Wirelesswort
 November $1971 \quad 17 \frac{1}{2}$ R

Pickup arm construction

Tape recorting survey

Celestion \square

Loudspeakers for the Perfectionist

The Garrard AP76 transcription quality deck gives you a good deal to think about:

Forget the price for a moment, look at the features - Offers automatic play (start, stop and return) of single records at $33 \frac{1}{3}, 45$ and 78 rpm . \square Tab controls for viscous damped cue and pause, start/stop. manual/auto. ם Hexagonal, low resonance, aluminium pickup arm. - Resiliently mounted counterbalance weight. \square Stylus force adjustment, calibrated 0 to 5 grams. Bias compensation calibrated for spherical and elliptical styli. Combined record speed and size selector. \square Slide-in cartridge carrier. $\quad 11 \frac{1}{2}$ inch nonmagnetic turntable driven by 4 -pole induction motor. \square Performance: wow and flutter better than 0.10% rms. Rumble (relative to $1.4 \mathrm{~cm} / \mathrm{sec}$ at 100 Hz) better than -49 dB . This performance betters DIN 45-500 Hi-Fi standard. B Black and silver finish as standard Wooden base and rigid plastic cover available.

These are hard facts (and compare them with what the competition offers). Add in true quality engineering and the reliability based on 50 years' leadership in record players.

Now look at the price - recommended at $£ 27.85$ Fully $£ 10$ cheaper than the good competitive decks having the same features. Only Garrard can do it - by long experience and their comprehensive production programme across a whole range of quality players

At $£ 27.85$ the AP76 gives you transcription quality
Return the coupon below for full details of this and other Garrard decks - or ask your Hi-Fi dealer for a demonstration today

Sansui
 4-ChannelStereo. The Doors Are Always Open.

Now, walk right in and step right up to a fabulous new experience in sound -- Sansui 4 -channel stereo. The door-both doors-are always open.

One door gives you access to new building-from-scratch 4 -channel receivers, the other to supplementary components that will let you up-grade your 2 -channel system to 4 -channel status in seconds.

Either way, you can instantly convert your valuable two-channel tapes and records (as well as FM broadcasts) into the new format

For those interested in a complete new 4-channel system, the 240 watt Sansui QR-4500 4-Channel Receiver is the ideal nucleus. This truly extraordinary unit, which incorporates the exclusive 4-channel synthesizer decoder, also gives you a supersensitive stereo tuner, plus a high performance control amplifier for all the power you'll probably ever need. But if that's still not enough, then more power to you, check out the 280 watt QR-6500.

Building on a two-channel system? Then choose the versatile new 120 watt QS-500 4-Channel Rear Amplifier. Added to your present system, along with a second pair of speaker systems, it elevates you to 4 -channel status instantly. And the 50 watt QS-100 can do the same.

Still another means of making the 4-channel grade is the QS-1 4-Channel Synthesizer Decoder. With it, you need only add a second stereo amplifier and another pair of speaker systems.

You're on the threshold of this enthralling new 4 -channel experience now. Stop in soon at your nearest authorized Sansui dealer and walk right in. Either door

The Symbol of Sansui 4-Channel Sound

England: VERNITRON (UK)LTD. Thornhill Southampton S095QF Tel: Southampton 44811 / Ireland: INTERNATIONAL TRADING GROUP LTD. 5 Cope Street. Dame Street, Dublin 2/West Germany: COMPO HI-FI G.M.B.H. 6 Frankfurt am Main, Reuterweg 65 / Switzerland \& Liechtenstein: EGLI, FISCHER \& CO.. LTD. ZURICH 8022 Zurich, Gotthardstr. 6, Claridenhof / France: HENRI COTTE \& CIE 77, Rue J-R. Thorelle, 77, 92-Bourg-la-Reine / Luxembourg: LUX Hi-Fi 3, rue Glesener, Luxembourg/ Austria: THE VIENNA HIGH FIDELITY \& STEREO CO. A 1070 Wien 7, Burggasse 114/Belgium: MATELECTRIC S.P.R.L. Boulevard Léopold II, 199, 1080 Brussels/ Netherlands: TEMPOFOON N.V. Tilburg, Kapitein Hatterasstrat 8, Postbus 540 / Greece: ELINA LTD. 59 \& 59A Tritis Septemvriou Street, Athens 103 /Italy. GILBERTO GAUDI s.a.s. 20121 Milano, Corso Di Porta Nuova, 48 / South Africa: GLENS (PTY) LTD. P.O. Box 6406 Johannesburg / Cyprus: ELECTROACOUSTIC SUPPLY CO., LTD., P.O. Box 625 , Limassol / Portugal: CENTELEC LDA. Avenida Fontes Pereira de Melo, 47, 4.0 dto., Lisboa-i / Malta: R. BRIZZI 293, Kingsway, Valletta / Canary Islands: R. HASSARAM Calle la Naval, 87, Las Palmas / SANSUI AUDIO EUROPE S.A. Diacem Bidg., Vestingstraat 53-55, 2000 Antwerp, Belgium / SANSUI AUDIO EUROPE S.A. FRANKFURT OFFICE 6 Frankfurt am Main, Reuterweg 93, West Germany / SANSUI ELECTRIC CO., LTD. 14-1, 2-chome, Izumi, Suginami-ku, Tokyo 168, Japan

PHILIPS

Philips for the hest 'PAL' you could have

Colour television cen win or lose you your friends - and your profits. Fast, efficient and reliable installation and after sales service will make sure you're on the winning side. Philips PM 5508 PAL Colour Pattern Generator provides your engir eers with all the facilities for on-the-spot colour TV (and monochrome) service - for many adjustments you den't even need an oscilloscope ; just use the receiver's picture tube insteac.
Of course, though, a sensitive, 10 MHz double-beam oscilloscope, such as the Philips PM 3230, could increase your advantage further - even over the competition.
If you want to make friends and influence people just contact Pye Unicam straight away. Ask for a leaflet

giving more information on the Philips PM 5508 PAL Colour TV Pattern Generator, the PM 3230 Oscilloscope and other radio and TV service equipment in the Philips range.

Pye Unicam Ltd
York Street Cambridge CB1 2PX
England
Telephone (0223) 58866 Telex 81215

PYE UNIPAM LTE

Your hotline to ele

The new distribution service that brings together six market leaders under one cover!

Now there's a faster more reliable way to get hold of electronic components. It's called BLUELINE. It covers almost all your everyday needs with a selective top quality range. And backs it with a service so efficient and friendly that BLUELINE quickly becomes an extension of your own purchasing department.

Six top manufacturers

BLUELINE is unique in its teaming together of the six market leaders in component manufacture. They give a quality concentration that enables you to meet most of your everyday needs for components.

In depth stocks

BLUELINE holds quantity stocks for every component. So it doesn't matter whether you need single items for a prototype or a batch for a production run. BLUELINE can cope with stocks off the shelf....or deliver to your scheduled requirement.

Computerised stock control The BLUELINE ICL 1903A computer forecasts demand and prints out a stock list daily - a feature that means orders can be confirmed immediately they're received and delivery on time guaranteed.

On-the-spot handling of orders
Order by post if you like. Or if you really want to get things moving, by telephone or telex. BLUELINE girls on the sales desk can give you the up-to-the-minute position on any component in the catalogue, handle your queries, confirm prices and give you a delivery date. And they're backed by five engineers throughout the country to help with queries and special orders on-the-spot.

Compact, comprehensive catalogue The complete BLUELINE range is covered in this catalogue. If you haven't yet received your copy, please write - or better still, phone 01-366 6371 and get a preview of the friendly way we make ourselves indispensable to your organisation.

Blueline Electronic Components Refuge House, River Front Enfield, Middlesex Tel: 01-366 6371

PARIS ANO COMPONENS FOR telecommuncaion engineanin aND HeCtroncs
 EXPORT-IMPORT

 Electromechanical
 Components
 Electroacoustic
 Components
 Miscellaneous Parts and Components
 Connectors, sockets
 Switches
 Relays
 Pilot lamps
 Rotary buttons
 Microphones
 Earphones
 Loudspeakers
 Transformers
 Fluorescent tube and mercuryvapour lamp adapters
 Ferrites
 Permanent magnets
 Aerials
 IMPORT
 Semiconductor devices
 Integrated circuits

ELEKTROMODUL
Hungarian Trading Company for Electrotechnical Components
BUDAPEST, XIII., VISEGRADI UTCA 47 a-b
Telephone: 495-340; 495-940. Telex: 22-5154, 22-5155
WW-007 FOR FURTHER DETAILS
 with the Thorens TD 150 turntable.

The SME Model 2000 Plinth System includes pre-cut pick-up mounting boards and motor boards which make this a simple matter.
Alternatively, existing items can usually be adapted.
Full details are given in information sheet No. 7, a copy of which we will send you on request.

The best pick-up arm in the world SME Limited • Steyning • Sussex - England Telephone Steyning (0903) 814321

Here are some outstanding ICs from the wide Plessey standard range.
As European leaders in MOS and Bipolar technology
Plessey also offers you the most experienced
custom/customer design service available proven by more than 400 successfully completed designs.

Ultra-High-Speed ECL Dividers

SP602 $\div 2500 \mathrm{MHz}$ SP620 $\div 5 \quad 400 \mathrm{MHz}$ $\mathrm{SP} 630 \div 10600 \mathrm{MHz}$
These three circuits form part of an expanding range of dividers. Power consumption from only 60 mW . Operating temperature from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
They are the only dividers available with full temperature range at this speed. Commercial and military applications are already nearing production.
WW-250 for further details.

Unique LSI Computing Circuits

These DTL/TTL compatible circuits were initially developed for process control applications in ICI. Now generally available, they feature the following:

SP520 5-Bit Reversible Gray Code Counter

A 5-bit up-down counter with non-overflow facility with both Gray and binary outputs. The Gray code o / p 's can be inhibited-effectively open-circuiting. This makes them ideal for 'addressed parallel highway wired-OR applications'. Reset to zero facility is also provided.

SP521 5-Bit Binary Rate Multiplier

Basically an arithmetic unit capable of multiplying
together a frequency and a binary number. Has two-phase capability, is infinitely cascadable and eliminates the need for capacitors and other components, all as a result of internal Gray code operation.

SP522 Divider, Phase Lock and Comparator

Divides the master clock frequency (8 F) by 8 giving two interlaced o/p's (IF). These can be used to clock the SP521. There is also an o/p at 2F. Locks the phase of any i / p signal to that of the master clock. Max. i/p frequency to phase lock circuit is 3.2 F .
The comparator is a 5 -bit up-down counter with reset facility to the central symmetrical state.
WW-251 for further details.

Quad decade complements MOS counter range	Device Number	Single or Quad Decade	Single or Dual Power Supply	BCD or Decimal Output		Carry Facility	Package
	MP107B	S	S	BCD	V	\checkmark	10 lead TO. 5
	MP108B	S	S	BCD	1	\checkmark	10 lead TO. 5
	MP120B	Q	D	BCD	1	\checkmark	16 lead DIL
	MP123B	S	D	BCD	V		10 lead TO. 5
	MP124B	S	D	Decimal	V		16 lead DIL
ww-252 for further details.	MP125B	S	D	BCD	V	\checkmark	14 lead DIL
	MP126B	S	D	Decimal	1		16 lead DIL
	MP127B	S	D	BCD	1	\checkmark	14 lead DIL

Detectors, Demodulators \& AGC Circuits

The SL622C, a microphone amplifier plus VOGAD and the SL623C, an SSB demodulator, low level AM detector and AM AGC generator are the latest additions to the successful range of SL600 communications circuits. This fully compatible series operates from a single power rail, has low power consumption, full AGC facilities and operates up to 140 MHz .

WW-253 for further details.

1 GHz Transistor Pair

The SL360 is a monolithic natched pair of transistors capable of being used at frequencies up to 1 GHz . The particularly good low current betas make this device suitable for a wide range of applications.

Typical characteristics:		
$\mathrm{BV}_{\mathrm{CEO}}$	15 V	$\left(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}\right)$
h_{FE}	65	$\left(\mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=5 \mathrm{~mA}\right)$
f_{T}	2.5 GHz	$\left(\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=5 \mathrm{~mA}\right)$
f_{T}	3.2 GHz	$\left(\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=25 \mathrm{~mA}\right)$
$\mathrm{V}_{\mathrm{BE}}(1)-\mathrm{V}_{\mathrm{BE}}(2)$	3 mV	$\left(\mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}\right)$
$\mathrm{h}_{\mathrm{FE}}(1) / \mathrm{hFE}(2)$	1.1	$\left(\mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=5 \mathrm{~mA}\right)$
$\mathrm{V}_{\mathrm{CE}}(\mathrm{Sat})$	0.25 V	$\left(\mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}\right)$

These characteristics make the SL360 an ideal element for the design and manufacture of more complex UHF circuits.
WW-254 for further details.

Low Noise GaAs Microwave FET'S

Featuring high transconductance, low capacitance and operating frequency up to 4.5 GHz .
GAT1 $\quad 10 \mathrm{~dB}$ gain at $1 \mathrm{GHz} \quad 4 \mathrm{~dB}$ noise figure GAT2 $\quad 8 \mathrm{~dB}$ gain at $3 \mathrm{GHz} \quad 5 \mathrm{~dB}$ noise figure Ideal for use in low noise front-end amplifiers. WW-255 for further details.

Television and Audio Circuits

Colour TV on 2 Chips

The SL435C and SL436B combined form the complete colour signal processing section of a colour television receiver (PAL system).
The following functions are incorporated:
Chroma amplification - PAL switch - Colour killer
Gated burst amplifier with 45° switch
Internal stabilisation - Reference amplifier
Matrixing for red, green and blue outputs
R-Y, B-Y balanced demodulator

6W Audio Amplifier

The SL403D is a 6W (3W rms) audio amplifier incorporating a.c. and d.c. short-circuit protection. The device is designed to operate from a 12 V to 18 V supply into loads from 3Ω to 15Ω. Total harmonic distortion at full output is typically less than 0.3%.

WW - $\mathbf{2 5 6}$ for further details.

OPTO Character Recognition

The OPT6 is a linear array of 72 integrating elements designed for OCR, code recognition and position sensing applications where high data rates and high definition are required.
The 72 elements operate in current recharge mode and integrate for one line period. Two clock pulses and one data input pulse are required for scanning the shift register which will operate typically in the range 10 K Hz to 7 MHz .
The $0.2^{\prime \prime} \times 0.08^{\prime \prime}$ chip is mounted in a $\frac{3^{\prime \prime}}{4}$ glass windowed flat pack and dissipates about 300 mW at maximum bit rate.
WW-257 for further details.

Product Summary

If you would like details of the full range of Plessey IC's please ask for our Product Summary. This includes details of nearly 300 standard bipolar and MOS IC's, package diagrams, MOS logic diagrams and bipolar logic diagrams.
WW-258 for further details.

Semiconductors

UK Distributors:
Farnell Electronic
Components Limited Canal Road, Leeds LS12 2TU
Tel : (0532) 636311

SDS-WEL Components Limited Hilsea Industrial Estate, Hilsea. Portsmouth Hampshire. Telephone: (0705) 65311 5 Loverock Road, Reading, Berkshire Telephone: (0734) 580616

The world's most universal audio bridges

Wayne Kerr's B224 and B642

The B224 is a manually operated bridge,
the resistive and reactive terms being independently set to a null indicated on the meter. A rechargeable battery is fitted in order to make the instrument portable.

Each of these bridges has ten decade ranges and can be used to measure any type of component or complex impedance. Transformer ratio-arms are used to cover a very wide range of measurement using a minimum number of standards which are set digitally. The three terminal facility provided by this type of bridge enables small values of capacitance or high values of resistance to be measured at the end of long lengths of cable. Components can also be effectively isolated electrically from a complex network allowing individual measurements to be made without discornection from the circuit being necessary.

This is a high fidelity amplifier (0.3% intermodulation distortion) using the circuit of our 100% reliable 100 Watt Amplifier with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer Amplifier, again fully protected against overload and completely free from radio breakthrough.

The mixer is arranged for $2-30 / 60 \Omega$ balanced line microphones, 1-HiZ gram input and 1-auxiliary input followed by bass and treble controls. 100 volt balanced line output or $5 / 15 \Omega$ and 100 volt line.

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 5-WAY MIXER USING F.E.T.s

 This is similar to the 4 -way version but with 5 inputs and bass cut controls on each of the three low impedance balanced line microphone stages, and a high impedance (10 meg) gram stage with bass and treble controls plus the usual line or tape input. All the input stages are protected against overload by back to back low self capacity diodes and all use F.E.T's for low noise, low intermodulation distortion and freedom from radio breakthrough. A voltage stabilised supply is used for the pre-amplifiers making it independent of mains supply fluctuations and another stabilised supply for the driver stages is arranged to cut off when the output is overloaded or over temperature. The output is 75% efficient and 100 V balanced line or $8 / 16 \Omega$ output are selected by means of a rear panel switch which has a locking plate indicating the output impedance selected.100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms -15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.

THE 100 WATT MIXER AMPLIFIER with specification as above is here combined with a 4 channel F.E.T. mixer, 2-30/60 Ω balanced microphone inputs, $1-\mathrm{HiZ}$ gram input and 1 -auxiliary input with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Bass and treble controls fitted.
Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.
200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{~dB}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output $10 \mathrm{C}-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available.

F.E.T. MIXERS and PPM's

Since we have been supplying professional mixers for 25 years we have delayed the introduction of solid state units until they were at least as good as their valve counterparts. (Which will continue where required.)
The various sections of the FET mixers and BBC type PPM's have been performing successfully for several years in other equipments with complete reliability. The PPM also uses an FET in its time constant circuit so that polyester capacitors can be used. The response from the 600Ω output (25Ω source impedance) is level 20 Hz to over 30 kHz with very low intermodulation distortion to zero level +12 dB . The input signal voltage range is over twice that of the valve unit and the noise at least halved.

Stentoriun spidisi Shelins

These superb new speaker systems make available even higher standards of performance in sound reproduction and uphold the high reputation gained by Whiteley Stentorian speakers throughout the world.
Attractively designed and soundly constructed, they are available in either Teak or Rosewood finish.

LC93
A $19^{\prime \prime} \times 12 \frac{1}{2}^{\prime \prime} \times 8 \frac{1}{2}^{\prime \prime}$ completely enclosed acoustically loaded cabinet housing a $9^{\prime \prime}$ graded melamine paper cone with siliconized cambric suspension giving a frequency response of 60 Hz to 20 KHz .

LC94

A $29 \frac{1}{2}^{\prime \prime} \times 23 \frac{3^{\prime \prime}}{}{ }^{\prime \prime} \times 6 \frac{1}{8}{ }^{\prime \prime}$ acoustic Labyrinth enclosure fitted with acoustic resistance in the pipe, using the same highly efficient $9^{\prime \prime}$ speaker unit used in the LC 93. Frequency response 45 Hz to 20 KHz .

LC95

The LC95 loudspeaker system is an acoustically loaded Bass Reflex cabinet, measuring $31 \frac{1^{\prime \prime}}{} \times 20 \frac{3}{4}^{\prime \prime} \times 13 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$, fitted with two loudspeakers and a crossover network. The bass loudspeaker being used is a newly developed $12^{\prime \prime}$ unit having a Melamine treated paper cone with a cambric surround. The middle and high frequency unit is a new $8^{\prime \prime}$ loudspeaker having a Melamine treated paper ribbed cone and surround.

These products
can be seen in
our showrooms at
109 Kingsway, London WC2.

In just 2 minutes, find out how you can qualify for promotion or a better job in Engineering ...

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn on 'SATISFACTION - OR REFUND OF FEE' terms. If you'd like to know how just a few hours a week of your spare time, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

WHICH SUBJECT WOULD INTEREST YOU?

Mechanical
A.M.S.E. (Mech.)

Inst. of Engineers
Mechanical Eng.
Maintenance Eng.
Welding
General Dicscl Eng.
Sheet Metal Work
Eng. Inspection
Eng. Metallurgy
C. \& G. Eng. Crafts
C. \mathbb{K} G. Fabrication

Draughtsmanship A.M.I.E.D.

Gen. Draughtsmanship Die \& Press Tools lilec. Draughtsmanship Jig \& Tool Design Design of Elec. Machines Technical Drawing Building

Electrical \& Electronic A.M.S.E. (Elec.) C. \& G. Elec. Eng C. \& G. Elec. Eng
General Elec. Eng General Elec. Eng.
Installations \& Wiring Electrical Maths. Electrical Maths.
Electrical Science Computer Electronics Electronic Eng.

Radio\& Telecomms. C. \& G. Telecomms. C. \& G. Radio Servicing Radio Amatcurs' Exam. Radio Operators' Cert. Radio \& TV Enginecering Radio Servicing Practical Television TV Servicing
Colour TV
Practiçal Radio \&
Electronics (with kit)

Auto \& Aero
A.M.I.MI.

MAA/IAII Diploma
C. \& G. Auto Eng.

Gencral Auto Eng.
Motor Mechanics
A.R.B. Certs.

Gen. Aero Eng.

Management \&

Production Computer Programming Inst. of Marketing A.C.W.A

Works Management Work Study Production Eng. Storekecping Estimating Personnel Alanagement Quality Control Electronic Data Processing Numerical Control Planning lingincering Materials Handling Operational Research Metrication

Constructional
A.M.S.1: (Cir.)
C. \& G. Structural

Road Engincering
Civil Enginecring
Building
Air Conditioning Heating \& Ventilating Carpentry \& Joinery Clerk of Works Buiding Drawing Surveying Painting and Painting and
Decorating. Architecture Architecture
Builders' Quantitiss

General
C.E.I.

Petroleum Tech
Practical Maths.
Refrigerator
Servicing.
Rubber Technology
Sales Engineer
limber Trade
Fanm Science
Agricultural ling
General Plastics
General Certificate
of Education
Choose from 4^{2}
O' and 'A' Level
subjects including:
linglish
Chemistry
General Scione
Geolog.
Phosics
Muhhematics
Tichnical Drawing
French
German
Russiant
Spanish
Biolog.
B.I.E.T. and its
associated schools
have recorded wall ozer 10,000 G.C.E. staccesses at ' O ' and 'ficceesel.
WE COVER A WHE RANGE OF TECHNICAL. AND PROFESSIONAL. EXAMINATIONS.
Over 3,000 of our Students have obtained City \& Guilds Certificates. Thousands of other exam successes.

THEY DID ITSO COULD YOU

"My income has almost trebled . . . my life is fuller and happier." - Case History G/321.
"In addition to having my salary doubled, my future is assured."-Case History H/493.
"Completing your Course meant going irom a job I detested to a job I love." - Case History B/461

FIND OUT FOR YOURSELF

These letters-and there are many more on file at Aldermaston Court-speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you.

7ree!

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

Dept B7, Aldermaston Court, Reading RG7 4PF.

Accredited by the Council for the Accreditation of
Correspondence Colleges.

.

 collect with RON:

For electronic valves (a really comprehensive rainge), neon indicator tubes, semi-conductors (a wide variety), integrated circuits.
Teonex offers more than $3,0 C 0$ devices. They are tre Teכnex rarge are neally always available for competitively priced and thev are superlative in performance, becalse the company imposas strict quality control. Teorex corcentrstes entirely en export and now operates in more then sixty countries, on Government or private contract All pojular types in
m nediate delizery.
Nrize now for technical sjecifications and prices :0. Teonex Limited, 23 Westbourne Grove Mews, Lordor W11, England. Cables Tosuply London W11. Tз ex: 26225G

Electronic valves, neop incicator tubes, semi-corductors and integrated circuits for export

業 soundsintemational

Advancesig gen source

B4A7 $100 \mathrm{kHz}-80 \mathrm{MHz}$ B4B7 30kHz-30MHz Price £135

E2 $100 \mathrm{kHz}-100 \mathrm{MHz}$ Price £70

SG62B 150kHz-220MHz Price £65

> The range of RF SIGNAL GENERATORS
> from Advance Electronics covers
> frequencies from 30 kHz to 220 MHz .

For full information and data on RF and LF sig. gens. contact Advance Electronics Ltd.

RF SIGNAL GENERATORS

from the advancer range.

ADVANCE ㅌITRTIROINICS ITMMITED

[^0]
m.OU means business...

Specially processed coatings to ensure high varouem and long life

Screen sizes from 7.41 cms with complete range of phosphors including bi-colour display

Unique transistor protection derme (TPD)
to limit energy disispation in the event of voliage flashover

YOU REQUIRE
YOU WANT
YOU APPRECIATE
the highest standards of soldering attainable, maximum operator efficiency, minimum risk to components.
the lightest, best engineered 'irons available, consistently reliable performance, minimal maintenance problems.
low cost, a wide choice of instrument sizes, good delivery and service, inexpensive spares, British design and quality.

LIGHT SOLDERING DEVELOPMENTS LTD.
28 Sydenham Road, Croydon CR9 2LL
Telephone: 01-688 8589 \& 4559

Radar CRT business

Advanced gun designprecision alignment for crisp high brightness presentation
A BRIEF SELECTION FROM THE RADAR CRT RANGE

Round screens unless otherwise stated

Business to M-OV means total commitment to quality. Our reputation for cathode ray tubes has been won purely and simply on specification and performance-advanced specification and unbeatable performance. Take our radar CRTs for example -who else can give you such a wide variety of specifications including commercial, BS 9000, CV and MIL? Who else can incorporate the unique transistor protection device? Who else but M-OV offers such a wide range of radar cathode ray tubes as standard. Write today for our cathode ray tube catalogue which lists the full range of radar tubes together with CRTs for instrument, data display and TV studio applications. Serving industry comes naturally to M-OV because in today's world M-OV means business.

$\mathcal{G} \mathcal{E} \mathcal{C}$ THE MOO VALVE CO LTD
 HAMMERSMITH LONDON .WW PE

TEL: 01-603 3431 TELEX: 23435 CABLES: THERMIONIC LONDON A member of The GEC Electronic Tube Co. Ltd., a management company combining the activities of The M-O Valve Co. Ltd. and English Electric Valve Co. Ltd

We'll fill the air with sound

New 'Toa' P.A. systems Goldring now offer modern 'Toa' P.A. equipment for in-place installations -to go-in anywhere, and make sound go everywhere! And it's a high quality/top value equipment range that carries a crystal-clear message for you. It means business.

Solid state amplifiers. Dynamic microphones. Box, Column, Horn and Panel-cone speakers. Equipment to cover all sound requirements . . . For service in offices, schools, airports, rail terminals, sports arenas, concert halls. Wherever people gather-indoors and out of doors. Hackney, London E8 3 SE. Phone or-985 1152

WW-018 FOR FURTHER DETAILS

Terminate your wiring

Use Hellermann-GKN Compression Terminal Kits. They're ideal for general maintenance work on electrical and electronic equipment - domestic or industrial - and one of the Kits is specially made for automobile electronics.

Take your pick from three different Kits, each one containing 12 of the most popular compression terminals. With or without a hand crimping tool. The terminal packets are re-sealable, and fit into the pockets of the plastic wallet that can either be hung on a wall or folded neatly into a tool bag.

UNIVERSAL with pre-insulated terminals for general electrical maintenance and domestic appliances.
Kit No. 1. - without tool : $£ 6.15$ Kit No. 1-CT -including tool : £8.30
MAINTENANCE with pre-insulated terminals for factory and general maintenance.
Kit No. 2-without tool : $£ 6.15$ Kit No. 2-CT - including tool : £8.30
GARAGE with non-insulated terminals and covers used on
most automobiles.
Kit. No. 3 -without tool : $£ 3.25$ Kit No. $3-$ CT-including tool : $£ 5.40$

All prices are subject to quantity terms. Each of these Kits can be made up to customers' requirements. subject to quantity.

Write for descriptive leaflet to:
NETTLEFOLD \& MOSER LTD
170-194, Borough High Street, London, SE1 1LA. Tel: 01-407 7111.

AUDIO MEASURING INSTRUMENTS
Two instruments having a superior performance than any others of this type regardless of price. Now accepted as standard equipment by Broadcasting Authorities, recording studios, magazine equipment test laboratories, and audio research and development laboratories all over the world.

LOW DISTORTION OSCILLATOR

An instrument of high stability providing very pure sine waves, and square waves, in the range of 5 Hz to 500 kHz . Hybrid design using valves and semiconductors.
Speciflcation
Output Impedance:
Output Voltage:
Output Attenuation:
Sine Wave Distortion:
Square Wave Rise Time: Monitor Output Meter:
Mains Input:
Size:
$5 \mathrm{~Hz}-500 \mathrm{kHz}$ (5 ranges) 600 Ohms.
10 Volts r.m.s. max.
$0-110 \mathrm{~dB}$ continuously variable.
0.005% from 200 Hz to 20 kHz increasing to
0.015% at 10 Hz and 100 kHz 0.015% at 10 Hz and 100 kHz .
Less than 0.1 microseconds.
Scaled $0-3,0-10$, and dBm.
$17 \frac{1}{4} \times 11 \times 8$ in
$25 \times 1 \mathrm{lb}$.
$£ 150$

DISTORTION MEASURING SET

A sensitive instrument for the measurement of total harmonic distortion, designed for speedy and accurate use. Capable of measuring distortion products as low as 0.002%. Direct reading from calibrated meter scale.

Specifcation

Frequency Range
Sensitivity:
Mater:
Input Resistance
High Pass Filter:
Fiequency Response:
Power Requirements:
Weight
Price:
$20 \mathrm{~Hz}-20 \mathrm{kHz}$ (6 ranges) $0.01 \%-100 \%$ f.s.d. (9 ranges) $100 \mathrm{mV} .-100 \mathrm{~V}$. (3 ranges).
Square law r.m.s. reading.
100 kOhms .
3 dB down at 350 Hz
30 dB down at 45 Hz .
$\pm 1 \mathrm{~dB}$ from second harmonic of rejection ncluded battery.
$17 \pm \times 11 \times 8 \mathrm{in}$.
15.10 .
£120.
Descriptive technical leaflets are available on request.

RADFORD LABORATORY INSTRUMENTS LTD.
BRISTOL BS3 2HZ
Telephone: 0272, 662301

How to get what you want without having to try very hard

SINGLE SOURCE MAKES SENSE

Anything you can do to save yourself trouble makes sense. When it comes to ordering smaller quantities of a variety of parts there is a lot to be said for getting everything from one place. We're in business to make that easy for you.
As stockholders of Cinch, Dot and FT products, we are an efficient single source for pretty well everything of this kind you are likely to want in whatever quantity you want it and at short notice. So, whether it's Radio, Electronic and Electrical Components, Metal Pressings, Clips, Fasteners or
Assemblies that you need, the easiest way is to get them from us-the most economical too, in the end.

Make United-Carr

 your
SINGLE SOURCE

116 PAGE FREE SINGLE SOURCE CATALOGUE illustrates thousands of stock items, any one of which you might want at any moment, posted on request to Firms and Organisations. Send for your copy now :

United-Carr Supplies Ltd.,
Frederick Road, Stapleford, Notts.
Sandiacre 2828 STD 0602392828

OTHER MODELS AVAILABLE:

2206	Converter No. 2 code to morse.
2201	Converter morse to No. 2 code.
3072	Line commutator.
451	Morse code reperforator, 3082
3065	Student box.
$3 F$	tone generator.

(GNT Morseinker
 MODEL 1532

Specially designed for training. Prints dots and dashes on tape with variable paper speed drive. Speed range $0-40$ words per minute.
GNT Transmitter MODEL 115

Specially designed for morse transmitting schools permitting the insertion of pauses between transmitted letters and words. Speed range 5-35 w.p.m.

GNT Morse key
 MODEL 605

A heavy duty key in a strong bakelite housing. All parts free of electrical potential available with platinum/iridium or silver contacts which are visible for inspection.

GNT Undulator)
 MODEL 311

Records WT signals up to 300 words per minute available in single or double pen versions with or without amplifiers with built-in tone filter for increased selectivity.

The GNT range of morse equipment for automatic transmission and morse code training schools is now manufactured in the U.K. by

Morse Equipment Limited

IIstirnusisinas,

$\mathrm{I}_{\text {CBO }} \& \mathrm{I}_{\text {EBO }}: \quad 10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$ f.s.d. acc $\pm 2 \% \mathrm{f} . \mathrm{s}$ d. $\pm 1 \%$ at voltages of $2 \mathrm{~V}, 5 \mathrm{~V}, 10 \mathrm{~V}$, $20 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}, 60 \mathrm{~V}, 80 \mathrm{~V}, 100 \mathrm{~V}, 120 \mathrm{~V}$, and 150 V acc. $\pm 3 \% \pm 100 \mathrm{mV}$ up to $10 \mu \mathrm{~A}$ with fall at $100 \mu \mathrm{~A}<5 \%+250 \mathrm{mV}$. Short circuit current limit 1 mA .
$B V_{C B O}: \quad 10 \mathrm{~V}$ or 100 V f.s.d.acc $\pm 2 \%$ f.s.d. $\pm 1 \%$ at currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and $1 \mathrm{~mA} \pm 20 \%$. Open circuit voltage limit 150 V
$I_{B}: \quad 10 n A, 100 n A, 1 \mu \mathrm{~A} . .10 \mathrm{~mA}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at fixed I_{E} of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, and 100 mA acc. $\pm 1 \%$. $V_{C E}=2 \mathrm{~V}$ approx.
$h_{\text {FE }} \quad 3$ inverse scales of 2000 to 100,400 to 30 and 100 to 10 convert I_{B} into $h_{F E}$ readings. Acc. is $\pm(2+200 \div \%$ of f.s.d. $) \%$ i.e. $\pm 4 \%$ at f.s.d.
$V_{B E}: \quad 1 \mathrm{~V} . \mathrm{s.d}$. acc. $\pm 20 \mathrm{mV}$ measured at conditions on $h_{\text {FE }}$ test.
$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$: $\quad 1 \mathrm{Vf.s.d}$ acc. $\pm 20 \mathrm{mV}$ at collector currents of $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA with $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ selected at 10,20 or 30 acc. $\pm 20 \%$

DIODE \& ZENER DIODE RANGES

$I_{D R}$: Asiebotransistor ranges
V_{Z} : Breakdown ranges as $B V_{C B O}$ for transistors.
$V_{D F}: \quad 1 \mathrm{Vf.s.d}$. acc. $\pm 20 \mathrm{mV}$ at I_{DF} of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$, $100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA acc. $\pm 1 \%$.

POWER SUPPLY
One type PP9 battery, or A.C. mains when a LEVELL Power Unit is fitted.

SIZE \& WEIGHT
$7^{\prime \prime} \times 10 \frac{1}{4}{ }^{\prime \prime} \times 5 \frac{1}{2}{ }^{\prime \prime} .8 \mathrm{lbs}$
${ }_{\text {vor } \mathrm{mm}_{2}} \mathbf{£ 6 5}$

The TM2
 -anew a.c./d.c. millivoltmeter fromFarnell

* $1 \mathrm{mV}-300 \mathrm{~V}$ f.s.d.
* $10 \mathrm{~Hz}-2 \mathrm{MHz}$
* $10 \mathrm{M} \Omega$ typical input impedance/resistance
* Low zerodrift
* Mains or battery operated

The TM 2 is a general purpose instrument offering a wide frequency range of operation, a high input impedance/resistance and very low drift. It is basically mean rectified reading, the meter being calibrated to provide r.m.s. values for sine wave inputs in a range sequence of 1-3-10. A decibel scale from-10dB to + 2 dB is also provided. The TM 2 has an integral power supply permitting operation from a.c. mains and may also be run on two internal batteries. Its U.K. price is $£ 68.00$.

For further details contact:-

Farnell Instruments Limited, Sandbeck Way, Wetherby, LS22 4DH. Tel: 0937 3541/6.

WW- 024 FOR FURTHER DETAILS

Used by all government services-Atomic. Military, Naval, Air, G.P.O. and Ministry of Works: Radio. Motor and Industrial Manufacturers. Plumbing and Sheet Metal Trades, Garages, etc.

New EMIColorline push-pull CATV The foremost multi-channel VHFsystem

Extended Bandwidth $40-270 \mathrm{MHz}$ Decreased Distortion Increased Cascadeability

The new EMI Colorline Mark II Push-Pull CATV equipment follows the highly successful Mark I system offering greater channel capacity, lower distortion and greater system reach.
The push-pull amplifiers and their associated passive units have a bandwidth of $40-270 \mathrm{MHz}$ and are designed for systems distribuiting up to twenty channels, where single octave operation is not acceptable.
VHF bands, I, II and III and areas of the VHF spectrum outside the normal broadcast bands can be used.

Mark II Colorline permits the planning and installation of networks having extremely low crossmodulation, intermodulation and harmonic distortion. All amplifiers have full AC line power facilities. Amplifier/power units are readily interchangeable without disturbing cable connections and are also mechanically compatible with EMI Mark I amplifiers. For details of this new equipment and the Colorline system planning concept, contact EMI today.

ERMTUELENHSIDM

Telecommunications Group, Television Equipment Division.
EMI Electronics Ltd., Hayes, Middlesex, England.
Telephone: 01-573 3888 • Telex 22417 • Cables: EMIDATA LONDON
A member of the EMI Group of Companies.
International leaders in Electronics, Records and Entertainment.

TOGETHERNESS

comes with a

3 in 1

PLUG-IN

 CASSETTE ASSEMBLYAn entirely new cassette system the Rohde \& Schwarz Sync \& Colour sub-carrier Generator Assembly Type SPSF is made up of a rack adapter which complies with the $19^{\prime \prime}$ or DIN standard, and contains three plug-in cassettes.

The Colour Sub-carrier Generator Type SFNF has a highly stable oscillator circuit together with input facilities for an external colour sub-carrier for parallel operation.

The TV Sync Generator Type STNF has a built-in coupler for the colour sub-carrier and supplies digital pulses which include PAL and burst-flag.

The Burst Generator Type SBNF with internal pulse generation, has a facility for synchronization by composite video signal. Each cassette is separately available in a small cabinet. The TV Sync Generator has its own cabinet whilst the Colour-Sub-Carrier Generator and Burst Generator use a common cabinet as they are frequently used together, each cassette can however be operated independently.

- Sync \& Colour Sub-carrier Generator Assembly Type SPSF
- Cassette system for supplying pulses to TV servicing and measuring equipment
- Available for all TV standard systems with 625 and 525 lines.
- Suitable for the colour-TV systems NTSC, PAL and SECAM.
Send for literature on the SPSF and its plug-in partners today.

aveley electric เть

Arisdale Ave
South Ockendon Essex

Tei: Sth Ockendon 3444 Telex: 24120 Avel Ockendon

ELTEC

Would like to INTRODUCE you to our new range of modular counting instruments

By selection of the correct boards the following instruments are available:

```
- totalising counters
- BATCH COUNTERS
- TACHO-RATIOMETERS
- BI-DIRECTIONAL COUNTER
- TIMER COUNTER
```

\star Low Cost

- Completely Modular
\star T.T.L.
\star Bench or Panel Mounting
\star Customer Requirements Satisfied

ELTEC ELECTRONIC EQUIPMENT LTD.

33 Wednesfield Rd., Willenhall, Staffs. Sales Dept. Willenhall 68290

WW-029 FOR FURTHER DETAILS

INSTRUMENT CASES
SIZE
$6^{\prime \prime} W \times 4^{\prime \prime} \mathrm{Hx} 4^{\prime \prime} \mathrm{D}$

We believe the finest instrumen case in the country. BEATS ALL COMPETITORS FOR PRICE AND STRENGTH.
fibreglass press moulded in grey, and blue supplied with 4 rubber feet, 18 SWG ALLOY CHASSIS, 16 SWG ALLOY FRONT PANEL. FRONT PANEL HAS PROTECTIVE film for marking out and protection chromed die cast handle. the case has two sets of runners moulded in which will take alloy or p.c. board CHASSIS. SAME DAY OFF-THE-SHELF DELIVERY. THIS SIZE OF CASE CAN BE TURNED DN END TO MAKE 4^{\prime} W $\times 6^{\prime \prime} H \times 4^{\prime \prime}$. PLEASE ADVISE IF HANDLE \& FEET TO BE SUPPLIED LOOSE. PANEL PUNCHING AVAILABLE DN 100 UP. TRADE AND QUANTITY DISCOUNTS ON REQUEST.
FUIL list of accessories available, sent with each oroer, i.e. SWitches, PANEL LAMPS, AMPLIFIERS, FUSES, ETC.

Ref. Ww

E. R. NICHOLLS

46 Lowfield Road, Stockport, Cheshire
Tel: 061-480 2179

ADCOLA Soldering Instruments add to your efficieincy

THE NEW 'INVADER'

ADCOLA L. 646

for Factory Bench Line Assembly
A precision instrument-supplied with standard $3 / 16^{\prime \prime}(4.75 \mathrm{~mm})$ diameter, detachable copper chisel-face bit*.
Standard temp. $360^{\circ} \mathrm{C}$ at 23 watts.
Special temps. from $250^{\circ} \mathrm{C}$ $410^{\circ} \mathrm{c}$.
*Additional Stock Bits
(illustrated) available
COPPER

Don't take chances. We don't. All our ADCOLA Soldering Instruments are of impeccable quality. You can depend on ADCOLA day after day. That's why they're so popular. You get consistent good service . . . reliability . . from our famous thermally controlled ADCOLA Element and the tough steel construction of this ideal production tool.

Soft magnetic alloys

TELCON OFFER THE WIDEST RANGE

Mumetal alloys

This is the best known and widest used Telcon group of high permeability alloys. They possess low hysteresis and total losses and are available in strip, rod, bar, wire and core form. Typical applications include many types of transformers, bridge ratio arms, inductors, h.f. chokes, blocking oscillators, filter circuits, magnetic amplifiers, saturable reactors, modulators, flux gate magnometers, storage circuits, shift registers, transformers, logic switching circuits and a variety of magnetic shielding applications.

Radiometal alloys

Almost as well known as the Mumetal group, these high permeability alloys, with their high saturation induction and low electrical losses, are extensively used for transformers and chokes where the operating flux density is higher than is possible with Mumetal and where a higher permeability than that of silicon iron is required. The six grades have a variety of applications including: relay circuits, pulse and radar transformers, transductor and convertor cores, magnetic amplifiers and saturable reactors.

Permendur alloys

Permendur has the highest saturation ferric induction of all known alloys commercially available. It also has a correspondingly high incremental permeability at high inductions. It is extensively used for stator laminations, telephone diaphragms, magnetic circuits of loudspeakers and equipment operating at high temperatures. Its excellent magnetostrictive properties are frequently used in echo sounders and ultrasonic devices. A special grade of alloys, known as 'Rotelloys', which have superior mechanical properties have also been developed for use in high speed rotating equipment such as aircraft generators.

Telcon Metals Ltd.,
Manor Royal, Crawley, Sussex.
(Crawley 28800)

COMPAK 8 can be tuned in seconds -by anyone!

Labgear COMPAK 8 HF SSB PACKSET

10W p.e.p. speech over entire range 2-9 MHz. Unprecedented serviceability

SSB transceiver with a minimum of controls - lower in weight, smaller in size, and with greater flexibility of performance than any comparable equipment.
Labgear COMPAK 8 is designed for single side-band suppressed-carrier voice or key operation in A3J or A2J modes under the most severe environmental conditions. It meets the needs of military, security forces, police, emergency, surveying etc. and is designed for use by non-technical operators.

Transmitter and receiver use plug-in modules for ease of servicing. Low-noise high-gain receiver employs dual gate MOSFET RF devices in conjunction with fast attack, slow release AGC, to give exceptional immunity to blocking and cross modulation and performance approaching base station standards.

We're sensitive to everyone's needs.

Different people have very different requirements in $\mathrm{Hi}-\mathrm{Fi}$, so Goldring developed a comprehensive range of stereo magnetic cartridges that are superb in performance and realistic in price.

From the G800 Super E for those who seek perfection down to the G850 for systems on a budget, the Goldring range offers unsurpassed quality and value.

Your request will bring full details of these and other Goldring products. Goldring Manufacturing Company (GB)Limited, 10 Bayford Street, Hackney, London E83SE. Tel:01-985 1152.

WW- 035 FOR FURTHER DETALLS

NEW 7060

Precision T.V. waveform monitor.
Combined waveform and picture monitor.

- All line standards (including CCTV).
\square Odd \& Even field selection.
- Pulse \& Bar overlay (same field).
- 75 and 1 M switched attenuators.

Post Office TV test set Type 13B

[^1]

NEW 72 SERIES

The On- Site commissioning/servicing scope.
Light/Rugged/Compact.
High Brightness for Low Occupance Signals.
Dual Channel 15 MHz/Signal delay.
Full delayed sweep/delay gate timebase with two trigger inputs.
Post Office Oscilloscope Type 14A.

NEW 7130

Wideband extension of 71 Series

Oscilloscopes.

A0 MHz Dual Channel plug - on amplifier.
100 MHz High writing speed display unit.

- Full delayed sweep/Gate timebase module.
- True dual trigger inputs/Unrestricted trigger source selection.
Complete compatability with all 71 Series modules.

THE

ORYX50

*Screw adjustment range $200^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$.

* Heat settings accurate to $\pm 2^{\circ}{ }_{0}$.
* One tip for all temperatures.
*Temperature adjustable whilst iron is on.
*Cool, comfortable handle.
*Standard tip — long life iron coated.
* Choice of 11 tip sizes.
*Built-in indicator lamp - thermostat controlled.
*Rated at 50 watts.
* $12,24,50,115$ or $210 / 250 v$. a.c. models.

used as standards in many industries
- Accurate to $\pm 0.3 \%$ or $\pm 0.1 \%$ as specified
- Not sensitive to voltage or temperature changes, within wide limits
- Unaffected by waveform errors, load, power factor or phase shift
- Operational on A.C., pulsating or interrupted D.C., and superimposed circuits
- Need only low input power
- Compact and self-contained
- Rugged and dependable

Anders means meters

FRAHM Resonant Reed
Frequency Meters are available in plastic and hermetically sealed cases to British and U.S. Government approved specification. Ranges $10-1700 \mathrm{~Hz}$. Literature on these meters and Frahm Resonant Reed Tachometers available on request.
Manufacture and Distribution of Electrical Measuring of Electrical Measuring Equipment. The largest stocks Equipment. The largest stocks
in the U.K. for off-the-shelf delivery

AHDERS ELECTROIILS LITIITED

 London NW1. Tel: 01-3879092

Mullard Unilex modules need no soldering, no knowledge of electronics. They make the stereo amplifier so simple that anyone can build

it in an hour, for around $£ 16$.
Connect the record deck and speakers and you've built your stereo system.
For the comprehensive instruction book 'Do-it-yourself Stereo' and stockist list post this coupon today with a 25p P.O.
Mullard UNILEX
Room 512, Mullard House, Torrington Place, London WC1E 7HD

Name \qquad
Address
\qquad
\qquad
WW13.71

TIITOMTHNUS

 OF Lssillisemp Bameris
second prints with roll, pa materials including 35 mm .

Inexpensive Type P

- LIGHTWEIGHT
- SIMPLE OPERATION
- attractive APPEARANCE
- LOWER PURCHASE PRICE
- ECONOMY SIZE POLAROID FILM TYPE 20
- PRE-EXPOSURE VIEWING
- LENS f4.5 $2.4^{\prime \prime}$ (61 mm) lens provides reproduction of trace and graticule with good linearity. The object/image ratio is $1: 07$ (nom).
- SHUTTER SPEEDS include fixed exposure $1 / 25$ th sec. (nom) time and brief.
- ADAPTORS Camera models available for most popular oscilloscopes.

4 WADSWORTH ROAD GREENFORD MIDDLESEX ENGLAND TE1:01.998-1011
THE DAVALL PHOTO-OPTICAL COMPANY OF THE BENTIMA GROUP

> PD Connectors is New PD Connectors is No Solder PD Connectors is No Screws PD Connectors is Simple PD Connectors is Sensible PD Connectors is Economy PD Connectors is $\mathbf{2 8 P}$

The System
This DIN 235A connector is one of a series of PD connec tors. Cables which have been fitted with a PD universal terminal can be attached to any connector in the series. Complete compatibility between any PD audio connector is thereby achieved

Method

The PD universal terminal is the heart of the system. These contacts are quickly and simply crimped to the cable without the use of any solder, special tools or screws. No part of the plug need be placed on the cable before the connections are made. The pins with the terminals attached are fitted into the centre bush in either 2 pin, 3 pin, or 5 pin stereo configuration.

Advantages

Facility for testing the output connections of a socket. Room allowed for attenuating resistors or other components. Manufactured in many colours for quick cable identification.

The PD connector is made in Britain by:
$-1-{ }_{28}$ Parry Electronic Developments Ltd L- 28 Greville St London EC1N 8SU Tel: 242-1100

"The alternative to QUAD is not a colour television set but a seat in the concert hall"

QUAD

for the closest approach to the original sound

Brandenburs
 high volage engineers

solid state HV modules

 to power cathode ray tubes, etc.
-ready to connect

Many companies looking for HV supply modules have been driven to making their own - in spite of the cost and time involved. But now there is no need to. Brandenburg, the British high voltage specialists, can supply standard, compact, reliable, fully tested modules with outputs up to 15 kV at up to $500 \mu \mathrm{~A}$ to meet the most exacting demands at a very economical price. For requirements outside this range, Brandenburg are always prepared to quote for batch or quantity production of custom-engineered designs to meet particular applications.

Special features:

1. Prototypes test proven under extreme electrical and environmental stress conditions.
2. Designed and packaged to operate in a wide range of environments.
3. Additional low voltage and output in the order of 500 V suitable for various applications including focus supply.
4. Capable of withstanding overloads, flashovers and short circuit conditions.

Brandenburg Limited

939 London Road, Thornton Heath, Surrey. CR4 6JE. England. Tel : 01-6890441 Telex 946149.

To obtain further details of any of the coded items mentioned in the Editorial or Advertisenent pages of this issue, please :omplete one or more of the ittached cards entering the eference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication. Please Use Capital Letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription, place a tick in the box on one of the postage-free cards opposite and fill in your name and address.

Subscriptions rates:- Home $£ 4.00$ a year. Overseas, 1 year $£ 4.00,3$ years. $£ 10.20$ (U.S.A. and Canada, 1 year $\$ 10,3$ years $\$ 25.50$).

Wireless World can also be obtained through newsagents at $17 \frac{1}{2}$ p. per copy.
Overseas readers can pay subscriptions in local currency through the agents listed on the reverse of this tab.

$$
\begin{aligned}
& \text { WIRELESS WORLD, } \\
& \text { READER ENQUIRY SERVICE, } \\
& 429 \text { BRIGHTON ROAD, } \\
& \text { SOUTH CROYDON, } \\
& \text { SURREY CR2 9PS }
\end{aligned}
$$

Enquiry Service for Professional Readers

WW	WW	WW
Ww	WW	WW
WW	WW....	WW
WW	WW	WW
WW.	WW . . .	WW

Wireless World, November 1971

WIRELESS WORLD

Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.

Name .
\qquad

Address

Telephone Number

PUBLISHERS USE ONLY			A/E		

Position in Company

Nature of Company/Business
No. of employees at this establishment

I wish to subscribe to Wireless World
VALID FOR SIX MONTHS ONLY

Postage will
be paid by
Licensee

Do not affix Postage Stamps if posted in
Gt. Britain, Channel Islands or N. Ireland

Licence No. 12045
WIRELESS WORLD, READER ENQUIRY SERVICE, 429 BRIGHTON ROAD, SOUTH CROYDON, SURREY CR2 9PS

Enquiry Service for Professional

 Readers| WW | Ww |
| :---: | :---: |
| ww | |
| ww . . . | WW |
| ww | WW |
| ww . . . | ww |
| Ww | |
| Ww. | ww |
| WW | |
| ww | WW |
| ww | Ww |
| w | |
| ww | WW |
| ww | WW |
| WW. | |
| ww | |
| ww . . . | WW |

WIRELESS WORLD

Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.

Name .

Name of Company .

Address.

Telephone Number

Position in Company
Nature of Company/Business
No. of employees at this establishment

I wish to subscribe to Wireless World
VALID FOR SIX MONTHS ONLY

Do not affix Postage Stamps if posted in Gt. Britain, Channel Islands or N. Ireland
ostage will be paid by Licensee

OVERSEAS AGENTS
Argentine Alberto A. Mortz, Manzanares 2083, Buenos Aires
Australia BCN Agencies Ltd, 178 Collins Street, Melbourne 3000
Engineering Publications (A) (Pty) Ltd,
52 Pitt Street, Sydney, NSW 2000
Gordon \& Gotch (A'sia) Ltd, PO Box No.
112, Camberwell E6, Melbourne
Austria Gerold \& Co., Graben 31, Vienna 1
Belgium Office International de Librairie
SPRL, 30 Ave. Marnix, Brussels 5
W. H. Smith \& Son, 71.75 Blvd. Adolphe Mx, B-1000 Brussels

Brazil Mr. H. Bincer, Caixa Postal 4316, Sao Paulo

Canada Franklin Square-Dawson Subscription Service Ltd, 6 Thorncliffe Park Drive, Toronto 17, Ontario
Gordon \& Gotch (Canada) Ltd.,
55 York Street, Toronto 1, Ontario
Ceylon SD Weerasuriya 9, Manning Place, Wellawatta, Colombo

Chile Artical Ltd, Casilla No. 9950, Santiago

Central Africa International Magazines
Circulation, PO Box 2954, Lourenco Marques, Mozambique
Denmark Mr. Arnold Busck BoghandeI, Kjobmagergade 49, Copenhagen-K Jul Gjellerups Boghandel, Solvgade 87. DK-1307 Copenhagen-K
Finland Rautatiekirjakauppa OV, Kampinkatu 2. Helsinki 10
France Dawson-France SA, BP, 40
Villebon-S/Yvette, F-91 Palaiseau
Technique \& Documantation Librairies Lavoisler, 11 Rue Lavoisler, Paris 8 e Office Internationale de Documentation et Librairie, 48 Gay-Lussac, Paris 5
Germany Buch \& Zeitschriften Union MBH, Postfach 997, 2 Hamburg 1
Ex Libris Buchhandelsges, Ferdinand-
Dirichs-Weg 26, 6 Frankfurt/Main
W. E. Saarbach GmbH, Postfach 1016 10, 5 Cologne 1

WIRELESS WORLD, READER ENQUIRY SERVICE, 429 BRIGHTON ROAD, SOUTH CROYDON, SURREY CR2 9PS

Enquiry Service for Professional Readers

WW . . .	WW.	WW
WW.	WW	WW
WW	WW	WW
WW . .	WW	WW
WW.	WW	WW
WW	WW	WW
WW	WW	WW
WW	WW	WV
WW	WW	WW
WW	WW	WW
WW	WW	WW
WW	WW	WW.
WW	WW. . . .	WW
WW	WW . . .	WW
WW.	WW	WW
WW	WW	WW

Wireless World, November 1971

WIRELESS WORLD

Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.

Position in Company .
Nature of Company/Business
No. of employees at this establishment

Greece Librairie C. Cacoulides,
Panepistimlou 39. Athens 132
Hong Kong Yau Yuen Company, PO Box
1353, Hong Kong
India Mr. T. J. Pinto, PO Box No. 1141,
GPO, Bombay-1
Italy Etas-Kompass SPA, 6 Via Mantegna, 20154 Milan
Techna, Via Cesi 16, 40135 Bologna
Japan Maruzen Co. Ltd, PO Box 5050,
Tokyo International, 100-31 Japan
Mexico Crane Agency, Ave 16 de Septiembre Num 6-402, Pasaje Savoy Mexico 1 DF
Netherlands Dekker en Nordemann's,
Amsterdam
Ahrend NV, Amsterdam
New Zealand Gordon \& Gotch (A'sia) Ltd, 102 Adelaide Road, Newtown, Wellington R. Hill \& Son Ltd., Cnr. Gillies Ave \& Eden Street, Newmarket, Auckland, SE1
Nigeria Daily Times of Nigeria Ltd,
PO Box 139, Lagos
Norway A/s Narvesens Litteraturtjeneste, Postboks 6140-Etterstad, Oslo 6
Portugal Livraria Ferin Lda, $70-74$ Rua Nova Do Almada, Lisbon 2
South Africa American \& Overseas
Publications Pty. Ltd, PO Box 3025, Port Elizabeth
P. J. Kearney \& Sassin (Pty) Ltd, PO Box 1883, Johannesburg
Wm. Dawson \& Son (SA) (Pty) Ltd, Cape Town
Spain Distribuidora Internacional,
Apartado 9156, Madrid 9
Sweden Almqvist \& Wiksell Subscription Agency, PO Box 62, S-101 20, Stockholm Wennergren-Williams AB, Fack, S- 104 25 Stockholm 30
Switzerland Kurt Staheli \& Co.,
Bahnhofstrasse 70, 8001 Zurich
United States of America Illiffe-NTP Inc, 300 East 42nd Street, New York, NY 1001

VARIABLE TRANSFORMERS ARE ALWAYS AVAILABLE FROM STOCK AT THE LOWEST PRICES

Fully shrouded variable transformers-input 240VAC output 0-260VAC
$1 \mathrm{amp} £ 7.00 \quad 10 \mathrm{amp} £ 22.50$ $2.5 \mathrm{amp} \mathrm{f} 8.05 \quad 12 \mathrm{amp} £ 23.60$ $5 \mathrm{amp} £ 11.75 \quad 20 \mathrm{amp} £ 49.00$ 8 ampf 15.90
Supplied complete with brackets for bench and panel mounting

Constant voltage transformer stabilises mains voltage to $\pm 1 \%$ output $240 \mathrm{VAC} \pm 1 \%$
input $240 \mathrm{VAC} \pm 20 \%$
capacity 250 Watts
price $£ 12.50$ with quantity discounts

New solid state variable voltage control input 240 VAC output 25-240VAC

SSB Receivers 2-30 MHz.

Modular plug-in chassis system. 7 receivers fit a standard $19^{\prime \prime}$ rack assembly. Frequency Range $\quad 2-30 \mathrm{MHz}$. single or multi-channel. Crystal-controlled. S/N 20 dB for $1 \mu \mathrm{~V}$
Gain Audio output of +17 dBm . for $1 \mu \mathbf{V}$.
Audio Output $\quad 50 \mathrm{MW}$. at 600 ohms c.t
A.G.C. \quad An input signal increase from $3 \mu \mathbf{V}$. to 1 V . increases the A.F. output by not more than 2 dB .
Response An incoming carrier from 300 Hz . to 3000 Hz . displacement on the appropriate side of the nominal carrier frequency produces an A.F. output within 2 dB . of that produced by a signal displaced 1 KHz . Input Impedance 50 ohms BNC.
Spurious Responses All including second-channel and I.F. breakthrough $\mathbf{6 0}$ dB. down. Frequency Stability Within 1 Hz . per MHz . of nominal receiver frequency within the ambient temperature range 20 to 35°. External fine tuning by amhient temp
Environment Storage and operation within the range 20 to $35^{\circ} \mathrm{C}$. at relative humidity up to 90%.
General Plug-in module censtruction. Front panel size $\mathbf{7}^{\prime \prime} \times 2 . \mathbf{4}^{\prime \prime}$. Depth $\mathbf{1 0}^{\prime \prime}$. 7 receivers fit one $19^{\prime \prime}$ sulb-rack

Phase Lock Loop Receivers 1-500 MHz.
AM, FM, FSK, Multiplex Telemetry. Complete and self-contained in $4 \frac{1^{\prime \prime}}{}{ }^{\prime} \times 3 \frac{1}{2}^{\prime \prime} \times 1^{\prime \prime}$ diecast screened casel
Low Noise RF Amplifiers.
Up to 700 MHz . Noise figures of less than 1.5 dB . at 150 MHz . and 2.5 dB . at 400 MHz . Bandwidth up to 10%.
Gain up to 100 dB . with manual or AGC.
Frequency Converters.
Up to 700 MHz . Details as amplifiers.
Linear Amplifiers.
RF up to 500 MHz . Power output up to 15 W . Drive 100 MV .
Frequency Multipliers.
Output up to 700 MHz . at 500 MV . Unwanted harmonics 30 dB . down.
VHF Acceptance Filters.
100 to 500 MHz . Two section cavities. 70 dB . adjacent frequency attenuation. 0.5 dB . insertion loss.

Yes, two more exciting new CCTV units from one of the world's leading manufacturers

On the left is the SHIBADEN VM $171 \mathrm{~K} \ldots$ a solid state $17^{\prime \prime}$ video monitor that is ideal for use in SHIBADEN CCTV systems. This excellently designed model combines top reliability with a low power consumption. And pictures of excellent contrast and high resolution are guaranteed by the high gain and wide band video amplifier. There is little or no picture distortion

On the right is the latest SHIBADEN CCTV camera model HV-40S
This is a $\frac{2}{3}$ " separate mesh vidicon that combines a compact design and light weight - which makes it ideal for a very wide range of CCTV applications
Its style and performance make it ideal for educational institutions and as a training unit in commerce. industry and schools.

It can be used for all forms of conventional surveillance.
This unit has a guaranteed Video Standard Resolution in excess of 500 lines plus a built in light control circuit.

The HV-40S is simple to use - which means any operator can achieve excellent results. And the fully silicon transistorised circuit ensures a truly stable operaton in any environment.

If you would like further detaits on either of these exciting additions to the SHIBADEN range of CCTV equipment, write or telephone today for your copy of the fully illustrated technical brochures to

5HIBADEA (UK. ISMITTED

 grgaccast \& cctv equiment manlifacturers 61-63 Watford Way, Hendon, London, NW4 3AX. Telephone: 01-202 8056

WW-047 FOR FURTHER DETALLS

ONKYO
 JAPAN'S LEADING HI-FI EQUIPMENT

COMPLETE STEREO SYSTEMS
SM-10 Modular 20 Watts Total Output. Dynamic Four Component Series. 28 Watts Total Output. Multiac 50D Special 4-AMP System. Multiac 60D Special 4-AMP System.

INTEGRA SERIES

725. Integrated Stereo Amplifier 22/22 W. 723. Integrated Stereo Amplifier $33 / 33$ W. 225. Stereo Receiver $22 / 22 \mathrm{~W}$.
726. Stereo Tuner.

PHOTOGRAPH:
SM-10 Complete Component Sterio System -28 Watts Total Output.
Suggested retail price $£ 133.00$ inclusive of Purchase Tax.

Trade enquiries are invited at the Showrooms of the sole U.K. distributors.
J. PARKAR \& Co. (London) Ltd.

Parkar House, 1 Paul Street, London, E.C.2A 4JQ. Telephone 01-628 4577.

Erma laboratory leads

for instruments, electronic equipment and general laboratory use
ERMA Laboratory Leads find innumerable applications on laboratory instruments and equipment. Hermaphrodite socket design for simplest possible connexion into pins or sockets.

- Two sizes : 2 and 4 mm socket diameter plus a 4 mm heavy duty size
Eight standard colours
- Six standard lengths of lead
- Easily stacked from front or rear
- Negligible contact resistance
- Vibration proof

Panel Mounting

 SocketsThese panel mounting sockets accept all conventional rigid and spring loaded 4 mm plugs. Can be had plain or spring loaded and with alternative round or square shrouds.

Send for catalogue or our sales engineer for more information on these and other laboratory aids.
ERMA LIMITED
Mount Pleasant, Alperton, Wembley, Middlesex Telephone: 01-903 4561 Telex: 264229 Telegrams: Ermobil Wembley
wW- 050 FOR FURTHER DETALLS

PRECISION POTENTIOMETER

TYPE P. 10^{-7}
ACCURACY: 5 ppm
RESOLUTION: $0.1 \mu \mathrm{~V}$
RANGE: 0 to 1.1 volts

7 DIAL IN LINE READ OUT
SCREENED AND GUARDED
TRUE ZERO CONTROL
6 DIAL CURRENT REGULATOR 4 TEST CIRCUITS

Request full details from:

CROYDON PRECISION INSTRUMENT COMPANY

Hampton Road, CROYDON (Postal Code: CR9 2RU) Telephone 01-684 4025 and 4094

Acoustic Research has measured the response of more than a million high-fidelity speakers.

Here are some things we have learned about listening.

1000

1. The frequency response of a midrange driver unit of an AR-3a, on axis. This corresponds to what one would hear outdoors, listening directly in front of a speaker.

Integrated power output curves.

AR-3a and AR-5 with high-priced magnetic cartridge. It is interesting to see that the cartridge introduces somewhat more degradation of the signal than the speaker system, at least in the frequency range observed Nevertheless. a small adjustment of the amplifier treble control could restore uniformity of response.

Nooo
2. What happens when a listener moves over to one side of the speaker in 15° increments.

AR-2ax with moderately-priced magnetic cartridge. Althougn not as accurate as the AR-5 or AR-3a the AR-2ax displays the same kind of performance, that is its integrated power output curve is relatively level Because its dispersion, especially in the lower midrange is less uniform the AR-2ax is more dependent on optimum placement than the others.

3. The integrated power output of the AR-3a above 1000 Hz , measured in a special reverberant chamber. Reflection from the walls of the chamber mixes together all of the sound emitted by the speaker system in all directions. an effect much more like that of a listening room than the anechoic chamber used for 1 and 2. A speaker system which measured well in both types of chamber would be accurate under almost all listening conditions.

A muiti-directional' system and a very expensive cartridge Such systems are designed to take advantage of room reflections to smooth response and create spatial effects.

Fidelity means accuracy.
Accuracy distinguishes high-fidelity speaker systems from the speakers in simple radios and gramophones. It is therefore reasonable that evidence of accuracy should take precedence over descriptions of a speaker system's size, shape or theory of design. Acoustic Research offers exact measurement data for AR speaker systems to all who ask for it: music listeners, audio enthusiasts, science teachers. even competitors.

The accuracy of a speaker system can be evaluated by listening tests or by measurement. Both methods give the same information in different ways.

Testing for accuracy.

To perform a listening test, an extremely accurate recording must be made and played back alongside the original source of sound. Amplifier and speaker system controls are adjusted to obtain as close a match as possible; and the speaker system judged by the degree of similarity. Acoustic Research has presented public concerts at which the Fine Arts Quartet and other musicians could be compared with recordings played back through AR speaker systems: even seasoned critics were deceived. Obviously, listening tests cannot be made with commercial recordings of music since the listener has no way of knowing which adjustment is most accurately reproducing the recording.

Objective measurements.
While it is not always convenient to carry out scientifically controlled listening tests, properly conducted measurements can give the same information in permanent, quantitative form. AR knows something about this, having already tested the response of well over a million speakers - every one that we have ever made, and many made by competitors. Our findings are that the most important measurements required to assess the accuracy of a speaker system are (1) frequency response on-axis, (2) frequency response off-axis, (3) integrated power output.

AR speakers are now available in pine, and start at $£ 38.95$ including purchase tax. Write to Bell \& Howell for more information, and a list of dealers.

AR
 \square BelleHowell

Bell \& Howell A-V Ltd.
Alperton House, Bridgewater Road. Wembley, Middlesex HA0 1EG
Telephone: 01-90'2 8812

\section*{0.3% STOUITEGALVANOMETER

 with internal voltage reference
 - Fast response for bridge use.
 - Go-no go inspection facility.
 - 0.3% precision calibration.
 Negligible pick up.
 - Output for recording instruments.
 Other design features include double screening and good common mode rejection.
 SPECIFICATION
 | Range | Voltage | Current |
| :--- | :--- | :--- |
| 6 | $100 / 0 / 100 \mu \mathrm{~V}$ | $100 / 0 / 100 \mathrm{nA}$ |
| 5 | $1 / 0 / 1 \mathrm{mV}$ | $1 / 0 / 1 \mu \mathrm{~A}$ |
| 4 | $10 / 0 / 10 \mathrm{mV}$ | $1 / 0 / 1 \mu \mathrm{~A}$ |
| 3 | Non Linear | $1 / 0 / 1 \mu \mathrm{~A}$ |
| 2 | $100 / 0 / 100 \mathrm{mV}$ | $1 / 0 / 1 \mu \mathrm{~A}$ |
| 1 | $1 / 0 / 1$ volt | |
| | | |
| ccuracy Range $6 \pm 1 \%$ | | |
| Range 5, 4, 2 and $1 \pm 0.3 \%$ | | |

 Write for details or a demonstration to:-

 Brook Avenue, Warsash, Southampton SO3 6HP. Tel.: Locks Heath 4221
 Current
 100/0/100 nA
 $101 \mu \mathrm{~A}$
 $1 / 0 / 1 \mu \mathrm{~A}$
 $1 / 0 / 1 \mu \mathrm{~A}$
 Accuracy Range $6 \pm 1 \%$
 Range 5, 4, 2 and $1 \pm 0.3 \%$}

WW-054 FOR FURTHER DETAILS

Audio Connectors

Broadcast pattern jackfields, jackcords, plugs and jacks
Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut
Hirschmann Banana plugs and test probes XLR compatible in-line attenuators and reversers
Low cost slider faders by Ruf
Future Film Developments Ltd. 38 Hereford Road, London W2 5AJ.
01-229 8054 or 01-229 9111

WW- 056 FOR FURTHER DETALLS

FOR THE FIRST TIME

an electronic multimeter to suit both your pocket and your needs

A.K.G. Equipment Ltd.

Eardley House
182-184 Campden Hill Rd. w8 7AS

Nombrex accuracy!

in the palm of your hand

TRANSISTORISED-COMPACT-MODERN STYLING

Standard Model 29-S

- $150 \mathrm{KHz}_{z}-220 \mathrm{MHz}_{2}$ on fundamentals
- Eight clear scales. Total length 40°
- Smooth vernier tuning-ratio 7t
- Magnifier cursor-precision tuning
- Overell accuracy, better than 1.5%
- Modulation, variable depth and frequency

Price $£ 20.00$

Xtal Check Model 29.X

- All the features of the Model 29-S AND
Integral Crystal Dscillator providing
alibration check points throughout
all ranges. For adjustment of scale accuracy to $\pm 0.02 \%$

Illustrated: R. F. SIGNAL GENERATOR MODEL 29 , Spin Wheel Tuning $£ 1.00$ extra technical leaflets. Post and Packing $32 \frac{1}{2} \mathrm{p}$ extra

NOMBREX (1969) LTD. EXMOUTH DEVON Tel. 03-952 3515

WW-060 FOR FURTHER DETAILS

QUICKER SERVICING-MORE PROFITS
Now, more than ever before, RADIO \& TV SERVICING gives value for money. Every Servicing Engineer realises the value of readily available servicing data-it means speedy servicing, satisfied customers and more profit-and information on earlier models that come in for repair is almost impossible to come by. Radio and TV Servicing will give you just this-it's the most comprehensive library of servicing data available

SERVICING DATA ON OVER 1500 POPULAR MODELS
Here, in 6 handy volumes, you have comprehensive technical data for servicing over 1500 popular 1965-71 models. The sections on Colour TV alone makes this 3600 -page library a sure money-spinner for years to come. Examine RADIO \& TV SERVICING and prove for yourself how valuable and indispensable this money-making library is.

OVER 4200 CIRCUITS, PRINTED PANEL DIAGRAMS, COMPONENT LAYOUT DIAGRAMS, AND WAVEFORM GRAPHS

File 710 -day trial

To: Macdonald Technical \& Scientific, PO Box 50, Swindon, Wilts. Please send Radio \& TV Servicing- 6 volumes - on 10 days free trial. I understand that I am under no obligation to buy and may return the volumes in 11 days if not satisfied. If I do decide to buy the volumes I will post

$\square \quad$ The full cash price of $\mathbf{£ 2 6 . 2 5}$ ($\mathbf{£ 2 6 . 5 . 0}$) or
 $£ 2.80$ ($£ 2.16 .0$) dep. and 9 monthly payments of $\mathbf{£ 2 . 8 0}$ ($£ 2.16 .0$) paying $£ 28$ in all.

Name
block letters please
Address

RP28

LOOKING FOR THE BEST DEAL IN Low cost power supplies? YOU'VE FOUNDIT.
 Circuit Integration have used their experience in power supplies - and new enlarged production facilities - to bring you the CU600 SERIES
 Check this brief specification - then check the price! You'll be surprised
 Outputs from 0-60v. Output impedance less than 0.05 ohm

 Integrated Circuit stabilized All siticon semiconductors Short circuit protection. Use in series or parallel. Compact design, rugged construction. Provision for slide-in stackingPRICES start at $£ 12$ per unit, subject to quantity and educational discounts.

TYPE OUTPUT CURRENT
CU600A 0.12v 0.5A
CU600B $0.30 \mathrm{v} \quad 0.25 \mathrm{~A}$
$\begin{array}{lll}\text { CU600 } & 0.60 \mathrm{~V} & 0.1 \mathrm{~A}\end{array}$
CU600D 15-0-15v 0.25A
CU600E $\quad 30-0-30 \mathrm{~V} \quad 0.1 \mathrm{~A}$
CU600F $\quad 0 \& 2-12 \mathrm{~V} \quad 0.5 \mathrm{~A}$

E- CIRCUIT INTEGRATION LIMITED
Canal Sireet, RUNCORN, Cheshire, Tel: Runcorn 75973-6
WW-063 FOR FURTHER DETAILS

XENON STROBOSCOPE

A Stroboscope designed primarily for laboratory, industrial and educational applications where the elaboration and expense of more complex equipment may not be required. Features include simplicity of operation, robust construction, exceptionally low price and built in reliability.

The instrument is of modern appearance, small, light in weight, convenient to use and portable. A wide range of flashing rates is covered by the large accurately calibrated dial, allowing operation at low frequencies for strobo photographic experiments and at high speeds for observation of rapidly rotating or reciprocating phenomena.
The external triggering facility permits single shot operation by an external closing contact and also provides a synchronising input for high and low speed repetitive phenomena which might otherwise be difficult to maintain in exact phase.

Light source.
Flashing rate Frequency accuracy Triggering.

Price: $£ \mathbf{3 8} .50$
High intensity Xenon tube mounted in a para bolic reflector.
1.250 flashes/second in 3 ranges.

Typically $\pm 2 \%$ of each full scale.
(a) by internal oscillator
(b) by external closing contacts.

Edwards Scientific International Ltd.
Knowle Road, Mirfield, Yorkshire. Tel: O92484 4242

CROWN INTERNATIONAL

IC150 Pre-Amplifier

Designed to team with the fabulous DC300 Power Amplifier

Frequency Response. Hi-level: $\pm 0.6 \mathrm{~dB} 3 \mathrm{~Hz}-100 \mathrm{kHz}$ with high impedance load, $\pm 0.1 \mathrm{~dB} 10 \mathrm{~Hz}-20 \mathrm{kHz}$ with IHF load: Phono: $\pm 0.5 \mathrm{~dB}$ of RIAA. calibrated.
Phase Response. High-level: typically $+1^{\circ}$ to $-12^{\circ} 20 \mathrm{~Hz}-20 \mathrm{kHz}$ with IHF load: Phono: typically $\pm 5^{\circ} 20 \mathrm{~Hz}-20 \mathrm{kHz}$ additional phase shift.
Hum and Noise. $20 \mathrm{~Hz}-20 \mathrm{kHz}$ inputs shorted; High-level: 90 dB below rated output (typically 100 dB with IHF " A " weighted measurement; Phono: 80 dB below 10 V input) typically 0.5 V input noise.
Distortion THD. Essentially unmeasurable: IM : less than 0.01% at rated output with JHF measurement (typically under 0.002\%).
Inputs. Five high-level inputs (1 tuner. 2 auxiliary, 2 tape). two equalisedphonos. Input Gain and Impedance. High-level $20.8 \mathrm{~dB} \pm 0.2 \mathrm{~dB} .100 \mathrm{Kohms}$: Phono: $50-70 \mathrm{~dB}$ (adjustable), 47 Kohms
Phono Input Capability. $33-330 \mathrm{mV}$ at 1 kHz , depending on gain (100 mV when set to 60 dB total preampgain).
Output. 10 V maximum before overload. 2.5 rated, 600 ohms output impedance
Phono Output and Impedance. (At tape out.) 600 ohms with typical maximum output of 9 V RMS at 1 kHz into high-impedance load.
Filters: Rumble -3 dB at 50 Hz with 6 dB -per-octave cut-off; Scratch: -3 dB at 5 kHz with 12 dB -per-octave cut-off.
AC Outlets. Four switched with 25A switch. one unswitched.
Power requirements. About 2 watts at 120 V or $240 \mathrm{~V} 50-400 \mathrm{~Hz} \mathrm{AC}$.
Sole Agents: MACINNES LABORATORIES Ltd., 71 Oakley Rd., Chinnor, Oxon. Tel. Kingston Blount (0844) 52061

WW- 066 FOR FURTHER DETAILS

Introduction to Field Effect Transistors

by J. Watson Ph.D.
University of Wales

128 pages about the theory and applications of tield effect transistors: - Introduction to the field effect transistor - Characteristics, parameters and tolerances of the field effect transistor - Biasing and audio frequency amplification - Voltage-controlled resistors current- limiters and d.c. amplifiers - High-frequency amplifiers and mixers - FET switches. choppers and analogue gates. \bullet Integrated circuits - Miscellaneous devices and applications. Price $£ 1.00$
SILICDNIX LTD. SAOREA Sketty. Swansea, SA28BA
Tel:Swansea(0792) 2 ¹2?1

Please send
copy/copies of "an Introduction to Field Effect Transistors" for which I enclose cheque/P.O. No to the value of f

Name
Company
Address

INTRODUCING THE STAR PPERFORMER FROMEANTEX

The element of the new ANTEX Model CCN soldering iron is completely enclosed inside a cera c (aluminium oxide) shaft to ensure maximum reliability. This material combines great strength with near-perfect insulation. Live transistors can be soldered with complete safety; leak age is negligible.

The iron has passed a 4000 v A.C. test and production models are routine,tested at 2000v A.C. Officially approved even by the Swiss Electricity Authorities. Available with our standard long life iron-coated bit which fits snugly over the element or with the new 7 Star bit for yet more efficient heat-transfer. 7.Star bits are iron-coated nickel plated and chromium plated.
With some $400^{\circ} \mathrm{C}$ at the tip rapid recovery of heat and a soldering speed of one joint per second, productivity gains are spectacular. The complete iron comes with 6ft of $\mathbf{2}$-core flexible lead, secured against twist and strain by an insulated screw and tailpiece.
Model CCN 240(230-240v) 15 watt with long-life bit $3 / 32^{\prime \prime} £ 1.80$. spare bits $1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}$ and $1 / 4^{\circ}$ 25p.
Model CCN $240(230-240 \mathrm{v}) 15$ watt with 7-Star bit $1 / 8^{\prime \prime} \mathbf{~ E 1 . 9 5}$. spare bits $1 / 8^{\prime \prime} 50$ p.
(Prices subject to quantity discount)

from electrical and radio shops or
from Antex.Ltd. FREEPOST (no stamp required)
Plymouth PL 11BR.
Telephone: 0752-67377/8 Giro No: 2581000

TELEPRINTERS•PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUIPMENT
 SALE OR HIRE

2-5-6-7-8 TRACK AND MULTIWIRE EQUIPMENT

Special Codes Prepared
TELEGRAPH AUTOMATION AND COMPUTER PERIPHERAL ACCESSORIES DATEL MODEM TERMINALS, TELEPRINTER SWITCHBOARDS

Picture Telegraph, Desk-Fax, Morse Equipment: Converters and Stabilised Rectifiers; Line Transformers and Noise Suppressors; Tape Holders, Pullers and Fast Winders; Governed, Synchronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass Filters; Teleprinter, Morse,
 Teledeltos Paper, Tape and Ribbons; Polarised and specialised Relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment; Racks and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Connectors, Wires, Cables, Jack and Lamp strips, and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.

W. BATEY \& COMPANY

Ggiety Works, Akeman Street. Tring, Harts
Tel: Tring 3476 (STD 0442 82)
Cables: RAHNO TRING Telex: 82362, A/B BATEY TRING WW- 069 FOR FURTHER DETAILS

Suppliers of Elliort, Cambridge and Pye instruments

LEDON INSTRUMENTS LTD

76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.: 01-692 2689
G.P.O. APPROVED CONTRACTOR TO H.M. GOVT.

RECORDER AMPLIFIERS

and instrumentation systems

150
series DIFFERENTIAL DC AMPLIFIERS
Wide dynamic rangehigh common mode rejection
Low noise, low drift performance Modular or cased presentation also

MINI-AMP FE-251-GA

differential dc pre-amplifier Compatible modules and cards ensure ease of application and great flexibility.
FYLDE
16 OAKHAM COURT, PRESTON (0772) 57560

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:
HARRIS ELECTRONICS
(London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

Trinity House

 Light Tower to replace the Light Ship off Beachy Head. The tower is 115 ft . high and it is equipped with a 36 ft .4-section Beacon Aerial made by Bantex.

for Acrials

Bantex manufacture aerials
for land, sea and defence communications

Bantex aerials combine good design and reliability
in all conditions

For enquiries or full catalogue please contact Ernest Gutman

Bantex Itd ABBEY RD., PARK ROYAL, LONDON N.W. 10
Telephone: 01-965 0941 Telex: 82310
WW-074 FOR FURTHER DETALS
PIEZO-ELECTRIC TRANSDUCER AMPLIFIER

The ANCOM F series is a range of AC INSTRUMENTATION amplifiers for use with Low Sensitivity Transducers. AC or DC OUTPUT COUPLING PIEZO-ELECTRIC ACCELEROMETER MEGOHM RESISTIVE SOURCES

[^2]Illustrated brochure obtainable from:

Eddystone Radio Limited,

Alvechurch Road, Birmingham B31 3PP
Telephone: 021-475 2231 Telex: 337081

A member of Marconi Communication Systems Limited

JOHN SMITH LTD.
2098 PON LANE WEST BROMWIOH - 8TAFFS. TEL. 021-553 2516 (3 LINES WOODS LANE CRADLEY HEATH • WARLEY - WORGS. TEL. CR 69283 (3 LINES)

WW-075 FOR FURTHER DETAILS

STOCKISTS OF B.P.O. COMPONENTS

Adaptors, Recall Switches
Arrestors, Lightning
Blocks, Terminal
Boxes, Distribution
Boxes, Junction
Carbons, Protector
Capacitors, Telephone
Coils, Repeating
Coils, Repeating
Cords, Handset
Cords, Instrumen
Cords, Switchboard
Dials. Automatic
Dial Accessories
Dial Mountings
Earpieces
Electrodes
Fuses
Fuse Mountings
Fuse Panels
Generators, Hand
Handsers
Indicator, Miniature
Jacks, Battery
Jacks, Lamp 10 \& 20 way
Jacks, Lamp Single
Jacks, Shelf
Jacks, Strips 10 \& 20 way
Jacks, Test Relay Ser
Jacks, Switchboard

```
Keys, Lever, Standard
Keys, Miniature
Keys, Strip, Digita
Keys, Plunger
Lamp Sockers
Lamp Caps
Links
Meters, Subscriber
Mouthpieces
Plugs, Instrument
Plugs, Selector
Plugs, Switchboard
Plugs, Test
Receivers, Inset
Rectifiers, Telephone
Relays
Relays, Miniature
Relay Coils
Ringers, Telephone
Transformers, Telephone
Transmitter Insets
Telephone Instruments
Telephone Cases
Uniselectors
Uniselectors, Miniature
Etc.
We also stock unit assemblies for PAX, PABX, PUBLIC EXCHANGE TWO MOTIO EQUIPMENT. 2000 \& 400 TION SELECTORS BPO TORS \& F FINA: GROUP SELEC. TRANSISTOR FINAL SELECTORS TRANSISTOR RINGING GENER-
ATORS, ETC.
```

Manufacturers and Trade Enquiries only, quoting BPO and/or Manufacturers Reference numbers

TELEPHONE \& WIRELESS COMPONENTS LTD.
147 The Broadway, London, NW9 7EA TEL. 01-203 2814

CABLES: Telwirco NW9

Logic PowerSupply

New, compact plug-in 5 V power unit desiǵned to supply
IC logic such as DTL, TTL etc.
Mains input $110,220,240 \mathrm{~V} 50-60 \mathrm{~Hz}$
Regulation $<0.1 \%$ line and load, Ripple $<2.5 \mathrm{mV}$ p-p
Transient recovery time $40 \mu \mathrm{Sec}$
Full short circuit protection - re-entrant current limit
Output spike clipper and optional overvoltage "crowbar'
Dimensions $95 \times 108 \times 55 \mathrm{~mm} 5 \mathrm{~V} 1 \mathrm{~A}, 95 \times 175 \times 70 \mathrm{~mm} 5 \mathrm{~V} 2 \mathrm{~A}$
Price 5 V1A 1 off $£ 14 \cdot 00,5$ off $£ 12 \cdot 00,50$ off $£ 10.00$
Add $£ 2$ for 5V2A Add $£ 2$ for Crowbar
Add $£ 2$ for cased units Immediate Delivery

Weir

Weir Electronics Ltd Durban Rd Bognor Regis Sussex Bognor Regis 5991 Grams Electron Bognor Regis

WW- 076 FOR FURTHER DETAILS

ENCAPSULATION -

low tool cost method for cylindrical coils and potting. Enquiries also for-

REED RELAYS SOLENOIDS COIL WINDING TRANSFORMERS

 to 10 k.V.A.Solenoid SRM. 7 lbs to 14 lbs at $1 \frac{1}{2}{ }^{\prime \prime}$

Knapps Lane, Bristol 5. 0272657228

SOLE IMPORTERS IN U.K:

QUALIT ELEGTRONIGS LTD.
47-49 HICH STREET, KINGSTON-UPON-THAMES, SURREY. Tel:01-546 4585 WW-079 FOR FURTHER DETAES

Once-only packing is money thrown away!

Re-usable Protectomuffs are the answer. Tailor-made for your product and slipped on in seconds by unskilled staff, these tough. padded covers never wear out. Weatherproof and washable, Protectomuffs carry your name, and fold flat for return and storage. Nothing gives better protection nor costs less per journey! Hoover use them, Rediffusion. Ferranti and others . . people who know the value of their products. Why not you? An investment now means no further outlay for years!

NAME
COMPANY \& ADDRESS

PBOTEETOMWFF

Send coupon for details to: JOHN EDGINGTON \& CO. LTD.
108 OLD KENT ROAD. LONDON. S.E.1. Tel: 01-703 3801
 WW- 080 FOR FURTHER DETALLS

DAVIAN

FERRANTI semiconductors at lowest prices

2Tx107	10p	21×320	28p	BFS61	19p	ZS178	34 p	r:Sio47A	17p
27x108	9 D	21×330	13p	BFS96	${ }^{16 p}$	zS270	10 p	F:S1051A	$17 p$
2Tx109	10p	27x331	14p	BFS97	21p	zS271	14p	r:SO56A	17p
2TX300	10p	27x500	10p	BFS98	21p	zS272	16p	I:SIJ62A	17p
2TX301	11p	2TX501	11p	Diode		zS274	17 p	r:SU68A	$17 p$
2TX302	15p	2TX502	15p	zS 140	22p	zS276	23p	r:Sio75A	17p
2TX303	12p	2TX503	12p	2S141	39p	zS278	33p	r:SIO82A	17p
27x304	19p	27x504	39p	zS142	30p	Zener		r: sog 1 A	17p
2TX310	7 p	27x510	15p	zS 170	9 p	KSO30A	17p	r:SI00a	17p
27x311	9 p	2T×530	19p	zS171	11p	KSO33A	17p	I:SI10A	17p
27×312	9 p	2Tx531	20p	zS172	14p	KSO36A	17p	1:SI20A	17p
2T×313	${ }^{10 p}$	BFS59	15p	zS174	15p	kSO39A	17p	I:SI30A	17p
ETX314	11 p	bFS60	19p	zS176	21p	KSO43A		E:SI50A	1^{17}
	MOTOROLA MJE2955-£ 1.65 . MJE3055-85p e8ch.								
	Postage \& packing 10 p. Free above f2.0C. Send SAE for data. PO Box 38 Oldham Lancs								

둘NNNN

All fully coded, all from well-known manufacturers and now available, while stocks last, at better than bulk-buyer's prices! Cash with order only.

THIS MONTH:

$1 N 4148$ Signal Diode
18 for $50 p$
($=1$ N914)
$1 N 50601$ Amp Rectifier 400V ($=$ A14D) avalanche protected 7 for 50p
2N2926 NPN Silicon Transistor 8 for 50p
(Red) hife 55-110
2N2923 NPN Silicon Transistor 7 for 50p h.fe 90-180

2N3721 Gen. Purpose Transistor 8 for 50p
Post and packing 10p for 1 or 2 packs; 3 packs or more post free.

Order any quantity, till sold (but we regret packs cannot be subdixided).

P.O. or Cheque payable Jermyn Industries, Vestry Estate, Sevenoaks, Kent.

WW-081 FOR FURTHER DETAILS

R, C \& L BOXES WHEATSTONE BRIDGES VOLTAGE DIVIDERS UNIVERSAL BRIDGES for educational purposes

VARIABLE LOW PASS ACTIVE FILTERS over the range of : 1 Hz to 11 kHz CLOSE TOLERANCE CAPACITORS 400 Volts D.C. down to: $\pm 1,2.5 \%$ made to customers requirements
All enquiries to: LIONMOUNT \& CO. LTD.
Bellevue Road, New Southgate, London, N.11.Tel: 01-368 7047
WW- 083 FOR FURTHER DETALLS

JES AUDIO INSTRUMENTATION

Illustrated the Si453 Audio Oscillator SPECIAL FEATURES:

* very low distortion content-less than . O5\%
\star an output conforming to RIAA recording characteristic
* battery operation for no ripple or hum loop
\star square wave output of fast rise time

CHART RECORDERS

MOVING COIL

SINGLE PEN

ELLIOTT Portable AC/DC RECORDER
34^{*} wide. Fitted with alarm contacts which close when the

Sensitivity $\operatorname{Im} \operatorname{Im}$ f.s.d. DC. Built-in bridge rectither for use

RECORD $3^{* *}$ Graphic ACDC RECORDER
Fitted with alarm contacts which close a reigh GPO specification, pre-set ralue. Panel mounting and free stinlling models are available Coil resistance: 1900 ohms. Sensitivity: ImA f.g.s. DC. Built-in bridge rectifier for use on AC. Chart speeds: 1 and 6 ins. per hour

EVERSHED \& VIGNOLES MURDAY SYSTEM RECORDING WATTMETER
A portable roll chart recorder mounted in a lockable wootlen case The chart is driven by an 8 -day cllckwork mechaniann allowing the
instrument to be used on site completely independently of a mains

 depth $8 t^{*}$. Weight: 22 £ lbs.
EVERSHED \& VIGNOLES MURDAY SYSTEM ORDING AMMETER A portable roll chart recorder incorporating oil danping. Range
$15-0-15 m A$. Chart width 7 ins. Chart
Bpeed: 1 in. per hour. Chart drive: Clockwork- 8 -day. Dimensions: Ht. 19^{*}, width 104^{7}, depth 8°

ELLIOTT DC MILLIAMMETER RECORDER
A robust and well-tried instrument using the LINKSYN pen eystem ${ }_{65}^{\text {Which has ever low pen to paper friction. The standard charts contain }}$ resiatance: 4,500 othe Chart width: $3 t$ ins. Chart speed: 1 and f ins.

ELLIOTT DC MILLIAMMETER RECORDER A reiaboe clock work-driven recorder using an ink trough and gyphon
pen. Range: $0-1 \mathrm{~mA}$ DC. Coil resisistance: 1050 ohmes. Chart width:
 ELLIOTT DC MILLLAMMETER RECORDER Biniliar to 0-1 mA a above, but four chart bpeeds seleceted by movement
of lever. Range: : 12 mA . Coil resistance: 2900 ohms. Chatt width: 44 ins. Chart apeed 1 and 6 ins. per houri, 1 and 6 ins, per minute. depth $7 \mathrm{~g}^{*}$. Weight: 30 lbs.
ELLIOTT DC MILLLAMMETER RECORDER Range: 0 -ImA. Coil resistance: 1050 ohms, Chart width: 4 inive

ELLIOTT MODEL 400 "EMREC" DC MILLIAMMETER RECORDER
A portathe free-standing single-pen recorder designed for field use fluerescent strip light. Range: $0-1 \mathrm{~mA}$. Chart witth: 4 ins. Chart
 evershed \& vignoles portable dC mLliEVERSHED \&ECORDER
A nest and compact instrument using a typewriter ribbon chopper

KELVIN HUGHES Portable HTGH SPEED RECOREDERS
A general purpose instrument providing a clear, instantaneous and
permanent recorl on Teledeltos paper. Will respond to sigruls having ${ }_{\text {a rem relatively high rate of change. The moving-coil galvanometers are }}$ fitted with a unique torsion strip sugpenslon which protects the comes complete with a matched amplifier. Chart width: $1 \$ \mathrm{in}$. Chart

 Also available with 2 and 4 pens-see below.

TWO PENS

RECORD DUPLEX 3^{*} GRAPHIC RECORDER

ELLIOTT DC MLLIAMMETER RECORDER Slimilir th

KELVIN HUGHES PORTABLE HIGH SPEED Similar to single pen above. Chart width: 3 ing. Chart speecis: \boldsymbol{f}. $2,4,4.1 \mathrm{cicm}$. per sec. Chart drive: 230150 Hz synchronous motor.
Pens: Electric pens on Teledeltos paper. Dimiensions: Ht

THREE PENS

EVERSHED \& VIGNOLES ADMIRALTY RECORDER
Originally designed for services use for tested magslips but can be used as a normal 3 -pen recorder. Range: $12-150$ AC f.g.d. Aet by
range selector gwitch. Chart width: $3 \cdot 5 \mathrm{~cm}$. per channel. Chart speed:

FOUR PENS

KELVIN HUGMES PORTABLE HIGH SPEED
 4, 8, 16 cm . per aec. Chart drive: 230 V . 50 Hz synchrnous motor.
Pemas: Electric pens on Teledeltos paper. Dimensions: Ht. 8 , width

POTENTIOMETRIC

SINGLE POINT

KENT INSTRUMENTS Mk. II CHART RECORDEF A general purpose stow reaponse recorder suitable for recordin
quantities which have a relatively slow rate of change such as tem perature, smoke density, etc. Bensitivity: 10nv. Response time: 3
 Dimensions: Ht. 168°. width 19°, depth 155^{-}….............. $£ 58.50$ LEEDS \& NORTHRUP STRIP CHART RECORDER

CAMBRIDGE STRIP CHART RECORDER WITH CAMBRIDGE ST

SIX POINTS

RUSSION STRIP CHART RECORDER A very well-made recorder, fully tmpicalised and ideally suited to
use in an industrial environnent, for recurding temperature, humidity etc. Range: $100-0-10$ Hymy
 $\underset{\text { Range: } 0 \text { - } 10 \mathrm{~m} \mathrm{~m} \text {. Chart width: } 10}{\text { ELLI }}$ ing. Dimenkions:

TWELVE POINTS

KELVIN HUGHES MODEL HPR/A12 Mod 2 STRII

CIRCULAR CHART TYPES

FIELDEN Mk. II SER VOGRAPH TYPE RL41
Fhe four point head enables four inputs to be recorded on the chari in four separate colours. Range: $0-50$ microamps. Chart diameter 11 ins. Chart speed: 1 rev yer hour. Chart irive: Interchangeable
synchronous motors. Power supply: $210 / 250 \mathrm{~V}$ 50 Hz 35 Watts.

