WirelessWorld

June $1971 \quad 17 \frac{1}{2} \mathrm{p}$

Low-range linear ohmmeter

 intelligent machines?

How do you control all this?

Swiftly Safely And surely. With the ITT range of STAR mobile radiotelephones.

STARphone. The smallest radiotelephone in the world We designed it without external rods or aerials to fit in your pocket Yet despite its diminutive size. STARphone will give you incredibly clear two-way communication over a wide area To help you load and unload at the dock-side, in factories and warehouses. To keep you in touch on building sites, in hospitals, at airports. Approved by the Ministry of Technology for safe use in oil refineries, petrol tankers, or wherever fire is a hazard

And for perfect fade-free communication in moving vehicles, STAR mobile radiotelephone. Its noise-cancelling microphone means you get crystal-clear speech transmission, whatever's going on in the background At whatever speed you're travelling. And it has excellent range and penetration of built-up areas. You'll find STAR in taxis, transport fleets, police cars and ambulances. To name but a few

What's more, the entire range of STAR equipment has won the British Council of Industrial Design Award for its good looks and functional design. Another
reason for its worldwide marketing success.

The STAR range of mobile radiotelephones is widely used across the globe wherever growth in industry calls for more efficient and reliable communication. Designed and produced by ITT and marketed in Europe through the vast ITT sales network. STARphone and STAR mobile radiotelephone are available from:

ITT Mobile Communications Ltd New Southgate, London N. 11 Telephone: 01-368 1200 Telex: 261912

Designers specify them for their reliability and modern styling. Buyers choose them for their competitive prices and delivery.

teillor

are selected by equipment manufacturers everywhere.

Vista Series
Popular, reliable panel meters with robust phenolic mouldings and scale lengths from $1 \frac{3}{4}$ in to $4 \frac{1}{2}$ in. This range combines compact functional styling with easy readability and excellen: performance. Mechanisally interchangeable with the Fyneline range.

Edgewise Series Here's the latest in the range of three Edgewise panel meters, the Model 330 with a $2 \frac{1}{4}$ in scale length. Ideal for today's crowded instrument panels, other scale lengths are 11 $\frac{1}{16}$ in (Model11) and $1 \frac{3}{4}$ in (Model220).

Fynelline Serles
Adaptable versatile series with scale lengths from $1 \frac{3}{4}$ in to $4 \frac{1}{2}$ in. Contemporary styling and clear shadow-free readings ensure maximum readability. This modern range maintains the Taylor reputation for reliability and sensitivity.

Taylor offers a comprehensive range of movingcoil and moving-iron panel meters. The movingcoil meters feature the proven Taylor centre-pole movement with practically friction-free operation, inherent magnetic shielding

and high torque/weight ratio. They are sensitive, accurate instruments that conform generally to BS 89/54 with contemporary or conventional styling. Ask for the

Taylor makes test equipment too!
Two typical models are Taylor Model 88B, a robust, wide-range multimeter with automatic cut-out and polarity reversal facility, and the

Panel Meter Shortform Catalogue.
popular Taylor Type 127A, a pocket-sized multimeter for the service engineer and hobbyist. Ask for the Instrument
Shortform Catalogue.

Hall Electric Limited
Haltron House, Anglers Lane
London, N.W. 5.
Telephone: 01-485 8531 (10 lines) Telex: 2-2573
Cables: Hallectric, London, N.W. 5.

7 V r.m.s. Sine or Square from 1 Hz to 1 MHz

FREQUENCY:
SINE WAVE OUTPUT:
DISTORTION:
AMPLITUDE STABILITY:
SQUARE WAVE OUTPUT
SYNC. OUTPUT:
SYNC. INPUT:
SIZE \& WEIGHT:

1 Hz to 1 MHz in 12 ranges. Accuracy $\pm 2 \% \pm 0.03 \mathrm{~Hz}$.
$7 \mathrm{Vr} . \mathrm{m}$. s. reducible to $<200 \mu \mathrm{~V}$ with $\mathrm{R}_{\mathrm{S}}=600 \Omega$ at all levels. $<0.1 \%$ up to 5 V output, $<0.2 \%$ at 7 V from 10 Hz to 100 kHz .
$< \pm 1 \%$ variation with frequency up to 300 kHz .
7 V peak reducible to $<200 \mu \mathrm{~V}$. Rise time $<150 \mathrm{nS}$.
$>1 \mathrm{~V}$ r.m.s. sine wave in phase with the main output.
$\pm 1 \%$ frequency lock range per volt r.m.s. input.
$7^{\prime \prime}$ high $\times 10 \frac{1}{4}{ }^{\prime \prime}$ wide $\times 5 \frac{1}{2}{ }^{\prime \prime}$ deep. 10 lbs.

Types TG200 and TG200M generate only sine waves. Types TG200M and TG200DM have a meter calibrated $0 / 2 \mathrm{~V}, 0 / 7 \mathrm{~V}$ and $-14 /+6 \mathrm{dBm}$. Types TG200 and TG200D have a calibrated control instead of a meter.

The surround of silence - the truth of pure sound

From Bradley. A new ACIDC DVM with a.c. range $20 \mathrm{~Hz}-100 \mathrm{KHz}$ at $£ 420$.

All Bradley instruments can be supplied with a British Calibration Service Certificate from our own B.C.S. approved standards laboratory.

Bradlav's new high-quality AC/DC Digital Voltmeter costs you only $£ 420$ in the U.K. and this includes all extras.
The Bracle, 183 measures d.c. voltages from 1 Cu'v 101000 V d.c. with an accuracy of 0.01%. It has a maximum reading of 1.500 V , נsing the 50% overrange facility. The extras include guarded input circuits which give high common mode rejection; $>140 \mathrm{~dB}$ at ne frequency.
On a.c.the 188 will measure from $100 \mu \mathrm{~V}$ to 1000 V r.m. E . and over the range $40-5000 \mathrm{~Hz}$ the accu-acy is 0.1%. The common mode rejecticn is 50 dB at 50 Hz .
As we'de said, the 188 includes all usual optional extras as standard--display storage, $1-3-4-8$ coded BCD data output, an unsaturatec standard cell as an internal calibra-ionreference and automatic indicat on of polarity.
The 185 de-initely gives a lot of value in a small package.

G \& E ERADLEY LTD
Electral House, Neasden Lane Londor NW10
Tel: 0 - 4507811 Telex: 25583

A Lucas Company
BRADLEY
electronics

The thrills of amateur short wave communication can be a joy forever. With TRIO's 9R-59DS communications receiver you can be assured of repeated adventure. TRIO's modern engineering techniques are especially apparent in its mechanical filter which achieves amazingly superior selectivity. For the thrill of a lifetime tune in with TRIO's 9R-59DS.

Specifications:

- Frequency Ranges: Band A $550-1600 \mathrm{KHz}$, B $1.6-4.8 \mathrm{MHz}, \mathrm{C} 4.8-14.5 \mathrm{MHz}, \mathrm{D} 10.5-30 \mathrm{MHz}$. Sensitivity: $2 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ Ratio (at 10 MHz) - Selectivity $\pm 5 \mathrm{KHz}$ at -50 dB - Power Consumption: 45 watts ©Audio Power Output: 1.5 watts - Tube \& Diode Complement: $6 \mathrm{BA} 6 \times 3,6 \mathrm{BE} 6 \times 2,6 \mathrm{AQ} 8 \times 2,6 \mathrm{AQ} 5, \mathrm{SW}-05 \mathrm{~S} \times 2, \mathrm{SW}-05 \times 2$, IN60×2. Dimensions: Width $15^{\prime \prime}$, Height $7^{\prime \prime}$, Depth $10^{\prime \prime}$.

the sound approach to quality
TRIO
TRIO ELECTRONICS, INC.

TRIO KENWOOD ELECTRONICS S.A. 160 Ave., Brugmann, 1060 Bruxelles, Belgium
Sole Agent for the U.K.
B.H. MORRIS \& CO., (RADIO) LTD. 84/88, Nelson Street. Tower Hamlets, London E. 1. Phone: $01-7904824$

They're easier to design with . . quicker to assemble. Two very good reasons for getting to know the Arrow 93 family of rocker switches. On the drawing board, their versatility meets your every switching need with matching units that mount up snugly together-same standard escutcheon, same standard aperture. Versatility? 17 variations on the basic switch alone-one or two pole, two or three position, plus biased versions. Then, a series of twin rockers in one pole, two or three position variations. On-off switches with built-in pilot lights, one or two pole. And indicators with single or double lenses to match the versatility of the switch range.
Then, on to assembly stage. Press an Arrow 93 unit into its aperture and it snaps securely into place. Clip the connections onto its spade terminals and you've completed the job in seconds. Tot up

See us on Stand 1-182 at the I.L.E.C. Show, Olympia

the savings in labour costs! You'll see why the Arrow 93 series is a happy family from your point of view.
They're rated up to 15 A 250 V AC. Ask us for the technical details.

ARROW ELECTRIC SWITCHES LTD.

BRENT ROAD, SOUTHALL, MIDDLESEX.
PHONE; 01-574 2442 Telex: 23332 Cables: ARROWHART LONDON

Subsidiary of ThyyIII
Trime
93 series

50/70 WATT ALL SILICON AMPLIFIER
 WITH BUILT-IN 4-WAY MIXER USING F.E.T.s.

This is a high fidelity amplifier (0.3% intermodulation distortion) using the circuit of our 100% reliable- 100 watt amplifier with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer amplifier, again fully protected against overload and completely free from radio breakthrough. The Mixer is arranged for 2-30/60 Ω balanced line microphones, $1-\mathrm{HiZ}$ gram input and 1 -auxiliary input followed by bass and treble controls. 100 volt balanced line output or $5 / 15 \Omega$ and 100 volt line.
This is similar to the 4 way version but with 5 inputs and bass cut controls on each of the three low impedance balanced line microphone stages, and a high impedance (10 meg.) gram stage with bass and treble controls, plus the usual line or tape input. All the input stages are protected against overload by back to back low noise, low intermodulation distortion and freedom from radio breakthrough. A voltage stabilised supply is used for the pre-
 amplifiers making it undependent of mains supply fluctuations and another stabilised supply for the driver stages is arranged to cut off when the output is overloaded or over temperature. The output is 75% efficient and 100 V balanced line or $8-16 \Omega$ output are selected by means of a rear panel switch which has a locking plate indicating the output impedance selected.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.

THE 100 WATT MIXER AMPLIFIER with specification as above is here combined with a 4 channel F.E.T. mixer, 2-30/60 Ω balanced microphone inputs, 1-HiZ gram input and 1-auxiliary input with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Bass and treble controls fitted. Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{~dB}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 dB and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the trebie and bass controls set level. Standard model 1-low mic. balanced and 1 auxiliary input.

INTERCONTINENTAL COMPONENTS

 for:
Electrolytic Capacitors

from 6V to 500V DC wkg

5 mfd to $10,000 \mathrm{mfd}$

Available from stock

INTERCONTINENTAL COMPONENTS

Electric House, 18 King St., Maidenhead, Berks. 5L6 IEG

Tel: MAIDENHEAD 32466

The DIMMASWITCH is an attractive and efficient dimmer unit which fits in place of the normal light switch and is connected up in exactly the same way. The ivory mounting plate of the DIMMASWITCH matches modern electric fittings. The bright chrome control knob activates an on-off switch and controls 40-600 watts of all lights except fluorescents at mains voltages from $200-250 \mathrm{~V}, 50 \mathrm{~Hz}$. The DIMMASWITCH has built-in radio interference suppression. Price: E 3.20 plus 10 p post and packing Kit Form: $£ 2.70$ plus 10 p post and packing Please send C.W.O. to :-
DEXTER \& COMPANY
4 ULVER HOUSE, 19 KING STREET, CHESTER CH1 2AH. Tel: 0244-25883. As supplied to H.M. Government Departments. Hospitals, Local Authorities. etc.

Tomplate HF Rerariva Pintantia napability in: SID mater circla

How Hermes did away with vast rhombic or log-periodic antenna farms shoed away by a shrewd array ...
Take 1 meter diameter loops 4 meters apart and get an omni directional broad-band receiving array. covers $2-32 \mathrm{MHz}$
optimum beam characteristics for both long and short range communications.
Rosette configuaration of linear arrays gives a number of overlapping high gain beams all available simultaneously. * Using less than one hundredth of the real estate.

Aperiodic Loop Systems are shrewd enough for restricted space, quick set up, roof mountable, or just below ground level.
Governments and military agencies use them.
Give up the antenna farm. ASK US
Hermes Electronics Limited
Suite 315
2020 F Street N. W.
WASHINGTON
D.C., 20006

Telephone 202 296-2978
TWX 710-882-1106

Beat amp cramp.

With the Motorola 5 to 60 amp silicon power transistor range.

Specify Motorola silicon power transistors and you can be sure of one thing - no amp cramp.

Motorola give you the widest possible range. And that's not all.

Specify Motorola and you're putting top quality into your circuits. And saving money too.

Therangegoes from 5 to 60 amps . You've got a choice of 5 packages and up to Ioamps in plastic. Beat amp cramp with Motorola. Write to:
Motorola Semiconductors, Dept. WW2, York House, Empire Way, Wembley, Middx. Telephone: 01-903 0944.

Distributors: Celdis Ltd, Reading. Elcom. ${ }^{+}$:c 1 td, Glasgow. GDS (Sales) Ltd, Slough. Jermyn Industries Ltd, Sevenoaks. A. M. I.ort \& Co Ltd, Oldham. Semicomps Ltd, Alperton.

Check our check list

Meters available in over 100 case sizes, Edgewise, Rectangular, Round and Square, Bakelite, Clear plastic and Metal cases.

- Clip-on Volt/Ammeters.
\square Contact Meters, Moving Coil Relays, Solid StateDesk Stands
Digital Panel Meters.
Edgewise Meters.
E Educational InstrumentsElectrostatic Voltmeters.
Frequency Meters—DeflectionalFrequency Meters-with Contact Arms Solid State
Frequency Meters-Vibrating Reed
Galvanometers
- Hermetically Sealed Meters
- Instrument Rectifiers
- Long Scale, 180° and 240° Meters
- Maximum Demand Indicators.
- Motammeters Moving Iron with overload scale.
- Moving Coil Meters.

ㅁ Moving Iron Meters.Multi-range Meters.Pedestal Pattern Meters.Phase Switches.Portable InstrumentsPortable Instrument Cases.P.P.M. Meters.Resistors or Multipliers.Shunts.Sub-Standard Instruments.Switchboard Meters.

- Tachometer-Indicators.
- Tachometer-Generators.
- Tachometer-Resonant Reed
\square Test Equipment
Test Sets, A.C./D.C. (Precision).
- Thermocouple Meters
- Thermo Junctions
- Transducers-Wattmeter
\square Transducers-Frequency
- Transformers-Current.
\square Transformers-Split Core
- Transformers-Potential.
- V.U. Meters
- Wattmeters-Panel Mounting
- Wattmeters-Portable (Precision).
- Waterproof Pattern Meters
. . interested? Give us a ring.

it's the longest

Models KE1 and KE2 Miniature Edgewise Meters. Nominal scale lengths $1.2^{\prime \prime}$ and $2^{\prime \prime}$ Available in sensitivities from 50 microamps Moving Coil.

K.M. SERIES with clear front Shadowless Dials. Available in most ranges of Moving Coil and Moving Iron. Eight case sizes. Scale lengths from $0.75^{\prime \prime}-$ 6.25"

Circular Scale 240° Meters, Models CS60 and CS80. Nominal scale lengths $4^{\prime \prime}, 5.5^{\prime \prime}$ Available in sensitivities from 200 microamps Moving Coil.

Vulcan Short Scale Meters Models V1, V2. V3 and V4. Nomina! scale lengths $1.625^{\prime \prime}$, $2,2.85^{\prime \prime}, 3.5^{\prime}$
Available in all ranges of Moving Iron normal of Moving Iron no
or overload scale.

AINEERS ELETTRONIISS LIIIITED
 48/56 Bayham Place, Bayham Street, London, N.W. 1 Telephone 01-3879092.
 Manufacturers and distributors of Electrical Measuring Instruments. Sole U.K. distributors of FRAHM Resonant Reed Frequency Meters and Tachometers. Manufacturers of purpose built electrical and electronic equipment to customers' requirements.

Anders means meters

We ve made these four new additions to our already large range of meters. They are well designed and pleasing to look at. And they are competitively priced.

We also offer a fast delivery of non-standard instruments. In small or large quantities. And many requirements can be supplied off the shelf. Ask for details of our special dial drawing and metric conversion service to customers individual specifications.

Converting to 4-Channel Stereo

SP2000

SP50

The Sansui QS-1 System:
 First and Foremost in 4-Channel Stereo.

Sansui's QS-1 system was the first and remains the foremost means of economically-and authenticallyproducing four-channel stereo.

Built around the new but already famed 4-Channel Synthesizer Decoder (QS-1), the Sansui system is the most inexpensive means yet devised of moving up to the incomparably richer world of four-channel stereo. And yet, as audio critics have testified, the effect is more than equal to, and often better than that produced by so-called "discrete" four-channel systems.

But the most attractive aspect of the QS-1 system is that it lets stereo enthusiasts continue to make use of
their existing libraries of 2-channel discs and tapes, not to mention FM stereo broadcasts, and to enjoy them in the new 4 -channel format. Which means more liveliness, more presence than those sources - were ever thought to contain.

It's accomplished by the QS-1's unique decoding matrix, which translates 2 -channel signals into four channels, and by a process known as "phase modulation," which produces the minute time delays necessary to the close approximation of an entire sound field.

The QS-1 is at its brilliant best when, as the illustration shows, it is teamed with quality Sansui components especially engineered
to make the most of it.
These include the 3-motor 4-head SD-7000 stereo tape deck and the 2-speed Automanual SR-2050C turntable. For the front channels, get the new 140 watt AU-888 Control Amplifier and 70 watt SP-2000 speaker systems, and for the rear, the 85 watt AU-555A Control Amplifier and 25 watt SP- 50 speaker systems.

And there you have it, fourchannel stereo at its finest, by the first and foremost name in the field. Sansui.

The Symbol of Sansui 4-Channel Sound

[^0] Germany: COMPO HI-FI G.M.B.H. 6 Frankfurt am Main, Reuterweg 65 / Switzerland \& Liechtenstein: EGLI, HISCHER \& CO., LTD. ZURICH 8022 Zurich, Gotthardstr, 6, Claridenhof / France: HENRI COTTE \& CIE 77, Rue J.-R. Thorelle, 77, 92-Bourg-la-Reine / Luxembourg: LUX Hi-Fi 3, rue Glesener, Luxembourg / Austria: THE VIENNA HIGH FIDELITY \& STEREO CO. A 1070 Wien 7, Burggasse 114 / Belgium: MATELECTRIC S.P.R.L. Boulevard Léopold II, 199 , 1080 Brussels / Netherlands: TEMPOFOON N.V. Tilburg, Kapitein Hatterastraat 8, Postbus 540 / Greece: ELINA LTD. 59 \& 59A Tritis Septemvriou Street, Athens 103 /Italy: GILBERTO GAUDI s.a.s. 20121 Milano, Corso Di Porta Nuova, 48 / South Africa: GLENS (PTY) LTD. P.O. Box 6406 Johannesburg / Cyprus: ELECTROACOUSTIC SUPPLY CO., LTD., P.O. Box 625 , Limassol / Portugal: CENTELEC LDA. Avenida Fontes Pereira de Melo, 47, 4.o dto., Lisboa-1/Malta: R. BRIZZI 293, Kingsway, Valletta / Canary Islands: R. HASSARAM Calle la Naval, 87, Las Palmas / SANSUI AUDIO EUROPE S. A. Diacem Bidg., Vestingstrat 53-55, 2000 Antwerp, Belgium / SANSUI AUDIO EUROPE S.A. FRANKFURT OFFICE 6 Frankfurt am Main, Reuterweg 93, West Germany / SANSUI ELECTRIC CO., LTD. 14-1, 2-chome, Izumi, Suginami-ku, Tokyo, Japan

In just 2 minutes, find out how you can qualify for promotion or a better job in Engineering ...

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn on 'SATISFACTION - OR REFUND OF FEE' terms. If you'd like to know how just a few hours a week of your spare time, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

Mechanical

A.M.S.E. (Mech.

Inst. of Engineers
Mcchanical Eng.
Maintenance Eng
Welding
General Dicsel Eng Sheet Metal Work
Eng. Inspection
Eng. Inspection
Eng. Metallurgy
Eng. Metallurgy
C. \& G. Eng. Craft
C. \& G. Eng. Crafts

Draughtsmanship A.M.I.E.D.

Gen. Draughtsmanship Dic \& Press Tools Elec. Draughtsmanship Jig \& Tool Design Design of Elec. Machines Technical Drawing Building

Electrical \& Electronic
A.M.S.E. (Elcc.)
C. \& G. Elec. Eng.

General Elec. Eng. Installations \& Wiring Electrical Maths. Electrical Science
Computer Electronics Computer Elect

Radio \& Telecomms. C. \& G. Telecomms. C. \& G. Radio Servicing Radio Amateurs' Exam. Radio Opcrators' Cert. Radio \& TV Enginẹcring Radio Servicing Practical Television TV Servicing Colour TV
Practical Radio \& Electronics (with kit)

Auto \& Aero

A.M.I.M.I

MAA/IMI Diploma C. \& G. Auto Eng. General Auto Eng Motor Mechanics A.R.B. Certs. Gen. Aero Eng

Management \& Production Computer Programming Inst. of Marketing A.C.W.A. Works Management Work Study Production Eng Storekecping Estimating Personnel Management Quality Control Electronic Data Processing Numerical Control Planning Engincering Materials Handling Operational Research Metrication

Constructional
A.M.S.E. (Civ.) C. \& G. Structural Road Engincering Civil Enginecring Building
Air Conditioning Heating \& Ventilating Carpentry \& Joinery Clerk of Works Building Drawing Surveying Surveying Painting and
Decorating Architecture Architecture
Builders' Quantities

General
C.E.I.

Petroleum Tech.
Practical Maths.
Refrigerator
Servicing.
Rubber Technology
Sales Engineer
Timber Trade
Farm Science
Agricultural Eng.
General Plastics
General Certificate of Education
Choose from 42
' O ' and ' A ' Level
subjects including:
English
Chemistry
Gencral Science
Geology
Physics
Mathematics
Technical Drawing
French
German
Russiont
Russian
Spanish
Spanins
Biology
B.I.E.T. and its
associated schools
have recorded zacll
over 10,000 G.C.E.
successes at 'O' and
successes al
WE COVER A WIDE
RANGE OF TECHNICAL AND PROFESSIONAL EXAMINATIONS.
Over 3,000 of our Students have obrained City \& Guilds Certificates. Thousands of other exam successes.

THEY DID IT-SO COULD YOU

"My income has almost trebled . . . my life is fuller and happier." - Case History G/321.
"In addition to having my salary doubled, my future is assured."- Case History H/493.
"A turning point in my career - you have almost doubled my standard of living." Case History K/662.
"Completing your Course meant going from a job I detested to a job I love." - Case History B/461.

FIND OUT FOR YOURSELF

These letters - and there are many more on file at Aldermaston Court - speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you.

7ree!

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.
BRIISH INSTIIUTEOF EMGINIERRIMGIECHMOLOGY

Dept D259, Aldermaston Court, Reading RG7 4PF.

AVAllable Now!
 prowest

 INSERTION TEST LINE SIGNAL EQUIPMENT TYPE 552 (V.I.T.S.)Prowest Electronics Limited
AIRFIELD ESTATE WHITE WALTHAM MAIDENHEAD BERKSHIRE ENGLAND
Telephone: Littlewick Green 3226/8
Telex: 847241

* Integrated circuits and digital techniques ensure the production of colour test line signals to highest standards of accuracy, stability and reliability.
* Programmable to National or International test line standards.
* Provides for future test line specification changes.
* Signal insertion and erasure programmed from front panel
* Minimum crosstalk - Test line signals generated 'on demand' from Inserter
* Full Field test signals provided for use during out-of-Program time.
* Automatic by-pass facility protects Program against equipment or supply failure
* Generator will operate separately as free standing unit.
* Remote control facilities.

GENERAL
Insertion test line signal equipment (also known as V.I.T.S.) is essential for monitoring and automatically controlling the performance of PAL or NTSC colour television channels during Program time.

The type 552 equipment, constructed to a design by the Independent Television Authority, generates such signals and provides the means for their insertion or erasure at any standard level video point in a vision channel. During out-of-program time, test lines and comprehensive full field test signals, generated internally, may be substituted for the main signal, Channels are provided for the insertion of control and data signals during the vertical interval.

New expanded 1971 range of ready-to-use electronic circuit modules

Complete pretested subassemblies requiring only soldering iron, pliers and screwdriver to install in equipment. Ideal for lab "one-offs,' prototypes and pilot marketing short runs.
A data sheet is packaged with each unit.

PC10
MAGNETIC TAPE REPLAY PREAMPLIFIER
using self-compensating circuit that adjusts
itself to different tape speeds without switching
usable with PC1, 2, 5, 7.
Price $£ 1.8750(£ 1.17 .6)$
PC101
COMPACT 9V, 200mA, DC POWER SUPPLY UNIT
General replacement for 9 V batteries.
Suitable PC1, 2, 3, 4, 7, 9, 10, 1006 source
for Zener stabilised 5V digital IC supply.
Price £1.7250(£1.14.6)

PC102
VERSATILE $21 \mathrm{~V}, 330 \mathrm{~mA}$ DC POWER SUPPLY UNIT
with separate 21 V winding for optional extra
DC output, suitable 3W 15 transformerless
amps. source $12-18 \mathrm{~V}$ stabilised supply.
Price $£ 3.0000$ ($£ 3.0 .0$)
PC106
USEFUL 12V. $\frac{1}{2}$ A DC POWER SUPPLY UNIT
General replacement for 12 V batteries, suitable
PC5. 712. Source for Zener stabilised supplies
replacing 6 and 9 V batteries.
Price $£ 2.4750$ ($£ 2.9 .6$)

PC712
MEDIUM POWER SPEAKER AMPLIFIER (1W. 15 ohm)
For higher power applications similar to
PC2 but using 12 V supply and standard 15 ohm
speaker. Driver for high powers.
Price £3.0000 (£3.0.0)
PC1006 and PC1006k
MULTIMETER SENSITISER ($1 \mu \mathrm{~A}, 10 \mathrm{mV}$ FULL SCALE)
Multiplies sensitivity of standard multimeter or $50 \mu \mathrm{~A}$ DC meter fifty times. PC1006 Amp or PC1006k assembly kit. Price PC1006 £6.0542 (£6.1.1) and PC1006k $£ 1.5000$ ($£ 1.10 .0$)

PC1010
BALANCED INPUT LINE MONITOR AMP (3W, 8 ohm)
Designed for 600 ohm line but can be used as
general purpose monitor/talkback amp powered
by two batteries or PC1011 supply.
Price $£ 6.6667$ ($£ 6.13 .4$)

PC1011
DOUBLE DC ($\left.\pm 10 \mathrm{~V}, \frac{1}{2} \mathrm{~A}\right)$ POWER SUPPLY UNIT
Useful general purpose double power supply.
Source for Zener-stabilised rails or linear
Cs. Suitable PC1010.
Price $£ 4.1667$ ($£ 4.3 .4$)

distributors

Coventry Factors Ltd.,
Coronet House.
Upper Well Street
Coventry CV1 4AF. Warwickshire
Tel: 0203-21051/5
Telex: 311243
Eastem Aero Electrical Services Ltd.,
Building 202
Enfield Road.
Hounslow, Middlesex.
Tel: 01-759 1314
G.S.P.K. (Sales) Ltd.,

Hookstone Park
Harrogate.
Yorkshire.
Tel: Harrogate 96258
Telex: 57962
Hird-Brown Electronics Ltd.
Lever Street.
Bolton BL3 6BJ
Lancashire.
Tel: Bolton 27311
Telex: 63478
I.T.T. Electronic Services Ltd.,

Edinburgh Way
Hanow, Essex.
Tel: 02796-26777
Telex: 81146
L.S.T. Electronic Components Lid.

7 Coptfold Road.
Brentwood.
Essex.
Tel: Brentwood 226470
Telex: 99443

Lugton \& Co. Ltd.
209-212 Tottenham Court Road
London, W.1A 2BN
Tel: 01-636 3261/9
Telex: 25618
S.D.S. (Portsmouth) Ltd.

Hilsea Industrial Estate
Portsmouth PO3 5JW
Tel: 0715/65311
Telex: 86114

by
 Power Amplifiers
 Solid State
 100 watts Type 744
 50 watts Type 743
 A long term investment in advanced techniques by a Company with forty years experience in Audio design.
 The first of a special range of equipments with built in USER VALUE. Engineered to the highest technical specification and setting a new standard for the reliability requirements of professional and rental use. An amplifier of great distinction, to set a standard by which others will be judged.
 For its complete specification to I.E.C.268.3 and for information on other amplifiers, microphones, studio equipment and loudspeakers write to us at ...
 No ventilation problems.

"The alternative to QUAD
is not a
colour television set
but a seat
in the
concert hall"

QUAD

for the closest approach to the original sound

The Mark2 TSV70 Power Supply

saves you 50% space, 25% weight... and $£ 24$ in cash!

WW- 025 FOR FURTHER DETALS

> TAPE TRANSPORTS, RECORDERS AND FAST COPYING BANKS FOR ALL APPLICATIONS STANDARD RANGE OR CUSTOM BUILT. TAPE WIDTHS UP TO $\frac{1}{2}{ }^{\prime \prime}$ SPEEDS $\frac{15{ }^{\prime \prime}}{16}$ TO 60 I.P.S.

GET THE WHOLE PICTURE BY WRITING OR TELEPHONING

TAPE RECORDER DEVELOPMENTS LTD. SALES \& SERVICE, "DOG HOUSE". COPLE, BEDFORDSHIRE.

TEL. CARDINGTON 404
FACTORY: HALL LANE, WALSALL WOOD, STAFFORDSHIRE. TEL. BROWNHILLS 5351/2/3

GT. 5 is an entirely new comprehensive brochure of Audio Transformers and contains details of a wider range of standard types. Recent introductions to Gardners Audio range described in this brochure include super-fidelity transformers with exceptionally low phase-distortion and the ability to handle steep side transient signals without generation of overshoot. Also listed is a range of high proof-voltage transformers for Post Office transmission lines and a new range of ultra miniature transforrrers with remarkably good performance. A frequency response linear from the lower audio frequencies to the supersonic band is standard to many of the newer types.

Gardners also have nine other GT Catalogues.
Whatever your transformer requirement there is rrore than a possibility that we can supply something suitable from stock. We make the largest range of standard trar sformers in Europe.

Return the coupon to us.

And we'll send you the GTs by return.

GT. 1 POWER CONTROLLING SATURABLE REACTORS 50W. to 1 kW . with application notes.
GT. 5 AUDIO TRANSFORMERS including Microphone and line matching, Driver, output and impedance matching transformers.
GT. 12 LILLIPUT SERIES OF MICROMINIATURE
TRANSFORMERS including Inverter, A.F and wide-band carrier matching A.F. Driver and pulse types, miniature smoothing and A.F inductors.
GT. 16 ALPHA SERIES OF ASSEMBLIES for filters, delay lines, modulators, etc.
GT. 17 LOW VOLTAGE, ISOLATING AND AUTO
TRANSFORMERS in nearly two hundred ratings, 6 v . to 440 v . and 5 vA to 2 kvA in six assembly styles.
GT. 21 MANUAL OF INVERTER TRANSFORMERS AND MODULES.
GT. 23 INDUCTORS, including heavy current and commutation types.
GT. 24 POWER TRANSFORMERS for use with tube type circuits (including obsolescent types) and E.H.T. and Magnetron Supply Transformers.
GT. 25 TRANSISTOR POWER SUPPLY TRANSFORMERS
GT. 100 GENERAL REFERENCE CATALOGUE with data sheets of assemblies available for specially designed transformers.

GARDNERS TRANSFORMERS LIMITED
Christchurch Hampshire BH23 3PN
Tel: Christchurch 2284 (STD 02015 2284),
Telex 41276 GARDNERS XCH

DC Differential Voltmeter-6-figure readout from 100 mV to 1 kV . accuracy 0.01%. Calibrated null meter, analog output for recorders. Ask for M400 Data Sheet.

Transmission Meașuring Set portable equipment for checking a.f. lines and equipments from 20 Hz to 120 kHz . Suits 75,140 and $600-\mathrm{hm}$ circuits, balanced or unbalanced, terminated or unterminated. Details on application, quoting 44C.

DC Multimeter-full-scale ranges $30 \mu \mathrm{~V}-300 \mathrm{~V}, 30 \mathrm{pA}-100 \mathrm{~mA}$ and 10Ω $1 \mathrm{G} \Omega$. Switched filter. Constant $100 \mathrm{M} \Omega$ for 1% voltage measurements. Analog output. Ask for M300 Data Sheet.

Capacitor Test Set - direct readout of percentage deviation from a pre-set value, and of dissipation, with automatic limit circuits showing pass/high/low. Also 4-figure capacitance measurement. Ask for B700 Data Sheet.

Signal Source -30 kHz to 30 MHz with 50 -ohm attenuated output from - 50 to +10 dB on $1 \mathrm{Vp-p}$. for counters. Stable in frequency and amplitude. Ask for O200 Data Sheet.

Frequency Counter-direct readout of time, count, period and frequency to 50 MHz . Memory, inhibit and gating facilities. Electrical and mechanical stop/start. Clock pulse outputs. Ask for FC50 Data Sheet.

To be sure of good listening use your eyes

The SP25 Wk 111 single eco d jajine Lnit has the facility for. both autor ctic anc manual play. Complying with DIN $45-500$ stancarcs, the SP25 Mk III offers the kind of jrec sion engineering and sophisticeted features found n far more expensive players. Superb quality at a Judget pr ce

It is just one of the la-ge range of Garrard turntables that are products af Garrard's unsparing attituce to fine eng nee-ing and modern design. Which is why you'll find Garrard decks in television, radis and record ng studijs, where precisio 1 a 1 d reliability are jiã. For more about Garrard Dec-s, use ycur pen. Fill in the coupon for the free Gar-ard range broch ire.

Please send me, without obligation, free copies of the Garrard range brochure ard other literature

NAME
ADDRESS

Garrard, Dept.WW5., Newcastle Street, Swindon, Wiltshire. Plessey Consumer Electronics Divizicn

WW-029 FOF FURTHER DETAILS

When YOU need HIGH QUALITY AIR SPACED TRIMMERS

... take your choice from the wide range by TINSLEY. They are readily available in quantity; up to 30 pf ; fitted with mechanical lock if required; all parts of high grade silver plating. Split stator trimmers are also available.

[^1]
The Mode SVITOOED

 Viteo Taperceovrier-
The newestadition to

the Stibaden Range

This new Shibaden Model SV-700ED is a modified version of the very successful SV- 700 series of video taperecorders and is equipped with the newly developed 'Electronic Editor.
This remarkable capability permits intermittent recording or the electrical insertion of other programs to a pre-recorded program and can be easily performed without any disturbance.
The outstanding features of this new unit include a built in electronic editor which ensures noise-free editing. There is complete tape interchangeability which means that tapes recorded on one SV-700ED are fully playable on any other Shibaden SV series half-inch video taperecorder and on SV-800EC units. Still frame viewing for close inspection of a critical scene is possible and the automatic gain control system will eliminate troublesome level adjustment against variation of input levels for both the video. and audio.
Audio dubbing is possible and audio can be added or recorded over to a previously recorded tape. The recording time is 70 minutes continuous recording on one Shibaden R-706 video tape.
Write today for a fully detailed brochure and price list of the SHIBADEN range.

SHIBADEA (UK.) LIMITED
BROADCAST E CCTV EGUIPMENTMANUFACTURERS
61-63 Watford Way, Hendon, London, NW4 3AX. Telephone: 01-202 8056

Which has a d.c. sensitivity of 20,000 ohms per volt? Which has an a.c. sensitivity of 2,000 ohms per volt?

Which has a d.c. accuracy $\pm 2 \frac{1}{4} \%$ F.S.D.?
Which has an a.c. accuracy $\pm 2 \frac{3}{4} \%$ F.S.D.?
Which maintains a.c. accuracy to $20 \mathrm{kc} / \mathrm{s}$?
Which provides high voltage probes to
 extend the range to 25 or 30 kV d.c. for testing electronic equipment with high source impedance? Which provides probes that can be used with any other meter of similar sensitivity?
Which type of case would you like? Leather or Vinyl. Both available. Which meter makes every user a devil's advocate for its performance and handiness?

The pocket size Minitest

Get the catalogue for a full briefing.

SALFORD ELECTRICAL INSTRUMENTS LIMITED

Peel Works. Barton Lane, Eccles.
Manchester M30 OHL
Telephone 061-789 5081 Telex 667711
A Member Company of GEC Electrical Components Ltd.

Cacomins

MICRO
 SOLDERNG INSTRUMENTS

A range of micro soldering instruments combining high performance with really small dimensions and providing exceptional versatility.

Weighing about $\frac{1}{2}$ oz. (less flex) these miniature tools ensure the utmost accuracy and safety in use, resulting in consistently high standards of soldering with minimum operator fatigue.

Ultra-slim unbreakable nylon handles give a cool, comfortable grip for sustained delicacy of operation.

Slip-on bits are fitted over the element shaft, so absorbing all the heat produced and giving high performance with rapid heating and recovery. A wide range of interchangeable tip sizes is available to suit different types of work.

There are ADAMIN models from, 8 to 24 watts, in voltages from 6 v . to 240 v .

LIGHT SOLDERING DEVELOPMENTS LTD.,

MULTI-RANGE METER NORMATEST TYPE 785

With its 40 ranges this small multi-range instrument is ideally suited for the laboratory, workshop and service departments. Featuring a taut band suspended movement it is very robust and shockproof.
$20,000 \mathrm{ohm} / \mathrm{V}$ D.C. $\quad 4,000 \mathrm{ohm} / \mathrm{V}$ A.C.
Ranges Full Scale
D.C. Current:
D.C. Voltage: A.C. Current: A.C. Voitage:
$30 \mu \mathrm{~A}$ to $6 \mathrm{~A} \quad(9$ Ranges)
60 mV to 600 V (9 Ranges)
$150 \mu \mathrm{~A}$ to 6 A (8 Ranges)
1.5 to 600 V (6 Ranges)

Resistance: 10 to $50,000 \mathrm{ohm} \& 1$ kilohm to 5 Megohm Request full details from:

CROYDON PRECISION INSTRUMENT COMPANY
Hampton Road, CROYDON (Postal Code: CR9 2RU) Telephone: 01-6844025 and 4094

Solartron's synthesizer signal generator eliminates hose three operator headaches: keeping the signal jenerator within the bandwidth of the RX that's being shecked; having to reset output levels with each nodulation change; and having to readjust controls with every frequency; change.
Just look at these advantages:

- crystal accuracy and stability-3 parts in 10^{9} over 24 bours. We guarantee that the frequency you set today' Nill be there tomorrow. Or the day after that! D digital decade frequency setting-down to 10 Hz esolution. Setting times a few seconds manually, or a ew milliseconds by electrical programming.
- complete modulation facilities-AM, FM, SSB or Pulse.

Solartron-Schlumberger are Europe's proven leaders in synthesizer signal generators.

Tell us about your Laboratory or ATE requirement. We'll be pleased to meet it. Precisely.

Phone or write for full technical details.

SOLARTRON
 Schlumberger

The Solartron Electronic Group Ltd
Farnborough Hampshire England Tel: 44433

Three ranges of Tunnel Diodes are available-Germanium for microwave amplifiers through 18 GHz and high speed switching applications - Gallium and Antimonide for ultra low noise microwave 1 amplifiers-Gallium Arsenide for microwave oscillator applications and back diodes for high speed detection.
Plifiers

Contact us for full information MICROWAVE DIVISION

AURIEMA LTD
23/31 King Street, London, W3. Telephone: 01-993 1461

WW-038 FOR FURTHER DETALS

*PROFESSIONAL AERIALS

* MISSILE \& SATELLITE TRACKING
* SHIP TO SHIP
* GROUND TO AIR
* TELEMETRY POWER SYSTEMS ETC
* MOBILE RADIO
* SHIP TO SHORE

The new J BEAM Colinear incorporates in-built 'phase inverters' (patent appli. 56417/70) consisting of a series of printed circuits sealed and shrouded in glass-fibre laminate which enables 25\% reduction in the physical size of the aerial to be achieved. Provides omni-directional coverage with gain of 10 dB UHF or 6 dB VHF .

: ENGINEERIMG LTD

OFFICIAL CONTRACTORS TO THE BBC,ITA, MIN. OF DEFENCE, HOME OFFICE, LOCAL AUTHORITIES.

Write or telephone today for our new 56p, fully illustrated catalogue, complete with data specifications.
ROTHERSTHORPE CRESCENT, NORTHAMPTON. TEL: 63531 (STD 0604)

TELEX: 311101

WW-039 FOR FURTHER DETAILS

DC300

DUAL-CHANNEL POWER AMPLIFIER

Phase Response Less than $5^{\circ} 0-10 \mathrm{KHz}$.

Total Output (IHF)
T.H.D.
I.M. Distortion ($60-7 \mathrm{KHz} 4: 1$)

Damping Factor
Hum and Noise $\mathbf{(2 0 - 2 0 K H z})$
Slewing Rate
Dimensions
Weight
Finish

Frequency Response $\quad \pm 0.1 \mathrm{db}$ Zero- 20 K Hz at 1 watt into 8 ohms, $\pm 0.6 \mathrm{db}$ Zero- 100 K Hz .

Power Response $\quad \pm 1 \mathrm{db}$ Zero- 20 KHz at 150 watts RMS into 8 ohms.
Power at Clip Point Typically 190 watts RMS into 8 ohms, 340 watts RMS into 4 ohms per channel
Typically 420 watts RMS into 8 ohms, 800 watts RMS into 4 ohms.
Better than 0.03% at 1 KHz at 190 watts level.
Less than 0.1% from 0.01 watt to 150 watts RMS into 8 ohms, typically below 0.05% (max 0.05%.

Greater than 200 (Zero to 1 KHZ into 8 ohms at 150 watts RMS).
100 db below 150 watts RMS output (unweighted, typical 110 db).

8 volts per micro-second. S-R is the maximum value of the first derivative of the output signal. 19 in . standard rack mount (W.E. hole spacing), 7 in . height, $9 \frac{3}{4} \mathrm{in}$. deep (from mounting surface). 40 pounds net weight.
Bright-anodized brushed-aluminium front-panel with black-anodized front extrusion, access door, and chassis.
\star DC-Coupled throughout!
\star Short Circuit proof!

* 500 Watts RMS Mono.
$\star 70$ Volt Balanced line out!
* UNEQUALLED QUALITY!
$\star 3$ YEAR PARTS WARRANTY!
\star onLY $\mathbf{f 3 2 0}$ inc. DUTY!

CARSTON ELECTRONICS LTD.
SHIRLEY HOUSE 27 CAMDEN ROAD LONDON, N.W. 1 9LN
01-267 2748

Abeurate and diret measurement of spaed without coupling to moviny parts

resonant reed TACHOMEIERS

for hand use or permanent mounting
Ranges and combinations of ranges from 900 to 100,000 r.p.m.
Descriptive Literature on Frahm Resonant Reed Tachometers and
Frequency Meters available from the sole U.K. Distributors. Manufacture and Distribution of Electrical Measuring Instruments and Electronic
Equipment. The largest stocks in the U.K. for off-the-shelf delivery.
Anders Electronics limited London NW1. Tel: 01-3879092

Nombrex accuracy!

R.F. SIGNAL GENERATOR MODEL 31
 Pricef12.50

We consider this instrument to be the best R.F. Signal Generator on the market today at its price. No amateur radio enthusiast or educational establishment should be without one.

Note a few of the specification details below:-

- Wide range $150 \mathrm{KHz-350} \mathbf{~ M H z}$.
- Accuracy better than 2\%.
- R.F. Output, or modulated 400 Hz .
- A.F. Signal available externally.
- Output average $\mathbf{1 0 0} \mathbf{~ m V}$ overall.
- Continuously variable attenuator.
- Fully transistorised circuitry.
- Provision for external supply.
- Guaranteed for 12 months

Export enquiries to Norddeutshe Mende
 Rundfunk KG, 28 Bremen 44, Postfach 448360. West Germany.

Trade enquiries welcome. Send for full technical leaflets. Post and Packing 35p extra.
$\underset{\text { Nel: }}{\text { NOM-952 } 3515}$ (1969) LTD. EXMOUTH DEVON

PROSEC 85 smooths the paths of power

Electrolytic Prosec 85 keeps power line fluctuations at bay. Not just for now, but over a hundred thousand hour working life. Long after the weaklings have failed, Prosec 85 will still be smoothing and filtering reliably. That's the level of protection that costly equipment must have. Shelf life is a remarkable 3 years, too. Advance Filmcap have crammed some high capacitances into these
little cases, from 820 up to $150,000 \mu \mathrm{~F}$. And the biggest is only 123 mm high! They cope with an extra wide temperature range, -55° to $+85^{\circ} \mathrm{C}$. Prosec 85 is available now, in quantity, fast. From Advance Filmcap or from four leading distributors. Spenco Electronic Se̊rvices, Farnell' Electronic Components, Best \& Raynor, and G. D. S. Sales. So what are you waiting for? Get the data right away.
Rhosymedre Wrexham
Denbighshire
Telephone: Ruabon 2471
Telex: 61.424
We are extibiting at IL.E.C. 18 -22 May Stand 1-188

STAND-OFF INSULATORS

fackson stand-off insulators are designed to perform well in rigorous environments. Their insulation rexistance exceeds 20 million megohms even when atmospheric humidity is high. (They meet British Services test specification DEF5334.) They will withstand high steady voltages and intense r.f. fields. Forty different types: ask for catalogue.

Working voltages up to 10 kV .
Stoved-on silicone treatment: water repellent.

* Ceramic bodies.
* Silver-plated tags.
t No solder. No plastic. No adhesives.

P. 30 3-GANG and P. 30 F.M. 3-GANG
* A.M. 8.5 min 320 pF swing Timmore 25 pF swing
A.M. 25pF swing

EGear ratio $3: 1$ or $7: 1$ or $1: 1$
+1.75 in $\times 1.8$ in $\times 25$ in

- Ceramic insulation.
P. 20 2-GANG A.M.
* AM. 10 min 510pF swing
* Trimmers 25 pF swing 1.75 in $\times 1.8$ in $\times 2.5$ in.
P. 2 2-GANG A.M. F.M.
* Gear ratio 3:1 of 1:1
* Cepacitance A.M. 10.pF min. 510.pF swing
* Capscitance F.M 4pt min. 10pF swing 1.75 in \times Chyons ${ }^{1.8 \mathrm{in} \times 2.8 \mathrm{in} .}$

It's reliable if it's made by Jackson!

Write for literature
JACKSON BROS. (London) LTD.
DEPT. W.W. KINGSWAY-WADDON CROYDON, CR9 4DG
Phone: Croydon 2754-5 (01-688) 'Grams: Walfilco, Croydon U.S. office : M. Swedgal, 258 Broadway, N. York, N.Y. 10007

"ASTRONIC" LTD.

FIRST IN THE FIELD WITH A COMPLETE RANGE OF MODULAR AMPLIFIERS

THE RESULT OF THIRTY YEARS

 EXPERIENCE IN SOUND AMPLIFICATION, NOW ANNOUNCE THEIR RESPONSE SELECTOR TYPE A 1888

A MUST IN ACOUSTICALLY

 DIFFICULT SITUATIONS SUCH AS CHURCHES, HALLS, THEATRES etc.This unit, the result of three years research, can be built into a new, or added into an existing sound system and provides a simple but effective means of adjusting the overall response to suit the particular location.

Eight calibrated thumb wheel controls enable each section of the audio band to be adjusted to reduce troublesome building resonances etc., thereby allowing microphone levels to be increased before "howl back" occurs.

The unit is available in two forms: Type A 1888 is a portable instrument and Type A 1781 is a module to be used in conjunction with our Series 1700 units.

Further information from :
DALSTON GARDEIS, STAMMORE, MIDOLESEX, HA7 1BL

$$
\text { OI-204 } 2125
$$

VARIABLE TRANSFORMERS ARE ALWAYS AVAILABLE FROM STOCK AT THE LOWEST PRICES

Fully shrouded variable transformers-input 250VAC output 0-260VAC
$1 \mathrm{amp} £ 5.50 \quad 10 \mathrm{amp} £ 18.50$
$2.5 \mathrm{amp} £ 6.75 \quad 12 \mathrm{amp} £ 21.50$
$5 \mathrm{amp} £ 9.75 \quad 20 \mathrm{amp} £ 37.00$
$8 \mathrm{amp} £ 14.50$

Constant voltage transformer stabilises mains voltage to $\pm 1 \%$ output $240 \mathrm{VAC} \pm 1 \%$ input $240 \mathrm{VAC} \pm 20 \%$ capacity 250 Watts price $£ 12.50$ with quantity discounts

New solid state variable voltage control input 240VAC output 25-240VAC
5 amp £8.38
$10 \mathrm{amp} £ 13.75$

GRAPHIC EQUALISER $\operatorname{Type}^{901}$

SPECIFICATION:
INPUT

MAX. OUTPUT
NOISE
GAIN
FREQUENCY RESPONSE Controls mid position $\pm 0.4 \mathrm{~dB} 20 \mathrm{~Hz}$

DISTORTION
EQUALISER
CENTRE FREQUENCIES

CALIBRATION
FILTER
TERMINATIONS

POWER SUPPLY
to 20 KHz Controls at Max. or Min. \pm 1.2 dB 35 Hz to 18 kHz .

Typical 0.01% at 0 dBm . out.
$\pm 12 \mathrm{~dB}$ with 18 dB headroom at maximum boost.
58014025045080014002500 4500800014000 Hz with switched \pm 0.3 of an octave on all frequencies effectively covering 37 Hz to 17 kHz in 33 bands.
12K floating OdBm.
0 dBm into 600Ω floating from 40Ω
source and 1Ω unbalanced at rear
+20 dBm .
-80 dBm (unweighted).
OdB adjustable $\pm 10 \mathrm{~dB}$.

Steps of 1 dB . resolution 0.5 dB .
Switched: 3 dB down at $30-20,000 \mathrm{~Hz}$.
By standard Post Office jack terminations on front panel, also connected to screw terminations a| rear.
$110-120 / 220-240 \mathrm{~V} 50-60 \mathrm{~Hz}$

IhreeNew races firm Dranco

NEW 7060
Precision T.V. waveform monitor.
Combined waveform and picture monitor.
All line standards (including CCTV).
\square Odd \& Even field selection.

- Pulse \& Bar overlay (same field).
-75 and $1 M$ si switched attenuators.

NEW 7130
Wideband extension of 71 Series Oscilloscopes.
50 MHz Dual Channel plug - on amplifier.
100 MHz High writing speed display unit.
Full delayed sweep/Gate timebase module.
\square True dual trigger inputs/Unrestricted trigger source selection.
Complete compatability with all 71 Series modules.

NEW 72 SERIES
The On- Site commissioning/servicing scope.

- Light/Rugged/Compact.
- High Brightness for Low Occupance Signals.
Dual Channel 15 MHz/Signal delay.
- Full delayed sweep/delay gate timebase with two trigger inputs.
\square Post Office Oscilloscope Type 14A.

\squareEast Mains Industrial Estate, Broxburn, West Lothian, Scotland
DYNAMCO Telēphone: Broxburn 2631 Telex: 72174

TRACK DOWN DAMAGING TRANSIENTS!

NOW, you can determine the source and monitor the magnitude of transients with the compact, low cost, Erskine Surge Indicator, Mk II. As a guide to corrective action, the indicator is a must for designers manufacturers and
 users of semi-conductors
and relay switching equipment.

WW- 051 FOR FURTHER DETAILS

PLEASE WRITE FOR ILLUSTRATED LEAFLETS OF THESE SANWA METERS

SOLE IMPORTERS IN U.K;

AOALIT ELECTBONLES LID.
47-49 HICH STREET, KINGSTON-UPON-THAMES, SURREY. Tel:01-546 4585

Let's cut

 the crackle! Telefunken 204 TSYou don't want a load of waffle about the brilliance of the Telefunken 204TS allstereo tape recorder.

It speaks for itself!
Whatever you put in, comes out unmolested. No irritating hums, buzzes or crackles find their way onto the track.

But what you want is facts not words.

It complies with the very, very stringent German tape recorder standards.

Separate controls for recording and playback, including sound level meters.

Single selector switch for all operating functions.

Three speeds.
Signal to noise ratio $\geqq 50 \mathrm{db}$ at $7 \frac{1}{2} \mathrm{ips}$.

And it can be used as a straight-through stereo amplifier as well!

Another fine example of the Telefunken philosophy: dedication to faithful reproduction.

Get the full story from your dealer or write direct.

AEG/Telefunken

AEG House

Chichester Rents
Chancery Lane
London WC2 AlNH
01-242 9944

NEW CELESTION LOUDSPEAKERS
4 MODEL: PS12 TC 1798 TYPE: DUAL CONE 12" RANGE: $40 \mathrm{~Hz}-12 \mathrm{KHz}$ POWER: 20 WATTS RMS FLUX: 128,000 MAXWELLS IMPEDANCE: 15 or 4-8 OHMS PRICE (R.R.P.) $£ 9.00$

MODEL: PS8 TC 9470 TYPE: DUAL CONE 8" RANGE: $50 \mathrm{~Hz}-12.5 \mathrm{KHz}$ POWER: 6 WATTS RMS FLUX: 38,500 MAXWELLS IMPEDANCE: 15 OHMS PRICE (R.R.P.) $£ 2.90$

* Both recommended for Unilex

The Celestion "Ditton 120"
Placed in top $\mathrm{Hi}-\mathrm{Fi}$ class by reviewers
Supplied in matched pairs - Teak or Walnut
Superb Performance - Economical Price $£ \mathbf{4 8} . \mathbf{0 0}$ pair

CELESTION

 'POWER RANGE'MODEL: G12M
RANGE: $40 \mathrm{~Hz}-8 \mathrm{KHz}$ POWER: 25 WATTS RMS FLUX: 145,000 MAXWELLS IMPEDANCE: 8 or 15 OHMS PRICE (R.R.P.) £12.95

MODEL: G12H
RANGE: $40 \mathrm{~Hz}-8 \mathrm{KHz}$ POWER: 30 WATTS RMS FLUX: 180,000 MAXWELLS IMPEDANCE: 8 or 15 OHMS PRICE (R.R.P.) $£ 15 \cdot 75$

'POWER RANGE'

The finest Loudspeakers made for electronic guitars
Loudspeakers for
the Perfectionist
Please write for details.
ROLA CELESTION LIMITED
DITTON WORKS, FOXHALL ROAD, IPSWICH, SUFFOLK IP3 8JP Telephone (0473) 73131

TELEPRINTERS• PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUPMENT

SALE OR HIRE

2-5-6-7-8 TRACK AND

 MULTIWIRE EQUIPMENTSpecial Codes Prepared
TELEGRAPH AUTOMATION AND COMPUTER PERIPHERALACCESSORIES DATEL MODEM TERMINALS, TELEPRINTER SWITCHBOARDS
Picture Telegraph, Desk-Fax, Morse Equipment: Converters and Stabilised Rectifiers; Line Transformers and Noise Suppressors; Tape Holders, Pullers and Fast Winders; Governed, Synchronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass Filters; Teleprinter, Morse,
 Teledeltos Paper, Tape and Ribbons; Polarised and specialised Relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment; Racks and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Connectors, Wires, Cables, Jack and Lamp strips, and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.
 WW-055 FOR FURTHER DETAILS

AMPLIVOX COMMUNTCAMIONS LIMMPED

AMPLIVOX CON MUNICATIONS LTD. BERESFORD AVENUE • WEMBLEY • MIDDX TELEPHONE 01-902 8991
GRAMS AND CABLES • AMPLIVCX WEMBLEY See us on stand 336 Hall E at the Paris Air Show

For noise-free communications, without 'carbon' crackles. Write or telephone for a free demonstration, at your premises, without any obligation.
Name
Title
Address

For the first time - a new Amplivox headset offering full communications facilities yet under $20 z$ in weight.

The New Amplivox MINILITE - a breakthrough in super-lightweight headset design. MINILITE is feather light. No wearer fatigue. No wearer discomfort. New accoustic techniques have led to an earpiece that need barely touch the ear. So it's hygienic as well as comfortable. MINILITE is so light that it can be attached to the frame of a normal pair of spectacles. The telescopic 'Boom' is an accoustic tube that gives highest speech intelligibility. For all situations where the wearer has to use a headset continuously

MINILITE pays off handsomely in terms of performance, comfort and operator satisfaction at a truly economical price.
Minilite is Wearer Right
Send for full MINILITE details straight away. Or see it for the first time, at the Paris Air Show. Stand 336 Hall E.

AMPLIVOX COMMUNICATIONS LIMITED

BERESFORD AVENUE, WEMBLEY,
MIDDX., HAO IRU.
Telephone: 01.902 8991. Cables: Amplivox Wembley.

Different people have very different requirements in $\mathrm{Hi}-\mathrm{Fi}$, so Goldring developed a comprehensive range of stereo magnetic cartridges that are superb in performance and realistic in price.

From the G800 Super E for those who seek perfection down to the G850 for systems on a budget, the Goldring range offers unsurpassed quality and value.

Your request will bring full details of these and other Goldring products.
Goldring Manufacturing Company (GB)Limited, 10 Bayford Street, Hackney, London E8 3SE.
Tel:01-985 1152 .
Goldring \odot Series 800
Stereo Magnetic Cartridges.

Keep those Contacts CLEAN DIACROM SPATULA

The "Diacrom" is a metal spatula upon which diamond powder has been deposited by a special process. No deep scratches are possible because density is controlled and the polishing of the contacts is achieved by a gentle brushing motion. With coloured nylon handle for complete insulation and easy size identification.

Manufactured in Franc British Patents applied for

- Grain size 200, thickness $55 / 100 \mathrm{~mm}$., both faces diamonded. For quick cleaning of industrial relays and switching equipment, etc. - Grain size 300 , thickness $55 / 100 \mathrm{~mm}$., both faces diamonded. For smaller equipments, like telephone relays, computer relays, etc.
- Grain size 400 , thickness $25 / 100 \mathrm{~mm}$., one face diamonded. For sensitive relays and tiny contacts. Two close contacts facing each other can be individually cleaned, because only one face of the spatula is abrasive.
Sole Distributors for the United Kingdom
SPECIAL PRODUCTS (DISTRIBUTORS) LTD. 81 Piccadilly, London, W.I. Phone: 01-629 9556.
As supplied to the War Office, OK A.E.A., Electricity Generating Boards, Brtish Rainays and other public authoristes; also leading electronic and_industrial users throughout the Onitod Kinodom

R,C \& L BOXES WHEATSTONE BRIDGES VOLTAGE DIVIDERS UNIVERSAL BRIDGES for educational purposes

VARIABLE LOW PASS ACTIVE FILTERS over the range of :1 Hz to 11 kHz
CLOSE TOLERANCE CAPACITORS 400 Volts D.C. down to: $\pm 1,2.5 \%$ made to customers requirements

All enquiries to: LIONMOUNT \& CO. LTD.
Bellevue Road, New Southgate, London, N.11. Tel: 01-368 7047

Brought to you for your listening enjoyment from the

Connoisseur
 precision in sound COLLECTION

Now Quality Performance Comes Realistically Priced! B.D.2. COMBINED TURNTABLE \& PICK-UP ASSEMBLY
The tried and trusted B.0.2. features:

* Belt drive turntable with new S.A.U. 2 arm operated by hydraulic lift and with special lowering device. Now incorporates new head shell with lateral adjustment. $33 \frac{1}{3}$ and 45 r.p.m.
* Virtually silent
* Anti-vibration springs
* Available as chassis or on teak plinth REC. RETAIL PRICE FROM f31.31

Price list and illustrated literature on request to

A. R. SUGDEN \& CO. (Engineers) Ltd.

Market Street, Brighouse HD6 1DX, Yorkshire. Telephone: 2142 WW-061 FOR FURTHER DETALS

ENCAPSULATION -

low tool cost method for cylindrical coils and potting. Enquiries also for-

REED RELAYS SOLENOIDS COIL WINDING TRANSFORMERS to 8 K.V.A.

Relay module 12-way "MS" range
 Knapps Lane, Bristol 5. 0272657228
 the same way you choose a dog: you scrutinise and examine carefully, and take it out for a trial run. And you ask to see its pedigree.
When you handle a Rendar product, you can see at once that it's a better breed: first class materials; precision machining and assembly; sound design. Its pedigree is impeccable.
Just 1 winner from the Rendar kennel The Rendar Safebloc saves time and saves life. There's no need to fit a plug for testing - just connect the apparatus direct. And theres no lid is closed.
Rendar pioneered this concept, and introduced the "Safebloc" to the British market over 12 yeats ago. It's indispensable on testing lines, and for all kinds of electrical demonstrations. Doub
available for 3 -phase applications.

INSTRUMENTS LTD Burgess Hill, Sussex, England Tel. 2642-4. Cables RENDAR Burgess Hill WW-062 FOR FURTHER DETALLS

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: $01 / 837 / 7937$

a genuinely new concept in high-fidelity design

the new Englefield range

Better looking-obviously ... Better performing, definitely ... and certainly lower priced compared with other top line high fidelity equipment. Yet with all this, the new Englefield 840 range has still further plus features. Only with the 840 system can you incorporate the tuner within the amplifier itself, enabling you to convert it to a Stereo \& F.M. tuner amplifier of unsurpassed performance in a matter of minutes. The Englefield Add-in 'Press-tune Stereo F.M. Link can also be used with other amplifiers if so desired. See and hear the new Englefield 840 range at your hi-fi stockist NOW or send coupon for full details by return.
Englefield 840 equipment is guaranteed for 5 years.

840A amplifier design features

Swing-up lid enables all input and output connections to be reached instantly and easily from interior of cabinet. Audio connections are via DIN sockets (plugs supplied). Combined speaker muting switch and headphone socket on front panel. Silicon transistors throughout. Full complementary output stages with current limiting circuitry. Rotary controls fitted with dual wipers and lubricated tracks for long life and silent action. 18 gauge plated steel chassis. Unconditionally stable. For shelf or cabinet mounting.

840T stereo F.M. tuner design features

4 pre-tunable push button stages for instant programme selection. Switchable A.F.C. Automatic stereo reception. Sensitivity better than one micro-volt. Incorporates dual gate FET and I.C. circuitry, back to back varactor diodes and ceramic filters. Can be used separately or inserted in the 840 cabinet. 75Ω and 300Ω balanced aerial sockets.

- Recommended retail prices - Englefield 840A Amplifier £45: Englefield 840A Press-tune Stereo FM Tuner £45 (inc. P/T): Englefield 840TA Stereo Tuner Amplifier £95 (Inc. P/T),

Specifications

THE AMPLIFIER
Inputs - Pick-up, (sen itivity 2.8 mV into 47 Kohms) Overload factor-100MV (32 dB) Tape: Radio 80 mV : Microphone 5 mV . Signal to noise ratio -mag. P.U. better than $67 \mathrm{~dB}: 64 \mathrm{~dB}$ for other inputs.
Cross-talk at $1 \mathrm{KHz}-54 \mathrm{~dB}$
Distortion - 0.08% at 1 KHz at all powers up to 20 watts R,M.S. Power bandwidth and output -35 Hz to 30 KHz at 1 dB for 20 watts R.M.S. into 8 ohms, per ch. driven together
Controls -Volume: Bass ($\pm 16 \mathrm{~dB}$ at 40 Hz): Treble ($\pm 14 \mathrm{~dB}$ at 10KHz): Balance.
Push-button for P.U.,. Radio, Tape, Mic., and mono/stereo: on-off, filter and (disguised) headphone socket/speaker muting switch. Connections- via DIN sockets at rear, plugs supplied also, Mains A.C. $110 / 250 \mathrm{~V} .50 / 60 \mathrm{~Hz}$. Two mains outlets for gramo. motor, etc. one direct, one switched on with amplifier.
Facilities - Swing-up lid for instant access to connections, permitting cabinet to stand flush to wall; also space to take Englefield tuner if required.
Cabinet - steel, hand covered with simulated soft black leather and immensely durable, with black base, size $16!^{\prime \prime} \times 4 t^{\prime \prime} \times 11^{\prime \prime}$ $(413 \times 109 \times 28 \mathrm{~mm})$.

ADD-IN PRESS-TUNE STEREO F.M LINK
With four tunable press button controlled stages each 88-108 MHz . Also press-button for A.F.C.
Sensitivity -1 micro-volt for 30 dB quieting
Sub-carrier rejection-48dB at 19 KHz .
ideband noise -60 dB .
Frequency response-10 KHz to 15.6 KHz (-3 dB).
Separation $-35 \mathrm{~dB}(100 \mathrm{~Hz}$ to 10 KHz$)$
Aerial - Sockets for 75 ohms and 300 olıms, balanced.
Tuning meter and indicating beacon automatic stereo reception
on the front panel.
Details of Englefie!d 840 range please, to
NAME
ADDRESS.

TDK SUPER DYNAMIC TAPE

The SD Familya choice of all popular sizes and configurations

Higher S / N ratio means less noise
Wider dynamic range means wider frequency response
Higher allowable recording levels means higher output
(4) Less distortion due to greater density of magnetic oxide particles

* Less dropouls and head-wear due to mirror smooth compressed tape surface
- Precision mechanism means less mechanical and movement problems
* Acknowledged by engineers and technicians the world over as the best quality tape on the market

TDK Super Dynamic Tapes are available in 7-inch open-reel or cassettes. The SD Cassettes are offered in both the popular C-60 and $\mathrm{C}-90$ sizes. The 7 -inch reel is comes with 1800 ft . on standard hub.
Truly a triumph in magnetic tape technology!

For further information contact
IMPECTRON LTD, 23-31 King Street, London, W3 Telephone: 01-9925388

5544 Single Beam Solid State Dscilloscope

10 MHz Bandwidth at $10 \mathrm{mV} / \mathrm{cm}$ 四 All Solid State Design Small Size—Light Weight 22 Calibrated Sweep Speeds 噛 Versatile Triggering including TV Line and Frame Sync
$6 \times 10 \mathrm{~cm}$ ．Viewing Area Built－in Voltage Calibrator 䄞 FET Inputs

The S54A is an all solid state， single beam oscilloscope．Smartly styled yet ruggedly built，the S54A
has a wide application in field work，in the laboratory and in production line testing．
At $£ 125$ you will find no other oscilloscope of its type which offers such features at such low cost．Write or phone for full specification NOW！！！

1－115／131 AT THE I．L．E．C．SHOW OLYMPIA

Telequipmen \top

ERNIER

SET

> VARIABLE VOLTS/CM

Telequipment

Telequipment
313 Chase Road，Southgate，London N14 6JJ． Telephone：01－882 1166．Telex：262004， A Division of Tektronix U．K．Ltd．

CAL 50 mV PP
EXTX

WW－071 FOR FURTHER DETAILS

Wireless World

Electronics, Television, Radio, Audio

WirelessWorld

This month's cover. Not a design engineer who has let his work go to his head but our artist's design to illustrate the article in this issue 'In Search of Intelligent Machines'. The original cast (lent to us by the Royal College of Surgeons) shows the Broca areas of the brain.

IN OUR NEXT ISSUE

A high-performance s.s.b. receiver can be built by adding an aerial tuned circuit and a local oscillator to the s.s.b. receiver module using i.cs which will be described next month. A circuit for an oscillator for operation on 20 m is included.
Audio sweep generator. A low-cost design using voltage-controlled f.e.ts in a Wien bridge oscillator. Sweep times of $0.1 \mathrm{~s}, 4 \mathrm{~s}$ or 40 s can be selected.

ibpa

inie Prational Bus.ness
Press Assocrales

I.P.C. Electrical-Electronic Press Ltd Managing Director: George Fowkes Publishing \& Development Director
George H. Mansell
Advertisement Director: Roy N. Gibb Dorset House, Stamford Street, London, SEI © 1.P.C. Business Press Ltd, 1971 Brief extracts or comments are allowed provided acknowledgement to the journal is given.

Contents

265 Editorial Comment

266 The Search for Intelligent Machines by R. Baker
269 Circuit Ideas
270 Alternatives to the Teleprinter by D. A. Paynter
272 Announcements
272 Books Received
273 200-W Linear Amplifier by G. R. Jessop
275 Books Received
275 Conferences and Exhibitions
276 News of the Month
279 Physics Exhibition

292 Sixty Years Ago
293 Electronic Building Bricks-13 by James Franklin
294 Low-range Ohmmeter by J. Johnstone
295 Stereo Mixer-2 by H. P. Walker

A 116 INDEX TO ADVERTISERS

Published monthly on 3 rd Monday of preceding month, $17 \frac{1}{2} \mathrm{p}$ (3 s 6 d).
Editorial \& Advertising offices: Dorset House, Stamford Street, London S.E.1. Telephone 01-928 3333.
Telegrams/Telex, Wiworld Bisnespres 25137 London, Cables, "Ethaworld, London S.E.1."
Subscription \& Distribution offices: 40 Bowling Green Lane, London E.C.I. Telephone 01-837 3636.
Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.
Subscription rates: Home, $£ 4.00$ a year. Overseas, 1 year $£ 4.00 ; 3$ years $£ 10.20$ (U.S.A. \& Canada 1 year $\$ 10$, 3 years $\$ 25.50$).

through BRIMAR

Electronic Video Recording has just been launched in Britain. This exciting new development which could revolutionise educational and industrial television, depends on a reproducer known as a Teleplayer. Manufactured by Rank Bush Murphy Ltd., the Teleplayer depends on a Brimar Flying-Spot Scanner Cathode Ray Tube Q8-100AA, specially developed in conjunction with the EVR Partnership.

Brimar manufacture the widest range of cathode ray tubes for industry to meet most specifications. Tomorrow's new and more complex demands are already being evaluated by Brimar. It's this kind of forward thinking that keeps Brimar ahead. Write for further details.

CRT reliability - Fr -2

Wireless World

Value for money in R\&D

Editor-in-chief:
W. T. COCKING, F.I.E.E.

Editor:

H. W. BARNARD

Technical Editor:
T. E. IVALL, M.I.E.R.E.

Deputy Editor:

B. S. CRANK

Assistant Editors:

J. GREENBANK, B.A.
G. B. SHORTER, B.Sc.

Drawing Office:

L. DARRAH

Production:
D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
G. J. STICHBURY
B. STOREY (Classified Advertisement Supervisor)

Telephone: 01-928 3333 Ext. 533 \& 246.

It has been suggested by Dr. F. E. Jones, managing director of Mullard, that the electrondiscovered by J. J. Thomson 74 years ago-is an ageing particle and that although there is still tremendous momentum in the world's electronics industries we are now very much in an era when the chances of major technological advances are becoming much reduced. Despite this outlook there is still a vast sum of money being spent both by industry and the Government on electronics research. The big question is, are we getting value for money?

At a conference* in Liverpool a few months ago on the subject of value for money in R \& D it was stated that "the rate of economic growth of Great Britain is quite out of keeping with the amount spent on R \& D". Many figures have been published showing how unfavourably the $\mathrm{U} ; \mathrm{K}$. compares with other countries in this respect. In terms of gross national product, for instance, the U.S.A. and the U.K. spend roughly the same proportion on R \& D, but a forecast g.n.p. per head for 1975 is greater for the U.S.A. by a factor of 2.6. For Japan, which spends proportionately less than a half of the amount we in the U.K. spend, the forecast shows Japan will by then overtake us by a factor of 1.6. Even Italy, spending proportionately one ninth of our R \& D expenditure will approximately equal the U.K. figure by 1975.

There are two areas concerned-curiosity-oriented $R \& D$ and economicallyoriented R \& D. The two are quite different and there is a tendency to write off the 'basic' research as a necessary investment for the future, mainly because it is difficult, if not impossible, to measure its effect, and to make the other economic in the sense that some measurable return is expected. Some argue that technology-in the sense of applied R \& D, design, production-depends on science, that the one follows the other as part of a logical sequence.

Some of Britain's shortcomings in R \& D are often put down to qualified manpower difficulties - loss of personnel to other countries, inadequate training and education, and a general shortage of the right kind of people. Some say this shortage arises because the system is not turning out what industry needs, others that many bright people tend to stay at university on curiosity research which means there are fewer available for applied R \& D. Professor J. E. Flood, of Aston University, notes a lack of enthusiasm in industry for higher degree holders. He comments "if the enthusiasm of most of industry for M.Sc. courses is lukewarm the attitude to Ph . D. research in universities is almost hostile. Many firms place no value on Ph.D training and some even consider it positively harmful". This is in complete contrast to the U.S.A. where staff for R \& D jobs usually have higher degrees, and Bell Telephone for instance recruit only physicists and chemists with Ph.D. degrees. They recruit engineers with first degrees only if they agree to take a master's degree course. There is a widespread feeling that university courses do not relate to the problems of the real world. And there does seem a good case for equipping people with the necessary abilities to handle real problems, to communicate and to work with others. Many feel there is a strong case for a critical look at the Ph.D. mill.
To return to the question of value for money, analysis of a large number of technically based companies producing complex systems showed, according to J. R. Pollard of Plessey Telecommunications, that to spend below 4% of turnover on $R \& D$ "is likely to be insufficient to support reasonable company expansion in a technically fairly demanding environment and expenditure in excess of 12% is likely to be unremunerative in the sense of producing comparable profits in the future".

But whatever proportion is spent, it can be argued that a company should be increasing R \& D expenditure when earnings per employee fall, and not the converse. It does seem reasonable to suppose that when efficiency falls, something must be increased to maintain the situation. Taking this argument to its logical conclusion suggests that because Britain is less efficient than other countries, spending on R \& D should be proportionately greater to offset this. So how do we square this with expected future cuts in R \& D spending?

[^2]
The Search for Intelligent Machines

Do we want them, and can we build them?

by R. Baker*, B.Sc., M.Sc.

The basic ideas of logic circuits have by now diffused throughout the electrical engineering world. An ever-increasing number of digital systems, made up from these logic circuits, are finding applications in almost every aspect of modern life. Sometimes special-purpose digital machines are adequate; in other cases the versatility of the digital computer is needed. But, tremendously useful as these machines are, they do have some very distinct limitations. These arise out of the fact that everything that a digital machine can do must be carefully worked out beforehand, and this must be built into the machine by the designer or fed in by computer programmers. Because everything must be planned in this way the data which are to be processed must be presented to the machine in a very wellorganized manner. In practice this means that if a machine is to be connected 'online', then it must be connected only to very 'tidy', well organized systems. Unfortunately that rules out the majority of real-life problems, because in these the data are more-or-less disorganized. Problems of this kind are still solved (or more often, left unsolved) by human operators. Alternatively the data can be carefully sifted by data-preparation staff. And in any case human designers and programmers are still needed to tell the machine how to solve each kind of problem. With the everincreasing demand for data-processing, and new faster computer circuits, the human operators are rapidly becoming the weak links in the system. To help improve this situation work is in progress towards getting better man/machine communication; for example, by using programming languages which are more like everyday language, and by using interactive computer graphics. At the same time as this work has been going on, various research workers have been playing a very long shot, in the same general direction. They are assuming that at some time in the future it may be possible to build machines that act intelligently. This will be in distinct contrast with today's generation of machines.

[^3][^4]noticing. Just how deep will be apparent when we remember that the description 'intelligent' has traditionally been reserved for human beings, and more recently to some animals. We are making a complete break with tradition when we take the description over to non-living systems. We shall have to produce a good case for doing so, and we shall have to be very careful how we do it. Even when applied only to humans, the term 'intelligence' is embarrassingly hard to define or describe, as educationists are acutely aware.
If we want to carry over the idea of intelligence from man to machine, we shall do best to define human intelligence in terms of what a person does in a difficult situation -how he reacts to problems. By considering intelligence in this active way, we can take the idea over to machines quite easily, because we can talk about how machines would react to problems. If we can design a machine to react to a range of problems in the same way that an intelligent person would, we should not say the machine is unintelligent (at least not if it's listening). So far as human intelligence is measured, we generally try to disregard routine skills, however impressive; we are more looking for things like the ability to spot regularities in apparently confused situations, to learn from experience, and generally to take on a wide range of problems even if we have not been taught how to deal with them. Presumably we are looking for the same capabilities from intelligent machines, and that rules out machines such as fixed programme computers with their routine skills, but leads towards pattern recognizing and other adaptive machines.

The hope is that 'intelligent' machines would be able to organize their own input data, and be able to look for their own solutions to problems. If such machines can ever be produced, not only will they be able to take over a whole new range of practical tasks, but they may also give us a clearer idea of our own mental processes. One hopes, too, that they would be able to attempt some of the problems which still baffle human beings. On the other hand we must not overlook the fact that (as has happened with many other worthwhile discoveries) they may be used for antisocial purposes. Nor can we completely disregard those who claim that we are wasting our time trying to make intelligent
machines. 'Intelligence' they say is the prerogative of the human brain; and that has capabilities which go beyond anything a machine could do'. Of course they may be right, but we are not going to find out by giving up before we start. Although we are not even within sight of making intelligent machines, a modest start has been made, and research is continuing. The name of studies leading in this direction is 'artificial intelligence' or 'machine intelligence'.

Which way to intelligent machines?

There are two schools of thought on how we ought to set about making intelligent machines. Both of them are based on the idea that we should try to get as much information as we can from the working of real brains. We could call the first approach the software approach; the idea is to use conventional computers with programmes which make them act intelligently. The proponents of this method point out that we know little of the precise operation of brain cells, or of how they are actually connected to make a working system. So instead of trying to copy something we don't understand anyway, we will do better to use conventional computers, which we do understand; then try to programme them to act intelligently, using any observations we can of our own and other people's mental processes. On this basis a start has been made in getting computers to reproduce some simple aspects of intelligent behaviour. The sort of things computers are doing is controlling a robot vehicle which learns to find its way around in an obstacle-filled room, and being able to recognize and manipulate objects when seen from different angles and distances. More formal tasks include proving theorems in logic and mathematics, and of course playing a good game of chess.

The other approach, which is going to receive more attention in this article, is through the use of so-called adaptive logic. According to the proponents of this approach we have a better chance of getting a 'brainlike' machine if we make at least some attempt to build it with circuits copied from brain cells. In particular, if an intelligent machine is to operate in real-life situations it will have to get visual information about them through TV cameras or the like. Now these visual signals are
characterized by large amounts of parallel data, much of it redundant or even downright misleading. This will demand parallel arrays of logic circuits acting as patternrecognizers. Being able to respond to spoken and written information will also be a big help, and these are also recognition tasks. (Digital computers approach jobs in an essentially step-by-step method, and this serial working is going to be slow and inefficient).

What are we trying to copy?

The human brain appears to be made up from about 10^{10} inter-connected nerve cells or neurons. These neurons come in many shapes and sizes, and Fig. 1 shows some of the main features of a typical example. On the left are the input branches, of which there may be many thousands; these are called dendrites. These merge into the central body (or soma) of the cell. From this comes the relatively long axon. Very complex chemical and electrical processes take place within the neuron, and these are not yet fully understood. Streams of low-

Fig. 1. A typical neuron showing connection with another neuron at a synapse.
level electrical pulses can be detected passing through the neurons. These pulses appear to convey pulse-rate-modulated information. It is presumed that the neurons are acting as data-processing elements (virtually logic elements) to this information. The dendrites collect pulses from previous stages, and after some attenuation these arrive at the soma. Here they are summed up (across the inputs and over short periods of time). If this combined sum exceeds a certain threshold value, the soma generates a pulse which travels down the axon, which distributes it to following stages. The neuron is ready to fire again after a short recovery period. Connections between stages are made through small structures called synapses which form junctions between axons and dendrites. It is thought that these synapses might be modifying the performance of the neurons by acting as variable-gain devices. Some of the neuron inputs are actually inhibitory, and signals on these reduce the neuron's sensitivity. Quite a lot of effort has been devoted in the past to designing circuits which exactly reproduce the electrical characteristics of neurons. But so much hardware is taken up reproducing just one neuren like this that it is hardly practical
to test large networks, which is really the aim of the operation.

Simplified models

What must be done is to produce a very much simplified electronic model of the neuron, and hope that even after this simplification some of the neuron's essential data processing properties will remain. If we conveniently forget the time-factor in the summing process, and replace the

Fig. 2. Threshold gate.
modulated pulses with binary signals, we find ourselves with an ordinary threshold logic gate. Such a gate is shown in Fig. 2; for the sake of symmetry the logic levels are set at +1 and -1 . The performance of the gate can be adjusted by altering the amplifier gains a_{1}, a_{2} etc. through the range $x(+1)$ to $x(-1)$. The threshold level T can also be altered. The output switches if:

$$
a_{1} \cdot I_{1}+a_{2} \cdot I_{2}+\ldots \geqslant T
$$

Because the gate performance can be changed or adapted just by altering certain parameters, it is an example of adaptive logic.

