Wireless

Stereo f.m. tuner
 Graphic logic display

60th birthday issue

\square no electrical 'set zero' control required \square high sensitivity \square high basic accuracy \square resistance measurements up to $100 \mathrm{M}_{\Omega} \square$ low battery consumption \square measurement up to $100 \mathrm{kHz} \square$ comprehensive overload protection \square simple to operate \square easy readability

All this and it's an Avometer, too!

With the Electronic Avometer Type EA 113, you can measure a.c. and d.c. voltage between 10 mV and 1000 V f.s.d., a.c. and d.c. current between $10_{\mu} \mathrm{A}$ and 3 A (plus $1_{\mu} \mathrm{A}$ f.s.d., d.c.) all at a basic accuracy of 1.25%. The sensitivity on d.c. is $1 \mathrm{M} \Omega / \mathrm{V}(100 \mathrm{M} \Omega$ max).

Get full details from Avo Limited, Avocet House, Dover, Kent. Tel: Dover 2626 Telex: 96283 or from
Elesco Frazer Limited, 36 St Vincent's Crescent, Glasgow C 3. Tel: 041-2219301
Wirelect Electronics Limited, Wirelect House, St Thomas Street, Bristol 1 Tel: 0272294313

WW-006 FOR FURTHER DETAILS

Vortexion

This is a high fidelity amplifier (0.3% intermodulation distortion) using the circuit of our 100% reliable- 100 Watt Amplifier (no failures to date) with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for $2-30 / 60 \Omega$ balanced line microphones, 1-HiZ gram input and 1-auxiliary input followed by bass and treble controls. 100 volt balanced line output or $5 / 15 \Omega$ and 100 volt line.

THE VORTEXION 50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4-WAY MIXER USING F.E.T.s.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.

THE 100 WATT MIXER AMPLIFIER with specification as above is here combined with a 4 channel F.E.T. mixer, $2-30 / 60 \Omega$ balanced microphone inputs, 1 -HiZ gram input and 1 -auxiliary input with tone controls and mounted in a standard voltage drop of over 25% and the stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains available in rack panel form.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms -15 ohms and 100 volt line. Bass and treble controls fitted.
Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{~dB}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 dB and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1-low mic. balanced and Hi Z gram.

ELECTRONIC MIXERS. Various types of mixers available. 3-channel with accuracy within 1 dB Peak Programme Meter. 4-6-8-10 and 12 -way mixers. Twin 2, 3, 4 and 5 channel stereo. Built-in screened supplies. Balanced line mic. input. Outputs: 0.5 V at 20 K or alternative 1 mW at 600 ohms , balanced, unbalanced or floating.

ELECTRICAL RADIO CO LTD

manufacturers of a wide range of audio, electronic \& communication equipment

congratulate WIRELESS WORLD on sixty years of
 communication

DANGER
 HIGH
 VOLTAGE

Sens

Int

Exi

High
Voltage

Output $\div 1000$

$R o=100 \Omega$

Output

Overload

From Bradley. A new face in our calibrator family.

It is called the type 134 D.C. Calibrator. An accurate high voltage source for the calibration of panel meters and electronic instr aments, or as a precision laboratory reference source.
The 134 provides output voltages up to 1000 V d.c. at an accuracy of 0.05% of dial setting, and with a current capability of 50 mA . A deviation control gives direct reading of percentage error, a feature pioneered by Bradley and now incorporated in all our calibrators

You will probably recognise soma of the other faces we show here.
The $127 B$ for instance. A 500 V D.C
Calibrator for use as a precision voltage source, having an accuracy of 0.05% and a current capability of

20 mA . The 127 B gives high accuracy
The A.C. Calibrator in the range is the 125B. This can be used for the production line testing of meters or as an extremely stable a.c. source. Output voltages up to 500 V a.c. are available at spot frequencies of 50 , 400,1000 and 2400 Hz . Alternative frequencies are available if required. The accuracy is normally 0.2% of setting, but 0.1% instruments can be supplied complete with an official B.C.S. certificate

The 132 D.C Current Calibrator provides stable d.c. current from $1 p A$ to 100 mA with an accuracy of 0.05% of dial setting. Its principal uses are the calibration of current
sensitive devices, including panel meters, relays and transducers, and the production testing of semiconductor devices, and thin film resistors. It is particularly u seful as a development laboratory reference source.

For use with the Bradley 132, is the 144 D.C. Current Multiplier, an add-on unit which extends the range to 0 amperes. The combination of these two instruments provides a versatile high current source which covers the testing of most panel meters and which amongst numerous other applications has been used as a precise current source in chemical electrolytic experiments.

A Lucas Company
G \& EBRADLEY LTD Electral House, Neasden Lane London NW10
Tel:01-450 7811 Telex:25583

All Bradley instruments can be supplied with a British Calibration Service Certificate from our own B.C.S. approved standards laboratory.

Confidere. v, (Lat.)

WELWYN ELECTRIC LIMITED

(Founded 33 years ago)

Our wing span-athird of a century

Wonders of the modern world
Teonex products, of course! Over 3,000 of them, electronic valves, semi-conductors, and now - neons and indicators too ... all performing superbly in many climates ... all at prices that are very competitive.

How do Teonex do it? Specialisation in one field. Concentration on export only. Very strict quality control.

Sold in sixty countries, on Government or private contract, Teonex offers you a comprehensive range, with most items immediately available.

For technical speciffcations and prices, please write to Teonex Limited, 2a Westbourne Grove Mews, London W.11, England. Cables: Tosuply London W.11.

Polymite capacitors scorn conventional housings. You buy them stripped for action. Because Polymites use a thin polyester metallised film, they offer high capacitance values, small physical size, much less weight ; plus the high mechanical strength of Erie's special way of applying terminal connections. All without a 'can'. And all with the properties of recovery from humidity that Erie Polymites alone can offer.

Scan the specification :
Capacitance range
Working Voltages up to
Sizes as small as

Type M310
100pF-47,000pF 750 V
$8 \mathrm{~mm} \times 4 \mathrm{~mm}$

Type M312
$.022 \mu \mathrm{~F}-2.2 \mu \mathrm{~F}$
250 V and 400 V
$16 \mathrm{~mm} \times 7 \mathrm{~mm} \times 2.5 \mathrm{~mm}$

Send for the data. Or tell
one of our engineers may call.

Erie Electranics Limited, Great Yarmouth, Norfolk.
Telephane: 04934911 -Telex: 97421

We like to be in a position to talk to our customers in the same language.

That's why in the competitive world of electronics we make it our business to know all about the latest 'whisper'

In handling the latest products from such companies as Texas, Ferranti and Plessey we act as a 'clearing house' for new ideas and developments.

We hear the 'whisper' as soon as it emerges - and pass it straight to you.

Because we want you to come to us for your electrical components, we make sure you get a good deal

Like on delivery dates After-sales-service Competitive prices And, of course, product information Very often a quick word with us at planning stage will save you a great deal of time and money.

So next time you're in the market for components give us a ring.

We might well be able to give you awhiser WEL

numbers

QUAD

for the closest approach to the original sound

Acoustic Research has measured the response of more than a million high-fidelity speakers.

Here are some things we have learned about listening.

. The frequency response of a midrange driver unit of an AR-3a, on axis. This corresponds to what one would an AR-3a, on axis. This corresponds to what one would

Integrated power output curves.

AR-3a and AR-5 with high-priced magnetic cartridge. It is interesting to see that the cartridge introduces somewhat more degradation of the signal than the speaker system, at least in the trequency range observed Nevertheless, a small adjustment of the amplifier treble control could restore uniformity of response.

2. What happens when a listener moves over to one side of the speaker in 15° increments.

3. The integrated power output of the AR-3a above 1000 Hz . measured in a special reverberant chamber. Reflection from the walls of the chamber mixes together all of the sound emitted by the speaker system in all directions, an effect much more like that of a listening room than the anechoic chamber used for 1 and 2. A speaker system which measured well in both types of speaker system which measured well in both types of conditions.

A 'multi-directional' system and a very expensive cartridge Such systems are designed to take advantage of room peffections to smooth response and create spatial effects.

Vertical divisions $\frac{1}{2} \mathrm{~dB}$

Fidelity means accuracy.
Accuracy distinguishes high-fidelity speaker systems from the speakers in simple radios and gramophones. It is therefore reasonable that evidence of accuracy should take precedence over descriptions of a speake'r system's size. shape or theory of design. Acoustic Research offers exact measurement data for AR speaker systems to all who ask for it: music listeners, audio enthusiasts. science teachers, even competitors.

The accuracy of a speaker system can be evaluated by listening tests or by measurement. Both methods give the same information in different ways.

Testing for accuracy.

To perform a listening test, an extremely accurate recording must be made and played back alongside the original source of sound. Amplifier and speaker system controls are adjusted to obtain as close a match as possible: and the speaker system judged by the degree of similarity. Acoustic Research has presented public concerts at which the Fine Arts Quartet and other musicians could be compared with recordings played back through AR speaker systems; even seasoned critics were deceived. Obviously, listening tests cannot be made with commercial recordings of music since the listener has no way of knowing which adjustment is most accurately reproducing the recording.

Objective measurements.

While it is not always convenient to carry out scientifically controlled listening tests, properly conducted measurements can give the same information in permanent, quantitative form. AR knows something about this, having already tested the response of well over a million speakers - every one that we have ever made, and many made by competitors. Our findings are that the most important measurements required to assess the accuracy of a speaker system are (1) frequency response on-axis, (2) frequency response off-axis, (3) integrated power output.

AR speaker systems start at $£ 39 \cdot 95$. Write to Bell \& Howell for more information and a list of dealers.

$\sqrt{ } \sqrt{ }$ BelleHowell

Bell \& Howell A-V Ltd.

Alperton House, Bridgewater Road. Wembley.
Middlesex HAO 1EG
Telephone: 01-902 8812

In just 2 minutes, find out how you can qualify for promotion or a better job in Engineering . . .

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn on 'SATISFACTION - OR REFUND OF FEE' terms. If you'd like to know how just a few hours a week of your spare time, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

Mechanical

A.M.S.E. (Mech.)

Mechanical Eng Maintenaace Eng. Welding
General Diesel Eng.
Sheet Metal Work
Eng. Inspection
Eng. Metallurgy
C. \& G. Eng. Craft
C. \& G. Eng. Crafts

Draughtsmanship
A.M.I.E.D.

Gen. Draughtsmanship Dic \& Press Tools Elec. Draughtsmanship Jig \& Tool Design Design of Elec. Machines Building

Electrical \& Electronic A.M.S.E. (Elec.) C. \& G. Elcc. Eng. Gcneral Elec. Eng. | Installations \& Wiring |
| :--- |
| Electrical | Electrical Maths. Electrical Science Computer Electronics

Electronic Electronic Eng.

Radio \& Telecomms. C. \& G. Telecomms. C. \& G. Radio Servicing Radio Amateurs' Exam. Radio Operators' Cert. Radio \& TV Enginẹcring Radio Servicing Practical Television TV Servicing Colour TV
Practical Radio \& Electronics (with kit)

Auto \& Aero
A.M.I.M.I.

MAA/IMI Diploma
C. \& G. Auto Eng.

General Auto Eng.
Motor Mechanics
A.R.B. Certs.

Gen. Acro Eng.

Management \&

Production Computer Programming Inst. of Marketing
A.C.W.A.

Works Management
Work Study
Production Eng. Storekecping Estimating
Personnel Management Quality Control Electronic Data Processing Numcrical Control Numerical Control
Planning Enginecring Planning Engincering
Materials Handling Materials Handling
Opcrational Rescarch Opcrational
Mctrication

Constructional
A.M.S.E. (Civ.)
C. \& G. Structura! Road Engincering Civil Enginecring Building ${ }^{\text {Bir Conditioning }}$ Ar Conditioning
Heating
Ventilating Carpentry $\&$ Jontiating Carpentry \& Join
Clerk of Works Building Drawing Surveying Painting and Decorating. Architecture
Builders' Quantities

General
General
C.E.I.

Petroleum Tech
Practical Maths
Refrigerator
Rubber Technology
Sales Engineer
Timber Trade
Farm Science
Agricultural Eng.
General Plastics
General Certificate
of Education
Choose from 4^{2}
' 0 ' and ' A ' Level
subjects including:
English
Chemistry
Gencral Science
Geology
Rhysics
Mathemanics
Mathenauics
Technical Drawing
French
German
Russian
Spanish
Spanish
${ }_{\text {B.I.E.T. and its }}$
ussociated schools
have recorted well
over 10,000 G.C.E.
successes
successes at 'O' and
'A' level.
WE COVER A WIDE RANGE OF TECHNICAL AND PROFESSIONAL
EXAMINATIONS.
Over 3,000 of our Students have obtained City \& Guilds Certificates. Thousands of certificates. Thousands of

THEY DID IT-SO COULD YOU

"My income has almost trebled . . . my life is fuller and happier." - Case History G/321.
"In addition to having my salary doubled, my future is assured." - Case History H/493.
"A turning point in my career - you have almost doubled my standard of living." Case History K/662.
"Completing your Course meant going trom a job I detested to a job I love." - Case History B/461.

FIND OUT FOR YOURSELF

These letters - and there are many more on file at Aldermaston Court - speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you.

7ree!

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

Dept 446A, Aldermaston Court, Reading RG7 4PF.
(Write if you prefer not to cut this page)

Hall Electric Limited
Haltron House, Anglers Lane
London, N.W. 5.
Telephone: 01-485 8531 (10 lines)' Telex: 2-2573
Cables: Hallectric, London, N.W.5.

THIS NEW ARROW CT RANGE OF COMMERCIAL SUB-MINIATURE SWITCHES OFFER Big savings

plus 2A 250 V AC operation.

A new range of low-cost, compact switches, which will be found to be invaluable when weight and space saving, together with good product styling, are prime considerations.

Combining the highest standards of quality and reliability, this range of switches opens up new horizons for designers of commercial equipment. Competitive in price and of attractive appearance these sub-miniature switches are available with two or three position single and double pole changeover circuits, are rated at 5A 29 V DC, 2A 250 VAC , and measure only $0.551^{\prime \prime} \times 0.256^{\prime \prime}(S P) 0.512$ (DP) and $0.93^{\prime \prime}$ to the top of the sleeve.

Write or telephone for full details and/or samples of these latest Arrow switches - they're little beauties!

ARROW

ARROW ELECTRIC SWITCHES LTD.

Today, two schools of thought exist where there is a need for automated measurements.

Buy a fully compatible test system and let the supplier do the systems engineering.

Tektronix offers salutions . . . buy the system for each approach:

If you're of the "buy the system" group ... you must decide: Functional, DC or Dynamic tests? The NEW Tektronix S-3150 will do all three types of testing on Digital IC's. Our S-3130 will make dynamic tests on IC's, transistors, circuit boards, etc. Most suppliers provide DC or Functional test systems . . Tektronix provides dynamic systems!

A word for dynamic testing: dynamic testing is a powerful tool, enabling you to verify the performance of active devices under operating conditions. If the device has a specified clock frequency of 15 MHz , why perform a DC or Functional test and be left guessing that it will work at 15 MHz . . . test it there! There are nine systems available from Tektronix
. standard modifications to three of these brings the total to twe/ve catalogued dynamic systems.

We're anxious to discuss the unique applications that can't be served by one of our standard catalogued systems!

.ufrom TEKTRONIX

Buy the best of each system module and do your own systems design.

or buy the modules!

The Type 240 Programme Control Unit, in conjunction with a disc memory, can programme the $568 / 230$ at speeds up to 100 measurements per second. systems modules available?

> Tektronix offers a digital oscilloscope with programmable
plug-in units, multiplexers,
The Type 250 Auxiliary Programme Unit provides additional programming capabilities to the 240 and buffering for pulse generators, power
supplies, etc. pulse generators, power
supplies, etc.
greater speed, accuracy and convenience when you tailor your system around these modules.

programmers, programme control units and programmable pulse generators. Dynamic, switching-time measurements are made with

The Type 241 will automatically sequence through 15 programmes, stopping on out-of-limits measurements. Programmes are easy to set up and change. plug-in units, all the measurement functions of the 568/230 can be externally programmed.

I.LE.C. SHOW STAND 1-115,131

TEKTRONIX
committed to progress in waveform measurement

Tektronix U.K. Ltd.
Beaverton House, P.O. Box 69,
Harpenden, Herts.
Tel: Harpenden 61251 Telex: 25559
Northern Region Office:
Beaverton House, 181A Mauldeth Road,
Manchester 19.
Telephone: 0612240446 Telex: 668409

Scopemanship

Here's the 'scope that gives you more scope than you've ever had for the money before.
£185 buys you -
A bandwidth of DC to 15 MHz .
$5 \mathrm{mV} / \mathrm{cm}$ dual trace display.
Signal delay.
Comprehensive trigger facilities
with T.V. sync separator.
Switched X-Y operation.
Bright line auto free-run.
20 lbs., $7^{\prime \prime} \times 11^{\prime \prime} \times 17^{\prime \prime}$ portability.
Those are just some of the the facilities that make the Advance
Electronics OS1000 oscilloscope a really universal instrument for most general purpose laboratory and service applications including T.V. - and compared with many others of similar performance, the OS1000 will leave you around $£ 100$ to spend on something else - like the Advance DMM2 Digital Multimeter!

OS1000-DUAL TRACE OSCILLOSCOPE

from the ADVANCE range.

MODEL 2000 PLINTH SYSTEM

The SME model 2000 plinth system is more than a handsome and convenient housing for your turntable and SME precision pick-up arm. It meets the mechanical requirements under which the best performance will be obtained. High-quality workmanship is combined with ease of assembly. The basic unit is finished in selected veneers of teak, straight-grained walnut, or rosewood. A one-piece hinged lid in heavy acrylic is reinforced with a polished stainless-steel trim.

Write for details to: SME LIMITED. STEYNING•SUSSEX ENGLAND

Motor boards in matching veneers are ready cut and drilled for screwdriver assembly with the appropriate pick-up arm and turntable. An uncut board is also available

Four-point spring suspension adjustable for height and damping protects the motor board from acoustic feedback and external vibration.

A bench full of test gear

B

without spending a pile of money.

Good test and measuring instruments need not cost a pile of money. Heathkit instruments are well known not only for low cost . . . but high value. Heathkit achieve this by quality design with precision where it counts. The end result is more performance-per-pound invested. Whatever your requirements... Oscilloscopes, VVMs, Generators, Power Supplies etc. we aim to please. May we have your enquiry?

MODELS SHOWN
A) Oscilloscope $10-18 \mathrm{U}$ Kit $£ 42.80$. Carr 80p.
B) Oscilloscope, OS-2 Kit f32.00, Carr. 60p
C) VVM IM-25

Kit $£ 44.00$, Carr, 40 p.
D) VVM IM-17

Kit £17.30, Carr. 30p.
E) Multimeter MM-IU

Kit $£ 16.00$, Carr. 30p.
F) Generator RF-IU Kit $£ 17.50$. Carr. 30p.
G) HV Supply IP-17 Kit £39.90, Carr. 60p. H) LV Supply 1P-27 Kit £41.40, Carr. 50p. ASSEMBLED PRICES ON REQUEST.

Please
send me the FREE
Catalogue

STOCKISTS OF B．P．O．COMPONENTS \＆ALLIED EQUIPMENT TWC
 TELEPHONE \＆WIRELESS COMPONENTS LTD． 147，The Broadway，London，N．W．9． Tel．01－203 2814 Cables：Tetwireco，London，N．W．9．

WW－ 025 FOR FURTHER DETAILS

DC300

DUAL－CHANNEL．POWER AMPLIFIER

\vdots		« DC－Coupled throughout！ ＊Short Circuit proof！
－	－DEジリリ	＊ 500 Watts RMS Mono．
		$\star 70$ Volt Balanced line out！
Freuencer hesposie		
		＊UNEQUALLED QUALITY！
	\pm Itiole	
Total Output（IHF）	Typically 420 watts RMS into 8 ohms． 800 watts RMS into 4 ohms，	$\star 3$ YEAR PARTS WARRANTY！
		＊onty $\mathbf{£} \mathbf{3 2 0}$ inc．DUTY！
Humand（ase		
		CARSton electronics lit．
$\begin{aligned} & \text { Dimesess } \\ & \text { Weipht } \end{aligned}$Finish		SHIRLEY HOUSE
		LONDON，N．W． 1 gLN
		$01-2672748$

GT. 5 is an entirely new comprehensive brochure 0^{-} Audio Transformers and contains details of a wider rénge of standard types. Recent introductions to Gardners Audio range described in this brochure include super-fidelity transformers with exceptionally low phase-distortion and the ability to handle steep side transient signals withcut generation of overshoot. Also listed is a range of high proof-voltage transformers for Post Office transmission lines and a new range of ultra miniature transformers with remarkably good performance. A frequency response linear from the lower audio frequencies to the supersonic band is standard to many of the newer types.

Gardners also have nine other GT Catalogues.
Whatever your transformer requirement there is more than a possibility that we can supply something suitable from stock. We make the largest range of standard transformers in Europe
Return the coupon to us. And we'll send you the GTs by return.

GT. 1 POWER CONTROLLING SATURABLE REACTORS 50W. to 1 kW . with application notes.
GT. 5 AUDIO TRANSFORMERS including Microphone and line matching, Driver, output and impedance matching transformers.
GT. 12 LILLIPUT SERIES OF MICROMINIATURE
TRANS =ORMERS including Inverter, A.F. and wide-band carrier matching A.F. Driver and pulse types, miniature smoothing and A.F. inductors.
GT. 16 ALPHA SERIES OF ASSEMBLIES for filters, delay lines, modulators, etc.
GT. 17 LOW VOLTAGE, ISOLATING AND AUTO TRANSFORMERS in nearly two hundred ratings, 6 v . to 440 v , arid 5 vA to 2 kvA in six assembly styles. MANUAL OF INVERTER TRANSFORMERS AND MODULES.
GT. 23 INDUCTORS, including heavy current and commutation types.
GT. 24 POWER TRANSFORMERS for use with tube type circuits (including obsolescent types) and E.H.T. and Magnetron Supply Transformers.
GT. 25 TRANSISTOR POWER SUPPLY TRANSFORMERS.
GT. 100 GENERAL REFERENCE CATALOGUE with data sheets of assemblies available for specially designed transformers.

GARDNERS TRANSFORMERS LIMITED
Christchurch Hampshire BH23 3PN
Tel: Christchurch 2284 (STD 02015 2284)
Telex 41276 GARDNERS XCH

Please indicate your requirement by circling the number/s below

1	5	12	16	17	21	23	24	25	100

ANNOUNCEMENT by Grampian

The first of a special range of equipments with built in USER VALUE. Engineered to the highest technical specification and setting a new standard for the reliability requirements of professional and rental use. An amplifier of great distinction, to set a standard by which others will be judged.
For its complete specification to I.E.C.268.3 and for information on other amplifiers, microphones, studio equipment and loudspeakers write to us at

Power Amplifiers
Solid State
100 watts Type 744
50 watts Type 743

- 100 watts continuous R.M.S. 4 hours I.E.C. Test.
- A new technique of assembly using flexible printed wiring, interchangeable modules, and providing access from the front.
* The most complete protection systems available.
- Die -cast machined front panel heatsink. No separation needed for stacking on racks. No ventilation problems.

The ADAMIN thermal wire strippers allow one-handed operation, using a simple tweezer action.

They strip coverings of up to about $\frac{5}{32}$ in dia. with minimum risk of damaging the conductors.
for PTFE insulation
use Model PTFE (illustrated), available for 24 volts only FOR PVC INSULATION $\begin{gathered}\text { and simial low-emperature maerials use Model PVC, available for } 12 \text { or } 24 \\ \text { vols }\end{gathered}$ for $\boldsymbol{M} \boldsymbol{Y} \boldsymbol{L} \boldsymbol{A} \boldsymbol{R}$ irradiated pvc use Model PVC 212 or 24 volts.

LITESOLD TRANSFORMERS permit safe operation from any mains power point.
Please ask for new leaflets 5/1015/13
LIGHT SOLDERING DEVELOPMENTS LTD.
28 Sydenham Road, Croydon, CR9 2LL Tel: 01-688 $8589 \& 4559$

${ }^{\top}$ N 0 linSolder

ENTHOVEN offers you Europe's Widest Range
One good reason for soldering with Enthoven - whatever your needs - is the Enthoven range. It gives you a wide choice of high quality products developed for use with modern techniques. It includes Flux Cored Solder Wires, Solder Pre-forms, Solid Solders, selective Fluxes, solder specialities, materials for printed Circuitry and for soldering Aluminium. For complete technical details of Europe's widest range, ask Enthoven Solders Limited, Dominion Buildings, South Place, London EC2. Telephone 01-628 :--- 8030; telex 21457; cables: ENTHOVEN LONDONEC2

SPECIAL PRODUCTS

BASE METAL EXTRUSIONS
LEAD POTS, TUBES \& BRICKS LIOUID SOLDERS, PAINTS AND POWDERS

ALUMINIUM SOLDERS AND FLUXES
PRINTED CIRCUIT SOLDERS AND FLUXES

HIGH AND LOW MELTING POINT ALLOYS

SOLDERS FOR SPECIAL SERVICE
HIGH PURITY METALS--PRE-FORMS SOLDERING IRONS

Meeting amplification needs

Goldring Manufacturing Company (Great Britain) Ltd. 10 Bayford Street, Hackney, London E8 3SE. Phone: OI-985 1152

Vareco Type	$\mathbf{3 3 - 2}$	$\mathbf{3 3 - 1 0}$	$60-5$
Output Voltage	$0-33 \mathrm{~V}$	$0-33 \mathrm{~V}$	$0-60 \mathrm{~V}$
Output Current	$\mathbf{0 - 2 A}$	$0-10 \mathrm{~A}$	$0-5 \mathrm{~A}$
Price	$\mathbf{£ 5 5}$	$\mathbf{£ 9 0}$	$\mathbf{£ 9 5}$

Remote Pror cunnits-Series and Paralicioperation

Manufacturers of high quality Power Supplies: Digital Instruments and Oscilloscopes
Roband Electronics Limited, Charlwood, Horley, Surrey, England. Tel : Crawley 20172. Telex: 87434.

Eight good reasons for choosing EMI Vidicons

Range Magnetic and electrostatic, 26 mm and 13 mm tubes, standard and short length, including those with specialised target layers and faceplates.

Versatility Designed for use in a wide range of colour and monochrome broadcast and closedcircuit cameras, both live and film pick-up.

Performance EMI separate mesh vidicons are noted for their high sensitivity, short lag and good resolution.

Uniform Quality Every EMI vidicon tube is produced to uniform standards for complete reliability.

LONDON
Edmundsons Electronics Ldd.
60-74, Market Parade, Rye Lane, Peckham, London, S.E.15' Tel: (01)-6399731 BIRMINGHAM
Hawnt \& Co. Ltd. Tel: (021)-359 4301 CARDIFF

Economy EMI technology, quality control and production techniques provide tubes at realistic prices.

Guarantee Every EMI vidicon is guaranteed for 500 hours or 12 months' operation.

Professional Advice Our engineers are ready to discuss your particular application.

Fast Service Just telephone EMI or your nearest EMI distributor for fast replacement service. (U.K. distributors are listed below.)

LIVERPOOL

Smith \& Cookson Ldd.
49-57, Bridgewater Street, Liverpool 1.
Tel: (051)-709 3154
SHEFFIELD
The Needham Engineering Co. Ltd.
P.O.B. 23, Townhead Street

Sheffield S1 1 YB Tel: (0742)-27161
NEWCASTLE UPON TYNE
J. Gledson \& Co. Ltd.

Newbiggin Lane, Westerhope,
Newcastle Upon, Tyne, NE5 1PM Tel: (0632)-860955

A NEW PORTABLE OSCILLOSCOPE

for hand use or permanent mounting
Ranges and combinations of ranges from 900 to 100,000 r.p.m.
Descriptive Literature on Frahm Resonant Reed Tachometers and
Frequency Meters available from the sole U.K. Distributors. Manufacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largest stocks in the U.K. for off-the-shelf delivery.
anders electronics limited
48/56 Bayham Place, Bayham Street, London NW1. Tel; 01-3879092

Anders means meters RTHER DETAILS

WW-036 FOR FURTHER DETAILS

Seleniumhigh voltage tripler multipliers forcolour\& monochrome television EHT supplies

This assembly is a direct replacement for British Radio Corporation Group EHT. Part Nos. OM3-?00 and 6M3-034 and will clip straight into the existing transformers
Operating Characteristics
Horizontal frequency $10-16$ (kHz) Imput.pulse \quad (kJtte 6.8 (kV) D.C. output voltage 18 (kV) D.C. load current
$0.300(\mu \mathrm{~A})$

Ratings

Imput pulse $\quad 7.3$ (kV) Max
D.C. output voltage
(zero beam current) 20 (kV) Max. D.C. load current 400 (JA) Max: Ambient temp. 65 ($\left.{ }^{\circ} \mathrm{C}\right)$ Max. Surface temp. $80\left({ }^{\circ} \mathrm{C}\right)$ Max. Frequency (pulse) 20 (kHz) Max.
Price
1-9 £2.25 each, postage paid
Prices for larger quantities on application

Also available
HALF WAVE UNIT for B.R.C. GROUP TU18-2HD
Price 1-9 £2.00 each.

Fill in coupon below and send cheque with order.

TRIPLER

for T.V.M., Decca, B.R.C. Group Colour sets Prices on application
HALF WAVE RECTIFIER STICKS for ITTKB
Price on application

QUADRUPLER

for Rank, Bust, Murphy Colouir Sets Prices on appl.cation.

For list of components stocked in Airdrie please fill and return the reply coupon below

Clydesdale Bank Buildings, 7 Graham Street. Airdrie. Telephone: Airdrie 66881/2/3 Telex 778638

Please send Triplers TU18-2TQ
Please send Half wave units TU18-2HD
We enclose cheque/P.O. for f

Please send information/quotation for
to replace.
Please quote for the following components

WW-038 FOR FURTHER DETAILS
WW-039 FOR FURTHER DETALIS

GOLDRING SERIES 800 and 850 STEREO MAGNETIC CARTRIDGES

Our famous ' 800 Series' True Transduction cartridges, developed on the 'Free Field' principle, allow the most delicate groove-stored signals to be accurately relayed and re-created with uncompromising precision. And the
G. 850 Free Field stereo magnetic cartridge, intended primarily for 'budget' hi-fi systems, offers all the advantages of a good quality magnetic cartridge at a very attractive price.

Super E
800 Super E For those aiming at perfectionextra low mechanical impedance for ultimate tracking is achieved by a duo-pivoting arrangement membrane-controlled to avoid longitudinal or torsional modes
blemishing performance. Each cartridge supplied with individual curve and calibration certificate.

800/E Designed for transcription arms, a micro-elliptical diamond is fitted to a fine cantilever, end-damped against natural tube resonances, accurately terminated in a special conical hinge to give pin-point pivoting.

800/H This Free Field Cartridge is designed for inexpensive changers to track between $2 \frac{1}{2}$ to $3 \frac{1}{2}$ grams and has a high output of at least 8 mV .

G850 This relatively inexpensive Free field stereo magnetic cartridge is capable of bringing out the very best performance that 'budget' hi-fi systems can provide -

See Goldring at

 Stand No 1023, 1025 \& 1028 at Sonex

DC Differential Voltmeter - 6-figure readout from 100 mV to 1 kV , accuracy 0.01%. Calibrated null meter, a nalog output for recorders. Ask for M100 Data Sheet.

Transmission Measuring Set portable equipment for checking a.f. lines and equipments from 20 Hz to 120 kHz . Suits 75,140 and 600 -ohm circuits, balanced or unbalanced, termina:ed or unterminated. Details on application, quoting 44C

DC Multimeter - full-scale ranges $30 \mu \mathrm{~V}-300 \mathrm{~V}, 30 \mathrm{pA}-100 \mathrm{~mA}$ and 10Ω $1 \mathrm{G} \Omega$. Switched filter. Constant $100 \mathrm{M} \Omega$ for 1% voltage measurenents Analog output. Ask for M300 Data Sheet.

Capacitcr Test Set-direct readout of percentage deviation from a pre-set value, and of dissipation, with automatic limit circuits showing pass/hig 7/low. Also 4-figure capacitance measurement. Ask for B700 Da:a Sheet.

Signal Source - 30 kHz to 30 MHz with 50-ohm atter uated output from - 50 to +10 dB on $1 \mathrm{Vp}-\mathrm{p}$. Monitor outlet for counters. Stable in frequency and amplitude. Ask for O200 Data Sheet.

Frequency Counter-direct readout of time. count, period and frequency to 50 MHz . Memory, inhibit and gating facilities. Electrical anc mechanical stop/start. Clock pulse outputs. Ask for FC50 Data Sheet.

WAYNE KERR

JACIKSON

 BROS. (London) Limited Invite you to see their latest designs of

INTERNATIONAL LONDON ELECTRONIC COMPONENT SHOW

OLYMPIA MAY 18-21

VARIABLE TRANSFORMERS

OUTPUT 0-265V \star INPUT 240V 50/60 CPS SHROUDED FOR BENCH OR PANEL MOUNTING

VARIABLE TRANSFORMERS

$2.5 \mathrm{amp} \quad \mathbf{E 6 . 7 5 p} \quad 10 \mathrm{amp} \mathbf{E 1 8 . 5 0 p}$

 emp E14.50p 20 amp £37.00p $1 \mathrm{amp} \mathbf{£ 5 . 5 0 p}$

Inset shows latest pattern Brush gear ensuring smooth Brush gear ensuring sm
continuous adjustment.

solid state variable VOLTAGE CONTROL

* Output 25-240\%
- Input 240 V 50 CPS
* 5 amp \& 10 arrp models
* Completely sealed

5 amp models $£ 8.38 p$ 10 amp models $£ 13.75 p$

20 AMP LT SUPPLY UNIT * Input 240 V Ourput 20 amps at 24 V and 12 V * Weight 50 ibs.
$£ 42.50$ p
$\quad \mathbf{E 2 . 0 0 p} \mathbf{C} \& \mathrm{P}$ (G.B.)
50 AMP 0-24V DC LT. SUPPLY UNIT

mefer. $*$ Ideal Ior Plaing Unirs. * Fully
protected. and weight $16^{\prime \prime} \times 12^{\prime \prime} \times 27^{\prime \prime}$ High -70 lls . Rear wheats finted.
f85.00p C \& P (inland) $\mathfrak{\varepsilon 3 . 0 0} \mathrm{p}$

CONSTANT VOLTAGE TRANSFORMER
Maintain spot-on test gear readings with Automatic Mains stabilizer.
Specification:

* Oltput 240 V
- Accuracy $\pm 1 \%$
* Input 190-260V
* Capacity 250 watts * Corrected wave
£12.50p c \& P£1.00p
I.M.O. PRECISION CONTROLS LTD.
(Dept WWX) 313 EDGWARE ROAD, LONDON W.2. TEL. 01-723 2232
WW— 944 FOR FURTHER DETALLS

D.C. NULL DETECTOR, TYPE 6042 米

Portable detector for use with d.c. bridges and potentiometers. Sensitivity $10{ }_{0} \mathrm{~V}$ full scale. Input impedance 14,000 Ω. Fully transistorised. 4 ranges. Resolution 1 V in $10.000 \leq$ source resistance. Noise less than 0.15 kV peak to peak.

NULL DETECTOR AM PLIFIER, TYPE 6040*
Similar to above but with increased sensitivity $-1{ }_{1} \mathrm{~V}$ full scale. Resolution 0.1 LV . 7 ranges.

* SEND FOR LEAFLETS 175/2049 and 175/2047

This year's business

The Electrical and Electronic Trader Year Book, 1971 contains all the information you could possibly want about the radio, television and domestic electrical industries. It contains a comprehensive buyers' guide to manufacturers and suppliers: addresses and phone numbers of makers, concessionaires and wholesalers: plus a guide to makers and suppliers of proprietary and branded products and a wealth of technical data. At $£ 2.00$ a copy it's the best buy in the field.
To get your copy ask at your newsagent, or fill in the coupon and send it to: Cashiers; IPC Business Press (Sales \& Distribution) Lid., P.O. Box 147, 40 Bowling Green Lane, London EC1P 1 DB

Please send me. copies of the Electrical and Electronic Trader Year Book 1971
I enclose cheque/p.o. no................ to the value of
($£ 2.00$ per copy plus $20 p p \& p$)
Name
Company
Addréss

CALIBRATION PROBLEMS?

We specialise in the repair and calibration of all proprietary and commercial test equipment

We can provide the following services

- FULLY GUARANTEED REPAIR OF INSTRUMENTS
- CALIBRATION CARRIED OUT TO MANUFACTURERS' SPECIFICATION
(ALL TYPES OF MULTI-METERS, INC. AVOMETERS, REPAIRED
- REPAIR SERVICE 7 DAYS
- WIRING AND SHEET METAL FACILITIES

Write or 'phone

FIRNOR-MISILON LIMITED
MARSHGATE TRADING ESTATE, MARSHGATE DRIVE, HERTFORD. TEL: HERTFORD 5584

a genuinely new concept in high-fidelity design

the new Englefield range

Better look.ing-obvious/y ... Better performing, definitely ... and certainly lower priced compared with other top line high fidelity equipment. Yet with all this, the new Engletield 840 range has still furtherplus features. Only with the 840 system can you incorpora te the tuner within the amplifier itself, enabling you to convert it to a Sterec \& F.M. tuner amplifier of unsurpassed performance in a matter of minutes. The Engletield Add-in 'Press-tune Stereo F.M. Link can also be used with other amplifiers if so desired. See and hear the new Englelield 840 range at your hi-fi stockist NOW or send coupon for full details by return.
Englefield 840 equipment is guaranteed for 5 years.

840A amplifier design features

Swing-up lid enables all input and output connections to be reached instantly and easily from interior of cabinet. Audio connections are via DIN sockets (plugs supplied). Combined speaker muting switch and headphone socket on front panel. Silicon transistors throughout. Full complementary output stages with current limiting circuitry. Rotary controls fitted with dual wipers and lubricated tracks for long life and silent action. 18 gauge plated steel chassis. Unconditionally stable. For shelf or cabinet mounting.

840T stereo F.M. tuner design features

4 pre-tunable push button stages for instamt programme selection. Switchable A.F.C. Automatic stereo reception. Sensitivity better than one micro-volt. Incorporates dual gate FET and I.C. circuitry, back to back varactor diodes and ceramic filters. Can be used separately or inserted in the 840 cabinet. 75Ω and 300Ω balanced aerial sockets.
3. Recommonded retail pricos - Englefield 840A Amplifier £45: Englefield 840A Press-tune Stereo FM
Tuner £45 (inc. P/T): Englefield 840TA Stereo Tuner Amplifier £95 (Inc. P/T). Tuner £ 45 (inc. P/T): Englefield 840TA Stereo Tuner Amplifier £95 (Inc. P/T).

SONEX'71

PEAK SOUND (HARROW) LTD., 32 ST. JUDES ROAD. ENGLEFIELD GREEN, EGHAM, SURREY. Tel. Egham 5316

Specifications

THE AMPLIFIER
Inputs - Pick-up, (sensitivity 2.8 mV into 47 Kohms) Overload factor -100 MV (32 dB): Tape: Radio 80 mV : Microphone 5 mV . Signal to noise ratio -mag. P.U. better than $67 \mathrm{~dB}: 84 \mathrm{~dB}$ for other inputs.

Cross-talk at $1 \mathrm{KHz}-54 \mathrm{~dB}$

Distortion -0.08% at 1 KHz at all powers up to 20 watts R.M.S. Power bandwidth and output -35 Hz to 30 KHz at 1 dB for 20 watts R.M.S. into 8 ohms, per ch. driven together.
Controls -Volume: Bass $(\pm 16 \mathrm{~dB}$ al 40 Hz): Treble $(\pm 14 \mathrm{~dB}$ at 10 KHz): Balance.
Push-button for P.U., Radia, Tape, Mic., and mono/stereo: on-off, filter and (disguised) headphone sock at/speaker muting switch. Connections - via DIN sockats at rear, plugs supplied also. Muins A.C. $110 / 250 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$. Two mains outlets for gramo. motor, etc. one direct, one switched on with amplifier.
Facilities - Swing-up lid for instant access to connections, permitting cabinet to stand flush to wall; also space to take Englefield tuner if required.
Cabinet - steel, hand covered with simulated soft black leather and immensely durable, with black base, size $16 t^{\circ} \times 4 t^{\circ} \times 11^{\prime \prime}$
$(413 \times 109 \times 28 \mathrm{~mm}$).
ADD-IN PRESS-TUNE STEREO F,M LINK
With four tunable press button controllad stages each 88-108 MHz . Also press-button for A.F.C.
Sensitivity - 1 micro-volt for 30 dB quisting
Sub-carrier rejection 48 dB at 19 KHz .
Wideband nolse-60dB.
Frequency response - 10 KHz to $15.6 \mathrm{KHz}(-3 \mathrm{~dB})$.
Separation $-35 \mathrm{~dB}(100 \mathrm{~Hz}$ to 10 KHz).
Aerial-Sockets for 75 ohms and 300 ohms, balanced.
Tunling meter and Indicating beacon automatic stereo reception on the front panel.

Detaila of Englefleld 840 range please, to
NAME
ADDRESS.

The majority of Recording and T.V. Studios use TANNOY monitors-the same units provide professional standards in the home

"Lancaster" corner-mounting fitted with 12 " or 15" Dual Concentric Height 2' $9^{\prime \prime}$ Wiath $2^{\prime \prime} 1^{\prime \prime}$ Front to rear corner $1^{\prime} 4 \frac{3}{4}^{\prime \prime}$

"Lancaster"
free-standing fitted with 12" or 15" Dual Concentric. Height 2' $9 \frac{1}{2}^{\prime \prime}$ Width $1^{\prime} 9 \frac{1}{2}^{\prime \prime}$ Depth $1^{\prime} 0 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$

$$
2-4
$$

"III LZ"Mk. II. Aperiodic enclosure with I/I LZ unit. Height $1^{\prime} 3^{\prime \prime}$ Width 1' $^{\prime} 11^{\prime \prime}$ Depth $9 \frac{3}{4}{ }^{\prime \prime}$
Depth ${ }^{9}$

Audio T, Oryden Chambers, 119 Oxford Street. W.1. 01-437 3063/5338 Croisette Radio Ltd., 210 London Road. Hadleigh, Essex. 0702/558339 Nick Dakin, 45 Radford Road, Nottingham. 0602/73862 Davis \& Kays. 115 Kingsway, London W.C.2. 01-405 0446 J. Gough \& Co. Ltd., 148.154 North Road, Cardiff. 0222/28473 Hampstead High Fidelity, 91 Heath Street, London N.W.3. 01-435 6377 H. C. Harridge Ltd., 8 Moor Street, London WIV 5LT. 01-437 7108 Horns, 6 South Parade, Oxford. 086555360
James Kerr \& Co. Ltd., 98-118 Woodlands Road, Glasgow C.3.
041 332/0988
Kingsway Studios (Ossett) Ltd., 25, 33, 35, 37 Dale Street, Ossett Yorks.
09243/3415
Lloyd \& Keyworth Ltd., 26-27 Downing Street, Farnham, Surrey. 025135534 Millwards. Salop Street, Wolverhampton.
Merrow Sound Ltd., 205 Epsom Road. Merrow, Guildford. Surrey.
048364171
John Munro, 9 Gilmour Crescent, Lossiemouth, Morayshire. 03438123 Nottingham Hi Fi Centre, 156. Alfreton Road, Nottingham. 060276919
J. S. Ramsbottom \& Co. Ltd., Coney Lane, Keighley, Yorks. 05352 5444-8 The Recorderie, 10 Buckingham Parade, Stanmore, Middlesex.

019542940
RSC Audio House, Henconner Lane, Leeds 13
Ken Rose Audio, 283 Fleet Road, Fleet, Hants. 025145053
Swisstone, 225 Worple Road, Raynes Park, London S.W.20. 01-946 1528
Studio 99, 81 Fairfax Road, Swiss Cottage, London N.W.6. 01-624 8855
G. W. Smith \& Co., 311 Edgware Road, London W.2. 01-262 0387

Victor Buckland Ltd., 41-49 London Road, Derby. 033248425
Clement Wain Ltd., Red Lion Square, Newcastle, Staffs. 6311963110
London Audio (St. Albans) Ltd., 32 London Road, St. Albans, Herts.
56-59996
The Audio Centre, 86 Queens Road, Southend-on-Sea
Hardman Radio Ltd., 45 Hadman Street, Liverpool 1.
Victor Morris (Cameras) Lid., 340 Argyle Street, Glasgow C.2.
Westronics, Communications House, Kingskerswell, 26 Newton Road, Newton Abbot, Devon. Kingskerswell 3079
Minim, 916 London Road, Thornton Heath, Surrey. 01-684 4565

All cabinets are
fitted with Monitor Gold Loudspeakers

NORWOOD ROAD. WEST NORWCOD LONDON, S.E. 27. 01-6701131

DYMAR FOR R/T MEASUREMENT

DYMAR manufacture a range of very economically priced instruments specifically designed for use in the design, production and servicing of Radio Telephone Equipments.
The Type 785 Modulation Meter is a solid state instrument for the measurement of the Depth of Modulation in Amplitude Transmitters or the Frequency Deviation in the case of F.M. Transmitters. It is specifically designed for narrow deviation transmitters in today's mobile and portable V.H.F. radiotelephones, the most
sensitive deviation range being 3 kHz f.s.d. A feature of the instrument is the low residual F.M. noise of the local oscillator which with the A.F. "Voice" filter switched in is typically -44 db below 3 kHz deviation.

Carrier Frequency Range :
F.M.Deviation :
A.M. Modulation Depth :

Sensitivity:
$30 \mathrm{MHz}-480 \mathrm{MHz}$
3 kHz f.s.d. -100 kHz
$3 \% \mathrm{f} . \mathrm{s..d}-100 \%$
Better than 2 millivolts
overthe whole
frequency range

A.M./F.M. Modulation Meter only £260

Other Dymar Instruments

701 Wideband Millivoltmeter
761
711
721
585

Wideband Millivoltmeter Noise Factor Meter V.H.F. Millivoltmeter D.C. Microvoltmeter
A.F. Power Meter with Batteries
£125 £250
£130
£140
£115 724 Suppressed Zero D.C. Microvoltmeter

705 A.F. Microvoltmeter

All S.N.S. Tuners and Amplifiers are tested at full rated output for 72 hours before despatch.
After each unit has been passed through visual inspection it is given a full specification check in the test laboratories prior to going on 'soak test'.
When the 72 hours are completed the unit is then given a further full specification check before despatch.
Why have we incorporated this in to our established test procedures, which have always been considered rigorous? Simply as an added safeguard to ensure that our customers throughout the world receive equipment with the highest possible reliability.
It's no coincidence that S.N.S. equipment has a reputation for quality ... it's been designed that way.

range of sound equipment

S.N.S. Communications Ltd., 851 Ringwood Road, West Howe,

Bournemouth, England, BH11 8LN Telephone: Northbourne 5331 (STD 02016)

Tested for 72 1 coves hours

40 watt multi input amplifier Type PA40

100 watt single input amplifier Type CD100

Most ranges availāble from stock. Write for descriptive leaflet or demonstration.

WW-052 FOR FURTHER DETALS

CINCEPT FGR THE 7日's

The new Storno fully automatic VHF/UHF radio communication system permits direct two-way selection dialling between mobiles and any telephone extension connected to a private automatic exchange. There are also facilities for car-to-car dialling and for predetermined selection of most frequently used extensions.

Stirll is ready for the 70's-and beyond

 FM radiotelephones are better
The Dolby 360 Series

Nearly a thousand of these new units are already in use.

DOpouey system

Thit inurion

Each Series 360 unit is only $1 \frac{3}{4}$ inches (44 mm) high. 16 channels therefore require only 28 inches of rack space.
Full compatibility with the A301
Models 360 and 361 are single-channel A-type (professional) noise reduction units which process signals identically to the two-channel A301. The new units are small in size and are designed for simplified installation and use of the Dolby System with 16 -track recorders. The cost of the 360 series is somewhat less than that of the A301 for an equivalent number of channels.

Automatic record/play changeover in the 361
The Model 360 is a single-channel noise reduction processor unit. The Model 361 is identical to the 360 in size and appearance, but contains facilities for automatic record/play changeover controlled from the recorder. In the new series, the operating mode is set and clearly displayed by illuminated push-button switches.

Internal oscillator

High stability

Single-module design

An internal "Dolby Tone" oscillator is provided for establishing correct operating levels. The characteristic modulation of the tone also identifies Dolby-processed tapes. All oscillators in a multi-track installation can be controlled by a single switch.

The circuit is highly stable and does not require routine adjustment. A removable front panel allows input and output levels to be adjusted from the front of each unit. The panel also provides access to relays and the noise reduction module.

DOLBY LABORATORIES INC

UK and International

346 Clapham Road London SW9
(01) 720-1111 telex: 919109 cables: Dolbylabs London

TELEFUNKEN

are
Demonstrating their Range of
UNIT AUDIO SYSTEMS
in
Room 1010 SKYWAY HOTEL
March 31st SONEX '71 April 4th

WW-055 FOR FURTHER DETALS

TELEPRINTERS •PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUPMENT

 SALE OR HIRE
 2-5-6-7-8 TRACK AND MULTIWIRE EQUIPMENT

TELEGRAPH AUTOMATION AND COMPUTER PERIPHERALACCESSORIES DATEL MODEM TERMINALS, TELEPRINTER SWITCHBDARDS
Picture Telegraph, Desk-Fax, Morse Equipment: Converters and Stabilised Rectifiers; Line Transformers and Noise Suppressors; Tape Holders, Pullers and Fast Winders; Governed, Synchronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass Filters; Teleprinter, Morse, Teledeltos Paper, Tape and Ribbons; Polarised and specialised Relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment; Racks and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Connectors, Wires, Cables, Jack and Lamp strips, and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.

W. BATEY \& COMPANY

$>$

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:
HARRIS ELECTRONICS (London) 138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

Sansui control amplifiers. Whencere yource ready:

Whenever you're ready for the added professionalism of a control amplifier, Sansui is also ready. With a complete line of quality units in every power and price range. Each a distinguished example of Sansui's dedication to stereophonic perfection.

If you're ready for the most complete, the most powerful such amplifier, then the 180 watt solid state AU-999 is for you. The undisputed champion in the field, it offers the most advanced circuitry yet developed, boasts a 10 to $30,000 \mathrm{~Hz}$ power bandwidth and keeps distortion of any type to 0.4% or less. The AU999 also offers separately usable pre- and power amplifiers, a Triple Tone Control circuit, and the capability of handling three sets of . speaker systems and two tape decks.

For those more inclined toward the middle power ranges, there's the 100 watt AU-666 and 85 watt AU-555A, both striking examples of engineering excellence. The AU-666 has a wide 10 to $40,000 \mathrm{~Hz}$ power bandwidth and limits distortion to a low 0.5%, while the AU-555A has a 20 to $40,000 \mathrm{~Hz}$ power bandwidth and the same low distortion figure. Beth are complete with separately usable pre- and
power amplifier sections and Sansui's unique Triple Tone Control circuit.

And in compacts, riththing quite approaches Sansui's 46 watt AU-222 for ccmpleteness and versatility. Endowed with a 20 to $20,000 \mathrm{~Hz}$ power bandwidth, it minimizes distortion at 0.8% or less, and offers no fewer that six inputs - more than any other amplifier of its size.

Whichever you choose, enjoy it more fully with Sansui's advanced $55-20$ stereo headphone set, a 2 -way 4 -speaker unit complete with separate controls for tonal quality and volume. No other stereo headphone set is geared so perfectly to exploiting Sansui control amplifiers.

So whenever you're ready for the $\lrcorner n d e n i-$ able advantages of such an amplifier, see your nearest authorized Sansui dealer. He's ready with a full selection.

We take it all back!

We were right about the sales support we'd need to sell our LM 1240 digital multimeter.

It doesn't need any, it's selling itself.
So if when you order your LM 1240 direct from this ad., you are not completely satisfied that it does all we say of it, we'll take it back within 14 days and return your money in full. Beat that for reassurance!

Justlookathis spec.

- Volts: $100 \mu \mathrm{~V}-1,000 \mathrm{~V}$.
- Amps: 100 nA-2 amps.
- Ohms: 100 m-20 M. - 26 ranges.
- Bi-polar.
 - Full overload protection. - 1999 scale length. - Dual slope integraticn for noise rejection.
- Go-anywhere portability.

SIMPLY SEND THIS COUPON TO YOUR PURCHASING DEPARTMENT-OR TO US.

> I would like to buy Solartron's LM 1240 Multimeter. If it doesn't give full satisfaction we can return it within 2 weeks of delivery and cancel our order without further obligation.
> Please order me
> LM 1240 s at $£ 195$ each, including P. \& P.

ORDER NO.
NAME
COMPANY
DEPARTMENT
SOLARTRON

Schlumberger

Electronic Simpson Multimeters

 mindoubing te ACCU-LOG

The first Multimeter to give you consistent
"'percent-of-reading" accuracy ... anywhere on the readout scale.

Model 202 offers:
■ MAXIMUM ACCURACY ANYWHERE ON THE SCALE
■RANGES OVERLAP FOR CONVENIENT OPERATION
■ RUGGED TAUT BAND SUSPENSION
■ OVERLOAD PROTECTED

BACH-SIMPSON LIMITED

331 UXBRIDGE ROAD, RICKMANSWORTH, HERTS. WD3 2DS Telephone Rickmansworth 76900

TRANSFORMERS

MAINS 2VA to 2kVA

AUTO

10W to 5000W

OLYMPIC TRANSFORMERS LTD 224 HORNSEY ROAD, LONDON, N. 7
 Tel. 01-607 2914

"BECUWE" MINIATURE LEVER KEYS

Designed for compact modern equipment, for all climates, these miniature keys are only 0.425" wide by 0.78" long and 1.76" deep behind panel.

BRITEC LIMITED

WW- 061 FOR FURTHIRR DETAILS

ENCAPSULATION -

low tool cost method of cylindrical coils and potting. Enquiries also for:-

REED RELAYS SOLENOIDS

 COIL WINDING TRANSFORMERS to 8 K.V.A.
 9 Knapps Lane, Bristol 5. 0272657228

Si451 Millivoltmeter

* 20 ranges also with variable control permitting easy reading of relative frequency response
$\mathbf{f 3 5 . 0 0}$

JES AUDIO INSTRUMENTATION

Illustrated the Si453 Audio Oscillator

SPECIAL FEATURES:

* very low distortion content-less than .O5\%
* an output conforming to RIAA recording characteristic
* battery operation for no ripple or hum loop
* square wave output of fast rise time
£40.00
also available
Si452 Distortion Measuring Unit
* low cost distortion measurement down to 01% with
comprehensive facilities including L.F. cut switch. etc.
J. E. SUGDEN \& CO. LTD., BRADFORD ROAD, CLECKHEATON, YORKS. Tel: Cleckheaton (OWR62) 2501 monitors are shown below. Please contact us for full information.

Screen Sizes
$14^{\prime \prime}$
$19^{\prime \prime}$
20
(20illuminantD)
Series 1A

High quality monochrome monitors suitable for use either in T.V. studios or laboratory applications demanding the highest possible performance. Facilities include electrical centering, modular circuit design and separately stabilised E.H.T. These together with exceptional stability and high brightness capability are some of the notable features of this range.

Designed for a wider range of less demanding applications and offering an extended choice of screen sizes. Ideally suited for general studio uses, high performance industrial systems and data display. Many optional features are available

CUSTOM - BUILT UNITS

From a wide range of tested and proven sub-units, Prowest are able to offer attractively priced custom-built display assemblies in special packaging. Applications include data terminals, military and scientific displays, and airport flight indicators etc. Your enquiries are invited.

prowest

Prowest Electronics Limited AIRFIELD ESTATE WHITE WALTHAM MAIDENHEAD, BERKS. ENGLAND Telephone Littlewick Green 3226/8 Telex 847241

The Eagle Annual.

Sorry, no Dan Dare, Digby or P.C. 49. Because this is the new Eagle annual catalogue. And it's packed with interesting things. Like the new TSA 151 stereo amplifier: it uses a new block construction silicon output device for absolute reliability. It's got low noise silicon transistors throughout. Its output is 15 Watts per channel. That's 15 Watts RMS, not an exaggerated figure for maximum music power.

The price? A very reasonable £36.
And for people who like to listen to stereo undisturbed, we've got the new SE 100 headphones.

Dual cone transducers are used throughout,and to keep the weight down, the independent volume controls are
mounted on a separate unit with a pocket clip. £16.00.

Every item in the annual has been specified or selected by Gerry Adler. Eagle is Gerry's baby, and he's very fussy about what goes out under the Eagle banner. He gets very twitchy at the thought of a duff diode. A bit like the Mekon in fact.

But he does it for a reason.
He believes that if the first Eagle product you buy is O.K., you'll come back for more.

That's what's made Eagle a success.
Fingike Interilarlionial
Coptic Street, London WC1A 1NR
Tel:01-6360964

I. C. Breadboarding P

then you need

GHEQUERBOARD PATCHBOARDS

Chequerboards provide an easy plug-in facility for all integrated circuit modules. Interconnection is via plug-in cords for easy nonsoldering interchange of all modules.
The Chequerboard Patchboard consists of a series of bussed sockets on a $0.250^{\prime \prime}$ pitch. Integrated circuits or discrete components are then mounted on standard carriers, which can easily be inserted and removed by hand from the Patchboard. Thus, integrated circuits can be used again and again without fear of mechanical damage. Paper designs can be checked, modified and proved with ease and simplicity-quickly.
and...

The CU 100 series of power supplies are designed for use with the Chequerboard series of Patchboards. They provide the necessary stabilised power. a set of logic indicators and a source of clock pulses

- $1.5 \mathrm{amps}-2$ to 6 volts \quad or $0.5 \mathrm{amp}-6$ to 18 volts
- Overload protection.
- $0.5 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{Mc} / \mathrm{s}$ square wave generator
- Integral neon logic level indicators.

We shall be glad to send you our 15 page fully illustrated brochure, telling you all about CHEQUERBOARD PATCHBOARDS ACCESSORIES - POWER UNITS - EDUCATIONAL KITS, etc.

If your enquiry is urgent-contact
JEFF JEVANS (Sales Director) 17 RYE WALK INGATESTONE ESSEX Telephone: INGATESTONE 3185

You choose electrical equipment in much the same way you choose a dog: you scrutinise and examine carefully, and take it out for a trial run. And you ask to see its pedigree.
When you handle a Rendar product, you can see at once that it's a better breed: first class materials; precision machinery and assembly; sound design. Its pedigree is impeccable.
Just 1 winner from the Rendar kennel
The Rendar Safebloc saves time and saves lite. There's no need to fit a plug for testing - just
connect the apparatus diract. And there's no danger of shocks - no current can pass until the lid is closed.
Rendar pioneered this concept, and introduced the "Safebloc" to the British market over 12 years ago It's indispensable on testing lines, and for all kinds
of elecrical demonstrations. Double Safeblac available for 3 -phase applications.

RENDAR

INSTRUMENTS LTD
Burgess Hill, Sussex. England Tel. 2642-4. Cables RENDAR Burgess Hill wW- 067 FOR FURTHER DETALS

KONTAKT "Cold Spray 75"
For rapid and effective fault location
Non-toxic, non-inflammable, Cold Spray 75 is a chemically inert coolant capable of producing temperatures of down to - 42 centigrade. It can also be used to prevent heat damage during soldering processes, for the rapid freezing of small articles for biological and technical purposes and the prompt location of hairline cracks and other faults in temperature dependent components.

Other Kontakt products:

Kontakt 60 and Kontakt 61 for relay contact cleaning. Plastic Spray 70 , transparent protective lacquer. Insulating Spray 72.
Kontakt WL. Spray Wash.
Antistatic Spray 100. Antistatic agent for plastics
Politur 80. Polish and cleaner.
Fluid 101. Dehydrating Fluid.
Details from UK distributors.
SPECIAL PRODUCTS DISTRIBUTORS LTD.
81 Piccadilly, London, W. 1

Celestion

The Celestion "Ditton 120"
Placed in top Hi-Fi class by reviewers
Supplied in matched pairs - Teak or Walnut
Superb Performance - Economical Price £48.00 pair

CELESTION 'POWER RANGE'

MODEL: G12M
RANGE: $40 \mathrm{~Hz}-8 \mathrm{KHz}$ POWER: 25 WATTS RMS FLUX: 145,000 MAXWELLS IMPEDANCE: 8 or 15 OHMS PRICE (R.R.P.) $£ 12.95$

MODEL: G12H
RANGE: $40 \mathrm{~Hz}-8 \mathrm{KHz}$ POWER: 30 WATTS RMS FLUX: 180,000 MAXWELLS IMPEDANCE: 8 or 15 OHMS PRICE (R.R.P.) $£ 15 \cdot 75$

'POWER RANGE'

The finest Loudspeakers made for electronic guitars
Celestion request the pleasure of your company at SONEX
Skyway Hotel, Heathrow
April 3-5

ROLA CELESTION LIMITED

DITTON WORKS, FOXHALL ROAD, IPSWICH, SUFFOLK IP3 8JP Telephone (0473) 73131

Telex 98365

Forty years of service to particular people

High fidelity is not an end in itself.

The discriminating listener who has gone to considerable trouble in buying and installing equipment in order to hear music to the greatest advantage, will be particular in his choice of records. This is where E.M.G. can help.
E.M.G. is an outstandingly interesting shop which for forty years has specialised exclusively in selling records of classical and serious music. Very large and attractive stocks are carried. But it is not for records and equipment alone that E.M.G. are so widely recognised. The company publishes a privately circulated monthly review of current record releases which is accepted as the finest of its kind by any standards. With the help of the recommendations of The E.M.G. Monthly Letter ($£ 1.50$ a year, post free) you can choose with confidence and at all times be well informed about records both technically and musically. From now on, then, choosing records could be a much easier and more pleasurable business by starting with 'The Monthly Letter' and if you cannot reach E.M.G. in person to purchase the records you want, the postal department can send them securely to any part of the world (free of purchase tax overseas). (N.B. There is also an exceptionally well stocked equipment department at E.M.G.)

Specimen copy on request

Although it costs only $£ 1.50$ for a 12 months' subscription, post free, for The E.M.G. Monthly Letter, if you prefer to see a copy before ordering, a specimen will be sent free on request. Please enclose stamps for $3 p$ when writing.

E. M. G hanomade

26, SOHO SQUARE, LONDON, WIV 6BB

Telephone 01-734 4311

Nearest Underground station Tottenham Court Road.

This s the one tt at handles like a dream, Solertron's outstanding new 50 MHz CD174C

The push-buttons and ever switc hes are where yo \perp want ther, umen you want them, on a compac: $8 \frac{3^{\prime \prime}}{}{ }^{\prime \prime}=10 \frac{1}{2}^{\text {º }}$ tront pane

Take the trigger co-trols for e cample With the five lever swiches up. you have fully automatic thijgering over the full bandwidt with a trigh base line under no signa ' cenditicrs.

And you simply cperate the appıopriate clearly designated lever to select a special source, slope level, sing \in shot or czupling (which insludes TV sync)

Further, :here's a sure-fire trace finder button wrich brings a free-run brightened trace on screen - whatever the control settings

But handling apart, the CD1740 packs real perfo mance.

The timebase push-buttons give you 10 sweep modes including delayed and delayed gating with the capability of closely inspecting complex wave forms without jitter

Two identical Y channels with fet inputs give low noise and drift, 600 V protected, chopped cr alternate, added or differehtial. And you get $5 \mathrm{mV} / \mathrm{cm}$ sensitivity on both X and Y when Y amplifier feeds the X unit.

Add to this an advanced internal graticule mesh tube-run at 12.5 kV -and you have a bright crisp $10 \times 8 \mathrm{~cm}$ display of excellent geometry right up to the nanosecond speeds availzble from the timebase.

Just 'feel' the performance and you'll give it the thlmbs up.

Post this magazine's reply-paid card and we'll send you our data sheet of full details.

SOLARTRON

Schlumberger

RELIABLE LONG DISTANCE HF SSB RADIOTELEPHONES FOR INDUSTRY, GOVERNMENT AND CONSTRUCTION PROJECTS. FAST DELIVERY.

ASTROFONE " 150 "
 For point-to-point, mobile and marine use. From US \$925*

- 2 to 8 channels; 2 to 18 MHz
- 150 watts P.E.P. Output (Tested beyond 2500 Km .)
- Compact for easy installation.

Built-in power supply

- Models for $115 / 230$ volt AC and 12 volt DC operation
- Optional selectable sideband, squelch, crystal ovens, VOX, CW
The Astrofone " 150 " High Frequency Single Sideband Transceiver is powerful, easy-to-operate and economical. Transis torized receiver and exciter for reliability and performance. Meets applicable International (Geneva) Radio Regulations.

PATROLFONE SC120

The 7.5 kilogram
manpack portable with the giant voice.
From US \$1499*
ready to use.

- 1 to 20 channels, 2 to 10 MHz
- 20 watts rated P.E.P. output (Tested beyond 1000 Km .)
- Operates from any 12 volt source-internal flashlight or rechargeable batteries, vehicular battery, hand-crank generator. AC power supply available
- Military design and rugged construction for field use
Now in use in over 50 countries in every environment from the Amazon to Antarctica by military forces, explorers, geophysical research teams and construction project managers. Completely transistorized.
*Write for quantity prices or see your distributor.

PLEASE SEND MORE DATA ON: ASTROFONE $\square \quad$ PATROLFONE \square

name
organization
title
ADDRESS
CITY
COUNTRY

SOUTHCOM
INTERNATIONAL
Department 171-2
2210 Meyers Avenue
Escondido, California 92025 U.S.A.
Telephone (714) 746-1 141
Cable: SOUTHCOM Telex: 695-400
Representatives Worldwide

the test

Put Hatfield to

The Hatfield range of Transmission Test Equipment includes the Psophometer Type 1000 which is specified by the Post Office. This rugged battery operated unit incorporates solid state circuitry throughout and is designed for measuring flat or weighted wide-band noise.
The Milliwatt Test Set Type 747 gives laboratory accuracy in portable form making it unnecessary for more than
 one instrument to standardise signal levels on 75, 140 and 600 ohm circuits. Send for full details of Hatfield Transmission Test Equipment and a copy of our Short Form Catalogue.

forward thinking in electronics
HATFIELD INSTRUMENTS LIMITED
Burrington Way, Plymouth PL5 3LZ, Devon.
Burrington Way, Plymouth PL6 3LZ, Devon. South-East Asia: for prompt service and deliveries, contact:
Hatfield Instruments (NZ) Lid., P.O. Box 561, Napier, New Zealand.

WW- 073 FOR FURTHER DETALLS

ERSHINE

CONSTANT POTENTIAL CHARGER

Unattended standby units and vital battery installations are supported and protected by the Erskine C.P. charger. The conservatively rated $3-1000$ amp range offers: Soft start, independent settings, current protection to short circuit, natural convection cooling . . and all at a value engineered price. Send for leaflet.

ERSKINE LABORATORIES LTD., SCARBOROUGH,YORKSHIRE
TEL. 07232433 TELEX 52562.
A Mepoer of the Dale Group of Compenies.

ERIE

- the FET people

Low noise audio FET's ; low noise v.h.f. FET's. choppers; switches. J-FET's and MO'SFET's. Single and dual gates. A whole range - the Toshiba range. All available. From Erie.

The demand for FET's is growing. And Erie, whose UK-based components activity spans nearly four decades, know from experience that the demand can only be satisfied by good availability, advanced technology and proven reliability. At an
economical price. Toshiba meet this challenge - they design and produce over 50% of the world's FET's. Their research and develapment centre is one of the largest private laboratories in the world.
Contact Erie Distributos Division now for the literature on Toshiba FET's and other semiconductor products.

Or if you have a semiconductor problem why not tell us about it - it's likely we already have the answer.

For only $£ 25$, Farnell have produced a Jench power supply with a high performance: Line Stability
$\pm 10 \%$ mains change cutput change $<2 \mathrm{mV}$ Load Stability
zero-fulk load change cutput change $<3 \mathrm{mV}$ Ripple and Noise at $80<\mathrm{Hz}$ bandividtn $<1 \mathrm{mV}$ r.m.s.
The o dtput can se switched to provide either $0-30 \mathrm{~V}, 0-5 \mathrm{~A}$ or $\mathrm{D}-15 \mathrm{~V}$, 1 A with full current capability over the entire voltage range. Precise levels of voltage a ad cursent are monitored by a large clear scale me:er. The power sucply is protected from overload by current limiting circuiary.
This compact general -purpose unit is ideally suitec for Industrial ard Educational laboratories with limited budgets.

THE E3O FROM Farneli Instruments Ltd.

