& P. 5 p . Large discount for discount for quantity
Squirrel cage BLOWER ASSEMBLY conıplete with standard mains input motor. Size $7^{*} \times 2 \frac{1}{2}^{\circ}$ dia. only
80 p ea. P. \& P. 25 p ea.

CLAUDE LYONS Main Stabilizer. Type TS-1L-5S0. 16 amps. $£ 30$; Carr Inp $^{47 / 65}$ cs. Output $127+1-0.25 \%$

MAGNETRONS TYPE CV370. Brand new. Boxed. 68 ei.

KELVIN \& HUGHES 4-channel multi-speed recorders complete with amplifiers. $£ 45$.
EVERSHED a VIGNOLES Recording paper. Brand new boxed. L618H4 $7^{* *}$ wide, $13^{* \prime}$ dia. I7p roll; JL900H4 de, dia. 25p toll.
19in. Rack Mounting CABINETS 6ft. high. Double Bay complete with doors. Fine condition. £25. Carriage
at

SELECTED B.C. 221 Recal OFFER
B.C. 221 Recalibrated to Ministry Snecif. cation in brand new condition, complete with circuit, UAYAE Ter U่ WAYNE Kerr Universal Bridge type CT375. $£ 40$ ea
Cart. $£ 1 \cdot 50$.

MULLARD ELECTROLYTICS

2200MFD 100 v $10 \mathrm{~A}\left(50^{\circ} \mathrm{C}\right)$
$75 p$ each
BRAND NEW BOXED

LARGE REDUCTION FOR QUANTITY

SANGO 50 micro amp rectangular meter. Size 27×3
with 4 separate scales, lever operated, $0 / 6$ white, $0 / 60$ with 4 separate scales, lever operated, $0 / 6$ white, $0 / 60$
blue, $0 / 6 v 0$ red and set zero. 1 -00 ea. P. \& P. 17 p .

GOOD CONDING IS BELIEVING:

GOOD CONDITION. BC221 complete with correct charts, circuit diagrams. ONLY $£ 16.00$ C.R.T's 5°
C.R.T.'s $5^{\prime \prime}$ type CV1385/ACR13. Brand new with
spec. sheet. 63 p ea. \mathbf{P}. P . ${ }^{2} \mathrm{p}$. spec. sheet. 63p ea. P. \& P. 35p.
MARCONI Valve Voltmeter 42813/1 \&5 ea
RESISTORS by PIHER. Carbon FHIIm. 1 and 2 watt. All 5% Brand new Perfect. Mixed values. COSSOR D.B. Scopes-some models from
Genuine MULLARD Transistors/Diodes and guaranteed. OC41, 42, 76, 77, 83; OA5. 10. All at 3p ea. OC23-10p ea.
CAPACITOR PACK- 50 Brand new components
only 50 p. P. \& P. 17p.
POTS -10 different values. Brand new.-50p. P. \& P. 17p.

COMPONENT PACK consisting of $2-2$ pole many pole vol control: 250 resistors \ddagger and $\frac{1}{2}$ watt 17 p .
COMPLETE Printed Circuit TRANSISTOR I.F:
 75 p. P. \& P. 10 p .
3000 Series relays- 15 mixed values (new and as
new, no rubbish) E1.00 P. Pe (1) MUST GO : Solartron Storage oscilloscope QD910. Tested, working. ONLY $£ 100$. Carr, extra
STUART TURNER No. 12 Water pump GPH720/
10FTHRD or GPH150.45FT.HD. Complete with standard mains input isolating transformer. Ideal SUNVIC D.C. Amplifier. Standard Mains, $0 \cdot 1 \mathrm{mv}$. SUNVIC D.C. Amplifter, Standard Mains, 0.1 mv . DELIVERED TO YOUR DOOR 1 cwt of Electronic Scrap chassis, boards, etc. No Rubbish.
FOR ONLY \&3.50. N. Ireland 50p extra. SPECIAL OFFER-Five useful Moving Coil Meters O NLY EI•50. P. \& P 50p.
LOOSE LEAF BINDERS. Blue plastic cover. 4 ring. Standard size. 4 for El. P. \& P. 35 p. 25 for
E5. Carr. £1.

Panel switches DPDT ex en. 10p ea.; DPST Brand new, 7p ea.; DPST twice, brand new 25p ea.
HEAVY DUTY 6 amp .2 pole c/o- 20 p ea.
GRATICULES. 12 crn. by 14 cm . in High Quality
plastic. 30 d ea. P. \& P. 5p.

BY ATES • EMIHUS • FAIRCHILD • FERRANTI • I．T．T．．MULLARD • NEWMARKET • PHILIPS • R．C．A．P TEXAS • TRANSITRON

TRANSISTORS SELETION FROM OUR LIST
 SEND FOR YOUR FREE GOPY TODAY

AAY：

 そでき

 200

良建

रेदेध
能融要
保会会
そそれ

路
路

路

品郧品

路
路

BC184L 18p ${ }^{\text {OAA200 }}$	BC212L 18p	
BC213L	OA202	BC213L 12p

BC214L
15
OC16

 \begin{tabular}{ll|l}
BCY30 \& 35 p \& OC22

BCY3 \& 40 p \&

\hline

BCY31 \& 40 p \& OC23

BCY32 \& 60 p \&

OC24

BCY33 \& 30p \& OC24 \& 60

BCY34 \& $35 p$ \& OC25 \& 40

BCY 44 \& $35 p$ \& OC2 \& 2

BCY 38 \& 45 p \& OC28 \& 2

OC2

BCY 39 \& 21．00 \& OC28

OC29

\hline
\end{tabular}

 \begin{tabular}{ll|l}
BCY72 \& 15p \& Oc4

BCA

BD115 \& 75p \& OCA4

BD123 \& $85 p$ \& OC45

BD12 \& \&

\hline

\hline BD123 \& $85 p$ \& OC70

BD12 \& 80 p \& \&

BD131 \& 75 p \& \&

OC71

BD132 \& 80p \& OC72

OC75
\end{tabular} BDY

BDY 60	OC812	40 p
OC83	OC83	25 p

free copy today！\end{gathered}\)

7D

5 p	IS44	7 p	28303
28304			

$$
s
$$

SIL

BRAND NEW，FULL SPECIFICATION，TTL 74 SERIES BRANDED FAIRCHILD，I．T．T．AND TEXAS Nort Devices may be mi
Description
2－input NAND gat es NANO gates 2 Quad 2－input 2 －input NoR
3 Quad 2－input open
4 Hextuple inverters
Hex inverters with
7405 Hex inverters with open colle
7410 Tripl 3 －input NAND gates
7413 Dual 4－input Schmizs triggers
30 Dual 4－input Schmizt trigger
20 Dual 4 －input NAND gates
Single 8 －input NAND gates
Single 8 －input NAND gates
0 Dual 4 －input NAND buffer
Oates

\qquad

OUR RANGE IS ALWAYS EXPANDING－Enquiries invited for new types arriving daily ADDITIONAL DISCOUNTS－10\％ $12+; 15 \% 25+; 20 \% 100+-$ DELIVERYIS FROM STOCK

ELECTRONIC ORGAN DIVIDER BOARDS built to
 high indusitial/computer spec. 5 octave set E15. Complete with connection data and oscillator details.
 COPPER LAMINATE P.C. BOARD
 $8 \frac{1}{2} \times 5 \frac{1}{2} \times 1 / 16$ in. $12 \frac{1}{2} p$ sheet, 5 for 50 p $11 \times 6 \frac{1}{2} \times 1 / 16$ in. 15 p sheet, 4 for 50 p
 $11 \times 8 \times 1 / 16 \mathrm{in} .20 \mathrm{p}$ sheet, 3 for 50 p
 Offcut pack (smallest 4×2 in.) 50 p 300 sq .
 P\&P single' sheet 4p. Bargain packs 10p
 SPEAKERS AND CABINETS
 E.M.I. $13 \times 8 \mathrm{in}$. (10 watt) with two tweeters and cross- over $3 / 8 / 15 \mathrm{ohm}$ models. $£ 3.75$. P.Pe 25 p . E.M.I. 13×8 in. base units (10 watt) $3 / 8 / 15 \mathrm{ohm}$ E.M.I. $6 \frac{1}{2}$ in. Ind. 10 watl Woofers. 8 ohm. $13,000 \mathrm{gss}$ E2.25
 E.M.I. 20 watt $(13 \times 8 \mathrm{in}$.) with single tweeter and "X-over" 20 Hz to $20,000 \mathrm{~Hz}$. Ceramic magnet "X-over" 20 Hz to $20,000 \mathrm{~Hz}$. Ceramic magnet $11,000 \mathrm{gss}$. £8. P.P. 40 p .20 watt base unit only. $£ 6$. P.P. 40p.

 $\frac{3}{4} \mathrm{in}$. teak-finished blockboard. Size $14 \times 10 \frac{1}{4} \times 9 \mathrm{ln}$. $\mathbf{5} 5$ ea. P.P. 40 p.

PRECISION A.C. MILLIVOLTMETER (SolartIon) $1.5 \mathrm{~m} . \mathrm{V}$ to 15V: 60db 10
£22.50. P.P. \&1.50.
WAVE ANALYSER TYPE 853 (AIRMEC). $30 \mathrm{Kc} / \mathrm{s}$. $30 \mathrm{Mc} / \mathrm{s}$. Excellent condition. £25. Carr. E2.
MINIATURE UNISELECTOMS (A.E.I. 2203A.), 3 bank 12 position, non-bridging wipers. $\mathbf{E 4 . 2 5}$ ea. Brand new Complete with base
MOTORISED VARIACS. Unit containing 2 amp . 0/270 Carr. £1.
BRIDGE MEGGERS (500v. series 2) £18 éa. in good working order.
BRIDGE RECTIFIERS (Mullard GEX 54INBIPIF) Output 74 volt . at 18 amps. 22 ea. (brand new)
BULK COMPONENT OFFER. Resistors/Capacitors. All pieces E2. (Trial order 100 pcs. 50 p.) We are confiden pieces $\begin{aligned} & \text { y } 2 \text {. (rrial } \\ & \text { you will re-order. }\end{aligned}$
ERCO WIRE-WOUND POTS. New Individually boxed 200 ohm 25 watt 50p: 725 ohm 50 watt $75 \mathrm{p}: 300$ ohm
 which). $4 \times 1 \times 1$ in. £1.75, P.P. 50 5 digit (Reset) 12 v . d.c. ($2 \mathrm{z} \times 2 \times 1$ in.). E3. P.P. 5 p . 6 digit (Reset) 12 v . d.c. ($2 \mathrm{z} \times 2 \times 1 \mathrm{in}$.) £3-50, P.P. $5 p$.

MICROAMMETERS (4 in . sq. Weston) 25-0-25 microamps. New/boxed, $22 \cdot 26$ ea. P.P. 25D
PRECISION CAPACITANCE JIGS. Beautifully made
with Moore \& Wright Micrometer Gauge. Type 1. 18.5pf to 1220p. £10 ea. Type 2. 9.5pf to 11.5pf. £6 ea POT CORES LA1/LA2/LA3, 50p ea.

LIGHT DIMMERS (2000 watt) Triac Controlled. $3 \frac{1}{3} \times 2 \times 1 \frac{1}{4}$

COMP UTER TAPES. 2400 ft . $\frac{3}{4} \mathrm{in}$. On N.A.B. Hubs complete whth transparent cassette case. E2 e8. P.P. 50p. LIQUID LEVEL SWITCH. Detects even mildly conductive
liquids J.e. ether etc. N/O-N/C contacts fails to safe. §10 ea "L.a.e, literatuIe, LIFE" ELECTROLYTICS (screw terminal) LONG LIFE' ELECTROLYTICS (scre
25,000 u.f. $40 \mathrm{v} .\left(4 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{in}\right.$.) E1 P.P. 10 p.$$
10,000 u.f. $75 \mathrm{v} .\left(4 \frac{1}{2} \times 2 \frac{1}{3} \mathrm{in}\right.$.) 87 p p. P.P. 10 p . 10,000 u.f. 75 v . ($4 \frac{1}{2} \times 2 \frac{1}{2}$.) 87 pp . P.P. $10 p$ 7,100 u.f. 40 v . $(4 \times 2 \mathrm{in}) 75 p.$. P.P. 10 p .
3,150 u.f. $40 \mathrm{v} .\left(4 \times 1 \frac{1}{2}\right.$ in.) 78 p. P.P. 10 p.$$
TELEPHONE DIALS (New) £1 ẹa. RELAYS (G.P.O. '3000'). All iypes. Brand new from $37 \frac{1}{2} p$ ea, 10 up quotations only.
TELEPHONE EXTENSION CABLE 3 core/cream p.v.c. 100 yd. coll E2 200 yd. Coll E3.75. P.P. 25p.
75 ohm . 8 bank (Brand new) 25-way 75 ohm. 8 bank $\frac{1}{2}$ wipe £3.25. 10 bank

BLOWER FANS (Snail type) Type 1: Housing dia. $3 \frac{1}{2}$ In.
Air outlet $1 \frac{1}{4} x 1$ In. £2.25. P.P. 25p. Type 2: Mousing dia 6 in . Air outlet $2 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{in}$. £4. P.P. 50p. Both types 115 j 240 v . A.C. (brand now)

RELAYS

SIEMENS/VARLEY PLUQ-IN. Complete with transparent dust covers and bases. 2 pole c/o contacts $35 p$ ea; 6 make
contacts $40 p$ ea.; 4 pole c/o contacts 50 p ea. $6-12-24-48 \mathrm{v}$ contacts 40 p ea. $; 4$ pole c/o contacts 50 p ea. 6-12-24-48
2 VOLT H.D. RELAYS ($3 \times 2 \times 1 \mathrm{In}$.) with 10 amp . silver contacts 2 pole c/o 40p ea.; 2 poio way 40p. P.P. $5 p$ 24 VOLT N.D. RELAYS ($2 \times 2 \times \frac{3}{4} \mathrm{in}$.) 10 amp . contacts.
240 VOLT A.C. RELAYS $\left(1 \frac{3}{4} \times 1 \frac{3}{3} \times 1\right.$ in.) G.P. contacts
1 make 2 c/o. 60 p ea. P.P. 5 p.
REED RELAYS 4 make $9 / 12 \mathrm{v}$. (1,000 ohm.) $62 \frac{1}{4 \mathrm{p}}$ ea,
2 make $37 \frac{1}{4} \mathrm{p}$ ea. 1 make 25 p ea. Reed Switches ($1 \frac{1}{4} \mathrm{in}$.) 2 make $37 \frac{1}{2} p$ ea. 1
10p ea. $£ 1$ per doz.
SUB-MINIATURE REED RELAYS ($1 \mathrm{in} . \times \frac{1}{2} 1 \mathrm{n}$.). Weight Toz. Type 1.960 ohm, $3 / 9 \mathrm{v}$. 1 r.
$1800 \mathrm{ohm} .3 / 12 \mathrm{v} .1$ make. 75 p ea.
E.H.T. GENERATOR MODULE (Mullard VM1049) input 12 volt, output 1800 volt 1 m.a. £4 ea. P.P. 25 p

PATTRICK \& KINNIE

191 LONDON ROAD - ROMFORD - ESSEX
ROMFORD 44473
RM79DD

SIGNAL GENERATOR TS-403B/U (or URM-61A): (Hewlett Packard). A portable, self-contained, general-purpose test equipment designed for use with radio and radar receivers and for other applications requiring small amounts of RF power such as measuring standing-wave ratios, antenna and transmission line characteristics, conversion gain, etc. Both the output freq. and power are indicated on direct-reading dials. 115 V , AC, So e/s. Freq, $1800-4000 \mathrm{Mc} / \mathrm{s}$. CW, FM , Modulated Pulse-4 0 - delayed from 3-300 microWecs from external or internal pulse. O/put-1 milliwatt max., 0 to - 127 db secs from external or internal pulse. Price: $£ 120$ each $+\Sigma 2$ casr.
SIGNAL GENERATOR TYPE 902: (P.R.D.). A portable, general-purpose, broadband, microwave signal generator designed for testing and maintenance of aircraft radio and radar receivers in the SHF band. The RF output level is regulated by a variable attenuator calibrated in dbm. The frequency dial is calibrated in Mc/s. Provision is made for external modulation. Power Supply$115 \mathrm{~V}, \pm 10 \% \mathrm{~A} . \mathrm{C} ., 50 \mathrm{c} / \mathrm{s}$. Freq. $-3650-7300 \mathrm{Mc} / \mathrm{s}$. Internal TransmissionCW, Pulse, FM. External Transmission-Square Wave, Pulse. Power O/put0.2 milliwatts. O/put

TEST SET TS-147C: Combined signal generator, frèquency meter and power meter for $8500-9600 \mathrm{Mc} / \mathrm{s}$. CW or FM signals of known freq. and power or measurement of same. Signal Generaror: O/put -7 to - 85 dbm. Trans-mission-FM, PM, CW. Sweep Rate-0-6 Mc/s per microsec. Deviation-0 $40 \mathrm{Mc} / \mathrm{s}$ per sec. Phase Range-3-50 microsec. Pulse Repetition Rate-to 4000 pulses per sec. RF Trigger for Sawtooth Sweep-5-500 wats peak $0.2-6$ microsec. duration, 0.5 microsec pulse rise time. Video Trigger for Sawtooth Sweep-Positive polarity, $10-50 \mathrm{~V}$ peak. $0.5-20 \mathrm{microsec}$ duration a 10% max. amplitude, less than 0.5 microsec rise time between 90% and 10% max. amplitude points. Frequency Meter: Freq. $8470-9360 \mathrm{Mc} / \mathrm{s}$. Accural $+2.5 \mathrm{Mc} / \mathrm{s}$ per sec. absolute, $+1.0 \mathrm{Mc} / \mathrm{s}$ per sec. 10 freq. increments than $60 \mathrm{Mc} / \mathrm{s}$ relative, $\pm 1.0 \mathrm{Mc} / \mathrm{s}$ per sec at $9310 \mathrm{Mc} / \mathrm{s} \mathrm{per} \mathrm{sec}$. point. Accuracy measured at to +30 dbm . Output 7 to 85 dbm . Price: $£ 75$ each $+£ 1$ carr. MICROLINE IMPEDANCE METER MODEL 201: $5300-8100 \mathrm{Mc} / \mathrm{s}$ £75 each, £1 carr.
MICROLINE DIRECTIONAL COUPLER MODEL 209: $5260-8100 \mathrm{Mc} / \mathrm{s}$ 24DB. £12.50 each, post 35 p.
COAXIAL TEST EQUIPMENT: COAXWITCH—Mnftrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch. 50 ohms, type " N " femal connectors fitted to receive UG-21/U series plugs. New in ctns., $\mathbf{£ 6} \cdot \mathbf{5 0}$ each post 37 p .
POLARAD MSG-1 MICROWAVE SIGNAL. GENERATOR: $95-2 \mathrm{GHz}$, 0 to -127 dbm output. Freq. accurate to within $\pm 1 \%$. Internal $F M$, pulse and squarewave modulation. POLARAD MSG-3 MICROWAVE SIGNAL. GENERATOR: 4.5-8GHz Internal pulse and squarewave modulation. £185 each, carr. $£ 1 \cdot 50$
POLARAD MSG MICROWAVE SIGNAL GENERATOR: 12.417.5 GHz £ 225 each, carr. $£ 1.50$

TS-45/APM3 "X" BAND SIGNAL GENERATOR (and transmitter output power and frequency meter): $8.7-9 \cdot 5 \mathrm{GHz}$. Accuracy $\pm 2 \mathrm{MHz}$
PRD FRIEQUENCY METER $5810: 9-1 \cdot 5 \mathrm{GHz}$. 855 each, post 60 p.

USM-2AC OSCILLOSCOPE: 3 in. oscilloscope with $2 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{Mc} / \mathrm{s}$ vertical response, and $8 \mathrm{c} / \mathrm{s}$ to $800 \mathrm{Kc} / \mathrm{s}$ horizontal response. Sensitivity 50 mv . rms/inch. Triggered sweep, built-in trigger pulses and markers. Mains input each, carr. £2.
SIGNAL. GENERATOR TS-497B/URR: (Boontón). Freq. 2-400 Mc/s in 6 bands. Internal Mod, 400 or $1000 \mathrm{c} / \mathrm{s}$ per sec. External Mod. 50 to 10,000 c / s per sec. External PM. Percent Mod. $0-30$ for sine wave. Am or Pulse Carrier. Price: $£ 85$ each $+£ 1.50$ carr
FREQUENCY METER TS-74 (same TS-174): Heterodyne crystal controlled. Freq. $20-280 \mathrm{Mc} / \mathrm{s}$. Accuracy $.05 \%$. Sensitivity 20 mV . Internal Mod. at $1000 \mathrm{c} / \mathrm{s}$. Power Supply-batteries 6 V and 135 V . Complete with calibration book. (Manufactured for M.O.D. by Telemax. "As new" in cartons.) £75 each. Fuly 54 VAI YE VOLTMETER: Portable battery operated. In strong metal CT. 54 VALVE VOLTMETER: Portable battery operated. in strong metal case with full operating instructions. $2.4 \mathrm{~V}-480 \mathrm{~V}$. A.C. or D.C. in 6 Ranges, probe, excellent condition. £12-50, carr. 75 p.
CT. 381 FREQUENCY SWEEP SIGNAL GENERATOR: $85 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ and response curve indicator with 6in. CRT tube and separate power supply. Fully stabilised. Price and further details on request.
DIGITAL VOLTMETER \& RATIOMETER Model BIE. 2116, $\mathbf{E 6 5}$, carr. £2.
DIGITAL VOLTMETER Model BIE. 2114, £55, carr. £2. (Mnftrs.
Blackburn Instruments).
MARKA SWEEP GENERATOR MODEL VIDEO (Kay Electric, USA)
£65, carr. £2.
MARCONI VARIABLE ATTENUATOR Type 388C: £15 ea. Carr. 60p. MODULATOR UNIT: complete with transformer and 2×807 valves mounted MODULATOR UNIT: complete with transformer and 2×807 valves mounted
in 19 in . chassis $\times 8$ in. high $\times 8$ in. deep. $\$.50$ secondhand cond., or $\$ 8.50$ in 19 in. chassis $\times 8$ in
RF UNIT: suitable for use with the above unit. Complete with $2 \times 3 \mathrm{E} 29$ valives. RF UNIT: suitable for use with the above unit. Complete with $2 \times 3 \mathrm{E} 29$ valves. Ideal for con
POWER UNTTS AVAILABLE FOR FOLLOWING SETS: 52 set-mains input, 150V@60mA and 12V @ 3 amps, new cond. $£ 3 \cdot 50$. Receiver type 88 input, 150V @) 60mA and 12 V @ 3 amps, new cond. 1475 -mains input, 250 V @ 80 mA and 6.3 V @ 4 amps, new cond. 93.50 No. 19 set $\mathbf{\varepsilon 2} \cdot 50$. C 12 set $£ 4 \cdot 00$. 88 set $£ 2 \cdot 50$. Carriage all types $£ 1$ extra.
STABII.ISED. BENCH POWER SUPPLY: fully smooth, dual output positive or negative, $2-6 \mathrm{~V} ; 6-9 \mathrm{~V} ; 9-12 \mathrm{~V}$ and $12-16 \mathrm{~V}$ all at 2 amps d.c. from mains input LONDEX ABRIAL CHANGEOVER RELAT: 24 V D.C. £1 50 ea. +25 p post

ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C. @ 1.8 amps , $400 \mathrm{c} / \mathrm{s} 3$ phase, 66.50 each, post 50 p .24 v D.C. input, 175 v D.C. @ 40 mA . output, $£ 1.25$ each, post 20 p.
CONDENSERS: 30 mfd 600 v wkg. d.c., 5.50 each, post 50 p .15 mfd 330 v a.c., wkg., 75 p each, post 25 p. 10 mfd 600 v .43 p each, 25 p post. 8 mifd 2500 v . 55 each, carr. 63 p. 8 mfd 600 v. 43 p each, post $15 \mathrm{p} .8 \mathrm{mfd} .1 \% 300 \mathrm{v}$. D.C. £1.25, post $25 \mathrm{p}, 4 \mathrm{mfd} 3000 \mathrm{v}$. wkg. 83 each, post 37 p .4 mfd 2000 v . £2 each, post 25 p . 4 mfd $600 \mathrm{v} ., 2$ for $\mathrm{L1} .0 .25 \mathrm{mfd}, 2 \mathrm{Kv}, 20 \mathrm{p}$ each, post 10 p .0 .01 mfd MICA 2.5 Kv , £1 for 5, post 10 p . Capacitor 0.125 mmar,
TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price $£ 1 \cdot 25$, post 25 p.
SOLENOID UNIT: 230 v . A.C. input, 2 pole, 15 amp contacts, $\mathbf{£ 2} \mathbf{5 0} \mathrm{each}$. post 30p.
CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps, $£ 2.50$ each, cart. 75 p. OHMITE VARIABLE RESISTOR: 5 ohms, $5 \frac{1}{2}$ amps; or 40 ohms at 2.6 amps ; 500 ohms, 0.55 amps: Price (either type) $£ 2$ each, 25 p post each.
TX DRIVER UNTT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$'s; complete with flament transformer 230 v . A.C. Mounted in 19 in . panel, $£ 4.50$ each, carr. 75 p . POWER SUPPLY UNIT PN-12A: 230V a.c. in put $50-60 \mathrm{c} / \mathrm{s} .513 \mathrm{~V}$ and 1025 V @ 420 mA output. With 2 smoothing chokes $9 H, 2$ Capacitors, 10 Mrd , 5 , $5 \mathrm{Z3}$. $2 \times 5 \mathrm{~V}$ windings @ 3 Amps each ard 5 V a.c. input. 4 Rectifying 6 Amp and $4 \mathrm{~V} @ 0.25 \mathrm{Amp}$. Mounted on steel base $19^{*} W^{*} 11^{\prime \prime H} \mathrm{Hx} 14^{\prime \prime} \mathrm{D}$. (All connections at the rear.) Excellent condition 86.50 each, carr. 81 .

AUTO TRANSFORMER: $230-115 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s} ; 1000$ watts. mounted in a strong steel case $5^{\prime \prime} \times 6 \frac{1}{\prime \prime}^{\prime \prime} \times 7^{\prime \prime}$. Bitumen impregnated. £6 each, Carr. $63 \mathrm{p} .230-115 \mathrm{~V}$, Carr. 50p.
CT TRANSFORMER: PRI 230V. Output 3×6.3 at 3 amps each winding, $3 \mathrm{~g}^{\prime \prime} \times 4^{\prime \prime} \times 5^{\prime \prime}$. Fully shrouded $21 \cdot 50$ post 50 p.
VARIABLE VOLTAGE REGULATOR TRANSFORMER: Input 230 V A.C.; Output $57 \cdot 5 \mathrm{~V}-230 \mathrm{~V}$ in 16 equal steps @ 21 Amps. $£ 22 \cdot 50$ each, carr. $£ 1 \cdot 50$. TRANSFORMER: 230 V A.C. input. $17 \cdot 75 \mathrm{~V}$ @ 35 Amps output. $\mathbf{~} \mathbf{2 9} \cdot 50$ each, carr. £1.
TRANSFORMER: ' C ' Core. 230 V A.C. input. $1000-0-1000 \mathrm{~V}$ or $750-0-750 \mathrm{~V}$ @ 250 mA . $£ 6.50$ each, carr. 75 p .
MODULATOR UNIT: 50 watt. part of $\mathrm{BC}-640$, complete with 2×811 valves microphone and modulator transformers etc. $\mathbf{E 7 : 5 0}$ each, 75p carr.
CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG1 526)CV1 colour) green, medium persistence complete with nu-metal screen, $\$ 3.50$ each, post 37 p. APNI ALTLMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s}$., complete with all valves 28 V. D.C. 3 relays; 11 valves, price $\$ 3$ each, carr. 50 p. ANTENNA WIRE: 100 ft . long. $75 \mathrm{p}+25 \mathrm{p}$ post.
APN-1 INDICATOR METER, 270° Movement. Ideal for making rev. counter. A1.25, post 25 p.
VARIABLE POWER UNIT: Complete with Zenith variac $0-230 \mathrm{~V} ., 9$ amps. 2 in in scale meter reading $0-250 \mathrm{~V}$. Unit is mounted in 19 in . rack. \&15 each ع1.50p carr.
AIRCRAFT SOLIENOID UNIT D.P.S.T.: 24V, $200 \mathrm{Amps}, £ 2$ each, 25 p post. RADAR SCANNER ASSEMBLY TYPE 122A: Complete with parabolic RADAR SCANNER ASSEMBLY TYPE 122A: Complete with
reffector (24 in . diameter), motors, suppressors, etc. $\mathbf{~} 235$ each, $£ 2$ carr.
DECADE RRSISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each, 0.9 ohms. Tolerance $\pm 1 \% £ 3$ each, 25 p post. 90 ohms per step. 10 positions total value 900 ohms. 3 Gang. Tolerance $\pm 1 \% \$ 3 \cdot 50$ each, post 25 p .
CRYSTAL TEST SET TXPE 193: Used for checking crystals in freq. range $3000-10,000 \mathrm{Kc} / \mathrm{s}$. Mains $230 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. Measures crystal current under oscillatory conditions and the equivalent paralle resistance. Cry
conjunction with a fieq. meter. $£ 12.50$ each, $£ 1$ carr.
LEDEX SWITCHING UNIT: 2 ledex switches, 6 Bank and 3 Bank respectively 6 Pos.; 1 Manuial switch, 16 Bank 2 Pos. \&A each, 50p post
VARIAC TRANSFORMERS: Input 115 V , output $0-135 \mathrm{~V}$ at 2 Amps. 23 each 50 p post. Input 115 V , output 135 V at 5 Amps. \& 5 each , 50 p post.
RACK CABINETS: (totally enclosed) for Std. 19 in . Panels. Size 6 ft . high $\times 21$ in. wide $\times 16 \mathrm{in}$ deep, with rear door. $£ 12$ each, $£ 2.50 \mathrm{Ca}$
in. wide $\times 19 \mathrm{in}$. deep, with rear door. $£ 8.50$ each, $£ 2$ Carr.
FUEF INDICATOR Type 113R: 24V complete with 2 magnetic counte $0-9999$, with locking and reset controls mounted in 3 in. diameter case. Price $£ 2$ each, 25 p post.

