

Marconi Instruments delivered from stock!

The MI TF 2006 is a signal generator of very advanced design, offering a multiplicity of features specially incorporated to assist research, development and test engineers engaged on the most advanced communications equipment. It is the only fully transistorized signal generator covering the $4-1000 \mathrm{MHz}$ range. Low inband noise, freedom from microphony, good frequency stability and accurate, directly-calibrated fine frequency tuning control make it ideal for narrow-band fm measurements on mobile receivers. Similarly, the wide modulation frequency range, wide deviation range and freedom from phase distortion simplify performance assessment of fm telemetry and other multiplex systems. The full frequency range is covered by a system of five independent oscillator units giving a unique degree of

Hexibility. Each unit has its own tuning scale and modulating element. Any combination of units up to four can be selected.

MI - Europe's largest single source of signal generators. TV, Narrow Band FM, AM/FM, PCM, etc. - whatever the purpose or the frequency to be covered, Marconi Instruments is the company most likely to have the precise instrumen't you need. Behind it: experience unique in the business.

MARCONI INSTRUMENTS LIMITED
A GEC-Marconi Electronics Company
Longacres, St. Albans, Hertfordshire, England. Tel: St. Albans 59292 Telex: 23350

- high accuracy digital measurement a full multimeter facilities a little larger than an Avometer \quad a automatic decimal point and over-range indication \quad internal calibration source asimple push-button operation \square BCD print-out facility a fully portable alow cost

All this and it's an Avometer,too!

With the Digital Avometer DA 112, you can measure a.c./d.c. voltage between 1 V (100 mV d.c.) and 1000 V full range, a.c./d.c. current between $1 \mathrm{~mA}(100 \mu \mathrm{~A}$ d.c.) and 1 A full range and resistance from 100_{Ω} to $1 \mathrm{M}_{\Omega}$ full range. Basic accuracy $\pm 0 \cdot 1 \%$ of reading ($\pm 0 \cdot 1 \%$ of full range on 1 V and 10 V d.c. ranges). A.c. measurements up to 100 kHz . Input resistance $1000 \mathrm{M}_{\Omega}$ on 10 V d.c. range. 50% over-range facility (except 1000 V a.c.) at specified accuracy.

Elesco Frazer Limited, 36 St. Vincent's Crescent, Glasgow C3. Tel: 041-221 9301
Wirelect Electronics Limited, Wirelect House, St. Thomas Street, Bristol 1. Tel: 0272294313

The TM2

-anew a.c./d.c. millivoltmeter fromFarnell

* $1 \mathrm{mV}-300 \mathrm{f}$ f.s.d.
* $10 \mathrm{~Hz}-2 \mathrm{MHz}$
* $10 \mathrm{M} \Omega$ typical input impedance/resistance
* Lowzero drift
* Mains or battery operated

The TM 2 is a general purpose instrument offering a wide frequency range of operation, a high input impedance/resistance and very low drift. It is basically mean rectified reading, the meter being calibrated to provide r.m.s. values for sine wave inputs in a range sequence of 1-3-10. A decibel scale from-10dB to + 2 dB is also provided. The TM 2 has an integral power supply permitting operation from a.c. mains and may also be run on two internal batteries. Its U.K. price is $£ 68.00$

For further details contact:-

Farnell Instruments Limited, Sandbeck Way, Wetherby, LS22 4DH. Tel: 0937 3541/6.

"ASTRONIC" LTD.

FIRST IN THE FIELD WITH A COMPLETE RANGE OF MODULAR AMPLIFIERS

THE RESULT OF THIRTY YEARS

 EXPERIENCE IN SOUND AMPLIFICATION, NOW ANNOUNCE THEIR RESPONSE SELECTOR TYPE A 1888

A MUST IN ACOUSTICALLY DIFFICULT SITUATIONS SUCH AS CHURCHES, HALLS, THEATRES etc.

This unit, the result of three years research, can be built into a new, or added into an existing sound system and provides a simple but effective means of adjusting the overall response to suit the particular location.

Eight calibrated thumb wheel controls enable each section of the audio band to be adjusted to reduce troublesome building resonances etc., thereby allowing microphone levels to be increased before "howl back " occurs.

The unit is available in two forms: Type A 1888 is a portable instrument and Type A 1781 is a module to be used in conjunction with our Series 1700 units.

Further informotion from :
DILSTON GAROEENS, STAMMORE, MIDDIESEX, HA 1 1BL
이-204 2125

A.C. MICROVOLTMETERS

VOLTAGE \& db RANGES: $15 \mu \mathrm{~V}$,
$50 \mu \mathrm{~V}, 150 \mu \mathrm{~V} \ldots 500 \mathrm{~V}$ f.s.d. Acc.
$\pm 1 \% \pm 1 \%$ f.s.d. $\pm 1 \mu \mathrm{~V}$ at 1 kHz $\pm 1 \% \pm 1 \% \mathrm{f} . \mathrm{s} . \mathrm{d} \pm 1 \mu \mathrm{~V}$ at 1 kHz
$-100-90 \mathrm{~F}+50 \mathrm{~dB}$. scale $-100-90 \ldots+50 \mathrm{~dB}$. scale
$-20 \mathrm{~dB} /+6 \mathrm{~dB}$ rel. to $1 \mathrm{~mW} / 600 \mathrm{~s}$ - $20 \mathrm{~dB} /+6 \mathrm{~dB}$ rel. to $1 \mathrm{~mW} / 600 \Omega$.
RESPONSE: $\pm 3 \mathrm{~dB}$ from 1 Hz to RESPONSE: $\pm 3 \mathrm{~dB}$ from 1 Hz to
$3 \mathrm{MHz}, \pm 0.3 \mathrm{~dB}$ from 4 Hz to 1 MHz above $500 \mu \mathrm{~V}$. Type TM3B can be set to a restricted B.W. of 10 Hz to 10 kHz or 100 kHz .
INPUT IMPEDANCE: Above 50 mV : $>4.3 \mathrm{M} \Omega<20 \mathrm{pt}$.
On $50 \mu \mathrm{~V}$ to 50 mV : $>5 \mathrm{M} \Omega<50 \mathrm{pf}$ AMPLIFIER OUTPUT: 150 mV at f .s.d.

PORTABLE INSTRUMENTS

D.C. MULTIMETERS

VOLTAGERANGES: $3 \mu \mathrm{~V}, 10 \mu \mathrm{~V}, 30 \mu \mathrm{~V} \ldots 1 \mathrm{kV}$.
Acc. $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 01 \mu \mathrm{~V}$. LZ \& CZ scales.
CURRENT RANGES : 3pA, 10pA, 30pA ... 1mA (1A for TM9BP) Acc. $\pm 2 \% \pm 1 \%$ f.s.d. $\pm 0.3 \mathrm{pA}$. LZ \& CZ scales.
RESISTANCE RANGES: $3 \Omega, 10 \Omega, 30 \Omega \ldots 1 \mathrm{kM} \Omega$ linear. Acc. $\pm 1 \%, \pm 1 \%$ f.s.d. up to $100 \mathrm{M} \Omega$.
RECORDER OUTPUT: 1 V at f.s.d. into $>1 \mathrm{k} \Omega$ on LZ ranges.

BROADBAND VOLTMETERS

H.F. VOLTAGE \& dB RANGES: $1 \mathrm{mV}, 3 \mathrm{mV}, 10 \mathrm{mV} \ldots 3 \mathrm{f} . \mathrm{s} . \mathrm{d}$ Acc. $\pm 4 \% \pm 1 \%$ of $f .5$.d. at $30 \mathrm{MHz}-50 \mathrm{~dB},-40 \mathrm{~dB},-30 \mathrm{~dB}$ to +20 dB . Scale $-10 \mathrm{~dB} /+3 \mathrm{~dB}$ rel. to $1 \mathrm{~mW} / 50 \Omega$. $\pm 0.7 \mathrm{~dB}$ from 1 MHz to 50 MHz . $\pm 3 \mathrm{~dB}$ from 300 kHz to 400 MHz . L.F. RANGES: As TM3 except for the omission of $15 \mu \mathrm{~V}$ and $150 \mu \mathrm{~V}$ AMPLIFIER OUTPUT: Square wave at 20 Hz on H.F. with amplitude proportional to square of input. As TM3 on L.F.

Long battery life and large overbad ratings are leading features of these solid state instruments. Mains units and leather carrying cases are optional extras. All A type instruments have $3 \frac{1}{4}$ " scale meters and case sizes $5^{\prime \prime} \times 7^{\prime \prime} \times 5^{\prime \prime}$, B type instrumerts have $5^{\prime \prime}$ mirror scale $5^{\prime \prime} \times 7^{\prime \prime} \times 5^{\prime \prime}$, B type instrumerts have
meters and case sizes $7^{\prime \prime} \times 10^{\prime \prime} \times 6^{\prime \prime}$

PORTABLE VOLTMETERS

WW-- 010 FOR FURTHER DETAILS

EAVESDROP ON THE EXCITING WORLD OF AIRGRAFT COMMUNICATIONS. JUST OUT

VHF AIRCRAFT BAND CONVERTER

Listem in to arhunes, private planes, Jet PLANES. Eavestrop on exciting cosstall between pilots, ground approach, ground conirol, airpon f2. 37 towe. Hear tor yourself the disciplined vacces hiding
(47/6) censeness on talk dowis. Be with them when they
(47/6) have to take nerve-ripping decisions in omargences tune in to the inciuding heathrow, GATwick. LUTON, RINGWAY, Phes Twick ETC. This fantastic fully transistorised instrument can be butt in under iwo hours. 隹 design team built four-everyone warked
fitst time.) No soldering necessary. Fully illustrated simply worded instructions take you step-by-step. Uses standard PP3 batteny. Size only $44^{3} \times 3^{\prime \prime} \times 11^{3}$. All you da is extend rod aenial. place close to any ordinary madium CONNECTIONS WHATEVER NEEDED. USE CONNECTI ONS WHAOOIS OI SEND NOW ONLY E2.37 $(47 / 6)+23 p(4 / 6)$ p. \& p. 10 all paris including tase, nuls, screws, wire, etc. etc. (parts available separately.

RELAXATRON

cuts dut ndise pollution-sodthes yout neavesi Don't underastimate the uses of this fantastic new design-the AELAXATRON is basically a pink noiss generator based on avalenche operated transistors. Besides being able tomask out extraneous unwanted sounds, it has other very inter esting properties. For instance mary people find a rainstorm mystenously relexing, a large parf of this feeling
of well-being can be divectly rraced to the saund of falling raindrogstof well-beingy can be directly traced to the sound of falling raindrops 1 a wall-known type of pink noise. A group of demists have expen mented on pavients with this pink noise-ND AINAES CHETICS WERE
USED? Tha USED! The noise ostensibly created a mast detinite raaction on
these patients nervous systems with the resulis that then atin systems were blocked. IF You wion im noisy or istractivg SURROUNDINGS, if you have thouble concenthating.
owiv £2.25 If you feel tensed, unable to helax -then build this

fantastic Rèlaxation. Once used you will never want to be without it-pocket sized. Uses standard PP3 batteries (current used so small that battery lifa is almost shall-litel) CAN BE EASIL BUILT using our unique. step-by-step. fully illustrated plans. All parts including case, a pair of crysial phones, components, nuts, sceews, wire, elt., elc Send onily $\mathbf{f 2 . 2 5}+25 \mathrm{p}$ p. \& p . 145/- +5 /-) (Parts availsble separatety.)

Real Working ELECTRONIC ORGAN

onıv $£ 2.75$

Don't confuse with ortinary electric organs that simply blow air over mevth-organ-type and testing this superb. Fevolutionary efectronic reeds. etc. Eght months were spent in creating self-contained loudspeaker. Fittean separate keys, span two fuill octizus-plays the "Yellow Rase of Texas", "Silent Night", "Auld Lang Syne", and lots of similar tunes on this real working electronic
organ. Size 13$\}^{2}$ " 10^{-}. ${ }^{2}$ ". organ. Size $\times 10 \times 27$. Uses standard battery. Have the thill and excitement of building it together win he peas sure of playning a real electionic organ. Play it anywhere. No soldering necess sary.
Easy as A. B, C to make follownag the ite fully illustrated stap-by-step instructions BIG

 resistors, knobs, transformers, volume control, wire, nuts, stiews, instructions. erc. tpants availabie separaielyl. Have all the pleasure of making it yourself, bimsh with an exciting gift for someone

Examine at home for 7 days. Your monay refunded if not 100% delighted.
CONCORD
ELECTRONICS LTD. (Dept. WW14)

INGENIOUS
ELECTRONIC

SLEEP

INDUCER
CANT SLEEP AT MIGHTS? DO YOU WAKE UP IN THE NIGHT AND CANT GET OFF TO SLEEP AGANT? SODRHED DFF TO SATISFYING LeEp eveay might? the inu SLEEP EVEAY NIGHT? Then ouidd

even stops by itseff so you dont have to worry abour it being on all night! he loudspeaker produces soothing audio-frequency sounds. contirumously peated-hut as time goes on the sounds pradually become less and lessuntil they eventualy cease altogether, the efficet it has on peaple is amazingty very simiar to nypnosis. A control is provided for adjustang the lengith of times, etc., all andede ofectich any reasonaby imteligent person.in about two hours. ep-by-step tuily illustrated instractions induded Mo solda easy- 0 -1010 Works oft standard batteries-extremety economical. Size onty $3^{\prime \prime} \times 43^{\prime \prime} \times 11^{3^{\prime \prime}}-$ take it anywhere. All parts including case, loudspaaker components, nuts, wire screws. atc. etc. there will be a gheat demano for this unidue NEW DESIGN-SENO NOW E2.1\} $+25 p$ p. \& p. \{ $\left\{55_{i}+5_{-}\right.$- , Pans avaiuble separately

FIND BURIED TREASURE! TREASURE LOCATOR

Transistorised
Metal locator detects and tracks down buried metal objects- it signais exact location (no phones used usas any transistor ratio which fits inside
no connections needed) FNOS LOSI CDONS JEWELIEAY KEYS WAR SOUVENIRS, ARCHAEOLDGICAL PIECES, METALLC DAE NUGGETS EIC EETE METALLL DLE, NUGGETS, ETC. Entemely sensitive,
objects
will
buried $\begin{gathered}\text { signal } \\ \text { several }\end{gathered} \underset{\substack{\text { presence } \\ \text { feet }}}{\text { below }}$ of certain Can be built with ease in one short evening
 $\xrightarrow{\square}$
remarkably low price All parts deduding dotactor head al this remarkably low price. All parls including detector head case nuts
serews. wire. simple instructions. efc Sent now $\mathbf{f 2 . 3 7}+23$ p p\&ip $(47 / 6+4 / 6)$. Sectional handle as illustrated 75p (15/\%). Parts available sepsately. Made up looks worth 115 .

How to get what you want without having to try very hard

SINGLE SOURCE MAKES SENSE

Anything you can do to save yourself trouble makes sense. When it comes to ordering smaller quantities of a variety of parts there is a lot to be said for getting everything from one place. We're in business to make that easy for you.
As stockholders of Cinch, Dot and FT products, we are an efficient single source for pretty well everything of this kind you are likely to want in whatever quantity you want it and at short notice. So, whether it's Radio, Electronic and Electrical Components, Metal Pressings, Clips, Fasteners or Assemblies that you need, the easiest way is to get them from us-the most economical too, in the end.

Make United-Carr

 your
SINGLE SOURCE

116 PAGE FREE SINGLE SOURCE CATALOGUE illustrates thousands of stock items, any one of which you might want at any moment, posted on request to Firms and Organisations. Send for your copy now:

United-Carr Supplies Ltd.,
Frederick Road, Stapleford, Notts.
Sandiacre 2828 STD 0602392828

UNITED-CARR
SUPPLIES

This

new

range of AIR SPACED VARIABLE CAPACITORS and TRIMMERS ...

CATALOGUE AVAILABLE NOW!

Send today for our NEW LIST 300 detailing our wide range-from miniature air spaced trimmers up to large high voltage transmitting capacitors.

SUB MINIATURE TRANSFORMERS
We have facilities for the manufacture of miniature transformers to customers' own designs-and would welcome any enquiries.

Write today for complete details
H. TINSLEY \& CO LTD • WERNDEE HALL

SOUTH NORWOOD • LONDON SE25 • 01-654 6046

new celestion loudspeakers

- MODEL: PS12 TC 1798

TYPE: DUAL CONE 12"
RANGE: $40 \mathrm{~Hz}-12 \mathrm{KHz}$
POWER: 20 WATTS RMS FLUX: 128,000 MAXWELLS IMPEDANCE: 15 or $4-8$ OHMS PRICE (R.R.P.) $£ 9.00$

MODEL: PS8 TC 9470 TYPE: DUAL CONE 8" RANGE: $50 \mathrm{~Hz}-12.5 \mathrm{KHz}$ POWER: 6 WATTS RMS FLUX: 38,500 MAXWELLS IMPEDANCE: 15 OHMS PRICE (R.R.P.) £2.90

* Both recommended for Unilex

The Celestion "Ditton 120"
Placed in top Hi-Fi class by reviewers
Supplied in matched pairs - Teak or Walnut
Superb Performance - Economical Price $£ 48$-00 pair

CELESTION

 'POWER RANGE'MODEL: G12M
RANGE: $40 \mathrm{~Hz}-8 \mathrm{KHz}$ POWER: 25 WATTS RMS FLUX: 145,000 MAXWELLS IMPEDANCE: 8 or 15 OHMS PRICE (R.R.P.) £12.95

MODEL: G12H
RANGE: $40 \mathrm{~Hz}-8 \mathrm{KHz}$ POWER: 30 WATTS RMS FLUX: 180,000 MAXWELLS IMPEDANCE: 8 or 15 OHMS PRICE (R.R.P.) $£ 15.75$

'POWER RANGE'

The finest Loudspeakers made for electronic guitars

Loudspeakers for

the Perfectionist
Please write for details
ROLA CELESTION LIMITED
DITTON WORKS, FOXHALL ROAD, IPSWICH, SUFFOLK IP3 8JP
Telephone (0473) 73131 Telex 98365

Even with a perfect pickup, the distortion from a gramophone record for sounds of equal level increases very rapidly at high frequencies, eventually doubling for every major third increase in pitch.

There comes a point when, to musical ears, the distortion is increasing faster than the musical quality. The QUAD filter system is designed to enable those with ears to hear to obtain more of the music and less of the distortion.

QUAD

for the closest approach to the original sound

JOHN SMITH LTD.
209 8PON LANE - WEST BRONWICH - STAFFS. TEL. 021-553 2516 (3 LINES) WOODS LANE - CRADLEY HEATH • WARLEY - WORCS. TEL. CR 69283 (3 LINES)

WW-017 FOR FURTHER DETAILS

Beat amp cramp.

With the Motorola 5 to 60 amp silicon power transistor range.

Specify Motorola silicon power transistors and you can be sure of one thing - no amp cramp.

Motorola give you the widest possible range. And that's not all.

Specify Motorola and you're putting top quality into your circuits. And saving money too.

Therangegoes from 5 to 60 amps . You've got a choice of \mathfrak{j} packages and up to 10 amps in plastic.

Beat amp cramp with Motorola. Write to:
Motorola Semiconductors, Dept., WW3
York House, Empire Way, Wembley, Middx.
Telephone: 01-903 0944.

Distributors: Celdis Ltd, Reading. GDS (Sales) Ltd, Slough. Jermyn Industries Ltd, Sevenoaks. A. M. Lock \& Co Ltd, Oldham. Semicomps Ltd, Alperton.

DUAL-CHANNEL POWER AMPLIFIER

\author{

* DC-Coupled throughout!
}
\star Short Circuit proof!
$\star 500$ Watts RMS Mono.
$\star 70$ Volt Balanced line out!
* UNEQUALLED QUALITY!
$\star 3$ YEAR PARTS WARRANTY!
* only $£ 320$ inc. DUTY!

CARSTON ELECTRONICS LTD. SHIRLEY HOUSE 27 CAMDEN ROAD LONDON, N.W. 1 9LN 01-267 2748

WW- 020 FOR FURTHER DETALLS

We'll fill the air with sound

New 'Toa' P.A. systems Goldring now offer modern 'Toa' P.A. equipment for in-place installations -to go-in anywhere, and make sound go everywhere! And it's a high quality/top value equipment range that carries a crystal-clear message for you. It means business.

Solid state amplifiers. Dynamic microphones. Box, Column, Horn and Panel-cone speakers. Equipment to cover all sound requirements . . . For service in offices, schools, airports, rail terminals, sports arenas, concert halls. Wherever people gather-indoors and out of doors.

(Great Britain) Limited, 10 Bayford Street, Hackney, London E8 3SE. Phone OI-985 II 52

ssil
The best pick-up arm in the world

SME precision pick-up arms offer a standard of design and engineering which has earned them many distinctions. Throughout the world thousands are used daily by enthusiasts, professionals, and broadcasting and recording companies, who appreciate a specification that is eminently suited to the needs of modern high-quality sound reproduction.

Write to SME Limited • Steyning • Sussex • England

From engineering sketches to printed circuit board the same day.

CIRCUIT-STIK conductive shapes are pre plated ready for soldering. Pressure sensitive adhesive backing to substrate makes assembly simple, gives good adhesion, easily withstands soldering temperatures, yet is simply removed for circuit modification.
As durable and reliable as boards produced by conventional methods. A wide variety of circuit element patterns.
The sensible way to design, develop and prove printed circuit designs.

Circuit-stik

Marketed in the U.K. by

Bourns (Trimpot) Lid
Hodford House, 17/27 High Street
Hounslow, Middlese:
Tetephone: 01-572-a111 Telex: 264485

KWP/B36

GHTDUN:NY METERS

」sed as standards in many industries
(2ccurate to $\pm 0.3 \%$ or $\pm 0.1 \%$ as FRAHM Resonant Reed specified
2 Not sensitive to voltage or temperature changes, within wide limits

- Unaffected by waveform errors, load, power factor or phase shift
- Operational on A.C., pulsating or interrupted D.C., and superimposed circuits
- Need only low input power
- Compact and self-contained
- Rugged and dependable

Anders means meters
 neastic and hermetically sealed cases to British and Government approved specification. Ranges $10-1700 \mathrm{~Hz}$. Literature on these meters and Frahm Resonant Reed Tachometers available on request Manufacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largest stocks in the U.K. for off-the-shelf delivery

anders electronics limited

48/56 Bayham Place, Bayham Street, London NW1. Tel: 01-3879092 WW-024 FOR FURTHER DETALLS

In just 2 minutes, find out how you can qualify for promotion or a better job in Engineering ...

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn on 'SATISFACTION - OR REFUND OF FEE' terms. If you'd like to know how just a few hours a week of your spare time, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

Mechanical

A.M.S.E. (Mech.)

Inst. of Enginecrs
Mechanical Eng.
Maintenance Eng.
Maintena
Wending Diesel Eng.
Sheet Metal Work
Eng. Inspection
Eng. Inspection
Eng. Metallurgy
C. \& G. Eng. Crafts
C. \& G. Eng. Crafts

Draughtsmanship
A.M.I.E.D.

Gen. Draughtsmanship
Dic \& Press Tools Elec. Draughtsmanship Jig \& Tool Design Design of Elec. Machines Technical Drawing Building

Electrical \& Electronic A.M.S.E. (Elec.) C. \& G. Elec. Eng General Elec. Eng. Installations \& Wiring Electrical Maths. Electrical Science
Computer Electronic Computer Electro
Electronic Eng.

Radie \& Telecomms. C. \& G. Telecomms. C. \& G. Radio Servicing Radio Amatcurs' Exam. Radio Operators' Cert. Radio \& TV Enginecring Radio Servicing Practical Television TV Scrvicing Colour TV
Practical Radio \&
Practical Radio \&
Electronics (with kit)

Auto \& Aer

A.M.I.M.I.

MAA/IMI Diploma
C. \& G. Auto Eng. General Auto Eng. General Auto Eng A.R.B. Certs. Gen. Acro Eng.

Management \&
Production Computer l'rogramming Inst. of Marketing A.C.W.A. Works Management Work Study Production Eng. Storckecping Estimating Personnel Management Quality Control Electronic Data Processing Numerical Control Planning Engincering Planning Engincering Materials Handling Operational Rescarch Metrication

Constructional A.M.S.E. (Ci*.) C. \& G. Siructural Road Engineering Civil Engincering Building Air Conditioning Heating \& Ventilating Carpentry \& Joinery Carpentry \& Joinery Clerk of works Building Drawing Surveying Painting and Decorating Architecture
Builders' Quantiti

General
C.E.I.

Petroleum Tech
Practical Maths.
Refrigerator
Scrvicing.
Rubber Technology
Sales Engineer
Timber Trade
Farm Scicnce
Farm Scicnce
Agricultural Eng.
General Plastics
General Certificate
of Education
Choose from 42
'O' and ' A ' Lcrel
subjects including:
English
Chemistry
General Science
Geology
Physics
Mathematics
Technical Drawing
French
Germant
Spanish
Spantish
Biology
B.I.E.T. and its
associated schools
have recorded zuell
have recorded 10,000 G.C.E.
successes at ' O ' and successes at
WE COVER A WIDE RANGE OF TECHNICAL AND PROFESSIONAL EXAMINATIONS.
Over 3,000 of our Students have obtained City \& Guilds Certificates. Thousands of other exam successes.

THEY DID ITSO COULD YOU

"My income has almost trebled . . . my life is fuller and happier." - Case History G/321.
"In addition to having my salary doubled, my future is assured."-Case History H/493
"Completing your Course meant going from a job I detested to a job I love," - Case History B/461.

FIND OUT FOR YOURSELF

These letters-and there are many more on file at Aldermaston Court-speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you.

7ree!

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

Dept B7, Aldermaston

 Court, Reading RG7 4PF. POST THIS COUPON TODAY

SOLDERING IRONS?

We are specialists. Whatever your particular application, we are most likely to have just the tool for the job.

TELEPRINTERS • PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUPMENT

SALE OR HIRE

2-5-6-7-8 TRACK AND MULTIWIRE EQUIPMENT

Special Codes Prepared

telegraph autom ation and com puter peripheral accessories

 datel modem terminals, teleprinter switchboarosPicture Telegraph, Desk-Fax, Morse Equipment: Converters and Stabilised Rectifiers; Line Transformers and Noise Suppressors; Tape Holders, Pullers and Fast Winders; Governed, Synchronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass Filters; Teleprinter, Morse,

Teledeltos Paper, Tape and
 Ribbons; Polarised and specialised Relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment; Racks and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Connectors, Wires, Cables, Jack and Lamp strips, and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.

W. BATEY \& COMPANY

The cataves models-absolute gems of truly miniature soldering instruments, with interchangeable slip-on bits and precise performance. Unapproachable for sustained accuracy on small work.

The Litestat thermostatic models, with fully adjustable control, available for all voltages. Two extremely versatile instruments, 55 and 70 watts, giving really generous soldering capacity on demand, with closely controlled idling temperature. Very attractively priced from £3.84 (£3-16-10).

All backed up by an excellent spares and repair service, and a wide range of ancillary tools and accessories. We would like you to have the whole story-please ask for our NEW CATALOGUE.

5/1001/15

LIGHT SOLDERING DEVELOPMENTS LTD.,

28 Sydenham Road, Croydon, CR9 2LL
Telephone: 01-688 8589 \& 4559

Telex: 82362, AB BATEY TRING
WW- 028 FOR FURTHER DETAILS

Put Hatf the test

The Hatfield range of Transmission Test Equipment includes the Psophometer Type 1000 which is specified by the Post Office. This rugged battery operated unit incorporates solid state circuitry throughout and is designed for measuring flat or weighted wide-band noise.
The Milliwatt Test Set Type 747 gives laboratory accuracy in portable form making it unnecessary for more than
 one instrument to standardise signal levels on 75, 140 and 600 ohm circuits. Send for full details of Hatfield Transmission Test Equipment and a copy of our Short Form Catalogue. HATFIELD forward thinking in electronics

HATFIELD INSTRUMENTS LIMITED

Burrington Way, Plymouth PL5 3LZ, Devon.
Tel. Plymouth (0752) 72773/4 Grams: Sigjen, Plymouth. Telex: 45592
South-East Asia: for prompt service and deliveries, contact
Hatfield Instruments (NZ) Ltd., P.O. Box 561, Napier. New Zealand.

If you think closed circuit television is complicated, come to Dixons

As distributors of every famous name in TV equipment, Dixons can offer you totally unbiased advice on every problem connected with CCTV.

The service we offer is complete: consultation, quotation, supply and installation.

Come to our showrooms and we"ll show you the very latest equipment in this field. From ITC mini-CCTV at £99.95 for a camera and monitor 10 a comprehensive system selling at $£ 50,000$.

When you've chosen the system best suited to your requirements, we can offer you a choice between outright purchase, contract hire, hire purchase and short term rental.

Our full time staff technicians will check the equipment you buy before installation and give you unbeatable after sales service.

So don't make a move in CCTV without us
Call in or send us the coupon for more information of a particular quotation.
Or phone us at 01-437 8811 . Main agents for Memorex video tape

TO: Dixons CCTV Ltd., 3 Soho Square, London W.1.

I am interested in CCTV. Please send me details by return of post.
NAME
ADDRESS

AUDIO MIXER TYPE mxT/800

 Fully professional in performance and in facilities * Overload margins, noise levels, distortion figures and frequency response, are equal to those of large studio desks.
A single plug in board per module includes all active components.

Modules available include:-
Microphone channels ($2 \& 4$ group working) : Line Channels: Group modules (including V.U. \& P.PM. metering): Monitor module: enerator module Limiter compressor modul Linnel. Tone generator module. Limiter compressor module. Line equaliser

WW-031 FOR FURTHER DETAILS

TEL: (01) 965 6281. TELEX: 923004

Subsidiary of Felten \& Guilleaume Kabelwerke AG KÖLN-MÜLHEIM

CRIMP

CABLE-CONNECTOR ASSEMBLY
Annual call-off orders quoted.
Ww- 032 FOR FURTHER DETAIIS

From Bradley. Real time interval measurement on the new 60 MHz counter timer.

All Brad ey instouments can be supplied with e British Calibraticn Service Certifisate from our own B.C.S. a jproved standards laboratory.

-Tine int

Now Bredley introduce an advanced 60 MHz instrument with a big range of facilities in a compact package. For orly £450 in the UK.
Total perfoumance of the 187 is wider than that of compelitive equipment at a similar price.
Look what yol get for your money. Full frequer cy, period (both single and multiple average), real time interval and ratio measure nents, plus totalise and scaling acilities.
Dual-chanrel operation and dual trigcer allows accura:e time interval and ratio measurements. Channel A gives dc tc 60 MHz , Shannel B, dc to 10 MHz .
Extra-wide tine base range 1μ S to 1005 High-stabil ty clock, 5 parts in 10^{9}.
Standard BCD data output and displas storage nC extracharge for
these featu es.
The 187 certainly offers a lot of features.
Why no: write or phone for more details.

G \& EBRADLEY LTD

Electra House, Neasden Lane London NW10
Tel:01-4507811 Teléx: 25583

A Lucas Conpany

- RADFORD

AUDIO MEASURING INSTRUMENTS

Two instruments having a superior performance than any others of this type regardless of price. Now accepted as standard equipment by Broadcasting Authorities, recording studios, magazine equipment test laboratories, and audio research and development laboratories all over the world.

LOW DISTORTION OSCILLATOR

An instrument of high stability providing very pure sine waves, and square waves, in the range of 5 Hz to 500 kHz . Hybrid design using valves and semiconductors.

Specification
Frequency Range:
Output Impedance:
Output Voltage: SIne Wave Distortion

Square Wave Rise Time Monltor Output Meter: Mains Input
Slze: Weight Price:
$5 \mathrm{~Hz}-500 \mathrm{kHz}$ (5 ranges) 600 Ohms.
10 Volts r.m.s. max
$0-110$ dB continuously variable.
.005\% from 200 Hz to 20 kHz increasing to Less than 0.1 microseconds.
Scaled 0-3, 0-10, and dBm.
100 V.-250 V. $50 / 60 \mathrm{~Hz}$.
$17 \frac{1}{4} \times 11 \times 8$ in
25 lb.
f 150

DISTORTION MEASURING SET

A sensitive instrument for the measurement of total harmonic distortion, designed for speedy and accurate use. Capable of measuring distortion products as low as 0.002%. Direct reading from calibrated meter scale.

Specificatlon

Frequency Range:
istortion Range :
Sensitivl
Meter:
Meter:
High Pa
Frequency Response
Power Requirements : Size: Welght
Pilce:
$20 \mathrm{~Hz}-20 \mathrm{kHz}$ (6 ranges) $0.01 \%-100 \%$ f.s.d. (9 ranges). 100 mV . 100 V . (3 ranges)
Square law I
3 dB down at 350 Hz .
30 dB down at 45 Hz .
± 1 dB from second harmonic of relection frequency to 250 kHz .
Included battery.
$17 t \times 11 \times 8 \mathrm{In}$.
15 lb.
f 120.
Descriptive technical leaflets are available on request.

TIED max OF

SOLD STATE A.C. MANS AMPLIFIERS

employing only high grade components and transistors

LTA15 15 WATT AMPLIFIER

High Fidelity Output switched inputs for Gram, 'Mike', Tape and Radio. Frequency Response $10-40,000 \mathrm{cps}-3 \mathrm{~dB}$. Trable Control + 17 dB to- 14 dB at 14 Kcs . Hum and Noisa - Bods.
Harmonic Distortion 0.2\% at rated out-
Out.
PTA30 HI-FI
PUBLIC ADDRESS AMPLIFIER
A successor to our popular Conchord 30 watt unit.
Input Sensitivity 2 my (max.)
Oueput 30 watts.
Output Sockets for Loudspeaker or combination of Speakers with total impedance
between 3 ohms and 30 ohms. Three individually controlied inputs for Mixing purposes.
Housed in fully enclosed stove enamelled
Controls Vol (1) Vol (2) Vol (3) with mains switch, Treble 'lift' and 'cut.' Bass 'lift' and 'cur.
AN IDEAL UNIT FOR YOCAL AND
ANSTR YMENTAL GRODPS SHIT: AND INSTRUMENT PICK-UP, ALSO
FOR RADIO, TAPE, OR GRAM.

Recommended
Retail price
$£ 19$
Size $9 \frac{1}{2} \times 3 \frac{3}{2} \times 5 \frac{1}{4} \mathrm{in}$. approx.
If required an attractive wood cabinet
with veneer finish can be supplied for
any model. Prices from supplied for
K $3 \cdot 50$

Recommended Retail price £24
Size $12 \times 3 \frac{1}{2} \times 6$ in. approx.

Available from your Local Hi-Fi Dealer

Please send a stamped addressed envelope for full descriptive details
of above units.
 ELECTRON WORKS, ARMLEY, LEEDS

WW-034 FOR FURTHER DETAILS

DIOTESTOR IN-CIRCUIT .TRANSISTOR TESTER

BRITEC LIMITED, 17 Charing Cross Road, London WC2H OER Tel: 01-930 3070

WW- 035 FOR FURTHER DETAILS

Your choice of Live SocketsInstantly!

A Lexor DIS-BOARD gives you up to 6 sockets from one power outlet. Portable or permanent fixing, compact units, with safety neon. Over 1,000 socket combinations available from stock. All types of fittings and finishes.

LEXOR DIS-BOARDS LIMITED.
Allesley Old Road, Coventry.
Telephone 72614 or 72207

The thrills of amateur short wave communication can be a joy forever. With TRIO's 9R-59DS communications receiver you can be assured of repeated adventure. TRIO's modern engineering techniques are especially apparent in its mechanical filter which achieves amazingly superior selectivity. For the thrill of a lifetime tune in with TRIO's 9R-59DS.

Specifications:

- Frequency Ranges: Band A $550-1600 \mathrm{KHz}$, B $1.6-4.8 \mathrm{MHz}, \mathrm{C} 4.8-14.5 \mathrm{MHz}, \mathrm{D} 10.5-30 \mathrm{MHz}$. Sensitivity: $2 \mu \mathrm{~V}$ for $10 \mathrm{~dB} 5 / \mathrm{N}$ Ratio (at 10 MHz) - Selectivity $\pm 5 \mathrm{KHz}$ at -50 dB - Power Consumption: 45 watts - Audio Power Output: 1.5 watts Tube $\&$ Diode Complement: $6 \mathrm{BA} 6 \times 3,6 \mathrm{BE} 6 \times 2,6 \mathrm{AQ} 8 \times 2,6 \mathrm{AQ} 5$, SW-OSS $\times 2$, SW-05 $\times 2$, IN60×2. © Dimensions: Width 15", Height $7^{\prime \prime}$, Depth $10^{\prime \prime}$.

TRIO KENWOOD ELECTRONICS S.A. 160 Ave., Brugmann, 1060 Bruxelles, Belgium

We're sensitive to everyone's needs.

Different people have very different requirements in $\mathrm{Hi}-\mathrm{Fi}$, so Goldring developed a comprehensive range of stereo magnetic cartridges that are superb in performance and realistic in price.

From the G800 Super E for those who seek perfection down to the G850 for systems on a budget, the Goldring range offers unsurpassed quality and value.

Your request will bring full details of these and other Goldring products.
Goldring Manufacturing Company (GB) Limited, 10 Bayford Street, Hackney, London E8 3SE.
Tel:01-985 1152.

Goldring \odot Series 800

Stereo Magnetic Cartridges.
WW-038 FOR FURTHER DETAILS

A.F. GENERATOR MODEL 30 PRICE £19.50

A PRECISION BUILT, FULLY TRANSISTORISED. AUDIO GENERATOR ALMOST INDISPENSABLE FOR RADIO AND ELECTRONIC APPLICATIONS. WRITE FOR TECHNICAL LEAFLETS.

SOME SPECIFICATION DETAILS:

- 4 RANGES, $10 \mathrm{~Hz}-100 \mathrm{KHz}$.
© SINE AND SQUARE WAVE OUTPUT.
- DUAL CALIBRATED ATTENUATOR.
- WITHIN 5\% ACCURACY.
- STABILISED OUTPUT LEVEL.

Export enquiries to Norddeutshe Mende
Rundtunk KG, 28 Bremen 44. Postfach 448360. West Germany.

Trade enquiries welcome. Send for full technicall leaflets. Post and Packing $35 p$ extra.
NOMBREX (1969) LTD. EXMOUTH DEVON Tel: 03.9523515

We proudly present the production version of our professional custom tape transport, featuring full studio standards of performance, ruggedness and dependability
$\frac{1^{\prime \prime}}{4^{\prime \prime}}$ and $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ tape interchangeably, reel diameters from $7^{\prime \prime}$ to $11 \frac{1^{\prime \prime}}{n^{\prime \prime}}$
2 -speed hysteresis direct capstan drive at high torque. 05% wow and flutter or better. choice of $3 \frac{3}{4} / 7 \frac{1}{2}$ or $7 \frac{1}{2} / 15^{\prime \prime} /$ second speeds.
Extremely quiet solenoid operation, relay and solid state controlled, electrically latched by gentle push-button switches. All push-button functions can be remoted, and include MAINS ON/OFF, PLAY, RECORD, STOP, FAST FORWARD and REWIND. Other functions by toggle switching include MASTER MAINS ON/OFF, SPEED and REEL DIAMETER selection.
Solid state control of the two reel-drive motors permits rapid start, but minimum running tape tension for lowest wow and flutter with no loop throwing, hence no dancing idlers, and simplest tape path for rapid threading of tape. Tension levels are changed by REEL DIAMETER switch
Tape lift system causes tape to contact all three heads in RECORD, but only Tape lift system causes tape to contact all three heads in RECORD, but only
play head in PLAY for maximum tape and head-life. Plug-in interchangeable play head in
head systems
Motors, relays and solid state circuits are plug-in. Deck is cool-running and suitable for tropical operation. Available with a variety of plug-in electronic configurations of finest quality, including 4 channels on both tape widths.
Full details and prices from
JOHN STEED RESEARCH LTD,
220 EDGWARE RD, LONDON W2, Phane 01-723 5066

Let's cut the crackle 204

You don't want a load of waffle about the brilliance of the Telefunken 204TS allstereo tape recorder.

It speaks for itself!
Whatever you put in, comes out unmolested. No irritating hums, buzzes or crackles find their way on to the track.

But what you want is facts not words.

It complies with the very, very stringent German tape recorder standards.

Separate controls for recording and playback, including sound level meters. Single selector switch for all operating functions.

Three speeds.
Signal to noise ratio $\geqq 50 \mathrm{db}$ at $7 \frac{1}{2} \mathrm{ips}$.
And it can be used as a straight-through stereo amplifier as well!

Another fine example of the Telefunken philosophy: dedication to faithful reproduction.

Get the full story from your dealer or write direct.

AEG/Telefunken

AEG House
Chichester Rents
Chancery Lane
London WC2 A1NH
01-242 9944

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4-WAY MIXER USING F.E.T.s.

This is a high fidelity amplifier (0.3% intermodulation distortion) using the circuit of our 100% reliable 100 Watt Amplifier with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer Amplifier, again fully protected against overload and completely free from radio breakthrough.

The mixer is arranged for $2-30 / 60 \Omega$ balanced line microphones, $1-\mathrm{HiZ}$ gram input and 1 -auxiliary input followed by bass and treble controls. 100 volt balanced line output or $5 / 15 \Omega$ and 100 volt line.

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 5-WAY MIXER USING F.E.T.s

This is similar to the 4 -way version but with 5 inputs and bass cut controls on each of the three low impedance balanced line microphone stages, and a high impedance (10 meg) gram stage with bass and treble controls plus the usual line or tape input. All the input stages are protected against overload by back to back low noise, low intermodulation distortion and freedom from radio breakthrough. A voltage stabilised supply is used for the pre-amplifiers making it independent of mains supply fluctuations and another stabilised supply for the driver stages is arranged to cut off when the output is overloaded or over temperature. The output is 75% efficient and 100 V balanced line or $8-16 \Omega$ output are selected by means of a rear panel switch which has a locking plate indicating the output impedance selected.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms -15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.

THE 100 WATT MIXER AMPLIFIER with specification as above is here combined with a 4 channel F.E.T. mixer, 2-30/60 Ω balanced microphone inputs, $1-\mathrm{Hiz}$ gram input and 1 -auxiliary input with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms -15 ohms and 100 volt line. Bass and treble controls fitted.
Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{~dB}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 dB and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1-low mic. balanced and 1 auxiliary input.

QUICKER SERVICING-MORE PROFITS
Now, more than ever before, RADIO \& TV SERVICING gives value for money. Every Servicing Engineer realises the value of readily available servicing data-it means speedy servicing. satisfied customers and more profit-and information on earlier models that come in for repair is almost impossible to come by. Radio and TV Servicing will give you just this-it's the most comprehensive library of servicing data available.

SERVICING DATA ON OVER 1500 POPULAR MODELS
Here, in 6 handy volumes, you have comprehensive technical data for servicing over 1500 popular 1965-71 models. The sections on Colour TV alone makes this 3600-page library a sure money-spinner for years to come. Examine RADIO \& TV SERVICING and prove for yourself how valuable and indispensable this money-making library is.

OVER 4200 CIRCUITS, PRINTED PANEL DIAGRAMS, COMPONENT LAYOUT DIAGRAMS, AND WAVEFORM GRAPHS

FRES 10-day triel

Please send Radio \& TV Servicing- 6 volumes-on 10 days free trial. I understand that I am under no obligation to buy and may elum the volumes in if days if not satisfied. fo do decide to
\square The full cash price of $\mathbf{£ 2 6 . 2 5 (\mathbf { ~ } \mathbf { 2 6 . 5 . 0 } \text {) or }}$
$£ 2.80$ ($£ 2.16 .0$) dep. and 9 monthly payments of $£ 2.80$ ($£ 2.16 .0$) paying $£ 28$ in all.
block letters please
Address
Please tick(v/here
Address on left Is My our properily Rented furn. Patent's home Temp. address

All over the five continents and the seven seas Bantex aerials help to maintain reliable communications. Day in and day out.

Bantex aerials are selected because of their established reputation for good design and reliability. A reputation earned over many years.

Bantex manufacture all types of communications aerials, on land and on sea; for land communications we make aerials for man pack, mobile and fixed station use.

For your enquiries please contact Ernest Gutman.

Bantex Ltd. ABBEY RD., PARK ROYAL, LONDON N.W. 10
Telephone 01-965 0941 Telex 82310

WW-048 FOR FURTHER DETALS

RECORDER AMPLIFIERS
 and instrumentation systems

150
 series DIFFERENTIAL DC AMPLIFIERS

Wide dynamic range-
high common mode rejection
Low noise, low drift performance Modular or cased presentation also

MINI-AMP FE-251-GA

 differential dc pre-amplifier Compatible modules and cards ensure ease of application and great flexibility.EY 5 ELECTRONIC LABORATORIES LIMITED
16 OAKHAM COURT, PRESTON (0772) 57560

Essential equipment for the

Pickups and Arms
Pickup Accessories
Motor Units
Radio Tuners
Tuner/Amplifiers
Amplifiers and Control Units
Tape Recorders
Tape Decks
Tape Units
Tape Amplifiers and Mixer Units
Tape Accessorics and Components
Magnetic Tape
Test Tapes and Discs
Constructional Kits
Microphones
Speaker Drive Units
Speaker Accessories
Speaker Enclosures
$\mathrm{Hi}-\mathrm{Fi}$ Cabinets
FM/VHF Aerials
Complete Systems $\mathrm{Hi}-\mathrm{Fi}$
Hi-Fi Headphones
Directory of Hi-Fi Dealers
Decimal Currency Conversion Tables
With the 1971 edition of Hi-Fi Year Book you can be sure of really up-to-date references to British and imported hi-fi equipment. It is packed with descriptions, specifications, prices . . . set out in separate, illustrated sections under the headings listed. Over 400 pages in the equipment section alone. Also includes a
directory of dealers-plus articles by experts on various aspects of high quality sound reproduction.
ORDER YOUR COPY TODAY
£ I 00 (plus 15p postage)

ORDER FORM

To: Cashiers, IPC Business Press (Sales \& Distribution) Ltd., P.O. Box 147, 40 Bowling Green Lane, London, ECIP IDB
Please send me.........copy/copies of Hi-Fi Year Book 1971 (price $£ \mathrm{I} \cdot$. oo each plus I5p postage).
I enclose remittance value $£ . .$.
Name (please print)
Address

Train for tomorrow's world in

Radio and Television at The

Pembridge College of Electronics

Your first day on Television: 7th September, 1971

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. $1 \quad$ Phone: $01 / 837 / 7937$

WW-051 FOR FURTHER DETALS

Audio control systems for Aviation Intercom and Isolation Amplifiers for every type of civil and military aircraft

Further details from ww

Fg hawker siddeley

COMMUNICATIONS

S. G. BAOWN LTD. KING GEORGE:S AVENUE. WATFORD: HE RTFOAOSHIRE
TEL: WATFORO 23301 TELEX 23G12 TELEGAMS AADIOLINK WATFORO

Hawker Siddeley Group supplies mechanical, electrical and aerospace equipment with world-wide sales and service.

WW-0.02 FOR FURTHER DETAIIS

PARIS ANO COMPONENS FOR teleommuncailo enginering

 aND Electroncs
EXPORT-IMPORT

\square Resistors
\square Capacitors
\square Potentiometers
\square Connectors, sockets
\square Switches
\square Relays
\square Pilot lamps
\square Rotarybuttons
ElectroacousticMicrophonesEarphonesLoudspeakers

Miscellaneous Parts and Components

TransformersFluorescent tube and mercuryvapour lamp adapters
Ferrites
Permanent magnetsAerials
IMPORT

Vacuum tubes, special lamps

Semiconductor devicesIntegrated circuitsELEMTROMODUL

ELEKTROMODUL

Hungarian Trading Company for Electrotechnical Components

BUDAPEST, XIII., VISEGRADI UTCA 47 a-b
Telephone: 495-340; 495-940. Telex: 22-5154, 22-5155
WW-054 FOR FURTHER DETALLS

Si451 Millivoltmeter

* 20 ranges also with variable control permitting easy reading of relative frequency response

JES AUDIO INSTRUMENTATION

Ililustrated the Si453 Audio Oscillator SPECIAL FEATURES:

\star very low distortion content-less than 05%

* an output conforming to RIAA recording characteristic
* battery operation for no ripple or hum loop
* square wave output of fast rise time
£40.00
also available
Si452 Distortion Measuring Unit
* low cost distortion measurement down to $.01 \%$ with comprehensive facilities including L.F. cut switch, etc.
J. E. SUGDEN \& CO. LTD., BRADFORD ROAD, CLECKHEATON, YORKS. Tel: Cleckheaton (0WR62) 2501

MAY WE SUPPORT YOU?

RADIOMASTS LTD., structures have continually been supporting communal antennae for Police, Ambulance, Fire Service, Gas and Electricity Boards, just to mention a few. Our photograph shows a 5 ft Kelvin Hughes scanner, being supported by a 40ft tower, supplied and erected for Cranfield Institute of Technology, Bedford.

Our mast, towers and antennae are extensively used abroad, and we are continually developing structures specially for export, which includes our latest 100ft trailer mounted telescopic mast.

RADIOMASTS LTD., will welcome your enquiry for structures standard or Customer designed.

A CASE FOR "IMPEX"

Problem: I have a tuner, timer, mixer and digital clock for which I require suitable cases.
Answer: "IMPEX" Instrument Cases.
Problem: All the instruments are different sizes.
Answer: "IMPEX" have a standard range of 36 sizes.
Problem: I want them to be robust and stylish.
Answer: "IMPEX" cases were designed to be functional and attractive.
Problem: I don't think I could afford them; they sound expensive. Final Answer: "IMPEX" cases are very competitively priced. Find out how they answer all your problems. Details from:

"IMPEX"

P.O. Box 2BB, Newcastle upon Tyne, NE99 2BB "IMPEX". Manufacturers of the MS7, high quality Magnetic Pickup Preamplifier

VITAVOX

FOR HIGH QUALITY

MICROPHONES

LOUDSPEAKERS

and ancillary equipment
Further information from:
VITAYOX LTD., Westmoreland Rd., London, NW9 5YB
(Tel: 01-204.4234)

Solartron's synthesizer signal generator eliminates those three operator headaches: keeping the signal generator withir the bandwidth of the RX that's being checked; having to reset output levels with each modulation change; and having to readjust controls with every frequency change.

Just look at these advantages:

- crystal accuracy and stability-3 parts in 10^{9} over 24 hours. We guarantee that the frequency you set today will be there tomorrow. Or the day after that!
- digital decade frequency setting-down to 10 Hz resolution. Setting times a few seconds manually, or a few milliseconds by electrical programming.
- complete modulation facilities-AM, FM, SSB or Pulse.

Solartron-Schlumberger are Europe's proven leaders in synthesizer signal generators.

Tell us about your Laboratory or ATE requirement. We'll be pleased to meet it. Precisely.

Phone or write for full technical details.
SOLARTRON
Schlumberger
The Solartron Electronic Group Ltd Farnborough Hampshire England Tel: 44433

C \& G Telecommunication Techns’ Certificate C \& G Electronic Servicing Certificate R.T.E.B. Radio/T.V. Servicing Certificate Radio Amateurs' Examination General Certificate of Education, etc.

Which one would qualify you for higher pay?

International Correspondence Schools provide specialized training courses for all these certificates, and with the help of the Schools' experienced tutors you can be sure of early success. You will have the advantage of building on your practical experience and ensuring that you have the technical knowledge so essential for success in electronics.
And the result? You'll soon be qualified in your field of electronics, and in a position to choose your opportunity.
Find out how ICS can help you. Send for our free prospectus right away.

ALL EXAMINATION STUDENTS ARE COACHED UNTIL SUCCESSFUL

NOW-COLOUR TV SERVICING COURSES

As the demand for colour TV increases, so does today's demand for trained servicing engineers. You can learn the techniques of servicing colour and monochrome TV sets through new home study courses specially prepared for the practical TV engineer.

SELF-BUILD RADIO COURSES

We'll teach you both the theory and practice of valve and transistor circuits, as well as how to service them, while you build your own 5 valve receiver, transistor portable and high grade test instruments. You build equipment of real practical use!

W.W. AMPLIFIER KITS

100 W AMPLIFIER (OVERLOAD PROTECTION INCLUDED) Designer, Texas Instruments Approved.
Matched Set 22 guaranteed Texas transistors, diode, 13 caps
32 resistors, 3 pots, choke, $2 \mathrm{~h} / \mathrm{sinks} 4 \mathrm{in} . \times 4.6$ in. $\times 1.3$ in., drilled $2 \times$ TO3, fibreglass P.C.B., construction notes.. .. 18.00
Texas $2 \mathrm{~N} 371 \overline{5}^{\circ} \quad . \quad . \quad . \quad 2 \cdot 2 \dot{5}$ Texas $2 \mathrm{~N} 3791 \quad . . \quad . \quad 350$
Imported 2N3791 2.75 Drilled h/sink 0.40
F/glass P.C.B. 0.95 Mains transformer .. 6.00 4700 mfd .63 v $1.70 \quad 1000 \mathrm{mfd} .64 \mathrm{v}$. 0.70
Power supply; $42 \mathrm{v} .+50 \mathrm{v}$. transformer, all cpts., $\mathrm{h} / \mathrm{sink} \quad . \quad 15.00$ 2 power supply kits
30W BLOMLEY (New approach to class B)
Semiconductorset .. 6.00 Resistors, caps, pots .. 1.95
30W BAILEY (SINGLE POWER RAIL)
10 transistors 5•30 Resistors, caps, pot
. $1 \cdot 30$
LINSLEY HOOD CLASS AB
MJ48I, MJ491, MJE52I, BC182L, BC2I2L, Zener 3.35
16 resistors, 10 capacitors, 2 pots
LINSLEY HOOD CLASS A (DEC., 1970, CIRCUIT)
.
4 transistors ... 1.55 Resistors, caps, po
1.80

Please state 8Ω or 15Ω for L.H. amps.
Transistor matching and mica washers at no charge.
Resistors, except power types, $\frac{1}{2} \mathrm{~W} 5 \%$. Low noise carbon film.

SEMICONDUCTORS

NEW: TIP3055 (70V, 15A, 90W) I hole mounting 2N3055 equiv. 0.60

2N1613	0.20	2N3904	0.32	BFY50	$0 \cdot 20$	IB40K20	1.60
2 N 1711	0.25	2N3906	0.32	40361	0.50	IN916	0.08
2N3053	$0 \cdot 20$	2N4058	$0 \cdot 15$	40362	0.60	IS44	0.05
2N3055	$0 \cdot 60$	2N4062	$0 \cdot 12$	MJ481	1.20	IS920	$0 \cdot 10$
2N3707	0.11	BCl07	0.12	MJ491	1.30	1 S3062	0.35
2N3708	0.07	BC109	$0 \cdot 12$	MJE521	0.72	TIP29A	0.50
2N3709	0.09	BCI25	$0 \cdot 15$	MPSA05	0.30	TIP30A	0.60
2N3710	0.09	BCI26	$0 \cdot 22$	MPSA55	0.35	TIP3IA	0.60
2N3711	0.09	BCI82L	$0 \cdot 10$	MPSU05	0.60	TIP32A	0.74
2N3716	$2 \cdot 85$	BCI84L	0.12	MPSU55	0.70	TIP33A	1.05
2N3819	$0 \cdot 30$	BC212L	$0 \cdot 12$	\| B08T20	0.60	TIP34A	2.00
BRAND	NEW	$\begin{aligned} & \text { TOP QU } \\ & \mathrm{MA} \end{aligned}$	$\begin{aligned} & \text { ALITY } \\ & \text { ILOR } \\ & \text { POS } \end{aligned}$	OMPON R ONL REE		FAST SER	VICE

POWERTRAN ELECTRONICS
2 KENDALL PLACE • LONDON • W1
WW-061 FOR FURTHER DETALS

SHORT WAVE MAGAZINE

The journal for the Radio Amateur, established in 1937 and now circulating in all English-speaking countries. In the last 28 years it has become the most widely-read radio amateur magazine in the U.K. Includes regular SWL feature and much operating news covering all bands HF/VHF. Also articles on theory, design and contruction of amateur-band equipment. At least 64 pages every month. Price $22 \frac{1}{2}$ p by order through any newsagent (direct subscription $\mathbf{£ 2 . 7 5}$ (by first class post) year of 12 issues, post free).

Our Publications Dept. also offers a wide range of books of radio amateur and SWL interest, including the international DX Call Book (published in Chicago) (£3.10), ARRL Handbook (published in USA) ($\mathbf{£ 2} \cdot \mathbf{8 0}$), World Radio/TV Handbook (published in Denmark) ($\mathbf{£ 2}-\mathbf{2 5}$), DX Zone Map (published by Short Wave Magazine) (85p). Latest editions, post free, from stock-and many others, as listed in any issue of Short Wave Magazine.

> SHORT WAVE MAGAZINE, Ltd. 55 Victoria Street • London • S.W. 1 (Tel: 01-222 5341/2)

(Counter Service, 9.30-5.15, Mon. to Fri.) (Nearest Station: St. James Park) (Giro A/c No. 547 6151)

VARIABLE TRANSFORMERS ARE ALWAYS AVAILABLE FROM STOCK AT THE LOWEST PRICES

Fully shrouded variable transformers-input 250VAC output O-260VAC
$1 \mathrm{amp} £ 5.50 \quad 10 \mathrm{amp} £ 18.50$
$2.5 \mathrm{amp} £ 3.75 \quad 12 \mathrm{amp} £ 21.50$
$5 \mathrm{amp} £ 9.75 \quad 20 \mathrm{amp} £ 37.00$
8 amp £ 14.50

Constant voltage transformer stabilises mains voltage to $\pm 1 \%$ output $240 \mathrm{VAC} \pm 1 \%$ input 240VAC $\pm 20 \%$
capacity 250 Watts
price $\mathfrak{E} 12.50$ with quantity discounts

New solid state variable voltage control input 240VAC output 25-240VAC
5 amp E 8.38
10 amp E 13.75

D54 Dual Trace Solid State Oscilloscope

Priced at $£ 160$, the D54 is only one of the low-cost Telequipment oscilloscopes.
Many other models are available (priced from $£ 30$), designed by Telequipment specifically for applications where cost is a prime consideration. Ask for a demonstration--NOW!!!

Wireless World

Electronics, Television, Radio, Audio

This month's cover. Not a fly's eye but an array of silicon photodiodes in a Siemens vidicon tube, developed for videophone use. This sensitive tube, type XQ1200, is resistant to high target illumination and has low lag - residual signal is 10% after only 50 ms .

IN OUR NEXT ISSUE

Source-follower circuits. Ten f.e.t. circuits covering virtually every possible configuration.

Crosshatch and dot generator. Inexpensive TV pattern generator using t.t.l. employing the barest minimum of components. Its main application would be as a 'built in' test equipment for colour receivers.

ibpa

niernactond Business
Press Associales
I.P.C. Electrical-Electronic Press Ltd

Managing Director: George Fowkes
Publishing \& Development Director
George H. Mansell
Advertisement Director: Roy N. Gibb
Dorset House, Stamford Street, London, SE 1
© I.P.C. Business Press Ltd, 1971
Brief extracts or comments are allowed provided acknowledgement to the journal is given.

Contents

313 Editorial Comment

314 S.S.B. Receiver Module by R. C. V. Macario

A 100 INDEX TO ADVERTISERS

Letters to the Editor

Ceramic Pickup Equalization-1 by B. J. C. Burrows
The Diagnosis of Logical Faults by R.G. Bennetts
Sixty Years Ago
Transistor Circuit Analysis (concluded) by A. J. Blundell
H.F. Predictions

Audio Sweep Generator by F. H. Trist
Announcements
News of the Month
Circuit Ideas
Elements of Linear Microcircuits—9 by T. D. Towers
New Products seen at the London Components Show
Sonic Scanning for Tubeless Television by J. J. Belasco
Books Received
Conferences and Exhibitions
Personalities
World of Amateur Radio
New Products

Volume 77 Number 1429

Al00 INDEX TO ADVERTISERS

[^0]

Imbalance of trade in U.K. electronics

Figures issued by the Department of Trade and Industry reveal that in 1970, for the first time, U.K. imports of electronic equipment exceeded exports. This was in spite of a growth of exports for the whole electronics industry of 22%. The comparative figures for imports and exports are $£ 339 \mathrm{M}$ and $£ 320 \mathrm{M}$. It is, incidentally, interesting to recall that the 1970 import-export deficit is more than the total value of capital goods exported in 1957!

The industry's imbalance was due mainly to the large increase in imports of computers and computer peripherals. Whereas exports and re-exports in this sector rose from $£ 47.5 \mathrm{M}$ in 1968 to $£ 74.4 \mathrm{M}$ last year the comparative import figures are $£ 74.9 \mathrm{M}$ and $£ 148.4 \mathrm{M}$. Indeed the export-import performance of the electronic capital equipment industry as a whole has been reversed over the past few years. Whereas it was the major contributor to the industry's balance of trade a few years ago-in 1968 the sector's surplus was $£ 16.8 \mathrm{M}$-it last year added $£ 7.8 \mathrm{M}$ to the deficit. Why is this? It is certainly not because of a reduction in the overall output of the whole industry; last year's figure was about $£ 650 \mathrm{M}$-an increase of 21%. It does, however, indicate, as the Electronic Engineering Association points out in its 1970 report, that there is a substantial demand in the computer market both in this country and overseas, "which the relatively infant U.K. computer industry is as yet unable to satisfy".

Perhaps it is unfair, therefore, to saddle the industry with this problem child which is unlikely to grow to the stature of a man despite the Government's paternal interest.

Lest it should be assumed that all the computer imports come from the U.S.A. it is worth recording that about $33 \frac{1}{3} \%$, approximately $£ 50 \mathrm{M}$ worth, came from E.F.T.A. and E.E.C. countries last year. How many of the 'European' companies supplying us are 'offshore' establishments of American concerns is unknown.

Another area of the capital goods sector which is weakening is avionics, the fortunes of which are linked so closely to the country's aircraft industry.

While it is true, as the E.E.A. says in its report, that "in all other areas the industry has maintained its usual surplus balance of trade" it is no time for complacency. The need to go into the market place (however "common"!) is greater than ever. The old idea of a pathway being beaten to our doors by those anxious to buy our wares has long since past. It is encouraging therefore to see the very active part being taken by the E.E.A. in promoting the industry's participation in overseas exhibitions. An outstanding example of this is the number of companies joining in the composite display at the Geneva exhibition, Telecom '71, being held this month during the World Radio Conference For Space Telecommunications.

The increasing complexity of electronics in, for instance, space projects or supersonic aircraft, necessitates multi-national participation to sustain the scale of research, development and investment required. It is therefore essential, if we are going to maintain our position in the world electronics market, that in any multi-national collaborative projects the U.K. should get its fair share. In the aerospace field avionics has tended to come a poor third in priorities; after aero-engines and airframes.

Advertisements:
G. BENTON ROWELL (Manager)
G. J. STICHBURY
B. STOREY (Classified Advertisement Supervisor)

Telephone: 01-928 3333 Ext. 533 \& 246.
G. DONOVAN (Classified Advertisements)

Editor-in-chief:
W. T. COCKING, F.I.E.E.

Editor:

H. W. BARNARD

Technical Editor:
T. E. IVALL, M.I.E.R.E.

Deputy Editor:
B. S. CRANK

Assistant Editors:

J. GREENBANK, B.A.
G. B. SHORTER, B.Sc.

Drawing Office:

L. DARRAH

Production:
D. R. BRAY

Integrated circuits are employed in the module which is an s.s.b. receiver less frequency selection components

by R. C. V. Macario*, B.Sc., Ph.D., M.I.E.E.

Nearly all h.f. radio transmissions have gone over, quite rightly, to single-sideband working. This is because the product detectors and low-level narrow-band transmissions of s.s.b. systems provide a near optimum voice transmission system when looked at in terms of spectrum occupancy and signal range for a given transmitter power. Experiments and discussions have taken place on the feasibility of s.s.b. transmission for m.w. broadcasts ${ }^{1}$. If the latter took place it is probable that the remaining h.f. a.m. broadcast transmissions would be changed too, so that the design of s.s.b. receivers would be of interest on a very wide scale.
Receivers for s.s.b. are complex and expensive, mainly on account of the frequency stability necessary. This means some sort of standard frequency reference has to be built into-or alongside-the receiver because product detection needs to be almost coherent. That is, the phase and frequency of the demodulating carrier must be close to that of the transmitted signal carrier, whether it be present or totally absent. Yet, unless special transmissions and corresponding receiver circuits are employed, no help can be derived from the incoming signal.

If the frequency standard reference is separated from the rest of the circuits of the receiver the remaining sections of the receiver become much simpler. This remaining circuitry may be used for many apparently differing receiver systems. Before considering such a package, or module, it is helpful to briefly review some of the variations of s.s.b. receiver design.
There is considerable literature on s.s.b. operation ${ }^{23}$, but in order to assist later discussion let us quickly note certain features. Consider signal A, shown in Fig. 1, which will be amongst other signals at the receiver input. The usual process is to arrange suitable mixing with a locally generated carrier F_{01} so that signal A falls neatly into a crystal filter passband at F_{1} also shown in Fig. 1. However, there is an immediate complexity, depending on which sideband signal A is, and whether one mixes with a carrier above or below the signal "frequency. Table 1 assists here.
Thus in Fig. 1, where A is shown as a lower sideband signal (1.s.b.) an inversion *University College of Swansea

TABLE 1
Sideband inversion and non-inversion on mixing

Incoming signal F_{A}	Mix \cdot with carrier above F_{A} (inverts)	Mix \cdot with carrier below F_{A} (non-invert)	Direct conversion
I.s.b.	product detect carrier below i.f. passband	product detect carrier above i.f. passband	product detect carrier just below F_{A}
u.s.b.	product detect carrier above i.f. passband	product detect carrier below i.f. passband	product detect carrier just above F_{A}

- Local oscillator above i.f.-reverse result for local oscillator below i.f. passband frequency

Fig. 1. Frequency chart for s.s.b. demodulation.
occurs, and the product detecting carrier F_{02} [second local oscillator (1.o.)] needs to be below the nominal i.f. passband as indicated. The second channel signal (B for example) would correspond to an upper sideband signal (u.s.b.) if it were to be demodulated satisfactorily. If on the other hand A was also u.s.b. and referred to the same frequency of 2.0 MHz -shown dotted in Fig. 1-one must either change the crystal filter or one or both of the l.o. frequencies. In order to least disturb the
receiver module described here we have 'shifted the first local oscillator to below the i.f., as indicated in Fig. 1. The frequencies shown in the diagram are written as seven figure numbers to stress the need for accurate frequency generation necessary for satisfactory s.s.b. demodulation.

For various reasons the s.s.b. receiver structure shown in Fig. 2 has almost universally become adopted. Gain is necessary in the mixer-not immediately obvious

Fig. 2. Basic block structure of an s.s.b. receiver.

SL610 R.F. AMPLIFIER

SL G12 I.F. AMPLIFIER

SL 630 A.F. AMPLIFIER

SL 640 MIXER

SL 620/621 A.G.C. CONTROL

Fig. 3. SL600 characteristics summary.
from the ratio of input and output signals -to achieve an output signal of similar amplitude to the input signal and to raise the reference signal $\left(F_{O I}\right)$ to a sufficiently high level.

For ease of design the sections of the receiver dotted in Fig. 2 should be frequency independent. Integrated circuits are largely designed to be frequency independent; they are not expensive and also give repeatable performance. In other words design with integrated circuits is almost mandatory. With this approach it is also practical to contemplate remaking amateur receivers using a module of the type described; with one part of the receiver out of the way, more time can be spent on the design of the frequency generating circuits, for example, digital frequency synthesis ${ }^{4}$.

A particularly convenient integrated device family is the Plessey Microelectronics SL600 communication series. Fig. 3 summarises the devices and some of their characteristics of interest to the present article. From these, one can recognise the position each device might occupy in the receiver module. For example, the SL610 is much more suitable as the gain controlled r.f. amplifier than the SL6 11/612 because it will withstand the maximum input signal level with no a.g.c. applied, i.e. it should have better blocking characteristics.

In the i.f. section, where the signal level is more constant, one may as well use a device with the maximum gain, i.e. SL612, unless an i.f. frequency above 10 MHz is required.

The most critical characteristic however is one belonging to the a.g.c. device, SL621; namely the input audio signal level versus a.g.c. (d.c.) voltage level. This de-

Fig. 4. Device and gain structure of receiver module.
termines the gain needed ahead of the a.g.c. pick-off point in order that signal levelling occurs as soon as the input signal rises sufficiently above the receiver or aerial noise, i.e. above $1 \mu \mathrm{~V}$. Even so, a.g.c. operation must not occur due to receiver noise, otherwise the receiver noise figure is impaired.

Receiver design

Fig. 4 shows the undotted parts of Fig. 2 redrawn with an integrated circuit device number marked in its appropriate position. Underneaih, the expected gain per stage is marked as well as the signal level and a.g.c. range available.

The following considerations indicate how the choice of module was made. Suppose we require the receiver to operate with a more-or-less constant response from about $1 \mu \mathrm{~V}$ (e.m.f.) input, then approximately 7 mV is needed after the second mixer so as to just reach the a.g.c. threshold -see SL261 characteristics. This suggests a gain of 77 dB . Using a SL610 as the r.f. amplifier, and a SL612 as the i.f. amplifier clearly does not provide sufficient gain and a second i.f. module is required. A second SL612 allows a good margin for loss elsewhere in the receiver and costs little in terms of power consumption as it is a low current unit. However, a.g.c. need not be applied to the second SL6 12 since a range of nearly $120 \mathrm{~dB}(1 \mu \mathrm{~V}$ to 1 V$)$ is available by simply controlling the SL6 10 and the first SL612 as shown. An SL630 a.f. amplifier working from the SL621 input (audio) conveniently raises the output to the 0 dBm level. The output change of level with input signal will therefore be the same as that of the SL621, namely about $4 \mathrm{~dB},(7-11 \mathrm{mV})$.

The complete receiver electronics now becomes a matter of connecting these modules together. These connections are shown in the complete receiver circuit diagram, Fig. 5. Frequency generation and filter modules are shown dotted. A prototype printed card layout is illustrated with Fig. 6. This shows a single fixed-frequency receiver centred on the marine distress frequency of 2.182 MHz . Adaption to other frequencies, etc., is described below; a few notes on the interconnection of the devices (Fig. 5) may be helpful at this point.

With pins 5 and 6 of the SL 610 strapped together internal bias is available. The input impedance is approximately $3 \mathrm{k} \Omega$ at 3 MHz , but this must be connected capacitively to the aerial tuned circuit. The a.g.c. line is connected directly to pin 7 , with some r.f. decoupling. The +6 V pin 2 should also be decoupled to pins 4 and 8 , earth. Provided the aerial tuning available is sufficient, the SL610 output can be directly connected to the first mixer, SL641. This device needs an output load from the output pin 5 to the +6 V supply. An optimum d.c. load appears to be $2 \mathrm{k} \Omega$, as the device is then quietest. A further a.c. load, the resistors to ground can then be used to match the crystal filter, if necessary. A convenient list of crystal filters is to be found in reference five. The base decoupling pin 2 needs a $0.1 \mu \mathrm{~F}$ for radio frequencies.

The two SL612 i.f. devices are connected the same as the SL610, except that pin 7

(a.g.c.) of the second i.f. device is connected directly to earth; a.c. coupling, because of biasing, is necessary between all devices, however.
The second mixer is very similar to the first SL641. Again the decoupling on pin 2 only applies to r.f. and so can be $0.1 \mu \mathrm{~F}$. The local carrier supply to each product detector should be adjusted to be about 50 mV . Note the output of the second SL641 is a preset $2 \mathrm{k} \Omega$ pot.

This allows the receiver to be adjusted for optimum signal-to-noise ratio by taking up gain variations in the preceding modules as described above. The a.g.c. device, SL621, is a unit designed specifically for s.s.b. receiver operation. It operates directly off an audio input, and not d.c. Its action is such that if the input to it drops faster than $20 \mathrm{~dB} / \mathrm{sec}$, it holds its output d.c. control voltage at whatever level it happens to be at, for a time, depending on the value of the electrolytic capacitor connected to pin 6. At the same time its response is not too
fast (C on pin 5) so that speech, rather than noise spikes control the a.g.c. The audio input signal range is nominally $7-11 \mathrm{mV}$ (pin 1). The d.c. output (pin 2) goes from 0 to about 4 V (output impedance 40Ω) so making a level meter reading point.

The audio amplifier SL630 makes use of the same audio signal as the SL621. The r.f. is decoupled by $0.05 \mu \mathrm{~F}$. The capacitances, between pins 3 and 4, and across the output, give further lowpass filtering. The output voltage level, about 1 V , is available from about a 2Ω source. This is more than sufficient to drive directly an integrated power amplifier circuit of which there are a number of types available for 2 .to 5 watt operation. A single +6 V supply of about 50 mA drives the entire module.

Receiver performance

The layout illustrated in Fig. 6, although this by no means determines the performance, it can be expected that the
performance of any reasonable layout of the circuit of Fig. 5 will be the same as now discussed.

The measurements were all made with no aerial input tuning, i.e. a signal generator, or generators connected to the input terminal. Usually a 2.7 kHz i.f. bandwidth centred at 5.2 MHz was employed. The first local oscillator was derived from an external frequency synthesizer; the product detector frequency was usually as illustrated in Fig. 6.

Sensitivity and a.g.c. characteristic: This is given in Fig. 7 for 2.182 MHz . The pre-set gain control was adjusted so that the a.g.c. 'took off' at $1 \mu \mathrm{~V}$ (e.m.f.). One notes the output remains within 3 dB for a change in input of 100 dB from a $3 \mu \mathrm{~V}$ reference level, whilst a 20 dB signal-to-noise ratio for a 1 kHz signal is available from about $2 \mu \mathrm{~V}$.
Cross modulation: With a wanted signal 60 dB above $1 \mu \mathrm{~V}$ the interference pro-

Fig. 6. A printed circuit board construction.

Fig. 7. Signal-to-noise and a.g.c. performance of circuit of Fig. 4.
duced by an unwanted a.m. (50%) signal 20 kHz off-tune, 100 dB above $1 \mu \mathrm{~V}$, was 30 dB below standard output.

Blocking: With a wanted signal 60 dB above $1 \mu \mathrm{~V}$, an unwanted carrier 20 kHz off tune reduced the wanted output by 3 dB when its level was 112 dB above $1 \mu \mathrm{~V}$.

Intermodulation: With the wanted signal 40 dB above $1 \mu \mathrm{~V}$, two unwanted signals whose difference frequency equalled that of the wanted signals had to be 80 dB above $\mu \mathrm{V}$ to produce standard output. The level of inband intermodulation was measured as -32 dB with reference to the two wanted signals.
I.F. rejection: The measurement here refers to the carrier suppression in the

Fig. 8. Aerial pre-selection and local oscillator for 20-metre band.

Fig. 9. Circuit diagram for direct conversion s.s.b. receiver.

Fig. 10. Audio filtering within circuit of Fig. 9.
first SL641. At 5.2 MHz this was 24 dB . This can be improved by forward biasing the SL641, or using a SL640, but normally one does not run óne's aerial frequency at one's i.f.!