FIELDEN Mk. II SERYOGRAPH TYPE RB1 Similar to above except for following: Range: 0-60 microamps,
Chart diameter: 11 ins. Chart speed 1 rev in 24 hours. Weight: 28 Char
CAMBRIDGE TFMPERATURE RECORDER (Single These Thulb and capillary reliable circular chart recorders operate on the $10 \frac{3}{\mathrm{in}} \mathrm{in}$. Chart speed: 1 rev in it hours. Chart drive: 230 V 50 Hz
 NEGRETTI \& ZAMBRA TEMPERATURE RECORDER (Two Pen) Similar to above except has two pens and associated bulbs and tubing.
Range: $0-200^{\circ} \mathrm{C}$. Chart speed : 1 rev in 24 hours. Chart 1 rive: $2: 30 \mathrm{~V}$

ULTRA VIOLET RECORDERS

HONEYWELL 1706 VISICORDER
6 channel. Chart width: $\$$ ins. Chart speed. $6,12,25,50,100,200$, $400,800 \mathrm{~mm} . / \mathrm{sec}$. Timer internal; $1 / 10$ gec, 1 sec. Provisions for
external timer. Portable $13^{*} \times 11^{*} \times 9^{*}$. Mains supply. 8350.00 HONEYWELL G06S VISICORDER
14 channel complete with 6 galvo's. Chart, width: 6 ins. Chart, speeds $£ 200.00$
NEW ELECTRONIC PRODUCTS TYPE 1000 6 channel complete with 6 galvo's. Chart. width: 6 ins. Chart peeed
$0.2,0.6,2, f_{i}$ ins. /sec. Facilities or event marking and bright vieving. Footage counter. Overall dimensions: $14^{*} \times 16^{*} \times 10 \frac{1}{2}^{*}$. Mains supply. NEW ELECTRONIC PRODUCTS TYPE 1160 12 channel. Chart width: \# ins. Chart speed : 2, 6, 20,60 ins./sec.
Two event markers. Rack mounting. Overall dimensions: $19^{*} \times 12^{*} \times$ NEW ELECTRONIC PRODUCTS TYPE 1185 12 channel. Chart width: 12 ins, Chart speed: $0 \cdot 5,1,1 \cdot 5,2,4,6,10$,
$20,30,40,80,120$ ins. zec.
+10 or $\times 1$. Event marker and inching facilities. Overall dimensions
Note: Galvo's are availabie to various specifteations and a price will be quote
known.

MISCELLANEOUS

EVERETT EDGCUMBE "INKWELL" RECORDING WatTMETER
Thits recorder uses the dynamomeler principle to record power in

 ETHER "XACTROL" SIX POINT RECORDER Chart speed: 1 in. per hour. Power supply: 110 V b0 Hz (autotrans. former for 230 V 50 Hz arailable). Dimenioions: Ht. 0°. width $11^{\circ} \mathrm{j}$
depth 114^{*}. MUIRHEAD "MUFAX", Type 901, 9^{*} FACSIMILE RECORDER/TRANSMIT'TER

X-Y PLOTTERS

ELECTRONIC ASSOCIATES VARIPLOTTER 1100 E

 Fully overhauled, teated, guaranted and in new condition

1. MOSELEY AUTOGRAF MODEL 2A

 sec. for full scale. Supplied complete with copy of handzed $£ 310.00$

EVENT RECORDERS

ELECTRONIC BROKERS 6-CHANNEL TIME \& EV
Specially mate for us by a well-known manufacturer. Each of the
six chanieis works independently

 supply: $220-240 \mathrm{~V} 30 \mathrm{~Hz}$ or $110-115 \mathrm{~V}$ bo Hz , Dimensions: $\mathrm{Ht} . \mathrm{g}^{2}$.
wilth Carrying case....... $£ 5.00 \quad 19^{*}$ rack mounting attachment $£ 55^{\circ} 00$
EVERETT EDGECUMBE OPERATION GRAPHER TIME \& EVENT RECORDER 20 and 40 PENS
Pens operated by $24 v 1$ DC. Chart width: $8 \downarrow$ ins. Chart apeed: 1 in. pe

All the ahtove recorders have been fully refurbished by our own
workshops and carry a 3 nonthe' marranty As our stocks of recorders and other instruments is constantly chang

RECORDER CHART ROLLS
We have large stocks of pen recorder chart rolls ior most makes of recorder including Elliott, Kent, Honeywell, Record, Teledelitos
Rustrak, etc. Plesse let us know kustrak, etc. Please let us know your exact requirement

ANALYSERS

I. AVO

Type CT446 TRANsI8TOR ANALY8ER for measuring parameters
on PNP, NPN, and Point Contact Tranaistors............ $\mathbf{£ 3 0} 00$
2. DAWE INSTRUMENTS

3. DAWE INSTRUMENTS

Type 1401 A PORTABLE OCTAVE BAND ANALYBER. Fre-
quency range: 20 Hz - 10 KHz .
4. SOLATRON

AF ANALYBER. Frequency range : $2 \cdot 5 \mathrm{~Hz}-7.5 \mathrm{kHz}$. Battery powered.
$£ 25.00$
5. GENERAL RADIO

Type 760 AF ANALYBER. Frequency range: $2 \cdot 5 \mathrm{~Hz}-7.5 \mathrm{k} \mathrm{Hz}$
Battery powered.
6. FENLOW ELECTRONICS

Type Ba: I.F SPECTRUM ANALYSER. Frequency range: 0.3 Hz
7. DAWE INSTRUMENTS

Type $705 B$ WAVE ANALYSER. Frequency range: $00 \mathrm{~Hz}-16 \mathrm{k} \mathrm{Hz}$.
8. MARCONI 830.00

9. MUIRHEAD

ALL ORDERS ACCEPTED SUBJECT TO OUR TRADING CONDITIONS A COPY OF WHICR MAY BE INSPECTED AT OUR PREMISES
DURING TRADING HOURS OR WILL BE SENT ON APPLICATION THROVAH THE POST.

GENERATORS

SQUARE WAVE GENERATORS

1. SOLARTRON

TONE GENERATORS

2. B.E.M.E.

Type X9327, TONE GENERATOR Range: $3 \cdot 2,3 \cdot 6,4 \cdot 0,4 \cdot 4,4 \cdot 8$, VOLTAGE AND CURRENT GENERATORS 3. EKCO This instrument is a self-contained unit for providing accurate
voltoges fand currents which can be naried thy amall merements.

NOISE GENERATORS

4. WAYNE KERR

NOIBE GENERATOR CTT10. A portable instrument for measuring the noise factor of radio receiving equipment, metric radar receivers

400 Hz GENERATORS

5. HATFIELD INSTRUMENTS
 6. HATFIELD INSTRUMENTS Type PVM 16/1 133 Hz GENERATOR. Similar to above only 1133 Hz

TEST GENERATORS

7. MARCONI

Type TF1167 TElegraph thist generator. This generator delivers high quality keyed RF signals at stable carrier frequencies of
$3 \cdot 1,6 \cdot 2$, and $19 \cdot 3 \mathrm{MHz}$. On/off frequeucy \cdot shift or frequency shift diplex (twinplex) keying can be selected, or the carrier can be sinewave
amplitude modulation. Carrier Frequency: $3 \cdot 1,6 \cdot 2,9 \cdot 3 \mathrm{MHz}$. Fre-

PULSE GENERATORS
 PULSE GENERATORS

8. COSSOR

FLEMMING RADIO
 IO. KASAMA ELECTRONICS
type 301A PULSE GeNERATOR PRF 0-100K pps. Pulse width 11. NAGARD

SIGNAL GENERATORS

Audio Frequency
12. AIRMEC

Type 257 Sigical generator. Provides four phase related
 reference. Frequency range: 0.03 Hz to 30 Hz O/P level; 50 O peak
unbalanced to earth 0 of impedance: 10 Kohm normal. FULLL unbalanced to earth op impedance: 10 K ohm normal. FULL
gPEITCATION AVALABLE ON REQUETT......... 98500 13. ADVANCE

Type gG6a LF gignal GENERATOR. Frequency range: 5 Hz to

RF SIGNAL GENERATORS
14. ADVANCE

Type COXAN Spot frequenciess selected ', 12 push buttons marked A to 1 mHziCnit GENERATOR £15.00 15. SIGNAL GENERATOR
${ }_{2001}$ Ype CTz 218 knd . Frequency range: 83 kHz - 30 MHz . Crystal calibrator at 16. AIRMEC

Type 201 gtandard signal generator. This instrument

 Cmpedance. Frequency range: 30 kHz -30MHz in 7 bands. (RYSTAL and $\overline{0} 0$ check points on each band. FULL SPECIFICATION AVAIL-

[^3]
18. COSSOR Band widh : swept 1-10MHz...............................889.00 19. MARCON
 AVALLABLE ON
20. MEQUEST........................... £185 00 20. MARCONI
Type TFlitg GTANDard gignal generator. Frequency

FULL GPKCLFICATLON AVALLABLE ON REQUEST..... $£ 85.00$
21. MARCO NI

22. ADVANCE

23. ADVANCE

Type 71 signal, generator. Frequency range: $0-320 \mathrm{Mh} z$
24. AVO

Type CT378 GIGNAL GENERATOR. Frequency range: 2MHz-
 25. MARCONI

Type TPBOIA SIONAL GENEROTOR. Frequency range 10 MHz to
 IV CW O/P available. Itternal modulation: $400 \mathrm{~Hz}, 1 \mathrm{kHz}$ and 5 kHz
to 80% sine or square.

26. RCA

370 MHz
$£ 2500$

28. MARCONI
type trishen' 'x'band signal generator.
$£ 65 \cdot 00$
29. MARCONI
Type TF1343/2'X'BAND SIGNAL GENERATOR........ £85. 00
30. SANDERS

Type sG480 ' \mathbf{X} ' band bignal generator. These high grate generators comprige a klystron oscillator in a coaxial carity from
a staile power source. Provision for apyly molulation frou either an internal or externul source. Frequency
range 31. SANDERS

Type SGA78 'X BAND gIGNAL GENERATOR. Freque Type RG478 'X' BAND SIGNAL GENERATOR. Frequency range:
$1 \cdot 3-4 \cdot 2 \mathrm{kMHz}$. Detaile as $8 G 480$ above......................... $2875 \cdot 00$

INDICATORS

INSULATION TESTERS

EVERSHED \& VIGNOLES (MEGGER) 1. 500V 'Wlse' MEGGER....................................... $\mathbf{£ 1 5 \cdot 0 0}$ 2. 100V 'WEE' MEGGER................................ £12.50 3. 100V 'WEE' MEGGER SERIES 3. Ranges: 0.02-20Mohm;

$0-100$ ohms. .. $\mathbf{~} 18.50$ 4. CIRCUIT TEATING OHMETER. Ranges 0-1000 ohms; $100-$ | 4. infinity ohms. Battery operated. Complete with leather E. iR. case |
| :--- |
| and leads... |
| 1515 |

5. 100 V EARTH TESTER SERIES 2. Range $0-50$ ohm . . £10 50
6. 250V BRIDGE MEGGER \&1SRIES 2. Ranges: Bridge 0.01-909.

600 ohme. Mrulat

infnity...22.50
10. 1000 V INSULATION TESTER SERIES 1. Range: $0-5000 \mathrm{Mohm}-$

11 100V VABLEY LOOP TEST BRIDGE MEGGER £25.00 12. 1000V BRIDGE MHGGER SERIES • Ranger: B Hdge 0-01-999,

INTEGRATORS

I. BEAUMARIS ELECTRONICS

2. NEW ELECTF:ONIC PRODUCTS

INTEGRATOR AND CAMERA CONTROL. For
ith NEP
$£ 15 \cdot 00$

RCA The R.C.A. Speech Inverter is a device intended for use in radiotelephone installations where privacy is a prime congideration. The eruuipment when used in confunction with the R.C.A. M1-7182 Hybrid Tranfurmers enables pafallel two-way conversations on a single teleyhone pair line at each terminal of the communications aystem. With inversion, speech fed into the transmitting inverter circuit will feel the radio tramemitter with unintelligible signale. These signals will remain unintelligible until they pass through a receiving inverter under Licence in U.K.).......................................12-50

MEASURING SETS

DYNAMCO SYSTEMS
DYNAMCO SYSTEMS
TRANSMISGION MEASURING gET. Range: $0-15 \mathrm{db} \ldots \ldots £ 10.00$

METERS

MULTIMETERS

I. AVOMETERS

MODEL 7 .
$£ 17.00$

$$
25.00
$$

2. BRADLEY (GEC)

TRANBISTORIBD MULTIMETER TYPE CT471B. Fully trangistorizecl multi-range instrument for measurement of roltage up to
1000 MHz (1500 MHz with reduced accuracy) and current up 2 kHz and DC Resistance AC and DC voltage and current diviled into 11

 before despatch. Complete with handbook...... $£ 49.50$ Carriage 50p 3. E.I.L.

Type 4ta precision multi range meter. An instrument of very high nccuracs for nge in laboratury, test-room, or factory
Ranges: Voltage: DC 0.2 to 1000 V fsd. AC 1 to 1000 V mns fed
 OHMMETERS
4. W. G. PYE
amllohmme ER. Designed for measurement
Type 47 MILLOHMMETER. Designed for measurement of low and very 10 resistance. It is a trasportable direct reading ingtrument
with a clean linear scale and is very simple to use. Ranges: 1.2 Mohmm

Ph METERS

6. CAMBRIDGE INSTRUMENTS

Type L-134995 PL METER. Range: O-12. Prolien available from
manufucturer at approx. \&4.00 each. Conylete with galvanometer
7. INDUSTRIAL SCIENTIFIC INSTRUMENTS 50

Type iA PL METER. Range: $0-14$. In wooden box complete with eype ile put
e. PYE
8tin
8.

PHASEMETERS

9. MUIRHEAD

Type D729-BM PHAgEMETER. Frequency range: $0-25 \mathrm{~Hz}$ to
 PYROMETERS
II. INDUSTRIAL PYROMETER

RATEMETERS

12. FLEMING RADIO

VIBRATION METERS
13. DAWE INSTRUMENTS

TTpe 102C VIBRATION METER. Range: 2 to 10kHz. Complete
with probe.. 200

VOLTMETERS

14. DYNAMCO

Type 2006 DIGITAL VOLTMETER. Ranges: 100 mV -1KV fa scale: 4 digits. sensitivity: $10 \mu \mathrm{~V}$. Suyplied with D2 module an 15. DYNAMCO Type 2010 DIGITAL YOLTMETER. Ranges: 10 microcolt-1-1. 1 KV
Bcale: 6 digit. Accuracy: 0.001% feld. Complete with calibration certiflate.
16. GLOSTER INSTRUMENTS
Type (eE(BIE2123) DIGITAL VOLTMETER.............. 255.00

VALVE VOLTMETERS

18. E.IL.
(CT54) miCrovac flectronic testmeter. a

 fsd. Accuracy: \pm IN of frd UMENTS
Type fila TRUE RMS VALVE VOLTMETER. A sensitive electrnnic
 farms. Range: 100 microvolt to 300 V rms. Frequency: $\mathrm{BHz-500kHz}$
19. MARCONI

$21 . \mathrm{AVO}^{0.5 \mathrm{fg}}$
20. AVO TYP CT38 VALVE YOLTMETER.............................. $15 \cdot 50$

Once in a while, it has to happen. Something really new arrives. A development so far ahead that immediately it sets a standard of its own. That's why Telequipment are so cfter in the news. This time, it's a transistor curve tracer at remarkably wow cost the CT71. This is a dynamic semiconductor tester which allows display and measurement of characteristics of transistors, FET's and diodes. Two different transistor characteristics mae be displayed, including the collector family in common emitter configuration. In addition to the transistor curves the CT71 may be used to display dynamic characteristics of a wide range of semiconductor devices. It enables diode characteristics to be displayed at forward currents up to 2 A , reverse currents down to $5 n A$ and reverse voltages up to 1 kV . Two test fixtures are provided, one with 1 pair of TO-18's in a source-drain-gate configuration, 1 pair of TO-18's in an emitter-basecollector configuration, 1 pair of TO-15's in an emitter-base-collector configuration and 2 sets of 3 terminals in the emitter-base-collector configuration. The other provides two pairs of power transistor sockets (a pair of TO-66's and a pair of TO-3's) both pairs in an emitter-base-collector configuration. By producing such an instrument at only $£ 195$, Telequipment have again demonstrated their expertise in the design and manafacture of completely reliable equipment at a realistic cost. For further details write, telephone \boldsymbol{a} telex: Telequipment, 313 Chase Road, Southgate, London, N14 6JJ. Telephone: 01-882 1166. Telex: 262004 A division of Tektronix U.K. Ltd.

Wireless World

Electrunics, Television, Radio, Audio

Volume 77 Number 1433

The cover picture of the ribbon of a Reslosound UD4 microphone typifies the audio bias of this issue. Photographer-Paul Brierley.

IN OUR NEXT ISSUE

The Japanese Trinitron colour television tube, which has vertical striped phosphors and an aperture grille, is described and compared with the shadowmask tube with its triad dot structure.

A novel wow and flutter meter using a phaselocked loop is described by the designer of the pickup arm in this issue.

Contents

515 The Environment of Invention
516 Pickup Arm Design for Home Construction by R. Ockleshaw
519 Announcements
520 News of the Month
622 Progress in Acoustics by N. F. Spring
525 Letters to the Editor
526 Breakthrough in Integrated Circuits
527 Electrostatic Headphone Design by P. D. Harvey
532 Circuit Ideas
533 Dual-trace Oscilloscope Unit-4 by W. T. Cocking
536 H.F. Predictions
537 Receiving Weather Pictures from Satellites-2 by J. M. Osborne
539 Sixty Years Ago
540 Electronic Building Bricks-17 by J. Franklin
541 Wien Oscillators by P. Williams
547 'United States of Earth'
548 Focal Points at Berlin
549 The Drum Major by H. J. N. Riddle
553 Conferences and Exhibitions
554 Personalities
555 Experience with the Karnaugh Map Display by G. T. Lawrence
556 World of Amateur Radio
557 New Products
561 November Meetings
562 Literature Received
563 Progress in Tape Recording
A 105 APPOINTMENTS VACANT
A 120 INDEX TO ADVERTISERS

ibpa

I.P.C. Electrical-Electronic Press Lid

Managing Director: George Fowkes
Publishing \& Development Director George H. Mansell
Advertisement Director: Roy N. Gibb
Dorset House, Stamford Street, London, SE1
(C) 1.P.C. Business Press Ltd, 1971

Brief extracts or comments are allowed provided acknowledgement to the journal is given.

[^4] MPT. 1

The Environment of Invention

Editor-in-chief:
W. T. COCKING, F.I.E.E.

Editor:

H. W. BARNARD

Technical Editor:

T. E. IVALL, M.I.E.R.E.

Deputy Editor:

B. S. CRANK

Assistant Editors:
J. GREENBANK, B.A.
G. B. SHORTER, B.Sc.

Drawing Office:
L. DARRAH

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
G. J. STICHBURY
G. DONOVAN (Classified Advertisements)

Telephone: 01-928 3333 Ext. 533 \& 246.

It has been so often said that nowadays there is no place for the lone inventor that we are in danger of accepting it as an incontrovertible truth. First of all let it be known that there are plenty of electronics inventors around-whether they are experimenters working at home or professionals earning their living by electronics is not really important. Probably what is behind the cliche is the thought that an inventor cannot achieve much nowadays without being a member of a team with large resources at its command. What we should consider about this is whether a true inventor, a person with a divergent mind, can in fact achieve anything really original within such a team. How many inventions have been lost-still-born or not even conceived-because of the necessities and disciplines of the team's orderly march towards its pre-determined goal?

The inventor needs materials, tools and time-but above all time. He will get the first two by being an employee of an industrial organization, but time only up to a certain limit. In an efficiently run R \& D department the time allowable for any given line of enquiry is strictly determined. Someone, such as a research director, has to make the decision at some point that enough time has been spent on the project; that further work is unlikely to bring worthwhile benefits. This is an extremely difficult decision to make. How can he be sure there is not something really important that a few more weeks will bring to light, perhaps even by accident? It would be interesting to know if any such administrative soul-searching went on at Bell Telephone Laboratories when Shockley, Bardeen and Brattain were working towards the 'three-electrode germanium crystal contact device' which was to revolutionize the electronics industry. We know the official story, but we do not know what was the pattern and interaction of the purely human factors-euphoria, pessimism, hopes, doubts and obsessions-that moved the whole project.
Time, above all, is needed by the individual inventor because what drives him forward is often a completely irrational confidence, a feeling 'in his bones', in spite of all the setbacks, that his idea is going to work. The classic case of this is, of course, the 19th century American, Charles Goodyear, a non-scientist with no chemical knowledge, who experimented for years, impoverishing himself in the process, even to the point of selling his son's schoolbooks, in his determination to discover how to harden rubber (or vulcanize it, as we now say). In the end, after several spells in prison for debt, he succeeded. Is there a need for such heroic sacrifice nowadays? Perhaps not; but people, being people, will continue to have brain children which they will nurture obsessively against all discouragement, and some of these ideas, given time, can become powerful realities.
It is all too easy to look back on the 'progress of technology' as some impersonal force which has caused inventors to pop up at just the right moment to put another brick on the wall at a place where it was obviously needed. If Shockley, Bardeen and Brattain had not invented the transistor when they did, somebody else would have done it sooner or later. Those who think this should try viewing the 'progress' as it rolls into the future and attempt to predict what will be the most important electronic inventions by, say, the year 2000 A.D. They will be shocked at the paucity of their ideas.

Pickup Arm Design for Home Construction

by R. Ockleshaw

The pickup arm described is designed to accompany the turntable detailed in our last issue. It includes an optional bias compensator and lift mechanism. Mechanical resonance is damped by a flexible coupling between counterweight and arm. A further article will describe how to check performance of the turntable using a test record and novel wow and flutter meter.

Design of pickup arms has been well described. The articles* published in Wireless World May and June 1966 contain all the information required to design an arm for minimumdistortion due to lateral tracking errors. In the present design, note has also been taken of the opinions of J . Walton on pickup-arm design. \dagger

Briefly, one should try to avoid a system reproducing frequencies generally below the limits of audibility, because they may produce a disturbing Doppler effect on some loudspeaker systems whose acoustic impedance at these frequencies is low.
*J. K. Stevenson, 'Pickup arm design', Wireless World vol. 721966 pp. 214-8 and 314-20.
$\dagger \mathrm{J}$. Walton, 'Turntable rumble and pickup arm design', Wireless World vol. 681962 pp. 435-7.

Also, vibrations of the turntable and pickup-arm suspension should not cause excitation of the pickup arm, however damped.

A pickup arm has a natural period of oscillation of $T=2^{\pi}(M C)$ where M is the effective mass of the pickup arm and C is the compliance of the pickup cartridge. Mechanical impedance moves from a low to a high value around the resonant frequency peak-Fig. 1. Below the resonant frequency, because the mechanical impedance of the arm is low in comparison with the mechanical impedance of the pickup cartridge armature, the output from the pickup will be severely attenuated. Thus the arm acts like a high-pass filter, rejecting frequencies in the rumble range. The cut-off can be quite sharp but its value as an active part of a system is lost if different cartridges of varying compliance are fitted. Consequently my approach is that it is always better to ensure that rumble is reduced as much as possible at source and not rely entirely on the impedance characteristics of the arm. Damping the resonant peak is important too as the coincidence of some discrete vibration with the high-impedance resonant peak of an undamped arm may

In this photograph, the pickup arm has a different shell to that shown in the diagrams. A drawing showing how to make this version - heavier, though possibly aesthetically more acceptable - is available from the editorial offices.

Fig. 1. Pickup arm resonance must be damped to allow for different cartridges. In this design damping is achieved with plastic 'decoupling' between balance weight and arm.
cause excitement which could damage the disc groove. This design is damped by ensuring that the counterweight is flexibly coupled to the arm. This effectively spoils any modes of mechanical resonance.

Record warp causes large vertical pickup-arm movements and it is important that the stylus remains normal to the record surface. Making the vertical pivot axis normal to the axial line of the cartridge, as in this design, gives a better approximation to correct movement than making the axis normal to the whole arm.

Construction is described in the drawings and in the supplementary notes which follow. The material for the counterweight is steel, but this can be replaced by any high-density material such as brassthough the dimensions may have to be changed to maintain the correct weight. When making the decoupler, which fits into the counterweight tube, ensure the wide end is a comfortable push fit into the arm tube. Fit a $3-\mathrm{mm}$ internal dia. rubber sleeve over the smaller end and push into the counterweight tube, checking that the tube does not touch the decoupler.

The vertical pivot block is drilled at an angle to accept the arm tube. This is a difficult operation in practice without the aid of a jig and so a suitable design is shown. The material required is a 1 -in length of $\frac{3}{4}$-in dia. aluminium bar which is inserted

into the jig. Lock it into position by two 4BA screws. Using an $\mathrm{F}(0.255 \mathrm{in})$ drill, pierce the aluminium bar by inserting the drill into the hole in the jig face with the jig held in a vice. After piercing, shorten the pivot block to the dimensions given.

A jig is also used to make the vertical pivot pillars. Hold the pillar in the jig while preforming the cup with a $\frac{1}{8}$-in dia. drill. The pillar should not be removed from the jig, however, before the pivot cup is formed using the punch shown. Heat the punch to cherry red, quench and polish. After punching, likewise harden the pivot cups. Form the horizontal pivot cup in the same way, harden both pivot and cup, and finally polish the pivot.

Two versions of pillar base are shown. Use version A-best made on a lathe-if the lift mechanism is not required. Base B accepts both the lift mechanism and bias compensator pillar. Bond the two parts of base B after they have been made with Evostik and spray if desired.

Assembly

Once the vertical pivot block and decoupler are assembled on and in the arm tube

Parts list

All turntable and pickup arm parts are available from Longdendale Technological Products. Hadfield. Hyde. Cheshire.

part	description/material
arm tube vertical block decoupler bias compensator bar horizontal pivot block \& base A horizontal pivot stop horizontal pivot and cup. vertical pivot \& pilar pillar plate, finger bar \& clip pillar head platform base B counterweight cartridge carrier playing weight rider vertical pivot loading spring bias compensator pillar bias compensator arm socket-head grub screw pickup-arm wire nylon thread bias compensator weights lift mechanism body \& arm base lift and operating arm \& rod cam sleeve spring knob	```\(\frac{1}{4}\)-in dia. \(\times 20\) s.w.g. Al tube (\(12-\mathrm{in}\)) \(\frac{3}{8}\)-in dia. \(\times 1 \frac{1}{2}\)-in Al bar \(\frac{1}{4}\)-in dia. \(\times 1\)-in Al bar \(\frac{1}{8}\)-in dia. \(\times 3\)-in Al bar 1 -in dia. Al bar (2 -in) \(\frac{1}{4}\)-in dia. Al bar \(\frac{1}{8}\)-in dia. silver steel (13 -in) 28 s.w.g. brass or copper \(\frac{3}{4}\)-in dia. nom. copper central-heating tube (2 -in) \(\frac{1}{16}\)-in copper-clad laminate \(\frac{1}{4}\)-in Perspex sheet \(1 \frac{1}{4}\)-in a.f. mild steel hex. bar (1 -in) \(\frac{1}{8}\)-in Al \(\frac{3}{4}\)-in mild steel bar from Longdendale Technological Products \(\frac{1}{4}\)-in dia. Al rod \(\frac{1}{16}\)-in dia. s.s. \((13-\) in \()\) 6BA \(\times \frac{1}{4}-\mathrm{in}\) (6 off) about 18 -in appropriate lengths of \(\frac{1}{4}\)-in dia. brass rod 2 -in \(\times \frac{3}{4}\)-in p.v.c. bar \(\frac{1}{8}\)-in silver steel (7 -in) \(\frac{3}{8}\)-in nyton \(\frac{1}{2}\)-in nom. copper central heating tube (\(1 \frac{1}{2}-\mathrm{in}\)) \(\frac{1}{8}\)-in i.d. \(\times \frac{1}{4}\)-in long from Longdendale Technological Products \(\frac{1}{4}\) - in dia. p.v.c., Perspex etc. (1 -in)```

respectively, use the vertical pivot block as a jig to complete the $\frac{1}{8}$-in dia. axial hole through the arm tube and decoupler. A small amount of Araldite or Evostik ensures a permanent assembly. Now insert the spring and two pivots into the axial hole of the pivot block as shown.

Bond the vertical pivot pillars into the pivot holder with Araldite with the cups accurately aligned inwards. After setting, insert the vertical pivot block between the pillars by squeezing the pivot loading spring in the pivot block over the pivots. This is a tricky operation requiring a little patience and, hopefully, only ore spring! The resulting pivot should be completely free from sticking and quite stable.

Bond the horizontal pivot-stop bush to the horizontal pivot after it has been hardened and polished. Insert the squarecut end through the $\frac{1}{8}$-in hole in the pillar plate. Assemble the base to the pillar.

Fix the vertical pivot pillar holder on to the horizontal pivot by the gıub screw. Screw the horizontal pivot cup to the pillar base until the bush tightens against the top of the pillar. Slacken off $\frac{1}{4}$ turn and lock with cellulose paint. Adjust the vertical
measured as the distance the stylus overhangs the centre of the turntable. Using the adjusting screw on the head, adjust offset angle to give zero tracking angle-i.e. angle of stylus to groove at a distance of 2.4 in (2.375) from the turntable centre and then at a distance of 4.6 in (4.606) from the turntable centre. There should be very little difference in tracking angle. If it is discernible check the positioning of the arm base, the effective length and overhang.

Calibration

The playing weight rider can be omitted, in which case the playing weight must be set up each time using a suitable balance. If the rider is used the arm can be calibrated against either a 'pressure' gauge or a set of weights. In either case stick a piece of plasticine to the cartridge platform. Its weight is not important but it should be roughly equal to the weight of a cartridgesay 6 or 7 g .

If you use a pressure gauge, adjust the counterweight to balance the arm with the rider as close to the pivots as possible. Moving the rider away from the pivots will

Fig. 2. When turntable and pickup arm are assembled place hole A over spindle and hole B over pickup arm pillar. Draw round the base to mark selected position.
pivot block to give a clearance of about 0.025 in.

Wiring should present no problem if it is done before the arm is fitted to the pickup-arm board. Remember to mark one of the wires at both ends for identification. It may help if a piece of stiffer wire is threaded first so it can be used to pull both of the coaxial wires through at once. The two wires can be terminated on a small tagboard underneath the pickup-arm board or on to a plinth-mounted socket.

Performance of the arm is improved by using the bias compensator. Possibly the best way of setting up the compensator, for a spherically-tipped stylus at least, is with an unmodulated disc. But be prepared for some experimentation.

Setting up the arm

A jig for assembling the arm to the pickuparm board is shown in Fig. 2. It should be used with the turntable in place, the small hole being placed over the spindle. The other end should be slipped over the pickup-arm pillar. The arm's position should then be selected and marked.

Effective arm length should be nine inches - i.e. the distance from stylus tip to centre line of vertical pivots. To do this slide the head of the arm either forward or backward along the arm tube. The overhang is designed to be 0.625 in and is
unbalance the arm and increase the playing weight. Relate distance from the pivots to playing weight using the pressure gauge.

If you use weight, stick four $1-\mathrm{g}$ weights to the plasticine (assuming a maximum playing weight of 4 g). Adjust the counterweight to balance with the rider close to the pivots. Remove one of the weights and move rider away from pivots to rebalance. Mark the arm. Repeat this procedure removing one weight at a time until all have been removed. Half-gram markings can be inserted by interpolation as the scale will be linear.

A third article will describe a wow and flutter meter and how to check turntable performance.

Wide-stage stereo

Some readers of E. J. Jordan's article 'Loudspeaker Stereo Techniques' (Wireless World Feb. 1971) may like to know that the author has developed a practical design based on the 'reflector delay-line system', which can be adapted to suit individual requirements. Readers interested in having such a system built should write direct to E. J. Jordan, 22 Hyde Green, Marlow, Bucks.

Announcements

An equipment contract worth over $£ 10 \mathrm{M}$ for Europe's largest international telephone exchange, has been awarded by the British Post Office to Plessey Telecommunications. The equipment is for part of the first unit at Mondial House - the new international telephone exchange under construction on a $2 \frac{1}{2}$ acre site adjacent to Cannon Street Station, London. Apart from the massive switching complex, Plessey will design, develop and install International Accounting and Traffic Analysis Equipment. The heart of the I.A.T.A.E. is an on-line computer which will provide information on a call duration/route/destination basis for the clearing of international charges.

Blueline Electronic Components, a new distributor company at Refuge House, River Front, Enfield, Middx, (Tel. 01-366 6371), has been set up by ITT Components. It is completely independent of ITT Electronic Services and has been formed, as a franchised distributor - 'not to sell ITT lines'. Blueline has six franchises: Texas Instruments; Bourns: Plessey capacitors; Union Carbide solid tantalum capacitors; International Rectifiers; and Keyswitch Relays.

The BBC has placed an order with Pye TVT for 'sound-in-sync' equipment comprising 40 encoder and 61 decoder units. The system enables both sound and vision signals to be transmitted over a single land line in place of the current two-line system.

British Communications Corporation Ltd. of Wembley, have been awarded a contract by the Ministry of Defence covering the pre-production aspects leading to the supply of v.h.f. /f.m. manpacks for the 'Clansman' military communication project.

Computer Automation Inc., of California, designers and manufacturers of minicomputers and associated equipment, have formed a U.K. subsidiary company called CAI Ltd, at 95a High Street, Rickmansworth, Herts.

Guest International Ltd, Nicholas House, Brigstock Road, Thornton Heath, Surrey CR4 7JA, have signed an agreement to market in the United Kingdom the semiconductor and thin film products manufactured by A.S. Akers Electronics, of Norway.

Granger Associates Ltd, of Weybridge, has been appointed exclusive sales representative for Jampro Antenna Company, of California, manufacturers of broadcast aerials for v.h.f. and u.h.f. applications and associated equipment.

The McMurdo Instrument Co., Rodney Road, Portsmouth PO4 8SG, in conjunction with Alliance Technique Industrielle, of France, are marketing a range of miniature connectors built to the French CCTU 0811 specification.

Data Devices Ltd, Abbey House. Farnborough Road, Farnborough, Hants, has been appointed exclusive U.K. agent for the range of data terminals, modems and input/output devices manufactured by Terminal Equipment Corporation, of New Jersey, U.S.A.

Euro Electronic Instruments, Shirley House, 27 Camden Road. London N.W.I, has been appointed sole agent in the U.K. for Electro Optical Industries Inc., of Santa Barbara, California, makers of wave analysers, digital voltmeters, amplifiers and noise measuring equipment.

News of the Month

A step in the right direction

Farnell Electronic Components Ltd, component distributors, are to be congratulated for their latest policy on prices. They have just published a new catalogue and they have given an undertaking not to increase any of their published prices before 31st March 1972. Any manufacturers' price increases will be absorbed by Farnell and will not be passed on to customers.

Conferences by television

Groups of people in five large cities can now converse and see each other by means of Confravision, the conferences-by-television service just introduced by the British Post Office. Special studios have been built in London, Birmingham, Manchester, Glasgow and Bristol, and are designed so that they can be operated by the users themselves. Each studio has a vidicon camera, with a remotely controlled two-turret lens which will take in either five people or the central three of them in close-up; two 24 -inch monitor screens, allowing each group to see themselves as well as the other group; an overhead vertically mounted camera for transmitting documents; and microphones and a tape-recorder. There are two sets of duplicate push-button controls, one for use by the chairman of the group and the other, at a side desk out of view, for use by a secretary. Small pairs of monitors are provided for both the secretary and the document display operator.

Video signals, which are on the normal 625 -line monochrome 5 MHz bandwidth standard, are sent from the studio's equipment room by coaxial cable to the nearest network switching centre (e.g. in London the Post Office Tower), and thence over the Post Office's microwave radio network on a standard television channel as used by the broadcasting organizations. (It is understood that these channels are in fact television standby channels originally provided for broad-
casting signal distribution but seldom if ever used as such.) Sound is carried over music quality lines, but there is a possibility that sometime in the future it could be sent with the video signal by the 'sound-in-sync' technique. Wireless World's reporter, in London, took part in a discussion with a group in Bristol and found the system easy to get used to. The only minor drawback is that with five people displayed on the monitor it is difficult to see immediately which person is speaking. Some method of visual indication would be helpful. The pictures as seen at the demonstration did not appear to be up to the normal broadcast standard of clarity, and the sound, considering that it came over a music line, was somewhat distorted and muffled.

The cost of using the service? $£ 120$ per hour for up to 125 miles (e.g. LondonBirmingham) and $£ 180$ per hour over 125 miles (e.g. Glasgow-Bristol).

Taxi 'mayday'

Members of an independent taxi association in New York are to use an RCA radio system to alert their headquarters in case of a robbery or other emergency. By operating a concealed switch, a driver will be able to signal, without a passenger's knowledge, that an emergency exists. A controller, after consulting a \log of the cab's earlier movements to determine its general location, can summon help by calling the police or contacting other cabs near the one in distress.
The alarm is part of a two-way radio system which relays messages in number code as well as by voice. Automatic equipment in dispatch headquarters prints out a log showing the taxicab's identifying number, the time the message was received, and sounds a bell. Aside from emergencies, the RCA mobile radio will be used to advise the dispatcher via a coded message that a cab is available to pick up a passenger. The system automatically
transmits a return signal from the dispatcher that lights an 'acknowledge' lamp on the cab's dashboard to indicate the driver's message was received. The entire transaction takes a little more than a second. The digital system is expected to find other applications in the trucking and related industries.

Data for the individual

A. Marshall \& Son (London) Ltd, 28 Cricklewood Broadway, London N.W.2, are offering a mailing service to the general public which gives information and prices on the range of components stocked and will enable them to publicize small quantities of parts. Subscribers will be provided with a loose-leaf binder in which to collate all the information. A charge will be made of $£ 1$ per annum for the service and subscribers will be entitled to certain preferential discounts.

Radio controlled clocks

The 170 town clocks of Vienna have been modified so that they are now controlled by means of radio impulses. Until recently the clocks were controlled over telephone lines, and they often showed incorrect time because the same lines were used for fire alarm purposes. An alarm could result in one or several impulses being lost, which in turn caused the town clocks scattered over the city to show different times. The radio-controlled system, which was designed by the municipal engineers of Vienna in collaboration with Storno engineers, employs two crystal-controlled main clocks which in turn are controlled by the observatory of Vienna. The maximum error that can occur is now 20 ms .

Complex hybrids

A small West German company called Microelectronic has introduced a high packing density system for thick-film hybrid circuits. Lewicki, the designer, claims to be able to achieve four times the packing density of conventional hybrids at only twice the cost.

The new hybrid consists of two ceramic substrates held slightly apart by small
soldered risers. The space between them is sufficient to allow chips to be attached to all four substrate-surfaces thus providing the equivalent of four hybrid circuits in each device. In this way, using $25 \times$ 12 mm substrates, up to 80 components can be attached. Interconnections between opposite sides of each substrate are made around the substrate edges. This eliminates the need for punching holes and reduces cost. In addition to holding the substrates apart, the risers provide interconnections between each substrate and form the external leads for the dual-in-line package.

Churches television centre

Just outside Watford, there is a country house which has just had a large, six-camera, television studio added. The building is the headquarters of the Churches Television Centre whose object is to spread the Christian message using television. The centre has an outside broadcast unit and gives training in television and sound broadcasting techniques in an effort to make maximum use of modern ways of spreading information. Television programmes made at the centre, and recorded on video tape, are copied on to 16 mm film for distribution throughout the country.

Marine simulator

A digital marine radar simulator is to be designed and produced by Marconi Space and Defence Systems for a nautical college currently being built at Hull. The simulator will help to train students to tackle the hazardous and crowded shipping situations which will become an accepted part of their daily lives. The simulator mimics a ship's bridge, including radar display, helm controls, echo sounder, radio direction finder, and other instruments. A student can navigate his 'ship' through any exercise conditions which the instructor sets. The situations to which he has to respond might range from collision avoidance action in busy seaways to navigating along fog-bound shores. The 'ship's' manoeuvring reactions are preset in the simulator's computer, and can be varied to represent any size of ship, from supertankers to small trawlers. Provision is made in the trainer for the special fishery training requirements of the Hull and Grimsby trawler fleets, and for research into ship and port control situations.

The trouble with ATS-3 and receiving it in the U.K.

A jammed aerial control system in the satellite ATS- 3 recently caused the almost four-year-old experimental satellite to stop transmitting weather pictures as well as other data.
N.A.S.A. officials believe the spacecraft gets heated up when the sun is north of the equator in the summer-and, as the aerial is located on the top and north side of the spacecraft, it probably overheats the drive system causing it to stop spinning.

The spacecraft spins at 100 revolutions per minute and the aerial spins in the opposite direction at almost the same speed which, when coupled with the motion of the satellite in its orbit, keeps the aerial pointed toward Earth.

About mid-July officials at N.A.S.A's Goddard Space Flight Center, had trouble making the aerial drive at the necessary speed. A few days later it cleared up and worked well. Then in early August the problem began again only this time the aerial spin rate went to zero.

The sun has now moved farther south and, as in previous years, ATS-3 is on the air again and is being used in an automatic weather picture experiment. The object is
to prove that a geo-stationary satellite can transmit weather data to a wide area as indeed it can as shown by the photograph received by Westminster school, using the equipment described in this and last month's issues of Wireless World, direct from ATS-3.

The picture was taken by the satellite ESSA-9 (which does not use the normal automatic picture transmission system) and was transmitted on command to an American ground station. The picture was then sent to Mojave in California where the grid and coastline were added. The modified picture was then transmitted in normal a.p.t. form to ATS-3 whose internal transponder re-transmitted it at 135.6 MHz . ATS-3 is stationed at longitude $70^{\circ} \mathrm{W}$ over Colombia which means that the Westminster school aerial had to be positioned with a bearing of 255° and an elevation of only 3°. The range was about 22,000 miles - quite an achievement for home-made equipment. Incidentally, readers who wish to receive ATS-3 are warned that interference can be expected from aircraft transmitters which use adjacent channels.

Applying 'Bosworth' in radio and radar instruction

As a result of the university/industry liaison recommended by the Bosworth* report to start courses in product technology, a compromise has been worked out between industry's need for staff-release periods which are not too long and universities' pleas for adequate lecturing time.

The Electronic Engineering Association and the University of Birmingham have organized a Bosworth M.Sc. course in radio-communications and radar technology consisting of nine sessions. Each session lasts from one to three weeks and is a course in itself in a particular subject. The sessions are designed to allow
engineers to attend only those lectures which are of interest to them. Experience gained during 1970/71 showed that it was desirable to arrange all the lectures for three days of any one week allowing short-course students to return to their firms for the remaining two working days.

[^5]
Progress in Acoustics

Seventh International Congress on Acoustics, Budapest

by N. F. Spring,* B.Sc., A.R.C.S., M.Inst.P.

It is now well past the time that acoustics could be referred to as the 'Cinderella of the sciences'. More than 700 papers were presented at this year's international acoustics congress, so this report is more than usually selective. The selection problem is eased by my total ignorance of large sections of acoustics. For example, I feel singularly unqualified to comment on voiced/voiceless probabilities of SerboCroatian speech sounds, and Wireless World readers hoping for a discussion of the acoustical feat ures and perceptual cues of the four tones of standard colloquial Chinese will be disappointed.

Electro-acoustics

One of the most widely used devices for the production of artificial reverberation in broadcasting and recording is the reverberation plate. The decay of flexural vibrations in a carefully made steel sheet, $2 \mathrm{~m}^{2}$ in area and 0.5 mm thick, simulates the reverberation of a room remarkably well. For some time now the inventor of the reverberation plate, W.Kuhl (I.R.T., Hamburg) has been developing a smaller version, hoping to make it small enough to fit into the boot of a car and also to

[^6]eliminate the slight residual metallic colouration of the existing plate. Dr. Kuhl's written work on the new plate has been tantalizingly sparse so far and it was not surprising that his Budapest paper "Eine Kleine Nachhallplatte" was extremely well attended.
Fig. 1 shows the reverberation time/ frequency characteristics of the existing large plate and of an experimental plate having an area of $0.1 \mathrm{~m}^{2}$ and a thickness of 0.02 mm . To maintain the eigentone density, a reduction of surface area of the plate must be accompanied by a proportional reduction in thickness; the difficulties in making a successful mini-plate arise from this fact. The lower surface density of the new plate (more properly described as a foil) means that the various sources of unwanted damping are much more effective and it is difficult to maintain the required reverberation time at high frequencies. There are also difficulties with the transducers, whose mass cannot be permitted to be more than a few milligrams if attached to the foil. Kuhl's paper gave a very clear summary of the problems but was less informative about solutions. One hopes that it will not be too long before a commercial version of the mini-plate is available.

Barát and Viczián (Hungary) produced

Fig. 1. Reverberation time /frequency characteristic of experimental reverberation plate only $0.1 \mathrm{~m}^{2}$ in area, compared with a standardized plate.
some fascinating colour pictures illustrating their technique for displaying sound field contours. Five differently coloured lamps are fixed onto a microphone and each lamp is arranged to switch on when the sound pressure level at the microphone falls within one of five different narrow ranges. To trace out a contour of constant sound pressure level, one merely moves the microphone so that one lamp stays switched on. An open-shutter camera in front of the sound source will then record a set of isobars of different colours. A set of colour slides showing the patterns in front of a bass-reflex loudspeaker at different frequencies was very instructive, and a 'picture' of sound leaking through a door indicated that the technique might be useful for investigations in the field as well as in the laboratory.

Open-loop high-frequency cut-off in audio power amplifiers can result in momentary 100% intermodulation distortion according to M. Otala (University of Oula, Finland). Transient clipping occurs when a rapidly rising voltage is applied to the input terminals. If the open-loop cut-off frequency is not very high, then the negative feedback does not act quickly enough to reduce the amplified input signal and overload occurs. Otala's contribution has been to present a theory of this type of distortion which enables the duration of the distortion to be calculated. In practical terms the results indicate that an amplifier can be blocked off for 1 ms by quite small transients. Measurements on three popular commercial amplifiers were presented. One, a Danish amplifier, employed judicious local feedback and gave no sign of distortion. The worst of the other two, a nominally 20 -watt amplifier, had a distortionless output power of only 0.15 W , which went below 10 mW when the tone control was set for maximum treble boost. The next step required is the acquisition of data on the subjective importance of this type of distortion.

The pioneers of the electret microphone, G. M. Sessler and J. E. West (Bell Telephone, U.S.A.), gave some examples of the latest work on electret transducers. The dielectric polarization in an electret is almost completely attributable to charge displacement and very little to dipole

This $1 / 8$-scale model of a studio has been used by the B.B.C. in listening tests to determine how the acoustics of the real studio might be improved.
alignment. Work over the past two or three years has shown that the most rapid and consistent method of producing a uniform charge distribution at the surface of the electret is simply to fire an electron beam at it. The high capacitance per unit area of the foil-electret microphone and the fact that there is virtually no physical limitation on size means that large units having a high capacitance can be made. One such unit, when fed into a high input resistance amplifier, had a frequency response ranging from 1 mHz to 10 kHz and was used to record infrasonic radiation from Apollo 10. A more down-to-earth application is for a touch-dial for telephones (Fig. 2). Touching the metallized-foil electret through one of the holes displaces it and generates a voltage pulse across a resistor wired between the metallizing and the underlying backplate.
A. Boleslav (Czechoslovakia) described a method of measuring the frequency response of a woofer without the use of a free-field room. A pressure gradient microphone is placed in the centre of the mouth of the loudspeaker, close to the diaphragm. Provided certain conditions are met, the results are close to those obtained in a free-field room.

Room acoustics

There were several papers on acoustic modelling of one sort or another. Of the theoretical models, Strom (Norway) described an investigation on room shapes by use of a computer model, using ray-tracing techniques. Although the method involved gross oversimplifications, some interesting tentative results have been obtained. Rectangular halls typical of the 19 th century, possessing a high rating according to Beranek's scale, showed a relatively even
spatial distribution of the impinging energy and there seemed to be a certain concentration of reflected energy in the time interval 50 to 100 ms . Highly rated modern halls also gave similar results, except that the concentration of energy was found to be in the 20 to 50 ms time interval. In contrast, modern halls having a low rating showed an uneven distribution of impinging energy both in space and time; also the directional distribution of reflections did not seem to be so uniform.

Fig. 2. Touching the metallized foil electret through one of the holes displaces it, producing a voltage pulse across a resistor connected between electret and backplate.
A. N. Burd described the continuing work on the BBC's $\frac{1}{8}$-scale model of a large orchestral studio. In spite of formidable engineering difficulties, recordings can now be made in the model having a weighted signal-to-noise ratio better than 52 dB and with colourations from the transducers at a level sufficiently low so as not to mask the acoustical characteristics of the model. Demonstration recordings were played to show the similarity between music reproduced in the model and that reproduced in the real studio. Listening tests on a number of simple modifications to the model have suggested ways in which the acoustics of the real studio might be improved.

Gilford and Gibbs (University of Aston), are concerned with the use of $\frac{1}{4}$-scale models to investigate the characteristics of sound transmission in building structures. Whether such models are valid or not depends partly on the way in which the internal losses of the modelled materials vary with frequency and amplitude. The authors' measurements show that internal losses are not a large factor in transmission loss along structural elements of a building for the common building materials in use today. The losses could, however, affect the airborne transmission of sound through panels and walls to a significant extent. These losses are therefore a potential source of error in models attempting to scale airborne transmission.

The assisted-resonance system installed in the Royal Festival Hall has been very successful, notwithstanding the fact that no satisfactory theory of its detailed behaviour has yet been devised. G. Dodd (Southampton) has been studying the characteristics of peaks in the transmission response of rooms, and in his paper he concludes that the room behaves
like a simple damped oscillator in the vicinity of well-defined peaks. The well-defined peaks are those which are chosen for assisted-resonance channels. Dodd's results suggest that a theory of assisted resonance simpler than those proposed hitherto might be possible.

Anyone contemplating planning the expensive facility of a free-field room or anechoic chamber, would do well to read the paper by Delany and Bazley (N.P.L.). They have produced a satisfactory method of predicting the performance of such rooms having an absorbent lining of plane sheets. They also reported progress towards predicting the performance of wedge-lined rooms at middle and high frequencies. Already the authors have produced some interesting results. The usual figure of merit of a free-field room is obtained by measuring the variation in sound pressure as a microphone is moved away from a point source of sound. In free space the pressure would vary inversely as the distance, so the figure of merit in a free-field room is obtained by considering departures from this inverse pressuredistance law. What Delany and Bazley found was that the mean deviation of the field from the true law varies only slowly as the frequency is increased in wedge-lined rooms; this behaviour is rather different from that observed with plane absorbent treatment where the performance improves significantly towards higher frequencies. They also found that for a given frequency in a wedge-lined room the r.m.s. deviation inzreases with increasing separation between the source and the microphone, and their final conclusion was that the presence of even small reflecting objects within the enclosure has a profoundly deleterious effect on the overall performance of a wedge-lined room.

A round-table discussion on subjective evaluation in room acoustics was opened by F. Kolmer (Czechoslovakia). Kolmer reminded us that in spite of its wellknown shortcomings, the reverberation criterion is still the only generally accepted objective criterion which corresponds with subjective evaluation of the acoustics of a room. After reviewing the recent work on improvements to objective measurements and attempts to establish subjective evaluations, Kolmer concluded that the connection between the subjective perception and the objective description of the acoustic field is the missing link in room acoustics. The discussion from the floor was conducted very energetically. The fact that it was held almost entirely in German emphasized the difficulties of the concepts involved. especially if they are to be discussed internationally. British workers in this field have encountered considerable difficulties in applying names to the subjective qualities being evaluated. Terms like bloom, sheen, brilliance, and so on are bad enough, but what are we to make of Räumlichkeit, Halligkeit, Raumeindruck and Durchsichtigkeit? (Incidentally it seems that the recent British work in this field-e.g. Hawke's work at University College, London - was

not widely known.)

New objective measurements in room acoustics are still being vigorously pursued, especially those concerned with the impulse response of rooms. R. Kürer, in his introduction to a round-table discussion on the subject, focused attention on recently proposed parameters such as early decay time and early reverberation, including Kürer's own parameter Schwerpunktzeit (a sort of centre of gravity of the envelope of the decay curve).

Acoustic surface-wave devices

Developments in acoustic surface-wave (a.s.w.) devices were the subject of an invited paper by E. G. S. Paige (R.R.E., Malvern). Progress in the past five years has been impressive and it is now possible to make the front-end of a television receiver including r.f. amplifier, local oscillator, mixer, channel selector, i.f. filter and i.f. amplifier using these devices. The planar structure means that their fabrication is compatible with that of microelectronic circuits.

The basically simple structure of a surface-wave delay line having interdigital transducers is shown in Fig. 3. The system resonates when the wavelength equals the spacing between the fingers, and the bandwidth is given simply by the resonant angular frequency divided by the number of finger pairs.

Fig. 3. In acoustic surface-wave devices the system resonates when the wavelength equals the finger spacing. Bandwidth is inversely proportional to the number of finger pairs.

Many other a.s.w. substitutes for electronic devices are possible, such as matched filters for pulse-compression systems, directional couplers, tapped delay lines and decoding filters. Even the non-linearities have been exploited recently in an a.s.w. convolver.

An interesting feature of an a.s.w. filter is that the arrangement of the fingers in the transducer looks like the impulse response of the filter, with the weighting corresponding to the degree of finger overlap. Dr Paige foresees the possibility that, with the development of many combinations of a.s.w. components in the future, large sections of electronics will be done without electrons.

Computers and acoustics

At the exhibition held at the time of the congress it was notable that all the major acoustical instrument manufacturers were offering measurement systems incorporating real-time frequency analysers and small laboratory computers to reduce the data from the analysers to a more digestible form. This development was also reflected in a number of the papers which discussed the use of such systems in, for example, sound power measurement. perceived noise level determinations and computer-controlled transmission loss measurement.

Other applications of computers were also evident and a round-table conference on the use of computers in acoustics was introduced by M. R. Schroeder (Göttingen University, formerly at Bell Telephone) with later support by Denes, Mathews and Risset (Bell Telephone). This might well have been called the Bell Labs Show. Professor Schroeder gave us a breathless and breathtaking account of the applications of computers to acoustical problems. Among the remarkable demonstrations was one on noise stripping. A recording of speech in the presence of noise so intense that the speech was unintelligible was processed so as to be virtually noiseless. The technique relied on computed estimates of the noise spectrum still remaining good estimates during the periods of speech. so that an accurate subtraction of the noise could be made.

The effectiveness of the predictive coding of speech was also demonstrated. The inherent redundancies in speech are utilized to predict the current sample of a speech signal from its past values. The difference between the true and predicted values is then coded. Even with only one-bit coding, the quality was remarkably good.

The next international acoustic congress is to be held for the first time in London, in July 1974.

Further reading

Proceedings of the seventh international acoustics congress are published in four volumes (2750 pages: abstracts only. 255 pages) by Akademiai Kiado. Budapest.

Otala. M. 'Transient distortion in transistorized audio power amplifiers' I.E.E.E. Trans. vol. AU-18. 1970. pp.234-9.

Sessler. G. M. \& West. J. E. I.E.E.E. Trans. vol. AU-19. 1971. p. 19 et seq.

Harwood. H. D. \& Burd. A. N. 'Acoustic modelling of studios and concert halls'. International Broadcasting Convention 1970 (I.E.E. conference publication 69). See also Wireless World October 1970 p. 484.

Marshall, F. G. \& Paige, E. G. S. 'Novel acoustic surface-wave directional coupler with diverse applications". Electronics Letters vol. 7. 1971, pp. $460-2$.
Mathews, M. V. 'The technology of computer music’. MIT Press. 1969.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Helical v.h.f. aerials

Mr. Monser's article on helical v.h.f. aerials in the September issue leads us to repeat our warning given in a letter in Wireless World, January 1969, which referred to the use of helical aerials for u.h.f. reception.

The argument still holds for Bands I and III where the planning of television v.h.f. stations in this country has been based on the use of mixed polarization to reduce interference between co-channel stations. It has been established by experiment, and is recognized internationally, that v.h.f. signal polarization is sufficiently well preserved even over long interference paths for an additional 10 dB protection at 90% of locations against interference transmissions to be readily achievable with vertical and horizontal transmissions and the corresponding types of receiving aerial.

In Band II (f.m. sound) the use of mixed polarized transmission was not adopted because sufficient channels were available to obtain a good coverage without having to resort to this stratagem. The use of a helical aerial in Band II may have some advantage but the claimed advantage in respect of multipath propagation is not in general valid. Since it is agreed that reflections would have a greater tendency to change polarization than the direct signal, it would always be of some advantage, other things being equal, to match the receiving aerial polarization to that of the wanted transmission.
J. L. EATON \&
L. F. TAGHOLM,

BBC Research Department,
Kingswood Warren,
Surrey.

Television sound quality

I hope Mr. Sear's recent experience ('Letters', October issue) has not discouraged him. There are two ways of improving television sound, which is of very good quality when transmitted.

At the risk of nullifying the maker's guarantee, the first thing to do is to find
out if there is, in the set, any sound signal worth using. To do this, a 200 W mains isolating transformer (NOT a Variac) should be connected between mains and the set. Next the detector output should be found and connected to a good amplifier (radio input). The TV set should be earthed at the amplifier input, and the connection on the chassis should be as near as possible to the detector diode load. If the sound thus obtained is satisfactory, the isolating transformer should be connected to the set using a 2-pin connector which is not compatible with the mains connectors. This will prevent accidents! If, with this (easy) modification, the quality is still not satisfactory, then a separate tuner will be necessary.

The cheapest way to provide one is to obtain an old valve television set which has a turret tuner. (Many dealers will gladly give them away.) This set should have everything unnecessary removed from it the e.h.t. supply, vision circuits and c.r.t. Apart from enabling a smaller box to be used, this will reduce the h.t. load and hence improve the smoothing, and will eliminate those circuits as local sources of interference. The valve heaters which have been removed should be replaced by a suitable dropper resistor to enable the chain to operate from 240 V . Next the sound i.f. strip should be tuned up to give maximum sound, consistent with acceptable vision buzz from the adjacent signal, and the output taken from the detector to the high-quality amplifier. For a transistor amplifier, it will probably be necessary to use a cathode follower between the detector and the output. The audio amplifier valve can most easily be utilized for this. To keep hum down, the common on the set from a point as near as possible to the detector should be earthed at the amplifier input, and nowhere else.
Peter Small, Cavendish Laboratory, Cambridge.
The following are extracts from a few of the many letters on this subject.
I chanced to come across an advertisement referring to an "Audio adaptor unit" which was exactly what I (and obviously Mr. Sear) was looking for.

It comprises a small compact unit, with a built-in isolating transformer, and comes complete in a teak box of only $3 \frac{1}{2}$ in cubic dimensions.
This unit, which feeds the audio output of the TV set to an external loudspeaker or amplifier, is obtainable írom M.A.C. Electronic Co., Ripley, Surrey, under the reference AAU-TV, and costs about $£ 8$.

Finally, regarding TV (u.h.f.) tuners, there are to my knowledge two on the market, one made by Lowther Manufacturing Co., of Bromley, Kent, and the other by Motion Electronics of Addlestead Farm, Tonbridge Road, East Peckham, Kent. The latter firm also make v.h.f. television tuners.

M. TOOGOOD,

North Baddesley,
Southampton.
Upon purchasing a new portable television set, a Teleton TH14, I noticed that an earphone socket was provided. I have been in contact with the set manufacturers who have no criticism whatsoever with the piping of sound from this socket through an amplifier to loudspeakers, providing a far higher standard of reproduction. C. E. Hayhurst,

Putney,

London S.W. 15.
There must be a niche, somewhere along the spectrum between $£ 60$ rubbish and $£ 300$ luxury, for a set or range of television sets which will give improved performance and be reliable. Perhaps, like some tape recorders, we could have TV units with no sound amplifiers or speakers of their own but, having fully isolated chassis, are to be linked to the domestic hi-fi equipment. But manufacturers will not provide them if there is no demand; and there will be no demand if they do not make them.
T. R. MAhoney,

London W6 8HE.
I have for some time been using a converter fitted to my Eddystone EB35 Mk 11/S which provides me with BBC-2 sound. This I feed into my high-quality amplifier and with the loudspeakers set around the television receiver, the improvement in sound quality is truly remarkable. Of course one could suggest that the programme planners get together so that we could enjoy in stereophony on the Radio 3 transmitters some of the excellent musical programmes of BBC-2. The Corporation could also, possibly, save some programme costs as the BBC-2 concerts are very acceptable in sound only.

R. M. Carroll.

Stratford upon Avon
For the past year I have been using a Bang and Olufsen 24 -inch monochrome receiver. While the sound quality from this is not exactly high fidelity it does deliver about $2 \frac{1}{2} \mathrm{~W}$ at fairly low distortion into a 9 in $\times 5$ in speaker.
If true high-fidelity sound is required an outlet is provided direct from the
demodulator which can be fed to an external amplifier.

Most people who buy black and white television sets do so, I believe, because they can't afford colour; if they have any money available above the cost of a monochrome receiver they would rather spend it on colour than on improving the sound quality.
B. DARLING,

Winchmore Hill,
London N. 21.

People who complain about television sound are probably also those who are quite happy to pay $£ 500$ for a highfidelity audio set up, and therefore would not object to paying $£ 50$ for the one-off modifications to the receiver.

One method is to construct a special receiver which is fed from the intercarrier output of the i.f, amplifier. Interconnection is made on the hot side of the ratio discriminator coil or, in the case of an i.c. discriminator and amplifier combined, on some pin found by experiment to contain some signal voltage. (For example, the quadrature coil.) A design for such a receiver, not too difficult to construct, has been published.

A somewhat cheaper alternative might be open to the enthusiast daring enough to cut into his f.m. tuner to provide a 10.7 MHz signal i.f. input to the existing strip. A frequency changer could then be constructed to convert the 6 MHz to 10.7 MHz and feed it to the tuner.
JOHN DE RIVAZ,
Barnet,
Herts.

'These tell-tale women ...'

Tsk! Tsk! What is 'Vector' saying? (October issue). Does he think no further than the end of his quill pen? While agreeing with him regarding the proliferation of obscure acronyms for the various exhibitions, seminars, etc., etc., I must point out the danger with which one of his alternatives is fraught. Can you imagine the reaction of our ever-loving wives when they accidentally turn over the pages of our diaries, and for sometime in May find the following entry:-'London-Frieda' (or Janice, or Laureen)? D. JONES,

Newbury,
Berks.

Breakthrough in Integrated Circuits

Ferranti plump for collector diffusion isolation

A simple bipolar integrated circuit process which allows low-cost production with most of the advantages of m.o.s. i.cs is announced by Ferranti. Devices are made by the collector diffusion isolation technique first investigated* at Bell Telephone Labs about $3 \frac{1}{2}$ years ago. The technique did not make much impact when announced, no doubt because of the low 3-V breakdown voltage of devices. But after looking at various production processes for i.cs, like the tri-mask, base diffusion isolation and silicon gate techniques, Ferranti recognized the potential of c.d.i. and spent two years developing the process to increase the breakdown potential to allow circuits to be used with 5 -volt supplies - directly compatible with conventional bipolar digital i.cs. Not that c.d.i. devices are confined to digital electronics - in fact both linear and digital circuits can be combined on the same chip. Ferranti have designed a series of c.d.i. functional building blocks and are developing circuits for application to automotive systems, battery desk calculators, consumer durables, telecommunications and custom logic arrays. Among devices already in production are a high-speed random access memory and a 1024 -bit shift register. They expect most of their custom designed i.cs to c.d.i. in two to three years.

Conventional bipolar devices suffer from high-power dissipation, large chip area and the production process involves nine steps. Unipolar (m.o.s.) devices in contrast have low power dissipation, small area per function and only five masking steps. But they are severely limited in speed, they pose handling problems unless protective circuitry is included, and have a higher packaging cost. The c.d.i. bipolar technique allows circuits to be produced in only five steps instead of nine, with high complexity, high speed, low propagation delay-dissipation product, and low chip size (see Table 1).

Characteristics of a typical device are shownin Table 2. High f_{T} and low series resistance give the high-speed capability of the devices. Current gain is maintained at a higher level than in ordinary bipolars at both high and low collector currents.

Because the devices do not rely on surface properties of semiconductors-asin m.o.s.-they are less susceptible to ionic contamination and have the high stability and ruggedness of conventional bipolar devices. The masking steps in the production process follow a five-step sequence of: buried n^{+}diffusion, isolation diffusion, emitter diffusion, contact holes and

Table 1. Comparison between conventional bipolar, m.o.s. and c.d.i. bipolar gates

	c.d.i. bipolar	m.o.s.	bipolar
chip area (static gate)	20	30	$100\left(10^{-3} \mathrm{in}^{2}\right)$
dissipation propagation delay (for above diss)	2	1	10 mW
delay-dissipation product	10	100	10 ms

Table 2. Typical c.d.i. device characteristics

$B V_{C B O}$			
$h_{\text {fe }}$	7.5 V	$V_{\text {offset }}$	5 mV
f_{T}	60 typ	I CBO	1 pA
$R_{\text {sat }}$	1 GHz	$h_{\text {fe }}$ inverse	20
	10Ω	$C_{o b}$	0.3 pF

interconnections. The low thickness of the player ($1.5 \mu \mathrm{~m}$ as opposed to $5 u \mathrm{~m}$ for t.t.l. and $10 a$ for m.o.s. - normally n-type in conventional devices) and the passivation technique used results in only shallow oxide steps on the surface make metallizing easier. Ferranti are not disclosing precise process details at present but they say the increase in collector-base breakdown voltage is a result of changing the sheet resistivity of the non-selective p^{+}layer and changing the epitaxial layer thickness and resistivity. The problem of storage delay usually circumvented by gold doping or with Schottky diodes - caused by hole storage in the collector does not arise. (The n-type layer in a conventional device is now an p-type layer, see diagram) and storage that occurs in the base is reduced by wiring an additional emitter to the base. This dual emitter facility means that devices can be produced with or without delays, as dictated by the circuit, with virtually no difference in cost.

A potentially competitive process is Fairchild Isoplanar \dagger using isolation by oxidation and etching, but Ferranti say c.d.i. is better because it involves less etching, and less time (by an order of magnitude) in the furnace for oxidation (isolation by diffusion is much quicker), greatly reducing the possibility of building up stresses in the silicon.

- Murphy, B.T., et al, 'Collector diffusion isolation' Proc. I.E.E.E. vol. 571969 pp. 1523-7.
\dagger Deltzer, D \& Herndon, W , 'lsolation method shrinks bipolar cells... Electronics vol. 441971 pp. 52-5.

Correction

'Incremental indicator': The Comark instrument described in 'New Products' in September (p .461) has a resolution better than $10 \mu \mathrm{~V}$ and provides 30 ranges of 1 mV f.s.d.

Electrostatic Headphone Design
 Instructions for making a simple and inexpensive high-quality unit

by Philip D. Harvey, B.Sc.

The design described below, like that published in 1968 ${ }^{1}$, is based on the constant charge push-pull principle schematically illustrated in Fig. 1. The constant charge is derived by feeding the diaphragm from a high resistance R, and relying on the capacitance of the earphone to store the charge.

Basic requirements in construction are that:

1. the fixed plates be rigid, acoustically transparent, and both flat and conducting on the inner surface;
2. the spacers be flat, of uniform thickness and, above all, insulating; and that
3. the diaphragm be flexible and light.

In all, three models were constructed. In producing fixed plates for the final model the electro-mechanical analogy described in Appendix B was used.

Stroboscopic examination of an earphone had shown that the diaphragm behaves as an elliptical vibrating piston with major and minor axes set by the spacers. These dimensions were set at $75 \times 45 \mathrm{~mm}$ to cover the ear. A short transmission "tunnel" is employed to improve low-frequency coupling with the ear. This extension is lined to reduce resonances.

The fixed plates are of single-sided copperplated fibre-glass. Hole area is 30% sufficient to ensure acoustical transparency without sacrificing rigidity. The holes must be deburred after drilling.

To remove the risk of charge leakage at the edges of the board and at the connecting bolt holes (due perhaps to tearing of the diaphragm and consequent shorting) about 2 mm of copper is removed from the edges of the board round the connecting bolt holes (see Figs 2 and 3) to prevent charge leakage should the diaphragm tear at the edges.

The spacers, made of polyvinyl acetate, are cut in one piece from a sheet to avoid poorly insulating joints. These are drilled, using the fixed plates as templates, and deburred

To make a safe connection of high voltage leads, two methods can be employed for the outer plates
(a) Alternate unrounded corners of each fixed plate are removed to allow a connection to be made to the other fixed plate.

[^7]Plasticine can be used for insulating the connection. The principle is illustrated in Figs 4 and 5 .
(b) A small hole may be drilled in one corner of the fixed plate, and the copper side of the board slightly countersunk. The insulation of the signal wire is then stripped off, the inner being tinned and fed through the hole, as shown in Fig. 6. The well, created by countersinking, is now filled with solder which makes good contact with both the wire and copper plating. By grinding this surface flat we have a good safe connection.
To insulate the diaphragm connection it was decided to utilize the insulating properties of both the fixed plates and the transmission tunnel. The connection was brought to the surface of one fixed plate by a brass bush as shown in Fig. 7. The connection was then made harmlessly between the tunnel and board.

The film for the diaphragm is prepared by taping it crease free over a wooden frame of inside dimensions $200 \times 250 \mathrm{~mm}$. The frame, with the film now flat and under tension on its upper surface, was placed over a sheet of glass $240 \times 190 \mathrm{~mm}$ of slightly greater thickness than the frame. Under these conditions it was easier to rub Aquadag on and off the film. This should be continuous until surface resistivity is $10^{8} \Omega$. The prepared film is next mounted on one spacer using double-sided Sellotape with the resistive side exposed, and laid on to the other spacer and a fixed plate with the brass bush inserted. The brass bush

Fig. I. Push-pull electrostatic sound generator.

4BA clearance hole countersunk by 2 mm
Fig. 2. Plan view of fixed plate.

Fig. 3. Mould used for the transmission tunnel, and typical results achieved.

Fig. 4. One corner of final model.
now contacts the resistive coating, although it might be necessary to use some Aquadag on the contacting surfaces. The other fixed plate is laid on the assembly, followed by the transmission tunnel ready drilled, enabling the parts to be fastened together with nylon nuts and bolts. The components are shown in Fig. 5.

Before testing, the earphone is heated by warm air to tighten the diaphragm and remove any slight creases in it.

Transmission tunnel details

The transmission tunnel must be light and strong, and transmit the sound produced by the earphone to the ear. The simplest shape to do this is shown in Fig. 9. The only readily available group of materials to fulfil the above conditions is the plastics. These also have an advantage of damping incident sound, whereas metals tend to 'ring'.

The idea of casting the tunnel from polystyrene was investigated. Experiments led to the use of a wooden mould. It was found that if the mould was left overwaxed, then the excess wax was melted during the ensuing catalytic process, and this enabled the polystyrene to be removed from the mould whilst it was still pliable. Provided it was well supported whilst setting fully, the result was quite acceptable. Both the mould used (made of two parts for easier positive removal) and a typical positive are shown in Fig. 3.
Tunnels of both clear and coloured polystyrene were made, and it seems that the colouring material used gave the tunnel added strength.

It was found that latex foam rubber, used for lining the tunnel because of its excellent sound absorbing properties, was best cut on the bandsaw.

Variation of the other component elements

Under given conditions of signal and bias voltages, the two components affecting the earphone's performance are:
(a) The spacers-the thickness of which determine E and hence sound output. Spacer thicknesses of $0.18,0.25,0.37,0.62$ and 1 mm were tried. Decreasing the spacer thickness did not alter the frequency response but raised the sound level. Construction difficulties increased as spacer thickness decreased due to the slight and unavoidable warping of the fixed plates. This did not become too bad until ionization of the air was also a problem (see below).

Silicon resin bonded paper, paxolin, and dry paper were also tried as spacer materials. No difference was observed in the performance and it is concluded that any material having a resistivity greater than $10^{10} \Omega \mathrm{~cm}$ would be satisfactory.
(b) The diaphragm-through which no appreciable current should flow in less than half the time period of the lowest frequency to be reproduced. This ensures constant charge conditions. If one assumes the diaphragm to be perfectly conducting and the earphones to have capacitance C farads, and further that the lower limit of audibility is 27 Hz , then the diaphragm must be fed via a resistance R ohms, such that;

$$
R C>\frac{1}{2 \times 27} \text { (approx.). }
$$

C is calculated as 330 pF from $C=\frac{\epsilon A}{d}$
whence $R>\frac{1 \times 10^{12}}{54 \times 330}$ i.e. $R>6 \times 10^{7} \Omega$.
Due to the high value of this resistance it is easier to make the diaphragm resistive than feed it through an external resistance. Experiments were made with sheets of $10^{7} \Omega$ surface resistivity and greater. As expected the bass response improves as the resistance increases. The high-frequency

Fig. 6. Cross-section of alternative final model.

Fig. 7. Cross-section through comnection to diaphragm.

Fig. 8. The completed final earphone.

Fig. 5. Component parts of the final model.

Fig. 9. Basic transmission-tunnel shape.
response also improves, due presumably to the lower mass resulting from less graphite on the film. As some charging current must flow on to the diaphragm there is some limit to how high the resistance can be. Best results were obtained at the limit of measurability, i.e. a surface resistivity of approximately $10^{9} \Omega$.

Hospital anti-static polythene was tried and though it worked, the type available was thick and heavy, with a surface resistivity of only $10^{5} \Omega$. Hence both high and low frequencies suffered.
Various materials of the same type (Vitafilm) were obtained from local supermarkets. These were analysed spectroscopically and found to be the same material with the exception of that supplied by Sainsbury's. Microscopic analysis then showed that Vitafilm because of its porosity was not very suitable. The film made by The Borden Chemical Company was judged to be best closely followed by that made by Filmco in Durham.

Further tests to discover how best to apply homogenous resistive coating to the film were made on Borden's film. The use of evaporation techniques were first studied, but these posed three problems. In the conventional evaporator the film surface exposed was not large enough for an even film to be deposited over a sufficiently large area. Also at the low temperature required (not to destroy the film) oxidation of the depositing metal occurred. Finally when a film was deposited the metal permeated the plastic, altering its properties such that it became brittle and unusable.
Dry graphite powder rubbed into the surface did not alter its resistivity, presumably because the particles did not interlink and form molecule chains.

Finally a method was considered whereby a conducting medium could be sprayed as a solution in a liquid that would attack the film and hence give a permanently resistive surface. Graphite does not readily dissolve in any p.v.c. solvent, and so could not be used. A solution of silver in methyl acetate (Silver Dag) was sprayed on to a film, soaped to lower surface tension. The results were encouraging but a less active solvent would have to be used. Before pursuing this method, diluted Aquadag was substituted for Silver Dag and found to leave a completely uniform layer of graphite on the film when dry. Although this coating could be made fairly thick its resistivity remained immeasurably high until it was rubbed. Experience soon showed the amount that had to be sprayed for the required resistivity.

Drive circuits

Provisional model

The circuit shown in Fig. 10 employs the output stage of a commercial valve amplifier. The surface resistivity of the diaphragm must be greater than $10^{8} \Omega$ and hence the $10^{7} \Omega$ resistor in the feed line to the diaphragm is not necessary, but an added safety precaution.
It was found that the $0.01 \mu \mathrm{~F}$ isolating capacitors were sufficiently leaky to allow the outer plates to attain a high voltage, and the diaphragm could be earthed as an
alternative form of bias. This makes the diaphragm an effective negative charge. This is not desirable because a steady high voltage on the outer conducting plates could be dangerous.
With the earphones in the circuit as shown, distortion was apparent, even at low acoustic levels. This was thought to be due to the output transformer. This amplifier was not designed to operate at maximum output continuously, and under these conditions inter-modulation distortion sets in. The earphones require a high voltage signal, but very little current. With this in mind an amplifier to deliver a distortion free signal was designed.

Designed valve amplifier

With a spacing of 0.37 mm (which changed by only 10% at full bass output) the maximum permissible voltage between the diaphragm and either fixed plate, to avoid ionization of the air between them, is

1000 V . With 300 V on the diaphragm this means that the maximum peak-to-peak voltage level on one plate can be 500 V . This leaves a large margin of safety for humid days or signal surges. The circuit of Fig. 11 was used giving only 400 V peak signal, as the valves and components were readily available. It gave no distortion observable on an oscilloscope, even without negative feedback, due presumably to the light loading on the amplifier.

Its use gave immediately discernible improvement in output level and fidelity.

Designed transistor amplifier

40 V rails are commonly available on transistor amplifiers and the circuit of Fig. 12 was built giving 32 V peak signal. Using 300 V rectified mains on the diaphragm gave a barely audible output.

The circuit of Fig. 13 was designed to give 300 V peak output. Any n-p-n silicon transistor with a $h_{f e}>50$ at 1 mA and a

Anodes of
output valves

Fig. 10. Modified output of a commercial valve amplifier.

Fig. 12. Differential amplifier providing 32 V output.

$V_{c e}>35 \mathrm{~V}$ will do for the first stage. The transistors in the differential stage should preferably be matched.
Three potentiometers are included to set up the amplifier to its optimum performance. First use R_{1} to match the base voltages of $T r_{1}$ and $T r_{2}$; then adjust R_{3} to make the average collector voltage of Tr_{3} and $T_{4} 115 \mathrm{~V}$. Finally, using R_{2}, balance these collector voltages; repeat this procedure until both Tr_{3} and $T r_{4}$ collectors are at 155 V .

Measurement and analysis

From the section below and Appendix A the optimum of all the variables may be found. Although the thinner the spacers used the more the acoustic output obtained, it was found with the thinner ones ($0 \cdot 18$ and 0.25 mm) that the air ionized on more humid days. This was apparent as a clicking noise, varying in repetition rate from one to ten hertz. It arose because constructionally the fixed plates are never equidistant from the diaphragm, and the air between the diaphragm and closest plate ionizes first. This allows attraction to the other plate increasing E, so that air here ionizes while the other reconstitutes itself. This effect is eliminated by reducing the voltage on the centre plate, but this necessarily reduces sensitivity.
The 0.37 mm spacers were therefore chosen and a plot of output versus central electrode potential revealed a levelling off at about 600 V . This is unexplained, but below this value the measured output is very near to the calculated value.

Many listeners were satisfied with volume and fidelity using 350 V on the diaphragm and the designed valve amplifier. There were many comments on the "depth" of the sound, which is due to the fact that plane waves are arriving at the ear, and these are normally associated with a distant source by the hearing mechanisms. When in use on a stereo system this effect makes it easier to identify the direction from which the sound appears to come.

Results achieved

Traces of the frequency responses are given with markings of 10 dB intervals and at the frequencies $20 \mathrm{~Hz}, 100 \mathrm{~Hz}, 200 \mathrm{~Hz}$, $1 \mathrm{kHz}, 2 \mathrm{kHz}, 10 \mathrm{kHz}$ and 20 kHz .

Fig. 14 gives the responses with different input signal voltages. The effect of increasing this voltage should be the same as decreasing spacer thickness. The relative graphs show this to be true, though the relative amplitudes differ.

Fig. 15 displays the difference made by altering the potential on the centre electrode.

Fig. 16 displays the difference in characteristic responses when plotted in the open air, and when plotted in the artificial ear.

Fig. 17 shows the best response achieved and corresponds to all the variables being optimised. The component specification for this is :
spacers-polyvinyl acetate 0.37 mm thick;
diaphragm-Borden Chemical's plasti-

Fig. 13. Suitable transistor drive amplifier providing 300 V peak output.

Fig. 14. Response
for different
signal-voltage levels.

Fig. 17. Comparison of best earphone constructed with the published response of a Koss ESP6 unit.
Fig. 15. Response for different diaphragm voltages.

Fig. 16. Comparison of response in open air to that in artificial ear.

cized p.v.c. sheeting 15μ in thick, sheet resistivity $10^{9} \Omega$.

Safety

There are no uninsulated connections carrying high voltage near to the ear. Provided the connections at the signal generator are also well insulated, there is no danger of a fatal shock. There is always the danger of the diaphragm splitting, but even if it were to lacerate and protrude from a fixed plate, it would come up against the polyurethane foam the earphone is lined with. (This avoids cavity resonances in the sound conveyed to the ear, as well as insulating the ear.) If the diaphragm managed to touch the ear, then in the worst case at least $10^{8} \Omega$ on the film would allow only $3.5 \mu \mathrm{~A}$ to flow through the body, even assuming the body to be a dead short!

Suggested improvements

In order to achieve a broad frequency response it is essential to have slack suspension, and a low mass radiator. The first has been achieved by the use of a diaphragm which can be under quite high stress on its own plane, whilst a relatively low force can cause deflection in a transverse direction. In this design the mass of the radiator is no more than that of a layer of adjacent air a few millimetres in thickness. This could further be reduced by using a film resistive by manufacture.
The effect of resonances in this particular shape of diaphragm has not been investigated as the response curve does not indicate trouble of this kind. Three final points are worth making:
(a) The behaviour of the charge on the film is still largely unexplained as is the levelling off of the response with greater than 600 V on the diaphragm ;
(b) Double-sided boards which prevent warping, along with more sophisticated construction techniques, should yield a system of adequate acoustic output using much smaller signal and bias voltages; and (c) The quantities of different types of distortion present could be measured. Results obtained and listening tests indicate their virtual absence at low sound levels.

APPENDIX A

Measuring the response of the earphone on the ear

Without elaborate equipment, such as a probe microphone, this is difficult to do. Furthermore the earphones under test were not always safe to wear. For these reasons the ear was simulated for the tests. Artificial ears are readily available, and commonly have a volume of 6 cubic centimetres. The volume enclosed by the transmission tunnel is nearly twenty times this, and the addition of the ear's volume makes little difference to its response. The B \& K microphone used for the tests was one inch in diameter, about the same as the opening to the ear. The flat wooden plate used for holding the microphone was lined with polyurethane foam, to simulate the coefficient of reflection of the skin.

The conventional B \& K frequency plotting apparatus was then set up, and a constant peak-voltage sine-wave output fed to one plate with the other earthed. The inner electrode is maintained at, say 400 V by an h.t. supply. The frequency is swept continuously throughout the audio range $20-20,000 \mathrm{~Hz}$, synchronized to a chart recorder into which the output of the microphone amplifier is fed.

Measuring diaphragm surface resistivity

Apply 250 V d.c. across two electrodes one inch long and one inch apart. The current flow is measured. Sufficient accuracy was obtained by quoting the result as $P \times 10^{N} \Omega$, where both P and N are integers.

APPENDIX B

The electro-mechanical analogy

This is employed to determine the output expected from the earphones, and the frequency response expected. The calculations performed assume values either already determined for the final model or values of the materials readily available.
Fig. 18 gives the equivalent mechanical circuits of the earphones, where the mass m is the mass per unit area of the diaphragm. The spring S is the suspension of the diaphragm in the transverse direction. The damping, $2 R_{m}$ in the centre frequency band, is due to the impedance of the air. F_{o} is the peak force per unit area on the diaphragm.
Employing the electrical analogy of this circuit gives us Fig. 19. The mass per unit area becomes an inductance of M henries. The suspension becomes a capacitance of S^{-1} farads. The damping becomes a resistance of $2 R_{m} \Omega$, and the force a voltage of $F_{o} \sin \omega t \mathrm{~V}$.

Fig. 18. Equivalent mechanical circuit of earphone.

Fig. 19. Circuit given by the electro-mechanical analogy.

We know that:
$M=2.4 \times 10^{-2} \mathrm{~kg} \mathrm{~m}^{-2}$ (Vitafilm)
$2 R_{m}=2 \rho c$
$=820$ Rayl in the mid-frequency band.
S cannot be easily measured in situ, but a comparison with a conventional 4 inch loudspeaker indicated the same order of magnitude. It is calculated accurately knowing the free resonance to be at 55 Hz .

From Fig. 19 we know:

$$
I=\frac{F_{o} \cos \omega \mathrm{t}}{\left(2.4 \times 10^{-2} j \omega+\frac{S}{j \omega}+820\right)} \mathrm{amps},
$$

and that at resonance I is real.

Hence

$$
2.4 \times 10^{-2} j \omega=\frac{S}{j \omega},
$$

giving $S=2.4 \times 10^{3}$ newtons per metre. Because power \propto current 2, the -6 dB points are given by

$$
\begin{aligned}
\frac{s}{\omega_{L}} & =820 \\
\omega_{h} m & =820
\end{aligned} \quad \therefore \omega_{L}=30, \omega_{h}=35,000 .
$$

Therefore the -6 dB points are expected to be at 5 Hz and 6000 Hz In the region between these two points the movement of the plate is opposed only by the resistance of the air, so that the device is almost 100% efficient.

A light, thin material, such as that from the Borden Chemical Company considerably extends the flat response.

In order to determine the expected output, the equation $F_{o}=q E_{o}$ is utilised. The charge per unit area, q, is determined from the expression :

$$
q=\frac{C \times V_{d c}}{\text { area }}=\frac{2 \epsilon_{o} V_{d c}}{d}
$$

where $V_{d c}$ is the voltage applied to the diaphragm, and d is the thickness of the spacers:

Hence

$$
\begin{aligned}
F_{o} & =\frac{2 \epsilon_{o} V_{d c}}{\text { area }} \times \frac{v_{o}}{2 d} \\
& =1.95 \times 10^{-2} v_{o} \text { newtons per metre }{ }^{2}
\end{aligned}
$$

A loudness of 100 dBm is considered adequate, whence $F_{o}=2$ newtons per metre ${ }^{2}$.
This is achieved by signal voltages V_{o} of the order of 100 V in the region 6 kHz to 10 kHz . This is not a signal voltage sufficient to cause ionization of the air with 350 V on the diaphragm.

A suitable amount of the recommended plastic film, made by the Borden Chemical Company, will be sent from the Wireless World editorial department to any reader on receipt of two $2 \frac{1}{2} \mathrm{p}$ postage stamps.
Aquadag can be obtained in 75 g jars, from stockists of the Acheson Colloids Co. products. It costs $22 \mathrm{p}(+10 \mathrm{p}$ packing and postage) from Ferguson and Timpson Ltd, 7-9 Sebert Road, Forest Gate, London E.7.

Circuit Ideas

Zero hysteresis trigger circuit

Where it is necessary to generate a fast rise-time square wave from a slowly varying input, the Schmitt trigger type of circuit is normally employed. However, the regenerative switching action usually results in considerable hysteresis. This means that the mark-to-space ratio will vary with the input signal amplitude. Further, the fundamental component of the square wave output will be phase delayed with respect to the input.

The circuit shown can give both zero hysteresis and an equal mark-space ratio provided the input frequency is known approximately. Multiple triggering due to high-frequency noise is also effectively eliminated. $T r_{1}$ serves as a constant current source to the differential pair $T r_{2}, T r_{3}$. Regenerative feedback between the collector of Tr_{2} and the base of Tr_{3} is provided by R_{1} and C_{2}. Switching occurs when the base voltages of these two transistors become approximately equal. During switching, the base voltage of $T r_{3}$ changes by $\pm 5 \mathrm{~V}$. This inhibits further operation of the stage until the capacitor C_{2} has discharged according to the approximate time constant $C_{2} R_{3}$. Provided this discharge is nearly
completed during a half cycle of the input waveform the remaining hysteresis may be reduced to zero by adjusting R_{1}. Subsequent adjustment of R_{2} then ensures an equal mark-space ratio at the output.
C. J. PaUll,

University College of Swansea.

Digital method of obtaining frequency difference

In developing the readout for an exclusively t.t.l. digital system it became necessary to extract, aperiodically with reasonable precision, the difference frequency between two square waves. The D-type flip-flop used (the SN7474) has the feature that, as the clock pulse goes to one (the positive clock edge) the D signal is transferred to the Q output, the transfer occurring in the 20 -or-so nanoseconds characteristic of t.t.l.

Typically, a fixed clock frequency $\left(f_{c}\right)$ of 50 kHz was used and an equal mark-

space ratio, variable frequency $\left(f_{d}\right)$ applied to the D input. The Q output will reverse as the signals go in and out of synchronism, one cycle of output will occur every n cycles of the clock when n is the cycles between synchronism.
Thus $n f_{c}=(n+1) f_{d}$
hence $f_{c}-f_{d}=f_{d} / n$
The output pulse durations must be integers of the clock period. Thus there will be variations in individual durations of \pm one clock period. The error is not cumulative, and typically if the sampling time is one second the frequency recorded will be the true difference frequency with the usual \pm one digit uncertainty.

This method has been found to be a convenient and very advantageous way of obtaining a readout of difference frequency, being completely aperiodic, exclusively t.t.l., applicable over a wide frequency range and avoiding, the expensive incorporation of a reversible counter.

The case where the frequency difference is large is of practical interest. If $f_{d}=m f_{c}$ where m is an integer, the output will be unchanged (zero frequency) as the D signal is effective only at the instant of the clock edge. Similarly if $f_{d}=\left(m+\frac{1}{2}\right) f_{c}$ the output will be f_{c}. Consideration will show that as f_{d} increases the output frequency will move linearity between the limits of zero and f_{c} to the ultimate performance of the device. Direct measurement has established that the performance expected from the analysis given is achieved in practice. J. F. W. Bell \& J. M. Pelmore, University of Aston.

Simple relay monostable

This circuit was evolved to enable a signal to switch a relay on very quickly and to have a variable drop-out time. Another important requirement was that of 'signal storage' so that the delay would be effective as from the last signal which for my purposes were pulses of constant height but varying widths. Fairly consistent

delay times can be achieved dependent upon the voltage fed to C, and to the high impedance of the switching pair. In my application C was $330 \mu \mathrm{~F}$ tantalum, R $22 \mathrm{k} \Omega$, and D_{1} a silicon diode with a fairly large I_{R} characteristic. The pulses were about 4 V in amplitude.
J. Vickers,

London S.W. 10.

Dual-trace Oscilloscope Unit

4. Attenuators and switching circuits

by W. T. Cocking*, F.I.E.E.

In Part 3 we dealt in considerable detail with the design of an amplifier using bipolar transistors. The effect of component tolerances was treated in detail as well as the precautions needed to prevent the accidental application of a high voltage to the input from damaging the amplifier. Two amplifiers are needed, of course, one for each signal channel. These are identical except that only one carries the common collector resistance for the two output stages.

The circuit of the amplifier given in Part 3 is, of course, only the bare bones of it. It was found experimentally that the emitter followers tended to generate high-frequency oscillations and that collector resistors, with a by-pass capacitor across $V_{c c}$ were needed to prevent this. A capacitor to earth from the base of $T r_{6}$ was also required, and various other by-pass capacitors. These are matters which depend very much on layout and cannot be predicted.

The amplifiers have individual, continu-ous-gain controls with a minimum range of 3.33:1. Further control of signal level is by switched attenuators preceding the amplifiers, and attenuating probes at the input ends of the cables. As explained in Part 1 a probe is necessary primarily to reduce the effective input capacitance, which is provided mainly by the cable.

Attenuators

In Part 1 we envisaged the use of a dualrange probe which, with an internal switch, would provide two basic signal ranges of 1 V and 3 V input for 1 V output from the amplifier. This would require merely the addition of a 10:1 attenuator section to give 10 V and 30 V ranges. The advantage of this scheme was that it permitted the use of an amplifier gain of only 3.33 , and at the start of the development we did not know if we could obtain a gain of 10 times reasonably easily.
The main disadvantage of the scheme was the practical difficulty of constructing the probe to be reasonably small yet employ standard components. It was also a disadvantage to have two switches widely separated in space to control the gain. Further, it was undesirable that there should be a change of input impedance on operating the probe switch.

[^8]However, it turned out, as explained in Part 3; that a gain of 10 times was readily obtained. The probe, therefore, now contains merely a $900-\mathrm{k} \Omega$ resistor shunted by a trimmer capacitor to give, with the amplifier input resistance of $100 \mathrm{k} \Omega$, an attenuation of $10: 1$. The amplifier gain of 10 times makes up for this and the overall gain is unity. A $3-\mathrm{ft}$ length of coaxial cable has a capacitance of about 60 pF . The amplifier will probably add at least 10 pF and the safety diodes (Part 3) account for the bulk of this. The input impedance of the probe will be $1 \mathrm{M} \Omega$ by about 7 to 10 pF .

For input voltages greater than 1 V attenuators are needed, to enable ranges of $3 \mathrm{~V}, 10 \mathrm{~V}$ and 30 V to be obtained. For the $3-\mathrm{V}$ range, attenuation of $3: 1$ is needed; for the $10-\mathrm{V}$ range it must be $10: 1$; and for the $30-\mathrm{V}$ range, the two can be used in cascade. For this to work, each attenuator section must have an input impedance equal to that of the amplifier, when it is terminated by that same impedance.

The simplest attenuator section is shown in Fig. 1 with the termination $R_{0} C_{0}$. Let α be the reciprocal of the attenuation (i.e., 3 for a $3: 1$ section; 10 for a $10: 1$ section) then

$$
R_{1}=R_{0} \frac{\alpha-1}{\alpha} \text { and } R_{2}=\frac{R_{0}}{\alpha-1}
$$

Fig. I: Basic attenuator section.

Thus for $3: 1$, and $R_{0}=100 \mathrm{k} \Omega$, $R_{1}=66.6 \mathrm{k} \Omega$ and $R_{2}=50 \mathrm{k} \Omega$, while for a $10: 1$ section $R_{1}=90 \mathrm{k} \Omega$ and $R_{2}=11.1 \mathrm{k} \Omega$.
For correct frequency compensation, we must have $C_{1} R_{1}=C_{0}\left(R_{0} \| R_{2}\right)$, which means $C_{1}=C_{0} /(\alpha-1)$ when the foregoing resistance requirements are met. Since the cable precedes these attenuators, the value of C_{0} is not about 70 pF as it is for the probe, but nearer 10 pF . Thus, in the two cases, C_{1} will be about 5 pF and 1.1 pF respectively. The input capacitance excluding C_{2}
will be C_{0} / α, or 3.3 pF and 1 pF , and so C_{2} must be C_{0} less this figure.
In practice, one cannot have C_{1} less than about 3 pF because of the minimum capacitance of the trimmer and other strays. This means that it may be necessary to increase C_{0} by adding capacitance to it. If C_{0} itself is increased, the probe capacitance will have to be increased also and so the input capacitance will also increase which is undesirable. An alternative is to shunt R_{2} by a fixed capacitor.
If C_{0} is 10 pF , and we connect 22 pF across R_{2} of a $10: 1$ section, the effective C_{0} is 32 pF and so C_{1} must be $32 / 9=3.55 \mathrm{pF}$, which is more reasonable. The input capacitance is then 3.2 pF , so C_{2} must be $10-3.2=6.8 \mathrm{pF}$ for the normal 10 pF input capacitance.