GEARED MOTOR: 24 c . D.C., current 150 mA , output 1 rpm , $£ 1 \cdot 50 \mathrm{each}^{\mathrm{c}}$ 25p post. ASSEMBLY UNIT with Letcherbar Tuning Mechanism and potentiometer, 3 rpm, $£ 2$ each 25 p
purpose motors available. List 3 p .
ACTUATOR UNIT: With 115 V d.c. geared motor; o/put 12.5 rpm ; torque 16 ins. oz; reversible; microswitches and potentiometer. $23 \cdot 50$ ea. +40 p post. DALMOTORS: $24-28 \mathrm{~V}$ d.c. at $45 \mathrm{Amps}, 750$ watts (approx. 1 hp) $12,000 \mathrm{rpm}$. E5 each, 50p post.
GEARED MÓTOR: 28 V d.c. 150 rpm (sultable for opening garage doors). \&4 each, 50p post.
 25 p post
H.T. TRANSFORMERS

AT A FRACTION OF MAKER'S PRICE PARMEKO POTTED TYPES: Pri taps $200-240 \mathrm{v}$. Sec. 1875 v .
$60 \mathrm{~m} / \mathrm{a} . ~$.2 kV . Pk. wkg. and $500 \mathrm{v} 31 \mathrm{~m} / \mathrm{c}$. 63.50 . Car 450 Pri. Taps $200-240 \mathrm{v}$. Sec. $630-0-630 \mathrm{v}$. $105 \mathrm{~m} / \mathrm{a}$. 5 vv . 4 a ., 5 v . 4 p . Pri. taps $200-240 \mathrm{v}$. Sec. 1600 v . $50 \mathrm{~m} / \mathrm{aTT}$. and 250 v . $50 \mathrm{~m} / \mathrm{a} . \mathrm{H} .6 . \mathrm{T}$. v .
0.6 a
 TROPICALISED: Pri. 230v. Sec. 890-710-0-710-890v. $120 \mathrm{~m} / \mathrm{la}$.
 Pri. taps 200-240v. Sec. taps 150 , 165 v , 4 a . S4.50. Carr 50 : OPEN FRAME TABLE.TOP CONNECTIONS 1 Carr. SOp.

PARMEKANSFORMERS

PARMEKO POTTED TYPE

Parmeko $10 \mathrm{HEAVY} 655 \mathrm{~m} / \mathrm{a}$ Res HT CHOKES
Open type. f4.50. Carr. Res, 80Ω. Size $7 \times 7 \times 7$ ins Gresham $9 \mathrm{H} 500 \mathrm{~m} / \mathrm{a}$. 5 KV wkg. Res. 40 Q . Pozzéd type
$9 \times 8 \times 8 \mathrm{ins} .26 .00$. Carr. Cl. 25. 15H $300 \mathrm{~m} / \mathrm{a} 50 \mathrm{ohm}$. "C", core potred type. $\mathbf{1 3 . 1 2} \mathbf{1 2}$ P.P. 50 p. $10 \mathrm{H} 300 \mathrm{~m} / \mathrm{a} 60 \mathrm{ohm}$. "C", "ore potzed type. 62.75 . P.P. 50 p
$15 \mathrm{H} 180 \mathrm{~m} / \mathrm{a} .200 \mathrm{hmm}$. "C" core potted type. 2.25. .P. 45 p .

GARDNERS LT TRANSFORMERS
Pri, $200-220-240 \mathrm{v}$. Sec. $2.0-2 \mathrm{v}$. 111 . Twice 8 Kv . D.C. wkg. 63.

T.E.C. 240-110v. ISOLATION TRANSFORMERS Pri Tapped 10. 0. 200. 220. 240v. sec. Tapped $110-112.5$-115v Terminal Board connections. Size $9 \times 9 \times 7$ ins. Weight 60 lbs erminal Board co
15.00 . Carr. 90 p.

LT.P. LT TRANSFORMERS
Pri $220-240 \mathrm{v}$. sec. 6.3 v 8 amp . Four tines. Fully tropicalised,
Table top connections. $\mathbf{~ 3} .90$. Carr. 60 p .

9 \& 10 CHAPEL ST., LONDON, N.W.I 01-723-785

01-262-5125

STEP DOWN $240 / 110 \mathrm{~V}$. A UTO TRANSFORMERS pin American sockers. All sizes from 80 to $2 \nmid k v a$. available Send s.a.e. for list. American sockets, plugs, ad aptors also available.

GARDNERS AUTO TRANSFORMERS
Tapped $0,200,210,220,230,240,250 \mathrm{v}, 600$ watts. Open frame
type, table top connections $\& 2$ P.P. 35 p .
Pri $180,200,220,240 \mathrm{v}$. Sec. TRANSFORMERS
Pri $180,200,220,240 \mathrm{v}$. Sec. $100-0-100 \mathrm{v}$. $65 \mathrm{M} / \mathrm{A}$ and $6184-67 \mathrm{v}$.
P.P. 25p.

CHLORIDE HEAVY DUTY LEAD-ACID BATTERIES in glass containers. Set of 24 , giving 50 v . D.C. 85a.h. Filled, in
perfect condition, with connectors and mains charger. $\$ 120$ ex-warehouse.

EXCID LEAD-ACID BATTERIES with charging instructions, Ideal for ighting, alarm systems, etc. Two packed in original maker's cartons. $\mathbf{1} .75$. Carr. 50 p . One $\mathrm{f} \mid .00$. Carr. 25 p .

VEEDER-ROOT COUNTERS
6-digit resettable, 230v. A.C. Size $3 \frac{1}{2} \times 2 \frac{2 z}{} \times 1 \frac{1}{2}$ ins. 4200

HIGH-CAPACITY ELECTROLYTICS Tubular type 5prague $40,000 \mathrm{mfd}$. 10 v. D.C. Wkg. 50 p. P.P. 15 p .
S.1.C. 25,000 mfd. 12 v. D.C. wkg. 40 p. P.P. $10 \mathrm{p} .10,000 \mathrm{mfd}$.
 16v. D.C. wkg. 8,00
wkg. 40 p. P.P. 10 p.

PLESSEY COUNTERS
A.C. 240 v . Five Digirs. Overall size $2 \frac{1}{2} \times 1 \frac{1}{2} \times 1 \frac{1}{2}$ ins., 95 p ,

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms $100 \mathrm{mV}-1$ volt -52.5 ohms. Internal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}$, $40-100 \mathrm{c} / \mathrm{s}$. Consumption approx. 40 watts. Measurements $29 \times$ $121 \times 10 \mathrm{in}$. Second hand condition. $£ 27.50$ each, Carr. $£ 1.50$.
MARCONI SIGNAL GENERATOR TYPE TF-144H/S: Frequency Range $10 \mathrm{Kc} / \mathrm{s}-72 \mathrm{Mc} / \mathrm{s}$. RF Output $2 \mu \mathrm{~V}-2 \mathrm{~V}$ at 50Ω. Int. Mod. 400 and $1000 \mathrm{c} / \mathrm{s}$. Excellent condition with Manuals. £200.00 each. Carr. £2.
FREQUENCY METER BC-221: $\mathbf{1 2 5 - 2 0 , 0 0 0} \mathrm{Kc} / \mathrm{s}$, complete with original calibration charts. Checked out, working order $£ 18 \cdot 50$ $+£ 1$ carr.; OR BC-221 (as received from Ministry), good condition, less charts, $£ 8 \cdot 50+£ 1$ Carr.
MARCONI DEVIATION TEST SET TF-934: $2.5-100 \mathrm{Mc} / \mathrm{s}$ (can be extended up to $500 \mathrm{Mc} / \mathrm{s}$ on Harmonics). Dev. Range $0-75 \mathrm{Kc} / \mathrm{s}$ in modulation range $50 \mathrm{c} / \mathrm{s}-15 \mathrm{Kc} / \mathrm{s} .100 / 250 \mathrm{~V} \mathrm{a.c}.\{45$ each, £1-50 carr.

TELEPRINTER CREED TYPE 7B: Page-printer, 24V d.c. power supply, "as new" condition, in original packing case, $\mathbf{£ 2 5 . 0 0}$ each. Second-hand condition (excellent order), no parts broken, $£ 15 \cdot 00$ each. Carriage both types $£ 2$.
CREED TELEPRINTER TYPE 7B: Page-printer (GPO Model) with $110 / 250 \mathrm{~V}$ d.c. motor $£ 20$ each. Secondhand condition. Carr. £1. CREED TELEPRINTER 54/N4: This type of teleprinter has 4 keyboards with letters and figures. £75 each: Carr. £1.
CREED TELEPRINTER MODEL 75: Receiver only. Page. £35 each. Carr. £1.
CREED TELEPRINTER MODEL 75: Receiver and transmitter. £A5 each. Carr. £1.
CREED REPERFORATOR TYPE 7P/N4: $£ 35$ each. Secondhand condition. Carr. $£ 1$.
CREED REPERFORATOR TYPE 7P/N3: £25 each. Secondhand condition. Carr. £1.
CREED TELEPRINTER RECEIVING REPERFORATOR 7TR/3: Provides a means for storing in the form of perforations in a paper tape, messages received in Start-Stop code at stations where trafic has to be transferred from one circuit to another. Will interpret signals correctly from either 7 -unit or $7 \frac{1}{2}$-unit transmitters; standard operating speed is 50 bauds. Punching mechanism designed to punch one or two tapes simultaneously. Can accommodate 1 or 2 tape rolls. Automatic starter which enables unit to be left unattended. Brand new in cases complete with tuning fork, rolls of tape, and miscellaneous operating spares. Power supply 24 v £30 each; or second hand cond. (no spares) $£ 18 \cdot 50$ each. Carr either type $£ 1.50$.
CREED REPERFORATOR MODEL 85: secondhand, excellent cond. $£ 18 \cdot 50$ each.
CREED REPERFORATOR MODEL. 86R: (similar to above) new cond. $£ 30 \cdot 00$ each. Carr. either type $£ 1.50$.
CREED AUTO TRANSMYTTER 6S/4: secondhand cond £10.00 each. Carr. £1.
CREED AUTO TRANSMITTER 6S/4M: Secondhand condition. $£ 12$ each. Carr. $£ 1$.
CREED AUTO TRANSMITTER 6S/6: new cond. £15.00 each Carr. 11.
CREED AUTO TRANSMITTER 6S/6M: Secondhand condition. $£ 17$ each. Carr. £1.

The largest selection

74 Series TTL I.C'S DOWN AGAIN IN PRICE

"Q" PAKS QUALITY TESTED SEMICONDUCTORS

 ถิธి⿵ి
|ANOTMER BI-PAK FIRST THE NEW S.G.5. EA 1000 AUDIO AMPLIFIER MODULE *GUARANTEED NOT LESS THAN 3 WATTS RMS

Aubio Amplatis) providing players, Audio and Stereo units, also applications and phone answering
machines. OTHER USES:- portable appl
cations where supply rails as low as $9 v$ are of
prime importance.

Oler 8
${ }_{2}$ N2926 17 .r. type trans.GET880 lo moxy trans.
\qquad

$$
8 \mathrm{cco}
$$

$$
\begin{aligned}
& 1001 \\
& 8 \\
& 8 \\
& 6 \text { OA } \\
& \text { IN } \\
& 80 A
\end{aligned}
$$

$$
\begin{aligned}
& \text { IN69 } \\
& \text { 10A } 60 \text { IV siil Reciti. } 18425 \mathrm{R} \\
& \text { Sil power rect. BYZ } 13 \\
& \text { Sil }
\end{aligned}
$$

Jatisumed aive and Quainy in Every Pak, or money back.

| U2 | 60 Mixed Germanium Transistors AF/RF ... | \ldots | \ldots |
| :--- | :--- | :--- | :--- | :--- |
| U3 | 75 Germanlum Gold Bonded Diodes sim. OAř, OA 47 | \ldots | |

UB $\quad 60200 \mathrm{~mA}$ Sub-min. Sil. Diodea

$$
\begin{aligned}
& \text { NN3705 } \\
& \text { NNN amp. } 4
\end{aligned}
$$

$$
\begin{aligned}
& \substack{\text { PN Namp. } \\
\text { clation }}
\end{aligned}
$$

U9	20 Mixed Volts 1 watt Zener Dioder
UII	30 PNP Silicon Planar Transistors TO-5 sim. 2
U13	30 PNP.NPN Sil Transistora OC200 \& 28104

| C14 | 150 Mixed silicon and Germanium Diodes a.... 2 N |
| :--- | :--- | :--- |
| U15 | 25 NPN Silicon Planar Transistors To. 5 sim. |

U24 20 Germanium 1 -amp Rectitiers (IJM up to 300 PIV
U25 25300 Mc/s NPN Silicon Transistors 2 N708, B8Y27 U $\overline{25}$ 30 Past \& witching Silicon Diodes like 1N914 Mlero-min

 \begin{tabular}{ll}
U32 \& 25 Zener dindes 400 mW Do7 ease mixed Volts, 3.18 D

\hline U33 \& 15 Plastic case 1 amp Silicon Rectiflers 1 N 4000 series

\hline

U34 \& 30 sil. PNP alloy trans. TO-5 BCY 26,2830

\hline 035 \& 25 Sil. Planar trans. PNP TO 18 2N2906.
\end{tabular}

U36	258 8il. Planar NPN trans. TO-5 B				
U37	30 8il. alloy trans. $80-2$ PNP, OC210	$281 / 52$		U38	20 Fast Switching sil. trans. NPN $400 \mathrm{Mc} / \mathrm{s}$
:---	:---	:---			
U39	30 RF Germ. PNP trans. $2 \mathrm{~N} 1303 / 3 \mathrm{TO}$.				

\qquad
$\begin{array}{ll}\text { U42 } & 10 \text { VHF Germ. PNP trans. TO. } 1 \text { NK Th67 } \\ \text { U43 } & 25 \text { Sil. trans. Plastic TO.18 AF BC113-114 }\end{array}$

Code Nok, mentioned above are given as a gulde to the

F.E	BILICON PHOTO	$\begin{aligned} & \text { BRAND NEW TEXAS } \\ & \text { OERM.TRARSISTORS } \end{aligned}$
		Coded and Guaranteed
2N3820 509	TO. 18 Lens end.	Pak No. EQ VT
2N3821 $\cdot \cdots \ldots \ldots .3$ 35p	NPN Sini. to BPx	T1 8203318 0c71
2N3823 \ldots...... 30p	${ }^{25} 5$ and P21. BRaND	T2 D1374 0c72
	NEW. Full data	T: D1216 OCA1D
2N5459 40p	available. Fully	T4 829381T OC81
BFW10 40p		T5 829382T OC82
MPF105	Price lach	T6 8203448 0 OC44
	1-24 25 5. $99 \quad 100$ up	T7 82G345B OC45
	45p 40p 35p	T8 829378 OC7
quivalenis book	PHOTO TRANS	
n. B.P. 1 Prico 40	OCP71 Type	T108 20.4

ROCK BOTTOM PRICES

Type
No.

No
$\begin{array}{l}\text { RP930 } \\ \text { BP932 } \\ \text { Ben }\end{array}$

R
nevicea may be mixed to quality for quan

${ }_{402}^{302}{ }^{2}$

EqABANI Transistor
ADI6I/ADI62

2 N3055 ${ }_{\text {SIL. }}^{115}$ WATT
63D EACH NPN
STIICON 50 WATTS
MATCEED NPNPNP
MATCEED NPN/PNP
BIP 19 NPN TO-3Plastic BIP 19 NPN TO-3 Plastic
BIP 20 PNP Brand new
VCBO $100 /$ VCEO $50 /$

STOP PRESS A NOW OPE
18 BALDOCK ST. (A10), WARE, HERTS. Tel: 61593
OPEN 9.15.6 Tue sday to Saturday. Late night FRIDAY to 8 p.m.

$$
\begin{aligned}
& \text { LICON RECTIFIERS-TESTED }
\end{aligned}
$$

 LA4.
inc.

OSCILLOSCOPES

TEKTRONIX Type 551 with L\&G plug in or CA type.
TEKTRONIX Type 545 B with CA plug in, hand book.
TEKTRONIX Type 56IA with types 3 B3
TEK 3A6 plug in as new.
TEKTRONIX Type 661 sampling
scope, with $4 \$ 2$ and STIA plug-ins. TEKTRONIX Type $531 \mathrm{~A} D C$ to 15 MHz .
All the above oscilloscopes have been All the above oscilloscopes have been
carefully tested and calibrated and carry carefully tested and calibrated and carry
a six months guarantee, large savings up a six months guarantee, large savings up
to 50% can be made on the manufacturers list price. Or if you are considering you a fair price for any used Tektronix scope, or plug-ins.

MUIRHEAD PRECISION DECADE

 FrequecILLATOR TYPE 890A frequency range $=1 \mathrm{~Hz}$ to 111.11 KHzincorporates precision 5 MHz crystal with miniature scope display any frequency within the range may be selected and repeated with absolute accuracy. Perfect
condition. Price
MUIRHEAD Modulator Type D-978-A
Price .. Modulator Type D-978-A MUIRHEAD PHASE METER Type 729-AM Enables user to read direct indication of phase angle and the difference in level
between two sinusoidal voltages, both between two sinusoidal voltages, both
voltages may also be measured. Supplied voltages may also be measured. Supplied
in as new condition. PriceE275
SOLARTRON PHASE ANGLE
MEASURING EQUIPMENT COMprising: Low frequency decade oscillator 4 phase type OS-103.
TFA Carrier Converter type JX-641 and
Phase Sensitive Volt Meter type VP250. LOW FREQUENCY SPECTRUM ANALYSER TYPE FENLOW Range
Price
dition
€ 100 Price
AIRMEC ELECTRONIC OHM-
Resistance may be read dir
Resistance may be read directly on large
six inch scale meter from 0.3 ohm to 10 M six inch scale meter from 0.3 ohm to 10 M ohms in six ranges in good serviceable
condition for 240 vac operation

SCHOMANDL PRECISION FREQUENCY METER TYPE FDI GPO approved equipment for Radio in as new condition with calibration certificate.
5 MULLARD OC36 TRANSISTORS Mounted on plug in P.C. Board. Absolutely brand new unused. Size 6×5 ins. Our
price only $£ 1.25$ p. \& p . inclusive. 10 MULLARD GET 113 TRANSIS TORS +10 diodes resistors ete. Size 6×5 ins. Brand new boards. Only 55p p. \& p. inclusive.

AERIAL CHANGE/OVER RELAYS of current manufacture designed espec12 v . frequency up to 250 MHz at 50 watts Small size only, 2 in, $x+i n$. Offered brand new, boxed. Price $£ 1 \cdot 50$, ine. P.\&P. MINIATURE AEI UNISELECTORS 12 position $\times 3$ bank 250 ohm coils, I bridging and 2 non-bridging wipers availcomplete with bases. Price $£ 4$ p.p. 50p

ETHER TRANSITROL TEMPERATURE CONTROLLERS. MODEL 990

ovens, furnaces, erc. Offered brand new boxed 228 . Litzle used eype $£ 22$ each. P.P.'S0p.

$3.5^{\prime \prime}$ panel mounting high grade instruments. Brand new, boxed. Scaled $0-200$ and 270° sweep, 75 mV for F.S.D. Uses; ideal rev counter, indicators or could be used as intended. 0-200A with
suitable shunt. Price $\mathbf{E 2} 50$. White scale,
White scale,
black numerals
TELEMAX HIGH VOLTAGE INIkv. to IJkv. Used for the detection and measurement of leakage current and the operation of high voltage apparatus, the output voltage used is mieasured on a large $3 \frac{1}{2}$ in. meter, any leakage which flows in the test circuit is indicared on the same lethal and may be shert circuited is non damage, small portable mains operated supplied in first class condition. Price $£ 30$.

TINSLEY VERNIER POTENTIO-

DORAN METER 4363D

 MERAN VERNIER POTENTIO divider and galvanometer DORAN PH Meter Portable type $£ 18$ DORAN WHEATSTONE BRIDGE. Portable. E20
MAGNIFICATION METERS

Marconi Q Meter Model TF329G perfec
condition $£ 50$
 condition $£ 40$

WESTERN ELECTRIC. Frequency Standards incorporates precision 200 Hz

 value maintained fork. This small modulehas many applieations. Only $\mathbf{5 7 . 5 0}$.

CANNON XLR AUDIO SERIES XL 3-11. 3 pole plug
XL 3-11. 3 pole plug
XL 3-32. 3 pole socket 125 p The pair
XL $6-11.6$ pole plug
XL $6-32.6$ pole socket 150 p The pair
XL 3-32. 3 pole socket fixed the pair XL 3-31. 3 pole socket fixed
Offered brand new sealed packs at a little over half price.

LUCAS CAR RELAYS. 12 v. Heavy duty make. Suitable for spotlights, horns, overdrives, etc. Brand new.
Only $37 \frac{1}{2}$ p. Special price for quantities.

LUCAS POWER DIODES

P.l.V. 400 max. 35 amp (gold plated) stud mounting. In sets of four. Only $£ 2$. P. \& p. 10p.

AM/FM SIGNAL GENERATOR TF948
Variable output,$\mu \mathrm{V}-100 \mathrm{MV}$ in one db steps continuously variable AM Mod to frequency range in 2 bands 20.80 mHz Prequency
Price $£ 85$.

.ROBAND STABILISED P.S.U
 V50/50

4 decade voltage selection from 0.500 at 0.5 amp output adjustable in 5000 steps. Voltage and current elearly
indicated on quality meters. Fuse/ Protected late equipment. Price 685.

MAGNETIC AB (SWEEDEN) NOISE FIGURE METERS
 NOISE FIGURE

As new. With Pluge in Amplifiers.
ROHDE \& SCHWARZ POLYSCOP c/w accessories for sale or hire

SIX Level A.E.I. Uniselectors miniature plug in type 2216 A coil 125 ohms. non6 bank. Absolurely brand new. 12 position 6 bank. Absolutely brand new in makers
cartons sold complete with base.. $66-50$

IMHOFS FRILEC

Dimensions 1.5 ins. deep $\times 4.5 \times 4.5$. Very silent running precision fan specially designed for cooling electronic current practice is to run fan from split primary of mains transformer or use suitable mains dropper. Available brand new, boxed, list price over ElO. Our
price $62 \cdot 75$. P.P. 20 p. price E2.75. P.P. 20p.

\section*{SERVOMEX MAINS}
 VOLTAGE CONTROLLERS

 The Servomex controllers are high quality units designed to keep your mains voltag constani regardless of deviations on line voltage, the units are not frequency conscious and very suitable for photo graphic uses and test equipment ete Types availableAC2/Mk2B max, rating- 9 amps
645
675

BARGAIN OFFER-LOW VOLTAGE STABILISED POWER SUPPLIES *Voltage Range $16-24 \mathrm{~V}$.
 * Current Range to 6 Amps.

* Full over-voltage and Current pro
tection. tection.
AC Ripple content better than 5 mV . ing standards and incorporate the ing standards and incorporate the
very best of components and circuit design for long life and reliability. Employs Silicon transistors, thryistors, C-Core transformer etc. Offered in perfect condition, carefully ehecked before despatch. List price over $£ 125$ Our price anly $\mathbf{£ 2 6 . 5 0 . ~ C a r r i a g e ~ £ 1 . ~}$
9 Amp model. ..

UNISELECTOR SWITCHES Standard BPO Type, 3 bank, 25 positions (+4 posizion auxillary bank), bridging
wipers, fitted spark suppression. Brand wipers, fitted spark suppression. Brand
new and boxed, famous manufacturer. Price only E2.75. P. \& P. 25p.
BPO Type, 16 banks, 50 positions, full wipe non-bridging contacts. 100 ohms. good used condition at only $\not \leq 5$ each. P. \& P. SOp. 8 banks, 25 positions, 48 V . operation. Offered in good used condition for $£ \mathbf{2}$ each. P. \& P. 25 p

POLARAD SPECTRUM ANALYSER

Frequency coverage $0.01 \mathrm{GHz}-91 \mathrm{GHz}$. Frequency coverage $0-01 \mathrm{GHz}-91 \mathrm{GHz}$,
Latest type solid state. Price and details on request.

MULLARD VALVE TESTERS
RD VALVE
HI-SPED
A few of the following available. Mks. II and electrically perfect Fully overhauled with 1,000 cards. C65. All supplied with instructions, etc.
R.F. SIGNAL GENERATORS MARCONI TF8OIO/I range 10 to 485 MHz P.U.R.

801A range 10 to 300 MHz
MARCONI TF867 range 15 kHz to
30 MHz 30 MHz MARCONI TF762C range 300 to 600
MHz HEWLETT PACKARD 612A 400 to 1200 MHz $\begin{aligned} & \text { HEWLETT PACKARD } 6160 \text { P.U.R } 1780\end{aligned}$ $4,000 \mathrm{MHz}$ AIRMEC $20{ }^{\circ}$ range $30 \mathrm{kHz}^{£ 125}$ $\begin{array}{lll}\text { AIRMEC Model } 201 \\ 30 \mathrm{MHz} & .1 & \text { range } 30 \mathrm{kHz} \text { to }\end{array}$ 30 MHz
AlRMEC Model 701
range 30 kHz to 30 MHz
AIRMEC Modei 257 range $\cdot 003$ to $30 \mathrm{~Hz} £ 55$
SA SA!JNDERS/MARCONI CT480 range 7 te 12 GHz SMUNDERS/MARCONI CT478 range 1.3
to 4.5 GHz ..

AUDIO OSCILLATORS SQUARE WAVE GENERATORS
DONNER (USA) Model 1200 sine way range 1 Hz to 1 MHZ in six ranges variable amplitude. Price
MARCONI TF8R5A 25H
sine/square. Price
Hz to 5
TEKTRONIX Model 105 square wave 1 Hz to LMHZ. Price
PRECISION APPARATUS INC. sine we 5 Hz to 600 kHz . Price SOLARTRON Model CO-546 25 Hz to 500 kHz Price.
COLLINS MECHANICAL FILTERS B9A fitting new price $\mathbf{E 7} .50$.
P.F. RALFE

10 CHAPEL ST. LONDON N.W. 1
Phone 01-723 8753

Cossor Electronic Invertors type CRA 200. A high quality device for output. Incorporating the following features: Inpur 23-28V D.C

- Full overload protection.

Sine wave output.

* Remote control facilities.

Completely Solid State (Silicon transistors).

- Built to Airerát specifications
loy of output concinuous.
3 phase requirements. Operation for new boxed unems. Offered brand
new brice $£ 17.50$ Carriage 50p
Constant Voltage DC Power Supplie Model DC's
Astabilised unit supplying 48 vde at 4 amp
input $200-245 \mathrm{vac}$ srabilised input 200-245vac stabilised to withi
$+1 \%$ ar full load. Supplied new

DISTORTION FACTOR METER
RADIOMETER TYPE BKF5
New with Manual. Price $£ 85$.
COAXIAL SWITCHES
Suizable for aerial changeover and high Suitable for aerial changeover and high
frequency switching up to $1,000 \mathrm{MHz}$ miniature Vacuum drawn eype 110 v dc operation connections BNC and N types
Offered brand new, boxed. Price $\mathbf{6 3 . 2 5}$

LEAD-ACID EQUIPMENT BATTERIES IOV 5AH. Transparent casing. Size $2 \frac{1}{6} \times 5 \times 7$ in per box, complete with links and instructions. Can supply voltages in the
range from $2-20 \mathrm{v}$. Price $\mathbf{\ell 2 \cdot 2 5}$, inc. P.\&.P. OSCILLOSCOPE Solartron Type $523 / \mathrm{S} .2$. DC. $10 \mathrm{MC} / \mathrm{S}$ Bandwidth. Sensitiviry max. I MV/CM ully overhauled and calibrated. Ready E52-50. P. \& P. ©2.

MARCONI TF936
IMPEDANCE BRIDGE
inductance range: $1 \mu \mathrm{H}$ to 100 Henry
Capacitance range: Iof to $100 \mu \mathrm{~F}$
Capacitance range: I of to $100 \mu \mathrm{HF}$.
Resistance range: 0.1 ohm to 100 .
Components may be measured ot Components may be measured at $80 \mathrm{~Hz}_{2}$
1 kHz and 10 kHz Accurocy nominally $1 \% 0$.
Power supply $100-250 \mathrm{y}$ a.c. Offered Power supply $100-250 \mathrm{~V}$ a.c. O
litte used condition. Price 865 ,
We will overhaul, service and calibrare any type of oscilloscope quickly and
efficiently. We also purchase Solartron, Tektronix. Telequipment, EMr, Cossor,

MUIRHEAD PRECISION 50 Hz ELECTRONIC TUNING FORK

 ELECTRONIC TUNINOurput variable. Amplitude 300 V max. Applications suitable for time standard
driving, etc: New condition. Price $\mathbf{6 5 5}$. LORAN RECEIVER TYPE 262A. Marine Set. Use: for long-range naviga-
tion to enable operator to determine his tion to enable operator to determine his
position when weather conditions or position when weather conditions or
distance prevent the use of standard methods. Range 750 miles (day). 1400 Thes (night). Dimensions $18 \times 17 \times 26$ in. condition, complete with technical
manual. Price 550 .

VARIACS (DURATRAC)
3 amp type motorised version. 240 AC. As new. Only E8.50. P. \& p. 50p. new condition. Price $£ 17.50$. Also motorised version of above,
with Drayton RQ motors. E22.50. HELICAL POTENTIOMETERS $07 /-10 / 1 / 001 / A$. Following values supplied ex-stock

Res. 500 ohm $\pm 1 \%$
1 K ohm
5 K ohm
5 K ohm
20 K ohm
All above Helicals are brand new stock Quankities avalable. Price \&/ 25 each Beckman Type A Helical pots. 5 Watt 10 turn. Resistances available. 30Kohms and $50 K$ Khms. Brand new and boxed. Price $£ 1.75$ each.
Bournes Helical pots. Miniature type.
Resistance loKohms. Brand Resistance loKohms. Brand new. Price We h
We have available from stock many other types and values, please telephone
for quotation. OMR
OMRON POWER RELAYS. Type Mk2PL. 230 V. A.C. coil. Two heavy duty c/o contacts. Complete with perspex cover
and octal base. New and boxes. Price and octal base. New and boxes. Price
80 p . Carriage each 5 p .
"INTERCOM TELEPHONES" desk telephones and associated 10 watt amplifiers available together with
telephone dials, and standard B.P. components preferably to be sold as one lot.