Other i.f. frequencies may be used. The following data is of interest:

i.f. frequency	relative output (Input $10 \mu \mathrm{~V}$, no a.g.c.)
500 kHz	0 dB
1.4 MHz	0 dB
5.2 MHz	0 dB
$9 \mathrm{MHz}^{*}$	-1 dB
10.7 MHz	-3 dB
$*$ Seee reference 6	

Using a 10.7 MHz i.f. suggests using the module for v.h.f. operation. Again the following data is of interest:
aerial frequency*
sensitivity
(Local oscillator adjusted accordingly) $\mu \mathrm{V}$ (pd) for 20 dB

ed accordingly)	s / n at 1
1 MHz	1.4
3	1.4
10	1.4
30	1.6
70	2.0
100	3.6
120	4.0

*i.f. passband at 5.2 MHz
The fall in performance is mainly due to the mixer characteristics. Some selection of devices for the best operation at 100 MHz may be necessary.

Application

To adapt the module to on-the-air operation one needs to supply a pre-selection (aerial) filter and a stable local oscillator source as indicated in Fig. 2. Thus Fig. 8 gives some information for adapting the module to one of the h.f. amateur bands, e.g. 14 MHz (20 metres). A fixed tuned aerial selection circuit is sufficient, unless extremely severe local transmissions are evident. The f.e.t. local oscillator circuit ${ }^{7}$ tunes over 200 kHz and on one such model it remained within $\pm 25 \mathrm{~Hz}$ of the set frequency, sufficient for general purpose radio telephony. For other bands switching-in other similar and appropriate units is advised.

The receiver module has also been employed to monitor medium-wave experimental s.s.b. transmissions ${ }^{1}$ on 1.438 MHz (u.s.b.). Since m.w. signals are usually of the order of millivolts some 20 dB of attenuation was inserted ahead of the module and a single coil front end was employed-see Fig. 8. A local frequency generator was set to $6,638,200 \mathrm{~Hz}$, corresponding with the other frequencies shown in Fig. 5. An accurate oscillator is needed for listening here as one must remain within approximately $\pm 4 \mathrm{~Hz}$ if reception is to be satisfactory. Amplitude modulated signals can also be demodulated. At v.h.f. a lumped aerial filter may again be used similar to that of Fig. 8(a), but the local oscillator would need to be something specialbeyond the scope of this article. The module nevertheless operates satisfactorily though with a decrease in the sensitivity as discussed earlier.

Test frequency $=5.183 \mathrm{MHz}$ Local oscillator $=5.182 \mathrm{MHz}$

Fig. 11. A.G.C. performance of circuit of Fig. 9.

Avoiding the crystal filter

S.S.B. can also be directly demodulated. That is, instead of selecting the wanted s.s.b. signal with an i.f. crystal filter, and then product detecting down to audio, both steps can be carried out at the first mixer, i.e. the local carrier is practically coincident with the input signal frequency. With direct conversion receivers ${ }^{899}$ one can save both the crystal filter and corresponding crystal oscillator. In doing this, however, one introduces the following problems,
(1) i.f. gain has to be replaced by audio gain (noisier),
(2) the s.s.b. signal must be free from a second channel (i.e. not compatible with a.m., i.s.b., etc.), and
(3) it is very susceptible to harmonics of the local (first) oscillator.
Nevertheless, it is very easy to adapt Fig. 5, to a direct conversion form: Fig. 9. Thus one notes the front end SL610/SL640 is retained together with the a.g.c. device SL621. The i.f. amplifier has been replaced by a single high-gain SL630, while the second SL630 is as before. Audio filtering prior to a passive, or active, lowpass audio filter is practical by capacitively loading the SL640 and SL630 device respectively, as shown in Fig. 9. The a.g.c. performance of this circuit is as good as the previous module because both the r.f. and first a.f. amplifier can be controlled by the SL261 as shown in Fig. 10.

References

1. H. Eden, 'Perspective of replanning 1.f./m.f. broadcasting', EBU Review, Pt.A, 106, December 1967, pp.242, and subsequent issues. 2. Single-sideband issue of the Proc. I.R.E., December 1956.
2. E. W. Pappenfus, et al., 'Single sideband principles and circuits', (McGraw) 1964. 4. J. Stinehelfer and J. Nichols, 'A digital frequency synthesizer for an AM and FM receiver', IEEE Trans. BTR-15(3), October 1969, pp. 235-245.
3. P. G. Martin, 'Crystals and mechanical filters, a survey', Radio Communication, August 1968, pp 515-519.
4. D. R. Bowman, 'Amateur communications receiver', Wireless World, July, August 1969, pp 298-301, 361-366.
5. G. E. Goodwin, 'A 10 MHz VFO', Radio Communication, August 1970, pp. 528-531. 8. R. S. Taylor, 'A direct conversion s.s.b. receiver', QST, September 1969, pp. 11-14. 9. C. F. Dorey, 'A direct conversion receiver for 14 MHz ', Radio Communication, May 1970, pp. 296-299.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Ceramic pickup equalization on the stereo mixer

I have used the gramophone pickup amplifier, Fig. 3, described by Mr. Walker in his article 'Stereo Mixer' in the May issue, but have obtained rather poor results with the ceramic pickup facility. Discussions with the author have revealed that part of the trouble was due to the input resistance changing at low frequencies. With the present value of C_{6} in the emitter of $T r_{2}$ there is a small signal voltage fed back at low frequencies via R_{4} to the base of $T r_{1}$. This has the effect of modifying the input resistance and thus affects the performance with ceramic pickups, giving a rise of 3 to 4 dB below 100 Hz . A simple solution is to increase C_{6} to say $50 \mu \mathrm{~F}$ but this gives a rather extended low-frequency response with magnetic pickups. A better solution is to put a $68 \mathrm{k} \Omega$ resistor in series with R_{4} and connected to the junction of R_{9} and R_{10}. The junction of R_{4} and this $68 \mathrm{k} \Omega$ resistor is decoupled to ground with a $10 \mu \mathrm{~F} / 16 \mathrm{~V}$ capacitor. The input resistance will now be constant at $220 \mathrm{k} \Omega$ throughout the audio range.

Mr. Walker has also pointed out that as stated in the text the equalization in Fig. 3 is suitable for a source capacitance of 600 pF . This includes the capacitance of the connecting cable as well as that of the cartridge; the input time constant formed by this source capacitance and R_{4} is about $135 \mu \mathrm{~s}$. If the cartridge had a capacitance of 800 pF , for example, and was connected to the mixer with a cable of about 200 pF capacitance, this would require an effective input resistance of $135 \mathrm{k} \Omega$. In practice a $360 \mathrm{k} \Omega$ could be connected between the 'ceramic' position of the input switch and ground. Likewise for other source capacitances.
C. R. Whiteley,

Cambridge.

Recording characteristics

In his first article (May '71) on a stereo mixer, H. P. Walker repeats J. L. Linsley Hood's "suspicion" that the R.I.A.A. recording characteristic is not accurately followed below 50 Hz by most record manufacturers.

While it is true that most records contain very little material below this frequency, the major disc cutting systems (Westrex, Neumann, and Ortofon) are very carefully equalized to the R.I.A.A. curve, and if a full-range signal were to actually reach the cutting amplifier, the resulting disc would come very close ($\pm 1 \mathrm{~dB}$) to the R.I.A.A. curve.

To minimize several technical and operational problems, however, most microphones, recording consoles, and mastering channels incorporate some type of high-pass filter operating in the $30-60 \mathrm{~Hz}$ region. This filtering, which is applied to the signal before it reaches the cutting amplifier, is the reason for the lack of very low-frequency signals on a typical disc.

It should be mentioned that, within the current decade, quieter studios, better microphones and microphone suspensions, better plating, and significant improvements in mass-market Hi-Fi equipment should enable the recording system designer to include 10 more clean-andquiet hertz on his final product.
Charles Nairn,
Detroit,
Mich., U.S.A.

Pickup self-capacitance

I read with interest the letter from Mr . Burrows in your June issue, on the subject of the frequency response of ceramic pickup cartridges used with a circuit such as my simple pre-amp. There may be circumstances in which what he says is correct. However, there is another side to this argument, and in fairness to the designers of pickup cartridges (and amplifier circuits) it should be stated.

To recapitulate Mr. Burrows' argurnent, a ceramic (piezo-electric) pickup cartridge can be considered as a generator in series

Fig. 1
with a capacitance of equivalent value to its own self-capacitance. When this is used in conjunction with a high value load resistance as shown in Fig. 1, and driven from a constant displacement system, as may be supposed to be the case with R.I.A.A. recording characteristic records below some 500 Hz , the output should be predictable from the attenuation characteristics of the pickup self-capacitance and load resistance. In the case of one well known and highly regarded ceramic cartridge, used with the recommended 2.2 megohm load the output response characteristics, at l.f., should be as shown by curve (a) in Fig. 2.

In addition, since the amplitude characteristics of the recording suffer a 12 dB fall between 500 Hz and 2 kHz the treble response will be as shown by (b) in Fig. 2.

Fig. 2

However, the makers show a response curve under these conditions which is substantially flat within the range 50 Hz 10 kHz . This astonishing (?) circumstance arises as a result of the electro-mechanical design of the head in which the compliance of the cantilever mechanism, the visco-elastic mounting of the ceramic elements and the known and presumed resonant characteristics of the cartridge, stylus and arm are utilized to modify the final frequency response characteristics of the system. If this were not so, the final performance of the simple ceramic pickup valve amplifier combination would be far less satisfactory than it is, and the manufacturers of piezo-electric transducers might no longer be in business.

Unfortunately, piezo-electric elements are inherently more affected by the small amplitude, low velocity and low frequency lateral and vertical displacements which constitute turntable 'rumble' than their electromagnetic transducer counterparts. This problem is worsened by the fact that such inexpensive pickup cartridges are likely to be used, mainly, with relatively inexpensive turntables in which rumble can be expected to be more of a problem. For this reason, the satisfactory use of a ceramic cartridge with an inexpensive turntable and loudspeaker units having reasonable bass response demands the use of some form of high-pass rumble filter, and to be effective this requires an attenuation slope of at least $18 \mathrm{~dB} /$ octave
-with a turnover frequency of some 35 40 Hz . If a lesser slope is used a proportionately higher turnover frequency will be required (with consequent greater loss of bass) in order to achieve the same desired attenuation of the rumble frequencies.

The most convenient means of achieving the suggested $-18 \mathrm{~dB} /$ octave characteristic is by using an active filter having a double $R C$ 'lead' element within the loop, and a gain adjusted to give a Q of 1.4. A single $R C$ element external to the loop, and having an attenuation of 0.71 at the transition frequency of the filter, will then remove the characteristic hump of the filter and convert the -12 dB characteristic of the active element into the desired -18 dB slope. In performing this function it matters not one bit whether the passive $R C$ element is before or after the active section although for optimum overload characteristics it is preferable that it should be before.

If this passive attenuator is omitted or modified as Mr. Burrows suggests the residual l.f. hump of the active filter element will certainly augment the bass response of the pickup but at the expense of the slope of the filter characteristic, which will be reduced to -12 dB /octave (plus any l.f. attenuation due to cartridge characteristics).

Finally, if I may make a point which will perhaps put matters in perspective, the effective value of two capacitors in series is readily calculable, and in the case of the Connoisseur SCU1, which Mr. Burrows quotes, the effect of the 1500 pF series capacitor, will be to make this cartridge appear to have an internal capacitance of 176 pF instead of 200 pF . If the bass response of this unit into $2 \mathrm{M} \Omega$ with such an effective element capacitance is as bad as Mr. Burrows suggests the effect of restoring it to its original 200 pF by omitting the series capacitor is not going to work many miracles either.
J. L. Linsley Hood,

Taunton,
Som.

Audio amplifiers

I have just completed making up the modular pre-amplifier and the 20 -watt class AB amplifier (in stereo) described in Wireless World July 1969 and July 1970 and I am writing to express my thanks and appreciation for the pleasure Mr. Linsley Hood, and Wireless World, have given me in reading about and constructing these amplifiers. I get my parts from U.K., hence the delay.

I suppose I have been constructing audio amplifiers for myself and friends at odd times over twenty years. It took Mr. Hood to sell me the idea of transistors equalling valves. Frankly all commercial transistor audio amplifiers I had heard did not come up to a good valve designlike the Radford-that is, until I built Mr. Hood's design. Audibly, the Wireless World amplifiers are the best, valve or transistor, I have heard.

I was a sporadic reader of $W . W$. and came across Hood's class A by accident and read your April 1969 issue with avid interest. From then on I became a regular reader and was delighted to read, and profit by, your further articles on audio.

I hope Mr. Hood sees this, as I would certainly like my gratitude conveyed to him somehow. And thank you also. Articles such as these cannot fail to enhance your reputation.
E. MCSHERRY,

Wellington, N.Z.

Stereo techniques in Australasia

I was delighted to note an article by the esteemed E. J. Jordan on Loudspeaker Stereo Techniques in the February issue (received in New Zealand in May!) At last I feel I have read an article that looks at 'audible' stereo in the proper perspective. For many years we have taken mono speaker systems, doubled them, and reproduced stereo. And despite many theories, formidable or otherwise, aimed at improving the loudspeaker's reproduction, stereo remains largely unchanged in this respect. When a manufacturer sells a pair of speakers, he has no idea how the customer will place them. For many people stereo in its true sense does not exist.

The biggest objection to stereo must be its critical listening area. I am employed by a firm which manufactures largely 'middle class' fidelity equipment, using speaker units manufactured here, and, due in the main to the rather small size of our market in comparison to that in the U.K., these units lack some of the sophistication of imported ones.

Therefore it is the 'average' person who purchases our gear, and not dyed-in-thewool Hi-Fi enthusiasts. Because of this fact, one regularly finds speaker enclosures set up in homes in most impractical positions for satisfactory listening.

To this end, I have for some time been experimenting with a single box method of providing stereo, guaranteeing the customer an adequate listening area in his living room.

Economy being paramount, the result was an 8 ft long box (8 ft being the standard length of a single sheet of veneered board), 6 in deep, and 9 in high.

Along this length and facing forward, were placed five $6 \frac{1}{2}$ in high-compliance type speakers, with small centre cones. The total length was divided into five equal air suspension systems. A purely resistive division was used between each speaker. The result is one similar to the centre channel technique. The middle speaker's output is 50% left and 50% right, although this level is approx 25 dB down on either the left or right. The second and fourth speaker then receive $75 / 25 \% \mathrm{~L}$ and R, and are also down on level, to some point between the centre and outside speakers. This then gives an amplitude 'curve' to your sound wall. In a way this
gives increased 'width' to the inside of your polar characteristics, without altering the position from a frontal aspect. The effect of this system, though still not in my opinion the right approach to reproducing the original sound stage, is none-the-less astonishing to listen to. As with Mr Jordan's phase delay technique it is possible to stand at one end of the enclosure and be 'run over' by the train. (I in fact used a track in which an American dragster commences at one end, and disappears completely through your wall, with surprisingly little damage). The most notable feature is the increase in 'breadth' and definition, when listening to a large orchestral piece.
Retail price is approximately $\$ 110$ N.Z. (about $£ 50$ sterling). Although this was a modest unit, there is no reason why a larger system could not be built using superior units. Power handling is 15 watts r.m.s. per channel. Mounted on the wall, the system looks very attractive in today's modern, centrally heated living rooms, and can replace ye olde mantel-piece.
Garry V.Lambert,
Waihi,
New Zealand.

F.M. tuner and stereo

I was most impressed with the f.m. tuner design by L. Nelson-Jones, published in the April Wireless World, but I feel compelled to query the tuner's suitability for stereo reception or, to be more specific, the suitability of the FM-4 filters.

I think it is now generally accepted that, for good stereo performance, an i.f. bandwidth of $250-300 \mathrm{kHz}$ is required (the good old rule of thumb formula $2\left(f_{m}+f_{d}\right)$ for bandwidth in f.m. systems gives a required bandwidth of 256 kHz with a deviation of 75 kHz and maximum baseband frequency of 53 kHz). However, the manufacturer's data shows that the 3 dB bandwidth of a single FM-4 could be as narrow as 200 kHz and, if one was unlucky enough to obtain two filters which were at the minimum end of the bandwidth specification spread, the tuner would have a 6 dB bandwidth of 200 kHz , which would be ideal for mono, but virtually useless for stereo.

It could well be that the specification tolerances are wider than the actual production spread and the problem would then not arise, but I do feel that some assurance to this effect should be given, either by the author or by Vernitron, especially as the text of the article implies that the prototypes of the tuner have not actually been tried with a stereo decoder.
K. Clayson,

Redhill,
Surrey.

The aut hor replies:

The quick answer is, yes the tuner is certainly suitable for stereo use, and since the script was originally written has been tested on stereo transmissions, on which it performs well.

The reason why would be more apparent had the second half of the article been available to Mr. Clayson, in that this contains the response curve of the i.f. amplifier together with a more thorough treatment of the mode of operation of the tuner. The figures of the requirements of a stereo tuner and of the performance of the FM-4 filters given by Mr. Clayson are essentially correct, but he has overlooked one important point, namely the good limiting performance of the tuner.

This results in an effectively wider bandwidth as shown in the graph, so that at the minimum signal strength at which stereo reception would give anything like an acceptable signal-to-noise ratio, the effective bandwidth is approximately 400 kHz , or more. It was partly for this reason that the limiting threshold of $0.18 \mu \mathrm{~V}$ was set so low.
L. NELSON-JONES.

'High-quality tape recorder'

I should like to clear up two points which are causing confusion over my tape recorder design. (W.W., Nov, Dec. 1970, Jan. '71).

The components list on p. 591 December, gives the Plessey core number for T_{1} as $905 / 1 / 01613 / 008 \mu$ e; this should be 905/1/01613/108 μ e.

It is becoming difficult to obtain the Plessey cores in small numbers, however the requirement can be met from the new Mullard range as below:
$L_{1} \quad 6.25 \mathrm{mH}$ Plessey $905 / 1 / 01581 /$ $006 \mu \mathrm{e} ; \mu_{\text {eff }} 220,41$ turns $/ \mathrm{mH}$ or Mullard LA 1225 and LA1274, both numbers.
$L_{2} \quad 10.6 \mathrm{mH}$ Plessey 905/1/01581/009; $\mu_{\text {eff }} 63,84.5$ turns $/ \mathrm{mH}$ or Mullard LA1416 and LA1339.
T_{1} Plessey 905/1/01613/108 μ; ; $\mu_{e f}$ 300, 32 turns $/ \mathrm{mH}$. Nearest equivalent: Mullard LA1219 and LA 1275.
If the Mullard core is used for T_{1}, C_{29} should be 400 pF beehive trimmers.

I have given the inductance values for L_{1} and L_{2} at 1 kHz and 100 kHz respectively. Any cores capable of operating at the frequencies concerned may be used if wound to these values.

The tape heads specified were $\frac{1}{2}$ track Bogen UK202B record and replay and UL290 erase; quarter-track heads UK 207B can be used without modification, although it is better to make $C_{28} 100 \mathrm{pF}$ beehive trimmers.

The old quarter-track heads UK207 require more bias than the UK202B; for this the bias windings will need to be $120+$ 120 turns and the oscillator run from about 11 V , with C_{29} adjustable. The erase heads are all good substitutes in stereo.
J. R. Stuart,

London, W. 4.

Stereo decoder using sampling

We have been largely at cross purposes in our discussion about sample-and-hold stereo decoders. The discrepancy of 1000:1 in frequency characteristic* arose because one of us (T.P.) was considering the transmission of signals through the sampler while the other (D.E.O'N.W.) was referring to the spurious outputs caused by high-frequency signals applied to the input of the decoder. We are thus both correct in our assertions.

We have agreed that allowing the sampler to 'free-run' during mono reception can result in a degradation of the signal/noise ratio. However, changing the mark/space ratio of the sampling pulse to $1: 1$ can only, at best, give an improvement of 6 dB . As this change would eliminate any advantages of using a sample-and-hold method for stereo decoding, it is not the answer to the problem. Instead, the modifications described \dagger give a practical solution to the problem of noise during mono reception.
D. E. O'N. WADDington T. Portus.

- See letter from T. Portus, June issue, p. 283.
†See letter from D.E.O'N. Waddington, May issue, p. 233 .

Multi-core cables

Now that D.I.N. connectors are becoming standard on many items of equipment, would manufacturers make 5 -core cables readily available, and 4 -core individually screened cables available, at least on demand.

A few words, also, to users. How about creating a demand for these cables by using them whenever making up D.I.N. leads? It works out cheaper in the long run, instead of making up dozens of different single or twin-core leads.
R. Williams,

St. Albans,
Herts.

Ceramic Pickup Equalization

1-Myths against maths and measurements

by B. J. C. Burrows, B.Sc.

Almost every human endeavour accumulates a fund of information, fundamental understanding, rule-of-thumb methods, folklore and mythology. Sound reproduction has its share of all these. In particular, items like pickups and loudspeakers have a somewhat higher proportion of mythology than others.

There is one aspect of pickup operation which has more than its share of myths, but which allows an objective analysis. This is the question of the influence of the pre-amplifier input loading on magnetic and, more especially, ceramic pickups. A thorough reading of published reports, papers, books and manufacturers' operating instructions reveals a wide range of opinion. Many sources assert that the electrical loading on the pickup caused by the pre-amplifier input impedance affects the mechanical operation of the pickup by damping mechanical resonances! Thus:
'It is advantageous in all cases to apply negative feedback* to the pickup, whether electromagnetic or crystal. This may be accomplished in any conventional manner and the feedback reduces non linear distortion and the effect of mechanical resonances ${ }^{1}$.

Fig. 1. Recording correction curves. (a) R.I.A.A. (b) constant amplitude.
'Now because of the (capacitative) nature of crystal and ceramic pickups it is only necessary to connect them into a sufficiently low electrical resistance for their inbuilt correction to be almost nullified ${ }^{2}$.

The inbuilt correction referred to is incorporated into most ceramic pickups

[^1]to compensate for the difference between the real R.I.A.A. recording characteristic, Fig. 1 (a), and a true constant amplitude characteristic (b). This is achieved by allowing a broad mechanical resonance to occur in the high frequencies. The degree of equalization achieved in practice is quite good. Fig. 2 shows the output from a Sonotone 9TAHC when playing an R.I.A.A. test record.

Certain other myths on pickup operation concern the use of ceramic pickups with fully R.I.A.A. corrected magnetic input sockets on pre-amplifiers. Information on the Leak Varislope II stereo preamplifier includes 'For optimum results no additional resistors are required. The input loading $(70-100 \mathrm{k} \Omega)$ on the pre-amplifier forces this type of pickup to give approximately the same frequency characteristic as moving coil and variable reluctance pickups . . \therefore Apart from one pickup only, the Connoisseur SCU1, this recommendation is totally wrong on two major factors! The Leak information, to compound its misdemeanour, goes on to say 'If more bass is desired you should insert a $100 \mathrm{k} \Omega$ resistor in series with each live pickup input lead'. If for more bass one substitutes treble cut starting at an even lower frequency than normally this would be more accurate!

More recently, fashion has veered away from low impedance loading, bringing forth a welter of designs of f.e.t. pre-amps and other high input impedance circuits and converters, presumably because of dissatisfaction with the results of following advice such as that quoted above. In fact, now there are signs of a return to the belief that ceramic pickups (stereo and mono) must be operated into a high impedance for best results. Indeed, two recently published pre-amp designs 4,5 in Wireless World tend to perpetuate the idea by providing an input impedance of $2-5 \mathrm{M} \Omega$ for the ceramic pickup input (thus rigidly following the manufacturer's traditional recommendation).

Pickup design and operating recommendations remain almost unchanged from valve amplifier days when high input impedances were normally available. This has probably led to the belief that high impedance loading is necessary for best operation of the pickup because the manufacturers recommend it! Although
this myth, too, is widespread, there nonetheless appears to be no truth in it and I think, along with the others, it can be classified as an 'old wives' tale'.

I should hasten to add that I am not saying that loading a pickup with a high impedance is bad or wrong, but there are disadvantages with high impedance loading. References 4 and 5 are the best original transistor pre-amp circuits as yet published in Wireless World for ceramic pickups \dagger, but see also reference 3 for modifications to the Dinsdale Mk. I and Mk. II pre-amplifiers.

Fig. 2. Sonotone 9TAHC frequency response curve. (a) voltage across $2 M \Omega$ load shunted by 100 pF . (b) internal pickup e.m.f. Curve (a) can be derived from (b) by calculating the bass cut due to the $2 M \Omega$ load-which gives $3 d B$ down at 88 Hz .

It seems rather a pity to spoil the fun of the advocates of a host of 'bolt-on' goodies (f.e.t. pre-amps, impedance converters, etc., etc.) which claim to provide the necessary high- Z load for best performance but the 'old wives' tale' appears to have no foundation. This is demonstrably true by maths, measurement and listening tests. In the past it is probable that many designers have erred on the safe side in their design philosophy, preferring the devil they know ($R_{\text {load }}$ $>2 \mathrm{M} \Omega$) to the devil they don't know (equalization problems with $R_{\text {load }} \ll 2 \mathrm{M} \Omega$). Since conventional (and cheap) bipolar transistors are most conveniently used in low input impedance circuits this seems a good time to try to form an understanding

[^2]of the effects of $R_{\text {load }} \approx 10 \mathrm{k} \Omega$ on ceramic pickups.

The existing mythology can be summarized in six main points. Low impedance loading is variously said to:
(1) affect the mechanical damping and transient response of the pickup;
(2) affect the built-in mechanical equalization which depends on broad mechanical resonances;
(3) reduce the distortion;
(4) affect the separation (i.e. crosstalk);
(5) provide correct equalization into a magnetic pickup input with so-called 'velocity loading'; and
(6) alter the needle tip mechanical impedance.
What is required then is an understanding of the interaction between the electrical and mechanical parts of the pickup.

A pickup is not a simple device mechanically ${ }^{6}$; whereas the equivalent circuit of the electrical part is simple-or is it? It is generally shown as in Fig. 3.

Fig. 3. Equivalent circuit of one channel of a stereo ceramic pickup.

This is an equivalent circuit. In the real thing C is the capacitance of the ceramic bimorph within which e, the pickup e.m.f., is generated. There is no physical access to point A in the actual pickup. The pickup capacitance, C, can be measured with a conventional a.c. bridge. Typical values of C and e for many stereo pickups are shown in Table 1.
The pickup e.m.f. is measured by connecting a very high input impedance voltmeter to the pickup terminals when tracking a known groove modulation. Fig. 2 shows the variation of e.m.f. against frequency for a mechanically compensated pickup (9TAHC).

So our simple equivalent circuit consists of just two elements: a voltage source and a series capacitance. But, e is produced by mechanical motion of the ceramic element, and is thus inextricably tied up with the mechanical constants-damping,

TABLE 1

Pickup type	Capacitance $\dagger \dagger$	Output \dagger
Acos GP94/1	900pF	100 mV
BSR C1		110 mV
- Decca Deram	600 pF	30 mV
Garrard KS40A	600 pF	200 mV
Goldring CS90	900pF	50 mV
Goldring CS91E	900 pF	20 mV
Sonotone 9TAHC	800pF	55 mV
Connoisseur SCU1*	200pF	150 mV
†at $1 \mathrm{~cm} / \mathrm{sec}$ at 1 kHz , r.m.s. into $R_{\text {load }}>1 \mathrm{M}$ *no mechanical compensation in this pickup. \dagger †for each channel.		

Fig. 4. Power conversion efficiency of a stereo ceramic pickup (9TAHC).
resonances, etc. To understand the six points mentioned above, what we need to discover is whether the electrical load across the output terminals in any way affects these mechanical constants, thus altering e. To be more specific.
(a) are e and C independent of loading?
(b) is the needle tip impedance independent of load?

Should e be affected by load this would imply that a much more complicated equivalent circuit is required involving both the mechanical and electrical equivalent circuits and the degree of coupling between them.

Pickup efficiency

Although it is plausible that the electrical load might affect mechanical resonances, it depends on the magnitude of the effect. A calculation of the efficiency would give a good clue to the likelihood of appreciable coupling within the pickup.

For a good ceramic stereo pickup*, at 1 kHz with a fully modulated groove, 3 g playing weight is needed.

Thus input power to pickup $=$

$$
\frac{20 \times 3 \times 981}{10^{7} \times \sqrt{2}} \mathrm{~J} / \mathrm{s}=4.2 \mathrm{~mW}
$$

Its e.m.f. e is 1.1 V r.m.s. in series with 800 pF , and taking a load R of 160Ω, power into load
$=\frac{e^{2} R}{X_{C}{ }^{2}+R^{2}}=3.8 \mu \mathrm{~W}$
Therefore tranducer efficiency is 0.091%. That is, less than $1 / 1000$ part of the input power appears in the load. Higher and lower values of R give an even lower efficiency than 0.091%. Fig. 4 plots the variation of efficiency for three frequencies over a wide range of load. Even at 10 kHz with the optimum load the peak efficiency is merely 0.18%, i.e. less than $1 / 500$ of the input power.

This is an important result since it shows

[^3]that ceramic pickups are inefficient devices when looked at from the energy conversion point of view. So also are magnetic pickups \dagger, most microphones and a host of other transducers. With such a low overall efficiency is it reasonable to think that the mechanical damping will be affected by different values of load resistor? Obviously not, since a $1 / 1000$ th part represents an insignificantly small proportion of the total absorbed power.

It follows that the voltage generator e in the equivalent circuit depends only on mechanical factors and these are unaffected by electrical loading.

Although e is independent of the load resistance R, the voltage developed across R will depend on the values of R and the pickup capacitance, C, since they form a simple high-pass filter. This effect is simple to calculate and very simple to correct in the pre-amplifier. We may now review the six "myths" listed above.
(1) The transient response is unchanged.
(2) The mechanical equalization is unaffected.
(3) Distortion is unchanged.
(4) Separation is unaffected.
(5) Velocity loading does work with certain special precautions ${ }^{3}$.
(6) Needle tip mechanical impedance is unchanged.
To some this may come as a surprise and some readers may find mere calculations unconvincing, and, like the author, prefer a practical demonstration to show that the theoretical model upon which the deductions were based was a valid representation of the real thing.

Measurements were carried out with two different pickups-a Sonotone 9TAHC and a Garrard EV26. The important differences between these pickups are that the 9TAHC has a high capacitance and low

[^4]output, but the EV26 has a low capacitance and a high output. The output from the pickup was fed to a microswitch so that it could be switched into an $R_{\text {in }}=10 \mathrm{M} \Omega$ amplifier of gain -1 or straight into a resistor of $10 \mathrm{k} \Omega$ as in Fig. 5.

Fig. 5. Test circuit for high/low impedance loads.

With switch S_{1} up, the pickup 'sees' the $10 \mathrm{M} \Omega$ amplifier input resistance but the amplifier output is fed to the 'scope via a $C R$ circuit of 1000 pF and $10 \mathrm{k} \Omega$. With the switch down, the pickup is directly loaded by a $10 \mathrm{k} \Omega$ resistor. Therefore, in each case the output to the oscilloscope is taken from $C R$ circuits of $f_{0}=16 \mathrm{kHz}$ but in the first case the transducer is loaded by $10 \mathrm{M} \Omega$ and the second by $10 \mathrm{k} \Omega$. This method of comparison eliminated rumble, and accentuated the distortion and resonances because of the $6 \mathrm{~dB} /$ octave rising frequency response up to 16 kHz . An EMI test record TCS101 was used which consists of constant frequency bands of L only and R only at 20 spot frequencies from 30 Hz to 20 kHz . During the comparison tests, differences were looked for in the output voltage amplitude and waveform throughout the whole range of the audio frequency spectrum down to $60 \mathrm{~Hz}^{*}$ while S_{1} was operated rapidly to change from high- to low-impedance loading.

The first clear fact to emerge from the comparison test was that mechanical equalization was completely unaffected when changing the load, and was also unaffected by making the other channel o.c. or s.c. The second clear fact was that the stylus mass/record compliance resonance dominated the distortion and it also was unaffected by the loading of either the test channel, or o.c. or s.c. on the other channel. Most ceramic pickups have a broad hump in the frequency response at about 8 kHz caused by the piezoelectric element. On the face of it this resonance would be the most readily affected by electrical damping if electrical damping is significant since it is the actual ceramic element which is resonating thus giving the closest coupling to the output. But this too was unaffected. In fact no change in waveforms at all occurred on switching from high to low load.

This would have been a perfect experi-

[^5]Fig. 6. Superimposed waveforms at $6 \mathrm{kHz}(\mathrm{a})$, 18 kHz (b) and 20 kHz (c) taken at different points on the test record and using the arrangement of Fig. 5.

ment from which beautifully coincident oscillograms should have been produced, but for one thing. The distortion on any one test frequency varied continuously. Oscillograms would have shown this variation, and not the lack of it at the instant of load switching. Fig. 6(a), (b) and (c) show superimposed waveforms at 6,18 and 20 kHz respectively taken at different circumferential points on the record. Despite this difficulty, it was feasible by eye to check that no waveform change took place at the instant of load switching. Incidentally, the waveform fluctuations kept in step with the record rotation so they are probably caused by record pressing aberrations,
warps or changes in the hardness of the vinyl.

These measurements have confirmed the calculation. However, a listening test is always the final deciding test with audio problems since subjective assessment often reveals unexpected shortcomings. Comparisons made over a period of many months in day-to-day usage of a record player using alternate high- and lowimpedance loading revealed that there is no detectable difference. The amplifier was frequency corrected as given in Fig. 8(b) of ref. 3 when the low-impedance load configuration was used, i.e. bass lift of $6 \mathrm{~dB} /$ octave starting at 500 Hz was applied
to compensate for the bass cut due to the $200 \mathrm{k} \Omega$ input resistance.

Reasons for low efficiency

The calculations which produced Fig. 4 use the 'black box' approach, in which the 'innards' of the box (i.e. the pickup) are ignored, and only the input-output characteristics considered. The calculations show that whatever load is used the overall efficiency is very low. This fact allows many important deductions to be made without recourse to detailed knowledge of the contents of the box. For example, the needle tip impedance must be unaffected by electrical load and, with practically all magnetic pickups apart from sum and difference types, all the other factors mentioned earlier are unaffected. A plausible argument that might be raised at this point is that the low overall efficiency with ceramic pickups is caused by very weak coupling between the needle cantilever and the ceramic element, but the element might still be efficiently coupled to the electrical output terminals. But, the pickup series capacitive reactance precludes a high efficiency through limiting the current into the load, except at very high audio frequencies.

At these high frequencies, the ceramic element needs to be well damped to avoid pronounced resonances when the pickup is used with a high load resistance, and indeed the usual construction of ceramic pickups does include one or more damping blocks mounted directly on the bimorph, which makes it well damped, independent of any loading effects. It would be unworkable in any case to expect the electrical load to damp correctly the mechanical parts, such damping being inherently very frequency dependent. Thus, efficiency is low at high frequencies because of damping, and it is low at low frequencies due to the series reactance of the self capacitance. Tuning out the reactance at, say, 100 Hz with a high- $Q 2500 \mathrm{H}$ inductor might raise the efficiency to 4%, but give a very peaky frequency response!

The same type of argument can be used for magnetic pickups although different in detail. A magnetic pickup would be very inefficient at low frequencies owing to the very low e.m.f. and at high frequencies where the efficiency might be high, damping and the rising series reactance ($X_{L} \infty f$) once more work against this.

The requirement of aperiodic response from a vibrating system is in direct conflict with efficiency, and this is the main feature which automatically precludes high conversion efficiency from a gramophone transducer be it ceramic, moving-coil, variable reluctance or even strain gauge! Thus, interaction between electrical load and mechanical performance is to all intents and purposes negligible.

Choice of pickup operating conditions

Having established that the pickup loading has no influence on distortion, needle impedance, separation etc., the designer is free to choose the simplest and best operating circuit for the ceramic pickup.

High impedance circuits are very popular but there are many difficulties. All the pickups in Table 1 need at least $4 \mathrm{M} \Omega$ to put the turnover frequency to 50 Hz or below and the SCU1* needs $16 \mathrm{M} \Omega$! High input impedance transistor pre-amplifiers are inconvenient, prone to noise and hum pick-up and need f.e.ts or multi-transistor bootstrapped input stages. No conventional high-impedance circuit deals satisfactorily with the better quality ceramic pickups, particularly the Connoisseur SCU1, because the bass turnover frequency is too high. Also a "tone balance" type of tone control circuit is needed to provide the correct treble lift. Ceramic pickup input stage design will be more fully examined in Part 2 of this article.

Fig. 7. Basic circuit for equalizing any ceramic pickup.

Low impedance loading suffers from none of these disadvantages. All equalization can be achieved around one transistor (see Fig. 7) and the circuit can be easily adapted for any of the pickups listed in Table 1. The pre-amplifier merely has to provide sufficient bass lift to counteract the bass cut due to the low input impedance, and the overall frequency response can be held flat to well below 50 Hz ; better than with a $1-2 \mathrm{M} \Omega$ load in fact! Rumble filtering can be designed into the single stage as well to reduce the very low-frequency noise. Allowance can be made for the absence of mechanical compensation in the Connoisseur SCU1, since tone balance adjustment is a feature of the virtual earth feedback amplifier, and is achieved by varying one component- R_{1}.

Conclusions

1. Pickup load impedance has no effect on the in-built mechanical compensation, transient performance, distortion, separation, etc.
2. Much published information on this subject, including amplifier manufacturers'

[^6]operating instructions, is often illinformed to the point of absurdity.
3. High-impedance loading does not automatically cure all of the equalization problems particularly the low capacitance types and the SCU1.
4. Decompensation circuits as in ref. 3, (Figs. 12 and 13) arc needed when operating most pickups (except SCU1) into magnetically corrected pre-amplifiers.

References

1. 'Radio Designers Handbook'. Ed. LangfordSmith, page 743. Ref. 220 quoted in this paragraph is E. O'Brien, 'Hi-Fidelity Response from Phonograph Records', Electronics, March 1949.
2. Walton J. 'Pickups, the key to Hi-Fi', Pitman. Chapter 5, page 56.
3. Burrows, B. J. C. 'Ceramic Pickups and Transistor Pre-amplifiers', Wireless World, February 1970.
4. Linsley-Hood J. L.. 'Modular Pre-amplifier Design', Wireless World, July 1969.
5. Linsley-Hood J. L., 'Simple Audio Preamplifier', Wireless World, May 1970.
6. Kelly S., 'Stereo Gramophone Pickups', Wireless World, December 1969.

Back Issues

Readers who missed earlier issues of this volume may like to know that copies of the January and March to June issues this year are still available price 27 p each, including postage, from the Back Numbers Dept, Dorset House, Stamford Street, London S.E.1. The September and November 1970 issues are also still available.

For the benefit of readers wishing to construct projects described in issues now out of print we can supply sets of pages of the following articles at $12 \frac{1}{2}$ p each.

May 1970

Low-cost Horn Loudspeaker System by "Toneburst"
Simple Audio Pre-amplifier by J. L. Linsley Hood

June 1970

Transistor Tester by D. E. O'N. Waddington Crystal Oven and Frequency Standard by L. Nelson-Jones
December 1970
High Quality Tape Recorder-2 by J. R. Stuart Simple Class A Amplifier and Modular Pre-amp by J. L. Linsley-Hood
February 1971
New Approach to Class B Amplifier Design by Peter Blomley
Stereo Decoder using Sampling by D. E. O'N. Waddington

The Diagnosis of Logical Faults

by R. G. Bennetts*, B.Sc., M.Sc.

Abstract

One of the problems that the designer and user of logical systems is confronted with, is that of testing the logical functioning of the circuits within the system. The procedure is usually split into two main processes-namely a simple go/no go test followed by, in the event of a no go decision, a more thorough analysis to determine the location of the fault. The former is known as fault detection whereas the full detection and location process is termed diagnosis. It is the purpose of this series of two articles to illustrate, through the use of examples, some of the techniques that have been developed to assist in determining the necessary tests and to comment on their advantages and disadvantages.

The processes for detection and location of faults occurring at circuit level, i.e. printed circuit board or sub-assembly level, have always been rather complex and the pre1960 logic designer was usually left to his own devices when it came to their specification. This led to a number of ad hoc techniques such as exhaustive testing, special test rigs, the provision of test points positioned on the actual board, or as in the case of digital computers, special diagnostic programmes usually based on checking the order code and assuming that this would indicate full operational status of the central processor unit. As the complexity of the circuits increased, it became apparent that the techniques in use were not capable of providing full checkout of the system, or in the case of exhaustive testing, would take too long. Associated with this was areas of operational uncertainty leading to a lack of confidence in the finished design.
Fortunately, about this time (1960), the theory behind the design of logical networks was becoming consolidated and logic designers were beginning to realize the potential of formalizing their logic requirements and using the algorithmic reduction techniques. This increased use of switching theory, as it is now known, suggested ways in which the circuits could be fully tested without exhaustive testing. It was also found that algorithms that had been developed for minimizing the logical equations could be adapted and used in the selection of the minimal number of tests required to provide diagnostic information. Consequently, a number of formal techniques for determining the necessary tests for detection and/or location of faults has evolved and this paper seeks to explain how these techniques are applied and what their restrictions are. Some of the restrictions are common to all techniques and the next section contains details of these together

[^7]with definitions of the terminology of diagnosis.

General restrictions and definitions

The type of faults that can occur within a logical circuit can be classified into two groups-logical and non-logical. Among the logical faults is included such types as signal lines being stuck a logical 1 or logical 0 . These stuck-at-1, stuck-at-0 types are usually referred to as $s-a-1, s-a-0$ respectively and can result from open- or short-circuit connections, input transistor malfunction, etc. The logical fault group can be further sub-divided into single fault only, multiple faults or intermittent faults. In general, the diagnostic techniques are designed to cover single faults with limited coverage of multiple faults. The intermittent fault is extremely difficult to diagnose using automatic techniques, and the usual approach is to continually re-cycle the diagnostic test set until the fault recurs and is successfully diagnosed. Note that the occurrence of a logical fault causes the circuit to still function as a completely logical circuit, albeit incorrectly and it is usual to refer to the 'good' circuit and the many faulty circuits.
The non-logical fault group contains all those faults that are not included in the logical group and this includes power rail failure, ground plane incompatibilities, crosstalk, incorrect wiring etc. Such faults

Fig. I. Fauit masking through redundancy.
may give rise to a logical malfunction, but the diagnostic test set is limited to discovering the logical effect of the fault, and not its cause.
A test on a logical circuit is a defined input configuration that will produce a defined output under the no-fault condition. If the output is not correct, this indicates the existence of a fault and in general, one test is not sufficient to completely cover all postulated faults. This implies therefore that one must seek a set of tests, called the diagnostic test set (d.t.s.) that will cover all the postulated faults and in the limit, all input configurations (exhaustive testing) may be used. There is an obvious disadvantage here in that for n input variables, there are 2^{n} tests and it is this exponential proliferation of tests that quickly leads to impractical diagnostic test sets.
A further general restriction is that the circuits should contain a minimal amount of redundant logic. In some cases such as in the avoidance of races and hazards, redundant logic is incorporated into the circuit and a fault occurring within the redundant logic may not be observable at an output terminal unless the signal lines in the redundant-logic are brought out to an accessible observation post such as the edge connector of a printed circuit board or a test point. If these lines are not accessible, then the faults cannot always be detected, let alone located. A prime example of this occurs in majority voting circuits in which redundancy is deliberately introduced to increase the reliability and diagnosis techniques, for this class of circuit has to make use of extra test points or outputs.

A further effect of redundancy is that in some cases a fault occurring in the redundant element can mask other faults occurring in the non-redundant elements. This is illustrated in Fig. 1.
The function realized here is given by:

$$
z=\bar{a} \bar{c}+b \bar{c}+a b
$$

and either by Boolean manipulation or Karnaugh mapping, it becomes obvious that the $b \bar{c}$ term is redundant. This means that G_{2} is a redundant gate. Consider now the effect of a s-a-1 fault on the output of G_{2}. This will cause the output z to always be 1 and will mask $\mathrm{s}-\mathrm{a}-0$ faults occurring on either G_{1} or G_{3} outputs. Note also that no input configuration can be found to diagnose the G_{2} output $\mathrm{s}-\mathrm{a}-1$ fault since this would
entail establishing a test that simultaneously set G_{1}, G_{2} and G_{3} outputs to $0: a=b=\bar{c}$ $=0$ will achieve this, but it is not known whether the s-a-1 fault is occurring on G_{1}, G_{2} or G_{3} output. This leads to the conclusion that s-a-1 faults occurring on G_{1}, G_{2} or G_{3} are indistinguishable in that there is no input configuration that is capable of differentiating between them.
One other feature of G_{2} is that the other fault, G_{2} output s-a-0, is completely undiagnosable since there is no input configuration that will simultaneously attempt to create a 1 on G_{2} output and a 0 on G_{1} and G_{3} outputs.
Before leaving this section, it is as well to define the circuit classification terms combinational and sequential. The definitions are as follows:

Combinational circuit:

Logic circuit in which the output(s) obtained from the circuit is solely dependent on the present state of the input.

Sequential circuit:

Logic circuit in which the output(s) obtained from the circuit is not only dependent on the present inputs, but also the past inputs. This implies storage and feedback of previous input conditions.
These two types of circuit are illustrated diagrammatically in Figure 2.

COMBINATIONAL CIRCUIT

SEQUENTIAL CIRCUIT

Fig. 2. Models for combinational and sequential circuits.

Testing procedures

There are two main approaches to the testing of logical circuits. The first, termed multi-flow uses the response of the $(j-1)^{\text {th }}$ test to determine the $j^{\text {th }}$ test. This involves the use of certain criteria and these are enumerated in a later section (that dealing with partitioning).
The other approach, termed single-flow does not have this facility and consists instead of a pre-defined set of tests, all of which must be applied before any decision can be made. Generally, multi-flow procedures are more efficient and in some cases, can allow very rapid analysis as to the state of the circuit. Single-flow procedures are usually easier to implement, however, and provided an optimum set of tests can be derived, can often be more economical.
Both procedures lend themselves to automatic test systems, the basic configuration

Fig. 3. Automatic test system.
for which is shown in Fig. 3, and the testing tape will either contain the pre-defined set of tests (single-flow) or criteria details (multi-flow).
Alternatively for the multi-flow procedure, the test tape can contain tests that have been pre-determined from a computer simulation of the circuit-under-test. The idea of simulation has become quite useful as far as sequential circuits are concerned, but simulation does carry its own problems of. course.

Discussion of the diagnosis technique

The remainder of this paper is concerned with a discussion of four techniques that are now in use. The aim of each is to produce a satisfactory set of tests that can be applied to a circuit and analysis of the output sequence enables either the detection or full diagnosis of a fault if it exists. Each technique will be discussed in general terms and then applied to an example-the same example being used in all cases. In this way, it is hoped that an effective comparison may be made. For the purpose of establishing the concepts behind the technique, the example is kept relatively simple, i.e. a pure combinational circuit, but the extension or otherwise into the sequential circuit field will be indicated. The postulated faults will be restricted to single $\mathrm{s}-\mathrm{a}-1, \mathrm{~s}-\mathrm{a}-0$ type for all techniques. Again, this is so as to not obscure the conceptual detail, but bear in mind that this is usually a natural limitation of the technique anyway. The four techniques that will be studied are: Fault matrix; path sensitizing; boolean difference; and partitioning.

Of these four, the first three are primarily used to produce a test set suitable for use in single-flow testing procedures, whereas the fourth is more applicable to the multi-flow technique.

Fig. 4. The circuit used to illustrate the various techniques of diagnosis.

The problem is this: Given the circuit shown in Fig. 4, and assigning each signal transmission path $C_{1} \rightarrow C_{8}$ as shown*, determine a minimal or near-minimal (optimal) set of tests that may be applied to the input terminals such that analysis of the resultant output sequence will successfully
(a) detect or
(b) detect and locate the single faults of s -a-1 or $\mathrm{s}-\mathrm{a}-0$ occurring on each connection.
The circuit itself does not contain redundant elements (although this results in a race on C_{6} and C_{7}); it is not symmetrical and it contains a variety of gate types.

1: The fault matrix

The fault matrix F relates a set of tests to their associated faults and the entries within F are the output values resulting from the defined input conditions with the defined fault. In the case of the circuit of Fig. 4, there are three input terminals and therefore eight different tests, termed $t_{0} \rightarrow t_{7}$. The 16 faults $f_{1} \rightarrow f_{16}$ that are postulated are s-a-0, s-a-1 faults occurring on the eight connections $C_{1} \rightarrow C_{8}$ and are referred to as $C_{1} / 0, C_{1} / 1$, $C_{2} / 0$ etc. to denote $C_{1} \mathrm{~s}-\mathrm{a}-0, C_{1} \mathrm{~s}-\mathrm{a}-1, C_{2}$ $\mathrm{s}-\mathrm{a}-0$ etc. Thus the matrix in this case is an 8 -row by 16 -column matrix with an extra column $\left(f_{0}\right)$ to denote the output under the no-fault condition. The entries within the matrix can be determined either by hand computation or more usually by means of a computer simulation of the circuit. The F matrix for the example circuit is shown in Fig. 5.

We will consider initially, the problem of fault detection. The F matrix as it stands is difficult to manipulate and a further matrix G_{D} is formed by comparing each fault mode with the no-fault column and entering a 1 if there is a difference between the entries on the same row. Expressing this more formally:

For all $0<i<7,1 \gtrless j \gtrless 16$, the $t_{i} f_{j}$ entry $=1$,
if and only if $t_{i} f_{0} \oplus t_{i} f_{j}=1$
where \oplus denotes the Boolean exclusive OR operator.
The G_{D} matrix for the example circuit is shown in Fig. 6 and the no-fault column is not now present.
Examining the G_{D} matrix, we see that for any one test, a number of faulty conditions is usually identified. For example, if we apply t_{1} to the circuit and the output is incorrect, i.e. O, then this indicates that a fault is present and that the fault is one of five- $C_{1} / 1, C_{2} / 1, C_{4} / 1, C_{7} / 0$ or $C_{8} / 0$. Remembering that we are only interested in a go/no go check at this stage, we wish to select a minimal set of tests such that the outputs will, if correct, enable us to say that none of the faults $f_{1} \rightarrow f_{16}$ are present. This problem of minimal covering is identical to the selection of prime inplicants in minimization of combinational logic and the solution to both problems is the same,

[^8]| $a b c$ | test | f_{0} | $\begin{gathered} f_{1} \\ c_{1} / o \end{gathered}$ | $c_{1}^{\boldsymbol{f}_{2}} / \boldsymbol{f}$ | $\stackrel{f_{3}}{c_{2} / 0}$ | | $\begin{gathered} f_{5} \\ c_{3} / o \end{gathered}$ | $\begin{gathered} \boldsymbol{t}_{6} \\ C_{3} / 1 \end{gathered}$ | $\begin{gathered} f_{7} \\ c_{4} / 0 \end{gathered}$ | $C_{8}^{f_{8}} / 1$ | $\stackrel{f_{9}}{c_{5} / 0}$ | $\begin{aligned} & f_{10}^{1} \\ & C_{5} / 1 \end{aligned}$ | $\begin{gathered} f_{1} \\ c_{6} / 0 \end{gathered}$ | $\stackrel{f_{12}}{C_{6} / 1}$ | $\begin{gathered} f_{13} \\ c \\ \hline \end{gathered}$ | $\begin{gathered} f_{14} \\ c_{7} / 1 \end{gathered}$ | $\begin{gathered} f_{15} \\ C_{8} / 0 \end{gathered}$ | $\stackrel{f_{16}}{C_{8} / 1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 000 | t_{0} | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | '1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
| 001 | t_{1} | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
| 010 | t_{2} | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 |
| 011 | t_{3} | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 100 | t_{4} | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 101 | t_{5} | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 110 | $t_{\text {b }}$ | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | , | 1 | 0 | 1 |
| 111 | t_{7} | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |

Fig. 5. The fault matrix F for Fig. 4.

	$\left(f_{0} f_{f}\right)$	$\left(f_{0} f_{2}\right)$	$\left(f_{0} f_{3}\right)$	$\left(f_{0} f_{4}\right)$	$\left(f_{0} f_{5}\right)$	$\left(f_{0} f_{6}\right)$	$\left(f_{0} f_{7}\right)$	$\left(f_{0} f_{\mathrm{B}}\right)$	$\left(\boldsymbol{f}_{0} \boldsymbol{f}_{\mathrm{g}}\right)$	$\left(f_{0} f_{10}\right)$	$\left(f_{0} f_{11}\right)$	$\left(f_{0} f_{12}\right)$				$\left.f_{0} f_{16}\right)$
t_{0}		1											1		1	
t_{1}		1		1				1					1		1	
t_{2}		1	1		1	1	1		1	1		1	1	1	1	1
t_{3} t_{4}	1	1	1	1			1		1			1		1		1
t_{5}	1			1			1		1			1		1		1
$t_{\text {t }}$			1								1				1	
t_{7}	1		1								1				1	

Fig. 6. The detection matrix G_{D} for Fig. 4.
i.e. the use of the Quine-McCluskey algorithm.
The first requirement is to determine the essential tests. These arise if a particular fault is detectable only by one test and this amounts to scanning G_{D} for single entry columns. If we do this, we see that $f_{5}\left(C_{3} / 0\right)$ can only be tested by t_{3}. Similarly, we require t_{2} for f_{6}, t_{1} for f_{8} and t_{2} for f_{10}. The essential tests therefore are t_{1}, t_{2} and t_{3} and these will cover not only the faults already mentioned but also most of the other faults. In fact, f_{1} and f_{11} are the only faults now requiring cover, and the addition of t_{7} to the three essential tests will complete the cover. One possible detection test set therefore (in this case, the minimal) is $t_{1} t_{2} t_{3}$ and t_{7} and in terms of the input/output values $a b c / z$, the test set is $001 / 1,010 / 1,011 / 0,111 / 1$. When these input values are presented sequentially to the circuit, any deviation from the defined output sequence will indicate the existence of an error. The next step is to locate the error down to the actual gate and in order to determine this, a different matrix G_{L} is formed.

The G_{D} matrix was based on indicating differences only between the outputs of the no-fault circuit and all other circuits. For full diagnosis, we wish to be able to differentiate between all the circuits and this means that not only do we compare $f_{j}, 1 \gtrless j$ $₹ 16$ with f_{0}, but also with $f_{k}, 1<k<16$ where $k \neq j$. This will create a much larger (column-wise) matrix, but subsequent treatment is the same as for G_{D}. Expressed formally;

For all 0 ₹ $i ₹ 7,0<j ₹ 16,0<k$ $₹ 16, j \neq k$, the $t_{i} f_{j k}$ entry $=1$ if and only if

$$
t_{i} f_{j}+t_{i j k}=1
$$

The G_{L} matrix is not shown here since it is rather large (8 rows $\times 136$ columns*) but some initial degree of simplification can be applied by noting the indistinguishable fault sets from G_{D}. Referring to Fig. 6, we see that $f_{7}, f_{9}, f_{12}, f_{14}$, and f_{16} are all detectable

[^9]with the same three tests t_{3}, t_{4} or t_{5}. This means that we cannot tell which of the five has occurred and there is no point in forming the $\binom{5}{2}$ columns that they represent. Similarly with ($f_{6} f_{10}$) and usually the only means of differentiating between indistinguishable faults is by the use of extra test points or access via terminal pins. This does mean that allocation of test points can now be made on a definitive basis, and not intuitively as is sometimes the case.
The formidable size of the G_{L} matrix tends to severely limit its use in deriving full locational test sets and this also applies to a lesser extent to the G_{D} matrix. It is a useful approach, however, and does serve to illustrate quite clearly the concepts of essential tests and indistinguishable faults. The example chosen is of necessity very simple. A more sophisticated sequential circuit can be accommodated within the fault matrix framework provided the entries in F can be ascertained. This normally requires a full computer simulation and the entry will possibly be an output sequence rather than a single 1 or 0 . Multi-output circuits can also be handled simply by writing the output set in binary (or decimal equivalent) into the F matrix and proceeding as before. In this case, the exclusive OR operation is applied to corresponding bits in the output word.

2: Path sensitizing

The basic technique of path sensitization relies on three processes:
(a) The postulation of a known fault at a known location.
(b) The propagation of the fault from its location to one or more of the primary outputs via a sensitive path, i.e one along which any change in the logical value of the fault will be reflected in a corresponding change at the primary output. This is called the forward-trace phase.
(c) Implicit in the forward-trace phase is the setting up of other elemental inputs and outputs and these can only be established by their predecessors-in the limit this
being the primary inputs. This process is termed the backward-trace phase and the final set of primary inputs constitute the necessary test configuration for the postulated fault.
In order to clarify the technique, we will consider the fault $C_{4} \mathrm{~s}-\mathrm{a}-1$ in the example circuit of Fig. 4.

Forward-trace phase: The first step is to determine through which gates the fault may be propagated and initially $C_{4} / 1$ can only affect the output of G_{4}. In order to do so, C_{5} must be held at 1 such that if C_{4} is s-a-1, C_{7} becomes 0 . If C_{4} should be 0 and the fault is not apparent, then C_{7} will be 1 . The effect of the fault has now been propagated to C_{7} and again a search is made to determine through which gates the effect may be further propagated. In this case G_{5} is the only candidate and we note that if C_{7} is 0 , then provided C_{6} is held at 0 , the output C_{8} will be 0 , and will indicate the existence of the fault, since the output under the no-fault condition will be 1 . The effect of the fault has now been driven to an observable primary output and this completes the forward-trace phase. Before proceeding with the backward-trace phase, a comment about the terminology is in order. A 'sensitive' input to a gate is usually termed the control input and the other inputs that are held at some level, the static inputs. In general, for an n input gate, there are ($n-1$) static inputs and one control, but in some cases referred to as reconverging fanout cases, there may be more than one control input.

Backward-trace phase: The backward-trace phase is essentially the establishment of the static inputs that were determined during the forward-trace phase and in the limit this will in volve the primary inputs. In the case of $C_{4} \mathrm{~s}$-a-1, the static inputs were C_{5} held at 1 and C_{6} held at 0 . Also required of course is that C_{4} should be 0 in the correctly functioning circuit. Let us now examine the implications of these three requirements. (1) C_{5} held at 1 .

Logically $C_{5}=C_{1}+C_{3}$, therefore the permissible alternatives are:

$$
C_{1} C_{3}, \bar{C}_{1} C_{3} \text { or } C_{1} \bar{C}_{3}
$$

(2) C_{6} held at 0 .

Logically $C_{6}=C_{1} C_{2}$, therefore the permissible alternatives are:

$$
\bar{C}_{1} \bar{C}_{2}, \bar{C}_{1} C_{2} \text { or } C_{1} \bar{C}_{2}
$$

(3) C_{4} to be 0 .

Logically $C_{4}=C_{1}+C_{2}$, and there is only one valid alternative:

$$
\bar{C}_{1} \bar{C}_{2}
$$

It now remains to select a combination that is valid for all three circumstances and $\bar{C}_{1} \bar{C}_{2} C_{3}$ is the only one that satisfies this. Consequently 001 on $C_{1} C_{2} C_{3}$, i.e. t_{1}, is the only test that will detect $C_{4} / 1$ and this can be verified by reference back to the G_{D} matrix of Fig. 6 and looking at the f_{8} column. The sensitive path in this case is via G_{2}, G_{4}, and G_{5}, with G_{1} and G_{3} acting as staticizing gates as shown in Fig. 7.

Associated with this technique is an allied process that will determine what faults a particular test input will detect. It is not

Fig. 7. The sensitive path and fully assigned circuit for $C_{4} s-a-1$.
proposed to describe this in detail, but it consists basically of identifying the control and static inputs on the gates for a fully assigned circuit, i.e. one in which the true values of all the transmission lines under the defined input condition is known. From this knowledge, each line can be subjected to certain criteria to determine whether or not a fault will be successfully propagated to a primary output.
Also it is more usual to integrate the forward- and backward-trace phases such that if inconsistencies occur, i.e. if no valid combination can be found to suit all static requirements, then they may be recognized earlier, thus saving unnecessary computation.

In summary therefore, the process consists of postulating a fault, determining the necessary test input, deriving all other faults that such a test will detect and then repeating the process for another fault not yet covered until all faults are included. If this is conducted on the example circuit of Fig. 4 such that the first fault postulated is $f_{1}\left(C_{1} / 0\right)$ then the three tests t_{4}, t_{5} or t_{7} will be identified. A decision must now be made as to which of these three to select and the only basis for this is to compute the number of faults each test will detect and select that one that detects the greatest number*. In this case t_{4} and t_{5} both detect seven faults whereas t_{7} only detects four. If we arbitrarily chose t_{4}, the next fault (proceeding numerically from $f_{1} \rightarrow f_{16}$) will be $f_{2}\left(C_{1} / 1\right)$. Again, three tests are identified $-t_{0}, t_{1}$, and t_{3} - and of these t_{3} would be selected. Proceeding in this manner, the final test set would be $\left\{t_{4}, t_{3}, t_{2}, t_{1}, t_{7}\right\}$.
This result highlights one of the three major disadvantages of the sensitive path approach - namely that the essential tests cannot be predetermined and this can lead to a non-minimal test set. (In the case of the example circuit, the minimal test set is given by $\left\{t_{1}, t_{2}, t_{3}, t_{7}\right\}$). The second is that the process is only suitable for deriving a detection test set, rather than a fulldiagnostic set and the third is that it is very difficult to apply this technique to sequential circuits since the forward- and backward-trace phases tend to become rather complex due to the overall feedback that occurs.

[^10](to be concluded next month)

60 Years Ago

July, 1911. This issue of Wireless World's predecessor, The Marconigraph, included an article (originally a lecture to the Royal Institution of Great Britain) entitled 'The Practical Development of Radiotelegraphy' in which Commendatore G. Marconi reviewed the current state of the art and Figs 1 and 2, reproduced photographically from the article, show a transmitter and receiver of the time. Also described in the article was a disc discharger (Marconi patent 1907) which allowed a much improved transmitter. Fig 3 shows the apparatus which was described by Marconi as follows:
"The apparatus shown consists of a metal disc a having copper studs firmly fixed at regular intervals in its periphery and placed transversely to its plane. This disc is caused to rotate very rapidly between two other discs b by means of a rapidly revolving electric motor or steam turbine. These side discs are also made to slowly turn round in a plane at right angles to that of the middle disc. The connections are as illustrated in the figure. The studs are of such length as to just touch the side discs in passing, and thereby bridge the gap between the latter.
"With the frequency employed at Clifden, namely 45,000 , when a potential of 15,000 volts is used on the condenser, the spark gap is practically closed during the time in which one complete oscillation only is taking place, when the peripheral speed of the disc is about 600 feet a second. The result is that the primary circuit can continue oscillating without material loss by resistance in the spark gap. Of course the number of oscillations which can take place is governed by the breadth or thickness of the side discs, the primary circuit being abruptly opened as soon as the studs attached to the middle disc leave the side discs.
"This sudden opening of the primary circuit tends to immediately quench any oscillations which may still persist in the condenser circuit; and this fact carries with it a further and not inconsiderable advantage; for, if the coupling of the condenser circuit to the aerial is of a suitable value, the energy of the primary will have practically all passed to the aerial circuit during the period of time in which the primary condenser circuit is closed by the stud filling the gap between

the side discs; but, after this, the opening of the gap at the discs prevents the energy returning to the condenser circuit from the aerial as would happen were the ordinary spark gap employed. In this manner the usual reaction which would take place between the aerial and the condenser circuit can be obviated with the result that with this type of discharger and with a suitable degree of coupling the energy is radiated from the aerial in the form of a pure wave, the loss from the spark gap resistance being reduced to a minimum.
"An interesting feature of the Clifden plant, especially from a practical and engineering point of view, is the regular

Fig. 3.
employment of high-tension direct current for charging the condenser. Continuous current at a potential which is capable of being raised to 20,000 volts is obtained by means of special direct-current generators; these machines' charge a storage battery consisting of 6,000 cells all connected in series, and it may be pointed out that this battery is the largest of its kind in existence. The capacity of each cell is 40 ampere hours. When employing the cells alone the working voltage is from 11,000 to 12,000 volts, and when both the direct-current generators and the battery are used together the potential may be raised to 15,000 volts through utilizing the gassing voltage of the storage cells.
"The potential to which the condenser is charged reaches 18,000 volts when that of the battery or generators is 12,000 . This potential is obtained in consequence of the rise of potential at the condenser plates, brought about by the rush of current through the choking or inductance coils."

A paragraph in the editorial under the heading 'Man v Machine' starts 'The old bugbear of the machine being too far in advance of the man in charge of it has been trotted out again . . ${ }^{\text {. Need we say }}$ more!

New from Ferrograph

For the maintenance of professional recording equipment.

Now, for the first time, all the major parameters of a magnetic recording system can be measured on a single, inexpensive instrument. The Ferrograph RTS1 Recorder TEsI Set.

Consisting of 4 basic sections-variable frequency audio generator, millivoltmeter with associated attenuator, peak-to-peak wow and flutter meter, and distortion measuring network-this instr ument will measure frequency response, distortion crosstalk, erasure, input sensitivity, output power and signal/noise ratic.

Completely solid state and lightweight, it may be used in the field as well as the laboratory,
operating on voltages of 100-120, 200-250 volts at 50 or 60 hz .

It is developed specially for those people who have to operate, maintain or service all types of tape recorders, sound-on-film equipment and aucio apparatus.

The Ferrograph RTS1.
Made to stand the test.
Why not write for further details?

FERROGRAPH SOUNDS GOOD

Insure against distortion with Shure

Shure Model 444
Controlled magnetic microphone. Specially communications applications.

New Approach to Transistor Circuit Analysis

by A. J. Blundell*, M.I.E.E.

Concluded from the June issue

The second and final article shows how the author's simple "voltage-control" transistor model is applied to the emitter-follower stage. It discusses accuracy of the model-compared to the hybrid- π circuit-and introduces d.c. and large signal versions of the model, applicable to Darlington and complementary pairs. It concludes by applying the model to the Lin output circuit and shows how simple modifications improve this circuit. Part 1 introduced the model from first principles and showed how to apply it to the common-emitter stage. The author proposed a correction term for evaluating internal emitter resistance of transistors and showed how to optimize voltage gain.

The second most important transistor circuit is the emitter follower or commoncollector stage, Fig. 11(a). This is not as straightforward to analyse as the commonemitter stage because it is strongly bilateral. This means that G_{V} is not simply related to μ and equation (1) is not applicable. An amplifier made entirely of bilateral stages is complex with almost everything interacting; input and output impedances depending on load and source impedances respectively. Fortunately in transistor circuits an emitter follower usually precedes or follows a
common-emitter stage which breaks the chain because it has definite input and output resistances.

Suppose R_{l} is known; then the total emitter resistance $R_{e}{ }^{\prime}$ is the parallel combination of R_{e} and R_{l}, Fig. 11(b). The voltage gain must now be called A_{V} because the load is included. This is just the ratio of the potential divider consisting of r_{e} and R_{e}, i.e.

$$
A_{V}=\frac{R_{e}^{\prime}}{r_{e}+R_{e}^{\prime}}
$$

The input resistance is simply

$$
r_{1}=\beta_{e}\left(r_{e}+R_{e}{ }^{\prime}\right)
$$

*Lanchester Polytechnic, Rugby

(a)

(b)

(c)

(d)

(e)

Fig. 11. In the common-collector stage or emitter follower (a), voltage gain is not simply related to μ because the stage is strongly bilateral, i.e. input and output impedance depends on load and source impedances respectively. Gain can be calculated knowing either $R_{e}(b)$ or R_{s} (c). To find gain knowing R_{s} involves finding r_{2} combining it with R_{e} and the driven opencircuit voltage gain. Resistance r_{2} is found by putting $V_{s}=0$ and applying V_{2} at the output (d), which shows r_{2} as the combination at (e).
so that

$$
\begin{aligned}
G_{V} & =\frac{V_{1}}{V_{s}} \cdot \frac{V_{l}}{V_{1}}=\frac{r_{1}}{R_{s}+r_{1}} \cdot A_{V} \\
& =\frac{\beta_{e}\left(r_{e}+R_{e}{ }^{\prime}\right)}{R_{s}+\beta_{e}\left(r_{e}+R_{e}^{\prime}\right)} \cdot \frac{\left.R_{e}^{\prime}\right)}{r_{e}+R_{e}^{\prime}} \\
& =\frac{R_{e}}{\beta_{e}}+r_{e}+R_{e}^{\prime}
\end{aligned}
$$

If on the other hand R_{s} is the quantity known, we can work the other way. Let B_{V} be the driven open-circuit voltage gain analogous to A_{V} but with R_{s} included instead of R_{1}. From Fig. 11 (c)

$$
\begin{aligned}
\mu & =R_{e} /\left(r_{e}+R_{e}\right), r_{1}=\beta_{e}\left(r_{e}+R_{e}\right) \\
\text { and } B_{V} & =\frac{V_{1}}{V_{s}} \cdot \frac{V_{2}}{V_{1}}=\frac{r_{1}}{R_{s}+r_{1}} \cdot \mu \\
& =\frac{\beta_{e}\left(r_{e}+R_{e}\right)}{R_{s}+\beta_{e}\left(r_{e}+R_{e}\right)} \cdot \frac{R_{e}}{r_{e}+R_{e}} \\
& =\frac{R_{e}}{\frac{R_{s}}{\beta_{e}}+r_{e}+R_{e}}
\end{aligned}
$$

Obviously if $R_{e}{ }^{\prime}$ is substituted for R_{e} the result will be G_{V} as above and this would be the usual procedure, but to do the thing properly we will find r_{2} and combine it with R_{e} and B_{V} in a formal way. The output resistance is usually the trickiest of the basic calculations. First make $V_{s}=0$ because its value does not affect r_{2}, then apply V_{2} at the output-Fig. 11(d). If I_{2} can be calculated r_{2} can be found. One current component is that flowing down R_{e}, the other flows up r_{e} as I_{e}, and down R_{s} as I_{b}. Thus the total voltage drop is $I_{e} r_{e}+I_{b} R_{s}=I_{e} r_{e}+I_{e} R_{s} / \beta_{e}$ $=I_{e}\left(r_{e}+R_{s} / \beta_{e}\right)$, a esult which implies that this part of the circuit acts as a resistance $\left(r_{e}+R_{s} / \beta_{e}\right)$ so that the total resistance is simply the parallel combination of the two paths as shown in Fig. 11(e). Then

$$
r_{2}=\frac{R_{e}\left(r_{e}+R_{s} / \beta_{e}\right)}{R_{e}+r_{e}+R_{s} / \beta_{e}}
$$

so that for any R_{l}

$$
\begin{aligned}
G_{V} & =\frac{V_{g}}{V_{s}} \cdot \frac{V_{e}}{V_{g}}=B_{V} \cdot \frac{R_{l}}{r_{2}+R_{l}} \\
& =\frac{R_{e}}{\left(\frac{R_{s}}{\beta_{e}}+r_{e}+R_{e}\right)} \cdot \frac{\left.R_{l}\right)}{\left[\frac{\left(R_{d}\left(r_{e}+R_{s} / \beta_{e}\right)\right)}{\left(R_{e}+r_{e}+R_{s} / \beta_{e}\right)}+R_{l}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{R_{e} R_{e}}{R_{e}\left(r_{e}+R_{s} / \beta_{e}\right)+R_{l}\left(r_{e}+R_{s} / \beta_{e}\right)+R_{e} R_{l}} \\
& =\frac{R_{e} R_{l}}{\left(R_{e}+R_{l}\right)\left(r_{e}+R_{s} / \beta_{e}+R_{e} R_{l} /\left(R_{e}+R_{l}\right)\right.} \\
& =\frac{R_{e}^{\prime}}{R_{s} / \beta_{e}+r_{e}+R_{e}^{\prime}}, \text { as before. }
\end{aligned}
$$

Those who have read C. H. Banthorpe's article ($W . W$. August 1966) may have seen the one by G. Garside, ${ }^{3}$ which was something of a sequel. Let us take the ring-of-three amplifier that he discussed as an example of the emitter follower analysis; we will assume that no feedback is used. Fig. 12 shows the circuit. There are two common-emitter stages separated by an emitter follower.
It is usually easier to marry the emitter follower to the following stage. Taking $\beta_{e}=60$ for all the transistors the calculation proceeds as follows.

$$
r_{e c}=26 / 2+3 / \sqrt{2}=15 \Omega, \mu_{c}=-1100 / 15
$$

$$
\stackrel{ }{=}-73.5 \text { and } r_{1 c}=60 \times 15=900 \Omega \cdot r_{1 \mathrm{c}}
$$

$$
\text { acts as load for } T r_{b} \text { so } R_{e b}=900 \times
$$

$$
22,000 / 22 ; 900=864 \Omega . r_{e b} \text { at } 0009 \mathrm{~mA} \text { is }
$$

$$
299 \Omega \text { so that } A_{V b}=864 /(299+864)=
$$

$$
0 \cdot 742 . r_{1 b}=60(299+864)=69,800 \Omega \text {. }
$$

Thus $T r_{b}$ and $T r_{c}$ act as a single transistor with $\mu_{b c}=A_{V b} \mu_{c}=0.742 \times 73.5=-54.5$ and $r_{1 b c}=69,800 \Omega$.

It is now easy to combine this equivalent transistor with $T r_{a}$ for $r_{e a}$ at 0.5 mA is 56Ω and there is an emitter resistor of $1,000 \Omega$ so that $\quad \mu_{a}=-7,000 /(56+1,000)=-6.62$ and $r_{1 a}=60(56+1,000)=63,360 \Omega$.
Now we cannot work out the overall gain G_{V} because the source and load resistance for the complete amplifier are not known, so the overall gain we calculate is the opencircuit voltage gain of the amplifier

$$
\begin{aligned}
\mu_{T} & =\mu_{a} \cdot \frac{r_{1 b c}}{\left(r_{2 a}+r_{1 b c}\right)} \cdot \mu_{b c} \\
& =\frac{6 \cdot 62 \times 69,800 \times 54 \cdot 5}{7,000+69,800}=328 .
\end{aligned}
$$

Finally $r_{2 c}=1,100 \Omega$ so that the circuit is completely represented by

$$
r_{1 T}=63,360 \Omega, \mu_{T}=328, r_{2 T}=1,100 \Omega
$$

Now a source and load may be connected and off we go again!

Referred resistances

Looking back at the work on the emitter follower there is no denying that the algebraic expressions are not so simple as those of the common-emitter circuit. It would be useful if some graphic aid could be developed, so that part of the manipulation could be displayed on a circuit diagram. In equation (11) it was found that the source resistance could be treated as being in series with r_{e} if it were first divided by β_{e}. On the other hand the resistances in the emitter appear in the base circuit as the input resistance if they are multiplied by β_{e}.
These are examples of a general rule which allows the effects of resistances to be transferred through the beta barrier. The rule leads to a more sophisticated technique for analysing transistor circuits which has, alas, its dangers and disadvantages. The danger is partly because the logic is more complicated and partly because the indi-

Fig. 12. Derivation of open-circuit voltage gain of ring-of-three amplifier used to illustrate emitter follower analysis. With no feedback and source and load unconnected gain is 328 .
vidual "internal" voltage drops may not correspond to the actual ones; this will not matter if "external" properties are all that are required. The disadvantage is that the coupling gains are not brought out specifically so negating one of the main points of the previous work.

To illustrate the technique let us calculate the overall gain of the common-emitter circuit in Fig. 13(a).

Figs 13(b) and (c) show the two possibilities for transferring the effects of the resistances. In (b) the two resistances in the base circuit are divided by β_{e} and added to the emitter circuit, while in (c) the resistances in the emitter circuit are multiplied by β_{e} and added in parallel with the base circuit. Although the effects are transferred, the resistances must still appear in their original positions and exert their usual influence in that part of the circuit. The effect of β_{e} has now been taken care of so its value can be set equal to infinity in the new circuit diagrams.
From Fig. 13(b) we see that the base voltage is equal to V_{s} because $\beta_{e}=\infty$ implies zero base current and therefore no voltage drop across R_{s} and R_{b}. The voltage gain between base and collector is the usual ratio of total collector resistance to total
emitter resistance so that

$$
G_{V}=\frac{-R_{c}^{\prime}}{\left(r_{e}+\frac{R_{s}}{\beta_{e}}+\frac{R_{b}}{\beta_{e}}+R_{e}\right)}
$$

With this method the overall gain is found in one go straight from the modified circuit diagram.