For a $3: 1$ section, C_{1} is 5 pF without added capacitance and C_{2} will be 6.7 pF .
Exact calculation is impracticable, because no capacitance is known accurately enough. What we do in practice is to set up the amplifier with the probe only and feed the probe with a square wave. We adjust the probe trimmer for the optimum waveform. If the minimum capacitance of the trimmer is too large, we add capacitance to C_{0}. This is unlikely because of the cable. If the maximum is too small, we add, perhaps, 10 pF , across the probe trimmer.

We now insert an attenuator and apply the square wave directly to its input, not via the probe. Now C_{1} of the attenuator is adjusted; if its minimum is too large we add a fixed capacitor across R_{2}, trying various values until we find one which will enable a definite optimum setting for C_{1} to be obtained. Having done this we apply the square wave to the attenuator through the probe and we now adjust C_{2} only. Again if the maximum capacitance of this trimmer is too small, we try various fixed capacitors in shunt, until we find one which enables a definite optimum setting for C_{2} to be obtained. This brings the input capacitance to the proper value to suit the probe and as this was previously adjusted to suit C_{0}, it brings the input capacitance to C_{0}.

The same procedure is adopted for the second attenuator. There are no further adjustments when the two sections are used in cascade. The correct response should automatically be obtained. In practice, it may not be. The main cause of any such
trouble is stray coupling between input and output. Stray capacitance between the input of one section and the output of the other has a serious effect and it need be only a fraction of 1 pF . Careful screening is essential.

It is possible to use a 3-pole 4 -way rotary switch to give the ranges of $0,3: 1,10: 1$, and 30:1. With a single wafer this is unsatisfactory because stray capacitance causes violent overshoots when both sections are in cascade. Separate wafers must be used with screening. It is considered preferable, however, to use separate d.p.d.t. switches and the arrangement is shown in Fig. 2. Two coupling capacitors C_{1} and C_{2} are included; the first is desirable to prevent any d.c. loading of the circuit under test, the second is needed to prevent operation of the switches from affecting the bias on the input stage of the amplifier. For a reasonable low-frequency response C_{1} can be $0.22 \mu \mathrm{~F}$ because it is in a $1 \mathrm{M} \Omega$ circuit, but C_{2} must be $2 \mu \mathrm{~F}$ since the resistance level is about $100 \mathrm{k} \Omega$. C_{1} must be 350 V rating to be safe for overloads, but C_{2} can be of quite a low-voltage rating. It is essential that these capacitors be completely screened to prevent hum pick-up.

The resistors needed have values of 90 , $66.6,50$ and $11.1 \mathrm{k} \Omega$. None is a preferred value. High-stability types of $\pm 1 \%$ tolerance should be used to give a $\pm 2 \%$ tolerance on the attenuation ratio. The required values can be obtained from combinations of preferred values; thus two $180 \mathrm{k} \Omega$ resistors in parallel give $90 \mathrm{k} \Omega$ (and in the probe two $1.8 \mathrm{M} \Omega$ give $900 \mathrm{k} \Omega$), two $100 \mathrm{k} \Omega$ give $50 \mathrm{k} \Omega$, and two $22 \mathrm{k} \Omega$ give $11 \mathrm{k} \Omega$. The value of $66.6 \mathrm{k} \Omega$ can be achieved by $120 \mathrm{k} \Omega$ in parallel with $150 \mathrm{k} \Omega$. Alternatively, the required values can often be picked out from a largish selection of resistors, but an accurate bridge is needed to do this.

Switching circuits

To effect the switching between one channel and the other, the transistors $T r_{9}$ in the two amplifiers require to be driven by square waves in opposite phase. These are best produced by a bistable driven by some form of pulse generator. The conventional bistable of Fig. 3 produces square waves of opposite phase at its two collectors, so these can be connected through limiting resistors to the bases of the two Tr_{9} transistors.

When one transistor in Fig. 3 is ON it is saturated and its collector is at about 0.2 V : the other is then OFF and passes no

Fig. 3. Basic bistable circuit.

Fig. 4. Bistable with steering diodes D_{1} and D_{2} added.
collector current, so that its collector is at

$$
V_{C C} \frac{R_{B}+R_{K}}{R_{B}+R_{K}+R_{C}}
$$

For a $12-\mathrm{V}$ supply a square-wave amplitude of about 10 V peak-to-peak is obtainable. Circuit values are far from critical.

To change the state of the bistable a negative trigger pulse is needed on the ON transistor. This is where most of the problems arise. It is necessary to incorporate steering diodes to ensure that a succession of trigger pulses are routed alternately to the two transistors, since each pulse must be fed only to an ON transistor. The arrangement is shown in Fig. 4 and the steering action depends largely upon the capacitors C_{1} and C_{2}.

Consider a stable state with $\operatorname{Tr}_{1} \mathrm{ON}$ and $T r_{2}$ OFF. If this has persisted for long enough, analysis is easy. The collector of

Fig. 2. Circuit of probe and attenuator sections.
$T r_{1}$ is at 0.2 V or thereabouts while the base is around 0.7 V ; Tr_{1} is saturated. (Incidentally, all figures quoted here are very rough ones; we say this to avoid having to say "about" everytime!). The diode D_{1} then has 0.5 V forward voltage across it and is near, if not actually in, conduction. The potential of the right-hand plate of C_{1} (on the diagram) is 0.2 V .

As its base is at earth and its collector at $10 \mathrm{~V} \mathrm{Tr}_{2}$ is non-conducting and D_{2} has 10 V reverse bias, and the right-hand plate of C_{2} is at 10 V . A negative trigger pulse of, say, 4 V amplitude is applied to the left-hand plates of both capacitors, and appears also on the right-hand plates. This drops the voltage across D_{2} from 10 V to 6 V , but the diode is still cut off and the voltage is not applied to the base of $T r_{2}$. If the source of pulses is of low impedance, D_{1} conducts and pulls the base of $T r_{1}$ negative by the pulse amplitude and so cuts off T_{1}. If the source is not of low impedance the pulse amplitude is reduced by the low input resistance of $T r_{1}$ while it is conducting.

Assuming that $T r_{1}$ is cut-off, its collector voltage rises and drives Tr_{2} into conduction. The action is cumulative around a closed positive feedback loop. The speed of transition is governed by the circuit resistances and stray capacitances. At the end, the initial conditions are reversed with $T r_{1}$ OFF and ${T r_{2}} \mathrm{ON}$. The charges on C_{1} and C_{2} are unaltered, however; C_{1} is still at 0.2 V with the collector of T_{1} at 10 V and C_{2} is at 10 V with the collector of Tr_{2} at 0.2 V .

The capacitors now charge and discharge through $R_{D 1}$ and $R_{D 2}$ until C_{1} is at 10 V and C_{2} is at 0.2 V . In each case there is 9.8 V acting and the time required for this change to occur is approximately $3 C R_{D}$. Common values are $C=0.001 \mu \mathrm{~F}$ and $R_{D}=22 \mathrm{k} \Omega$, so the time is $66 \mu \mathrm{~s}$.

If three signal cycles are to be displayed on each oscilloscope trace, the signal period for this condition is $22 \mu \mathrm{~s}$, so its frequency is 45 kHz .

It is not necessary that the interval between successive trigger pulses should be as long as $3 C R_{D}$. If it is shorter, the charging and discharging will be less complete and the difference between the voltages on the two capacitors will be smaller. Eventually the difference will be too small for the steering diodes to function properly and the bistable will refuse to change state. It is usually reasonable to work with a trigger pulse interval equal to the time constant, which is 22μ s for the foregoing values. This will enable three cycles of signals up to 135 kHz to be displayed.

In practice, it has proved difficult to generate a square wave having a shorter half-cycle period than $25 \mu \mathrm{~s}$, even with changes to the steering circuit time constant. This corresponds to a trigger pulse repetition frequency of 40 kHz and, if the circuit is triggered by the oscilloscope timebase, to the timebase frequency. At lower frequencies, triggering remains good without change of time constant. Thus, for a threecycle display, oscilloscope triggering can be used only for signal frequencies up to 120 kHz . For higher signal frequencies, either more cycles must be displayed or unsynchronized triggering employed, as
described in Part 1. The pulse generator for this is still limited to 40 kHz maximum.

To display three cycles of a 50 Hz signal, the timebase frequency must be 16.66 Hz . Flicker will inevitably occur. It will be prohibitive with dual traces because the repetition frequency of each will be only 8.33 Hz . This is covered by using an unsynchronized condition with a switching frequency much higher than the signal frequency. A good display will result with a ratio of about 100:1, which makes the lowest pulse generator frequency about 500 Hz . However, it is advisable to extend the range down to about 100 Hz for cases where it is impracticable to trigger the switch from the c.r.o. timebase.
The range of frequencies needed is thus $400: 1$, which can easily be achieved in three ranges.
Before we consider the pulse generator, however, there is one other matter to be dealt with. It is necessary to have a squarewave generator to adjust the trimmer capacitors of the probes and attenuators. It cannot easily be done without it. Rather a good waveform is needed. As the equipment needs a square-wave generator for switching, the obvious thing to do is to arrange for it to be usable also for the attenuator adjustments. This means that the square wave must be freer from minor blemishes than is necessary for switching and there must be outputs at the proper voltage levels.
The positive half-cycles are usually somewhat marred by the charging currents of the steering capacitors. The simplest remedy is to add a pair of clamping diodes, as shown by D_{3} and D_{4} in Fig. 5. These are returned to a voltage lower than $V_{C C}$ which is stabilized by the zener diode D_{5}. As long as a collector voltage is below V_{Z} the associated diode plays no part, but when it rises to about V_{z}, the diode conducts and clamps the collector voltage to V_{Z}. There is then a low impedance path for charging currents. In addition, the square-wave amplitude is now closely defined by V_{Z} and is independent of $V_{c c}$. This makes it easier to prevent any dangerous condition occurring on Tr $_{9}$.
The second requirement of various output levels is easily met by dividing R_{C} of one transistor into several resistors in series, at the junction of which the various outputs will appear. With a 4.7 V zener diode, the square-wave amplitude will be nominally 4.5 V , plus the clamping diode drop, which is around 0.6 V , or 5.1 V total.

With only the probe in use an amplitude of around 0.45 V is about right. With the input to the amplifier itself and the $10: 1$ attenuator in use, the same amplitude is needed. With the $3: 1$ attenuator only 0.135 V is required. Using the probe and the 3:1 attenuator, we want 1.35 V , and with the $10: 1$ attenuator, 4.5 V . When the probe and both attenuators are in circuit, and we apply 4.5 V we shall get only 0.15 V on the oscilloscope. There are no adjustments on this range, and although the amplitude is rather small, it is sufficient to check that nothing serious is wrong.
The voltage ratios required are $1: 1$, $3.33: 1,10: 1$ and $33.3: 1$, so the resistance

Fig. 5. Bistable elaborated to include clamping diodes D_{3} and D_{4}

Fig. 6. Sawtooth generator with unijunction transistor.

Fig. 7. Emitter follower to isolate the sawtooth generator from the bistable.
ratios needed are $0,2.33: 1,9: 1$ and 32.3:1. We cannot hope to get these exactly and it is not necessary, for any voltage will do as long as it is roughly right. A string of resistors $68 \Omega, 180 \Omega, 680 \Omega$ and $1.2 \mathrm{k} \Omega$ totals $2.128 \mathrm{k} \Omega$ and is reasonably matched by $2.2 \mathrm{k} \Omega$ for the other transistor. This gives $5.1 \mathrm{~V}, 2.12 \mathrm{~V}, 0.569 \mathrm{~V}$ and 0.155 V with a tolerance of $\pm 10 \%$ using 5% resistors and an extra $\pm 5 \%$ for the zener tolerance. Experimentally, we obtained $5.2 \mathrm{~V}, 2.5 \mathrm{~V}$, 0.66 V and 0.18 V in a particular case. Experimentally, with a basic capacitance of 150 pF plus strays, and a total resistance of 22 to $250 \mathrm{k} \Omega$ the square-wave frequency (to one-half of the sawtooth frequency) was $7.95-71.5 \mathrm{kHz}$. Adding $0.001 \mu \mathrm{~F}$ gave 920 Hz to 9 kHz , and adding $0.01 \mu \mathrm{~F}$ gave $120-$ 1430 Hz .

Turning now to the pulse generator, the simplest is a unijunction and the circuit is shown in Fig. 6. Three capacitors and a selector switch provide the three frequency ranges and the variable resistor enables the frequency to be set at any required value. A switch in the supply line enables the generator to be disabled when triggering by the oscilloscope timebase is required.
A positive-going sawtooth appears across the capitance, a positive pulse across the 22Ω resistor and a negative pulse across the 100Ω. Neither pulse unfortunately is suitable for triggering the bistable. It triggers best from the negative-going flyback of the sawtooth. If an attempt is made to trigger directly, by connecting C_{1} and C_{2} of Fig. 5 to the capacitor of Fig. 6, trouble can arise. The charging currents of C_{1} and C_{2} affect the charging current in Fig. 6 and differently on successive cycles. Successive sawteeth have different amplitudes and durations, and the final square wave no longer has a 1:1 mark-space ratio. A buffer stage is, therefore, needed to separate the two. This must have a high input impedance ($>1 \mathrm{M} \Omega$) and a low output impedance.

For operation from the oscilloscope timebase a sawtooth output is needed and this can be either positive or negative going. With the Marconi Instruments model which we used it is about 8 V negativegoing. Thus, phase reversal is needed.

We found experimentally that a TIS 43 p-n unijunction produced a sawtooth of 6.2 V amplitude, the peak being 7.5 V above earth. Thus the capacitance is discharged to 0.7 V . An emitter follower with a load of $10 \mathrm{k} \Omega$ should give an input resistance of over $1 \mathrm{M} \Omega$. A p-n-p transistor is better than an $n-p-n$ here because it is the negativegoing edge of the sawtooth which we want for triggering. The $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistor can turn on plenty of current to supply a capacitive load, or more likely, the low impedance of the ON transistor being triggered. An n-p-n transistor on a negative-going edge is likely to cut-off in this condition. All that we need as a buffer between the circuits of Figs 5 and 6 is the simple arrangement of Fig. 7. This takes a mean current of 0.35 mA .

The requirements for triggering the bistable from the timebase of the oscilloscope are rather different and will depend upon the particular instrument used. If a positivegoing sawtooth is available or can be readily obtained, it can be reduced to 6 V amplitude by a potential divider. In most cases it can then be fed directly to C_{1} and C_{2} of Fig. 5.

If the only sawtooth available is negativegoing, as in the case of the Marconi Instruments oscilloscope which we used, a phase reversal is needed. The sawtooth is of 8 V amplitude and comes at low impedance from a cathode follower.
It is tempting to use the circuit of Fig. 7 with a collector resistor, both inputs and outputs being switched. This will not work, however, for the stage would then have to give a total output of 12 V and would require a supply of at least 14 V , whereas we may have only 10.5 V , and less if decoupling is needed. Further, the bias condition would have to be changed. The switching would get involved and it is

Fig. 8. Phase reverser for use with negative-going sawtooth.

Fig. 9. Practical phase reverser.
simpler and cheaper to use a separate transistor.

The sawtooth, since it is taken from the oscilloscope, is likely to be a good one and so its mean value will be nearly one-half of its peak-to-peak amplitude. Mid-point biasing of the transistor will be needed with a capacitance input coupling.

For phase-reversal an earthed-emitter stage is needed and the obvious thing to do is to use the simple arrangement of Fig. 8. However, it does not work! The d.c. conditions in the presence of a signal are very different from the truly static ones. There is a d.c. restoration effect at the base which causes this.

As will be seen next month, a protective diode is needed across R_{2} with its anode earthed and it turns out that the simplest arrangement is the one shown in Fig. 9. Here C is the coupling capacitor and R is chosen to suit the particular oscilloscope used; D is the protective diode to guard against excessive negative inputs. This diode and the base-emitter path of the transistor form two diodes back-to-back. Unless the input is very small, they conduct alternately and their d.c. restoring tendencies act in opposition and tend to cancel. The circuit acts as a crude slicer and an output from the transistor is obtained whenever it conducts. In spite of its simplicity, the circuit works admirably.

The unijunction sawtooth generator with its emitter follower, and this phase reverser for c.r.o. triggering, are shown together in Fig. 10 with the necessary switching.

Correction

In Part 2, September p. 423, middle column, the numerator of the fraction in the expression for $R_{\text {in }}$ should be $R_{L}+R_{C} /(1+y)$.

Fig. 10. Sawtooth generator, emitter follower and phase-reverser for c.r.o. sync showing switching.

H.F. PredictionsNovember

Despite decreasing solar activity the MUF for South America exceeds 30 MHz for several hours so the 26 MHz broadcast and 28 MHz amateur bands should be open between 08.00 and 14.00 G.M.T. throughout the month. These two frequency bands will also be available to South America but not quite so consistently and to North America for very short periods only, if at all.

Prospects for the Far East are not good. The high rate of MUF change during 06.00 to 18.00 G.M.T. indicates that several working frequencies are required for a continuous commercial service. A steady MUF for the remaining period is offset by LUF exceeding FOT which means poor signal-to-noise or fade out.

A CLEAR CASE

TYPICAL PRICE: KM $106(106 \mathrm{~mm} \times 83 \mathrm{~mm})-1 \mathrm{~mA} .100$ off at $\mathbf{~} 2.51$ each.

Anders means meters

Without a shadow of a doubt this latest range of Anders Meters will satisfy every equipment manufacturers' need for good quality meters at extremely competitive prices.
The KM Series (illustrated above) comes in 8 case sizes, rectangular and square flush, with clear front shadowless dials and scale lengths from $0.75^{\prime \prime}-6 \cdot 00^{\prime \prime}$.
(a) KL 180° scale meters, in 3 case sizes, with scale lengths from $4 \cdot 00^{\prime \prime}-6 \cdot 00^{\prime \prime}$.
(b) Profile Series of edgewise meters are encased in clear plastic and available in 5 case sizes.
(c) CS 240° scale meters have black bakelite cases, in 2 sizes with $4 \cdot 00^{\prime \prime}$ and $5 \cdot 50^{\prime \prime}$ scale lengths.
There is ex stock availability on most of the above types in standard ranges, with fast prototype service. These models are only part of our very large and comprehensive range of instruments. We hold the largest stocks of meters in the United Kingdom. Catalogues and price information on request.

ANDERS ELECTROMILS LIMITED

48/56 Bayham Place, Bayham Street, London, N.W. 1. Telephone 01-3879092
Manufacturers and distributors of Electrical Measuring Instruments and Electronic Equipment. Sole U.K. distributors of FRAHM Resonant Reed Frequency Meters and Tachometers.

I-BEAM PROFESSIONAL AERIALS

for Telecommunications

The new J BEAM Colinear Aerial range incorporates in-built "phase inverters" (patent appli. 56417/70) consisting of a series of printed circuits sealed and shrouded in glass-fibre laminate which enables 25% reduction in the physical size of the aerials to be achieved; Provides omni-directional coverage with gain of 6 dB or $10 \mathrm{~dB} U H F$ and 3 dB or 6 dB VHF

Write or telephone today for our 56 page, fully illustrated catalogue, complete with data specifications on aerials for \star missile \& satellite tracking \star ship to ship \star ground to air \star telemetry power systems etc \star mobile radio \star ship to shore.

EMGINEERING LTO

Receiving Weather Satellite Pictures

2: A more complex station which provides better quality pictures

by J. M. Osborne*

Last month I described a very simple system for receiving weather satellite pictures and now I would like to describe the more complex arrangement which we use at Westminster School. I am not suggesting that readers should try to copy this because it would probably prove impossible to obtain many of the surplus components we employed in the construction. However my object is to provide a little food for thought and show the sort of steps which are necessary if last month's simple system is to be improved.

As mentioned last month a picture taken by a satellite is broadcast at four lines per second in the 137 MHz band; each picture taking around three minutes to send. Successive pictures overlap geographically and one can receive, in U.K., three pictures covering North Africa to Iceland in a single satellite transit. The carrier from the satellite's transmitter is frequency modulated with a 2.4 kHz sub-carrier which is in turn amplitude modulated with the picture information as shown in Fig. 15 (a). There is no line synchronizing signal so that the user has to provide his own sync pulses at 4 Hz . Each picture is preceded by a train of pulses (see Fig. 15 (b)). The gaps in the sub-carrier correspond to the start of a
*Westminster School, London.

(a)

(b)

Fig. 15. (a) Sub-carrier envelope for one line of picture information. (b) Sync pulse train preceding the picture. The gaps are at 4 Hz .
line of picture information and are used to initiate pulses at 4 Hz generated by the circuit given in Fig. 11 last month.

A block diagram of the complete ground station we use is shown in Fig. 16. The 2.4 kHz audio sub-carrier emerges from the receiver and, after demodulation, is used
to control the spot brightness of a c.r.t. The spot is made to scan in a normal TV type raster by two timebases; the line running at 4 Hz and the frame sweeping once in 200 seconds for an 800 line picture. The raster is photographed by setting up a camera in front of the c.r.t. as described last month.

A stereo tape recorder can record from points A and B and subsequently play back into the circuit at the same points. This enables the picture making process to be separated from the reception of the satellite's signal and is a great help in the building and testing stages.

Signal chain

The aerial is a crossed Yagi made by J-Beam Ltd, of Northampton. It is type $2 / 10 X Y$ cut for 137 MHz . The mounting is very crude but has operated without trouble for over two years. A short mast was fixed to railings on the roof but the clamps left a little slack. A short rod was clamped to the mast horizontally, acting as a handle to rotate the mast about a vertical axis. Another short rod was clamped but not tightened horizontally near the top of the mast about ten feet above the ground. The Yagi was tightly clamped to one end of this rod at right

Fig. 16. Westminster School's satellite station.
angles to it. Another short rod was tightly clamped to the other end, also at right angles parallel to the Yagi boom. This rod is the handle for setting the elevation of the aerial. Greasing proved a mistake as the wind tended to take over the steering. All the parts are standard TV aerial components supplied by J-Beam.

The aerial feed goes via two f.e.t. v.h.f. pre-amplifiers to the frequency converter. The pre-amplifiers are useful but are by no means essential because of the high signal strength of present satellites. The frequency converter is a standard 2 m amateur band type made by Solid State Modules of Huddersfield and aligned by them for 137 MHz . This gives, with an internal crystal oscillator, a first i.f. of 21 MHz which is connected by a coaxial cable to the aerial terminal of an Eddystone EC 10 communication receiver tuned to the 21 MHz band. For example a satellite on 137.5 MHz appears at 21.5 MHz on the receiver's dial and satellites transmitting at 137.62 MHz appear at 21.62 MHz on the dial. The EC 10 is an a.m. receiver so the 465 kHz i.f. output from the frequency changer is connected via a screened lead and a small capacitor to an external i.f. amplifier with a frequency discriminator. The i.f. amplifier we used came from a Pye Cambridge mobile receiver. Its bandwidth was rather below the required 50 kHz but in practice it gave adequate results. The audio output of the external i.f. amplifier's discriminator was fed back to the a.f. stages of the EC 10 . A50-0-50 $\mu \mathrm{A}$ meter in series with a $30 \mathrm{k} \Omega$ resistor was connected to the discriminator to serve as an f.m.

Fig. 17. Circuitry around the c.r.t.
tuning meter. The internal i.f. of the EC 10 remains live but the diode detector is disconnected from the a.f. amplifier and drives a signal strength meter instead. This is a large scale $100 \mu \mathrm{~A}$ meter in series with a $20 \mathrm{k} \Omega$ resistor on a long extension lead so that it can be placed in sight of the aerial operator as a tracking aid. The audio output of the f.m. discriminator does not indicate signal strength and it is, of course, just this property which makes it possible to obtain consistent pictures over a wide range of signal strengths.

Tape recording pictures

If one wishes to record the pictures a highquality stereo tape recorder is worthwhile. The Brenell STB2 we employ gives good results. Tape deteriorates noticeably after several runs and only new high grade tape
can be relied on for perfect results. However, any tape in any tape recorder will give results adequate for testing the rest of the apparatus, provided imperfections of the tape and recorder are recognized for what they are. The 1 kHz timing signal from point B Fig. 16 is recorded on one track while at the same time the picture is recorded on the other track from point A. Thus synchronizing is affected by tape speed changes, wow or flutter. It is possible to add an extra record/playback head to some mono tape recorders (four track recorders may have the wiring to one head available for external use). The 1 kHz can be recorded without bias and retrieved without other modification to the recorder.

The circuit of the crystal sync pulse divider unit was given last month. The only modification required for using a tape recorder is shown in Fig. 16.

The 1 kHz square wave now goes through an $L C$ filter tuned to 1 kHz to provide a sine wave for the recorder. The filter is not essential but cleans up the input to the tape by removing harmonics from the square wave. On play-back the same filter provides a good clean signal with no noise to produce false triggering. The filter 'rings' at its 1 kHz resonant frequency, attenuating all other frequencies. Tape recordings are made, and played back into points A and B.

Cathode-ray tube

In order to resolve an 800 line picture, the c.r.t. spot size must not be more than one thousandth of the tube diameter. Suitable

Fig. 18. Line timebase and waveforms.

Fig. 19. Vertical timebase.

tubes with electrostatic deflection do not appear to be available but TV type tubes obviously meet the required specification. We obtained an obsolete Pye monitor type 2780 which contained an excellent tube. The monitor cabinet was a convenient housing for the tube but none of the original electronics except the scan coils proved of any value. Fig. 17 gives the circuitry associated with the c.r.t.

Line timebase

The scan coils in the monitor had a resistance of about 10Ω and it was found that i.c. audio amplifiers, capable of driving a loudspeaker direct, were ideal for driving the scan coils. The final version of the line timebase is shown in Fig. 18. The SN724N is wired as a monostable with a period of about 0.24 s as determined by R_{3}. The diode connected across R_{3} greatly speeds the recovery time, enabling the monostable to operate every 0.25 s . A negative going edge, from the 4 Hz sync generator circuit described last month. applied to the base of $T r_{6}$ drives the monostable to negative saturation. Transistors Tr_{7} and Tr_{8} are switched off: $T r_{7}$ allows the picture signal to reach the tube and Tr_{8} starts the integrator formed by the SL403A. At the end of the
integrator's timing period the monostable goes back to positive saturation, switching on Tr, thereby blanking the c.r.t. spot and resetting the integrator by switching on $T r_{8}$.

It is now fairly obvious how the sweep operates. The current through the deflector coil is determined by the voltage between the output of the SL403A and the midpoint of the batteries. The output voltage, when Tr_{8} is on, is set by the potentiometer R_{8}. When a sync pulse arrives Tr_{8} switches off and C_{4} starts to charge through R_{4} at a rate determined by potentiometer R_{5}. As the input remains at 'virtual earth' the output voltage goes down causing the spot to sweep the tube. Assuming that the sweep speed has been set correctly the spot reaches the end of the sweep just as the monostable period ends and flyback occurs.

Vertical time base

The vertical timebase uses the same integrator circuit (Fig. 19) as the horizontal timebase, except that $T r_{8}$ is replaced by a switch as only one sweep per picture is needed. The sweep speed is variable over a wide range and can easily be set to 200 s but high quality components are needed to give reliable and consistent performance. This applies
particularly to $C_{5} . R_{12}$ and the switch.
In the simple vertical timebase circuit described last month the capacitor was shown in Fig. 5 as being $1 \mu \mathrm{~F}$ and in Fig. 12 as 1 mF . Fig. 12 is correct, e.g. one millifarad or $1,000 \mu \mathrm{~F}$.

Demodulator and monitor

The 2.4 kHz signal from either the receiver or tape recorder drives the monitor speaker and the primary of a step-up transformer (Fig. 20). The ratio is about $1: 5$ and the secondary is tuned by a capacitor to resonate at 2.4 kHz giving a useful improvement in the signal-to noise ratio. The secondary is centre tapped to allow full wave rectification of the sub-carrier. The polarity of the modulation can be switched so that either a positive or negative picture can be taken. Thus the film in the camera can give either a negative for normal printing or a positive for a slide projector. The demodulated a.f. picture signal is fed to a potentiometer which adjusts the contrast. The zener diodes act as limiters and stop interference spikes from reaching the c.r.t. The full demodulated output is taken to a separate terminal for the picture sync.

Power supplies

The supplies for all units except the c.r.t. come from batteries which means that each unit is self contained and is free from mains earth with the batteries inside the box. This eliminates problems due to hum and coupling of units through common supplies is avoided. In view of the light intermittent load, the cost is probably less than mains power supplies even over a period of years. Nife cells for the time bases can be left on trickle charge though even these can be replaced with Ever Ready Lattern Cells type 996.

60 Years Ago

November 1911. Perhaps the most exciting story in this issue of the Marconigraph came under the heading 'Experiences of the first Marconi airship officer'. Jack Irwin was the wireless operator in question and he described the part wireless played in the unsuccessful attempt of the airship America to reach Europe. It appears that after being blown far off course and after sustaining damage a ship was sighted. Irwin says "I immediately called C.Q.D. and S.O.S., but received no response. So, seizing an electric torch, I commenced calling in Morse fashion. After some little delay I was answered by the steamer. I conveyed to them by lamp the fact that we were equipped with wireless, and in a few minutes the most welcome signals I ever heard came hammering in my 'phones".

The America was brought down in the sea and the crew were taken off by the steamer, which was the Royal Mail S.S. Trent.

Electronic Building Bricks

17. Alternating current and voltage

by James Franklin

Most people are familiar with the term 'a.c.' in reference to the electricity mains, but even those who know that it means 'alternating current' may not be quite sure of what is alternating. It is, in fact, the direction of the electron flow (current) in a circuit. The electrons flow first in one direction round the circuit, then in the opposite direction, then in the first direction again . . . and so on, rather like the balance-wheel of a clock.

Figs. 1 and 2 use the electronic circuit ideas introduced in Part 5 to demonstrate the nature of alternating current. In Fig. 1 (a) the e.m.f. source drives electrons round the circuit in the direction shown by the arrow. The value of the current is determined by the resistor R (see Part 7). A time-graph of this uni-directional current (switched) is shown at (b).

In Fig. 2 (a) we have the same circuit, but the e.m.f. source has been taken out and put back with the + and - terminals in the reverse positions. When the switch is closed the current direction is now reversed. The value of the unidirectional current, however, is still determined by R and is the same as in Fig. 1.

(a)

Fig. 1. Uni-directional current in circuit (a) when the switch is closed and opened is plotted in (b). The meter is a centrezero type.

(a)

Fig. 2. Same circuit as in Fig. 1 but with the e.m.f.-source connections reversed so electron flow direction is reversed.

Fig. 3. Use of a change-over switch in circuit enables us to combine two uni-directional currents into an alternating current.

Fig. 4. Graph of alternating current of voltage having a sinusoidal waveform.

In the graphs we use in electronics there is a convention that electrical variables of opposite direction are plotted on opposite sides of a central zero on the vertical axis - analogous to degrees of latitude north or south of the equator. Which current direction we show as 'going up' from zero and which 'going down' doesn't really matter as long as we make the situation clear by labelling the vertical axis of the graph. So, since the current direction in Fig. 2 (a) is opposite to that in Fig. 1 (a) we plot the current in the Fig. 2 (a) circuit as in Fig. 2 (b).

If now we repeatedly reverse the \pm position of the e.m.f. source-which we could do conveniently by removing the ordinary switch and putting in a changeover switch - we would repeatedly reverse the direction of the current in the circuit. Following the convention, the resulting graph of current would be as in Fig. 3. Note that at each change-over of the switch the current flowing in one direction falls to zero (switch going 'off') and immediately rises to the maximum value in the opposite direction (switch going 'on'). The resulting time graph, or waveform, is a representation of an alternating current.

The waveform of the alternating current graph is obviously determined by the instants we choose to operate the change-over switch, and in Fig. 3 it can be seen that we have chosen to operate the switch not randomly but in a strictly regular fashion. As a result this waveform is a constant repetition of a fixed cycle of current values and directions. It is, in fact, an oscillation (see Part 10). As such it could be generated by an electronic square-wave generator instead of the manually operated switch used for Fig. 3.

Thus a periodic alternating current is an oscillation. It can have any waveform (e.g. square, triangular) but the most widely used shape is the sine wave, described in Part 10. This is the waveform that is produced by power-station generators for the electricity mains and by electronic oscillators for the various uses described in Part 13. As a reminder, the sine-wave oscillation shown in Part 10 is repeated here in Fig. 4 as an alternating current.

What about the e.m.f., or voltage, that causes the current to flow? An alternating current in a circuit is created by an e.m.f. varying in a corresponding way and alternating on the principle of the $\pm \mp$ change-over switching used for Fig. $\overline{3}$. In the generator or oscillator, this repetitive change of polarity, as it is called, occurs automatically. When plotting a graph of sinusoidal (or other waveform) alternating voltage we adopt the convention shown on the right hand vertical axis of Fig. 4. The upward direction is for values of positive

- $\quad(+)$ electrical potential (as given by the + terminal of a battery if the - terminal is considered as zero potential); and the downward direction is for values of negative $(-$) potential (as given by the terminal of the battery if the + terminal is considered as zero potential).

Wien Oscillators

Properties of RC oscillators using Wien and related networks

by P. Williams*

This article discusses the properties required of both active and passive sections of a range of $R C$ oscillators. The passive networks include that due to Wien and other networks using the same $C R$ values to give the same frequency for which the phase-shift is zero. Minimum realizations of suitable controlled sources are indicated and a series of practical circuits described. These include well-known circuits together with some new variants. Some have the advantage of low component count and the possibility of operation at low voltages and currents. Two other approaches to the design of $R C$ oscillators-negative-impedance convertors and balancedbridged circuits - are shown to be alternative descriptions for many known circuits, and a series of variants is described, together with their practical advantages. The nullor representation is, as with active circuit theory, a useful concept in helping to unify the three approaches.

Oscillators based on $R C$ networks have been variously designed in terms of controlled sources, ${ }^{1}$ impedance convertors ${ }^{2}$ and balanced bridge circuits. ${ }^{3,4}$ Of these $R C$ networks, that due to Wien ${ }^{5}$ is the most usual at low frequencies, and it is considered together with related networks using identical components and giving the same frequency of zero phase shift. The properties required of the associated controlled sources are discussed and transistor realizations outlined.
The basic forms of the Wien-bridge oscillator are considered and related to controlled source oscillators having external negative feedback networks. Oscillătors can also be realized by the application of a negative impedance converter (n.i.c.) to the arms of the Wien network. Such a use of some known n.i.cs is described, and the resulting oscillators are also shown in bridge form. The discussion is limited for simplicity to the case of two equal capacitors and two equal resistors (with one noted exception).
*Paisley College of Technology

Fig. 1. In the Wien network there is a single frequency for which phase shift is zero, at which voltage transfer function attains its maximum value of $1 / 3$. (Equal resistances and equal capacitances are assumed throughout this article unless shown otherwise.)

Wien's network

The basis of most sinusoidal oscillators designed for the 1 Hz to 1 MHz frequency range is Wien's network-Fig. 1. In its simplest form it uses pairs of identical resistors and capacitors as this allows continuous tuning over wide frequency ranges. There is a single frequency for which the phase shift between input and output is zero, and at that frequency the voltage transfer function (T_{v}) attains its maximum magnitude of one third.

The network input and output can be interchanged, when the new current transfer function $\left(T_{i}\right)$ is identical with the previous value of T_{v}

$$
\begin{aligned}
\text { forward } T_{v}^{-1}= & \frac{v_{i}}{v_{o}}=1+Z_{1} Y_{2} \\
\text { reverse } T_{i}^{-1} & =\frac{i_{i}}{i_{o}}=1+Z_{1} Y_{2} \\
1+Z_{1} Y_{2} & =3+j\left[\omega C R-(\omega C R)^{-1}\right]
\end{aligned}
$$

The circuit configurations for these wellknown oscillators are indicated in Fig. 2.

There are several related networks of the same resistors and capacitors with transfer functions which peak at the identical frequency of zero phase shift if properly terminated. These are shown in Fig. 3 and the defined transfer functions are indicated for the two directions and identified separately. Thus the first network will be given as I or II according to the direction of signal flow. The basic properties of the networks are summarized in Fig. 3.

Controlled-source oscillators

A series of oscillators can be constructed by combining each network with the appropriate controlled source. Networks I, III and V require an ideal voltage amplifier, or, adopting the nomenclature of Mitra, ${ }^{7}$ a voltage-to-voltage transducer (v.v.t). The required voltage gain is then +3 . Similarly

Fig. 2. Oscillators can use either a voltage amplifier with high input and low output resistances or a current amplifier with low. input and high output resistances.

Fig. 3. Networks related to Wien's network and having the same frequency of zero phase-shift for equal component values.
networks II, IV and VI require a current-tocurrent transducer (c.c.t.) of current gain +3 . The basic oscillator circuits for III and IV are shown in Fig. 4. Similar circuits can be drawn for each of the other networks.

Realizations of the amplifiers used in the above network should ideally meet the constraints (a) that the output is in phase with the input, (b) that the transfer function is the inverse of that of the network at the frequency of zero phase shift, and (c) that the input and output impedances should be separately zero or infinite as required by the network. This last condition is equivalent to the requirement that for a defined value of T_{v}, T_{i}, T_{z} or T_{y} that the value of the corresponding T_{i}, T_{v}, T_{y} or T_{z} should be infinite. None of the available active devices can meet the last condition, but used in the inverting mode (common cathode, emitter or source) the errors due to finite transfer functions can be small.
In the other modes though the phase relationship is correct, either the current gain or the voltage gain is less than, or equal to, unity. Thus a minimum of two active devices must be used and Fig. 5 shows the five combinations of two identical transistors that meet the first constraint. Only the first three of these can approximate to satisfying the third constraint. Combining each of these three with each of the ten $C R$ networks above would generate 30 oscillator circuits, but there is considerable mismatch with some combinations. For example network VII requiring current drive and open-circuit load would match ill with amplifier C the input and output impedances of which are both low. The resulting oscillator, which for brevity will be referred to as VIIC, would have a frequency of oscillation markedly different from the natural frequency of the properly terminated network

When an optimum combination of network and amplifier has been chosen it is likely that the available gain will be greatly in excess of that needed just to sustain oscillation. The loop gain can be reduced simply by attenuation of the signal at some point in the loop. or a resistive network can be introduced which simultaneously modifies the effective impedances presented by the amplifier to the network. This minimizes loading errors and leads in some cases to

(a)

(b)

Fig. 4. Series of oscillators can be made using each of the networks of Fig. 3 with the appropriate controlled source. Basic circuits for lypes III and IV are shown. See Fig. 5 for amplifier configurations.
oscillators which are more usually considered as bridge oscillators. The following series of circuits indicate some of the combinations that can be used.

In each case an attempt has been made to minimize component count to expose the essential elements of the oscillator. To this end advantage has been taken of the ability of bipolar transistor to operate with collector forward-biased with respect to base by
a few hundred millivolts on the peaks of the output waveforms. Naturally these circuits would benefit from additional bias networks for larger outputs at lower distortion, but some of the suggested circuits have the advantage of very low power consumption. Simpler circuits may result if the power supply is a constant-current rather than a constant-voltage type.

The circuits shown in Figs 6(a) and 7(a)

Fig. 5. Of the five combinations of two identical transistors that produce non-inverting amplifiers, only the first three have appropriate input and output impedances. Combining these with the CR networks would provide 30 oscillator circuits-though there would be mismatches in some, affecting frequency of oscillation.

Fig. 6. To get loop gain just in excess of that needed to sustain oscillation, a resistive attenuator is included-a type IA circuit is shown (a)—which at the same time reduces loading errors (b). Network I can be replaced with III or IV of Fig. 3.

(b)

Fig. 7. Type IIA circuit (a), with practical version (b) including resistive attemuator to reduce loading errors. Network II can be replaced with IV or VI of Fig. 3. These simple circuits may need more elaborate bias networks for large outputs but have very low power consumption.
are the usual forms of voltage- ${ }^{8}$ and current-fed ${ }^{9}$ Wien networks and can be classified as types IA and IIA respectively. Biasing methods are indicated in Figs 6(b) and 7(b). In each case R_{1} and R_{2} define the transfer function of the amplifier while minimizing the loading effects on the network. Network I may be replaced by III or V, and network II by IV or VI. The input and output impedances differ but, provided loading effects have been minimized, the behaviour is comparable. The Wien network together with these resistors also constitute an almost-balanced bridge at the frequency of oscillation and such circuits have been regularly described in the literature. ${ }^{4,10}$ Other variants on the bridge oscillator are given in the following section.

Variants of normal Wien oscillators

Amplifier B of Fig. 5 has high input and output impedances and of the three it is the nearest approximation to a voltage-tocurrent transducer (v.c.t.). As such it matches best to networks VII and VIII. For simplicity only network VIII is shown in the following circuits. That of Fig. 8 uses a longtailed pair with $T r_{2}$ tapped onto the resistor of the $C R$ network. This is the simplest way of limiting the amplitude of oscillation, but the finite input impedance of $T r_{2}$ does load the network. If the loop gain is high enough, the base is loading only a small part of R, with reduced effect on the frequency of oscillation.
Clearly a better method is to use negative feedback in the emitters of $T r_{1}$ and $T r_{2}$ raising the input and output impedances of the amplifier and allowing it to approach more closely to the ideal v.c.t. A complementary form of the circuit is shown in Fig. 9(a). Direct coupling of the emitters of a pair of complementary bipolar transistors makes for a simple circuit requiring only a single-ended power supply. The effective source impedance of the supply should approach zero at the frequency of oscillation, but biasing would be both critical and strongly temperature-sensitive if a direct voltage source were used. A direct-current source adequately bypassed solves this problem as indicated in Fig. 9(b), though such a source can be provided by a limiting resistor to a direct voltage source.
Other forms of type B oscillators can be designed to take advantage of the characteristics of f.e.ts. The loading effects of the gate circuits will be negligible, and direct voltage supplies are suitable. Two complementary circuits are shown in Figs 10(a) and 10(b). The required supply voltage clearly depends on the pinch-off voltages of the transistors.

These f.e.t. circuits share a problem not encountered with the bipolar versions. The transconductance $\left(g_{m}\right)$ is much lower than for bipolar transistors operated at comparable currents, e.g. $\sim 1 \mathrm{~mA} / \mathrm{V}$ as compared with $\sim 40 \mathrm{~mA} / \mathrm{V}$ at currents in the region of 1 mA . Thus unless the effective load presented by the network is high enough, the circuit will not oscillate. As indicated in the Appendix, the solution is to operate the f.e.ts close to pinch-off. To a first-order approximation the maximum possible p.d.
across the drain resistor of Tr_{1} is constant, but as the device approaches pinch-off g_{m} falls more slowly than does the drain current I_{d}. As the loop gain depends on the product $g_{m} R$ and R may vary inversely with I_{d} the loop gain continues to rise as the current falls. The value of R may become

Fig. 8. Amplifier B of Fig. 5 approximates a voltage-to-current transducer because of its high input and output impedances and best matches networks VII and VIII. This circuitusing VIII-uses a long-tailed pair with one R tapped to give amplitude limiting while reducing the loading effect of Tr_{2} base.
impractically high with some f.e.ts but the limitation can be removed by the addition of separate bias networks. Mixed circuits using one bipolar transistor and one f.e.t. can also be used as in Fig. 10(c).
The networks most suited to amplifier \mathbf{C} are IX'and X . These ideally require zero

Fig. 9. This complementary form of Fig. 8 circuit uses negative feedback in the emitters to raise input and output impedances. A bypassed current source (b) avoids the problem of critical and temperature-sensitive bias with direct voltage source.

Fig. 10. The two complementary f.e.t. circuits (a) and (b) feature negligible loading by the gate circuit and allow direct voltage supplies. Low g_{m} of the f.e.ts-which may prevent oscillation-is avoided by using one bipolar transistor (c).

Fig. II. Amplifier C of Fig. 5 best approximates to a voltage-to-current transducer with zero source and load impedances and is best suited to networks $I X$ and X. Circuit (a) showing network X-has variable loop gain and needs a dual supply. Complementary version (b) uses a single-ended constant-current supply, unbypassed. (With transistors replaced by nullors the oscillatory condition is $R^{\prime}=3 R$.)

Fig. 12. Oscillator (a)-a modified version of Fig. $6(b)$-is produced with network I and amplifier C but feedback increases input impedance and makes it similar to type IA. Loading of the network is reduced by reducing current in Tr_{2}, requiring an f.e.t. for the second stage.

Fig. 13. This version of the Fig. 12(a) circuit-produced from Fig. 12(a) by transposing bridge elements-indicates that bridge drive and output points can be interchanged. In this version either the two capacitors or the two resistors in the bridge have a common point.
source and load impedances and amplifier C approximates to a current-to-voltage transducer (c.v.t.). Two practical versions are shown in Fig. 11 (a) and (b). The first has two identical transistors separately biased with network X (or IX) coupled between the emitters. The loop gain is varied by a resistor in the collector of Tr_{1}. The complementary version in Fig. 11(b) is particularly simple in that beyond the active devices and the Wien network it uses but a single additional resistor-again to bring the circuit just into the oscillatory condition. In this case the constant-current supply should not be bypassed as the signal is transmitted through the network via the emitters. Similar realizations of type IXC are possible and the introduction of f.e.ts allows some variety in the choice of supplies.

Bridge oscillators

Some self-biasing bridge oscillators can be produced by a simple modification to the circuit of Fig. 6(b). The combination of

Fig. 14. Wien-bridge oscillators using nullor representations - the combination of nullator and norator and equivalent to any controlled source of infinite gain. Circuits (a) and (b) have nullator and norator transposed, with (a) equivalent to Figs 6 and 12 and (b) equivalent to Figs 7 and 13.
network I with amplifier C seems less than ideal as the amplifier approximates to a c.v.t., i.e. with low input impedance. The loading effect of this input impedance on the network can be mitigated by the series application of negative feedback. The resulting circuit is shown in Fig. 12(a) and is unusual in that the feedback is to the base of $T r_{1}$. Ideally the emitter current of $T r_{1}$ should be vanishingly small, which places a similar constraint on the base current of $T r_{2}$. If both are silicon transistors and $T r_{2}$ has a high current gain the ratio $R_{2}: R_{1}$ approaches that for a balanced Wien bridge. The mean output voltage is then a reasonably defined multiple of the base-emitter p.d. of Tr_{1} and no other bias elements are required. The method may be extended by replacing $T r_{2}$ by a junction field-effect transistor of low pinch-off voltage. The gate current is negligible, the collector load of $T r_{1}$ may be very high and the loading effect of Tr_{1} emitter current on the Wien network is minimal.
The oscillators of Fig. 12 are basically
type IC but the feedback makes the behaviour similar to type IA. Isolating the section of the circuit consisting of network I with the feedback resistors R_{1} and R_{2}, leads to the alternative interpretation of the oscillator. It is a bridge, almost at balance at the critical frequency with the amplified unbalance being just sufficient to provide the appropriate drive voltage. Such an approach further indicates that bridge drive and output points can be interchanged as shown in Fig. 13. This version of the circuit has the advantage that either the two resistors or the two capacitors of the Wien network have a common point to one side of the supply. Remote control of frequency is thereby facilitated.

Nullor representation

Two one-port networks- the nullator (characterized by $V=I=0$) and the norator ${ }^{11}$ (in which voltage and current are independent) -have been used very successfully in the analysis and synthesis of such active networks as the negative-impedance convertor ${ }^{12}$ and the gyrator. ${ }^{13}$ Combined as the nullor ${ }^{14}$ these one-port networks have been shown to be equivalent to any controlled source of infinite gain, e.g. the ideal operational amplifier. ${ }^{15}$ If the bridge network is isolated then the active devices together with any bias components may be replaced by one or more nullors. In the circuit of Fig. 14(a) a single nullator/norator pair is sufficient to determine the conditions of oscillation. The nullator imposes the constraint of zero p.d. between one opposite pair of bridge points without drawing current, while the norator establishes an arbitrary p.d. between the other pair. This is possible only if the bridge is precisely balanced.

The nullor concept gives no information on the operations of the circuit with finite controlled sources but allows other forms of oscillator to be generated. The circuit of Fig. 14(a) is equivalent to those of Figs 6 and 12. If nullator and norator are interchanged as in Fig. 14(b) the same constraints apply and the circuit is equivalent to those of Figs 7 and 13. The equivalence can be established by replacing each individual transistor by a nullor in which nullator and norator have a common point. If in the circuit any nullator/norator pair appears directly in series it places no constraint on the p.d. between the output points of the pair and draws no current. In each of the circuits of Figs 6, 7, 12 and 13 there remains one effective nullor in which the nullator and norator are floating.
A better approximation to the nullor is to be found in the many operational amplifiers obtainable in both discrete and monolithic forms. The gains, though finite, are sufficiently high that the departure from the behaviour predicted on the basis of the nullor is small. It seems then that two distinct forms of Wien-bridge oscillator are possible with such amplifiers. A further practical sub-division arises because, though the input floats with respect to output, one side of the output is common to a supply line for most commercially available circuits. Four realizations then result as in Fig. 15 , depending on which bridge vertex is

Fig. 15. Using operational amplifiers as an approximation to the nullor, four different forms of the Wien-bridge oscillator are possible.

Fig. I6. Comparing the oscillators of Fig. 14 with negative impedance converter acting on the frequency-dependent section, they can be redrawn, (a) corresponding to Braun type IVA and (b) corresponding to IVB.
connected to that output point which is common with a supply line-generally the the common point of a dual-polarity supply. ${ }^{16}$

From a nullor standpoint versions (a) and (c) are identical as are (b) and (d). The differences arise where the oscillator is coupled into other active circuits sharing the same supply. Circuit (c) has the disadvantage that the amplifier inputs are subjected to a higher common-mode signal as compared to that of circuit (a), assuming equal C, R values in the network and equal signal amplitude at the amplifier output. Where voltage-controlled tuning is required it is an advantage if the elements controlling the frequency have a common point at the common potential of the system. This property is present in circuits (b) and (d) as it is in Fig. 13.

(a)

(b)

(c)

Fig. 17. Oscillator proposed by Pasupathy (a) corresponding to Braun type IIIB n.i.c. (b) and bridge at (c).

Fig. 18. Practical circuit (a) will oscillate with supplies of $1 V$ and $70 \mu \mathrm{~A}$. It is produced by nullator/norator interchange on Fig. 17. Corresponding n.i.c. Braun IIA is at (b) and bridge representation is at (c).

Another feature of these last circuits is that an output is available from either side of the nullator to the common supply point which differs in phase from that at the usual output point. The impedance at these points is high and any loading must be light but the phase may be adjusted by varying R_{1} and R_{2} while maintaining their ratio. If instead the value of the capacitors is changed together, the frequency is varied while the relative phase between the two outputs is retained.

It may sometimes be advantageous to operate such circuits with high values of R_{1}, R_{2} so that high output voltages are possible with small common-mode signals at the inputs. This would also allow the use of capacitors of low voltage rating where maximum capacitance in a given volume is important. Two-transistor circuits corresponding to those of Fig. 15(c) and (d) are equally feasible and the discussion of the circuits of Figs 12 and 13 is applicable.

N.I.C. oscillators

Many oscillators have been classified as negative-resistance oscillators including the transitron and tunnel-diode types. In others an amplifier port may present an equivalent negative resistance to a tuned circuit because of some feedback path to that port. Similarly Wien-bridge oscillators can be interpreted in terms of negative-impedance convertors. Pasupathy ${ }^{2}$ has argued that the Wien-bridge oscillator should be considered
as a special case of the negative-impedance oscillator and proposed the circuit shown in Fig. 17(a). Resistors R_{a} and R_{b} define the conversion factor for the circuit just as resistors R_{1} and R_{2} define the transfer function of the controlled source in the circuit of Fig. 6(b), or as the corresponding resistors define the bridge balance conditions in Figs 12 to 15.

However, the simplicity of Pasupathy's oscillator stems from the choice of active circuit and not as suggested from the advantages of an n.i.c. approach. Thus in each of the circuits of Figs 12 to 15 , the amplifier, together with the resistive arms, can be interpreted as performing impedance conversion on one frequency-dependent arm in presenting to the other. Comparing these circuits with the n.i.cs as classified by Braun, ${ }^{12}$ Fig. 14(a) and (b) can be redrawn as in Fig. 16. They correspond to Braun IVA and IVB respectively. Similarly Pasupathy's oscillator corresponds to Braun IIIB-Fig. 17(b).

Another n.i.c. listed by Braun as IIA is shown in Fig. 18(b), while Fig. 18(a) gives one realization of an oscillator using it. The oscillator requires separate voltage and current supplies but the operating voltages can be very low. For example, it will oscillate with $V=1 \mathrm{~V} \pm 10 \%$ and $I=70 \mu \mathrm{~A}$. Under these conditions and with R_{2} adjusted to produce a 50 mV r.m.s. output at the emitter of Tr_{2}, the peak p.d. between this point and ground is $\sim 1.2 \mathrm{~V}$.

(b)

(c)

Fig. 19. Baxandall's oscillator with two antiphase low-impedance outputs (a) corresponds to Braun IIA (b) and to the bridge oscillator (c) activated by two nullors with a common point to both nullators and both norators.

An oscillator due to Baxandall requires two inverting amplifiers and has two antiphase low-impedance outputs--Fig. 19(a). The equivalent circuit-Fig. 19(b)-shows that it corresponds to Braun IIIA. Equally it may be seen as a bridge oscillator activated by two nullors with a common point to both nullators and both norators. This is convenient as this common point can be the common supply line and the circuit is well-suited to realization with operational amplifiers. Just as two distinct forms of bridge oscillator were obtained by interchanging nullator and norator in Fig. 14, so too Fig. 20 shows a new oscillator related to that of Baxandall and corresponding to Braun IIB. The two low-impedance outputs can be adjusted in phase by choice of R_{1} and R_{2} while the appropriate ratio is maintained. The frequency can be varied by changing both capacitors without upsetting this phase relationship.

Other ni.i.cs can be used with Wien's network to produce oscillators. A particularly interesting oscillator is possible using Braun I. The conversion factor is identically unity with ideal transistors and the circuit and its realization are shown in Fig. 21(a) and (b). The restriction imposed on the Wien network is that the elements of the series arm may no longer be identical with those of the parallel arm. In practice the finite gains of the transistors means that the impedance of the series arm must be

Fig. 20. Interchanging nullator and norator in Fig. 19 provides a new circuit (a) corresponding to Braun IIB (b). Bridge equivalent is at (c).

Fig. 21. Circuit at (a) works from a current source of $10 \mu \mathrm{~A}$ at IV. Corresponding ni.c., Braun I, is at (b) and bridge is at (c).
further reduced. The power supply required is an unbypassed current source of as little as $10 \mu \mathrm{~A}$ with a circuit p.d. of less than 1 V . This oscillator is of interest for micropower operation and where minimum component count is important.

Appendix

In the circuit of Fig. 10(a) a condition can be derived for the minimum transconductance of the f.e.ts to sustain oscillation. For simplicity the f.e.ts are assumed to be separately described by the equation

$$
\begin{equation*}
I_{D}=I_{\mathrm{DSS}}\left(1-\frac{V_{g s}}{V_{P}}\right)^{2} \tag{1}
\end{equation*}
$$

with equal values of $\left|I_{D S S}\right|$ and $\left|V_{P}\right|$. ($I_{D S S}$ is that value of I_{D} the drain current for $V_{g s}=0$. V_{P} is that value of $V_{g s}$ for which I_{D} is zero.) For the oscillatory condition, the loop gain has to be unity and

$$
\text { loop gain }=\frac{g_{m}}{2} \cdot \frac{1}{3} \cdot R \quad \text { i.e. }\left(g_{m} R\right)_{o s c}=6
$$

If both devices are operating in the pinch-off region, the value of gate-source voltage for the n-channel f.e.t. is as shown.

$$
V_{g s}=-\frac{V_{s}}{2}
$$

Maximum loop gain at any operating cur-
rent is obtained for R such that the n-channel f.e.t. is just pinched-off i.e.

$$
\begin{align*}
V_{g d} & =V_{P} \\
I_{D} R & =V_{S}-V_{d g}=V_{S}+V_{P} \tag{2}
\end{align*}
$$

From equations 1 and 2
$R=\frac{V_{P}-2 V_{g s}}{I_{D}}=\frac{V_{P}\left[1-2+2\left(\frac{I_{\mathrm{D}}}{I_{\text {DSS }}}\right)^{\frac{1}{2}}\right]}{I_{D}}$
Differentiating I_{D} with respect to $V_{g s}$ in equation 1

$$
\begin{equation*}
g_{m}=-\frac{2 I_{D S S}}{V_{P}}\left(\frac{I_{D}}{I_{D S S}}\right)^{\frac{1}{2}} \tag{4}
\end{equation*}
$$

Multiplying equations 3 and 4

$$
\begin{aligned}
g_{m} R & =-\frac{2 I_{D S S}}{V_{P}}\left(\frac{I_{D}}{I_{D S S}}\right)^{\frac{1}{2}} \cdot \frac{V_{P}}{I_{D}}\left[2\left(\frac{I_{D}}{I_{D S S}}\right)^{\frac{1}{2}}-1\right] \\
& =2\left[\left(\frac{I_{D S S}}{I_{D}}\right)^{\frac{1}{2}}-2\right]
\end{aligned}
$$

For oscillatory condition

$$
\begin{aligned}
6 & =2\left[\left(\frac{I_{D S S}}{I_{D}}\right)^{\frac{1}{2}}-2\right] \\
I_{D} & =\frac{I_{D S S}}{25}
\end{aligned}
$$

Thus for a pair of complementary f.e.ts having equal magnitudes of $I_{D S S}$ and V_{P} and operating in the pinch-off region oscillation can only commence if the drain current is reduced to 4% of the zero-bias on-current.

REFERENCES

1. Kundu, P., "RC tuned oscillators", J. Brit. I.R.E. vol. 11, 1951 pp. 233-41.

Owens, J. M., "Audio oscillator uses new RC design". Electronics, vol. 27, 1954 pp. 176-7.
2. Pasupathy, F., "Transistor oscillator using negative impedance", Electronic Engineering, vol. $38,1966 \mathrm{pp} .808-9$.
Hachtel, G. D. and Pepper, R. S., "Synthesis of integrable nearly-sinusoidal potentially bistable oscillators". I.E.E.E. Journal of Solid-State Circuits, vol. SC-1, 1966 pp. 111-7.
3. Hewlett, W. R., U.S. Patent no. $2,268,872$. Jan. 6, 1942.
4. Hickman, D. E. D., "Wien bridge oscillators". Wireless World, vol. 65, 1959 pp. 550-5.
5. Wien, Max, "Messung der induction constanten mit dem 'Optischen Telephon' ', Ann. der Phys. vol. 44, 1891 pp. 704-7.
6. Dueno, B., "A circuit study", Proc. I.R.E. vol. 33, $1945 \mathrm{pp} .66-7$.
7. Mitra, S. K., "Analysis and synthesis of linear active networks", Wiley, 1969 pp. 25-7.
8. Terman, F. E., "Electronic and radio engineering", McGraw Hill, 1955 pp. 501-3.
9. Stott, C., "Transistor RC oscillator". Wireless World, vol. 68, 1962 pp. 91-4.
10. Ganguly, U. S., "Null network oscillators" Proc. I.E.E.E. vol. 55, 1967 pp. 582-3.
Routh, W. S., "Fully-compensated operational amplifier". Designing with integrated circuits. Wiley, 1969, pp. 291-7.
11. Carlin, H. J. and Youla, D. C., "Network synthesis with negative resistors", Proc. I. R.E. vol. 49, 1961 pp. 907-20.
12. Braun, J., "Equivalent n.i.c. networks nullators and norators", I.E.E.E. Trans. vol. CT-12. 1965 pp. 441-2.
13. Bendik, J., "Equivalent gyrator networks with nullators and norators', I.E.E.E. Trans. vol. CT-14, 1967 p. 98.
14. Carlin, H. K., "Singuiar network elements", I.E.E.E. Trans. vol. CT-11, 1964 pp. 67-72.
15. Antoniou, A., "New gyrator circuits obtained by using nullors". Electronics Letters, vol. 4, 1968 pp. 86-7.
16. Post, E. J. and Van der Scheer, J. W. A., "Bridge-stabilized oscillators and their derivatives", J. Brit. I.R.E., vol. 16, 1956 pp. 345-50.

'United States of Earth'

Fifty-four nations recently signed an agreement in which they pledged to co-operate in developing communications satellites. Arthur C. Clarke, who was the first to describe the feasibility of geo-stationary communications satellites in his 1945 Wireless World article 'Extraterrestrial Relays', was a guest of honour at the proceedings.

Arthur Clarke said at the signing "Whenever I peer into my cloudy crystal ball and try to visualize the future of communications satellites, I remember an incident that occurred in England almost a hundred years ago.
"The very alarming news had just been received from the United States that a certain Mr. Edison had invented an electric light. This, of course, was very disturbing to the manufacturers of gas, oil and candles. So as we British do in an emergency, we called a Parliamentary Commission. It listened to the evidence of expert witnesses, who gave the reassuring news that nothing further would be heard of this impractical Yankee invention....
"Among the witnesses called was the chief engineer of the British Post Office. Someone on the Commission said to him: 'We understand that the Americans have invented a machine that can transmit human speech. Do you think that this telephone - will be of any use in Great Britain?' The chief engineer of the Post Office thereupon replied: 'No, Sir. The Americans have need of the telephone but we do not. We have plenty of messenger boys.'
"This very able man totally failed to see the possibilities of the telephone - and who can blame him? Could anyone, back in 1880 have imagined that the time would come when every home would have a telephone, and business and social life would depend upon it almost completely?
"I submit, ladies and gentlemen, that the eventual impact of the communications satellite upon the whole human race will be at least as great as that of the telephone upon the so called developed societies.
"In fact, as far as real communications are concerned, there are yet no developed societies; we are all in the semaphore and smoke signal stage. And we are now about to witness an interesting situation in which many countries - particularly in Asia and Africa - are going to leapfrog a whole era of communications technology and go straight into the space age. They may never know the vast networks of cables and microwave links that this continent has built at such enormous cost, both in money and natural resources. Satellites can do far more, at far less expense to the environment.
"Intelsat, of course, is concerned primarily with point-to-point communica-
tions involving large ground stations. It provides the first reliable. high quality, wide bandwidth links between all the nations that wish to join, and the importance of this cannot be underestimated. Yet it is only a beginning, and I would like to look a little further into the future. .
"Two years from now, N.A.S.A. will launch the first satellite - ATS-F which will have sufficient power for its signals to be picked up by an ordinary domestic television set, plus about two hundred dollars worth of additional equipment. In 1974 this satellite will be stationed over India and, if all goes well, the first experiment in the use of space communications for mass education will begin. I have just come from India, where I have been making a TV film on the promise of space. We erected, in a village outside Delhi, the prototype antenna - a simple umbrella shaped wire mesh affair, three meters across. Anyone can put it together in a few hours; it needs only one per village to start a social and economic revolution.
"The engineering problems of bringing education, literacy, improved hygiene and agricultural techniques to every human being on this planet have now been solved. The cost would be of the order of a dollar per person per year. The benefits in health, happiness and wealth would be immeasurable.
"But, of course, the technical problem is an easy one. Do we have the imagination - the statesmanship - to use this new tool for the benefit of all mankind? Or will it be used merely to peddle detergents and propaganda?
"I am an optimist; anyone interested in the future has to be. I believe that communications satellites can unite mankind. Let me remind you that whatever the history books say, this great country was created little more than a hundred years ago by two inventions. Without them the United States was impossible; with them, it was inevitable. Those inventions of course were the railroad and the electric telegraph.
"Today we are seeing, on a global scale, an almost exact parallel to that situation. What the railroads and the telegraph did here a century ago, the jets and the communications satellites are doing now - to all the world.
"I hope you will remember this analogy in the years ahead. For today, my friends, whether you intend to or not, whether you wish to or not - you have signed far more than yet another intergovernmental agreement.
"You have just signed the first draft of the articles of federation of the United States of Earth."

Focal Points at Berlin

Pressure on space prevented us from including these photographs in our report of the Berlin international radio and television exhibition (pages 486-8, October issue). 1. Concurrent with CBS announcing their SQ (stereo/quadraphonic) disc and matrix technique, Sony - the first CBS licensee - showed their SQ 1000 decoder, which will be available in Europe, early next year (see last issue). 2. Goodmans Dimension 8 loudspeaker unit which, by virtue of the smaller angle one set of loudspeaker axes make with the wall behind, claims to give a larger area of stereo effect, as well as a "Raumeffekt" due to reflections from the other set of loudspeakers. 3. Blaupunkt ARI (information by radio for car travellers) decoder which switches off the normal car radio programme for 3 min when a $2.35-\mathrm{kHz}$ signal, frequency modulated with a $12-\mathrm{Hz}$ tone, is received to allow reception of traffic information. 4. Typical touch type of television tuner (Graetz). 5. Philips VCR video cassette recorder with built-in u.h.f. receiver. 6. Pickup (stylus to the left) of the Teldec (Telefunken-Decca) colour video disc system (see last issue).

Thank you gentiemen.

Department of Trade \& Industry, British Rail,
Port of London Authority, United Kingdom Atomic Energy Authority, Carphones Ltd.,
Caledonian//British United Airways, Central Electricity Generating Board,

AutomobileAssociation, C.W.S. Limited, Chubb Alarms Ltd., City of London Police, Turriff Construction Corp., Marks \& Spencers Ltd., Prestcold (Southern) Ltd., Wasco Electronics Ltd., Appledore Shipbuilders Ltd. Boots Pure DrugCo. Ltd. British Steel CorporationTubes Division,
Calor Gas (Ireland) Ltd., Helsinki Transport
Board (HKL), Esso Petroleum Co. Ltd., Ford Motor Co. Ltd., Imperial Chemical
Industries Ltd.,
Kellogg \& Co. Ltd., Kodak
Ltd., Mobil Oil Co. Ltd.,

Pilkington Bros. Ltd. Spanish Police,
St. Etienne Taxi Union, Reed Group Ltd.,
Shell-Mex \& B. P. Ltd., Royal Malaysian Police,

Vauxhall
Motors Ltd.,

Court Line Aviation Ltd., Iberia Airlines of Spain, Hawker Siddeley Aviation Ltd., K.L.M. Royal Dutch
Airlines, Pan American World Airways,

Council of the Stock Exchange, Chrysler United Kingdom Ltd.,

Dartford Tunnel Joint Committee,

East African External Telecommunications Co. Ltd., Kuwait Oil Co.,

London Transport
Executive, Trust Houses Forte Limited, Zambian Electricity Supply
Corporation. All use
STAR mobile or
Starphone pocket radiotelephones.

And they've helped to make us one of the world's leading radiotelephone companies.
So thanks again, gentlemen.
If you'd like STAR, too,
write to: ITT Mobile
Communications Limited, Radlett Works,
Colney St.,
St. Albans, Herts.
Tel: Radlett 4711

EM 102: E-1 favourite

There has always been a choice with EM 102 oscilloscopes. Now there's even more. Decide between two main frames and three modules, all completely interchangeable. The best odds you can find for any application in medicine, the laboratory, computer fault finding or
 field work. A further choice of d.c. operation and internal batteries is also offered. The superb, ultra-sophisticated, EM 102D main frame with an improved delayed sweep for easy analysis of digital information, TV wave forms and pulse techniques joins the field with the existing EM 102. With either, you can select the low-cost 15 MHz EM 515 module, the EM 53030 MHz dual-channel vertical amplifier, or the new EM 505 high-gain differential amplifier which gives you sensitivities down to $50 \mu \mathrm{~V} / \mathrm{cm}$ and impressive performance for examining outputs from transducers and other low-level signals. All are true dual channel modules with triggering well over 50 MHz . You're bound to back a winner with the EM 102 series. Write or ring for details.

SE measures up to tomorrow's technology

SE Laboratories (Engineering) Ltd., North Feltham Trading Estate, Feltham, Middlesex. Telephone: 01.890 1166 Telex: 23995
Transducers, recorders, oscilloscopes, digital instrumentation, data systems, medical electronic equipment, etc.

The Drum Major

A hand-operated frequency response measuring instrument

by H. J. N. Riddle

The instrument described here is a hand-operated device for rapid plotting of response/frequency characteristics of audio equipment. It does the same sort of job as a swept-frequency a.f. oscillator and chart recorder, but the test frequency is varied and the chart is moved by hand-simultaneously at whatever speed one likes-and at the same time the response is traced on the chart by hand. using a fine felt-tipped pen. The response of the equipment being tested is measured by an a.c. voltmeter; this consists of an amplifier driving a reflecting voltmeter movement, the light spot from which falls on the chart. Thus as the frequency is varied the light spot makes a path on the moving chart, and if the pen tip is held on to it, always following the spot, this path is traced as a visible line-the frequency response. Fig. 1 shows the general principle of operation.

The name "Drum Major" derives from the fact that the chart on which the frequency response is traced is wrapped round a drum, as can be seen in Fig. 2 and the photographs. This drum is manually rotated, using the left hand, by mearr's of a wheel. On the wheel is marked a logarithmic frequency scale (0 to 20 kHz), which moves past a stationary 'cursor' as the wheel is rotated. This scale is in alignment with a corresponding logarithmic frequency scale marked on the chart. The charts are home-made-photocopies taken from a pen-and-ink master-and are of a length which almost encircles the $3 \frac{1}{2}$-inch diameter drum (about 30 cm). A fresh chart is attached to the drum at one end by a folded tongue in the paper strip, which fits into a slot cut in the drum, and at the other end by adhesive tape. In addition to the frequency scale the charts carry a response scale in decibels (voltage or current ratios), with lines at $0,1,5,15$, 20 and 25 dB ; these, of course, are seen as circumferential lines when the charts are attached to the drum.

Mechanically coupled to the drum and hand-wheel is a variable capacitor, which is part of a variable oscillator in a heterodyne circuit generating the test frequency. It is this capacitor which varies the test frequency as the wheel and drum are rotated by hand. A heterodyne oscillator, as distinct from some other type of oscillator using range switching, is, of

Fig.1. Schematic showing the principle of operation of the instrument.
course, necessary, because an essential of the whole instrument is to provide a frequency sweep of 0 to 20 kHz with a single turn (actually 350°) of the drum. In this heterodyne oscillator the fixed frequency part works at 280 kHz while the variable oscillator can be varied from 280 kHz to 260 kHz by the capacitor, and
it is the difference frequency resulting from heterodyning these two outputs which provides the $0-20 \mathrm{kHz}$ sweep.

To obtain a chart with suitable scales-logarithmic frequency scale and decibel response scale-two non-linear relationships have to be introduced into the system in Fig. 1. First, in the variable oscillator, there has to be a non-linear relationship between the rotation (angular displacement) of the drum and the capacitance of the variable capactor. This is provided partly by the law of the variable capacitor itself and partly by a cam through which the drum spindle drives the capacitor spindle (see Fig. 2). Secondly, in the a.c. voltmeter, the normally linear response of the amplifier and meter movement has to be modified to give a decibel response scale. This is given

Editor's note. This article is not presented as a repeatable constructional project, as we think many readers may be deterred by the mechanical construction work involved, but we hope sufficient information is given to help and guide experimenters who may wish to try building something similar.

Fig.3. Circuits of the three sections of the heterodyne oscillator: variable oscillator, fixed oscillator and demodulator. Pick-off coil tappings are found by experiment.

The Drum Major in use. While rotating the drum by the hand wheel (left) the operator follows the movements of the light spot across the' drum chart with a fine felt-tipped pen.
by the mechanical characteristics of the reflecting voltmeter movement.

In addition to response/frequency measurements by the method described, several other facilities are provided by the instrument. It can be used as a signal generator $(0-20 \mathrm{kHz})$, as an a.c. voltmeter (ranges: $0-35 \mathrm{mV}, 0-350 \mathrm{mV}, 0-3.5 \mathrm{~V}$, $0-35 \mathrm{~V}$) and as a capacitance meter (1 pF to $1 \mu \mathrm{~F}$). There is a square-wave test signal output, derived from the sinewave oscillation; and a chopper, consisting of a multivibrator and an electromechanical relay, by which both the square-wave and sinewave outputs may be interrupted at various rates.

Heterodyne oscillator

The circuit of the heterodyne oscillator is shown Fig. 3. It consists of two Hartley type transistor oscillators, one fixed and the other variable, two pick-off coils to enable the oscillations to be heterodyned, and a demodulator circuit which extracts the difference frequency and filters out the unwanted high-frequency components. The output of the demodulator passes into an amplifier (Fig. 4) which provides the final test signal; this has an amplitude variable from 0 to 2.0 volts r.m.s.

In each of the $280-\mathrm{kHz}$ oscillators the transistor collector circuit feeds power into a tapping on a tank circuit, consisting of a 67 -turn ferrite-coil coil tuned by a capacitor; and feedback is provided by a 16 -turn coil, coupled to the tank circuit, which is connected via a 500 pF d.c. isolating capacitor to the base of the transistor. The base is d.c. biased through an $820 \mathrm{k} \Omega$ resistor connected to the collector of the transistor. The frequency of the variable oscillator in Fig. 3 is determined by the 365 pF square-law variable capacitor (one section of Henrys Radio type 0) which is driven through the cam system by the drum.

If there is any magnetic or electrical coupling between two oscillators there is a tendency for them to "pull" into the same frequency of oscillation. This tendency increases as the oscillation frequency of one approaches that of the other. Even with the oscillator coils wound in pot-cores a considerable external field exists, and to reduce magnetic coupling the two oscillator units are mounted as far apart as possible and at right angles. Even so, electrostatic coupling between the wiring and components of each oscillator is sufficient to cause "pulling" unless care is taken in the layout of the wiring.
The very fact that some of the highfrequency output of each oscillator is to be mixed in a common circuit is itself a source of coupling. For this reason the pick-off windings are designed with as few turns as possible and with very thin wire (to reduce capacitive coupling). Further, the load imposed by the demodulator on the output impedance of these windings is kept as low as possible. Even if the oscillators do not "pull" together completely, the output waveform of the whole heterodyne oscillator will be considerably distorted.

Several factors in the circuit design of each oscillator influenced the extent to which the oscillator is affected by "pulling" in the presence of unwanted coupling: ratio of inductance to capacitance of the tuning components, ratio of turns between tapping on the windings, phase of feedback current. characteristics of the transistor, and degree of decoupling of d.c. supplies. The component values in Fig. 3 take account of these factors and were found by experiment.

In general the frequency at which "pulling" becomes serious is related to the frequency of the fixed oscillator. For example, other things being equal, oscillators operating at 200 kHz may pull seriously when the difference is reduced to 20 Hz , while oscillators designed for 2 MHz could be expected to be similarly affected when the difference frequency is as high as 200 Hz . As the aim is to produce audio frequencies to below 50 Hz , the lower the frequencies of the individual oscillators the better. However, as the frequency at the upper end of the audio range is to be 20 kHz , difficulties in eliminating the highfrequency components from the demodulator output increase as the individual oscillator frequencies are reduced. The matter inevitably has an element of compromise about it, and other considerations enter in too: (a) interference with, or by, broadcasting or other radio channels-in particular, any strong local transmitters; (b) the desirability that the modulated product of the two oscillations should have a constant amplitude over the range of the instrument: and (c) the necessity for a good sinusoidal waveform in each oscillator. Various frequencies were in fact tried before the final choice of 280 kHz for the fixed oscillator was made.

As can be seen, the two pick-off coils are connected in series and their combined output is fed to the demodulator circuit. Difficulties were feared with the elimination of 280 kHz energy from the final output (the 260 kHz as well, when generating 20 kHz) and experiments proved the fears to be well founded. Attempts to overcome the trouble by providing by-pass capacitors in the demodulator, or at one or more stages in the following amplifier, inevitably resulted in a fall-off of output amplitude (voltage) as the output frequency increased.

Finally, the filtering arrangement shown was adopted to remove the bulk of the unwanted components, but further cleaning-up was achieved with by-pass capacitors in the amplifier (Fig. 4). One of the two filters is a series acceptor circuit, tuned to remove frequencies of 270 kHz $\pm 10 \mathrm{kHz}$ connected between the emitter of the 2 N 4058 and earth; the other is a rejector circuit, similarly tuned, connected between the demodulator output and the amplifier. Fixed capacitors of 200 pF and 500 pF in the amplifier deal with any small amounts of h.f. components which do get through.
One advantage of the heterodyne method over other methods of signal generation is that, in general, any change
in the frequency of one oscillator, due to temperature changes or mains voltage variations, is likely to take place also in the other oscillator, thus cancelling errors from these causes in the audio frequency output.
In practice the Drum Major operates in ambient temperatures of below $5^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ and requires only a few minutes to stabilize after first switching-on before it is ready for use. The 50 pF zero-set variable capacitor in the fixed oscillator is used to ensure accurate accordance of the output audio frequency with chart position. With the chart on the drum set to zero frequency, this capacitor is adjusted until the light spot plunges down and remains stationary on the 0 dB line of the chart.

A further, vernier, adjustment of zero setting is provided by a circular rotatable magnet mounted on a spindle passing through the case, as shown in the drawing and photographs. This is a convenient, if crude, way of making minute alterations to oscillator frequency, utilizing the fact that the oscillator coils have ferrite pot cores.

The a.c. voltmeter

Fig. 5 shows the circuit of the a.c. voltmeter which is basically a transistor amplifier with an input attenuator and with a rectifier circuit at the output to feed the d.c. meter. The first stage is an emitter follower (to secure high input

Fig.4. Amplifier for output from demodulator of heterodyne oscillator (Fig.3).

Fig.5. Circuit of the a.c. voltmeter, showing the $100 \mu \mathrm{~A}$ reflecting meter movement at the bottom right.

Fig.6. Square-wave generator, driven by sinewave from oscillator amplifier (Fig.4).

Showing how the chart is attached, by a folded tongue in the paper fitted into a slot in the drum.

Fig.7. Circuit of chopper for periodic interruption of sinewave and square-wave test signals.
impedance), the second a grounded emitter voltage amplifying stage, and the third an emitter follower. This arrangement allows the collector of the second transistor to remain almost unaffected by the cycle of changes which occurs as the rectifying circuit goes through its phases of operations, thereby keeping the feedback power to the input constant. The rectifying circuit, consisting of a $10 \mu \mathrm{~F}$ capacitor and silicon diodes D_{1} and D_{2}, operates as follows: During each negative-going half-cycle of the emitter of the AF115 emitter-follower the capacitor becomes charged, its right-hand plate going positive as current flows through D_{1}. During each positive-going half-cycle of the emitter the capacitor discharges through D_{2} and the meter moving-coil. To overcome the relatively high pedestal voltage of the silicon diodes a "priming" circuit is provided in the shape of the $2.2 \mathrm{k} \Omega$ potentiometer and associated $3.3 \mathrm{k} \Omega$ and $4.7 \mathrm{k} \Omega$ resistors. This circuit largely, but not entirely, overcomes the cramping of the low-reading end of the scale, and also provides a convenient "zero set" control which overcomes the effects from the temperature sensitivity of the diodes.

The combination of linear amplifier, rectifiers and moving-coil meter would normally produce a linear scale on the meter and recording chart. What is required of this combination is a
logarithmic amplitude response, in order to produce a linear decibel scale on the meter and chart. The necessary correction is obtained by two mechanical expedients: (1) the moving-coil meter chosen for the job, a tuning indicator MH25B, $100 \mu \mathrm{~A}$, (Henrys Radio), has an in-built tendency to non-linearity - equal increments of current producing greater deflection at the lower end of the scale than at the top; (2) this tendency is augmented by an added gravitational effect which, acting vertically, has little or no effect in the zero position of the moving mirror, but offers an increasing return force as the mirror is deflected. It is purposely not counterbalanced.
The amplifier, diodes and variable attenuator are completely screened, being housed in a cylindrical canister within the chassis. This prevents leakage into the voltmeter of h.f. fields from the high and audio frequency generating sections of the instruments.
The multi-position rotary switch of the attenuator, of course, forms the range switch of the a.c. voltmeter and the four positions are marked $\div 1(-0 \mathrm{~dB}), \div 10$ $(-20 \mathrm{~dB}), \div 100(-40 \mathrm{~dB})$ and $\div 1000$ (-60 dB).

Reflecting voltmeter

The reflecting voltmeter is a tuning indicator meter movement (see above) with the pointer cut down to a short stub, to which a small concave mirror is cemented. The concave mirror was made by smashing one of the thin glass globes used for decorating Christmas trees and then selecting by experiment a piece of glass of suitable size and concavity. This was simply a matter of finding a piece of mirror glass which gave a sufficiently sharp spot of light on the chart. The reflecting voltmeter thus made is mounted, together with a spot-filament lamp, in a separate housing fixed immediately above the drum (see photos), so that the light spot movement is parallel with the drum axis and dB scale on the chart.
The sensitivity, resistance and other characteristics of the meter movement affect the whole design of the meter amplifier. Much depends on the importance one attaches to the accuracy of the logarithmic form of the light-spot scale.

Other facilities

Square-wave output. Although of little use with the drum charts, a square-wave generator is included for general test purposes. Shown in Fig 6, this is a circuit which receives a sinewave output from the amplifier of the heterodyne oscillator (Fig 4) and converts it into a square wave of the same frequency.
Chopper. Both the sinewave and square-wave outputs may be interrupted at rates up to 100 per minute and to different degrees, by a chopper circuit. This, shown in Fig. 7, is a multivibrator, of variable frequency, driving an electromechanical relay. Contacts of this relay,
by earthing an inter-stage coupling in the heterodyne oscillator amplifier (Fig. 4), interrupt the sinewave and square-wave outputs. A "Depth" control, provided by inserting an adjustable amount of resistance into this short-circuiting, enables a partially chopped output to be obtained from the sinewave outlet. The on/off ratio of the chopper may be adjusted as required.

Capacitance measurement.

Capacitance from 1 pF to $1 \mu \mathrm{~F}$ can be measured on the principle of using the unknown capacitance to alter the frequency of the fixed oscillator in the heterodyne pair, then measuring the change by means of the variable oscillator. First, the variable oscillator is adjusted to the same frequency as the fixed oscillator to give zero beat frequency - indicated either by the light spot falling to zero on the drum or by an earphone connected to the sinewave or square-wave output. Then the unknown capacitance is connected through a range switch to the
tuned circuit of the fixed oscillator at the points shown in Fig. 3. This changes the oscillator's frequency and results in a beat frequency. The hand-wheel is then rotated until the frequency of the variable oscillator equals that of the fixed oscillator and there is zero beat frequency once more. The amount of rotation is proportional to the unknown capacitance and this value is indicated by a calibrated capacitance scale on the rim of the hand-wheel. The large range of the capacitance measurement (a million to one) is made possible by connecting the unknown capacitance to different tappings on the fixed oscillator's coil through a range switch. There are in fact three ranges: 1.0 to 200 pF ; 10 pF to $0.1 \mu \mathrm{~F}$; and $0.002 \mu \mathrm{~F}$ to $1.0 \mu \mathrm{~F}$.

The "padding capacitors" shown in Fig. 3 are necessary for bringing the capacitance scales on the hand-wheel to convenient positions and providing overlap bet ween scales.

Voltage checking. The a.c. voltmeter in the

Scale layout of chart for plotting response/frequiency characteristics on the drum.

Fig.8. Power supplies for the instrument.

Details of the reflecting meter movement and spot-filament lamp below it in their housing (cover removed).

Drum Major can, of course, be used for measuring voltages at various points in a test setup; for example, the output of the demodulator, the output of the amplifier which follows it, or the voltage from the equipment under test. For this purpose a "meter` select" switch is provided (though not shown in the diagrams).

Construction

As far as possible separate functional units have been assembled on separate. small Veroboards, although the demodulator circuitry was mounted in situ, partly in the wiring and partly on the control potentiometers. The filter coils were fixed with cement to the underside of the chassis. The chassis is, of course, a common positive conductor. For the power supplies (Fig. 8) transformers and rectifiers are housed in the drum box. Where the d.c. supplies are to be used by voltage-sensitive circuits (e.g. the oscillators) separate decoupling and stabilization by zener diodes is provided, with the components mounted under the chassis.

Conferences and Exhibitions

GATESHEAD

Nov. 23-25 Five Bridges Hotel
Electronic Instruments Exhibition
(Industrial Exhibitions Ltd., 9 Argyll St, London WIV 2HA)
MANCHESTER
Nov. 15-19
Belle Vue
Low Cost Automation Exhibition
(Exhibitions for Industry Ltd, 157 Station Rd East, Oxted, Surrey)
OVERSEAS
OVERSEAS $31-$ Nov. 4
Las Vegas
Engineering in Medicine and Biology Conference (I.E.E.E., 345 East 47th.St, New York, N.Y.10017)

Nov. 2 \& 3
Boston
Electronics Packaging Conference
(I.E.E.E., 345 East 47 th St, New York, N.Y. 10017) Nov. 24-27

Karaikudi
Electrochemistry Seminar
(Dr C. V. Suryanarayana, Central Electrochemical Research Institute. Karaikudi-3, (Tamil Nadu), India)
Nov. 29-Dec. 3
Biotelemetry Symposium
(South African Council for Scientific and Industrial Research, P.O. Box 395, Pretoria)

Personalities

J. A. Powell, M.A., D.Phil., has joined EMI Ltd as group technical director. Dr. Powell, who is 47, has been managing director of Texas Instruments Ltd since 1963 and assistant vice-president of its American parent company for the past three years. In 1940 he undertook a two-year instrumentation apprenticeship with the R.A.F. In 1943 he was invalided out of the Service and went to Oxford University. He was awarded a post-doctorate research fellowship by the National Research Council in Ottawa in 1952 and returned to. Britain in 1954 to become leader of a research team at Marconi's Jreat Baddow Laboratories in Essex. Dr. Powell, who joined Texas Instruments in 1957 as a product engineer, is chairman of the Electronic Valve and Semiconductor Manufacturers' Association (VASCA), and a member of the Electronic Components Board.

Frank Caplin, B.Sc. (Eng), F.I.E.E., who joined British Communications Corporation Ltd in 1956 as technical director, has retired but will continue to act as technical advisor to the company. In the late 1940 s and early 1950 s Mr. Caplin was in the Signals Research and Development Establishment (S.R.D.E.) where he was in charge of the development of the Larkspur Range of Army combat radio equipment.
T. G. Clark, F.I.E.R.E., has joined Mullard Ltd as technical manager of the Communications Division following an academic year with the School of Management Studies at Portsmouth Polytechnic. Mr. Clark was previously with Decca Radar, AstaronBird and The Plessey Co. Ltd.
L. Calvert has been appointed sales manager of the Marine Division of Redifon Ltd. He was previously the Marine Division's Northern Area Manager. After war service with the R.A.F. as a radio observer, Mr. Calvert qualified as a marine radio officer joining Redifon in 1953, as a marine service engineer
at Hull. He subsequently took charge of the company's worldwide marine service network, operated from London.

Elizabeth Laverick, B.Sc., Ph.D., F.I.E.E., who was the fifth woman to achieve full membership of the Institution of Electrical Engineers (that was in 1964), has been appointed deputy secretary of the institution in succession to F. Jervis-Smith who has retired. Dr. Laverick studied physics and radio at the University of Durham where she received her doctorate in 1950. She joined Elliott Bros. in 1953 and in 1959 became head of the company's Radar and Communications Research Laboratory. Latterly she has been technical director of Elliott-Automation Radar Systems now part of GEC-Marconi Electronics.

Harry Sellers, managing director of Tektronix U.K. Ltd since its formation in 1963, has retired. Mr. Sellers was commercial director of Livingston Laboratories, who handled the U.K. marketing of Tektronix prior to the setting up of the U.K. company in Harpenden.

John Elliott, B.Sc., has joined The McMurdo Instrument Co., at Portsmouth, as manufacturing director. Mr. Elliott, who is 41 and graduated in engineering from London University, has been with Dubilier for the past 17 years, latterly as general manager.

The appointment of three senior sales engineers was recently announced by Siemens (U.K.) Ltd, of Brentford, Middx. They are A. Joyce (semiconductors), M. Bennett (ferrite and passive components) and J. M. Silvester (electro-mechanical components). Mr. Joyce, who began his career with the Post Office Research Laboratories at Dollis Hill, has worked for the Atomic Weapons Research Establishment, and several companies, latterly Microwave Ltd. Mr. Bennett has been with M.E.L. and Mullard Ltd, and

Mr. Silvester, who was originally employed on valve and microwave device development with Mullard, was latterly with I.T.T. Also announced by Siemens is the appointment of R. K. D. Fowler as their specialist on radio interference suppression. He joins the company from Timeon Electronics Ltd where he was marketing manager. He previously spent five years with the Solartron Electronic Group.
T. B. "Jock" Henderson, commercial director of British Radio Corporation, has retired on medical advice. He served in the Radar Branch of the R.A.F. and in 1957 was appointed sales promotion manager for HMV and Marconiphone brands, and two years later became sales director of Philco (Great Britain) Ltd. When in 1965. British Radio Corporation Ltd was organized to bring together the Ferguson, HMV, Marconiphone and Ultra activities of the company into one operating division of Thorn, Mr. Henderson was appointed commercial director. He is to reside in Cyprus but will retain his connections with B.R.C. as a consultant.

Francis Oakes, F.I.E.E., F.I.E.R.E., until recently executive director of research and engineering of Thorn Bendix Ltd, is setting up as an engineering and management consultant. His connection with Thorn Electrical Industries, with which he has been associated for 18 years, will, however, not be severed as he will act as a consultant to the company. Born in Austria in 1919 he came to England in 1939 and became a British subject in 1947. After a period of free-lance technical writing and consulting he joined Thorn Electrical Industries in 1953. In 1961 he became chief engineer of the Ferguson Electronics Division and, successively, chief engineer, director and general manager of Thorn Electronics (Laboratories) Ltd., and since 1967 , executive director of research and engineering, Thorn Bendix Ltd.

Ronald F. Russ, F.I.E.E., has been appointed managing director of Electro Mechanisms Ltd, of Slough. Mr. Russ, who is 45 , was formerly founder managing director of Consolidated Electrodynamics Division of Bell \& Howell Ltd. and more recently international vice-president of the Electronics \& Instruments Group, Bell \& Howell, California, U.S.A.

Keith G. Johnson has been appointed video projects manager for Ampex International, of Reading, Berks, where he will be responsible for broadcast video systems business throughout Europe, Africa and the Middle East. Mr. Johnson was previously with the B.B.C. He worked on the first transatlantic transmissions
made by Telstar and Early Bird satellites and later joined the studio planning department where he co-ordinated the outside broadcast engineering for the 1966 World Cup programmes. He was latterly manager for video outside broadeast planning and design.
R. W. Garrett, B.Sc., F.I.E.E., has joined Dynamco as general manager of their factory at Broxburn, near Edinburgh. Mr. Garrett, who is 41 , had been director of production with Crosfield Electronics, London, for the past four years. Prior to that he had spent over four years with Elliott's, latterly as manager of the manufacturing division of Elliott Electronic Tubes Ltd. Dynamco have also announced the appointment of W. J. Trevelyan as marketing manager, analogue products. Mr. Trevelyan, who is 33, has been with Dynamco since November 1968 when he joined as an area sales engineer. He served his apprenticeship in the electronics laboratory of Venner Ltd.

Three new directors have been appointed to the board of Pye Telecommunications Ltd. They are William F. Hawes, Patrick B. Holden and Edward J. Scotcher. Mr. Hawes, aged 50, is the general manager for marketing and has been with the company for 23 years. Mr. Holden (34) joined Pye Telecoms two years ago as central services manager and is now overseas marketing manager. Mr. Scotcher (45), who joined the company two years ago from G.E.C., is manufacturing manager.

OBITUARY

Sir Alan Dudley, K.B.E., C.M.G., director of the Electronic Components Board since 1968, died at the age of 64 on September 13th. Sir Alan had a distinguished career in the Civil Service from 1930, latterly as deputy secretary at the Ministry of Overseas Development (1964-68), before joining the Electronic Components Board. Under his wise guidance the three associations B.V.A., VASCA, and R.E.C.M.F. joined together to form the E.C.B.

Hubert Barker, C.B.E., director of network planning at the Post Office, died on September 19th while on holiday in Syracuse. He was 61 . He joined the Post Office in 1928 and was seconded to the Air Ministry in 1938 to help plan the communications system for operations control of the R.A.F. He was later commissioned in the R.A.F. and became deputy chief signals officer in the 2nd Tactical Air Force. He returned to the Post Office after the war but in 1951 was again temporarilly seconded to the Air Ministry on special duties.

Experience with the Karnaugh Map Display

The writer discusses the problems he met when constructing the display and describes its value in teaching

by G. T. Lawrence*

The Training Centre of Automatic Control Engineering Limited sets out to give students, who vary from instrument mechanics to qualified engineers, an insight into the principles of electronics in a short period of time. To facilitate this end a system of experiment boards was evolved, each board being related to an experiment guide sheet. On the digital side it is possible to cover from simple pulse forming, multivibrator switching through to counting circuits. It is not easy for a student to quickly analyse basic logic devices. Therefore, when the article on the Karnaugh map display unit appeared in the April 1971 Wireless World we quickly saw the possibilities it offered, both to the student, using the above mentioned system, and for demonstration purposes on the shorter, higher pressure, appreciation courses.

Having decided to build the unit we presented it to a student engineer as a project and work was started on this basis. I do feel that, while it was not intended to be within the scope of the article, we would have been helped by some constructional guidance, to avoid the pitfalls that are irresistible to the student. It was decided to use modular construction and to employ a mains power supply unit. Due to delay in the provisioning of certain components the p.s.u. and oscillators were ready for testing before the logic module was complete. When testing the oscillators the clock generator performed exactly as predicted in the article. However, the phase shift oscillator then performed as expected, but inspection of voltages and a look at the diagram revealed the reason. The transistor collector was saturating at the level of bias chosen. The easy way out was taken and a $3.3 \mathrm{k} \Omega$ resistor was fitted in the collector instead of $6.8 \mathrm{k} \Omega \quad\left(R_{7}\right)$. The oscillator then performed as expected, but without reasonable control of the gain with the trimmer resistance, and thus with a sine wave something less than perfect. This was still being thought about but was not considered desperate.