The first breakthrough in this direction was made in 1943 by McCulloch and Pitts. They were able to prove theoretically that virtually any logical or mathematical function could be produced by a suitable network of simple threshold gates. Their classic paper marked the beginning of an era. But it left unsolved the problems of
actually designing and constructing networks to carry out useful tasks.

One of the early attempts to build a useful system was the Perceptron, described in 1958 by Frank Rosenblatt. This was a pattern-recognizing device based on the supposed nerve connections coming from the eye. An input pattern was projected onto an array of photocells. Each photocell had the output +1 or -1 , depending on whether or not it is illuminated. This matrix fed a 'preprocessor', consisting of a parallel array of threshold gates with fixed weights of +1 or -1 . This array fed a single, adaptive output gate, consisting of a threshold gate with variable weights. The idea will be explained by a simple Perceptron which is shown in Fig. 3. This simple Perceptron is to be taught to distinguish between two patterns. Each preprocessor gate sees a small random portion of the matrix. The two patterns are shown alternately. Some of the gates will switch over when the patterns change; we could call these 'useful' gates. Others will remain in one state; these are 'useless' in discriminating between the patterns. The Perceptron is now trained to distinguish the patterns by adapting the gains (weights) of the output gate. The gains in the paths from 'useful' gates are turned up; the 'useless' gates are shut out by turning the corresponding gains towards zero. The gains are adjusted auto matically during this training phase. After training, the Perceptron is able to respond also to patterns which are slightly different from the training patterns. This valuable property is called generalization. (This is essential, if distorted or 'noisy' versions of the pattern are to be recognized.) Much more complicated Perceptrons are possible, and they give correspondingly more sophisticated performance. But there are two basic weaknesses in the Perceptron concept. The fixed preprocessing layer may actually tend to disorganize the input data. Also it is quite possible that for a given problem, all the preprocessor gates might happen to be 'useless'. Since the preprocessor logic is fixed, the Perceptron will fail in this case.

Adeline and Madeline

The problems of the preprocessor were solved by drastic surgery. The fixed logic was eliminated, and the adaptive gate was connected directly to the input pattern. Even the threshold level was made adaptive. Adeline (adaptive linear neuron), devised by Bernard Widrow, works this way. And to obtain better performance, parallel arrays of Adelines were set up, giving Madelines (multiple Adelines). Madeline arrays have been tested, with some degree of success, on a range of problems including speech recognition, weather forecasting, electrocardiogram analysis, and dynamic control.

Having got this far, we should look at the circuit problems involved in actually building an adaptive threshold gate. The logic is straightforward; it is the weights which pose an unpleasant problem. We need either a variable-gain amplifier or else an electronically variable resistor; the snag is that the gain or resistance-value must be stored between adjustments. The first solution, used in the Perceptrons and similar systems, was a motor-driven potentiometer. But this of course gives a bulky, unreliable and expensive system. More recent devices have employed magnetic components. The signal is modulated at r.f. and put through a transformer. The transformer output is adjusted by varying the magnetization of the core, using control windings. Another useful device is the Memistor. This consists of a metal film resistor immersed in electrolyte. Its resistance is varied by plating on or off it, via a third electrode. But to simulate large nerve networks we need a reliable, compact and cheap adaptive circuit. And systems containing vast numbers of analogue storage devices do not look too promising at present. If only we could use purely digital circuits we could take full advantage of modern microelectronics techniques.

Breaking away from threshold circuits

To get clear of these rather unsatisfactory analogue storage devices, Igor Aleksander decided to make a clean break with the threshold gate model of the neuron. Instead, in 1966 he proposed a completely digital model, based on a 'universal gate'. Now any logic circuit can be specified by its truth table. An ordinary logic circuit has just one truth table. But a universal gate can be adjusted to have any truth table. By supplying extra circuitry to set up a truth table to suit the task in hand we get an adaptive universal gate. Although universal gates are farther away from the observed performance of neurons than are threshold gates, this is compensated by the fact that universal gates are much more general. (A universal gate can give any Boolean function of its inputs, but a threshold gate can give only a small fraction of all those possible.) Fig. 4 shows a universal element with two inputs. An AND gate is provided corresponding with each possible entry in the truth table. Connecting the AND gate gives a ' 1 ' in the corresponding line of the truth table; disconnecting it gives a ' 0 '. For simplicity, links are shown for these
connections. In practice electronic switching circuits are used. In Aleksander's SLAM (stored logic adaptive module), the AND gates are switched in or out of service according to the states of storage bistables. The states of these bistables are actually set up during a training session. This consists of showing the SLAM some typical examples of the patterns it is to recognize, at the same time energizing a 'teach' terminal. Afterwards it responds to the training patterns, even without the 'teach' signal. In practice parallel arrays of SLAMs were used, and these have generalizing properties. For example, after being trained with some typical examples of a handwritten letter, SLAM arrays can recognize slightly different versions of the letter, which they have not seen before.

Feedback of data is known to be a feature of brain activity. Now Dr. Aleksander has incorporated it into SLAM arrays. Binary patterns are shown to SLAM arrays and the resulting transformed patterns are delayed and fed back to the input. This has led to improved recognition. Some quite new
right through to that sophisticated specimen, homo sapiens. This method is evolution, and its essential features are supposed to be the generation of random variations in offspring, together with a process described as 'survival of the fittest'. It is obviously a very powerful method, but equally clearly it is very slow. Could we simulate evolution electronically, so as to get some of the advantages, but within a reasonable time-scale? According to Laurence Fogel and his colleagues the answer is 'yes'. According to Fogel, the mark of an intelligent being is the ability to look at the past states of a real-life system and from that to predict a future state. If we code these states into a sequence of numbers, we are looking for a machine which after being shown a number-sequence will output a predicted future term in the series. Fogel used computer-simulated sequential logic machines to attempt these predictions. (Sequential machines are made up from logic gates and delay elements.) The

Fig. 4. Universal gate with adaptation circuits.
properties have alsocome out. These include a short-term memory of patterns seen previously, the ability to recognize sequences of patterns, and the ability to give attention to certain situations. SLAM circuits are in fact available from Integrated Photomatrix Ltd.

Improved performance through evolution?

The work described so far concerns attempts to model brain activity using special computer programmes, or by arrays of adaptive logic circuits. The design of these models is obtained by a combination of analysis, experimentation and intuition. But nature, using none of these methods, has achieved vastly more spectacular results. Nature's method has led from simple one-celled organisms
states and connections of the machines were randomly modified, one at a time, simulating mutation. The modified machines were either retained or destroyed, depending on whether the modification gave improved prediction. Presumably the effectiveness of the method on real systems will depend on just how successfully a system can be modelled by a sequential machine.

The author has also proposed an evolutionary machine, but this time using an array of universal gates made up in hardware. It was tested on a simulated vehicle-routeing problem. The idea was to simulate in a simple way the twofold adaptation which goes on in nature. Learning processes in an individual correspond to short-term adaptation. The evolution of a species is a long-term adaptive process. In the author's system
short-term adaptation was simulated by systematically modifying the universal gates. Evolution was simulated by randomly inserting extra gates into the array, retaining only those which gave improved system performance.

The future

This brief guided tour will indicate that 'artificial intelligence' is still in its infancy. A number of quite different approaches have been investigated, and in some of these useful progress has been made. And research continues. The results are certainly not spectacular. The search for intelligent machines will be long and difficult, but it presents a unique and fascinating challenge.

Finally, in fairness to the researchers past and present in this field, the author points out that the work of only a few has been described, and that only briefly. For those who want to read further, the first book listed below is a very digestible text covering the work on Perceptrons, Madelines and much else and the second a good introduction to SLAM circuits.

Further reading

A. J. Cote Jr. "The search for the robots". Basic Books Inc. 1967.
I. Aleksander. "Brain cell to microcircuit". Electronics and Power, Feb. 1967.
P. M. Lewis. "Practical guide to threshold logic". Electronic Design, Oct. 25, 1967.
H. S. Crafts. "Components that learn". Electronics, March 22, 1963.
L. J. Fogel et al. "Artificial intelligence through simulated evolution". Wiley, 1967.
D. Michie. "Future for integrated cognitive systems". Nature, Nov. 21, 1970.
R. Baker. "Digital networks which adapt by scanning and growth". Electronic Letters, July 9, 1970.
W. S. McCulloch \& W. Pitts: "A logical calculus of the ideas immanent in nervous activity", Bulletin of Mathematics and Biophysics, 1943, 5, pp.115-134.
F. Rosenblatt: "A comparison of several Perceptron models in self organising systems", ed. M.C. Yovitz, (Spartan Books, 1962).
B. Widrow \& others: "Practical applications for adaptive data-processing systems", Revue A, 1968, X, pp.27-38.

Circuit Ideas

Dry cell charger

The circuit shown has proved suitable for charging dry cells. It is pointless (and dangerous) to attempt to charge cells

which have discharged over several months. The charge lost ($+10 \%$) should ideally be replaced immediately, but weekly topping up is satisfactory. The necessary conditions for recharge are thus like those for leadacid accumulators. The $2.2 \mu \mathrm{~F}$ polyester capacitors act as current limiters. This charger can be used for batteries up to 18 V . K. W. Mawson,

Bradford.

Multivibrator with switched mark ratios

The circuit shown below was devised to provide a multivibrator which can have its mark period varied in fixed ratios (here 1:3:5:7:9) by a switch S_{1}, whilst allowing for variation of the absolute periods (by R_{2}) without upsetting these ratios. This idea has been used in a multivibrator also incorporating a previous circuitidea ('Large space-mark ratio multivibrator', K. D. Cliff, April 1969), and in which the 'space'
periods are also variable. The circuit formed the heart of a windscreen wiper control. Intermittent operation of $1,2,3,4$ or 5 wipes can be selected by S_{1}. The $100 \mu \mathrm{~F}$ capacitor C_{1} was added to provide the unbalance needed to start the multivibrator at switch-on.
J.H.J.Dawson,

Sheffield.

Pulse and voltage level indicator

Trouble-shooting a board holding many digital i.cs is tedious when using a 'scope and probe. The simple circuit shown here lights up a bulb when a pulse or a level above 0.7 V is found. The input impedance is high and there is no significant loading of normal digital circuits. A level detector $T r_{1}$ has the same threshold $(0.7 \mathrm{~V})$ as r.t.l. logic 1. If this level is exceeded $T r_{1}$ turns on triggering a 1 ms monostable pair

($T r_{2}$ and $T r_{3}$) lighting the lamp momentarily. Steady in puts above 0.7 V hold the lamp on. The circuit can be housed in $\frac{3}{8}$ in diameter plastic tube with a'probe attached.
J. M. Firth,

Ottawa.

Alternatives to the Teleprinter

A survey of noiseless high-speed methods

by D. A. Paynter* ${ }^{*}$, M.I.E.E., M.I.E.R.E.

The teleprinter has been a familiar device as a communication terminal for a long time. It is an electrical typewriter in which a pulse code decides waich character should be printed. Decoding and type actuation is electro-mechanical, giving rise to considerable noise in operation. A typical operating speed is 10 characters per second although machines operating at higher speeds are available.

Recently 'electronic' teleprinters have appeared. In these decoding is performed by solid-state electronic circuits in place of moving parts. The printing process however still involves impacting a type face against paper with its attendant limitations of speed and noisy operation.

In addition to its use as a communication terminal, the teleprinter is finding an increasing application as a computer peripheral and the conventional teleprinter is now commonplace as a man-machine interface connected over a telephone line to a central processor. When used as a print-out connected directly to a computer, the machine takes the form of a line printer in which a number of characters can be printed simultaneously at speeds approaching 1,000 lines per minute. This is slow compared with the capability of the computer, resulting in the total processing time being limited by the printer speed.

The teleprinter used for communication purposes is also slow compared with the information rate which could be transmitted over telephone lines, so there is a potential need for a machine with greater speed capability. If this can be achieved together with an improvement in reliability and reduction in noise level so much the better. If the mechanical printing action could be replaced by some non-mechanical process, higher speeds and quieter operation become a possibility and it is interesting to consider how printing can be performed without a mechanical printing process.

Photographic methods

If an image of a character is projected onto a light-sensitive emulsion, subsequent development results in a permanent visual record of the character. This is exploited

[^5]in photo-typesetting machines in which the 'fount' consists of a dise containing within its periphery transparent images of the characters required. The required character is selected by rotating the disc until the character is positioned behind a projection system which produces the image on the photo-sensitive emulsion. \dagger

The disc can be replaced by a cathode-ray tube on which visual images can be formed. The use of silver halide photographic material for teleprinter copy would however be prohibitively expensive and a more economic solution is to use xerography ${ }^{1}$ which has a familiar application in office copying-machines. In this process a selenium-coated drum is electrostatically charged in darkness by corona discharge. A visual image is projected onto the drum. The resistivity of selenium varies with the amount of light falling upon it and in consequence the charge leaks away in the bright portions of the image. A latent electrostatic image is accordingly formed on the surface of the drum. An electrostatically charged toner powder is then applied to the drum adhering to the charge areas and making the image visible. The powder image is next transferred to paper and fixed by melting a resin contained in the toner powder.
A variation of this process uses paper coated by zinc oxide ${ }^{2}$. The zinc oxide functions in a similar way to the selenium drum and enables the image to be formed directly on the paper and eliminates the transfer process between the drum and the paper. A simpler machine is therefore

Fig. 1. Electrostatic printing can be achieved by applying an electric field across dielectric coated paper.
possible but with the penalty of a requirement for special paper.

Printers in which the characters are formed on the surface of a cathode-ray tube and printed by the photographic methods described are too elaborate and expensive to be seriously considered as an alternative to the teleprinter.

Electrostatics

The examples considered so far entail creation of a visual image before the electrostatic image can be produced. Processes have been invented in which the intermediate light stage has been eliminated. In one case the screen of a cathode-ray tube is replaced by a line or matrix of closely spaced pins which conduct the electrons from the beams through the glass onto the surface of paper bearing an insulating coating. If characters are formed on the face of the tube in a conventional way an electrostatic image is formed on the coated paper and this can be made visible with powder as before. Although the optics of the previous system have been eliminated the tube is expensive and machines using this system have found only limited application.

If a high voltage is applied between two electrodes separated by an air gap, one of which is pointed, a steam of ions will pass across the gap (Fig. 1). If dielectric coated paper is now placed between the electrodes a charge will be deposited on the dielectric. This phenomena can be used to create an electrostatic image of a character on paper. The paper can be arranged to travel under a row of closely spaced pins situated at right-angles to the direction of paper travel. The incoming message in the form of a pulse code is first stored line-by-line in a memory. From this stored information the necessary pulses are derived to produce lines of electrostatic characters which are subsequently processed to become visible.

Machines are available based on this principle but with the variation of a print head actually contacting the paper coating. The voltages needed to print are lower than those required with ionization printing.

The memory can be eliminated if the characters are actually printed character-by-character. This can be achieved by
using a matrix of pins situated above the paper at each character position. The incoming code is processed by a translator which energizes appropriate pins of each matrix in turn to form the character. Fig. 2 shows a stack of four such heads each consisting of a matrix of 5×7 pins of $25-u$ m diameter on $25-\iota \mathrm{m}$ centres.

Fig. 3 shows a message printed at the rate of 500 characters a second on an experimental electrostatic tape printer. The paper tape is transported at 125 cm a second in contact with a backing electrode and separated from the printing head by 25 to $50 \mu \mathrm{~m}$. The voltage is applied to the appropriate pins in the form of $30-\mu \mathrm{s}$ pulses. which means that printing can take place on continuously moving paper. In the page-printer form 60 heads similar to that illustrated would be situated across the width of the paper, each head being energized in turn to print sequentially across the paper.

Fig. 2. In the electrostatic method, a matrix of pins can be used to print character by character. The matrix head shown has 5×7 matrices with 25 um dia. pins spaced at $25-\mu m$ intervals. A page printer might comprise 60 such heads across the width of paper.

The quality of print produced by a 5×7 matrix of dots is adequate for most purposes. If a greater variety or higher quality of character is required a 7×10 matrix can be used.

Electromagnetism

By using magnetic recording techniques it is possible to 'write' a magnetic image onto suitable material and this image can subsequently be made visible by the application of ferrous powder. As in the case of the electrostatic printer, a magnetic image of the character can be formed by
means of a matrix of magnetic recording heads packed into the areas occupied by one character. In place of the voltage pulse demanded by the electrostatic system a current pulse through the appropriate heads is needed and as the coating of paper with a magnetic medium is an expensive procedure, recording takes place on a magnetic drum. Powder is then applied to the drum and subsequently transferred by pressure to paper. An experimental machine using this principle has been demonstrated ${ }^{4}$ but such a device has not yet been marketed.

Steered ink jet

If one considers ink issuing from a very small jet physically vibrated along its axis, the liquid will break up into a series of droplets. If these droplets carry an electrostatic charge and are made to traverse an electric field they will be deflected in a similar manner to electrons in a cathode-ray tube. This principle was applied to the design of an oscillograph recorder ${ }^{3}$ in 1964 (Fig. 4). In this case droplets of ink are formed by a $25-\mu \mathrm{m}$ diameter nozzle, vibrated by a crystal transducer operating in the region of 45 kHz . Each droplet passes through a hole in a charging electrode to which the voltage waveform to be recorded is applied. Each droplet leaves the charging electrode with a charge proportional to the voltage applied at that instant and then passes through a transverse electrostatic field producing a deflection proportional to the droplet charge. The paper moves continuously at right angles to the deflection of the droplets, producing the other axis of the deflection.

Fig. 5 shows an experimental rig in which droplets of water issuing from a jet are deflected in this way. A pulse voltage waveform is applied to a ring electrode causing the stream of droplets to be deflected in sympathy. The deflection of the droplets is too fast to be seen by the naked eye so the photograph was taken under stroboscopic light synchronized with the droplet frequency. To make the deflection assembly visible a second exposure under steady illumination was made resulting in the solid line from the jet superimposed on the photograph of the droplets.

It is not convenient to turn the ink stream on and off so the same effect is achieved by arranging for the ink to be intercepted by a device which returns the ink to the reservoir at zero voltage; at other voltages the ink is deposited on the

Fig. 4. To avoid using special paper a charged ink jet can be used, deflected electrostatically. Pulsed operation is achieved by attaching a transducer to the ink feed pipe.
paper. If the deflection of the jet and the movement of the paper is used to form a raster scan, a matrix of dots is deposited on the paper. This matrix can be arranged to fill the area occupied by one character in which case any character can be printed by suppressing the appropriate dots. This is achieved in the electronic character translator by arranging that when the stream is at the appropriate position zero voltage is momentarily applied to the charging electrode to ensure that the droplet is intercepted.

This type of printer can operate on wide range of uncoated paper and has the advantage that the characters become visible the moment they are printed. The jet has to be very small (typically $25-\mu \mathrm{m}$ dia.) and precautions have to be taken to avoid blockage in operation.

Two printers operating on this principle are now available from U.S. sources.

The printing methods described so far constitute the major candidates for supremacy at the present time. There are other methods, for example thermal printing, which offer advantages over impact printing but require relatively expensive paper and lack the speed potential of electrostatic or electromagnetic printing.

Costs

It has not been demonstrated that it is possible to market a machine at a price which will compete with teleprinters currently available. The results of

Fig. 5. Ink jet photographed under stoboscopic illumination. A second exposure under steady illumination was made to show the deflection assembly, which accounts for the continuous ink stream.
increased operating speed must be judged in relation to increased capital cost and such disadvantages as the inability to print simultaneous copies.

The cost of paper becomes significant when dealing with high-speed machines. A 300 -character-per-second machine operating for three hours per day for a five-day week will cost $£ 200$ p.a. for paper. If the machine requires specially coated paper this cost could at least double implying an additional running cost of $£ 200$ p.a. or more. The choice could well arise between a relatively simple and reliable machine using special papers and a more complicated machine in which a wide range of papers can be used.

There is at the moment a tremendous world growth in communications. The transmission of the written word is placing an ever increasing demand on available systems. Postal services are finding difficulty in coping with an ever increasing volume of paper. In what sphere the high-speed printer will find its greatest application is not yet clear but without doubt such devices will become an integral part of the communication network of the future.

References

1. Schaffont, R.M. \& Oughton. C.D. 'Xerography: a new principle of photography and graphic reproduction'. J. Opt. Soc. Amer. vol. 38, 1948, p. 991.
2. Young, C. J. \& Greig, H. C. 'Electrofax direct electrophotographic printing on paper'. RCA Review, vol.15, 1954, p. 469.
3. Sweet, R. G. 'High-frequency recording with electrostatically deflected ink jet.' Rev.Sci.Inst. vol. 36,1965, p. 131.
4. Brewster, A. E. 'A high-speed magnetic printout system.' Electronics and Power, vol.62. 1968.

Announcements

The I.E.E. Vacation School at University College, Bangor, on electric circuit theory, which was to have taken place from 22 March to 2 April 1971 will now be held from 5 to 10 July.

STC are negotiating with Chelton (Electrostatics) Ltd of Marlow, Bucks, for the acquisition by Chelton of the technical information and know-how needed for the manufacture and exclusive world-wide marketing of all STC aircraft aerials (excluding only h.f. notch aerials) and engineering services.
J. Grant and Taylor Ltd are to take over STC's closed-circuit television business which includes Grundig and Conrac agencies. STC will continue to market low light level cameras.

Telemotive U.K. Ltd, Albany House, 32 Southfields, East Molesey, Surrey, has acquired from STC their business in 'Telemotive' radio remote control of cranes and other industrial machines.

Pye Unicam Ltd, of Cambridge, are to start leasing scientific equipment. All the financial arrangements for this service will be carried out by Communication Services Ltd, a company jointly owned by Pye and Philips.

An agreement to grant manufacturing rights on an instrument landing system has been concluded between Thomson-CSF (France) and Texas Instruments (U.S.A.).

Cossor Electronics Ltd, Harlow, Essex, have received a large order from the Australian Department of Civil Aviation to supply secondary surveillance radar equipment to be installed throughout Australia.

An exclusive U.K. marketing agreement has recently been negotiated between the Tokyo based NF Instrument Co. and Takmar Electronics Ltd for the NF range of test instruments. Their test instruments include function generators, an auto-ranging a.c. voltmeter, low-distortion oscillator and distortion analysers.

Wilmex Ltd have undertaken distribution of Stax Audio Products in the U.K.

ITT Semiconductors U.K. and Intermetall Hableiter Der Deutsche ITT Industries GmBh Germany, who together form ITT-SC-Europe, have signed a contract with American Micro-Systems Inc. appointing ITT-SC-E as exclusive sales representative and distributor for AMI products in Europe.

Radiatron Components Ltd have taken over as sole U.K. representatives for the complete Irion \& Vosseler IVO range of impulse counters and associated equipment.

Seatronics (U.K.) Ltd, a new second source of supply of electronic components, becomes the first organization to exclusively market own-brand components, initially resistors, capacitors and electro mechanical parts manufactured in Asia. Headed by Peter Webber, previously marketing manager of Morganite Resistors, Seatronics will specialize in standard passive components manufactured in such areas as Singapore and Japan.

Radiall Microwave Components Ltd are now sole U.K. agents for the Cable Division of Thomson Houston, France.

Onkyo, of Osaka, japan, who manufacture audio equipment, have appointed J. Parkar \& Company (London) Ltd, Parkar House, I Paul Street, London E.C.2, sole distributors for their products.

Redifon 'Ltd have purchased the marine radio interests of Cosalt Ltd.

Industrial Control Systems have recently introduced a semiconductor burn-in service at their Northampton factory, for major semiconductor manufacturers, equipment manufacturers and other large volume users of semiconductor components.

Standard Telephones and Cables Ltd has won an order worth over $£ 180,000$ from British Rail for a 960 -circuit, 4 MHZ , coaxial cable telephone link between British Rail Marylebone headquarters and four London stations. The stations involved are Eust on, Liverpool Street, Waterloo and Paddington.

Radiatron Components Ltd are now sole U.K. representatives for the range of electromechanical and electronic components manufactured by ERNI \& Co., Zurich.

Under the name, Raytheon-TAG Components Ltd a U.K. office, which will operate frm 1st June at Shelley House, Noble Street, London E.C.2, is being opened by Transistor AG, Zurich.

A range of function generators made by Interstate Electronics Corporation, of Anaheim, California, is now available in the U.K. through Euro Electronic Instruments Ltd, Shirley House, 27 Camden Road, London N.W.1.

Pye Ether Ltd and Georg C. K. Withof GmbH have concluded an agreement to cover development, production and marketing of their combined ranges of process control instrumentation.

Harlech Television are buying three Marconi Mk. 8 automatic colour television cameras as part of their re-equipment programme in an order worth $£ 80.000$ placed with Marconi Communication Systems Ltd.

Dage (Great Britain) Ltd, Haywood House, High Street, Pinner, Middx, have been appointed sole U.K. distributors for the range of glass-sealed flat packages for integrated circuits manufactured by PhilcoFord of Pennsylvania, U.S.A.

Books Received

Electronic Measurement Techniques by D. F. A. Edwards. The author's preface states that 'the main object of this book is to provide in one volume practical information concerning the latest techniques in electronic measurements. Another justification for the present work is the fact that many people take up electronic or communication engineering as a career with a good working knowledge of the theory involved but with little idea of how to adapt and use the appropriate measuring instruments'. The chapters, averaging twenty pages each, cover basic electronic measurement (resistance, current, voltage, etc.), the general use of various instruments (including meters, oscillographs and oscilloscopes), and many techniques of measurement (resonance methods for L, C, R, and Q; various methods for power, frequency etc; null procedures). The last two chapters describe standards and the measurement of non-electrical quantities with reference to electronically linked servo-mechanisms. The author uses SI units throughout and the book includes worked examples and questions from B.Sc., I.E.E. and City and Guilds examination papers, for which the answers are also given. Pp. 377 including index. Price $£ 4.20$ cased, and £2.80 limp. Butterworth \& Co (Publishers) Ltd, 88 Kingsway, London WC2B 6AB.
Field-Effect Electronics by W. Gosling, W. G. Townsend, and J. Watson. The opening historical review, referring back to 1925 , is followed by an up-to-date introduction to junction and insulated gain f.e.t. operation including that relevant to III-V compound semiconductors and Schottky and silicon gate fabrication. A chapter is devoted to noise and the remainder of the book to the applications of f.e.t. devices. Pp. 364 including index. Price $£ 8$. Butterworth \&. Co (Publishers) Ltd, 88 Kingsway, London WC2B 6AB.

200-W Linear Amplifier

by G. R. Jessop*

Abstract

An amplifier is described which will provide 200 W at frequencies between 3.5 and $\mathbf{2 8 M H z}$. The article also describes the construction of the high-power valve employed and briefly mentions how it can be used as a 200 W a.f. output stage.

Before describing the actual amplifier a few words on the valve employed would not go amiss. The valve is type TT 100 and was originally developed from the earlier type TT21 for use in shipborne s.s.b. equipment. It has an anode overload dissipation of 2.7 times the maximum anode dissipation for five minutes allowing for the effect of a possible large aerial mismatch when, for instance, the aerial is broken or 'down on the deck'. The high thermal

* M-O Valve Company Ltd.
capacity of the anode is achieved without the use of an expensive carbon block anode. The valve uses a B12F cathode-ray tube base which allows multiple leads to the electrodes resulting in a low electrode lead impedance. To meet the electrical demands, and at the same time to keep the cost down to a reasonable level, two cathode assemblies, complete with grids and screen grids, are employed and surrounded by a massive anode. This means that standard large electrode structures are used and there was no need to design a

Component details

R_{1}	$1 \mathrm{k} \Omega, 3 \mathrm{~W}$, carbon
R_{2}	10Ω (two off)
R_{3}	100Ω over-wound with a single
	turn of $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled copper wire
r.f.c	2.5 mH pi-wound choke
r.f.c	see text
r.f.c	2.5 mH pi-wound choke

$C_{12} \quad 10 \mathrm{nF}, 500 \mathrm{~V}$, disc ceramic
$C_{3} \quad 30 \mathrm{nF}$, three 10 nF capacitors in parallel
$C_{4}{ }_{6}{ }_{10} 2.5 \mathrm{nF}, 2.5 \mathrm{kV}$, mica
$C_{7} \quad 9-300 \mathrm{pF}$, variable (Jackson)
$C_{8} \quad 500 \mathrm{pF}, 2.5 \mathrm{kV}$, mica
$C_{9} \quad 40-500 \mathrm{pF}$ variable (Jackson)
500 mA f.s.d. meter
$L_{1,2} \quad$ see text

Fig. 1. Circuit of the linear amplifier capable of producing 200 W up to 30 MHz .
special electrode assembly for the valve. This dual-electrode construction leads to easy connection of anti-parasitic components.

When using the valve it is essential to ensure that the glass bulb does not exceed $270^{\circ} \mathrm{C}$ by using some sort of cooling system. Two methods come to mind. The first, and more obvious, is to ventilate the enclosure in which the valve is installed and then to use either a simple fan to stir the air adequately (this method is illustrated in the amplifier described), or a small extractorfan.

Alternatively, a more elegant method is to use a close fitting heat shield having good contact with the bulb allowing the heat to be transferred from it to the chassis. The heat can then be conducted to a suitable heat sink attached to the back of the equipment.

The amplifier

Of the various anode circuits which may be used for linear amplifiers to cover a wide range of frequencies, none is more convenient than the standard 'pi-coupling' where with suitable components a relatively wide range can be matched into the load.

In the grid circuit, the passive arrangement is probably the most satisfactory, provided that a reasonably high value of loading resistor, such as $1 \mathrm{k} \Omega$, is used. With this circuit feedback is unlikely if the socket wiring is properly arranged; it does, however, call for somewhat higher drive power than would be the case using a tuned-grid circuit. At the same time a more constant load is provided into which to operate the drive.

The circuit of the amplifier is given in Fig. 1. R_{1} is the grid loading resistor and \boldsymbol{R}_{2} the anti-parasitic resistor (in fact there are two of them, one being connected to each control grid, pins four and nine). The screen grids are decoupled by the use of three 10 nF disc ceramic capacitors in parallel connected from pins six and seven to earth.

All the input and socket connections are made below the chassis; the arrangement of the various components is shown in the lay-out diagram Fig. 2. It is important to note that all the earth connections are made to a common point to reduce chassis circulating currents. The connections of the

Two views of the completed prototype. In the left-hand photograph the h.t. decoupling capacitor can be seen in the top left-hand corner
four cathode pins should be as short as possible and made from thick wire or copper strip.

The anode circuit is a conventional shunt-fed pi-coupling, the variable components being the anode tuning capacitor C_{7}, the tapped inductor L_{1}, L_{2} and the output matching capacitor C_{9}.

These main components should be built effectively as a unit using capacitors with insulated end plates and the earth connections to their rotors made by a single piece L-section copper strip ($75 \times 50 \mathrm{~mm}$) bolted to the chassis (this can be clearly seen in the internal view of the amplifier). A copper strip connection from the output socket

Fig. 2. Under-chassis layout of components.
should also be returned directly to the common earth strip of the tuned circuit. This arrangement will reduce the chassis circulating currents to a minimum.

Coil winding

The anode inductor comprises two parts, L_{1} for the higher frequencies connected in series with L_{2} to make the complete coil. $L_{1}: 9$ turns of 3 mm diameter copper wire, the turn spacing being 1.5 mm . The internal diameter of the coil is 38 mm . Taps are made at 3 and 5 turns from the anode end for the 28 and 21 MHz amateur bands respectively. The whole coil is used for the 14 MHz band.
L_{2} : 21 turns of 2.5 mm diameter copper wire wound on an epoxy resin former 38 mm in diameter, turns are spaced to occupy a winding length of 70 mm . A tap is made at 9 turns from the connection to L_{1} for operation at 7 MHz . Selection of the taps on the inductor is by the high voltage ceramic switch.

Anode feed r.f. choke: This choke(r.f.c.) has to have high impedance over the whole frequency range at which the amplifier is to operate, since it is effectively in parallel with the tuned circuit. In this case a simple single-layer coil is used consisting of 100 turns of 24 s.w.g. enamelled wire close wound on a 12.5 mm diameter ceramic former (winding length 64 mm). The choke is mounted horizontally below and at. right-angles to the anode inductance to minimize inductive coupling.

Construction

This may be of any convenient form to suit individual requirements. The unit illustrated is a small amplifier contained in
a cabinet $260 \times 200 \times 165 \mathrm{~mm}$. A simple fan to provide adequate air circulation is fitted to the rear panel. No detailed drawing is needed for a unit of this type; all the relevant data can be obtained from the photographs.

One point that needs mentioning is that the meter, being close to the considerable r.f. field, must be shielded and its connections by-passed to chassis. The h.t. feed line should also be screened as near as possible to the actual supply socket. It is also by-passed at the h.t. supply socket as can be seen in the front view photograph (top left-hand corner of the rear panel).

Performance

The performance of the amplifier illustrated is summarized in the table of results and the curve, Fig. 3. The power output is substantially constant over the frequency range 3.5 to 28 MHz .

Tests carried out at a very much lower frequency give similar results; the operating conditions and performance quoted may

Fig. 3. Performance in terms of output and input power against frequency.

TABLE 1 Amplifier performance

frequency	3.5	7	14	21	28	MHz
anode voltage	850	850	850	850	850	V
screen voltage \dagger	216	216	216	216	216	V
grid voltage	-50	-50	-50	-50	-50	V
anode current (no sig.)	100	100	100	100	100	mA
anode current (max. sig.)	375	375	375	375	375	mA
screen current (max. sig.)	35	20	26	17	33	mA
grid current (max. sig.)	2	2	2	2	mA	
Power output (in load)	195	200	205	195	190	W
power input (drive)	1.5	1.5	1.6	1.7	2	W

†voltage stabilized using two QSI206 glow discharge stabilizers in series.
Valve data: type TT100
single tone

anode voltage	V_{0}	600	800	850	V
screen voltage \dagger	$V_{g 2}$	216	216	216	v
grid voltage*	$-V_{g 1}$	42	48	50	V
anode current (no sig.)	fa(0)	150	110	100	mA
anode current (max. sig.)	fa	300	350	375	mA
screen current (no sig.)	$l_{g} 2(0)$	- 5	3	2.5	mA
screen current (max. sig.)	$\mathrm{f}_{g 2}$	25	28	30	mA
grid current (max. sig.)	p_{i}	-	1	2	mA
grid voltage (pk crest)	$V_{g 1}$	42	49	52	V
power output (load)	P_{L}	100	180	200	W
anode impedance	z_{a}	1100	1400	1400	Ω
two tone\#					
anode current (max. sig.)	$1 a$	225	245	250	mA
screen current (max. sig.)	$i_{g 2}$	15	15	16	mA
grid current (max. sig.)	p_{1}	-	0.1	0.25	mA
power output (p.e.p.)	P_{L}	100	180	200	W
power output (mean)	P_{L}	50	90	100	W
intermodulation $\#$	IM	42	28	26	dB

+Voltage stabilized using two QSI206 discharge stabilizers in series.
*Adjusted to set anode current at no signal
\# Two signals of equal amplitude spaced 2 kHz in frequency.
\ddagger Intermodulation distortion products at any level of the drive voltage relative to either tone
therefore be applied to audio amplifier applications as well.

For audio amplifiers (push-pull pair) anode-to-anode load impedance should be 2460Ω. The $400-\mathrm{W}$ output can be obtained with an anode supply of 850 V and a grid current of 2 mA or at 1 kV with no grid current (class AB1).
It will also be seen that the drive power rises with increasing frequency. This is largely due to circulating current through the valve's input capacitance (37.5 pF) dissipated in the anti-parasitic resistors.

The drive can be computed from the following formula:

$a=$ power in load resistor

 $=V_{\text {in (peak })} /(R \times 2)$ where R is the anti-parasitic resistor R_{2}.$b=$ power in anti-parasitic resistors. See Table 2.
$c=$ power in valve $=$ peak drive voltage times peak fundamental grid current. Total drive power is equal to $a+b+c$.

The amplifier as described is suitable for operation with an input that can be matched to the effective input impedance but if the amplifier is to be driven by an exciter/driver designed itself to feed into a $50-75 \Omega$ output with only a limited range of loading capacitance, it will be necessary to provide a

200-W LINEAR AMPLIFIER

 TABLE 2| \boldsymbol{f} | $\boldsymbol{X} \boldsymbol{C}_{\boldsymbol{m}}$ | $\boldsymbol{I}_{\text {in }}$ (peak) | Input power
 $\mathbf{M H z}$$\Omega_{\mathbf{W}}$ |
| :---: | :---: | :--- | :--- |
| 3.5 | 1200 | 0.046 | 0.005 |
| 7 | 580 | 0.095 | 0.02 |
| 14 | 306 | 0.186 | 0.08 |
| 21 | 200 | 0.28 | 0.18 |
| 28 | 120 | 0.46 | 0.5 |

The input current is that flowing in the input capacitance via the two anti-parasitic resistors in parallel.
suitable matching coupling to step up the impedance to a suitable value or a tuned input circuit.

Books Received

Measuring ©scilloscopes edited by J. F. Golding. This compilation of contributions by Marconi Instruments engineers has been made primarily for oscilloscope users. The accent is laid on methods and principles-circuits are only included to illustrate this approach. The discussion is limited to general purpose real-time oscilloscopes, and does not deal with techniques for measuring very fast transients (or very high frequencies) such as are employed in sampling and travelling-wave oscilloscopes. Chapter titles are-construction and operation, getting the signal to the oscilloscope, the Y co-ordinate, the X co-ordinate. the display, the complete oscilloscope. and oscilloscope applications. Pp 236 including index. Price $£ 4.20$. Iliffe Books. Butterworth \& Co. (Publishers) Ltd. 88 Kingsway, London WC2B6AB.

Transistor Audio Amplifiers by P. Tharma This book is based on work done at the Mullard Central Application Laboratory. The first nine chapters are analytical, describing transfer characteristics for large and small signals in junction transistors, small signal stages and output stages, noise, thermal stability, negative feedback, and distortion. The remainder of the book, chapters ten to seventeen. describes practical circuits for highand low-power audio amplifiers, tape recorder circuits and power supplies. An extensive index is provided. Pp. 413. Price £6. Iliffe Books, Butterworth \& Co (Publishers) Ltd, 88 Kingsway, London WC2B 6AB.

Conferences and Exhibitions

Further details are obtainable from the addresses in parentheses

LONDON

June 7 \& $8 \quad$ Royal Lancaster Hotel Materials Control \& Economics
(B.C.E., Mercury House, Waterloo Road, London S.E.1.)

June 8-10
Savoy Place
Aerospace Antennas
(I.E.E., Savoy Place, London WC2R OBL)

June 21-25
Royal Lancaster Hotel
Film '71
(B.K.S.T.S., 110-112 Victoria House, Vernon Pl., London WC 1B 4DJ)

SUNBURY

June 1 \& 2
Holbrook Hall
Acoustic Testing Facilities
(Sound Research Labs.. .Holbrook Hall, Sudbury, Suffolk)

OVERSEAS

June 1-3
Ottawa
Electrical \& Electronic Measurement \& Test Instruments
(I.E.E.E., P.O. Box 252, Richmond, Ontario)

June 2-4

Genoa
Satellite Communications
(Instituto Internazionale delle Comunicazioni, 18 Viale Brigate Partigiane, 16129, Genoa)

June 2-4

Washington
Laser Engineering \& Applications
(D. R. Herriott, Bell Telephone Laboratories, Murray Hill. N.J. 07974)

une 2-12

Vancouver
British Columbia International Trade Fair
(D. Kenneth Brown, British Columbia International Trade Fair 1971, Suite 1100, 475 Howe St., Vancouver, B.C.)

June 7 \& 8

White Plains

Applications of Ferroelectrics

(Dr. A. W. Smith, IBM Watson Research Center, Yorktown Heights. N.Y. 10598)
June 7\& 8
Chicago
Broadcast \& TV'Receivers
(D. Ruby, Zenith Radio Corp., 6001 W. Dickens Ave., Chicago, Ill. 60639)
June 12-17
Paris
Automatic Contro-I.F.A.C. Congress
(Intl. Fed. of Automatic Control, Graf-Recke-Str. 84, P.O.B. 1139, Düsseldorf, Germany)

June 14-16
Montreal
World Communications Conference
(I.C.C., P.O. Box 201, Station H, Montreal 107)

June 14-19

Lille
International Electronics Week
(Soc. pour la Diffusion des Sciences et des Arts, 14 Rue de Presles, 75-Paris 15 ème)

June 17-27
Geneva
Telecom 71 Exhibition
(I.T.U., Place des Nations, Geneva)

| June $21 \& 22$ | | Baden Baden
 Properties of \quad Electric-conductive
 Magnetic |
| :--- | :--- | :--- | :--- |
| Materials | | |
| (Int. Electrotechnical \quad Commission, 1 | Rue de | |
| Varembe, Geneva) | | |

News of the Month

change over will take place on January 1972.

The change will affect only users of precise frequency generators and time keeping equipment, who probably will have to adjust their equipment or operations. These users include radio and television stations, scientific laboratories, electric-power companies, manufacturers of electronic equipment and perhaps the makers of navigation and radar equipment. Groups which use precise timing instruments for the sole purpose of synchronizing their activities will not necessarily be affected.

1971 Queen's Awards for technical innovation

Six companies in the electronics field received the Queen's Award for technical innovation. AEI Scientific Apparatus received the honour for their EM7 millionvolt microscope which is the only electron microscope with a resolution of $0.0005 \mu \mathrm{~m}$. The microscope is about 6 m high and to date ten have either been installed or are being manufactured to order. Decca Radar received the award for their type 71 doppler radar for helicoptors and for the type 72 for fixed-wing aircraft and for their solid-state marine radar. This latter item contains a step recovery diode local oscillator that took three years to develop, an all-semiconductor modulator and auto-follow tuning. Transmitter power is only 3 kW . Decca Survey received the award 'for technical innovation in the radio position fixing system Hi-Fix'. Hi-Fix is a portable h.f. position fixing system. This employs three shore-based transmitters working on the same frequency and can determine a ship's position 200 miles away
to within a few metres. Hi-Fix was used to find the hydrogen bomb which was lost when a U.S. aircraft crashed near Palomares in Spain some time ago. There are now well over 100 Hi -Fix chains in operation.

International Computers were granted the award for technical innovation in a computer integrated design and production system for the ICL 1906A computer.

Marconi Instruments manufactured a range of r.f. power meters which are the first to be commercially available using thin film techniques. For this range they received the Queen's A ward.

In the semiconductor field one cannot get very far without very high quality raw materials. In this field the Queen's technical innovation Award was conferred on Metals Research, for a crystal pulling system for the production of single gallium phosphide crystals. The company also received the award for an image analysing computer.
-

Change to bring G.M.T. in line with atomic time

Greenwich Mean Time (G.M.T. or U.T.C.-Co-ordinated Universal Time) will be slightly altered soon to eliminate the present offset from atomic time. This offset consists of a continuous retardation of 30 parts in 10^{7} plus step adjustments of 0.1 seconds to keep U.T.C. or G.M.T. within 0.1 second of a time scale based on the rotation of the earth.

The need for the change arises from the fact that today's atomic clocks are very constant and provide a time reference that is much more uniform than the scale provided by the earth's rotation. In fact, a time scale based on the earth's rotation will vary almost a second per year. That much variation cannot be tolerated by many technical and scientific projects, and so atomic clocks are used today.

With the new system the atomic clock rate will not be slowed down at all, and instead of adding or subtracting a whole second every few months, everyone will
add or subtract a whole second once in 12 to 18 months. Naturally, if your clocks lose or gain more than one second in a year, you won't have to worry about these tiny adjustments.

The one-second adjustment, or leap-second, is very similar in concept to adding an extra day during leap-years. The standard time and frequency radio stations maintained by various countries will co-operate with the International Time Bureau in broadcasting the new time scale and in making the adjustments simultaneously, preferably on January 1st or July 1st. To provide a traditional service to navigators and astronomers, who need earth related time these stations will broadcast information concerning the difference between the transmitted time and the astronomical time. The difference will not be more than 0.7 second, and will probably be broadcast with a resolution of 0.1 second. The

Colour TV deliveries increase

Television deliveries for the first quarter of $1971(542,000)$ were 9% up on the same period of $1970(496,000)$, according to the Economic and Statistical Division of the British Radio Equipment Manufacturers' Association. This was due to the continued increase in deliveries of colour sets which reached 146,000 for the three months this year, compared with 86,000 in 1970, whilst monochrome fell slightly from 410,000 in 1970 to 396,000 for the first quarter this year.

During March itself 53,000 colour sets and 134,000 monochrome sets were delivered, as compared with 31,000 and 138,000 respectively in March 1970.

A slight fall in record players from 115,000 for January-March 1970 to 109,000 this year is seen as an indication more of a swing towards the growing audio separates market, rather than a decline in deliveries of record playing equipment. During March itself 39,000 players were delivered compared with 40,000 in March 1970.

U.H.F. radio-telephone service

Christopher Chataway, Minister for Posts and Telecommunications, recently inaugurated a new u.h.f. radio-telephone service, called 'Readycall'. Subscribers to the service, operated by Burndept Electronics (ER) Ltd, will have a u.h.f. radio-telephone installed in their cars. They will then be able to make calls, via the Readycall operator and the public telephone network, to anyone they wish; in a like manner they can also receive calls. Although the equipment could be linked directly to the telephone network this is not the case at present and the operator acts as a go-between to relay information.

Burndept have been granted two licences by the Minpostel for the system. The first allows them to use the frequency band 450 to 470 MHz and the second
covers the break in the Post Office's monopoly.

The system employs 5 W transmitters, 25 kHz channel spacing and phase modulation with a peak deviation of 5 kHz . A selective call method is employed to ensure privacy. Each vehicle installation has an individual 'address' set by a plugin decoder and can be switched to the receive mode only if the correct sequence of tones is transmitted. A three-tone sequential system is used. the tones being between 540 and 3180 Hz . As soon as the correct tone sequence for a particular radio-telephone is received a lamp on the instruments' front panel illuminates. This warns the subscriber he has been called (should he be away from his car) so that he can call the operator on his return.

At present the system is in use only in London which is served by two transmitters covering an area bounded by Enfield, London Airport, Croydon and Dartford. At the inauguration Wireless World heard the system operating in a coach driving round London and in spite of the built-up area and dense traffic the freedom of fading and noise was quite remarkable.

Subscribers to the system pay a rental charge of $£ 16$ per month and the system is in operation between 8 a.m. and 6 p.m. on weekdays only.

Another Japanese
 PAL receiver

An imported colour television receiver which claims to avoid infringement of Telefunken PAL patents is announced by Teleton, European marketing organization for the Japanese Mitsubishi combine. First rumoured in these pages in 1969, the set follows introduction of PAL receivers by Hitachi--by agreement with Telefunken —and by Sony, who also claim to avoid patent infringement. Unlike the Sony 33 cm set using the single-gun Trinitron c.r.t., the Teleton set uses a shadow mask tube scaled down to 30 cm and works on the simple PAL basis. It uses a patented subcarrier switching technique first used in an NTSC set-described in Electronics, 31st May 1965-and modified for 180° switching. The set is a single-standard u.h.f. receiver priced at $£ 179.50$.

Heart monitoring by 'phone

Patients with heart complaints recovering at home can be monitored for cardiac irregularities over regular telephone lines. A portable, wireless monitor that permits a patient to move around freely has been tested at Beth Israel Medical Centre in New York City. In the test 19 patients were monitored for total of 194 hours. The
combined system consists of a small, low-power, radio transmitter carried by the patient; a receiver in the patient's room tuned to the portable transmitter; and a unit linking the radio receiver to the patient's telephone. All the equipment required for remote monitoring can be carried in an attache case.

Heart performance data collected by electrodes on the patient's body is sent by the transmitting unit to the nearby receiver. Bell Labs have co-operated with the Beth Israel Medical Centre in the project.

Stereo radio network extension

Work is being carried out to adapt the v.h.f. Radio- 3 transmitter at Rowridge, Isle of Wight, to stereophonic broadcasting. Programme material will be received direct from the transmitter at Wrotham, Kent, and will be retransmitted. It is expected that Hampshire, Dorset, South Wiltshire, South Berkshire, South-west Surrey and West Sussex will have sufficient signal strength for stereo reception from the Rowridge transmitter aerial. Many listeners will have to fit improved aerial systems if they are to benefit fully from the new service, as a good aerial is essential for good stereo reception.

U.S.-Canada satellite agreement

The National Aeronautics and Space Administration of America and the Canadian Department of Communications today signed an agreement for a co-operative experimental communications technology satellite. The agreement provides for the launch of the Canadian satellite in a geostationary orbit by N.A.S.A. in 1974. It will be designated Co-operative Applications Satellite C (CAS-C).

Specific objectives of the project are to conduct communications experiments with ground terminals operating at extremely high frequencies (12 GHz) and to develop and flight test a high efficiency power source (more than 50% efficiency at a minimum output of 200 W . The satellite will also test solar power cell arrays which will have an initial power output of over 1 kW .
These experiments are intended to develop techniques for providing services to small villages, including TV two-way voice communications, data links and facsimile, which would have potential in the outlying northern areas of Canada. The 12 GHz experiments will help to open
the frequency spectrum above 10 GHz which is urgently needed for communications, broadcasting, and educational television.

STAR Aerosat contract

The British Aircraft Corporation Space Systems Group, Bristol, have been appointed prime contractors by the European Space Research Organization in a definition study contract awarded to the STAR (Satellites for Telecommunications, Applications and Research) Consortium. The contract is for an aeronautical communications and surveillance satellite (Aerosat), which will monitor and control aircraft over long distance routes and entails the study of suitable satellites and launch vehicles, as well as the characteristics of aircraft and ground stations.

The work will be concerned with frequencies in the u.h.f. L-Band (1540 to 1660 MHz). Thomson-CSF of France have been appointed prime sub-contractors for the communications and surveillance aspects of the system.

This is the second contract gained by the STAR consortium since it was formed in December last year. The first, which was mentioned last month in this section, was to define a European telecommunication satellite system.

How to present a technical lecture

A discussion meeting on how to present a technical lecture will be held on Wednesday, 2nd June 1971, at the Institution of Electrical Engineers, Savoy Place, London, at 5.30 p.m.
An introduction, in the form of a playlet, will illustrate the right and wrong ways of verbal and visual presentation. There will then be an opportunity for the audience to put views to a panel chaired by Mr. J. A. Lawrence, telecommunication consultant with the Plessey Telecommunications Group, together with Dr A. V. M. Coombs, Senior principal scientific officer, P.O. Research Department, Mr. G. Eric Evans, consultant designer and Mr. Aubrey Singer, Head of Features, B.B.C.

The meeting is organized by the Engineering Writing and Speech Chapter of the U.K. and Republic of Ireland Section of the Institute of Electrical and Electronics Engineers.

More Birthday Celebrations

The Wireless World '60th birthday' amateur station GB3WW, operating from Dorset House during the month of April, made nearly one thousand contacts with stations in more than 50 countries and in all continents. Contacts were made on the $3.5,7,14,21$ and 28 MHz bands, though most were on $3.5,14$ and 21 MHz . Because of the limited operating times (evenings and Saturdays), few stations in Oceania were worked-but an exception was KR6IX in Okinawa; all other continents were well represented. Despite severe ionospheric disturbances around the Easter period, the call signs of many long-distance stations found their way into the GB3WW log: FG7AB (Guadaloupe); MP4TDA (Trucial Oman); MP4BHL and MP4BHM in Bahrein: 9Y4CR (Trinidad): 5 Z 4 LW and 5 Z 4 LI in Kenya; TI2LA (Costa Rica); CR6MK (Angola); VP2EEL (Anguilla): 9M2WM (Malaysia), several ZS stations in South Africa and JA. JH and JR stations in Japan-and many, many others. Distance seemed annihilated during such 'openings' as a 20 -minute spell on 14 MHz s.s.b. when four

Californian amateurs were contacted in succession.

On 3.5 MHz , considerable numbers of British stations were worked---one was that of Ken Alford (G2DX) whose 1914 station TXK was illustrated in our April 'birthday' issue. Another pioneer station was F8DR in the South of France who was licensed in 1923. DA2XX/P concealed the identity of J. Cooper. G3DPS, and until recently general secretary of the Royal Signals Amateur Radio Society. One of the GB3WW operators made contact with an amateur with whom he had shared his first Army billet in 1941 and whom he had neither seen nor contacted since!

Many British and Overseas amateurs sent birthday greetings to $W . W$., with large numbers of Americans showing familiarity with the journal. 60th birthday greetings were mutually exchanged with GB3ERD operating during the opening of the 60 -year anniversary exhibition of the Derby and District Amateur Radio Society.
A number of American 'novice' stations
were worked cross-mode (s.s.b. out, c.w. in) on 21 MHz . Operation was divided between s.s.b. and c.w. At least one American station was using only an indoor dipole-another 40 watts of a.m.

Bulk of the work-load fell on the KW2000B transceiver used in conjunction with the KW linear, though the high performance of the 'first reserve' receiver-one of the new Eddystone 1830/1 all-semiconductor receivers-was fully explored by most operators. Despite one or two minor problems, the equipment showed clearly that extremely effective world-wide communication can be achieved today with a minimum of installation time and even without the use of beam aerials (a KW trap dipole was used throughout, though it had the advantage of the height of Dorset House).

Our thanks to all the hundreds of amateurs whose co-operation made operating GB3WW an event to remember-also to Minpostel for the licence, and to KW Electronics, Eddystone, Shure and D. R. Bowman (G3LUB) for the loan of equipment.

In the event, the team of operators included F. C. Ward, G2CVV; D. A. Findlay, G3BZG, R. S. Roberts, G6NR; B. M. Johnson. G3LOX: D. R. Bowman. G3LUB; G. M. C. Stone, G3FZL; S. H. Andrews, G3OGY: and Pat Hawker. G3VA.

Mullard, who recently celebrated their Golden Jubilee, presented us with a magnificent birthday cake at a luncheon held in honour of Wireless World's 60 th birthday. The photograph shows Harold Barnard, the editor, and Charles Marshall (right), of Mullard, who made the presentation. The cake carried a reproduction of the front cover of our April birthday issue.

The photograph shows a mock-up of a 1911 to 1913 amateur radio station set-up at the Derby and District A mateur Radio Society's exhibition to celebrate their Diamond Jubilee. The Wireless World birthday station, GB3WW, was pleased to exchange greetings with the Derby Society's Jubilee station GB3ERD

Items of interest seen at Alexandra Palace

Helical linear motor

A prototype helical reluctance linear motor, demonstrated by University College North Wales, allows accurate control on open loop. Developed at Bangor this new linear actuator is based on the principle that components of a magnetic circuit attempt to move so that a condition of minimum reluctance is attained where there is maximum mag-neto-motive force. The geometric construction of the motor is such that rotation of the magnetic field in the stator is converted directly into linear motion of the armature. The motor assembly has no racks, pinions or screw threads, and may be used either in a stepping or continuous mode. In the stepping mode it becomes particularly appropriate to use direct digital control. Step sizes are typically 0.2 mm and in continuous mode the resolution is typically 0.2 mm . The available force depends on machine size and has been recorded at 30 kg . Stiffness has been recorded as high as $600 \mathrm{~kg} / \mathrm{mm}$, and a speed of $100 \mathrm{~mm} / \mathrm{s}$ has been achieved.

Pseudo-random quantization for p.c.m. television

One of the early applications of p.c.m. television may be for transmitting Viewphone signals between towns and cities. An exhibit comprising a 6 megabits/second system constructed as part of the Post Office research programme into methods of minimizing the digital data rate required to transmit television was shown.

A 319-line television system with a bandwidth of 1 MHz was used to demonstrate the subjective aspects of transmission by p.c.m. At the input to the p.c.m. system the signal is sampled at 2 MHz and each sample is quantized into one of eight levels. The value of each level is coded into three binary digits and the p.c.m. signal is transmitted to the decoder unit at a rate of $6 \mathrm{Mb} / \mathrm{s}$. Here, the eight level signal is reconstituted, passed through a low-pass filter and displayed on the picture monitor.

Because of the three bits/sample coding the displayed picture can have only eight levels of brightness. However, instead of keeping these fixed, which would cause severe 'contour' distortion of the image,
the coder and decoder are 'dithered' by a pseudo-random signal which causes the brightness represented by each coding level to change frame by frame and point by point within each frame.

The quantizing distortion therefore appears as random noise. Adding the pseudo-random signal to the video signal before coding disperses the quantizing contours as random noise but the total noise power in the displayed image is now equal to that of the inherent quantizing noise plus that of the dither. The signal-to-noise ratio of the image is maximized if the dither is subtracted again after the contours have dispersed. Identical, synchronized pseudo-random dither generators are therefore provided at each end of the digital link. the dither signal itself has been designed to minimize the visibility of the pseudo-random quantizing error by exploiting the way in which the subjective visibility of noise falls with frequency.

Flat display

A flat gas discharge display is under development by Mullard Research Labs. The cathode-ray tube is not necessarily the cheapest form of display when only a few lines of characters are needed, and the device shown had a capacity of four lines of 14 characters. Each device is formed by a 5×7 cell matrix, $0.75-\mathrm{mm}$ square and spaced at $1.5-\mathrm{mm}$ centres. Cells in each of 83 columns have their cathodes connected together to form one set of cross bars; anodes connect to an orthogonal set of 34 cross bars.

In the demonstration of this tube', rows were addressed sequentially and
columns addressed in parallel from a row store. A buffer store recirculated data via a 64 -character generator to the row store to refresh the panel at 500 Hz . Generator was a standard 2240 -bit m.o.s. read-only memory and the buffer store used six recirculating 64 -bit m.o.s. shift registers. The display demonstrated is shown in Fig.1.

Self-aligned molybdenum-gate m.o.s. transistors

Using the conventional m.o.s.t. technology, source/drain and gate areas, and gate conductors are defined by successive photomechanical masking steps, where essentially photographic images are aligned visually onto the pattern produced at the previous stage of processing. The alignment obtainable from this system is limited by the accuracy of the aligning equipment; for a typical system sequential patterns can be aligned to within $\pm 3 \mu \mathrm{~m}$. Thus for a high frequency device of channel length say $3 \mu \mathrm{~m}$ the gate conductor must be made $9 \mu \mathrm{~m}$ wide to ensure that the gate covers the channel completely. The resultant gate overlap onto source and drain regions gives rise to parasitic input capacitance, which degrades high frequency performance.

With the advent of l.s.i. m.o.s., several techniques to produce auto-registered structures have been investigated to give better performance and higher packing densities. The most commonly used systems are the silicon gate m.o.s. and the ion implanted m.o.s. both of which require quite complex processing.

An attractive alternative, the molyb-

Fig. 1. The flat gas-discharge alpha-numeric display shown by Mullard.

Fig. 3. Mask used for shift register.
Fig. 2. Molybdenum gate m.o.s. shift register.
denum gate m.o.s. has been investigated in the Electronics Department of Southampton University. This maintains the advantages of self alignment, but also results in simpler processing.
In this technique a layer of molybdenum is deposited onto the oxidized slice, and the metal and underlying oxide removed in the required diffusion areas to define gate conductors and source/drain regions. The slice is then diffused, the gate conductor acting as a diffusion mask, to produce source and drain areas that register exactly with the gate conductor. Gate overlap is now defined solely by diffusion depth. For the devices made at the University the diffusion depth is of the order of $0.4 \mu \mathrm{~m}$, giving gate overlap of around 0.2 to $0.3 \mu \mathrm{~m}$, an order of magnitude reduction over conventional processing.
Fig. 2 shows a shift register produced by this process which has a propagation delay of 10 ns per stage, and is t.t.l. compatible.

The mask used, shown in Fig. 3, was cut by a computer controlled laser-beam machine, also developed in the Electronics Department.

Matrix for addressing displays

A different way of coding information for solid-state displays uses a programmed coding matrix. Normally, character generation is done with m.o.s. read-only memories. The coding matrix shown by STL is simple to manufacture and its current handling capacity is compatible with GaAsP light emitters.

A matrix can be made with conducting rows and columns on a silicon slice, p -n junctions being diffused at appropriate intersections. Thus the matrix distributes current from input lines or terminals to a certain combination of output connections. Normal thickness silicon slices- $250 \mu \mathrm{~m}$ are inconvenient because to minimize crosstalk between adjacent diodes they must be well separated, resulting in a large matrix area. Also input and output connections.
have to be on the same side. But with very thin slices- $20 \mu \mathrm{~m}$-input and output conductors can be put on opposite sides and the diode-to-diode distances can be reduced. The slices, $2.5-\mathrm{cm}$ diameter, are lapped and polished conventionally. Thickness monitoring below $25 \mu \mathrm{~m}$ is made easy because the slices become transparent to red light. Diodes are produced by diffusing boron to a depth of $10 \mu \mathrm{~m}$ into an n -type slice. Metal contacts $50-\mu \mathrm{m}$ wide and spaced at $75-\mu \mathrm{m}$ intervals are deposited and wired using the beam lead technique. A matrix with 40 top and bottom contacts measures $5 \times 5 \mathrm{~mm}$.

Locked demodulator for Gunn devices

A new technique for frequency demodulation may lead to a simple Gunn oscillatordemodulator for short-range radio links at X-band. Experiments at the University of Sheffield by G. S. Hobson have shown that controlled variation of frequency in a c.w. X-band Gunn oscillator causes variations in bias current, which can be used to directly demodulate f.m. signals when the oscillator is locked to an incoming signal. When the oscillator is locked, detected current and frequency deviation

Fig. 4. The constant voltage bias circuit used so that the current could be monitored.
show a linear relation. An efficiency in the range 0.1 to $1 \mathrm{~mA} / \mathrm{MHz}$ is achieved-constant up to 1 MHz -with a lock-in bandwidth of 1 MHz . In the experiments the Gunn diode was mounted in a coaxial cavity and connected to a constant-voltage bias circuit so that current could be monitored (see Fig. 4). Outputs between 1 and $10 \mathrm{mV} \mathrm{pk}-\mathrm{pk}$ have been obtained with a 50Ω current-sensing resistor, with very little dependence on incoming power. For a $1-\mathrm{MHz}$ bandwidth, detector sensitivity is comparable with junction diode detectors. The trouble is the sensitivity to ambient temperature changes-it is not possible at present to get drift down to less than the 1 MHz required under all temperature conditions.

Scanning doppler guidance system

The phenomenon known as doppler shift has been used for many years in navigational systems. Basically, an aircraft can transmit a pulse of r.f. at some known frequency and receive the resulting reflection from the ground. The received signal will differ slightly from the transmitted signal by an amount proportional to the speed of the aircraft. By measuring this doppler, or frequency, shift it is possible to compute the aircraft's ground speed-not to be confused with air speed which can be very different. Several transmitters and receivers are often fitted to one aircraft so that drift can be calculated. Drift is the 'sideways' movement of the aircraft over the ground relative to its heading caused by wind. Doppler ground speed and drift measuring systems are often used as a reference for inertial navigation equipment. The outputs of the inertial equipment being compared with the doppler outputs so that error signals can be computed.

Standard Telecommunications Laboratories Ltd announced work they had been doing on a new way of harnessing the doppler effect to provide an aircraft with positional, instead of speed and drift, information which employs equipment both on the ground and in the aircraft.

On the ground a transmitter transmits a continuous signal (at the moment in the L-band) which is made to physically move at a known rate. A receiver in the aircraft measures the doppler shift of the signal due to the movement of the transmitted signal. This shift is proportional to the sine of the aircraft's bearing on the transmitter relative to the aircraft's heading, or more correctly track.

To make the transmitted signal move STL employ a multiple aerial array. The output of the transmitter is switched to each aerial in turn and the result, as far as the receiver is concerned, is very similar to a continuously moving aerial.

The doppler shift that would be extracted by the receiver from the equipment just described would be very small indeed and would be masked by receiver and transmitter drift. To overcome this problem a second r.f. signal is also radiated to provide a steady reference locked to the moving signal. Both signals
are received by the aircraft and both contain the same error components but only one is subjected to the doppler shift due to the movement of the signal source. Comparison of the two signals yields only the doppler shift proportional to the bearing of the transmitter and the error components are eliminated.

In practice the frequency of the reference signal is slightly offset from the bearing signal although they are both ultimately derived from the same r.f. oscillator. The output of the receiver is the beat note between the two signals. This is of fairly low frequency so the doppler shift, which is contained in the beat note becomes relatively large and easy to measure very accurately using digital counting methods.

This basic arrangement can be used to solve a number of navigational problems. A single horizontal array of aerials will provide the aircraft with azimuth (track) information, a vertical aerial array will give information on the aircraft's elevation. Two such arrays mounted at right angles will form an omni-range beacon. Three arrays mounted orthogonally will give a three dimensional service anywhere in a straight line from the transmitter. If two such orthogonal systems (six aerial arrays) are employed at different sites the aircraft equipment can display position over the earth's surface in three dimensions.

Applications do not end with navigation; the scanning doppler system can be used to replace the airfield localizer and glide path transmitters, used for instrument approaches and automatic landing,
with advantage. This would be particularly valuable for vertical and short take-off aircraft.

STL say that although they have been working in the L-band they are now extending operations into the C -band. They have calculated that a C-band system would be accurate to about 0.02 degree r.m.s.

Measuring the tides

A printed circuit digital tide gauge, capable of accurately recording mean wave height in open water was demonstrated by the Institute of Coastal Oceanography and Tides. The sensor is a 13 m long plasticcovered multi-layer printed circuit which stands vertically in the water. Elements are spaced at 2 cm intervals and capacitance changes produced by the fluctuating water level are measured. The associated electronic circuitry provides Gray code binary information, and finally a pulse train is developed in which a pulse rate is proportional to the instantaneous water level. In the presence of waves the sampling procedure provides an accuracy of 1 mm in the total range of 13 m .

Adaptive delta modulator system

Shown by Southampton University, the exhibit concerned an adaptive version* of the basic delta modulator employing fullwidth pulses and $R C$ integration. A digital
*Betts, J. A. and Ghani, N., 'Adaptive delta modulator for telephony', I.E.E. Electronics Letters, Vol. 6, No. 11, 28th May, 1970, pp. 336-338.
technique is used to sense the level of the input signal and to control the amplitude of the pulses applied to the $R C$ network in the feedback loop. Subjective testing with speech signals and a modulator clock rate of 56 kilobits/s has shown that a useful volume range of 40 dB is available with commercial telephony-grade performance. At a clock rate of 19.2 kilobits/s which is common in military communications, a signal-to-quantization noise ratio of 16 dB has been obtained over a dynamic input range of 20 dB for an 800 Hz sine wave.

The level sensor consists of a J-K bistable, a combination of NOR gates as shown in Fig. 5 and an averaging circuit having a 20 ms time constant. The output from the exclusive NOR circuit is high whenever adjacent pulses in the output from the delta modulator are of the same polarity, and the averaged value is approximately a constant level $V_{\text {so }}$ for any sine wave input. $E_{m a x} \sin \omega_{m t}$ satisfying the limiting condition of nonoverloading of the basic delta modulator

$$
E_{\max }=\frac{V}{1+\omega m^{2} T^{2}}
$$

where T is the time constant of the feedback network and V is the amplitude of the digital output. That is to say,

$$
V_{w} \approx k E_{\max } \sqrt{1+\omega m^{2}} \overline{T^{2}}
$$

$$
\approx k \omega m E_{\max }, \text { where } \omega m>1 / T
$$

For sine wave inputs having peak amplitudes $E<E_{\text {max }}$ the level sensor output V_{s}, is given by
$V_{s}=k \omega m T E$.
These characteristics form the basis of the adaptive system. The feedback loop is arranged to keep the output from the level sensor at $V_{s o}$, i.e. the modulator is

Fig. 5. Adaptive delta modulator using full width pulses.
made to function at the limit of nonoverloading over a wide range of input conditions.

A novel application of the adaptive delta modulator known as the Adaptifon \dagger system has also been developed in which the compression and expansion circuits of Lincompex are realized by the delta modulation technique. Speech is transmitted in analogue form at constant amplitude which together with an f.m. syllable-rate channel occupies the conventional 3 kHz bandwidth. The receiving system has the capability of removing fading from signals transmitted over an h.f. path. The system has two advantages over Lincompex, namely the use of a digital shift register for delay equalization and its compact lightweight size which makes it suitable for mobile applications.

Fire detection by laser beam

The Fire Research Station, at Boreham Wood, has found a good use for a lowpower laser. The outbreak of fire in a closed room results in a mushroom of hot gas. If a laser beam is passed through the gas layer just below the ceiling the refractive index gradient due to the temperature gradient causes the beam to be deflected downwards. For a temperature gradient of $4^{\circ} \mathrm{C} / \mathrm{m}$ deflection of the beam is about 3 mm for a 40 m path through the hot gas. Turbulence in the gas flow moves the spot about irre gularly. The detector is a photocell with a chequer-board mask. The holes in the mask are roughly equal in area to the laser-beam spot. Capacitatively coupling the photocell to an amplifier results in a signal whenever the spot moves quickly, but there is no output for the slow drive that might result from building movements or changing ambient temperature. Optimum discrimination between fire and normal sources of heat is achieved by amplifying the photocell's output in the range 40 to 70 Hz .

Reducing noise in photodiode arrays

With a rectangular array of silicon photodiodes additional noise over a single diode or a linear array is produced which is greater than the random noise generated by the elements themselves. Called spatial noise, it results from the element-to-element differences in output level due to variations in quantum efficiency, cell dimensions, leakage current, and output off-set of associated m.o.s. amplifiers. A signal processing system which can improve signal-to-noise ratio has been developed at the Allen Clark Research Centre. With no illumination, output from each of 100 photodetector elements in the array is stored in a shift register. When an image is focused on to the array, the stored information is subtracted from its output so that the variations causing the spatial noise are eliminated. To obtain sufficient accuracy, the output from each detector element is converted into a 10 -bit code.

[^6]Although the system demonstrated used a small 10×10 photodiode array, it had sufficient bandwidth for use with an array of 10^{4} detector elements scanned at 16 frames per second. By expanding the digital store it is possible to generate flicker-free displays even when the detector array is scanned at very low rates.

Measuring distortion using an oscilloscope

The University of Sheffield laid on a simple oscilloscope demonstration of the effect of negative feedback. Of particular interest was a discussion of an oscilloscope technique for estimating the amount of second harmonic distortion present in a sine wave. The procedure is to estimate the upper and

Fig. 6. Demonstrating the effect of negative feedback.
lower turning points for a line making equal intercepts with the waveform-as shown in Fig. 6.

It is easily shown that:

$$
\frac{V_{2}}{V_{1}}=\frac{V_{g}-V_{b}}{2\left(V_{a}+V_{b}\right)}
$$

and
$2 V_{1}=V_{a}+V_{b}$
This last point illustrates that the amplitude of the distorted signal is the same as that of its fundamental component.

Microwave biased photoconductor

A fast response photoconductor operated with a high-frequency bias provided by a microwave field, gives a photodetector with a large gain-bandwidth product. The system, which was shown at the exhibition, is at present under development at Plessey's Allen Clark Research Centre (for the Ministry of Aviation Supply) and is designed to work at $1.06 \mu \mathrm{~m}$ and uses germanium as the photo-conductor. The noise equivalent power is $5 \times 10^{-9} \mathrm{~W}$ in a 10 MHz electrical bandwidth and the 10 90% rise time is 80 nanoseconds. The 10 GHz bias is applied to the photoconductor by mounting it in the high-field region of a re-entrant microwave cavity. The change in conductivity of the photoconductor, which is caused by the absorption of amplitude modulated light, results in a change in the reflection coefficient of the microwave cavity. The resultant change in microwave power reflected by the cavity is detected, amplified
and displayed. The amplitude fluctuations of the output are a reproduction of the amplitude fluctuations in the incident light beam. The bandwidth of the system is limited by the bandpass of the microwave cavity.
This detector will be suitable for use in optical communications systems, laser radar and imaging systems. It is worth noting that once the microwave system has been developed, operation at any desired wavelength can be obtained by insertion of an appropriate semiconductor sample in the photoconductor cavity. The system under development has been operated with silicon, germanium and indium arsenide and work is in progress to extend the operating wavelength to 10.6 microns.

Safety for miners

The presence of gas in mines is one of the greatest hazards of the mining profession as events of not too long ago have emphasized. The Safety in Mines Research Establishment have been doing work to find ways of detecting the presence of dangerous gases and have come up with a solution employing a semiconductor sensing element. An example shown at the exhibition was designed to detect methane. It consists of a bead of zinc oxide which is doped with platinum and is formed on two $25 \mu \mathrm{~m}$ platinum wires held $50 \mu \mathrm{~m}$ apart. A current is passed through the bead to heat it up to a temperature of $600^{\circ} \mathrm{C}$ and a voltmeter is used to register the voltage drop across the sensing element so formed.

If methane is present it is absorbed by the zinc oxide and results in a change in the electrical characteristics of the bead and a change in the reading on the voltmeter.

The sensing element will measure methane concentrations in air over the entire range (0 to 100%) and up to 5% methane concentration it is accurate to $\pm 0.1 \%$.

Short items

- Class D amplifiers with power output up to 2.5 kW are being made by E. M. Wareham (Measuring Systems) Ltd. Designed in conjunction with U.K.A.E.A., Culham, they can be paralleled to give powers up to 20 kW . Model shown had an output power of 500 W from d.c. to 1 kHz . Working from two 24 -volt batteries, energy is returned to the battery when used with inductive loads.
- $R C$ oscillator type TG200 made by Levell Electronics Ltd, uses single-track potentiometer for frequency control in a two-integrator circuit. It is designed so that varying the gain of an amplifier varies frequency. Instrument covers 1 Hz to 1 MHz with an amplitude of 0.2 mV to 7 V .
- By illuminating an S1 photocathode with an infra-red gallium arsenide emitter through a light guide, 20th Century Electronics aim to develop an electron emitter as an alternative to the thermionic cathode. Photocathode has a current density of $5 \mathrm{~mA} / \mathrm{cm}^{2}$.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

M.W. broadcasting

It would seem that around 1955 , the B.B.C. gave up trying to provide a decent a.m. service to its listeners on the grounds that an adequate v.h.f. service would be provided. The results are that in the evening Radio 1 suffers from appalling distortions which presumably arise from operating too many transmitters on the same wavelength. Radio 2 is virtually unobtainable in many areas (particularly Scotland) and Radio 4 appears to have ceded its officially allocated 330 m and 434 m wavelengths to unauthorized, but well muscled, East German transmitters.

Now that the B.B.C. monopoly has been breached and a wavelength re-shuffle is imminent I would like to make a plea that the B.B.C. Engineering Dept. face up to the realities of life in the 70s. First, to accept that 15 years of poor service and propaganda have failed to drive the average listener from the medium and long waves. Secondly to acknowledge that future commercial competition means that some priority will have to be given to the bulk audience i.e. Radios 1 and 2. Thirdly to come to terms with the fact that the Copenhagen Plan died when the two Germanys recovered strength in the early 1950s. Let us have a determined attempt to provide a good, truly national, three channel, day and night a.m. service. If frequencies are the trouble why not take some. What, for example, is wrong with 155 kHz and 254 kHz as reinforcements for Radio 2? Similarly, if interference is the trouble, why not follow the trail blazed by the Foreign Office at Crowborough and turn up the wick? To achieve parity with the noisy Continentals requires 1 MW on 200 kHz .
C. Higham,

South Croydon,
Surrey.

Loud and clear

Having been engaged in the audio field during what Mr. Devereux, in his evocative article 'Loud and Clear' (April p.156), calls 'the first golden age of high-quality sound', I feel it would be right to couple with the name of P. G.A.H. Voigt those of H. A. Hartley and P. K. Turner. They too
produced equipment that was unusual, for those days, in being good enough to disclose transmission defects and to allow enjoyment of the 'good things which for years the B.B.C. had been wasting on the desert air'.

Perhaps Hartley-Turner also rate a mention in an anniversary issue of Wireless World on the strength of Hartley's mordant advertising copy, which was for a few years a regular feature of the journal; in its way it was as far ahead of its time as certain of the firm's products and I well remember people saying that the $\mathrm{H}-\mathrm{T}$ advertisement was the first thing they turned to.

Claud Powell,

New Malden,
Surrey.

C-D ignition

I have recently built the C-D ignition system described by R. M. Marston, (W.W. Jan. '70) and incorporating all the modifications later recommended.

On installation in my six cylinder car it was found that severe misfiring occurred from mid-range r.p.m. onwards, a problem that other constructors have experienced (W.W. May '70).

Investigation showed this was due to a rapid fall in the 400 -volt supply to C_{1}, which in turn was due to a large difference in peak current through Tr_{1} and $T r_{2}$. In my case it was 1.4 amps and 2.5 amps respectively and results from the spread of $h_{f e}$ between transistors.

Unless matched pairs of 2N3055 transistors are purchased it would seem that some form of setting-up procedure should be adopted.

In my case it was as follows:-
(1) After initial wiring and functional checks, short-circuit Tr_{1} emitter/base. Connect $250 \mu \mathrm{~F}$ capacitor between emitter and collector.
(2) Monitor the voltage across R_{6} and adjust the value of R_{7} until 2.5 volts are read.
(3) Remove the short-circuit and capacitor from $T r_{1}$. Short $T r_{2}$ emitter/base and connect the $250 \mu \mathrm{~F}$ capacitor between the emitter and collector. Adjust the value of R_{8} until, again, the voltage across R_{6} is 2.5 volts.
(4) Remove the short-circuit and capacitor.

After this setting-up procedure the unit worked perfectly.

I apologize for writing on an article published 18 months ago but feel these comments may be of use to other constructors in similar trouble.
R.C. LOCKWOOD,

Harlow,
Essex.

Stereo decoder using sampling

In his letter in the May issue about the performance of the sample and hold network of his decoder, Mr Waddington has contradicted himself-by charging me with 'relying entirely on theory' on the one hand, while producing 'excellent spectrum photography' on the other, in spite of the spectrum photograph using the sample and hold network of his decoder.

I thought my letter made it clear that the results obtained in practice closely followed predicted theoretical performance-i.e. a $(\sin x) / x$ response for a narrow sampling interval. The photograph clearly shows a loss of about 2.4 dB at 15 kHz , this being supported by theory.

I therefore do not agree with Mr Waddington's estimate of the -3dB frequency of close to 15 MHz , rather than the predicted 17 kHz .

I also do not agree with his terminology of the sample and hold network as a 'gated peak detector', because it does not detect peaks but merely samples-and therefore multiplies-and holds, a random input signal for a fixed interval.

I must stress again that audible noise reduction may be effectively accomplished only by either pre-filtering or reducing the sampling signal mark-to-space ratio. T. Portus, Derby.

Pickup self-capacitance

While musing on the design of the rumble filters included in two pre-amplifiers of Mr. J. L. Linsley Hood intended for use with ceramic pickup cartridges (Fig. 5 page 308 Wireless World July 69 and Fig. 4 page 208 May 1970) it became obvious that the design as published would not be satisfactory with all pick-ups owing to the effect of the pickup self-capacitancé. Each of the two pre-amplifier designs uses the same basic design system for its rumble reduction-a $12 \mathrm{~dB} /$ oct. . active filter eircuit giving a slight hump near the cut-off frequency together with an input circuit $C-R$ combination to flatten the hump, and to provide a further $6 \mathrm{~dB} /$ oct.

In the case of the July 1969 design this $C R$ circuit is shown as a capacitance of $680 \mathrm{pF}\left(C_{1}\right)$ and a resistance of $4.3 \mathrm{M} \Omega$ $\left(R_{1}\right)$ in Fig. 5. Likewise in the May 1970 design the $C R$ circuit is placed at the input of the pre-a mplifier and consists of 1500 pF (C_{1}) and $2 \mathrm{M} \Omega\left(V R_{2}\right)$. These circuit values would give -3dB frequencies of 54 Hz and 53 Hz respectively, if, and only if, the

Fig. 1 Performance of unmodified pre-amplifier with three different ceramic cartridges. (a) pre-amplifier alone; (b) Sonotone 9TAHC; (c) Decca Deram; (d) Connoisseur SCUl plus 100 pF strays; and (e) Connoisseur SCU1, no strays.
pickup cartridge can be considered as a zero impedance generator. Since all pickups are capacitive sources, the pickup selfcapacitance would have to be at least 10 times the capacitance of C_{1} in each case not to interfere appreciably. Of the pickup cartridges likely to be used with these preamplifiers, none has a capacitance higher than 1000 pF , and one pickup-the Connoisseur SCU1-is only 200 pF ! Thus the pickup capacitance will interfere with the design -3 dB point very considerably.

This effect would cause considerable attenuation of the bass, which therefore destroys the advantage of a high load impedance generally required to obtain good bass. The golden rule here is, never put capacitance in series with the pickup connection to the load resistor. Series capacitance means that the load resistor must be raised to obtain reasonable bass.