HEWLETT PACKARD TYPE IB5B VERSATILE SAMPLING SCOPE

This instrument brings the convenience of the low frequency scope to high frequency measure－
ments fut the micro－nano and picosecond ranges． Full apecification and price available on request．

SMITHS SERVOSCRIBE TYPE RE5I1．20 FLAT BED RECORDER A multi－range，multi－speed desk type potentio－ metric recorder deaigned for general laboratory use where the record is required to be expressed linearly with respect to time．Recoris may in in
made on elther roll aharts or graph sheets in either ink or ball pen． Input range： 2 mV to 20 V in 11 ranges or Recording width： $8 \mathrm{ins}(1200 \mathrm{~mm})$ ． Response： 1 sec for t．s．d．（nomins 1 ）．
Chart drive： 6 speeds $600 / \mathrm{mm} / \mathrm{min}$ to $30 \mathrm{~mm} / \mathrm{hr}$ synchronous． Manufactarer＇s Price．．．．
Electronie E Brokers＇

AIRMEC 853 H．F．WAVE ANALYSER
Frequency range： $30 \mathrm{KHz}-30 \mathrm{MHz}$ in 7 bands．
A very popularinstrument which has been $\$ 4500$

SALES BULLETIN SEND FOR YOUR FREE COPY

ROHDE \＆SCHWARZ Z IMPEDANCE PLOTTER
These Instrument will rapidly plot the loci of the limpedance or admittance of any item
such as antennas，tranaformers，absorbers，
 $50 Z_{o}$ where $Z_{0}=50$ ， 60 or 75 ohm． Type ZDU ${ }_{2650}^{2550}$

ELFCTRONIC BROKERS

PORTABLE TRANSISTOR TESTERS
TYPE R2448 Self－contained battery powered for checking leakage，current and gain of PNP and NPN transistors．Meter and audio thdication
Gain range 10－150 contlnuously variable．．．．．．．PRICE：$£ 750$ TYPE R2885
Self－contained battery powered for checking leakage，current and gain of PNP translators only．Meter and audio indication．Gain
range $10-150$ continuously variable．．．．．．．．．．．PRICE： 84.95 BRAND NEW

／W handbook．Price $£ 40$ ．Pase． P． 50 p ．
MEMORY PLANES
Perrite core memory planes with
wired Ferrite cores．Vsed for building your own computer or as an interest－ lng exhibit in the deraonstration of a computer．Mounted on plastle of matrices $40 \times 25 \times 4$ cores each one
Individualty addressable and divided ndividually addressable and divided
nto 2 halves with independent sense

POTENTIOMETERS								
TEN TURN 3600° ROTATION Linearily Manufacturers Model Price								
Res．Ohma Pinearity	Manufacturers	Model	Price			Becktnan．．		23．00
100／100／100．．	Beckman．		£8．00					
100．．．．．．．．	Beckman	A．	£3．00	$100 \mathrm{~K} / 100 \mathrm{~K}$		Ford．		85．00
200	Beckma		83．00					¢3．00
500	Beckma	8． 50	53．	100 K		Colv	2501	£2．25
500	Colve			100K		Colvern		\＆2．50
510	Foxes．．	P610．	造2．00	298 K		Hecktna	8439	． 50
300	Colvern		82．50	300 K		Beckma		50
500	Colvern	HEL10	20．25	THREE	URN	ROTATIO		
1 K	Relcon	HELO7	22．25	100／100		Beckrman		
2K	Beckinan	SA1101	£3．00	1001100		Beckman	Type	00
2 K	Beekmaǹ	． 7216.	83.00			Beckn	PX2	
2K	Reliance	GPM15	发2．00	1 K ．				
2 K	General Co	OP－10		20k		Beckman	C． 8	
$\underset{K K}{8 K}$	Relcon	CLR25	23．00	10K／10K	． 0.1	Beckman		
10K	Beckman	A．	． 330	50 K		Beckman		
10K．．．．．．．．． 0.1	Beckman		－ $23 \cdot 50$	FIFTEEN	TURN	400 ROTAT		
10K ．．．．．．． 0 －1	Colvern	CLR26	． 23.50	$25 \mathrm{~K} / 25 \mathrm{~K}$ ．		Beckman B	10 w	
15K	Colvern	CLR24	23．00	$46 \mathrm{~K} / 48 \mathrm{~K}$ ．		Beckman B	10 wa	
18K	Beckman		23． 00	TWEN	TURN	7200° ROTA	ON	
25K．．．．．．．．．0．5	Helipot．	SAJ3，3	¢3．00	1 Meg．		General Co	PXM1	84．00
29K．．．．．．．．． 0.05	Beckman	812124	¢4．50	50 K		Reliance．		
${ }_{30 \mathrm{~K}}$	Colvern．	． 2402 BA95C	$\begin{aligned} & 2150 \\ & 83.00 \end{aligned}$	156 T	N．56／60 ${ }^{\circ}$	ROTATION		
30 K 30 K	Beckman Beckmap	．A．885C	$\begin{aligned} & 2300 \\ & 8350 \\ & 88 \end{aligned}$			ROelvin Hughe	P0	¢0．50
${ }_{30 \mathrm{~K}}$	Beckman	84169	． 3 300	FIVE				
$30 \mathrm{~K} \ldots . .$.	Beckman	．8A1679	23.25				HEL11.	
${ }^{30 \mathrm{~K}}$	Colvern．	240211	21．00			Colvern ．． 6	CLR2	22．00
50 K		．07．5	42．25	U1．5K			CLR2	22．00
OUR STOCKS ARE CONSTANTLY CHANGING－PLEASE LET US KNOW YOUR EXACT								

DYNAMCO 2010 DIGITAL VOLTMETER

Fully overhauled．CaUbrated（certifed）and Guaranteed．
Specification：Bcaley 109999．DC．Accuracy： 0.001% f．s．d．Range： 10
 $50 \mathrm{~Hz}, 130 \mathrm{~dB}$ ．O／P．Parallel B．C．D：Inductive potentiometric system HEWLETT
ANALYSER
A highly versatile analyser which covers the range from 10.1 MHz 40 Hz ．The accuracy and fleribility of the instrument make it suit able Or many applications beyond the capability of other spectrunn annlybera－
These include wideband but rapid RFI measure mente，gpectrum survell－ These include wideband but rapid Rolk measure menteng spectrum evaluations embracing such teats as fast pulsing，vie
Full specification and price on application．

1＝a

ELECTRONIC BROKERS LIMITED（Dept．WW／4）
49／53 Pancras Road London NW1 2QB
Telephone 8377781 Telex 267307

SPECIAL OFFER！
 SINGLE PEN RECORDER－ELLIOTT
 TYPE 230

A most versatile pen recorder
 inear 3 in ．strip on a curyi－ synchronous speeds： 1 ln ．and 6 im ，per hour． Fitted with high and low alarm contacts operated by the moving
coll．Basic movement 0 － man DC coll resietance 400 ohms．Fitted with rectiffer to athow operation
on AC effective coll impedance on AC effective coil．
st 50 Hz 1800 ohmas．
Power supply required
230 V 50 Hz
Applications：Ideal for recording Applications：Ideal for recording
relatively slow changing pheno－ mens such as： Temperature：Gas or liquid Flow rariations，Power Demand， Rainfall，humidity，etc PRICE $225 \cdot 00$ Clockwork ersion also available PRICE 229.50

components trcluding motors tachogenerators，gearheads，etc．Please let us know your require ments or ask for our current stock list．

GENERAL PURPOSE

 MULTI－RANGEElectronic Instruments Model 6610 Accuracy：On the voltage ranges the accuracy of the meter ls betier han 1% and the ampliter better nan t\％on all ranges．
mperes： 0 to $10-14$ amp
0 to $3 \times 10^{5} \mathrm{amps}$ f．s．d． Coulombs： 0 to 10.18 coulombs
f．s．d．to 0 to 3×10^{-8} coulombs f．s．d．
folid：
Volte： 0
0.1 V f．s．d．to 0 to 30 V
 I／P Resistance： $10-5$ ohme． Zero drift typically better than 2% mennd heurs．and guaranteed for

MODEL 1706
VISICORDER UIV
RECORDER
In almost new condition，This record up to 6 channels simul． taneously from DG 5000 Hz at Writing speed of 30,000 ohms／sec．
Recording range： $\mathrm{DC} \rightarrow 500 \mathrm{~Hz}$ ． Raper widthit Il ins．wide． Uptical Arm： 18 cm ．
Paper speeds：Eigkt speeds from
Dlmensions：H． 104 in ．，W． 12 in ．， Depth 14 ln.
Complete with
4 KKHz
Galyos．

A BARGAIN IN NEW POWER SUPPLIES．AT LESS THAN HALF PRICES
O／P Voltage $7.5 \mathrm{~V} \div 9 \mathrm{~V}$ ．Max．load
current 10 Amps．Max．ripple on full load approx． 60 m F．p．p． protection．．OUR PRICE E19．50

LINDAIR(ELECTROTECH)LTD

Silently driven by a shaded pole Mycalex motor. Compact powerful and quiet running with aluminium impeller (outlot spiral element. May be switehed for 500 or 1,000 watts. PRICE ONLY
P. \& P. 40 p .

$£ 1.60$

PROGRAMME TIMER BY HONEYWELL A bank of 15 micro-s witches are each independently operated by 15 pairs of cams which in turn are individually adjustable to give switching periods of zero to 12 seconds with infinitely variable combinations. A mains synchronous motor drives the cam shaft at I rev. per 12 seconds (5 R.P.M.). Destigned originally for vending machines at a cost of $\mathbb{C} 5 \cdot 00$ plus. Many applications where continuous sequence programmes are required, cartons. First class value at $£ 5.75$ plus 25 p P. \& P .

4
"GOYEN"" PRESSURE SWITCH-Incorporating differential adjustment between
$2^{\prime \prime}$ and $12^{\prime \prime}$ water gauge (a max. of approx. $\frac{1}{z}$ p.s.i.). A single pole change-over switch rated 15 amps. 250 v , is actuated. Air inles tube ${ }^{\text {" }}$ " dia.
Projection H ". Overall size, Projection H". Overall size,
dia. $3 \xi^{\prime \prime}$ depth $2^{\prime \prime}$ plus H* (air dia. 3 . dep
"TEDDINGTON" CONTROL
 capillary and sensor probe. No The thermostat actuates a
15 amp . 250 v . e/o switch. A 15 amp . 250 v , e/o switch. A second single pole
on/off switch is incorporated in the adjustment mechanism. 88p.
VINKOR POT CORE ASS, TYPE LA. 2103 (core LA.2100). Normal price Cl-48. Our price 75 p each. Special quote for quantity.
UNISELECTORS: 8 Bank 25 -way 24 v . Double sweep. Bra
E5-25, P. \& P. 25p.

AMPEX 7.5 V. D.C. MOTOR. motor designed for use in the
AMPEX model AG20 portable récorder. Torquee $450 \mathrm{GM} / \mathrm{CM}$.
Stall load at 50 ma . Draws 60 ma on run. $600 \mathrm{rpm} \pm 5 \%$
speed adjustment internal AFl]
RF suppression.
 Original cost $\mathrm{f} 16 \cdot 50$. Our price sider
25p. Large quantiey availdale (apeclai quota"WINCHESTER" (U.S.A.) \& THACK 200 mH . 2.50 Corr Paid
"CROUZET" TYPE 96.
$115 / 240 \mathrm{v}, 50 \mathrm{~Hz}$. $47 / 48$ watts.
50 rpm. Skeusly constructed. Size: $2 H^{*}$ dia. $x+3 t^{*}$ long,
plus spindle $\left.\right|^{*} \times t^{*}$ dia. Anti-
clock. \&2.75. P. \& P. 25p.
YPE 955. Same as above, but 3 rpm . 3.00 Unless otherwise stated-all items are NEW and UNUSED. Postal or carriage charges ore for Great Britaln only
Wo wilcome orders from established companiaz, educational dopts. ete. 2

NORPLEX

MICRO-LITES

Wonderful engineering-micro miniature incandescent lamp small enough to pass through from the output of a transistor. Rating: 1.5 v , $10-15 \mathrm{ma}$. Size $4.4 \times 1.4 \mathrm{~mm}$. dia. Leads 22 mm . These fantastic lamps have a life expectancy of
$1,000 \mathrm{hrs}$ OUR PRICE

"PRECISION FAN CO." (Smith Induetrieen TRIFUGAL FAN/BLOW.
ER.-This is a beautifully
balanced particularly quiet balanced, particularly quiet 2 cubic t . $/ \mathrm{min}$. The moter is a Mycalex, drawing only 240 ma
on run. Weight 2 t 16 . Sizes:
Case dia. 3 .1. only) 3.125 in. width overall (inc. motor) 5.25 in., aperture 3.125 in. 'by

"SORENG" MAINS SOLENOID. 1" travel, 18 lb. pull (approx.). Size:
$2 z^{n}$ long $\times 2 \psi^{2} \times 2$ high.
Powerful. $27^{\prime \prime}$ long $\times 21^{\prime \prime} \times 27$ high.
Powerful- $\mathbf{1} \cdot 75$. P. \& P. 25p.

"DAVENSET" MAINS SOLENOID.
travel. 8 lb . pull (approx.). Size: $2 t^{\prime \prime}$ long x
2 ¹" $\times 2^{2 "}$ high. Similar in appearance to
"SORENG" ह1.25. P. \& P. 25p. 6 DIGIT NON-RESET COUNTER by E. N. M. Led. 240 v . A.C. Size $2 \frac{1}{2}$

SEEN THIS?

 THIS IS THE ONLY WAY WE COULD ILLUSRATE THIS

 the farnous American fibre-glass copper-ciad laminate.Finest qualisy with Woven Glass base of Epoxy-resin. Finest qualiey with Woven Glass base of Epaxy-resin.

 sily) Post FREE. Full sheets pose by rail G.B. only El one or more sheeks.

FURTHER BULK PURCHASE SILVANIA MAGNETIC SWITCH

 NOW COMPLETE WITH REFERENCE MAGNET! A magnetically activated switch. Vacuum sealed in a glass envelope. Silver contacts normally closed, rated 3 amp at $120 V$. Itamp atlong
t^{\prime} dia. Ideal for Burgiar Alarms, Security systems, etc., and wherever non-mechanical switching
is reaired. Now Lowar Price. Only $E 2.10$ for 12 .

[^8]

 SYNCHRONOUS AUTO-RESET PROCESS TIMER by LONDEX LTD.

Brand New and Boxed

 These well known timers are already in world-wide use Research and for. all machine control timing problems.Repetitive aceuracy better than 0.5% of full scale Repetitive accuracy better than 0.5% of full scale setting. Two or more can be interconnected to give
control of a series of processes. $230 / 250 \mathrm{v} .50 \mathrm{~Hz}$, also control of a series of processes. $230 / 250 \mathrm{v}$, 50 Hz , available 60 Hz . 15 minutes full scale, is sees. per available 60 Hz . 15 minutes full scale, division. Driven by self-starting sync. motor. rating 5 amp at 250 v . a.c. Incorporates solenoid
rater operated clutch. Also, lever actuated micro swithes. Normal price probably in excess
of $\mathbf{C 1 6}$. Complete with multi-pin connector as ilfustrated. OUR
£6.50
"FINDER" 240v.A.C. Octal Relay 2c/o 6 amp contacts, "OMRON" TYpe 1050 Miciro-switch aetion ralay $12 \mathrm{v} . \mathrm{D} . \mathrm{C}$. Ic/o 65 p .
S.T.C. Midget Sealed Relay type 4109 EC . 12v. 40 mA 170Ω, single H.D. make. 53 p each.
"B. \& R." ${ }^{3}$ e/o. 10 amp. contacts (silver) operates ${ }^{n}$ 41.00 .

MAGNETIC DEYICES. 12 v . $3 \times$ H.D. e/o Contacts

SANGAMO WESTON. Moving coil relay 315 』 $310 \mu \mathrm{a}$, complete with base, 75p each.

 CAP. ${ }^{20 / 25}$ ma cont. current. Size: $2 \frac{1}{4}^{\circ} \times$
Cox.
Carr. Paid.
 GEARED MOTORS
"parvalux" Revertible 100
RPM Geared Mator. Type
SD S.D.14, 230/250v. A.C. 22
Ib. in. fors spindle. Ase class
condition. $\$ 7.50$ each. P. \& condition. 87.50 each. P. ${ }^{\text {\& }}$
P. 50 p . Also limited number only as above. Brand Now
E/2.50 each. P. \& P. 50 p "HONEYWELL"

Two and three bank, manual push. Ideal for vending machines
etc. Each bank comprises eck. Each bank comprises
240 v . A.C. The through amp 240v. A.C. The through-panel
mounting assembly is in heavy
polythene surmaunted by belater polythene surmounted by blac
knob. Neck dia. in $^{2}, 2$ bank 40 p
3 bank 55 p. 3 bank 55p.
CURRENT FLOW INDICATOR deal for all sypes of battery
operased equipment (portable operased equipment (portable machines, tape recorders, etc.).
Four white seoments appear
when current flows. Coll is 600 a $6 / 12 \mathrm{v}$. Drawing only 8
 Flxing centres $1 f^{\prime}$. CI 1.25 each. Carr. Paid

ERNEST TURNER | ERNEST TURNE |
| :--- |
| B00 $\mu \mathrm{C}$ | 1600 movement, 2° cese, elliptic plastic Iront. Green-

Red-Green uncalibrated seale. elliptic
Red-Green
C. 50 each. Carriage Paid. MYCALEX. Open frame shaded pole motors.
240 v . $50 \mathrm{~Hz}^{2} 7 \mathrm{rpm} .28 \mathrm{lb} . / \mathrm{in} .80 \mathrm{rpm}$. $12 \mathrm{lb} . / \mathrm{in}$.
 BRAND NEW "GRYPHON", BROOK 50 Hz I Ph .083 hp .1380 rpm .0 .96 amp 5 s full load, to spindle. This is a suparbly constructed, standord- foosmounted unit, with the extra facility of reversal by remote switehing,
Weicht 16 Ib . 10 oz Ofered in original maker's Waight 16 Ib .10 oz , Offered in original makers
packing at approx. half price. $£ 7.50$. Carr. 75 p. BRAND NEW "SMITHS" SYNCHRONOUS GEARED MOTORS. Revs per min. 2-3-6-10-30-60, Revs per hour. Da-2.
per day $4-8.75$ R each. Car. paid. per day 48. 75R each. Carr. paid.
SYNCHRONOUS MOTORS. 220/38Ôv.
$50 / 60 \mathrm{Vz}$. $250-300 \mathrm{pm}$ 75p $50 / 60 \mathrm{~Hz}, 250-300 \mathrm{rpm}$. 75 p each. MAINS INDUCTION MOTOR, Open
frame. in spindle, weight \mathcal{I} Ib. Powerful.
$88 p$ each. P . $\&$ P. 12 p . WEEWould like ta annourice that Gecome mamberif of the LINDAIR programme giving a comprehenspanion and stracmilined service. Whatever your mente-contact ur first, maybe we can molp. We also wolcome trade enguiries. Vistit our now component shop JUS
OPENING at 315 Edgware Road.

NATON WDOE SFPMCE + ELECTROIALDE Electronic Component Speciclists

RIVLIN
PRECISION
RESISTORS
0.1% TO;0.01\% olerance £ $1-£ 2$
for values 100 K and under

RESISTORS-10\%, 5\%, 2\%

Code	Power	anc	ge	ves	1 to 9	10 to	100 up
				E12		(see note	
				E2			
	$1 / 4 \mathrm{~W}$	0\%	4.7 n -10M0	E12		0.	0.7
			$4.7 \mathrm{n}-10 \mathrm{Ms}$	E24			
	iw		$4.7 \mathrm{n}-10 \mathrm{Mn}$	E12			1.
	1/2W		$10 \Omega-1 \mathrm{M} \Omega$	E24			
W	iw	$10 \% \pm 1 / 200$	$0.22 \Omega-3.9 n$	E12		7	6
	$3 W$		$12 \mathrm{n}-10 \mathrm{~K} \Omega$	E12			
WW	-		128-10K		9	,	8
Codes: $\mathbf{C}=$ carbon film, high stability, low noise. $\mathrm{MO}=$ mesal oxide, Elecerosil TR5, ulera low noise. WW = wire wound, Plessey. Prices are in pence each for Values: quantities of the same ohmic E12 denotes series: $10,12,15,18,22,27,33,39,47,56$, volue and power rating. NOT 68, 82 and their decades. mixed valuas. (Ignare frac- tions on total value of resistor E24 denoses series: as E12 plus $11,13,16,20,24,30,36$, $43,51,62,75,91$ and their decades. tions on order.) 4, 51. 62, 75, 1 a							

CAPACITORS

SIEMENS 5% POLYCARBONATES
$0.01,0.012,0.015,0.018,0.022,0.027$ $0.033,0.039,0.045,0.056,0.068,0.082$, $0.1,0.12,0.15,0.18,0.22$ $0.27 .7 \mathrm{p} ; 0.33,0.39,9 \mathrm{p} ; 0.47,10 \mathrm{p} ; 0.56,13 \mathrm{p}$; 0.68 , 15p; 10030 p .

MULLARD polyester C280 series
$250 \mathrm{~V} 20 \%: 0.01,0.022,0.033,0.0473 p$ each;
 21 p : $2-2 \mu \mathrm{~F}, 24 \mathrm{p}$
MULLARD SUB-MIN ELECTROLYTICS C426 range, axial lead
Values ($\mu F / V$) $: 0.64 / 64 ; 1 / 40 ; 1 \cdot 6 / 25 ; 2.5 / 16 ; 2.5 / 64$:
$4 / 10 ; 4 / 40 ; 5 / 64.6 .4 / 6.4 .6 .4125 .8 / 4 ; 010 ; 10 / 2.54$ 4/10; 4/40; $5 / 64 ; 6 \cdot 4 / 6 \cdot 4 ; 6 \cdot 4 / 25 ; 8 / 4 ; 8 / 40 ; 10 / 2 \cdot 5 ;$ $\begin{array}{ll}10 / 16 ; 10 / 64 ; & 12.5 / 25 ; 16 / 10 ; 16 / 40 ; 20 / 16 ; 20 / 64 ; \\ 25 / 6.4 ; 25 / 25 ; 32 / 4 ; 32 / 10 ; 32 / 40 ; 32 / 64 ; 40 / 16 ;\end{array}$ $25 / 6 \cdot 4 ; 25 / 25 ; 32 / 4 ; 32 / 10 ; 32 / 40 ; 32 / 64 ; 40 / 16 ;$
$40 / 2 \cdot 5 ; 50 / 6 \cdot 4 ; 50 / 25 ; 50 / 40 ; 64 / 4 ; 64 / 10 ; 80 / 2 \cdot 5 ;$ $80 / 16 ; 80 / 25 ; 100 / 6 \cdot 4 ; \quad 125 / 4 ; 125 / 10 ; 125 / 16 ;$ $160 / 2 \cdot 5 ; 200 / 6 \cdot 4 ; 200 / 10 ; 250 / 4 ; 320 / 2 \cdot 5 ; 320 / 6 \cdot 4$; 400/4; 500/2.5.
LARGE CAPACITORS
High ripple current types: 1000/25, 28p; 1000/50, 41p; $1000 / 100,82 p ; 2000 / 25,37 p ; 2000 / 50,57 p ;$

SIEMENS POT CORES

In a range of types having air gaps from 1.0 mm . to zero at prices from lip for cores and
14 p for adjusting screw. Full details, see our latest catalogue, post free lop.

IOW/15 BA AXANDALL SPEAKER
As originally designed by P. J. Baxandall and described with equaliser network speaker unit and specially $18^{\prime \prime} \times 12^{\prime \prime} \times 10^{\circ}$. Price, inc. carriage paid in U.K

CARBON TRACK POTENTIOMETERS, long spindles. Double
SINGLEGANGline SINGLE GA NG linear 100 n to 2.2 Mn , 12 p ; Single $\mathrm{gang} \log , 4 \cdot 7 \mathrm{~K} \Omega$ to $2 \cdot 2 \mathrm{Mn}, 12 \mathrm{p}$; Dual gang linear
$4.7 \mathrm{k} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega, 42 \mathrm{p}$; Dual gang $\log , 4 \cdot 7 \mathrm{~K} \Omega$ to $4.7 \mathrm{k} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega, 42 \mathrm{p}$; Dual gang log, $4.7 \mathrm{~K} \Omega$ to
$2.2 \mathrm{M} \Omega, 42 \mathrm{p}$; Log/antilog, $10 \mathrm{~K}, 47 \mathrm{~K}, \mathrm{M} \Omega$ only 42 p ; $2 \cdot 2 \mathrm{M} \Omega, 42 \mathrm{p}$; Log/antilog, $10 \mathrm{~K}, 47 \mathrm{~K}$, I Ms only 42 p ;
Dual antilog, 10 K only, 42p. Any type with 2 A D.P. mains switch, $12 p$ extra. Only decades of $10,22 \& 47$ available in ranges
quoted. CONCENTRIC in any combination of
DUAL CON
above values, SOp; with swizeh, 77p.
CARBON SKELETON PRE-SETS
Small high quatity, type PR linear. only: 100Ω,
$220 \Omega, 470 \Omega, 1 \mathrm{~K}, 2 \mathrm{~K} 2,4 \mathrm{~K} 7,10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}$ 2202, 470 , IK, 2K2, 4K7, 10K, 22K. 47K, 100 K , horizontal mounting, 5 p each.

ZENER DIODES,
$400 \mathrm{~mW}: 2.7 \mathrm{~V}$ to 36 V , 15 p each; $\mathrm{IW}: 6.8 \mathrm{~V}$, to 82 V 27 p each; $1.5 \mathrm{~W}: 4.7 \mathrm{~V}$ to 75 V , 60 p each.
Clip to increase 1.5 W rathg to 3 watts. (type Clip to increase 1.5 W
266F). 4p. SIEMENS 2N 3055
POWER TRANSISTOR POWER TRANSIS
Made to Siemens
superb standards of superb standards of
specification and de-
pendability. With pendability. With free
insulating set. NOW
ONLY

ELiEmCO SOLDERSTAT SOLDER Axpoplate ord beaveifuly mode example from a wide and

Minitron DIGITALINDICATOR

TYpE Boisf seven seqment inicacor compacilice with
 nuble. in it it ied diaticical symoits alto ovail: $£ 2.00$ Svicable BCD decoder driver type FLLI2IT $£ \mid-35$

MISCELLANEOUS ITEMS from stock

Transistors and PCB for one channel, ${ }^{\text {ch }}$.46. Rs and Cs for one channel MAIN LINE AMPLIFIERKITS
70 watt power amp. modulekit, 11260 nett. Power supply kit, 40.00 stereo Kit. 2 power amps. pre-amp kit, power supply kit and masched into your own cabinet, $438 \cdot 40$ nett
 E5.O4. Also Integr
THERMISTORS
VA1039, VA1040, VA1055, VA1
I5p. R24, R53, R54, 11 -35. R.54.
HANDBOOK OFTRANSISTOREQUIVALENTS, 40p. HANDRADIO E ELECTRONICS. COIOur codes \& data wall chart, 150 ENGINEERS REFERENCE HANDBOOK \& TABLES, 20p
(Add 3p. for postage on each of above if bought separately.) INSULATED SCREW TERMINALS in range of seven colour each 12p. Matching plugs: 2 mm , each 5 p ; 4 mm , each 7 p.

SIEMENS TTL INTEGRATED CIRCUITS

 FLH191 (7402) Quad 2-inpur NOR
FLH291 (7403) Quad 2-inpur NAND, O/C collecror FLH211 (7404) Hex inverter
FLH271 (7405) Hex inverser, O/C collector
FLH381 (7408) Quad 2-innut AND
FLH391 (7409) Quad 2-inpuz AND, O/C collector

FLH351 (7413) Dual 4-input NAND
FLH121 (7420) Dual 4inpu NAND
FLH13
FLHI31 (7430) 8-input NAND
FLHI41 (740) Oual 4-inpus NAND power
FLLIO1 (74141) BCD-decimal decoder, nixie driver
FLL281 (742) BCD-decimal decoder,
FLH361 (743) Excess 3 -decimal decode
(16) $11.24 p$

FLH361 (7443) Excess 3-decimal decoder
FLH371 (7444) Excess 3-Gray-decimal deco
(186) 4.126

FLHI51 (7450) Expandable.dual 2 wide 2 -inpu
FLHI61 (7451) Dual 2 wide 2 -input
FLH|61 (7451) Dual 2 wide' 2 -input
FLHI71 (7453) Expandable 4 wide 2 -inpue
FLHI81 (
FLY4
FLYIOI (7466) Oual 4-input expander
FLIO1 (770) JK flip flop
JK flip flop
JK master slave flip flop
Dual JK master slave flip flop
Oual dotype edge triggered hip flop
Quad bi-stable latch
Oual KK master slave flip flop
Gazed full adder
2 bit binary full adder
2 bit binary full adder
4 bit binary full adder
Half adder
Decade counter
8 bit shift register
Divide by 12 counter
4 bit binary councer (1
rer parallel l/P, series O/P (10
4 bit left shift right shife register
5 bit shift register
Dual quad bistable latch
DKaster slave flio flop
JK master slave flip flop with J
Dual JK master slave flip flop
Monostable flip flop
Up down decade counter
ounter with clear

FL/241 (74192) Up down decade counter with clear
FLJ251 (74193) Up down binary counter with clear
All packages 14 . leads unless stated otherwise before, prices.

COMPONENT DISCOUNTS
Pe or more, 15% on orders for
Prices subject to aiteration withour
10% on orders for components for $\mathbf{6}$ or more, 15% on orders fo
POSTAGE AND PACKING FREE
on orders over 22 . Please add 10p if under. Overseas orders welcome:
carriage and insurance charged at cost.
U.S.A. CUSTOMERS are recommended to contact ELECTRO.
VALUE AMERICA, P.O. Box 27, Swarthmore PA 1908I.

Wilkinnons EST. 1921
 RELAYS P.O. TYPE 3000

 BUILT TO YOUR SPECIFICATION
Contocts up to 8 changeover

- DUST COVERS
* QuIck delivery
* KEEN PRICES
* QUOTATIONS BY RETURN HOME \& OVERSEAS

DIGITALCLOCK complete With knobs

 All settings are achieved by two dual-concentric controls at 10 minute division "click" set alarm fup to 12 hour delayl. manufacture guarantee reliable operation and long life. The quality switch will automatically turn off any appliance - radio. TV. light. etc.. at any pre-set time up to 60 min and in conjunction with the Auto setting will switch on the appliance again next morning. The
clock measures 4 in (W) $x^{\prime} 1$ il in (H) $\times 3$ lin. (D) loverall from front of drum to back of switch). clock measures 4 in $(W) \times$ in (H) $x 3$ fin. (D) loverall from front of drum to back of switch, sleep switch 12 hour alarm - Mains operation Shock and vibration proof Made espacially for sleep switch 12 hour alarm Mains operation Shock and vibration proot Made especially for
Lasky's by famous maker Bull-in alarm buzzer . Hours, minutes, seconds read-off © Forward and backward adjustment © Silent synchronous motor.
SPECIAL QUotes
LASKY'S PRICE E6.50 с \& P25p

BSR TD8S

 required. Operation is simplicity itself - the unit is switched on and off by the insertion of the cartridge:
the only external control being a channel selector with illuminated channel indicator. Adjustment is provided external control being a channel selector with illuminated channel indicator. Adjustment is delivers a pre-amp output of 125 mW . Power requirements: $210 / 250 \mathrm{~V}$ AC 50 Hz . Frequency $50 \mathrm{~Hz} 10 \mathrm{KHz}, 4$ pole dynamically balanced synchronous motor maintains unwavering speed accuracy independent of mains fluctuations. Compact In size the TD8S is housed in black and woodgrain plastic cabinet. Size: $8 \frac{1}{2}(W) \times 3 \frac{1}{2}(H) \times 19 \nmid$ (D) in.
LISTPRICE
£24.20
LASKY'S PRICE E19.95 c \& P 35p.