The next stage was to test the complete device before putting it into its box. Once the logic was connected it was found necessary to replace the original collector
load in the oscillator and to change the bias level, as there was insufficient gain to make it 'go' under load. The $56 \mathrm{k} \Omega$ bias resistor $\left(R_{6}\right)$ was replaced by a $100 \mathrm{k} \Omega$ and the 470Ω fixed emitter resistor $\left(R_{5}\right)$ replaced by a 470Ω trimmer. This produced a satisfactory result.

The ladder networks performed well (once a dry joint on one of the pins had been found), but the 0's were all leaning drunkenly backwards. A check of the oscillator showed that the 90° signal was one lag displaced. Correcting this cured the problem, and it was a simple matter on the Telequipment oscilloscope to get all 1 s or all Os. However, the output from the X amplifier was too high for the oscilloscope gain control to cope with, and to get the matrix nicely in the screen area it was necessary to put variable gain in the unit's X amplifier feedback path. The $10 \mathrm{k} \Omega$ resistor (R_{37}) was replaced by a $4.7 \mathrm{k} \Omega$ fixed and $4.7 \mathrm{k} \Omega$ variable resistor in series. Having been successfully tested this far, the unit was put into jts box, and made a very pleasing instrument.
An i.c. NAND gate was linked to the unit and the display examined. From the display it was clear that D and \bar{D} were out of place and either the student had failed to make the amendment called for in the May Wireless World or else the
amendment was unnecessary. Reversal of the connections gave a true display. Apart from this the whole was quite satisfactory.

The real test came when the unit was linked to the 14 in display oscilloscope, (dubiously, because of the lower input impedance and longer persistence screen of the big oscilloscope). However, all went well except that the 0s had mysteriously become narrower than on the small oscilloscope without changing the aspect ratio of the matrix and fly-back was accentuated due to the large screen and its persistence but this was not disconcerting.

Fortunately at this point there was a ready-made set of 'guinea pigs', in the form of a senior appreciation electronics course. Having dealt with the principles of analogue electronics, digital circuits and a little logic theory, the action of plugging in an 'instant truth table" produced quite a marked response. The ability to reverse the logic was the thing that completed the picture and tied a number of loose ends nicely together. The class felt that it really was happening, even though two days previously an electron was something to be feared. All things considered the task was well worth while and will serve the purpose for which it was designed, together with one or two side benefits not originally apparent.

[^9]

The unit before final assembly.

World of Amateur Radio

Truth and fiction

Seldom can amateur radio have received so many front-page headlines as in connection with the now-famous Baker Street bank raid of September 11th-12th. At the time, one gained the impression in amateur circles that there was considerable relief when it finally emerged that the 27.15 MHz 'citizen's band' transmissions stemmed from a genuine raid and were not part of some elaborate hoax which might have provoked public criticism or derision of the hobby. It was fascinating to hear on Independent Television News the tapes made by the short-wave-listener, Mr Robert Rowlands. He was using an AR88 receiver.
But for those who may be contemplating using the incident as the basis of the script for a TV play or film-a word of warning. They will find that they have been largely pre-empted by a recent Columbia Pictures film called 'The Anderson Tapes'. It is expected that this film, already shown in the United States, will be released in the U.K. early next year. With Sean Connery and Dean Martin in the leading roles, the film tells how a master robbery is foiled at the last moment by a young invalid amateur radio operator. Amateurs who have seen the film claim that, unlike so many earlier films touching on amateur radio, this one does not violate techrical feasibility. It also provides glimpses of Canal Street, New York, a well-known centre of electronic surplus and surveillance equipment of which perhaps our nearest equivalent in London is Lisle Street.
A factual film on amateur radio called 'The Ham's Wide World', produced for A.R.R.L. by Dave Bell, W6BVN, has been shown more than 225 times by American television stations to an estimated audience of over 9 million.

Top-band super-DX

Some extremely significant results achieved during the past few years in the reception of low-power British and European 1.8 MHz amateur signals in Western Australia have been reported in Radio Communication. The listener, Mr G. Allen, shows convincingly that the optimum period for such remarkable propagation conditions which have led not only to reception but
also to quite large numbers of two-way contacts - is around the December solstice, almost invariably occurring for only short periods around the time of local dawn (roughly 21.00 to 21.15 G.M.T.). Curiously enough no comparable results 'appear possible - at least to anything like the same extent - in other parts of Australia, or around the June solstice. Although Mr Allen notes that the fading characteristics of the European signals are far more akin to F-layer than E-layer propagation, he does not himself offer the suggestion, which one might deduce from his results, that the transmissions may be reaching Western Australia by means of some form of chordal hop or layer entrapment mode; such modes have previously been felt to account for some of the quite common 3.5 MHz contacts between European and Australian amateurs.

The possibility of further investigation into this super-DX working is offered by the activity on this band of VK9GN and the prospect that VR1AA will soon be using 1.8 MHz .

Another series of 1.8 MHz transatlantic tests has been organized by Stewart Perry, W1BB, for November 28th, December 26th, January 9th and 23rd and February 13th (05.00 to 07.30 G.M.T.). The North American stations will use $1800-1810 \mathrm{kHz}$, European $1823-1830 \mathrm{kHz}$ with alternate five-minute periods (U.S. and Canadian stations to lead off each hour). These tests thus span the 50th anniversary of the famous transatlantic tests of December 1921 organized in Britain by Wireless World. These were the tests which led to the first reception in Britain of numbers of North American amateur stations.

Proud of "home-built"?

The criticism is sometimes made by outsiders that amateur operation in these days of compact s.s.b. factory-built transceivers is all rather haphazard and as though the Post Office offered facilities for making random telephone calls to unknown subscribers (the cynics will say they already do this unintentionally). What is forgotten is that, in practice, a quite substantial proportion of amateur communication is with specific stations - members of local nets, regular "skeds" (scheduled times)
with old friends or as part of long-term propagation studies and the like. There is also evidence that home-construction often continues alongside the use of factorybuilt s.s.b. equipments. A recent letter from Dr Michael Eccles, G3PPE/W6, how resident in California, mentions that many amateurs in the United States are now using commercial s.s.b. transceivers for home or mobile use almost as a form of telephone to keep in touch with other amateurs while continuing their home-building interests on v.h.f. equipment.

A man of many interests

It is sad to report the death of yet another well-known amateur. Within a few hours of taking part in the V.H.F. Field Day in September, Ernie Dedman, G2NH, died. Although perhaps best known as the cofounder, with N. H. R. Munday, G5MA, in the late 1920s, of the Quartz Crystal Company, he was for over forty years an enthusiast in developing and popularizing amateur techniques, including much early work in v.h.f. and s.s.b. (and even home-built computers), yet turning up from time to time on c.w. during h.f. contests.

In brief

At the I.A.R.U. Region III meeting in Tokyo, mainland China and Albania were named as countries permitting major 'intrusion' into the exclusive amateur frequency allocations in the 7 MHz band (Albania but not China is a member of the International Telecommunications Union). The Japanese society has produced detailed spectrum photographs underlining the current prolific interference in this band In the twelve months to July 31 st, 1971 there was an increase of 311 in the British Class A amateur licences, 548 in Class B (both these figures are marginally down on the corresponding figures for July 1970). The total number of licensed amateurs in Britain now exceeds $16,500 \ldots$. New prefix for Swaziland is 3D6 with 3D6AX reported active on 7 MHz at weekends . . . The prefix OM instead of OK is again available to Czech amateurs until December 31st . . . The next Radio Amateurs' Examination is on Monday, December 6th - the R.S.G.B. is organizing an examination centre at the University of London (applications, before October 31st, to R.S.G.B., 35 Doughty Street, London W.C.1) The 1972 president of R.S.G.B. will be R. G. Hughes, G3GVV 144 MHz enthusiasts are being urged to use more c.w. on the band. With modern equipment this mode can provide reliable long-haul contacts at times when the range of a.m. and f.m. 'phone is limited Philip West, junior, whose father holds the call G3JPN, has passed the Post Office morse test at the age of nine - believed the youngest candidate ever in Britain. His eight-year-old sister, Pauline, can also copy morse.

Pat Hawker, G3VA

New Products

M.O.S. high speed shift register

A silicon nitride m.o.s. static shift register fabricated using the SGS-patented Planox process can be clocked up to 2 MHz . The M134 is a register of $16+16+32$ bits. Clock and data inputs and outputs are compatible with t.t.l. integrated circuits. Supply voltages are $+5 \mathrm{~V},-5 \mathrm{~V}$ and -12 V . Encapsulation is TO-100 metal can. Operating temperature range is 0 to $70^{\circ} \mathrm{C}$. SGS (United Kingdom) Ltd, Plan ar House, Walton Street, Aylesbury, Bucks.
WW301 for further details

Signal storage tube

A range of image storage tubes, the C996 family from Cathodeon, will record a single short exposure and then display the image for up to 30 minutes. Where only a weak signal is available, the desired image may be integrated over a period of time. The range can be used for radar scan conversion to television display, with storage for up to 100 hours and prolonged read-out of up to 30 minutes, and for the integration of weak signals. The tubes incorporate a dielectric storage target scanned by two opposing electron beams. The input beam can be amplitude modulated with any desired signal information, and this information is statically stored on the target. The reading beam can then be used to extract the stored information for long periods of time. Either beam can be used finally to erase the stored information. Writing, reading and erasure can be area selective and also adjustable in time for a particular type of tube. The full range of storage characteristics is obtained by making available a number of types with different targets. The tubes have a circular target and are magnetically focused and

scanned. Length approximately 300 mm , diameter 40 mm . Weight 130 g without coils. Cathodeon Ltd, Trinity Hall Farm Estate, Nuffield Road, Cambridge. WW332 for further details

Gyrotropic ferrite circulator

Microwave and Electronic Systems has developed the Gyrocore-a non-reciprocal junction device. It consists of three lumped inductors placed between two ferrite discs.

An integral permanent magnet provides a magnetic field to couple the inductors by the gyrotropic action of the ferrite material. It is, in effect, a conventional circulator
giving low-loss transmission between two adjacent ports when the third port is decoupled. Line impedance can be matched by including suitable capacitance networks at each port. Four models are available to cover a frequency range of 50 to 1000 MHz with a power rating of 10 W mean and 1 kW peak. Isolation is better than 20 dB and insertion loss is about 1 or 2 dB . An isolatoronly version, known as the Isocore, is also available. This is a Gyrocore with one port terminated with a matched load. External tuning circuits can be included at the other two ports and adjusted for minimum forward loss and maximum isolation at the operating frequency. Microwave and Electronic Systems Ltd, Lochend Industrial Estate, Newbridge, Midlothian.
WW302 for further details

Calculator i.c.

All the electronic logic required for a digital calculator, performing addition, subtraction, multiplication and division, is contained in a 28 -pin, single-chip m.o.s. integrated circuit, the TMS 1802NC, just introduced by Texas Instruments. The only additional components required to construct a complete calculator are a keyboard, a numerical display (e.g. lightemitting diode array) and display driver circuits. Texas say that it should enable a calculator to be manufactured at a cost of $£ 20$ ex works, the i.c. itself costing less than $£ 10$ (in quantity). A laboratorymade specimen calculator was demonstrated to Wireless World.

The i.c. contains an eight-digit b.c.d. arithmetic logic unit; a three-register 182bit random access store; a 3520 -bit read-only memory for holding the programme; and timing, output, and control decoders. Floating-point or fixedpoint operation calculations can be performed and there is automatic round-off of numbers and leading-zero suppression. Arithmetic and control operations are based on a 4μ s single-phase clock system.

Electrically the i.c. requires a substrate supply, $V_{S S}$, of 7.2 V nominal and a gate supply, $V_{G G}$ of -7.2 V . The substrate current, $I_{S S}$, is typically 25 mA while the power dissipation of the whole chip is 250 mW .

The manufacturers state that they can supply integrated circuit display drivers and light-emitting diode displays suitable for working with the TMS 1802NC. Texas Instruments Ltd, Manton Lane, Bedford. WW314 for further details

Wideband high-power oscillator

Using eight plug-in heads, model 445 power oscillator from Microdotavailable from Texscan Instrumentscovers the range 10 kHz to 2500 MHz . Six plug-in units cover the range 10 kHz to 1000 MHz providing output up to 50 W . The two ranges $1000-2000 \mathrm{MHz}$ and $2000-$

2500 MHz have outputs variable up to 25 and 15 W respectively. Each plug-in unit can be amplitude or frequency modulated. Modulation can be applied externally or from an internal 1 kHz square-wave generator. After stabilization, frequency stability is given as $\pm 0.002 \%$ for a ten minute period and power output constant to within $\pm 0.2 \mathrm{~dB} / \mathrm{h}$. The unit is protected from mismatch and loss of load. The frontpanel meter indicates forward or reflected power. Texscan Instruments Ltd, Lord Alexander House, Hemel Hempstead, Herts.
WW322 for further details

Plastic power transistors for audio

Four transistors for use in medium-power audio equipment, announced by the Philips group at the Paris Components Show (page 229, May issue), are now available from Mullard. Designated BD201-4 they are inexpensive plasticencapsulated devices that can give an output of 20 W into loads of four or eight ohms. The BD201 and BD202 form a complementary pair, as do the BD203 and BD204, the odd numbers being $n-p-n$ transistors. Brief details are:

BD	BD	BD	BD
201	202	203	204

$V_{C B O} \max (\mathrm{~V})$	60	-60	60	-60
$V_{C E O} \max (\mathrm{~V})$	45	-45	60	-60
$I_{C} \max (\mathrm{~A})$	8	-8	8	-
$P_{\text {tot }} \max (\mathrm{W})$				
$T_{a m b} \leq 25^{\circ} \mathrm{C}$	55	55	55	55
$\left.T_{j \max } \mathrm{~T}^{\circ} \mathrm{C}\right)$	150	150	150	150
$h_{F E} \min \left(I_{C}=\right.$				
$\left.3 \mathrm{~A}, V_{C E}=2 \mathrm{~V}\right)$	30	30	-	-
$h_{F E} \min \left(I_{C}=\right.$			30	30
$\left.2 \mathrm{~A}, V_{C E}=2 \mathrm{~V}\right)$	-	-	30	30
$f_{h f e} \min (\mathrm{kHz})$				
$\left(I_{C}=0.3 \mathrm{~A}, V_{C E}=\right.$				
$3 \mathrm{~V})$				

High-voltage versions of the 2N3055 that have high-power handling capability are also announced. They are 2 N 3442 and 2 N 4347 and are particularly suitable for
use in a.f. amplifiers, converters, voltage regulators and power supply units. Type 2N3442 has a current rating of 15A and a power rating of 117 W . With a $V_{C E}$ of 80 V it will pass 1.4 A d.c. The 2 N 4347 has a current rating of 10 A and a power rating of 100 W . It will pass 1.4 A at $V_{C E}$ $=70 \mathrm{~V}$. Case is TO-3 style. Mullard Ltd. Mullard House, Torrington Place, London WC1E 7HD.
WW 323 for further details (BD types) WW324 for further details (2 N types)

Single-cast mixer/local oscillator

A combined high quality waveguide balanced mixer and local oscillator source have been designed as a one-piece cast by Micro Metalsmiths. Designated the type MM16B 3G1 the unit operates from 9.3 to 9.5 GHz in WG 16 size, and uses Mullard

crystals and Gunn diode. This bias voltage can be varied $\pm 0.3 \mathrm{~V}$ to give a tuning range of $\pm 10 \mathrm{MHz}$. Signal v.s.w.r. is 1.7. The units can be produced in brass or aluminium and bandwidths altered to meet requirements. Micro Metalsmiths Ltd, Kirby Moorside, York.
WW327 for further details

Static inverter

An inverter designed to provide a 50 Hz supply at 240 V from a nominal 24 V d.c. supply is available from R. Gilfillan \& Co. The main application of the unit, type $24 / 360 / 50 \mathrm{R}$, is as an emergency supply for mains operated equipment. The output voltage is maintained within $\pm 6 \%$ for battery supply voltages of 22 to 28 V and for loadings from below 0.5A to the full nominal 1.5 A . The inverter is protected against reversal of input polarity and against overload. Frequency stability is $\pm 1 \%$, but a crystal-controlled master oscillator can be provided or provision can be made for locking to an external 100 Hz source. Distortion over the practical working range is below 10%, and is very much less at 24 V input and 1 A load current. If a lower distortion figure is required because

of the special nature of the application an additional network element-pair may be incorporated. It is not needed for most applications. Meters are provided for both input and output voltages. Connections in the standard version are terminals for the battery and a 3 -pin socket for the 240 V output. Alternative types of connectors may be fitted if required. The efficiency under nominal working conditions (24 V supply, 360 VA resistive load) is 75%. Variants for 60 Hz or 40 H , working are available. R. Gilfillan \& Co. Ltd, South downview Road, Broadwater Trading Estate, Worthing, Sussex.
WW320 for further details

Slide sync recorder

A mono two-track $1 \frac{7}{8} \mathrm{in} / \mathrm{sec}$ cassette recorder and player with built-in speaker combined with a pulsing and synchronizing facility is available from Sigmatron. Amplifier output is 5 W (an extension speaker can be used). An audio input socket with separate control and level indicator are fitted. Playback frequency response is $100 \mathrm{~Hz}-8 \mathrm{kHz}$. The deck is fitted with a pause control. Other facilities provide for pulsing on one track while the audio signal is being monitored from the other track, and for a control signal to be introduced to stop the programme at, predetermined points, the programme then being re-started by push button. When the tape finally ends, the tape unit ejects the cassette and stops. The unit is called the Magister and costs $£ 99$. Sigmatron Ltd, Woodman Works, Durnsford Road, Wimbledon, London S.W.19.
WW310 for further details

Board-mounting DIN sockets

Rigid mounting direct to printed circuit boards, with overlap support for adjacent pairs or multiples, is possible with new DIN

Shure Electronics Limited, 84 Blackfriars Road, London, SE/ 8HA Telephone01-928 3424 Telex 2243

EEV know how to cool amag

netronfor high powerradar.

in a polypropylene case 20 cm long. The transmitter power of the PL201 is $1 W$. The battery lasts for a day and can be replaced quickly and recharged. Chargers are available. Rank Precision Industries Ltd, Watton Road, Ware, Herts.
WW328 for further details

High impedance oscilloscope probe

Active probe type POA 155 from Meteronic presents an input impedance of 10 MHz on all ranges. Bandwidth is $2 \mathrm{~Hz}-$ 12 MHz and switchable for $\times 10$ and

$\div 10$. The probe draws 11 mA from a 24 V supply. The output connector is miniature coax or B.N.C. Price £12. Meteronic, 114/116 Shipbourne Road, Tonbridge, Kent.
WW326 for further details

Transistor alarm-signal generator

A transistor operated'buzzer', encapsulated for protection against humidity, and compensated for changes in air pressure, is

available from UMED. The output frequency is 3000 Hz modulated by 300 Hz , and peak sound pressure level 84 dB at just over 1 metre. It is available for 12 or 24 V d.c. operation, but will work directly from a.c. when the sound will be modulated by the supply frequency. Current consumption is about 30 mA at 12 V . Price $£ 1.75$. U.M. Electrical Distributors Ltd, Beaumont Road, Banbury, Oxon.
WW315 for further details

Resin-coated capacitors

The Sky Cap range of capacitors made by Aerovox and now available from G. E. Electronics (London) extends from 2.2 pF to $4.7 \mu \mathrm{~F}$ (tolerances $\pm 5 \%, \pm 10 \%, \pm 20 \%$ or $+80,-20 \%$). Three working voltages are provided for- 50,100 and 200 V d.c., with a dissipation factor from 0.1 to 2.5%. Case sizes extend from 0.1 to 0.5 sq.in with thicknesses of only 0.1 to 0.2 in max. The leads are solder-coated copper. G. E. Electronics (London) Ltd, Eardley House, 182/184 Campden Hill Road, Kensington, London W8 7AS.
WW311 for further details

Precision wirewound resistor

Supplied in standard resistance values from 10Ω to $1 \mathrm{M} \Omega$, Econistors from Guest International have resistance tolerances of $0.005 \%, 0.01 \%, 0.025 \%$ or 0.1%. The temperature coefficient is ± 3 p.p.m. $/ \mathrm{deg}$ C max. from -55 to $125^{\circ} \mathrm{C}$. Long-term stability is ± 25 p.p.m. per year and less than 50 p.p.m. per year after three years operation under normal conditions. Windings are multiple pi and balanced to minimize the effect of capacitive reactance. Encapsulation is epoxy resin. The body size is $13 \times 7 \mathrm{~mm}$ with tinned copper axial leads. The resistors are also available in non-standard values up to $1.1 \mathrm{M} \Omega$. Industrial Components Division, Guest International Ltd, Nicholas House, Brigstock Road, Thornton Heath, Surrey, WW309 for further details

Electrochemical capacitors

The Gould Ionics Energy Storage Device (ESD) is an electrochemical capacitor with exceptionally high capacitance density and charge retention. It provides capacitance of $160 \mathrm{~F} / \mathrm{cu}$.in, with leakage resistance greater than $10,000 \mathrm{M} \Omega$. A 50 F capacitor occupies less than $1 / 3 \mathrm{cu} . \mathrm{in}$. and can store up to 25 coulombs at 0.5 V , with greater than 97% charge retention after 16 months storage. Using the electrochemical properties of rubidium silver iodide, the ESD can provide values from 50 F down to 0.01 F ($10,000 \mu \mathrm{~F}$) as individual units, and down to $500 \mu \mathrm{~F}$ formed on an i.c. substrate. Applications include long-time ramp generators and timing circuits (up to about a month with reasonable charging currents), standby
power for computer memories, and production of pulse power even months after charge. Prototype ESDs with values from 0.01 F to 50 F are priced at $£ 19.20$ each (minimum order is three of any one value). Large production quantity prices are expected to be in the $£ 0.60-£ 1.80$ range. Lyons Instruments Ltd, Hoddesdon, Herts.
WW331 for further details

Sound-level meter calibrator

The Rohde \& Schwarz ELEB sound-level meter calibrator, available from Aveley Electric, provides a coupler opening into which a meter's microphone is inserted. The calibrator can then be switched on to provide a standard level at 1000 Hz . At this frequency the calibration level is independent of the weighting filters used. Calibration error is kept within $\pm 0.25 \mathrm{~dB}$ at $25^{\circ} \mathrm{C}$ (within $\pm 0.5 \mathrm{~dB}$ between 0 and $50^{\circ} \mathrm{C}$) by internal compensation. Aveley Electric Ltd, Arisdale Avenue, South Ockendon, Essex.
WW317 for further details

Mobile radiotelephone

A medium-power solid-state v.h.f. f.m. radiotelephone, type BE385 from Burndept, is available with up to ten channels. Operation is from the 12 V vehicle

accumulator using either positive or negative earth. Operation is at 160 MHz or 80 MHz with 12.5 kHz channel spacing. Burndept Electronics (E.R.) Ltd, St. Fidelis Road, Erith, Kent.
WW330 for further details

Panel meter

A panel mounting meter with a scale length of 57 mm is available from Taylor Electrical Instruments. This meter, model 330 , uses the Taylor centre-pole move-

ment. It can be mounted vertically or horizontally. Taylor Electrical Instruments Ltd, Archcliffe Road, Dover.
WW318 for further details

November meetings

LONDON

3rd. IERE - "The effectiveness of modern visual communications systems" by B. Stapley at 18.00 at Engineering Lecture Theatre, University College. Gower St., W.C.I.

4th. IEE - "The pulsars", seventh Appleton lecture by Prof. F. G. Smith at 17.30 at Savoy Pl., W.C. 2.

4th. RTS - "Satellite broadcasting" Pt.3: Space broadcasting by Dr. G. Phillips at 19.00 at I.T.A., 70 Brompton Rd., S.W.3.

5th. IEE -- "Computer controlled frequency response measurement" by A. J. Ley and A. J. Martin at 17.30 at Savoy Pl., W.C.2.

9th. IEE - "Trinitron: its history and future" by S. Miyaoka at 17.30 at Savoy Pl., W.C. 2 .

9th. SERT - "Thyristors and semiconductor devices in domestic appliances and television’" by J. B. Ruming at 19.00 at Mullard House, Torrington PI., W.C.1.

9th. AES - "A variety of approaches to audio power amplifier design" by David Rees at 19.15 at the Mechanical Engineering Dept., Imperial College, Exhibition Rd., S.W.7.

10th. IEE - "Piezo-electric devices" by P. Ellis at 17.30 at Savoy Pl., W.C.2.

IOth. IEE - "Cable television and the wired city"' by R. P. Gabriel at 17.30 at Savoy PI., W.C. 2 .

IIth. IEE/I.Phys. - Colloquium on "Semiconductor memories" at 17.30 at Savoy Pl., W.C.2.

I Ith. RTS - "Satellite broadcasting" Pt. 4: Applications and implications of satellites by T. Singleton and Economics of satellite broadcasting by A. L. Witham at 19.00 at I.T.A., 70 Brompton Rd., S.W.3.

15th. IEETE - "World electronics scene" by Dr. Frank Jones at 18.00 at the IEE, Savoy Pl., W.C.2.

16th. IEE/IERE -- Colloquium on "Computer applications to design, simulation and testing of logic circuits and systems" at 10.00 at Savoy Pl., WC2.

17th. I.Navigation - "Onboard systems for monitoring marine traffic" by M. O'Hagan at 17.00 at the Royal Institution for Naval Architects, 10 Upper Belgrave St, S.W.I. 17th. IERE - "Solid state microwave sources for radar application" by Dr. B. Taylor and J. M. Skinner at 18.00 at Engineering Lecture Theatre, University College, Gower St., W.C.1.

18th. RTS - Discussion: "The poor relation - television sound" at 19.00 at I.T.A., 70 Brompton Rd., S.W. 3.

19th. IEE/I.Measurement Control
"Measurement and control in oceanography" discussion at 17.30 at Savoy Pl., W.C.2.

22nd. IEE - Colloquium on "British activities in satellite technology" at 10.30 at Savoy Pl.. W.C.2.

23rd. IEE - "Electronics in the '70s training for management opportunities" by Dr. F. E. Jones at 17.30 at Savoy PI., W.C.2.

24th. IERE -- "Recognition and encouragement of innovation" by K. Benjamin at 18.00 at Engineering Lecture Theatre, University College, Gower St., W.1.

25th. IERE - Symposium on "Correlation" at 10.30 at Mullard House, Torrington Pl., W.C.I.

ABERDEEN

9th. IERE - "Recent development in oscilloscope design" by W. N. A. Tatton at 19.30 at Robert Gordon's Institute of Technology, Physics Dept., St. Andrews St.

AYLESBURY

22nd. IEE - "Long distance millimetric waveguide systems" by R. W. White at 19.30 at the College of Further Education.

BIRMINGHAM

17th. RTS -- "The technical future of television" by Stuart Sansom at 19.00 at A.T.V. Centre, Broad Street.

BOURNEMOUTH

2nd. IERE - "Electronic performance testing of motor vehicles" by C. D. Freeman at 19.00 at the Technical College.

BRIGHTON

23rd. IERE — "Closed circuit television on cable - two standard video schemes" by J. A. Sharp and R. W. Wooten at 18.30 at the Technical College.

BRISTOL

9th. IEETE -- "ITV colour - challenge and achievement" by A. James at 19.30 at Cabot Room, Royal Hotel, College Green.

18th. SERT - "Satellite communications" by Group Capt. F. C. Padfield and Sq. Ldr. Holtby at 19.30 at Room C1.1, Cabot House, Bristol Polytechnic, Ashley Down Rd.

24th. IERE - "Hi-fidelity sound reproduction" by R. L. West at 18.00 at Queens Building, The University.

CAMBRIDGE

25th. IERE/IEE - "Thoughts on world communication" by Prof. C. Cherry at 18.30 at University of Cambridge Engineering Laboratories, Trumpington St.

CARDIFF

10th. IERE - "Trends in integrated circuits" by R. G. Hibberd at 18.30 at the University of Wales Institute of Science and Technology.

CHATHAM

25th. IERE - "Operational research" by W. H. Simmonds at 19.00 at the Medway College of Technology.

CHELTENHAM

I Ith. IERE - "V. L. F. communications" by Dr. 1. E. E. Bain at 19.00 at Government Communications Headquarters.

COLCHESTER

3rd. IEE - "The ionosphere and radio engineering" by G. Millington at 19.00 at the University of Essex, Wivenhoe Park. 9th. IERE - "Printed circuit boards for microelectronics" by J. A. Scarlett at 18.30 at the University of Essex, Wivenhoe Park.
llth. SERT - "Decoders and c.d. as in

Pye television receivers" by L. Briggs at 19.30 at the North East Essex Technical College, Sheepen Road.

EDINBURGH

10th. IERE - "Recent development in oscilloscope design" by W. N. A. Tatton at 19.00 at Napier College of Science and Technology, Colinton Rd.

FARNBOROUGH

25th. IERE - "Concorde flight control and landing systems" by R. George at 19.00 at the Technical College.

GLASGOW

1lth. IERE - "Recent development in oscilloscope design" by W. N. A. Tatton at 18.00 at The Institution of Engineers and Shipbuilders, Rankine House, 183 Bath St.

19th. SERT - "Holography and its applications" by Dr. Sayce at 19.30 at Birniehill Lecture Theatre, N.E.L.. East Kilbride.

HUDDERSFIELD

8th SERT -- "Video tape recorders" by R. Maude at 19.30 at Room E43. Engineering Tower, The Polytechnic, Queensgate.

LEICESTER

9th. RTS - "The Philips cassette video recorder" by C. Mitchell and C. I. Reid at 19.30 at the Bennitt Building, lecture room 4, University Rd.

16th. IERE - "The application of phase-locked loop to stereo decoders" by A. J. Haywood and M. J. Portus at 19.00 at the Physics Department, The University.

LIVERPOOL

10th. IERE - "The bipolar coagulator" by N. J. Davies at 19.00 at Dept. of Electrical Engineering and Electronics, University.

MANCHESTER

11th. IERE - "Modern oscilloscopes" by M. Thistlethwaite at 18.15 at University Institute of Science and Technology, Renold Building.

MIDDLESBROUGH

30th. SERT - "R.F. measurement techniques" at 19.30 at the Cleveland Scientific Institution.

NEWCASTLE-UPON-TYNE

10th. IERE - "Digital instrumentation" by A. R. Owens at 18.00 at the Main Lecture Theatre, Ellison Building, The Polytechnic.

PLYMOUTH

18th. IERE - "Optical communication systems" by M. M. Ramsey at 19.00 at The Polytechnic.

PORTSMOUTH

17th. IERE - "Micro-wave integrated circuits" by S. V. Judd at 18.30 at the Polytechnic.

SOUTHAMPTON

16th. IEETE - "Police communications" by Chief Inspector G. W. Baker and G. H. T. Evans at 19.30 at Polygon Hotel.
STONE
Ist. IERE - "Radio astronomy" by R. S. Booth at 19.00 at Post Office Technical Training College, Duncan Hall.

SWINDON

2nd. IERE - "Thyristor applications" by Dr. M. James at 18.15 at The College.

WAKEFIELD

11th. IERE - "Electronics in policework" by A. Thompson at 19.00 at Technical and Art College, Margaret Street.

YORK

3rd. SERT - "Electronic applications in hospitals" by D. Barnard at 19.30 at the College of Further Education, Dringhouses.

Literature Received

For further information on any item include the appropriate WW number on the reader reply card

ACTIVE DEVICES

Integrated Photomatrix Ltd, The Grove Trading Estate, Dorchester, Dorset, have produced a shortform catalogue - which doubles as a wall chart on their optoelectronic components
. WW401
A Motorola wall chart devoted to m.e.c. (Motorola emitter coupled logic) is available from GDS (Sales) Ltd, Michaelmas House, Salt Hill, Bath Rd, Slough, Bucks

WW402
An 'All products short-form catalogue' covering standard and custom designed m.o.s. i.cs, diodes, connectors and capacitors has been produced by Emihus Microcomponents Ltd, Clive House, 12-18 Queens Rd, Weybridge, Surrey

A catalogue which lists rectifier, zener and microwave diodes, diode assemblies, thyristors and transistors manufactured in America by a company called Unitrode can be obtained from G. E. Electronics (London) Ltd; Eardley House, 182/4 Campden Hill Rd, Kensington, London W. 8

WW404

PASSIVE COMPONENTS

We have received the following literature from the components division of Pye TMC Ltd, Roper Rd, Canterbury, Kent:

Subminiature relay (contacts 2 c.o., 15 W or 0.5 A ; sensitivity 35 mW)

WW405
Sensitive reed relays (n.o., n.c., or latching) WW406 Latching relay type 21 (contact s.p.c.o., 3A, 28Vd.c; sensitivity 176 mW) WW407
Small power relays type PHP (various coils; 4 p.c.o. contacts rated at 3 A at 30 V d.c.) . . WW408
'Moduprint' panel mounted paper tape printers available in a variety of configurations WW409
'Proximity initiators and proximity switches
Snap-action switch d p.dt
'Diode-lites'. GaAs light emitters . . . WW412
GaAs numerical readout assembly . . WW413
Single GaAs numerical readouts . . . WW414
The 'Hugger' adjustable clamp is an adjustable cable and harness clamp of a new design which is available in screw mounting and self-adhesive forms. It is described in a leaflet. Thomas \& Betts International Inc., Greenhill House, 90-93 Cowcross St , London ECIM 6JR

WW415
The D-T-V Group (126 Hamilton Rd, London SE27 9SG) have produced another 'Swift Service' components catalogue. It lists a large number of both passive and active devices

WW416
Fast response 'patch thermocouples' (types P1 and P2) which can be stuck to any suitable surface to provide a permanent temperature monitor point are described in a leaflet. Comark Electronics Ltd, Brookside Ave, Rustington, Littlehampton, Sussex . WW417

A catalogue, called 'Section-K' covers a range of banana plugs and patch cords. Radiall Microwave Components Ltd, Romer House, The Causeway, Staines, Middx

WW4 18
Details of mechanical counters in all shapes and sizes are given in a short-form catalogue from English Numbering Machines, Queensway, Enfield, Middlesex

WW4 19
Rank Bush Murphy, Drayton Rd, Boreham Wood, Herts., have produced a second edition of their electronic components catalogue WW420

Tantalum capacitors stocked by ITT Electronic Services, Edinburgh Way, Harlow, Essex, are listed in a publication 'Tantalum Capacitor Finder'. Other manufacturers' equivalent type numbers and N.A.T.O. numbers are given

WW421

APPLICATION NOTES

We have received the following literature from Integrated Photomatrix Ltd, The Grove Trading Estate, Dorchester, Dorset:
Information sheet PX129. ‘Analogue Photodetector family'

WW422
201. 'The facts of light' WW423
202. 'An optical speech link' ... WW424
203. 'Image scanning with IPL 7000 series photo arrays’ WW425

Application note 935 from Hewlett Packard Ltd, Components Group, 224 Bath Rd, Slough, Bucks. SL1 4DS, is called 'Microwave power generation and amplification using Impatt diodes'

WW426

EQUIPMENT

A tape recorder designed for educational purposes (VR47) is described in a leaflet. Van der Molen Ltd, 1 Mildmay Rd, Romford, Essex RM7 7DA WW427

We have received the following literature from Aveley Electric Ltd, Arisdale Ave, South Ockendon, Essex RM 15 SSR.
Dumont Oscilloscope model 1062 . . WW428
Pacific Measurements Inc. (U.S.A.) log./lin. r.f. power meter model 1009 ($10 \mathrm{MHz}-12.4 \mathrm{GHz}$, $1 \mu \mathrm{~W}-10 \mathrm{~mW}$)

Rhode \& Schwarz Literature

Supplement to communication equipment catalogue WW430
Supplement to measuring instruments catalogue WW431
HFV. Field-strength meter, v.h.f. (130 dB range) USU1. Selective microvoltmeter, $30-1000 \mathrm{MHz}$ WW433 USU2. Test receiver, u.h.f., $30-1000 \mathrm{MHz}$ WW434 PBO. Octave filter, 45 to $22,400 \mathrm{~Hz}$. WW435

Leaflet P. 1030 from Adretta Ltd, Station Approach, Fleet, Hampshire, describes a precison tuning fork oscillator designed for operation from a 5 V supply, $600-4,000 \mathrm{~Hz}$

WW436
Motorized selector switches for switching low-level devices such as thermocouples, resistance thermometers, etc are described in a leaflet from the Croydon Precision Instrument Co, Hampton Rd, Croydon WW437

A 13-page catalogue is devoted entirely to Hewlett Packard's (224 Bath Rd, Slough, Bucks) very large range of pulse generators

WW438
The type 830 medium power (15 W peak) X-band pulsed signal source is the subject of a leaflet from Microtest Ltd, 28 Walker Lines, Industrial Estate, Bodmin, Cornwall

WW439
A set of leaflets describe the audio-visual equipment used to produce the 'Heroes' display at Madame Tussaud's exhibition. Electrosonic Ltd, Electronic Control and Audio Systems, 47 Old Woolwich Rd, London S.E. 10

WW440
Various size transparent grids, a numerically controlled X-Y photo-construction equipment and a $20-$ inch measuring microscope, all for printed circuit master board fabrication, are mentioned in a leaflet from P. T. Barclay \& Partners Ltd, Ullswater Industrial Estate, Coulsdon, Surrey . . . WW441

We have received the following literature from Data Laboratories Ltd, 28 Wates Way, Mitcham, Surrey Mullard mosaic printer. (Prints a variety of characters based on a 5×7 matrix on paper) WW442
700 series analogue to digital conversion systems
Biomotion (U.S.A.) transient recorder model 610 (d.c. to 2.5 MHz). WW444
Biomotion transient recorder model 8D2 (d.c. 500 kHz)

WW445
Smiths Industries, Industrial Instrument Division, Kelvin House, Wembley Park Drive, Wembley, Middx. HA9 0NU, have sent us a series of data sheets describing a range of very small chart recorders 96 mm (3.78 in) square at the face and 210 mm (8.27 in) deep:

D/Tem. Thermocouple input chart recorders with ranges from $-60-1.600^{\circ} \mathrm{C}$. . . WW446
D \& Z series: Miniature chart recorders with f.s.ds of 6 mV or $10 ،$ A upwards . . . WW 447

Type Z. Miniature ten-channel chart recorders WW448

A brochure describes a solderability tester manufactured by Electrothermal Engineering Ltd, 270 Neville Rd, London E. 7

WW449
Scientific Audio Electronics, P.O. Box 2361, Santa Ana, California 92707, U.S.A., have supplied us with the data on the following items:

Programme equalizer WW451
Stereo octave equalizer WW452
Power amplifiers WW453
F.M. stereo tuner (Mk 6) with digital frequency readout and a 3 inch oscilloscope tuning display (\$950 in U.S.) WW454

GENERAL INFORMATION

The following information sheets may be obtained from the Engineering Information Department, B.B.C., Broadcasting House, London W1A 1AA. 1936(2). B.B.C. radio Manchester v.h.f. service details
1926(5). B.B.C. radio Merseyside v.h.f. service details
1034(17). Radio transmitting stations (v.h.f.)
1607(1). Stereophony, questions and answers
1924(7). Stereophonic transmissions radio 3
4937(2). Angus 625 -line colour television services
The services offered by Siraid, South Hill, Chislehurst, Kent BR 7 5EH, in adhesive bonding, instrumentation and control and automation equipment, is described in a leaflet called 'of course'
The following BS publications may be obtained from the Sales Branch, British Standards Institution, 101 Pentonville Rd, London N1 9ND.

Glossary of electrotechnical, power, telecom-
munications, electronics, lighting and colour terms.
Part 3. Terms particular to telecommunications and electronics.

Group 01: General telecommunications and electronics terminology price $£ 1.40$ Group 02: Telephony terminology price $£ 1.20$ Group 03: Telegraphy, including facsimile terminology price £1 Group 04: Broadcasting radio and television terminology price 80p Group 05: Propagation and media terminology
Group 06: Radio location and navigation terminology price £1 Group 07: Radiocommunication terminology
BS3939: Supplement No. 3 (1971) Graphical symbols. Additions and alterations to sections 1-22
price $£ 1$
BS9000: Part 1. General description and basic rules price £1.20
BS9361: 1971. Rules for the preparation of detail specifications for semiconductor devices of assessed quality: high frequency low power transistors price 95p

Industry Services International Ltd, Griffin House, High St, Bracknell RG12 1LF have prepared a brochure which describes the services it can offer in product support, maintenance improvement, quality control and technical communication

WW455

Progress in Tape Recording

by Basil Lane

Since its origin in 1898, the progress of magnetic recording has been marked by fits and starts of inventiveness, and a slow acceleration of interest by the general public. Modern plastic tapes first appeared in 1944, but it rook until the early 1950s for domestic tape machines to become popular in the home.

Even at that stage quality was still far from being high and the initial enthusiasm gave way to euphoria in which many well known manufacturing names went to the wall. In the long run it was almost certainly the continuing professional interest which restored the commercial popularity of the tape recorder, until in this past year the general sales figures have shown a satisfying upward trend that has encouraged the formation of many a new company.

In this review we take a brief look at developments which over the past year or so have represented a serious contribution to the state of the art of tape recording. Many of the limitations of modern techniques rest with the tape itself and so it is logical that the first section of this article should be devoted to this subject.

Tape technology

Essentially, magnetic recording tape consists of a plastic base material coated with a magnetically retentive surface. As the most readily available and tractable material for this active element is iron, most development effort up until around 1965 concentrated on producing compounds of this substance for use in coatings.

Certain oxides of iron show good magnetic properties, but one in particular is ideal for the purpose, having high retentivity, low coercivity and being cheap to manufacture. This is gamma ferric oxide which does not occur in nature and has to be derived by a fairly exhaustive process from the non-magnetic alpha ferric oxide. The final physical form of the oxide is a fine needle shaped particle the dimensions of which are required to be held within fairly tight tolerances, since this has a bearing on the final characteristics of the tape.

Since a carefully controlled layer of these particles needs to be applied to the plastic base material some adhesive and
dispersive properties are required and these are added to the oxide in the form of a binder, solvent and lubricant. This mixture or 'dope' is then carefully applied to the base material in thicknesses and dispersion to suit the properties required of the final product.
The factors in the coating and its associated process which affect the magnetic properties can be stated in a simplified form as follows. The proportions of oxide, binder and solvent are determined by the necessity to keep oxide shedding to a minimum. Many of the so called 'white box tapes' suffer terribly from this problem, thus clogging up the recorders on which they are used.

Oxide thickness determines the maximum output possible from the tape - the thicker the magnetic material the greater is the recording current required for saturation. Greater thickness also reduces the distortion at normal recording levels but requires increased levels of bias. The absolute noise level of the tape is affected by oxide thickness since this is related to the bulk of active material in the replay head gap field at any one time. Modulation, or d.c., noise is related to the density, evenness of dispersion and thickness, and regularity of particle size - the latter also affecting sesitivity and print through. Particle size and dispersion also have an important bearing on the short wavelength performance and the noise spectrum.

Surprisingly, the base material also plays a major part in some of the final properties of the tape. Most modern products have a p.v.c. or polyester base material with a later trend towards polyester. This is immensely strong even when thin and resists stretch, shrinkage and reasonable punishment from water and heat. The thickness chosen is a complex function dependent on the acceptable limits of print through (though oxide properties have some bearing on this) and the mechanical details of fitting a specific length of tape onto a certain reel size or the degree of wrap round on record and replay heads required by different types of recorder. Naturally the geometry of the heads plays no mean part in this and this does help to explain one of the many reasons for the diversity of base thicknesses available. Another consider-
ation which comes to mind is the final use to which the tape is put - for example, educational recorded material tends to undergo extensive and often rough treatment and for this, a heavy grade of base material could prove to be most suitable. The poor degree of wrap round oh the tape heads would be of minor consequence since the degree of fidelity does not often have to be high.

In cassettes the base thickness is more usually dictated by the need to squeeze a specific amount of tape into fixed dimensions. For this reason, triple play would be used for C60 cassettes and quad play for the longer C90 versions. Thus it is usual where a manufacturer produces a complete range of tapes, for up to five thicknesses of base material to be utilized. Some tapes are put to work in cartridges and other endless loop devices, where long lengths have to slide over each other and to assist this graphite is added to the base material to provide lubrication. Polyester, in common with most other plastics can build up static, which affects the way in which tape winds on or off a reel. This can be partly overcome in some base materials by making the reverse a matt finish to help prevent the tape from slipping sideways as it beds on to the reel. However, as will be seen, some manufacturers have gone to the root of the problem and produced a solution which could prove to be more satisfactory.

All these points add up to a large number of independent variables which can be permutated and combined to produce a range of tapes from which selection has to be made to suit circumstances.

For convenience, tapes can be grouped under generic headings dependent upon their magnetic properties - low noise, low noise and high output, high output, and low print. Bearing in mind that there are only a limited number of physical factors involved, it can be seen that trading of one advantage for another is inevitable, so now we go on to look at the way in which the modern generation of tapes has evolved.

Modern developments in tape

The latest range of magnetic tapes based upon the use of ferric oxide as the recording medium has probably reached
the ultimate in development. Much of the progress has been led by BASF who were the first to produce a viable magnetic tape. The latest achievement in the domestic range of tapes can be said to be a spin off from the demanding requirements made of the professional range where most manufacturers have made efforts to produce the difficult combination of low noise with high output. For example, where quality reproduction is required in domestic machines with 4-track heads or $\frac{1}{4}$-track stereo heads BASF's LP35LH probably represents a good example of the latest generation. However, such a tape would be suitable for use only with the more modern machines where the bias - an important factor many fail to appreciate - has been optimized for that particular product. In the case of earlier machines BASF DP26 would be preferred, since the machine biasing would produce a more acceptable high-frequency performance and a more satisfactory subjective signal-to-noise ratio.

Generally speaking, professional machines working at $38 \mathrm{~cm} / \mathrm{sec}$ are better off with single-play tapes where the additional base thickness assures the best signal-to-print ratio and a good measure of mechanical stability. Here two new developments by BASF have been announced recently. Advantage has been taken, in one instance, of the professional Dolby 'A' system (of which more later) to introduce a tape with an incredibly good low noise performance coupled with excellent short wavelength characteristics. However, considering the base thickness $(50 \mu \mathrm{~m})$ the print through is slightly inferior to the standard LGS52. Fortunately, since the Dolby system deals with this problem rather well this is of minor consequence. The tape type is known as SP50M and represents a step which should assist studios to improve the quality of new masters and duplicating copies quite considerably.

The second and most recent addition to the professional range of tapes is one which carries the same oxide as LP35LH but has a matt backing to assist in even spooling. This can be a most important requirement for several reasons. Any tape edges protruding from the bulk of the reel of tape are easily damaged; this has a significant effect upon the signal level produced by the replay head. Also, unequal stresses are held in the tape causing distortion of the base material. This line of thinking is also evident in the new types produced by Zonal Tapes. Known as the Spectrum range not only are they available with matt back finish (in the low noise version) but also the base material has been given anti-static treatment which helps to prevent uneven spooling, and reduces the possibility of small dust particles adhering to the tape. In both versions a high output performance has been achieved, but some evidence of the trade off principle is shown in that one tape provides low noise with high output, and another low print-through with high output. Although
the Spectrum range was designed principally with the professional in mind, the extended-play versions would probably work very well on modern high quailty domestic machines.

EMI have chosen to produce an interesting group of tapes under the name of AFONIC. ${ }^{-}$These consist of different base thicknesses with identical oxides and oxide thicknesses. The result is that apart from a deteriorating signal-to-print ratio with the reduction of base thickness, all tapes have identical magnetic properties and no change of biasing is necessary when moving from one tape to another.

Over the past year, cassettes have proved to be the area of greatest growth and signs of this are reflected in the number of developments and innovations that have taken place. Since the cassette machine is a sensitive animal, the cassette design is of considerable importance in ensuring a low wow and flutter performance. In all cases the degree of tape/head contact depends upon a constant and steady back tension from the feed spool and most cassettes have failed to provide this. The main reason for this is irregularities in rewind tension causing the tape to scatter or throw sideways and come into contact with the inner cheeks of the cassettes; in addition, sufficient tension builds up in the tape itself to cause temporary tape stretch. Unfortunately this is not relaxed during the normal passage of the tape across the head, and tape weave occurs reducing channel separation and aggravating the wow and flutter problem. Other problems relate to a small bulk of oxide present in the record and replay head gap field creating low levels of tape saturation with accompanying poor low-frequency distortion characteristics.

These difficulties caused a considerable flurry of development activity involving about three years hard research. There has also been a spin-off from the computer and video recording fields where the demands for low dropout coupled with excellent short wavelength characteristics have engendered research into the use of other magnetic materials beyond ferric oxide.

A considerable amount of this work has centered on, the use of oxides of nickel, cobalt and chromium - all of which have magnetic properties of the right type. Du Pont de Nemours, of America, were the first to make the break, by marketing a cassette tape carrying chromium dioxide as the magnetic medium. The advantages said to be gained from this were improved signal-to-noise ratio coupled with a superior ability to accept a higher level of signal at high frequencies. However, this was not strictly true, for the absolute noise level was higher, and although a higher level of flux could be recorded on to the tape, if advantage of the better high-frequency record characteristics of the tape were taken by adjustment of equalization and pre-emphasis the resultant subjective noise level deteriorated taking the situation almost back to square one. Although Du Pont holds the patents on this type of tape, three other firms have now produced their own versions of this
type of oxide. The first of these to appear in Europe was from Agfa who produced review samples in the UK earlier this year. From tests conducted on this tape, two things became immediately obvious, first that the oxide had a higher coercivity requiring a greater level of bias current, and a higher retentivity making it almost impossible to erase using the average cassette recorder. Other factors, such as an inferior modulation noise, became evident and a rather abrasive surface which wore the soft record/replay heads on cassette machinery at a rather alarming rate. Clearly, these two new tapes did not represent the advance first imagined, but they did bring a marginal improvement. Finally, BASF had been seeking a way of producing a chromium dioxide tape without falling foul of the Du Pont patent and came up with a series of pre-production samples first appearing from the beginning of this year, and showing a steady improvement with each appearance. September saw the launch of the product and testing shows that many of the earlier deficiencies of the oxide have been overcome.

Biasing for BASF chrome cassettes needs up to twice as much head current as conventional oxides, and a high-frequency ($70 \mu \mathrm{sec}$) replay equalization. Unfortunately the DIN Committee has settled to retain the low frequency $1590 \mu \mathrm{sec}$ characteristic used with ferric oxide tapes which reduces the overload margin at low frequencies quite considerably. This is currently causing one of the biggest headaches for cassette enthusiasts. However, signal-to-noise ratio and high-frequency performance has been improved and a better surface structure has eliminated the original head wear objections. This cassette will be appearing on the market from the end of October at a rather higher price than its ferric oxide counterparts. The need for a change of bias and equalization implies the necessity for some additional circuitry in cassette machines and this is now appearing on some models. It is interesting to note that all versions of the cassette have the same thickness base material making the C 120 a much more reliable product than its forebears. I understand, although I have not received any literature on the subject, that the Japanese firm of TDK are also marketing a chromium dioxide tape around this time, extending the choice to a C30 length.
The principal disadvantage of such an oxide is the need to alter the bias and equalization, and this has occasioned some research into oxide materials having superior qualities to ferric oxide but requiring little or no change in any of the machine parameters. The 3 M Company Magnetic Division have come up with a tape making use of a cobalt oxide which is said to bring improvements in signal-to-noise ratio by permitting greater levels of signal to be impressed upon the tape. Ampex have also been working along these lines but with the addition of mixing the coating in two layers with ferric oxide. This brings several advantages. Since cobalt oxides have a lower
retentivity and coercivity the danger of print through is increased (the 3 M 's product suffers rather badly in this respect), and so mixing ferric oxide with the cobalt oxide can give the superior print characteristics of ferric oxide whilst adding the sensitivity of the cobalt. Whether this will work out in practice, remains to be seen, but it is rumoured that something will soon appear from Ampex

As mentioned earlier, the cassette itself is a major influence in determining the performance of the machine and to this end efforts have been made by all manufacturers to improve the tape wind and eliminate jamming or increased friction. Some interesting research by the 3 M company shows that wow and flutter on conventional tapes increases sharply after about 50 passes through the machine. This is a result of an accumulation of winding errors and internal stresses building up in the base material to permit the tape to touch the cassette cheeks thus creating an irregular back tension. They have overcome the problem by making the base material highly conductive to eliminate static.

Ampex and Philips are attacking the problem from a mechanical standpoint by improving the bearings of the spool centres, which contribute a considerable amount of friction. The first version produced by Philips was intended for computer purposes in data logging. The most fascinating feature of this data cassette is that it is made of metal, thus improving accuracy and reliability.

The new chrome cassette produced by BASF also displays some unique features to improve the mechanical performance. Pivoted, hard plastic guides give an even wind, help to remove dust particles, and also peel the tape layers apart in the event of static causing one layer to stick to the next. Developments are occurring so fast in this sector of the tape world that much might have happened between the writing of this article and its appearance on the bookstall.

So far, little has been said about cartridges, these employing an endless loop of $\frac{1}{4}$ in tape. Some developments have occurred here with improvements in tape oxides similar to that enjoyed by the reel-to-reel recorder, but in particular the peculiar requirements for low friction where tape layers move one against the other have created the need for newer improved lubricants and heavier gauges of base material. Molybdenum disulphide has come to the rescue and the BASF cartridge tape base material is now impregnated with this chemical.

Progress in tape recorders

From the foregoing, one might be forgiven for assuming that all the major developments of the past two years have been with the tape manufacturers, but this is not really so, although in most instances the new machines have been the result of a steady improvement, rather than startling innovation. On the mechanical

Misalignment of the pole pieces in a cassette record/replay head.
side considerable effort has gone into improving the reliability and mechanical performance so that wow and flutter figures of well below 0.15% have become quite common. At the high-priced end of the scale it is getting difficult to differentiate between domestic and professional - a fact that many over-enthusiastic advertising departments take unfair advantage of when labelling their machines as professional or semi-professional (whatever it is!) when they meet few of the criteria demanded by the professional recordist.
H.M. Government does have some say in the definition of a professional recorder (for tax purposes) but the requirements of the studios and broadcast organizations tend to be more basic and down to earth. Obviously the highest possible mechanical and electrical performance is required. The demands made of a machine that is to produce master or duplicating material are very high indeed, but in addition to this there are other features which are not only desirable but have become obligatory. Such features as being able to accept NAB or cine centred $10 \frac{1}{2}$ in spools; being fitted with either XLR connectors; P.O. jack plugs or locking DIN plugs; being capable of operation at tape speeds of $19.5 \mathrm{~cm} / \mathrm{s}$ and $38 \mathrm{~cm} / \mathrm{s}$; having accessible bias, preemphasis and equalization controls - all these have become regular features that delineate the professional area. In addition there are a number of important electrical requirements that have to be met, such as balanced line input and outputs (usually 600 ohms, although one studio at least has adopted a lower impedance) variable speed spooling and interchangeable head blocks.

Tape heads

Record and replay heads naturally present themselves next for discussion. Essentially. all that a recorder head consists of, is a
ring-shaped electromagnet with a very fine gap between the pole pieces. Three types of material are now used for the poles in this area.

The earliest and still most popular structure is laminated magnetically soft iron. The very thin pieces of metal are stamped out, clamped together, wound with fine enamelled copper wire, and finally either moulded into a plastic block or fixed firmly inside a metal extrusion. The manufacturing tolerances involved are very close and this is why it is only in the very top-quality machines that consistency of performance is found from head to head. The principal factors involved are the gap dimensions which affect the wavelength performance of the head, alignment of the gap vertically since azimuth errors can cause serious reductions in level across the tape by phase cancellation at high frequencies, and vertical alignment of the pole pieces which can affect inter-track crosstalk and signal output.

As an example of the sort of errors which can occur, we reproduce a highly-magnified picture of a cassette record/replay head that suffers from several inaccuracies in this respect. The gap between the pole pieces is extremely small (about 1 micron) and severely limits the usable flux output. For this reason on multi-head machines it is usual to obtain a good flux at the record head by keeping a fairly wide gap, anything up to $12 \mu \mathrm{~m}$ for reel-to-reel heads, and a very narrow gap at the replay head for good high-frequency performance.

The shape of the pole piece in contact with the tape is of some considerable importance. At low frequencies, where the recorded wavelength approaches the dimensions of the core width, comparatively large fluctuations of output level can occur. Normally these would be

The Dolby System: A Progress Report

Following world-wide acceptance of the professional A-System, more than thirty manufacturers will soon offer advanced new consumer products incorporating the Dolby B-System.

The Dolby A-System is the professional noise reduction system. Nearly 5,000 processors are now being used by record companies, motion picture studios, broadcasting stations and communication authorities throughout the world. The A-System has achieved virtually universal acceptance among professionals because it is precise and consistent in operation, simple to use, and has no effect upon the music or other signals being recorded or transmitted.

The Dolby System is a complementary noise reduction system. Unlike playback-only devices, which even in their most sophisticated form must alter the characteristics of the material, the Dolby System is used before and after the recording or transmission channel. The process selects the quietest signals during recording, where noise might be heard by a listener, and subtly increases their level automatically. Loud signals are not processed in any way. During playback, the low-level components are reduced by an exactly complementary amount, thus re-establish ing exactly the original signal dynamics, and at the same time eliminating most of the noise introduced during the recording process

The Dolby A-System provides wide-band noise reduction. With the Dolby A-System, this low-level compression-expansion technique is applied in four separate frequency bands covering the entire audio spectrum. Consequently cross-talk, modulation noise, print-through, and hum are all reduced, in addition to tape hiss. In communications applications, cross-talk, dialling pulses, and other mid-range noises such as monkey chatter are all effectively attenuated.
The Dolby B-System is the compatible high fidelity noise reduction system for consumer applications. Using the same basic compression-expansion technique as the A-System, but employing a single high-frequency band, the B-System is intended for consumer applications where hiss is the predominantly encountered noise. The single band operation is much simpler and lower in cost than its professional counterpart. Dolby Laboratories makes only protessional products, but licenses the B-System to manufacturers of consumer tape recorders, receivers and Dolby adapters. More than 30 companies will soon be making products incorporating the B-System, and others are joining the list each week.

ADVENT

A.G.S
allied radio shack
AMPEX
BELL \& HOWELL
BENJAMIN
bigston
CONCORD
CROWN RADIO
EMERSON
FERROGRAPH
FISHER

HARMAN-KARDON highgate (alpha HITACHI
JANSZEN
KELLAR KENWOOD (TRIO) K. L. H
lafayette
LENCO
MITSUBISHI
NAKAMICHI PLANET

RANK WHARFEDALE REVOX
SANSUI
SILVER
SINGER
SONAB
STANDARD RADIO
TEAC
TELETON
TELEX/VIKING
3M/WOLLENSAK

The Dolby B-System has been used in FM broadcasting with excellent results. FCC rules permit broadcasting of Dolby-encoded signals in the U.S:; experiments of this kind are taking place in other countries as well. The reduction in noise given by the system can more than double the area in which high-fidelity listening is possible, with no increase needed in transmitter power. Later this year Fisher and Harman-Kardon will be the first to offer receivers with the Dolby System built in.

Hundreds of different commercially recorded Dolby cassettes will be available by the end of the year. Many are already being released regularly by Columbia, Ampex, London/ Decca, Vox, Musical Heritage Society, RCA (U.K.), and Pye/ Precision (U.K.). Twenty other companies have obtained the professional B-Type encoders needed for duplicating such cassettes. There is no royalty payment to Dolby for these recordings. Listeners and dealers everywhere agree that Dolby cassettes are perfectly playable on any cassette recorder, and usually sound better even on non-Dolby equipment.
The Dolby B-System and new tape formulations (such as chromium dioxide) work very well together. Although their noise reduction effect is much less than that of the Dolby System, some of the new tapes provide a useful extension of highfrequency response. Used with the Dolby System, they provide striking evidence of the cassette's real capability. Although chromium dioxide tape is not compatible with the vast majority of cassette recorders in the field and on dealers' shelves, more and more manufacturers are providing new machines with the necessary circuitry, along with the Dolby System.

Integrated-circuit versions of the Dolby B-System will be available next year. An IC is being developed jointly by Signetics and Dolby Laboratories; the technology will be made available to IC manufacturers everywhere, to insure industry standardization and lowest cost to consumers, as well as reliable supply to manufacturers. Ultimately, the increased retail cost incurred by adding the Dolby System to a tape recorder should be $\$ 10$ to $\$ 20$.

The cost of licensing the Dolby System has been reduced considerably because of rapid industry acceptance of the system. Manufacturers now pay on a simple per-unit basis, with royalties as low as ten cents per channel. The licensing agreement also entitles a manufacturer to sustained technical support from Dolby Laboratories in noise reduction applications. Dolby employs a staff of more than 100 at its London facility, and maintains offices in New York and Tokyo, all devoted exclusively to noise reduction system development, manufacture, sale and licensing. To date, 80 patent applications have been filed in 17 countries to cover the Dolby System; 19 patents have already been issued in 10 countries, including the United States.
with a low revolution rate, the inertia of the flywheel is also reduced thus permitting variations in spooling or back tensions to adversely affect wow and flutter performance. Speed control on most modern mains driven machines is either governed by taking advantage of synchronous motors or using am electronic servo system such as is to be found on the Revox. An additional advantage of the servo system is to permit a direct drive capstan from the motor spindle, where the accuracy of the servo system overcomes the disadvantages of the low angular speed of the motor.

Battery-powered machines can suffer from supply voltage variations due to battery exhaustion and it is normal in these to stabilize the supply in some way.

An example of the success of combining these two features is to be found in the fascinating new addition to the Nagra range - the SN miniature tape recorder. Here the supply for transport and electronics is derived from two dry cells giving a total of 3 V , this is then converted to 5 V and stabilized for use by the motor and circuitry. In addition a servo system holds speed constant and because the capstan and motor spindle are in one, wow can be held to a minimum by the same system.

Flutter can occur as a direct result of small variations in the intimacy of tape contact with the head. In most early machines this was kept under control by the use of pressure pads, still a feature of the Ferrograph Series 7 machines. Part of the reason for employing such a system was because of the difficulties in maintaining a steady back tension from the feed spool which was mechanically braked to avoid overrun. Over the past few years an increasing tendency has been to use three motors one to drive the capstan and the others to rewind and control the 'play' mode tape tension. This has eliminated the necessity for pressure pads, but still leaves tape/head contact at the mercy of small vibrations caused by tape sticking as it leaves the feed spool or slow variations in reel motor torque as the diameter of the tape spool changes. Various systems have been evolved to combat the problem, many having been passed on to domestic machines from the professional range. Typical of such an evolution is the use of flutter rollers between the feed spool and head block in the Akai GX365. The Tandberg 6000X shows a vestige of the old pressure pad system with the use of a pressure pad pressing the tape against a metal plate to the left of the erase head thus providing good control of the tape as it passes across the head assembly.

Philips have introduced an interesting feature in their machine to be released in November. The capstan drive motor is a d.c. brushless type where a Hall effect device is used to sense the armature position and appropriately switch a transistor circuit controlling the polarity of the motor supply. It seems a pity that having gone to all this trouble the Philips N4450 is incapable of turning out a better
wow-and-flutter figure than 0.15% at $19 \mathrm{~cm} / \mathrm{s}$ (the best speed) and a speed constancy of $\pm 1 \%$. As an example of the sort of figures claimed for a professional portable, the Tandberg Model 11P used with their unique Farnell Tandberg film sync system has a wow and flutter of 0.14% at $19 \mathrm{~cm} / \mathrm{s}$ and speed constancy of 0.5%. Better results are, of course, obtained by the Nagra IVD (at three times the price); typical figures at $19 \mathrm{~cm} / \mathrm{s}$ being 0.05% wow and flutter and 0.1% speed stability. The need for additional gimmicks on domestic machines has brought a rash of very high priced machines, mostly from Japan, which include the facility of playing $\frac{1}{4}$-track tapes in the reverse direction and either adjusting the position of the playback head (Akai GX365) or using additional replay heads (Pioneer) switched to the alternative track positions. In conjunction with such facilities these machines and others with similar systems, such as the Philips N4550, have automatic timing devices which will permit a continuous cycling between any preselected two points on the tape.

In cassette machines, the problems associated with tape transport are those of a reel-to-reel machine, but amplified considerably by the need for miniaturization and the slow tape speed. Since the cassette principle started as a low-cost low-quality replay system, the urgency for improving the quality of the transport has not been great-until the last two years which saw the introduction of the Dolby ' B ' system to be described later in this article. Again the impetus came from Japan where Nakamichi Inc. produced prototype machines capable of a performance limited only by the cassettes available at that time. These improvements were built into the current generation of high-quality decks where experience has shown that poor cassette mechanics can even reduce the standards of this type of machine to unacceptable limits.

Further improvements are being made all the time which represent a movement towards high fidelity reproduction. So far the best wow and flutter available from such machines is around 0.15% found in the unique double capstan Sony TC160. Here tape tension is held constant across the head by placing a capstan each side, the one nearest the feed spool rotating at a slightly lower speed than the main drive capstan. An alternative, used by National in the U.K. marketed RS-275US, is to direct drive the capstan which also forms the motor spindle. With such a small capstan and a low tape speed, the rotational velocity of the motor armature is extremely low and controlled by a servo system to achieve a claimed wow and flutter performance of 0.1%; which incidentally is also the claimed figure for the Sony TC 160. Extensive use has been made of solenoid operated controls in the National deck which make it a delight to operate but incredibly complex looking inside.

Generally speaking cassette mechanisms can be divided into two broad groups those where the cassette moves up to the
head and pinch wheel assembly, and those where the cassette is held in a fixed position and the head assembly moves. The latter is based upon the original Philips system and derivatives representing developments of one sort or another are the Nakamichi, Sony, Wollensak and others. The first system, known as the Staar mechanism, has a brand new derivative in the Goldring Lenco deck, having two capstans (one used for playing in reverse), a four-track record/replay head, and two erase heads. Automation plays an important part in this mechanism since it will play through the cassette in one direction, sense the end and commence playing back in the opposite direction, finally ejecting the cassette at the end of the cycle.

There is no doubt that the cassette mechanism is going to get better. Already very high performance is possible under laboratory conditions, equalling the best domestic reel-to-reel machines and so it should not be too long before production techniques permit the realization of such high standards in domestic machines. The best in this respect can be confidently said to be the Wollensak, a traditionally designed machine, manufactured in America, and capable of consistently high standards. Advent have incorporated this mechanism into the latest generation of their Dolby cassette machines, the result being a virtual 'Rolls-Royce' of cassette decks. Regrettably these machines are not as yet available in the U.K.

The advances in electronics have perhaps not been quite so obvious as those previously discussed, but are nonetheless of great value.

The earliest Grundig recorders employing transistors, in common with other good domestic machines of the period, were very elemental and contained hardly any more transistors than the last of the valve models. Five or six transistors fulfilled all electronic functions at that time. Now with a reduction in the cost of transistors, advantage can be taken of using more devices to improve performance such that the latest comparable machine uses around 14 transistors. In addition functions such as automatic record level control are to be found on these and other machines such as the Tandberg and Sony range.

Low-noise devices have helped to improve the performance of reel-to-reel machines and to a lesser extent that of cassette machines where the noise limitations are more with tape than the electronics.

Miniaturization of components helps in the production of the small portable and cassette machines where electronic circuits are not only used to deal with the audio signals but also to serve many of the control functions.

Amplifier design has been simplified in some machines by the introduction of integrated circuits, a trend that will be becoming increasingly popular, if only to hold down production costs.

Several manufacturers have produced new machines which either represent a

Tape Recording Survey

step into an area they had not served before, or have completely modernized well established designs. Good examples of the latter are the new series of machines from Brenell, the top of the range being the industrial Type 19 tape deck which employs many of the features described previously in this article. With a wow and flutter performance of 0.05% at $38 \mathrm{~cm} / \mathrm{s}$, rack mount facility and solenoid operation, it is worthy of the title professional.

Sony have entered the world of professional machines with their new TC-850-2 with all the usual facilities expected of such a machine, plus a few such as sound-on-sound and echo.

Telefunken have introduced a range of professional portables under the generic coding of M28. It is interesting to note that these machines are available with the head block arranged in the fashion popular in studios on the Continent, where the tape oxide faces outwards from the reel and cannot come into contact with guides until its arrival at the head. This helps to reduce oxide wear and the accompanying scatter of oxide particles over the working surfaces.

Both Ferrograph and Revox have revamped their current range of recorders to include a new one containing the Dolby ' B ' noise reduction system.

In a similar range to the Akai GX365
comes the Sansui SD7000, which is a high-priced domestic machine having a great variety of automatic facilities including an automatic rewind which is triggered by the presence of a 20 Hz signal on the tape. At a retail price of over $£ 400$, including purchase tax, one cannot help wondering if they are not being a little more than optimistic.

The interests of the amateur movie maker are more than adequately looked after by the Tandberg Model 11-2 with its associated oscillator and indicator unit. Here a similar system to that employed by the professional Leevers Rich equipment has been produced to enable the production - with amateur cine equipment - of perfectly synchronized sound, and even to transfer this sound on to a stripe on the film after editing has been effected.

Most recently BASF added a surprising feature to their range of products by marketing two cassette recorders in the medium price range. One of them is very representative of current thought by Japanese manufacturers in that it incorporates an f.m. /a.m. tuner.

Noise reduction

A principal problem in tape recording is the limitation set on dynamic range by the level of noise and the overload margin of
the tape. Even with the new sophisticated ranges of tape available the demands of high-quality mastering require even lower levels of noise, thus giving room to accommodate a better dynamic range. Tape duplicating adds its own set of problems with the increase of noise which accompanies each stage of the copying process. For many years experiments were conducted with a view to producing an effective noise reducer which would not be noticeable in operation.

One such system has met with considerable success in this area, to the extent that it has become available in a domestic form in several cassette recorders, where the need for noise reduction is at its greatest, as well as in some reel-to-reel machines. The system is known as the Dolby ' A ' noise reducing process for professional applications and the Dolby ' B ' for domestic applications.

The professional processor was developed before the domestic version, but it is interesting to begin by examining the elements of the system by first taking a look at one of the earlier ' B ' processor circuits, examining the circuit operation and then describing its philosophy. In this way we take an easy step to examining the principles of the more complex ' A ' system. Fig. 1 shows one of the ' B ' system circuits used as an integral part of a cassette recorder.

New from Ferrograph

For the maintenance of professional recording equipment.

Now, for the first time, all the major parameters of a magnetic recording system can be measured on a single, inexpensive instrument. The Ferrograph RTS1 Recorder Test Set.

Consisting of 4 basic sections-variable frequency audio generator, millivoltmeter with asscciated attenuator, peak-to-peak wow and flutter meter, and distortion measuring network -this instrument will measure frequency response, cistortion, crosstalk, erasure, input sensitivity, output power and signal/noise ratio.

Completely solid state and lightweight, it may be used in the field as well as the laboratory,
operating on voltages of $100-120,200-250$ volts at 50 or 60 hz .

It is ceveloped specially for those people who have to sperate, maintain or service all types of tape recorders, sound-on-film equipment and audio apparatus.

The Ferrograph RTS1.
Made to stand the test.
Why not write for further details?

FERROGRAPH SOUNDS GOOD

Special purpose tape
 equipment

-a new problem-solving service by Brenell

We invite enquiries for the design and production of special-purpose equipment to meet any professional or industrial tape requirement.

Our wide experience of high-quality tape recorder engineering ensures the efficient solution of any problem on the basis of standard equipment combinations or specially designed units built to laboratory standards.

- Tape transport - $\frac{1}{4}$ ", $\frac{1}{2}^{\prime \prime}$ or $1^{\prime \prime}$ reel-to-reel tapes and all types of cassettes
- Recording and replay amplifiers
- Copying equipment, tape or cassette
- Remote control facilities
- Single unit or batch-production Put your special problem to us.

Brenell Type 19 Tape Deck

Brenell Transistorised Hi-fi Tape Link
hremel
BRENELL ENGINEERING CO. LTD..
231 Liverpool Road, London N.1. Tel: 01-6078271 (5 lines)

How DO you cLEAN your TAPES?

LeeRaser

Bulk erasure is the only way to get rid of background noise and build-up of incompletely erased signals.

Ask for details of the new LeeRaser LR70 and LR71 tape demagnetisers
01-874 9054 Telex 935959

LEENERS-RICH

EQUIPMENT LIMTED
A MEMBER OF THE MCP GROUP
LEEVERS-RICH EQUIPMENT LIMITED
319 TRINITY ROAD, WANDSWORTH.
LONDON SW18 1 YO ENGLAND

On record, the input signal passes via the recorder input level control R_{1}, and the bias/multiplex filter to emitter follower Tr_{2} The filter is required to remove supersonic noise, including the f.m. stereo pilot tone, which would otherwise upset the operation of the noise reduction circuit. Transistor $T r_{3}$ provides a high-impedance point on its base for summing on replay and a low impedance drive for a filter from which the noise reduction signal is derived. The filter consists of two elements - a fixed high-pass network consisting of capacitor C_{1} and a resistor and a variable high-pass network formed by capacitor C_{2} and the drain-to-source resistance of the $T r_{4}$. The resistance of the f.e.t. is dependent on its gate-to-source voltage, which is derived from the non-linear rectifier stage driven by the transistor Tr_{j}. The impedance of the f.e.t. channel falls with a rise in its gate voltage. The output of the filter is amplified by the inverting stage, $T r_{5}$ and $T r_{6}$, the gain of which is adjusted by R_{2} during manufacture and determines the maximum amount of noise reduction signal available from the circuit. The noise-reduced signal appears at the emitter of $T r_{6}$. The main signal is taken from the emitter of Tr_{3} into the inverting unity-gain amplifier $T r_{8}$ to the collector of which is fed the noise reduction signal via C_{3}. The two signals are in phase and so they add, the resulting boosted record signal being fed via emitter follower Tr_{9} and the record preset calibration control R_{4} to the head driver amplifer. The noise reduction signal is also used to derive the control signal for the variable section of the filter. The signal is amplified by $T r_{j}$, rectified by D_{1} and initially integrated by capacitor C_{4}. The $C R$ network in the emitter of $T r_{7}$ increases the gain of the stage at high frequencies, which in turn gives the characteristic turn down in the record response at medium levels (about -30 dB) thus avoiding the possibility of overloading the tape. The second part of the integrator, capacitor C_{5}, is charged during slow increases of side-chain signal level, but if the voltage drop across the series resistor becomes sufficient to forward-bias D_{2}, charging of the capacitor takes place much quicker. It is this non-linear nature of the rectifier stage and the resulting control voltage which enables the noise reduction circuit to remain inconspicuous in action. For small changes in signal level, the control signal changes slowly and its action remains undetectable, for large transients, the control signal changes quickly, enabling the circuit to cope with the new signal conditions almost instantly, the effect of the transient in the control signal being masked, as far as the ear is concerned, by the transient in the signal. By the time that the ear has recovered from the effect of the signal transient, the control transient has passed. The maximum level of the noise reduction signal voltage under transient conditions is limited by diodes D_{3} and D_{4}. If actually clipping, the noise reduction signal may seem rather alarming, but it does not sound so because the condition lasts for

Farnell-Tandberg sound sync system provides a high quality sound recording facility for 8 mm movie film.
less time than the ear takes to recover from the transient.

The switchable Dolby circuitry being described uses the same elements, rearranged somewhat, to produce the inverse characteristics of the system in its record mode to restore the signal to its original condition. The signal from the replay preamplifier comes via the replay preset calibration control $R_{\overline{5}}$ and the bias/multiplex filter to the emitter of $T r_{2}$. Here it is fed via R_{6} to the base of Tr_{3} where it is mixed with the noise-reduction signal coming from the emitter of T_{6} yia C_{6} and R_{7}. The mixed signal feeds the filter stage (C_{1} etc.) and the inverting amplifier Tr_{8}. The action of the filter, noise-reduction signal amplifier, rectifier driver and rectifier stages is identical to that in record. It should be noted that the phase of the noise-reduction signal is the inverse of that of the input signal at the emitter of $T r_{2}$ resulting in a subtraction of the noise-reduction signal from the input signal, thus giving the noisereduction action.

When the block diagram of the Dolby system is discussed later, it will become apparent that the signal appearing at the emitter of Tr_{3} will be identical with that fed into the input of the record processor. It will also become obvious why the filter stage is fed with this signal and not the replay input signal (i.e. that on the emitter of Tr_{2}). The signal is then fed to the replay output amplifier.

Noise and dynamic range

Having discussed how the circuitry of one version of the basic Dolby idea works. it would now be worth while to consider why it should follow the dictated characteristics. All information, transmission and storage systems introduce extra information to that fed into the input. The unwanted information is generally called 'noise'. In a tape system, there are two basic sources of noise. These are the electronics involved in the transfer of the signal on and off the tape and the tape itself. Both these sources of noise have theoretical minimum values below which, at normal 'people com-
patible, temperatures at least, it is not possible to go. The effect of noise is that it manifests itself as being similar to the wanted signal but at a level somewhat below it. Noise gives rise to practical difficulties when the information to be recorded has a wide dynamic range, as has music. The magnetic properties of the tape limit the maximum signal that may be recorded on the tape without excessive distortion, and this means that if the dynamic range of the music is greater than the difference between the maximum signal allowable on the tape and the noise on the tape, then the quieter passages of the music will be lost amongst the noise. In order to reduce the effects of noise it is necessary to decrease the noise, increase the maximum allowable signal or to devise a way of modifying the signal on record so that the full dynamic range of the music is squashed to fit in the range allowed by the tape, and then to expand the range back to normal on replay.

You have already seen how the efforts of the tape manufacturers have improved the capability of their products, but this alone is not enough, especially if one bears in mind the trend, which is happening in parallel with the improvement in tapes, to narrower track widths and slower tape speeds. There have been therefore quite a large number of different approaches to the idea of dynamic range squashing. As not many of these systems are in use today, it is likely that they suffered from one or more of the general 'squasher' deficiencies, among which are poor tracking between record and replay. susceptibility to gain and law errors, poor dynamic range, poor dynamic capability, giving rise to overshoots on transients, audible 'breathing' effects and control signal-produced distortion effects.

It was not until some considerations of the physiological properties of the mechanism of hearing were brought to bear on the problem by Dr. Ray Dolby. that a satisfactory solution was devised. As we have seen his concept does away with any processing of high-level signals. these being applied to the tape in a completely unaltered form. No noise-
reduction action occurs for these signals, nor is any necessary because as far as ear is concerned the signal masks the noise. provided that the signal and the noise are fairly close to one another in frequency. This proviso gives rise to the necessity for the four-frequency band technique used in the A system and the sliding single high-frequency band (with the disadvantage that it is effective only against high-frequency noise) in the B system.

The noise-reduction action is applied only to low-level signals. A small correction signal, which we have been calling the noise-reduction signal is subtracted from the main signal on replay. On record the noise-reduction signal is added to the main signal to raise the low-level signal above the tape noise. Thus on record the wanted signal has its low-level components at a higher point than normal so that on replay these are depressed back to their normal position. The mathematics of the idea are quite simple. The record output y is related to the input x by:

$$
y=\left(1+G_{1}(x)\right) x
$$

where G, is the record amplifier gain. The replay output z is related to the replay input, which is equal to the record output y by:

$$
z=y-G_{2}(z)
$$

where G_{L} is the replay amplifier gain. Combining these two relations, we get:

$$
z=\left(\left(1+G_{1}(x)\right) /\left(1+G_{2}(z)\right)\right) x
$$

Now if $G_{1}=G_{2} z=x$
Thus if the two noise-reduction signal producing blocks are identical, and the tape record/replay system between the two processors has unity gain, the replay signal is identical with the record. How these requirements have been realized in practice has already been described.

The second of the two conditions is catered for by the record and replay calibration preset controls whose existence was mentioned without explanation. Because a piece of electronic circuitry does not know what is a high level and what is a low level signal, an operating voltage in the circuit has to be related to a specific level of flux on the tape. The circuit then regards this voltage as its zero operating level. The replay calibration control is adjusted so that when a standard level set tape is played, the correct reference voltage appears at the input to the filter circuit of the processor. Because the tape recorder system needs to have unity gain, the record calibration is then adjusted so that with a voltage at the reference level appearing at the input to the filter circuit, a flux level equal to that on the level set tape is recorded on the tape, and this criterion tested by checking that the recorded tape replays at the same level as the level set tape. This requirement is perhaps a little inconvenient since the record calibration needs to be checked and possibly changed if the type of tape used for recording is changed, due to the different sensitivities of different tapes. However, the system is not too critical of gain differences, up to 2 dB being tolerable in the domestic system.

Since the wider tracks and higher
speeds of $\frac{1}{4}$ in tapes result in lower noise the so called 'Dolby reference level' is $180 \mathrm{nWb} / \mathrm{m}$ and for cassettes $200 \mathrm{nWb} / \mathrm{m}$. To ensure compatibility it is necessary to have the highest quality test tapes, and in general tracked test tapes are undesirable unless there is some guarantee of the accuracy of vertical alignment in the head of the machine under test.

Brief mention has been made of the professional Dolby 'A' system which was the predecessor of the domestic ' B ' system. Since the physiological 'raison d'etre' for the Dolby system has been explained, it will suffice to provide the reminder that noise masking by high-level signals occurs only for that section of the spectrum appearing in the proximity of the high-level signal. This suggests that to produce optimum noise reduction in high-speed recordings over the entire audio range, the processor needs to work in several discrete bands. The 'A' processor does precisely this, dividing the range into four separate bands, the amount of effect produced in each band being dependent upon the signals present within its own pass band. In practice the filters are not so sharp as to prevent some 'spill-over action' from one channel to another, which can only serve to provide a continuity over the pass-band. The frequency divisions are made as follows: 80 Hz low pass; $80 \mathrm{~Hz}-3 \mathrm{kHz}$ band pass; $3 \mathrm{kHz}-9 \mathrm{kHz}$ band pass; and 9 kHz high pass.

The need for a division between the two systems becomes obvious when considering that at low tape speeds the most obtrusive noise is hiss - hum and low frequency noises being largely unnoticed at the listening levels employed domestically. Thus the Dolby ' B ' system represents an economic solution to a vexing problem. Wherever the highest quality is required of the system and the economics are less of a governing factor, the Dolby ' A ' system proves more satisfactory.

Hum and other low-frequency noise is suppressed in band 1, cross talk and print though mostly occur in band 2 where they are suppressed, bands 3 and 4 dealing with higher frequency noises. The Dolby 'A' processors are made exclusively by Dolby Laboratories.

With the increasing interest in recorded cassettes the Dolby ' B ' process has come into its own. Already most of the major producers of this 'packaged music' are marketing Dolby ' B ' processed tapes where the high speed duplicating copies have been prepared using the new model 320 processor designed specifically for this purpose.

On the domestic front the ' B ' processor units are manufactured by licencees for inclusion either directly into recording machines or into separate 'black box' processors for use with any tape hi-fi system. Examples of the former type of unit have already appeared in such machines as the Bell \& Howell Des 1700, Rank Wharfedale DC9, Harmon Kardon, Ferrograph Series 7 and Revox. Examples of the latter 'black box' units are just beginning to appear from Kellar and
from Alpha (Highgate Acoustics), both manufactured in the U.K.

From the amount of interest aroused by this system, one might be forgiven for imagining that it is the only noise suppression device available. It is probably true to say that the only other domestic systems are used solely by the designer in his own machines. Sony and National Panasonic have both marketed domestic noise reduction circuits in their own machines which operate on the 'threshold switch' principle. Here, the replay signal is constantly monitored and once it falls below a pre-determined level the gain of the replay amplifiers is reduced to suppress noise. Such a system inevitably produces an effect on the signal inasmuch as a low-level signal mixed with the noise can also be suppressed. The advantages of a non-complementary system capable of dealing with conventionally recorded material is fairly obvious and is exploited in a system announced by Philips. Known as the dynamic noise limiter it is said to operate on the replayed signal to reduce high-frequency noise according to the signal level existing at the time. Insomuch as it operates in a continuous fashion there appears to be some vague resemblance to aspects of the Dolby ' B ' system. However, there is no evidence that the operation and recovery times of the processor take into account the recovery time of the ear as does the ' B ' system. As a result it would seem almost certain that the action of the Philips d.n.l. would be noticeable and intitial reports of demonstrations at CES in America suggest that the 'pumping' and 'breathing' typical of many early systems was noticeable on certain types of recording. What does seem a little odd is that Philips appear very reluctant to release any further information or even give a U.K. demonstration.

Future trends

Cassettes show themselves as a growth industry and it is probably time to say that domestic purchases will be almost totally in this area in the years to come. Already some clear divisions are appearing, with cartridges serving the background music and car reproducer field, cassettes eating into the disc industry and reel-to-reel machines reserved for those who make their own recordings. I feel sure that such a polarization will continue, although experiments are proceeding with even higher quality cassette machines which may well equal the performance of the best domestic reel-to-reel machines.

THE POINT FIVE TAPE TRANSPORT
Everything gets started just right back here on the deep-dished. low-weight. sand cast aluminium chassis.

DEPENDABILITY PLUS

mechanical stability of the highest order
high tolerance conthol
dust. humioity, altitude, temperature, tropic and environmental prodf
SAFE ENCLDSURE OFAIL WIRING AND MECHANICAL PARTS
MINIMAL GENERATION OF HEAT. HUM AND RF
Simple clean design
plug-in maintenance of motors. relays ano solio state circuits
NO RATS' NEST OF WIRING AND NDT A OUST COLLECTOR
EASY TO CLEAN, JUST IN CASE, and
easy to mount in 19 inch stanoard racks or cabinets
WIring and adjustments accessible by merely removing the front panel
And, internally, a high order of mechanical and electrical simplicity (only the design thinking was complex) in this 2 -speed, remoteable, push-button controlled solenoid operated transport. A product of people who truly care about rea problems.

Prices and fiterature from

JOHN STEED RESEARCH LTD.,
220 EDGWARE RD, LONDON W2, ENGLAND
Phone 01-7235066

Opportunities Unlimited in RADIO,TELEVISION, ELECTRONICS

C \& G Telecommunication Techns’ Certificate Radio Amateurs' Examination General Certificate of Education, etc.

Which one would qualify you for higher pay?

International Correspondence Schools provide specialized training courses for all these cerrificates, and with the help of the Schools' experienced tutors you can be sure of early success. You will have the advantage of building on your practical experience and ensuring that you have the technical knowledge so essential for success in electronics.

And the result? You'll soon be qualified in your field of electronics, and in a position to choose your opportunity.
Find out how ICS can help you. Send for our free prospectus right away.

ALL EXAMINATION STUDENTS ARE COACHED UNTIL SUCCESSFUL

NOW-COLOUR TV SERVICING COURSES

As the demand for colour TV increases, so does today's demand for trained servicing engineers. You can learn the techniques of servicing colour and monochrome TV sets through new home study courses specially prepared for the practical TV engineer.

SELF-BUILD RADIO COURSES
We'll teach you both the theory and practice of valve and transistor circuits, as well as how to service them, while you build your own 5 valve receiver, transistor portable and high grade test instruments. You build equipment of real practical use!

Accredited by the Council for the Accreditation of Correspondence Colleges

NOW ONE OF THE LEADING FRANCHISED SEMICONDUCTOR DISTRIBUTORS OFFERS NEW branded devices at industrial trade prices

MULLARD, INTERNATIONAL RECTIFIER, SENSITRON, S.G.S., NATIONAL SEMICONDUCTOR

bulk quantity prices on request. we hold one of the largest semiconductor stocks in the u.k.

LOW COST DIGITAL TTL 7400 RANGE FROM FRANCHISED DISTRIBUTOR STOCK

(0 ${ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)					
		Silicone Moulded Package			
or			1-24	25.99	+
			Ep	$\mathrm{fp}^{\text {p }}$	p
$\begin{aligned} & \text { DM7400N } \\ & \text { DM740IN } \end{aligned}$	(SN7400N)	Quad Two-Input Gate	0.250	0.200	0.167
	(SN7401N)	Quad Two-Input Gate (Open			
		Collector)	0.250	200	. 167
DM7402N DM7403N	(SN7402N) (SN7403N)	Quad Two-Input NOR Gate	0.250	0.200	0.167
		Quad Two-Input Gate (Open Collector)	0.250	0.200	. 7
DM7404N		Hex Inverter	0.275	0.225	0.188
DM7405N	(SN7405N)	Hex Inverter (Open Collector)	0.275	0.225	0.188
DM7410N	(SN74ION)	Triple Three-Input Gate	0.250	0.200	0.167
DM7420N	(SN7420N)	Dual Four-Input Gate	0.25	0.2	0.167
DM7430N	(SN7430N)	Eight-Input Gate	0.25	0.200	0.167
DM7440N	(SN7440N)	Dual Four-Input Buffer	0.250	0.200	0.167
DM7450N	(SN7450N)	Expandable Dual AND-ORINVERT Gate	0.250	0.200	0.167
DM7451NDM7453N	(SN745IN)(SN7453N)	Dual AND-OR-INVERT Gate	0.250	0.200	
		Expandable AND-OR-INVERT	0.250	0.200	. 167
DM7454N	(SN7454N)	AND-OR-INVERT Gate	0.250	0.200	0.167
DM7460N	(SN7460N)	Dual Four-Input Expander	0.250	0.200	0.167
DM7472N	(SN7472N)	J-K Master Slave Flip flop	0.325	0.263	0.22
DM7473N	(SN7473N)	Dual J-K Flip Flop ${ }^{\text {d }}$	0.525	0.417 0.363	
DM7474N	(SN7474N)	Dual D Flip Flop	0.450	. 63	
DM7476N	(SN7476N)	Dual J-K Flip Flop with Preset			
DM7486NDM74107N	(SN7486N)(SN74IO7N)	Quad Exclusive-OR Gate	0.575		
		Dual J-K Flip Flop with Vec and	0.525	0.417	

TRANSISTORS
LARGE QUANTITY-PRICES ON APPLICATION

CONTINUOUS TAPES Cousino
AUTOMATIC MESSAGE REPEATING MAGNETIC TAPE MAGAZINE
Single-Reel Tape Magazine that instantly converts your tape recorder into a continuous operating message repeater NO REWINDING Necessary. NO Attention Necessary. Repeats your message, lesson, after hour, day after day. without trouble or attention.
The Model U-I310 is the most widely used of the versatile and compact continuous loop Audio Vendor magazines. It will fit most standard tape recorders. The U-I 310
Audio Vendor is $3 \frac{5}{4} \mathrm{in}$. in diameter. Playing time $3 \frac{1}{2} \mathrm{in}$. per second (15 min . average) UC-I3IOCC 15 Mins. $£ 5.60$.

POWER DEVICES, SENSITRON

guaranteed. industrial stock items

	1.99	100-999		$1-99$	100-999
2N3054	467	. 362	iN5171	171	121
2N3055	. 629	525	IN5172	183	129
2N3232	417	375	IN5173	237	167
2N3235	. 667	467	IN5174	300	212
2N3441	925	800	in5400	162	112
2N3442	61.700	61.375	IN5401	-183	-129
2N3715	k1.467	61.300	IN5402	204	146
2N3716	E1. 637	61.375	IN5403	221	15
2N3771	K1.700	61.400	1N5403	267	187
2N3772	61.800	¢1.500	iN1199	392	308
2N3773	¢2.875	¢2.475	IN1202	775	633 53
2N4347	K1.050	875	IN1183	667	533
2N4348	E1. 625	<1.375	INII86	11.108	887
STSII34	¢2.950	¢2.525	Quantity Prices are Available on Request		
IN5170	133	. 096			

GROUP
LIMITED
E.Q.D. APPROVED

YOUR SMALL AUDIO AMPLIFIER PROBLEMS SOLVED WITH S.G.S. INTEGRATED CIRCUITS
Audio Amplifier TAA 621
Designed for use in mains operated T.V. sets and record players as an audio amplifier. The supply voltage range is from 6 to 24 V and the device can deliver up to 4 W output power.
Absolute Maximum Rating
Max. Supply Voltage (no signal): 27 V ; Power dissipation ($T A=60^{\circ} \mathrm{C}$) 1.06 W ; Input Voltage: -0.5 to 1.5Vp: Peak Output Current: 0.8A: Storage Temperature: -25 to $100^{\circ} \mathrm{C}$; Junction Temperature: $125^{\circ} \mathrm{C}$. $1.24 \mathbf{£ 2} .025$; 25-99 El .755.

EA 1000

NEW COMPLETE MODULE
3 Watts min. output power; $50 \mathrm{~Hz}-25 \mathrm{~Hz}$ bandwidth Signal to noise ratio- 86 dB .
Complete with Capacitors and Resistors on $76 \times 65 \mathrm{~mm}$ printed board: 1-24 E2-625; 24-99 E2-275.
Supplied with data sheet and application report.

ZENER DIODES

$\begin{array}{llll}\text { BZY95 Series 40p } & \text { 32p } & \text { 28p }\end{array}$
1.5 Watt
15%
10 Volt -
75 Volt
BZX70 Series 24 $\frac{1}{2} p \quad$ 20p $\quad 17 \frac{1}{2} p$
2.5 W
$\pm 5 \%$ olt-
75 Volt

9.1 Volt-33 Volt

TRIACS
SENSITRON AT NEW LOW PRICES

 ULTRASONIC TRANSDUCERS

DTV
These $40 \mathrm{Kc} / \mathrm{s}$ ultrasonic transducers can be used for simple remote control systems without electrical cables or electronic links, two basic

APPLICATIONS:

Remote Control; Leakage Detectors; Intruder Alarms; Experimental Speech Transmission; Supplied with free Transmitter and Receiver Circuit. Essential Component Kit for TX/RX

FOR INDUSTRIAL TRADE "SWIFT SERVICE" 60 PAGE CATALOGUE. SEND 35p. TERMS C.W.O. OR C.O.D.
EXCEPT FOR EST. ACCOUNTS, GOVERNMENT DEPTS., ETC. PLEASE ADD 10 P P.\&P. (U.K.), 50p OVERSEAS As these are trade prices it is regretted that we have to impose a minimum order value of $£ 2 \cdot 50$ U.K., $£ 5$ overseas. Orders to:
D.T.V. CROUP LTD (Dept. M/OI), 126 HAMILTON ROAD, LONDON SE27 9 SG

Super IC-12

Highfidelity Monolithic Integrated Circuit Amplifier

Two years ago Sinclair Radionics announced the World's first monolithic integrated circuit $\mathrm{Hi}-\mathrm{Fi}$ amplifier, the IC.10. Now we are delighted to be able to introduce its successor, the Super IC. 12. This 22 transistor unit has all the virtues of the original IC. 10 plus the following advantages

1. Higher power.
2. Fewer external components
3. Lower quiescent consumption
4. Compatible with Project 60 modules.
5. Specially designed built-in heat sink. No other heat sink needed.
6. Full output into $3,4,5$ or 8 ohms
7. Works on any voltage from 6 to 28 volts without adjustment.
8. NEW 22 transistor circuit.