As an example of this effect, the actual bass response with three well known pickups is shown in Fig. 1, which is redrawn from Fig 3 in the May 1970 article. Owing to the large attenuation at rumble frequencies given by having the -3 dB

TABLE 1I. Modifications to Linsley Hood

 pre-amplifier May 1970| Pickup cartridge | C_{x} |
| :--- | :--- |
| C1 (or SC5M) | 390 pF |
| CS 90/91E | 470 pF |
| 9TA HC | 560 pF |
| KS 40A | 820 pF |
| Deram | 820 pF |
| SCU1 | Not suitable |

TABLE I. Modifications to Linsley Hood pre-amplifier July 1969, Fig. 5

As an example of the suggested modifications the pickup input circuit for each channel of a Connoisseur SCUI will be as shown here.
the response will be approximately flat down to 50 Hz and then drop off at $18 \mathrm{~dB} /$ oct. at lower frequencies.

One further point; the circuit given for curve 3 in Fig. 5 of the modular preamplifier design of July 1969 is claimed to give a 12 dB lift. The circuit shown gives only 9.5 dB . However should the full 12 dB be needed, the revised values of $1 \mathrm{M} \Omega$, $3.3 \mathrm{M} \Omega$ and 100 pF should be used instead of $1.5 \mathrm{M} \Omega, 3 \mathrm{M} \Omega$ and 68 pF respectively, as shown in the example circuit beneath Table I. Using these revised values the actual circuit performance is:- lift 12.5 dB , turnover frequencies, 500 Hz and 2.1 kHz (as for R.I.A.A. equalization).
B. J. C. Burrows,

Ewelme,
Oxon.

Ganged potentiometers

Your correspondent K. J. Young (March issue) refers to the "Addashaft" scheme for supplying potentiometers and shafts separately. As the sole U.K. distributors of Addashaft controls-this was our trade name for the patented system employ-ed-our marketing experience may be of interest.

Initial interest was high in the context of single ganged potentiometers alone. Wé were offering a range of nine different shafts together with log. or linear law potentiometers, with or without mains switch. The stock reduction principle expounded by Mr. Young was thus valid. However, in time, industry usage standardized largely on 0.25 in. plastic spindles with flat, thus negating the practical effect of this principle. It is true that damage during shaft cutting was diminished. Against this, the combined cost of separate shaft and potentiometer unit was significantly higher than that of a factory assembled unit. Material savings, though offering a wider choice of shaft lengths, would have been marginal and largely offset by the smaller batch sizes of the greater variety manufactured. In the event, market interest declined to a point where the range was discontinued.

During the life of this range, prototypes were produced of dual concentric and tandem forms. The mechanical problems were more complex and aggravated, in the case of dual concentric types, by the different knob fittings and relative shaft lengths. Cost differentials and quality assessment problems would have been greater. Market research indicated a lower level of interest than for single ganged types. For these reasons no serious work was undertaken and all work abandoned at the time the single ganged range was discontinued.

While still recognizing the value to some users of this approach, we do not believe that the overall market situation has since changed to the extent that this idea could usefully be revived as an economically attractive proposition.
ROY S. GIBBONS,
Radiospares,
London E.C.2.

New from Ferrograph For the maintenance of professional recording equipment.

Now, for the first time, all the major parameters of a magnetlc recording system can be measurec on a single, nexpensive instrument. The Ferrograph RTS1 Recorder Test Set.

Consisting of 4 basic sections-variable frequency audio generator, millivoltmeter with associated attenuator, peak-to-peak wow and flutter meter, and distortion measuring network -this instrument will measura frequency response, dlstortion, crosstalk, erasure, input sensitivity, output power and signal/roise ratio.

Comsletely solld state and lightweight, it may be used in the field as well as the laboratory,
operating on voltages of 100-120, 200-250 volts at 50 or 60 hz .

It is developed specially for thase people who have to operate, maintain or service all types of tape recorders, sound-on-film equipment and audio apparatus.

The Ferrograph RTS1.
Made to stand the test.
Why not write for further details?

FERROGRAPH SOUNDS GOOD

Insure against distortion with Shure

Shure Model 444 Controlled magnetic microphone. Specialiy designed for radio communications applications Special response characteristic gives optimum speech intelligibility.

[^7] Shure Communications Microphones.

Name
Address

Shure Electronics Ltd.
84 Blackfriars Rd., London SE; Tel: 01-928 3424

Transformer Phase Reversal?

by 'Cathode Ray'

Here, in Fig. 1, is a simple practical problem. The transformer has identical primary and secondary windings, with 100% coupling and negligible losses. The secondary is wound around the core from c to d in the same rotation as the primary from a to b (indicated by the conventional dots as well as by the way the coils are drawn). What is the polarity from c to d relative to that from a to b ?

I said it was a practical problem. In an amplifier circuit the answer would make all the difference between negative feedback and positive feedback. And in an oscillator circuit it would make all the difference between oscillation and non-oscillation. I have heard of a batch of 200 units having to be scrapped because someone got it wrong. Yet when a certain teacher put it to a class of electrical engineering students, 11 of them said the polarity would be the same and 12 said the opposite!

Fig. 1. An ideal transformer. Is the secondary voltage in phase with the primary voltage, or phase-reversed?

Victor Mayes, of Gloucester Technical College, has made a special study of the current state of education on this point, and it seems that it is a very poor state indeed. In the circumstances the class as a whole can be congratulated for nearly half of them getting the answer right, when less than one in ten of the available textbooks was quite clear on this elementary matter. Mr Mayes looked up nearly 60 relevant books of the last 20 years, and found only five he could recommend on it, and he had reservations about some of them. The great majority used double-headed voltage arrows or in some other way failed to show which way they were jumping, but most of them spoke of a voltage phase reversal bẹtween primary and secondary
and indicated it by a phasor diagram basically as in Fig. 2. Even among the few authors whose symbolism clearly specified the directions of the windings and the relative polarities of the voltages across them, most showed a phasor diagram like this, implying a phase reversal.

What were you taught?

Fig. 2. The usual phasor diagram for Fig. 1 is basically like this.

Mr Mayes was so disturbed by this state of affairs that he sent a circular letter to all the transformer manufacturers he .could trace, asking them their answers to the question. I have seen the replies, which reveal a corresponding confusion. One or two said there was supposed to be a phase reversal but for certain purposes it was more convenient to assume there wasn't! (This is matched by at least one author who says there is no phase reversal, but because examination questions are marked on the basis that there is, he would go along with that idea!) The best way of proving that electrical (and electronic) education is an ass is, according to Mr Mayes, to try it and see, using an oscilloscope or other unambiguous indicator. Quite so, but I'm afraid I can't persuade the Wireless World management to supply such equipment to each reader with this month's issue, so I'll just have to try to make the thing irrefutably clear on paper.

Being so old, I've completely forgotten what I was taught, but I do know that because of inattention or otherwise I carried away a very hazy impression of a lot of things. In a college course there is really no time to question every little bit of information one is given, orally or by reading; the task of absorbing enough to pass the exams is sufficient. The questioning came later; often much later.

Nothing would do but to think it out for myself. The results of this cogitation were sometimes additional to-occasionally even contrary to-the usual teaching. To impress them on my mind I wrote them out and sent them along to the Editor for the time being of Wireless World, and he has been publishing them since 1934 (even earlier under another name).

One advantage of this procedure was that when called upon by a correspondent to clarify the phase relationships of transformers I was in no way affected by the regrettable state of things described by Mr Mayes. Until 1968, when he drew my attention to it, I was quite ignorant of it. The possibility of any-let alone a majority of-people clever enough to write a textbook falling into such an elementary error had just not occurred to me. I still find it hard to believe. On the other hand, as long ago as 1954, when this transformer question was put to me, I was already aware of the double-headed voltage arrows and all the other ambiguous and confusing notations and conventions applied to circuit diagrams and still more confusingly to phasor diagrams (then usually called vector diagrams) and had discarded the lot and begun again from scratch, arriving at the system used in the Wireless World article on transformers (Sept. 1954, p. 454) and described in more detail in the book Phasor Diagrams (Iliffe, 1966). This system, being unambiguous, is incapable of giving a confusing answer over a matter like this of phase relationship. Any voltage between two points can be regarded as in one phase or its opposite, depending on which is taken as the reference or zero point. So the points have to be labelled (say a and b) and the voltages labelled to correspond, either V_{ab} or V_{ba} depending on direction (or more simply $a b$ or $b a$ if such letters are known to be used for voltages, in contrast to $A B$ and $B A$ for currents). Finally the phasors have to be labelled to correspond. Arrows are superfluous, and indeed only tend to confuse.

For example, Fig. 3 shows the voltage phasors corresponding to Fig. 1. The fact that they are parallel signifies that the voltage $c d$ is in phase with the voltage $a b$. And equally, it is opposite in phase to ba. There are no double-headed arrows, like

Fig. 3. Recommended phasor diagram for Fig. 1, leaving no uncertainties.

Mr Facing-both-ways in Pilgrim's Progress, nor single-headed arrows to tell you that you must face one particular way.

Yes, you may say, but how does one know that cd must be drawn that way, and not the opposite as the textbooks say? Well, I went into that in a good deal of detail in the September 1954 Wireless World and in Sec. 7.7 of Phasor Diagrams. This time only the voltage phase relationship is in question, so we shall cut out most of the detail and confine ourselves to that one point.

We begin with a primary winding only, as in Fig. 4. The generator is giving a sine-wave voltage, which is set up between the two points a and b . It drives a current around the winding, and this current causes a corresponding alternating magnetization of the core. This in turn generates a voltage in the winding. This voltage also occurs between points a and b. And as there cannot be more than one potential difference between two points at the same time, these voltages must be equal. They are in effect one and the same voltage and can therefore be represented by the one phasor ab . What makes them equal? This condition is automatically fulfilled by just enough magnetizing current flowing to make it so.

Here now is the first place where the ordinary phasors with arrow heads can get people confused. Most books call the generator voltage E and the voltage generated in the coil V_{1}, or some such symbols. Then if they are thinking of the two terminals a and b they may show E and V_{1} in phase, as in Fig. 5(a). Much more likely they will be thinking of voltages acting around the circuit, E (say) clockwise at some instant, and V_{1} anticlockwise, and will represent them as in Fig. 5(b). Fig. 4 is not only simpler; it corresponds to the undoubted fact, which can be demonstrated with a voltmeter, that only one voltage at a time exists between a and b . So voltages $a b$ due to the generator and $a b$ due to the coil cannot be anything but in phase. Of course if you prefer to compare voltages $a b$ and $b a$, you are

Fig. 4. Fig. 1 can be developed from this basic circuit.
entitled to say they are opposite in phase. Please yourself. All are right. There can be no argument or doubts as in Fig. 5 .

Next, no difference in principle is involved if the winding is made of stranded wire. All the strands are in parallel and all have the same voltage induced in them by the alternating magnetic flux. For simplicity let us suppose there are only two strands. There can be a very thin layer of insulation between them, not enough to upset the condition that both windings embrace the same amount of flux so have the same voltage induced in them. These two strands, if they are now disconnected at their ends, can be

(a) (b)

Fig. 5. Voltage phasor diagram (a) is sometimes seen for Fig. 4, but (b) is much commoner.
regarded as the two separate windings in Fig. 1, except that the winding connected to the terminals c and d is open-circuited. The phasor diagram, as in Fig. 6 while the strands were paralleled by connection at their ends, now becomes as in Fig. 3. This diagram shows that there is indeed a phase reversal between voltages $a b$ and $d c$. But I think most people would want to compare $a b$ and $c d$, which are undoubtedly in phase. It is confusing to say, without precise indication of winding directions and an unambiguous voltage notation, that the secondary voltage is reversed in phase compared with the primary.

Fig. 6. This phasor diagram applies to Fig. 4 when the winding consists of two strands ($a b$ and $c d$) in parallel, and Fig. 3. applies when they are disconnected to yield Fig. 1.

Of course the arrowy situation of Fig. 5 is now complicated by the secondary voltage, which might be called V_{2}. I will spare you the varieties of 'vector' diagrams you will be able to find when there are three arrows to play about with!

Just before signing off I would however remind you that our transformer was an ideal one, with 100% coupling and negligible losses. Having got the basic action straight, one can then go on to introduce elaborations to represent winding resistances, core losses and leakage inductance.

H.F. PredictionsJune

Effects of summer season and steadily decreasing solar activity are particularly evident on the East/West route charts. Poor working or loss of communication on low power systems can be expected when LUF is close to FOT and it can be seen that this condition exists for 8 to 12 hour periods on three of the routes.
LUFs shown are for reception in the U.K. Those for the reciprocal routes will be roughly the same shape but shifted along the time axis. This prolongs the poor working periods for two-way communication.

New Approach to Transistor Circuit Analysis

by A. J. Blundell*, M.I.E.E.

In this two-part article - which forms a complete introduction to transistor amplifier theory A. J. Blundell describes a simple "voltage-control" transistor model bridging the gap between an earlier simple model and the hybrid- π equivalent circuit. It can be applied to small-signal, large-signal and d.c. conditions and has the advantage that the ordinary circuit diagram can be turned into its own equivalent circuit by introducing a simple circuit concept called a "beta barrier". Part 1 starts with amplifier basics, and introduces the small-signal model and applies it to a common-emitter stage. A correction term used in evaluating internal emitter resistance is proposed by the author who also gives a method of optimizing voltage gain. Part 2 will apply the model to an emitter-follower stage, discuss its accuracy compared to the hybrid- π circuit and give a d.c. and large-signal version of the model applicable to Darlington and complementary pairs. It concludes by applying this model to the well-known Lin output stage and shows how simple modifications balance the circuit.

The theory of transistor amplifiers seems to be in a bewildering state. Although accepted transistor models were laid down and their equations solved many years ago, they do not appear to be entirely satisfactory.

There are several reasons for this, perhaps the most significant being that manufacturers quote only h parameters for their transistors, indeed sometimes only $h_{f e}$ is provided. Consequently only the twogenerator h-parameter model can be used without considerable pre-calculation.
The h-parameter model is not easy to handle without approximation, except for the most elementary circuits, as anyone will realize who has attempted an exact solution for the common-emitter amplifier with an external emitter resistor. Also it is not suitable when reactive circuit elements, such as transistor capacitances, become important.
Further, h parameters are liable to misinterpretation because of the correlations which exist between them. The result of this is that many engineers have come to regard the transistor as a wide tolerance device and many have adopted the attitude that the only course of action is to apply plenty of feedback so that the open-loop characteristics do not matter very much. In fact the situation is not nearly so bad as this.
I have been concerned with semiconductor power devices since their early days so that when called upon to teach transistor circuit fundamentals it was assumed that I must be an expert on transistors.
Smiling cheerfully to maintain the illusion I hurried to the library to do some hard reading. The wide range of textbooks available only justified fears when, as luck would have it, I saw the article "Simplified transistor amplifier calculations" by C. H.

[^8]Banthorpe. ${ }^{1}$ This immediately rang the proverbial bell because it appeared to have a desirable attribute of any theory-its suitability for back-of-the-envelope calculations in the laboratory. In addition it was a "voltage control" rather than a "current control" approach.
The last point seems very important. From the physical point of view the transistor in its usual common-emitter connection is voltage controlled; the base current being (except for a negligible component) a parasitic effect which would be absent in an ideal transistor. (If anyone would like a fight over this one I'm game!) Further, there are influential engineers who prefer the voltage control point of view. For example P. J. Baxandall says ${ }^{2}$: For many years I have felt that the almost universal tendency to regard transistors as "basically

Explanation of symbols. Average or r.m.s. values are indicated by capital letters; instantaneous values by lower-case letters. Capital letter subscripts indicate the total or d.c. value of a quantity; lower-case subscripts indicate the a.c. or time-varying component, taken from its average value.
current operated devices" has exerted a major retarding influence on progress in good transistor circuit design.
There are also very down-to-earth reasons for preferring a voltage description of a circuit. Most transducers are specified in terms of voltage generated or required and, because the oscilloscope is the universally used test instrument, a voltage signal is easier to measure than a current signal.
It is important to point out that the real object of amplification is to increase the power transmitted rather than to increase the signal voltage or current level. To illustrate the distinction consider the transformer which is not an amplifier but can give a voltage gain proportional to the turns ratio. The current gain however, will be the reciprocal of the turns ratio so that the power gain is unity, ignoring losses.
The essential property of an amplifier is that the output power plus the internal loss is greater than the input power. To be able to do this an amplifier needs an active element and an auxiliary power source which it can use to provide the extra signal power. The transistor is such an active element and the auxiliary power source is its d.c. supply.
Unfortunately power is not easy to measure directly so that engineers usually think in terms of a combination of source or load impedance and a voltage or current gain; which amounts to the same thing.

Having put forward arguments intended to explain motivation rather than to convince a sceptic, the following exposition presents a theory of transistor amplifiers which bridges the gap between C. H. Banthorpe's treatment and the hybrid- π equivalent circuit, the latter being the one which allows transistor capacitances to be incorporated most easily. The starting point does not concern transistors, but amplifier theory itself, because it is often misunderstood.
Taking voltage as the main variable for measuring the signal it is necessary to examine the general problem of transferring a signal from a source through an amplifier to a load, starting first with a direct source-to-load transfer with no amplifier.

Coupling gain

Suppose a source feeds a load as in Fig. 1(a). To aid visualization let the source be a microphone and the load a pair of head-

Fig. 1. To introduce transistor amplifier theory an understanding of voltage transfer is necessary-often misunderstood. Simplest way to find signal transfer from source to load (a) under no-load conditions (b), is to treat the two resistances as a potential divider (c).
phones. The specification for the microphone will give the voltage output for a certain sound power on no load which is V_{s}, under the conditions of Fig. 1(b). The output (or internal) resistance R_{s} will also be given. The resistance of the headphones, R_{l}, will be given together with some reference to the signal voltage necessary to provide a comfortable level of sound.

Now the simplest way to find the signal transfer is to realize that the two resistances form a potential divider across V_{s} as shown in Fig. 1 (c). Then $I=V_{s} /\left(R_{s}+R_{t}\right)$ so that the usual potential divider equation V_{l} $=I R_{l}=V_{s} R_{l} /\left(R_{s}+R_{l}\right)$ results. Then

$$
G_{V}=\frac{V_{l}}{V_{s}}=\frac{R_{l}}{\left(R_{s}+R_{l}\right)}
$$

This equation acts as the defining equation for G_{V} which is the overall voltage gain from specified source voltage V_{s} to the load voltage V_{l}.

The amplifier

Often the load voltage will not be sufficient and an amplifier is needed. The linear integrated-circuit amplifier is both the simplest to deal with and the most complicated in construction. A number of parameters are usually specified for it but only three concern the low-frequency a.c. opera-tion-input resistance, output resistance and voltage gain.

Voltage gain is specified with no load so that it is the open-circuit voltage gain. Let μ represent a gain of this type which occurs in an unconnected amplifier.

Fig. 2 shows the equivalent circuit. The microphone feeds the input of the amplifier which behaves as a simple resistor r_{1}. The voltage V_{1} appearing across r_{1} is amplified

Fig. 2. Equivalent circuit of a source-amplifier-load enables overall gain to be expressed as a product of input coupling gain (from Fig. 1), internal amplifier gain μ and output coupling gain.
by the factor μ and appears as a source V_{g} which has an output resistance r_{2} and is connected to the output terminals. These in turn are connected to the headphones which form the final load R_{l}. (Capitals represent component resistances while lower-case letters indicate the effective resistance of an amplifying device or circuit.)
This discussion is limited to a unilateral amplifier, i.e. V_{1} affects V_{2} but V_{2} does not affect V_{1}.
The overall gain comprises three terms: the input coupling gain-this, as for Fig. 1, is a potential divider so that $V_{1} / V_{s}=r_{1} /\left(R_{s}+r_{1}\right)$; the internal gain of the amplifier $V_{g} / V_{1}=\mu$; and the output coupling gain which is another potential divider $V_{l} / V_{g}=R_{l} /\left(r_{2}+R_{l}\right)$. Then

$$
\begin{align*}
G_{V} & =\frac{V_{l}}{V_{s}}=\frac{V_{1}}{V_{s}} \cdot \frac{V_{g}}{V_{1}} \cdot \frac{\dot{V}_{l}}{V_{g}} \\
& =\frac{r_{1}}{\left(R_{s}+r_{1}\right)} \cdot \mu \cdot \frac{R_{l}}{\left(r_{2}+R_{t}\right)} \tag{1}
\end{align*}
$$

This equation is the basic expression for the overall voltage gain of an amplifying system in which R_{s} and R_{l} are known from the input and output device specifications. Of course R_{s} or R_{l} might be the output or input resistance of another amplifier. Equation 1 can easily be extended to multistage amplifiers, the output resistance of one stage becoming the source of the next. For two stages there will be three coupling gains and two μ s.
When working out amplifier designs the reader is strongly advised to calculate and record the three items of equation 1 separately and then multiply them together. This is because they each give information about the state of one of the three sections of the circuit not otherwise available as will be shown later.
Before going on to the transistor there is one more gain to be considered. Although G_{V} is the basic quantity required, it cannot be measured directly when the system is working because the only voltages accessible are V_{1} and V_{2}. The measured voltage gain between terminals on load is the loaded stage gain defined by

$$
A_{V}=\frac{V_{2}}{V_{1}}=\frac{V_{g}}{V_{1}} \cdot \frac{V_{2}}{V_{g}}=\frac{\mu R_{t}}{\left(r_{2}+R_{t}\right)}
$$

It is the product of the open-circuit gain and the output coupling gain; the input coupling does not affect it. It is useful because it is needed when checking and making measurements on the circuit and in the past
has been regarded by many writers as the final goal of amplifier calculations (or at least this has been implied). That this is a mistaken notion is easily shown by pointing out that of two amplifiers the one with the highest G_{V} may have the lowest A_{V}.
The next section is concerned with finding r_{1}, μ and r_{2} for transistor amplifiers.

Bipolar transistor

Fig. 3(a) shows a transistor, such as the general-purpose n-p-n BC108, with voltages applied to give normal working conditions. If $v_{B E}=V_{B B}$ is varied, i_{E} will change and a plot of the resulting characteristic is shown in Fig. 3(b), this curve being similar in shape to that for a forward-biased p-n junction diode. Of course the base-emitter junction is a p-n junction but it may seem surprising that the presence of the collector does not alter the relationship. Variations in $v_{C E}$ move the curve slightly, but they do not affect its slope so long as $v_{C E}$ is greater than about one volt.

Under small signal conditions, where a low-value a.c. signal is superposed on the d.c. quantities, it is the slope of the characteristic which is important as demonstrated in Fig. 3(c). This shows an alternating voltage superposed on a $0.6-\mathrm{V}$ steady bias which produces an alternating current superposed on a $1-\mathrm{mA}$ direct current. The amplitude of the alternating current is equal to the alternating voltage divided by the

Fig. 3. To help find r_{1}, r_{2}, and μ in Fig. 2 and in equation 1, a model is needed in terms of simple components. To provide this the bipolar transistor (a) must be understood, in particular the $i_{E}-v_{B E}$ relationship (b) whose slope is the important thing (c), and which is approximately constant if $v_{C E}$ is greater than $1 V$.
slope of the curve, if the level of the a.c. quantities is low enough so that the curve can be considered straight over the portion used.
When connected as an amplifier $v_{C E}$ varies and the resulting movement of the curve changes the $v-i$ relationship. With most transistors the error introduced in μ is only 3 to 5% if A_{V} is 200 , so that in most circuits it will be less than this. When it is realized that auxiliary component values are usually less precise-most people use 5 or 10% tolerance resistors-the error is negligible in a general-purpose analysis. Equations given in this article assume that $v_{C E}$ does not affect the base-emitter quantities.
Now the key base-emitter relationship is given, under restricted conditions, by the Shockley equation

$$
\begin{equation*}
i_{E}=I_{S}\left[\exp \left(q V_{B E} / k T\right)-1\right] \tag{2}
\end{equation*}
$$

where k is Boltzmann's constant ($1.3805 \times$ 10^{-23} joule $\left./{ }^{\circ} \mathrm{K}\right) q$ the electron charge (1.602×10^{-19} coulomb) and T the absolute temperature in ${ }^{\circ} \mathrm{K}$. At $30^{\circ} \mathrm{C}$, a good typical working temperature for a low-level amplifier transistor, $k T / q=0.026 \mathrm{~V}$.

Because we are only interested in forward bias above 0.1 V where $\exp \left(q V_{B E} / k T\right) \gg 1$ equation (2) can be rearranged to give $v_{B E}=(k T / q) \ln \left(i_{E} / I_{S}\right)$. The slope of the curve, which has the dimensions of V / I, is the differential resistance r_{t} where t indicates the theoretical value. It is found by differentiating the equation for v giving

$$
r_{t}=\frac{k T}{q i_{E}}=\frac{0.026}{i_{E}}=\frac{26}{i_{E}(\mathrm{~mA})} \Omega \quad \text { at } 30^{\circ} \mathrm{C}
$$

Resistance r_{t} is current-dependant but if the swing of i_{E} is kept small then r_{t} will not change much and for many purposes the steady d.c. value I_{E} can be substituted giving

$$
r_{t}=\frac{k T}{q I_{E}}=\frac{26}{I_{E}(\mathrm{~mA})} \Omega
$$

This theoretical emitter resistance is given by many writers and it illustrates a virtue of the bipolar transistor: that its major characteristic should be the same for all transistors and is not a production-dependent parameter. This contrasts sharply with the situation with valves and field-effect transistors.

Unfortunately transistors are not so ideal although the difference is not large at low currents. One cause of deviation is the failure of Shockley's equation at the current values normally used; the term $k T / q$ tending towards $2 k T / q$ as the current rises. In addition there are more or less pure resistances present such as the transverse resistance of the thin base layer between emitter and collector regions. Both these effects depend on the size of the device and on manufacturing techniques.

In spite of the complexity of the situation it is possible to provide a satisfactory correction whose accuracy is acceptable as long as the correction itself is not too large a proportion of the total emitter resistance. The correction was found by making measurements of the emitter resistance on a number of groups of various types of transistor. Measurements were done for a range of values of I_{E} and it was found that the values of emitter resistance fell into two groups

$$
\beta_{C}=\alpha_{O} \beta_{E}
$$

Fig. 4. Summary of transistor parameters are contained in the symbol. Numerical values are added in some positions in following circuit diagrams.
with modern low-level general-purpose transistors in the lower and older types in the higher group. The emitter resistances were plotted against I_{E} and a curve drawn through at the upper ten percentile. This indicated a deviation from r_{t} depending on the inverse square root of I_{E} so that the true emitter resistance is

$$
\begin{aligned}
r_{e} & =r_{t}+\text { correction } \\
& =\frac{26}{I_{E}(\mathrm{~mA})}+\frac{a}{\sqrt{I_{E}(\mathrm{~mA})}} \Omega
\end{aligned}
$$

where $a=3$ for modern silicon planar types and 4 for the others. This appears to hold well up to about 10 mA and with decreasing accuracy to a maximum of about 40 mA .
This range of validity is quite good because h parameters are often given for only one current in the 1 to 5 mA range-taking for granted that at higher current the less accurate characteristic curves would be used.

Note that the term given here concerns base-emitter terminal voltage and emitter current. It therefore includes both the input potential divider of Banthorpe and the 2 to $5-\Omega$ emitter-lead resistance used to correct his r_{m} to his r_{t}.

The $v_{E E}-i_{E}$ characteristic is the most important feature of the transistor in linear amplifiers and is basic to the voltage control approach. The other major feature is, of course, that nearly all (a fraction, α_{0}) of the current in the emitter is deflected to the collector. If the collector current to base current ratio $\beta_{c}=\alpha_{0} /\left(1-\alpha_{0}\right)$ is not less than 50 , the collector current will differ from the emitter current by less than 2% (for the high-beta BC 108 by'less than 0.8%), so that for most purposes i_{C} can be taken equal to i_{E}.

In the present treatment the base-toemitter current gain is more important than the usual base-to-collector current gain β_{c}.

To save space I shall write

$$
\frac{i_{E}}{i_{B}}=\frac{i_{C}+i_{B}}{i_{B}}=\frac{i_{C}}{i_{B}}+1=\beta_{C}+1=\beta_{E}
$$

Incidentally, the h parameter corresponding to β_{C} is $h_{F E}$, thus $\beta_{E}=h_{F E}+1$.

The base-to-emitter current gain will have two forms, the direct current gain, $\beta_{E}=I_{E} / I_{B}$, and the alternating current gain, $\beta_{e}=I_{e} / I_{b}$. The a.c. gain is defined mathematically as $d i_{E} / d i_{B}$ but in practice it is measured by applying a small alternating emitter current I_{e} in addition to the standing current I_{E} and dividing I_{e} by the resulting a.c. component of base current I_{b}. The current must be small enough to avoid the effect of non-linearities.

As an aid to memory the parameters can be written into the transistor symbol as indicated in Fig. 4. This shows at a glance that $\beta_{C}=\alpha_{o} \beta_{E}$. Numerical values will normally be added in some or all of these positions in the circuit diagrams.

The action of a transistor can be summarized as follows
(a) a voltage $V_{B E}$ is applied between base and emitter
(b) a current then flows in the emitter given by the diode curve or, for small a.c. signals superposed on the d.c. level, an alternating current $V_{b e} / r_{e}$
(c) nearly all the emitter current flows to the collector
(d) a small current flows through the base due to the deflection mechanism being imperfect
(e) the collector voltage hardly affects the process.

Transistor model

When analysing the behaviour of a complicated device a wise thing to do is to try to set up a circuit consisting of simple wellunderstood components which will do the same job.

The first attempt to do this for the above conditions results in nonsense but it is useful because it shows a reason for the current control philosophy in linear transistor amplifiers.
Items (a) and (b) lead to the circuit of Fig. 5(a), which is satisfactory for all positive values of $v_{B E}$ and i_{E} except perhaps for very small currents of the order of the collector saturation current. Linear circuit elements cannot deal with the non-linear diode

Fig. 5. Partial transistor model (a) can use r_{e} in place of base-emitter diode for small signals (b). Adding current generator with I_{e} as control variable (c) is invalid because it prevents input voltage appearing across r_{e} and allows $V_{c e}$ to appear across r_{e}. It is avoided by making I_{b} the control variable (d).
characteristic so the argument is limited to small-signal calculations for which the diode can be replaced by the resistor r_{e} as in Fig. 5(b). This means that we are making a straight-line approximation to the diode characteristic and ignoring the d.c. offset.
The value of β_{e} is usually reasonably constant for a useful range of current values and this suggests addition of a currentcontrolled generator to handle items (c) and (d), Fig. 5(c). Physically I_{b} depends I_{e} so that I_{e} is the control variable and the current generator goes in the base circuit.
Unfortunately this equivalent circuit is invalid: the current generator prevents the input voltage from appearing across r_{e} because the voltage across a current generator need not be zero. Also it does not account for (e) as it allows V_{ce} to appear across r_{e}.

The usual way of getting round the difflculty is to put the current generator in the collector circuit and make I_{b} the control variable, Fig. 5(d). This is correct because the only requirement is a relation between the currents and, mathematically, it does not matter which really controls which. The result is a very neat solution indeed because it fulfils all the requirements (a) to (e) using only two elements. It is the basis for one of the two equivalent T networks widely quoted in the past.

Unfortunately the model immediately introduces the idea that base current controls collector current and that current gain is the major parameter. An alternative solution on which this work is based is to invent new elements.

To add to the already large list of basic circuit elements seems at first sight to be rash but the benefit in ease of circuit analysis is considerable. In fact the proposed elements are similar to two already existing in advanced circuit theory.

The new elements allow d.c. and largesignal analysis as well as small-signal analysis so that we can return to total instantaneous values.

Beta barrier

The starting point is Fig. 5(a) which is valid for the relationship between $i_{B E}$ and $v_{B E}$. A vertical line is placed across the upper connection to the diode, Fig. 6(a). This is the "beta barrier"* which acts as a semipermeable membrane to the emitter current. It ensures that $i_{B}=i_{E} / \beta_{E}$ but is itself all at the same potential so that the top of the diode is at base potential. For an n-p-n transistor it is convenient to think of deflecting the flow of electrons which is in the opposite direction to conventional current flow.

One more thing is required. The collector terminal is to take the deflected current but its voltage must not influence the voltage at the beta barrier. This is not difficult to remember but for the time being a single double-zero symbol is used-it is omitted later. Its characteristic is that any voltage may exist across it and any current may flow through it - the current not being influenced by the voltage.
Fig. 6(b) shows the complete equivalent slightly rearranged. Remember that all of

[^9]

Fig. 6. Because the circuit of Fig. 5 suggests that base current controls collector current, a new equivalent circuit is proposed. This involves two new circuit symbols: a 'beta barrier' shown at (a) which allows $i_{b}=i_{E} / \beta_{E}$ but which itself is at base potential and not influenced by the collector voltage-indicated by the 'double-zero' symbol shown in the new equivalent circuit (b) (omitted in later circuits). Similarity with standard diagram allows an ordinary circuit diagram to act as its own equivalent circuit. New circuit holds for d.c. and large signals as well as for small signals, but small-signal analysis is simplified by replacing diode by $r_{e}(c)$.
the symbol indicated by the dotted line is at the base potential, the double- 0 symbol holding off the collector voltage while allowing the current deflected by the beta barrier to flow round the collector circuit. Choice of the new elements has been made with the standard transistor symbol in mind, and the similarity is essential to the method because the aim is to turn the ordinary circuit diagram into its own, equivalent circuit. This means that calculations can be done straight from the conventional circuit diagram.
The equivalent in Fig. 6(b) is a largesignal model suitable for both signal and bias calculations. In the next section it is restricted to small-signal a.c. analysis by replacing the diode by a resistance r_{e} as shown in Fig. 6(c). For clarity the d.c. collector supply is retained-an example of the need in transistor circuits to be able to mix a.c. and d.c. quantities. It is clear that the model in Fig. 6 faithfully simulates conditions (a) to (e).

Common-emitter amplifier

The common-emitter circuit is the most important connection for voltage amplification. The signal is applied at the base and the amplified voltage appears at the collector. Of course the collector supply would
prevent the collector voltage from varying and so a collector feed resistor R_{c} is added in series with the supply. This component is sometimes called the d.c. load but this term is avoided here partly to avoid confusion with the real load R_{t} and partly because R_{c} has a more important significance. Fig. 7(a) shows the circuit in its usual form while Fig. 7(b) gives a "transatlantic" rearrangement, better suited to analysis. The resistance r_{e} has been added in the emitter as recommended for small-signal analysis.

Calculation of μ is now as follows. The input alternating signal voltage $V_{b e}$ is applied at the base and appears across r_{e} giving $I_{e}=V_{b e} / r_{e}$. A fraction α_{o} of this current is deflected by the beta barrier and flows through the collector and through the resistor R_{c} to the collector supply. The alternating output voltage will be $V_{c e}=I_{c} R_{c}$ $=-\alpha_{o} I_{e} R_{c}$. Thus the open-circuit voltage gain is

$$
\begin{equation*}
\mu=\frac{V_{c e}}{V_{b e}}=-\frac{\alpha_{o} I_{e} R_{c}}{I_{e} r_{e}}=-\frac{\alpha_{o} R_{c}}{r_{e}} \approx-\frac{R_{c}}{r_{e}} \tag{3}
\end{equation*}
$$

where in the last term α_{o} is taken equal to unity. The equation gives the open-circuit gain needed in the expression for G_{V} in equation (1).
In case the simplicity of the present model is misunderstood the calculation is repeated for the simpler diagram of Fig. 8, where the d.c. source, which does not affect μ, is omitted and the approximation $\alpha_{o}=1$ has been made so that $I_{c}=I_{e}$. The major effect of applying a voltage at the base is to cause a current I_{e} to circulate round the collector-emitter circuit. As the output voltage is the drop across one resistor while the input voltage is the drop across the other, μ is obviously the ratio of the two resistors. Further, the current flows up

Fig. 7. Common-emitter amplifier circuit used to calculate open-circuit voltage gain μ $\left(\approx R_{c} / r_{e}\right)$.

Fig. 8. Simpler circuit of common-emitter amplifier with d.c. source omitted and the approximation $I_{e}=I_{c}$ made so that it can be immediately seen that μ is the ratio of the two resistors, and that there is a change of polarity.
one and down the other so that there will be a change of polarity for a.c.

This is all that there is to the calculation of voltage gain, but the idea underlies all further work.

Common-emitter stage with external emitter resistor

Fig. 9(a) shows the normal circuit and Fig. 9 (b) the new a.c. equivalent. Voltage gain is easily calculated because R_{e} is merely in series with r_{e} so that

$$
\begin{equation*}
\mu=-\frac{\alpha_{o} R_{c}}{\left(r_{e}+R_{e}\right)} \approx-\frac{R_{c}}{\left(r_{e}+R_{e}\right)} \tag{4}
\end{equation*}
$$

It must be confessed at this point that the choice of the present model which concentrates attention on the base-emitter characteristic was greatly influenced by the simpli-

Fig. 9. Calculation of open-circuit voltage gain with addition of an external emitter resistor is easily done as R_{e} is merely added to r_{e}.
city with which impedances in the emitter lead can be handled. It is gained however at the expense of having to multiply any quantity involving base-emitter to collector transfer by α_{0} if the current gain is poor enough for it to matter; a small price to pay for the advantages gained.

Input and output resistances

Having calculated μ, then r_{1} and r_{2} are needed before G_{V} can be found. These are not difficult to obtain because so far as the input is concerned the base current is proportional to the emitter current. So the transistor behaves as if the resistors r_{e} and R_{e} (if present) were across the input, except that the current is only $1 / \beta_{e}$ times as large as it should be, that is it behaves as if the resistances were β_{e} times larger, so that

$$
\begin{equation*}
r_{1}=\beta_{e}\left(r_{e}+R_{e}\right) . \tag{5}
\end{equation*}
$$

If an alternating voltage is applied to the collector it will produce a current only in R_{c} as we have agreed that the "double zero" pre-
vents $V_{c e}$ from effecting I_{b} or I_{e} and hence I_{c}, thus

$$
\begin{equation*}
r_{2}=R_{c} \tag{6}
\end{equation*}
$$

These parameters refer to the circuit including R_{c} and not just to the transistor. Also, in a practical circuit there may be bias resistors across the input, in which case the effective total input resistance is simply the parallel combination of r_{1} as above with the total external parallel resistance. The parameters needed to calculate G_{V} are now available.

Example

The circuit of Fig. 10 shows a BC108 transistor in the common-emitter connection between a $600-\Omega$ source representing a microphone and a $600-\Omega$ load representing headphones; d.c. bias components are ignored. What is G_{V} ?

From the data sheet β_{c} is in the range 125 to 500 , so that taking the minimum value to give a conservative result, $\beta_{e}=126$ (correction hardly necessary!). Collector current is 1 mA so that r_{e} can be calculated using a constant of three as the transistor is a silicon planar of the low-level type.

$$
\begin{aligned}
r_{e} & =\frac{26}{1}+\frac{3}{\sqrt{1}}=29 \Omega \\
\mu & =\frac{5000}{29}=-173 \\
r_{1} & =126 \times 29=3650 \Omega \\
r_{2} & =5000 \Omega \\
\therefore G_{V} & =\frac{3650}{600 \times 3650} \times(-173) \times \frac{600}{5000 \times 600} \\
& =-0.859 \times 173 \times 0.107=-15.9
\end{aligned}
$$

The value of working out each term of G_{V} separately becomes apparent. Of the available gain of 173 the major loss is at the output coupling where only 10.7% gets through. The condition at the input is better ; $85 \cdot 9 \%$ being transmitted.

Notice that as only r_{1} depends on β_{e}, the effect of a transistor with maximum β_{e} is

Fig. 10. Example used to illustrate calculation of voltage gain according to equation 1. This method of calculation shows that of the available gain of 173, 85.9% is transmitted by the input coupling and only 0.7% by the output coupling. It also shows that effect of using a transistor of four times the gain is an increase in voltage gain of only 12%.
just to change the input coupling loss to 0.96 ; an increase in G_{V} of only 12%. Measured voltage gain A_{V} does not of course depend on β_{e}. It is merely

$$
A_{V}=-173 \times 0.107=-18.5
$$

It is my firm opinion that drawing in the resistor r_{e} to replace the arrow in the symbol is an important part of the technique; analysis is done by human beings who are invariably helped by such visual aids. The addition of r_{e}, together with the beta barrier idea, turns the circuit diagram into an equivalent circuit which is made suitable for large signal or d.c. analysis by replacing the resistor with a diode.
Now try adding a $50-\Omega$ emitter resistor to Fig. 10 and see if G_{V} is $6 \cdot 4$!

Checking the value of $\boldsymbol{r}_{\boldsymbol{e}}$

So far the only item outside the scope of previous models, if suitable approximations are made, is the value of r_{e}. The correction term given is necessarily based on the small range of types and quantities available for measurement and its validity may well be questioned. If any reader has the time and opportunity to extend the measurements it would be a valuable contribution.

The value of r_{e} can be checked, however, at any current for which h parameters are available. To show this let us give the h parameters for the beta barrier model. We consider the transistor only and not R_{c}.
$h_{i e}$ is input resistance with output shortcircuited $=\beta_{e} r_{e}$
$h_{f e}$ is base-to-collector current gain with output short-circuited $=\beta_{c}$
$h_{r e}$ is collector-to-base (or reverse) volt-
age gain with input open-circuited $=0$
$h_{o e}$ is output admittance with input opencircuited $=0$
Parameters $h_{r e}$ and $h_{o e}$ are zero because $V_{c e}$ does not affect $V_{b e}$ or I_{c}. The betabarrier model therefore is one in which $h_{r e}=h_{o e}=0, \beta_{e}=h_{f e}+1$ and $r_{e}=h_{t e} /$ $\left(h_{f e}+1\right)$.

As an example let us use the data published by the makers of the BC108 to find r_{e}. For $I_{E}=2 \mathrm{~mA}, \theta=25^{\circ} \mathrm{C}$, this is

	min.	typ.	max.	units
$h_{\text {ie }}$	1600	3600	8500	Ω
$h_{\text {fe }}$	125	280	500	-
$\therefore h_{i e}\left(h_{\text {fe }}+1\right)$	12.8	12.86	17	Ω

For $25^{\circ} \mathrm{C}=298^{\circ} \mathrm{K}, r_{t}=k T / q I_{E}=12.84$ and
$3 / \sqrt{I_{B}(\mathrm{~mA})}=2.1$ so that $r_{e}=14.94 \Omega$.
Unfortunately the measurements made to obtain the empirical correction factor did not include BC108s, but with those transistors measured no value of r_{e} was found to be less than r_{t}, although a few were very near to it, while 90% were covered by the correction factor. Thus, from the measurements, the spread of r_{e} might be expected to be from 12.84 to about 16Ω; a range which corresponds well with the values calculated from the h parameters.

Voltage gain of transistors

Returning to voltage gain, a very interesting deduction can be made from equation (3).

The collector feed resistor R_{c} cannot be freely chosen because it must carry the direct collector current and the resulting voltage drop must be less than the collector supply voltage $V_{c c}$. For a number of reasons a good choice of collector working voltage is half the supply voltage ; any other choice merely changes the resulting constant slightly. Assuming that the correction can be neglected at low currents then $r_{e}=0.026 / I_{E}$ (amps) and the drop across R_{c} is $V_{c c} / 2$ so that $V_{c c} / 2=I_{C} R_{c} \approx I_{E} R_{c}$ then $R_{c}=V_{C C} / 2 I_{E}$ and

$$
\begin{align*}
\mu & =-\frac{R_{c}}{r_{e}}=-\frac{V_{c C} I_{E}}{2 I_{E} 0.026}=-\frac{V_{c c}}{0.052} \\
& \approx-20 V_{c c} \tag{7}
\end{align*}
$$

Thus the open-circuit voltage gain of a transistor ampfier designed in the standard way is about 20 times the supply voltage! For example the usual 9-V radio battery gives $\mu=-180$.
If the half-supply-voltage principle is not adhered to, the result will not change much even if maximum output swing is not required. because there is rarely the need to drop less than $V_{c c} / 2$ across R_{c} and the maximum permissible would be about $3 V_{c c} / 4$ due to the need to ensure that drift in I_{E} does not saturate the transistor, i.e. does not reduce $V_{C E} \approx 0$.

At higher currents the correction factor becomes significant and the gain drops below $20 V_{c c}$ giving a reduction of 5% at $0.5 \mathrm{~mA} .10 \%$ at 1 mA and 20% at 5 mA . Equation (7) can therefore be regarded as the maximum gain of the transistor. The only way to increase the voltage gain is to increase the supply voltage!

Optimum gain

The results of the previous section can be used to provide a basis for the selection of the direct emitter current ; a subject incompletely dealt with in most text books. First we find that the four parameters of an amplifier are not independent. (Four, because to μ, r_{1} and r_{2} we must add the current gain $\beta=I_{2} / I_{1}$.) For a transistor the amplifier current gain is identical to β_{c} so that from equations (3) and (5) assuming $R_{e}=0$

$$
\begin{equation*}
\frac{-\mu}{\beta_{c}}=\frac{\alpha_{o} R_{c}}{\beta_{c} r_{e}}=\frac{R_{\mathrm{c}}}{\beta_{e} r_{e}}=\frac{r_{2}}{r_{1}} \tag{8}
\end{equation*}
$$

Although proved for the transistor amplifier this relation is true for any amplifying system and only requires the assumption that the amplifier is unilateral.

Because μ and β_{c} are approximately constant for changes in I_{E} while both r_{1} and r_{2} are inversely proportional to it, the transistor turns out to be a unique device in which the input and output resistances can be varied together while their ratio remains constant. This provides an opportunity to maximize the overall voltage gain by adjusting the emitter current to give the maximum coupling gain. It can be shown* that for maximum G_{V}

$$
\begin{equation*}
\frac{r_{1}}{R_{s}}=\frac{R_{1}}{r_{2}} \tag{9}
\end{equation*}
$$

[^10] with respect to r_{1} and equate to zero.
i.e. the ratio of input resistance to source resistance should be equal to the ratio of load resistance to output resistance. Substituting for r_{1} in equation (9) from equation (8) gives
\[

$$
\begin{align*}
& \frac{r_{2} \beta_{c}}{-\mu R_{s}}=\frac{R_{l}}{r_{2}} \text { or } r_{2}{ }^{2}=\frac{-\mu R_{l} R_{s}}{\beta_{c}} \\
& \text { Then } R_{c}=r_{2}=\sqrt{\frac{-\mu R_{l} R_{s}}{\beta_{c}}} \tag{10}
\end{align*}
$$
\]

For a system R_{l} and R_{s} are known and β_{c} is given for the transistor. Using the approximate value $\mu=20 V_{c c}$, a value can be found for R_{c} which in turn gives $I_{E} \approx I_{C}$ $=V_{C C} / 2 R_{c}$. This value for I_{E} will give the maximum overall voltage gain.

Perhaps the most important relation in this section can now be derived, for equation (9) implies that the coupling gains are equal for the maximum gain condition. Substituting for r_{1} from equation (9) into the input coupling gain gives

$$
\begin{aligned}
\frac{r_{1}}{R_{s}+r_{1}} & =\frac{R_{s} R_{l} / r_{2}}{R_{s}+R_{s} R_{l} / r_{2}}=\frac{R_{s} R_{l}}{R_{s} r_{2}+R_{s} R_{l}} \\
& =\frac{R_{l}}{r_{2}+R_{l}}
\end{aligned}
$$

Thus the optimization can be checked by examining the coupling gains for equality: a powerful reason for working them out separately.

This leads to a very practical design procedure which does not require memorizing equation (10). One morely tries a few current values, calculating r_{1} and r_{2} and checking the ratios in equation (9). When the current appears to be approximately right G_{V} is calculated and as a final check the coupling gains are compared.
For an example of the use of equation (10) the circuit of Fig. 10 will be optimized. The working is as follows. $\mu \approx 20 V_{c c}$ $=-20 \times 10=-200, \beta_{c}=125, R_{l}=600$, $R_{s}=600$. Then $R_{c}{ }^{2}=200 \times 600 \times 600 / 125$ $=676,000 \Omega^{2}$, so $R_{c}=760 \Omega . I_{E}=10 / 2 \times$ $760)=6.6 \mathrm{~mA}$.
$r_{e}=26 / 6 \cdot 6+3 / \sqrt{6 \cdot 6}=5 \cdot 1 \Omega$.
$\mu=-R_{\mathrm{c}} / r_{e}=-760 / 5 \cdot 1=-148$ (accur-
ately).
$r_{1}=126 \times 5.1=640 \Omega$. Finally
$G_{V}=-640 / 1240 \times 148 \times 600 / 1360$

$$
=-0.515 \times 148 \times 0.44=34
$$

The optimized gain is over twice the gain previously obtained. This is because the increase in output coupling gain has more than compensated for the decrease in input coupling gain. The coupling gain terms in G_{V} are still not quite equal, but the maximum in the gain-versus $-I_{E}$ relation is very flat and if the coupling gains are within about 20% of each other the gain is negligably less than maximum.
With the current at its new value the current gain will have a greater effect on G_{Y}. This is because the input coupling term is now more dependent on r_{1} which is the only thing that current gain affects. The change to $\beta_{\mathrm{c}}=500$ will increase G_{V} to 53 which is a 55% increase to be compared with the previous increase of 12%. If freedom from changes in β_{e} are required then it is better to work at a lower current than optimum where the input coupling gain approaches unity. There are many reasons
for choosing a particular value of $I_{E}-\beta_{e}$ must not have fallen away from its best value, power dissipation must be within limits, frequency response and noise level must be satisfactory etc - but in the absence of such considerations optimization of I_{E} will give the greatest voltage gain.

> To be concluded

References

1. Banthorpe, C. H., 'Simplified transistor amplifier calculations' Wireless World. vol. 72 August 1966 pp. 382-4.
2. Baxandall, P. J., 'Symmetry in a class B amplifier' Wireless World, vol. 75 September $1969 \mathrm{pp.416/7}$.

Sixty Years Ago

June 1911. Fleming in an article 'High-frequency Alternators for Wireless Telegraphy' in the Marconigraph looked at the various ways being tried to produce high-frequency alternating current so that these waves could be used instead of spark transmitters. But he said '. . . it will be well to suspend enthusiasm for the new method until it has won its spurs by actual contest with the old established and reliable spark method in the field of everyday radio telegraphic work.' The efforts of a Dr. Goldschmidt, who was a lecturer at Darmstadt Technical College, to produce high frequency waves using an induction motor as a frequency multiplying device were described as follows:
'If a continuous current is passed through the stator of an induction motor, and if the rotor is caused to revolve by some means, the rotor circuits will be traversed by an alternating current, the frequency of which will depend on the number of poles of the stator and speed of the rotor. If the alternating current produced in the rotor is led through the stator it will produce a revolving field, which can be used to create in the rotor current of still higher frequency. These, again can be led through the stator, and in turn induce higher frequencies still in the rotor. In this manner the frequency can be multiplied up. The currents of intermediate frequency can be taken up in condenser circuits tuned to them, and the final high-frequency current be made to circulate up and down an antenna or aerial, and so create persistent electromagnetic waves of, say 10,000 or 20,000 feet in wave length. This process is scientifically and practically possible, and its success, so far as tried has resulted in a company being formed in Germany to exploit it.'

Fleming pointed out that it would take a rotor speed change of only half a per cent to throw the output of the rotor out of tune with 'the various fundamental and harmionic condenser circuits.'

better made at a more realistic price

Backed by 20 years experience, Harmsworth, Townley are making low voltage, high current transformers by methods which ensure reliability while keeping prices to the minimum.

We make the coils in cast aluminium, which has good mechanical and heat strength, and we use a modular form of construction which speeds and simplifies the work and reduces the cost to you.

Single-phase or three-phase transformers are available from 2 kVA up to 400 kVA .

Townley transformers are custom built to your individual needs and if you send a full specification we can quote you by returr.
Write or telephone for full details of construction and the information we require for quoting.

Harmsworth,Townley

Harmsworth, Townley \& Co. Ltd.,
Harehill, Todmorden, Lancs.
Telephone: Todmorden 2601

Electronic Building Bricks

13. Uses of oscillations

by James Franklin

In Part 5 we studied the oscillator and the nature of oscillations. We saw that an oscillation is a cycle of events which repeats itself indefinitely. The time taken to generate one complete cycle is called the period of the oscillation, while the number of periods that occur in a given time is called the frequency of the oscillation.

Of what use are oscillations? Their main function is to act as carriers of information in those parts of electronic systems where several sets of information-different signals-have to be transmitted through a common medium without getting mixed up. One such common medium is space (for which the oscillations are converted into radio waves) and another is the trunk cable, as used for inter-city telecommunications. Within electronic equipment we sometimes have to transmit several signals simultaneously from one 'building brick' to another by means of a single electrical circuit (Part 11 April) without the signals interfering with each other and so destroying the information.

To understand how this is done we need to look at two aspects of oscillations: (1) how they can act as carriers of information; and (2) the properties that enable oscillations to be distinguished from each other.

Since an oscillation is an electrical

(b)

Fig. 1 How a periodic change can be used to carry information: (a) by modulation of amplitude; (b) by modulation in time.
quantity periodically changing with time it offers two possibilities for carrying information: we can vary the extent by which the electrical quantity is periodically changing; and we can vary the time at which a periodic change takes place. This is illustrated in Fig. 1. At (a) the broken lines show how the extent, or amplitude, of the change could be varied; at (b) the broken lines show how the time of the change could be varied. In both (a) and (b) the process of varying a property in accordance with the information is known as modulation.
The general principle of being able to vary the timing of a periodic change can be used in several ways, to give oscillations with distinct properties. Some examples can be seen in Fig. 2. We can control the instants at which the current rises and falls in such a way that the whole current/time graph is displaced, as shown in (a). This is known as a phase difference-the broken-line square wave has a different phase from the full-line square wave. Or we can control the instants at which the rises and falls occur in such a way that the time intervals between them, the periods, are different from in (a). This is shown in (b), which has shorter periods, and (c), which has longer periods. As a result, oscillations (b) and (c) differ in frequency from those in (a).

Fig. 2 shows us two things. First, it shows us practical methods of modulation derived from the Fig. 1(b) principle, that is, phase modulation (a) and frequency modulation, (b) (c). Thus, with the amplitude modulation in Fig. 1(a), we have three methods altogether. (There are others, but all are based on the fundamental processes illustrated in Fig. 1.) Secondly Fig. 2 shows us properties by which several oscillations travelling through a common medium may be distinguished from each other, notably the properties of frequency and phase. Of these frequency is the most widely used, for example, tuning a radio receiver to stations with different radio-wave frequencies. The property of phase distinction is utilized, for example, in colour television to enable two different colour information signals to be
transmitted simultaneously, with the same carrier frequency, and yet be separated in the receiver. It is also used for trunk telecommunications in which different signals are sent as trains of pulses-each train being identified by its 'position' in time relative to the others*.

What we have discussed so far has been illustrated by square-wave oscillations. Fig. 3 shows how the principles apply to sine waves (Part 10). Oscillations (d) and (e) differ in phase although they have the same frequency. Oscillation (f) differs in frequency from (d) and (e). (Note that a difference in frequency inevitably means a difference in timing as well, but that a phase difference can exist without a frequency difference.) A sine-wave oscillation modulated in amplitude, on the Fig. 1(a) principle, is shown at (g)-the modulating information in this case being part of a signal from a microphone.

Fig. 2 Square-wave oscillations illustrating (a) phase difference, and frequency difference between (a), (b) and (c).

Fig. 3 Sine-wave oscillations differing in phase, (d) and (e), and in frequency, (d) and (f); also a sine-wave oscillation modulated in amplitude (g).

Low-range Ohmmeter

Linear-scaled instrument for measuring resistance of contacts and soldered joints

J. Johnstone

Originally intended for matching the resistance of small wound components, this ohmmeter has since proved to be of general use in the laboratory, typical applications being measuring switch contact resistance and testing printed circuit boards for dry joints. A constant current is applied to the resistance under test, and the resultant potential difference is indicated on a meter. Output voltage is limited to less than one volt to protect the meter and any active devices in the circuit under test. Test current is 250 milliamps for 500 milliohms f.s.d. and 25 milliamps at 5 ohms f.s.d.

Under constant-current conditions, the series pair $T r_{1}$ and $T r_{2}$ are controlled by the current error amplifier, Tr_{4} and Tr_{5}. (Transistor Tr_{1} should be fitted to a heatsink of 16-gauge aluminium sheet, $7.5 \times 5 \mathrm{~cm}$.) Transistor Tr_{3} together with R_{2} and R_{3} form a constant-current source for Tr_{4}. When the amplifier is balanced-i.e. when
the voltage across R_{9} and R_{5} equals the reference voltage of D_{2}-the current through R_{1} is provided equally by $T r_{4}$ and $T r_{5}$. An error signal at $T r_{4}$ base causes a collector current change of ΔI with a resulting change of $-\Delta I$ - in $T r_{5}$ collector current. This changes the bias of Tr_{3} by $-\Delta I \times R_{3}$, altering its collector current by - $\left(\Delta I \times R_{3}\right) / R_{2}=-\Delta I$, thus doubling the overall gain of the error amplifier.

A further advantage of this circuit is that any variation in the amplifier supply rail will have a similar effect on R_{2} and R_{3}, and its effect is nullified. When the voltage between the output rails rises to approximately 500 millivolts, control passes to the voltage limiting amplifier.

The reference and error sensing sides of the voltage limiting amplifier must be referred to the wooutput rails. This presents a problem in that any load on the negative
rail will result in inaccurate current regulation. The emitter follower $T r_{6}$ buffers this point from the current demands of D_{3}. As voltage limiting occurs the voltage across R_{9} and R_{5} falls toward the zero volts rail, and $T r_{6}$ ceases to conduct. Diode D_{1} then becomes forward-biased and supplies the current required by D_{3}. The maximum output voltage is preset by adjusting R_{10}.
If the meter is connected across the output rails the impedance of the lead between the instrument and R_{x} could give rise to errors, particularly at 500 milliohms f.s.d. This is avoided by using screened wire between the instrument and the test probes. The screen carries the test current, while the inner lead is connected to the meter. The screen and inner lead are connected together at the test probe. With suitable probe tips this method gives errors of less than 1% f.s.d.

This instrument is intended for measuring resistances and not monitoring. No attempt has been made to compensate for the drift caused by temperature rise in R_{9} and R_{5}. Prolonged application of the current may also cause temperature drift in R_{x}. Input voltage variations will result in some drift in both the current and voltage amplifiers. If this proves troublesome R_{4} and R_{8} should be replaced with constantcurrent sources.

The range may be adjusted by connecting a resistor of between 20% and 100% of full scale between the test probes. Resistor R_{9} is then set to give the required reading. When testing for dry joints, the f.s.d. should be set to 500 milliohms. A good soldered joint will normally have a resistance of less than 50 milliohms, and a dry joint will normally exceed 500 milliohms.
 500 milliohms or 5 ohms is set by R_{9}. Resistors should be $\frac{1}{2}$-watt types with $\pm 5 \%$ tolerance unless shown otherwise.

Stereo Mixer

2-Further circuits and construction notes

by H. P. Walker, B.A.

Post-mixing circuits

In the prototype, the signal from the virtualearth mixer is taken to the tone-control circuit via a switchable rumble filter and the main gain fader and stereo balance controls. The signal is fed at low impedance from the tone-controls directly to external equipment or passed on to the line and metering amplifiers.

Tone-control and filter circuits. The circuit shown in Fig. 11 can conveniently be divided into two by the main gain and stereo balance controls. These controls are similar to those described for the premixing amplifiers except that the balance control does not fade either channel to zero. The author chose a $10 \mathrm{k} \Omega$ potentiometer for the main gain fader after finding that a $50 \mathrm{k} \Omega$ potentiometer caused an audible deterioration in the residual noise level when the control was set at about half full output.

Filter circuits. Prior to the stereo balance control, a switchable rumble filter attenuates frequencies below 25 Hz at about 24 dB / octave in conjunction with the built-in lowfrequency turnover, as shown in the tonecontrol characteristics, Fig. 12. The highpass filter is synthesized using emitterfollower sections which are cheap to construct and give a gain of unity in the pass-band. Low-pass filters may also be synthesized in a similar manner to give various turnover characteristics (e.g. maximally flat amplitude or linear phase) and various rates of attenuation.

Although no high-frequency filter is included in the present design, its use is definitely advantageous when gramophone records are being reproduced. The omission is partly due to the prejudice of the author who feels that only a comprehensive h.f. filter system, in which the slope and turn-over-frequency are variable, is really useful:
the best known is that on the Quad 22 and 33 control units*. The subjective affect of Butterworth (or maximally flat magnitude) low-pass filters is often to increase the noise and distortion they are intended to reduce, while the signal assumes an unpleasant 'nasal' quality due to the transient distortion. This is caused by the abrupt turnover in the amplitude response followed by a steep roll-off at $18 \mathrm{~dB} /$ octave or more, and is easily demonstrated by examining the theoretical response of such a circuit when excited by a step function ${ }^{7}$ (e.g. a square wave).

As a result, the author has never found this type of filter very useful and frequently prefers the original noise and distortion to the coloration caused by the transient
*A useful passive circuit having a fixed turnover frequency and variable slope was described by R. Williamson in Hi-Fi News ${ }^{5}$ and reproduced in a later article by B. Grossmith ${ }^{6}$.

Fig. 11. Tone-control and filter circuit. Residual noise $-98 d B$. $\operatorname{Tr}_{11}-\operatorname{Tr}_{15}$ BC109 etc.
ringing. However, if the rate of attenuation is reduced to $12 \mathrm{~dB} /$ octave this transient distortion is aurally less noticeable while tests using a Bessel (linear phase or maximally flat time delay) filter ${ }^{7}$ gave, subjectively, a quite pleasing effect even with an $18 \mathrm{~dB} /$ octave roll-off. This is to be expected from the improved transient response resulting from the more gradual turnover characteristics. A practical circuit, realizing this filter, is shown in Fig. 13 and the frequency response curve for the values shown, in Fig. 14. Changing the turnover frequency involves scaling the values of C_{1}, C_{2} and C_{3}, but simply halving C_{2} to 220 pF gives curve 2 , which, although not maintaining the true Bessel characteristics, does not seem to cause audible transient distortion.

Tone-control circuit. The shape of the tonecontrol characteristics, like those of the h.f. filter, are a somewhat subjective problem, though there are some important specifications which must be met by any proposed system:
(i) low interaction between bass and treble controls;
(ii) low distortion even at maximum boost; and
(iii) a truly flat amplitude characteristic and a good transient (i.e. square wave) response when the controls are in the 'flat' position.
The tone-control circuit of Fig. 11 is basically a virtual-earth feedback configuration in which the bass control is of the variable turnover frequency type and the treble control has a fixed turnover frequency, approximately determined by the time constant $R_{2} C_{2}$, and effectively lifts and cuts the whole of the frequency range above 2 kHz . The gain/frequency characteristics are shown in Fig. 12. The component values used in the tone control network are the result of experimental measurements and listening tests. In particular the treble control components were carefully chosen so that the control can alter the musical 'brilliance', and it gives a variation which is related to rotation, i.e. there is no 'dead band'.

The nominal signal level of 360 mV , leaving the virtual-earth mixer, is attenuated by 6 dB in the stereo balance control so that the maximum signal level entering the

Fig. 12. Characteristics of filter and tone controls.

Fig. 13. High-frequency filter. $\operatorname{Tr}_{1} \operatorname{Tr}_{2}$ BC109 etc.

Fig. 14. Characteristics of Fig. 13.
tone-control stage is about 180 mV . As the tone-control network is symmetrical, to obtain a gain of greater than one the feedback connection must be made to a tapping in the output load resistor. The gain is then given by $\left(R_{5}^{-}+R_{4}\right) / R_{4}$. For a nominal output of 500 MV r.m.s. a gain of 2.8 is required; for higher or lower outputs R_{4} should be altered (e.g. to 390Ω for 1 Vr.m.s. output), remembering of course that the circuit is not designed for outputs much greater than 2Vr.m.s.

Turning to the amplifier itself, the bootstrapping circuit is used which gives a gain without feedback of 2000 and a distortion level of less than 1%. This enables very low distortion to be obtained even at maximum boost. Although the effective source resistance presented by the tone-control network varies with frequency, a suitable average value for design purposes is $5 \mathrm{k} \Omega$, which sets the collector current at 100 uA in $T r_{14}$ for a low noise figure. Tr_{13} provides a low impedance drive to the tone-control network, R_{1} and C_{1} being included to prevent h.f. instability.
The complete circuit has low interaction between the controls and in the 'nominally flat' position the overall response is flat to within 1 dB over the audio range and the square-wave performance shows rise and fall times of about $0.5 \mu \mathrm{~s}$ with no overshoot. Harmonic distortion for an output of 500 mV r.m.s. is less than 0.02% rising to 0.05% at 2 V r.m.s. The level of residual noise at the output with the main gain control turned down is approximately -93 dB w.r.t. 500 mV when measured on a bandwidth of -20 kHz .

Line amplifiers: The mixer may often be required to feed into a 600Ω termination at a power level of several milliwatts. The line amplifiers have been designed for this purpose and single-ended and push-pull versions are shown in Fig. 15 and Fig. 16 respectively.

Both circuits have a gain of about ten, determined by the feedback components, but the single-ended stage, operating in class A , has a limited output voltage swing (at low distortion) of 2 V r.m.s. into a 600Ω load. When feeding high impedance loads ($>10 \mathrm{k} \Omega$), such as insensitive power amplifiers, the maximum output voltage is in excess of 5 V r.m.s. at less than 0.05%
distortion. Residual noise is -82 dB w.r.t. 500 mV output (20 kHz bandwidth). The single-ended circuit has the merit of simplicity compared with the more sophisticated design of Fig. 16.

The complementary emitter-follower, Fig. 16, operating in class B, can supply more than +20 dBm to a 600Ω load ($8-9 \mathrm{~V}$ r.m.s.) at very low distortion ($<0.05 \%$). A quiescent current of $2-3 \mathrm{~mA}$ in the output circuit, set by R_{1}, reduces the crossover distortion to a low level (none is detectable on the oscilloscope trace of the residual). The circuit configuration is that commonly used in power amplifiers, the a.c. and d.c. feedback loop being combined as they also are in the single-ended design. Residual noise is less than -95 dB measured as above.

Monitor ampliffer: The complete circuit is shown in Fig. 17. The clean feeds and mixed output are selected by the two-pole, six-way switch and a $50 \mathrm{k} \Omega \log$. potentiometer is used as a monitor level control to prevent loading when the individual channels are selected. The monitor amplifier is basically the same configuration as that used in the line amplifier, Fig. 16, except that a higher standing current of 10 mA is used in the second transistor and a complementary pair of power transistors, $T r_{3}$ and $T r_{4}$, make the circuit suitable for driving a loudspeaker up to about 2 W . The amplifier is, however, primarily meant for headphone monitoring and under these conditions its performance is very good, but the possibility of 1.s. operation could be useful for a talk-back facility in live recording. Needless to say the output transistors should have some form of heat sink for continuous loudspeaker operation.

The components R_{1}, C_{1} and C_{2} improve the high-frequency stability. The preset, R_{4}, is adjusted for symmetrical clipping at the output (a centre-line voltage of 10 V d.c.) and R_{5} is used to set the quiescent current of 10 mA in Tr_{3} and Tr_{4}. The diode, D_{1}, across which the bias voltage is developed, should be mounted close to the power transistors to aid thermal stability. A gain of approximately 20 , determined by $\left(R_{2}+R_{3}\right) / R_{3}$, is sufficient to cause overioad when the amplifier is driven from the clean feeds at a nominal signal level of 240 mV . Normally some resistance (e.g. 15 15) must be connected in series with lowimpedance headphones to protect the .phones-and also the operator's ears!

Signal-level meters: Some form of metering is essential in a mixer of this complexity if maximum signal-to-noise ratio and low distortion are to be obtained. Apart from the obvious value in setting-up procedures and in monitoring output levels, a properly calibrated built-in meter is very useful for checking pickup cartridges, tone control characteristics, channel balance and so on.

The relative merits of peak programme and VU meters are a controversial subject! ${ }^{8}$ The use of VU meters in this design does not presume any general preference for this type of metering. In the author's opinion peak programme meters are better as recording level indicators, whereas VU

Fig. 15. Single-ended line amplifier. Distortion 0.1% at 2 V r.m.s. into $600 \Omega ; 0.05 \%$ at $5 V$ into high impedance. Residual noise -82 dB w.r.t. 500 mV output $(20 \mathrm{kHz}$ bandwidth).

Fig. 16. Push-pull line amplifier. Distortion 0.03% at $+20 \mathrm{dBm}(8 \mathrm{~V}$ into $600 \Omega)$ at 1 kHz and 10 kHz , and at lower powers (20 kHz bandwidth). $D_{1} D_{2} 1 \mathrm{~N} 914$.
meters seem to give a more realistic indication of sound or signal level. In either case, though, the interpretation placed on meter readings depends on the experience of the user.
In the prototype the metering circuit was connected directly to the output of the tone-control stage, Fig. 11, but naturally it could be switched to read other data in the equipment. The simple one-transistor amplifier of Fig. 18 provides the required gain and any frequency compensation and isolates the meter (and its non-linear loading) from the signal circuit. The meter is the heart of the system and while it is possible to obtain satisfactory results without spending vast sums of money, the constructor should avoid 'cheap' meters which are often poorly damped and inaccurately calibrated and give quite
meaningless readings on transient signals. The meters used in the prototype were SEW MR45P, from G. W. Smith \& Co. (Radio) Ltd., which give adequate performance for the author's requirements; more expensive models would give more consistent readings. The values of R_{c} and C_{c} given in Fig. 18 relate to this particular meter and give a calibration accurate to within 0.5 dB at high frequencies.

-Power supply

The advantages of a regulated power supply are-
(i) rail voltages independent of mains supply fluctuations,
(ii) mains-borne interference' partially suppressed, and
(iii) low-impedance power supply rails,
avoiding possible low-frequency instability due to interaction between circuits.
This last point is particularly relevant in circuits where emitter-follower outputs draiw currents of several milliamps. Although the author included an a.c. decoupling network ($100-200 \Omega$ and $100 \mu \mathrm{~F}$) in series with the power supply rail to most of the individual circuits, this was avoided with the tone-control circuit because the bass-boost control would make the circuit rather sensitive to l.f. crosstalk and instability if maximum boost were used. Electronic overload protection can be built into such a supply and can prevent excessive damage under fault conditions.
The complete power supply circuit shown in Fig. 19(a) is the one used by the author for the prototype but there are several variations possible to suit different requirements. These are mainly determined by the desired output facilities. If it is intended to use the low-power loudspeaker monitoring facility (described in connection with Fig. 17) then the separate 20 V regulated supply (Fig. 19(a)) should be used since this provides isolation from the supply rails to the rest of the mixer and incorporates a peak overcurrent protection circuit, R_{2} and $T r_{6}$. The moderate current swings required for headphone monitoring allow the monitor amplifier to use the same supply rails as other circuits in the mixer. For this application the series transistor regulator, shown in Fig. 19(b), should be substituted for the shunt zener stabilized circuit.

The series regulators are of conventional design. Transistors $T r_{1}$ and $T r_{4}$ are mounted on heatsinks (the metal chassis is satisfactory) and Tr_{8} (Fig. 19(b)) should
be fitted with a clip-on, finned, heatsink though currents of more than 50 mA are better handled by a chassis-mounted 2 N 3054 (with R_{4} reduced to $2.2 \mathrm{k} \Omega$). When the current drawn from the supply is sufficient to develop about 0.6 V across R_{1} (or R_{2}), $T r_{2}$ (or $T r_{6}$) begins to conduct and removes a proportion of the current drive from the series regulator to maintain a constant current limit which is set by $V b c_{2} / R_{1}$.
It may have occurred to readers that, because the $O V$ rails of the regulator outputs will be a common signal earth, the same control voltage will appear across both R_{1} and R_{2} and consequently the current limits cannot be set independently. In passing, it should be noted that common power supply rails must be paralleled at the actual supply and not by devious routes in the mixer.

Under working conditions R_{1} is between 2.7Ω and 1.2Ω and R_{2}, which will dominate the current limit, should not be less than 0.3Ω thus setting the peak-current limit at 2 A . When testing the mixer circuits during construction, the author found it expedient to disconnect the 20 V regulated supply and increase R_{1} to a much larger value (say 10Ω) as a safeguard against wiring mistakes. The maximum current which can be drawn from the zener-stabilized 20 V supply is determined by the value of R_{3}, such that $I_{\max }=10 / R_{3}$.
If, however, there is likely to be a large variation in the current required from this supply, allowance must be made for the dissipation in the zener diode and the alternative circuit, Fig. 19(b), is preferable.

Little need be said of the rest of the circuit; any type of rectifying diodes and

Fig. 17. Monitor amplifier. Tri 2N4058, 2N3702 etc; Tr_{2} BC109 etc, $\operatorname{Tr}_{3} \operatorname{Tr}_{4}$ AD161/162 (matched), D_{1} OA95.

Fig. 18. VU-metering amplifier. Tr_{1}
BC109 etc. BC109 etc.
transformer can be used so long as they meet the specifications.

Earthing

Care must be taken that earth loops do not arise within the mixer or when it is connected to other equipment. When a lowresistance closed loop is formed (e.g. by a multiple earth return of busbar and chassis) a relatively large current can flow for only a small induced voltage. If this current happens to pass through the earth return to the input of a sensitive amplifier, the potential difference developed across this earth return is in series with the signal source and a background hum is produced.

The presence of both power supply and signal earth returns is a potential source of trouble and to prevent it, low-value resistors (1.2-4.7 Ω) should be included at suitable points. Fig. 20 shows the method used by the author for earthing the sensitive input circuits and no earth-loop problems were experienced with the prototype. Note that the only low-resistance path is between the input sockets; also that 'dry-joints' in the earthing system can create low-value resistances in the signal-earth return path.

Much the same kind of arguments apply to the interconnection of equipment, namely, the mixer should not be connected to amplifiers, tape machines, etc., via both the mains and signal earths.

To facilitate 'setting-up' procedures the author fitted a switchable mixer earth return (Fig. 20) and also optional turntable earthing switches in case some strange earthing arrangement is encountered with ancillary equipment.
It is very difficult to generalize on earthing problems and although one can become quite speedy at this kind of trouble shooting, it can also be very perplexing at times. However, an intelligent and logical approach from the beginning helps enormously if trouble does occur and one should not tempt providence by placing mains transformers close to input circuits and microphone transformers. Earth loops can usually be identified by the 'edgy' character of the hum they produce (more of a 'buzz' in fact).

Constructional details

The photographs, Fig. 21, show the front and back of unit 1 , which contains

Fig. 19. (a) Comprehensive power supply. $D_{1}-D_{4} 100 \mathrm{~V} 0.5 \mathrm{~A} . T_{1} 30 \mathrm{~V} 0.5 \mathrm{~A}$. (b) Alternative to zener diode stabilized 18 V rail.
the premixing amplifiers, channel faders and virtual-earth mixer. Interconnection between units is by one 8 -way cable carrying signal and power supplies and one 12-way cable for clean-feed monitoring signals. Unit 2 contains tone-controls, output and monitor amplifiers, metering facilities and regulated power supply. The advantages of using two units instead of one are, first, that the sensitive input circuits can be isolated physically and electrically from the a.c. mains wiring; secondly, the greater flexibility compared with the rather cumbersome single unit; and thirdly, that if one wished to use completely different
mixing facilities, unit 1 could be changed while still maintaining the facilities of unit 2 in its present form.

All the individual circuits, with the exception of the power supply, were constructed on plug-in printed circuit boards made by the author from $\frac{1}{16}$ in copper-clad ${ }^{*}$ laminated board. Input facilities of the mixer can then be changed simply by removing one board and plug-ging-in another. As all connections to a board must be made in close proximity to each other, care must be taken to keep input and output as far apart as possible particularly on high gain, 'wideband'
circuits (e.g. microphone amplifiers)
It is logical to layout a stereo pair of circuits as mirror images of one another and then the circuits will still operate if the boards are accidently inserted back to front. The outermost tabs on the edge connector for any board are the power-supply earths, and they connect via the low-value resistors to the signal earth busbar round the perimeter of the board. The positive rail enters on the innermost tabs; the different supply voltages are standardized to enter on different sets of tabs (18 V on the middle two and 30 V on adjacent tabs) so that even if an 18 V board were accidently plugged

Fig. 21. Front and rear views of unit 1.
into a 30 V socket, no damage could result. Signal outputs were normally placed near the edge of the board and inputs near the middle.
For obvious reasons the connections between input sockets and edge connectors should be as short as possible and properly screened. The circuits themselves are sufficiently stable for reasonable lengths of screened wire to be used in connecting them to controls and no great care was exercised in this respect when building the prototype.
So far in this article we have not mentioned the subject of crosstalk because it is a function only of layout, provided that the circuits have been designed with low output impedances to prevent electrostatic induction. For the circuitry from the virtualearth mixer input to the output, the author obtained readings of -75 dB and -66 dB (ref. 500 mV r.m.s. output) at 1 kHz and 10 kHz respectively. Crosstalk in the input circuits is very dependent on how the input of the other channel is loaded but typically the electronics will have a crosstalk 30 dB better than that of pickup cartridges and tape machines. The worst crosstalk is likely to occur with sensitive microphone inputs though here the
measured values for the prototype were considerably better than -40 dB even at 10 kHz .

Testing

If the constructor does not own the necessary equipment to test the specification of the completed circuits, simply checking the d.c. voltage at the amplifier output (shown on the circuit diagrams) is correct can be taken as an indication that the circuit is functioning properly. This is because the direct coupling between stages requires all d.c. conditions to be right.

Using the mixer

To obtain the highest signal-to-noise ratio at low distortion, some attention must be given to the adjustment of preset sensitivity controls and it is here that the metering facility comes into its own. The steps are as follows:-
(i) Turn-up the main gain fader to 0.75 full output and leave the main balance control at the central position.
(ii) Turn-up the channel fader to the desired working point (e.g. 0.75 full output) and then adjust the preset sensitivity
and channel stereo balance controls for maximum outputs of 0 VU when a monophonic tape or record is being played stereophonically. Repeat this procedure for all channels to be used.
The important point is to use full signal level after the channel faders without going to the other extreme of overloading the virtual-earth mixer and obtaining the maximum output of 0 VU with the main gain control turned down to low levels. Conversely if low outputs are required from the mixer (e.g. for tape recorders or sensitive amplifiers) these should be achieved by turning down the main gain fader or preferably the preset output level control and not by using a low mixing level with the main gain control turned fully up. The main stereo balance control is intended to compensate for imbalance in output equipment such as loud speakers.

Some readers may think this is stating the obvious, but the author has sometimes found a logical approach the only way of ensuring full use of the mixer when connected to a variety of input and output equipment which may also have gain controls.

References

5. Williamson, R., 'The Twin-twenty Mark 2 ', Hi-Fi News, March 1969.
6. Grossmith, B., 'A Low-distortion Integrated Amplifier', Part 2, Hi-Fi News, November 1969. 7. Kuo, F.F., 'Network Analysis and Synthesis', second edition Chapter 13, J. Wiley (1966). 8. Robinson, D., ‘P.P.M. or VU', Tape Recorder, September 1967.

Correction Note

'Stereo Mixer' Part 1, May 1971

The auxiliary input sensitivity given as 230 mV in Table 1 should be $30 \mathrm{mV} . R_{3}$ in Fig. 8(a) should be 220 ${ }^{2} R_{2}$ and R_{5} in Fig. 10 should be 22 k and 33 k respectively, and C_{4} should be rated at 64 V not 6.4V. In Figs. 7 and 8(a) and (b), the signal-to-noise ratio is given without reference to an input signal level. For Fig. 7 a 66 dB s / u ratio is obtained for 200Ω source resistance with respect to $45 \mu \mathrm{~V}$ at 1 kHz . For Figs. 8(a) and (b), 63.5 dB s/u ratio refers to a signal level of $100 \mu \mathrm{~V}$ on 30Ω. All measurements were made on a noise bandwidth of about 20 kHz .

June Meetings

8th. AES-Discussion on "Audio assessments and measurements" at 19.15 at Mechanical Eng. Dept., Imperial College, Exhibition Rd., London S.W.7.

10th. RTS-Lecture/demonstration on I.T.A. digital standards converter at 19.00 at the I.T.A., 70 Brompton Rd., London S.W.3.

30th. Brit. Acous. Soc.-"Acoustic atmospheric propagation and applications" at 14.30 at University College, London W.C. 1 .

WW- 077 FOR FURTHER DETALLS

EEV know how to mak

Magnetrons, hydrogen thyratrons, klystrons, travelling-wave tubes, duplexer devices, storage tubes, pulse tetrodes, backward-wave oscillators... the list of EEV products goes on. We make them all: there are 328 types listed in our current catalogue and if the type you need isn't there don't worry: just give us
the chance to make it specially for you.
EEV's radar component capability is known throughout the world. The range is wide, the quality and reliability superb - and our customers have proved it hundreds of times.

Please send for the latest data from EEV - and prove it for yourself.宽

EEV know how.

We take itall back!

We were right about the sales support we'd need to sell our LM 1240 digital multimeter.

It doesn't need any, it's selling itself.
So if when you order your LM 1240 direct from this ad., you are not completely satisfied that it does all we say of it, we'll take it back within 14 days and return your money in full. Beat that for reassurance!