BELTEK 8 TRACK CARTRIDGE PLAYER

BELTEK C5700 with pair SP24 speakers $\mathbb{2 9 . 0 0}$
C \& P 25 p each on C5700 and SP24 speakers.
Beltek SP24 speakers are available perfectly matching the C5700 in performance and finish pecially designed for optimum performance in hea

PYE SHORT WAVE

CONVERTER

Converter compact Shortwave Suitable for use on 12 V positive or negative earth systems. radio tuning to give full cover from 3.12 MHz 21.75 MHz . On/off switch and by-pass switch for crackle finished case. Size: bin. (W) $\times 1 \frac{1}{8} \mathrm{in}$. (H) $\times 3 \mathrm{jin}$. (D). (Can be used with any AM radio.)

LASKY'S PRICE 88.75 сз ${ }^{2} 20$.

TAPE SCOOP

£1.25 each 5 for $£ 5.00$
etal NAB spools. Fully guaranteed brand new

OUT NOW! 1972 AUDIO-TRONICS

 NEW REVISED EDITIOavallable - FREE on request. The 44 ner availabie- PREE on request. The 44 newspaper size pages - many in full colour 一 are ars are nd Package Dea(s) Tape recording and Audio accessories. Don't miss LASKYS AUDIO.TRONIC CARD SCHEME offering holders one month's interest tree credit up to $£ 50$. Send your name and CRED

 Break hear--duty contactis and dust cover. Small or large quantities supplied, packed

AXIAL fans as used in above units 6 in. blades reversible type size 7 in by 7 in with AXIAL fains as used in above units 6 in , blades reversible type size 7 in. by 7 in , with
open flange each end $\leqslant 15$ each carr. 75 , as above bue with $1 / 15$ th H . P. motor also $£ 15$

MINIATURE DIGITAL INDICATOR, size of digits in., illuminated by 280 valt lamps, reading 0 to 9 with left and right hand decimal points, quick disconnect at the rear of the unit the lamp projects the corresponding digit anp is lighted, densing lens shrough a projection lens on to the viewingsc
unit. $62-50$ ea., send s.a.e. for illustration and full details.
ORTABLE VOLTMETERS 160 volts ACJDC moving iron 8 in Mirror
 polished wood case with hinged flap $9 t$ in. by 84 in. by 32 in, oniy 50 each, post
resistance suplied to extend range to 320 volts (scale reading $\times 2$) 50 exta.
VOLTMETERS 2 in. flush round AC/DC with fixing clip $0-20$ or $0-40$ voles $\$ 2.50$ each

 with resistance Box 0/9999 ohms. Brand new, E65 00 eq.

HIGH SPEED COUNTERS
3 in . x i in. 10 counts per second, 4 v ., 50 v ., or 100
 £1.75

L. WILKINSON (CROYDON) LTD LONGLEY HOUSE LONGLEY RD. CROYDON SURREY
 Grams whico croyo

VERY LIMITED QUANTITY FERROGRAPH (SERIES 5) STEREO TAPE RECORDERS

A few of these first class machines have been
complete STEREO RECORDERS/REPRODUCERS.
complete STEREO RECORDERS/REPRODUCERS.
A lower track record playback head has bsen fitted into the third head position on the standard WEARTe eck. in cadition to the normai
electronic chassis and P.S. U. complete the modification.
The specification is as for the original mono machine, plus stereo i.e. 37 and $7 \ddagger$ i.p.s.: superimposition: variable erasure (fading in or out) on .already recorded material: peak-reading meter for recording: separate bass. troble, gain controls aux sockets on
front panal and on P.S. U.: pause control: clock-type counter. STEREO: separate heads. electronics and P.S.U. provide:-a higher than normal cross-talk ratio: completely independent recording and playback control of either channel tin addition each channel has its own
channel etc.
The unit, and an additional monitor penel. is mounted on a common frame and housed in a metal cabinet. The Complete frame may be removed as a whole lor dismantled into surrece

MI-19467-A MASTER OSCILLATORS

These R.C.A. units which are used in the ET 4336 transmitter and which were supplied as a separate item. each in its own slide-in metal case, are ideal as the hear power (approx. 20w) transmitter. or as a basis fo modification to suit individual requirements. They incorporate a 6 -position oscillator switch (covering 1 to 5 MHz): a 3 -position Multipliar swhich (covering 2 to mutiolier coils with "tums counting" mechanisms for multiplier coils with tums counting mechanisms
precise tuning. Power requirements are H.T. and L.T for the 807 valve used in the unit, and are brought by an 8 -pin Jones plug on the rear of the chassis. The basic frequency coverage of the oscillator is 1 to 10 MHz . whlch can be extended to 20 MMz when used as the oscillator section of a higher power transmitter or when
 evered in full in the extremely comprehensive instruction/service manual (supplied with each unit) containing wiring and circuit diagrams. adjustments, photographs, etc, BRAND NEW. Price per unit is $£ 8.50$ including 2807 valves. Carriage 75

COLOMOR ELECTRONICS LTD

SERVICE TRADING CO

Poatago and Carriage shown below are inland only．For
Overseas
please ask $\begin{array}{cc}\text { overseas } \\ \text { quotation．} & \text { please } \\ W e & \text { ask } \\ \text { do } & \text { not }\end{array}$ issue a oalalogue of liat．

$0-260 \mathrm{~V}$ ．at 50 amps Special discount for quantity | OPEN TYPE（Panel Mounting） |
| :--- |
| tamp $£ 4.75, \quad 1 \operatorname{amp} £ 7.00$ |
| 1 amp $£ 8.05$ |

－L．T．TRANSFORMERS

DOUBLE WOUND VARIABLE

RANSFORMERS
Fulfy isolated，low rension Secondary winding．Input
200 v ，A．C．Output continuously VARIABLLE $0-36 \mathrm{v}$ ．A．C．

36 volt 30 amp．A．C．or D．C Variable L．T．Supply Unit
nput $220 / 240$ v．A．C．Outpiut Con－ tinuously variab
Fully isolated． \qquad
\qquad
\qquad obust meta
neter，Pane ndicator and chrome handes．input and Output fully fused
deally suited for Lab．or Industrial use． 668 plus $\kappa 2$ p．\＆ 230 VOLT AC SOLENOID
EXTREMELY POWERFUL SOLENOID with approximately 141b．pull，linch travel．Fitted with mounting feet．Size 4 inches long，
Price $£ 2.00$ including post \＆pkg．

230－250 VOLT A．C．SOLENOID Similar in appearance to above illustration．）Approx，I $\frac{1}{2} \mathrm{fb}$ ．
pull．Size of feet $1 / \times 1$ If．Price $85 p$ incl．post．Manufac－
$18-24$ VOLTTO．C．SOLENOID
Size：O．A．L． 3 itin，\times It in，$\times 1$ in．Maximum push 1 at

50 in I ELECTRONIC PROJECT KIT

50 easy to build Projects．No soldering，no special tool required．The Kit includes Speaker，meter， Transiormer，plus a host of other components of the 50 possible page instruction leand．Mol Mransistor Radio Amplifier etc．，etc．Price， 57 ．75．P．\＆P．30p．

ARD NEW All types． 0.260 v．at 1 amp -260 v．at 2.5 amps -260 v ．at 5 amps -260 v ．at 10 amp -260 v ．at 15 amps -260 v．at 20 amps -260 v．at 25 cmps $0-260$ v．at 37.5 am

All primaries $220-240$ volts
Type No．
Sec．Taps
Type No． 34 Sec ． taps
$30,32,34,36 \mathrm{v}$ ．at 5 mps
$\begin{array}{ll}2 & 30,40,50 \mathrm{v} \text { ．at } 5 \mathrm{amps} \text { ．} \\ 3 & 10,17,18 \mathrm{v} \text { at } 10 \mathrm{amps} \text { ．}\end{array}$
$16,12 \mathrm{v}$ ．at 20 amps.
$5 \mathrm{in}, 18,20 \mathrm{v}$ ．at 20 a $66,12,20 \mathrm{v}$ ．at 20 amps ． 8 4．6，24， 32 v ．as 12 amp

RING TRANSFORMERS

arge centre aperture，can be used as a Double wound current Transformer，Auto Transformer， E．Using the RT． 100 V ．A．Model the outpur could be wing to give 8 V ＠ 12 A Amp．， 4 V ．（3） 25 Amp．or 2 V ． 950 Amp, etc．
Price：RT． 100 VA 3.18 turns per volt，$E 2.25+17 \mathrm{p}$ p．and ．

INP T 23 v．A．C． 50 O
 fariale 0，260 v．a．c．

P）POWER RHEOSTATS
 （NEW）

 NEW）Ceramic construction，wind－ Enamel，heavy duty brush assembly designed for continuous duty．AVAILABLE STOCKIN THE FOLLOWILABLE FROM 100 WATT 1 ohm $10 \mathrm{a} ., 5$ h hm 4．7a．， 10 ohm 3 a ． 230 mA ．， $2 \cdot 5 \mathrm{k}$ ohm ${ }^{\circ} 2 \mathrm{a}$ ． 5 k ohm 140 mA ．Diamerer K Wh．All at £l 12，P．\＆P．IIP hm． Black Sllver Skirted kno All alibrated in Nos，1－9．If in．dia brass bush．Ideal for above Rheostats，I8p ea．

PROGRAMME TIMERS

 notor．Drives 15 cams，each witch．Cams are individually ariable，allowing innumerabl ombinations．Ideally suited for

machinery control，automation etc．Also in the field of entertainment，for chaser lights，animated display

STRDBE！STROBE！STROBE！

FOUR EASY TOBUILD KITS USING．XENON WHITE
 TERNAL TRIGGERING． $230-250 \mathrm{y}$ ．A．C．OPERA EXPERIMENTERS＂ECONOMY＂KIT ponents including Veroboard S．C．R．Unijunction Xenon Tube + instructions E 6.30 plus 25 NEW INDUSTRIAL KIT deally suitable for shools，laboratories etc．Roller tin printed circuit．New trigger coil．plastic th
Adjustable 1－80 f．p．s．Price $£ 10.50$ ． 50 P P．\＆P． HY－LYGHTSTROBE
This strobe has been designed for use in large rooms，
halls and the photograph：c field，and utilizes a silica
tube for hube for longer life expectancy，printed circuit for easy assembly，also a special trigger coil and output
capacitor．Speed adiustable $1-300$ f．0．s．Light output
approx． 4 ioules．Price $\$ 12-00$ ．P．\＆P． 50 ． SPECIALLY
TED MESIGNED FULLY VENTILA－
CASE incl．reflector， 4.00 ．P ， 45p．Post paid with kie．
＇SUPER＇HY－LIGHT KIT
Approx． 4 times the light output of our well＇proven
Incorporating，Heavy duty power supply．
Variable speed from $1-23$ flash per sec
Variable speed from $1-23$ flash per sec．
lioht．．
Nover before a Strobe Kit with 80 HIGH an
output at so LOW a price．ONLY E 20.00 plus
ATTRACTIVE，ROBUST，FULLY VENTILA． TED METAL CASE specialiy designed for the Super T－INCH POLISHED REFLECTOR．Ideally suited （post paid with kits．

CONSTANT SPEED，PRECISION MAD VOLT D．C．GOVERNED MOTOR Seven pole armature，ballrace bearing．
2750 r．p．m．Length 2 11／16．Dia．13／16． haft length $5 / 16$ ．Shaft dia $5 / 64$ ．No load 40 ma ．Normal load 35）ma．Ideal for p．\＆p． 10 p ． \qquad 240 V A．C．SOLENOID OPERATED
FLUID VALVE
Will handle liquids or gases up to 7 p．s．l． Forged brass body，stainless steel core and pring．$\frac{1}{\frac{1}{2}}$ in．b．s．p．inlet／outiet．Precision made，British mig．PRICE；$£ 1.75$ P．\＆P．20p．（i） orisinal pocking． riginal packin

D．C．AMMETERS

Available in 1 amp．， 5 amp．， 15 amp．， 20 amp．
Size $2 t$ in．dia． $1 t$ in．deep，$\subset 1.75$ incl．P．\＆P ．
$0-300$ volts A．C．El 1.90 inel，P．\＆P．
MOTOROLA MACII／6 PLASTIC TRIAC 400 PIV 10 AMP
Now available EX STOCK supplied complate with full data and applications sheet．Price $£ 1.05$ plus $7 p$ P．\＆P Suitable Diac 30p（RCA40583）

SIX FIGURE RESETABLE

 COUNTER48 Volt D．C．operation．Packed in
P．\＆P． 20 p．

INSULATED TERMINALS Available in black，red，whice， 10p each．Post paid Minimum

G．E．C．I2－WAY 15 AMP CONNECTORS NEW in maker＇s carton BAKELITE $£ 1.25$ per doz
LEXIBLE $\mathbf{1} 1 \cdot 50$ per doz．Post paid．（Minimum doz）

HIGH FREQUENCY

TRANSISTORISED MORSE OSCILLATOR
Adjusable to also earpiece for personal monito
morse key． $\mathbf{2} .25$ plus 18p p．\＆p．

RELAYS NEW SIEMENS PLESSEY，et

 MINIATURE RELAYS AT COMPETITIVE PRICES
 $70016-244 \mathrm{M} 2 \mathrm{~B} \quad 6 \mathrm{p}^{\circ} * 2500$ 24－45 6 M $70016-244 \mathrm{elo} \quad 78 \mathrm{p}^{*} 2400$ 30－45
 73 p ＊ $15 \mathrm{k} 85-1106 \mathrm{M}$ 50 p
50 p

（1）Coil ohms；（2）Working d．c．volts：（3）Contacts：（4 | Price HD＝Heavy Duty．All |
| :--- |
| 12 VOLT |
| .C ．RELAY |

140 ohm coil，three sets c／o contacts rated at 5 amp 78p incl．P．\＆P．（Similar to illustration below．） DIAMOND H＇ 230
Three sets c／o contacts rated at 5 amps
Price $50 \mathrm{p} . \mathrm{P} . \mathrm{K}^{2} \mathrm{P} .10 \mathrm{p} .(100$ lots $\& 40.00$
＇KEYSWITCH＇ 230 YOLT A．C．RELAYS＇ One set clo contacts rated at 7.5 amp．Boxe
40 p．P．\＆P． 5 p．（ 100 lots 632.00 incl．P．\＆P．） MINIATURE RELAYS

LIGHT SOURCE AND PHOTO CELL MOUNTING Precision engineered light soure日気䋨 with adjustable lens assembly and 0 ventilated lamp housing to tak MBC bulb．Separate photo cell mounting assembly for ORP． 12 or similar cell with optic window．Both units
are single hole fixing．Price per pair $\mathbf{E 2} .75$ p $\&$ p 18p．

200－250 y．A．C．NEON INDICATOR

VENNER ELECTRIC TIME SWITCH $200 / 250$ volt．Ex－GPO．Tested，perfect
condition．Two ON，two OFF，every 24 hrs ． at any manually pre－set time．Price： 10 amp
$E 2.75$ ． 15 amp， 63.25 .20 amp， 63.75, P．\＆ 20p．Also available with Solar Dial
at dusk．OfF at dawn．Prices as abov

UNISELECTOR SWITCHES－NEW
4 BANK 25 WAY FULL WIPER
25 ohm coil， 24 v．D．C．Operation $45 \cdot 88$ ；plus 22 p P．\＆P
6 BANK 25 WAY FULL WIPER
25 olím coil， 2
operation． $66 \cdot 50$ ，plus 22p P．\＆
8 BANK 25 WAY FULL WIPER
24 v．D．C．operation．67．63，plus 22 p P．\＆P．
$230 \mathrm{~V} / 240 \mathrm{~V}$ COMPACT SYNCHRONOUS GEARED MOTORS

$\begin{array}{lll}\text { RPM cw } & 1 \mathrm{RPH} \mathrm{A} / \mathrm{cw} & 10 \mathrm{RPH} \text { Al／w } \\ 2 \mathrm{RPH} \mathrm{cw} & 15 \mathrm{RPH} \text { A／cw }\end{array}$ 60 RPM cw 3 RPH A／cw 20 RPH cw
 Fraction of
makers＇price makers＇price

12 VOLT DC MOTOR

 Powerful 12 volt I amp REVERSIBLE motor．Speed 3，750 rpm．Complete giving approx．final speed of eithe 240 r．p．m．or 125 r．p．m．Size 41 in $2 t \mathrm{in}$ ．dia．Price ine．post either type 95 p BODINE TYPE N．C．I． GEARED MOTOR （Type I） 71 r．p．m．torque 10 lb ．in．Reversible $1 / 70$ rh h．p．cycle .38 mp．（Type 2） 28 r．p．m．torque 20
b．in．Reversible 1／80th h． 50 tol he above twa prisio 28 amp． offered In＇as new＇condition．Input voltage of motor 15v A．C．Supplied complete with transformer for Price A．C．input．plus 35p P \＆P or less tran former $£ 2 \cdot 13$ plus 27p P．\＆P．
curtalns，display stands，vending machines，etc，etc．

THE BUUY IN FREQUENCY COUNTERS THE YAESU YC-305 £97-50!
 Free delivery by Securicor in 24 hours normally Counts to 30 MHZ O
 Counts to 30 MHZ : Operates on AC or 12 VDC Superbly engineered

SPECIFICATION

Frequency Range: 5 Hz to 30 MHz
Accuracy: \pm time base stabilicy +1 count
Gate Times: I milli-second or 1 second
Frequeney Unit: MHz and KHz
Input Impedance: high 1 M ohms, low 56 ohms
Input Capacity: less than 20 pF
Maximum Input: 60 V p-p less than 10 sec. 20 V p-p consinuous
Time Base Frequency: $1,000 \mathrm{KHz}$ erystal controlled
Power Requirement: $100 / 110 / 117 / 200 / 234 \mathrm{~V} \mathrm{AC} 18 \mathrm{VA}$ or $12-14.5 \mathrm{VDC}$ Dimensions: $8-3 / 4 \mathrm{~W} \times 3-1 / 4 \times 10-1 / 2$ inches Weight: approx. 8 lb
Tube and Semiconductors: integrated circuit 25 ; siliton eransistor 8; FET I; silicon diode 11; display tube 5
We are Yaesu Musen Co. DISTRIBUTORS in the U.K. All equipment carries one year Manufacturer's Guarantee for which we carry full spares and
Your 'ONE-STOP' single source of all YAESU equipment plus MASTS,

OUTHAMPTON, SO4 4D

 TEI: TOTTEN 4930 or 2785Cobles: AERIAL, SOUTMAMPTON
WW 094 FOR FURTHER DETAILS

RADIO MAST \& ANTENNAS DIPOLE JUNCTION UNITS

MANUFACTURERS OF:
Aerial Systems for M.F.
\& H.F. range including:
Centre Fed Half Wave
Uipolas.
Delia Matched Dipoles.
Folded Dipoles.
Broad Bank Cage
Monopoles.
Rhombic Systems.
Quadrant Dipoles. Inverted "V" Arsays. Terminated folded
Dipoles.
M.F. "T" \& "L" Aerials. Vertical Radiators. Radio Masts: Portable Tubular. Permanent Tubular. Permanent Lattice. Dipole Centre Connectors. Transmission Line Equipment. Lead-in-Insulator Panels. Coaxial and Wire Feeder Routes.

Shown CCJ/2 Lightweight $40 z$. Mobile or PortableNATO Coded £2.95

Type CCJ/1
Heavy duty. Weight 12 oz. Up to 2 KW For permanent installations flexible end connections $£ 4.90$
Both the above units supplied with all necessary fittings including $1 / p$ plugs. They can also be used as junction for long wire aerials to coaxial cable for fead into buildings.

SUPPLIERS TO:
Government Ministries, Crown Agents, principal manufacturer's of Telecommunications equi pmentandoverseas governments and administrations.

INSULATORS
We maintain large stocks of antenna strain, maststà, egg, and line insulators. Only 20,000 in stock. Commercial and Export enquiries. Please send for preferred stock list. Малу others available in small quantities.

SOUTH MIDLANDS CONSTRUCTION LIMITED

S.M. House, Osborne Road, Totton, Hants. England Telephone: Totton 2785/4930 Cables: Aerial, Southampton