Alternatively, transferring to the base circuit as in Fig. 13(c), the base current is again zero so that the base voltage is the output of the potential divider consisting of $R_{s}, R_{b}, \beta_{e} r_{e}$ and $\beta_{e} R_{e}$. The overall gain is then the gain of the divider multiplied by the gain of the transistor

$$
\begin{aligned}
G_{V} & =\frac{\left(\beta_{e} r_{e}+\beta_{e} R_{e}\right)}{\left(R_{s}+R_{b}+\beta_{e} r_{e}+\beta_{e} R_{e}\right)} \cdot \frac{\left(-R_{c}^{\prime}\right)}{\left(r_{e}+R_{e}\right)} \\
& =\frac{-R_{c}^{\prime}}{\frac{R_{s}}{\beta_{e}}+\frac{R_{b}}{\beta_{e}}+r_{e}+R_{e}}, \text { as before. }
\end{aligned}
$$

Thus there are two ways of transferring the resistances depending on the requirements of the problem. The reader can check that the use of equations (4), (5), (6) and (1) will give the same results.

As an example the circuit of Fig. 12 will be recalculated. Fig. 14 shows the circuit in its referred form. As R_{s} is not known the total emitter resistance of $T r_{a}$ has been transferred to its base where it forms the input resistance of the amplifier, while the $T r_{b}$ and $T r_{c}$ base resistances have been transferred to their emitters. Notice that the collector resistor of $T r_{a}$, which represents its output resistance, has been transferred first to the emitter of $T r_{b}$ by dividing by $\beta_{e b}$, and then, together with the resistance already in the emitter of $T r_{b}$, to the emitter of $T r_{\mathrm{c}}$ by dividing by $\beta_{\text {ec }}$ i.e. $R_{e c}{ }^{\prime}=$ $((7,000 / 60+299) \mid 22,000) / 60=6 \cdot 8 \Omega$. Note that when β_{e} is put to infinity the resistance between the top end of r_{e} and ground is zero!

The coupling between each of the three stages is now unity and so

$$
\mu_{T}=\frac{(-7,000)}{1,056} \cdot \frac{22,000}{22,416} \cdot \frac{(-1,100)}{21 \cdot 8}=328
$$

and $r_{1}=63,360 \Omega, r_{2}=1,100 \Omega$ as before.

Fig. 13. In calculating the overall gain of the common-emitter circuit (a), resistances in the base circuit can be referred to the emitter circuit by dividing by $\beta_{e}(d)$, or resistances in the emitter circuit can be referred to the base by multiplying by $\beta_{e}(c)$.

Fig. 14. Open-circuit gain of Fig. 12 circuit can be calculated more quickly using referred resistance technique of Fig. 13. Emitter resistance of $T r_{a}$ is transferred to base; Tr_{b} and $T r_{c}$ base resistances are transferred to their emitters; collector resistance of Tr_{a} is transferred first to Tr_{b} emitter by dividing by $\beta_{e b}$ and then-with emitter resistance of Tr_{b}-to $\operatorname{Tr}_{\mathrm{c}}$ emitter by dividing by $\beta_{e c}$.

Fig 15. To find how the beta-barrier model compares to this hybrid- π circuit it is transformed to the circuit of Fig. 16.

Fig. 16. Equivalent of hybrid- π circuit of Fig. 15 where r_{e}^{\prime} is r_{e} plus a measurable correction term.

The calculation time is much lower with this method and once the principles of transferring the resistors has been understood the analysis is much easier.

Relation of beta-barrier model to the hybrid- π

The beta-barrier model is acknowledged to be an approximate one and it is interesting to examine the nature of the approximation. This can be done by comparison with the more exact models in use at present and it
has already been done in the case of h parameters. Of the others only the hybrid- π circuit is worth considering because it allows fairly accurate representation of the transistor self-capacitances and so enables frequency response calculations to be made. ${ }^{4}$ The beta-barrier model has been designed to be a simplified form of the hybrid- π circuit, into which it can easily be expanded.

Fig. 15 shows a standard form of the hybrid- π circuit ${ }^{4}, 5$ where

$$
r_{m}=r_{t} / \alpha_{o} \quad \text { and } \quad r_{t}=k T / q i_{E} .
$$

An assumption in the values given is

$$
h_{i e} h_{o e}=2 h_{r e} h_{f e} .
$$

which is true for step junctions and appears to be quite good for others.

The T circuit consisting of r_{x}, r_{π} and r_{μ} can be changed to a π circuit by the T to π transformation. However, this is not quite good enough because the node b^{\prime}, which disappears, controls the current generator so that other current generators appear controlled by nodes b and c. Avoiding details, the circuit transforms exactly to Fig. 16, where

$$
\begin{aligned}
r_{e}^{\prime}= & \alpha_{o}\left(r_{m}+r_{x}\left(1+h_{r e}\right) / \beta_{c}\right) \\
& \simeq r_{t}+r_{x} / \beta_{e} \text { as } h_{r e} \ll 1 \\
= & k T / q i_{E}+r_{x} / \beta_{e}
\end{aligned}
$$

We immediately recognise r_{e}^{\prime} as r_{e} with a correction of r_{x} / β_{e}, i.e. the ohmic base circuit resistance referred to the emitter circuit.

Measurements indicate that this correction is not constant and it seems reasonable to suppose that it is made up of at least two terms: r_{x} / β_{e} plus a current-dependant term possibly due to Shockley's equation becoming invalid at high injected densities. In fact capacitance and frequency response measurements indicate that r_{x} is also unlikely to remain constant over the whole range of useful i_{E}. However the important thing is the practical correction factor and this can be measured.

Going back to Fig. 16 and selecting only $r_{b e}$ and the current generator, we can show that with r_{e}^{\prime} replaced by r_{e} these are equivalent to the beta barrier model as they both have the same input resistance, deliver the same current for the same base-emitter voltage and have infinite output resis-tances-Fig. 17(a).

Thus an accurate low-frequency model is
given by adding the feedback and output resistances of Fig. 16 to the beta-barrier model as in Fig. 17(b). This is now as accurate as the hybrid- π circuit for lowfrequency work.

Of course it is possible to push Fig. 17(b) to the limit by adding an r_{x} in series with the base and replacing r_{e} by a value closer to r_{t}, allowing capacitances to be added to give the complete hybrid- π equivalent, but the problem is to decide how much of the correction factor really is r_{x} / β_{e} !

One can carry things too far. For those brought up with a standard set of components it is usually best to stick to them when the going gets tough. This implies returning to the conventional hybrid- π circuit when feedback and output resistance and capacitances become important. The value of the circuit in Fig. 17(b) lies in its suitability for assessing how important these secondary effects are. Since r_{μ} and r_{o} usually make only a small difference to the results, the best practical procedure is to use the simple betabarrier theory to calculate all circuit voltages and currents, and then use these to find the currents that would flow in the extra components. It is then possible to estimate how much difference the secondary components make without doing an exact calculation; in many cases a simple first-order correction is all that is required to give a working accuracy.

Sometimes the correction turns out to be important and makes a large difference in the overall results. It is then necessary to make a a more exact calculation as in the case of the trarsistor pairs discussed in the next section.

Examples of circuit analysis

The final thing to do is to analyse a few circuits to demonstrate points of technique.

The super-alpha pairs frequently used are interesting. In the Darlington pair of Fig. 18(a) $R_{e}{ }^{\prime}$ includes any load on the output terminals, for this is a bilateral circuit.
Transferring the coupling between Tr_{1} and $T r_{2}$ to the emitter of $T r_{2}$ and transferring all the resistances to the base of $T r_{1}$, enables both current gains to be put to infinity-Fig. 18(b). Then

$$
A_{V}=\frac{R_{e}{ }^{\prime}}{r_{e 2}+\frac{r_{e 1}}{\beta_{e 2}}+R_{e}{ }^{\prime}}
$$

Fig. 17. Circuit of Fig. 16 is equivalent to the beta-barrier model by using only $r_{b e}$ and the current generator of Fig. 16 and replacing r_{e}^{\prime} by $r_{e}(a)$. A beta-barrier model (b) as accurate as the hybrid- π circuits for low frequencies is thus derived by adding feedback and output . resistances of Fig. I6 to (a).
and

$$
r_{1}=\beta_{e 1}\left(r_{e 1}+\beta_{e 2}\left(r_{e 2}+R_{e}^{\prime}\right)\right)
$$

Now $r_{e 1}$ and $r_{e 2}$ are not independent for the direct emitter currents are related because $I_{E 1}=I_{B 2}$, so that $I_{E 1}=I_{E 2} / \beta_{E 2}$. The value of the beta-barrier model is again evident because d.c. and a.c. quantities can easily be mixed in the same equation if the correction for r_{e} can be ignored. (This is fair for $r_{e 1}$ because $I_{E 1}$ will usually be very low, but not so good for $r_{e 2}$.) Then

$$
\begin{aligned}
r_{e 1} & =0 \cdot 026 / I_{E 1}=0 \cdot 026 /\left(I_{E 2} / \beta_{E 2}\right) \\
& =\beta_{E 2} r_{e 2}, \text { and }
\end{aligned}
$$

$$
A_{V}=\frac{R_{e}^{\prime}}{r_{e 2}+\frac{r_{e 2} \beta_{E 2}}{\beta_{e 2}}+R_{e}^{\prime}} \approx \frac{R_{e}^{\prime}}{2 r_{e 2}+R_{e}^{\prime}}
$$

$$
\text { if } \beta_{E 2} \approx \beta_{e 2}
$$

$$
r_{1}=\beta_{e 1}\left(\beta_{E 2} r_{e 2}+\beta_{e 2} r_{e 2}+\beta_{e 2} R_{e}^{\prime}\right)
$$

$$
=\beta_{e 1} \beta_{e 2}\left(2 r_{e 2}+R_{e}^{\prime}\right)
$$

But these results are equivalent to those for a single transistor which has a current gain equal to the product of the individual gains and twice the usual emitter resistance - Fig. 18(c).

As a further exercise the effect of the correction terms can be included. The term for the single equivalent transistor is just that for T_{2}.

Another interesting case is the complimentary pair of Fig. 19. The referred resistance method is inappropriate here because it is the collector of Tr_{1} which feeds $T r_{2}$, and Tr_{1} (as a circuit) has infinite output resistance. This is a case where the current gain method is better because $I_{c 2}=\beta_{c 2} I_{c 1}$ $=\alpha_{o 1} \beta_{c 2} I_{e 1}$. Then

$$
\begin{aligned}
V_{i n} & =I_{e 1} r_{e 1}+\left(I_{e 1}+\alpha_{o 1} \beta_{c 2} I_{e 1}\right) R_{e}^{\prime} \\
& =I_{e 1}\left(r_{e 1}+\left(1+\alpha_{o 1} \beta_{c 2}\right) R_{e}^{\prime}\right)
\end{aligned}
$$

$\operatorname{Now}\left(1+\alpha_{o 1} \beta_{c 2}\right) \approx \alpha_{o 1}\left(1+\beta_{c 2}\right)=\alpha_{o 1} \beta_{e 2}$, so

Comparison with more exact model

So much for the simple model; how does it compare with the more exact one? We redraw the Darlington circuit using the extended beta-barrier model of Fig. 17(b) as in Fig. 20(a). Because the positive d.c. supply rail is effectively at earth potential with respect to a.c., the top ends of all the new resistors are at earth potential and the diagram can be redrawn as in Fig. 20(b). In addition the emitter resistances of each stage have been transferred to the base circuits as r_{11} and r_{12} and the betas put to infinity.

First we find A_{V}. Suppose that $T r_{2}$ works at 2 mA , then $r_{e 2}=15 \Omega$ and, from the data for the $\mathrm{BC} 108, h_{r e}=1 / 5000$. If $\beta_{C 2}$ is 125 , $I_{E 1}$ will be $16 \mu \mathrm{~A}$ and $h_{r e 1}$ is then about $1 / 100$ and $r_{e 1}$ will be 1649Ω.

For a $10-\mathrm{V}$ supply $R_{e}{ }^{\prime}$ cannot be much more than 2500Ω. The collector-emitter resistor of $T r_{2}$ is $r_{e 2} / h_{r e 2}=15 \times 5000=$

(a)

(b)

Fig. 18. Because both a.c. and d.c. quantities can be mixed in the same equation with the beubarrier model it is easy to show that the Darlington pair (a) has a current gain equal to the product of individual gains and an emitter resistance of twice the usual value (c).Voltage gain is calculated by first transferring $r_{e 1}$ to Tr_{2} emitter and then transferring all resistances to the base of $\operatorname{Tr}_{1}(b)$ and using the relation $I_{E 1}=I_{E 2} / \beta_{E 2}$.

Fig. 19. Analysis of the complementary pair shows equivalence to a single transistor of current gain $\alpha_{o 1} \beta_{e 1} \beta_{e 2}$ with emitter resistance $r_{e 2}$.
$75,000 \Omega$ which, appearing in parallel with $R_{e}{ }^{\prime}$, gives a total external emitter resistance of $R_{e}{ }^{\prime \prime}=2420 \Omega$. Then the input resistance of $T r_{2}$ is $r_{12}=\beta_{e 2}\left(r_{e 2}+R_{e}{ }^{\prime \prime}\right)=126$ $(15 \times 2420)=304,000 \Omega$. In parallel with r_{12} are two resistors: $\beta_{e 2} r_{e 2} / h_{\text {re2 }}=126 \times 15$ $\times 5000=9.37 \mathrm{M} \Omega$, and $r_{e 1} / h_{r e 1}=1649 \times$ $100=164,000 \Omega$. The Tr_{1} output resistance $r_{e 1} / h_{r e 1}$ is the most important, being about half r_{12}.

The total effective external emitter resistance for $T r_{1}$ is then obtained by putting all the resistances in parallel giving a value of $106,000 \Omega$ so that $A_{V}=106,000 / 107,649 \times$ $2420 / 2435=0.979$. The value given by the simple analysis, allowing for the correction factor in r_{2}, is $2500 /(13+15+2500)=0.989$. Of course the difference will not often be important.

The input resistance is much more interesting. The external emitter resistance of $T r_{1}$ is $106,000 \Omega$ so $r_{11}=\beta_{e 1}(1649+$ 106,000). From the data $\beta_{e 1}$ is about 50 so $r_{11}=5.34 \mathrm{M} \Omega$. $\beta_{e 1} r_{e 1} / h_{r e 1}=50 \times 1649 \times$ $100=8 \cdot 24 \mathrm{M} \Omega$, which in parallel with r_{11} gives an overall input resistance of $3.24 \mathrm{M} \Omega$. The simple analysis gives $\beta_{e 1} \beta_{e 2}\left(2 r_{e 2}+R_{e}\right)$ $=50 \times 126(28+2500)=15 \cdot 8 \mathrm{M} \Omega$, so the correct value is only a fifth of that given by the simple model. Most of the difference is accounted for by the output resistance of $T r_{1}$ which is a function of $h_{r e 1}$ and $r_{e 1}$.

An improvement can be made by bootstrapping the collector of $T r_{1}$ to the emitter of Tr_{2}. This can be done by connecting a capacitor between the two points and adding a feed resistor to the Tr_{1} collector. The alternating voltage on the collector is then 0.979 times the base voltage and the voltage across the extra resistances of Tr_{1} is only $1-0.979=0.021$ times its previous value, so that the currents are 50 times smaller.

A better solution is to choose for Tr_{1} a transistor whose β and $h_{r e}$ values are good at the working current. The overall performance will then be closely predicted by the simple model.

Large signal and d.c. analysis

The model is adapted for large signal analysis by replacing the resistor r_{e} by a diode and using the $v_{b e}-i_{E}$ characteristic. Analysis is now more difficult but it can be helped by making the hybrid- π approximation that

Fig. 20. To compare simple and more exact beta-barrier models for the Darlington pair, circuit is redrawn (a) using model of Fig. 17(b). Circuit (b) is equivalent to (a) with emitter resistances of each stage transferred to the base circuits as r_{11} and r_{12}. Two models give input resistances differing by a factor of five, but simple model gives more accurate result when Tr_{1} collector and Tr_{2} emitter are bootstrapped.

(b)

Fig. 21. For d.c. and large-signal analysis emitter resistors must be replaced by diodes. This Lin circuit (a) consisting of a Darlingtom pair and a complementary pair is equivalent to circuit (b) and is separated for analysis into Figs 22 and 23.
the correction factor is constant, i.e. that the deviation from the theoretical logarithmicshaped diode curve is due to pure resistance of value r. Then

$$
\ddot{v}_{B E}=\frac{k T}{q} \ln \frac{i_{E}}{I_{S}}+i_{E} r
$$

As an example we will treat the Lin output stages that have received a lot of attention recently - Fig. 21(a). For simplicity the $100-\Omega$ resistors, which modify the baseemitter characteristics at low currents, are ignored, the circuit then essentially consisting of a Darlington pair and a complementary pair operating independently but with a common ground rail. The common ground rail current serves as the output current of the stage and flows via an isolating capacitor to the load resistance. The position of the capacitor and the load can be interchanged without affecting the a.c. quantities so that if the ground rail is initially set to $V_{C C} / 2$ then the capacitor will be charged to this value and it will be seen that the load is, in effect, tapped half way down the supply. In the final arrangement Fig. 21(b) - the current out of each pair can be calculated separately.

The Darlington pair is shown in Fig. 22 with all the quantities indicated and where

$$
\begin{gathered}
v_{T 1}=\frac{k T}{q} \ln \frac{i_{E 1}}{I_{S 1}}+i_{E 1} r_{1} \\
v_{T 2}=\frac{k T}{q} \ln \frac{i_{E 2}}{I_{S 2}}+i_{E 2} r_{2} \\
\text { Then } v_{1}=v_{T 1}+v_{T 2}+i_{o} R_{1} \\
=\frac{k T}{q} \ln \frac{i_{E 1}}{I_{S 1}}+i_{E 1} r_{1}+\frac{k T}{q} \ln \frac{i_{E 2}}{i_{S 2}} \\
+i_{E 2} r_{2}+i_{E 1} R_{1} .
\end{gathered}
$$

Now $i_{E 2}=i_{E 1} \beta_{E 2}$ so
$v_{1}=\frac{k T}{q} \ln \frac{i_{E 1}{ }^{2} \beta_{E 2}}{I_{S 1} I_{S 2}}+\frac{i_{E 2}}{\beta_{E 2}} r_{1}+i_{E 2} r_{2}+i_{E 2} R_{1}$ and as $i_{o}=i_{E 2}$

$$
\frac{v_{1}}{i_{o}}=\frac{k T}{q i_{E 2}} \ln \frac{i_{E 1}{ }^{2} \beta_{E 2}}{I_{S 1} I_{S 2}}+\frac{r_{1}}{\beta_{E 2}}+r_{2}+R_{1}
$$

This is the relation between the drive voltage v_{1} and the output current i_{o}. For the complementary pair the circuit is as in Fig. 23 and

$$
v_{1}=v_{T 1}+\left(i_{E 1}+i_{C 2}\right) R_{1}
$$

Now $i_{C 2}=\beta_{C 2} i_{C 1}=\alpha_{O 1} \beta_{C 2} i_{E 1}$
Then
$v_{1}=\frac{k T}{q} \ln \frac{i_{E 1}}{I_{S 1}}+i_{E 1} r_{1}+i_{E 1}\left(1+\alpha_{O 1} \beta_{C 2}\right) R_{1}$ but $\left(1+\alpha_{O 1} \beta_{C 2}\right) \approx \alpha_{O 1}\left(1+\beta_{C 2}\right)=\alpha_{O 1} \beta_{E 2}$ so that

$$
v_{1}=\frac{k T}{q} \ln \frac{i_{E 1}}{I_{S 1}}+i_{E 1} r_{1}+i_{E 1} \alpha_{o 1} \beta_{E 2} R_{1}
$$

Next $i_{o}=i_{E 1}+i_{C 2}=i_{E 1}\left(1+\alpha_{O 1} \beta_{C 2}\right)$

$$
=i_{E 1} \alpha_{o 1} \beta_{E 2}=i_{E 2}
$$

Finally

$$
\begin{equation*}
\frac{v_{1}}{i_{o}}=\frac{k T}{q i_{E 2}} \ln \frac{i_{E 1}}{I_{S 1}}+\frac{r_{1}}{\alpha_{O 1} \beta_{E 2}}+R_{1} \tag{13}
\end{equation*}
$$

The reason for the unbalance is now obvious. Taking equations (12) and (13) term by term we see that r_{2} is missing in (13); that as $\alpha_{01} \approx 1$ the terms in r_{1} will be matched but the logarithmic terms are unbalanced, there being a term $(k T / q) \ln \left(i_{E 1} \beta_{E 2} / i_{S 2}\right)$ too much in equation (12).

There have been two recent proposals to improve the balance. The first was put forward by I. M. Shaw, ${ }^{6}$ and the second by P. J. Baxandall (W.W. Sept. 1969). In both cases a diode is added to the complementary pair. Figs 24(a) and (b) show the two circuits and the analysis is as follows.

In Shaw's circuit the diode characteristic is

$$
v_{D}=\frac{k T}{q} \ln \frac{i_{o}}{I_{S D}}+i_{o} r_{d}
$$

Fig. 22. Large-signal model of Darlington pair used to calculate expression for v_{1} / i_{0}. Comparing with expression for the complementary pair - derived from Fig. 23 shows the two circuits are unbalanced.

Fig. 23. Large-signal model of complementary pair.

Then

$$
\begin{aligned}
v_{1}= & v_{T 1}+v_{D}+\left(i_{E 1}+i_{C 2}\right) R_{1} \\
= & \frac{k T}{q} \ln \frac{i_{E 1}}{I_{S 1}}+i_{E 1} r_{1}+\frac{k T}{q} \ln \frac{i_{E 1}+i_{C 2}}{I_{S D}}+ \\
& \left(i_{E 1}+i_{C 2}\right) r_{1}+\left(i_{E 1}+i_{C 2}\right) R_{1} \\
= & \frac{k T}{q} \ln \frac{i_{E 1}\left(1+\alpha_{O 1} \beta_{C 2}\right)}{I_{S 1} I_{S D}}+i_{E 1} r_{1}+ \\
& i_{E 1}\left(1+\alpha_{O 1} \beta_{C 2}\right) r_{D}+i_{E 1}\left(1+\alpha_{O 1} \beta_{C 2}\right) R_{1} \\
= & \frac{k T}{q} \ln \frac{i_{E 1}^{2} \alpha_{O 1} \beta_{E 2}}{I_{S 1} I_{S D}}+i_{E 1} r_{1}+ \\
& i_{E 1} \alpha_{O 1} \beta_{E 2} r_{D}+i_{E 1} \alpha_{O 1} \beta_{E 2} R_{1}
\end{aligned}
$$

$$
\text { as } i_{o}=i_{E 2}
$$

$$
\frac{v_{1}}{i_{O}}=\frac{k T}{q i_{E 2}} \ln \frac{i_{E 1}{ }^{2} \alpha_{O 1} \beta_{E 2}}{I_{S 1} I_{S D}}+\frac{r_{1}}{\alpha_{O 1} \beta_{E 2}}+r_{D}+R_{1}
$$

This is similar to the Darlington pair if $\alpha_{01}=1$ and if

$$
r_{D}-\frac{k T}{q i_{E 2}} \ln I_{S D}=r_{2}-\frac{k T}{q i_{E 2}} \ln I_{S 2}
$$

so that $r_{D}=r_{2}+\frac{k T}{q i_{E 2}} \ln \frac{I_{S D}}{I_{S 2}}$
Because r_{D} and r_{1} are independent of $i_{E 2}$ then $I_{S D}$ must equal $I_{S 1}$ and r_{D} must equal r_{2}.
P. J. Baxandall puts the diode in the emitter of $T r_{1}$ in parallel with a $100-\Omega$ resistor which we will ignore in this simplified analysis. Using the same expression as before for the diode

$$
\begin{aligned}
& \begin{array}{l}
v_{1}=v_{T 1}+v_{D}+i_{o} R_{1} \\
=\frac{k T}{q} \ln \frac{i_{E 1}}{I_{S 1}}+i_{E 1} r_{1}+\frac{k T}{q} \ln \frac{i_{E 1}}{I_{S D}}+ \\
i_{E 1} r_{D}+\left(i_{E 1}+i_{C 2}\right) R_{1} \\
\text { but } i_{C 2}=\beta_{C 2} i_{C 1}=\alpha_{O 1} \beta_{C 2} i_{E 1} \\
\text { so } v_{1}=\frac{k T}{q} \ln \frac{i_{E 1}{ }^{2}}{I_{S 1} I_{S D}}+i_{E 1} r_{1}+i_{E 1} r_{D}+ \\
i_{E 1} \alpha_{O 1} \beta_{E 2} R_{1}
\end{array}
\end{aligned}
$$

also $i_{o}=i_{E 1} \alpha_{O 1} \beta_{E 2}=i_{E 2}$
so that
$v_{1}=\frac{k T}{q i_{E 2}} \ln \frac{i_{E 1}{ }^{2}}{I_{S 1} I_{S D}}+\frac{r_{1}}{\alpha_{O 1} \beta_{E 2}}+\frac{r_{D}}{\alpha_{O 1} \beta_{E 2}}+R_{1}$.
This is similar to the Darlington pair if $\alpha_{O 1}=1$ and if

$$
\begin{aligned}
& \frac{r_{D}}{\beta_{E 2}}-\frac{k T}{q i_{E 2}} \ln I_{S D}=r_{2}-\frac{k T}{q i_{E 2}} \ln \frac{I_{S 2}}{\beta_{E 2}} \\
& \text { so that } r_{D}=\beta_{E 2} r_{2}+\frac{k T \beta_{E 2}}{q i_{E 2}} \ln \frac{\beta_{E 2} I_{S D}}{I_{S 2}} .
\end{aligned}
$$

Again r_{D} and r_{2} are independent of $i_{E 2}$ so for equality of characteristic

$$
I_{S D}=I_{S 2} / \beta_{E 2} \text { and } r_{D}=\beta_{E 2} r_{2}
$$

It is not difficult to work out the input impedances for these circuits when it will be found that the same conditions apply.
The next step in the analysis would be to introduce the output and feedback resistors and the $100-\Omega$ resistors normally inserted in the $T r_{1}$ emitters.

In conclusion it should be emphasized that the main purpose of the beta-barrier model is to provide a quick method of making a reasonably accurate analysis of

H.F. Predictions
 —July

The charts are based on an ionospheric index of 77. This is midway between maximum and minimum conditions giving LUF's close to MUF's for long periods, conditions similar to those of 1966/67. Over the next few months U.K. daytime working will improve but during the hours before dawn conditions will become worse.

Fig. 24. Modification of complementary pair due to I. M. Shaw (a) and to P.J. Baxandall (b). Text shows how balance is improved.
transistors amplifiers by allowing the circuit diagram to be used as the equivalent circuit diagram. The load on the memory is not heavy; the most important things to recall are ideas rather than formulae. Many designs need only a minimum value for $h_{f e}$ and this can always be obtained from manufacturers' short summary booklets or similar publications. Finally when trouble comes the simple model can be extended by stages to the hybrid- π circuit and a better analysis made.

REFERENCES

3. Garside, G. 'Simplified transistor circuit design' Wireless World, vol. 73 June 1967. pp.264-9.
4. Searle, Boothroyd, Angelo, Gray and Pedersen, 'Elementary circuit properties of transistors', Wiley. 1966.
5. Mullard Ltd, 'Reference manual of transistor circuits'. 1961.
Le Croissette 'Transistors'. Prentice Hall. 1965.
6. Shaw, I. M. 'Quasi-complementary output stage modification', Wireless World, vol. 75 June 1969. pp.265/6.

Audio Sweep Generator

Using f.e.ts in a Wien bridge circuit

by F. H. Trist, B.Sc.

This circuit uses f.e.ts as voltage-dependent resistances in a Wienbridge oscillator. Frequency sweep is achieved by applying a ramp voltage to the f.e.ts from an op-amp Miller integrator, switched at a pre-determined rate by a comparator in a feedback loop, giving a $10: 1$ change. An improved design - not tested - using operational amplifiers throughout provides better sweep linearity, adjustable output level and simplified calibration.

In this oscillator design a ramp generator feeds a voltage to the gates of two f.e.ts used as voltage-dependent resistances in a Wien bridge circuit, thus effecting a frequency sweep.

Automatic gain control of the Wien bridge type of oscillator is critical and must maintain a loop gain of exactly unity for stable and undistorted oscillation. This does not imply that the signal produced will be constant in amplitude, as some variation is essential to compensate for changes in circuit characteristics, in particular thermal effects and tuning network attenuation. This last is most critical, as these changes occur during èvery sweep due to what I call 'dynamic mismatch' between the two f.e.ts. The large-signal resistance characteristic of two typical p-channel devices-

Fig. 1-shows the ratio of their resistance changes with gate-to-source potential and so the attenuation through an $R C$ network also changes with frequency. These changes must be offset by a.g.c. and the greater the degree of dynamic mismatch, the greater will be the variation in the signal level over each sweep. It is important therefore to match these devices as closely as possibleto 5% for a constant level within 1 dB . Devices of equal drain-to-source resistance at zero bias invariably possess this degree of dynamic match over their useful range.

The higher the value of this resistance R_{0}, the greater the frequency range obtainable with any pair of tuning capacitors. A ratio of $10: 1$ was chosen and about half of a large batch of f.e.ts had resistances

Specification of prototype

Sweep linearity: better than 15% on all ranges. (A marker generator could be used to pin-point frequencies required to greater accuracy.)
Frequency ranges: $10-100 \mathrm{~Hz}, 100 \mathrm{~Hz}-$ $1 \mathrm{kHz}, 1-10 \mathrm{kHz}, 10-100 \mathrm{kHz}$. (Can be set to within 3% using a digital frequency meter, or more accurately using 25 -turn potentiometers.)
Sweep times: 40s for greatest accuracy; 4s for faster sweeps using long-persistence c.r.ts; 0. Is on upper three ranges only.

Amplitude: fixed at 155 mV (within $\pm 0.5 \mathrm{~dB}$ on lowest range, $\pm 0.2 \mathrm{~dB}$ on next, and $\pm 0.1 \mathrm{~dB}$ on higher ranges). Variable output can be provided by a $10 \mathrm{k} \Omega$ potentiometer and emitter follower between Tr_{3} emitter and output socket.
Harmonic distortion: less than 1%.
Power supply: +15 V and $-15 \mathrm{~V} \pm 5 \%$ needed, regulated to 0.5% from 20 to 80 mA .

Fig. 1. Automatic gain control offsets 'dynamic mismatch' which occurs when f.e.ts are used in a Wien network. This 'mismatch' is caused by the ratio of the drain-source resistances varying with gate-source voltage as shown.

Fig. 2. Ramp generator uses Miller integrator switched at selected rates by a comparator in the feedback loop. (Resistors in all circuits should be $\frac{1}{2}$-watt, $\pm 5 \%$ tolerance unless shown otherwise. Compensation capacitors should be polystyrene dielectric.)
high enough to provide this ratio. The devices used are type 2 N 3820 , though the n -channel equivalent is cheaper and can be used by modifying the circuit so that the gates have a negative control voltage. The minimum value of R_{0}-as measured on the 'ohms' range of an Avo multimeter - is
320Ω, though this is not essential for the a.g.c. device. Devices with R_{0} below this figure may not be suitable for tuning.

The ramp generator consists of a Miller integrator switched at a selected rate by a comparator in a feedback loop ${ }^{1}$ - Fig. 2.

Fig. 3. Limiter and range calibrator includes three pre-set potentiometers for each range to set maximum and minimum frequencies. Null potentiometers allow minimum frequencies to be adjusted without affecting maximum frequency. (Potentiometers can be skeleton pre-set or, for greater precision, multi-turn pre-set types.)

Fig. 4. Voltage-controlled oscillator with f.ets as resistors in Wien network uses another f.e.t. for a.g.c. Allow circuit to settle for one minute before starting sweep. (Non-polarized capacitors in the range switching should have polyester or polystyrene dielectrics.)

Amplitude is defined by the zener diode, providing a threshold reference level to the comparator. The comparator output switches the diode bridge, giving a step input of $\pm 15 \mathrm{~V}$ to the integrator. In the 'hold' position the pre-set potentiometer can be set to offset any drift in the integrator, thus presenting a constant amplitude to the oscillator.

The generator incorporates a limiter which provides a pause between each sweep. This is particularly useful when using the slowest sweep speed as adjustments can be made to the network under test during this time without stopping the generator or spoiling a photographic record. The slowest speed is primarily intended to enable useful photographs to be taken on time-exposure. By providing a 'rest' between sweeps, the demands made on a.g.c. response time are eased.
Because the long sweep times are not available on oscilloscopes, a voltage sweep output is provided after the limiter (Fig. 3) for direct coupling to the x-channel of the oscilloscope.

A range calibrator-Fig. 3-is included to provide adjustment for tolerance spreads in the f.e.ts and capacitors used in the tuning bridge. There are three potentiometers for each range. Adjust the maximum frequency for each range on the $f_{\text {max }}$ potentiometers with the $f_{\text {min }}$ pots at maximum amplitude. When these four have been set, adjust the $5-\mathrm{k}(\Omega$ variable resistor in the null potential divider to give the same potential at point B as at A when the ramp generator is at its mimimum-amplitude pause. (Use the slowest sweep or the "hold' setting.) The null potentiometers are then adjusted to give equal slider potentials to those on the corresponding maximum frequency potentiometers. This procedure gives a null balance so that the $f_{\text {min }}$ potentiometer can be adjusted during the maximum ramp pause without affecting the maximum frequency settings. These last set the minimum frequency for each range.

The potentiometer in the emitter of $T r_{2}$ adjusts the overall sweep amplitude on all ranges and the resistor in the collector of $T r_{3}$ allows maximum frequency shifts on all ranges. Used together, they allow compensation of temperature effects on the f.e.ts.

Before attempting to set up the calibrator, make sure each range is allocated the correct calibrator output. To ensure this, measure the d.c. level required to give maximum frequency on each range. Allocate the range with the highest level to calibrator output a and so on. On initially setting up, use the temperature compensation pots to ensure that output d never goes negative at any point in the cycle and that output a minimum frequency can be obtained with the bottom $f_{\text {min }}$ potentiometer at maximum output setting.

In the voltage-tuned oscillator - Fig. 4 the switch selects the range calibrator output ($\mathrm{S} 1_{\mathrm{a}}$, not shown) as well as the tuning and a.g.c. smoothing capacitors for each range. Using the same capacitor

Suggested Improved Version.

In this suggested improved version a ramp generator (above) feeds a two-stage v.c.o. (top left) giving better sweep linearity. An integrating frequency-to-voltage converter (bottom left) provides the display time-base-also having better linearity. The comparator detects the sweep range limit and reverses the direction of frequency sweep via the reset connection to the v.c.o. Close tolerance components in the integrator allow all four ranges to be set to within $\pm 2 \%$ with one setting. Set the calibrated output level amplifier (top right) to give say 5 V r.m.s. output on the lowest switch position. The three upper positions will then be accurate to $\pm 1 \%$. Op-amp supply lines $(+15 \mathrm{~V}$ and -15V) should be decoupled with $0.04-\mu$ F capacitors.

Although the unit described has proved very useful, its performance can be improved to allow accurate measurement of network response. Disadvantages are the calibration procedure (to compensate for f.e.t. spreads), the display sweep generator is not very linear with frequency, and the output level is not fully adjustable.

Much setting-up procedure and nonlinearity of the first design is eliminated in this proposal (see block diagram). In addition, manual frequency and amplitude control is incorporated. Operational amplifiers have been used throughout to simplify design.

for a.g.c. smoothing on all ranges presents the possibility of squegging should there be the smallest trace of mains pickup in the circuit. The values selected prevent this.

Transistors Tr_{7} and Tr_{8} provide a noninverting amplifier, the stage gain of Tr_{7} being controlled by the resistance across
the drain-source of $T r_{6}$ and hence by the gate-source voltage. Signal input to the tuning network is too small to cause serious frequency modulation at signal frequencies because of the potential divider in Tr_{9} emitter. At the same time it gives useful output amplitude (155 mV r.m.s. on the
prototype) and an adequate signal-tonoise ratio.

Further amplification - about 50 times - and half-wave rectification of the oscillator signal is provided by $T r_{10}$ and $T r_{11}$. The d.c. level at the collector of $T r_{11}$ is fed back to the Tr_{6} gate providing gain

A709 Connections

Transistors

Bipolar types should have $h_{f e}>100$ at lmA. Low-noise transistors are preferred for the oscillator section.
$T r_{1}, T r_{7}, T r_{9} \& T r_{10}$ ME4103, BC 107, BC109, BC167, BC169, BC184L or 2 N 3707
$\operatorname{Tr}_{4}, \operatorname{Tr}_{5} \& \operatorname{Tr}_{6}$ 2N3820-see text
$\operatorname{Tr}_{2}, \operatorname{Tr}_{3}, \operatorname{Tr}_{8} \& \operatorname{Tr}_{11}$ ME0413, 2N4058, 2N4062, 2N4126 or 2N4289

Application of sweep generator. Lower traces show envelope response of 2nd-order low-pass filter with 10 kHz 'break' frequency Generator set to 4 s sweep time. Upper traces show envelope response of 2nd-order high-pass filter with 100 Hz 'break' frequency. Generator is uncalibrated and set to 40 sweep time. Spikes at 50 Hz are due to hum on the signal.
control for the oscillator. The time-constant formed by the collector load on $T r_{11}$ is large enough to remove virtually all signal frequencies from the d.c. level.

The f.e.t. is biased very near to pinch-off - the most dynamic region (Fig. 1). The high loop gain around this f.e.t. ensures this condition is maintained without pinching off. The loop gain necessary to obtain these conditions was calculated from an expression derived by Middlebrook ${ }^{2}$ which relates the resistance function of the junction f.e.t. to $V_{g s}, V_{d s}$ and V_{p}

$$
R_{d s}=R_{0} /\left(1-V_{g \delta} d V_{p}-V_{d g} / V_{p}\right)
$$

The ratio V_{g} / V_{p} is 0.98 nominally with $V_{d s}$ assumed zero. Simple circuit analysis dictated a nominal stable loop gain for the oscillator amplifier of 33. This demands $R_{d s}$ to be nominally $20 \mathrm{k} \Omega$. By substituting extreme values of R_{0} for Tr_{6}, (200 and 400Ω), the above ratio was obtained to ± 0.01, with a loop gain between oscillator output and f.e.t. gate of 50 . The oscillator signal level variation was also calculated for a 3% mismatch between $T r_{4}$ and $T r_{5}$, and found to be very small. In practice, this degree of control is not obtainable due to errors in the a.g.c. voltage produced by the time-lag in the smoothing network. Superior performance could be obtained if the smoothing network is replaced by a linear sample-and-hold circuit of wide range. Such circuits are elaborate and not justified in this low-cost system.

The variable resistor at T_{8} emitter sets d.c. level in the oscillator and minimizes signal level fluctuations during sweep. It should be set before the range calibrator, because it affects input impedance of $T r_{7}$ which is across $T r_{4}$ and thus marginally varies frequency.

Construction

The prototype was built on three $0.15-\mathrm{in}$ matrix Lektrokit pin boards mounted in a Lektrokit case. If tracked Veroboard is used $15-\mathrm{pF}$ capacitors may be needed
across the bases of $T r_{7}, \operatorname{Tr}_{8}$ and Tr_{10} (Fig. 4). Layout of operational amplifiers is critical, particularly in the comparator where there are no compensation networks. Decouple their supplies as close to the supply pins as possible and keep connections minimum in length. Keep input leads away from output leads.

References

1. G. B. Clayton, 'A triangular-square wave generator’ Wireless World, vol. 75 1969, pp.586-7.
2. R. D. Middlebrook, 'A simple derivation of field-effect transistor characteristics' Proc. I.E.E.E. vol.51 1963, pp.1146-7.
N.B. U.S. patent 3,432774, filed March 1971 by O. A. Fick, covers the use of f.e.ts in Wien-bridge voltage-tuned oscillators.

Announcements

The fourth International Broadcasting convention, now held in London biennially, has been arranged for 4th to 8th September 1972. The convention and association exhibition will again be held at Grosvenor House, Park Lane. Jointly sponsored by five institutions plus the Electronic Engineering Association, the secretariat is provided by the I.E.E., Savoy Place, London WC2R OBL.

Two one-day seminars are to be held on the 21 st and 22nd of September by the IPC Business Press quarterly Computer Aided Design to study the application of c.a.d. techniques to engineering.

Dolby Laboratories Inc. and the Signetics Corporation jointly disclosed that they are collaborating to develop a monolithic integratedcircuit version of the Dolby-B compatible noise reduction system. The i.c. version is expected to be available to Dolby licensees early in 1972.

A compact radar altimeter developed by Honeywell Inc. in the U.S.A. for aircraft and missile programmes has been selected by the U.K. for use on The Hawker Siddeley Harrier vertical take-off and landing combat aircraft and the British aircraft Corporation Jaguar fighter for the R.A.F. The altimeter is also to be installed on the Westland Lynx generafpirpose helicopter.

A range of Vidicon television camera tubes manufactured by Heimann GmBh, of Weisbaden, is to be marketed by Top Rank Television under the brand name of top rank Heimann.

An agreement to grant sales and manufacturing rights of the Thomson-CSF ground i.l.s. systems type LS37I has been signed between Thomson-CSF of France and the Decca Navigator Company Ltd.

Field Tech Ltd, of Heathrow Airport, London, now have the world-wide marketing rights (except Scandinavia) for the airborne applications of the aerial matching unit type 780 produced by Satf Electronic AB, of Stockholm, Sweden.

Rofin Ltd, (technical developments) Laser division, 3 Windhill, Bishop's Stortford, Herts, are introducing to the British market a large range of novel optics, optical components and instruments made by the Oriel Optics Corporation in the U.S.A.

Echometrix Ltd, announce that they have been appointed exclusive U.K. agents for Schurig Electronics, of West Germany, who manufacture a wide range of digital instrumentation.

Scientific Electro Systems (Essex) Ltd, have been appointed sole U.K. agents for the French microwave manufacturing company, M.D.P. Electronics who manufacture some 600 microwave items.

Senistron Semiconductors of America have appointed the D.T.V. Group Ltd, sole U.K. distributors for their complete range of semiconductor devices.

Lyons Instrument Ltd of Hoddesdon, Herts, and Nu-Devices Inc. of Norwalk, Connecticut, U.S.A., have concluded an agreement whereby Lyons become exclusive U.K. representatives for the Nu -Devices range of electronic instrumentation.

The Post office have awarded a contract to Dynamco, worth more than $£ 100,000$, for one hundred and twelve Dynamco 7060 precision TV' waveform and picture monitor test sets now designated P.O. NO 13B (see R.E.C.M.F. Exhibition report).

Greater London Council Ambulance Service is one of the first to concur with the recommendation put forward by the Department of Health and Social Security to use f.m. communications. An order has been placed with Stono Ltd to equip 300 ambulances with mobile radiotelephones.

GEC-AEI Telecommunication Ltd, of Coventry, have obtained orders worth 50.25 M from Empresa Nacional de Tele-communicaciones S.A. (ENTEL), the national telephone operating company in Chile, for expanding the 1800 km microwave radio system already supplied by GEC.

The Plessey Electronics Group has received an order valued in excess of $£ 600,000$ from the Ministry of Aviation Supply for lightweight PTR446 i.f.f. transponder equipments. These are to be installed in helicopters of all three British services.

Varta AG. one of the largest battery manufacturers in Europe, with a new marketing subsidiary company in the U.K. (Varta Batteries Ltd) have announced several new batteries for transistor radio and other applications to their range.
R. S. Delgliesh Ltd, Newcastle upon Tyne, have placed an order with Marconi Marine for full communications and navigational aid installations for their three new bulk carriers under construction at Cammell Laird \& Co., (Shipbuilders and Engineers) Ltd, Birkenhead.

The Danish Posts and Telegraphs Department have ordered six v.h.f. television transmitters of a new type worth $£ 200,000$ from Marconi to replace equipment installed in 1966.

News of the Month

High-density memory

The Central Research Laboratory of Hitachi Ltd has developed a holographic memory capable of storing 20,000 bits of digital information, equivalent to 2,500 characters, in a space of only 0.5 mm in diameter. The memory storage density is 100,000 bits per $/ \mathrm{mm}^{2}$. With this type of memory device, which uses laser beams to record holographic information in a specially treated transparent geiatine film, noise causes trouble as the concentration of the information-bearing laser increases in a particular area. This, in the past, has limited the storage density to around 10,000 bits $/ \mathrm{mm}^{2}$. The problem was solved by developing a special optical plate that can evenly diffuse the information-bearing laser beams. The optical plate is made of multi-layered thin films of cerium oxide evaporated on a glass substrate through several kinds of random patterned screens.

Laser beams disperse as they pass through this plate which is called a 'random phase shifter'.

Because reading of the stored information is done easily by directing a laser on the holographic memory, the reading time is only $1 \mu \mathrm{~s}$.

Possible applications of the memory device include large-capacity, high-speed computers. For instance, a total of 10,000 holographic memories, which can be laid out on a $5 \times 5 \mathrm{~cm}$ plate, have a total storage capacity of 200 million bits, with a read-out time of a few microseconds.

Hybrid to be checked in space

Hybrid microcircuits have been with us for some time but not long enough for much to be known about their

Shown here is RCA's semiconductor factory in Herstal, Liege, Belgium. The $\$ 10$ million plant is located on a 20-acre site and includes 100,000 square feet of floor space. It will manufacture semiconductor power devices, general purpose silicon power transistors, silicon controlled rectifiers and triacs. It is interesting to note that construction of the factory started in November 1969, production started in October 1970 and the millionth unit was produced in March 1971.

reliability-much the same could be said for monolithic integrated circuits. Many military users are still very cautious when it comes to incorporating monoliths in equipment. Take the new military radio equipment 'Clansman' for instance; every i.c. in this is subjected to rigorous electrical and environmental tests; but in addition every chip is visually examined using a high-power microscope to check for manufacturing defects which do not show up on the other tests and may lead to shortened life.

Hybrids, with their components printed on a ceramic substrate. when viewed under a high-power microscope resemble a ploughed field complete with trenches. In an effort to discover how a hybrid microcircuit will withstand an encounter with the severities of space one is to be incorporated in the British satellite Black Arrow X3 which is due for launch late in the summer this year.

The main contractor for the $£ 2.5 \mathrm{M}$ satellite is Marconi Space and Defence Systems who are responsible to the Royal Aircraft Establishment for the project. The satellite is now assembled and is undergoing a series of pre-launch checks.

The hybrid microcircuit contains an analogue-to-digital converter and an analogue multiplexer which duplicate items in the satellite's main data coder. Outputs from the main coder, and the hybrid counterpart, will be compared so that the performance and stability of the hybrid can be assessed.

Noise reduction in tape cassettes

A noise suppression system for cassette recorders and players which doesn't rely on specially prepared recordings has been developed by Philips in Eindhoven. Using a 'dynamic noise limiter' circuit effective in the playing mode only it will be included in Philips cassette players to be introduced later this year.

The idea is similar to that used in the Sanyo tape recorder (p. $585 / 6$ December 1970 issue). Frequencies above about 4 kHz are attenuated during low-level passages where tape noise would be most noticeable. This is achieved slightly differently in the two systems. In the Sanyo circuit the collector load of a transistor shunts the signal path, the transistor being fed by a d.c. signal derived from the a.c. signal after passing through a high-pass filter. In the Philips circuit progressive attenuation is achieved by cancellation of the signal by a signal from an auxiliary channel. This channel includes the high-pass filter and a level-sensitive attenuator, and the technique may give smoother operation.

It is clear that some signal is lost in these systems but it is argued that when musical instruments are played softly, their harmonic content is much reduced so that with this system some loss at high frequencies can be tolerated. While this may be true with many instruments there are others which retain a substantial
amount of h.f. information when played softly-cymbals for instance and possibly stringed instruments-so it will be interesting to hear this in operation. We note that the makers include an on /off switch for these circuits. Philips claim a signal-to-noise ratio improvement of 10 dB at 6 kHz and 20 dB at 10 kHz unweighted. They also claim an improvement in transient response because of the circuit introducing a phase retard at high frequencies, compensating for the lead due to the equilization circuits.

Circuit analysis bureaux

If you think that computer-aided design is a highly expensive process only suitable for large companies Time Sharing Ltd would be pleased to prove you wrong. They have available two programmes for circuit analysis that do not involve one in a great deal of expense. You need a computer terminal at your premises-a Teletype 33 costs $£ 33$ per month to hire which includes maintenance-and you will have to arrange for the Post Office to fit a suitable modem. Other charges depend on how much you use the service, the type of work you are doing and how much material you want to store away in the computer's memory for future reference. For example a fairly comprehensive analysis of a single transistor amplifier might take about 20 minutes and cost less than $£ 5$.

The first programme is called Telinac (Telcomp linear a.c. circuit analysis). To use it one sketches the circuit and assigns each connection point a node number. The computer is given the circuit by typing the component type (R, C, etc.), giving its value and the node numbers to which it is connected. Transistors can be specified in terms of $h_{F E}, \mu, f_{T}, C_{O B}$, etc or by y-parameters. Other components that can be added are transformers, inductors (coupled or uncoupled), operational amplifiers and transmission lines. The programme will calculate the gain and phase shift of the circuit at different frequencies, the voltage at any node and will printout the circuit admittance matrix and the y-parameters of the network or a graph of gain against frequency. Ali these facilities are options and the user can manipulate the computer to his own ends within certain limits.

The second programme is called FNAP (Fortran linear a.c. analysis). It complements the first programme and will handle larger circuits (up to 30 nodes and 100 branches at 100 frequencies). Operation is similar to Telinac, it is faster, and will perform a Monte Carlo analysis for simulation of production runs with user's choice of spread distributions.

Free adhesive know-how

Designers and constructors in many industries have increasing need for
knowledge of the various types of adhesive, and for advice on the properties, advantages and disadvantages of adhesives in particular roles. With long experience in the physical chemistry of surfaces, Sira Institute has for years offered adhesives consultancy both to its members and to a growing number of non-member clients. From now on Siraid-Commercial (who have been giving free instrumentation advice for some time) will answer where-to-buy-what-adhesive enquiries free (there are more than 600 brands from which to choose!). If a problem demands special expertise or research the enquirer will be referred to Sira Institute's consultants, whose fees will be agreed with the client in advance. If you are in industry and would like to take advantage of this service ring 01-467 2636, or write to Siraid-Commercial, Sira Institute, South Hill, Chislehurst, Kent, BR7 5EH.

Britain at Telecom '71

Sixteen British companies will share the 750 square metre stand making up the U.K. joint venture at Telecom '71 in Geneva sponsored by the Electronic Engineering Association in conjunction with the Department of Trade and Industry. The event runs from June 17th to 27th coincident with the World Administrative Radio Conference for Space Telecommunications on which we hope to report in a future issue.

The companies taking space on the U.K. stand are: British Oxygen; Cable and Wireless; EMI Electronics; Ferranti; Granger Associates; Hewlett Packard; International Aeradio; Marconi Co.; Marconi Instruments; Microwave Asso ciates; Plessey; Post Office Telecommunications; Science Research Council; Solartron; Sperry Rand; and the Gardos Corporation.

Microcircuit symposium

A successful second symposium on 'Microcircuits and their Applications' was held recently at the Polytechnic of North London and organized by the Department of Electronic and Communications Engineering. Two hundred and sixty delegates heard a total of twenty-one papers covering a wide range of recent developments in the field of monolithic and hybrid integrated circuits.

The symposium began with papers on the technology of integrated circuits. One paper covered the isoplanar process which, as far as complex bipolar i.cs are
concerned, should produce a considerable reduction in the area taken up by the isolation regions. The paper also covered the m.o.s. silicon gate process.

The principles embodied in a paper on the fundamentals and applications of m.o.s. logic were illustrated in one which followed on desk calculators. It was shown how a desk calculator could be constructed from only four basic standard i.cs; this is being developed further and will result in a single i.c. desk calculator which will be available in the near future.

A paper on thin-film active filters described how hybrid techniques were being employed successfully in their construction. This was followed by the final paper on the application of i.cs in the automotive industry which stressed the importance of overcoming pollution and of improving safety and performance.

Babbage memorial meeting

The British Computer Society and the Royal Statistical Society are to jointly sponsor a meeting to commemorate the centenary of the death of Charles Babbage-considered to be the pioneer of the computer. The meeting will take place on 18th October, in the main lecture theatre of the I.E.E., Savoy Place, Victoria Embankment, London W.C.2.

Charles Babbage was born at Totnes in Devon during 1791. There is very little doubt that his Analytical Engine formed the theoretical basis of today's electronic digital processor. Babbage also played a leading part in the establishment of statistics in this country.

O.S.I.?

We now have another set of initials to learn which-for some reason best known to themselves-Plessey have coined. They use the initials o.s.i. (optimum scale integration) to describe two new integrated circuits which together form the complete colour processing circuitry for a television receiver (chroma amp., gated burst amp. with 45° switch, reference amp., PAL switch, colour killer, stabilization circuitry, colour demodulator and matrices). The circuits are the result of cooperation between Plessey and Rank Bush Murphy and are in production at Plessey's Swindon plant.

2
 TEKTRONIX

Tel tronix U.K. Itd.
Eeavertonallouse, Po Box 69
Harpegnder, Herts
Tet, Harpenden 6125 , elex: 25559
Nothert Region Office
Eeazertginlause 181, A. cormite 10 progress in wayeform measuremen

\square PRICE DOWN $\quad \begin{aligned} & \text { PERFORMANCE UP }\end{aligned}$

TEKTRONIX 7000 series moves into the lower cost market with 50 MHz bandwidth oscilloscope and: 5 mV dual-trace amplifier and sweep delay
£1024
5 mV dual-trace amplifier and single time base........................£879
5 mV single-trace amplifier and single time base
£772

LOOK AT THESE FEATURES!

- Large $6 \frac{1}{2} \mathrm{in}$. CRT - with 15 kV brightness.
- 3 plug-in compartments giving capability up to 4 traces.
- Choice from 20 plug-in units including single trace, dual trace,
differential, voltage comparator, including single trace, dual trace,
differential, voltage comparator, current measuring and sampling.
Sensitivities from $10 \mu \mathrm{~V} /$ div. at 1 MHz , $1 \mathrm{mV} /$ div. at 55 MHz , to $5 \mathrm{mV} / \mathrm{div}$. at 60 MHz .
- Accuracy, amplitude and time, is 2%.

Time base sweep rate to $5 \mathrm{~ns} /$ div.

- Complete compatibility with 7000 series mainframes and plug-in units.
- $5 \frac{1}{4} \mathrm{in}$. Rackmount also available.

PRICES DELIVERED IN UK
7403N Oscilloscope
7A15 Single trace amplifier............£119
(+f 13.60 duty)
7A18 Dual trace amplifier................£226
7B50 Single time base.................. $£ 210$
7B53N Sweep delay time base......... $£ 355$

Ask for a demonstration by your Tektronix field engineer Call Harpenden 61251 or Northern Region Office 061-224 0446

Circuit Ideas

Low cross-over distortion class B amplifier

A difficulty with class B amplifiers is that although it is possible to set the quiescent current at the time of manufacture to a pre-determined value which gives low distortion this current is liable to change greatly with ageing, temperature, and changes in power supply voltage.

The circuit shown reduces these effects by using a comparator $\left(A_{2}\right)$ to detect when the current through R_{1} (shown as $3.9 \mathrm{k} \Omega$) drops below the value of $I_{\text {min }}=(18-12) /$ R_{1} amps, and then integrating its output by means of A_{3} and its associated R and C. The slowly changing voltage produced is applied to the resistor chain of $820 \Omega, 820 \Omega$ and 470Ω, its effect being to increase the voltage across the 470Ω resistor so that the quiescent current through the output
transistor never falls below the value of $I_{\min }$. The junction of the two 820Ω resistors is bootstrapped by the $250 \mu \mathrm{~F}$ capacitor so that both sides of the complementary 'White emitter follower' output pair are driven with nearly the same signal voltage. During the part of the cycle when $\operatorname{Tr}_{1}, \operatorname{Tr}_{2}$ are conducting, D_{1} conducts providing a low impedance path to the +12 V rail without which only a very small current could be provided via the 18 V rail and the $3.9 \mathrm{k} \Omega$ resistor.

Overall feedback is provided to the input of A_{1} by means of the $10 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$ resistors. An interesting feature of the circuit is that because of the on-off nature of the error detector the minimum current rises and falls again to its minimum value at about 5 Hz . However, because this occurs within the loop at a frequency at which the open loop gain of A_{1} is greater

than 15,000 , it is quite unmeasurable at the output.

A secondary +18 V supply is required. This is obtained from the main + and 12 volt supplies. A_{4} is part of a squarewave generator the output of which is d.c. restored by D_{2}, rectified by D_{3} and zener stabilized by D_{4} to produce 18 V . This voltage is applied to A_{2} enabling it to operate with about 12 V at its input terminal. It is also used to establish the minimum current through R_{1}.
A. SANDMAN,

Royal College of Surgeons,
London.

Low-noise f.e.t. amplifier

The circuit presented is that of a low-noise amplifier suitable for use with signals from high source impedances.

For low input capacitance a cascode configuration of f.e.ts is employed. The use of a second f.e.t. in the upper position, instead of a bipolar transistor, results in a lower noise figure* for the amplifier. Maximum voltage gain (about 85) is obtained by bootstrapping the cascode load resistor with $T r_{3}$, which also provides, through its collector circuit, negative d.c. feedback to establish the

operating point of the circuit.
Performance:
Voltage gain, a.c. 85 with C_{1}
5 without C_{1}
Input capacitance 6 pF with C_{1}, dependent on $T r_{1}$ used
Input resistance up to $1000 \mathrm{M} \Omega$ dependent on gate leakage of Tr_{1}
Total distortion at 1 kHz , with C_{1} in circuit, $1.1 \%\left(V_{\text {out }}=3 \mathrm{~V}\right.$ p-p)

The distortion figures remained the same for $V_{d s s}$ of $T r_{2}$ varying between 1.6 and 3.4 V . This voltage is dependent on the $I_{d s s}$ of $T r_{2}$, which must be greater than the $I_{\text {dss }}$ of Tr_{1}, for correct biasing conditions. R. L. HOOPER,

University of Canterbury,
New Zealand.

[^11]
Elements of Linear Microcircuits

9. Voltage regulators

by T. D. Towers*, m.B.E.

The d.c. voltage regulator is a very common circuit in electronics as practically all equipment requires a power supply which in many cases must be stabilized. This means that a power supply's voltage must not vary with changes in mains voltage, load current or ambient temperature. Complete voltage regulator circuits are easily made in both monolithic and hybrid microcircuits.

Op-amps for voltage regulation

Although a variety of ready-made voltage regulator microcircuits are available, general purpose op-amps are now so common that many designers 'roll their own' regulators using a standard $\mu \mathrm{A} 709, \mu \mathrm{~A} 741$, LM101 or a similar device. Fig. 1 is a typical example which will supply 12 V at 100 mA . The $\mu \mathrm{A} 741$ serves as a d.c. error signal amplifier. Its output current supplies the base of the series pass transistor Tr_{1}. The non-inverting input is held at the constant 6.2 V by the zener diode. The inverting input receives an error signal proportional to the stabilized output voltage (about half) from the potential divider R_{3}, R_{4}, R_{5}. Fine adjustment for exactly 12 V is by R_{4}.

Simple regulator microcircuits

Monolithic voltage regulators fall into two classes: simple medium-performance multioption building blocks and complex highperformance complete regulators.

As a typical example of a simple regulator, Fig. 2(a) shows the circuit of the Westinghouse WM330. The compoundconnected Darlington pair, $\operatorname{Tr}_{1}, T r_{2}$ has a current gain of over 10,000 and functions as the series control element. Tr_{3} is the feedback amplifying transistor, while the zener diode, provides a 6.2 V reference. The temperature coefficients of the $V_{B E}$ of $T r_{3}$ and of the zener voltage diode are equal and opposite, resulting in good temperature stability. The whole circuit is contained in a $3.5 \times 3 \mathrm{~mm}$ silicon chip mounted in an 8 -pin TO- ${ }^{3}$ package, and is capable of handling an output current up to 1 A when bolted to a heat sink. Fig. 2(b)

[^12]shows the simplest way of using the WM330.

Where high output current handling is not needed, you can use one of the simple regulator microcircuits available in smallsignal transistor packages. Typical of these is the G.E. (U.S.A.) D13V utility voltage regulator. See Fig. 2(c) for the circuit. This is basically a shunt regulator in which terminal three is held at a voltage above terminal one equal to the sum of $V_{B E_{1}}$; $V_{D}, V_{B E}{ }_{2}$. On its own, it can be connected as a shunt regulator as in Fig. 2(d), where:

$$
V_{\text {out }}=V_{3} \times\left(R_{1}+R_{2}\right) / R_{2}
$$

The regulator adjusts the current drawn through R_{3} to hold $V_{\text {out }}$ constant. As a shunt regulator the D13V can handle up to $40 \mathrm{~mA}^{\prime}$ shunt current and give a regulated output voltage up to 40 V , provided the maximum permissible device dissipation of 400 mW is not exceeded. For higher currents or lower standing drain from the input power supply, it can also be connected as a series regulator as in Fig. 2 (e). In this arrangement, it can control a base current of up to 40 mA in the series-pass transistor T_{3}, which gives possibilities of using a power transistor for outputs up to 1 A .

High-performance voltage regulators

Manufacturers have developed a wide range of more complex microcircuits using

Fig. 1. Using a standard monolithic op-amp ($\mu \mathrm{A} 741$) to make up a 12 V , 100 mA stabilized d.c. supply.
the advantages of the monolithic technology to the full and covering output voltages from 1 to 100 V . Mostly these are in multilead TO-5, dual-in-line or flat-pack form, and usually capable of dissipating not more than about 500 mW . However, higher power versions in multi-lead TO-8 and TO-3 or heat-sinked dual-in-line are becoming available.

As yet there is little standardization, although 'second sourcing' makes it possible to obtain some types from more than one manufacturer. Two regulator microcircuits have become almost industry standards in this way: the Fairchild $\mu \mathrm{A} 723$ and the National Semiconductor LM100.

Into a silicon chip $(1.3 \times 1.5 \times$ 0.18 mm) the $\mu \mathrm{A} 723$ crams a power series-pass transistor, reference amplifier, error amplifier and current limiting circuitry using planar epitaxial processes.

Fig. 3 shows the internal circuitry of the 723. In this, $T r_{15}, T r_{16}$ is a compound Darlington series pass element. The circuits around D_{2} comprise the fixed voltage reference source. The long-tail pair Tr_{10}, $T r_{13}$ is a feedback amplifier with $T r_{12}$ as its constant current load resistor. The components $T r_{1}, T r_{2}, R_{1}, R_{2}$ and D_{1} form the base biasing network for all the constant current transistors $\operatorname{Tr}_{3}, \quad \operatorname{Tr}_{7}$ and Tr_{12}. Together $T r_{3}, T r_{4}, T r_{5}, T r_{6}$ provide a constant current feed for the zener D_{2}, with negative feedback ensuring a low output resistance for the voltage reference source. $T r_{7}, T r_{8}, T r_{9}$ provide a suitable drive for the long-tail pair constant current transistor Tr_{11}.

Thus far, the 723 can be seen to be merely a refined version of the basic regulator type of Fig: 2(a). Extra features of the 723 are Tr_{14} with isolated leads offering optional uses as a feedback current limiter or as a pre-regulator. Also, both inputs to the feedback amplifier are isolated to allow additional flexibility, and the collector of the series pass transistor Tr_{16} is separated from the internal circuitry.

For full details of the performance of the $\mu \mathrm{A} 723$ you must consult the detailed data and applications sheets, but some indication of its capabilities can be seen from the following figures. It can be used with input voltages from 9.5 to 40 V and output voltages from 2.0 to 37 V . It can provide output currents up to 150 mA , so long as the power dissipation rating of

Fig. 2. Simple voltage regulator microcircuits. (a) Westinghouse WM330; (b) connection of WM330 in practical circuit; (c) G.E. (U.S.A.) D13V utility voltage regulator; (d) the D13V as a shunt regulator; (e) the D13V as a series regulator.

800 mW is not exceeded. For a nominal 12 V input, and 5 V regulated output at a nominal load current of $5 \mathrm{~mA}, V_{\text {out }}$ varies less than 5 mV for a change of $V_{\text {in }}$ from 12 to 15 V , and less than 25 mV for a $V_{\text {in }}$ change from 12 to 40 V . With $V_{\text {in }}$ fixed at 12 V for 5 V output, a load current variation from 1
to 50 mA will give less than 10 mV variation in $V_{\text {out }}$. Ripple rejection is typically 80 dB , i.e. 1V ripple on the input gives only 0.1 mV ripple at the output. Output voltage varies with temperature less than 0.015% per C , i.e. on a 5 V output less than $750 \pi \mathrm{~V}$ for $1^{\circ} \mathrm{C}$ change. The standby current drain of
the 723 is less than 4 mA , and with an external 10Ω short-circuit current limiting resistor in the output line, the output current will self limit at about 65 mA .

The $\mu \mathrm{A} 723$ is supplied by many manufacturers. In the U.K. apart from Fairchild's own version, the device appears under other

Fig. 3. Internai circuitry of industry-standard Fairchild Semiconductors $\mu A 723$ voltage regulator microcircuit.

(c)

Fig. 4. Versatility of commercial voltage regulator microcircuits illustrated in typical circuit connection options for standard $\mu A 723$. (a) Nominal 7.15 V output with only one external capacitor; (b) low voltage (+2 to +6 V) output; (c) high voltage $(+8$ to $+37 \mathrm{~V})$ output; (d) foldback current limiting arrangement; (e) pre-regulated low voltage output.
manufacturers' numbers such as Mullard's TBA281, S.G.S's L123 and I.T.T's MIC723.

Applications of the μ A723

To ,illustrate the versatility of the 723 , Fig. 4 gives a number of circuit arrangements using only the 723 and passive components. Monolithic i.cs such as the 723 can provide in themselves only limited voltage (up to about 40 V) or current (up to about 150 mA). However, external transistors can be used to extend their capabilities in this respect. For example adding an outboard 2 N 3055 power transistor to the basic 723 as in Fig. 5(a) raises its output current capability to over 1A,

To achieve a regulated output voltage above the limit of the 37 V implicit in the 723 specification, the substrate of the microcircuit can be elevated above ground potential by tying its negative supply terminal to a regulated voltage high enough above ground to bring the output to the required voltage. Fig. 5(b) shows how a $100 \mathrm{~V}, 50 \mathrm{~mA}$ output is obtained in this way.

Terminals three and two, the two inputs
to the feedback amplifier bases, are virtually at the same potential. Thus the voltages across R_{5} and R_{3} are equal. Now R_{3} and R_{4} are equal and in series across the internal 7.15 reference voltage of the 723 , so that the voltage drop across R_{5} (equal to that across R_{3}) is 3.57 V . Thus the voltage drop across R_{6} is $\left(R_{6} / R_{5}\right) \times 3.57 \mathrm{~V}=102 \times$ $3.57 / 3.57=102 \mathrm{~V}$. This sets the output line 100 V above ground.

The LM100

The other workhorse voltage regulator, the LM100, uses the circuit of Fig. 6. This device contains, on a single silicon chip, the voltage reference, the feedback operational amplifier and the controlled series pass transistor to make up a voltage regulator. The voltage reference part of the circuit starts with a zener diode D_{1} that is supplied by a current source (one of the collectors of the multi-collector transistor Tr_{2}) from the unregulated input. The output of D_{1}, which has a positive temperature coefficient of $2.4 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, is buffered by an emitter follower, Tr_{4}, which increases the temperature coefficient to $+4.7 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. This is further increased to $+7 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ by the
diode-connected transistor, Tr_{6}. A resistor divider, R_{1}, R_{2} reduces this voltage to exactly compensate for the negative temperature coefficient of $T r_{7}$, producing a fully temperature-compensated output of 1.8 V at the base of Tr_{8}.

The transistor pair $T r_{8}, T r_{9}$ form the input stage of the operational amplifier. The gain of this stage is made high by the use of a current source (one of the collectors of $T r_{2}$) as a collector load for $T r_{9}$. The output of this stage drives a compound emitter follower $T r_{11}, T r_{12}$, to supply a regulated output voltage at terminal one. An additional transistor, Tr_{10} is used to permit limitation of the output current of $T r_{12}$. This current limit is determined by an external resistor connected between terminals one and eight, with a value between 10Ω for 30 mA current limit to 30Ω for 10 mA . As for the rest of the circuit, $\operatorname{Tr}_{1}, T r_{3}, T r_{5}$ are part of a bias stabilization circuit for $T r_{2}$ to set its collector currents at the desired values. Resistors R_{9}, R_{4} and zener diode D_{2} serve the sole function of starting the regulator. Finally D_{3} is a clamp diode which keeps $T r$, from saturating on feedback overload.

The LM100 can be obtained in an 8 -lead TO-5, dual-in-line or flat-pack form. The terminal numbers in Fig. 6 refer to the TO-5 version. The basic LM100 is specified for a -55 to $+125^{\circ} \mathrm{C}$ temperature range. The same device also appears as the LM200 for -25 to $+85^{\circ} \mathrm{C}$, and LM300 for 0 to $+70^{\circ} \mathrm{C}$. The LM 100 is available from a number of manufacturers, usually under a related number as LA100 (Nucleonic Products), or SG100 (Silicon General). Also, we find alternative types, such as the RCA CA3055, with different internal circuitry but which are completely interchangeable with LM100 having the same pin connections and performance.

Performance-wise the LM100 is not dissimilar to the $\mu \mathrm{A} 723$. Its input voltage range is 8.5 to 40 , and output 2.0 to 30 V . Its load regulation is better than 0.5% for a current output from 1 to 10 mA . Its line regulation is less than $0.2 \% / \mathrm{V}$, and its standby current on no load less than 3mA.

Applications of the LM100

Circuit applications of the LM100 follow very much the pattern of the 723 as indicated in Figs. 4 and 5 above, and will not be detailed here. However, ah illustration of how the LM100 can be used in conjunction with general purpose op-amps to produce a practical regulated double-rail bench supply for working with op-amps is given in Fig. 7.

Fig. 7(a) is the mains step-down; rectifying and smoothing unit to give positive and negative 24 V unregulated d.c. rails, A and B , with a ground rail G .

Fig. 7(b) shows the section to produce stabilized positive and negative 20 V rails, C and D. The LM100 is connected to give the positive rail C directly. An op-amp, A_{1}, with its non-inverting input connected to the ground rail through a $10 \mathrm{k} \Omega$ resistor has its input virtual earth at ground potential. The $20 \mathrm{k} \Omega$ input resistor from the +20 V rail to the inverting input and the
$20 \mathrm{k} \Omega$ resistor from the inverting input to the output establish the output at -20 V , to provide the negative regulated rail, D.

The third section of the system shown in Fig. 7(c) is designed to provide a further two stabilized positive and negative rails, switchable through the range $\pm 20,15,10$ and 5 V . The regulated +20 V applied at the input to the ladder network of resistors, sets up selectable reference voltages of 2.5 , $5.0,7.5$ and 10.0 V which can be applied to the non-inverting input of the op-amp, A_{2}. The $20 \mathrm{k} \Omega$ resistors from the inverting input to ground and to the output set up the output voltage of A_{2} at $(20+20) / 20=2$ times the input voltage on the non-inverting input. This gives a positive output rail E whose voltage can be set at $5,10,15$ or 20 V . The op-amp A_{3} is used to produce an inverted output equal and opposite in sign to E . Thus F gives an output of -2.5 , $5,10,20 \mathrm{~V}$ corresponding to the voltages on E .

Although the op-amps shown in the design are LM101, they could equally well be any standard device such as the $\mu \mathrm{A} 709$ or $\mu \mathrm{A} 741$.

Special-purpose voltage regulators

So far we have discussed only generalpurpose voltage regulators which can be adapted to many different voltage requirements. There is growing up, however, a range of devices specially fabricated for a single use.
An example of these is the Philips TAA550, an integrated monolithic twoterminal voltage stabilizer in a two-lead TO-18 can which is specially designed to provide the supply voltage for variable capacitance diodes in television tuners independent of supply voltage and temperature variations. With a nominal stabilized voltage of 33 V , all these require are a series resistance to the unregulated power supply and a shunt capacitor. They take typically 5 mA of current.

Another useful example of specialpurpose regulators is the LM309, which is a complete 5 V regulator on a single silicon chip. Designed for local regulation on digital logic cards, the 309 neatly eliminates distribution problems caused by single central-point regulation in the system. No external components or adjustments are required. In a TO-5 package, it handles currents up to 200 mA , and in a TO- 3 over 1 A .

Hybrid voltage regulators

We nowadays have a rather impressive range of monolithic voltage regulators readily commercially available, and yet hybrid microcircuit manufacturers continue to introduce new regulators. Why is this? Well, you can build higher power hybrid regulators than you can monolithic. But the main advantage of hybrid assembly is that hybrid techniques permit you to 'trim on test' during manufacture, and adjust the output voltage much more exactly than can be achieved in monolithics. Also any high-frequency compensating capacitors can be included in the package to give you a truly self-contained
(a)

(b)

Fig. 5. Typical uses of external transistors to extend output capabilities of standard voltage regulator microcircuit (μ A723). (a) high-current series-pass external transistor; (b) 'floating' high voltage ($100 \mathrm{~V}, 50 \mathrm{~A}$) output.

Fig. 6. Internal circuitry of industry-standard National Semiconductors LM100 voltage regulator microcircuit.

Fig. 7. Application of LM100 in regulated double (\pm) rail bench power supply for use with linear microcircuits: (a) rectifying-smoothing giving $\pm 24 \mathrm{~V}$ unregulated; (b) fixed $\pm 20 \mathrm{~V}$ regulated section; (c) switchable $\pm 5,10,15,20 \mathrm{~V}$ section.

Fig. 8. Circuit of hybrid voltage regulator, General Instruments NC562.
circuit requiring no additional external components.

Fig. 8 is the circuit of the General Instruments NC562 hybrid regulator. Typical of hybrid voltage regulators, this circuit is thermally and electrically more efficient than an equivalent monolithic version because of the use of parallel pass transistors $\operatorname{Tr}_{6}, \quad T r_{7}$ with low saturation resistance. The control amplifier uses high-gain $\mathrm{n}-\mathrm{p}-\mathrm{n}$ and $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistors, $\operatorname{Tr}_{1}-\operatorname{Tr}_{2}$ and $\operatorname{Tr}_{3}-\operatorname{Tr}_{4}$, to ensure high open-loop gain and minimum standby current. A junction f.e.t., $T r_{5}$, forms a constant current source to drive Tr_{6} and Tr_{7} bases under feedback control by transistor Tr_{1}. The zener reference element D_{2} is compensated by D_{1} to provide excellent temperature characteristics for the regulator, and the unit is encapsulated in a high-dissipation 12-lead TO-8 package.

If terminals one, two and three are connected together, and terminal eight is connected to twelve, and six to four, and if a supply of more than 13 V is connected to terminal seven then the output from terminal four is a precise stabilized 12 V at up to 800 mA with 0.1Ω output resistance.