- Sa dbeck Way,

ALL BAND COMMUNICATIONS RECIVER JR-599
ALL BAND SSB TRANSMITTER TX-599

TRIO IS FULLY-EQUIPPED FOR FULL-CYCLE COMMUNICATIONS

TRIO's JR-599 communications receiver brings the highest-type, professional, all-bands potential to amateur bands on an allocated 1.8 to 29.7 MHz frequency range, 50 and 144 MHz bands and $W W V^{\prime} s 10 \mathrm{MHz}$ standard signal. A receiver frequency readable to the nearest 500 Hz is guaranteed due to precision type double gear mecharrism and variable capacitor with linear characteristic for main tuning dial of a 25 kHz band at one full turn. The all-band SSB TX-599 transmitter matches the JR-599 with its wide-spread IC and FET network. All HF bands are covered with its single switch mode on LSB, USB, AM and CW positions. All of TRIO's equipment-or equipment com-binations-is designed to provide entirely full-cycle communications capability.

the sound approach to quality

TRIO LLIECTRONICE, INC.

Beiore you even look al Rotel hi-li equipment gel one thing clearly in your

We promise you that all Rotel equipment is clean lined, good-looking and handsome enough to please the most critical wife.

But, before we even give you a sight of it, we want you to hear something first. For example, that Rotel, still a fairly new name on the hi-fi scene, is building a reputation for the best value-for-money equipment available، That Rotel sports some technical features surprisingly advanced for its price range. That Rotel equipment is being handled and serviced in the UK by The Rank Organisation. And that the Rotel sound sounds right to even the keenest ear.

For starters, we've shown you the details of two Rotel amplifiers and one tuner. If you write to the address below, we'll send you all the information we have on the whole of the big-value range. Or better still, drop in on your dealer.

But whichever you do, do it soon, d'you hear?

RA 310 Stereo Ampllfier
Power output: 15 watts RMS per channel into 80 hm . Frequency response: $20-30,000 \mathrm{~Hz}+0-1.5$. Input sensitivity: Mag $3 \mathrm{mV}, \mathrm{Au} \times 200 \mathrm{mV}, \mathrm{X}$ 'tal 100 mV , Tape Monitor 300 mV .
Hum and noise: Phone 60 dB , Aux 65 dB , Tuner 65 dB . Separate bass and treble control. Tape monitor switch. Provision for two pairs of speakers (perfect for parties, or upstairs-downstairs listening). $\mathbf{£ 4 2 . 5 0}$ (rec. retail price).
RT320 Stereo AM/FM Tuner(Matching Tuner to RA 310). Sensitivity: $2.5 \mu \mathrm{~V}$.
Signal to noise: 60 dB .
Stereo separation: 35 dB .
Price complete with stereo decoder
$\mathbf{5 4 . 5 0}$ (rec. retail price).
RA 610 Stereo Amplifier
Power output: 30 watts RMS perchannelinto 8 ohm. Frequency response: $20-50,000 \mathrm{~Hz}+0-1.5$. Input sensitivity; Mag 3 mV, Aux 200 mV , X'tal 100 mV , Tape Monitor 300 mV .
Hum and noise: Phono 60 dB . Aux 70 dB , Tape 70 dB , Tuner 70 dB.
Separate bass and treble slide controls for each channel. Additional facilities include: 2 Phono inputs,
2 auxiliary inputs, low and high filters (which pretty well makes you the owner of a discotheque). $\mathbf{£ 6 9 . 0 0 \text { (rec. retail price). } . ~ . ~ . ~}$

solartroon
Imisoa oc digital volmaiten

Europe's engineers have been acclaiming Solartron's LM 1604 as the most magnificent all-round performance, value-for-money DVM on the market.

They've put it to the test, glven it their enthusiastic approval and are coming back with repeat orders.

And the British Armed Forces have had a go. They put it through their rigorous environmental tests and it came through with flying colours and CT number 577.

Now armed forces in Europe are using it.
The LM1604's proven specification speaks for itself. 1 microvolt sensitivity, infinlte noise rejection.

19999 full scale, remote programming-which makes it ideal as the DVM for systems instrumentation-0.005\% accuracy at 25 readings/sec., a.c. or d.c. readings. mains locked integration period and auto ranging.

Choose the DVM with bullt-in integrity.
The proven one.
Post the magazine's reply-paid card and we'll send you full details.

SOLARTRON
 Schlumberger

Farnborough Hampshire England Telephone 44433

The new PG-71 Pulse Generator costs $£ 150$, has two independent channels and one unusual characteristic...

* High output-dual 10 volts into or from 50@
* Fast <10 ns rise/fall times
* Wide ranges-period $200 \mathrm{~ns}-1 \mathrm{sec}$. $(1 \mathrm{~Hz}-5 \mathrm{MHz}$) delay $50 \mathrm{~ns}-1 \mathrm{sec}$. width $50 \mathrm{~ns}-1 \mathrm{sec}$.
* Gating, external trigger and manual one-shot facilities
* True double pulse-two channels each with independent delay, width and amplitude
* Pulse advance capability to +1 sec .
* Super-portable: only $3 \frac{1_{2}^{\prime \prime}}{} \times 9 \frac{1^{\prime \prime}}{} \times 11^{\prime \prime}, 7 \frac{1}{2} \mathrm{lb}$ - battery operation available
* Internal channel mixing facilities

[^0]
RECORDER AMPLIFIERS

and instrumentation systems

150 series DIFFERENTIAL DC AMPLIFIERS

Wide dynamic range-
high common mode rejection
Low noise, low drift performance
Modular or cased presentation
also

MINI-AMP FE-251-GA $^{\text {Pa }}$

 differential dc pre-amplifierCompatible modules and cards ensure ease of application and great flexibility.
EY\& E ELECTRONIC LABORATORIES LIMITED 16 OAKHAM COURT, PRESTON (0772) 57560
WW- 085 FOR FURTHER DETAILS
XENON STROBOSCOPE

A Stroboscope designed primarily for laboratory. industrial and educational applications where the elaboration and expense of more complex equipment may not be required. Features include simplicity of operation, robust construction exceptionally low price and built in reliability
The instrument is of modern appearance. small. light in weight, convenient to use and portable. A wide range of flashing rates is covered by the large accurately calibrated dial, allowing operation at low frequencies for strobo photographic experiments and at high speeds for observation of rapidly rotating or reciprocating phenomena.
The external triggering facility permits single shot operation by an external closing contact and also provides a synthronising input for high and low speed repetitive phenomena which might otherwise be difficult to maintain in exact phase

Light source
Flashing rate
Frequency accuracy. Triggering

High intensity Xenon tube mounted in a para bolic reflector.
1-250 flashes/second in 3 ranges
Typically $+2 \%$ of each full scale.
(a) by internal oscillator
(b) by external closing contacts

Price: $£ 38.50$

Edwards Scientific International Ltd.
Knowle Road, Mirfield, Yorkshire. Tel: 0924844242

new
 Goodmans Module 80

 Tuner

 Tuner Amplifier

 Amplifier}Europe's big selling tuner amplifier is here now.
The Module 80 has been tested and proven over the past six months on the continent with great success.
This is why:-

* Superb selectivity
* Highly sensitive
* Genuine 70 watts output
* Good stereo channel separation and definition

Goodmans Module 80

Goodmans Loudspeakers Ltd.,
Axiom Works, Lancelot Rd.,
Werrbley HA0 2BJ Tel. 01-902 1200
see and

Sampling Times$0.1 \mathrm{~Hz}-11$ seconds$0.5 \mathrm{~Hz}-3$ seconds$5 \mathrm{~Hz}-1.2$ seconds$50 \mathrm{~Hz}-1.2$ seconds$500 \mathrm{~Hz}-1.2$ seconds

Features

Up to 5000:1 improvement in Data RateMeasures to 4 significant figuresFull scale accuracy 0.01%Measures down to 0.1 Hz
Applications

Slow speed TachometryMains frequency monitoringRapid acting Hi/Lo speed alarms\square Heart rate monitoring

Cosmocord Limited Eleanor Cross Road Waltham Cross Hertiordshire England

Telephone
Waltham Cross 27331

Manufactured in Great Britain by

cosmocora

WW-089 FOR FURTHER DETAILS

Neither you nor your microphone ought to be kept on a lead

Nombrex accuracy!

in the palm of your hand
TRANSISTORISED-COMPACT-MODERN STYLING

Standard Model 29-S

- ${ }^{150 K H z}-220 \mathrm{MHz}$ on fundamentals
- Eight clear scales. Total length 40°
- Smooth vernier tuning-ratio $7 \frac{1}{2}$: 1
- Magnifier cursor-precision tuning - Overall accuracy, better than 1.5% - Modulation, variable depth and frequency Price $£ 20.00$

Xial Check Model 29-X

- All the features of the Model 29-S AND
- Integral Crystal Oscillator providing calibration check points throughout all ranges. For adjustment of scale accuracy to $\pm 0.02 \%$

The tube circuitry provides five alternative conditions of operation:
(a) Normal: P31 characteristics as in a conventional non-storage oscilloscope.
(b) Variable Persistence: Provides continuous control from 0.2 second to more than 1 minute.
(c) Storage (without enhancement): As a storage oscilloscope, it is capable of storing traces. for periods of up to 10 minutes.
(d) Store (with variable enhancement): The writing speed may be increased up to about ten times.
(e) Hoid: Retention time of image written in the store condition is prolonged up to one hour.

A choice of differential, ultra high gain, or wide band with Signal Delay plug-in Y amplifiers, makes the DM53A capable of meeting almost any measurement requirement.
Send for full details now and see just how great is the value offered in the Telequipment DM53A. U.K. Prices: f490-f556,
depending on choice of amplifiers.

TELEQUIPMENT < 䡒>

Telequipment, 313 Chase Road, Southgate, London, N.146JJ. Telephone: 01-882 1166

SEE US AT THE
I.L.E.C. SHOW STAND 1-115/131

Wireless World

Electronics, Television, Radio, Audio

Volume 76 Number 1426

The reflected image of an integrated circuit on the gettering of an R valve on this month's cover symbolizes the advances in technology during Wireless World's 60 years. (Photograph by Paul Brierley)

IN OUR NEXT ISSUE

Artificial vision. A microelectronic implant for directly stimulating the brain of blind people in order to restore some degree of vision: r.f. signals are conveyed by inductive-loop transmitters and receivers. Full description of Medical Research Council work.

Circuitry for a five-channel stereo mixer will be described along with constructional hints. The various high-quality amplifiers can be used as components for an audio pre-amplifier.
Experimental miles-per-gallon meter.

ibpa

I.P.C. Electrical-Electronic Press Ltd

Managing Director: George Fowkes
Publishing \& Development Director: George H. Mansell
Advertisement Director: Roy N. Gibb
Dorset House, Stamford Street, London, SE1
© I.P.C. Business Press Ltd, 1971
Brief extracts or comments are allowed provided acknowledgement to the journal is given.

Contents

A126 INDEX TO ADVERTISERS
Sixty Years by Hugh S. Pocock
Loud and Clear by F. L. Devereux
Milestones in Receiver Evolution by W. T. Cocking
Radio Wave Propagation by R. L. Smith-Rose
Some Significant Steps in Radio Communication by W. J. Baker
Basic Theory Since 1911 by "Cathode Ray"
The World of Amateur Radio 1911-1971 by Pat Hawker
F.M. Stereo Tuner by L. Nelson-Jones
News of the Month
Letters to the Editor
Karnaugh Map Display by Brian Crank
Sonex 71
Elements of Linear Microcircuits-7 by T. D. Towers
H.F. Predictions
Don't Look Now by Thomas Roddam
Low Distortion Tone-control Circuit by P. M. Quilter
Progress in Air Traffic Control
Power Amplifier for A.C. Servomotors by R. J. Wallace \& J. M. Clarke Announcements
High-gain Audio Voltage Amplifier by D. Leblebici
Circuit Ideas
Electronic Building Bricks-11 by James Franklin
Personalities
New Products
Literature Received
Meetings \& Conferences

[^1]
SIRAVE
 through BRIMAR

 kind of progress that keeps Brimar ahead.

BPT. 4

Sixty Years

Editor-in-chief:
W. T. COCKING, F.I.E.E.

Editor:

H. W. BARNARD

Technical Editor:
T. E. IVALL, M.I.E.R.E.

Deputy Editor:
B. S. CRANK

Assistant Editors:
J. GREENBANK, B.A.
G. B. SHORTER, B.Sc.

Drawing Office:

L. DARRAH

Production:
D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
G. J. STICHBURY
B. STOREY (Classified Advertisement Supervisor) Telephone: 01-928 3333 Ext. 533 \& 246.

The editorial regularly presents us with an opportunity to express an opinion on some topic of interest. We rarely discuss ourselves and it is not our practice to have 'guest editorials", but on this occasion, as we celebrate our 60th birthday, we have broken with tradition and have invited Hugh S. Pocock, F.I.E.E., to occupy the editorial chair once again. To him, more than any other one person, must go the credit for the development of Wireless World both in its formative years and in its later growth. He was editor from 1920 to 1941, then managing editor, and successively director, managing director and chairman of our publishing company until his retirement in 1962.

We also include in this issue several contributions reviewing progress during the past 60 years in various fields-audio, receiver techniques, basic theory, communications and radio propagation.

Looking back through the volumes of Wireless World we are conscious of the debt we owe to our contributors (some whose names became household words) whose knowledge and ingenuity has enabled us to maintain the ideals set in the first issue of W.W.-"This then is our policy: to be of use and interest to our readers, and through them to be a factor for progress."

We are also deeply grateful for the support given us by our advertisers and last, but by no means least, for the loyalty of our readers. Now we temporarily vacate the chair!

When the Marconigraph was published by the Marconi Company in 1911 the intention was to provide a means of giving wider publicity to the Marconi System than had been possible through Guglielmo Marconi's lectures to scientific bodies and references in the Press. The circulation, however, was mainly amongst Marconi engineers and marine operators with a small readership amongst those interested in the Marconi Company as an investment or speculation.

After two years of publication it was decided to broaden the scope of the journal and put it on sale on bookstalls, with the new name of The Wireless World, the idea being to remove the impression that it was merely a Marconi publicity publication. Under the new title it was to continue to favour the Marconi System but to be broader in its attitude towards other activities outside the company.

In making preparations for the launching of the first issue of The Wireless World the Marconi Company put out an advertisement for an editorial assistant preferably with some knowledge of wireless. This advertisement caught the eye of one who was to be closely identified with the journal's fortunes for the next fifty years. His qualifications were a fluent pen (at that time), the holder of an Experimental Wireless licence, and that he had absorbed almost everything published on the subject at that date, although he admitted to dodging the mathematical analysis of the spark in Fleming's "Wireless Telegraphy".

Being accepted for the job he found himself installed in Marconi House in the

Strand, London. The site for the present Bush House, alongside, had just been cleared for building. Preparation for the first The Wireless World was being made but that was not a full-time occupation for the new recruit so to him was assigned, as an extra duty, the editorship of the new publication "The Year Book of Wireless Telegraphy and Telephony".

The Postmaster General had granted a good many Experimental Wireless licences by this time and Gamages produced a directory of them and ran a department to supply experimenters with the gear they required. The Wireless Society of London (which became the Radio Society of Great Britain) was a focal point and the then editor was keenly supported in the idea of fostering amateur interests. The Wireless World became the official organ of the society and published, in full, its lectures and discussion's.

With the outbreak of the first world war there was strict censorship, experimental licences were withdrawn, and our publishing activities greatly circumscribed. We were, no doubt, the first wireless journal to have to submit material to censorship and we well remember taking our 'copy' to Whitehall, where the chief censor, F. E. Smith (later Lord Birkenhead), dealt with it personally.

A commission in the Royal Engineers with wireless and intelligence duties at home and then overseas meant a break in association with the journal until late in 1920, when the invitation, sent to Baghdad, to return to occupy the editorial chair of The Wireless World was a rewarding prospect.
When the present Editor recently did me the honour to invite me to make some contribution to the 60th anniversary number he said he had in mind that (for a very short time, I presume!) I should be back in the editorial chair and contribute a guest editorial.

The cover of the first issue of the journal under its or inal title.

The four-colour cover of April 1913 'Wireless World".

As that is the nature of the invitation it gives me every excuse to adopt the editorial 'we' as we proceed and we propose to confine ourselves mainly to touching on certain events and outside influences which have affected the journal's career.

With the lifting of censorship after the first world war a wealth of material became available for publication. The general availability of the valve provided great scope for inventors and experimenters.

Naturally, with such a promising field, $W . W$. did not long remain without competitors and a number of new journals appeared. The journal was taunted with its Marconi bias and consequent neglect of rival systems.

The Postmaster-General did not re-issue experimental licences despite the clamouring of the wireless societies and amateurs. Eventually the wireless societies decided to seek legal advice to obtain what clearly appeared to be their rights under the Wireless Telegraphy Act. Then something occurred which was to prove of great importance to our future. We were telephoned one evening by a press friend and told that a rival radio publisher had put out a news item to the press that $£ 500$ was being offered to the Wireless Society of London to assist in its legal show-down with the Post Office. A prompt telephone to the home of the manager of Marconi publications procured the authority to make a similar offer if we felt it necessary in the interests of the journal. So, the next morning our offer and that of the rival publication both appeared in the press. Nothing very interesting about that, one might say, but it had its repercussions! That morning we received a summons from the managing director of Marconi's, (F. G. Kelloway, a former PostmasterGeneral) to attend his office with the publisher. The Post Office had apparently
taken the line with the Marconi Company that it could not continue the present negotiations for wireless station contracts while the company's publication supported an attack on the Post Office monopoly. The outcome of that stormy interview was the decision to find a buyer for the offending Wireless World. This is how the journal came into the fold of Iliffe \& Sons, Ltd in 1924. Though respecting our former proprietors, we welcomed the change wholeheartedly because it gave us editorial independence and we could no longer be charged with bias, while we had the very important advantage that we now had the resources of a top publishing house ready with financial support and experience of publishing. One of the first moves was to change the format to suit rotary presses for a much increased printing order. The competition from other journals in the field remained intense but we were able to hold our own and establish a reputation for sound designs for constructional articles and all round technical reliability.

We remember the occasion when the first issue under our new proprietors was on the machines we spotted a letter from a reader which expressed his disapproval of stunt circuits, but this appeared as STunt circuits. At that time our rival publishers gave a serial number to the constructional designs which they published and prefixed the number with ST , being the initials of the designer. With alacrity the printing machine was stopped and the offending capital letters reduced to lower case.

The most active competition in the field eventually closed down and those journals of the rival group which continued did so under other publishers. It is interesting to recall that we later received from the former proprietor of the Radio Press (John Scott-Taggart) a generous tribute to The Wireless World. (We hope he reads this in his Beaconsfield retreat!)

The RADIO REVIEW The Paper for Every Wireless Amaleur
 The por ram inive

Constructional feature in this 1925 issue was a two-band crystal receiver and amplifier.

Hardly had the competition of the Radio Press faded out than we were confronted with another problem. The B.B.C., which had launched Radio Times, now produced a new journal World Radio. Profiting from the moncpoly of their own programmes, they were able to obtain, by exchange, advance details of a wide selection of foreign programmes for publication in World Radio. This at a time when there was very great interest in receiving the foreign transmissions and designers of receivers here competed to achieve a degree of selectivity which made it possible to sort out the individual programmes. Next, World Radio added to its contents technical articles and constructional designs, carried a sub-title 'The Technical Journal of the B.B.C.', and competed with us for contributors. In addition to protesting, which seemed to have little effect, we felt we had to take steps to safeguard our position especially when the B.B.C's use of the microphone to publicize its journals was taken into account.
That is why Wireless World began the very expensive policy of breaking the monopoly by publishing foreign programmes, as well. Both journals became unprofitable and eventually World Radio discontinued publication of technical articles of the type we objected to and we agreed in return to discontinue foreign programmes. In a general agreement between the B.B.C. and the Press the B.B.C. undertook to confine its future publishing activities to what was 'pertinent to the service of broadcasting'. World Radio was closed down at a later date and in any case could hardly have continued to obtain advance foreign programmes as the cloud of war in Europe darkened.
As events seemed to be moving towards war we felt that there could soon be an urgent need for people skilled in the very field for which our journal catered. We believed our readership would be the ideal medium through which to recruit for such services. So we launched a 'Wireless World Register', inviting our readers, who would be ready to give their services in an emergency, to complete a form giving such particulars as we thought would be most useful. Having got the approval of the Services we published the form in the journal with the address side carrying O.H.M.S. (on the recommendation of the Admiralty). We believe that such a permission had never been given previously to any technical journal nor has it been granted since, as far as we are aware. There was a rewarding response from our readers and the completed forms went to the Wireless Telegraphy Board as a convenient clearing house. Perhaps this resulted in our getting less credit for our enterprise than would otherwise have been the case. The register proved very valuable especially in meeting the need for radar personnel.

The imminence of war made things very difficult for us. It is well known that technical journals depend very largely on their advertising pages for a healthy existence. Manufacturers were now so overwhelmed with orders for war needs that they saw no purpose in advertising and

Our object "to be of use and interest to our readers, and through them to be a factor for progress" remains unchanged.
we suffered badly. So unpromising was the position that a boardroom decision was made that we should close down. That might well have been the sad end of Wireless World but fortunately our board of directors was not composed of Medes and Persians and they were prepared to reverse a decision. We produced facts and figures to show how Wireless World could be expected to continue, even profitably, by changing from weekly to monthly publication with a corresponding reduction in paper and printing costs and a reduced staff which was already inevitable with departures of a number to the Services. Actually, with the change to monthly publication, we never looked back.

From this point onwards in our history the editorial 'we' should be taken to include successive editors, the late H. F. Smith, and also F. L. Devereux, two names which will always be associated with the very best that we have been able to put before our readers issue by issue through the years. We are proud to have been followed by men of such outstanding qualities. Throughout its history Wireless World has enjoyed the co-operation of a loyal and efficient editorial team and the journal's success must, of course, be credited to them and to our many outstanding contributors, both staff and outside, who have devoted their energies to the needs of our readership. Our present editor, H. W. Barnard, carries on the tradition with that dedication and competence which can be expected from one who has devoted the whole of his working life to Wireless World.
It would seem appropriate here to make reference to the transfer of Iliffe's to new proprietors. A good many years ago Iliffe's, being a private company, was
attached, for convenience, to a public company (the Amalgamated Press) then controlled by Lord Iliffe with his partners. Some time later Amalgamated Press was sold to I.P.C., the Daily Mirror Group, and we believe the new proprietors only later discovered how important an acquisition had come their way with the lliffe journals. There was much reorganization and change, but Wireless World together with other electrical and electronic publications was gathered as one unit which still continues as a distinct entity constituted much as it was when we vacated the chairmanship of the unit to rest from our labours some eight years ago.

In "The Torrington Diaries"* which record the travels through England of John Byng (later Viscount Torrington) the author states, in his introduction, "If my Journals should remain legible, or be perused at the end of 200 years, there will, even then, be little curious in them relative to travel, or the people: Because our Island is now so explored: Our roads, in general, are so fine; and our speed has reached the summit". This he wrote during a tour in Lincolnshire in June, 1791. But we can have sympathy with John Byng for how could we, at the time the Wireless World was launched, foresee the future through successive stages of the invention of the valve, with all its applications, short wave communication, radio telephony, broadcasting, radar, television, the transistor and the employment of electronic devices in almost every human activity. And we do not think anyone today would venture to suggest that we have "reached the summit"!

[^2]
Loud and Clear

Developments in audio over 60 years

remembered by F. L. Devereux, B.Sc.

Of necessity the Editor has had to comb the park benches for someone long enough in the tooth to remember when Wireless World began and who at the same time was engaged in sound recording-albeit in the humble capacity of holder of the hot flat-iron near the wax cylinder while his father made records of piano playing.

Yes, home recording was well established before the first issue of W.W. made its appearance on the bookstalls, and my father's Edison-Bell phonograph boasted an exponential horn, sapphire stylii for recording and playback and a hill-and-dale groove-recently revived in the Telefunken-Decca video disc. But wireless signalling was in a much more primitive state. There was no broadcasting as the term is now understood; indeed, wireless telephony, except for a few sporadic experiments of limited range and duration, was unknown.

When Wireless World began, signals were in morse-nice digital stuff. All you had to do to get the message clearly was to make it loud enough to stand above the threshold of background noise. Power at the transmitter and sensitivity at the receiver (amplification was to come later) were the first essentials in getting the signal from point to point; then it was a case of cutting down ambient noise in the receiving room until one could almost hear the blood circulating in the ear. My own dodge was to retire to an unventilated but heavily damped clothes closet, floor area $4 \mathrm{ft} \times 4 \mathrm{ft}$, with sufficient air for nearly half an hour, at the end of which time noisy breathing drowned all but signals from Eiffel Tower and Poldhu.
F. L. Devereux retired in 1965 after more than 40 years with Wireless World, including eight as Editor. In 1917, at the age of 17, he went to Parkeston Quay, Harwich, as a laboratory mechanic in the Board of Invention \& Research engaged on anti-submarine methods. He later joined the Navy as a midshipman and after demobilization in 1919 went to Birmingham University where he graduated in physics. Before joining Wireless World in 1923 he spend a short time in industry.

In those days when the very idea of a loud-speaking telephone seemed like science fiction, the most sought-after piece of equipment was the Brown reed-driven headphone. This highly sensitive earpiece, with an aluminium cone diaphragm and a slack gold-beater's skin surround, was designed by S. G. Brown (honoured also as a pioneer of the gyro-compass). It had micrometer screw adjustment of the air gap between reed and electro-magnet and was a great advance on run-of-the-mill iron diaphragm types then current.

Having made the signal audible the next step was to try to amplify it so that several people could hear it simultaneously without diluting it further among several headphones. Brown was again to the fore, first with a truncated conical horn added to the reed movement and later with current amplification by attaching a button microphone to the reed.

It is significant that at this time any device for augmenting the signal after detection was termed a 'note magnifier'. Oh, happy days, when all one had to design for was a single frequency! Success was measured by the amount of noise the device produced, and if a few harmonics crept in so much the better-the note was "crisper" and probably easier to read. (Incidentally, I wonder how many presentday pilots and R / T operators see any incongruity in the expression 'How do you
read me?' As a fugitive from the morse era, whenever I hear it I see in my mind's eye the written message and the pencil flying across the signal pad at 20 w.p.m.)

Many mechanical devices as well as electrical were developed to augment the sound, e.g. the Brown 'Frenophone' in which pressures from a reed unit were made to control the friction between a rotating glass disc and a pad to which the apex of a cone diaphragm was attached; the Johnsen and Rahbek system where the friction between a partially conducting rotating drum and a band brake was augmented by electrostatic forces at the interface; and the aptly named 'Stentorphone' in which compressed air was released through an electromagnetically controlled valve.

The signal was by now quite definitely LOUD, and to the excitement induced by the exercise of these new powers of amplification was added, in the early 1920 s , the thrill of hearing voices and snatches of music through the babel of morse. And that's when our troubles really began: the primitive digital days were at an end and, headed by Fourier, analogue met hods were rearing their ugly heads.

Meanwhile during the 1914-18 war, the thermionic valve (originally partially gas-filled) had got rid of its early flatulence and with the emergence of the hard-pumped ' R ' valve took over entirely

Wireless World's first $R-C$ coupled amplifier caused consternation among transformer manufacturers.

The Williamson amplifier-a vintage design of the valve era.
the amplification of audio-frequency signals. At first all amplifiers were transformer-coupled using bundled ironwire cores and later laminations.

The transformer became the focus of attention as the site of all the virtues of a.f. amplification and a whole industry of new firms sprang up to compete for the supply of this vital component. When a practical resistance-capacitance-coupled amplifier was first described in W.W. (October 10th, 1923) under, as it subsequently turned out to be, the rash title of 'Distortionless Telephony Reception', the article opened, in the prose style of the period, with these immortal words: "The methods adopted for low-frequency amplification applicable to the increase in volume of morse signals must no longer be regarded as satisfactory for the purpose of reproducing telephony with loud-speaking apparatus".

On the day following publication we were besieged by an angry mob (for such the rival transformer makers had joined to become in face of a common enemy) demanding instant recantation with veiled threats of withdrawal of advertising or, failing that, some retribution less painful to themselves like burning the author at the stake. The Editor of that day, never at a loss when choosing the appropriate means of surmounting, circumventing or just quietly infiltrating an impasse, subsequently wrote a skilfully worded note which, capable of being read both as a recantation and an endorsement, gave all interested parties so much to think about that we were able quietly to get back to the work of preparing future issues.

So the controversies began as to how, having got the signal loud, we should set about making it clear. Decoupling of anode circuits to control instability, 'straight-line amplification', 'tonecompensated volume control', 'harmonic', 'intermodulation' or just simply 'nonlinearity' distortion, negative feedback,

Vogt electrostatic loudspeaker of 1939 working on the "constant voltage" system, was inherently non-linear".

Western Electric "Kone" loudspeaker.
even 'ultra-linear' amplification (did they mean that having got the line straight we should go beyond and bend it the other way?)-all these topics, according to the fashion of the moment, have engaged the minds of high-quality enthusiasts, eventually to be absorbed into the technology or refuted and quietly forgotten. Some of the early practical embodiments of those ideas which have so far stood the test of time will not be forgotten when future histories come to be written. The W.W. Quality Amplifier of 1934 designed by W. T. Cocking and using PX4 output valves without feedback can still hold the candle to many more complex and over-sophisticated modern types. Nor should we forget the vintage years of 1947-49 which produced the Baxandall and Williamson high-quality valve amplifiers. "Not a ha'porth of difference" (to borrow a phrase from a current detergent commercial) might describe their performance; but most people could not afford to build both, and while they hesitated, the stampede in favour of Williamson started in Australia with endorsement by the Amalgamated Wireless Valve Co. Pty. Ltd, and rapidly spread back across the world to Europe.

From the beginning, amplifier design and performance have always been several jumps ahead of the loudspeaker, which is not really surprising when one starts to make a list of the factors involved--strength and elasticity of materials, internal friction, magnetism, dielectric properties, even thermodynamics when one considers the possible transitions from isothermal to adiabatic working in the throat of a high-power horn loudspeaker or the plasma of an Ionophone. But such complexities did not trouble us in the 1920s. Efficiency was the ticket and the competition then, as now, was chiefly between horn-loaded and direct-radiating diaphragms. Actuating mechanisms of both types were of the
moving-iron variety-telephone diaphragms driving the fashionable swannecked horns and reed mechanisms for the larger paper cone diaphragms. Both introduced prodigious asymmetrical distortion, proportional to the inverse square of the varying air gap. But who cared? The music kept good time, and by Edison-Bell phonograph standards the quality was quite acceptable.

At this time and for years to come the B.B.C. set a standard of quality which was streets ahead of the capabilities of commercial receivers to reproduce. Protagonist in the drive for better sound quality was the B.B.C's first chief engineer, P. P. Eckersley, whose energy and wit did much to stir the listeners from their indifference and the industry from its lethargy. His campaign was powerfully reinforced by the introduction in 1924 of the Marconi-Round-Sykes moving-coil microphone in place of carbon-granule types.

Returning to loudspeakers, the Baldwin balanced armature unit and the Western Electric 'Kone' showed how non-linearity distortion could at least be reduced and bass response improved, and there was a final fling of the moving-iron principle in the so-called 'inductor dynamic' unit with motion parallel instead of normal to the magnet pole-pieces. But this was a last despairing effort to stem the advancing tide of the moving-coil, patented in 1874 by Siemens, again by Lodge in 1898 , and brought up to date in 1924 by Rice and Kellogg of the GE Company of America.

No single step in the progress of sound reproduction has ever equalled that from

A new standard of performance was set in 1933 by the Voigt unit with a 20 kilogauss magnet.

[^3]

Of 19 pickups tested by Wireless World in 1929 only these six (BTH, Brown, Burndept, Igranic, Magnum, Webster) recorded any output above 4 kHz !
moving-iron to moving-coil, or fired so much enthusiasm. Those who were first privileged to hear the results felt compelled to spread the good tidings, and mass meetings were organized by the redoubtable Dr. N. W. McLachian in London, by Dr. F. W. Lanchester in the Midlands and by Wireless World's Assistant Editor, F. H. Haynes at the leading radio societies. At last the good things which for years the B.B.C. had been wasting on the desert air could be appreciated and we entered the first golden decade of high-quality sound, culminating in the work of P. G. A. H. Voigt, whose many-sided genius showed that the lily could indeed be painted. Through the medium of his domestic corner horns with
their massive 20 kilogauss field magnets and twin diaphragms, and with a temerity which smacked of lèse-majeste, he disclosed faults in the B.B.C's own transmissions. I well remember turning up at his home in South London for a demonstration of his latest model, only to be told that it was 'off'. "They're still using that mic. with the shrieking 6 -kilocycle frontal cavity resonance that I complained about last week" He was right, of course, and that microphone was subsequently taken out of service.

Thus is progress made, sometimes waiting for the man, sometimes for the means. The detailed design of stereophonic recording on di;c, as it is used today, was worked out ands patented in 1933 by A. D.

Blumlein, but at that time discs were made of heavily loaded shellac and, to quote Stuart Black (W.W. December 1943) "We get our music by scraping a steel point carrying some tons of weight per square inch over what is virtually a refined macadamized roadway". Not until the advent of vinyl co-polymers and microgroove recording could Blumlein's ideas be fully exploited.

And speaking of Blumlein reminds me of another story. When high-definition television started in England in 1936 all the high-quality enthusiasts were agog with excitement at the prospect of unlimited bandwidth on v.h.f. On medium waves the B.B.C. did not modulate above 10 kHz because of international agree ments on channel spacing. Sure enough, when the Alexandra Palace station opened up the improvement in quality of the accompanying sound channel was so marked that readers were demanding constructional details for v.h.f. receivers -just to demonstrate to their friends the virtues of unlimited bandwidth. At an I.E.E. discussion on the design of the A.P. transmitter several speakers rose to thank the B.B.C. for acceding to the public demand for greater bandwidth. To which Bluntlein replied that he was sorry to disillusion the gentlemen concerned, but the improvement had nothing to do with bandwidth; for some time the B.B.C. had been in process of redesigning its microphone ' A ' amplifiers and it just so happened that the new equipment, with greatly reduced non-linearity distortion, had been put into service for the first time at Alexandra Palace. And wasn't it P. P. Eckersley at another I.E.E. meeting who
said: "The wider you open the window the more dirt blows in?"

When one is stirring up memories of technological progress, why is it that people so often keep popping up among the hardware? W. S. Barrell of E.M.I.: "When I want to impress other people I play Tchaikovsky but when my staff ask my opinion of their latest improvement I always insist on Bartok". G. A. Briggs, who came into the loudspeaker business from the textile industry and who, if he brought a pair of cloth ears with him when he started, must have quickly used them up for diaphragm surrounds, for no one can so unerringly detect a false sound-and that without benefit of scientific aids (who is likely to forget his demonstration, at the start of the Festival Hall recitals, of the qualities of loudspeaker enclosures using nothing more sophisticated than a carpenter's mallet?). And C. E. Watts: I once made the mistake of saying to him that I did not see the sense of square-wave testing since such sounds were not to be found in nature, or for that matter in music. On my desk next morning I found a beautiful photomicrograph of three consecutive square-groove traces (triangular, of course, with constant velocity recording). Attached was a compliments slip endorsed "From Danse Macabre". I found out later that C.E.W. had spent most of the night chasing up and down the groove of that well-known test-piece of the period until he found what he sen sed must be there.

Here I think we are getting near to the gist of the matter. When you know all about the physics of vibration and its transmission through the air even about

the mechanism of the cochlea of the ear-you do not yet know the first thing about sound which is the perception of vibration. After all the trouble with Fourier and sine waves we are back where we started with the digital spikes of trains of nervous discharge travelling in times of the order of milliseconds along multiple paths, many of them redundant, to be subjected to correlation processes of the order of micro-seconds between the two halves of the brain-then probably to be over ridden or ignored altogether by the recipient. As with sight the human capacity for instantaneous attention to detail is limited. Who knows or cares if there is a cut-off at 8 or 18 kHz when the back desks of the violins are out of tune or the woodwind is dragging its feet?

Looking into the future it would seem that startlingly new technological advances will be few and far between, though it is always possible that some simple improvement awaits discovery under our noses. One need only cite the electrostatic loudspeaker which seemed to have been fully exploited by Hans Vogt in the late 1920s until Prof. F. V. Hunt and his colleagues at Harvard, after thorough mathematical analysis, showed thirty years later that what seemed to be inherent distortions could be removed by the simple expedient of working under 'constant charge' conditions.

Much remains to be done in the field of psychoacoustics, to find how judgments are conditioned by previous experience, why the mind accepts the false as the norm and often rejects improvement for no other reason than unfamiliarity. I am old enough to remember that switches marked 'mellow' had to be fitted to many broadcast receivers after the makers had tried to give the public better high-frequency response.

Envoi

As I drift, in the sixth age of man "into the lean and slippered pantaloon, with spectacles on nose" I know that if my old age pension does not run to a colour television licence I can still enjoy music, talks and plays-all those things that enter the mind's eye through the ear.

One small regret. The old W.W. Quality Amplifier was such a comfort on winter nights in my "den", but since changing over to integrated circuits I have had to buy an electric fire with two bars. We seem not so much to have miniaturized the watt as to have mislaid it altogether.

For his large scale lecture-demonstrations of high-quality sound on both sides of the Atlantic, G. A. Briggs might well have taken his motto from Danton: "De l'audace, et encore de l'audace et toujours de l'audace." Fears for their success were completely routea.

Milestones in Receiver Evolution

W. T. Cocking*, an innovator in the field, recalls some of the highlights in radio and television receiver development

The real beginning of radio can be said to date from James Clark Maxwell's hypothesis, which he formulated in the latter half of the 19th century, that a displacement current (i.e., a changing electric field) could produce a magnetic field. He formulated this hypothesis in order to improve the symmetry of his equations relating electric and magnetic fields and he showed that, if it were true, one solution of them indicated electromagnetic waves travelling in space with finite velocity. There was at that time no way of proving or disproving his hypothesis, but later Heinrich Hertz succeeded in generating such electromagnetic waves. Still later, Marconi developed the elevated open aerial and the way was then clear for the practical development of wireless communication.

Sixty years ago when Wireless World started, all normal transmissions were by spark telegraphy using Morse code and receivers were very simple affairs using one or two tuned circuits with magnetic coherers or crystal detectors.

The triode valve had been invented
(1907) but few people had heard of it and it was not until World War I that it became widely known and was manufactured in any quantity. Practical radio-telephony had to wait for this moment because a source of continuous oscillations was needed as a carrier for speech signals and the valve proved the only suitable way of generating them.

The early 20s may be said to be the real beginning of radio as we know it today. There was military equipment available on the disposals market and valves could be bought. Receivers existed using up to five r.f. 'amplifiers' in cascade with special valves having contacts at each end of a glass tube for the filament and one on each side for the grid and anode (V24. Q or QX). Even with these low-capacitance types the stage gain was very low.

The normal receiving valve was the R type. This was a bright emitter with a filament taking about 0.6 A at 5 V . It had an a.c. resistance of about $40 \mathrm{k} \Omega$ with a μ of about ten. All equipment was battery operated with a large accumulator for the l.t. supply and an h.t. supply of 60 to 120

The exterior of the famous 'Everyman's Four-valve receiver designed by W. James and described in the 1926 article as " a 'two-control' receiver of remarkable efficiency".

Abstract

W. T. Cocking's first contribution to Wireless World was in 1929, but it was not until 1936 that he joined the staff. During the war he served in the R.A.O.C. and R.E.M.E., attaining the rank of major, and from 1942 to 1945 was attached to the Ministry of Supply. After the war he was appointed editor of our sister journal Wireless Engineer and in 1965 became editor-in-chief of Wireless World and Industrial Electronics (successor to W.E.) which ceased publication in 1969.

volts from dry batteries. The usual valve receiver was a reacting detector with or without one transformer-coupled a.f. stage. Headphones were normal and many receivers had nothing but a tuned circuit and crystal detector.

Broadcasting in this country began in 1922 and was the start of major development in receivers. Throughout the history of receiver development receiver designers have been quick to exploit, to the full, the potentialities of components available to them and the major advances have usually had to await component development-especially in valves.

The first valve improvement was the dull-emitter filament. The DER needed a $2-\mathrm{V}$ supply only. Then came the ' 0.06 ' types, which took only 60 mA at 3 V and permitted the use of a dry battery for the filament supply; but this had too short a life to become really popular. The other characteristics of these valves were very similar to those of the R type.

Broadcast listeners began to dislike using headphones and the loudspeaker became popular. The results of the early loudspeakers driven by a grossly overloaded valve of the time were so horrible that power valves were developed. We should hardly call them so today, for few gave more than two or three times the output of an R valve! Then came the LS5 and LS5A. The latter, especially, did give useful power but needed 400 V h.t. supply.
In this period there was great interest in the design of tuning coils. In the crystal-set days a solenoid of about 4 inches diameter and 12 inches long was used with a slider for tuning. Then variable capacitors (we called them condensers then) were used with plug-in coils of the honeycomb or Burndept types of windings.

Wireless World organized a competi-

tion among its readers who were invited to send sample coils. A prize of $£ 5$ was offered for the best. The results were published in the $17 \mathrm{th}, 24 \mathrm{th}$ Feb. and 3rd March 1926 issues ($W . W$. was then a weekly). At around the same period S. Butterworth published a series of articles in Experimental Wireless \& The Wireless Engineer (April-July 1926) on 'Effective Resistance of Inductance Coils at Radio Frequency' and an abbreviated version appeared in Wireless World for 8th and 15th Dec. 1926 under the title 'Designng Low-Loss Coils'. Butterworth's work was of outstanding importance because for the first time it enabled unscreened air-core coils to be designed not merely for a required inductance but also for a required r.f. resistance.

At around this period, or a little earlier, the neutrodyne circuit was developed by Hazeltine in the U.S.A. and it enabled stable and useful r.f. amplification to be obtained. The typical American receiver of the period had two neutralized triode r.f. stages, triode detector and two trans-
former-coupled a.f. stages. There were three separate tuning capacitors, for ganging was still to come.

In Wireless World for 28th July and 4th August 1926 there appeared constructional details for a very famous receiver indeed, the Everyman Four. (Incidentally the original title was 'Everyman's Four-Valve', a prototype of which is kept at the Science Museum, London.) This had one r.f. stage neutralized with a DE5B valve ($r_{a}=21$ $\mathrm{k} \Omega \mu=18$) with two tuned circuits. The coils were of 3 -in diameter and $3 \frac{1}{2}$-in long and had 74 turns of $27 / 42$ Litz wire, each strand s.s.c. and overall d.s.c. The stable r.f. gain was 36.5 to 46 over the medium-wave band. The detector was an anode bend type using a Cosmos SP18 Blue Spot valve $R C$ coupled to a DE5B, which was transformer coupled to a DE5 output valve. The whole set took 10 mA at 150 V and the output valve took 4.75 mA . The input power to the output stage was thus 710 mW and so the output to the
loudspeaker could hardly exceed 150 mW .
The performance of this receiver far outshone its competitors of the time and it set an entirely new standard of medium-wave broadcast reception. Its success depended largely upon the r.f. coil development referred to above, but also on the development of neutralizing.

In this country the neutrodyne never achieved the prominence that it did in the U.S.A., for it had barely reached here when the screened grid tetrode made its appearance and made neutralizing unnecessary. Shortly after this the output pentode appeared, and the introduction of the indirectly heated cathode made mains operation practicable.

From 1926 onwards valve development was rapid and receiver designs changed accordingly until in the early 30 s the "standard' receiver was mains operated with one r.f. stage, grid detector, and pentode output stage. Ganged tuning arrived. This was an obvious development, but its possibility depended on achieving much higher accuracy of manufacture of variable capacitors and it was not really satisfactory until this was done.
*At this time the increasing number of broadcasting stations in Europe called for a great increase of selectivity in receivers. At the same time, much more attertion was being paid to quality of reproduction. This led to the use of coupled-pairs of tuned circuits operating as bandpass filters ('Band-Pass Four' W.W., June and July 1930) and then to the revival of the superheterodyne.

This first appeared during World War I, but was comparatively little used until the early '30s. The main reason for this was that it required more valves than the straight set and it was not until the advent of mains operation that many people could afford the extra power supply for these valves. Mains operation and better valves made the superheterodyne at last practicable but it was for a time held

Schematic diagram of connectlons. T_{1}, aerial-grid transformer; T_{2}, high-frequency valve transformer; Th, Ferrantic 3.5: low-

A photograph of the original circuit, compleie with caption, of the Everyman Four.
back by the problem of ganging the oscillator with the signal circuits.

An early design ('Super-Selective Six' W.W. June 1931) had separate controls for the two, but ganging was achieved quite soon ('Monodial', W.W., April, 1932). Around this period, some unorthodox designs appeared. They achieved temporary prominence and then fell into disuse because of certain drawbacks, so they are really side shoots to the main line of development.

One such was the Stenode. This was a superheterodyne using a quartz crystal in the i.f. amplifier to obtain high selectivity together with tone correction in the a.f. amplifier for the severe sideband cutting. It aroused great controversy about the physical reality of sidebands and some of the claims made for it appeared to contravene accepted theory. The true explanation eventually appeared, but the Stenode never achieved any real popularity. One feature of it, the correction of sideband cutting by a suitable a.f. amplifier response, was adopted in the Monodial.

Another sideshoot was the Single-Span (1934). In this a high intermediate frequency (1.6 MHz) was used with a fixed tuned input bandpass filter covering 150 kHz to 1.5 MHz . This enabled all tuning to be done by the oscillator ($f>1.6 \mathrm{MHz}$) and eliminated ganging and waveband switching. Although satisfactory when first described it did not long remain so. The increasing numbers and powers of broadcasting stations soon produced so many whistles that it became impracticable without excessive refinement.

All this time spasmodic attention had been paid to quality of reproduction. An outstanding example was the Science Museum Receiver (W.W., July and August 1930) which probably provided
the best reproduction of any equipment of its date.

An early Hi-Fi amplifier (this term had not then been invented) was the Wireless World 'Push-Pull Quality Amplifier' (May 1934). This had two PX4 triodes in push-pull driven with $R C$ coupling from push-pull MHL4 triodes in turn driven by a concertina phase-spliter. The output transformer was specially designed for the job and contributed greatly to the performance. The output stage operated in a mode which might be called slight class AB. It was nearly class A but not quite. The amplifier gave 4 W output at an unspecified, but quite low, distortion level.

Some examples of it exist today and judged aurally the results compare well with much more modern designs.

In 1934 Black in the U.S.A. 'invented' negative feedback, primarily for amplifiers in cable circuits. This, as always, was a specialized field and it took sometime for the principle to work its way out for more general usage (W.W., Nov. 1936), but within a few years it became common, although it was not at first always used to the best advantage.

At about this time the triode valve began to die as an audio output valve. Larger powers were being demanded and the biggest triodes (PX25, 25 W dissipation) were directly heated types. Indirectly heated cathodes did not seem to go with large power and in any case the pentode was more efficient (theoretical maximum 50% against 25% for a triode). The drawback of the pentode was that it introduced much more distortion than a triode and many quality enthusiasts would have nothing to do with it.

Here negative feedback came to the rescue and made pentode quality as good as triode quality and spelt the demise of the

triode output valve. It was eventually realized that the triode could be regarded as a pentode with 100% negative feedback from anode to screen! It was around this period (1936) that a.g.c., which is a form of negative feedback, came in.

To return to the early ' 30 s, there were two other important developments. One was a kind of negative feedback, automatic gain control (W.W., September 1932), although it was not then recognized as being such. It came into popular use long before true negative signal feedback. The second development ($W . W$., Sept. 1932) was 'Ferrocart', which was the first iron-dust core for r.f. coils. Of German origin, it consisted of iron dust sprinkled on waxed paper which was then rolled and compressed to form a solid block which could be cut to the desired shape. Sometimes a ring core toroidially wound was used, at others the material was formed into E and I sections. It enabled a big reduction to be made in the size of r.f. coils and stimulated the development of the methods of construction and was soon replaced by cores of iron dust compressed with a binder into a solid. These were much nearer the cores of today.

During the ' 30 s there was intense activity in valve development not only in entirely new types, but in building multiple valves. The duo-diode-triode was one of the first, but by 1939 there were double triodes, double pentodes and triodepentodes. The new types were mainly multi-grid ones for superheterodyne frequency changing. The first was the pentagrid or heptode and this was followed by the octode. A parallel line of development for the same purpose produced the triodehexode, and triode-heptode.

Indirectly heated valves usually had 4 V , 1A heaters, but in the U.S.A. $6.3-\mathrm{V}, 0.3-\mathrm{A}$ heaters soon became standard because of the introduction of car radio. American cars had $6-\mathrm{V}$ batteries. When car radio came to this country a range of $13-\mathrm{V}$, 0.3 -A valves was produced to suit our $12-\mathrm{V}$ batteries. These could be seriesconnected for use in a.c. /d.c. sets.

It was not long, however, before some degree of standardization with the U.S.A. occurred and $6.3-\mathrm{V}, 0.3-\mathrm{A}$ heaters became general and was followed just before the war with the all-glass construction of which the best known early member is the famous EF50.

The advent of television in 1936 shifted the emphasis in valve development to r.f. pentodes of high- g_{m} and low capacitance. An early example was the TSP4 with g_{m} $=6 \mathrm{~mA} / \mathrm{V}$, but this was quite soon replaced by the EF50 which had about the same mutual conductance but which was much better screened and was much smaller physically. Further valve development was interrupted by World War II and for a good many years the EF50 was the standard valve in radar receivers.

In the U.S.A. the small all-glass construction was adopted and later in the war such types were made here. These were more robust and had lower capacitances and higher mutual conductances, so that radar i.f. amplifiers, for instance, became smaller and more reliable. After the war

this form of construction continued and it is now employed in nearly all valves.

The next major development was the transistor in 1948. Of outstanding technical interest, it took a long time to have effect upon receiver design. The crystal detector, which is a semiconductor diode, was used in the very early days of radio. The commonest types were carborundum with a steel plate, zincite-bornite (Perikon) and galena with a catswhisker. During World War II it was revived as a centi-metre-wave radar detector and properly designed with a pre-set capsule so that the user was presented with a little cartridge requiring no adjustment. Quite early on certain crystals were known to be able to generate oscillations under certain conditions, but little or nothing was known about how they worked.

As power rectifiers, copper-oxide and, later selenium, types were widely used from about 1930 onwards; little was known about how they worked, and their design was largely empirical. Nevertheless, they were very satisfactory.

The development of the transistor and the enormous amount of work on semiconductors which preceded and followed it cleared up all these other matters. The first transistors were point-contact types and it was not until the junction transistor arrived and became manufactured in quantity that its effect became evident.

Apart from the computer, its first main application was to hearing aids. It had the outstanding advantages of much smaller physical size than a valve and of requiring no filament-heating power. It was also more efficient in that, because the minimum permissible voltage drop across the device could be under 1 V (with a valve it had to be 10 V or more) the h.t. supply power could be reduced.

In receivers, the transistor for the first time permitted the construction of a really practicable portable receiver. Portables were made and sold from quite early days, but they were large and heavy, had a poor performance and short battery life. The transistor changed all this as soon as types capable of amplifying and oscillating up to about 2 MHz became available. So much is this the case that the old
table-model receiver is now virtually obsolete. It is now the mains-operated radiogramophone or the battery-operated transistor portabie. The development of ferrites, too, made the ferrite rod aerial possible and eliminated the cumbersome frame aerial from the portable. In the domestic market valves are now rarely used except in television receivers, but even here there are some which depend entirely upon semi-conductors.

During World War II, as we have said, valves began to get smaller. To match this components generally got smaller, too. The process of miniaturization had started. The transistor accelerated this and discrete components are now incredibly small by pre-war standards. But this is far from the end. Integrated circuits are with us and are coming into use in the domestic radio field. Even the variable-capacitor seems to be on the way out. It is starting to be replaced by a special semiconductor diode known variously as a varactor or varicap which has a capacitance dependent upon the voltage applied to it. At the moment, the only difficulty seems to be to manufacture diodes which all have the same capacitance at the same applied voltage; it is virtually the ganging problem again.

We cannot conclude without some mention of television. This started as a regular service in 1936 with one transmitter at Alexandra Palace, and after a short trial period the present 405 -line system was adopted. Receiving cathode-ray tubes had a $12-\mathrm{in}$. diameter screen with electric focusing and deflection and operated at 4 kV . By modern standards the tubes had poor focus and brightness.

Constructional details of a television set were given in W.W., 2nd-30th July 1937. The receiver was of the t.r.f. type with three r.f. stages, diode detector and one video stage. The power supplies formed a large part of the cost and bulk, for three separate ones each with its own mains transformer were needed. Supplies of 250 V for the receiver proper, 1000 V for the time bases and 4 kV for the c.r.t. Commercial practice of the time was similar, but a few manufacturers employed the superheterodyne. A major difficulty
was to obtain stable and high r.f. gain with the necessary bandwidth, because the valves available were not really suitable.

In the next two years, great improvements were made, partly because better valves became available and partly because of a change to magnetic deflection and focusing of the c.r. tube. To reduce costs the 9 in . tube was adopted, and at least one set (Murphy) sold for $£ 30$. A second constructional receiver was described in W.W., 29th June-20th July 1939, which took great advantage of these developments and gave a performance greatly superior to that of the first.

The war interrupted television, of course, and it was not until 1946 that transmissions started again. The post-war receivers naturally followed the immediate pre-war practice and the whole trend was to 9 in . tubes with magnetic focusing and deflection. The service restarted on 7th June 1946.

Another constructional receiver was described in W.W., Jan.-Dec. 1947. This was probably unique in that it included full constructional details of deflector and focusing coils, the reason being that such parts were not available on the retail market at that time. The receiver was initially of the t.r.f. type, but later a superheterodyne of much higher gain was described as an alternative. The e.h.t. supply, which was still no more than 5 kV , was obtained from the line flyback using a voltage-doubler with selenium rectifiers.

War-time, and early post-war, valve developments made a big difference to television receiver design, especially on the r.f. side. The development of ferrites, too, had a big effect, for it so greatly reduced the losses in line-scan transformers and deflector coils that it permitted a further development-the energy-recovery scanning systems. These are now universal, but on them depended the practicability of wide-deflection angles and, hence, large screen tubes and the higher voltages needed for adequate brightness with them. The period 1947-1957 was an exceptionally interesting one in development.

Then, of course, came a 625 -line system on v.h.f. and, finally, colour and a constructional receiver (W. W., June 1968-June 1969), again appeared.

In this article, some may feel that undue stress has been laid upon designs for the home constructor. There is a sound reason for quoting these, however, which is that much more information about them is available than of commercially produced receivers of the time, especially in the early days. The heyday of the constructor was in the '20s and early '30s. After that, it became less popular as receivers became more complex, but the commercial pattern changed also and it gradually became more expensive to make a receiver than to buy one!

The demand for constructional articles fell off but the old saying, "An ounce of practice is worth a ton of theory", is still true. It is not that theory is unnecessary. It is more necessary than ever. It needs the practice, however, to drive it home and makn realize to the full what it means.

Radio Wave Propagation

Ten more years

by R. L. Smith-Rose, C.B.E., D.Sc., F.C.g.I, F.I.E.E.

In the 50th birthday issue of Wireless World a review was presented on the development of our knowledge of the manner in which electromagnetic waves travel over the earth's surface and through the lower and upper atmospheres, and of the experience which has resulted in the development of practical communications on a world-wide basis ${ }^{1}$. It is the purpose of this article to review the progress that has been made during the past ten years, taking note, as appropriate, of the associated developments in radio astronomy and space communications.

Because electromagnetic waves travel, subject to conditions of absorption, refraction and reflection, not only round the surface of the earth but also into the surrounding space, it has long been recognized that international collaboration is essential if confusion and interference are to be avoided in the practical development of communications, navigational guidance and the satisfactory broadcasting of sound and television programmes. It is on account of the international aspects and the need to avoid a chaotic state of radio interference, that organizations such as the International Radio Consultative Committee (C.C.I.R.) and the International Union of Radio Science (U.R.S.I.) ${ }^{2}$ are continuously in operation to guide and control both the practical development and the scientific research associated with this subject. The introduction of sound and television broadcasting, advanced radio aids to both aerial and marine navigation and, more recently, the pursuit of research in radio astronomy and the space around us, have all served to emphasize the need for such international co-operation.

Influence of terrain on wave propagation

The development of medium-wave broad casting has, for many years past, stimulated the continued study of the effect of the electrical conductivity and dielectric constant of the ground on the propagation of radio waves over the earth's surface. The C.C.I.R. has produced, and published from time to time, sets of curves showing the decrease of field strength with distance from the transmitter which is assumed to be radiating a power of one kilowatt. It is further assumed that both the se-ding and
receiving stations are on the ground and that the waves travel over a smooth homogeneous earth, neglecting any effect of the troposphere. Five sets of such curves were revised in 1970^{3} and have recently been published from Geneva. These sets of curves relate to four different values of the conductivity of the earth over which the waves travel, while the fifth set is appropriate to the much higher conductivity and dielectric constant of sea-water. Individual curves relate to a series of frequencies between 10 kHz and 10 MHz .

Recommendations covering the use of the curves emphasize that they should be used to determine field strengths only when it is known that ionospheric reflections at the frequency under consideration will be negligible in amplitude. An example of such application is given as propagation in daylight at frequencies between 150 kHz and 2 MHz , and for distances less than about 2000 km . These sets of curves continue to form the basis of international discussions on the siting of broadcasting and other radio transmitting stations.

Methods have also been developed for computing the propagation conditions over ground paths of mixed electrical constants, such as are encountered in travelling from dry sand to a fresh-water lake, or from normally moist soil to sea-water of greatly increased conductivity. Similarly the effect of a variable terrain, including hills and mountain ridges which may be regarded as sharp irregularities in relation to the wavelength, has been studied in considerable detail to obtain information on such effects required for the planning

Dr. R. L. Smith-Rose, who is 76, retired from the Scientific Civil Service in 1960 after 41 years' service. A graduate of Imperial College, University of London, Dr. Smith-Rose was superintendent of the Radio Division of the National Physical Laboratory from 1939 until 1948 when he became the first director of radio research in the Department of Scientific and Industrial Research (now the Science Research Council). He is a past president of the International Scientific Radio Union and is at present chairman of the Frequency Advisory Committee of the Ministry of Posts and Telecommunications, and secretary-general of the Inter-Union Commission on Frequency Allocations for Radio Astronomy and Space Science.
of broadcasting and other services which depend on ground-wave transmissions. Renewed emphasis on the desirability for further study of this subject has arisen during the past decade by the need for such earth-bound services to share some of the bands of frequencies with space telecommunication systems. Practical experimental work in this field has been conducted in parallel with a large amount of theoretical study, so that the combined results may be used in planning radio systems and predicting their performance with a good measure of reliability.

Ionospheric research and long-distance propagation

Apart from national internal services, the major portion of the world's communications is conducted in high frequency radio waves, taking advantage of the appropriate reflection of such waves from the several regions of the ionosphere. It is now over 45 years since the classical experiments of Sir Edward Appleton demonstrated the existence of ionized regions in the earth's upper atmosphere, which reflect radio waves within suitable bands of frequencies, resulting in the transmission of the waves all round the earth's surface.

Continuous research carried out in various countries has shown that the frequencies of waves that can be so reflected depends upon the density of ionization in the atmosphere at heights from about 100 to 400 km above the earth's surface. It was established some years ago that this ionization process is dependent upon the intensity of emission of ultra-violet radiation from the sun. Furthermore, physicists have known for a long time that this emission is subject to variation on a basis with a period of the order of 11 years. As a result the range of frequencies or wavelengths which can be used for the world's long-distance services is much greater during a period of maximum solar activity than in the corresponding period about 5 years later.

In a previous article ${ }^{4}$, mention was made of the co-operative scientific study which was conducted on a world-wide basis of conditions in the ionosphere during the period of maximum solar activity (1957-58)-the International Geophysical Year (IGY), as it was termed. With the
knowledge provided by astronomers that the mean period of the sun's activity is about 11 years, a similar and enhanced programme of studies of the ionosphere was planned and carried out during the period 1964-65, which was designated the International Quiet Sun Year (IQSY). During this period, for the first time observations at observatories on the earth's surface were supplemented by direct measurements of conditions in the ionosphere, made first with the aid of rockets and later by the launching of complete radio sounding equipments through and above the ionosphere.

The topside ionospheric sounder

Prior to 1960 rockets and artificial earth satellites were already in use for the measurement of solar radiation and the study of its effect on conditions in the ionosphere.

It was in September 1962 that a complete radio ionospheric transmitting and receiving equipment, known as the Alouette I top-side sounder, was launched into an approximately circular orbit at a height of about 1000 km . The frequency of the transmitter swept over the range 1 to 11.5 MHz in a period of eleven seconds, during which time the satellite had moved about 120 km ; so that one complete ionogram was produced for approximately every degree of latitude.

The results obtained from this investigation have proved a most valuable supplement to the information provided by the world network of ionospheric sounding stations on the earth's surface. The fact that it was examining the properties of the ionosphere from above, in a virtually continuous world-wide orbit, brought to light some new and interesting points concerning anomolous geomagnetic conditions at the equator and the interaction between the previously identified radiation belts and the ionosphere below them.

The Alouette I satellite has provided a valuable series of observational emissions over a period of several years. It was still operating when, in November 1965, another artificial satellite-called Alouette II and also built in Canada-was launched into an elliptical orbit with major and minor axes of about 2980 and 500 kilometres respectively. This second satellite operates on command for about six hours per day, carrying out five experiments, which include a topside sounder, a radio-noise experiment over the frequency range 0.2 to 14 MHz , and the measurement of very low frequencies over the range 50 to 30,000 hertz. Both these and other satellites launched more recently have proved very successful in materially adding to our knowledge of radio transmission conditions at heights well above the ionosphere.

Radio meteorology and the troposphere

For many years past the meteorologist has used radio sounding technique to give him detailed information of the temperature,

pressure and humidity changes in the earth's atmosphere up to heights of 10 km or more. In return, this information has proved invaluable in the planning and operation of radio communication services operating at very short-metre and centimetre-wavelengths. Under what is termed a normal or standard gradient of atmospheric temperature with height, such waves may travel in a path curved toward the earth at a radius of about four-thirds that of the earth itself. Variation of atmospheric conditions along the path may, however, change this to a greater or less curvature, including what is virtually rectilinear propagation ${ }^{5}$.

The development of direction finding and, later, radar techniques, has also enabled the radio scientist to explore wind movements up to the maximum heights in the troposphere, varying from 10 to 15 km depending on latitude and season. By international collaboration, a considerable amount of useful empirical knowledge has been gained from such combined radio and meteorological investigations in different parts of the world. But the search for a simple method of applying a knowledge of meteorological conditions to the determination of radio propagation has not led to very satisfactory results. In spite of such difficulties, however, the combined experience of scientists and engineers has enabled a certain amount of guidance to be made available to those responsible for the installation and operation of radio services at decimetre and centimetre wavelengths. A useful recommendation recently brought up to date by the
C.C.I.R. incorporates a revised set of curves relating field strength to distance of transmission for the v.h.f. $(30-250 \mathrm{MHz})$ and u.h.f. $(450-1000 \mathrm{MHz})$ bands. These curves display a statistical average of received field strength for 50% of the terminal locations and for periods of from 1 to 50% of the operating time. Associated reports enable the effect of changing the receiving aerial height to be estimated, and describe a method for determining the corresponding field strengths when the path of transmission is of a mixed land and sea nature.

But it is not only for the design and operation of radio systems with earthbound terminals that a detailed knowledge of the effects of the troposphere is necessary. Modern developments of unmanned satellites in orbit round the earth for radio relay communication purposes also require a detailed knowledge of the propagation of radio waves through the non-ionized regions of the atmosphere, taking account of spatial variations of refractive index which can cause both refraction and scattering of the waves. With this type of work is associated an investigation of the absorption of radio waves by oxygen and water vapour of the variable densities encountered in the earth's atmosphere, and of the corresponding scattering of the waves particularly caused by various types of rainfall.

The development of telecommunications on an international scale depends to a major extent on an agreement as to the
type of investigations to be carried out and, particularly, on the nomenclature used in organizing the work and describing the results achieved. It has been evident for many years past that the propagation of radio waves of frequencies greater than 30 MHz is greatly influenced by meteorological conditions in the troposphere. In recognition of this the C.C.I.R. has drawn up a recommended list of terms used in the study of radio propagation through the troposphere. This vocabulary ${ }^{3}$ was started nearly twenty years ago, and it has been constantly extended and revised as necessary at successive meetings of the international committee dealing with radio communications. Associated with the vocabulary are the agreed definitions of a basic reference atmosphere and the recommended formula for the radio refractive index. All these activities have done much to extend the successful application of the upper portions of the electromagnetic spectrum to practical use.

Radio astronomy

It may not be out of place to conclude this review with a brief reference to radio astronomy, a science which has made
great advances during the period under review in many parts of the world. Excluding the relatively small activity in the field of radar astronomy, which uses a combined transmit-receive technique, the activities of the radio astronomer are confined to studying the natural radiations from sources in space, not only within the solar system but out to the limits of the explorable universe.

By the aid of either an extensive fixed aerial array or, more usually, of a large steerable aerial system, the astronomer is able to record and investigate the radiations emitted over the entire radio spectrum. So valuable has this work become in the past decade that a special international commission was set up in 1960, to review the requirements of the radio astronomer and to take all appropriate steps to ensure that his observations of these natural phenomena should be protected from interference by other services operating within the terrestrial environment.

In some cases the radio astronomer has identified specific emissions from natural phenomena, such as the radiation from neutral hydrogen in the frequency band 1400.1427 MHz . But more generally the
astronomers have sought protection from interference in a series of frequency bands at approximately octave intervals throughout the spectrum, so that they may conduct a co-ordinated long-term series of continuous observations of the phenomena which give rise to these radiations. The results so far obtained have materially added to our knowledge of the history of the universe which was already available from the much older work of the optical astronomer. While the major additions to our knowledge have been obtained from installations on the earth's surface, space radio astronomy has developed rapidly in recent years, culminating in the launching of the first Radio Astronomy Explorer Satellite for the observation of solar and galactic radiation free from the absorption caused by the earth's atmosphere.

It is perhaps of interest to note, in conclusion, that while up to a few years ago radio communications and control systems operated within the limitations of the earth's circumference, the modern astronaut seeks and receives a corresponding service which has already operated successfully at a range of about a quarter of a million miles-the mean distance between the moon and the earth.

References

1. R. L. Smith-Rose. "Fifty Years Research in Radio Wave Propagation", Wireless World, April 1961, Vol.67, p. 203.
2. International Scientific Radio Union. "Progress in Radio Science 1960-63", Vol.II "Radio and Troposphere", Vol. III "The Ionosphere".
3. International Radio Consultative Committee. "XIIth Plenary Assembly New Delhi, 1970", Vol.II, "Propagation in Non-Ionized Media".
4. R. L. Smith-Rose. "Radio and the I.G.Y.", Wireless World, February 1960, Vol.66, p. 52.
5. J. A. Saxton. "Advances in Radio Research", Volumes 1 \& 2, Academic Press, 1964.
Aerials for radio astronomy: two of three paraboloids, at the Mullard Observatory, Cambridge University, used in an aperture synthesis technique to obtain resolving power equal to that of 1 -mile diameter paraboloid.

Some Significant Steps in Radio Communication

by W. J. Baker *

Anno Domini 1911... the coronation of King George V Sherlock Holmes in the Strand magazine . . . hansom cabs jingling through the streets, fighting a defensive battle against the noisome motor car . . . the heavier-than-air machine, a frail contraption of bamboo, wire and canvas, staggering uncertainly into the sky . . . no sound broadeasting . . . television no more than a Punch cartoon. It was in this year that Wireless World (then called The Marconigraph) first saw the light of day. Wireless telegraphy was fourteen years old, solidly established as the only means of long-range maritime communication but by no means so sure of itself in terms of inter-continental message-carrying; for in that area it constantly fell foul of the powerful cable interests, with tooth-and-nail battles being fought.

The first decisive step in wireless communication had been taken in 1895 when Guglielmo Marconi had the inspiration of adding an elevated wire and an earth system both to his transmitter and receiver, (thereby increasing the range from yards to miles) and of incorporating a morse key as a means of sending messages in code. It was strange that no one had thought of doing either of these things before, because the aerial wire had often been used as a collector of static electricity ever since the Benjamin Franklin experiment, while the use of the morse key (invented sixty years earlier) seems an obvious application. But the fact remains that no one did; and (what seems more incredible) no one, with the exception of Sir William Crookes, seems to have even considered the possibility of using Hertzian waves as a communications medium until Marconi arrived in England with his apparatus. A collection of scientific curiosities which he had improved and turned into a commercial communication system.
The second great step forward was the 'Four Sevens' (No. 7777) patent for tuned circuits, granted to Marconi in 1900. This again was not completely original work; it owed much to such workers as Lodge and Braun but embodied logical extensions which had not

[^4]previously been thought of. Hitherto, two or three stations operating within range of one another had brought chaos to the ether. The tuned circuit permitted multi-station operation (albeit the tuning was flat by our standards) and in so doing destroyed one of the most valid of the criticisms levelled at wireless telegraphy.