SINCLAIR GENERAL GUARANTEE
Should you not be completely satisfield with your purchase when you receive it from us, return the goods without delay and your money will be refunded in full, including cost of return postage, at refunded in full, including cost of return postage, at
once and without question. Full service facilities are once and without question. Full se
available to all Sinclair customers.

Output power 6 watts RMS continuous (12 watts peak)
Frequency Response 5 Hz to $100 \mathrm{KH} 7 \pm$ 1 dB .

Total Harmonic Distortion Less than 1%. (Typical 0.1%) at all output powers and all frequencies in the audio band
Load Impedance 3 to 15 ohms.
Power Gain 90 dB ($1,000,000,000$ times) after feedback.

Supply Voltage 6 to 28 volts (Sinclair PZ-5 or PZ-6 power supplies ideal)

Size $22 \times 45 \times 28 \mathrm{~mm}$ including pins and heat sink.

Input Impedance 250 Kohms nominal
Quiescent current 8 mA at 28 volts

With the addition of only a very few externa resistors and capacitors the Super IC. 12 makes a complete high fidelity audio amplifier suitable for use with pick-up. F.M tuner etc. Alternatively, for more elaborate systems, modules in the Project-60 range such as the Stereo 60 and A.F.U. may be added. The comprehensive manual supplied with each unit gives full circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include car radios, oscillators etc. The very low quiescent consumption makes the Super IC. 12 ideal for battery operation

Price, inc. FREE printed circuit board formounting.

f2.98 Post

Sinclair Radionics Ltd, London Rd, St. Ives Huntingdonshire PE17 4HJ
Telephone St Ives (048 06) 4311

Sinclair Project 60

The World's leading range of high fidelity modules

New!

Project 605

The easy way
to buy and build Project 60

Project 605 is one pack containing: one PZ5 two Z30's, one Stereo 60 and one Masterlink This new module contains all the input sockets and output components needed together with al necessary leads cut to length and fitted with nea fittle clips to plug straight on to the modules Thus all soldering and hunting for the odd part is eliminated You will be able to add further Project 60 modules as they become available adapted to the Project 605 method of connecting Complete Project 605 pack with $£ 29.95$ comprehensive manual, post free
 All you need for a superb 30 watt high fidelity stereo amplifier.

Sinclair Radionics Limited, London Road. St. Ives, Huntingdonshire PE174HJ.
Tel \cdot St. Ives (048 06) 4311

Project 60 offers more advantage to the constructor and user of high fideiity equipment than any other system in the world.
Performance characteristics are so good they hold their own with any other available system irrespective of price or size.
Project 60 modules are more versatile - using them you can have anything from a simple record player or car radio amplifier to a sophisticated and powerful stereo tuner-amplifier. Either power amplifier can be used in a wide variety of applications as well as high fidelity. The Stereo 60 pre-amplifier control unit may also be used with any other power amplifier system, as can the AFU filter unit. The stereo FM tuner operates on the unique phase lock loop principle to provide the best ever standards of sensitivity and audio quality. Project 60 modules are very easily connected together by following the 48 page manual supplied free with all Project 60 equipment. The modules are great space savers too and are sold individually boxed in distinctive white and black cartons. With all these wonderful advantages, there remains the most attractive of all - price. When you choose Project 60 you know you are going to get the best high fidelity in the world, yet thanks to Sinclair's vast manufacturing resources (the largest in Europe) prices are fantastically low and everything you buy is covered by the famous Sinclair guarantee of reliability and satisfaction.

Typical Project 60 applications

System	The Units to use	together with	Cost of Units
Simple battery record player	2.30	Crystal P.U. 12 V battery volume control	£4.48
Mains powered record player	Z.30, PZ. 5	Crystal or ceramic P.U volume control etc.	£9.45
$20+20 \mathrm{~W}$ stereo amplifier for most needs	$\begin{aligned} & 2 \times 2.30 \text { s, Stereo } 60, \\ & \text { PZ. } 5 \end{aligned}$	Crystal, ceramic or mag PU. F.M. Tuner, etc.	£23.90
$20+20 \mathrm{~W}$. stereo amplifier with high performance spkrs	$\begin{aligned} & 2 \times 2.30 \text { s, Stereo } 60 \text {, } \\ & \text { PZ. } 6 \end{aligned}$	High quality ceramic or magnetic P.U., F.M. Tuner. Tape Deck. etc	£26.90
$40+40$ W. R.M.S. de-Iuxe stereo amplifier	2×2.50 s, Stereo 60 PZ.8, mains trsfrmr	As above	£34.88
Indoor P.A.	Z.50, PZ.8, mains transformer	Mic., guitar, speakers, etc. controls	£19.43

[^10]
from a simple amplifier to a complete stereo tuner amplifier with Project 60 modules

Z. 30 \& Z. 50 power amplifiers

The $Z .30$ and $Z .50$ are of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02\% at full output and all lower outputs. Whether you use $Z .30$ or $Z .50$ amplifiers in your Project 60 system will depend on personal preference, but they are the same size and may be used with other units in the Project 60 range equally well. SPECIFICATIONS (2.50 units are interchangeable with Z. 30 sin all applications).
Power Outputs
Power $\begin{aligned} & \text { 2 utputs } \\ & 2.30 \\ & 15\end{aligned}$ watts R.M.S. into 8 ohms using 35 volts 20 watts R.M.S. into 3 ohms using 30 volts.
20 watts R.M.S. into 3 ohms using 30 volts.
$\mathbf{Z . 5 0} 40$ watts R.M.S. into 3 ohms using 40 volts l 30 watts R.M. S. into 8 ohms using 50 volts.
Frequency response: 30 to $300.000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
Distortion: 0.02% into $80 h m s$.
Signal to noise ratio: better than 70 dB unweighted. Input sensitivity: 250 mV into 100 Kohms .
For speakers from 3 to 15 ohms impedance.
Size: $14 \times 80 \times 57 \mathrm{~mm}$.
2.30

Built, tested and guaranteed with circuits and instruc tions manual. $£ 4.48$
2.50
with circuits and instructionsmanual. $£ 5.48$

Project 60 Stereo F.M. Tuner

First in the world to use the phase lock loop principle

The phase lock loop principle was used for receiving signals from space craft because of its vastly improved signal to noise ratio. Now. Sinclair have applied the principle to an F.M. tuner with fantastically good results. Other original features include varicap diode tuning printed circuit coils, an I.C. in the specially designed stereo decoder and squelch circuit for silent tuning between stations. Good reception is possible in difficult areas, and often a few inches of wire are enough for an aerial. In terms of a high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatic ally as the tuning control is rotated, a panel indicator lighting up as the stereo signal is tuned in. This tuner can also be used to advantage with any other high fidelity system. SPECIFICATIONS-Number of transistors: 16 plus 20 in IC. Tuning range: 87.5 to 108 MHz Capture ratio: 15 dB . Sensitivity: $2 \mu \mathrm{~V}$ for 30 dB quiefing $7 \mu \mathrm{~V}$ for lock-in over full deviatıon Squilch level: $20 \% \mathrm{~V}$. A.F.C. range: 200 KHz Signal to noise ratio: $>65 \mathrm{~dB}$. Audio fre quency response: $10 \mathrm{~Hz}-15 \mathrm{KHz}$ ($\llcorner 1 \mathrm{~dB}$). Total harmonic distortion: 0.15% for 30% modula tion. Stereo decoder operating level: $2, \mathrm{~V}$. Cross talk: 40 dB . Output voltage: $2 \times 150 \mathrm{mV}$ R.M S Operating voltage: 25-30VDC Indicators: Power on/tuning/stereo.

Size: $93 \times 40 \times 207 \mathrm{~mm}$
Built and tested. Posi free
£25

Stereo 60 Pre-amp/control unit

Designed for Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout, achieving a really high signai-to-noise ratio and excellent tracking between channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs.
SPECIFICATIONS-Input sensitivities: Radio-up to 3 mV . Mag. p.u. 3 mV : correct to R.I.A.A curve $\pm 1 \mathrm{~dB}: 20$ to 25.000 Hz . Ceramic p. u . -up to 3 mV : Aux -up to 3 mV . Output: 250 mV . Signal to noise ratio: better than 70 dB . Channel matching: within 1 dB . Tone controls: TREBLE +15 to -15 dB at $10 \mathrm{KHz}:$ BASS +15 to -15 dB at 100 Hz . Front panel:brushed aluminium with black knobs and controls. Size: $66 \times 40 \times 207 \mathrm{~mm}$. Built tested and guaranteed.

```
£9.98
```


A.F.U. High \& Low Pass Filter Unit

For use between Stereo 60 unit and two Z.30s or Z.50s, and is easily mounted. It is unique in that the cut-off frequencies are continuously variable, and as attenuation in the rejected band is rapid ($12 \mathrm{~dB} /$ octave). there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The A.F.U. is suitable for use with any other amplifier system. Two filter stages --rumble (high pass) and scratch (low pass). Supply voltage -15 to 35 V . Current -3 mA . H.F. cut-off (-3 dB) variable from 28 KHz to 5 KHz . L.F. cut-off $(-3 \mathrm{~dB})$ variable from 25 Hz to 100 Hz . Distortion at 1 KHz (35 V . supply (0.02% at rated £5.98 output. Size: $66 \times 40 \times 90 \mathrm{~mm}$. Built tested and guaranteed.

To: SINCLAIR RADIONICS LTD LONDON ROAD ST. IVES HUNTINGDONSHIRE PE17 4HJ		
Please send	Name	
	Address	
lenclose cash/cheque/money order.		

Jack Plugs, 201, 310, 316, 309, 404
Jack Strips 310, 320, 510, 520, 810 Line Transformers
Resistor Lamps and Holders
Jack sockets 300, 500, 800
Resistor Bobbins, coils and spools

Bells and Bell Transformers 6V or 12V
Low Pass Filters
U Links and Sockets
Fuse mountings 4028 and Mounting H. 15 B.
Mountings Protector Strip H. 40
Patching and switchboard Cords
Patch Panels
Terminal Blocks and Strips
Uniselectors and Miniature Uniselectors Ringing Generators

Large stock of GPO Type Components available for prompt delivery COMMUNICATION ACCESSORIES and EQUIPMENT LIMITED

77, AKEMAN STREET, TRING, HERTS.
TELEPHONE: TRING 3476.
TELEX: 82362.

WW-104 FOR FURTHER DETAILS

THIS HIGH PERFORMANCE 32 MHz TIMER/COUNTER

is only $£ 160$

ADD ON UNIT EXTENDING RANGE TO OVER 200 MHz f88.
MADE BY R.C.S. ELECTRONICS WHO PRODUCED THEIR FIRST ECONOMY INSTRUMENT NEARLY 10 YEARS AGO.
IF YOU CANNOT BELIEVE THAT AN EIGHT FIGURE COUNTER WITH AN ELECTRONICALLY CONTROLLED CRYSTAL OVEN AND AN INPUT SENSITIVITY OF 10 mV (WHICH WOULD NORMALLY COST YOU AT LEAST £300) CAN BE BOUGHT FOR THIS FIGURE WRITE FOR FULL SPECIFICATION SHEET OR PHONE ROY GRIFFIN ON EXT. 4 FOR THE FULL GRIFF.

R.C.S. ELECTRONICS, NATIONAL WORKS, BATH ROAD, HOUNSLOW, MIDDX. TELEPHONE O1-572 0933/4/5

IN 15 MINUTES YOU COULD HAVE CAPACITIVE DISCHARGE ELECTRONIC IGNITION FITTED TO YOUR CAR.

will give you

- CONTINUAL PEAK PERFO RMANCE
- UP TO 20\% REDUCED FUEL CONSUM PTION
- EASIER All-w EATHER STARTING
- increased acceleration \& top SPeed
- longer Spark plug life
- increased battery life
- CONTACT BURN ELIMINATED
- PURER EXHAUST GAS EMISSION
- radio interference suppressed

The langest selection

74 Series TTL I.C'S DOWN AGAIN IN PRICE

BP $03=7443$ Quad

BP $86=7486$ Quad 2-Input Excl. No
BP ${ }^{\text {M }}=7490$ BCD Decader Counter
BP $91=74918$-Bit Shift Registers
 BP $94=7494$ Dual Entry + Bit Bhift Register
BP $95=749$ 4 Bit Dp-Down 8hit Register
BP $96=7496$ Bit Parallel in Prrallei BP $96=7496$ 外 Bit Parallel in Parallel out Shift-Register
BP100 $=74100$ 8-Bit Biatable Latches
BP104 $=74104$ Single J-K Plip-Flop equiv. 900 Aerie: BP104 $=74104$ single J-K Flip-Flop equiv. 900
BP105 $=74105$ Single J-K Flip-Flop equiv. 900
BP107
BP1
B4107 Dual Master Slave Flip. Flops BP107 $=7+107$ Dual Master Slave Flip.FPops
BP110 $=74110$ Gates Master.Slave Flp Flops
BP111 $=7411$ Dual Data Lock-out FHp-Fiop BP118 $=74118$ Hex Set-React Latches
BP119 $=74119$ Hex Set-Reset Latches BP119 $=74119$ Hex 8et-Reset Latchea 24 pir
BP121 $=7+121$ Monostable Multivibratora BP141 $=7441 \mathrm{BCD}$-to-Decimal Decoder/Driver
BP1 BP150 $=74150$ 16-Bit Data Selector
BP151 $=71518$-Bit Data Selectors (with strobe) BP154 $=74153$ Dus1 4-Line-to-1-Line Dat
P15 $165=74165$ Line Decoder BP155 $=74155$ Dual 2 to 4 Line Decoder
BP156 $=44156$ Dral 2 to 4 Line Decoder O / C
BP160 BP161 $=74161$ Aync. 4 - Bit Binary Counte
BP190 $=74190$ Syac. Up-Doun BCD Cour BP190 $=74190$ Syac. Up-Douna BCD Counter
BP191 $=\overline{7} 4191$ Bync. Binary Up-Down Counter (mingle BP192 $=74192$ Aynce Up-Down Decade Counter
BP193 $=74193$ Bync. Binary Un-Down Counter (tow
BP196 $=74196$ Pre-setable 50 MHZ Decade Counter
BP197 $=74197$ Pre-8etuble 5uM MZ Binary Counter RP1 $198=7+198$ 8-Bit Parallel L-R Shift Regitier
BP199 $=741998$-Bit Parallel Access Shift Register BP199 = 741998-Bit Parallel Accesg Shift Register
Devices may he inixed to qualify for quantity price
atplication. application. (TTRL 74 Serien only.)
and

TTL INTEGRATED CIRCUITS

Manufactirers" "Fult outs"-out of apec. devkes including functional units and
part function but classed abs out of spec. Irom the mannufacturera' very rigid speciflaca-
tions.

tions. Id PAK No

DTL 930 SERIES

Tyo

 $\begin{array}{ll}\text { BP933 } & \text { Dual 4-input expander } \\ \text { BP935 } & \text { Expandable Hex Inverter }\end{array}$
$\begin{array}{ll}\text { BP936 } & \text { Hex Inverter } \\ \text { BP94.4 } & \text { Dual tinput y }\end{array}$
BP945 Master slave JK or Rg
BP946
$\begin{array}{ll}\text { BP946 } & \text { Quad, 2-input NAND } \\ \text { Breqs } \\ \text { BP95t } & \text { Manter-slave JK or RS }\end{array}$
$\begin{array}{ll}\text { BP951 } & \begin{array}{l}\text { Monostable } \\ \text { BP962 }\end{array} \\ \text { Triple 3-input vasid }\end{array}$
BP902
BP9093 Dual Master-8lave JK with separate clock
BP9094 Dual Master-blave JK with separate clock
RP9094 Dual Mater--lave JK with separate clock
Br9097 Dual Master-8lave JK with Common Clock
BP9099 Dual Master-8lave JK Common Clock
d to qualify for quantity price. La
application. (DTL 930 series only.)
"Q" PAKS QUALITY TESTED SEMICONDUCTORS

ANOTHER BI-PAK FIRST!
THE NEW S.G.S. EA 1000 AUDIO AMPLIFIER MODULE *GUARANTEED NOT LESS
than 3 WATTS RMS than 3 Watts rms Especialy designed by S.G.S.
incorporating their Proven
Linear I.C. Audio Amp. TA62I providing unlimited applica-
tions for the enthusiast in the
construction of radios. record tions
const
playe

- Overall Size $2 \times 3 \times$ n $^{\prime \prime}$ Typical Total Mar-
monic distortion at
Watt less than 1%. Supply Voltage (Vs)
$\mathbf{2 4 V} 15$ ohm load. Module Tested and Guaranteed $\begin{array}{lr}\text { Aty. } 1.9 & 10-25 \\ \text { Price each } 2.63 & 62.28 \\ \text { Larger }\end{array}$ arger quantitios o

Full hook-up diagrams and complete technical data sup
plied free with each module or availa
$10 p$ each

NEW BI-PAK UNYESTED SEMICONDUCTORS
SUPER PARS
Unequalled Value and quality
Gatigaction GUARANTEED in Every Pak, or money back.
Par No.
UI 120 Glass Sub-min. General Purpose Germanium Diodea . . 50

-the lowest prices!

GARRARD DECKS Garrard SP 25 Mk.III $\mathbf{E 1 1 . 5 0} \mid$ Garrard SP 25 Mk.1I SP 25 Mk III cartridge 25 Mk.il wis £20.95 cartridge f9.85 GARRARD PACKAGES POST FOR ALL PACKAGES 50p.
Garrard AP 76 with AD76K cart. and Lasky's plinth and cover. ...
Garrard SP 25 Mk.III. AD76K cart. and Lasky's plinth and cove

GARRARD SL55B

Four speed autochanger that accepts up to 8 LP's. Has al
the refinements that Garrard SL turntables are famous for With lifting device that allows 'spot-on' track selection on all discs and perfect cueing facilities for singles. Wired fo mono and stereo. Size 14 in (W) $\times 11$ in (D) 4 到 ${ }^{2}$ above and 3in below unit plate.
LASKY'S PRICE $£ 10.50{ }_{35}{ }^{\text {POS }}$

DEMSM BEARDMTS
andes the young experimenter and elec tronics hobbyist to produce a wide range of transistor circuits of increasing sophistication - without soldering or the use of any tools DENSHI KIT SR-1A
Kit comprises: Base board: tuner block. 4 resistors: choke coil: transformer: 28A transistor for RF. 2 diodes: 3 capacitors: batery block: morse key; antenna lead; crystal earphones: various bridge and connecting pieces. This kit permits the building of 16 basic circuits. DENSHI KIT SR-3A
arsiprises of 2 base boards. 50 component and accessory parts inc. 3 transistors and 2 diodes, voi. control. $2 \frac{1}{2}$ in speaker in extension baffle housing, cadmium sulphide photo cell, crystal mic, earpiece. test probes, morse key, extension mp. with batt DENSHI DR-7 (illustrated)
oth audio ynd can if amplifiers and ernal auxiliary equirmen Comprises 3 in loudsed wer exsonal earpiece. 7 transistors, diode, thermistor volume conto capacitors, resistors, tuning capacitor, battery connectors, external project terminal blocks. shoulder carrying strap. battery, etc. PLUS 36 page manual of theory and schematics. High impact resistant case Will house any of the radio SR-1A $£ 3.35$ SR-3A $£ 11.00$ oR-7 $£ 9.75$

> 207 EDGWARE ROAD, LONDON, W.2. 33 TOTTENHAM CT. RD, LONDON, W1P 9RB. 109 FLEET STREET, LONDON, E.C.4. 152/3 FLEET STREET, LONDON, E.C.4. HIGH FIDELITY AUDIO CENTRE 42-45 TOTTENHAM CT. RD, LONDON, WIP 9RD. MALL ORDERS AND CORRESPONDENCE TO 3.15 CAVELL STREET. LONDON. E1 2BN

natror

VITA VOX HIGH QUALITY

MICROPHONES PRESSURE UNITS
And a wide range of associated eqpt.
Further information from

VITA VOX LTD

Westmoreland Road, London NW9 9RJ Telephone: 01-204 4234

MOTOR SPEED CONTROL

SOLID STATE UNITS FOR FRACTIONAL H.P. MOTORS AC or DC
Units supplied for speed control of D.C. Motors (24 v .5 amp .). Giving absolute minimum Torque loss throughout the speed range.
Suitable D.C. Motors can be supplied giving speeds from 0-40,000 r.p.m.
Facilities for design and small batch production to customers requirements.

TRIDAC LTD (Electronics)
6 Melinite Industrial Estate, Hatfield Road, Watford WD2 5SL Herts. Tel: Watford 26661

attractive elegtrovilio Discounts. Electronic Component Speciclists

EVERYTHING BRAND NEW TO SPEC • LARGE STOCKS • NO SURPLUS

BARGAINS IN NEW SEMI-CONDUCTORS
many at new reouced prices. All power types with free insulating sets

40361	55p	2N2905	4 p	2 N 4291	15p	BC148	9p	BFX87	29p
40362 $2 N 696$	${ }_{178}^{88}$	2 N 2905 A	470	2 N 4292	15p	BC149	10 p	BFX88	${ }_{26 p}^{29 p}$
${ }^{2} \mathbf{N} 6997$	178	${ }^{2 N} 2 \mathrm{~N} 2924$	20p 20	AC107 AC126	${ }_{20}^{46}$	${ }^{8 C 153}$	190	BFY ${ }^{\text {B }}$ S	${ }^{23}$
2N706	12p	2N2926	$11 p$	AC127	20 p	8C557	120	$8 \mathrm{BFY5}$	20 p
2N930	29p	2N3053	27p	AC128	20 p	BC158	11 p	${ }_{85} 8$	${ }_{16 p}$
2 N 1131	29p	2N3055	60 p	A Cl53k	22 p	${ }_{8 C} 159$	12 p	${ }^{\text {C }} 407$	$17{ }^{1}$
2 N 1132	29p	2N3702	13p	ACl76	16 p	BC167	118	${ }_{\text {C4Cl }}$	17p
2 Ni 302	19p	2N3703	13 p	ACY20	20p	BC1. 68	10 p	MC140	25p
2 N 1303	19p	2N3704	13 p	$A^{\text {ACY }} 22$	16p	BC169	$11 p$	MPS6531	35 p
2 N 1304	${ }^{26} \mathrm{p}$	2N3705	13p	ADI40	63 p	BC177	14 p	MPS6534	30 p
2 N 1305	${ }^{26 p}$	2N3706	13p	AD142	50p	BC178	13p	NKT211	25p
2N1306 2 N 1307	33p	2N3707	13 p	ADI49	58p	8 BC 179	14p	NKT212	25p
2 Nl 308	36 p	2N3709	11 p	${ }_{\text {ADI }}$ AD162	33 p	BC182L	$11 p$	NKT214	${ }^{23}$
$2 \mathrm{~N} \mid 309$	36p	2 N 3710	13 p	AFI14	24 p	BC184L	110	NKT403	65 p
2 N 1613	23p	2N3711	13p	AFIIS	$24 p$	BC212L	16 p	NKT405	79p
2 N 1711	260	2 N 3819	23p	AFII7	22p	BC2\|3L	16 p	OC71	38p
2 N 1893	54p	2 N 3904	35p	AF124	33 p	BC214L	16p	OC81	25p
2 N 2147	95 p	2 N 3906	$35 p$	AF127	22p	BCY70	19p	0 O 8	20p
	34 p	2 N 4058 2 N 4059	$13 p$ $10 p$	AFI39	${ }^{33} \mathrm{p}$	$\mathrm{BCYO}^{\text {C }}$	33 p	ZTX300	14p
2N2219	$38 p$	2 N 4060	11 p	AF239	33 P	BCY72	15p	ZTX301	16p
2N219A	53p	2N4061	$11 p$	ASY28	$27{ }^{2}$	8 8F167	${ }_{18}{ }^{2}$	21×302	22 p
2 N 2270	${ }_{6} \mathrm{2}^{\text {p }}$	2N4062	12 p	BC107	12 p	${ }_{8 F 173}$	19	${ }_{2 T \times 304}$	${ }_{27}^{22}$
2 N 2369 A	19 p	2 N 4124	18 p	${ }^{8 C 109}$	$11 p$	8 BF 194	$14 p$	ZTX500	18 p
2 N 2483	35 p	2 N 4126	27p	$8 \mathrm{BC1} 09$	12p	8 BF 195	15p	ZTX501	$21 p$
2 N 2484	42 p	2 N 4284	15 p	8 BC 125	$15 p$	BFX29	31 p	ZT×502	25p
2 N 2646	47p	2 N 4286	15 p	8 BC 126	22p	BFX84	25p	ZT $\times 503$	22p
2N2904A	42p	2N4289	15p	BC147	10p	8FX85	34p	ZTX504	52p

RESISTORS— $\mathbf{1 0} \%, \mathbf{5 \%}, \mathbf{2 \%}$

COLVERN 3 watt Wire-wound Potentiometers. $10 \Omega, 15 \Omega, 25 \Omega, 50 \Omega, 100 \Omega, 150 \Omega, 250 \Omega, 500 \Omega$,
$1 \mathrm{~K}, 1.5 \mathrm{~K}, 2.5 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 15 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 32 \mathrm{peach}$

ZENER DIODES 5\% full range E24 values: $400 \mathrm{~mW}: 2.7 \mathrm{~V}$ to 30 V , 15 p each; $1 \mathrm{~W}: 6.8 \mathrm{~V}$, to 82 V , 27p each; 1.5 W : 4.7 V to $75 \mathrm{~V}, 60 \mathrm{p}$ each. Clip to increase 1.5 W rating to 3 watts (cype 266F), 4p.

[^11]| Values availoble | $\begin{array}{cc} 209 & 102099 \\ \text { (see note below). } \end{array}$ | | 100 up |
| :---: | :---: | :---: | :---: |
| E12 | , | 8 | 7 |
| E24 | , | 0.8 | 0.7 |
| E12 | , | 0.8 | 0.7 |
| E24 | 1.2 | I | 0.9 |
| El2 | 2.5 | 2 | 1.8 |
| E24 | 4 | 3.5 | 3 |
| E12 | 7 | 7 | 6 |
| E12 | 7 | 7 | 6 |
| E12 | 9 | 9 | 8 |

Prices are in pence each for quantities of the same ohmic value and power
rating. NOT mixed values. (Inore fractions on total value of resistor order.)

CAPACITORS

MULLARD polyester C280 series
$250 \mathrm{~V} 20 \%: 0.01,0.022,0.033,0.047$ 3p each; $0.068,0.1,4 p$ each; $0.15,4 p ; 0.22,5 p .10 \%$ $0.33,7 p ; 0.47,8 p ; 0.68, ~ i I_{p} ; 1 \mu \mathrm{~F}, 14 \mathrm{p} ; 1.5 \mu \mathrm{~F}$,
$21_{\mathrm{p}} ; 2.2 \mu \mathrm{~F}, 24 \mathrm{p}$.
MULLARD SUE-MIN ELECTROLYTICS C426 range, anial lead

Values ($\mu \mathrm{F} / \mathrm{V}$): $0.64 / 64 ; 1 / 40 ; 1.6 / 25 ; 2.5 / 16 ; 2.5 / 64$. 4/10; 4/40; $5 / 64 ; 6 \cdot 4 / 6 \cdot 4 ; 6 \cdot 4 / 25 ; 8 / 4 ; 8 / 40 ; 10 / 2 \cdot 5$: 25/6.4; 25/25. $32 / 4$; $32 / 10 ; 16 / 40 ; 20 / 16 ; 20 / 64 ;$ | $25 / 6 \cdot 4 ;$ | $25 / 25 ;$ | $32 / 4 ;$ |
| :--- | :--- | :--- |
| $40 / 2 \cdot 5 ;$ | $50 / 6 \cdot 4 ;$ | $50 / 25 ;$ |
| $50 / 40 ;$ | $32 / 40 ;$ | $32 / 46 ;$ |
| $104 / 10 ;$ | $80 / 2.5 ;$ | | $80 / 16 ; 80 / 25 ; 100 / 6 \cdot 4 ; 125 / 4 ; 125 / 10 ; 125 / 16 ;$ $160 / 25 ; 200 / 6 \cdot 4 ; 200 / 10 ; 250 / 4 ; 320 / 2 \cdot 5 ; 320 / 6 \cdot 4 ;$ 400/4; 500/2.5.

LARGE CAPACITORS
High ripple current types: 1000/25, 28p; 1000/50,
41p; $1000 / 100, ~ 32 p ; 2000 / 25,37 p ; 2000 / 50,57 p$ 21p; $2000 / 100$, \&1-44: $2500 / 64$, $77 p$; 2000/50, 57p; 5000/25, 62p; $5000 / 50$, il 10 ; $5000 / 100, \& 2.91$: 10000/50, \&2.40.

HANDBOOK OF TRANSISTOR EQUIVA. LENTS \& SUBSTITUTES 40p (Post 3p if ordered alone.)

COMPONENT DISCOUNTS

Not allowed on
10% on orders for components for 45
| 5% on orders for components for $\& 15$
\star SIEMENS

TTL INTEGRATED CIRCUITS

FLHIO1 (7400) Quad 2-input NAND .
FLH201 (7401) Quad 2-input NAND (open collecter) FLHI91 (7402) Quad 2 -input NOR
FLH211 (7404) Hex inverter
FLH271 (7405) Hex invercer (open collecter)
FLHII (7410) Triple 3-input NAND
FLH351 (7413) Dual 4-input Schmitt trigger.
FLHI41 (7440) Dual 4-input NAND
FLH281 (7442) BCD to decimput NAND power
FLHISI (7450) Expandable dual 2 wide 2 input
FLHI7I (7453) Expandable 4 wide 2 input
FLY। 1 (7460) Dual 4 -input expander
FLJIOI (7470) J-K flip flop
FLJII (7472) J-K master slave flip flop
FLJI41 (7474) Dual D-type edge trigger flip flop
FLJ151 (7475) Quad bi-stable latch
FLJI31 (7476) Dual d-K master slave flip flop
FLH341 ${ }^{(7486)}$ Half adder

* SIEMENS 5\% TOLERANCE POLYCARBONATE CAPACITORS
$0.01,0.012,0.015,0.018,0.022,0.027$
$0.033,0.039,0.045,0.056,0.068,0.082,0.1,0.12,0.15,0.18,0.226 \mathrm{p}$ $0.27,7 p ; 0.33,0.39,9 p ; 0.47,10 p ; 0.56,13 p ; 0.68$, $15 p$.

NEW PEAK SOUND SPECIAL OFFER
Fantastic new Englefield 840 amplifier with add-in facilities for
stereo cuner, advertised at $£ 49.50$. Special Electrovalue offer plus
stereo cuner, advertised at $£ 49.50$. Special Electrovalue offer, plus
choice of case finish in black, red, blue or green simulated leather. chaice of case finish in black, red, blue or green simulated leather.
In makers sealed carton and guaranteed.
NETT $\& 38.75$

THE 1971 CATALOGUE

64 pages - thousands of items well classified, plus valuable information and diagrams post free 10 p

Special offer of AMPEX professional tape heads mu－metal shrouded．（Designed for model AG20）．Ful 3 track record，or playback，$\pm 3 \cdot 00$ ．Erase heal record only，$£ 3 \cdot 00$ each．Carriage paid．

OXLEY P．T．F．E．BARB TERMINALS．Stand off

HARWIN．Tapped（ 6 Ba）high voltage＂stand off＂
insulators．leneth insulators，length
per 100 ．Carriage Paid．
K．L．G．SEALED TERMINALS．Type TLSI AA K．L．G．SEALED TERMINALS．Type TLSB AA，
overail length $H^{\prime \prime}$ ，box of 100 ，$£ 1.00$ ．Type TLSI BB，over－ overall length H＂，box of 100 ， 61.00 ．Type TLSI
all length I^{*} ，box of $100,61.50$ ．Carriage Paid． ＂BENSON BROS．＂ 12% D．C．HEAVY DUTY BENSON BROS．
SOLENOID．Size： $3^{\prime \prime} \%$ overall．\times HEAVY D $1 t^{\prime} \times 1$ ．．Very ＂DECCO＂MAINS SOLENOID．－ Compact and very powerful． 16 lb．pull．
is travel which can be increased to l＂by

MAINS SOLENOID BY MAGNETIC DEVICES LTD．A beautifully constructed solenoid at half normal price．A two－sided bracket is incorporated for vertical or horizontal mounting．Size： $2^{\prime \prime} \times 1 \frac{1}{n}^{\prime \prime} \times 1 \frac{1}{n}^{\prime \prime}$ ．Pull is approx． 2 Ib．，plunger travel $1 t^{\mu}$ ．Fixing eye takes up to $\frac{1}{2}$ bolt．Plunger noin－captive．New in original makers
boxes． 75 p each，plus 25 p P．\＆P．Large number avail－ able，special price for quanticy．

RELAYS

Perspex enclosed，plug in，with base．Size $1 \frac{1}{2 "}_{t^{\prime \prime}} \times 1 \frac{1^{\prime \prime}}{} \times 3^{\prime \prime \prime}$
MO $308600 \Omega 24 v .4 \mathrm{c} / 0.60 \mathrm{p}$ ea．， $45 \cdot 00^{\prime \prime}$ per doz． MQ $50810,000 \Omega$ io0v． $4 \mathrm{c} / \mathrm{p}$ ． 50 p ea．， 84.50 per daz． S．T．C．Midget Sealed Relay type 4109 EC ． 12 v .40 mA i70 ，single H．D．make． 53 p each．
 2 volts
fl 1.00.
＂OMRON＂OCTAL BASE．A．C．mains． $2 \times 5 \mathrm{amp}$ ．
C／O contacts．Perspex enclosed．88p．
A．E．Perspex enclosed，plug in， 50Ω 6v． $2 \mathrm{c} / \mathrm{o} .63 \mathrm{p}$
ea． $470 \Omega 12 \mathrm{v} .4 \mathrm{c} / \mathrm{o} .73 \mathrm{p}$ ea． $2,780 \Omega \mathrm{k} .48 \mathrm{v} .4 \mathrm{c} / \mathrm{o} .73 \mathrm{p}$ ea． $1,260 \Omega 48 \mathrm{v} .6 \mathrm{c} / 0.83 \mathrm{p}$ ea．
ea．
NEW＂＇F．I．R．E．＇，PLUG－IN RELAY．－115v．Coil $50 / 60$ C．P．s． contacts．Very robuse． 63 p ．

NEW＂＇ISKRA＂ 240 V ．A．C． RELAY．－
contacts． 63 p ．
SIEMENS HIGH SPEED RE．
 LAY，Type 89L．1，7
coil．New 63 p each
＂GOYEN＂PRESSURE SWITCH． －Incorparating differential adjustment of approx．$\frac{1}{2}$ p．s．i．）．A single pole change－over switch rated 15 amps． 250 v ．is actuated．Air inlet tube $\frac{10}{10^{\prime \prime}}$ dia．Projection $\mathrm{H}^{\prime \prime}$ ．Overall size：
 dia．${ }^{3 t^{\prime \prime}}$ ，depth $2^{\prime \prime}$ plus $H^{\prime \prime}$（air tube）．

ERIE．Ceramicon capacitor．Type CHV4IIP． 500 P．F． 30 KV Size 1.5^{n} dia．$\times 1 \cdot 44^{\prime \prime}$ long． 50 p ea．Carriage paid． HIGH CAPACITY ELECTROLYTICS．Cylinder－ type with serew terminals on top．Average size 3 ＂dia．X
$4 t^{N}$ high．＂Mallory＂ $20,000 \mu$ F 30 v ．D．C． 45 y ．D．C．surge $41^{\prime \prime}$ high．＂Mallory＂20，000 μ F 30v．D．C． $45 v$ ，D．C．surge．
－＂Mallory＂ $25,000 \mu$ 2 $25 v$ ．D．C．，40v．D．C．surge．＂Mallory＂ ＂Mallory＂ $25,000 \mu$ F 25v．D．C．，40v．D．C．surge．＂Mallory

$35,000 \mu$ F $15 v$. D．C．，20v．D．C．surge．＂Mallory＂ $\begin{array}{lllll}35,000 \mu \mathrm{~F} & 15 v . & \text { D．C．，} 20 v \text { D．C．surge．＂Mallory } \\ 40,000 \mu \mathrm{~F} & 10 \mathrm{v} \text { ．D．C．，} & 12 \mathrm{v} \text { ．D．C．surge．＂Sprague＂}\end{array}$ | $40,000 \mu$ F 10 v ．D．C． 12 v ．D．C．surge．Sprague＂ |
| :--- |
| $40,000 \mu \mathrm{~F}$ |
| 0 v ．D．C．， 12 v ．D．C．surge．＂Genercl Electric＂ |

 $\frac{\text { order } £ 1.00 \text { on these items．P．\＆P．10p each．}}{\text { BELLING \＆LEE FUSEHOLDERS }}$ TYPE LI382．Size 0 ．Rating 7A．Breakdown voltage （DC）：$>10 \mathrm{kV}$ ．List price 71 p ．Our price $£ 2.00$ per doz．
 posts suitable for soldering or solderless snap－on
connectors $\left(t^{\prime \prime} \times 0.032^{\prime}\right)$ ．Current rating 30 A max． List price 30 p ．Our price El 1.50 per doz．

CURRENT FLOW INDICATOR． Ideal for all types of battery operated equipment（portable machines，tape appear when current flows．Coil is $600 \Omega 6 / 12 \mathrm{v}$ ．Drawing only 8 ma on function．Neat in appearance．Size： dia．$\dagger^{\prime \prime} \times{ }^{\prime \prime} H^{\prime \prime}$ deep．Fixing centres lia．fi． 25 each．Carr．Paid．
＂TEDDINGTON＂CONTROLS THERMOSTAT．Adjustable internal adjuster takes the maximum up to $120^{\circ} \mathrm{C}$ ．Circuit cuts in again at
3° below cut－out setting． $42^{\prime \prime}$ capillary 3° below cut－out setting． $42^{\prime \prime}$ capilary
and sensor probe．The thermostat and sensor a probe． 15 amp .250 v ．c／o switch． A second single pole on／off switch is incorporated in the adjustment

PRECISION FAN CO．＂ （smiths Industries） CENTRIFUGAL FAN／ BLOWER．－This is a beau－ tifully balanced，particularly quiet running，unit giving approx． 90 cubic ft．$/ \mathrm{min}$ ． The motor is a 2 pole shaded pole 240 v ．Mycalex，drawing only 240 ma on run．Weight 2 ll lb ．Sizes：Case dia． 3.1 in．，width（case only） 3.125 in．，width overall（inc． motor） 5.25 in．，aperture $3 \cdot 125 \mathrm{in}$ ．by 1.85 in．Offered
well below makers price at $£ 2.95$ P．\＆P． 25 p． well below makers price at $£ 2.95$ Centrifugal Blower Watkins \＆Watson．240v． 50 Hz ．Powered by A．E．I． continuous rating 2850 rpm
motor．Cowl diameter 10^{*} Outlet fiange 2＂${ }^{\prime \prime}$ ．D．Coupling Outlet flange 2．Coupling flange supplied．These superb
precision units are ideally suited for Organ construction． Offered at approx．half makers

HEAVY DUTY PORTABLE BATTERIES．New ex WD． $12 v .75$ AH．Built in stout metal cases with
 ADVANCE CONSTANT VOLTAGE TRANS FORMER．Type CVS 750A．Input $190-260 \mathrm{v} .50 \mathrm{~Hz}$
 $7+3 / 2 \times 81^{\prime \prime}$
G．B．only）．
＂ADVANCE VOLSTAT＂CONSTANT VOLTAGE TRANSFORMER．Input 190 to 260 v ．Output 230 R．M．S．at 10 Watts．Supplied with matching capacitor E2．00 plus 25 P P．\＆P

301 EDGWARE ROAD，W． 2

where we look forward to welcoming all our old find an unusual and interesting variety of find an unusual and interesting variety
electronic pot－pouri．Hope to see you soon？
L．T．TRANSFORMERS．Prim． $0-110-240 \mathrm{v}$ ．Sec． $4.5-$
 Prim．${ }^{220 / 2}$
Prim．200／240v．Sec．0－1－56－58－60 at 3.5 amps plus $0-90$ at 100 ma Wax impregnated with screw term．blocks

＂WODEN．＂Prim．10－0－200－240v．Sec．two separate windings 6 v at 4 amps each．$\in 2-50$ ，plus 30 p P．\＆P．
＂WODEN．＂Prim．0－110－200－220－240v．Sec．34－36－38v． at 600 va． 47.50 ，plus 50 p P．\＆P．

VINKOR POT CORE ASS．TYPE LA． 2103 （core LA． 2100 ）．Normal price $f \mid-48$ ．Our price 75 p each． Special quote for quantity．
UNISELECTORS． 8 Bank 25 －way 24v．Double sweep． Brand new in maker＇s boxes． $\mathbf{5 5} \mathbf{2 5}$ ．P．\＆P．25p．
SYLVANIA MAGNETIC SWITCH．A magnetically activated switch operating in a vacuum．Switch speed 4 ms ．temperature -54 to $+200^{\circ} \mathrm{C}$ ．Silver contacts
normally closed rated 3 amps at 120 v ． 5 amps at 240 v ． normally closed rated 3 amps at $120 v .5$ amps at 240 v ． quotations for 100 or over

＂BMALLORY＇，LONGLIFE BATTERIES．Type A．R．MI2 cell
$1.35 \mathrm{v} .3,600 \mathrm{ma} / \mathrm{H}$ ．CAP． $250 / 300 \mathrm{ma}$ cont．current．Size： $2^{\prime \prime} \times$ in $^{\prime \prime}$ ． 5 for $£ 1.00$ or $£ 2.00$ per doz．Carr．Paid．Type B． Comprises $8 \times R M 625$ cells．Nom．
volts． 1.35 each 10.5 v ．Overall． $350 \mathrm{ma} / \mathrm{H}$ volts． 1.35 each 10.5 v ．Overall． $350 \mathrm{ma} / \mathrm{H}$
$C A P .20 / 25 \mathrm{ma}$ cont．current．Size：
 We welcome orders from establish of companies， cost of invoicingmust baimade on any order amounting
 limited number only as above．
Brand New．$£ 12.50$ each P．\＆P．50p
ELECTRO CONTROL（CHICAGO）．Shaded pole 240 v .50 Hz .200 rpm 10 lb ． in ． $\mathbf{E 2 \cdot 5 0}$ ．P．\＆P． 25 p ． MYCALEX．Open frame，shaded pole motors． 240 v ． $50 \mathrm{~Hz}, 7 \mathrm{rpm} .28 \mathrm{lb} . / \mathrm{in} .80 \mathrm{rpm} .12 \mathrm{lb} . / \mathrm{in} . ~ £ 2.25 \mathrm{each}$. P．\＆P． 25 p．
＂CROUZET＂TYPE 965． $115 /$
$240 \mathrm{~V}, 50 \mathrm{~Hz}, 47 / 68$ watts， 50 $240 \mathrm{v} .50 \mathrm{~Hz} .47 / 68$ watts． 50 rpm ．
Stoutly constructed．Size： $2 \mathrm{H}^{\prime \prime}$ dia Stoutly constructed．Size： $2 \mathrm{H}^{\prime \prime}$ dia
$\times 3 t^{\prime \prime}$ long，plus spindle $1^{\prime \prime} \times t^{\prime \prime}$ $\times 3 t^{\prime \prime}$ long，plus spindle $I^{\prime \prime \prime} \times{ }^{\frac{\jmath^{\prime \prime}}{\prime \prime}}$
dia．Anti－clock． $\mathbf{2}$ ．75．P．\＆P． $25 p$

TYPE 955．Same as above，but 3 rpm．© 3 00．P．\＆P．
25p．
SPECIAL OFFER
BRAND NEW＂GRYPHON＂＇BROOK RE－
VERSIBLE MOTORS．Type TE 230／250v． 50 Hz ．
1 Ph．O83 h．p． 1,380 r．p．m． 096 amps at full load，
$\frac{1}{2}$＂spindle．This is a superbly constructed，standard
foot－mounted unit，with the extrafacility of reversal
by remote switching．Weight 16 lb．IO oz．Offered
in original maker＇s packing at approx．half price．
$\mathbf{5 7} 50$ ．Carriage 75p．

SYNCHRONOUS MOTORS． $220 / 380$ v． $50 / 60 \mathrm{~Hz}$ ． 250－300 rpm．75p each
MYCALEX MAINS．Shaded pole， 1425 rpm．腬＂ spindle． 2 for $\mathbf{£ 1 \cdot 2 5}$ ．Carriage Paid．
MAINS INDUCTION MOTOR．Open frame，交＂spindle，weight ？${ }^{3}$ Ib．Powerful．88p each．P．\＆P．I2p． AMPEX 7．5v．D．C．MOTOR．This is an ultra－precision tape motor
designed for use in the AMPEX model AG20 portable recorder．Torque $450 G M / C M$ ．Stall load at 500 ma ．
Draws 60 ma on run． $600 \mathrm{rpm}+5 \%$ speed adjustment，internal AF／RF suppression．${ }^{\frac{1}{2}}$ dia．\times ．${ }^{\text {spindle，}}$ f16．50．Our price $£ 4$－25．P．\＆P． 25 p ． l．arge quantity available（special able 75p each．
VACTRIC PRECISION D．C．MOTOR．Type XOTPI9 10 v ．D．C． $0.66 \mathrm{amp} .8,000 \mathrm{r} . \mathrm{p} . \mathrm{m}$ ．， $30 \mathrm{gm} / \mathrm{cm}$ ．Size 7. Original maker＇s packing．Limited supply． $\mathbf{E 3} 50$. Carriage paid．
＂HONEYWELL＂MICROSWITCHES Two and three bank，manual push．Ideal for vending machines，ecc．Each bank comprises a change－over rated at 15 amps 240 v ．A．C The through－panel mounting assembly is in heavy polythene surmounted by black knob．
Neck dia．8＂，2－bank 40p．3－bank 55p．

＇HONEYWELL＂，TYPE 23AC－NE．－ 15 amp．change－over micro switch is fitted on angled metal rod operating cam．50p each

PYE MICROSWITCH．Otehall rype This switch has a $13^{\prime \prime} \times{ }^{\prime \prime} \mathbf{2}^{n}$ dia．column plus $\frac{1^{\prime \prime}}{}$ plunger．Minimum travel operates switch．25p each．P．\＆P．10p．Special
discount for quantities．
HONEYWELL（USA）Sub－minioture 2 bank panel mounting micro－switch，positive toggle action giving 2 change－over
＂HONEYWELL＂V3 Series．Flush micro－switch $10 \mathrm{amp} . \mathrm{c} / \mathrm{o}$ ．The side panel is insulated．End plate size： $2^{\prime \prime} \times \mathbf{8}^{\prime \prime}$ ．\＆1 50 ．per doz．Carriage Paid．
＂FIBRE GLASS＂COPPER CLAD．TOP grade．One size only， $7 \frac{1^{\prime \prime}}{2} \times 4 \frac{1}{\prime \prime}^{\prime \prime} \times \frac{1}{16}$＂． 3 panels $\leqslant 1 \cdot 00$ ． 12 panels E3．50．P．\＆P．15p．
＂SRBP＂，COPPER CLAD．Sizes： $77^{\prime \prime} \times 4 \frac{3}{1 / 3} \times{ }^{1 / \prime} \times$
 SLIDER SWITCHES． 3 amp．cype D．P．D．T． $1^{\prime \prime} \times$ tio $\times z^{\prime \prime}$ deep．I amp type 3 P．D．T．$\frac{t^{\prime \prime}}{} \times \frac{?_{10}^{\prime \prime}}{} \times \frac{7^{n}}{}{ }^{n}$ deep．
El． 25 per doz．Either type or mixed as required． Carriage Paid．
PLUNGER SWITCHES．Spring return． 3 P．D．T．I amp． Single action．Size： $\mathbf{l}^{\prime \prime} \times$ 畀＂plus plunger． $\mathbf{f 1} \cdot 50$ per doz． Carriage Paid
A．C．／D．C．M／IRON AMMETERS． 0.5 amps or $0-8$ amps（suitable battery chargers etc．）．Perspex front．Size：
$17^{\prime \prime} \times 1 \mathbf{7}_{8}^{\prime \prime}$ ．Any 2 for $\& 1 \cdot 10$ ．Carr．Paid． $+$

ERNESTTURNER $800 \mu \mathrm{~L}$ METER．
160Ω movement， $2^{\prime \prime}$ case，eliptic plastic front．Green－Red－Green
uncalibrated scale $£ \mathbf{\$} .50$ each．Car uncalibrated
riage Paid．

Computer Sales $\&$ Services

ICT HOLLERITH Type 29.80 col. punch A well-proven electronnech* duplicating, spaciug, and skipping tacilities. Two types ot keyboard are avalable for and Alphabetic. From £150 FEATURES: Motor cut-out switch for clearing card jumus.
Stop Lever for stopping caril at the 80th columing cari atrailable $/ 129$ colvan verifiers.

DATA DISC

The Mark IV Data Diac Handler is a self-contained magnetic disc memory unit designed for integration with amall computers or
other digital sygtems. The hander" salient featuren Randomaccess; High density contact recording; Interchangeatule disc cartridges; Write lock-out; Air filtration h oritical areas Minimal maintenance requirements. The mechanical assembly

[^12]

For the preparation verifying and coppying of
data in 1 so cop data in 180 (full 128
characters) even parity ${ }_{8}$ characters) even parity Fast entry keyboard,
mounted with paper tape reader and purch boused in
Bound-proof
drawers. "As new"-immediate
delivery frometock $£ 595$

COMPUTER AND MAGNETIC TAPE CERTIFIED 550 B.P. 1.

Computer Sales \& Services (Equipment) Ltd. 49-53 Pancras Road, London N.W. 1 Telephone 01-278 5571
Telex 267307
WW-109 FOR FURTHER DETAILS

TRANSFORMERS

Primery 200-2INS ISOLATING SERIES LSO AYAlapped (120 V) and Earth Shielded Centre

AUTO SERIES (NOT ISOLATED)							
Ref.		Weight	Size cm.		Taps		\& P
113	(W20	Ib oz	$7.3 \times 4.3 \times 4.4$	0-115-2		1.	Np
64	75	14	$7.0 \times 6.4 \times 6.0$	0-115-2			20
4	150	30	$8.9 \times 6.4 \times 7.6$	$0-115-2$	220-240	1.74	30 36
66	300	60	$10.2 \times 10.2 \times 9.5$	-1		3.38	5
67	500	128	$14.0 \times 10.2 \times 11.4$	",'	".	5.03	67
84	1000	160	$11.4 \times 14.0 \times 14.0$	",'	".	9.12	82
93 95	1500 2000	28 40 0	$13.5 \times 14.9 \times 16.5$	",	",	13.22	
73	3000	458	$17.4 \times 18.1 \times 21.3$,	17.26 23.47	

ILV 500 WTALLY ENCLOSED II5V AUTO TRANSFORMER and two 115 V outlet sockets, 66.85 . P \& P . 67 nP . LOW VOLTAGE SERIES (ISOLATED)
PRIMARY $200-250$ VOLTS 12 AND OR 24 VOL

RANGE

PRIMARY 200-250VOLT FORCHEYCHARGER TYPES Ref. Amps. Weight Size cm.

All ratings are continuous. Standard construction: open with solder tags and wax impregnation. Enclosed styles to order.

MAINS KEYNECTOR

For fast mains input to one or more electrical appliances up to 13 amps withou
wiring a plug. Ideal for production testing Send for descriptive leaflet. $\mathbf{6 2 \cdot 7 5} . \mathrm{P}$ \& P 25 np
\star Custom production winding service \star Ex stock items same day service \star Quantity prices on application
Also stocked: SEMICONDUCTORS . VALVES MULTIMETERS • MAINS KEYNECTOR ELECTROSIL METAL OXIDE RESISTORS

ELECTRONIC ORGAN DIVIDER BOARDS built to high industrial/computer spec. 5 octave set Et5 Complete with connection data and oscillator details.

COPPER LAMINATE P.C. BOARD
$8 \frac{1}{2} \times 5 \frac{1}{2} \times 1 / 16$ in. $12 \frac{1}{2} p$ sheet, 5 for $\mathbf{5 0 p}$
$11 \times 8 \times 1 / 16$ in 20p sheet, 3 for 50 p
Offcut pack (smallest $\mathbf{4} \times 2$ in.) 50 p 300 sq
P\&P single sheet $\mathbf{4 p}$. Bargain packs $\mathbf{1 0 p}$

SPEAKERS AND CABINETS

E.M.I. $19 \times 14 \mathrm{in} .50$ watts (14A/603A). Four tweeters mounted across main axis. Separate "X-over" un balances both bass and h.f. sections. 20 Hz to 20.000 Hz . Bass unit flux 16,50
£25. Carr. $£ 1.50$.
E.M.I. 13×8 in. (10 watt) with two tweeters and cross over $3 / 8 / 15$ ohm models. $£ 3.75$. P.P. 25 p.
E.M.I. 13×8 in. base units (10 watt) $3 / 8 / 15$ ohm models £2.25. P.P. 25 p.
E.PA.I. $6 \frac{1}{2}$ in. ind. 10 watt Woofers. 8 ohm, 13,000 gss E.2-25. P.P. 15 p
E.M.I. 20 watt ($\$ 3 \times 8 \mathrm{in}$.) with single tweeter and "X-over" $20 \mathrm{~Hz} \mathrm{to} 20,000 \mathrm{~Hz}$. Ceramic magnet 11.000 gss . £8. P.P. 40 p. 20 watt base unit only. $\mathbf{f 6}$

CABINETS for $13 \times 8 \mathrm{in}$. Speakers made from $\frac{3}{4} \mathrm{in}$. teak finish blockboard. 20 watt cabinet $\left(21 \times 15 \times 8 \frac{1}{2}\right.$
in.) $£ 6$. P.P. 50 p. 10 watt cabinet $(16 \times 11 \times 8$ in.) in.) $\mathbf{£ 6 .}$ P.P. 50 p .
$\mathbf{£ 4 . 8 0 . ~ P . P . ~} 40$.
"AIRMAX' $7 \frac{1}{2}$ in. FANS. Aluminium diecast housing (9 in.) 240 v . a.c. New. £5. P.P. 50 p .
'KLAXON" GEARED MOTORS (8 ib-in.) 112 J.p.m. 240v. £2.25.
BRIDGE MEGGERS (500 v . series 2) f18 ea. in good working order.

BRIDGE RECTIFIERS (Mullard GEX 54INBIPIF) Output 74 volt. at 18 amps. $\mathbf{£ 2}$ ea. (brand new).

BULK COMPONENT OFFER. Resistors/Capacitors. All types and values. All new modern components. Over 500
pieces $\mathbf{£ 2}$. (Trial order 100pcs. 50 p .) We are confident you will re-order.

BERCO WIRE-WOUND POTS. New individually boxed. 200 ohm 25 watt 50p : 725 ohm 50 watt 75p : 300 ohm

HIGH SPEED MAGNETIC COUNTERS ($4 \times 1 \times 1 \mathrm{in}$.) 4 digit $24 / 48 \mathrm{v}$. (state which), 32 $\frac{1}{2}$ p ea. P.P. 5 p . 3 Digit (Re-settable) 12 v . working f1 75 .	

LEVEL METERS ($1 \frac{1}{2} \times \frac{1}{2}$ in.) 200 micro
Germany 75 ea. $2 \times 1 \frac{1}{2}$ in. (Japan) $£ 1$ ea.
MICROAMMETERS ($4 \mathrm{in} . \mathrm{sq}$. Weston) $25-0-25 \mathrm{mic}$ (amps. New/boxed. $£ 2.25$ ea. P.P. 25p
PRECISION CAPACITANCE JIGS. Beautifully made
with Moore \& Wright Micrometer Gauge. Type 1. 18.5 pf to
$\mathbf{2 2 0 p f}$. $\mathbf{f 1 0}$ ea. Type 2. 9.5 pf to 11.5 pf . $\mathbf{£ 6}$ ea
POT CORES LA1/LA2/LA3. 50p ea
LIGHT DIMMERS (2000 watt) T riac Controlled. $3 \frac{1}{2} \times 2 \times 1 \frac{1}{4}$
in. $£ 5.75$ ea. P.P. 25 p.

TRANSFORMERS

L.T. TRANSFORMER. (Shrouded) Prim. 200/250v Sec. 20/40/60v. 2 amp. $\mathbf{£ 2}$ ea. P.P. 40p
L.T. TRANSFORMER. (Constant voltage) Prim. 00/240v. Two Secs. 50v. 2 amp. £3. P.P. 50p. .T. TRANSFORMER. Prim. 240v. Sec. 8/12/20/25v 3.5 amp . 1 ea. P.P. 40p.
.T. TRANSFORMER. Prim 220/240v. Sec. 13 v . 1.5 amp. 65p. 10.5 v .1 amp Model 50p. P.P. 15 p . L.T. TRANSFORMER. "ADVANCE VOLTSTAT" Prim. 190-260v. Sec. 6 V . r.m.s 25 watt. $\mathbf{£ 2}$ ea. P.P. 20 .
H.T. TRANSFORMERS. Prim. $200 / 240 \mathrm{v}$. Sec. H.T. TRANSFORMERS. Prim. $200 / 240 \mathrm{v} . \mathrm{Sec}$.
$300-0-300 \mathrm{v} .80 \mathrm{~m} . a$.
6.3 v . c.t. $2 \mathrm{amp} . £ 1.50 \mathrm{P} . \mathrm{P} .40 \mathrm{p}$.
 H.T. TRANSFORMERS (H.D.) Prim. 200/240v. Sec. 550 v .2 amp. £7.50. Cart £1; 440 v . ${ }^{2}$
STEP-DOWN TRANSFORMERS. Prim. 200/240v. STEP-DOWN TRANSFORMERS. Prim. 200/240v.
Sec. 115 v .120 watt (double wound). $\mathbf{E 1} \cdot \mathbf{2 5}$. P.P. 25p; 250 watt (D.W.). £2.25. P.P. 25p; 500 watt (D.W.). £5. P.P. f1; 600 watt (auto). E4-50. P.P. 75p; 750 watt (auto). £5-50. P.P. f1.
ADVANCE CONSTANT VOLTAGE. Prim. 190/250v. Sec. 115 v . 2250 watt. $\mathbf{£ 1 5 \text { . Carr. £250. }}$
REGULATED POWER SUPPLY. (Coutant) Input $100 / 250 \mathrm{v}$. Output $=150 \mathrm{v}$. D.C. at $500 \mathrm{~m} / \mathrm{a}$ TWICE. Dimensions $5 \frac{1}{4} \times 6 \frac{1}{2} \times 11 \frac{1}{2} \mathrm{in}$. Wt. $22 \mathrm{lb} £ 20$ each. Cart. E2.
120 amp . AUTO TRANSFORMER. 190/270v. $50 \mathrm{c} / \mathrm{s}$.
Tapped every 5 volns. 550 ea. (Car. by arrangemen.)
COMPUTER TAPES. 2400 ft . $\frac{3}{4}$ in. On N.A.B. Hubs co
plete with transparent cassete case. $£ 2$ ea. P.P. 50 p.

LIQUID LEVEL SWITCH. Detects even mildly conductive liquids i.e. ether
S.a.e. Iiterature.
'LONG LIFE' ELECTROLYTICS (screw terminal). 25.000 u.f. 40 v . ($4 \frac{1}{2} \times 2 \frac{1}{2}$ in.) E. 1 P.P. 10 p .

10,000 u.f. 75 v . ($4 \frac{1}{2} \times 2 \frac{1}{2}$ in.) $87 \frac{1}{2}$ p. P.P. 10 p
7.100 uf. 40 v . $(4 \times 2$ in.) 75p. P.P. 10 p .

TELEPHONE DIALS (New) £1 ea. RELAYS (G.P.O. '3000'). All yypes. Brand new fiom 37 ${ }^{2}$ p ea. 10 up quotations only. TELEPHONE EXTENSION CABLE coil £3.75. P.P. 25 p . UNISELECTORS (Brand new) 25 -way
75 ohm. 8 bank wipe £3.25. 10 bank 75 ohm. $\mathbf{8}$ bank $\frac{1}{2}$ wipe $\mathbf{£ 3} 25$. 10 bank
$\frac{1}{2}$ wipe $£ 3.75$. Other types from $£ 2.25$.

RELAYS

SIEMENS/VARLEY PLUG-IN. Complete with transparent dust covers and bases. 2 pole c/o contacts 35p ea; 6 make contacts 40p ea. ; 4 pole c/o contacts 50p ea. 6-12-24-48v types in stock
12 VOLT H.D. RELAYS ($3 \times 2 \times 1 \mathrm{in}$) with 10 amp. silver Contacts 2 pole c/o 40p ea. ; 2 pole 3 way 40p. P.P. 5 p.

24 VOLT H.D. RELAYS $\left(2 \times 2 \times \frac{3}{4} \mathrm{in}\right.$) 10 amp . contacts. 4 pole c/o. 40p ea. P.P. 5 p.
240 VOLT A.C. RELAYS ($1 \frac{3}{4} \times 1 \frac{3}{4} \times 1$ in.) G.P. contacts make $2 \mathrm{c} / \mathrm{o} .60 \mathrm{p}$ ea. P.F. $5 p$
REED RELAYS 4 make $9 / 12 \mathrm{v}$. ($1.00 j$ ohm.) $62 \frac{1}{2}$ p ea. 2 make $37 \frac{1}{2} p$ ea. 1
$\mathbf{1 0 p}$ ea. f1 per doz.
SUB-MINIATURE REED RELAYS ($1 \mathrm{in} . \times \frac{1}{4} \mathrm{in}$.). Weight $\frac{1}{5}$ oz. Type 1.960 ohm, $3 / 9 \mathrm{v} .1$ make. $62 \frac{1}{2} \mathrm{p}$ ea. Type 2. 1800 ohm, $3 / 12 \mathrm{v}$. 1 make. 75 p ea
E.H.T. GENERATOR MODULE (Mullard VM1049) input 12 volt, output 1800 volt $1 \mathrm{~m} . \mathrm{a} . \mathbf{£ 4}$ ea. P.P. 25p. SILICON BRIDGES 100 p.i.v. 1 amp ($\times \times \frac{5}{8} \times \frac{3}{3} \mathrm{in}$) $45 p$; 100 p.i.v. $2 \mathrm{amp}\left(1 \frac{1}{4} \times 1 \frac{1}{4} \times \frac{1}{2} \mathrm{in}\right.$.) 75p.

Or FACTORY BUILT with
$£ 5$ monts guarantee．Den．
55．75and 9 mthly pay
$£ 3.50$（Total $£ 37.25$ ）
FACTORY BUILT
£6 and 9 monthiv parment
£6 and 9 monthly payments
£ 3.86 （Total $£ 40.74$ ）
puxted chimuth
TORS．FOY゙R DIODES FOUR RECTILLCON TRANSIS TECHNICAJ DETAILS（applying to each channel where controls． CONTROLS：PUSH－BUTTON SELECTOR（1）Dise（2）Kadio on／off．Bass．Treble，and Balance Plus Ceramic Mak．P．（7）Mains

RSC G66Mk．II 6 i 6 Wat high quality StEREO AMPLIFIER

COMPLETE KIT OF PARTS
including fully wired printed circuit
Or FACTORY BUILT IN TEAK VENEERED CABINET
Individual Genged controls：Kass， circuit construation employitig io

 Selector Rwiten
Radio．
For
 silver finisheit metal faciack plate and $\&<$
watching control kna
f10．50 £13．99

THE＇YORK＇HIGH FIDELITY 3＇SPEAKER SYSTEM

 REMARKABLE VALUE HEAR IT AT ANY BRANCH R．S．C．AlO 30 WATT ULTRA LINEAR HI－FI AMPLIFIER

High

FANE LOUDSPEAKERS＇POP’ 25／2
 than Bass Guitar＂r Electronic
Organ．Carr．free．Or den． $\mathcal{E} 1$ Ong 9 monthy payments 75 p $\mathbf{f 6 . 7 5}$
（Total £7．75）．
HI－FI LOUDSPEAKER ENCLOSURES
（7）Teak or Arrormosia veneer finish．

FANE 807 HIGH FIDELITY LOUDSPEAKER

AUDIOTRINE HIGH FIDELITY LOUDSPEAKERS
ceramic magnets high efliciency surround or＂＂Ls ${ }^{\text {s }}$ ．Treated Cone Rubler surround，＂D＂indicates Tweeter Cone providing extended frequency range up to 15,000 e．p．s．
performance at low cost．Impedance

 AUDIOTRINE HI－FI SPEAKER SYSTEMS

C^{2}weeter．Smigoth response and extended fre－ Cart．30p．
5,000 line Speaker 65.75

FANE ULTRA HIGH POWER LOUDSPEAKERS

 All power ratings are R．M．S．continuous， 2 years cast chassis ALL CARRIAGE FREE．18＂＂POP’ 100

15＂＇POP’ 60
rattrg 80 watts
发边
£ 12.90 12＂＇POP＇ 50

 sen
R．S．C．BATTERY／MAINS CONVERSION UNIT

 Size $5 \frac{1}{2} \times 4 \frac{1}{2} \times 2$ in．approx．Completely
replates hatteries supplying 1.5 v ，and 40 v ． Where A．C．matins $200 / 250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$ is
available． COMPLETE KIT WITH DIA
or READY FOR USE 83.50 ．
INTEREST CHARGES REFUNDED ON CREDIT SALES SETTLED IN 3 MONTHS

R．SCANATNSTRANSEOBMERS FULLYGUARANTEED．Interleaved and

 TOP SHROUDED DROP－THROUGH TYPE

 FILAMENT or TRANSISTOR POWER PACK $6.3 \mathrm{v} .1 .5 \mathrm{a} .49 \mathrm{p} ; 6.3 \mathrm{v} .2 \mathrm{a}, 54 \mathrm{p} ; 18.3 \mathrm{v}$ ．
$6.3 \mathrm{v}, 6 \mathrm{a} . £ 1.30: 12 \mathrm{v}, 1 \mathrm{a} .55 \mathrm{p} ; 0.9 .18 \mathrm{v} .1 \mathrm{t}$

\qquad
 OUTPUT TRANSFORMERS
 50 p
83 p
 £1．98

SMOOTHING CHOKES

$150 \mathrm{~mA}, ~$
$10 \mathrm{H} .200 \Omega 60 \mathrm{p} ; 80 \mathrm{~mA} .20 \mathrm{H}, ~$
200 $250 \Omega 50 \mathrm{p}$ ； $60 \mathrm{~mA} .10 \mathrm{H} .400 \Omega 25 \mathrm{p}$ ．
SELENIUM RECTIFIERS F．W．Brldged 6／12v．D．C．Output Input Max．18v．A．C．1a．，25p；2a．，35p；3a．， 50 p ；

[^13]

 enquiries．ERquiries melcomed．Branches MALI OZDERS

${ }^{\text {LEICESTER }}$

 LIVERPOOL ${ }^{73}$ Dale St．（Hall－day Wed．）（Tel． 2363573
LONDON 238 Edgware Road，W． 2 （Hall－day Thurs．）Tel． 7231629 MANCHESTER 604 OIdham Screet（Hall－day Wed．）Tel． 2362778 MIDDLESBROUGH ${ }^{106}$ Newoort Rd．（Hall－day Wed．）．Tel． 47996

BENTLEY ACOUSTIC CORPORATION LTD.

38 CHALCOT ROAD, CHALK FARM, LONDON, N.W. 1 THE VALVE SPECIALISTS Please forward all mail orders to Littlehampton

Abstract

DIAMOND H HEAVY DUTY ROTARY SWITCHES DP 2 circuir 35a., 250v. A.C.-D
cover and knob. 85p. P.P 2 Sp.
HIGH CAPACITY ELECTROLYTICS

 T.C.C. Block type CE40M. 200 mfd . 380 v . wkg. Size $9 \times 3 \times 2 \mathrm{in}$.
75p. P.P. 15 Ft Type CE44H. 250 md . 250 v . wikg. Size $5 \times 4 \times 3$

in. 50 p. P.P. 15 p . Max. A.C. input 36v. D.C. Outpur $24 \mathrm{v.}$, 5a. $£ 1.50$. P.P. 25p. | DIAMOND H RELAYS |
| :---: |
| Type BR 115 BIT-9C A CO COntacts, 150 ohms. 26v., 250v. 15a. |
| Enclosed in metal case. Size it \times I in, dia. 75 inc. post. | OMRONSUB MINIATURE RELAYS

Type 105 IN. 12 v . D.C. C C.O. 5 amp contact overall. Size
$1 \times 1 \times 1 \mathrm{in}$. New and boxed with mounting screws. 45 p .
P.P. 5 Sp .

ELECTRO METHODS 23v. A.C. CONTACTORS 1 Heary. Duty
50p. P.P. 10p.

LONDEX PLUG-IN RELAYS
Sealed type, 28v. D.C. Three heavy dury silver contacts. Size
$2 \times 2 \times 11$ in. Complete with base. 50 p. P.P. 10 p.
MAGNETIC DEVICES 6v. D.C.
CONTACTORS
3×1 Heavy Makes contacts. Size
$2 \times 1 \frac{1}{2} \times 1$ in. 50p. P.P. 10 p .

 type 600Ω. 3 Co contacts 30 p . $50 \Omega 2$ make contacts (ex. equip
ment) 25 p. P.P. All relay 5 p .
MOTOR STARTER CAPACITORS
4.5 mid .400 v . A.C. Wkg. Tubular type. Size $4 \times 1 \frac{1}{2}$ in, 42 p
$\mathrm{P} . \mathrm{P} .10 \mathrm{p} .1 .5 \mathrm{mfd} .440 \mathrm{v}$. A.C. wkg. Block type. Size $2 \frac{1}{2} \times 2 \times 2$ $2 \frac{1}{2}$ in. 25 p. P.P. 10 p .
 24v., $0.8 \mathrm{ra}$. Sec. $3,6.3 \mathrm{v}$., la. All winding
Open frame type rable top connections.
PARMEKO L.T. TRANSFORMERS
Neptune series
$6 v .4 a$.

 P.P. 25 p. PRI' $115-230 \mathrm{v}$. Sec. tapped $9-10 \mathrm{v}$. $\frac{1}{2} \mathrm{a}$. and 6.3 v ., 3.5 a .
$9.3 \mathrm{v} ., 1.2 \mathrm{a}$. 11.00 . P.P. 25p.

PARMETKO HEAVY DUTY CHOKES
10H 650m/a 50 M 8,00v. R.M.S. Test size $7 \times 7 \times 7 \mathrm{in}$. $10 \mathrm{H} 650 \mathrm{~m} / \mathrm{a} 50 \mathrm{n} 8,000 \mathrm{~V}$.
341 b . $\mathbf{£ 5 . 7 5}$. Carr. $£ 1.00$. 9 \& 10 CHAPEL ST., LONDON, N.W.I 01.723-7851

01-262-5125

SPECIAL OFFER RADIO SPARES MULTI-TAPPED L.T. TRANSFORMERS Pri. 200, 220, 240 v . Sec. provides alt voltages from $1-40 \mathrm{v}$., 90 watts. Separate taps are as follows: 1 v . $9 \mathrm{a} ., 2 \mathrm{v}$. $9 \mathrm{a} ., 2 \mathrm{v}$. 9 a ., 5 v . $9 \mathrm{a} . \mathrm{I}$ I v . 4.5 Fa ., tov. 3a. Fully enclosed. Table top connections. Size $4 \frac{1}{2} \times 4 \frac{1}{2} \times 3 \frac{1}{2}$ ins. 64.50. P. \& P. 25p.
GRESHAM HEAVY DUTY HT CHOKES $10 \mathrm{H} 300 \mathrm{~m} / \mathrm{a}$ DC. Conservatively rated. DC Res 50Ω. Size H $7 \frac{1}{2} \times 5 \frac{1}{2} \times 5 \frac{1}{2}$ ins. Weight $18 \frac{1}{2} 16 s$. Open type. Table top connections, 6350 . Carr. 75p. Oil-filled potted eypes. 15 H $300 \mathrm{~m} / \mathrm{a} .60 \Omega .63 .75$. Carr. 75p. $15 \mathrm{H} 180 \mathrm{~m} / \mathrm{a} .200 \Omega . \mathbf{6 2 . 2 5 .}$ P. \& P. 50 p . $10 \mathrm{H} 180 \mathrm{~m} / \mathrm{a} .130 \Omega$. $£ 1 \cdot 50$. P. \& P. $40 \mathrm{p} .10 \mathrm{H} \mathrm{m} / \mathrm{a}$, \&1-15. P. \& P. 40p.
HEAVY DUTY LT TRANSFORMERS By famous maker. Fully Tropicalised. Pri tapped 100, $110,120,200,220,240 \mathrm{v}$. E.S. Three Separate Secondaries 27 v . 9a., 9v. 9a., 3v. 9a. Plus $17-0-17 \mathrm{v}$. 025 a and 17 v . 0-25a. Table TOp Connections. $\mathbf{4 4 0 0}$. Carr. 50p.
PARMEKO " \mathbf{C} " CORE TRANSFORMERS Pri. tapped $110-200-240 \mathrm{v}$. Sec. 1250 v . $197 \mathrm{~m} / \mathrm{az}$ Sec. 2 161 v . $110 \mathrm{~m} / \mathrm{a}$. Sec. $3152 \mathrm{v} .76 \mathrm{~m} / \mathrm{a}$. Sec. $4124 \mathrm{v} .25 \mathrm{~m} / \mathrm{a}$. Sec. $528 \mathrm{v} .0 \cdot 4 \mathrm{a}$. Sec. $66 \cdot 4 \mathrm{v} .6 \cdot 2 \mathrm{a} .6 \cdot 3 \mathrm{v} .3-25 \mathrm{a}$. $6.3 \mathrm{v} .1 \cdot 4 \mathrm{a}$. Table top connections. Size $5 \times 4 \times 4$ ins. Brand new boxed. \&1-75. P. \& P, 45p.

[^14]

AUTO TRANSFORMERS
240v.-110v. or lo0v. Completely Shrouded fitted with
Two-pin American Sockets or terminal blocks. Please state which type required
Type

HEST BUY IN TTL!!

SIEMENS QUALITY PLUS BARGAIN PRICES PLUS LST SERVICE

Pars No. Description
FLIHIOI Quadruple 2-input
HIOI Quadruple 2-input
NANO gate
|1। Triple 3-input NAND
111 Triple 3 -input NAND
121 Duate 4 -inpur NAND
B-input NAND gate
131 (1) Dual 4-input NANO
Dual 4-input NA
buffer
I Expandable dual
Expanide 2 -inpur
2ND-OR-INVERT
161 Duait
gate
ual 2 -wide 2 -input
AND-OR-INVERT
gate
171 Expandable 4-wide
INVERT gate
181 4-wide 2-input $\begin{aligned} & \text { AND-OR-INVERT }\end{aligned}$
191 Quatruple 2-input

$191 \begin{array}{l}\text { Quadruple 2-input } \\ \text { NOR gate } \\ 201 \\ \text { Quadruple 2-input } \\ \text { NAND gate with }\end{array}$

201 Quadruple 2-input with open
collector outpu
211 Hex inverter
$\begin{array}{ll}231 \\ 241 & \text { 2-bour binary ful binary }\end{array}$

7454 20p 16p 14p
7400 20p 16p $7410 \quad 20 \mathrm{p}$ 16p 14p $\begin{array}{lll}7420 & \text { 20p } & \text { 16p }\end{array}$ $7440 \quad 24 \mathrm{p} \quad 20 \mathrm{p} \quad 17 \mathrm{p}$ 1450
7450 20p 16p 14p
7451 20p 16p 14p
7453 20p 16p 14p
$7401 \quad 20 \mathrm{p} \quad 16 \mathrm{p} \quad 14 \mathrm{p}$ $\begin{array}{rlll}7401 \\ 7404 & 20 p & 16 p & 14 p \\ 7480 & 67 p & \text { 21p } & \text { 18p } \\ 748 p \\ 7482 & 87 p & 73 p & 62 p\end{array}$ $7483 \quad € 1.32 \quad 11.16 \quad € 1.00$
$271 \begin{gathered}\text { Hex inverter with } \\ \text { open collector }\end{gathered}$
281 BCD output decimal decoder
outpur 291 Quadruple 2-input
$31 \begin{gathered}\text { open collectoroutput } 7403 \text { 20p } \\ \text { Quadruple 2-input }\end{gathered}$ 16p $\quad 14 \mathrm{p}$ uadruple $2-i n p u t$
exclusive-OR
351 Schmitt Trigger
361 Excess 3 to decimal
371 Exeess 3 gray to
381 Quad 2-inputpositive
AND gate Totem
391 Quad 2-input positive
FLY 101 Dual $\begin{gathered}\text { coctor } \\ \text {-input }\end{gathered}$
FLJ 101 J expander
III J.K master-slave
$121 \begin{gathered}\text { flip-flop } \\ \text { Dual } 1 \text {-K master } \\ \text { slave filip-flop }\end{gathered}$
131 Duave flip-flop slave fli p-flop wit
preset and clear
$\begin{array}{llll}7486 & \text { 33p } & \text { 27p } & \text { 23p } \\ 7413 & 35 p & \text { 29p } & \text { 25p }\end{array}$
$\begin{array}{lllll}743 & 61.45 \quad 61.20 \quad & 61.08\end{array}$ $7444 \quad$ \& $1.45 \quad$ \& $1.20 \quad$ \& 1.08

7408 25p 21p 18p 7409 25p 21p 18p $\begin{array}{llll}7460 & \text { 20p } & \text { 16p } & 14 p \\ 7470 & \text { 45p } & \text { 37p } & \text { 32p }\end{array}$ 7472 32p 27p 23p 7473 45p 40p 35p
$7405 \quad 25 \mathrm{p} \quad 21 \mathrm{p} \quad 18 \mathrm{p}$
7442 \& 1.16 94p 81p 7476 45p 40p 36p

Dual D-type edge 151 Quad bisrable larch

$\begin{array}{llllll}161 & \text { Decade counter } & 7490 & 80 \mathrm{p} & \text { 67p } & \text { 57p } \\ 171 & \text { Divide-by-12 counter } & 7492 & 85 p & 71 \mathrm{p} & 61 \mathrm{p}\end{array}$
$\begin{array}{lllllll}181 & \text { 4-bit binary counter } & 7493 & 80 \mathrm{p} & \mathbf{6 7 p} & 57 p \\ 191 & \text { 4-bit shift register } & 7495 & 87 p & 72 p & 62 p\end{array}$
191 4-bit shift register
201 Synchronous up dow 4 -bit decade
$\begin{array}{llll}\text { Counter with one } \\ \text { line mode control } \\ 74190 & <1.80 \quad £ 1.48 \quad & \mathbf{1} .27\end{array}$
211 Synchronous up down with one line
 $\begin{array}{lllllll}231 & \text { 4-bit shift register } & 7494 & \text { Ki.13 } & \text { 94p } & 81 p\end{array}$ 4 4-bit decade
251 (As above)-binary
$74192<1.74<1.45<1.25$

261 5-bit shife register and clear
$301 \begin{gathered}\text { Dual quadruple } \\ \text { bistable latch }\end{gathered}$
$74100<1.64<1.37<1.17$ FLLLIOI BCD $\begin{gathered}\text { vibrator decimal } \\ \text { decoder }\end{gathered}$ decoder and nixie decoder
driver
$74141 \quad$ \& $1.22 \quad 11.02 \quad 87 p$ CONTHACT DRDER LPERCES AND BULK QUANTITY PPIRICES QUDTED ON HEQUEST

[4STATON INTETROM

Solve your communication problems with this new 4-Station Transistor Intercom system (1 master and 3 subs), in de luxe plastio cabinets for desk or wall mounting. Call/talk/ Masten from Master to Subs and Subs to Master. Operates on one 9 v . hattery. On/off
switeh. Volume control. Ideally suitable to switeh. Volume control. Ideally suitable to
modernise Office, Factory, Workshop, Waremodernise Office, Factory, Workshop, Warehouse, Hospital, Shop, etc., for instant interdepartmental contacts. Complete with 3 connecting wires, cach 66 ft . and other accessories.
Nothing else to buy. P. \& $]^{\prime} . £ 0.40$ in $U . \mathrm{K}$.

A top quality DE-LUXE transistorised intercom consists of MASTEK and SUB for desk/wall mounting. Call, talk or listen from either unit. On/Off switch, volume control. Ideally suitable as "BABY SITTER"' or Door Phone. A boon for spastics and invalids. Useful in the home, surgery or business for instant 2 -way conversations, effective range 300ft. Unsurpassed in QUALITY AND PERFORMANCE. Complete with Gift. connecting lead. Battery $£ 0 \cdot 14$. extra. P. \& P. £0-25. Price Refund

WEST LONDON DIRECT SUPPLIES (W.W.) 169 KENSINGTON HIGH STREET, LONDON, W. 8

SUPPRESSION CHOKE PROBLEM?

WE STOCK A STANDARD RANGE OR WILL DESIGN TO YOUR SPECIFICATION.

FOR FURTHER INFORMATION ON INDUCTORSAUDIO - MAINS - INVERTERTRANSFORMERS
contact

203/269 Foleshill Rd. Coventy 24224

S.G.brawn
 MILITARY - INDUSTRIAL COMMERCIAL EDUCATIONAL
 CDMMUNICATIONS Audio control systems for Aviation Intercom and Isolation Amplifiers for every type of civil and military aircraft
 KG Hawker siddeley
 COMMUNICATIONS

G. F. MILWARD

TRANSISTOR EQUIVALENT BOOK. LATEST EDITION.
Mikes, Low impedance, dynamic stick type with on/off switch
Crystal, Inserts with bracket
Lockable car aerials
Dee-Gee 25 watt pencil bit soldering irons
Speakers, 2 tin, 8 ohms
Insulating Tape, $\frac{1}{2}$ in wide, 10 yard rolls
Miniature
Rwirch cleaner, aerosol way or 2 pole 6 way
Electrolytic Capacitors $2,000 \mu \mathrm{f} 25$ volt Rev.
1,000 uf 70 volt
$10,000 \mu \mathrm{f} 35$ volt
2000 uf 25 volt
$60 \mu \mathrm{f}+200 \mu \mathrm{f} 300$ volt
400 uf 275 volt
$10 \mu \mathrm{f} 6$ volt
$10 \mu \mathrm{f} 25$ volt
$16 \mu \mathrm{f} 250$ volt
$32 \mu \mathrm{f} 275$ volt

Unrepeatable Offer ! ! ! ! Surplus VERO-BOARDS, $3_{4}^{\prime \prime} \times 22_{2}^{\prime \prime} \times \cdot 15^{\prime \prime}$ Only 10 p each or $\mathbf{~} 1.00$ per dozen							
TRANSISTORS AND I.C.S							
ALL BRAND-NEW WITH MANUFACTURERS MARKIINGS							
ASY22	10p	OC45	10p	2N709	50p	2N3703	13p
ASY29	25p	OC46	15p	2 N 1302	15p	2N3704	18p
ASZI7		OC141	22p	2N1309	23p	2N3707	15p
(OC35)) 25p	OCI39	22p	2 N 1613	25p	2N3877A	40p
BC167	15p	OC74	20p	2N1711	25p	7401	40p
BCY70	18p	OC204	25p	2N2646	58p	7410	40p
BFXI2	20p	2G345	10p	2N2926	15p	7430	40p
OC41	20p	2G371	10p	2N3053	25p	7472	55p
OC42	23p	2G378	10p	2N3055	75p	7473	90p
OC43	20p			2N3702	18p	7475	¢1.15
0 C 44	15p						

Unrepeatable Offer ! ! ! !
Surplus VERO-BOARDS, $3_{3}^{\prime \prime} \times 2 \frac{1}{2}$ " $\times 15^{\prime \prime}$

TRANSISTORS AND I.C.S

VEROBOARD

$2 \frac{1}{2}$ in $\times \operatorname{lin} \times 0.15$ in $6 p \quad 5$ in $\times 3 \frac{3}{4}$ in $\times 0.15$ in 28p $\quad 3{ }_{3}^{3}$ in $\times 3^{3}$ in $\times 0.1$ in 24p $3 \frac{3}{3}$ in $\times 2 \frac{1}{2}$ in $\times 0.15$ in 16p $\quad 17$ in $\times 2 \frac{1}{2}$ in $\times 0.15$ in $55 p \quad$ Sin $\times 2 \frac{2}{2}$ in $\times 0.1$ in 23p
 Spot Face Cutter 38p. Pin Insert Tool 48p. Terminal Pins (0.1 or 0.15) 36 for 18p. Special Offer Pack consisting of $52 \frac{1}{2}$ in \times lin boards and a Spot Face Cutter-50p.

RECORD PLAYER CARTRIDGES. Well below normal prices! G90 Magneric Stereo Cartridges, Diamond Needle, 6 mV outjut, 44 . ACOS GP $67 / 2$ (Mono, Crystal) 75 p. ACOS GP $91 / 3$ (Compatible, Crystal) $£ 1$. ACOS GP 67/2 (Mono, Crystal) 75p. ACOS GP $91 / 3$ (Compatible, Crystal) El. ACOS
GP $93 / 1$ (Stereo, Crystal, Sapphire) EI-25. ACOS GP 93/ID (Stereo, Crystal. Diamond) $\mathbf{1 1} 63$. ACOS GP $94 / 1$ (Stereo, Ceramic, Sapphire) $\mathbf{1 1} \cdot \mathbf{5 0}$. ACOS GṔ 94/ID (Stereo, Ceramic, Diamond) $\mathbf{E 1 - 8 8}$. ACOS GP 95/I (Stereo, Crystal with two L.P./Stereo needles) $\mathbf{| 1 . 2 5}$.

TRANSISTORISED FLUORESCENT LIGHTS, 12 volt. All with reverse

 polarity protection. 8 watt type with reflector, suitable for tents, etc., $\mathbf{6 3}$ Postage/Packing 25p. 15 watt type, batten fitting for caravans $\mathbf{4 4}$. Postage/Packing25 p . 13 watt type, batten with switch. $22 \mathrm{in} \times 2 \mathrm{in} \times$ in $£ 5$. Postage/Packing 25 p . 25p. 13 watt type, batten with switch. 22 in $\times 2$ in \times lin $£ 5$. Postage/Packing 25p. THESE CAN BE SENT ON APPROVAL AGAINST FULL PAYMENT.

MULLARD POLYESTER CONDENSERS

1,000 pf, $1,200 \mathrm{pf}$, 1,500pf, I,800pf, 2,200pf, 15p per dozen (all 400 V working) $0.15 \mu \mathrm{f}, 0.22 \mu \mathrm{f}, 0.27 \mu \mathrm{f}, 30 \mathrm{p}$ per dozen (all 160 V working). 25% discount for lots of 100 of any one type

RESISTORS

$\frac{1}{4}$ and $\frac{1}{2}$ watt Most values in stock. 50 p per 100 . 10 p per dozen of any one value. WIRE WOUND MAINS DROPPERS. Hundreds of values from 0.7 ohm upwards. 1 watt to 50 watts. A large percentage of these are multi-tapped droppers for radio/television. Owing to the huge variety these can only be offered "assorted" at 50p per dozen

SILYER MICA/CERAMIC/POLYSTYRENE CONDENSERS

RECORDING TAPE BARGAIN! The very best British Made low-noise high-quality Tape! 5 in Standard 38p. Long-play 45 p . 5^{3} in Standard 45p. Longplay 60p. 7 in Standard 60p. Long-play 82p. We are getting a fantastic number of repeat orders for this tape. Hight we suggest that you order now whilst we
still have a good stock ar these low prices?

STOCKTAKING CLEARANCE! IMPOSSIBLE TO REPEAT: We have huge numbers of components in quantities too small to advertise individually. In order to "clear the decks" we have made up parcels containing a mixture of carbon and wire-wound resistors, electrolytic of normal price. It is emphasised that these are mixed parcels onlycontents cannot be stipulated! Sold only by weight.

Gross weight 2 lb.
Gross weight 5 lb.
$\epsilon 2$ (postage 20p)

NEW! NEW! NEW! NEW!

An aerosol spray providing a convenient means of producing any number of copies of a printed circuit both simply and quickly.
Method: Spray copper laminate board with light sensitive spray. Cover with transparent film upon which circuit has been drawn. Expose to light. (No need to use ultra-violet.) Spray with developer, rinse and etch in normal manner. Light sensitive aerosol spray. $\mathbf{E 1 . 0 0}$ plus Developer spray

50p postage
SPECIAL 50p PACKS. ORDER 10 PACKS AND WE WILL INCLUDE AN EXTRA ONE FREE IDE

RESISTORS, $\frac{1}{4} / 1$ watt		
assorted	100	50 p
Wire-wound 1 to 3 watt	20	50 p
	5 to 7 watt	15
50 p		
(10 watts	10	50 p
Multi-tapped	12	50 p
PAPER CONDENSERS		
TV types	50	50 p
Miniature	100	50 p

Suitable for Mains
Radio/Tv Transistor types Mixed (both types) POLYSTYRENE
CONDENSERS
MULLARD POLYESTER COND.
SILVER MICA
WIRE-WOUND 3-Watt SLIDERS
VOLUME CONTROLS
NUTS AND BOLTS. Mixed length/rype
$8 B A$. 8B.A.
6 B.A.
1 B.A. 2 B.A.
METAL SPEAKER GRILLES $7 \frac{1}{2}$ in. $\times 3 \frac{1}{2}$ in.
EARPIECES, MAGNETIC
No Plug
2.5 mm Plug
3.5 mm Plug

500 MICRO AMP LEVEL
METERS
VEROBOARD. TRIAL PACK
5 BOARDS + CUTTER

TRANSISTORS
P.N.P. Untested but mainly
N.P.K. Untested but mainly

50 50p
$\begin{array}{lll}O . K . \\ \text { OCP } 7 \text { equivalent } & 5050\end{array}$
Light-sensitive Diodes $\begin{array}{ll}5 & \text { 50p } \\ 10 & 50 p\end{array}$
(These produce up to Ima from light)
OC44 Mutlard Ist grade
OC45 Mullard Boxed
2G378 Output, Marked
2G37I Driver, Marked
ASY 22, Marked
BY 127 Rectifiers
IN 4007 Rectifiers
(1200V peak)
$\begin{array}{lll}\text { STC } 3 / 4 \text { Rectifiers } & 4 & 50 \\ & 6 & 50\end{array}$
DIODES (0A 81 \& OA 91) $\quad 40^{6} 50 \mathrm{50}$
Solid Core. Insulated 100 yds . 50 p $\begin{array}{ll}\text { Stranded ditto } & 50 y d s . ~ 50 p\end{array}$ SOLAR CELLS Large Selenium
Small (6 cells will power a Micromatic radio)
CO-AXIAL CABLE
Semi Air-spaced 15yds. 50p CRYSTAL TAPE RECORDER MIKES
CRYSTAL EARPIECES
3.5 mm Plug

Injector Kit
In
I 50 p
$\begin{array}{lll}\text { Injector Kit } \\ \text { TRANSISTORISED Signal } & 50\end{array}$
TRANSISTORISED CAR REV. COUNTER KIT (Needs I ma. I 50p
meter as indicator)

Gloster Digital Voltmeters. We still have a few of these attractive instruments remaining in stock. Manufacturer's original list price was in the region of $£ 180$, we have sold a large quantity at $\mathbf{6 9 2} 10$ but we are anxious to clear our remaining stocks at the special price of 455 CARRIAGE PAID U.K.

Marconi A.F. Wottmater TF956 1μ watts $t 06$ watts into switched loads. $\mathbf{C 2 0}$ (carriage paid)

Sangamo-Weston Portable sub-standard Frequeney Meters S105 $1200.2000 \mathrm{~Hz}, 95.135 \mathrm{~V}$. ©12.50. Post 37 to .

Goodmans Midax 650 mid range horn units, 15 ohms Special price 67.75 postage paid.

Gertsch COMPLEX RATIO BRIDGE Model CRB2B. Six digits in phase, four digits in quadrature. Our price $\mathbf{6 2 0 0}$.

Tantalum Capacitors. We hold large stocks by S.T.C. T.C.C., Dubilier, Kemet, Plessey, G.E., etc. Send for stock list with lowest prices for immediate delivery.

Plugs, Sockets and Connectors. Over 150.000 items in stock including Plessey Mk. 4, 6, 7, 104, U.K.A.N., Painton Electromethods, Cannon, Belling Lee, Amphenol, Trans radio. etc. Enquiries for specific items to Orpington or Lydd

Class D Wavemeters No. 2. 1-2-19 Mc with charts Brand new. 615 (carriage $£ 1.50$).

DRY REED INSERTS

Overall length $1-85^{*}$ (body lengith 1.1°). Diameter 0.14^{*} t
switch up to 500 mA at up to 250 V D.C. Gold clad contacts. $\mathbf{1 2 t p}$ per doz.; $\mathbf{6 3} \mathbf{7 5}$ per 100; $\mathbf{6 2 7} \mathbf{5 0}$ per 1,000; $\mathbf{6 5 0}$ per 10,000 . All carriage paid.

HALF PRICE REED RELAY OFFER' 100 items for 67 (post paid)! Each kit comprises:
30 Reed Switches

10 Wound Relay Coils (to suit)
30 Reed Relays (with one to four contacts each)
30 Unwound Bobbins (to suit)
at the fantastic price of 67 post paid U.K.! Which is half of our own already ridiculous prices! Don't delay-hurry-
buy while stocks last!

A.C. MAINS to 27V D.C. POWER SUPPLY UNITS. hese interesting $27 V 0.5 A$ units (will happily provide 700 mA ment case, provision being made for base or side mountingCable entry grommets are mounted in the base of the unit.
The choke capacity smoothed output is sold state stabilised against variation in input voltage and output current, and against variation in input voltage and output current, and
input and output fuses with spares are fitted. The output operates a built-in S.P.C.O. relay to switch for instance an
alarm circuit. Input voitage is $200-250 \mathrm{~V}$ A.C. In lov steps, while the transformer secondary carries two taps. All
termations to a Grelco block. There is adequate room for other equipment within the ventilated case, which is $12^{*} \times x$
$10^{*} \times 6^{\prime}$ deep. Our price, brand new in carton with $10^{*} \times 6^{6}$ deep. Our price, brand new in carton with
circuit, only 63 .