WW- 095 FOR FURTHER DETATLS

```
STANLEY QUALITY KITS
enormous interest. A well-designed kit is one that is sought after, and a well presented
kit (with no missing parts) is easy to construct. (%). Wate R.M.S. Hi-Fi Transistor Power Amplifier Kit
Specification: 30 watts R.M.S. into 8 ohms. 
Total Harmonic Distortion: Less than 0.22% for any power up to 30 watts
Total Harmonic Distortion az IkHz at 20 wates into 8 ohms is less than 0.03%.
```



```
            Price of Module Kit, t8.00 p.p. 20p; 2 for }616.00\mathrm{ post free.
                Built and Tested, }29.00\mathrm{ p.p. 20p; 2 for ¢18 00 post f
This first-class kit has inputs for magnetic or ceramic cartrid KIT
tape, radio, auxiliary I,
*)
Overload Factor: 34 dB all inputs.
Total Harmonic Distortion: 0.03%% at normal oucput; 0.3% at 20 dB overload.
NEW RELEASE-60 WATT TRANSISTOR
SISTOR POWER AMPLIFIER KIT
Specification: }60\mathrm{ watts R.M.S. into 8 ohms.
Tozal Harmonic Distortion at Full output into 8 ohms is less than 0.15%.
This kit has short circuit proof protection. Price 611.50 p.p. 200.
                                    M MAIL ORDER ONLY
                                    STANLEY ELECTRONICS
SUITE ONE, 8 FOSTER LANE, LONDON E.C.2.


Increase efficiency of Offic, Shop Workshop with this DELUXE TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. Just moisten the suction pad and stick it to one side of the telephone. A useful office aid. On/Oft switch. Volume control. Operates on one \(9 v\) battery. Size \(3 \mathrm{in} . \times 4 \mathrm{in}\). Ready to operate. Add 14 p extra for battery. P \& P 22p.


This NEW, versatile De Luxe 4(1 Master and 3 Subs) Intercom wall master and 3 Subs) for desk or munication problems instantly. EffecMive range 300 ft . Call/talk/listen from Master to Subs and Subs to Master. With Selector switch. Ideally sultable
for office, shop, home or surgery. for office, shop, home or surgery. three 66 ft . connecting wires and accessories. On/Off switeh, volume control. P. \& P. 40p.
WEST LONDON DIRECT SUPPLIES
169 KENSINGTON HIGH STREET, LONDON W8 6SN

Only high grad
manufacturers.

Or FACTORY BUUILT with
12 months guarantee. Dep
12 months guarantee. Dep. £3.75 and 9 mthly payments
(Total \(£ 37.25\) )
Or FActopy BUI
Or FACTORY BUILT in
cabinet as illustrated. cabinet as ilustrated. Dep. £3-99 (Total £42.91)
\(£ 33.75\)
£38.75
PRINTED CIRCUITRY, TWENTY SILICON TRANSIS FOS, FUR DIODES, FOUR RECTIFIERS LS (applying to each channel where CONTROLS (3) Tape (4) M SH-BUTTON SELECTOR (1) Disc (2) Radio nn/off. Bass, Treble, and Balance Plas Crammic Mag. P.U. Switeh.

REPRESENTING VALUE FAR HIGHER THAN THE HIGH FIDELITY

FANE LOUDSPEAKERS ‘POP' \(25 / 2\) Dual cone \(15 \Omega\) (for uses other 12 in . 25 watt Terms: DEPOSIT f1 CARR. PAID \(£ 6.75\) and 9 monthly payments 75p (Total 87.75 ).
HI-FI LOUDSPEAKER ENCLOSURES A. Weak or Airormosia veneer finish. sizes approz. Carr. 30 p extra
jEs
Size \(16 \times 11 \times 9 \mathrm{in}\).
Pressurised. Glvas pleasing results with any Rin. \(\leq 5 \cdot 35\) SEE For optimum performance with \(\mathbf{1 6} 47\)
Fispeaker. \(22 \times 15 \times 9\) in. Ported


FANE 807 HIGH FIDELITY LOUDSPEAKER

AUDIOTRINE HIGH FIDELITY
 LOUDSPEAKERS

\section*{construction. Latest high efficiency} ceramic magnets. Treated Cone surround, "D" indicates Tweeter
Cone providing extended frequency range inp to \(15,000 \mathrm{c} . \mathrm{p} . \mathrm{s}\). exceptional performance at low cost. Impedance 3 or \(8-15\) ohms.
WEEN ORDERING PLEASE STATE IMPEDANCE


AUDIOTRINE HI-FI SPEAKER SYSTEMS

\(\sqrt[8]{20}\)15 olini bigh quatityed speak 12 k . 11.000 , cross-over unit and quency
duction.


> SEND S.A.E. FOR FREE COLOUR BROCHURE OF
> MONEY SAVING FULL
> SYSTEM PACKAGE OFFERS

\section*{[FANE ULTRA HIGH POWER}

LOUDSPEAKERS All power ratings are R.M.S. continuous. guarantee. High flux ce

Dep.: \(£ 6\) and 9 monthly payments
\(£ 2 \cdot 20\) (Total \(£ 25 \cdot 80\) ).
15" "POP' 60 anva 222.95
 Dep: 53.30 nud 9 monthly payments 11.30 (Total 115 ).
FOR BASS GUITAR OR ELECTRONIC ORGAN. ETC.
 (Tntal \&12-80). PAIR SUITABLE ALL PURPOSES.


NEW BRANCH NOW OPEN
19/19a Market Street
\begin{tabular}{|c|c|}
\hline HIGH QUALITY LOUDSPEAKERS & R.S.C. COLUMN SPEAKERS \\
\hline In tenk or afror- &  \\
\hline mosil veneered & and Public Address. 15 \\
\hline 10 \% 15 & Wats. Fitted four \\
\hline  & (er \\
\hline  &  \\
\hline  & E 11 \\
\hline \(\begin{array}{llll}16 & \times 18 & \times 10 \\ \text { Or dep. } \\ \text { ef }\end{array}\) & ¢3 \\
\hline
\end{tabular}
R.S.C. BATTERY/MAINS CONVERSION UNIT
 Type BM1.An all-dry battery eliminator.
Size \(5 \frac{1}{2} \times 4 \frac{1}{2} \times 2 \mathrm{n}\). approx. Completely replaces batteries supplying \(1 \cdot 5 \mathrm{v}\). and 90 V . to battery radio where A.C. mains 200/250v
Complete Kit \(\mathbf{f} 3 \cdot 25\) Ready
with Diagram
for use \(\mathbf{~} 3 \cdot 75\)
INTEREST CHARGES REFUNDED on Credititsales

BATIN SLlvER METAL FACIA with biack lettering. PUSH-BUTTON SELECTOR SWITCHING * JACK SOCKET FOR HEADPHONES太 CABK SOCKET FOR HEADPHONES
©
SUTABEE FOR MANEL VENEERED IN SATIN TEAK. SURTABLE FOR ANY MODERN PICK-UP CARTRIDGE CERAMIC OR MAGNETIC, REGARDLESS OF PRICE.
WE RECOMMEND OSE WITH THE BEST ANCLLLARY EQUPMENT THAT CAN BE AFFORDED. OUTPUT: 15 watts R.M.S. (Continuous) into 8 ohms. HUM \& NOISE -75dB Min. Vol - \(6 \mathbf{6 d B}\) Full Vol.
HARMONIC DISTORTION \(0.1 \%\) at 1000 Hz 10 Watts FREQQUENCYRESPONSE:- 3 dB 7 Hz to 70 KHz BASS CONTROL: +17 dB en -1 bdB at 40 Bz , CROSS TALK -58 dB
SENSITVITIES: Disc Mag. 2.5 mV . Ceranic 35 mV , Radio 120 mV . Tape REAR PANEL SOCKETS ARE FOR 3 PAIRS OF INPUTA (1) P.U. (2) Radio (3) Tape Amp. Plus pair for tape recorder signal take off and 2 pairs

R.S.C. TAI2 Mk III \(6.5+6.5\) WATT
STEREO AMPLIFIER
 \begin{tabular}{l} 
STRUCTION HIGHH FIDEEITY OUTPUT OF \\
6.5 WATIS PER CHANNEL \\
\hline
\end{tabular} Designed for optimum
any crystal or or cermance
ceramic
Gram. P.U. separate switched input sockets on each channel \(\star\) Separate Bass and Treble
 Distortion \(0.3 \%\) at 1,000 c.p.s. . Hum and Noise \(-70 d B *\) Sensiivities: (1) 50 mV ; (2) 400 mV ; (3) 100 mV . Output rating I.H.F.M. \(\star\) Handsome finish Fascia plate and Knobs.
COMPLETE KIT OF PARTS WITH FULL
WIRING DIAGRAMS
INSTRUCTONS
15.50
Carr.
40p



THE'YORK'HIGH FIDELITY 3'SPEAKER SYSTEM
 cast chassis. Roll rubber cone surround for ultra low resonance, and ceramic magnet.
(2) 3 .way quatter section series cross-oter speaker. ( \(\$\) ) High ethiciency tweeter, (5) Appropriate quantity acoustic damping R.S.C. AIO 30 WATT ULTRA LINEAR HI-FI AMPLIFIER Hieghly sensitive. Puat-Pull high
 ECLss, 807,807 , Gz34, Separate Bas and Treble Controls
Seusitivity 36 militrolts. Suitable for High Impedance mic.
 Tape. Reserve L..T. nnd H.T. Ror Radio Tuner. Two inputar, with associated volume codro or that two scparate inputs such as Gram and "Mike" can be mixed 200-250 Y. A. A.C. For 3 \&is \(15 \Omega\)
speakers. COMPLETE KIT PARTS. WIRING DIAGRAMS, INSTRUCTIONS. ( \(1 \cdot 90\). Or factory 12 months' guarantee for \&19.75. Tech. figs. apply to factory built units. Carr. 65 p .
TERMS: Deposit \(£ 4\) and 9 monthly payments of \(22 \cdot 10\) (Total \(£ 22 \cdot 90\) ). Send \(8 . A . E\). for leaftet.竍
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{R.S.C. MAINS TRANSFORMERS} \\
\hline & Where neecesary. Primaries 200-230v. \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Socisg Screned.
MIDEET CLAMPED TYPE \(2: \times 24 \times 2\}\) in. \\

\end{tabular}}} \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{For Mulird 510 Ampiner} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{(e)}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
 \\
Btandard Pentude \(5,000 \Omega\) to \(7,000 \Omega\) to \(3 \Omega\) \\

\end{tabular}}} \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline &  \\
\hline &  \\
\hline \multicolumn{2}{|l|}{SMOOTHING CHOKES} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{SELENIUM RECTIFIERS}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline
\end{tabular}

\section*{BRADFORD}

BLACKPOOL (Agent) \& \& Electronics 227 Church St.
BIRMINGHAM \({ }^{30 / 31} \mathrm{Gt}\). Western Arcade (Half-day Wed.)
DERBY 26 Osmaston Ra. The Spot (Hall-day Wed.) Tel. 41361
DARLINGTON
EDINBURGH
GLASGOW 326 Arayle St. (Hall
HULL \({ }^{91}\) Paragon Street Halifday Thurs.). Tel. 20505


MAIL ORDERS to: 106 HENCONFER LANE, LEEDS 13.
Termas C.W.O. or C.O.D. Postage 25p extra
Trade supplied s.a.E. With enquiries. ERANCHES OPEN ALL DAY SATURDAY.

\section*{LEICESTER \({ }^{3}\)} LEEDS 5 -7 Coünty (Mecca) Arcade, Briggate (Half-day Wed.) LIVERPOOL \({ }^{73}\) LONDON 238 Edgware Road, W. 2 (Half-day Thurs.) Tel. 7231629 MANCHESTER 60A Oldham Streer (Half-day Wed.) Tel. 2362778 MIDDLESBROUGH \({ }^{106}\) Newport Rd. (Half-day Wed.). Tel. 47096 NEWCASTLE UPON 41 Blacket Street (Hpp. Fenwicks Store) NOTTINGHAM


\title{
G. F. MILWARD
}

Mail Orders: DRAYTON BASSETT, TAMWORTH. STAFFS

\section*{ELECTRONIC COMPONENTS}

Wholesale/Retail:

NEW LINES \(: 1!!\)
E.M.I. Speakers with twin

8 watt amplifiers complete
Cassette Tapes: C60, \(57 \mathrm{p} ; \mathrm{C} 90,75 \mathrm{p} ; \mathrm{C}_{120}, 90 \mathrm{p}\).
GOLDRING MAGNETIC' CARTRIDGES (G850)
Cardioid Ball type Mikes (usually \(\mathbf{£ 6 . 6 0 \text { ) }}\)
Intercom with Battery \& Lead
Neons, with resistor and 2 it lead
Speakers, 8 ohm. 21 in.
MUL
TRANSISTOR EQUIVALENT BOOK. LATEST EDITION
Mikes, Low impedance, dynamic stick type with on/off switeh Crystal, hand
lockable car aerials
Lockable car aerials
Dee-Gee 2 watt pencil bit soldering irons
Insulating Tape, \(\frac{1}{2}\) in wide, 10 yärd rolis
Miniature Output Transformers
Rotary Swltches, 4 pole 3 way pr 2 pole 6 wä
Switch cleaner, cerosol cans
RECTIFIERS 1 N4007 1200 peak volts, 30 amps peak current, 1 amp mean current. 100 for \(£ 7 \cdot 50,1,000 £ 50\)


\section*{VEROBOARD}
\(2 \frac{1}{2}\) in \(\times 1\) in \(\times 0.15\) in \(6 p \quad \sin \times 3 \frac{3}{2}\) in \(\times 0.15\) in \(28 \mathrm{p} \quad 3 \frac{3}{2}\) in \(\times 3\) in \(\times 0.1\) in 24 p
 \(\sin \times 2 \frac{1}{2} \mathrm{in} \times 0.15 \mathrm{in} 20 \mathrm{p} \quad 3 \frac{3}{2} \mathrm{in} \times 2 \frac{1}{2} \mathrm{in} \times 0.1 \mathrm{in} 21 \mathrm{p}\) Spot Face Cutter 38p. Pin insert Tool 48p. Terminal Pins ( 0.1 or 0.15 ) 36 for 18 p . Special Offer Pack consisting of \(52 \frac{1}{2} \mathrm{in} \times \mathrm{lin}\) boards and a Spot Face Cutter-50p.
RECORD PLAYER CARTRIDGES. Well below normal price: G90 Magnetic Stereo Cartridges, Diamond Needle, 6 mV output, ©2.75. ACOS GP 67/2 (Mono, Crystal) 75p. ACOS GP \(91 / 3\) (Compatible, Crystal) CI. ACOS GP \(93 / 1\) (Stereo, Crystal, Sapphire) CI.25. ACOS GP 93/ID (Stereo, Crystal,
Diamond) fl-63. ACOS GP 94/I (Stereo, Ceramic, Sapphire) El-50. ACOS GP Diamond) fl-63. ACES GP 94/I (Stereo, Ceramic, Sapphire) EI-50. ACOS GP
94ID (Stereo, Ceramic, Diamond) \&1.88. ACOS GP \(95 / 1\) (Stereo, Crystal with \(94 / I D\) (Stereo, Ceramic, Díamon
two L.P./Stereo needles) \(£ 1-25\).
TRANSISTORISED FLUORESCENT LIGHTS, 12 volt. All with reverse polarity protection. 8 watt type with reflector, suitable for tents, etc., 63. Postage/Packing 25p. Is watt type, batten fitting for caravans \&4. Postage/Packing 25p. 13 watt type, batten with switch. 22 in \(\times 2\) in \(x\) lin ES. Postage/Pac
THESE CAN BE SENT ON APPROVAL AGAINST FULL PAYMENT.

\section*{MULLARD POLYESTER CONDENSERS}

1,000 pf, 1,200pf, 1,500 pf, 1,800pf, 2,200pf, 15p per dozen (all 400V working). \(0.15 \mu 1,0.22 \mu\), \(0.27 \mu\), 30 p per dozen (all 160 V working). \(25 \%\) discount for lots of 100 of any one type.

\section*{RESISTORS}
\(\frac{1}{5}\) and \(\frac{1}{2}\) watt. Most values in stock. 75 p per 100 . 10 p per dozen of any one value. WIRE WOUND MAINS DROPPERS. Hundreds of values from 0.7 ohm upwards. I watt to 50 watts. A large percentage of these are multi-tapped droppers for at 50p per dozen.

SILVER MICA/CERAMIC/POLYSTYRENE CONDENSERS
Large range in stock, 75 p per 100 of any one value. \(15 p\) per dozen.
RECORDING TAPE BARGAIN! The very best British Made low-noise high-quality Tapel 5 in Standard 38p. Long-play 45 p. 58 in Standard 45 p. Longplay 60 p . 7in Standard 60 p . Long-play 82 p . We are getting a fantastic number still have a good stock at these low prices?

STOCKTAKING CLEARANCEI IMPOSSIBLE TO REPEAT! We have huge numbers of components in quantities too small to advertise individually. In order to "clear the decks" we have made up parcels containing a mixture of earbon and wire-wound resistors, electrolytic of normal price. It is emphasised that these are mixed parcels onlycontents cannot be stipulated! Sold only by weight.


\section*{FANTASTIC OFFER!} 4,000,000 DIODES TO CLEAR!

\author{
Germanium (OA 91 type) Gold Bonded Silicon (BA 144 type) Zener ( 400 mw . BZY 88 type) \\ 50p \\ 1,000 \\ £1 10,000.... £9 OF ANY ONE TYPE
}

300

TANTALUM CAPACITORS. COMPARE THE PRICE-OMLY IOP EACH : ! : ! !

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Miniature types} \\
\hline -022 \(\mu \mathrm{f}\) & 20 & volts \\
\hline .033 \(\mu\) f & 20 & volts \\
\hline \(047 \mu \mathrm{f}\) & 20 & volts \\
\hline .068 \(\mu\) f & 35 & volts \\
\hline - \(12 \mu \mathrm{f}\) & 35 & voits \\
\hline - \(15 \mu \mathrm{f}\) & 35 & volts \\
\hline - \(22 \mu \mathrm{f}\) & 50 & voles \\
\hline . 47 uf & 50 & volts \\
\hline . \(68 \mu \mathrm{f}\) & 35 & voles \\
\hline . 68 น f & 50 & voles \\
\hline \(1 \cdot 0\) - f & 35 & voles \\
\hline \(1.0 \mu \mathrm{f}\) & 75 & volts \\
\hline \(1 \cdot 8 \mu \mathrm{f}\) & 20 & volts \\
\hline \(2 \cdot 2\) ¢f & 20 & voles \\
\hline 2.7 ¢f & 50 & voles \\
\hline \(\mu \mathrm{f}\) & 12 & volts \\
\hline 3.3 ¢f & 15 & voles \\
\hline \(\mu \mathrm{f}\) & 20 & volts \\
\hline 4.7 Hf & 35 & volts \\
\hline 5.6 ¢f & 6 & voles \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 6 & Hf 35 & ts \\
\hline 8.2 & \(\mu \mathrm{f} 10\) & volts \\
\hline 8.2 & -1 35 & its \\
\hline 15 & -1f 35 & Its \\
\hline 18 & -f 35 & 年its \\
\hline 22 & uf 15 & olts \\
\hline 27 & Hf 20 & lts \\
\hline 56 & \(\mu \mathrm{f}\) & olts \\
\hline 56 & 20 & olts \\
\hline 150 & \(\mu \mathrm{f}\) & olts \\
\hline \multicolumn{3}{|l|}{Standard} \\
\hline \(6 \cdot 8\) & \(\mu \mathrm{f} 50\) & voles \\
\hline 7.5 & uf 20 & volts \\
\hline 8.2 & \(\mu \mathrm{l} 150\) & ds \\
\hline 12 & Mf 35 & olts \\
\hline 12 & uf 50 & its \\
\hline 39 & \(\mu \mathrm{ff} 20\) & alts \\
\hline 82 & \(\mu \mathrm{f} 20\) & \\
\hline 150 & \(\mu!15\) & \\
\hline 270 & \(\mu\) & \\
\hline
\end{tabular}

\section*{NEW! NEW! NEW! NEW!}

An aerosol spray providing a convenient means of producing any number of copies of a printed circuit both simply and quickly.
Method: Spray copper laminate board with light sensitive spray. Cover with transparent film upon which circuit has been drawn. Expose to light. (No need to use ultra-violet.) Spray with developer, rinse and etch in normal manner. Light sensitive aerosol spray
© 1.00 plus Developer spray

50p postage
SPECIAL 50p PACKS. ORDER 10 PACKS AND WE WILL INCLUDE AN EXTRA ONE FREE 1!|!


\title{
2 HZ TO 20 MHZ SOLID STATE BEAM SWITCH FOR ONLY £9.25. P.P. 25p.
}


20 HZ
We supply a completely assembled ready to connect and use Glass Fibre printed circuit board (size \(4 \frac{3}{4}{ }^{\prime \prime} \times 3 \frac{14^{\prime \prime}}{}\) ) with 47 high quality comporients consisting of 6 silicon epitaxial transistors, 10 silicon diodes, 21 carbon film resistors, 8 capacitors, a chop selector switch and shift control (these both on flying leads). British Manufacture-Sole Distributors.

Freq. Response Chop rate Input Impedance (both channels)
Input range (attenuators available at extra cost)
Power requirements System loss

9 to 15 volts Systenloss less than Completely encased with attenuators and BNC Connectors. \(£ 25\) each.

IKEGAMI 625 CAMERA with standard lens. f65.

ROHDE \& SCHWARZ - UHF RECEIVER, 280-940 MHZ ( 4600 MHZ ) Type USVD-(BN 1523). ONLY £450.

ROHDE \& SCHWARZ Z-g-DIAGRAPH, 300-2400 MHZ Type ZDD (BN 3562) 50 ohms. In FINE CONDITION. ONLY \(£ 275\).

REMSCOPE Storage Oscilloscope type SO1. Fine Condition complete with manual. \(\mathbf{f 1 2 5}\) ea. Cari \(£ 1.50\).

TRANSISTOR INVERTOR. 12 V to 1.5 KV 2 MA AC. Size \(1 \frac{1}{2}^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime} \times 4^{\prime \prime}\). ONLY £2.95P\&P 25p.

SOLARTRON Precision Millivoltmeter type VF252. Max. sensitivity \(\mathbf{1 . 5 m V}\) full scale. \(\mathbf{£} 30\) éa. Carr f1.50.

SOLARTRON LABDRATORY AMPLIFIER AWS 51A. 15 cs to 350 KHz 60 db attenuator in 1 db steps. Balance output, meter scaled in db's and volts. \(£ 12\) ea. Carr \(£ 1.50\).

SOLARTRON TFA CARRIER CONVERTER JX641.f50. Carr \(\mathbf{f 1 . 5 0 .}\)
Associated equipment available.
\begin{tabular}{|c|c|c|}
\hline = & MULLARD & \\
\hline \(47000 \mathrm{mfd} \mathrm{25V}\) & CAPACITORS 2200 mfd 100 V & 3150 mfd 40 V \\
\hline 28A & \[
10 \mathrm{~A}\left(50^{\circ} \mathrm{C}\right)
\] & \[
70^{\circ} \mathrm{C}
\] \\
\hline 60 p өа. P \& P 10p. & 75p ea. & 60p ea. \\
\hline
\end{tabular}

ELECTRON MICROSCOPE BY TESIA completely self-contained including optics on table size \(5 \mathrm{ft} \operatorname{Sin} \mathrm{x}\) \(2 \mathrm{ft} \sin \times 2 \mathrm{ft} \sin\) high. Full information and price, etc., on request.

\section*{THERMAL MICROPLOTTER BY PHILCO}
complete with calibrator and optics with BRYANS auto plotter type 2100 . P.U.R.

\section*{POLARD SPECTRUM ANALYSER}
complete with 5 plug-in units covering \(10-44,000 \mathrm{MHz}\). Price \(£ 425\).
MARCONI U.H.F. SIGNAL GENERATOR TF 1060 450 MHz to 1200 MHz . f220. Carr f1.50.

\section*{MARCONI FM/AM SIGNAL GENERATOR TF 1066/1}

10 MHz to 470 MHz . \(\mathbf{£ 3 8 5}\). Carr \(£ 1.50\).

\section*{MARCONI VTVM TF 1300 \\ As new. \(£ 50\) ea. Carr \(£ 1\).}

MARCONI WIDE BAND MILLIVOLTMETER TF 1371
£65. Carr \(£ 1.50\).

FREQUENCY METER by J.A.C: ELECTRONICS LTD. MODEL 331
- AS NEW. ONLY £475.

TE KTRO NIX Time märk unit type \(181 £ 75\). TEKTRONIX CA Plug-in £75.
TEKTRONIX Current probe type P6402 £240.

STABILIZED POWER UNIT for BC221 Freq. Meter, Slide-in and connect. ONLY £3.75p P \& P 75 p .

MARCONI L.C.R. Bridge type 868 f65. Carif \(£ .50\).

VALVE VOLTMETER type 202. 1.5V full scale to \(150 \mathrm{~V} A C\) and 1 V full scale to 100 V DC. Large mirror scaled meter. Standard mains input, supplied complete with probe, leads, etc. £15 ea. Carr \(\mathbf{£ 1}\).

RACAL VOLTAGE to FREQUENCY CONVERTOR SA503. 0.5 V to 500 V . \(£ 25\) ea. Carr \(£ 1\)
E.H.T. POWER UNIT. 0-40KV Variac controlled, metered. As new condition, \(£ 150\). Carriage at cost. 7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College) Tel.: Reading 582605/65916


Thermortat with Probo. Made by the famous Ranco Thermo
stat Co. Covers the range from approx. \(0^{\circ}-200^{\circ} \mathrm{C}\). variable by a control spindle, handlee currents up to 16 ampa
Length of capilary and sensor tube approz. 3 ft. 6 in These are ldeal for ovens and as a general purpose themo stat. Price 50 peach or 10 for 440 .
8mall Tuning Condenger as fited to many imported Japanese and Hong Kongendios. 2 -gang sbout 200 pF per gang
Sise approx. 1 in . by 1 in. With a in. diametor spindle with size approx. \(25 p\) each or 10 for 28.25.
Heat cover. Sink. Small type as used with 0081 etc. Price 5p each Heat 10 for 45 p .
Hish Voltage Condenser, 0.265 mifd. 1500 V RM8 which
means that these have a D.C. rating of over 4000 V . 75 p means that these have a D.C. rating of over 4000 V . 75 p each or tat for 126 . For
 cannister, 4-pin base. Price 20p each or 10 for \(91 \cdot 80\).
IF Transormers. 465 K.C. double tumed and made for
transistor circuita. 35 p per set of 3 . 10 aets for 23.15 . transistor circuits. \(35 p\) per set of 3.10 sets for \(23 \cdot 15\).
Speotacle Frames (No lenses). With bullt-in. hearing sids, The amplifer and batterybeing housed int the anms. Although these are complete heartog aide we are selling them purely for the sub-ministure componente they contain. We give no
guarantee that they are in working order also these may be guarantee that they are in worki
accond hand. Price \(82-50\) each.
Gtant Roy Counters. This 1 san \&-tn. diameter moving coll meter with extra long ( 260 deg.) pointer movement. 1 maA
full scato defeetion. New and guaranteed perfect. Probsbly coating anything up to \(£ 20\). Limited number only, our prict 35.50 each plus 40 p post and insurance.
Foot \(8 W i t o h . ~ T w i n ~ l e v e r s ~ e a c h ~ o f ~ w h i c h ~\)

QMB change-over switch. Price 900 each.
 complete with turntsble price \(22 \cdot 25\) each plus 20 p post and
insurance.
 control knob and colib rated dlal. Thls month's apecial
bargain at EOp. Vaefut in the Kitchen, Office and DarkProgrammmers. s reva per minute. Made by Magnetic
 around the shaft, Ideal for motivated lighting displays,
sequential owitohting etc. Drive motors are \(200-240 \mathrm{~V}\) ह0Hz Model A has 5 change-over contacts. Price \(\$ 1 \cdot 50\), Model B has 11 change-over contacts. Price \(\mathrm{ts}^{2}\).
Programmers. 6 reve per minnte. Similar to previous items but having 8 sets of change-over contacts. Mow
\(200-240 \mathrm{~V} 50 \mathrm{EK}\). Price
Block Heat each. Black Heat Elomenti. Coppor clad in in. tubular construction
replacements ha Tricity and manny other cookers aloo suit-
able if connected to able if connected in serles to heat airing cuphoards and for
other low temperature applicatlons. The following types
 long by 9 in. wide. 85 p each or 10 for \(87 \cdot 65\).
Radiant Cooker Rings. As atted to Tricity and many other popular cookera. We have two types. These are copper clad fiameter of 6 fl la . and the elements have been slightly Alatened to Increase radiation.
Backer Type 7Dl- 2000 watts has a metal cover, ise approz.
\(3 \mathrm{in} . \mathrm{by} 1 \mathrm{in}\) in by it in, over.the element connections, 80 in 3 in . Hy 1 in in. by \(1 t\) in. over.the element connections. 80 in
addition to being s replacement this could also quickly be addition to being a replacement this could alao quilckly be
made into a bolling ring ss it only needs mounting on a
minple inon simple iron frame. This element is rated \(200-210 \mathrm{~V}\) but It is
perfectly sare on 240 V and an these are ususily immerstat perfectly safe on 240 V and an these are uasilly aimmersta
controlled the lower voltage rating is not all that important. controlled the lower voltage rating is not all that important
Price 75 p each or 10 for 16.7 h . Backer Model: 7D1 Mk \(\Pi\) again 2000 watts rated but
has no cover oyer olement ends. Price 65 pach or \begin{tabular}{l} 
has no coner \\
10 \\
for \\
\hline
\end{tabular}
Trioltt Cookrer Elements. We have quite an assortment of
these and will describe them in future ingues-but if in the these and will describe. them in future ingues-but if in the
meantime you are needing these then please let us have a sketch, we may have the exact one in gtock.
gketch, we may have the exact one in stock.
gidid ofvith. '2-pole changeover panel mounting by two
6BA sorews. Size approx. 1 in. by in. rated 250 V Ismp.

 Snall Oroc. Clip
or 10 for \(45 p\).
Bell Transtormer. Normal mains input 4, 6, 8V output,
 \(20 \mathrm{~V} \frac{1}{2 m p}\). Price 60 p each or 10 tor \(65-40\).
 Dial Thermometer. Reading from \(200-525 \mathrm{~F}\). used on Trictty and other cookers. This has a flange and can be
mounted through a 17 in . hole or alternatively it can just be rested on the object whose temperature it li required to



Type "D". We call thio the Ire-stat as it cuts in and out at airound freezing point, \(2 / 3\) amps. Has many uses, one of length of our blanket wire ( \(16 \mathrm{gd}\). ) 50 p is wound round
 plus bp post. \({ }^{\text {Then }}\). Hquid-particularly those in glass tanks, rata or sinks
thermostat is held (half submerged) by rubber sucker or wire clip-ldeal for fish tanks-developers and chemical deg. F. Price 90p plue 10p post and insurance.

HIGH ACCURACY THERMOSTAT Usea differential comparator 1.C. with thermiator B5 probe.
Desiguer claims temperature control to within \(1 / 7\) th of a degree. Complete kit with power pack \(\mathbf{8 5} 50\).
Beenrded Tapas. Not cassettes but normal 5 in. gpools, 37 in. Popular and Clasical. We have over 150 titles now in
stock. Price 65p each or 5 for \(\mathbf{2 2} 50\). Send for list of titles atock. Price
interested.


\section*{TREASURE TRACER} Complete Kit (except wooden battens) to make the metal detector as , the drivalt in Practical Wireless August
issue. £8.95 plus 20 p post and issuc. £8


SMITHS 24-HOUR 2 ON/2 OFF TIME SWITCH Thle is the popular raodel, as used to the Autoset and Morphy
 FIRE ALARM BELL
Malns operated. Really loud ring \(6^{*}\) gong. Size approx. \(12^{*} \times 6^{*} \times 41^{\circ}\). suitable outside or inside. Heavy cast case with th conduit entry. Made
by A.F.A. Operates of \(200-240 \mathrm{~V}\) AC. \(£ 3.75\) plus 60 p .


\section*{MULLARD AUDIO AMPLIFIER} MODULE
Uses \& transistors, and has an output of 750 mW tnto
8 ohms speakera. Lnput suitable for cryatal mic. or plekup. 9 volt battery operated. size \(2^{\circ}\) long \(\times 15^{\circ}\) wide \(\times\) \(1^{18} \mathrm{high}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{INSTRUMENT SWITCHES} \\
\hline No. of Poles & 2 may & 3 wry & 4way & 8 way & 8 way & 8 way & 9 way & 10 way & 12 way \\
\hline 1 pole & \({ }^{60 p}\) & \({ }^{80} \mathrm{p}\) & 60p & 60p & 80p & \({ }^{80}\) & \({ }^{60 p}\). & 60 p & p \\
\hline 2 poles & 80 D & \({ }^{609}\) & 80 D & \({ }^{600}\) & 800 & 80 p & \({ }^{600}\) & & \\
\hline 3 poles & \({ }^{60 p}\) & 60 p & \({ }^{60 p}\) & \({ }^{60 p}\) & \({ }_{11}\) & 81 & 81 & 81.40 & 81.40 \\
\hline 4 poles & \({ }^{800}\) & \({ }^{600}\) & \({ }^{60 p}\) & 11 & 81.40 & 81.40 & \$1.40 & 81.80. & 81.80 \\
\hline 5 poles & 600 & 600 & \({ }^{21}\) & \({ }^{11}\) & 21.40 & 21.40 & \$1-40 & 82.20 & 22.20 \\
\hline 6 poles & \({ }^{80}\) & 41 & \({ }^{1}\) & 11 & 21.40 & S1.40 & 51.40 & 82.60 & 82.60 \\
\hline 7 poles & 60 p & 21 & \({ }^{21}\) & 81.40 & 81.80 & 21.80 & 81.80 & & \\
\hline 8 poles & 31 & 21 & 21 & 21.40 & 81.80 & 21.80 & 21.80 & & \\
\hline 9 poles & 21 & 81 & 81 & 21.40 & 48.20 & 22.20 & 220 & & \\
\hline 10 poles & 21 & \({ }^{11}\) & 21.40 & 21,80 & 22.20 & 8.20 & 82-20 & & \\
\hline 11 polea & 21 & 21.40 & 81.40 & 81.80 & 22-80 & 22.80 & 88.60 & & \\
\hline 12 poles & 81 & 21.40 & 21.40 & 21.80 & \(22 \cdot 60\) & 12.60 & 22.60 & & \\
\hline
\end{tabular}

\section*{2 AMP VARIAC}

Variacs without a doubt are a most useful device and no workshop should be without two or three of them. spacial purchase ensbles us to oner ex-equipment but mechanically and

\section*{THIS MONTH'S SNIP}

\section*{FLUORESCENT TUBES 15p EACH}

Here is a golden oppoitunity to light up those murals and pelmetís and to put lights
where you have often planned to have them or if plant growlag fo your hobby why not where you have often planned to have them or if plant growlag I I your hobby why not
install a bank over your f reing bench-remember we can supply the control gear at very low prices too, ( \(\{1\) per set). This is a sperial spring Offer Firat grade tubes all by best makers and all at the low price of 15p each in boxed lots
of 24 of similar type or 20 g each for less than 24. All the tubes are perfectly standard of 24 of aimillar type or 20 g each for less than 24 . All the tubes are perfectly standard)
having normal blopto ends sind all 8 re white (coloured tubes available if required). Following types avaluble: 18,16 watt; \(24^{\prime \prime}, 40\) watt; \(36^{\prime \prime}, 40\) watt; 39 . ' Sorry but All at the same low price and even lower prices if you buy a large quantily. Sorry but
we cannot despatch less than a' boz of 24 as the cost of carriage and packing would be prohibitive, however you may mix the 24 to four requirement and the speclal price
for a mived 24 would be 84 . If not collecting please add 50 per bor per 200 mileas.

包

\section*{BATTERY CONDITION TESTER}

Made by Mallory but auttable for all batteries made by Ever Ready and others, most of which are zinc carbon type but also mercury manganese puts a dummy load on the battery and the meter scale ladicates the


\section*{DISTRIBUTION PANELS}

Just what you need for work bench or lab. \(4 \times 13 \mathrm{mmp}\)


\section*{HONEYWELL PROGRAMMER}

This is a drum type timing derice, the drum being callbrated in
They are eloso arranged to allow 2 operatlons per wivitch per rotation. by the trips thus 15 circuits may be changed per revolution. Drive motor is mains operated 5 revs. per chin. gome of the many uses of this timer are Machinery control, Boilor firing, Dlapensing and Vending machines, Displsy lighting animated signs, 818 galling etc. plue 250 post and lus. Don't miss this terrifle bargala.
2,400ft. of the Beat MOMPUTER TAPE
 cassette. fin. Wide 81.00 plus 30 p post and insurance with casaette with wide 85 p plus 25 p post and \(\ln\) gurance with cassette. Bpare spools and c
\(-1 \mathrm{ln} \cdot 75 \mathrm{p}\). ln . 75 p each plus 20 p post and Insurance.


\section*{CAPACITOR DISCHARGE CAR IGNITION} This system which has proved to be amazingly efficlent and
rellable was firstdescribed to the Wirelese World about a year ago. We can supply kit of parts based on circult a (Praratical
Wirelese). Price \(84 \cdot 95\). When ordering please state whether for
 Wirelecs). Price \(£ 4 \cdot 95\). When ordering pleage atate whether for
ma. De-luae model \(£ 6 \cdot 95\). De-luxe and made-up ready \(\& 8 \cdot 95\). positive or negative syateme.
All plus 30 p post and packing.


SMITHS 20 .AMP CLOCK SWITCH Thls is a tamous Smiths Clock with 20 amp nlour switch. (Amitch onfort time is con-
thatiable.) A beantiful unit. OHered at less than the cost of the chock
"alone. 28 with application notes and
circuits. Glass front and bezel 75 . circuits. Glass front and
Post and
marurance 20 p .

\section*{\(\square!\)}

\section*{SOLDER GUN}

A must for every busy man, gives almot instant heat almo illuminater Job.
Dual heat \(100 / 140\) watt \(£ 3 \cdot 75\) plas post \& ins. 20p. BIG JOB 250 wat Dual heat \(100 / 140\) watt \(£ 3 \cdot 75\) plus poast \& ins. 20p. BIG JOB 250 watt
model. \(£ 4.75\) plus.poti o ling. 40 p .


DRILL CONTROLLER
New LkW model, Electronically changes apeed
from approximately 10 revs. rom approximately 10 revs.
o maximum. Full power at all eeds by finger-tip control. MAINS OPERATED MAINS OPER \(220 / 240 \mathrm{v}\). 50 cycle solenold with operation. Closes 4 circuits each ated at 10 amps. Extremely well asde by a German Electrical 2 in. El each.
DOUBLE LEAF CONTACT


AUTO-ELECTRIC CAR AERIAL with danhoan control swith-Auliy extenc positive or negative earth. Supplied complete with ftting ingtructions and ready wired dash
board awitch. 25.75 plus 25 p post and ins


MICRO SWITCH
 5 amp. changeover contacts, 9 p each, 81.00
doz. 15 amp . on/ofl 10 p each or \(£ 1.05 \mathrm{dO}\)
15 amp . amp. changeover \(15 \mathrm{p}, 10\) for 10 en \(\mathrm{El} \cdot 35\). MINIATURE WAFER 2 pole, 2 way- 4 Wole 2 way 2 pole, 2 way-4 pole, 2 way- 2 pole, 3 way-
4 pole, 3 way- 2 pole, 4 way- 3 pole, 4 way2 pole, 6 way 1, pole, 12 was. All at 18 y
each, fl 180 dozen, your assortment.
\begin{tabular}{|c|}
\hline WATERPROOF REATING \\
ELRMEAT \\
26 yaris length 70W, Belf-regulating \\
temperature control. 50p post free.
\end{tabular}

BLANKET SWITCH Double pole with neon let into side of luminous
in dark. Ideal for dark room lighto or for use with waterproor element new plastic case. 25 p;
10 for 22.253 heat model \(38 p ; 10\) for \(23 \cdot 42\). HEARING AID AMPLIFIERS (Ris behind ear deaf alds) 9 tranalstore on thay P.C. board With volume control-whole thing only about hal \({ }^{\text {as big as }}\)
Ozo cube. 81.75 or with sub-miniature microphone and L.B.
attached 83.50 . ELECTRIC CLOCK WITH 20AMP. SWITCH
 Is another time or alarmperiod a bell wil soound. Oifered at only At the end of the
regular price fR . 50 , iess the than the value of the elock
nlone-post and ing. R Abmost zero resistant CLL

 CAR ELECTRIC PLUG Itte in place of cigarette lighter. Usefin Ite in place of cigsette lighter. Usef
method for making a qulck connection into
the car electrical ayatem. 38 each or tho car electrin
10 for \(\& 3.42\).
QUICK CUPPA
Mini Immerslon Heater. 350w. 200/240v. Bolis full cup in abont two minutes. Uee any
socket or lamp holder. Have at bedslde for tecket or lamp holder. Have at bedslde for
tea, baby food, etc. \(\$ 1 \cdot 25\), poat and
insuraince 14 p . 12 V car model also available. insure price. Jug model also a vaitable \(\ell 1.50\)
pane \(P\). \(P\). 14 p .
SNAP ACTION SLIDE SWITCH Rated 5 . 240 v . Made by Arrow. Type
Atted in the handles of electrio drills,
vacuut

\section*{NUMICATOR TUBES}

POCKET CIRCUIT
TESTER
Test contlnufty for any low reai

ance circuit, house miring, car
electrics, Teats polarity of dlodea and rectifers. Also ideal size for conversion to sign
300 or 2 for 50 p . Post paid.
§ 12 WAY SUBMINIATURE
MULTI-CORE CABLE
7.0076 copper w.r.N. each core P.V.C. Insulated and on
difierent colour. P.V.C. covered overall and approx. \(3 / 16 \mathrm{in}\)
thick. Prin thick. Price 200 per yard.

\footnotetext{
Where postage is not stated then
orders over \(t 5\) are post free Below orders over ES are post free. Below
E5-add 20p. S.A.E. with ES-add 20p. S.A.E. with enquiries
}


\section*{}

\section*{\(\underset{\substack{t \\ 0,05 \\ 0.85}}{5}\) \\ FULLY GUARANTEED \\ herid \\ FIRST QUALITY \\ VALVES}
\begin{tabular}{|c|c|c|c|}
\hline 38 & \(5 \times 8 \quad 4.60\) & \(6 \mathrm{RS7}\) & \\
\hline 0.45 & 5Y3GT 0.40 & 6BW6 & \\
\hline 1.00 & \(\begin{array}{lll}523 & 0 \cdot 60\end{array}\) & 6BW & \\
\hline 0.35 & \(\begin{array}{ll}5240 & 0.40\end{array}\) & 6BX6 & \\
\hline 0.70 & 6/3012 \(0 \cdot 80\) & 6 B & \\
\hline 1.00 & 6A8G 0.40 & & \\
\hline 0.38 & 6AB4 \(\quad 0 \cdot 35\) & 6 BZ & \\
\hline 0.35 & 8AC7 0.40 & 6 C & \\
\hline 0.35 & baf4a 0.55 & 6 CB & \\
\hline 0-35 & bags 0.22 & 60 & \(0 \cdot 35\) \\
\hline 0.40 & \(6 \mathrm{~A} 77 \quad 0.40\) & & \\
\hline 0.40 & 6AG6 0.50 & & \\
\hline 0.40 & 6AJ8 0.30 & 6C67 & \\
\hline 0.50 & 6AK5 0.35 & & \\
\hline 0.50 & 64 K 5 V & 8CL & 0.55 \\
\hline 0.50 & 0.45 & 6 CU & \\
\hline 0.20 & 6ak6 0.60 & 6CW4 & \\
\hline 0.55 & 6AL3 0.43 & 6СYб & \\
\hline 0.60 & 6als 0.20 & -6. & \\
\hline 0.45 & BAM5 0.35 & 6D3 & \\
\hline 0.40 & 6AM6 0.38 & 6DCe & \\
\hline \(0 \cdot 30\) & 6aN8 0.55 & 6 Dk & 0.50 \\
\hline 0.30 & 6AQ5 0.38 & 6DQ6 & \\
\hline 0.30 & 6AQ6 0.65 & 6E5 & \\
\hline 0.50 & 6AR5 0.45 & 6EA & \\
\hline \(0 \cdot 30\) & 6AR6 0.55 & 6EH7 & \\
\hline 0.60 & 6AR11 1.25 & 6Ed7 & \\
\hline 0.50 & 6A85 0.45 & 6F5 & 0.7 \\
\hline 0.50 & 6A36 0.40 & 6F60 & \\
\hline 0.50 & 6A370 0.85 & 6 F11 & \\
\hline 2.75 & 6ATG 0.35 & \(6 \mathrm{6F13}\) & \\
\hline 0.80 & gausata & 6F14 & \\
\hline 4.00 & \(1 \cdot 25\) & 6 Fl 15 & \\
\hline 0.45 & fave 0.25 & \({ }^{6 \mathrm{FP} 17}\) & \\
\hline 0.70 & 6avscta & 6 F 18 & \\
\hline 0.38 & 0.8 & 6 F 22 & \\
\hline 3.20 & fave 0.30 & 6 Fr 23 & \\
\hline 8.00 & 6AW8A 0.60 & 6 F 24 & \\
\hline 0.40 & 6AX4GTB & \(6 \mathrm{~F}^{25}\) & \\
\hline 40 & . 60 & 6 F 28 & \\
\hline 0,75 & \(6 \mathrm{AX5GT}\) & 6GK0 & \\
\hline 3.00
0.25 & 6B4G \(\quad 1.00\) & \({ }_{635}\) & \\
\hline 3.00 & 6B7 0.40 & 6J6 & \\
\hline 0.50 & 6B8G 0.25 & 6.5 & \\
\hline 0.50 & \({ }^{68 \mathrm{Bab}} 0.25\) & \(6 \mathrm{K60}\) & \\
\hline 0.35 & \({ }_{6 B 46} 0.25\) & 6 K 7 & \(0 \cdot 3\) \\
\hline & 6BE6 0.30 & \(6 \mathrm{K8C}\) & \\
\hline 13.5 & GBF5 1.00 & \({ }^{6 K 8 G}\) & - \\