By connecting a variable potentiometer across one-two-three, the output can be adjusted between 10 and 20 V . A current limiting circuit can be connected at terminals four, five and six and a decoupling capacitor for the reference element at terminal ten.

State of the art

Except for the general adoption of the $\mu \mathrm{A} 723$ and the LM100, there is no effective standardization of voltage regulator microcircuits. Hitherto most of the regulator microcircuits available have been singlerail only, but a fairly recent development has been the appearance of double-rail types such as the Motorola Semiconductor's $\pm 15 \mathrm{~V}$ MC1567.

Finally, a likely development is that .hybrid manufacturers will take basic chips like the LM100 and incorporate them with all the necessary extra components to produce self-contained three-terminal packages, that only have to be inserted between the unregulated supply and the regulated output lines with a common earth line.

The remaining three instalments in this series of articles on microcircuits will cover:
10-A.M. receivers
11-F.M. receivers
12-Television receivers

Write or telephone today for our 56 page, fully illustrated catalogue, complete with data specifications.

 LOCAL AUTHORITIES, ETC.

Member of the J. Beam Group of Companies

To keep them in touch.

Chauffeurs. Drlvers of taxis, ambulances, lorries and tankers. Firemen and policemen. Builders. Dockers. Doctors and nurses.

ITT's Star range of vehicle and pocket radiotelephones. For people on the move who need to communicate.

Star mobile radiotelephone. For faultless, fade-free communication in vehicles. Wherever you are, however fast you're travelling. It has excellent range and signal
penetration in built-up areas. Its noise cancelling microphone gives crystal clear speech reception whatever background noise there might be.

Then there's Starphone, ITT's truly pocket-sized radiotelephone, with no external aerial rod or wires. Yet despite its diminutive size Starphone gives amazingly clear communication over a wide area. There's a version approved by the Ministry of Technology for safe use wherever a fire hazard exists.

There's also the Briefcase Portable, a complete communication system in a briefcase Installed and operational in seconds.
ITT Mobile Communications Ltd., New Southgate, London, N. 11. Telephone: 01-368 1200 Telex: 261912

New Products seen at the London Components Show

In addition to details of a selection of the new products introduced on the 360 stands at the Electronic Components Show (Olympia May, 18-21) we have included a few items seen at the shows put on by some companies at nearby hotels. Further information on any product can be obtained by professional readers by inserting on the reader reply card the appropriate reference number.

Television waveform monitor

Dynamco displayed a precision television video waveform monitor (type 7060) which is particularly useful for checking the quality of video signals after they have been relayed by landline-in fact the Post Office is to use the instrument for just this purpose. Any degradation of the quality of the signal, due perhaps to a landline defect, can be quickly seen and measured. Of course the instrument is also valuable for monitoring the picture quality of outside broadcasting units and for c.c.tv applications.

The 7060 consists of a standard oscilloscope with a good deal of extra electronics added. The display is presented on a 127 mm (5in) retangular c.r.t. Basically there are the following four modes of operation:

1. Normal: In this mode the instrument functions as a conventional oscilloscope with a frequency response from d.c. to 5 MHz within 0.1 dB , to 10 MHz within 0.2 dB and to 20 MHz within 3 dB . The input attenuator varies the deflection sensitivity from $50 \mathrm{mV} /$ division to $0.4 \mathrm{~V} /$ division in 6 dB steps. Two input sockets present impedances of $1 \mathrm{M} \Omega$ and 45 pF or 75Ω. One of the plug-in timebase units provides sweeps from $0.1 \mu \mathrm{~s} /$ division to 2 s /division in 22 (1-2-5) calibrated steps with all the usual triggering facilities and a $\times 10$ magnifier.
2. Raster \times 1: With the function switch in this position and a video signal complete with synchronizing pulses-either composite or separate-applied to the input a $90 \times 67 \mathrm{~mm}$ television picture will appear on the screen. An internal sync. separator provides trigger pulses which may be switch selected on the standard timebase unit which provides the horizontal sweep. The sweep rate is set by the normal timebase speed controls so any line standard can be accommodated. A strobe pulse can be adjusted to brighten any line
or any part of any line, or any section of up to six lines on the raster. The portion of the raster covered by the bright-up strobe pulse can then be expanded to fill the screen so that it can be examined in detail.
3. Raster $\times 2$: Vertical deflection is multiplied by two; timebase can be triggered at any point on the raster so that larger sections of the raster can be examined in detail.
4. Waveform: The video waveform for the section of the raster covered by the bright-up pulse described above is displayed on the screen. A special graticule and vernier fitted to the display enables precise measurements (0.02 dB) of picture quality to be made in the mode.

Other features include a black-level clamp which may be switched in or out or the removal of an internal link removes the interlace component of the video signal for ease of line selection. Many other options are available. Dynamco Ltd, East Main Industrial Estate, Broxburn, West Lothian, Scotland.

WW374 for further details

60 MHz counter /timer

Bradley Electronics had a compact 60 MHz counter/timer (model187) among the new products they introduced at an exhibition at Kensington Close Hotel which ran at the same time as the R.E.C.M.F. exhibition at Olympia. The instrument will measure frequency, period (single and average), true time interval, ratio, and has totalize and scaling functions.

The d.c. to 60 MHz channel A has a sensitivity of 10 mV at 30 MHz rising to 40 mV at 60 MHz . Channel B will operate from d.c. to 10 MHz and in this case the sensitivity is 10 mV . Both channels have an input impedance of $1 \mathrm{M} \Omega$ and 20 pF with
the input attenuator in any but the $\times 1$ position where the capacitive component rises to 50 pF . The input attenuators are identical with four positions marked $\pm 250 \mathrm{mV}$ to $\pm 250 \mathrm{~V}(\times 1$ to $\times 1000)$.

The internal timebase is derived from a 1 MHz crystal oscillator with a typical stability, after a 72 hour warm up period, of 5 parts in $10^{9} / \mathrm{day}$ or 3 parts in $10^{8} /$ week. Each of the nine timebase ranges are individually selected by a separate switch. Time base speeds available go from $1 \mu \mathrm{~s}$ to 100 s in decade steps.

The accuracy of the instrument in its various modes is as normal for this type of equipment, i.e. ± 1 count, \pm timebase error or \pm trigger error. The latter parameter, trigger error, is calculated from 0.008 divided by signal slope in volts per second, the answer being in seconds, The various functions of the instrument are selected on individual switches and not on a rotary selector switch. G. E. Bradley Ltd, Electral House, Neasden Lane, London N.W. 10.
WW377 for further details

Oscilloscopes and curve tracer

Three new dual-trace oscilloscopes from Telequipment have bandwidths of 25 MHz at $10 \mathrm{mV} /$ div or 15 MHz at $1 \mathrm{mV} / \mathrm{div}$ (D66) and 15 MHz at $10 \mathrm{mV} / \mathrm{div}$ or 10 MHz at $1 \mathrm{mV} / \mathrm{div}$ (D65). Model D68 has high-gain differential amplifiers giving a sensitivity of $10 \mu \mathrm{~V} / \mathrm{div}$ (common-mode rejection 100 dB) and $2-\mathrm{MHz}$ bandwidth. Prices are £ 195 (D65), £225 (D66), and £320 (D68). Curve tracer CT71 (illustrated) displays

transistor and diode characteristics at currents of up to 2 A , reverse currents down to 5 nA and reverse voltages up to 1 kV . Two different characteristics can be displayed on the $10 \times 10 \mathrm{~cm}$ screen. Price £195. Telequipment, 313 Chase Road, London, N 14 6JJ.

WW35 1 for further details (scopes)
 WW352 for further details (tracer)

Versatile signal generator

Model TF2008 is a signal generator introduced by Marconi Instruments which covers the range from mid-audio to u.h.f. with a choice of amplitude or frequency modulation. In addition it is a sweep generator capable of sweeping from 10 kHz to 4.5 MHz up to 360 to 510 MHz , while still retaining its a.m./f.m. capability-useful for many dynamic measurements.
Carrier frequency: 10 kHz to 510 MHz in 11 bands. Range switch changes the scale so that only the frequencies available on that band are visible on the tuning scale leading to easy, unambiguous frequency setting. Accuracy $\pm 0.5 \%$ above 22.5 MHz . Stability is typically 5 p.p.m. above $\cdot 22.5 \mathrm{MHz}$. An uncalibrated fine-tuning control is provided which has a very limited range-fine tuning can also be carried out electrically via a front panel terminal ($\pm 4 \mathrm{~V}$).
Calibrator: An internal crystal oscillator provides 13 check-points per band which are indicated on the tuning scale. The calibrator oscillator can be used to provide markers when operating in the sweep mode.
Incremental frequency: Precise incremental frequency changes can be made using the internal Δf control without upsetting the standardization of the main tuning scale. The control is calibrated in kHz and operates in conjunction with a range switch with settings at $3,10,30$ and 100 kHz for carrier frequencies below 45 MHz , with an additional setting $(300 \mathrm{kHz})$ for higher carrier frequencies.
Narrow sweep: A voltage of $\pm 5 \mathrm{~V}$ applied to the external narrow sweep terminal will produce a carrier shift of $\pm 100 \mathrm{kHz}$ at carrier frequencies below 45 MHz and $\pm 300 \mathrm{kHz}$ at higher carrier frequencies. The shift voltage is applied to the same varicap diode as is used for the incremental frequency control.
Wide sweep: An internal triangular wave oscillator operating at 18 Hz controls the
frequency of a voltage controlled oscillator which covers the same frequency ranges as the main carrier oscillator. Sweep width and centre frequency controls are provided. The carrier oscillator provides a marker at the frequency indicated on the main tuning scale.
Modulation: An internal oscillator, variable between 300 Hz and 3 kHz , provides the source of internal modulation. Amplitude modulation can be to a depth of 80% and frequency modulation up to a deviation of 100 kHz below 45 MHz , and 300 kHz above this, is obtainable. The modulation frequency characteristic is within 0.6 dB from 30 Hz to 53 kHz with negligible phase shift making the instrument suitable for stereo application.
R.F. output: The output level of the instrument is variable from $0.2 \mu \mathrm{~V}$ to 200 mV from a 50Ω source. Adjustment is by a coarse control covering 110 dB in 10 dB steps and a fine variable control covering 10 dB . The automatic carrier level control obviates the need for a set carrier control-but a meter is provided to check the correct functioning of the automatic system. The modulation oscillator also has a similar meter and automatic level control system. The r.f. output waveform has less than 5% total harmonic distortion. The instrument will accept the output of an external modulation oscillator or an external sweep oscillator for narrow or wide sweep. Marconi Instruments Ltd, St Albans, Herts.
WW373 for further details

Colinear array

The new u.h.f. colinear array by J-Beam giving 10 dB gain is complemented with a 6-dB gain u.h.f. aerial (£37), a 6-dB gain v.h.f. aerial (£62) and a 3-dB v.h.f. aerial (£33). These aerials combine glass-fibre construction with new-style printed phasing elements instead of coaxial lines. As an example of their characteristcs, the $10-\mathrm{dB}$ u.h.f. aerial has a $2 \frac{1}{2} \%$ bandwidth

giving a frequency range of $450-470 \mathrm{MHz}$ with a maximum v.s.w.r. of 1.5 . Impedance is 50 ohms and half-power beam-width 8°. J. Beam Engineering Ltd, Rotherthorp Crescent, Northampton.
WW370 for further details

28-cm c.r.t.

Cathode-ray tube type LD740 is electrostatically deflected with $20 \times 16 \mathrm{~cm}$ picture size and made by M-O Valve Co. (GEC). Designed for general use it is capable of operation up to 25 MHz and

has deflection coefficients of 6 and $8 \mathrm{~V} / \mathrm{cm}$. Grid voltage for cut-off is -90 V and line width is 0.6 mm (measured by shrinking raster at $10 \mu \mathrm{~A}$ beam current). M-O Valve Co Ltd, Brook Green Works, London W. 6.
WW358 for further details

H.F. radiotelephones

Model 401 s.s.b. transmitter-receiver for the band 1.6 to 4.2 MHz made by Hatfield Instruments is intended for maritime use. Giving 400 watts peak envelope power it adopts the common technique of using a valve output stage. It has 23 transmission channels and 35 receiving channels, including the $2.182-\mathrm{MHz}$ distress channel. A $200-\mathrm{W}$ version will be introduced shortly. Hatfield Instruments Ltd, Burrington Way, Plymouth, Devon, PL5 3LZ.
WW350 for further details

Light sensing array

Probably the largest integrated circuit chip in the world contains a light sensing array and is manufactured by Integrated Photomatrix Ltd., The Grove Trading Estate, Dorchester, Dorset. The chip which measures $25.9 \times 1.52 \mathrm{~mm}$ houses 256 photo-diodes formed in a long row and a 256 bit shift register.

The device would normally be operated in the recharge sampling mode as follows. A ' 1 ' is allowed to circulate through the shift register at a known rate under the influence of an externally generated clock pulse. The photo diodes in the array are charged sequentially by this ' 1 '. The rate of discharge of each diode is proportional to the amount of light falling upon it and each diode will be recharged on every

256th clock pulse as the ' 1 ' propagates through the register. The amount of charge required by each diode-proportional to the amount of light falling on the diode - is monitored on a line common to all diodes and is converted to an output voltage. The output waveform will have 256 sections, each section having a value corresponding to the amount of light falling on one particular diode.

The device is available in six sizes, i.e. $50,64,100,128,200$ and 256 diodes long, but no doubt special lengths could be manufactured. In fact I.P.L. make the chips much longer than required and then select serviceable sections. The manufacturing yield on these devices must be fairly small because of their large size. This is reflected in the price-the 256 diode version costs $£ 500$.

Applications include pattern recognition, data transmission; position sensing, machine tool control, etc.
WW375 for further details

Power meter for semiconductor devices

For measuring power in semiconductor devices, magnetic devices and electronic circuits generally, Aladdin Instruments-a recently formed division of Aladdin Industries-announce model 6311A electronic wattmeter. The instrument compares magnitude and phase of voltage and current in a circuit or device without imposing a heavy load as in dynamometer wattmeters. The new instrument has a

sensitivity of $10,000 \mathrm{ohms}$ per volt with an input capacitance of 10 pF . Thermal converters are used to produce a d.c. output from the input signals-thus it is independent of input waveform and reads true r.m.s. power. It covers inputs from 300 mV to 300 V and 10 mA to 10 A with power indication from 3 mW to 3 kW . It handles waveforms up to 500 kHz and risetimes of 200 ns . Aladdin Industries Ltd, Greenford, Middlesex.
WW357 for further details

Miniature rotary switch

Guest International are marketing a miniature rotary switch with screw transmission and rectilinear displacement of slide contacts. The switch, type KR10C, is intended for p.c. board mounting. Type KR10B, for wire connections, has a fixing socket. The nominal working voltage is 150 V and the current carrying capacity

150 mA . Insulation between adjustment contacts is $10^{6} \mathrm{M} \Omega$. Versions are available with one, two, or three wafers. Guest International Ltd., Nicholas House, Brigstock Road, Thornton Heath, Surrey CR4 7JA.
WW390 for further details

Digital counter

A custom-built multi-stage m.o.s. counting module in the AMF Venner model 7737 digital counter replaces seven boards that would have been necessary had a conventional i.c. design been used. This generalpurpose instrument, which measures $289 \times 216 \times 89 \mathrm{~mm}$ and weighs 4 kg , provides push-button selection for frequency and multi-period measurement, simple and two-line timing, and counting.

The 7737 has a 7-digit display with an integrated automatically-positioned decimal point. Its principal measurement specifications include frequencies up to 50 MHz (± 1 count); multi-periods, in 0.1μ s units, up to 1 MHz ; timing units between $0.1 \mu \mathrm{~s}$ and $10 \mathrm{~s}(\pm 0.1 \mu \mathrm{~s})$ in decade steps; and counting up to a maximum frequency of 50 MHz . Provision is also made for serial or parallel 1248-codedata outputs, and the display can be normal or stored, the display time being adjustable from 0.1 to 5 s , or infinite.

The new digital counter has an input impedance of $1 \mathrm{M} \Omega$, with an input sensitivity of 10 mV r.m.s., and incorporates a $10-\mathrm{MHz}$ crystal-controlled oscillator as an internal reference. Price in the U.K. is £245. AMF International Ltd., Kingston By-Pass, New Malden, Surrey.
WW393 for further details

D.C. motors

An interesting range of high-quality, very reasonably priced, d.c. motors was exhi'bited by Portescap (U.K.) Ltd. The motors, because of their low starting voltage (typically 100 mV) and low inertia (rest to 63% full speed in milliseconds) are ideal for use in small servo systems. They may also be used as tacho generators as their output voltage is within 1% of linearity with rotation speed-a data sheet is available for using the motors in this way. Self lubricating phosphor bronze bearings are used, the multi-segment commutators are of silver alloy and gold alloy is employed for the brushes. The rotors contain no iron and consist of self supporting windings encapsulated in a thin coat of resin.

The smallest motor in the range is the Escap-15. This is 15 mm in diameter and

20 to 33 mm long, depending on the model. Motors are available in this range from 2 to 12 V with output powers of 0.24 to 0.7 W ; efficiency is 80% and starting torques range from 5.23 to 17.5 gcm . A range of 19 gear boxes is available giving output shaft speeds from 25,000 r.p.m. to 3 r.p.m.

The largest motor, Escap-26P, can be powered by up to 24 V and has a maximum power output of 3.5 W and a maximum starting torque of 180 gcm . Nine-segment commutators are employed on these models and a time constant of 20 ms is obtained.

Each of the range of motors is sub-divided into numerous variants. Prices start at about $£ 3$ per motor. Some models have built in v.d.rs to eliminate surges. Portescap (U.K.) Ltd, 204 Elgar Rd, Reading, RG2 0DD.

WW378 for further details

Solid-state lamp and holder

A lamp having a solid-state light emitter is available from Oxley Developments Company. The holder incorporates the 'Barb' Cone-lock principle for rapid assembly to panel or chassis without risk

of damage. Switch-on is surge free. Characteristics:
emitter
operating current
red
nominal operating voltage
brightness
emission peak wavelength
$20 \mathrm{~mA}(\max 40 \mathrm{~mA})$
1.7 V
$50 \mathrm{ft}-1\left(170 \mathrm{~cd} / \mathrm{m}^{2}\right)$
maximum operating
temperature
650 nm
emission rise and fall time
$70^{\circ} \mathrm{C}$
maximum reverse current
1.0 ns
$0.3 \mu \mathrm{~A}\left(V_{t} 3 \mathrm{~V}\right)$
Oxley Developments Co Ltd, Priory Park, Ulverston, North Lancashire.
WW388 for further details

I.C. audio amplifier

Integrated audio amplifier type SL403D is a short-circuit proof version of SL403A. It delivers three watts of power continuously into an eight-ohm load directly from a piezo-electric pickup. Distortion is 0.3 to 0.5% from 100 Hz to 5 kHz (as for the earlier version). Short-circuit protection is achieved by including sensing resistors in series with the output transistors' (see diagram). If the voltage rises above a

pre-set value the s.c.r.-integrated onto the chip-conducts turning on two additional transistors and turning off the output devices. To switch off the s.c.r. the supply must be interrupted. Type S.1402D (two watts) is also available. Plessey Microelectronics, Cheney Manor, Swindon, Wilts.
WW363 for further details

Mercury-wetted relays

A range of mercury-wetted relays with no contact bounce is claimed by Associated Automation to be the only type with a single-pole switch. Contacts are rated at 1 A or 250 V with a maximum of 50 VA . Operating life is quoted as 1000 million operations and contact resistance is 40 milliohms. They use a single-pole wetted switch suitable for telephone use because of its small size. Operate and release ampere-turns are 55 and 20 respectively. Associated Automation Ltd, 70 Dudden Hill Lane, London N.W. 10.
W W360 for further details

Sandwich stepper

N.S.F. Switches and Controls introduced a neat little stepping switch of unusual design. The switch is rectangular in shape, quite small ($75 \times 56 \times 12 \mathrm{~mm}$), and 12.7 mm thick. The actuating solenoid and drive assembly is sandwiched between two printed circuit boards which carry the printed contacts and wiring. The stepper has twelve positions and incorporates a 'home on zero' arrangement. Life of the device depends on the load switched by the contacts and lies between 2 and 5 million operations. The contacts are capable of carrying a current of 2 A and
will break a current of 120 mA at 120 V a.c. or 500 mA at 28 V d.c. Maximum stepping speed is $60 / \mathrm{sec}-$ not continuous. N.S.F. Ltd, Keighley, Yorks BR21 5EF. WW381 for further details

Contact resistance meter

In the model RM371 milliohmeter made by British Physical Laboratories the test specimen is connected to a constant 10 mA source at 10 or 30 mV and 1 kHz and the voltage drop across it measured. Range is $20 \mu \Omega$ (first marking) to 300Ω with an accuracy of $\pm 2 \%$ of full scale reading. It includes a go/no go indicator for production use. As well as measuring contact resistance of relays, switches and connectors, it is useful for p.c. boards, heating elements, fuses and thermo-electric elements. Price is $£ 150$. B.P.L. Instruments Ltd, Radlett, Herts. WW 361 for further details

Instrument potentiometer

A 1.5-watt linear wire-wound potentiometer for instrument applications is now made by Welwyn Electric. Based on an earlier potentiometer designed for television convergence controls it is now available as a P 29 type in a resistance range from 5Ω to $5 \mathrm{k} \Omega$ with 10% tolerance, or 2% to special order. It is

suitable for use up to 500 V . Price is 15 p in bulk quantities. Welwyn Electric Ltd, Bedlington, Northumberland.
WW353 for further details

Video transistors

Three n-p-n video transistors from Mullard have low feedback capacitance and high voltage rating. Maximum $V_{C B O}$ is 185 V for BF336, 250V for BF337 and 300V for BF338. Maximum $V_{C E O}$ is 120 V for BF336, 180V for BF337 and 180V for BF338. Other characteristics shared by the three devices are as follows:
maximum $I_{C M}$ (peak value) $\quad 100 \mathrm{~mA}$
(for period $t \leqslant 27 u \mathrm{~s}) \quad 150 \mathrm{~mA}$
(for period $t \leqslant 0.5 \mu \mathrm{~s}$) $\quad 200 \mathrm{~mA}$
maximum $P_{\text {tot }}$
$\left(T_{m b} \leqslant 145^{\circ} \mathrm{C}\right)$
2.75 W
maximum junction temperature $200^{\circ} \mathrm{C}$ minimum $h_{F E}$
$\left(I_{C}=30 \mathrm{~mA}, V_{C E}=10 \mathrm{~V}\right.$
$T_{j}=25^{\circ} \mathrm{C}$)
20
minimum f_{T}
$\left(I_{C}=30 \mathrm{~mA}, V_{C E}=20 \mathrm{~V}\right) \quad 80 \mathrm{MHz}$
typical $-C_{R E}$
$\left(I_{C}=10 \mathrm{~mA}, V_{C E}=20 \mathrm{~V}\right) \quad 3.0 \mathrm{pF}$
Mullard Ltd., Mullard House, Torrington Place, London W.C.1.
WW391 for further details

Transistor tester

The characteristics of bipolar transistors, diodes and zener diodes can be measured using this low-cost transistor tester (TM12) from Levell Electronics Ltd, Park Rd, High Barnet, Herts. An abridged specification appears below; the price is $£ 65$.
$I_{C B O}, I_{E B O} 5$ ranges between 10 nA and $100 \mu \mathrm{~A}$ f.s.d. at any of 12 voltages between 2 and 150. Short circuit current limit 1 mA .
$B V_{C B O} \quad 10$ or 100 V f.s.d. at currents of 10 or $100 \mu \mathrm{~A}$, or 1 mA ., o.c. voltage limit $=150$.
$I_{B} \quad$ Decade ranges from 10 nA to 10 mA f.s.d. at fixed I_{E} between $1 \mu \mathrm{~A}$ and $100 \mathrm{~mA} . V_{C E}=2 \mathrm{~V}$.
$h_{F E} \quad 10$ to 2000 , f.s.d., three scales.
$V_{B E} \quad 1 \mathrm{~V}$ f.s.d.
$V_{C E}$ (sat) $1 V$ f.s.d. at I_{C} between 1 and 100 mA with I_{C} / I_{B} selected at 10,20 , or 30 .
$I_{D R} \quad$ As $I_{E B O}$
$V_{Z} \quad$ As $B V_{C B O}$
$V_{D F} \quad 1 \mathrm{~V}$ f.s.d. at currents of between $1 \mu \mathrm{~A}$ and 100 mA .
WW $\mathbf{3 8 0}$ for further details

Crystal oscillators

Two compact oscillators, FS5903 and FS5953, made by Cathodeon Crystals allow for voltage control of oscillation frequency. Frequency can be altered by a variable potentiometer or modulated at audio frequencies. Each unit can be directly interfaced with t.t.l. logic gates in the 74 (or similar) series, and can be directly connected into a phase locked

loop. The oscillators are based on the FS5901 and FS5951, the latter having compensation for temperature effects and allowing for frequency stability of ± 0.1 p.p.m. between 0° and $60^{\circ} \mathrm{C}$. Linearity for both packages is better than $\pm 5 \%$ on the control range 0.5 V to 5.0 V , and the output is a $0-2.8 \mathrm{~V}$ minimum square wave. Cathodeon Crystals Ltd., Linton, Cambridge.
WW387 for further details

Digital voltmeter logic module

 A single m.o.s. integrated circuit manufactured by Integrated Photomatrix Ltd., Grove Trading Estate, Dorchester, Dorset, provices all the logic necessary for a digital voltmeter with a four digit plus 1 display. To build a complete voltmeter it is necessary to add only an integrator, clock multiplexing switches, comparator and single display decoder. Use of the new i.c. results in a saving of some 20 standard t.t.l. packages. The device, MC9C2, will give up to five readings a second, is capable of phase locked loop operation, and has facilities for autoranging and set-point comparison. WW3 79 for further details
Communication receivers

Eddystone hac their impressive range of communicatior. receivers on display at a small private exhibition. Among the various receivers was the model 1830 general purpose h.f/m.f. receiver. Wireless World used a pre-production prototype of this model for its 60 th birthday amateur radio station, GB3WW, which operated during April. The 1830 is a double conversion superhet covering 120 kHz to 30 MHz in nine bands--incremental tuning is available above 1.5 MHz Reception modes are c.w., m.c.w., d.s.b. and s.s.b.; a four-position selectivity filter is provided. Sensitivity is $3 \mu \mathrm{~V}$ for 15 dB signal-to-noise ratio. Ten switched crystal-controlled channels are included, in addition to the continuous tuning, in the standard version.

The EB37 is a broadcast receiver developed from, and intended to replace, the EB35. Unlike the EB35 it does not have a v.h.f. band. Coverage is long-wave, medium-wave and 1.5 to 22 MHz in three bands. Sensitivity is $5 \mu \mathrm{~V}$ for 15 dB signal-to-noise ratio up to 3.5 MHz and $15 \mu \mathrm{~V}$ at higher frequencies.

Eddystone also had on display a v.h.f.
interference tracing and measuring receiver, developed for the Post Office. The measuring range provided is 110 dB and measurements may be made to an accuracy of $\pm 2 \mathrm{~dB}$ over the frequency range $31-250 \mathrm{MHz}$ (three bands). For a 6 dB indication above noise an input of $2 \mu \mathrm{~V}$ is required-field strength $<20 \mu \mathrm{~V} / \mathrm{m}$. Reception modes are c.w., a.m. and f.m. It will be more than 12 months before the noise measuring set No. 31A is generally available. Eddystone Radio Ltd, Alvechurch Rd, Birmingham B31 3PP.
WW376 for further details

Solder tags for inductors

To avoid the problem of the cheaper kinds of plastic melting when soldering to attached tags, Aladdin Components have produced a new tag arrangement for transformer bobbins. The tags are set in a thermosetting plastics material which is

clipped into place on the thermoplastic nylon bobbin. This avoids the high cost of a thermosetting plastics material for the whole bobbin. Aladdin Industries Ltd, Greenford, Middlesex.
WW356 for further details

Time-standard quartz crystals

ITT have developed two crystals, available in glass envelopes or elongated TO-5 and TO-8 metal cans, with frequencies of 16,384 and $8,192 \mathrm{~Hz}$. When used with standard 7 -bit i.c. binary dividers these provide 1 Hz reference accurate to 2 min utes per year. Standard Telephones and Cables Ltd., Edinburgh Way, Harlow, Essex.
WW389 for further details

Reliable electrolytics

Made in France by Seco Novea, new high-value electrolytic capacitors have a life of 100,000 hours under 'normal' conditions. Known as the Prosec 85 series they are available in voltage ratings from 6.3 to 80 V and capacitance values from $820 \mu \mathrm{~F}$ to 0.15 F . They are specially suitable for smoothing with $100-\mathrm{Hz}$ ripple current rating of 16 A for $12,000 \mu \mathrm{~F}$ at 80 V and 5.5 A for $10,000 \mu \mathrm{~F}$ at 6.3 V .
(These $20^{\circ} \mathrm{C}$ figures derate by just over a factor of two at $85^{\circ} \mathrm{C}$.) Leakage current (in $\mu \mathrm{A}$) is less than $10 \sqrt{C V}(C$ in $\mu \mathrm{F})$. Available in the U.K. from Advance Filmcap Ltd, Rhosyedre, Wrexham, Denbighshire.
WW359 for further details

Planar transistors

Three silicon planar n-p-n chips by Ferranti are the basis of a new range of transistors. The devices have a $V_{C E O}$ rating of 80 V and a minimum $h_{F E}$ of 60 at 1 A . They are available in packages allowing a dissipation of 11 watts (TO-5), 15 watts (TO-66) and 20 watts (TO-3).

	I_{C}	$h_{F E}$	$V_{\text {CEsat }}$	$f_{T}(\mathrm{MHz})$
ZTU1	3 A	$60 @ 1 \mathrm{~A}$	$<0.5 \mathrm{~V}$	60
ZTU2	5 A	$60 @ 3 \mathrm{~A}$	$<0.5 \mathrm{~V}$	60
ZTU3	10 A	$40 @ 6 \mathrm{~A}$	$<0.5 \mathrm{~V}$	30

Other types which may be produced from these chips are BDY60, 2N4000 (ZTU1), BFX34 (ZTU2) and 2N3420 (ZTU3). A new p-n-p- equivalent of the ZTX341 100 -volt tube driver is the ZTX 541 . New Micro-E transistors are BF403 (similar to BC107), BF404 (similar to BC179), BF405 (similar to 2 N 2220) and BF406 (similar to BCY70). New types ZTX384A-C are high gain low-noise transistors with spreads of 240-500, 240-900 and 450-900. Ferranti Ltd, Gem Mill, Chadderton, Oldham, Lancs.
WW 364 for further details (ZTU1-3)
WW 365 for further details (tube driver) WW 366 for further details (BF403-6)
WW 367 for further details (ZTX384)

Automatic digital bridge

Direct reading of capacitance, inductance, conductance, resistance, loss factor and Q is provided in the automatic digital bridge, model B900, announced at the show by Wayne Kerr. This four-quadrant bridge

has twin displays reading up to 19999. Either or both displays can be used as a four-range d.v.m. In addition a reciprocal capacitance facility provides a linear distance/readout relationship for checking capacitive transducers. Wayne Kerr Co., Roebuck Rd, Chessington, Surrey.
WW395 for further details

Dual in-line components

Dual in-line switch by Erg provides a variety of switching arrangements from 1 -pole 8 -way to 4 -pole 2 -way. Called DILswitch 16 , it is rated at $28 \mathrm{~V}, 250 \mathrm{~mA}$ and has a minimum life of 20,000 contact

wipes. Price is about £1. DILpack 14 (illustrated) is a package for assembling components costing $£ 20$ for 100 . Erg Industrial Corporation Ltd, Luton Road, Dunstable, LU5 4LJ, Beds.
WW362 for further details

100-MHz c.r.t.

Brimar cathode-ray tube type V4152B made by Thorn is intended for oscilloscope use at frequencies up to 100 MHz , and especially for computer servicing. Side y-plate connectors give a low capacitance to all other electrodes of 3.5 pF and this,

together with small spot size, make the tube suitable for 100 MHz use. High y -sensitivity (deflection coefficient 2.8 to $3.6 \mathrm{~V} / \mathrm{cm}$ at 12 kV) allows the tube to operate with 43 V pk-pk for 1.5 times screen height. Control grid cut-off voltage is -40 V to -70 V . Thorn Radio Valves and Tubes Ltd, 7 Soho Square, London, W1V 6DN.

WW355 for further details

Variable networks

By sequentially contacting over 1000 individual thick-film capacitors the Sprague Varinet variable networks provide capacitances variable over a range of 1:1000. The latest Varinet units also incorporate variable resistors as well as static $R C$ networks. Standard units, which measure $1 \times 1 \times 0.5$ in, incorporate one or two variable capacitors $(10-10,000 \mathrm{pF})$ as well as variable $R C$ combinations with constant impedance at 1 kHz , or a constant $R C$ product of $160 \mu \mathrm{~s}$. Sprague Electric (U.K.) Ltd, 159 High St., Yiewsley, W. Drayton, Middx.

WW394 for further details

High-density power supplies

High-current models in the BRM range of power supplies by Advance Electronics have a power output density of one watt per cubic inch. The range comprises units providing up to 60 V at 1 or 3 A and up
to 40 V at $1,5,10,30$ and 50 A . The 30 and 50 -A models are 19 -in rack mounting size and the rest half-rack size. They are provided either with thumb-wheel switches for output selection or potentiometers with meter indicators. High packing density is achieved by a special transformer design, which eliminates the necessity of a choke, together with a thyristor regulator. Advance Electronics Ltd, Raynham Road, Bishop's Stortford, Herts.
WW354 for further details

- Pye TMC has developed a range of both plastic cased and plastic sleeved foil capacitors having low self-inductance, low series resistance and low dissipation. The capacitance range is 1000 pF to $0.5 \mu \mathrm{~F}$ at 160 V . Pye TMC Ltd., Capacitor Division, Oldmedow Road, Hardwick Trading Estate, King's Lynn, Norfolk. WW392 for further details
- Plessey showed the Planar 850 random access core memory, claimed to be the lowest-cost system ever produced by Plessey. Designed to provide capacities up to 32,786 words of 18 bits, it comprises modules each of 4096 words, 8 bits. Plessey Components Group, Wood Burcote Way, Towcester, Northants.
WW369 for further details

Miniature relays made in Germany are available from Londex. Model 5200 and $5510 / 50$ are suitable for p.c. board mounting and are designed for use with transistor circuits. Type 5200 has silver/nickel contacts rated at 2A and 250 V (75 VA max.) and will operate at 50 Hz . Type 5510 has silver contacts rated at 5 A (and 350 V (450 VA max). Coil power for both types consumes 800 mW . Londex Ltd, P.O. Box 79, 207 Anerley Rd, London, SE20 8EW.
WW371, for further details

- Copper tubes are used for water cooling on the BK 448 ignitron for welding control, made by EEV. This prevents corrosion in older ignitrons resulting from water impurities acting on stainless steel tubes. The ignitron works from a 250 to $600-\mathrm{V}$ supply and can provide up to 600 kVA with two tubes in parallel. English Electric Valve Co., Chelmsford, Essex.
WW372 for further details
- Included in the range of 20 new products shown by Belling \& Lee are miniature fuseholders and delay fuses, an illuminated push-button circuit breaker, latching coaxial plugs and sockets, and 9and 50 -way miniature connectors. Belling \& Lee Ltd, Great Cambridge Road, Enfield, Middlesex.
- The lead length has been increased and a pip has been raised on the lead out of the resistor range 174 from Erie Electronics. The idea of course is to ensure that the resistor does not fall off the circuit board before soldering on production
lines. Three versions of the device are available all rated around 0.25 W at $70^{\circ} \mathrm{C}$. The resistors are available from 10Ω to $12 \mathrm{M} \Omega$ in $\pm 5,10$ and 20% tolerances. Erie Electronics Ltd, South Denes, Great Yarmouth, Norfolk.
WW382 for further details
- New microwave power transistor made by GEC-AEI Semiconductors, Witham, gives $\frac{1}{2}$-watt output at 4 GHz with 6 dB gain. (Their older DC5501 gives 1 watt at 2 GHz .) It is hoped to extend power output to 5 watts.
WW368 for further details
- One of the six new products introduced by Fluke International Corporation was the model 8200A digital voltmeter. The four-digit display enables measurements to 1 kV with a resolution of $1 \mu \mathrm{~V}$ and an accuracy of $\pm 0.01 \%$ of input $\pm 0.01 \%$ of range.

WW383 for further details

- Only $£ 245$ will buy you the latest 50 MHz counter/timer (TF2416) from Marconi Instruments (St Albans, Herts). The TF2416 has a six-digit display plus polarity indication, a 10 MHz internal frequency reference with a stability $\pm 1 \times$ 10^{-6}, gating times from $0.1^{-\mu}$ s to 10 s in decade ranges and three inputs, etc. Several options are available.

WW384 for further details

A range of kits, called Josty Kits, could be seen on the stand of Stylus Supplies (Mountings) Ltd. These kits, which are manufactured in Denmark, should appear on the British market sometime in the future when a suitable distribution chain has been set-up. The range includes most of the electronic novelties normally built by the home constructor including automatic car parking lights, a projector control unit, windscreen wiper control unit, 'psychedelic light controller', photo timer, as well as audio, r.f. and f.m. equipment and transistor ignition systems. Stylus, Supplies (Mountings) Ltd, P.O. Box 41, Tavistock St, Bletchley, Bucks.

- Hewlett Packard (224 Bath Rd, Slough, Bucks SL1 4DS) have announced a new low-cost 3 -digit display multimeter. Ranges are 1 mV to 500 V a.c. $(20 \mathrm{~Hz}$ to 10 $\mathrm{MHz}), 100 \mathrm{mV}$ to 1 kV d.c., $1_{\mu} \mathrm{A}$ to 100 mA and 1Ω to $10 \mathrm{~m} \Omega$. All figures given above are f.s.d.; over-range of 100% f.s.d. is possible on all ranges except 1 kV ; polarity indication is automatic and overload protection is available on all ranges. Model 3469 A, price about $£ 300$ including duty.

WW385 for further details

A 'Sucobox' is a screened container for such things as r.f. attenuators, matching units, probes etc. Sucoboxes are available in several sizes with a variety of coaxial sockets; they are manufactured by Suhner Electronics Ltd, 172/176 Kings Cross Rd, London WCIX 9DH.
W W386 for further details

DOES IOdB LESSTAPE HSS NIERESTYOUR
 Then processyourtapesthrougha KDB-1 Dolby Bnoise reduction unit

£49.50

Kellar
 Electronics Ltd.,

6 Bycullah Avenue Enfield Middlesex Telephone: 01-363 7890
DOLEY SYSTEM 'DOLBY' is the Irademark of Dolby Laboratories Inc.
Full details and name and address of your nearest dealer available on request

RCA Announces the Industry's First Power Transistor Thermal-Cycling Ratings.

The Rating "Pyramid"-built with the help of RCA's Controlled Solder Process.

RCA, the industry leader in over-all silicon resources, introduces a totally new concept in thermal-cycling ratings to help you establish and extend equipment life.

Using these new thermal-cycling ratings, you can tell at a glance the life expectancy of any given RCA power transistor in terms of number of cycles, power dissipation, and case temperature change. A rating chart is being developed for each family of RCA power transistors, and will be included in data sheets as they are completed. RCA's Controlled Solder Process (CSP) has made possible these ratings - the only such ratings in the industry.
Controlled Solder Process is an RCA development. With it, RCA can control the effects of thermal stress between the pellet and mounting base, and thereby extend the number of times a transistor can be cycled thermally. CSP increases the device thermal-cycling capability from five to 20 times. The RCA "pyramid" is the only rating chart yet devised to help you avoid thermal-fatigue failure in the field.
This announcement of thermal-cycling ratings on power transistors is made in the same spirit as RCA's pioneering disclosure in 1964 on Second Breakdown capability. The philosophy, simply, is to continue to provide power transistor users with the best possible tools to achieve the optimum interface between the capabilities of RCA devices and the needs of their applications.
For more information on RCA's new thermal-cycling ratings, consult your local RCA Representative or your RCA Distributor or write to : RCA Ltd., Solid State Division, Sunbury on Thames, Middx. Tel : Sunbury 85511. Telex : 24246. Grams: RCA London or on the Continent to: RCA, 2-4 rue du Lièvre, 1227 Geneva, Switzerland.

Sonic Scanning for Tubeless TV

A formula for the future

by J. J. Belasco

For many years television production has been frustrated by the sheer physical size of television cameras. Film cameras are much smaller and more mobile and consequently television suffers from a surfeit of old fashioned, stylized film techniques and clichés. Because of the availability of small film cameras little work appears to have been done to reduce the size of television cameras and this has affected outside broadcasting above all. This writer who is currently concerned with television o.bs, looked forward to light weight o.b. cameras with the arrival of the vidicon/Plumbicon, but hopes were dashed when it was found necessary to use three tubes for colour and despite the B.B.C. publishing a monograph on a two-tube camera based on an idea by the writer (B.B.C. Monograph No.50, September 1963). anything less than three tubes has not been used for professional television. A knowledgeable section of the industry even insist on four tubes and television o.bese is the order of the day (see article in the Royal Television Society Journal, Vol.11, No.10, Summer 1967). Until a one-tube camera arrives television will not compete in mobility with a 16 mm cine camera, although it is already far superior in picture quality. Even when the single-tube camera arrives, the tiny pick-up area of the Plumbicon is nullified by the length of the tube necessitated by the gun assembly and scanning/focus coils. At the receiving end the viewer has to suffer a similar assembly which makes his display nearly as deep as it is wide (although it makes little difference if the display is monochrome or colour). Thus the viewer is limited in screen size. The whole problem seems to revolve around the scanning system-and the requirement of the scanning system of an inertialess reading/writing device. Current technology uses an electron beam to read or write. Light beams have been used (Baird), but light beams require mechanical devices to scan them and these are big and cumbersome. Scanning by mechanical means has been used as recently as the Apollo 12 missions for frame sequential colour and although this produced a very lightweight camera (which the writer thinks has great possibilities for television) it can only be a frame sequential device.

There is, however, one other inertialess
device which might be useful for scanning-an electric field. If an electric field could be persuaded to perform the classic scanning motion over a photosensitive surface it might be possible to extract the appropriate brightness information from it. To this end the writer proposes the following suggestions (Provisional Patent 28737). Refer to Fig.1, which represents one television scanning line only. This line is made of a bar of glass or steel or some such solid but elastic material. At one end of this line bar is an electromechanical transducer which is fed

Fig. 1
with a voltage pulse. This transducer thus excites the line bar and sends a pulse of sound-a sonic pulse-travelling down it. This sound pulse, of longitudinal elastic deformation, travels along the bar at the speed of sound (in a solid medium). If the bar is made the correct length the sonic pulse will travel down it in the time of one television line. Sound waves are, of course, normally longitudinal waves, i.e. the wave motion is in the direction of propagation (unlike light or electromagnetic waves whose wave motion is at right angles to the direction of propagation). However a little used physical law, Poisson's, states that in solid bodies any elastic deformation in a longitudinal direction is accompanied by a proportional deformation in a transverse direction. One way of utilizing this travelling mechanical wave for scanning is to place a slab of piezoelectric crystal in intimate contact with the bar. Thus the mechanical pulse moving along the bar produces a travetling

Fig. 2
voltage pulse in the piezoelectric crystal. This is the basic principle of sonic scanning-a sonic pulse travelling in an elastic medium generates a travelling electric field in a crystal lattice.

To utilize this travelling voltage pulse (Fig.2) a 'sandwich' constructed of a back conductor, a photoconductor and a front transparent conductor is laid on top of the crystal. Light from the televised scene travels through the front conductor. A voltage bias is applied to the front and back conductor and has a polarity such that a current cannot pass through the photoconductor until the arrival of the travelling voltage pulse. The current that flows through from the front signal plate to the back signal plate is thus proportional to the light falling on the photo-sensitive surface at any given point on the scanning line, but is only delivered to the output terminals on the arrival of the 'electrosonic' gating pulse. Thus one line scan is achieved.

Frame scanning is achieved by passing the voltage pulse at the end of the line bar to another transducer at the beginning of the next line bar, which sonically excites

Fig. 3
this second line bar, and so on. Thus the cycle is: line sonic pulse moving along a line bar (accompanied by travelling voltage pulse), voltage pulse transferred in line blanking to next line bar transducer, and so on. Once the sonic pulse is fed into line bar No. 1 it will run on down at scanning speed to line 625.

As an alternative, frame scan could be produced by attaching a vertical bar and piezoelectric crystal to the back of the assembly of line bars (Fig.4) and sending a sonic pulse down this vertical bar. Appropriate connections are made from the vertical crystal to the back conductors of each line bar sandwich and the biasing

Fig. 4
is arranged so that the light sensitive layer does not become conducting until the arrival of both a line and frame 'electrosonic' gating pulse. The vertical bar would need to have a sound transmission speed (or appropriate length) to equal frame scan time. (Or, alternatively, an electrical frame delay line could be used.) An advantage of this latter frame scanning technique is that all the line bars and piezo crystals could be made into one solid slab of picture area, on top of which are laid discrete line 'sandwiches'. The line sonic pulse could then be injected laterally through the whole slab (instead of line by line) since each 'sandwich' requires the arrival of a line and frame pulse to make it conduct.
The modification for transmission of colour pictures (Fig.5) is a simple one. Each line 'sandwich' would consist of a single back conductor on which are laid three parallel layers of photoconductor and a front transparent coloured conductor. The travelling 'electrosonic' pulse thus runs along all three colours simultaneously producing simultaneous R , G, B outputs. No registration problems are created and no scan controls are required. However, the speed of sound in steel or quartz is about 3,200 metres per second, giving rise to a line length of 16 cm for a 625 -line system. The optics for a taking area this size may be inconvenient at the present state of the art, but geometric electron image magnifications

Fig. 5
may provide the answer to the problems of taking area. Nevertheless the possibility of strapping a flat plate of approx. 6in side over the back end of a zoom, albeit of complicated optics, ought to excite the television industry.

The display side could also benefit by this system. It should be possible with sufficient development to propagate a sonic pulse through a crystal lattice in such a way that light cannot normally pass through the crystal due to crossed planes of polarization but upon the arrival of the sonic pulse, the plane of polarization is aligned, permitting light to pass. Thus a solid slab of piezoelectric crystal (or equivalent) may behave as a photographic transparency, allowing a light to be projected through the crystal slab onto a projection screen. The lightness of the image is thus not determined by phosphor brightness, but by the brightness of the projection lamp. (Prov. Patent 49465.)

Looking into our crystal ball, perhaps we shall see a future generation of television viewers also looking into a crystal ball activated by sonic scanning producing television in the round!

Books Received

Solid-State Devices and Applications by Rhys Lewis. The author, a lecturer in electronics at Llandaff Technical College, Cardiff, has written this book specifically for technicians. In it he has assembled the theory of operation, manufacture and main applications of all the major solid-state devices now available. The first part summarizes fundamentals of semiconductor theory and describes diodes, bipolar and unipolar transistors, and integrated circuits. Part two discusses applications of these devices in relation to amplification, oscillation, non-linear circuit operation, logic and power control. The first chapter of the final part describes equivalent circuits for semiconductors, showing how these are derived from four-terminal network theory. This is followed by two chapters on logic, including treatment of Boolean algebra, Veitch diagrams and de

Morgan's theorems. Pp 258 including index. Price £3. Butterworth \& Co. (Publishers) Ltd., 88 Kingsway, London WC2B 2AB.

Pickups and Loudspeakers by John Earl. Designed as a companion to Mr. Earl's How to Choose and Use Tuners and Amplifiers this book completes his survey of the audio reproducing chain. After an introductory chapter, outlining the manufacturer of gramophone records and discussing some fundamental technical aspects of pickup systems and loudspeakers, the book deals very practically with pickups and speakers. The discussion afforded under the headings 'using' and 'choosing' is very valuable and there seems to be no significant aspect left out. The two last chapters deal with turntable units and headphones. Pp. 203 including index. Price $£ 3$. Fountain Press Ltd, 46-47 Chancery Lane, London WC2A 1 JU .

Conferences and Exhibitions

Further details are obtainable from the

 addresses in parenthesesLONDON
July 12-17
Imperial College
Industrial Measurement and Control by Radiation Techniques
(I.E.E., Savoy Place, London WC2R OBL)

BIRMINGHAM

July 5-9
Bingley Hall
Materials and Fastenings Exhibition
(Business Conferences \& Exhibitions, Mercury
House, Waterloo Road, London S.E.1)

BRISTOL

July 9-12
The University
Marine Electronics
London W.C.2)

CARDIFF

July 5-9
Sofia Gardens
Advanced Industrial Measurement \& Control (Exhibitions Wales \& West, Holly House, Rhiwderin, Nr. Newport, Mon NF1 9YF)

EXETER

July 3-5
The University
Band Structure in Solids
(Inst. Phys. 47 Belgrave Sq., London S.W.1)

NOTTINGHAM

July 6-8 The University
Electronic Control of Mechanical Handling
(I.E.R.E., 9 Bedford Sq., London WC1B 3RG)

OVERSEAS

July 13-15
Philadelphia
Electromagnetic Compatibility
(R. Showers, Moore Sch. of E.E., Univ. of Penna., Philadelphia, Penna 19104)
July 26-Aug 6 Louvain
Summer School-Impact of Optimization Theory on Technological Design
(Dr. M. J. Rijckaert, Inst. voor Chemie ingenieurstechniek, Katholieke Universiteit Leuven, de Croylaan 2, 3030 Heverlee, Belgium)

Personalities

H. Stanesby, C.G.I.A., F.I.E.E., director of radio technology at the Ministry of Posts and Telecommunications since the formation of the ministry, retires on August 2nd. Immediately prior to this appointment he was deputy director of research at the Post Office having been staff engineer in the radio planning and provision branch of the Engineering Department from 1952 to 1960. Mr. Stanesby, who is 65 , joined the Post Office Radio Laboratories at Dollis Hill as a youth-in-training in 1924 and in 1951 was made responsible for the direction of the laboratories. He played an important part, especially in the design of the quartz crystal filters, in developing coaxial systems for multi-channel telephony.
C. W. Sowton, O.B.E., B.Sc.(Eng.), F.I.E.E., at present deputy director of radio technology at M.P.T., will succeed Mr. Stanesby as head of the department. He is also appointed chairman of the technical sub-committee set up by the Television Advisory Committee which was reconstituted by the Minister last January. Mr. Sowton was staff engineer in the overseas radio planning and provision branch of the Post Office from 1961 until his appointment in the M.P.T. in 1969. For about 10 years prior to 1961 he was concerned with the technical aspects of the sound and television broadcasting services in this country, especially on questions of frequency allocation. He was also for some years secretary of the -T.A.C. technical sub-committee. The other members of the T.A.C. technical sub-committee, of which Mr. Sowton is chairman, are: Professor J. Brown and Dr. J. A. Saxton (independent members); M. A. E. Butler, R. J. Clayton and K. I. Jones (radio industry); R. P. Gabriel (Relay Services Assoc.); J. Stuart Sansom (Independent TV Companies Assoc.); J. Redmond (B.B.C.); F, Howard Steele (I.T.A.); J. K. S. Jowett and D. Wray (Post Office); E. S. Mallett (Dept. of Trade and Industry); and T. Kilvington (Min. Post \& Tel.). The reconstituted technical sub-
committee has been asked by the T.A.C. for advice on the technical problems involved, the time scale for implementation and the costs of development in terrestrial and satellite broadcasting, the distribution of broadcasting by wire and the introduction of apparatus to be used with television sets for recording and playing back programmes.
E. L. E. Kluth, Ph.D., M.Sc., has been appointed assistant to the managing director, P. C. G. Danby, of Brookdeal Electronics Ltd, of Bracknell, Berks. Born in Danzig, Dr. Kluth, who is 32, came to England in 1964 to take his Ph.D. at Reading University, having spent the previous twelve years in Canada where he graduated and gained his masterate at the University of Manitoba. In 1968 he went to the U.S.A. and spent 18 months on a post-doctoral fellowship at the

State University of New York, Buffalo, concentrating on low temperature specific heat measurements. Since 1969 he has been with Moore Business Forms Inc. of Niagara Falls, New York, as a research physicist in charge of the physics department.

The gold medal of the Royal Television Society "for outstanding contributions to television", has been awarded to T. H. Bridgewater, O.B.E.. F.I.E.E., who retired from the B.B.C. three years ago. Mr. Bridgewater, who is 63. joined the Corporation in 1932 as an assistant maintenance engineer in the small nucleus of staff who installed and operated the experimental 30 -line television studio, after working for four years on television development with Baird. He was appointed a senior maintenance engineer at Alexandra Palace when the B.B.C's 405 -line service started in 1936. After war service with the R.A.F.. in which he was engaged on radar and navigational aids and attained the rank of Squadron Leader, he returned to the B.B.C. in 1946. He became superintendent engineer, television outside broadcasts in 1952 and chief engineer, television in 1962, a post he held until his retirement.
A. C. Richards has been appointed deputy managing director of International Aeradio Ltd which he joined in 1947. As head of the Services Division he will be responsible for the organization which plans, installs, operates and maintains technical services for aviation and telecommunications
in nearly 60 countries. He will also have overall responsibility for the subsidiary companies overseas. Following commissioned service in the Royal Air Force during the war. Mr. Richards joined the company as an air traffic control officer. He served at a number of stations overseas including acting as adviser on air traffic control to the Director General of Civil Aviation in Italy.

David G. Dalgoutte is this year's recipient of the John Logie Baird Travelling Scholarship awarded jointly by Radio Rentals and the Royal Television Society. David Dalgoutte left the High School of Glasgow in 1966 for Glasgow University where he took a B.Sc. with first class honours last year. He also won the Isaac Newton Medal in Natural Philosophy and is now doing post-graduate research in optical guided waves. He plans to visit the U.S.A. to extend his studies.

The Marconi International Marine Co. has announced the appointment of John Older as its representative in North America. He succeeds David Bowker who is returning to the United Kingdom to take up another appointment. Mr. Older joined the company's sea-going radio officer staff in 1956 and in 1964 was appointed to the staff at the Hull depot as a marine technical assistant. He has served at various company depots both at home and overseas, his last appointment being company representative in Nigeria.

Keith H. Billings, M.I.E.R.E., has joined Coutant Electronics as head of their ceramic thick film and encapsulation activities. Mr. Billings was formerly technical manager of the standard and encapsulated power supply development group at Roband Electronics for $4 \frac{1}{2}$ years. Before that he was with the Ministry of Technology as technical controller of the electronics test equipment design and development group.

V' O. Stokes, who joined the Marconi Company in 1926 and has throughout most of his career worked on transmitter research and development, has retired. Last year his book 'Radio Transmitters' was published. Mr. Stokes has been editor of the company's journal Point-to-Point since 1965.

Ernest Milner, aged 45, has been appointed director of market development with A. B. Electronic Components Ltd, of Abercynon, Glamorgan. Mr. Milner joined A. B. Electronics 14 years ago as chief development engineer. He served his apprenticeship with G.E.C. and studied at the Bradford Technical College.

World of Amateur Radio

Television interference on u.h.f.

The description, in last month's 'World of Amateur Radio', of the Swedish tests on television receiver immunity-or lack of it-to high r.f. fields, resulted in a number of comments from readers. There can be no doubt that many British amateurs are concerned that so little attention has been paid in this country to the assessment and improvement of the immunity performance of television receivers; there is also little doubt that the former hopes that the spread of u.h.f. television might virtually eliminate television interference (TVI) as a serious threat to amateur operation are being rapidly dissipated. The tendency for front-end bipolar transistors to be easily overloaded; the ability of h.f. and v.h.f. signals to leak into the i.f. stages of current television sets; the use of high-frequency silicon planar transistors in a.f. stages-these and many other design factors appear to offset the reduced likelihood of serious harmonic radiation at u.h.f. Another problem which is making itself felt is the new hazard of interference at chroma and colour sub-carrier frequencies of colour receivers.

Whereas a few years ago interference to television reception on Bands IV and V was rare, it is now quite common. Ian Jackson, G3HOX, reports that recent surveys among members of the Echelford and Greenford, Middx, underline that TVI is still much more serious to individual amateurs than might be thought from the official Post Office statistics. Twenty-two Echelford members reported 48 cases: 34 affecting Band I, 16 affecting Band III and 11 affecting Bands IV \& V. Nine Greenford members had similarly been concerned with 48 cases: 40 affecting Band I, 23 Band III and 20 Bands IV \& V. Most of these cases were dealt with directly by the amateurs concerned and thus will never appear in P.O. statistics. Out of these 96 cases, only one could definitely be attributed to harmonics (actually from the receiver side of a transceiver!), the others are considered to be the result of television receiver design or receiver installation practices. Like many other amateurs, Ian Jackson believes that the set-makers could greatly reduce the susceptibility of u.h.f. receivers
to strong local h.f. and v.h.f. signals at negligible cost. Extremely simple high-pass filters and isolating techniques to reduce the leakage of signals into TV receivers along the coaxial outer braiding or the mains leads are often sufficient to overcome the problem.

Unfortunately, British set-makers tend to shrug this off as very much of a minority problem. Indeed, the recently published B.R.E.M.A. annual report for 1970 states on interference that "although isolated complaints have occurred, there has been no widespread instances of interference to domestic TV and radio services during the current year; this may be due to some extent to the increasing use of the u.h.f. rather than the v.h.f. bands for television".
It is true that u.h.f. should be much less susceptible, but it is already clear that this will not be achieved in practice unless rather better immunity to h.f. and v.h.f. signals is built into the sets. It is interesting to note that in the United States a signifant number of American manufacturers and importers now supply high-pass filters at no charge in order to help clear up TVI problems. In Britain, many hundreds of amateurs still voluntarily close-down during television transmission times to avoid the hostility of neighbours who do not appreciate that the fault so often does not lie with the amateur.

V.H.F. notes and news

On May 26th, sporadic E conditions extended up to at least 144 MHz resulting in contacts between British amateurs and stations in Yugoslavia. To encourage more microwave activity, the R.S.G.B. is to issue awards to amateurs making contacts over distances exceeding 500 km on 13 $\mathrm{cm} ; 400 \mathrm{~km}$ on $9 \mathrm{~cm} ; 300 \mathrm{~km}$ on 6 cm ; and 150 km on 3 cm or 15 mm . Minpostel has agreed that the beacon station at Lerwick, GB3LER, should be permitted to operate on 50.1 MHz during darkness after the close-down of television. There are now over 60 beacons operating in Region 1 , including 40 in the $144-\mathrm{MHz}$ band and 11 in the $432-\mathrm{MHz}$ band. A recent addition is OE3XAA on 145.988 MHz located at a height of 865 metres on
the Hoher Lindkogel in Austria. The American Electronics Industries Association has failed in its attempt to have the band 146 to 148 MHz re-allocated for Citizens' Band operation, but has now formally proposed to the F.C.C. that $220-222 \mathrm{MHz}$ be diverted to a new "Class E" Citizens Radio service; this proposal is being strongly opposed by the A.R.R.L.

Licence figures

The latest Minpostel licence figures again emphasize the rapid increase in Class B (v.h.f. only, phone only) licences. In the 12 months to March 31st, 1971, Class A licences increased by 2.2% to 13,777 ; Class B by 21.8% to 2656 ; Class A/mobile by 2.3% to 2558 ; Class B/mobile by 46.2% to 389 ; amateur TV by 8.3% to 195 . A small but significant number of Class B licencees subsequently take the morse test in order to obtain a Class A licence. To encourage morse training, over 100 morse training sessions are transmitted by British amateurs each week, under an R.S.G.B. agreement with the Ministry which normally forbids messages to be 'broadcast' by amateur stations. Most of the practice sessions are on the $1.8-\mathrm{MHz}$ band, but some are on $3.5,28,70,144$ and $432-\mathrm{MHz}$ bands. Organizer of this service is M.A.C. MacBrayne, G3KGU, 25 Purlieu Way, Theydon Bois, Essex.

In brief

C. G. ("Bert") Allen, G8IG, the first amateur ever to obtain a "Worked All Zones" award for telephony operation, died recently . . . Robert Skegg, G3ZGO, has now established two-way slow-scan television contacts with Greece, Italy, United States and Guadeloupe . . . Len Newnham, G6NZ, has recently been appointed "Society Historian" of the R.S.G.B. . . . The Baptist Missionary Society of Great Britain is to operate the special station GB3BMS on July 10 during the Baptist Church Garden Party-the equipment will later go to missionaries in the Congo. . . . A special Weymouth quatercentenary station, GB3WQC, will operate from the Weymouth Arts Centre on July 9-11 . . . GB2SS will operate from the Southern Steam Engine Rally, July 24-25, at Milton Gate, Lewes Road, Polegate, Hants. . . . Mobile rallies being held during July include: July 4 Truro and South Shields; July 11 Upton on Severn; July 17 Winchester; July 18 Scarborough; July 25 Stoney Cross Airfield, New Forest. . . . An Australian 1.8 MHz listener has logged about 30 British amateurs. . . . The prefix SZO instead of SV is being used during 1971 by Greek amateurs to commemorate the 150th anniversary of the Independence of Greece.

Pat Hawker, G3VA

Not onlybeautiful, but...

* Lightweght
* Tropicalized
* Practically unbreakable
* High impedence, high level phones "Carbon microphones available * Extremely comfortable
* Simple to service.

The new 'Astrolite' headset has been adopted by many of the leading Television, Broadcasting and Programme companies for studio and
O.B. use, and no wonder.

It's fully inverchangeable with all known carbon level systems. No more of the 'snap, crackle and pop', just t ie message, clear and reliable, using our new ncise-cancelling high quality movinc-coil microphore with integral amplifiers.

AMPLIVOX COMMUNICATIONS LIMIPED

AMPLIVOX COMMUNICATIONS LTD. BERESFORD AVENUE • WEMBLEY • MIDDX. TELEPHONE 01-902 8991 gRAMS AND CABLES • AMPLIVOX • WEMBLEY

For noise-free communications, without 'carbon' crackles. Write or telephone for a free demonstration, at your premises, without any obligation.

Name

Title
Address

EEV know how to simpliff

EEV make the widest power range .cf UHF TVklystrons: they are efficient, economical and compatible with solid state drives. Outputs of 45,28 , 12,7 and 5.5 kW are available.
Even the biggest ones can be easily and safely transported to the most remote locations.

This 10 kW klystron can be easily removed from its pack. It's then ready to be dressed with the pretuned cavities which have been removed from the other klystron.

Dressing the klystron is easy too. The tuning of the external cavities should not be altered. In effect the new klystron is merely replacing t electron beam in the rf circuit. This operation, including replacement in the magnetic frame, takes about 8 minutes.

slystron installation.

is also easy to lower the klystron ito the circuit assembly because tere are guide rails on the internal ructure of the magnetic frame. he assembly is then pushed back ito the transmitter.

Switch on! The upper curve shows the optimum transmitter response before shut down. The lower curve shows the initial response with the new EEV klystron. Only a trimming adjustment is necessary to regain optimum performance.

Replacement complete:
the sequence transmitter off-circuit assembly out-cavities off-klystrons changed-cavities on-circuit assembly in-transmitter on-picture transmitted-only takes 30 minutes with two unskilled men. That's fast and it will be a long time before it needs doing again, because EEV klystrons have long lives. Please ask for the full data.禺

EEV know how.

with St timer/counters.

Two SE Timer/Counters cover every application in the measurement of frequency, period, multi-period, time, count, pulse width and ratio. Each gives you digital display in its most advanced and practical form with push-button operation - you always know what scale you are using; SE's usual precision, styling, unbeatable value for money.

Model SM 200 is a particularly simple, all purpose, extra-low-cost Timer/Counter, displaying up to 99999 and occupies only $0.18 \mathrm{ft}^{3}$ Model SM 201 is a superb instrument for the most sophisticated demands. It displays up to 999999; sensitivity is 10 mV , bandwidth typically 115 MHz , it gives you stored and non-stored display, level and sensitivity controls - all in an attractive instrument only $0.29 \mathrm{ft}^{3}$ Both instruments are light-weight, easy to use, sturdy and reliable. Write or ring for details.

SE measures up to tomorrow's technology

SE Laboratories (Engineering) Ltd., North Feltham Trading Estate, Feltham, Middlesex. Telephone: 01-890 1166 Telex: 23995 Transducers, recorders, oscilloscopes, digital instrumentation, data systems, medical electronic equipment, etc.

New Products

TO-5 socket

The A23-A2045 TO-5 3-lead socket from Jermyn is of octagonal shape and allows close packing on 0.40 in pitch without danger of adjacent devices shorting. The overall height of 0.3 in enables devices with leads up to 0.25 in long to be fully inserted. The socket is moulded in glassloaded nylon and is fitted with gold plated phosphor bronze contacts. Contact resistance is typically $11 \mathrm{~m} \Omega$ and capacitance between contacts is 0.7 pF . Insulation resistance between the contacts is over $10^{4} \mathrm{M} \Omega$. The solder tails are suitable for p.c. boards up to 0.125 in thick and are arranged on a 0.20 in p.c.d. Jermyn Industries, Manufacturing Division, Vestry Estate, Sevenoaks, Kent.
WW304 for further details

Recorder test set

Performance of tape recorders can be measured by the Ferrograph Recorder Test Set RTS 1, a portable instrument. Required characteristics-including frequency response, s / n ratio, distortion, crosstalk, erasure, wow and flutter, input sensitivity and output power-are measured by pressing push buttons which select appropriate sections of the instrument. One section is a signal generator variable from 15 Hz to 150 kHz with a response flat within $\pm 0.2 \mathrm{~dB}$ and with distortion less than 0.08% between 100 Hz and 20 kHz . A level of +5.5 dBm can be delivered into a load of 600Ω, and coarse and fine attenuators enable the output to be set precisely over a range of 65 dB .

A second section is a millivoltmeter with accuracy within $\pm 2 \%$ f.s.d. from 30 Hz to 20 kHz and with a frequency response flat within $\pm 0.2 \mathrm{~dB}$ between 10 Hz

and 150 kHz . Its sensitivity can be varied in 10 dB steps to give f.s.d. with inputs from 1 mV to 100 V . The wow and flutter section employs the same indicating instrument but in a circuit that makes it measure peak-to-peak weighted wow and flutter to C.C.I.R. and D.I.N. specifications. There are two ranges of sensitivity, giving f.s.d. for 0.3% or for 1%. An internal oscillator provides the necessary 3.15 kHz test frequency. The fourth section enables measurements of total harmonic distortion to be made by the rejection of a fundamental frequency in the range 500 to $1,500 \mathrm{~Hz}$. Measurements down to 0.05% are possible with input signals of 100 mV or more. There is provision for connecting an external oscilloscope.
The instrument will operate from mains supplies of $105-120 \mathrm{~V}$ or $200-250 \mathrm{~V}, 50$ to 60 Hz . It weighs approximately 6.4 kg (14lb). Price: £250. The Ferrograph Co. Ltd., The Hyde, Edgware Road, London N.W.9.

WW301 for further details

Low-capacitance f.e.ts

Designed for low-noise applications in wideband amplifiers, the U273A-5A series of Siliconix f.e.ts have a $C_{r s s}$ of less than 0.5 pF and a $C_{i s s}$ of less than 2 pF . Noise figure is $20 \mathrm{nV} / \sqrt{ } f$ (Hz) at 1 kHz reducing to half this at around 100 kHz . Drain currents are 0.5 to $20 \mathrm{~mA}, 1.0$ to 4.0 mA and 3.0 to 6.5 mA for the three transistors which have a $g_{f s}$ of 500,600 and 800μ mho. Encapsulation is TO-72. Siliconix Ltd, Saunders Way, Sketty, Swansea, SE2 8BA.
WW315 for further details

Stereo simulator

Kampel Electronics are producing a stereophonic source simulator (as a preamp function) to provide the left and right channels of a stereo amplifier with distinctly different signals derived from a mono source. According to the manufacturer the simulator is designed to position the instruments of a full symphony orchestra with mono input, avoiding the 'floating instrument' effect, and producing an image lacking only the 'presence' of
two channel stereophonic reproduction. The unit is equipped to plug into the tape record/replay facility of a stereo amplifier -a 5-pin DIN plug connector is provided. An external tape socket and tape monitor control is provided on the simulator. When connected the simulator can be switched in or out of circuit.

Specification:

Bandwidth $20 \mathrm{H}-1 \mathrm{MHz}$
input impedance $50 \mathrm{k} \Omega$
max. input 1 V
output impedance $1 \mathrm{k} \Omega$
insertion gain $1: 1+1$
Power is supplied by a 9 V (PP3) battery -current drain is 1 mA . Simulator case measures $100 \times 62 \times 40 \mathrm{~mm}$. Price $£ 10$ plus 20 p p. \& p. Kampel Electronics Ltd, 99 Old Christchurch Road, Bournemouth, BHI IEP.
WW312 for further details

Edgewise panel meters

Risso Electronics Products announce a series of panel meters, in which there is the option of fitting either a taut-band or moving-coil movement. The Model 27ME has been designed to make maximum use of space without sacrificing readability. Scale length is 27 mm (the earlier Model

47ME has a scale length of 47 mm). The accuracy of both models exceeded the requirements of the class 5 category of the new B.S. 89/70 on a.c. and on d.c. is class 2.5 in accordance with B.S. 89/70. Risso Electronics Products Ltd., 137/139 Sandgate Road, Folkestone, Kent. WW308 for further details

Printed circuit socket

A socket for printed circuit mounting, made by Berg Electronics Inc., of Pennsylvania, has a square cup giving (it is

claimed) more reliable connection than presently available circular cups. A spring, soldered to the board, allows round leads from 0.014 to 0.022 in diameter and flat leads 0.008 to 0.01 lin thick by 0.025 in wide to be accepted. The sockets, called Minisert, are available separately or in strip form for use with an inserter machine. Berg Electronics Inc, New-Cumberiand, Pennsylvania 17070.
WW303 for further details

Audio oscillators

Two spot-frequency oscillators are being made at the Testing Apparatus and Special Systems Division of STC. The GTA-30A (shown) provides 39 spot frequencies from 100 Hz to 3900 Hz , using edge switches to give a digital presentation of the frequency. The GTA-30B provides 12 spot frequencies from 200 Hz to 3400 Hz , using a rotary switch. Both oscillators will

5

deliver output levels of +10 to -70 dBm into impedances of $75,140,150$ and 600Ω. Each instrument can be held in the hand while making measurements. The oscillators are powered by internal batteries (two PP7), and the battery life is at least 100 hours. Two sizes of leather carrying cases are available. Size is 114×216 $\times 102 \mathrm{~mm}$, and weight 1.6 kg including the batteries. Standard Telephones and Cables Ltd., 190 Strand, London, W.C.2. WW305 for further details

Radio microphone

Resio-Audac transmitter type $\mathrm{TX} / 100$ is built into the microphone and operates with a free hanging wire 17 in long. Operating at 174.8 MHz , it provides an output of 10 mW with a modulator amplitude response of 40 Hz to $15 \mathrm{kHz} \pm 2 \mathrm{~dB}$. Distortion is given as less than 0.5%. A battery charger is built into the receiver RX/A which will feed any good-quality amplifier. Price is $£ 98$ each. A cheaper transmitter (type TX/T £60) is separate

from its neck microphone. Reslosound Ltd, 24 Upper Brook Street, London W.l. WW314 for further details

Low-cost f.e.ts

Redhawk Sales are importing a range of epoxy encapsulated transistors including two f.e.ts having low noise, low capacitance and high gain. Types 2N3823 and 2N4416 (priced at 10 p and 24 p each in 1000 up quantities) are n-channel TO-18 style devices. Characteristics are:

	3823	4416
$V_{g s s}(\mathrm{~V})$	30	30
$I_{d s s}(\mathrm{~mA})$	4-20	5-15
$V_{\text {gs (opl }}(\mathrm{V})$	1-7.5	1-5.5
$I_{\text {gss }}(\mathrm{nA})$	0.5	0.1
${ }_{\mathrm{gm}}$ (μ mhos) at 1 kHz	3500-	4500-
	6500	7500
200 MHz	> 3200	
400 MHz		>4000
$C_{\text {iss }}(\mathrm{pF})$	6	4
$C_{r s s}(\mathrm{pF})$	2	1
$P_{d}(\mathrm{~mW})$ at $25^{\circ} \mathrm{C}$	250	250

Redhawk Sales Ltd., 33 Highfield Road, Flackwell Heath, Bucks.
WW307 for further details

Power NOR gate

The MIC 7428J from ITT Semiconductors is a quad 2 -input power NOR gate, with each of its four outputs capable of driving forty standard t.t.l. inputs. Compatible with the MIC 7402J standard NOR gate, it has a typical power dissipation of 100 mW , a typical propagation delay of 9 ns , and a standard operating temperature range of $0-75^{\circ} \mathrm{C}$. ITT Semiconductors, Footscray, Sidcup, Kent.
WW323 for further details

Radiotelephone for v.h.f./a.m.

Ultra Electronics are aiming to increase their share of the mobile radiotelephone market with the introduction of a 15 -watt
transceiver. The modulator of the transmitter can be used as a p.a. amplifier with 15 W output power when receiving; otherwise output is 3 W (10% distortion). Ten channels can be used with either 12.5 or 25 kHz spacing. Frequency stability is ± 7.5 in 10^{6} up to $70^{\circ} \mathrm{C}$. Receiver sensitivity is $1 \mu \mathrm{~V}$ for 12 dB signal-to-noise ratio. Ultra Electronics Ltd, Western Avenue, London W.3. WW302 for further details

6A rectifier in plastic pack

Motorola Semiconductors are making 6 A silicon rectifiers in a plastic, axial lead case. Known as the MR 751 series, they are available in four peak reverse voltage ratings of $100,200,400$, and 600 V . The

prices are about half those of their studmounted equivalents. The MR 751 series have a forward voltage drop of 0.9 V (maximum) and a reverse current of 0.25 mA (maximum) at the rated d.c. voltage. Motorola Semiconductors Ltd., York House, Empire Way, Wembley, Middlesex.
WW306 for further details

High impedance voltmeter
 for a.c.

Model 188 digital voltmeter by G. \& E. Bradley has the 'guarded' input circuit used on model 155 oscilloscope. With the guard ring technique a very high input impedance is possible $(10,000 \mathrm{M} \Omega)$ and common-mode rejection is improved. On d.c. ranges accuracy is 0.01%, which on the lowest (100 mV) range gives a resolution of $10 \mu \mathrm{~V}$. on a.c. ranges accuracy vaires from 0.1% (up to 5 kHz) to 2% (up to 100 kHz). A standard cell with a temperature coefficeint of 0.0005% is used as a reference: Binary-coded decimal output is provided. Price $£ 420$. G. \& E. Bradley Ltd, Electral House, Neasden Lane, London N.W. 10.
WW319 for further details

Plastic shrouded connectors

The RPC series of shrouded connectors from Henry \& Thomas, are designed to replace DIN types. Both the shell and the insulator are of grey plastic, and the mating parts have an automatic locking

mechanism easily released by press-button action. Male contacts are of gold-plated brass and the female contacts of goldplated phosphor bronze. The connector has a proof voltage of 500 V a.c., a current rating of 5 A , insulation resistance of $1000 \mathrm{M} \Omega$ at 500 V d.c., and contact resistance of $5 \mathrm{~m} \Omega \max$ at 1 A d.c. Price per mated pair is 57p. Henry \& Thomas Ltd., Yeo Street, Bow Common, London E.3. WW310 for further details

Miniature regülated plug-in power supply

Weir's 5V 2A power supply unit meets the d.c. supply requirements of i.c. logic systems. The design incorporates safeguards including transient over-voltage protection, short circuit and overload protection, remote sensing facilities and rapid response to load change. S.C.R. 'crowbar' over-voltage protection is avaiiable as an optional extra (Type $5 \mathrm{~V} 2 \mathrm{~A}^{*}$). Price ranges from $£ 12$ to $£ 16$, depending on the quantity supplied. The specification includes:
output voltage $<0.05 \%$ for $\pm 10 \%$
regulation supply line charge
$<0.1 \%$ for 100% load change
temperature
$<0.02 \%$ C typical coefficient ripple and noise $<2.5 \mathrm{mV}$ peak to peak remote sensing positive and negative rail sensing provided
operating temperature $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
dimensions $95 \times 175 \times 70 \mathrm{~mm}$
Weir Electronics Ltd, Durban Road,
Bognor Regis, Sussex.
WW 327 for further details

Miniature rectifiers

Concord Instrument Company, sole U.K. agents for Solid State Devices Inc., are marketing a range of miniature 2 A rec-tifiers-1N5171 through to 1N5178,

1 N 4517 and SS009. The range exhibit a maximum forward voltage drop of 1.2 V at $25 \mu \mathrm{~A}$. The peak inverse voltage rating ranges from 50 V to 1200 V and the price from 10 p to 24 p each (1-9). Concord Instrument Company, 28 Cricklewood Broadway, London N.W.2.
WW311 for further details

Radiotelephone for v.h.f./f.m.