Signals across the Atlantic

The hat trick was brought off in the following year (1901) with the Poldhu to Newfoundland transmissions of the letter 'S'. This was achieved against all odds; it defied the known laws of Hertzian wave propagation; it was done using lashed-up aerials (the main aerials on both sides of the Atlantic had been blown down in severe gales); the transmitter was beset with teething troubles; the wavelength of 366 metres was, it subsequently transpired, not a good choice; and the transmission took place at the most unsuitable time of the day, with daylight over the whole path. The project was one of the greatest technological gambles of all time-and how near to failure it was! The success of the experiment was all the more remarkable when it is remembered that the receivers of the day embodied no form of amplification and so the onus was entirely on the transmitter.

Spectacular as the spanning of the Atlantic was, some years were to elapse before a reasonably reliable commercial system of message-carrying became possible. The real triumph lay in the technology. Up to that time, wireless apparatus had consisted of toughened-up laboratory equipment-small, tablemounted and battery-driven. Thanks to Marconi's vision and the engineering genius of Dr. J. A. (later Sir Ambrose) Fleming, who designed the high-power equipment, the transition was effected in one tremendous leap. Poldhu brought wireless telegraphy out of its swaddling clothes and straightaway set it to man's work.

The experiment also provided a classic illustration of the dangers of leaning too heavily on laboratory results. In the laboratory it had been proven time and time again that Hertzian waves could not follow the earth's curvature to any significant degree, whereas Marconi's field work had shown they were doing so to a

osclll ations corresponomg to above premance clipve

Characteristics of the Clifden, connemara, spark transmitter given by Marconi in a Royal Institution lecture in June 1911.
far greater extent than theory allowed. The question was, could the waves surmount a hump of ocean more than a hundred miles high and arrive at destination on the far side? When the transatlantic experiment showed that they could, science was confounded, because it seemed to make nonsense of Maxwell's theories and Hertz' wave propagation experiments. The anomaly arose because the ionosphere did not exist on paper or in the laboratory but it most emphatically did over the Atlantic, although no one knew it at the time (even twehty years later its existence was still causing controversy.)

The Maggie

The following year (1902) saw the introduction of the Marconi magnetic detector, a device which enabled traffic to be handled at a rate of about 30 w.p.m.-more than three times that permitted by the best coherers. The cable companies, already alarmed by the transatlantic feat, were further perturbed by the advent of the 'Maggie' which brought wireless operating speeds on a par with their own. This detector remained as standard Marconi receiving equipment for a number of years and is known to have survived to the 1920 s.

SThort-wave beam system

All experimental work done after the 1901 transatlantic experiment seemed to
indicate conclusively that the use of long waves in conjunction with high powers was the correct formula for long-distance communication. Thus by 1918 we find the Marconi 'timed spark' station at Caernarvon transmitting on 14,000 metres with a power of 200 kW , using a directional aerial which could radiate towards New Brunswick or the Antipodes. To this was added, in 1920, a long-wave 100 kW valve telephony transmitter which also established contact with Australia.

Ever since 1910 Guglielmo Marconi had had the dream of providing the British Empire with a chain of wireless stations to link its units together in a manner which would not be nearly so vulnerable as the cable circuits in time of war. Various governments, for various reasons, had procrastinated over this and the issue had not been settled by 1924, but matters then looked more hopeful and in fact, orders for long-wave high-power (1000 kW) stations had already been received by the company from Australia and South Africa. At long last, Marconi's cherished ambition was coming true.
Into this situation Marconi and his assistant C. S. Franklin themselves inserted what was very like a spanner in the works. Various experiments on wavelengths between 10 and 100 metres had been undertaken since 1917; these were primarily for short-haul links, but it had been noted that on occasion the signals, while dying out at a comparatively short distance were reappearing hundreds of miles away. Wireless amateurs too, having had these 'useless' wavelengths forced upon them, were reporting trans-oceanic ranges which occurred at some times and not at others. Marconi and Franklin, in 1923, conducted exhaustive experiments between a specially built short-wave station at Poldhu and Marconi's yacht Elettra and these fully confirmed the skip-distance effect. Further tests, using various wavelengths from 32 to 92 metres established a rough rule-of-thumb as to the best wavelength to use at a given time of day to reach a given destination; it was also established that Australia could be contacted with a fraction of the power used by the longwave giants.

This, then, was the nature of the spanner. Orders were on hand for two huge, expensive long-wave stations. But,
secreted in the company files, were details of an entirely new concept; the use of short waves which, by reason of the manageable dimensions of the aerial arrays, could be beamed to destination instead of being scattered broadcast. Should the long-wave orders be executed notwithstanding, or should the customers be informed of the new development?

The solution was not so simple as all that. Freak propagation conditions might account for the extraordinary ranges; time alone could tell whether this was so or not. Again, the short-wave beam equipment used had been strictly experimental; it all needed engineering. Was it justifiable to put forward a largely untried experimental rig against a proven (but very much more expensive) system?

Marconi had everything to gain by proceeding with the original order and then developing the beam system at leisure, producing it some years later. Characteristically, he did it the hard way and kept faith with his customers, the Australian and South African governments. He told them the exact situation, offered beam stations in lieu of the long-wave giants and let them decide for themselves. Both opted for the beam system, with Canada following suit. The British Government and the Post Office agreed to the provision of an Empire beam system, provided that the first circuit (between Canada and Britain) fulfilled the stringent conditions laid down. It did so, and by the end of 1927 the Empire beam service was in full operation.

Not the least remarkable part of the story is the technical feat of C. S. Franklin and his small team. With the decision made, Franklin had to engineer the experimental transmitter into production form, to modify valve design, to design the various aerial systems to operate on the wavelengths selected and to devise a means of conveying the output power of the transmitter to the aerial system without undue loss. All this was done in a matter of weeks-the last-mentioned by Franklin's invention of the concentric feeder, forerunner of the coaxial cable.

Thermionics

Not all momentous steps are immediately recognized as such. An instance occurred

Receiving station

 at Bridgwater, Somerset, typical of the MarconiFranklin beam stations set up in 1926 for the Post Office.in 1904 when Dr. J. A. Fleming, Marconi's Scientific Adviser, utilized the Edison effect (originally noted 22 years earlier) to develop the first thermionic valve, the diode. Although not the first electronic device to be used (the 'Italian Navy' or 'Solari' detector of 1901 was a form of semiconductor rectifier) the Fleming diode was, nevertheless, the foundation stone of electronics as we know it today.

In 1906 Dr. Lee de Forest, of the U.S.A., set the cat among the pigeons by patenting a three-electrode valve, for which powers of amplification were claimed. Fleming was never a man to suffer rivals graciously and the Marconi Company promptly filed an action to restrain de Forest from manufacturing and to invalidate his patent, claiming then the diode constituted the master patent and that the third electrode, the 'gridiron', was an appendage. The first lawsuit, heard in the U.S.A., gave Marconi's the verdict, but this ruling was overset by another court. There followed an interminable series of legal actions which dragged on for years. Although World War I brought an easement of the situation, the wrangle was not finally resolved until the 1920s, when a compromise was effected.

The circumstance was ironic in that, at the onset, the squabble was over a virtually useless device. The early triodes had practically no amplification factor and were, at best, temperamental performers. Their theory of operation was imperfectly understood and it was widely accepted that a 'soft' vacuum or a gas filling was essential. Not until 1911-12 when research by Dr. Irving Langmuir and others produced the 'hard' or high-vacuum valve, was the device transmuted into a really effective component. The importance of this work cannot be over-emphasized because, for the first time, a batch of valves with reasonably similar characteristics could be predicted and manufactured.
In 1913 came another tremendous technical advance when A. Meissner (Germany) patented the first thermionic generator. In this he was closely followed by Franklin and Round (Britain) and, a little later, by Armstrong and de Forest (U.S.A.) This discovery not only made wireless telephony a practical proposition (although it had been done before by non-thermionic means) but it formed a critical point in the history of electronics. Until that time there had been one broad highway and one only-wireless telegraphic communication. The development of the triode valve in its dual roles of amplifier and generator (a process accelerated by the Great War) brought a post-war diversification which has continued to this day.
Sound and television broadcasting, the present gramophone industry, the talking picture industry, public address systems, electronic navigational aids, television, radar and electronic test instrumentation are just a few of the roads which branched from the wireless telegraphy highway as a result of the

2MT, the Writtle, Chelmsford, transmitter operated by P. P. Eckersley in 1921/2.

Lauritz Melchior broadcasting from the Chelmsford works of Marconi in 1920-two years before the formation of the B.B.C.
development of the triode, and which are now arterial roads in their own right.

Broadcasting

All these diversifications, like Topsy, 'just growed'. Sound broadcasting for instance, came into being after World War I largely by accident when engineers at Westinghouse in the U.S.A. and Marconi's in this country, becoming bored with reciting into their respective microphones for range tests, used gramophone records as interludes during which they could restore their vocal chords. To their surprise they found they had a small but coviferous ready-made audience of amateurs clamouring for more. In Britain, this situation led, via the Melba and Melchior concerts, the joyous 'send-up' approach of P. P. Eckersley and his team at 2MT Writtle and the sobriety of the original 2LO at Marconi House in the Strand, to the formation of an association of British radio manufacturers known as the British Broadcasting Company in 1922. (It became a Corporation in December 1926.)

Television had a rockier road to tread. Historically its concept (as a closed circuit system with wires as the transmission medium) pre-dates sound broadcasting by more than half a century. Its practical realization, however, had to await the development of the valve amplifier. For
example, the apparatus designed by Nipkow in 1884 did not come to fruition until 1926 when John Logie Baird, using the Nipkow system of spinning-dise scanning, with the indispensable additions of an improved photo-cell and valve amplifiers, became the first man to give a public demonstration of television pictures which had movement and a degree of light and shade in them. He also implemented a suggestion made by A. Sinding-Larsen in 1911, namely that the signals generated by the televising apparatus might be used to modulate a radio-frequency carrier wave.

Not all steps which are taken are forward ones. In 1907 Professor Rosing (Russia) had pioneered the use of the cathode-ray tube as a means of picture display and achieved still pictures of simple geometric shapes. In the following year A. A. Campbell Swinton (a Scot) outlined a proposal for an all-electronic scanning system; he followed this three years later (1911) with a more detailed account and set down the essentials of the modern camera tube. He also visualized the receiver as using a cathode-ray tube type of display. Nothing significant was done to develop such a scheme, however, until V. Zworykin (U.S.A.) patented his iconoscope in 1923 and P. Farnsworth, another American, was known to be working on his image dissector. Zworykin's camera tube embodied the

Using the Nipkow system of spinning-disc scanning, Baird gave public demonstrations of television in 1926.
important inter-scan storage principle, which Farnsworth's did not. Neither inventor, it seems, knew anything about Campbell Swinton's proposal at that time.

Both devices presented immense difficulties in manufacture and it was not for some years that a practical demonstration of either could be given. In the meantime Baird demonstrated, in rapid succession, the production of television pictures in darkness, colour television, and stereoscopic pictures and in 1930 began a limited experimental 30 -line public service, using two B.B.C. medium-wave stations, one for vision, one for sound.

The publicity he gained in the late 1920s encouraged many of the bigger radio manufacturers to investigate the possibilities of television. Unfortunately almost all their effort was concentrated on various mechanical systems and in consequence a good deal of money went down the drain.

Electric and Musical Industries Ltd was one company which thoroughly investigated mechanical scanning, the EMI team being under the brilliant leadership of Isaac Shoenberg. By 1932 Shoenberg saw clearly that electronic scanning was the system for the future and intensive research was done on camera tube design, resulting in the Emitron tube. The team also developed interlaced scanning.

In 1934 the television interests of EMI were merged with those of the Marconi Company to form a new organization, the Marconi-E.M.I. Television Company ; by so doing the skills of E.M.I. in video work were allied to Marconi expertise in wideband modulation and amplification (it had been realized for some time that the complex high-definition video signals would have to be transmitted at v.h.f.)
Two years later (1936) the Government appointed Selsdon Committee recommended a public trial of the Marconi-E.M.I. system against a new high-definition system developed by the Baird Company. Transmissions on both systems, on a turn-and-turn-about basis, were radiated by the B.B.C. from Alexandra Palace, North London, for

[^5]several months from November 2nd, 1936. The Marconi-E.M.I. Company transmissions employed all-electronic scanning at 405 lines per frame, interlaced, while Baird used 240 lines sequential scanning; high-speed Nipkow discs performed the scanning process for televizing individual subjects in the Baird studio, while an intermediate film system took care of larger scenes. By February 1937 the battle was over, the MarconiE.M.I. system emerging the winner. Transmissions were, however, suspended from the outbreak of war in 1939 until June 7th, 1946.

Electronics diversification

Over the years, from the mid-1930s to the present time, electronics research effort has mounted steadily; gone are the days of the lone-wolf investigator, his place taken by the mass-attack technique or by a sizeable team. The resultant multiplicity of inventions in a great diversity of directions makes it extremely difficult to select those which constitute the most significant advances from a list that would fill a book.

Which to mention in a limited space? The development of v.h.f. and microwave techniques immediately clamours for attention. So also does the study of the ionosphere and troposphere; the development of the super-het and frequency modulation by Armstrong; the pioneering of radio astronomy by Jansky and others; these and dozens more cry out for comment. But, in the space available, three innovations, radar, the transistor and satellite communications stand out as vital steps in the technology.

Radar

Hertz in his earliest experiments had shown that wireless waves could be reflected from a metallic screen; Tesla, in 1900, suggested that such waves might be used to detect moving objects, while in 1904 Hülsmeyer actually patented a rudimentary form of radar. Then the dark ages set in; not until 1916, when Marconi and Franklin were working on two metres, was interest revived in reflected waves. This was referred to by Marconi in 1922 in the course of a speech to the American Institute of Engineers when he gave a remarkably accurate prophecy of how the detection of remote objects might be accomplished.

The practical development of what is today known as radar began with the work of Appleton, Barnett, Briet, Tuve and others in ionospheric sounding; the two last-mentioned seem to have been the first to have used pulsed transmissions for the purpose.

The first proposal for the use of pulsed transmissions for radar purposes was made in 1931 by Butement and Pollard of the Signals Establishment at Woolwich. They built a 50 cm equipment using a rotating beam and succeeded in detecting echoes from objects at a range of about 100 yards, but neither the War Office nor the Admiralty were interested and so the work was abandoned for lack of support.

Robert Watson-Watt's paper "Detection and Location of Aircraft by Radio

Examples of early klystron and magnetron tubes.

Methods", produced in 1935, is well known, as also is his work on the development of a practical radar system, for which he was subsequently knighted. Watson-Watt's work in this connection provided the chain of radar stations of various types established in Britain by the beginning of World War II. In 1939, the development of the resonant cavity magnetron by Randall and Boot was another momentous forward stride, in that it made high-power centimetric radar a reality. Centimetric Air-to-Surface Vessel radar, when introduced, brought a dramatic increase in U-boat destruction. Airborne radar for the interception of night raiders and a form of secondary radar which identified 'friendly' from 'hostile' aircraft were also introduced early in the war.

In the post-war years, to date, both ground and airborne radars have come into wide usage on civil aircraft and have become an indispensable air traffic control aid at busy airports.

The transistor

Beyond question no other single component developed in the post-war period has influenced radio communications (and electronics in general) to anywhere near the same extent as the transistor. The rectification properties of certain crystals were known in the early 1900s and in 1906 Dunwoodie introduced the carborundum detector. Various crystal rectifiers have been used over the years, reaching their hey-day in the sound broadcasting boom of the mid-1920s but surviving in enormously improved form to the present day.

In 1911 Dr. Eccles announced the oscillating crystal but experimental interest in this lapsed for many years until $W . W$. in 1924-5 published various articles dealing with the phenomenon.

Contrary to general belief, it would seem that the first solid-state amplifiers as we know them were not, after all, invented at Bell Telephone Laboratories. The distinction goes to Dr. J. L. Lilienfeld who filed a patent entitled "Method and Apparatus for Controlling Electric Currents" in Canada in-1925. Although his description of how his invention
worked is wrong, the drawings show it to be a form of n-p-n transistor. Just why the potentials of this device were not explored is not known, but the next announcement of a solid-state amplifying device is that of Shockley, Bardeen and Brattain of Bell Telephones who, in 1948, announced their development of the point-contact transistor, for which, subsequently, a Nobel Prize was awarded.

Communication via satellite

The evolution of radio communications has, until fairly recently, been largely a matter of coming to terms with the ionosphere. No single frequency band is ideal for all purposes; each has its advantages and limitations. The l.f. and m.f. bands are, for example, suitable for long- and medium-range transmission, but can accommodate only one information channel per carrier. H.F. transmission systems also provide long-range facilities but can carry only a few channels. The very high frequencies and ranks above give progressively greater channel-bearing capacities but the direct signals are limited in range to line-of-sight and therefore, as a generalization, could only achieve long-distance working by employing a series of installations as point-to-point links \dagger.

In 1945, Arthur Clarke, in a $W . W$. article entitled "Extra-Terrestrial Relays" prophesied that future progress lay in the direction of artificial earth satellites equipped with receivers and transmitters. This forecast came to practical fruition in the early 1960s and, in particular, in 1962, when the Telstar satellite was the medium of a successful series of communication transmissions (including television programmes) between the U.S.A. and England; subsequent launchings of synchronous satellites have provided a 24-hour service to the point where communication via satellite is commonplace. By such means, v.h.f. and the higher frequencies have been freed from their former short-range limitations and can have their multi-channel capabilities exploited for long-distance communications. To date, however, h.f. still remains the backbone of long-distance radio communications, on economic grounds.

Knowledge versus wisdom

As is, I suppose, proper in a technical journal, the discussion has been confined to technical advances. Whether the application of such discoveries has made for a better world is not the business of the engineer and the physicist. Or is it? How far are we responsible for the part radio communication has played - and contin ues to play-in the destruction of lives in war-time? Again, sound and television broadcasting has affected the pattern of living to a profound degree, the extent of which we cannot fully appreciate. Its vast potential for moulding social behaviour and world opinion is, however, all too often concentrated on holding a distorting mirror to the faces of its audience. Are our hands clean in this respect?

[^6]
Some of the controversies that have raged over the years

by "Cathode Ray"

One basic theory which, I suspect, is held by many today is that way back in 1911 -and no doubt for many years after - 'wireless' was developed in scientific darkness on a 'try it and see' basis, quite different from the modern approach. A look through the early issues of The Wireless World would surprise and enlighten any who think that the theoretical basis of those far-off days was good only for a giggle.

The first thing that pulled me up when I did some browsing was an article by H. M. Dowsett in the May 1913 issue, 'Molecular Structure of Insulators'. That title wouldn't look at all out of place in 1971. It was quite a simple treatment which one could hardly improve upon for present-day beginners. After all, though Fermi-Dirac statistics have entered our ken in the meantime and would have to be included in any full treatise on insulators, one doesn't need them in an elementary picture.

Prof. G. W. O. Howe's treatises on electromagnetic waves (Nov. 1913) and aerial capacitance (1915) were not elementary. I suspect the Editor would quickly turn them down today as too mathematical. All levels of intellect were catered for in The Wireless World and besides theory articles for beginners a free wireless instruction course was offered by a certain Robert Baden-Powell. (The Wireless World itself was almost free, by our standards, being 5 s a year - 12 issues-including postage.)

One notes with interest that as early as 1911 someone was asking 'Does Wireless Affect the Climate?' Nuclear explosions, moon rockets and the Concorde have now largely taken the place of wireless as a scapegoat for unusual weather. It is worth noting that 60 years ago Campbell Swinton delivered a paper which included a detailed outline of essentially the present system of television, using cathode-ray cameras and receiving tubes.

Among people still living, John Scott-Taggart seems to have been the first to appear in The Wireless World (Dec. 1914), followed closely by H. S. Pocock (Feb. 1915). P. G. A. H. Voigt, better known how for audio, wrote on reflex receivers in Dec. 1921. It was not until 23rd Aug. 1923 that I came in, but still far
enough back to make it hard for me to imagine what it is like to start now. Is there anything to compare with the excitement we had on first hearing spark morse signals, very memorable still after 50 years? Observation of the way children now accept colour television leads me to doubt it. But such reminiscing is an intolerable self-indulgence by the aged, and anyway is outside my present brief.

As we look back have we any ground at all for a feeling of superiority about our present-day theory? Well, however sound people like G. W. O. Howe may have been (and he long continued to get us on the right tracks with his famous editorials in Wireless Engineer, the sister journal of $W . W$.) one must admit that many in the amateur fraternity (and some even of the professionals) were a bit hazy. The principles of tuning caused a lot of difficulty. One of the main problems at the relatively low radio frequencies used was interference due to atmospherics, or $X \mathrm{~s}$ as they were called. All sorts of ideas for tuning them out were thought up, usually in ignorance of the fact that interference of this kind, being almost aperiodic, shock-excited the tuning circuits at their own natural frequency.
'Cathode Ray' started his inimitable series of expository articles in Wireless World in 1934. Many of these articles have since been published in book form-'Second Thoughts on Radio Theory' and Essays in Electronics'. For many years the identity of 'Cathode Ray' was closely guarded but eventually it became known that it was M. G. Scroggie who has contributed to the Journal under his own name since 1923. When accepting our invitation to contribute to this 60th birthday issue he wrote 'Your letter started me on to calculating how much I have had published in $W . W$.; the result is 725 contributions (including reviews and letters over 47 years, totalling $1,400,000$ words. Can anyone top this record?' If we exclude members of the staff, the answer is no! Mr. Scroggie graduated at Edinburgh University and was chief engineer of Burndept Wireless Ltd from 1928 to 1931 and since then, except for the war years, has been a consulting radio engineer. During the war he was first in charge of the early CH radar station at Pevensey, Sussex, and then at No. 9 R.A.F. Radio School before going inte $t^{\prime \prime}$ "ir Ministry.

The urge of amateurs to achieve the maximum ranges of communication was often unaccompanied by a corresponding grasp of the factors involved, and a belief grew up that results were essentially outside the scope of theory and were maximized by following the superstitions of the most successful DX witch doctors. So it was refreshing to read (in Experimental Wireless and Wireless Engineer, Dec. 1924) a letter from E. H. Robinson demolishing one of these fetishes, broadly-tuned c.w. transmissions', and ending 'I should like to suggest that the many amateurs who despise theory as not in agreement with practice should inquire more closely into their actual knowledge of theory and the precision with which they observe practical facts'-advice that ought to be pasted in large letters on the walls of many labs as well as shacks.

In fairness to amateurs we must remember the other side of the coin: the professionals relied on their theory that short waves were no good for long-distance communication, so they allocated them to amateurs. They regretted their generosity when the amateurs opened up communication with the antipodes on a few watts. The old theory had to be replaced by a better one.
The supreme example of the ultimate triumph of theory is, of course, the semiconductor revolution. So long as work in this field was guided by practical people it was restricted mainly to fiddling with the catswhisker to find a sensitive spot on the chip of natural galena crystal for better reception of 2 LO . That, and perhaps copper oxide rectifiers in the charger needed to keep the l.t. battery fit to heat the bright-emitter valves which were displacing crystals. How vastly different since the physicists stepped in with their Fermi levels and things!
Although examples can be quoted of progress being made with the aid of theories afterwards proved to be wrong, in general it is helpful to pick the right theory. The most entertaining situations arise when theories clash. When Galileo was threatened with dire penalties unless he recanted his theory that the earth moves round the sun (instead of being the fixed centre of the universe) he did so, but is said to have muttered under his breath

$$
\text { , ..ess } \bar{W}_{b}
$$

'and yet it moves'; just ω in my young days we inaudibly added I don't think' to the declarations of good intent forced on us by parent or teacher. The classic example of a clash of theories in our own field was the great sideband controversy.

Anything of the kind would probably be impossible today. Persons who declare that the earth is flat stand no chance of raising a furore. But around 1930 a world-famous authority in the field of radio, Sir Ambrose ('the valve, invented by me') Fleming, F.R.S., declared-and stuck to it-that sidebands were imaginary; a mere mathematical fiction. This was of more than academic importance. As W. T. Cocking mentions elsewhere in this issue, a new and supposedly revolutionary type of receiver (the Stenode) was claimed to be proof of the wrongness of orthodox sideband theory. And the future of television appeared to hang on it.

Not even the caustic wit of G. W. O. Howe succeeded altogether in dispelling doubts, and in the end a Governmentsponsored committee was set up to investigate. Its findings, Special Report No. 12 of the Radio Research Board, published by H. M. Stationery Office in 1932, coldly and relentlessly re-established orthodox theory.

Although hardly such a cause celebre, the biggest correspondence I ever had on any article arose from one on a very similar subject, under the title 'Fourier -Fact or Fiction?' (W.W. Sept. 1955). Here again the theory is that a current (or other variable) which in pratice is generated as a whole, is nevertheless equivalent to a number (if necessary, infinite!) or harmonic components of constant amplitude. Coming 25 years later, this controversy revealed hardly any doubt about the reality of the harmonic components, but centred on a rather more subtle question posed in the article. Granted that there are good practical grounds for the unique place of sine waves in theory of this kind. Could some waveform other than sine wave be regarded as basic and an entirelydifferent but valid theory be erected on that basis? One correspondent declared this discussion to be 'singularly fruitless'. So it may have been in this particular case, but one of the most fruitful mental exercises is to do just what was suggested: question our assumptions. This is a hard mental exercise, so is seldom done. Progress is made by doing it. We tend, lazily, to cherish the concepts we have been brought up on and which have served us well, until we are convinced there can be no reasonable alternative.

I have become only too familiar with this kind of inertia in connection with phasor diagrams. This valuable aid to visualizing the workings of electronic circuits is rejected by all but a few because it looks like an unfamiliar-and therefore difficult-variety of the 'vector' diagrams that we know so well. These we have already found to be almost useless for electronic circuits and no help in understanding ordinary electrical a.c. circuits unless those circuits are simple
enough to beurable without. These old 'vector' diagrams must bear a lot of the responsibility for the widespread teaching (even in textbooks) that there is a phase reversal between primary and secondary of a transformer. (With incredible self-control I'm going to say no more here about my alternative!)
Just after the last World War another controversy raged, about valve equivalent circuits. This time even G. W. O. Howe seemed to lack his usual gift for clearing away the red herrings and revealing the essential, which in this case is that the valve and its equivalent circuit are two quite different things. So the source of anode d.c., necessary for one, has no place in the other. The reference direction of output signal current in the equivalent circuit must be decided without reference to that d.c. source. A pity that muddled thinking on this plagues present-day transistor conventions.

More unnecessary confusion was introduced into valve amplifier theory by the work of Bode admittedly classic, but misguided) on negative feedback in that the symbol μ (a universally accepted standard symbol for voltage amplification factor) was used for actual voltage amplification; which is better denoted by A. The devil of it was that μ is correct in the formula for output impedance with feedback, but not in the others, for gain, distortion reduction, etc.

During the last War I was shocked to find many radar instructors teaching that when (say) a positive-going input signal is applied to a $C R$ circuit, as shown in Fig. 1, the output also goes positive because of the charging of C. In fact, of course, any charging or discharging of C appears only as distortion of the signal at the output.

Talking about distortion, I would like to mention a variety which I named scale distortion (W.W. 24th Sept. 1937, p.318; also Nov. 1948, p.392). When thrown into any assembly of audio experts this term used to act like a petrol bomb in Bogside. Guaranteed instant controversy. I don't know whether it still works. The main point was that unless an audio scene' is reproduced at the same intensity at the listener's ear as the original, what he hears is a distorted version, in that the tonal balance (especially the proportion of bass) is upset.

In this statement, only the word 'distortion' could be seriously questioned. Often it was denied that it could be distortion, since the same effect was noted if one moved away from the original

- und, or nearer to it. Not quite true, for certain spatial effects would change too; but ignoring them I feel that if the objector had paid for the best seat, acoustically speaking, for a piano recital, and was obliged to sit half-way along the corridor, with the door open, or close against the piano, he might well use an even ruder word than distortion'. The comparison should be with the original heard in a favourable position. The other main argument concerned what, if anything, one could do about it when the reproduced intensity was unavoidably not the same as the original. Attemps to 'compensate' by having a tone control linked with the volume control were, in my view, misconceived.

Controversy tends to wax especially hot when, as in this example, subjective aspects are involved. Even a stone deaf man can measure sound intensities, but neither he nor anyone else is likely to agree about loudness; still less, unpleasantness. And all our work ultimately does involve subjective perception, rather than purely physical
What of the future? Since in all our theories we use concepts (such as fields) which of their nature cannot be said to be absolutely true or false (Essays in Electronics (lliffe), Chap. 1.) there may come a day when it will be found more convenient to use some alternative concepts. But human inertia tends to keep established concepts established. Then of course we can look forward to the discovery of new phenomena, possibly calling for new concepts. But the way things are going I would expect the greatest developments to concern the aforementioned mysterious link between objective phenomena and subjective perception. As a result of new theories of perception we may well be able to improve our equipment by discovering more precisely the physical factors that yield desired or undesired subjective effects. The Haas effect, which decides whether voice reinforcement appears to come from the actual speaker or not, is an example of what has been done along these lines.

To realize how difficult is investigation in the subjective, compare the most sophisticated computer that exists or can be imagined with a human being of very limited attainment-say, an average young child. Even a child has aesthetic likes and dislikes, outside the capacity of the computer. Why? Can strictly scientific investigation tell, or is it for ever beycnd its scope? Is it because human beings are not just machines?

The World of Amateur Radio 1911-1971

By Pat Hawker, G3VA

From a few thousand to half-a-million transmitting amateurs ... from spark to s.s.b. . . . from a few miles to moonbounce ... from coherers and crystal detectors to m.o.s.f.e.ts and integrated circuits from jiggers, slide tuning coils, high-speed rotary gaps, motor ignition coils and Wimhurst machines to transceivers and transistors . . . from the bright emitter valves of the twenties and the wide open spaces of " 200 metres and down" to the current pressures on the narrow frequency assignments . . from causing broadcast interference on the old 440 -metre band to television interference, the dominating problem of the past few decades. Yet always the same interest in extending working ranges whether on 200 metres or 2400 MHz ; the same problems of how to improve receiver selectivity and sensitivity -and almost always the same fears that other interests and authorities may wish to limit the scope of amateur communication.

Historically, amateur or 'experimental' radio reaches back more than 60 years-indeed it began as soon as the results of Marconi and the other pioneers started to reach outwards from purely scientific circles. In the U.K., its official beginning was determined by the Wireless Telegraphy Act, 1904, with its provisions for the use of 'wireless telegraphy for experimental purposes'-though the hobby remained unregulated in the U.S.A. until December, 1912, when the amateurs there were banished to the 'useless' and unwanted regions of ' 200 metres and below'.

In the pages of 60 years of Wireless World one can trace the major events which make up this durable interest. You can find descriptions of pre-1914 amateur stations, including W. K. Alford's station TXK the forerunner of his present call G2DX; the formation in 1913 of the Wireless Society of London which, in 1922, became the R.S.G.B. and for which Wireless World was the official journal until February, 1925.

Early days

It was in the years from 1911 that amateur radio emerged as an activity distinct from the early dabbling in wireless telegraphy -then, as now, with strong links with similar activity in the U.S.A.

This illustration accompanied a description of W. K. Alford's station in the October 1914 issue of Wireless World.

Yet the links with modern operating were by no means tenuous. Wireless World in 1914 reported an attempt by the Wireless Society of London to put an end to 'jamming' that reads as though it could have been written yesterday. Among the 13 rules were: transmitter to be sharply tuned; receiver to be as selective and sensitive as possible. Those early amateurs were advised: 'do not transmit at less than 12 w.p.m.; listen carefully before calling a station; never carry out testing work with the aerial on that can be done equally well with it off; always use minimum power; refrain from answering a station that is calling some other station; listen in after finishing a conversation to see whether anyone is waiting to call you ...?

And the clubs were forming. A Junior Wireless Club (later to become the Radio Club of America) had been formed in New York in 1909 at the same time as Hugo Gernsback began publishing Modern Electrics with a large radio content. In 1911, the year W.W. began as The Marconigraph, five enthusiasts formed the Derby Wireless Club, which-as the Derby and District Amateur Radio

Society-is currently engaged in marking its own 60 th anniversary. The club met weekly, possessed a library, carried out experiments-one of these was to use two buckets as a variable capacitor; one suspended from a pulley by a cord to raise and lower it into the other! Those Derby enthusiasts soon decided that 'the secret of successful reception is a high aerial and a good pair of headphones'.

In 1912, the first British Commonwealth 'national' radio society was formed--the Wireless Institute of Australia (still the society representing Australian amateurs) and it was reported that some 400 experimenters in New South Wales were covering distances up to 30 miles with converted $\frac{1}{2}$-inch motor ignition spark coils.

In Britain, by 1914, 990 of the old three-letter experimental calls had been issued; there was even, in 1913, a 'directory of stations' published by Gamages which had emerged as one of the main suppliers of equipment to amateur experimenters. Meanwhile the hobby was going great guns in the United States, with A.R.R.L. formed in 1914, but then as only
one of a number of groups catering for amateurs. After the close-down of British stations in August, 1914, the Americans continued active until 1917 with as many as 6000 stations. occasionally working distances over 1000 miles. One of the early American amateurs was none other than Edwin Howard Armstrong whose regenerative receiver, used in his amateur station, was the first of this brilliant engineer's many inventions.

Broadcasting and short waves

After World War I came a long struggle to re-establish amateur radio transmitting (and even receiving which had equally been banned during the war). In this struggle Wireless World played a major role. As early as March 1919 an editorial, with the support of Marconi, Fleming and Eccles, made a strong plea for the removal of restrictions; Marconi wrote 'I consider that the existence of a body of independent and often enthusiastic amateurs constitutes a valuable asset towards the further development of wireless telegraphy.'

But it was late in 1920 before transmitting licences were again issued with callsigns of current form (except for the absence of official international prefixes until 1928) for 1000 metres (later changed to 440 metres) and below 180 metres. By this time word was trickling through of long distances being covered by American amateur spark and valve (c.w.) stations: 500,1000 and even 2000 miles on wavelengths of about 200 to 230 metres.

Soon plans were launched for transatlantic tests, with the British listeners organized by Philip Coursey, 2 JK , then research editor of Wireless World. The first tests in February, 1921, proved a failure, but new tests were planned for the following winter. Paul Godley, American 2ZE, brought over receivers which he set up at Ardrossan, Scotland. During the December tests he logged 27 American and one Canadian station, but this time several British listeners also heard transatlantic signals. On 11th December, 1921, the special Radio Club of America station 1 BCG sent the first complete amateur message across the Atlantic-one of the signatories was Armstrong. These tests finally settled the spark versus c.w. controversy, overwhelmingly in favour of valve transmitters.

During his stay in England Paul Godley lectured to the Wireless Society of London saying 'one has far greater hopes of being able to travel greater distances on shorter wavelengths than on higher wavelengths'. This was a hint of things to come-the historic pioneering of short waves by amateurs. The breakthrough came in late November 1923 when Leon Deloy, French 8 AB , worked the A.R.R.L. station of Fred Schnell, 1MO, on about 100 metres, initiating a mighty rush to short waves. Jack Partridge, 2KF, was the first British station to work the Americans, on 8th December, 1923. In January, 1924, E. J. Simmonds, 2OD, made contact with
the States with an input of only about 30 watts. In the autumn Cecil Goyder, a 16 -year-old schoolboy at Mill Hill, and Gerald Marcuse, 2 NM , made contact with Frank Bell, Z4AA, in New Zealand. It was feats such as these that really woke communication companies to the possibilities of the short waves they had previously scorned.

Not all amateurs in the 'twenties were interested in long-distance working. In 1920-21, with no regular broadcasting in the U.K., British amateurs began putting out gramophone records and even live concerts-sometimes with official blessing, sometimes without it. The Wireless Society organized a massive petition, signed by 63 clubs representing 30,000 enthusiasts, asking for regular broadcast ing. Amateurs can also claim to have initiated Empire broadcasting when Gerald Marcuse, 2NM, began a series of transmissions on about 30 metres, well in advance of the first B.B.C. station G5SW.

But the coming of broadcasting soon brought problems to the amateurs, and 440 metres was lost. By then Hugh Pocock had been writing in Wireless World of the extent that petty rivalry was threatening to split the ranks of amateur enthusiasts. But the biggest threat was in the new regulations of April 1924 when the authorities attempted to impose a total ban on all casual international working by British stations. Wireless World immediately offered to place $£ 500$ at the disposal of the R.S.G.B. to allow a test case to be argued in the Courts. Fortunately the authorities gradually gave way (although the ban on the use of 'CQ' remained until 1946).

Later days

In the years that followed, amateur radio became established as something quite distinct from broadcasting and turned more and more to h.f. and v.h.f. Strictly speaking all licences in the U.K. were 'experimental' as the first 'amateur' licences were not issued until 1946. But, in practice, in the 'thirties the hobby was recognized, even if newcomers were restricted to 10 watts and $1.8,7$ and 14 MHz .

Frequencies continued upwards. Jimmy Matthews, G6LL, (still active) made the first transatlantic contact on 28 MHz in October, 1928, but the band went dead for some years. About the same time, amateurs began to explore frequencies around 56 and 112 MHz , then wide-open and unused. In the 'thirties came the annual contests and the operating certificates. Equipment which until then had been virtually all home-built began to be purchased. The superhet communications receiver began to displace the $0-\mathrm{V}-1^{*}$ and 1-V-1 receivers. Names such as Eddystone, HRO, Hammarlund and Hallicrafters were heard increasingly. The

[^7]crystal filter, developed for h.f. by Lamb of A.R.R.L., exploited a British development for stenode reception.

By now crystal control had replaced the old t.p.t.g. and master oscillators (and was later to be partially replaced by v.f.o.). The 'Zepp' was the popular aerial of the 'thirties. Near Chicago, Grote Reber, W9GFZ, was making the first-ever radio telescope to plot radio sources in the sky-while Dennis Heightman, G6DH, identified solar hiss. A.M. stations on 14 and 28 MHz made intercontinental phone working a daily occurrence.

On 31st August, 1939, all British experimental licences were withdrawn and amateur activity, as such, ceased until January. 1946. Many amateurs used their operating skills in the Services-and incidentally were responsible for many of the most successful feats of both British and German intelligence! Indeed, interest in the hobby did not fade away, and the R.S.G.B. actually increased membership from 3800 to 9600 during this period.

In February, 1941 , a controversy arose following the publication of an article 'The future of amateur radio' in Wireless World (and which I can now reveal was written by me), as to the form that post-war licences should take. Many of the ideas put forward during this controversy were later adopted by the Post Office when, in January 1946, the first-ever U.K. amateur licences were issued, though a number of 'incentive' elements of this licence were later to be abandoned.

But the basic terms of the 1946 licence continue through several revisions to govern the hobby in this country, though the introduction in 1964 of Class B (phone-only, v.h.f.-only) licences poses the likelihood of further erosion of interest in c.w. telegraphy, which to some of us continues to be 'inescapably the basic form of amateur communication'.

By the 1950 s, the first steps towards the now dominant s.s.b. mode of operation had been taken, 144 MHz had displaced the old 56 MHz band, 420 MHz had been opened to amateurs (including the new interest in amateur television), rotary Yagi and Quad aerials had become popular, amateurs had discovered transequatorial propagation. Two further decades have brought the transceiver and the semiconductor revolution, but the hobby has changed remarkably little in its essentials.

One might ask what is the appeal of amateur radio that attracts recruits from both inside and outside electronics and succeeds in retaining their interest not just for the average 10 years or so, but for 30 , 40,50 and even 60 years? Its recruits have included such giants as Armstrong, Ryle, Kraus, Campbell-Swinton, Fink, Terman, Henney, Collins, Eckersley, Reber, Villard, Crosby, Beverage ... and also 'outsiders' such as Barry Goldwater, Brian Rix and King Hussein.

Perhaps Wireless World summed it all up when, in 1914, it quoted Tennyson:

I hear at times a sentinel

Who moves about from place to place
And whispers to the worlds of space In the deep night that all is well.

F.M. Stereo Tuner

High-performance design for home construction

by L. Nelson-Jones, F.I.E.R.E.

In recent years there have been a number of developments in the components field, particularly in semiconductor devices, that have led to great improvements in the design possibilities for f.m. broadcast receivers. In particular these have been the advent of the dual-gate m.o.s.f.e.t., integrated-circuit i.f. amplifiers and demodulators, ceramic filters and improved variable-capacitance diodes. This two-part article describes an f.m. tuner design using these devices, discusses the advantages of the devices and gives constructional and alignment details. It does not attempt to be all-embracing and there will doubtless be some who disagree with the author's views of the current scene. It is hoped however that they do show some ways in which f.m. tuner design is currently evolving.
The work is the result of many months of design and measurement on five
prototypes, so that results are not based on a one-off, and should be reproducible by readers who wish to copy the design. The receiver was designed to achieve in a relatively simple way a performance equal to the better examples of the commercial models available, but at a much lower price. (Total material cost comes out at about £11.) Comparison with the figures given in a recent Wireless World survey of commercial tuners (September 1970) suggest this aim has been achieved. The performance of the tuner under normal conditions of use has been excellent. One of the units is in use in Blandford Forum in Dorset-very much a fringe area-and gives noise-free reception from the Isle-of-Wight transmitters, including the new local station Radio Solent.

The design for the front-end of the f.m. receiver is shown in Fig. 1. Both r. f. amplifier and mixer stages use dual-gate
f.e.ts with gate protection diodes. In the r.f. stage the upper gate is decoupled and acts as a screen between drain and gate 1 , much as the g_{2} electrode of a thermionic valve does. In the mixer stage this second gate is used as the injection point for the local oscillator voltage. There is not the same need for a screen between drain and gate 1 in a mixer stage as the drain load is not tuned to either the signal or oscillator frequencies. There is therefore little or no gain at signal frequencies to cause oscillation provided care is taken with the layout. particularly the length and placing of leads.
The magnitude of the local oscillator injection at gate 2 will affect the mixer gain and the spurious signal response characteristics of the mixer stage. This local oscillator voltage will be higher than in transistor tuners using bipolar devices by up to an order of magnitude and for the circuit conditions used a value of

Fig.1. Front-end of receiver using dual-gate f.e.ts.

Fig. 2. Intermediate-frequency amplifier using ceramic filters and

a.f.c. integrated-circuit quadrature demodulator. Circuit of $I C_{2}$ will be given in part 2 .
For stereo reception, use 150 pF and not $4.7 n F$ at pin if of $I C_{2}$.

500 mV r.m.s. gives a reasonable mixer gain without too high a spurious signal response. In fact higher levels have been used without great trouble from spurious signals. Far greater trouble can be caused by lack of screening, leading to i.f. harmonics being picked up by the front end-especially with the high sensitivity of this tuner and, because of its small size, the close proximity of the front-end and the i.f. amplifier.

The oscillator is a conventional Hartley circuit with the ground point moved to give a grounded-collector design. There is no particular advantage to be gained in using an f.e.t. in this stage so that the cheaper bipolar device is preferred. Automatic frequency control is applied by the variable capacitance diode D_{1} coupled to the emitter of the oscillator stage. A resistor of $22 \mathrm{k} \Omega$ prevents the decoupling capacitor of $0.1 \mu \mathrm{~F}$ from shorting out the oscillator voltage. The $0.1-\mu \mathrm{F}$ capacitor together with the 1 megohm resistor form a low-pass filter to prevent audio voltages in the a.f.c. voltage from reducing the modulation of the carrier by audio frequency modulation of the local oscillator.

The a.f.c. can be switched out of operation by connecting the diode to a constant reference voltage from the i.f. amplifier. Diode D_{1} is returned to the 12 -volt supply line of the oscillator so that the a.f.c. control voltage changes the diode reverse voltage in the correct direction to reduce any oscillator drift. An increase in local oscillator frequency increases the intermediate frequency, which in turn leads to a rise in the output potential of the demodulator of the i.f. integrated circuit $I C_{2}$ (Fig. 2). As the diode is connected to the +12 V supply, this increase reduces the reverse bias across D_{1}, increasing the diode capacitance and reducing the local oscillator frequency to correct its drift.

The mixer has a grounded-base stage feeding the 330 -ohm resistor needed to correctly terminate the first filter unit X_{1}
(Fig. 2). This resistor also makes a convenient low-impedance output point from the front-end. A cheap p-n-p bipolar device is more than adequate for this position, because in a grounded-base configuration the requirements in respect of high frequency or noise performance are not stringent. The working Q of the tuned circuit is less than 20 so that tuning is not critical, and it is set to maximize gain in the usual way.

The supply for gate 2 of the r.f. stage is derived from the decoupled oscillator supply rather than from the top of L_{2}. This is brought about purely by layout convenience on the printed wiring board and, as gate 2 is additionally decoupled, has no effect on the performance.

I.F. amplifier

Two ceramic filter units $X_{1} \& X_{2}$ are separated by a buffer amplifier ($I C_{1}$) of moderate gain (about 20 dB). The reason for this moderate gain is that it is desirable to place the filters as early as possible in the i.f. amplifier so that as successive stages limit with increasing signal level there is no change in bandwidth. This would be fully achieved if the whole of

Fig. 3. Graph of low-level performance shows sensitivity of $0.75 \mu \mathrm{~V}$ (for $\pm 75 \mathrm{kHz}$) for 20 dB quieting. A bove 50 uV input, signal-to-noise ratio is better than $60 d B$.
the i.f. gain were after the filter, and provided the mixer did not limit.

In practice it is not possible to achieve this ideal, but the compromise of using only moderate gain before the second filter unit is a reasonable one and does not give rise to any undue increase in bandwidth over the normal range of signal levels. The performance obtained is a great improvement over normal bipolar i.f. amplifiers using discrete components with several double-tuned i.f. transformers. In such an amplifier the selectivity of the transformers is gradually lost starting at the output end as successive stages limit and the overall selectivity can leave a lot to be desired at high signal levels.

The first integrated circuit is a longtailed pair circuit, used as a cascode amplifier by ignoring one of the top pair of transistors and driving into the long-tail transistor. The input impedance of this stage is suitable for the ceramic filter unit so far as resistance is concerned, but is above the maker's ricommendations so far as input capacitance is concerned. For this reason the resistor terminating the filter X_{1} is raised to 470 ohms, which compensates for the increased capacitance loading of the stage in restoring the top of the filter characteris ic to reasonable flatness.

The load of the cascode stage is a 330 -ohm resistor-to drive the filter X_{2} from the correct source impedance. This low value results in the stage gain being low, especially 'when the loading effects of the filter are accounted for, so that although the slope of the cascode stage is around $100 \mathrm{~mA} / \mathrm{V}$ the overall gair from the output of X_{1} to the input to X_{2} is only a little over 20 dB .

The input impedance of the $I C_{2}$, around $2 \mathrm{k} \Omega$, is not very much greate. r than 330 ohms so that a terminating res istor of 390 ohms is used at the output of X_{2}. The value of the feed capacitor 'quadrature' tuned circuit L_{5} is la the maker's recommended valu the ger than of 18 pF .

The value is not very critical in practice and up to 47 pF has been used with little change in performance once the circuit had been retuned. It is likely that with large departures from the recommended value there will be an increase in distortion, but no appreciable effect is likely to stem from the increase to 22 pF , a value more readily available than 18 pF .

One possible reason for the apparent insensitivity to the value of this capacitor is that the quadrature drive voltage is derived from a resistive tap on the load resistor of the final stage of the i.f. amplifier of $I C_{2}$. The value of the impedance at this tap is fairly low, and as the coupling to the circuit is increased by increasing the value of the capacitor, the damping effect of this resistor increases, lowering the Q of the quadrature circuit, and compensating-at least to some extent-for the increased drive and tending to restore the correct phase relationship.

The audio output from pin 14 is taken via a $2.2-\mathrm{k} \Omega$ resistor to provide additional overload protection.

The reference used when a.f.c. is not required is derived from a potentiometer across the supply. The values chosen give a voltage close to that obtained at pin 14 of $I C_{2}$ (when there is either no signal or the signal is at centre frequency). The output level at pin 14 of $I C_{2}$ stays fairly close to around 46% of the supply voltage over the range $10-16$ volts, and thus a simple potential divider is adequate for this reference voltage as this will also provide such a percentage of the supply voltage.

Because the output at pin 14 is a percentage of the supply voltage it is essential that the supply to the tuner be very well smoothed if hum and noise on the output is to be prevented. This is also important as the a.f.c. diode is returned to the 12 -volt supply, and supply rail hum will therefore produce frequency modulation of the intermediate frequency whether or net a.f.c. is switched on.

The requirement for a ripple-free supply was one of the reasons for the choice of a 12 -volt supply, so that adequate resistive smoothing could be used with a large reservoir capacitor. The drain of the tuner is almost constant and fairly well defined at a little under 35 mA so that simple resistive dropping is satisfactory. An important point is that with such a network it is essential that the supply to the resistor be switched to disconnect the receiver, and not the supply to the receiver from the reservoir capacitor. In this latter case the capacitor would charge up to the full supply voltage with the receiver off, and on switching on the receiver would momentarily receive the full supply, which might well be enough to permanently damage the active devices of the receiver, especially $I C_{2}$. For supplies much above, say, 36 volts some form of simple stabilizer would be preferable.

Performat ce

The low el performance of the tuner is show iig. 3. At signals above $50 \mu \mathrm{~V}$

Fig. 4. Metal bridge-covering lead from Tr_{1} drain to its tuned circuit-under the tuning capacitor is essential to maintain stability. Bridge, which can be tinplate, is detailed in F1G7 Fig. 7. Complete tuner is screened by fitting into a die-cast box.

Fig. 5. Self-supporting r.f. coils, wound wilk slightly stretched wire, are shaped on a $\frac{1}{6}$-in dia. rod.

Fig. 6. Two screened i.f. coils are wound with 33-gauge enamelled wire and secured with a little Denfix cement. Capacitors are fixed with masking tape.
the signal-to-noise ratio is better than 60 dB , and the 20 and 30 dB quieting figures are 0.75 and $1.9 \mu \mathrm{~V}$ respectively. Limiting (-3 dB) of the demodulated audio signal (single-tone filtered from noise) occurs at only $0.18 \mu \mathrm{~V}$ so that at all usable signal levels the i.f. section is limiting.
Unfortunately no signal generator was available which had an output with amplitude modulation-free from f.m., and it has therefore not been possible to check the a.m. rejection of the receiver. However, it is expected that the result will be close to the figure quoted for the i.f. integrated circuit $\left(I C_{2}\right)$ at moderate signal levels, with an improvement when the first i.f. amplifier limits. The figure quoted for the TAA661B is 40 dB at 10 mV input, equivalent to around $10 \mu \mathrm{~V}$ input at the aerial. Performance is summarized in the table on this page.

General layout

The tuner is constructed on a single-sided printed circuit board and is divided into two areas. The front-end and the i.f. amplifier are laid out separately, side by side, on a printed circuit board about 10 $\times 8 \times 5 \mathrm{~cm}$ overall, and in such a way that they may be separated if desired.

The complete tuner is enclosed in a screened box to cut down on spurious responses due to radiation from the i.f. amplifier, and to reduce local oscillator radiation to a minimum. This screening is especially necessary with this design because of its very high sensitivity.

The dial drive system suggested gives a scale length of 13.7 cm with a reasonably linear frequency change over the centre 80% of this scale. A cord drive system is used which has the advantage of retaining the pointer at both ends, thus eliminating the problem of sliding friction at one end
of the pointer, and giving a much smoother drive.

The overall layout of the components is shown in Fig. 4 as seen from the components side of the board, and also in the oblique view.

In construction keep leads short and if possible test all components on a bridge before fitting them on the board, as this can save ruining a good p.c. board should the tuner not work first time. It cannot be emphasized too strongly that such component checks can save much wasted money and temper. It is also vital to check that the components are correctly located, the diode connected with the right polarity, and that there are no breaks or shorts on the 'track' of the p.c. board. This latter point is of importance on such a small board with roughly 200 component holes, as tracks are necessarily fine and gaps small. A watchmaker's eyeglass has been the constant companion of the author during the construction and design of this tuner.

Coil construction

The r.f. coils are all made from 18-gauge tinned copper wire and are self-supporting. Taps are made by soldering leads of 22 -gauge tinned copper direct to the turns of the coils-Fig. 5. The coils were made by winding the wire on a $\frac{1}{4}$-in rod such as a drill shank. The wire should be straightened by placing one end of a length in the vice and pulling the other end until the wire stretches very slightly, when the wire will have lost all kinks.

The coil wires should be a firm push fit in the board, if undue strain on the copper foil of the board is to be avoided when adjusting the coils. At all cost avoid the wires being loose in the board before soldering and if necessaiy apply the
minimum of Araldite epoxy adhesive around the 18 -gauge coil wires on the components side of the board after soldering in position. The joints should then be quickly reheated with the soldering iron to cause the Araldite to run into the holes in the board, thus securing the coils rigidly. After using such an adhesive the board must be left in a slightly warm place, e.g. an airing cupboard, for 24 hours to ensure that the adhesive has set hard.

The coils should be mounted on the board in the positions shown in Fig. 4, and with the turns of the coils nearest the board surface 2.5 mm clear of the board. In the case of the oscillator coil this must also be 3.5 mm clear of the rear face of the tuning capacitor. It is best to adjust the coils before soldering them into the circuit board to minimize subsequent adjustment, and the overall coil lengths given (over the outside of the end turns) are close to the
Performance

Sensitivity
-3 dB limiting

20 dB quieting $\quad 0.75 \mu \mathrm{~V}$
final adjusted lengths required for correct tracking.

An alternative method of mounting is to open up the main coil mounting holes in the board and insert 'eyelets' which are big enough to allow the 18 -gauge coil leads to pass through them. The eyelets are riveted into the board so that the strain is removed from the copper track. Overall connection is obtained by soldering the track to the eyelet and to the coil leads. All the main pads for the ends of the coils are large enough to allow this to be done.
The two screened i.f. coils are both constructed on Neosid coils type NS /E3, and both are wound with 33 -gauge enamelled wire, preferably of the self-fluxing variety. The two coils are wound as shown in Fig. 6 and the turns secured in place for stability with a minute quantity of Denco Denfix polystyrene cement. (Do not use modelmaker's polystyrene cement as some varieties can have high loss factors.) It is essential to use the least possible quantity as the bobbin of the coils is made from polystyrene loaded with iron dust and is very easily dissolved by this cement. When the cement has dried, place the ferrite sleeve over the coils, ensuring that the leads are well pressed down in the slot at the base of the bobbin so that this ferrite sleeve does not scratch the wires.

Next push on the polythene retaining disc. Secure the ferrite sleeve to the coil former with a smear of Evostik latex-resin contact adhesive around the join between the sleeve and the coil former near the base. When dry connect the capacitors (and the resistor in the case of L_{5}). Tape these components to the former as shown to hold them clear of the coil can. Make sure all leads are well clear of the can when this is slipped over the coil. Next fix the core into the coil. The ferrite core cuts its own thread into the polythene top retainer. Set the top of the core level with the top of the polythene retainer-Fig. 6b. This should be close to the final adjustment position. In the case of L_{4} the capacitor is connected to the coil on one side via the printed circuit, which connects pins 1 and 4 , thus placing the $68-\mathrm{pF}$ capacitor across the coil.

Fitting components to the board

Due to the small size of the board and components it is absolutely essential to use a soldering iron with a small tip which is adequately hot and clean. Lead lengths must be kept short and the components close to the board. This is especially important with the ceramic disc decoupling capacitors (1 and 47 nF types). The transistors should be pushed down onto the board until the body is 2.5 mm above the board; pushing the transistors closer than this will strain the leads unnecessarily. This rule applies also to $I C_{1}$. The second i.c. should be placed down on the board until the shoulders on each lead contact the board; the body of the i.c. vill thēn be just clear of the board.
There will be some difficulty in locating the polarity of the diode due to the small size of t is device. If in doubt check it with

Fig. 7. Metal bridge-covering lead from Tr, drain to its tuned circuit-under the tuning capacitor is essential to maintain stability.
an ohmmeter on the ohms $\times 1$ range, when the cathode will be the one connected to the positive lead of the multimeter when the meter shows conduction. (On a multimeter the polarity of the leads on the resistance ranges is the opposite to that shown on the meter panel so that the red positive lead is negative, and when connected to the cathode results in the diode being forward biased.)

There are two wire links on the board, one on either side of L_{5} in the i.f. section. These links may be either 22 -gauge tinned copper or 1-024 p.v.c. covered wire. Connections to the 3 -gang capacitor are by similar wires. The capacitor is secured to the board by two 6BA screws not longer than 4.5 mm of thread.

The link from the r.f. to i.f. sections is by a twisted pair of 1-024 p.v.c. insulated wire as shown in Fig. 4 and in the oblique view. Take care to see that this is correctly connected, i.e. the live lead of the pair connects between the collector of Tr_{4} and the input to X_{1}.

The two screened coils L_{4} and L_{5} are soldered into circuit after being pushed
well down on the circuit board so that when the can is placed over the coil it just rests on the polythene retainer at the top of the coil, while also just contacting the p.c. board. The can is put on the coil after soldering the coil into the board, and the two can tags are then also soldered to the board.

There is one component not shown on the circuit because it is not a circuit component. This is a 'bridge' across the lead from the drain of $T r_{1}$ to its tuned circuit under the tuning capacitor. This bridge continues the earth plane as well as screening the lead. It is essential to use this bridge to maintain stability in the r.f. amplifier. The bridge is necessary because of the layout limitations set by the capacitor having its connections on only one side of the body, and the need to keep the coils well spaced to obtain good stability and keep oscillator radiation low.

The dimensions and location of this bridge are shown in Fig. 7. The bridge may be made of any metal that will not corrode but will solder. Tinplate was used in the original units. Take care not to short the wire to the centre-section stator of the variable capacitor at the end of the bridge nearest to L_{2}.

If the ceramic filters need removing from the board, take care not to apply pressure when applying heat to the connections, otherwise the component will be damaged. Remove solder first with a desoldering tool or with copper braid.

In the photograph the alternative type of oscillator transistor is shown. If this type is used then the fourth connection on the transistor won't exist-used to earth the can on the TO-72 type specified (40244). Only the three connections nearest the 3 -gang capacitor will then be used. In addition, an extra lead is shown in the photograph adjacent to the integrated circuit $I C_{2}$ that is not shown in Fig. 4. This lead connects to pin 14 of this i.c. to control the a.f.c. However, as the output lead (via the 2.2 -kohm resistor) will

Fig. 8. Suggested cord system eliminates pointer friction and can be mounted in any plane.

Fig. 9. Typical scale graduations for the band 87.5 to 108 MHz .
normally have a d.c. blocking capacitor in series, it will be at the same potential as pin 14, and is therefore suitable for the same purpose.

Screening of the tuner

It is essential to screen the tuner to avoid instability in the i.f. section due to pick-up, particularly from the output lead. Although the de-emphasis capacitor removes most of the $10.7-\mathrm{MHz}$ signal and its harmonics, the output lead can still have sufficient of these signals present to cause spurious whistles when tuning if this lead is anywhere near the r.f. section. A great improvement results from connecting a capacitor of 470 pF from the output to ground which, with the $2.2 \mathrm{k} \Omega$ series resistor, removes these high-frequency signals sufficiently to make the position of this lead less of a problem. (In stereo applications the capacitor used will probably need reducing to $100-200 \mathrm{pF}$ to avoid attenuating the stereo switching waveform unduly, and if a long screened lead is used for the output the capacitance of this lead should be enough by itself.)

Protolypes were fitted into an ITT die-cast case with internal dimensions 12 $\times 9.5 \times 2.5 \mathrm{~cm}$ and is a tight fit with regard to height. Connections to the tuner should be made through insulated feed-through terminals close to the board so that all leads are as short as possible inside the screened box. A slot will have to be cut in the side of the box to allow the tuning capacitor shaft to pass through. The author found it easiest to fit the tuner board to the lid of the box, and to use the box as a cover, with holes drilled in line with the trimmer capacitors and L_{4} and L_{5} to enable final alignment with the box closed.

The board is mounted by four 6BA screws as shown in Fig. 4 and must be spaced about $5-8 \mathrm{~mm}$ from the surface of the screened box, to prevent the track-side of the board from shorting on the box. Extra nuts or spacers may be used to achieve this spacing.

Dial drive system

Fig. 8 shows the layout of the suggested cord drive system which eliminates the problem of pointer friction, and is suitable for mounting in any plane. The parts required are made by the manufacturers of the 3 -gang capacitor with the exception of the pointer, made of 18 -gauge tinned copper, or similar, and the cord. Typical scale graduations for the 87.5 to $108-\mathrm{MHz}$ band are shown to scale in Fig. 9.

To be concluded with a discussion of devices used and alignment methods.

Parts list

Set of parts is available from Integrex Ltd, P.O. Box 45, Derby DE1 1TW.

Inductors

See illustrations and text for winding details $L_{4} \& L_{5}$ inductor assemblies are Neosid NS/E3

Dial components (ail Jackson)
$\frac{1}{2}$-in brass pulieys, type 4879 (4 off)
$\frac{1}{2}$-in brass pivots, type 4539 (4 off)
brass spacers, type 4880 (4 off)
type ' G 'drive spindle, type 5080
drive drum 2.5 cm dia. $4-\mathrm{mm}$ bore

Variable capacitors

$3 \times 14 \mathrm{pF}$ tuning capacitor, part no.5560/3/14 (Jackson)
4.5 to 20 pF trimmer (3 off) (Piher make from Henry's Radio or Rosenthal type STSE-7, N750 from Radio Resistor Co. or type 7S-Triko 02 from Steatite Insulations)

Fixed capacitors

1 nF disc ceramics, $50 \mathrm{~V}, 1-\mathrm{cm}$ mounting centres (10 off)
$0.1 \mu \mathrm{~F}, 16 \mathrm{~V}$ (Mullard type C280)
$32 \mu \mathrm{~F}, 10 \mathrm{~V}$ (Mullard type C426)
$22,68(2 \mathrm{off}) \& 100 \mathrm{pF}, 160 \mathrm{~V}$, polystyrene
15, $47 \&$ (2 off) 330 pF ceramic tubular or disc, or polystyrene mounting centres 1 cm
4.7 nF miniature tubular polystyrene $1.65-\mathrm{cm}$ mounting centres. Use 150 pF for stereo

Resistors
Miniature carbon film type, ${ }_{8}^{1}$ watt $\pm 5 \%$ tolerance (Mullard)

Active devices
40673 (RCA 2 off). In mixer stage, lack of gate protection diodes may be acceptable, in which case types 40604 or 3 N 141 can be used. If the risk of not using diodes is acceptable for r.f. stage, types 40603 or 3N140 can be used. N.B.: retain protective spring until power is applied
40244 (RCA), alternatively TI409 (TO-92) -now avaialable as TIS64 (TO-18), Texas
BC213L (Texas) or BCY70
CA 3053,3028 A or 3028B (RCA)
TAA661B (SGS)
TIV307 (Texas)

Also needed are

printed circuit board (available drilled, solder coated and with component locations) ceramic filters type FM-4 (Vernitron). Order as pair with same colour coding (orange10.625 MHz , yellow- 10.6625 MHz , green -10.700 MHz , blue -10.7375 MHz , violet-10.775MHz)
trimming tool for L_{4} and L_{5} cores
nylon cord
die-cast box
Denfix cement
Denfix cement (from Home Radio)
Evostik latex-resin impact adhesive

Baird's Video Disc turns again

The video disc is not a new idea, as J. C. G. Gilbert pointed out in his article on the Teldec system last year." John Logie Baird recorded video signals from his 30 -line television camera on a 78 r.p.m. wax disc as far back as July 1928. Copies were made and sold to the public by Selfridge's store, London, in the early 1930s, the idea being that they should be played from an electric gramophone into the Nipkow-disc Baird Televisor of the time.

Recently Wireless World was able to examine one of these discs, and see the kind of pictures it produced on a Televisor, at a demonstration put on by the I.T.A. at the television museum in its London headquarters. The disc, which looks like a 10 -inch black gramophone record with a red label, was acquired from Mr. G. Diment of Herne Hill, London, who bought it from Selfridge's in 1935 at a price of 7 shillings. On the label are the words 'Recorded Television Record No. 1, Speed 78, Scanning Speed 750, Lines 30, For Private Use Only'. Because the disc is very fragile a magnetic tape recording had been made of its video signals, and it was this taped copy which was played into the Televisor at the demonstration.

The Televisor was a 40 -year old model, one of two acquired by the museum and restored to working order by I.T.A. engineers at the Fremont Point transmitter, Jersey. The authenticity of the results was assured by H. J. Barton-Chapple, who worked with Baird, and by P. J. Packman, who built one of the two Televisors in 1928 at Plessey.

All that can be said of the pictures seen is that they were a sequence of patterns, in the characteristic orange light of the Televisor's neon tube. What the patterns depicted was anybody's guess, though we were told they were caricatures of human faces. Certainly, the first video disc cannot be regarded as anything more than a technical curiosity. It is nonetheless a further tribute to Baird's ingenuity and enterprise in the face of the public's indifference at that time.
*"The Video Disc", Wireless World, August 1970, p. 377.

Correction

Peter Blomley, author of the articles 'Nev' approach to class B amplifier design ${ }^{3}$ (February a nd March issues), tells us Tr_{3} in Fig. 1 of the secend article should be type 2 N 3904 and not 2 N 3905 , and that in Fig. 5 the ordinate should b labelled $0.00075 \% / \mathrm{cm}$, and not $0.0012 \% / \mathrm{cm}$.

'W.W.' amateur radio station

As part of the journal's 60 th birthday celebrations we are to operate during April an amateur radio station using the specially assigned call GB3WW. The station is being set up in Dorset House, where we have had our editorial offices for nearly 40 years, and will operate in the amateur h.f. bands.

Our contributor Pat Hawker, G3VA, will be in charge of the station and among those manning the station from time to time will be F. C. Ward (G2CVV) president of the R.S.G.B., D. A. Findlay (G3BZG) general manager of the R.S.G.B., R. S. Roberts (G6NR), B. M. Johnson (G3LOX), J. Brodzki (G3HQX), S. Andrews (G3OGY), D. R. Bowman (G3LUB) and G. M. C. Stone (G3FZL).
The station will comprise a KW2000B transceiver, KW 1000 linear amplifier, Eddystone 1830/1 receiver, Heath SB303 receiver and the s.s.b. receiver described by David Bowman in our July-September 1969 issues. The microphone is a Shure 444. A trap dipole is being installed on
the roof of Dorset House about 100 ft above street level.

We are grateful for the co-operation of manufacturers and the Minpostel in enabling us to operate this station. A special QSL card embodying a reproduction of the front cover of this issue is being prepared.

Electronics industry manpower

For the first time the manpower problems of the electronics industry in the U.K. have been studied in isolation from those of the electrical industry. This has been done by a working group of the electronics 'Little Neddy' (Economic Development Committee), under the chairmanship of Professor G. D. Sims of Southampton University, and some conclusions and

New sector control consoles in the Mediator air traffic control system are now in full operational use for controlled airspace at the West Drayton centre. Consoles include flicker-free bright displays-made possible by a scan conversion technique-which combine both primary radar information in the form of blips and secondary radar data in the form of digitally generated characters. Secondary radar can provide aircraft identification, route ard height information depending on the kind of transponding equipment installed on board aircraft (see 'Progress in air traffic control' page 200).
recommendations are presented in a preliminary report 'Qualified Manpower in the Electronics Industry' published by the National Economic Development Office. The conclusions are not exactly startling, the main points being that while the availability of qualified engineers and scientists is satisfactory there is evidence of a serious shortage both of technicians and of graduate production engineers willing to work in the electronics industry.

There seems to emerge from the report a picture of an industry in a confused and mulish state of mind about its own problems. It does not understand what facilities and information are available to assist with the education and use of technological manpower; it does not have adequate statistics and forecasts for manpower requirements; it is not sponsoring students for 'Bosworth' bridging schemes in sufficient numbers to make the courses fully viable; and it does not regard the release of qualified workers at regular intervals for continuing education as normal and desirable.

Among the working group's recommendations is one that the electronics EDC should sponsor a study of manpower utilization in the context of the management of innovation and its consequences. The fact that U.K. industry is well behind the U.S.A. and Japan in the speed and effectiveness with which it can turn an R \& D project into a commercially available product is now well known, and has been made painfully apparent by the Rolls-Royce debacle. The working group is convinced that 'a better use of manpower, better management and control of projects, and a more appropriate mix of manpower resources could all make very substantial contributions to shorter lead-times, and thus to more effective innovation? The EDC has agreed in principle to the proposal and asked the NEDO to start the study.

Film and chips

A new method of mounting integrated circuit chips, which looks like being very suitable for use with automatic assembly methods, has been developed by the Philips Research Laboratories, of Eindhoven, Holland. The processed integrated circuit chips are mounted on a long strip of Polymide film and can be stored on reels like recording tape. The Polymide film has a metallic film contact pattern on which the chips are mounted in the same way as 'flip-chips' are mounted in hybrid integrated circuits. After the chips have been mounted the reels of tape holding the chips are treated to improve mechanical strength and are then passivated. During testing faulty chips on the film are marked so that they can be rejected automatically during subsequent circuit building.
The film-mounted chips can be applied

The metalization pattern on the Polymide film can be clearly seen. Integrated circuit chips mounted in this way could easily be used in automatic assembly machines.
to a printed circuit board, or to any other substrate for that matter, or they can be mounted on specially designed headers for conventional insertion into printed circuit boards. When mounted in the header Philips are claiming excellent heat dissipation characteristics. An experimental monolithic audio amplifier with an output of 3 W has already been built and operated successfully using the technique.