\hline & 6BF6 0.55 & 6K23 & 0.8 \\
\hline 6.00 & 6BH6 0,75 & 6K25 & \\
\hline 4.50 & 6BJ6 0.50 & 6 L 7 & \\
\hline 0.48 & 6RK4B 1.25 & 6L18 & \\
\hline 0.50 & ABK7A 0.80 & 6LD2 & 0.5 \\
\hline 0.60 & 6BL7GTA & \(6 \mathrm{N7}\) & \\
\hline 254M & 0.80 & 6P1 & 0 \\
\hline 2.50 & 6BN6 0.45 & 6 P 28 & \(0 \cdot 6\) \\
\hline 5.00 & 6BQ5 0.25 & 607 & . \\
\hline 8.00 & 6BQgetb & 8R7 & 04 \\
\hline 0.75 & 0.75 & 68 & 0.4 \\
\hline 0.35 & 6BQ7A 0.45 & 6844 & 0.6 .5 \\
\hline 45 & 6BR7 0.80 & 68 & \\
\hline 40T 0-50 & 6BR8 & 6sci & \\
\hline
\end{tabular}
 \begin{tabular}{l|l|l|ll} 
PCF201 & 0.75 & PZ30 & 0.35 & UBF11 \\
PCF800 & 0.80 \\
PCF801 & 0.50 & QQV02.6 & UBL21 & 0.65 \\
PCF & 2.25 & UC92 & 0.60
\end{tabular}
 \begin{tabular}{|c|c|cc} 
PCF802 0.50 & QQV03-10 & UCC85 & 0.40 \\
PCF805 & 0.80 \\
PCF800 & 0.70 & 1.25 & UQC80 \\
UCF803-20A & UCH21 & 05 \\
\hline
\end{tabular}

\section*{OUR NEW 197I/1972 CATALOGUEIS NOW READY. PLEASE SEND STAMPED AND ADDRESSED QUARTO ENVELOPE FOR YOUR FREE COPY}

PLEASE NOTE THAT VALVES LISTED ABOVE ARE NOT NECESSARILY OF U.K. ORIGIN
Head Office
44a WESTBOURNE GROVE, LONDON, W. 2

Tel.: 727 5641/2/3
Cables: ZAERO LONDON
Retail branch. (personal callers only) 85 TOTTENHAM COURT RD.
LONDON W.2. Tél: 5808403

\title{
APPOINTMENTS VACANT
}
dISPLAYED SITUATIONS VACANT AND WANTED: \(£ 9\) per single col. inch.
LINE advertisements (run-on): 50p per line (approx. 7 words), minimum two lines.
Where an advertisement includes a box number (count as 2 words) there is an additional charge of 25 p .
SERIES DISCOUNT: \(15 \%\) is allowed on orders for twelve monthly insertions provided a contract is placed in advance.
BOX NUMBERS: Replies should be addressed to the Box numbcr in the advertisement, c/0 Wireless World, Dorset House, Stamford Street, London, S.E.I.
No responsibility accepted for errors.

Advertisements accepted up to WEDEESEDAY, 12 p.m., 5 th APRIL for the MAY Issue, subject to space being available. subject to space being availabic.

\section*{HSTRUMENT TECHIICIAIS}

We have vacancies in our Instrumentation Laboratory for Staff Technicians with experience of the installation and operation of test measurement systems, incorporating mainly electrical/electronic instruments. Candidates should have practical ability, and a minimum educational standard of ONC or equivalent and should preferably have served an apprenticeship in electronics or as instrument mechanic.
The Company operate an excellent Pension Scheme and assistance will be given with removal expenses to Barrow.

This is not only an opportunity to work in one of the most technically advanced Shipyards in the U.K. but also to enjoy the amenities offered by the neighbouring Lake District National Park.
Applicants should write, stating qualifications, experience to date, age and present salary to:-
C. H. Purkiss', Staff Personnel Manager, (Ref. S.149/IT/DQ), VICKERS LIMITED. Barrow Shipbuilding Works, P.O. Box 6, Barrow-in-Furness, Lancashire.

\title{
MCTBS leaders' in marine technology SHIPBUILDING GROUP
}

\section*{SURREY EDUCATION COMMITTEE GIPSY HILL COLLEGE} Kenry House, Kingston Hill, Kingston upon Thames TECHNICIAN
required for the Educational Aids Department. Salary on Technical Scale 2/3, from f 1.038 to fi, 395 plus \(f 105\) London allowance. Qualification and experience in electronics are expected. An interest in photography or graphics would be welcome.
For further details apply to the Senior Administrative Officer at the College, telephone 01-549 1141 .

\section*{CHARLES AIREY ASSOCIATES LTD.}
of 155 Knightsbridge, S.W. 1.
Have an ever changing register of vacancies within the Electronics Industry.

Current vacancies-include :
1. Development Engineers for Radio Paging Systems.
2. Design Engineer for Colour TV to \(£ 2,500\).
3. Post Design Services Engineer HF, SSB Equipment to \(£ 1,800\).
4. Installation/Maintenance Engineers for communal aerial systems or wired systems in Hotels.
5. Installation or commissioning Engineers for PABX crossbar strouger or TXE2 exchanges.
Whatever your skills or experience, write or telephone:

David Hilton or Judy Hortin 01-581 0286

\section*{Electronic Test Engineers}

Pye Telecommunications of Cambridge has immediate vacancies for Production Test Engineers.
The work entails checking to an exacting specificationVHF/UHF radio-telephone equipment before customer delivery; applicants must therefore have experience of fault finding and testing electronic equipment, preferably communications equipment. Formal qualifications while desirable, are not as important as practical proficiency. Armed service experience of such work would be perfectly acceptable.
Pye Telecommications is the world's largest exporter of radiotelephone equipment and is engaged in a major expansion programme designed to double present turnover during the next five years. There are therefore excellent opportunities for promotion within the company. Pye also encourages its staff to take higher technical and professional qualifications.
These are genuine career opportunities in an expansionist company, so write or telephone without delay for an application form to:
Mrs. A. E. Darkin,
Pye Telecommunications Limited,
Cambridge Works, Haig Road, Cambridge.
Telephone: Cambridge 51351 Ext. 355

\title{
Shore jobs \\ for Radio Officers.
}

If you'd like a job ashore, at a United Kingdom Coast Station, the Post Office will start you off on \(£ 1,252 \cdot 13\) - \(1,576 \cdot 60\), depending on age, with annual rises up to \(£ 2,145 \cdot 75\) (compulsory pension contributions are included in these amount\$). In addition you would receive payments that can be as much as \(£ 300\) or more a year for attendances during evenings, nights, Saturday afternoons and Sundays. Opportunities also exist for overtime.

There are good prospects for promotion to higher posts.

You will need to be 21 or over, with a 1 st Class Certificate of Competence in Radiotelegraphy issued by the Postmaster General, or the Ministry of Posts and Telecommunications, or a

Radiocommunication Operator's
General Certificate issued by, the Ministry
of Posts and Telecommunications, or an equivalent certificate issued by a Commonwealth administration or the Irish Republic.

Find out more by writing to:
The Inspector of Wireless Telegraphy, MTR, Wireless Telegraph Section (WW), Union House, St. Martins-le-Grand, London; EC1A 1AR.


\title{
Electronics Service Engineer for work on digital/analogue data recording systems
}

EMI Electronics Limited has a vacancy in its Installation and Maintenance Division for an Engineer to be responsible for the installation, commissioning and maintenance of digital/ analogue data recording systems. He will be based at Hayes, Middlesex, but the position will involve work in the field in the U.K. as well as occasional overseas visits.

Applicants, aged 25-45, should have reached" H.N.C. Electronics standard, and should be conversant with tape transport mechanisms.

Starting salary will be up to \(£ 2000.00\) per annum, assistance will be given with removal expenses. Company benefits include free Life Assurance and a contributory Penșion Scheme. Please apply in writing, stating brief career details, or ring :-

\footnotetext{
EnI
R.C. Dwyer, Personnel Department, EMI Limited, Hayes, Middlesex. Tel. No. 01-573 3888 Ext. 2887.
}

\section*{UNIVERSITY of KENT}

\section*{AT \\ CANTERBURY}

Applications are invited for the posts of EXPERIMENTAL OFFICER and TECHNICIAN in PHYSICS for work on the development, construction and maintenance of equípment associated with research projects. Experience in electronics would be an advantage. A degree would be desirable but not essential for the post of Experimental Officer and a national díploma qualification desirable but not essential for the post of Technician. Appointments Initially for one year with the possibility of renewal, on scale £990-£1902 for the post of Experimental Officer and \(£ 1041-£ 1410\) for the post of Technician.

Application forms and particulars from the Assistant Registrar, Faculty of Natural Sciences, Chemistry Building, The University, Canterbury, Kent, quoting Ref. A.5/72 for the post of Experimental Officer and T.72/1 for the post of Technician. Closing date 31st March.

\section*{GRANADA TELEVISION TRAINEE SOUND ENGINEERS}

We, are looking for bright young men to train as Assistant Engineers (Sound) in our Manchester Studios. The people we appoint will be electronics engineers in the age range 20 to 25 years, possessing at least a physics ' \(A\) ' level or an ONC in physics or electrical engineering. Although short on practical experience at a professional level, they will be knowledgeable about the theory of sound studio techniques and equipment. They will also be able to demonstrate an informed interest in some field of music.
Appointments will be at a salary of £1,670 per annum, increasing to \(£ 2,117\) upon satisfactory completion of a nine month training period.
We offer excellent working conditions, including four weeks paid holiday and generous Granada Group pension and life assurance benefits.
Write with full details to:
\[
\begin{aligned}
& \text { Robert Connell } \\
& \text { Granada Television } \\
& \text { MANCHESTER M6O 9E.A }
\end{aligned}
\]

\section*{ROYAL HOLLOWAY COLLEGE (University of London) Englefield Green, Surrey. \\ SENIOR \\ INSTRUMENT TECHNICIAN}
for operation, maintenance and repair of scientilic instruments. Salary on the scale \(£ 1,398-£ 1,707\).
Applications together with the names and addresses
of two referees should be sent to the Personnel Officer:

\section*{NEVE \\ requilre an Electronic Design Engineer}
to work on advanced circuits for professional audio systems of which previous experience is essential. A thorough background in the design of linear systems is necessary, and afamiliarity with analogue/ digital data processing techniques desirable. A good ear and an appreciation of music would be an advantage. The successful applicant must be able to act on his own initiative. Good salarynegotiable at interview.
THE SOUND OFNEVE IS WORLD WIDE

\author{
Apply to: \\ Personnel Manager, \\ NEVE ELECTRONIC LABORATORIES limited \\ Melbourn, Royston, Herts. Telephone: Royston 60776
}

\section*{Benciif from the TV Bassefte Revolution}

In the fields of entertainment, education and industrial training, the future for the Electronic Video Recording System is unlimited. The EVR Partnership, consisting of ICI and CIBA/GEIGY, has established up-to-date facilities for cassette production at Basildon and the people who join us now will benefit from our growth and share in our success.

\section*{SENIOR MAINTENANCE ENGINEER £2,420-£2,900 p.a. + shift pay.}

To be responsible for the maintenance of a wide range of highly sophisticated electronic equipment with the assistance of a team of maintenance engineering staff. A minimum qualification of an HNC or its equivalent, together with several years experience of the maintenance of television equipment is essential. Knowledge of Quadruplex Video Tape Recorders and Flying Spot Telecine equipment would be advantageous.

\section*{ELECTRON BEAM RECORDER ENGINEER £2,000-£2,400 p.a. + shift pay.}

To be responsible for the maintenance of Electron Beam Recorders used to produce master film from television signals. Applicants must be qualified to at least HNC level and have experience in the design or maintenance of video equipment using modern semiconductor circuit techniques. Some experience of, or recent training in television engineering, electron physics, vacuum engineering, photography and servo systems would be an advantage. Detailed training will be given to well qualified engineers having a very good knowledge of the principles, but lacking in practical experience of some of the techniques mentioned above.

\section*{Video Recorders and Telecine Equipment Staff}

\section*{ENGINEER}

\section*{£2,000-£2,400 p.a. + shift pay.}

To be responsible for the setting up, first line maintenance and operation, including some editing of video tape recorders and telecine equipment. Experience of the operation or maintenance of similar equipment and the good understanding of colour television principles is essential. An HNC or its equivalent is desirable.

\section*{ASSISTANT ENGINEER}

\section*{£1,600-£1,960 p.a. + shift pay.}

To work with the Engineer on the same operational tasks. A minimum qualification of ONC or its equivalent, together with a good understanding of colour television principles is essential. Some previous experience of the operation or maintenance of television studio equipment is desirable.
All these posts involve shift work at our new Processing Station at the new town of Basildon. Salaries, working conditions and opportunities for promotion are excellent and for most of the people who join us, there are houses available to rent.

Suitably experienced people are invited to write, quoting Ref: MM4/WW, giving details of their qualifications and experience, to:


The Personnel Manager, EVR Processing Station, Christopher Martin Road, Basildon, Essex.
An ICI and CIBA/GEIGY Partnership


\section*{TEST ENGINEERS}

The leading U.K. Manufacturers of high grade T.V. monitors and ancillary T.V. studio equipment require Test Engineers for their rapidly expanding test department.

Situated in the Berkshire town of MAIDENHEAD the company offers pleasant working conditions, good salaries, and a friendly environment.

Duties will cover the testing of our complete range of equipment.
Previous experience on television equipment is not essential but candidates must have a thorough knowledge of electronics and testing procedures. Reply to:

\section*{PROWEST ELECTRONICS LTD.,}

Boyn Valley Road, Maidenhead, Berks.
Telephone: Maidenhead 29612

\section*{H.M. GOVERNMENT COMMUNICATIONS CENTRE}
has vacancies at Hanslope Park for

\section*{TELECOMMUNICATION SCIENTISTS/ENGINEERS}

Posts are available in teams engaged in the development and trials of communication equipments. Experience in Audio, RF, VHF, UHF or Digital techniques is required. Age: 25-35 years. Qualifications: A Degree in Telecommunications or Electronics is preferred, HND or C \& G Full Technological Certificate acceptable. Experience : 3-5 years work in communication or electronic design. Salary: Depends on qualifications and experience. Normally in the range of \(£ 1,810-\) £2,350 p.a. but a few Senior posts are available for exceptional candidates. Applications: with personal details, qualifications and experience to:

Personnel Officer,
HMGCC, Hanslope Park, Wolverton, Bucks.

\section*{FOREMOST \\ IN THE \\ UNITED \\ KINGDOM}

IN CONSTANT TOUCH WITH
EVERY EMPLOYER OF
EXPERIENCED ELECTRONICS
ENGINEERS
Our professional placement service is specialised, confidential and completely free


Phone us at any time or write quoting EW 103
ELECTRONICS
APPDINTMENTS LTD
noftman hicuse
105.109 STRAND-LONDON-WCE

TE. On-836555?

\section*{HI-FI FANATCC NEEDED}

We need a Readers' Queries Manager who can deal with a wide variety of readers problems concerned with hi-fi. The applicant must have a detailed knowledge of current audio and radio products both from the technical and buying view-
point. He will work in coniunction with two of Britain's leading hi-fi magazines.
The ideal candidate will be under 30 and will have had experience of the hi-fi industry from either the retailing or the production sides. He must be and concise fashion and must also be able to show that he is an enthusiast for high quality sound reproduction.
Salary is negotiable. Write to Box No. 1713.

\section*{BUSINESS OPPORTUNITY \\ Earn a substantial extra income through a fascinating part-timie business of your own that you could share
with your wife and operase from your own home. This is an outstanding business opportunity with rewards exceeding 65000 per annum at the higher levels. We
are looking for organisational and managerial ability. are looking for organisotional and manage \\ VISTA MARKETING MAIDENHEAD 28754}

Small specialist electronic manufacturing company requires

TEST ENGNEIR
with good basic understanding of transistor pulse circuitry. Interesting and varied work. Commencing salary around \(\$ 1,500\).

Hounslow 01-570 4065

\section*{University of Newcastle upon Tyne Department of Photography and Teaching Alds Laboratory Film and Television Section \\ ENGINEERING MANAGERTV and FILM}

Required, as soon as possible, to assume overall
responsibility for the operasional avallability of black and white studios and mobile unit, advise on setting up, mainzaining and operating addizional small scale and to organise the training of academic and rechnical staff within the University, and occasionally from elsewhere, in the operation of CCTV equipment. A degree
or HNC with endorsement or similar qualifications are desirable, with studio and O.B. experience with the BBC or iTV or a large CCTV studio operation in a responsible operational engineering role in both sound
and vision. The ability to undertake practical CCTV and vision. The ability to undertake practical CCTV during programme recording and editing is essential. Salary on the scale \(\mathbb{K 2 , 0 4 0}\) to \(\mathbf{E 3 , 0 0 3}\) (to be revised Under recent salary award). Membership of F.S.5.U. required.

Applications ( 3 copies) giving full details of qualificareferees should be sent not later than 29 th March, 1972 to The Registrar, The University, Neweastle-upon-Tyne NEI 7RU, from whom further particulars may be obtained. Please quote reference W.W.

\begin{abstract}
R EDIFON TELECOMMUNICATIONS LTD. R fully experienced ENGINEEXS commencing salaries. We would particularly welcome enquiries from ex-Service personnel or personnel about to leave the Services. Please write, giving full details to-The Recruitment Officer, Redifon Telecommunications Ltd., Broomhll Road, Wandsworth, S.W.18. [21. TECHNICIAN with some experience of electronic engineering required for postgraduate department concerned with experimental media. Interest in developof light and sound visual media an advantage. Starting salary between \(£ 1,200-£ 1,250\) pa according to qualifications and experience. Please send rull details or age, Registrar (Adminjstration), Royal College of Art,

SITUATIONS WANTED
ENGLISH Radio Technictan, ex-R.EM.E., and
 time service department, based in Denmark, for an electronic firm exporting to Europe. Box No. 1732 .
ARTICLES.FOR SALE
brand new to full grecifications all devices
10p each: OC71, OC45. 15p each: ME1001, ME1002, ME2001,


ME6101, ME8001, ME9002, ME9021, ME9022. 221p each:
ME0404-2, ME9001. 23p each: ME0493, ME1100, ME1120,
ME3001, ME3011, ME6102, ME8002, ME8003, 24p each:
ME0411, MT0414, MT4104. \(25 p\) erch: ME0401, ME0402, ME041, MT041, MT4104, 255 eqch: ME0401, ME0402,
ME0412, ME0463, ME0491, ME0492, MT0413, MT4103,
87p each: ME501, ME3002, MT0404, MTG003, 27p each: ME501, ME3002, MT0404, MT6003. 30D each: ME502, MT0404,-2, MT3011, MT6002. 38p each: ME503, MF511, MP8121, MT0411, MT0463, MT4101, MT9002, Quantity Price List available for industrial and trade users. TECTRONTC sTPPITES PO OOZ
\end{abstract}

A ARVAK ELECTRONICS. 3-channel sound-light £ 132 . -74 Bedford Avenue, Barnet, Ferts. \(01-4491268\)

A QUANTITY of new EMI Vidicons type 9677 C and A \(9677 \mathrm{M}, 35 \%\) off list price, also a number o lenses, GPO approved line transmission amplifiers fo CCTV along standard GPO lines. Also two broadcast standard 14 in . Monitors. Tel. 7947350 during office
hours.
\([1701\) hours.
A UDIO MIXER UNITS AND KITS, Partridge ElecA tronics, Dept. WW 12, 21-25 Hart Road, Thundersley, Benfleet. Essex. Tel. South Benfleet (STD 037-45-3256) For more details see w.w. March issue.
A RMATURE winding machine. Automatic winding A by electrical and hydraulic programme, fitted with electronic digital counter. To clear \(£ 30\). Also "QUICK ng. To clear \(£ 25\).-102 Parrswood Road, Withington Manchester 20. Tel. 061-224 3553 . [1672 BATTERY CHARGERS. Heavy-duty 15 amp model 1240 volt A.C. Will charge \({ }^{6}\) volt, 12 volt, 24 volt meter, fuse, variable control on/ofi switch, all leads. Completely ready for use. Guaranteed "MALDEN" Unit sent by return B.R.S. \(£ 16 \cdot 50\).-Malden Transformers [1723
COLOUR TV Camera (Studio), complete with lenses, tubes and cables. In perfect working order.
Bargain \(£ 1,000,01-2290898\) day or \(01-9070548\) evening.

COLOUR, UHF and TV SERVICE SPARES, SPECIAL OFFER VARICAP Electronic tuned transistd. UHF
tuners ELC 1043 Incl. connection data \(£ 4.50\) P/P 25 p . Chrominance Delay Line DL1 \(£ 1.95 \mathrm{P} / \mathrm{P} \quad 25 \mathrm{p}\). Luminance Delay Line \(£ 1.30 \mathrm{P} / \mathrm{P} 25 \mathrm{~m}\). Colour Monitor Decoder Panels designed to BBC standards incl. circuit data, Pal Filter and Delay £6. Chrominance £6, Luminance \(4 £ 17.50 \mathrm{P} / \mathrm{P} 35 \mathrm{p}\) ). Also quantity Colour TV Camera panels and asstd. manufacturers' surplus colour recelver panels. Plessey Colour scan colls \(£ 5.75 \mathrm{P} / \mathrm{P} 35 \mathrm{p}\), Convergence colls £ \(3.80 \mathrm{P} / \mathrm{P} 25 \mathrm{p}\), Blue lateral \(£ 1 \cdot 25 \mathrm{P} / \mathrm{P}\) 10 p (or complete set \(£ 10 \mathrm{P} / \mathrm{P}\) 50p). Mullard type colour electronic control of static convergence £1.75 P/P 25p. Leading Brit. maker Colour LOPT assy, incl. EHT output and focus control \(£ 3.50 \mathrm{P} / \mathrm{P} 35 \mathrm{p}\), Integrated transistd. decoder unit incl. crrcults \(£ 1.25 \mathrm{P} / \mathrm{P} 10 \mathrm{p}\), Convergence board colls AT4040 25, 55, 79, 25p P/P 10p. B9D Va/ve bases for colour valves and PL500 serles drive, Indicator \(£ 3.95 . \mathrm{CHF}\) transistd. push button £5.25. Knobs 40 p . UHF/VHF basic integrated tuner £3.95. Cyldon UHF valve tuners \(£ 1 \cdot 50\) all tuners \(\begin{array}{ll}\text { P/P } 25 p \text {. UHF list available on request. Transistd. } \\ \text { UEFF/VFF } & \text { IF panels } \\ £ 4.75 \text { (or salvaged } £ 2.50 \text { P/P }\end{array}\) 25 p . MURPHY \(600 / 700\) serles complete UHF conversion kits incl. tuner, drive assy., 625 IF amplifter, 7 valves, accessories housed in cabinet plinth assembly \(\mathbf{~ 7 . 5 0 ~ P / P ~}\) 50p. SOBELL/GEC 405/625 Dual standard switchable IF amplifier and output chassis incl. cet. £1.50. P/P 30p. PHILIPS 625 IF amplifier panel incl. cct. \&1.00 P/P 25p. VHF turret tuners AT 7650 incl. Valves for KB PYE miniature incremental for 110 to 830 , Pam and Invicta \(£ 1.95\), A.B. miniature with UHF injection sultable KB, Baird, Ferguson, 75 p , Ekco, Ferranti, Plessey push button with UHF injection \(£ 1.00\), all tuners \(\mathbf{P} / \mathbf{P} 25 \mathrm{p}\). New flreball tuners Ferguson, HMV, Marconi \(£ 1 \cdot 90 \mathrm{P} / \mathrm{P} \cdot{ }^{25 p}\). Large selection LOPTs, Scan
coils, FOPTs avalable for most popular makes. PYE/ coils, FOPTs avatlable for most popular makes. PYE/ Power unit £3.25 Lagbean "Triset' 3 outlet UHF/VHF distributor amplifier, mains operated \(£ 6.50 \mathrm{P} / \mathrm{P} 25 \mathrm{p}\). MANOR SUPPLIES, 172 WEST EAND LANE, LONDON, N.W. 6 (No. 28, 59, 159 Buses or W. Hampstead Tube LONDON, N.W.11. Tel, 01-794 8751

\section*{RADIO OPERATORS}

DO YOU HAVE

\section*{PMG I, PM G II, MPT, 2 YEARS OPERATING EXPERIENCE?}

POSSESSION OF ONE OF THESE QUALIFIES YOU FOR CONSIDERATION
FOR A RADIO OPERATOR POST WITH THE COMPOSITE SIGNALS ORGANISATION
On satisfactory completion of a 7 month specialist training course, successful applicants are paid on scale rising to \(£ 2000\) pa; commencing salary according to age- 25 years and over \(£ 1453\) pa. During training salary also by age, 25 and over \(£ 1152\) pa with free accommodation.

The future holds good opportunities for established (ie pensionable) status, service overseas and promotion.

Training courses commence every Januan, April and September. Earliest possible application advised.

Applications only from British-born UK residẹnts up to 35 years of age ( 40 years if expectionally well qualified) will be considered.

Full details from:

\author{
Recruitment Officer \\ Government Communications Headquarters Room A/1105
}

\section*{Offices \\ BRENTFORD ELECTRIC LIMITED AN ELECTRONICS DESIGN ENGINEER}
to augment an enthusiastic feam engaged on a variety of projects in power regulation. Applicants should be Graduate Electronic Engineers with several years industrial experience and preferably some familiarily with closed loop controls, logic circuits, Thyrislor circuits or operational amplifiers.
Hours: 9.00 a.m, to 5.10 p.m. Mondays to Thursdays, and
9.00 a.m. to 4.40 p.m. Fridays. (37-hour week)

Apply: Personnel Services,
Brentford Electric Limited,
Manor Royal, Crawley, Sussex. Tel: Crawley 277551703

\section*{*ARTICLES FOR SALE*}

\section*{RADIO TELEPHONES}

50 STORNO CQM33C FM IVv \(68-88 \mathrm{mHz}\) 10 COSSOR 103 日E FM \(12 v 88-108 \mathrm{Mhz}\) -4 COSSOR I4AAE AM \(12 v 68-88 \mathrm{mHz}\) 2 COSSOR \(104 E 2\) AM \(12 \mathrm{v} 2-8 \mathrm{mHz} \cdots \quad \in 16\) I \(\quad \cdots\) PYESANGUARD AM25B \(12 \mathrm{v} 68-88 \mathrm{mHz}\) 10 STCSTR12D AM \(24 \mathrm{v} 118-131 \mathrm{mHz}\)
2
TIIS4-RI155 \& SPARES. LARGE QUANTITY EXPECTED IN DURING MARCH. CRYSTALS
Over 20,000 in seock between 2 \& 19 mHz , mose styles available; from. \(£ 1\) each. Terms. Cash with order

\section*{BAGINTON ELECTRONICS}

MARKET CORNER, BAGINTON, COVENTRY, WARKS.
Also at Coventry Alrport.
Phone Coventry (0203) 302668

\section*{WITWORTH TRANSFORMERS}
ine output transformers Manufacturers of the largest range in the country All makes supplled.

\section*{Modern BAIRD, BUSH, GEC, PMILIPS}

Replacement types ex-stock.
For "By-return" service, contact your nearest Depot: Phone: \(01-9483702\)
TIDMAN MAIL ORDER LTD. Dept. W.W., 236 Sandycombe Road, Rlchmond, Surrey Valves, tubes, CONDENSERS, resistors, rectifiers and FRAME OUTPUT TRANSFORMERS also stocked. callers welcome.

\section*{GUARANTEED COMPONENT BARGAIN} COMPACT British manufacturer, C90 CASSETTE 1 at \(54 \mathrm{p}, 3\) off 50 p \(\mathrm{BC} 107 / 8 / 9 \mathrm{9p} ; \mathrm{BC147/8/9} 10 \mathrm{p} ; \mathrm{BC157/8/9}\) 10p; BC142/3 30p; 40361 38p; 40362 42p; 2N3055 50p: BYZ13 21p.

Tantalum capacitors-wide range-quantity inquiries invited
Free UP p. \& p. above 50 p min. order.
Send or telephone 01-556 0340 for lists.
gOLDTECH ASSOCIATES (Main Order), 27 Hoop Lane - London - NW11 8.JN 1747

EX-RENTAL TV: (UNTESTED) Complete with 13 channel tuners. Good cabinets.


Tubes Ex-Equipment Tested SINGLE PANEL
\(19^{* / 21 / 24}\) any type
\(23^{\prime \prime}\) any type
TWIN PANEL (BONDED)
19" bonded All All tubes add \(£ 1\) carriage.
Valyes ex equipment
\begin{tabular}{|c|c|c|c|c|c|}
\hline R91 & 5 p & \(30 \mathrm{L15}\) & 12 & PL & 2210 \\
\hline EBF8 & 1230 & & & & \\
\hline ECC88 & \(12 \pm\) & & 1778 & \({ }^{\text {PY }} 8800\) & 15 \\
\hline EF80 & 12\% & PC84 & 770 & PY82 & \\
\hline EF85 & 12.8 & PCF88 & \({ }^{721}{ }^{7} 5^{\circ}\) & \(\underline{0} 191\) & \\
\hline & 12\% & PCL85 & \(22 \pm 0\) & F23 & \\
\hline E & 176 & PCLB? & 171p & 30PL1 & \\
\hline 30PL13 & 20p & PCL 86 & 17tp & 30 P 12 & \\
\hline 830L\% & \(12 \ddagger 0\) & PCL83 & 12ip & 30 F & \\
\hline
\end{tabular}

Add 2 p per valve p , and p . Orders over \(£ 1 \mathrm{p}\). and p .
UHF TUNERS
For Ferguson 850 . 900 chassis, adaptable for most
U.H.F. chassis \(E 2: 50\), p. \& p. 00 p. U.H.F. chassis \(£ 2 \cdot 50\), D. \& p. 50 p .

SLOT METERS
Smiths reconditioned switchnaaster MKMIII. Decimalsmens recondithed working order. 12 for \(£ 25\) delivered.
izeor sample send \(£ 2.50\) c.w.0.

TRADE DISPOSALS (Dept. T.S./W.W.)
Thornbury Roundabout. Leeds Raad, Bradford,
(Tel. \(0274 / 685670\) ) Yorks.


Sheffield Steel Products Ltd Sheffield S9 1RU. Tel : (0742) 41235

\section*{FOR SALE}

1-Fernseh 16 mm Telecine machine including Bauer projector, spares and film winder.
1-Intertherm R.F. Generator, type 1P60/14/30M serial No. 1158, \(30 \mathrm{KW}, 350 / 550 \mathrm{KHz}\).
1-Plàting through hole equipment ref. 28611 with 400 amp rectifier system, one tank No. 6 and No. 8 tank.
1-Liquid Helium plant.
1-300llne board telephone exchange. Various surplus stores items. Price-subject to negotiation.

Contact: J.J. Seymour, Horley 5544 .1712

\section*{PLAYBACK MACHINES E 3}

These machines made by Clarke \& Smith were formerly
used as "Talking books for the slind" and contain a sensitive \((20 \mu \mathrm{~V})\) amplifier with tone and volume controls
using 2 ustector. Output is 2 watts into \(7 \times 4^{4} 3\) ohm speaker with jack socket for extension. Original deck with solenoid operation uses single 4 -pole \(A C\) motor, and the
unit is enclosed in a polished wood cabinet \(13 \downarrow \times 14 \frac{1}{2} \times 9^{\prime \prime}\) unit is enclosed in apolished wood cabinet ONLY © \(+C 1\) carr. Ferrograph simultaneous double channel tape recorder in cabinet or can be rack moun






 SURPLUS COMPONENTS AND EQUPMENT PUR CHASED.
\(01-7772001\).

GREENWELD ELECTRONICS (W9),
24 Goodhart Way, West Wickham, Kent CALLERS WELCOME,
PLEASE PHONE FIRST
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{CuT THE COST OF SERVICING WITH LONG LIFE TOSHABA VALVES} \\
\hline \multicolumn{4}{|c|}{LOOK AT THESE PRICES AND MAKE YOURSELF POUNDS MORE PROFIT} \\
\hline E8.91 & \(14 \frac{1}{2} \mathrm{P}\) & 5p & \(19 \frac{1}{2}\) \\
\hline ECC. 82 & \(22 \pm p\) & \(71 p\) & 30p \\
\hline EF. 80 & \(20 \frac{1}{2} p\) & 7p & \(27 \frac{1}{\text { p }}\) \\
\hline EF. 183 & 28p & \(9 \frac{1}{}\) P & \(37 \pm p\) \\
\hline EF. 184 & 28p & \(91 p\) & \(37 \frac{1}{p}\) \\
\hline EH. 90 & 25tp & \(8 \frac{1}{1} \mathrm{P}\) & \(34 p\) \\
\hline PCC. 189 & 31 \({ }^{\text {P }}\) & 11 P & \(42 \frac{1}{2} \mathrm{P}\) \\
\hline PCF. 80 & 251p & \(8 \frac{1}{2} p\) & 34 p \\
\hline PCF. 86 & 30 p & \(10 \frac{1}{p} \mathrm{p}\) & \(40 \frac{1}{2} \mathrm{P}\) \\
\hline PCF. 801 & 321p & \(11 p\) & 431 P \\
\hline PCF. 802 & 31.18 & \(11 p\) & 42 \(\frac{1}{} \mathrm{P}\) \\
\hline PCL. 82 & 251p & \(8 \frac{1}{}{ }^{\text {P }}\) & \(34 p\) \\
\hline PCL. 84 & 251p & \(8 \frac{1}{}{ }^{\text {P }}\) & 34 p \\
\hline PCL. 85 & 28p & 91 p & 37\%p \\
\hline PCL. 86 & \(28 \frac{1}{1} \mathrm{p}\) & 10 p & \(38 \pm\) P \\
\hline PFL. 200 & 391 p & 131 \({ }^{\text {P }}\) & 53 p \\
\hline PL. 36 & \(40 \frac{1}{} \mathrm{P}\) & 14 p & 54ip \\
\hline PL. 84 & \(21 p\) & \(7 p\) & 28p \\
\hline PL:504 & 42p & \(14 \frac{1}{2} \mathrm{P}\) & \(56 \frac{1}{p}\) \\
\hline PL. 508 & 471p & 16p & \(63+\mathrm{P}\) \\
\hline PL. 509 & 72 p & 241p & 96\$p \\
\hline PY.500A & 471 P & 16 p & 631p \\
\hline PY. 800 & 22p & 71 P P & 291p \\
\hline
\end{tabular}

Subject to settlement discount 5 per cent of Goods content 7 days and 2 per cent monthly Toshiba valves are being used extensively by major take advantage of the savings to be made.
COMBINED PRECISION COMPONENTS (PRESTON) LTD 3 Moor Park Avenue, Preston, PRI 6AS, Lancashire Tel. Home Soles Division, Preston 077256347 . Expor
New Price List from 20th Auguse

\section*{G.W.M. RADIO LTD.}

DII/I3. Approx. 10 tons of ancillary equipment including Aerial Matching Units, Operators Control Units, etc. HM100/150 a quantity of units and spares. High Voltage variable vacuum capacitors by Jennings, types UXCF and VMMHC in various capacities. All in good unused condition. Enquiries invited.

Mr. L. C. Grout, 40/42 Portland Road, Worthing, Sussex. Tel.: 090334897

\section*{PRECISION}

\section*{POLYCARBONATE CAPACITORS}

\section*{Fresh stock}
-
Fully tested
close tolerance capacitors by well-known manuAll 63 V d.

P.E. SCORPIO IGNITION SYSTEM

Special \(1 \mu \mathrm{~F} 400 \mathrm{y}\) a.c. capacitor for use in place of two existing \(0.47 \mu \mathrm{~F} 1000 \mathrm{~V}\) d.c. units (C6 and C7).

Post and packing \(5 p\) on all orders
\(V\). ATTWOOD
P.O. Box 8, ALRESFORD, HANTS. 1726

\section*{ELECTROMIC EQUIPMENT}

Hewlett Packard 400 D Vive Voltmeter .
 Hewlett Packard 130 C Oseillescope \(\ddot{200 u V / c m} \quad 100\)
Sensitivity Hewlett Packard 203 A Variable Phase Functlon
Generator \(0.00005 \mathrm{~Hz}-60 \mathrm{KHz}\). Sine and Square Wave \(\cdots 3250\) Hewlett Packard 3734A 5MHz 5 digit Multi funcHewlett Packard 211 A Squäre Wäve Generator \(1 \mathrm{~Hz}-1 \mathrm{MHz}\).. ... .. .. .. \(\mathbf{6 0}\) General Radio \(155^{\circ 4}\) A Sound and vibration Analyser
General
Analyser \(15 \ddot{6} 4\) Sound and Vibration \(\$ 150\) General Radio 1562 Sound level Callbrator .. 585
General Radio 1350 A Generator-Recorder General Radio 1350 A A Generator-Recor General Radio 1142-A Freq Meter and Discrmin ator \(5 \mathrm{~Hz}-1.5 \mathrm{MHz}\)
Solartron 546 Oscillator \(20 \ddot{\mathrm{~Hz}}-500 \mathrm{~K} \mathrm{~Hz}\)
Solartron D0905 Seabilised amplitude Generator Solartron CDIO15 Oscilloscope Solartron CDiol2 Oscilloscope B.W. 25 MHz Thorn W 112 OH Air Television Receiver. Advance 78B A.C. Millivolemeter Advance 77 B A.C. Millivoltmeter Gresham Lion Wave Form 625 Line Pulse and Bar C. Lyons PG33 Pulse Generator

Radiometer MS27de FM-AM Standard Signal Generator 0.3 to 240 MHz . Virtually new Airmec 859 Auto continuity tester
 Hewlete Packard Plug-in I732A Ma Me Magne Data
Epsylon MRI200 Brand New Mar leaflet) .. .. .. .. .. ..P.o.A Other equipment available includes Vibr
ment, Tape Decks, P.S. Us., Printers, etc. GOOD QUALITY INSTRUMENTS ALWAYS MEEDED ALSO ENVIRONMENTAL EQUIPMENT. CONSULT US DEFORE YOU DISPOSE OF YOUR SURPLUS EQUPPEET
quipment for hire at Competitive Prices. Export Buying Agents of Instrumentation and
Research Equipment for Overseas Customers.

\section*{MARTIN ASSOCIATES}

Myrorian, Greensward Lane, Nr. Reading, Berks
Tel:ARBORFIELD CROSS 610 or WEST FOREST 4896

\section*{มixw How COST FULL SPEC \\ FOR IMMEDIATE DELIVERY \\  \\ ELEKTRON sppurs \\ 259 CARDINGTON RD., BEDFORD \\ TERMS C.WO FREE POSTAGE OVER IS
FOR SMALLER ORDERS ADD \(7 P\)}

\section*{Trampis alagirnaik}
 Light Emit Diodes. Visible red \(2 v 67\). Infra-red \(\$ 1.49\). 70931 p .74134 p .3 .5 W AF IC amp 41.49 . TTLGates isp. 74 N Full range available. DIL Sockers 14/16 Pin 12p.
BC \(107 / 8 / 98 \mathrm{p}\). BCI 177 12p. ME 0404-2 18p. 2 N 3055 49p. Zeners 400 mW 12 p . Ia Rects. 50 v 5 p . 400 p 9 p . Data 7 p . C.W.O.P.P. U.K. 7p. P.O. Box 29, Bracknelf, Berks.

\section*{TRIACS-ISOLATED CASE}

No. 410 10A, 400 V , TO- 220 plastic No. 415 15A, 400 V , TO- 220 plastic No. \(430 \mathrm{30A}, 400 \mathrm{~V}\). TO- 3 surface meg. No. 425 25A, 400 V , stud non-isolated No. \(031+30 \mathrm{~V}\) trig diode. Pk. of 5 Discount: \(10-2910 \%\); \(30-9915 \%\).
Bulk prices ( \(100-100 \mathrm{~K}\) ) on request.
P. \& P. 7p under E5. C.W.O. only. 48 hr , service.

\section*{OPTECH ELECTRONICS \\ Stanmore, Middx. HA7 4 JP}

WW- 098 FOR FURTHER DETAILS
 individually boxed ex-equipment PL504's at 171 p
each. PL36 PCL85 at 15 p each. PCL82, PCL83, PCL84 at 10p each. P\&P 4 p per valve, 12 or over 21 p per valve, orders over f \(£ 3\) free. Other types available,
S.A.E. list. SAME DAY SERVICE. L. \(\&\) D. Components Ltd., 71 Westbury Ave., London, N22 6SA. \(01-888\) 2710.
 \(\mathrm{B}_{2} \mathrm{in}\). \(\times 2 \frac{1}{2}\) in. \(\times\) any length. D.E.W. Ltc. (W.),
Ringwood Rd., Ferndown, Dorset. S.A.E. for leafet. Write now-R'ght now.
Colour TV I.C.'s, full range. Countless bargains, 1.e. AD161/162 pair 50 p . F.M. modules as before. Set MPX Colls 75p. Set AM Colls plus ferrite aerial and
oscillator
in . Set F.M. I.F.'s (6) \(£ 1\). P\&P 6 p . Full details in our new illustrated 1972 Catalogue 20 p post Green Road, N10' 3 HN .
\(\mathbf{E}^{\mathrm{X}}\). BBC outside broadcast equipment consisting of © 95 ono. 2 new Grundig light beam telephones, \(£ 180\). Tel. 7947350 during office hours. \([1702\)