A portable transceiver for mobile use is made by Singer Products Co. Inc., of New York. Operating in the band 150 to 174 MHz with five channels using narrow

band f.m., it is rated at 25 W output power. When removed from its housing it operates from internal batteries at 8 W output power. Singer Products Co. Inc., 30 Church Street, New York, NY10007. WW313 for further details

V.H.F. active filter

The Wavecom model TP01 low-noise tunable active pre-selector from Wessex Electronics has a tuning range of 215 320 MHz , a tuning voltage of $5-20 \mathrm{~V}$, a maximum noise figure of 3 dB , an insêrtion

effect of $0-0.2 \mathrm{~dB}$, and a bandwidth of 5%. Selectivity is $12 \mathrm{~dB} /$ octave with a minimum of 40 dB out-of-band rejection. Bias requirements are -12 V typically at 8 mA . Frequency stability in the range -20 to $+80^{\circ} \mathrm{C}$ is -0.1 MHz max. Wessex Electronics Ltd., Storer Trading Estate, Yate, Bristol BS 17 5QP.
WW309 for further details

Transistor and diode test set

Model T8BQ automatic transistor and diode test set from Lorlin Industries of U.S.A., available from Euro Electronic Instruments can perform up to 8 sequential tests automatically. It can check
for breakdown voltage, leakage, gain and saturation voltage with an accuracy of 1%. Voltage and current test levels are set by front panel thumb-wheel controls and results are indicated by panel lights. Programming ranges for current and voltage are $0 . \ln \mathrm{A}$ to 10 A and 10 mV to 600 V . Test time is normally 16 ms for each test. Price $£ 3,900$. Euro Electronic Instruments Ltd, Shirley House, 27 Camden Road, London N.W.1.
WW316 for further details

Video system trolley

The Video Systems Division of Bell \& Howell A-V Ltd, are producing mobile closed-circuit television modules equipped for recording and replay. The 'Video Trundles' are steel trolleys with camera,

video recorder, and control and mixing equipment. The trolleys are 99.1 cm high and 68.6 cm deep, and available in two standard lengths, 81.3 cm and 122.0 cm Longer versions can be supplied. The 'Trundles' can be supplied 'blank', to be fitted with customer's equipment. Bell \& Howell A-V Ltd., Alperton House, Bridgewater Road, Wembley, Middx. HAO 1EG.
WW 317 for further details

Colour camera

Colour c.c.t.v. Viewfinder Camera, model FPC-1000 from Shibaden (U.K.) employs a dichroic mirror optical system and a three-tube colour system. Varying lighting conditions are compensated for by automatic iris control. Also built-in is a $2: 1$ interlace sync system, a colour bar generator, a colour temperature compensation filter, a camera cable compensator allowing extension to 200 m , and an intercom and tally system. Although provided with a $20-100 \mathrm{~mm}$ f 1.8 zoom lens, any ' C ' mount lens can be used. Resolution is 400 lines vertically and 300 lines horizontally. Video output is 1V p-p composite (sync negative) and 0.7 V p-p non-composite PAL encoded (N.T.S.C. version available). Shibaden (U.K.) Ltd., 61/63 Watford Way, Hendon, London NW4 3AX.
WW 318 for further details

Oscilloscope calibrator. The G. \& E. Bradley calibrator, type 192, mentioned on p. 309 of the June issue, provides a 1 nanosecond edge at variable repetition frequencies and not 1 ms as stated.

Literature Received

For further information on any item include the appropriate WW number on the reader reply card

ACTIVE DEVICES

A 32-page brochure covers the testing procedures used by the National Semiconductor Corp., 2,900 Semiconductor Drive, Santa Clara, California, 95051, on their monolithic and hybrid integrated circuits ...WW401

A range of epoxy encapsulated transistors, is briefly described in a data sheet from Redhawk Sales, 33 Highfield Rd, Flackwell Heath, Bucks.WW402
RCA Ltd, Sunbury-on-Thames, Middlesex, have available a wall chart showing 22 spectral response curves of the most popular photocathodes used in their range of photomultipliers. \qquad .WW403
We have received the following literature from the Westinghouse Brake and Signal Co. Ltd, 82 York Way, King's Cross, London N.1:

Technical publication T1161, data on thyristors D1161 and D1161C \qquad ..WW404 Technical publication TR1167, data on thyristors type D1 167 .WW405
Data sheet thyristor D 1184 (200A, 4.1 to 5.5 k V). WW406
Technical publication DCM 'Driver and controller modules for thyristor application’WW407
A price list is available from Ferranti Ltd, Gem Mill. Chadderton, Oldham, Lancs., covering integrated circuits, transistors, diodes, rectifiers, and opto-electronic devices. \qquad ..WW408 IC Distributors, P.O. Box 38, Norwich NOR 95H, Norfolk, have sent us a price list for 74 series t.t.l. integrated circuits \qquad
Thyristors and silicon and selenium rectifiers manufactured in Germany by Semikron are described in a brochure from Goodacre \& Davenport Semiconductors Lid, 179 Junction Rd, Burgess Hill, Sussex.
.WW410
The latest addition to the series of mini-books published by the Mullard Educational Service is called thyristors. It may be obtained from the Mullard Educational Service. Torrington Place, London WC 1E 7HB

PASSIVE COMPONENTS

Reed switches manufactured in America by Hamlin are described in a catalogue from Inter-Market Services Ltd. 47A Hay's Mews, Berkeley Sq., London W.1. ..WW4 15 Screws, nuts and washers in metric sizes are the subject of a catalogue from C. W. Sheffield and Kenning Ltd. Wynford Rd. Industrial Estate. Acocks Green, Birmingham B27 6JUWW416 Plugs, sockets, edge connectors, terminal strips, printed circuit tags, micro switches, valve holders, screening cans, and voltage selector panels are among the items covered in a catalogue from United Car Supplies Ltd, Clifton Works, Frederick Rd, Stapleford, Nottingham \qquad ..WW417
A small leaflet lists the range of helical scan video tapes available from the 3M Co. Ltd, 3M House, Wigmore St. London W1A 1ETWW4 18
A 14-page catalogue called 'coaxial connectors and coaxial cables is available from Radiall Microwave Components Ltd, Romar House, The Causeway, Staines, Middlesex

Toggle switches in all shapes and sizes, indicator lamps and push buttons are the subject of a catalogue from the Industrial Electronic Components Division of Guest International Ltd, Nicholas House, Brigstock Rd, Thornton Heath, Surrey CR4 7JA ..WW420
The Telephone Cable Division of BICC Ltd, P.O. Box 5, 21 Bloomsbury St, London WCIB 3QN, have produced a leaflet (No. 643) called 'Type 1.2/4.4 coaxial pairs for telephone and television systems'
Electrolube, the well, known product for switch cleaning, is described in a leaflet from Electrolube Ltd, Oxford Ave, Slough, Bucks SL1 4LB ..WW422 McArdle \& Brainsby (Import \& Export) Ltd, P.O. Box 2BB. Newcastle upon Tyne NE99 2BB, have available a leaftet which describes a range of instrument cases marketed under the brand name Impex ...WW423
A catalogue, called UK 71, from Erie Electronics Ltd, South Denes, Great Yarmouth, Norfolk, lists various types of capacitors, thick film resistors and potentiometers
..WW424
Extremely small capacitors are described in Engineering Bulletin 3516 which is called 'Solid electrolyte tantalex capacitors for ultra-miniature circuits' and is available from Sprague Electric Co. (UK) Ltd, Sprague House, 159 High St, Yiewsley, West Drayton, MiddlesexWW425
A range of capacitors from 0.01 to $22 \mu \mathrm{~F}$ and from 63 V to 400 V d.c. working is the subject of a leaflet from Waycom Ltd, Wokingham Road, Bracknell. Berks RG12 1ND ...WW426
'Inco Nickel No. 30', a magazine published by International Nickel Ltd, Thames House, Millbank, London S.W.I. describes how nickel is used in products from a bicycle to a radio telescope.WW427
The latest catalogue of West Hyde Developments Ltd, Ryefield Crescent, Northwood Hills, Northwood, Middlesex HA6 1 NN, lists instrument cases, special tools, Neon indicator lamps, transformers, Pidam modules, etc.WW428

APPLIC ATION NOTES

SGS (UK) Ltd, Planar House, Walton Street, Aylesbury, Bucks., have prepared two technical bulletins giving circuit information and application details on two integrated circuits;

LO45. A channel amplifier intended for use in f.d.m. telephone systems to provide audio power for driving a standard line through a matching transformer (Bulletin No. 107)WW43
TBA651. An a.m. radio receiver i.c. combining the functions of r.f. amplifier, oscillator, mixer and i.f. amplifier (Bulletin No. 108)WW432
'A simple discussion of time series analysis' is the title of a publication from the General Radio Co . (Overseas), Helenastrasse 3, P.O. Box 8034, Zurich 34, Switzerland, which deals with the recovery of signals from noise, amongst other thingsWW433
Application report No. 8 from Brookdeal Electronics Ltd, Market Street, Bracknell, Berks., is called Auger Spectroscopy, and deals with surface analysis in industrial and research laboratories.

Philips have published an attractive little booklet called 'Experiments and measurements with oscilloscopes'. The explanatory text for each measurement is accompanied by a circuit diagram and a colour photograph showing the expected oscilloscope traces. The booklet may be obtained, price 75 p from J. M. Wilson, The Philips Electronic Instrument Dept, Pye Unicam Ltd, York St, Cambridge CB1 2PX.

If you would like information on ultrasonic cleaning and ultrasonic plastic assembly Dawe Instruments Led, Concord Rd, Western Ave, London, W3 OSD. have some literature available
..WW435

EQUIPMENT

Microphones, general audio equipment, and audio test equipment are listed in the Sennheiser catalogue which is available from Hayden Laboratories Ltd, East House, Chiltern Avenue. Amersham, Bucks., who now market Sennheiser products in the U.K.

A comprehensive range of power supplies is featured in a leaflet from Lambda Electronics Ltd, Marshlands Rd, Farlington, Portsmouth PO6 IST.

We have received the following literature from Aim Electronics Ltd, The River Mill, St. Ives, Huntingdon, PE17 4EP:

PSD122A. Phase sensitive detector \qquad WW440
TPD149. Teleptype punch drive. \qquad WW44
DCA184A. Amplifier, d.c., intended for tracking
filter applications ..WW442
ADC 193. A nalogue-to-digital converter, conversion time $5 \mu \mathrm{~s}$. .,WW443
PSA194. Phase shift amplifierWW444 GOA219A. General purpose operational amplifier ...WW445
MLS249A. Minilock. equipment for recover.................................. signals from noise, $10 \mu \mathrm{~V}$ sensitivityWW446 FVC250A. Converter, f to VWW447

Grampian Reproducers Ltd, The Hanworth Trading Estate, Hampton Rd, West Feltham, Middlesex, have produced a leaflet describing power amplifiers with outputs of 100 W and 50 W \qquad ..WW450
Electronic counters, digital multimeters and data amplifiers are included in the short-form catalogue of Dana Electronics Ltd, Bilton Way, Dallow Rd, Luton, Beds.

A 128-page catalogue which lists audio equipment and some other domestic items is being produced by KJ Enterprises, 33 Bridle Path, Watford, Herts, WD2 4BZ ..WW457

Also available from the same address is a musicassette cataloguePrice 25p

Omron Precision Controls, 313 Edgware Rd, London W2 1BP, who manufacture timers, counters proximity switches, floatless switches etc. have published a price listWW458
A short-form catalogue lists the digital products and the literature available from Analogic, Audubon Road, Wakefield, Mass 01880, U.S.A.WW459

GENERAL INFORMATION

Tektronix UK Ltd, Beaverton House, Harpenden, Herts., have published another book in their measurement concepts series, this is called 'Spectrum Analyzer jmeasurements'Price 50p The Tin Research Institute have published a booklet called Tin and its Uses No. 88 which may be obtained from the Tin Research Institute, Fraser Road, Perivale, Greenford, MiddlesexWW460 The 1971 issue of the Association of Public Address Engineers Directory may be obtained from the A.P.A.E., 394 Northolt Road, South Harrow, Middlesex HA2 8EYPrice 25p BS9210: 1971. 'Specification for radio frequency connectors of assessed quality: Generic Data and Methods of Test' may be obtained from BSI Sales Branch, 101 Pentonville Rd, London, N1 9ND
..Price 1.60
B.B.C. engineering information sheet No. 4006 (3) deals with u.h.f. television reception, and is available from the Engineering Information Dept, Broadcasting House, London WIA 1AAWW461

Highfidelity Monolithic Integrated Circuit Amplifier

Two years aço Sinclair Radionics announced the World's first monolithic integrated circuit $\mathrm{Hi}-\mathrm{Fi}$ amplifier, the IC.10. Now we are delighted to be able to introduce its saccessor the Super IC.12. This 22 transistor unit has all the virtues of the original 10.10 plus the following advantages:

1. Higher power.
2. Fewer external components.
3. Lower quiescent consumption.
4. Compatible with Project 60 modules.
5. Specially designed built-in heat sink. No other heat sink needed.
6. Full output in:o $3,4,5$ or 8 ohms.
7. Works on any voltage from 6 to 28 volts without adjustment.
8. NEW 22 transistor circuit.

Output power 6 watts RMS continuous (12 watts peak).
Frequency Response 5 Hz to $100 \mathrm{KHz} \pm$ 1 dB .
Total Harmonic Distortion Less than 1\% (Typical 0.1.\%) at all output powers and all frequencies in the audio band.
Load limpedance 3 to 15 ohms.
Power Gain 90dB (1,000,000,000 times) after feedback.
Supply Voltage 6 to 28 volts (Sinclair PZ-5 or PZ-6 power supplies ideal).
Size $22 \times 45 \times 28 \mathrm{~mm}$ including pins and heat sink.
Input Impedance 250 Kohms nominal.
Quiescent current 8 mA at 28 volts.
Price : including FREE printed circuit board for mounting. $\mathbf{f 2 . 9 8}$ Post free

With the addition of only a very few external resistors and capacitors the Super IC. 12 makes a complete high fidelity audio amplifier suitable for use with pick-up. F.M. tuner etc. Alternatively, for more elaborate systems, modules in the Project 60 range such as the Stereo 60 and A.F.U. may be added. The comprehensivemanual supplied with each unit gives full circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include car radios, oscillators etc. The very low quiescent consumption makes the Super IC. 12 ideal for battery operation.

[^13]
Sinclair Project 60

the world's most advanced high fidelity modules

Sinclair Project 60 presents high fidelity in such a way that it meets every requirement of performance, design, quality and value and now that the remarkable phase lock loop stereo FM tuner is available, it becomes the most versatile of high fidelity systems. With Project 60, it is possible to start with a
modest mono record reproducer, and expand it to a sophisticated stereophonic radio and record reproducing system of fantastically good quality to hold its own with any other equipment, no matter how expensive. Project 60 is a unique high fidelity module system where compactness and ease of assembly are combined with

	System	The Units to use	together with	Cost of Units
A	Simple battery record player	2.30	Crystal P.U., 12 V battery volume control	£4.48
B	Mains powered record player	Z.30, PZ. 5	Crystal or ceramic P.U. volume control etc.	£9.46
c	$20+20$ W. R.M.S. stereo amplifier for most needs	$\begin{aligned} & 2 \times Z .30 \mathrm{~s}, \text { Stereo 60, } \\ & \text { PZ. } 5 \end{aligned}$	Crystal, ceramic or mag. P.U., most dynamic speakers. F.M. tuner etc.	£23.90
D	$20+20$ W. R.M.S. stereo amplifier with high performance spkrs.	$\begin{aligned} & 2 \times 2.30 \mathrm{~s}, \text { Stereo } 60, \\ & \text { PZ. } 6 \end{aligned}$	High quality ceramic or magnetic P.U.. F.M. Tuner. Tape Deck, etc.	£26.90
E	$40+40$ W. R.M.S. deluxe stereo amplifier	$2 \times 2.50 \mathrm{~s}$, Stereo 60 PZ.8, mains trsfrmr	As for D	£34.88
F	Outdoor P.A. system	2.50	Mic.. up to 4 P.A. speakers controls, etc.	£5.48
G	Indoor P.A.	Z.50, PZ.8, mains transformer	Mic., guitar, speakers, etc., controls	£19.43
H	High pass and low pass filters	A.F.U.	C. D or E	£5.98
J	Radio	Stereo F.M. Tuner	C. Dor E	£25.00

circuitry that is far in advance of any other manufacturer in the world. Thus it is extraordinarily easy to assemble any combination of modules using nothing more complicated than the simplest of tools, and you certainly do not have to be experienced to build with complete confidence. The 48 page manual free with Project 60 equipment makes everything easy and you can house your assembly in an existing cabinet, motor plinth. free standing cabinet or virtually any arrangement you wish. Once you have completed your assembly you will have superlatively good equipment to give you years of service and enjoyment. You will have obtained superb value for money because Project 60 is the best selling modular system in Europe and can therefore be produced at extremely competitive prices and with excellent quality control

Sinclair Radionics Ltd., London Road. St. Ives, Huntingdonshire PE17 4HJ
Tel: St. Ives (048 06) 4311

Sinclair Project 60

Z.30 \& Z. 50 power amplifiers

The $\mathbf{Z . 3 0}$ and $\mathbf{Z . 5 0}$ are of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at full output and all lower outputs. Whether you use $\mathbf{Z . 3 0}$ or $\mathbf{Z . 5 0}$ amplifiers in your Project 60 system will deperid on personal preference, but they are the same size and may be used with other units in the Project 60 range equally well.

SPECIFICATIONS $(250$ units are inter-

 changeable with 2.30 s in all applicetions). Power Outputs2. 3015 watts R.M.S. into 8 ohms using 35 volts: 20 watts R.M.S. into 3 ohms using 30 volts. 2.5040 watts R.M S. into 3 ohms using 40 volts: 30 watts R.M.S. into 8 ohms, using 50 volts.
Frequency response: 30 to $300.000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
Dlstortion: 0.02% into 8 ohms.
Signal to nolse ratio: better than 70dB unweighted.
Input sensitivlty: 250 mV into 100 Kohms . For speakers from 3 to 15 ohms impedance.
Size $3 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{1}{2}$ in.
Z. 30

Built testad and guarantead with circuits and instructions manual
£4.48
2.50

Built. tested and guaranteed with circuits and instructions manual.
£5.48

Power Supply Units

Designed specially for use with the Project 60 system of your choice.
Illustration shows PZ.5 to left and PZ.8.(for use with $\mathbf{Z . 5 0 s}$) to the right. Use PZ. 5 for normal Z. 30 assemblies and PZ. 6 where a stablised supply is essential.
PZ-6.30 volts unstabilisod £4.98
PZ-6 35 volts stablised £7.98
PZ-8 45 volts stabilised
(less mains transformer) $£ 7.98$
PZ-8 mains transformer $\mathbf{£} 5.98$

Guarantee

If within 3 months of purchasing Projact - 60 modules directly from us, you are dissatisfied with them. we wilt refund your money at once. Each module is guaranteed to work perfectly and should any defect arse in normel use we will service it at once and without any cost to you whitsoever provided that it is returned to us within 2 years of the purchase data. There will be a_small charge for service thergafter. No charge for postage by surface mail. 4 rr -mail charged at cost.

Stereo 60

 pre-amp/control unit

Designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout, achieving a really high signal-to-noise ratio and excellent tracking between channels. Input selection is by means of push buttons and accurate equalisation is proviḍed for all the usual inputs.

SPECIFICATIONS

Input sensitivities: Radio-up to 3 mV . Mag. p.u. 3 mV : correct to R.I.A.A. curve $\pm 1 \mathrm{~dB}: 20$ to $25,000 \mathrm{~Hz}$. Ceramic p.u.-up to 3 mV : Aux-up to 3 mV .
Output: 250 mV
Signal-to-noise ratio: better than 70dB.
Channel matching: within 1 dB .
Tone controls: TREBLE +15 to -15 dB at 10 KHz : BASS +15 to- 15 dB at 100 Hz .
Front panel: brushed aluminium with black knobs and controls.
Size: $8 \frac{1}{2} \times 1 \frac{1}{2} \times 4$ ins.
Built, tested and guaranteed.
$£ 9.98$

Active Filter Unit

For use between Stereo 60 unit and two 2.30 s or $Z .50 \mathrm{~s}$, and is easily mounted. It is unique in that the cut-off frequencies are continuously variable, and as attenuation in the rejected band is rapid ($12 \mathrm{~dB} / o c t a v e$), there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The A.F.U. is suitable for use with any other amplifier system. Two stages of filtering are incorporatedrumble (high pass) and scratch (low pass). Supply voltage - 15 to 35 V . Current - 3mA. H.F. cut-off (-3 dB) variable from 28 k Hz to 5 kHz . L.F cut-off (-3 dB) variable from 25 Hz to 100 Hz . Distortion at 1 kHz (35 V . supply) 0.02% at rated output.
Built, tested
and guaranteed
£5.98

Stereo FM Tuner

first in the world to use the

phase lock loop principle
Before production of this tuner, the phase lock loop principle was used for receiving signals from space craft because of its vastly improved signal to noise ratio over other systems. Now, for the first time, the principle has been applied to an FM tuner with fantastically good results. Other original features include varicap diode tuning, printed circuit coils, an I.C. in the specially designed stereo decoder and squelch circuit for silent tuning between stations. Sensitivity is such that good reception becomes possible in difficult areas. Foreign stations can be tuned in suitable conditions and often a few inches of wire are enough for an aerial. In terms of a high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically as the tuning control is rotated, a panel indicator lighting up as the stereo signal is tuned in. This tuner can also be used to advantage with any other high fidelity system.

SPECIFICATIONS:

Number of transistors: 16 plus 20 in I.C.
Tuning range: 87.5 to 108 MHz
Capture ratio: 1.5 dB
Senaitivity: $2 \mu \mathrm{~V}$ for 30 dB quieting: $7 \mu \mathrm{~V}$ for full limiting.
Squelch level: $20^{\mu \mathrm{V}}$.
Signal to noise ratio: $>65 \mathrm{~dB}$
Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{KHz}$
$(\pm 1 \mathrm{~dB})$ Audion Total har
Total harmonlc distortion: 0.15% for 30% modulation
Stereo decoder operating level: $2 \mu \mathrm{~V}$
Pilot tone suppresslon: 30 dB
Cross talk: 40 dB
I.F. frequency: 10.7 MHz

Output voltage: $2 \times 150 \mathrm{mV}$ R.M.S
Aerial Impedance: 75 Ohms
Indicators: Mains on: Stereo on; tuning indicator Operating voltage: 25-30 VDC
Size: $3.6 \times 1.6 \times 8.15$ inches: $91.5 \times 40 \times 207 \mathrm{~mm}$

Prlce: E25 built and tested. Post free

TO: SINCLAIR RADIONICS LTD LONDON RDAD ST. IVES HUNTINGDONSHIRE PE17 4HJ

Please send

Name

Address

for which I enolose cash/cheque/money order.

EI-PRE-PAK

FULLY TESTED AND MARKED			
AC 107	15p	OC170	230
${ }_{\text {AC }}{ }_{\text {ACl2 }} 126$		OC171	23p
AC128		OC200	25p
AC176		Oc201	25p
ACY17		26303	130
AF239		2N1302.3	40 p
AFF186		2N1304-5	
AF139		2N1306-7	
${ }^{\text {BC154 }}$	250	2N1308-9	
BC171= BC 107	13 D	BC113	100
${ }_{\text {BFP194 }}^{\text {BC17 }}$	138 150	ver	
BFF94		Power	
BF274		Transistors	
BFY50		OC20	50 p
BSY25		OC23	300
BSY26		OC25	250
BSY27	13 p	OC26	25p
BSY28		- 28	\%
BSY29	13 p	OC35	25p
BSA95A		ос36	D
OC41	13 p	AD 149	30 p
OC44	13 p	2N3055	63p
OC45	13 D	25034	25p
0 C 71	13 p	Diodes	
0 C 72	13 p	AAY42 $=0 A_{5}$	Op
$\bigcirc{ }^{\circ} \mathrm{CB1}$		OA91	$9 p$
$\bigcirc \mathrm{O} 810$	${ }^{13 \mathrm{P}}$	OA79	9 p
			9 p
OC140		IN914	

PACKS OF YOUR OWN CHOICE UPTO the value of 50p with orders OVER $£ 4$

CLEARANCE LINES

	1-10	10.50	$50+$
SL 403D Audio Amp. Latest Type	2.00	1.95	1.80
IC. 709C Linear Opp. Amp.	50p	40p	35 p
A.E.I. Fully marked \& tested Gates	25p	22p	20p
A.E.I. Fully marked \& tested Flipflops	50p	40p	30p
0C71/72. Fully tested, unmarked	5 p	5 p	4p
Matched Sets, 1-0C44, 2-0C45. Per set	25p	20p	$15 p$
Matched Sets, OC45, 1 st \& 2nd I.F. Per set	$15 p$	12p	10p
T/C45 Thyristors, 6 A, 60V. Texas	$15 p$	$15 p$	12p
0A47 Gold bonded Diodes, marked \& tested	$3 p$	3 p	2p
1W Zener Diodes: $6.8 \mathrm{~V}, 7.5 \mathrm{~V}, 24 \mathrm{~V}, 27 \mathrm{~V}, 30 \mathrm{~V} \& 43 \mathrm{~V}$	$5 p$	4p	3 p
10W Zener Diodes. $7.5 \mathrm{~V}, 11 \mathrm{~V}, 13 \mathrm{~V}, 20 \mathrm{~V} \& 100 \mathrm{~V}$	20p	17p	15p
Micro Switches, S/P. C/O. Popular size	25p	$20 p$	$15 p$
1 Amp. Bridge Rectifiers. 25V. RMS	25p	22p	20p
1 Amp Plastic Rectifiers: These are and other rejects from the BY127 rang	volt	werse	

COLOUR T.V. LINE OUTPUT TRANSFORMERS.
Designed to give 25 K.V. when used with PL509 and PY500 valves. As removed from colour receivers at the facions.
post and packing 23 p

BUMPER BUNDLES

These parcels contain all rypes of surpius electronic components. printed panels. switches. potentiometers

2 LBS IN WEIGHT FOR f1

OUR VERY POPULAR 3p TRANSISTORS

FULLY TESTED \& GUARANTEED

TYPE " A "
PNP Silicon alloy, metal $\mathrm{T} 0-5$ can. 2S300 type. direct replacement for the OC200/203 range

TYPE "B" PNP Silicon

 pLASTIC ENCAPSULATION, low voltage but good gain. these are of the 2N3702/3 and 2N4059/62 range.TYPE " ${ }^{\prime}$
NPN Silicon
PLASTIC ENCAPSULATION Low Noise Amplifier of the $2 N 3707 / 8 / 9 / 10 / 11$ Series.

TYPE "E
PNP Germanium AS OR RF
please state on order. Fully marked and tested.

BULK BUYING CORNER

NPN/PNP Silicon Planar Transistors, mixed untested. similar

 to $2 \mathrm{~N} 706 / 6 \mathrm{~A} 8$. BSY26-29, BSY95A, BCY70 etcper 500 . 68.00 per 1.000
Silicon Planar NPN Plastic Transistors, untested, similar to 2N3707-11 etc.
E 4.25 per 500 . $\mathbf{f} .00$ per 1.000 .

Silicon Planar Diodes, DO-7 Glass. similar to OA200/202. Silicon Planar Diodes, DO-7
BAY31-36. £4.50 per 1.000 .

NPN/PNP Silicon Planar Transistors, Plastic TO-18. similar to BC113/4. BC153/4, BF153/160 etc
f. 425 per 500 . $£ 8.00$ per 1,000 .

0C44. OC45 Transistors, fully marked and tested
500 plus (a) $8 p$ each. 1.000 plus e $6 p$ each
0C71 Transistors, fully marked and tested.
500 plus (18 6 each 1.000 plus (10 5 p each
3823 E Field effect Transistors. This is the 2 N3823 in plastic
case.
500 plus (1) 13 peach 1.000 plus © 10 peach
1 Amp Miniature Plastic Diodes
1N4001. 500 plus a 3 p each. 1,000 plus a $3 p$ each. 1 N4004. 500 plus 5 e each 1,000 plus 4 p each
1 N4006. 500 plus 6 p each. 1,000 plus $5 p$ each 1 N4007. 500 plus (e8 $8 p$ each. 1.000 plus ee $7 p$ each

W UNMARKED U			
880	8		50p
${ }^{883}$	200		pp
${ }^{88} 4$	100		50p
${ }^{886}$	50	Sill	Dp
${ }^{888}$	50	Sill Tran, NPN, PNP. eotur	Op
${ }^{860}$	10	${ }_{7}^{\text {Went Xoner }}$ Miodedes	50p
н6	40		50p
H10	25	Mixed volts, $1 \frac{1}{2}$ watt Zeners Top hat type	50p
${ }^{866}$	150		50p
H15	30		50p
	8	Experimeneres Pat of tinegraed	50p
	20		50p

F.E.T. PRICE BREAKTHROUGH

This field effect transistor is the 2N3823 in a plastic encapsulation; coded 3823 E . It is an ideal replacement for the 2N3819. Data Sheet supplied with device.
$1-10=30$ p each, $10-50=25 p$ each, $50+20$ p each.

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a perfectly linear and accurate re counter for any car.

each

FREE CATALOGUE AND LISTS for: -
 ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 50p CASH WITH ORDER PLEASE. Add 10 p post and packing per order. OVERSEAS ADD EXTRA FOR POSTAGE
P.O. RELAYS
CONTACTS AND
ARIOUS for
OIL RESISTANCES.
NO INDIVIDUALSELECTION.
POST \& PACKING $25 p$

VARIOUS CONTACTS
COIL RESISTANCES
O INDIVIDUAL SELECTION
POST \& PACKING 25p
f1

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

Wo respectfülly ask
customers to include
a minimum f1,00 par
ordorit helpstoplanaheat
a saves postage as well.

TRANSFORMERS

MAINS ISOLATING SERIES
Primary $200-250$ Volts
Tecondary 240 Volts Centre
ALSO AYALABped (I20V) and Earth Shielded

Re	VA	Weight	Size cm.	$\begin{aligned} & \text { Qty } \\ & \hline-2.24 \end{aligned}$	$\begin{aligned} & \text { oty. } \\ & 25-99 \end{aligned}$	
No.	(Wats)					p
61	100	512	$10.2 \times 8.9 \times 8.3$	2.28	2.13	52
62	250		$9.5 \times 12.7 \times 11.4$	5.05	4.66	7
63	500	270	$17.1 \times 11.4 \times 15.9$	9.74	9.01	
92	1000	40	$17.8 \times 17.1 \times 21.6$	17.94	16.59	
128	2000	630	$24.1 \times 21.6 \times 15.2$	29.66	27.43	
129	3000	840	$21.6 \times 21.6 \times 20.3$	46.38	42.90	
190	6000	178	$31.1 \times 35.6 \times 17.1$	76.11	70.48	

$$
\begin{array}{ccc}
\text { Qty. } & \text { Qty } & P . P . \\
1.24 & 25-9 & \text { eoch } \\
\mathbf{E} & 6 & \mathrm{~Np} \\
0.74 & 0.69 & 20 \\
1.44 & 1.33 & 30 \\
1.74 & 1.10 & 36 \\
3.88 & 3.13 & 52 \\
5.03 & 4.65 & 67 \\
9.12 & 8.84 & 82 \\
13.22 & 12.23 & * \\
17.26 & 15.96 & \\
\hline 23.47 & 21.73 &
\end{array}
$$

PRIMARY LOW VOLTAGE SERIES (ISOLATED)
RANGE Ref. Amps
No. $12 \mathrm{~V}{ }_{2 \mathrm{NV}} \mathrm{V} \underset{\mathrm{lb} \text { oight }}{\text { oz }}$ Size cm . Secondary Windings $\begin{array}{ccc}\text { RANGE } & \\ \text { Qty. } & \text { Qty. } & \text { P.P. } \\ 1-24 & 25-99 & \text { ech } \\ \mathbf{6} & £ & N P \\ 0.74 & 0.69 & 22 \\ 0.88 & 0.81 & 22 \\ 1.16 & 1.07 & 22 \\ 1.62 & 1.50 & 36 \\ 1.95 & 1.81 & 42 \\ \mathbf{2 . 5 6} & 2.37 & 52 \\ 3.95 & 3.16 & 52 \\ 5.03 & 4.70 & 67 \\ 9.28 & 8.58 & 82\end{array}$

Ampe	Weight	Size cm.	Secondory Tops
0.5	$1{ }^{1} 4$	$8.3 \times 3.7 \times 4.9$	0-12-15-24-30V
10	20	$7.0 \times 6.4 \times 6.0$, .,
2.0 3.0	3 4 4	$8.9 \times 7.0 \times 7.6$ $10.2 \times 8.9 \times 8.6$	$\because \quad \because$
4.0	60	$10.2 \times 9.5 \times 8.6$	" ${ }^{\prime}$
$6 \cdot 0$	78	$12.1 \times 9.5 \times 10.2$." ..
10.0	122	$14.0 \times 10.2 \times 11.4$	". ."
Amps	Weight	Size cm.	50 VOLT RANGE
0.5		$7.0 \times 7.0 \times 5.7$	0-19-25-33-40-50
1.0	210	$8.3 \times 7.3 \times 7.0$.. .,
2.0	50	$10.2 \times 8.9 \times 8.6$., .,
3.0	0	$10.2 \times 10.2 \times 8.3$..
4.0	94	$12.1 \times 11.4 \times 10.2$	" .,
6.0	124	$12.1 \times 11.1 \times 13.3$.' ${ }^{\text {, }}$
8.0 10.0	18	$13.3 \times 13.3 \times 12.1$	" ,
10.0	1912	$16.5 \times 11.4 \times 15.9$., ".
Amps.	Weight	Size cm.	60 VOLT RANGE
0.5	2	$8.3 \times 9.5 \times 6.7$	0-24-30-40-48-60V
1.0	30	$8.9 \times 7.6 \times 7.6$," .,
2.0 4.0	$\begin{array}{rl}5 & 6 \\ 10 & 6\end{array}$	$10.2 \times 8.9 \times 8.6$ $11.4 \times 9.5 \times 11.4$ 13.	"
$6 \cdot 0$	1612	$13.3 \times 12.1 \times 12.1$	". ".,
10.0	23	$16.5 \times 12.7 \times 16.5$,

PRIMARY : $00-250$ VOLT FAD BATTERY CHARGER TYPES

$\begin{array}{r} \text { Ref. } \\ \text { No. } \\ 45 \\ 5 \\ 86 \\ 146 \\ 50 \end{array}$	Amps :	eight	Size cm.		Qty.	- ${ }_{\text {Qty-9. }}$	P.P.
		16 oz	-		\pm	2tr	No
		19	$7.0 \times 6.0 \times 6.07$		1.17	1.08	30
	4.0 6.0	$\begin{array}{ll}311 \\ 5 & 12\end{array}$	$\left.\begin{array}{l}10.2 \times 7.0 \times 8.3 \\ 10.2 \times 8.9 \times 8.3 \\ 1\end{array}\right\}$	Please note, these	1.77	1.64	42
	8.0	${ }^{5} 12$	$\left.\begin{array}{r}10.2 \times 8.9 \times 8.3 \\ 8.9 \times 10.2 \times 10.2\end{array}\right\}$	units do not in-	2.67 3.04	2.47 2.82	52
	12.5	1114	$13.3 \times 10.8 \times 12.1$		4.52	4.18	67
t CARRIAGE VIA B.R.S.							
All ratings are continuous. Standard construction: open with solder tags and wax impregnation. Enclosed styles to order.							
VARIABLE VOLTAGE TRANSFORMERS (ENCLOSED) Input $230 \mathrm{~V} 50 / 60 \mathrm{~Hz}$. Output variable from $0-260 \mathrm{~V}$.							
				10 Amp .			18.50
2.5			6.75	12			21.00
$\begin{aligned} & 5 \\ & 8 \end{aligned}$			9.75 14.50		EXT		37.00

ALSO AVAILABLE: Open construction variable voltage transformers, suitable for

* Speedy production winding service.
\star Please send for full lists.
Also stocked: SEMICONDUCTORS • VALVES MULTIMETERS • MAINS KEYNECTOR SEE PAGE 98

BARRIE ELECTRONIOS
 11 MOSCOW ROAD - QUEENSWAY LONDON, W. 2

EXCLUSIVE

DIGITAL CLOCK MECHANISM

- Made espacially for Lasky's by famous

Maker

- Mains operation
- Auto "SLEEP"
- Hours, minutes switch
- Forward and beckward tims read-off - Silent operation synchronous motor
- Shock ard vibration proof
- Buitt in alarm buzzer

This unique DIGITAL CLOCK is now available EXCLUSIVELY FROM LASKY'S in chassis form for you to mount in any housing that you choose. All settings AUTO and AUTO ALARM, "sleep" switch. 10 minute division "click" set alarm fup to 12 hour delayk time adjustment. Utra simple mechanism and high quality manufacture guarantee reliable operation and long life.
The sleep switch will automatically turn off any appliance-radio. TV. light, etc., at any pre-set time up to 60 min . and in conjunction with the AUTO setting will switch on the appliance again next morning. measures $4 \frac{3}{4} \mathrm{~W} \times 1 \frac{3}{4} \mathrm{H} \times 31 \mathrm{D}$ (overall from front of drum to back of switch). SPEC: $210 / 240 \mathrm{~V}$ AC, The clock measures $4 \frac{3}{3} \mathrm{~W} \times 1 \frac{3}{4} \mathrm{H} \times 3$, (overall from front of drum to back of switch). SPEC: 210/240V AC,
50 Hz operation: switch rating 250 V . 3A. Complete with instructions. HUNDREDS OF APPLICATIONS COMPLETE WITH SET OF CONTROL KNOBS
LASKY'S PRICE EG.95p P SPECIAL QUOTATIONS

MIDLAND 10-406

AM/AIRCRAFT RADIO
The first pocket size receiver of its type allowiny you to tune-in
to the entire air communications band covered by 108-137 MHz in addition to full AM medium wave. Intermediate requencies: AM 455 KHz : VHF $10.7 \mathrm{mc} / \mathrm{s}$. Output power $200 \mathrm{mV} 2 \frac{1}{2} \mathrm{in}$. P.D. 8 ohm speaker. A built in ferrite rod aerial
 is provided for AM reception. The $10-406$ is finished in blue with chrome trim. chrome telescopic antenna. Size 6 . $\times 3_{i} \times 1$, complete with bathenes. magnetic tarphone. instructions and circul LASKY'S PRICE $£ 8.35$ Pop $13 \circ$

TMK PL436 MULTI-TESTER

 tirish troni panel.Specitication. DCV ranges 0.6 .3 12.30, 124.60ut al 20 K onnis'

- ACV ranges 3.30.120.600V al 8 K /ahmsiv DC current $50 \mu \mathrm{~A} 0.6 .60600 \mathrm{~mA}$
- Resistance luk. 1uuk. IM and luM ohms end scaie. 565.650.6.5h and 65 K ohmis
- Cenite scale.

LASKY'S PRICE $£ 6.95$ р\& $\boldsymbol{\rho}_{13}$.

TMK 200 METER KIT
This meter kit by TMK offers the unique opportunity of building a really first-class
precision multimeter at a worthwhite saving in cost. The cabinat is supplied with the meter scale and movement mounted in position: the Model 200 also has the range selector in position. The highest quality components and 1% tolerance resistors are used throughout. Supplied complete with full constructional. circuit and operating instructions.
20.000 O.P.V. Muitimeter. Features 24 measurement ranges with mirror scale Large $3 \times 2 \mathrm{in}$. meter. Full scale accuracy. DCV and current: $\pm 2 \% \mathrm{ACV}: \pm 3 \%$,
ance: $\pm 3 \%$. Special 0.6 V DC range for transistor circuit measurements. SPECIFICATION
SPECIFICATION 1 - 0 - 6-6-30-120-600-1.200V at 20K/OPV OACV: 0-6-30-120-600-1.200V at 10KOPV. $-D C$ current: $0.0 .6-6 \cdot 60 \mathrm{~mA}$. Resistance: $0.10 \mathrm{~K}-100 \mathrm{~K}-1 \mathrm{M}-10 \mathrm{M}$ / at 10 K UPV. 0.0 C current: $0.0 .6-6 \cdot 600 \mathrm{~mA}$. Resistance: $0.10 \mathrm{~K}-100 \mathrm{~K}-1 \mathrm{M}-10 \mathrm{M}$ \rightarrow Decibels -20 to +63 dB OOutput: $0.05 \mu \mathrm{~F}$ blocking capacitor. Uses two 1.5 V U7 typel batteries. Black bakelite cabinet-Size $5 \frac{1}{4} \times 3 \frac{1}{4} \times 12 \mathrm{~m}$ Compleh win est leads.
KIT PRICE ONLY $£ 4.59$ Р 8 PI3
LASKY'S TM1 METER 1000 ohms/V the tirst of Laskys new. took top valut meters. the M_{1} is a really uny pockel multimeter providing "big" meter accuracy and performance. Precision moveBeautifully designed $\pm 3 \%$ of full scale. Click stop range selaction switch. Beautifully designed and made impact resistant black case-with white and
DC/V: 0-10-50-250-1000 at 1 K ohms $/ V$ Resistance: $0-150 \mathrm{~K}$ ohms ACN: 0.10.50-250-1000 at 1 K ohms $/ \mathrm{N}$ Decibals: -10.22 dB - Complete with test leads, battery and instructions

LASKY'S PRICE £1.95 P\& P13p.

LASKY'S TM5 METER 5000 ohms/V

- DCN: 3-15-150-300-1.200 at 5 K ohms N Another new look pocket multimeter fmm Lashys providing top - ACN: 6-30-300-600 at 2.5 K ohms N
- Resistance: $0-110 \mathrm{~K}$ ohms. 0.1 M ohms
- Decibels: -10 dB to 16 dB ads. battery and
LASKY'S PRICE £2.95

207 EDGWARE ROAD. LONDON, W. 2.

33 TOTTENHAM CT. RD, LONDON, WIP 9RB.
109 FLEET STREET, LONDON, E.C. 4.
152/3 FLEET STREET, LONDON, E.C.4.
HIGH FIDELITY AUDIO CENTRE*
42-45 TOTTENHAMCT. RD, LONDON, WIP 9RD. MAIL ORDERS AND CORRESPONDENCE TO 3-15 CAVELL STREET. LONDON. E1 2BN

EXAMPLES OF CURRENT STOCK

IBM Key \& Printing Punches
(024,026,029).
from $£ 650$
Verifiers (056).. $£ 690$
Sorters (082,083,084)....................from $£ 895$
Collators $(085,087)$.
Reproducers (519).
from $£ 2,600$
from $£ 1,980$
Refurbished \& covered by IBM or our own maintenance facilities.

HAND PUNCHES

ICT Hand Punches-3 months warranty OUR PRICE $£ 95 \cdot 50$ (Cost new $£ 150$)
IBM Hand Punches \& Verifiers- 3 months warranty OUR PRICE $£ 103$

COMPLETE SYSTEMS ON VIEW
UNIVAC 1004, ELLIOTT 803B, ICL 1500 ,
PDP8, IBM 1401, UNIVAC 90, NCR 400

Many other systems can be on short delivery including: SDS, IBM, ICL, UNIVAC, HONEYWELL, etc.

RING 01-278 5571 NOW!

Computer Sales \& Services (Equipment) Ltd 49-53 Pancras Road London NWI
Telephone 01-2785571
Telex 267307

OSCILLOSCOPE PROBE TM8II9 High impedance $100 / 1$ resistive attenuated probe for accurate dis play of HF waveforms or short rise time pulse signals, offered
brand new with all accessories and brand new with all accessories and
instruction manual. List price $£ 17$. instruction manual. Our price $\mathbf{c 7} \cdot 50$ including earth bayonet
TM8194. A MARCONI PRODUCT
SOLARTRON OSCILLOSCOPE 523S. 2
The best of the surplus scopes for $\mathbf{6 5 2}$, fully serviced and calibrated, compare the specification with others. Bandwidth $D C-I 0 \mathrm{MHz}$ at 3 dB . Sensitivity is $1 \mathrm{MV} / \mathrm{cm}$. Time Base 0.1 usec- $1 \mathrm{~cm} / \mathrm{sec}$ in 7 decades with fine control on each range. Uses C Core mains transformers/4 in. High resolution flat face PDA CRT and many
other features make this scope very other features make this scope very
suitable for colour television servicing and many other applitations. Price $E 52$ and many othe
P. \& $\mathrm{P} \mid \cdot 25$.

BARGAIN OFFER 6V DC TAPE RECORDER MOTORS Type DMI48-I. Fully screened * reversible * constant speed * specially designed for Portable Recorders* Price only El P.P. IO

20Kv ELECTROSTATIC

VOLTMETER UNIT 5 in. scale Ernest Turner Model 32 contained in polished wood case with
HV input sockets. Only ElO Carr. 15p
MARCONI 12 KHI QUARTZ CRYSTAL contained in B7G envelope with flying lead connections. Brand new with flying ead
only $62 \frac{1}{2} p$ each

TEKTRONIX TYPE 310. PORT. ABLE OSCILLOSCOPE. PERFECT CONDITION. PRICE EI50. MARCONI TF930 H.F. field strength measuring equipment. $18-125 \mathrm{mHz}$. 665 .

GALLENKAMP OVEN TYPE OY 400

This oven offered as new. List over $£ 240$. Our Price ONLY $£ 125$.

IMPEDANCE BRIDGES

AVO Type I with slide rule scale as new Bradley Type 131 LC/R bridge
Cossor Model 1446 with C.R.T. E (30
$\varepsilon 35$ balance
Wayne Kerr Model B221 0.1% accuracy Wayne Kerr Model B521 LC/r Bridge $£ 40$
 Marconi Model TF936 Measures L\& 80 Hz I \& 10 kHz

RECEIVERS COMMUNICATIONS Eddystone 770 U range 150 to 500 MHz
Eddystone 840 A range $\cdot 5$ to $30 \mathrm{MHz} £ 32$ Halicraters S27c Range 18 - 143 mHz Hallicrafters $\$ 36$ Range Marconi CR100 Range 50 kHz to 30 mHz Marconi CRISO/2 Range 2 to 60 mHz double conversion HRO. MX Madel range .5 to $30^{\circ} \mathrm{mHz}$ full set coils.
RI 155 Trawler
RII55 Trawler band model with super
slow motion drive APR/4 Search Rece $1,000 \mathrm{mHz}$

4-INCH G.E.C. DOUBLE GUN

 C.R. Tubes Spiral P.D.A. type 1046 F.Brand new. Boxed. Price $\in 10.50$. Roband stabilised P.S.U. rype TIll. Output 50v. 5 a. For bench mounting. Overlow cut-out. Current and voltage
meters, etc. Offered as new. 665.

Dawe Stroboflash Model I200C calibawe btrobolash between 6 14,500 R.P.M. Good used condition/for mains operation $£ 25$
LR2 FREQUENCY STANDARDS by General Radio (U.S.A.). Offered brand new. Cost over 4,000 dollars each. Our new. Cost
Crompton Parkinson direct reading 4 inch flush panel mounting for 250 V 4 inch flush panel mounting for 250 V
single phase operation 50 HZ with single phase ope
external resistance
PYE Electrostatic Voltmeter model I 1310 scalamp type Voltage range I8KV mains
operated in good used condition .. E22 KIENZLE ELECTRONIC PRINTER model DII-E as new condition
*Videcon Tubes Cathodeon
brand new at surplus price
Cambridge model D.E. Potentiomerric Recorder. Single point type. Range $0-10$ mV . Chart speed $30 \mathrm{in} . / \mathrm{Hr}$. Slide wire manual and components, charts etc.

SPECIAL OFFER

"INSULATION TESTERS" TYPE No. II METROHM by famous British manufacturer. All solid state. No handles to crank Runs off 9 volt transistor battery. Simply press button for function.
Range 0.1 to 25 M ohms for insulation testing. Also 0.1 to 100 Range 0.1 to 25 M ohms for insulation testing. Also 0.1 to 100 ohms for resistance and continuity checking. Clear, concise scale.
Small size modern instrument, complete with carrying strap and Small size modern instrument, complete with carrying strap and For $\mathbf{2 5 0}$ volt pressure only. List Price $\mathbf{6 1 9} \mathbf{5 0}$. Our Price $\mathbf{6} \mathbf{6} \mathbf{0 0}$ plus 221 p post/packing

KELVIN HUGHES
TYPE 17
RADAR EQUIPMENTS
BRAND NEW WITH ALL ACCESSORIES
6 FT. SCANNER. $24 V$ ELECTRICS

HEWLETT PACKARD
TRANSFER OSCILLATOR MODEL 540B, IN AS NEW WITH HANDBOOK P.U.R.

Honeywell Brown Electronic Recorder. Potentiometric type, Sensitivity $0-01 \mathrm{mV}$

RHODE \& SCHWARZ POLYSKOP
(SWOB 2)
\& 0.1 mV offered as new perfect order $\mathbf{C 2 2 5}$
With accessories for sale or hire.

AIRMEC PORTABLE RF SIGNAL GENERATOR. AM/FM Type CT212. Specially designed for fleld use for 30 MHz . Accurate scale calibration. Variable output rom 1 micro V 100 mV o to 80 db . offered in excellent condition. Only E45

MARCONI 80ID GENERATOR $10-470$ MHz OUTPUT $0.1 \mu V$ to IV

MARCONI TF867 Standard RF Signal Generator range 15 kHz to 30 MHz . Variable output from 4 micro o 4 Volts. Extremely accurate attenuator, high output stability and discrimination make the generator very uitable for precision measurements on networks and
alters. Modulation to 100% may be applied at filters. Modulation up to 100% may be applied at
400 or 1000 Hz . Built in crystal calibrator. Offered in first class condition. Price EI75.

MAGNIFICATION METERS

Marconi Q Meter Model TF329G perfect condition $\mathbf{E 5 0}$ Marconi HF Q Meter TF886A perfect condition. . $\mathbf{4 0}$ Advance Q Meter Model T. 2 perfect condition. . . . $£ 40$

TEKTRONIX 515A

 and TEKTRONIX 524AD AVAILABLE NOWDawe Production Q Meter Model 620C brand new $\mathbf{E 5 5}$

TEKTRONIX 551 WITH TWO PLUGINS PERFECT CONDITION

Miniature solenoid driven wafer switches, type-Iedex single pole, 7 pos.; 3 wafers. Primarily used for channel switching in Radio-'Telephones. Wafers may be substituted for any type. Solenoid voltage, 12 or 24 V
Brand new, El. 50 each, p.p. $12 \frac{1}{2} \mathrm{n}$.

LF OSCILLATORS \& GENERATORS

Solartron constant outpur generator madel DO905 range $50 \mathrm{kHz}-50 \mathrm{Mhz}$ OP between $10 \mathrm{mV} \& 10$ vols as new
Donner sinewave oscillator $1 \mathrm{HZ}-100 \mathrm{~K} \mathrm{~Hz}$
AIRMEC Model 257 LF signal generator. Range $0.003-30 \mathrm{HZ}$
Nayne Model- 858 range $30-1,000 \mathrm{kHz} \& 1-30 \mathrm{MHz}$ in 7 ranges

variable O.p. $316 u \mathrm{~V}$ to 31.6 volts . .
TS-47APR range $40-500 \mathrm{MHz}$. function modulated/pulse/ $\mathrm{C} \ddot{\mathrm{W}}$. mains or battery operated small portable unit
PYE LF Osc' Model 11026 range 4 Hz to 40 kHz
arder 8 condition for mai voltage operation unless stated

CANNON XLR AUDIO SERIES

XL 3-31 3-Pole Socker

$\begin{array}{ll}\text { XL } 3-31 & \text { 3-Pole Socker } \\ \text { 3-12 } & \text { 3-Pole Plug }\end{array} \quad \begin{aligned} & \text { Thep } \\ & \text { The pair }\end{aligned}$ | $\begin{array}{ll}X L & \text { The pair } \\ \text { XL 3-11 3-Pole Plug } & \text { 3-Pole Plug } \\ \text { XL } & \text { 3-32 3-Pole Socket }\end{array}$ | $\begin{array}{l}\text { The } \\ \text { The pair }\end{array}$ |
| :--- | :--- | XL 6-11 6-Pole Plug

XL 6-32 6-Pole Socker $\quad \begin{aligned} & \text { 150p } \\ & \text { The pair }\end{aligned}$ XL 6-32 6-Pale Socket The pair
Offered Brand New. Sealed Packs at a
little over $\frac{1}{2}$ List Price.

MULLARD HIGH SPEED VALYE TESTERS. We have a small quantity o these very popular testers available late model. Complete with cards and in good working order. Price $\mathbf{6 4 5}$

LOW VOLTAGE POWER SUPPLY
To supply continuous 5 amps and ammeter employs silicon heavy duty rectification and high quality components very suitable for light duty plating and charing duties. 240 v . AC supply, fully fused. Small size only $10 \times 7 \times 6$ in.
Offered brand new units. Price 612.50 .

LEEDS NORTHRUP Integra. Slow speed chart recorder and Temperature speed chart recorder with chrome AL controler for use with chrome
couples/temperature range $0-1000^{\circ} \mathrm{C}$
C incorporates POTENTIOMETRIC
RECORDER \& Sensitive Controller Series 60. Offered in good used condition
.6105

MARCONI 1094 A/S

HF SPECTRUM ANALYSER 3-30MHz LATE MODEL FOR SALE OR HIRE

LUCAS CAR RELAYS. 12 v. Heavy duty make. Suitable for spotlights horns, overdrives, etc. Brand new.

BARGAIN OFFER

200-yard reels equipment wire, size $1 / 024$ STC quality, various colours. Brand new reels only 75 p. P. \& P. $12 \frac{1}{3}$ p.

HUNTER MAGSLIPS 3 inch Series, Type E-18-V/2. Very suitable for servo operation of hydraulic valves radar aerials and other applications for 50 volt 50 cycle operation. Offered brand new in transit
boxes, at only $£ 3.25$ each.

Rhode 蚛 Schwarz UHF 1000 Lood Resistor. An oil immersed load 0-600 MHz 60 ohms
$\mathrm{FNr} \mathrm{H} 3086 / 14$. Price $\mathbf{E 8 5}$ carriage extro

Noise Generator Model CT-82

 Range 15 kHz to 160 MHz very useful noise for factor measurements of receivers/ wide bandment is directy calibrated in noise factor and displayed on panel meter also ourput and isplayed on panel meter, also outpu operation offered in good used condition small size low price only $\mathrm{E8}$ Carr. 50 p.

Cossor Electronic Invertors type CRA 200. A high quality device for producing a $115 v 400 \mathrm{HZ}$ single phase output. Incorporating the
Full overload protection.

- Sine wave ourpur.
* Remote control facilities

Completely Solid State (Silicon
Builr to Ai
Buile to Aircraft specifications
I80VA of outpur continuous.
May be run in series operation for new boxed units. Price 617.50 Carriage 50p

Constant Voltage DC Power Supplies Model DC'8
A stabilised unit supplying 48 vde at 4 amps input $200-245 \mathrm{vac}$ stabilised to within

VARIAC TRANSFORMERS

8 amp type fully shrouded with scale plate a control knob. Good used condiAlso 3 amp type as above 64.50 p Carr.50p EIMAC SK-600A. Air spaced Valve
Holders suitable for 4×250, etc. Power tetrodes, brand new, boxed, complete with clamps, screws; heavy silver plate finish. Normal list price $\mathbf{E 6} 550$. Our price C2.50.
A.E.I. MINIATURE UNISELECTOR SWITCHES
No waiting, straight of the shelf and into your equipment, the Catalogue Nos. are 2202A, 4/33A63/1; coil resistance is 250 ohms. Complete with base, and the price is 65. Limited quantity only Also: 2203A, 2200A, 2202A.

SEARCH RECEIVERS AN/APR/4 Range $38-1000 \mathrm{mHz}$ with 3 RF cuning heads, circuit diagrams, etc. E95.

AERIAL CHANGE/OVER RELAYS

 of current manufacture designed especially for mobile equipments, coil voltage 12 v., frequency up to 250 MHz at 50 wates. Small size only, 2 in. $\times \frac{\mathbf{J}}{\mathbf{I}}$ in. Offeredbrand new, boxed. Price EI:50, inc. P.\&P.

COAXIAL SWITCHES
 American Manufacture

Suitable for aerial changeover and high frequency switching up to $1,000 \mathrm{MHz}$ miniature Vacuum drawn type 110 v dc operation connections BNC and N cypes.

LEAD-ACID EQUIPMENT
 BATTERIES IOV 5 AH

Transparent casing. Size $2 \frac{1}{2} \times 5 \times 7$ in. per box, complete with links and full instructions. Can supply voltages in the
range from $2-20 \mathrm{v}$. Price E2-25, inc. P.\&.P.

BURNDEPT RF PLUGS still available. These hard to find plugs are used on a multitude of equipment, especially Londex aerial c/o relays. Offered new
ex. equipment. 2 for 50 p, inc. p.p.

NIFE traction Batteries Nickel Iron. 1.2 V per cell rated at $180 \mathrm{~A} . \mathrm{H}$. Sold in crates of three cells or crates of five cells. $\epsilon 4$ per cell. Guaranteed best buy.

BT9I-500R THYRISTORS
500 PIV Max rect. Current 16 amps. Guaranteed perfect. Price $\in 1 \cdot 25$ each.

COLVERN HELICAL POTS

5 K ohms
$\left.\begin{array}{l}\begin{array}{l}\text { 5K ohms } \\ \text { IOK ohms } \\ 20 K \text { ohms } \\ 30 \mathrm{~K} \text { ohms }\end{array}\end{array}\right\} \quad$ ALL TEN TURN

30K ohms PRICE $£ 1.75$
ELECTRONICS VOLTMETERS for low level signal sources
PYE High Impedance DC Amplifier for measurements better than 20.
volts centre zero. Price 656.
PHILIPS GM 60101 mV FSD to 300 V in 12 ranges. Price 645
PHILIPS PM 2520 I mV FSD to 300 V in 12 ranges RMS voltmeter 10 Hz to OL
SOLARTRON VF-252. AC millivolt meter 1.5 mV for FSD to $15 \vee 30 \mathrm{M}$ ohms impedance. Price 665
H. W. SULLIVAN STANDARD apacitance range 0 to 100 of fully screened with engraved vernier sub divided into 100 equal divisions complete with vernier index and original manu-
facturers seal offered brand new, at facturers seal
only $E 25$ each.

SOLARTRON PULSE GENERATOR GP1101.2: Period-2 microsecs to 100 msec ; Pulse Duration-1 microsec to 100 msec ; Delay time-1 microsec to 10 msec . All continuously variable in 5 ranges with fine control. Accuracy $\pm 10 \%$. Pulse Amplitude- $0.5 \mathrm{~V}-100 \mathrm{~V}$. Accuracy $\pm 10 \%$ continuousiy variable
in 4 ranges with fine control. Double Pulses; Pre-Pulse; Triggering; Square Wave O/put; Squaring Amplifier. Input-100-250V, 50-60 c's. New condition Wave Oput; Squaring Amplifier. Input-1
with Manual. Price: $\mathbf{£ 8 5}$ each $+\mathrm{£} 1: 25$ carr.

USM-24C OSCILLOSCOPE: 3 in. oscilloscope with $2 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{Mc} / \mathrm{s}$ vertical response, and $8 \mathrm{c} / \mathrm{s}$ to $800 \mathrm{Kc} / \mathrm{s}$ horizontal response. Sensitivity 50 mv . rms/inch. Triggered sweep, built-in trigger pulses and markers. Mains input $115 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. Complete with all leads, probes and circuit diagram. £42.50 each,' cart. £2.

OS-46/U OSCILLOSCOPE: A general purpose oscilloscope suitable for measuring signals from $0-1000 \mathrm{~V}$ d.c. to over $50,000 \mathrm{c} . \mathrm{p.s}$. (Further details on request, S.A.E.) $£ 35$ each, carr. $£ 1 \cdot 50$.

SIGNAL GENERATOR TS-510A/U: (Hewlett Packard). A generalpurpose signal generator designed to furnish signals with a very low spurious energy content, suitable for alignment of narrow-band amplitude modulated receivers. It may be amplitude modulated by internally generated sine waves or by externally applied sine waves or pulses. Freq. Range- $10-420$ Mc/s in bands, $\pm 0.5 \%$ accuracy. Emission-AM, Cat, Pulse. O/put $400,1000 \mathrm{c} / \mathrm{s}(0-$ 90%. Built-in Crystal calibrator ($1,5 \mathrm{Mc} / \mathrm{s}$). Price: $\mathbf{8 1 5 0}$ each, complete with transit case, manual and all leads; OR £125 each, Sig. Gen. only. Carr. both types £2.

SIGNAL GENERATOR TS-403B/U (or URM-61A): (Hewlett Packard). A portable, self-contained, general-purpose test equipment designed for use with radio and radar receivers and for other applications requiring smal amounts of RF power such as measuring standing-wave ratios, antenna and and power are indicated on direct-reading dials. $115 \mathrm{~V}, \mathrm{AC}, 50 \mathrm{c} / \mathrm{s}$. Freq.-$1800-4000 \mathrm{Mc} / \mathrm{s}$. CW, FM, Modulated Pulse- $40-4000$ pulses per sec. Pulse Width- $0.5-10$ microsecs. Timing-Undelayed or delayed from 3-300 microsecs from external or internal pulse. O/put-1 milliwatt max., 0 to -127 db variable. O/put Impedance- 50 ת. Price: $£ 120$ each $+\mathbf{£ 2}$ carr.

SIGNAL GENERATOR TYPE 902: (P.R.D.). A portable, general-purpose, broadband, microwave signal generator designed for testing and maintenance of aircraft radio and radar receivers in the SHF band. The RF output level is regulated by a variable attenuator calibrated in dbm. The frequency dial is calibrated in Mc / s. Provision is made for external modulation. Power Supply$115 \mathrm{~V}, \pm 10 \%$ A.C., $50 \mathrm{c} / \mathrm{s}$. Freq.- $3650-7300 \mathrm{Mc} / \mathrm{s}$. Internal TransmissionCW, Pulse, FM. External Transmission-Square Wave, Pulse. Power 0 . put-
0.2 milliwatts. O/put Attenuator: - 7 to -127 dbm . Load- 50Ω. Price 0.2 milliwatts. Oput

TEST SET TS-147C: Combined signal generator, frequency meter and power meter for $8500-9600 \mathrm{Mc} / \mathrm{s}$. CW or FM signals of known freq. and power or measurement of same. Signal Generator: O/put - 7 to - 85 dbm . Trans-mission-FM, PM, CW. Sweep Rate- $0-6 \mathrm{Mc} / \mathrm{s}$ per microsec. Deviation-0 $40 \mathrm{Mc} / \mathrm{s}$ per sec. Phase Range- $3-50 \mathrm{microsec}$. Pulse Repetition Rate-to 4000 pulses per sec. RF Trigger for Sawtooth Sweep-5-500 watts peak 0.2-6 microsec. duration, 0.5 microsec pulse rise time. Video Trigger for Sawtooth Sweep-Positive polarity, $10-50 \mathrm{~V}$ peak. $0.5-20$ microsec duration a 10% max. amplitude, less than 0.5 microsec rise time between 90% and 10%
max. amplitude points. Frequency Meter: Freq. $8470-9360 \mathrm{Mc} / \mathrm{s}$. Accuracymax. amplitude points. Frequency Meter: Freq. $8470-9360 \mathrm{Mc} / \mathrm{s}$. Accuracythan $60 \mathrm{Mc} / \mathrm{s}$ relative, $\pm 1.0 \mathrm{Mc} / \mathrm{s}$ per sec. at $9310 \mathrm{Mc} / \mathrm{s}$ per sec. calibration point. Accuracy measured at $25^{\circ} \mathrm{C}$ and 60 humidity. Power Meter: Input: +7 to +30 dbm . Output - 7 to -85 dbm . Price: $£ 75$ each $+£ 1$ carr.

SIGNAL GENERATOR TS-418/URM49: Covers 400-1000 Mc/s range CW, Pulse or AM emission. Power Range- $0-120 \mathrm{dbm}$. Price: $£ 105$ each $+£ 1 \cdot 25$ carr.

TELEMETRY AUDIO OSCILLATOR TYPE 200T: (Hewlett Packard) Freq.- $250 \mathrm{c} / \mathrm{s}-100 \mathrm{Kc} / \mathrm{s} .5$ over-lapping bands. High stability. O/put 160 mw Freq.- $250 \mathrm{c} / \mathrm{s}-100 \mathrm{Kc} / \mathrm{s}$.5 over-lapping bands. High
or 10 V into 600Ω Price: $£ 65$ each $+£ 1.25$ carr.

SIGNAL GENERATOR TS-497B/URR: (Boonton). Freq. $2-400 \mathrm{Mc} / \mathrm{s}$ in 6 bands. Internal Mod. 400 or $1000 \mathrm{c} / \mathrm{s}$ per sec. External Mod. 50 to $10,000 \mathrm{c} / \mathrm{s}$ per sec. External PM. Percent Mod. 0-30 for sine wave. Arn or Pulse Carrier O/put Voltage $0.1-100,000$.

FREQUENCY METER TS-74 (same TS-174): Heterodyne crystal controlled. Freq. $20-280 \mathrm{Mc} / \mathrm{s}$. Accuracy $.05 \%$. Sensitivity 20 mV . Internal Mod. at $1000 \mathrm{c} / \mathrm{s}$. Power Supply-batteries 6 V and 135 V . Complete with calibration Fully stabilised Power Supply available at extra cost $£ 7 \cdot 50$ each. Carr $£ 1 \cdot 50$.

CT. 54 VALVE VOLTMETER: Portable battery operated. In strong metal case with full operating instructions. $2.4 \mathrm{~V}-480 \mathrm{~V}$. A.C. or D.C. in 6 Ranges, 1Ω to $10 \mathrm{Meg} \Omega$ in 5 Ranges. Indicated on
probe, excellent condition. $£ 12 \cdot 50$, carr. 75 p .

CT:381 FREQUENCY SWEEP SIGNAL GENERATOR: $85 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ and response curve indicator with bin. CRT tube and separate power supply. Fully stabilised. Price and further details on request.

CANADIAN HEADSET ASSEMBLY: Moving coil headphones 100Ω with chamois leather earmuffs. Small hand microphone complete with switch and moving coil insert. New Condition. $£ 1 \cdot 75$ each, post 25 p.
DLR. 5 HEADPHONES: $2 \times$ balanced armature earpieces. Low resistance $\mathbf{£ 1 . 2 5}$ a pair, 25 p post.

ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C. @ 1.8 amps, $400 \mathrm{c} / \mathrm{s} 3$ phase, $£ 6.50$ each, post 50 p .24 v D.C. input, 175 v D.C. @ 40 mA . output, $£ 1-25$ each, post 20 p.
CONDENSERS: $40 \mathrm{mfd}, 440 \mathrm{v}$ A.C. wkg. $£ 5$ each, 50 p post. 30 mfd 600 v wkg. d.c., $£ 3 \cdot 50$ each, post 50 p . $15 \mathrm{mfd} 330 \mathrm{va.c.}$, wkg., 75 p each, post 25 p .10 mfd 1000 v .63 p each, post 13 p . $10 \mathrm{mfd} 600 \mathrm{v} .43 \mathrm{p} \mathrm{each}, 25 \mathrm{p}$ post. 8 mfd 2500 v . $\ell 5$ each, carr. 63 p .8 mfd 600 v .43 p each, post $15 \mathrm{p}, 8 \mathrm{mfd} .1 \% 300 \mathrm{v}$. D.C. £1.25, post $25 \mathrm{p}, 4 \mathrm{mfd} .3000 \mathrm{v}$. wkg. $£ 3 \mathrm{each}$, post 37 p .4 mfd 2000 v . £2 each, post 25 p . $4 \mathrm{mfd} 600 \mathrm{v} ., 2$ for $£ 1.0 \cdot 25 \mathrm{mfd}, 2 \mathrm{Kv}, 20 \mathrm{p}$ each, post 10 p .0 .01 mfd MICA 2.5 Kv £1 for 5, post 10 p . Capacitor $0 \cdot 125 \mathrm{mfd} 27,000 \mathrm{v}$. wkg. $23 \cdot 75$ each, 50 p post.
TCS MODULATION TRANSFORMERS, 20 wates, pr. 6,000 C.T.; sec. TCS MODULATION TRANSF
$\mathbf{6 , 0 0 0}$ ohms. Price $\mathbf{£ 1} \cdot \mathbf{2 5}$, post 25p.
SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, E 2.50 each. post 30p.
CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps , £2.50 each, carr. 75p. OHMITE VARIABLE RESISTOR: 5 ohms, $5 \frac{1}{2} \mathrm{amps}$; or 40 ohms at 2.6 amps . Price (either type) $£ 2$ each, 25 p post each.
TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$'s ; complete with filament transformer 230 v . A.C. Mounted in 19 in . panel, $\mathbf{\& A} 40$ each, carr. 75 p . POWER SUPPLY UNIT PN-12A: 230V a.c. input 50-60 c/s. 513V and 1025 V @ 420 mA output. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V and 10 Mfd 600 V . Filament Transformer 230 V a.c. input. 4 Rectifying Valves type $5 \mathrm{Z3}$. $2 \times 5 \mathrm{~V}$ windings@3 Amps each, and $5 \mathrm{~V} @ 6 \mathrm{Amp}$ and $4 \mathrm{~V} @ 0.25 \mathrm{Amp}$. Mounted on steel base $19^{\prime \prime} \mathrm{W} \times 11^{\prime \prime} \mathrm{H} \times 14^{\prime \prime} \mathrm{D}$. (All connections at the rear.) Excellent condition $\mathbf{8 6} \cdot 50$ each, carr. £1.
AUTO TRANSFORMER: $\mathbf{2 3 0 - 1 1 5 V}, 50-60 \mathrm{c} / \mathrm{s}, 1000$ watts. mounted in a strong steel case $5^{\prime \prime} \times 6 \frac{1}{2}^{\prime \prime} \times 7^{\prime \prime}$. Bitumen impregnated. £6 each, Carr. 63p. 230-115V $50-60 \mathrm{c} / \mathrm{s}$, 500 watts. $7^{\prime \prime} \times 5^{\prime \prime} \times 5^{\prime \prime}$. Mounted in steel ventilated case. 23.50 each, Carr. 50p.
LT TRANSFORMER: PRI 230V. Output 4×6.3 at 3 amps each winding, $3 \frac{1}{\prime \prime}^{\prime \prime} \times 4^{\prime \prime} \times 5^{\prime \prime}$. Fully shrouded $£ 1 \cdot 50$ post 50 p.
MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves, microphone and modulator transformers etc. $\mathbf{\$ 7 \cdot 5 0}$ each, 75 p carr.
CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG1 (CV1526) colour green, medium persistence complete with nu-metal screen, $\mathbf{8 3} .50$ each, post 37 p .
APNI ALTIMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s}$., complete with all valves 28 v. D.C. 3 relays, 11 valves, price $\mathbf{£ 3}$ each, carr. 50p.
ANTENNA WIRE: 100 ft . long. $75 \mathrm{p}+25 \mathrm{p}$ post.
APN-1 INDICATOR METER, 270° Movement. Ideal for making rev. counter. £1-25, post 25p.
VARIABLE POWER UNIT: Complete with Zenith variac 0-230V., 9 amps ; $2 \frac{1}{2}$ in. scale meter reading $0-250 \mathrm{~V}$. Unit is mounted in 19 in . rack. £15 each $2 \frac{1}{2} 1.50$ p carr.
f
AIRCRAFT SOLENOID UNIT D.P.S.T.: $24 \mathrm{~V}, 200 \mathrm{Amps}$, $\mathbf{£ 2}$ each, 25 p post.
RADAR SCANNER ASSEMBLY TYPE 122A: Complete with parabolic reflector (24 in. diameter), motors, suppressors, etc. £35 each, £2 carr.
DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each .9 ohms. Tolerance $\pm 1 \%$ e3 each, 25 p post. 90 ohms per step. 10 positions, tal value 900 ohms. 3 Gang. Tolerance $\pm 1 \% \mathbf{8 3} \cdot 50$ each, post 25 p.
MARCONI DEVIATION TEST SET TF-934: $2.5-100 \mathrm{Mc} / \mathrm{s}$ (can be extended up to $500 \mathrm{Mc} / \mathrm{s}$ on Harmonics). Dev. Range $0-75 \mathrm{Kc} / \mathrm{s}$ in modulation range $50 \mathrm{c} / \mathrm{s}$ $5 \mathrm{~K} / \mathrm{s}$. $100 / 250 \mathrm{~V}$. a.c. £45 each, $£ 1.50$ carr.
CRYSTAL TEST SET TYPE 193: Used for checking crystals in freq. range $3000-10,000 \mathrm{Kc} / \mathrm{s}$. Mains $230 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. Measures crystal current under oscillatory onditions and the equivalent parallel resistance. Crystal freq. can be tested in EDEX SWITCHING UNIT 2 ledex switches 6
LEDEX SWITCHING UNIT: 2 ledex switches, 6 Bank and 3 Bank respectively, 6 Pos.; 1 Manual switch, 16 Bank 2 Pos. $A 4$ each, 50p post.

GEARED MOTOR: 24 c . D.C., current 150 mA , output 1 rpm , £1•50 each, 25p post. ASSEMBLY UNIT with Letcherbar Tuning Mechanism and potentiometer, 3 rpm , $£ 2$ each 25
purpose motors available. List 3p.
DALMOTORS : 24-28V d.c. at 45 Amps, 750 watts (approx. 1 hp) $\mathbf{1 2 , 0 0 0 \mathrm { rpm }}$. \&5 each, 50p post.
GEARED MOTOR: 28 V d.c. 150 rpm (suitable for opening garage doors). \&A each, 50p post.
SMALL. GEARED MOTOR: 24 V d.c., output 200 rpm . Meas'm'ts 1 tin. dia. $\times 3 \frac{1}{2}$ in. long. $£ 2$ each, 23p post.

FUEL INDICATOR Type 113R: 24V complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in 3in. diameter case. Price £2 each, 25 p post.