Just lookat this spec.

- Volts: $100 \mu \mathrm{~V}-1,000 \mathrm{~V}$.
- Amps: 100 nA-2 amps.
- Ohms: $100 \mathrm{~m}-20 \mathrm{M}$.
- 26 ranges.
- Bi-polar.

- Full overload protection.
- 1999 scale length.
- Dual slope integration for noise rejection.
- Go-anywhere portability.
- SIMPLY SEND THIS COUPON TO YOUR PURCHASING DEPARTMENT-OR TO US.

> I would like to buy Solartron's LM 1240 Multimeter. If it doesn't give full satisfaction we can return it within 2 weeks of delivery and cancel our order without further obligation. Please order me_ LM 1240 s at $£ 195$ each, including P. \& P.

ORDER NO.
NAME
COMPANY

SOLARTRON

Schlumberger

The Solartron Electronic Group Ltd Farnborough Hampshire England Tel: 44433

by H. A. Cole*, M.I.E.R.E.

The circuit uses t.t.l. quad two-input gates to produce a cascade of monostables in a very economic way. A trigger pulse causes a chain of any number of pulses to be produced. Each pulse can have a different duration as set by a single resistor and capacitor. The cascade can be arranged so that it is self sustaining after the initial triggering. An auxiliary output provides a pulse with a duration equal to the sum of the durations of all other pulses in the cascade.

The principles of the circuit may be understood by looking at Fig. 1. Application of a start pulse to the AND gate (\& 1) sends a trigger pulse to the first monostable m.sd, which produces a negative going pulse for a period t_{1}. At the end of this period, the output waveform from m.s. 1 returns to its quiescent level and, in doing so, itprovides a trigger for m.s. 2 and so on down the chain until the last monostable (m.s.n) is triggered. When this happens, the circuit either returns to the quiescent state at the end of the period t_{n}, or it is made to start the sequence all over again; depending upon the setting of the switch S_{1}.

With S_{1} in the 'single-shot' mode, only one cascade is produced for the application of each start pulse. With S_{1} in the 'repetitive' mode, the circuit is automatically retriggered at the end of each cascade by the pulse produced by the last monostable.

The second AND gate (\&2) produces an output waveform $t_{1}+t_{2}+t_{3}+t_{n}$ which is a negative going pulse with a duration equal to the sum of all the other pulses in the chain.

Circuit description

The circuit diagram, and the waveforms are shown in Fig. 2. The monostables are formed from 74 -series NAND-gate elements, connected in such a way that any one gate (except the first) is shared by two adjacent monostables. In this way, only half the number of gates is required compared with usual circuits of this type in which two gates are required to form each monostable.

The first monostable (m.s.1) is formed from gates G_{3} and G_{4}, its operating period (t_{1}) being determined by the time-constant of the coupling components C_{1}, R_{1}. The second monostable (m.s.2) is formed from gates G_{4}, G_{5}, and its operating period $\left(t_{2}\right)$ is determined by C_{2}, R_{2}. The remaining monostables are connected in exactly the same way. To a first approximation, the
operating period of each monostable is given by $1.3 C R$ seconds, where C and R are the coupling components expressed in farads and ohms. To reduce the need for large-value coupling capacitors it is desirable to keep the value of R as large as possible. However, the maximum value which may be used for normal-power t.t.l. (SN7400) is of the order of 500Ω; the corresponding value for low-power t.t.i (SN74LOO) is $5 \mathrm{k} \Omega$. These values are dictated by the maximum permissible input voltage to a gate which will be accepted as a logical ' 0 ' level (approx. 0.8 V max), and the corresponding maximum input current requirements $(1.6 \mathrm{~mA}$ for normal-power t.t.1. and 0.18 mA for low-power t.t.1.). In the circuits described here, low-power t.t.l. is used throughout and the value of R used is $4.7 \mathrm{k} \Omega$ with a tolerance of $\pm 5 \%$.

In the quiescent state, the output levels of gates $G_{4}, G_{5} \ldots G_{n}$ are held at a logical ' 1 ' (about 4 V) by the resistors $R_{1}, R_{2} \ldots$ R_{n}; the capacitors $C_{2}, C_{3} \ldots C_{n}$ are therefore fully charged. The output level of
G_{3} is at a logical ' 0 ' ($\because \approx 4 \mathrm{~V}$) since both inputs are at a logical ' 1 '; the capacitor C_{1} is therefore uncharged.

When a 'start' pulse is applied to the circuit, G_{2} supplies a logical ' 0 ' pulse to G_{3} and causes' its output to change to a logical ' 1 '. This level is transferred to G_{4} via C_{1}, R_{1}, and causes its output to fall to the ' 0 ' level. This is fed back to G_{3} to reinforce the trigger pulse, which may now be removed. The fall in level at G_{4} output also causes C_{2} to discharge, the discharge path being via the output and input impedances of G_{4} and G_{5}, respectively. The circuit remains in this unstable state as C_{1} charges towards the ' f ' level produced by G_{3}; the charging path being via R_{1} and the output impedance of G_{3}.

When the voltage developed across R_{1} (due to the charging current of C_{1}) falls below about 2 V (the minimum acceptable ' 1 ' level for G_{4} input), the output produced by G_{4} once more reverts to a ' 1 ' level and the first monostable returns to its quiescent state; the waveform produced by this monostable is shown as T_{1} in Fig. 2(b).

The return of G_{4} output to the quiescent ' 1 ' state causes a logical ' 1 ' to appear (by way of C_{2}, R_{2}) at G_{5} input, and hence a ' 0 ' to appear at its output. This output is fed back to the input of G_{4} to reinforce the ' 0 ' level transition which occurs across R_{1} during the operation of the first monostable; it also causes the discharge of

Fig. 1. Block diagram. With S_{1} in the repetitive position the cascade is self sustaining.

C_{3} via the output and input impedances of G_{5} and G_{6}, respectively. The second monostable remains in this unstable state until the charging current of C_{2} causes insufficient voltage to be developed across R_{2} to maintain a logical ' 1 ' at G_{5} input. At this point, the second monostable reverts to its quiescent state and the output from G_{5} returns to a logical ' 1 '; the output waveform produced by this monostable is shown as T_{2} in Fig. 2(b).

Fig. 3. It may be necessary to connect the sum output gate like this.

The remainder of the circuit continues to operate in the same way as the second monostable, each monostable being triggered by its predecessor.
When the circuit is set to operate in the single-shot mode, the cascade of waveform generation ends with the completion of the waveform produced by the last monostable. It is then necessary to apply another 'start' pulse to the circuit to initiate another cascade. When the circuit is set to the repetitive mode of operation, the cascade is automatically re-started by pulse T_{n}.

Experimental results

It may be fou. ne necessary to delay the recovery of the waveforms at the inputs of \&2 in order to allow sufficient time for the leading edges of successive input waveforms to reach the logical ' 0 ' state required by the gate G_{8}. This may be done by means of the method of coupling shown in Fig. 3. The maximum permissible value of the resistor R_{i}, for low-power t.t.l. is about $2.5 \mathrm{k} \Omega$. Values of $2.2 \mathrm{k} \Omega$ for R_{i}
and 27 pF for C_{i} have been found quite satisfactory.

Start-pulse duration

The duration of the 'start' pulse required to initiate the monostable cascade, is determined largely by the value of the timing capacitor (C_{2}) used in the second monostable. This is because of the slowingup effect which this capacitor has on the regenerative feedback connection between the two gates $\left(G_{3}, G_{4}\right)$ which form the first monostable. For values of C_{2} less than about 1000 pF , the 'start' pulse duration need not exceed 50 ns . Above this value, however, the required duration increases almost linearly with C_{2}, being about $10 \mu \mathrm{~s}$ for a C_{2} value of $1 \mu \mathrm{~F}$.
To a first approximation, the necessary 'start' pulse duration is given by: 13 C us where C is the value of the capacitor C_{2}, in $\mu \mathrm{F}$, and R is assumed to be $4.7 \mathrm{k} \Omega$.
No attempt has been made to find out the maximum timing period, although consistently reliable operation has been observed with timing periods as high as 2.5 seconds.

Integrated Circuit Stereo Pre-amplifier

Adding an active rumble filter

by L. Nelson-Jones

In the original design of this pre-amplifier ${ }^{1}$ the low-frequency response was flat to below 20 Hz , the first limiting factor being in practice the l.f. cut-off of the power amplifier with which it was designed to work ${ }^{2}$. In use the unit has given excellent service, with the exception of occasional rumble. Some discs seem to have rumble recorded on them.

The original pre-amplifier design aimed

Fig. 1. Alternatives for incorporating the filter network: (a) in gram' input and (b) in second stage where it is effective on all inputs and reduces the $1 / f$ noise of the first stage. The $0.068 \mu \mathrm{~F}$ capacitors are 10% polyester and each should be matched with its corresponding number in the other channel. The $33 \mathrm{k} \Omega$ resistor should be 5%, or better, 0.25 W high stability carbon film or metal oxide.
at simplicity and this was kept in mind in trying to establish a suitable circuit modification. The first obvious thought was to reduce the size of the coupling capacitors, but this was not pursued, since the cut of 12 dB per octave obtained in this manner leads to a very gradual roll-off, and thus a serious loss of bass if adequate rumble attenuation is to be achieved. A parallel-T notch filter was also considered, but rejected on the grounds of complexity and the tight matching of components required. The solution eventually settled upon was to use a Sallen \& Key active filter which results in the addition of only two extra components. The filter can be added in one of two places: (a) at the input to the first stage, which has the advantage of affecting only the pickup cartridge input; or (b) between the output of the volume control and the input to the second stage, where it will also serve to attenuate $1 / f$ noise, which comes almost entirely from the R.I.A.A. compensated first stage and is the major noise component in the amplifier. On balance the author prefers the latter position.

Fig. 1 shows the way to connect the filter in these two positions, together with the extra components used. Fig. 2 shows the effect of this filter on the response curves of the pre-amplifier. The Sallen \& Key filter has the great merit of having little effect on the circuit at frequencies appreciably above the cut-off, so that it is very easily incorporated into an existing design. At frequencies above the cut-off, the resistor between the centre point of the two capacitors and the feedback point of the amplifier is effectively 'bootstrapped' since, in accordance with normal feedback theory, the feedback point closely follows the input voltage waveform in level and phase. Only near and below the cut-off does the feedback point differ from the input in amplitude and phase, and it is this shift in the feedback point relative to the input at the cut-off that gives the filter its very sharp cut-off. The effective damping factor, or Q, of the circuit can be adjusted by changing the values of the time constants of the filter. The values chosen give the sharpest roll-off without appreciable lift prior to this roll-off. If for instance the $33 \mathrm{k} \Omega$ resistor is reduced to say $27 \mathrm{k} \Omega$ then there will be a slight lift at the cut-off point relative to the higher frequencies, while a

Fig. 2. Overall R.I.A.A. equalization with and without the rumble filter (either circuit).

Fig. 3. Simple modifications for different output stage gain.
value of say $39 \mathrm{k} \Omega$ will result in a more gradual cut.

Note on gain modification to tone control stage
 Some users requiring to drive valve amplifiers which need a larger swing have asked if the gain and output rating can be raised to make it possible to drive these amplifiers. The load resistor of the tone control stage may be modified very simply as shown in Fig. 3 to give up to about 2V r.m.s. and a gain of up to 3 .

References

1. Nelson-Jones, L., 'Integrated Circuit Stereo Pre-amplifier', Wireless World, July 1970.
2. Nelson-Jones, L., 'Ultra-low Distortion ClassA Amplifier', Wireless World, March 1970.

Personalities

Alan Cormack, B.Sc., M.I.E.E., has been appointed general manager, Communications Division, of Redifon Ltd. He joined the company last November from Racal-B.C.C. Ltd, where he had been technical director since 1967. Before joining Racal he was tecĥ̄nical director with B.C.C. Ltd, where he was responsible for all engineering and production activities. Mr. Cormack, who is 44, served in R.E.M.E. after graduating from Manchester University at the early age of 19. Commissioned as captain, he was put in charge of basic electronic training at the R.E.M.E. Training Centre. Upon leaving the Army, he joined G.E.C., and was chief engineer, Radio Communications Division, when he left to join B.C.C. in 1965.
T. D. Towers, M.B.E., M.I.E.E., M.I.E.R.E', who is well known to readers for his contributions on semiconductors and i.cs (part 9 of his current series will be in the next issue) was recently appointed marketing director of Newmarket Transistors Ltd. He joined the company in 1958 as a circuit applications engineer. He had previously served for 18 years in the Colonial Audit Service and it was not until joining Newmarket that he took up electronics professionally. An honours graduate of the universities of Glasgow (M.A.), Cambridge (B.A.) and London (B.Sc.) Mr. Towers has successively been chief development engineer and marketing manager of Newmarket.
R. P. Henegan, Assoc. I.E.R.E., has been appointed managing director of Gardners Transformers Ltd in succession to C. J. Gardner who becomes executive-chairman. Mr. Henegan, who is 45 , joined the company as general manager in 1964 from Technograph and Telegraph Ltd, with whom he was a director and general manager. His career includes nearly 10 years with Gresham Transformers, where he was commercial manager. Mr Gardner started the business with his brother, Harold,
as a small wireless shop in 1928. Four years later the manufacture of transformers and other wound components began. The appointment of Dennis E. Wheatley, M.I.E.E., as general sales manager is also announced by Gardners. Mr. Wheatley, 42, was sales manager with Cannon Electric (GB) Ltd, and before that marketing manager in the connectors and wiring divisions of the Plessey Company.

LTH Electronics Ltd, of Luton, have announced the appointment of Ken Brown as joint managing director, and N. W. A. Le Gros (previously managing director) becomes chairman and joint managing director. Prior to joining LTH, -Mr . Brown was sales director of Pye-Ether Ltd, of Stevenage, manufacturers of control instruments, formerly known as Ether Controls. He was also on the board of other Ether Group companies.

The British Electrical and Allied Manufacturers Association has announced the appointment of S. L. H. Clarke, B.A., F.I.E.R.E., as chairman of the Industrial Control and Electronics Board. Mr. Clarke is a director of GEC-Elliott Automation Ltd., GEC-Elliott Process Automation Ltd., Marconi Elliott Computer Systems Ltd., and GEC-Elliott Computer Software Ltd. He is also chairman of the Instrumentation and Control Groups of the I.E.R.E. and vicepresident of the Institute of Measurement and Control.
G. Ivor Thomas has been appointed director, design and development, of A.B. Electronic Components Ltd, of Abercy on, Glamorgan. Mr. Thomas, who is 48, has been with the company for 17 years as chief development engineer, and latterly as chief product- engineer. The company also announced the appointment of Alan Sutton as sales director. An honours graduate of Bristol University in electrical engineering, Mr. Sutton was formerly
product planning manager of Solartron Electronic Group Computer Division at Farnborough. He was also at one time project manager, missile systems, at B.A.C., Stevenage. The following members of the executive staff have also been appointed associate directors: D. J. Evans, finance director; H. R. Heaven, company secretary; Lloyd C. Burton, supplies director; and R. J. Gent, production director.
P. David Glasspole, the former sales manager, has been appointed sales director, and R. J. (Dick) Virgoe, previously chief development engineer, technical director of Transducers (CEL) Ltd, of Reading, Berks. Mr. Glasspole, aged 37, joined the company towards the end of 1968 as marketing manager, before which he was on the sales staff of Leeds and Northrup where he was concerned with all aspects of the manufacturing and marketing of their instruments. Prior to this he spent three years in R.E.M.E., having previously been for eight years with the British Aircraft Corporation. Mr. Virgoe, who is 33, joined Transducers (CEL) in 1963 as a development engineer. He was previously a project leader in the Transducer Division of Ether Langham Thompson, where he was responsible for developing bonded foil-strain-gauge and semiconductor load cells and pressure transducers, strain and piezo-electric accelerometers, variable-reluctance pressure transducers and related products.

Portescap (UK) Ltd, the newlyformed subsidiary of Portescap, Swiss manufacturers of d.c. micromotors, has announced the appointment of G. Roger Swainston, B.Sc., as managing director. Prior to joining Portescap, he was marketing director of IDM Electronics and before that was sales manager (control and instrumentation division) for Ultra Electronics. He graduated in physics from London University, was commissioned in R.E.M.E. and was an instructor in servomechanisms and control equipment at the Army School of Electronics.

Bob Wise has been promoted to sales manager of the Commercial Products Division of Ultra Electronics Ltd. Previously regional sales manager, he will now be responsible for the United Kingdom sales and service operations of the division's products, with particular emphasis on the Lion radiotelephone range. Previously with Multitone, Mr. Wise has been with UEL for nearly four years. John Wood has joined the company as product manager and will be responsible for product planning and overseas
operations for the Lion range. For the past 18 years he has been with Pye Telecommunications Lid, where he was manager, spares division. Lance Horne, southern area sales manager has been appointed field sales co-ordinator. Mr . Horne has been with UEL for three years, having previously been with Storno Ltd. Jack Moseley has joined UEL as service manager, Commercial Products Division, after 16 years with Pye Telecommunications Ltd, where he was a regional service manager. Mr. Moseley is now responsible for all home and overseas service of the Lion radiotelephone range.
M. A. Stuart, B.Sc., M.I.E.E., was recently appointed managing director of the Belclere Company. F. B. Day, the retiring managing director, continues as chairman of the Board. Mr. Stuart, who joined the company as director and general manager last November, was previously general manager of the Electro-component Division of English Numbering Machines Ltd, a division of the Rank Organisation.
L. E. Q. Walker, who has edited the Marconi Review for over 30 years, has retired from the Marconi Company. He joined the company after graduating at the Imperial College of Science \& Technology in 1926. He was at one time the company's deputy chief engineer (works) but has been at the Great Baddow Research Laboratories since 1958 where, at the time of his retirement, he was special process consultant.
A. E. Bowyer-Lowe, who has been in the radio and electronics industry since 1922, has retired. After working as an apprentice in the family business making components and receivers, he joined Pye Radio in 1930 and was at one time manager of the group's Test Engineering Department. Latterly he has been senior electronics engineer in Ling Dynamic Systems, previously known as Pye-Ling Ltd.

OBITUARY

Brigadier Sir Lionel Harris, K.B.E., M.Sc., F.I.E.E., engineer-n-chief of the Post Office from 1954 to 1960, died on 18th March aged 73. He joined the Post Office research branch at Dollis Hill in 1922 having previously spent four years with signals in the Australian Imperial Forces. During the 1939-45 war he successively commanded G.H.Q. Signals; was Chief Signal Officer, Lines of Communication; and for two years chief of General Eisenhower's Telecommunications Section. From 1949 until his appointment in 1954 as engineer-in-chief he was controller of research.

World of Amateur Radio

The Swedish way

For several years amateurs have been convinced that some television chassis are significantly more prone to suffer interference from nearby radio transmitters than others. But few serious attempts to make objective assessments of receiver immunity characteristics over a full range of models have ever been reported. However the current issue of Radio Communication (May) describes how the Swedish amateur society S.S.A., in conjunction with the Swedish government institute S.I.F.U., recently tested 16 different colour TV receivers on sale in Sweden (no British models). These were operated on moderately weak TV signals using an aerial only 2 metres away from a 14 MHz dipole. The sets were tuned to C.C.I.R. channel 4 (not in direct harmonic relationship with the transmitter powering the dipole). The power of the transmitter could then be increased from zero to a maximum of 100 W output.

Three of the TV receivers (Blaupunkt, Radionette and Telefunken) showed no noticeable interference on sound or vision even when the transmitter was at maximum power. Yet several models showed interference effects when the transmitter output was only 0.5 W ; still others were affected by $2,2.5,4.4$, 8.3, 12.5 and 14.5 W. Generally, it required significantly more transmitter output to interfere with sound compared with vision (but one chassis was affected on sound by 8.3 W , yet coped with up to 72 W on vision). This cross-section of Continental chassis thus showed differences in immunity to high r.f. fields amounting to over 17 dB .

It would be extremely interesting if similar tests could be carried out on British TV chassis-many of us would be extremely surprised if these did not show a very wide spread of results. Yet it is extremely difficult to convince viewers that an amateur may cause TVI through no fault of his own but as a direct result of receiver design practices. The general adoption of bipolar transistors in TV front-ends has made the performance in the presence of local transmitters a very real problem.

Could not the R.S.G.B., B.R.E.M.A., Minpostel, B.B.C. and I.T.A. co-operate in carrying out similar tests--and publishing
the results? In 1969, the B.B.C. Research Department published a report on a few sample v.h.f./f.m. radio receivers which emphasized the wide differences in performance near to unwanted local transmitters and have since demonstrated this to official organizations. But the public is left without guidance.

Upsurge in American activity?

After several 'stand still' years, A.R.R.L. has recently reported a marked upsurge of interest by newcomers in amateur radio: membership is up by 1600 ; there has been increased sales of 'beginner publications'; a record number of visitors to the League's headquarters; an increase of 50% in the number of 'advanced class' licences. About half the newcomers are aged 20 or younger.

Fifty-eight stations have now gained the 'five-band DXCC' award, with J. Bazley, G3HCT (No 35), and Dr E. J. Allaway, G3FKM (No 42), as British representa-tives-but Europe's strongest entry is seven West German amateurs.

Body-blow to 70 cm TV?

Only a decade ago, British amateurs, including the amateur TV enthusiasts, had the use of a full $40-\mathrm{MHz}$-wide band between 420 and 460 MHz . Today they are restricted to a split 22 MHz . Soon, as became explicit at the recent R.S.G.B. v.h.f. convention, Minpostel propose to reduce the allocation to 8 MHz (432 to 440 MHz). Thus, in a few years, the band will have become a mere one-fifth of its former size. This outcome to the constant pressure exerted in recent years by the business mobile radio interests is not unexpected-and few responsible amateurs would deny that two-way radio has strong claims to more frequencies. But it represents, unless some special provisions are made, a body blow at amateur TV transmission. If the band is rigorously enforced, it will in future become impossible to transmit 625 -line d.s.b. signals. And even if v.s.b. can be achieved by amateurs, a single amateur TV signal would occupy virtually the entire band, rendering it unusable for
organized communication based on zonal band planning.

Unfortunately, this is only the latest example of the unfavourable restrictions imposed on amateurs in Region 1 when compared with the other regions. Consider h.f., North Americans (Region 2) have $3.5-4 \mathrm{MHz}$ (British only $3.5-3.8$) and 7 to 7.3 MHz (British 7-7.1); or, on v.h.f., the substantial American allocations at 50 and 220 MHz , and their 144 MHz band twice the size of that in Region 1. Comparisons are odious-in this case they are also extremely depressing. Why are British and European amateurs so less deserving of frequencies than those in the States and Canada and South America?

It is much to be hoped that some provision can be made for amateur TV in the 430 MHz region. The numbers of TV amateurs may be small, but they should surely be encouraged.

In Brief

Will Badman, G2ZG, of Bath, one of Britain's oldest active amateurs, has died at the age of 91 . In 1922 he put out several local broadcast programmes on 160 and 1000 metres-but even as a youth he had charged the batteries used by Marconi during his historic Bristol Channel experiments in 1897
'Trans-equatorial tests' on 1.8 MHz are being organized this year by Rolf Rasp, daily during June from 00.00 to 00.30 g.m.t. European stations should transmit between $1825-1830 \mathrm{kHz}$ and stations in the southern hemisphere will use 1.8-1.81 MHz . Europeans are allotted the first five and then alternate five-minute periods. Last year, during similar tests, a number of 'firsts' were made by European amateurs with Brazil-this year PY1MGF and PY2BJH have increased their power to 1 kW June R.S.G.B. events include National Field Day (June 5-6), a microwave contest (June 20) for bands from 1 GHz up; 70 MHz portable contest (June 27) The Midland V.H.F. Assembly and Dinner is on June 19 at Oldbury and application forms for tickets are available from Graham Badger, G3OHC, 50 Essex Road, Four Oaks, Sutton Coldfield Pembroke 'Bucket and Spade' party at Saundersfoot on June 13 (J. Hogg, GW8DMD, 2 Pembroke Road, Pembroke Dock) . . . Anglian Mobile Rally at the Suffolk Show Ground on June 27 (D. W. Thomas, G3ZLN, 9 Bürlington Road, Ipswich) Longleat Park Mobile Rally on June 27, organized by Bristol R.S.G.B. Group (details G3PQE, G8AGT or G3ULD) . . . 9H1BL in Malta has successfully received 50 MHz TV pictures from Rhodesia by means of transequatorial-mode propagation . . . German and Austrian amateurs have been heard on 145.41 MHz in the U.K. while they were using a balloon-borne translator An Oscar Australis prototype translator carried in a balloon resulted in a 500 -mile $144 / 420 \mathrm{MHz}$ contact in Australia recently.

Pat Hawker, G3VA

New Products

Oscilloscope amplifier

An oscilloscope Y-amplifier plug-in module, type EM505, is announced by S.E. Laboratories for the 102 series a.c./d.c. main frames. The module is a high-gain differential amplifier, plus an additional highbandwidth channel, with input sensitivity extending from $50 \mu \mathrm{~V} / \mathrm{cm}$ to $20 \mu \mathrm{~V} / \mathrm{cm}$; bandwidth in all positions is greater than 0.5 MHz . The EM505 display-noise is less than $3 \mu \mathrm{~V} / \mathrm{cm}$ measured tangentially. Since noise is related to bandwidth, the display noise can be reduced with a 3 dB point filter switch at $50 \mathrm{kHz}, 5 \mathrm{kHz}, 500 \mathrm{~Hz}$, or 50 Hz . Drift has been reduced to $50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, but d.c. off-set can be applied. The range covered by this front panel control is $\pm 150 \mathrm{mV}$ c.m.r. at $1 \mathrm{kHz}, 94 \mathrm{~dB}$ at 100 kHz . The front panel provides an output to drive a u.v. galvanometer recorder. An additional Y amplifier channel provides a bandwidth d.c. to 150 MHz at $10 \mathrm{mV} / \mathrm{cm}$, and 1 mV at 6 MHz . Price of the module is under $£ 150$. S.E. Laboratories (Engineering) Ltd, North Feltham Trading Estate, Feltham, Middx.
WW330 for further details

Wide bandwidth oscilloscope

New Philips oscilloscope type PM3370 has a plug-in amplifier with a sensitivity of $1 \mathrm{mV} / \mathrm{cm}$ extending up to 150 MHz . Previous instruments with bandwidths of this order had a sensitivity of 5 or

$10 \mathrm{mV} / \mathrm{cm}$. Noise is kept to a low level by using two amplifiers in parallel for high and low frequencies, giving opencircuit noise of $200 \mu \mathrm{~V}$ and short-circuit noise of $100 \mu \mathrm{~V}$. There are five verticalchannel plug-in units, two new-one is the PM3372, a dual-trace $150-\mathrm{MHz}, 1 \mathrm{mV} / \mathrm{cm}$ amplifier and the other is the PM3379, a 10 MHz to 6.5 GHz spectrum analyser. The other three are $50-\mathrm{MHz}$ units originally made for model PM3330 oscilloscope. A 70-ns signal delay is incorporated in the Y -signal path to allow examination of leading edges of pulses. Timebase includes a 'display' switch associated with the main and delayed timebase, so that both the original trace and the intensified portion can be viewed at the same time. Sweep times cover the range $50 \mathrm{~ns} / \mathrm{cm}$ to $1 \mathrm{~s} / \mathrm{cm}$ and a $\times 10$ magnifier extends time to $5 \mathrm{~ns} / \mathrm{cm}$. The c.r.t., with distributed deflection plates, has a display area of $6 \times$ 10 cm . Pye Unicam Ltd, York Street, Cambridge.
WW303 for further details

Wattmeter

The Wattavi wattmeter, available from Hartmann and Braun (UK), has a sensitive iron-cored electrodynamic movement. It has three separate field coils arranged in adjacent compartments and constructed for rated currents of 1,5 and 25 A . There are five connecting terminals on the front of the case-two for the current path and three for the voltage path. Below the scale are three switches, by means of which three current and three voltage ranges $(1,5,25 \mathrm{~A}$ and 100,200 and 500 V) can be selected. The circuit used is that of a three-phase three-wire system, i.e. there is a single-phase movement with an artificial star point created by three star-connected resistances. A current selector permits measurements to be made with single phase a.c. on all the ranges. A wide variety of applications is possible. For instance current transformers with a secondary current of 1 A or 5 A can be inserted in the 1 A and 5 A ranges. Similarly the 100 V range of the voltage path facilitates the use of voltage transformers, the secondary voltages of which are 100 V or 110 V . Two scales marked in 50 divisions are provided,

one numbered $0-100$ the other $0-250$, from which the results can be calculated by use of a few simple constants, of which a table is included on the front of the instrument. Hartmann \& Braun (UK) Ltd, 967 Harrow Road, Wembley, Middx.
WW319 for further details

Solid-state inductor

A solid-state inductor weighing less than 3 g and housed in a 14 -pin dual-in-line package, is available from Cambion Electronic Products. The inductance can be externally varied from 1 H to greater than

100 H . Usable below $100 \mathrm{kHz}, Q$ values in the order of 15 are obtainable at 1 Hz and below. Cambion Electronic Products Ltd, Sales Department B-02, Cambion Works, Castleton, Nr. Sheffield S30 2WR. WW325 for further details

Instrument for comparing micro circuits

A new version of the Vision Engineering Comparascope extends its application to the comparison of integrated-circuit photo-masks and thick- and thin-film circuits against a master sample. Pairs of objectives for magnification of 10,25 , 50 and 100 are fitted so that any two

WW250 for further details

CA TEKTRONIX

\square PRICE DOWN $\quad \begin{aligned} & \text { PREORMANCE UP }\end{aligned}$

TEKTRONIX 7000 series moves into the lower cost market with 50 MHz bandwidth oscilloscope and: 5 mV dual-trace amplifier and sweep delay.

5 mV dual-trace amplifier and single time base $£ 879$
5 mV single-trace amplifier and single time base. .1772

Large $6 \frac{1}{2}$ in. CRT - with 15 kV brightness.

- 3 plug-in compartments giving capability up to 4 traces.
- Time base sweep rate to 5 ns/div.
- Complete compatibility with 7000 series mainframes and plug-in units.
- Choice from 20 plug-in units including single trace, dual trace, differential, voltage comparator, current measuring and sampling.
- Sensitivities from $10 \mu \mathrm{~V} /$ div. at 1 MHz , $1 \mathrm{mV} /$ div. at 55 MHz , to $5 \mathrm{mV} /$ div. at 60 MHz .
Accuracy, amplitude and time, is 2%.
- $5_{\frac{1}{4}}$ in. Rackmount also available.

Ask for a demonstration by your Tektronix field engineer Call Harpenden 61251 or Northern Region Office 061-224 0446

TEKTRONIX

magnifications can be used. Images from the specimen circuit and its master are combined through polarizers in the microscope head and then passed through a rotating analyser. When viewed through the binocular eyepiece the master and sample are repetitively superimposed with an approximately constant light intensity, and any points of discrepancy between the two show as a periodic change. A micrometer eyepiece allows measurements to be made down to 2.5 um . Inspection tables are motorized with automatic centralizing. Price is about $£ 5,000$. Vision Engineering Ltd, Send Road, Woking, Surrey.
WW308 for further details

Switching transistors

High voltage n-p-n silicon planar switching transistors, types 2N3724, 2N3725, 2N4013, and 2N4014, are now available from Sprague Electric Co. (U.S.A.). Types 2N3724 and 2 N 4013 feature a 30 -volt $B V_{C E O}$, a 50 -volt $B V_{C B O}$, and a current gain of 30 at a collector current of 1 amp . $B V_{C B O}$ and $B V_{C E O}$ for 2 N 3725 and 2 N 4014 are 80 V and 50 V respectively, with a minimum current gain of 25 for a collector current of 1 amp . The devices have a gain-bandwidth product greater than 300 MHz and turn-on and turn-off times of 35 ns and 60 ns respectively at a collector current of 0.5 amp . Types 2N3724 and 2 N 3725 are available in a TO-5 package and types 2 N 4013 and 2 N 1014 in a TO-18 case. Available in the U.K. from Sprague distributors-Quarndon Electronics Ltd, W.E.L. Components Ltd, and S.D.S. (Portsmouth) Ltd. Sprague Electric Co. North Adams, Mass. 01247 , U.S.A.

WW328 for further details

V.H.F. transceivers

The v.h.f. airmobile band ground-to-air transceivers, models 25/SS and 25A/SS from Park Air Electronics may be powered from internal batteries, from an external a.c. supply or from an external

d.c. supply. An output power of 2.5 W 85% modulated a.m. is sufficient for ranges of up to 45 miles to aircraft at 2000 ft or above, using the built-in telescopic aerial. Up to 24 channels are available on the $25 \mathrm{~A} / \mathrm{SS}$ (four on the $25 / \mathrm{SS}$, which may lie anywhere in the band $118 / 126 \mathrm{MHz}$). A full range of accessories is available as optional extras. The complete equipment including batteries and internal charger and a.c. supply weighs only 4.6 g and measures 36×12 $\times 19 \mathrm{~cm}$. Prices: $£ 295$ for $25 /$ SS and $£ 320$ for 25A/SS (U.K.). Park Air Electronics, Red Lion Square, Stamford, Lincs. WW320 for further details

200 pF to 33 nF variable capacitor

A variable capacitor with a $1: 165$ range of capacitance has been developed recently by J. Briechle in Germany. It is made with a minimum capacitance of 200 pF and maximum value is 33 nF . This wide range is achieved by winding metal foil onto a reel fed bỳ two adjacent reels.

self-time
constant \tan 。
insulation $3 \times 10^{10}(\rho$ at 20 nF
600s at 20 nF temp. coefficient $10^{-3} / \mathrm{deg} \mathrm{C}$

The main application is in the construction of variable-frequency $R C$ filters. J. Briechle, 7731 Kappel über Villingen, Schwarzwald, Federal Republic of Germany.
WW307 for further details

Counter timer

A four-decade counter timer, type 72C-1, from Orbit Controls provides facilities for frequency measurement, interval timing, and counting. The timebase is derived from the 50 Hz mains supply and its accuracy is therefore dependent on the supply frequency, which is normally within $\pm 0.1 \%$. Two ranges of frequency measurement are provided, having gate times of 0.1 s and 1 s respectively. The measurement capacity therefore is 100 kHz . The display time is arranged to be 1 s on both frequency ranges. Three timing ranges are provided, with timing increments of $0.01,0.1$ and 1 s respectively. Start and stop is by means of a front panel switch,

or by the opening and closing of remote contacts, for which terminals are provided on the rear panel. Facilities for 2-line operation are also provided on the rear panel. The instrument provides a single counting range to 9999 . The same start/ stop switch or parallel rear panel contacts are used as in the single-line timing mode. On both single-line timing and counting, successive counts can either accumulate on the display, or restart from zero. A reset button on the front panel, again paralleled with contacts on the rear panel for remote operation, is provided to enable each successive count to restart from zero. On two-line timing, successive counts always start from zero. While the instrument has a maximum frequency indication of 100 kHz , its counting capability is in excess of 1 MHz , offering pulse discrimination better than $1 \mu \mathrm{~s}$. Input is via a b.n.c. connector on the front panel, or a parallel pair of terminals on the rear panel. Input sensitivity is 100 mV and a continuously variable input attenuator is provided. Also appearing on rear panel terminals is a +5 V d.c. supply for energizing external transducers. Price $£ 95$ in U.K. Orbit Controls Ltd, Alstone Lane Industrial Estate, Cheltenham, Glos. GL5 1 8JQ.
WW327 for further details

Fast thyristor

The D1162 thyristor from Westinghouse Brake English Electric Semiconductors is a $55 \mathrm{~A} I_{T}$ r.m.s. ($35 \mathrm{~A} I_{T}$ av.) device capable of turning off in 8 to $10 \mu \mathrm{~s}$ at $100^{\circ} \mathrm{C}$. Shorter turn-off time can be achieved if the current is reduced. The D1162 TB1 (100 V) costs $£ 9.41$ and the TB6 (600 V) costs $£ 29.41$. Intermediate voltage versions are available. Westinghouse Brake English Electric Semiconductors Ltd, Avon House, Upper Cocklebury, Chippenham, Wilts.
WW329 for further details

Transmitter-receiver for amateurs

An improved version of the SR-400 Cyclone 2 transmitter-receiver has been introduced by Hallicrafters Co., of Illinois. Designated SR-400A and called Cyclone 3 it has increased power for single-sideband operation-550 watts peak envelope. Features of the new set include a built-in crystal calibrator, calibrated fine receiver tuning, circuit obviating need for matched power amplifier valve, six-pole crystal i.f. filter, and audio notch filter. Optional extras include an air blower for the output valves, and an 11 to 16 -volt power supply

for mobile and field operation. Price is $\$ 995$ in the U.S. Hallicrafters Co, 600 Hicks Road, Rolling Meadows, Illinois 60008.

WW302 for further details

Precision potentiometers

The Bourns ' B -line' range of single-turn wirewound precision potentiometers for servo or bush mounting is available in $\frac{7}{8} \mathrm{in}, 1 \frac{1}{16} \mathrm{in}$ or 2 in diameters. The thin profile (0.6 in housing length) is claimed to fit wherever another potentiometer has been used and facilitates smaller packaging sizes and modifications.
Standard specification:
resistance tolerance $\pm 3 \%$
linearity for $\frac{7 \mathrm{~B}}{8} \mathrm{in}$ and $1 \frac{1}{16} \mathrm{in} \quad \pm 0.5 \%$
linearity for $2 \mathrm{in} \quad \pm 0.3 \%$
track angle $\quad 350^{\circ} \pm 2^{\circ}$
absolute minimum setting 1Ω or 0.1% total
resistance
power rating at $70^{\circ} \mathrm{C} \quad \frac{7}{8}$ in, 1.0 W
$1 \frac{1}{66}$ in, 1.5 W
2in, 4.0W
insulation resistance $\quad 1,000 \mathrm{M} \Omega$
temperature range $\quad-65$ to $+150^{\circ} \mathrm{C}$
maximum no. of gangs 10

Additional gangs are easily fitted; these add only 0.2 in to the housing length. Bourns (Trimpot) Ltd, Hodford House, 17-27 High Street, Hounslow, Middx. WW324 for further details

F.M. tuner

An f.m. tuner for sound distribution systems is made by Millbank Electronics. Tuning is by one pre-set multi-turn potentiometer. For other applications a pushbutton station selector is available. The
normal tuning range is $80-110 \mathrm{MHz}$ with absolute limits of 65 and 130 MHz . Dualgate f.e.ts are used at v.h.f., together with i.c. voltage regulators, two i.cs in the 10.7MHz i.f. amplifier and a ceramic filter unit, and a 'quadrature' demodulator-a line-up quickly becoming standard. In addition, a two-stage audio amplifier gives low output impedance at up to 3.5 V for $\pm 75 \mathrm{kHz}$ deviation. Sensitivity is $5 \mu \mathrm{~V}$ for 30 dB signal-to-noise ratio. T.H.D. is 0.2% at 1 kHz and 2 V output. Millbank Electronics, The Square, Forest Row, Sussex.
WW312 for further details

High-power audio amplifier

Crown (U.S.A.) amplifier type D150 with a continuous output of 140 watts per channel into four ohms is sold by Carston Electronics Ltd in the U.K. The amplifier gives 90 W r.m.s. into an 8Ω load.
noise $\quad 100 \mathrm{~dB}$ below 75 watts
damping factor 200
intermodulation $0.1 \%, 10 \mathrm{~mW}$ to max.
power
power response $5 \mathrm{~Hz}-20 \mathrm{kHz}, 75$ watts

$$
\pm 1 \mathrm{~dB}
$$

price $£ 200$
Carston Electronics Ltd, 71 Oakley Road, Chinnor, Oxfordshire.
WW306 for further details

I.Cs for f.m. stereo receivers

Standard stereo processing circuits, including a 19 kHz amplifier, frequency doubler, stereo indicator lamp, and stereo demodulator, are contained in each of four new integrated circuits for f.m. stereo receivers now in production at the Semiconductor Division of the Sprague Electric Co. The four new devices are types ULN-2120A, ULN-2121A, ULN2122A, and ULN-2128A. In addition, type ULN-2121A is provided with an emitter follower output. Both the ULN2120A and ULN-2122A have provision for audio muting and stereo/mono switching. The type ULN-2122A also provides
for adjustable stereo channel separation. The ULN-2120A, ULN-2122A, and ULN-2128A may be used as direct electrical pin-for-pin replacements for Motorola types MC1304, MC1305, and MC 1307, respectively. All four circuits are housed in 14-lead dual-in-line moulded plastic packages and are specified to operate over the ambient temperature range of -30 to $+85^{\circ} \mathrm{C}$. Stockists are Quarndon Electronics, WEL Components, and SDS (Portsmouth). Sprague Electric Company, North Adams, Mass. 01247, U.S.A.

WW318 for further details

Professional tape recorder

Leevers-Rich Equipment have replaced their E5 machine with a new $\frac{1}{4}$-inch console recorder, model E200. The machine is available in full-track, twin-track and half-track versions. All the principal subassemblies are readily interchangeable, even down to spool pot assemblies and deck-control switch banks. The standard model offers speeds of 38 and $19 \mathrm{~cm} / \mathrm{sec}$ (15 and $7 \frac{1}{2}$ i.p.s.). Other speed ranges are readily obtained by interchanging plug-in

units. The equipment is housed in a console which occupies only four square feet of floor area. Tape speed and direction are continuously variable, and there is provision for 'inching' whilst maintaining tape contact with the replay head. Leevers-Rich Equipment Ltd, 319 Trinity Road, Wandsworth, London S.W.18.
WW313 for further details

Silicone adhesive sealant

'Silcoset' 153 silicone adhesive from I.C.I. cures in air, with little shrinkage, to give a silicone rubber that is flexible from $-60^{\circ} \mathrm{C}$ to $+225^{\circ} \mathrm{C}$. It has good electrical insulation properties, resists corona and ozone and bonds to unprimed surfaces. It resists ageing and weathering, as well as oxidation, and stands up to many oils,
chemicals and solvents. Easily applied, it gives protection against dust, moisture, vibration and shock. 'Silcoset' 153 is supplied in a 75 cc tube; $\frac{1}{3}$-litre cartridge; 5 -litre drum and 20 -litre drum. I.C.I. Nobel Division, Nobel House, Stevenston, Ayrshire.
WW315 for further details

Helical potentiometer

A high resolution wirewound helical potentiometer, HEL.09, is available from Reliance Controls in 3, 5 or 10 turn versions. Resistance ranges are 10 turn25Ω to $150 \mathrm{k}!; 5$ turn- 25Ω to $100 \mathrm{k} \Omega$; 3 turn -25Ω to $50 \mathrm{k} \Omega$. Higher values are available. Body diameter is 22.4 mm and length 24 mm . It is available in sealed or unsealed versions. Performance data:

linearity
$\pm 0.1 \%$ or $\pm 0.2 \%$ power rating $\quad 2 \mathrm{~W}$ at $70^{\circ} \mathrm{C}\left(0\right.$ at $\left.125^{\circ} \mathrm{C}\right)$ temperature range $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ noise 100Ω e.n.r. Max. spindle diameter 6 mm or $\frac{1}{4}$ in

Spindle lengths from 16 to 35 mm are available. Mounting is metric bush or imperial bush. The case is diallyl pthalate and the former enamel-coated copper. The nominal weight is $28 \mathrm{~g}(1 \mathrm{oz})$. Sales Department, Reliance Controls Ltd, Drakes Way, Swindon, Wilts. WW316 for further details

High-output op-amp

The Ancom $15 \mathrm{~A}-11$ op-amp is unusual in providing an output of $\pm 100 \mathrm{~mA}$ at $\pm 10 \mathrm{~V}$. Overdrive recovery time is $2 \mu \mathrm{~s}$. Input current offset is $\pm 10 \mathrm{~mA}$ and input voltage offset $8 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. The common-mode rejection ratio is 10,000 . The amplifier measures $32 \times 32 \times 16 \mathrm{~mm}$. Price $£ 10$ (1-9), $£ 8.50$ (10-24). Ancom Ltd, Devonshire Street, Cheltenham GL50 3LT.
WW326 for further details

Oscilloscope calibrator

An up-dated version of model 156 oscilloscope calibrator is announced by G. \& E. Bradley. The new calibrator-type 192provides a 1 -ms edge at variable repetition frequencies (1 s to $1 \mu \mathrm{~s}$) for testing Y-amplifier response. For Y-amplifier calibration, a $1-\mathrm{MHz}$ square-wave train, together with direct voltage levels accurate to $\pm 0.25 \%$, cover the range $30 \mu \mathrm{~V}$ to 200 V . A time mark generator giving one pulse every five

seconds to every 10 ms allowing timebase calibration. G. \& E. Bradley Ltd, Electral House, Neasden Lane, London N.W.10. WW305 for further details

Audio transistors

Four new audio transistors are announced by Mullard. Designed for 'driver' stages in amplifiers, they are plastic types with TO-92 cases. Types BC327 and BC328 are $\mathrm{p}-\mathrm{n}-\mathrm{p}$ devices and BC 337 and BC 338 are $n-p-n$. They have a dissipation of 500 mW at $25^{\circ} \mathrm{C}$ ambient with an $h_{F E}$ range of 100 to 600 . Maximum $V_{C E O}$ is 45 V for BC 327 and BC 337 and 25 V for BC 328 and BC 338 . $I_{C M}$ is 800 mA . Mullard Ltd, Torrington Place, London W.C.1.

WW311 for further details

Ten-watt p.a. amplifier

A low-cost 10 W amplifier made by Trusound for public address, gives a regulated 100 -volt output from two lowimpedance microphone inputs ($100 \mathrm{\mu V}$) and a high-impedance input $(500 \mathrm{mV})$. Amplitude response is 100 Hz to 12 kHz $\pm 3 \mathrm{~dB}$. Price $£ 32$. Trusound Manufacturing Ltd, Crittall Road, Witham, Essex. WW310 for further details

Large digital display

A recent addition to the range of apparatus by Unilab Science Teaching Equipment, for use in schools and colleges, is a t.t.1.compatible digital readout unit with 4inhigh characters. The readout can be used

up to 10 MHz . Two or more digital readouts may be linked together. Input modules available include a 1,10 and 100 kHz clock oscillator, single and dual gates and output for a frequency meter. There is also a $\times 10$, $\times 100$ and $\times 1,000$ multiplier. Unilab Science Teaching Equipment, Clarendon Road, Blackburn, Lancs.
WW322 for further details

Slider potentiometers

A range of carbon-track slider potentiometers is available from A.B. Electronic Components. The resistance range for linear tracks is 100Ω to $10 \mathrm{M} \Omega$ and for \log tracks $1 \mathrm{k} O$ to $10 \mathrm{M} \Omega$. The power rating at $40^{\circ} \mathrm{C}$ ambient temperature is

0.4 W for linear controls and 0.2 W for log. The body material is glass-filled nylon. Slider travel is 58 mm . For quantities $1-9$ single units cost $£ 1.60$ and dual units $£ 2.40$ each, and for quantities of 100-249 the cost falls to 40 p and 60 p respectively. The minimum invoice charge is $£ 3$. A.B. Electronic Components Ltd, Abercynon, Glam.
WW317 for further details

Marine s.s.b. radiotelephone

Covering 2 to 24 MHz , a single-sideband radiotelephone made by RF Communications Inc., of Rochester, N.Y., has six variants for on-board and coastal station use. The models, type RF-201M, differ in the number of channels (between 6 and 60) and in the simplex/duplex facility. Modes available are upper sideband suppressed carrier, upper sideband reduced carrier and double sideband. Rated power output is 150 watts (peak envelope) but this can be increased to 1 kW with an optional linear amplifier. In common with

other radiotelephones of this type transistors are used in all but the power amplifier circuits. Receiver sensitivity is $0.5 \mu \mathrm{~V}$ for 10 dB signal-to-noise ratio. Available for 12,24 or 32 -volt direct supplies, or 115 and 230 -volt alternating supplies, from RF Communications Inc, 1680 University Avenue, Rochester, N.Y. 14610. WW301 for further details

Low-power heatsinks

A range of lightweight clip-on coolers, designated the NF200 series, is available from Jermyn for TO-5, TO-8 and TO-18 size transistors and i.cs. Each size is available with a choice of fin height and overall diameter and the unique fin design assures excellent natural air convection in both horizontal and vertical positions. Prices start at $£ 0.13$ (1-99 off) for the smallest (TO-18) size. Jermyn Industries, Manufacturing Division, Vestry Estate, Sevenoaks, Kent.
WW331 for further details

P.A. acoustic 'equalizer'

A filter module designed to avoid how or acoustic feedback in p.a. systems is made by Astronic Ltd. The module is available with up to eight plug-in $L C$ filters for frequencies between 160 Hz and 5 kHz
and with a control range of $\pm 12 \mathrm{~dB}$. The filters can be used for either cut or lift in response depending on which way each filter 'card' is plugged in. The module is also useful in music reproduction systems where acoustic properties of the environment alter tonal balance. Astronic Ltd, Dalston Gardens, Stanmore, Middx HA7 1BL.
WW309 for further details

Signal generator synthesizer

An accurate wide-range oscillator, made by Green ECE Ltd, allows frequency selection by five decade switches giving a resolution bet ween 1 in 10^{4} and 1 in 10^{5}. Frequency

of the output extends from 1 Hz to 10 MHZ with an harmonic distortion of less than 1% for the range 10 Hz to 100 kHz . Squarewave output is available with a rise time of less than 20 ns . Outputs are also available at
the fixed frequencies of $10,50,100$, and 500 Hz and 1,5 and 10 kHz . Lock-on time is three seconds. Green ECE Ltd, 5 Thorold Road, London N22 4YE; marketed by Echometrix Ltd, 113 The Broadway, Leigh-on-Sea, Essex.
WW332 for further details

Logic pulse generator

A small mains-operated logic pulse generator has been produced by C. \& N. (Electrical). It is designed for testing and checking integrated circuit systems and its outputs-fully compatible with d.t.l./ t.t.1. levels-include simultaneous positive and negative pulses and delayed pulses. Performance characteristics are: pulse repetition frequency 1 Hz to 10 kHz pulse duration $\quad 1 \mu \mathrm{~s}$ to $500 \mu \mathrm{~s}$ delayed pulse duration 150 ns rise/fall time 20ns output typically 4V into 200Ω

The unit comes in a die-cast alloy case and costs $£ 30 . \mathrm{C} . \& \mathrm{~N}$. (Electrical) Ltd, The Green, Mumby Road, Gosport, Hants. WW321 for further details

High-power static switch

The Transipack high-power static switch from Industrial Instruments is claimed to be capable of switching the output of a static inverter over to the mains supply without any interruption of power flow -the waveform of the inverter being locked to that of the mains. Thus the failure of the inverter supplying smooth a.c. to a computer system need not cause immediate shut down. Industrial Instruments Ltd, Stanley Road, Bromley BR2 9JF, Kent.
WW314 for further details

Flash tube

A spiral zenon-filled flash tube, type XL630, from E.E.V. is intended for use in stroboscopic applications. It is capable of producing up to 300 flashes per second. Four or five of these tubes running at a mean level of 40 W each, will provide the equivalent to several kilowatts of tungsten lighting. Anode voltage is 1400 V max. and 800 V min . Required trigger energy 4 mW . Ignition voltage (minimum) 6 kV . Overall height is 110 mm . English Electric Valve Co. Ltd, Chelmsford, Essex.
WW323 for further details

eceived

ly card

vup, 126 Hamilton Road, London cently appointed distributors for the Jrk company Sensitron Semiconductors, have a data sheets on Sensitron power transistors

We have received the following literature from LST Electronic Components Ltd, 7 Coptfold Rd, Brentwood, Essēx.

Retail semiconductor catalogue postage 5 p RCA, HM91 Hobby circuits manual; includes equivalents chart for the transistors mentioned which are not available in the U.K. price $£ 1.55$ A publication from AEG-Telefunken, D71 Heilbronn, Postfach 1042, West Germany, lists new semiconductor devices manufactured by them

Amendment sheet No. 10 is available for the technical handbook 'Semiconductors' published by Ferranti Ltd, Gem Mill, Chadderton, Oldham, Lancs.
.WW404
The following literature is available from AEI Semiconductors Ltd, Carholme Rd, Lincoln:
BS9000 scheme for semiconductors: explanation
'Thyristors and their applications' 25 p
'Voltage regulator diodes' price 25p
'Power semiconductors-quick reference data'
Semiconductor price listWW407
The National Semiconductor Corporation, 2900 Semiconductor Drive, Santa Clara, California 95051, U.S.A., have sent us the following literature: 'Tri-state logic' (TTL-5); characteristics and uses

Data sheet, LM114/115 transistor pairs. WW409
A retail semiconductor price list (No. 36) is available from Henry's Radio Ltd, Edgware Road, London, W.2.

A data sheet gives details of the type UHP-004 quad high-current core driver from the Sprague Electric Company. The sheet may be obtained from W.E.L. Components Ltd, 5 Loverock Rd, Reading, Berks.
. WW4 10
Wall chart giving details of the new 10,000 range of emitter coupled logic from Motorola Semiconductors Ltd, York House, Empire Way, Middlesex . WW411
Brochure describing the logic design services and logic card products of Jasmin Electronics Ltd, Station Rd, Quorn, Leics LE12 8BP WW412
We have received a microwave semiconductor catalogue (SF-4006) from Microwave Associates Ltd., Craddock Rd, Luton, Beds. WW413 Also available from the same company is a list of the semiconductor literature produced by them

PASSIVE COMPONENTS
Publication TD: 2-70 gives details of a range of encapsulated LC filters. Cambridge Thermionic Corp., 445 Concord Ave, Cambridge, Massachusetts 02138 , U.S.A.
The NC range of glass-tin-oxide resistors is the subject of a data sheet from Electrosil Ltd, Pallion, Sunderland, Co. Durham
A short-form catalogue from A.B. Electronic Components Ltd, Sutherland House, 5/6 Argyll Street, London W1V 1AD, lists thick film microcircuits, cermet controls, connectors, switches, potentiometers, tuners, c.c.tv. equipment, amongst other thingsWW417
Manual GT23 from Gardners Transformers Ltd, Christchurch, Hampshire BH23 3PN, describes a range of inductors and gives full dataWW418 We have received a copy of a 'stock catalogue' giving details of the capacitors, potentiometers and resistors available through the distributor division of Erie Electronics Ldd, South Denes, Gt. Yarmouth, Norfolk
. WW419
Miniature, metal sensing, switches ($25 \times 10 \mathrm{~mm}$) are described in a leafiet from Digitation Ltd, 117 Church Lane, Rickmansworth, Herts. WW421
Catalogue 102 from Cambion Electric Products Ltd, Cambion Works, Castleton, Nr. Sheffield, Yorks S30 2WR, deals with solder terminals, rf. chokes and connectors WW422
Integrated circuits, connectors and thermistors are described, with data and prices, in the April 1971 edition of Sasco Electronic News. SASCO Ltd, P.O. Box 2000, Crawley, Sussex WW423 Also available from SASCO is a leaflet giving data on precision thermistors manufactured by the Yellow Springs Iastrument Company of the U.S.A. WW424
The DTV Group 126 Hamilton Rd, West Norwood, London S.E.27, have published a catalogue giving details of the range of products manufactured by Omron Precison Controls of Edgware. Included are timers, switches, variable transformers and the like

APPLICATION NOTES

Application report No. 10 from Brookdeal Electronics Ltd, Market St, Bracknell, Berks, describes the use of the boxcar detector in acoustic paramagnetic resonance measurements
We have received three application notes from SGS (U.K.) Ltd, Planar House, Walton St, Aylesbury, Bucks, which show how some of their complex consumer equipment microcircuits can be employed:

No. 101. TAA661, i.f/f.m. amplifier and detector
-WW42
No. 105. TAA621, audio frequency amplifier No. 106. TBA261, i.f/f.m. limiter-amplifier, f.m. detector, d.c. volume control WW429
Technical Bulletin 116, 'Aquisition of shaft-angle data' discusses the three main approaches, digital shaft encoders, resolvers and synchros, and precision potentiometers. North Atlantic Industries Inc., Terminal Drive, Plainview, New York 11803, US.A. WW430
Application notes from Hewlett Packard (224 Bath Rd, Slough, Bucks) show how their equipment can be used for solving particular problems. The two
latest examples we have received are:
125. 'Data acquisition'

WW43i
120. 'A new technique for pulsed rf. measurements'

WW432

EQUIPMENT

Hewlett Packard Ltd (224 Bath Rd, Slough, Bucks) instruments and accessories price list WW451 Also available from the same address, data on the HP9500 series of automatic test systems ... WW452 A logic probe (LP500/1), manufactured by EMI, is the subject of a leafiet from SASCO Ltd, P.O. Box 2000, Crawley, Sussex
Designed for use in small boats a 25 W radio telephone is described in a leaflet from RF Communica tions Inc., Marine Marketing Dept, 1680 University Ave, Rochester, New York 14610, U.SA. .WW449
A simulated three-dimensional c.r.t. display using isometric presentation is achieved on the automatic display generator from Federal Scientific Corp., 615 West 131st Street, New York 10027, U.S.A. The equipment is intended for use with the company's spectrum analyzer \qquad WW450
Tempatron Ltd, 65 Milford Rd, Reading, Berks RG1 8LZ, have available literature on a range of electronic timers
Dynamic Technology Ltd, Station House, Harrow Rd, Wembley, Middlesex, have sent us the following literature:
'Equalizing video distribution amplifier 1-6'. One input, six equalized outputs, gain OdB.WW459
'Equalizing video amplifier 1-1'. As above with
one outputWW460
'Colour error corrector'
.WW461

GENERAL INFORMATION

The Electrical Research Association (Cleeve Rd, Leatherhead, Surrey) have set-up a vacuum technology consultation service which is described in a brochure
. . WW462
Magyar Kereskedelmi Kamara, Hungarian Chamber of Commerce, Budapest 62, P.O.B. 106, have available a directory of Hungarian trade companies

The following British Standards publications are available from BSI Sales Branch, 101 Pentonville Rd, London N1 9ND:
BS4665: Part 1: 1971. 'Specification for enamelled copper conductors temperature index 180 (modified polyester base)' price £1 BS4663: Part 1: 1971. 'Specification for enamelled copper conductors temperature index 220 (aromatic polymide base)' price $£ 1.60$ The following publications are in the BS 9000 series and contain generic data and methods of test for parts of assessed quality:
BS9010: 1971. Transmitter tubes price $£ 1$ BS9030: 1971. Magnetrons price $£ 1.80$ BS9050: 1971. Cathode-ray tubes price $£ 2$ BS9070: Section 4: 1971. Fixed capacitors polystyrene dielectric price 60p BS9070: Section 5: 1971. Fixed capacitors ceramic dielectric price 60p BS9070: Section 6: 1971. Fixed capacitors polycarbonate dielectric and polythene terephthalate dielectric for d.c. use price 60p
BS9070: Section 7: 1971. Fixed capacitors mica dielectric price 60p BS9070: Section 8: 1971. Fixed capacitors aluminium electrolyticprice 60p The following publications in the BS9000 series are rules for the preparation of specifications for semiconductor devices of assessed quality: BS9321: 1971. Microwave mixer diodes, pulse operation price 60p BS9322: 1971. Microwave detector diodes BS9365: 1971. Transistors (general) price 60

International Aeradio Ltd, Aeradio House, Hayes Rd, Southall, Middlesex, have produced a 32-page glossy brochure which describes their activities round the world
The Mullard Educational Service, Mullard House, Torrington Place, London WC1E 7HD, have published a list of the literature available from them which can be obtained by applying to the above address. Mullard also have available a 16 mm film, which can be borrowed free of charge, called 'The Electrons Tale'. It tells, in a light-hearted way, using cartoons, how the electron has revolutionized life.

Electronic Communication with the Dead?

I don't often deal with technical matters on this page. The way I figure it is that you, having digested the hors d'oeuvre of editorial thunderings and survived the main dish of electronics theory and practice, would have to be a masochist to demand another helping of the mixture as before.

However, every rule has its exception. Free Grid's comments on metamorphosed ψ waves (see page 212, April issue) reminded me of a curious incident which happened to me some years ago and for which I have never been able to find a rational explanation. When I was about fourteen years old I discovered, lying in a loft, an ancient radio of the type which I believe was known in the 1920s as a 'det-2 l.f.' This used a leaky-grid detector (a triode) with reaction applied by the old swinging-coil principle, the coils being of the plug-in type. I refurbished this museum piece and, being curious as to its DX capabilities, it became my practice during school holidays to set the alarm for 2 a.m. and to search, using headphones, for American stations.
But now we come to the curious bit. On two or three occasions over several weeks, at times when I had removed the aerial plug-in coil to change wavelength (which meant that the aerial was virtually open-circuited) a raucous voice burst the silence with a few words; it was clearly speech but so distorted as to be unidentifiable as to content. Only a few words occurred at a time, although I remember waiting for about an hour hoping to hear more, but without success. Most of the European stations had long since closed down and I was remote from anys high-power commercial transmitters, neither were any amateurs operating in the area.

I'd all but forgotten about it until reminded by Free Grid's hypothesis. Then, in the curious way things happen, I came across a newly-published book called 'Breakthrough'* which I strongly commend to your attention. The author claims that an ordinary common-orgarden tape recorder, if switched on and left to its own devices can, on playback,

[^11]be found to reproduce voices originating from the dead.

Now there are few words which are more emotive than 'spiritualism', with vehement pro- and anti-camps arising at the mere mention of it. So if you are antiand feel the hackles rising and find yourself muttering 'More mumbo-jumbo about vibrations and ectoplasm!', just hold your horses and bear with me for a few minutes more.
Personally, at the moment, I stand uncommitted. I only know what I have read. The author, Dr. Raudive, is not an electronics man, but he has apparently recorded some 72,000 of these voices and a selection of these has been put on to a gramophone record which is on general sale. What is even more important from our standpoint is that he has called in a host of independent opinions, including those from highly qualified physicists and electronics engineers, all of whom verify the claim that voices do appear on the tape, although not all are convinced that they originate from the dead. No one can offer any theory which reconciles known natural laws with the phenomena. The electronics engineers have experienced this mysterious voice production using their own equipment and have weighed in with various circuits of their own devising (this book gives diagrams) which offer improvements on the original Raudive apparatus. Incidentally, it is suggested that videotape might provide a medium for further development work.

There are, the book says, four main approaches to the recording process which have been investigated. They are:
(a) The microphone method. For this, the microphone is connected to the tape recorder in the conventional way. The tape is run in the presence of witnesses, who may talk, providing that gaps are left for the ' x-voices'.
(b) The diode method. A simple circuit is given. This consists of an 'aerial' wire $6-7 \mathrm{~cm}$ long, connected to one recorder input terminal via an inductance of about 0.5 mH . One side of a solid-state diode connects to the 'aerial'/inductance junction; its other side goes to the second input terminal; the input terminals are shunted with a $100 \mathrm{k} \Omega$ resistor. The diode
 we know to have left this ϵ
are on a tape which can be heard by everybody. Th cannot explain the phenomen psychologists cannot offer an e either. Scientific tests have shou Faraday cage, for example) tha voices originate outside the experin. and are not subject to auto-suggestic telepathy. Philologists have examined phenomenon and testified that, althous audible and understandable, the voices art not formed by acoustic means; they are twice the speed of human speech and of a peculiar rhythm which is identical in the 72,000 examples so far examined. " (My italics.)

It seems also that the sentences are telegraphese in character and, when the experimenter is multilingual the language may be polyglot-one word perhaps in Swedish, the next in German, the next in English, and so on. Like the messages purporting to emanate from conventional psychic sources, the accent seems to be on identification of friends and relatives who have passed over.

The sincerity of the book seems beyond question and the near one hundred pages of appendices give much technical detail of the apparatus used, as well as hypotheses regarding the cause of the phenomenon, although the translation seems to fall down in places (but not so badly as to cloud the gist). Theories involving relativity and anti-matter are among those present. One, however, which (unless I have missed it) does not seem to have been advanced is that fortuitous irregularities in the formation of the magnetic tape itself might, if put through a high gain amplifier, sound like words to anyone who (perhaps unconsciously) wanted words to be there. I put this forward with diffidence, particularly in view of the overwhelming evidence. I should be only too pleased to be proved wrong.

One thing is sure, and that is that the problem of the origin of these 'voices' cries out for investigation. I know, as well as you, that the whole thing sounds impossible. How can words be derived from a silent microphone? But don't forget that in 1901 it was theoretically impossible for radio waves to cross the Atlantic, because no-one knew of the existence of the ionosphere. By the same token there are no doubt a lot of things about electronics which so far we know nothing.

Highfidelity Monolithic Integrated Circuit Amplifier

Two years ago Sinclair Radionics announced the World's first monolithic integrated circ」it $\mathrm{Hi}-\mathrm{Fi}$ amplifier, the IC.10. Now we are delighted to be able to introduce its successor the Super IC. 12. This 22 transistcr unit has all the virtues of the original IC. 10 plus the following advantages:

1. Higher power.
2. Fewer external components.
3. Lower quiescent consumption.
4. Compatible with Project 60 modules.
5. Specially designed built-in heat sink.

No other heat sink needed.
6. Full output into $3,4,5$ or 8 ohms .
7. Works on any voltage from 6 to 28 volts without adjustment.
8. NEW 22 transistor circuit.

Output power 6 watts RMS continuous (12 watts peak).
Frequency Response 5 Hz to $100 \mathrm{KHz} \pm$ 1 dB .
Total Harmonic Distortion Less than 1% (Typical 0.1\%) at all output powers and all frequencies in the audio band.
Load Impedance 3 to 15 ohms.
Power Gain 90dB (1,000,000,000 times) after feedback.
Supply Voltage 6 to 28 volts (Sinclair $\mathrm{PZ}-5$ or $\mathrm{PZ}-6$ power supplies ideal).
Size $22 \times 45 \times 28 \mathrm{~mm}$ including pins and heat sink.
Input Impedance 250 Kohms nominal.
Quiescent current 8 mA at 28 volts.
Price: including FREE printed circuit board for mounting. $£ \mathbf{2 . 9 8}$ Post free

With the addition of only a very few external resistors and capacitors the Super IC. 12 makes a complete high fidelity audio amplifier suitable for use with pick-up. F.M. tuner etc. Alternatively, for more elaborate systems, modules in the Project 60 range such as the Stereo 60 and A.F.U. may be added. The comprehensive manual supplied with each unit gives full circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include car radios, oscillators etc. The very low quiescent consumption makes the Super IC. 12 ideal for battery operation.

$\overline{\text { WW- } 080 \text { FOR FURTHER DETALLS }}$

Sinclair Project 60

the world's most advanced high fidelity modules

Sinclair Project $\mathbf{6 0}$ presents high fidelity in such a way that it meets every requirement of performance, design. quality and value and now that the remarkable phase lock loop stereo FM tuner is avallable, it becomes the most versatile of high fidelity systems. With Project 60, it is possible to start with a
modest mono record reproducer and expand it to a sophisticated stereophonic radio and record reproducing system of fantastically good quality to hold its own with any other equipment, no matter how expensive. Project 60 is a unique high fidelity module system where compactness and ease of assembly are combined with

	System	The Units to use	together with	Cost of Units
A	Simple battery record player	2.30	Crystal P.U., 12V battery volume control	£4.48
B	Mains powered record player	Z.30, PZ. 5	Crystal or cerámic P.U. volume control etc.	$£ 9.45$
C	20+20W. R.M.S. stereo amplifier for most needs	$\begin{aligned} & 2 \times 2.30 \mathrm{~s}, \text { Stereo 60, } \\ & \text { PZ.5 } \end{aligned}$	Crystal, ceramic or mag. P.U., most dynamic speakers, F.M. tuner etc.	£23.90
D	$20+20$ W. R.M.S. stereo amplifier with high performance spkrs.	$\begin{aligned} & 2 \times 2.30 \text { s, Stereo 60, } \\ & \text { PZ.6 } \end{aligned}$	High quality ceramic or magnetic P.U., F.M. Tuner. Tape Deck, etc.	£26.90
E	$40+40$ W. R.M.S. deluxe stereo amplifier	' 2×2.50 s, Stereo 60 PZ.8, mains trsfrmr	As for D	£34.88
F	Outdoor P.A. system	$\mathbf{Z . 5 0}$	Mic., up to 4 P.A. speakers controls, etc.	£5.48
G	Indoor P.A.	2.50, PZ.8, mains transformer	Mic., guitar, speakers, eic., controls	£19.43
H	High pass and low pass filters	A.F.U.	C. Dor E	£5.98
	Radio	Stereo F. M. Tuner	C. Dore	£25.00

circuitry that is far in advance of any other manufacturer in the world. Thus it is extraordinarily easy to assemble any combination of modules using nothing more complicated than the simplest of tools, and you certainly do not have to be experienced to build with complete confidence. The 48 page manual free with Project 60 equipment makes everything easy and you can house your assembly in an existing cabinet, motor plinth, free standing cabinet or virtually any arrangement you wish. Once you have completed your assembly you will have superlatively good equipment to give you years of service and enjoyment. You will have obtained superb value for money because Project 60 is the best selling modular system in Europe and can therefore be produced at extremely competitive prices and with excellent quality control
Sinclair Radionics Ltd., London Road. St. Ives, Huntingdonshire PE17 4HJ Tel: St. Ives (04806) 4311

Sinclair Project 60

Z. 30 \& Z. 50 power amplifiers

The $Z .30$ and $Z .50$ are of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonis distortion is an incredibly low 0.02% at full output and all lower outputs. Whether you use Z .30 or Z .50 amplifiers in your Project 60 system will deperid on personal preference, but they are the same size and may be used with other units in the Project 60 range equally well.
SPECIFICATIONS (250 units are inter-
changeable with 2.30 s in all applications).
Power Outpute
2.3015 watts R.M.S. into 8 ohms using 35 volts: 20 watts R.M S. into 3 ohms using 30 volts.
2.5040 watts R.M S. into 3 ohms using 40 volts: 2.5040 watts R.M S. into 3 ohms using 40 watts R.M.S. into 8 ohms. using 50 volts. Frequency response: 30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
Frequency response: 30 to 300.
Distortion: 0.22% into 8 ohms.
Distortion: 0.22% intio: better than 70 dB un-
Signal to noise ratio: bill weighted.
Input sensitivity: 250 mV into 100 Kohms .
For speakers from 3 to 15 ohms impedance.
Size $3 \frac{1}{2} \times 2 \frac{1}{6} \times \frac{1}{2} \mathrm{in}$.
2.30

Built tested and guaranteed with circuits and instructions manual
£4.48
2.50

Built, tested and guaranteed with circuits and instructions marial. $£ 5.48$

Power Supply Units

Designed specially for use with the Project 60 system of your choice.
Illustration shows PZ. 5 to left and PZ. 8 (for use with Z .50 s) to the right. Use PZ.5 for normal Z.30 assembles and PZ. 6 where a stablised supply is essential.
PZ-5 30 volts unstabilised $£ 4.98$
PZ-6 35 volts stabllised $£ 7.98$
PZ-8 45 volts stabilised
(less mains transformer) $£ 7.98$
PZ-8 mains transformer $£ 5.98$

Stereo 60 pre-amp/control unit

Designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout, achieving a really high signal-to-noise ratio and excellent tracking between channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs.

SPECIFICATIONS

Input sensitivities: Radio-up to 3 mV . Mag. p.u. 3 mV : correct to R.I.A.A. curve $\pm 1 \mathrm{~dB}: 20$ to $25,000 \mathrm{~Hz}$. Ceramic p.u.-up to 3 mV : Aux-up to 3 mV .
Output: 250 mV
Signal-to-noise ratio: better than 70dB.
Channel matching: within 1dB.
Tone controls: TREBLE +15 to -15 dB at $10 \mathrm{KHz}:$ BASS $+15 \mathrm{to}-15 \mathrm{~dB}$ at 100 Hz .
Front panel: brushed aluminium with black knobs and controls.
Size: $8 \frac{1}{\frac{1}{2} \times 1 \frac{1}{2} \times 4 \text { ins. }}$

$\begin{array}{l}\text { Built, tested } \\ \text { and guaranteed. }\end{array}$
9.98

Active Filter Unit

For use between Stereo 60 unit and two Z.30s or $Z .50 \mathrm{~s}$, and is easily mounted. It is unique in that the cut-off frequencies are continuously variable, and as attenuation in the rejected band is rapid ($12 \mathrm{~dB} /$ octave), there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The A.F.U. is suitable for use with any other amplifier system. Two stages of filtering are incorporatedrumble (high pass) and scratch (low pass). Supply voltage -15 to 35 V . Current - 3mA. H.F. cut-off (-3 dB) variàble from 28 k Hz to 5 kHz . L.F cut-off (-3 dB) variable from 25 Hz to 100 Hz . Distortion at 1 kHz (35V. supply) 0.02% at rated output.
Built, testad
and guaranteed
£5.98

Stereo FM Tuner

first in the world to use the
phase lock loop principle
Before production of this tuner, the phase lock loop principle was used for receiving signals from space craft because of its vastly improved signal to noise ratio over other systems. Now. for the first time, the principle has been applied to an FM tuner with fantastically good results. Other original features include varicap diode tuning, printed circuit coils, an I.C. in the specially designed stereo decoder and squelch circuit for silent tuning between stations. Sensitivity is such that good reception becomes possible in difficult areas. Foreign stations can be tuned in suitable conditions and often a few inches of wire are enough for an aerial. In terms of a high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically as the tuning control is rotated, a panel indicator lighting up as the stereo signal is tuned in. This tuner can also be used to advantage with any other high fidelity system.
SPECIFICATIONS:
Number of transistors: 16 plus 20 in I.C.
Tuning range: 87.5 to 108 MHz
Captureratio: 1.5 dB
Sensitivity: $2 \mu \mathrm{~V}$ for 30 dB quieting: $7 \mu \mathrm{~V}$ for full limiting.
Squelch level: $20 \mu \mathrm{~V}$.
A.F.C. range: $\pm 200 \mathrm{KHz}$
A.F.C. range: $\pm 200 \mathrm{KHz}$

Audio frequency response: $10 \mathrm{~Hz}-16 \mathrm{KHz}$ ($\pm 1 \mathrm{~dB}$)
Total harmonic distortion: 0.15% for 30% modulation
Stereo decoder operating level: $2 \mu \mathrm{~V}$
Pilot tone suppression: 30 dB
Cross talk: 40dB
I.F. frequency: 10.7 MHz

Output voltage : $2 \times 150 \mathrm{mV}$ R.M.S.
Aerial Impedance: 750 hms
Indicators: Mains on: Stereo on; tuning indicator Operating voltage: 25-30 VDC
Size : $3.6 \times 1.6 \times 8.15$ inches: $91.5 \times 40 \times 207 \mathrm{~mm}$

Price: $£ 25$ built and tested. Post free

Guarantee

If within 3 months of purchasing Project -60 modules directiy from us, you are dissatisfied with them. we will refund your money at once. Each module is guarenteed to work pe fectly and should any defect arise in normal use we will service it at once and witrout any cost to you whatsoevar provided that it is returned to us within 2 years of the purchase date. There will be a small charge for service thereafter. No charge for postage by surface mail. Ar-mail charged at cost.

TO: SINCLAIR RADIONICS LTD LONDON ROAD ST. IVES HUNTINGDONSHIRE PE17 4HJ Please send

Name

Address
for which I enclose cash/cheque/money order.

Sinclair C16/Micromatic

016 High fidelity loudspeaker

The Q16 employs the well proven acoustic principles specially developed by Sinclair in which a spécial driver assembly is meticulously matched to the characteristics of the uniquely designed cabinet. In reviewing this exclusive Sinclair design, technical journals have justly compared the 016 with much more expensive loudspeakers. Its shape enables the Q16 to be positioned and matched to its environment to much better effect than is the case with conventionally styled enclosures. A solid teak surround with a special all-over cellular foam front is used as much for appearance as its ability to pass all, audio frequencies without loss.

This elegantly designed shelf mounting speaker brings genuine high fidelity within reach of every music lover.

Specifications:

Construction: Special sealed seamless sound or pressure chamber with internal baffle.
Loading: up to 14 watts RMS.
Input Impedance: 8 ohms.
Frequency response: From 60 to 16,000 Hz . confirmed by independently plotted B and K curve.
Driver unit: Special high compljance unit having massive ceramic magnet of 11,000 gauss, aluminium speech coil and special cone suspension for excellent transient response.
Size and styling: $9 \frac{3}{4}$ in. square on face x $4 \frac{3}{4} \mathrm{in}$. deep with neat pedestal base. Black all over cellular foam front with natural solid teak surround.
Price £8.98.

Britain's smallest radio

Considerably smaller than an ordinary box of matches, this is a multi-stage AM receiver brilliantly designed to provide remarkable standards of selectivity, power and quality for its size. Powerful AGC counteracts fading from distant stations: bandspread at higher frequencies makes reception of Radio 1 easy. The plug-in magnetic earpiece provided, matches the Micromatic's output to give wonderful standards of reproduction. Everything including the special ferrite rod aerial and batteries is contained within the minute attractively designed case. Whether you build a Micromatic kit or buy this amazing receiver ready built and tested, you will find it as easy to take with you as your wrist watch, and dependable under the severest listening conditions.

Specifications:

Size: $36 \times 33 \times 13 \mathrm{~mm}(1.8 \times 1.3 \times 0.5 \mathrm{in}$.)
Weight: including batteries, 28.4 gm (1 oz.)
Case: Black plastic with anodised aluminium front panel and spun aluminium dial.
Tuning: medium wave band with bandspread at higher frequencies (550 to $1,600 \mathrm{KHz}$).
Earpiece: Magnetic type.
On/off switching: By inserting and withdrawing earpiece plug.
Kit in pack with earpiece, case, instructions and solder $£ 2.48$.
Ready built, tested and guaranteed, with earpiece £2.98.
Two Mallory Mercury batteries type RM675 required from radio shops, chemists, etc.

Sinclair Radionics Ltd., London Rd, St. Ives Huntingdonshire PE17 4HJ.
Telephone St. Ives (048 06) 4311

J E S AUDIO INSTRUMENTATION

Si451 $£ \mathbf{3 5 . 0 0}$
Comprehensive Millivoltmeter
350μ Volts
20 ranges
Hlustrated the Si 452 Distortion Measuring Unit -low cost distortion measurement down to .01\%

Si453
$£ \mathbf{3 0 . 0 0}$ Low distortion Oscillator sine - square - RIAA
J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (OWR52) 2501 BRADFORD ROAD, CLECKHEATON, YORKSHIRE.

WW-084 FOR FURTHER DETALLS

S.G.brawn
 MILITARY • INDUSTRIAL

 COMMERCIAL - EDUCATIONAL CDMmunications the
Undion Tominmat

HAWKER SIDDELEY COMMUNICATIONS

S. G. BROWN LTD., KING GEORGE'S AVENUE, WATFORD, HERTFOROSHIRE
tel: wa tforo 23301 telex 23412 telegrams radiolink watford Hawker Siddeley Group supplies-mechanical, electrical and aerospace equipment with world-wide sales and service. WW-085 FOR FURTHER DETAILS

G.P.O. APPROVED CONTRACTOR TO H.M. GOVT.

TRANSFORMERS

PRIMARY 200-250 VOLT FOR CHARGING GOR OR 12 VO

* CARRIAGE VIA 8.R.S.

All ratings are continuous. Standard construction: open with solder tags and wax impregnation. Enclosed styles to order

$$
\begin{aligned}
& \text { VARIABLE VOLTAGE TRANSFORMERS (ENCLOSED } \\
& \text { Input } 230 \mathrm{~V} 50 / 60 \mathrm{~Hz} \text {. Ourpur variable from } 0-260 \mathrm{~V} \text {. }
\end{aligned}
$$

* Speedy production winding service.
\star Please send for full lists.
Also stocked: SEMICONDUCTORS • VALVES MULTIMETERS

MAINS KEYNECTOR
SEE PAGE 114

BARRIE ELECTRONICS
 11 MOSCOW ROAD • QUEENSWAY LONDON, W. 2
 Grelephener wher Nearest Tube stotlone : 0il-22 $6631=0$ - 880 1128

WW-087 FOR FURTHER DETAILS

Post and Packing-15p any quanzity

WEST HYOE DEVELOPMENTS LiMIIED, RYEFIELD CRESCENT, MORTHWODO HILLS, NORTHWDOD. MIDOX. HAG INN. Teiephene: Northwood 2494126732 Teiex: 923231
WW--088 FOR FURTHER DETALLS
This illustration shows

Sinclair Project 60

 made-up using Mod-2 Gready punched case
\qquad for production. Made with PVC coated materials there is no paint to scratch. the surface is scuff resistant and easy to clean. Coated aluminium front and back panels gives easy cutting with rigidity and coated steel top, bottom and sides gives strength and ease of assembly. Three heights of cases, four widths and two depths give 48 dif.
ferent cases. Mod.2 means modern design
Kit of Sinclair hardware inc. sapacitors, plugs. sockets, screws, wire heat sink tuse, fuse hoider, etc. f3.40 P\& P 22p.
Sinclair punchad case and chessis, Mod 2 trpe G in wond grain, $£ 4.25$ Type G is now available in simulated teak in wood grain finish and ideally suited for domestic equipment. Also available ready punched for Sinclair Project 60. with or without A.F.U. It is available with a set of fitting plugs, sockets, fuses, etc

WEST HYDE DEVELOPMENTS LIMITED, RYEFIELD CRESCENT, NORTHWOOD HILLS, NORTHWOOD, MIDDX., HA6 1NN. Telephone: Northwood 24941/26732. Telex: 923231 WW- 090 FOR FURTHER DETAILS

 contacts to 13 amps. A meon indicator lights when mains is on the orner sockets. 1 at $\mathrm{f1} 1.35$. P\&P 15 p
WEST HYDE DEVELDPMENTS LTD., RYEFIELD CRESCENT, NORTHWOOD HILLS, MIDDX, HAG INN Telephone: Northwood 24941/26732. Telex: 923231 WEST HYDE NTHWD WW-- 089 FOR FURTHER DETALLS

WESt hyde oevelopments ltd. Ryefielo chescent, northwdod hils, northwodd, midolesex, hag inn Teiephone: Northwood 24941/26732 Teita: 923231 WEST HYDE NTHWO WW-091 FOR FURTHER DETAILS

The extensive range of Oxley Snales now include an Eyelet version (which is ideally suited for mounting I.C. Packs and other components for experimental work). They augment the well known standard range of Oxley "Snales" suitable for mounting in 0.040 inches, 0.050 inches diameter holes.