 Road, Stourport, Worcs. Tel. 02-993 5222 order C.O.D. Answer phone installed
M. G. SCROGGGIE (Cathode Ray) disposing of lab. GR Precislon variable capactor. Precislon \(3 / 30 / 300\) voltmeter, Elllott precision 0-44 wattmeter, stablized power unit -95 to +500 V , bridge detector-amplifer, Campbell
frequency bridge, insulation meter, low ohmmeter, \(G R=\), audlo power meter, R1155A receiver, components, etc.
Tel. \(01-460\). 6360 . Printed Circuit Board in 6 standard widths. 2 in., \(1 / 16 \mathrm{in}\). Fibreglass 2p, per 3 sq. in. Paxolin 1 p per 2 sq. In. P. \& p .5 p per order. S.a.e. quotations for other
sizes and quantity discounts.
d.
 Gardens, Braintree, Essex, CM7 6LY. Tel. Bralntree
25254.
\([1725\)
PYe V.H.F. Radio Telephone comprising Type AM27F base station and 14 Cambridge moblles. Further particulars from the Water Engineer, Plastirion, Russell
Road, Rhyl. Tel. Rhyl 2254 .
 8,000 models available. S.A.E. enquirtes Hamilton Radto. 8,000 models available, S.A.E. enquiries Hamilton Radio,
54 London Road, Bexhiu-on-Sea, Sussex. Tel. Bexhlif

SONY CV2000B Video recorder and CVM306BP monitor complete with manual and spare tape plus
two Murphy monitors, \(£ 315\) o.n.0. Brighton 778191 or Rustington 3137 (eventngs).
\(\mathbf{S}_{\text {response }}^{\text {PECIAL }}\) RESISTOR ofier due to the enormous 250 for en \(t\) our, last offer. Here is another bargain, 5 per cent and 10 per cent mixed. Your selection, but subject to a maximum of 20 different values, and no
more than 50 of any one value. If any value is out of more than 50 of any one value. II any value is out of
stock the nearest will be sent. Note no. quantity discount allowed. All goods as prevlousiy advertised in
March issue Wireless World. COMPONENT FACTORS, P.O. Box 18, Luton, Beds.
 3 core rubber covered \(28 / 0076\) ( 500 yard colls) \(\sum_{£ 15.50}\) per foll. Free, 3 core PVC Black 14/0076. (100 yd colls)
 \({ }_{\text {flat }}^{28 / 0076 \text {. ( } 100 \mathrm{yd} \text { coils) } £ 3.50 \text { per roll. 25p. Single }}\) core PVC black. \(14 / 36\). (100 yd coils) \(£ 0.50\) per roll.
10p. Instrument Case Strap. \(5 / 16\) in. wide nylon black. 10p. Instrument Case Strap. \(5 / 16 \mathrm{in}\). wide nylon black. ( 100 yd coils). 0.50 per roll. 10p. Broxbourne Eng. Co.,
Salisbury Road, Roddesdon, Herts. Telephone Hoddesdon 6366.
SURPLOE to requirements, HT rectiflers, diodes. 100/1,000 9p. Mullard OC 45, 1-99 10p: \(100-500\) 1p 500 up 5 p . Cash with order, P\&P 10p. J.D.A., 119
 TWIN POWER SUPPLY PANELS, seml-stabllised

 Electrolytic Capacitors, \(2 \times\) Plessey 1,000 mlero, 25 V \(2 \times\) Mullard 640 microF, 25 V . Circuit details supplied
 01-580 7391.
\(V_{\text {acuum is our specialty. New and second-hand }}\) etc. Sillicone rubber or varnish outgassing equipment etc. Sillcone. rubber or varnish outgassing equipment
from \& 40 . V. N. Barrett (Sales) Ltd., 1 Mayo Road.
Croydon, \(01-684\).
 s.a.e. for ilterature. Johnsons (Radio), St. Martins Gate Worcester, WR1 2DT.
\(\mathbf{W}_{1950 / 71 \text {, excellent condwanty-one }}^{\text {IRELESS }}\) bound volumes 1711 Wireless World.
4 COSSOR CC 303 A.M. High Band 20 watt Moblle
 Moblle V.H.F. Radio Telephones \(25 \mathrm{Kc} / \mathrm{s}\) channelling
 Radio Telephone \(25 \mathrm{Kc} / \mathrm{s}\) channelling (suftable for
 Systems
Grimsby. Tel., Cosalt Buld
Limsby
57381. 9 V MTNI MAINS PACK KIT. Components for compact size of PP7 etc. battery baftery double wound bransformer, runs cool. With leafet, £0.80 only, UK post 5 p .


INDIVIDUAL POCRET DOSIMETERS, LATEST
GOVERNMENT RELEASE. TYPE 2A \& 3 , 11 OOD
available individually wrapped in boxes of 50. Also available individually wrapped in boxes of 50 . Also
300 Chargoing Units No. I for the above Dosimeters
ind individually Boxed, both are absolutely Brand New,
supplied one box of 50 Dosimeters with one Charger
 E10. Larger quantities by quotation TrANS-AECEIVERS due to Warehouse clearance, old stock, we have for disposal, few only Trans-Receivers
(approx. 40) No. 62 MK2, made by Pye for the Navy and Army. Using a total of it Valves, \(1 R F\) and 2 IF stages A.V.C., BFO, covering \(1.5 \mathrm{mc} / \mathrm{s}\) to \(10 \mathrm{mc} / \mathrm{s}\) (approx. 200
to 30 meters in wo switched bands. CCan be used on RT or CW M.O. or Crystal. A very good internal ATU made
of a rotating Silver wire coil, Tunable over the complete range, suitable for acrials 4 it. to 100 ft, Internal P. U. for
12 volt OC . A meter is fitred for checking voltages A.V.C.
 with Headphones \({ }^{2}\) Mike, two spore Valves. Circuit
 Radio for the army, using 12 Valves (BG7 Bases) covering
\(60-95 \mathrm{mc} / \mathrm{s}\) in three preset channels, Crystal controlled. \(60-95 \mathrm{mc} / \mathrm{s}\) in three preset channels, Crystal controlled.
Tuning Condenser is simply tuned to one or three adjust-

 Panel Test Meter, housed in Alloy Waterproor Case size
\(144 \times 12 \% \times\) ins. . Poprox. Supplied in New or as New
tond

 can plut into a Power Socket on the 52 Trans-Receiver
which was normaly used tith Supplied in orod used
condizion with circuit 33.75 . Pose 50. Or Brand New condition with circuit 63.75 . Poss 50 p . Or Brand New
in Carton with operating manual and Circuit connectors to set 55.75. Poss 50 s .
JOHNS RADIO Dept.

\section*{BUSINESS OPPORTUNITIES}

INVEST \(£ 1,100\) in Stock with International, excitin growth organisation. Reap \(£ 500\) monthly income with Hard work and Determination-Write fuly SCANOCO, Down Ampney, Private Road, Chelmsford.
Essex. (Dlstributors of Golden Chemical Products)

\section*{TEST EQUIPMENT - SURPLUS AND SECONDHAND}

S \({ }^{\text {IGNAL generators, oscilloscopes, output meters, wave }}\), frequency meters, multi-range meters


\section*{RECEIVERS AND AMPLIFIERSH \\ SURPLUS'AND SECONDHAND}

COMMUNICATIONS RECEIVER AR-88D including
HRO RX5s, etc., AR88, CR100, BRT400. G209, 6640 , Ashtc., etc., \(\ln\) stock-R-R. T. \& I. Electrontcs, Ltd.,
A. 1986 .

\section*{NEW GRAM AND SOUND EQUIPMENT}
\(\mathrm{C}_{\text {cameras, }}^{\text {LASGOW,-Recorders bought, sold, exchanged; }}\) versameras, -Vletor Morris, 343 Argyle St., Glasgow, C. 2,

\section*{TAPE RECORDING ETC}

\section*{YOUR TAPES TO DISC.- \(£ 8,000\) Lathe. From \(£ 1.50\)} High Bank, Hawk St., Carnforth, Lancs. Deroy Studios,

\section*{ARTICLES WANTED}

\section*{TEST EQUIPMENT}

We wish to buy Test Equipment, ancillary spares and devlces; Components, plugs and sockets, meters, relays, motors, valves, seml-conductors, microphones, head sets, C.C.T.V. equipment; Receivers, Transmitters, Microscopes, Theodolites, Levels, cameras, Computers and ancillary equipment, lenses (professional and amateur) for motion picture and still work; film in bulk. Immediate decisions and Immediate payment.

\section*{CONNECTORS \& ELECTRONICS LTD 20 College Drive, Ruislip, Middlesex Telephone: Ruislip (713) 5953}

A vo 8 WANTED. Any condition. Any quantity. Send w. for packing INS. Huggett's Ltd., 2 Pawsons Road, Highest posstble cash prices sor Akal, B. \& O: Uher, Vortexian, etc. \(9.30-5\). \(01-242{ }^{2}{ }^{2} 401\).
\([102\) WANTED, all types of communications recelvers Electronites, Let., Ashille Old Hall, Ashville Rd., LonElectronics, Ltd.. Ashville Old Hall, Ashvilie Rd., Lon-
[63
don, E.11. Ley. 4986 .

W Anted by collector, Burndept Grecian Va
\(\mathbf{W}^{\text {ANTED, surplus transistors, semiconductors, resis- }}\) Vors, and radio and TV parts. Please state price.
-velco Electrontcs, Bridge Street, Ramsoottom, Bury Lvelco Electroncs, Bridge Street, Ramsbottom, \({ }_{\text {LIf }}\) [17 \(\mathbf{W}^{\text {ANTED, }}\) televislons. , tape recorders, radiograms,


\section*{VALVES WANTED}
\(W^{E}\) buy new valves, transistors and clean new com-


\section*{SERVICE \& REPAIRS}
\(\mathrm{S}^{\text {CRATCHED TOBES. OU }}\) Our experienced polishing service agan make your colour or monochrome tubes as new Retube Ltd., North Somercote, Louth, Lincs, or 'phone
\(0507-85\)
300 .


\section*{CAPACITY AVAILABLE}

A \(\begin{aligned} & \text { DESIGN Service for audio amplifers, tape re- } \\ & \text { corders, } \\ & \text { FM tuners, etc. Full production engineering }\end{aligned}\) support. Ail designs guaraniteed specifiction angineering support. Au designs guaranteed specification and valve
engineered. For prompt quote Box No. WW 1751 WIreless
world world.
\(\mathbf{A}_{\text {IRTRONICS }}^{\text {LTD }}\), for Coll Winding-large or small plers to Pion runs, Also PC Boards Assemblies. Sup3a Walerand Road, London, Ex.E.13. Tel. 01-852 1706 [61 \(\mathrm{C}_{\text {coils, }}^{\mathrm{OLI}}\) winding capacity. Transformers, chokes, R.F. coils, etc.i to your specification. Sweetnam \& Brad-
Ltd., Bristol
Road, Malmesbury, Wilts., or Tel. ley Ltd., Bristol Road, Malmesbury, Wilts., or Tel.
Malmesbury 3491. \(D^{\text {EsiGN, development, repair, test, and small pro- }}\) duction of electronic equipment. Spectalist in proELECTRONLCS, 54 Lawford Rd., London, N.W 5 01-267 0201.
\(\mathbf{E}_{\text {Letc. Pronic and electrical assembly, panel wiring }}^{\text {Lectrict }}\) etc. Prototype and short runs a speciallty. J.M.L.
E1736
Electronic \(061-643\)
4741 . ELECTRONIC Manufacturing Contractors, customers TECHNICAL WRITING-Service Manuals-P.C. LayService. J. W. Taylor, 2 Stonor Road, w.14. Tei. \({ }_{01-603}\)
\(W_{\text {singly }}^{\mathrm{E}}\) undake the manufacture of transformers ngly or in quantities to any specification. Al


\section*{TECHNICAL TRAINING}
C.IE., A.M.S.E.. City \&\% Cullds, etc. Thousands of Engineering Prospectus FREE - State subject of inter Eninering. Prospectus
est. BREE.I.E.T. (Dept. H. 18). Adermaston Court, Readmg
RG7 4PF. Accredited by C.A.C.C.
 Compses in Engineering, Electronics, Radio, TV: book from: B.I.E.T. (Dept. H.17). Aldermaston Court,
Reading, RG7
[16F. Aceredited by C.A.C.C. COURSES
Full trime courses in electronics and TEle-
vision. These are nine month courses, starting next September, which lead to City and Guilds certinext september, which ead to city and Guilds certi-
flates. Extensive laboratory work is included, and there
are, in most cases, no fees for those under 18 at are, in most cases, no fees for those under 18 at
enrolment. Full details from. Section 434 , Electrical and Electronic Engineering Department, Southall
College of Technology, Beaconsfleld Road, Southali, Middx.

\section*{TUITION}
\(\mathrm{B}^{\text {ECOME }}\) "technically qualified" in your spare time. \(B\) Home study courses in Radio, TV, Servicing and Maintenance, ReT.E.B. Chambers College, etc.-Informa-
tive FREE guide: Chime BOOKS
GOVERNMENT SURPLUS WIRELESS EQUIPMENT or British/USA Contains clrcuits, data, illustrations for British/USA receivers, transmitters, trans/receivers
and a wide range of equipment. Modifications to sets and test equipment included. Price \(£ 2.85 \mathrm{pp}\). 15 p .PTICS. How to use lenses and mirrors. 112p, 100 Oillustrations. Hardback. Best book on the market for the newcomer to optics. \(£ 1\) each on 14 days approval types, 48 page H. W. ENGLISH, 496 Rayleigh Road, Hutton, Brent-
 free copy of the sortnightly World Radio Bulletin and \begin{tabular}{l} 
my Price List. (Mail only) D. McGarva, 16 Chambers \\
Street, Edinburgh EH1 IHS. \\
\hline 27
\end{tabular}

\section*{POWER UNITS}

400c/s 1/P contain 8 N.P.N. Sil transis Texas type 2S012A, these are power type Vc 70 V 2 amps, also 18200 P.I.V. 8 amp and 18 200 P.I.V. 1 amp diodes plus misc parts. New boxed
\(\mathbf{£ 4 . 5 0}\) plus 75 p carr.

\section*{\(270^{\circ}\) METERS}
F.S.D. 1 Ma Scale marked 0, 2, 4, 6, \(8 \times\) Deg Cent, size 2" O.S.D. \(3 \frac{1}{2}\) " long, high grade Alrcraft inst., supplied new and boxed. \(\mathbf{E 1 \cdot 2 5}\) plus 15 p post.

\section*{400c/s INVERTORS}

I/P 24/28v D.C. O/P \(115 \mathrm{v} 400 \mathrm{c} / \mathrm{s} 180 \mathrm{Va}\) sine wave all transistor, by A.C. Cossor for M.O.D. supplied new with connecting data. \(\mathbf{8 1 2}\) plus 50p carr.

\section*{MAINS VOLT STABILISERS}

I/P 200/240v 60c/s O/P 240 at 200 watts, regulation + or \(-.25 \%\) for \(10 \% ~ 1 / P\) change, distortion less than 3\%, all transistor supplied new with circ.
£15 plus \(\mathbf{E 1}\) carr.

\section*{SERVO INTEGRATORS}

Part of bombing computer all transistor contains two separate integrator units with \(2 x\) tacho gen., \(4 x\) syncro con Tx, \(2 x\) motor units, \(400 \mathrm{c} / \mathrm{s}\) supply, supplied in good condition by 400c/s
Smiths.
£8 plus 75p carr.

\section*{EXTRACTOR FANS}
8. dia fan unit motor \(115 \mathrm{v} 50 \mathrm{c} / \mathrm{s} 3,300\) RPM with front grill, full enc. bushless motor conds supplied, ex American equip. E2.50 plus 50 p carr.

\section*{POWER FILTERS}

Made by Filtron U.S.A. type SP278, rated 250v A.C. or 600 v D:C. at 30 amps, size \(6^{\prime \prime}\) long \(2 \frac{1}{4}^{\prime \prime}\) dia, single nut fixing, ex American equip.

\section*{TIMER UNITS}

Intended to give time periods up to 1,000 secs. in 10 sec . steps as Dekatron display with int 10 Kc erystal OSC., 6 tubes are used in the display section, requires etc. P.U., supplied in new cond.

812 plus \(£ 1\) carr.

\section*{SCOPE TROLLIES}

Made by Cossor, supplied in used cond. 25 plus 75p carr.

\section*{DYNAMOTOR UNITS}

These are new spares for T.C.S. Tx/Rx \(12 v\) I/P O/Ps 220v 100 Ma E 1 and 440v 200 Ma £1.50. Both plus 25 p carr.
CIRCUIT DIAGRAMS
1035 Mk2 and 31049 Mk3a, 13a CD518 (CT316), OS-8 all 50p each. CD513.2 and CD1014.2 £1.50 each. CT38 50p, TF801A 75 p , R1165B \& L, 1392,1475, ARR-2, APN - 9 all 30p each. TF144G. B4075p each. WIRING STRIPS
These are solder type wiring strips 24 way, supplied new \(\mathbf{£ 1 . 2 5}\) per 100 or sample 10p.

\section*{MISC. ODDMENTS TO CLEAR}
T.V. monitor E.M.I. type 301 14" £37. T.V waveform mon E.M.I, type 302 E26. E.M.I. Cam Con unit transistor £18. Digital Printer H.P. 11 line, motor \(115 \mathrm{v} 60 \mathrm{c} / \mathrm{s}\) printer only no electronics £15. Invertor \(24 / 28 v\) D.C. to \(115 \mathrm{v} 400 \mathrm{c} / \mathrm{s} 3\) phase 150 Va by Echo transistor, new cond. £18. Airmec type 761 Freq. standard with book £26. Power units 115 v A.C. to 150 v D.C. at 500 Ma stab with meters E6.75. Scopes American type USM-50 response \(3 \mathrm{c} / \mathrm{s}\) to \(15 \mathrm{Mc} / \mathrm{s} 115 \mathrm{v} \mathrm{I} / \mathrm{P} £ 39 \cdot 50\), also USM-24 115 V I/P at f33. Sig. gen TF801A \(10 / 300 \mathrm{mc} / \mathrm{s}\) with book, good £26. Rustrack recorder 240 v motor tápe speed \(6^{\circ} / \mathrm{Hr}\) coil 1 Ma \(£ 14\).

The above prices include carr. Goods are ex equip unless stated otherwise. Callers by appointment only. Phone Sheffield 369882, evenings only.
A. H. SUPPLIES

57 MAIN ROAD, SHEFFIELD \(\$ 9\) 5HL


\section*{ELECTRONIC CIRCUITS MANUAL}

Over 3,100 modern electronic circuits, complete with values of all parts, organized in 99 logical chapters for quick reference and convenient browsing.
by John Markus
69.50

Part Postage 25 p

OPERATIONAL AMPLIFIERS by Burr-Brown \(\mathbf{E 7} \cdot 20\)

Postage 25p RADIO AMATEUR HANDBOOK 1972 by A.R.R.L. \(£ 2 \cdot 70\) Postage 25p RADIO TECHNICIAN'S BENCH MANUAL by Hellyer 63 Postage 10p AUDIO TECHNICIAN'S BENCH MANUAL by John Earl \(\& 3\) Postage 10p RADIO \& ELECTRONIC LABORATORY HANDBOOK by M. G. Scroggie \(\mathbb{C 4} 75\) Postage 20p 1972 WORLD RADIO-T'V HANDBOOK 12.80

Postage 10 p 110 INTEGRATED CIRCUIT PROJECTS FOR THE HOME CONSTRUCTOR by R. M. Marstón \(\$ 1.20\) Postage 7p

\section*{THE MODERN BOOK CO.}
bRITAIN'S LARGEST STOCKIST

19-21 PRAED STREET, LONDON, W. 21 NP

Phone 7234185 Closed Sat. I p.m.

\section*{BETTER GET 'SET'}

 Meter 125 KHZ-20 MHz
Complese with valves, crystal
and charts. 19.50 . Carr. El 50 .
 plete with 12 V . D.C. P.S.U., C22.50. Carr. 22.50 .
Marconi 801 Signal Genera-
tor. 10.310 MHz. In original
rransit case. \(\mathbf{E 4 5}\). Carr, \(£ 2.50\).
Crystal Calibrator No. IO. Crystal controlled hazaerodyne wavemeter
covering 500 KHz Hz MHz (Harmonics up to
300 V . \(\mathbf{~ D . C . ~} \mathrm{MHz}\). 15 mA . Power required 12 V . 0.3 A D.C. Tess equipment for 62TM/RC.
5 pecial Offer E2.50. P. \& P. \({ }^{50}\) P. special Offor 62.50 . Pi \& P. \({ }^{50} \mathrm{p}\).
Fow only No. 82 TMiRc


SET 500uA Meters. Scaled 0-600 and 0.15v. Brand New, Boxed. - \(1 \cdot 25\). Post paid. (Quantity prices on request.)
R.F. Amplifier. To R.F. Amplifier. TO increase
output of No. 9 set. Only 2utput of No. 19 set. Only book for RF Amp. \(\mathbf{3 7}\) paid. Post
paid.


Famous Tole 'F' Field Tole
phones. Suitable for Farms phones. Suitable for Farms
Building sites. etc. Communica tion up to 5 miles or more.
Rugged construction, will last Rugged constrution, will last a
lifetime. Only 66.25 palr. Car. \(\mathrm{El} \cdot 25\). (Twin telephone wire for
above available-ask for orice.) above available-ask for price. Ex RAF Periscopes. Made by
Kelvin Hughes containing a preclaion made optics sywrem pro viding erystal elear wide range vision (2 prisms and 8 lenses).
Builz in 24 y heating Built in \(24 y\) heating circuit to
prevent misting and freezing. Approx. 24 long with folding handles and rubber eyepiece
Weight 4 lbs . Complete in instrument case, Only \(\mathbf{E} 5.75\).

Many other Ex-Govt. Surplus Equipment items in stock: Resoo numerous to mention. Enquiries invited. List 25p. Post paid. (Refundable
chases over \(\{3\) )
C.W.O. Carriage sharges apply Minimum Export Order 650.

\section*{Surplus Electronic Trading}

Drivers End Lane, Codicote, Hitchin, Herts, SG4 8 TP

\section*{MULLARD AUDIO CIRCUITS}

Components inc. P.C. boards now available for these excellent designs S.A.E. for lists ANDOR ELECTRONICS LTD. 45 Lower Hillgate, Stockport. Tel: 061-480 9791


Thanks to a bulk purchase we can offer
BRAND NEW P.V.C. POLYESTER AND MYLAR RECORDING TAPES
Manufactured by the world-famous repucable British tape firm, our tapes are boxed in polythene and have fitted leaders. etc. Their quality is as good as any other on the market, in no way are the tapes faulty and are not to be confused with des patch service. des patch service price and. postage will be refunded.



 Postage on all orders \(7 \frac{1}{2} \mathrm{P}\)
COMPACT TAPE CASSETTES AT HALF PRICE
60,90 , and 120 minutes playing time, in original MC 60 45p each. MC 90 62 \(\frac{1}{2}\) p each. MC 12092 p each

\section*{STARMAN TAPES}

28 LINKSCROFT AVENUE, ASHFORD. MIDDX.

Ashford 52136

\section*{- SMABET LTD.}

\section*{We make transformers amonget other things} AUTO TRAYSFORMERSS \(0-110-200-220-240 \mathrm{v}\) a.c. up or


 MAISS TRANSFORMERS, © Prim \(200 / 240\) a.e. TX2 \(250-0-5\)


 multivolt ta

 \(25 \mathrm{~V} 2 \mathrm{~A}, \mathrm{z}^{2} \cdot 60\).







O/P TRANSFORMERS FOR POWER AMPLIFIERS. 33
 spectication
MAINS TRANSFORMERS FOR POWER AMPLIFIERS

 LOUDSPEAKERS FOR POWER AMPLIFIERS. New
lamous makes for pubul address eysterma, bass guitars



 MandAL OF POWER AMPLIFIERS. Issued by G.E.C



 of any size spool of magnetie tape, cassettes, \(22 \cdot 40,+24 \mathrm{p}\).
TAPE RECORDER MoTORS. A variety of usea, blowers, TAPE RECORDER MoTORS. A varie
fans etc. New, \(230 / 250 \mathrm{v}\) a.c. 50 peach.
BECKMAN RELITPOT 10 TURR PRECISTON POTS. 10 K 5\%. Lil. Tol 0.25\%
 PRENTED CIBCOTS ETCHLEG KITS. Solutions and
 S.A.E. ENQUIRIES-LISTS. MATL ORDER ONLY 46 KEMILWORTH ROAD, EDGWARE. MIDDX, HA8 8YO
Oarriage axtra on all orderg
Tel: \(01-9589314\)

\section*{Dimmit range of light dimmers}

Standard wall mounting rotary and slider control models

Rotary: \(400 \mathrm{~W} £ 3 \cdot 10,1 \mathrm{KW} £ 3 \cdot 90\) module only: 400 W £2.80, 1 KW £3.30
Slider: 400W £3.95, \(1 \mathrm{KW} £ 4.65\) module only: \(400 \mathrm{~W} £ 3 \cdot 40,1 \mathrm{KW}\) £3.90

Send 10p for complete catalogue of Dimmits \& Dimmit components Trade enquiries invited. Discount for quantities.
YOUNG ELECTRONICS 54 Lawford Rd., London NW5 2LN. 01-267 0201

\section*{EXGLUSIVE OFFERS}

\section*{AMPEX}

Precision Instrumentation and Data TAPE RECORDER-REPRODUCERS
 TYPE FR 100A: S1x 8peedis, per second, strackn, or tape hauging roilers and heads) control. Precislon servo control \begin{tabular}{ll} 
to \\
0.75 & is sec, track timing \\
\(u\) & sec. Drift free withla \\
\hline
\end{tabular} 1 per cent. Accuracy \(10^{1}\) per reek. Power input \(105 / 125 \mathrm{j} ~ 48\) to
00 cycles. PRICE 400 cycles. PRICE \(£ 150\). FR 100B: Speeds and specticaTYPE FR 1100 \&150.
 ighterand more moder construction than Type FR100B PRICE E125. The above
electronice in 6 ft. cabinete.


COMMERCIAL TYPE LATTICE STEEL AERIAL MASTS
Al masts are eectional and have up to 230 feet for the smaller
fizee and 750 feet for the larger sizee and 750 teet tor the larger
sizes. Detalle and prices below are for 10 toot seoctions. Al are alvanised finish. Top ad base Type A Lightweight Se Type B mediumweight \(12 \%\) Type D Heavywetight 22 alar \(£ 22\)
 aldes triangular 229
s.
s.
HIGHEST QUALITY 19" RACK MOUNTING CABINETS

Totally Enclosed
 nclosed cabinets with rear door ftted empuannolietete bolts and open front. Rack panel mounts recessed 1 . from front
 Actual raek panel mounting space 1977 .
TYPE G: \(80^{\circ}\) high \(x^{2211^{2}}\) wide \(\times 274^{\circ}\) deep. As above Type \(F\) but slighty shorter and deeper. "tia. circular ent in top and no gaps in rack mounting gutips. Usable
ack mounting space is \(74^{\circ}\). Botom panel is raised \(2^{-}\)
rom floor. PRICE 212.50 (Carriage extra)
also other types 80- TO 88- hige available
Full detalis of all above available on requeal
FREE
40-page list of over 1,000 diferent trems in tock


Carriage extra at cont on all above.
All goods are er-Government stores.
Wo have a large quantity of "bits and pieces" We cannot list-please sond us your requirements
we can probably belp-all enquifies anawered.

\section*{P. HARRIS ORGANFORD - DORSET \\ BOURNEMOUTH 85051}

'SERIES 7 AMPLIFIERS'
for ultimate reliability and coolest running


GRAMPIAN GEPRODUGERS LIMITED Hanworth Trading Estate, Fetham, Middolesex. Tatephene:01-894914.

CASH IMMEDLATELY AVAILABLE for redundant and surplus stocks of radio, television, telephone and electronic equipment, or in component form such as meters, plugs and sockets, valves, transistors, semi conductors, capacitors, resistors, cables, copper wire, screws and nuts, speakers, etc.
The larger the quantity the better we like it.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, London, N12.
Telephone: 014452713014450749 Evenings: 019587624

\section*{WANTED}

ELECTRICAL AND ELECTRONIC SURPLUS EQUIPMENT BEST PRICES PAID FIELD ELECTRIC LTD
3 SHENLEY ROAD, BOREHAMWOOD Telephone ELSTREE 6009


THE ONLY COMPREHENSIVE RANGE OF RECORD MAINTENANCE
 EQUIPMENT IN THE WORLD!

Send P.O. 15 p for 48 page booklet providing all necessary information on Record Care.

CECIL E. WATTS LIMITED Darby House
Sunbury-on-Thames, Middx.

\section*{WE PURCHASE ALL FORMS OF ELEGTRONIG EQUIPMENT AND COMPONENTS, ETC.}

CHILTMEAD LTD.
7, 9, 11 Arthur Road, Reading, Berks.

Tel:582 605

\section*{BRAND NEW—FULL SPEC. DEVICES}

709, 33p; \(723,75 \mathrm{p} ; 741,36 \mathrm{p} ; 2 \mathrm{~N} 2926 \mathrm{Grn}\). 8p; \(2 \mathrm{~N} 3055,48 \mathrm{p} ;\) BFY \(50-1-2,10 \mathrm{p}\). I.C. pln zockets in strip 0.7 p per pin Dalo PC Marker, 80p; 3 amp. 200 V. Rect. 11 D . Discounts atart at 10 off.

\section*{JEF ELECTRONICS (W.W.4)}

York House, 12 York Drive, Grappenhall, Warrington, WAt 2EJ. Mall Order only. C.W.O. P. \& P. 7p per order. O/seas 55 p . Llstifee on application. Money back if not astisfied.
DIGITAL NIXIE-READ OUT
HOURS. MINUTES AND SECONDS


\section*{OVERNIGHT}

Prototype Printed Circuits Fastest in Lóndon Area 48 hour and Overnight Services
Electronic \& Mechanical Sub-Assembly Co. Ltd., Highfield House, West Kingsdown, Nr. Sevenoaks, Kent. Tel: West Kingsdown 2344

\section*{几ONDON CENTRAR Radio stoluse}

TELEPHONE CABLE. Plastic covered grey 4 -core coloured
coded. 7lp per yd. Bpecial quote for quantity. RECORD STORAGE UNITS. Brand new, Anti-warp. Compact \(200^{\circ}\) stores 200 reconds. £11.98. P.P.\&. 20 . Compact 100
stores 100 records. \(£ 5 \cdot 5 \%\). P.P. 58p. Leaflets available. B. A.E. ELECTRICITY SLOT METERS (5p in slot) for A.C. Talins. Fixed tariff 10 your requirements. Sultable for hotels, etc. \(200 / 250 \mathrm{v}\).
10 A . \(£ 4.50,15 \mathrm{~A}\). \(£ 5 \cdot 00.20 \mathrm{~A} . ~ £ 5 \cdot 50\). P.P. 60p. Other amper.

MODERN DESK PHONES, red, green, blue or topaz, 2 tone grey
or black, with internal bell and handset with 0.1 dial \(£ 4.50\). or black, wit
P.P. 371p.
5-WAY PRESS BUTTON INTER-COM TELEPHONES in Bakelite case with junction box handset. Thoroughly overhauled guaranteed. Price \(25 \cdot 25\). Wiring diagram on request, send s.a.e. 10-WAY PRESS-BUTTON INTER-COM TELEPRONES in Bakelite case wlth Junction box handset. Thoroughly overhauled
Guaranteed. Guaranteed.
send s.a.e.
20-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bake lite case with function box. Thoroughly overhauled. Guaranteed 87.75 per unit. Wiring diagram on request, bend s.a.e.
 Rs new. 200/250 v. 10 A. \(£ 2 \cdot 12 t: 15 \mathrm{~A} . £ 2 \cdot 621 ; 20 \mathrm{~A}\). \(22 \cdot 87 \mathrm{t}\)
Other amperages available. 2 years' guarantee. P.P. 25p.
23 LISLE ST. (GEr. 2969) LONDON W.C. 2
Closed Thursday 1 p.m. Open all day Saturday

\section*{Build a PROJECT "X" SYNTHESISER using Dewtron"PROFESSIONAL MODULES}
(*Regd. Trademark)
VOLTAGE CONTROL amplifiers,oscillators, filters and P-H-A-S-E
MAN-SIZED PATCHBOARD, no cables.
CASH SAVINGS by buying sets of modules and components.
ALL MODULES available separately.
Send S.A.E. for detalls or 15 p for full musical catalogue D.E.W.Ltd., 254 Ringwood Rd., Ferndown, Dorset

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large quantities of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes. Wholesale and Export only,

\section*{J. Black}

OFFICE: 44 GREEN LANE, HENDON, N.W.4. 2AH Tel: 01-203 1855. 01-203 3033 STORE: LESWIN ROAD, N. 16

Tel: 01-249 2260


Biggest stock in Europe for Japanese Wireless Intercoms. 2 m FM and Amateur SSB Transceivers. For 3 postal IRC's we send our new colour catalogue.
SOKA SRL, BOX 176 , CH-6903 Lugano, Switzerland TX: 79314, Tel

WW-097 FOR FURTHER DETAILS
WE PURCHASE
COMPUTERS, TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGS AND SOCKETS, MOTORS, TRANSISTORS,
RESISTORS, CAPACITORS, POTENTIOMETERS, RELAYS TRANSFORMERS ETC.
ELECTRONIC BROKERS LTD.
49 Pancras Road, London, N.W.1. 01-837 7781


Newest, neatest system ever devised for storing small parts and components: resistors. capacitors, diodes, transistors, etc. Rigid plastic units, interlock together in vertical and horizontal combinations. Transparent plastic drawers. have label slots/handles on front. Build up any size cabinet for wall, bench or table top.
BUY AT TRADE PRICES!
Single units (1D) £1.35 per dozen size approx \(\left(2 \frac{1^{\prime \prime}}{4}\right.\) high \(2 \frac{1}{4}^{\prime \prime}\) wide \(5^{\prime \prime}\) deep) 2 E £2. 25 per dozen. 3 D £ 2.35 for 8 units. 6 22 23.65 for 8 units (2 3D's in 1 outer) 6D1 £3.30 for 8 units. Postage/Carriage 35 p for orders under \(£ 5\). Carriage paid for orders over \(£ 5\)

\section*{PLUS QUANTITY OISCOUNTS!}

Orders \(£ 5\) and over DEDUCT \(5 \%\) in the \(£\) Orders \(£ 10\) and over DEDUCT \(7 \frac{1}{2} \%\) in the \(£\) Orders \(£ 2\) and over DEDUCT \(10 \%\) in the \(£\)

QUOTATIONS FOR LARGER QUANTITIES

\section*{DESIGNER-APPROVED "W.W." HI-FIKITS}
\(\star\) LINSLEY HOOD MODULAR PRE-AMP July 1969 design with Dec. 1970 mods. Versatile system built on Lekktrokit with layout detalls.
\(\star\) LINSLEY HOOD I5-20W AMPLIFIER
July 1970 latest and ultimate design. O/P capacitor PCs (SRBP/Fibreglass), Tr3, 4 \& 5 mount compactly approved by the designer. O/P Tr's matehed for spec'd performance: Metalwork now available ensures simple construction of amps. and power supply.
\(\star\) BAILEY 3OW AMPLIFIER (Nov. '68)
Mk. IV PCB (SRBP/Fibreglass) has extra pre-set for quiescens current. Output capacitor and PCB mount directly and compactly on specially designed generous heat-sink.
* NEWI!! BAILEY PRE-AMP (AUG. 1971) Superbly engineered kit of this established amp, Uses RH \&H fibreglass PCBs enabling a stereo 5 tin. Basic metalwork ex-stock; fascia plate and cabinet soon. Especially recommended to drive 15-20W AB amp.
AFTER-SALES SERVICE at reasónable cost.
REPRINTS of any one article at 30p Inc'g p.p. DETAILED PRICE LISTS at 5p \(\} \begin{aligned} & \text { (Stamps } \\ & \text { accepted) }\end{aligned}\)

АPERSONAL, CALLERS WELCOME-BY łAPPOINTMENT. DESPATCHBYRETURN

\title{
A. 1 FACTORS \\ 72 Blake Road, Stapleford, Nottingham
}

Tel. Nottingham \(46051^{\circ}\) Giro No. 4876008 ( 10 a.m. -12 Midnight 7 days/week)

Vary the strength of your lighting with a



The DIMMASWITCH is an attractive and efficient dimmer unit which fits in place of the normal ligh switch and is connected up in exactly the same way. The ivory mounting plate of the DIMMASWITCH matches modern electric fittings. Two models are available, with the bright chrome knob controlling up to 300 w or 600 w of all lights except fluorescents at mains voltages from \(200-250 \mathrm{~V}, 50 \mathrm{~Hz}\). The DIMMASWITCH has built-in radio interference suppression.
Price: . 600w- £3.20. Kit form- \(\mathbf{E 2 . 7 0}\) \(300 \mathrm{w}-£ 2.70\). Kit,form- \(£ 2.20\).
All plus 10p post and packing.
Please send C.W.O. to:-
DEXTER AND COMPANY
4, ULVER HOUSE; 19 KING STREET, CHESTER CH1 2AH TEL: 0244-25883
As supplied to H.M. Government Departments, Hospitals, Local Authorities, etc.

\section*{CUT YOUR LEVEL PROBLEMS DOWN TO SIZE; WITH A CHADACRE ELECTRONICS AUDIO COMPRESSOR TYPE 9521}


Almost every audio source can benefit from a degree of compression, that is to "ame" the dynamic range of the programme.
Compression will tend to increase the density of the sound, this is due to the act that the low and medium levels are increased, relative to the maximum levels. "The Ratio" of the compressor will determine the density, i,e., the rate at which the gain increases: e.g., a ratio of \(6: 1\) simply means that for a 6 dB increase of input signal the resulting output will only rise 1 dB
The speed at which the compressor reduces the level, is termed attack "time" and the optimum attack time for a compressor lies between 1 and 10 Ms .
The rate at which the compressor takes to restore its gain back to normal is termed the "release time."
Both of the above time characteristics are adjustable on the 9521 compressor. They are fast attack/fast release, medium attack/medium release, special attack/ slow release. Specially designed for automatic level control of tape recorder. These "time constants" are selected via a 3 -position switch. Also adjustable: : Input gain control, compression control, compressor in/out* for comparing the uncompressed signal, and on/off control* to disconnect the supply.
The uses the 9521 compressor may be put to are very comprohensive. Below are listed just a fow.
In a mixing console, where it may be inserted in individual channels, between the microphone amplifier and line amplifier. Used in this sphere it will prevent overload distortion of the following stages, and may also be used to create special effects, which may suit the artistic requirements of the programme.

In conjunction with a discotheque system, to give a constant level, with the peak level; the compressor will make the R.M.S. value appear as a constant peak level, thereby packing the maximum "punch" for this type of application.
It may also be used in public address work, where it will compensate for poo microphone technique, Intelligibility may be improved and enable the amplifie to be used at a lower gain setting, with the consequential risk of acoustic feed-back howls greatly reduced.
The worid of radio'communication may also reap the advantages of the compressor. By applying the 9621 in this field, the "talk power" or intelligibility over a noisy channel is greatly improved, it is preferable to speech clipping, as it does not introduce harmonic distortion
Finally, it can be effective to the hard of hearing, who may need to listen to the radio or television at an uncomfortably high volume (to others) in order to hear everything. If, however, the dynamic range of the material is compressed the annoyance factor caused to others by the peak sound levels is reduced.
The 9521 compressor is available either as a Module, mounted on a Painton 15-way plug; order: 9521/M. Or built in an attractive robust case. The input and output connections are terminated on a Din socker
The power requirements may be either satisfied from internal batteries \(\dagger\) (amiple space provided) or an external power supply may be fed into the two banana sockets provided. Order: 9621/C.
* Available on cased units only.
\(\dagger\) Two Type PP9.

\section*{9521-SPECIFICATION}

Powar requirements: \(18 \mathrm{v} / 4.5 \mathrm{~mA}-30 \mathrm{v} / 6 \mathrm{~mA}\).
Input impedance: 50 ka . Output impedance: 600 n . Ratio: continuously variable, \(1: 1\) through \(6: 1\). Unweighted noise level: 90 dB . Fast attack/fas release: may be pre-sot anywhere between 1 Ms and 10 Ms , normally set for 10Ms at factory. Medium attack/medium release: 0.5 secs Fast attack/slow release : attack approx. 3Ms, release approx. 7 secs.*
* Longer release times available on request.

\section*{PRICES}

9521/C-1-4 £28.50. 5-10 £26-50. 11-25 £24. \(9521 / \mathrm{M}-1-4 £ 19 \cdot 50\). \(5-10 £ 15 \cdot 50.11-25 £ 13 \cdot 50\).

\title{
Need a counter-fast?
}
 Oh yes, and oscilloscopes, voltmeters, signal generators, meters, test sets, recorders, power units. You name it, we rent it out ... fast ... on very reasonable terms. Try us, or start by sending for the Labhire brochure. SOUTH Cores End Road,

NORTH Shearer House,
Dunham Rd, Altrincham, Cheshire.
06-285 23106
061-928 0080

\section*{INIDEX TO ADVERTISERS}

Appointments Vacant Advertisements appear on pages 91 -97


\footnotetext{
Printed in Great Britain by Southwark Oliset, 25 Laviggton Street, London. S.E.1, and Published by the Proprietors, 1.P.O. Eleorrical-Elzorrbowio Press, Lrd., Dorset House, Stamford St, London, SEl 9LU telephone


 or affized to or as part of any publlcatlon or advertislng, llterary or pletorini matter whatsoever.
}


Other important manufacturers using automatic soldering machines for printed circuits have also found that the advantages of using EXTRUSOL include

\section*{1. Less dross on initial melting}
2. More soldered joints per pound of solder purchased
3. Less reject joints
4. Improved wetting of electronic components and printed circuit boards
5. More uniform results

ALL EXTRUSOL is completely protected by plastic film from the moments of manufacture until it is used. EXTRUSOL can be released under AID authority and supplied to U.S.A. Spec. QQ-S-571d.

EXTRUSOL is supplied in \(1-\mathrm{lb}\). and \(2-\mathrm{lb}\). Trapezium Bars and Pellets in different alloys with strictly controlled tin contents to suit the appropriate soldering machines, baths and pots. Bars are available for automatic solder feed. Many overseas manufacturers, including those in the U.S.A., are now using EXTRUSOL in conjunction with the wide range of Multicore Soldering Chemicals and Liquid Fluxes. Write on your Company's note paper for comprehensive technical information about EXTRUSOL \& Multicore Soldering Chemicals.

\section*{Multicore Solders Limited,}

\section*{Maylands Avenue,}

Hemel Hempstead, Herts.
Tel: Hemel Hempstead 3636. Telex: 82363.

\section*{Eर夏直RUSOTI}

EXTRUSOL is used exclusively in the automatic soldering equipment at the Plessey factory at Upminster and the illustration shows computer printed circuit boards being soldered.
```