Amateur radio history

As mentioned elsewhere in this issue the Derby Wireless Club (now called the Derby and District Amateur Radio Society) was formed in 1911, and, like $W . W$., is marking its 60 th birthday with special events. The first is an exhibition to be held in the Derby Museum and Art Gallery from 3rd to 17th April (excluding Good Friday). The aim of the exhibition is to illustrate the various activities of the society, but space will also be devoted to the history of amateur radio. Exhibits will include items constructed by early members of the society, and there will also be a life-size reproduction of a typical amateur station of the period 1911-13. A modern amateur station will be in operation at the exhibition and the call-sign will be GB3ERD

The exhibition will be opened at 3 p.m. on 3rd April, by the Mayor of Derby, Alderman Miss M. E. Grimwood-Taylor, whose father, S. Grimwood-Taylor, was one of the founders of the society.

Being the oldest amateur radio society in the U.K. (now with 245 paid-up members it has many historic pieces of equipment and components and an effort is being made to set up a permanent museum.

100MHz m.o.s. i.cs

Metal oxide silicon transistors have been successfully made at the Hirst Research Centre (G.E.C.) with channel lengths of only $1 \mu \mathrm{~m}$ against the 6 to $10 \mu \mathrm{~m}$ normally employed in commercial m.o.s.
integrated circuits. Apart from increasing packing density by a factor of ten it is estimated that 100 MHz integrated circuits can be made with these devices and could mean that m.o.s. will soon be knocking t.t.l.

The short channel transistors were made from masks produced by Cambridge Scientific Instruments Ltd using electron beam methods. The ion implanted source and drain regions have a low feedback capacitance giving the device its high operating speed.

The work had been carried out under a Ministry of Defence contract and is part of a much larger programme of research into m.o.s. devices being carried out at the Hirst Research Centre.

Top of the short-wave pops

The International Short Wave Club reported a record response to their poll, held once every three years, to establish the most popular short-wave station. Votes have been received from most countries in the world including China and the U.S.S.R. Each voter could give five-votes for his first choice, four for his second and so on. It was found that many individuals did not go any further than a first choice. Of the 30,836 valid votes cast (4,712 arrived too late) Radio Australia
won with 7,010 votes followed by the B.B.C. World Service with 4,493 . Third and fourth were Radio Nederland $(3,877)$ and Voice of America (3,711), followed by Deutsche Welle $(1,269)$, Radio Japan (1,051) and Radio Canada (1,018)

Printed circuit patent

A decision taken recently in the House of Lords ended a ten-year legal battle by Technograph Printed Circuits (London). The decision confirmed that the patent taken out in 1943 by Technograph describing the manufacture of printed circuits was valid until it expired in 1967 after a seven-year extension. In this particular case the decision was against Mills and Rockley (Electronics) who had been sued for patent infringement by Technograph. However, the implications are much greater and writs have been issued against forty other British printed circuit manufacturers.

In America a similar ten-year law suit has been going on involving Technograph Printed Circuits' associate company Technograph Inc. although a decision has not yet been reached.

Selective crystallization

Work is in progress at the Battelle Development Corporation, an international independent research institute, on a new process to produce m.o.s.t. microcircuits on a sapphire substrate. Instead of coatino the sapphire with a film of silicon and using masking and etching processes to form active devices and interconnection patterns as is usual the new method does all this in one very complex process called selective crystallization.

The work so far has shown that the process is feasible but more research is needed before the method could be used for production.

A new low-cost navigation system, installed on the Blue Funnel cargo liner Prometheus, intended to operate with the American navigational satellite system. The equipment, which was built by S.T.C., carries out dead reckoning naviga tion between satellite passes.

Birthday greetings

Congratulations to Wireless World on completing its sixtieth year of publication. It was the world's first radio journal and has always been in the forefront in report ing technical developments in broadcasting. It is regarded as essential reading by most B.B.C. engineers.

The B.B.C. is a slightly younger organization, but during the forty-nine years of its existence, B.B.C. engineers have had the pleasure and privilege of contributing to Wireless World many articles on broadcasting and associated subjects. We value these close links with Wireless World and send it our best wishes for continuing success.
J. REDMOND,

Director of Engineering,
B.B.C.,

London.

I am sure that thousands of radio and electronics engineers throughout the world will wish to congratulate Wireless World on reaching its sixtieth anniversary. Over this period, longer than any other journal in this field, Wireless World has accurately and honestly surveyed the broadest aspects of communications and electronics engineering, and initiated many designs of equipment using advanced techniques.

One of my most treasured possessio is a complete set of bound volumes of ${ }^{f}$ ns journal. In these is recorded the whole history of the remarkable devel whole
over the past sixty years, and over the past sixty years, and pf shans the
only regret is that the adve only regret is that the adve rhaps the
were not bound in for they were not bound in for they record the economics of the industry. in and the

It was fortunate that my ph at Westminster City School iv telegraphist in the R.N.V.R. first World War, and his en wireless and line commun tinued into the school cl laboratory. Soon he had winding hundreds of feet copper wire on 4 in diamete pregnated cardboard tubes : off to Lisle Street, which wi mecca for radio components of visiting the school tucker
ysics master vas a senior during the thusiasm for ications conassroom and his students of insulated r paraffin imind sending us is already the .. So in place and buying

Fives balls we spent our pennies with Kate Raymond who sold ebonite end plates, aluminium vanes, 2 BA rod and brass spacers, with which we made variable condensers. Farther along the road was Will Day, an outstanding inventor of cinematograph apparatus, who saw the potential development of the radio industry, and who later financially assisted John Logie Baird with his early television experiments. Will Day was the source of galena crystal, and, if one had the money, quite sophisticated micrometer adjustment cat's whisker crystal detectors. Then a trek to Shoreditch to buy some continental headphones from Ted Rosen who later became the chairman of Ultra Electronics, Ltd. Already the school had a good aerial consisting of two parallel 50 foot $7 / 22$ s.w.g. copper wires on spreaders and a copper plate earth. Thus early in 1922 one was thrilled to hear the time signals from the transmitter on the Ciffel Tower.
These were the hays of the amateur constructor and the founding of many radio clubs, the activities of which were regularly recorded in Wireless World. Althoup ${ }^{\text {a }}$ other journals sprang up to encours age the newcomer to wireless, already ${ }_{f}^{W} W$. held the esteem of the relatively ew professional engineers and the band of enthusiasts who followed the advanced constructional articles published in the journal. Many outstanding designs followed and one remembers the first to use a double ended screen-grid valve as an r.f. amplifier, and the using of Litzendraht inductances. Over many years Wireless World has sponsored designs for high-quality amplifiers of which The W.W. Push-Pull Quality Amplifier probably laid the foundation of the audio industry. Also in the early 'thirties members of the $W . W$. staff set up the first investigation into the performance of loudspeakers with a large baffle board mounted on the roof of the building and a microphone mounted on a mast.

Throughout the years since 1925 when I first made personal contact with members of the staff of Wireless World, I have always regarded it as a privilege to enjoy the friendship and advice of the successive Editors and their staff. Each has set a high standard and given devoted service to the journal, their readers and the industry. Many of the articles have been
contributed by world famous scientists, physicists and engineers and in spite of changing economic conditions and wars every issue has maintained a high and accurate standard.

Long may Wireless World continue to be published and its team of contributors and staff maintain the high standard of technical journalism that has made it the pre-eminent journal in the communications world.
J. C. G. Gilbert

Northern Polytechnic,
London N78DB.

Stereo decoder using sampling

Referring to D. E. O'N. Waddington's article in the February issue, I have found that the second harmonic distortion level (0.6% at 30 mV input) and the signal attenuation (9 dB at 5 kHz) can both be reduced by simple modifications to the circuit.

The de-emphasis network accounts for 5 dB of the 9 dB attenuation quoted, but what of the other four? As resistors R_{25} and R_{27} (Fig. 7 page 73) bias Tr_{10} and Tr_{11} near pinch-off, particularly for a transistor with low $V_{(P) G S}$, the operating point is one at which g_{m} is low and non-linearity comparatively high. Further, the low-value load resistor of $2.2 \mathrm{k} \Omega$ implies low gain.
The 2 V adjacent to the source of $T r_{10}$ suggests that transistors close to the lower limit of $V_{(P) G S}$ were used in the prototype. The manufacturer's data sheet shows g_{m} to be $2 \mathrm{~mA} / \mathrm{V}$, and hence a gain of about five times open-loop or 0.8 $(-2 \mathrm{~dB})$ as a source follower. These figures were confirmed by measurement and a harmonic distortion figure of 0.1% obtained at 100 mV r.m.s. level-relating to the source follower only.
Turning now to the f.e.t. switch Tr_{8} or $T r_{9}$ it is important to bear in mind the inherent capacitance $C_{g d}$ between gate and drain of the transistor. Were this fixed in value, its effect would simply be to cause an error between the input sample voltage and the output hold voltage across C_{12} or C_{17}. This error is caused by the transference of charge to $C_{g d}$ on the trailing edge of the sampling pulse, and is minimized when $C_{g d}$ is small and the hold capacitance as large as possible.
As the capacitance $C_{g d}$ in practice is voltage-dependent in a highly non-linear manner the hold voltage error is also nonlinearly related to the input sample voltage. This voltage is the instantaneous sum of the sample pulse amplitude and the composite signal at the source. The situation is summarized in the following expression

$$
V_{e}=\frac{1}{C_{12}} \int_{V_{1}}^{V_{2}} C_{g d}(V) d V
$$

where V_{e} is the error voltage, and V_{1} and V_{2} define the input amplitude limits.

Measurements on Mr Waddington's sample-and-hold circuit show an harmonic distortion figure of approximately 0.5%
to 100 mV r.m.s. output across C_{12}, and an attenuation of 2 dB was obtained.

To minimize both attenuation and distortion, the hold capacitor can be increased in value so long as it is able to become fully charged during the sampling interval. This is to say $5 C R=250 \mathrm{~ns}$. No value is given for $R_{d s(o n)}$ in the BFW 10 data but it seems this is below 300Ω, so that C_{12} and C_{17} can be increased to 180 pF . Taking this opportunity to consider $R_{d s(o f f)}$, it is essential that the sampling pulse at the gate has an amplitude of at least 8 V to ensure that limit transistors switch off as required, and this necessitates an increased supply voltage. Taking all these factors into consideration the following modifications can be made.

1. Increase supply to 12 V and feed the drains of $T r_{10}$ and Tr_{11} from a 20 to 24-V supply.
2. Omit C_{15}, C_{18}, R_{24} and R_{26}, directly coupling the drains of Tr_{8} and Tr_{9} to the gates of Tr_{10} and Tr_{11}.
3. Increase C_{12} and C_{17} to $180 \mathrm{pF} . R_{25}$ and R_{27} to $22 \mathrm{k} \Omega$ and R_{28} and R_{29} to say $33 \mathrm{k} \Omega$ while reducing C_{19} and C_{20} to 1.5 nF . These modifications reduce susceptibility to spread in f.e.t. characteristics, reduce distortion to 0.05% and reduce attenuation in the sample-and-hold and source follower sections to less than 1 dB .

It is desirable to disable the sampling action for monophonic reception, by opencircuiting R_{13} and R_{21} for example, other wise noise components around 38 kHz are translated to audible frequencies causing appreciable degradation of signal-to-noise ratio, especially in view of the triangular noise spectrum associated with an f.m. system.

This type of decoder is very attractive in terms of cross-talk performance, suppression of 19 kHz and 38 kHz components, and reduction of subcarrier sidebands. Perhaps fuller advantage of the technique could be taken by using a phase-locked-loop sampling oscillator, which would enable both setting adjustments and wound components to be eliminated.

Incidentally, one of the transistors suggested for Tr_{8} to Tr_{11}-the BFW 10has a $V_{(P)} / J S$ max of 8 V -dangerously close to the supply of 9 V .
D. R. BIRT,

Oxted,
Surrey.

In his letter in the March issue D. E. O'N. Waddington states that for a sample-andhold network it ". . . is not the 'sampling' but the 'hold' which causes noise harmonics to be heterodyned into the audio bandwidth" and that "The mark-to-space ratio of the sampling waveform has very little to do with the interference introduced. . ."

It must be remembered that sampling is a process whereby each component in one signal is multiplied by each component in the other signal, producing sum and

difference frequencies. It follows that the difference frequency produced when h.f. noise is sampled at a high rate will be l.f. noise.

Further, because the h.f. spectrum content of the sampling waveform is a function of mark-space ratio, the amount of l.f. noise produced will depend on the mark-space ratio of the sampling signal. The hold network does not appreciably alter the frequency content in the audio bandwidth as it does not perform a nonlinear function. Above the audio bandwidth the h.f. signals are attenuated by the hold function.

The photograph shows the approximate response of Mr Waddington's sample-andhold circuit on a scale of $0-100 \mathrm{kHz}$. Zero amplitude occurs at integral multiples of 38 kHz . The response has a $|(\sin x) / x|$ shape and it is interesting to note that at 15 kHz the theoretical response is 2.4 dB down, agreeing very closely with the practical result.

I agree that low-pass filtering the input signal will prevent the generation of audio noise. The low-pass filter should ideally have a linear phase response to maintain high-frequency separation. I think Mr Waddington's suggested 80 kHz is a little high-the 2 nd harmonic of 38 kHz will be able to operate on noise dowis to 61 kHz to produce audible noise.

Improving the h.f. response of the decoder to reduce the $2.4-\mathrm{dB}$ loss at $15 \mathrm{kH}^{\boldsymbol{H}} \mathrm{Z}$ may be difficult if suppression of h.f. signals is to be maintained.

R. T. Portus,

Rolls-Royce Ltd.

Components for constructors

I must add my hearffelt agreement to the comment on this topic contained in "World of Amateur Radio" (W.W. Jan. 1971). Only in recent years have I been able to even contemplate building many pieces of equipment that captured my imagination when a teenager in the 1950 s. Alas now that I can afford such luxuries I am faced with the near impossibility of finding parts.

My own immediate problem is quite simply that I wish to build a receiver covering from, say, 10 to $2,000 \mathrm{~m}$ in the usual bands. I would like the receiver to have a reasonable sensitivity but not be in the communication receiver class. Basically, I feel able to "design" such a receiver along conventional lines.

Tuning coils can be obtained, and older readers will be delighted to know that Home Radio still include the famous

Wearite " P " coils in their catalogue. Alas no one to my knowledge markets a suitable dial or tuning scale covering the above ranges to match a specified tuning capacitor gang and the Wearite coils or for that matter anyone else's coils.

There are some of us who wish to build such equipment from scratch and who do not want to buy a kit complete to the last length of wire.

All I want to do is to build a reasonably simple receiver and my mind boggles at the trials in store for anyone brave enough to consider the Wireless World colour receiver. Construction will be a simple task compared with obtaining replies to enquiries about component availability. It is evident that people like myself must be a dying race and it is for this reason that supplies seem to have disappeared from the market. Some of us might even be prepared to pay through the nose for what we require if only someone would realize we exist and set out to exploit us!

F. Brian Kyle,

Workington,
Cumberland.
About a year ago we formed a buying group with a number of other dealers* in the London area which we provisionally call "Group One". Its primary object is to buy components at the best prices in reasonable quantities. There are several secondary aims such as exchange of surplus stock and exchange of information. To some extent this action has been forced on us because we wished to buy certain items that wholesalers do not wish to handle and the manufacturers will only sell in quantities that are beyond the pocket of one dealer to buy. But I would like to stress the fact that this is not aimed at distributors or wholesalers (I for one, have always believed that they do a useful job and earn their money); in fact any small wholesaler or equipment manufacturer would be welcome to join. I feel sure that you will agree that this is a desirable scheme as ultimately it means the Group can offer your readers a greater range of goods at the lowest prices. Initially we were going to limit it to about 20 dealers (not on a'ccount of any closed shop principle, $\mathrm{b}_{\mathrm{L}}{ }^{\mathrm{t}}$ because we thought, quite wrongly, that we could not handle the administration of a lárger number). Now we would like to offer me 'mbership to any bona fide trader in the U. K. and I would be very grateful if you co uld make this generally known through th e courtesy of your columns. At the mol nent there is no entrance fee or subscriptior ${ }^{1}$. If anyone is interested please write to me at Home Radio (Components) Ltd, 234-2 0 London Road, Mitcham, Surrey CR4 3HD.
alan Sprox ${ }^{\text {TON, }}$
Mitcham,
Surrey.

[^8]
Ourclaim to fameisbeing broadcast the world over.

Such is the power of Ferrograph tape recorders. Used in major broadcasting stations as well as in the aircraft industry, Police and Fire Services and Government Departments.

A Ferrograph tape recorder is a status symboland an investment. The buyer knows he is getting a top standard machine which maintains that standard for many years. (We give a 3 year guarantee inclusive of record and replay heads.)

You may pay a little more at the outset, but the rewards are many in service and reliability.

Series \mathbf{Y} Twin Channel Stereo machine
(illustrated): Housed in a light alloy casing, this machine is specially adapted for audio frequency instrumentation recording in scientifie and industrial applications (purchase-tax-free for
these uses). Input and output conditions suitable for matching professional equipment. Available in single or two-channel forms, recording full, $\frac{1}{4}$ or $\frac{9}{2}$ track. 3 tape speeds on each machine.

Other details are yours for the asking-just complete the coupon below.

If you have a recording problem contact Ferrograph. Special machines can be made up to customers requirements.

Series Y tape recorders are available direct from the Ferrograph U.K. compary or principal overseas agents (list available on request).

> FERROGRAPH SOUNDS GOOD

[^9]

Insure against distortion with Shure

WW-096 FOR FURTHER DETALL

A low-cost instrument which may be used to assist in teaching logic and Boolean algebra

by Brian Crank*

Although this instrument employs the same basic principles as the earlier Wireless World Logic Display Aid (May to December 1969) any resemblance ends there. The present instrument is simpler and is very much cheaper. The circuit has been reduced to just four integrated circuits, three digital and one linear, and four transistors plus a few resistors, capacitors and diodes. The cost need not exceed a few pounds.

Mind you, the present instrument is not nearly so versatile as the earlier design although the display is more pleasing to the eye. The instrument will produce, on the screen of an oscilloscope, the Karnaugh map of any combinational logic circuit. If you are not completely familiar with Karnaugh maps a simple description will be found in the appendix to this article.

The reason for designing an instrument which will produce a Karnaugh map for any circuit is quite simple. The student is often taught Boolean algebra and logic through the use of the Karnaugh map. It completes the circle for the student to see a logic circuit producing the same map that was used to explain the operation of the circuit in the first place. In other words the theory and the practice can be brought closer together.
You may remember that in the earlier display the characters nought and one were displayed on the oscilloscope screen in the form of a pattern of dots. In the present design the characters are drawn as continuous lines exactly as you would draw them by hand. A typical display is shown in Fig. 11(a). Another advantage over the earlier design is that only two leads are needed between the instrument and the oscilloscope. These are the leads for X and Y deflection; an intensity modulation lead is not required.

As already mentioned the circuit is hybrid in that both linear and digital circuits are employed. Broadly the characters are positioned using a combination of both linear and digital techniques and the characters themselves are formed by linear circuits. The choice of whether to display a nought or a one at a particular position is taken by the logic circuit the Karnaugh map of which is to be displayed.

To use the instrument all one does is

[^10]Fig. 1. A simplified block diagram of the instrument. Practically any oscilloscope will be suitable because the demands made upon it are small although it must be capable of operating from an external timebase.

Oscilloscope
switched for external timebase

to connect it to the X and Y inputs of an oscilloscope, and connect any logic circuit to the instrument; the Karnaugh map for that circuit will then appear on the screen.

A block diagram of the instrument is given in Fig. 1. In brief, a clock pulse generator is used to drive a four-bit counter. The counter is split into two and each half drives a resistive ladder network. The ladder networks perform digital-toanalogue conversions and the resulting four-step staircase waveforms are fed to operational amplifiers which are used to drive the oscilloscope's X and Y deflection inputs. The oscilloscope is switched for external timebase operation. This produces sixteen dots on the screen arranged in a four-by-four matrix.

A sine wave oscillator, with a frequency much higher than the clock generator, produces two outputs which have a 90° phase difference. The sine wave corresponding to 0° is fed to the Y operational amplifier and the 90° waveform is fed to the X operational amplifier via an attenuator and a transistor switch. The result of the two sine waves on the screen of the oscilloscope is a vertical ellipse similar to the ' 0 ' printed here. The net result of both the sine and staircase waveforms is to dis-
play on the c.r.t. a four-by-four matrix of 0 s . If the switch in the sine wave lead to the X operational amplifier is open there will be no horizontal sine wave component in the deflection waveform so on the screen will appear sixteen 1s. The 1 is formed by the sine wave input to the Y amplifier.

The counter that drives the ladder networks also drives a logic circuit which produces outputs that comply with the rules of a Karnaugh map. These outputs are used to drive the logic circuit you wish to display and the output of this logic circuit is used to control the $0 / 1$ switch at the input to the X operational amplifier. Each section of the instrument will now be described in detail.

Sine wave oscillator

The sine wave oscillator is used to produce a Lissajous figure which represents 0 in the display and to do this, as we have already seen, it must produce outputs at 0° and 90°. An early version of the instrument used a sine wave $R C$ oscillator followed by a 90° phase-shift network. Although this worked it was unsatisfactory because it was necessary to specify close tolerance components for the frequency

Fig. 2. The four-section phase-shift oscillator used to produce the characters which form the display. Operating frequency is about 22 kHz .

Fig. 3. Astable multivibrator clock generator which runs at about 1.4 kHz .

Fig. 4. The Y ladder network.
Component reference numbers in brackets refer to the X ladder. The circuit converts the output of a counter into a staircase waveform by performing a digital-to-analogue conversion.
to be right for the phase shift required. An $L C$ oscillator could have been used with the advantage that the frequency adjustment, to line the oscillator up with the phaseshift network, would have been no problem. However, coils, as well as being fairly bulky at the frequency we are interested in, are not the most popular items in constructional articles so it was decided to find a solution using $R C$ circuitry.
The circuit employed is shown in Fig. 2. As can be seen it is a single transistor phase-shift oscillator. Normally a phaseshift oscillator employs three $R C$ sections, each section phase shifting by 60°, to obtain the 180° phase shift necessary to obtain positive feedback and oscillation.

In the present design four $R C$ sections

Fig. 5. The equivalent circuits of the ladder network for the four different conditions of the counter driving it.
are employed, each section shifting by 45° ($4 \times 45^{\circ}=180$). It is now a simple matter to pick off the 90° signal after two 45° phase shifts at the output of the second $R C$ section.
The potentiometer R_{40}, the only adjustment in the whole instrument, is used to vary the a.c. gain of $T r_{1}$ while maintaining d.c. conditions. The gain must just be enough to overcome the losses in the phaseshift network. If the gain is too low oscillation will not occur; if it is too high distortion will result. Potentiometer R_{40} is adjusted for a good sine wave output from $T r_{1}$. The frequency of oscillation is about 22 kHz but this is not at all critical.

Clock generator and counter

The clock generator is shown in Fig. 3. Little need be said about it as it is a conventional astable multivibrator which runs at about 1.4 kHz .

The four-bit counter is formed by one t.t.l. (transistor-transistor logic) integrated circuit type SN7493N. This i.c. comes in the m.s.i. or medium scale integration class. It contains four $J-K$ flip-flops and is connected as shown in the main circuit diagram (Fig. 10). The four flip-flops are cascaded to form a standard binary counter.

Looking at only the first two flip-flops, the outputs of which are called Q_{1} and Q_{2}, the following outputs are produced:

Q_{2}	Q_{1}
0	0
0	1
1	0
1	1

The outputs of the second pair of flip-

Clock

Output Q_{1}

Fig. 6. Shows how the output of the t.t.l. binary counter is affected by the clock generator. The steps in the waveform are removed by a clamping circuit.

Fig. 7. The clamping circuit. The outputs to the ladder networks are the voltage drops across three forward-biased diodes in series.

Fig. 8. The X deflection amplifier complete with the single-transistor 1/0 switch. The Y deflection amplifier circuit is the same but Tr_{4} and its associated components are omitted.

Fig. 9. Karnaugh map edge coding. A graticule, the same as this drawing, should be made so that the display on the c.r.t. can be viewed through it.

Fig. 10. The complete circuit of the Karnaugh map display instrument. The SN7486N actually contains four exclusive-OR gates, however, only two are used here.
flops, Q_{3} and Q_{4}, produce exactly the same output but at one quarter of the frequency.

Ladder networks

The two ladder networks are connected to the binary counter. When the flip-flop Q_{1} is at 0 the Q_{1} output is connected, via a saturated transistor, to the 0 V line. When the output Q_{1} is at 1 it is connected via a saturated transistor to +6 V .
The circuit of one ladder network is given in Fig. 4. The inputs Q_{1} and Q_{2} are switched according to the tablegivenearlier. So Fig. 4 can be redrawn for each of the four states of the counter, so far as the output voltage is concerned (Fig. 5). If you would care to do the sums you will find that the output will rise from 0 V in equal steps to produce a staircase.

Clamping network

Unfortunately the output of the flip-flops is not a good square wave. Although the rise and fall times are far more than adequate for the instrument the output of a particular flip-flop is affected by its input conditions. Fig. 6 illustrates this point.

The step in the waveform causes a corresponding step in the output of the ladder network which in turn causes certain characters on the display to appear double. The re for this trouble is to add a clamp-
ing network which slices the top off the output from the flip-flops. This network is shown in Fig. 7.

The diodes $D_{1 \text { to } 4}$ isolate the outputs of the flip-flops from each other and resistors R_{24} to 27 limit the current to a safe value. The output to the ladder network is now the voltage drop across three diodes in series.

Operational amplifiers

and $1 / 0$ switch

The well known operational amplifier type 709 is used in the instrument. The particular version employed (SN72709DN) is manufactured by Texas Instruments and includes two 709 amplifiers in a single dual-in-line package. The circuit of the X deflection amplifier is shown in Fig. 8. The Y deflection amplifier is identical except that the $1 / 0$ switching transistor, $T r_{4}$, and its associated components are omitted.

Resistors R_{p} and R_{f} combine to form the feedback resistor which sets the overall gain of the amplifier. Additionally R_{p} protects the amplifier from accidental short circuit of the output leads by limiting the output current. $R_{d} C_{a}$ and C_{b} are frequency compensation components which ensure stability.

The BC108 (Tr_{4}) is the switch which is controlled by the external logic circuit. It short-circuits the 90° output of the sine wave oscillator to ground when a 1 is
required on the c.r.t. R_{h} is of a sufficiently large value to prevent the switch from significantly affecting the oscillator itself.

Logic circuit

Imagine that the Karnaugh map of Fig. 9 is superimposed on the c.r.t. face. Bec ause of the action of the previously discussed circuitry the c.r.t. spot first rests in the top left-hand square, it then moves to the next square down, then to the square below that until it reaches the bottom of the column. The spot then flies back to the top but this time to the second column. The process continues until all 16 squares have been scanned. The spot then goes back to the first square again and the process is repeated, such is the effect of the two staircase waveforms. Each square on the map corresponds to a particular state of the counter. For instance, the top left-hand square is scanned when the counter outputs are all 0 , that is at the top of both staircase waveforms (both the X and Y amplifiers invert).

We also know that each square on a Karnaugh map corresponds to a particular set of variables as defined by the coding at the edge of the map (see appendix if necessary). We must ensure that when the spot is in a particular square that the set of variables represented by that square are available at the output of the instrument for

Fig. 11.(a). This is a photograph of the display which shows the map produced by an exclusive-OR gate connected to the A and B outputs $(\bar{A} B+A \bar{B})$. The photograph has been 'doctored' in that the squares and edge coding have been drawn in. Normally this information would be contained on a graticule as shown in Fig. 9, however, this would be very difficult to photograph. The remainder of the photographs are waveforms within the unit. (b) 1.4 kHz clock waveform; (c) sine wave oscillator (22 kHz) taken at the emitter of $T r_{1}$; (d) the staircase waveform at the output of the Y operational amplifier, for this photograph the sine wave oscillator was disabled; (e) Y deflection output when the display at (a) is being produced and (f) X deflection waveform under the same conditions; (g) waveform at the collector of $T r_{4}$ when the display at (a) is being produced.
feeding to the external logic circuit. We must therefore compare the output of the counter with the Karnaugh map edge codings and rectify any differences that occur.

Karnaugh map edge coding	counter outputs		
B	A	Q_{2}	Q_{1}
0	0	0	0
0	1	0	1
1	1	1	0
1	0	1	1

The above table compares the output of the Y counter with the map's $A B$ edge coding. The last two terms are different and therefore some logic is necessary to correct this.

Firstly on examination we can say that $Q_{2}=B$ so a direct connection from the counter output Q_{2} will form the output variable B.

Also, on examination, it can be seen that:

$$
A=Q_{1} \cdot \bar{Q}_{2}+\bar{Q}_{1} \cdot Q_{2}
$$

which is our old friend the exclusive-OR function. We have already stated that the X counter outputs, Q_{3} and Q_{4}, have the same outputs as Q_{1} and Q_{2} but at a slower rate and we can see that the Karnaugh map coding for C and D is the same as for A and B. We must therefore conclude that an identical logic function is required, namely

$$
\begin{aligned}
& D=Q_{4} \\
& \text { and } C=Q_{3} \cdot \bar{Q}_{4}+\bar{Q}_{3} \cdot Q_{4}
\end{aligned}
$$

The circuit of the logic section of the instrument can be seen on the lower lefthand side of the main circuit diagram, Fig. 10, and it can be seen that only two integrated circuits are required. The output variables, A, B etc., are buffered by simple inverters to prevent external connections from upsetting the operation of the counter. These inverters also provide the complement of the variables, \bar{A}, \vec{B} etc.

Complete circuit

Fig. 10 combines all the circuits discussed so far and therefore little need be said about it. The various waveforms present for a particular display are shown in Fig. 11. Because the sine wave oscillator and the clock are not synchronous flyback between characters takes a different route every time and is not visible on the screen at normal brightness levels. Because of this blanking (a Z connection to the oscilloscope) is not required.

Construction

Making the unit is quite straightforward and no special precautions need be taken. A photograph of the layout employed in the prototype is given in Fig. 12; several components will not be found in this picture because they are mounted on the reverse side of the board.
It is important to connect pins two and three of the binary counter (SN7493N) to the 0 V line. These pins are inputs to a gate which resets the counter. If this is not done the counter will be held at 0000 and the unit will not function. The only adjustment is R_{40} which must be set to give a n cely shaped 0 . If you wish to adjust the si se of the characters changing the value of R_{28}

Fig. 12. A photograph of the prototype showing component positions. It should be noted that some parts have been mounted on the reverse side of the board and are therefore not marked. The integrated circuits are plugged into dual-in-line sockets which makes for easy removal.
will alter the height and R_{30} will alter the width.

Appendix

Karnaugh maps: The Karnaugh map is a means of pictorially showing all possible combinations of a number of two-state variables. Because of the way it is constructed it has other properties which make it possible to simplify Boolean expressions with the minimum of effort although it must be said that for more than four variables it is usually better to employ a more advanced method.

We will construct a Karnaugh map for four variables. The map will be the same as that displayed on a c.r.t. using the instrument described in the article. The basis of a Karnaugh map is a square. Each variable (usually labelled A, B, C and D for convenience) is allocated half the area of the square. To indicate the area occupied by a particular variable a simple edge coding system is employed. Fig. 13(a) shows the area occupied by the variable A and it is the area adjacent to the 1 s under A in the edge coding. What is the area adjacent to the 0 s under A in the edge coding? This is obviously the area representing \bar{A}. If the square of Fig. 13(a) is cut out and rolled into a cylinder the areas representing A and \bar{A} become continuous-but more about that later. In Fig. 13(b) the areas representing B and \bar{B} have been added. The square is now divided in four and each section represents one of the four possible combinations of A and B. From top to bottom, reading the edge coding, the sections are $\bar{A} \bar{B}, A \bar{B}, A B, \bar{A} B$.

You may have noticed that as you progress down the map, or up for that matter,
only one of the variables alters at a time and this still applies if the map is rolled into a cylinder again because $A B$ becomes adjacent to $\bar{A} \bar{B}$.
In Figs. 13(c) and (d) the variables C and D have been added. If you consider only these two variables and roll the map into a cylinder the opposite way each section differs by only one variable. Reading round the tube so formed we get $\bar{C} \bar{D}, C \bar{D}, C D, \bar{C} D, \bar{C} \bar{D}$ etc.

Looking at the map as a whole it is plain

Fig. 13. The construction of a Karnaugh map and two examples. See text for full explanation.
to see that each one of the sixteen squares we have formed represents one of the possible combinations of the four variables. For instance the top left-hand square, as can be seen by the edge coding, represents $\bar{A} \bar{B} \bar{C} \bar{D}$ and the bottom right-hand square represents $\bar{A} B \bar{C} D$.

But more important still is that adjacent squares, horizontally or vertically not diagonally, differ only in the negation of one of the variables. We have also proved, by rolling the map into a cylinder, that the top of the map is adjacent to the bottom and the left-hand-edge is adjacent to the right-hand-edge.

Two simple examples will show how these properties can be used to simplify Boolean expressions. Consider the expression $A \bar{B} C \bar{D}+A \bar{B} C D$. Draw a map as in Fig. 13(d) and put a 1 in the two squares representing the terms in the expression and an 0 in all the other squares. Because the 1 s are adjacent to one another they are ringed as shown in Fig. 13(e). The simplified expression is derived by taking only variables which are common in adjacent terms. So $A \bar{B} C \bar{D}+A \bar{B} C D$ reduces to $A \bar{B} C$.

Fig. 13(f) shows the Karnaugh map for the expression $\bar{A} \bar{B} \bar{C} \bar{D}+\bar{A} \bar{B} \bar{C} D+$ $\bar{A} B \bar{C} \bar{D}+\bar{A} B \bar{C} D$. All terms are adjacent and form a square of their own so only variables common to all four terms need be used. Therefore, from the map of Fig. $13(\mathrm{f})$: $A B C D+A B C D+A B C D+$ $\bar{A} B \bar{C} D=\bar{A} \bar{C}$
This brief explanation will serve to give the reader some idea of what a Karnaugh map is all about.

Next month a memory unit will be described which can be used with the Karnaugh map display unit, in place of the external logic circuit, to form an 'electronic blackboard'. Up to two Karnaugh maps can be stored, displayed or amended at will.

Shopping List

Resistors

All resistors, except the potentiometer, are 0.25W 5\%.

$10 \mathrm{k} \Omega$	\times	18	150	\times	4
470Ω	\times	1	150 k	\times	1
$56 \mathrm{k} \Omega$	\times	1	33 k	\times	1
$6.8 \mathrm{k} \Omega$	\times	2	3.3 k	\times	2
$1 \mathrm{k} \Omega$	\times	3	47	\times	2
$4.7 \mathrm{k} \Omega$	\times	2	1.5 k	\times	2
6.8Ω	\times	1			
470Ω	preset potentiometer.				
Capacitors					
500 p	\times	4	$5,000 \mathrm{p}$	\times	2
$100 \mu, 6 \mathrm{~V}$	\times	2	200 p	\times	2
0.1μ	\times	2	$100 \mu, 12 \mathrm{~V}$	\times	2
		$500 \mu, 12 \mathrm{~V} \times$	1		

Semiconductors

SN7493N, 4-bit binary counter,	$\times 1$	
SN7486N, quad exclusive-OR gate,	\times	",
SN7404N, hex inverter,	\times	$"$
SN72709DN, dual op-amp,	\times	"
BC108 transistors,	\times	4
1N914 diodes,	\times	6
5V,400mW zener diode	\times	1
Miscellaneous		
dual-in-line sockets,	\times	4
Lektrokit board type LK141,	\times	1
Lektrokit pins,	\times	100

SONEX 71

Hotel hi-fi show at London Airport

Over 150 rooms have been booked by more than 60 exhibitors for the second Sonex exhibition to be held at the Skyway Hotel, London Airport. The show will be open to the trade only on Wednesday 31st March and Thursday 1 st April, between 11.00 and 18.00 . It will be open to the public for the next three days, from 11.00 to 21.00 on Friday and Saturday and from 11.00 to 18.00 on Sunday April 4th.
Because of the postal strike admission tickets will not be required. Each visitor will receive a free sixteen-page show guide.
Features of the exhibition that are new this year include a 'Living with $\mathrm{Hi}-\mathrm{Fi}$ ' display arranged by Homemaker magazine, and the promise of considerable activity by Radio London.

Brand names at the show

A.D.C.	Empire	Leak	Revox
A.K.G.	F.A.L.	Lowther	Richard Allan
Acos	Fane	Luxor	Rogers
Acoustic Research	Gabraphone	Metro-Sound	Rotel
Akai	Garrard	Mordaunt-Short	Sansui
Alpha-Arena	Goldring	Musitapes	Sheppard
Armstrong	Goodmans	National	Shure
Audio Packs	Grampian	Panasonic	Sinclair
Audio Technica	Harman-Kardon	Ortofon	Skandia
B.S.R. McDonald	I.M.F.	Peak Sound	Sonab
B \& W Electronics	J.B.L.	Peerless	Sonotone
Bib	J.V.C. Nivico	Philips Electrical	Sugden, J.E.
Brenell	Jordan-Watts	Pickering	Telefunken
Cambridge Audio	K.E.F.	Pioneer	Teleton
Celestion	KMAL (Monks	Poly-planar	Thorens
Connoisseur	Audio	Quad	Wharfedale
Decca	Koss	Radford	

An f.m. tuner from J. E. Sugden employs a varicap tuned front end and a four stage i.f. section with double tuned couplings. A switchable filter permits reduction of $L-R$ information thus allowing separation to be traded for reduced noise on weak signals.

The Lowther Auditorium Acousta is an enclosure combining two sound sourcesone forward, the other rearward. Using two such enclosures in place of a pair of conventional single perspective speakers gives increased solidity to stereophonic reproduction.

Futuristic Aids will be demonstrating a loudspeaker from Fane Acoustics which employs a new ribbon unit for mid range and top frequencies and a 12in driver for bass.

Cambridge Audio have a new speaker called the Junior, and a 'slave unit' to boost the output of their amplifiers.

Rogers will be demonstrating a modified and improved version of their Studio Monitor loudspeaker which is being manufactured under licence from the B.B.C.

Elements of Linear Microcircuits

7: Radio- and intermediate-frequency amplifiers

by T.D. Towers,* M.B.E., M.A.

We tend to think of silicon monolithic technology (in which complete circuits are produced in small crystal chips little larger than the dot on a printed ' i ') as being very modern. Technologically this is so, but any reader who has access to Vol. 1 of Wireless World could well be surprised to find in the July 1913 issue a long article by Dr. A. E. H. Tutton entitled 'Crystals as Rectifiers and Detectors' examining crystal lattice structures in detail and pointing the way to the use of 'the very best procurable single individual crystals'. Some of the semiconductors examined by Tutton such as 'perikon', 'anastase' or 'brookite' may only evoke nostalgic memories from more elderly readers. On the other hand, unexpectedly, Tutton also devoted attention to pure silicon (so important now to monolithic integrated circuits), and to such sophisticated materials as silicon carbide and liquid crystals (important now in semiconductor opto-electronics).
The celebrated H. J. Round in a reply to Dr. Tutton in the August 1913 issue was curiously prophetic in his remark 'Crystals work well as wireless receivers'. In the 1970s we have indeed reached the stage where virtually the complete receiver circuitry can be produced in a silicon chip. The present article examines the state of the art for r.f. and i.f. amplifier microcircuits.

A survey of r.f./i.f. amplifier microcircuits in early 1971 showed about 100 commercial types available, all produced by semiconductor device manufacturers. Of these, virtually all are monolithic, although hybrid circuits are beginning to appear. Before we devote the remainder of the article to monolithics, it might be well to consider why hybrids are appearing alongside them.

Fig. 1 gives the circuit of the Newmarket NMC809A, a thick-film hybrid r.f. /i.f. amplifier. The seeing engineer's eye will note that it is a d.c. coupled feedback pair $T r_{1}, T r_{2}$, with an emitter follower buffer Tr_{3}, the transistors being 2 N 918 family devices with a typical frequency cut-off approaching 1,000 MHz . The circuit has a frequency response from d.c. to over 40 MHz . The resistor trimming possible with thick film

[^11]

Fig. 1. Example of a thick film hybrid r.f./i.f. wideband amplifier; Newmarket Transistors NMC809A.
assembly gives it a very narrow gain spread; typically $\pm 1 \mathrm{~dB}$ in 22 dB at 1 MHz . It can be used as a wideband amplifier or as a tuned r.f./i.f. amplifier up to 40 MHz . The separate connection to the emitter of $T r_{2}$ allows for full decoupling for low-frequency applications, or for a peaking capacitor for top-end video expansion, and series or parallel tuned circuits for band-pass or band-reject purposes. Designed to work on 14 V with typically 14 mA current, the NMC809A does not require any external biasing components, as bias levels are set up by resistor trimming during manufacture.

Monolithic r.f. circuits

In conventional discrete component r.f. /i.f. amplifiers it is normal to use a single transistor per stage, usually in a common-emitter arrangement, or, at very high frequencies, in a common-base arrangement. In both of these methods feedback from output to input can lead to instability and various neutralization techniques have to be used when high stage gain is called for.
Where higher stage power gain is wanted, some d.c.-coupled arrangement of two transistors can be used instead of a single transistor between tuned circuits. Three configurations often met with are
the long-tail pair, the cascode arrangement and the d.c. feedback pair.
Now with discrete circuitry the single transistor common-emitter stage has such advantages in gain, noise figure and impedance matching convenience that you only come across the other arrangements mentioned where abnormal performance is required.

When we come to monolithic i.cs, cost per transistor becomes less significant, being replaced by cost per stage. Here we find single transistors abandoned, and one

Fig. 2. Basic transistor configurations used in monolithic r.f./i.f. amplifiers; (a) long-tail pair; (b) cascode; (c) d.c. feedback pair.
of the three multiple-element arrays used. For ease of analysis, these are shown in basic form, without isolating and biasing networks, in Fig.2. Each has its advantages. The long-tail pair of Fig. 2 (a) has fairly low noise, high power gain, high stability, simple biasing, inherently symmetrical operation, non-saturating limiting action, fast recovery from overdrive and easy interstage matching. The cascode of Fig.2(b) has low noise, high power gain, high stability, and easy interstage matching. The d.c. feedback pair of Fig.2(c) is distinctive for low noise, large signal handling capacity and low power consumption.

Long-tail pair

The long-tail pair with a resistor tail is widely used in r.f./i.f. monoliths. One example is given in Fig.3, which is the circuit diagram of the Philips TAA380A. This is an i.f. amplifier suitable for use in TV intercarrier sound circuits and f.m.
broadcast receivers and comes packaged in the small multi-lead TO-5 ou/line metal can. Transistors $T r_{1}$ and $T r_{2}$ form a long-tail pair with tail resistor R_{1} and buffer isolating emitter follower Tr_{3} feeding to further long-tail pairs $T r_{4}, \operatorname{Tr}_{5}$ and $T r,{ }^{1} T r_{8}$ to drive an output tuned circuit connected to terminal five. Transistors $\quad T r_{9}$ and $T r_{10}$ provide stabilized voltages for close control of d.c. bias; reference voltages being provided from selected points in the series diodes D_{1-8} which are forward biased through R_{11}.

The resistive-tail long-tail pair is used as a basic element in many other commercial monolithic r.f./i.f. amplifiers such as the General Electric PA 189, RCA CA304I, 3043, Fairchild μ A 717, Motorola MC1350, Siemens TBA120 and the Philips TAA570. Most of these are complex multi-stage circuits to provide a complete block of functions for a receiver.

Some monolithic multi-stage r.f./i.f.

Fig. 3. Commercial i.f. amplifier microcircuit illustrative of use of resistor-tail long tail pair as basic amplifying element in monolithic microcircuit construction (Philips TAA380A).

Fig. 4. Monolithic r.f./i.f. amplifier long-iail pair with transistor constant current tail (Philips TAA350).
amplifiers use a transistor instead of a resistor as the constant-current source for the long-tail pair. This three-transistor type of gain block can be seen forming repetitive elements in cascode in commercial microcircuits and Fig.4, the Philips TAA350 is an example of this technique. The long-tail pair with transistor tail, $\operatorname{Tr}_{1}, \operatorname{Tr}_{2}, T r_{3}$, with its output buffer emitter followers $T r_{4}, T r_{5}$ are repeated for the four stages. The bias for the tail transistor is provided from a common rail voltage defined by the forward voltage drop across the diodeconnected $T r_{21}$ fed from the positive rail through a $2.1 \mathrm{k} \Omega$ resistor. The differential amplification with current-driven long-tail pairs gives high a.m. rejection making the amplifier suitable for use with very simple f.m. detectors.

Several monoliths have been made which can be used in a large number of different ways. Fig. 5 gives the circuits of a number of the more common commercially available ones. These can, in most cases, be used as a cascode or a transistor-tail long-tail pair.

All the circuits of Fig. 5 are basically a balanced emitter coupled transistor pair with a third transistor providing the emitter current for each of the pair. Such a configuration would be costly to fabricate with discrete components because of the difficulty of getting adequately matched balanced pairs and the need for separate biasing networks stable with temperature and supply voltage variations. With monolithic fabrication these difficulties do not arise. The different examples in Fig. 5 reflect different manufacturers' design approach to versatile microcircuits with many circuit connection options.

The RCA CA3053/3028 of Fig.5(a) uses resistor networks to bias the tail transistor Tr_{3}. The Motorola MC1550 of Fig.5(b) features a diode in the biasing network for temperature stability; the Fairchild μ A703 of Fig.5(c) uses two biasing diodes; and the Amelco 911 (also National Semiconductors devices LM171/271/371 of Fig.5(d) uses as many as three bias semiconductors for maximum stability. Fig.5(e), the Signetics NE511, is a different approach and offers two amplifier stages in the one package together with one biasing diode. This gives the equipment designer great flexibility for special circuit requirements. Another example of extreme versatility is the RCA3004 / 3020 shown in Fig.5(f).

Cascode circuits

So far we have not mentioned cascode operation. It will be found that in monolithic microcircuits a true twotransistor cascode arrangement is almost never found. This is because a cascode circuit can be made up by taking a transistor-tailed long-tail pair such as Fig.5(a) and using the tail transistor Tr_{3} as the common emitter input of the cascode pair and one of the balanced pair as the common-base output. Some of the circuits of Fig. 5 have direct access to the base of the tail transistor and can be used as

Fig. 5. Commercial single-stage monolithic r.f./i.f. amplifiers using long-tail pairs with transistor tails; (a) RCA CA3053/3028; (b) Motorola MC1550; (c) Fairchild $\mu A 703$; (d) A melco 911; (e) Signetics 511; (f) RCA 3004/3020.
(a)

Fig. 6. Alternative cascode and long-tail pair tuned amplifier arrangements of Motorola MC1550 microcircuit; (a) coscode $60 \mathrm{MHz}, 30 \mathrm{~dB} 0.5 \mathrm{MHz}$ bandwidth; (b) long-t, il pair 10.7 MHz f.m. i.f.
effertively in cascode as in long-tail pair mode (where the input is applied to one of the balanced pair). One feature not to be overlooked is that the three-transistor configuration (whether it be cascode or long-tail pair) always leaves an unused terminal which can be employed to apply automatic gain control.

Perhaps the easiest way to understand the versatility of the transistor triplet is to look at one specific example, say the Motorola MC1550 whose basic circuit is given in Fig.5(b). This microcircuit can be connected, for example, as a cascode 60 MHz tuned amplifier in the arrangement of Fig.6(a) or as a long-tail pair 10.7 MHz i.f. amplifier as in Fig.6(b).

D.C. feedback pair

The cascode and long-tail pair are not the only configurations used by monolithic manufacturers. The d.c. coupled feedback pair shown for discrete circuitry at Fig.2(c) above has advantages that have led to its adoption by some manufacturers. One example of this is the Plessey SL612 r.f. amplifier (Fig.7). The design is essentially an emitter coupled d.c. feedback input pair $T r_{1}, T r_{3}$ providing d.c. bias from the emitter of Tr_{3} to the input of $T r_{1}$ via a $5 \mathrm{k} \Omega$ resistor. The d.c. coupled pair is followed by an emitter follower Tr_{5} providing feedback into the emitter of Tr_{1} via a 525Ω resistor. The overall circuit gain is 20 dB Low noise is ensured by running $T r_{1}$ at low current and good signal handling by the overall feedback. Effective a.g.c. control of 50 dB is achieved via Tr_{8} and

Fig. 7. Commercial r.f. amplifier monolithic microcircuit using basic d.c. coupled feedback pair configuration:
Plessey SL612 r.f. ($2-76 \mathrm{MHz}$) tuned amplifier.

Table 1
Directory of r.f./i.f. microcircuit manufacturers

Company

Amelco (Teledyne)
Fairchild
General Electric (USA)
Intermetall
Marconi-Elliott Microelectronics
Mitsubishi
Motorola
Mullard (Philips)
National Semiconductors
Newmarket Transistors
Plessey
R.C.A.
S.G.S.

Siemens
Signetics

Microcircuit type numbers
911
$\mu A 703 / 717 / 719$
PA189
TAA710
M316
M5142P
MC1 100/1350/1352/1550
TAA350/380/380A/450/570/640
LM171/172/271/371/372/703
NMC 809A
SIC 809A $502 / 503 / 551 / 552 / 553 / 610 / 611 / 612$
CA3002/3004/3005/3006/3028/3041/3042/3043/3044/3053
CA3002/3004/3005 TAA661/730
L103. TAA661/730
TAA981/991. TBA120/400
NE5 10/511. SE5 $10 / 511$
$T r_{2}$ and power consumption is some 15 mA on a 6 V supply. The circuit is optimized to give a 150 MHz cut-off frequency ensuring satisfactory operation over the $2-76 \mathrm{MHz}$ communications band.

To help readers see what is commercially available in the way of r.f. /i.f. amplifier microcircuits, Table 1 lists the major manufacturers whose products of this type are on the U.K. market, with a selected list of types known to the author.

The wide range of microcircuits available to the equipment designer vastly simplifies the production of tuned amplifiers from 100 kHz to 100 MHz , whether for fixed frequency i.f. use, with high gain, low current consumption and narrow bandwidth, or for variable r.f. use, with low noise, large signal handling, a.g.c., without substantial change of characteristics, and without a performance change across the tuning band.

H.F. PredictionsApril

The charts are based on an Ionospheric Index of 96 , the corresponding sunspot number being 83. Similar predictions were made for April 1970 but the observed index value jumped to 130 and remained high the following month. There was a similar trend in 1969.

Transequatorial paths have their highest MUFs during equinox months and conditions should be good above 20 MHz . Evening fading is relatively independent of season and cycle on the South African path but is worse during this season on others Poor conditions are expected from the Far East midnight to 09.00 G.M.T. and North America will be liable to several days of weak signals 06.00 to 16.00 G.M.T.

MUFs apply to both directions of a route while LUFs are for reception in the U.K. only.

Don't Look Now

Sampled Data Controlled Systems, and

by Thomas Roddam

Some years ago, when the book Principles of Feedback Design was in preparation, I did not dream of discussing a topic which, I then thought, was way out of our world The airlines tell me the world is getting smaller, but if it is, there is still the simple fact that it gets more packed every day. Having started on non-linear systems, and found that the describing function is relatively easy to use, we must examine the sampled-data systems because we need this method for practical equipment. We need it, in fact, for power supplies.

Simple sampled-data systems we use in everyday life. You come home, look at the thermometer, or just guess, and having sampled the room temperature you either switch on a heater, or you don't. There are two sampling modes which follow. Either you take a data sample, am I hot or cold, at regular intervals in the natural breaks of the telly programme, or you operate with a relay dead-band characteristic: it's getting too hot in here, and off goes the heater. It's so tempting to continue with this example until it collapses in confusion. There is one feature which can be examined. Suppose that you have a very powerful heater, and that it is a very cold day. With regular sampling you may never be comfortable: it gets too hot before the next sample is due, if the heater is on; if it is off it gets too cold. This is the characteristic behaviour of a nonlinear loop with an intolerable instability.

The theoretical study of sampled data systems is complicated by a number of factors. The sampling may not be exactly regular in period: this is a very common situation. The sample may not be taken, as the simple theory demands, in an infinitely short time. I do not propose to be pernickety about this, because this is merely an introduction to the subject. Furthermore, I have some numbers in mind. A particular system contains, in the loop, an inductor which is nominally 50 mH at 8 A d.c. An inductor of this kind, of course, is really $50-70 \mathrm{mH}$ at best, and may be up to 200 mH at lower values of polarizing current. And then there is a big electrolytic capacitor. Details of the sampling data process are trivial compared with the large range of uncertainty of the response of the linear system. It does not make engineering sense to impose close tolerances on these components just to enable the theory to be made more precise.

In most of the literature it would seem
that the forward path and the feedback path are shown as combined. This is because so much of the theory has been carried out in terms of control systems. For regulated power supplies this means, quite simply, that we connect the monitoring voltmeter in a different place. The essential bit of a linear regulator can take the form shown in Fig. 1. There are refinements, but they do not affect what we are considering. Normally we regard the voltage across the output terminals as the object of study, but in fact it is the voltage at point B which is the significant term so far as the regulator is concerned. The long-tail pair can be considered as a combiner and the complete unit rearranged into the form of Fig. 2. The actual output is then given by $V_{B} /$ (pot' ratio). It is just the same for an audio amplifier, although we may put frequency dependent terms into the divider path. Stability depends on $\mu \beta$, not on either μ or β alone.

A sampled data system begins by looking at the error signal. This is done by the sampler. The output from the whole system will be a continuous one, and so the system must have a continuous instruction supplied to it. This is provided by a hold circuit, which stores the latest news of the error, provided by the sampler, until the next sample is taken. You plan your Sunday by the sea on the basis of Saturday night's weather forecast: you can even get it in stored form, in the evening paper. The overall system takes the form shown in Fig. 3. In this the box marked "operate" would be marked ($\mu \beta$) if we left out the sample and hold processes, and we shouid study the term $(1-\mu \beta)$, the difference signal, the error signal.

The elegant way of studying the stability of a system characterized by a function $F(s)$, or $f(t)$, is to study the roots of the equation

$$
F(s)=0
$$

In a simple world, all we know is $f(t)$, the way the system behaves when we give it a momentary impulse, but we find that we are urged towards the use of the Laplace transform and then to the Cauchy theorem, so that we finish up with a result which is simply the Nyquist diagram. It is usually fairly easy to find $F(s)$ for a linear system in the world of electronics. If we can find a form of $F(s)$ for the sample and hold part

Fig. 1 Heart of a power supply regulator.

Fig. 2. Symbolic view of Fig. 1.

Fig. 3. Sampled data control system.
of Fig. 3 we shall be able to proceed absolutely along the established lines. One way of attacking this would be by the route of the describing function. The alternative is a bold frontal attack to determine the behaviour in time of the hold output when a standard signal is applied to the sampler. If the Laplace transform can be used on this process we have just two functions, $F_{1}(s)$ and $F_{2}(s)$, for the two parts of the circuit which are in tandem, and overall we have

$$
F(s)=F_{1}(s) \cdot F_{2}(s)
$$

As it turns out, the Laplace transform which is obtained for a sampling system is an infinite series. I suppose this could have been expected, because the sampling process is one which implies infinite currents to reset the holder in an infinitely short time. A modified transformation, which is called
the Z-iansformation and which is related to the Laplace transform, is used. It has a rather interesting effect on the stability rules.

We had better look at the process we want to put into mathematical terms. Fig. 4 shows how an input signal is first converted into a train of pulses and is then processed by the hold circuit, a circuit which is often called a box-car circuit. If we think of the conversion of 4 (a) into 4 (d) in terms of the describing function there are two points which are obviously fairly true. The first point is that

Fig. 4. Sample and hold process.
the describing function is not a function of amplitude, as it is with dead band or saturation non-linearities. The sample-hold operaation is a linear one, in this sense. The second point is that the sample-hold operation provides a delay of about one-half the sampling period. This delay does not depend on the input frequency so that it is not a phase angle. Thus far, then, the s.h.o. behaves very much like a transmission line for the purpose of its describing function. Things get rather odd, however, if the input frequency is increased to around one-half the sampling frequency. If the samples are taken at 0 deg and 180 deg the output will be zero: if they are taken at 90 deg and 270 deg the s.h.o. will show a small gain. The output will show characteristic slow beats. This can be interpreted by treating the whole thing as a modulator, with input frequencies of f_{i} and $\left(f_{s}+2 f_{s}+3 f_{s} \ldots\right.$), the spectrum of the sampler. The term $2 f_{s}-f_{i}$ is very close to f_{i} when $f_{s} \approx f_{i}$, and this is one way of looking at the beat source: another is to fix attention simply on $f_{s}-f_{i}$. From the first, however, we see that we are likely to get this sort of thing happening when $f_{i}=2 f_{s}$, and so on right up the spectrum.

Two consequences can be guessed. The first is that any attempt to find a simple describing function in the form $G(s)$ will need to deal with an infinity of odd spots. This is because our sampler is what we might call an infinity generating function. The second is that we may get trouble with those beats in a practical system. Hold circuifs do not normally hold for ever: if we think of a power supply filter as a hold circuit it will do its job nicely at 100 Hz , getting rid of ripple, but if there is an instability near the sampling frequency which produces an input, will the beat frequency get suppressed? The describing function technique is at its
safest if one is throwing away harmonics. Here there is a nasty danger of subharmonics, and in practical systems it is found that oscillations at a subharmonic of the sampling frequency are, indeed, produced.
The formal approach is, as we have said, by means of the Z-transform. This is developed in the following way. Suppose that the input to the sampler is a waveform $f(t)$. The output is a series of pulses, separated by time T. The nth pulse, at time $t=n T$, is quite simply $f(n T)$ and is fully expressed by

$$
f(n T) \delta(t-n T)
$$

Where $\delta(t)$ is the impulse function, a unit impulse at time $t=0$, or, for $\delta(t-n T)$, at time $(t-n T)=0$, or $t=n T$. As we know from our delving into the Laplace transform, the impulse function is \mathscr{L}-transformable. In fact we can write

$$
\mathscr{L} f(n T) \delta(t-n T)=f(n T) \exp (-n T s)
$$

This takes advantages of the fact that while we are looking at this pulse, $n T$ is a constant, and so $f(n T)$ is also a constant.
The whole pulse series which comes out of the sampler is the sum of all the individual pulses:

$$
\sum_{n=0}^{\infty} f(n T) \exp (-n T s)
$$

Now we write $z=\exp (T s)$ and the pulse becomes:

$$
\sum_{n=0}^{\infty} f(n T) z^{-n}
$$

We call this $F^{*}(z)$, the Z-transform of $f(t)$, and write

$$
F^{*}(z)=Z f(t)
$$

Just as when we are dealing with functions of the complex frequency, s, we take the ratio of input $I(s)$, and output $O(s)$, and call its inverse the transfer function

$$
\frac{O(s)}{I(s)}=G(s)
$$

so in sampled systems we can take $F_{\text {in }}^{*}(z)$ and $F_{\text {out }}^{*}(z)$ and write

$$
\frac{F_{o u t}^{*}(z)}{F_{i n}^{*}(z)}=G^{*}(z)
$$

the sampled transfer function. It is a special kind of system gain. Fortunately it is related to the ordinary meaning of gain. The mathematics is of a kind best studied in privacy by consenting adults, with long expressions all over the place. The final answer is elegant:

$$
G^{*}(z)=\mathscr{L}^{-1} G(s)
$$

Thus all you do is work out $G(s)$, with all those $(s+a)$ and $\left(s^{2}+a s+b\right)$ terms that come from X, R and L, C, R circuits, find the inverse Laplace transform, using tables if you are idle, and then find the Z-transform, for which you should have another set of tables.

Although it is not uncommon for the hold function to be provided by a network of capacitance and inductance there are practical as well as theoretical circuits in which the box-car hold system is used. It is a circuit element of a rather special kind. It has what we may call a frequency response, that is to
say a transfer characteristic expressed in terms of s, which is obtained by using the Laplace transform on the behaviour in the time domain. It is rather unusual, in circuit theory, to find ourselves working this way round. Again the mathematics is a mass of long expressions, but in the end we obtain a transfer function for the hold circuit, $G_{h}(s)$, given by

$$
G_{h}(s)=(1-\exp (-s T)) / s
$$

Remembering that s is a generalization from $j \omega$, we see that we have a sort of $j \omega T$, and the exponential function gives us a power series of this, a harmonic series of the sampling frequency.

Although I do not expect that, from this article alone, readers will be in a position to design sampled data systems, it is nevertheless of some value to know the form which some basic functions take when they are Z transformed. The obvious one to begin with is the unit step, the most basic function which can be meaningful. Although we took the unit impulse for our normal kind of circuit, sampling a unit impulse is an exercise in probability which I will not attempt, especially as we would be considering the chance of two infinitely short pulses coinciding. The Z-transform of the unit step, however, is quite easy. All the pulses are the same height, and

$$
f(n T) \text { is a string of } 1,1,1 \ldots
$$

This makes

$$
\begin{aligned}
F^{*}(z) & =\sum_{0}^{\infty} z^{-n} \\
& =1+1 / z+1 / z^{2} \cdots \\
& =z /(z-1)
\end{aligned}
$$

It is more elaborate than the Laplace transform, which is simply $1 / \mathrm{s}$.
A key waveform is the one we get from a single root on the real axis, for which the s-function is $1 /(s-a)$. For this the inverse Laplace transformation gives us

$$
f(t)=\exp (a t)
$$

Each pulse in the train which comes out of the sampler is $\exp (a T)$ the size in the preceding one: a is usually negative, of course. The Z-transformation gives us

$$
\begin{aligned}
Z \exp (a t) \cdot u(t) & =\Sigma z^{-n} \exp (a n T) \\
& =\Sigma\left(z^{-1} \exp a T\right)^{n} \\
& =\frac{z}{z-\exp (a T)}
\end{aligned}
$$

Once all the analysis has been gone through, we have the overall sampled transfer function. In the familiar case of a linear system we, if we are using the Laplace approach, find $\overline{\mu \beta}(s)$, and then substitute $j \omega=s$. Most of us go by a different route, to get $\mu \beta$ as a function of ω without using s at all. When we have this expression for $\mu \beta$ we plot it out as ω goes from 0 to ∞. We should in theory plot it from $\omega=-\infty$ to $\omega=\infty$, but we only need to do this in some very tricky systems. Where is the critical point (1,0), or if you don't slip the 180°, $(-1,0)$? This is the Nyquist test for stability. In a previous article we saw that this trick of standing at the critical point and saying "are we surrounded" is the equivalent of searching the whole half-plane for roots by

Fig. 5. Phase plane diagram.
going round it on a contour. We can be Indians or Wagon Train.

In a sampled data system we have

$$
z=\exp s T
$$

Let us put $s=j \omega$, so that

$$
z=\exp (j \omega T)
$$

But $\exp j \omega T=\cos \omega T+j \sin \omega T$
and as we vary ω this means that z goes round and round on a circle of unit radius. Instead of varying ω from 0 to ∞ we need only go once round this circle. From then on, use Nyquist.

The underlying mathematics would seem to have evolved from the use of the Fourier and Laplace methods. Whenever one has a simple, powerful, mathematical technique one finds that there are mathematicians nibbling away at the foundations. Whenever the engineer says of a solution- that bit does not make sense, let's leave it out-the mathematician goes away to find a technique which will leave it out automatically. In the describing function method we leave out the harmonics, and sometimes land in trouble. The mathematics of the Z-transform comes from a study of where the Laplace transform goes wrong. There is less chance of applying the more rigorous theory which lies behind the Z-transform to functions which will have some odd feature which makes the procedure give the wrong answer. The difficulty, as always, is that the more general the rules, the harder it is to live with them: read the regulations at the park gate before you take the dog for a walk and you will see just what I mean.

Even if I had devoted ten times as much space to a very detailed explanation of how to use this classic sampled-data approach it would not have been a help in the real world. Practical sampled-data systems do not work with infinitely short sampling pulses, and the sampling pulses may not be evenly spaced.

One form of practical sampled-data system which is of both theoretical and practical interest is obtained when the sampling switch is closed for a finite time. This means that the sampler output is a normal pulse amplitude modulated signal, with pulses
which can pass reasonably well through at least a part of the linear system. The type of hold circuit is then probably not the zero order hold which produces the boxcar effect, but a first or second order integrator. One important feature of this is that the theory must fit at the ends. When the pulse becomes very short the situation is the one we have just discussed, for which the Z-transform or other short-pulse techniques must give the same answer. If the pulse length is T, the sampler switch is closed all the time, and the answer must be the usual linear, $\mu \beta$, answer.

The sampler may produce pulse length modulation. I simply will not start on this. Except, there is one form of pulse length modulation which we must consider. Suppose that the sampler switch closes at a moment determined by the sign of the error signal, and is opened at regularly occurring times. This produces pulse length modulation with a modulated leading edge. Suppose also that the pulses are an odd shape. Who would want to build such a circuit? This is, in fact, just what one gets with thyristor regulation in phase-control and is not too different from some switching regulators.

Other switching regulators behave even more awkwardly. Both pulse frequency and pulse length vary over the controlled range. These, in fact, are probably best dealt with by using the describing function, treating them as relay circuits with hysteresis. But if you feed in some jitter signal deliberately they look like sampled data systems.

I want to look at some practical systems next month: there is not enough space here. There is, however, one other theoretical approach which I think deserves just about the space I have left if I am to stick to my standard length. The mechanical people call this the velocity-phase diagram technique, which does not mean much to us. It is chiefly used for rather simple systems, which are, in fact, just the sort of systems we want to use it for. That sentence expresses my meaning precisely: up with changes I will not put.

A typical circuit equation is

$$
L \frac{d I}{d t}+R I+\frac{1}{C} Q=E
$$

It is not necessary that L, C, R or E should be constant. We can always write :

$$
\frac{d I}{d t}=\frac{E-R I-(1 / C) Q}{L}
$$

If $I=d Q / d t$ we have
and thus

$$
\left.\frac{d I}{d Q}=\frac{d I}{d t} \right\rvert\, \frac{d Q}{d t}
$$

$$
a Q Q_{2}-\quad L T
$$

This expression contains no mention of time, not even in the disguise of frequency, unless time is hidden in one of the parameters. The most likely place to find time is in E, but even the $t=0$ idea of the unit step can be eliminated in the plot which is adopted. Actually I never know what charge is: we used to catch it on little drops of oil. Volts I know, I've got a meter for finding them. And

$$
\begin{aligned}
Q & =C V, \text { so } \\
\frac{d I}{d V} & =\frac{E-R I-V}{(L / C) I}
\end{aligned}
$$

The validity of one or two steps needs checking in each particular problem by running through this process writing not just C or L or R or E, but $L_{0} f(I)$ for an inductance which saturates, for example. The essential feature of this technique is that it is basically a practical one, working from the problem to the solution. The methods we normally adopt, like the Nyquist diagram, really start with the answer and we just test the problem against it.
The technique now is this. We choose our starting condition, when all the terms on the right-hand side are known. Let us begin by using the specific example we have, although this is not the only circuit we can handle in this way. To make life very easy, let us take $E=0, R=1,(L / C)=1$ and initial conditions $V=1, I=1$. We plot this point at P in a voltage-current diagram (Fig. 5).