Send for technical details and samples.
OXLEY DEVELOPMENTS CO.LTD.
Priory Park, Ulverston, North Lancs, England
Tel: Ulverston 2621 Telex: 6541 Cables: Oxley
 Ulverston

WW——092 FOR FURTHER DETAILS

W.W. AMPLIFIER KITS

100 W AMPLIFIER (OVERLOAD PROTECTION INCLUDED) Designer, Texas Instruments Approved.
Matched Set 22 guaranteed Texas transistors, diode, 13 caps,
32 resistors, 3 pots, choke, $2 \mathrm{~h} /$ sinks $4 \mathrm{in} . \times 4.6 \mathrm{in}$. $\times 1.3 \mathrm{in}$.,
drilled $2 \times$ TO3, fibreglass P.C.B., construction notes.. .. 18.00 2 sets
Texas 2N3715 2.25 Texas 2N3791 .. $\quad .$.
Imported 2N3791 $\quad . . \quad$.. 2.75 Drilled h/sink $\quad .$.
F/glass P.C.B. 0.95 Mains transformer .. 6.00
4700 mfd .63 v $1.70 \quad 1000 \mathrm{mfd} .64 \mathrm{v}$. 0.70
Power supply; 42v. + 50v. transformer, all epts., h/sink .. 15.00
2 power supply kits
28.50

30W BLOMLEY (New approach to class B)
Semiconductor'set .. 6.00 Resistors, caps, pots .. 1.95 30W BAILEY (SINGLE POWER RAIL)
10 transistors 5.30 Resistors, caps, pot .. I.30
LINSLEY HOOD CLASS AB
MJ48I, MJ491, MJE521, BC182L, BC212L, Zener 3.35
16 resistors, 10 capacitors, 2 pots $2 \cdot 20$
LINSLEY HOOD CLASS A (DEC., 1970, CIRCUIT)
4 transistors 1.55 Resistors, caps, pot
Please state 8Ω or 15Ω for L.H. amps.
Transistor matching and mica washers at no charge.
Resistors, except power types, $\frac{1}{2} \mathrm{~W} 5 \%$. Low noise carbon film.

SEMICONDUCTORS

NEW: TIP3055 (70V, 15A, 90W) I hole mounting 2N3055 equiv. 0.60 $\begin{array}{llllllll}2 N 1613 & 0.30 & \text { BCI26 } & 0.22 & \text { MJ491 } & 1.30 & 1 S 44 & 0.10\end{array}$ $\begin{array}{llllllll}\text { 2N171I } & 0.25 & \text { BC182L } & 0.10 & \text { MPSA05 } & 0.30 & 15920 & 0.10 \\ \text { 2N3055 } & 0.60 & \text { BC184L } & 0.12 & \text { MPSA55 } & 0.35 & 153062 & 0.35\end{array}$
 $\begin{array}{llllllll}\text { 2N3904 } & 0.32 & \text { BFY50 } & \mathbf{0 . 2 0} & \text { MPSU55 } & 0.70 & \text { TIP30A } & 0.60 \\ \text { 2N3906 } & 0.32 & 40361 & 0.50 & \text { MJE521 } & 0.72 & \text { TIP33A } & 1.05\end{array}$ $\begin{array}{llllllll}\text { BCIO9 } & 0.12 & 40362 & 0.60 & \text { IBO8T20 } & 0.60 & \text { TIP34A } & 2.00\end{array}$ $\begin{array}{lllllll}B C I 25 & 0.15 & \text { MJ48I } & 1.20 & \text { IB40K20 } & 1.60\end{array}$
BRAND NEW TOP QUALITY COMPONENTS, FAST SERVICE MAIL ORDER ONLY
POWERTRAN ELECTRONICS
2 KENDALL PLACE • LONDON • W1

MARSHALL'S INTEGRATED CIRCUITS NEW LOW PRICES • LARGEST RANGE • BRAND NEW • FULLY GUARANTEED
 SPECIAL OFFER: 5\% DISCOUNT TO ALL SATURDAY CALLERS (JULY AND AUGUST ONLY)

	4	8	8
8N7411	0.25	0.20	0.18
8N7413	0.50	0.45	0.40
8N7420	0.25	0.20	0.18
8N7430	0.25	0.20	0.18
8N7440	0.25	0.20	0.18
8N7441AN	1.00	0.90	0.80
8N7442	100	0.90	0.80
8N7446	1.25	1.10	1.00
8N7447	1.10	1.00	0.90
8N7448	100	0.90	0.80
8N7450	0.25	0.20	0.18
GN7451	0.25	0.20	0.18
8N7453	0.25	0.20	0.18
8N7454	0.25	0.20	0.18
8N7460	0.25	0.20	0.18
SN7472	0.40	0.35	0.80
8N7473	0.45	0.40	0.35
gN7474	0.45	0.40	0.36
8N7475	1.00	0.90	0.80
8N7476	0.45	0.40	0.85
SN7483	1.00	090	0.80
SN7486	0.50	0.45	0.40
8N7490	1.00	0.90	0.80
9N7492	1.00	0.90	0.80
8N7493	1.00	0.90	0.80
SN7495	1.00	0.90	0.80
8N7496	1.00	0.80	0.80
8N74107	0.45	0.40	0.35
SN74153	1.90	1.70	1.50
8N74154	8.20	1.45	1.80
8N74160/T157D1	1.80	1.70	1.60
8N74161	2.80	2.50	8.40
gN74164	2.20	1.95	1.80
SN74165	2.25	1.95	1.80
8N74192	8.25	1.05	1.80
8N74193	2.25	1.95	1.80

8 Pin TO-5 I.C. Hoiders, 0.35 14 Pin Dual-m-Line I.C. Holders, $20 \cdot 321$
All gates may be mired to qualify for quantity discounts. This applles also to MSIs (separate mixes only).

mULLARD tTL E		$\begin{aligned} & \text { MULLARD } \\ & \text { LINEAR } \end{aligned}$		
FJH101	0.871			
FJH121	0.871	TAA241	${ }_{4}^{1 \cdot 254}$	
FJH141	0.871	243	1.50	
FJH161	0.871	${ }_{293}^{263}$	-0.77t	
FJH171	0.91	300	1.75	
PJH221	0.871	310	$1 \cdot 85$	
FJJT101	1-371	320	${ }_{1} 1.75$	
FJJ121	1.87t	435	1.47 1	
FJJ141	3.12\}	${ }_{5}^{521}$	${ }_{8.80}^{1.829}$	
FJJ191	1.87!	530	$4 \cdot 95$	
FJJ251	3.12t	570	1.971	
FJY101	0.80	TAB101		
		Tadloo	1.974	
MULLARD DTL ${ }^{\text {s }}$ (1.971	
FCH101	0.871	gmateral		
FCH121	1.05	Electric	8	
FCH201		PA222	2.601.40	
	$1 \cdot 82$	PA230		
FCH231	1.50	PA234	0.92	
FCJ101	1 1.62)	PA237	2.10	
FCJ111	1.55			
PCJ201	1.80	PA264	1.20	
FCJ211	8.75		2.002.05	
FCK101	4.371	$\begin{aligned} & \text { PA424 } \\ & \text { PA436 } \end{aligned}$		
FCY101	1.05	PA494	1.90 2.05	
		Data \& Application Sheets 5 p per type.		
Plessey	8			
gL403A 3 watt amp. 8L.701C $8 G 8$ TAA661B	$2 \cdot 121$	toshiba		
		TH9013P20 watt amp. ${ }^{4 \cdot 57}$		
	1.45			
		TH9014P	1.65	
	1.82)	Pre-amp Data sheets	0.181	
BRIDGE RECTIFIERS				
$\frac{\mathrm{AMP}}{1}$				
		${ }_{0}^{0.474}$		
1.5				
4		0.700.771		
4				
6		0.621		
${ }^{6}$		$\begin{aligned} & 0.87 t \\ & 1.121 \end{aligned}$		
6				

A. MARSHALL \& SON LTD.

See our Ad. on opposite page for Transistors, Diodes, Passive Components and P. \& P. charges. Many more types in stock and arriving daily. PLEASE ENQUIRE.

CHOICE OF IOOO'S OF ITEMS LARGEST SELECTION LOW PRICES AND RETURN OF POST SERVICE

TRANSISTORS Brand naw and fully guaranteed. PLEASE NOTE:-A large number of our transiztors have

SILICON RECTIFIE
$\begin{array}{lllllll}\text { Fiv } & 50 & \text { RECCTIEIERS }_{100} & & 200 & & 400 \\ & 600 & 800 & 1000 & 1200 & 1400\end{array}$
 ${ }_{3}^{35 A}={ }_{1}: 371.60$

THERMISTORS (MULLARD)

 VA10050.15

SEND $1 /$-(5 n) FORNEW COMPREHENSIVE
Hours: 9-5.30 pm Mon-Fr! 9-1 pm Thurs

FACSIMILE RECORDERS
Transmission apeed: Recorder. Helix speed: $60,90,120 \mathrm{rev} / \mathrm{min}$.

MULTIMETER TYPE CT47IB
Fully transistorized multi-range
instrument
for
measurement

nith rediced accuracy, anid current
up 2 kHz and D.C. Resistane A.C.
and D.C. roltage and current divided
into 11 ranges. $12 \mathrm{mV}-1200 \mathrm{~V}$.
A.C./.C.C. Current 12 micro A.1.2A.

1000 M ohm.
R.F. Voltinges 5 range 40 mV to 4 V
\qquad
WELDING POWER SUPPLY-Hughes Model MCW 550. Constant witas
Mains input. Price
£125.
NEW LOW INERTIA INTEGRATING MOTORS
Elect;o-Methods Model. 901 and 996 PL. Permanent magnet
D.C. Motor. High sensitivity. 1, leal for instrument-type servo
mechanisms, lighi loads driving mechanical counters perforning
off a photo-cell or thermo couple, etc. 6 V . Nominal. Typical para
meters. Btarting voltage (no load) 15 mV at 0.375 mA . Full load
speed $1845 \mathrm{r} . \mathrm{pm}$. (approx.). Moment of Inertia of. Armature
1.8 gr . cm/cm. Welght of Motor 300 gm (approx.).
\qquad
E.H.T. GENERATOR, BRAND NEW D.C. CONVERTER MULLARD TYPE 1049
Input 12 V D.C. 0.3 AA . Output 1800 y (Min) at $1 \mathrm{mAA}, 2500 \mathrm{~V}$ (Min)
on No Load. Ful spec. and circonit nrovided. Enchpmated module
\qquad
MIDGET POWER RELAY TYpe Mk 1 (OMRON)
on frame.
5 for $£ 150$. P. \& P P. ineluded.
R.F. ATTENUATOR MARCONI TF IO73A
\qquad
ACTUATOR

ACCELEROMETERS
Model LA23C Potentiometric

£26. P. \& P. 25 p .
Type SE55/A \pm g. Price: £28. P. \& P. 25 p.
Type F. Ceramic type manufactured by G.E.C. up to 1000 g . o/p
${ }_{2} 3 \mathrm{mV}$. C.w. Technical leaflet 2 BA
stud mounting. Price: $£ 3.75$.
\qquad
SPLIT-FIELD D.C. SERVO MOTOR

NEW D.C. STEPPING MOTOR

TRANSDUCER OSCILLATOR-AMPLIFIER-DEMODULATOR. An.
encapsulated unit. Suitable where space or adverse environnuental encapsulated unit. Suitable where space or adverse environroental
couditions prevail. Supplied with a matching transducer a typical o/p is $\pm 3 V$ into $50 \mathrm{KOhms}$. Bupply voltage 12v. D.C. Range of
trausducers availahle $0.50: 0-750: 0-1000: 0-4000$ psi. Price $£ 65$
\qquad
TRANSDUCERS
Now K.D. Instruments Model TD 216. Resistire Bourdon Tube
pressure trasducer range 002000 p.s.i. I'rice: $\mathbf{£ 1 5}$.
\qquad
New Displacement Bonded Resistant Strain Gauge \quad raechanical displacement produces 0.3% resistive Change Nominal resistance $3 \cdot 5+3.5 \mathrm{Kohm}$. Ex-Government
Model No. IT- $2-31-35$. Price: $\mathbf{£ 1 0}$.
\qquad
MARCONIT.F. Il68 HIGH DISCRIMINATION OSCILLATOR
Suitable for H.F. Communication applicatious. The 2 Hz diserimina-
 Grystal and standardised centre frecuency. Calibration accuracy
$\pm \mathbf{1} \%$. Price: $£ 135$.

PEN RECORDERS
Southern instruments M.942C
4 channel fitted with 4 sieed gtarbox giving 1, 5, 25 and $100 \mathrm{mp} / \mathrm{gec}$.
Frequency response 0.55 Hz with Frequency response $0-55 \mathrm{~Hz}$ with it senbitivity of 25 mA
Price: $£ 150$.
2 Pen Southern Instruments MR 450
\qquad
E.M.I. INSTRUMENT L.F. TAPE RECORDER Portabie equipment consisting of 3 units (Deck, Amplifier and
p.S.U.) in transit cases. Four speests using styndard $\frac{1}{3}$ in. tape.
\qquad
BRAND NEW ELECTRO-
MAGNETIC COUNTER
A high precision counter offered at
turers of imilar type. High counting
speed. 25 impulse/sec. 6 digit display.

oltage and inapulse rater available
\qquad
\qquad
NUMICATORS
Fnd Reading
GRIOM/U (Clear)

Quantity	Price Each (Less Base)
1-3	£1.40
4-10	£1.35
11-25	11.30
26-100	£1.20
(Amber)	
(Red)	1- 3
(Red)	4-10
(Clear)	11-25
(Red)	26-100
(Amber)	

Fide Reading

XN3/FA	$38 \mathrm{~m} / \mathrm{m}$ lead
XN3/F	$38 \mathrm{ma} / \mathrm{m}$ lead
XN3A/F	$6 \mathrm{~m} / \mathrm{m}$ lead

\qquad
\qquad
TELETYPE 8 HOLE PAPER PUNCH BRPEII $£ 260$. Also available 5 hole punch BRPE2 as above. This model bas
5/7 HOLE OPTICAL READER BY FERRANTI
\square
SINE COSINE POTENTIOMETER 47K Precision component by Pye. Model 2005 .
Manuftetured to rigid Ministry gpecitication.
\qquad
in one irame. Fach unit contains two sine
and two cosine potentiometer sections, the
\qquad
$34,0 z / \mathrm{in}$. Dimensions:
11,74 in. Wt. $7 \pm 1 \mathrm{th}$. E
condition. 810.00 ea
VHF ADMITTANCE BRIDGE
Wayne Kerr B801A. 1-100 MHz , Conductance 0-100 millimhos.
\qquad
\qquad
SIGNAL GENERATOR
Advance DI/D
Advance Dl/D. $10 \mathrm{MHz}-300 \mathrm{MHz}$ in 6 ranges,

\qquad
PH METER
Pye Model 110
\qquad Matual 0.100 deg. C. Dimensions: W. 12 in .
D. $\mathrm{in} . \mathrm{H} .5 \mathrm{in}$. Wt. 9 lh . Very good condition,
$\mathbf{\$ 4 2 . 0 0 . ~ P . ~ \& ~ p . ~} \$ 1.00$.

Industrial \& Scientific Instruments Ltd
\qquad
PORTABLE FREQUENCY METERS TF1026/1. A direct reading absorption meter, employing a con centric line closed at one end and turned by variable capacitor
at the other enl of the line, giving a irequency range: 250 MHz
\qquad
DIGITAL INDICATORS KGM Type M3
A neat compact indicator providing selective display
$0-9$. Fig. height 18 mm . panel mounting 6 mm tubular
midget Hange lamps. Supplied with 28 r. bulbs. Finished
\qquad
MODEL 1706 VISICORDER
In alnost new condition. This direct reading U/V Recorder can
record up to 6 channels simultaneously from D.C. 000 Hz at writing speed of 30
Recording range:
Paper width
Optical Arm

BRAND NEW CAPACITOR REVERSIBLE SINGLE PHASE PARVALUX MOTORS
\qquad
COAXIAL LINE OSCILLATOR
\qquad
\qquad
\qquad

3 PHASE VARIAC TYPE 50 BM

BARGAIN D．C．STABILISED
POWER SUPPLY UNIT Price $£ 9.50$
brand new solid state modular unit．I／P 110 v．+240 r． 50 Hz
$0 / \mathrm{P}+12$ v．D．C． 12 v．D．Cul． 24 v．D．C．w．r．t．conmon．All at 500 mA． $1 / \mathbf{P}$ on／off oxitch．Fube ard warning light．Stabilisation $101 / 1$
for $+10 \% \cdot 15 \%$ mains charge．Eynivalent O／P resistance less than
 CONSTANT VOLTAGE TRANSFORMERS 1 phase．O／P $2: 30$ V． 1500 w．Thity PF．$£ 50.00$ ．Carviage extra ADVANCE MT 285ZA
／P 190－260 v． 50 Hz ．， 1 phase．C／P 230v． 2 kW ．Unity P．F．$£ 35.00$

X Y PLOTTERS

（to offer the fullowing Recorders in an overhauled
1．Moseley autograf model 2a
Table size： $11 \mathrm{in}. \times 17 \mathrm{in}$ ．Limensions：W． 24 in．，H． 9 in ．，D． 16 in ． $0-7 \mathrm{k}, 15,75,150,750 \mathrm{mVV} ; 0-1 \mathrm{~L}, 71,15,75,150$ ．Y Axis $0-5,10$ ，
$50,100,500 \mathrm{mV} ; 0.1,5,10,50,100$ ．Sensitivity not less than 200 k ohms／V．Accuracy： $0.25 \% \mathrm{FS}$ oz all ranges．Response speeds： 1 sec． 2．HOUSTRTON INSTRUMENTS MODEL HR 934
 Axis． $0-7,7.8,10,19,68$ ruV a add 0.5 V ．Switched Atteriuators on
both Axcs．Respnuse speeds： 2 sec．for full scale．$£ 250.00$ ．Carriage

PRECISION

POTENTIOMETERS

TEN TURN 3600° ROTATION
BRAND NEW

	Linearity Per cent	Manuacturers	Model	
100／100／100		Beckran．	Nodel	－ 28.00
	．0．5	Beckroan	A．	± 3.00
200	0.5	Beckran．	A	£3．00
500.	0.1	Beckraan	． 8	£3．50
500		Colvern	2501	£225
500		Foxes．	PX4	¢2．00
500		Colve	2610	£2－50
500		Colverit	26／1000	£3．00
500	10	Relcos．	HEL10	£225
1K．		Retcon	HEL07	£225
2K	0	Beokran	．8A1101	£3．00
2K	0.25	Beckraal	． 216	£3．00
2 K		Reliance	GPM15	£2－00
2 K		Geners Contro	GPalb	£2．00
5K．		Relcoaz．	．07－10	22－50
5K		Colve．ti	CLR250	£3．00
10 K		Becknan		23．00
10K．	． 01	Beyknan X	A	£3．50
10 K	$0 \cdot 1$	Colvera．	CLH26／	£350
15 K		Colvern	CLR240	£3．00
18 K		Beckrian		£3－00
25 K		Helipot	．8A1337	E3．00
29 K	0.05	Beckman．	SA1244	£450
30 K		Colvera．	2402.	£1．50
30 K		Beckman	BA95C	¢3．00
30 K		Reckras．	A． 88	£3．50
30 K		Beckrian．	．8A1692	£3．00
30 K	． 022	Beckraan．	881679	23．25
30 K	10.	Colvern．	2402／1．	£1．50
		Reliazce	07－10	
¢0K．			07.5	22．25
50 K		Colv	2503	
50 K	．	Foxer．	1 $\times 1$	£2．25
50 K		Beckraan．		£3．00
50 K		Becknan．	A	£3．50
$100 \mathrm{~K} / 100 \mathrm{~K}$		Ford．	A	25．00
100 K	0.1	Beckin	A	23．50
100 K	0.0	Beektran	A	¢3．00
100 K		Colverin	2501.	£225
100 K		Colvern	2610	£2．50
298K		Beckman．	843902	83；50
300 K	0.1	Beckitan．		£3：50
THREE TURN 780° ROTATION				
100／100	． 0.5 ，．．．．	Beckriman		£3．00
100／100		Becknan．	Type C	£3．00
300		Beckman	${ }^{9303}$	£2：25
1K．		Fox	PX2／H3	¢2．25
10 K		Beckrran	C．s8	£2－25
$20 \mathrm{~K} / 20 \mathrm{~K}$		Beckrean	C．3．	£3．00
$10 \mathrm{~K} / 10 \mathrm{~K}$	0－1	Beckruan	C．	£3．00
50K．．．．	0.5	Beckrian	C．8．	£1．75
FIVE－AND－A－HALF TURN				

ELLIOTT CONSTANT SPEED DRIVE UNIT TYPE 64D 2595 This unit can be used for the calibration of tacho．
generators，testiag and calibration of potentiometers or

2．

MONOCHROMATIC LIGHT＂LAPMASTER＂ MONOCHROMATIC，Light area： 11 in ．$\times 8$ fin．$£ 15.00$.
110／220v． 1 －ph． 50 Hz ．
Carriage $£ 2.00$ ．

SOUND ANALYSER
General Radio Cor．TYpe $760 \cdot \mathrm{~A}$ ．Portable．Battery powered．
Designed for use with Type 759 sound level meters，but can ber Denigned for use with Type 759 sound level meters，but can be
used with anv other microphone or vibration pick－up and amplifier usith suitable characeeristics．Supplied less microphoue． $\mathbf{2 5 0}$ ． Carriage extra．
MARCONI TF899
$20 \mathrm{mV}-2 V$ A．C．， 3 ranges． $50 \mathrm{~Hz}-100 \mathrm{MHz}$ ．Detected O／p for modu－
lation monitoring RF probe．Mains P．\＆．U．Overhated，$£ 25$.
PHILLIPS GM6020
100 micro V－10V，input $1.10 \mathrm{mV}-1000 \mathrm{~V}$ input $2.100 \mathrm{pA}-10$ micro A．
Accuracy $\pm 3 \%$ ．Input Z 1 M ohru，input $1,100 \mathrm{M}$ ohm，input 2 ．
ADVANCE STABILISED
Model D．C．207A 24v 8A

 BANDERS MODEL CT 480 （8G 480）and BCT 478 （SO 478）．Speciflea $8 \cdot 0-11 \cdot 0 \mathrm{KMHz}$（CT 480 ）and $1 \cdot 5-4 \cdot 0 \mathrm{KMHz}$（CT 478）．Thes $8 \cdot 0-11 \cdot 0$ KMHz（CT 480）and $1 \cdot 5-4 \cdot 0 \mathrm{KMHz}^{\text {a }}$（CT 478）．These
high grade generatorg cornprise a kigstron osciliator in in
co－axial cavity fed froma a stable power

PERKINS ELMER MODEL 240 ELEMENTAL ANALYZER
This precision instrument accurately deternines the carbon，hydrogen and nitrogen content of organic com combustion．This equipment has only had one user and
is offered c／w a leuls and Northrip Speedomax Recorder Excellent condition．Manufacturers overhaul． 6 mont guarautee．$£ 3,000$（representirg a saving of $£ 1,000$ ）．

DEVIATION METER Marconi TF 928
$20-100 \mathrm{MHz}$ ．Can be used to 500 MHz ． Measurement of deviation up to 40 KHz，Cryetal Standard．Uged in sett－ ing up deviation in YHF Wide Band
Multichannel FM systemsand Radar

SOLARTRON OSCILLATOR CO546 25 Hz － $\mathbf{2 0 0 k H z}$ ．Attenuator and $0 / \mathrm{P}$ meter．Very good condition

RCA U．H．F．SIGNAL GENERATORTYPe 710A Frequency range $370-560 \mathrm{MHz}$
Modulation facility．I／P 117 V
$50 / 60 \quad \mathrm{~Hz}$
50 w. and supplied complete with auto
transiormer for $230 / 250 \mathrm{~V} \mathrm{i} / \mathrm{p}$ ． transformer for $230 / 250 \mathrm{~V}$ i／p．
$£ 85$（cartiage extra）．

FREQUENCY：
DISTORTION
MEASURING BRIDGE
TYPE 1607 TYPE 1607

7－TRACK DIGITAL MAGNETIC TAPE STORAGE DECK

Ref．13） are multi－track recording unit $\mathrm{s}_{\text {，ideal for }}$ are mutti－track recording units，ideal for
dats storage．Record and Heplay heade
encased in one encabed in one common unit．Low resistance hesds．Frequeucy reepponse
approximately $0 \mathrm{Kc} / \mathrm{s}$ ．to $50 \mathrm{Kc} / \mathrm{s}$ ．Bit density 557 b．p．I． 1 in．， $10 \pm$ in．spools
230 v．to 380 v．A．C．Capstan Motor speed 1，500 r．p．m． 48 v．D．C．Rewind
motors．Finished in bruab aluminium and matt－black．size 27 in．$\times 26$ in．\times 8 in．W
extra．
MEMORY PLANES
Ferrite core memory planes with wired
Ferrite cores．Used for building your

（Dept．W．W．）49－53 PANCRAS ROAD，LONDON，N．W．I．Tel：0I－837 778I／2．Cables：SELELECTRO

REFURBISHED computers and peripherals

a complete hardware and software back up

special two tier maintenance system

A new comprehensive service to computer users. C.S.S. offer from a SINGLE SOURCE-refurbished computers and peripheral equipment, comprehensive hardware and software back up, plus special maintenance facilities taifored to your needs. Whether you need a card punch, or a complete system installed, working and maintained, we can help.
Write for our brochure or make an appointment to visit our showroom now.

Computer Sales \& Services (Equipment) Ltd
49-53 Pancras Road London NW1
Telephone 01-2785571
Telex 267307

Train for tomorrow's world in Radio and Television at The Pembridge College of Electronics

19" 625 LINES ALL TRANSISTOR VIDEO MONITORS. DESIGNED AS A BLACK AND WHITE MONITOR FOR OUTSIDE BROADCASTS.

FROM ANY ANGLE QUALITY AND PERFORMANCE FOR ONLY £1OO. (SPECIAL SURPLUS PRICE).

BRAND NEW
IN MANUFACTURER'S PACKING. STANDARD MAINS INPUT. MASSIVE DISCOUNTS FOR QUANTITY. SPECIAL RATES TO SCHOOLS, UNIVERSITIES, ETC.

Solve your communication problems with this new 4-Station Transistor Intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ isten from Master to Subs and Subs to Master. Operates on one 9 V . battery. On/off modernise Office, Fsetory, Workshop, Were modernise Office, Fuctory, Workshop, Warehouse, Hospital, Shop, etc., for instant interdepartmental contacts, Complete with 3 connecting wires, each 66 ft . and other accessories. Nothing else to buy. P. \& P. $£ 0.40$ in U.K.

A top quality DE-LUXE transistorised intercom consists of MASTER and SUB for desk/wall mounting. Call, talk or listen from either unit. On/Off switch, volume control Ideally suitable as "BABY SITTER" or Door Phone. A boon for spastics and invalids. Useful in the home, surgery or business for instant 2 -way conversations, effective range 300 ft . Unsurpassed in QUALITY AND PERFORMANCE. Complete with $66 f t$. connecting lead. Battery $£ 0 \cdot 12$ extra. P. \& P. $£ 0-25$. Price Refund if not satisfied in 7 days.

TomestatiEPHONEAMPIIER

£2.98

Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Portable Transistor TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/off switch. Volume Control. Operates on one 9 v . battery which lasts for months. Ready to operate. P. \& P. $£ 0.18$ in U.K. Add $£ 0.12$ for Battery.
Full price refunded if returned in 7 days.

WEST LONDON DIRECT SUPPLIES (W.W.) 169 KENSINGTON HIGH STREET, LONDON, W. 8

> A CASE FOR "IMPEX"
> Problem: I have a tuner, timer, mixer and digital clock for which I require suitable cases.
> Answer: "IMPEX" Instrument Cases.
> Problem: All the instruments are different sizes. Answer: "IMPEX" have a standard range of 36 sizes Problem: I want them to be robust and stylish.
> Answer: "IMPEX" cases were designed to be functional and attractive.
> Problem: I don't think I could afford them; they sound expensive. Final Answer: "IMPEX" cases are very competitively priced. Find out how they answer all your problems. Details from: "IMPEX"
> P.O. Box 2BB, Newcastle upon Tyne, NE99 2BB
> 'IMPEX'. Manufacturers of the MS7, Magnetic Pickup Preamplifier

enjoy perfect stereo as YOU DRIVE WITH THE NEW

8 Track Stereo Car Play System. The newest and most efficient personana car entortatiommamt Now ITS HERE! Acceprst amy of the 1000's of pro. recordad 8 --track cartidiges now avvilable giving up wo 1 hour aapch. Channolk changs artomatically giving nom-
 surface mountion speaters spocially designed for ratly surface mounting spiaders spocialh desinned for raxily High 4 weits per channel outpur. Playbuck system 8 track 4 Chamnel with automatic or mamuas pusth button chamen

LASKY'S PDICE $£ 2695$
KYSPRICE 26.95
Without Speakers E22.50
Without Speakers $\mathbf{E 2 2 . 5 0}$ range of pre-recorded 8 -track cartridges available from stock

FANTAVOX

Two Waveband All Transistor Car Radio A new two waveband all transistor car radio that and long wavebands with slide switch wave change Fully transistorised for superior sensitivity and reliability. Large easy to grip controts. Ifuminated dial. Externally adjustable aerial trimmer ensures maximum output. Operates on all 12 v . DC system Negative or positive earth. Standard size $6 \frac{1}{4}(W) \times 4 \frac{3}{4}(D) \times 2$ in. (H). Black with chrome trim. Complete with speaker. baffle. mounting brackets and instructions. Fully guaranteed $\mathbf{\$ 3 0 0 3} 5$-section aeria

LASKY'S PRICE £8.95

DIGITAL CLOCK MECHANISM

maker

- Mains operation
- 12 hour alarm
- Auto "S LEEP" switch
- Hours, minutes and seconds read-off - Forward and backward time adjustment Shock and vibration proof mo - Built in alarm buzzer

This unique DIGITAL CLOCK is now available EXCLUSIVELY FROM LASKY'S in chassis form for you to mount in any housing that you choose. All settings
are achieved by two dual-concentric controls at the front including: ON-OFFRM, "sleep" switch. 10 minute division "click" set alarm (up to 12 hour delay). AUTO and AUTO ALARM, "sleep switch, 10 minute division click set alarm (up to 12 hour delay). long life. time up to 60 min . and in conjunction with the AUTO setting will switch on the appliance again next morning.
The clock measures $4 \frac{3}{4} \mathrm{~W} \times 1 \frac{3}{4} \mathrm{H} \times 3!\mathrm{D}$ (overall from front of drum to back of switch). SPEC: $210 / 240 \mathrm{VAC}$. 50 Hz operation switch rating $250 \mathrm{~V}, 3 \mathrm{~A}$. Complete with instructions. HUNDREDS OF APPLICATIONS COMPLETE WITH SET OF CONTROL KNOBS
LASKY'S PRICE $£ 6.95$ p\& p 18p. $\quad \begin{aligned} & \text { SPECIAL QUOTATION } \\ & \text { FOR QUANTTIES }\end{aligned}$
LASKY'S TM1 METER 1000 ohms/V The first of Lasky's new-look top value meters. the TM 1 is a really tiny pocket multimeter providing "big meter accuracy and performance. Precision move
ment calibrated to $\pm 3 \%$ of full scale Click stop range selection switch Beautifully designed and made impact resistant black case with white and "etallic red/green figuring. Ohms zero

- DCN: 0-10-50-250-1000 at 1 K ohms N - Resistance: $0-150 \mathrm{~K}$ ohms ACN: 0-10-50-250-1000 at 1 K ohms $/ \mathrm{N}$ Decibals: $-10-22 \mathrm{~dB}$
DC CURRENT: $0-1 \mathrm{~mA} .100 \mathrm{~mA}$
Size only 3 年 $\times 2 \mathrm{sin} \times 1$ DC CURRENT: O-1mA, INOmA Size only 3 , $\times 2^{3 i n} \times 1$
LASKY'S PRICE £1.95 P\&PIBR.

LASKY'S TM5 METER $5000 \mathrm{ohms} / \mathrm{V}$

pact Readability is case-size: 4 in. $\times 2$ 2inn. $\times 1$ inn. fitted with extra large 2 inn. square meter. ansistrised suipent. Aecessed click stop selection switch Ohme zero adiustment Buyf finish with crystel clear meter cover

- DC/N: 3-15-150-300-1,200 at 5K ohms/
- AC/N: 6-30-300-600 at 2.5 K ohms/
- DC Current 0.300μ A 0.300 mA
- Resistance: $0-10 \mathrm{~K}$ ohms,
- Decibels: -10 dB to 16 dB
- Complete with test leads

LASKY'S PRICE £2.95
207 EDGWARE ROAD, LONDON, W. 2.
33 TOTTENHAM CT. RD, LONDON, WPP 9RB.
109 FLEET STREET, LONDON, E.C.4.
152/3 FLEET STREET, IONDON, E.C.4.
HIGH FIDELITY AUDIO CENTREr
42-45 TOTTENHAM CT. RD, LONDON, WIP SRD.
MAIL ORDERS AND CORRESPONDENCE TO 3-15 CAVEIL STREET. LONDON. E1 2BN

EX COMPUTER PRINTED CIRCUIT

 capacitors, diodes, etc. Our price, 10
boards, 50 p . P. \& P. 7 p . With a guaranteed minimum of
Data included.
SPECIAL BARGAIN PACK. 25 boards for \&1, P. \& P. I Ip. With a guaranteed Data ineluded.
PANELS with 2 power transistors sim. to OC28 on each board plus components. 2
boards $4 \times O C 28$) 50 p . P \& P 5p. 9 OA5, 3 OA10, 3 Pot Cores, 26 Resistors, 14 Capacitors, 3 GET872, 3 GET872B, ${ }^{\prime}$,

I2V 4A POWER SUPPLY
Extremely well made by FRAKO GmbH in W. Germany, with constant voltage mains transformer, tapped
240 V . Full wave rectification and capacitor smoothing. Size $9^{\circ} \times 6^{\circ} \times 5^{n}$, weight 111 b , These units are brand new, unused and fully guaranteed. Maker's price believed to be

$250 \begin{aligned} & \text { MIXED RESISTORS } \\ & 4 \text { and } \frac{1}{2} \text { Watt } \\ & \text { 62p }\end{aligned}$

DIODES EXEQPT. 4 for 50p
20 Amp 150 PIV 4 for $£ 1.00$
P. \& P. 5p

QUARTZ HALOGEN BULBS
with long leads 12 V 55 W for car spotlights and projectors etc. 50p

RELAYOFFER
Single Pole Changeover Silver Contacts

BUMPER BARGAIN PARCEL We guarantee that this parcel contains at
least, 750 components. Short-leaded on least 1,750 components. Short-leaded on panels, including a minimum of 350 tranaudio and switching types-data supplied), The rest of the parcel is made up with: Resistors 5% or better (including some composition eypes. Mainly it and \& watt \ldots diodes, miniature silicon types OAOO, OA91, OA95, 15130 , etc. cyp. capacitor including tantalum, electrolytics, ceramic values ... also the odd transformer, trim pot, etc., etc. , These are all miniature ponents. Don't miss this, one of our offers yet! Price $\mathbf{£ 3 \cdot 2 5 .}$. P. \& P. 33 p-U,K New Zealand EI P. \& P. Limited stocks

R Reconditioned, fully tested and guaranteed with a ripple better than 10 mv , and regula ection or than $\%$. Over voltage pro suit 43 extra if required We offer the following types
 $150 \begin{aligned} & \text { High Stabs f. and I Watt, } \\ & 5 \% \text { and Better }\end{aligned}$ LARGE CAPACITY ELECTROLYTICS $41^{\prime \prime} \times 2^{\circ}$ dia. $10,000 \mathrm{mfd} 30 \mathrm{~V} 40 \mathrm{P}$ each
5.000 mfd 55 V
1.000 V $1^{\circ} \times 3^{\prime}$ dia. $8,000 \mathrm{mfd} 55 \mathrm{~V} \quad$ P. \& P. 6 E each 50 p each P. \& P. 12p each
EXTENSION TELEPHONES
99p ea. ${ }^{\text {P. }}$ Ep p $£ 1.75$ for $2{ }^{\text {P }}$ so

for RELAYS P.O. TYPE 3000 BUILT TO YOUR SPECIFICATION Contacts up to 8 chongeover + QUICK DELIVERY * KeEN prices DUST COVERS-QUOTATIONS BY RETURN

UNISELECTORS AVAILABLE FROM STOCK: 3 LEVEL,
5 LEVEVEL,
LEVEL,
LEVEL, II LEVEL. WRITE OR PHONE FOR DETAILS, MICROAMMETERS AC, SANGAMO WESTON MOVING COIL RECTIFIER 2t in., $£ 4$ ea., same in $3 \frac{1}{2}$ in., $£ 4.50$ ea. $0.5002 \frac{1}{2}$ in. 54.4 ea. Post 255 on each. New sixpage instrument list now available. P. O. STANDARD EQUIPMENT RACKS. 6 ft. U Grom siock. MOTORS. 1 r.p.m, or 3 r.p.m. 4 watts very powerful, reversible 24 v .
 Rec to 6 Voits 15 Amps DC. Heavily damped $0 / 20$ ammeter Moving Coil 21° reads true up to 6 voits charging eurrent, which is regulated by a four position rotary switch and sliding resistance. $13 \frac{1}{*}^{\circ} \times 12^{\circ}$, designed to scand on bench or fit to a wall $\in 15$. Carriage paid.
EQUIPMENT WIRE P.V.C. covered $\mathbf{t 4}$ per 1,000 yds. $7 / 0076$, $14 / 0048$
type 1 and 2 , all colours. $14 / 0076$ type II, Red and Natural only 110 per 1,000 yds.

MINIATURE BUZZERS, 12 volts, with tone adjuster 40p each as illustrated. LEDEX ROTARY SOLENOIDS AND CIRCUIT SELECTORS, size 5 S .
4 pole 11 way and off 67 ea. 24 pole 11 way and off $£ 12.54$ pole On/Off Eq ea.

VEEDER-ROOTMAGNETIC COUNTERS WITH ZERO RESET 800 COUNTS
PER MINUTE. 6 Figures. General Purpose Type. IIO v. A.C. 55 post 20p. PER MINUTE. 6 Figures. General Purpose Type. 110 v. A.C. 25 post 20p. SEND FOR OND CARBONTYPES RELAYS'ORSTENT ARESTOCKISTSOFSTUARY TUM
FUGALPUMPS NOE: 9 , IOAND
I2, DETAILS SENTON REOUEST HIGH SPEED COUNTERS 37 in.
with 4 in. 10 counts per second,
vigures. The following D.C. voltages are availa
24 v ., 50 v ., or 100 v

L. WILKINSON (CROYDON) ETD. LONGLEY HOUSE LONGLEY RD. CROYDON SURREY
 Phone: 01.6402336

ELECTROVALUE

EVERYTHING BRAND NEW TO SPEC • LARGE STOCKS • NO SURPLUS

BARGAINS IN NEW SEMI-CONDUCTORS
many at new reduced prices - all power types with free insulating sets

40361	55p	2N2905	44p	2N4291	15p	BCI48	9 p	BFX87	29p
40362	68p	2N2905A	47p	2N4292	15p	BCI 49	10 p	BFX88	26p
2N696	20p	2N2924	20p	ACl07	46p	BCI53	19p	BFY50	23p
2N697	22p	2N2925	22p	ACl26	20p	BCI54	20p	BFY51	20p
2N706	12p	2N2926	$11 p$	AC127	20p	BC157	12p	BFY52	23p
2N930	29p	2N3053	27p	ACl28	20p	BC158	$11 p$	BS $\times 20$	16p
2N1131	${ }^{36}{ }^{\text {p }}$	2N3055	65p	AC153K	22p	BCI59	12p	C407	17p
2 N 1132	40p	2N3702	13p	ACI76	16p	BC167	$11 p$	MCI 40	
2N1302	19p	2N3703	13p	ACY20	20p	BC168	10 p	MPS6531	25p
2N1303	19p	2N3704	13p	ACY22	16 p	BC169	10 p	MPS6531	$35 p$ $30 p$
2N1304	23p	2N3705	13p	AD140	56 p	BCI77	$11 p$	MPS6534	30p
2N1305	23p	2N3706	13p	AD142	50p	BCI78	14 p	NKT211	25p
2 N 1306	33p	2N3707	13p	ADI49	60 p	BC179	13p	NKT212	25p
2N1307	33p	2N3708	13p	ADI61	33p	BC182L	14 p	NKT214	23p
2N1308	36 p	2N3709	13p	AD162	36p	BCI83L	10 p	NKT274	18p
2N1309	36p	2N3710	13p	AFII4	30p	BC184L	10 p	NKT403	65p
2 N 1613	23p	2N3711	13p	AFII 5	30p	BC212L	$16 p$	NKT405	79p
2N1711	26p	2N3819	35p	AFII7	28p	BC213L	$1{ }^{16 p}$	OC7I	29p
2N1893	54p	2N3904	35p	AFI24	30p	BC214L	16p	OC81	25p
2N2147	95p	2N3906	35p	AF127	28p	BCY70	19p	OC83	20p
2N2218	34 p	2N4058	13p	AFI39	33p	BCY7I	33p	ZTX300	12p
2N2218A	43p	2N4059	10p	AF239	36 p	BCY72	15p	ZTX301	16p
2N2219	33p	2N4060	$11 p$	ASY26	27p	BFII5	23p	ZT×302	22p
2N2219A	53p	2N4061	$11 p$	ASY28	27p	BF167	18p	ZTX303	22p
2N2270	62p	2N4062	12p	BC107	12p	BFI73	19p	ZTX304	27p
2N2369A	19 p	2N4124	18p	BCl08	$11 p$	BF194	14p	ZTX500	18p
2N2483	35p	2 N 4126	27p	BC109	12 p	BFI95	15p	ZTX501	$21 p$
2N2484	42p	2N4284	15p	BC125	15p	BFX29	31 p	ZTX502	25p
2N2646	54p	2N4286	15p	BC126	22p	BFX84	25p	2TX503	22p
2N2904A	42p	2N4289	15p	BCI47	10p	BF×85	34p	ZTX504	52p

RESISTORS

Code	Power	Tolerance	Range
C	1/20W	5\%	$82 \Omega-220 \mathrm{~K} \Omega$
C	1/8W	5\%	$4 \cdot 7 \Omega-330 \mathrm{~K} \Omega$
c	1/4W	10\%	$4 \cdot 7 \Omega-10 \mathrm{M} \Omega$
C	1/2W	5\%	$4.7 \Omega-10 \mathrm{M} \Omega$
C	IW	10\%	$4 \cdot 7 \Omega-10 \mathrm{M} \Omega$
MO	1/2W	2\%	$10 \Omega-1 \mathrm{M} \Omega$
WW	iw	$10 \% \pm 1 / 20 \Omega$	$0.22 \Omega-3.9 \Omega$
WW	3W	5\%	$12 \Omega-10 \mathrm{~K} \Omega$
WW	7W	5\%	$12 \Omega-10 \mathrm{~K} \Omega$
Codes: $C=$ carbon film, high stability, low noise. MO = meral oxide, Electrosil TR5, ultra low noise $W W=$ wire wound, Plessey.			
Values: E/2 denotes series: $10,12,15,18,22,27,33,39$. 47, $56,68,82$ and their decades. E24 denotes series: as E12 plus II, 13, 16, 20, 24, $30,36,43,51,62,75,91$ and their decades.			

ZENER DIODES 5\% full range E24 values: $400 \mathrm{~mW}: 2.7 \mathrm{~V}$ to 30 V , 15 p each; $1 \mathrm{~W}: 6 \cdot 8 \mathrm{~V}$, to 82 V , 27 p each; $1.5 \mathrm{~W}: 4.7 \mathrm{~V}$ to $75 \mathrm{~V}, 60 \mathrm{p}$ each. Clip
266 F), 4 p . . 266F), 4p.

CARBON TRACK POTENTIOMETERS, long spindles. Double wiper ensures minimum noise level.
Single gang linear 100 n to 2.2 Ma , 12p; Single gang log, 4.7 K o to $2.2 \mathrm{M} \Omega$, 12 p ; Dual gang linear 4.7 KQ to $2.2 \mathrm{M} \Omega$, 42p; Dual gang log, $4.7 \mathrm{~K} \Omega$ to $2 \cdot 2 \mathrm{Mn}, 42 \mathrm{p}$, Log/anciog, 10 K , $47 \mathrm{~K}, \mathrm{Mn}$ only 42 p ; D.P. mains switth, 12 p e extra. Any type with Only decades of $10,22 \& 47$ quoted.

CARBON SKELETON PRE-SETS
Small high quality, type PR, linear only: 100Ω, 220Ω. 470Ω, $1 \mathrm{~K}, 2 \mathrm{~K} 2,4 \mathrm{~K} 7,10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}$, $220 \mathrm{~K}, 470 \mathrm{~K}, \mathrm{IM}, 2 \mathrm{M} 2,5 \mathrm{M}, 10 \mathrm{M} \Omega$. Vertical or horizontal mourting, $5 p$ each.

COLVERN 3 watt Wire-wound Potentiometers. $10 \Omega, 15 \Omega, 25 \Omega, 50 \Omega, 100 \Omega, 250 \Omega, 500 \Omega, 1 \mathrm{~K}, 1 \cdot 5 \mathrm{~K}$, $2.5 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 15 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 32 \mathrm{p}$ each.

ENAMELLED COPPER WIRE even No. 5WG
only: 2 oz. reels: 16-22 SWG 25p; 24-30 SWG 30p;
32, 34 SWG, 33 p ; $36-40$ SWG, 35 p .

Volues ovailable	It (see note below).	100 up	
E12	9	8	
E24	1	0.8	0.5
E12	1	0.8	0.7
E24	1.2	1	0.9
E12	2.5	2	1.8
E24	4	3.5	3
E12	7	7	6
E12	7	7	6
E12	9	9	8
Prices are in pence each for quantities			
of the same ohmic value and power			
rating. NOT mixed values. (lgnore			
fractions on total value of resistor			
order.)			

Prices are in pence each for quantities
of the same ohmic value and power rating. NOT mixed values. (Ignore
fractions on total value of resistor ractions on total value of resistor
order.)

TYGAN SPEAKER MATERIAL 7 designs, $36 \times 27 \mathrm{in}$, sheets, $£ 1.57$ sheet
MULLARD polyester C280 series $250 \mathrm{~V} 20 \%: 0.01,0.022,0.033,0.047$ 3p each; $0.068,0.1 .4 \mathrm{p}$ each; $0.15,4 \mathrm{p} ; 0.22,5 \mathrm{p} .10 \%$:
$0.33,7 \mathrm{p} ; 0.47,8 \mathrm{p} ; 0.68,11 \mathrm{p} ; 1 \mu \mathrm{~F}, 14 \mathrm{p} ; 1.5 \mu \mathrm{~F}$, $0.33,7 p ; 0.47,8 p$
21p; 2.2 $\mu \mathrm{F}, 24 \mathrm{p}$.
MULLARD SUB-MIN ELECTROLYTICS
 Values $(\mu / V): 0 \cdot 64 / 64 ; 1 / 40 ; 1 \cdot 6 / 25 ; 2 \cdot 5 / 16 ; 2 \cdot 5 / 64 ;$
$4 / 10 ; 4 / 40 ; 5 / 64 ; 6 \cdot 4 / 6 \cdot 4 ; 6 \cdot 4 / 25 ; 8 / 4 ; 8 / 40 ; 10 / 2.5$; 10/16; $10 / 64 ; 12.5 / 25 ; 16 / 40 ; 20 / 16 ; 20 / 64 ; 25 / 6 \cdot 4$; $25 / 25 ; 32 / 4 ; 32 / 10 ; 32 / 40 ; 32 / 64 ; 40 / 16 ; 40 / 2 \cdot 5 ;$ 50/6.4; $50 / 25 ; 50 / 40 ; 64 / 4 ; 64 / 10 ; 80 / 2 \cdot 5 ; 80 / 16 ;$ $80 / 25 ; 100 / 6.4 ; 125 / 4 ; 125 / 10 ; 125 / 16 ; 160 / 2.5 ;$ $200 / 6.4 ; 200 / 10 ; 250 / 4 ; 320 / 2.5 ; 320 / 6 \cdot 4 ; 400 / 4 ;$
$500 / 2.5 ;$ 500/2.

LARGE CAPACITORS

High ripple current types: $1000 / 25,28 p ; 1000 / 50$, 41p; $1000 / 100,82 p ; 2000 / 25,37 p ; 2000 / 50,57 p ;$ 5000/25, 62p; 5000/50 64, 77p; 2500/70, 98p; $10000 / 25$, £1.40; $10000 / 50$, E2.40.

COMPONENT DISCOUNTS

10% on orders for components for $\mathbf{6 5}$ or more. (\mathbf{N}. discount on nett items.) for E 15 or more

POSTAGE AND PACKING
Free on orders over $\mathbf{4 2}$. Please add 10 p if orders under $£ 2$.
Overseas orders welcome: carriage and insurance charged at cost.
Send S.A.E. for lotest list. Prices subject to alteration without notice.

Appointed distributors for SIEMENS (U.K.) LTD. and E. GRINSTEAD ELECTRONIC COMPONENTS.
also appointed stockists for
NEWMARKET TRANSISTORS.

PEAK SOUND

Designed by Peter Baxandall. Superb reproduc tion for its size. Handles ELAC 15Ω 59RM109 speaker unit. Kit \&13.90 nett; built E 19.42 nett.

MAINLINE AMPLIFIER KITS

RCA/SGS designed main amplifier kits. Input sensitivity $500-$ 700 mV for full output into 8Ω

Power	Kit price	Suitable unreg.
	including components	power supply kit
12 W	$£ 8.40$ nett	$£ 4.82$
25 W	$£ 9.75$ nett	6.92
40 W	$£ 10.50$ nett	$£ 6.03$
70 W	$\mathbf{1 2 . 6 0}$ nett	$£ 6.87$

30 WATT BAILEY AMPLIFIER PARTS

Sensitivity $1-2 \mathrm{~V}$ for full output into 8Ω.
Transistors and PCB for one channel $£ 6.30$
Transistors and PCBs for two channels $£ \mathbf{1 2} \cdot \mathbf{7 2}$ Capacitors and resistors (metal oxide), $£ 1.95$ per channel Complete unregulated power supply pack, $\mathbf{E 4} 75$ Suitable heat sink $10 D N$ space $400 \mathrm{c}, 55$ p

INTEGRATED CIRCUITS

PLESSEY SL403A 3 watts into $7 \cdot 5$ ohms. $£ 2 \cdot 10$ nett Application data SINP
SINCLAIR IC. 10 as advertised, complete with instructions and applications manual $£ 2.95$ nett. Components pack for stereo inc.
transformer, controls, etc., $£ 4.75$ nett.

S-DECS PUT AN END TO BIRDS NESTING
Components just plug in-saves time-allows re-use of components. S-Dec (70 points), $1 \cdot 00$
-Dec, may be temperature-cyeled (208 points), $£ 2.50$

INDICATOR LAMPS
NEON chrome bezel, round red NR/R, 24p; chrome bezel, round amber NR/A, 24p; chrome bezel, round clear NR/C, 24p. Neon, square red type LSSC/R, 17 p ; amber type LS5C/A, 17 p ; clear type LSSC/C, i7p. All above are for 240 v . mains operation. Filament types: 6 v .0 .04 A square red type LSSC/R-6v,, 20p;
 LS5C/C-6v., 20p; 6v. $0.04 A$ green type LS5C/G-6v., 20p; 12v.

DIN CONNECTORS

Loudspeaker		2-pole
Audio		3 -pole
Audio	-	4 -pole
Audio	.	5-pole
Audio	\cdots	5 -pole

TOGGLE SWITCHES, 250 V a.e. I-5A
chrome dolly and chrome milled nut S.P.S.T. 19 p, S.P.D.T. WAVECHANGE SWITCHES
LONG SPINDLES
1P $12 \mathrm{~W} ; 2 \mathrm{P} 6 \mathrm{~W} ; 3 \mathrm{P} 4 \mathrm{~W} ; 4 \mathrm{P} 3 \mathrm{~W} \quad 24$ peach $\begin{array}{ll}\text { SLIDER SWITCHES D.P.D.T. } & 24 p \text { each }\end{array}$ CORED SOLDER-64/40 alloy, 20 s.w.g. Boz. reel, $65 p$, llb. reel, $£ 1 \cdot 20$.

HANDBOOK OF TRANSISTOR EQUIVALENTS a
SUBSTITUTES 40p. (Post $3 p$ if ordered alone.)

DEPT. WW.671, 28 ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY,
Hours: 9-5.30, 1.0 p.m. Soturdoys. Phone: Egham 5533 and 4757 (STD 0784-3) Telex 264475

COPPER LAMINATE P.C. BOARD
$8 \frac{1}{2} \times 5 \frac{5}{5} \times 1 / 16 \mathrm{in}$. $12 \frac{1}{2} p$ sheet, 5 for 50 p
$11 \times 6 ; \times 1 / 16 \mathrm{in}$. 15 p sheet, 4 for 50 p
$11 \times 2 \times 1 / 16 \mathrm{in}$. 20 p shet, in .) 50 p 300 sq . in.$~$
P\&P single sheet 4p. Bargain packs 10p

SPEAKERS AND CABINETS

E.M.I. $19 \times 14 \mathrm{in}$. 50 watts (14A/600A). Four tweeters mounted across main axis. Separate "X-over" unit Bass unit flux $16,500 \mathrm{gss}$. A truly magnificent system E25. Саги £1-50.
E.M.I. 13×8 in. (10 watt) with two tweeters and cross over $3 / 8 / 15$ ohm models. £3.75. P.P. 25p.
E.M.I. $13 \times 8 \mathrm{in}$. base units (10 watt) $3 / 8 / 15$ ohm
E.M.I. $6 \frac{1}{2}$ in. rnd. 10 watt Woofers. $8 \mathrm{ohm} .13,000 \mathrm{gss}$ £2.25. P.P. 15 p .
E.M.I. 20 watt ($13 \times 8 \mathrm{in}$.) with single tweeter and "X-over" 20 Hz to $20,000 \mathrm{~Hz}$. Ceramic magne 11,000gss. £8. P.P. 40p. 20 watt base unit only. £6. P.P. 40p.

CABINETS for $13 \times 8 \mathrm{in}$. Speakers made from $\frac{3}{4} \mathrm{in}$. teak finish blockboard. 20 watt cabinet ($21 \times 15 \times 8 \frac{1}{2}$ in.) E6. P.P. 50p. 10 watt cabinet ($16 \times 11 \times 8 \mathrm{in}$.) £4.80. P.P. 40p.
"AIRMAX" $7 \frac{1}{2}$ In. FANS. Aluminium diecast housing (9 in.) 240 v . a.c. New. E5. P.P. 50 p.
"KLAXON" GEARED MOTORS (8 ib-in.) 112 r.p.m. 240v. £2-25.
BRIDGE MEGGERS (500v. series 2) £18 ea. in good working order.

BRIDGE RECTIFIERS (Muliard GEX 54INBIPIF) Output 74 volt. at 18 amps . $\mathbf{E 2}$ ea. (brand new)

BULK COMPONENT OFFER. Resistors/Capacitors. All types and values. All new modern components. Over 500 pieces E2. (Trial order 100 pcs. 50 p .) We are confident you will re-order.

BERCO WIRE-WOUND POTS. New individually boxed 200 ohm 25 wa
100 watt $\mathrm{E1}$ ea.

LEVEL METERS ($1 \frac{1}{2} \times \frac{1}{2}$ in.) 200 micro a
Germany 75 p ea. $2 \times 1 \frac{1}{2}$ in. (Japan) £1 ea.
MICROAMMETERS (4 in . sq. Weston) 25-0-25 microamps. New/boxed. £2.25 ea. P.P. 25p.
PRECISION CAPACITANCE JIGS. Beautifully made with Moore \& Wright Micrometer Gauge. Type 1.
1220 pf . $\mathbf{E 1 0}$ ea. Type $2,9.5$ pf to 11.5 pf. $\mathbf{E x}$ ea.

POT CORES LA1/LA2/LA3. 50p ea.
IGHTDIMMERS (2000 watt) Triac Controlled. $3 \frac{1}{2} \times 2 \times 1$ in. E5.75 ea. P.P. $25 p$.

TRANSFORMERS

L.T. TRANSFORMER. (Shrouded) Prim. 200/250v. Sec. 20/40/60v. 2 amp. $£ 2$ ea. P.P. 40p.
L.T. TRANSFORMER. (Shrouded) Prim. 200/250v. L.T. TRAN. 20/40v. 1.5 amp. $£ 1$. 50 ea. P.P. 30p.
L.T. TRANSFORMER. Prim. 240v. Sec. 8/12/20/25v. L.T. TRANSFORMER.
3.5 amp. £1 ea. P.P. 40p.
L.T. TRANSFORMERS. Prim. 240v, Sec. 14v. 1 amp. L.T. TRANSFORMERS. Prim. 240v, Sec. 14v. 1 amp
SOp; 10.5 v .1 amp. model 50p. P.P. either type 15 p . L.T. TRANSFORMER. "ADVANCE VOLTSTAT" Pim. 190-260v, Soc. 6virm. 25 watt. H.T. TRANSFORMERS. Prim. 200/240v. Sec $300-0-300 \mathrm{v} .80 \mathrm{~m} . \mathrm{a} .6 .3 \mathrm{v}$. c.t. 2 amp . £1-50 P.P. 40 550-0-350v. 60 m.a. 6.3v. c.t. 2 amp. £1. P.P. 25p. H.T. TRANSFORMERS (H.D.) Prim. 200/240v. Sec.
550v. 2 amp. $£ 7.50$. Carr. $£ 1 ; 440 \mathrm{v} .2 .8 \mathrm{amp} . £ 7.50$. 550 v . 2 amp. $£ 7 \cdot \mathbf{5 0}$. Carr. $£ 1$; 440 v .2
Cari. E. Chokes to match E4. Carr. . 1 ,
$\mathbf{S T E P}$-DOWN TRANSFORMERS. Prim. 200/240v. Sec. 115 v .120 watt (double wound). £1.25. P.P. 25p; 250 watt (D.W.). £2-25. P.P. 25 p; 500 watt (D.W.). $£ 5$. (auto). E5-50. P.P. E1
ADVANCE CONSTANT VOLTAGE. Prim. 190/250v, ADVANCE CONSTANT VOLTAGE.
CONSTANT VOLTAGE TRANSFORMER. Prim $90 / 260 \mathrm{v}$. Sec. 230 v . r.m.s. 150 watt. £3-28. Carr. 75 p. 120 amp. A UTO TRANSFORMER. $190 / 270 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$.
Tapped every 5 volts. $\mathbf{E 5 0}$ ea. (Carr. by arrangement.)
Tapped every 5 volts. $\mathbf{£ 5 0}$ ea. (Carr. by arrangement.)
COMPUTER TAPES. $2400 \mathrm{ft} . \frac{3}{2} \mathrm{in}$. On N.A.B. Hubs com
plete with transparent cassette case. $£ 2$ ea. P.P. 50 p.

LIQUID LEVEL SWITCH. Detects even mildiy conductive liquids i.e. ether etc. N/O-N/C contacts fails to safe. $\mathbf{£ 1 0}$ ea. S.a.e. literature.
"LONG LIFE" ELECTROLYTICS (screw terminal) 25,000 u.f. 40 v . ($4 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{in}$.) £1 P.P. 10 p.
10,000 u.f. 75 v.
$\left(4 \frac{1}{2} \times 22\right.$
10,000 u.f. 75 v . ($4 \frac{1}{2} \times 2 \frac{1}{2}$ in.) $87 \frac{1}{2}$ p. P.P. 10 p
3,150 u.f. 40 v . $\left(4 \times 1 \frac{1}{2}\right.$ in.) 75 p . P.P. 10 p .

TELEPHONE DIALS (New) $£ 1$ ea.

RELAYS (G.P.O. '3000'). All types. Brand new from 371 $\frac{1}{2}$ P ea. 10 up quotations only.
TELEPHONE EXTENSION CABLE 3 core/cream p.v.c. 100 yd. coil $£ 2200$ yd. coil £3.75. P.P. 25p.
UNISELECTORS (Brand new) 25-way
75 ohm. 8 bank $\frac{1}{2}$ wipe E3.25. 10 bank 75 ohm. 8 bank $\frac{1}{2}$ wipe $£ 3 \cdot 25$. 10 bank
$\frac{1}{2}$ wipe $£ 3.75$. Othes types from $£ 2 \cdot 28$.

ELAYS

SIEMENS/VARLEY PLUG-IN. Complete with transparent dust covers and bases. 2 pole c/o contacts 35 p ea; 6 make contacts 40p ea.; 4 pole c/o contacts 80p ea. 6-12-24-48v types in stock.

12 VOLT H.D. RELAYS ($3 \times 2 \times 1 \mathrm{in}$.) with 10 amp . Silver
contacts 2 pole c/o 40p ea.; 2 pole 3 way 40 p . P.P. 5 p.
24 VOLT H.D. RELAYS ($2 \times 2 \times \frac{3}{4} \mathrm{in}$.) 10 amp . contacts. 4 pole c/o. 40p ea. P.P. 5p
240 VOLT A.C. RELAYS ($1 \frac{3}{4} \times 1 \frac{3}{4} \times 1 \mathrm{in}$) G.P. contacts 1 make $2 \mathrm{c} / \mathrm{o} .60 \mathrm{p}$ ea. P.P. 5p.
REED RELAYS 4 make $9 / 12 \mathrm{v}$. (1,000 ohm.) 62 $\frac{1}{2} \mathrm{p}$ ea. 2 make $37 \frac{1}{2}$ p ea. 1 make 25p ea. Reed Switches ($1 \frac{1}{4} \mathrm{in}$.) 10p ea. £1 per doz.

SUB-MINIATURE REED RELAYS ($1 \mathrm{in} . \times \frac{1}{4} \mathrm{in}$.). Woight oz. Type 1.960 ohm, 3/9v. 1 make. $62 \frac{1}{2} p$ ea. Type 2. 1800 ohm, $3 / 12 \mathrm{v} .1$ make. 75p ea.
E.H.T. GENERATOR MODULE (Mullard VM1049) input 12 volt, output 1800 volt 1 m.a. f4 ea. P.P. $25 p$

SILICON BRIDGES 100 p.i.v. 1 amp ($8 \times 8 \times \frac{8}{8} \mathrm{in}$) 45 p 100 p.i.v. $2 \mathrm{amp}\left(1 \frac{1}{4} \times 1 \frac{1}{4} \times \frac{1}{2}\right.$ in.) 75 p.

VALVES

VALVE VOLTMETER TYPE TF 958 Measures AC 100 mV ; 20 c/s to $100 \mathrm{mc} / \mathrm{s}$,
DC 50 mV to 100 V , multiplier extends ac
range to 1.5 kV . Balanced input and centre

 $\boldsymbol{2}$
2.20
1.75
0.80
0.32
0.40
0.40
0.35
0.75
0.75
0.40
0.30
0.15
0.50
0.30
0.32
0.15
0.40
0.30
0.50

 N21B
N 25
1N43
1N70
1N702-7
1N83A
1ZMT5
1ZMT10
1ZT5
1ZT10
2G385
2G403
1N 4785
2N277
2N918
2N1304
2N1306
2N1307
2N2147
2N2904
2N3053
2N3054
2N3055
2N2730
2N3731

 RS1/30
RS1/35
RS1/40
RS3//05
CRS3/20
CRS3/30
CRA25/025
CRS3/40
GETT03
GET115
GET116
GEX66
NKT22
NRT304
SD91s
SD928
SD93s
SD94
SD98S
V405A
ZENER
DIODES
All preferr
voltage

 CMMM guarantee

MANY oTHERS IN STOCK inch
Special Falves. U.K. P. P. Up to
over H_{3} post free. C.o.D. 20 p extra.

VIDEO OSCILLATOR TF 885A \& 25 Hz to 5 MHz and $25 \mathrm{~Hz}-12 \mathrm{MHz}$ respec-
tively, fine and scuare wave output up to tively, fine and square wave output up to
31 Iv . $£ 55$ and $\mathbf{6 8 5}$ resp. Carriage $\mathrm{El} \cdot 50$.

MARCONI VHF OSCILLATOR
TYPE TF 924/I. Complete with power TYPE TF 924/I. Complete with power unit Type TM 4230 . Frequency range 10 to 50 mW , Klystron Osc with auromatic tracking. Facilities for reflection
modulation. $\mathbf{E l 2 5}$. Carriage MARCONI VHF ALIGNMENT OSCILLOSCOPE TF 1104 . Combined sweep generator and CRO for VHF IF and VF analysis. RF ranges
$41-216 \mathrm{kHz}$. IF range $10-40 \mathrm{MHz}$. VF range 5 kHz to 10 MHz . Output 10 uV to 250 MV continuous at 50 ohms. Sweep
500 kHz to 10 MHz . $£ 89.50$. Carr. $£ 1$. MARCONI R/C OSCILLATOR TYPE TF IlOI. Frequency range 20 Hz to 200 kHz . Accuracy sit 1%,
distortion less than 0.5%. Stabilised Oscillator no zero setting required €72.50. Carriage $£ 1 \cdot 50$.

HEWLITT PACKARD AUDIO MODEL 206A £89.50. Carriage M1.50. Full specification for S.A.E.

REMSCOPE TYPE 741 STORAGE OSCILLOSCOPE. On trolley, complete with plug-in trace shifter and two
plug-in Y amplifiers. Price on applica-plug-i
tion.

INTEGRATED CIRCUITS

MANY OTHERS IN STOCK

 RCACA 3005 wide band R.F. Ampl. 61.35 CA 3012 wide barid ampl. I 150 mW . fl 10 CA 3020 Audio power ampl. 1 . 1.37 CA 3036 Audio pre-ampl.
STC 93018 Digital dual 4 input gates $£ 4.3$ MIC 709-1C Linear sperational ampl. $\mathbf{£ 9 . 5 0}$
MIC 9005 D Highspeed flip-flop $\mathbf{£ 2 . 7 0}$
 Mullard
 REDIFON
Twinplex combiner type AFS $13 £ 65$ Twinplex converter type AFS 12 with
P.S.W. $£ 85$ F.S.K, unit type GKI85A $\mathbf{6 5 8} \mathbf{5 0}$

PLEASE NOTE Unimaiseses ALL EQUIPMENT

MARCONI TEST EQUIPMENT

TF 144 G SIGNAL GENERATOR. To clear. In very good "as seen" condition.
Complete with mains and battery cables,

SIGNAL GENERATOR TF 801/A. c / s. I kc / s. External $50 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$. 5 ohms 100 db below 200 mV from 301/A/l source. 685 . DITTO but output. £89. Borh P. \& P. $£ 1$, inand instruction manual.

SOLARTRON EQUIPMENT

 Regulated and stabilised P.S.U. SRS$151 \mathrm{~A}, 20$ to 500 V positive at 300 mA in two ranges. Variable and fixed 170 V negative output, $£ 35$. Carriage $£ 1$. CD $711 S .2$. Double beam, DC
7MHz scope, E85. Carriage $£ 1.50$. 7 MHz 'scope, 685 . Carriage $£ 1 \cdot 50$.
CD 643.2 . Single beam Laboratory
Model Model,
application.

SIGNAL GENERATOR TYPE CT 480. $7-12 \mathrm{kMHz}$ in one range, square and

 SIGNAL GENERATOR TYPE CT478. As above but $1.3-4.2 \mathrm{kMHz}$ in two 478. As abo
ranges $£ 55$.

Il $\frac{1}{2} i n$. DIA. PANEL METERS. $7 \frac{1}{2}-15 \mathrm{v}$ indeal for "Battery
BOONTON Q METER TYPE 160A. Freq. range 50 kHz to 75 MHz , main capaci-
tor 30 to 500 pF . Vernier caacitor +3 pF . q range. $0-250$ with $2.5 \times$ multiplier. 685 plus carriage
VALVE CHARACTERISTIC METER
complete with manual 657.50 . Carriage complete with manual $657 \cdot 50$. Carriage MULLARD PRECISION VARIABLE CAPACITORTYPE F.2. 15 pF to 336 pF . Supplied individual
 SUSPENSION GALVANOMETERS
Cambridge instruments $£ 12$. P, \& P. $\in 0 \cdot 60$.
Open 9-12.30, 1.30-5.30 p.m. except Thursday 9-1 p.m.

VACUUM CONDENSERS VACO UM CONDENSERS
$12,50,55 F$ Each 20.000 30/. P. \& P. $4 /$ /
BRADLEY PORTABLE ELECRONIC BRADLEYPORTABLE ELECTRONIC
MULTIMETER TYPE CT47!B. This instrument operates from three it cells,
is fully transistorised and measures A.C.
and D.C. current, A.C. and D.C. voltage and D.C. resistance. Buile-in battery check As request. above MODEL CT 47IA manufactured by AVO, full spec and price on request. 4
4, 5 and 8 bank 25 way uniselectors, 24V, guaranteed perfect, $\mathbf{E 3 . 7 5}$;
£4.50; $£ 6.87$ respectively. ARB8; SPARES. We hold th
in U.K. Write for list.

AM/FM SIGNAL GENERATOR TF 937 (CT 218) Frequency range 85 kHz Built in crystal calibrator 200 kHz and 2 mHz . RF outpur $1 \mu \vee$ to - IV. Four interna Carriage $1 / 5 / 0$.
F.M. DEIATION METER TYPE TF934. Frequency range $2.5-100 \mathrm{MHz}$ Can be used up to 500 MHz . Deviation

HARNESS "A" \& "B" control units junction boxes, headphones, micro
29/4IFT. AERIALS each consisting of
ten 3it., fin. dia. tubular screw-in ten 3 ft ., fin. dia. tubular screw-in
sections. 11 ft . (6 -section) whip aeria with adaptor to fit the 7in. rod, insulated base, stay plate and stay assemblies pegs, reamer, hammer, etc. Absolutely brand new and complece ready to erect in canvas bag, £4. P. \& P. $£ 0 \cdot 50$.
FIELD TELEPHONE TYPE "F" Excellent for communication in cases Excellent for tommunicat. Pair including batteries, fully tested. $£ 6 \cdot 50$, or with
220 yds. field cable in drum $£ 7.50$.

FOR EXPORT ONLY 53 TRANSMITTERS. All spares
available. COLLINS TCS. Complete installations and spare parts.
COLLINS
TYPE
23ID $\mathbf{k W}$ TRANSMITTERS. 10 channel, autotune and manual tuning. Complete
with very comprehensive spares. Full specification and price on application Complete installations and all
spares. No. 19 WIRELESS SETS spares. No.
H.P. SETS and all spares R. 210
RECEIVERS RECEIVERS with all necessary
accessories.
PYE PTC 2002N A.M Ranger Mobile Radio Telephone, brand new and complete, $£ 45$.

TELEPHONE ENQUIRIES | relating to TEST E OUIPMENT should |
| :--- |
| be made to |
| 11748 |
| 8006 | HONE EMQUIRIES be made to $01-7488006$ Extens

To view TEST EQUIPMENT please phone for appointment PHONE 01-743 4946
BENTLEY ACOUSTIC CORPORATION LTD.
38 CHALCOT ROAD, CHALK FARM, LONDON, N.W. 1 THE VALVE SPECIALISTS Telephone 01-722-9090 Please forward all mail orders to Littlehampton
 (77 RANGEII)

BASIC RANGES (DIRECTLY CALIBRATED).
D.C. POTENTIAL; 250 mV , $1 \mathrm{~V}, 2.5 \mathrm{~V}, 10 \mathrm{~V}, 25 \mathrm{~V}, 100 \mathrm{~V}$, 250V. (Input resistance IOMw.)
D.C. CURRENT; $10 \mu \mathrm{~A}, 25 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 250 \mu \mathrm{~A}, 1 \mathrm{~mA}$, $2.5 \mathrm{~mA}, 10 \mathrm{~mA}, 25 \mathrm{~mA}, 100 \mathrm{~mA}, 250 \mathrm{~mA}, 1 \mathrm{~A}$.
RESISTANCE; $0-200 \mathrm{w}, 0-20 \mathrm{Kw}, 0-2 \mathrm{Mw}, 0-1000 \mathrm{Mw}$ A.C. POTENTIAL; $100 \mathrm{mV}, 250 \mathrm{mV}, 1 \mathrm{~V}, 2.5 \mathrm{~V}, 10 \mathrm{~V}, 25 \mathrm{~V}$ $100 \mathrm{~V}, 250 \mathrm{~V}$.
A.C. CURRENT; $10 \mu \mathrm{~A}, 25 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 250 \mu \mathrm{~A}, 1 \mathrm{~mA}$, POWER; Into 15,50 or $150 \mathrm{~W}-5 \mathrm{~mW}, 50 \mathrm{~mW}, 500 \mathrm{~mW}$ POWER; Into 15, 50 or $150 \mathrm{~W}-5 \mathrm{~mW}, 50 \mathrm{~mW}, 500 \mathrm{~mW}$,
5 W . into 600,2000 or $5000 \mathrm{~W}-50 \mu \mathrm{~W}, 500 \mu \mathrm{~W}, 5 \mathrm{~mW}$, $50 \mathrm{~mW}, 500 \mathrm{~mW}, 5 \mathrm{~W}$.
DIFFERENTIAL D.C. POTENTIAL; $250-0-250 \mathrm{mV}, 1-0-1 \mathrm{~V}$ $2 \cdot 5-0-2.5 \mathrm{~V}, 10-0-10 \mathrm{~V}, 25-0-25 \mathrm{~V}, 100-0-100 \mathrm{~V}$.
Overload protection is incorporated. Supply voltage 110 or $200 / 240 \mathrm{~V}$ A.C. 50 Hz . In excellent condition, complete in carrying case, checked
E25.75. (C.P. England and Wales.)

SYNCHROS AVAILABLE

 EX STOCKR-C-L BRIDGE TYPE 373 (21 RANGE)
This attractive instrument measures RC \& L and in addition has facilities for checking the capacity and
leakage of Electrolytic Capacitors. The ranges are; $C-0.5-100 \mathrm{pF}, \quad 1000 \mathrm{pF}, \quad 10,000 \mathrm{pF}, \quad 0.1 \mu \mathrm{~F}, 1 \mu \mathrm{~F}, 10 \mu \mathrm{~F}$, $100 \mu \mathrm{~F}, 1000 \mu \mathrm{~F}$.
$\mathrm{R}-0.5-10 \mathrm{~W}, 100 \mathrm{~W}, 1000 \mathrm{~W}, 10 \mathrm{KW}, 100 \mathrm{KW}, 1 \mathrm{MW}$ IOMW, 100MW.
$\mathrm{L}-50 \mu \mathrm{H}-10 \mathrm{mH}, 100 \mathrm{mH}, 1 \mathrm{H}, 10 \mathrm{H}, 100 \mathrm{H}$.
The D.C. polarising voltages available are $0-50 \mathrm{~V}$ and 0 -500V and are set on internal meter.
Leakage current ranges $0-500 \mu \mathrm{~A}$ and $0-5 \mathrm{~mA}$.
An internal nill indicator is fitted, an external indicator 'phones or 'scope may be employed.
Measurements are made with a 5 in . D.A. calibrated dial at 50 Hz for " R " and the 5 highest " C " ranges and at IKHz for the remaining "C" ranges and "L. Power supply requirements are $110-120 \mathrm{~V}$ A.C. or A . $\times 10 \mathrm{~V}$). The size is $18 \times 13 \times 12 \mathrm{in}$. The weight 30 ib . The instrument is housed in an alloy case with provision for rack mounting if desired. A reconditioned home-produced precision instrument at a and Wales.)

SERVO MOTORS IMMEDIATE DELIVERY

TEKTRONIX MICROWAVE. Spectrum Analyser L3852 plug-in unit as new E275. Small 3 amp Impedance TEKTRONIX MICROWAVE. Spectrum Analyser Ly85 1016 , Eline. Fenlow SA2 Spectrum Analyser 0.3 Hz to
 T 249 4-channel oscilloscope, $\in 55$. Airmec millivoltmeter $7784, \in 35$.

PLUGS, SOCKETS \& CONNECTORS

 Typeling Lee, Amphenol, Transradio, etc. Enquiries for specific items to Orpington or Lydd.

SUB-MINIATURE I in. DIAMETER METERS. Arib-
trary Mcale. Sealed, $150-0.150 \mu A, 0-300 \mathrm{AA}$ or $0-500 \mu \mathrm{~A}$.
Either

Gertach COMPLEX RATIO BRIDGE Model CRE2B.
Six digits in phase, four dizits in quadrature. Our Price E200.

Servo and Electronic Sales Ltd
Electrical and Servo Control Engineers. - Electrical Suppliers - Engineering Stockists - Aeronatical Sup
Post orders to 43 HIGH STREET, ORPINGTON, KENT. Phone: Orpington $31066 / 33976 / 33221$ ost orders to 49 MILL ROAD, LYDD, KENT (Works). Phone: Lydd 252
67 LONDON ROAD, CROYDON, SURREY (Retail Branch and Instrument Repairs).

FULLY TRANSISTORISED
G \& E BRADLEY ELECTRONIC MULTIMETER TYPE CT471B
 $40 \mu \mathrm{~A}, 120 \mu \mathrm{~A}, 400 \mu \mathrm{~A}, 1-2 \mathrm{~mA}, 4 \mathrm{~mA}, 12 \mathrm{~mA}, 40 \mathrm{~mA}, 120 \mathrm{~mA}$,
 carriago fl

PRECISION POTENTIOMETERS
Numerous instrument types, continuous rotation
potentiometers for control application and HELIPOTS in stock. List on application.

MAINS 27v D.C. POWER SUPPLY UNITS These interesting $27 v 0.5 \mathrm{~A}$ units (will happily provide 700 mA
indefinitely) are built into an attractive grey-finished instrument case, provision being made for base or side mounting, Cable entry grommets are mounted in the base of the unit. against variation in input voltage and output current, and agnut and output fuses with spares are fitted. The output
inperates a built-in S.P.C.O. relay to switch for instance an
oper alarm circuit. Input voltage is $200-250 \mathrm{v}$ D. C. in 10 v stepst
while the alarm circuit.
while the transformer secondary carries two taps. Al
terminations are transferred over to a Grelco block. There terminations are transterred over to
is adequate room for other equipment within the ventilated case, which is $12 \times 10 \times 6$ deep
in carton with circuit, only $\mathbf{6 . 2} .25$

This superb stereo system"is a real price breakthrough. It comprises the VISCDUNT F.E.T.MK I amplifier on which full deteils are given below, the famous Garrard SP 25 MK III (including reak veneer base and transsarent cover) with diamond cartridge or 2025. T C and the very successful DUO type 2 speakers.

Measuring $17 \frac{1, "}{2} \times 10 \frac{3}{4}$ " $\times 6 \frac{3}{4}$. The Duo type 2 speakers are teak finished with matching Vynair grills. They incorporate a $3 \mathrm{ohm}, \mathbf{1 3}^{\prime \prime}$ x 8" drive unit and Parasitic tweeter. Max. Jower handling 10 watts. Price E14 per pair plus p\& p E2.

WITH MK II amplifier and magnetic cartridge $\mathbf{£ 4 8}$ plus $£ 2.50$ P\&P.

She iscowent F.E.T. Mk \mid £14.25 plus 50p P. \& P.