COAXIAL TEST EQUIPMENT: COAXWITCH-Mnftrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type "N. female connectors fitted to receive UG-21/U series plugs. New in ctns., i6.50 each, M1460-22, 2 pole, 2 throw. (New) $\mathbf{E 6} \cdot 50$ each, post 25 p. 1 pole, 4 throw, Type M1460-4. (New) £6.50 each, post 25p.
PRD Electronic Inc. Equipment: FIXED ATTENUATOR; Type 130c, 2.0-10.0 KMC/SEC. (New) \&5 each, post 25p. FIXED ATTENTUATOR: Type $1157 \mathrm{~S}-1$ (New) $£ 6$ each, post 25 p .

MOVING COIL INSERT: Ideal for small speakers or microphones. Box of 3 £1, post 23p.
HAND MICROPHONE: (recent design) with protective rubber mouthpiece. £2, post 23p.
MICROLINE IMPEDANCE METER MODEL 201: 5300-8100Mc/s. £75 each, £1 carr.
MICROLINE DIRECTIONAL COUPLER MODEL 209: $5260-8100 \mathrm{Mc} / \mathrm{s}$. 24DB. £12.50 each, post 35p.

CALLERS BY TELEPHONE
APPOINTMENT ONLY
W. MILLS

19" 625 LINES ALL TRANSISTOR VIDEO MONITORS. DESIGNED AS A BLACK AND WHITE MONITOR FOR OUTSIDE BROADCASTS.

FROM ANY ANGLE QUALITY AND PERFORMANCE FOR ONLY £100. (SPECIAL SURPLUS PRICE).

BRAND NEW
IN MANUFACTURER'S PACKING. STANDARD MAINS INPUT. MASSIVE DISCOUNTS FOR QUANTITY. SPECIAL RATES TO SCHOOLS, UNIVERSITIES, ETC.

MARSHALL'S INTEGRATED CIRCUITS NEW LOW PRICES • LARGEST RANGE • BRAND NEW • FULLY GUARANTEED SPECIAL OFFER: 5\% DISCOUNT TO ALL SATURDAY CALLERS (JULY AND AUGUST ONLY)

ELEGTROALDE

EVERYTHING BRAND NEW TO SPEC • LARGE STOCKS • NO SURPLUS

\star SIEMENS

TTL INTEGRATED CIRCUITS

FLH201 (7401) Quad 2 -inpur NAND (open collecter) FLHI91 (7402) Quad 2-input NOR
FLH21I (7404) Hex inverter
FLH271 (7405) Hex inverter (open collecter)
FLHIII (7410) Triple 3-input NAND
FLH35! (7413) Dual 4-input Schmitt trigger.
FLHI2I (7420) Dual 4-input NAND
FLH281 (7442) Dual 4-input NAND power
FLHI51 (7450) Expandable dual 2 wide 2 input
FLHI7I (7453) Expandable 4 wide 2 input
FLYIOI (7460) Dual 4-input expander
FLJIOI (7470) J-K flip flop
FLJIII (7472) J-K master slave flip flop
FLJI41 (7474) Dual D-type edge trigger flip flop FLJI5I (7475) Quad bi-stable latch
FLJI31 (7476) Dual J-K master slave flip flop
FLH34I (7486) Half adder
\star SIEMENS
POLYCARBONATE CAPACITORS
$0.01,0.012, \frac{250 \mathrm{~V}}{}$ up to $0.1 \mathrm{mF}: 100 \mathrm{~V}, 0.1 \mathrm{mF}$ and above $0.033,0.039,0.047,0.056,0.068,0.082,0.1,0.12,0.15,0.18$, $0.27^{0.22}$

NEW PEAK SOUND SPECIAL OFFER
Fantastic new Englefield 840 amplifier with add-in facilities for stereo tuner, advertised at $£ 45$. Special Electrovalue offer, plus

choice of case finish in black, red, blue or green simulated leather. | choice of case finish in black, red, blue or green simulated eather. |
| :--- |
| In makers sealed carton and guaranteed. |

MISCELLANEOUS ITEMS

POSTAGE \& PACKING

FREE on orders over $£ 2$. Please add 10 p if orders under $£ 2$. Overseas orders welcome: carriage and insurance charged at

BARGAINS IN NEW SEMI-CONDUCTORS

MANY AT NEW REDUCED PRICES • ALL POWER TYPES WITH FREE INSULATING SETS

40361	55p	2N2905	44p	2N4291	15p	BCI 48	9p	BFX87	29p
40362	68p	2N2905A	47p	2N4292	15p	BCI 49	10p	BFX88	26p
2N696	20p	2N2924	20p	ACl07	46p	BC153	19p	BFY50	23p
2N697	22p	2N2925	22p	ACl26	20p	BC154	20p	BFY51	20p
2N706	12p	2N2926	$11 p$	AC127	20p	BC157	12p	BFY52	23p
2N930	29p	2N3053	27p	AC128	20p	BC158	$11 p$	BS $\times 20$	16 p
2N1131	36p	2N3055	60p	AC. 53 K	22p	BC159	12 p	C407	17p
2N1132	40p	2N3702	13p	AC176	16p	BC167	$11 p$	MC140	25p
2 N 1302	19p	2N3703	13p	ACY20	20p	BC168	10 p	MPS6531	25p
2 N 1303	19p	2N3704	13p	ACY22	16p	BC169	$11 p$	MPS6531	35 p 30 p
2 N 1304	23p	2N3705	13p	ADI 40	56 p	BC177	14 p	MPS6534	30p
2 N 1305	23p	2N3706	13p	AD 142	50p	BC178	13 p	NKT211	25p
2N1306	33p	2N3707	13 p	ADI49	58p	BC179	14p	NKT212	25p
2 N1307	33p	2N3708	10p	ADI61	33p	BCI82L	$11 p$	NKT214	23p
2N1308	36p	2N3709	$11 p$	ADI62	36p	BCI83L	10p	NKT274	18 p
2NI309	36p	2N3710	13p	AFII4	30p	BCI84L	$11 p$	NKT403	65p
2 N 1613	23p	2N3711	13p	AFII5	30p	BC212L	16p	NKT405	79p
2N1711	26p	2N3819	23p	AF117	28p	BC213L	16p	OC71	29p
2N1893	54p	2N3904	35p	AFI24	30p	BC214L	16 p	OC81	25p
2N2147	95p	2N3906	35 p	AF127	28p	BCY70	19p	OC83	20p
2N2218	34p	2N4058	13p	AF139	33p	BCY7I	33p	ZTX300	14 p
2N2218A	43p	2N4059	10p	AF239	36p	BCY72	15 p	ZTX301	16 p
2N2219	38p	2N4060	$11 p$	ASY26	27p	BFII5	23p	ZTX302	22p
2N2219A	53p	2N4061	$11 p$	ASY28	27p	BF167	18p	ZTX303	22p
2N2270	62p	2N4062	12p	BC107	12 p	BFI73	19 p	ZTX 304	27p
2N2369A	19p	2N4124	18p	BCl08	$11 p$	BF194	14p	ZTX500	18 p
2 N 2483	35p	2N4126	27p	BC109	12 p	BFI95	15p	ZTX501	21p
2N2484	42p	2N4284	15p	BC125	15p	BFX29	31 p	ZTX502	25p
2N2646	54p	2N4286	15p	BCI26	22p	BFX84	25p	ZTX503	22p
2N2904A	42p	2N4289	15p	BC147	10p	BFX85	34p	ZTX504	52p

RESISTORS-10\%, 5\%, 2\%

| Code | Power | Tolerance | Range | Values
 available | to 9
 (see | 10 to 99 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Cote below). | | | | | | | 100 up

Codes: $C=$ carbon film, high stability, low noise. \quad Prices are in pence each for quantities $\mathrm{MO}=$ metal oxide, Electrosil TRS, ultra low noise. of the same ohmic value and power
$\mathrm{WW}=$ wire wound, Plessey.

Values:
E12 denotes series: $10,12,15,18,22,27,33,39$, E24, denotes series: as E12 plus II, 13, 16, 20, 24, E24 denotes series: as E12 plus 11, 13, 16, 20,
$30,36,43,51,62,75,91$ and their decades.

CARBON TRACK POTENTIOMETERS,

 long spindles. Double wiper ensures minimum Single gan Single gang linear 100Ω to $2 \cdot 2 \mathrm{M} \Omega$, 12p; Single $4.7 \mathrm{k} \Omega$ to $2.7 \mathrm{M} \Omega$ to $2.2 \mathrm{M} \Omega$, 12 p ; Dual gang linear $2 \cdot 2 \mathrm{M} \Omega, 42 \mathrm{p}$; Log/antilog, $10 \mathrm{~K}, 47 \mathrm{~K}$, $1 \mathrm{M} \Omega$ only 42 p Dual antilog, 1OK only, 42p. Any type with $\frac{1}{2} \mathrm{~A}$ D.P. mains switch, $12 p$ extraOnly decades of $10,22 \& 47$ available in ranges Only de

CARBON SKELETON PRE-SETS
Small high quality, type PR, linear only: 100Ω $220 \Omega, 470 \Omega$, IK, $2 \mathrm{~K} 2,4 \mathrm{~K} 7,10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}$, $220 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M} 2,5 \mathrm{M}, 10 \mathrm{M} \Omega$. Vertical or horizontal mounting, 5p each.

COLYERN 3 watt Wire-wound Potentiometers. $1 \mathrm{~K}, \mathrm{i} .5 \mathrm{~K}, 2.5 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 15 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 32 \mathrm{p}$ each

ZENER DIODES 5\% full range E24 values: ZENER DIODES $400 \mathrm{~mW}: 2.7 \mathrm{~V}$ to 30 V , 15 p each; $1 \mathrm{~W}: 6.8 \mathrm{~V}$. to 82 V 27p each; $1.5 \mathrm{~W}: 4.7 \mathrm{~V}$ to $75 \mathrm{~V}, 60 \mathrm{p}$ each. Clip
266 F), 4 p .

[^14]fractions on total value of resistor order.)

CAPACITORS

MULLARD polyester C280 series
$250 \mathrm{~V} 20 \%: 0.01,0.022,0.033,0.047$ 3p each $0.068,0.1,4 p$ each: $0.15,4 p ; 0.22,5 p .10 \%$ $0.33,7 p ; 0.47,8 p ; 0.68,11 p ; 1 \mu \mathrm{~F}, 14 \mathrm{p}$; $1.5 \mu \mathrm{~F}$,
$21 \mathrm{p} ; 2.2 \mu \mathrm{~F}, 24 \mathrm{p}$.

MULLARD SUB-MIN ELECTROLYTICS C426 range, axial lead.. ... 6p each Values ($\mu \mathrm{F} / \mathrm{V}$): $0.64 / 64 ; 1 / 40 ; 1 \cdot 6 / 25 ; 2 \cdot 5 / 16 ; 2 \cdot 5 / 64$ 4/10; 4/40; $5 / 64 ; 6 \cdot 4 / 6 \cdot 4 ; 6 \cdot 4 / 25 ; 8 / 4 ; 8 / 40 ; 10 / 2 \cdot 5 ;$ 10/16; $10 / 64 ; 12 \cdot 5 / 25 ; 16 / 10 ; 16 / 40 ; 20 / 16 ; 20 / 64$ $\begin{array}{llll}25 / 6.4 ; & 25 / 25 ; & 32 / 4 ; & 32 / 10 ; \\ 40 / 2 \cdot 5 ; & 50 / 6 \cdot 4 ; & 50 / 25 ; & 50 / 40 ; \\ 64 / 4 ; & 64 / 64 ; 40 / 16 ;\end{array}$ 80/16; 80/25; $100 / 6 \cdot 4 ; 125 / 4 ; 125 / 10 ; 125 / 16$; $160 / 2 \cdot 5 ; 200 / 6 \cdot 4 ; 200 / 10 ; 250 / 4 ; 320 / 2 \cdot 5 ; 320 / 6 \cdot 4 ;$ 400/4; 500/2.5.
LARGE CAPACITORS
High ripple current types: 1000/25, 28p; 1000/50, 41p; 1000/100. 82p; 2000/25, 37p; 2000/50, 57p 5000/25, 62p; 5000/50, £1.10; $5000 / 100$, $92 \cdot 91$ $10000 / 50, £ 2 \cdot 40$.

HANDBOOK OF TRANSISTOR EQUIVA LENTS \& SUBSTITUTES 40p (Post 3p if ordered alone.)

COMPONENT DISCOUNTS

10% on orders for components for mor
15% on orders for components for $£ 15$

28watts, r.m.s. 40 Hz to $40 \mathrm{kHz} \div 3 \mathrm{~dB}$

Viscount III Audio Suite complete

PRICES SYSTEM 1
Viscount III RT101 amplifier $£ 22.00+90$ p p\&p $2 \times$ Duo Type ll speakers, $\quad £ 14.00+£ 2$ p\&p Garrard SP25 Mk. III with
MAG. cartridge, plinth
and cover

Total $\frac{£ 23.00}{£ 59.00}$

Available complete for only $\mathbf{f 5 2} 00+\mathbf{f 2} 60$

SPECIFICATION

14 watts per channel into 3 to 4 ohms. Total distortion
@ 10 WW @ $1 \mathrm{kHz} 0.1 \%$. P.U. 1150 mV into 3 Meg . @ 10 W @ $1 \mathrm{kHz} 0.1 \%$ P. P. 1 15limv into 3 Meg. R.1.A.A. Radio 150 mV into 220K. (Sensitivities given R.1.A.A. Radio 150 mV into 220 l . (Sensitivities given
at full power.) Tape out facilities; headphone socket, at full power.) Tape out faciitities; headphone socket,
power out 250 mW per channel. Jone controls and power out
filter characteristics. Bass: +12 dB to $-17 \cdot \mathrm{~dB}$ @ $) ~$ 60 HZ . Bass filter: 6 dB per octave cut. Treble control; treble +12 dB to $-12 \mathrm{~dB} @ 15 \mathrm{kHz}$. Treble filter: 12 dB per octave. Signal to noise ratio: (all controls at dB per octave. Signal to noise ratio: (all
max) RT101-P.U.1. max R R same as RT101 but P.U. 2.450 mV into 3 Meg. Cross talk better than - 35 dB on all inputs. Overload characteristics 26 dB on all inputs.

SOUND 50
 50 WATT AMPLIFIER \& SPEAKER SYSTEM

Output Power. 45 watrs R.M.S. (Sine wave drive). Frequency response: -3 db points 30 Hz at 18 KHz . Total distoction: less than 2% at rated output. Signal to noise ratio better than 60 dh Spasker /aserance 3. 8 or 15 opase Buss Contol Bange: Aange: $\pm 13 \mathrm{db}$ at 60 Hz . Treble Control Range: $\pm 12 \mathrm{db}$ at 10 KHz . Inputs: 4 inputs at 5 mV into 470 K Each pair of inputs contiol by separate volume control. 2 inputs at 200 mV into 470 k , To protect the output valres, the incorporated fail safe circuit will ensble the amplifier to be used at half power. SPEAKEAS: Size $20^{\prime \prime} \times 20^{\circ} \times 10$ incorparamg, $12^{\prime \prime}$ heavy duty 25 watt high flux, quality loudspeaker with cast frame.
Cobinets atuactively finished in two tone colour scheme-Black and grey.

ELEGANT SEVEN Mk 3 (350 mW) construction. Circuit 13p FREE WITH PARTS

SYSTEM 2
As System 1, but with $2 \times$ Duo Type III speakers at pair $£ 32.00+£ 3 p \& p$ Available complete for $£ 69+£ 4$ p\&p SYSTEM 3
Viscount III Amplifier RT100 $£ 17.00+90 p$ p\&p $2 \times$ Duo Type II speakers, pair $£ 14.00+\mathbf{£ 2}$ p\&p Garrard SP25 Mk. III with CER. diamond cartridge, plinth and cover $\quad £ 21.00+£ 1 \mathrm{p} \& \mathrm{p}$ Total $\overline{£ 52.00}$
Available complete for only $\mathbf{£ 4 9 . 0 0}+\mathbf{£ 2 . 5 0}$

SPEAKERS Duo Type II

Size $17^{\prime \prime} \times 10 \frac{3}{4}^{\prime \prime} \times 6$ l'". $^{\prime}$. Drive unit $13^{\prime \prime} \times 8^{\prime \prime}$ with parasitic tweeter. Max. power 10 watts. 3 ohms Teak veneer cabinet. $£ 14$ pair $+£ 2$ p\&p.
Duo Type Ill Size $23 \frac{1}{\frac{1}{2}} \times 11 \frac{1}{\frac{1}{\prime \prime}} \times 9 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$. Drive unit $13 t^{\prime \prime} \times 8 t^{\prime \prime}$ with H.F. speaker. Max. power 20 watts at 3 ohms. Freq range 20 Hz to 20 kHz Teak veneer cabinet. $£ 32$ pair $+£ 3$ p \ddagger p.
transistor fully-
tunabie M W.
.
. superhet portable Set of parts. Complete with all componenis. including ready etched and drilled printed circuit board—back printed for foolprool

MAINS POWER PACK KIT 75p exir Price $£ 5.25$ plus 50 p P. \& P.

The DORSET $(600 \mathrm{~mW}$)
7 transistor fully tunable M.W.-L.W superher portable - with baby alarm
facility
Ser facility. Set o parts. The latest modulised and pre-align ment techniques

Price $\mathbf{f 5} 5 \mathbf{2 5}$ plus 50 p P. \& P Circuit 13p FREE WITH PARTS

TOURIST
MARK 3 ALL TRANSISTOR CAR RADIO

Beautifully designed so blend with the interiors of all cars. Beautifully designed on biend wity tuning and long wave loading coils ensures Permeability tuning and long wave loading coils ensures excellent tracking- sensitivity and selectivy on bouro volts. bands. R.F. Sensitivy atm speaker is 3 watts. Pre-aligned I.F module and tuner together with comprehensive instructions guarantees success first time. 12 volts negative or positive earth. Size 7" $\times 2$ " $\times 4 \frac{1}{2}{ }^{\prime \prime}$ deep.

RADIO \& TV COMPONENTS (Acton) LTD 21a High Street, Acton, London, W.3.6.NG

 Also 323 Edgware Road, London, W.2: Goods not disparched. outside U.K. Terms C.W O. All tanuiries S A.E.

ROHDE \& SCHWARZ POWER SIGNAL GENERATOR Type SMLR (BN4I001)
$100 \mathrm{KHz-30} \mathrm{MHz}$ in 5 ranges. $t 1 \%$. $0 / \mathrm{P} 1.7 \mathrm{wr}$ MAX O/P Volts $0-10$ into 60 ohms and 1 microvolt- 3 . .
A. M. Modulation to 90%. This is a high quality laboratory

DYNAMCO 2010 DIGITAL
VOLTMETER
Fully overhauled, Calibrated (Certifled) and Guaranteed.
Specification:
Seale: 109999. D.C. Accuracy: 0.001% reater than $25,000 \mathrm{M}$ ohm: C M $; 1 / \mathrm{P}$ 160 dB .50 Hz 130 dB O/P. Parallel B.C.D. Inductive potentiometric system for excellent stability. Price: $£ 850$ (new price over $£ 1,600$).

DIGITAL VOLTMETER DYNAMCO 2006
Scale 9999. D.C. range. 10 micro-volt- 1 kV . I/P. Z greater than 10,000 Mohms. B.C.D. Parsilel $1 / \mathrm{P}$ (isolated)
Bupplied with D. 2 Module. Overhauled Calibration certit cate. To maker's specification. New price \&765. Our price £400. Carriage extra

7-TRACK DIGITAL MAGNETIC TAPE STORAGE DECK These machenes, originally ex-computer, are muiti-rack reconilig units, ideal for
data storage. Record and Replay headd
encased in one conmen encased in one common unit. LIow
resistance hieads. Frequency
respone

 8 and matt-hack. size 27 in. $\times 26$ in. 8 in. Weight 90 ib. Price 265 . Carriage
MEMORY PLANES

Ferrite core memory planes with wired
Ferrite cores. Used for building your own computer or as an interesting puter. Mounted on plastic material, $40 \times 25 \times 4$ cores eanieh one of matrices sddressable and divided into 2 baivee wires. $£ 6$ 6. 65 . P. \& P. P. inclusive.

(Ref. C4)

!

(Ref. C4) 5

BRAND NEW COMPUTER TAPES AND

SPOOLS
Made by well known manufacturers
in. certine
in. 2.400 ft .
in. Highest grade $2,400 \mathrm{ft}$..........
in. 10 f in. dla. spool and cassette.
in. 10 in ind dia. spool and carseette 1 in. metai 104 in. dia. spool and cassette
in. N.A.B. centres $10 \downarrow$ in. spool anly.

TEXAS BALL BONDER. Overlauled. £250.

50 MHz .8 DIGIT FREQUENCY COUNTER SYSTRON-DONNER Model 1037 -S
D.C. I/P 0-50 MHz. A.C. I/P $10-50 \mathrm{MHz}$. Gate tinne 1 micro-second accuracy. Reads in KHz or MHz with positioned decinnal point
Sensitivity 100 Mv. r.m.s. B.C.D. O/P. PRINT COMMAND. OVER LOAD PROTECTION. DIMENSIONS: H. 5\% in., W. 17i in., D 174 in. Wt. 42 Ibs. Ma ins $1 / \mathrm{P}$. This instrument has been overhauled
and calibrated and is offered in excellent condition. $£ 350$. Carriage extra.

EYELET BONDER PLANER B80I
.g. condition. C/W stand. Overhauled. $£ 750$

5 KV IONISATION
TESTER AIRMEC 732
Non-destructive insulation testing. Audible indication of lonisation
currents.
$200-5 \mathrm{kY}$. currents. Variable voltage from
$20-5 \mathrm{kV}$. High impedance source.
Mains \mathbf{I} / P. $£ 35$.

MODEL I706 VISICORDER
in almost new condition. This direct reading U/V Recorder can
"cord up to 6 channels simultaneously from D.C. 5000 Hz at ting speed of $30,000 \mathrm{in}$. per sec.
cording range: $\quad \mathrm{D} .-5000 \mathrm{H}$

$\begin{array}{lllll}\text { Paper speeds: } & \text { Eight speeds from } 0.25 \cdot 32 & \text { in./sec. ani }\end{array}$

FACSIMILE RECORDERS

Drangmiseion apeed: Recorder. Helix speed: $60,90,120 \mathrm{rev} . / \mathrm{min}$. ${ }_{\text {Pef. }}^{46}$ lines $/ \mathrm{in}$.Price $£ 350$. Completely overhauled plus carriage.

X Y PLOTTERS

he are now able to offer the following Recorders in an overhauled 1. MOSELEY AUTOGRAF MODEL 2A
 $0-71,15,75,150,750 \mathrm{mV} ; 0.1,7,7,15,75,150$ r. Y Aris $0-5,10$,
$50,100,500 \mathrm{mV} ; 0-1,5,10,50,100 \mathrm{v}$. Senstivity not less than 200 k hme/V. Accuracy: $0.250,50,100 \mathrm{~F}$. Sensitivity not ranges. Response speeds: 100 k for full scale. Supplied complete with copy of handbook. $£ 310 \cdot 00$. 2. HOUSTON INSTRUMENTS MODEL HR 934

 twith Axis. Response speeds: 2 sec. for full scale. £ $195 \cdot 00$. Carriage

DIGITAL INDICATORS KGM Type M3 A neat compact indicator providing selective display midget flangt 18 rmm . panel mounting. 6 mm . tubular matt black anomps. supplied with 28 v . bulbs. Finlshed £3.25. P. \& p. Free.

TRANSISTORISED TIMER

 Ekco M5220An extremely versatile timer for use with high stabllity pulse counting systems.
Less power supply. £45. Carriage extra.
TRANSISTORISED SCALER M5200
E45. Carriage extra.
 M 5220

SOLARTRON OSCILLATOR CO546

E5z-500K Hz. Attenuator and $0 / \mathrm{P}$ meter. Very good condition

ELECTRONIC

SIGNAL GENERATOR "X" BAND
8ANDERA MODELCT 480 (SG 480) and CT 478 (8 G 478). Speciflca $8 \cdot 0.11 \cdot 0 \mathrm{KMHz}$ (CT 480) and $1 \cdot 5-4 \cdot 0 \mathrm{KMHz}$ (CT 478). Theae high grade generators comprise a klyatron oscillator in a source. Provision for application of
square wave or square wave or pulse modulation internal or external sources. Attenuator call-
brated from $0-100 \mathrm{db}$ below 1 mW . brated from $0-100 \mathrm{db}$ below 1 mW .
$1 / \mathrm{P} 110-250$. $60-500$ Hz. 200 . Rack
mounting W .19 in mounting. W, 19 in., H. 14 in., D. 15 in , of handbook. Teated
$£ 275$. Carrisge extra.

DEVIATION METER
Marconi TF 928
 Measurement of deviation up to 400 ing up deviation in VHFF Wide Band MultiChannel FM Bystemas and Radar.

lb. $£ 95-00$.

NUMICATORS
End Reading
GRIOM/U (Clear)
 XN $23 / \mathrm{FA} \quad 38 \mathrm{~m} / \mathrm{ma}$ lead

RCA U.H.F. SIGNAL GENERATOR Type 710A
 $50 / 60 \mathrm{~Hz}$ sow. Overhauled and $50,60 \mathrm{~Hz}$ sow. overhauled and
suppled complete with auto trans former for $230 / 250 \mathrm{~F} . \mathrm{I} / \mathrm{P}$. 285 (carriage extra).
 er) Free.

YIBRON ELECTROMETER MODEL 33B
An exceptionally stable laborstory finstruvoltager and currents derived fromalia high mpedance source. The Vibron Electrometer
has input ranges of $10 \mathrm{mV}, 30 \mathrm{mV}, 100 \mathrm{mV}$, 300 mV and 1 V and the output is 1 mA full acale on all ranges, The zero drift does not input resiatance is 10 to the power of 13
ohms. $£ 75$ (carriage extra).

ADVANCE STABILISED
POWER SUPPLY
Model D.C. 207A 24 v. 8A Model D,C. $207 A 24$ v. 8 A
Built to the highest specificatione for
continuous use in computor installa-

PERKINS ELMER MODEL 240
ELEMENTAL ANALYZER
This precision instrumert accurately determines the
carbon, hydrogen and nit ogen content of organic comcarbon, hydrogen and nit ogen content of organic com-
pounds hy detecting and measuring their products of combustion. This equipme nt has only had one user and
is offered c/w a Leeds and Horthrup Speedomax Recorder is offered c/w a Leeds and Horthrup Speedomax Recorder.
Excellent condition. Mannfacturers overhaul. 6 month Evarate condition. Manlifacturers overhaul. 6 mo
guarantee. $£ 3,000$ (representing a saving of $£ 1,000$).

DECADE VOLTAGE AND CURRENT

 GENERATOREkco Type 1482A. Provides accurate test voltages and currente which can be varied by small inc ements $0-1 \mathrm{v}$. in steps of 0.0001 $0-10 \mathrm{v}$. in steps of 0.001 v . Carrent $0 / \mathrm{P} 1 \mathrm{v}$. range. 10-5 10^{-13} amps on 10 v . Range $10^{-4}-10^{-12}$ anrps. Mains $1 / \mathrm{P} .19$ in. Rack Mounting C/II Manual. $£ 45$

GRESHAM INSULATION FLASH.TESTER MK 6 $0.5-2 \cdot \mathrm{kV}$. Mains I/P. Overhamed £35. Carriage extra

R.C. POWER OSCILLATOR (Associated

Electronic Eng. Al302)
Frequercy rarge: 20 Hz to 200 KHz , in 4 ranges. output porcer: 0.250 v ., 4 -5 watts r.m.s. Output impedjances: 15 ohmis, 1,000 ohmer:
4,000 ohms; 600 ohms attenustor adjustable. Loaded 600 ohms, 4,000 ohms; 600 ohms attenustor adjustable. Loaded 600 ohms,
$0^{.} .6$ ohns. Output lerminations: High impedance, earthed; low 0.6 ohms. Output Lerminations: High impedance, earthed; low
impedance, isolated. Output leve: Output level control o-10 div.
Meter ranges: Switched 10 v ., 50 v ., 250 v . Input voltage: $200-250 \mathrm{v}$. Meter rarges: Switched 10 จ., 50 v., 250 v. Input voltage: $200-250 \mathrm{~V}$.
A.C. 50 Hz . Output terminal swstrh: Switchable to High or Low impedance output.
O/H. Very good condition. 29 E . Carriage extra.

NUCLEONIC INSTRU MENTS

High Accuracy Metal Wall Gauge Ekco Type N563B. Portable transistorised gamma back scatter gauge up to 18 mm. in 2 Field Ratemeter Ekco Type 1645A. 0-1,000 counts/sec. In 5 ranges. Portable transistorised. C/W Dipping Probe N675A for Beta counting in liquids. C/W Kamual. £105- Ratemeter ONLY A35.ifiter Logarithmic D.C. Pat of Monitor Gamma Reactor.

MUIRHEAD-WIGAN LF. DECADE
OSCILLATOR D-638A

BRAND NEW NIMTEC AMPLIFIER I5I

DISCRIMINATOR 95/2127-1/6
230

CURRENT \& RESISTANCE MEASURING UNIT A33B
To extend the range of the ELisCT ROMETER to measure very

POWER SUPPLIES
We specialise it all kirds of POWER SUPPLIES. Current
stock includes the following Modular units. All have mains I/P.

MULTI OUTPUT UNITS AND SPECIALS ${ }_{3350}^{0 / P V} \quad$ A unatabilised \quad Make \quad Prico
 $\begin{array}{llll}-12-0+12 & 210 & \underset{y}{\text { Lisinggtone }} \text { (LMO50) }\end{array} \quad 28 \cdot 50$ $\begin{array}{llll} & 24 & 240 & \text { £18.00 }\end{array}$ Unetabilised
Variable

150 mA
$160-300$
$6-3$ v. A.C
${ }_{3 \mathrm{~A}}^{150 \mathrm{~mA}}$
$\begin{array}{llll}\begin{array}{ll}\text { Variable } \\ \text { Voltmeter and ammeter) }\end{array} & 240 & \text { I.E. } & \text { £35.00 }\end{array}$

$30 \mathrm{~A} . \mathrm{C}$.		
400 Hz adjustable	300 mA	240
$£ 36.00$		

400 Hz adjustable $£ 36.00$ | $175-260$ | $\begin{array}{l}\text { 80mA } \\ \text { Adjustable (Metered) }\end{array}$ | 240 | Smiths |
| :--- | :--- | :--- | :--- |
| \&30.00 | | | | Universal Labpack Radiord £20.00 HT \& LT Supply astable 220

EX-COMPUTER HIGHLY STABILISED TRANSISTORISED LOW VOLTAGE POWER SUPPLIES These modular units protection on both
INPUT and DUTUT. LOAD regula. Low Ripple and I fast response tirne. All
units checked and
 I/P VOLTAGE $\quad-20 \cdot 130$

ヶ. 50 Hz available in the following

 These units
stocke last.

BARGAIN D.C. STABILISED

POWER SUPPLY UNIT $£ 9.50$
 500 mA . I/P on $/ 0$ switch. Fuse and warning light. Stabilisation $100 / 1$ for $+10 \%-16 \%$ mains charge. Equivalent $0 / \mathrm{P}$ reaistance less than 50 M ohms. Ripple and notre less than

CONSTANT VOLTAGE TRANSFORMERS
 ADPVANCE MT 285ZA
I/P $190-260$ v. 5 H. Hz., 1 phase. $0 / \mathrm{P} 2.30 \mathrm{~V} .2 \mathrm{~kW}$. Unity
P.F. 235.00 . Cerriage extra.

ELECTRONIC ASSOCIATES
VARIPLOTTER IIOOE
X-Y plotter, suitable for recording apalogue information. Table size $15 \mathrm{in} . \times 10 \mathrm{in}$.; slow speed 20 ln ./sec.; $1 / P$ seneitivity for F.S.B. tested, guaranteed and in new condition. Price: $£ 350$.

VIBRATION EQUIPMENT

I. AUTOMATIC L.F. SWEEP OSCILLATOR PYE-LING ACO I (DAWES 444D) AD rutomatic unit providing motorised sweep faclitice and characteristic. Appllcations Resonancé Search and Endurance testing.

5 Hz-s KHz 21 sweep speeds from $0 \cdot 1-10$ octaves/minute. Variable 0/P up to 10 v. r.m.s, Mains I/P. Excellent
condition. \&85. Carriage extra. 2. POWER OSCILLATOR 5VA bY PYE-LING Hz -50 KHz . Overhauled. \&49. Carriage extra 3. CATHODE FOLLOWER. GOODMANS E506
channel. Very good condition. £45. Carriage extra.
4. PHASE SHIFTER MODEL E556
(GOODMANS)
19 in. Rack Mtg. Main I/P. Very good condition. £56.

MULTIMETER TYPE CT471B Fully transistorized multi-range
instrument for measurement of
of oltage up to 1000 MHz (1500 MHz with reduced accuracy) and current and D.C. voltage and current divided into 11 ranges. $12 \mathrm{mV}-1200 \mathrm{~V}$.
A.C.J.C.C. Current 12 mitcro A-1.2A.
D.C. Resistance 5 ranges 0.1 ohmD.C. Resistance 5 ranges 0.1 ohm-
1000 M ohm.
R.F. Voltages 5 range 40 mV to 4 V .
B.Ftery powered. Onfered in excellent condition. Teated Battery powered. Onfered in excellent condition. Teated
before despatch. Complete with handbook. \&54. Carr. 50 p . MIDGET POWER RELAY Type Mk
(OMRON), 230,50 Hz Coll, 1 pole double throw, Unused.
Faulty plating on frame. 5 for $\& 1$. 50 . (P. \& P. included.)

EROKERE

49-53 PANCRAS ROAD, LONDON, AW.W. Tel:01-837 7781/2. Cables: SELELECTRO
Telex: 267307 (Open Mon-Fri. 9 a.m.-6 p.m.)

SINE COSINE POTENTIOMETER 47K Precision component by Pye. Moidel 20062.
Manuactured to rigid
Ministry The assembly consists aree wits mounted in one frame. Each unit conta ns two ine
and two coine potentiometer tection, ine
sideters being ganged together. Electrical and two cosine potentiometer sections, the
sliders being tanged togethe.. EEectrical
conneetions, 2 end taps,
clider and centre 3if oz/fin, Dimensions: w. 6 住in., H. 5 in., D. $7 t$ in. Wt. 7 t it. Ex equipment. Go
condition. 810.00 each. Carriage extra.

WELDING POWER SUPPLY-Hughes Model

 MCW 5b0. Constant VoltageMains input. Price 2125.

SIGNAL GENERATOR
Advance DI/D

 245.00. Carriage extra

ntrols.

PORTABLE FREQUENCY METER
TF1026/1. A direct reading absorption meter, employing a conthe other end of the lize, giving a frequency range: 250 MZ M-500 MHz , or an almost linear scale approx. 9 in. in length. Complete
E.M.I. INSTRUMENT L.F. TAPE RECORDER
 P.A. .). in tranit cases. Four speeds using stand
Exceptlonal value, two only arailable. Price
\&75.
R.F. ATTENUATOR MARCONI TF 1073A DO- 150 MHz 1dB steps 75 Ohms. Double Bcreened constructlon. ested and in va condition. 225.

VHF ADMITTANCE BRIDGE

Wayne Kert B801A. 1-100 MHz. Conductance 0-100 milliohme.
 Also B801. Indicates parallel components of conductance and
 -100mohm MHz . 1115 (40% of new price).
bRAND NEW CAPACITOR REVERSIBLE
SINGLE PHASE PARVALUX MOTORS

COAXIAL LINE OSCILLATOR

sy Baunders. Type CLC 7 -12. The Oscillator is adjustable from $7-12$ MHz. A high reset accuracy with no backlaah having $\pm .1 \%$. The instrument 18 supplied with a calibration chart and valye, and is suitable to be coupled to any wave
wavegulde tranatorner, Price $\mathbf{~} 555$.

Special offer of AMPEX professional tape heads mu-metal shroucled. (Designed for model AG20. Ful
track record, or playback, $£ 3 \cdot 00$. Erase head $£ 2.00$. Set of 3 with mounting bracket and cover $\mathbf{£ 7 \cdot 5 0 \text { . Half track }}$ record or playback only, $£ 3.00$ each or $£ 5.50$ per pair with bracket and cover. Carriage paid.

AMPEX. Dynamic stick microphone, high impedance low noise. Offered welf below makers price at $£ 6.50$.

Three only as new. "AMPEX" AG20 Portable Tape Recorders. Full track heads. Remote control facility. Power pack, etc. Cost $£ 450$. Our price $\mathbf{1 1 7 5}$. PERSONAL CALLERS ONLY.
"DECCO" MAINS SOLENOID.Compact and very powerful. 16 lb . pull. $g^{\prime \prime}$ travel which can be increased to $1 "$ by removing captive-end-plate. Overall size $2^{\prime \prime} \times 2 \frac{1^{\prime \prime}}{2} \times 2 \frac{3}{4}^{\prime \prime}$ high. $f 1 \cdot 50$. P. \& P. 25 p .
WEBBER MAINS SOLENOID. Robust and strong On this item the plunger travel is $1_{1}^{3 "}$. Performance 6 lb . pull at $\mathrm{I}_{\frac{1}{2} " ;} 8 \mathrm{lb}$. at $\mathrm{I}^{\prime \prime} ; 10 \mathrm{lb}$. at $\frac{1}{2}{ }^{\prime \prime}$. The non-captive plunger has a fixing eye to take up to $\frac{3}{16^{\prime \prime}}$ bolt. Size $2 \frac{1}{8}^{\prime \prime}$ high $\times 2^{\prime \prime} \times 2^{\prime \prime}$. $£ 1 \cdot 25$ plus 25 p P. \& P.
SPECIAL OFFER
MAINS SOLENOID BY MAGNETIC DEVICES LTD. A beautifully constructed solenoid at half normal price. A two-sided bracket is incorporated for vertical or horizontal mounting. Size: $2^{* \prime} \times 11^{\prime \prime} \times 11^{\circ}$. Pull is approx. 2 lb , plunger travel I $t^{\prime \prime}$. Fixing eye takes up ro bolt. Plunger non-captive. New in original makers boxes. 75p each, plus 25 p P. \& P. Large number available, special price for quantity.

RELAYS

 SIEMENS. High speed type 89L. 1,700 $\Omega+1,700 \Omega$
 2 volts D.C. Draws approx. I amp. Size: $2^{n} \times 1 \frac{1^{n}}{2^{n}} \times 1 \mathrm{l}^{n}$ "OMRON" OCTAL BASE. A.C. mains. $2 \times 15 \mathrm{amp}$. C/O contacts. Perspex enclosed. 88p A.E. Perspex enclosed, plug in, $50 \Omega 6 \mathrm{v} .2 \mathrm{c} / \mathrm{o} .63 \mathrm{p}$ ea. $470 \Omega 12 \mathrm{v} .4 \mathrm{c}$ o. 73 p ea. 2,780 $\Omega 248 \mathrm{v} .4 \mathrm{c} / \mathrm{o} .73 \mathrm{p}$ ea. $1,260 \Omega 48$ y. $6 \mathrm{c} / \mathrm{o}$. 83 р еа.
SCHRACK. Octal base 24 v . 2 HD c/o. Perspex enclosed
63p.
E.R. $1,000 \Omega 6 v . D C . ~$
1 make encapsulated reed rype Size: $\boldsymbol{f}^{\prime \prime} \times \frac{7^{\prime \prime}}{8 \prime \prime} \times 1 \xi^{\prime \prime} .4$ for Cl 00
 ured for high acceleration re
quirements (including Gyroscope Co. Size: Length horizontal mount and voltage. $£ 1.63$ each

ELECTROLYTIC CAPACITORS MULLARD $900 \mu \mathrm{~F} 100 \mathrm{v}$. heavy ripple screw terminals $1 \frac{7}{1.0}$ dia. $\times 3^{1 \mathrm{x}}$
 38 p ea., $\notin 3.50$ per doz. $1,250 \mu \mathrm{~F} 25 \mathrm{v}$.
50p ea., $\mathbf{6 4} 50$ per doz.
HUNTS $1,000 \mu$ F 50v. $1 z^{\prime \prime}$ dia. $\times 2^{\prime \prime}, 25$ p ea., $10,000 \mu \mathrm{~F}$ 6 v . $13^{\prime \prime}$ dia. $\times 2^{\prime \prime}, 30 \mathrm{p}$ ea., 63.00 per doz. $16 \mu \mathrm{~F} 350 \mathrm{v}$ "." $\times 11^{\prime \prime}$ wire ends, $£ 2 \cdot 00$ per doz, $1,000 \mu \mathrm{~F} 50 \mathrm{v}$. I
dia. $\times 3^{\prime \prime}, 30 \mathrm{p}$ ea., $£ 3.00$ per doz. $32-32 \mu \mathrm{~F} 275 \mathrm{v}$. $1^{\prime \prime}$ dia dia. $\times 3^{\prime \prime}$, 30p ea., 63.00 per doz. $32-32 \mu \mathrm{~F} 275 \mathrm{v}$. $1^{\prime \prime}$ dia
$\times 2^{\prime \prime}$, 38p ea. $100 \mu \mathrm{~F} 100 \mathrm{v}$. $1^{\prime \prime}$ dia. $\times 2^{\prime \prime}, 25 \mathrm{p}$ ea. ERIE. Ceramicon capacitor. Type CHV4IIP. 500 P.F 30 KV Size 1 's dia. $\times 1.44^{\prime \prime}$ long. 50 "TANSITOR" (U.S.A.) TANTALUM WET SIN
TERED ANODE POLARISED CAPACITORS DC size: $1 \frac{1}{n}^{\prime \prime}$ long $x 3^{\prime \prime}$ dia. $200 \mu \mathrm{~F} .25 \mathrm{v}$. DC size: $3^{\prime \prime \prime}$ lon
 30 v . DC size: ${ }^{3}$ long X 咅 dia. $2.5 \mu \mathrm{~F}$. 300 v . DC size " long $\times{ }^{\text {H/ " }}$ "dia One wire each end. Also few only
Tansistor "MICRO-MODULE" capacitors 0.2 mfd . 15 v wire-ended, size: Carbide 15 mfd. 10 v . All types $£ 1.25$ per doz. (mixed o as required). Carriage paid.

WHERE NO CARRIAGE CHARGE IS
INDICATED PRICE IS INCLUSIVE.

MOTORS AMPEX 7.5 v . D.C. MOTOR. This an ultra-precision tape motor AG20 portable recorder. Torque $450 \mathrm{GM} / \mathrm{CM}$. Stall load at 500 ma . Draws 60 ma on run. $600 \mathrm{rpm} \pm 5 \%$ speed adjustment, internal AF/RF suppression. $\frac{1}{4 "}^{\prime \prime}$ dia. $\times 1^{\prime \prime}$ spindle, motor $3^{\prime \prime}$ dia. $\times 16 .{ }^{\prime \prime}$. Original cas 16.50. Our price E3.25. P. \& P. 25p Large quancity availab (special able 75 p each

Brand New "DISCUS" Centrifugal Blower by Watkins \& Watson. 240v. 50 Hz . Powered by A.E.I. continuous rating 2850 rpm motor. Cowl diameter $10^{\prime \prime}$. Outlet flange 2" $1 . D$. Coupling flange supplied. These superb precision units are ideally suited for Organ construction. Offered at approx. half makers price 612.50 . Carriage $\mathbf{6 1} .50$

POWERFUL DUAL YOLT AGE. $110 / 240 \mathrm{v} .50 \mathrm{~Hz}$. Blower y Fanmanco Ltd. A compact wide impeller givin dia. \times If thrust. $2^{\prime \prime} \times 1 \frac{1}{\prime \prime}^{\prime \prime}$ outlet. Weight $3 \frac{1}{2} 1 \mathrm{~b}$. These units are unused
and offered at only $\leqslant 3.50$. P.\&P and
30 p .

SPECIAL SUMMER OFFER

LIMITED PERIOD ONLY FROM NOW UNTIL 31st AUG. 1971 A DISCOUNT OF 20\% WILL BE DEDUCTED ON ALL ORDERS OF £7.50 AND OVER

We weicome orders from established companies,

BUSINESS HOURS: 264 PENTONVILLE ROAD, LONDON, N. 1 9.30-6 (1 p.m.Sats.)

GEARED MOTORS "Parvalux" Reversible 100 5.D.14, 230/250v. A.C. 22 lb./in. 5.D. $14, ~ 230 / 250 v . ~ A . C . ~$
$i^{\prime \prime}$
spindle. Ist class condition. spindle. Ist class Condition.
67.50 each. P. \& P. 50p. Also Brand New. $£ 12.50$ each P. \& P. 50p.
ELECTRO CONTROL (CHICAGO). Shaded pole $240 \mathrm{v} .50 \mathrm{~Hz} .110 \mathrm{rpm}, 16 \mathrm{lb} . / \mathrm{in} . £ 2 \cdot 25$. P. \& P. 25 p .200 rpm 10 lb ./in. $\mathrm{E2} 2.50$. P. \& P. 25p.
MYCALEX. Open frame, shaded pole morors. 240 v $50 \mathrm{~Hz}, 7 \mathrm{rpm} .28 \mathrm{lb} . / \mathrm{in} .80 \mathrm{rpm} .12 \mathrm{lb}$. $\mathrm{in} . ~ £ 2 \cdot 25$ each P. \& P. 2Sp.

SMITHS SYNCHRONOUS MOTORS. 12 r.p.h. "CROUZET", TYPE 965 Hz, 2 watts. 88 P. \& P. 25p CROUZET TYPE $965.115 / 240 \mathrm{v}, 50 \mathrm{~Hz} .47 / 68$ Watts plus spindle $1^{\prime \prime} \times \frac{1}{2}^{* \prime}$ dia. Anti-clock. $£ 2 \cdot 75$. P. \& P. 25 p. MYCALEX MAINS. Shaded pole, 1425 rpm. $\frac{3}{16}{ }^{*}$ MAINS INDUCTION MOTOR. Open frame $\frac{1}{10}$ spindle, weight $\frac{3}{3}$ b. Powerful, 88 p each. P. \& P. 12p E.M.I. PROFESSIONAL TAPE MOTOR. $i 10 / 240 \mathrm{v}$ 5 Hz .300 rpm , reversible, silent running. $4 \frac{1}{}$ dia. 46.00 per pair. P. \& P. 50p each.

SYLVANIA CIRCUIT BREAKERS gas filled providing a fast thermal response between 80° $2,000 \mathrm{lb}$, sq. in. rated 10 amp at 240 v con tinuous. Fault currents of 28 amps. at 120 v or 13 amp . at 240 v . silver contacts. Supplied in any of the following opening temperatures (degs. cent.) $95,100,120,130,135,140,145$,
$150,155,160,170,175$. Price $\mathbf{3}$ for $\mathbf{\& 1}$ or
$\mathbf{6 3 . 5 0}$ per 63.50 per dozen.

SYLVANIA MAGNETICSWITCH-a ma netically activated switch operating in to $+200^{\circ} \mathrm{C}$. Silver contacts normally closed to $+200^{\circ} \mathrm{C}$. Silver contacts normally closed rated 3 amps. at 120 v . 1.5 amp . at 240 v . Price
4 for $£ 1 ; £ 2.50$ per doz. P. \& P. 10 p . Special quatations for 100 or over. Reference magnet available 8p each.

PYE MICROSWITCH. Otehall type.
 plus $\frac{1}{2}$ Plunger. Minimum travel operates
switch. 45 p each. P. \& P. IOp. Special discount for quantities.

METERS
ERNEST TURNER 800 La METER. plastic front. Green-Red-Green uncalibrated scale $£ 1.50$ each. Ca

MINIATURE B.P.L. 500-0-500 MICRO-AMMETER掊" dia. scale. Through panel mounting. Hermetically sealed. El '63. Carriage paid.
"TAYLOR" AMMETER O-I amp. Modern design $\mathbf{3}={ }^{1 / 2} \times{ }^{31^{\prime \prime}}$. Plastic front. Calibrated 50×20 ma Divs
$\mathbf{E 2} .50$ plus 25 p P. \& P. "ATLAS" SUB-MINIATURE LAMPS (Capped) - Ratings 5 v . $60 \mathrm{ma} \cdot \mathbf{3 5} \pm 25 \%$ Lumens. Life Expectancy 60,000 hours or at 6 V . mm . 1.50 per doz $\mathbf{6 5 . 0 0}$, of 50.. 2 mounting micro-switch, positive toggle action giving 2 change-over
OXLEY P.T.F.E. BARB TERMINALS. Stand of ? 14 " or $\frac{1}{2}$ ". $\mathbf{~} \mathbf{2} .75$ box of 100 .
HARWIN. Tapped (6 Ba) high voltage "stand off" insulators, length $\frac{z}{n}^{\prime \prime}$, tapped (8 Ba) i^{n} long. $£ 2 \cdot 00$ per 100. Carriage Paid
K.L.G. SEALED TERMINALS. Type TLSI AA,
overall length H", box of 100, EI-00 Type TLSI BB,
overall length, $l^{\prime \prime}$ box of 100 , \&I 50 Carriage Paid.

[^15] TORIES PLEASE NOTE WE HAVE PURCHASED A NUMBER OF THE GRIFFIN AND GEORGE BIOANALYST CHEMISTRY MODULE G. \& G. CAT. NO. 554-320. COMPLETE AUTOMATED SYSTEM. BRAND NEW IN ORIGINAL MAKER'S PACKING CURRENTLY LISTED AT E925. WE OFFER THE5E AT 4425 NETT. CARRIAGE EXTRA

Wholesale/Retail:

TRANSISTORS AND I.C.s
ALL BRAND-NEW WITH MANUFACTURERS MARKINGS

ASY22	10p	2N709	50p
ASY29	25p	2NI302	15p
ASZI7 (OC35)	25p	2NI309	23p
BCI67	15p	2N1613	25p
BCY70	18p	2NI7II	25p
BFXI2	20p	2N2646	58p
OC4I	20p	2N2926	15p
OC42	23p	2N3053	25p
OC43	20p	2N3055	75p
OC44	15p	2N3702	18p
OC45	10p	2N3703	13p
OC46	15p	2N3704	18p
OCl41	22p	2N3707	15p
OCI39	22p	2N3877A	40p
OC74	20p	7401	40p
OC204	25p	7410	40p
2G345	10p	7430	40p
2G371	10p	7472	55p
2G378	10p	7473	90p
		7475	¢1.15

YEROBOARD

 $\sin \times 2 \frac{1}{2}$ in $\times 0.15$ in $20 \mathrm{p} \quad 3 \frac{3}{2}$ in $\times 2 \frac{1}{2}$ in $\times 0.1$ in 21 p Spot Face Cutter 38p. Pin Insert Tool 48p. Terminal Pins (0.1 or 0.15) 36 for $18 p$. Special Offer Pack consisting of $5 \frac{1}{2}$ in \times lin boards and a Spot Face Cutter-50p.

RECORD PLAYER CARTRIDGES. Well below normal prices!
G90 Magnetic Stereo Cartridges, Diamond Needle, 6 mV output, 44 . ACOS GP 67/2 (Mono, Crystal) 75p. ACOS GP 91/3 (Compatible, Crystal) EI. ACOS GP 93/I (Stereo, Crystal, Sapphire) £1-25. ACOS GP 93/ID (Stereo, Crystal,
Diamond) $£ 1.63$. ACOS GP $94 / 1$ (Stereo, Ceramic, Sapphire) $£ 1.50$. ACOS GP $94 / 10$ (Stereo, Ceramic, Diamond) $£ 1-88$. ACOS GP $95 / 1$ (Stereo, Crystal with two L.P./Stereo needles) $£ 1 / 25$.

TRANSISTORISED FLUORESCENT LIGHTS, 12 volt. All with reverse polarity protection. 8 watt type with reflector, suitable for tents, etc., $£ 3$ Postage/Packing 25p. 15 watt type, batten fitting for caravans f4. Postage/Packing $25 p .13$ watt type, batten with switch, 22 in $\times 2$ in \times lin 45 . Postage/Pa
THESE CAN BE SENT ON APPROVAL AGAINST FULL PAYMENT.

MULLARD POLYESTER CONDENSERS
$1,000 \mathrm{pf}, 1,200 \mathrm{pf}, 1,500 \mathrm{pf}, 1,800 \mathrm{pf}, 2,200 \mathrm{pf}$, 15 p per dazen (all 400 V working). $0.15 \mu f, 0.22 \mu \mathrm{f}, \mathrm{o} \cdot 27 \mu \mathrm{f}, 30 \mathrm{p}$ per dozen (all 160 V working). $\mathbf{2 5 \%}$ discount for lots of 100 of any one type.

RESISTORS

$\frac{1}{4}$ and $\frac{1}{2}$ watt Most values in stock. 50 p per 100 . 10 p per dozen of any one value. I watt to 50 watts. A large percentage of these are multi-tapped droppers for radio/television. Owing to the huge variety these can only be offered "assorted" at 50 p per dozen.

SILVER MICA/CERAMIC/POLYSTYRENE CONDENSERS
Large range in stock, 75 p per 100 of any one value. $15 p$ per dozen.
RECORDING TAPE BARGAIN! The very best British Made low-noise high-quality Tapel 5 in Standard 38p. Long-play 45p. 5s in Standard 45p. Longplay 60p. 7in Standard 60p. Long-play 82p. We are getting a fantastic number of repeat orders for this tape. Might we suggest that you order now whilst we still have a good stock at these low prices?

> STOCKTAKING CLEARANCE! IMPOSSIBLE TO REPEATI We have huge numbers of components in quantities too small to advertise individually. In order to "clear the decks" we have made up parcels containing a mixture of carbon and wire-wound resistors, electrolytic and paper condensers, controls, transistors, diodes etc., for a tiny fraction of normal price. It is emphasised that these are mixed parcels onlycontents cannot be stipulated! Sold only by weight.
> \&1 (postage 20p

4,000,000 DIODES SILICON, GERMANIUM OR ZENER (STATE CHOICE) LOTS OF 100,000-£150 10,000-£20 1,000-£3 500-モ2 100-50p

1,000,000 germanium transistors
 (OC71/0C75)

LOTS OF 100,000-£250 10,000-£30
$1,000-£ 3 \cdot 50$
500-£2
100-50p

NEW! NEW! NEW! NEW!

An aerosol spray providing a convenient means of producing any number of copies of a printed circuit both simply and quickly.
Method: Spray copper laminate board with light sensitive spray. Cover with transparent film upon which circuit has been drawn. Expose to light. (No need to use ultra-violet.) Spray with developer, rinse and etch in normal manner. Light sensitive aerosol spray Developer spray
SPECIAL 50p PACKS. ORDER 10 PACKS AND WE WILL INCLUDE AN EXTRA ONE FREE !!!!

assorted Wirt
 assorted Wire-wound 1 to 3 watt 5 to 7 watt 10 watts

Multi-tapped wa
PAPER CON
Tv types

100
20
15
10 $\begin{array}{ll}20 & 50 p \\ 15 & 50 p \\ 10 & 50 p \\ 12 & 50 p \\ & \\ 50 & 50 p\end{array}$ $\begin{array}{ll}50 & 50 p \\ 00 & 50 p\end{array}$ 00

TRANSISTORS
$\begin{array}{llll}\text { P.N.P. Untested but mainly } \\ \text { O.K. } & & \\ \text { N.P.N. Untested but mainly } & & 50\end{array}$
OCP 71 equivalent
$\begin{array}{ll}\text { Light-sensitive Diodes } & 10 \\ 50 \mathrm{p}\end{array}$
(These produce up to Ima from light) 50 p
OC44 Mullard Ist grade 450 p OC45 Mullard Boxed
2G378 Output, Marked
2G371 Driver, Marked
ASY 22, Marked IN 4007 Rectifiers
$\begin{array}{ll}\text { (} 1200 \mathrm{~V} \text { peak) } & 4 \quad 50 \mathrm{p} \\ \mathrm{STC} 3 / 4 \text { Rectifiers } & 6 \quad 50 \mathrm{p}\end{array}$
DIODES (0A 81 \& OA 91) 40 50p
Solid Core. Insulated 100 yds . 50p Stranded ditto 50yds. 50p SOLAR CELLS $\begin{array}{ll}\text { Large Selenium } & 250 \mathrm{p} \\ \text { Small }\end{array}$ (6 cells will power a Micromatic ${ }^{3}$. radio)
CO-AXIAL CABLE
SemiAir-spaced $15 y d s .50 p$
CRYSTAL TAPE RECORDER MIKES TAPE RECORDER CRYSTAL EARPIECES
3.5 mm Plug
250 p

TRANSISTORISED Signal
Injector Kit
I
Injector Kit
TRANSISTORISED Signal
Tracer Kit
TRANSISTORISED CAR REV. COUNTER KIT (Needs I ma, meter as indicator)
G. F. MILWARD, Drayton Bassett, Tamworth, Staffs. Postage (minimum) per order 15 p .

STEPHENS
 ELECTRONICS,
 P.O. BOX 26, AYLESBURY, BUCKS.

 \section*{SEND S.A.E. FOR LISTS

 \section*{SEND S.A.E. FOR LISTS GUARANTEE GUARANTEE

 Satisfaction or money

 Satisfaction or money refunded}

 refunded}}
guaranteed valves by the leading manufacturens by return service 1 Year's guarantee on own brand, 3 MONTHS' ON OTHERS

 TRANSISTORISED UHF TUNER UNITS
NEW AND GUARANTEED FOR 3 MONTHS Complete with Aerlal gocket and wires for Radio and Allied TV aeta but can be used for most makes.

SERVICE AIDS
witch Cleaner, 58p; 8 with Clean Jack Pluge and Socketa PLUGS
Standard Plugs
Standard Socketa
$19 p$
$18+p$
Co-Axial Plugs Standard socketg $\quad . . \quad \therefore \quad$.. $12 \downarrow \mathrm{p} \quad$ Belling Lee for similar

INE OUTPUT TRANSFORMERS

STYLII-BRITISH MANUFACTURED
All types in stock.
Double Tip "8"
Double Tip ' \mathbf{D} "
33p Slagle Tip "g"' = Sapphire" ${ }^{37 p} \quad$ " $D^{\prime \prime}=$ Diamond
A diacount of 10% is also given for the purchase of 3 or more tubes at any one
time. All types of tubes in stock. Carriage and insurance 75 p anywhere in Britaln.
4.75
84.75
24.76
84.75
44.75

47p

SEMICONDUCTORS BRAND NEW MANUFACTURERS MARKINGS NO REMARKED DEVICES

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 2N388A \& 62tp \& R.c.A. \& \& AF106 \& 42ıp \& BC142 \& 30p \& BP224 \& 30p

\hline 2 N 614 \& 80p \& 40253 \& P.A. \& AF114 \& 250 \& BC143 \& P.A. \& BF225 \& 30 D

\hline 2N697 \& 20p \& 40398 \& P.A. \& AFlis \& 30p \& BC147 \& 17 D \& BP257 \& 47 p

\hline 2N698 \& 25p \& 40458 \& PA. \& AFl16 \& 25 p \& BC148 \& 159 \& BFX84 \& 300

\hline 2N706 \& 12tp \& 2N4061 \& 22 p \& AF117 \& 250 \& BC149 \& 17p \& BFY19 \& 38p

\hline 2N706A \& $12+p$ \& 2N 4062 \& 2etp \& AF118 \& B09 \& BC152 \& 1710 \& BFY50 \& 22+p

\hline 2N930 \& 27\% \& 2N 4286 \& 179 \& AP119 \& 20 p \& BC157 \& ROP \& BFY51 \& 2 t

\hline 2N1132 \& $38+\mathrm{p}$ \& 2N4291 \& 17dp \& AP124 \& \& BC158 \& 1710 \& BFYB2 \& $22 \cdot \mathrm{p}$

\hline 2N1303 \& 17\% \& ACl07 \& 30 p \& AF125 \& 20 p \& BC189B \& 14D \& B8X21 \& 3710

\hline 2N1305 \& $22+p$ \& AC117 \& 60 p \& AF126 \& 20 p \& BC169C \& 15p \& 0c25 \& 500

\hline 2N1306 \& 25 \& AC126 \& 20p \& AP127 \& 17\% \& BC171 \& 17 p \& 0 C 26 \& 3210

\hline 2N1307 \& 25 p \& ACl27 \& 25p \& AF139 \& $37 \pm$ \& BC175 \& 270 \& 0028 \& 02 p

\hline 2N1711 \& 25p \& AC128 \& 20 p \& AP178 \& 450 \& BC183 \& $28 . \mathrm{p}$ \& ${ }^{0} \mathbf{0} 29$ \& 75 p

\hline 2N2147 \& 727 \& ${ }^{\text {AC154 }}$ \& 29 p \& AP179 \& 459 \& BC184 \& 82. \& ${ }_{0}^{0} \mathbf{c} 38$ \& 40

\hline 2N2160 \& 57\% \& AC176 \& 20p \& AF180 \& 58.0 \& BC187 \& 281 p \& OC36 \& 62%

\hline 2N2614 \& 800 \& AC187 \& 69 \& AF181 \& 420 \& BC813L \& ${ }^{267 p}$ \& $\mathrm{OC}^{\mathrm{O} 42}$ \& ${ }^{250}$

\hline 2 N 2646 \& 57 t \& AC188 \& 37 tp \& AF186 \& ${ }^{66}{ }^{\text {d }}$ \& BCY82 \& 870 \& OC44 \& 800

\hline 2 N 2905 \& 40 p \& ACY17 \& 278 \& $\mathrm{Ar}^{2} 39$ \& 427 \& BCY88 \& 22 D \& 0C45 \& 1210

\hline 2N2926 \& \& ACY18 \& 885 \& AsY28 \& 88, \& BCY70 \& 20p \& OC46 \& 15 p

\hline Green \& 14p \& ACY19 \& 250 \& ${ }^{\text {BC107 }}$ \& 15] \& BD115 \& ${ }^{78} \mathrm{p}$ \& 0 C 70 \& 15 p

\hline Yellow \& 12]p \& ACY20 \& 25 \& ${ }^{\text {BC108 }}$ \& 15 D \& BD121 \& 650 \& ${ }^{0} \mathbf{C 7 1}$ \& 12tp

\hline Orange \& 1270 \& ACY21 \& 25p \& BC109 \& 15D \& BD123 \& 88. \& 0.72 \& 129

\hline 2N3053 \& 27 \% \& ACY2\% \& $20 p$ \& ${ }^{\text {BCl13 }}$ \& 975 \& BD124 \& 681 \& ${ }^{0} \mathrm{C} 74$ \& 88

\hline 2 N 3055 \& 750 \& ACY28 \& 200 \& BC114 \& 870 \& BD131 \& ${ }^{8710}$ \& ${ }^{0} \mathbf{0} 75$ \& 28p

\hline 2N3391 \& 201 \& ACY40 \& 200 \& $\mathrm{BCl}^{\text {BCl }}$ \& 38 \& ${ }^{\text {BD132 }}$ \& ${ }^{97}$ \& OC76 \&

\hline 2N3392 \& 200 \& ACY41 \& 20. \& $\mathrm{BCl16}^{6}$ \& 02 ${ }^{\text {d }}$ \& BF115 \& ${ }_{478}$ \& OC77 \& 27tp

\hline 2N3702 \& 17% \& ACY44 \& 400 \& BCl16a \& 3710 \& BF117
BF160 \& P.A. \& ${ }_{0}^{0} 0881$ \&

\hline 2N3704 \& 29

$20 p$ \& AD140
AD142 \& 880 \& ${ }_{\text {BC118 }}$ \& 389
3870 \& BF160
BF1 62 \& ${ }_{\text {P.A.A. }}$ \& $0 \mathrm{C81}$
$0 \mathrm{C81D}$ \& ${ }_{20 p}^{20 p}$

\hline 2N3711 \& 20 p \& AD149 \& 5710 \& BC134 \& 5710 \& BF163 \& 38 p \& OC83 \& 25p

\hline 2N3819 \& 355 \& AD150 \& 827 \& BC135 \& P.A. \& BF167 \& 25p \& OC84 \& 25 p

\hline 2 N 3826 \& 300 \& AD161 \& 8710 \& RCl 36 \& P.A. \& BF173 \& $32+\mathrm{D}$ \& 0c139 \& 32 p

\hline 2N3905 \& 37d \& AD162 \& 37.5 \& ${ }^{\text {BC137 }}$ \& P.A. \& BF178 \& 85p \& OC140 \& $32+\mathrm{p}$

\hline 2N 3914 \& P.A. \& AF102 \& 88p \& BC138 \& P.A. \& BF179 \& $72+8$ \& OC170 \& 30 p

\hline \& DIO \& DES 8 \& CTIF \& ERS \& \& ${ }_{\text {BFI }} 181$ \& 38.8 \& OC171 \& 80 p
$\mathbf{3 9}$

\hline IN914 \& 7 fo \& BZY88 \& \& 0 A 91 \& 710 \& BF184 \& 25p \& OC200 \& 47tp

\hline AA119 \& 100 \& (Series) \& 3819 \& OA202 \& 10 D \& BP194 \& $22+\mathrm{P}$ \& OC202 \& 47%

\hline BA102 \& 280 \& OAS \& 12 p \& BA144 \& 1210 \& BF195 \& $274 p$ \& 0cP71 \& 424p

\hline BA115 \& 74 \& 0 OA 4 \& 75 \& BA145 \& 20% \& BF196 \& 42+p \& P346A \& 26 p

\hline B4114 \& 12.1 \& OA70 \& 780 \& BA148 \& 289 \& Br197 \& 31+p \& TIS43 \& 40p

\hline ${ }_{\text {RY100 }}$ \& 20 p \& OA781 \& 78 \& BA155 \& P.A. \& BF198 \& 42tp \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{P.A. Price on application}}

\hline BY127 \& 2815 \& OA90 \& 7 7 \& Balb 6 \& P.A. \& BP200 \& 364p \& \&

\hline
\end{tabular}

\qquad
1

$\quad 68 \mathrm{p}$
81.05
81.05
81.05
81.82
81.24
81.55
81.80
81.24
81.67
82.09
81.89
81.39
81.89
81.89
81.81
81.81
82.00
${ }_{\mathrm{XX}}^{\mathrm{SX}} \mathrm{N}$
D/8
each
82.00
${ }_{850}^{\text {GOLDEL }}$
‥ 82
CARTRIDGES
\square

$\underset{3 \text { EMPT }}{\text { EMPE REELS }} \quad$ Boxed in Passerties

CAS8ETTHEs
Boxed in Plastic Library Packs
C60
C90 C120 \because
P. $\&$ P. $7 p$ on all orders.

ADD 3p PER ITEM FOR POST AND PACKING FOR ORDERS UNDER 24 PIECES.

TERMS, CASH WITH ORDER ONLY. POST AND PACKING PAYABLE ON ORDERS UP TO £6, AFTER THAT, FREE EXCEPT C.R.T.'s.

SERVICE TRADING CO

VARIABLE VOLTAGE TRANSFORMERS

INPUT 230 v. A.C. $50 / 60$ OUTPUT YARIABLE O/260 v. A.C. BRAND NEW. Keenest prices in the country. All types (and spares) from $\frac{1}{2}$ to 50 amp . availa ble from stock.
 0.260 v . at 2.5 mps $0-260 \mathrm{v}$. at 5 amps. $0-260$ v. at 15 amps. $0-260 \mathrm{v}$. at 20 amps . $0-260 \mathrm{v}$. at 25 amps. $0-260 \mathrm{v}$. at 37.5 mmps
$0-260 \mathrm{v}$ at 50 amps .

I AMP

carriage extra.

\section*{OPEN TYPE (Panel mounting). $\frac{1}{2}$ amp. 63.93}
 RING TRANSFORMERS

Functional Versatile Educational

Abstract

These multi-purpose Auto Transformers, with large centre aperture, can oe used as a Douole

 Wound current Transformer, Auto Transformer,H.T. or L.T.Transformer, by simply hand wind: E.g. Using the RT, 100 V.A. Model the outpur could opening. to yive 8 V @ 121 Amp ., 4 V . (4) 25Amp, or 2 V . © 50 Amp ., etc.
Price: RT 00 VA .

 L.T. TRANSFORMERS All primaries $220-240$ volts.
Type No.
Sec. Taps

Now available EX STOCK supplied complete with full data and applications sheet. Price $£ 1.05$ plus 7 p P. \& P.
Suitable diac 30 p (RCA40583)

ELECTRONICORGANKIT

Easy to build, solid
state. Two full octaves (less sharps and flats). fitted hardwood case, lite $1 \frac{1}{2} v$. batteries. Complete set of parts including speaker, etc., together
with full instructions and 10 tunes. $£ 3.00$. P. \& P. 25 p . 50 in 1 ELECTRONIC PROJECT KIT 50 easy to build Projects. No soldering, no special tools
required. The Kit includes Speaker, meter, Relay, Transformer, plus a host of other components and a 56 page instruction leaflet. Some examples of the ${ }^{\text {Projects are: Sound level Meter, } 2 \text { Transistor Radio, }}$ Amplifier etc., etc. Price $£ 7.75$. P. \& P. 30p. Complete set of parts including: crystal diode, ferrite aerial, drilled chassis and personal ear-piece. No soldering, easy to build, full step-by-step instructions

UNISELEGTOR SWITCHES
NEW 4 BANK 25 WAY FULL WIPER
65.88, plus 22 p P. \&

6 BANK 25 WAY FULL WIPER
25 ohm coil, 24 v. D.C. operation. 66.50 , plus 22p P. 8
8 BANK 25 WAY FULL WIPER 24 V. D.C. operation. $87 \cdot 63$, plus 22p P. \& P 12-28 VOLT D.C. BLOWER UNIT
Powerful, smooth running, precision
made Blower Unit. 5,000 RPM, $\cdot 54$ amps. made Blower Unit. 5,000 RPM, 54 amps Price $\mathbf{6 2 . 0 0}$ post paid

Price $£ 2.00$ post paid. VERY SPECIAL OFFER
Cannot be repeated. 500 v .50 Meg Record insulation testers. Excelfent condition, fully tested. Complete

STROEESRROUELSTROEA

THREE EASY TO BUILD KITS USING
LIGHT FLASH TUBESSTSOLID STATE TIMING ++
TRIGGERING CIRCUITS. PROVISION FOR EX-
TERNALTRIGGERING. $230-250 v$. A.C. OPERATION, TRIGGERING CIRCUITS. PROVISION FOR EX-
TERNAL TRIGGERING. $230-250 \mathrm{v}$. A.C. OPERATION,
The Strobe is one of the most useful and interesting The Strobe is one of the most useful and interesting
instruments in the laboratory or workshop. It is
invaluable for the scudy of movement and checking invaluable for the study of movement and checking
of speeds. Many uses can be found in the psychiatric of speeds. Many uses can be found in the psychiatric
and photographic field $s_{\text {, }}$ also in the enterainment and photographis fields, ase aseat deal in the mootor industry - business. It is used a great dea in anteresting scientific EXPERAM Adjustable I to 36 Flash per sec. All electronic com-
ponents including Veroboard S.C.R. Uniiunction
 NEW INDUSTRIAL KIT
Ideally suitable for schools, laboratories etc. Roller
tin printed circuit. New trigeer coil, plastic thyristor tin printed circuit. New crigger coil, plastic thyristor
Adjustable 1-80 f.p.s. Price $\mathbf{E 1 0} 50$. 50 P P. \& P. HY-LYGHT STROBE
This strobe has been designed for use in large rooms,
halls and the photographic field, and utilizes a silica cube for longer life expectancy, printed circuit for easy assembly, also a special rigger coil and output
capacitor. Speed adiustable 1-30 f.p.s. Light output

AND NOW!

THE 'SUPER' HY-LYGHT'KIT Approx. 4 times the light output of our well proven Incorporating. Heavy duty power supply
Variable speed from 1-23 flash per sec. Fantastic Octal based tube with massive electrodes. Reactor control circuit producing an intense white Tight. brilliant light output of the 'SUPER' HY-LYGHT Never before a Strobe Kit with so HIGH an t output at so
75 p . P . 7-INCH POLISHED REFLECTOR. Ideally suited
for above Strobe Kits. Price 53p and i3p P. \& P . or
 RUNNING HOUR METER. 240 volt, 50 cycle, 2.2 watt. Calibrated in minutes. Six figure. PRICE;

VENNER ELECTRIC

TIME SWITCH
200/250 volt. Ex-GPO. Tested, perfect
any manually pre-ser time. Price: 10amp.
62.75 . 15 mmp . $\mathbf{3} \cdot \mathbf{2 5}$. 20 amp . 63.75 . P. \& P.

INSULATED TERMINALS Available in black, yellow, blue and green. New RELAYS NEW SIEMENS PLESSEY, etc. MINITURE RELAYS AT COMPETITIVE PRICES.

RECHARGEABLE NICKEL CAD. BUTTON CELLS.

connected to give 2.4 v ., at $25 \mathrm{milliamp} / 10$ hour rate, complere with $200 / 250 \mathrm{v}$. A.C. charger,

 unused. Price 48 p eachunits for $\& 1.00$ post paid.

NICKEL CADMIUM BATTERY
1.2 v. 35 AH. Size 80 high $\times 3 \times 10$. $£ 1.50$ each, plus 20 p
 Sintered Cadmium Type 1.2 v. 7AH. Size: height 3 in in.
wideh 2 in. x is in. Weight: approx. 13 ozs. Ex-R.A.F. Tested 63 p. P. \& P. 15 p.
230 VOLT AC SOLENOID EXTREMELY POWERFUL SOLENOID with approximately 141b. pull, inch travel. 4 ted with mounting feet. size 2 inches ing Price $£ 2.00$ including post \& pkg.

$2 \overline{230-250}$ VOLT A.C. SOLENOID
(Similar in appearance to above illustration.) Approx. \|t 1 lb .
pull. Size of feet $1 / \times 1 \frac{1}{16}$. Price 85 incl. post. Manufac-
36 volt 30 amp. A.C. or D.C. Variable L.T. Supply Unit
Input $220 / 240$ v. A.C. Output Con-
tinuously variable
full 36
v. A.C.ID.C.
Fully isolated. Fitted in robust metal
case with Voitmeter, Ammeter, Panel
Indicator and chrome handles. Input and Output fully fused.
Indicator and chrome handes.
Ideally suited for Lab. or Industrial use. E58 plus $£ 2$ p. \& c .
230V/240V COMPACT SYNCHRONOUS
GEARED MOTORS
Manufactured by either Sangamo, Hay
or Smith. Built-in gearbox.
Clockwise rotation

12 VOLT DC MOTOR
Powerful 12 volt 1 amp REVERSIBLE motor. Speed $3,750 \mathrm{rpm}$. Complete giving final speed of 125 RPM. Size ${ }_{4 \frac{1}{3} \mathrm{in}} \mathrm{K} \times 2 \frac{1}{2} \mathrm{in}$. dia. Price inc. post 95 p .
PARVALUX TYPES DI9 $230 / 25 \overline{0}$ VOLT AC REVERSIBLE GEARED MOTORS
30 r.p.m. 40 lb . ins. Positio drive spindle adjustable to
different angles. Mounted different angles. Mounted on
substantial cast aluminium base. Ex-equipment. Tested and in first-class running order. A
really powerful motor offered at a

BODINE TYPE N.C. 1

GEARED MOTOR
(Type 1) 71 r.p.m. corque 10 lb . Reversible 1/70th h.p. 50 cycle .38 amp. (Type 2) 28 r.p.m. torque 20
Ib. in Reversible $1 / 80$ th h.p. 50 cycle 28 amp Ib. in Reversible I/80th h.p. 50 cycle .28 amp . The above two precision made U.S.A. motors are offered in 'as new' condition. Input voltage of motor $\mathbf{2 3 0 / 2 4 0 v}$ A.C. input 6.15 plus 35 p P. \& P. or less trans Price, either type $£ 3 \cdot 15$ plus
former $£ 2 \cdot 13$ plus 27 P P. \& P. These motors are ideal for rotating aerials, drawing curtains, display stands, vending machines etc. etc.