Now at P

$$
\frac{d I}{d V}=\frac{-R I-V}{(L / C) I}=\frac{-I-V}{I}=-2
$$

We draw in an arrow to describe this slope. Let us go along this line to $V=0.8$, $I=1.4$, and call this P_{1}. Here

$$
\frac{d I}{d V}=\frac{-1.4-0.8}{1.4}=-1.57
$$

A new arrow is drawn to show the path from P_{1}. Using the approximation

$$
\frac{d I}{d V}=-1 \cdot 5
$$

the next point is $V=0 \cdot 6, I=1 \cdot 7, P_{2}$.

$$
\text { Here } \frac{d I}{d V}=\frac{-1.7-0.6}{1.7}=1.35
$$

There is no reason why we should not go on like this, building up a trajectory which shows how the circuit behaves. Except this: where does the arrow head come from? We must let time into the system just a little way. The time to go from P to P_{1} is

$$
t_{P P_{1}}=\int_{P}^{P_{1}} d t=\int_{P}^{P_{1}} \frac{d V}{d V / d t}=\int_{P}^{P_{1}} \frac{d V}{I}
$$

and as in this short stretch $I \approx 1$ and $d V=$ $-0 \cdot 2$, the time in the movement from P to P_{1} is negative. We should head off in the other direction, instead of looking back into history. So we build up $P^{\prime}, P^{\prime \prime}, P^{\prime \prime \prime}$ and in the end we get the spiral path sketched in Fig. 6, which must, of course, decay to the

Fig. 6. The final picture.
origin, as we have no supply E to provide any final voltage. In this particular circuit a fixed voltage input would have given a spiral centred, if that is the word, on the point ($E, 0$). This is obviously a stable system : in the long run it settles down. It is not a very exciting sysuem, although it is easy to watch the spiral on an oscilloscope. If the brightness can be modulated it is possible to put time markers on as well.
In a non-linear system we can get up to all sorts of tricks. For simple folk like me a rather coarse stage by stage calculation is carried out. The example I am using now has been chosen so that it does not overlap the material I have in mind for the next article. Let us stick to our $L C R$ circuit, but let us take some special cases. If we take $R=0$ we have

$$
\begin{aligned}
\frac{d I}{d V} & =-\frac{V}{I} \\
I d I+V d V & =0 \\
I^{2}+V^{2} & =\text { const. }
\end{aligned}
$$

This is the equation of a circle and I really do not think we need a figure. If we make R rather small we know that the oscillations die away very slowly. For convenience the system will be started off at the point $I=I_{0}$, $V=0$, and we shall get a spiral path which lies inside the circle. The first half-cycle is shown in Fig. 7 as the path from I_{0} to $-I_{1}$.

Fig. 7. Formation of a spiral.

Suppose that when V is negative the circuit is changed, to make R negative. The behaviour is then an expanding spiral, which I have drawn as $-I_{1}$ to I_{2}. We are now back nearly where we statted, and we can repeat the whole process. As the figure is drawn I_{2} is bigger than I_{0}, and so the spiral will get bigger and bigger. This, then, is a truly unstable situation.

In circuit terms this corresponds to an ideal class-B oscillator which drives for exactly half a cycle and decays for the other half. In terms of the s-plane the pole spends equal amounts of time on each side of the imaginary axis, but goes rather further into the right-hand half than it does into the lefthand half. The oscillator designer would disagree with the description "ideal". He wants the amplitude to stay constant. One way of doing this is to adjust the values of $R+$ and $R-$ very precisely, so that what we lose on the swings we make on the roundabouts. This is the function of a thermistor in such a circuit. There are two other ways, which are more in our line: the thermistor

Fig. 8. Stabilization of oscillation by clipping at I_{0}.
is a linear operator, after all. We can use a limiter of some kind. It is a matter of taste how the limiting is done. A diode can be used to clip the voltage used in this analysis: a diode can also be used to clip the current. Examination of particular circuits will show how a non-linearity is added to each. Without giving any particular preference to any method, the sort of behaviour we get is shown in Fig. 8. This would be analysed in three pieces, $A \rightarrow B, B \rightarrow C$ and $C \rightarrow A$.

An alternative technique is to change the point at which R is switched from negative to positive. This is indicated in Fig. 9. From A round to B the damping is positive, and from B to A the spiral is a growing one. The change now takes place at $-V_{0}$ and if this is chosen correctly the system remains in an equilibrium oscillation. It is, of course, a class-C oscillator and will be designed, with a d.c. loop study, to make $-V_{0}$ self-adjusting. If the d.c. loop is not correctly designed the system has a different instability and is either a blocking oscillator or a squegger.

Circuits of this kind often have a deadband characteristic. When this is so, the initial conditions become of great interest. There are two circles on the diagram of Fig. 10. If the circuit is set off at the point $\left(I_{1}, 0\right)$, inside the circle C_{1} the dead, or partly-dead, band means that the gain, in the describing function sense, is not enough to keep the circuit oscillating, and it just dies slowly. If the circuit is set off at $\left(I_{2}, 0\right)$ it will begin to oscillate, and we have at first no restraint on the oscillation so that the spiral is a diverging one, until the circle C_{2} is reached, when the oscillation settles down. For the initial condition $\left(I_{3}, 0\right)$ the limiting mechanism is rather over-working, bringing the

Fig. 9. Stabilization by change of transition
trajectory in towards C_{2}, the steady state oscillation.

For systems of reasonable simplicity these plots can be constructed on a point by point basis. They are also easy to produce by analogue modelling and to observe with an oscilloscope. Timing marks can be put along the trajectory, even when it is being constructed in this step-wise way. It is thus perfectly practicable to apply this method to a sampled-data system. The case against the method is one with which I have a good deal of sympathy. You are doing all this work on just this problem : you will have to do it all over again for the next problem. How nice to have general solutions. I am not satisfied, however, that the second, third, tenth problems of the same kind will involve the same amount of work. One great

Fig. 10. Three initial conditions.
point in favour of this approach is that it keeps currents and voltdges in your mind. They cannot slip off to iniitiity for an instant, leaving you with a sound analysis and a pile of dead transistors.

Non-linear circuit anal sis, and especially that part of it connected with feedback systems, seems to be in a ratiler awkward phase of its existence. There exists a very large amount of theoretical work in the form of original papers, some of great subtlety. The textbooks, when they are up to date, deal with the more elegant refinements of linear theory before they come to non-linearity. Not only does this discourage the student, who, if he is studying in his own time, collapses before he reaches the nonlinear material: the academic knows that non-linear systems are either trivial or too complicated to be subjects for an examination question. Meanwhile, we all need to build them. So let us stop thinking about Aspects of Non-linear Control Theory and start remembering, You, too, will go round the bend.

Low Distortion Tone-control Circuit

Bipolar transistors used in a Baxandall configuration

by P. M. Quilter*

Now that very high quality transistor power amplifiers are definitely with us, attention must be refocused on the preamplifier. The main source of distortion in the pre-amplifier is often the tone control circuitry as the power amplifier may require IV r.m.s. or more to drive it fully, and it usually takes this directly from the output of the tone-control circuit.

The standard one-transistor circuit, as used by A. R. Bailey ${ }^{1}$, gives a total harmonic distortion figure in the region 0.1% to 0.2%. The circuit, adopted by J. L. Linsley Hood ${ }^{2}$ is an improvement but necessitates the use of an f.e.t. which is not yet as cheap as a bipolar transistor and, because of its high drain load, requires an output buffer. Ideally a distortion figure in the region of 0.01% at 1 V output is desirable.

To achieve this using bipolar devices requires that either the inherent openloop distortion in the amplifier be reduced, or the open-loop gain increased to give a higher feedback factor for the same closed-loop gain.

The distortion in a transistor with a very high ratio of collector-slope resistance to collector-load is very nearly a function of output current alone. Therefore if the collector load can be raised the output current required to produce a given voltage will be reduced with a consequent reduction in distortion (and an increase in open-loop gain). Unfortunately, the high value of collector load would ordinarily make a high value of supply voltage necessary, and might also make loading effects of the feedback network significant. These difficulties can be overcome simply with an emitter follower performing two functionsproviding an output buffer for the high collector load, and giving a bootstrap voltage to raise the effective value of collector load.

The function of bootstrapping is to reduce the actual voltage swing across the collector load resistor for a ε iven collector current required to produce this change, and hence raise the effective resistance of the collector load. This can be achieved by driving the top end of the collector resistor in step with the collector

[^12]

Fig. 1. The complete tone-control circuit built round two n-p-n silicon transistors.

Fig. 2. Total harmonic distortion as measured at $2 V$ output. (a) is the measured t.h.d. of the signal generator, (b) the distortion curve with the tone control flat, and (c) the distortion curve with maximum bass and treble boost.
voltage. The final arrangement is shown in Fig. 1.

The circuit as tested omitted R_{3} giving R_{4} equal to 560Ω with the values of R_{1} and R_{2} shown. The gain was $2.2: 1$ at centre frequency with a subsequent loss of about 1.2:1 with the balance control fitted as shown. The distortion figures for a constant output of 2 V r.m.s. are shown plotted against frequency (Fig. 2). The distortion curves for the test oscillator
used and the distortion measured at the output of the amplifier are substantially the same up to 2 kHz but, with the treble control set for maximum boost, there is a slight rise at high frequencies. This may have been due to emphasis of the harmonics produced by the test oscillator itself because of the rising characteristic of the amplifier at high frequencies.
The output clips at 6 V r.m.s. and with the controls set to the "flat" position, the
total harmonic distortion from 40 Hz to 20 kHz was measured to be 0.01% or less at 5 V r.m.s. output.

The signal-to-noise ratio measured with reference to 1 V r.m.s. output over a 20 kHz bandwidth was 104 dB and the rise time to a step input, $0.1 \mu \mathrm{~s}$.

The circuit may be modified to suit personal taste as required. The relevant equations are as follows:

$$
\begin{align*}
& \text { gain }=\frac{R_{1}+R_{2}}{R_{2}} \tag{1}\\
& R_{1}+R_{2} \approx 2 \mathrm{k} \Omega \tag{2}\\
& R_{3}=R_{4}-\frac{R_{1} R_{2}}{R_{1}+R_{2}} \tag{3}
\end{align*}
$$

Some increase in distortion may result if the gain of the circuit increases beyond 5 or 6 although this may be acceptable especially if the required output voltage is fairly low, as the distortion is a function of output voltage.

Balancing equation (3) is important in order to ensure the controls will be set at their electrical centre when the frequency response is flat. In fact a perfect square wave response cannot be achieved for any setting of the controls unless this equation is balanced.

It should also be noted that the output impedance of the stage driving the circuit is part of R_{4} because R_{4} is the total source resistance. If this is not taken into account equation (3) will be invalid.

If R_{4} is greater than about $500 \Omega 2$ the two $1 \mathrm{k} \Omega$ resistors R_{5}, R_{6} can be omitted. They are included only to limit the ultrasonic gain to prevent instability. It is not advisable to increase R_{4} above $2 \mathrm{k} \Omega$ as the treble control range within the audio range will then be restricted.

The transistor type BC184L was used for this circuit in preference to the more common BC 109 because, from experience, the latter type had a tendency to oscillate parasitically due to its collector connected metal can.

In conclusion, this circuit has the advantages of a high output voltage with very low output impedance, negligible distortion and good signal-to-noise ratio.

REFERENCES

1. A. R. Bailey, "High-Performance Transistor Amplifier", Wireless World, December 1966. 2. J. L. Linsley Hood, "Modular Pre-amplifier Design", Wireless World, July 1969.

Progress in

 Air Traffic ControlThe first stage of the national air traffic control scheme-code name Mediatorhas been introduced at the National Air Traffic Control Service centre at West Drayton, Middlesex. Civil and military radar units operating until recently at Heathrow and serving South-east England have now been closed. With 2,500 movements per day at peak times, increasing at about 10% per year, the new system is needed to increase capacity as well as safety. Work on Mediator was initiated by N.A.T.C.S. in 1962 when it was set up to organize a comprehensive air traffic control system for both civil and military use.

Mediator recognizes radar as the controlling agent whereas in the past radar has been a back-up to 'procedural' control. With it, a whole new range of radar, communications, and automatic data processing equipment is being brought into operation with its associated engineering control, maintenance, power station, and new traffic control techniques. Thinking behind the scheme is similar to that proposed in the early 1960 s-see 'Electronics for Mediator' Wireless World vol.71, September 1965, pages 426-9-but there have been changes since then, partly as a result of difficulties with equipment.

Difficulties with the computer for flight plan processing have meant postponement of the full implementation of stage 1 but in the words of Michael Noble, Minister for Trade '. . . This was not a reason for delaying other improvements . . . not dependent on this particular development.' Improvements include completely new consoles-illustrated on page 181-with bright radar displays and a secondary radar facility, providing controllers with aircraft identification codes superposed on the primary radar display.

The secondary system, of course, works only with those aircraft installed with transponders, at present in the minority. They either have a 64-bit coded transponder-which enables a two-digit route code to be shown on the radar display-or 4096-bit coded transponder which allows aircraft to be identified with two additional decimal digits. Further, some aircraft are fitted with altimeter telemetry equipment, allowing flight level to be shown as well.

Facilities which make up stage 1 of Mediator fall into four main parts-radar outstations, communications links, processing and distribution, and display. The most interesting parts of the system are to do with processing and display, but of course the outstations and communications links are vital and much effort has been devoted to their reliability. Of the long-range primary radar stations at Ash, Ventnor, Lowther and St Annes using $50-\mathrm{cm}$ radars-chosen in preference to the alternative $10-\mathrm{cm}$ radar which would give more precisely defined blips but is susceptible to rain effects-three have dual
aerial heads.
All the secondary radars, co-sited with the primary radars, have dual heads. The main heads have duplicated electronics to give a high degree of reliability and to facilitate maintenance without interruption to the service. . . .

Bright radar displays use a scan conversion technique in which primary video data is written into the storage surface of a conversion tube. This is read with a 1024-line scan many times a second reinforcing the $55-\mathrm{cm}$ display and thus achieving television-screen brightness level. This system differs from other scan conversion systems in the way the secondary radar information is added to the primary. Use of two electron guns-with consequent registration prob-lems-is avoided by sharing gun writing time between the two data. When secondary radar information is available, the normal 'square' scan (equal forward and 'flyback' trace time) for primary information is interrupted and the aircraft designation written on the 256 -bit line using digital character generation.

With this system it had been possible to superpose primary and secondary displays to an accuracy of $\pm 1.5 \mathrm{~mm}$.

There is also a third kind of information on the display tube-a locally generaied map together with range rings and other static information.

One problem found with this technique of digitally writing the secondary radar information relates to the equal forward and reverse scans. If a display's digit is not accurately matched in position on the forward and reverse scans a jagged sawtooth effect can be produced-an effect which did in fact occur. Attempts to right this by adjusting electrical lengths of cables between scan conversion unit display were unsuccessful and passive delay networks had to be introduced. This needed extra gain from the video amplifiers to maintain display brightness and consequently these are being replaced.

Flight plan processing for controlled airspace is now done with a 32,000 -word store using a Ferranti Hermes computer. The system stores flight plans-aircraft identification and certain other informa-tion-wind speed and direction, airways structure, link routes, reporting points, and runways in use at Heathrow, verifies the flight plans, calculates an e.t.a. for each reporting point en-route, and prints-out flight, progress strips.

For middle airspace a Marconi Myriad computer system will be brought into use by March 1972 at which time R.A.F. m ddle airspace controllers move to the new centre. This triplicated real-time system was originally planned to be operational by now but software problems led to its postponement. Although only one of the three computers is connected on-line at any time, the others contribute thoough a kind of self-checking voting

1912 -the day your number cameup.

So what else has come up?

Since then Plessey has clocked up a great many other firstsparticularly in TXE2 (Pentex in the world markets)

A Plessey TXE2 was the first production electronic exchange to be installed ir. Europe. 'There are now over 75 Plessey electronic exchanges in operation in Britain alonenot to mention those overseas.
Plessey equipment is in great demand all over the world, so we can't promise delivery overnight. But what we can promise is the care we take to meet our obligations to you. Care in the opening of new factories, training of new staff and the availability of our engineers to advise on your telecommunications problems.

EEV know how to makt

1

radartubes.

Magnetrons, hydrogen thyratrons, klystrons, travelling-wave tubes, duplexer devices, storage tubes, pulse tetrodes, backward-wave oscillators... the list of EEV products goes on. We make them all: there are 328 types listed in our current catalogue and if the type you need isn't there don't worry: just give us
the chance to make it specially for you.
EEV's radar component capability is known throughout the world. The range is wide, the quality and reliability superb - and our customers have proved it hundreds of times.

Please send for the latest data from EEV - and prove it for yourself. \qquad

EEV know how.

Power Amplifier for A.C. Servomotors

A simple general-purpose $10-W$ design that will drive size-11, -15 or -18 servomotors

by R. J. Wallace*, m.I.E.R.E. and J. M. Clarke*, M.Sc.

An amplifier was required for use in the closed loop carrier servo system shown in Fig. 1 to drive the servomotor. The standard operational amplifier would obviously not supply the required amount of power and an investigation of commercially available amplifiers failed to reveal one that could be used in this system.
Amplifiers were found that would drive 20 V centre-tapped servomotor windings. However, these were not a lot of use as 20 V is not standard for servomotor tacho and reference windings. The reason for this is that suppliers of servo components are closely allied to the aircraft industry, where there is no need for an amplifier to drive the reference and tacho windings, since they are usually driven from the internal 400 Hz aircraft supply. However, in an industrial electronic system, it is not always convenient or desirable to use the 50 Hz line supply for excitation purposes and for the reasons of standardization one amplifier should be capable of driving any winding. The example given is a case in point. Here the inherent property of the a.c. servomotor to remove quadrature signal components is utilized by deriving the reference signal from optical sources. The excitation frequency in such a system can be anywhere in the region of 50 Hz to 1 kHz . *Sira Insitutuc

An alternative source of power amplifiers and power amplifier designs is the audio field. But here, in order to obtain very low distortion figures, these designs are unjustifiably complicated for industrial application.
In short, there is a need for a simple amplifier, capable of driving any winding of a suitable servomotor which might also be suitable for any application which requires a general purpose a.c. power amplifier.

Design

It was decided, as discussed, that the amplifier should be able to drive any winding of the servomotor, that all windings should operate at the same voltage and that the amplifier should have no need of the centre tap often available on the control winding.

With regard to power output, one amplifier for reference and tacho windings and one amplifier for the control winding was considered acceptable. The most often used motor is size-11 which dictates that the amplifier should have a power output of 10 W . Incidentally, this is also sufficient to drive single windings on a size-15 or - 18 motor.

Since the frequency at which a servomotor may be required to operate can de-

Fig. 1. A closed loop carrie system where an a.c. servomotor is sed. Here two optical signals, which are varying at the same time at 440 Hz , are combined to derive a reference signal. In addition one signal is used as the error signal.

These signals are so close to the 400 Hz commonly used for a.c. servomotors, they can be directly used to excite a servomotor via suitable amplifiers.
However to find a source of supply of such amplifiers is a problem.

Fig. 2. Basic circuit of the class B output stage employed. Several other possibilities were considered and rejected.
pend on the system as well as the nominal operating frequency of the motor, the frequency response at the amplifier was made as wide as possible, consistent with stability into complex loads, and the final design will drive either $50-, 60$-, or $400-\mathrm{Hz}$ motors, and any complex load up to 20 kHz .

The most generally available servomotors have either 26 - or $115-\mathrm{V}$ windings. The 26 - V version was chosen as this allows a transformerless output stage to be employed. Because the amplifier may be used in systems where the preservation of phase information is important, clipping of the output waveform was arranged to be symmetrical. In addition, no damage will result from reasonable overloads.

Commercial amplifiers often incorporate a 90° phase shift circuit but, since the required phase shift often depends on system phase relationships, such a circuit was not included.

The fact that a.c. servos can tolerate a small amount of distortion suggests the use of a class B, rather than class A, output stage. The higher efficiency of class B means lower heat dissipation and smaller size.

After considering a number of possibilities the simple output stage of Fig. 2 was chosen because of its simplicity, because feedback is easily applied and because the loop gain is low enough to make instability due to complex loads unlikely.

Circuit details

The circuit of the amplifier is shown in Fig. 3. Each output transistor is driven by a common emitter stage and coupling capaci-
tors are avoided by the use of complementary circuitry. Overall feedback is by R_{7}, R_{8} and R_{9}, R_{10}, with a separate path for each 'half' of the amplifier to assist in stabilizing the bias currents.

The high frequency response is restricted to 23 kHz by C_{1} and C_{2}. The bandwidth can be increased to about 400 kHz by removing C_{1} and C_{2} if due care is taken with the component layout. Diodes $D_{1 \text { to }}$ are for bias current temperature compensation, the final value of the output stage bias being set by $R V_{1}$ and $R V_{2}$. All the transistors and diodes are mounted on a common heat-sink which should have a thermal resistance of less than $2.5^{\circ} \mathrm{C} / \mathrm{W}$.

Fuses F_{1} and F_{2} provide protection against damage when the amplifier is used into a load below the permitted minimum, or short circuits of small duration. They do not give full protection and the provision of additional safeguards was not considered to be worth while. The clipping action protects the amplifier when it is overdriven.

Performance

Three amplifiers were built and subjected to the tests detailed below. The amplifier load resistance was 68Ω and the signal frequency was 400 Hz .

Voltage gain versus ambient temperature: The gain of the three amplifiers was measured for 10 V r.m.s. output. The results were as follows.

Amplifier	Gain	
	$20^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
1	5.72	5.85
2	5.72	5.9
3	5.72	5.84

Fig. 3. Final circuit. With the input shorted to ground $R V_{1}$ and $R V_{2}$ should be adjusted for $1 m A$ quiescent current through Tr_{3} and $T r_{4}$.

Fig. 4. The completed prototype.

Clipping levels: The r.m.s. output voltages at the clipping points of the three amplifiers were measured and are set out below. These voltages are marginally higher than might be expected because of the small amount of distortion.

Amplifier	Clipping voltage (r.m.s.)	
	$20^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
1	28.9	29.2
2	28.7	29.3
3	28.8	29.2

Frequency response: The high frequency response has been limited as described earlier and is 3 dB down at 23 kHz . As the amplifier is d.c. coupled, the minimum frequency for full output is determined by the maximum period over which it is permitted to average the instantaneous dissipation. While 40 Hz has been specified as the minimum, a margin of safety has been allowed for constructional and device parameter variations. One amplifier, has in fact operated satisfactorily down to 30 Hz .
Input impedance: The input impedance is slightly dependent on level, the lowest value being $3.5 \mathrm{k} \Omega$.
Quiescent current stability: Since the diode and transistor $V_{b e}$ characteristics are not matched perfectly, some change in bias current is observed with change in temperature. The figures were as follows:

Amplifier	Bias current in mA			
	$20^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
	Tr_{3}	Tr_{4}	Tr_{3}	Tr_{4}
1	1	1	26	25
2	1	1	28	28
3	1	1	27	26.2

The change of bias current with temperature is determined by the type of compensating diodes and the current through them. Since it is not practically possible to achieve a constant bias current with respect to temperature, á positive temperature coefficient is accepted so that increase of temperature will not lead to distortion because of insufficient bias current. Typically the bias current falls to 0.1 mA at $0^{\circ} \mathrm{C}$ but the major change, to approximately 27 mA at $70^{\circ} \mathrm{C}$, occurs between
$50^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$. The figure of 27 mA represents only about 5% of the peak current at full output.
D.C. current in the load: The amplifier is completely d.c. coupled and any d.c. appearing at the input, perhaps, due to offset errors in a preceding operational amplifier, for example, causes a d.c. current to flow in the servomotor. In the worst case approximately 60 mA at the input causes 5 mA to flow in a 68Ω resistive load.

Since completion of this amplifier (Fig. 4) integrated circuit audio power amplifiers have become available in the U.K. with power outputs up to 5 W . Perhaps one of the integrated circuit manufacturers would think it worth while to market a servomotoramplifier with a similar performance to that described by the authors.

Announcements

Duty free. All approved v.h.f. multi-channel radio communication and navigation equipment used in light aircraft is now exempt from U.K. import duty.

The entire share capital of General Video Systems Ltd, the main U.K. distributor of Shibaden broadcast and c.c.t.v. equipment, has been purchased by Shibaden. The name of the company has been changed to Shibaden (U.K.) Ltd, which will continue to trade from 61/63 Watford Way, Hendon, London NW4 3AX. Tel: 01-202 8056.

Nortronics Company Inc, of Golden Valley, Minnesota, manufacturers of magnetic recording heads, have formed Nortronics, S.A. in Brussels to market their products in Europe. A manufacturing facility will be formed at a later date.

The Avionics Division of Plessey Electronics Group are to supply IFF shipborne transponders and auto-decoders valued in excess of $£ \frac{1}{2} \mathrm{M}$ to the Royal Navy.

The Canadian Dipartment of Transport has awarded a $£ 118,000$ coniract to Decca Radar (Canada Ltd, for a harbour $\mathrm{r} \boldsymbol{e}$ har system to cover the Chedabucto Bay area, Nova cotia.

The Scottish Northern Lighthouse Board bas purchased four radio beacons and ancillary equipment, valued at $£ 25,960$, from AGA (U.K.) Ltd.

High-gain Audio Voltage Amplifier

by D. Leblebici*

One of the commonly used feedback amplifier circuits is the 'feedback pair', where feedback is applied from the collector of the second transistor to the emitter of the first transistor (Fig. 1(a), ref. 1).

The feedback circuit described here is a modified form of the conventional feedback pair (Fig. 1b). Feedback is the series voltage type applied from the emitter of ${T r_{3}}$ to the emitter of $T r_{1}$. The circuit has some advantages as compared to the conventional feedback pair:

- The output as well as the input terminals of the circuit are outside the feedback loop and consequently the amount of feedback is independent of the source and load impedances.
The input and output signals are in phase opposition and as a consequence it is possible to apply a second feedbar. k loop (parallel voltage feedback) from the collector of $T r_{3}$ to the base of $T r_{1}$.
*Elektrik Fakültesi, Teknik Üniversite, Istaribul.
${ }^{1}$ National Bureau of Standards, preferied circuit no. 201.

Fig. 1. Comr form of feedback pair (a), and modifie the modifie independen
$\eta(b)$. One advantage of is that feedback is id impedance.

The feedback voltage is taken from the emitter of $T r_{3}$. The negative feedback acts to decrease the distortion of the voltage wave at that point. The relation between the output voltage V_{2} of the amplifier and the voltage V_{2}^{\prime} fed back can be written as

$$
\frac{V_{2}}{V_{2}^{\prime}} \approx \frac{R_{5} I_{e 3}}{R_{4}} \frac{I_{e 3}}{}
$$

provided that $R \gg R_{4}$. For a high-gain transistor $I_{c 3} / I_{e 3}$ is very close to unity. Hence

$$
\frac{V_{2}}{V_{2}^{\prime}} \approx \frac{R_{5}}{R_{4}}
$$

This shows there is an additional and practically linear (low distortion) voltage gain of magnitude R_{5} / R_{4} from the emitter to the collector Tr_{3}.
As the voltage gain from the collector of Tr_{2} to the emitter of Tr_{3} is approximately equal to unity, the voltage gain from the input terminal to the emitter of ${T r_{3}}^{\text {must be }}$ equal to the gain of a conventional feedback pair using the same transistors $T r_{1}$ and $T r_{2}$ and the same circuit components R_{1}, R_{2}, R_{3} and R_{F}. As this gain is approximately equal to ($R_{F}+R_{1}$)/ R_{1} (ref. 2), the total voltage gain becomes

$$
A_{v}=\frac{V_{2}}{V_{1}} \approx \frac{R_{F}+R_{1}}{R_{1}} \cdot \frac{R_{5}}{R_{4}}
$$

The only drawback of the circuit is its relatively high output resistance, which is approximately equal to R_{5}.

Experimental circuit

The experimental circuit diagram is shown in Fig. 2. The stages are directly coupled. To stabilize the quiescent points a d.c. feedback across the first two transistors is used. A collector current of about $200 \mu \mathrm{~A}$ is chosen for T_{1} this being the optimum collector current of transistor BC109 for minimum noise. The transistor operating points and component values have been calculated for a sufficiently high open-loop gain and as high a dynamic range as possible.

The calculated open loop gain $V_{2}^{\prime} / V_{1}^{\prime}$ is 11600 , a value that is sufficiently high. The additional gain provided by Tr_{3} is about 10 .

[^13]

Fig. 2. Practical circuit of preamplifier with voltage gain of 100 for $R_{F}=5.6 \mathrm{k} \Omega$ or 1000 for $R_{F}=78 \mathrm{k} \Omega$. Total harmonic distortion is 0.02% and 0.04% respectively.

The measured overall voltage gain for $R_{F}=5.6 \mathrm{k} \Omega$ was $A_{v}=100$ (calculated value: $A_{v}=92$) and the available maximum output swing was $18 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$ $(6.4 \mathrm{~V}$ r.m.s.). For an output voltage of 5 V r.m.s. the total measured harmonic distortion was 0.02%. For $R_{F}=78 \mathrm{k} \Omega$ the measured A_{v} was 1000 (calculated value: $A_{v}=1150$). The maximum output voltage was again $18 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$ and the total harmonic distortion was $0.04 \% \quad\left(V_{2}=5 \mathrm{~V}\right.$ r.m.s.). The measured lower and upper cutoff frequencies for both cases were 17 Hz and 200 kHz .

Consequently, the circuit is very convenient as a high-gain audio preamplifier. The possibility of applying a second, independent, parallel voltage feedback loop makes it possible to use the circuit as a low output impedance, moderate gain and high dynamic range booster amplifier. With frequency dependent feedback, it is also possible to use the circuit as a low distortion equalizer amplifier.

ircuit Ideas

system enabling the system to meet a reliability specification which allows only one failure lasting 30 seconds or less in five years.

Reducing noise in volume controls

Noisy volume controls have been a problem since the early days of radio and although solutions do exist they are generally expensive and/or inconvenient. In transistorized equipment the problem is often worse, or much worse. If there is a steady voltage between the ends of the track of the control as well as the signal voltage, when the control is varied a varying proportion of both voltages will be present at the slider and if the circuit connected to the slider can conduct d.c. then a varying current will flow between the track and slider. Because of contact irregularities noise will be generated. It is usual to include capacitors in the input and output of volume controls to eliminate such d.c. noise. Even when they are included, however, current will flow as they become charged or discharged at switch on or off of the equipment. For a given type, the higher the capacitance the higher the leakage, and in

high-quality equipment high value capacitors must be used for good low-frequency performance. Silicon n channel f.e.ts are now available at a price comparable with that of volume controls. The inclusion of a source follower, between the slider of a volume control and the following circuit will usually make the control much less noisy. The circuit shown is one used by the writer. The original circuit was broken at A B and the source follower inserted. In some circuits it may be necessary to reverse the electrolytic to
maintain correct polarity. In equipment using a positive h.t. line the whole source follower circuit should be inverted. The input impedance of the source follower is very high and as the input capacitor need be only $0.01 \mu \mathrm{~F}$ for very adequate lowfrequency response, a paper capacitor with virtually no leakage can be used.
C. H. BANTHORPE,

Northwood,
Middx.

Single i.c. trip unit

D.T.L. nand gates may be connected so that they function as a trigger circuit from an analogue voltage. When a d.t.l. 6996259 integrated circuit -which contains three triple input nand gates-is connected as shown, the logic level output V_{o} will be dependent on the setting of the potentiometer R_{1}. With an input of 5 V the output voltage V_{o} is at logic 1. Reducing the input voltage by adjustment of R_{1} will, at a critical voltage, cause the nand gate 1 to switch over, thus switching nand gate 2. The output voltage V_{o} will now be at logic 0 . Feedback from gate 2 to gate 1 ensures that V_{o} stays at logic 0 , until the input voltage is raised above the critical value. The nand gate 3

switches over which resets nand gate 2 , and then V_{0} once again becomes logic 1 . The critical value for this particular unit was found to be 1.35 V . This circuit was used in place of a Schmitt trigger in a voltage-level detector.

W. E. Price,

Laindon,
Essex.

Nickel-cadmium battery charger

The circuit charges the battery at a constant current and switches off when a certain voltage is reached. The charging current can be varied by means of $V R_{2}$. For currents above 1A R_{1} should be reduced. The switch-off voltage can be varied by means of $V R_{3}$. Should a batery of less than 4 V be connected for charging, then R_{2} would have to be reduced to about $1 \mathrm{k} \Omega$. The circuit functions as follows: $T r_{4}$ and $T r_{5}$ form a Schmitt urigger circuit with Tr_{4} on after S_{1} has been ressed; when the preset voltage has been reached $T r_{5}$ goes on and $T r_{4}$ off, thus switching off the charger. The circuit was designed for 550 mA and 6 to 7.5 V .
F. Ballerini,

Rome,
Italy.

Complete circuit of electronically switched battery charger.

11. Information paths between units

by James Franklin

We have seen that information-which might be numbers of objects in an electronic counting system or light intensity in a television system-may be represented by electrical variables. We have also looked fairly closely at some of these variables, and seen how they exist in circuits (Part 5). We have not, however, studied how the electrically represented information is act ually conveyed from one electronic unit to a nother.

Part 1 showed block diagrams of a television set and a computer and explained that the lines joining the blocks indicate paths for information. Some readers may have thought it odd that these paths, as well as the functional units themselves, were considered as "building bricks". The justification for this idea is that in practice these information paths are provided by circuits-particular arrangements of conductors.

At this point we should get to know one of the conventions of electronic diagrams -conventions, incidentally, which are automatically understood all over the world. The electrically represented information which comes out of an electronic unit is called the output, and is normally shown emerging from the right hand side of the unit. Conversely, the information an electronic unit receives is called the input

Fig. 1. The convention of a single line used to indicate an information path, the output of one unit becoming the input of another. (This line is not an electrical conductor as such.)
and is shown going into the left hand side of the unit. Thus, in Fig. 1 the output of unit A becomes the input of unit B.

As we have said the basic means by which the information is conveyed is electrical energy-more specifically the rate of delivery of energy, which is power (Part 8). In practice, however, we don't usually consider power as representing the information, mainly because it is not very convenient to detect and measure the varyiıg power that flows from unit A to.
unit B. The measuring instruments commonly used in electronics respond to other electrical variables, variables that are proportional to the power, in particular potential difference and current. This complicates the picture, because in any circuit where electrons are moving there must be an e.m.f., and this creates both potential difference and current. Which one, then, represents the information?

The answer is, simply, whichever one the electronic designer has chosen to represent the information. The other variable is there as well, in the sense that it can be measured, but it is not taken as significant as a bearer of information.

Fig. 2. An electric circuit joining two units so that it provides an information path between them. In this circuit, current is the significant variable.

As an example, Fig. 2 shows the basic principle by which information may be transmitted from one unit to another using current as the significant variable. It can be seen that there is a complete electrical circuit passing through part of unit C and part of unit D. Electrons are made to flow in this circuit by an e.m.f. existing in section c of unit C. (We will not discuss exactly how this e.m.f. comes to be there, as we are not at the moment concerned with the actual functions of units C and D, but it originates from the e.m.f. source supplying electrical power to unit C.) The electron flow rate (current) varies with time and this variation represents information (Part 2). In unit D, at section d of the circuit, there is a means of continuously detecting or responding to the value of the current. Thus the information represented by the current variation is conveyed into D.

It would be possible to detect a potential difference (resulting from the e.m.f. at c) between the two output terminals of unit C. or between the two input terminals of unit D, but this in itself is not significant

Fig.3. Another circuit providing an information path between units, but using potential difference as the significant variable.
because current has been chosen as the information bearing variable.

Fig. 3 shows how information may be transmitted using potential difference (p.d.) as the significant variable. Here again there is a circuit completed through the two units. There is a p.d. between the output terminals of unit E, resulting from the e.m.f. existing at e, and it is the variation of this p.d. which represents the information. The input terminals of F, being connected to the output terminals of E, have the same p.d. between them (analogy: the water level in a water gauge is the same as the water level in the tank to which it is attached). This p.d. is present at f, where there is a means of continuously detecting it, so that the information represented by the variation of p.d. is conveyed into F.

Again there is a current flowing in the circuit, but here it is this current which is not significant as an information bearer. In some electronic systems designed to use p.d. as the significant variable the current flowing is extremely small, for example less than a millionth of an ampere. In such cases one can think of the information virtually as being conveyed by a variation of p.d. alone. In other cases the circuit is not completed at f (imagine broken line absent), and unit F detects the information as an electric field (Part 5) which is created by the p.d. between the input terminals.

As a practical example, E and F in Fig. 3 could be two stages of an electronic amplifier (Part 9). The potential difference at e would be that developed across a load in the high-power circuit of stage E, while circuit f would be the low-power control circuit of stage F.

Personalities

D. B. Weigall, C.B.E., M.A F.I.E.E. retires from the position of deputy director of engineering at the end of March after more than 37 years of service with the B.B.C. A graduate of Christ Church, Oxford, he joined the Corporation in 1933. After three years in the Research Department he became assistant to the superintendent engineer, studios. From 1940 to 1942 he was seconded as chief engineer to the Malaya Broadcasting Corporation and from 1943 to 1946 he was technical adviser on broadcasting to the Ministry of Information. After his return to the B.B.C. Mr. Weigall joined the Planning and Installation Department in 1948. He was appointed chief engineer, External Broadcasting, in 1962; assistant director of engineering in 1963 and deputy director of engineering in 1967.
G. Stannard, B.Sc., F.I.E.E., A.C.G.I., retires on May 24th from the position of chief engineer, communications, in the B.B.C. Educated at the City \& Guilds College, London University, he joined the B.B.C. in 1932 and after working in the London control room and the recording section he transferred to the Lines Department in 1935. He has been chief engineer, communications, since 1965. In this position he has been responsible for the planning and commissioning of the vision, sound and communication networks used for the distribution of programmes and the provision of other communication facilities.

As a result of the retirements of D. B. Weigall and of G. Stannard, the B.B.C. has announced the following appointments:
D. E. Todd, B.Sc.(Eng.), F.I.E.E., at present assistant director of engineering, will assume the responsibilities of deputy director, in addition to his present responsibilities for the engineering specialist departments. Mr. Todd joined the B.B.C. in 1946 and was head of Transmitter Planning and Installation Department from 1965 until his appointment as assistant director of engineering in 1968.
T. B. McCrirrick, F.I.E.E.,
F.I.E.R.E., will become assistant director of engineering and will be responsible for the Transmitter and Communications Departments, the Engineering Information, Engineering Training and Engineering Personnel Departments. Mr. McCrirrick joined the Corporation in 1943 and transferred in 1949 to the television service, where he later held the posts of engineer-in-charge, television studios. and head of engincering, television recording. Since last June he has been chief engineer, radio broadcasting.
D. R. Morse, F.I.E.E., lately chief engineer, capital projects, has been appointed to the new post of chief engineer, networks and communications. He will have special responsibilities for negotiations with the Post Office and the Ministry of Posts and Telecommunications regarding the provision of B.B.C: programme and communication networks.
J. D. MacEwan, B.Sc., F.I.E.E., M.I.E.R.E., A.Inst.P., becomes chief engineer, radio broadcasting. Mr. MacEwan joined the B.B.C. in 1947. He was appointed a senior lecturer at the Engineering Training Centre, Evesham, in 1956. Since August 1969 he has been chief engineer, regions.

Tony Martin, who joined International Rectifier in 1959 when they commenced manufacture at their Oxted, Surrey, plant, has been appointed Northern European sales manager. He worked for several years as an application engineer and then transferred to the marketing department where he held successive posts of sales office manager and product sales manager. He will be responsible for the industrial sales organization in all Northern European countries.

James Lionel West, aged 35, has been appointed manufacturing manager of the m.o.s. division of Emihus Microcomponents Ltd at Glenrothes, Fife. Mr. West's previous appointments were with General Instruments, Elliott Auto-
mation and the A.E.I. research laboratories at Harlow.
P. Scargill, M.I.E.R.E., general manager of the Electronics Division of Union Carbide U.K. Ltd, is transferring to Union Carbide Europe, in Geneva, where he will be responsible for the group's European electronics business. Mr Scargill, who is 36, joined Union Carbide in 1966 from Hughes International (U.K.) and was previously U.K. capacitor sales specialist with International Electric Co. of New York.

Tony Wynter, who recently joined Devices Instruments Ltd, of Welwyn Garden City, Herts, has been appointed managing director of Devices Pty. Ltd, the sales and service organization set up in Sydney, Australia. Before joining Devices Mr. Wynter was a member of the medical electronics staff at the National Hospital for Nervous Diseases, Queens Square, London.

Peter D. Simmons has joined SE Laboratories as product manager of their new digital instrumentation division. Immediately prior to joining SE Labs he was sales manager for Racal, and before that was with Solartron and Dowty.

Guy Barnes, PhD., B.Sc., has joíned Emihus Microcomponents Ltd as technical manager. Dr. Barnes, aged 38, graduated in physics and mathematics at Reading University. He then undertook on behalf of the Admiralty four years research at

Dr. Guy Barnes
the University into the surface properties of semiconductors. He joins Emihus from Texas Instruments where he was integrated circuit department manager. From 1958 to 1963 he was chief physicist with Mining and Chemical Products Ltd.
A. G. Touch, M.A., D.Phil., who is 60, is retiring from the post of chief scientist at the Government Communications Headquarters. A graduate of Jesus College, Oxford, Dr. Touch joined Watson-Watt's radar team at Bawdsey research station in 1936. For his
contributions to the development of meter-wave AI and ASV he received a substantial award on the recommendation of the Royal Commission on Awards to Inventors. From 1941 to 1947 he was liaison officer with the British Joint Services Mission in Washington. On his return to this country he became superintendent of the Blind Landing Experimental Unit at Martlesham Heath, Suffolk, and from 1952 to 1954 was deputy director of electronics research and development (air) in the Ministry of Supply. From 1954 to 1959 he was director of electronics research and development (ground), M.o.S., and then senior superintendent of the Radio Department at R.A.E., Farnborough. He is to be succeeded as chief scientist at the Government Com. H.Q. by Ralph Benjamin, Ph.D., who is at present director of Admiralty Underwater Weapons Establishment at Portland. Dr. Benjamin, who is 47, joined the Admiralty Signal Establishment in 1944. His particular fields of research at A.S.E. were pulse techniques and weapon control. Dr. Benjamin's place at Portland is being filled by G. L. Hutchinson, Ph.D., at present head of the Military and Civil Systems Department at the Royal Radar Establishment, Malvern. A graduate of King's College, London, Dr. Hutchinson joined the Scientific Civil Service in 1939 working on the installation of the coastal radar chain. In 1943 he joined the Telecommunications Research Establishment, then from 1948 to 1954 was at R.A.E. Farnborough and later on the staff of the British Joint Staff Mission in Washington.

Siliconix Ltd., of Swansea, recently announced two new appointments. David Thomson, has joined the company as sales engineer. In 1963 he joined A.E.I. Telecom munications as a student apprentice concentrating on the design of linear and digital telecommunication equipment and gained an honours degree in electronic engineering at The City University, London. In 1968 he went to Elliotts, Rochester. as a development engineer on airborne digital computers. David J. West, aged 23, who graduated in electrical engineering only this year from the University College of Swansea, has joined the company as applications engineer.

OBITUARY

Leonard Walter Filmore, manag ing director of Jackson Brothers (London) Ltd, which with his father and brother he founded in the early 'twenties, died on January 30th aged 67. During the war years he was very active on Ministry Standardization Panels and right up to the time of his death he worked on the Variable Capacitor Standardization Panel of R.E.C.M.F.

New Products

Beam tetrodes

Two compact conduction-cooled beam tetrodes are available from M-O Valve Co. Typically they give 400 W output in f.m. service up to 175 MHz , and 200 W up to 500 MHz . In s.s.b. service 300 W p.e.p. output is obtainable up to 175 MHz . Both tubes are electrically identical but differ in construction. The CCS1 has a square copper block fitted to the anode which is intended to be bolted to a heat sink directly or by means of a beryllia heat conducting block when electrical isolation is required. The CCS2 incorporates an electrically isolated flange intended to be clamped directly to a heat sink. Thermal resistance between anode and flange is made low by the use of beryllia ceramic. There is no significant increase in output capacitance. These conduction cooled tubes are fully replaceable in new equipment for existing well established forced air cooled types. The conduction cooling assists circuit designers by eliminating moving parts in the cooling system and so achieves greater reliability and compactness at reduced power consumption. M-O Valve Co. Ltd, Brook Green Works, London W.6. WW315 for further details

R.M.S. voltmeter

Model A130 r.m.s. voltmeter from Prosser Scientific Instruments allows waveforms from d.c. to 100 kHz with crest factors (peak to r.m.s. ratio) up to $10: 1$ to be analysed. An averaging time constant facility allows integration from 1 to 300 s. At very low frequencies it is sometimes useful to measure the instantaneous power by measuring the instantaneous square of the voltage. This facility is provided on the A130 with a time constant of 10 ms . The instrument, designed for bench use or rack mounting, employs a large meter display ($\pm 2 \%$ accuracy) as

well as providing an output for higher accuracy readings. The specification includes the following:
input impedance $1 \mathrm{M} \Omega 25 \mathrm{pF}$
overload $\quad 300 \mathrm{~V}$ d.c. or peak on ranges $1 \mathrm{mV}-10 \mathrm{~V}$.
1000 V d.c. or peak on ranges 30 V to 300 V .
output 4 inch panel meter scaled $0-10 \mathrm{~V}, 0-3 \mathrm{~V}$, and -15 dB to +2 dB . Linear d.c. output 0 10 V and $0-3 \mathrm{~V}$ full scale depending on range selected.
output impedance $<10 \Omega .10 \mathrm{~mA}$ max.
accuracy
$\pm 0.5 \%$ of full scale.
power requirements $115 / 240 \mathrm{~V}$ a.c., $50 /$ $60 \mathrm{~Hz}, 50 \mathrm{VA}$.
dimensions $\quad 445 \mathrm{~mm} \times 133 \mathrm{~mm} \times$ 344 mm .
weight
5 kg .
Prosser Scientific Instruments Ltd, Lady Lane Industrial Estate, Hadleigh, Ipswich, Suffolk.
WW317 for further details

Miniature silicon bridge rectifiers

A range of 1.2 A silicon bridge rectifiers is available from General Instrument (UK). The assemblies are of flat construction with in-line leads, and measure $23.5 \times 4 \mathrm{~mm}$. Called the FB series they have a p.i.v. rating of up to 600 V and a one cycle surge capability of 50 A at operating temperatures from $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$. General Instrument (UK) Ltd, Stonefield Way, Victoria Road, South Ruislip, Middx.
WW314 for further details

Numeral indicator tubes

ITT Components Group Europe, by arrangement with Burroughs Corporation, are manufacturing two new long-life sideview cold-cathode indicators. The 5853 S is designed for use in time-sharing by anode strobing applications; the 5870S is intended for d.c. and pulsed operation with peak cathode currents up to 10 mA . Both tubes have a display of numerals 0 to 9 inclusive with one decimal point on the left and right of each main character, and a character
display area of 13.5 mm (height) $\times 7.6 \mathrm{~mm}$. Maximum overall height is 30.5 mm , and diameter 13 mm . Base connections are 14 tinned leads with in-line configuration for printed circuit or socket use. Typical operating conditions are:
type 5853S

anode supply voltage	200 V
peak cathode current	14 mA
pulse duration	$100 \mu \mathrm{~s}$
pulse repetition frequency	500 Hz
type 5870S	
anode supply voltage	200V
cathode current (with	
decimal point)	3.2 mA
cathode pre-bias voltage	67 V

cathode pre-bias voltage 67 V
ITT Components Group Europe, Valve Product Division, Brixham Road, Paignton, Devon.
WW313 for further details

Twin-chánnel oscilloscope

Differential oscilloscope type 155 from Bradley Electronics has an input impedance of $100 \mathrm{M} \Omega$ shunted by 1 pF , and 100 dB common-mode rejection. The commonmode signal may be as high as $\pm 15 \mathrm{~V}$ at maximum sensitivity. Sensitivity is $100 \mu \mathrm{~V} / \mathrm{cm}$, but this can be increased to

$10 \mu \mathrm{~V} / \mathrm{cm}$ by cascading the two channels. The timebase will operate down to $5 \mathrm{~s} / \mathrm{cm}$. Outputs suitable for driving pen recorders are provided and the oscilloscope can be used as an $X-Y$ plotter. Trigger arrangements include auto and single shot and the general facilities provided include beam locate and internal calibration. G. \& E. Bradley Ltd, Electral House, Neasden Lane, London N.W. 10.
WW 303 for further details

Telephone dial testers

An instrument which tests telephone dial pulsing-in terms of operate and release times of individual dial pulses-is made by Amalgamated Wireless (Australasia) Ltd. Traditionally, dial performance during

production adjustment is done by measuring pulsing speed and make-tobreak ratio on an average basis. But the telephone dial pulse monitor type IT 1466 compares make and break duration of each pulse with preset tolerance limits. Indication is given if any interval is outside the limits set by the operator by lighting a 'short', or 'long' lamp. In addition the instrument detects excessive contact bounce, counts the number of pulses received, and checks sequerice and relative timing of off-normal contact re-closure. Pulse analyser type IT1467 performs similar tests and additionally gives 'short', 'pass' and 'long' indication for each of ten contacts. Both incorporate a crystal oscillator timing standard. Available in the U.K. from Amalgamated Wireless (Australasia) Ltd, Aldwych House, 81 Aldwych, London W.C. 2 .

WW311 for further details

Capacitors for s.c.r.
 commutation

A range of capacitors for high-power controlled rectifier circuits is made by Aerovox Corpn. Developed to provide low inductance and low series resistance needed to turn off s.c.rs, the capacitors are said to be made more reliable than general-purpose types. They are made with three kinds of dielectric-paper, metallized paper and polycarbonateand are designed to dissipate internally generated heat. Paper dielectric gives lowest cost, but as might be expected gives largest bulk. Size is reduced by using metallized paper, but cost increases and

the ability to handle alternating current is reduced. This is circumvented by using polycarbonate, but at higher cost. Paper dielectric capacitors are available in voltage ratings from 200 to 2000 V d.c. and the values of capacitances available depends on voltage rating (in the region of 1 to $50 \mu \mathrm{~F}$). Polycarbonate types, rated at 600 V d.c., have values from 1 to $20 \mu \mathrm{~F}$ and metallized paper types, rated at 200 V d.c., have values from 25 to $150 \mu \mathrm{~F}$. U.K. agents are Auriema Ltd, 23 King Street, London W. 3 .
WW 305 for further details

Cathode-ray display unit

A self contained c.r.t. display unit, the EV8000 from Electronic Visuals, has a $100 \times 80 \mathrm{~mm}$ flat-faced tube, regulated power supplies, balanced input amplifiers for vertical and horizontal deflections, and brightness (Z axis) control via either

a simple blanking amplifier or an optional wideband linear amplifier. The vertical amplifier has a bandwidth of d.c. to 10 MHz and all inputs are compatible with t.t.l.' and d.t.l. levels. The unit can be supplied in various case types and is suitable for 19 in rack-mounting. Electronic Visuals Ltd, P.O. Box 16, Staines, Middx. WW 304 for further details

High-voltage multiplier dises

A series of 10 kV high-voltage multiplier discs developed by Aerovox Corp and marketed by Auriema are made with high K dielectric materials. The coating is epoxy resin. Available in 1,000 and 2,000 pF capacitances as standard (other values are available) the discs have a capacitance
tolerance of $\pm 20 \%$, a 2% maximum dissipation factor, insulation resistance of $20,000 \mathrm{M} \Omega$, and are designed for working voltages up to $10,000 \mathrm{~V}$ d.c. Other capabilities include a temperature characteristic of $\pm 15 \%$ change in capacitance from $+10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, a corona voltage of approx. $2,700 \mathrm{~V}$ r.m.s. at 50 Hz and a corona level of less than 100 picocoulombs. Auriema Ltd, 23-31 King Street, London W. 3.

WW318 for further details

$60-\mathrm{GHz}$ varactor diode

A gallium arsenide varactor diode capable of operating at 60 GHz has been developed by the Services Electronics Research Laboratory and is manufactured by Marconi. The diode, of the diffused mesa type, is used in the $50-\mathrm{cm}$ circular waveguide system of TE_{01} mode propagation.

Known as type XMD3A, it is available in three figures of merit - from 40 to 90 GHz -in a ceramic leadless inverted device package for simple integration into stripline structures. Photograph shows the gold connection to the chip magnified 2000 times. Marconi Co Ltd, Chelmsford, Essex.
WW 308 for further details

High-speed leadless diodes

Switching diodes for use in hybrid largeand medium-scale integrated circuits are made by Dickson Electronics Corpn (U.S.A.). They are rated for 75 mA forward current at 75 V d.c. with a dissipation of 250 mW . The diodes can be mounted upright with wire bonding or inverted with reflow solder bonds. Dual types are made with either common anode or common cathode connections. Available from Dage (G.B.) Ltd, Haywood House, 64 High Street, Pinner, Middx.
WW 310 for further details

Logic modules

Feedback Instruments have added a reed relay unit RU336 and a lamp display unit LD265 to their range of logic and analogue teaching elements. The RU336 contains two reed relays which, when either is operated by a logic ' 1 ' input, will switch currents up to 1 A in external circuits, thus providing single-pole changeover switching controlled by the logic. The LD265 supplements the display lamps

already available on the Logikit mounting decks. Four buffered lamp circuits operate in the presence of a ' 1 ' at the input. All the logic (Logibit) elements are of identical size and are compatible with any of the Feedback logic teaching equipment. Prices of individual elements vary but all are under £10. Feedback Instruments Ltd, Park Road, Crowborough, Sussex.
WW316 for further details

Ferrite limiters

A series of solid-state ferrite limiters introduced by EMI-Varian is claimed to gives a ten-fold increase in life expectancy over conventional TR tubes and limiters. The VFX 9500 device for example operates from 8.5 to 10.0 GHz (X-band). The integral unit consists of a ferrite limiter followed by a diode limiter. The ferrite portion provides about 10 dB of high-power isolation while the diode limiter reduces spike and flat leakage power to levels which provide reliable protection to the receiver diode.
Operating characteristics include: bandwidth
any 5% b.w. from 8.5 to 10.0 GHz
peak power
10 kW
v.s.w.r.
1.5:1 max.
insertion loss $\quad 1.0 \mathrm{~dB}$ max.
spike leakage energy 0.02 erg max.
flat leakage energy 20 mW max.
recovery time $\quad 0.5 \mu$ s max. insertion length $\quad 88.9 \mathrm{~mm}$ weight

680 g
EMI-Varian Ltd, Hayes, Middlesex. WW312 for further details

V.H.F. frequency synthesizer

A frequency synthesizer for 27 to 70 MHz and tunable in increments of 25 kHz is made by Akers Electronics, a Norwegian

microelectronics manufacturing company. Using thin-film hybrid circuits and designed as a phase-locked loop it occupies only $86 \times 60 \times 40 \mathrm{~mm}$ and weighs 0.35 kg . It is intended as a frequency source in simplex military f.m. 'manpack' transceivers in the 27 to 70 MHz band. During transmission it operates as a modulated exciter and during reception as local oscillator, when frequency range is 37.7 to 80.7 MHz for an i.f. of 10.7 MHz . Akers Electronics, 3191 Horten, Norway. WW 301 for further details

Power diodes in plastic

Two new power circuits from AEI handle double the power of earlier circuits. Type PM7A-Q, a bridge rectifier with $16-\mathrm{amp}$ mean output and 44 -watt dissipation, is available in seven voltage ratings from 200 to 1400 V r.m.s. Type PM6A-Q, two separate diodes of $10-\mathrm{amp}$ mean current and 34 watts dissipation, is also available in the seven ratings. (The other kind of circuit PM5A is a diode-thyristor combination, but remains as originally

specified.) These three combinations are used in BDA 'Hotpoint' washing machines and enable universal motors to be used in place of expensive induction motors with the multiple windings required by electromechanical regulators. AEI Semiconductors Ltd, Carholme Road, Lincoln. WW 302 for further details

U.H.F. field-strength indicator

Designed and manufactured by Rohde \& Schwarz the u.h.f. field-strength indicator, type Huze, comprises a transistor receiver and a \log-periodic broadband aerial. The aerial is fixed to the receiver during measurement and can be adjusted in any direction and plane of polarization. The signal picked up is applied via a decade attenuator and a tunable bandpass filter to a mixer diode, where it is converted to the first i.f. of 150 MHz . The instrument is operated from built-in sealed chargeable batteries. Battery power is sufficient for about eight hours with the a.f. section switched on (charging the storage batteries takes about 14 hours).

The charger may also be used as the power supply, the storage batteries acting as buffers. Field-strength range is 31 to 110 dB above $1 \mu \mathrm{~V} / \mathrm{m}$ and voltage range 16 to 90 dB above $1 \mu \mathrm{~V}$. Aveley Electric Ltd, Arisdale Avenue, South Ockendon, Essex.
WW 307 for further details

6-mm potentiometer

Sub-miniature metal glaze potentiometers to MIL specifications are made by TRW Inc. Available from 10Ω to $1 \mathrm{M} \Omega$ in $\frac{1}{2}$-watt rating (at $85^{\circ} \mathrm{C}$) with temperature

coefficient of 1 in $10^{4} / \mathrm{deg} \mathrm{C}$. It measures 6.4 mm dia and 4.5 mm high. Type 171 is for vertical adjustment and type 172 for horizontal adjustment. Available in the U.K. from Dubilier Ltd, Victoria Road, London W.3.
WW 306 for further details

I.C. for active filters

Three identical amplifiers are included on an integrated circuit made by Mullard. Designed for use in $R C$ active filters up to 150 kHz , each amplifier has an input resistance of $25 \mathrm{k} \Omega$ and an output resistance of $9 \mathrm{k} \Omega$. Gain is 39 dB or 117 dB in cascade. An emitter follower is included which reduces output impedance to 500Ω. Designated type TAA 960 it operates from a 6 -volt supply and consumes about 2 mA . Mullard Ltd, Torrington Place, London, WC1E 7HD.
WW 309 for further details

D.I.L. pulse transformer

Bourns (Trimpot) have introduced Model 4252-1005 miniature d.i.l. pulse trans-former-a 16 -pin unit with high insulation resistance, fast rise and fast fall time, clean pulse performance and low coupling capacitance. The specifications include:
operating temperature range 0° to $70^{\circ} \mathrm{C}$ pulse inductance

$\left(\pm 10 \%, 0^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$	$150 \mu \mathrm{H}$
leakage inductance	$1.0 \mu \mathrm{H}$
coupling capacitance	5 pF
pulse width	400 ns

Bourns (Trimpot) Ltd, Hodford House, 17/27 High Street, Hounslow, Middx. WW319 for further details

Literature Received

For further information on any item include the appropriate $W W$ number on the reader reply card

Aveley Electrics Ltd, South Ockendon, Essex, have sent us the following literature which originated from Rhode and Schwarz of West Germany and Scientific-Atlanta of Georgia, U.S.A.
Rhode and Schwarz:
'Semitest 111' (ISP) for testing digital integrated circuits. Can be used on r.t.1., d.t.1., d.t.l.z., t.t.1., e.c.l., and m.o.s. logic WW439
'Power signal generator' (SLRE), 6.7 to 12.7 GHz , 0.5 to 3 W

WW440
'Modules for data aquisition and processing' (UC) $\ldots .$. WW441
'Antenna rotators' (HA455/3 \& 555/1) with hydraulic drive for directional aerial systems
'V.H.F. compact directional finder' (NP8), 117.5 to 136.5 MHzWW443
Scientific-Atlanta:
'Swept-frequency microwave measuring system' (series 1700) WW444
'Horn antenna' (series 6800) WW445
'Transportable u.h.f. telemetry tracking system' (series 3000 R 18) 1435 to 1535 and 2200 to 2300 Mhz

A new catalogue has been produced by Eagle International, Coptic St, London WCIA INR., which lists audio and test equipment as well as a variety of components

We have received the following literature from Lyons Instruments, Valley Works, Ware Rd, Hoddesdon, Herts., which describes goods manufactured in Switzerland by Institut Straumann.

OSC 104, hermetically sealed tuning-fork oscillators operating at frequencies in the range 1 to 6 kHz at temperatures from -55 to $+85^{\circ} \mathrm{C}$. Power supply between 5 and 12 V ...WW448 DIV-, MUL-, FOS-104, frequency divider, frequency multiplier and sine-wave shaping unit for use with the tuning-fork oscillators WW449
STP-70/A, price list for the above range. WW450
A leaflet is available which describes the 'Miniscope' low-voltage soldering iron manufactured by Enthoven Solders Lid, Dominion Buildings, South Place, London ECM 2RE

Nortronic A/S, 1380 Heggedal, Norway have sent the following literature:
703 , multi-fiter 35 Hz to 14 kHz . Contains 26
$\frac{1}{3}$ octave filters $\ldots \ldots \ldots \ldots \ldots$................... 452 Sound level indicator; versatile sound measuring
 Logic simulator for tuition, etc.WW454
702 , universal filter 0.2 Hz to 20 kHz in 5 bandsWW455
701 , universal filter 40 Hz to $16 \mathrm{~Hz} \ldots \ldots$ WW456
Automatic tracking filter and wave analyzer (audio)WW457

Intended for use with Tektronix 540 and 550 oscilloscopes a light coupled oscilloscope plug-in unit is described in literature available from Lyons Instruments Ltd, Valley Works, Ware Rd, Hoddesdon, Herts. Called the IsoAmp model 6150 the unit provides 1.5 kV isolation and will accept signals up to 300 V peak-to-peak at up to 35 MHz . The signal is converted to light and the only connection to the oscilloscope is via a fibre optic light guide
.WW458
The leaflet 'Short-wave puts you where it's at' describes the range of Hallicrafters communications receivers. The Hallicrafters Co, 600 Hicks Rd, Rolling Meadows, Illinois 60008, U.S.A. . . WW459

Second-hand computers are the subject of a catalogue from Computer Sales and Services. 49 /53 Pancras Rd, London N.W.I.

Kampel Electronics Ltd, 99 Old Christchurch Rd, Bournemouth, BH1 1 EP , have produced a leaflet describing a stereophonic source simulator which is designed to be used with a stereo amplifier to produce a stereophonic effect from a monophonic signal source

GENERAL INFORMATION

The Scientific Instrument Manufacturers' Association of Great Britain, SIMA House, 20 Peel St, London W.8, have produced a second edition of their 'Metrication Guide'. This revised edition costs £2.50

April Meetings

Tickets are required for some meetings: readers are advised, therefore, to communicate with the society concerned

LONDON

Ist. IERE-."Future techniques for cockpit display" by D. R. Evans and Capt. D. S. Kirkland at 18.00 at 9 Bedford Sq., W.C.I.

Ist. RTS-"Sound techniques for television and commercial recording" at 19.00 at Intersound Recording Studios, Park Drive, Wembley, Middlesex. 6th. IEE-"Business. society and the professional engineer" by B. M. Maskell at 17.30 at Savoy Place, W.C.2.

7th. IEE-."The use of telecommunications in meteorology" by A. A. Worthington at 17.30 at Savoy Place, W.C.2.

15th. IEE-Discussion on "Development of electrical and electronic systems during flight testing of new aircraft" at 18.00 at Savoy Place, W.C.2.
15th. RTS-"New techniques in video mixing" by W. R. Hawkins at 19.00 at I.T.A. 70 Brompton Rd., London S.W.3.
16th. IEF-Discussion on "Engineering science in schools and further education" at 14.00 at Savoy PI., W.C.2.

16th. IEE--"The effective training of professional engineers as managers" by P. H. L. Thomas at 17.30 at Savoy PI., W.C. 2 .

19th. IEETE-Panel under the chairmanship of Prof. R. C. G. Williams discussing "Panel connecting problems" at 18.00 at Savoy PI., W.C. 2 .
20th. IERE-"Automatic camera line-up in colour television" by D. V. Ryley and Mrs. G. Claydon at 18.00 at the London School of Hygiene and Tropical Medicine, Keppel St., Gower St., W.C. 1 .

20th. AES-"Wide range ribbon loudspeaker development" by Stanley Kelly at 19.15 at the Mechanical Engineering Dept., Imperial College, Exhibition Rd., S.W. 7
21 st. Inst. Navigation-"The application of low light television to navigation" at 17.00 at the Royal Geographical Society, 1 Kensington Gore, S.W.7. 21st. SERT-"System 24" by C. P. Davies at 19.00 at London School of Hygiene \& Tropical Medicine, Keppel St., W.C.I.

21st. BKSTS -"Recording techniques for multichannel stereo" by Michael A. Gerzon at 19.30 at I.T.A., 70 Brompton Rd., S.W.3.

23rd. IEE-Discussion on "Light emitting diodes and their utilization" at 17.30 at Savoy PI., W.C.2.

27th. IERE--"Communications through space, flame and fibre" by Prof. P. J. B. Clarricoats at 18.00 at the London School of Hygiene \& Tropical Medicine. Keppel St., Gower St., W.C. 1.
28th. IERE-"Applications of Camac" by H. Bisby at 18.00 at 9 Bedford Sq., W.C.1.

29th. IEE/IERE-Colloquium on "Design and application of minimal computers" at Savoy PI., W.C. 2 .

29th. RTS-Fleming Memorial Lecture: "Perspectives in television" by Huw Wheldon at 19.00 at The Royal Institution, Albemarle St., W.1.

BALLYMENA

20th. IERE-"Loudspeakers" by R. L. West at 19.30 at Ballymena Technical College.

BIDEFORD

20th. British Computer Soc.-"Computer aided design" by B. Gott at 18.15 at the Library Theatre.

BIRMINGHAM

19th. SERT-"Electronic music" by A. Douglas at 19.30 at Aston University.

21st. RTS-"Radio telescopes" by Dr. Guy Pooley at 19.00 at the A.T.V. Studio Centre, Bridge Street.

BOURNEMOUTH

21st. SERT - "Remote control and indication systems" by N. Greene at 19.30 at Bournemouth Municipal Technical College.

CHELMSFORD

28th. IEE-"Radio meteorology" by Dr. J. A. Saxton at 18.30 at King Edward VI Grammar School, Broomfield Rd.

EVESHAM

20th. IERE-"World satellite communication systems" by G. H. Banner at 19.00 at B.B.C. Club.

HIGH WYCOMBE

28th. IEE-"Plasma-the fourth state of matter" by Dr. J. E. Allen at 19.15 at the High Wycombe College of Technology and Art.

LIVERPOOL

21st. IERE-"Computer aided circuit design" by E. Wolfendale at 19.00 at the Department of Electrical Engineering, University of Liverpool.

MANCHESTER

15th. IERE-"Radio astronomy" by E. J. Daintree at 19.15 at the Renold Bldg., U.M.I.S.T., Altrincham St.
22nd. SERT--"Integrated circuits" by J. Tomson at 19.30 at U.M.I.S.T.

NEWCASTLE-UPON-TYNE

14th. IERE-"Electronics and the entertainment industry-the future" at 18.00 at Ellison Building, The Polytechnic, Ellison Place.

PLYMOUTH

7th. RTS-"Computers in television programming" by N. W. Green at 19.30 at the Studios of Westward Television Ltd.

READING

29th. IERE-"Direct digital control-the case for the special purpose computer" by P. Atkinson and A. J. Allen at 19.30 at the J. J. Thomson Laboratory, University of Reading. Whiteknights Park.

ROMFORD

21st. IERE-."Management of R \& D" by D. C. Dalton at 18.30 at Central Library.

ROTHERHAM

22nd. IEETE-"Yorkshire TV studios, Leeds" by P. G. Parker at 19.00 at College of Technology, Main Hall, Howard Street.

SWANSEA

1st. IERE/IEE-"The use of satellites for civil communication" by C. F. Davidson at 18.15 at Department of Applied Science, University College.

WALSALL

28th. IEETE-"Electronics in the automobile" by
W. F. Hill at 18.45 at Midlands Electricity Board District Offices, Green Lane.

WOLVERHAMPTON

6th. IERE-"Direct digital control-the case for the small special purpose computer" by \mathbf{P}. A. Atkinson at 19.30 at the Polytechnic.

WORCESTER

22nd. B.Computer Soc.-."Introduction to computer simulation" by G. S. Perdue at 19.30 at Worcester Technical College.

Conferences and Exhibitions

Further details are obtainable from the addresses in parentheses

LONDON

Apr. 15 \& 16
Imperial College
Britain's Modern Standards-
the contribution and the Gain
a (British Standards Institution, 2 Park St., London WIA 2BS)
Apr. 19 \& 20
I.E.E., Savoy Place

Hybrid Microelectronic Circuits
(International Society for Hybrid Microelectronics,
c/o Dr. R. G. Loasby, A.W.R.E., Building A37,
Aldermaston, Reading RG7/4PR)
Apr. 19-22
Alexandra Palace
Physics Exhibition
(1.P.P.S., 47 Belgrave Sq., London S.W.1.)

Apr. 21-29 Earis Court
International Engineering and Marine Exhibition
(Industrial \& Trade Fair Ltd, Commonwealth
House, New Oxford St., London WC 1A 1PB)
BRIGHTON
Apr. 4-6

University of Sussex

Vacuum Equipment
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

Apr. 20-23
Technical Communication in the 70s
Technical Communication in the 70s
(Business Conference \& Exhibitions, Mercury
House, Waterloo Rd., London S.E.1.)
LANCASTER
Apr. 5-7
The University
Elementary Particle Physics
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

YORK
Apr. 5-8 The University
Atomic and Molecular Physics
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

OVERSEAS

Apr. 5 \& 6
System Theory Atlanta
(C.O. Alford, School of Electrical Eng., Georgia

Institute of Technology, Atlanta, Georgia 30332)
Apr. 12-15
Washington
Telemetering Conference
(Washington Technical Consultants, 422
Washington Bldg, Washington D.C. 20005)
Apr. 13-15
Boston
Electronics in Medicine
(Electronics in Medicine, 330 W. 42nd St.,
New York, NY 10036)
Apr. 13-15
New York
Computers and Automata
(Polytechnic Institute of Brooklyn, 333 Jay St.,
Brooklyn, New York 11201)
Apr. 13-16
Magnetics Conference
(C.D. Mee, IBM Corp., Building 015, Monterey
\& Cattle Rds, San Jose, California 95114)

Real \& Imaginary

by "Vector"

Salute to "Free Grid"

Mention the name of Norman Preston Vincer-Minter to W.W. readers and I warrant that blank expressions will be the order of the day. But mention "Free Grid" and all of those of more than seven years' standing in readership will know at once who you're talking about. And will not only know, but almost invariably the mention of the name will provoke reminiscence of the "Do you remember what he said about-?" type.