SPECIALIST STOCKISTS OF SERVOMOTORS, SYNCHROS, MAGSLIPS AND PLUGS AND SOCKETS

Serro and Electronic Sales Ltd

Electrical and Servo Control Engineers - Electrical Suppliers. Engineering Stockists - Aeronautical Suppliers Post orders to 43 HIGH STREET, ORPINGTON, KENT. Phone: Orpington 31066 19 MILL ROAD, LYDD, KENT (Works). Phone: Lydd 252 (STD 06792)
67 LONDON ROAD, CROYDON, SURREY (Retail Branch and Instrument Repairs). Phone: 01-688-1512 (Croydon)

Electric and Hydraulic Actuators. We now have in stock a selection of Electric and Hydraulic Actuators pro-
viding both linear and rotary motion. A list fully describing these items is available on receipt of S.A.E. Vartical and Rate Gyros. Please send S.A.E. for details A WWIDE SELECTION OF SERYO MOTORS NOW AVAILABLE INCLUDES THE FOLLOW Mil size $11-400 \mathrm{~Hz}$ versions for 26 and $15 V$, operation
with $10 / 20,13 / 26$ and $57.5 / 115 \mathrm{~V}$ control phase windings. Mil size $08,10,11$, 15 and 18 motor generators for 400 Hz Operation with 26 and 115 V energised tacho generators.
Mil size $08,10,15$ and 18 two-phase servo motors also Mil size $08,100, \mathrm{~Hz}$ and 18 two-phase servo motors also
available for 400 Hz windings and a limited range in 50 Hz types.
Mil Permanent Magnet Fiald Servomotors Size 08 ,
Mi 15 and 18 with supply voltages from 6 to $50 \mathrm{~V} \mathrm{D}^{\circ}$. Mil Tachogenerators Size 08 and 10 for 400 Hz supply. Mil size 11 servomotor gearheads available in various
ratios from 10 : 1 to $1,000: 1$. ratios from $10: 1$ to 1.000 :
All items available ex-stock
prices.
Evershed and Vignolas' Servomotors and Servomotorgeneratars. We hold stocks of this well-known manu an enquiry stating your broad design considerations will bring a reply by return indicating ex-stock, zvailability o Write for our Data Sheets Al3I onwards for details of available Servomotors.
MIL SYNCHROS avoilable ex-stack in sizes $08,11,15$ 16, 18 and 23 for 50,60 and 400
Synchro Contro Transormers
Synchro Control Tronsmitters
Synchra Control Diffarential Transmitears
Synchro Torque Transmitters and Receivers
Synchro
Equivalent MAGSLIP ELEMENTS more suitable for educational use now in stock. A00I onwards for Sunchro and Magslip information.
Ether Electromethods Low Inertia Integrating Motors
available ex-stock at extremely low prices. For $1.5,6,12$ available ex-stock at extrem
and $24 V$ operation in stock.
Dessyn Transmitters and Receivers for 24 V D.C. operation. We have available various types of Transmitters and
Blank Dial Receivers. Please advise us of your approximate Blank Dial Receivers. Please advise us of your approximate requirements and we will be pleased to quote.

Hilgar and Watts Large Quartz Spectograph with A.C.
spark and D.C. are source units, rotating sector and Juddspark and D.C. are source units. rotating sector and Judd-
Lewis comparator, etc. Available for inspection at our Lydd

Seatrac Radar Equipment $\mathbf{X / S}$ Band. We have a one only complete installation comprising: X/S Band Transmitte Receivers and indicator console, scanner, complete with
aerial and driving motor, cables and kit spares. In as new condition. Please communicate with our Lydd Office for full details.

MARSHALL'S INTEGRATED CIRCUITS

 NEW LOW PRICES • LARGEST RANGE • BRAND NEW • FULLY GUARANTEED| rca linear icy | | | | | | | | | | | 1-24 | 25-99 | | 1-11 | 2-24 | MULLARD T | TL 2 | | $\begin{aligned} & \text { MULLARD } \\ & \text { LNEAR } \end{aligned}$ | |
| :---: |
| Type | $\frac{1-24}{24}$ | $\underset{8}{23-99}$ | Type | 8^{1-24} | $\underset{f}{2 \overline{0}-99}$ | Type | | e^{1-24} | 26-99 | GN7420 | $\begin{aligned} & 8 \\ & 0.20 \end{aligned}$ | P 0.18 0.48 | SN74107 | ¢ 0.52 0.58 | - ${ }^{2}$ | FJH101 FJH121 | 0.871 0.872 | | $\begin{aligned} & \text { LINEAR } \\ & \text { TAA241 } \end{aligned}$ | $\begin{gathered} z \\ 1.621 \end{gathered}$ |
| casouo | $1-80$ | 1.60 | CA3049 | $1 \cdot 60$ | 1.43 | CA. 3059 | | 1.65 | 1.48 | SN7423 | 0.51 0.48 | 0.47 | SN74110 | 0.80 | 0.75 | FJH141 | 0.872 | | ${ }_{24}^{24}$ | 4.25 |
| CA3001 | $2 \cdot 69$ | 2.40 | CA3050 | 1.84 | 1.64 | Ca3060 | | 4.81 | $4 \cdot 37$ | 8N7403 | | 0.45 0.45 | SN74111 | 1.57 | 1.25 | FJH161 | 0.87 | | 243 263 | ${ }_{0}^{1.751}$ |
| CA3002 | 1.80 | 1.60 | CA3081 | 1.34 | 1.20 1.47 | CA306i2 | | 2.55 1.20 | 2.27 | 8N7427 $\mathbf{8 N} 7428$ | 0.48 0.80 | 0.45 0.75 | SN74118 SN7419 | ${ }_{1}^{1.92}$ | 1.25 1.80 | FJH16i | ${ }^{0.871}$ | | 293 293 | 0.77 |
| CA3004 | 1.80 | 1.80 | CA3052 | 1.65 | 1.47 | CA:30tid | | 1.20 | 1.07 | SN7430 | 0.23 | 0.21 | 8N74121 | 0.50 | 0.47 | FJH171 | 0.81 | | 300 | 1.75 |
| CA3905 | ${ }^{1.17}$ | 1.05 | CA30̄̄3 | 0.48 | 0.41 | CA3065 | | 1.20 | 1.07 | 8N7432 | 0.48 | 0.45 | SN74122 | 1.44 | 1.35 | FJH221 | 0-87t | | 310 | 1.25 |
| CA33006 | 2.80 2.83 | 2.50 2.34 | ${ }_{\text {CA }}^{\text {CA } 3055}$ | 1.09 2.40 | 0.97 2.13 | CA:3075 | | ${ }_{1}^{1.30}$ | 1.00 1.16 | 8N7433 | 0.80 | 0.75 | SN74123 | $2 \cdot 85$ | 2.70 | FJ. ${ }^{\text {diol }}$ | 1-37t | | 320 | 0.72 t |
| CA3008 | 1.80 | 1.60 | | | | | | | | 8N7437 | 0.64 | 0.60 | SN74145 | 1.80 | 1.75 | FJJ121 | 1.87 | | 350 | 1.75 |
| CA3008A | $2 \cdot 96$ | 2.64 | MOTOROLA | | | | | | | SN74:38 | 0.64 | 0.60 | SN74150 | 3.42 1.40 | 3.40 1.85 | FJJ14, | 3.12\} | | 435 | 1.47 d |
| CA3010 | $1 \cdot 37$ | 1.23 | | | | | | | | 8N7441A | 0.23 | ${ }_{0}^{0.21}$ | GN7415; | 1.40 | 1.35 | FJJ191 | $1.87 \frac{1}{1}$ | | 529 | 1.324 |
| CA3010A | 2.53 | $2 \cdot 25$ | | | | | | | | SN7442 | 0.85 | 0.81 | SN74154 | 2.20 | $2 \cdot 10$ | FJJ251 | $3 \cdot 12$ | | 530 | 4.95 |
| CA3011 | 0.74 | 0.65 | MC717 | | | ${ }^{4} 4.45$ | PLESSEY | | | gN7443 | 2.88 | ${ }_{2} 280$ | ¢N74150 | 1.88 | 1.80 | FJYi01 | 0 | | 570 1.97t | |
| ${ }_{\text {CA }}^{\text {CA3012 }}$ | 0.89 1.05 | -0.79 | | $0 \cdot 66$ | MC1461 | | | | | SN7444 | 2.86 | | gN74156 | 1.88 | 1.60 | | | | TAB101 0 | |
| CA3014 | 1.24 | 1.10 | MC719 | 0.68 | MC1463 | 6.52 | 2 | | 2 | 8N7445 | 2.50 | 2.40 | 8N74157 | 1.82 | 1.82 | MULLARD DTL $£$ | | | | |
| CA3015 | 2.09 | 1.88 | MC724 | 0.68 | MC1466 | 4.44 | SL403D | | $2 \cdot 13$ | 8N7446 | 1.00 | 0.95 0.95 | ${ }_{\text {gN }}$ | ${ }_{2}^{1.80}$ | ${ }_{2}^{1.75}$ | | | | TAD100 TAD110 | 1.97 |
| CA 3015 A | $3 \cdot 40$ | 3.03 | MC780 | $2 \cdot 47$ | MC1469 | 2.97 | slfioc | | 1.70 | | 1.00 | 0.95 0.95 | ${ }_{\text {SN }}$ 84162 | $2 \cdot 60$ 4.28 | 4.10 | FCH101 | $0.87+$ | | TADIl0 | 1.971 |
| CA3016 | 2.48 | 8.19 | MC788 | 1.48 | ${ }_{\text {MC1530 }}$ | 8.60 8.60 | sL611C | | 1.70 | SN7449 | 1.00 | 0.95 | SNT4163 | 4.26 | $4 \cdot 10$ | FCH121 | 1.05 | | | |
| CA3016A | 3.73 | ${ }^{3.33}$ | MC790 MC838 | 5 | | 4.53 | SL612C | | 1.70 | SN7450 | 0.20 | 0.18 | 8N74164 | 2.20 | $2 \cdot 10$ | FCH121 | 1.05 | | GEnERAL | |
| | 0.84 1.10 | 0.89 0.98 | MC848 | 1.39 | MC1550 | 0.59 | 8L620C | | 2.60 | SN7451 | 0.20 | 0.18 | SN74165 | 2.25 | $2 \cdot 15$ | FCH161 | 1.05 | | | 2 |
| CA3019 | 0.84 | 0.75 | MC851 | 2.61 | MC1670 | 9.19 | SL621C | | $2 \cdot 60$ | 8N7453 | 0.20 | 0.18 | 8N74166 | 4.45 | 4.20 | FCH201 | $1 \cdot 32 \pm$ | | ${ }_{P}{ }^{\text {P4222 }}$ | . 60 |
| CA3020 | $1 \cdot 28$ | $1 \cdot 13$ | MC819 | 1.42 | MC:3052 | 1.75 | 8L630C | | 1.63 | SN7454 | 0.20 | 0.18 | S×74167 | 8 | 8.10 | FCH231 | 1.50 | | ${ }_{\text {PA } 234}$ | 1.40 |
| CA3020A | 1.60 | 1.43 | MC1013 | 1.70 | MC:30tio | 2.76 | | | | 8N7460 | 0.20 | 0.18 | 8N74170 | 4.38 2.40 | 4.18 8.30 | FCJ101 | $1 \cdot 62$ | | PA237 | $2 \cdot 10$ |
| CA3021 | 1.56 | 1.39 | MC1034 | 5.95 2.70 | MFC400 | 0.62 0.57 | 8L640C | | $3 \cdot 10$ | 8N7472 | ${ }_{0} .38$ | ${ }_{0} \cdot 30$ | 8N7417\% | 1.68 | ${ }_{1} 1.60$ | FCJ111 | 1.55 | | PA239 | $2 \cdot 10$ |
| CA3022 | 1.30 | 1.16 | MC1302 | 2.70 2 | MFC600 | 0.88 | 8L641C | | $3 \cdot 10$ | 8N7473 | 0.43 | 0.41 | SN74176 | $2 \cdot 64$ | 2.55 | FC. 201 | 1.80 | | PA246 | 1.60 |
| ${ }_{\text {CA }} \mathbf{C A} 3023$ | ${ }_{1} \cdot 00$ | 1.13 0.90 | MC1435 | 3.45 | MFC802 | 1.04 | 8Litic | | 30 | 8N7474 | 0.43 | 0.41 | 8N74177 | 2.64 | 2.55 | FCJ211 | 2.75 | | PA264 | 1.90 |
| CA3028A | 0.74 | 0.65 | MC1454 FAIRCHILD | 1.80 | Data She | 0.12 | 8L702C | | 1.30 | 8N7475 | 0.45 | 0.44 | SN74180 | ${ }_{9}^{2 \cdot 13}$ | | FCK101 | 4.37\% | | PA424 | 2.05 |
| CA3028B | 1.05 | 0.94 | | 1 | 6.11 | | | ${ }^{1-5}$ | 6-11 | 8N7476 8 SN 480 | 0.70 | ${ }_{0} 0.45$ | SN74181 | 8.03 | 1.95 | FCY101 | 1.05 | | PA 436 | 1.90 |
| CA3029 | 0.87 | $0 \cdot 77$ | $\begin{aligned} & (\mathrm{BTL}) \\ & \hline(9) \mid\} \mid \end{aligned}$ | | ${ }_{40}{ }_{0}^{5}$ | L92 | ${ }_{0}^{2}$ | | 0.37 | $8 \mathrm{SN7481}$ | 1.40 | 1.38 | 8N74184 | 4.80 | 4.60 | | | | PA 494 | 2.05 |
| | ${ }_{1}^{1.85}$ | 1.47 | $\begin{aligned} & \mathbf{L}(9) 19 \\ & \mathbf{L} 914 \end{aligned}$ | | $\begin{array}{ll}40 & 0.37 \\ 40 & 0.37\end{array}$ | L92 | | | 0.37 | 8N7482 | 0.87 | 0.82 | 8N74185 | 4.80 | ${ }^{4.60}$ | sa | | | Data \& Appl | cation |
| Ca3030A | 2.53 | 2.25 | | $\begin{array}{ccc}1.5 & 6-11 \\ i\end{array}$ | | | | -5 | 6.11 | 8N7483 | 0.87 2.00 | 0.82 1.85 | SN74190 | 1.80 1.80 | 1.70 1.70 | | | | Sheets 5p pe | type. |
| CA3033 | 2.53 | 2-25 | linear | | | | ${ }_{0}^{8.43}$ | SN7485 | ${ }_{3}$ | 1.80 | 8N74192 | 1.75 | 1.65 | TaAgole | | | | | | |
| CA3033A | 4.26 | ${ }^{8.80}$ | $\begin{aligned} & \text { UA702A } \\ & \text { UA702C } \end{aligned}$ | $\begin{array}{lll}\text { TO5 } & \text { 2.80 } & 2.70 \\ \text { TO5 } & 0.77 \\ 0.75\end{array}$ | | | | Uazioc | | | 0.43 0.88 | SN7486 | 0.33 | 0.30 | SNT4193 | 1.75 | 1.65 | TAA621 | 203 | | toseliba | 4 |
| CA33035 | ${ }_{0}^{1.23}$ | 1.10 0.65 | | | | vaiz:C | T05 | 0.90 1.87 | 0.88 1.75 | SN7490 | 0.87 | 0.84 | SN74194 | 2.67 | 2.55 | tain00A | 3.75 | | TH9013P | 4.57 |
| CA3037 | 1.85 | 1.47 | $\begin{aligned} & \text { UA703C } \\ & \text { UA709A } \end{aligned}$ | $\begin{array}{ll} \text { TOS } \\ \text { DOL } \\ \text { DOE } \end{array}$ | 251.22 | $\begin{aligned} & \text { UA716 } \\ & \text { UA7+1C } \end{aligned}$ | T0s | 0.80 | 1.78 0.78 | SN7491A | ${ }_{0}^{1.21}$ | 1.10 0.84 | ${ }_{8}^{\text {SN7 }}$ (4195 | ${ }_{2}^{2.25}$ | 2.10 | TaA61t | $1 \cdot 69$ | | 20 watt amp | |
| СА 3037 | 2.53 | 2.25 | UA7090
 UATO!C | | $45 \quad 0.43$ | UA741C | DIL | 0.70 | 0.68 | | 0.87 0.87 | 0.84 0.84 | 8N74196 SN74198 | ${ }^{2 \cdot 64}$ | ${ }_{5.65}$ | TAatilc | 2.03 | | TH9014P | |
| | 3.40 0.84 | ${ }_{0}$ | UA716C TOS 0 | | $\begin{array}{lll}47 & 0.45\end{array}$ | SN72709DN | | 1.25 | $1 \cdot 10$ | SN7495 | 0.87 | 0.84 | 9300 | $2 \cdot 10$ | 1.05 | | | | | |
| CA3040 | 2.40 | 2-14 | | | | | | 1-24 | 25-99 | 8N7496 | 0.87 | 0.84 | 9310 | See 8 | 24160 | | BRIDGE | RECT | rimars | |
| CA3041 | 1.09 | 0.97 | | | | | | | | | | ε | ${ }^{8}$ | 8N7497 | 6.40 | 6.00 | 9311 | 2.80 | $2 \cdot 60$ | CtR-KIT | AMP. | PIV | $4{ }^{4}$ SILI | ONE |
| CA3042 | 1.09 | 0.97 | TTL LOGICs ${ }_{\text {RN7 }}$ | | 0.18 | 8 N 7408 | | 0.20 | 0.18 | SN74104 | ${ }_{1} 1.6$ | 1.40 | T151)1 | See 8 SN | 4160 | $1 / 11^{*} 80.15$ | 15 | 600 | 0.40 GR | A8E |
| CA3043 | 1.37 | 1-23 | $\begin{aligned} & \text { 8N7401 } \\ & \text { 8N7402 } \end{aligned}$ | 0.20 0.20 | 0.18 | 8N7409 | | 0.20 | 0.18 | SN74105 | 1.52 | 1.40 | 9601 | see | 4120 | ± 0.15 | 1.5 | 100 | 0.478 Red | point |
| CA3044 | 1.20 | 1.07 | | $\begin{array}{ll}\text { GN- } 403 & 0.20\end{array}$ | | 0.18 | 8N7410 | | 0.20 | 0.18 | | | | | See | , | | | 100 | 0.60 | pat |
| CA3045 | 1.23 | 1.09 | | | | 0.18 | 8N7411 | | 0.23 | 0.21 | $8 \mathrm{Pin} \mathrm{TO-5}$ | I.C. | Iders, | | | | BOARD | 4 | 100 | 0.70 | |
| CA3046 | 0.69 | 0.60 | $\begin{aligned} & \text { 8N } 7404 \\ & \text { SN7405 } \end{aligned}$ | 0.20 0.20 | 0.18 | SN7412 | | 0.48 | 0.46 | 10 Pin To- | I.C. | olders, | | | | For PA246 | $\stackrel{4}{4}$ | 50 | 0.75 | |
| CA 3047 | 1.37 | 1-23 | | $\begin{aligned} & 0.20 \\ & 0.20 \\ & 0.80 \\ & 0.20 \end{aligned}$ | 0.18 | 8N7413 | | 0.40 | $0 \cdot 38$ | 12 Pin TO- | I.C. | olders | | | | I.C. eircuit | | 50 200 | 0.62 l 0.80 | |
| CA3047A | 2.53 | 2.25 | $\begin{aligned} & \text { AN7405 } \\ & \text { 8N } 7406 \end{aligned}$ | | 0.75 | SN7416 | | 0.84 | 0.78 | 14 Pin Dua | in-Lin | I.C. | 8, 20.20 | | | | | ${ }_{400}^{200}$ | ${ }_{1}^{0.80}$ | |
| CA 3048 | 2.04 | 1.81 | | | $0 \cdot 18$ | SN7417 | | 0.84 | 0.78 | 16 Pin Dua | -in-Lin | I.C. | [s 80.25 | | | Sheet. 80.65 | 6 | | | |

MODERN TELEPHONES tyne 706. Two tone grey 3.50 ea. The same but black ≤ 3 ea. P. \& P. 25 p ea BRAND NEW, two tone grey 66 ea. P. \& P. 25p ea. STANDARD GPO DIAL TELEPHONES (black) with internal bell. 87p. P. \& P. 25 n . Two for $£ 1.50$. РНOTOM
PHOTOMULTIPLIERS. EMI 6097X at $\mathbf{6 0} 8 \mathbf{5 0}$ ea.促

> 5 SPECIAL OFFER
> $\begin{aligned} & 5 \text { in. Photomultiplier type. PDPP4G by } 20 \text { th } \\ & \text { Century. } 63 \text { ea. P. \& P. 30p. }\end{aligned}$

TRANSISTOR OSCILLATOR. Variable frequency $40 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{kc} / \mathrm{s}$. 5 volt square wave o/p. for 6 to 12 v
DC input. Size it $\times 1 \ddagger \times 1+\mathrm{in}$. Not encapsulated. Brand DC input. Size $1 \$ \times 1 \ddagger \times 1 \ddagger \mathrm{in}$. Not encapsulated. Brand new. Boxed. 57p ea.

RELAYS

G.E.C. Sealed Relays High Sieed 24V. 2m 2b-23p ea. S.T.C. Sealed 2 pole c/o 700 ohms (24 V). 15p ea.
S.T.C. Seale
12 v
35_{p} ea.

CARPENTERS polarised Single pole c/o 20 and 65 ohm coil as new, complete with base 37p ea.
Single pole c/o 14 ohm coil 33p ea. Single pole c/o 45 ohm coil 33 p ea. Single pole c/o 4.000 ohm coil 33 p ea. Varley VP4 Plastic covers 4 pole c/o $5 \mathrm{~K}-30 \mathrm{D}$ ea. I 33p ta.

POTENTIOMETERS

COLVERN 3 watt. Brand new. $5 ; 10: 25: 50 ; 100$; 250; 500 ohms: 1: 25:5:10: 25:50k all at 13p ea, MORGANITE Snecial Brand new. 2.5; 10; 100 :
$250 ; 500 \mathrm{~K}: 2 \cdot 5$ mer. 1 in. sealed. 17p ea.
BERCO SQ. Brand new. $5: 10 ; 50 ; 250 ; 500$ ohms:
$1 ; 25 ; 5: 10: 25 ; 50 \mathrm{~K}$ at 25 p ea.
STANDARD 2 meg. log pots. Current type 15 p ea. INSTRUMENT 3 in . Colvern 5 ohm 35p ea; 50 k and 100 K 50 p ea.
BOURNE TRIM POTS. 10; 20: 50: 100: 200; 250 : 500 ohms: $1 ; 2.5 ; 5 ; 25 \mathrm{~K}$ at 35p ea.
ALMA precision resistors $100 \mathrm{~K} ; 400 \mathrm{~K} ; 49 \mathrm{~K}: 998 \mathrm{~K}$:
$1 \mathrm{meg}-0.1 \% 27 \mathrm{p}$ ea.: $3 \cdot 25 \mathrm{k}, 13 \mathrm{~K}-0.1 \% 20 \mathrm{p}$ ea. 1 meg 0.1% 27p ea.: $3 \cdot 25 \mathrm{k}, 13 \mathrm{~K}-0.1 \% 20 \mathrm{p}$ ea.
ERIE feed through ceramicons $2200 \mathrm{pf}-4 \mathrm{p}$ ea.
Sub-min. TRIMMER ${ }^{3}$ square. 8, 5pf. Brand new 13p ea. Concentric TRIMMER 3/30 pf. Brand new 7p ea.
E.H.T. 2 mfd 5 KV . Brand new. $£ 1.50$ ea.

VISCONOL EHT CAPACITORS

\qquad
 $\begin{array}{llllll}0.001 m f d & 5 \mathrm{kV} & 40 \mathrm{p} \text { ea. } & 0.002 \mathrm{mffd} & 18 \mathrm{kV} & 65 \mathrm{p} \text { ea. } \\ 0.001 \mathrm{mfd} & 10 \mathrm{kV} & 50 \mathrm{pea} . & 0.05 \mathrm{mff} & 15 \mathrm{kV} & 80 \mathrm{p} \text { ea. }\end{array}$
0.01 niff
0.0005 mff
$20 k$
 Brand new 0.25mfd 5 KV . Dubilier 50 p ea. P. \&P. 15 p Rapid discharge 1 mfd 5.6 KV €l ea. P. \& P. 15 p .
MULLARD 47000 mfl .25 V , 28A. Brand new at 60 p
E.H.T. TRANSFORMERS \& POWER UNITS Complete Assembly o to 130 KV DC. Variac Con As above, bit 26 KV DC $3 \cdot 5 \mathrm{KVA}$. $£ 135$.
Choice of capacitors and chokes, e.g.. 400 H 25 MA 60 KV Insulationt.
0 to 64 KV AC and $20 \mathrm{~V} 20 \mathrm{~A} 2 \mathrm{KVA} . ~$
665.
4000-0-4000 14.6KVA. $£ 35$.
0-2200 2.5KVA. E15. RIAGES AT COST
DECADE DIAL UP SWITCHES. Finger-tip. En graved 0/9. Gold plated contacts. Size ${ }^{\frac{1}{2}}{ }^{\prime \prime}$ high, 24^{*} deep $\frac{1}{2}^{\circ}$ wide. 75 p ea. Bank of 4 with escutcheon plates, etc. $2 \frac{1}{2}^{*}$ hish. $24^{\prime \prime}$ deen. $24^{\prime \prime}$ wide, $\mathbf{2 2 5 0}$.
PHOTOCELL equivalent OCP 71 13p ea
Photo-resist type Clare 703. (T05 Case). Tw
Photo-resist type Clare 703. (TO5 Case). Two for 50p. BURGESS Micro Switches V3 5930. Brand new 13p ea. HONEYWELL. Sub-min. Microswitches type 11SM3-T. Brand new. 17p ea.
PANEL mounting lamp holders. Red or green. 9d ea.
BRAND NEW PLUGS AND SOCKETS
CANNON. 50 way DDM50P 75p ea.; DDM50S 50p ea As above but 25 way 50p ea: plug; 35p ea. socket; 75p per pair: 9 way 33p ea. plug and socket, 50 p per pair

TRANSFORMERS. All standard inputs.
STEP DOWN ISOLATING trans. Standard ${ }^{240 v}$ AC to 120 V tapped $60.0 \cdot 60700 \mathrm{~W}$. Brand new. 65 ea As above $55-0-55 \mathrm{~V} 300 \mathrm{~W}$. $£ 3$ ea. P \& P .35 p .
Aeptune series $460-435-0$ etc. 230 MA and $600-570-540-0$ etc. 250 MA .63 .50 incl, post.
 \& 4.50 incl. postage. Designed to be series paralieled. \& 50 incl. postage. Designed to be
Parmeko $3.3 v 2$ amp $\times 4-1.13$ ea.
Gard/Parm/Part. 450-400-0-400-450. $180 \mathrm{MA} .2 \times 6 \cdot 3 \mathrm{v}$. E3 ea.
Transformer $250-80 \mathrm{MA} ; 13 \mathrm{~V}-1 \cdot 2 \mathrm{~A}$ and 6.3 V 5 A . $£ 1.50$. CHOKES. $5 \mathrm{H} ; 10 \mathrm{H} ; 15 \mathrm{H} . \mathrm{up}$ to $120 \mathrm{~mA}, 42 \mathrm{p}$ ea. Large quantity LTT, HT, EHT transformers.
GROUND PLANE ANTENNA. Ex-admiralty. Brand new boxed. Adjustable $90-160$ megs. (Like unbrella) $\mathbf{E} 6.50$. Carr. A1.

MARCONI TF888 SIGNAL GENERATOR.

Freq. $70 \mathrm{kc} / \mathrm{s} .70 \mathrm{mc} / \mathrm{s}$ in 8 ranges Directly read. $500 \mathrm{kc} / \mathrm{s}-5 \mathrm{mc} / \mathrm{s}$ Crystal Calibrator. $1 \mathrm{kc} / \mathrm{s}$ Internal modulation available on terminals as external audio. Built-in power meter 3 to 600 ohms and 10 mw to 1 watt. Large rectangular meter scaled for RF and Power. $50 \mathrm{ohm}, 80 \mathrm{ohm}$ and high level OP sufficient for lining, etc., available on termination unit. Attenuator calibrated to 0.5 micro volt. Size $14 \times 10 \times 5 \frac{1}{2}$ ins. Mains or battery operated. Supplied Brand New in original crates at £30 each. Carriage $£ 1 \cdot 50$.

OSCILLOSCOPES

$634 \mathrm{DC}-.15 \mathrm{Mc} / \mathrm{s}$. Fine condition. $\mathbf{6 5 0} \mathrm{inc} / \mathrm{s}$. In the

SOLARTRON SOLARTRON | condition $£ 43 \mathrm{DC}-15 \mathrm{me} / \mathrm{s}$ Brand new E 85 |
| :--- |
| 150 | SOLARTRON GC-10 nic/s. CD513- $\mathbb{E} 40$. SOLARTRON CT316 (1)300 range) DC \rightarrow megs. $\begin{array}{ll}\text { COSSOR } & \mathbf{1 7 . 5 0} . \\ \text { HARTI } & 1049 \mathrm{Mk} .3 . \text { DB. } £ 25\end{array}$ HARTLEY 13A DB. 625.

All carefully checked and tested. Carriage $£ 150$ extra

MARCONI

Noise gell. TF1301, £40. Carr. $£ 1 \cdot 5$
Vacuum tube Voltneter TF1041A. $£ 35: 1041 \mathrm{~B}, ~ £ 45$ Wide Range Oscillator TF 1370 and TF 1370 A
 Deviation type 719 , $£ 30$ ea. Carr. 75 p .
TF 1026 Frequency Meter $\mathrm{f} 12 \cdot 50$. Carr. 75 p . TF 329 Magnífication Meter. As new condition $£ 60$ TF 195 Audio Generator $£ 10$. Carr. $£ 1 \cdot 50$.
TF 801A Signal generator $£ 35$. Car
Retter grade $£ 55$ ea. Carr. $£ 1 \cdot 50$.
TF 886 Magnifcation Meter $£ 45$. Carr. $£ 1$.
TF 369 N .5 Impedance Bridge from $£ 50$ ea. Carr $\underset{T F}{ } \mathbf{T} 144 \mathrm{G}$ Signal Generator. Serviceable. Clean $£ 15$. TF 144 G Signal Generator. Serviceable. Clean $£ 15$. alve voltmeter type CTQu8, $£ 17.50$ ea. Carr. 75 n
TF 885 VIdeo Oscillator Sine/Square $£ 35$ Carr. $£ 1-50$ TF885/1 $£ 55$. Carr. £1.54.

SOLARTRON

Stabilised P.U. SRS 151A. ©15. Carr. $£ 1.50$
Stabilised P.U. SRS 152 . \&10. Carr. \& 1.50 .
Precision Millivoltmeter $11252 . £ 25$. Carr. $£ 1$.

CINTEL

Square and Pulse gen. PW 0.05 to 03 micro secs.
15 mV to 50 V ; rep rate 5 hz to $250 \mathrm{kz} £ 20$. Carr, $£ 1$.

AIRMEC

Signal Generator type 701. 625. Carr. £1 50.
AIRMEC Generator type 210 \&il20. Carr. £1 50

> E.M.I. Oscilloscone type WM16. Main frame $£ 125$. Choice of Plug in $7 / 2 \mathrm{DC}-24 \mathrm{mc} / \mathrm{s} \times 2 \notin 35: 7 / 1 \mathrm{DC}$ E.M.I. WM8. DC to $15 \mathrm{mc} / \mathrm{s}$. Complete with plug in pre-anp, from 440.

BECKMAN MODEL A. Ten turn pot complete with dial. $100 \mathrm{k} 3 \%$ Tol 0.25% only $£ 2 \cdot 13$ ea.

E.H.T. Base B9A in Polystyrene holder with cover Brand new. 13p ea.
FIBRE GLASS PRINTED CIRCUIT BOARD. Brand new. Single side to per 84 . in. Double sided Ip per sq- in

Standard 240V MOTORS by CITENCO reduction gearbox to 19 r.p.m. reversible. 45 ea.
Single pole 3 3-way 250 - AC 15 antp switch. 8p ea
P. \& P. 5p. Jarge discount for quantity.
TELEPHONE TAPE UNITS, Standard mains size. supplied complete with $i^{\prime \prime}$ spools and tave, $\in 100$ only.

Squirrel cage BLOWER ASSEMBLY conılete with standard mains input motor. Size $7^{\prime \prime} \times 2 \xi^{\prime \prime}$ dia. only
80 p ea. P . \& $\mathrm{P},{ }_{25 \mathrm{p}}$ ea.

CLAUDE LYONS Main Stabilizer. Type TS-1L-5SO. Input 119-135 volts $47 / 65$ cs. Output $127+/-0.25 \%$ 16 amps. 235. Carr. $£$.
E.H.T. Unit by Brandenburg model S.0530/10. $\mathbf{6 5}$.

MAGNETRONS TYPE CV370. Brand new. Boved $£ 8$ ea.

KELVIN A HUGHES 4-channel multi-speed recorders complete with anplifters $£ 60$ ea

EVERSHED \& VIGNOLES Recording naper. Brand new boxed. L618H4 $7^{* \prime}$ wide. 13^{*} dia. 17
roll. JL900H4 $7^{\prime \prime}$ wide, $1 \frac{1}{*}^{\prime \prime}$ dia. 25 p roll.

19in. Rack Mounting CABINETS 6ft. high 19in. deep. Side and rear doors. Fully tapped, $£ 12 \cdot 50$. Carriage at cost. Double Bay complete with doors. Fine condition. $\mathbf{£ 2 5}$. Carriage at cost.

SELECTED B.C. 221 RECAL TO Ministry specification in like brand new condition, complete with circuit only E27.50. Carr. t $1-50$.

SIGNAL GENERATOR CT53. $8-300 \mathrm{mc} / \mathrm{s}$. Complete with charts. \&15. Carr. £1-50. With Photo-stat cony of
charts. $11 / 50$. Carr. $£ 50$.
WAYNE Kerr Cniversal Bridge type CT375. 440 ea. Cart. £1:50.

4 DIGIT RESETTABLE COUNTERS. 1000 ohm coil. Size $1 \ddagger \times 1 \times 4 \mathrm{if}$. As new. by Soleco of Geneva. 42.50 ea.
As above but $350 \mathrm{ohm} . £ 3.50 \mathrm{ea}$.

SANGO 50 micro amp $4^{* *}$ round. Brand new boxed.

SANGO 50 micro amp rectangular meter. Size 27×3 with 4 separate scales. lever operated, $0 / 8$ white. $0 / 60$ blue. 0/600 red and set zero. $\mathbf{E 1} \cdot \mathbf{2 5}$ ea. P. \& P. 17 p .

SEEING IS BELIEVING:

STILL AVAILABLE. BC 221 complete with correct charts, circuit diagrams, in tine condition or ONLY ©13.34. Carr. 11
C.R.T.s $5^{\prime \prime}$ type CV1385/ACR13. Brand new with spec. sheet. 63p ea. P. \& P. 35p.
MARCONI Valve Voltmeter 428B/1 45 ea. arr. 1
RESISTORS by PIHER. Carbon Film, 1 and 2 watt. All 5% Brand new Perfect. Nixed values.
COSSOR D.B. Scopes-some models from 415 .
MARCONI Absorption Wattmeter 1 micro watt to watts Type TF956. FANTAS'IC at 57 ea
Genuine MULLARD Transistors/Diodes. Tested and kuaranteed. OC41, 42, 76, 77, 83; OA5. 10. All 3p ea. Oč3-10p ea.
MAINS MOTORS Standard voltage. size up on R/P tape recorders.
COMPONENT PACK consisting of 2-2 pole amp push on/off switches; 4 pots 1 donble; 1 -small double pole vol control; 250 resistors $\frac{1}{2}$ and $\frac{1}{2}$ watt nany high stabs. Fine value at 50p per pack, P. \& P. p.

3000 Series relays- 15 mixed values (new and as
new, no rubbish) $£ 1.50$. P. \&P. 37 p).
TEC
TEKTRONIX 517 SCOPE Extremely fast 5 Nan Sec per C.M. Good condition. 675 .
GYROS Large clear plastic topped. Type A $\mathbf{f 5}$ ea
ALBRIGHT
ALBRIGHT Heavy Duty Contactor. Single make. P. \& P. 24 V coil. Brand new, boxed. \&l ea. incl.

MUST GO : Solartron Storage oscilloscope QD910 € 100 only. Carr. extra.
STUART TURNER No. 12 Water pump GPH720/ 10FT.H1 or GPH150/45 FT.HD. Complete with standard mains input isolating trangformer. Ideal
fountains, waterfalls, etc. ONLY \& 5 ea. P. \& P. £1 25 .

Carriage extra.

Panel switches DPDT ex eq. 13p ea.: DPST Brand new, 17p ea.: DPST twice, brand new 25p ea
Brand new heads for TR50 and TR51 Tape Recorders
GYROS Large clear plastic topped. Type A 44 ea.
PYROS LLa.

Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order

FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd units, etc., at 'Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day.

7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College) Tel.: Reading 582605/65916

TRANSISTORS A SELECTION FROM OUR LIST SEND FOR YOUR FREE COPY TODAY!

DABAR AUDIO MIXER MODULES

A range of audio Pre-amplifier Modules is now available enabling the construction of custom-built audio mixers for studio, P.A. and discotheque installations at reasonable cost and with many facilities usually available only on expensive systems. The Modules, constructed on glass fibre printedcircuit boards, are complete with anodised aluminium black facia plates and four control knobs identified: L.F.. H.F.. Echo Send and PF.L. The modules are designed for use with external faders or volume controls and fulfil most equirements in the audio field Up to ten input modules may be mixed into equirements in the andio in be mixed into the combined Mixer/Line Amplifier Type MX/LNTA which is available on a
matching facia plate with V.U meter. The line amp will deliver +20dBM. All mixing may be effected with 10 k log faders.
The modules are fixed with four screws and dimensions are $7 \frac{1}{2}$ in $\times 2 \frac{3}{4}$ in
Input modules available
UM 1 200-600 ohm MIC
UM2 50 k ohm MIC
UM3 Mag P/U 1.5 mV R.I.A.A
UM4 Mag P/U 5 mV RIA.A
UM5 Crystal P/U 500 mV
UM6 High Level Tape/Tuner 500 mV

Mixer/Line amp MX/LNTA: 10 inputs plus expander input; 600 ohm line out with preset for V.U. adjustment

Power Unit for above Modules: Type PU11/30. 30V. 500mA. 100W slave amplifier-100W into 4 ohm load $13 \frac{3}{4} \mathrm{in} \times 10 \frac{1}{2} \mathrm{in} \times 7 \frac{1}{2} \mathrm{in}$.

Prices: UM1-6, $£ 9$ each MX/LNTA, $£ 12$. PU11/30. $\mathbf{£ 8} .100$ W Slave Amp $\mathbf{£ 6 0}$. Manual showing mixing arrangements. connection data, etc. 25p. S.A.E. all inquiries. Trade inquiries welcome.

DABAR ELECTRONIC PRODUCTS
98a LICHFIELD STREET. WALSALL. STAFFS WS 1 1UZ. WALSALL 34365

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms $100 \mathrm{mV}-1$ volt -52.5 ohms. Internal Modulation: 400c/s sinewave 75\% depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}$, $40-100 \mathrm{c} / \mathrm{s}$. Consumption approx. 40 watts. Measurements $29 \times$ $121 \times 10 \mathrm{in}$. Second hand condition. $£ 27.50$ each, Carr. $£ 1.50$.

MARCONI SIGNAL GENERATOR TYPE TF-144H/S: Frequency Range $10 \mathrm{Kc} / \mathrm{s}-72 \mathrm{Mc} / \mathrm{s}$. RF Output $2 \mu \mathrm{~V}-2 \mathrm{~V}$ at 50Ω. Int. Mod. 400 and $1000 \mathrm{c} / \mathrm{s}$. Excellent condition with Manuals. $\mathbf{£ 2 0 0 . 0 0 ~ e a c h . ~ C a r r . ~ £ 2 . ~}$

MARCONI UNIVERSAL BRIDGE TF-866A and TF-868: £75.00 each, Carr. £2.

MARCONI DEVIATION TEST SET TF-934: $2.5-100 \mathrm{Mc} / \mathrm{s}$ (can be extended up to $500 \mathrm{Mc} / \mathrm{s}$ on Harmonics). Dev. Range $0-75 \mathrm{Kc} / \mathrm{s}$ in modulation range $50 \mathrm{c} / \mathrm{s}-15 \mathrm{Kc} / \mathrm{s} .100 / 250 \mathrm{~V}$ a.c. £45each, $£ 1 \cdot 50 \mathrm{carr}$.

FOR EXPORT ONLY BRITISH \& AMERICAN COMMUNICATION EQUIPMENT

VRC.19X Trans-ceiver, $150-170 \mathrm{Mc} / \mathrm{s}$, 2 Channel, 20 Watts, Output $12 / 24 \mathrm{~V}$ d.c operation. General Electric Transmitter, $410-419 \mathrm{Mc} / \mathrm{s}$, thin line tropo scatte system, with antennae. W.S. Type 88, Crystal controlled, $40-48 \mathrm{Mc} / \mathrm{s}$. W.S. Type $\mathrm{HF}-156, \mathrm{Mk}$. II, Crystal controlled, 2.5-7.5 Mc/s. W.S. Type 62, tunable, 1.5-12 Mc / s. C. $44, \mathrm{Mk}$. II, Radio Telephone, Single Channel, $70-85 \mathrm{Mc} / \mathrm{s} .50$ watts, output, 230 V . a.c. input. G.E.C. Progress Line Tx Type DO36, $144-174 \mathrm{Mc} / \mathrm{s}$ 50 watt, narrow band width. A.C. input 115 V . BC-640 Tx, $100-156 \mathrm{Mc} / \mathrm{s}$, 50 watt output, 110 V or 230 V input. STC Tx/Rx Type 9X, TR1985; RT1986; TR1987 and TR1998, $100-156 \mathrm{Mc} / \mathrm{s}$. TRC-1 Tx/Rx, Types T. 14 and R. 19 , SSB , $1.5-20 \mathrm{Mc} / \mathrm{s}$. Sun-Air Tx/Rx Type T-10-R. Collins $\mathrm{Tx} / \mathrm{Rx} / \mathrm{Type}$ 18S4A. Collins Tx/Rx Type ARC-27, $200-400 \mathrm{Mc} / \mathrm{s}, 28 \mathrm{~V}$ d.c. With associated equipment available. ARC-5; ARC-3; and ARC-2 Tx/Rx. BC-375; 433G; 348; 718; 458 455 Tx/Rx. Directional Finding Equipment CRD. 6 and FRD. 2 complete Sets available and spares, Complete system with full set of Manuals.

FREQUENCY METER BC-221: $125-20,000 \mathrm{Kc} / \mathrm{s}$, complete with original calibration charts. Checked out, working order £18.50 + £l carr.; OR BC-221 (as received from Ministry), good condition, less charts, $£ 8 \cdot 50+£ 1$ Carr.

RACK CABINETS: (totally enclosed) for Std. 19 in. Panels. Size 6 ft . high $\times 21 \mathrm{in}$. wide $\times 16 \mathrm{in}$. deep, with rear door. $£ 12$ each, $£ 2.50$ Carr. OR 4 ft . high $\times 23 \mathrm{in}$. wide $\times 19 \mathrm{in}$. deep, with rear door. £8.50 each, £2 Carr.
RECEIVER TYPE R-278B (Collins' design): $225-400 \mathrm{Mc} / \mathrm{s}$; freq. controlled; 1,750 channels at $0 \cdot 1 \mathrm{Mc} / \mathrm{s}$ intervals; channel change time 5 secs; 115 or 230 V a.c., $50-60 \mathrm{c} / \mathrm{s}$. Triple-conversion superheterodyne with automatic tuning and noise limiter; delayed and amplified automatic volume control, and carrier-operated relay circuit. Further details on request. $£ 150.00$ each.
TELEPRINTER CREED TYPE 7B: "as new" condition, in original packing case, $£ 25.00$ each. Second-hand condition (excellent order), no parts broken, $£ 15 \cdot 00$ each. Carriage both types $£ 2$.

Abstract

USM-2AC OSCILLOSCOPE: 3 in . oscilloscope with $2 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{Mc} / \mathrm{s}$ vertical response, and $8 \mathrm{c} / \mathrm{s}$ to $800 \mathrm{Kc} / \mathrm{s}$ horizontal response. Sensitivity 50 mv . $\mathrm{rms} / \mathrm{inch}$. Triggered sweep, built-in trigger pulses and markers. Mains input $115 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. Complete with all leads, probes and circuit diagram. $£ 42 \cdot 50$ $115 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. C SIGNAL GENERATOR TS-403B/U (or URM-61A): (Hewlett Packard). A portable, self-contained, general-purpose test equipment designed for use with radio and radar receivers and for other applications requiring smal amounts of RF power such as measuring standing-wave ratios, antenna and transmission line characteristics, conversion gain, etc. Both the output freqand power are indicated on direct-reading dials. $115 \mathrm{~V}, \mathrm{AC}, 50 \mathrm{c} / \mathrm{s}$. Freq.-Width- $5-10$ microsecs. Timing-Undelayed or delayed from $3-300$ microecs from external or internal pulse. O/put-1 milliwatt max., 0 to - 127 db variable. O/put Impedance-50 Ω. Price: $£ 120$ each $+£ 2$ carr. SIGNAL GENERATOR TYPE 902: (P.R.D.). A portable, general-purpose, broadband, microwave signal generator designed for testing and maintenance faircraft radio and radar receivers in the SHF band. The RF output level is egulated by a variable attenuator ca ior exted in dom. . Mc / s. Provision is made for external modulation. Power Supply $15 \mathrm{~V}, \pm 10 \%$ A.C., $50 \mathrm{c} / \mathrm{s}$. Freq. $-3650-7300 \mathrm{Mc} / \mathrm{s}$. Internal TransmissionCW, Pulse, FM. External Transmission-Square Wave, Pulse. Power O/put0.2 milliwatts. O/put Attenuator: - 7 to -127 dbm . Load- 50Ω. Price: $£ 135$ each $+£ 2$ carr. TEST SET TS-147C: Combined signal generator, frequency meter and power meter for $8500-9600 \mathrm{Mc} / \mathrm{s}$ CW or FM signals of known and and or measurement of same. Signal Generator: O/put - 7 to - 85 dbm . Trans-mission-FM, PM, CW. Sweep Rate- $0.6 \mathrm{Mc} / \mathrm{s}$ per microsec. Deviation-0$40 \mathrm{Mc} / \mathrm{s}$ per sec. Phase Range-3-50 microsec. Pulse Repetition Rate-to 4000 pulses per sec. RF Trigger for Sawtooth Sweep- $5-500$ watts peak. .2-6 microsec. duration, 0.5 microsec pulse rise time. Video Trigger for Sawtooth Sweep-Positive polarity, $10-50 \mathrm{~V}$ peak. $0.5-20$ microsec duration a 10% max. amplitude, less than 0.5 microsec rise time between 90% and 10% max. amplitude points. Frequency Meter: Freq. 8470-9360 Mc/s. Accuracythan $60 \mathrm{Mc} / \mathrm{s}$ relative, $+1.0 \mathrm{Mc} / \mathrm{s}$ per sec. at $9310 \mathrm{Mc} / \mathrm{s}$ per sec. calibration point. Accuracy measured at $25^{\circ} \mathrm{C}$ and 60 humidity. Power Meter: Input: +7 to +30 dbm . Output -7 to -85 dbm . Price: $£ 75$ each $+£ 1$ carr. SIGNAL GENERATOR TS-497B/URR: (Boonton). Freq. $2-400 \mathrm{Mc} / \mathrm{s}$ in 6 bands. Internal Mod. 400 or $1000 \mathrm{c} / \mathrm{s}$ per sec. External Mod. 50 to $10,000 \mathrm{c} / \mathrm{s}$ eput Voltage $0.1-100,000$ microvolts cont variable. Impedance 50Ω Price: 885 each $+£ 1.50 \mathrm{carr}$. FREQUENCY METER TS-74 (same TS-174): Heterodyne crystal controlled. Freq. 20-280 Mc/s. Accuracy $.05 \%$. Sensitivity 20 mV . Internal Mod. ther 135 V . Complete with calibration Fully stabilised Power Supply available at extra cost $£ 7.50$ each. Carr $£ 1.50$. CT.54 VALVE VOLTMETER: Portable battery operated. In strong metal ase with full operating instructions. $2.4 \mathrm{~V}-480 \mathrm{~V}$. A.C. or D.C. in 6 Ranges (20) $\mathrm{£12.50}$, carr. 75p probe, excellent condition. \&1250, carr. 75p. CT. 381 FREQUENCY SWEEP SIGNAL GENERATOR: $85 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ and response curve indicator with 6in. CRT tube and separate power supply. Fully stabilised. Price and further details on request. AVO WIDE RANGE SIGNAL GENERATOR: Freq. $50 \mathrm{Kc} / \mathrm{s}-80 \mathrm{Mc} / \mathrm{s}$ in 6 bands. Mains input $100-130 \mathrm{~V} ; 200-260 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}$. Second-hand, excellent cond. £14 each, or: New cond. complete with all leads and transit case £20 each. Carriage $£ 1$.

CANADIAN HEADSET ASSEMBLY: Moving coil headphones 100Ω with chamois leather earmuffs. Small hand microphone complete with switch and moving coil insert. New Condition. $£ 1.75$ each, post 25 p .
HEADSET ASSEMBLY TYPE No. 10: Moving coil headphones and micro phone. (Similar to above) new cond. £1-75, post 25 p; or second-hand cond 1-25, post 25 p.
HEADSET ASSEMBLY: with lightweight boom microphone Good secondhand condition. £250, post 75p
DLR HEADPHONES: $2 \times$ balanced armature earpieces. Low resistance $1 \cdot 25$ a pair, 25p post.
MOVING COIL INSERT: Ideal for small speakers or microphones. Box of $\mathbf{3} \mathbf{~ £ 1 ,}$ post 23p.
HAND MICROPHONE: (recent design) with protective rubber mouthpiece. e2, post 23p.
No. 16 HAND MICROPHONE: With carbon insert, lead and plug. Price 75p ach, plus 25p post
MICROLINE IMPEDANCE METER MODEL 201: $5300-8100 \mathrm{Mc} / \mathrm{s}$. £75 each, £1 carr.
MICROLINE DIRECTIONAL COUPLER MODEL 209: $5260-8100 \mathrm{Mc} / \mathrm{s}$ 24DB. £12.50 each, post 35p.
POWER UNITS AVAILABLE FOR FOLLOWING SETS: 52 set--main nput, 150V @ 60mA and 12V @ 3 amps, new cond. $\mathbf{2 3} 50$. Receiver type 88 $1475)$-mains input, 250 V @ 80 mA and $6.3 \mathrm{~V} @ 4$ amps, new cond. 83.50 No. 19 set $£ 2.50$. C12 set $£ 4 \cdot 00.88$ set $\mathbf{£ 2} \mathbf{5 0}$. Carriage all types $£ 1$ extra
STABILISED BENCH POWER SUPPLY: fully smooth, dual output, positive or negative, $2-6 \mathrm{~V} ; 6-9 \mathrm{~V} ; 9-12 \mathrm{~V}$ and $12-16 \mathrm{~V}$ all at 2 amps d.c. from mains input. :25 + £2 carr.
DIGITAL VOLTMETER \& RATIOMETER Model BIE. 2116, £65, carr. £.2 DIGITAL VOLTMETER Model BIE. 2114, £55, carr. £2. (Mnftrs. Blackburn nstruments).
MARKA SWEEP GENERATOR MODEL VIDEO (Kay Electric, USA) £65, carr. £2.

ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C. @ 1.8 amps , $400 \mathrm{c} / \mathrm{s} 3$ phase, $66 \cdot 50 \mathrm{each}$, post 50 p .24 v D.C. input, 175 v D.C. @ 40 mA . output, £1.25 each, post 20p
CONDENSERS: $40 \mathrm{mfd}, 440 \mathrm{v}$ A.C. wkg. 55 each, 50 p post. 30 mfd 600 v wkg. d.c., £3.50 each, post 50 p .15 mfd 330 v a.c., whg., 75 p each, post 25 p .10 mfd 1000 v. 63 p each, post 13 p .10 mfd 600 v .43 p each, 25 p post. 8 mfd 2500 v . £5 each, carr. 63 p . 8 mfd 600 v .43 p each, post $15 \mathrm{p}, 8 \mathrm{mfd} .1 \% 300 \mathrm{v}$. D.C. £1.25, post $25 \mathrm{p}, 4 \mathrm{mfd} .3000 \mathrm{v}$. wkg. £3 each, post 37 p .4 mfd 2000 v . £2 each, post 25 p . £1 for 5 , post 10 p . Capacitor $0.125 \mathrm{mfd}, 27,000 \mathrm{v}$. wkg. £ $3.75 \mathrm{each}, 50 \mathrm{p}$ post.
TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price £1 25 , post 25p.
SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, $\mathbf{2 2} .50$ each. post 30p.
CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps, $\mathbf{~} 2.50$ each, carr. 75p. OHMITE VARIABLE RESISTOR: 5 ohms, $5 \frac{1}{2} \mathrm{amps}$; or 40 ohms at 2.6 amps. Price (either type) $\mathbf{\text { f2 each, } 2 5 p \text { post each. }}$
TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$'s; complete with flament transformer 230 v. A.C. Mounted in 19in. panel, $\mathbf{£ 4 . 5 0}$ each, carr. 75p. POWER SUPPLY UNIT PN-12A: 230V a.c. input $50-60 \mathrm{c} / \mathrm{s} .513 \mathrm{~V}$ and 1025V @ 420 mA output. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mrd 1500 V and $1 \times 5 \mathrm{~V}$ windings @ 3 Amps each, and 5 V @ $@ 6 \mathrm{Amp}$ and 4 V @ 0.25 Amp. Mounted n steel base $19^{\prime \prime}$ W11"Hx14"D. (All connections at the rear.) Excellent condition $\mathbf{E 6} \cdot 50$ each, carr. El .
AUTO TRANSFOFMER: $230-115 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}, 1000$ watts. mounted in a strong teel case $5^{\prime \prime} \times 6 \frac{1^{\prime \prime}}{} \times 7^{\prime \prime}$. Bitumen impregnated. £6 each, Carr. 63p. 230-115V, Carr. 50 p .
LT TRANSFORMER: PRI 230 V . Output 3×6.3 at 3 amps each winding, $32^{\prime \prime} \times 4^{\prime \prime} \times 5^{\prime \prime}$. Fully shrouded $£ 1 \cdot 50$ post 50 p
VARIABLE VOLTAGE REGULATOR TRANSFORMER: Input 230V A.C.; Output $57.5 \mathrm{~V}-230 \mathrm{~V}$ in 16 equal steps @ 21 Amps. $\mathbf{2 2} 50$ each, carr. $£ 1 \cdot 50$. TRANSFORMER: 230 V A.C. input. $17.75 \mathrm{~V} @ 35 \mathrm{Amps}$ output. $\mathbf{£ 9} 9 \mathbf{5 0}$ each, carr. £1.
TRANSFORMER: ' C ' Core. 230V A.C. input. $1000-0-1000 \mathrm{~V}$ or $750-0-750 \mathrm{~V}$ @ 250 mA . £6.50 each, carr. 75 p
MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves, microphone and modulator transformers etc. $\mathbf{£ 7 \cdot 5 0}$ each, 75 p carr.
CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG1 (CV1526) colour green, medium persistence complete with nu-metal screen, $\mathbf{E 3} \cdot 50$ each, post 37p. APNI ALTIMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s}$., complete with all valves 28 v . D.C. 3 relays, 11 valves, price f 3 each , carr. 50 p .
ANTENNA WIRE: 100 ft . long. $\mathbf{7 5 p}+25 \mathrm{p}$ post.
APN-1 INDICATOR METER, 270° Movement. Ideal for making rev. counter. ع1.25, post 25p.
VARIABLE POWER UNIT: Complete with Zenith variac $0-230 \mathrm{~V} ., 9 \mathrm{amps}$; $2 \frac{1}{2} \mathrm{in}$. scale meter reading $0-250 \mathrm{~V}$. Unit is mounted in 19 in. rack. £15 each, £1.50p carr.
AIRCRAFT SOLENOID UNIT D.P.S.T.: 24 V , 200 Amps, $\mathbf{£ 2}$ each, 25p post.
RADAR SCANNER ASSEMBLY TYPE 122A: Complete with parabolic reflector (24 in . diameter), motors, suppressors, etc. $£ 35$ each, $£ 2$ carr.
DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms. Tolerance $\pm 1 \% £ 3$ each, 25 p post. 90 ohms per step. 10 positions,
total value 900 ohms. 3 Gang. Tolerance $\pm 1 \% ~ £ 3 \cdot 50$ each, post 25 p.

CRYSTAL TEST SET TYPE 193: Used for checking crystals in freq. range $3000-10,000 \mathrm{Kc} / \mathrm{s}$. Mains $230 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. Measures crystal current under oscillatory conditions and the equivalent parallel resistance. Crystal freq. can be tested in conjunction with a freq. meter. $£ 12.50$ each, $£ 1$ carr.
LEDEX SWITCHING UNIT: 2 ledex switches, 6 Bank and 3 Bank respectively, 6 Pos.; 1 Manual switch, 16 Bank 2 Pos. £4 each, 50p post.
VARIAC TRANSFORMERS: Input 115 V , output $0-135 \mathrm{~V}$ at 2 Amps . $£ 3$ each 50 p post. Input 115 V , output 135 V at 5 Amps . $\mathbf{~} 5$ each, 50 p post.

GEARED MOTOR: 24 c . D.C., current 150 mA , output $1 \mathrm{rpm}, \mathbf{£ 1} \cdot \mathbf{5 0}$ each, 25p post. ASSEMBLY UNIT with Letcherbar Tuning Mechanism and potentiometer, 3 rpm, 2 each

DALMOTORS: $24-28 \mathrm{~V}$ d.c. at $45 \mathrm{Amps}, 750$ watts (approx. 1 hp) $12,000 \mathrm{rpm}$. £5 each, 50p post.
GEARED MOTOR: 28 V d.c. 150 rpm (suitable for opening garage doors). ${ }^{2} 4$ each, 50 p post.
SMALL GEARED MOTOR: 24V d.c., output 200 rpm . Meas'm'ts $1 \frac{1}{2} \mathrm{in}$. dia. $\times 3 \frac{1}{2}$ in. long. $£ 2$ each, 23p post

FUEL INDICATOR Type 113R: 24V complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in 3 in. diameter case. Price £2 each, 25 p post.

COAXIAL TEST EQUIPMENT: COAXWITCH-Mnntrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type ' N '' female
connectors fitted to receive UG-21/U series plugs. New in ctns., $\mathbf{f 6} \mathbf{5 0}$ each, connectors fitted to receive UG-21/U series plugs. New in ctns., $\mathbf{e 6} \mathbf{5 0}$ each, post 37p. CO-AXIAL SWITCH-Mnftrs. Transco Products Inc., Type Type M1460-4. (New) £6-50 each, post 25p.

PRD Electronic Inc. Equipment: FIXED ATTENUATOR; Type 130c, 2.0-10.0 KMC/SEC. (New) \&5 each, post 25p. FIXED ATTENTUATOR: Type $1157 \mathrm{~S}-1$ (New) $\mathbf{£} 6$ each, post 25 p.

USED EXTENSIVELY BY JNDUSTRY, GOVERNMENT DEPARTMENTS \& LOW COST QUICK DELIVERY OVER 200 RANGES IN STOCK OTHER NEW "SEW" CLEAR PLASTIC METERS

TYPE SW. 100
$100 \times 80 \mathrm{~mm}$.
DESIGNS!

'SEW' CLEAR PLASTIC METERS

Type Mr.52P. 2tin. square froats

$50 \mu \mathrm{~A}$	13210	10 V . D.C.	£2.00
$50.0 .50 \mu \mathrm{~A}$	£2.60	20V. D.C.	22.00
$106 \mu \mathrm{~A}$	12.60	50 V . D.C.	£200
T00-0.100 1 A	22.374	300 V . D.C.	£200
$500 \mu \mathrm{~A}$	¢2.25	15V. A.C.	£2 00
1 mA	22.00	300 V . A.C.	22.00
5 mA	£2.00	B Meter 1 mA	£210
10 ma	£2.00	vU Meter	2310
50 mA	£200	1 smp A.C.*	2200
100 mA	£2.00	5 mmp . A.C.*	£2.00
500 mA	¢2.00	10 mpp A.C. ${ }^{\text {- }}$	£200
1 amp.	£2.00	20 amp A.C.*	£2.00
5 amp .	£2.00	30 amp A.C. ${ }^{\text {c }}$	£2.00

Type MR.65P. 31 in . \times 3idin. fronts		
$50 \mu \mathrm{~A}$	23.371	10V. D.C. .. fe
$50-0.50 \mu \mathrm{~A}$.	22.75	20V. D.C. . 52.10
$100 \mu \mathrm{~A}$	£2.75	$5^{50 V .}$ D.C. . $£ 2.10$
$100 \cdot 0-100 \mu \mathrm{~A}$	£2.60	150V. D.C... £2.10
$200 \mu \mathrm{~A}$	22.60	3(1)V. O.C... £2.10
$500 \mu \mathrm{~A}$	£2.37	15 V . A.C. .- $£ 2$
$500-0.500 \mu \mathrm{~A}$	¢2-10	50 V. A.C. .. 22.10
1 mA	£2.10	150 V . A.C. ${ }^{\text {c }}$ (2.
5 mA	£2.10	300 V . A.C. . $£ 2$
10 mas	22.10	500 V . A.C. - $£ 2$
50 mA	¢2.10	8 Meter lmA ¢ $£ 237$
100 mA	22.10	VU Meter -. $£ 3.37$
500 mA	£2.10	$50 \mathrm{ma} \mathrm{A.C.*}$. $£ 2.10$
1 amp.	22.10	$100 \mathrm{~mA} \mathrm{A.C.*} 22.10$
5 amp.	E2.10	200 mA A.C. - 22.10
		500 mA A.C.* ${ }^{\text {f2 }} 10$
15 smp .	£2.10	$1 \mathrm{amp}. \mathrm{A.C.*} £ 2-10$
20 mmp .	22.10	
30 amp. 50 amp	22.10	
${ }^{5} \mathrm{~V}$. D.c.	22.10	30 amp . A.C. $=22.10$

* MOVING IRON-

ALL OTHERS MOVING COIL
Please add postage

SEW EDUCATIONAL

 METERS
Type ED 107 Size overall 100 mm $\times 90 \mathrm{~mm} \times 108 \mathrm{~mm}$ A new
quality
range of hing
moving instruments ideal for
school experiments athor experimenta aud
othen applications. 3in. mirror scale.
The meter movement is asily acceasible to demons

Available in	¢ followi	ranges:-	
$100 \mu \mathrm{~A}$	E4.25	20 V d.c.	+3.
1 mA	E3.97	50 V d.c.	83.97
${ }^{50-0-50} \mathbf{\mu}$ A	24.25	300 V d.c.	97
dmA	83.97	Dual ra	

Ad.c.
$500 \mathrm{~mA} / 5 \mathrm{~A}$
$5 \mathrm{~V} / 50 \mathrm{~V}$ d.c.

"SEW'' BAKELITE PANEL METERS

[^15]
MULTIWETERS fon EUERY purpose

MODEI, TE-200 20,0010
O. P. Mirroracale, overload protection.
$0 / 5 / 25 / 125 / 1,000$ V. D.C.
$0 / 10 / 501250 / 1,000$ V. A.C.
$0 / 50101250$ Min $0 / 50 \mathrm{HA} / 250 \mathrm{MA} .0 / 60 \mathrm{~K} / 6$
meg. +20 to +62 db. ${ }_{8375}$ P. \& P. 1 isp

TMK MODEL MD. 120 Mirror
Bcale. $20 \mathrm{~K} /$ Volt D.C. 10 K 0 Volt A.C. Woit D.C. 10 K 0 $30 / 60 / 3616 / 600 / 3,000$
$6 / 120 / 12241$
Volt D.C. Current $0-60 \mu A / 0-12 / 0-$
300 mA . $0-60 \mathrm{~K} / \mathrm{B} \cdot \mathrm{fj}$ Mohms.

MOUEL 50030,000 O.P. with overload protection mirror scale. 0/.5/2.5/10/25
$100 / 250 / 500 / 1,000$
\mathbf{v}.
D.C 0/2.5/10/25/100/250/500/1,000 2. A.C. $0 / 50 \mu \mathrm{~A} / 5 / 50 / 500 \mathrm{~mA}$. 60 meg Ω. $£ 8.87$. Post paid

TMK LAB TEBTER 100,()00 O.f.V. 6 f in. Scale
Buzzer Short Circuin Check
Sensitivity:

 Current
smp. R $100 \mathrm{~K}, 10 \mathrm{MEG}, 100 \mathrm{ME}$

$$
\begin{gathered}
\text { ROUND SCALE TYPE PENC } \\
\text { TESTER MODEL. TS. } 68
\end{gathered}
$$

$$
\text { P. \& P. } 13 \mathrm{p} \text {. }
$$

TMK MODEL 117
ELECTRONIC
VOLTMETER
Battery operated, 11 me
input. 26 ronger.
4 in. marge
5 mirror scale. size

TE-20RF SIGNAL GENERATOR

TRANSISTORISED L.C.R. A.C MEASURING
BRIDGE.
bridge oftering ex-
cellent range and
accuracy at low cost.

Ranges:	
11.1	REG
10	10

$\pm 2 \%$. TURNS RATIO $1: 1 / 1000-1: 11100$ 6 Ranges $\pm 1 \%$. Bridge voltage at $1,000 \mathrm{CPB}$
Operated from 9 volts. $100 \mu \mathrm{~A}$. Meter indicstion. Operated from 9 volts. $100 \mu \mathrm{~A}$. Meter indicstion.
Attractive 2 tone metal case. Size $71^{\circ} \times 5^{\circ} \times 2^{\circ}$

MODEL 5 Iryo 57 Ranges,
 Hengitivity: $50 \mathrm{~K} /$ Voit D.C.
$5 \mathrm{~K} / \mathrm{Volt}$ A.C. D.C. Volts:
$.125, .25,1.25,5,10,25,50$,
125,250 . $540,1.00(\mathrm{~V}$, A.C. Volts: $1.5,3,5,10,25$,
A.C. Voita $11.5,3,10,25$,
$50,125,250,500,10,25$,
 5. 16 amp. Resistance: $2 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{MEG}$,
10 MEG . Decibels: -20 to $+85 \mathrm{~dB} £ 1250$

 ingerument matufactured
in U.S.8. R. to the highest
standards. Ranges: 2.5 . standards. Ranges: 2-5/
$10 / 50 / 250 / 500 / 1000 \mathrm{v}$
D.C. $2.510 / 50 / 150$ D.C. 2.51.10/50/2.50/500/

 leads, instructions and
sturdy ateel carrying
 Carr. 50p.

FTC-40I

TRASTER
Full canabilities for
measuring A, B and $\mathbf{1 C O}$. measuring A, B and 160 .
NPN or 1'NP. Equasly
adaptable for checking adaptable for checking
diodea. supplied coma diodes. Supplied com-
plete with instructions. battery
26.97t.

HONEYWELL DIGITAL VOLTMETER VT. 100

Can be patiel or bench rounted. Basic meter
measures 1 volt DC, but dan be used to measure a wide range of AC and DC volt, current and ohme with optional plug in cards. 8pecification: Accuracy: $0.2, \ldots$ digit. Resolution: 1 ml .
Number of digits: 3 plus fourth overrange digit Overranke: $100-(\mathrm{u}$, to 1.999). Input impedance: 1090 Meg ohm. Measuruig cycle: I per serond.
Adjustment: Automatic zeroing, full scale aljustment against in internal reference voltake.
Overloid. to 10 v D C Input. Pully floating (3 poles). Input power: $11(16 \cdot 2: 30 \mathrm{v}$. A.C. $50 / 60$ eyeles.
Overall size: $5 \ddagger$ in. $\times 21 / 1$ tiin. $\times \quad$ \& $3 / / 6 \mathrm{in}$. AVAILABLE BRAND NRW AND FULLY
GUARANTEED AT APPROX. HALF PRICE

E49.97立 Carr. 50 p.

G. W. SMITH
 \& Co. (Radio) Ltd.
 ALSO SEE NEXT TWO PAGES

SEMI－CONDUCTORE／VALVES

ALL OEVICES BRAND NEWAND FULLY GUAMANTEED

TRANSISTOR DISCOUNTS：－
$12+10 \% ; 25+15 \%$ ； $100+20 \%$ ANY ONE TYPE POSTAGE ON ALL SEMI－CONDUCTORS 7p EXTRA．

－VALVES

OA2	38p	25\％	30p	L93	35 D
0 B 2	45p	23\％	2 p	Em	
O24	30 p	2586	65 p	EM81	
LL4	20 p	${ }^{39015}$	80 p		
IR 5	35p	3 CCl 17	85 p	EM	
185	${ }^{25}$	30 Cl 18	85 p	EM	${ }^{\text {P }}$
IT 4	${ }^{25}$	30F5	85 p	EY	
TH4	${ }^{27 p}$	30－LL	\％${ }^{\text {P }}$		
IUS	50 p	30 FL 12	92 D	EY	
2 D 2	${ }^{355}$	30FLIt		E7240	
394	40 p	${ }^{30 L 15}$	85 p		
－	${ }_{45 \mathrm{P}}^{35 \mathrm{p}}$	${ }^{30 \mathrm{LI}}{ }^{3}$	80p		
5 Sk	${ }^{40 p}$	${ }_{30 \mathrm{Pr}}^{19}$	80p	E2Z	
50.4	${ }^{33 \mathrm{D}}$	${ }^{30 \mathrm{PaL}}$	${ }_{7}^{70 \mathrm{p}}$	QZ	
${ }_{5} \mathrm{Y}_{3}$	${ }_{32 \mathrm{p}}$	30 PL	${ }_{80 \mathrm{p}}$	KT	
${ }_{\text {6，}}^{5 \times 3 \mathrm{La} 2}$	${ }_{75 \mathrm{p}}^{40 \mathrm{p}}$	${ }^{35 \mathrm{~L}} \mathrm{C}$	${ }_{30 \mathrm{p}}^{50 \mathrm{p}}$		
fic		35%	30 p		
	40 p		40 p	${ }^{\text {PC }}$	
fia	${ }^{30 \mathrm{p}}$	50	45 p		
${ }_{6} 6$	${ }_{20 \mathrm{p}}^{57}$	80	50 c	${ }_{\text {PCCO }}$	
6，${ }^{\text {a }}$	33p	45.42	40 p	PCC8	
	${ }^{35 \mathrm{p}}$	8178	50 y		
	${ }^{37 \mathrm{P}}$	${ }^{1625}$	50 p		
${ }_{6 \text { 6AUG }}^{60}$	－${ }_{20 \mathrm{p}}^{30 \mathrm{p}}$	${ }^{37146}$	21.50	${ }_{\text {PCFP80 }}$	
6.4	30 p	Az：1	50 p	PCF82	
	25 p	CY31	${ }^{35 \mathrm{p}}$	${ }_{\text {PCFP }}$	
	${ }_{45 p}^{308}$	${ }_{\text {DAF96 }}$	${ }_{42 \mathrm{p}}$		
66．J6	45 p	Dr91	25 p	PC	
${ }_{6} 613074$	40 p	ก196	42 p		
${ }_{6}^{6 \mathrm{GRR}}$	${ }^{855}$	DK91	${ }^{355}$	${ }^{\text {PCP }}$	
6 B	${ }^{65}$	DK：12	S0p		
6	85	DI92	425		
${ }_{6876}$	780	${ }^{\text {D1．92 }}$	${ }_{45 p}^{355}$	${ }_{\text {PCLP }}$	
${ }_{6} 6$	33p		42 p	PCL84	
${ }_{6}^{6 C}$	${ }_{61} 815$	DM70	32 p	${ }_{\text {PCl } 85}$	
fic_{6}		DY86	${ }^{33 \mathrm{p}}$	${ }_{\text {PCL }}$	
${ }_{6}^{6 \mathrm{FF}}$	${ }_{8}^{83 p}$	E8	${ }_{85 \mathrm{p}}^{35 \mathrm{p}}$		55
	30	E180	${ }_{95 p}$	${ }_{\text {P1 }}^{1} \mathrm{P1}$	
${ }_{6}^{6 F 13}$	38p	eabc80	${ }^{35 \mathrm{p}}$	${ }^{\text {PLL }}{ }^{\text {P2 }}$	
	${ }_{65 p}^{655}$	EBA ${ }^{\text {E }}$	${ }_{20 \mathrm{p}}^{335}$	${ }_{\text {PLL }}$	
${ }^{6 F 18}$	450	EbC	${ }_{55 p} 5$	pr	
	${ }_{20 \mathrm{p}}^{80 \mathrm{p}}$	${ }_{\text {EBr }}^{\text {ERC8 }}$	${ }_{40 p}^{30 p}$	${ }_{\mathrm{P}}^{\mathrm{P}}$	
6，54	50 p	empr	40 p	PYa	
	${ }^{200}$	Epr89	${ }^{320}$	Pr_{P}	
${ }_{6}^{6} \mathrm{JJF}_{6}$	$3{ }^{30 \mathrm{p}}$	${ }_{\text {ECRE }}^{\text {ERL，}}$	${ }_{80 \mathrm{p}}^{60 \mathrm{p}}$	${ }_{\text {PY }}^{\text {PY }}$	
${ }_{6} 8.57$	45 p	EC88	${ }^{80}$	PY83	
8 K	35 p	ECC40	6^{00}	PY	
${ }^{6 L 26}$	45 F	${ }_{\text {ECCs }}$	${ }^{30 \mathrm{p}}$	PY8	
ne	${ }_{408}$	ECC8	${ }_{40 p}$	U25	
${ }_{6847}$	${ }^{408}$	ECF80	${ }^{35 \mathrm{p}}$	U26	
${ }_{\text {Fing }}^{\text {fin }}$	${ }^{350}$	${ }_{\text {EC }}$	${ }_{85 p}^{35 p}$	U50	
6isk7	350	ECH21	57 p	${ }^{\text {U191 }}$	
${ }_{6}^{68}$	${ }^{35 \mathrm{D}}$	FCH3	${ }^{600}$	${ }^{\text {U } 281}$	
$6 \mathrm{6S}$	${ }_{3}^{359}$	${ }_{\text {ECH }}$		U23	
66^{6}	${ }^{600}$	${ }^{\text {ECH8 }}$	${ }^{400}$	U801	
	${ }_{32 \mathrm{p}}^{20 \mathrm{p}}$	${ }_{\text {ecle }}^{\text {ECL8 }}$	${ }_{35 \mathrm{p}}^{40 \mathrm{p}}$	UABC80	
${ }_{6 \times 4}$	30 p	FCl	${ }_{650}$	URC	
	${ }_{27 \mathrm{p}}^{30}$		${ }_{80 \mathrm{p}}^{40 \mathrm{p}}$	UBC	
1 lic	sup	EF39	40 D	UBP	
10	${ }^{900}$	krfo	50 D	ycr	
${ }_{0 \text { P14 }}$	${ }_{41.10}$	F．F＋2	${ }_{70}$	VCF	
12．4T8	30p	EF80	25p	UCH	
12	30 y	${ }_{\text {cFes }}^{\text {EF8 }}$	${ }_{300}^{359}$		
12	309	${ }_{\text {EF86 }}$	${ }^{30 \mathrm{p}}$	UCH81	
12 AL	33 p	EFP1	33p	UCL83	
－128	－35D	${ }_{\text {EFF }{ }^{\text {¢ }} \text { S }}$	${ }_{30 \mathrm{p}}^{40 \mathrm{p}}$	UF41	
$12 \mathrm{BH7}$	40 D	EFi84	${ }^{35}$		
${ }_{2}$	${ }_{45 p}^{35 p}$	${ }_{\text {ELR }}$	${ }^{40 p}$	UF89	
	75 D	EL33	1125	ULil	
	41.10	${ }^{\text {EL4l }}$	${ }_{5}^{55}$	UL84	
${ }_{20 \mathrm{P} 3}^{201}$	${ }^{50 \mathrm{p}}$ 60p	${ }_{\text {ELT，}}^{\text {El }}$	58p 585 5 p	UY41	
${ }^{20 \mathrm{P}} \mathrm{P}_{5}$	${ }_{\text {c }}^{21.10}$	Elst	${ }_{230}^{250}$	${ }^{\text {UY80 }}$	
${ }_{2556}^{20 \mathrm{~L}^{\text {a }}}$	${ }^{21} 45$	${ }_{\text {EL91 }}^{\text {ELL }}$	42p	VR150／30	0
		r2p in ε			
ZENER DIOD					
400 MW 3－3－33 Volt		${ }_{2}^{1.5-4 \text { matt }}$			
		20p each			

$\begin{gathered} \overline{2 N 3055} \\ 25+ \\ 100+ \end{gathered}$	$\begin{aligned} & 76 \mathrm{p} \\ & \text { 22p } \\ & 50 \mathrm{p} \end{aligned}$	$\begin{gathered} \text { AF239 } \\ 25+ \\ 1100+ \\ 500+ \\ 1000+ \end{gathered}$	37p 328 388 285 208 $20 p$
BC113	15p	BC148	11 p
$25+$	${ }^{135}$	$25+$	9 p
$\xrightarrow[\substack{100+\\ 5110+\\ \hline}]{ }$	12 p 10 p	5010）+	${ }_{7 p}$
$1000-$	8 p	$1003+$	${ }_{8 p}$
BYZ13	25 p	BC168C	15p
＋	20 p	$25+$	12 D
0 －	17p		10 D
${ }_{\text {c }}^{5000+}$	135 13	coun＋	¢
BC1 $07 / 8 / 9$	10 p	BC169C	15D
	${ }^{9 p}$	$25+$	12p
	8 p	$109+$	10 p
$500+$	${ }^{7}$		${ }_{\text {c }}^{8 \mathrm{~B}}$
	12 p		
$25+$	10 p	$25+$	${ }^{30 \mathrm{p}}$
$100+$	${ }^{9 p}$	${ }^{1000}$	20p
500＋	${ }_{70}^{8 p}$	－ $5000+$	$\stackrel{22 \mathrm{p}}{20 \mathrm{p}}$
$\bigcirc \mathrm{OC}_{7} 2$	12p	BFI94	${ }^{17 \%}$
＋	10p	$25+$	15p
$100+$	9 p	$100+$	139
$1000+$	${ }_{7}$	$1000+$	105

RECORD DECKS

 B.S.R $\underset{\substack{619 \\ 510 \\ 310}}{\substack{10}}$ mego t.p.D.

 thorens ${ }^{62}$

 TX 11

GARRARD

All other mup

RECORD DEC

PACKAGES

Pinth ant wov
with cartridge.
with cartridge.

TAHCD $\varepsilon 1595$

Garrard spes III with Goldring G800 $£ 18 \cdot 95$ metal pinth.)
Garraril Al'7. With Goldring G800
R8R MPfin with Audio Technica A

fioldring
Gollring

EADPHONE JUNCTION BOX Connects to Amplifer and ated sterener headphong atternit.
with a three pooition tu give headiphones only,
spakereo ony or both tugether.

SPECIAL PURCHASE BRAND NEW IBin 100 watt SPEAKERS Male by Celestion or Fane. I Iin. resonance, Litited stock only.
813.95 each. (arriage 5up.

SINCLAIR EQUIPMENT

 her steren bio pre-amp, P28 power supply. £20-25.
 6 FM TUNT 820.25 . C^{2} palkers. PROMEC sinclair prontucts in stock. $1 \mathrm{Cl} 22,22.50$. 2,000

LATEST CATALOGUE

New 6th edition giving full details of comprehensive range of HI-F! EQUIPMENT COMMUNICATIONS EQUIPMENT. FREE DISCOUNT COUPONS VALUE 50 p. 272 pages, fully illustrated and detailing thousands of items at bargain prices.

Latest exciting release. Brand new molel, beauti-
fully styled with wamut case. $6+6$ watta rin. \$witched inputs for magk, xtal, anx, tape. Incorporates volume, bras, treble and sliding balance Rec. List $2: 32 \cdot 50$. Our Price $£ 1750$. Carr. 17
 plinth and eover, G800 cartridge, pair DJ 3 way
speakers. Total Rec. List £81. Our Price 254.95 TELETON F. 2000 AM/FM STEREO TUNEE/

Probably the most mopnlar budget Tuner/
Anp. and now offered at a ridiculous low price. 5. watts $\mathrm{F} . . \mathrm{B}$. per channel. Tape/Cer. phono
inputs. A PC/Buit-in MPX. List $£ 51$. Our Price E28-75. Carr. DOp.
F. 2400 , Garrarl $2025 \mathrm{~T} / \mathrm{C}$ Changer fitted stereo
cartridge, with plinth and cover and pair of $G W \$$ 3 -way speakers. Total Rec. I'rice 597 -734. Our TRANSISTOR FM TUNER
 6 TllaNSISTOR
HIGH QUALITY
TUNER GIZE
ONLY Gin. 4 tin. \times
2tin. 3 I.F. Gtages.
 criminator ample
output to ceed most output to
ampliflers. Operates
Ond on 9 volt battery. Coverage $88-108 \mathrm{Mc} / \mathrm{s}$. Kearis

built ready for use. Frantastic value for money, | £6.371. P \& \& PT 12\&1 |
| :--- |
| BTEREO MULTPLEX ADAPTORS, £4-971. |

ceramic or tuner inputs with twin atereo headeach channel. Operates from !iv battery. Inputs $5 \mathrm{MU} / 100 \mathrm{MU}$. Output $\overline{50 \mathrm{MW}} \mathbf{W}$. 55.97 . P. \& P. 15 p .

Exceptional
budget price
amplifier. All gili

Output $2 \times 6 \mathrm{~W}$ HMA. Inputs Mag, Tape, Xtal,
Tuner, Tape Out. £14.75. Carr. 37 p .
EA. 41 REYERBERATIION

AMPLIFIER
 27 TOTTENHAM CT. RD. LONDON, W. 1 3 LISLESTREET, LONDON, N.C. 2

TO-3 PORTABLE OSCILLOSCOPE. 3^{n} TUBE $\underset{\sim}{\square}$
 - 1.5 MHZ Input imp
$2 \mathrm{meg} \mathrm{I} .25 \mathrm{PF}, \mathrm{m}$ 2 meg Ω.
genaitivity. KHZ. Ioput imp. 2 meg 0 20 PF. Time base. 5 ranges
10 cpa- 300 KHZ Bynchronization. Intermal/external. Illuminated scale. $140 \times 215 \times 330 \mathrm{~mm}$. Weight $15 \nmid \mathrm{llss}, 220 / 240 \mathrm{~V}$.
A.C. Supplied brand new with handbook A.C. Supplied brand new with handbook
e. 37.50 . Carr. 50 p.

BELCO AF-5A SOLID STATE SINE SQUARE WAVEC.R. OSCILLATOR

HELICAL POTENTIOMETERS ITT MCPMI5 10 TURN $2 \frac{1}{2}$ WATTS Avaitable 500 ohtn, $1 \mathrm{~K}, 5 \mathrm{~K}$ ohin. $£ 1.25$ each.
P. \& P. 15 p.
 40 db Frequency: DC to $200 \mathrm{KHZ}(-3 \mathrm{db})$.
Accuracy: 0.05 db . + indication $\mathrm{db}(0.01)$ Maximum irput less than 4 watta (50 volts)

seareis	230 VOLT A.C. 50 CYCLES
4	RELAYS $\begin{gathered}\text { brand new. } 3 \text { sets } \\ \text { of changeover }\end{gathered}$
	contacts at 5 amp rating. 50 p each
	P. \& P. $111 \mathrm{p}(100$ lots 840) Qual* tities available.

270° WIDE ANGLE

1 mA METERS

UR-IA SOLID STAT COMMUNICATION RECEIVER 4 Bands covering 550ke/日-30me/b. FET, 8 Meter,
 £25. Carr. 371 p

UNR 30 RECEIVER
4 Bands covering $550 \mathrm{ke} / \mathrm{s} \cdot 30 \mathrm{me} / \mathrm{s}$. B.F.O. Built
in speaker 220.140 AC . Brand new with instrucLAFAYETTE HA-600 RECEIVER

variable B.F.O., noise limiter S detector, spread. RF Gain, $15^{*} \times 92^{*} \times 84^{*}$. 181 l . $220 / 240 \mathrm{p}$ AC or 12v DC. Brand new with instructions. $£ 45$

B.C. 221 FREQUENCY METERS Idest release $125 \mathrm{KHz-20} \mathrm{MHz}$. lixcellent con-
\qquad
SOLID STATE VARIABLE A.C.

AUTO TRANSFORMERS

WS62 TRANSCEIVERS Large quantity available for EXPORT
Excellent condition. Enquiries invited

POWER RHEOSTATS

High quality ceramic construction. Windings erabedded in vitreous ename

5 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1000 / 1510 / 2500$ or 5000 ohms. 72 ID. P. \&P. -3
100 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1000$ or 25000 ohms . $£ 1.37$. P. \& P. Itp

"YAMABISHI" VARIABLE VOLTAGE TRANSFORMERS Excellent quality Low price - Immediate delivery
MODEL $8-260$

GUSNTH: \& GO.(RADORO) ITD

Tel: 01-6363715
Tel: 01-4378204
Tel: 01-4378204
Tel: 01-4379155

All Mail Orders 10-
11-12. Paddington Green.
London, $W .2$
Tel: $01-2626562$
(Tradesupplied

QUALITY PARTS
 FOR THE DISCERNING BUILDER

BAILEY PRE-AMPLIFIER still offers lowest distortion level and best overload capability. Edge Connector Mounted Printed Circuit in Fibreglass or Paxolin material to choice. Highest quality parts including gain graded transistors. BAILEY 30w POWER AMPLIFIER. Edge Connector Mounted Printed Circuit in Fibreglass or Paxolin material, size $41^{\prime \prime} \times 23^{\prime \prime}$. This unit and the above Pre-amplifier can both be used in our new Metalwork Assembly.
BAILEY 30w POWER SUPPLY. We have now designed a Printed Circuit Board for the power supply, again intended to be used with our Metalwork, which also has edge connector mounting. Available in Fibreglass material only. BAILEY 20w AMPLIFIER. Special driver transformer and bifilar wound mains transformer. Printed circuits and all parts available for this design.
LINSLEY HOOD CLASS A. Full sets of parts now available to the new specification given in the December, 1970, Wireless World.
SUGDEN CLASS A AMPLIFIER. A Hi-Fi News design. All parts are in stock except the Metalwork.
J. R. STUART TAPE CIRCUITS. All parts now available.

Full details are given in our Free lists. Please send foolscap s.a.e.

HART ELECTRONICS

PENYLAN MILL, MORDA, OSWESTRY, SY10 9AF SALOP Tel: Oswestry 2894

Personal callers are always welcome. But please note we are closed on Saturdays.

INTEGRATEDCIRCUIT SOCKETS

DRQ8
DRQ7
16 po
DRD7
16 pol.
14 pol
16 pol
14 pol

SOLE DISTRIBUTORS SUPER-ELECTRONICS

5. VIOLET HILL. LONDON N.W. 8. 6248281

RELAYS P.O.TYPE 3000 AND 600 BUILT TO YOUR SPECIFICATION Contacts up to 8 changeover * QUICK DELIVERY \star KEEN PRICES \star DUST COVERS-QUOTATIONS BY RETURN
P.O.TYPEUNISELECTORSFROMSTOCK, SOY. HLEVEL, IB
IO NON-BRIDGING, 3, 4 AND SLEVELALSO AVAILABLE.
MERCURY WETTED CONTACT RELAY Elliott type HGZM 145 ohms. normally-open 2 normally-closed contacts 63 ea.

 Fibre Air Filter and directional Duct. Capasitor
or 100125 Volts 2,800 R.P.M. \& 12 , carrige
MINIATURE DIGITAL INDICATOR, size of digit 5 in., 28 . lamps. Por easy lamp replacement, when one of the twelve lamps at the rear of the unit is lighted, the lamp projects the corresponding digit on the condensing lens Assembled in banks of five E14. Brand new $82-50$ each the front of th
MINIATURE BUZZERS, 12 volts, with tone adjuster 40 peach as illustrated. LEDEX ROTARY SOLENOIDS AND CIRCUIT SELECTORS, SIIE 55 . 4 pole 11 way and of 65.30 .24 pole 11 way and off $£ 10.50 .54$ pole On/OH 67.50 . SOst 20 p .
ROOM THERMOSTAT adjustable between 45 and 75 deg far 10 amp 250
volt, bakelite casing 4 in $\times 3$ in. with 2 in . dia control knob, 62 ea, post 24 p
INDUSTRIAL FANS 16 in. blades $223 / 240$ Volt A.C. motor 1,400
R.P.M. in housing with adjustable lourres $\&$ fold-up filter. 625
HIGH SPEED COUNTERS
3 in in. $x 1 \mathrm{in}$. 10 counts per second,
with 4 figures. The following $D . C$. voltages are available, $6 \mathrm{v} ., 12 \mathrm{v}$.
$24 \mathrm{v} ., 50 \mathrm{v}$., or 100 v . Also supplied with aux

$$
\begin{aligned}
& \text { VACUUM PUMP Plessey Type B.3.X Mk. 2, Pat. No. CV. } 5072 \text { rotary vane } \\
& \begin{array}{l}
\text { type } 6 \text { in. HG inlet depression at } 2000 \mathrm{r} . \mathrm{p} . \mathrm{m} \text {. and 7.5 c.f.m., with } 20 \text {. in. Ho. delivery } \\
\text { pressure. } 5 \mathrm{in} \text {. Hg inles depression at } 1200 \mathrm{r} . \mathrm{p} . \mathrm{m} \text {. and } 3.5 \mathrm{cf.m} \text {, with } 20 \text { in. Ho }
\end{array} \\
& \text { delivery pressure, Size } 6 \mathrm{in}, \times 4 \mathrm{in} \text {. excluding } 2 \mathrm{in} \text {. } x \frac{1}{\mathrm{i}} \mathrm{in} \text {. splined shaft. Inler and }
\end{aligned}
$$

L. WILKINSON (CBOYDON) LTD. LONGLEY HOUSE LONGLEY RD. CROYDON SURREY
 \author{ Phone: 01-6840236

 Grams: WILCO CROYDO}
FM TUNER

NELSON-JONES

Approved parts for this outstanding design (W.W. Adrill971).
Featuring $0.75 \quad \mu V$ sensitivity. Mosfet front end. Ceramic I.F. strip. Triple gang tuning. $\frac{1}{2} \mathbf{V}$ r.m.s. output level, suitable for phase locked decoder, as below. Designer's own P.C.B.
All parts including P.C.B. S.A.E. please lists.

PHASE LOCKED STEREO DECODER
 PORTUS AND HAYWOOD

Approved kit for this superb decoder (w.W. Sept.1970).
Featuring 40 dB separation up to 10 kHz . NO COILS. Negligible spurious tones (birdies). Simple setting up. Suitable for wide variety of tuners including the NELSON-JONES TUNER as above
Complete decoder kit £8.97, p.p. \& ins. 15p
Stabilised PSU kit $£ 3.55$ p.p. $18 p$

LIGHT EMITTING DIODES (Red)

Solid state visible light source, typical life of many years continuous operation. May be used as indicator, light modulator, etc. Maximum current 20 mA .
Only 50p each inc. connection data
INTEGREX LIMITED
P.O. BOX 45 DERBY DE1 1TW

Bl-PRE-PAK

FULLY TESTED AND MARKED

PACKS OF YOUR OWN CHOICE UP TO THE VALUE OF 50p WITH ORDERS OVER E4

CLEARANCE LINES

GOLOURT.V. LINE OUTPUT TRANSFORMERS Designed to give 25 KV when used with PL509 \& PY500 alves. As removed from colour receivers at the factory. NOW ONLY 50p EACH. Post and Packing 25p 1 Amp. other rejects from the BY127 range Ideal for low voltage other rejects from the BY127 ran
Power Units, etc. Price: $\mathbf{f 1} 1$ per 100.

BE 105 Varicap Diodes
OC71 or 72 Fully tested
Unmarked
Matched sets, 1-0C44 \&
2 -OC45's. Per Set
1 st \& 2nd IF
OA47 Gold Bonded Diodes,
Marked \& tested.
24. 27 Zener Diodes 7.5

10 Watt Zener Diodes 5
2. 11. 13. 16. 20. 24.100 y

Amp Brdge, S/P. C/O
INTEGRATED CIRCUITS
SL403D Audio Amp. 3 Watt 709C Linear Opp. Amp. Gates Factory Marked \&

Marked 8 Tested. A.E
PA234 1 Watt Audio Amp

NEW TESTED \& GUARANTEED PAKS

${ }^{82} \quad 4$| Photo Cells. |
| :---: |
| 5102 ma . |
| |
| |

${ }^{\text {B79 }} \mathbf{4} \underset{\substack{\text { 1N4007. Sit. Rec. Dicdes. } \\ 1 \text { amp. Plastic. }}}{\substack{1.000 \\ \text { P.I.V. }}} \mathbf{5 0 p}$

$250 \begin{aligned} & \text { Mixed Resistors. Post and packing } \\ & \text { Approx. Quantity counted by weight. }\end{aligned}{ }^{10 \mathrm{p} .} \mathbf{5 0 p}$
$40 \begin{aligned} & \text { Prestage } 7 \text { p. }\end{aligned}$ Resistors. Mixed Values. 50 p
${ }^{\text {H9 }} \mathbf{2}$ OCP71 Light Sensitive Photo Transistors. 50 p

$10{ }^{\text {ocks1/81D }}$ Gncoded white glass type PNP ${ }^{\text {Germ. }}$ 50p
${ }^{128} 20 \underset{\substack{\text { OC200/1/2/3 } \\ \text { To-5 } \mathrm{Can}}}{\substack{\text { PNP }}}$ silicon uncoded 50 p

BUMPER BUNDLES
These parce printed
omponents. printed panels, switches. ransist

2 LBS IN WEIGHT FOR £1

OUR VERY POPULAR 3p TRANSISTORS FULLY TESTED \& GUARANTEED

TYPE "A

PNP Silicon
alloy, metal To-5 can. 25300 type, direct replacement for the OC200/203 range

TYPE "B PNP Silicon plastic encapsulation low voitage but good gain, these are of the 2N3702/3 and 2N4059/62 range.

TYPE "F"
NPN Silicon plastic encapsulation Low Noise Amplifier of the $2 N 3707 / 8 / 9 / 10 / 11$ Series.