Modern TELEPHONES type 706 ．Two－tone grey and
 with internal bell．87p．P．\＆P．25p．Two for $\{1.50$ ．
SURVEY METER RADIAC No．3．Hand portable size $91 \times 5 \times 5 \hat{3}$ ins． 3 ranges（scale changes） 0.03 ； $0.3 ; 3 \mathrm{R} / \mathrm{H}$ ．Internal Ion Chamber．Nice condition
$\epsilon 3$ ea． P ． P ． 50 p ．

PHOTOMULTIPLIERS．EMI 6097X at 58.50 ea． 6097B－E5 ea．Type $931 A-62.25$ eat．
TRANSISTOR OSCILLATOR．Variable frequency $40 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{kc} / \mathrm{k}$ ． 5 volt square wave of／p．for 6 to 12 v
DC input． Size $11 \times 1 \mathrm{it} \times 1$ tin．Not encapsulated．Brand new．ROXed
CRAMER TIMER
28V DC Sween $1 / 100$ th see $\& \&$ sweep 60 secs． $4^{\prime \prime}$ dial．Remote control stop／start reset $\mathbf{5 5 0 0}$ ． G．E．C．Sealed Relays High Speed 24 V ． $2 \mathrm{ml} 2 \mathrm{~b}-23 \mathrm{p}$ ea． S．T．C．sealed 2 pole c／o， 2,500 ohms．（okay 24 v ） 13 p ea： 12\％ 350 ea．
CARPE NTERS polarised Single pole c／o 20 and 65 ohm coll ns new，complete with base 370 ea．
Single nole c／o 14 ohm coil 33p ea：Single pole e／o 45 ohm coil 33p ea．Single pole c／o 4000 ohm coil 33o ea．
Varley VP4 Plustic covers 4 pole col $5 \mathrm{~K}-30 \mathrm{p}$ ea．
larley VP4 Plastic covers 4 pole cfo 5 K －
33p ea．
POTENTIOMETERS
COLVERN Brand new． 50 M $100 ; 250 ; 500$ ohms； 1 ； 2．5； $5: 10 ; 25 ; 50 \mathrm{~K}$ all at 13 p ea．Snecial Bramd new．
MORGANITE $2.5 \mathrm{~K} ; 250 \mathrm{~K} ; 500 \mathrm{~K} 2.5$ meg． 1^{*} sealed．
17pea．${ }^{\text {STANARD }}$ meg Log pots．Current type．5o ea． INSTRUMENT 3＂Colvern．5： 25 ohms 35p ea．
BOURNE TRIM POTS． $10020: 50 ; 100 ; 200$ ； 250 ；．

 DALE heat sink resistors，non－Inductive 50 watt．Brand
new 8.2 KK at 13 p ea．
SILVER ZINC
Nou
Rnill．Brand
new．Single cell

ERIE feed through CAPACITORS
Sub－nin．TRIMMER R Buare．8，5pf．Brand new 13p ea． Concentric TRIMMER $3 / 30$ pf．Brand new 7 p ea．
ELECTROLYTICS．Brand new． 250 nifd． 70 V 23 p ea E．H．T． 2 mfd 5 KV ．Brand new ≤ 1.50 ea
E．H．T． 0.1 mff 7 KV at 40 p ea．： 0.1 mfd 5 kv at 35 p ea Brand new 0.25 mfd 5 KV ．Dubilier 50 p ea． P ， $\mathrm{N}_{\mathrm{P}} \mathrm{P} .15 \mathrm{p}$ ．
DECADE DIAL UP SWITCH．Finger－tip．
Engraved 0／9．Gold plated contacts，Size $2 \frac{1}{2 "}^{\prime \prime}$ hiph．

PHOTOCELL Equivalent OCP 71 13p ea．
Photo－resist type Clare 703．（TO5 Case．Two for 500．
BURGESS Micr Switches V3 5930．Brand new 130 ． BURGESS Micr Switches V3 5930．Brand new 13 p ea．
HONEYWEL．Sub－min．Microswitches type 11SM3－T． Brand new．17D ea．
PANEL nimin．Microswitches type 11SM3－T
BRAND NEW PLUGS AND SOCKETS CANNON． 50 way DDM50P 75p ea．；DDM50S 50p ea． ${ }_{\text {AB }} \ddagger 1$ per pair．
As above but 25 way 50 pea．plug；350 ea．socket； 75 p
per pair： 9 way 33 p ea．plug and socket 50 p ． per pair； 9 way 330 ea．plug and socket，500 per pair．

 B．N．C．right angle $£ 1.25$ ea．；Min．socket round 50 o ea． Standard B．N．C．round 35p ea．Many others too numerous to list．All prices quoted for one off
STEP TRANSF ORMERS．All standard inputs．
AC to 120 V tapped $60-0.60700 \mathrm{~W}$ ．Brand new． 65 ea
 Neptune series $460-435 \cdot 0$ etc． 230 MA and $600-570 \cdot 540-0$ enc． 250 NA．t to incl．pos．
Transformer $0-215-50$ give 48 V 3．5Amps etc． $\mathbf{~} \mathbf{3} .50 \mathrm{incl}$ ．post．
 Mitching contact cooled bridge rectifler 37 p ea． $4.5 \mathrm{~V} 40 \mathrm{amp}(180 \mathrm{Va)} \mathrm{fl} .75$ ea．incl．postage or 3 for $£ 4.50$ incl．postage．Designed to be Series paralleled．
Parmeko 8.3 v 2 ann $\times 4-\varepsilon \mid=13$ ea．
Gard／Parm／Part， $450-400-0-400-450.180 \mathrm{MA} .2 \times 8.3 \mathrm{v}$ ． C3 ea．
 Large quantity LT．HT．EHT transformers
GROUND PLANE ANTENNA．Ex－admiralty Brand new boxed．Anjustable $90-160$ megs．（Lik
umbrella）$£ 6.50$ ．Carr．$\& 1$ ．

NUCLEONIC INSTRUMENTS

Pulse analyser N101；Scaler 1009 E ：Coincidence
unit 1036 C ．Anti colncidence Amplifler N 567 ：A／B／G Radiation Monitor 1257 A ： complete 1339 A system $\mathrm{A} / \mathrm{B} / \mathrm{G}$ ：EHT Potentioneter unit 10077： 1430 amplifier cF and head：Some scintillation castles；radiation monitor 1320 C and 1320X（X－ray）survey meters no．2 and 3；Rate－ meter scintilation 1388A：Frast neutron 1262C；
 2004： 2005 B ；nanosec tinue amplititule convertor $2011 \mathrm{~A} ;$ pulse aniplitude arladyser 2010 B ；discrimina－
tor 2007 B ；high level amp 2025 and others．Inforna－ tor 2007 B；high
tion available．

MARCONI WIde Range Oscillator TF1370＇s and

TEST GEAR

OSCILLOSCOPES E．M．I． WM $2 \mathrm{DC}-13$ me／$£ 25$

 SOLARTRON SOLARTRON （food condition 1850 ． $\underset{(D-10}{ }$ nic／s．$C D 513-640$ ． CT313：（D300 range）DCD－

SOLARTRON

 COSSORHARTLEY E17．50．

CT52，Min DB．$£ 25$ ．
All carefully checked and testerl．Carriage $£ 1 \cdot 50$ extra． MARCONI
Noise gen．TF1301，$£ 40$ ．Carr．${ }^{\text {£ } 1.50 . ~} 18$

 TF888 A 4 Portable Test Set 70 ． $\mathrm{kc} / \mathrm{s} .70 \mathrm{~m} / \mathrm{cs}$ ．
Brand new crated，$£ 40$ ea．（arr．$£ 1 \cdots 25$ ． Brand new crated，$£ 40$ ea．（Carr． $41 \cdot 25$ ．
TF 1026 Frequency Meter $£ 12 \cdot 50$ ．Carr． 75 TF 329 Marnification Meter．As new condition $\mathbf{6} 60$ TF 195 Aldio（＇enerator $£ 10$ ．Carr．\＆1． 50 ．
Better krade $£ 55$ ea．Carr．$£ 1.50$ ．
Tr801B Sig Gen 10 －500 nic／s frouii $£ 150$ ．
TF 886 Magnificatlon Meter $£ 45$ ．Carr．$£ 1$

TF 144 G Signal Cenerator．Serviceable．Clean E 15 In exceptional condition $£ 25$ ．Carr \＆1． 1.50 ．

 SOLARTRON
Laboratory amplitter AWS51A． $15 \mathrm{c} / \mathrm{s}-350 \mathrm{kc} / \mathrm{s}$ £ $£ 5$
Stabilised P．U．SRS 151a $£ 20$ ．Carr．£1．50．Carr．£

 Oscillator type OS 101 ．$£ 30$ ．Carr．$£ 1-50$ ．
D．C．Anmulifer type Ad 900 ．$£ 30$ ．Carr $£ 1$ ．
AVO
Testmeter No． $1 £ 12$ ea．Carr． 7 n．
Electronic Testmeter CT 38 ．Complete $£ 20$ Carr．$£ 1$ CINTEL
Scuare and Pulse gell．PW 0.05 to 0.3 micro secs． AIRMEC
Signal Generator type 701．$£ 25$ ．Carr． $\mathfrak{E} 1$ ． 50

MARCONI TF 1277．Colour studio scope，will line malect．In superb condition．$£ 120$ ．
40 megs 65 ．Differential unit available from $£ 40$ ．
$\begin{aligned} & \text { E．M．I．WM8．DC to }{ }^{15 \mathrm{I}} \mathrm{me} / \mathrm{B} \text { ．Complete with plug } \\ & \text { in pre－amp．from } £ 40 \text { ．}\end{aligned}$

BRADLEY ATTENUATORS 0,500 meg cycles． $0 / 12 \mathrm{db}$ and $0 / 120 \mathrm{db}-620$ per pair．
BECKMAN MODEL A．Ten turn 1rot complete
with dial． $100 \mathrm{k} 3 \%$ Tol 0.25% only $£ 2.13$ ea．
E．H．T．Base B9A in Polystyrene holder with cover． Brand new． 13 p ea．
DVM＇s BIE $\because 114 \notin 50$ ea．；BIE $2116 £ 50$ ea．Carr．$£ 1 \cdot 50$ ． BC22I－Brand new $£ 35$ ea．Carr．£1
NAGARD Double pulse gen type $500: £ 50$ ．Carr，$£ 1-50$ ．

MARCONI SPECTRUM ANALYSERS type OA 1094 ，from $£ 325$ ．

FIBRE GLASS PRINTED CIRCUIT BOARD．Brand new．Single side $\frac{1}{2}$ p per sq，in．Double sided Ip ner sq．in．路
BERCO miniature variac type 31C． $0-250 \mathrm{~V}$ 1 amp． pointer．As new \＆3．P．\＆P．37p．
SEQUENTIAL TIMERS 240V synchronous motor tron． $1: 2$ cann operated 2 pole micro switches．Individually adjustable from 0° to 180° ．£6 ea．
Standard 240 V MOTORS by CITENCO reduction gearbox to 19 r．p．m．reversible．$£ 5$ ea
Single pole 3－way 250 V Ac： 15 amp switch．8p ea．
P ．\＆P ． 5 ．Large discount for quantity． Modern renlacement for VCR 138 tube．Flat face 3 in ．
FERRITE rods complete with LW，MW and coupling
colls．Brand new． 25 p ea．P．\＆P．7p．
onls．Brand new．25o ea．P．\＆P．Ti，
Sifuirrel care BLOWER ASSEMBLY complete with
standard mains input motor．Size $7^{* \prime} \times{ }^{*}$ dia ond standard mains input motor．Size $7^{* \prime} \times 2 \frac{1}{*}^{\prime \prime}$ dia．only
DUNFOSS olenoid valves，』40V 50 c／s．Type EVJ ：2，
Brand new boxed $£ 5$ ；Second hand $€ 3$ ．P．\＆P．30p．

CLAUDE LYONS Main Stabilizer．Type TS－1L－5S0． 16 amps．$£ 35$ ．Carr．£2．
SERVOMEX．Stab．Transistor P．U． $0-15 \mathrm{~V} 2.5$ ainps olt and Current meters overload trip $£ 15$ ea．Carr £1•50
E．H．T．Unit by Brandenburg model s．0530／10．$£ 55$ ．
SMITHS twin channel recorder．Transistorised．$£ 65$ ．
Various other single and twin track recorders from $£ 20$ ．
ulti－speed recorders KELVIN \＆HUGHES 4 －channe
EVERSHED \＆VIGNOLES Recorling paper．Brand roll．JL900H 47^{*} wide， $1 z^{*}$ dia． 25 p roll．
19in．Rack Mounting CABINETS fit．hish 19 in ．deep Side and rear doors．Fully tapped， $\mathbf{E 1 2} \cdot 50$ ．C＇arriage at cost． Double Bay complete with doors，Fine condition． $\mathbf{£ 2 5}$ ． arriage at cost
ADVANCE six．gen type D1．£15 ea．Carr．£1：50． Calibration unit type（T155．\＆6 ea．Carr． 50 p ．
Signal Generator CT53．Complete whith charts El 5. arr．£1＇50．
TIME CALIBRATOR unit by Cawkell any or all time intervals from o．5 microsecomd to 1.000 microsecond． WAYNE Kerr Universal Bridge type（T375 $£ 45$ ea． Carr．£150
MUIRHEAD Swent Aurlio Oseillator $£ 50$ ea．Carr．$£ 1 \cdot 50$ EMI Swent Audio Oscillator type SROZ $£ 40$ ea．Carr

Travelling WAVE oscilloscopes－Sweep sucerl from 10 micr secs to 10 namo secs．$£ 150$ ea．

4 DIGIT RESETTABLE COUNTERS． 1000 ohm ．

 Cil．Size $17 \times$As alove but 350 ohm．$£ 3.50$ ea
 $-100-0-+100.52 \times 4 . \pm 3$ ea
SANGO 50 micro amp 4^{*} round．Brand new boxed EA．38．P．\＆P．38\％．
SANGO 50 micro amp rectangular meter．Size $21 \times 3^{\prime \prime}$ with 4 separate scales，lever operated， $0 / 6$ white． $0 / 60$ 1／he，0／600 red and set zero．$£ 1 \cdot 75$ ．1＇．© P．17p
SANGO 50 micro amp $3^{* *}$ round meters．Ex brand new radiation erluip．$£ 1$ ea．P．\＆P． 17 p ．

SEEING IS BELIEVING First come，first served

AT LAST．BE 221 complete with correct charts circuit diagrans，in the comlition for ONLY $£ 13 \cdot 34$ ． （＇arr．£1
C．R．T＇s $5^{\prime \prime}$ type＂ $\mathrm{Y} 1385 / \mathrm{MCR13}$. Brand $n \cdot \mathrm{w}$ with suec．sheet．63p ea．I．\＆P．35p．
MARCONI Valve Voltmeter 428B／1 65 ea MARCONI Valve Voltmeter $428 \mathrm{~B} / 1 \quad 65$ ea Carr． 1 ． watt．All 万＂．．Hrand new l＇erfect．Mixed values COSSOR D．B．scopes－some motels from $£ 15$ ． MARCONI Alsorption Wattmeter 1 micro watt to is watts．Type Troñt．FivTASTIC at $£ 7$ ea． SOLARTRON stab．PU AS516 \＆AS517．（ircuits supplied．Fantastle value at $£ 2$ and $£ 4$ each． SUPERB BUYS．Furzehinl V：300A Valve millivolt meter lom to ki． 10 en．
denuine MULLARD Transistors／Diodes．Tested and plaranteerd．OC41，42，76，77，83：0A5，10，Al MAINS MOTORS MAINS MOTORS standard voltage．Rize un on еа．P．\＆P＇ 15 ри．
COMPONENT PACK consisting of $2 \cdot 2$ pole \because amp push on／off switches； 4 jots 1 double： 1 －sma double pole vol control； 250 resistors $\frac{1}{4}$ and watt
many high stalus．line value at 50 p per pack． I^{\prime} \＆ P ． many high stabs．Fine value at 50 p per pack．P＇．\＆P
17 p ． 3000 series relays－15 mixed valt
new，no rubhish El－50．P．\＆P．37p
STUART TURNER No．1上 Water pump（iPH7：0 10FT．H1）or（ $11^{1} 115150 / 45 \mathrm{FT} . \mathrm{HH}$ ，（omplete with standard mains imnt isolating transformer，Idea ＇arriage extra

TRANSISTOR EHT INVERTORS． 12 volt in，o／p Ideal CRT supply，photommitipliers etc．Full information supplied．Brand new at $£ 6.50$ ea．P．\＆P． 25 p
Also，as above but 1.5 KV AC $20 \mathrm{kc} / \mathrm{s}$ ．E3．50．P．\＆P． 25 p. Panel switches IIPl＇T ex eq．13p ea．；DPST Brand new．
17p ea．；DPS＇twice，brand new 25o ea． 17p ea．；DPS＇twice．brand new 25p ea．
Switches 4 pole 2 way 13p．
Replacement UHF Transistor Tuners．Hrand new Brand new heads for TR50 and TR51 Tape lecorders E1．60．
GYROS Large clear wastic topped．Type A 65 ea

Official Orders Welcomed，Gov．｜Educational Depts．，Authorities，etc．，otherwise Cash with Order
FOR CALLERS．Always a large quantity of components，transformers，chokes，valves，capacitors，odd units etc．，at＇Chiltmead＇prices．Callers welcome 9 a．m．to 10 p．m．any day．

7／9 ARTHUR ROAD，READING，BERKS．（rear Tech．College）Tel．：Reading 582605／65916

	T.C.C. BLOCK CAPACITORS				
${ }_{92}{ }^{\text {Type }}$	${ }_{1}{ }_{10}$	O.C. 750	eg. Cent	Price	${ }^{\text {corrsp}}$
Sub Chassis	8	1200	70	${ }^{750}$	${ }^{20} 0^{\circ}$
1119	8	1000	60	60p	15
921 M	8	750	60	${ }_{370}$	
${ }_{\text {CPI }}^{82}$	8	250	71	${ }_{28}{ }^{\text {p }}$	${ }_{10} 0^{\circ}$
CPI47H	8	200	71	20p	10 p
92 M	6	750	60	37p	10°
${ }_{\text {CPI53GO }}$	${ }_{4}^{4}$	1500 1200	70	478	5
Illim	4	1000	60	370	0 p
921 M	4	750	60	32p	
CP147T	4	600	70	${ }^{25 p}$	p
821 M	4	500	60	22p	7 P
Sub Chassis	4	450	100	22 P	$7{ }^{7}$
11 M	2	3000	60	${ }_{37 \mathrm{p}}$	$7{ }_{70}$
CPI50GO	2	1500	71	42p	$7{ }^{\circ}$
		500	60	15 p	P
CPI4H	2	200	71	10 D	3 P
CPI43	1	${ }_{600}$	71	${ }_{10 \mathrm{p}}$	p
	0.5	2000	60	25p	
TCAYA	$8+4$		60	45p	
CP57VO	0.01	12 K	60	30p	${ }_{5 p}$

 2MFD 5,000v. EI.50. IMFD 5,000v. 11.50 . 4MFD 800v. 35p. P. \& P. under $£ 1.0020 \mathrm{p}$. Over $£ 1.0045 \mathrm{p}$.

65MFD 550\%. WORKING BLOCKCAPACITORS
 $0.06 \mathrm{MED} 850 \mathrm{v}, 20 \mathrm{p}$ P. \& P. ${ }^{2} 10 \mathrm{p}$
OMRON SUB MINIATURE RELAYS
Type 105 N. 12 v . D.C. I C.O. 5 amp contact overall. Size Type 1051 N .12 v . D.C. I C.O. 5 amp contact overall. Size
$1 \times 1 \times 1$ in. New and boxed with mounting serews. 45 p . MAGNETIC DEVICES SEALED RELAYS 5,000 n, 3 C. . . contacts. Overall size $2 \times 2 \times 1+\mathrm{in}$. New boxed. 37tp. P.P. 7tp.
ELECTRO METHODS $2.3 v$. A.C. CONTACTORS 1 Heavy Duty
50 p. P.p. 10 p .
Sealed type, 28 LONDEX PLUG-iN RELAYS
$2 \times 2 \times 1$ in. Complete with base. 50 p. P.P. 10 p.
GARDNERS POTTED TYPE HT TRANSFORMERS Pri 110.200 .220 .240 v . ES. Sec. rapped 350 , 360 . 370.380 . 390.
400 v . $350 \mathrm{~m} / \mathrm{a}$. $130 \mathrm{v} .10 \mathrm{~m} / \mathrm{a}$. 15 v .2 a . $6 \cdot 3 \mathrm{v}$. 3a. $6 \cdot 3 \mathrm{v} .3 \mathrm{a}$. $400 \mathrm{v} .350 \mathrm{~m} / \mathrm{a} .130 \mathrm{v} .10 \mathrm{~m} / \mathrm{a} .15 \mathrm{v}$. $2 \mathrm{a} . \mathrm{a}^{6.3 \mathrm{v}}$.
6.3 v . 3 a .6 .3 v .2 a .6 .3 v .1 a . $£ 5.50$. Carr. 75 p .

GARDNERS HEAVY DUTY CHOKES
 IH 1 amp.
Carr. 50 p .

WODEN L.T. TRANSFORMERS

 Table top connects. EConservatively rated. Fully shrouded terminal block connections. fl $\cdot 25$. P. \& P. 20p. English Electric
Pri. $230-250 \mathrm{v}$. Sec. tapped. $6 \cdot 3,6 \cdot 4,6 \cdot 5,6 \cdot 6 \mathrm{v}$., 27a. 'C' core. Pri. 230-250v. Sec. tapped 6.3, 6.4, 6.5, ${ }^{6}$
Table top connections. $£ 2 \cdot 50$. P. \& P. 30p.

9 \& 10 CHAPEL ST., LONDON, N.W.I 01-723-785।

01-262-5125
T.E.C. 240-110\%. ISOLATION TRANSFORMERS Pri Tapped 10.0 .200 .220 .240 v , sec. Tapped $110-112.5-$
115 v . Conservatively rated at 9 amps . Tropicalised open irame type. Terminal Board connections. Size $9 \times 9 \times$

Gardners Pri 200-220 240v. ES Sec. tapped 100 - $110-$ 120 y . Conservativ
$\mathbf{6 7} 75$. Carr. 75 p .

```
Hy famous maker Fully Tropicalised PRMERS By famous maker. Fully Tropicalised. Pri tapped 100 ,
\(110,120,200,220,240 v . E . S\). Three Separate Secondaries
```



``` \(0-25\) a. Table Top Connections. \(\pm 400\). Carr. 50 p .
```

> PARMEKO ${ }^{\circ} \mathrm{C}^{\prime \prime}$ CORE TRANSFORMERS
Pri. tapped $110-200-240 \mathrm{v}$. Soc. 1250 v . $197 \mathrm{~m} / \mathrm{a}$. Sec Pri. tapped $110-200-240 \mathrm{v} . \mathrm{Sec} 1250 \mathrm{v}$. $197 \mathrm{~m} / \mathrm{a} . \mathrm{Sec} .2$
161 v . $110 \mathrm{~m} / \mathrm{a}$. Sec. $3152 \mathrm{v} .76 \mathrm{~m} / \mathrm{a}$. Sec. 4124 v . $25 \mathrm{~m} / \mathrm{a}$. Sec. 528 v . 0.4 a . Sec. 66.4 v .6 .2 a . 6.3 v .3 .25 a .6 .3 v . 1.4 am .
Table top connections. Size $5 \times 4 \times 4$ ins. Brand new Table top connections. Siz
boxed. $£ 1.75$. P. \& P. 45 p.

SPECIAL OFFER RADIO SPARES
Pri MULTI-TAPPED L.T. TRANSFORMERS

GRESHAM CHOKES

$15 \mathrm{H} 300 \mathrm{~m} / \mathrm{a} 50$ ohm. "C", Core Potted Type. $£ 3.12 \mathrm{P}$. \& P. 50p
$10 \mathrm{H} 300 \mathrm{~m} / \mathrm{a} 60 \mathrm{ohm}$. "C" Care Potted Type. 22.75 P. \& P. 50 p .

GARDNERS CHOKES
$100 \mathrm{H} .20 \mathrm{~m} / \mathrm{a} ., 150 \mathrm{p}$. P.P. $20 \mathrm{p} .20 \mathrm{H} .80 \mathrm{~m} / \mathrm{a} ., 150 \mathrm{p}$. P.P. 20 p.
$20 \mathrm{H} .40 \mathrm{~m} / \mathrm{a} ., 37 \frac{1}{2} \mathrm{p} . \mathrm{P} . \mathrm{P} .15 \mathrm{p} .10 \mathrm{H} .75 \mathrm{~m} / \mathrm{a}, 37 \frac{1}{2}$ p. P.P. 15 p.

$$
\begin{aligned}
& \begin{array}{r}
\text { LOW TENSION SMOOTHING CHOKES } \\
\text { By Redcliffe. } 100 \mathrm{MH} .2 \text { amps. } 2.50 \mathrm{P} \text {. \& P. 45p. Swinging }
\end{array} \\
& \begin{array}{l}
\text { By Redcliffe. } 100 \mathrm{MH} .2 \text { amps. } 62.30 \text { P. \& P. } 45 \mathrm{p} \text {. Swinging Types. } \\
10 \mathrm{MH} .6 .5 \mathrm{amp}-50 \mathrm{MH} .2 \mathrm{amps.} 22.25 \text { P. \& P. } 45 \text { p. Both types }
\end{array} \\
& \text { less than ahm res. Hermetically sealed. Oil filled. Brand new. } \\
& \begin{array}{l}
\text { less than } \ddagger \text { ohm res. } \\
\text { In makers cartons. }
\end{array}
\end{aligned}
$$

REDCLIFFE 'C' CORE TRANSFORMERS All Primaries rapped $200-220-240 \mathrm{~V}$. Table top connections.
Sec. $130 \mathrm{v} ., 450 \mathrm{~m} / \mathrm{a}$. Three times. K 4.25 . P. \& P. 40 p . $11-0-11 \mathrm{v}$

WODEN HEAVY DUTY LT TRANSFORMERS
Pri. 230 v . Sec. $24 \mathrm{v} ., 30 \mathrm{a}$. Enclosed in metal case. Size $9 \frac{1}{\frac{1}{2}} \times$
6at in. ©8.30. Carr. 50p
GARONERS HEAVY DUTY HT TRANSFORMERS Pri. $110-220-240 \mathrm{v}$, Sec. $255-0-6 a$. Conservatively rated. ${ }^{\circ} \mathrm{C}$ ' core
Table top connections. Size $10 \times 8 \times 7 \mathrm{in}$. $£ 12.75$. Carr. $£ 1.50$.

Pri. tapped $100-110-120-200-220-240 \mathrm{~V}$. Sec. $100-110-120-200$

 6.3.
75 p .1
7.

PARMEKO TRANSFORMERS

Jupiter Series. Pri. M10v., 200-220-240v. Sec. 24-0-24v., $470 \mathrm{~m} / \mathrm{a}$
and $150 \mathrm{v} .15 \mathrm{~m} / \mathrm{a}$. Hermetically sealed. f .75-2 and 50 v . t m/a. Hermetically sealed. f1.75. P. of P. 25p.
Neptune Series. Pri. $110-200-220-240 \mathrm{v}$. Sec. $250-0-250 \mathrm{v}$. $70 \mathrm{~m} / \mathrm{a}$.

ENGLISH ELECTRIC TRANSFORMERS

Pri. 220-240v, Sec. tapped 30-57.5-115v. 0.5a. and 3 v .40

Pri. 200-220 GARDNERS LT TRANSFORMERS
P.P. 50 p . Pri. $200 \mathrm{-} 220-240 \mathrm{v}$. 2 v . 1 la . Twice 8 Kv . D.C. $w \mathrm{~kg}$. 63

BY FAMOTRANSFORMERS
Pri. 240v. Sec. $10.3 \mathrm{v}, 5 \mathrm{a}$. Twice Conservatively rated. Table top connections. E3.75. Carr. 50 p . Pri. 200-220-240v. Sec. I5v
 0.75a. Conservatively rated 'C' core T.T. connections. $£ 1.50$.
P.P. 35p. Pri. 200-220-240v. Sec. 15 v . Ia. Twice. $£ 1$. P.P. 35 p.

Solve your communication problems with this new 4-Station Transistor Intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk listen from Master to 8ubs and Subs to Master. Operates on one 9 v . battery. On/off awitch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hospital, Shop, etc., for instant interdepartmental contacts. Complete with 3 con necting wires, each 66 ft , and other accessories. Nothing else to buy. P. \& P. $£ 0 \cdot 40$ in U.K.

A top quality DE-LUXE transistorised intercom consists of MASTER and SUB for desk/wall mounting. Call, talk or listen from either unit. On/Off switch, volume control. Ideally suitable as "BABY SITTER" or Door Phone. A boon for spastics and invalids. Useful in the home, surgery or business for instant 2 -way conversations effective range 300 ft . Unsurpassed in QUALITY AND PERFORMANCE. Complete with 66 ft . connecting lead. Battery $£ 0 \cdot 12$ extra. P. \& P. £0.25. Price Refund if not satisfied in 7 days.

Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Portable Transistor TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. A usoful office aid. A holding the handset. A useful office aid. for must for every telephone user. Useful for
hard of hearing persons. On/off switch. Volume Control. Operates on one 9 v. battery which lasts for months. Ready to operate. P. \& P. $\mathfrak{£} 0 \cdot 18$ in U.K. Add $£ 0 \cdot 12$ for Battery.
Full price refunded if returned in 7 days.

WEST LONDON DIRECT SUPPLIES (W.W.) I69 KENSINGTON HIGH STREET, LONDON, W. 8

FROM METHUEN A HISTORY OF THE MARCONI

 COMPANYW. J. BAKER

". . . a readable and wide-ranging account which does much to illuminate the development of the radio industry at large." The Times Literary Supplement. "It tells an entertaining story which must have involved much painstaking research." Electronics \& Power. ". . . this book will not only be of interest to the vintage radio enthusiast, but almost a Bible to all those who take any interest in wireless communication . . ." Practical Wireless.
$£ 5.00$

EXCLUSIVE OFFER of COMMUNICATION RECEIVERS RC410/R and RC411/R and H.F. SYNTHESIZERS RC460/S

- MANUFACTURED BY WORLD RENOWNED BRITISH COMPANY
- ALL TRANSISTOR/I.C. CIRCUITRY
- COVERAGE RC410/R $2-31 \mathrm{MHz}$ in 29 BANDS

RC411/R 15KHz-31 MHz in 31 BANDS

- DIGITAL DISPLAY INDICATING TUNED FREQUENCY GENERATED BY INTEGRAL SYNTHESIZER
- LOCAL OSCILLATOR DRIFT LESS THAN 1 PART IN 10^{8} PER DAY
- OVERALL FREQUENCY STABILITY BETTER THAN 5 PARTS IN 10^{7}

OTHER CHARACTERISTICS INCLUDE:-
Aerial input impedance 50 ohms unbalanced Maximum Sensitivity: $-0.5 \mu \mathrm{~V}$ for $12 \mathrm{~dB} \frac{(\mathrm{~S}+\mathrm{N})}{\mathrm{N}}$ at standard output (Odbm into 600 ohm balanced load) Intermediate Frequencies 1.6 MHz and 100 KHz
I.F. Selectivities:-3dB Bandwidths of $\pm 3.5 \mathrm{KHz}, \pm 1.5 \mathrm{KHz}$, $\pm 0.6 \mathrm{KHz}, \pm 0.15 \mathrm{KHz}$.
Notch Filter $\pm 4 \mathrm{KHz}$ about a centre frequency of 100 KHz . A.G.C. 3 switched attack/decay times of 10/600, 20/800 and $30 / 2000 \mathrm{mS}$.
Audio Output 1 watt into 3 ohms or 10 mW into 600 ohms. Noise Limiter
'S' Meter.

Mains Input $100 / 125$ or $200 / 250 \mathrm{v} .50 / 60 \mathrm{~Hz} 70 \mathrm{~W}$.
Dimensions $9^{\prime \prime}$ high, $19.2^{\prime \prime}$ wide, $18.75^{\prime \prime}$ deep, suitable for
$19^{\prime \prime}$ rack mounting.
THE SYNTHESIZERS TYPE RC460/S have the following main characteristics:-

- FREQUENCY COVERAGE 1 MHz to 29.9999 MHz in 100 Hz steps
- FACILITY FOR USING EXTERNAL FREQUENCY STANDARDS OF $5 \mathrm{MHz}, 1 \mathrm{MHz}, 200 \mathrm{KHz}$ or 100 KHz as WELL AS THE INTERNAL STANDARD of 5 MHz
- FREQUENCY STABILITY OF BETTER THAN 1 PART IN 10^{6} PER 100 DAYS, 3 PARTS IN 10^{8} PER DAY
- OUTPUT 0.3-Iv r.m.s. INTO 50 OHMS (metered)

The Mains supply to the unit is $100 / 125$ or $200 / 250 \mathrm{v} .50 / 60 \mathrm{~Hz} 60 \mathrm{~W}$. The dimensions $7^{\prime \prime}$ high, $19 \cdot 2^{\prime \prime}$ wide, $18^{\prime \prime}$ deep, suitable for rack mounting.

PRICES OF THE ABOVE INSTRUMENTS ARE:-

RC410/R $£ 300, \mathbf{R C 4 1 1 / R} £ 350$ (List $£ 1,500$ approx.) RC460/S (Bench or Rack Mounting version) $\mathbf{£ 1 5 0}$ All instruments supplied complete with handbooks.
Carriage extra at cost but we would recommend customers to arrange to collect from any of the addresses below by appointment at all of which the equipments can be demonstrated. Alternatively, delivery to U.K. Mainland can be arranged by special carrier at a cost of $£ 5$ per item (England) or $£ 10$ per item (Scotland). (Plus insurance $£ 1$.) TERMS: Strictly C.W.O. or supply against official order from approved customers.

THESE RECEIVERS AND SYNTHESIZERS HAVE BECOME AVAILABLE OWING TO RATIONALISATION OF RANGE FOLLOWING AN AMALGAMATION OF COMMERCIAL INTERESTS

DON'T DELA Y OUR STOCKS ARE STRICTLY LIMITED!

[^16]
USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, LOW COST QUICK DELIVERY OVER 200 RANGES IN STOCK OTHER NEW "SEW" CLEAR PLASTIC METERS BAKELITE PANEL METERS

	TYPE SW. 100 $100 \times 80 \mathrm{~mm}$.	TYPE S-80 80 mm . square fronts			
		${ }_{5}^{50 \mu \mathrm{~A}} \ldots \ldots$.	${ }_{8}^{43.122}$	sov. m.c.	
		100\%	${ }_{22 \cdot 972}$	surv. dic:	\&2.47\%
	1 amp . D.C. 22.97 f		£2.87t	1 amp. D.C.	£2.47t
23. 25	5 anp. D.C. $£ 2 \cdot 97$	500 LA	¢2.62t	5 amp. n.c.	¢2.47t
$\begin{aligned} & 5104 \mathrm{~A} \\ & 1 \mathrm{~mA}\end{aligned} . .$.			${ }^{22} 2.475$	3unv. A.C.	£2.62
1 mA ${ }^{\text {e }}$ 297\%	vC Meter 83.75	20v. b.C.	82.475	\checkmark Meter	23.372

'SEW' CLEAR PLASTIC METERS

Type MR.5.sp. 2 ilin, square fronts.	
$50 \mu \mathrm{~A}$. £ $£ 16$	10'V. D.C. .. $£ 2.00$
$50-0-50 \mu \mathrm{~A}$. $£ 2.60$	20 V . D.C. .. $£ 2.00$
$100 \mu \mathrm{~A}$.... £2.60	£2.00
100-0-100 $\mu \mathrm{A}$ £2.37	300 v . 1.C... $£ 2.00$
$500 \mu \mathrm{~A}$.... £225	200
	3015.
5 mA £2.00	8 Meter 1mA £2.10
$10 \mathrm{~mA}$. £200	VU Meter .. $£ 3.10$
50 mA $£ 2.00$	1 amp A.C.* $£ 2.00$
100 mA $£ 2.00$	5 amp . A.C.* $£ 2.00$
500 mA . . . $£ 2.00$	10 amp . A.C.* £2.00
1 ump. £2.00	20 amp . Acc. $£ 200$
$5 \mathrm{amp}{ }^{\text {¢ }} 2.00$	30 amp . A.C.* $£ 2.0$
Type Mr.85P. 3 lin . $\times 3 \mathrm{kin}$. Ironts	
	10V. 13.C. . $£ 2.10$
$50-0.50 \mu \mathrm{~A} .$.	20V. D.C. .. £2.10
$200 \mu \mathrm{~A}$ … $\mathrm{S}^{2} 260$	100Y. b.c...
$500 \mu \mathrm{~A}$.... $82 \cdot 371$	15V. A.C. . ${ }^{\text {2 }}$ 2.
$500-\mathrm{n}-500 \mu \mathrm{~A}$ ¢ 22.10	¢0V. A.C. .. £2.10
$1 \mathrm{~mA}$.	150\%. A.C... 82.10
5mA	
50mA $82 \cdot 10$	8 Meter 1 mA (22.3 \%
$100 \mathrm{~mA} . . . \mathrm{e}$ £2.10	VU Meter -. £3-37\%
500 mA $£ 2.10$	$50 \mathrm{~mA} \mathrm{A.C.I}. \mathrm{E}^{2} 10$
$1 \mathrm{amp} . . .$.	$100 \mathrm{~mA} \mathrm{A.C.*} \mathrm{£} £ 10$
$20 \mathrm{amp} . . .$. . $\frac{\text { ¢ } 2 \cdot 10}{}$	
$30 \mathrm{amp} . . .$.	10 amp A.C. ${ }^{\text {f2 }}$ (10

* MOVING IRONall others moving coil

Please add postage

SEW EDUCATIONAL

 Type ED 107 Size overall 100 mm A new range of high quality moving coil
instruments
ideal
for school experiments and
other bench applica. tions. 3in. mirror scale Available in the following ranges:-
$100 \mu \mathrm{~A}$
$50-0-50 \mu$
$1-0.1 \mathrm{~m}^{2}$
1Ad.c.
5 Adc. .

10 V d.c.
20 V d.c.
$500 \mathrm{~V} . \mathrm{c}$.
$300 \mathrm{~d} . \mathrm{cc}$.
Dual range
$500 \mathrm{~mA} / 5 \mathrm{~d}$
$5 \mathrm{~V} / 50 \mathrm{~V}$ d.c.

84.25
44.25

"SEW" BAKELITE PANEL METERS

EDGWISE METERS

Type P.E.70. 3 17/32in, $\times 1$ 15/32in. $\times 2$ in, deep ${ }^{50} 50 \mathrm{~A}$. $60-0.5$
$100 \mu \mathrm{~A}$
$100-0.100$
$100 \mu \mathrm{~A}$
$100-0-100 \mu$
$200 \mu \mathrm{~A}$

Send for illustrated brochure and further details on all Sew Panel Meters-Discounts for quantities

WULTIMETERS for GUERY pupposed

Min

MODEL TE-12. 20,000 OP.P.
 $600 / 1,200$ V. A.C. $0 / 66 \mu \mathrm{~A} / 6 /$
$60 / 600 \mathrm{~mA} .0 / 6 \mathrm{~K} / 600 \mathrm{~K} / 6 \mathrm{Meg}$

TMK LAB TEATER
100,001 O.P.V. it in. Scale
Buzer Short Circuit Check.
Sensitivity.

Current: $10,1000 \mathrm{VA}$. D.C. 10,

HONEYWELL
DIGITAL VOLTMETER VT. 100

Can be panel or hench mounted. Basic meter
measures l volt D.C. but can be used to measure a measures I volt D.C. but can be used to measure a
wide range of AC anil 1% volt, current and ohms

specification

Accuraey:
Resolution
Number of digits: 8 plus fourth overrange digit. Input impedance: 1000 Meg ohin
Measuring cycle: 1 per second.
Automatic zeroing, full scale
adjustment againat au internal
referenen
reference voltage.
10liv. D.C.
Overload: th llov.
Input: Fully floating (3 poles).
Input: Fully floating (3 poles).
Input power: $110-230 v$. A.C. $50 / 60$ cycles.
Overall size: 5 fin. $\times 213 / 16 \mathrm{in} . \times 83 / 16 \mathrm{in}$
GVAILABLE BRAND NEW AND FULLY
UGARANTEED AT APPROX. HALF PRICE
モ49.97 $\frac{1}{2}$ Carr. 50 p

G. W. SMITH
\& Co. (Radio) Ltd.
aLSO SEE NEXT TWO PAGES

SENI-CONDURTORS/VALVES
 ALL DEVICES RRAND NEWAND FULLY GUARANTEED

Abstract

TRANSISTORS TRAN

NKT278 NKT2 25

TRANSISTOR DISCOUNTS:-12+ $10 \% ; 25+15 \% ; 100+20 \%$ ANY ONE TYPE
POSTAGE ON ALL SEMI-CONDUCTORS 7p EXTRA. S.A.E. FOR FULL LISTS

DIODES AND RECTIFIERS					
1 N 34 A	10p	BA154	12^{2}	GJ7M	37p
1N914	7 p	BAX13	12p	OA5	170
1N916	7	BAX16	$18 p$	oat	$12 p$
AA119	7 p	BAY31	7 p	OA10	22p
AA129	10 D	BAY38	25p	ong	10 p
AAZ13	3 10p	BY100	15 p	OA47	7 D
AAZ15	$5 \quad 12 \mathrm{p}$	BY103	$2 \mathrm{2P}$	OA70	7p
AAZ17	7 12D	B Y 122.	37 p	OA73	10 p
BA100	15p	BY124	$15 p$	OA79	89
BA102	$2 \mathrm{C2D}$	BY126	15 p	OA81	7p
BA110	32p	BY127	17 p	OA8S	7 p
BAll	270	BY164	57p	OA90	7 p
BA112	$270 p$	BY210	35 p	OA91	7 p
BA115	570	BYZ11	32p	0ays	7 p
BA141	32p	BYZ12	30 p	oazon	10p
BA1 12	32p	BYZ13	${ }^{25 p}$	OA202	10 p
BA144	4 12p	BYZ16	40 p	OA210	17p
BA145	5 20p	F8T3/4	220		
THYRISTORS					
PIV	50	100	200	390	400
1A	25p	27 p	37 y	40 p	478
4A		47p	550	57\%	770
5A		${ }^{555}$	80		76
7A		55p	6.5	-	97

REDPOINT HEATSINKS

Tos and Tols Finned 5 p

				-				
			今		-			
				+				

HI-FI EQCIIPMENT SAVE UPTO 33 $\frac{1}{3}$ \% OR MORE SEND S.A.E. FOR. DISCOUNT 'PRICE LISTS AND PACKAGE OFFERS!

RECORD DECKS

\qquad MTP60 T.P.D 510 T.P.D. 1 H.T. 70 H.T. 70 Packag THORENS TD125AB TX25
TD150A II
TD150AB TX150A

GARRARD | A 40 II |
| :--- |
| 2025 | 28.40

4987
810.50 202
300

$$
\begin{aligned}
& \text { SF20 } 11 \\
& \text { A70 II } \\
& \text { SL65B }
\end{aligned}
$$

AP76 sL72B

${ }^{\text {AL72B }}$
$\mathbf{8 L 7 5 B}$
$\mathbf{8 L 9 5 B}$
GOLDRIN
${ }_{\text {GL69P/2 }}^{\text {GL69/2 }}$ 282.20
229.50
229.97
239.40

GL75 OL75P

OL75P
LID69/75
G99
PIONEE 837.95

TELETON SAQ-206 STEREO AMPLIFIER

Latest exciting release. Brand new model, beauthswitched inputs for mag, xtal, sux, tape. Incor porates volume, bass, treble and sliding balance Rec. List 132.50 . Our Price 219.97 . Carr 37 p
Ruggeted rystem. 8 AQ 206 amplifer, $\$ \mathrm{PP} 25$ III

S
TELETON SPECIAL OFFER! \ddagger Mono * Etereo Cartridge Carriage 50p extra any model.

RECORD DECK PACKAGES
Decks supplied read cover fitted with cart
Garrand
Garrsid 2025 T/C with
Sonotone 9TAHCD

Garrard SP25 III with tioldring G800 220.95 Garrand AP76 with Gold tng G800.... 830.95 Gokdring GL69/2 with Coldring G800 Goldring GLIJs with Goidring G800. foldring GL75 with Galdring G800E 255.50 Carriage 50p extra any model.

SINCLAIR EQUIPMENT
Project 60. Package Offers

000060

 power supply, \&18-85. Cirr. $374 \mathrm{p} .2 \times \mathrm{Z50}$ amplifler stereo 60 preanmp, PZt powers
 tuit and e16 fora pairoi 2168 speakers. PROJECT

Our latest edition giving full details of comprehensive range of HI-FI EQUIPMENT COMMUNICATIONS EQUIPMENT. FREE COMMUNICATIONS EQUIPMENT. FREE
DISCOUNT COUPONS VALUE 50 p . 248 pages, fully illustrated and detailing chousands of items at targain prices.

SEND
NOWI OHLY
37뇨
$P \& P$ 10p

 New high-quallty port-
able lutrumen gine
lity 1 Hz to 100 KHz . Aquare
20 Hz to 20 KHz . Out$\begin{array}{ll}\text { put } \max . \\ \mathrm{K} & \text { ohupg), } \\ +10 \mathrm{db}(10 \\ \text { Operation }\end{array}$
 $220 / 240$
2120 mm.
120. Price 22%. 50

CRIOT AM/FA BTLAREO TUNER AKPLIFLER
WITH MATCHING PARR SAIOO8 BPEAEER 8Y8TEMS Output 4 watts per channel. Excellent reception AFC, built-in MPX. Cer/XTAL Input.
Total List \&50-25. OUR PRICE $229 \cdot 95$. Carr
Alpo available with Garrard 2025T/C Record Changer, Plluth, cover and stereo cartridge.
 Price $22 \% .50$
Carr. 25 p.

MARCONI TF.I42E DISTORTION FACTOR METERS Excellent condition. Fully tested 220 . Carr. 75p.

Accurate wide range
algnal generator cover-

oulibrated. Dlrectly
caalibrated.
R.F. attenuator. Op. eration $200 / 240$ attenuator, Op .
Brand new

. \& P. 37 \$p. B.A.E. for details
TE22 SINE SQUARE WAVE
TE22 SINE SQUARE WA

High quality ooramic construction. Windinga ambedded in nitreous enamel.
Heavy duty bruah wiper. Continuous ratigg. Whde range avalablo ex-stock.
Bing
 ${ }_{50}^{25}$ WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1000 / 15000$ ort. $10 / 25 / 50 / 100 / 250 / 500 / 1000 / 2500$ or 5000 ohme 50 WATT. $10 / 25 / 50 / 10 / 250 / 500 / 1000 / 2500$ or 5000 ohms. $£ 1 \cdot 05$. P. \& P. 7 p.
100 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1000$ or 2500 ohmos. $£ 1 \cdot 37 \mathrm{H}$. P. \& P. $7 \$ \mathrm{p}$.

TRANSISTORISED L.C.R. A.C MEASURING

${ }_{1110 \mathrm{MFD} .6 \text { Range }}$

$\pm 2 \%$. TURNS RATIO $1: 1 / 1000-1: 11100$. ${ }^{6}$ Ranger $\pm 1 \%$. Bridge voltage at 1,000 CPS.
Operated from 9 volta, $100 \mu \mathrm{~A}$. Meter lodication. Operated from 9 volta. 100μ A. Meter Lodication
Attractive 2 tone metal case. $8 \mid z e$ 7|" $\times 5^{*} \times 2^{2}$ £20. P. \& P. 25p.

TE-I6A TRANSISTORISED
 SIGNAL GENERATOR

UNR 30 RECEIVER
4 Bande covering $550 \mathrm{kc} / \mathrm{s} \cdot 30 \mathrm{mc} / \mathrm{s}$. B.F.O. Buil in speaker 2020/240v AC. Brand new with instruc WS62 TRANSCEIVERS Largequantity available for EXPORT Excellent condition. Enquiries invited LAFAYETTE HA-600 RECEIVER

LAFAYETTE TE-46 RESISTANCE

2 ohms-2004 meg
ohms. Aso
impedance
check
turn
ratio insulation. 200/250 v. A.C.
Brand New. $£ 17.50$
Cart. 37to.

TO.2 PORTABLE OSCILLOSCOPE A genermi purpose low cost day uee. Y ampop. Bandwhith 2 OPA-1 MHZ. Lnput tmp. 2 meg ${ }^{9}$. 26 PF, mput trop. ecale. 2 tube. $115 \times 180 \times$
230 min . Waight $8 \mathrm{lbs} 220 /$ 230 min. Waight 8ibs. $220 /$
240 v . $4 . \mathrm{C}$. Supplied brand new with. handbook. exde. 50 .

variable B.F.O., noise limiter, s Metetector, Bandapread. RF Gain. $15^{\prime \prime} \times 91^{\prime \prime} \times 81^{\prime \prime} .18 \mathrm{ib} .220 / 240 \mathrm{v}$
AC or 12 v DC. Brand new with instructions. \&45 Carriage 50 p .
FULL RANGE TRIOEQUIPMENT

CRYSTAL
CALIBRAT
NO. 10
small portable crystal conatrolled wortable crystal

 $\mathrm{Kc} / 8-10 \mathrm{Mc/s}$ (up to
$30 \mathrm{Mc} / \mathrm{s}$ on harmonics).
Calibrated dlal. Power Calibrated dhal. Power
requirements 300 V.D.C.

B.C. 221 FREQUENCY METERS

 Latost releare $125 \mathrm{KHz}-20 \mathrm{MHz}$. Fxcelient con-ditlon. Fully tested and checked and complete with calibrator charts. $\& 27 \cdot 50$ each. Carr. 50 p . SOLID STATE VARIABLE A.C.

TEIII DECADE RESISTANCE ATTENUATOR Variable range 0-111 db. Connections.

 ance 600 ohms. Rage 0.1 db \times $10)+(1 \mathrm{db} \times 10$
 $10+(10 \mathrm{~b} \times 10)$ $+10+20+30+$

40 db . Frequency: DC to $200 \mathrm{KHz}(-$ (2db).
Accuracy: $0.05 \mathrm{db}+$ indication $\mathrm{db} \times 0.01$.
 Bailt io 600 o load realstance with internald
external switch. Brand new $\& 27.50$ P. \& P. 25p.

TE-20D RF SIGNAL GENERATOR Accurate wide range sig
nal generator covering
 O bands. Directly cali-
brated. Variable RF brated. Variable RF.
attenuator, audio output. Xtal acketet for calibrat
tion 2201940 V Xtal socket for calibra.
tion. 2200240 V . ${ }^{\text {A.. }}$.
Brand new with instruc. Brand new with instruc.
tions. 215.1 Carr. 37 p p.
Bize $140 \times 215 \times 170 \mathrm{~mm}$.

 Cart, pald.

$$
215 \times 170 \mathrm{~mm} .
$$

POWER RHEOSTATS

"YAMABISHI" VARIABLE VOLTAGE TRANSFORMERS
Excellent quality Low price ${ }^{\text {MODEL }} \mathrm{Immediate}$ delivery
MODEL

MODEL 8-260	MODEL S-260 B Panel Mounting	
General Purpose	1 Amp 25.50	
Beach Mounting	2.5 Amp .. . ${ }^{\text {26.62 }}$	
1 Amp .. 25.50	Please add postage	
	INPUT ${ }^{\text {ALL }}$ M MOLTS ${ }^{\text {a }}$	
	INPUT 230 VOLTS, $50 / 60$ cYCles	
	OUTPUT VARIABLE ${ }^{\text {S0/60 }}$ CYCLES	
12 Amp .. 221.00	0-260 VOLTS	

BGTTER GET 'SET'

BEST OFFER YET! Famous BC. 221 Frequency Meter with valves, crystal and charts. Only $£ 13.50$. Carr. $£ 1.50$. Limited number.
Order Now!
Marconi 801 A Signal Generator. $10-310$ MHz. In original
transit case. $\mathrm{E45}$. Carr. $£ 2.50$.

Crystal Calibrator Na. 10. Crystal controlled heterodyne wavemezer
covering 500 KHz 10 MHz (Harmonics covering $500 \mathrm{MHz-10} \mathrm{MHz}$ (harmonics
up to 30 MHz . Power required
300 V . D.C. 15 mA . 12 V . 0.3 A D.C. Test equipment for $62 T M / R C$.
Only $£ 4.25$. P. \& P. 50p.
Fow ontr-No. 62
10 MHz . 17 . 50 . Carr .
 Famous Tele 'F' Field Tele-
phonas. Suitable for Farms,
Building Sites, etc. Communication up to 5 miles or more.
Rugged construction, will last a lifetime. Only $\mathbf{E 5} 75$ ' pair. Carr. El. (Twin telephone wire for
above available-ask for price.)

Ex RAF Periscopas. Mada by Kelvin Hughes containing a pre-
cision made optics system procesion made optics system pro-
viding crystal clear wide range
vision vision (2 prisms and 8 lenses).
Buile in 24 v heating circuit to Buile in 24 v heating circuit to
prevent misting and freezing. Approx. 24 long with folding handles and rubber eyepiece.
Complete, as new, in instrument Complete, as new, in instrument
case. Oniy 65 . Carr. 75 p. (Less case-store soiled $\mathbf{\text { t3.75. Carr }}$ 75p.)

Many other Ex-Govt. Surplus
Equipment items in stock. Receivers etc. items in stock. Re
 paid, (Refundable against pur
chases over $£ 3$)

Surplus Electronic Trading

 Drivers
, Hitchin, Herts,

LOWE ELECTRONICS

119 Cavendish Road, Matlock, Derbyshire Tel: Matlock 2817

SSB Communications Equipment, Test Gear, etc. Importers of Yaesu Musen, F.E. \& Inoue Equipment.

In addition to our wide range of new equipment, we offer the following second-hand receivers and test gear.

Receivers:
Lafayette HA-350 $\mathbf{6 5 5}$
R.C.A. 8516L £150

Collins 51J3 $\mathbf{£ 1 5 0}$
Collins 51J4 £275
Collins URR 390A £350
Collins URR $388 \mathbf{£ 2 2 5}$
Heathkit SB301 plus extra CW filter $\mathbf{£ 1 1 0}$
Inoue IC-700R f60
Sommerkamp FR-500 £110
Test Gear
Signal generators CT212 (85 kHz to 32 MHz AM/FM) $£ 29.50$
BC221's $£ \mathbf{1 5} \mathbf{-} \mathbf{£ 2 5}$ according to condition and linearity.
Mikes, keys, keyers, monitors, mobile antennas (Tavasu), headsets, intercomms., VTVM's. Iow voltage regulated p.s.u.'s. SWR bridges, components, etc., etc.
Have you equipment to sell? May pay you to get our quote
Send a large s.a.e. and we will fill it with lists of components, equipment, sundries, etc., etc.

Vary the strength of your lighting with a (0)MM (1swich

COMBINED PRECISION COMPONENTS, (PRESTON) LTD. 3, Moor Pork Avenue, Preston, PRI GAS, Lancashire Tel. Home Soles Division. Preston 077256347
Export Division. Preston 077254157

Thanks to a bulk purchase we can offer BRAND NEW P.Y.C. POLYESTER AND MYLAR RECORDING TAPES
Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polythene and have fitced leaders, etc. Their quality is as the tapes faulty and are not to be confused with imported, used or sub-standard tapes. 24-hour despatch service.
Should goods not meet with full approval, purchase price and postage will be refunded.
S. P. $\left\{\begin{array}{llllll}3 i n & 160 \mathrm{ft} & 10 \mathrm{p} & 5 \mathrm{in} . & 600 \mathrm{ft} . & 30 \mathrm{p} \\ 5 \mathrm{tin} & 900 f \mathrm{l} & 40 \mathrm{p} & 7 \mathrm{in} . & 200 \mathrm{ft} & 45 \mathrm{p}\end{array}\right.$

 postage on all orders $7 \frac{1}{2} \mathrm{P}$ HALF PRICE
60,90 , and 120 minutes playing time, in original plastic library boxes.
MC 6045 p each. MC $9062 \frac{1}{2} p$ each. MC 12092 p each STARMAN TAPES
28 LINKSCROFT AVENUE, ASHFORD, MIDDX.

WW-081 FOR FURTHER DETAILS

MINIATURE WIRE ENDED SILICON

0.10
0.12
0.15

MVIOB LIGHT EMITTING DIODE
MVIOB LIGHT EMITTING DIODE
To 18 outline. Brightness 500 Ft.L st 50 mA . Forward roltage
1.65 to 2 V . Spectral length 6300 to 7000 A (red light). Leng

INTEGRATED MONOLITHIC DUAL
OPERATIONAL AMPLIFIER MCI435P
Two identical ampliflers in AMPLin dual-lin-line epoxy package. 400 mW disappation. Typical open loop voltage gain 7000 . Max. differential input $\pm 5 \mathrm{~V}$. Power supplies 6 to 9 V . Max. Irequency
$1 \mathrm{mc} / \mathrm{s}$. 22.00 .

MINIATURE CERAMIC CAPACITORS $25 V$ D.C. WORKING
5\%, toleranes: $22-27-33-39-47-56-68-100-120-150$ 180-220.270. $830-$
$680-820-1006 \mathrm{pF}$

TWO NEW OSCILLOSCOPES FROM RUSSIA

CI-5 SINQLE BEAM
OSCILLOSCOPE
$10 \mathrm{mc} / \mathrm{s}$ passband, triggered sweep froiu $1 \mu \mathrm{sec}$. to 3 millisec. Free running time base from $20 \mathrm{c} / \mathrm{s}$ to $200 \mathrm{kc} / \mathrm{s}$. Built-in time inarker and amplitude callbrator, 3 -in. cathode ray tube with telescopic viewing
hood 39.00

CI-16 DOUBLE BEAM - O8CILLOSCOPE
$5 \mathrm{mc} / \mathrm{s}$ passband. Separate
Y 1 and YZ amplifters rectangular 5 in. $\times 4$ in brated triggered sweep from $0.2 \mu \mathrm{sec}$. to 100 millisec. per cm. Free running time base $50 \mathrm{c} / \mathrm{s}$ to $1 \mathrm{mc} / \mathrm{s}$. Built-in time base calibration and amplitude caliFull details on request spares available.

OUR 1970/1971 CATALOGUE IS AVAILABLE. PLEABE SEND B.A.E. FOR YOUR FREE COPY

44a WESTBOURNE GROVE, LONDON, W. 2

Tel.: 727 5641/2/3
Cables: ZAERO LONDON
Retail branch (personal callers only) 85 TOTTENHAM COURT RD.,
LONDON W.2. Tel: 5808403
A.R.B. Approved for inspection and release of electronic valves, tubes, klystrons, etc.

WE WANT TO BUY:

SPECIAL PURPOSE VALVES. PLEASE OFFER US YOUR SURPLUS STOCK. MUST BE UNUSED.

For
 manufacturing service call Hartley's

Capacity available now backed by a top rate team of experienced designers and skilled assembly workers. Quotations and delivery schedules offered by return. And we've a nationwide collection and delivery service.
Cossor; G.E.C.; Marconi: M.A.S.; M.O.D. : Plessey; Short Bros; Vickers; Vosper Thornycroft and many others have made use of this facility.
*Electronic and Electro-Mechanical assembly:
*Precision Test and Calibration
Service:
*Sheet Metal and press work (full plating and painting facilities);
*Tooling and Welded Fabrication;
*TapeRiter and Marine Packaged Communications and Magnetic Tape Data Recording Systems; E.Q.D. Approved.

* For further information circle 108

Write or call DON FLAWITH.
hartley electromotives umited MONKMOOR ROAD, SHREWSBURY SY2 5SU Telephone Shrewsbury (0743) 6J43

Wonders of the modern world

Teonex products, of course! Over 3,000 of them, electronic valves, semi-conductors, and now-neons and indicators too... all performing superbly in many climates . . . all at prices that are very competitive.

How do Teonex do it? Specialisation in one field. Concentration on export only. Very strict quality control.
Sold in sixty countries, on Government or private contract, Teonex offers you a comprehensive range, with most items immediately available.

For technical speciffations and prices, please write to Teonex Limited, 2a Westbourne Grove Mews, London W.11, England. Cables: Tosuply London W. 11

electronic valves semi-conductors neons \& indicators for export TEONEX

```
MACLEANS 6" FANS
230v. AC. 2800 rpm f2.75 pp 35p
IMLOCK ALUMINIUM CHASSIS FRAMES
10\frac{1}{2}
CROMPTON PARKINSON ELECTRIC MOTORS
Single phase \frac{1}{2}hp}1440\textrm{rpm}\mathrm{ or 2800 rpm E6 pp £1
t hp }1425\textrm{pmm}\mathrm{ E3.76 pp 75p
t hp 1425 rpm E2.25 pp 60p
SMITHS 12 VOLT CAR HEATER FANS
E1.50 pp 30p
P.O.TYPE
20 way 3 pole Jack Strips
10\frac{1}{2}\times3\frac{1}{2}
SOLENOIDS 12 VOLT PULL ACTION
2*\times1** 年**40p pp 8p
STC SEALED RELAYS DOUBLE POLE
CHANGEOVER 48v 2500\Omega Ex-equip. 15p pp 5p
CHANGO
minia
SIEMENS MINIATURE RELAY Double pole
changover dust cover/base. 48v. 2500\Omega 51p
pp 5p new
OMRON MIDGET POWER RELAY Type Mk 1
230v. AC. Single pole changeover contacts
5amp 440v AC 250v, DC. E1p pp 5p
HONEYWELL MICRO-SWITCH
HONEYWELLMICRO-SWITCH 
ANALEX POWER SUPPLY
7"\times19*\times13*230v. AC. Input-6v. 5 amp }\times
18v. 7.5 amp DC output; Fully transistorized marginal
adjust. on output £35 carriage £3
ANALEX POWER SUPPLY 13** }1\mp@subsup{1}{}{\circ}\times5\frac{1}{4
230 v. AC. Input-36v. }14\mathrm{ amp DC.output
stabilized ex-equip £27-60 carriage £2.50
COUTANT/ROBAND POWER SUPPLIES
28v. }20\textrm{amp DC. output 220/50v. AC. Input
l
VEEDER-ROOT MECHANICAL COUNTERS
5 digit : lever operated; Resettable 3" }\times1\frac{1}{2}\mp@subsup{|}{}{*}\times1\frac{1}{4
ex-equip. 55p pp 10p
SMITHS CIRCULAR TAPE POSITION
INDICATOR Resettable 55p pp 10p
DORMAN LOADMASTER
250v./440v. AC. 5 amp triple pole circuit breaker
E1.48 pp 25p
G.E.C. 5-AMP CIRCUIT BREAKER
E1 pp 15p New
```


TRANSFORMER

```
230 V. AC. Input. 6.6 y 122 amp output \(6 \frac{1}{2} \times 7 \frac{1}{2}^{\circ} \times 9^{*}\) inc. terminals new \(\mathbf{f 1 5}\) cartiage \(\mathbf{f 2}\)
GARDNERS: Potted input \(0-250 \mathrm{v}\). AC. output 18v. \(500 \mathrm{~m} / \mathrm{amp}: 50 \mathrm{v} .150 \mathrm{~m} / \mathrm{amp} 6 \mathrm{v} .250 \mathrm{~m} / \mathrm{A}\), \(3^{*} \times 2 \frac{1}{4}^{*} \times 2 \frac{1}{4}^{*}\) ex-equip. tested \(\mathbf{E 1} \mathrm{pp} 20 \mathrm{p}\) SIMPSON AUTO TRANSFORMER
\(240 \mathrm{v} / 110 \mathrm{v} 10 \mathrm{amp}\). \(91^{*} \times 10 \frac{1}{2}^{*} \times 10 \frac{1}{2}^{*}\)
£10 carriage £1-50
TEXAS INST. 2N3710/BC107 Trans
10p ea. min. 3 off pp 5p
TEXAS INST. ZENNER DIODE
\(56 \mathrm{v} \pm 2 \frac{1}{2} \% 10\) watts. 30 p pp 5 p
BECKMAN THERMOMETERS with switch.
calibrated \(0-100^{\circ} \mathrm{C}\). E4 pp 50p
OXLEY BARB INSULATED FEED THRO*
TURRET TAGS box 100 £1 pp 15p; \(15 p\) doz. pp 8p
GARRARD 2 TRACK TAPE DECKS MAG TYPE
\(230 \mathrm{v} . \mathrm{AC}\). 17 f ips. 50 v . solenoid operated brakes, deal for contin. tape players \(\mathbf{£ 7 \cdot 5 0} \mathrm{pp} \mathbf{£ 1} \cdot \mathbf{2 5}\) new RUBBER CABLE CONNECTORS
3 pin 5 amp non reversible 25p pp 8p
BELLING LEE in-line rubber covered interference suppressor 26p pp 8p
TELESCOPIC AERIALS
chromed \(7^{*}\) closed \(28^{\prime \prime}\) extended 6 section
ball jointed base 23p pp 8p new
MULLARD 4 DM160 INDICATORS
in plastic holder/cover ex-equip
size approx. \(1 \frac{z^{2}}{}{ }^{*} \times 1 \frac{1}{4}{ }^{-1} \times \frac{1}{2}{ }^{-1}\) 36p pp 8p
PRINTED CIRCUIT BOARD/19. ACY 19's:
10 OA200 Diodes: 1 reed relay: 10AZ 229 zenner ass capacitor/resistors. Power supply 22v. \(250 \mathrm{~m} / \mathrm{A}\) DC. Output 240v. AC. £1 pp 20p ex-equip
MALLORY ELECTROLYTICS screw terminals
25,000 MFD 25v DC 55,000 MFD 15v DC 40,000 . \(10 \mathrm{VDC} \quad 27,000\).. 15 v DC \(20,000 \quad\) 30vDC. \(37,500 " . " 15 v D C\) All at 50p ea pp 13p. Each condenser scr
PIEZO Dynamic Stick Mierophone
\(50 \mathrm{~K} \Omega\) complete B .5 mm
ack plug \(\mathbf{E 1} \cdot \mathbf{5 0}\) pp 10 p
TOGGLE SWITCHES Single pole Double Throw ex-equip new condition 50p doz. pp 13p
FIBRE GLASS TAPE 100 yd . roll: \(3^{*} 3 \frac{1}{2}{ }^{*}\) wide E1 per roll pp 20p
PAINTON type 159 series connectors working voltage 350 v AC/DC current max. 3 amp AC/DC 7 pin plug \& socket 50p pp 10p
15 pin plug \& socket £1 pp 10p
31 pin plug \& socket \(\in 1.50 \mathrm{pP} 10 \mathrm{p}\)
CASH WITH ORDER
```


FELDEEECTRCLTO.

SHENLEY ROAD, BOREHAMWODD, HERTS. Adjacent Elstree Mainilne Station Tel: 01-953 6009

APPOINTMENTS VACANT

DISPLAYED SITUATIONS VACANT AND WANTED: $£ 8$ per single col, inch.
LINE advertisements (run-on): 45p per line (approx. 7 words), minimum two lines.
Where an advertisement includes a box number (count as 2 words) there is an additional charge of 25 p .

Advertisements accepted up to
SERIES DISCOUNT: 15% is allowed on orders for twelve monthly insertions provided a contract
is placed in advance. Replies should be addressed to the Box number in the advertisement, c/o Wireless World, Dorset House, Stamford Street. London, S.E.1.
No responsibility accepted for errors.

THURSDAY, 12 p.m., 8th JULY, for the AUGUST issue, subject to space being available.

HUDDERSFIELD

RAMSDEM TECHNICAL COLLEGE

NEW NORTH ROAD, HUDDERSFIELD Principal: Dr. H. T. Taylor B.Sc., M.S:.(Tech.), F.R.I.C., M.B.I.M.

EDUCATIONAL TELEVISION SERYICE
Applications are invited for the post of LECTURER I

for the College E.T.V. Service

The person appointed will eventually be responsible for the organisation of E.T.V. in the College and will be expected to further develop the tse of the studio. He will assist develop the ise of the studio. He will assist being integrated into curriculum development programmes and therefore appropriate experience of studio procedures together with a flair for script writing for E.T.V. is desirable.
Salary (Burnham Scale) : Lecturer Grade I- $£ 1,230-£ 2,075$ p.a. (under review)
Additions may be given for approved qualifications and industrial experience.
Application torms and further particulars are obtainable from the Principal to whom applications should be returned within fourteen day: from the appearance of this advertisement. (Please quote R.T.C. I42). H, GRAY
Clerk to the Governors

The HATFIELD POLYTECHNIC

Senior

> Technician for PSYCHOLOGICAL LABORATORY

to be responsible for maintenance and construction of a variety of electronic and cther equipment. The post is a new one and offers scope for individual responsibility. Applicants should hold an appropriate National Certificate or City and Cuilds qualification. Salary scale: Grade T3/T4 £1089-£1515, according to experience and qualifications. Apply to the Secretary and Academic Registrar, The Hatfield Polytechnic, PO Box 105, Hatfield, Herts. Quote ref: $535 / \mathrm{WW}$.

The Royal Fleet Auxiliary

requires

Radio Officers

Rate of pay on entry depends on experience but as examples, a newly qualified officer would receive $£ 1116$ and one with 3 year sea-service would receive $£ 1656$.

Regular increments are awarded for Company service thereafter and there are excellent prospects for promotion into the Senior grade with salaries rising to $£ 3348$ per annum.

There are additional allowances for officers in possession of extra technical qualifications.

* Leave 116 days per annum served
* Paid study leave
* Generous sick leave and welfare arrangements.
* Non-contributory pension
* Special training courses on full pay
* Opportunities for wives to travel

The Royal Fleet Auxiliary is a career service offering an interesting and exciting way of life to young men of above average ability who seek a more challenging technical job at sea.

For further particulars, write or telephone:-

The Director of Fuel, Movements and Transport (Naval) 74A, Room 2125, Empress State Building, London SW6. Telephone: 01-385 1244 Ext. 3213

WORK AS A RADIO TECHNICIAN ATTACHED TO SCOTLAND YARD

You'd be based at one of the Metropolitan Police Wireless Stations. Your job would be to maintain the portable VHF 2-way radios, tape recorders, radio transmitters and other electronic equipment which the Metropolitan Police must use to do their work efficiently.
We require a technical qualification such as the City \& Guilds Intermediate (telecommunications) or equivalent.
Salary scale: $£ 1,161$ (age 21) rising by increases to $£ 1,590$ plus a London Weighting Allowance. Promotion to Telecommunications Technical Officer will bring you more.
For full details of this worthwhile and unusual job, write to :

METROPOLITAN POLICE

Room 733 (RT/WW), New Scotland Yard

Broadway, London, SW 1

or telephone 01-230 1212 extension 2605

UNIVERSITY OF BATH
 School of Chemlstry and Chemical Engineerlng
 EXPERIMENTAL OFFICERCOMPUTER SYSTEMS

(Re-advertisement)
Applications are invited for the above post, tenable within a group concerned with the development of computer-based systems for for the control and automation of laboratory experiments. This project is supported by the Science Research Council.
Duties include the design and construction of special-purpose electronic equipment and the development of on-line programmes for a PDP8/K70 computer system.

Candidates should possess a degree or equivalent qualification in a branch of Engineering or Physics. Practical experience in analogue and digital electronics, modern wiring and construction techniques is essential, whilst experience in computer systems and programming will be an advantage.

The starting salary for suitably qualified applicants will be within the range $£ 1,536$ £2,182.
Informal enquiries can be made of Mr. P. E. Sawyer, School of Chemistry and Chemical Engineering, (Bath 6941 Exten sion 501).

Application forms should be obtained from the Registrar (S), The University, Claverton Down, Bath, quoting reference 71/1(R).

1228

LEEDS (ST. JAMES'S) UNIVERSITY hOSPITAL MANAGEMENT COMMITTEE
 GRADE III MEDICAL PHYSICS TECHNICIAN

Interesting post in busy department. Applicants should have at least three years experience in electronics as applied to medicine. St. James's Hospital has recently acquired University status and the department is going through an intensive and the depolit the process of depm. regarded as Deputy
tronics Department.
Applications, stating, age, experience etc, and the names of two referees to the Group Secretary, St. James's Hospital, Leeds LS9 7TF.

1232

PLYMOUTH POLYTECHNIC

Department of Electrical and Electronic Engineering

The following vacancies exist in the Department of Electrical and Electronic Engineering:

SENIOR TECHNICIAN (2 posts)

Minimum qualifications are the successful completion of the Al year of the Higher Nationa Certificate in Electrical Engineering or the City and Candidates should have had experience of one of the following:
(a) Operation, maintenance and repair of all apparatus and equipment in the Television Transmitter Laboratory;
(b) Maintenance and repair of all apparatus and equipment in the Colour Television Engineering, Television Research and Development Laboratories.
Salary Scale: Senior Technician TIII £1,089-£1,272 p.a. plus additions for appropriate qualifications. Further particulars and application forms can be obtained from the Clerk to the Governors, Plymouth Polytechnic, Plymouth PL4 8AA, to whom they should be returned as soon as possible

CHALLENGING OPPORTUNITIES in CANADA

Radio and Electronic Technicians with a desire to see more of the world can find rewarding work with Canadian Marconi Company. Technicians are required for maintenance duties at remote sites in Labrador and the Northwest Territories.
Successful applicants will enjoy starting salaries of $\$ 8,400$ plus first class prospects for rapid advancement and further substantial rises during the first year. There are also genuine opportunities for promotion to supervisory grades with salary ranges of over \$14,000 per annum.
Food and accommodation is provided free for the employee (there is no family accommodation) in addition to heavy duty clothing. Assistance with air passage is available.
A chance of a lifetime is offered to accrue substantial savings.

Formal training and experience in maintenance of communicationstype equipment is required with special emphasis on:

Microwave

Tropospheric Scatter

 Communications Systems Telephone and Carrier (Multiplex)If you have three or more years experience in installation or maintenance on this type of equipment together with recognized qualifications, i.e. City and Guilds, Higher National or equivalent, the answer is YES! Interviews will be held in London in the near future. Please send brief career details to:
Canadian Marconi Company, Special Services Division, 2442
Trenton Avenue, Montreal 301, Quebec, Canada. Attention: Mr. D. S. Howell

* Salary up to $£ 2,165$
* Low taxation
* $\mathbf{2 5} \%$ gratuity on completion of $\mathbf{3 0}$ month tour
* Appointments Grant
* Contract 24 -36 months
* Education and outfit allowances
* Subsidised accommodation

Required to undertake the field training of local technical officers in all aspects of installation and maintenance of HF and VHF radio equipment particularly HF-Marconi; S.T. and C.; Plessey; Racal; VHF-GEC; Pye; A.T. and E. The officer selected may also be required to lecture at the Post Office Training School at a basic level on transmission principles. Candidates must hold appropriate City \& Guilds Certificates or an equivalent qualification and have considerable experience in the installation and mointenance of the above mentioned equipment.