But first, to the young among us, a word or two of explanation. The name N. P. Vincer-Minter appears in W.W. volumes prior to 1930, mostly as a contributor of constructional articles. Then, on September 17th, 1930, "Free Grid" made his entrance with a regular page feature under the heading "Unbiased". At first, to judge from his remarks, he was very much on trial (editors are adept at suspending the sword of Damocles) but before long his inimitable style made his place assured. For thirty-four years (he died, aged 67, on 11 th March 1964) he continued to delight readers with his wit, his scholarship, his anecdotes and his "inventions". "Free Grid" became as much a part of the journal as the front cover.

At first the drawings which accompanied his page were relatively characterless but by the end of 1930 the "F.G." image (which, incidentally, bore no resemblance to Vincer-Minter) emerged, together with those of the formidable Mrs. "Free Grid" and the little "Grid Leaks". The illustrations became a perfect complement to the writing. Here, epitomized, was the middle-class little man of the period-bowler. spectacles, neat suit, furled umbrella and all-ever ready to do battle with bureaucracy. intransigent manufacturers, slipshod terminology or sheer stupidity. The aggressive chin of the cartoonist's little man added emphasis to the prose, for "F.G." was an arch-puncturer of balloons and the sworn enemy of sacred cows.

But it is in the role of prophet that "Free Grid" is best remembered. Here he was in a league of his own. In the Jubilee issue of W.W. in 1961 he really let himself go and as no commemorative issue would be complete without "Free Grid"I make no apology for turning over the rest of the page to him. Ladies and gentlemen (and particularly new readers), here is the incomparable "Free Grid" writing ten years ago:

A.D. 1971, 1986, 2011

Another 50 years will have to pass before Wireless World can publish another jubilee number, and that will be the centenary number of April A.D. 2011. However, it is customary to celebrate 60th and 75 th anniversaries of things. I shall be very surprised if by the 60th anniversary in 1971 we do not have coloured television and by the 75th anniversary in 1986 stereoscopic coloured TV.

By 1971 our television sets will probably have a scanning unit so that we can show our coloured slides and also our home cine films on the c.r.t. and by 1986 our home ciné films will be returned to us from the processing station in the form of magnetic tapes holding both sound and vision recordings.
By 1986 every set will, of course, have a built-in multi-channel tape recorder for vision and sound so that while we are watching one programme we can simultaneously bottle one or more of the several alternative programmes that will be available.

Fettered by Physics

I will now . . . venture to glance into the future of electronics but I am definitely not
going to inflict on you any of the unimaginative and rather obvious ideas which most science-fiction writers present to their readers. . . .

The reason for their unimaginative stories is that writers of science fiction allow their minds to be fettered by physics, or, more accurately, by our contemporary knowledge of physics. The "sciction" scribes, as I call them, write fantastic stories-doubtless accurate by contemporary scientific knowledge-about travel to distant worlds while overlooking the possibility of travel to another kind of world which is right under their noses. The world to which I refer is the extra-spatial and extra-temporal one which I discussed fully in the March, 1959, issue of this journal. I am greatly indebted to "Cathode Ray" for my ideas and gladly acknowledge it. As I explained in my original thesis on the subject it was he who set me thinking by his article in the November 1958 issue. In that article he gave us a very vivid picture of electrons as being "waves of which nobody knows" which it is usual to call ψ waves. As a result of reading this I expressed the view that if we could manage to alter one of the properties of the ψ waves, such, for instance, as their). . we should probably
find that these metamorphosed electrons vanished, like H. G. Wells's Time Machine, out of our world of time and space into that extra-spatial and extra-temporal "world" inhabited by ghosts, fairies, poltergeists and other seemingly shadowy and clammy entities who seem to pass through brick walls, to be able to be in two places simultaneously and, in general, to ignore many if not all the laws of physics.

In actual fact I don't believe they do ignore them; they merely seem to ignore physical laws because our knowledge of physics today is very limited in comparison with what it will be in 2011."

I am reluctant to call this spaceless and timeless place the metaphysical world because I don't think it is "beyond physics" as the name would imply. I will, therefore, call it the psychotronic world which simply means that it is built of metamorphosed electrons, or, in other words, psychotrons, a word which I coined in the May 1960 issue to describe these extra-spatial and extra-temporal electrons or ψ waves which had had their wavelength or other property changed or metamorphosed and had, therefore become $\mu \psi$ waves.

Electrovision

I will venture only one prophecy on more ordinary lines by suggesting that before 2011 our electronic experts and ophthalmic surgeons will have got together to do something very drastic for people like myself suffering from failing sight.

I have in mind the development of something like the special kind of cathode-ray tube used for transmission but in very miniature form so that it would actually take the place of an eye and convert vision into pulses along the optic nerve, as the natural eye does now.
Requiescat in pace "Free Grid"

'Books cannot always please, however good" was the caption to this cartoon illustrating "Free Grid" suffering from the symptoms of "uxorogenic cuicophoria".

Now available, six of the best from RCA
Six new power transistors for output levels from 5 W to 70 W (8Ω impedance).

Manufactured by RCA to the highest professional standards.
Available from your local stockist as of now
Make a note of the right number for your project.

Type	40629	40630	40631	40632	40633	40636
Power Output	5 W	7 W	10112 W	25 W	40 W	70 W

Or phone Sunbury-on-Thames 85511 and we'll tell you more.
There's plenty more to tell.
RCA Ltd., Solid State, Sunbury-on-Thames, Middlesex.
OFFICIAL DISTRIBUTORS:
Semicomps Northern Ltd., The Square, Kelso, Roxburghshire. Tel: 2366, REL Equipment \& Components Ltd., Croft House, Bancroft, Hitchin, REL Equipment \& Compo
Herts. Tel: $50551 / 2 / 352202$.
ECS (Windsor) Ltd., Thames Avenue, Windsor, Berks. Tel, 68101 (20 lines)

Sinclair Project 60

the world's most advanced high fidelity modules

Sinclair Project 60 presents high fidelity in such a way that it meets every requirement of performance, design. quality and value and now that the remarkable phase lock loop stereo FM tuner is available, it becomes the most versatile of high fidelity systems. With Project 60, it is possible to start with a
modest mono record reproducer and expand it to a sophisticated stereophonic radio and record reproducing system of fantastically good quality to hold its own with any other equipment, no matter how expensive. Project 60 is a unique high fidelity module system where compactness and ease of assembly are combined with

	System	The Units to use	together with	Cost of Units
A	Simple battery record player	2.30	Crystal P.U., 12 V battery volume control	£4.48.
B	Mains powered record player	Z.30, PZ.5	Crystal or ceramic P.U. volume control etc.	£9.45
C	$20+20$ W. R.M.S. stereo amplifier for most needs	$\begin{aligned} & 2 \times 2.30 s, \text { Stereo 60, } \\ & \text { PZ. } \end{aligned}$	Crystal, ceramic or mag. P.U., most dynamic speakers. F.M. tuner etc.	£23.90
D	$20+20$ W. R.M.S. stereo amplifier with high performance spkrs.	$\begin{aligned} & 2 \times 2.30 \mathrm{~s}, \text { Stereo } 60, \\ & \text { PZ. } 6 \end{aligned}$	High quality ceramic or magnetic P.U., F.M. Tuner. Tape Deck, etc.	£26.90
E	$40+40$ W. R.M.S. deluxe stereo amplifier	$2 \times 2.50 \mathrm{~s}$, Stereo 60 PZ.8, mains trsfrmr	As for D	£34.88
F	Outdoor P.A. system	2.50	Mic., up to 4 P.A. speakers controls, etc.	£5.48
G	Indoor P.A.	2.50, PZ.8, mains transformer	Mic., guitar, speakers, etc., controls	£19.43
H	High pass and low pass filters	A.F.U.	C. D or E	£5.98
J	Radio	Stereo F.M. Tuner	C. D or E	£25.00

circuitry that is far in advance of any other manufacturer in the world. Thus it is extraordinarily easy to assemble any combination of modules using nothing more complicated than the simplest of tools, and you certainiy do not have to be experienced to build with complete confidence. The 48 page manual free with Project 60 equipment makes everything easy and you can house your assembly in an existing cabinet, motor plinth, free standing cabinet or virtually any arrangement you wish. Once you have completed your assembly you will have superlatively good equipment to give you years of service and enjoyment. You will have obtained superb value for moneybecause Project 60 is the bestselling modular system in Europe and can therefore be produced at extremely competitive prices and with excellent quality control.
Sinclair Radionics Ltd., London Road. St: Ives, Huntingdonshire PE17 4HJ.

Sinclair Project 60

Z. 30 \& Z. 50 power amplifiers

The $Z .30$ and $Z .50$ are of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at full output and all lower outputs. Whether you use $\mathbf{Z . 3 0}$ or $\mathbf{Z . 5 0}$ amplifiers in your Project 60 system will deperid on personal preference, but they are the same size and may be used with other units in the Project 60 range equally well.
SPECIFICATIONS (250 units are inter-
changeable with Z.30s in all applications).
Power Outputs
2.3015 watts R.M.S. into 8 ohms using 35 volts: 20 watts R.M.S. into 3 ohms using 30 volts. Z.50 40 watts R.M S. into 3 ohms using 40 volts: 30 watts R.M.S. into 8 ohms, using 50 volts.
Frequency response: 30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
Distortion: 0.02% into 8 ohms.
Signal to noise ratio: better than 70dB unweighted.
Input sensitivity: 250 mV into 100 . Kohms.
For speakers from 3 to 15 ohms impedance.
Size $3 \frac{1}{2} \times 2 \frac{1}{4} \times \frac{1}{2}$ in.
2.30

Built resed and
Built rested and guaranteed with circults and instructions manual
$£ 4.48$
2.50

Built, tested and guaranteed with circuits and instructions manual. $£ 5.48$

Designed specially for use with the Project 60 system of your choice.
Illustration shows PZ. 5 to left and PZ.8. (for use with 2.50 s) to the right. Use PZ. 5 for normal Z. 30 assemblies and PZ. 6 where a stablised supply is essential.
PZ-5 30 volts unstabilised $\mathbf{£ 4 . 9 8}$
PZ-6 35 volts stablised $£ 7.98$
PZ-6 35 vorts stabilised
PZ-8 45 volts stabilised
PZ-8 45 volts stabilised
(less mains transformer)
$£ 7.98$
PZ-8 mains transformer £5.98

Guarantee

If within 3 months of purchasing Project " 60 modules directly from us, you are dissatisfied with tham, we will refund your money at once. Each modula is guaranteed to work pe fectly and should any defect arise in normal use we will service it at once and without any cost to you whatsoever provided that it is returned to us within 2 years of the purchase date. There will be a small charge for purchase date. There will be a small charge for
service thereafter. No charge for postage by service thereafter. No charge for pos
surface mail. Air-mail charged at cost.

Stereo 60 pre-amp/control unit

Designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout, achieving a really high signal-to-noise ratio and excellent tracking between channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs.

SPECIFICATIONS

Input sensitivities: Radio-up to 3 mV . Mag. p.u. 3 mV : correct to R.I.A.A. curve $\pm 1 \mathrm{~dB}: 20$ to 25.000 Hz . Ceramic p.u.-up to 3 mV : Aux-up to 3 mV .
Output: 250mV
Signal-to-noise ratio: better than 70 dB .
Channei matching: within 1 dB .
Tone controls: TAEBLE +15 to -15 dB at $10 \mathrm{KHz}:$ BASS +15 to- 15 dB at 100 Hz .
Front panel: brushed aluminium with black knobs and controls.
Size: $8 \frac{1}{2} \times 1 \frac{1}{2} \times 4 \mathrm{ins}$.
Built, tested
andguaranteed.
$£ 9.98$

Active Filter Unit

For use between Stereo 60 unit and two Z.30s or $Z .50 \mathrm{~s}$, and is easily mounted. It is unique in that the cut-off frequencies are continuously variable, and as attenuation in the rejected band is rapid ($12 \mathrm{~dB} /$ octave), there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The A.F.U. is suitable for use with any other amplifier system. Two stages of filtering are incorporated rumble (high pass) and scratch (low pass). Supply voltage -15 to 35 V . Current -3 mA . H.F. cut-off (-3 dB) variable from 28 k Hz to 5 kHz . L.F cut-off (-3 dB) variable from 25 Hz to 100 Hz . Distortion at $1 \mathrm{kHz}(35 \mathrm{~V}$. supply) 0.02% at rated output.
Built, testad
and guaranteed
£5.98

Stereo FM Tuner

first in the world to use the
phase lock loop principle
Before production of this tuner, the phase lock loop principle was used for receiving signals from space craft because of its vastly improved signal to noise ratio over other systems. Now. for the first time, the principle has been applied to an FM tuner with fantastically good results. Other original features include varicap diode tuning, printed circuit coils, an I.C. in the specially designed stereo decoder and squelch circuit for silent tuning between stations. Sensitivity is such that good reception becomes possible in difficult areas. Foreign stations can be tuned in suitable conditions and often a few inches of wire are enough for an aerial. In terms of a high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically as the tuning control is rotated, a panel indicator lighting up as the stereo signal is tuned in. This tuner can also be used to advantage with any other high fidelity system.

SPECIFICATIONS:

Number of transiators: 16 plus 20 in I.C.
Tuning range: 87.5 to 108 MHz
Capture ratio: 1.5 dB
Sensitivity: $2 \mu \mathrm{~V}$ for 30 dB quiating: $7 \mu \mathrm{~V}$ for full limiting.
Squelch ievel: $20 \mu \mathrm{~V}$.
A.F.C. range: $\pm 200 \mathrm{KHz}$

Signal to noise ratio : $>65 \mathrm{~dB}$
Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{KHz}$ $(\pm 1 \mathrm{~dB})$
Total harmonic distortion: 0.15% for 30% modulation
Stereo decoder operating level: $2 \mu \mathrm{~V}$
Pilot tone suppression: 30 dB
Cross talk: 40 dB
I.F. frequency: 10.7 MHz

Output voltage: $2 \times 150 \mathrm{mV}$ R.M.S.
Aerial Impedance: 75 Ohms
Indicators: Mains on: Stereo on; tuning indicator
Operating voltage: $25-30$ VDC
Size : $3.6 \times 1.6 \times 8.15$ inches: $91.5 \times 40 \times 207 \mathrm{~mm}$

Price: $\mathbf{E 2 5}$ built and tested. Post free

Yo: SINCLAIR RADIONICS LTD LONDON ROAD ST. IVES HUNTINGDONSHIRE PE17 4HJ Please send

Name

Address
for which I enclose cash/cheque/money order.

Sinclair IC10/Q16/Micromatic

IC10

The world's most advanced high

 fidelity amplifierThis is the world's first monolithic integrated circuit high fidelity power amplifier and preamplifier. The circuit itself is a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick, having 5 watts RMS output (10 watts peak). It contains 13 transistors (including two power types). 2 diodes. 1 zener diode and 18 resistors, and is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins This exciting device is more rugged and has considerable performance advantages, including complete freedom from thermal runaway and a very low level of distortion. The IC10 is primarily intended as a full performance high fidelity power and preamplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. It may also be used in other applications including car radios, electronic organs, servo amplifiers (it is dc coupled throughout) etc.

Circuit Description

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class $A B$ output is used with closely controlled quiescent current which is independent of temperature. There is generous negative feedback round both sections and the amplifier is completely free from crossover distortion at all supply voltages, making battery operation eminently satisfactory.
Each IC10 is sold with a comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include oscillators, etc. The pre-amp section can be used as an RF or IF. amplifier without any additional transistors.

Specifications

Output: 10 watts peak. 5 watts RMS continuous Frequency response: 5 Hz to $100 \mathrm{kHz} 1 \pm \mathrm{dB}$ Total harmonic distortion: Less than 1% at full output.
Load impedance : 3 to 150 hms
Power gain: $110 \mathrm{~dB}(100,000,000,000$ times) ow
Supply voltage: 8 to 18 volts. (A Sinclair power Supply voltage : 8 to 18 volts. (A Sinclair
unit, $P Z .7$ is available for mains operation) unit, PZ 7 is available for mains operation)
Size: $1 \times 0.4 \times 0.2$ in. plus heat sink and tags Size: $1 \times 0.4 \times 0.2$
Sensitivity 5 mV .
Sensitivity 5 mV .
Input impedance: Adjustable externally up to 2.5 Mohms.

Price (with manual) : $£ 2.98$ post free.

016

High fidelity loudspeaker

The 016 employs the well proven acoustic principles specially developed by Sinclair in which a special driver assembly is meticulously matched to the characteristics of the uniquely designed cabinet. In ceviewing this exclusive Sinclair design, technical journals have justly compared the Q16 with much more expensive loudspeakers. Its shape enables the Q16 to be positioned and matched to its environment to much better effect than is the case with conventionally styled enclosures. A solid teak surround with a special all-over cellular foam front is used as much for appearance as its ability to pass all audio frequencies

This elegantly designed shelf mounting speaker brings genuine high fidelity within reach of every music lover.

Specifications

Construction: Special sealed seamless sound or pressure chamber with internal baffle
Loading: up to 14 watts TMS
Input impedance : 8 ohms.
Frequency response: From 60 to 16.000 Hz . confirmed by independently plotted B and K curve. Driver unit: Special high compliance unit having massive ceramic magnet of 11.000 gauss, aluminium speech coil and a special cone suspension for excellent transient response
Size and styling: $9 z$ in square on face $\times 47$ in. deep with neat pedestal base. Black all-over cellular foam front with natural solid teak surround
Price f8.98.

To: SINCLAIR RADIONICS LTD LONDON ROAD ST. IVES HUNTINGDONSHIRE PE17 4HJ Please send

Name

Address

WW-104 FOR FURTHER DETALS

REED SWITCH

West Hyde reed switches have illudu $50,000,000,000$ operations at ovar 2.000 per second. 1 oft 0.75 . 10 oft 0.65 . P\& P 10 P .
Already there are well over a milition seed switches a week being used in Great Britian alone. The West Hyde version has the additional advantage of hemetically seating and accurately positioning the reed in a protective polyaropylenie moulding
OVEA SPEED MONITORS FLOW MONITBRING, CONVEYOR MONITORING. COUNTING. POSITION OETECTION PROXIMITY OETECTORS (FeS REV COUNTERS. LIMIT SWITCHES. PRESS TOOL PROTECTION.
its ADVANTAGES ARE
LOW COST. EASY MOUNTNG LONG LIFE. SAFETY. Vibration resistance. Ideal for oriving logic.

Contil neon illuminated push micro switches. They can have, mains or transistor driven neot lighting inside the push button; momentary. or ON/OFF operation with twist action and switching by one or two micro switches or less nean. indicator, or a push button micro switch. West Hyde neons. nominally 25.000 hours. plus Pye switches, together make these push buttons remarkable value for money

Supplied with or without nean

1 or 2 microswitches.
Momentary or lock on
$\left.\begin{array}{l}\text { Momentary or lock on. } \\ \text { Red or natural colour }\end{array}\right\}$
cost
2 switches. illuminated No switch, illuminated switch, non-illuminated
2 switches, non-illuminated

Same price
$\begin{array}{ll}10 \mathrm{off} & 100 \\ 0.73 & 0.67\end{array}$ $\begin{array}{ll}0.73 & 0.55 \\ 0.53 & 0.39 \\ 0.44 & 0.39\end{array}$ $\begin{array}{ll}0.43 & 0.38 \\ 0.48\end{array}$ $0.58 \quad 0.50$ quantities
specify
1 or 2 microswitches
Lock or momentary
Whether cap is required

All Contil Transformers, with transistorised equipment, give a wide range of voltages.
 WEST HYDE W(1)

WW-105 FOR FURTHER DETALS

 resistant plastic, it has a full view embossing wheel with a precise action, which gives fast finger tip embossing with clear, sharp impressions on $12 \mathrm{ft} \times 3^{\prime \prime}$ tape. Labeller in Blue, Green, Yellow, Red. Tape in Black, Red Blue, Green, Gold

Labeller: $f 1 . P$ \& $P 8 p$.
Tape reels: $33 p, P \& P 5 p$.

Wese Hyde Diat Verier Caliners are manntirant value and an enarmous help on both development work and production. The dirsct reading dial is very tleat. and they provide insda, stael with hardened slides. Packed in avelvel -lined metal cass available in lour sizes: $6^{\prime \prime} \times 001$ or $150 \mathrm{~mm} \times .05 \mathrm{~mm}$这 $\mathrm{f} 10.75 .12^{\prime \prime} \times .001$ or 300 mm a E 22.75 . Less fo quantity

OSCILLOSCOPE PROBE TM8II9 High impedance $100 / 1$ resistive attenuated probe for accurate display of HF waveforms or short rise time pulse signals, offered brand new with all accessories and instruction manual. List price $f 17$. TM8I94. A MARCONI PRODUCT

HIGH VOLTAGE TRANSFORMERS

 nput 240 v ., output 2560 y . and 2820 v at 1 amp. Weight 75 lb . Price $£ 15$
AUDIO OSCILLATORS

Range $0-200 \mathrm{kHz}$ in 4 ranges. Output voltage 1 micro volt to 12 volt. in seven ranges. Frequency check meter 60 and
400 Hz . Yery good stability and 400 Hz . Very good stability and low dis-
tortion. Contains thermostatically contortion. Contains thermostatically con-
trolled heater. Supplied complete with trolled heater. Supplied complete with leads circuit diagram etc *ondition. Price E35 P.P. ${ }^{\text {c/ }}$ MANY OTHER TYPES AVAILABLE

SOLARTRON OSCILLOSCOPE 523S. 2
The best of the surplus scopes for $\mathbf{6 5 2}$, fully serviced and calibrated, compare the specification with others. Bandwidth Time Base $0.1 \mathrm{usec}-1 \mathrm{~cm} / \mathrm{sec}$ in 7 decades Time Base 0.1 usec- $\mathrm{cm} / \mathrm{sec}$ in 7 decades C Core mains transformers/4 in. High resolution flat face PDA CRT and many other features make this scope very suitable for colour television servicing
and many other applications. Price $\& 52$ and many oth
P. \& P. $1 \mid \cdot 25$.

BARGAIN OFFER GV DC TAPE RECORDER MOTORS TYPe DM148.I Fully screoned * reversible * constan speed *specially designed for Porta
Recorders *Price only $£ 1.75$ P.P. 10 p

> SCHOMANDL FREQUENCY CONVERTER UNIT TYPE FDM.I Range । KHz to 900 MHz an approved standard for telecommunications equip facturers specifications.

CROYDON INSTRUMENTS

 Precision Kelvin Wheatstone Bridge ype KW Measurements can be made type KWI. Measurements can be madefrom 0.0001 of an ohm. 100,000 ohms from 0.000 of an ohm. insitu Sullivan Galvo, four decade ranges, four standards and six Kelvin divide/multiply ratio's offered in excellent condition ready for use Price 695

MARCONI 12 KHz QUARTZ
CRYSTAL contained in B7G envelope with flying lead connections. Brand new only $62 \frac{1}{2} \mathrm{p}$ each.

MORGANITE GLASS ENCLOSED RESISTORS Value 2.5 k . meg ohms RESISTORS
colerance 10%. EI- 25 per carton of four

WATSON MARLOW ORBITAL LOBE PUMPS
Specially designed for corrosive liquids etc. Rated output against 10 ft . head-
110 G.P.H. direction of flow reversible. 10 G.P.H. direction of flow reversible. Supply 240 v. A.C. mains. Nett weigh
14 Ib . Supplied as new. Prite $£ 12.50$ 14 lb . Supplied as new
P. \& P. 50 p. List $£ 22.50$.

Voltage and Current regulators-heavy duty rheostats-I ohm rated at 10 A rand new by famous manufacturer, $62 \frac{1}{2} \mathrm{p}$

Lucas diode rectifiers full wave bridge rectifier mounted on special heat-sink $50 \mathrm{~V},-60 \mathrm{~V}$. operation rated at 50A. Has many uses for heavy duty charging plants, plating rectifiers, etc., etc. Per pair E 8
two completa bridge rectifiers(, p.p. $37 \frac{1}{2}$ p

GEC UNISELECTOR. GPO pattern 8 BANK 25 POSITION 75 ohm BRIDGING WIPERS. Brand new
Boxed. Only $\mathbf{E 2} \cdot 50$ P.P. 22p.

RF SIGNAL GENERATORS AM VO Ltd MND FM
AVO Led. Model CT 378. Good quality AM generator 2-225 MHz in seven range calibrated output level I uV to I V frequency range directly calibrated with set level meter. Smal size modern instru leads and mains lead for price only $\& 35$ Airmec Ltd. Model CT-212 AM/FM signa generator 85 kHz to 32 MHz directly calibrated output level calibrated 1 uV
to $I V$ deviation $0-30 \mathrm{kHz}$, fully portable to IV deviation $0-30 \mathrm{kHz}$, fully portable
for 24 DC and 240 v . AC operation in first for 24 DC and 240 v . AC operation in first
class condition. Our price, only $£ 45$.

SPECIAL OFFER

"INSULATION TESTERS" TYPE No. II METROHM by
famous British manufacturer. All solid state. No Mand es to cran Runs off 9 volt transistor battery. Simply press button for function. Range 0.1 to 25 M ohms for insulation testing. Also 0.1 to 100 ohms for resistance and continuity checking. Clear, concise scale. Small size modern instrument, complete with carrying strap and protecting cover. Offered in good used condition with battery ready to work. For 250 volt pressure only. List Price $£ 19.50$. Our Price $\mathbf{5 6 \cdot 0 0}$ plus $22 \frac{1}{2} \mathrm{P}$ post/packing.

Rhode \& Schwarz ESM 300 UHF Receiver $A M / F M \quad 85 M H z-300 ~ M H z$ Rhode \& Schwarz BN 1503 Rhode \& Schwarz BN4151/2"60 Noise sength test receiver AM/FM Rhode \& Scharz
 Rhode \& Schwarz BN $33664 / 50$ UHF Load resistor 100 watt 50 ohm $\quad 0 \mathrm{MHz}-600 \mathrm{MHz}$. Rhode \& Schwarz BN4521 Vibration Meter $30 \mathrm{~Hz}-12 \mathrm{KHz}$. Rhode \& Schwarz

ZD Diagraph
Advance Q meter type T.I.
$00 \mathrm{kHz}-100 \mathrm{MHz}$.
Marconi Q meter type 329G
$50 \mathrm{kHz}-50 \mathrm{MHz}$.
$15 \mathrm{MHz}-170 \mathrm{MHz}$
DOUBLE BEAM OSCILLOSCOPE RHODE \& SCHWARZ POLYSKOP
DC-7MHz CALIBRATED AI
CONDITION, ONLY $£ 65$ P.P. $£ 2$

$$
\begin{aligned}
& \text { (SWOB 2) } \\
& \text { With accessories for sale or hire. }
\end{aligned}
$$

Airmec portable RF signal generator. AM/FM Type CT212.
Specially designed for fleld use for mains or 12v operation. Frequency range 85 kHz to 30 MHz . Accurate scale calibration. *Variable output from 1 micro V 100 mV .

TEKTRONIX 551 WITH TWO PLUGINS

MARCONI 80ID
A.M. SIGNAL
GENERATOR IO-470
MHZ OUTPUT
$0.1 \mu V$ to IV

400 or 1000 Hz . Built in crystal calibrator. Offered in first class condition. Price El75.

Precision Multi Turn Indicating Dials sultable for 10 turn Helical Pots, machined from soldi dural with the skirt engraved 0 to 100 and inner dial engraved 0 to 10 sultable for standard t inch spindles, these
small dials are as easy to fix as screwing on an small dials are as easy to fix as screwing on an for counter knob depth $\frac{1}{i} \operatorname{tn}$. Brand

WANTED. GOOD
 EQUIPMENT

Miniature solenold driven wafer switches, type-Ledex single pole, 7 pos., 3 wafers. Primarily used for channel switching in Radio-Telephones. Wafers may be sub-
stluted for any type. Solenoid voltage, 12 or 24 V . stituted for any type. Solenoid
Brand new. EI .50 each, p.p. $12 \frac{1}{2} \mathrm{p}$.
CAMBRIDGE INSTRUMENT Co. Ltd. Precision test meters. Electrodynamic A.C. Ammeter 0 to 15 amps with test certificate Dynamometer A.C. Ammeter range 0 to 15 amps

Tinsley Universal Shunt type 4309 C
Tinsley Vernier Potentiometer type 4363E Auto

Digital Voltmeter Solartron LM902.2 four digit readout
Solartron A. C. Convertor LM 903 matching unit for LM902
Hewlett Packard DVM 405CR four digit readout auto polarity
Glouster DVM BIE 2123 A.C./D.C. transistor portable $0-1000$

> | TEKTRONIX 581 |
| :---: |
| WITH TYPE 80 |
| PLUG IN AND PROBE |
| AS NEW CONDITION |

EIMAC SK-600A. Air spaced Valve Holders suitable for 4×250, etc. Power retrodes, brand hew, boxed, complet with clamps, screws; heavy silver plate | inish. Normal list price $\mathbf{6} 6 \cdot 50$. Our price |
| :--- |
| 2.50 . | C2.50.

A.E.I. MINIATURE UNISELECTOR So SWITCHES
No waiting, straight off the shelf and are 2202 A equipment, the Catalogue Nos 250 ohms, 4/33A63/1; coil resistance price is $\mathbf{6 5}$. Limited quantity only available
Also: 2203A, 2200A, 2202A
Resolved Components Indicator VP 253/1a. Solartron Low Frequency Decad Oscillators. Solartron OS 103 and asso ciated equipment. 2 Phase Low Frequency Oscillator, type Bo 567. Solartron Solartron Synchro test set, type CT 428 Solartron AC Millivolt meter. Precision Type VF 252.

AERIAL CHANGE/OVER RELAYS of current manufacture designed espec 12 v ., frequency up to 250 MHz at 50 watts Small size only, 2 in. $\times \frac{7}{}$ in. Offere brand new, boxed. Price $\mathbf{\$ 1} \cdot 50$, inc. P.\&P

RECEIVERS COMMUNICATIONS

Marconi CRI $50.2-60 \mathrm{MHz}$ as new. . 66 Hallicrafters S27C $110-220 \mathrm{MHz}$. HROM× $500 \mathrm{KHz}-30 \mathrm{MHz}$. Redifon R50M. $13 \mathrm{KHz}-32 \mathrm{MHz}$.
Reece Mace Double Reece Mace Double conversion
$60 \mathrm{KHz}-31 \mathrm{MHz}$

COAXIAL SWITCHES
Suitable for aerial shangeover and high frequency switching up to $1,000 \mathrm{MHz}$ miniature Vacuum drawn type 110 vde operation connections BNC and N types
Offered brand new, boxed. Price $\mathbf{\& 3 . 2 5}$

Hirger \& Watts Microspin X Band Bridge Type W957. Microspin Proton Hea Frequency Meter. Type FAZ 210
spin Modulator. Type FA 210.
Microspin 1 cm Wave guide direction couples, associated measuring equipmen High Voltage Klystron Power Supply Units. Type FA 80.
Hilger \& Watts Absorbance Convertor and many other items of interest offered Brand new equipment.

LEAD-ACID EQUIPMENT
BATTERIES IOV 5AH.
Transparent casing. Size $2 \ddagger \times 5 \times 7$ in Offer box, brand new and boxed, 2 batteries instructions. Can supply voltages in th range from 2-20v. Price $£ 2 \cdot 25$, inc. P.\&.P Burndept RF Plugs still available. These hard to find plugs are used on a multitude lo relays Offered new ex equipment. 2 for 50 p , inc. p.p

Nife traction Batteries Nickel Iron. 1.2 V per cell rated at 180 A.H. Sold in crates of three cells or crates of five cells. \& per cell. Guaranteed best buy.

BT9I-500R THYRISTORS 500 PIV Max rect. Current 16 amps Guaranteed perfect. Price $\mathbf{£ 1 \cdot 2 5}$ each

COLVERN HELICAL POTS
 1 K ohms 5 K ohms
 $\left.\begin{array}{l}\text { 5K ohms } \\ 10 \mathrm{~K} \text { ohms }\end{array}\right\}$ ALL TEN TURN
 lok ohms
 20K ohms
 PRICE $£ 1.75$

Wayne Kerr Impedance Bridge B521.
Price $£ 45$.
Electronic Vol
PYE High Impedance DC Amplifier for measurements better than 20 uV to 10 volts centre zero. Price CS6.
Phillips GM 60101 mV FSD to 300 V Phillips GM 6010 I m.
in 12 ranges. Price 445.
Phillips PM 2520 l mV FSD to 300 V . in 12 ranges RMS voltmeter 10 Hz to 1 MHz Price E45.
Dawe Model 616A transistorised Voltmeter 10 mV FSD to 300 volts. In 10 ranges. 627.
Levell Model TM2A transistor AC VoltSolartron VF-252 AC milivaltmeter 1 $\mathrm{m} V$ for FSD to $15 \vee 30 \mathrm{M}$ ohms impedance. Price $£ 65$.

H. W. SULLIVAN STANDARD AIR SPACED CONDENSERS

Capacitance range 0 to 100 pf fully screened with engraved verniar subdivided into 100 equal divisions complete
with vernier index and original manufacturers
only $£ 25$ each. only $£ 25$ each.

UCAS CAR RELAYS LUR. 12 V. Heavy duty make. Suitable for spotlights Only $37 \frac{1}{2}$ p. Special price for quantities.

BARGAIN OFFER
200-yard reels equipment wire, size $1 / 024$, STC quality, various colours. Brand new

HUNTER MAGSLIPS 3 inch Series, Type E-18-V/2. Very suitable for servo operation of hydraulic valves radar aerials and ocher applered brand new in transit boxes, at only $£ 3.25$ each.

MUIRHEAD PHASEMETER
D-729-bm. Complete with supply and Dith manual. Pricter. O

50 DECO IMPULSE COUNTERS 4 DIGIT RESETT 10 Impulsos per second. 27MA 220 V COIL AC/DC OFFERED BRAND NEW AT $£ 2$ EACH

DEE D

ADVANCE DC STABILIZED
 P.S.U. TYPE PM8

Fully stabilized power module PM8 15 to 30 volts 5 amps offered brand new, Price $£ 25$

CANNON XLR AUDIO

PLUGS AND SOCKETS
3 POLE and 6 POLE AVAILABLE EX STOCK

OLARTRON VF252/NSL
SION ACMILLIVOLT M Range I.S milli volt (for full scale deflection) to 15 volts in eight ranges input offered are of the very latest type not to be confused with the older models.

To supply $12 \cdot 15-20.24$ and 30 volts To supply 12-15-20-24 and 30 volts-at and ammeter employs silicon control rectification employs silicon heavy duty very suitable for light dury components charing duties. 240 v . AC supply, fully Offered brand new units. Price $£ 12 \cdot 50$. -

SPECIAL 50p PACKS. ORDER 10 PACKS AND WE WILL INCLUDE

RESISTORS, $\frac{1}{2} / \frac{1}{2}$ watt assorted Wire-wound 1 to 3 watt 5 to 7 watt 10 watts		50 p 50 p 50 p 50 p
PAPER CONDENSERS		
Tr types		
Miniature		
ELECTROLY		
${ }_{\text {Radio/Tr }}$		
Transistor typ		
Mixed (both typ		50p
POLYSTYRENE		
Mullard polyester		
COND.		
SILVER MICA		
SLIDERS		
VOLUME CONTROLS		
Assorted		
NUTS AND BOLTS. Mixed		
ngth		
8 B.A		
6 B.A.	100	50p
4 B.A.	100	50p
2 B.A.	100	50
METAL SPEAKER GRILLES		
$7 \frac{1}{2} \mathrm{in} . \times 3 \mathrm{l} \frac{1 \mathrm{in}}{}$		50p
EARPIECES, MAGNETIC		
2.5 mm		
3.5 mm Plug		
METERS		
VEROBOARD TRIAL PACK 5 BOARDS + CUTTER		

SINCLAIR AMPLIFIERS AND SPEAKERS: Complete range in stock.
All at 10% discounton IINE All at 10% discount on tisy
 Postage/Packing 25p. is watt type, batten fitting for caravans 44 . Postage/Packing 25 n 13 watt type, batten with switch. 22in $\times 2$ in \times lin $\mathbf{E 5}$. Postage/Packing 25p.

MULLARD POLYESTER CONDENSERS

$1,000 \mathrm{pf}, 1,200 \mathrm{pf}$, $1,500 \mathrm{pf}, 1,800 \mathrm{pf}, \mathbf{2 , 2 0 0 \mathrm { pf } \text { , } 1 5 \mathrm { p } \text { -pir dozen (all } 4 0 0 \mathrm { V } \text { workingl }) ~}$ $0.15 \mu \mathrm{f}, 0.22 \mu \mathrm{f}, 0.27 \mu \mathrm{f}, 30 \mathrm{p}$ per dozen (atil 160 V working). $25 \times$ discount for lots of 100 .ef any ohe type.

RESISTORS

$\frac{2}{2}$ and $\frac{1}{3}$ Wate Most values in stock. 50p per 100. 10p per dozen of any one value. 1 watt to So MAINS DROPPERS. Hundreds of valuas from 0.7 ohm upwards. radio/television. Owing to the huge variety these can only be offered "assorted" 2t 50p per dozen.

SILVER MICA/CERAMIC/POLYSYYAENE CONDENSERS
Lacge range in stock, 75 p per 100 of any one value. 15 p per doxent
RECORDING TAPE BARGAIN! The very best British Made low-noise high-quality Tapel sin standard 3ap. Long-play 45p. Sein Standard 45p. Longeof repeat orders for this tape. Might we suggest that you order now whilst we still have a good stock at these low prices?

65 WORTH OF COMPONENTS FREE 1111
thinking of learning another tanguagel If so apply to us for details of LINGUA PHONE courses. We will GIVE you 65 worth of components of your selection
quite free of charge when you purchase a course $1!!!$

TRANSISTORS

WE OFFER FROM STOCK AN EXCLUSIVE RANGE OF BRAND NEW CERAMIC FULL SPECIFICATION LOW COST TTL 7400 RANGE OF INTEGRATED CIRCUITS

BRAND FULLY NEW GUARANTEED NEW LIST－NEW PRICES

Send today for your FREE copy of our new 1971 list
$2 \mathrm{~N}_{2} 44$ $2 N 4696$
$2 N 697$

$2 N 706$ | | | | | |
| :--- | :--- | :--- | :--- | :--- |
| 2N706 | 17p | BC108 | 12p | BSX 21 |
| 2N | 37p | | | |

2N930	25p	BC114	35p	BY100	15p
2N1131	30p	BC115	32p	BY126	150

 \begin{tabular}{ll|ll|l|l|}
\& N1309 \& 25p \& BC138 \& 40p \& GET102 30p

2N1613 \& 22p \& BC147 \& 17p \& GET111 40p \& 7

OET880 37p

2N1613 \& 22p \& BC147 \& 17p \& GET111 40p

2N1711 \& 25p \& BC148 \& 12p \& GET882 27p \& 74

\hline

2N1711 \& 25p \& BC148 \& 12p \& GET882 25p

2N2147 \& 75p \& BC149 \& 20p \& MAT100 25p

2N2160 \& 65p \& BC154 \& 37p \& MAT101 30p

2N2160 \& 65p \& BC154 \& 37p \& MAT101 30p

2N2218 \& 30p \& BC157 \& 20p \& MAT120 25p

2N2219 \& 32p \& BC158 \& 17p \& MAT121 30p

2N2219 \& 32p \& BC158 \& 17 p \& MAT120 25p

2N2222 \& 30p \& BC159 \& 20p \& MJ2801E1．37

2N2222 30p \& BC159 \& 20p \& MJ2801є1

2N2222A37p \& BC177 \& 25p \& MJ2901

2N2369 \& 20p \& BC178 \& 25p \& M

2N2484 \& 35p \& BC179 \& 27p \& MJE370

2N7D

2N 2484 \& 35 p \& BC179 \& 27 p \& MJE370 97p

2N2646 \& 50p \& BCY30 \& 25 p \& MJE520 87p

2N2904 \& 30p \& BCY31 \& 30p \& MJE2955
\end{tabular} 2 N 29

N 29 2N2006
2N2906 15
5
0
0
0
0 2 N 2926 2N3053 2N3054 2N 2 N305 2N3702
2N 3703 2 N 3702
2 N 3703
2 N 3704 2N370 $2 \mathrm{~N}:$
2 N
2 N －Z Z 2N37
2 N 38
2 N 38 2N3820 $2 N 4061$
$2 N 5457$ 28301 28301
$2 S 302$
$2 S 303$
28304
40250 \％

द4

\qquad
\qquad
\qquad
\qquad

$+4$

は4

4 4

4न言合
元

दरे

㛡息

\＆

路

路

系乡等

दूर

दर्व

BAX16	7p	BFY84	42p．
BAY31	7p	BFY90	65p

ouad 2－Input Dand Gate
（ Quad 2－Input Nand Gate
Quad 2－Input Positive Nor Gate
Hex Inverter
Hex Inverter open Collector Triple 3－Input Nand Gate
Single 8－Input Nand Gate
Single 8－Input Nand Gate
Dual 4－Input Buffer Gate
BCD to Decinnal Decoder and N
BCD to Decimal Decoder（TTL）
Dual to－Input and／or／not Gate－Expandable
Single 8－Input and／or／not Gate－Expandable
Dual 4－Input－Expandable
Single JK Flip Flop－Edge Triggered
Single Master Slave JK Flip Flop Dual Master Slave JK Flip Flop
Dual D Flip Flop
7476 Quad Bistable Latch
7493 Four Bit Binary Counter
7492 Divide by 12． 4 Bit Binary Counter
7494 Dual Fintry 4 Bit Shift Register
495 4 Bit Up Down Shift Register
$\mathrm{E} \mid 0$
E
100
Data available for above series in booklet form，price 10 p ．
Dual Inline 14 Pin Sockets 30p each． 16 P＇in 35p each．

SILICON RECTIFIERS

1 AMP MINIATURE WIRE ENDED PLASTIC Type P．IV． $1-4950+100+500+1000+$

$\begin{array}{lrllllll}\text { Type } & \text { P．I．V．} & 1-49 & 50+100+500+1000 \\ \text { IN4001 } & 50 & 8 p & 7 p & 6 p & 5 p & \\ \text { IN4002 } & 100 & 9 p & 8 p & 7 p & 51 p & 4\end{array}$

1．5 AMP MINIATURE WIRE ENDED PLASTIC
Type P．I．V． $1-49 \quad 50+100+500+1000+$ $\begin{array}{lrrrrrr}\text { Type } & \text { P．I．V．} & 1-49 & 50+100+500+1000+ \\ \text { PL } 4001 & 50 & 10 p & 9 p & 8 p & 7 p & 6 p \\ \text { PL4002 } & 100 & 11 p & 10 p & 9 p & 8 p & 7 p\end{array}$ $\begin{array}{rrrrrrrr}\text { PL4001 } & 50 & 10 p & 9 p & 8 p & 7 p & 6 p & \text { 9p } \\ \text { PL4002 } & 100 & 11 p & 10 p & 9 p & 8 p & 7 p & 15 \\ \text { PL4003 } & 200 & 12 p & 11 p & 10 p & 9 p & 8 p & 25 \\ \text { PL } 4004 & 400 & 12 p & 11 p & 10 p & 9 p & 8 p & 10 \\ \text { PL4005 } & 600 & 15 p & 13 p & 11 p & 10 p & 9 p & 50 \\ \text { PL4006 } & 800 & 17 p & 15 p & 13 p & 12 p & 10 p & 10 \\ \text { PL4007 } & 1000 & 20 p & 17 p & 15 p & 13 p & 11 p & \end{array}$

3 AMP PLASTIC WIRE ENDED RECTIFIERS

Type P．I．V．1－49 $50+100+500+1000+$ $\begin{array}{rrrrrrr}\text { PL7001 } & 50 & 20 \mathrm{p} & 18 \mathrm{p} & 17 \mathrm{p} & 16 \mathrm{p} & 14 \mathrm{p} \\ \text { PL7002 } & 100 & 20 \mathrm{p} & 19 \mathrm{p} & 18 \mathrm{p} & 17 \mathrm{p} & 15 \mathrm{p} \\ \text { PL7003 } & 200 & 22 \mathrm{p} & \text { 20p } & 19 \mathrm{p} & 18 \mathrm{p} & 16 \mathrm{p}\end{array}$

MINIATURE POTTED BRIDGE AECTIFIER

（Sillicon）Slze t in．$x \frac{1}{2}$ in．x in．
Type P．I．V．rent $1-4950+100+500+$
$\begin{array}{lllllll}1002 & 100 & 2 \text { anps } & 60 \mathrm{p} & 55 \mathrm{p} & 50 \mathrm{p} & 45 \mathrm{p} \\ 2002 & 200 & 2 \mathrm{amps} & 70 \mathrm{p} & 65 \mathrm{p} & 60 \mathrm{p} & 55 \mathrm{p}\end{array}$
$\begin{array}{lllllll}2002 & 200 & 2 \text { amps } & 70 \mathrm{p} & 65 \mathrm{p} & 60 \mathrm{p} & 55 \mathrm{p} \\ 4002 & 400 & 2 \text { amps } & 80 \mathrm{p} & 75 \mathrm{p} & 70 \mathrm{p} & 65 \mathrm{p} \\ 6002 & 600 & 2 \text { amps } & 90 \mathrm{p} & 80 \mathrm{p} & 75 \mathrm{p} & 70 \mathrm{p}\end{array}$
$\begin{array}{llllllll}4002 & 400 & 2 \text { amps } & 80 p & 75 p & 70 p & 65 p & \text { BY } \\ 6002 & 600 & 2 \text { ampp } & 90 \mathrm{p} & \text { 80p } & 75 \mathrm{p} & \text { 70p } & \text { BY } \\ 1004 & 100 & 4 \text { amps } & 70 \mathrm{p} & 600 & 55 \mathrm{p} & 50 \mathrm{p} & \text { BY } \\ 2004 & 200 & 4 \text { amps } & 75 \mathrm{p} & 70 \mathrm{pop} & 65 \mathrm{p} & 60 \mathrm{p} & 10\end{array}$

$\begin{array}{ll}4006 & 400 \\ 6006 & 60\end{array}$

NEW LIST－NEW PaICES 1971 TRAN
LIST 1000 LIST 10OO
SEND FOR SEND FOR Y
COPY TOOAY

SEMI－CONDUCTORS

LOOK AT THESE PRICES FOR QUANTITIES FROM STOCK

AFII4 Mullard 25p	AFII5 Mullard 25p
$25+20 p$	$25+20 p$
$100+17 p$	$100-17 p$
$500+15 p$	

$\underset{\substack{150 \\ 150 \\ 150}}{\substack{150 \\ 4}}$

R．C．A．INTEGRATED
CIRCUITS

Li			
CA3011	＋750	${ }_{\text {CA }}$	$\underline{4} \mathbf{9}$
CA3012	900	CA3039	850
СА3013	± 110	CA3041	¢1．10
CA3014	£1 45	C． 3042	¢1． 10
CA3018	¢1．10	CA3043	
CA3020		CA3044	¢ $¢ 1.25$
${ }_{\text {CA } 3022}$	\pm	CA3045	
CA3023	¢ 1.25	CA3048	E2．25
CA3026	$\pm \begin{aligned} & \pm 1.00 \\ & \pm 1.20\end{aligned}$	CA3051	¢1．35

INTEGRATED CIRCUITS | MFC |
| :--- |
| I．C． |
| PA2 |
| TAA |
| TAT |
| TAI |
| MC1 |
| UL9 |
| UL9 |
| LA7 |
| MC1 |
| PA23 |
| PA23 |

$$
\begin{aligned}
& \text { Zen } \\
& 400 \\
& \text { Mini } \\
& \text { BZY } \\
& \text { All } \\
& \text { Yolt- } \\
& 155 \\
& 25+ \\
& 100 \\
& 500 \\
& 1000
\end{aligned}
$$

NTEG

POWER RECTIFIERS

 Stud Mounting 6 amp Range
HENRY'S RADIO LTMTED mumswo ENGLAND'S LEADING ELECTRONIC CENTRES -

 HLFI. COMPONENTS TEST PA DISCOTHEDUE ELECTRONIC ORGANS MALL ORDER HENELEC SELF-POWERED PRE-AMPLIFIERS

SLIM MODERN DESIGNS USING THE LATEST
SIICON TRANSISTORS, FET''s and IC's. DIN SOCKETS, ETC. fitted. PUSH-BUTTON SELECTION, $20 d B$. Bass and treble boost and cut. All inputs provided plus TAPE RECORD and REPLAY. Specifically designed for use with PA25 and PA50 Amplifiers GOLD AND SILVER OUTPUTT UP TOP I VOLT Simple mounting. Also suitable for use with Amplifier Models M
\star FET9/4. Mono with built-in mic. mixer. Accepts any ceramic or \star FET 154 STEREO.

Magnetic cart., input, tuner, tape, etc. Beautiful stereo sound.
\star I.C. STEREO
FET's etc.
SIMPLICITY TO MOUNT-EASYTOUSE-DESIGNED FOR QUALITY, PERFORMANCE AND PRICE

LOOK AT THE SPECIFICATIONS!
25 WATT \& 50 WATT RMS SILICON AMPLIFIERS

TEST EQUIPMENT

For Educational, Professional and Home Constructors
 AFI05 50k/volt multimeter (illus.).
Price 68.50 $\begin{array}{ll}\text { Price } 68.50 & \text { P.p. } 20 \text { p } \\ \text { Leather case } £ 1.42\end{array}$
$200 \mathrm{H} 20 \mathrm{k} / \mathrm{volt}$. Price 63.87 p.p. 20p Case 62p
$50030 \mathrm{k} /$ volt multi-meter Price 68.85 p.p. 20p Leather case $£ 1.50$
THL $332 \mathrm{k} /$ volt. Price $£ 4 \cdot 12$ P.p.
Leather case $£ 1.15 \mathrm{p}$ TE65 Valve voltmeter (illus.) $£ 17.50$ p.p. 40 p VM5I Transistorise AF/RF millivoltmeter.
Price $£ 32.00$ p.p. 40 p TE22 Audio Generator Price $\mathbf{E} 17.00$ p.p. 35 p. TE20D RF generator (illus.). Price $£ 15.00$ p.p. 35p

TE22D Matching audio generator.
Price $£ 17.00$ p.p. $35 p$ TEI5 Grid dip meter. Price $£ 12.50$ p.p. 20 p TO3 Scope (illus.). $3^{\prime \prime}$ tube. $1.5 \mathrm{Mc} / \mathrm{s}$.
Price $£ 37.50$ p.p. 50 p Cl-5 Scope. 3^{n} tube $10 \mathrm{Me} / \mathrm{s}$ PB. Price 639.00 p.p. 50 p *CI-16 Double beam scope. Price 887.00
$\xrightarrow{\text { P. Leaflet No. } 19 \text { on }}$ equest.
RP40 (Illus.) Vari$\begin{array}{lr}\text { able } 5-20 v . & 0-2 \\ \text { amps. Price. } £ 25.50\end{array}$ p.p. 47p

RP246-12v. ${ }^{\text {t }}$ 3v. E21.50 p.p. 47p

RPI24 Variable -24v. 1 amp. Price Ł 13.50 p.p. 37 p

PANEL METERS 38 and lus large range Edge types also $240^{\circ}-250^{\circ}$ types. Latest Catalogue is a must for complete details.

- At full power 0.3\% distortion. - At full power- $1 \mathrm{~d} \mathrm{~B} \mid \mathrm{Ic} / \mathrm{s}$ to $40 \mathrm{kc} / \mathrm{s}$ - Response- $1 \mathrm{~dB} 11 \mathrm{c} / \mathrm{s}$ to $100 \mathrm{kc} / \mathrm{s}$.

PA 2510 transistor all silicon differential input 400 mV sensitivit. 25 watts Rms into 8 ohms. Supplied with edge connector harness size $5 \times 3 \times 2$.
PA 5012 transistor version 50 watts Rms into 3 to 4 ohms. Size
MU 442 . Power supply for one or two PA 25 or one PA 50. PA 25 £7.50. P.p. 15 p. PA 50 E9. 50 . p.p. 15 p . MU 442 £6. 00 p.p. 25 p . All units. No soldering-just edge connectors and plugs.
(4ise time 2μ sec. - Short circuit proof plus limiting cct.

BUILD THIS

FM TUNER
also Decoder,
tuning meter
\& power supply
5 MULLARD TRANSISTORS $300 \mathrm{ke} / \mathrm{s}$ BANDFIDELITY REPRODUCTION. MONO AND STEREO. A popular VHF FN Tuner for
quality and reception of mono and stereo. quality and reception of mono and stereo. the REAL sound. All parts sold separately. TOTAL E6.97 p.p. 20p
Cabinet 100p, Decoder Kit $\mathbf{4 5} \mathbf{9 7}$, Tuning Meter £1-75. Mains unit (optional) Model PS900 $£ 2 \cdot 47$. Mains unit for Tuner and Decoder PSI200 £2.62

plus a complete range of individual units in stock-Demonstrations all day-visit CREDIT/HP TERMS (Credit terms from $£ 30$ purchase-callers only).
FREE--Stock Lists Nos. 16/17 on request BEST VALUE IN U.K.

HENRY'S LATEST CATALOGUE

Latest editior
350 pages.

* COMPONENTS TEST GEAR EQUIPMENT, MODULES
*SPECIAL OFFER'S, Etc., Etc. Everything for the constructor. Complete with 50p (10/-) value discount voucher for use with NOT SEND AWAY TODAY?
FREE 8-page Transistor, IC, Diode lists No. 36
FREE 16 -page Organs to Build brochure free Decks and Hi Fi Stock Lists Nos. 16/17
FREEPA, Disco and Lighting List No. 18 FREE Quotations for all Electronics-

TRANSISTOR AMPLIFIERS

$4-3004$ TR 9 volt 300 m
1044 TR 9 volt I watt
3044 TR 9 volt 3 watt
3044 TR 9 volt 3 watt
PA7 6 TR 16 volt 7 watt
$£ 1.75$
$£ 2.12$

| R |
| :--- | \(\begin{array}{r}\quad 2.47

\quad

\hline 2.75

\hline 3.62\end{array}\)
6086 TR 24 volt 10 watt $\begin{aligned} & \mathbf{E} .12\end{aligned}$
 MPA12/3 6 TR 18 volt MPAI2/156 TR 36 volt 12 watt $\mathbf{~} \mathbf{4} \mathbf{5 0}$ Z309 TR 30 volt 20 watt $\begin{aligned} & \mathbf{5 5 . 2 5} \\ & \mathbf{£ 3} \mathbf{7 5}\end{aligned}$ PA25 10 TR (special) 25 watt $\not \mathbf{7 7 . 5 0}$ PA50 12 TR (special) 50 watt $£ 9.50$ 100100 watt with power supply

OPTIONAL POWER SUPPLIES. Postetc. 20p P. 500 Switchable (One or Two) for 104, 304 .. $£ 2.62$ PS. 20 Switchable (One or Two) for PA7 . $\quad £ 3.47$ MU24/40 Switchable (One or Two) for MPA12/3 or
 $\begin{array}{llrlll}\text { PZ8 for } Z 50 & & £ 5.97 & \text { Transformer } & \ldots & € 2.25 \\ \text { P11 for } 608 & \because & £ 2.87 & \text { P15 for } 410 & \ldots & £ 2.62\end{array}$ MU442 for I or 2 PA25 or I only PASO
$2 \times Z 30$ amplifier, stereo 60 pre-amp, PZ5 power supply, £ 19 .
SINCLAIR PROJECT 60 PACKAGE
DEALS Carr. 40 p. Or with PZ6 power supply, $£ 21$. Carr. 40 p. $2 \times Z 50$ amplifier, stereo 60 pre-amplifier PZ8 power supply, $£ 21 \cdot 50$. Carr. 40p. Transformer for PZ8, $£ 2.25$ extra. Any of the above with Active Filter unit add $£ 4.87$ or with pair Q16 speakers
add $£ 16$. Also NEW FM TUNER, $£ 21$.
NEW INTEGRATED CIRCUIT STEREO
MULTIPLEX DECODER
Model IO67

Two transistor plus integrated circuit design $9-12$ volt operated, $50 \mathrm{~m} V$ sensitivity, lamp output direct. Auto switching plus many other features. Size $2 \frac{1}{4}^{\prime \prime} \times 22^{\frac{3^{\prime \prime}}{}} \times \frac{3}{4}^{\frac{3^{\prime \prime}}{2}}$ Standard 0.1 connector or solder connections. Output 1 volt per channel. Price

Range 0.10 mr .

FOR MEASUREMENT OF RADIO ACTIVITY Supplied complete with instructions, haversack, cables new, tested complete with 4 cell H.T. Eliminator.
Plug in mains units $£ 3.75$ Dosimeters 0-50R 62p;0-150R 50p: $0-500 \mathrm{R}$ 50p

Opportunities Unlimited in RADIO, TELEVISION, ELECTRONCS

C \& G Telecommunication Techns' Certificate C \& G Electronic Servicing Certificate R.T.E.B. Radio/T.V. Servicing Certificate Radio Amateurs' Examination General Certificate of Education, etc.

Which one would qualify you for higher pay?

International Correspondence Schools provide specialized training courses for all these certificates, and with the help of the Schools' experienced tutors you can be sure of early success. You will have the advantage of building on your practical experience and ensuring that you have the technical knowledge so essential for success in electronics.
And the result? You'll soon be qualified in your field of electronics, and in a position to choose your opportunity.
Find out how ICS can help you. Send for our free prospectus right away.

ALL EXAMINATION STUDENTS ARE COACHED UNTIL SUCCESSFUL

NOW-COLOUR TV SERVICING COURSES

As the demand for colour TV increases, so does today's demand for trained servicing engineers. You can learn the techniques of servicing colour and monochrome TV sets through new home study courses specially prepared for the practical TV engineer.

SELF-BUILD RADIO COURSES

We'll teach you both the theory and practice of valve and transistor circuits, as well as how to service them, while you build your own 5 valve receiver, transistor portable and high grade test instruments. You build equipment of real practical use!

POST TODAY FOR FULL DETAILS OFICS COURSES IN RADIO, TV AND ELECTRONICS DRESDONDENCE SCHOOLS

The OXLEY Wire Wrap "Barb" cone-lock Connector is a feed through insulator for high speed automated panel wiring. It consists of a rectangular section spill which is nickel flashed and dip spin tinned, with a P.T.F.E. insulating bush. The wire wrapping operation is achieved by a rotary tool which quickly produces highly reliable joints.

The connectors are suitable for assembly into $0.156^{\prime \prime}(4 \mathrm{~mm})$ diameter holes and have a working voltage of 1.5 KV and a maximum current rating of 5 amps .

OXLEY DEVELOPMENTS COMPANY LTD. Priory Park, Ulveston, North Lancs., England

OXLEY $^{\circ} D$

 Tel: Ulveston 2621 Telex: 654I Cables: Oxley UlivestonWW-108 FOR FURTHER DETALS

EMERGENCY LIGHTING UNITS WIRED TO MAINS. LIGHTS WHEN MAINS ABSENT. TRANSISTOR REGULATED CHARGER WALL MOUNTING, RUNS 6 HRS. WITHOUT CHARGING PRICE £ 17.50
RECHARGEABLE BATTERY UNITS TO YOUR SPECIFICATION. HIGH ALTITUDE. UNDEAWATER, ETC. CONSTANT CURRENT AND CONSTANT VOLTAGE. CHARGES BY QUOTATION.

$6.400 \mu \mathrm{~F} 40 \mathrm{~V}$ Sprague high cur- Jones panel sockets 4 pin . £0.05
 Mouldtrimmers Radiospares 2200 380S. 1M Ω onlyE. E0.10 15 -Way Gold sub-min Cannon
 $50 \mathrm{~Hz} \quad \ldots . .5 \%-360 \mathrm{~N}$
Thermal trips E.T.A. $250 \mathrm{~mA} 23 \Omega$
240vAC $\mathbf{f 0 . 8 0}$
Thermal 240 V inps. A.C. 700 mA 3Ω fo. 80 Miniature Relay $4-10$ volt 45Ω 2 pole make contacts ... fo. 30 $2.5 \Omega 50 \mathrm{w}(50 \times 16 \times 16 \mathrm{~mm}$) Integral finned heatsink .. £0.50 $3.5 \Omega 50 \mathrm{w}(50 \times 16 \times 16 \mathrm{~mm}$.) Dummyloads£0.50 2N3055 RCA 115 w 60v. Pairs on heatsinks with mountings $£ 1.25$ MJE521 Motorola 25w 40v plastic iN5234 Motorola 6.2 v Zener 500 mw £ 0.10
Z2A130/ITT 13.2 v Zener 1w £0. 10 Miniature Do6 silicon diodes $£ 0.05$
sockets ex. new equipment sockets ex. new equipment
$5 A 7500.6$. Miniature 10 way barrier strip. Solder tag to screw clamp fopg PC Corara whtoneht MIC944 Dual i/p pwr gate and one ITTMIC946 Quad $2 \mathrm{i} / \mathrm{p}$ gate. 20 boards $£ 0.50$
Relay chassis with coil 300ft. 28 swg enam approx. $\frac{1}{2}$ oz. 2 coils (Invisible longwires?) £0.05 Mounting pads TO5 and TO18 100 for $£ .25$ t066 Mounting kits, 2 kits 50.50 8 BA solder tags. 100 tags f0. 10 Resistors $\frac{1}{6} \mathrm{w} 1 \mathrm{~K} 5$ only $\frac{1}{2} \mathrm{~W}$ Ohms $10,68,150,470$ iK 1 K 5 10, 68, 150 , 470 , $1 \mathrm{~K}, 1 \mathrm{~K} 5$ 1w . K2 10\% $470 \mathrm{~K} 5 \%$ 15 any selectionE $\mathbf{1} 0.10$

MINIMUM ORDER E2. CASH WITH ORDER. CARRIAGE FREE

ORDERS OVER £ 2010% DISCOUN

FILM PRODUCERS-EQUIPMENT-MANUFACTURE-HIRE-SERVICES AND SUPPLIES

CHOICE OF IOOO'S OF ITEMS LARGEST SELECTION LOW PRICES AND RETURN OF POST SERVICE

now been reduced in pric						$\begin{aligned} & \mathrm{BC} \mid 22 \\ & \mathrm{BC} 125 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.55 \end{aligned}$	- $\begin{gathered}\text { BFY25 } \\ \text { BFY26 } \\ \text { er }\end{gathered}$	$\begin{aligned} & 0.25 \\ & 0.20 \end{aligned}$	$\begin{aligned} & \text { NKT214 } \\ & \text { NKT215 } \end{aligned}$	$\begin{aligned} & 0.22 t \\ & 0.22 \end{aligned}$							
			0.15	$3{ }^{\text {N12 }} 18$														
2	0.20	$2{ }^{2} 3$		W 14	0.77					NKT215								
${ }_{2}^{2 G 303}$	0.20	2N3402	0.22	3N141														
${ }_{2}^{2 G 306}$		$\begin{aligned} & 2 \text { N } 3403 \\ & 2 \text { N } 3404 \end{aligned}$	${ }^{0} 0.32$							NKT219	0.30							
					0.67 0.87					NKT223								
	0.30	2N3405	0.45		0.52													
	0.	2 N																
				0250														
				4025	0.32													
	0.22	2 N	1.30	40309	0.32	${ }_{\text {BC }}$	0.20	BFY56A	0.571	NKT2								
2N69	0.2	2 N	0.97 t	403	0.45	BC160	0.62 k	BFY75	0.30	NKT2	27							
N697	0.20	2N35	1.25	403	. 35		0.15	BFY76	0.424	NKT241								
2 N 698	0.25			40	0.47		0.1		0.57									
2N699	0.6				${ }^{0} .37$					NK	21							
				40316	0.47		0.15	BF	0.25	NKT245	0.20							
708			${ }_{0} 0.12$	40317	0.37				0.2	NKT	20							
2N708 2N709	$0.62{ }^{2}$	2 N 3703	0.12	40319	0.55													
2 N 718	0.25	2 N 3704	0.17	40322	0.47	BC			5									
N718	0.30	2 N 3705		40323	0.32	BC	0.22	BPY	4	N								
2 N 726	0.30	2 N	$0.12{ }^{0}$	40324	0.47	${ }^{\mathrm{BC}}$	0.12	BR										
27	$0 \cdot 30$			403238	- 0.37	${ }_{8 C 184}$	O. 0.15	BSX	0.17									
	0.17 0.17	2 N 37 2 N 3	0.09	4034	${ }_{0}^{0.27}$	${ }_{8 \mathrm{BCl}}^{82 \mathrm{~L}}$	0.10	${ }_{\text {BS }} \times 21$	0.37	NKT281	27							
					0.57		0.10	BSX	0.45									
2 N 929	0.221	2 N 37	0.12		0.52													
${ }^{2} \mathrm{~N} 933$	0.2	2 N 37			0.42	${ }^{\text {BC }}$	- 0.12	BS	- 0.32	NKT								
2N9870	0.2	2N37	2.221	4036	0.57		0.27	BS	0.62	NKT405	75							
N091	0.22	${ }_{2}{ }^{2}$		4037					022	NKT	. $62 \pm$							
${ }_{2} \mathrm{~N} 1131$	0.25	$2{ }^{2} 3773$	2.40	4040	0.57		-		0.27									
2 N 132	0.25	2 N 3791	2.75	40407	0.40													
1	0.17	2 N 38		4040	0.52				7	NKT	.32							
1304		2N3823	0.97	4041														
2 N 1304 2 N 1305	0.22	2N2754A	0.27	4041	0.5		0.521	BSY		NKT674F								
N1306	0.25	2N3855	0.271	40467	0.57		0.371	BSY	0.17	NKT677F								
		2 N 385	0.30	40468			. 15											
2 N 130					0.5		.											
N1309	0.30	2 N 385	0.35 0.25		0.50		0.32	${ }_{85} 8$	0.17	NKT736	0.35							
Ni6	0.2	2 N 38	0.		0.30	C	0.22	BSY36	0.25	NKT73	$0 \cdot 25$							
					0.20	BC	0.971	BSY37	0.25	NKT78								
2 N 1632		2 N 3859 A	0		0.25		0.20	85Y	. 22	NKT103	${ }^{0.324}$							
N1637		2 N 38			${ }_{0} 0.22$		0.17	BSY	O. 0.22	NKT								
$\mathrm{N}_{16} 6$	0.2	2N38	0		0.25		0.2		0.32	NKT1051	0.32							
2Ni701	1.62	2 N 3877 A	0						0.32	NKT20329								
$2{ }^{2} \mathrm{Ni} 711$	0.25	2 N 3900	0.371	${ }^{\text {ACl }} 88$	0.3	B01	$1.12+$	BSY	0.37	NKT20								
2N1889	0.32	2 N 3900 A	0	ACr	0.27			BSY										
N1893	0.37	2 N 3901	${ }^{0} 0.975$	${ }^{\text {ACMI }}$	0.25		O.	BSY	. 47 t	NK								
- ${ }^{2} \mathrm{~N} 21478$	0.82 0.57	2N393	0.35 0.35		0.25	${ }_{8}$	0.9		0.45									
${ }_{2 N}$	0.57	2 N 3905	0.374	${ }^{\text {ACY }}$	0.25	BOI	0.97	${ }_{\text {BS }}$	0.52	NK								
2 N 2193	0.40	2N3906	0.377	ACY22	0.20		1.37 +		0.57	NK								
2 N 2193 A	0.424	2 N 4058	${ }_{0}^{0.17}$	${ }^{\text {ACr }}$	0.20 0.20	BOY	1. 51.5	BSY9	O. 012	N	0.							
2N2194	0.30 0.27	2N4	104	${ }^{\text {ACr }}$ A 4	- 0.25	BOYIP	1.75	BSW70	0.275	1802								
2 N 22	0.32		0.12	ACY4	0.40	BDY	1.97 !		0.75	OC20	0.75							
2 N 2219	0.321	2 N	$0 \cdot$	ADI40	0.521	BDY	1.12	C424	$0.27{ }^{\text {a }}$	$\mathrm{OC22}^{\mathrm{C} 23}$	0.50 0.50							
2 N 2220			0.47	AD	0.57 0.57		1.25	C426										
2N2221	${ }_{0}^{0.25}$	2N42	0.42	AD	${ }_{0}^{0.371}$	BOY	1.25	C428	0.371	\bigcirc	-42t							
2 N 2287		2 N 425	0.42	AD	0.371	B0	1.00	C74	0.30	26	訾							
2 N 2297	0.30	2N4284	0.17	AFIO	0.42	BF	0.25	D16P	$0.37{ }^{0}$	${ }^{\circ} \mathrm{C} 28$	$0.62+$							
2 N 2368	0	2 N 4285	0.17	AFI 14	0.30		O.474	016	${ }_{0} 0.37$									
2N2369	0.17	2N4286	O.17	AFI15	0.2	BF16	${ }_{0}^{0.37+}$	${ }^{8} 16$	${ }_{0} 0.40$	\bigcirc								
2N2369A	0.17	2N4288	$0 \cdot 17$		0.25		0.32		0.30	\bigcirc								
2 N 2483	0.2	2 N 428	0.171	AFII 18	$0.62 \pm$	BF17	0.32	GET	0.20	\bigcirc	. 25							
2 N 2484	0.32	2 N 4290	0.17	AFII9	0.20	8F17	0.52	GET:	0.20	OC								
2 N 2539	0.22	2 N 4291	0.17	AFI24	0.22	BF179	0.72	GET	0.20 0.20	OC4s								
2 N 2540	${ }_{0}^{0.32}$	2N4292	0.12 0.47	AFI25	0.20													
${ }_{2}{ }^{2} 2614$	0.30	2N43	0.45 0.52	AF127	27	${ }_{\text {BF }} 84$	0.25	GET	0.127	$\bigcirc \mathrm{OC7}$	12							
2N2646	0.571	$2{ }^{2} 5$	0.57	AF13	0.371	BF18	$0.42+$	GETE	0.30	OC								
2N26		2 N	42	AFI7	0.42	BE19	${ }_{0}^{0.20}$	GET8		OC								
$2 N 271$ $2 N 27$	0.25 0.25	2N5	0.42 0.12		${ }_{0} .52$	BF19	$0.42 \downarrow$	GET	0.22	\bigcirc	0.22 +							
2713	0.2	2 N	0.52		0.42	BFI9	0.42	GET8	0.224	$\bigcirc \mathrm{C} 77$	0							
2 N 2714	0.30	2 N 5175	0.521	AD	0.427	BFI9	0.42 t	GET8	0.22	OC8								
2 N 286	0.627	2	40	AF2	. 627	BF2	${ }^{0} 0.52{ }^{\text {a }}$	GE	0.22									
2 N 299	0.30	${ }^{2} \mathrm{~N} 5232 \mathrm{~A}$. 45		${ }_{0}^{0.62}$	BF22	${ }_{0}^{0.20}$	${ }_{\text {M }}^{4} 4200$	1.12									
${ }^{2} \mathrm{~N} 290$	0.32 0.37	2N5	0.42			8F2	$0.22+$	MJ 421	1	$\bigcirc \mathrm{OCl}^{1} 9$	$0.32 \pm$							
${ }_{2} \mathrm{~N} 2905$	d	2 N 5249	0.671		. 27	BF	0.22	Mj430	1.02	OC	0							
2 N 2906	0.25	N	25	As	0.27		O. 0.42	M M										
2N2906	${ }_{0}^{0.27}$	2	2.75 2.62		0.2	${ }_{\text {Br }}$	${ }_{0} .27$	Ms	${ }_{1} 1.25$	$\bigcirc{ }^{\circ} \mathrm{C} 200$	0.37							
2 N 2923 2 N 292	0.5	2N5305	${ }_{0}^{2.371}$				0.22	M 4	1.00	O	0.47							
2 N 2924	15	2N5	0.40		0.32 t	BF 229	0.30	MJ49	1.37 t	OC202	0.62							
2 N 2925		N	0.371	A	0.25		0.30	M118	2.17	$\bigcirc \mathrm{OC}$								
2N2926		2 N 5308	0.62	As	0.25		${ }_{0}^{0.374}$	MJE	0.62	- ${ }^{\circ} 205$	${ }_{0}^{0} .62{ }^{0}$							
Gree		2N5309	${ }^{0} 0.62$	${ }_{\text {AS }}$	0	${ }_{\text {er }}^{\text {BF }}$	${ }_{0}^{0.27}$	Mjes	-0.87t	O	0.75							
	$\stackrel{0}{0.12}$	-	0.427 0.27				$0.67 t$	MPF	0.42 t	$\bigcirc{ }^{\text {CP71 }}$	$0.42+$							
2 N 3011	0.30	2N5355	0.27	ASY8	0.25	BF	0.25	MPF	0.377	OR	$0 \cdot 6$							
2 N 3014	$0.32 \pm$	$2 N 5356$	0.32	ASY	0.32	${ }^{8 F}$	${ }^{0} 0.32{ }^{\text {a }}$	MP	${ }_{0}^{0.374 .}$	PRPGA	${ }^{0}$							
2 N 3053	0.25	2N5365	0.47	ASZ20	- 0.372	${ }_{8 F}^{\text {BF }}$	${ }_{0} 0.274$	MP	0.3	Tis	${ }_{0} 0.62$							
2N3054	O. 0.50	2N 2366 N 5367	0.32	${ }_{\text {AUSY }}$	${ }_{1}^{1.50}$		0.25	NK	0.4	Tis43	0.40							
2 N 3133	0.30	${ }^{2}$ N5457	0.371	BC107	$0.12+$	BF	$0 \cdot 62\}$	NKT	0.42	T1544								
2 N 3134	0.30	25005	0.75	${ }^{\text {BCCl08 }}$	0.12		- 0.70	NK	0.2	Tis46	- 0.12							
2 N 3135 2 N 3136 2	0.25 0.25	2SO20	2.00	${ }_{\text {BCl }}^{\text {BCl13 }}$	0.127 $0.27 t$	Bry		NK	0.2	Tis 47	$0 \cdot 12$							
${ }_{2} \mathrm{~N} 3340$	$0.97 \pm$	$2{ }^{2} 103$	0.25	${ }^{\text {BCL }} 14$	0.374	BFYi7	0.22	NKT	0.271	TS488								
2 N 3349	1.30	25104	0.25	${ }^{\text {BCL }} 15$		${ }^{\text {BFYI }}$ BFY			O. 0.32	Tis49								
2 N 3390 2 N 391	0.25 0.20	25501 25502	0.324 0.35	${ }_{\substack{\mathrm{BC} \\ \mathrm{BCl} 16 \\ \hline 16 \\ \hline}}$	- 0.627	SFY19	0.327 1.60	NK	0.30 0.30	Tis50								
${ }_{2}{ }_{2} \mathrm{~N} 3391$	0.20 0.30	2 L	0.35 0.27	BC 116 BC 118	0.374 0.324 0.	BFY2 BFY2			- 0.30	Tis								
2N3391A	- ${ }_{\text {O }}$	2N53	0.27 0.40	${ }_{8 C 121}$	${ }_{0}^{0.20}$	${ }_{\text {BFL2 }}{ }^{\text {b }}$	0.45	NKT213	0	Tis53	$0.22+$							

DIODES AND RECTIFIERS

0.07		8		OAS	0.171
0.07	BAIOO 0	BY100	0.17	OAIO	0.221
$0 \cdot 2$	BA102 0.22 k	BY103	0.224	OA9	0.10
0.10	BAllo $0.32{ }^{\text {l }}$	BY\| 22	0.37	OA47	0.071
15120 0.15	BAl15 0.07	BY124	0.15	OA	
151210.171	BAI41 $0 \cdot 32{ }^{\text {a }}$	BY126	0.15	OA73	0.00
Is130 $0 \cdot 12$	BA142 0.32 t		$0 \cdot 17$	OA79	
0.121	BAl44 0.121			OA81	${ }^{0.071}$
$\begin{array}{lll}15132 & 0.15\end{array}$			+		
A119 ${ }^{0.071}$	BA 154 BAX 13 O.12 0				0.07t
1290.10	BAX 160.12				
$0 \cdot 10$	BAY18:			OA200	
(eam					
post and packing 0.221 . 5 amp (Douglas) MT107 Sec. tappings from 6y to 50 V .. 5.50					
40512 TO .5 mod .6 mpp 400					
Economy Range Triace					

INTEGRATED CIRCUITS
SEE OUR SEPARATEADVRTIEMENT ON PAGE 94
SHOWING NEW I.C.: AT NEW LOW PRICES.