BULK BUYING CORNER

NPN/PNP Silicon Ptanar Transistors. mixed untested, similar to $2 \mathrm{~N} 706 / 6 \mathrm{~A} / 8$. BSY26-29. BS
E 425 per 500 E8.00 per 1.000

Silicon Planar NPN Plastic Transistors, untested. similar to
E4 25 per 500 e8.00 per :000
Silicon Planar Diodes. DO-7 Glass, similar to OA200/202 BAY31.36. £4. 50 per 1.000

NPN/PNP Silicon Planar Transistors, Plastic TO-18, similar to $\mathrm{BCl} 13 / 4, \mathrm{BCl} 53 / 4$. $\mathrm{BF} 153 / 160$ etc
$£ 4.25$ per 500 . $£ 8.00$ per 1.000
OC44. OC45 Transistors. fully marked and tested
500 plus (a) 80 each. 1.000 plus ab $6 p$ each
OC71 Transistors. fully marked and tested.
500 plus eat $6 p$ each. 1.000 plus a $5 p$ each.
3823 E Field effect Transistors. This is the 2 N 3823 in plastic
case
plus e 13 peach 1.000 plus © 10 peach
Amp Miniature Plastic Diodes
1N4001. 500 plus 3p each 1,000 pius a $3 p$ each 1 N4004 500 plus a $5 p$ each. 1.000 plus (9) $4 p$ each 1N4006. 500 plus ($6 p$ each. 1.000 plus (a) $5 p$ each. 1 N4007 500 plus a $8 p$ each. 1.000 ptus (a) 7 p each

TYPE "E
PNP Germanium af or rf please state on order. Fullv marked and tested.

NEW UNMARKED UNTESTED PAKS

B80	8	Dual Trans. Matched $0 / P$ pairs NPN. Sill in TO- 5 can	50p
883	200	Trans. manufacturer's rejects all types NPN. PNP. Sil and Germ.	50p
884	100	Silicon Diodes DO-7 glass equiv. to OA200, OA202	50p
886	50	Sit Diodes sub min. iN9 14 and IN916 types	50p
B88	50	Sil Trans. NPN, PNP. equiv. to OC200/1, 2N706A. BSY95A, etc.	50p
860	10	7 watt Xener Diodes Mixed Voltages	50p
H6	40	250 mW Zener Diodes DO-7 Min Glass Type	50p
H1O	25	Mixed volts. $1 \frac{1}{2}$ watt Zeners. Top hat type	50p
866	150	High quality Germ. Diodes Min glass type	50p
H15	30	Top Hat Silicon Rectifiers. 750 mA Mixed volts	50p
H16	8	Experimenters' Pak of Integrated Circuits Data supplied	50p
H20	20	BY126/7 Type Siticon Rectifiers. 1 amp plastic. Mixed volts	50p

F.E.T. PRICE BREAKTHROUGH

This field effect transistor is the 2N3823 in a plastic encapsulation; coded 3823E. It is an ideal replacement for the 2N3819. Data Sheet supplied with device.
$1-10=30 p$ each, $10-50=25 p$ each. $50+20 p$ each.

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block. will turn any $0-1 \mathrm{~mA}$ meter into a perfectly linear and accurate rev.
counter for any car. each

FREE CATALOGUE AND LISTS for: -
TRANSISTORS, RECTIFIERS,
DIODES, INTEGRATED CIRCUITS.
FULL PRE-PAK LISTS.
\& SUBSTITUTION CHART
MINIMUM ORDER 50p CASH WITH ORDER PLEASE. Add 10p post and packing per order. OVERSEAS ADD EXTRA FOR POSTAGE

8 RELAYS for f 1

Various Contacts and Coil Resistances. No individual selection. Post and Packing 25p

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

STEPHENS
 ELECTRONICS，
 P．O．BOX 26，
 AYLESBURY，BUCKS．

SEND S．A．E．FOR LISTS GUARANTEE
Satisfaction or money
refunded

GUARANTEED VALVES BY THE LEADING MANUFACTURERS BY RETURN SERVICE
1 Year＇s guarantee on own brand， 3 months＇on others

AL3 ${ }^{\text {a }}$	60p	1888CC	623 p	EL803	85p	press	42ıp	PY83	50，	UL，41	57pp	6arb	$32 \downarrow \mathrm{p}$	6EW6	80p	68L7GT	32 p	12K7GT	35p	35 A	55
А\％す！	${ }^{6} 10 \mathrm{p}$	ECFP\％／2	471p	EL821	55 p	PCC88	708	PY88	41 p	UL84	55p	6AS5	35p	${ }_{6} \mathbf{F} 1$	700	6isN76T	30p	12Q70	25p	$35 \mathrm{B5}$	65
C1．1	80p	ECF8i	55p	ELL89	75p	PCC89	${ }^{81 p}$	PY500	£1．00	UM80／＊	45 p	6AAPG：	80 p	6Fs	40 p	b397	40p	12807	25 p	$35 \mathrm{C5}$	35
［日L3）	85p	E¢H：35	671p	EM34	80	PCC18：	61p	PZ30	808	UY4	40p	6ATt	45p	${ }_{6} \mathrm{Ftjof}$	25p	68R7	37 p	12897	35 p	356	${ }_{65}$
1＇131	35ν	1scht	${ }^{66 p}$	EM71	62tp	PCFPG：	51p	Qudite－6	22．10	UY85	34p	gaub	30p	${ }_{6} \mathbf{H} 11$	32／p	fiT8	$32+\mathrm{p}$	12847	25p	3n ${ }^{\text {a }}$	65
11aF：	41p	ECH81	$51 p$	EM54）	400	PCF＇82	$52 ¢ \mathrm{D}$	QQUO3－10	£1．25	U301	85 p	6Bat	47！p	6 F 12	$22 / \mathrm{p}$	6U4GT	62］p	128.7	25p	$35146 T$	47 1
dafam	410	ECH83	40 p	EM81	42 l p	PCF84	47 ¢ p	Qvo3．12	${ }^{85 p}$	W7e	35p	6BE6	80 p	6F13	35 p	6088	35p	128K7	40p	35 W 4	25
19P星	45p	RCHA	471p	EM84	3710	PCFPri	61p	819	650	2759	£1．224	${ }_{6}^{6} \mathrm{BH6}$	$42 \pm$ p	${ }_{6}^{6 F 14}$	60 D	${ }^{6} \mathrm{~V} 6 \mathrm{G}$	321 p	128L7GT	40 D	35Z3	55
$1)^{1014}$	45p	ECLam	40 p	EM87	55 p	PCFP10／1	81 p	1220	75 p	OAL	$32+\mathrm{p}$	6B．J6	42tp	6 6F15	55 p	${ }_{6 \times 4}{ }_{6}$	${ }^{25} 5$	128N7GT	40 p	35 Z 4 C	25
1）к91	57 f	RCLata	49p	EN91	32 p	PCF801	61p	su2150A	75 p	OA3	45p	6BK7A	50 p	6F18	40p	$6 \times 5 \mathrm{ct}$	$27 / \mathrm{p}$	129Q7	40 p		37
1ヵ¢96	$57 / \mathrm{p}$	ECCL 83	571p	EY61	40p	PCPsita	61p	TT21	22－40	0132	$32 \pm$	6 BL 8	35 p	6irez	32.5	6x8	$55 p$	128167	324p	з5200 \mathbf{T}	37
111，42	37 p	ECLS6	49 p	EY80	450	PCr＇sis	65 p	TT22	22．50	OP3	50 p	6BN5	42 LD	$6 \mathrm{~N}^{2} 3$	7710	6Y゙か\％	80 p	1487	80 p	50A5	65
115．94	37 ¢ ${ }^{\text {P }}$	ECLI 800	\＄1．50	EY81	40 D	PCF80\％	${ }^{61 p}$	U18／20	$677 p$	OC3	35 p	6BN6	40 p	$6 \mathrm{FP}^{2} 4$	67 p	7 Y 4	60 p	30 D 1	45p	50B5	35
1－bly	46p	EF39	52 p	EY8：3	55 p	PCF808	6770	U20	67 p	0123	321 p	6R45	25p	CFP^{24}	$75 p$	913W6	42 p	20L1	¢1．00	50 C 5	35
DMYT0	32ip	EF80	40 p	EY86	40p	PCHza	70 p	U2̇\％	75 p	304	400	${ }^{63187}$	75 p	${ }_{6}^{6 \mathrm{~F}^{2} 26}$	${ }^{35} \mathrm{p}$	100\％	50 p	20 P 1	50 p	50L6Gt	40
1，Y8f／7	40p	FF83	50 p	EY87	42 tp	PCL52	51p	U26	75p	384	35 p	$6 \mathrm{BR8}$	95p	${ }_{6} \mathbf{F} 28$	700	10Dl	40 p	20P\％	80p	83 Al	90
1）Y8Mr	42 p	${ }_{\text {EFR }}$	${ }^{41}$	EY88	${ }^{27 p}$	${ }^{1} \mathrm{CLE} 83$	${ }_{510}$	U31	${ }_{\text {4．5p }}^{\text {c1．50 }}$	3V4 ${ }_{\text {SR }}$	40p	6BW6 684 W	$8{ }^{821}$	${ }_{6 F 30}^{6 \mathrm{~F} 29}$		1002	${ }_{4}^{40 \mathrm{p}}$	2014	21.00 81.00	85AL	37 lp
Egaca	${ }^{2} 275$	Er86	${ }_{40 p}^{86 p}$	${ }_{\text {EZ }}^{\text {ER882 }}$	${ }_{27}^{271 p}$		5510	U37	E1．50 30 p	8R4GY 5 U 4 a	55p	68W7 68×8	${ }_{25 p}^{69 p}$	${ }_{6}^{6 F 30} 6$	47p ${ }^{35}$	${ }^{101019}$	${ }^{90 \mathrm{p}}$	2505	81.00 $45 p$	${ }^{8512}$ goau	371 p $\mathrm{k2}$
E13\％	¢4－50	EF！	421 p	EZ40	45 p	P（1．84	51p	U52	30p	5U4 ${ }^{\text {a }}$	37 p	${ }_{6} 6 \mathrm{BZi}$	$32 / \mathrm{p}$	8，JGT	30 p	10 F 8	400	$25 \mathrm{~m} / \mathrm{GT}$	371p	SKC1	600
Filsili	95p	Fres	50 D	EL41	45p	POK6	E1－524	${ }^{176}$	${ }^{25 p}$	${ }^{51} 4 \mathrm{C}$	40 p	${ }^{604}$	${ }^{30 \mathrm{p}}$	f．l7	42 p	11151	40 p	25246	30 p	90CU	21.25
PAblic80	52 bp	EP93	47p	EZ810	27 p	${ }^{\text {Pr }}$	74p	U78	25 p	5Y3GT	30 p	${ }_{6 C 5 G T}$	${ }^{351} \mathrm{p}$	6K6GT	50 p	10LDI1	55p	${ }_{3645}^{2586}$	50 p 40 p		
FiAF42	50 p	EF94	77 p	E／781	27 p 2 250	${ }_{\text {PLas }}$	64p 90 p	U191	${ }^{75 p}$	${ }_{52461}^{5 Z 3}$	$45 p$ 400	${ }_{60064}^{6064}$	11.40 2710		$321 p$ 30 p	10 P 13 10 P 14	55p 41.00	$30 A 5$ 30 A1\％	${ }_{40 \mathrm{p}}^{40 \mathrm{p}}$	${ }_{811 /}$	81．50
HBCM3 EBCY	［59p		$621 p$ 58 p	${ }_{\text {ERS }}$	250 55.00	${ }_{\text {PL }}{ }^{\text {P181 }}$	51p	U291	${ }_{35}{ }^{41 p}$	${ }^{52460} 6$	70 p	${ }_{6}^{6 \mathrm{Ca}}{ }^{\text {d }}$	527 p	6K23	30p	${ }_{12 \mathrm{Pl}}^{12} 5$	21．00	${ }^{304153}$	40p	812 A	83．25
EIICR1	$32 \pm$	EF184	35 p	G 5501	8 p	PLxiA	62 pp	U281	40 p	$6 \mathrm{AB4}$	32 ${ }^{\text {p }}$ p	6 CRC	27 䂙	6 K 25	75p	12AC6	37 p	30 Cl 17	80 p	813	83．75
Eibser	47 pp	E280F	$\underline{52.10}$	（\％Z301	371 p 30 p	${ }^{1} \mathrm{PL} \mathrm{L} \times 2 \mathrm{~L}$	${ }_{510}^{36 p}$	${ }_{\text {U } 282}$	40p	$\mathrm{FiAFP}^{\text {a }}$	47 p P	${ }_{\text {ccat }}^{\text {60b6a }}$	81.15	＋，466T 6.7	45p	${ }_{12}^{12 A D F}$	$37 \% p$ $40 p$	：10018	75p	${ }^{8+16} 4$	70
EBPA	$40 p$	EFsim	81.00	GZ2，	30p	PLA	51 p	U40，	500	biag7	${ }^{471 \mathrm{p}}$	${ }_{6}^{\text {6CG7 }}$	45p	${ }_{6}^{6 L 17}$	32 p	$12 \mathrm{Al5}$	40p	30 F 5		5642	60p
FBPF8：	40p	EF804	\＄1．00	GZ32	$47 \ddagger$ p	PLP4	41p	U404	37 tp	bag7	$37 \leq \mathrm{p}$ 50 p	${ }_{\text {fichb }}^{\text {fich }}$	55 p	${ }_{6}^{6 L 18}$	30 p	12A05	40 p	30 FLL	95p	6080	
ERPR9	400 260	${ }_{\text {EF811 }}^{\text {EF }}$	${ }_{525}^{750}$	（12833	37 p 50		$82 \pm p$ $85 p$	UROI	21.00 524	6aHti	50 p 290	${ }_{4}{ }_{6}^{6 C L 6} 4$	50 p 620		$32 \pm p$ 350	liatio lianut	${ }_{75 p}^{25 p}$	30FLL	${ }^{921 p}$	6080 61.46	21.37 21.50
ERSH1 ＋653	26 p 50 p	${ }_{\text {ELI36 }}^{\text {E1／34 }}$	524p	＋234 HK 96	53．p	${ }_{\text {PLSO5 }}$	$85 p$ $\mathbf{8 1 . 4 5}$	U13F89	${ }^{52} 40$	6AJs	29p	ficys	${ }_{40 \mathrm{p}}^{62}$	${ }_{\text {BP1 }}^{\text {infor }}$	${ }_{600}^{350}$	l2AU6	75 p 30 p	30FL14	77\％p	61.46 6146 B	21.50 82.371
mCs31］	60 D	EL4 4	55 p	HL92	35 p	PL508	¢1．00	UBC4I	49 p	tiAK¢	57 p	6GY7	${ }^{800 p}$	${ }_{\text {fir min }}$	¢1．05	12AV7	45p	30 Ll	45 p	6267	32ıp
HC88	${ }^{300}$	CLSt	57 lp	HL94	40 p	PLL509	11.54	UCCss	48 p			${ }^{6123}$	40 p	${ }^{\text {fir }} \mathrm{F} 28$	61 p	12AX7	30p	30 LL 5	${ }^{85 p}$	6364）	\＆1．25
FCCM	30p	ELS 1	50D	KT66	£1．37t	${ }^{\text {PLLP102 }}$	${ }^{86 p}$	UCH ${ }^{2}$	${ }^{89} \mathrm{~F}^{\text {p }}$	6ala	42ip	${ }_{\text {6．}}^{6 \mathrm{CK} 6}$	674 p	697	37 pp	12AY7	${ }^{67} 5 \mathrm{p}$	：20117	35p	6361）	
Recys	32 \ddagger p	$\mathrm{EIPR}^{\text {L }}$	41p	$\mathrm{KTR}^{\text {¢ }}$	${ }^{81} 1.66$	${ }_{\text {PL }}{ }^{\text {P }} 13$	86 p	UCH81	54 p	6aLou	16 p	CEK6	4210	${ }^{6878}$	${ }^{350}$	12B4A	${ }^{50 p}$	$31{ }^{3} \mathrm{~F} \mathrm{l}^{2}$	${ }^{80 p}$	6939	$22 \cdot 10$
4：C93	47hp	EL85	42 p	N78	¢1．05	${ }^{\text {PY }} 33$	${ }^{621 p}$	UCL82	51p	6ams	25 p	609613	60p	${ }_{6814}^{681}$	40p	12BAli	32% p	30 Pl 18	${ }^{35}$	710	75
	40p	$\mathrm{ELSF}^{\text {en }}$	42 p	PapC80	40 p	${ }^{1} \mathrm{PY} \mathrm{Y}_{81}$	3230	UCLs：	61 p	fiam0	22 p p	6Ds4	75p					30 P 19	$\underset{75 p}{75}$	7360	81．80
	${ }_{421}^{421 p}$	${ }_{\text {ELPO }}$	${ }^{32} 25$	${ }_{\text {PC86 }}$	${ }_{36 \mathrm{p}}^{51 \mathrm{p}}$		${ }_{410}^{410}$	UF41／2	55p	fiaqú	$32 \downarrow$ p	6ibab	55p	${ }^{68187}$	$\xrightarrow{37} \begin{aligned} & \text { 37p }\end{aligned}$		${ }_{32} 32$	$30 \mathrm{PL1}$	77 p 900 900	7586	\＆1．25
	$42 \downarrow \mathrm{p}$ $42 \pm \mathrm{p}$	RLCH1	${ }_{35 \mathrm{p}}^{25}$	${ }_{\text {PC97 }}$	36p	${ }_{\text {P Y Y P01 }}$	${ }_{41 p}{ }^{41 p}$		37，${ }^{\text {P }}$	gaqi	50p	6EH7	32 p	$6 \mathrm{SJ7}$	37 p	$12 \mathrm{BY7}$	${ }^{50 \mathrm{p}}$	$30 \mathrm{PL14}$	85 p	90012	32 tp
＊${ }^{\text {H }}$	55p	EL3\％	£1．15	PCO84	46p	PY82	35 p	UF89	41 p	6AR5	32 p	6E． 17	35p	bsk7	32¢p	12K5	500	35 A 3	50 D	9003	50p

CATHODE RAY TUBES

Type		$\stackrel{\text { New }}{\underset{\Sigma}{2}}$	$\begin{gathered} \text { Budget } \end{gathered}$	Type		New	Budget
Mw3\％ 20			£4．50$\mathbf{8 4} 50$	$\mathrm{A}^{50} 0$－ $120 \mathrm{~W} / \mathrm{R}$	CME2013	¢10．85	
				AW53－80	CME2101	28．93\％	${ }_{46.25}$
MW＋3 60\％	CRM171			AW59－：\％			
	CRM172	86．60	84．62	AW59－91	CME2303	¢9．58 ${ }^{\text {¢ }}$	¢7－20
以1W：8i\％	（＇1）M17\％	86．60	¢4．62	A59－15	CME2303		
－W13－80Z	CME1702	¢6．80	84．42t		CME2；03	80－581	87． 20
	CME1703	E6－60	84．82）	A59－115	CME2305		
	CME1769］	± 6.60	44－62！	${ }_{459}^{459-13 W}$	CME2306	¢13．65	${ }^{210.971}$
	C17AA	¢6－60	64．62t	A59－23W	CME2 0_{0} ¢	112．60	£10．50
	Cl7AF	26.60	24．62	A59－23W／R		212.80	210．50
А 4 4：－88	CMEITH5	26．60	¢4．62	${ }_{\text {A } 61-120 W / R}$	CME2413	${ }_{\text {¢13 }} 13.50$	$\begin{array}{r}\text { ¢11 } \\ 814.50 \\ \hline\end{array}$
				COLOUR TUBES			
A HST_{5}－ 91	A 77 14W	£5－95	24．87	A49－191X	19 inch	252．50	
A3；14W	CME1SMI！	¢5．95	24．87	A56－120X	22 inch	257．50	
	CME190\％	45．85	84.87	Atis－11 C	25 inch	¢62．50	
	（＇ME19013	25.95	£4．87	PORTABLE SET TUBES			
	clpar	£5．95	84．87	TA1217		± 11.50	
A） 11 W	CMEI905	88.861	87．00	A $28-14 \mathrm{~W}$		${ }_{69} 161$	
A47 136	Cmeichis	£10．27	\＄8－50				
As．26lv	CM L 1905	¢8－88］	87.75	CME160			${ }^{\text {ap }}$ \％ 75
A47 3ivi／k	CME1913R	¢9．33］		CMEIG02			88.00

TRANSISTORISED UHF TUNER UNITS
NEW AND GUARANTEED FOR 3 MONTHS
Complete with Aerial socket and wires for Radio and Allied TV sets but can
be used for most makes．
Continuous Timing．E4．50；Push Button． 55.00 ．
SERVICE AIDS

 LINE OUTPUT TRANSFORMERS

a．e．c．	BT454		． 84.75	G．E．C．	2028		．．	84.75
（i．E．C．	BT456	．	－ 84.75	G．E．C．	2041			£4．75
G．E．C．	2010		\therefore ¢4．75	G．E．C．	2 \％ut Serie			
G．E．C．	2013		－ 84.75	Philipg	19TG	．	．	£4．75
G．E．C．	2014	\cdots	－ $\begin{array}{r}\text { ¢ } 4.75 \\ \hline 4.75\end{array}$	lye	Moll． 36		．	44.75
G．E．C．	2018 2043	\because	a .8475 -84.75	Pye	Mod． 40			¢4．75
G．E．C．	2048	\because	24．75	Thorn	800－850	．．	\cdots	24.75

STYLII－BRITISH MANUFACTURED
Bingle Tip＂sto ${ }^{2}$ ．．． $13 \mathrm{p} \quad$ Double Tip＂ 8
Double Tip＂D
${ }^{\prime \prime}-$ Diamond
A discount of 10% is also given for the purchase of 3 or more tubes at any one

SEMICONDUCTORS BRAND NEW MANUFACTURERS MARKINGS NO RFMARKED DEVICES

1
0
0
0
么幺力
动么会
2 N 37
2 N 37
2 N 38
2 N 381
2 N 382
$2 \mathrm{~N} 3!41$

[^16]ADD 3p PER ITEM FOR POST AND PACKING FOR ORDERS UNDER 24 PIECES．

CARTRIDGES

	$P_{\text {each }}$			
		SX54	p／8	
${ }^{\text {cosem }}$	${ }_{8}^{81.05}$			
	线1．055	${ }_{688000}^{680}$		（
${ }_{\text {arab }}$	${ }^{21}$			${ }^{219.50}$
	（81．80	${ }_{\substack{105}}^{10.5}$		${ }_{990}^{99 p}$
${ }_{\text {apem }}^{\text {apen }}$	－			${ }_{700}$
Acos $1041-10$	82．09	${ }^{\text {do }} 10508080$		
X54 ${ }^{\text {x }}$	81.39 81．39	DCALOSC	D／8	${ }^{\text {84p }}$
		${ }_{8 \text { fit }}$		
	约1．81	${ }_{\text {\％TA }}^{\text {OTA }}$	${ }_{\text {D／8 }}^{\text {D／8 }}$	${ }_{\text {c1－79 }}^{8179}$

MAGNETIC RECORDING TAPES by a leading manafacturer

EMPTY	tape reels	CASSETTES
3in	．．7p	Boved in Plathic Library Packs
4 in	$\cdots 90$	C60 ．．．．．53p
5 in	．11p	C 90 ．．．．${ }^{\text {83p }}$
59 in		C120．．${ }^{87 \mathrm{p}}$
7 in	．13p	P．\＆P． 7 p on all orders．

TERMS CASH WITH ORDER ONLY．POST AND PACKING PAYABLE ON ORDERS UP TO £6，AFTER THAT，FREE EXCEPT C．R．T．＇s．

SERVICE TRADING CO

VOLTAGE TRANSFORMERS
INPUT 230 v. A.C. $50 / 60$ OUTPUT VARIABLE 0/260 v. A.C. ORAND NEW. Keenest prices in the ccuntry. All types (and 5 pares) fr
t to 50 amp. available from stock. 0.260 v ot 1 mp
$0-260 \mathrm{v}$ at 2.5 amps £8.05 0.260 v . at $5 \mathrm{amps} \ldots \mathrm{m} .75$ 0.260 v . at $10 \mathrm{amps} \quad$.. $£ 22.50$ $\begin{array}{lll}0-260 \mathrm{v} \text {. at } 15 \mathrm{amps} & \text {.. } & \pm 25.00 \\ 0-260 \mathrm{v} \text {. at } 20 \mathrm{amps} & \text {. } & E 49.00\end{array}$ -260 v. at 20 amps $0-260$ v. at 37.5 amps 0.260 v , at 50 amps

AMP

0.26

$m p \in 8.05$
L.T. TRANSFORMERS

RONER RHEOSTATS
 (NEW)

 Enamel, heavy duty for continuous duty. AVAILABLE FROM STOCKIN THE FOLLOWING II VALUES 100 WATT 1 ohm $10 \mathrm{a} ., 5$ ohm 4.7a., 10 ohm 3a., 25 øhm 2a., 50 ohm $9.4 \mathrm{a}_{\text {., }} 100 \mathrm{ohm} 1 \mathrm{a}_{\text {, }} 250 \mathrm{ohm}$ 230 mA ., $2 \cdot 5 \mathrm{k}$ ohm $\cdot 2 \mathrm{a}$., 5 k ohm 140 mA ., Diameter $3 \frac{1}{5} \mathrm{im}$. Shaft length ${ }^{3} \mathrm{in}$. dia. $\frac{15}{8} \mathrm{in}$., $\mathrm{El} \mid \cdot 50$. P. \& P. 15 p . 50 WATT I.12/10/25/50/100/250/500/1K/1.5K/2.5K 5 K פhm. All at f1•12, P. \& P IIp25 WATT $10 / 25 / 50 / 100 / 250 / 500 / \mathrm{l}$ ohm.
Black Silver Skirted knob calibrated in Nos. 1.9 . 1
in. dia brass bush. Ideal for above Rheostats, I8p ea.
UNISELECTOR SWITCHES - NEW
4 BAMK 25 WAY FULL WIPER 25 ohm coil, 24 v. D.C. operation $\mathbf{6 5} \cdot 88$. plus 22 p P. \& 6 BAHK 25 WAY FULL WIPER
operation. $£ 6.50$, plus 22p P. \& P
8 BANK 25 WAY FULL WIPER

VERY SPECIAL OFFER

500 w 50 MEG "RECORD" INSULATION TESTERS.

SRODELSTROPELSTROE

NICKEL CADMIUM BATTERY
Sintered Cadmium Type I. 2 v. 7A.H. Size: height $3 \frac{1}{2}$ in. width 2

MOTOROLA MACII/6 PLASTIC TRIAC 400 PIV 8 AMP
Now avanlable EX STOCK supplied complete with full
data and applications sheer. Price $£ 1 \cdot 05$ plus 7p P. \& P data and applications sheet. Price
Suitable Diac 30p (RCA40583).

INSULATED TERMINALS Available in black, red, white, yellow, blue and green. New
10 p each. Post paid. HIGH FREQUENCY
TRANSISTORISED MORSE OSCILLATOR Adjustable tone control. Fitted with moving coilspeaker, also earpiece for personal monitoring. Complete with
morse key. $£ 2.25$ plus $18 p \mathrm{p}$. \& p .
MINIATURE LEVEL METER
Approximately 300 micro amp basic, as
fitted to Tape Recorders, etc. Strip type
dual coloured dial. 50 p $+8 p \mathrm{P} . \& \mathrm{P}$.

RELAYS NEW SIEMENS PLESSEY, etc. MINIATURE RELAYS AT COMPETITIVE PRICES.
 Sulphide Photocell. Relay Transistor and High Speed Relay for 6 or 12 volt aperORP. 12 and Circuit 63p post paid

220/240 A.C. MAINS MODEL
incorporates mains transformer rectifier and special
relay with I make, I break. H.D. contacts. Price inc 230 VOLT AC SOLENOID EXTREMELY POWERFUL SOLENOID with approximately
| 4Ib. pull. I inch travel. Fitted with mounting feet. Size 4 inches long, 2 inches wide and 3 inches high.
Price $£ 2 \cdot 00$ including post \& pkg.

230-250 VOLT A.C. SOLENOID (Similar in appearance to above illustration.) Approx. I 1 Ib.
pull. Size of feer $1 / \times 1$ I 1 . Price 85 incl. post. Manufac-
cured by Westool Led.

36 volt 30 amp . A.C. or D.C. Variable L.T. Supply Unit

 indicator and chrome handles. Input and Output fully fused.
Ideally suited for Lab. or Industrial use. 658 plus $£ 2$ p. \& c . $230 V / 240 V$ COMPACT SYNCHRONOUS GEARED MOTORS

PARVALUX TYPES DI9 $230 / 250$ VOLT AC REVERSIBLE GEARED MOTORS 30 r.p.m. 40 lb . ins. Fosition of drive spindle adjustable to
different angles. Mounted on different angles. Mounted on
substantial cast aluminium base. Ex-equipment. Tested and in first-class running order. A LONDON, WC2H 7 JJ .

OSCILLOSCOPE PROBE TM8!I9 robe foraccure $100 / 1$ resistive TMBig probe for accurate display of HF waveforms brand new with all accessories and instruction manual. List price 617 Our price $£ 7 \cdot 50$ including earth bayonet
TM8194. A MARCONI PRODUCT MARCONI TF 1020A RF POWER SETPR. P. 75 p .
We have in stock

MARCONI 12 KHz QUARTZ CRYSTAL contained in B7G envelope with flying lead
only $62 \frac{1}{2} p$ each.
MARCONI DUAL TRACE OSCILLO. used condition with probe/handbook used cond
guarantee.
PHILLIPS MODEL GM SOIO. DC IOW level electronic voltmerer measurements
from ImV for full scale deflection to 300 vdc in twelve ranges. Indication on 5 inch mirror
scale. A first-class instrument at an economi-
cal price. Only $£ 40$ plus battery, P \& P. 75 p. scale. A first-class instrument at an economi-
cal price. Only $£ 40$ plus battery. P. \& P. 75 p. WAVE ANALYSERS
MARCONI TF445E 20 Hz to 16 kHz or modulated r.f. up to 500 MHz Price $£ 125$ AIRMEC model 2485 MHz to 300 MHz film scale frequency setting. Price $£ 85$ film scale frequency setting. Price $£ 80$ OSCILLOSCOPES
TEKTRONIX Type 551 with L\& G plug in
TEKTRONIX Type 5458 with CA plug in, hand book and choice of probes.
TEKTRONIX Type $453, \mathrm{DC}$ to 50 MHz portable, as new with Probes and manual.
TEK 3 A6 plug in as new.
and
TEKTRONIX Type 310 miniature port-
TEKTRONIX Type 581 DC to 80 MHz with plug in as new condition. Trolleys available.
TEKTRONIX Type 531A DC to 15 MHz . TEKTRONIX Current probe amplifier type 131.
All the above ossilloscopes have been carefully tested and calibrated and carry a six months guarantee, large savings up
to 50% can be made on the manufacto 50% can be made on the manufacupgrading your equipment we can offer you a fair price for any used Tektronix scope, or plug-ins.
MUIRHEAD PRECISION DECADE OSCILLATOR TYPE 890A
Frequency range $=1 \mathrm{~Hz}$ to 11111 KHz incorporates precision 5 MHz crystal with within the range may be selected and repeated with absolute accuracy. Perfect condition. Price
MUIRHEAD Modulator Type D-978-A Price
MUIRHEAD PHASE METER Type $729-A M$ Enables user to read direct indication of phase angle and the difference in level between two sinusoidal voltages, both vortages may also be measured. Supplied
in as new condition. Price $£ 275$

SOLARTRON PHASE ANGLE MEASURING EQUIPMENT COM prising: Low frequency decade oscillator
4 phase type OS-I03.
TFA Carrier Converter type JX-641 and
LOW FREQUENCY SPECTRUM
ANALYSER TYPE FENLOW
Range $0 \cdot 3 \mathrm{~Hz}$ to IKHz excellent condition
Price $\quad . \quad . \quad$ fl50

ELECTRONIC CALCULATORS

Little used condition, surplus to requirereadour and alt usual funcrions, readout and a Wisual functions, i.e. calculator employs all solid state circuitry with i.c.s. contained on four plug in boards. Small portable machines for mains voltage operation. Carefully checked before despatch. List price $\mathbf{6 2 4 0}$, offered at only $£ 55$, carriage 75 p.

SCHOMANDL PRECISION FREQUENCY METER TYPE GPO approved equipment for Radio Telephone Marine servicing etc., offered in as new certificate.

ROBAND MODEL T107

Transistorised variable volt bench supply
ADVANCE COUNTER TIMER Range $\mathrm{IHz}-\mathrm{MMHZ}$ six digit readout
portable instrument, large display, price and details on request.

SOLARTRON LM902.2
Digital Volt Meter, range $1 \mathrm{mV}-1,000 \mathrm{~V}$

E

SPECIAL OFFER

"INSULATION TESTERS" TYPE No. II METROHM by famous British manufacturer. All solid state. No handles to crank. Runs off 9 volt transistor battery. Simply press button for function. Range 0.1 to 25 M ohms for insulation testing. Also 0.1 to 100 ohms for resistance and continuity checking. Clear, concise scale. Small size modern instrument, complete with carrying strap and protecting cover. Offered in good used condition ready to work. $22 \frac{1}{2}$ p post/packing.

EVERSHED QUICK RESPONSE
RECORDER (DUPLEX) TYpe QU RECORDER (DUPLEX) Type QU/ CRD 10 with amplifier unit rype $P A$.
$10 . \mathrm{M} / \mathrm{G} / 2$ with cables handbook. In as new condition, these smail portable recorders are very popular and are of current manufacture offered at less than

Honeywell Brown Electronic Recorder. Potentiometric type, Sensitivity $0-01 \mathrm{mV}$ \& $0-1 \mathrm{mV}$ offered as new perfect order $£ 225$ AIRMEC PORTABLE RF SIGNAL GENERATOR. AM/FM TYpe ('T212. Suecially designed for fiend use for matins
or $12 v_{\text {on }}$ oration. frequency range 85 kHz
 Variable output from 1 nicro $V 10$ mil
0 to solb. Otfered in excellent condition 0 to Roilb.
Only $£ 45$

MAGNIFICATION METERS
Marconi Q Meter Model TF329G perfect condition Marconi HF condition
dvanion $£ 40$
 Dawe Production Q Meter Model 620C
brand new
CANNON XLR AUDIO SERIES XL 3-31 3-Pole ${ }^{2}$ \& SOCKETS

$\left.\begin{array}{l}\text { XL 3-12 3-Pole Socket }\end{array}\right\} \begin{aligned} & 150 \mathrm{p} \\ & \text { The }\end{aligned}$	$\times 13$-11 3-Pole Plug
$\times 135 \mathrm{p}$	XL 3-32 3-Pole Socket The pair XL 6-11 6-Pole Plug

XL 6-32 6-Pole Socket The p XL 6-32 6-Pole Socket The pair
OHfered Brand New. Sealed Packs at a OHered Brand New.
little over List Price.
MULLARD HIGH SPEED VALVE TESTERS. We have a small quantity of these very popular testers available late working order. Price $£ 45$

WANTED, GOOD QUALITY TEST EQUIPMENT

 Miniature solenoid driven wafer switches, type-Ledex single pole, 7 pos., 3 wafers. Primarily used for channel switching in Radio-Telephones. Wafers may be sub-stituted for ahy type. Solenoid voltage, 12 or 24 V . stituted for ahy type. Solenoid
Brand new. $\mathbf{f 1} 50$ each, p.p. $12 \frac{1}{2}$ p.

FREQUENCY DEVIATION METER Rohde \& Schwarz Type FMV-BN4620 Direct reading deviation range $0-150 \mathrm{kHz}$ suitable for use with transmitters with output frequencies up to 600 MHz , a high grade instrument in as new condition.
Price only $\quad . \quad .$.

ROHDE \& SCHWARZ

Frequency synt hes ized R.F. generator type XUA. The output frequency is
adiustable with crystal accuracy in adiustable with crystal accuracy ith
steps of lkHz and continuously with an error of less than 0.5 Hz . Frequency range is 30 Hz to 30 MHz , output voltage can be set accurately between Imv to 1 volt, lockable
frequency accuracy $\pm 2 \times 10-8$ irequency accuracy
frequency drift is
greater than irequency drift is greater than
$2 \times 10^{-}$makes the XUA an excellent instrument for stability measure-
ments* calibration* and selectivity ments* calibration* and selectivity
measurements of a high order. measurements of a high order.
Offered in as new condition with frequency meter at $£ \mathbf{2 5 0}$. Carr. extra.

KEITHLY MODEL 4I4C
Micro-Microammeter Range IPA-IOMA in seventeen ranges perfect condition.

SIX Level A.E.I. Uniselectors miniature plug in type 2216A coil 125 ohms. nonbridging wipers with index. 12 position 6 bank. Absolutely brand new in makers cartons sold complete with base. . 66.50

Bargain Parcel for Experimenters Standard BPO uniselector 8 bank, 25 position alternate wipers 75 ohm coil used condition may need adjustment. Also BPO telephone dials latest type Also BPO telephone dials latest type
grey finish new and boxed and BPO grey finish new and boxed and BPO
3000 type latching relay $4 \mathrm{C} / \mathrm{O}$ contacts reverse polarity delatching, with dus

P.F. RALFE
 10 CHAPELST. LONDON N.W. 1 Phone 01-723 8753

ADVANCE LV POWER SUPPLIES

 MODEL DC22| Stabilised 24 volts 5 amps. Brand new, |
| :--- |
| only \ldots |

R.F. SIGNAL GENERATORS

 MARCONI TF80ID/I range 10 to 485 MHz PU.R.MARCONI TFBOIA range 10 to 300 MHz MARCONI TF867 range 15 kHz to $\begin{array}{lll}30 M H z \\ M A R C O N I ~ T F 762 C ~ r a n g e ~ \\ 300 & \text { to } 600\end{array}$ MHz MARCONI TF937 range 85 kHz 665 MARCONI TF937 range 85 kHz to 3OMHZ
HEWLETT PACKARD 6I2A 400 (1200 HEWLETT PACKARD 612A 400 to 1200 HEWLËTT PACKARD 6i6a 1780 to $4,000 \mathrm{MHz}$ Model $20 \ddot{1}$ range 30 kHz to $\mathbf{3 0} \mathbf{M H z} \quad \cdots \quad \because \quad \cdots \quad \cdots \quad £ 75$ AIRMEC Model 701 range 30 kHz to AIRMEC Model 257 range 003 to 30 Hz SAUNDERS/MARCONI CT480 range 7
to 12 GHz to 12 GHz
SAUNDERS/MARCONI CT478 range 1.3

$$
85
$$ AUDIO OSCILLATORS SQUARE WAVE GENERATORS DONNER (USA) Model 1200 sine wave range-lHz to 1 MHZ in six ranges

 sine/square Price
sine/square. Price
IHz to LMHZ. Price
wave
$\notin 60$ Hz to 600 kHz . Price NC . sine wave MULLARD sine wave 20 Hz to 20 kHz high output suitable for speaker testing
 500 kHz Price

MARCONI 1094 A/S
HF SPECTRUM ANALYSER $3-30 \mathrm{MHz}$
LATE MODEL FOR SALE OR HIRE
LUCAS CAR RELAYS. 12 v. Heavy duty make. Suitable for spotlights, horns, overdrives, etc. Brand new.
Only $37 \frac{1}{2}$ p. Special price for quantities.

Rohde \& Schwarz UHF 1000 Load Resistor. An oil immersed load 0-600 MHz 60 ohms 1000 watts. Type RD $1 / 60-$

Noise Generator Model CT-82 Range 15 kHz to 160 MHz very useful noise for factor measurements of receivers/ wide band I.F. amplifiers etc., the instru-
ment is directly calibrated in noise factor and displayed on panel meter, also output meter calibrated in dbs, for $115-250 \mathrm{vac}$ operation offered in good used condition, small size low price only $£ 8$ Carr. 50p.

MARCONI VALVE VOLTMETER

 MODEL 104I.BVoltage range 300 mV to $1,000 \mathrm{~V}$ in 7 ranges. Frequency response 20 HZ -
$1,500 \mathrm{MHZ}$. DC resistance 50 ohms to 500 Mohms . Carefully checked and calibrated. Price

BELIX MODULE POWER SUPPLY UNITS MODEL TSS24IA
1 INp. Supplied brand new. Price $\mathbf{6 2 2}$ p.p. 50 p. Other Belix P.S.Us available

RADYNE I KW R.F. HEATER. In excel-
RADYNE I KW R.F. HEATER. In excel-
lent operational condition complete with Mullard TY4-40 valve and timer

Cossor Electronic Invertors type CRA 200. A high quality device for producing a lisv 400 H zingle phas features: Input 23-28V D.C
Full overload protection

* Sine wave output
* Remote control facifities.

Completely Solid State (Silicon
transistors).

* Built to Aircraft specifications. * I80VA of output continuous.

3 phase requirements. Offered brand 3 phase requirements. Priced brand Corriage 50p

Constant Voltage DC Power Supplie

 Model DC'A stabilised unit supplying 48vdc at 4 amps input 200-245vac stabilised to within
$+1 \%$ at full load. Supplied new .. $£ 12$
SEARCH RECEIVERS AN/APR/4 Range $38-1000 \mathrm{mHz}$ with 3 RF tuning heads, circuit diagrams, etc. $£ 95$. AERIAL CHANGE/OVER RELAYS of current manufacture designed espec ially for mobile equipments, coil voitage
12 v . frequency up to 250 MHz at 50 watrs 12 v ., frequency up to 250 MHz at 50 watts. Small size only, 2 in. $\times \frac{7}{6}$ in. Offered
brand new, boxed. Price $f 1 \cdot 50$, inc. P.\&P

COAXIAL SWITCHES

Suitable for aerial changeover and high frequency switching up to $1,000 \mathrm{MHz}$ miniature Vacuum drawn type $110 \vee d$ Operation connections BNC and N types.
Offered brand new, boxed. Price $£ 3.25$.

LEAD-ACID EQUIPMENT
BATTERIES IOv 5AH.
Transparent casing. Size $2 \frac{1}{3} \times 5 \times 7$ in Offered brand new and boxed, 2 batteries per box. complete with lins and full instructions. Can supply voltages in the
range from $2-20 \mathrm{v}$. Price $£ 2.25$, inc. P.\&.P. BURNDEPT RF PLUGS still available. These hard to find plugs are used on multitude of equipment, especially Londex aerial c/o relays. Offered

ex. equipment. 2 for $\mathbf{5 0 p}$, inc. p.p. BT9I-S00R THYRISTORS | 500 PIV Max rect. Current 16 amps. |
| :--- |
| Guaranteed perfect. Price $£ 1-25$ each. |
| COIVERN HELICAI POTS |

1 K ohms
5 K ohms
10 K ohms
20 K ohms
20 K ohms
30 K ohms
30K ohm
ALL TEN TURN

ITTAVOX WEATHERPROOF LOUDSPEAKERS MODEL ASL-35I latest design in. diameter, re-entran type 50 watts output with adjustable fixing bracket supplied new and boxed,
price $\mathbf{E 8} \mathbf{5 0}$. p. \& p. 50 p. The above units price $\mathbf{6 8 . 5 0 .}$ p. \& p. 50p. The above
conform to marine specifications.
LORAN RECEIVER TYPE 262A. Mon Set. Use. for long-range naviga position enable operator to determine his distance prevent the use of standard methods. Range 750 miles (day), 1400 miles (night). Dimensions $18 \times 17 \times 26$ in. The above units are offered in good used condition, complet

H. W. SULLIVAN STANDARD

AIR SPACED CONDENSERS
Capacitance range 0 to 100 pf fully
screened with engraved vernier subscreened with engraved vernier sub-
divided into 100 equal divisions complete with vernier index and original manuonly $£ 25$ each.
ond
MINIATURE AEI UNISELECTORS 12 position $\times 3$ bank 250 ohm coils, 1 bridging and 2 non-bridging wipers avain able now Types 2200A and 2302A
complete with bases. Price $£ 4$ p.p. 50 p

BECKMAN HELICAL
Type 'A' Ten turn. 5 watt Linearity
0.25%. Resistance value 1,000 ohms
 Also in type ' A '' 30 K and 50 K . Price a spec' as above.
BOURNES miniature ten turn pots resistance 10 K ohms/Lin. 5% brand COLVERN COLVERN ten turn type CLR $2402 / 115$
20 K ohms dial only 0.75 inch standard spindle, new fils. We have in stock many types and values of ten and 3 turn potentiometers. Let us know your requirements.
HEATHKIT Decade Resistance Box Model DR IU 5 decade box resistance up to-llook ohms in steps of I ohm.
Excellent condition. Price KIENZLE ELECTRONIC PRINTER model DII-E as new condition . . 6150 brand new at surplus price $£ 15$ Cambridge model D.E. Potentiometric
Recorder. Single point type. Range 0-10

```
OSCILLOSCOPE
E.M.I. WM16. Complete with Dual Trace Plug-in
    Amp/Differential Plug-in Amp./Trolley
Solartron- CD. 1222 . With Dual Trace unit
solatton. CD. 1220 With Dual Trace unit .... \(£ 220\)
Cawkell Remscope WO Dith Dential Amp unit. . \(£ 240\)
WM2 Cope so.1. Storage Oscilloscope
E.M.I. WM8
Cossor 1035. Double Beam
Cossor 1035 Mk. III. Double Beam
Solartron CD. 6435
OSCILLOSCOPE CAMERAS
Cossor Model 1428. Complete with Drive Unit
    Model 1431. Single shot or continuous 35 mm . Film
    speeds \(05 / \cdot 1 / 25 / 5 / 1 / 2 \cdot 5 / 5 / 10 / 25\) inches \(/ \mathrm{sec}\). Few
    onsor Model 1428 Com. .
Model 1429 Film speeds 41236 inches/sec \(\leq 4\)
Shackman Auto Camera Mk. III. Auto or manual
    operation. Shutter speeds. \(\cdot 10 / \cdot 25 / \cdot 50 / \cdot 100 / \cdot 200 / \mathrm{B} / \mathrm{T}\)
    100 ft . 35 mm . Film capacity. Wray \(\mathbf{i / 3 . 5}\) lens. . \(£ 18\)
                TEST EQUIPMENT
    Marconi Carrier Deviation Meter TF.791B \(\mathbf{6 5 5}\)
    Marconi Carrier Deviation Meter
Freq. Range: 4250 MHz in 4 ranges
    Dev. Range: \(5-75 \mathrm{KHz}\) in 3 ranges
2. Marconi FM/AM Signal Generator TF.995A/4
        req. Range: \(1.5-220 \mathrm{MHz}\) in 5 ranges \([\mathbf{1 7 5}\)
        Dev. Range: \(5 / 15 \mathrm{KHz}\) ranges
        Mod. Freq.: \(400,1,000,1,500 \mathrm{~Hz}\)
        Output voltage variable by stepped attenuator
        Marcani Universal L.C,R,Bridge TF.868/i \(£ 60\)
        Measures Inductance \(1, \mu \mathrm{H}-10 \mathrm{H}\), at 1 KHz and
                Capacitance \(\{\mu \mu \mathrm{F}-100 \mu \mathrm{~F}\}^{\mathrm{at}} 10 \mathrm{KHz}\)
    Marconi Vacuum Tube Voltmeter TF.I04IA
    Measures DC volts, AC volts: \(1-1000 \mathrm{~V}\) in 7 ranges
    Also Resistance: \(1-10^{6} \Omega\) in 7 ranges
5. Marconi Sensitive Valve Voltmeter TF. 1100
        Measures \(A C\) volts: \(1 \mathrm{mV}-300 \mathrm{~V}\) in 12 ra
    Marconi Distortion Factor Meter TF. 142F \(\mathbf{6 8 5}\)
    Freq. Range: \(1008,000 \mathrm{~Hz}\) in 4 ranges
    Marconistortion Factor Meter TF. 142 E 45
    Gertsch Phase Angle Voltmeter
        STD VTVM ImV-300V RMS in 12 ranges
        Phase Angle Voltmeter: \(0^{\circ}-90^{\circ}-180^{\circ}-270^{\circ}\) ranges
    Exceptionally good condition
    Marconi Video Oscillator TF. \(885 \mathrm{~A} \ldots \mathrm{E} 45\)
        Freq. Range: \(25 \mathrm{~Hz}-5 \mathrm{MHz}\) in 2 bands
        Also square waves in the range \(50 \mathrm{~Hz}-150 \mathrm{KHz}\)
        Output variable by stepped attenuator from
        Ediswan L.F Oscillator R. 666
        Freq. Range: \(1.4 \mathrm{~Hz}-5.5 \mathrm{KHz}\) in 7 ranges
    Solartron Oscillator Os. 101 .......
        Freq. Range: \(25 \mathrm{~Hz}-250 \mathrm{KHz}\) in 4 ranges
Output: 0 IOV in I dB steps. \(600 \Omega\)
        Output: \(0-10 \mathrm{~V}\) in 1 dB steps. 600 S 2
Solartran Oscillator Co. \(546 \ldots\)
        Solartron Oscillator Co.546............. \(£ 35\)
        Freq. Range: \(25 \mathrm{~Hz}-500 \mathrm{KHz}\) in 5 ranges
Output: 0 IOV in I dB steps. \(75 \Omega\) and \(600 \Omega\)
    Pye Audio Frequency Oscillator........ \(\leqslant 15\)
    Freq. Range: \(20 \mathrm{~Hz}-20 \mathrm{KHz}\) in 3 ranges
    Output continuously variable 0-20V. \(600 \Omega\)
        Cintel Mutual and Self Inductance Bridge
        \(1 \mu \mathrm{H}-30 \mathrm{mH}\) in 12 ranges
    . \(01 \Omega-3,000 \Omega\)
15. Gaumont-Kalee Wow and Flutter Meter
        Measures Flutter 0 \(1 \%\); Wow \(0.1 \%\); Peak
        Marconi R.F. Signal Generator TF.5I7F. . \(\mathbf{2 5}\)
        \(0-300 \mathrm{MHz}\) in 2 ranges. Piston attenuator.
        Servomex Controls Led. Motor Controller
        MC. \(47 \ldots \ldots\) control from 0-10,000 r.p.m. in 4 ranges
        Clockwise or anti-clockwise rotation. Complete
        with motor.
    Pye Scalamp Galvanometer
    Lexor Variable Delay Line. \(417, \mathrm{~S} .680 \ldots \pm 22\)
    Carnbridge Instruments Versatile Galvano-
    meter. Physical Labs. Megohmeter RM.
Brith
RM
```



```
    Elliott Bros. Precision Portable Watt
meter. \(0-750 \mathrm{~W}\)....................... 15
23. Sangamo-Weston AC Voltmeter Model
    To B.s. 89 standard. Two ranges: iov, 200 V
    Marconi Modulation Meter 3-72 MHz.
25. Marconi R.F. Generator 200 MHz 275 Watts
26. Marconi ' Q' Magnification Meter TF.329G \(£ 45\)
Avoconi R.F. Generator 25 Watts
    Model \(D\).
        Model 4.
Model 7.
        Model 8 Mk. II.
29.
    Tinsley Universal Shunt Type 3000
    Cambridge Dynamometer Voltmete
        Measures AC and DC volts in 5 ranges to B.S. 5.89
        Grade 5 Hz within \(0.30 \%\).
        Ernest Turner Prec
        \(A C\) and DC volts in 5 ranges. \(5 / 10 / 25 / 50 / 250 \mathrm{~V}\)
        F.S.D.
```


T．V．CAMERA LENSES

Rank Taylor Hobson Vidital Lenses 625 each Focal lengths： $2 \mathrm{~cm} ., 5 \mathrm{~cm} ., 8 \mathrm{~cm}$ ．Brand New
E．MA．T．V．Camera Focus Coil Assemblies $£ 10$ each

R．C．A．AR． 88 MUNICATION RECEIVER

MINIATURE GEARED MOTORS
r．p．m．HAYDEN 240 V AC．Clockwise rotation． 80 p each．P．P． 10 p
tr．p．m．CROUZET 240 V AC．Anti－clockwise rota－ tion．80p each．P．P． 10 p
rotation．80p each．P．P． 10 p DC．Anti－clockwise

RELAYS

Siemens／Variey Plugin．Complete with trans－ parent dust cover．
4 p co． $15,000 \Omega 2 ; 5,800 \Omega 2 ; 2,500(2 ; 700 \Omega 2 ; 240 \mathrm{~s})$ 2p c／o． $700 \Omega ; 430 \Omega: 230 \Omega ; 52 \Omega$ 50p each．P．P． 5 p C．P．Clare Ministure Sealed 2p c／o． $110 \Omega ; 675 \Omega ; 9,100 \Omega$ 70p each．P．P．5p S．T．C．Sealed Relays 2 ； 170Ω ．60p ea．P．P． $5 p$ ．P．O．Relays
2p c／o．H．D．2，000 』；4，000 S；6，000 S
ch．P．P．8p
D． $500 \Omega ; 2,000 \Omega ; 6,00 \mathrm{p}$ each．P．P．8p latching Relays．B．\＆R．Type $\mathrm{H} 02 / \mathrm{T} .498 \mathrm{2p}$ p $/ \mathrm{l}$ 380』．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．98p．each P．P．8p

SOLENOIDS

I2V DC Operation． $2 \frac{1}{2}^{\prime \prime} \times 1 \frac{1}{4}^{\prime \prime}$ dia．．． 50 p each．P．P． 10 p PRINTED CIRCUIT EDGE CONNECTORS 15 way．Electro－Methods Ltd．KKM． 155 O．156＂pitch 6 way． $0.125^{\prime \prime}$ pitch．KKM． $65 \ldots . .$. 20p each．P．P．20 pp SUB－MINIATURE UNIVERSAL PLUG AND 2－pin E．M．L．Type D2 SOCKET

15p per pair．P．P．4p

R．F．CONNECTORS

P．E．T．Type 101．Free plug．Straight entry－15p each
Chassis socket．．．．．．．．．．．．．．．．．．．． 15 p each．P．P． 5 p ILLUMINATED PUSH－BUTTON SWITCHES 2p c／o．Non－locking only．．．．．．．．．．．．35p each．P．P．Sp

WIRE－WOUND POTENTIOMETERS
 Colvern，Reliance．All values from $1 \Omega-100 \mathrm{~K} \Omega \mathbf{1 9 p}$ each P．P 5

360° wire－wound pots．Colvern
CLR／6605／418 $10 \mathrm{~K} \Omega$
 10 －turn pots．Bourns． $10 \mathrm{~K} \Omega 2 \mathrm{~S} \%$ lin． 0.25%
$£ 1.98$ each 360° Precision Servo Potentiometers．Ether type $4004 / 17.500 \Omega 2$ ． $3^{\prime \prime}$ dia．，$\frac{1}{4}^{\prime \prime}$ spindle；＂＇spindle
£4．00 each
TURNS COUNTING DIALS
Beckman Duodial．Model RB．For use with precision potentiometers．Inner scale registers hundredths of each turn；outer scale counts the number of turns．
 Brand new in manufacturer＇s boxes，complete with
template and accessories．．．．．．$£ 1-40$ each．P．P． $12 p$
STUDIO MONITOR LOUDSPEAKER SYSTEM E．M．I． 5 speaker system．Complete with 3－way Vari able Crossover Network．I only

ALARM BELLS

Suitable for Burglar Alarms．AGRO Type 4145
200250 V AC．．．．．．．．．．．．．．． $\mathbf{6 3} 50$ each．PP 40 P

PANEL METERS

Man＇f＇t＇rer	Sensitivity	Scale	Size／Shape	i Price
Sifam M42	1 mA	Blank	$44^{*} \times \frac{33^{*}}{} 3^{*}$	63.25
Ether 14－50		$\mathrm{C} \times 10$	$\left.4^{2} \times 3\right\}^{2}$	$£ 1.50$
MCB228 Ernest	$100 \mu \mathrm{~A}$	$0.150^{\circ} \mathrm{C}$	$3 \frac{1}{2}^{-1} \times 3^{-}$	6300
Turner W．IS	1 mA			
		$0-15$	$13^{\frac{3}{4}}$ round	25
W． 090	1 mA	－ $0-5$	2t＂round	
W23LS．	1.0 .1 mA	270° movement		
nest		$15-0-15 \mathrm{~V}$ ．	33^{*} round	4.25
Turner	$\begin{gathered} \text { 5-0-5mA } 270^{\circ} \text { movement } \\ \left\lvert\, \begin{array}{c} 50-0.50 \\ 250-0.250 \\ \text { Blank } \end{array}\right. \end{gathered}$			
Taylor 7527			$\begin{aligned} & 22^{n} \text { round } \\ & 2 \frac{1}{3} \times 0.65^{*} \end{aligned}$	63.00 4.25
Sangamo ${ }_{\text {Westonill }}$		0.500		
S／Wescon．	$200 \mu \mathrm{~A}$ ．	0－10	4i－$\times 3$ 3．	64.25
S／Weston	$50 \mu \mathrm{~A}$	0－10	$44^{*} \times 3{ }^{\frac{1}{2}}$	¢4．75

MULTIPIN PLUGS AND SOCKETS
Paintan／Jones 2／4／6／8／12／18／24／33－way．P．E．T．，B．N．C． Amphenol，Cannon，D．I．N．，Plessey，E．M．L

PAPER CAPACITORS

Manur．／Type	Value	W．V．	Pric
CP55QO	001	6kV．D．C．	
－	002	3 kV ．D．C．	
T．C．C．CP56QO	$01 / \mathrm{F}$	6kV．D．C．	50
T．C．C． 131	$25 \mu \mathrm{~F}$	2 kV ．D．C．	
Dubilier 8265	$1 \mu \mathrm{~F}$	1.5 kV ．	45p
T．C．C．CPI4IW	$25 \mu \mathrm{~F}$	1 kV	45p
Dubilier H110	$2 \times 0.25 \mu \mathrm{~F}$	600 V	45p
T．C．C． 121 B．I．M	$0.5 \mu \mathrm{~F} 10 \%$	1.5 kV	50p
T．C．C． 92	$0.5 \mu \mathrm{~F} 10 \%$	750 V ．	40p
Dubilier 8209	$1 \mu \mathrm{~F} 20^{\circ}$ 。	600 V ．	40p
C．C． 62	$1 \mu \mathrm{~F} 10^{\circ}$	350 V ．	40p
C．C．CPI42T	${ }_{1 \mu \mathrm{~F}} \mathrm{~F} 20^{\circ}$ ，	600 V	40 p
T．C．C． 111 I．M．	$1 \mu \mathrm{~F}$	1 kV	50p
T．C．C．LK		350 V ．	
C．C．TCB／TG	F $\mathrm{F}+15 \%$	350 V	45p
	$1 \mu \mathrm{~F}$	1.5 kV	
Plsok	$1 \mu \mathrm{~F} 20$	2.5 k	60 p
C．C．TCB／LM	$2 \mu \mathrm{~F} 5$	350 V ．	60p
C．C． 621 M	$2 \mu \mathrm{~F} 10$	350 V ．	55p
C C	$2+2 \mu \mathrm{~F}+$	350 V	65p
CB／TG	$4 \mu \mathrm{~F} 5$	350 V ．	60p
T．C．C．TCB／SB	$4 \mu \mathrm{~F}+15$		55
	4μ		6p
Hunts RDIos			70p
T．C．C． 467	$6 \mu \mathrm{~F} 5$	350 V ．	70p
T．C．C． 478	$6 \mu \mathrm{~F}+15$	350 V ．	70p
B． 215	$8 \mu \mathrm{~F} 20 \%$	600 V	
P．\＆P．，under $£ 1,10$ p；over $f 1$ ，free．			
CABLE			
Copper Constantan Compensating Cable for C			
Alumel Thermocouples．P．V．C．covered $1 / 044$Type 2，A．Per yard．．．．．．．．．．．．．．．．．．．．．． 10 p			
100 yard drum．Each			
Shielded Compensating Cable： Construction：3／036 Tnd．Cpr．）P．V．C．			
3／036 Cupro \} H.R.N.			
Twin flat：Melinex tape；tnd．cpr．braid．Per yard 15p 100 yard drum．Each			
Stranded Cable．14／0076．Per 100 yards ．．．．．．．．． 75 p P．\＆P．20p．			
LIGHTING EQUIPMENT Suitable for Discotheques，Clubs，etc．			
Three Channel Model．．．．£ 18 each．P．\＆P．30p			
De－Luxe Three Channel Model			
150 W ．Oil Wheel Projectors complete with oil			
Oil Wheels，6＂	a．．．．．．．． 66	each．P．\＆	30p
1 r．p．m．Motors．．．．．．．．．80p each．P．\＆P．10p			
Send	for Descri	Leaflet	

TRANSFORMERS

Mains Transformer．Pri．0－240V．Sec．250－0－250V． $75 \mathrm{~mA} .6 \cdot 3 \mathrm{~V}$ ． $3 \cdot 5 \mathrm{~A}$ ．．．．．．$£ 1.75$ each．P．\＆P．30p armeko E．H．T．Transformer．Type P． 66890 A ．Pri．
240 V ．IA．Sec．IOkV．C．T． 20 mA ．Enclosed in metal case． $5^{\prime \prime} \times 4 \frac{1^{\prime \prime}}{} \times 4 \frac{1}{2}{ }^{\prime \prime}$ ．Weight II lb ．
 － 66.50 ．Sec． Miniature Transformers． $2 \mathrm{in} . \times$ ii in \times each Miniature Transformers． $2 \mathrm{in} . \times 1 \frac{1}{2}$ in．$\times \frac{1}{\frac{7}{4}}$ in．
Pri． 240 V ．Sec． $12 \mathrm{~V} .100 \mathrm{~mA} \mid$ All types Pri． 240 V ．Sec． $0,20 \mathrm{~V}, 30 \mathrm{~V} .100 \mathrm{~mA} . .$. $\left.\begin{array}{l}\text { Pri．} 240 V \text { ．Sec．} 0,18,36,0,18,36100 \mathrm{~mA}\}\end{array}\right\} \begin{aligned} & 65 \mathrm{p} \\ & \text { Pri．} 240 \mathrm{ch}\end{aligned}$ Shrouded Transformers
Pri． $0.120-240 \mathrm{~V}$ ．Sec． 24 V

 Heater Transformers．Pri．0－110－200－220－240V．
Sec．6．3V．3A．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1.00 each COMPONENTS
Carbon Film．1\％，2\％，5\％Tol．Resistors in stock．E24 range．1\％，6p each； 2% ， 5 p each； 5% ， $2 \frac{1}{2} p$ each Also in stock many non－preferred values，useful for Metal Oxide Resistors． 2 metc．
Tetal Oxide Resistors． $2 \% \frac{1}{2}$ watt．TR5．Complete
range always in stock． 1 off 5 p each； 100 of $3 \frac{1}{2}$ each Mullard Electrolytic Capacitors．Complete range always in stock．
Mullard Polyester Capacitors．Complete range always in stock．
Lemco Silver Mica Copacitors．Complete range always in stock．
olystyrene Capacitors．Complete range always in stock．
30W Co Resistors．IW，3W，6W，12W，15W， Semiconductors．Transistors，Diodes，Rectifier Blocks，Thyristors，U．J．Ts．，Diacs，Triacs，F．E．Ts．， Zeners，Photocelis，etc．

C．T．ELECTRONICS

267 ACTON LANE，LONDON，W． 4 01－994 6275
Nearest Underground－Chiswick Park（District Line）；Acton Town（Piceadilly Line）．Bus Routes：E3，88，207，15，7，260．
Please Note：As yet we do not have a catalogue available．Any queries please phone or call at the above address Business Hours：MONDAY to SATURDAY $9.30 \mathrm{a} . \mathrm{m}$ ．to $6 \mathrm{p} . \mathrm{m}$ ．WEDNESDAY $9.30 \mathrm{a} . \mathrm{m}$ ．to I p．m． WANTED．SURPLUS OR REDUNDANT COMPONENTS AND TEST EQUIPMENT
Radio Valve and Transistor Data, 9 9th Ed
Compiled by A. M. Ball

| 0 | 592 | 05976 | 6 | $232 p p$ |
| :--- | :--- | :--- | :--- | :--- | 1970

Guide to Broadcasting Stations, 16th Ed 0592081311 160pp 1970 50p

20 Solid State Projects for the Car and Garage
R. M. Marston
0592028666 cased 115 pp illustrated 1970
0592000486 limp
$\mathbf{£ 1 . 8 0}$
£1.20

R. M. Marston			
0592028674 cased	105pp illustrated	1969	£1.40
0592028720 limp			90p

110 Semiconductor Projects for the Home Constructor
R. M. Marston

0592028453 cased 124pp illustrated 1969
$\mathbf{f 1 . 8 0}$
$059202864 \times$ limp

110 Integrated Circuit Projects for the Home Constructor
R. M. Marston
$059200063 \times$ cased 138pp illustrated 1971
$\mathbf{£ 1 . 8 0}$
0592000583 limp £1-20

Beginner's Guide to Radio, 7th Ed
Gordon J. King, RTechEng, MIPRE, FSRE, MRTS, MITAI
040800016
194ppillustrated 197
£1.00

Colour Television Servicing

Gordon I. King, RTechEng, MIPRE, FSRE, MRTS, MITAI
0408000449 328pp illustrated $1971 \quad \mathbf{£ 4 . 4 0}$

Practical Aerial Handbook, 2nd Ed
Gordon J. King, RTechEng, MIPRE, FSRE, MRTS, MITAI
$0408000015 \quad$ 232pp illustrated $1970 \quad \mathbf{~ 2 . 7 0 ~}$

Radio and Audio Servicing Handbook, 2nd Ed
Gordon J. King, RTechEng, MIPRE, FSRE, MRTS, MITAI $040800018 \times \quad$ 283pp illustrated $1970 \quad \mathbf{£ 3 . 0 0}$

Television Servicing Handbook, 3rd Ed Gordon J. King, RTechEng, MIPRE, FSRE, MRTS, MITAI
$0408000333 \quad$ 358pp illustrated $1971 \quad \mathbf{£ 3 . 8 0}$

Servicing with the Oscilloscope

Gordon J. King, RTechEng, MIPRE, FSRE, MRTS, MITAI
$0408000325 \quad$ 176pp illustrated $1969 \quad \mathbf{~ 1 . 4 0}$

Hi-Fi and Tape Recorder Handbook
Gordon J. King, RTechEng, MIPRE, FSRE, MRTS, MITAI 0600401316 304pp illustrated $1969 \quad \mathbf{£ 2 . 0 0}$

Beginner's Guide to Television, 4th Ed
Gordon J. King, RTechEng, MIPRE, FSRE, MRTS, MITAI
$0600410188 \quad$ 208pp illustrated $1968 \quad \mathbf{~} 8$ 1.00

Colour Receiver Techniques
T. D. Towers, MBE, MA, BSc, AMIEE
$059205943 \times \quad$ 88pp illustrated $1968 \quad \mathbf{£ 1 . 7 5}$

Rapid Servicing of Transistor Equipment
Gordon J. King, RTechEng, MIPRE, FSRE, MRTS, MITAI
0600412946 160pp illustrated $1966 \quad \mathbf{f 1 . 5 0}$

Radio and Electronic Laboratory Handbook, 8th Ed
M. G. Scroggie, BSc, CEng, FIEE

0592059502 610pp illustrated 1971 £4.75

Foundations of Wireless and Electronics
M. G. Scroggie, BSc, CEng, FIEE

0592059618 cased 521 pp illustrated $1971 \quad \mathbf{£ 3 - 0 0}$
0592000419 limp $\mathbf{f 1 . 8 0}$

Principles of Semiconductors

M. G. Scroggie, BSc, CEng, FIEE

0592027376 156pp illustrated 1961
$\mathbf{£ 1 . 5 0}$

Available from leading booksellers or

28watts, r.m.s. 40 Hz to $40 \mathrm{kHz} \pm 3 \mathrm{~dB}$

Output Power: 45 watts R.M.S (Sine wave drive). Frequency response: -3 db points 30 Hz at 18 KHz Total distortion. less than 2% at rated output Signal to noise ratio: better than 60 db. Spazker/mpedarase 3. 8 or 15 ohms. Bass Contion Range: $\pm 13 \mathrm{db}$ at 60 Hz Treble Control Range: $\pm 12 \mathrm{db}$ at 10 KHz . /nputs: 4 inputs at inputs controlled by separate volume control. 2 inputs at 200 KV into 47 ok To protect the output valves, the incorporated tail safe circuit will enable the amplifier to be used at hall power. SPEAKERS: Size $20^{\circ} \times 20^{\prime \prime} \times 10^{\prime \prime}$ incorporating $12^{\prime \prime}$ heavy duly 25 watt high flux, quality loudspeaker with cast trame, Cabinets attractively finished in two tone colour scheme-black and grey.

CONTINENTAL 4-TRACK, 3-SPEED TAPE DECK

 with high impedance heads
 thwheel brings wow and funter levels down to approx 0.3% toral al 37 and $7 \frac{7}{2}$ ips fast rewind in both directions. Controts could dnit be sid damage Efficienl servo-acion type braking, Easy drop-in tape loading
The RC74 comes with an attractive moulded deck cover, which lias postions for tone and volume colltrols. The unil is built into a ngid die-cast trame, and overall spe of the wiole unitis Price Price complete $\mathbf{£ 1 5 \mathbf { 0 0 }}$. Plus $75_{p p}$ p \&

TOURIST
 MARK 3
 ALL TRANSISTOR

CAR RADIO
 module and tuner together with comprewensive instructions guarantees success filst time 12 volis negative or positive earth. Size $7^{\prime \prime} \times 2^{\prime \prime} \times 4 \frac{1}{2}$ "deep.
Circuil diagram ${ }^{13 p}$ pree with parts. Speaker,
Speaker postage free when ordeted with parts.

SET OF PARTS
f6. 30
-. A Ampater. 2 in. \&quare full rikion face for flush mounting.
Ho-ing iron instrument. Ideal for charger. Price 43 p each.
 pick up on unit plate. 4 appeed auto-stop turnover cartridge.

 ne for earh coin, 2ip, 5p or 10p. Price $\mathbf{\text { L1 }} 7 \mathbf{7 5 p}$ each plus

 Whatit case which opens at right gngle for deak or opens
completels for hand holdink. Good general purpose mike.

 acenorien and $4 \times 11 / 3 \times 3$ in. in. Sub station $3 \times 14 \times 4$ in i.ns. Master 49
Price $£ 8.50+20 \mathrm{p}$

Laborstory Instruments. For horizontal use in strong black cinforced has ellte cases with screw down terminals eapeci tly ruitable for experiments and demonstrations. All have than 1.5%. Following available:
D.C. Voltmeter 0 - 300 y . La.d. moving coil mirror acale meter size approx. $5 \times 4 \times 1+$ in. Price $21 \cdot 75$.
D.c. Voltmeter, $0-30 \mathrm{t}$. f.x.d. moving coil mirmi
size approz. $5 \times 41 \times 1$ in. Price 2175 .
Range aelection 25 , 50 and 100 mA by zelection switch meter cale (coil resistance marked) size. Ti $\times 5 \times 3 \$$ in. type
 precininn metrr (coll
trpe M/109/ Price
Ets.
Galvometrer eo-0-20 8.a.d. mowing coil precision laboratory

Acon. A' eteri. For use with Acostransducera and accelero ity of not less than 17.5 mv . per g .8 and a linear output over the trequency range under investigation.
This ig a precision instrument. It measures 'g' in three steps,
$0.10,0-10$ and $0-10$ ors directly on a large clear meter scale $0-10,0-10$ and $0-1010$ directly on a large clear meter scale
$0-1$. We have two models. Atandard Model (IDONI). Price 212 and:
With relay to trip the external circuit (trip levelis adiustable by a control which is virtually linear with the meter scale).
The trip load may be up to 2 a . Once the circuit has been tripped it can be restored by a reset button. Price of this
model is \&18. Please note also we have Acos Trangducers ref. no. IDIOOI in stock. Price e4 each.
 enamelled black, upright mounting. All have normal 50 cps
primary $230 / 240 \mathrm{v}$. with primary acreen and are new and prinary $230 / 240 \mathrm{v}$. with primary treen and are new and
unused. Small quantitien only of each type arailable as Modei $6000 / 79$. $275-0-275 \mathrm{v}$. at 330 mA . and 6.3 v . at $4 \cdot 6 \mathrm{a}$. Frike $£ 4.50+51 \mathrm{p}$ post.
 Modes 47 . 620 . $0-620$ at 9 mA .4 v . at. IA. Price $\mathrm{et} .50+40 \mathrm{p}$ Parmeko Neptune C. Core choken. These are eucased and Model $6000 / 734 \mathrm{H} \mathrm{at} 560 \mathrm{~mA}$. $22 \cdot 50+40 \mathrm{p}$ pos
Model 55.10 H at $1 \mathrm{~mA} .22 .50+40 \mathrm{p}$ pont.
 Moded 60 . 10 R st 110 mA . Price $28+40 \mathrm{p}$ post. Reyrolle
Prae Hoidern. Heavy duty type B.8.s. 88440 . Reyrole
power fure holdera. Englith Electric type 8.100 .1 , ex.
 at 250 each.
Eiectronic Car \mathbf{I} nition. In addition to the kits for 12 v kite but mode up and ready to work. Frice $\mathbf{2 5} 50+30 \mathrm{p}$ pos Carbon Reaistops. We are now atncking these in a big way
and will be pleased to quote special prices to quantity Price per ea

Price per ea				
Watt	${ }_{10}^{1-9}$	$\begin{gathered} 10-99 \\ 8 \mathrm{D} \end{gathered}$	$\begin{gathered} 100-999 \\ 6 p \end{gathered}$	$\begin{gathered} 1,000) \\ 5 \mathrm{p} \end{gathered}$
] Watt	20	18p	15p	125p
$2 W_{\text {att }}$	4 D	32 p	309	2750

80 perial Beasistor Assortment Offer (3). As ofler 1 but 1 watt Price El: Reisial Assor Assortment Otler (4), As offer 2 but 1 watt. ${ }_{32}$ Wer sub-Minizture Multi-core Cable 7.0076 copper corea each core P.V.C. insulated and of different colour.
F.V.C. covered overail and approx. $3 / 16$ in. thick. Price $20 p$ per yard.
Snap Action Slide 8 witch. Rated 5 sa . 240 v . Made by Arrow. 5p rach, 10 for 45p.
P. . Gemini Amplitier. This amplifer is a $30+30$ wat stereo ampliker and pre-amplifler of exceptionally high one can buy no matter what the cost. The P.E. Gemini has been designed tor bowh hi f applications and for use with discothqeus and for this reason, has a microphone input
that can be mived with any other input. The amplifier ia desimned to be capable of driving two Quad electrobtatic speakers and is thus capable of driving any other speskers, provided they are of the correct impedance. We ofter the of data. 55p past paid. built in reaistor for main. 10 p each. 10 for 900 . 15p rach. 10 inr $81 \cdot 2.5$ Thermintor Bead Type. For instruments, medical applica
tiona, ete. ITT No GL23. 75p each. 10 for $\mathbf{E B} .75$. 3 Core maina Leads. Spectial offer this month is a 6ft, lead with $23 / 36$ cores and coloured according to the new code Price 80 each or i 10 for 500 .
Intergated Ciratin
Integtruted Cirait Mountinga. Enables I.C's to be plugged in and out for quick substitution and to prevent damage to
soldering. 14 pla type $14 p$ each or 10 for $\mathbf{~ 2 1 - 2 8 . ~} 16$ pin
 Mase with printed circuit or vero basings. Ideal for fronta and

HONEYWELL PROGRAMMER

Thas is a drum type tuming devce, the drum being catimateu in en There are 15 changeover milcro switches each of 10 smp type operate by the trips thus 15 cirecuits may be changed per recolution. Drive motor is mains operated 5 revs. per mini eome of the many uses of
nis timer are Machinery control, Boilier firing, Dispenaing and Vending machines, Display lighting animuted aigns, ilgnailizg etc. Price from Makers probsbly over 110 esch . Special suip prit.
pluas 25p post and ins. Don't miss thls terrific bargain.

ELECTRIC TIME SWITCH

Made by smitha these are A.C. mains operated. Nor LocKWork. Ideal for niounting on rack or shelf or exn be built into box with 13 A socket. 2 completely djustable time periods per 24 boures samp changeover

 £2.50 p pair.

BATTERY CONDITION TESTER

Wade by Mallory but suluable for all St hers, mosit of which are zinc carbon thpere but alsog mercury mangnene nicad-silver oxide and sixaile bateries may be ested The teste

CENTRIFUGAL FAN

Mains operated, turbo blower type. Pressed steel housing contsins

DIGITAL COUNTER TIMER
Very gtable and reliable crystal controlled circuit
 ist 30p.

THIS MONTH'S SNIP IMMERSION HEATERS

Made by G.E.C. 2.750 watts, 200/240v. Complete with fixing ring and two rubber washers.
 have to be an unusual type bo it might be cheaper to use our contact thermostat at sop.
Special gnlp price for element lis 40 peach 20p poet and in in

TANGENTIAL HEATER UNIT

This hater unit is the very latest type, most efficient, and quiet rumning. Is as is ftted in
Hoover and blower heaters costing $\& 15$ and
 more. We have a few only. Comprisee motor,
impiller, $2 \mathrm{k} W$, element and ikw. element allowing
switching 1,2 and 3 kW and with thermal anfety

non't miles this. Cont tril Bwiteh 35D. P. \& P. 40 p.

CAPACITOR DISCHARGE CAR IGNITION

post. When ordering pleesea etate whether for poitive or negative systems. Aso available,

distribution panels

Juat what you need for work bench or lab. $4 \times 13 \mathrm{amp}$,
gockets in metal lix to

pligs and onfort owitch with neon warning livht. Bupplied complete with 7 teet of heavy
cable wired

20 AMP ELECTRICAL PROGRAMMER
Loorn in your sleepl Have Rado playing and kettie boiling as you awake-smitch-on lighta to ward off intrudere - have warmi house to come home to. All these and many other things you
can do if you invest in an Electrcal Programmer. Made by the

 switch-onf time of which can be delayed up to 12 hours (continuously varisble not stepped) Bimilarly the switch-on time can be delayed. This is a beautiful unit, size $51 \times 34 \times 24$ in.
deep. Metal encasel, glass fronted with chrome surround. Onered at $\mathrm{f} \cdot 40$ plus 23 p deep. Metal encasel. g
postage and insurance.

integrated circuits

Namicator Tuben. For digital Lnstruments, counters, timent
 operated by a diaphram which in tum is operated by
 prespure is adruatable but is aet ot opermet ho approx
io in. of water. These are quite low presure devices and can in fact be operated simply y bow pressure into the inle
tube. Oriminal
ure was for washing machines tube. Original use wra for washing lmachines to turn of
water when tub hase reached correct level but no doubt has many other application, 50 D each. 10 for $£ 4.50$. papat notors. Intended for cooling computera but aure alte

 shatt, 3 in. high $\times 11$. n . Wide, but high speed and very
hin powertul, These mototra werate trom the maing. Are particularly useful as they can be speed controlled by our thyriator kit or by varisble resietor £1 each. Wireles, October ismue. It is a simple circuit but has many
 Charser Kit. Comprises of 3 amp. Cransformer ca 200 . cectifer and a pair ot hefty crocodile cllys. With wiring
 smiths movement, 2 one and 2 ons per 24 houra. Very
neaty made and finished. Original retail price $\& 7$ each Few only, new and perfect. 24.00 each.

MAINS TRANSISTOR POWER PACK Tesilged to operato transistor reta and amplikfers. Adfunt corkchn). Takes the place of any of the following batteries PP1, PP3, PP4, PPG, PP7, PP9, and others. Kit comprisee cosins tranaformer rectifier, amothing and load resistor
condennera and inatructlons. Real bulp at only 83 p condenners and
plus 18 poetage.
 MAINS OPERATED
CONTACTOR

 rated at 10 amp. Extremely
meal
made by a derman Electrical Company. Ove
2 in. $\& 1$ exch.

MAINS OPERATED
SOLENOIDS

Model 77R-mmall but powerful 1 | puil- |
| :--- |
| Bod. |
| Hodel |
| odel |

MAINS RELAY BARGAIN

special thls month are some single, double rated at 15 smps. Operating coll wound for 40V. A.C. Good British Mak

LIGHT DIMMER

For sny lamp up to 200 watt. Mounted on Buitch plate to ft th place of atandard ewitch
Virtually no radio interference. Price $£ 1$. 98 plus 20p post and ing.
A Yow Berrive to Rendert, A bulietin bringing newe of new lines, special anips and "too few to adyertise " ines wilit
poted to subections during first week of each month

Where postage is not stated then
orders over $f S$ are post free. Below f5 add 20p. S.A.E. with enquiries

BETTER GET'SET

Famous BC. 221 Frequency Meter $125 \mathrm{KHZ-20} \mathrm{MHz}$. Complete with valves, crystal and charts. Only 1 13.50. Carr. \& 1.50 . Less Charts 26 . Carr Carr. $\mathrm{f} 1 \cdot 50$
Marconi 801 A Signal Generator. $10-300 \mathrm{MHz}$. In original
transit case. 445 . Carr. $£ 2 \cdot 50$.

Crystal Calibrator No. 10. Crystal covering $500 \mathrm{KHz-10MHz} \mathrm{(Havemeter}$ uo to 30 MHz . Power required 300 to . D.C. 15 mz . Power required 12 V . 0.3 A D.C.
Test Test equipment for $62 \mathrm{TM} / \mathrm{RC}$.
Only $\$ 4.25$. P. \& P. 50 p

No. 19 SET 500uA Meters. Scaled 0-600 and $0-15 v$. Brand New Boxed \&1-25. Post paid. (Quantity prices on request.) R.F. Amplifier. To increase output of No. 19 set. Only book

All No. 19 spares in stock. Complete instruction book
with circuits for No. 19 equipment. ${ }^{37}$ Heary Duty Past paid. in metal cases with carrying
 Liquid Prismatic Compas:
Famous Tele 'F' Field Tele-
phones.
Suitable for Farms, phones. Suitable for Farms, tion up to 5 miles or more. iferged construction, will tast a
Only ES 75 pair. Carr (Twin telephone wire for Exove avaliable-ask for price.) Kelvin Ha Periscopes. Made by cision made optics system previding crystal optics system provision (2 prisms and 8 lenses).
Buitt in $24 v$ heating sircuit prevent misting and freezing Approx. $24^{\text {sting }}$ long with freezing. Weight and rubber eyepiece. n instrument case. Ondy is: 63.75. Carr. 75 p .) Many other $E x$.
Equipment items in storplus ceivers etc. in small stock. Requiries invited. List ${ }^{5}$ nion. Enpaid. (Refundable) 25 p . Post hases over E_{3}.) to Mainland only Minimum Export

Surplus Electronic Trading

Drivers End Lane, Codicote, Hitchin, Herts, Hours of Business. 8-5 Mor-F Telephone: Codicote 242 for appointment.

We are a Polish company exporting high stability electronic components which have good mechanical characteristics and long life expectancy.

Valves

Electron Guns

TV Picture Tubes

Sub-assemblies

Tape Recorder Heads

We can offer production capacity and the ability to produce tape recorder heads to meet our customers' own specifications.

EXPORTER
 Elektrim

Polish Foreign Trade Company for Electrical Equipment Ltd Warszawa 1, Czackiego 15/17, Poland. Telegrams: ELEKTRIM-WARSZAWA, Phone: 26-62-71, Telex: 814351 P.O. Box: 638

If you are interested, please send for catalogues and quotations.

WW-114 FOR FURTHER DETAILS

Newest, neatest system ever devised for storing small parts and components: resistors. capacitors, diodes, transistors. etc. Rigid plastic units, interlock together in vertical and horizontal combinations. Transparent plastic drawers have label slots/handles on front Build up any size cabinet for wall, bench or table top.

BUY AT TRADE PRICES!

Single units (1D) $\mathbf{£ 1 . 3 5}$ per dozen size approx ($2 \frac{1}{4}^{\prime \prime}$ high $2 \frac{1}{4}^{\prime \prime}$ wide $5^{\prime \prime}$ deep) 2D £2.25 per dozen. 3D £2.35 for 8 units. 6 D 2 f 3.65 for 8 units ($2 \mathrm{3D}$'s in 1 outer) 6D1 £3.30 for 8 units. Postage/Carriage 35 p for orders under $£ 5$. Carriage paid for orders over $£ 5$

PLUS QUANTITY DISCOUNTS!

Orders £5 and over DEDUCT 5\% in the £ Orders $£ 10$ and over DEDUCT $7 \frac{1}{2} \%$ in the $£$ Orders $£ 20$ and over DEDUCT 10% in the $£$

QUOTATIONS FOR LARGER QUANTITIES
(Dept.WW 11) 124 CRICKLEW000 BROADWAY LONDON, NW. 2

TEL. 01-450 4844

The DIMMASWITCH is an attractive and efficient dimmer unit which fits in place of the normal light switch and is connected up in exactly the same way. The ivory mounting plate of the DIMMASWITCH matches modern electric fittings. Two models are available, with the bright chrome knob controlling up to 300 w or 600 w of all lights except fluorescents at mains voltages from $200-250 \mathrm{~V}, 50 \mathrm{~Hz}$. The DIMMASWITCH has built-in radio interference suppression.
Price: $600 \mathrm{w}-\mathbf{£ 3 . 2 0}$. Kit form- $\mathbf{£ 2 . 7 0}$.
300w-£2.70. Kit form- $\mathbf{E 2} 20$.
All plus 10 p post and packing.
Please send C.W.O. to:-
DEXTER AND COMPANY
(4), ULVER HOUSE, 19 KING STREET, CHESTER CH1 2AH TEL: 0244-25883
As supplied to H.M. Government Departments, Hospitals, Local Authorities, etc.

AC/DC MULTIMETER AND TRANSISTOR $27 \mathrm{AC} / \mathrm{DC}$ ranges $03-900$ -
 $50,0 \mathrm{ohman}$. Transistar colicetor cut-oif
current 60 microamp. DC current curfent 60
gaid $10-350$.
Sensitivity 16700 o.p.y. DC and
3300 o.p.r. AC.
Price complete with pw be

INTEGRATED CIRCUITS

TAA26: Direct coupled 3-stage amplifier, up to $\mathbf{j o m}$ he/s. Supply TAAat: Medium irequency amplifier up to $60 \mathrm{r} / \mathrm{kc} / \mathrm{s}$. Supply AABze MOAT stage followed by a bi-polar transistur. (Gate-to-
 detector and remote D.C. volume control lacility, Nominal
supply roltage $12 y$

WHEN ORDERING BY POST PLEASE ADD $£ 0 \cdot 12 \frac{1}{2}$ $(2 / 6)$ IV f FOR HANDLING AND POSTAGE.
NO C.O.D. ORDERS ACCEPTED

TRANSISTORS

Gacux

310A

FIRST QUALITY VALVES

OUR NEW 1971/1972 CATALOGUE IS NOW READY. PLEASE SEND STAMPED AND ADDRESSED QUARTO ENVELOPE FOR YOUR FREE COPY
PLEASE NOTE THAT VALVES LISTED ABOVE ARE NOT NECESSARILY OF U.K. ORIGIN
Head Office:
44a WESTBOURNE GROVE, LONDON, W. 2

Tel.: 727 5641/2/3 Cables: ZAERO LONDON
Retail branch (personal caliers only) 85 TOTTEN HAM COURT RD.,
LONDON W.2. Tel: 5808403
A.R.B. Approved for inspection and
release of electronic valves, tubes,
klystrons, etc.

WE WANT TO BUY:

SPECIAL PURPOSE VALVES. PLEASE OFFER US

The standard case, CSI which is bench mounting, can be converted to 19 inch rack mounting simply by fitting brackets to each side.

The CSI will accept one full rack module or two half rack modutes, and the CS2 will accept one half module.

The cases are constructed from aluminium extrusions and plastic mouldings thus producing a good quality case.

Case Systems

20 HUNT LANE CHADDERTON LANCASHIRE
TELEPHONE 061-652-1580
WW-115 FOR FURTHER DETAILS

RADIO \& ELECTRONIC laboratory handbook

by H. G. Scroggie
\&4.75 Eight Edition Postage 15p

THE MAZDA BOOK OF PAL RECEIVER SERVICING by D. J. Seal. £3.50. Postage 15p.

GUIDE TO PRINTED CIRCUITS by Gordon J. King. $\mathbf{£ 2 - 5 0}$. Postage lOp.

PUBLIC ADDRESS HANDBOOK by Vivian Capel. 63. Postage lOp.

MULLARD DATA BOOK 1971/2. 30p. Postage Fp.

RCA TRANSISTOR THYRISTOR \& DIODE MANUAL by RCA. $£ 1.30$. Postage 20p.

TRANSISTORS IN PULSE CIRCUITS by G. Fontaine. E6. Postage lOp.

TRANSIENTS IN ELECTRONIC ENGINEERING by E. E. Kepler. $£ 7$. Postage lOp.

THE MODERN BOOK CO.

britain's largest stockist
of British and American Technical Books 19-21 PRAED STREET, LONDON, W. 21 NP

Phone 7234185

Closed Sot. I pom.

EXCLUSIVE OFFERS

Precision Instrumentation and Data TAPE RECORDER-REPRODUCERS

 per second, δ° tracks, $t^{\prime \prime}$ tape easily changed to and $^{\circ}$ or $1^{\prime \prime}$ by 101° reel capacity. Push beat ton control. Precision servo control
 1 per cent. Accuracy 10^{5} per week. Power ip put $105 / 125$,
401
cycles. PRICE
£125. FR 100B: speeds and specific Lion as above but 14 tracks and
io tape. PRICE $£ 150$. T tape. PRICE E150. TYPE FR 1100, an above but t^{*} per second, and 4 track, easily
changed to lighter and more modern construct ion than Type FR 1 wis PRICE $£ 125$. The above co
electronics in 6 ft. cabinets.

HIGHEST QUALITY 19" RACK
MOUNTING CABINETS Totally Enclosed
$\begin{aligned} & \text { TYPE A: } \\ & \text { TYPE B: } \\ & 78^{*} \\ & \text { high } \\ & \text { high }\end{aligned} \times 30^{20^{*}}$ deep $\times 24^{24^{*}} \times 24^{\prime \prime}$ wide.
DOUBLE SIDED. These cabinets will take rack panels both sides, that is back and front and are drilled and
tapped all the way down every for this purpose. They are fitted with "Instantit", patent fully adjustable rack mounts which are vertically and horizontally adjustable -these allow the panels to be recessed when they are enclose them br don rs.
太 Other features include-all corners and edges mounded. Interior fittings tropicalise. Removable built in cable
ducts. Removable built in blower ducts Vent lated and dusect proofed tops. Detachable side panels. Full length instantly detachable doors fitted expanding bolts if ordered with cabinets Made in U.S.A.-- Cost the American Government $£ 107$ before devaluation. Finished in grey PRICE \&26.50 each (Carriage extra) Pull length tome \& 5 each extra
Doors are not need required to tie emplonted hack and front -
TYPE C: 80° high $\times 27^{\circ}$ deep $\times 22^{\circ}$ wide. American panel mounting cabinets, made by 1nkane. U.S.A. Open front fitted rack thounta drilled and tapped all the way down every \&". Full length rear door with latch. Finished in grey these cabinctis have been used but are in recommended they are re-sitaved before use.
PRICE $: 15$ each (Carriage extra)
TYPE D: 76° high $~+18^{*}$ deep $\times 22^{\prime \prime}$ wide. These are slightly mansion and condition to Type they are Made ty 1L.C.A. of U.S.A. ALSO OTHER TYPES 80 TO 88" HIGH AVAHABLE Full details of all above available on request. TRANSPORT: We have made special economical transport arraugemprits for these cabinets undatnaged

APPOINTMENTS VACANT

DISPLAYED SITUATIONS VACANT AND WANTED: $£ 8$ per single col. inch.
LINE advertisements (run-on): $45 p$ per line (approx. 7 words), minimum two lines.
Where an advertisement includes a box number (count as 2 words) there is an additional charge of 25 p .
SERIES DISCOUNT: 15% is allowed on orders for twelve monthly insertions provided a contract
is placed in advance. Wireless World, Dorset House, Stamford Street, London, S.E.1.
No responsibility accepted for errors.

EXPANDING COMPANY IN SAUDI ARABIA REQUIRES EXPERIENCED CERTIFICATED ENGINEERS
 FOR THE FOLLOWING POSTS CHIEF ENGINEER

B.Sc. or equivalent with 10 or more years experience in Operation and Maintenance of Transmission and Broadcasting Equipment.

ENGINEERS TECHNICIANS

Experience in Operation and Maintenance of Broadcasting Equipment, Studio Equipment and Teleprinters.
Please submit a complete resume and state availability and salary required. Box WW 1270

PERSONAL ASSISTANT

with technical and commercial ability wanted for managing director of London TV Retail business of the highest standing; established over 40 years. A suitable applicant would be trained to take increasing charge during the gradual retirement of the present managing director. Exceptional opportunity for keen and capable man. Write, stating age and details of background and career. Box WW 1452

ENGINEER/PHYSICIST

OXFORD UNIVERSITY

Salary $\mathbf{E 1 8 7 0 - 2 8 8 7}^{\mathbf{0}}$
(with F.S.S.U. benefits)
HEAD OF ELECTRONIC INSTRUMENTATION GROUP NUCLEAR PHYSICS LABORATORY

A vacancy exists for a graduate engineer/physicist to head a group responsible for the design and maintenance of electronic instruments used in nuclear physics research.
The nuclear physics laboratory is housed in a new, well equipped building. A large experimental reof high precision analogue electronics and on-line data analysis using PDP-10 and PDP-7 computers. Development of CAMAC data systems will assume an increasing importance in the furure.
Applicants should have experience in the design of electronics and logic systems. A knowledge of the nuclear instrumentation field would be an advantage but is not essential.
Applications, which will be treated in confidence hould be accompanied by full particulars and Nuclear Physicsessor K. W. Allen,
Nuclear Physics Laboratory, Oxford OXI 3RH

MARINE RADIO PROJECT AND SYSTEMS ENGINEER

We are looking for a man to join a small unit engaged in economic design An "Ideas" man conversant with semi-conductors, linear and digital integrated circuits, propagation and aerials related to maritime communications and navigational devices. Qualifications, H.N.C. or similar, plus three or more years experience, also the ability to communicate and co-operate with sales teams and customers, and be mobile for occasional travel for system commissioning. An excellent salary is offered plus the usual fringe benefits associated with a well established company. Write, in the first instance to

Norman Manion,
Recruitment Officer, REDIFON LIMITED.
Broomhill Road, London, S.W.18.
REDIFON ${ }^{3}$
A Member Company of the Rediffusion Organisation

OPPORTUNITIES IN TELECOMMUNICATIONS

Men with good telecommunications knowledge are required to be responsible for electronic equipment on London Transport.

The work consists of maintaining, testing and fault finding on Radio. Television and associated electronic equipment. A sound knowledge of the work is required and the possession of City and Guilds certificates (or equivalent) in telecommunications subjects 49 and 300 would be an advantage. The rate of pay including a variable incentive bonus averages $£ 31$ for a 5 day 40 hour week. Additional payments are made for overtime.

These positions offer:-
Free travel on and off duty, sick pay and pension schemes.

Please apply in writing to:-

> Superintendent of Recruitment Griffith House 280, Old Marylebone Road, London, N.W.1. (Ref. R.L.)