[^0]: Published monthly on 3rd Monday of preceding month, 20p
 Editorial \& Advertising offices: Dorset House, Stamford Street, London SE1 9LU. Telephone 01-928 3333. Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London S.E.1."

 Subscription \& Distribution offices: 40 Bowling Green Lane, London ECIR ONE. Telephone 01-837 3636. Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.
 Subscription rates: Home, $£ 4.35$ a year. Overseas, 1 year $£ 4.35 ; 3$ years $£ 11.10$ (U.S.A. \& Canada 1 year \$11, 3 years \$27.75).

[^1]: *Electronic Retina is a trademark of Recognition Equipment Incorporated.

[^2]: *Decca Navigator Co. Ltd.

[^3]: WW-006 FOR FURTHER DETAILS

[^4]: Brookdeal worldwide agencies: America Keithley Instruments Inc. Ohio (216) 248 0400. Australia H. Rowe \& Co. Piv. Lid:. Melbourne $42 / 0481$. Austria Ing. Wilhelm Thilo, Klagenfurt. 04222 70549. Canada R-O-R Associates Lid.. Ontario 4162917121 . Denmark Tage Olsen A/S. Copenhagen O1 294800, Finland Into O/Y, Helsinki 11 123. France Radio Equipments-Antares. Division Electronique. Paris 7375480. Germany Keithley Gmbh.. Munchen 0811745321. Greece H. Johanides, Athens 818624 . Holland and Belgium Intechmij N.V.. The Hague 2512 12. Israel R.D.T. Electronics Engineering Ltd., Tel-Aviv $266181-2$. Italy Vianello S.P.A., Milan 553081. Japan Toyo Trading Co., Tokyo 279 0771. New Zealand Sample Electronics (NZ) Lid., Auckland 667-356. Norway Norsk Marconikompani A/S, Oslo 6704 86. South Africa Radiokom (1969) Pty. Ltd., Braamfontein 485712 . Spain Payma S/L. Madrid 2153941 . Sweden Tél Inter A.B., Stockholm 08641800 . Switzerland Fritz Weber. Zurich 051854444.

[^5]: For the full story of the Testmatic TM60 please fill in:

[^6]: Should you not be completely satisfied with your purchase when you receive it from us, return the goods without delay and your money will be efunded in full, including cost of return postage. at once and without question. Full service facilities are quailable to all Sinclair customers.

[^7]: QUALITY：LST are official Franchised Distributors for the majority of our advertised products．Members of the Association of Franchised Distrib－memeero utors of Electric Components．afec

[^8]: ATLAS SUB-miniature lamps eypa liliz and

 mm ; capped $9.1 \times 3.1 \mathrm{~mm}$. Ideal for instrument lighting
 normally sold in exess of 60 p each, our price $£ 1.50$ per dozen or boxes 50 at 25 per box.
 ATLAS MIDGET PANEL LAMPS unrivalled for indication pur* poses requiring a brilliant but tiny light source. Available with flange
 of 50 at E4per box.
 IT. THANFORMERS. Prim. 220/240v. Sec. $0-510-15-20 \mathrm{v}$, at 2 amps .
 EI.25 P. \& P. 15 p .
 Prim. 200/240v. Sec.
 impregnated with screw term. blocks. Weight 10 ibs. E3. 60
 Prim. $220 / 240 \mathrm{v}$. Sec. 0.13 at 1.5 amp . 63 p . P. \& ${ }^{\prime}$ P. I5p.
 Prim. $220 / 240 \mathrm{v}$. Sec. 0.13 at 1.5 amp . 63p. P. \&'P. I5p.
 "HONEYWELL" V3 Series. Flush micro-switch 10 amp . c/o. The side panel is insulated. End plate size: $2^{\prime \prime} \times 8^{\prime \prime}$. $\mathbb{1} \cdot 50$ per doz. Carr. Paid