CAPACITORS. Polyester, ceramics, Polystyrene, silver mica,
Eantalum, trimmers et

D.		4	MFD.	V.	4	MFO.	V.	1
Mri.	${ }^{18}$	0.07	25.	50	0.071	400		
1.6	25	$0.07 \frac{1}{1}$	32	40	0.071			
2	350	0.10	32	450	0.274	500	25	
2.5	16 10	0.07t	40	16	0.071	500 640	16 16	${ }_{0}^{0.24}$
4	40	0.07%	50	12	$0.07 \pm$	1000	16	0.25
4	350	0.11	50	25	0.071	1000	25	0.25
5	18	$0.07{ }^{\text {¢ }}$	50	50	0.10	1000	50	$0.37 \pm$
5	50	0.07%	64	25	0.07	2000	25	0.42 t
6.4	6.4	0.07	80	16	0.07%	2000	50	0.62
8	40	0.07 ¢	80	25.4	0.07	2500	12	0.25
8	450	0.15 0.07	100 100		$0.07 \pm$ 0.07	2500	25	0.471
10	12	0.07	100	25	${ }_{0}^{0.10}$	2500	50	0.67
12.5	25	0.071	100	50	$0 \cdot 12$	2500	64	0.77
16	10	0.07	125	10	$0.07 \pm$	3000	25	0.521
16	15	$0.07 \pm$	200	10	0.071	4000	100	2.371
16 25	${ }^{450} 6$	0.16 0.07	250	25	0.14	4500	64	2.25
25	10^{4}	$0.07 \pm$	250	50	0.19	5000	25	0.621
25	25	0.071	320	10	0.071	5000	50	0.97 t

ERMISTORS (MULLARD)			
R53 (STC) ${ }_{\text {l }}$ 27t		VA1039 0	VA10770.20
		VA1053 $0.12 \frac{1}{4}$	VAl0910
		VA10660.19	VA1096 0.20
2 \downarrow	VA10370.12t	VA1074 0.12t	VA10970.20
$0 \cdot 15$	VAIO38 0.12	VA1075 0.22t	

Please note:-Due to bulk buying we can now offer Texas RCA and Newmarket Semiconductors at industrial distributor prices. New quantity Price List available for industrial users upon request.

LOW COST ELECTRONIC \＆SCIENTIFIC

BRAND NEW MINIATURIZED AUTOMATIC STRIP CHART RECORDER

by RUSTRAK of Anterica．This recorder indicates the magnitude of applied currents or voltages by a continuous distortion－free 2 ？in Chart novenent scale calibrated $0-100$ microamps novement，scale callbrated 100 microamps 12v．D．C．C／W handbook，Price £40．P．\＆P 50p．

MOTORS

LOW TORQUE HYSTERESIS MOTOR MA23 Ideal for instrument chart drives．Extremely quiet，useful in areas
where amblent nolse levels are low．High starting torque enable relative high inertia loads to be drisen up to 6 －oz／im．A vailable in
 r．p．m．， $1 / 16$ r．p．m．．， $1 / 24$ r．p．m．， $1 / 3$ r．p．m．， $1 / 2400$ r．p．m．， $1 / 300$
r．p．m．， $1 / 720$ r．p．m．， 1 r．p．m．M．P． 10 Induction Motor， 120 V 50 Hz r．p．m．， $1 / 720$ r．p．m．， 1 r．p．m．M．P． 10 Induction Motor． 120 V 50 Hz
20 r．p．m．$£ 1.50 \mathrm{P}$ ．\＆ \mathbf{P} ．inclusive．

CLUTCH MOTORS

$24080 \mathrm{~Hz} 1 / 12$ r．p．in．， $1 / 6$ r．p．m．．， $1 / 3$ r．p．m． $120 \mathrm{~V} 50 \mathrm{~Hz} 1 / 12$

WELDING POWER SUPPLY－Hughes Model MCW 550 ．Constant voltage．Weld voltage and duration controls． Mains input．Price on application．
NEW LOW INERTIA INTEGRATING MOTORS Electro Methods Model． 901 and 906 PL．Permanent magnet mechanisms，light loads driving mechanical counters performing integration，or as small power generators．Will operate directly off a photo－cell or thermo couple，etc．6V．Nominal．Typical para meters．Starting voltage（no load） 15 mV at 0.375 mA ．Full load
speed 1845 r．p．m．（approx．）．Moment of Inertia of Armature 1.8 gr ．cra／cm．Welght of Motor 300 gms （approx．）．
ع15．P．

SPLIT－FIELD D．C．SERVO MOTOR
 213．50．P．P．included．
NEW D．C．STEPPING MOTOR
＂Sloosyn．＂14V 0．53A 50 oz in torque．
B1F1LAR Gynchronous Motor．atepping duty 200 stepa／shatt revolution．Each step 1.8 dogreeE 3% accuract．Nons－cumu－
lative．Made by superint Elebtric C．U．B．A．\＆18．50．P．\＆P．
EHT GENERATOR，BRAND NEW D．C
CONVERTER MULLARD TYPE 1049 ，C
CONVERTER M．Ontput 1800V（Min）at $1 \mathrm{~mA}, 12500 \mathrm{~V}$（Min）
Input 2V D．C．0－3A．Ontput 1800V（Min）at 1 na，
on No oad．Full spec．and circult provided．Encapanated module
L．5in．，W．2tin．H．1zin．

MIDGET POWER RELAY TYpe Mis（OMRON）

SYNCHRONOUS MOTORS

Model S 71 r．p．h．and $1 / 60$ r．p．h．Self starting complete with gearing shaft it in．dia．tin．iong， $200 / 250 \mathrm{~V} 50 \mathrm{~Hz}$ ．New condition Ex
Equipment．$£ 1 \cdot 50 . \mathrm{F}$ ．\＆P．included．

D．C．TACHOGENERATOR Type 9c／108 16v．at， 1000 r．p．m．Drive ع16－50．P．\＆P．inclusive．

R．F．ATTENUATOR MARCONI TF 1073A
$\mathrm{DC}-150 \mathrm{MHz} \mathrm{ddB}$ steps 75 Ohms．
Tested and in VG condition．$£ 25$.

ACTUATOR

By English Electric．Type 4519 Mk ． $1 \mathrm{D} . \mathrm{C}$ ．Motor AE 1560 Mk ．
28V 3A． 500 r. ． m ．Intermittent ratlag． 218 ． P ．\＆ P ．inclusive，
ACCELEROMETERS
Model LA 23 C Potentiometric + or -10 G operating Voltage 30 V Model LA 23 C Potentiometric + or－ 10 G operating Voltage 30V，
Nominal resistance 17．5K and Model $\mathrm{LA} 23 \mathrm{C}+$ or -100 C 34 V ，
Rel 20 K ．Price 228. P．\＆P． $5 /$ ．

TYPE SE 55／A Range + or－ 1 G £28．P．\＆P， $5 /$
Suppled c／w technical leaflet．Weight 14.8 grammes．2BA stu mounting．E3．15．0． \mathbf{P} ．

DIGITAL VOLTMETER DYNAMCO 2010 COMPLETELY OVERHAULED CALIBRATION CERTIFICATE EXCELLENT CONDITION GUARANTEED C／W HANDBOOK

Scale：109999．D．C．Accuracy： 0.001% ．FSD Range： 10 mincro $\mathrm{V}-1 \cdot 1 \mathrm{kV}$ ．I／P Z greate than $25,000 \mathrm{M}$ ohm．C．M．R．D．C． 160 dB $50 \mathrm{~Hz} .130 \mathrm{~dB} .0 / \mathrm{P}$ ．Parallel B．C．D．Induc tive potentiometric system for excellen stability．£1000．（New Price over £2000．）

Many other types of counters are available ranging from 3－6 derit with various supply voltskes．Ring our Sales Office for further information．										
TEKTRONIX Plug in Unit Type E－BRAND NEW．Price 275 P．\＆P．60p．Also Type $80 \$ 25$										
Manufacturer	Type	No．of Digita	Impuines per sec．	Reset	$\begin{gathered} \text { Oparatin } \\ \text { Volt } \end{gathered}$	ing Current	8180	Ret．	Remarks	Price
Sedeco	ATCEZ3E	3	10	M．	48V D．C．	48 ma	$4^{*} \mathrm{~L} \times 1^{\prime \prime} \times{ }^{\prime \prime}$	C． 2		3.00
Sedeco	ATCEZ4E	4	25	M	60V D．C．	100 mA	1 も゙ $\times 1 \times 4 \times$ ¢	C． 6	600Ω coil new 10000 coil used	$\begin{aligned} & 2.50 \\ & 1.50 \end{aligned}$
Sedeco	ATCEF4E	4	10	E／12V D．C．	12V D．C．	120 mA	$4^{\prime \prime} \mathrm{L} \times 2 \mathrm{l}^{\prime \prime} \times 1 \mathbf{1 m}^{\prime \prime}$	C． 5	$\begin{aligned} & \text { New } \\ & \text { Used } \end{aligned}$	$\begin{aligned} & 6.25 \\ & 1.50 \end{aligned}$
Sedeco	ATCEFsE	5	25	E／24V D．c．	24V D．C．	240 mA	$4^{*} \mathrm{~L} \times 1 \mathbf{t}^{\prime \prime} \times 2 \mathbf{t}^{\prime \prime}$		New	6.00
Sedeco	ATCEZSE	5	25		160 V				Coil 100K．New ．．	8.00
Sedeco	T1F5 PIEH	5	10	M	$\begin{aligned} & 110 \mathrm{~V} \\ & 50 \mathrm{~Hz} \end{aligned}$		$41^{* 5} \mathrm{~L} \times 5 \mathbf{t}^{\prime \prime} \times 5 \mathbf{4}^{\prime \prime}$		2 banks of 5 digits each bank independent．Used	$8 \cdot 00$
Sedeco	ITPB3	6	10	M．\＆E．	240 V 50 Hz				Print out－Totalising	40.00
Counting Instrument	1500	4	15		24 V D．C．			C． 3	Each digit indepen－ dentlyset，counts down to zero operating main switch	6.50
，	429	4	15	E／240V 50Hz	24V D．C．			C． 12		4．12t
＂	120	6	15	E／24V D．C．	24 V D．C．		$38^{\prime \prime} \mathrm{L} \times 3 \mathbf{t}^{\prime \prime} \times \mathbf{t}^{\prime \prime}$			4.75
＂	101A	6		M．	48 V D．C．				Used ．．．．	3．124
Veeder Root	BD134545	5							Mechanical operation， Ratchet reat Inverse Nos．	$0 \cdot 62$
＂．${ }^{\text {－}}$		6		M．	160V D．c．					2.75
＂＂	B38	6		M．	48 V D．C．					2.75
＂\quad＂		6			110V D．C．					200
$\because \quad \cdots$		6		M．	230V 50Hz					2．75
＂		6		M．	24V D．C．					2.00
Haztler		6		M．	24V D．C．				600Ω coll．New ．．	4.50
＂		6		$\begin{gathered} \mathrm{M} / \mathrm{E} \\ 110 \mathbf{v}_{\mathrm{D}} \text { D.C. } \end{gathered}$	110V D．C．				$1100 \Omega / 800 \Omega$ ．Ubed	2.45

BRAND NEW ELECTRO．
MAGNETIC COUNTER

NUMICATORS

GRIOM／U（Clear）
Quantity P

e Each

Side Reading
XN $3 / \mathrm{FA} \quad 38 \mathrm{~m} / \mathrm{m}$ lea
XN3／FA $\quad 38 \mathrm{~m} / \mathrm{m}$ lead $\begin{array}{ll}\text { XN3A／F } & 6 \mathrm{~m} / \mathrm{m} \text { lead } \\ \text { XN3A } & 6 \mathrm{~m} / \mathrm{m} \text { lead }\end{array}$ $\begin{array}{lr}\text { XN3A } & 6 \mathrm{~m} / \mathrm{m} \text { lead } \\ \text { XN11／F } & 38 \mathrm{~m} / \mathrm{m} \text { lead }\end{array}$ （Amber）
（Red）
（Red）
（Clear）
（Red） $\xrightarrow[\substack{1-\\ 4-1 \\ 11-2}]{ }$ $\begin{array}{cc}11-25 & (21.05) 21 /= \\ 26-100 & (20.95) 19 /=\end{array}$

EICHNER 8 HOLE PUNCH

No mowor dred equipment using 48v Reader £29．50：Punch $£ 48.50$ ．Carriage $£ 1 \cdot 25$ ．
7 HOLE NON PARITY TAPE PUNCH Lew condlition． 7 HOLE TAPE PUNCH 60 characters per second by well－known manufacturer．
TELETYPE 8 HOLE PAPER PUNCH BRPEII C260． Also available 5 hole punch BRPE2 as above．This model ba $5 / 7$ HOLE OPTICAL READER BY FERRANTI
（I83）SIONAL GENERATOR CT 480 SANDERS．Range 7 KHz － 12 KHz ．O／p．0－$\pm 60 \mathrm{~V}$ ．Attenuation range -10 to $\begin{gathered}+100 \\ \text { Price } \\ £ 85\end{gathered}$

TRANSDUCER OSCILLATOR－AMPLIFIER－DEMODULATOR．An where space or adverse matehing with \＆．E．Trangducers．Sultable Where space or adverae environmental conditions prevall．Supplied
with a match Supply voltage 12v．D．C．Range of transducers available 0 － 50 ： 1．0－1000．O4000 pai．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Price £65 TRANSDUCER－Now Resistive Bordon Tube Prinoiple ${ }_{\text {Tranducer }}^{\text {pressure }}$
Tranducer by K． Ref．C．6．．．．．．．．．．．．．．．．．．．．． RESISTANCE STRAN GAUGES Pang t

OSCILLATOR．High discrimination，by Marconi T．F．1168．This lnstrument suitable for H．F．Communlcation．Due to its high
discrimination makes it suitable for crystal fiter response in Tx and Rx drive units．Frequency range $90-110 \mathrm{KHz}, 2 \mathrm{~Hz}$ discrimina－

RECORDERS 4 PEN OSCILLOGRAPHS SOUTHERN INSTRU－ MENTS M942C． 4 Channel Atted with 4 speed gear bozes giving
$1,5,25,100 \mathrm{~m} . \mathrm{m}$ ．per sec．Frequency responat $0-55 \mathrm{~Hz}$ ，sensitivity O／m．m．M．A．

E．M．I．
Portable L．F．Tape Recorder，Ex－service equipment consistinf of hree Unit housed in tranait cases（Tape Deck，Amplifier，P．s．J．）． in．track speed 30 in．， 15 in．， $7 \frac{1 n}{}$ in．and t in．min．Price $\$ 75$ ．
Many control taclitiles．This is a good quality recorder．

EQUIPMENT AND COMPONENTS

MEASURING INSTRUMENTS AND RECORDERS

 ${ }^{1000} \mathrm{M}$. M . Vhm . R.F. Voltages 8 range 4 mV to $4 V$.
Battery powered. Offered in excellent condition. Teated before Battery powere. ofrered in exchent condition. Teated
deppatch. Complete with handbook. $£ 54$. Carriage $10 /$.

FACSIMILE RECORDERS

D649 K 18 in. Chart Recorder. Helix speed: 60, 90,120 rev. $/ \mathrm{min}$ 96 lines/in.

POWER SUPPLY UNITS

PRECISION POTENTIOMETERS

VHF ADMITTANCE BRIDGE
Wayne Kerr B801A. I-100 MHz. Conductance 0.100 millimhos.
Capacitance $0-230 \mathrm{pF}$ and 0 to -230 pF . $\mathbf{£ 1 2 0}(40 \%$ of niew price $)$
 Aositive or negative copacitance for tines. antennas and feedelers.
$0-100 \mathrm{mMho}$.0 to
06 pF and -75 pF . Accuracy 2% up to

FENLOW LOW FREQUENCY ANALYSER FENLOW LOW FREQ UENCY ANALYSER
0.3 Hz to K Hz , Power density $0-10$ Bandwidth switching range.
$.06: 0.3: 1.5: 7.5: 37.5 \mathrm{~Hz}$. Priee $£ 275$.

TWENTY MILLION MEGOHMMETER
E.I. Model 29A. Test voltage 85 and 500 V . $8 / \mathrm{C}$ Current less than
4 mA 30 M ohm- $20 \times 104 \mathrm{M}$ ohin. Charging Delay $1 \$$ secs. Mains

NEW ELECTRO PNEUMATIC TRANSDUCER
TRANSMITTER
TRANSMITTER
Taslor. Cat. No. XX701 TF13.
Input- 30 . 50 Ma. Output 3-15 PSI. Spec. 670. Coill 3 ohms.
This preclsion transducer accurately controls air pressure by a Input - $50-0+50$ Ma. Output 3-15 PSI. Spec. 670 . Coll 3 ohms.
This preclsion transducer accurately controls air pressure by a
varying electrical signal. $£ 50$. P. P. included.
R.C. OSCILLATOR

Solartron Type CO $1004 \cdot 2$. $10 \mathrm{~Hz}-1 \mathrm{MHz}$ in 5 ranges. O / P level Algo avallable Type co 1004. £30. P. \& P. £1.
PORTABLE FREQUENCY METERS
TF1026/1. A direct reading absorption meter, employing a con-
centric line closed at one ond and turned by variable capacitor
at the other end of the at the other end of the lige, giving a irequency range: 250 MHz
500 MHz , on an almost linear ccale approx. 9 in. In length. Com plete in pollshed wooden case. Price $£ 17.50$. Carriage extra,
DIGITAL INDICATORS KGM Type M3 A neat compact indicator providing selective diaplay
$0-9$. Fig. helght 18 mina. panel mounting. 6 mom. tubular
midget fangelan matt black anodize. supplied with 28 v . bulbs. Finighed £3.25. P. \& p. Free.
MODEL 1706 VISICORDER
In almest new condition. This direct reading U/V Recorder can
record up to 6 chasunels simultaneously frotn D.C. 5000 Hz at Frriting speed of 30000 m ohs/ace.
Recording range:
D.C.一 5000 H z.
Paper width:
Optical Arm:
Paper Gpeeds:

Eight. speeds from $0.25-32 \mathrm{in} / \mathrm{sec}$. and

BRAND NEW CAPACITOR REVERSIBLE
BRAND NEW CAPACITOR REVERSIBLE
SINGLE PHASE PARVALUX MOTORS $230 / 250$ Y. $50 \mathrm{~Hz} 2,800 \mathrm{r}$ r.p.m. $1 / 30 \mathrm{~h}$.p. Cont. rated. 甭 in. shaft
dia. $\times 31$ in. long. Foot mounting. Weight 6 ib. $£ 5.75$ post free.
COAXIAL LINE OSCILLATOR
By Baunders. Type CLC 7.12. The Osciltator is adiustable from 7-12 MHz. A high reset accuracy with no backlash having $\pm 1 \%$.
The instrument 19 supplied wlth a calibration caart and valve and is
suitable to be coupled to any waveguide size by using a coaxial to suitable to be coupled to any wryeguide size by using a coaxial
waveguide transiormer. Price: £55.
7.TRACK DIGITAL MAGNETIC TAPE STORAGE DECK
(Ref. 13) These machines, originally ex-computer
are multi-track recording are muli-track recording units, ideat for
data storage. Record and encased in one cond and Replay heads
resistance heads. Frequency reaponae

 230 v. to 380 r. A.C. Capstan Motor
gpeed 1.500 r.p.m. 48 . D. D. Rewind Ren
motors. Finiehed in brush aluminium motors. Finiehed in brush aluminium

MEMORY PLANES (Ref. C4) Ferrite core memory planen with wired
Ferrite cores. Used for bulding your own connputer or as an intereatio
exhibit in the demonstration of a con
puter. Mounted on plastic mater
 addressable and ditided into 2 hallyes
with findependent senge and inhibit

BRAND NEW COMPUTER TAPES AND EMPTY SPOOLS
Made by well knoxn manufacturers

in. 10 in diad spool and casette.
in. in. 8 in. dia spool and caseette.
in. metal $10 \frac{1}{\text { in }}$. dia. spool snd csasette
in. N.A.B. centrea $10 \dagger$ in. apool only.

MULTI-RANGE TRANSISTORISED VOLT.

METER 1063
Employing sillicon planar F.E.T., thit instrument gives long-term stablity and negligible drift over a wide temperature range. Whde
irequency band $0-300 \mathrm{MHz}$. using HPV 1083 . Voltake range $0-80 \mathrm{KV}$. frequency band
Centre zero on DC ranges for differential circuit application. 1 nput resistance 1 M .ohm/Volt on all DC ranges. Accuracy + 3- F.S.D Meter scale 5in. with IM diferent colour for different scales.
Special price $£ 42 \cdot 50$ each. Carriage et1-60.
CLOSED CIRCUIT TELEVISION Cling 1 in . Vldicon Comperiaing Pe operate at 405 Hines. Channel 2 (58 M Mz). Can be tuned to other frequencles. W. $5 \ln$. H. 71 ln . D. 104 in . MONITOR.
19in. Ferguson Model $3622405 / 825$ Standard TV receiver. Work. igin. Ferguson Mode.

in April issue of "Practical Wireless" OUT NOW

 8-PAEE GUIDE TD
TEST INSTRUMENTS

This illustrated eight-page supplement is a comprehensive guide to test gear now on the market for use in testing radio and audio equipment. Though complete in itself, it will also provide a useful introduction to an important new series on servicing by H. W. Hellyer and Gordon J. King, which starts in the following month's issue.

Also other interesting constructional features

PRACTIGAL MPBEGES

April issue out now-17 $\frac{1}{2}$ p

ELEGTROALUE

EVERYTHING BRAND NEW TO SPEC • LARGE STOCKS • NO SURPLUS

BARGAINS IN NEW SEMI-CONDUCTORS

MANY AT NEW REDUCED PRICES • ALL POWER TYPES WITH FREE INSULATING SETS

40361	55p	2N2905	44p	2N4291	15p	BCI48	14 p	BFX 87	29p	
40362	68 p	2N2905A	47p	2N4292	15p	BC149	15p	BFX 88	26 p	
2N696	20p	2N2924	20p	AC107	46p	BC153	19p	BFY50	23 p	
2N697	22p	2N2925	22p	AC126	20p	BC154	28 p	BFY51	${ }_{20} \mathrm{p}$	
2N706	12p	2N2926	$11 p$	AC127	20p	BC157	19p	BFY52	${ }^{23} \mathrm{p}$	
2N930	29p	2N3053	27p	AC128	20p	BC158	17 p	BS $\times 20$	16 p	
$2 \mathrm{~N} \mid 131$	36 p	2N3055	75p	AC153K	25p	BC159	18 p	C40)	17p	
2 N 1132	40p	2N3702	13p	AC176	27p	BC\|	167	13p	MC140	25p
2 N 1302	19p	2N3703	13p	ACY20	20p	${ }^{\text {BC }} 168$	11 p	MPS6531	${ }^{25 \mathrm{p}}$	
2N1303	19p	2N3704	13p	ACY22	16p	${ }^{8 C 169}$	13p	MPS66534	35 p 30 p	
2 N 1304	23p	2N3705	13p	ADI40	56p	BC 177	17p	MRS6334	35	
2 N 1305	23p	2N3706	13p	AD142	50p	BC178	15 p	NKT211	25 p	
2 N 1306	33p	2N3707	13p	AD149	60p	BC179	17p	NKT212	25 P	
2 N 1307	33p	2N3708	13p	AD161	40 p	BC182L	13p	NKT214	23 p	
2 N 1308	36p	2N3709	13p	ADI62	40 p	B6t83	110	NKT274	${ }^{18} \mathrm{p}$	
2 N 1309	36p	2N3710	13p	AFII 4	30p	BC1841	130	NKT403	${ }^{65}$	
2 N 1613	23p	2N3711	13p	AFII 5	30p	SC212L	25p	NKT405	79 P	
2 N 1711	26p	2N3819	35p	AFII 7	28p	BC213L	25p	0 O 71	29 p	
2 N 1893	54p	2N3904	35p	AFI24	30p	BC214L	25p	OC81	25p	
2N2147	95p	2N3906	35p	AF127	28p	BCY70	19 p	OC8ID	25p	
2N2218	34p	2N4058	20p	AF139	48p	BCY71	33p	ZTX300	17p	
2N2218A	43p	2N4059	20p	AF239	49p	BCY72	15 p	ZTX301	17 p	
2 N 2219	${ }^{38} \mathrm{p}$	2N4060	20 P	ASY26	${ }^{27} \mathrm{P}$	8 BF 15	23P	ZT×302	22p	
2N2219A	${ }_{53}{ }^{\text {p }}$	2N4061	${ }^{20} \mathrm{p}$	ASY28	${ }^{27} \mathrm{p}$	BF167	27p	ZTX303	22p	
2N2270	62 p	2 N 4062	20p	BC107	14p	BFIT3	$31 p$	ZTX304	33p	
2N2369A	19 p	2N4124	18p	BC108	12p	8 BF 194	17 p	ZTX500	25 p	
2N2483	${ }^{35 p}$	2 N 4126	${ }^{27} \mathrm{p}$	BC109	14 p	BF195	18p	ZTX501	25p	
2N2484	42p	2N4284	15p	BC125	15p	BFX29	$31 p$	ZTX502	30 p	
2N2646	54P	2 N 4286	15 p	BCI26	22 p	BFX84	25p	ZTX503	25p	
2N2904A	42p	2N4289	15p	BCI 14	15p	BFX85	34p	ZTX504	60 p	

RESISTORS

Code	Power	Tolerance	Range
C	$1 / 20 W$	5%	$82 \Omega-220 \mathrm{~K} \Omega$
C	$1 / 8 W$	5%	$4.7 \Omega-330 \mathrm{~K} \Omega$
C	$1 / 4 W$	10%	$4.7 \Omega-10 M \Omega$
C	$1 / 2 W$	5%	$4.7 \Omega-10 M \Omega$
C	$1 W$	10%	$4.7 \Omega-10 M \Omega$
$M O$	$1 / 2 W$	2%	$10 \Omega-1 M \Omega$
$W W$	$1 W$	$10 \% \frac{1}{2} / 20 \Omega$	$0.22 \Omega-3.9 \Omega$
$W W$	$3 W$	5%	$12 \Omega-10 \mathrm{~K} \Omega$
$W W$	$7 W$	5%	$12 \Omega-10 \mathrm{~K} \Omega$

Codes: $\mathrm{C}=$ carbon film, high stability, low noise.
MO = metal oxide, Electrosil TR5, ultra low nois
$W W=$ wire wound, Plessey.

Values: E12 den

E12 denotes series: $10,12,15,18,22,27,33,39$, E24 denotes series: as E12 plus II
30, 36, 43, 51, 62, 75, 91 and their decades. ZENER DIODES 5% full range E24 values:
$400 \mathrm{~mW}: 2.7 \mathrm{~V}$ to 30 V , 15 p each; $1 \mathrm{~W}: 6.8 \mathrm{~V}$. to 82 V , 27 p each; $1.5 \mathrm{~W}: 4.7 \mathrm{~V}$ to $75 \mathrm{~V}, 60 \mathrm{p}$ each.
Clip to increase 1.5 W rating to 3 watts (type 266 F), 4 p .

CARBON TRACK POTENTIOMETERS, long spindles. Double wiper ensures minimum noise level.
Single gang linear 220Ω to $2.2 \mathrm{M} \Omega, 12 \mathrm{p}$; Single gang log. $4.7 \mathrm{~K} \Omega$ to $2.2 \mathrm{M} \Omega$, 12 p ; Dual gang linear, $4 \cdot 7 \mathrm{k} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega, 42 \mathrm{p} ;$ Dual gang log, $4 \cdot 7 \mathrm{~K} \Omega$ to
$2 \cdot 2 \mathrm{M} \Omega, 42 \mathrm{p}$; Log/antilog, $10 \mathrm{~K}, 47 \mathrm{~K}, \mathrm{IM} \Omega$ only 42 p ; Dual antilog, loK only, 42p. Any type with $\frac{1}{2} A$ D.P. mains switch, extra 12p.

Please note: only decades of 10,22 and 47 are available within ranges quoted.

CARBON SKELETON PRE-SETS

Small high quality, type PR, linear only: 100Ω,
$220 \Omega, 470 \Omega, 1 \mathrm{~K}, 2 \mathrm{~K} 2,4 \mathrm{~K} 7$ 1oK, $22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}$ $220 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M} 2,5 \mathrm{M}, 10 \mathrm{M} \Omega$. Vertical or horizontal mounting, 5p each.

COLYERN 3 watt Wire-wound Potentiometers. $10 \Omega, 15 \Omega, 25 \Omega, 50 \Omega, 100 \Omega, 250 \Omega, 500 \Omega, 1 \mathrm{~K}, 1 \cdot 5 \mathrm{~K}$, $2.5 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 15 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 32 \mathrm{p}$ each.

ENAMELLED COPPER WIRE even No. SWG only: 2 oz. reels: 16-22 SWG 25p; 24-30 SWG 30p; 32, 34 SWG, 33 p ; $36-40$ SWG, 35p.

Values available	1 to 9 (see	10 to 99	100 up
E12			

Prices are in pence each for quantities of the same ohmic value and power rating. NOT mixed values. (Ignore fractions on total value of resistor
order.)

TYGAN SPEAKER MATERIAL
7 designs, $36 \times 27 \mathrm{in}$. sheets, $£ 1.57$ sheet.
MULLARD polyester C280 series
$\begin{array}{lll}250 \vee & 20 \%: ~ 0.01, ~ & 0.022, \\ 0.068,0.033, & 0.047 & 3 p \\ \text { each; }\end{array}$ $0.068,0.1,4 p$ ench; $0.15,4 \mathrm{p} ; 0.22$, $5 \mathrm{p} .10 \%$:
$7 \mathrm{p} ; 0.33,0.47$. 0 pi 0.68 7p; $0.33,0.47,8 p ; 0.68,12 p ; 1 \mu \mathrm{~F}, 14 \mathrm{p} ; 1.5 \mu \mathrm{~F}$,
21p; 2.2 $\mathrm{L}, 24 \mathrm{p}$,
H,

MULLARD SUB-MIN ELECTROLYTICS
 ($/ 10 ; 4 / 40 ; 5 / 64 ; 64 / 4 / 64 ; 4 ; 6 \cdot 4 / 25 ; 8 / 4 ; 8 / 40 ; 10 / 2.5 ;$ 10/16;10/64; $12 \cdot 5 / 25 ; 16 / 40 ; 20 / 16 ; 20 / 64 ; 25 / 6 \cdot 4 ;$ $\begin{array}{ll}25 / 25 ; & 32 / 4 ; 32 / 10 ; 32 / 40 ; 32 / 64 ; ~ 40 / 16 ; 40 / 2.5 ; \\ 50 / 6 \cdot 4 ; & 50 / 25 ; \\ 50 / 40 ; & 64 / 4 ; \\ 64 / 10 ; & 80 / 2 \cdot 5.80 / 16 ;\end{array}$ $50 / 6 \cdot 4 ; 50 / 25 ; 50 / 40 ; 64 / 4 ; 64 / 10 ; 80 / 2 \cdot 5 ; 80 / 16 ;$

$80 / 25 ; 100 / 6 \cdot 4 ; 125 / 4 ; 125 / 10 ; 125 / 16 ; 160 / 2$ | $80 / 25 ;$ | $100 / 6 \cdot 4 ;$ | $125 / 4 ;$ | $125 / 10 ;$ | $125 / 16 ;$ |
| :--- | :--- | :--- | :--- | :--- |
| $200 / 6 \cdot 4 ;$ | $200 / 10 ;$ | $250 / 4 ;$ | $320 / 2 \cdot 5 ;$ | $320 / 6 \cdot 4$ | $200 / 6 \cdot 4 ; 200 / 10 ; 250 / 4 ; 320 / 2 \cdot 5 ; 320 / 6 \cdot 400 / 4 ;$

$500 / 2.5$.

LARGE CAPACITORS

High ripple current types: $1000 / 25,28 \mathrm{p} ; 1000 / 50$, $41 p ; 1000 / 100,82 p ; 2000 / 25,37 p ; 2000 / 50,57 p ;$ 2000/100, £1.44; 2500/64; 77p; $2500 / 70, ~ 98 p ;$ $10000 / 15,85 p ; 10000 / 25$, E1-22; $10000 / 50, \mathrm{E2.20}$.

COMPONENT DISCOUNTS
10% on orders for components for $£ 5$ or more.
15% on orders for components for $f 15$ or more 15\% on orders for components for $\mathrm{E} / 5$ or more.
(No discount on nett items.) (No discount on nett items.)

POSTAGE AND PACKING

Free on orders over $£ 2$.
Please add 10 p if order is under $£ 2$.
Overseas orders welcome:
Overseas orders welcome: carriage and insurance
charged at cost.

PEAK SOUND PRODUCTS

Stereo amplifier in modular kit form 12 watts RMS per channel into $15 \Omega £ 38 \cdot 45$
Cabinet kit only $\mathbf{E 6}$. These prices nett.
As reviewed in Hi Fi Sound and other important journals.

BAXANDALL SPEAKER SYSTEM

Designed by Peter Baxan dall. Superb reproduc tion for its size. Handle ELAC watts with ease. Uses
15Ω
$59 R M 109$ peaker unit. Kit $£ 13.90$ nett; built $\mathbb{E} 19 \cdot 40$ nett.

MAINLINE AMPLIFIER KITS

CA/SGS designed main amplifier kits. Input sensitivity 500 oomV for full output into 8Ω.

Power	Kit price	Suitoble unreg.
	including components	power supply kit
$12 W$	$£ 8.40$ nett	$£ 4.82$
$25 W$	$£ 9.75$ nett	$£ 5.92$
$40 W$	$£ 10.50$ nett	$£ 6.03$
$70 W$	$£ 12.60$ nett	

30 WATT BAILEY AMPLIFIER PARTS

 Sensitivity $\mathrm{I} \cdot 2 \mathrm{~V}$ for full output into 8Ω.Transistors and PCB for one channel $£ 6.46$
Transistors and PCBs for two channels $£ 12.92$
Capacitors and resistors (metal oxide), $\mathbf{E 2} \cdot 00$ per channel Complete unregulated power supply pack, $\mathbf{6 4 . 7 5}$
Suitable heat sink $10 D \mathrm{~N}$ space $400 \mathrm{c}, 55 \mathrm{p}$

INTEGRATED CIRCUITS

PLESSEY SL403A 3 watts into 7.5 ohms. Application data, 10 p.
Price per unit, nett $£ 2 \cdot 10$
SINCLAIR IC. 10 as advertised, complete with instructions and applications manual $\mathbf{6} \mathbf{9 5}$, nett. Components pack for stereo £4.75 nett.

S-DeCs PUT AN END TO BIRDS NESTING

Components just plug in-saves time-allows re-use of comComplete T-Dec may be temper
(208 points), $\mathbf{£ 2 \cdot 5 0}$
MEDIUM RANGE ELECTROLYTICS
Axial leads: $50 / 50,9$ p; 100/25, 9 p; 100/50. 13p; 250/25, 13 p
$250 / 50$ 19p; $500 / 25,19 p ; 500 / 50,21$ p; $1000 / 25,20 \mathrm{p} ; 100 / 50,30$ $250 / 50,19 p ; 500 / 25,19 p ; 500 / 50,21$ p; 1000/25, 20p; 1000/50, 30p 2000/25, 30p; 2000/50 48p.
SMALL ELECTROLYTICS
Axial leads: $4 \cdot 7 / 10,4 \cdot 7 / 25,5 / 50,5 p$ each; $10 / 10,10 / 25,10 / 50$
$33 / 10,50 / 10,5 p$ each; $25 / 25,25 / 50,47 / 25,100 / 10,220110$, 33/10, 50/10, 5p each; 25/25, 25/50, 47/25, 100/10, 220/10, 6p
NEON INDICATOR LAMPS
all $200 / 250 \mathrm{~V}$. Square bezel, red only
Round, chrome bezel red, amber, clear
23p each

TOGGLE SWITCHES, 250V a.c. I-5A

chrome dolly and chrome milled nut S.P.S.T. 19p, S.P.D.T. 25p D.P.D.T. 29p; S.P.D.T. centre off 20p
WAVECHANGE SWITCHES
LONG SPINDLES
IP 12W; 2P 6W; 3P 4W; 4P 3W 24p each
SLIDER SWITCHES D.P.D.T.
$15 p$ each

PLEASE WRITE FOR DETAILS OF SPECIFIC EQUIPMENT, DATA PREP. -OR COMPLETE SYSTEMS

ICT 29 \& 34
80 Col Card Punches Refurbished and with choice of Keyboard \& coding.
Delivery from stock.

ICT 129

80 Col Card Verifiers Refurbished and with choice of Keyboard \& coding.
Delivery from stock.

ICT \& IBM

80 col Hand Punches Rebuilt with 3 month warranty.
Delivery from stock.

ICT MODEL 103 VERIFIERS

80 col rebuilt with 3 month warranty. Delivery from stock.

COMPUTER SALES AND SERVICES (EQUIPMENT) LTD.

49-53 Pancras Rd., London, N.W. 1 rel: 01-278 5571 Telex: 267307

NEW LOW PRICES FOR W.W. AMPLIFIER KITS

100 W AMPLIFIER (OVERLOAD PROTECTION INCLUDED)
Designer, Texas Instruments Approved.
Matched Set 22 guaranteed Texas transistors, diode, 13 caps,
32 resistors, 3 pots, choke, $2 \mathrm{~h} /$ sinks $4 \mathrm{in} . \times 4.6 \mathrm{in} . \times 1 \cdot 3 \mathrm{in}$.,
drilled $2 \times$ TO3, fibreglass P.C.B., construction notes $\quad \therefore 18.00$

2 sets

$35 \cdot 00$
$\begin{array}{llllllll}\text { Texas } 2 \mathrm{~N} 3715^{\circ} & . . & . . & 2.25 & \text { Texas } 2 \mathrm{~N} 3791 & . . & . . & 3.50\end{array}$
Imported 2N3791 2.75 Drilled h/sink 0.40
$\begin{array}{lllllll}\text { F/glass P.C.B. } & \text {.. } & \text {.. } & 0.95 & \text { Mains transformer } & . . & 6.00\end{array}$
$4700 \mathrm{mfd} .63 \mathrm{v} . \quad \cdots \quad . \quad 1.70 \quad 1000 \mathrm{mfd} .64 \mathrm{v} . \quad . \quad \therefore \quad . \quad 0.70$
Power supply; 42v. +50 v . transformer, all cpts., h/sink $\quad \therefore \quad 15.00$
2 power supply kits $28 \cdot 50$
30W BAILEY (SINGLE POWER RAIL)
10 transistors 5.60 Resistors, caps, pot .. I.30
LINSLEY HOOD CLASS AB
MJ481, MJ491, MJE521, BC182L, BC2I2L, Zener 3.35
16 resistors, 10 capacitors, 2 pots 2.20
LINSLEY HOOD CLASS A (DEC., 1970, CIRCUIT)
4 transistors I.55 Resistors, caps, pot .. 1.80 Please state 8Ω or 15Ω for L.H. amps.
Transistor matching and mica washers at no charge.
Resistors, except power types, $\frac{1}{2} W 5 \%$. Low noise carbon film.

SEMICONDUCTORS

POWERTRAN ELECTRONICS

2 KENDALL PLACE • LONDON
W1

WW-111 FOR FURTHER DETAILS

QUALITY PARTS

FOR THE DISCERNING BUILDEK
BAILEY PRE-AMPLIFIER still offers lowest distortion level and best overload capability. Edge Connector Nouri.ed Printed Circuit in Fibreglass or Paxolin material to choice. Highest quality parts including gain graded transistors. BAILEY 30w POWER AMPLIFIER. Edge Connector Mounted Printed Circuit in Fibreglass or Paxolin material, size $41^{\prime \prime} \times 23^{\prime \prime}$. This unit and the above Pre-amplifier can both be used in our new Metalwork Assembly.
BAILEY 30w POWER SUPPLY. We have now designed a Printed Circuit Board for the power supply, again intended to be used with our Metalwork, which also has edge connector mounting. Available in Fibreglass material only. BAILEY 20w AMPLIFIER. Special driver transformer and bifilar wound mains transformer. Printed circuits and all parts available for this design.
LINSLEY HOOD CLASS A. Full sets of parts now available to the new specification given in the December, 1970, Wireless World.
FULL KITS OF PARTS including Edge Connector Mounting Printed Circuit now available for Linsley Hood AB Design. This unit is fully compatible with our Metalwork Assembly.
SUGDEN CLASS A AMPLIFIER. A Hi-Fi News design. All parts are in stock except the Metalwork.
WADDINGTON STEREO DECODER. Printed circuits now available in fibreglass and paxolin material.
J. R. STUART TAPE CIRCUITS. We will be designing Printed Circuit Boards and supplying parts for this interesting design.
Full details are given in our Free lists. Please send foolscap s.a.e.

HART ELECTRONICS

321 Great Western Street, Manchester M14 4AR
Personal callers are always welcome at our retail shop, but please note we are closed on Saturdays.

This superb stereo system is a real price breakthrourgh. t comprises the VISC OUNT F.E.T. Mk l'amplifier on which full details are given below, the famous Garrard SP 25 Mk II (inctuding teak veneer base and transparent cover) with diamond cartridge or 2025 TC and the very successful DUO type 2 speakers.

Meastring $17 \frac{1}{2}^{\circ \prime} \times 10 \frac{3}{4}^{\circ} \times 6 \times \frac{3}{4}^{\prime \prime}$ the Dro type 2 speakers are teak finished with matching Vynair grills. They incorporate a 3 ohm, 13 ' $\times 8^{\prime \prime}$ drive unit and Parasitic tweeter. Max. power handling 10 watts. Price $£ 13.50$ per pair plus p\&p $£ 1.50$. WITH MK II amplif er and magnetic cartridge $\mathbf{5 4 8}$ plus $12.50 \mathrm{P} \& \mathrm{P}$.
The Tiscount F.E.T. Mk 1 £ 14.25 plus 50p P. \& P.

Specification: Output per channel 10 watts r.m.s. into 3 ohms. Frequency bandwidth 20 Hz to $20 \mathrm{kHz} \pm$ 1 dB @ 1 watt.
Total distortion: 1 kHz @ 9 watts 0.5%.
input sensitivities: CER, P.U. 100 mV into 3 meg ohms. Tuner 100 mV into 100 K ohms.
Tape 100 mV into 100 K .

High fidelity transistor stereo amplifier employing field effect transistors. With this feature \& accompanying guaranteed specifications below. the Viscount F.E.T. vastly surpasses amplifiers costing far more. Size: $12!^{\prime \prime} \times 6^{\prime \prime} \times 2^{\prime \prime}$ in simulated teak case

Overload Factor: Better than 26 dB .
Signal to noise ratio: 70 dB on all inputs (with vol. max) Controls: 6 position selector switch (3 pos. stereo 8 3 pos. monol. Separate Vol. controls for left \& right channels. Bass $\pm 14 \mathrm{~dB}$ @ 60 Hz . Treble (with D.P.S. on/off) $\pm 12 \mathrm{~dB}$ @ 10 kHz . Tape Recording output sockets on each channel.

BUILT \& TESTED.
Mk II (MAG. P.U.) $\mathbf{£ 1 5 . 7 5}$ plus $50 p \rho \&_{p}$ Specification same as Mk. I. but with the following inputs.
Mag. P.U. CER. P.U. Tuner. Spec. on Mag. P.U. 3 mV @ 1 kHz input impedance 47 K . Fully equalised to within $\pm 1 \mathrm{~dB}$ RIAA. Signal to noise ratio- 65 dB (vol.

Elegant Seven Mk 3 (350mW) 7 transistor fully-tunable M.W.-t.W. superhet portable Set of parts. Complete with all components,
including ready etched and drilled printed circuit including ready etched and drilled printed circuit
boand-back printed for foolproof construction MAINS POWER PACK KIT: 47p extra Price $£ 5.25$ plus 50 p P. \& P

The Dorset (600 mW)

7.transistor fully tunable M.W.-L.W. superhet portable-with baby alarm facility. Set of parts. The latest modulised and pre-alignment techniques makes this simple to build. Sizes: $12 \times 8 \times 3$ in Price $£ 5.25$ plus $50 \mathrm{p} P$ \& P Price $\mathbf{~} \mathbf{5} .25$ plus 50 p P.
Circuit 13 PREE WITH PARTS

SOUND 50

SOUND 50 AMPLIFIER AND SPEAKER SYSTEM

The Sound Fitty valve amplifier and speakors are sturdily constructed with smart housings and thoroughly tastad slectronics. They are dessigned to last-to withstand the knacks and bumps of life on the road. Built for the small and madium sized gig, thay are aasy to handle and quick to set up and can be relied upon to come over with all the quality and power you need.
Output Power: 45 watts R.M.S. (Sine wave drive). Frequency rasponse: -3 dh points 30 Hz at 18 KHz . Total distartion: lass than 2% at rated output. Signal to noiss ratio: better than 60 dh. Spesker Impedance: 3. 8 or 15 ohms. Bess Control Range: ± 13 db at 60 Hz. Trebla Control Range: $\pm 12 \mathrm{db}$ at 10 KHz . Inputs: 4 inputs at 5 mV into 470 K Each pair of inputs controlled by separate volume control. Each pair of inputs control
2 inputs at 200 mV into 470 K .
2 inputs at 200 mV into 040 K .
To protect the output valves, the incorporated fail safe circuit will enabie the amplifier to be used at half power. SPEAKEAS: Size $20^{\prime \prime} \times 20^{\prime \prime} \times 10^{\prime \prime}$ incorporating Baker's $12^{\prime \prime}$ heavy duty 25 watt high flux quality loudspeaker with cast frame. Cabinets attractively finished in two tona colour scheme—Black and grey.
COMPLETE SYSTEM

f50
Amplifier $£ 28.50+£ 1.50 \mathrm{P}$ \& P. Speakers ea. $£ 12.50+£ 1.75$ P \& P.

DANSETTE

TOURISTE MK3

CAR RADIO
ALL TRANSISTOR
Beautifully designied to blend with the interiors of all cars. Permeability tuning and long wave loading coils ensures excellent tracking, sensitivity and selectivity on both wave bands. R.F. sensitivity at 1 MHz is better than 8 micro volts. Power output into 3 ohm speaker is 3 watts. PreJaligned I.F. module and tuner together with comprehensive instructions guarantees success first time. 12 volts negative or positive earth. Size $7^{\prime \prime} \times 2^{\prime \prime} \times 4 \frac{1}{2}$ " deep. Originally sold completaly built for $\mathrm{f} 15.23 \quad$ Citeail diagram 13 P . Free SET OF PARTS wits parts. Speaker, £6.30 Pius 50p P. \& P astage on speaker frue when orriered with parts.

RADIO \& TV COMPONENTS (Acton) LTD 21a High Street, Acton, London, W.3.6.NG Also 323 Edgware Road, London, W.2. ALL OHDEHS BY POSFto Actor

Train for tomorrow's world in

 Radio and Television at The Pembridge College of ElectronicsYour first day on Television: 21st April, 1971

CAPACITOR DISCHARGE IGNITION SYSTEM

The popular Wireless World Capacitor-Discharge Ignition system is now available in two versions. The original unit, comprising a printedcircuit board with stand-off heat-sink and separate transformer, or the mechanically re-designed unit with printed-circuits and a transformer contained within a die-cast box: the transistors and thyristor being mounted on the outside of the case and supplied with snap-on plastic covers. This version also includes a plug and socket for ease of connection, together with a conversion plug providing instant change-over to conventional ignition.

Both versions embody printed-circuit boards designed for positive and negative earth ignition systems thus enabling simple conversion to opposite polarity if the vehicle is subsequently changed. A complete complement of components is supplied with each kit together with ready-driled and roller-tinned printed-circuit board fully machined heat-sink (or die-cast box) and a custom-wound transformer.

Suitable for 12 V . systems only. All components available separately. Wiring details are supplied for both polarity systems. Please state polarity required so that correct semiconductors can be supplied. Complete assembly and wiring manual for boxed version 5/- refundable on purchase of kit.

PRICE 'OPEN VERSION' $£ 9.25$ plus 50p. Carriage. 'ENCLOSED VERSION' £11.25 plus 50p. Carriage. TRADE ENQUIRIES INVITED. MAIL ORDER ONLY
DABAR ELECTRONIC PROLAUCTS 98a LICHFIELD STREET, WALSALL, STAFFS. WVS1 IUZ Tel: WALSALL 34365

WW- 112 FOR FURTHER DETAILS

Send 5 p for New Comprehensive I.C. Semiconductor price list (24 pages)
INTEGRATED CIRCUITS
NEW LOW PRICES • FULLY GUARANTEED zca 3000
3005 7
11
12

SEMI－CONDUCTORS／VALVES BRAND NEW \＆FULLY GUARANTEED

幽

賏
TN^{4003}
究㠰
坛定

\section*{VALVES
 30FLl4

HI－FI EQUIPMENT SAVE UP TO 33 $\frac{1}{3} \%$ OR MORE 33 $\frac{1}{3} \%$ OR MORE
 SEND S．A．E．FOR
 SEND S．A．E．FOR DISCOUNT＇PRICE LISTS DISCOUNT＇PRICE LISTS AND PACKAGE OFFERS！

 AND PACKAGE OFFERS！}
CARRARD

B．S．R．MCDONALD
${ }_{510}^{\text {MP60 }} 8112.95$

TEAK BASE AND PERSPEX COVER for above
BSR range $£ 3.974$ ．Carriage 37 t
TPDI SERIES with plinth and cover and ready

MP60	$£ 18.50$	510	$£ 20.97$	

Carriage 50 p ertra each ite
SPECIAL OFFERS $\underset{\text { Garrard SP25 Mk III fitted Goldring G800 }}{\text { Gartridgo and wooden plinth }}$ cartridge and wooden plinth with
perspex cover．ready wired．Total list
price $£ 35$ ．OUS PRICE 622.50 Carr． 50 p． GOLDRING GL69／2 fitted Goldring

CRIOT AM／FM BTEREO TUNER AMPLIFIER WITH MATCHDVG PAIR SA1003 SPEAKER SYSTEMS Output 4 watts per channel．Excelient
reception AFC，built－in MPX．Cer／XTAL Input． Total Llst $450 \cdot 25$ ．OUR PRICE $\mathrm{f} 28 \cdot 95$ ．Carr． Also available with Garrard $2025 \mathrm{~T} / \mathrm{C}$ Record Ready wired．£45．Carr．$£ 1$ ．
AMERICAN RECORDING TAPES

 American 6in．900ft．L．P．acetate

HOSIDEN DH04S 2－WAY STEREO HEADPHONES

GOLDRING CARTRIDGES

 G850G800 $G 800$
$G 800 \mathrm{E}$

SINCLAIR EQUIPMENT

2×230 amplifler，stereo 60 pre－amp，PZ6
 stereo 60 pre－amp，PZs power supply．\＆21．50． Carr． 37 pp ．Transformer 4 PZ8， 82.97 f extra，
Add to any of the above $84.87{ }^{7}$ for active glter Add to any of the above $£ 4 \cdot 87 \frac{1}{d}$ for active filter 60 FM TUNER $£ 20 \cdot 971$ ．Carr． 37 kp ．All othe

Latest exclting release．Brand new model，beruti
fully styled with walnut case． $6+6$ watta r．m．a． 8witched Inputs for mag，stal，aux，tape．Incor－ porates volume，bass，treble and sliding balance Rec．List $229 \cdot 00$ ．Our Price $\mathbf{E 1 9 . 9 \%}$ ．Carr． 37 p Suggented system．SAQ 206 amplifer，SP25 III， plinth and cover，G800 cartridge，pair DJ 3 way
speakers．Total Rec．List $£ 81$ ．Our Price $£ 59.50$ ． sperkers．Total Rec．List $\mathbf{8 8 1}$ ．Our Price $\mathbf{£ 5 9 \cdot 5 0}$ ．
Carr．$£ 1 \cdot 50$ ．

Our latest edition giving full details of a
comprehensive range of HI －FI EQUIPMENT COMPONENTS，TEST EQUIPMENT and COMMUNICATIONS EQUIPMENT．FREE DISCOUNT COUPONS VALUE 50p． 248 pages，fully illustrated and de

SEND SAE FOR FULL LISTS！

0\％on 12
15% on $25+$ any one type
arge quantity discounts on applica－
on．Postage：Semi Conductors 8p Ilves 15 p ．

MARCONI CT4 TF956 AF ABSORPTION WATTMETER
$1 \mu /$ watt
e20. Carr. ε
TEIII DECADE RESISTANCE ATTENUATOR db. Connection Enbalanced T and
 $+10+20+80+$
40 db Frequency:
DC to 200
AHZ
(Maximum input legs than \& watts (to voita). Built in 800 . load resistance with internail/
external switch. Brand new $£ 27.50$ P. \& P. 25 p . BELCO AF-5A SOLID STATE SINE SQUARE WAVEC.R.OSCILLATOR Slone $18-200,000 \quad \mathrm{H}_{2}$; 8 quare $18-500,000 \mathrm{~Hz}$.

TE-I6A TRANSISTORISED

SIGNAL GENERATOR

 mHz . An inexpensive instrument for the handy battery. Wlde easy to read scale. $800 \quad \mathrm{kHz}$ modulation. 57 in. $\times 57$ modulation. 57 in. $\times 5{ }^{57}$ in. $\times 3 \%$ in. Complete with_instructiona and leads. £7. 971 P. \& P. 20 p . BELCO DA-20 SOLID STATE

TE-65 VALVE VOLTMETER

High qualty ing instrament
with
ranges.

 triegoume.
220240 v. 22021200. A.C. operation,
Complete with probe and Complete with probe and
instructions
$£ 1750$.
P. ad P . 30p.
Adititonal Probes avail.

MODEL TE-200 20,000
O.P.Y. Mirror beale O.P.V. Mirror seale, over$0 / 5 / 2512511,000 \mathrm{~V} . \mathrm{D} . \mathrm{C}$ $010150 / 250 / 1,000 \mathrm{Y} . \mathrm{AC} . \mathrm{C}$ meg. +20 to +62 d

MODEL TE-80 20,000 O.P.V

MODEL TE-70. 30,000 O.P.V D.c. $0 / 6 / 630 / 120 / 120 / 6001,200$ A. . $0.0 / 30 \mu 4 / 8 / 30 / 300 \mathrm{~mA}$.
 ${ }^{5} 5.50$ P. \& P. 15p

TE.900 20,000n/FOLT GLANT MULTMETER. Mirror zeale

TIMETE
Battery operated. fully transistorised. Bensi-

 Mc/:
270° WIDE ANGL
mA METERS

HONOR TE. $10 \mathrm{~A} .20 \mathrm{k} \Omega / \mathrm{Volt}$
 $0 / 50 \mu A / 2.5 \mathrm{~mA} / 250 \mathrm{mAA}$ D. C .
 dB. $10.0,100$ mld. 0.11
$83.47 \mathrm{~F}, \mathrm{P} . \& \mathrm{P}$. 15 F . 15 p .

MODEL TE-300 30,000 O.P.V.Mirror seale. 0 , $1 / 15$) ${ }^{60130121,200}$ V.D.C. $0 / 8 \mathrm{~K} / 80 \mathrm{~K} / 800 \mathrm{~K} / 8 \mathrm{meg}$. $-20.97 \mathrm{f}, \mathrm{P}$. $\& \mathrm{P}$. 15 p .

MODEL TE-12. 20,000 OP. V. $0 / 0.8 / 6 / 30 / 120 / 600 / 1,200 /$
$3,000 / 6,000$ v. D.C. $0 / 6 / 30 / 120 /$ $6001.200 \mathrm{v} \cdot \mathrm{A}, \mathrm{C} .0 / 60 \mu \mathrm{~A} / 6$ $60 / 600 \mathrm{~mA} .0 / 6 \mathrm{~K} / 660 \mathrm{~K} / 6 \mathrm{Meg}$.
$80 \mathrm{Meg} . \Omega .50 \mathrm{PF} .2 \mathrm{MPD}$.

TMK MODEL TW-20CB
FEATUREB REBETTABLE OVERLOAD BUTTON. Benei-
tivity: 20 K /Volt D.C. $\mathrm{EK} \mathrm{K} /$ Volt

 5 MEG. Decibels: -20 to +52 d . £11-50. P. \& P, 17 p p
 $100,500 \mathrm{~mA}, 2.5,10 \mathrm{amp}$
$100 \mathrm{~K}, 10 \mathrm{MEG}, 100 \mathrm{MEG}$. Dectbels: -10 to +49 db . Plastic Case with
carrying handle. Size $7 k \times 6 \ddagger \times 37$. $£ 1890$.
 SKYWOOD SW-500

 rent: $20 \mu \mathrm{~A} / 6 / 601 / 50 \mathrm{~mA}$
Resistance: $10 \mathrm{~K} / 100 \mathrm{~K}$

UNR 30 RECEIVER
4 Bands corering $550 \mathrm{kc} / \mathrm{s}$ - $30 \mathrm{mc} / \mathrm{s}$. B.Y. O . Buil Eppaker 220/2. Brand new with instru

WS62 TRANSCEIVERS
Largequantity available for EXPORT Excellent condition. Enquiries invited

UR-IA SOLID STATE
COMMUNICATION RECEIVER

 £25. Carr. 37 pp .

LAFAYETTE HA.600 RECEIVER

ariable B.F.O.,
 AC or 12 V DC.
Carriage 50 p .

LAFAYETTE HA-800 SOLID STATE AMATEUR COMMUNICATION RECEIVER

mech. milters, product

detector, variable BFO, 8 Meter, $100 \mathrm{ko} / \mathrm{s}$ callibra
tor. $220 / 240 \mathrm{v} A C$ or 18 lb . Brand new with instructions. 257.50 . FULL RANGE TRIOEQUIPMENT EDDYSTONE V.H.F. RECEIVERS 770R. $14-165 \mathrm{Mc} / \mathrm{s}$. excellent condition. $£ 150$.
 Compact and panel mounting. drills, electrical ipplianceste.

 $211 \cdot 97$. Postage 121 p -

AUTO TRANSFORMERS 0/115/230v. step up or step down. Fully shrouded.

VOLTAGE STABILISER TRANS FORMERS, $180-260 \mathrm{v}$. Input. Output 230 v Available 150 w or 225 w. . $£ 12.50$. Carr. 25 p .
"YAMABISHI" VARIABLE VOLTAGE TRANSFORMERS

Excellent qu MODEL 8-260	mmedi	del
General Purpose	1 Amp .. ${ }^{\text {a }}$	
Bench Mounting	2.5 Amp $\cdots \quad \therefore \quad \underset{E 662}{ }$	
1 Amp . 25.50	Please add postage	
2.5 Amp $\cdot .86 .75$	ALL MODELS	
5 Amp - 88.75	INPUT 230 VOLTA.	
	50/60 CYCLE8	
12 Amp O $\because 2121.00$	OUTPUT VARLABLE 0 -260 volte	1

POWER RHEOSTATS

High quallty ceramic construction. Windings embedded in vitreous ename Heavy duty bruah wiper, Continuous rating. Wide range ars
Sngle hole fixing, \}in. dia. ahaftr. Bulk quantitleg available. 100 W

QUICKER SERVICING-MORE PROFITS
Now, more than ever before, RADIO \& TV SERVICING gives value for money. Every Servicing Engineer realises the value of readily available servicing data-it means speedy servicing, satisfied customers and more profit. Radio and TV Servicing will give you just this-it's the most comprehensive library of servicing data available.

SERVICING DATA ON OVER 1500 POPULAR MODELS
Here, in 6 handy volumes, you have comprehensive technical data for servicing over 1500 popular 1965-71 models. The sections on Colour TV alone makes this 3600-page library a sections on Colour TV alone makes this 3600 -page library a
sure money-spinner for years to come. Examine RADIO $\& ~$ sure money-spinner for years to come. Examine Radicle and indispensable this money-making library is.

OVER 4200 CIRCUITS, PRINTED PANEL DIAGRAMS, COMPONENT LAYOUT DIAGRAMS, AND WAVEFORM GRAPHS

Fise 10-day tral

SCOPETRONICS

Design
and
Manufacture

STUDIO TAPE RECORDERS
TAPE TRANSPORTS of all types

TAPE HEADS

TAPE ELECTRONICS

The 1151 Studio Tape Recorder

A development and special products division is available to meet your requirements.

SCOPETRONICS LTD.
CROWN WORKS, CHURCH RD., KINGSTON-UPON-THAMES, SURREY

[^14]
THYRISTORS

TERMS

Cash with order, pleas
iop inland; 25p Europe; 60p elsowhere.
ALL ORDERS DESPATCHED WITHIN ONE WORKING DAY

Mail Order Dept. (WW), 7 Coptfold Road, Brentwood, Essex

COMPONENTS

NEW!

SN74N SERIES TTL LOGIC
NOW FROM L.S.T.-FULL SPECIFICATION TEXAS INDUSTRIAL INTEGRATED CIRCUITS AT ECONOMY PRICES
 Available vertical or
mounting.) Usual values
to 5 Meg.