Telecommunications Engineers
 KENYA

\star Salary up to $£ 2,718$
\star Low Taxation
\star Contract 24 months
\star Gratuity $\mathbf{2 5} \%$ ($\mathbf{4 5} \%$ if leave foregone)
\star Education allowances
\star Subsidised accommodation
\star Appointment Grant $£ 100$ or $£ 200$ payable in certain circumstances
Required by the Police Department Signals Branch. The officer will normally be based at the Provincial Headquarters Workshop although he may be required to undertake extensive safari throughout Kenya.

Candidates, 25-58, must have served an approved apprenticeship followed by at least five years' experience in telecommunications engineering. They must hold City and Guilds Certificates or an equivalent qualification and have had experience in two or more of the following: (i) HF transceivers with emphasis on SSB and ISB in fixed mobile and portable roles; (ii) VHF transceivers (AM and FM) used in fixed, mobile and portable roles; (iii) Multiplex equipment in VHF and HF bands together with a knowledge of teleprinters; (iv) Fixed, mobile and portable equipment in the UHF band; (v) Aerial arrays in the HF, VHF and UHF bands.

The ability to train local engineers in practical work would be an advantage.

Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.I, for application form and further particulars, stating name, age, brief details of qualifications and experience and quoting reference number M2k/710927/WF.

Electronic Test Engineers

Pye Telecommunications of Cambridge has immediate vacancies for Production Test Engineers.
The work entails checking to an exacting specificationVHF UHF radio-telephone equipment before customer delivery; applicants must therefore have experience of fault finding and testing electronic equipment, preferably communications equipment. Formal qualifications while desirable, are not as important as practical proficiency. Armed service experience of such work would be perfectly acceptable.
Pye Telecommications is the world's largest exporter of radiotelephone equipment and is engaged in a major expansion programme designed to double present turnover during the next five years. There are therefore excellent opportunities for promotion within the company. Pye also encourages its staff to take higher technical and professional qualifications.
These are genuine career opportunities in an expansionist company, so write or telephone without delay for an application form to:
Mrs. A. E. Darkin,
Pye Telecommunications Limited,
Cambridge Works, Haig Road, Cambridge.
Telephone: Cambridge 51351 Ext. 355

BUSINESS OPPORTUNITY

Earn a substantial extra income through a fascinating part-time business of your own that you could share part-t ime business of your own that your own home. This is an ourstanding business opportunity with rewards are looking for organisational and managerial ability. are Teaphone for an appointment VISTA MARKETING MAIDENHEAD 28754

WALSALL \& STAFFORDSHIRE TECHNICAL COLLEGE

Applications are invited for the following post, duties to commence as soon as possible:

LECTURER GRADE I in TELECOMMUNICATIONS

Applicants should be prepared to teach Telecommunication Principles and Telephony to the Final Year of the City and Guilds Course in Telecommunication Course C.G.L.I. No. in Telecommunication Course C.G.L.. No. Telephony Laboratory.
Qualifications should include the Final Certificate of the C. \& G. Course in Telecommunicarions Technicians and Post Office experience is essential.
SALARY for the above post will be in accordance with the Burnham Further Education Scale, viz. Lecturer Grade fl,llo to $\mathcal{E}, 955$ per annum with appropriate additions for education and training.
APPLICATION FORM and further particulars may be obtained by applying to the Principal, Walsall and Staffordshire Technical College, St. Paul's Street, Walsall, Staffs. WSI IXN. Applications should be returned by Monday, 25th October, 1971.
Assistance with cost of removal will be granted in approved cases.
R. D. NIXON,

Secretary to the Joint Education Committee.

PAPUA NEW GUINEA

Vacancies in Telecommunications

The Department of Posts and Telegraphs in Papua New Guinea is currently looking for skilled Telecommunications Engineers and Technicians to help get its \$A14 million development programme under way.
This programme provides for an S.T.D. system throughout the entire communications network, and for automatic functioning of the telegraph and telex services, all using the latest equipment available.

Duties

Engineers: Class 3 - Exchange Planning or Telegraph and data equipment maintenance. Class 2 - Installation of radio external plant, exchange and telephone equipment design, workshop construction.
Senior Telecommunications Technical Officers and Telecommunications Technical Officers Grade 2: A number of positions at both levels of responsibility in the fields of radio station installation and inspection, broadcast and mechanical equipment design and installation, and similar functions in respect of telephone subscriber and exchange equipment. There are also positions involved in management of teleprinter workshop maintenance.
Senior Technical Officer (Mechaniss) responsible for provision of auto-plant, mechanical aids and power plant services.
Telecommunications Technical Officer Grade 1 : A number of positions covering maintenance of VHF, HF and Microwave systems, installation of telephone exchange equipment and power plant, manufacture of special telephone equipment, installation and maintenance of telegraph and telex services.
Technicians: Installation and maintenance of radio, or telephone or telegraph equipment.

Qualifications

Engineer: Applicants must be eligible for membership of the Institution of Engineers, Australia (eligibility for membership of Institution of Electrical Engineers, U.K., generally determines this) and have at least 2 years' relevant experience since qualifying.
Senior Telecommunications Technical Officers and Telecommunications Technical Officers: City and Guilds Telecommunications Technician Certificate in Radio, Telephone or Telegraphs, preferably with at least two
supplementary certificates and extensive relevant experience.
Senior Technical Officer Grade 1
(Mechanical) - an appropriate technical certificate or diploma is essential, plus extensive mechanical, electrical or automotive experience.
Technicians: City and Guilds Telecommunications Technician Certificate in Radio, Telephone or Telegraphs.

Salaries

Engineers Class 3 (Telecommunications)
\$A9601 - \$A10,682
Engineers Class 2 (Telecommunications)
\$A8150 - \$A9070
Senior Telecommunications Technical Officers
Grade 1 \$A6632 - \$A7012
Senior Technical Officers Grade 1 (Mechanics)
\$A6632 - \$A7012
Telecommunications Technical Officers Grade 2
(Radio - Telephones - Telegraphs) \$A6060 \$A6441
Telecommunications Technical Officers Grade 1
(Radio - Telephones - Telegraphs)
\$A5175 - \$A5919
Technicians (Radio - Telephones - Telegraphs) \$A3952-\$A5175
$\left(\$ A 1=46 \frac{1}{2}\right.$ p. stg. $)$

* An additional $\$ A 360$ p.a. is payable to married men. Income tax in Papua New Guinea is currently about half that in the United Kingdom.

Conditions

* 4 year contract engagement
* Fares paid to Papua New Guinea, and to the U.K. on completion of contract
* 3 months' leave after each 21 months' service
* Generous allowances for leave fares to Sydney, accommodation, children and their secondary education.
Apply - with full details of qualifications and experience indicating the position in which you are interested, to -
Recruitment Officer, Public Service Board, Canberra House,
Maltravers Street, London WC 2R 3EH Telephone: 01-836 2435. Applications close October 29th.

Opportunities with Redifon in Radio Communications

Experienced Test Engineers are invited to write to Redifon with regard to vacancies in our Test Department at Wandsworth. The salary range for these positions is $£ 1.248$ $£ 1.749$ plus. The Company is engaged in the design and manufacture of a wide range of radio communications and allied equipment from military pack-set to broadcast transmitter, including communications receivers. M.F beacons, teleprinter terminals, complete radio office installations for the Merchant Marine and mobile H.F. S.S.B. stations. Our Test Engineers have sound technical knowledge coupled with good practical experience in the alignment and test of H.F. and V.H.F.

Communications equipment.
The work is varied and interesting and offers excellent opportunity to broaden experience in semiconductors S.S.B. and Frequency Synthesis
Please write in the first instance to
Norman Manion,
The Recruitment Officer, Redifon Limited Broomhill Road, Wandsworth, S.W. 18

BALLS PARK COLLEGE OF EDUCATION HERTFORD

Educational Television Unit

TELEVISION ENGINEER

required for lst January, 1972, to assist Director of unit and be responsible for operation and maintenance of studio and mobile equipment.

Experience with $\frac{1}{2}{ }^{\prime \prime}$ and $I^{\prime \prime}$ V.T.R. equipment essential, together with detailed knowledge vidicon cameras and associated audio and vision mixer facilities.

The person appointed will be expected to organise most of his wark without direct supervision, and to consult with staff at the college and at local schools regarding the arrangements for recording and replay of video tapes

Salary will be on N.J.C. Scale T3/4 with additional allowances for recognised qualifications.

Further particulars and application form from the Principal at the Callege.

St. George's Hospital, S.W. 1 and S.W. 17
 A SENIOR ELECTRONICS TECHNICIAN or TECHNICIAN

is required for the Department of Medical Physics at the above Hospital. The work is varied and includes design and development of interesting projects in connection with all departments of the Hospital.
Applicants should have, preferably, for the senior position an H.N.C., but other qualifications will be considered. Salary scales, which are at present under review, within the range:

Grade V-\{1,035-\{1,335
Grade III- $\mathbf{E 1 , 3 5 6 - 6 1 , 7 6 4}$
Please apply to Mr. G. Davies, St. George's Hospital, Hyde Park Corner, London, S.W.I or telephone him on 01235 4343,

Ext. 335, for further details.
1426

ASSISTANT TECHNICIAN

for servicing radio sets, tape recorders. cine and still projectors, in educational establishments throughout Berkshire. Vehicle provided for travelling. Salary scale: $£ 1,194$ to $£ 1,395$ per annum, starting salary depending on experience and qualifications. For further particulars and applicacion form write to: The Director of Education, RGI 3EZ.
RGI 3 EZ.
1466

COLOUR TELEVISION TEST ENGINEER

Rediffusion have a limited number of vacancies for test engineers capable of fault tracing on colour television receivers.
Applicants must have a sound knowledge of transistor and colour receiver circuitry and holders of the R.T.E.B. final certificate will be preferred.
Salary scale according to experience and qualifications.
Applications to: A. E. Cox, Rediffusion Vision Service Ltd., Fullers Way South, Chessington, Surrey.

Tel. 01-397-5411

APPOINTMENTS

up to $£ 1741$ p.a. and all the variety you want as a Radio Technician

Variety is the keyword. As a Radio Technician with the National Air Traffic Services, you would be installing and maintaining a wide range of sophisticated electronic systems and highly specialised equipment. You would be involved with RT , radar, data transmission links, navigation aids, landing systems, closed circuit T.V. and computer installations. All custom-built to meet the stringent operational requirements of air traffic control throughout the U.K.

If you're aged 19 or over and have at
least two year's electronics experience, preferably with O.N.C. or C. \& G. (Telecoms.), you could qualify for entry to our training course. Your starting salary would be $£ 1,143$ (at 19) to $£ 1,503$ (at 25 and over), scale max. $£ 1,741$ - shift duty allowances. Good career prospects.

Write NOW for full details to:
A. J. Edwards, C.Eng., MIEE, Room 705, The Adelphi, John Adam Street, London WC2N 6BQ, marking your envelope
'Recruitment - в/ww/30'.
Not applicable to residents outside the United Kingdom.

NATS

National Air Traffic Services

EMI ELECTRONICS LTD., has a vacancy in the Installation and Maintenance Division, for an Engineer to be responsible for the installation, commission ng and maintenance of numerical control equipment for machine tools. He will be based at Hayes, Middlesex, but the position will involve work in the field in the U.K. as well as occasional overseas visits.

Applicants, aged 25-45, should have reachec H.N.C. Electronics standard, and should have experience in fault finding on solid state equipment. A knowledge of pneumatics and machine tools would also be an advantage.

Starting salary would be up to $£ 2,000.00$ per annum, assistance will be given with removal expenses. Company benefits include free Life Assurance and a contributory Pension Scheme. Please apply in writing, stating brief career details, or ring :-
R. C. Dwyer, Personnel Department EMI Limited, Hayes, Middlesex. Tel. No. 01-573 3888 Ext. 632.

REDIFFUSION

REDIFFUSION VISION SERVICE LTD
ST. HELENS AUCKLAND. BISHOP AUCKLAND CO. DURHAM.

TELEVISION EOUIPMENT ENGINEER

Our rapid expansion of manufacturing facilities at Bishop Auckland has created an opportunity for an Engineer who understands television especially in respect of Test Equipment.
H.N.C. or equivalent preferred but lack of formal qualification will not debar a suitable applicant if he has practical knowledge and experience of Production Methods.
Salary will be by negotiation and assistance will be given towards relocation expenses. Applications which will be treated in confidence should be marked Confidential and addressed to:
Mr. J. Davison, Engineering Manager at the above address.

* A member Company of the Rediffusion Organisation

New posts available at SOUTHERNGAS H.Q. Southampton

Radio Technician
£1,707-£2,013 p.a. radio and trunk network schemes

Should have H.N.C. Telecommunications or City and Guilds Certificate plus formal training with telecommunications manufacturer or major user plus several years experience; also knowledge of V.H.F., U.H.F., Microwave and Radio Multiplex techniques essential Ref. P.621/D.

Will survey and plan V.H.F. and U.H.F. systems ahead of the Conversion activity

Radio Technician

(Conversion)
£1,596-£1,884 p.a.

Applicants should have City and Guilds Final Certificate and have had formal training with a manufacturer or major user and subsequent operational planning experience totalling at least five years Ref. P.622/D.

Salaries within ranges shown according to qualifications, experience and ability. Assistance with cost of moving will be given.
Application forms may be obtained from the Senior Personnel Officer, The Southern Gas Board, 164 Above Bar, Southampton, SO1 ODU, to whom they should be returned by 1 st November, 1971. quoting the appropriate reference number.

RADIO OPERATORS

DO YOU HOLD
PMG II OR PMG I OR NEW GENERAL CERTIFICATE
OR
HAD TWO YEARS' RADIO OPERATING EXPERIENCE?
Looking for a secure job with good pay and conditions?
Then apply for a post with the Composite Signals Organization. These are Civil Service posts, with opportunities for service abroad, and of becoming established, i.e., non-contributory pension scheme

Specialist Training Course (free accommodation) starting April and September 1972 and January 1973.
If you are British born and resident in the United Kingdom, under 35 years of age (40 for exceptionally well qualified candidates). write NOW for full details and an application form from:-

Government Communications Headquarters,
Recruitment Officer,
Oakley, Priors Road, Cheltenham, Glos. GL52 5AJ.
(Telephone: Cheitenham 21491, Ext. 2270).

OXFORD REGIONAL HOSPITAL BOARD ELECTRONICS TECHNICIANS

required for the areas of Oxford, Aylesbury and Reading
Salary scales in the ranges:
Senior Technicians: £1797-£2568 pa
Technicians: £1104-£1764 pa
according to qualifications and experience.
Qualifications
Senior Technicians: HNC (Electronics) or equivalent.
Technicians: ONC or equivalent, HNC (Electronics) advantageous.
Successful candidates will form small teams engaged by Hospital Management Committees for maintenance, repair and modification of a wide range of medical electronics and allied equipment used in hospitals. The posts offer challenging and rewarding work in a new and expanding field. Opportunities available for further study.
Write for further information and application forms to the Secretary. Oxford Regional Hospital Board, Old Road, Headington, Oxford OX3 7LF. Completed applications required by 8th November quoting ref V73/71/G.

JAPANESE RADIOS

Distributors of quality Japanese Radios, Tape Recorders, etc., require experienced repairers

Tel: 6286157
1473

SITUATIONS VACANT

FULL-TIME technical experienced salesman rePh quired for retail sales: write giving detalls of age, Henry's Radio, Ltd., 303 Edgware Rd., London, W. 2
A. V. AIDS TECHNICIAN required for Language - Laboratory. Techniclan needed to maintain College's modern language laboratory and associated tape record ing and duplicating equipment. Experience of relay and transistor circuits and o.N.C. or cinity and Guilds preferred. Duties will involve some operation and maintenance of other recording and projection equipmen and a small amount of clerical work involved in keeping maintenance records and advising users of the laboratory. Salary on scale $£ 1,041-£ 1,410$ plus $£ 17$ a year London Alicuance according to qualincations and London School of Economics and Political Sclence (WW/N1486), Houghton Street, London. W.C.2. to b received not later than 29 th October, 1971. [1486 DRAUGHTSMEN. Mechanical and Electrical required by expanding electronics company specialising in tion is salaried and gives ample opportunity for advancement. Please apply Electrosonics Ltd., 47 Old Woolwich Road, Greenwich. London, S.E.10. Tel. $8584784 . \quad$ [22 EXPERIENCED Tape Recorder Engineer-familiar E with Revox, Akai, Ferrograph, etc. Good wages and bonus. Telesonic Ltd., 92 Tottenham Court Road, W. 1 01-636 8177.
GRampian have a further vacancy for a Senio Development Engineer. He must have a proven record of experience and responsibillty in audio elec-
tronic equipment design and preferably with some tronic equipment design and preferably with some H.N.C.. H.N.D. in electronic subjects.-Write in Instance to Grampian Reproduces Litd., Ref. H.G./1 Hanworth Trading Estate, Feltham. Middlesex. [1454 F you have had at least 5 years continuous technical 1 experlence with an audio equipment manufacturer then GRAMPIAN may be able to offer you a situation of interest appropriate to your ability. We are only interested in people who are truly conscientlous and pian Reproduces Ltd.. Ref. S.M./1, Hanworth Trading Estate, Feltham, Middx.
[1455
JAPANESE Radio importers require experienced 6286157 . 6286157.

R EDIFON LTD., require fully experienced TELE1 COMMUNICATIONS TEST ENGINEERS and ELECTRONICS INSPECTORS. Good commencing salaries. We would particularly welcome enquirles from ex-Service personnel or personnel about to leave the Recruitment Officer, Redifon Ltd., Broomhill Road Wandsworth, S.W.15.
SERVICE ENGINEER required (internal and external) Sior Hammond Organs. Salary £1,350-£1,400. Apply Box No. W.W. 1469.
T.V. Service Engineer, preferably with some colour 1 experience. A permanent post. Salary according to ability. Hydes of Chertsey Ltd.. $56 / 60$ Guildford Street Chertsey, Surrey. Phone Chertsey 63243 . [136 UNIVERSITY COLLEGE requires ELECTRONICS of research equipment involving digital control conance of research equipment involving digital control, commetalworking experience an advantage. C. \& G. Tele communications certificate or O.N.C. desirable. Salary $£ 1,041-£ 1,410$ plus $£ 170$ London Welghting.-Application form from Personnel Officer (Technical Staff CK2), University College London (WW/N). Gower Street

SITUATIONS WANTED

He $^{N C}$ Electrontcs 13 years experience telecommunica-- tions designing, seeks interesting and rewarding position.-Box W.W. 1451. Wireless World.
R ADIO Radar Technician (29) returning to U.K. early R 1972 seeks interesting appointment. Private, government, home, overseas. Currently employed as radar instructor.-Write Dempster, 54 Taman Permata. Singa-
pore 20 .

ENGINEER

Engineer with good academic background and wide experience in telecommunieations, electrooptics and colour work, wishes the opportunity to partieipate in an inceresting project, or initiace one. Salary is of secondary imporsance. Box No. WW 1460.

TEST EQUTPMENT - SURPLUS ANDSECONDHAND

SiGNAL generators, oscllloscopes, output meters', wave 5 voltmeters, frequency meters, multi-range meters, etc, etc., in stock-R. T. \& I. Electronics, Ltd., Ash-
ville Old Hall, Ashvilie Rd., London, E.11. Ley. 4986.

Shore jobs
 for Radio Officers.

If you'd like a job ashore, at a United Kingdom Coast Station, the Post Office will start you off on £1,080$£ 1,360$, depending on age, with annual rises up to $£ 1,850$. In addition you would receive payments that can be as much as $£ 300$ or more a year for attendances during evenings, nights, Saturday afternoons and Sundays. Opportunities also exist for overtime.

There are good prospects for promotion to higher posts.

You will need to be 21 or over, with a 1 st Class Certificate of Competence in Radiotelegraphy issued by the Postmaster General, or the Ministry of Posts and Telecommunications, or a

Radiocommunication Operator's General Certificate issued by the Ministry of Posts and Telecommunications, or an equivalent certificate issued by a Commonwealth administration or the Irish Republic.

Find out more by writing to: The Inspector of Wireless Telegraphy, IMTR, Wireless Telegraph Section (WW), Union House, St. Martins-le-Grand, London, EC1A 1 AR.

Telecommunications

RESIDENT COMPUTER ENGINEER

required for the Express and Star group of newspapers, based at Woiverhampton, who are currently pioneering a new approach to computer technology within the newspaper industry. The computer complex riow being instalied has been purposedesigned to provide an integrated on-line system serving both the production and accountancy functions of the group's two plants-at Wolverhampton and 20 miles distant at Telford in Shropshire.
The main part of the equipment-an on-line system for control and type-setting of advertising material and hand)ing of other daily publishing functions-consists of twin PDP-11 processors, 12 video terminals. Memorex 660 discs, and telecommunications links to two PDP-8 processors. This system plays a vital part in the daily production of two evening newspapers and it is imperative that the plant should remain fully operational at all times.
In addition the engineer may, from time to time, be asked to assist in the maintenance of other electronically-operated production equipment which is indirectly related to the computer complex.
This is a first-class opportunity for a computer service engineer who wishes to exchange field work for the stability, security and amenities that exist within a forward-looking company. The ideal condidate is likely to have experience in maintaining computing equipment and the servicing of electro-mechanical equipment. Formal qualifications are less important than evidence of technical training.
Applications, in writing only, with full details of qualifications. career to date and present salary to:

T. BOTTOMLEY,

Express and Star, Queen Street, Wolverhampton.
1467

Senior Audio Engineer
 £3,000p.a.

Owing to our continued growth in the field of high quality domestic radio, television and audio products, we are seeking a top class Senior Engineer to be responsible for the design and development of complete audio systems.

This post, at Chiswick, demands a high level of technical competence and the ability to achieve results through the effective control of a team of engineers. We will expect candidates to be professionally qualified and have at least 3 years direct experience, at a senior level, in the design and development of audio, tape and radio equipment working from initiation through to production stage. Preferred age range - early or mid thirties.

Career prospects with an acknowledged leader in the industry are extremely promising, and there is an extensive and attractive range of fringe benefits.

Assistance with relocation expenses will begiven.
To apply, please send brief details, or telephone direct for an application form to:

David Jux, Personnel Manager,
Rank Bush Murphy Limited,
Power Road, Chiswick, London W.4.
Tel: 07-994 6491
RANK BUSH MURPHY

City Engineer and Surveyor's Department

Area Traffic Control

Coventry has been invited by the Department of the Environment to participate in the development of prototype systems of Area Traffic Control by use of on-line computer. A team is being set up under the control of a Chief Traffic Engineer which requires the services of a

Senior Engineer

(system equipment and data transmission) $\mathbf{£ 2 7 6 6 - £ 3 1 8 0}$ or $\mathbf{£ 3 3 9 0}$

Applicants should hold a professional qualification and be capable of working in a multi-discipline team. The Senior Engineer's responsibilities will include:
(a) vehicle control, detection, location and surveillance equipment
(b) routing, capacity, interfaces and security transmission links
(c) control displays
(d) equipment and transmission procedures and monitoring.

The successful candidate should have practical knowledge/experience of multiflex (TDM/FEM) systems and be capable of conceiving, developing and evaluating systems for data transmission over post office type circuits. Removal and associated expenses up to $£ 200$ may be available.

Application forms from City Engineer and Surveyor,
Broadgate House, Coventry CV1 1 NH , returnable by 1st November, 1971.
coventry

V.T.R. ENGINEER

The Road Transport Industry Training Board has in operation a 3-camera broadcast-quality colour television studio with full telecine and video recording facilities at its Wembley headquarters. We now wish to appoint an experienced V.T.R. engineer to join a small team working on the production of training and educational television films.
He will be responsible to the Chief Engineer, mainly for the operation and maintenance of the V.T.R. equipment. This includes a 2" TR 50 master V.T.R. and a selection of $1^{\prime \prime}$ Helical scan equipment; he will be based at Wembley with occasional travel to training outlets.
Applications are invited from engineers (minimum age 24) experienced on such equipment with personal initiative and enthusiasm for producing high quality recordings. A knowledge of studio lighting, camera techniques and/or telecine equipment, together with the ability to drive and travel, would also be an added advantage.
Commencing salary from $£ 1800$ according to qualifications and experience. three weeks' holiday, contributory pension and life assurance scheme.

Please send all relevant personal history, stating how the above requirements are met and quoting reference ZH238, to: J. R. Barber, Personnel Manager, Road Transport Industry Treining Board, Capitol House, Empire Way, Wembley, Middlesex HA9 ONG.
$\mathrm{H}^{R O}$ Rx5s, etc., AR88, CR100, BRT400, G209, S640, Hetc., etc., In stock.-R. T. \& I. Electronics. Ltd. 4986.

RADCOM LIMITED

LAFAYETTE P.F. 60 Tunable V.H.F. F.M.
Receivers 152-174 m/cs. 1 Crystal Monitoring Position Adjustable Squelch Control, Audio Power, 2 Watts Tape Recorder Socket. Sensitivity 1 Microvolt. Size: $13 \frac{1^{\prime \prime}}{}$ w. $\times 7 \frac{1}{2}{ }^{\prime \prime}$ d. $\times 6^{\prime \prime}$ h. Weight: 10 lbs . 117 v . or 230 A.C. 12 v . D.C.

RADCOM LIMITED,
37 Danesfield Avenue,
Waltham, Grimsby, Lincs.
Tel: 0472-82 3487.

[^17]F quality, durability matter, consult Britain's oldest 1 transfer service. Quality records from your suitable tapes. (Excellent tax-free fund raisers for schools.
Modern studio facilities with Steinway Grand. Sound News, 18 Blenheim Road. London, W.4. 01-995 1661. [1328 YOUR TAPES TO DISC.- £6,000 Lathe. From $£ 1.50$. 1 Studio/Location Unit. S.AE. Leaflet. Deroy Studios, High Bank, Hauk St., Carnforth, Lancs.
[70

ARTICLES WANTEO

Highest possible cash prices for Akai, B. \& O., HBrenell, Ferrograph, Revox, Sanyo, Sony, Tandberg Uher. Vortexion, etc. 9 30-5. 01-242 7401 .
ValVes, Klystrons etc, wanted in quantities ty 102 CV329, CV342. CV417, CV428 805-807-813-723A/B etc.-Details to: Pype Hayes Radio Ltd. 606 Kingsbury WUANTED to buy-all types of electronic test equipWANTED to buy-all types of electronic test equipment and components. Immediate cash available.
[1334
-Telephone Yateley 83048. Wanted, all types of communications receivers Electrontcs, Ltd., Ashville Old Hall, Ashville Rd., London, E.11. Ley. 4986.

Wanted, surplus transistors, semiconductors. resisVelco Electronics, Bridge TV parts. Please state price.| Velco Electronics, |
| :--- |
| Lancs. Tel. $070-682{ }_{3} 036$. Street, Ramsbottom. Bury, |
| $\lceil 1456$ | Lancs. Tel. 070-682 3036

WANTED, televisions, tape recorders, radiograms, High new valves, transistors, etc.-Stan Willetts, ${ }^{37}$

TEST EQUIPMENT

We wish to buy Test Equipment, ancillary spares and devices; Components, plugs and sockets, meters, relays, motors, valves, semi-conductors, microphones, head sets, C.C.T.V. equipment ; Receivers, Transmitters, Microscopes, Theodolites, Levels, cameras, lenses (professional and amateur) for motion picture and still work; film in bulk. Immediate decisions and immediate payment.

CONNECTORS \& ELECTRONICS LTD 20 College Drive, Ruislip, Middlesex

Telephone: Ruislip (713) 5953
1453

VALVES WANTED

[^18]
APPOINTMENTS

SERVICE \& REPAIRS

TNSTRUMENT SERVICING AVO, Taylor, etc., multimeters, meggers, signal generators, etc. Quick and collection locally. V. W. \& E. Smith, 69 Chestnut Drive, Leigh 6674, Lancs.

Abstract

CAPACITY AVAILABLE IRTRONICS LTD., for Coil Winding-large or small production runs. Also PC Boards Assemblies. Suppliers to P.O., M.O.D., etc. Export enquiries welcomed. Coil winding capacity. Transformers, chokes R.F. C coils, etc., to your speciflcation. Sweetnam \& Bradley Ltd., Bristol Road, Malmesbury, Wilts., or Te [12 Malmesbury 3491 . Malmesbury 3491 Consultant/besigner. audio circuits. Prototypes and e specials to your specifications. Also interested partner, premises-BCM, Box 312, W.C.1. DESIGN, development, repair, test, and small prociectronics, 54 Lawford Rd., London, N.W 5 $01-2670201$ [1057 ELECTRONIC CIRCUITS and equipment designed by Electronics engineer with wide industrial experience Amplifiers, oscillators, modulators, filters, etc., for any types and drawings supplied.-Box No. W.W. 1471 . ELECTRONIC Manufacturing Contractors, customers Metalwork. oll types cabinets, chassis, racks for small milling and capstan work up to 1 in. barPHILPOTT'S METALWORKS, Ltd., Chapman St. Loughborough. TRAFFOLYTE ENGRAVED LABELS, CABLEFORMS Product CABLE ASSEMBLY. Contact Mr. A Moffat Production Department, J. D. Jackson Electronic Newark 5718

WE can assist you by manufacturing p.c.bs, contro W panels, sub-assemblies, short and long runs. Electronic Allied Components Ltd., BCA Estate, Measham Staffs. Telephone: Measham 8225 We undertake the manufacture of transformers singly or in quantities to any specification. A work guaranteed for 12 months -Ladbroke Transformer Co. Ltd., 820a Harrow Road, Kensal Rise, N.W. 10

ELECTRONIC DESIGN

Versatile, seasoned engineers design and/or construct your system at minimum cost. All types of electronic work undertaken.

Triangle Digital Services Box No. WW 1461

TECHNICAL TRAINING

$B^{\text {ECOME "Technically Qualified" in your spare time, }}$ glaranteed diploma and exam. homestudy courses in radio, TV servicing and maintenance. R.T.E.B., City \&
Guilds, etc., highly informative 120 -page Guide-free. Gulds, etc., Combers College (Dept. 837K), Aldermaston Court,
[16

ENGINEERS-get a technical certificate. Exam and E. Certificate Postal Courses in all branches of Engineering. Electronics, Radio and TV, Computers. Draughts, Building, etc. Write for helpful FREE Reading, RG7 4PF. H.17), Aldermaston Cour

TUITION

CIE, AMSE, City and Guilds, etc. Thousands of exam. Cuccesses. Postal Courses for all branches of Engineering. Illustrated prospectus FREE. Pldermaston court, Reading RG7 4PF (Deple [14
COLOUR TV SERVICING. Be ready for the coming Colour TV boom. Learn the techniques of sericing coly prepared for the practical home-study courses approved by leading manufacturer. Full details from ICS, (D 558), Intertext House, London, S.W. 8 4UJ. [1263 R ADIO and Radar M.P.T. and C.G.L.I. Courses. $\underset{\mathbf{8 J Z}}{\mathbf{K}}$ Write: Principal, Nautical College, Fleetwood, FY7

ARTICLESFOR SALE
 A ARVAK ELECTRONICS. 3-channel sound-light

 £ 132 . 74 Bedford Avenue, Barnet, Herts. 01-449 1268 .A ERIal amplifiers, bands I, II, III. Secondhand but - excellent condition. Reputable maker. Teleng 25 dB . 40 dB . 60 dB . S.a.e for full details, fraction original prices.-P. Webster, 15 Lindsay Road, Sprowston, Norwich NOR 92P, Norfolk
A ERIAL COVERING 80-40-20-15-10 metre bands, 60 A feet 18-HT-H7 Tower. £45 or nearest. Tel. $041-639$ 1975. A VAILABLE test equipment-Airmec 853 wave sweep gen No. 3351, £20. Solartron CD $1220,24 \mathrm{MHz}$ dual trace, sweep delay, $£ 100$. Spectrum analyser OA la94, £300. Marconi TF329 Q meter, £40; Video oscil-
 Yateley 83048 .

The Company's NAVAL WEAPONS DIVISION
 wish to appoint

A CHIEF ELECTRONICS ENGINEER who will need to have ingenuity and originality in his approach to electronics and be capable of making a significant contribution to the Division`s electronic standards. He must be fully experienced in and conversant with the latest techniques in circuit design. particularly in control systems, low frequency, pulse techniques and M. and L.S.I

A SENIOR DYNAMICIST is also required in the Division 10 work on advanced guided missite systems. He will need to have a good degree in one of the engineering sciences and considerable experience on aircraft, guided weapons or space projects. A background in modern computing methods and their application to complex system problems is essential

The Company will contribute towards the relocation of a married man into the Hattield area. Please write to:-

The Personnel Manager (Ref. 203)
HAWKFR SIDDELEY DYNAMICS LIMITED,
Manor Road. Hatfield. Herts.

HAWKER SIDDELEY
 dynamics

UNIVERSITY OF DURHAM (Department of Physics)

Applications are invited from suitably qualified and experienced men for the post of

DEPARTMENTAL SUPERINTENDENT (CHIEF TECHNICIAN II)

The department includes a number of active research groups. The duties include supervision of some 35 technical staff and of financial expenditure and ordering.
The salary scale will be at an appropriate point on the Chief Technician II scale ($£ 2,085-£ 2,604$).
Applications, together with the names and addresses of two referees, should be sent to the Science Site Manager, Science Laboratories, South Road, Durham to arrive by 25th October 1971
$\mathbf{B}^{\text {UILD }}$ IT in a DEWBOX quality plastics cabinet Ringwood Rd., Ferndown, Dorset. S.A.E. for leaflet Write now-Right now.

FIBREGLASS board double sided copper laminated R.C.A. Nuvistors type 7586 . 50 p , post and packing 8 p Mullard electrolytics 10U.F. 64 volts 4 for 20 p , specia price for quantity.-Elekon Enterprises, 12A Tottenham

FOR SALE. Any offers. Moviematic 16 mm Projector

FOR SALE, what offers, large quantities of transistors, F AF 186, OC 75, BF 158, BF 159, BF 164, and many others. Diodes CG 66 H and others. Thermistors, Voltage dependent Resistors, large quantities. Carbon and W.W. Resistors, Condensers, Line Output Trans formers, Rectiflers, Transformers, Potentiometers Broadfields \& Mayco Dispossis, 21 Lodge Lane, N Finchley, N.12. Telephone 01-445 2713.

TECHNICAL SALESMAN (25/35 yrs.)

with good general sound knowledge (Hi-Fi, Tape, Video and Film) for inter esting and varied position in main branch and outside. Permanent and progressive position. 3 weeks holiday.
Apply in writing for details and interview to

JOHN KING (FILMS)

71 East Street, Brighton
Tel: 27674

COLOUR, UHF and TV SERVICE SPARES. SPECIAL Panels designed CBC Brit. maker's Colour Monitor delay $£ 6$, chrominance $£ 6$, luminance $£ 4 \cdot 50$, encoded
 35p). Also quantity Colour TV Camera Panels. Plessey colour scan coils $£ 5.75 \mathrm{P} / \mathbf{P} \quad 35 \mathrm{p}$, convergence
coils $£ 3 \cdot 80 \mathbf{P} / \mathbf{P} \quad 25 \mathrm{p}$. Blue lateral $£ 1.25 \mathrm{P} / \mathbf{P}$ 10p (or complete set $\mathbf{£ 1 0} \mathbf{P} / \mathbf{P} 50 \mathrm{p}$). Mullard type colour Scan Coils $£ 3.50 \mathrm{P} / \mathrm{P}$ 35p, with latest type convergence coils for electronic control of static convergence $£ 2.50 \mathrm{P} / \mathrm{P}$ 25 p. Colour LOPT assembly incl. EHT output and
 incl. circuits $£ 1.25 \mathrm{P} / \mathrm{P} 10 \mathrm{p}$. DLI Delay Line $£ 3.75$. luminance Delay Line $£ 1.30$ P/P 20p. B9D valve bases for colour valves and PL500 series $12 \frac{1}{2} \mathrm{p}$ P/P 5 p . UHF tuners transistd. Incl. slow motion drive, indicator, AE

 6 position push button transistorised tuner easlly adjusted as 6 position UHF tuner, incl. elrcuit £ 4.50 P/P 50 .
$£ 4.75$ (or salvaged Transist. UHF/VHF IF panels
 700 series complete UHF conversion kits incl. tuner,
drive assy., 625 IF amplifer, 7 valves, accessories. drive assy. ${ }^{625}$ IF amplifier, ${ }^{7}$ valves, accessories,
housed in spectal cabinet plinth assembly, $£ 7.50$ or less tuner £3 P/P 50 p . SOBELL/GEC $405 / 625$ switchable IF amplifer and output chassis, $£ 1.50 \mathrm{P} / \mathrm{P} 30 \mathrm{p}$. Ultra 625 IF AMP chassis and circuit $£ 1.50 \mathrm{P} / \mathrm{P} 30 \mathrm{p}$. Philips 625 IF AMP panel and circult, f1 P/P 30p. panel incl. circuit $£ 1.95 \mathrm{P} / \mathrm{P} 30 \mathrm{p}$. UHF inst circuit $1 F$ on request. VHF tuners AB miniature with UHF injection suitable K.B., Baird, Ferguson 75p P/P $30 \mathrm{p}, \mathrm{Cyldon} \mathrm{C}$ \& $1 \mathrm{P} / \mathrm{P}$ 30p, Pye 13 ch . Incremental
$£ 1.25 \mathrm{P} / \mathrm{P}$ 30p. Ekco Ferranti Plessey push tuner with UFFF Ekco, Ferranti, Plessey push button ball tuners Ferguson HMV Marcont 30p. New fire30p. Philips export continental turret tuners 75 p channel coils Many others avallable. Large selection for most cons, LOPTS, Scan Coils. FOPTs available P/P 25 p. Pye/Labear make. Philips 110° Scan Colls $£ 2.85$ 14.25, power unt transista. masthead UHF booster booster, mains operated $£ 5.90 \mathrm{P} / \mathrm{P}$ FM set back (NOPLIES, 172 WEST END LANE, LONDON. NW 6 (No. 28 Bus or W. Hampstead Tube Statlon). MAIL
ORDER: 64 GOLDERS MANOR DRIVE, LONDON N.W.11. Tel. 01-794 8751

GOVERNMENT SURPLUS WIRELESS EQUIPMENT components lists for British/USA receivers, illustrations, trans/recelvers, includes modifications to sets and test equipment. Surplus/commercial cross referenced transistor and valve guide. A gold mine of invaluable in-
formation Price
¢ 2.85 , p.p. 15 p. Myers, 112 Stainburn Crescent Leeds 17. . p. . Myers, 112 stainburn JOURNAL I.E.R.E. bound volumes 18-29 (1958-65) also MINI. MAINS Transformer for 9 V d.c. power packs. V Our M17 is a robust British job, $30 \times 30 \times 37 \mathrm{~mm}$. pri, $0-230-250 \mathrm{~V}$, sec. $7-0-7 \mathrm{Vrms}, 120 \mathrm{~mA}$. Yoked, flying leads. $£ 0 \cdot 70$, U.K. post 5p. Amatronix Ltd., 396 Selsdon
Road, 8 . Croydon, Surrey, CR2 ODE $\mathrm{M}^{\text {ODEL }} 460$ Eico 5-in. Oscilloscope, with 488 elecGenerator. switch and probe. Model 378 Eico Audio Generator. Model RFG-2 Stark R.F. Signal Cenerator. Model ${ }^{1700}$ Mercury Valve Voltmeter. Two A.K.G.
Model D
25 Model $D 25$ Mikes in cases, and complete with mixer.
Model $D T 48$ Kudelski Stereo Earphones. Model M 50 (LO-2) Armaco Mike. Model 335 L Astatic Mike. All equipment fairly recent and in good oondition. all instruments 115 volt--Offers, please, to Brand, Maltings Garth, Thurston, Suffolk. Tel. Pakenham 753.
New catalogue no. 18 , containing credit vouchers
value 50 p . now available. Manufacturers surplus electric and mechanical components, new and post iree. Arthur Salls Radio Control Ltd. 28 Gardrer post iree. Arthur Sallis Radio Control Ltd., 28 Gardner
[94
SERVICE Sheets (1925-1971) for TV's, Radios, Tran8.000 models tape Recorders, Record Players, etc.; over 8,000 models avallable. S.A.E. enquiries. Hamilton Radio,
54 London Road, Bexhill. Tel. Bexhill 7097 .
 chloride, anhydrous tech., 10 lb . $£ 3$, carriage paid. telegraph items. offers invited.-Branson, 111 Park Road. Peterborough.
Test EQUIPMENT. Airmec Sig. Gen 201, £30: Pulse/Sin Gen. GM2314, £45; Keithley 131 Pulse Gen. $£ 125$; Cintel Pulse Gen., £25; Cambridge Potentiometer, £40; Pye Portable Potentlometer, £30; Pye Scalamps from $£ 10$ each; Chart Recorders from $£ 15$ each. For 10 Maple Lorge Close, Rickmansworth. Tel 09-237 76382.

VaCUUM COMPONENTS. U.H.V. valves. Bakeable W w 1462 valve. Gauges, etc. Low prices. Box No

VaCUUM pumps, coating plant, pyrometers, recorders Barrett, 1 Mayo Road, Croydon, CRO 2 QP , Surrey. $V_{\text {Transistorised }}^{80-180} \mathrm{mHZ}$ recelver, tuner, convertor. s.a.e. Tor literature. Johnsons (Radio), St. Martins Gate, WE make three types of aerial boosters, L45 for WUHF TV. L12 for VHF TV, L11 for VHF radio. Velco Electronics, 62 Bridge Street, Ramsbottom. Bury,
Lancs.
5% WATT HI-STABS. 3 for 2 p plus p . \& p. 6 p for up to 50 resistors plus 1 p for each additional 50 .
100 F
$16 \mathrm{~V}, 4 \mathrm{p}$.M. stereo I.F. strip $£ 3.50$ plus p \&

 range. FREE CATALOGUE p. \& p. 3 p . CHROMASONIC N10 3HN.

ELECTRONIC EQUIPMENT

Advance PP6 0-30V 3A Twin Variable PSU .. 565

Councer

Advance OFSIA ÖFF-AIR Frequency Standard
Advance VM79A UHF Millivoltmeter
Airmec 209 20KV lonisation Tester
£75

Airmec 210 M
Dynamco 2006 Digital Voltmeter with D2 Module c/w Calibration Certificate
Dawes $443 \mathrm{~A} 20 \mathrm{~Hz}-20 \mathrm{kHz}$ Sweep Oscillator
H-P $5233 \mathrm{~L} 0-2 \mathrm{MHz} 6$ digit Counter
H-P 7035 B X-Y Plotrer
H-P 411 A RF Millivoltmeter 500 kHz -IGHz
H-P 5255A Frequency Converters 3-12GHz
Marconi TF80ID/I AM Signal Generato
$10-485 \mathrm{MHz}$ c/w Calibration Certificate
NEP 106612 Channel UIV Recorder
Optimation RCD-I 5 Decade $0.1 \mathrm{~Hz}-100 \mathrm{kHz}$ 0.02\%

Radiometer FRA2 Wave Analyser $5 \mathbf{5} 1600 \mathrm{~Hz}$
Radiometer BKF6 Distortion Meter 20 Hz -
20 kHz
E $£ 200$
Rustrak Pen and Event Recorders
Tektronix $453 \mathrm{DC}-50 \mathrm{MHz}$ Portable Dual Beam Oscilloscope

Tektronix 106 Square Wave Generator
POA ektronix 6006×10 Voltage Probes
± 190
OTHER EOUIPMENT AVAILABLE INCLUDES: VIBRATION, ENVIRONMENTAL OVENS, MICROWAVE DREDIT FACIUITIES AVAILABLE ON ITEME OVER E1OO GOOD QUAIITY TEST EQUIPMENT AIWAYS NEEDED

MARTIN ASSOCIATES
Myrorian, Greensward Lane, Arborfield, Nr. Reading, Berks. Tel: Arborfield Cross 610 and West Forest 4896

1482

CLEARANCE OF NEW AND SECONDHAND MOBILE RADIOTELEPHONES

$£ 75$ new- $£ 50$ second-hand. Original price over $£ 140$. A leading manufacturer has hundreds of mobiles for sale built to latest P.O. specifications ($12 \frac{1}{2} \mathrm{kHz}$). The first hundred of these powerful, 4 channel, 7 watt VHF AM low band mobiles come complete with speaker, aerial, microphone and fixing brackets. These items will be extra an all other orders. Installation labour (if required) and crystals are extra. No warranty but maintenance contracts with quick service available in most areas

Write Box WW 1423

TAPE AMPLIFIERS $\mathbf{£ 1} \cdot \mathbf{5 0}$

Input: Low impedance, $20 \mu \mathrm{~V}$. Output: 2 W into 3 ohm
Valve tine-up: $2 \times E C C B 3$, EL84, EZ 80 . $61.50+50$ p Also
$7^{*} \times 4^{*}$ spailable in oak-faced ply cabinet, complete wit
non-standard deck using single A $7{ }^{\prime \prime} \times 4$ " speaker and non-standard deck using single $A C$
motor- $C 3+C 1$ carr. Another tape amp, EFB6, ECCB3,
ECLB2 motor. E3 + Cl carr. Another tape amp, EFB6, ECC83,
ECL82, EZ80. $61 \cdot 20$. Record player amp, ECL80, EZ80. 60 p . Marconi signal generators: TF144G $15 \mathrm{kHz-25MHz}$
in 8 ranges, $I \mu V$ to IV O/P Working OK, ह10. TF517F complete, €10. Wave-monitor G302, 'scope needing

 iac. $10 p$, 1% and 2% Hi-stab resistors, 100 mixed
referred values 50 p ; Few ECC70 30 p ; CV5087 CRT E5.

GREENWELD ELECTRONICS

W.4, 24 Goodhart Way, West Wickhom, Kent

Callers weicome, please phone 01-7772001 first.

AUDIO MIXER UNITS \& KITS

High quality MODULES and BOARDS for constructing complete mixers in mono and stereo or for amplifier front ends, etc., also complete custom built systems for high quality STUDIO, DISCO. and P.A. Installations at economical costs.

PARTRIDGE ELECTRONICS

Dept. W.W. 11 . 21/25 Hart Road . Thundersley • Benfleet • Essex Tel: South Benfleet 3256 1478

ARTICLES FOR SALE

COMPONENT FACTORS
 ALL GOODS BRAND NEW
 AND GUARANTEED
 P.O. BOX No. 18, LUTON, BEDS. LU1 1SU

TERMS: CASH OR CHEQUE WITH ORDER. POST AND PACKING FREE ON ORDERS ABOVE f5. FOR SMALLER ORDERS PLEASE ADD 10P. DISCOUNT: ORDERS ABOVE $£ 10-10 \%$, ABOVE $\mathbf{~} \mathbf{2 0}-15 \%$. ALL GOODS ADVERTISED ARE TOP GRADE PROFESSIONAL COMPONENTS AND SUBJECT TO A MONEY REFUND GUARANTEE IF NOT SATISFIED. WE HAVE MANY COMPONENTS NOT ADVERTISED, AND ENQUIRIES ARE WELCOME, BUT MUST ENCLOSE AN S.A.E. FOR REPLY. PRICE LIST 10P, DATA SHEETS 5P. TRADE ENQUIRIES WELCOME IATO

METERS

Valve Voltmeters, avo CT38, £20
Wave meter. Marconi, GL/T No. $350-90 \mathrm{~m} / \mathrm{cs}, \mathbf{£} \mathbf{3 8}$
Frequency meter, Banostroad, 4313. 110-250V A.C. input 0-100 M.A. meter, R.F. input socket, $\mathbf{f 2 0}$

Milliamp meter, Microwave Instruments Ltd. 0-400 M.A.
Wavemeter 1 type O.W.M. 1 A50 195-250 m/cs, £10
Wavemeter type W $1633 \mathbf{£ 1 0}$

SOUND RECORDERS

Tape Recorder E.M.I. R.E. 301 twin track with separate record and replay, heads and amplifiers, $\mathbf{£ 7 5}$
Wire recorder. Boosey \& Hawkes, £20

TEST SETS

Type 351 No. S/792, £15
Test Unit type 34. Calibrater receiver for S B and
If strips 230 V input, $£ 4$
Test set type 74. Cathode Ray oscilloscope type, f17

MISCELLANEOUS

Crimping tools, Mellermann, $\mathbf{£ 1}$
Grease guns. Tecalamite, side lever, $\mathbf{£ 1}$
Telephone relays, sockets, distribution boxes and switch loads in stock

Government Surplus Wireless. Equipment handbook, £3

SPECIAL UNITS

Delay box remote timer MK2 ${ }^{\circ}$, only $\mathbf{£ 3}$
Gearbox type A031 $0^{\circ}-315^{\circ}$, only $£ 18$
Cavity oscillator unit Band $2.5 \mathrm{~N}^{\circ} 45$, only $\mathbf{£ 8}$
Drive torque testing fixture T1 34425, only £15
Indicator unit type 176, only $\mathbf{£ 7}$
R.F. Units type 24B and 27B, only $£ 2$

Differential detector units, S.T.C. code 347 LU1B, only $\mathbf{£ 1 5}$
Time base unit, Murphy, LB1 49, only $£ 10$
Power unit Evershed and Vigroles Ltd. (Servo 4128), only $\mathbf{£ 1 0}$
FANS, MOTORS, AIR PUMPS
Aerofoil fan. 2,800 R.P.M. 240V 50/cs B.H.P. 0011, only £5
Air Pump Hymotic High Volume 40 p.s.i. with 1 H.P. 3 phase motor, only $£ \mathbf{2 5}$

SIGNAL GENERATORS

Model 1632. Triplet. $200 \mathrm{k} / \mathrm{cs}, \mathrm{T} 120 \mathrm{~m} / \mathrm{cs}$, only $£ 12$
Noise type 1. TF987/1, only £17
Noise type 1. 10S 16149, only £12
SMALL COMPONENTS
Valves. S.T.C. SV4 X150A, only £3

ARTICLES FOR SALE

BRICO ENGINEERING LIMITED HOLBROOK LANE, COVENTRY Tel: COVENTRY 89552 Telex 31685

Following the closure of our Electronic Fuel Injection Department we offer for sale the following electronic components. These components were intended for our own production and were purchased direct from manufacturers. The bulk of the stock is still in the original packing. We have reduced prices by up to 30%

Any parcel of components will be made up to suit customer's requirements. Termsare cash with order. P. \& P. 10p on orders less than £5.00. Quantity discount 5% on orders over $£ 25 \cdot 00,10 \%$ on orders over $£ 50 \cdot 00,12 \frac{1}{2} \%$ on orders over $£ 100 \cdot 00$, negotiable on orders over $£ 250 \cdot 00$.
We also offer for sale the following equipment, much of it less than 2 years old and all in good 'as used' condition.

Oscilloscopes and accessories Telequipment type D43R Tektronic plug in unit Type H	$\begin{aligned} & \text { Quantity } \\ & 2 \text { of } \\ & 1 \text { off } \end{aligned}$	$\begin{aligned} & \text { Price each } \\ & 885 \\ & \$ 45 \end{aligned}$	Racal 835 Resistance Boxes and bridges Muirhead decade 0-10K	2 off	6150 640	Solartron wide range oscillator CO1004-3	1 off	475
Power supplies			Pye 4 dial $0-10 \mathrm{~K}$	50 off 60 off	640 620	eldon Proximity Meters type PM. 2 Negretti \& Zambra Baro Vacuum	1 off	675
Electronic Industries Lrd. (APT) type	3 off	¢40	Ricardo F.M. Bridge P. 4550	1 off	650	Gauge	1 off	¢30
Electronic Industries Ltd. (APT) typ			Recorder			$1000-120^{\circ} \mathrm{C}$ (new)	8 off	¢12
TSU 1012 pre-set 12 V . 10 cmp	5 off	630	Vitatron Linear Recorder type UR. 100	2 off	¢200			
Advance Static Investor type IVS 54.			Tr			Production and General Equipment		
220/240V. AC. 500 W	1 off	475	Foster Trodiac type TRIO B.461			comm Thermostatic Baths	2 off	612
Brico P.s.U. 440 V .3 ph II and 16 V .			Variable output 0-270V. AC \}	2	614	with formica tost Consoles-steel	12 off	¢50
Coutant A.S.B. 2000.6 -30V. DC 20 amp	p $\begin{aligned} & 1 \\ & 2 \\ & \text { off }\end{aligned}$	630 695				Bodmer B.K. 1500 Rivering machine		
Coutant A.S.B. $1000.6-15 \mathrm{~V}$. DC 10 amp		± 50	Test and Environmental Equipment			with T12 and 21 heads	1 off	¢1,050
Coutant A.S.B. $500.9-16 \mathrm{~V}$. DC 5 amp	1 off	¢35	Medical Electronics Limited. Sa and Dust test cabinet			Ewbank Model ${ }^{\text {stripping a }}$ a ${ }^{\text {a }}$ cutomatic Wire		
Francis 440 V . AC 3 ph. 12 V . DC 50 amps (brand new)			Edwards Vacuum Pump/ISP. 30 C	2 off	635	auto wire pre-feed,		
Farnell SSFI 47	1 off	$\underline{50}$	Genevac 1/8 h.p. Vacuum Pump/			predetermined counter, wire		
Universal Counter Timers Racal SA. 535	Quantity $2 \text { of }$	$\begin{aligned} & \text { Price each } \\ & \leqslant 100 \end{aligned}$	Genevac $1 / 4$ h.p. Vacuum Pump/ Compressor type RPC. 3	1 off	635	Cambridge induction heating generator $3-4 \mathrm{kw}$ output type C.E. $1 / 3$	1 off	6600

ALL ENQUIRIES TO MR. S. H. HARDWICK.

All equipment may be viewed during normal working hours at the above premises. Delivery FREE on orders over $£ 250.00$.

COURSES

TELEVISION AND RADIO TRAINING

(DAY ATTENDANCE COURSES)

This private College provides theoretical and practical training in Radio and TV Servicing. Courses of one vear's duration, with daily attendance, are available for beginners and shorter courses for men with previous training in Electronics and Radio Training courses in Radar and Radio Transmission are also available following the TV course. Write for prospectus to: London Electronics College, Dept. B/5, 20 Penywern Road, Earls Court, London, S.W.5. Tel. 01-373 8721.

LAWSON
 NEW TUBES

Lawson "Century 99" are brand new tubes. Using silver activated screens, micro fine aluminizing, high definition electron guns, resulting in superb performance and very long life.
LAWSON TUBES
I8CHURCHDOWNRD. MALVERN, WORCS.
Telephone: MALVERN 2100

TELEVISION TUBES

REBUILT TUBES

Lawson "Red Label" rebuilt crts are particularly useful where cost is a vital factor such as in older sets or rental use. Red Label are completely rebuilt from

REBUILT selected glass and are exact REBUILT

TUBES | $£ 4.87$ |
| :--- |
| £ | $£ 5 \cdot 25$

$£ 6.87$ $£ 6.87$
$£ 7.25$
N.A.
N.A.
N.A.
N.A.
replacements.
2 years Guarantee both new and rebuilt FULL TUBE FITTINGS INSTRUCTIONS SUPPLIED CARR.INS.BYEXPRESS PASSENGER 14-19" 62p 21-23" 75p
WW-II7 FOR FURTHER DETAILS

WANTED

surplus transistors, semiconductors, capacitors, cable, electrical goods, radio, television and electrical equipment, wirc, aluminium, motors, recording accessories and all surplus equipment for SPOT CASH.

Buyer will call to inspect anywhere.
A. MARSHALL \& SON LTD.

28 Cricklewood Broadway London, N.W. 2
Telephone: 01-452 0161/2/3

$$
\begin{array}{ll}
\text { Telex: } & 21492 \\
\text { Cables: } & \text { CONIST LONDON }
\end{array}
$$

KIMNEGTOB

The safe quick way to connect electrical equipment to the mains

Commect annting
Oistracal in

bara wiras I Takss mulibbara wirass Chess mulu

parallet tounfecions up | parale 13 anms. Send |
| :--- |
| to |
| 10 | for leaflet

EB MARKETING
49-53 PANCRAS ROAD LONDON N.W.1 Tel:01-837 7781

WE PURCHASE ALL FORMS OF ELEGTRONIC EQUIPMENT AND COMPONENTS, ETC.

CHILTMEAD LTD.

7, 9, 11 Arthur Road, Reading, Herks.

Tel: 582605

LONOON CENTRES IADLO STORES

TELEPHONE CABLE. Plastic covered grey t-core coloured coded. 7to per yd. special quote for quantity. RECORD STORAGE UNITS. Brand new, Anti-warp. Compact stores 10 , records. \&5 57 . P.P. 58. Leaflete a a ailable. S.A.E ELECTRICITY SLOT METERS ($\overline{\mathrm{p}} \mathrm{p}$ in slot) for A.C. mains. Fixe tariff to your requirements. Suitable for hotels, ete. $200 / 250 \mathrm{v}$ 10 A . £4.50, $15 \mathrm{~A} . £ 5 \cdot 00 \cdot 20 \mathrm{~A}$. £5.50. P. P. G0p. Other amper
ales aralatle. Reconditioned as new 2 years guarantee. WIRELESS SET No. 38 A.F.V. Freq. range 7.3 to $9.0 \mathrm{Mc} / \mathrm{s}$. ing range $\frac{1}{2}$ to 2 miles. Size $101 \times 4 \times$ bin. Weight 6 \& 1 b includes power supply gits, and spare valves and vibrator als tank aerial with bate $£ 10.00$ per pair or $\mathbf{£ 5} \mathbf{0 0}$ single. P.P. 125 p MODERN DESK PHONES, or black, with internal bell and handset with 0.1 dia. $£ 4.50$ P.P. 374 P.
10-WAY P

10-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bake lite care with juaction box handset. Thoroughly overhauled 20-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bakelite case with junction hox. Thoroughly overhauled. Guaranteed £7.75 per unit
QUARTERLY ELECTRIC CHECK METERS. Reconditioned
 23 LISLE ST. (GER. 2969) LONDON W.C. 2 Closed Thursday 1 p.m. Open all day Saturday

OVERNIGHT

Prototype Printed Circuits Fastest in London Area
Electronic \& Mechanical Sub-Assembly Co. Ltd., Highfield House, West Kingsdown Nr. Sevenoaks, Kent.
Tel: West Kingsdown 2344

DIGITAL INTEGRATED CIRCUITS

Learn how to construct projects using the 74 T.T.L. series, with our

CONSTRUCTORS MANUAL

S.A.E. for full details, including prices of devices.

ANDOR ELECTRONICS LTD.

45 Lower Hillgate, Stockport.
Tel: 061-480 9791

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK
CONNECTING WIRES
Large quantities of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes. Wholesale and Export only.

J. Black

OFFICE : 44 GREEN LANE, HENDON, N.W.4. 2 AH Tel: 01-203 1855. 01-203 3033 STORE: LESWIN ROAD, N. 16

Tel: 01-249 2260

OSMABET LTD.

e mak amongst other things.

AOTO TRANSFORMERS. ©-110-200-200-240v a.c. up or watt $£ 1.35 ; 50 \mathrm{w} \quad £ 1.80 ; 75 \mathrm{w} £ 2.10 ; 100 \mathrm{w} £ 2.55$; 150 w
 MAINS TRANSFORMERS. Prim 200/240v a.c. TX2 $250-0$ -
 TX8 $250-0-250 \mathrm{v}$ 65 Ma. $1.3 \mathrm{~s}, 1.5 \mathrm{AA} . \mathrm{ER}^{6} 10$, MT1 200 V
 Mult
OMTALI LT TRANBFORMERS. Prim 200/240v a.c.

 $90-100-110,10-0-10,20.0-20,30-030,40-0-40,50-0-50 \mathrm{~F}$ a.c. $1 \mathrm{~A}-£ 3 \cdot 45 ;$ Duo $12 \mathrm{v} 4 \mathrm{~A}-12$
$2 \mathrm{~A}-0.10-20-25 \mathrm{r} 2 \mathrm{~A}$
$23 \cdot 60$.
24v AUTO TRANSFORMERS. Input $200 / 240 \mathrm{~F}$ a.c., output
$24 \mathrm{~V} 150 \mathrm{w} \cdot £ 4.50: 250 \mathrm{~W}$ £6.75: for 4 uartz Iodine lamps. LOW VOLTAGE TRANSFORMERS. Prim $200 / 240 \mathrm{v}$ a.c.

 MTDGET RECTIFIER TRANSFORMERS. Prim 200/240v
 MT9V 9-0.9. 1 A 98
75 A
$\mathrm{E1}-13$ each.
W.W. CAPACITOR DISCHARGE IGMTION TRANS-

O/P TRANSFORMERS FOR POWER AMPLIFIERS. 30

MAINS TRANSFORMERS FOR POWER AMPLIFIERS CX 6 Prim $200 / 240 \mathrm{om}$ a.c. See, $425-0.425 \mathrm{v}$ son Mat, 6.3 V 6A
 LOUDSPEAKERS FOR POWER AMPLIFIERS. New boxed, tamous makea for public addiress aystenis, bas
guitars, electronic organs. $\mathrm{Hi} 1-\mathrm{Fi}$, ete. 12 in . $15 \mathrm{~W} \mathbf{W} / \mathrm{Tweeter}$

 Horn tweeters $2-16 \mathrm{KHz}, 8,16$ ohms, $£ 1.50$ each, ${ }^{2}$ LOUDSPEAKERS. $2 \mathrm{inn}, 8,35$ or $80 \Omega, 2 \mathrm{in}$ in. $25 \Omega, 3 \mathrm{in} .30 \Omega$, 60p; 3 tin. 3 or $15 \Omega, 5 i n, 3$ or 15 or $25 \Omega, 5 \times 3$ in. 3 or 15

TAPE RECORDER MOTORS. A variety of use
fatis, etc. New. 110 v a.c., 30 p each, 50 p pair.
12 V LT FLUORESCENT LIGHTING. 8 watt 12 in. fitting
with tube, $£ 3 \%$: 12 y inverter for 20 watt tube $£ 5 \% 5$. with tube, $£ 3 \cdot 75$: 12 y inverter for 20 watt tube $£ 5 \% 5^{5}$ PRINTED CIRCUIT ETCHING KITS. Conipr to nake factory pack. with all solutions, and equipment to mast
your ow P.C. boards, instructions, £1.25, plus 20p post S.A.E. ENQUIRIES LISTS. MAIL ORDER ONLY 46 KENILWORTH ROAD, EDGWARE, MIDDX, HA8 8 YG
Carriage ertra on all orders. $01-9589314$

Thanksto a bulk purchase we can offer BRAND NEW P.V.C. POLYESTER AND MYLAR RECORDING TAPES
Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polythene and have fitted leaders, etc. Their quality is as good as any other on the market, imported, used or sub-standard tapes. 24-hour despatch service.
Should goods not meet with full approver
S.P. $\left\{\begin{array}{lllll}3 \mathrm{in} . & 160 \mathrm{ft} . & 10 \mathrm{p} & 5 \mathrm{in} . & 600 \mathrm{ft} . \\ 5 \mathrm{Fin} & 30 \mathrm{p}\end{array}\right.$

 Postage on all orders $7 \frac{1}{2} p$
COMPACT TAPE CASSETTES AT
0,90 , and 120 minutes playing time, in original

STARMAN TAPES

28 LINKSCROFT AVENUE, ASHFORD, MIDDX. Ashford 52136

Dimmerswitch ${ }^{-1}$
Will dim up to 400 watts of incandescent ilfhitla from zaro is full brillance. This untt slmaly renisens the normal lipht swlitch, and is fitted in a mafter of
 - Eien mare depth is ranalrat

PRICE Complete Kit £2.80
位 and tested 3.20
Diathane Ltd.
III. Sheffield Road. Wymondham. NORFOLK

Please add $£ 0.10$ postage and packing

PIRINTED CIRCUTRTS

 PROTOTYPE AND BATCH PRODUCTIONS Instrument panels and dlals in Metal and Perspex\star SCREEN PROCESS PRINTERS \star Brooklands Plating Co. Ltd. \$plce's Yafd, South End, Croydon CRO IBF O1-688-2128

DEIMOS Lit

 TAPE RECORDERS FOR RESEARCH, INDUSTRY AND PROFESSIONAL AUDIO single and multichannel SIMMONDS ROAD, WINCHEAP CANTERBURY, KENT 0227-68597
JOHN SAYS..

RING MODULATOR by Dewtron is professional transformerless 5 5-transistor, has adiustable F1/F2 rejection. Module $\mathbf{t 7}$. Unit c8.90. WAA-WAA Pedal AUTO RHYTHM from Dewtron modules. 5imple unit for waltz, foxtrot etc.., costs $£ 16.55$ in modules. SYNTHESISER MODULES and Other great 254 Ringwood Rood Ferndow.W. Lta.,

CASH IMMEDIATELY AVAIIABLE for redundant and surplus stocks of radio, television, telephone and electronic equipment, or in component form such as meters, plugs and sockets, valves, transistors, semi conductors, capacitors, resistors, cables, copper wire, screws and nuts, speakers, etc.
The larger the quantity the better we like it.

BROADFIELDS \& MAYCO
DISPOSALS
21 Lodge Lane, London, N12.
Telephone: 014452713014450749
Evenings: 019587624
$70936 \mathrm{D} ; 741138 \mathrm{D}:$ PA230 90p; PA234 86D; PA237 81.55 ; SL402A 81.75; 8L702C 40p; 8N76013 (like IC12) 21.50 80p; 2NAD55 $54 \mathrm{p} ;$ ME0402 21p; ME0412 $20 \mathrm{p} ;$ ME4101 11D;
ME4102 12p; ME6101 15D; MP8I11 35p; 3 AMP RECTIFIERS ME4102 12.
400 V 12 p.

JEF ELECTRONICS (WWII) York House, 12 York Drive, Grappeuhall, Warrington, Lancs. Mail Orier Only. C.W.O. P. \& P. 7p per order. Overseas 50 p
List free on application. Money back if not satisfed.

FIELD EFFECT TRANSISTORS N-Channel junction types-Epoxy encapsulated								
Type	$\mathrm{V}_{\mathrm{V} \text { ss }}$	$1 \mathrm{dss}$	\checkmark	$\begin{gathered} \hline \operatorname{lgss} \\ n A \end{gathered}$	1 khz	$\begin{aligned} & \mathrm{gm} \text { at } \\ & 200 \mathrm{Mhz} \end{aligned}$	400 Mhz	Price each
3819 E	25	2-20	8	2	2000-6500			24p
3823E	30	$4-20$ 5	8	0.5	3500-6500	> 3200		28p
4416 E	30	5-15	6	0.1	4500-7500		>4000	35p
2N4302	30	0.5-5	4	1	>1000			28p
2 N 4303	30	$4-10$	6	1	>2000			33p
2N4304	30	5-15	10	1	>1000			24p
2N5163	25	1-40	8	10	2000-9000			22p

Trade enquiries invited
Manufactured for and distributed by
REDHAWK SALES LTD. 33 Highfield Rd., Flackwell Heath, Bucks. Tel.: Bourne End 25854

GRAMPIAN REPRODUCEAS LIMITED Marworth Trading Estate, Felitham, Mididlosex. Telephone: 01-894 9141.

NEONS. PRINTED CIRCUIT BOARDS. INSTRUMENT CASES. MOULDED REED SWITCHES and PIDAM logic modules. CONTIL and BRIGHTLIFE products are all ex-stock. For details see October, 1971 and December, 1971 issues, advertisements. For further details use readerservice card. New prices on new leaflet. All cus

WEST HYDE DEVELOPMENTS LIMITED, RYEFIELD
CRESCENT, NORTHWOOD HILLS, NORTHWOOD, MIDDX.
Telephone: Northwood 24941/26732 Telex: 923231

WW DESIGNS BUILT \& TESTED

Nelson Jones FM Tuner
also alignment service
YOUNG ELECTRONICS
54 Lawford Road, London NW5 2 LN. $01-2670201$

WW CROSSHATCH GENERATOR KIT $£ 3 \cdot 25$ inc. $P \& P$
ASSEMBLED AND TESTED £4.25
INDUSTRIAL ELECTRONIC SERVICES 12 BLACK HORSE CLOSE . WINDSOR BERKS

68981
 aCCURATE
RELIABLE

Privare enquiries, send $5 p$ in stamps for brochure
THE QUARTZ CRYSTAL CO. LTD
O.C.C. Works, Wellington Crescent,

New Malden. Surrey $\quad 101-9420334$ \& 29881

	THE ONLY COMPREHENSIVE RANGE OF RECORD MAINTENANCE
Aguide. better care	EQUIPMENT IN THE WORLD!
	Send P.O. 15p for 48 page oooklet providing all necessary information on Record Care

IMLOCK ALUMINIUM CHASSIS FRAMES

P.O.TYPE

20 way 3 pole Jack Strips
$10 \frac{1}{4} \times 3 \frac{1}{2}-98 p$ pp 40p Ex-equip.
SOLENOIDS 12 VOLT PULL ACTION
$2^{*} \times 11^{\prime \prime} \times \frac{3}{3} 40 p \mathrm{pp} 8 \mathrm{p}$
ANALEX POWER SUPPLY
$7^{\prime \prime} \times 19^{\prime \prime} \times 13^{\prime} 230 \mathrm{v}$. AC. Input-6v. $5 \mathrm{amp} \times 2$
18 v .7 .5 amp DC output; Fully transistorized marginal adjust. on output $£ 35$ cariage $£ 3$
ANALEX POWER 36 Y 14 amp DC $19^{-} \times 5^{\frac{1}{2}}$
230 v. AC. Input-36V. 14 amp DC.outpu
stabilized ex-equip $\mathbf{£ 2 7} 50$ cartiage $£ 2.50$
COUTANT/ROBAND POWERSUPPLIES
28 v . 20 amp DC. output $220 / 50 \mathrm{v}$. AC. Input
fully stabilized, ex-equip tested. $16^{\circ} \times 16 \frac{1}{4}^{\prime \prime} \times 8 \frac{1}{4}$
approx. E45 carriage $£ 5$
TRANSFORMER
230 v . AC. Input. 6.6 v .122 amp output $6 \frac{1^{\prime \prime}}{} \times 7 \frac{1}{2}^{\prime \prime} \times 9^{\prime \prime}$
Inc. terminals new $£ 15$ carriage $£ 2$
GARDNERS: Potted input 0-250v. AC. output
$18 \mathrm{v} .500 \mathrm{~m} / \mathrm{amp}: 50 \mathrm{v} .150 \mathrm{~m} / \mathrm{amp} 6 \mathrm{v} .250 \mathrm{~m} / \mathrm{A}$
NLE $\times 2 \frac{1}{2}$ " ex-equip. tested $£ 1$ pp 20p
TURRET TAGS box 100 £1 pp 15p; 15p doz.
pp 8p
GARAARD 2 TRACK TAPE DECKS MAG TYPE
230 v . AC., $1 \frac{1}{7} \mathrm{ips} .50 \mathrm{v}$. solenoid operated brakes,
deal for contin. tape players $\mathbf{£ 7} \mathbf{5 0}$ pp $\mathbf{£ 1} \cdot \mathbf{2 5}$ new
TELESCOPIC AERIALS
chromed $7^{\prime \prime}$ closed 28° extended 6 section
MULICRD 4 M160 INDICA
MLLACD holder/cover ex-auip
ize approx. $1 \frac{3}{2} \times 1 \frac{1}{4}{ }^{\prime \prime} \times \frac{1}{2}=36 p p p$
PRINTED CIRCUIT BOARD/19, ACY 19 s
10 OA200 Diodes: 1 reed relay: $10 A Z 229$ zenner
ass capacitor/resistors. Power supply 22v. $250 \mathrm{~m} / \mathrm{A}$
DC. Output 240v. AC. E1 pp 20p ex-equip

TOGGLE SWITCHES Single pole Double Throw
ex-equip new condition 50p doz. pp $13 p$
F1BRE GLASS
E1 per roll pp 20p
PAINTON type 159 series connectors working
7 pin plug \& socket 50p pp 10p
7 pin plug \& socket 15 pin plug \& socket $\mathrm{f1} \mathrm{pp} 10 \mathrm{p}$
31 pin plug \& socket $£ 1 \cdot 50 \mathrm{pp} 10 \mathrm{p}$
CASH WITH ORDER

FIELDELECTRICLTD.
 3 SHENLEY ROAD, BOREHAMWOOD, HERTS.

 Adjacent Elstree Mainline Station. Tel: 01-9536009
DESIGNER-APPROVED "W.W." HI-FI KITS

\star LINSLEY HOOD MODULAR PRE-AMP July 1969 design with Dec. 1970 mods. Versatile system built on Lektrokir with layout details.

* LINSLEY HOOD SIMPLE PRE-AMP Designer-tested PCB (marked component values) for ceramic P.U. and Radio as described in May 1970 Front sub-panel gives compact assembly
* LINSLEY HOOD 15-20W AMPLIFIER

July 1970 latest and ultimate design. O/P capacitor, PCB, Tr3, $4 \& 5$ mount compactly onto heat-sink. Our kit personally tested and approved by the designer. O/P Tr's matched for spec'd performance.

* BAILEY 3OW AMPLIFIER (Nov. '68)

Mk. IV PCB has extra pre-set for quiescent current,
Output capacitor and PCB mount directly and compactly on specially designed generous heat-sink.

* NEW!!! BAILEY PRE-AMP (AUG. 1971)

Superbly engineered kit of this established amp. Uses RH \& LH fibreglass PCBs enabling a stereo version to be built in $8 \times 2 \frac{1}{4} \times 2 \frac{1}{2}$. Basic metal work ex-stock; fascia plate and cabinet soon.

AFTER-SALES SERVICE at reasonable cost.
REPRINTS of any one article at 30p
DETAILED PRICE LISTS at $\mathbf{5 p}$ inc. p.p.
PERSONAL CALLERS WELCOME-BY APPOINTMENT. DESPATCH BY RETURN

A. 1 FACTORS
 72 Blake Road, Stapleford, Nottingham

Tel. Nottingham 46051 Giro No. 4876008 (8 a.m. 10 p.m. 7 days/week)

BAKER 12 in. MAJOR $£ 9$
 $30-14,500$ c.p.s., $12 i n$. double cone,
woofer and tweeter cone together with a BAKER ceramic magne assembly having a flux density of 14,000 gauss and a total flux of 145,000 Maxwells. Bass resonance 40 c.p.s. Rated 20 watts. Voice coils available 3 or 8 or 15 ohms. Post Free Module kit, 30-17,000 c.p.s. Size $19 \times 12 \frac{1}{2}$ in. with tweeter, crossover,
baffle, instructions. $\left.\begin{aligned} & \text { baffle, instructions. } \\ & \text { Ideal for Hi Fi or P.A. }\end{aligned} \quad \mathbf{\$ |} \right\rvert\, \cdot 50$ LOUDSPEAKER CABINET WADDING 18 in. wide, $15 p$ per ft . run.
ALL "BAKER" SPEAKERS IN STOCK
E.M.I. QUALITY TAPE MOTORS Post 15p $120 / 240 \mathrm{v}$. A.C. 1,200 r.p.m.
Heavy Duty 4 pole 135 mA Heavy Duty 4 pole $135 \mathrm{~mA}^{\text {. }}$ Spindle $0.187 \times 0.75 \mathrm{in}$.
Size $3 \frac{1}{2} \times 2 \frac{1}{2} \times 2 \mathrm{in}, \quad 1.25$ BALFOUR GRAM MOTORS $120 / 240 \mathrm{v}$. A.C. 1,200 r.p.m. Heavy duty 4 pole 50 mA . Size $2 \frac{1}{2} \times 2 \frac{1}{8} \times 1 \frac{1}{2}$ in. $85 p$ Post $15 p$
 $\frac{\text { Size } 2 \frac{1}{2} \times 2 \frac{1}{8} \times 1 \frac{1}{2} \text { in. } 85 p \text { Post isp }}{\text { THIS ELAC CONE TWEETER IS OF THE }}$
 THIS ELAC CONE TWEETER IS OF THE
VERY LATEST DESIGN AND GIVES A VERY LATEST DESIGN AND GERFRMANC HIGHER STANDARD OF PERF
THAN MORE EXPENSIVE UNITS.
The moving coil diaphragm gives a good radiation pattern to the higher frequenponse from 1,000 eps to $18,000 \mathrm{cps}$. Size $3 \frac{1}{2} \times 3 \frac{1}{3} \times 2 i n$. deep. Rating 10 watts 3 ohm or $15 \mathrm{ohm} \leq 1.90 \begin{gathered}\text { Post } \\ 10 \mathrm{p}\end{gathered}$ 3 ohm
models.

410

LOUDSPEAKERS

E.M.I. $13^{\frac{1}{2}} \times 8 \mathrm{in}$.

With twin tweeters and
State 3 or 8 or 15 ohm .
illustrated.) Post 15p.
With flared tweeter cone and ceramic
magnet. 10 wates. Bass r
Flux 10,009 gauss. State 3 or
8 or 15 ohm . Post 15 p .

RETURN OF POST DESPATCH - CALLERS WELCOME
HI-FI STOCKISTS - SALES - SERVICE-SPARES
RADIO COMPONENT SPECIALISTS
337 WHITEHORSE ROAD, CROYDON. Tel: 01-684-1665

STOP PRESS

AUTOMATIC BIOANALYST
CHEMISTRY MODULE
by weil known British manufacturer. These NEW units allow automatic analysis of liquids.
POTENTIOMETRIC CHART RECORDERS
I, 6 , and 12 points by most well known manufacturers such as Kent, HoneywellBrown, Cambridge, etc. Please let us know your exact requirements.
HOUCHIN MODEL B. 40
FREQUENCY CONVERTER
This 50KVA 50 to 60 Hz
power frequency converter has been fully refurbished and is accompanied by a test certificate to B.S.
Specification.
Specification: Model B. 40 Type F.C. Part No AlOA Prime Mover: Electric Motor Input: $220 / 380 \mathrm{~V} 50 \mathrm{~Hz} 3 \mathrm{ph}$. Output: 220 V .60 Hz 3 ph . at 50KVA with P.F. of 0.8 PRICE £750.00

ELECTRONIC BROKERS LIMITED 49-53 Pancras Road, London, N.W.1.

Telephone 01-837 7781

LOWE EIECTRONICS
 119 Cavendish Road, Matlock, Derbyshire Tel: Matlock 2817

SSB Communications Equipment, Test Gear, etc. Importers of Yaesu Musen, F E \& Inoue Equipment.

In addition to our wide range of new equipment, we offer the following representative selection of second-hand receivers and test gear.

Receivers

Collins 51J4 £250
Racal RA17L E225
Eddystone 940 £90
National NC1 90 £45
Sommerkamp FR100B $\mathbf{8 8 0}$
Sommerkamp FR-500 £95

Test Gear

Marconi TF1331 scope $\mathbf{£ 6 0}$
Marconi TF1 221 Het. Converter $\mathbf{~} 40$
Signal generators CT212 (85 kHz to 32 MHz AM/FM) £25
BC221's $£ 10-£ 20$ according to linearity and condition
Tektronix 585A main frame $\mathbf{£ 2 5 0}$
Tektronix 53/54D plug-ins £35
Hickok OS-121C/USM-140 £175
Mikes, keys, keyers, monitors, mobile antennas (Tavasu), headsets, intercomms, VTVM's, low voltage regulated p.s.u.'s, S.W.R. bridges, components, etc., etc.

Have you equipment to sell? May pay you to get our quote.
Send a large s.a.e. and we will fill it with lists of components, equipment, sundries, etc., etc.

ALL SEMICONDUCTORS WARRANTED

Prices 1-9 as quoted, 10-99 less 10%, 100 up 15%, larger quantities special quote

TRANSISTOR
MOTORALA MPS 3646
200 MW 350 MHZ CB040 HFE 30 SILICON NPN. GENERAL PURPOSE 15p EA.
\section*{VARI-CAP DIODE

BB105.

30 PIV 18-28 pf.}
$17 \frac{1}{2} p$ EA.

7-9 ARTHUR ROAD, READING, BERKS. (rear Tech. College) Tel.: Reading 582605

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 105-116

Page	Page	Pa
A1 Factors .1................................ 119	Farnell Instruments Ltd....................... 22	Parkar, J., \& Co. Ltd. 34
Acoustical Mfg. Co., Ltd........................ 31	Ferrograph, The, Co. Ltd. 63	Parry Electronic Developments Ltd............... 30
Acoustic Research.............................. 37	Field Electric. 119	Pattrick \& Kinnie. 76
Adcola Products Ltd........................... 26	Future Film Developments. 38	P.C. Radio Ltd. 88
Advance Electronics Ltd. 15	Fylde Electronic Labs......................... 44	Plessey Electronics Ltd............................ 61
A.K.G. Equipment Ltd.. 40		Plessey Micro Electronics. 8, 9
	Garrard Ltd................................... 1	Powertran Electronics. 104
Andors Electronics Lrd............................ 29.117	Goldring Mfg. Co. Lid......................... 17, 29	
A.N.T.E.X. Ltd. 43	Goodmans Loudspeakers Ltd.. ${ }^{35}$	
A.P.T. Electronics................................. 25	Grampian Reproducers Ltd...................... 118	Quartz Crystal Co. Ltd............................... . . 118
Aveley Electric Ltd.............................. 24	Greenwood, W., Electronic Ltd. 28	
Ban		Radford Laboratory Insts. Lidd.................. 18
Barrie Electronics. 75		Radio Components Specialists Ltd................ 119
Batey, W., \& Co................................ 44		
Bentley Acoustical Corporation Ltd.................. 78	Harris, P....................................... 104	
Berry's Radio................................... 22.	Hart Electronics. 9.9	Repanco Ltd. 1180
B.I.E.T............... 13	Hatfield Instruments Lid.......................... 40	Research Communications...................... 33
Bi-Pak Semiconductors. 71	Henrys Radio Ltd.................................. 8.	R.E.W. Audio Visual. 65
Bi-Pre-Pak Ltd............................... 93	Henson, R., Ltd. 118	Rola Celestion Ltd.. Cover ii
Black, J......................... 117		R.S.C. Electronics............................... 70
Blue Line Electronic Components Lid........... 4,5		R.S.C. Hi-Fi Centres Ltd..
B.P.C. Publishing Ltd. C. 42	I.C.S. Ltd. Precision Controis Lid........................... ${ }^{65}$	R.S.T. Valves Ltd. 76
Bradley, G. \& E., Ltd.. Cover ${ }^{\text {Biii }}$		
	Industrial Insts. Ltd..................................... 118	
	Instructional Handbook Supplies.................... 118	
Brooklands Plating Co. Led........................ 118	Integrex Ltd............................... ${ }^{92}$	Service Trading Co...)......................... ${ }^{\text {a }} 9$
Brown, S. G., Ltd. 80	I.T.T. Mobile Communications ${ }^{55}$	Servo \& Electronic Sales Litd...................... 82
Bull, J. (Electrical) Led. 100	Ivoryet Ltd................................... . 102	Shibaden (U.K.)................................ 34
Butterworth \& Co. (Pub.) Ltd. 98		Shure Electronics Ltd.......................... 57
	J-Beam Eng. Ltd. 54	
	J.E.F. Electronics............................ 118	Sinclair Radionics Ltd...................... . $67,68,69$
	Jermyn Industries . 47	Smith, G. W. (Radio), Ltd....................................99,90,91
Circuit Integration Led. 42		Smith, J., Ltd. .
Colomor (Electronics) Ltd... 88		Starman Tapes. 117
Communication Accessories \& Equip. Ltd. 70		Steed, J., Research Ltd. 65
Computer Sales \& Service Ltd. 75	Labgear.Ltd.6........ ${ }^{\text {. }}$ 27.	Stephens Electronics . 94
	Lasky's Radio Ltd. .	Suigden, J. E., Ltd. ${ }^{47}$
	Lawson Tubes 117	Super Electronics Ltd. 92
Dabar Electronic Products...................... . 86	Ledon Instruments Ltd.. 44	Surplus Electronic Trading. 102
Davian Electronics. 47	Levell Electronics Ltd........................ 21	Telcon Metals Ltd. 26
Deimos Ltd....................................... 118	Levers-Rich Equipment Ltd....................... ${ }_{\text {L }}^{64}$	Telephone \& W ireless Components Lid. 46
Dewtron....................................... 118	Lexor Dis-Boards.............................. 38	Telequipment Ltd. . . .o....................... 50
Dexter \& Co................................. 102		Teleradio, The, Co. (Edmonton) Lid. 118
Diathane Ltd................................... 118	Llonmount \& Co. Ltd. ${ }_{\text {L }}{ }^{47}$	Telford Products Lid............................. 30
	London Central Radio Stores....................... 117	
Dixons Technical CCTV Ltd.................... 72	Lowe Electronics . 119	Thorn Radio Valves \& Tubes Ltd................ 52
	L.S.T. Components Lit. 79	Tridac Ltd..................................... 72
Drake Transformers Ltd. 32		United-Carr Supplies Lıd.. 19
D.T.V. Group. 66	Macinnes Laboratories Ltd.. 43	
Dynamco Ltd................................. 28	Marconi Communication Systems Litd........... 45	Valradio Ltd. 36
	Marshall, A., \& Sons (London) Ltd......... .82, 83, 117	Vitality Bulbs Ltd................................ 38
E.B. Marketing. 117	McKnight Crystal Co........................... 118	Vitavox Ltd...................................... 72
Edgington, John, \& Co. Ltd. 47	Mills, W...... .86, 87	Vortexion Led.................................. 11
Edwards Scientific Int. Led...... 42	Milward, G. F................................ 81	
Electronic Brokers 48, 49, 118, 119	Modern Book Co. 104	Watts, Cecil E., Ltd............................ . 118
Electronic and Mechanical Sub-Assembly Co. Ltd. 117	Morse Equipment Ltd.. ${ }^{20}$	Wayne Kerr, The, Co. Ltd.. 10
Electronics Design Assoc....................... 70	M.O. Valve Ltd. 16,17	Webber, R. A, Lrd.. 46
Electro-Tech Sales............................ ${ }^{74}$	Mullard (Unilex)............................... 29	
Electrovalue... ${ }^{\text {a }}$. 73	Multicore Solders Ltd...................... Cover iv	West Hyde Developments Ltd................... 118
Electro-Winds Ltd. 70		West London Direct Supplies.................. 80
Elektrim...................................... 102		Whiteley Electrical Radio Co. Ltd................ 12
	Nicholls, E. R. ${ }^{24}$	Wilkinson, L. (Croydon), Ltd.................... 92
Elec Electronic Equipment Ltd.................. ${ }^{24}$	Nombrex Ltd................................ 40	Young Electronics. 118
English Electric Valve Co. Ltd................... . 58 , 59		
Erma Ltd.. 36	Osmabet Ltd. 117	Z. \& I. Aero Services Lid. 103

[^19]
What is a true Calibrator?

Think of an instrument which produces highly stable voltage or current outputs at high accuracy without tricky balancing or using a costly DVM ...
Just set the dials to the required output . .
That's a true calibrator! And with
outputs traceable to international standards.
BRADLEY ELECTRONICS produce a whole range of Calibrators, both a.c. and d.c. types.
From this range two outstanding D.C. Calibrators
the 127B

$$
\begin{aligned}
& \text { * 0-500V d.c. } \\
& +11 \% \text { overrange } \\
& * 20 \mathrm{~mA} \text { output } \\
& * 0.05 \% \text { accuracy }
\end{aligned}
$$

the 134

* 0-1000V d.c. $+11 \%$ overrange
* 50 mA output
* 0.05% accuracy

A feature of all Bradley Calibrators is the direct reading of percentage error.
All Bradley instruments can be supplied with a
British Calibration Service Certificate from our own B.C.S. approved Standards Laboratory.

Electral House, Neasden Lane, London NW10 1 RR
Telephone: 01-4507811 Telex : 25583
A Lucas Company

BRADLEY

Remember - Bradley for the best Calibrators

The answer is every 3 minutes!
A mile of Ersin Multicore Solder is used every 3 minutes during normal working hours. That shows how the world's leading electronic manufacturers rely on Ersin Multicore 5 core Solder for thousand upon thousand of fast, economic and consistently reliable joints.

If in Britain or overseas you make or service any type of equipment incorporating soldered joints, and do not already use Ersin Multicore Solder, it must be to your advantage to investigate the wide range of specifications, which are available.

Besides achieving better joints-always - your labour costs will be reduced and substantial savings in overall costs of solder may be possible. Solder Tape, Rings, Preforms, and Pellets - Cored or Solid - and an entirely new type of cored disc, can assist you in high speed repetitive soldering processes.

EXTRUSOL The first oxide free high purity extruded solder for printed circuit soldering machines, baths and pots, is now available to all international specifications, together with a complete range of soldering fluxes and chemicals

Should you have any soldering problems, or require details on any of our products, please write on your company's note paper to:

MULTICORE SOLDERS LTD., HEMEL HEMPSTEAD, HERTS.

 Tel. No. Hemel Hempstead, 3636, Telex: 82363.
EXTRUSOL

-uanc rinemorray

Extrusol high purity extruded solder, available in 1 lb . and 2 lb . bars, and also Extrusol pellets, for printed circuit soldering machines, pots and baths, polythene protected.

GALLON CONTAINERS

All liquid chemicals and fluxes supplied in 1 gallon polythene 'easy pouring containers, with carrying handle.

AEROSOLS
PC. 21 A, PC. 10 A , and PC. 52 available in 16 oz . aerosol sprays.

7lb.REELS

Available in standard wire gauges from $10-22$ swg., on strong plastic reels.

> SOLDERTAPE, RINGS, PREFORMS,WASHERS, DISCS \& PELLETS

Made in a wide range solid or cored alloys Tape, rings and pellets are the most economical to use.

1lb.REELS

Available in all standard wire gauges from $10-34 \mathrm{swg}$., on unbreakable plastic reels. (From 24-34
swg. only $\frac{1}{2} \mathrm{lb}$. is
wound on one reel)

THE FINEST CORED SOLDER IN THE WORLD

[^0]: Raynham Road,
 Bishop's Stortford, Herts.
 Telephone:
 Bishop's Stortford (0279) 55155
 Telex: 81510

[^1]: \square
 East Mains Industrial Estate,
 Broxburn, West Lothian, Scotland
 DYNAMCO Telephone: Broxburn 2631 Telex: 72174

[^2]: INPUT RESISTANCE
 3000 M ohms typ
 InPUT CAPACITANCE
 NPUT NOISE
 UNITY GAIN FREQUENCY
 SMALL SIGNAL RESPONSE
 LOAD RESISTANCE 4 pf .
 $1 \mu \mathrm{~V}$ rms (12F-1a) 10 MHz
 2 Hz to 1 MHz
 1 K ohm minimum
 SUPPLY VOLTAGE
 $\pm 10 \mathrm{v}$ to $\pm 15 \mathrm{v}$
 The 12F-1 comprises two internal amplifiers, one a fixed low noise pre-amplifier gain +10 and a variable gain, 0.91 to 10 , inverting amplifier.

 MAXIMUM SIGNAL to pre-amp stage is 600 mV p-p.
 OUTPUT is dependent upon gain.

[^3]: 49-53 PANCRAS RD., LONDON, N.W.1. TEL.: 01-837 7781. TELEX 267307

[^4]: Published monthly on 3rd Monday of preceding month, $17 \frac{1}{2} \mathrm{p}$ (3 s 6 d).
 Editorial \& Advertising offices: Dorset House, Stamford Street, London S.E.I. Telephone 01-928 3333. Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London S.E.1."
 Subscription \& Distribution offices: 40 Bowling Green Lane, London E.C.1. Telephone 01-837 3636.
 Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.

 Subscription rates: Home, $£ 4.00$ à year. Overseas, 1 year $£ 4.00$; 3 years $£ 10.20$ (U.S.A. \& Canada 1 year $\$ 10$, 3 years $\$ 25.50$).

[^5]: Under the chairmanship of Mr. G. S. Bosworth a working group set up to examine the education and training requirements of industry issued two reports: an introductory one, 'A review of the scope and problems of scientific and technological manpower policy', H.M.S.O. Oct. 1965, and 'Education and training requirements for the electrical and mechanical manufacturing industries'. H.M.S.O. 1966.

[^6]: B.B.C. Research Department

[^7]: 'High-quality Elect ostatic Headphones' by J. P. Wilson, Wircless World, Dec. 1968

[^8]: Editor-in-chief, Wireless World

[^9]: *Automatic Control Engineering Ltd.

[^10]: F.M. Stereo Tuner ($\mathbf{£ 2 5)}$ \& A. F.U. Filter Unit ($\mathbf{£ 5 . 9 8)}$ may be added as required.

[^11]: Appointed Distributors for
 SIEMENS (UK) LTD.
 Appointed Stockists for
 RADIOHM POTENTIOMETER

[^12]: CT MEMORY PLANES COMPLETE WITH DRIVE LOGIC
 Each plane contains 40 words. A words has 52 cores. 3 wire syatem. To write al Half currents through row write
 wire and digit augment wire to set the core. To read Full current to reset cores through row read wire, and digits read out on digit augment wire. Actual currenta are not quoted but magnetising forces are, i.e
 210 MA -turns. write 1 (row wire)
 210 MA -turns
 rite 1 (row wire)
 $210 \mathrm{MA}-\mathrm{turne}$
 (digit angment)
 Pulse lengths of the order $2 / 18$ to write. $£ 149 \cdot 50$

[^13]: BRADFORD
 BLACKPOOL

 DERBY 26 Osmaston Rd．The Spor（Hall－day Wed．）Tel． 41361

 DARLINGTON 18 Priestga：e（Half－day Wed．）．Tel． 68043
 EDINBURGH
 GLASGOW
 HULL．

[^14]: REDCLIFFE 'C' CORE TRANSFORMERS

[^15]: Send for illustrated brochure and further details on all Sew Panel Meters-Discounts for quantities

[^16]: DIODES \＆RECTIFIERS

[^17]: NEW GRAM AND SOUND EQUIPMENT
 GLASGOW..-Recorders bought, sold, exchanged; versa.-Victor Morrts, 343 Argyle St., Glasgow, C.2.

 ## TAPE RECORDING ETC.

[^18]: W^{E} buy new valves, transistors and clean new components,
 quotation by
 return.-Walton's Worcester St.. Wolverhampton.

[^19]: Printed in Great Britain by Southwark Offset, 25 Lavington Street, London, S.E.1, and Published by the Proprietors, T.P.C. Elizorricat-Etwotromic Priss, Lid., Dorset House, Stamford St., London, S.E.1, telephone
 SUPPLY; This periodical ls sold subject to the following oonditions, wamely that it shall not, without the written consent of the publiohers frat, given, be lent, re-sold, hired out or othervise disposed of by way of Trade at a prioe in excess of the recommended maximum price ahown on the oover; and that it shall not
 or animed to or as part of any poblication or advertietng, literary or pletorlal matter whatsoever.