Specification: Output per channel 10 watts r.m.s. into 3 ohms. Frequency bandwidth 20 Hz to $20 \mathrm{kHz} \ddagger$ 1 dB@1 watt.
Total distortion: 1 kHz @ 9 watts 0.5%
inpur sensitivities CER. P. U. 100 mV into 3 meg ohms. Tuner 100 mb into 100 K ohms Tape 100 mV into 100 K ohms.

High fidelity transistor stereo amplifier employing field effect transistors. With this feature \& accompanying guaranteed specifications below, the Viscount F.E.T. vastly surpasses amplifiers costing far more. Size: $\left.122^{\prime \prime \prime} \times 6^{\prime \prime} \times 2\right\}^{\prime \prime}$ in simulated teak case

Overload Factor: Better than 26 dB .
Signal to noise ratio: 70 dB on all inputs (with vol. max) Contro/s: 6 position selector switch 13 pos. stereo \& 3 pos. mono). Separate Vol. controls for left \& right channels. Bass $\pm 14 \mathrm{~dB} @ 60 \mathrm{~Hz}$. Treble (with D.P.S. on/off) $\pm 12 \mathrm{~dB}$ @ 10 kHz . Tape Recording output sockets on each channel.

Mk II (MAG.P.U.) $\mathbf{£ 1 5 . 7 5}$ p/us 50 p $p \&$ Specification same as Mk. I. but with the following inputs.
Mag. P. U. CER. P.U. Tuner. Spec. on Mag. P.U. 3 mV @ $\uparrow \mathrm{kHz}$ input impedance 47 K . Fully equalised to within $\pm 1 \mathrm{~dB}$ RIAA. Signal to noise ratio- 65 dB (vol.

Elegant Seven Mk $\mathbf{3}$ (350 mW) 7 transistor fully-tunable M.W. L.W. superhet por-
able Set of parts. Complete with all components. able set of parts. Complete with all components.
including ready etched and drithed prinied circuit
boad board-back printed for foolproof construction. MAINS POWER PACK KIT $75 p$ extra Price $£ 5.25$ plus 50 p P. \& P
Circuit 13 P FREE WITH PARTS
 The Dorset (600 mW) 7 -transistor fully tunabie M.W.-L.W. superhet portable with baby alarm facility. Set of parns. The
latest modulised and prealignent latest modulised and Pre-alignment techniques
makes this simple to buid. Sizes: $12 \times 8 \times 3$ in. makes this simple to build. Sizes.
MAINS POWER PACK KIT 75 P extra. Price $£ 5.25$ plus 50 p P. \& P

SOUND 50

SOUND 50 AMPLIFIER AND SPEAKER SYSTEM

The Sound Fifty valve amplifier and speakers are sturdily constructad with stmart housings and thoroughly tested alectronics. They are dasigned to last-to withstand the knocks and bumps of life on the road. Buit for the small and madium sized gif. they are assy to handla and quick to set up and can be relied upon to come over with all the quality and power yous nead.
Output Power: 45 watts R.M.S. (Sine wave drive). Fraquency response: -3 db points 30 Hz at 18 KHz . Tatal distonion less than 2% at ratid output. Signal to moise ratio: better than 60 dh. Speaker impedance: 3. 8 or 15 ohms. Bass Control Range: ± 13 dh at 60 Hz Treble Control Range: ± 12 db at 10 KHz . Inputs: 4 inputs at 5 mV into 470 K Each pair of inputs controfled by separate volume control. 2 inputs at 200 mV into 470 K .
To protect the output valves, the incorporated fail safe circuit will enable the amplifier to be used at half power SPEAKERS: Size $20^{\circ} \times 20^{\prime \prime} \times 10^{\prime \prime}$ incorporating Baker's $12^{\prime \prime}$ heavy duty 25 watt high flux. qualiry loudspeaker with cast frame. Cabinets attractively finished in two tone colour scheme - Black and grey

COMPLETE SYSTEM

£50
Amplifier $£ 28.50+£ 1.50$ P \& P Speakers ea. $£ 12.50+£ 1.75 P \& P$

LIQUIDATED STOCK

DANSETTE
 TOURISTE MK3

CAR RADIO
ALL TRANEISTOR
Beautifully designed to blend with the interiors of all cars. Permeability tuning and long wave loading coils ensures excellent tracking. sensitivity and selectivity on both wave bands. R.F. sensitivity at 1 MHz is better than 8 micro volts. Power output into 3 ohm speaker is 3 watts. Pre-aligned I.F. module and tuner together with comprehensive instructions guarantees success first time. 12 volts negative or positive earth. Size 7" $\times 2^{\prime \prime} \times 4 \frac{1}{2}$ " deep. Orginally sold completely built for £15.23 SET OF PARTS
£6.30
Parge oneaker frae when ardered with partis.

RADIO \& TV COMPONENTS (Acton) LTD 21a High Street, Acton, London, W.3. 6.NG Also 323 Edgware Road, London, W.2. ALL ORDERSB BY POSI io Acton Goods not dispatched outside U.K Terms C.W.O. Alf enquities S. A. F

HAMRYS RADIO LMMITA \#सuswo ENGLAND'S LEADING ELECTRONIC CENTRES -

 H-FI CDMPONENTS : TEST PA PISCOTHEQUE ELECTBONIC ORGANS MALL ORDER HENELEC SELF-POWERED PRE-AMPLIFIERS

SLIM MODERN DESIGNS USING THE LATEST
SLICON TRANSISTORS, FET's and IC's. DIN
SILICON TRANSISTORS, FET's and IC's. DIN SOCKETS, ETC. fitted. PUSH-BUTTON SELECTION, $\pm 20 \mathrm{AB}$. Bass and treble boost and cut. designed for use with PA25 and PA50 Amplifiers GOLD AND SILVER FINISH, Mains operated. Supplied with all plugs etc. ADJUSTABLE OUTPUT UP TO I VOLT. Simple mounting
Also suitable for use with Amplifier Models MPA $12 / 3$ and MPA 12/15.
\star FET9/4. Mono with built-in mic. mixer. Accepts any ceramic or
\star FETIS4 STEREO
Magnetic cart., input, tuner, tape, etc. Beautiful stereo sound.
\star I.C. STEREO

SIMPLICITY TO MOUNT-EASYTO USE-DESIGNED FOR QUALITY, PERFORMANCE AND PRICE

- At full power 0.3% distortion.
At full power- 1 dB |Ic/s to $40 \mathrm{kc} / \mathrm{s}$. Response- $1 \mathrm{~dB} / \mathrm{l} / \mathrm{c} / \mathrm{s}$ to $100 \mathrm{kc} / \mathrm{s}$. LOOK AT THE SPECIFICATIONS!
25 WATT \& 50 WATT RMS SILICON AMPLIFIERS
- Rise time 2μ sec. Short circult proof plus limiting cct.

PA 2510 transistor all silicon differential input 400 mV sensitivity 25 watrs Rms into 8 ohms. Supplied with edge connector harness size $5^{\prime \prime} \times 3^{\prime \prime} \times 2^{\prime \prime}$
PA 5012 transistor version 50 watts Rms into 3 to 4 ohms. Size
MU 442. Power supply for one or two PA 25 or one PA 50.
PA 25 E7. 50 . p.p. 15 p. PA 50 E9.50. p.p. 15p. MU 442 E6.00 p.p. 25 p. All units. No soldering-just edge connectors and plugs.

TEST EQUIPMENT

For Educational, Professional and Home Constructors

AFI05 50k/vole multi meter (illus.)
Price $£ 8.50$ Price $£ 8.50$ P.p.
Leather case $£ 1.42$ $200 \mathrm{H} 20 \mathrm{k} / \mathrm{volt}$
Price $£ 3.87$ p.p. 20p Case 62p
$50030 \mathrm{k} /$ volt multi-meter Price $£ 8.85 \mathrm{P} . \mathrm{P}$.
Leather case EI .50 p Leather case EI-50
THL $332 \mathrm{k} / \mathrm{volt}$. Price E4-12 P.p. 15p TE65 Valve volmeter (ill us.) $£ 17.50$ p.p. 40 p
VM5I Transistorised AF/R.F millivoltmeter.
Price $£ 32.00$ p.p. 40 p

TE22 Audio Generator Price $\mathbf{f 1 7 . 0 0}$ p.p. 35 p.

TE20D RF generator
(illus,
Price $E 15.00$ (illus.). Price E15.00 TE22D Matching audio generator:
Price $\mathrm{EI7} .00$
p.p. $35 p$ TEI5 Grid dip meter rice E12.50 p.p. 20p
 TO3 Scope (illus.) tube. $1.5 \mathrm{Mc} / \mathrm{s}$
Price $\mathrm{E} 37.50 \mathrm{p} . \mathrm{p} .50 \mathrm{p}$ *Cl-5 Scope. $3^{\prime \prime}$ tube $0 \mathrm{Mc} / \mathrm{s}$ PB. Price $£ 39.00$ p.p. 50 p -CI-16 Double beam cope. Price 887.00 P.p. 50 p Lequest.

RP40 (Illus.) Vari able $5-20 \mathrm{v} . \quad 0-2$
amps. Price $£ 25.50$ amps. Price $£ 25 \cdot 50$
p. P. 47 p P.P. 47p

RP24 $6-12 \mathrm{v} . \mathrm{I}_{\text {Price }} 3 \mathrm{v}$.
$0-2$ amps. K21.50 p.p. 47p

RP124 Variable R. 24 v . 1 amp. Price
$\mathbf{E 1 3 . 5 0}$ p.p. 37 p

PANEL METERS Complete range in stock. 38,65 and 85 types plus large range Edge types also $240^{\circ}-250^{\circ}$ types. Latest Catalogue is a must for complete
 FM TUNER also Decoder, tuning meter \& power supply 5 MULLARD TRANSISTORS $300 \mathrm{kc} / \mathrm{s}$ BANDWIDTH PRINTED CIRCUIT, HIGH
FIDELITY REPRODUCTION. MONO AND STEREO. A popular VHF FM Tuner for quality and reception of mono and stereo.
There is no doubr about $\mathrm{it}-\mathrm{VHF}$ FM gives the REAL sound. All parts sold separately. TOTAL E6.97 p.p. 20p
Cabinet 100p, Decoder Kit E5.97, Tuning Meter ©1-75. Mains unit (optional) Model PS900 £2-47. Mains unit for Tuner and
Decoder PSi200 $£ 2.62$

plus a complete range of individual units in stock-Demonstrations all day-visit CREDIT/HP TERMS (Credit terms from 630 purchase-callers only).
FREE-Stock Lists Nos. 16/17 on request BEST VALUE IN U.K.

HENRY'S
LATEST
CATALOGUE
Latest editi
350 pages

* COMPONENTS, TEST GEAR EQUIPMENT
*SPECIAL OFFERS, Etc., Etc. Everything for the constructor. Complete with 50p value discount vouchers for use with purchase. Price 50p Post Free. WHY NOT SEND AWAY TODAY:
FREE 8-page Transistor, IC, Diode lists FREE 16-page Organs to Build brochure free Decks and Hi Fi Stock Lists Nos. Decks
$16 / 17$.
FREE PA, Disco and Lighting List No. 18 FREE Quotations for all Electronics-
send list and S.A.E.

SINCLAIR PROJECT 60 PACKAGE

Range $0-10 \mathrm{mr}$

FOR MEASUREMENT OF RADIO ACTIVITY Supplied complete with probe. List price $\notin 70$. Our price new, tested, complete with 4 cell H.T. Eliminator. Plug in mains units 63.75
Dosimeters $0-50 \mathrm{R} 62 \mathrm{p} ; 0-150 \mathrm{R} 50 \mathrm{p}$;
$0-500 \mathrm{R} 50 \mathrm{p}$

OPTIONAL POWER SUPPLIES. Postetc. 20p

$\begin{array}{lllll}\text { P. } 500 \text { (One or Two) for 104, } 304 & \ldots & \ldots & . . & £ 2.62 \\ \text { PS } 20 \text { (One or Two) for PA7 } & \ldots 3.47\end{array}$

 PS. 20 (One or Two) for PA7MU24/40 (One or Two) for MPA12/3 or MPAI2/15 64.50
 $\begin{array}{llllll}\text { PZ8 for Z50 } & \ldots & \mathbf{£ 5 . 9 7} & \text { Transformer } & . & \mathbf{£ 2 . 2 5} \\ \text { PII for } 608 & \cdots & £ 2.87 & \text { P15 for } \mathbf{4 1 0} & . . & £ 2.62\end{array}$ MU442 for 1 or 2 PA25 or 1 only PA50 $\quad £ 6.50$ $2 \times$ Z30 amplifier, stereo 60 pre-amp, PZ5 power supply, $\subset 16.75$ Carr. 40p. Or with PZ6 power supply, $118-25$. Carr. 40 p. $2 \times$ Z50 amplifier, stereo 60 pre-amplifier PZ8 power supply. $\mathbf{£ 1 0 - 2 5}$. Carr. 40p. Transformer for PZ8, $\mathbf{£ 2} \mathbf{2 5}$ extra. Any of the above with Active Filter unit add $£ 4.75$ or with pair Q16 NEW INTEGRATED CIRCUIT STEREO MULTIPLEX DECODER Model 1067
Two transistor plus integrated circuit design.
$9-12$ volt operated, 50 mV sensitivity, lamp output direct. Auto switching plus many other features Size $2 t^{\prime \prime} \times 2 \frac{3^{3}}{i^{\prime}} \times \frac{1}{2}^{\prime \prime}$ Standard 0.1 connector or solder connections. Output I volt per channel. Price ready to use $\mathbf{6 6} 50$ (Leaflet No. 7 on request)

 R

Electronic Organs
P.A. \& Discotheque Centre

309 EDGWARE ROAD;
LONDON, W.2.
Tel: 01-7236963

Electronic Components \&
Test Gear Centre
356 EDGWARE ROAD LONDON, W.2.
Tel: 01-402 4736

High Fidelity Sales \&
Demonstrations Ceritre
354 EDGWARE ROAD.
LONDON, W.2.
Tel: 01-4025854

Mail Orders. Special Bagaff Shop, Industrial Sales
303 EDGYAREROAD. LONDON, WR2. Tel: 01-7231808/9

Mail Orders: DRAYTON BASSETT, TAMWORTH, STAFFS

ELECTRONIC COMPONENTS

Wholesale/Retail:

TRANSISTORS AND I.C.s
ALL BRAND-NEW WITH MANUFACTURERS MARKINGS

ASY22	10p	2N709	50p
ASY29	25p	2N1302	15p
ASZI7 (OC35)	25p	2NI309	23p
BCI67	15p	2NI613	25p
BCY70	18p	2NI711	25p
BFXI2	20p	2N2646	58p
OC41	20p	2N2926	15p
OC42	23p	2N3053	25p
OC43	20p	2N3055	75p
OC44	15p	2N3702	18p
OC45	10 p	2N3703	13p
OC46	15p	2N3704	18p
OCl41	22p	2N3707	15p
OCl39	22p	2N3877A	40p
OC74	20p	7401	40p
OC204	25p	7410	40p
2G345	10p	7430	40p
2G371	10p	7472	55p
2G378	10p	7473	90p
		7475	¢1.15

SPECIAL 50p PACKS. ORDER 10 PACKS AND WE WILL INCLUDE AN EXTRA ONE FREE $111!$
RESISTORS, $\frac{1}{2} / \frac{1}{1}$ watt

PAPER CONDENSER
Ty types
ELECTROLYTIC CONDENSERS
suitable for Mains
Radio/TV
Transistor types
Mixed
MIYSTYRENE
CONDENSERS
MULLARD POLYESTER
SILVERMICA
WIRE-WOUND 3-Watt
SLIDERS
VOLUME CONTROLS
NUTS AND BOLTS. Mixed
length/type
8 B.A.
6 8.A.
2 B.A.
METAL SPEAKER GRILLES
7 7in. $\times 3 \frac{31}{2}$.
No Plug
No Plug
2.5 mm Plug

500 MICRO-AMP LEVEL
METERS
VEP. OBOARD. TRIAL PACK
5 BOARDS + CUTTER

100	${ }_{50}{ }^{\text {p }}$
20	50p
15	${ }_{50}{ }^{50}$
12	50p
50	
100	50p

PRANSISTORS

NEW! NEW! NEW! NEW! NEW!
A light-sensitive spray which enables you by photographic means to produce printed circuits in any quantity from a simple drawing. No lenses or timers needed. Just Light bulb.
Light-sensitive aerosol spray 5
Developer spray 50p

TRANSISTOR RADIOS

Once again we have a supply of these excellent radios which offer superb quality sound and excellent sensitivity. They are packed in a colourful presentation box complote with batcery, earpiece and carry price due to bulk purchase is only cl.98.

4,000,000 DIODES
 SILICON, GERMANIUM OR ZENER (STATE CHOICE)
 LOTS OF 100,000-£150
 10,000-£20
 1,000-£3
 500-£2
 100-50p

1,000,000 germanium transistors
 (0c71/0C75)
 LOTS OF 100,000-£250
 10,000-£30
 1,000-£3.50
 500-£2
 100-50p

SINCLAIR AMPLIFIERS AND SPEAKERS: Complete range in stock. All at 10% discount on list.

> VEROBOARD
> $2 \frac{1}{2} \times \operatorname{lin} \times 0.15$ in $6 p \quad$ in $\times 3 \frac{3}{2}$ in $\times 0.15$ in $28 \mathrm{p} \quad 3 \frac{3}{2}$ in $\times 3$ 3in $\times 0.1$ in 24 p 3 in $\times 2 \frac{1}{1}$ in $\times 0.15$ in 16p 17 in $\times 2$ in $\times 0.15$ in $55 \mathrm{p} \quad$ Sin $\times 2$ in $\times 0.1$ in 23 p 3 in $\times 3 \sin \times 0.15$ in 20p $\quad 17$ in $\times 3$ in $\times 0.15$ in $74 \mathrm{p} \quad$ Sin $\times 3$ in $\times 0.1$ in 28p Spot Face Cutter 38p. Pin Insert Tool 48p. Terminal Pins (0.1 or 0.15) 36 for 18p. Special Offer Pack consisting of $52 \frac{1}{2}$ in \times lin boards and a Spot Face Cutter-50p.
> RECORD PLAYER CARTRIDGES. Well below normal prices!
> G90 Magnetic Stereo Cartridges, Diamond Needle, 6 mV output, \&4. ACOS GP $67 / 2$ (Mono, Crystal) 75 p . ACOS GP $91 / 3$ (Compatible, Crystal) El . ACOS GP 93/, (Stereo, Crystal, Sapphire) \&I.25. ACOS GP 93/DD (Stereo, Crystal,
$\begin{aligned} & 94 / \mathrm{ID} \text { (Stereo, Ceramic, Diamond) } \mathrm{El} \cdot \mathbf{8 8} \text {. ACOS GP } 95 / \mathrm{I} \text { (Stereo, Crystal with } \\ & \text { two L.P./Stereo needles) } \mathbf{E I \cdot 2 5} \text {. }\end{aligned}$
TRANSISTORISED FLUORESCENT LIGHTS, 12 volt. All with reverse
polarity protection. 8 watt type with reflector, suitable for tents, etc., 83.
Postage/Packing 25p. 15 watt type, batten fitting for caravans E4. Postage/Packing
25p. 13 watt type, batten with switeh. 22in $x 2 i n x$ lin 65 , Postage/Packing 25p. MULLARD POLYESTER CONDENSERS
1,000pf, 1,200pf, 1,500pf, 1,800pf, 2,200pf, 15p per dozen (all 400 V working). $0.15 \mu \mathrm{f}, 0.22 \mu \mathrm{f}, 0.27 \mu \mathrm{f}, 30 \mathrm{p}$ per dozen (all 160 V working). 25% discount for lots of 100 of any one type.

RESISTORS

4 and watt Most values in stack. 50 p per 100 . 10 p per dozen of any one value. watt to 50 D MAINS DROPPERS. Hundreds of values from 0.7 ohm upwards. radio/television. Owing to the huge variety these can only be offered "assorted" at 50 p per dozen.

SILYER MICA/CERAMIC/POLYSTYRENE CONDENSERS
Large range in stock, 75 p per 100 of any one value. $15 p$ per dozen.

RECORDING TAPE BARGAIN: The very best British Made low-noise high-quality Tape! Sin Standard 38p. Long-play 45p. St in Standard 45p. Long play 60 p . 7 in Standard 60 p . Long-play 82 p . We are getting a fantastic number of repeat orders for this tape. Might we suggest that you order now whilst we still have a good stock at these low prices?

E5 WORTH OF COMPONENTS FREE!!!
Thinking of learning another language? If so apply to us for details of LINGUAPHONE courses. We will GIVE you 65 worth of components of your selection quite free of charge when you purchase a course ! ! ! !

BI-PREPAK LIMITED

PACKS OF YOUR OWN CHOICE UP TO the value of 50p WITH orders OVER $£ 4$

CLEARANCE LINES

OC71 \& OC72 transistors, unmarked, fully tested.	
TiC45 thyristors: 6 amp .60 volts, futly marked and tested. Texas plastic.	ked and $15 p$
	p
I.C. s fully marked and tested by A.E.1. Gates $\mathbf{2 5 p}$.	
Flip Flops 50p. 709 C linear amp. To-5 can	p
\uparrow watt zener diodes. $7.5 \mathrm{~V}, 6.8 \mathrm{~V}, 24 \mathrm{~V}, 27 \mathrm{~V} .30 \mathrm{~V}$ and 43 V .	$\mathrm{V} .30 \mathrm{~V}$
OA47 gold bonded diodes	
COLOUR T.V. LINE OUTPUT TRANSFORMERS.	
Designed to give 25 K.V. when used with PL509 and PY500 valves. As removed from colour receivers at the factory, ONLYf1 each post and packing 23p	
SPECIAL LINE	
: AMP. Bridge rectifiers 400 PIV. $=37 p \quad 800$ 100 PIV. $=25 p \quad$ PqU $=50 p$	
PAK F	13p
C	

${ }^{881} 10 \begin{aligned} & \text { Reed Switches, mixed types. large and } \\ & \text { small. }\end{aligned} \mathbf{5 0 p}$
${ }^{899} \mathbf{2 0 0} \begin{aligned} & \text { Mixed Capacitors, Post and packing } \\ & \text { Approx. Quantity counted by weight. }\end{aligned}{ }^{13 p} 50$ p
H4 $250 \begin{aligned} & \text { Mixed Resisiors. Post and packing } \\ & \text { Approx. Ouantity counted by weight. }\end{aligned} \mathrm{H}^{10 \mathrm{p}} \mathrm{50p}$
H7 $40 \begin{aligned} & \text { Wirewound } \\ & \text { Postrage } 7 p .\end{aligned}$ Resistors, Mxed Values. 50 p
H9 2 OCP71 Light Sensitive Photo Transistors. 50 p
${ }^{H} 1220 \underset{\substack{\text { NKT155/259 } \\ \text { stock clezrance. }}}{\substack{\text { Germ diodes. brand new }}} 50 \mathrm{p}$
$10{ }^{\text {OC71/75 }}$ Germ
$10 \xrightarrow{\text { OC81/81D }}$ Geim.
${ }^{8} 20 \underset{\substack{\text { OCL200/1/2/3 } \\ \text { tolscan. }}}{\text { PNP }}$ slicion uncoded 50 p
20 OA47 gold bonded diodes coded MCS2. 50p

BUMPER BUNDLES

hese parcels contain all types of surplus electronic
2 LBS IN WEIGHT FOR $\mathbf{f 1}$
OUR VERY POPULAR 3p TRANSISTORS
FULLY TESTED \& GUARANTEED

TYPE "A
PNP Silicon alloy, metal TO-5 can. 2S300 type. direct replacement for the OC200/203 range

TYPE "B"
PNP Silicon PLASTIC ENCAPSULATION, low voltage but good gain. these are of the 2N3702/3 and 2N4059/62 range.

TYPE "F"
NPN Silicon plastic encapsulation Low Noise Amplifier of the $2 N 3707 / 8 / 9 / 10 / 11$ Series.

TYPE "E"
PNP Germanium AF OR RF
please state on order. Fullv marked and tested.

Return of the unbeatable P. 1 Pak. Now greater value than ever

Full of Short Lead Semiconductors \& Electronic Components, approx. 170. We guarantee at least 30 really high quality factory marked Transistors PNP \& NPN, and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.

Please ask for Pak P.1. Only 50p 10p P \& P on this Pak

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block. will turn any $0-1 \mathrm{~mA}$ meter into a perfectly

The Semiconductor Supermarket of the South-East
linear and accurate rev. counter for any car. \qquad each
FREE CATALOGUE AND LISTS
for: -

ZENER DIODES

MINIMUM ORDER 50p CASH WITH ORDER PLEASE. Add 10 p post and packing per order. OVERSEAS ADD EXTRA FOR POSTAGE
P.O. RELAYS

8 for VARIOUS CONTACTS AND COIL RESISTANCES.
NO INDIVIDUALSELECTION.
INDIVIDUALSELECTION
POST \& PACKING 25 p

ach

TRANSISTORS, RECTIFIERS
 FULL PRE-PAK LISTS \& SUBSTITUTION CHART

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

STANDARD GPO DIAL TELEPHONES (black) P. \& internal

SURVEY METER RADIAC No. 3. Hand portable $8 L z e$
$0.3 ; 3 \times 5 \times 5 \pm$ ins. ${ }^{3}$ Ranges Internal Ion Chamber. Nice condition
 37tp. Charger only E1-50. P. \& P. 33p.
PHOTOMULTIPLIERS. EMI 6097X at $\mathbf{5 8 . 5 0}$ ea. 6097B- 65 ea. TYPe $931 A-62 \cdot 25$ ea.
TRANSISTOR OSCILLATOR.
TRANSISTOR OSCILLATOR. Variable frequency $40 \mathrm{e} / \mathrm{s}$ to 5 ke ke . E volt square wave of p, for 6 to 12 V DC mput. Size $11 \times 1 \mathrm{k} \times 1 \mathrm{in}$. Not encapsulated. Brand
new. Boxed. 57 m ex.
CRAMER B0 secs. 4^{*} dial. Remote control stop/start reset $\mathbf{E 5} .00$. RELAYS
G.E.C. Sealed Relays High Speed 24V. $2 \mathrm{ml} 2 \mathrm{~b}-\mathbf{2 3 p}$ ea. S.T.C. sealed 2 pole c/o. 2,500 ohms. (okay 24 v) 13p ea: CARPE NTERS polarised Single pole c/o 20 and 65 ohm coil as new. complete with base 37p ea.
Sill 33p ea. Single pole c/o 4000 : Single pole c/o 45 ohm Corle
Varley VP4 Plastic covers 4 pole chm $5 \mathrm{~K}-30 \mathrm{p}$ ea. ${ }^{3}$ 3 ea.

POTENTIOMETERS

COLVERN BTANA new. 50 METERS $100 ; 250 ; 500$ ohms: 1 ;

STANDARD 2 meg Log pots. Current type. 15p ea.
 5 OO Ohms; 1 TRIM POTS. $5: 25 \mathrm{~K}$ at $35 ; 20 ; 50 ; 100 ; 200 ; 250$, 500 ohms; $1 ; 2.55 ; 25 \mathrm{~K}$ at 35 pea en
ALMA precision resistors
$100 \mathrm{~K} ; 400 \mathrm{~K} ; 497 \mathrm{~K} ; 998 \mathrm{~K}$; 1 meg -0.1 .127 p ea. $3 \cdot 25 \mathrm{~K}-0.1 . .20 \mathrm{p}$ ea. at .
DALE heat sink resistors. non-inductive 50 watt. Brand new 8.2 K at 13 p ea.
SILVER ZINC Non-spill. Brand new. Single cell

CAPACITORS
ERIE feed through ceramicons $2200 \mathrm{pf}-4 \mathrm{p}$ ea.
Sub-min. TRIMMER square. 8. 5pf. Brand new 13p ea. Concentric TRIMMER 3/30 pf. Brand new 7p ea.
ELECTROLYTICS. Brand new. 250 mfd. 70 V 23p ea.
 Brand new 0.25 mfd 5 KV . Dubilier 50 p ea. P . \&P. P .15 p DECADE DIAL UP SWITCH. Finger-tip. DECADE DIAL UP SWITCH. Finger.tip.

PHOTOCELL equivalent OCP 71 13p ea.
Photo-resist type Chare 703. (TO5 Case). Two for 50 D
BURGESS Micro Ewitches V3 5930 Brand now HONEYWELL. Sub-min. Microswitches type 11 SM 3 . T Brand new. 17D ea.
PANEL mounting

NEL mounting lamp holders. Red. 90 ea.
BRAND NEW PLUGS AND SOCKETS

CANNON.

per pair but 25 way 50p ea. plug: 35 p ea. socket; 75 p

 B.N.C. right angle $\in 1 \cdot 25$ ea.: Min. socket round 50 p ea.
Standard B.N.C. round 35 pea. Many others too numerous to list. All prices quoted for 'one off, STEP TRANSF ORMERS. All standard inputs
STEP DOWN IS OLATING trans. Standard 240 v AC to 120 V tapped $60-0-60700 \mathrm{~W}$. Brand new ≤ 5 ea.
Neptune series ${ }^{460-435-0}$ etc. 230 MA and $600-570-540-0$ etc. 250 MA. 63.50 incl post. Transformer $0-215-250120 \mathrm{MA} ; 6.3 \mathrm{~V} 4 \mathrm{4A} \mathrm{CT} \times 2 ; 2 \times 6.3 \mathrm{~V}$
0.5 A and separate $90 \mathrm{v} 100 \mathrm{MA} \& 1.25 \mathrm{ea} . \mathrm{P}$. P .20 p . 0.5 A and separate $90 \mathrm{v} 100 \mathrm{MA} \in 1.25$ ea P P. \&' P. 20 p . Matching contact cooled bridge rectiffer 37 p ea. 20 p
 incl. postage. Designed to be Series paralleled.
Gard/Parm/Part. $450-400-0-400-450.180 \mathrm{MA} .2 \times 6.3 \mathrm{v}$. C3ea.

 Large quantity LT, HT, EHT P. \& Pransformers. Your requirements, please. ${ }^{\text {GRE }}$ ONTE Brand new boxed. Adjustable $90-160$ megs. (Like
umbrella) $\mathbf{E 6} 50$. Cart. E .

NUCLEONIC INSTRUMENTS

Pulse analyser N101: Scaler 1009E: Coincidence Amplifler $\mathbf{N} 567$: A/B/G Radiation Monitor 1257 A complete 1339A system A/B/G; EHT Potentiometer unit 1007; 1430 amplifer CF and head; Some ${ }^{\text {scintillation castles; radiation monitor } 1320 \mathrm{C} \text { and }}$
 Fluorl-meter 1080 A and many others. Also 2000 SERRES. Amp 2002A, Low level anp 2024; PU'S
2004; 2005B; nanosec time amplitude convertor 2004; 2005 B ; nanosec time amplitude convertor tor 2007 B ; high level amp 2025 and others. Informa tion a vailable.

MARCONI Wide Range Oscillator TF1370's and
TF1370A's. $10 \mathrm{c} / \mathrm{s}-10 \mathrm{mc} / \mathrm{s}$ from $\in 140$.

TEST GEAR

OSCILLOSCOPES

E.M.I.
SOLARTRON
SOLARTRON

SOLARTRON
7115 condition E50.

SOLARTRON
SOLARTRON

SOLARTRON

COSASOR
HARTLEY
HART
CTS2
CT52
All carefully checkin. scope. $\notin 17 \cdot 50$.
Noise gen. TF1301, $\mathbf{~ E 4 0}$, CaN
Vacuum tube Voltmeter TF1041A. © $£ 35 ; 1041 \mathrm{~B} . £ 45$.
 Deviation type 719, $£ 30$ ea. Carr. 75p.
AM/FM Portable VHF Test sets. As new. A must at C 60 . Carr, $£ 1 \cdot 25$.
TF 1026 Frequency Meter $\boldsymbol{\epsilon 1 2} \mathbf{1 0}$. Carr. 75p
TF 195 Andio Generator $\in 10$ AR new condition $£ 60$. TF 801 A Signal generator $£ 10$. Carr, $£ 1.50$. Carr. $£ 1-50$. TF801B Sig Gen $10-500 \mathrm{mc} / \mathrm{s}$ from f 150 .
Better ${ }^{\text {rexade }} \mathbf{6 5 5} \mathrm{ea}$. Carr. $£ 1.50$.

impedance Brider from 650 ea. Carr TF 144G Signal Generator. Serviceable. Clean $£ 15$. In exceptibnal condition $\mathbf{2} \mathbf{5}$. Carr. \&1-50. Valve voltmeter type CT208, $\in 17.50$ ea. Carr. 75 p .
TF 885 Viteo Oscillator Sine/Square $£ 35$ Carr, $\mathfrak{£} 1.50$. TF 885 Vikeo Oscillator Sine/Square $£ 35$ Ca
TF885/1 $£ 55$. Carr, $£ 1.54$. $£ 35$. Carr. $£ 1 \cdot 50$. SOLARTRON
Laboratory amplifier AWS51A. $15 \mathrm{c} / \mathrm{s}-350 \mathrm{kc} / \mathrm{s}$ © 35
Stabilised P.U. SRS 151 A $£ 20$. Carr. $£ 1 \cdot 50$.
Stabilised P.U. SRS 152 \& 15 . Carr 1.50.
Stabilised P.U.SRS 152 115 . Carr. \&1 50 .
Precision Millivoltmeter VP252. E25. Carr. £1
Process Response Analyser. Fine Condition $\mathbf{6 2 5 0}$

Testmeter No 1 AYO
Testmeter No. 1 ©12 ea. Carr. 75p.
Electronic Testmeter CT 38. Complete 620 Carr. $£ 1$ CINTEL
PW 0.05
Square and Pulse gen. PW $0 \cdot 05$ to 0.3 micro secs
15 mV to 50 V ; rep rate 5 hz to $250 \mathrm{kz} \mathbf{E 2 0}$. Carr. $£ 1$. AIRMEC
Signal Generator type 701. E25. Carr. £1-50.
AIRMEC Generator type 210 El20. Carr. £1.50.
MARCONI TF 1277. Colour studio scope, will line select. In superb condition. 6120 .
E.M.I. Osclloscope type WM16. Main frame $\in 125$. Choice of Plug in $7 / 2 \mathrm{DC}-24 \mathrm{mc} / \mathrm{s} \times 2 \mathrm{E35} ; 7 / 1 \mathrm{DC}-$ 40. megs E25. Differential unit available from $\mathbf{C 4 0}$.
E.M.I. WM8. DC to $15 \mathrm{mc} / \mathrm{s}$. Complete with plug E.M.L. WM8. DC to 15
in pre-anmp, from $£ 40$.

BRADLEY ATTENUATORS 0,500 meg cycles.
$0 / 12 \mathrm{db}$ and $0 / 120 \mathrm{db}-620$ per pair.
BECKMAN MODEL A. Ten turn pot complete
E.H.T. Base B9A in Polystyrene holder with cover Brand new. 13p ea.
DVM's BIE 2114 E50 ea.; BIE 2116 ¢50 ea. Carr. £1-50.
BC22I-Brand new $\mathbf{6} 35$ ea. Carr. £1.
NAGARD Thouble pulse gen type 5002 ©50. Carr. $£ 1 \cdot 50$.
MARCON1 SPECTRUM ANALYSERS type
OA 1094, from 6325 .
FIBRE GLASS PRINTED CIRCUIT BOARD. Brand new. Single side $\frac{1}{2}$ p per sa. in. Double sided Ip per sq. in.
BERCO miniature variac type 31C. $0-250 \mathrm{~V}$ 1 amp. ${ }^{5} 5 / 16$ th * depth. $3^{\prime \prime}$ diameter. Complete with dial and pointer. As new 63. P. \& P. 37p.
SEQUENTIAL TIMERS 240V synchronous motor $\frac{1}{2}$ rpm. 12 cam opersted 2 pole micro switches. Individually
adjustable from 0° to 180°. E6 ea.
Standard 240 V MOTORS with reduction gearbox 14 lbs. inch. 23 ea
Modern replasement for VCR 138 tube. Flat face 3 in . 1.63. P. P. 25 Bases 17p.

FERRITE rods connplete with LW, MW and coupling
coils. Brand new, 25 p ea. P. \& P. 7p. oils. B
FIREBALL TURRETS. Brand new EI•50 ea. P. \& P. 25p Sub-miniature 15 's 465/470 kcs. Size $\frac{t}{2} \times \times \frac{1^{\prime \prime}}{}$ high.
Sub-min. Vitality bulbs 8V 1.2 W 5 mm Clear L.E.S. $7 p$ ea. 100 off $6 p$ ea.
DUNFOSS-solenoid valves. 240V $50 \mathrm{c} / \mathrm{s}$. Type EVJ 2.

CLAUDE LYONS Main Stabllizer. Type TS-1L-580. Input 119-135 volts 47/
SERV OMEX. Stab. Transistor P.U. 0-15V 2.5 amps. Volt and Current meters, overload trip. $£ 15$ ea. Carr. -
.H.T. Unit by Brandenburg model S.0530/10. 655.
SMITHS twin channel recorder. Transistorised. 665.
Various other single and twin track recorders from $\mathbf{E 1 0}$.
arious other single and twin track recorders from $\mathbf{E 2 0}$.
EVERSHED \& VIGN OLES Recording paper. Brand new boxed. L618H4 7^{*} wide, $11^{* \prime}$ dia. 17
roll. JL900H4 7^{*} wide, 14^{*} dia. 25 p roll.

9in. Rack Mounting CABINETS 6ft. high 19in. deep. Side and rear doors. Fully tapped, $\in 12 \cdot 50$. Carriage at cost. Double Bay complete with doors. Fine condition. 625. Carriage at cost.
ADVANCE Sig. gen type 71. $\mathbf{E} 15$ ea. Carr. $£ 1 \cdot 50$. Signal Generator CT53. Complete with charts 615. Clignal fen
TIME CALIBRATOR unit by Cawkell any or all time intervals from 0.5 microsecond to 1,000 microsecond. WAYNE Kerr Universal Bridge type CT375 645 ea. Cart. $£ 1.50$.
MUIRHEAD Swept Audio Oscillator $£ 50$ ea. Carr. $£ 1 \cdot 50$. EMI Swept Audio Oscillator type SRO2 $£ 40$ ea. Carr. 2 .
Travelling WAVE oscilloscopes-Sweep speed from 10

4 DIGIT RESETTABLE COUNTERS. 1000 ohm . coll. Size $14 \times 1 \times 4 \mathrm{in}$. As new, by Sodeco of Geneva. \mathbf{E} 2-50 ea.
As above but 350 ohm. $\mathbf{6 3} \cdot \mathbf{5 0}$ ea
METERS-Model 3705 . $\mathbf{2 5 - 0 - 2 5}$ micro amp. Scaled.
METERS-Model ${ }_{-100-0-+100.5 \frac{1}{2}^{*}} \times 4^{* \prime} . £ 3^{25}$ ea.
SANGO 50 micro amp 4^{*} round. Brand new boxed
SANGO 50 micro amp rectangular meter. Size 29×3.

SANGO 50 micro amp $3^{* *}$ round meters. Ex brand
new radiation equip. $\in 1$ ea. P. $\&$ P. 17 p .

SEEING IS BELIEVING!

First come, first served
AT LAST. BC221 complete with correct charts,
circuit diagrams. in tine condition for ONLY E13.34. circuit diagrams. in fine condition for ONLY $\mathbf{C 1 3 \cdot 3 4}$. C.R.T.'s 5". Brand new with spec sheet. 63p ea
P. \& P. 25p. MARCONI Valve Voltmeter 428B/1 65 ea Carr. $£ 1$
AMERICAN oscilloscope type TS34/AP Size oood working

COSSOR D.B. Scopes-some models from EIS MARCONI Absorption Wattmeter 1 micro watt to
6 watts. Type TF956. FANTASTIC at 67 ea. SOLARTRON Stab PU AS518 \& 18517 . SOLARTRON Stab. PU AS5 16 \& AS517. Circuits
supplied. Fantastic value at $\in 2$ and $£ 4$ each. SUPERB BUYS. Furehill Vrood Valve meter 10 mv to 1 kv . Elo ea 200 A Valve millivolt MEGA Ohm Meters
MEGA Ohm Meters-check earths, bonding etc Genuine MULLARD Transistors/Diodes. Tested and guaranteed. OC41, 42, 76, 77, 83: OA5, 10. Al at 5p ea. OC23-10p ea.
COMPONENT PACK consisting of 2-2 pole 2 amp push on/off switches; 4 pots 1 double; 1 -smal double pole vol control; 250 resistors \ddagger and $\frac{1}{2}$ watt 3000 Series relays- 15 mixed values (new and as new. no rubbish) $41-50$. P. \& P. 37p 3000 Type 2 pole c/o assembly. Brand new boxed -will fit any 3000 type relay. 10 p incl. postage Carriage extra.

TRANSISTOR EHT INVERTORS. 12 volt in, o/p (+ or -) 1.5 KV 2 MA and $3 \mathrm{KV}+100$ micro amp. Ideal CRT supply, photomutiphers etc. Full information suppled. Brand new at 4 so ea. P. \& P. 25p
Also, as above but 1.5 KV AC $20 \mathrm{kc} / \mathrm{s}$. $\mathbf{3 3} \cdot \mathbf{5 0}$. P. \& P. 25 p . Panel switches DPDT ex erf. 13p ea.; DPST Brand new Switches 4 pole 2 way 13p.
Replacement UHF Transistor Tuners. Brand new Brand new heads for TR50 and TR51 Tape Recorders
£ 1.60 . GYROS Large clear plastic topped. Type A $\mathbf{6 5}$ ea P. \& P. 75p.

ALBRIGHT Heavy Duty Contactor. Single make MOTOR DRIVEN SWITCHES. 4 to 24 volt. 6 pole,
24 way. Brand new. $£ 3$ ea. P. \& P. 25 p.

Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order
FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd units, etc., at 'Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day.

CHILTMEAD LTD.

7-9-11 Arthur Road • Reading • Berks • Tel. No. 582605 (rear Tech. College) 300 yds. west of 22 Sun Street • Reading 65916

GEARED MOTORS "Parvalux" Reversible RPM 1, Geared Motor. Type
S.D. $14,230 / 250 \mathrm{v}$. A.C. 22 lb . lin t. spindle. Ist class condition.
$E 7.50$ each. P. \& P. 50p. Also limited number only as above.
Brand New. $£ 12.50$ each P. \& P. 50
ELECTRO CONTROL (CHICAGO). Shaded pol $240 \mathrm{~V} .50 \mathrm{~Hz}, 110 \mathrm{rpm}, 16 \mathrm{lb} . / \mathrm{in} . \mathbf{~} \mathbf{2 2} \cdot \mathbf{2 5}$. P. \& P. 25 p .200 rpm 10 lb ./in. $\mathbf{2 2} \mathbf{2 0} \mathbf{5 0}$. P. \& P. 25p.
MYCALEX. Open frame, shaded pole motors. 240 V $50 \mathrm{~Hz}, 7 \mathrm{rpm} .28 \mathrm{lb} . / \mathrm{in} .80 \mathrm{rpm} .12 \mathrm{lb}$./in. $£ 2.25$ each P. \& P. 25 p.

SMITHS SYNCHRONOUS MOTORS. 12 r.p.h

 ELECTROLYTIC CAPACITORS MULLARD. $900 \mu \mathrm{~F} 100 \mathrm{v}$. heavy ripple screw terminals $1 \frac{7}{7^{\prime \prime}}$ dia. $\times 3 \mathrm{l}^{n^{*}}$
 ${ }^{38} \mathrm{p}$ ea., $£ 3.50$ per doz. $1,250 \mu \mathrm{~F} 25 \mathrm{v}$. $1^{\prime \prime}$ dia. $\times 2^{\prime \prime}$ 50 p ea. 64.50 per doz
HUNTS $1,000 \mu \mathrm{~F} 50 \mathrm{v}$. $\mathrm{l}^{\prime \prime}$ dia. $\times 2^{\prime \prime}, 25 \mathrm{p}$ ea., $10,000 \mu \mathrm{~F}$ 6y. $13^{* \prime}$ dia. $\times 2^{* \prime}, 30 \mathrm{p}$ ea., 63.00 per doz. $16 \mu \mathrm{~F} 350 \mathrm{~V}$
 $\times 2^{\prime \prime}, 38 \mathrm{p}$ ea. $100 \mu \mathrm{~F} 100 \mathrm{v}$. $\mathbf{1}^{\prime \prime}$ dia. $\times 2^{\prime \prime}, 25 \mathrm{p}$ ea
ERIE. Ceramicon capacitor. Type CHV4IIP. 500 P.F.
30 KV Size 1.5^{*} dia. $\times 1.44^{\prime \prime}$ Iong. 50 ea. Carriage paid.
"TANIE
"TANSITOR" (U.S.A.) TANTALUM WET SIN

 Tansistor "MICRO-MODULE" capacitors 0.2 mfd . $15 \mathrm{v}^{2}$ wire-ended, size: ${ }^{\text {sin }}$ dia. (disc) T.A.G. and Union
Carbide 15 midd. 10 v . All types EI - 25 per doz. (mixed or Carbide 15 mid. lov, All ty.
VINKOR POT CORE ASS. TYPE LA. 2103 . Normal VINKORPOT CORE ASS. TYPE LA.2103. Normal
price fi-48. Our price 75p each. Special quote for price f quant
quantity
quantity
AMPEX. Dynamic stick microphone, high impedance low noise.
P. \& P. 25p
Special offer of AMPEX professional tape heads mu-metal shrouded. (Designed for model AG.
track record, or playback, $£ 3.00$. Erase head $£ 2.00$. Set o track record, or play
3 with mounting bracket and cover $\mathbf{6 7} 50$. Half track record or playback only, $£ 3.00$ each or $\$ 5.50$ per pair with bracket and cover. Carriage paid.

Painton Rotary Switch. Type 72 (to P.O. spec. RC1416). 3 pole, 3 position 2 bank. Offered at less than hal
"GOYEN" PRESSURE SWITCH. Incorporating differential adjustment between $2^{\prime \prime}$ and $12^{\prime \prime}$ water gauge
(a max. of approx. $\frac{1}{2}$ p.s.i.). A single pole change-over (a max. of approx. $\frac{1}{2}$ p.s.i.). A single pole change-over
switch rated 15 amps. 250 v . is actuated. Air inlet tube ${ }^{3}{ }^{\prime \prime}$. On Projection $\mathrm{H}^{\prime \prime}$. Overall size: dia. $3 \mathbf{1}^{\prime \prime}$, depth $2^{* \prime}$ plus $\mathrm{H}^{3 \prime \prime}$ (air tube). $\mathbf{E} \mid \cdot 25$. Carriage Paid.
THORN KEY SWITCH. 3 change-over. Neat action, either locking or spring-return, as required detereither by reversing fixing plate. Attractive plastic
minestle. Available red, green, grey, cream. 60 p each. prestle. Availab
HONEYWELL (USA) Sub-miniature 2 bank panel mounting micro-switch, positive toggle action giving
2 change-overs. Size: $\frac{7}{16} \times \frac{7}{16} \times \frac{3^{\prime \prime}}{4} .63 p$ esch. Carriage paid.
"HONEYWELL" V3 Series. Flush microswitch 10 amp . c/o. The side panel is insulated. End plate size: $2^{\prime \prime} \times \bar{t}^{\prime \prime}$. $f 1.50$ per doz. Carriage Paid.
OMRON MICROSWITCH. Type VV-15-IA.
Single c/o 10 amp . at 250 v . $\mathrm{I}^{*} \times \mathbf{t}^{\prime \prime} \times \mathrm{t}^{\prime \prime} . \mathrm{El} .50$ per dozen. MARCONI SANDERS Micro-wave switch. Type
No. 6442. Maker's list price $\mathbf{7 7 5}$. Our price $£ 7.50$

PYE MICROSWITCH. Orehall type. This switch has a lis" $\times{ }^{2}{ }^{\prime \prime}$ dia. column plus $\frac{1^{*}}{}$ plunger. Minimum travel operates
switch. 45 p each. P. \& P. IOp. Special discount for quantitie
"TEDDINGTON" CONTROLS THERMOSTAT TYPE TBB.-Adjustable between 75° and $120^{\circ} \mathrm{C}$. Circuit cuts in again at 3° below cutmout setting. $42^{\prime \prime}$ capillary and sensor probe. The thermostat actuates a
15 amp . 250 v . c/o switch. A second single pole on/off switch is incorporated in the adjustment mechanism. 88p. Carriage Paid.
UNISELECTORS. 8 , Bank 25 -way 24 v . Double sweep band new in maker's boxes. E6.75. P. \& P. 25p HEAVY DUTY PORTABLE BATTERIES. New ex WD. 12v. 75 AH. Built in stout metal cases with carrying handles and nifam socket outlet. Size $15 \frac{1^{\prime \prime}}{} \times$
$7 \frac{1}{2}^{\prime \prime} \times 10 \frac{1}{2}^{*}$ high, weight 73 lb . $£ 8.75$. Carriage $£ 2$. L.T. TRANSFORMER. Prim. $0-110-240 \mathrm{v}$. $4.5 v$
15 p .

Push Bution Smitch, Type 14 D.M.C. A Very fine switch made y Honeywell. The swith is intended for mounthy, on panel
hrough oblong hole. No acrew required for fixing, tit sprung
 mately 1 In. dia. nund and dished tor ease of operation. 0 normal when presure released. Ideal for instriment or
 energised by trabistor invarter thus gives maximum ligh
 ready to install. Complete with tube 24. Poat 20p. controllable from speed point of vlew, size 34 in x easily

 powertul pull, esize approx. 17 in. $\times 1$ in. $\times 11$ in. 1 in. pull
Maine
2 ins

 normal thermostata, i.e, gwitches on with a rising tempera-

 long $\times{ }^{2}$ in. dlameter. 81 . TV. Postage and inaurance 25p.
Hoaring Aid Amplifters. 3 transistors and asocolated con-

 pens when ach meted. NYlon body as ise
matic washing machinea. The mains solenold is completely embedded in a reellu jaciet thus making it absolutely waterprooi. Many uaes inctude automatic control of plant one smali and one iarge bose connector. Price 95p. $£ 10$ Nane. solenold operratod Whater Valve. Normaliy open, closes when activated. This is made by Asco, their type
No. 8030 A2. Thili is Aheavier and somewhat superior water

 rotated through 960 degs. Well made, should give years of
trobule free erarive. Price 21.75 , post and inseurance 30 .

 pilot light etc. \&8\&50, postage 30 p .
 Construction with mounting feet. \&又.25, poat 30p. Dut angled movement gives wide easilif read scale, 8 ranges
D.C. volta $0.15-150-1000 \mathrm{AC}$ volta $0-10-150-1000$ OC current 00 .

Air Soweod Tuntng Condonaer, 2 gang with slow motion estimated at approximately 300 p. .t, snd 250 p.f. 45 p . 25 doz .
 operate. Contacts rated at 10 amps. Price 20 p .

mately 1 If intis, useful gize and standard replacement in
many T. Sets, $18 p$. \&1. 20 per dozen. by Morganite, Weiwy or similar quality makers. Btandsro ircuita. Low values are wire wound. The following values are 0 peach. $£ 1$ per dozen. 1 Watt Trandistor Amplifier. Japanese made, very good quaity. Panel size approx. $54 \mathrm{in} . \times 2 \mathrm{in}$. 5 transistors,
$3-8$ ohm output, operated trom 9 v battery or from malue
 headilghts. $12 \mathrm{v} 50 / 40$ watt or $64 / 45$ watt and $6 \mathrm{v} 45 / 35$ or wiring diagram, not suitable for vehicles with sealed ignition ayatem or a dieal powered vehicle without a mater awitch
Comprise of relay coil with switch in metal can and limiting comprises of relay coll with witch in metal can and limiting 30 Becond Delay Unit. This requires 24v. AC or DC to operate, A higher or lower voltage would decrease or ncrease the delay time within limita. The switch which in closes after delay. It will remain closed for a period of 30 to 60 geconds dependlug upon how long the delay woltage is Made by A.E.I. these have many uses, i.e to delay switching on fan of central heating switching until the boiler has properly fired. Price 75D.
then use a relay. We cen supply instead of the switching on then use a relay. We can supply suitable one at 68p.
Thermo Gas Valve. Intended for gas refrigerators but biouly adaptable many other uses, this has an 8 ft . long capillary sensor and a very poiltive action gas valve.
The thermostat is adjuatable over the normal refrigeration Panostat. This device ls fitted to many electric cookers, it's a hermostat with flat probe and with it the temperature of a point or made to boil vigorausly. The setting is by norma ointer knob on the spindle. (Polnter knob not gupplied.) Price 75D each.
Remington Mini-Computerr. At the tlme of going to press we haven't very much information about thene, but they ontrollers, these are mounted on teak sinish dears and weigh just over 2 ewts. Size approx. $4 \mathrm{ft} . \times 2 \mathrm{ft} .6 \mathrm{in}$. \times pounds each to make. We have only three. Price 8175 each. Obvioualy. We sell these without guarantee as we have 18 r.p.m. Motors. Small mains operated motor made miths, with gear box attached. Finsl drive shaft $1 / 16$ th in Good quantity of these avalisble. 50p each or 12 for 25. parte and to be in repairable condition. 4 for $23 \cdot 50$. Post
10 minate Timer 8 witch. Sade by the famous Smiths approximately 120 deg. Turn the shaft and the circuit switch closes and will remsin closed for up to 10 minutes Timending on arc through which the switch has been turned. normal 12 hour clock with 20 amp awitch which may be eet
to operate on and off anywhere around the 12 hour dis]. Also incorporated is an oven thermometer and thermostatic
switch. The thermostatic switch may be set anywhere between $50^{\circ} \mathrm{C}$ and $90^{\circ} \mathrm{C}$. Price $\mathbf{2 5}$ emeh pluas 35 p postage and insurance. Oven censor unit on flec lead available as separate item price $£ \mathbf{2} \mathbf{2}$.

ERGOTROL UNITS

OUT OF SEASON BARGAIN

DISTRIBUTION PANELS

Juat what you need for work bench or lab. $4 \times 13 \mathrm{amp}$
pluge and on/oft switch with neon warning 11 ght . Bupplied
cable. Wired up ready to work, 82 less plug; $28 \cdot 25$ with fitted 13 amp plug; $82 \cdot 40$ with fitted 15 amp plug, plus 23p P. \& I.

THIS MONTH'S SNIP

FIRE ALARM BELL

Malns operated Really lowd ring 6 ln . gong. Size approx. $12 \mathrm{ln} . \times 6 \mathrm{ln} . \times 4 \mathrm{in}$. aultable outside or ingide. Heary cast case with $\frac{\mathrm{in} \text {. conduit entry. Made by A.F.A. Operates }}{}$ off $200-240 \mathrm{~V}$ AC. $\mathbf{2 3} \cdot 75$ plus 60 p .

I HOUR MINUTE TIMER

Made by famous Bmiths company, these have a large clear dlal, size $4 \frac{\mathrm{i}}{\mathrm{i}} \mathrm{in} . \times 3 \frac{\mathrm{in} \text {., which can be set in minutes up to }}{}$ hour. After preset period the bell rings. Ideal for processing. a memory jogger or,
micro-switch. 81.15 .

MOTORISED CAM SWITCH

These have a normal malus $200-240 \mathrm{~V}$ motor which drives a ratchet mecher give 6 and 2 on/oft thus approx 600 circnit changes per hour are posslble). Contacts, rated at 15 amp have been set lor certain switch combinations but, can, no doubt, be
altered to suit ar apectal fob. Also other switch wafers or devices can be altered to suit a speclal job. Also other switch waters or devices can be
attached to the shaft which extends approximately one lich. $£ 2.35$. Post and Ins. 23 p .

THYRISTOR LIGHT DIMMERS

Will dim licandescent lighting up to 600 watts from full brillance o out. Suitable to mount on M.K. switch plate, same slze and fixing astandard wall switch, so may be fitted in place of this, or mount on surface. Price complete with control knob 23

RESETTABLE FUSE

How loeg does it take you to renew a fuse? Time yourself when next one blows. Then reckoning your time at $\mathbf{\varepsilon 1}$ per hour see how quickly our resettable fuse (auto clrcuit breaiser) will pay for itself. Price only $£ 1$ each or $£ 11$ per dozen, specify 5,10 or $15 \mathrm{amp}-$ stmply fut in place of awitch.

9 PIECE SOCKET SETS

Complete with wall or bench rack. Most usetul sizes from
 $t \ln$. to $15 / 16 \mathrm{ln} .80 \mathrm{p}$ plua 23 F post and \ln surance.

4

 AaAannッ:

3 Stage permeability tuner
This Tuner is a precision instrument made for the famous Radiomobile Car Radio. It is a medium wave tuner (but set of long wave coils available as an to operate with an I.F. value of $470 \mathrm{Kc} / \mathrm{s}$. Extremely compact (eize only $21 \times$ 2×1 In. thich) with reduction gear for fine tuning. 65p, with circuit of front
end suitable for car radio or as a general purpose tuner for use with Amplifer.

No. of Poles	Ministure in in. da. wafers-silver plated 5 amp std. 1 in . splndle.								
	2 way	3 way	4 way	5 way	6 way	8 way	9 way	10 way	12 way
1 pole	${ }^{80}$	${ }^{000}$	800	800	60p	${ }^{89} \mathrm{p}$	88 p	${ }^{335}$	${ }^{88}$ p
2 poles	${ }^{600}$	${ }^{60 p}$	${ }^{60} \mathrm{D}$	60 p	60p	880	83 p	65p	56p
3 poles	${ }_{60 \mathrm{D}}$	000	${ }^{600}$	${ }^{60}$	81	${ }^{55}$	${ }^{55}$	750	750
4 poles	${ }_{600}$	600	80 p	81	${ }^{21} 1.40$	${ }^{55} 5$	${ }^{655}$	${ }^{95 p}{ }^{\text {a }}$	${ }^{969}$
5 poles	${ }^{60 p}$	60p	81	81	\$1.40	${ }^{750}$	75 D	81.15	${ }_{81}^{81.15}$
6 poles	${ }_{80 \mathrm{D}}$	81	81	81.40	21.80	${ }_{965}$	${ }^{750}$	31.35	21.86
8 poles	81	81	21	81.40	21.80	96 p	965		
9 poles	81	s1	81.40	21.40	22.20	81-15	41.15		
10 poles	81	4	81.40	81.80	22.20	81.15	81.15		
11 poles	21	81.40	21.40	81.80	28.60	21.35	81.35		
12 poles	11	21.40	21.40	E1.80	42.60	:21.35	21.36		

COMPUTER TAPES
2,400 ft. of the best magnetic tape money can buy. Made by E.M.I., 1 in . de, amont unbreakable and ana iot in. metal computer spool. Users have plus 33p post. Cassette to hold spool 50p extra

MICRO SWITCH

5 amp. chan 81.05 doz.

Where postage is not stated then orders over 6.5 are post free. Below
65 add 20 p. S.A.E. with enquiries please.

Post \& Trade orders to Dept. WW, J. Bull (Electrical) Ltd., 7 Park Street, Croydon CRO IYD Callers to 102/3 Tamworth Road, Croydon

Opportunities Unlimited in RADIO,TELEVISION, ELECTRONICS

C \& G Telecommunication Techns' Certificate C \& G Electronic Servicing Certificate
R.T.E.B. Radio/T.V. Servicing Certificate
Radio Amateurs' Examination General Certificate of Education, etc.

Which one would qualify you for higher pay?

International Correspondence Schools provide specialized training courses for all these certificates, and with the help of the Schools' experienced tutors you can be sure of early success. You will have the advantage of building on your practical experience and ensuring that you have the technical knowledge so essential for success in electronics.
And the result? You'll soon be qualified in your field of electronics, and in a position to choose your opportunity.
Find out how ICS can help you. Send for our free prospectus right away.

ALL EXAMINATION STUDENTS ARE COACHED UNTIL SUCCESSFUL

NOW-COLOUR TV SERVICING COURSES As the demand for colour TV increases, so does today's demand for trained servicing engineers. You can learn the techniques of servicing colour and monochrome TV sets through new home study courses specially prepared for the practical TV engineer.

SELF-BUILD RADIO COURSES

We'll teach you both the theory and practice of valve and transistor circuits, as well as how to service them, while you build your own 5 valve receiver, transistor portable and high grade test instruments. You build equipment of real practical use!

QUALITY PARTS

FOR THE DISCERNING BUILDER
BAILEY PRE-AMPLIFIER still offers lowest distortion level and best overload capability. Edge Connector Mounted Printed Circuit in Fibreglass or Paxolin material to choice. Highest quality parts including gain graded transistors. BAILEY 30w POWER AMPLIFIER. Edge Connector Mounted Printed Circuit in Fibreglass or Paxolin material, size $4 \frac{1}{1 "}^{\prime \prime} \times 2 \frac{3}{4}^{\prime \prime}$. This unit and the above Pre-amplifier can both be used in our new Metalwork Assembly.
BAILEY 30w POWER SUPPLY. We have now designed a Printed Circuit Board for the power supply, again intended to be used with our Metalwork, which also has edge connector mounting. Available in Fibreglass material only. BAILEY 20w AMPLIFIER. Special driver transformer and bifilar wound mains transformer. Printed circuits and aH parts available for this design.
LINSLEY HOOD CLASS A. Full sets of parts now available to the new specification given in the December, 1970, Wireless World.
FULL KITS OF PARTS including Edge Connector Mounting Printed Circuit now available for Linsley Hood AB Design. This unit is fully compatible with our Metalwork Assembly.
SUGDEN CLASS A AMPLIFIER. A Hi-Fi News design. All parts are in stock except the Metalwork.
WADDINGTON STEREO DECODER. Printed circuits now available in fibreglass and paxolin material.
J. R. STUART TAPE CIRCUITS. We will be designing Printed Circuit Boards and supplying parts for this interesting design.
Full details are given in our Free lists. Please send foolscap s.a.e.

HART ELECTRONICS

321 Great Western Street, Manchester M14 4AR
Personal callers are always welcome at our retail shop, but please note we are closed on Saturdays.

WW-098 FOR FURTHER DETAILS

XENON STROBOSCOPE

A Stroboscope designed primarily for laboratory, industrial and educational applications where the elaboration and expense of more complex equipment may not be required. Features include simplicity of operation, robust construction, exceptionally low price and built in reliability.
The instrument is of modern appearance, small, light in weight, convenient to use and portable. A wide range of flashing rates is covered by the large accurately calibrated dial, allowing operation at low frequencies for strobo photographic experiments and at high speeds for observation of rapidly rotating or reciprocating phenomena.
The external triggering facility permits single shot operation by an external closing contact and also provides a synchronising input for high and low speed repetitive phenomena which might otherwise be difficult to maintain in exact phase.

Light source.
Flashing rate.
Frequency accuracy. Triggering.

High intensity Xenon tube mounted in a parabolic reflector.
1-250 flashes/second in 3 ranges
Typically $\pm 2 \%$ of each full scale.
(a) by internal oscillator
(b) by external closing contacts.

Price: $£ \mathbf{8 8 . 5 0}$
Edwards Scientific International Ltd.
Knowle Road, Mirfield, Yorkshire. Tel: 0924844242

R.S.C.SUPERBOMKIHIGH FIDELITY STEREOAMPLIFIER

HIGB GRADE COMPONESTS.
GPECTFICATONS COMPAEABLE WITH
MITS COSTTNG CONSDERABLY MORE Emiploying Twin Printed Cireuits. 200/2507. A.C. maims operation. OUTPUT (Per channel): 10 Watto R.M.S channe ous into $15 \Omega 15$ Watts R.M.B. continuous into 3Ω ITPUT 8ENSITYVITIES: Mag. P.U.
Ceramic P.U. $35 \mathrm{~m} . \mathrm{v}$. Tape Amp. 400 m FREQUENCY RESPONSE: $\pm 2 \mathrm{~dB} .10-20,000 \mathrm{c}, \mathrm{p} . \mathrm{s}$ TREBLE CONTROL: +17 dB to -14 dB at $10 \mathrm{Kc} / \mathrm{s}$. BAS8 CONTROL: +17
HUM LEVEL: -80 dB HARMONIC DISTORTION: 0.1% at 10 Watts 1,000 c.p.s.
CROSS TALK: $\overline{2} 2 \mathrm{~dB}$ at 1,000 c.p.s.
 EMINENTLY SUITABLE FOR USE WITH ANY MAKE OF PICK-UP OR MIC. (Ceramic or Magnetic, Moving Coil, Ribbon or Crystal) CURRENTLY AVAILABLE.
SUPERB SOUND OUTPUT GUALITY CAN BE OBTAINED SUPERB SOUND OUTPUT QUALITY CAN BE OBTAINED
BY USE WITH FIRST-RATE ANCILLARY EQUIPMENT. COMPLETE KIT OF PARTS, point to point
wiring diagrams \& detailed instructions wiring dia
supplied.

UNIT FACTORY BUILT $£ 30.50$ Or deposit $£ 4$ and 9 ranthly parments $£ 3.35$ (Tntal £34.15)
Or in Teak or Atrormosia veneer
housing as illustrated. Carr. 75 p . $\mathbf{3 3 . 7 5}$ housing as illustrated. Terras: Deposit $£ 4$ and y monthly payments
$£ 3.75$. (Total $£ 3775$). Send s.A.E. for leaflet.

BRADFORD ${ }^{10}$ North Parade (Half-day Wed.), Tel. 25349
BLACKPOOL (Agent) O \& Electronics 227 Church St.
BIRMINGHAM
I.: O21-236 127. Hall-day Wed.

DARLINGTON 18 Priestgate (Half-day Wed.). Tel. 68043 EDINBURGH 133 Leith St. (Half-day Wed.)
GLASGOW 326 Argyle St. (Hall-day Tues.) T 56
HULL 91 Paragon Street (Half-day Thurs.). Tel. 20505

MAIL ORDERS to:
106 Henconner Lane, Leeds 13 Terms C.W.O. or C.O.D.
Postage 25 . extra under ED 30 p exer Trade supplied, S.A.E. with

Branches open ALL DAY Sat
MAIL ORDERS MUST

LEICESTER 32 High Street (Half-day Thurs.). Tel. 56420 LEEDS 5-7 County (Mecca) Arcade, Briggate $\begin{gathered}\text { (Halif-day Wed.) Tel. } 28252\end{gathered}$ LIVERPOOL ${ }^{73}$ Dale St. (Half-day Wed.). Tel. CeNtral 3573 LONDON 238 Edgware Road, W. 2 (Half-day Thurs.). | Tel. PAD |
| :---: | 629 MANCHESTER 60A Oldham Street (Halffday Wed.) MIDDLESBROUGH 106 Newport Rd. (Half-day $\begin{aligned} & \text { Wed.). Tel. } 47096\end{aligned}$ NEW CASTLE UPON 41 Blackett Street (opp. Fenwirks SHEFFIELD ${ }^{13}$ Exchange Street (Castle Market. Blds.)

SMOOTHING CEOKES

Avalable with Trans-
parent piastic coner
RECORD PLAYING MON UNITS Ready to plug into Amplite RP23C Consisting of Gartard Goldring Cseon high compliance ceramace stereolmono apritidse
witb dianoond stylus. Mounted on plinth Trangparen ped Cover included 50 p
Carrent
c26.09 RP6C Garrard 3200 Auto Unit
 OTHER TYPRes with Magnetio oit loweot orer traosparent povera

WEYRAD

COILS AND I.F. TRANSFORMERS IN

LARGE-SCALE PRODUCTION FOR RECEIVER MANUFACTURERS

P. 11 SERIES $10 \mathrm{~mm} . \times 10 \mathrm{~mm} . \times 14 \mathrm{~mm}$. Ferrite cores $3 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
P. 55 SERIES $12 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores $4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
T. 41 SERIES $25 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores 4 mm . $472 \mathrm{kc} / \mathrm{s}$ operation. Double-tuned 1st and 2nd I.F.s and Single-tuned 3rd I.F. complete with diode and by-pass capacitor.

These ranges are available to manufacturers in versions suitable for most of the popular types of Transistors. The Oscillator coils can be modified to enable specific tuning capacitors to be used provided that bulk quantities are required.

OUR WINDING CAPACITY NOW EXCEEDS
 50,000 ITEMS PER WEEK

On the most up-to-date and efficient machines backed by a skilled assembly labour force for all types of coils and assemblies.
WEYRAD (ELECTRONICS) LIMITED, SCHOOL ST., WEYMOUTH, DORSET

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms $100 \mathrm{mV}-1$ volt -52.5 ohms. Internal Modulation: 400 $/ \mathrm{s}$ sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}$, $40-100 \mathrm{c} / \mathrm{s}$. Consumption approx. 40 watts. Measurements $29 \times$ $124 \times 10 \mathrm{in}$. New condition. $£ 45$ each, Second hand condition $£ 27.50$ each, Carr. $£ 1.50$.

FREQUENCY METER BC-221: $\mathbf{1 2 5 - 2 0 , 0 0 0 ~ K c / s , ~ c o m p l e t e ~ w i t h ~}$ original calibration charts. Checked out, working order $£ 18.50$ $+£ 1$ carr.; OR BC-221 (as received from Ministry), good condition, less charts, $£ 8 \cdot 50+$ £1 carr.

FREQUENCY METER LM-13: $125-20,000 \mathrm{Kc} / \mathrm{s}, \mathbf{£ 1 5 \cdot 0 0}$, Carr. $£ 1$

FOR EXPORT ONLY
 BRITISH \& AMERICAN COMMUNICATION EQUIPMENT

VRC.19X Trans-ceiver, $150-170 \mathrm{Mc} / \mathrm{s}, 2$ Channel, 20 Watts, Output $12 / 24 \mathrm{~V}$ d.c. operation. General Electric Transmitter, $410-419 \mathrm{Mc} / \mathrm{s}$, thin line tropo scatter system, with antennae. W.S. Type 88, Crystal controlled, 40-48 Mc/s, W. W. S. Type Mc / s. C.44, Mk. II, Radio Telephone, Single Channel, $70-85 \mathrm{Mc} / \mathrm{s}, 50$ watts, output, 230 V . a.c. input. G.E.C. Progress Line Tx Type DO36, $144-174 \mathrm{Mc} / \mathrm{s}$, 50 watt, narrow band width. A.C. input 115 V . BC- $640 \mathrm{Tx}, 100-156 \mathrm{Mc} / \mathrm{s}, 50$ watt output, 110V or 230 V input. STC Tz/Rx Type 9X, TR1985; RT1986; TR1987 and TR1998, 100-156 Mc/s. TRC-1 Tx/Rx, Types T. 14 and R. 19 , ${ }^{\text {FM }}$ SB $60-90 \mathrm{Mc} / \mathrm{s}$. With associated equipment available. Redifon GR410 Tx/RX, SSB, 1.5-20 Mc/s. Sun-Air Tx/Rx Type T-10-R. Collins Tx/Rx/Type 18S4A. Collins Tx/Rx Type ARC-27, $200-400 \mathrm{Mc} / \mathrm{s}, 28 \mathrm{~V}$ d.c. With associated equipment
available. ARC-5; ARC-3; and ARC-2 Tx/Rx. BC-375; 433G; $348 ; 718 ; 458$; ${ }^{\text {available. AR }} \mathbf{4 5} \mathrm{Tx}$. Directional Finding Equipment CRD.6 and FRD. 2 complete Sets available and spares. Complete system with full set of Manuals.

RACK CABINETS: (totally enclosed) for Std. 19 in. Panels. Size 6 ft . high $\times 21 \mathrm{in}$. wide $\times 16 \mathrm{in}$. deep, with rear door. $\mathbf{\$ 1 2}$ each, $£ 2.50$ Carr. OR 4 ft . high $\times 23$ in. wide $\times 19$ in. deep, with rear door. $£ 8.50$ each, $£ 2$ Carr.
RECEIVER BC-348: Operates from 24V d.c. Freq. Range 200$500 \mathrm{Kc} / \mathrm{s}, 1 \cdot 5-18 \mathrm{Mc} / \mathrm{s}$. Secondhand £20 each, £1 Carr.
APR-9 SEARCH RECEIVER: Complete with two Tuning Units TN128, $1000-2600 \mathrm{Mc} / \mathrm{s}$, and TN129 $2300-4450 \mathrm{Mc} / \mathrm{s}$. £250.00 each.
APR-5 UHF RECEIVER: $1000-6000 \mathrm{Mc} / \mathrm{s}, 115 \mathrm{~V}$ a.c. Circuit. Oscillator, 6 IF Stages, Detector, Video Amplifier and Audio Amplifier. £120.00 each, Carr. £2.
RCA COMMUNICATION RECEIVER AR88: A.C. mains input. 110 V . or 250 V . Freq. in 6 bands, $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$. Output impedance $2 \cdot 5-600 \Omega$. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control, R.F. \& A.F. variable controls. Good second hand condition (guaranteed working) \&45 to 865 each. Carr. $£ 2 \cdot 00$.

SOLARTRON PULSE GENERATOR GP1101.2: Period- 2 microsecs to 100 msec ; Pulse Duration- 1 microsec to 100 msec ; Delay time- 1 microsec to 10 msec . All continuously variable in 5 ranges with fine control. Accuracy $\pm 10 \%$. Pulse Amplitude- $0.5 \mathrm{~V}-100 \mathrm{~V}$. Accuracy $\pm 10 \%$ continuously variable in 4 ranges with fine control. Double Pulses; Pre-Pulse; Triggering; Square Wave O/put; Squaring Amplifier. Input-100-250V, $50-60 \mathrm{c} / \mathrm{s}$. New condition with Manual. Price: 185 each $+£ 1.25$ carr.

USM-24C OSCILLOSCOPE: 3 in. oscilloscope with $2 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{Mc} / \mathrm{s}$ vertical response, and $8 \mathrm{c} / \mathrm{s}$ to $800 \mathrm{Kc} / \mathrm{s}$ horizontal response. Sensitivity 50 mv rms/inch. Triggered sweep, bullt-in trigger pulses and markers. Mains inpu $115 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s} . \mathrm{C}$
each, carr. $£ 2$.

OS-46/U OSCDLOSCOPE: A general purpose oscilloscope suitable for measuring signals from $0-1000 \mathrm{~V}$ d.c. to over $50,000 \mathrm{c}$.p.s. (Further details on request, S.A.E.) $£ 35$ each, carr. $£ 1 \cdot 50$.

SIGNAL GENERATOR TS-510A/U: (Hewlett Packard). A generalpurpose signal generator designed to furnish signals with a very low spurious receivers. It may be amplitude modulated by internally generated sine weves or by externally applied sine waves or pulses. Freq. Range- $10-420 \mathrm{Mc} / \mathrm{s}$ in 5 bands, $\pm 0.5 \%$ accuracy. Emission-AM, CW, Pulse. O/put Voltage- $0.1 \mathrm{~V}-$ 0.5 V , calibrated $\pm 2 \mathrm{db}$ accuracy. Modulation-Internal $400,1000 \mathrm{c} / \mathrm{s}$ ($0-$ 90%). Built-in Crystal calibrator ($1,5 \mathrm{Mc} / \mathrm{s}$). Price: $\mathbf{2 1 5 0}$ each, complete with transit case, manual and all leads; OR $\$ 125$ each, Sig. Gen. only. Carr. both types $£ 2$.

SIGNAL GENERATOR TS-403B/U (or URM-61A): (Hewlett Packard) A portable, self-contained, general-purpose test equipment designed for use with radio and radar receivers and for other applications requiring small amounts of RF power such as measuring standing-wave ratios, antenna and transmission line characteristics, conversion gain, etc. Both the output freq. and power are indicated on direct-reading dials. 115 V , AC, $50 \mathrm{c} / \mathrm{s}$. Freq.Width $0.5-10$ microsecs. Timing-Undelayed or delayed from $3-300$ microwes from exterral or internal pulse O/put-1 milliwatt max 0 to - 127 db secs irom exterrial or internal puise. O/put-1 milinwatt max.,
variable. O/put Impedance- 50Ω. Price: $\mathbf{£ 1 2 0}$ each $+£ 2$ carr.

SIGNAL GENERATOR TYPE 902: (P.R.D.). A portable, general-purpose, broadband, microwave signal generator designed for testing and maintenance regulated by a variable attenuator calibrated in dbm. The frequency dial is calibrated in Mc / s. Provision is made for external modulation. Power Supply -
 CW, Pullse, FM. External Transmission-Square Wave, Pulse. Power O/put0.2 milliwatts. O/put
$\mathbf{8 1 3 5}$ each + £2 carr.

TEST SET TS-147C: Combined signal generator, frequency meter and power meter for $8500-9600 \mathrm{Mc} / \mathrm{s}$. CW or FM signals of known or measurement of same. Signal Generator: O/put - 7 to - 85 dbm . Trans-mission-FM, PM, CW. Sweep Rate- $0-6 \mathrm{Mc} / \mathrm{s}$ per microsec. Deviation- 0 $40 \mathrm{Mc} / \mathrm{s}$ per sec. Phase Range- $3-50$ microsec. Pulse Repetition Rate-to 0.2-6 microsec. duration, 0.5 microsec pulse rise time. Video Trigger for Sawtooth Sweep-Positive polarity, $10-50 \mathrm{~V}$ peak. $0.5-20 \mathrm{microsec}$ duration a 10% max. amplitude, less than 0.5 microsec rise time between 90% and 10% max. amplitude points. Frequency Meter: Freq. $8470-9360 \mathrm{Mc} / \mathrm{s}$. Accuracy$+2.5 \mathrm{Mc} / \mathrm{s}$ per sec. absolute, $+1.0 \mathrm{Mc} / \mathrm{s}$ per sec. for freq. increments of less than $60 \mathrm{Mc} / \mathrm{s}$ relative, $\pm 1.0 \mathrm{Mc} / \mathrm{s}$ per sec. at $9310 \mathrm{Mc} / \mathrm{s}$ per sec. calibration point. Accuracy measured at $25^{\circ} \mathrm{C}$ and 60 humidity. Power Meter: Input: +7 to +30 dbm . Output - 7 to -85 dbm . Price: $£ 75$ each $+£ 1 \mathrm{carr}$.

SIGNAL GENERATOR TS-418/URM49: Covers 400-1000 Mc/s range CW, Pulse or $A M$ emission. Power Range- $0-120 \mathrm{dbm}$. Price: $£ 105$ each $+£ 1 \cdot 25$ carr

TELEMETRY AUDIO OSCHLLATOR TYPE 200T: (Hewlett Packard) Freq. $-250 \mathrm{c} / \mathrm{s}-100 \mathrm{Kc} / \mathrm{s} .5$ over-lapping bands. High stability. O/put 160 mw Freq. $-250 \mathrm{c} / \mathrm{s}-100 \mathrm{Kc} / \mathrm{s} .5$ over-lapping bands. High
or 10 V into 600Ω Price: $£ 65$ each $+£ 1 \cdot 25$ carr.

SIGNAL GENERATOR TS-497B/URR: (Boonton). Freq. $2-400 \mathrm{Mc} / \mathrm{s}$ in 6 bands. Internal Mod. 400 or $1000 \mathrm{c} / \mathrm{s}$ per sec. External Mod. 50 to $10,000 \mathrm{c} / \mathrm{s}$ O/put Voltage $0.1-100,000$ microvolts cont. variable. Impedance 50Ω Price: $£ 85$ each $+£ 1.50 \mathrm{carr}$.

FREQUENCY METER TS-74 (same TS-174): Heterodyne crystal controlled. Freq. $20-280 \mathrm{Mc} / \mathrm{s}$. Accuracy $\mathbf{0 5} \%$. Sensitivity 20 mV . Internal Mod. at $1000 \mathrm{c} / \mathrm{s}$. Power Supply-batteries 6 V and 135 V . Complete with calibration book. (Manufactured for M.O.D. by Telemax. "As new" in cartons.) $£ 75$ each.
Fully stabilised Power Supply available at extra cost $£ 7.50$ each. Carr $£ 1 \cdot 50$.

CT. 54 VALVE VOLTMETER: Portable battery operated. In strong metal case with full operating instructions. $2.4 \mathrm{~V}-480 \mathrm{~V}$. A.C. or D.C. in 6 Ranges, 1Ω to $10 \mathrm{Meg} \Omega$ in 5 Ranges. Indicated on 4in. scale meter. Complete with probe, excellent condition. £12-50, carr. 75p.

CT. 381 FREQUENCY SWEEP SIGNAL GENERATOR: $85 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ and response curve indicator with 6in. CRT tube and separate power supply. Fully stabilised. Price and further details on request.

CANADIAN HEADSET ASSEMBLY: Moving coil headphones 100Ω with chamois leather earmuffs. Small hand microphone complete with switch and moving coil insert. New Condition. £1.75 each, post 25 p

DLR.5 HEADPHONES: $2 \times$ balanced armature earpieces. Low resistance. £1-25 a pair, 25 p post.