[^17]

TECHNICAL SALES REPRESENTATIVE
COMPANY EXPANSION HAS CREATED A VACANCY FOR A TECHNICAL REPRESENTATIVE IN SOUTH LONDON. THE SUCCESSFUL APPLICANT WILL BE A PERSON OF PROVEN ABILITY WITH A WIDE DEGREE OF KNOWLEDGE IN THE TELECOMMUNICATIONS AND ELECTRONICS FIELD, AND ENGINEERING QUALIFICATIONS TO H.N.C. STANDARD. SALARY WILL BE NEGOTIATED ACCORDING TO QUALIFICATIONS AND EXPERIENCE. A COMPANY CAR IS PROVIDED AND SUPERANNUATION AND OTHER CONDITIONS OF SERVICE ARE GENEROUS.
APPLICATIONS GIVING DETAILS OF EDUCATION, EXPERIENCE AND QUALIFICATIONS TO BE FORWARDED TO:-

THE PERSONNEL MANAGER,
OXLEY DEVELOPMENTS COMPANY LIMITED, PRIORY PARK, ULVERSTON. NORTH LANCASHIRE.

1. Ministry of Defence (Air Force Department) require

CIVILIAN INSTRUCTORS (Male)

in the trade of Electronic Fitter (RADAR) at RAF Sealand, Deeside, Flintshire.
2. Candidates must be BRITISH SUBJECTS. Training in the appropriate subject, practical experience and ability to teach essential. Salary $£ 1265$ rising to $£ 1960,5$ day week, and 3 weeks and 3 days annual leave. Appointments unestablished but prospects of becoming pensionable. Write (preferably on a postcard) for application forms to Ministry of Defence CM(S)1m, Lacon House, Theobalds Road, London WC1X 8RY quoting Civ/Ins C.
Completed application forms must be returned by 16 July 1971.

Director of Electronics

Cambridge Consultants, the independent contract R \& D Company with a remarkable growth history, require an exceptional Director designate to lead the future expansion of the Electronics Group. The vacancy arises because of a return to University teaching.
Interest and experience in a wide range of electronics activities is essential since the man appointed will be leading a group working on: Precision Analogue Circuit design, Signal Analysis, R.F. and microwave circuits and systems, picosecond pulse techniques, digital techniques and systems engineering.
The successful applicant will have a proven record of team leading ultimate technical responsibility for projects handled and the ability to sell the services of such a group to external clients. He will probably be between $30-35$ and salary will be negotiable up to $£ 3.5 \mathrm{k}$ p.a.
Apply in first instance to
Cambridge Recruitment Consultants
8a Rose Crescent, Cambridge
Telephone 022364936

CITY OF LONDON POLYTECHNIC TECHNICIAN FOR BEHAVIOURAL RESEARCH

He will join a young expanding department of Psychology. The work entails supervision of student laboratory equipment and participation in the design and construction of apparatus for research projects. He should have some experience of electronics and the ability to deal with a variety of electrical and mechanical jobs.
Salary, subject to appropriate qualifications, is in the range of $£ 1,092$ - $£ 1,461$ (plus $£ 126$ London Weighting) and there is the possibility of early advancement to a more senior grade for the right man.
Applications giving age, education, qualifications, experience and present salary should be sent to Dr. D. Legge, Dept. of Psychology, City of London Polytechnic, Central House, Whitechapel High Street, London, E1 7PF.

SENIOR ELECTRONICS TECHNICIAN

Required in the Department of Electron Physics and Space Research for work on the development and construction of electronic apparatus to be used in automated equipment being developed for the examination of cervical smears for precancerous conditions. The post is available under a grant from the Cancer Research Campaign and is, initially at least, for one year.
Salary: $£ 1,398$ to $£ 1,707$.
Qualifications: HND (Electronics) or evidence of equivalent standard preferably with experience of high speed digital circuitry.
Apply: Assistant Secretary (Personnel), University of Birmingham,
P.O. Box 363

Birmingham' 15 2TT.
Ref: 105/B/760.

AUDIO TESTERS/ TROUBLE SHOOTERS

Required for interesting position in electro-musical equipment. Audio amplifiers of up to 100 watts. Echo Units (Copicat) $5 / S$ and valve, etc. Please phone in first place. WEM L.d., 66 Offley Road, London, S.W.9. 735-6568.

1179

TANDBERG

require experienced tape recorder engineers in North London.
Please phone Service Manager
LEEDS (0532) 35111 for further detalls.
1204

SERVICE ENGINEER FOR YAMAHA ORGANS

To set up and manage Service Department at Importers' Head Office in Bletchey. Instruction in the finer points will be available from the makers. Apply: Mr. Carr, Kemble (Organ Sales) Ltd. Mount Avenue, Bletchley, Bucks. Tel. No: Bletchley (09082) 5211.

Sea-going Radio Officers can now make sure of a shore job and good pay.

If you'd like a job ashore, at a United Kingdom Coast Station, the Post Office will start you off on $£ 1,080-£ 1,360$, depending on age, with annual rises up to $£ 1,850$. There are good prospects of promotion to higher posts, opportunities exist for overtime and you would receive additional remuneration for attendance during the late evenings, at night and on Saturday afternoons and Sundays.

You will need to be 21 or over, with a 1st Class Certificate of Competence in Radiotelegraphy issued by the Postmaster General or the Ministry of Posts and

Telecommunications, or a Radiocommunication Operator's General Certificate issued by the Ministry of Posts and
Telecommunications, or an equivalent certificate issued by a Commonwealth administration or the Irish Republic.

Find out more by writing to: The Inspector of Wireless
Telegraphy,
I.M.T.R.

Wireless Telegraph Section (L. 4 .) Union House, St. Martins-le-Grand, London, EC1A IAR.

ASSISTANT ENGINEERS GRADE II-BOTSWANA

\star Salary up to $\mathbf{£ 2 , 3 8 7}$
Ł 25\% gratuity on basic salary

* Low taxation
\star Appointments grant payable in certain circumstances
* Contract 24-36 Months
\star Subsidised accommodation
\star Education Allowances

Required by the Posts and Telecommunications Department for the following posts:-
(i) the installation and maintenance of HF and MF broadcasting equipment up to 10 KW .
(ii) the installation and maintenance of open-wire carrier systems up to and including 12 channel systems and multiplex equipment.
The selected officers will also be required to supervise and train local technical staff.
Candidates should be aged 30-45 and must possess the City \& Guilds Intermediate Certificate (Telecommunications) or equivalent and have had five years experience, excluding any period of approved training, or relevant duties.

Apply to CROWN AGENTS, ‘M’ Division, 4 Millbank, London, S.W. 1 for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference number M2K/690420/WF.

THE POLYTECHNIC OF NORTH LONDON

Holloway, London, N7 8DB
Applications are invited for the following full-time appointments to commence in September, 1971 :

SENIOR LECTURER in ELECTRONICS and COMMUNICATIONS ENGINEERING LECTURERS II in ELECTRONICS and COMMUNICATIONS ENGINEERING

The courses cover C.E.I. Parts ! and II and full-time H.N.D. in Electrical and Electronic Engineering Applicants should have specialist knowledge in one of the following subjects:

COMPUTERS AND COMPUTER AIDED DESIGN COMMUNICATIONS
ELECTRICAL POWER ENGINEERING
ELECTRICAL AND ELECTRONIC MEASUREMENTS SYSTEMS ENGINEERING

SALARY SCALES (under review):
Senior Lecturer: $£ 2,537 \times £ 65 \times £ 2,732 \times £ 70 \times £ 2,872$ plus $£ 85$ London Allowance
Lecturer II: $£ 1,947 \times £ 59 \times £ 2,537$ plus $£ 85$ London Allowance
Apply (stating post in which interested) for application form and further particulars to the Secretary, The Polytechnic of North Londion, Holloway, N7 8DB.

FLEET PERSONNEL SERVICES

have urgent vacancies for TEST ENGINEERS

With Communication Equipment Experience
These are permanent positions in South London, and vacancies exist for all grades. For details of these and many other vacancies in South London and the Home Counties phone or write

Fleet Personnel Services Ltd. 2 Victoria Road, Fleet, Hants.

Fleet 21551
1238

RADIO OPERATORS

DO YOU HOLD

PMG II OR PMG I OR NEW GENERAL CERTIFICATE OR HAD TWO YEARS' RADIO OPERATING EXPERIENCE? LOOKING FOR A SECURE JOB WITH GOOD PAY AND CONDITIONS?

Then apply for a post with the Composite Signals Organisation-these are Civil Service posts, with opportunities for service abroad, and of becoming established, i.e. non-contributory pension scheme.

Specialist training courses (free accommodation) starting January, April and September, 1972.

If you are British born and resident in the United Kingdom write NOW for full details and application form from

Recruitment Officer, Government Communications Headquarters, Oakley, Priors Road, CHELTENHAM, Glos. GL52 5AJ.
(Telephone: Cheltenham 21491, Ext. 2270)

UNIVERSITY OF SURREY VISUAL AIDS TECHNICIAN-PROJECTIONIST

There is a post vacant in the Audio Visual Aids Unit for a young man or woman who wants to make a career in this expanding field of Educa tional Technology. The Unit is well equipped with modern apparatus in a new building. The post offers a wide variety of activity in film projections, audio and electronics, CCTV and light workshop practice. Experience in one or more of these fields is an advantage, although training in specific techniques will be given where necessary.
The appointment will be made at Technician ($£ 1,041-£ 1,410$) or Senior Technician ($£ 1,398$ $£ 1,707$) level. There are generous holidays. Promotion prospects are good for those showing initiative, skill and responsibility.
Applications are invited immediately, on forms to be obtained from the Staff Officer, University of Surrey, Guildford.

RADIO ENGINEER

(Aircraft Radio Design)
to carry out design, specification and draughting of complete airciraft radio installations, and to work closely with installation teams.

Previous design experience is not essential but applicants must have had several years' practical installation experience on a variety of aircraft types.

Please apply to the:
Personnel Officer,
FIE LD AIRCRAFT SERVICES LTD.
East Midlands Airport,
Castle Donington, Derby, DE7 2SL
1259

CITY OF LEICESTER POLYTECHNIC
 School of Electronic and Electrical Engineering
 LECTURER IN ELECTRONICS or COMMUNICATION ENGINEERING

Required for courses including degree course in Electronic Engineering. Degree qualification essential; industrial, research or teaching experience in Electronics, Digital Electronic Systems, Communication Engineering, or Computer Aided Design desirable. Research and Consultancy encouraged. Opportunity to join a research group encouraged. Opportunity to join a research group
studying applications of a small computer in a studying applications of
communications system.

Salary (under review): £1,947 to $£ 2,537$ per annum.
Apply for further particulars and application form to: Chief Administrative Officer (Dept. Est.), City of Leicester Polytechnic, P.O. Box 143, Leicester, LE1 9BH.

Quality Assurance Engineers © Technicians

Marconi Space and Defence Systems Limited at Portsmouth are Britain's major satellite manufacturer. They also design advanced weapon and communication equipment.
Over the next few months we are going to need more Quality Assurance Staff to ensure the equipment, to be produced against our growing order book, is delivered on time.
Equipment is normally produced in very small numbers, often one-offs. Successful candidates for the Engineer positions will be expected to advise development staffs on design features and testing methods to be used, as well as participating in equipment testing.
Applicants should have had at least one year's experience in similar fields, those with microwave or test equipment experience would be particularly welcome.

Marconi Space \& Defence Systems

Please write or phone for application form to: R. Wilding, Recruitment Officer, Marconi Space and Defence Systems Limited, Applied Electronics Laboratories, The Airport, Portsmouth, PO3 5PH Telephone: Portsmouth 63211 Ext. 73

PORTSMOUTH

THE WORLD'S FINEST PROFESSIONAL PORTABLE TAPE RECORDER

Junior Service Engineer

An excellent opportunity has arisen for a young engineer to work in our London Service Department. The succesful applicant will be an enthusiastic and diligent worker with a good understanding of basic tape recorder principles and a standard of workmanship consistent with the quality of the product.
Good salary and conditions.
Existing holiday arrangements honoured.

Please send full details in writing to:-
MANAGING DIRECTOR,
HAYDEN LABORATORIES LTD., East House, Chiltern Avenue, Amersham, Buckinghamshire

One year's electronics experience

Then become a Radio Technician with the National Air Traffic Services. You would work on the installation and maintenance of a wide range of sophisticated electronic systems and specialised equipment throughout the U.K. You would be involved with RT, Radar, Data Transmission Links, Navigation Aids, Landing Systems, Closed Circuit T.V. and Computer Installations. You could also work on the development of new systems.

To qualify for entry to our training course you must be aged 19 or over, have at least one year's experience in electronics and preferably O.N.C. or C. \& G. (Telecoms). Your starting salary would be $£ 1,143$ (at 19) to $£ 1,503$ (at 25 or over), scale max. $£ 1,741$ - shift duty allowances. Good career prospects.

Send NOW for full details of how you can become a Radio Technician. Complete the coupon and return to A. J. Edwards, C.Eng., MIEE, Room 705, The Adelphi, John Adam Street, London WC2N 6BQ. marking your envelope 'Recruitment'.

I meet the requirements, please tell me more about the work of a Radio Technician.

NAME
ADDRESS \qquad
(A/ww/16)
Not applicable to residents outside the United Kingdom.

BACPreston Division

RADIO PERSONNEL

NEVE ELECTRONIC LABORATORIES LTD.

Specialising in the design and manufacture of sound control consoles and the supply of complete installations for professional sound studios in the fields of recording, broadcasting, television and films, require a:

SENIOR TEST ENGINEER

to accept responsibility for projects during the test and studio commissioning stages. Must be experienced in customer relations.
Attractive salary negotiable at interview.
Apply to: Personnel Manager,
Neve Electronic Laboratories Ltd., Melbourn, Royston, Herts.
Tel: Melbourn (Cambs) 776
A UDIO-VISUAL ENGINEER required for varied duties applicants with documented previous experience in the operation of professional motion picture and/or audio equipment. Company supplied vehicle but clean driving $£ 1,200-£ 1,400$ according to qualifications. Age 20-35 Box WW 1233. Wireless World.
D RAUGHTSMEN. Mechanical and Electrical required lighting control and audio visual products. This position is salaried and gives ample opportunity for advance ment. Please apply tectrosoncs Road, Greenwich, London, S.
EXPERIENCED Electronics Test and Service Engineer E for work on professional sound recording and film equipment. Progressive appointment, good salary and working conditions. Apply in writing stating qualifications and experience in detail to Mr. R. M. Wardrop Brentford, Middx.
HANIMEX (UK) LIMITED, require Audio Engineer according to experience Please contact Sectice Salary ager, Hanimex (UK) Ltd., 15-24 Gt. Doves Street London. S.E.1. Tel.: 01-407 8161. [1225 SALESMAN with good connections with wholesale Required by Hill Bros., 11 Finsbury Square. London. E.C.2., importers of electronic equipments and parts. Tel.: 01-606 4558.
$T V$ Retail Business of the highest standing. estabquires PERSONAL ASSISTANT with servicing experience. Good position and prospects for keen and capable man. State age and detalls of experience. Box WW

UNIVERSITY OF OXFORD, Department of Nuclear Physics, has a vacancy for a Senior Technician to join a group designing building and maintaining advanced experimental electronic equipment for use
by researchers in nuclear structure employing a twenty million volt accelerator. Experience in electronics is essential and a formal qualification an advantage. Starting salary in the range $£ 1,305$ to £ 1,712 with six weeks pald leave per year. Write to T. L. Green, Nuclear Physics Laboratory, Keble Road,
Oxford. Mentioning Reference A.133.

[^18]COLOUR TEIEVISION components for the home constructor, all parts listed in new specialist cataXtals. etc. S.A E. to Forgestone components. Ketteringham, Wymondham, Norfolk. [1254
COLOUR TV RECEIVER, less tube and deflection Cassemblies, pased on W.W. design can be seen working. £50. Harlow 27369.
D.C. PRE-RMP by Southern Instruments. Ltd also F.M. Pre-arap in new condition hum correctors. 10 Ripon Road, Nottingham, NG3 7FQ. ${ }_{[1241}$
New catalogue No. 18, containing credit vouchers surplus electric End mechanical components, price 22 p p, post free. Arthur Sallis Radio Control Ltd., 28 Gardner Street, Brighton. Sussex. [94

COURSES

London Borough of Havering havering technical college

FULL-TIME COURSE IN

 RADIO, T.V. AND ELECTRONICSA one year full-time course of theoretical and practical work on Radio, Monochrome and Colour T.V. Electronic Test Equipment, etc. No fees are payable for students under 18 years of age. For further particulars write to:

The Principal,
Havering Technical College, Ardleigh Green Road, Hornchurch, Essex, R'M11 2LL.

ARTICLES FOR SALE

17" BBC/ITV

TELEVISIONS £5

Working perfectly

PLUS P. \& P. $£ 1.00$
SUITABLE FOR ANY AREA
3 Channel 19" D/S TVs. ITV, BBC 1, BBC 2, £25 inc. carriage. 17" 13 Channel, complete but untested, $\mathbf{f 1} \mathbf{5 0}$ each, plus $£ 1$ P. \& P.

SPEAKERS

6" $\times 4^{\prime \prime}, 7^{\prime \prime} \times 4^{\prime \prime} 30 \mathrm{HM}$,
20p plus 8p P. \& P. each.

TRADE TV's

407 Thornton Road, Girlington, Bradford 8, Yorks.

SILICON RECTIFIERS

1000 PIV 10A Stud

800 PIV 10A Stud 200 PIV 10A Stud 600 PIV 1A Wire Ends 400 PIV 1A Wire Ends 200 PIV 1 A Wire Ends 200 PIV 1 A Wire Ends Germanium 50 PIV 1A Stud 60 watt CD Ignition Trans .. 3p each Efficiency Ferrite Model 2 .00 each post High B. M. SANDALL
AMBERCRAFT • HIGHAM

ELECTRONIC EQUIPMENT

Oscilloscope Philips PM3230 0-10 MHz 4 months old. $\mathbf{5 1 4 0}$ Oscilloscope Cossor 1049 D/B. $£ 30$
Oscilloscope Tele equipment $720 \mathrm{~S} / \mathrm{B} .0-6 \mathrm{mHz}$ T/B $1 \mathrm{uS}-50 \mathrm{~ms}$. 635
Oscillator Marconi TFIIOI $20 \mathrm{~Hz}-200 \mathrm{KHz}$. $£ 70$ Oscillator Philips GM23I5 $20 \mathrm{~Hz}-250 \mathrm{KHz}$. $\mathbf{6 2 0}$ Oscillator Furzehill $64251 \cdot 4 \mathrm{~Hz}-30 \mathrm{KHz}$. $£ 15$ Oscillator Dawes Audio Sweep Oscillator $20 \mathrm{~Hz}-20 \mathrm{KHz}$.
Aen Recorder Ether Potentiometric 6 point 10^{0} Chart
$0-5 \mathrm{mV}$ F.S.D. Chart Speed 4^{*} and $12^{*} / \mathrm{Hr}_{\text {. }} \mathrm{\&} 120$號 4 and $2 / \mathrm{Hr}$. 120
Pen Recorder Ether Potentiom
$0-12 \mathrm{mV}$ F.S.D. $\mathbf{I}^{\eta} / \mathrm{min}$, f 60
Pen Recorder Cambridge Type ' L ' Potentiometric
 $7^{\prime \prime}$ Chart Speed $1^{*} 2^{*}$ and $4^{\prime \prime} / \mathrm{Hr}$. 495
Pen Recorder Cambridge Potentiometric Electronic
6 point $0-100^{\circ} \mathrm{C}$ Chart width 7^{*} Chart Speed $\mathrm{H}^{\circ} / \mathrm{Hr}$. 6 point $0-100^{\circ} \mathrm{C}$ Chart width 7^{*} Chart Speed $1 \% / \mathrm{Hr}$.

Pen Recorder Record Moving Coil 3"
F.S.D. Chart Speed $1^{\prime \prime}$ and $6 * / \mathrm{Hr}$ E45
Air Capacitor Sullivan Var X6F 50uuf-610uuF c/w
Calibration Chart 45
MARTIN ASSOCIATES:
PHONE ARBORFIELD CROSS 610
1246

PLAYBACK MACHINES

2 watt, 4-valve amplifier with volume and tone controls and $7 \mathrm{in}. \times 4 \mathrm{in}$. W-ohm speaker. Deck contains single a.c. motor. All mounted in polished wood case size 13 t in. $\times 14 \frac{1}{2}$ in. $\times 9 \frac{1}{2}$ in. Formerly used as talking books for the blind, these units (80 p each), or converted to record players or conventional tape recorders. E4 carriage paid. Amplifier only, 62 carriage paid.
GREENWELD, 24 Goodhart Way, West Wickham, Kent. Callers welcome. Telephone Wickham, Kent.
$01-777200 \mathrm{l}$ first.

Electronics at The Open University

Catch up in your spare time by studying at home a new. introductory university course in Electromagnetics and Electronics which the Open University is offering in 1972.

Accepted students each receive an oscilloszope, and other equipment, to augment tuition by text, tutor, TV and radio. Whilst applicants are expected to have a scientific or technical background, no formal qualifications are needed.
Further information can be obtained by writing to
G. A. H. Kiloh,

0
The Open University
Walton Hall, Bletchley, Bucks.

TELEVISION AND RADIO TRAINING

(DAY ATTENDANCE COURSES)

This private College provides theoretical and practical training in Radio and TV Servicing. Courses of one year's duration, with daily attendance, are available for beginners and shorter courses for men with previous training in Electronics and Radio. Training courses in Radar and Radio Transmission are also available following the TV course. Write for prospectus to: London Electronics College, Dept. B/5, 20 Penywern Road, Earls Court, London, S.W.5. Tel. 01-373 8721.
$S^{\text {IMULTANEOUS }}$ translations? 4-channel equipment S for sale. Primavesi, 8 Salisbury Street, Liverpool,
Lis
8DR $\mathbf{V}_{\text {spectrophotometers/ovens, }}^{\text {ACUUM }}$ pumps, coating plarometers, recorders ${ }_{\text {Free }}$ catalogue. Barrett 1 Mayo Road, Croydon, CRO 2 QP , Surrey

$\mathbf{V}_{\text {remarkable }}^{\text {HFe }}$ 80-180 mHz Receiver, Tuner, Converter Kit,
 complete or S.A.E.
(Radio), Worcester
$\mathbf{W}_{3150}^{\text {AVEMETER }}{ }_{\text {MFZ }}^{165}$ TS 288 Resonant cavity 2910 to 35 HZ to 5 MHZ TF 885 VIdeo Oscillator output sine
25 MH siare 25 HZ to 150 KHZ . 1 Millivolt
 $\begin{array}{lllll}\text { to } 31-6 & \text { volts } & \text { £25 } & \text { S. Band WM CO-AX } \\ \text { type } \\ 8 & \text { to } & 11 & \text { Transmission } \\ \text { Rotary converters } 24 & \text { volts DC in }\end{array}$ ${ }_{250}$ volts and 6 volts out. $01-8921217$ Strataco. 61 Arragon Road, Twickenham, Middx. ${ }_{[1240}^{61}$ 8 -TRACK paper-tape photoelectric reader, Teletype ferrite core store, central processer and disk in various ferrite core store, central processer and disk in various Stepper motors, tape heads, 6 ft . rack and large numbers of ICs. $01-2626058$ after 6 p.m.
$60 \mathrm{kc} / \mathrm{s}$ Rugby \& $75 \mathrm{ke} / \mathrm{s} \mathrm{HBG}$ Neuchatel Radio Reunits, $£ 35$. Tholex, 6 Warwick Close, Hertford (4856).

TEST EQUIPMENT SURPEUS
 AND SECONDHAND

$\mathbf{S}_{\text {IGNAL generators, oscilloscopes. output meters, wave }}^{\text {voltmeters, }}$ voltmeters, frequency meters, muliti-range meters.
etc., etc., in stock.
R. T. $\&$ I. Electronics, Ltd., Ashvilie Old Hall. Ashvilie Rd.. London, E.11. Ley. 4986

RECEIVERS AND AMPLIFIERS -
 SURPLUS AND SECONDHAND

 Ashville Old Hall. Ashville Rd., London, E.11.
Le86.
[65

NEW GRAM AND SOUND

 EQUIRMENT$\mathbf{G}_{\text {cameras, }}^{\text {LASGOW, - Recorders }}$ bought, $\begin{aligned} & \text { sold, exchanged; }\end{aligned}$ cameras, etc.. exchanged for recorders or vice-
versa.-Victor Moris, 343
Argyle
St., Glasgow,
C.

TARERECORDING ETC.

[^19]
FOR HIRE

FOR HIRE CCTV equipment, including cameras, monitors, video tape recorders and tape-any period.

ARTICLES WANTED
 Highest CASH PRICES for Revox, Ferrograph,

 [102Wanted, all types of communications receivers Electronics, Ltd. Ashille Old Hall, Ashvilie Rd., LonElectronics, Ltd., Ashville Old Hall, Ashville Rd., Lon Wanted, televisio
, recorders, radiograms High
St.,
West
Wromwich, Stafis.

 $\mathbf{W}^{\text {E b }}$ buy new valves, tranststors and clean new comquotation by byents, large or small quantities. all detatls,

 quotation by return.-Walton's Wireless Stores, ${ }^{5}$ [62Worcester
St.

SERVIGE \& REPAIRS

INSTRUMENT SERVICING AVO, Taylor, etc., multimeters, meggers, signal generators, etc. Quick and brated, collection locally, V. W. \& E. Smith, 69 Chest nut Drive. Leigh 6674 Lancs.

CAPACITY AVAILABIE

A $^{\text {IRTRONICS LTD., for Coil Winding-large or small }}$ production runs. Also PC Boards Assemblles. Sup pliers to P.O., M.O.D., etc. Export enquirles welcomed CoIL winding capacity. Transformers, chokes R.F. coils, etc., to your speciffcation. Sweetnam \& Brad ley Ltd., Bristol Road, Malmesbury, Wilts,, or Tel Malmesbury 3491.
$\mathbf{D}_{\text {duction of dele electronic equipment, low rates. ymall pro- }}^{\text {ESIGN }}$ duction of electronic equipment, low rates. YOUNG ELECTRONICS, 54 Lawford Rd., London, N.W. 5 . 01-267 0201.
[1057
$\mathbf{M}_{\text {etc., to your }}^{\text {ETAL }}$ your own specification, capacity avallable for smail to your own specifacation, capacity available PHILPOTT'S METALWORES, Lt., Chapman St.
TRENT TRANSFORMER CO. One off-1,000 off. Openshrouded. Built to your specification. Prototypes despatched in 10 days. Power supplies (simple and
stab'd)
Wonallable ham 06076-66716. Wodsock Road, Noon, Not [1234

TURNED parts, automatic capstan capacity available approved.-Desmond Engineering. Combe Martin Devon. Combe Martin 2412. [1036
\mathbf{W}^{E} can assist you by manufacturing p.c.bs, control tronic Allied Compansembiles, short and long runs. Electronic Alied Components Ltd, BCA Estate, Measham,
Stafts. Telephont: Measham 8225 .
\mathbf{W}^{E} undertake the manufacture of transformers sork suargy or in quantities to any specification. Au work guar anted hor 12 months.-Laabroke Mransiormer Te. Ltd., $01-969{ }_{0914}^{820 a}$. Harrow Road, Kensal Rise, N.W. 10.

A.M.S.E. (ELEC.), City \& Gullds, R.T.E.B. Cert., Refund" terms. Wide range of Courses in Elec. Engin. eering, Desiga, Installation, Repairs, Refrigeration, Electronics, Radio \& TV, etc. Send for full details and llustrated book-FREE-BRITISH INSTITUTE OF maston Court, Reading RG7 4PF. Dept. 152K, Alder-
$\mathbf{B}^{\text {ECOME }}$ "Technically quallfed" in your spare time, guaranteed diploma and exam. homestudy courses in Gadio, TV servicing and maintenance. R.T.E.B., City \& -Chambers College (Dept. 837K), Aldermaston Court, Reading RG74PF.
TECHNICAL TRAINING in Radio, TV and Electronics home-study courses write. ICS Dept 443 interte home-study courses write: ICS, Dept. 443, Intertext
House. London, S.W.8.

TUITION

HuNDREDS of top paid jobs in Engineering await 1 qualifled men. Get a certificate through B.I.E.T Home Study-Mech., Elec., Auto.' Radio, TV, Draughts., FREE book.-B.I.E.T., Dept. 151 K , Aldermaston Court, Reading RG7 4PF.
MEN! You can earn £50 p.w. Learn Computer Computer Operations Training Centre, C.96, Oxford House, 9-15 Oxford Street, London, W.1.

[^20]
DESIGNER-APPROVED "W.W." HI-FI KITS

\star LINSLEY HOOD MODULAR PRE-AMP

July 1969 no-compromise design for the purist. Compactly built on Lektrokit. Layout details. Kit price from $\mathbf{8 7 . 4 0}$ (mono, mag.p.u. +2 I/P.s).
Dec. 1970 mods. for pre-amp and 10 w amp available.

* LINSLEY HOOD SIMPLE PRE-AMP

Designer-approved PCB (marked component locations) gives excellent results with ceramic pick-up. Kit includes all parts as in May 1970 article plus front panel. Mono 66.35. Stereo El 1 l 50 inc. p.p.

* BAILEY 30W AMPLIFIER (Nov. '68)

Mk. IV PCB has extra pre-set for quiescent current. Output capacitor and PCB mount directly and compactly on specially designed generous heat-sink.
\& LINSLEY HOOD I5-20W AMPLIFIER
July 1970 latest and ultimate design. O/P capacitor, PCB, $\mathrm{Tr} 3,4$ \& 5 mount compactly on to heat-sink. Our kit personally tested and approved by the designer. Gain of O/P Tr's >100.
POWER SUPPLIES (simple and stab'd) available.
HIGH QUALITY components inc'g Mullard, Hunts, TCC capacitors, Plessey moulded pre-sets. O/P Tr's matched $\pm 10 \% @ I c=1$ amp.
AFTER-SALES SERVICE at reasonable cost.
REPRINTS of any one article at 30p
DETAILED PRICE LISTS at 5 p inc. p.p.
PERSONAL CALLERS WELCOME-BY APPOINT. MENT. DESPATCH BY RETURN

A. 1 FACTORS

72 Blake Rd., Stapleford, Nottingham
Tel: Nottingham 46051 Giro No. 4876008 (8 a.m. 10 p.m. 7 days/week)

FM TUNER NELSON-JONES

Approved parts for this outstanding design (W.W. Aprill971).
Featuring $0.75 \mu \mathrm{~V}$ sensitivity. Mosfet front end. Ceramic I.F. strip. Triple gang tuning. $\frac{1}{2}$ V r.m.s. output level, suitable for phase locked decoder, as below.
Designer's own P.C.B.
All parts including P.C.B. S.A.E. please lists.
PHASE LOCKED STEREO DECODER
PORTUS AND HAYWOOD
Approved kit for this superb decoder (w.w. Sept. 1970).
Featuring 40 dB separation up to 10 kHz . Low distortion. Negligible spurious tones (birdies). Simple setting up. Suitable for wide variety of tuners including the NELSON-JONES TUNER as above.
Complete kit £8-97, p.p. \& ins. 15p
plus stabilised P.S.U. kit for decoder plus tuner.
£3.55, p.p. \& ins. 18p
INTEGREX LIMITED
P.O. BOX 45 DERBY DE1 1TW

UNISELECTORS AVAILABLE FROM STOCK: ${ }^{3}$ LEVEL, ${ }^{\text {4 LEVEL }}$ LEVE, MICROAMMETERS AC SANGAMO WESTON MOVING COIL RECTIFIER
 page instrument list now available. SPECIAL OFFER One hole fixing switches, double pole onjoff ${ }^{3}$ amp. 250 v. $\mathbf{L 1 . 5 0}$ per 10 . Post 15 p .
GEARED, MOTORS. I I.p.m. or ${ }^{3}$ r.p.p.m. ${ }^{1}$ wates very powerful, reversible 24 tr .
MINIATURE DIGITAL INDICATOR, size of digit in., $28 \quad v$. lamps. 0 through 9 with right and left hand decimal points, quick disconnect at rear
for easy lamp replacement, when one of the twelve lamps at the rear of the unit is lighted, the lamp projects the corresponding digit on the condensing lens 62.50 each.

$$
\begin{aligned}
& \text { EQUIPMENT WIRE P.V.C. covered t4 per } 1,000 \text { yds. } 7 / .0076,141.0048 \\
& \text { type I and 2, all colours. } 14 / 0076 \text { type } 11 \text {, Red and Natural only } \& 10 \text { per } 1,000 \text { yds. } \\
& \hline
\end{aligned}
$$

MINIATURE BUZZERS, 12 volts, with tone adjuster 40 peach as illustrated. ways on a 4-core cable. Carries voice loudly and clear over long distance. Two hand-sets supplied with pushes, buzzers, battery, plugs and sockets, 4 . wore PER MINUTE. 6 Figures. General Purpose Type. 110 v. A.C. 45 posist 20p. SEND FOR NEW LISTS OF RELAYS, POTENTIOMETERS, WIRE WOUND SWITCHES,SEMICONDUCTORS.WE ARESTOCKISTS Nos: ${ }^{\text {O }}$ 'IIO AND 12, DETAILS
high speed counters
31 in. $\times 1$ in. 10 counts per second,
with 4 figures. The following $D . C$. voltages are availab
24 v . 50 v ., or 100 v .
Also supplied with auxiliary contacts.

L. WILKINSON (CROYDON) LTD. longley house longiey rd. crovdon surrey

Grams: WILCO CROYDO

We are a Polish company exporting high stability electronic components which have good mechanical characteristics and long life expectancy.

Valves

Electron Guns

TV Picture Tubes

Sub-assemblies

Tape Recorder Heads
We can offer production capacity and the ability to produce tape recorder heads to meet our customers' own specifications.

EXPORTER:

Elektrim

Polish Foreign Trade Company for Electrical Equipment Ltd.
Warszawa 1. Czackiego 15/17, Poland. Telegrams: ELEKTRIM-WARSZAWA,

Phone: 26-62-71, Telex: 814351 P.O. Box: 638

If you are interested, please send for catalogues and quotations.

LAWSON NEW TUBES

Lawson "Century 99" are brand new tubes. Using silver activated screens, micro fine aluminizing, high definition electron guns. resulting in superb performance and very long life.

LAWSON TUBES I8CHURCHDOWNRD. MALVERN, WORCS.
Telephone:MALVERN 2100

19 "		$\pm 7 \cdot 25$
$21^{\prime \prime}$		
23"		
19'	TWIN PANEL	£10.25
23 "	TWIN PANEL	£15.50
19"	PANORAMA	
20"	PANORAMA	E9

WW-082 FOR FURTHER DETAILS

CASH IMMEDIATELY AVAILABLE for redundant and surplus stocks of radio, television, telephone and electronic equipment, or in component form such as meters, plugs and sockets, valves, transistors, semi conductors, capacitors, resistors, cables, copper wire, screws and nuts, speakers, etc.
The larger the quantity the better we like it.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, London, N12.
Telephone: 014452713014450749
Evenings: 019587624

TELEVISION TUBES

REBUILT TUBES
Lawson "Red Label" rebuilt crts are particularly useful where cost is a vital factor such as in older sets or rental use. Red Label are completely rebuilt from REBUILT selected glass and are exact TUBES replacements. 4" 84.25

2 years Guarantee both new and rebuilt FULL TUBE FITTINGS INSTRUCTIONS SUPPLIED CARR.INS.EYEXPRESS PASSENGER 14-19" 62p 21-23" 75p

- DUMET-_FULLSPEC.			
	1-24	25.99	$100+$
Nixie Tubes-End View High			
74NTTL" Gates: 7400, 10,20 .	20p	18p	
			Pf
Dec./Drivers: 74141, 7442	$85 p$	75p	65 p
Counters: 7490, 7492, 7493	$85 p$	75p	65p
Quad Latch: 7475	45p	43p	41 p
Flip Flops: 7470,7472	34 p	$3{ }^{39 \mathrm{p}}$	28p
Dual F/Fs: 7473,7474, $7476 \ldots$	${ }^{44 \mathrm{p}}$	39p	38p 28p
Memories: 7481 .	¢1.32	$\underline{61.22}$	11.12
Adders: 7480, 7483	85p	75p	65p
Exclusive or Gate: 7486	${ }^{78} \mathrm{p}$	70p	59p
OP. AMPS			
709 C (TO5) \quad.	${ }^{50 p}$	43p	39p
PLUS Beautiful TTL wall ehart free with every I/C order.			
Torms: Cash with order. M	"order	50p. P. \&	P. 10p.
U.K.; 25 p Eurape; 60 p Overseas.			
PRODUCTS			

$6^{\prime \prime W} \times 4^{\prime \prime} H \times 4^{\prime \prime} \mathrm{D}$

WE BELIEVE THE FINEST INSTRUMENT CASE IN THE COUNTRY. BEATS ALL COMPETITORS FOR PRICE AND STRENGTH.
FIBREGLASS PRESS MOULDED IN GREY, AND BLUE. SUPPLIED WITH 4 RUBBER FEET, 18 SWG ALLOY CHASSIS, 16 SWG ALLOY FRONT PANEL. FRONT PANEL HAS PROTECTIVE FILM FOR MARKING OUT AND PROTECTION. CHROMED DIE CAST HANDLE. THE CASE HAS TWO SETS OF RUNNERS MOULDED IN WHICH WILL TAKE ALLOY OR P.C. BOARD CHASSIS. SAME DAY OFF-THE-SHELF DELIVERY. THIS SIZE OF CASE CAN BE TURNED ON END TO MAKE $4^{\prime \prime \prime} W \times 6^{\prime \prime} \mathrm{H} \times 4^{\prime \prime} \mathrm{D}$. PLEASE ADVISE IF HANDLE \& FEET TO BE SUPPLIED LOOSE. PANEL PUNCHING AVAILABLE ON 100 UP TRADE AND QUANTITY DISCOUNTS ON REQUEST
FULL LIST OF ACCESSORIES AVAILABLE, SENT WITH EACH ORDER, i.e. SWITCHES, PANEL LAMPS, AMPLIFIERS, fuses, ETC. NEXT SIZE OF CASE READY END OF JULY. $9^{\prime \prime} W \times 4^{\prime \prime} H \times 3^{\prime \prime} D$

Ref WW

E. R. NICHOLLS,

46 Lowfield Road, Stockport, Cheshire. Tel: 061-480 2179

TAPES \& CASSETTES
Incredible but true! We offer these famous brands a prices at least $5 p$ per reel lower
advertiser. SEND for details now

Dept Ww 7 17 Laigh Park Rōad Leigh-on-Sea, Essex
London Office
01-2257004

JOHN SAYS.
 RING MODULATOR by Dewtron is professional transformerless, 5-transistor, has adjustable F1/F2 rejection. Module 67. Unit E8.90. WAA-WAA Peda kit of all parts, incl. all mechanics \& instr. ONLY 22.45 AUTO RHYTHM from Dewtron modulos. Simple unit for waltz, foxtrot etc., costs $£ 16.55$ in modules ORGAN PERCUSSION and other fascinating effects. Send 15p for illusc. list. D.E.W. Led.,
 254 Ringwood Road, Farndown, Dorset.

SURPLUS HANDBOOKS

19 get Circuit and Notes 1155 bet Circuit and Notes. 38 set Technical Instructions 46 set Working Instructions 88 set Technical Instractions BC. 221 Circuit and Notes 18 set Cirenit and Notes
BC. 1000 (31 set) Circuit and Note
CR. $100 /$ B. 28 Circuit and Notes
AR. 88 D Instruction Manu
62 set Circuit and Notes
 R.1355, R.F, 24,25 and 26 post free. R.1116/A, R.1224/A, BC.342, BC.348J, BC. 348 (E.M.P.), BC.624, 22 1475(88), 1392. 52 aet Render and Recejver circuits 40p post free. Colour Code Indicator 121p p/p 21 p . S.A.E. With all enquiries, please.
Postage rates apply to U.K. only, Mail order only to:
INSTRUCTIONAL HANDBOOK SUPPLIES Dept. W.W. Talbot House, 28 Talbot Gardens, LEEDS 8

FEMEC

MODERN NATO FIELD TELEPHONE exchange 10/0B
for 10 subscribers with handset, with ringing device. answer key batteries, used, very good condition, tested

DM West 680.
NATO FELOTELEPHONE FF 54 Complets with betterises factorynew

FEMEG, Farnmaldegerate, O-B Munchen 2 .
DM West 330 .

OSMABET LTD.

We make transformers amongst other things.
AOTO TRANSFORMERS. $0-110-200-220-240 \mathrm{v}$ a.c. up or

 MAINS TRANSFORMERS. Prim 200/240v ac TX2 $250-0$

 $10 / 20 \mathrm{v}$, Sec $250 \mathrm{v} 100 \mathrm{Ma}, 6 \cdot 3 \mathrm{v} 2 \mathrm{~A}, \mathrm{E}, 25$
MULTIVOLT TRANSFORMERS. Prim ${ }^{\text {OMT }} 4 / 1$ one tapped sec, $5-20-30-40-60 \mathrm{v}$ giving $5-10 \mathrm{v}$ a.15-20$0 \mathrm{MT} 4 / 1$ one tapped sec, $5-20-30-40-60 \mathrm{v}$ giving $\quad 5-10-15-20$
 $90-100-110,10-0-10,20 \cdot 0-20,30-030,40-0.40,50-0-50 \mathrm{v}$ a.c

 LOW VOLTAGE TRANSFORMERS. Prim 200/240v a.c

MIDGET RECTIFIER TRANSFORMERS. Prim 200/240V A.c. size $11 \times 2 \times 1 \frac{1}{2}$ in. PPT1 $9.0-9 \mathrm{v}$. 03 A ; PPT2 $12-0-12 \mathrm{v}$
 MT9y 91.13 each.
W.W. CAPACITOE DISCHARGE IGNTTION TRANS-
FORMER to specifiction, 22.50 plus 25 p . \& p . O/P TRANSFORMERS FOR POWER AMPLIFIERS. 30 Watt, A-A load 6.6 F, sec $3-7 \cdot 5-15$ ohms, $£ 4.05 ; 50$ watt.

MAINS TRANSFORMERS FOR POWER AMPLIFIERS TX 6 Prim 200/240₹ a.c. $8 \mathrm{sec}, 425-0.425 \mathrm{v} 500 \mathrm{Ma}, 6.3 \mathrm{v}$ 6A
 LOUDSPEAKERS TOR POWER AMPLIFIERS. New boxed, famous makes for public address systems, bass

 Hi-Fi 10W fitted twin tweeters with crossover network
3,8 and 15 ohms, 24 each. Horn tweeters $2.16 \mathrm{KHz} 8_{\text {, }}$ 3,8 and 15 ohms, 24
16 ohms, $£ 1 \cdot 50$ eaca.
 10 in . $£ 1.95$; $7 \times 4 \mathrm{ia}$.
£1.90. 8 or 15 ohras.
BULK TAPE ERASER. Instant erasure of any size spool magnetic tape, Caseettes, demagnetizing of tape heads
$200 / 240 \mathrm{v}$ a.c. $£ 2 \cdot 4 \mathrm{C}$. P. \& P. 20p. Leaflet S.A.E.

127 LT FLUORESCEJT LIGHTING. Complete 8 watt 12 in. | ftting |
| :--- |
| 25% |

PRINTED CIRCUIT ETCHING EITS. Complete commercial outfit to
E1-25.

8,A.E. ENQUIRIDS-LISTS. MAIL ORDER ONLY Carriage extra on all arders.

ANDOR ELECTRONICS LTD.

Mullard, Ferranti, R.C.A. Motorola
semiconductors
Mullard-resistors-capacitors
ZTX108 12p MPF102 42 $\frac{1}{2}$ p AF117 25p
ZTX300 15p MPF105 40p BC107 19p ZTX500 15p 2N3053 27p BC109 19p F. \& P. 10 p

Visit our new retail shop
45 LOWER HILLGATE
STOCKPORT
061-480-9791

WE PURCHASE

COMPUTERS, TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGS AND SOCKETS, MOTORS, TRANSISTORS, RESISTORS, CAPACITORS, POTENTIO METERS, RELAYS TRANSFORMERS ETC. ELECTRONIC BROKERS LTD. 49 Pancras Road, London, N.W.1. 01-837 7781

DESIGNING WITH TTL INTEGRATED CIRCUITS

Prepared by the IC Applications Staff of Texas Instruments Incorporated. €8.90

Post free
R.C.A. COS/MOS INTEGRATED CIRCUIT MANUAL by R.C.A. f I Postage 7p.
R.C.A. PHOTOMULTIPLIER MANUAL by R.C.A. fl. Postage 7p.

SOLID-STATE DEVICES AND APPLICATIONS by Rhys Lewis. $\mathbf{E 2}$. Postage 10 p .
MEASURING OSCILLOSCOPES by J. F. Golding. $£ 4 \cdot 20$. Postage lOp. MANUAL OF SOUND RECORDING by J. Aldred. 63.50. Postage IOp.
THE RADIO AMATEUR'S HANDBOOK by A.R.R.L. $22 \cdot 60$. Postuge 20p.

TRANSISTOR MANUAL by G.E. fl-05. Postage IOp

RADIO VALVE AND TRANSIS. TOR DATA by A. M. Ball. 75p. Postage 10p.

THE MODERN BOOK CO.
bRITAIN'S LARGEST STOCKIST
of British and American Technical Books 19-21 PRAED STREET, LONDON, W2 1NP

Phone 7234185 Closed Sat. I p.m.

THE ONLY
COMPREHENSIVE RANGE OF RECORD MAINTENANCE EQUIPMENT IN THE WORLD!

Send P.O 15p for 48 page booklet providing all necessar information on Record Care

CECIL E. WATTS LIMITED
Darby House
Sunbury-on-Thames, Middx

STEREO I.F. AMPLIFIER

This 3 stage IF into account the special requirements of a stereo signal Together with a suitable "front end" it would form the
basis for an easily built. mono or stereo. High Quality FM Tuner. The circuit which contains three stages of amplification can be mounted by means of edge connectors Unit supplied fully tested and adjusted $£ 3.50$ Suitable front end for above supplied for $£ 4.00$ Matching Decoder available at $£ 525$
For further cetails, Circuit etc., contact
23 PEACOCKS CLOSE CAVENDISH, SUFFOLK

WW-085 FOR FURTHER DETAILS

EXCLUSIVE OFFERS

HIGHEST QUALITY $19{ }^{\prime \prime}$ RACK MOUNTING CABINETS Totally Enclosed

DOUBLE STDED. These cabinets will take rack panels both sides, that is back and front and are drilled and tapped all the way down every ${ }^{\text {t }}$ for this purpose. They
are fitted with "Instantit" patent fully adjustable rack mounte which are vertically and horizontaliy adjustable -these allow the panels to be recessed when they are fitted with projecting components and it is desired to enclose them by doors.
\star Other features include-all corners and edges munded,
Interior fitings tropicalised. Removable built in ducts. Removable buill in blower ducts. Ventilated and insect proofed tops. Detachable side panels. Full length instantly detachable doors fitted expanding boits if Government $£ 107$ before devaluation. Pialshed in grey primer and in new condition.

PRICE 528.50 eaoh (Carriage extra)
Doors are not needed if panels are mounted back and front and they are not required to be enclosed.
TYPE C: 80° high $\times 27^{\circ}$ deep $\times 22^{\circ}$ wide, American Standard First Grade totally enclosed ventilated 19^{*} rack panel mounting cabinets, made by Dukane, U.S.A. way down every t^{*}. Full length rear door with latch Finished in grey theee cabincta have been used but are in good condition but if decoration is of importance it is recommended they are re-soraved before use
PRICE 215 each (Carriago extra)
TYPE D: 76° high $\times 18^{\circ}$ deep $\times 22^{*}$ wide, These are alightly smaller and finished in black otherwise they are similar in conatruction and condition to Type C above, Made by R.C.A. of U.S.A.

ALSO OTHER TYPES 80° TO 88° HIGH AVAILABLE Full detaila of all above available on request TRANSPORT: We have made apecial economical transport undamaged and to avoid expensive crating. Full detaila	on request.
40-page liat of over 1,000 diferent iteme in atoc	

DEIMOS:
 TAPE RECORDERS FOR
 RESEARCH, INDUSTRY AND PROFESSIONAL AUDIO single ond multichonne! SIMMONDS ROAD. WINCHEAP CANTERBURY, KENT 0227-68597

 WW DESIGNS BUILT

 WW DESIGNS BUILT AND TESTED

 AND TESTED}example:
Nelson Jones FM Tuner £16 Phased locked stereo decoder $£ 13$

S.A.E. details

YOUNG ELECTRONICS
54 LAWFORD ROAD, LONDON, NW5 2LN
Telephone 01-267 0201

AMERICAN
TEST AND CMMURICATON EOUIPMENT
\star GENERAL CATALOGUE ANIOUA P/6 \star
Manuals offered for most U.S. equipments
SUTTON ELEGTRONIIGS
Salthouse, Nr. Holt, Nortolk. cloy 289

(a)

Private enquiries, send $5 p$ in stamps for brochure
THE QUARTZ CRYSTAL CO. LTD
O.C.C. Works. Wellington Crescent,

New Malden. Surrey 101-942 0334 \& 2988)
WW- 086 FOR FURTHER DETALS

The safe quick way to connect electrical equipment to the mains
Conmects ampting
electrica
in seconds.
electrincal in succonds.
No phags, sockets or
barn wives Thuce mulib
${ }^{\text {parandel connections }}$
for leaflot
EB INSTRUMENTS
49-53 PANCRAS ROAD LONDON N.W. 1 Tel:09-8377789
WW-087 FOR FURTHER DETALLS

[^21]
WE PURCHASE ALL' FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC.

 CHILTMEAD LTH.7, 9, 11 Arthur Road, Reading, Berks.

Tel: 582605

PRINTED CIRCUITS

PROTOTYP \& BATCH PRODCCTIONS
Instrument panels and dials in Metal and Perspex
\star SCREEN PROCESS PRINTERS \star
Brooklands Plating Co. Ltd.
Spice's Yard, South End, Croydon CRO 1BF Tel: 01-688 2128

7400	21 p	7410	210	7474	40p
7486	430	709	40p	741	73p
DALO P	MA	ER	80p	2N3055	60p
ME0402	210	ME0412	20p	ME0413	17D
ME1002	120	ME4101	110	ME4102	12p
ME6001	150	ME6101	150	MELI1	35p
MEF104	51 D	MP8111	35p	1N4001	$7 p$
JEF ELECTRONICS (WW7)					
York Houm, 12 Yorl Drive, Grappenhall, Wearington, Lanel. Mail Order Only. C.W.O. P. \& P. Бp per order. Overseas 37p Money back if not satinfed.					

TRANSFORMER LAMINATIONS enor mous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.

MULTICORE CABLE IN STOCK
CONNECTING WIRES
Large quantities of miniature potentiometers (trim pots) 20 ohm to 25 K . Various makes. Wholesale and Export only.

J. Black

OFFICE : 44 GREEN LANE, HENDON, N.W.4. 2AH Tel: 01-203 1855. 01-203 3033 STORE: LESWIN ROAD, N. 16

Tel: 01-249 2260

Hi Quality Amplifiers for the Constructor Texas Amplifiers for real Hi Fidelity performance:
Pares and printed circuits available for 655,68 and 77 . sent for lists.
Sent
Bailoy. This ever popular pre amp now laid our ${ }^{\text {on }}$ a
printod circuit for Stereo. Board and drawings $\& 1 / 50$.
 paitay 30 Amplifier P.C. Board. 1.25 pair.
Parts also available for Linsley Hood devices.
325 Fore Streot, Edmonton, London N.9.01-007-3719

MAINS KEYNECTOR FAST \& SAFE

For fast mains input to one or more electrical
appliances up
to 13 amps without plugs SEE
PAGE 55
Sendforleaflet p\&p 0.25 WW-090 FOR FURTHER DETAILS

witt dim up to 400 watts of incandeseent lightias fram rare to full mrillianes. This unlt sianaly reslaces the asmai linht switith, and is fitted ing mattor of minutes. As MK mounting frame is supplied, for use then more depth is retifired

PRICE- Complete Kit $£ 2.80$
Built and tested $£ 3.20$ as supplied to Industry. Schools. Hospitals

ロisthene med.

111. Sheffield Road. Wymondham. MORFOLK

Please add $£ 0.10$ postage and packing

WANTED

surplus transistors, semiconductors, capacitors, cable, electrical goods, radio television and electrical equipment, wire, aluminium, motors, recording accessories and all surplus equipment for SPOT CASH.
Buyer will call to inspect anywhere.
Concorde Instrument Co.
28 Cricklewood Broadway London, N.W. 2
Telephone: 01-452 0161/2/3
Telex: 21492
Cables: CONIST LONDON

WW- 088 FOR FURTHER DETALS

Newest, neatest system ever devised for storing small oarts and components: resistors, capacitors, diodes, transistors, etc. Rigid plastic units, interlock together in vertical and horizontal combinations. Transparent plastic drawers have label slots/handles on front Build up any size cabinet for wall, bench or table top

BUY AT TRADE PRICES!

Single units (1D) $\mathbf{£ 1 . 3 5}$ per dozen size approx ($2 \frac{1}{4}^{\prime \prime}$ high $2 \frac{1^{\prime \prime}}{4}$ wide 5° deep) 2D £2.25 per dozen. 3D £2.35 for 8 units. 6D2 £3.65 for 8 units (2 3D's in 1 outer) 6D1 $\mathbf{~} 3.30$ for 8 units. Postage/Carriage 35 p for orders under $£ 5$. Carriage paid for orders over $£ 5$

PLUS QUANTITY DISCOUNTS!

Orders $£ 5$ and over DEDUCT 5% in the $£$ Orders $£ 10$ and over DEDUCT $7 \frac{1}{2} \%$ in the $£$ Orders $£ 20$ and over DEDUCT 10% in the $£$

QUOTATIONS FOR LARGER QUANTITIES
Woivis
(0ept. WW7). 124 CRICKLEW000
BRDADWAY, LONDON, N.W. 2

- ALL PURPOSE TRANSISTOR PRE-AMPLIFIER $\boldsymbol{\star}$

 or transistor aquipment Full instructions: 90p post
Brand now. Britioh made. Details S.A.E.

BAKER 12 in. MAJOR £9
 30-14,500 c.p.s., 12 in. double cone, woofer and tweeter cone together with a BAKER ceramic magnet assembly having a flux density of 14,000 gauss and a total flux of 145,000 Maxwells. Bass resonance 40 c.p.s. Rated 20 watts. Voice coils Module kit, $30-17,000$ c.p.s. Size $19 \times 12 \frac{1}{2} \mathrm{in}$. with tweeter, crossover, baffie, instructions. $\{|\mid \cdot 50$ LOUDSPEAKER CABINET WADDING 18 in . wide, 15 p per ft. run. 8 in. wide, isp per ft. run.
postextra 10p per order.

THIS ELAC CONE TWEETER IS OF THE VERY LATEST DESIGN AND GIVES A HIGHER STANDARD OF PERTORMANCE THAN MORE EXPENSIVE UNITS
The moving coil diaphragm gives a good cies and a smooth extension of total response from $1,000 \mathrm{cps}$ to $18,000 \mathrm{cps}$. Size ponse from \times 3iz $\times 2 \mathrm{in}$. deep. Rating 10 watts. 3 ohm or $15 \mathrm{ohm} \mathrm{fl} / 90 \begin{aligned} & \text { Post } \\ & 10 \mathrm{p}\end{aligned}$
models.
THE INSTANT BULK TAPE
ERASER AND RECORDING HEAD DEMAGNETISER
200/250 A.C. $£ 2 \cdot 35$ Post

RETURN OF POST DESPATCH - CALLEAS WELCOME HI-F! STOCKISTS - SALES - SEAVICE - SPARES
RADIO COMPONENT SPECIALISTS

STOP PRESS

SOLARTRON STORAGE OSCILLOSCOPE QD 910 Double Beam. DC-1MHz "X" Sensitivity $10 \mathrm{mV} / \mathrm{cm}$ to $30 \mathrm{~V} / \mathrm{cm}$ in 8 ranges. 5 in . Dia. Memotron CRT. Time Base 1 micro$\mathrm{sec} / \mathrm{cm}$ to $10 \mathrm{sec} / \mathrm{cm}$ in 10 ranges. Overhauled in V.G. condition. C/W trolley and copy of handbook. $£ 160$.
CAWKELL REMSCOPE SO1 STORAGE OSCILLOSCOPE. Single Beam. Time Base 0.3 micro-sec to 10 sec in 16 ranges. Y Amp Frequency Response. Low Gain 4 MHz . Med. Gain 2 MHz . (High Gain 0.5 MHz). Sensitivity $5 \mathrm{mV} / \mathrm{cm}$ at 0.5 MHz band width. Adjustable Display time $15-120 \mathrm{mins}$ in 4 steps. Variable persistence $1 \mathrm{sec}-2$ mins. Complete with TRACE SHIFTER TS which enables display of 5 or 10 steps at 30 micro-sec min intervals. Inclusive Price $£ 225$.
SOLARTRON CD 1400. Double Beam. DC-15MHz. CX 1441 and 1443 plug-in units. Rise Time 24 nSec . Sensitivity $100 \mathrm{mV} / \mathrm{cm}-$ $50 \mathrm{~V} / \mathrm{cm} .9$ ranges. Time base $0.5 \mathrm{micro}-\mathrm{sec}-$ $200 \mathrm{micro}-\mathrm{sec} / \mathrm{cm}$ in 18 ranges. 19 in. Rack Mounting. Overhauled V.G. condition. Handbook. £165.
L.F. SPECTRUM ANALYSER FENLOW S.A.2. $0 \cdot 3 \mathrm{~Hz}-1 \mathrm{KHz}$ in 5 ranges. Band width $0 \cdot 06-37 \cdot 5 \mathrm{Mz}$ in 5 steps. $£ 350$.
KENT CHROMALOG Mk I Digital Integrator for use with gas chromatography equipment. Automatic digital print out. Recorder O/P0-10mA. V.G. condition. Handbook. $£ 325$. R.F. SIGNAL GENERATOR MARCONI $144 \mathrm{H} / \mathrm{S} .10 \mathrm{KHz}-73 \mathrm{MHz}$. Stability 0.002% High Discrimination plus crystal oscillator. V.G. condition. $£ 165$.

ELECTRONIC BROKERS LIMITED

49-53 Pancras Road, London, N.W.1. Telephone 01-837 7781

CAPACITOR DISCHARGE IGNITION SYSTEM

THE POPULAR WIRELESS WORLD CAPACITOR-DISCHARGE IGNITION SYSTEM IS NOW AVAILABLE AS A MECHANICALLY RE-DESIGNED UNIT WITH THE PRINTED-CIRCUIT BOARDS AND A TRANSFORMER CONTAINED WITHIN A DIE-CAST CASE; THE TRANSISTORS AND THYRISTOR BEING MOUNTED ON THE OUTSIDE OF THE CASE AND SUPPLIED WITH SNAP-ON PLASTIC COVERS.
THE UNIT IS DESIGNED AROUND TWO PRINTED-CIRCUIT BOARDS LINKED ELECTRICALLY TO EACH OTHER AND TO THE CONNECTION PLUG BY MEANS OF A FLEXIBLE PRINTEDCIRCUIT. THIS ALLEVIATES TEDIOUS WIRING AND ENSURES A neat compact layout. the design of the boards is such THAT A POS. OR NEG. EARTH IGNITION SYSTEM CAN BE BUILT WITH EASE AND ONE SYSTEM CAN BE READILY CONVERTED TO THE OFPOSITE POLARITY IF REQUIRED. A COMPLETE COMPLEMENT OF COMPONENTS IS SUPPLIED WITH EACH KIT. TOGETHER WITH READY-DRILLED, ROLLER TINNED PRINTEDCIRCUIT BOARDS, FULLY MACHINED DIE-CAST CASE AND CUSTOM WOIJND TRANSFORMER.

SUITABLE FOR $12 v$ SYSTEMS ONLY. ALL COMPONENTS AVAILAble separately. Wiring details supplied for both POLARITY SYSTEMS. PLEASE STATE POLARITY REQUIRED SO THAT THE CORRECT SEMICONDUCTORS CAN BE SUPPLIED. CASE SIZE $4 \frac{3^{\prime \prime}}{4} \times 3 \frac{3}{4}^{\prime \prime} \times 3^{\prime \prime}$.

COMPLETE ASSEMBLY AND WIRING MANUAL 25p, REFUNDABLE ON PURCHASE OF KIT.

PRICE £11.25 plus 50p CARRIAGE. C.W.O. OR C.O.D.
TRADE ENQUIRIES INVITED. MAIL ORDER ONLY.
$D A B A R$
ELECTRONIC PRODUCTS
98a, LICHFIELD STREET, WALSALL, STAFFS. WS1 1 UZ
TEL. WALSALL 34365

Thermistors
F.J. Hyde, DSc, MSc, BSc.
The aim of this book is to give for the first time a comprehensive
account of the properties and applications of both positive and
negative temperature coefficient (NTC and PTC) types of
thermistors, in order that their potential usefulness in a wide
range of instrumentation and measurement may be made
evident. It will prove to be an indispensable reference book
for all those interested in the application of this extremely
useful circuit component.
0592 02607 0 208 pages illustrated 1971
Available from leading booksellers or:
The Butterworth GrOUP
88 Kingsway London WC2B $6 A B$

ALL SEMICONDUCTORS WARRANTED

Prices $1-9$ as quoted, $10-99$ less $10 \%, 100$ up 15%, larger quantities special quote

CHILTMEAD LIMITED

7-9 Arthur Road, Reading • Telephone 582605

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 85-94

[^22]

For increased efficiency find out more about our extensive range of ADCOLA Soldering Equipment-and we provide:
\star THREE DAY REPAIR SERVICE \star INTERCHANGEABLE BITS-STOCK ITEMS * SPECIAL TEMPERATURES AVAILABLE AT NO EXTRA COST.
ADCOLA TOOLS have been designed in cooperation with industry and developed to serve a wide range of applications. There is an ADCOLA Tool to meet your specific requirement. Find out more about our extensive range of efficient, robust soldering equipment.

No. 107. GENERAL ASSEMBLY TYPE

Fill in the coupon to get your copy of our latest brochure:

ADCOLA PRODUCTS LTD

(Dopt. H) Adcola House, Gauden Rd., London, 8W4 Tel. 01-622 0291/3 Talegrams: soljoint, London, Tolex Tolox: Adcola, London 21851

Please rush me a copy of your latest brochure:

NAME
COMPANY
ADDRESS

mss

 Culicore SOLDERS
for fast reliable soldered joints

Over 400 specifications used in more than 63 countries

Use the quality solder that leading electronic manufacturers depend on.
The life and efficiency of any piece of electronic equipment can rest entirely on the solder used in its assembly. If in Britain or overseas you make or service any type of equipment incorporating soldered joints, and do not already use Ersin Multicore Solder, it must be to your advantage to investigate the wide range of specifications which are available
Besides achieving better joints - always - your labour costs will be reduced and substantial savings in overall costs of solder may be possible. Solder Tape, Rings, Preforms, and Pellets - Cored or Solid - and an entirely new type of cored disc, can assist you in high speed repetitive soldering processes.

Ersin Multicore solder

Contains 5 cores of non-corrosive high speed Ersin flux. Removes surface oxides and prevents their formation during soldering. Complies with B.S. 219, B.S. 441, DTD 599A, Din 1707, U.S. Spec. QQ-S-571d
Savbit an exclusive Multicore Alloy which is saturated with copper to prevent absorption of copper from copper wires, circuit boards and soldering iron bits. Ministry approved under Ref: DTD 900/4535
Solder Tape, Rings Preforms and Washers, Cored or Solid, are available in a wide range of specifications.

STANDARD ALLOYS INCLUDE

TIN/LEAD	B.S. GRADE	LIQUIDUS MELTING TEMP.	
		${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$
60/40	K	188	370
Savbit No. 1	-	215	419
$50 / 50$	F	212	414
$45 / 55$	R	224	435
$40 / 60$	G	234	453
$30 / 70$	J	255	491
$20 / 80$	V	276	529

HIGH \& LOW MELTING POINT ALLOYS

Allor	description	melting temp	
TL.C.	Tin/Lead/Cadmium with very low melting point	$\begin{gathered} { }^{\circ} \mathrm{C} \\ 145 \end{gathered}$	$\begin{gathered} { }^{\circ} \mathrm{F} \\ 293 \end{gathered}$
L.M.P.	Contains 2\% Silver for soldering silver coated surfaces	179	354
P.T.	Made from Pure Tin for use when a lead free solder is essential	232	450
H.M.P.	High melting point solder to B.S. Grade 5S	$\begin{aligned} & 296 \\ & 301 \end{aligned}$	$\begin{aligned} & 565 \\ & 574 \end{aligned}$

COWPATBE E PRNTED CLRCUT SOLDERING MATERIALS

PC. 80 Multicore Solvent Cleaner removes organic contaminants such as grease, perspiration and residues of organic solutions from prior processed, as a precleaning process before soldering. It
is also very efficient in is also very efficient in removing rosin-based flux PC 10 atues after soldering. PC 10A Multicore Activated Surface Preservative is a pre-soldering coating for preserving the clean surfaces established by the PC. 80 Multicore Solvent Cleaner and PC. 2 Multicore Tarnish Renover. PC. 10A does not need to be removed before soldering and in fact contributes to the efficiency of the soldering process. PC. 10A should be used whenever there is a delay between cleaning and
soldering soldering.

Write tor technical bulietins on
your company's lettertead your company's letterthead tor
the products which interest you to MULTICORE SOLDERS LTD. Hemel Hempstead, Herts. Tel: H. Hempstead 3636 Telex 82363

Seven Standard Multicore Liquid Fluxes are now available, five of which are new:- PC. 21A Multicore Non-Corrosive Liquid Flux is recommended for wave, dip, brush spray and roller flux applications. PC. 25 Multicore Rosin Foam Flux is designed for foam fluxing and exhibits an unusually stable foam with PC. 52 Multicore
PC. 52 Multicore
Protective Coating
Protective Coating
is a lacquer which should be applied after soldering for protecting printed circuits from deterioration or failure in service. It can easily be soldered through if modifications or repairs are necessary at a later date

Gallon Containers All liquid chemicals and polythene suppled in 1 gallion
containers
couring containers, 'easy wouring' carring
handle. 45 cal. drums also available.

ERSIN

[^0]: Published monthly on 3rd Monday of preceding month, $17 \frac{1}{2} \mathrm{p}$ (3 s 6 d).
 Editorial \& Advertising offices: Dorset House, Stamford Street, London S.E.1. Telephone 01-928 3333. Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London S.E.1."
 Subscription \& Distribution offices: 40 Bowling Green Lane, London E.C.1. Telephone 01-837 3636. Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.

 Subscription rates: Home, $£ 4.00$ a year. Overseas, 1 year $£ 4.00 ; 3$ years $£ 10.20$ (U.S.A. \& Canada 1 year $\$ 10$, 3 years $\$ 25.50$).

[^1]: - The negative feedback referred to here has the effect of providing a low impedance load for the crystal of approximately $1.5 \mathrm{k} \Omega$ in series with $0.5 \mu \mathrm{~F}$.

[^2]: \dagger The design of the rumble filter in both refs. 4 and 5 does not allow for the effect of the pickup capacitance, but see letter in June 1971 issue of Wireless World for suggested modifications.

[^3]: *Calculation based on 9TAHC.

[^4]: TThe efficiency calculation, when performed for moving-magnet variable-reluctance and movingcoil pickups, reveals the same thing-efficiency about 0.01%.

[^5]: *The reactance of the pickup capacitance can no longer be neglected in comparison with $10 \mathrm{M} \Omega$ at frequencies lower than 60 Hz .

[^6]: *Really intended for operation into a $100 \mathrm{k} \Omega$ load (or less) fully R.I.A.A. magnetically corrected it then gives overall flat response $\pm 2 \mathrm{~dB}$.

[^7]: *University of Southampton

[^8]: *The fact that input ' a ' for instance really travels along three physically separate connections does not really matter here at all, since it would only increase the number of assigned connections and consequently the number of postulated faults. In real life, there would be 11 assigned connections.

[^9]: *The number of columns for n faults is given by

 $$
 \left(\frac{n+1}{2}\right)=\frac{n^{2}+n}{2}
 $$

[^10]: *This is really a modified form of the checkout criterion that is used in the partitioning technique q.v.

[^11]: * S. Cantarano, and G. V. Pallottino, 'A low noise f.e.t. amplifier for a spaceborne magnetometer'. Electronic Engineering, Sept. 1970 page 57.

[^12]: * Newmarket Transistors Ltd.

[^13]: Sinclair Radionics Ltd., London Rd, St. Ives
 Huntingdonshire PE174HJ
 Telephone St Ives (048 06) 4311

[^14]: Appointed Distributors for
 Appointed Distributor
 SIEMENS (UK) LTD.
 Appointed Srockists for
 NEWMARKET TRANSISTORS
 RADIOHM POTENTIOMETER

[^15]: BIO-CHEMISTRY AND CHEMISTRY LABORA-

[^16]: Demonstration equipments are held at the following points :-
 S. and S.W. London: Servo and Electronic Sales Ltd., 67 London Road, Croydon, Surrey. Tel. 01-688-1512. S.E. London and N.W. Kent: Servo and Electronic Sales Ltd., 43 High Street, Orpington, Kent. Tel. 31066. Sussex and Southern England: G.W.M. Radio Ltd., Portland Road, Worthing, Sussex. Tel. 34897. E. Kent: Servo and Electronic Sales Ltd., Mill Road, Lydd (STD 06792), Kent. Tel. Lydd 252. Overseas enquiries and home orders to our Lydd address please.

[^17]: Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.I, for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference number M2K/700416/WF.

[^18]: A D1161/162 comp pairs, mint, 60p only. UK post 5 p. A Amatronix Litd., 396 Selsdon Road, S. Croydon, Surrey, CR2 0DE
 [1161 b.
 A ERIAL BOOSTERS, we make three types L45 A U.H.F. television, L12 V.H.F. Television L11 Radio. Price $£ 2.95$ S.A.E. for details, Velco Electronics, 62
 Bridge Street, Ramsbottom, Bury, Lancs.
 A MERICAN 2N3055 transistors new, boxed, at 55p A each. Forgestone Components, Ketteringham, Wy-
 mondham, Norfolk.
 [1255
 Ringwood Rd., FERNDOWN, Dorset. S.A.E. for leaflet.
 Write now-Right now.
 COLOUR, UHF and TV SERVICE SPARES. SPECIAL COFFER, leading Brit. maker's Colour Monitor Panels designed to BBC standards. Pal filter and delay $£ 6$, chrominance $£ 6$, luminance $£ 4 \cdot 50$, encoded
 video input $£ 2.50 \mathrm{P} / \mathrm{P} 25 \mathrm{p}$ (or set of $4.517 .50 \mathrm{P} / \mathrm{P}$ 35p). Also quantity Colour TV Camera Panels. Plessey colour scan coils $£ 5.75 \mathrm{P} / \mathrm{P} 35 \mathrm{p}$, convergence coils $£ 3.80 \mathrm{P} / \mathrm{P} 25 \mathrm{p}$, Blue lateral $£ 1 \cdot 25 \mathrm{P} / \mathrm{P} 10 \mathrm{p}$ (or complete set $£ 10 \mathrm{P} / \mathrm{P} 50 \mathrm{p}$). Latest type colour scan and convergence coils, with electrical control of static conver-
 gence $£ 6.25 \mathrm{P} / \mathrm{P} 35 \mathrm{p}$. Colour LOPT assembly incl. EHT output and focus control $£ 4.50 \mathrm{P} / \mathrm{P} 35 \mathrm{p}$, luminance/ chrominance panel £ $1 \mathrm{P} / \mathrm{P} 25 \mathrm{p}$. Integrated transistd. decoder unit incl. circuits $£ 1.25$ P/P 10p. SPECIAL OFFER, leading Brit. maker's surplus 625 single standard TV chassis, latest design. almost complete,
 includes transistd IF bases, transformers, etc., incl. circuit, $£ 8.65 \mathrm{P} / \mathrm{P} 50 \mathrm{p}$. B9D valve bases for colour valves and PL500 series $12 \frac{1}{2} \mathrm{P} / \mathrm{P}$ 5p. UHF tuners transistorised, rotary slow motion drive or push button $£ 5.25 \mathrm{P} / \mathrm{P} 25 \mathrm{p}$. Integrated UAF/VHF 6 position push button transistorised
 tuner easily adjusted as 6 position UHF tuner, incl. tuner easily adjusted as 6 position UHF tuner, incl.
 700 series complete UHF conversion kits incl. tuner, drive assy., 625 IF amplifier, 7 valves, accessories, housed in special cabinet plinth assembly, $£ 7.50$ or able IF amplifier and output chassis. $£ 1.50 \mathrm{P} / \mathrm{P} 30 \mathrm{p}$. Ultra 625 IF AMP chassis and circuit $£ 1 \cdot 50$ P/P 30 p , Philips 625 IF AMP panel and circuit, $£ 1 \mathrm{P} / \mathrm{P}$ 30p. SOBELL/GEC 2015 series $405 / 625$ printed circuit IF panel incl. circuit
 on request.
 VHF
 tuners
 en on request. VHF tuners $A B$ miniature with UHF
 injection suitable $\mathrm{K} . \mathrm{B}$., Baird, Ferguson 75 p P/P 30p, Cyldon C £ $1 \mathrm{P} / \mathrm{P} 30 \mathrm{p}$, Pye 13 ch . incremental £1.25 P/P 30p. Ekco, Ferranti, Plessey push button tuner with UHF injection £ 1.50 P/P 30p. New flreball tuners Ferguson, HMV, Marconi type $£ 1.90 \mathrm{P} / \mathrm{P}$ P/P 30p. Many others available. Large selection channel coils, LOPTs, Scan Coils. FOPTs available for most popular makes. Surplus Ultra, Murphy 110^{*} Scan colls 75p P/P 30p. Sobell frame o/p transiormers 90p P/P 30p. Transistorised time base panel for transistd. masthead UHF booster $£ 4.25$, UHF/VHF/ FM set back booster, mains operated $£ 5.90$ Wolsey masthead amplifier power unit $£ 2.50 \quad \mathrm{P} / \mathrm{P} 25 \mathrm{p}$. Surplus BBC2 Belling Lee "Skyline" distribution amplifiers
 172 WEST
 END LANE
 LOND or W. Hampstead Tube Station). M.W. 6 (No. 28 Bus GOLDERS MANOR DRIVE. LONDON, N.W.11. Tel. 01-794 8751. [60

[^19]: YOUR TAPES TO DISC. - $£ 6,000$ Lathe. From $£ 1.50$. High Bank, Hawk St., Carnforth, Lancs.

[^20]: BOOK
 OPTICAL Detector Circuits: Burglar/Fire Alarm tested at 2,000 yards. Timer, counter, "Memory" circuit. PC Dlagram. 60p. Radiation/Optical detector Highlands, Needham Market, Suffolk.

[^21]: NEONS. PRIMTED CIRCUIT BOARDS. INSTRUMENT CASES. MOULDED REED SWITCHES and PIDAM logic modules. CONTIL and BRIGHTLIFE products are all exstock. For details see June, issues, advertisements. for further detais use reader
 service card. New prices on new leafioc. All customerz on mailing list will receive these automatically.

 WEST HYDE DEYELOPMENTS LIMITED, RYEFIELD CRESCENT, NORTHWOOD HILLS, NORTHWOOD, MIDDX. Telephone: Northwood 24941/26732 Telex: 923231

[^22]:
 SUPPLY: This perlodical seaold subject to the following conditions, , wamely that it shall not, without the writton consent of the publishors firsit given, be lent, re-sold, hired out or otherwise disposed of by way of Trade at a price in exceas of the recommended maximum price shown on the cover; and that it shall not
 or afficed to or as part of any pablication or advertising, uterary or pictorial matter whatsoever.