ROTARY CONVERTERS: Type 8a, 24 V D.C., 115 v A.C. @ 1.8 amps, $400 \mathrm{c} / \mathrm{s} 3$ phase, $48 \cdot 50$ each, post 50 p. 24 v D.C. input, 175 v D.C. @ 40 mA . output, $11 \cdot 25$ each, post 20 p.
CONDENSERS: $40 \mathrm{mfd}, 440 \mathrm{v}$ A.C. wkg. 55 each, 50 p post. 30 mfd 600 v wkg. d.c., $£ 3.50$ each, post $50 \mathrm{p} .15 \mathrm{mfd} 330 \mathrm{va.c.}$, wkg.; 75 p each, post 25 p .10 mfd 000 v. 63 p each, post 13 p. 10 mfd 600 v .43 p each, 25 p post. 8 mfd 2500 v . 85 each, carr. 63 p .8 mfd 600 v .43 p each, post $15 \mathrm{p}, 8 \mathrm{mfd} .1 \% 300 \mathrm{v}$. D.C. $£ 1 \cdot 25$, post $25 \mathrm{p}, 4 \mathrm{mfd} .3000 \mathrm{v}$. wkg. 53 each, post 37 p .4 mfd 2000 v . 22 each, post 25 p .
 TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price $81 \cdot 25$, post 25p.
SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, $£ 2.50$ each. post 30p.
CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps, $£ 2.50$ each, carr. 75p. OHMFTE VARIABLE RESISTOR: 5 ohms, $5 \frac{1}{2} \mathrm{amps}$; or 40 ohms at 2.6 amps . Price (either type) $£ 2$ each, 25p post each.
TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$'s ; complete with filament transformer 230 v. A.C. Mounted in 19 in . panel, $\mathbf{8 4} \cdot 50$ each, carr. 75 p . POWER SUPPLY UNIT PN-12A: 230V a.c. input $50-60 \mathrm{c} / \mathrm{s} .513 \mathrm{~V}$ and 1025V @ 420 mA output. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V and 10 Mfd 600 V . Filament Transformer 230 V a.c. input. 4 Rectifying Valves type 5 Z .3 .
$2 \times 5 \mathrm{~V}$ windings @ 3 Amps each, and $5 \mathrm{~V} @ 6$ Amp and $4 \mathrm{~V} @ 0.25$ Amp. Mounted $2 \times 5 \mathrm{~V}$ windings @3Amps each, and 5 V @ 6 Amp and $4 \mathrm{~V} @ 0.25 \mathrm{Amp}$. Mounted on steel base $19^{\prime \prime} \mathrm{W} \times 11^{\prime \prime} \mathrm{Hx} 14^{\prime \prime} \mathrm{D}$. (All connections at the rear.) Excellent condition e8. 50 each, carr. \&1.
AUTO TRANSFORMER: $230-115 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}$, 1000 watts. mounted in a strong steel case $5^{\prime \prime} \times 6 \frac{1^{\prime \prime}}{} \times 7^{\prime \prime}$. Bitumen impregnated. 86 each, Carr. 63 p . 2300115 V , $50-60 \mathrm{c} / \mathrm{s}, 500$ watts. $7^{\prime \prime} \times 5^{\prime \prime} \times 5^{\prime \prime}$. Mounted in steel ventilated case. $83 \cdot 50$ each, Carr. 50p.
LT TRANSFORMER: PRI 230V. Output 4×6.3 at 3 amps each winding,
$3 \frac{1}{2}^{*} \times 4^{*} \times 5^{n}$. Fully shrouded $£ 1 \cdot 50$ post 50 . $3 \frac{1}{2}^{\prime \prime} \times 4^{\prime \prime} \times 5^{\prime \prime}$. Fully shrouded $\mathbf{\& 1} 150$ post 50 p.
MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves, microphone and modulator transformers etc. $\mathbf{5 7 \cdot 5 0}$ each, 75 p carr.
CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG1 (CV1526) colour green, medium persistence complete with nu-metal screen, $\mathbf{8 3} .50$ each, post 37 p .
APNI ALTIMETER TRANS./REC. suitable for conversion $420 \mathrm{Mc} / \mathrm{s}$. , complete with all valves 28 v. D.C. 3 relays, 11 valves, price $\$ 3$ each, carr. 50 p .
ANTENNA WIRE: 100 ft . long. $75 \mathrm{p}+25 \mathrm{p}$ post.
APN-1 INDICATOR METER, 270° Movement. Ideal for making rev. counter. $1 \cdot 25$, post 25 p.
VARIABLE POWER UNIT: Complete with Zenith variac 0-230V., 9 amps. $2 \frac{1}{2}$. scale meter reading $0-250 \mathrm{~V}$. Unit is mounted in 19 in . rack. $\mathbf{1} 15$ each, £1.50p carr.
AIRCRAFT SOLENOID UNIT D.P.S.T.: $24 \mathrm{~V}, 200 \mathrm{Amps}$, 22 each, 25 p post. RADAR SCANNER ASSEMBLY TYPE 122A: Complete with parabolic reflector (24 in. diameter), motors, suppressors, etc. $£ 35$ each, $£ 2$ carr.
DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms . Tolerance $\pm 1 \% £ 3$ each, 25 p post. 90 ohms per step. 10 positions,
 MARCONI DEVIATION TEST SET TF-934: $2.5-100 \mathrm{Mc} / \mathrm{s}$ (can be extended
up to $500 \mathrm{Mc} / \mathrm{s}$ on Harmonics). Dev. Range $0-75 \mathrm{Kc} / \mathrm{s}$ in modulation range $50 \mathrm{c} / \mathrm{s}$ up to $500 \mathrm{Mc} / \mathrm{s}$ on Harmonics). Dev. Range 0
$15 \mathrm{Kc} / \mathrm{s} .100 / 250 \mathrm{~V}$. a.c. $£ 45 \mathrm{each}$, $£ 1 \cdot 50 \mathrm{carr}$.
CRYSTAL TEST SET TYPE 183: Used for checking crystals in freq. range $3000-10,000 \mathrm{Kc} / \mathrm{s}$. Mains $230 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. Measures crystal current under oscillatory conditions and the equivalent parallel resistance. Crystal freq. can be tested in onjunction with a freq. meter. $£ 12 \cdot 50$ each, $£ 1$ carr.
LEDEX SWITCHING UNIT: 2 ledex switches, 6 Bank and 3 Bank respectively, 6 Pos.; 1 Manual switch, 16 Bank 2 Pos. £ 4 each, 50 p post.

GEARED MOTOR: 24 c . D.C., current 150 mA , output $1 \mathrm{rpm}, \mathbf{£ 1 - 5 0} \mathrm{each}$, 25p post. ASSEMBLY UNIT with Letcherbar Tuning Mechanism and potentiometer, $3 \mathrm{rpm}, 22$ each 25 p post. SYNCHROS: and other special purpose motors available. List 3p.
DALMOTORS: 24-28V d.c. at 45 Amps, 750 watts (approx. 1 hp) 12,000rpm. £5 each, 50p post.
GEARED MOTOR: 28 V d.c. 150 rpm (suitable for opening garage doors). f4 each, 50p post.
SMALL GEARED MOTOR: $24 V$ d.c., output 200 rpm . Meas'm'ts $1 \frac{1}{\mathrm{~h} i n}$. dia. $\times 3 \frac{1}{4}$ in. long. $£ 2$ each, 23 p post.

FUEL INDICATOR Type 113R: 24V complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in 3 in. diameter case. Price $£ 2$ each, 25 p post.

COAXIAL TEST EQUIPMENT: COAXWITCH-Mnftrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type " N " female oist 37p. CO-AXIAL SWITCH-Meries plugs. New in ctns., 26.50 each, M1460-22, 2 pole, 2 throw. (New) 86.50 each, post 25p. 1 pole, 4 throw, Type M1460-4. (New) $\mathbf{2 6} \cdot 50$ each, post 25 p .
PRD Electronic Inc. Equipment: FIXED ATTENUATOR; Type 130c, 2.0-10.0 KMC/SEC. (New) L_{5} each, post 25p. FIXED ATTENTUATOR: Type 1157S-1 (New) 66 each, post 25 p.

MOVING COIL INSERT: Ideal for small speakers or microphones. Box of $\mathbf{3} \mathbf{~ 2 1}$, post 23p.
HAND MICROPHONE: (recent design) with protective rubber mouthpiece. E2, post 23p.
MICROIINE IMPEDANCE METER MODEL 201: 5300-8100Mc/s. 875 each, £1 carr.
MICROLINE DIRECTIONAL COUPLER MODEL 208: $5260-8100 \mathrm{Mc} / \mathrm{s}$. 24DB. £12.50 each, post 35 p.

DUBILIER BLOCK CAPACITORS

 .06MFD 850v. 20p P. \& P. 10p

GARDNER 'C' CORE H.T. TRANSFORMERS
Pri. $\mathrm{T} .200-240 \mathrm{v}$. Sec. 168 v . 2.5 a . iwice and 135 v . 210 m

 $155 \mathrm{~m} / \mathrm{a}$., 6.3 v . $3 \mathrm{a} ., 6-3 \mathrm{v}$. $1-6 \mathrm{a}$., 6.3 v . 1.6 a ., 5 v . 2.8a., $44-25$.
P.P. 50 . $200-240 \mathrm{v}$. Sec. 130 v . $180 \mathrm{~m} / \mathrm{a}$. twice, 200 v . $350 \mathrm{~m} / \mathrm{a}$,
 P.P. 25 p.
Pri. ${ }^{2}$. $100-115-200-240 \mathrm{v} . ~ S e c . ~ T . ~ 350, ~$
$360,370,380,390,400 \mathrm{v}$.,

 E1.25. P.P. 25 p .
Pri.T. $200-240 \mathrm{v}$. Sec. 27-0-27v. 0.3a., 29-0-29v. $0.3 \mathrm{a} ., 6.3 \mathrm{v} .0 .3 \mathrm{a}$.
दi.50. P.P. 25p.

PARMEKO NEPTUNE SERIES H.T. TRANSFORMERS

 Pri.T. $110-200-220-240 \mathrm{v}$. Sec. $500-0-500 \mathrm{v}$. $250 \mathrm{~m} / \mathrm{a} ., 6.3 \mathrm{v}$. 4 a .,

GARDNERS POTTED TRANSFORMERS

 Sec. 300 v
P.P. 25 p.

PARMEKO NEPTUNE SERIES L.T. TRANSFORMERS Pri. T. $115-230 v$. Sec. $4 v .0 .5 a$, four times. $87 \frac{1}{2} p$. P.P. $22 t p$.

 English Electric C Core. Pri. T, 220-240v, Sec. T, 30-57-5-115v.

VARIABLE D.C. SUPPLY UNITS TYPE S.E. 4

transformer with Variac controlled primary. 3 a in. scale metal case. Size $17 \times 17 \times 6$ in. $\mathbf{6 3 2} \cdot 50$. Carr. 75

AUTO TRANSFORMERS
240v.-llov. or 100 v . Complotely Shrouded fittod with Two-pin American Socket: or terminal blocks. Please
state which type required.
Type

Type	Wotts	Approx.	Weight	Price	Carr.
1	80		fb .	¢2.00	30 p
2	150	4	lb.	62.75	35 p
3	300	$6 \frac{1}{2}$	b .	63.75	35p
4	500	81	lb.	65.25	45p
5	1000		Jb .	67.25	50p
6	1500	25	1 b .	49.75	55p
7*	1750		lb .	614.75	75p
8*	2250	30	lb.	617.85	75p

Completely enclosed in beautifully finished metal case fitted
with two 2-pin American sockets, neon indicator, on/ofi switch. with two 2-pin American sockets, neon indicator, on/off switch.
and carrying handle.

SPECIAL OFFER RADIO SPARES MULTI-TAPPED L.T. TRANSFORMERS
Pri 200, $220,240 \mathrm{v}$. Sec. provides all voltages from $1-40 \mathrm{v}, 90$
watts. Separate taps are as follows: 90

WODEN L.T. TRANSFORMERS
 $240 v$. Sec. 10.5 v . 2a. Conservatively rated. Fully shrouded
rerminal block connections. 41.25 . P. \& P. 20p. Eng
Prish Electric

PARMEKO "C" CORE TRANSFORMERS Pri, tapped $110-200-240 \mathrm{v}$. 5 ec . 1250 v . $197 \mathrm{~m} / \mathrm{a}$. Sec. 2 $161 \mathrm{v} .110 \mathrm{~m} / \mathrm{a}$. Sec. $3152 \mathrm{v}, 76 \mathrm{~m} / \mathrm{a}$. Sec. $4124 \mathrm{v} .25 \mathrm{~m} / \mathrm{a}$. Sec. 528 v . 0.4 a . Sec. $66.4 \mathrm{v} .6 \cdot 2 \mathrm{a}$. 6.3 v . $3 \cdot 25 \mathrm{a}$. 6.3v. 1.4a. Table top connections. Size $5 \times 4 \times 4$ ins. Brand new boxed, 41.75. P. \& P. 45 p.

E.H.T. TRANSFORMERS Parmeko Neptune Pri. T. 110-115-200-240v. Sec. 4,000v. $10 \mathrm{~m} / \mathrm{a} .4-6.3 \mathrm{v} .2 \mathrm{a} ., 2 \mathrm{kv}$. 2a. 44.75 . P.P. 45p. Pri. T. $115-230 \mathrm{v}$. Sec. $2,000 \mathrm{v}, 5 \mathrm{~m} / \mathrm{a}$., 4 v . $1 \mathrm{a} ., 4 \mathrm{v} .0-5 \mathrm{a}$. 62.50. P.P. 35p. Gardners potzed rype, Pri. T. $200-$ 240 v . $5 \mathrm{ec}, 3,200 \mathrm{v}$. $2 \mathrm{~m} / \mathrm{a}$., 4 v . $0 \cdot 2 \mathrm{a}$., 2 v . $1 \cdot 5 \mathrm{a}$. $\mathrm{C2} \cdot 50$. P.P. 35p.

GRESHAM CHOKES

GARDNERS CHOKES
 $12 \mathrm{H} .200 \mathrm{~m} / \mathrm{a}$, E 1.75 . P. P. 45 p . PARTRIDGGE. $5 \mathrm{P} .2 .250 \mathrm{~m} / \mathrm{p}$.,
E 1.25. P.P. 40 p . SWINGING TYPE CHOKES. $34 \mathrm{H}, 60 \mathrm{~m} / \mathrm{a}$.

LOW TENSION SMOOTHING CHOKES By Redclifie. 100 MH .2 amps. 62.50 P. \& P. 45 p .5 winging Types.
10 MH .6 .5 amp-50MH. 2 amps. $\mathbf{2 2 . 2 5}$ P. \& P. 45 . Both types less than \ddagger ohm res. Hermetically sealed. Oil filled. Brand new. in makers cartons.

ISOLATION TRANSFORMERS

By Magestic Winding Co. Pri, 240v, Sec. 240v. Centre tapped. 2 Kva . Mounted in strong. metal case. Size
Conservatively rated, $\mathbf{2 7} \cdot \mathbf{5 0}$. Carr. E . 50 .

WESTINGHOUSE L.T. SUPPLY UNITS
A.C. input 200-240v. D.C. output. 25v. 8 amps. and $6.2,7.3$
 case. Size $18 \times 9 \times 9 \mathrm{in}$. $£ 8 \cdot 50$. Carr. 75 p . Type 105 OMRON SUB MINIATURE RELAYS 12 V D.C. C . 5 amp contact overall. Size Type 1051 N . $12 \mathrm{v}. \mathrm{O.C} \mathrm{C},. \mathrm{O} .5$ amp contact overall. Size
$1 \times 1 \times \mathrm{in}$. New and boxed with mounting screws. 45 p .
P.P. 5 P .

ELECTRO METHODS 2.3v. A.C. CONTACTORS 1 Heavy Duty Change-over Contact. Size $2 \frac{1}{4} \times 1 \frac{1}{2} \times+$ in
50p. P.

Sealed type, 28ND DEX PLUG-IN RELAYS
Sealed type, 28v. D.C. Three heavy duty silver contacts. Size
$2 \times 2 \times 1$ in. Complete with base. 50 p. P.P. 10 .
MAGNETIC DEVICES 6v. D.C. CONTACTORS
3 Heavy Makes contacts. Size
Size $2 \times 1 \frac{1}{2} \times 1$ in. 50 p. P.P. 10 p.

G.P.O. MAGNETIC COUNTERS
Type 100D. 4 digits. Operating voltage 3-6v. D.C.

Type 1000. ${ }^{4}$ digits. Operating voltage 3-6v. D.C. Size $3 \frac{3}{4}$
1×1 in. 50 p. P.P. 5p.
AIR MINISTRY I2v. D.C. MOTORS
Reversible. 3,750 r.p.m., 1 amp. Size $4 \frac{1}{2} \times 2 \frac{1}{2}$ in.
P.P. 10p. 3,750 r.p.m., lamp. Size $4 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{in}$. dia. 75p.
 P.P. $7 \frac{1}{2} \mathrm{P}$.

VENNER SYNCHRONOUS BIO-DIRECTIONAL 220-240v. 50 cycles 40 r.p.m. automotically reverses wherever
spindle stop is placed overall size $2 \frac{1}{2} \times 2 \times 1$ in. Spindle spindle stop is placed overall size $2 \frac{1}{2} \times 2 \times$ in. Spindle
length $\frac{t}{2}$ in. dia. I/16th. An ideal motor for display, giving a forward and reverse moxion. 62tp.
A.C. 220-240v. Shaded Pole Motors. 1,500 r.p.m., double

A.E.I. Adjustable Thermostats. Type TS2. stem. 6 in
60 deg. C. contacts N.O. 60 deg. C. contects N. N.
12 in.
stem. E 1.50 . P.P. 25 p.

MINIATURE 24v. D.C. GEARED MOTORS
500 r.p.m. Size $2 \times 1 t \times 1 \mathrm{in}$. Length of spindle 1 in., dia. $\%$ in
75 p. P.P. 20 p.

> PULLEN SHUNT WOUND $24 v$. D.C. REVERSIBLE MOTORS

Type 610 H.P. $1 / 75$ r.p.m. 3,500 Cont./R. New and boxed
$87 \frac{1}{f}$ p. P.P. $12 j \mathrm{p}$.
 EXIDE GLASS ACCUMULATORS brand new with charging instructions. Idealfor Emergency Lighting Alarm Systems, etc. 11.75 for Two. packed in
original maker's cartons. P. \& P. 65 p. One $£ 1.00$ P. \& P. origin
50p.

AMERICAN WILLARD
Miniature accumulators $8 v$. $1-2$ A.H. Size $\times 1 t \times 4 \mathrm{in}$. Wt. $5 \frac{1}{2}$ oz. These batteries were designed for meteorological
balloon transmitters. Easily flled with a hypodermic syringe.

PLESSEY A.C. 220-240v. SOLENOIDS PLESSEY A.C. 220-240v. SOLENOIDS
Very powerul. OOverail size $2 \frac{1}{2} \times 2 \times 2$ in. Pull $1 t$ in. Int
rating. $87 \frac{1}{f}$ p. P.P. $12 \frac{1}{f p}$.
A.C. $220-240 \mathrm{v}$. SHADED POLE MOTORS
 6 figs., inc. I/10th, I/HOL HOUR METERS

Type MK 3BRURGESS MICRO SWITCHES
Press Button. 45p for three. P.P. i5p. Norm open. $\frac{1}{2}$ in. raised
SIEMENS MINIATURE RELAY BASES inc. spring clips. 50 p. P.P. 10p.

SCOTCH MAGNETIC TAPE
SCOTCH MAGNETIC TAPE
Type 3 M $459 \frac{1}{\frac{1}{2} \text { in. 3.600 feet. Supplied new in maker's cartons. }}$
List price $\mathrm{E} 18^{2} 50$. Our price \&4. P.P. 30p.
Slydiock 15 amp panel fuse holders. Type 1533. Three for
50p. P.P. 10 p.
14/0076. Red/Green. 100 yard reels. 50p. P.P. I5p

CRYSTAL
CALIBRATOR

NO. 10 | NO. 10 |
| :--- |
| $\begin{array}{l}\text { small portable crybtal } \\ \text { controlled } \\ \text { wavemeter. }\end{array}$ |

 $\mathrm{Kc} / \mathrm{s}-\mathrm{-10} \mathrm{Mc} / \mathrm{s}$ (up to
$30 \mathrm{Mc} / \mathrm{s}$ on harmonica). Calibrated dial. Power
requirements 800 V.D.C.
15 mA and 12

B.C. 221 FREQUENCY METERS Latest release $125 \mathrm{KHz-20} \mathrm{MHz}$. Excellent con-
dition. Fully tested and cherked and complete with calibrator charts. $£ 27.50$ each. Carr. 50 p .
AM/FM SIGNAL GENERATORS
 Operation from 12 volt D.C. or 0/ $/ 10 / 200 / 250$ y A.C. Size 12×8 X 9 in. Supplied lo brand new
condition complete with all connectors, fully
tested, 45 . Carr s1. AVO CT. 38 ELECTRONIC MULTIMETERS High quality 97 range instrument which measures
A.C. and D.C. Vodage. Current, Resistance and Power Output Ranges D.C. volts 250 inv-10,000v.
(10 meg $\Omega-110$ neg Ω input). D.C. curent 10 . (10 meg $\Omega-110$ neg Ω input). D.C. current $10 \mu \mathrm{~A}-25$
amps. Ohma. $0-1,000$ meg Ω A.C. volt 100 mv .-
 A.C. current $10 \mu \mathrm{~A}-25$ amps. Power output 50
nuicro-watts-5
watts. Operation $0 / 110 / 200 / 250 \mathrm{~V}$. A.C. Supplied in perfect condition complete with
circuit lead and R.F. prohe. $£ 25$. Carr. 75 p . ADMIRALTY $62 B$ RECEIVERS High

 available BA1. L.F. version of above. $15 \mathrm{Kc} / \mathrm{\beta}-700$

TO- 2 PORTABLE

 OSCILLOSCOPE

 TO-3 PORTABLE OSCILLOSCOPE. $3^{\prime \prime}$ TUBE

 $2 \mathrm{meg} \mathrm{N} .25 \mathrm{PF} . \mathrm{X} \mathrm{smp}$ | 2 megitity. | .9 v | $\begin{array}{l}\text { p-p/CM. } \\ \text { Benaitwidth } \\ \text { bandwidt }\end{array}$ |
| :--- | :--- | :--- | bandwidth 1.5 cps 800

KHZ . Input limp. 2 meg Ω KHz. Tnput
20 PF . Time base. 6 ranges
10
KHZ . sya10 cpe- 300 KHZ . Sya chronization. Internal/ex$140 \times 215 \times 330$ mam. Weight 15 libs- $220 / 240 \mathrm{~V}$.
A.C. Supplied brand new with handbook

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, LOW COST QUICK DELIVERY OVER 200 RANGES IN STOCK OTHER

"SEW" CLEAR PLASTIC METERS

	$200 \mathrm{~mA} \mathrm{...} £$.
	300 mA $81.3^{7 \%}$
50:	500 mA £1.37t
	$2 \mathrm{mmp}$. £1.37t
	$5 \mathrm{amp}9$ £1.37t
	10 amp. . . . £1.37\%
	3V. D.C..... £1-371
	10V. D.C. .. fl^{1371}
	15V. D.C. .. $£ 1.37 \frac{1}{1}$
$50-0.50 \mu \mathrm{~A} \cdots 21.87 \mathrm{t}$	20V. D.C. .. $81 \cdot 371$
	100V. D.C... £1-37t
100-0-100 $\mu \mathrm{A}$ ¢ 1.75	150V. D.C... £1.37\%
$200 \mu \mathrm{~A}$.... ${ }^{20} 1 \cdot 75$	300V. D.C... £1-37t
$500 \mathrm{AA} \cdot \cdots \cdot$ £1-50	500 V . D.C... $£ 1$-37t
	750V. D.C... $21.37 \pm$
	15V. A.C. .. $£ 1.37 \pm$
$2 \mathrm{~mA} \ldots . .$. \& 1 -37	50V. A.C. .. £1.37t
$5 \mathrm{~mA}{ }^{\text {¢ } 1.37 t}$	150V. A.C... £1.37t
$10 \mathrm{~mA}{ }^{\text {el }}$-37t	300V. A.C. . $£ 1.371$
20 mA $21.37 \frac{1}{1}$	500V. A.C... $£ 1.37 \pm$
$\begin{aligned} & 50 \mathrm{~mA} \\ & 100 \mathrm{~mA} \\ & \end{aligned} . . .$.	8 Meter 1 miA ¢1.60
	VU Meter . . $£ 2 \cdot 10$
Type MR.45P.	frontr.
$50 \mu \mathrm{~A}182 .25$	$5 \mathrm{amp} . . .$. £1.50
50-0-50 $\mu \mathrm{A}$.. $\mathrm{E} 2 \cdot 10$	10V. D.C. .. $£ 1.50$
	20V. D.C. .. £1.50
100-()-100 $\mu \mathrm{A}$ 21.87	50V. D.C. . $£ 1.50$
$200 \mu \mathrm{~A}$ … $11.87{ }^{71}$	300 V . D.C... $£ 1.50$
$500 \mu \mathrm{~A}$.... $£ 1.60$	${ }^{15 \mathrm{~V}}$. A.C. . . $\mathbf{8 1 . 5 0}$
${ }^{500-0-500 \mu \mathrm{LA}}$ ¢1.50	
10mA 81.50	1 mmp A.C. $\$ \mathrm{El} 50$
50 mA $£ 1.50$	5 amp A.C. ${ }^{\text {a }}$ 21.50
100 mA $\mathbf{2 1} 50$	10 mmp . A.C. $4 \mathrm{El} \mathrm{El}^{50}$
500 mA $£ 1.50$	
1 amp $£ 1.50$	30 amp A.C. $\frac{1}{21} 50$

* MOVING IRONALL OTHERS MOVING COIL Please add postage

SEW EDUCATIONAL

 METERS Type ED 107 Size overall 100 mm
$\times 50 \mathrm{~mm} \times 108 \mathrm{~mm}$ A new
quality
range of of
moving quality moving coll
instruments ideal for
school experimenta and achool experiments and
other bench applica. tions. 3in. mirror scale.
The meter movement is Available in the following rangen:-

1 HV d.c.
$2 a \mathrm{~d} . \mathrm{c}$
50 V d.c.
300V d.c.
$510 \mathrm{man} / 5 \mathrm{~A}$.
$5 \mathrm{~V} / 50 \mathrm{~V}$ d.c.

83.97 83.97 $£ 3.97$
 ${ }_{4}^{24} 4$

"SEW" BAKELITE PANEL METERS

	500 mA $£ 175$
	$1 \mathrm{amp} . . .$. el ${ }^{\text {d }} 5$
	13 amp amp.....
	$50 \mathrm{amp}{ }^{\text {c }}$ ¢1-75
	5V. D.C..... $£ 1.75$
	10v. D.C. .. 81.75
	50V. D.C. .. 81.75
	150V. D.C... £1.75
	300 V . D.C... $£ 1.75$
$25 \mu \mathrm{~A}$. ${ }^{\text {che. }} 53.50$	30V. A.C.'.. $£ 1.75$
$50 \mu \mathrm{~A}, \ldots .$. 22.37	
${ }^{50-0-60 \mu \mathrm{~A}} \ldots .$.	
$100-0-100 \mu \mathrm{~A}$	500 mA A.C.* 21.75
	1 amp A.C.* ${ }^{\text {¢1.75 }}$
$1 \mathrm{~mA} \mathrm{....}$.	5 amp A.C.* 81.75
1.0.1mA.... $£ 1.75$	10 amp A.C.* 81.75
$5 \mathrm{~mA}11 .75$	20 amp . A.C.* 21.75
	VU Meter .. 53.10

EDGWISE METERS

 ${ }_{50} 50,4$.
 $100 \mathrm{~A}, \ldots$
$1000-100 \mu \mathrm{~A}$
$200 \mu \mathrm{~A}$

Send for illustrated brochure and further details on all Sew Panel Meters-Discounts for quantities

HONEYWELL
digital voltmeter

Can be panel or bench mounted. Basic meter measures I voit D.C. but can be used to measure a
wide range of AC and IC volt, current and ohm wide range of $A C$ and $D C$ volu, current and ohms Specification:
Accuracy: $\pm 0.2, \quad \pm 1$ digit.
Accsolution: 1 mmV .
Kumber of digits: 3 plus fourth overrange digit Number of digits: 3 plus fourth
Overrange: 100% (up to 1.999) Input impedance: 1000 Meg ohm . Measuring cycle: 1 per second.
Adjustment: Automatic zeroing, full seale adjustment against an internal reference voltage
Overload: to 100. D.C.
Input: Folly floating (3 poles)
Input power: $110-230 \mathrm{v}$. A.C. $50 / 60$ cyclea.
Overall size: $51 \mathrm{in}, \times 213 / 16 \mathrm{in} . \times 83 / 16 \mathrm{in}$. AVAILABLE BRANI NEW AND FULLY
£49.97 $\frac{1}{2}$ Carr. ${ }^{50 \mathrm{p}}$

COSSOR 1049 DOUBLE BEAM OSCILLOSCOPES

$\frac{\text { £25. Carr. } £ 1.50 \text {. }}{\text { MARCONI }}$

 Brand new and boxed in original sealed carton
VM79. UHF MILLIVOLT METER $100 \mathrm{Kc} / \mathrm{s}$ to $1,000 \mathrm{Mc} / \mathrm{s}$. A.C. 10 mV to 3 mv . D.C.
10 mV . to 3 v . Current 0.01 uA to 0.3 mA . ResistTTIS. TRANSISTOR TESTER Full range of facilities for testing PNP or NPN ranaistors in or out of circuit. $£ 37.50$.

G. W. SMITH
\& Co. (Radio) Ltd.
ALSO SEE NEXT TWO PAGES

SEMI-CONDUCTORTS/VALVES BRAND NEW \& FULLY GUARANTEED

Abstract

IN 914 IN 4001名名 IN 4 IN 41 IN 5 2 Z $2 \mathrm{2G}$ 2 C 202 ${ }_{3} \mathrm{By}$ -

 $\begin{array}{ll}\mathrm{OA2} & 38 \mathrm{p} \\ \mathrm{OB2} & 45 \mathrm{p} \\ \mathrm{OZ} & \end{array}$
 $\begin{array}{ll}30 \text { FLD } & \text { 76p } \\ \text { 30L15 } & 850\end{array}$

M-NYEQUPMENT

GARRARD

Full current range offered brand new and guaranteed at fantastic savings
 3000 Stereo 810.50
BP25 Mk III 811.75

 age 50 p extra each item.TEAK BASKS AND PERSPEX COVERS 1. For SP 25, SL65, \&L55, 3000, $2025 \mathrm{~T} / \mathrm{C}, 2025$
 For spas etc. to operate with Hd in place
$\mathbf{2 5 . 9 7 t}$. Carriage $37+\mathrm{p}$ extra each type.

B.S.R. McDONALD

 TPDI SERSRIES with plinth and cover and ready
 Carriage Bop extra each item.
SPECIAL OFFERS Garrard SP25 Mk III fitted Gold ring GEo
 GOLDRING GL 69/2 fitted Goldring

TELETON SPECIAL OFFER!

CRIT AM/FM STEREO TUNER AMPLIFIER GY8TEMS Output 4 watts per channel. Excellent reception AFC, built-1n MPX. Cer/XTAL Input.
Total List $250 \cdot 25$, OUR PRICE 889.95 . Carr. Total List $250 \cdot 25$. OUR PRICE $£ 89 \cdot 95$. Carr. Also available with Gerard $2025 \mathrm{~T} / \mathrm{C}$ Record Ready wired. \&43. Carr. 11 .
AMERICAN RECORDING TAPES
 quality 5 in. 600 ft . Std. plastic 48 p

 guaranteed. 5 tic. 1,800ft. D.P. Mylar guaranteed. Discounts for 5 tin. 2,400tt. T.P. Mylar $\mathrm{E1} \cdot \mathrm{~g}^{\mathrm{m}}$

TAPE CASSETTES
Top quality in plastic ubrary boxes
C $60-60 \mathrm{~min} .42 \dagger p ; 3$ for $£ 1$. 29

C120-120 min. 75p; 3 for 28.171
Cassette Head Cleaner 56p

HOSIDEN DH-02S STEREO HEADPHONES

$\underset{\substack{\text { SCALD } \\ 400 \text { RIV } \\ 81-37}}{ }$
SEND SAB FOR FULL LISTS!
DE FOR FULL
DISCOUNTS:
10% on $12+$ any one type
15% on $25+$ any one type
Large quantity discounts on applicaCion. Postage: Semi Conductors Bp;

MULTIMETERS for GUSEY pupposed

MARCONI CT4 TF956 AF ABSORPTION WATTMETER
280. Carr. $£ 1$

TEIII DECADE RESISTANCE ATTENUATOR db. Connections.

 Maximum input leas than 4 watts (50 volts) Bullt ln 600 a load reaistance with lnternal BELCO AF-5A SOLID STATE SINE SQUARE WAVE C.R. OSCILLATOR

 tion K ohms). Opera | attractive |
| :--- |
| 71 in. $\times 5 \mathrm{~m} . \times \mathrm{ne}$ case |
| $\times 2 \mathrm{in}$ |

Price 217.50

TE-I6A TRANSISTORISED

TE-65 VALVE VOLTMETER

High quality instrument
 A.C. volts $1.5-1,500$
Renistance $u p$ to 1,000 Resistance up to 1,000
meghma.
$220 / 240 \mathrm{~V}$. A.C. operation. 220, /2408. A.C. operation.
Complete with probe and Complete with probe and
lnstructlons 817.50. A Pditional Probes avail stle;
ect 12.

 1,000V. a.e. and d.c.
$0,111001500 \mathrm{ma}$
mA.
d.c.

MODEL TE-200 20,000 load protection $0 / 5 / 25 / 12531 / 1000$ V. D.C.
$0 / 10 / 50 / 250 / 1,000$ V. A.C.

 2 2 \}p.

MODEL TE-70. 30,000 O.P.
$0 / 3 / 15 / 60 / 300 / 60011,200$
∇ D.C. $0 / 6 / 361120 / 600 / 1,200$

MODEL 6025 57 Ranges,
Glant $5 \ddagger$ in Meter, Polarity Revere ${ }^{\text {Ratitch }}$
Benaitvity: 50 K

 10 Meg. Decibels: -20 to $+85 \mathrm{~dB} 212 \cdot 50$

FTC-401 TRANS

TRANS
Full capabilities too
measuring A, B and 1 Co
men NPN or PNPP EMa Equal
daptable for checkin
 lete wlith intstructio

TRTEIS

270° WIDE ANGLE
ImA METERS

$P O M A E R E M E S$

Iigh quality ceramio ccastruotion. Windlinga embedded ln vitreous ename

Sincle hole fixing, tin. dia, shatts. Bulk quantitlee avaliable

$\underset{5 / 25 / 50 / 250 / 1500 / 2.500}{\operatorname{HONOR}} \mathrm{va} / \mathrm{DOlt}$ $0 / 50 / 100 / 500 / 1,0000$ $0 / 50, \mathrm{~A} / 2.5 \mathrm{~mA} / 250 \mathrm{~mA}$ D.C.
$0 / 6 \mathrm{~K} / 6 \mathrm{meg}$. ohm -20 to +22

MODEL TE-300 30,000	
O.P.V. Mirror scale over-	
${ }_{60130011200 ~ V . D . C . ~}^{\text {a }}$	
V.A.C. $0130120 / 600 / 1.200$	
$6 \mathrm{OmA} / 300 \mathrm{~mA} / 600 \mathrm{~mA}$.	
${ }^{0 / 8 \mathrm{~K} / 80 \mathrm{~K} / 800 \mathrm{~K} / 8 \mathrm{cmeg} \text {. }}$	
25.97t, P. \& P. 15p.	

MODEL TR-18. 20,000 O.P.V. $010.0 / 6 / 3012016001,200 /$
$3.000 / 6,000 \mathrm{~V} . \mathrm{D} . \mathrm{C} .066130120 /$ $600 / 1,200 \mathrm{v}$. $A . C$. $60 / 600 \mathrm{~mA} .0 / 6 \mathrm{~K} / 600 \mathrm{E} / 6 \mathrm{Meg} /$

TMK MODEL TW-20CB OVERLOAD BUTTON: Bensi-

 $0.5,5,50,500 \mathrm{~mA} .-10$ amp. MEG. Decilbels: -20 to +52 d . \&11.50. P. \& P, 17 \& p

$100,500 \mathrm{~mA}, 2.5,10 \mathrm{amp}$. Be , Decibels: -10 to 10 , 49 db . Plastic Case with

SKYWOOD SW-500
 301600 A.C. volte
$3 / 30 / 300 / 600$. D.C. cur
coll rent: $200 \mathrm{AA} / 6 / 60 / 60 \mathrm{~mA}$
Reesistance: $10 \mathrm{~K} / 100 \mathrm{~K} /$

UNR 30 RECEIVER
 tiona. £15\%5, Carr. 37 f p .

WS62 TRANSCEIVERS
Wequatity available for EXPORT Excellent condition. Enquiries invited

COR-MM SOLID STATE RECEIVER

 spread, Bensti ivity Controi. 220/240v AC or 12 V | DC. $121^{\circ} \times 44^{\circ} \times$ |
| :--- |
| ع25. Carr. $37+\mathrm{p}$ |

LAFAYETTE HA-600 RECEIVER

ariable B.F.O., noise limiter, 8 apread. RF Gsin. $15^{*} \times 91^{-} \times 81^{*} .18 \mathrm{lb}$. $220 / 2407$
AC or 12 V DC. Brand new with instructions. 245 Carriage 50p.

LAFAYETTE HA-800 SOLID STATE MATEUR COMMUNICATION RECEIVER

an
tor. $220 / 240 \mathrm{v}$ AC or 12 v DCer, $100 \mathrm{kc} / \mathrm{s}$ calibra 18 lb . Brand new with Inetructions. 257.50 . FULL RANGE TRIOEQUIPMENT EDDYSTONE V.H.F. RECEIVERS 70R. 19-165 Mc/s. excellent condition. $\mathbf{£ 1 5 0}$

SOLID STATE YARIABLE A.C.

AUTO TRANSFORMERS $111 / 230 \mathrm{v}$ Step up or step down. Fully ghrouded

VOLTAGE STABILISER TRANS FORMERS. 180-260v. Lnput. Output 230v.
Available 180w or 225 w . 12.50 , Carr. 25 p .

"YAMABISHI" VARIABLE VOLTAGE TRANSFORMERS
Excellent quality - Low price olmmediate dellvery

Please add postage
ALL MODELA NPUT 230 VOLTS ${ }_{\text {s0/6 }}$ CYCLES
OUTPUT VARLABLE
special discounts $0-260$ FOLTS

OSCILLOSCOPE PROBE TM8II9 High impedance 100/I resistive attenuated probe for aecurate display of HF waveforms or short rise time pulse signals, offered brand new with all accessories and
instruction manual. List price E 17 . Our price 67-50 including earth bayonet
TM8I94. A MARCONI PRODUCT

SOLARTRON OSCILLOSCOPE 523S. 2
The best of the surplus scopes for $\mathbf{C 5 2}$, fully serviced and calibrated, compare the specification with others. Bandwidth aDC-IOMHz'at 3 dB . Sénisitivity is $1 \mathrm{MV} / \mathrm{cm}$. TTme Base 0.1 usec $-1 \mathrm{~cm} / \mathrm{sec}$ in 7 decades with fine control on each range. Uses resolution flat face PDA CRT and many resolution flat face PDA CRT and many other features make this scope very
suitable for colour television servicing and many other applications. Price 652

BARGAIN OFFER 6Y DC TAPE BARGAIN OFFER 6Y DC TAPE Fully screened * reversible * constant Recorders* Price only EI P.P. 10p

20Kv ELECTROSTATIC VOLTMETER UNIT

5 in. scale Ernest Turner Model 32 contained in polished wood case with HV input sockets. Only 810 Carr. 15p
MARCONI 12 KHz QUARTZ CRYSTAL contained in B7G envelope only $62 \frac{1}{2} \mathrm{p}$ each.

MORGANITE GLASS ENCLOSED RESISTORS Value 2.5 k . meg ohms,
tolerance 10%. $£ 1.25$ per carton of four, tolerance 10%. $£ 1-25$ per carton of four

MARCONI TF930

H.F. field strength measuring equipment. $18-125 \mathrm{mHz}$. 665 .

GALLENKAMP OVEN
This oven offered as new. List over $£ 240$.
Our Price ONLY $£ 125$.

IMPEDANCE BRIDGES

AVO Type I with slide rule scale as new
Bradley Type 131 LC/R bridge $\ldots \$ 30$ Cossor Model 1446 with C.R.T. phase
balance .. balance
Wayne Ke
Wayne Kerr Model B52I LC/r Bridge $£ 40$ Solartron Model MM906 I to 300 pf \& - 1 to 300 uH .

Marconi Model TF936 Measures $\mathrm{L} \mathrm{\& C}$ at
80 Hz \& $10 \mathrm{kHz} \ldots$
RECEIVERS COMMUNICATIONS Eddystone 770 U range 150 to 500 MHz Eddystone 840 A range .5 to $30 \mathrm{MHz} £ 32$ Hallicrafters S27c Range $110-220 \mathrm{mHz} \in 45$
Hallicrafters S36 Range $28-143 \mathrm{mHz} \in 40$ Mallicrafters CR 100 Range 50 kHz to 30 mHz
Marconi
Marconi CRI50/2 Range 2 to $60 \begin{array}{r}\mathrm{mHz} \\ \mathrm{mHz}\end{array}$ HROUble conversion
HRO. MX Model range $\cdot 5^{\circ}$ to $30^{\circ} \mathrm{mHz}$
full set coils.
R1IS5 Trawler band model with super
slow motion drive. APR/4 Search Receive
$1,000 \mathrm{mHz}$
SPECIAL ITEMS OF INTEREST
DAWE Sound level Meter Model 1400 E small portable instrument fully transis-
torised with manual/leather case/ torised with manual/leather case/ \&
built in calibrated microphane. Condition built in calibrated microphone. Condition
as new ..

Dawe Stroboflash Model 1200 C calibrated between 6 a

Dawe Stroboflash Model I200E calibrated between - 300 to 18,000 R.P.M. as new condition with portable stroboflood gun

Crompton Parkinson direct reading Kilowatt Meters. Range 0 to 4 Kilowatts, 4 inch flush panel mounting for 250 v single phase operation 50 HZ with external resistance
PYE Electrostatic Volemeter model 11310 scalamp type Voltage range 18 KV mains

KIENZLE ELECTRONIC PRINTER model DII-E as new condition *Videcon Tubes Cathodeon brand new at surplus price ..
Cambridge madel D.E. Potentiometric Recorder. Single point type. Range $0-10$ mVs. Chart speed 30 in . $/ \mathrm{Hr}$. Slide wire accuracy 0.3% offered brand new with
manual and components, charts etc.

SPECIAL OFFER

"INSULATION TESTERS" TYPE No. 11 METROHM by famous British manufacturer. All solid state. No handles to crank. Runs off 9 volt transistor battery. Simply press button for function. Range 0.1 to 25 M ohms for insulation testing. Also 0.1 to 100 ohms for resistance and continuity checking. Clear, concise scale. Small size modern instrument, complete with carrying strap and protecting cover, Offered in good used condition ready to work. For 250 volt pressure only. List Price $\mathbf{f 1 9 . 5 0}$. Our Price $\mathbf{6} \mathbf{6 . 0 0}$ plus
$22 \frac{1}{2}$ post/packing.

KELVIN HUGHES
 RADAR TYPE 17
 BRAND NEW WITH ALL ACCESSORIES
 6 FT. SCANNER. 24Y ELECTRICS
 hewlett packard TRANSFER OSCILLATOR MODEL 540B, IN AS NEW CONDITION P.U.R.

Honeywell Brown Electronic Recorder. Potentiometric type, Sensitivity $0-01 \mathrm{mV}$ \& $0-1 \mathrm{mV}$ offered as new perfect order $\mathbf{£ 2 2 5}$

AIRMEC PORTABLE RF SIGNAL GENERATOR. AM/FM Type CT212. Specially designed for fleld use for mains or 12 v operation. Frequency range 85 kHz to from 1 micro $V 100 \mathrm{mV} 0$ to 80 db . Offered in excellent | TEKTRONIX $55 I$ |
| :--- |
| WITH TWO PLUGINS |
| PERFECTCONDITION | condition. Only E 45

MARCONI BOID
MARCONI BOID GENERATOR 10-470

MHz OUTPUT

MARCONI TF867 Standard RF Signal Generator, MARCONI TF867 standard RF Signal Generator, to 4 Volts. Extremely accurate attenuator, high output stability and discrimination make the generator very suitable for precision measurements on networks and flters. Modulation up to 100% may be applied at 400 or 1000 Hz . Built in crystal calibrator. Offered in
first class condition. Yrice $£ 175$.

MAGNIFICATION METERS

Marconi Q Meter Model TF329G perfect condition $\mathbf{4 5 0}$ Marconi HF Q Meter TF886A perfect condition. . $\mathbf{4 0}$ Advance Q Meter Model T. 2 perfect condition $£ 40$ Dawe Production Q Meter Model 620 C brand new $\mathbf{£ 5}$

TEKTRONIX 515A
and
TEKTRONIX 524AD AVAILABLE NOW

WANTED. GOOD
 EQUIPMENT

Miniature solenoid driven wafer switches, type-Iedex single pole, 7 pos. 3 wafers. Primarily used for channel switching in Rudio-Telephones. Wafers may be substituted for any type. Solenold voltage, 12 or 24 V .
Brand new. 41.50 each,

LF OSCILLATORS * GENERATORS

Solartron constant output generator model DO905 range $50 \mathrm{kHz}-50 \mathrm{Mhz}$ OP between 10 mV \& 10 vols as new
Donner sinewave oscillator $1 \mathrm{HZ}-100 \mathrm{~K} \mathrm{~Hz}$
AIRMEC Model 257 LF signal generator. Range $0.003-30 \mathrm{HZ}$
AIRMEC Model- 858 range $30-1,000 \mathrm{kHz}$ \& $1-30 \mathrm{MHz}$ in 7 ranges
Wayne Kerr Video Osc' model 0.22 B 10 Hz to 10 MHz
Marconi oscillator TF885A $25 \mathrm{~Hz}-5 \mathrm{MHz}$ sine \& 50 Hz -i50kHz square wave, variable O.p. 316 uV to 31.6 volts
TS-47APR range $40-500 \mathrm{MHz}$. function modulated/pulse/CÖW. mains or battery PYperated small portable unit
PYE LF Osc' Model I 1026 range 4 Hz to 40 kHz
The above instruments are in excellent operational order \& condition, for mains
voltage operation unless stated

CANNON XLR AUDIO SERIES
 Offered Brand New. Sealed Packs at a
little over $\frac{1}{1}$ List Price.

MULLARD HIGH SPEED VALVE TESTERS. We have a small quantity of these very popular testers available late model. Complete with cards and in good working order. Price $\mathbf{£ 4 5}$

LOW VOLTAGE POWER SUPPLY

 UNITSTo supply 12-15-20-24 and 30 volts at continuous 5 amps with current control and ammeter employs silicon heavy duty rectification and high quality components very suitable charing duties. 240% ACy plating and fused. Small size only $10 \times 7 \times 6$ in. fused. Small size only $10 \times 7 \times 6 \mathrm{in}$.
Offered brand new units. Price $£ 12.50$.

LEEDS \& NORTHRUP Integra. Slow speed chart recorder and Temperature controller for use with chrome AL couples/temperature range $0-1000^{\circ} \mathrm{C}$ incorporates POTENTIOMETRIC RECORDER \& Sensitive Controller
Series 60 . Offered in good used Series 60. Offered in good used con-
dition ..
P.F. RALFE

10 CHAPELST. LONDON N.W. 1 Phone 01-723 8753

MARCONI 1094 A/S
 HF SPECTRUM ANALYSER $3-30 \mathrm{MHz}$

LATE MODEL FOR SALE OR HIRE

LUCAS CAR RELAYS. 12 v. duty make. Suitable for spotlights, Only 37tp Special price forand new. Only $37 \frac{1}{2} p$. Special price for quantities.

BARGAIN OFFER
200-yard reels equipment wire, size 1/024, reels only 75 p . P. \& P. 12itp.

HUNTER MAGSLIPS 3 inch Series, Type E-18-V/2. Very suitable for servo operation of hydraulic valves radar aerials
and other applications for 50 volt 50 cyll and other applications for 50 volt 50 cycle operation. Offered brand new in transit boxes, at only $\mathbf{E} 3.25$ each.
Rhode \& Schwarz UHF 1000 Load Resistor. An oil immersed load $0-600$
MHz 60 ohms 1000 wars. FNr H3086/14. Price 685 carriage extra

Noise Generator Model CT-82 Range 15 kHz to 160 MHz very useful noise for factor measurements of receivers/ ment is directly calibrated in noise factor and displayed on panel meter also fattor meter calibrated in dbs, for $115-250 \mathrm{vac}$ operation offered in good used condition small size low price only 68 Carr. 50 p.

fre
min miniature Vacuum drawn type 110 MHz operation connections BNC and N types.
Offered brand new, boxed. Price $£ 3.25$.

LEAD-ACID EQUIPMENT
 BATTERIES IOV 5AH.

Transparent casing. Size $2 \frac{1}{2} \times 5 \times 7$ in. per box, complete with links and full per box, complete with links and full instructions. Can supply voltages in the
range from $2-20 v$. Price $\in 2 \cdot 25$, inc. P.\&.P.

BURNDEPT RF PLUGS still available. These hard to find plugs are used on a multitude of equipment, especially
Londex aerial c/o relays. Offered new ex. equipment. 2 for 50 p , inc. p.p.

NIFE traction Batteries Nickel Iron. $1.2 V$ per cell rated at $180 \mathrm{~A} . \mathrm{H}$. Sold in
crates of three cells or crates of five cells. £4 per cell. Guaranteed best buy.

BT91-500R THYRISTORS
500 PIV Max rect. Current 16 amps.
Guaranteed perfect. Price $E l-25$ each.

COLVERN HELICAL POTS
$\left.\begin{array}{l}\text { IK ohms } \\ \text { 5K ohms } \\ \text { l0K ohms } \\ \text { 20K ohms } \\ 30 \mathrm{~K} \text { ohms }\end{array}\right\}$ ALL TEN TURN

ELECTRONICS VOLTMETERS for low level signal sources
PYE High Impedance DC Amplifier for measurements better than 20 uV to 10 PHILIPS GM
PHILIPS GM 60101 mV FSD to 300 V
in 12 ranges. Price $£ 45$
PHILIPS PM 2520 I mV FSD to 300 V in 12 ranges RMS voltmeter 10 Hz to 1 MHz . Price $£ 45$
SOLARTRON VF-252. AC millivoltmeter 1.5 mV for FSD to 15 V 30 M ohms impedance. Price $E 65$
H. W. SULLIVAN STANDARD Capacitance range 0 to 100 pf fully
screened with engraved vernier subdivided into 100 equal divisions complete with vernier index and original manufacturers seal offered brand new, at only $£ 25$ each.

Cossor Electronic Invertors type CRA 200. A high quality device for producing a 115 v 400 HZ single phase output. Incorporating the following features:

* Full overload protection.
* Sine wave output.
* Comple control facilities.

Constant Voltage DC Power Supplies A stabilised unit supplying 48vde at 4 amps input $200-245 v a c$ stabilised to within
$+1 \%$ at full load. Supplied new

VARIAC TRANSFORMERS a amp type fully shrouded with seale plate \& control knob. Good used condition. Price $£ 10$ Carriage ${ }^{75} \mathrm{p}$.
Also 3 amp type as above $£ 4.50 \mathrm{p}$

EIMAC SK-600A. Air spaced Valve Holders suitable for 4×250, etc. Power etrodes, brand new, boxed, complete with clamps, screws; heavy silver plate inish. Normal list price $£ 6 \cdot 50$. Our price
A.E.I. MINIATURE UNISELECTOR SWITCHES
No waiting, straight off the shelf and are your equipment, the Catalogue Nos 250 ohms. Complete with base, and the price is $\mathbf{E 5}$. Limited quantity only available.
Also: 2203A, 2200A, 2202A

SEARCH RECEIVERS AN/APR/4 Range $38-1000 \mathrm{mHz}$ with 3 RF tuning eads, circuit diagrams, etc. $£ 95$.

AERIAL CHANGE/OVER RELAYS flly current manufacture designed espec 2 v ., frequency up to 250 MH at 50 warts Small size only, 2 in $x \rightarrow$ in Offered brand new, boxed. Price $£ 1 \cdot 50$, inc. P. \&P.

COAXIAL SWITCHES
 American Manufactur

uitable for aerial changeover and high equency switching up to $1,000 \mathrm{MHz}$ - per cell. Guaranteed best buy

> Completely Solid State (Silicon
> * Built to Air
> * 180 VA of outpart specifications.

> May be run in series aperation for. 3 phase requirements. Offered brand new boxed units. Price $\mathbf{\& 1 7 . 5 0}$
Carriage 50 p Carriage 50p
\qquad

[^12]

SERVICE TRADING CO

INPUT 230 v. A.C. 50/60 OUTPUT VARIABLE 0/260 v. A.C. BRAND NEW. Keenest prices in the country. All types (and spares) from
to 50 amp. available from stock. $0-260 \mathrm{v}$ at 1 amp . $0-260 \mathrm{v}$. at 2.5 amps $0-260 \mathrm{v}$. at 5 amps . $0-265 \mathrm{v} .2 t$
$0-260 \mathrm{v}$. at 15 mpps . $0-260 \mathrm{v}$. at 15 amps $0-260 \mathrm{v}$. at 20 amps . $0-260 \mathrm{v}$. at 25 amps .
$0-260 \mathrm{v}$. at 37.5 amps . -260 v at 50 amps . 20 Different types available fo immediate delivery.

OPEN TYPE (Panel mounting). $\frac{1}{2}$ amp. $\mathbf{E 3 . 9 3}$

Functional Versatile Educational
UNISELECTOR SWITCHES NEW 4 BANK
25 WAY FULL WIPER
25 ohm coil, 24 v. D.C. operation
6 BANK 25 WAY FULL. WIPER
25 ohm coil, 24 v. D.C.

operation. 66.50 , plus 22 P P. \&
8 BANK 25 WAY FULL WIPER
24 v. D.C. operation. $47 \cdot 63$, plus 22 p P. \& P
12-28 VOLT D.C. BLOWER UNIT
Powerful, smooth running, precision made Blower Unit. 5,000 RPM, 54 amps .
Size $3^{\prime \prime}$ diameter $\times 3$ n $^{\prime \prime}$ long over all,
Price $\mathbf{6 2 . 0 0}$ post paid.

VERY SPECIAL OFFER
Cannot be repeated. 500 V .50 Meg Record insulation cesters. Excellent condition, fully tested. Complete

STROELSTROOELSTROEL

10-2 TRANSFORMERS. Step Np, step down. $10-200-220-240$ V. Fully shrouded. New. 300 wate type 63.63 each. P. \& P. 35p. 500 watt type $85 \cdot 13$ each. LIGHT SOURCE AND PHOTO CELL
MOUNTING
Precision engineered light source
with adjustable lens assembly and $0 \mathrm{E}=$ ventilated lamp housing to take
MBC bulb. Separate photo cell mounting assembly for ORP. 12 or similar cell with optic window. Both units are single hole fixing. Price per pair $\mathbf{6 2 . 7 5}$ plus 18 p .
P. \&PGHT SENSITIVE SWITCHES Kit of parts including ORP. 12 Cadmium
Sulphide Photocell. Relay Transistor and Sulphide Photocell. Relay Transistor and High Speed Relay for 6 or 12 volt oper2tions. Price $\mathrm{fl} \cdot 25$, plus $12 p$ P. \& P.
ORP. 12 and Cirsuit 63p post paid.

220/240 A.C. MAINS MODEL incorporates mains transformer rectifier and special
relay with I make, I break. H.D. contacts. Price inc INBULATED TERMINAL8 Available in black, red, white yellow, blue and green. New 10p each. Post paid. $\overline{S A} \bar{W} \bar{W} \bar{A}$

vided which directly reads temperature. Styty With thermometer probe attached. ${ }^{\circ}$ The
Meter checks from $-50^{\circ} \mathrm{C}$ up to $200^{\circ} \mathrm{C}$. Meter checks fro
Technical Data
DC volts: 0.25
DC volts: $0.25 \approx 1000 \mathrm{~V}$ in 6 ranges ($10 \mathrm{k} \Omega / \mathrm{V}$)
AC volts: $10 \approx 1000 \mathrm{~V}$ in 5 ranges $(5 \mathrm{k} \Omega / \mathrm{V}$
AC milliamperes: $0.25 \approx 250 \mathrm{ma}$ in 4 ranges
DC
DC ohms: $\mathrm{R} \times 1 \sim \mathrm{R} \times 1000$ in 4 ranges. (min 2
10mgn). Decibels:- $20 \sim 0^{+}+62 \mathrm{db}$.
Temperature: $-50^{\circ} \mathrm{C} 100^{\circ} \mathrm{C} \& 0^{\circ} \mathrm{C}$
Size: $54 \times 3 \mathrm{Z} \times 14$ in. Weight 1.2 lb . PRICE f 12.60 , Post paid.
TEN OTHER MODELS FROM STOCK. LEAFLET ONREQUEST.

RUNNING HOUR METER. 240 volt, 50 cycle, $2 \cdot 2$ watt. Calibrated in minutes. Six figure. PRICE;
$€ 3.00$ including Post \& Packing.

VENNER ELECTRIC

TIME SWITCH

200, 250 volt. Ex-GPO. Tesede

 Overrens ploaso ank

25 WAY FULL WIPER
Targe centre aperture, can be used as a Double
wound current Transiormer, Auto Transformer,
H.T. or L.T. Transformer, by simply hand windEng the required number of turns through the centre opening. to vive 8 V . 124 Amp., 4 V . (c) 25Amp. or 2 V . @ 50 Amp ., etc.
Price: RT. 100 VA 3.18 turns per volt, $62.25+28 \mathrm{p}$. and p.
 - RT. 3KVA 1.5 turns per volt, $\quad E: 1400+$ B0p p. and p. All primaries $220-240$ volts.
Type No.

HREE EASY TO BUILD KITS USING XENON WHITE

 RIGGERING CIRCUITS. PROVISION FOR EX The Strobe is one of the most useful and interesting invaluible for the study of movernent and checking of speeds. Many uses can be found in the psychiatricand photosraphic fields, also in the entercainmen
business. It is used a great deal in the motor induery business. It is used a great deal in the motor industry
EXPERIMENTERS "ECONOMY" KIT ponencs including Veroboard. A.C.R. Uniiunction NEW INDUSTRIAL KIT
保 Adjusrable 1-80 f.p.s. Price $59.45,50$ p P. \& P. HY-LYGHT STROBE hals and the photor draphice field, and in utilizes a rooms, silica, easy assembly, also a special trigger coil and output apacitor. Speed adjustable l-30 f.p.s. Light output T-INCH POLISHED REFLECTOR. Ideally suited
 MOTOROLA MACI/6 PLASTIC TRIAC 400 PIV 8 AMP Now available EX STOCK supplied complete with full
data and applications sheec. Price El. 05 plus 7 p P. \& P. Suitable jiac 30p (RCA40583)
ELECTRONIC ORGAN KIT

Easy to build, solid state. Two full octaves Fitted hardwood case, powered by two pen ite $1 \frac{1}{2} v$. batteries. Complese set of parts including speaker, etc., together
with full instructions and 10 tunes. $€ 3$-00. P. \& P. 25 p. 50 in I ELECTRONIC PROJECT KIT 50 easy to build Projects. No soldering, no special tools required. The Kit includes Speaker, meter, Relay, Transformer, plus a host of other components and a 56 page instruction leaflet. Some examples of the 50 possible
Projects are: Sound level Meter, 2 Transistor Radio, Projects are: Sound level Meter, 2 Transistor Radio,
Amplifier etc., etc. Price $£ 7.75$. P. \& P. 30p. CRYSTAI. RADIO KIT
Complete set of parts including: crystal diode, ferrite soldering, easy to 'build, full step-by-step instructions.

HOSIDEN DH-02-S Stereo Headphones Outstanding periormance. 8, ohm imp
pedance and $20-12,000 \mathrm{cps}$, Adjustable
head head band. Price only $\mathbf{6 2}$. 38, , A. \& P. I 2p.
Complete with lead and stereo jack plug.

RELAYS NEW SIEMENS PLESSEY, etc. MINITURE RELAYS AT COMPETITIVE PRICES. | 45 | $6-9$ | 2 HD | $\mathbf{5 0 p}$ | 700 | $12-24$ | $2 \mathrm{c} / \mathrm{o}$ | $\mathbf{6 3 p}^{*}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 185 | $6-12$ | $2 \mathrm{c} / \mathrm{o}$ | $63 \mathrm{p}^{*}$ | 700 | $15-35$ | $2 \mathrm{c} / \mathrm{o}$ | HD |
| $73 \mathrm{p}^{*}$ | | | | | | | |

 $\begin{array}{ccccccc}230 & 9.18 & 2 \mathrm{c} / \mathrm{oHD} & 63 \mathrm{p}^{*} & 1250 & 24-36 & 4 \mathrm{cio} \\ 230 & 9.12 & 4 \mathrm{c} / \mathrm{O} & 78 \mathrm{p}^{*} & 2500 & 36-45 & 6 \mathrm{M}\end{array}$ $\begin{array}{lllll} & \text { 78p* } 250036-45 & \text { 6M } & 63 p^{*} \\ 280 & 9-12 & 2 \mathrm{c} / \mathrm{o} & 73 \mathrm{p}^{*} & 240030-48 \\ 4 \mathrm{c} / \mathrm{o} & 50 \mathrm{p}\end{array}$ $\begin{array}{lllll}600 & 18-324 \mathrm{c} / \mathrm{o} & 78 \mathrm{p}^{*} 5800 & 40-70 & 4 \mathrm{c} / 0 \\ 700 & 63 \mathrm{c}^{*} & 63 \mathrm{p}^{*}\end{array}$ 700 16-24 $4 \mathrm{c} / 0$ 78p* 15k 85-1106M 50p* (1) Coil ohms; (2) Working d.c. volts; (3) Contacts;
Price $H D=$ Heavy Duty. All Post Paid. *including Base MAINS RELAY
230 v. A.C. coil $3 \mathrm{c} / \mathrm{o}, 10 \mathrm{amp}$. A.C. contacts. 50 p
$+8 p$ p. \& p. Similar to above illustration.
RECHARGEABLE NICKEL CAD. BUTTON CELLS.
2×1.2. 250 MA/HR Nickell Cadd Cells,
connected to
sive 2.4 . rate, complete with 200/250
unused. Price 48 p each plus unused. Price ${ }^{48 \mathrm{p}} \mathrm{p}$ each P
units for $\mathrm{El}, 00$ post paid.

NICKEL CADMIUM BATTERY 1.2 v. 35 AH. Size 80 high $\times 3 \times 10$. $\mathbf{1 1} 50$ each, plus 20_{p} P. \& P. P. \& P.
Sintered Cadmium Type 1.2 v. 7AH. Size: height 31
31
in.
,

230 VOLT AC SOLENOID EXTREMELY POWERFUL SOLENOID with approximately 141b. pull, inch travel. Fitted with
mounting feet. Size 4 inches long, $2 \frac{1}{8}$ inches wide and 3 inches high. Price $\in 2.00$ including post $\&$ pkg.

36 volt 30 amp. A.C. or D.C. Variable L.T. Supply Unit
 Fitted in robust metal case with volt-
meter. Ammeter, P Panel Indicator and meter, Ammeter, inpur and Output fully fused. Ideally $230 \mathrm{~V} / 240 \mathrm{~V}$ COMPACT SYNCHRONOUS GEARED MOTORS
Manufactured by either 5 angamo, Haydon
or Smith. Built-in gearbox.
rev. per hour. Clockwise rotation.
1 rev. per hour. Clockwise rotation.
1 rev. per hour. Anti-clockwise rotation
1 rev. per hour. Antickwise rotation.
2 revs. per hour. Clock
3 revs. per hour. Anti-lock wise rotation
5 roter
5 revs. per hour. Anti-clockwise rotation.
15 revs. per hour. Anterlockwer per hour. Anti-clockwise rotation
15 potion
15 rev. per hour. Anckwise rotation.

12 VOLT DC MOTOR
Powerful 12 volt 1 amp REVERSIBL motor. Speed $3,750 \mathrm{rpm}$. Complete with external gear train (removable)

- giving final speed of 125 RPM. Size giving final speed of 125 RPM. Size
4 inin. $\times 2 \frac{1}{2}$ in. dia. Price inc. post $95 p$.
PARVALUX TYPES DI9 230/250 VOLT AC REVERSIBLE GEARED MOTORS 30 r.p.m. 40 lb. ins. Positi drive spindle adjustable substantial cast aluminium base. Ex-equipment. Tested and in first-elass running order. A really powerful motor offered at a

BODINE TYPE N.C. 1 GEARED MOTOR
(Type 1) 71 r.p.m. torque 10 lb . in Reversible 1/70th h.p. 50 cycle .38 amp. (Type 2) 28 r.p.m. torque 20
Ib in Reversible $1 / 80 \mathrm{th}$ h.p. 50 cycle .28 mp. The above two precision made U.S.A. motors are offered in 'as new' condition. Input voltage of motor $115 v$ A.C. Supplied complete with transformer for 230/240v A.C. input
Price, either type E $3 \cdot 15$ plus 35 p P. \& P. or less transformer $22: 13$ plus $27 \mathrm{p} P$. \& P.
These motors are ideal for rotang aerials, drawing

aERO SERVIGES LTD

TWO
NEW A.C.D.C.
MULTIMETERS MULTIMETERS TYPE 4818 tow sensitivity $(667$ o.p.v.) extremely

sturdy instrument for Deneral electrical use. | D.C. rangea: $0.3 \cdot 1.5 \cdot 7.5-30-$ |
| :---: |
| $60.150-300-600-900 \mathrm{~V}$ and | $75 \mathrm{mV} ; \quad 300 \mu \mathrm{~s}-1 . \mathrm{s}-6-15-$

$\mathbf{6 0 - 1 5 0 - 6 0 0 \mathrm { mA }} 1.5-6 \mathrm{~A}$. 60-180-600mA $1.5-6 \mathrm{~A}$.
A.C. rangen: $0.3-1.5-7.5-30$
$60-150-300-600-900 \mathrm{~V}$. A. . rangen: $60.3-150.300 .600 .900 \mathrm{~V}$.
$1.5-6.15-60-150-600 \mathrm{~m}$. 1. $.8-6 \mathrm{~A}$.
Resigtance: Resistance: $0.2-3-30 \mathrm{kn}$.
Accuracy: $\mathbf{D} . \mathrm{C}$.
\% A. 1.5%. with carrying case and leads 89.7
TTPT 4818-high senfitivity for general electronic and TV-radio reenait pity: 20,000 o.p.F. DC and 2,000 o.p.r. AC. D.C. ranges: 75 mV -1. $5-3-7.5-15-30-60-150-300-600 \mathrm{~V}$ A.C. ranges: $1.5-3-7.5-15-30-60-150-300-600 \mathrm{~V}$. $600 \mu \mathrm{~A}-3-15-60-300 \mathrm{~mA}-1.5 \mathrm{~A}$.
Resistance: $0.5-5-50-500 \mathrm{~kg}$.
Resistance: $0.5-5-50-500 \mathrm{k} 0$
Capactity and Transmission level bcales.
Accuracy: 1.5% D.C.; 2% A.C.
Accuracy: 1.5% D.C.; 2% A.C.
PRICE, with carrying case and leads $810-60$.
Both instruments have knife edge pointers and mirror scales.
WHEN ORDERING BY POST PLEASE ADD $\mathbf{C O} \cdot 12$ (2/6) IN FOR HANDLING AND POSTAGE

ALL MAIL ORDERS MUST BE SENT TO HEAD
OFFICE AND NOT TO RETAIL SHOP.

SILICONEW TRANSISTORS ADDED

SILICO	300 m	$\mathrm{Ft}=100 \mathrm{Mc} / \mathrm{s} .$				${ }_{1}$
BFW87	$60 \mathrm{~V} \mu$	hte min. $80 .$.	.	..		$0 \cdot 80$
BFW88	60 V	hife min. 40.	0.2
BFW89	40V	hfe min. $80 .$.		.		0.28
BFW81	20V	hfe min. 40. .	.	\cdots	\cdots	0.20

miniature		WIRE ENDED RECTIFIERS			SILICON		
02	100 p.i.v.						
1N4004	${ }_{800}^{400} \mathrm{p}$ p.i.v.v.	${ }_{14}^{14}$.		..		

MVIOB LIGHT EMITTING DIODE To 18 outline. Btghtness 500 Ft .L at 50 mA . Forwand voltage
1.65 to 2 V . Spectral length 6300 to 7000 A (red light). Lens diameter 0.170 in .
PRICE 01.06 plus 0.10 P. P.

INTEGRATED MONOLITHIC DUAL
OPERATIONAL AMPLIFIER MCIA35P Two Identical amplifiers in 14 -pin dual-in-line epoxy pacikage.
400 mW disalpation. Typical open loop voltage gain 7000 . Max.
 $1 \mathrm{mc} / \mathrm{s}$. 2.00 .

MINIATURE CERAMIC CAPACITORS talerance: ${ }_{2}^{25 V}$ 22-27-38-99-47-56-68-100-120-15

180-220-270-330-300-470-560			
180-220-270-330-390-470-660	.	\cdots	20
\cdots			220 per 20
$3300-4700-6800010.0000 \mathrm{pF}$			24 per 20
80\% + 80\% tolerance: 0.015μ			25 p per 20
$0.022 \mu \mathrm{~F}$			28 p per 20
$0.033 \mu \mathrm{~F}$			28p per 20
$0-047 \mu \mathrm{~F}$			30p per 20

TWO NEW O8CILLOSCOPEs FROM RU88IA

CI-5 SINGLE BEAM $10 \mathrm{mc} / \mathrm{s}$ passband, triggered sweep from $1 \mu \mathrm{sec}$. to 3 millifrom $20 \mathrm{c} / \mathrm{s}$ to $200 \mathrm{kc} / \mathrm{s}$. Built-in time marker and amplitude callbrator, 3 -in. cathode ray tube with telescopic viewing

CI-18 DOUBLE BEAM

 8CILLOBCOPE 5 me/s passband. Separate rectangular $5 \mathrm{in} . \times 4 \mathrm{im}$. cathode ray tube. Calibrated triggered sweep from $0.2 \mu \mathrm{sec}$, to 100 millisec , per cm. Free running Built-in time base calibra. tion and amplitude cali. brator and amplitude ca....... 88.50 Full details on request. spares available.

OUR 1970/1971 CATALOGUE is AVAILABLE. PLEASE SEND S.A.E. FOR YOUR FREE COPY.

\qquad

FULLY GUARANTEED
 facix

FIRST QUALITY VALVES

 ㅇㅇㅇㅇㅇㅇㅇ웅ㅇㅇㅇㅇㅇㅇㅇㅇㅇ․评四

please note that valves listed above are not necessarily of u.k. origin

Head Office:

44a WESTBOURNE GROVE, LONDON, W. 2

Tel.: 727 5641/2/3
Cables: ZAERO LONDON
Retail branch (personal callers only)
85 TOTTENHAM COURT RD.
LONDON W.2. Tel: 5808403
A.R.B. Approved for inspection and
release of electronic valves, tubes, release of ele

WE WANT TO BUY:
SPECIAL PURPOSE VALVES. PLEASE OFFER US YOUR SURPLUS STOCK. MUST BE UNUSED.

APPOINTMENTS VACANT

DISPLAYED SITUATIONS VACANT AND WANTED: $£ 8$ per single col, inch:
LINE advertisements (run-on): 45 p per line (approx. 7 words), minimum two lines.
Where an advertisement includes a box number (count as 2 words) there is an additional charge of 25 p.
SERIES DISCOUNT: 15% is allowed on orders for twelve monthly insertions provided a contract is placed in advance. Wireless World, Dorset House, Stamford Street, London, S.E.1. No responsibility accepted for errors.

Advertisementw accepted up to THURSDAY, 12 p.m., Ioth JUNE, for the JULY issue, subject to space being avallable.

The Government of ZAMBIA requires

* Subsidised Housing \quad Education Allowances $\star 25 \%$ Tax-free Gratuity
 \star Appointment Grant of up to $£ 200$ payable in certain circumstances * Salary $£ 2, \mathbf{3 0 1}$ to $£ 2,579$ according to experience

Euties will involve the maintenance and installation of police radio equipment throughout Zambia, travelling by road and air.
The equipment includes modern low and medium power H.F. equipment, S.S.B. equipment and V.H.F. equipment inclualing multiplex links. Knowledge of maintenance of teleprinters, diesel and petrol generators preferred.
Candidates, who will serve in the rank of Inspector of Folice (non-uniformed), must have completed a five year anprenticeship or hold a service trade certificate or equivalent qualification and have at least sik years postcualification experience.

Radio Specialist. Ref. M2Z/61274/WF

Duties will involve the maintenance, overhaul and installation of ground terminal radio communica:ion equipment and navigational aid at Airports and Flight Information Centres.
The equipment includes radar systems, H.F. and V.H.F. transmitters and receivers, I.L.S. and D.F. systems and tape recorders. Candidates, who should be under 55 years of age, should have practical experience and a knowledge of theoretical principles within this field.
In addition they should have attained one of the following:-
(i) completion of a 5 year apprenticeship
(ii) a service trade certificate
(iii) an I.C.A.O. certificate
or (iv) equivalent.
Radio Engineers. Ref. M2Z/690315/WF

Apply to CROWN AGENTS, 'M' Divisior, 4 Millbank, London, S.W. 1 for application form and further particulars stating name, age, brief details of qualifications and experience and quoting relevant reference number.

TELEVISION AND RADIO TRAINING

(DAY ATTENDANCE COURSES)

This private College provides theoretical and practical training in Radio and TV Servicing. Courses of one year's duration, with daily attendance, are available for beginners and shorter courses for men with previous training in Electronics and Radio. Training courses in Radar and Radio Transmission are also available following the TV course. Write for prospectus to: London Electronics College, Dept. B/5, 20 Penywern Road, Earls Court, London, S.W.5. Tel. 01-373 8721.

Join us now as a Computer Service Engineer, and after six months' paid specialist training, you will be responsible for ensuring that our computers are in peak condition.

We are Britain's leading computer manufacturer; we give men who want a rewarding career an excellent basic salary while we train them in every aspect of customer engineering in the computer industry. You'll learn to deal with operational problems, and to use the most intricate machinery.

HNC or C\&G in electronics engineering, a Forces' training in electronics, or similar qualifications, are your passport to our opportunities.

How far you progress is up to you--the experience you get will stand you in good stead for your future career development. You'll gain knowledge of new methods and techniques on the most sophisticated equipment.

To add to your basic salary, you can get generous overtime and shift rates. There is a special allowance for working in central London. You will be operating in a computer environment on customers' premises in conditions well above the average for industry.

Age: 21/35.
Locatıons: Middlesex, Hertfordshire, Surrey, Central London, Manchester, Kidsgrove. Reading, Bracknell. and Dublin.

Write giving brief details of your career, and quoting ref. W W 756 C to: A. E. Turner, International Computers Limited, 85/9ı Upper Richmond Road, Putney, London SW 15.

TECHNICAL AUTHORS

The Data Systems Divisions of Redifon Ltd engaged in design and manufacture of computer-based systems, requires two additional experienced Technical Authors to meet its demand of expansion programme. If you possess HNC electronics or equivalent knowledge and can meet the challenge of producing original drafts from engineering drawings of electronics and digital equipment telephone immediately for further details and interview appointment. A secure career with attractive salaries and removal expenses will be offered to suitable applicants. Apply to:
S. Rehman Esq., Chief Technical Author, REDIFON LIMITED,
Data Systems Division, 17-23 Kelvin Way,
Manor Royal, Crawley.
Tel: Crawley 3051 1, Ext. 47
REDIFON ${ }^{*}$
A Mapriver Company of the Rediflusion Orgamsation

Senior Engineer Audio Systems $£ 2,000$ p.a. +

Rank Bush Murphy are acknowledged leaders in the field of high quality domestic radio, television and audio products. To strengthen our present team we want to recruit a Senior Engineer to work on Audio systems.

He will be responsible for the design and development of complete systems from initiation of the project to production stage. For such a level of responsibility the right man will have at least 3 years' direct experience in design and development of audio, tape and radio equipment. Membership of I.E.R.E. or I.E.E. would indicate to us the quality of the man.
The salary level and other employee benefits are as generous as one would expect from an organisation of our strength and profitability. Relocation expenses will be paid where appropriate.
Please write quoting reference Ww or telephone, giving us brief details of your career to date, to:

David Jux, Rank Bush Murphy Ltd.,
Power Road, Chiswick, London, W.4.
Telephone: 01-994 6491.
RANK BUSH MURPHY

Sea-going Radio Officers can now make sure of a shore job and good pay.

Assistant Engineers Grade 1 East African Posts and Telecommunications Corporation

* Salary £2341 (single officers) or $£ 2437$ (married officers) in scale rising to $£ 2718$
* Gratuity 25%
* Low taxation
* Subsidised accommodation
* Education allowances
* Contract of 24 months
* Overseas Installation grant

The officers' duties will be connected with the installation and maintenance of radio stations and will involve travelling to outlying stations at a considerable distance from their headquarters.
Candidates, 28-45 years, should possess the City and Guilds Intermediate Certificate (Telecommunications) plus a pass in Radio Grade 2 or an equivalent qualification and must have a thorough knowledge of the installation and maintenance of HF and VHF radio equipment. A knowledge of microwave, carrier and telegraph equipment would be an advantage.

Opportunities with Redifion in Ratio Communications

Experienced Test Engineers are invited to write to Redifon with regard to vacancies in our Test Department at Wandsworth
The salary range for these positions is $£ 1.248$ $£ 1.749$ plus. The Company is engaged in the design and manufacture of a wide range of radio communications and allied equipment from military pack - set to broadcast transmitter. including communications receivers, M.F. beacons, teleprinter terminals, cornplete radio office installations for the Merchant Marine and mobile H.F. S.S.B. stations, Cur Test Engineers have sound technical knowledge coupled with good practical experience in the alignment and test of H.F. and V.H.F.

Communications equipment.
The work is varied and interesting and offers excellent opportunity to broaden experience in semiconductors S.S.B. and Frequency Synthesis
Please write in the first instance to
Norman Manion.
The Recruitment Officer, Redifon Limited Broomhill Road, Wandsworth, S.W. 18

CAR RADIO TECHNICIAN

Bosch Automotive Products, in Watford, are looking for a rather special Car Radio Technician.
You must not only enjoy working on your own with the most modern equipment but also meeting people. We want you to help in training our dealer service personnel and give technical advice to dealers and private customers.
To cope with all this you must be qualified to City \& Guilds Standard in Radio and T.V. and have some administrative ability in order to maintain spare parts lists and the like.
This is a real opportunity with a growing company and not to be missed.

Interested? Ring or write: Miss F. Cracknell
Bosch Automotive Products Ltd.,
Rhodes Way,
Watford, Herts.
Tel : Watford 44233

H.M. GOVERNMENT COMMUNICATIONS CENTRE has vacancies at Hanslope Park for
 TELECOMMUNICATION ENGINEER

Posts are available for young men between the ages of 25 to 30 years with $3-5$ years post graduate experience in communications or electronic design; knowledge of VHF-UHF systems and digital techniques an advantage. A degree in Telecommunications or Electronics is preferred.
Salaries are up to $£ 2,500$ according to age, qualifications and experience. Applications with details of previous experience etc, to:
Personnel Officer, HMGCC, Hanslope Park, Wolverton, Bucks.

LONDON BOROUGH OF BRENT WILLESDEN COLLEGE OF TECHNOLOGY denzil road. London. n.w. 10
 DEPARTMENT OF ELECTRICAL ENGINEERING

LECTURER GRADE II
to teach telephony on the $C \& G$ Telecommunications Part I and Part II courses. Excellent opportunities exist for the development of a laboratory for this section of the department's work.

LECTURER GRADE I

to teach Radio/T.V./Electronics theory and practice on C \& G Craft and Technician courses.

Commencing salary within the scales according to experience and qualifications:

Lecturer Grade $11 £ 2,032-£ 2,622$
Lecturer Grade I £1,315-£2,160 subject to review.
Further particulars from Bursar.

Lelcestershile Eoucation committee LOUGHBOROUEH IECHNICAL COLLEGE

Principal: F. Lester, B.Sc., Ph.D., F.R.I.C.
department of electrical engineering
Applications are invited for the post of
LECTURER GRADE I duties to commence on the lst September, 1971. The person appointed will be required to teach Radio and Television. Theory and Practice, Electronics and Electrical Principles to Final Applicants should be suitably qualified and should preferably be members of a Professional or Technician Institution. A thorough knowledge of broadcast receiving equipment is required; previous teaching experience would be an advantage. Salary will be in accordance with the Burnham Scales for teachers in establishments for Further Education (under review), viz: Lecturer Grade I, scale according to qualifications and appropriate Further particulars may be obtained from the Principal, Loughborough Technical College, Radmoor, Loughborough, Leicestershire, to whom completed applications should be returned within fourteen days of the appearance of this advertisement.

Dolby Laboratories manufacture professional noise reduction equipment which has been widely accepted by major recording companies, recording studios and broadcasting authorities throughout the world. New applications for the equipment are now being explored in the film and television industries.
Dolby Laboratories is situated in a modern building south of the river, with excellent communications to the centre of London and main railway stations: the company, 6 -years-old, is expanding rapidly and now comprises 100 people. New vacancies arising within the Sales Department are for a Sales Engineer and a Sales Controller.

SALES ENGINEER

The requirement is for an electrical engineer who will be involved in all technical aspects of sales, including installation engineering, field servicing, and visiting and providing demonstrations and technical training for customers and distributors, both in the UK and abroad. He will occasionally be involved in investigations of new applications for the equipment. The successful applicant may well have experience of recording studio or broaccasting practice. He will probably have a degree, and should be aged between 25 and 35 .

SALES CONTROLLER

The Sales Controller will have responsibility for the supervision of the sales office, with particular reference to customer and distributor correspondence, sales forecasting, liaison with the Production Department, delivery scheduling, and shipping and exporting. In addition, he will explore new sales outlets for the equipment and seek suitable distributors in new markets. It is possible that the successful applicant will already have worked within the recording industry. He will probably have a degree, and should be aged between 25 and 35 .

Salary $£ 2500-£ 3000$ (even higher for exceptional men)

Write with brief details, in the first instance, or telephone.
Dolby Laboratories Inc., 346 Clapham Road, London, S.W.9. Telephone: 01-720 1111

Telecommunications Officer Grade II MALAWI

* Salary up to $£ 2165$
* Low taxation
* 25% gratuity on completion of 30 month tour
* Education allowances
* Subsidised housing
* Appointments Grant $£ 100$ or $£ 200$ payable in certain circumstances
* Contract 24-36 months

Required by the Department of Civil Aviation for the installation servicing and maintenance of aeronautical telecommunications equipment including MF beacons, low power (up to 1 KW) HF transmitters using SSB, AM and FSK techniques, low power (up to 50 W) VHF transmitters and associated VHF and HF receivers including RTT terminals, VHF multi-channel link and Wilcox VOR/DME equipments, Facsimile equipment and $200 \mathrm{Mc} / \mathrm{s}$ DME. Selected candidates will also be required to assist with the training of local staff.

Candidates, aged 25-55, must have completed a recognised apprenticeship or similar training in aeronautical telecommunications followed by a minimum of five years' relevant experience on at least 50% of the abovementioned equipment. The possession of the City \& Guilds Final Certificate in Telecommunications, H.N.C. or equivalent would be an advantage although applicants lacking formal educational qualifications but with extensive experience may be considered.

One year's electronics experience $\mathrm{O}^{+} \mathrm{N} \mathrm{C}$ or C\&G?

Then become a Radio Technician with the National Air Traffic Control Services. You would work on the installation and maintenance of a wide range of sophisticated electronic systems and specialised equipment throughout the U.K. You would be involved with RT, Radar, Data Transmission Links, Navigation Aids, Landing Systems, Close Circuit T.V. and Computer Installations. You could also work on the development of new systems.

To qualify for entry to our training course you must be aged 19 or over, have at least one year's experience in electronics and preferably O.N.C. or C. \& G. (Telecoms). Your starting salary would be $£ 1,143$ (at 19) to $£ 1,503$ (at 25 or over), scale max. $£ 1,741$ - shift duty allowances. Good career prospects.

Send NOW for full details of how you can become a Radio Technician. Complete the coupon and return to A. J. Edwards, C. Eng. MIEE, Room 705, The Adelphi, John Adam Street, London WC2N 6BQ, marking your envelope 'Recruitment'.

I meet the requirements, please tell me more about the work of a Radio Technician.

NAME \qquad
ADDRESS \qquad
------------------------- $\left(\mathrm{A}^{\prime} / \underline{W} W^{\prime} 7\right)$
Not applicable to residents outside the United Kingdom.

RADIO OPERATORS DO YOU HOLD PMG II or PMG I or NEW GENERAL CERTIFICATE or had two years' radio operating experience? looking for a secure job with good pay AND CONDITIONS?
 Then apply for a post with the Composite Signals Organisation-these are Civil Service posts, with opportunities for service abroad, and of becoming established, i.e. non-contributory pension scheme.
 Specialist training courses (free accommodation) starting January, April and September, 1972.
 If you are British born and resident in the United Kingdom write NOW for full details and application form from:
 Recruitment Officer
 Covernment Communications Headquarters
 Oakley, Priors Road, CHELTENHAM, Glos. GL52 5AJ
 Telephone: Cheltenham 21491 Ext. 2270
 92

Due to continued expansion the following vacancies have arisen within the

METROSOUND

GROUP OF COMPANIES

SENIOR BUYER. Experienced in the Electronic trade and possessing good component knowledge. Applicants must be keenly cost conscious with good experience of direct price negotiation and be conversant with component stock control systems.
SERVICE DEPARTMENT MANAGER. Thoroughly experienced in the servicing of transistorised Audio Amplifiers and related equipment and capable of consistently rapid and accurate work with the minimum of supervision.
SERVICE DEPARTMENT ENGINEER. With knowledge of transistorised Audio Amplifiers and interest in high fidelity equipment. Suitable for young service engineer wishing to specialise in this branch of electronics.
PRODUCTION TEST ENGINEERS. With knowledge of transistorised audio circuitry and experienced in the testing and repair of electronic assemblies to a high standard.
Successful applicants for the above positions will enjoy an excellent starting salary which will be directly negotiable. The normal working week will be $37 \frac{1}{2}$ hours with comfortable working conditions and any holiday arrangements already existing will be honoured.

Please apply by letter, telephone or in person to:
Mr. R. Bishop, Technical Director,
Metrosound Manufacturing Co. Ltd., Audio Works,
Cartersfield Road, Waltham Abbey, Essex.
Telephone: Waltham Cross 31933

ANTARCTIC EXPEDITION requires
 ELECTRONICS TECHNICIANS

to operate and maintain scientific equipment at British stations in Antarctica.
Minimum qualifications O.N.C. or final C. \& G. electronics. Practical servicing experience essential.
Salary from $\{1,328$ p.a. according to qualifications with all living and messing free. For further details apply to:
British Antarctic Survey, 30 Gillingham
Street, London, S.W.I.

BLACKPOOL AND FYLDE HOSPITAL MANAGEMENT COMMITTEE VICTORIA HOSPITAL CHIEF CARDIOLOGICAL TECHNICIAN

Applications are invited for the post of Chisf Cardiological Technician at this modern acute hospital of 566 beds which is a sub-regional cardiac centre. There is a staff of 5 excluding the Chief Technician. In addition to providing an EC.G. service to the wards and out-patient clinics, the work includes cardiac catheterisation, open heart surgery, coronary care and on out-patient pacemaker clinic.
The salaiy scale is $£ 1,266$ per annum rising to $£ 1,674$
per annum.
Applications in writing giving the names of iwo referees to the Hospital Secretary, Central Administra-
tion, Victoria Hospital, Blackpool FY3 8NR.

ELECTRONICS TECHNICIAN

Qualified person required for development and maintenance work on medical electronic equipment and computer interfacing.
Salary: $£ 1,278-£ 1,470$ or $£ 1,536-£ 1,800$ according to qualifications.

Apply: Professor Experimental Medicine, University College, Galway.

JUNIOR or STUDENT TECHNICIAN

required in the Research Department of Ophthalmology to join a smali enthsuiastic team working on the visual nervous system. Candidates must have a good educational background. An inventive turn of mind and the ability to apply this to the adaption of electronic and mechanical devices for special uses would be an advantage.
Please ask for an application form from Mr. H. Cooke, Personnel Officer, Royai College of Surgeons, Lincoln's Inn Fields London, W.C.2. A 3 PN Tel: 4053474

1169

TECHNICAL OPERATORS

If you are a young enthusiast in electronics, have a clean driving licence, and are looking for an interesting career, we will train you to operate and maintain closed circuit T.V. cameras and monitors and videotape recorders.

Apply in writing to:- Mr. Noel Copley, TAL Ltd., 9-11 Windmill St., London, W. 1.

Airline Radio Technicians

BOAC require fully trained and highly skilled Radio Technisians to work on the repair and overhaul of radio/radar equipment at Heathrow Airport-London. A high standard of theoretical knowledge is essential and at least tive years' experience in radio maintenance. An approved apprenticeship is desirable.
Pay is $£ 30.25$ per week rising after $\mathbf{3}$ months' satisfactory service to $£ 32.00$ plus shift premium.
Excellent conditions of service include a sick pay scheme, contributory pension scheme and opportunities for holiday air travel.
Please write, quoting reference WW/424 in your letter, giving details of training and experience, to:-
Manager Selection Services, BOAC, PO Box 10, Hounslow, Middlesex

RADIO TECHNICIANS

The Air Force Department has vacancies for Radio Technicians at

> RAF Sealand, near Chester
> RAF Henlow, Bedfordshire
> RAF St Athan, Barry, Glamorgan, and
> RAF Aldergrove, Crumlin, Co Antrim

Interesting and vital work on RAF radar and radio equipment

Applicants must be experienced technicians in the electronics field

Starting pay according to age, up to $£ 1503$ pa (at age 25) rising to $£ 1741$ pa with prospects of promotion.

5 day week-good holidays-help with further studies-opportunities for pensionable employment.
Write for further details to: Ministry of Defence, CM(S)3h, Lacon House, Theobalds Road, London, WC1X 8RY.

Applicants must be UK residents.

OXLEY DEVELOPMENTS

Have a vacancy in their Lake District Factory for a fully qualified

RADIO ENGINEER

The position will be one of potential and responsibility in a Company with 30 years of expansion behind it, and only those with ability and willingness to work hard should apply.
The Engineer chosen must have knowledge and experience in up to date Microwave design and measurement techniques and have a background which qualifies him to conduct a project from inception to manufacture.
The salary will be commensurate with experience; superannuation and other conditions of service are generous.
Applications giving details of education, experience and qualifications, should be forwarded to:

the personnel manager, OXLEY DEVELOPMENTS COMPANY LIMITED, PRIORY PARK, ULVERSTON, NORTH LANCASHIRE

Engineers
 Do you want to get into sales?

We require a development engineer without previous sales training for an internal sales engineer. This position offers excellent scope for personal advancement into the sales field. Salary negotiable plus special bonus and pension schemes.

Please 'phone T. Jermyn or P. Baker at Sevenoaks (0734) 51174

Jermyn Industries Vestry Estate Sevenoaks Kent
JERMYN

TEST TECHNICIAN

Required for Final Production Testing and Fault Finding of Digital Voltmeters, and analogue to digital converters.
Experience of similar work or of Digital Systems is essential. Qualifications to H.N.C. advantageous, although opportunities exist for completion of professional qualifications.
Full staff status including pension scheme and attractive salary.

Reply to: Head of Test Section, Fenlow Electronics Líd., Jessamy Road, WEYBRIDGE, Surrey
Tel: Weybridge 48177.

ELECTRONICS TECHNICIAN

Interesting post working on a range of devices and systems used by and for the blind. Experience in Transistor applications and practical assembly essential; knowledge of integrated circuits and light machine control an advantage. C \& G Telecom. Technician Cert. or O.N.C. Elec. desirable. Please apply in writing with full details of experience, including present post and salary, to Personnel Officer, Royal Nat. Inst. for the Blind, 224 Gt . Portland St., London WIN 6AA.

1200

BUSINESS OPPORTUNITIES

LARGE REWARDS GIVEN

for new products with security application
by International Alarms Company
Contact Box 1159

AUDIO TESTERS| TROUBLE SHOOTERS

Required for interesting position in electro-musical equipment. Audio amplifiers of up to 100 watts. Echo Units (Copicat) S/S and valve, etc. Please phone in first place. WEM Lid., 66 Offley Road, London, S.W.9. 735-6568.

TANDBERG
 require experienced tape recorder engineers in North London.
 Please phone Service Manager
 LEEDS (0532) 35111 for further detalis

SITUATIONS VACANT
 A FULL-TIME technical experienced salesman reprevious experience, salary required to-The Manager previous experlence, salary required to- The Manager, Henry's Radio. Ltd.. 303 Edgware Rd., London. W. ${ }^{\text {W. }}$. 67

D RAUGHTSMEN. Mechanical and Electrical required by expanding electronics company specialising in lighting control and audio visual products. This position is salaried and gives ample opportunity for advanceRoad, Greenwlch, London, S.E.10. Tel. 858 4784. [22 ELECTRONICS TECHNICIAN required in DepartONC or equivalent. Salary in Minimum qualifications
 Postgraduate Medical School, Hammersmith Hospital, Ducane Road, London, W.12, quoting reference $8 / 104 \mathrm{~A}$.
LEEDS AND BRADFORD AIRPORT. A vacancy Loccurs, for a Radio/Radar Technician to undertake maintenance of all ground equipment including radar maintenance experience essential. Salary in accordanc With LOCAL GOVERNMENT GRADE Technical $5 / 6$ ($£ 1,515-£ 2,025$ per annum), commencing salary between cations. Appointment subject to Local and qualifSuperannuation Acts and medical examination. Applit cations, stating age, education, and full detalls of experience and technical courses appended, together with name and address of two people to whom reference can be made, should be sent to the Airport Director phone 097373391 .
SOUTH SHIELDS Education Authority Sout S Shields Marine and Technical College; Principal: D. T. Turnbull, B.Sc., Ph.D., F.Inst.P., Principal:
F.R.S.A.S., F.R.S.A: Applications are invited for the following appointments tenable from 1st September, 1971. Department of Electrical Engineering \& Radio, Lecturer II and Lecturer I, according to qualifications and gineering Subjects. Salary Scales: Lecturer Itical En£2,020, Lecturer II, £ should hold a 1 st Class P.M.G. Certificate or a 2nd Class P.M.G. Certificate with a B.O.T. Radar Maintenance Certifleate. Additional electrical engineering and Guilds Technicians Certificate would be an advantage. Experience in modern marine radio communication techniques with a sound knowledge of transistorised equipment such as S.S.B. transmitters, recelvers, and true motion radar is essential. G. Denton, Dlrector of Shlelds. Education Office, Westoe Village, South
TECHNICAL OFFICER required in Department of preferred with wide experience of both analogue sind digital circuits. Salary in range $£ 1.465$ to $£ 2.425$ per annum. Applications to Secretary, Royal Postgraduate Medical School, Hammersmith Hospltal, Ducane Road, London, W.12, quoting reference 8/104. [1213 THE UNITED LIVERPOOL Hospitals and The suitably qualifled persons for appointment as ELECsuitably quallfed persons for appointment as ELEC-
TRONICS ENGINEER in the joint department of BioEngineering and Medical Physics. Grade: Senior Medical Physicist. Salary scale: £2,142 rising by annual increments to $\mathbf{\Sigma 2 , 6 4 1}$ a year. The post is the frst hospital appointment in the joint department and will be recognised by the University as entitling the holder dutles will be concerned with hospital electronic instrumentation and, initially, will include planning and executing a maintenance service and preparation for the provision of a full electronics service in the new general teaching hospital. Applicants should hold an appropriate bership of an appropriate corporate institution, and must have not less than five years relevant experience. Others may be considered for appointment at an abated salary. Further information may be obtained from the Secreapplications must be made by not later than the 31 st May, 1971 .
$T V$ Retall Business of the highest stanaug. estabquires PERSONAL ASSISTANT with servicing experience. Good position and prospects for keen and capable man. State age and details of experience. Box WW
1192 Wireless World.

UNIVERSITY OF ABERDEEN

TELEVISION SERVICE

Applications are invited for the post of:Television Engineer/Technical Operations (II)
Candidates, who should be able to demonstrate some understanding of the principles and current practices of colour studio and outside broadcast operations, will have H.N.C. or similar qualification.

The University Television Service is equipping to "Broadcast Standards" and requires an engineer with practical experience who will be capable of carrying out "1st Line" maintenance on television apparatus, unsupervised
This challenging post offers opportunities to gain experience in television mobile and studio operations, geared to the production of high quality teaching and research material.
Normal colour vision essential
Salary on scale $£ 1.275 \times 96-£ 1.371 \times 93-£ 1.836$, initial placing according to qualifications and experience. Superannuation (F.S.S.U.) and removal allowance.
Applications (8 copies) should be lodged with:The Secretary, University of Aberdeen, not later than June 30th 1971

BBG SENIOR LABORATORY TECHNICIAN

The BBC requires a Senior Laboratory Technician in the Service Planning Section of its Research Department at Kingswood Warren, Surrey. The work will involve taking field strength survey measurements of existing V.H.F. and U.H.F. transmitters and assisting in the planning and testing of sites for new transmitters.
Candidates must have a good knowledge of propagation theory, preferably to O.N.C. or equivalent level, and be familiar with electronics circuitry. The successful applicant must be able to show initiative and work without supervision. He will be expected to undertake field-work and must be prepared to work long periods away from base, including weekends, and to travel throughout the United Kingdom.
The starting salary will be $£ 1453$ per annum, (and could be higher for exceptionally qualified candidates), and will rise to $£ 2040$ per annum. If there are no candidates fulfilling the above requirements, the post may be filled initially at a lower grade.

Please write to

The Engineering Recruitment Officer,
BBC, Broadcasting House, London, W1A 1AA,
for an application form
quoting reference no. 71.E.4010. W.W.

APPOINTMENTS

For the Development of a "new" line of products, including tuners and hi-fi stereo equipment, we have an opening for an

ELECTRONIC ENGINEER

of Technical College (B.S.) level

with practical experience in the development of the above equipment.
This electronic engineer will get the space and the independence required to turn his job into a successful position.
Applicants are invited to write soon to the Head of the Personnel Department.

N.V. EMINENT

Manufacturers of Electronic Organs
1 Dronenhoek - Bodegraven - Holland.

LONDON BOROUGH OF RICHMOND UPON THAMES

TWICKENHAM COLLEGE OF TECHNOLOGY
TECHNICIAN T. $4(£ 1,362-£ 1,605)$ for Electronics Laboratory in Engineering Department to be responsible for producing and testing experimental equipment and maintenance and repair of Oscilloscopes, Signal Generators, etc. Applicants shall hold appropriate National Certificate or City and Guilds Technicians qualification.
Forms from Bursar, Twickenham College of Technology, Egerton Road, Twickenham, Middlesex returnable immediately.

ARTICLES FOR SALE

B41 receiver 1 KKHZ to 700 KHZ first class condition.
 B Arains P.S.U.'s, test gear, etc. lists S.A.E. Don Bhone Bleadon 672.
$\mathbf{B}_{2}^{\text {UILD }}$ IT in a DEwbox quality plastics cabinet.
 write now-Right now.
$\mathrm{C}_{3}^{\mathrm{CTV}}$ RECCORDER FOR SALE. Ikegami TVR 301 unit. 2 Foster 600 mikes, head demagnitizer cate con trol

COLOURE UHF and TV SERvice spares. special Panels designead to Brit. maker's Colour Monitor

 complete set $\mathbf{£ 1 0} P / P$ 50p). Latest type colour scan and convergence coils, with electrical control of static converoutput and focus control $£ 4.50 \mathrm{P} / \mathrm{P} 35 \mathrm{p}$, luminance/ chrominance panel $£ 1 P / P 25 p$. Integrated transistd.
 OFFER, leading Brit. maker's surplus. 625 single standard TV chassis, latest design, almost complete, bases, transformers, etc., incl. circuit, and line time B9D valve bases for colour valves and PL500 series $12 \mathrm{LD} P / P$ 5p. UHF tuners transistorised, rotary slow motion drive or push button $\boldsymbol{f} 5 \cdot 25$ P/P 25p. Inte-
grated UHF/VHF 6 position push button transistorised grated UHF/VHF 6 position push button transistorised
tuner easily adjusted as 6 position UHF tuner circuit $£ 4.50 \mathrm{P} / \mathrm{P} 50 \mathrm{p}$. Transist. UHF/VHF IF panels $\mathbf{£ 4 . 7 5}$ (or salvaged $£ 2.50$) P/P 25p. MURPHY $600 /$ 700 series complete UHF conversion kits incl. tuner,
drive assy., 625 IF amplifler, 7 valves, accessories, housed in special cabinet plinth assembly, $£ 7.50$ or

 Philips 625 IF AMP panel and circuit, \& 1 P/P 30p. panel incl. circuit E 1.95 P/P 30 p . UHF list avallable $_{\text {VHF }}^{\text {on }}$
 E $1.25 \mathrm{P} / \mathrm{P}$ 30p. Ekco, Ferranti, Plessey push button
tuner with UHF injection $£ 1.50 \mathrm{P} / \mathrm{P}$ 30p
 30p. Philips export continental turret tuners 75 p
P / P
30p. Many others avallable. Large selection channel coils, LOPTs, Scan Coils. FOPTs selection Scan colls popular makes. Surplus Ultra, Murphy 110° 90p P/P 30p. Transistorised trame o/p transiormers rerguson portable ${ }^{2} 2 \cdot 50 \quad P / P \quad 30 \mathrm{p}$. Pye panel for Fransistd, masthead UHF booster i4:25, Pye/Labgear
 amplifiers ${ }^{73} 3$ (Callers oe only). "Skyline" distribution or W. Hampstead Tube Station), M.W. ${ }^{6}$ (No. 28 Bus $01-794$
8751 . MANOR DRIVE. LONDON, N.W.11. Tel.
[60

FM4 RESONATORS for WW Stereo FM Tuner, $£ 1.50$
 396 Seldon Road, S. Croydon, Surrey CR2 ODE.

CURZEHILL SPECTRUM ANALYSER, £49.50. Tel-

MARCONI TF329G \&-meter. Good condition £37. collect).
[1185

NEW CATALOGUE No. 18, containing credit vouchers surptus electric and mechanical compacturers' new and post free. Arthur Sallis Radio Control Ltd., 28 Gardner | Street, Brighton, Sussex. |
| :--- |
| $[94$ |

SPARES for discontinued Tape Recorders and King (Pilms) State requirements, or call at John Tel.: 25042.

VACUUM COATING plant. 12 inch complete with all 1195 Wireless World.

17" BBC/ITV TELEVISIONS £5
 Working perfectly
 plus P. \& P. El 1.00
 SUITABLE FOR ANY AREA

3 Channel 19" D/S TVs. ITV, BBC 1, B BC 2
£25 inc. carriage. 17" 13 Channel, complete
but untested, $\mathbf{£ 1} 50$ each, plus $£ 1$ P. \& P.

SPEAKERS

$6^{\prime \prime} \times 4^{\prime \prime}, 7^{\prime \prime} \times 4^{\prime \prime} 30 \mathrm{HM}$, 20p plus 8p P. \& P. each.

TRADE TV's
407 Thornton Road, Girllngton, Bradford 8. Yorks.
$V^{\text {ACUUM }}$ pumps, coating plant, pyrometers, recorders spe catalogue. Barrett, 1 Mayo Road, Croydon, CRO 2QP, Surrey.
Phone 01-684-9917.
1056
$\mathbf{V}^{\text {HF }}$. ${ }^{80-180 \mathrm{mHZ}}$ Receiver, Tuner, Converter Kit, remarkable results from single transistor. $£ 4 \cdot 13$ (Radio), worcester wR1 2DT iterature. Johnson
$60 \mathrm{kc} / \mathrm{s}$ Rugby \& $75 \mathrm{kc} / \mathrm{s}$ HBG Neuchatel Radio Reunits, £35. Toolex, 6 Warwick outputs. Small compact units, $\mathbf{E} 35$. Toolex, 6 Warwlek Close, Hertiord (4856)

We make AERIAL BOOSTERS

ampliers, L45 U.H.F. television, LI2 Y.H.F. prevision, LII V.H.F. F.M. radio, all at one price C2.95. S.A.E, for leaflets.
Make your own printed circuits, 2-pieces of aminate size $6^{*} \times 3^{*}$ and etching, powder 40p.
VELCO ELECTRONICS 62 Bridge StCO ELECTRONICS, 62 Bridge St., Ramsbottom, Bury, Lancs.
Tel. Rams. 3036 .

ELECTRONIC EQUIPMENT

Oscilloscope tele equipment $0 / 1 \mathrm{~B} \quad 043$ price 670
Oscillator TF $110120-200 \mathrm{kHz} 670$
Oscillator TF 195 M \& $25 \mathrm{kHz} \mathrm{E7}$
Oscillator Phillips GM 2317 ± 20
Double Pulse Generator advance PG54 $\mathbf{6 0}$
Vari Filter $1471 \mathrm{E} / 5$
CINTEL phase corrector A75, B75 $£ 10$ each
Impedance Bridge Wayne Kerr B221 $\& 45$
P.S.U. Apt 502 Eis
P.S.U. Solartron SRS151 113

Pen recorders Cambridge 6 point $£ 120$
Pen recorders Ether single pen $0-10$
Pharecorders Ether single pen 0.10 mV E50
Phase Meter Muirhead $729 \mathrm{c} / \mathrm{w}$ P.S.U. $£ 235$

PHONE ARBORFIELD CROSS 610

BUSINESS FOR SALE

B OURNEMOUTH-Radio/T.V. \& Electronics. Thriving
 toliet, Kitchen-full central heating. Fine Retail Sho and WorkshoD/Stores. 11,750 Freehin Retall Vendor grant New Lease at UNGOING $£ 3,750$). CHRISTI ${ }_{27247}^{\&}$ CO., 112 Holdenhurst Road, Bournemouth.-Tel

TEST EQUIPMENT - SURPLUS AND SECONDHAND
 $\mathbf{S}_{\text {voltmeters, }}^{\text {IGNAL }}$ frequency meters, multi-ranse mate mave etc., etc., in stock,-R. T. \& I. Electronics Letd., Ash- ville Oid Hall. Ashvile Rd., London, E.11. Ley. 4986
 RECEIVERS AND AMPLIFIERS -
 SURPLUS AND SECONDHAND

$\mathrm{H}_{\text {etc., }}^{\text {RO }}$ Rxtc. etc., AR88, CR100, BRT400, $\mathbf{2} 209$, S 640 , Aote., etc., In stock.-R. T. \& \& Electronics,
Atd.
A986.

NEW GRAM AND SOUND EQUIPMENT

$\mathbf{G}^{\text {LASGOWT.-Recorders bought, sold, exchanged; }}$ cameras, etc., exchanged for recorders or vice-
versa.-Victor
Morris, 343 Argyle
St., Glasgow, C.

TAPE RECORDING ETC.

IF quallty, durability matter, consult Britain's oldest I transfer service. Qualicy records from your suitable tapes. (Excellent tax-free fund raisers for schools. Modern studdo facilities with Steinway Grand. -Sound YOUR TAPES TO DISC-- $£ 6,000$ Lathe. From $£ 1.50$. High Bank, Hawk St., Carnforth, Lancs.

FOR HIRE

$\mathbf{F}^{\text {OR HIRE }}$ CCTV equipment, including cameras monitors, vldeo tape recorders and tape-any period,
Detalls from
Zoom Television, Chesham 6777

ARTICLES WANTED

$\mathbf{H}_{\text {Recorders }}^{\text {IGHEST }}$ CASH ${ }_{90-5.00}^{\text {PRICES for }}$ food-quality Tape 2185. ${ }_{[102}$
$\mathbf{W}_{\text {and }}^{\text {anted, }}$ all types of communications receivers Electronics, test equipment.- Astallis to R. T. Asvile Old Hall, Ashville Rd., LonElectronics, Ltd., Ash
don, E.11. Ley. 4986.
$\mathbf{W}^{\text {ANTED, }}$ new surplus transistors, integrated cirBridge cuits, resistors and capacitors. Velco Electronics,
Street, Ramsbottom, Bury, Lancs. Bridge 3036.

300KS
PTICAL Detector Circuits: Burglar/Fire Alarm circuit PC at 2,000 yards. Timer, counter, "Memory"
 Highlands, Needham Market, Suffolk. $\mathbf{W}^{\text {IRELESS }}$ WORLD 1959-1969. Tel. 01-455 2053.

AGENCIES

$\mathrm{O}^{\text {WNER }}$ of small radio-electronics workshop wishes manufacturers representation/agency work. Glasshowroom, transport \& repair facilities all available Could be interested in routine maintenance, repali, or
construction work. Almost anything from d.c. t S.H. construction ${ }^{\text {w }}$ Wox WW1187.

EPOXY SEMICONDUCTORS FIELD EFFECT TRANSISTORS N CHANNEL											
Type	Case	Vgss	$\begin{aligned} & \text { Idss } \\ & \text { mA } \end{aligned}$	$\underset{\substack{\text { Vgs (off) } \\ \mathrm{V}}}{ }$	$\begin{aligned} & \text { Igss } \\ & n A \end{aligned}$	Ikhz	Yfs (umhos) 200Mhz	400M		$\begin{array}{r} \mathrm{PD} \\ \mathrm{~mW} \\ \hline \end{array}$	Price each
3823E	TO18E	30	4.20	1-7.5	0.5	3500-6500	>3200			250	28p
4416E	T018E	30	5-15	1-5.5	0.1	4500-7500				250	40p
TRANSISTORS AND I.C.S											
BC 113		8p	BC 118		5p		134				15 p
BC 114		18p	BC 125		Op			$15 p$ $15 p$		435	15 p
BC 115		20p	BC 126		5 p			$15 p$ $15 p$		703E (RF	35p
BC 116		20p	BC 132		5 P					(RF)	
Trade enquilies invited REDHAWK SALES LTD. 33 Highfield Rd., Flackwell Heath, Bucks. Tel.: Bourne End 25854											

FIRST EVER SURPLUS AMPLIFIER OFFER.
Output $1 \frac{1}{2}$ watts, includes 1 Mullard TAA263 I.C. I Mullard TAA 293 I.C. $2 \times$ 8D 106A power transistors and 6 transistors. E2. P. \& P. 12p.

As above but less BDIO6A Transistors. fl-50. P. \& P. 12p.

OSCILLOSCOPE TUBES 2 ilin. CV2184 4 volt heaters. \&l-50. P. \& P. 25p.

MORSE TAPPERS. 25p. P. \& P. 10p.
MULLARD POT CORES LA6. 75p. Post paid.
JAPANESE TRANSISTORS. 25A12, 25A31, 2SA53, 2SA141. I4p each. Post paid.
PLESSEY ELECTROLYTIC CAPACITORS 150UF. 500 volts and 200 UF 500 volts. 75 p each. Post paid.
MULLARD TRANSISTORS CV7042 (OC42) 13p. Post paid. R.C.A. 2N410. 13p. Post paid.

PAXOLIN BOARD, $12 \times 8 \mathrm{in}$., with foam rubber backing. 5 for 50p. P. \& P. 20p.
E.M.I. DICTAPHONES. Model 2403 MI/I2, includes useful valve amplifier. Very good motor, loudspeaker and many useful components. A breakdown bargain. 62. Carriage $£ 1$ or 60 to clear at f 100 the lot. Buyer collects.

MANUFACTURERS, WHOLESALERS, RETAILERS, ETC. We have huge surplus stocks of the following components; Plessey Moulded Track Potentiometers, Wire-Wound Resistors, from I ohm up, Plessey Electronic Capacitors, Relays, exe. At very attractive prices. Let us know your requirements. Business hours; 9.30 to 6 Monday to Friday. 9 to 4.30 Saturday.

ELEKON ENTERPRISES

12A Tottenham Street, London W1P9PQ TELEPHONE 01.580 7391

Signals and Information

C. C. Goodyear BSc, DPhil, AlnstP.

By avoiding detailed descriptions of circuits and systems, this book maintains the emphasis on signals and the ways in which they may be processed for transmission. Signals and Information will provide a background of communication theory for students at final year undergraduate level specialising in telecommunications and other fields such as control engineering, where a knowledge of processing techniques is required.
0408700939 cased 352 pages illustrated 1971 £4.20
$040870098 \times \mathrm{limp}$

Solid-State Devices and Applications

Rhys Lewis BScTech, CEng, MIEE.
Since the first appearance of the transistor in 1948, the field of solid-state devices has expanded so rapidly that it has become increasingly difficult to keep abreast of new developments. This book presents a concise summary of currently available devices, their theory, manufacture and applications.

```
O40800050 3 cased }264\mathrm{ pages illustrated 1971 £3-00 0408000511 limp
```

Available from leading booksellers or
The Buttermorth Group 88 Kingsway, London WC2B 6AB
Showrooms and Trade Counter, 4-5 Bell Yard, London WC2

VITAVOX

for HIGH QUALITY

 MICROPHONES LOUDSPEAKERS
and ancillary equipment

Further information from: VITAVOX LTD.
Westmoreland Rd., London NW9 5YB (Tel: 01-204 4234)

LOWE ELENTDNWNO

II7 Cavendish Road, Matlock, Derbyshire Tel: Matlock 2817 (2430 after 6 p.m.) SSB Communications Equipment, Test Gear, etc. Importers of Yaesu Musen, F.E. \& Inoue Equipment.

In addition to our wide range of new equipment, we offer the following second-hand receivers and test gear all fully checked, serviced and guaranteed.
Receivers:
R.C.A. $8516 \mathrm{~L} \mathbf{£ 1 5 0}$

Collins 51J3 £150
Collins 51J4 £275
Collins URR 390A £350
Collins URR $388 £ 225$
Heathkit SB301 plus extra CW filter $£ 110$ National NC $190 £ 45$
RCA AR88LF £30
RCA AR88D £40
Test Gear:
Avo v/tester $£ \mathbf{2 5}$
Wayne Kerr B901 admittance bridge £25 Rohde \& Schwarz SKTU Noise Generator £65
Signal generator CT212. AM/FM.
excellent attenuator, calibrated output
85 kHz to 32 mHz . $\mathbf{£ 2 9 . 5 0}$
BC221's $\mathbf{£ 1 5 - £ 2 0}$
Mikes, keys, keyers, monitors, mobile antennas (Tavasu), headsets, intercomms., VTVM's low voltage regulated p.s.u.'s S.W.R. bridges, components, etc., etc.

Have you equipment to sell? May pay you to get our quote.
Send a large s.a.e. and we will fill it with lists of equipment, sundries, components. etc., etc.

WW-100 FOR FURTHER DETALS

COMMUNICATION RECEIVERS from the U.S.A. The go ahead line in specialist radios UNIDUE in VHF frequencies UNSURPASSED in performance \& styling
They NOT ONLY receive Aircraft, Shipping (VHF and SW), Taxis, Ambulances, Fire Service, T.V. Sound, Harns, Gas \& Electric Boards, Public Services \& many other Commercial and Industrial Radio telephone Mobile transmissions
BUT AlSO Classical Music, Pop and ali that Jazz!!
TURN ON TO INSTANT SOUND! These are communications receivers and entertainment sources in one neat, transistorised, portable package. They keep exciting aircraft, shipping, RT mobiles plus Medium Wave, FM National and local broadcasts at your fingertips. Both feature powerful PM dynamic wide range speakers, switchable AFC to prevent driting, tone control, dial lighting, swivel telescopic VHF and rod aerials, precise slide rule vernier tuning external aerial and earphone sockets (cuts off speaker for private listening). Battery or mains operated from MODEL MPR 3005

ADVERTISED PRICES 15\% LESS THAN RETAIL VALUES
 DUE TO OUR DIRECT SELLING POLICY.

MODEL MPR 30166 BAND SAME BANDS AND FREQUENCIES ASMODEL MPR 3005 PLUS-SW
$5.0-120 \mathrm{OM}$
(WITH FINE
TUNER)
our price $\mathbb{1 4 1 . 7 5}$
plus 62 tp P/P
mpressive finish in Wainut with deep Chrome die-cast side panels and Walnut grained inserts. Trimmed with brushed aluminium and black speaker grille. Log scale for easy tuning. Size 9 isin H x $12 \mathrm{in} \mathbf{W} \times 4 \mathrm{in} \mathbf{D}$.

The latest in contemporary U.S.A. innovation HEAR T.V. SOUND - All channels 2-13 (Also UHF in many areas)

MODEL MPR 3073. THE FIRST IN T.V. SOUND PORTABLES. Sensitive swivel telescopic aerial receives LOCAL and DISTANT T.V. TRANSMISSIONS PLUS FULL MEDIUM WAVE and VHF/FM BANDS FOR ALL NATIONAL and LOCAL RADIO STATIONS. This unique model has leatherette trim, handsome walnut grain inserts, brown speaker grille with chrome trim. 22 transistor/diode superheterodyne circuit. AFC, AGC, tone control, slide rule tuning. Works from batteries or mains. Earpiece supplied for private listening. Log scale for easy tuning.

STOCKTON PARTNERS (Dept WW) importers \& Distributors
BRIGHOWGATE, GRIMSBY, LINCS. TEL 0472 64196/58815 CABLES: STOPART GRIMSEY

OUR PRICE $\mathbf{f 2 4 . 5 0}$ plus 50p P/P
Batteries incl.
BANDS:
MEDIUM WAVE 535-1605 Kcs
FM/VHF 88-108Mcs
T.V. $158-88 \mathrm{Mcs}$
T.V. 2 175-218Mcs

Suppliers to Governmen
Depts., Industry, Radio, T.V., \& Press, etc.

ANDOR ELECTRONICS LTD.

for new
Mullard, Ferranti, R.C.A. Motorola semiconductors
Mullard-resistors-cepacitors ZTX108 12p MPF102 42 $\frac{1}{2} p$ AF117 25p ZTX300 15p MPF105 40p BC10719p ZTX500 15p 2N3053 27p BC109 19p P. \& P. 10p

Visit our new retail shop
45 LOWER HILLGATE
STOCKPORT
061-480-9791

 Dopt: © 6 YUKAN, ZOABDONWARE ROAD We subdiy many Government Doppartments Municipe Authot os inst hules \&
We can suidy you too Wo can suypoly yeu too

WW-101 FOR FURTHER DETAILS

KEYNEGTOB

WW-102 FOR FURTHER DETAILS

AMERICAN

test and communications equipment * GENERAL CATALOGUE AN 104 1/6 * Manuals offered for most U.S. equipments
SUTTON ELEGTRONICS Salthouse, Nr. Holt, Norfolk. Cley 289

ARS					
NEW TUBES Lawson＂Century 99＂are brand new tubes．Using silver activated screens，micro fine aluminizing， high definition electron guns．				REBUILT TUBES Lawson＂Red Label＂rebuilt crts are particularly useful where cost is a vital factor such as in older sets or rental use． Red Label are completely rebuilt from REBUILT selected glass and are exact TUBES replacements．	
resulting in superb performance and very	$\begin{aligned} & \text { NEW } \\ & \text { TUBES } \end{aligned}$				
long life．	CME 1602 ± 8.50 17！£6．25			14＇ 54.25	2 years Guarantee both new and rebuilt
	21 ＂			$1^{19^{\prime \prime}} \mathrm{E} 5 \cdot 25$	
AWSON TJBES	$23^{\prime \prime}$			211 $23^{\prime \prime}$ f ¢	FULL TUBE FITTINGS
18 CHURCHDOWNRD．	19＇	TWIN PA TWIN PAN	E		INSTRUCTIONS SUPPLIED
MALVERN，HORUS．	19＂	PANORAMA			CARR．INS．BY EXPRESS PASSENGER
Telephone：MALVERN 2100	$23^{\prime \prime}$				14－19＂62p 21－23＇75p

WW－103 FOR FURTHER DETAILS

LAWSON NEW TUBES

和＂Century $99^{\prime \prime}$ are brand new tubes．Using silver activated screens，micro fine aluminizing， high definition electron guns． resulting in superb long life．

LAWSON TUBES
I8CHURCHDOWNRD．
MALVERN，WORCS

TELEVISION TUBES REBUILT TUBES

Lawson＂Red Label＂rebuilt crts are factor such as in older sets or rental use． Red Label are completely rebuilt from

TUBES $\begin{array}{ll}4^{\prime \prime} & 84 \cdot 25 \\ 7^{n} \\ \text { 玉4．87 }\end{array}$ both new and rebuilt FULL TUBE FITTINGS INSTRUCTIONS SUPPLIED 14－19 ${ }^{\prime \prime}$ 62p 21－23＂75p

WANTED

surplus transistors，semiconductors， capacitors，cable，electrical goods，radio television and electrical equipment， wire，aluminium，motors，recording accessories and all surplus equipment for SPOT CASH．
Buyer will call to inspect anywhere．
Concorde Instrument Co．
28 Cricklewood Broadway London，N．W． 2
Telephone：01－452 0161／2／3 Telex： 21492 Cables：CONIST LONDON

STEREO MIXER CIRCUIT

May 1971 Walker W．W．circuit component kits． All new components，gain selected transistors， 5\％C．F．resistors used throughout．
Fig．3．GRAM I．P．LESS SW．Mono 95p St．$£ 1.80$ Fig．6．CERAM I．P．Mono 70p St．$£ 1.30$ Fig．9．AUXILIARYI．P．LESS POT MOno 70p St． 51.30 Fig．10．VIRTUALEARTH MIXER Mono 63p St．£1．25 CARBON FILM RESISTORS 5\％IW 10R－2．2MR forquantity．
Terms：C．W．O．Mail order only．P．\＆P．10p per order under £3．S．A．E．for full lists．

SPECTRUM AUDIO
 Dept．W， 34 LEITH RD．，LONDON N22 5QA

CASH IMMEDIATELY AVALABLE

for redundant and surplus stocks of radio，television，telephone and electronic equipment，or in component form such as meters，plugs and sockets，valves， transistors，semi conductors，capacitors， resistors，cables，copper wire，screws and nuts，speakers，etc．
The larger the quantity the better we like it．

BROADFIELDS \＆MAYCO

 DISPOSALS21 Lodge Lane，London，N12． Telephone： 014452713014450749 Evenings： 019587624

BUILD YOUREELFA TRANSISTOR RADIO

RDAMER EIGHTMKI WITH TDNE CONTROL SEVEN WAVEBANOS－MW1．MW2．IW SW1．SW2，SW3 AND TRAWLER BAND and talascopis aeriat．Socket for car asrial． 7×4 in Speaker．Airspaced ganged tuning condensbr．Earpiece sockat and earpiece Selectivity switch．Size $9 \times 7 \times 4$ in．Total Building Coss f6．98，P．\＆P．38p．Plens and Parts list 25p（thee with parts）．
pocket．five，med．and longwaves \＆ TRAWLER BAND WITH SPEAKER 5 transistors and 2 diodes．ferrite rod asrial，tuning con－ denser，moving coil speaker，etc． $5 \frac{1}{2} \times 1 \frac{1}{2} \times 3 \frac{1}{2}$ in． Total Buildinge Costa $£ 2.23$ ．P．\＆P．18p．Plans namiece mith switched socket 30 p exte
boamer seven mk 4． 7 wave－banos MW1，MW2．LW，SW1．SW2．SW3，ANO TRAWLER 日AND． 7 transistors and 2 diodes．
Fertite rod aerial and telascopic astial．Socket for car aerial． 7×4 in speaker．Airspaced ganged tuning condenser，etc．Size $9 \times 7 \times 4$ in． Total Buildine Costs f5．98，P．\＆P． 38 p ．Per． total Burldines Cosis
sonal earpieca with swithed socket for private listening 30p extra．Plans and Parts list 15 p （thee with patis）．
transona five．medium．long ano trawler bano with speaker． 5 transistors and 2 diodes．farrite rod arerial． moving coil speaker， $8 \frac{1}{2} \times 4 \frac{1}{2} \times 17$ in．Total Building Costa $\mathrm{f2.38}$ ，parts）．Porsonal earpiece with switchee sockel 30 pextra

CONSTRUCTORS BARGAIN famdus makers portable wodden RADIO CABINET．Size $13 \boldsymbol{y}^{\prime \prime} \times \frac{3}{8} \times 7$ with chromad handte and fittings．Slatted wood
front．rexine covered paided sides．Dial calibrated Medium and Long Wave stations． Complete with 2 printed circuit boards and Elac 5＂ $5^{\prime \prime} 3^{\prime 2} 25$ ohm Heaw Duty P．M．Spagter Brand New．

RADIO EXCHANGE CO．LTD Dept WW． 61 High Street，Bedford． ＇Phone 023452367
Open 10．1，2．30．4．30．Sat． 9.12

For

manufacturing service call Hartley＇s
Capacity available now backed by a top rate team of experienced designers and skilled assembly workers．Quotations and delivery schedules offered by return．And we＇ve a nationwide collection and delivery service．
Cossor；G．E．C．；Marconi；M．A．S．； M．O．D．；Plessey；Short Bros；Vickers； Vosper Thornycroft and many others have made use of this facility．
＊Electronic and Electro－Mechanical assembly：
＊Precision Test and Calibration Service
＊Sheet Metal and press work（full plating and painting facilities）：
＊Tooling and Welded Fabrication：
＊TapeRiter and Marine Packaged Communications and Magnetic Tape Data Recording Systems：E．Q．D． Approved．
＊For further information circle 108

Write or call DON FLAWITH．

HARTLEY ELECTROMOTIVES LIMITED

MONKMOOR ROAD，SHREWSBURY SY2 5SU Telephone Shrewsbury（0743） 6343

Abstract

OSMABET LTD. We make transtormers amonget other thing AUTO TRAMSFORMFRS. $0-110-200-220-240 \mathrm{v}$ a.c. up or down, fully ahrouded fitted insulated terninal blocks, 30 watt $150.35 ; 50 \mathrm{w}$ 21.80; $75 \mathrm{w} 28.10 ; 100 \mathrm{w} 82.55 ;$

MADIS TRANSFORMERSS. PrIm 200/240v a.c. TX2 $250-0-$ $200 \mathrm{~V} 150 \mathrm{Ms}, 6.3 \mathrm{~F} 4 \mathrm{~A}$ CT, $0.5-6.3 \mathrm{~V}$ 3A, \&4.05; TX 5 , Sec 250 v 100 Ma 6.3v 2A, 2185 MULTTVOLT TRAMSFORHERR.' ' Prim domper ac. $20-100-110,10-0 \cdot 10,20-0-20,30-030,40-0.40,50-0.50 \mathrm{v}$ A.c. 14 83.45

24v AUTO TRANSPORMERR. Input 200/240v a.c., output 24 v 100w $24 \cdot 50 ; 250 \mathrm{~W} 86 \%$; for quartz Iodine lamps. LOW VOLTAGE TRAFSFORMERS. PTim 200/240v a.c. MIDGET REOTIFIRR TRANSFORMERS. Prim 200/240V 0.7 n a 21.13 each. W.W. IGMITION CIRCUIT TRANSFORMIRR to spec, $\mathbf{\& 2 \cdot 5 0}$ plus 25p p it p. O/P TRAMSFORIERRS FOR POWRER AMPLIFIERS. 30 watt, A-A load $6 \cdot 6 \mathrm{~K}, \mathrm{sec} 3 \cdot 7 \cdot 5 \cdot 15$ ohms, $24 \cdot 05 ; 50$ watt. $\mathrm{A} \cdot \mathrm{A}$ load $3 \mathrm{~K}, 86-75 ; 100$ watt $\mathrm{A} \cdot \mathrm{A}$ lond $3 \mathrm{~K}, ~ \$ 11 \cdot 40$; up to 400 watt to order.

MADIS TRANSFORMERS FOR POWER AMPLIFIERSS. ${ }_{C}$ TX 6 Prim $200 / 240 \mathrm{v}$ a.c. $\mathrm{Bec}, 425-0.425 \mathrm{v} 500 \mathrm{Ma}, 6 \cdot 3 \mathrm{v} 6 \mathrm{~A}$ $250 \mathrm{Ma}, 6.3 \mathrm{v} 4 \mathrm{~A} \mathrm{CT}, 6.3 \mathrm{v} 4 \mathrm{~A} \mathrm{CT}, \mathrm{O}_{0-5 \cdot 6.3 \mathrm{v}} 3 \mathrm{~A} \quad 87.50$. LOUDSPRAKKERS FOR POWER AMPLCFIERS. New bozed. famous makes for public address systems, bass guitars, electronic organs, $\mathrm{Hi} \mathrm{-Fi}$, etc. 12 Ln . $15 \mathrm{~W} \mathrm{~W} / \mathrm{Tweeter}$ ${ }^{134} \times 8 \mathrm{inin}$. $10 \mathrm{~W} 3,8$ and 15 ohms 22.25 each; $134 \times 8 \mathrm{in}$ 3,8 and 15 ohms, $£ 4$ each. Horn tweeters $2-16 \mathrm{KHz} 8$, 16 ohms, $£ 1-50$ each. \&1. 903 , 8 or 15 ohms. BULK TAPE ERASER. Instant eranure of any size spoo $200 / 240 \mathrm{v}$ a.c. 98.40 . P. \& P. 20 p . Leaflet $\mathrm{s} . \mathrm{A} \mathrm{E}$. heads, ARRCRAFT BAND CONVERRTRR. Entire sircraft band tunable receiver, 84.25 .

PRINTED CIRCUIT ETCBING EKTS. Comprehensive outat to make your own P.C. boards, $21: 25$. to make your own P.C. boards, 21 . 25 46 K.A.E. KHQUIRIRS-LISTS. MAI ORDER ORLY

Thanks to a bulk purchase we can offer
BRAND NEW P.Y.C. POLYESTER AND MYLAR RECORDING TAPES

Manufactured by the worid-famous reputable British tape firm, our tapes are boxed in polythene and have ficted leaders, etc. Their quality is as good as any fatey and are mot to imported, used or sub-standard tapes 24 with despatch service Should goods not price and postage will be refunded

60,90, and 120 minutes playing time, in original plastic library boxes.

STARMAN TAPES

28 LINKSCROFT AVENUE, ASHFORD MIDDX. Ashford 53020
WW-104 FOR FURTHER DETAILS

WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC.

CHILTMEAD LTD.

7, 9, 11 Arthur Road, Reading, Berks.

Tel: 582605

NEW 2nd EDITION TRANSISTOR CIRCUITS IN ELECTRONICS

Basic principles for amplifier, oscillator and switching applications including an introduction to integrated circuits. by S. S. Haykin and R. Barrett Postage 10p

THE RADIO AMATEUR'S HANDBOOK 1971 by A.R.R.L. $£ 2.60$. Postage 20p.
PICKUPS AND LOUDSPEAKERS by John Earl. 43. Postage 10p.

MODERN ELECTRONIC MATERIALS by J. Watkins. 63.50. Postage 10p.

INTEGRATED CIRCUIT SYSTEMS by D. J. Walter. E3-50. Postage 10p.
TAPE RECORDERS by H. W. Hellyer. E2.25. Postage 10p.

RADIO VALVEAND TRANSISTOR DATA 9th edition by A. M. Hall. 75p. Postage 5 p .

THE SEMICONDUCTOR DATA BOOK by Motorola, 5th edition. $£ 3$. Postage 30p.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books 19-21 PRAED STREET,

LONDON, W. 2
Phone PADdington 4185

CAPACITOR DISCHARGE IGNITION SYSTEM

THE POPULAR WIRELESS-WORLD CAPACITOR - DISCHARGE IGNITION SYSTEM IS NOW AVAILABLE AS A MECHANICALLY RE-DESIGNED UNIT WITH THE PRINTED-CIRCUIT BOARDS AND A TRANSFORMER CONTAINED WITHIN A DIE-CAST CASE; THE TRANSISTORS AND THYRISTOR BEING MOUNTED ON THE OUTSIDE OF THE CASE AND SUPPLIED WITH SNAP-ON PLASTIC COVERS.
THE UNIT IS DESIGNED AROUND TWO PRINTED-CIRCUIT BOARDS LINKED ELeCTRICALLY TO EACH OTHER AND TO THE CONNECTION PLUG BY MEANS OF A flexible printed-CIRCUIT. THIS ALLEVIATES TEDIOUS WIRING AND ensures a neat compact layout. THE DESIGN OF THE BOARDS IS SUCH THAT A POS. OR NEG. EARTH IGNITION SYSTEM CAN BE BUILT WITH EASE AND ONE SYSTEM CAN BE READILY CONVERTED TO THE OPPOSITE POLARITY IF REQUIRED. A COMPLETE COMPLEMENT OF COMPONENTS IS SUPPLIED WITH EACH KIT, TOGETHER WITH READYDRILLED, ROLLER TINNED PRINTED CIRCUIT BOARDS, FULLY MACHINED DIE-CAST CASE AND CUSTOM WOUND TRANSFORMER.
SUITABLE FOR 12v SYSTEMS ONLY. ALL COMPONENTS AVAILABLE SEPARATELY. WIRING DETAILS SUPPLIED FOR BOTH POLARITY SYSTEMS. PLEASE STATE POLARITY REQUIRED SO THAT THE CORRECT SEMICONDUCTORS CAN BE SUPPLIED. CASE SIZE $4 \frac{3}{4} " \times 3 \frac{3}{4}$ " $\times 3^{\prime \prime}$.
COMPLETE ASSEMBLY AND WIRING MANUAL 25p, REFUNDABLE ON PURCHASE OF KIT.
PRICE $£ 11.25$ plus 50p CARRIAGE. C.W.O. OR C.O.D.

TRADE ENQUIRIES INVITED. MAIL ORDER ONLY.
DABAR
ELECTRONIC PRODUCTS
98a, LICHFIELD STREET,
WALSALL, STAFFS. WS1 IUZ
TEL. WALSALL 34365

WW-105 FOR FURTHER DETAILS

MACLEANS 6° FAN8
230v. AC. 2800 rpm E2.75 pp 35p
IMLOCK ALUMINIUM CHASSIS FRAMES $10 \frac{1^{\prime}}{}{ }^{\prime} \times 8 \frac{3}{2}^{*} \times 6 \frac{1}{2}{ }^{*}$ E1 pp 20p
CROMPTON PARKIN\& ON ELECTRIC MOTORS
Single phase $\frac{1}{2} \mathrm{hp} 1440 \mathrm{rpm}$ or 2800 rpm fe pp E1 $\frac{1}{2} \mathrm{hp} 1425 \mathrm{rpmes} \mathbf{8 5} \mathrm{pp} 75 \mathrm{p}$
$1 \mathrm{hp} 1425 \mathrm{rpm} \mathbf{f 2} 25 \mathrm{pp}$ 60p
SMITHS 12 VOLT CAR HEATER FANS
f1.50 pp 30p
P.O. TYPE

20 way 3 pole Jack Strip
$10 \frac{1}{4}^{*} \times 3 \frac{1^{\prime}}{}{ }^{-98 p} p p 40 \mathrm{p}$ Ex-equip.
SOLENOIDS 12 VOLT PULL ACTION $2^{\prime \prime} \times 1^{\prime \prime} \times \frac{3}{2}{ }^{*} 40$ p pF 8 p
STC SEALED RELAYS DOUBLE POLE
CHANGEOVER 48v 2500 n Ex-equip. 16p pp Ep miniature 12v. 280 n New 2 changeover 40p pp 5p new
SIEMENS MINIATURE RELAY Double pole changover dust cozer/base. 48v. 2500 a 81 p pp 5p new
OMRON MIDGET POWER RELAY Type Mk 1 230 v . AC. Single pole changeover contacts 5 pmp 440 v . AC. 250 v . DC. 51 p pD 5p
HONEYWELL MICRO-SWITCH
10 mp 250v. AC. Ex-equip. 20p pp 5p

ANALEX POWER SUPPLY

$7^{\prime \prime} \times 19^{\prime} \times 13^{*} 230 \%$ AC. Input-6v. $5 \mathrm{amp} \times 2$ 18v. 7.5 amp DC output; Fully transistorized marginal adjust. on output C_{35} carriage $\mathrm{E3}$
ANALEX POWER SUPPLY $13^{\circ} \times 19^{\circ} \times 5 \frac{1}{4}$
230 v. AC. Input- 36 v . 14 amp DC. outpu
stabilized ex-equip £27•80 carriage £2•50
COUTANT/ROBAND POWER SUPPLIES
28 v .20 amp DC. output 220/50v. AC. Input Fully stabilized, ex-equip tested. $16^{\prime \prime} \times 16 \frac{1^{\prime \prime}}{} \times 8 \frac{1^{\prime \prime}}{}$ approx. E45 carriage E5
VEEDER-ROOT MECHANICAL COUNTERS 5 digit: lever operated; Resettable $3^{\prime \prime} \times 1 \frac{1}{3}{ }^{\circ} \times 1 \frac{1}{4}$ ex-equip. 55p pp 10p
SMITHS CIRCULAR TAPE POSITION INDICATOR Resettable E5p pp 10p
DORMAN LOADMASTER
$250 \mathrm{v} . / 440 \mathrm{v}$. AC. 5 amp triple pole circuit breaker E1.48 pp 25p
G.E.C. E-AMP CIRCUIT BREAKER

E1 pp 1 Ep Now

TRANSFORMER

230 v. AC. Input. 6.6 v. 122 amp output $6 \frac{1^{\prime \prime}}{} \times 7 \frac{1}{2}^{\circ} \times 9$
Inc. terminals new $\mathbf{E 1 5}$ carriage $\mathbf{£ 2}$
GARDNERS: Potted input $0-250 \mathrm{v}$. AC. output $18 \mathrm{v} .500 \mathrm{~m} / \mathrm{amp}: 50 \mathrm{v} . \mathrm{AC} .150 \mathrm{~m} / \mathrm{amp} 6 \mathrm{v} .250 \mathrm{~m} / \mathrm{A}$, $3^{*} \times 2 \frac{1^{*}}{4} \times 2 \frac{1^{*}}{4}$ ex-squip. tested E1 pp 20p
SIMPSON AUTO TRANSFORMER
SMPSN
E10 carriage E1-50
TEXAS INST. 2N3710/BC107 Trans
Op ea. min. 3 oft pp 5p
TEXAS INST, ZENNER DIODE
$6 \mathrm{v} \pm 2 \frac{1}{2} \% 10$ watts. 30p pp $5 p$
BECKMAN THERMOMETERS with switch.
calibrated $0-100^{\circ} \mathrm{C}$. f4 pp $80 p$
OXLEY BARB INSULATED FEED THRO'
TURRET TAGS box 100 E1 pp $15 p$; $15 p$ doz.
pp 8p
GARRARD 2 TRACK TAPE DECK\& MAG TYPE 230 v . AC., $1 \frac{7}{4} \mathrm{lps} .50 \mathrm{v}$. solenoid operated brakes, deal for contin. tape players $£ 7 \cdot 80$ pp $£ 1 \cdot 25$ new
RUBBER CABLE CONNECTOAS
3 pin 5 amp non reversible 25p pp 8p
BELLING LEE in-line rubber covered interference suppressor 25p pp 8p
TELESCOPIC AERIALS
chromed 7" closed 28^{*} extended 6 section
ball jointed base 23p pp 8p new
MULLARD 4 DM1 60 INDICATORS
in plastic holder/cover ex-equip.
size approx. $1 \frac{3}{2}$ " $\times 1 \frac{1}{4} * \times \frac{1}{\frac{1}{2}}{ }^{*} 36 p$ pp 8p
PRINTED CIRCUIT BOARD/19, ACY 19's:
10 OA200 Diodes: 1 reed relay: 10AZ 229 zenner ass capacitor/resist Outs. 240 v . AC. pp 20p ex-equip
MALLORY ELECTROLYTICS screw terminals
 40,000 " $10 \mathrm{vDC} \quad 27,000$." 15 v DC All at EOp"ea pp 13p. Each condenser scr
TOGGLE SWITCHES Single pole Double Throw ex-equip new condition 50p doz. pp 13p
FIBRE GLASS TAPE 100 yd . roll: $3^{*} 3 \frac{1}{2}{ }^{*}$ wide E1 per roll pp 20p
PAINTON type 159 series working voltag
350 v AC/DC curient max. 3 amp AC/DC
7 pin plug \& socket 80p pp 10p
CASH WITH ORDER
FIEDELECTRLCLTO.
3 SHENLEY ROAD, BOREHAMWOOD, HERTS.
Adiacent Elstree Mainline Station.
Tel: 01-9536009

Wonders of the modern world

Teonex products, of coursel Over 3,000 of them, electronic valves, semi-conductors, and now - neons and indicators too... all performing superbly in many climates . . . all at prices that are very competitive.

How do Teonex do it? Specialisation in one field. Concentration on export only. Very strict quality control.
Sold in sixty countries, on Government or private contract, Teonex offers you a comprehensive range, with most items immediately available.
For technical speciffcations and prices, please write to Teonex Limited, 2a Westbourne Grove Mews, London W.11, England. Cables: Tosuply London W.l1.

electronic valves
semi-conductors
neons \& indicators for export TEONEX

WW-106 FOR FURTHER DETAILS

EXCLUSIVE OFFERS
AMPEX
Precision Instrumentation and Data TAPE RECORDER-REPRODUCERS

per aecond, of tracizs, ${ }^{\circ}$ tape tap
changing rollers and hemion,
101° ree) capacity, Push botion control. Precialon servo control
to $0.75 \quad \mu$ sec, track timing
 1 per cent. Aocuracy 10^{5} per 400 cycles. 1100 , 4 apeeds, $31^{\circ}, 71^{\circ}, 15^{\circ}$ and $80^{\prime \prime}$ per accond, and 4 track, enally
changed to
$t^{* \prime}$ or 1° and of Highter and more modern constructlon than Type FR 100A.
PRICE $\& 380$ for eithar type. The above comprise complete units with electronlcs in

HIGHEST QUALITY 19" RACK MOUNTING CABINETS Totally Enclosed
 DOUBLE SIDED. These cabinete will take rack panels both sidea, that is back and front and are drilied and tapped all the way down every t" for this purpose. They are fitted with "Instantit" patent fully adjustabie rack -these allow the panels to be recessed when they are fitted with projecting cons enclose them by doors.
tOther features include all comers and edres mumied Interior fittings tropicalised. Removeblo bult in ouble ducts. Removable built in blower ducts. Ventilated and insect proofed tops, Detechable side panels. Fuill length instantly detachable doors itted oxpanding bolts if
ordered with cablinels. Made in U.B.A.- cont the American Government 2107 belore devaluation. Finlabed in grey primer and in new condition.

Doors a re not needed if pauela are mounted hack and front and they are not required to be enclosed.
TYPE C: 80° high $\times 27^{\circ}$ deep $\times 22^{\circ}$ Fide. American Btandard Firat Grade totally enclosed ventitited $19{ }^{19}$ rack papel mountipg cablnets, made by Dukane. U.B.A. Open front fitted rack monnts drilled and tapped all the way down every ine. Nall length rear door whith lareh. Fininhed in grey theee cablinetith have been ured but are in recommended they are ro-spraved before use.
TYPE D: 76° bigh $\times 18^{\circ}$ deep $\times 22^{\circ}$ wide. These are TYPE D: 76° bigh $\times 18^{\circ}$ dieep $\times 82^{\circ}$ wide. Those are similar in conetruction and sondition to Type C above. 4ade by R.B.A. or 0.8.A.

ALSO OTHER TYPES 80° TO 88° HIGH AVAILABLE Full detailn of all above arailable on request. TRAABPORT: We have made apecial economical tranaport
arrangements for the cabinets to ensure they artive arrangements for the ese cabinets to ensure they arrive
undamaged and to avold expensive cratlog. Full detalla on request.

We are a Polish company exporting high stability electronic components which have good mechanical characteristics and long life expectancy.

Valves

TV Picture Tubes

Tape Recorder Heads

We can offer production capacity and the ability to produce tape recorder heads to meet our customers' own specifications.

EXPORTER:

Elektrim
 n

Polish Foreign Trade Company for Electrical Equipment Ltd.
Warszawa 1, Czackiego 15/17, Poland. Tele.grams: ELEKTRIM-WARSZAWA,

Phone: 26-62-71, Telex: 814351
P.O. Box: 638

If you are interested, please send for catalogues and quotations.

WW-107 FOR FURTHER DETALLS

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large quantities of miniature potentiometers (flat pots) 20 ohm to 10 K . Various makes. Wholesale and Export only.

J. Black

OFFICE: 44 GREEN LANE, HENDON, H.W.4. 2AH Tel: 01-203 1855. 01-203 3033 STORE: LESWIN ROAD, N. 16 Tel: 01-248 2260

THE QUARTZ CRYSTAL CO. LTD
Q.C.C. Works. Wellington Crescent,

New Malden, Surrey \quad (01-942 0334 \& 2988)
WW-108 FOR FURTHER DETAILS

WW DESIGNS BUILT \& TESTED

example:
Nelson Jones FM Tuner £16
Phased locked stereo decoder $£ 13$
S.A.E. details:

YOUNG ELECTRONIGS
54 Lawford Road, London NW5 2LN. 01-267 0201

Electron Guns

Sub-assemblies

NEW! HANDY! TIDY! multi-drawer

I-N-T-E-R-L-O-C-K-I-N-G
storage
units
A PLACE for
EVERYTHING
EVERYTHING
IN ITS
PLACE!

Newest. neatest. system ever devised for storing small parts and components: resistors, capacitors. diodes. transistors. etc. Rigid plastic units. interlock together in vertical and horizontal combinations Transparent plastic drawers have label slots/handies on front. Build up any drawers have for wall bench or table top
buY AT TRADE PRICES! SINGLE UNITS (5 ins $\times 2$ iins $\times 2 \frac{1}{2}$ ins) Usually 15 p each \quad OUR PRIC
DOUELE UNITS $.5 \mathrm{ins} \times 4 \frac{1}{2}$ ins $\times 2 \frac{1}{4}$ ins) DOUBLE UNITS .5 ins $\times 4 \frac{1}{2}$ ins $\times 2$ inss) Usually 25 p each
PLUS QUANTITY DISCOUNTS!
Orders E 5 and over DEDUCT 5% in the $£$
Orders E 10 and over DEDUCT $7 \frac{1}{2} \%$ in the E
CKING/POSTAGE/CARRIAGE. Add 35 p to all orders under $£ 5$ Orders $£ 5$ and over, packing/postage/carriage free

QUOTATIONS FOR LARGER QUANTITIES

(Dept. WW6) 124 CRICKLEW000
BROADWAY, LONDON, N.W.2.

* ALL PURPOSE TRANSISTOR PRE-AMPLIFIER \star

 Brand now. British made. Dotzails S.a.E. MOP Free

BAKER 12 in. MAJOR £9
 30-14,500 c.p.s., 12 in . double cone, woofer and tweeter cone together with a BAKER ceramic magnet 14,000 gauss and a total flux of 145,000 Maxwells. Bass resonance 40 c.p.s. Ruted 20 watts. Voice coils available 3 or 8 or 15 ohms. Post Free. Module kit, $30-17,000$ c.pss. Size Module kit, $30-17,000$ c.p.s. Size $19 \times 12 \frac{1}{2}$ in. with tweeter, crossover
baffle, instructions. bafile, instructions.
Ideal for Hi Fi or P.A. LOUDSPEAKER CABINET WADULIK 18 in . wide, 15p per ft. run. Post extra 10p per order. E.M.I. QUALITY TAPE MOTORS Post 15p $120 / 240 \mathrm{v}$. A.C. 1,200 r.p.m., Heavy Duty 4 pole 135 miA .
Spindle $0.187 \times 0.75 i n$.

balfour gram motors
$120 / 240 \mathrm{v}$. A.C. 1,200 r.p.m. Heavy duty 4 pole 50 mA . Spindle $0.15 \times 0.75 \mathrm{in}$.
Size $2 \frac{1}{2} \times 2 \frac{1}{2} \times 1 \frac{1}{6}$ in. $85 p$ Post $15 p$

THIS ELAC CONE TWEETER IS OF THE VERY LATEST DESIGN AND GIVES A THAN MORE EXPENSIVE UNITS.
The moving coil diaphragm gives a good radiation pattern to the higher frequencies and a smooth extension of total response from $1,000 \mathrm{cps}$ to $18 ; 000 \mathrm{cps}$. Size $3 \frac{1}{3} \times 3 \frac{3}{2} \times 2 i n$. deep. Rating 10 watts. 3 ohm or $15 \mathrm{ohm} \leq \left\lvert\, .90 \begin{gathered}\text { Post } \\ 10 \mathrm{p}\end{gathered}\right.$ models.
THE INSTANT BULK TAPE ERASER AND RECORDING HEAD DEMAGNETISER
${ }_{\text {Leaflet S.A.C. }}^{200 / 250 \text { A.C. }} \mathbf{~} 2 \cdot 35 \begin{gathered}\text { Post } \\ 15 \mathrm{p}\end{gathered}$

RETURN DF POST DESPATCH - CALLERS WELCOME HI-FI STOCKISTS - SALES - SERVICE - SPARES RADIO COMPONENT SPECIALISTS 337 WhITEHORSE ROAD, CROYDON. Tel: 01-684-1665

STOP PRESS

VIBRATION EQUIPMENT. AUTOMATIC L.F. SWEEP OSCILLATOR PYE-LING ACO 1 (DAWES 444D). An automatic unit providing motorised sweep facilities and automatic changeover from displacement to acceleration characteristic. Applications resonance search and endurance testing. 5 Hz 5 kHz 21 sweep speeds from $0 \cdot 1-10$ octaves/minute. Variable O/P up to 10 V RMS. Mains I/P. Excellent condition. £95 carriage extra.
POWER OSCILLATOR SVA by PYELING $5 \mathrm{~Hz}-50 \mathrm{kHz}$. Overhauled $£ 49$ carriage extra.
CATHODE FOLLOWER. GOODMANS E506. 7 channel. V.G. condition $£ 45$ carriage extra.
ROHDE \& SCHWARZ SMLR BN 41001 POWER SIGNAL GENERATOR. $30-300 \mathrm{MHz}$ in 6 ranges $\pm 1 \%$. O / P power 0.15 W . O/P volts $0-3 \mathrm{~V}$ into 60 OHM . Internal and external modulation to 80%. A high quality laboratory instrument. Currently priced by the manufacturer at $£ 583$. ELECTRONIC BROKERS PRICE $£ 300$.

ELECTRONIC BROKERS LIMITED
49-53 Pancras Road, London N.W.1. Telephone 01-837 7781

Radio and Audio Servicing Handbook

2nd Edition
Gordon J. King AssocIERE, MIPRE, MRTS.
This book is a practical guide to the servicing of radio receivers and audio equipment of all types, and is intended especially for the service technician. Many others, however, find it of absorbing interest, among them students, hi-fi and recording enthusiasts, amateur experimenters, radio dealers and sound engineers.
040800018×284 poges illustrated $1970 \quad \mathbf{6 3 . 0 0}$ (60s)

Radio Valve and Transistor Data

9th Edition
Edited by A. Ball

Abstract

First published in 1949 this book has become an indispensable source of information for all those interested in electronic engineering, from the home constructor to the research worker. Exhaustively revised and updated, the useful and comprehensive information contained in this new edition will add to the already considerable reputation enjoyed by this highly successful book. $059205796 \quad 6 \quad 256$ poges illustrated $1970 \quad \mathbf{\leq 0 . 7 5}$ (15s) Available from leading booksellers or

11
 The Butterworth Group
 88 Kingsway, London WC2B 6AB

We can't wait to expand your laboratory

in $\mathbf{2 4}$ hours you can hire some of the World's top instruments at competitive prices

Southern Office: Cores End Road, Bourne End, Bucks. SL8 5AS. Northern Office: Shearer House, Dunham Road, Altrincham, Cheshire

INDEX TO AIDVERTISERS

Appointments Vacant Advertisements appear on pages 99-108

Page	Pagr	
A1 Factors.................................. 114	Gardners Transformers Ltd.................... 21	
Acoustical Mfg. Co., Ltd. ${ }^{\text {Adcole Products } 19} 19$	Garrard.. ${ }^{2} 23$	
	Goldring Mfg. Co, Ltd........... Readers card 17, 42	Quarta Crystal Co., Ltd.. 114
Advance Fumcap Ltd....................................... 31	Grampian Reproducers Lid.. 18	
Amplivox Ltd............................... . 40,41		Radio \& TV Components Ltd................... . 79
Anders Electronics Ltd. 11, 30	Hall Electric Ltd.. ${ }^{2}$	Radio Components Specialists Ltd................. 115
Andor Electronics Ltd. 1110	${ }_{H}$ Harris Electronics (London) Ltd................ ${ }^{43}$	Radio Exchange Co., Ltd. 111
	Hartley Electromotives Lid. 111	Rendar Instruments Litd.......................... $109.1{ }^{109}$
Auriema Ltd................................... 28	Hatfield Instruments Ltd. 38	Rola Celestion Ltd. 43
	Henry's Radio Ltd.. 80.8 , 81	R.M.S.Audio..................................... 110
	Henson, R., Ltd................................ 111	R.S.C. Hi-Fi Centres Lid. 18.8
	Hermes Electronics Ltd........................ . . . 9	R.S.T. Valves Ltd............................ 76
Bentley, K. J., \& Partners . 109	I.M.O. Precision Controis Litd. ${ }^{88}$	
Bentley Acoustical Corporation Ltd. 78	Impectron Ltd Controis Lid................... 35	Samson (Electronics) Ltd...................... 92
Berrys Radio. 42		Sansui Electric Co., Ltd.......................... ${ }^{\text {Salford Electrical }} 12$
		Sairord Electrical insts. Ltd. 25
Bi-Pak Semiconductors. 82		Servo \& Electronic Sales Litd. ${ }^{9}$
Bockthorpe Helierman Lita.............................. 114	Ivoryet Ltd. 115	Shure Electronics Lidd............................ 24.
Bradiey, G. \& E., Ltd............................ B 15		Sinclair Radionics Ltd.................. 59.9 , 60.01 61, 62
Brill, E., Ltd...................................... 114	J. Beam Engineering Ltd. 29	
Britec Ltd....................................... 43	J.E.F. Electronics. 111	Smith, G. W. (Radio), Ltd.................93, 94, 95
Butterworth \& Co. (Pub.) Lid. 115	Jackson Bros. (London) Ltd......................... . . 32	Splartron Electronic Group Ltd.27, 56
		Special Product Distributors Ltd................... ${ }^{\text {S }}$, 42
	Keytronics.................................... . . 74	Starman Tapes. 1112
		Stephens Electronics............................ . 64
Carston Electronics Ltd. 29	Labhire Ltd.. 116	Stockton Partners............................... 110
Cesar Products Led. (Yukan). 7 . ${ }_{\text {, }}$, 110	Lasky's Radio Ltd.................................$^{1} 74$	Sugden, A. R. ${ }^{\text {S }}$ S Co. (Eng.) Ltd. 43
Chiltmead Letd. $71,85,112$	Lawson Tubes................................. 111	Sutton Electronics Litd. ${ }^{63}$
Colomor (Electronics Ltd.), 77	Leda Tapes...................................... 114	Sutton Electronics Ltd. 110
Computer Sales and Service Ltd.................. 70	Ledon Instruments Ltd. 63	
Croydon Precision Inst. Co..................... 26	Levell Electronics Ltd. 3	
	Light Soldering Developments Ltd.. 26	Tape Recorder Developments Ltd. 20
	Limrose Electronics. 36	
	Lionmount \& Co. Ltd. 42	Tektronix U.K. Ltd................ Bound-in insert
Dabar Electronic Products. 112	Lloyd, J. J. Insts. Ltd. ${ }_{\text {Lowe }}{ }^{39}$	Telequipment Ltd., ${ }^{46}$
Deimos Ltd.. 10.109	L.S.T. Components Litd., 73	Teleradio, The (Edmonton), Ltd. 109
Dewtron_... 109.109		Thorn Radio Vaives \& Tubes Lida.................. ${ }^{113}$
Diathane Ltd. 114		Tinsley, H., \& Co., Ltd. 24
	Marshall, A., \& Sons (¢ondon), Ltd............66, 67	
Douglas Electronic İdustries Lio.................... 112	McKnight Crystal Co............................. ${ }_{111} 71$	Turner, Ernest, Electrical. 28
Dynamco Ltd.,....................................112		
		Valradio Ltd.................................. . . 26
		Vitavox Ltd..................................... $110.1{ }^{26}$
E.B. Instruments. 110	Motorola Semiconductors Ltd...................... 10 Multicore Solders Ltd............	Vortexion Ltd.................................. 1 $_{\text {\% }}^{8}$
Edwards Scientific Int., Litd., 1 $_{88} 8$ Multicore Solders Ltd................... Cover iv		
	Newmarket Transistors Ltd......................16,Nombrex Ltd.................................30	Watts, Cecil E., Ltd.................................. 114
Electro-Tech Sales. ${ }^{86}$		Wayne Kerr, The, Co., Ltd.................... 22
Electrovalue ${ }^{75}$		Webser, R. A., Ltd.......................... 43
Elekon Enterprises . 10.114	Osmabet Ltd............................. 112	West London Direct Supplies.................. ${ }^{65}$
English Electric © Valve Co..., Litd.................. 54.114 , 55	66	Weyrad (Electronics) Ltd....................... ${ }^{\text {a }} 9$
Enthoven Solders Ltd.............................. 18		Whiteley Electrical Radio Co., Ltd...... Readers' card 18
Erskine Laboratories . ${ }^{\text {a }}$. ${ }^{18}$	Pattrick \& Kinnie. 76	Wilkinson, L. (Croydon), Ltd................... 74
	P.C. Radio Ltd............................... 77	
	Peak Sound (Harrow) Ltd.. 44	
Farnell Instruments Ltd........................ . 20		Young Electronics............................. . 114
Ferrograph, The, Co., Ltd........................ 49	Powertran Electronics........................... 66	
Field Electric................................ . 113	Prowest Electronics Ltd.. 14	Z. \& I. Aero Services Ltd. 98

[^13]

The world's industry uses a mile of Ersin Multicore solder every... 3minutes? 3hours? 3days?

The answer is every 3 minutes!
A mile of Ersin Multicore Solder is used every 3 minutes during normal working hours. That shows how the world's leading flectronic manufacturers rely on Ersin Multicore 5 core Solder for thousand upon thousand of fast, economic and consistently reliable joints.

If in Britain or overseas you make or service any type of equipment incorporating soldered joints, and do not already use Ersin Multicore Solder, it must be to your advantage to investig ate the wide range of specifications, which are available.

Besides achieving better joints-always-your labour costs will be reduced and substantial savings in overall costs of solder may be possible. Solder Tape, Rings, Preforms, and Pellets - Cored or Solid - and an entirely new type of cored disc, can assist you in high speed repetitive soldering processes.

EXTRUSOL The first oxide free high purity extruded solder for printed circuit soldering machines, baths and pots, is now available to all international specifications, together with a complete range of soldering fluxes and chemicals.

Should you have any soldering problems, or require details on any of our products, please write on your company's note paper to:

MULTICORESOLDERS LTD., HEMEL HEMPSTEAD, HERTS.
 Tel. No. Hemel Hempstead, 3636, Telex: 82363.

EXTRUSOL

Extrusol high purity extruded solder, available in 1 lb . and 2 lb . bars, and also Extrusol pellets, for printed circuit soldering machines, pots and baths, polythene protected.

GALLON CONTAINERS

All liquid chemicals and fluxes supplied in 1 gallon polythene 'easy pouring containers, with carrying handle.

AEROSOLS
PC. 21 A PC. 10 A and PC. 52 available in 16 oz , aerosol sprays.

7lb.REELS

Available in standard wire gauges from $10-22$ swg., on strong plastic reels.

1lb.REELS
Available in all standard wire gauges from 10-34 swg., on unbreakable plastic reels. (From 24-34 swg. only $\frac{1}{2} \mathrm{lb}$. is
wound on one reel)

SOLDER TAPE, RINGS, PREFORMS, WASHERS, DISCS \& PELLETS

Made in a wide range solid or cored alloys. Tape, rings and pellets are the most economical to use.

THE FINEST CORED SOLDER
 IN THE WORLD

[^0]: England: VERNITRON (UK) LTD. Thornhill Southampton S095QF Tel: Southampton 44811 / Ireland: RADIO CENTRE 122A, St. Stephen's Green, Dublin 2 / West

[^1]: H. TINSLEY \& CO LTD • WERNDEE HALL SOUTH NORWOOD • LONDON SE25 • 01-654 6046

[^2]: * 'Research and Development in Electronics-Value for Money', I.E.E.

[^3]: Deep waters
 The reader may have noticed that we have got into very deep waters, almost without

[^4]: *Twickenham College of Technology.

[^5]: Research Division, Marconi Co, Ltd.

[^6]: \dagger Betts, J. A., 'Adaptifon system of telephony', I.E.E. Electronic Letters, Vol. 6, No. 17, 20th August, 1970, pp. 542-543.

[^7]: Please send me full information on

[^8]: * Lanchester Polytechnic, Rugby

[^9]: *I cannot recall whether this term is original.

[^10]: *Substitute for r_{2} from equation 8 in G_{V}, differentiate

[^11]: - By Dr. Konstantin Raudive; published by Colin Smythe Ltd $\mathfrak{£ 3 . 5 0 .}$

[^12]:

[^13]:
 at a price in excers of the recommended maximum price conditions, namely that It shall not, without the written consent of the publishers firat given, be lent, re-sold, hired out or otherwise disposed of by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whateover.