POTENTIOMETERS

Log or Lin less switch
Log or Lin OPs switch

CARACITORS-Mullard Minia-

Mullard Sub-Miniature Ceramic
Clate
63 volt working. Range 1.8 peries to 63 volt working. Range
220pt (usual $\begin{aligned} & \text { Pret. values). } \\ & \text { Packs of } 6 \text { (any values) }\end{aligned}$.
NEMER

NEONS Miniature

Minature neon bulbs
65 v AC, 90 V . DC.
Pack of 5 for
Pack of 5 for indicators mains
Panel neon in
voltage. Red lenses-round
voltage. Red lenses-round
Sauare or arrow shaped
faces

Hamsomaning in

VEROBOARD
$2.5^{\circ} \times 17^{\prime \prime} \times 0.15$

Bargain pack. 36 sq-inches of
various sizes 0.75 and/or

HEATSINKS
TO. 5 (elip-on) Pack of 4 for 15p
FINNED type for $2 \times$ TOready drilled at $2 \times 10-3$ FINNED type undrilled for
mposic
BOOKS
G.E. Transistor Manual $\underset{1 / 47}{ }$ R.E. Aransistor Transtor Manual \because
Resigners Guide to British Designers Guide to R.C.A. Hobby circuirs manual (Marston) Z̈andbook Zener Diode Handbook
Photocel and Solarcell Han book

	400mW 10\%	GLASS	SE TEXAS	n
152036	3.6 volt	152062	6.2	152120
152039	3.9 volt	152088	6.8	-
152043	4.3 volt	152075	7.5 vo	152180
152047	4.7 volt	152082	8.2 volt	S2270
152056	6 vo	152100		152300
		152110	11 vole	

PDICES: 1-24, 15p; 25-99, llip; $100+$, $9 p$

ENCAPSULATED BRIDGES
Type No
W005
W06
BENTLEY ACOUSTIC CORPORATION LTD．
38 CHALCOT ROAD，CHALK FARM，LONDON，N．W． THE VALVE SPECIALISTS Telephone O1－722－9090 Please forward all mail orders to Littlehampton

雨以 	

 N心號

 0.38
0.38
0.38
0.38
0.25
0.60
0.63
0.32
0.43
0.43
0.50
0.63
1.18
0.10
0.13
0.15
1.13
0.13
0.13
0.13
0.88
0.13
0.15
0.87
0.15
0.15
0.40
0.18
0.13
0.13
0.15
0.20
0.24
0.23
0.23
0.95
0.23
0.35
0.23
0.38
0.48
0.30
0.30
0.43
0.50
0.40
1.65
0.53
0.85
0.50
0.00
0.18
0.85
0.25
0.18
0.18
0 et of 3－OC83 0.6 18 osch． 0.0 v .0 .85
nufacturera conds nor rejects，which are often decribed as＂new and tested＂but have a limited and unrelisble rms of business．Cash or cheque with orlers packing 0.03 p per item，sublect to a minimum insured against damage in trasit for 0.03 p extra．Complete catalogue wit
0.07 p post paid．No enquiries answered unless B．A．E．Ls enclosed for reply．

sons
EST． 1921 for RELAYS P．O．TYPE 3000 BUILT TO YOUR SPECIFICATION Contacts up to 8 changeove ＊QUICK DELIVERY ＊KEEN PRICES ＊BUST RETOVEN
－QUOTATIONS
 METERS．AC／DC Moving coil， 2 in．flush round，complete with fixing clip． 3 types， $0-5$ amp， $0-20$ ．or $0-40$ v．$i 2.75$ each．New six－page instrument list now available．
Send for new potentiometer list，Wire Wound and Carbon types available from stock．
Send large S．A．E． 3 P．
From $\$$ tock：P．O．Standard Equipment Racks． 6 ft ．U channel sides，drilled forl 19 in．

 A．C．Ideal for greenhouses，etc．， 1775 ，post 30 p,
DIGITAL INDICATOR．Character size t＂high
 E2．50 each．Types available 0 to 9 or A
to your own requirements， 613.50 each．

E Q UIPMENT WIRE P．V．C．covered C4 per 1．000 yds．7／．0076， $1 / .024,14 / .0048$
type I and 2，all colours，14／0076 type II，Red and Natural only fio per i，000 yds．
MINIATURE BUZZERS， 12 volts，with tone adjuster 40 p each as illustrated．
LEDEX ROTARY SOLENOIDS AND CIRCUIT SELECTORS，size 55．
LEDEX ROTARY SOLENOIDS AND CIRCUIT SELECTORS，size 55 ．
4 pole 11 way and off $£ 5 \cdot 50$ ． 24 pole 11 way and off $£ 10 \cdot 50$ ． 54 pole On／Off $£ 7 \cdot 50$ ．
SINGLE FUSE HOLDERS．Belling Lee L356 one hole fixing．15p each．
VEEDER－HOOTMAGNETIC COUNTERS WITHZZRO RESET 800 COUNTS
PER MANUTE． 6 Figures．General Purpose Type． 110 v ．A．C．$£ 3.25$ post 20 p.

PEED COUNTERS

in． 10 counts per second，
tures．The following D．C．
re available， 6 v ．， $12 \mathrm{v}$. ．， ，or 100

Extremely well made by FRAKO GmbH in
W．Germany，with constant voltage mains

$250 \begin{aligned} & \text { MIXED RESISTORS } \\ & 1 \text { and } \frac{1}{2} \text { Watt } \\ & 62 p\end{aligned}$

DIODES EXEQPT． I Amp I，000 PIV 4 for 50 p 20 Amp 150 PIV 4 for $E 1 \cdot 00$ P．\＆P．5P

RELAY OFFER

BUMPER BARGAIN PARCEL We guarantee that this parcel contains at
least 1,750 components． 5 hort－leaded on pancls，including a minimum of 350 tran－ sistors（mainly NPN and PNP germanium， The rest of the parcel is made up with： Resistors 5% or betrer（including some $\mathbf{1 \%}$ ）mainly metal oxide，carbon film，and composition
diodes，miniature silicon types OA OA91，OA95，ISI 30，etc．．．capacitors including tantalum，electrolytics，ceramics and polyesters．．．inductors，a selection of
values．．．also the odd transformer，trim－ pot，etc．，etc．．These are all miniature，
up to date，professional，top quality com－

EX－COMPUTER

POOP
Reconditioned，fully tested and guaranteed．
These very compact units are fully smoothed These very compact units are fully smoothed tion better than 1% ．Over voltage pro－
tection on all except 24 v ．units． 120 vo － tection on all except 24 v ，units．120vo．
130 v. a．c． $50 \mathrm{c} / \mathrm{s}$ input．Mains transformer to suit $\$ 3$ extra if required．

150
LARGE CAPACITY

These phones aro extensions and do not
contain bells．

KEYTRONICS
14 EARLS COURTROAD，LONDON W． 8
WAREHOUSE AND DISPATCH WAREHOUS
014788499

SYSTEMI

PAIR OF
LOUDSPEAKER
UNITS
ncorporating high flux Unit for excellent sound quality in suitable enclosure. Roll P.V.C. cone surround and
long throw voice coi. to achleve very low
fundamental resonance at 30 c -p.-. Tweetor fundamental resonance at 30 c-p.p. Tweetor
cone fis fited to extend hlgh note response.
Frequency range $25-15 \mathrm{KHz}$. Impedance

 PRICE COMPLETE ONLY

Carr. $£ 1 \cdot 25$	1	
Terms:	Deposit	$£ 5.50$

 a REALLY SURPRISING STANDARD OF QUALITY IS OBTAINED FROM THIS COMPACT LOW PRICED SYSTEM

FANE ULTRA HIGH POWER LOUDSPEAKERS AU power ming amo Q yonris garanteo. Hikh Rax ornmie mazati'
 FANE LOUDSPEAKERS'POP'25/2

 R.S.C. BATTERY/MAINS CONYERSIONUNITS TYpe BM1. An all.dry battery ellimin-
ator. Bize $5 \ddagger \times 4\} \times 2 \mathrm{in}$. approx. Com-

RSC BASS-REGENT 50 watt AMPLIFIER powerfil high quality, sill purpose unit. For lead, rhythm, base, gultar,

THE'YORK'HIGH FIDELITY 3'SPEAKER SYSTEM

 cast chassig. Roll rubber cone surround for ultra low resonance, and ceramic magnet.
(2) 3 -way quarter section series cross-over system. (3) $8 \times 5 \mathrm{in}$. high fux middle range speaker. (4) High efflciency tweeter. (5) Appropriate quantity acoustic damping
B.S.C.G66 $6+6$ WATTHIGH QUALIT
 ance. Printed circult construction, employing 10 Tranistors
pins Dlode. Output ratiug IH.F.M. Biltabe tor Crystal
Pist Pick-ups etc.,., and for loudspeaker output limpedances of 3 to
15 ohms. For standard $200-250$ A.C. inalins operation. Atractive silver finished metal facia plate and matthing
control knobs. Complete KIT of PARTB INCLUDING
FUT

R.S.C. AIO 30 WATT ULTRA LINEAR HI-FI AMPLIFIER Highly, senitive. Pugh-Pull hlgh

TALI MKIII $6.5+6.5$ WATT STEREO AMPLIFIER	
any oryatal or ceramio Cram P.U. cartrigge,	
± 3 separate switched diput sockets on each	
FACTORY BULLT WITH 12 mTH GNTEE. $219 \cdot 50$. Or dep. 23 and 9 mntily pymte. 82.05 (Total $£ 21.45$). Or in Teak veneer honsing. $£ 28$. Or Dep. $£ 3$ and 9 mthiy. pymts 22.55 (Total $£ 25 \cdot 05$).	

INTEREST CHARGES REFUNDED On Credit Sales settied in 3 months

B.S.C.MAINS TBANSFORMERS: PULIY GOARAMTEED. Interloaved and | 90 p |
| :--- |
| ${ }^{95 p}$ |
| 105 |

 For Mullard 510 Amplifer.

${ }^{8} 5.25$.2.

Standard Pentode 0,0000 to 7,000 to $3 \Omega \quad 45 \mathrm{D}$
Puah-Pull 8 watts EL84 to 9 O or 150

22.09

R.S.C.SUPER 30NKIHIGH FIDELTM STEREOAWPLIEIER

HPGH GRADE COMPONEETS. 8PRCIFICATIONS COMPARABLE WITR
UNTTS COSTIMG CONSDERABLY MOR Employing Twin Printed Circults.
200/2507. A.C. mains operstion.
TRANsISTORS: 9 high-quality types per channel.
OTTPUT (Per chsnnel): 10 Watts R M. 8 contin. ous into 16 (Per channel): 10 Watta Watts R.M.M.s. continuIMPUT SENSITIVITIEs: Mag. P.U. 4 m . Ceramic P.U. $35 \mathrm{~m} . \mathrm{v}$. Tape Amp. 400 m.
$100 \mathrm{~m} . \mathrm{v} . \mathrm{Mic} .6 \mathrm{~m} . \mathrm{v}$. Tape Head $2.5 \mathrm{~m} . \mathrm{v}$. FREQUENCY RRSPONSE: $\pm 2 \mathrm{~dB}$. $10-20,000$ c.p.s. BASS CONTROL: +17 dB to -15 dB at $50 \mathrm{c} / \mathrm{s}$. BVM LEVEL; - 80 dB .
Habionic Distortion: 0.1% at 10 Watt

EMINENTLY SUITABLE FOR USE WITH ANY MAKE OF PICK-UP OR MIC. (Ceramic or Magnetic, Moving Coil, Ribbon or Crystal) CURRENTLY AVAILABLE. BY USE WITH FIRST-RATE ANCILLARYEQUIPMENT. COMPLETE KIT OF PARTS, point to point $\mathbf{C 2 3 \cdot 2 5}$ wiring di
supplied. FACTORY BUILT $£ 30.50$

 10 H .400 O 25 p . R.S.C.PLINTHS Superior Solid Natural Wood
Construction for Record
Playing unlts. Construction $\begin{array}{r}\text { for Record } \\ \text { Playing unlts. } \\ \text { Cut for }\end{array}$

CONTPOLS: MPPUT SOCKETS: (1) P.U. (2) Tape Amp. (3) Radio. (4) Mic. or Tape Head. (Operstion of Input selector assures appropriate equalisation.)
CHAssis: strong stoel construction. Approx. $12 \times 3 \times 8$ sin.

BRADFORD 10 North Parade (Half-day Wed.). Tel. 25349 BLACKPOOL (Agent) 0 \& C Electronics 227 Church St. BIRMINGHAM ${ }^{30 / 31}$ Gt. Western Arcade. DERBY 26 Osmaston Rd. The Spot (Halif-day Wed.) DARLINGTON 18 Priestgate (Half-day Wed.). Tel. 68043 EDINBURGH 133 Leith St. (Hali-day Wed.). GLASCOW 326 Argyle St. (Half-day Tues.). Tel. CITyy 4158 HULL gi Paragon Street (Hali-day Thurs.). Tel. 20505

MAIL ORDERS to: 106!Henconner Lane, Leeds 13
Terms C.W.O. or C.O.D.
Postage $25{ }^{5}$. extra under $£ 2$. Postage 25 p extra under $£ 2$.
30 p extra over $\Sigma 2$, or as stated. enquiries. Export enquiries Brancheslopen ALL DAY Sate MAIL ORORS MSS MST NOT
BENT SHOPS.

LEICESTER 32 High Street (Hall-day Thurs.). Tel. 56420

 LEEDS 5 -7 County (Mecca) Arcade, Briggate (Half-day Wed.) Tel. 28252 LIVERPOOL. 73 Dale St. (Half-day Wed.). CENeral 3573
 MIDDLESBROUGH 106 Newport Rd. (Calf)dary. ${ }^{\text {Wed. }}$. Tel. 47096 NEWCASTLE UPON 41 Blackett Stree ((opp. Fenwicks SHEFFIELD THE Store) (Hali-day Wea.). Tel. 21469 Or deposit $\& 4$ a.
Total
³4.15).
Total 834 :15). Or in Treak or Atrormoisis vereer
pooxing as illustrated. Cary
Ts erms: Deposilt 4 and 9 montis parment

Available with Trans.
parent plastio cover.
RECORD PLAYING
 RP23C
 Mith dibanond ditylue. Mounted oin

 Plinth
RP2C. OTEER TYPES Wi P.U. Cartridgen r or 'Roll over' tras
at lowest pricen.

BI-PREPAK

CLEARANCE LINES

DON'T MISS THIS LAST CHANCE
ONLY A FEW LEFT
UHF/VHF T.V. TUNER UNITS TU. 2 CON
PRICE 50p
tors, Come many other components, e.g. Capacitors.
tors. Coils and tuning condensers. etc. Although these nufacturers rejects they are not beyond repair as has
ALL TUNER UNITS ARE SUPPLIED
WITH CONNECTION DATA.
COLOUR T.V. LINE OUTPUT TRANSFORMERS.
ned to give 25 K.V. when used with PL509 and PY500
As removed from colour receivers at the factork ONLY fleach
post and packing 23p

SP

100 PIV. $=25 p \quad 400$ PIV $=33 p$

100 PIV . $=25 \mathrm{p}$	400 PIV. $=33 \mathrm{p}$	800 PIV. $=40 \mathrm{p}$
AK F 3		13p

$\begin{aligned} & \text { NEW } \\ & \text { B79 } \\ & \hline \end{aligned}$	STED \& GUARANTEED 1 N4007 Sil. Rec. Diodes. 1,000 P.IV.	$\begin{aligned} & \text { PAKS } \\ & 50 \mathrm{p} \end{aligned}$
88110	reed switches mixed TYPES LARGE \& SMALL	p
389	5 SP5 LIGHT SENSITIVE CELLS LIGHT RES. 400Ω DARK $1 \mathrm{M} \Omega$	50p
8924	NPN SIL. TRANS. AO6 $=$ BSXZU 2N2369. 500 MHz .360 mW	50p
в9з 5	GET113 TRANS EQUIV. TO ACY17-21 PNP GERM.	50p
8965	2N3136 PNF SIL. TRANS. TO- 18 HPE100-300 IC. $600 \mathrm{~mA}, 200 \mathrm{MHz}$	50p
898 10	XB112 \& XB102 EQUIV. TO AC126 AC156, OC81/2, OC71/2, NKT271. ETC.	50p
в99 2010	mixed CAPaCITORS, POST \& PACKing 13p APPROX QUANTITY COUNTED BY WEIGHT	50p
H4 250	MXEO RESISTORS: POST \& PACKING 10 p APPROX QUANTITY COUNTED BY WEIGHT	50p
H7 40	WIREWOUND RESISTORS MIXED TYPES \& VALUES, POSTAGE 7p	50p
н8 4	BY127 Silicon Recs. 1000 P.IV. 1 amp	50p
Н9 2	OCP71 LIGHT SENSITIVE PHOTOTRANSISTORS	50p

BUMPER BUNDLES
These parcels contain all types of surplus electronic
components. printed panels, ${ }^{\text {s. }}$ switches. potentiometers.
transistors and drodes.
2 LBS IN WEIGHT FOR E1
Return of the unbeatable P. 1 Pak. Now greater value than ever

PACKS OF YOUR OWN CHOICE UP TO the value of 50p with orders OVER 84

QUA VERY POPULAR 3p TRANSISTORS

 FULLY TESTED \& GUARANTEEDTYPE " A "
PNP Silicon glloy, matal To-5 can.
e 5300 type, direct
$2 \$ 300$ type, direct
renacement for the

TYPE "B"
PNP Silicon plastic encapsulation. low voltage but good gain! these are of the 2N3702/3 and 2N4059/62 range.

TYPE "F"
NPN Silicon PLASTIC ENCAPSULATION Low Noise Amplifier of the $2 N 3707 / 8 / 9 / 10 / 1$ Series.

TYPE "E
PNP Germanium af DR RF
please state on order. Fully marked and tested.

Full of Short Lead Semiconductors \& Electronic Components, approx. 170. We guarantee at least 30 really high quality factory marked Transistors PNP \& NPN, and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.

Please ask for Pak P. 1. Only 50p
$10 p \mathrm{P}$ \& P on this Pak.
Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a perfectly linear and accurate rev. counter for any car.

each

FREE CATALOGUE AND LISTS for: -
 ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 50p CASH WITH ORDER PLEASE. Add 5p post and packing per order. OVERSEAS ADD EXTRA FOR POSTAGE

P.O. RELAYS

VARIOU'S CONTACTS AND
8 for
COIL RESISTANCES
NO INDIVIDUAL SELECTION.
POST \& PACKING 25p

NEW UNMARKED UNTESTED PAKS

B80	8	Dual Trans. Matched O/P pairs r.PN. Sil. in TO-5 can	50p
B83	200	Trans manufacturer's rejects all types NPN, PNP. Sil. and Germ.	50p
884	100	Siticon Diodes DO-7 glass equiv. to OA200, OA202	50p
886	50	Sil. Diodes sub min IN914 and IN916 types	50p
888	50	Sil. Trans. NPN. PNP. equiv. 10 OC200/1. 2N706A. BSY95A. etc.	50p
860	10	7 watt Xener Diodes Mixed Voltages	50p
H6	40	250 mW . Zener Diodes D0-7 Min. Glass Type	50p
H10	25	Mixed volts, $1 \frac{1}{2}$ watt Zeners. Top hat type	50p
866	150	High quality Germ. Diodes Min. glass type	50p
H15	30	Top Hat Silicon Rectifiers. 750 mA . Mixed votts	50p
H16	8	Experimenters' Pak of Integrated Circuits. Deta supplied	50p
H2O	20	BY126/7 Type Silicon Rectifiers, 1 amp plastic. Mixed volts	50p

STANDARD GPO DIAL TELEPHONES (black)

P. \& P. 37p.

TRANSISTORISED FIELD RATEMETER
1368A range 0.05 to $25 \mathrm{mr} / \mathrm{hr}$ in 5 ranges size 12×3
$\times 7 \ddagger$ ins. $\mathcal{E} 10$ each. P. \& P. 50p.
SURVEY METER RADIAC
size $91 \times 5 \times 5 t$ ins 3 ADIAC No. 3. Hand portable size $9 t \times 5 \times 5 t$ ins. 3 ranges (scale changes) 0.03 :
$0.3 ; 3 \mathrm{R} / \mathrm{H}$. Internal Ion Chamber. Nice condition C3 ea. P. \& P. 50p. 7/6. Charger only 30/-. P. \& P. 33p.
PHOTOMULTIPLIERS. EMI 6097X at $\mathbf{C B} 50$ ea 6097B- 45 ea.
TRANSISTOR OSCILLATOR. Variable frequency
 new. Boxed. S7Per. 60 secs. $4^{* *}$ dial. Remote control stop/start reset $£ 6.50$. G.E.C. Sealed Relays High Speed 24V. 2 make 2 break. 23p.T.C. sealed 2 pole c/o. 2,500 ohms. (okay 24v) 13p ea; 12v 35p ea.
CARPENTERS nolarised Single nole c/o 20 and 65 ohm coil as new, complete with base 37 p ea.
coil 33p pere c/o 14 ohm coll 33p ea. Single pole c/o 45 ohm
COLVERN Brand new. 50 OMETERS
COLVERN Brand new. 50; $100 ; 250$; 500 ohms; 1 ; 2.5; $5 ; 10 ; 25 ; 50 \mathrm{k}$ all at 130^{2} ea. Special Brand new.

17p ea. INSTRUMENT $3^{\prime \prime}$ Colvern. 5; 25 ohms 35p ea.
BOURNE TRIM POTS. 10; 20; 50; 100; 200; 250;

ALMA precision resistore $100 \mathrm{~K}: 400 \mathrm{~K} ; 497 \mathrm{~K}$; 998 K :
1 meg- $0.1 .27 \mathrm{ea} . ; 3.25 \mathrm{~K}-0.1 .20 \mathrm{p}$ ea.
DALE heat sink resistors, non-inductive 50 watt. Brand new 8.2K at 13 p ea.
MULLARD VINKORS. Brand new boxed. LA2104 60p ea.: LA2411 45p ea.; LA2503 30p ea.
SILVER ZINC Non-spill. Brand new. 7ivV 5 cell. Size

MALLORY CELLS. 25p per set of 5
ERIE feed through ceram
Sub-min. TRIMMER A square. 8,5pf. Brand new 13p ea. Concentric TRIMMER 3/30 pf. Brand new 7p ea.
ELECTROLYTICS. Brand new. 250 mfd . 70V 23p ea. ELECTROLYTICS. Brand new. 250 mfd
E.H.T. 2 mfd 5 KV . Brand new $£ 1.50 \mathrm{ea}$.
E.H.T. 2 mfd 5 KV . Brand new $\notin 1 \cdot 50$ ea.
E.H.T. 0.1 mfd 7 KV at 40 p ea.; 0.1 mfd sk at 35 p ea.

DECADE DIAL UP SWITCH. Finger tip. 24° deep $i^{* / G}$ wide. 750 ea. Bank of 4 with escutcheon, $2 t^{*}$ deep t^{*} wide. 75 p ea. Bank of 4 with escutcheon
plates. etc. $2 t^{\prime \prime}$ high, $2 t^{*}$ deep, $2 t^{*}$ wide 62.50 . PHOTOCELL equivalent OCP 71 13p ea
Photo-resist type Clare 703. (TO5 Case). Two for 50p BURGESS Micro Switches V3 5930. Brand new 13p ea
HONEYWELL. Sub-min. Microswitches type 11 SM3-T. Brand new. I7p. ea.
PANEL mounting lamp holders. Red. 9p ea

BRAND NEW PLUGS AND SOCKETS
CANNON. 50 way DDM50P 75p ea.; DDM50S 50p ea A per pair.
as above but 25 way 50p ea. plug; 35p ea. socket; 75p U.H.F. Pluga fit UR57, 59,65 etc., 40 p ea ${ }^{\text {Pop }}$ per pair. U.H.F. Pluge fit UR57, 59,65 etc., 40p ea.
B.N.C. to U.H.F. Adaptor \&I-37 ea.; Min. B.N.C. to
U.H.F. ©I 50 ea.; 'T' junction B.N.C. El ea.; B.N.C. to B.N.C. plug. $\mathfrak{C l}$ ea junction B.N. B.C. EI ea.: B.N.C. plug B.N.C. right angle $£ 1.25$ ea.: Min. socket round 50° ea. to list. All prices quoted for ea. Many others too numerous TRANSFORMERS. All stan
STEP DOWN ISOLATING trank. Standard 240 v AC to 120 V tapped $60-0-60700 \mathrm{~W}$, Brand new. 65 ea . Transformer 0-215-250 $120 \mathrm{MA} ; 6.3 \mathrm{~V} 4 \mathrm{ACT} \times 2 ; 2 \times 6.3 \mathrm{v}$
 Matching contact cooled bridge rectifier 37p ea.
$4.5 \mathrm{~V} 40 \mathrm{amp}(180 \mathrm{Va}) \in 1.75$ ea. Incl. postage or 3 for $£ 4.50$ 4.5V 40 amp (180 Va) 1 ll 75 ea . Incl. postage or 3 f
tncl. postage. Designed to be Series paralleled.
 Gard/Parm/Part. $450-400-0-400-450,180 \mathrm{MA} .2 \times 6.3 \mathrm{v}$.
E 3 ea . CHOROKS. $5 \mathrm{H} ; 10 \mathrm{H} ; 15 \mathrm{H}$; up to $120 \mathrm{~mA}, 42 \mathrm{p}$ ea. Up Large quantity LT, HT, EHT transformers. Your requirements, pleage. Brand new boxed. Adustable $90-160$ megs. (Like
umbrella) E 12 .50. Carr. £1.

> NUCLEONIC INSTRUMENTS
> Pulse analyser N101; Scaler 1009E; Coincidence
unit 1038C: Antl coincidence unit Panax AU460; unit 1036C; Anti coincidence unit Panax AU460; Amplifler N567: A/B/G Radiation Monitor 1257A: unit 1007; 1430 amplitier CF and head; Some geintillation castles; radiation monltor 1320 C and 1320X (X-ray): survey meters no. 2 and 3 ; Ratemeter scintillation 1368A: Fast neutron 1262C; Fluori-meter 1080A and many others. Also 2000 SERIES. Amp 2002A; Low level amp 2024; PD's
2004: 2005B; nanosec
time amplitude convertor 2011 ; ; pulse amplitude snalyser 2010 B ; discriminator 2007 B ; high level amp 2025 and others. Informa-
tion available. tion available.

RACAL RAI7K receivers $£ \mathbf{2 5 0}$

Racal RA98A Automatic SSB adaptor for above. Brand new crated. 675 .
MARCONI TFI370A Wide Range R.C. Oscillator. As new Current model $£ 200$.

TEST GEAR

E.M.I. OSCILLOSCOPES

E.M.I. WM16 DB-24 megs each chan-
 nel. $£ 175$ only. WM 2 DC-1 3 ne/s $£ 25$
 E.M.I.

WM $2 \mathrm{DC}-13 \mathrm{mc} / \mathrm{s} £ 25$
WM $8 \mathrm{DC}-15 \mathrm{mc} / \mathrm{s} £ 40$.
E.M.I.

SOLARTRON

711 S . 2 D.B. $\mathrm{DC}-9 \mathrm{mc} / \mathrm{s}$. In fin condition $£ 50$.
SOLARTRON $643 \mathrm{DC}-15 \mathrm{mc} / \mathrm{s}$ Brand new $\mathrm{t85}$
Good condition 650 . Good condition E 50 .

SOLARTRON

CT316 (D300 range)
SOLARTRON
CT316
E 17.50.
£17.50,
Storage scope QD910 $£ 150$.

SOLARTRO

COSSOR 1049 Jk .3. DB. $\mathbf{6 2 5}$
HARTLEY
13A DB. 625
CT52 Min. scope. $\mathbf{E 1 7} \cdot \mathbf{5 0}$.
All carefully checked and tosted. Carriage $£ 1 \cdot 50$ extra MARCONI
New P.O.R
TF 1152 Power Metar. New P.O.R.
TF 1026 Frequency Meter $£ \mathbf{f 1 2} 50$. Carr. 75p.
TF 329 Magniflcation Meter. As new condition $\mathbf{6 0}$. TF 801 A Signal generator $£ 35$. Carr. $£ 1 \cdot 50$. TF 886 Magnification Meter $\mathbf{4 5 \text { . Carr. Car. }}$ £1. TF 369 N. 5 Impedance Bridge $\mathbf{T H O}$. Carr. $£ 1 \cdot 50$. TF 144G SIgnal Generator. Serviceable. Clean $\mathbf{E} 15$. In exceptional condition $\mathbf{2 5 5}$. Carr. $£ 1 \cdot 50$. TF895/1 ©55. Carr. £1-54.
TF 1343/2'X' Band gen. ©35. Carr. £1-50. SOLARTRON
Laboratory amplifier AWS51A. $15 \mathrm{c} / \mathrm{s}-350 \mathrm{ke} / \mathrm{s} £ 35$ Stabilised P.U. SRS 151 A $£ 20$. Carr. $£ 1 \cdot 50$. Stabllised PU. SRS 152 £15. Carr, \&1 50 . Precision Minivoltmeter VP252, £25. Carr. £1. Process Response Analyser. Fine Condition $£ 250$
Oscillator type OS 101. $£ 30$. Carr fl-50 Oscilator type Os 101 . 130 . Carr. $£ 1-50$.
D.C. Ampliffer type AA 900 . $£ 30$. Carr $£ 1$.
Storage Oscilloscopes QD 410 . $£ 150$. Carr. $£ 150$.

> AVO

Testmeter No. 1 £ 12 ea. Carr. 75p.
Electronic Testmeter CT 38 . Com
Electronic Testmeter CT 38. Complete 118 Carr. $£ 1$ CINTEL
Sine and Pulse Generator type 1873 £15. Carr. 75p. AIRMEC
Signal Generator type 701. £25. Carr. £1-50.
MARCONI TF 1277. Colour studio scope, will line select

LIMITED GUANTITY
TELEQUIPMENT D43R. Brand new with TD41
TB. E80 with 15 (s) TB. E 80 with $15 \mathrm{mc} / \mathrm{s}$ amp. E 105.

BRADLEY ATTENUATORS 0/500 meg cycles.
$0 / 12 \mathrm{db}$ and $0 / 120 \mathrm{db}$ cio per pair. HEWLETT PACKARD. Attenuators $0 / 500 \mathrm{meg}$
cycles. $0-132 \mathrm{db} .1 \mathrm{db}$ steps. 40 . BECKMAN MODEL
BECKMAN MODEL A. Ten turn pot complete
with dial. $100 \mathrm{k} 3 \%$ Tol 0.25% only $\mathbf{E 2} \cdot 13$ ea. E.H.T. Base B9A in Polystyrene holder with cover Brand new. 13p ea
BRUEL \& KIORER Automatic Vibration Exciter Control type 1016. E 40 .
DVM's BIE $2114 \subset 50$ ea.: BIE $2116 \subset 50$ ea. Carr. $£ 1 \cdot 50$ AMERICAN TRIPLETT Generators type 1632.100 BC22l with correct charta in
Carr. 1 1.
PANAX Pulse generator G100H. Mint. $£ 40$. Carr. £1-50 BRAND NEW INSTRUMENTS HOUSING. Size $8 \times 6 \times 7$ deep. Comprising of anodised aluminium front
and rear linked frame with recessed light blue front and and rear linked frame with recessed light blue front and
rear panels. Detachable dark grey vinyl covered
 FIBRE GLASS PRINTED CIRCUIT BOARD
FIBRE GLASS PRINTED CIRCUIT BOARD. Brand new. Single side $\frac{1}{2} p$ per sq. in. Double sided Io per sq. In.
Cut to size (Max. $24^{*} \times 15 *$). Postage 5p per order. BERCO miniature variac type 31C. $0-250 \mathrm{~V} 1$ $25 / 1$ th ${ }^{\prime \prime}$ depth, 3^{*} diameter. Complete with dial and pointer. As new E3. P. \& P. 37p.
SEQUENTIAL TIMERS 240V synchronous motor $\frac{1}{2}$ rom. 12 cam operated 2 pole micro switches. Individually adjustable from 0° to 180°. E6 ea
Standsard 240V MOTORS with reduction gearbox 14 lbs. per sq. Inch. 63 ea.
Modern replacement for VCR 138 tube. Flat face 3 in FERRITE rods complete with $L W$, MW and coupling
coils. Brand new. 25p ea. P. \& P. FIREBALLTURRETS. Brand new.
 Set of $3-63 \mathrm{p}$. Sub-min. Vitality bulbe $8 V 1.2 W 5 \mathrm{~mm}$ Clear L.E.S.

DUNFOSS -solenoid valves. 240V $50 \mathrm{c} / \mathrm{s}$. Type EVJ 2 Brand new boxed 65 : Second hand E3. P. \& P. 6/-.
Precision THERMISTOR by YSI. 100 k. at $25^{\circ} \mathrm{C}$ Range: $40^{\circ} \mathrm{C}$. to $150^{\circ} \mathrm{C}$. Supplied with charts giving ohms for each degree over entire range. Brand new. Cl 50 ea. CLAUDE LYONS Main Stabilizer. Type TS-1L-5S0.
Input $119-135$ volta $47 / 65 \mathrm{cs}$ Output $127+/-0.25 \%$ Input $119-135$ Volts Main Stabilizer. Type TS-1L-5S0 16 amps. E35. Carr. £2.
Panel mounting VARIAC 20 amp. 2 separate wipes (concentric shaft) $\in 25$. Carr. at cost.
ROBAND P.U. Type M39A. Stabllized 300 volte inc. carriage.
E.H.T. Unit by Brandenburg model S.0530/10. $£ 55$

KELVIN \& HUGHES 4 channel recorder. $\mathbf{4 0}$ ea
SMITHS twin channel recorder. Transistorised. 665.
Various other single and twin track recorders from $\mathbf{E 2 0}$.
EVERSHED \& VIGNOLES new boxed. L818H4 7^{*} wide, $1^{4^{*}}$ dia. 17 p roll: 6^{*} dia. EI roll. JL $900 \mathrm{H} 47^{*}$ wide, 19^{*} dla. 25p roll.
19in. Rack Mounting CABINETS Bft. high 19in. deep. Side and rear doors. Fully tapped, complete with base and wheels. $£ 12 \cdot 50$. Carriage at cost.
Double Bay complete with doors. Fine condition: $\mathbf{E 2 5}$. Carriage at cost.
TIME CALIBRATOR unit by Cawkell any or all time intervals from 0.5 microsecond to 1.000 microsecond. AUDIO/Vibrator Ampliffers 1 KW. $£ 50$ ea. Matching vibrators for above $3 \frac{1}{2}^{\circ} \times 2 t^{\prime}$ dia. Weirht approx. 1 ton. c 100 ea. Smaller units available.
MUIRHEAD Swept Audio Osoillator $£ 53$ e3. Carr. $£ 1 \cdot 50$. EMI Swept Audio Oscillator type $\mathrm{SRO} \geq \mathbf{E} 40$ ea, Carr. $1 \cdot 50$.

4 DIGIT RESETTABLE COUNTERS. 1000 ohm . coil. Size $1 t \times!\times 4$ lin. As new, by sorleco of Geneva. $\mathbf{6} \cdot 50$ ea.
As above but $\mathbf{3 5 0}$ ohm. $£ \mathbf{3} \cdot \mathbf{5 0}$ ea
METERS-Model 3705 . $25-0-25$ micro ainp. Scaled. $100-0 \cdot+100.5 \frac{1}{2}^{\prime \prime} \times 4^{\prime \prime} . £ 3$ e
SANGO 50 micro amp 4^{*} round. Brand new boxed.
$\mathbf{E} \mid \cdot 38$. P. \& P. 38 p.
SANGO 50 micro amp rectangular meter. Size 2 a $\times 3^{\text {f }}$ with 4 separate scales, lever operated, $0 / 6$ white, $0 / 60$ blue. 0/600 red and set zero. ©I-75. P. \& P, 17p.
RECTANGULAR WESTON 5* mirror back. Scaled 0.7501 ma brsic $\mathbf{3 0} /-$ ea: 100 mlero amp scaled $0-50$
62.50 . $\&$ P. 17 D . 2.50. P. \& P. 17D.

SANGO 50 micro amp $3^{\prime \prime}$ round meters. Ex brand
new radiation equip. $\mathrm{El}_{\text {ea. P. } \& \text { P. } 17 \mathrm{p} \text {. }}$

SEEING IS BELIEVING!

Flrat come, first served
$\underset{7}{\text { AMERICAN Oscilloscope type TS34/AP. Size }}$ good working condition. Ideal general purpose scope. 117 volt mains therefore only $\mathbf{£ 1 2} 50$. Carr. $£ 1$. COSSOR D.B. Scopes-some models from $\mathbf{C l} 5$. RACAL Diversity unit 65 ea.
MARCONI Absorption Wattmeter 1 micro watt to 6 watts. Type TF956. FANTASTIC at 67 ea.
SOLARTRON Stab. PU AS516 \& AS517. Circuita SOLARTRON Stab. PU AS516 \& AS517. Circuits
supplied, Fantastic value at $£ 2$ and E 4 each. supplied. Fantastic value at $\mathbf{E 2}$ and 64 each. VERY SPECIAL OFFER. AVO Transistor Ana-
lygers in superb condition ONLY $\in 30$ each. SUPERB BUYS. Fion IIl V200 Val SUPERB 8 UYS. Furzehill V200A Valve millivolt meter 10 mv to 1 kv . E 10 ea . Furzehill Valve volt-
nueter $378 \mathrm{~B} / 2$. 10 mv to 100 volts $£ 7$ ea. MEGA Ohm Meters-check earths, bonding etc. Ridiculous at ES ea.
SUNVIC DC Amplifier type DCA1, Thermo-couple etc. 69 ea.
Genuine MULLARD Transistors/Diodes. Tested
and guaranteed. OC41, 42. 76, 77, 83; OA5, 10. All and guaranteed. OC41, 42. 78, 77, 83; OA5, 10. All
at 5p ea. OC23-10p es. COMPONENT FACK consisting of $2-2$ pole
2 amp push on of splation

THANSISTOR EHT INVERTORS. 12 volt in t/eal or papplied. Brand new at $£ 6.50$ ea. P. \& P. 25 p . A liso, as above but 1.5 KV AC $20 \mathrm{kc} / \mathrm{g}$. $63 \cdot 50$. P. \& Prnel switches DPDT ex eq. 13p ea.; DPST Brand ng
To en.; DPST twice, brand new 25p ea. 1to ea.: DPST twice, brand new 25p ea.
\qquad

Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Casit wrin Order
FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd units, etc., at 'Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day.

CHILTMEAD LTD.

7-9-11 Arthur Road - Reading . Berks . Tel. No. 582605 (rear Tech. College) 300 yds. west of 22 Sun Street . Reading 65916

Postal Strike

IPC BUSINESS PRESS LTD.
DORSET HOUSE
STAMFORD STREET
LONDON S.E.I
Advertisers and Agencies who have Accounts payable for advertising in the Company's publications are kindly asked to settle these through the Bank Giro System.

The Transfer Form, obtainable from all Banks, should be completed as follows:-

Code No. 18-00-09
Bank Coutts \& Co.
Branch Fleet Street, London E.C. 4
Account IPC Business Press Ltd.
A/c No. 65548059
Paid in by Name and Address

Optional Extras. SONY AC-90e AC adaptor $\mathbf{£ 4 . 0 0}$ DCC-120 sidualised car battery cord $\mathbf{£ 6 . 0 0}$.
 are achieved by two dual-concentric controls at the front including: ON-OFFAUTO and AUTO ALARM, "sleep" switch, 10 minute division "click" set alarm (up to 12 hour deay) long life. The sleep switch will in conjunction with the AUTO setting will switch on the appliance again next morning.
 50 Hz operation. switch rating 250 V . 3 A. Complete with instructions. HUNDREDS OF APPLICATIONS

OMPLETE WITH KNOB
 LAS KY'S PRICE £6.95 ${ }_{\text {P\&P18p }}$

SPECIAL QUOTATIONS

LASKY'S TM5 METER

quality and value The "slimline" impact reststant case-size 4 娄in.
 is superıor on all low ranges: making this an excellent instrument fo
servicing transistorised equipment. Recessed click stop selection switch. Ohms zero adjustment. Buff finish with crystal ciear meter

- DC/V: 3-15-150-300-1,200 at 5K ohms/V
- AC / V : 6-30-300-600 at 2.5 K ohms $/ \mathrm{V}$
- DC Current 0-300 A A $0-300 \mathrm{~mA}$
- Resistance: 0-10K ohms, 0-1 M ohms
- Decibels:-10dB to 16 dP

LASKY'S PRICE £2.95

MIDLAND 10-406
 AM/AIRCRAFT RADIO

The first pocket size receiver of its type allowing you to tune-in MHz in addition to full AM medium wave. Intermediate frequencies: $A M 455 \mathrm{KHz}: V \mathrm{HF} 10.7 \mathrm{mc} / \mathrm{s}$. Output power: $200 \mathrm{mV} 2 \frac{1}{2} \mathrm{in}$. P.D. B ohm speaker. A built in ferrite rod aerial is provided for AM reception. The $10-406$ is finished in blue with chrome trim, chrome telescopic

LASKY'S PRICE £8.35 P\&P $13 p$

207 EDGWARE ROAD, LONDON.W. 2.
 33 TOTTENHAM CT. RD, LONDON, WIP GRB
 109 FLEET STREET, LONDON, E.C. 4.
 152/3 FLEET STREET, LONDON E.C.4.
 HIGH FIDELITY AUDIO CENTRE
 42-45 TOTTENHAM CT. BD, LONDON. WIP GRD.
 MAIL ORDERS AND CORRESPONDENCE TO 345 CAVELL STREET LONDON. E1 2BN

EX-STOCK TRANSFORMERS

\star A typical selection only is shown below. Please send for full lists.
\star Speedy production winding service offered.

All ratings are continuous. Standard construction: Open with solder tags and wax impregnation. Enclosed styles to order.

Also stocked: VALVES
SEMICONDUCTORS MULTIMETERS

* Carriage via B.R.S. TERMS OF BUSINESS: CASH WITH ORDER

BARRIE ELECTRONICS

11 MOSCOW ROAD • QUEENSWAY LONDON, W. 2
Telephone:
Nearest Tube Stations:
$01-2296681 / 2$ or 5501128
Bayswater, Queensway

1				$\begin{aligned} & \text { KT88 } \\ & \text { N78 } \\ & \text { OA2 } \\ & \text { OB2 } \\ & \text { PABC80 } \end{aligned}$	$\begin{aligned} & 1.75 \\ & 1.25 \\ & 0.35 \\ & 0.35 \\ & 0.37 \end{aligned}$
	4			${ }^{\text {PC97 }}$	0.40
B12H	1.75	ECH84	0.37	PC900	0.47
CY81	0.35	ECH200	$0 \cdot 62$	PCC84	0.87
DAF96	0.38	ECL80	0.45	PCC89	0.45
DF96	0.37	ECL82	0.32	PCC189	0.55
DK96	0.41	ECL83	0.65	PCE800	0.75
DL92	0.82	ECL88	0.40	PCF80	0.30
DL94	0.40	EF36	0.17	PCF82	$0 \cdot 33$
DL96	0.41	EF37A	0.45	PCF84	0.46
DM70	$0 \cdot 30$	EF39	0.40	PCFB6	0.67
DY86	0.30	EF40	0.50	PCF200	0.77
DY87	$0 \cdot 32$	EF41	0.62	PCF201	0.77
DY802	0.48	EF80	0.25	PCF801	0.48
E88CC/01	1-35	EF83	0.47	POF802	0.48
E18ACC	0.45	EF85	0.32	PCF805	0.72
Elsicc	0.45	EF86	0.81	PCF806	$0 \cdot 65$
E182CC	1.15	EF89	0.26	PCF808	0.72
EABC80	0.32	EF91	$0 \cdot 15$	PCH200	0.70
EAF42	0.50	EF92	0.37	PCL81	0.47
EB91	$0 \cdot 10$	EF96	0.25	PCL 82	0.37
EBC33	$0 \cdot 50$	EF183	0.32	${ }^{\text {PCL } 83}$	0.85
EBC41	0.52	EF184	0.35	PCL84	0.42
ECC81	0.20	EFL200	0.77	PCL85	0.42
EbF80	0.37	EL34	0.51	PCL86	0.42
EbF83	$0 \cdot 30$	EL41	0.57	PFL200	0.57
EBF89	0.30	EL42	0.52	PL36	0.53
ECC81	0.20	EL84	0.23	PL81	0.50
ECC82	0.28	EL85	0.36	PL, 82	0.40
ECC83	0.27 0.30	EL86	0.40	PL83	0.42
${ }_{\text {ECC88 }}$	0.30 0.80	EL90	0.30 0.35	PL884	0.42 0.35
ECC88	0.60 0.37	${ }_{\text {ELL }}$	0.35 0.85	PL500	0.78
ECC88	0.35	EM31	0.25	PL504	0.68
ECC189	0.48	EM80	0.40	PY33	0.60
ECF80	0.32	EM84	0.35 0.55	PY80	0.35
ECF8\%	0.32	${ }_{\text {EY }}^{61}$	${ }_{0} 0.40$	PY81	0.27
ECF83	0.77	EY86	0.35	PY82	0.27
ECF801	0.82	EY81	0.85	PY83	035
ECPB02	0.62	EY88	0.40	PY88	0.37
ECH35	0.60	EZ41	0.42 0.25	PY800	0.58
ECH42	0.65	EZ81	${ }_{0} .27$	PY801	0.8
ECH81	0.28	GZ34	0.58	QQvo	
ECH83	0.42	KT66	$1 \cdot 80$	3-10	1.25

INTEGRATED CIRCUITS RCA
$\xrightarrow{R} \mathrm{CA}$
CA 3005 wide band R.F. Ampl. 1.35
CA 30012 wiss band ampl. is0mW $\$ 1.35$

STC
MIC 93018 Digital dual 4 input gates $\mathbf{6 4 . 3 0}$
MIC $709-1 C$ Linear operational ampl.
E9.50 MIC
MIC 909 -1C Linear operational ampl.
Hightpeed flip-flop
E2.70 $\begin{array}{lll}\text { GA } 230 \text { E1 12; PA } 234 ~ & \mathrm{El} \text {; PA } 237 & £ 1.87\end{array}$

 VALVE VOLTMETER TYPE TF 958
Measures $A C 100 \mathrm{mV}: 20 \mathrm{c} / \mathrm{s}$ to $100 \mathrm{me} / \mathrm{s}$ Measures AC 100 mV : $20 \mathrm{c} / \mathrm{s}$ to $100 \mathrm{me} / \mathrm{s}$,
DC 50 mV to 100 V , multiplier extends ac range to 1.5 kV . Balanced input and centre-
zero scale for DC. AC up to 100 MHz . 232.50 .
$885 A 1$
25 Hz to 5 tively, fine and square wave output up to
3 Iv. $£ 55$ and 885 resp. Carriage $£ 1.50$

PRECISION VHF FREQUENCY METER TYPE 183. 20-300 Mc/s with accuracy 0.03% and $300-1,000 \mathrm{Mc} / \mathrm{s}$
with accuracy $0.3 . \%$. Additional band on harmonies $5.0-6.25 \mathrm{Me} / \mathrm{s}$ with ac-
curacy $+2 \times 104$. Incorporating calibrating quartz $100 \mathrm{kc} / \mathrm{s}+-5 \times$ $10-6120 / 220$ v. A.C. mains. 485. Carriage 22 .
MUIRHEAD.WIGAN DECADE OSFrequency range supply $100-250 \mathrm{~V}$. D.C.
± 5 o. $\%$. Power suracy
65 and 75 respectively, carr. fl .75 . REDIFON
Twinplex combiner type AFS 13 £65 Twinplex converter type AFS 12 with F.S.K. unit type GKI85A $\mathbf{~ 5 8 . 5 0 .}$

Bizizize
SPECIAAL OFER TRANSISTORS, ZENER DIODES

 AF127
AF139
AF178
AF186
AFY19
A8Y26
ASY28
ASY67
BAW1
BC107
BC108
BC113
BC118
BCY72
BF115
RF173
BF187
BFYb
BFY52
B805
RS
B82
BYY2
BYU100
BYZ13
 CRS
CRS
CRS
CRS
CRS
CR8
CRS
CRS
GE
GE
GE
GE
NK
NK
SD9
SD9
SD9
SD9
SD9
V40
ZE
DIO
All
AW MANF OTAERSINSTOCK inctude Cathode Ray Tubes and
Special Valves. U.K. P. P.: Up to 50p, 5p; to \&1. 10p; over

 2
0.28
0.20
0.55
0.48
0.15
0.55
0.75
1.00
0.15
0.70
0.35
0.25
0.17
0.25
0.40
0.40
0.42

 COMMR the valye with a guarantee

PLEASE NOTE Unesustess ALL EQUIPMENT
MARCONI TEST EQUIPMENT

Limited aty. SIGNAL GENERATOR TF $801 /$ a.
only
able. Fullspec able. Fullspec $10-300 \mathrm{Mc} / \mathrm{s}$. in 4 bands. Internal at 400
and price on $\mathrm{c} / \mathrm{s} \mathrm{l} \mathrm{kc} / \mathrm{s}$. External $50 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$.
reques

TF 14G SIGNAL GENERATOR. To clear. In very good "as seen" condition. SOLARTRON EQUIPMENT SOLARIRON EQUIPMENT
Regulated and stabilised P.S. U. SRS
151A, 20 to 500 V positive at 300 mA in
two ranges. Variable and fixed 170 V
negative output, $£ 35$. Carriage Cl.
CD 7115.2 . Double beam, DC to
7 MHz scope. 685 . Carriage $\mathrm{EI} \cdot 50$.
CD 643.2. Single beam Laboratory
Model, DC to 14 MHz price upon
application. SIGNAL GENERATOR TYPE CT pulse modulation and C.W. $\mathfrak{C} 65$. SIGNAL GENERATOR TYPE CT 478. As abo
ranges E55.

I $\frac{1}{2}$ in. DIA. PANEL METERS. $7 \frac{1}{2}-15 v$ -ideal for "Battery
BOONTON Q METER TYPE 160A. Freq. ${ }^{\text {range }} 50 \mathrm{kHz}$ to 75 MHz , main capaci-
tor 30 to 500 pF . Vernier capacitor $\pm 3 \mathrm{pF}$;
range. 0.250 with $25 \times$ metripler S_{85} range. $0-250$
NOISE GENERATOR CT 207. 100$600 \mathrm{M} / \mathrm{c}$ with buit--in 8 -minute timer
Complete with cables. $£ 57 \cdot 30$. MULLARD PRECISION VARIABLE
CAPACITORTYPE F. 2 CAPACITOR TYPE F. 2.
15 pF to 338 pF . Supplied SpF to 336 pF . Supplied with indivigual calibration certificate; Brand new, in
orizinal packing. Eli, Carriage 75 p SUSPENSION GALVANOMETERS
 75 ohms source £85. DI7TO but
801/A/I with additional high level
output. £89. Both P. \& P. \&I, in. cluding necessary connectors, plugs, and instruction manual. 12, SO, S5PF each 20,000y 30/E. \& \& P. 4/e
BRADLEYPORTABLE ELECTRONIC
MULTIMETERTYPE CT47IB. This MULTIMETER TYPE CTA7IB. This is fully transistorised and measures A.C.
and D.C. current. A. C. and D.C. Voltage and D.C. current, A.C. and b.C. Voltage
and D.C. resistance. Built-in battery check
and calibration check. Full spec. and price and calibration check. Full spec. and
on request.
As above but MODEL CT 47IA manu A; above but MODEL CT 47 IA manurequest. 8 bank 25 way uniselectors 24V, guaranteed perfect, $£ 3.75$; C4.50; 66.87 respectively. AR88 SPARES. We hold the largest stock
in U.K. Write for list.

Open 9-12.30, 1.30-5.30 p.m. * except Thursday 9-1 p.m.

AM/FM SIGNAL GENERATOR TF 937 (CT 218) Frequency range $85 \times \mathrm{Hz}$ -
30 mHz . 8 bands. Main dial total 56 foot. Built in crystal calibrator 200 kHz and 2 mHz . RF output $1 \mu \mathrm{~V}$ to 1 V . Four internal C.M. DEVIATION METER TYPE TF934. Frequency range $2.5-100 \mathrm{MHz}$. Can be used up to 500 MHz . Deviation
range $0-75 \mathrm{kHz} £ 67 \cdot 50$. Carriage $\mathrm{fl} \cdot 50$.

HARNESS "A" \& "B" control units, junction boxes, headphones, microphones, etc
29/41FT. AERIALS each consisting of ten 3 ft., i in. dia. tubular screw-in sections. lift. (6-section) whip aerial with adaptor to fit the 7 in . rod, insulated base, stay plate and stay assemblies. pegs, reamer, hammer, etc. Absolutely in canvas bag, f4. P. \& P. EO-50.
FIELD TELEPHONE TYPE '"F" Excellent for communication in and our doors for up to 10 miles. Pair including batteries, fully tested. $\mathbf{6 6 . 5 0}$, or with 220 yds. field cable in drum $\mathbf{£ 7 . 5 0}$.

FOR EXPORT ONLY 53 TRailable. COLLINS TC5. Complete
apmer installations and spare parts. 5 KW
COLLINS
TRANSMITTERS.
2JID tune and manual tuning. Complete specification and price on application. Complete instaliations and ali H.P. SETS and all spares R 210
RECEIVERS with all necessary
accessories.
PYE PTC 2002 N A.M. Ranger
Mobile Radio Telephone, brand
Mobile Radio Telephone, brand
new and complete, $£ 45$.

COLOMOR (ELECTRONITS)

 I70 Goldhawk Rd., London, W. 12 Tel. 01-7430899
SERVICE TRADING CO

INPUT 230 v. A.C. 50/60 OUTPUT VARIABLE 0/260 v. A.C. BRAND NEW. Keenest prices in the country. All types (and spares) from $0-260 \mathrm{v}$ at I amp. $0-260 \mathrm{v}$. at 2.5 amps 65.50 $0-260 \mathrm{v}$. at 5 amps . $0-260 \mathrm{r}$ at 10 amps. $0-260 \mathrm{v}$ at 15 amps . $0-260 \mathrm{v}$. ac 25 amps . $0-260 \mathrm{v}$. at 37.5 amps $0-260 \mathrm{v}$. at 50 amps . 20 Different types available for immediate delivery.

IAMP

 5 K ohm. All at \&1-12, P. \& P. II P25 WATT $10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{l}$

OPEN TYPE (Panel mounting). $\frac{1}{2}$ amp. $\mathbf{6 3 . 9 3}$

L.T. TRANSFORMERS

Alf primaries $\mathbf{2 2 0 - 2 4 0}$ volts
Type No.

	Sec. Taps	Price	Carr.
	12 V at 5A	¢1.88	28p
2	$30,32,34,36$ v. at 5 amps .	14.68	45p
3	30, 40, 50 v . at 5 mmps .	66.88	45p
4	$10,17,18 \mathrm{v}$. at 10 amps .	64.95	45p
5	$6,12 \mathrm{v}$ at 20 amps .	66.43	45p
6	$17,18,20 \mathrm{v}$. at 20 amps .	E7.28	55p
7	$6,12,20 \mathrm{v}$. at 20 amps .	¢6.88	55p
8	24 v . at 10 amps .	¢5-23	35p
9	$4,6,24,32 \mathrm{v}$ at 12 amps	E7.15	45p

$\overline{A U T O} \overline{T R} \overline{A N S F O R M E R S .}$ Step up, step down. A10-200-220-240 v. Fully shrouded. New. 300 watt type $63 \cdot 63$ each. P. \& P. 35 p . 500 watt type $65 \cdot 13$ each.
P. \& P. 45 P . 1,000 watt rype $£ 7 \cdot 13$ each. P. \& P. 55 p .
LIGHT SOURCE AND PHOTO CELL MOUNTING
Precision engineered light source

- $\mathrm{E}=$ with adjustable lens assembly and 17 MBC but lamp housing to tak ORP. 12 or similar cell with optic window. Both units are single hole fixing. Prise per pair $\mathbf{£ 2 . 7 5}$ plus 18p. LIGHT SENSITIVE SWITCHES Kit of parts including ORP. 12 Cadmium Circuit. Now supplied with new Siemen High Speed Relay for 6 or 12 volt operations. Price El-25, plus 12p P. \& P
ORP. 12 and Circuit 63 p post paid 220/240 A.C. MAINS MODEL
incorporates mains transformer rectifier and special elay with I make, break, H.D. contacts. Price inc. circuit E2.38, plus 20p P. \&

(B) ROWER
 (NEW) Ceramic construction, wind-

 Enamel, heavy duty brush assembly designed for continuous duty AVAILABLE FROM STOCKIN THE FOLLOWING II VALUES: 100 WATT I ohm 10a., 5 ohm 4.7 a ., 10 ohm 3 a ., 25 ohm 2a., 50 ohm l.4a., 100 ohm la., 250 ohm -7 a ., $500 \mathrm{ohm} \cdot 45 \mathrm{a}$., 1 k ohm 280 mA ., 1.5 k ohm 230 mA .2 .5 k ohm $-2 \mathrm{a} ., 5 \mathrm{k}$ ohm 140 mA ., Diameter 50 WATT $1.12 / 10 / 25 / 50 / 100 / 250 / 500 / \mathrm{KK} / 1.5 \mathrm{~K} / 2 \cdot 5 \mathrm{~K} /$

All at 78p, \& P 15 p .
Bla Silver Skirth
Black Siliver Skirted knob calibrated in Nos. 1-9. I $\frac{1}{2}$
in. dia. brass bush. Ideal for above Theostats, 18p ea
UNISELECTOR SWITCHES NEW 4 BANK 25 WAY FULL WIPER
$25 . \mathrm{hm}$ coil. $24 \mathrm{v} . \mathrm{D}$.
65.88 , plus 22 p P. $\&$.
6 BANK 25 WAY FULL

WIPER 25 ohm coil, 24 v . D.
 operation. 66.50, plus 22p P. \& P

8 BANK 25 WAYFULL WIPER $24 \mathrm{v.D.C}$ operation. 77.63 , plus $22 \mathrm{p} P \cdot$ \& \& M . MINIATURE UNISELECTOR homing bank 40 ohm coil. 24.36 v D.C. operation. Carefully removed from equipment and
tested. $£ 1 \cdot 13$, plus 15 P P. \& P.
NICKEL. CADMIUM BATTERY 1.2 v. 35 AH. Size 80 bigh $\times 3 \times 10$. $£ 1.50$ each, plus 20 p P. \& P. P . Cadmium Type 1.2 v. 7AH. Size: height $3 \frac{1}{2}$ in width 2 itin. \times I 亲in. Weight: approx. 13 ozs. Ex-R.A Tested 63p. P. \& P. 15p.

Smotisirioderiove

 * post paid wrh kits. MOTOROLA MACII/6 PLASTIC TRIAC 400 PIV 8 AMP
Now available EX STOCK supplied complete with full data and applications sheet.
Suitable diac 30 (RCA40583)
ELECTRONIC ORGA \bar{N} KIT

5 Mex

Easy to build, solid less sharps and flats) (less sharps and flats)
fitted hardwood case powered by two pen Complete set of parts including speaker, etc., together
with full instructions and 10 tunes. $63 \cdot 00$. P. \& P. 25p 50 in T ELECTRONIC PROJECT KIT 50 easy to build Projects. No soldering, no special tools required. The Kit includes Speaker, meter, Relay, page instruction leaflet. Some examples of the 50 possible Projects are: Sound level Meter. 2 Transistor Radio

HIGH FREQUENCY

TRANSISTORISED MORSE OSCILLATOR Adjustable tone control. Fitted with moving coil speaker also earpiece for personal monitor
morse key. 62.25 plus 15 p p. \& p.

SEMI-AUTOMATIC "BUG" SUPER SPEED MORSE KEY 7 adjustments, precision cooled, speed adjustable $10 \mathrm{w} . \mathrm{p} . \mathrm{m}$. to as high as desired. Weight $2 \frac{1}{2} \mathrm{lb}$. 84.63 P. \& P. 15p.

RECHARGEABLE NICKEL CAD. BUTTON CELLS. connected or give $2.4 / \mathrm{v}$, at 25 mickel Cad. Cells,
camp/lo hour rate complete with $200 / 250$
unused. Price 48 p each plus nits for $\mathbf{E 1}-00$ post paid
$\overline{12-28} \overline{\text { VOLT D.C. BLOWER UNIT }}$
Powerful, smooth running, precision made Blower Unit. 5,000 RPM, 54 amps Size $3^{\prime \prime}$ diameter $x 3$ lon $^{\prime \prime}$ long over all.

Price $\mathbf{E 2} .00$ post paid

SA $\sqrt{/ / 4}$ MULTI RANGE TESTERS
 NEW MODEL U-50DN MULTI TESTER, 20,000 O.P.V. MIRROR SCALED WITH OVERLOAD PRO. TECTION. Ranges: O.C. volts: 100 mV $0.5 \times .5 \times 250$ v. 1,000 v. A.C. volts 50 mA 250 mA Size $51 \times 31 \times 12$. Complete with batteries $\quad £ 8.00$ TEN OTHER MODELS FROM STOCK. LEAFLET
 $$
-12 \text { VOLT DC MOTOR }
$$
 $$
\text { Powerful } 12 \text { vole } 1 \text { amp REVERSIBLE }
$$
 $$
\begin{aligned} & \text { motor. Speed } 3,750 \mathrm{rpm} \text {. Complete } \\ & \text { with external gear train (removable) } \end{aligned}
$$
 $$
\begin{aligned} & \text { giving final speed of } 125 \text { RPM. Size } \\ & 4 \frac{1}{4} \mathrm{in} . \times 2 \frac{1}{2} \text { in. dia. Price inc. post } 95 \mathrm{p} \text {. } \end{aligned}
$$

 230 v. GEARED MOTOR 6 R.P.M.
 230 v. A.C. non-reversible, approx

200-250 v. | R.P.M. MOTOR

Dimensions: $4^{\prime \prime} \times 3^{\prime \prime} \times 2$

Spindle length
200/250v. $\frac{1}{4}$ RPM Motor (Mfg by Smith Price 75p inc. post) BODINE TYPE N.C. 1
GEARED MOTOR
(Type I) 71 r.p.m. torque 10 lb . in.
Reversible l/70th h.p. 50 cycle .38
mp. (Type 2) 28 r.p.m. corque 20
b. in Reversible $1 / 80$ th h.p. 50 cycle .28 amp

The above two precision made U.S.A. motors are offered in 'as new' condition. Input voltage of motor 115 A.C. Supplied complete with transiormer for
$230 / 240 \mathrm{v}$. C. input
Price, either type $£ 3.15$ plus 35 p P. \& P. or less trans
Price, either type $£ 3 \cdot 15$ plus
former $£ 2 \cdot 13$ plus 27 p . \&
These motors are ideal for rotating aerials, drawing
urtains, display stands, vending machines etc. etc.

VITAVOX

FOR HICH QUALITY
 MICROPHONES
 LOUDSPEAKERS

and ancillary equipment

Further information from:
VITȦvoX LTD., Westmoreland Rd., London, NW9 5YB (Tel: 01-204 4234)

Radio and Audio Servicing Handbook

2nd Edition
Gordon J. King AssoclERE, MIPRE, MRTS.
This book is a practical guide to the servicing of radio receivers and audio equipment of all types, and is intended especially for the service technician. Many others, however, find it of absorbing interest, among them students, hi-fi and recording enthusiasts, amateur experimenters, radio dealers and sound engineers.
040800018×284 pages illustrated $1970 \quad £ 3.00$ (60s)
Radio Valve and Transistor Data
9th Edition
Edited by A. Ball
First published in 1949 this book has become an indispensable source of information for all those interested in electronic engineering, from the home constructor to the research worker. Exhaustively revised and updated, the useful and tomprehensive information contained in this new edition will add to the already considerable reputation enjoyed by this highly successful book.
$059205796 \quad 6 \quad 256$ pages illustrated $1970 \quad \mathbf{~ 0 0 . 7 5 ~ (1 5 s) ~}$
Available from leading booksellers or

日

The Butterworth Group
88 Kingsway, London WC2B 6AB

WW-116 FOR FURTHER DETALLS

LATEST RELEASE OF

RCA COMMUNICATION RECEIVERS AR88

BRAND NEW and in original cases-A.C. mains input. 110 V or 250 V . Freq. in 6 bands $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$. Output impedance 2.5-600 ohms. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control, R.F. \& A.F. variable controls. Price $£ 87.50$ each, carr. £2.
Same model as above: Fully Recond. by M.O.D. £65 ea., or sec. hand cond. (guaranteed working order) from $£ 45$ to $£ 60$, carr. $£ 2$.
*SET OF VALVES: new, $\mathbf{\text { L3 }} 50$ a set, post 37p; SPEAKERS: new, $£ 3$ each, post 50p. *HEADPHONES: new, $£ 1.25$ a pair, 600 ohms impedance. Post 25 p.
AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L55. Price 50p each, post 13p. RF Coils 13 \& 14; 17 \& $18 ; 23 \& 24$; and 27 and 28. Price 63p each. 13p post. By-pass Capacitor K. $98034-1,3 \times 0.05 \mathrm{mfd}$. and M. $980344,3 \times 0.01 \mathrm{mfd}$., 3 for 50 p, post 13 p. Trimmers $95534-502,2-20$ p.f. Box of 3, 50p, post 13 p. Block Condenser, $3 \times 4 \mathrm{mfd}$., $600 \mathrm{v} ., £ 2$ each, 20 p post. Output transformers $901666-501 \mathrm{£1} \cdot 37$ each, 20 p post.

- Available with Receiver only.

If wishing to call at Stores, please telephone for appointment.

3-B TRULOCK ROAD, LONDON, N17 OPG
Phone: 01-808-9213

TRIPLETT SIGNAL GENERATOR Model 1632: Contains an R.F.
Oscillator calibrated in 10 fundamental bands, covering a freq. of $100 \mathrm{Kc} / \mathrm{s}$ $120 \mathrm{Mc} / \mathrm{s}$. Also a buffer amplifier and modulator stage, a metering system, crystal Oscillator stage, and a self-contained Heterodyme Detector. The wide frequency range covers broadcast, standard short-wave, T.V. and FM channels. Operates $115 \mathrm{a.c} ..50 / 60 \mathrm{c} / \mathrm{s}$. Output Meter $0-0.3$. Controls: Ext. Mod.;
Int. Mod.; CW; Het. Det.; Xtal.; AFO/put; RF Level; O/put Units; and Int. Mod.; Citict Het. Det. ; Xtal.; AF Multipier. Slow and Fast motion dial. Price £12.50 very good secondhand cond. Carr. 75p.

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms $100 \mathrm{mV}-1$ volt -52.5 ohms. Internal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}$, $40-100 \mathrm{c} / \mathrm{s}$. Consumption approx. 40 watts. Measurements $29 \times$ $12 \frac{1}{4} \times 10$ in. New condition. $£ 45$ each, carr. $£ 1 \cdot 50$.
VRC. 19 X Trans-ceiver, $150-170 \mathrm{Mc} / \mathrm{s}, 2$ Channel, 20 Watts , Output $12 / 24 \mathrm{~V}$ d.c. operation. General Electric Transmitter, $410-419 \mathrm{Mc} / \mathrm{s}$, thin line tropo scatter operation. General Electric Transmitter, $410-419 \mathrm{Mc}$, with antennae. W.S. Type 88, Crystal controlled, $40-48 \mathrm{Mc} / \mathrm{s}$. W.S. Type $\mathrm{MF}-156, \mathrm{Mk} . \mathrm{II}$, Crystal controlled, $2.5-7.5 \mathrm{Mc} / \mathrm{s}$. W.S. Type 62 , tunabie, $1.5-12$
Mc / s. C. 44 , Mk. II, Radio Telephone, Single Channel, $70-85 \mathrm{Mc} / \mathrm{s}$, 50 watts, Mc/s. C. 44, Mk. II, Radio Telephone, Single Channel, $70-85 \mathrm{Mc} / \mathrm{s}, 50 \mathrm{watts}$,
output, 230 V . a.c. input. G.E.C. Progress Line Tx Type DO36, $144-174 \mathrm{Mc} / \mathrm{s}$, 50 watt, narrow band width. A.C. input 115 V . BC-640 Tx, $100156 \mathrm{Mc} / \mathrm{s}$, 50 watt output, 110 V or 230 V input. STC Tx/Rx Type 9X, TR1985; RT1986; TR1987 and TR1998, $100-156 \mathrm{Mc} / \mathrm{s}$. TRC-1 Tx/Rx, Types T. 14 and R.19,
 Solins Tx/Rx Type ARC-27, 200-400 Mc/s, 28V d.c. With associated equipment available. ARC-5; ARC-3; and ARC-2 Tx/Rx. BC-375; 433G; 348; 718; 458; 455 Tx/Rx. Directional Finding Equipment CRD. 6 and FRD. 2 complete Sets available and spares. Complete system with full set of Manuals.
SOLARTRON OSCILLOSCOPE TYPE CD. 1015: D.C. to $21 \mathrm{Mc} / \mathrm{s} . \mathrm{YX}$ amplifier, triggering facilities, external calibrator, display 3 in in. tube. Mains 100 amplifier, triggering facilit
250 V . Price $£ 85 \mathrm{carr} . £ 2$.

SOLARTRON PULSE GENERATOR GP1101.2: Period- 2 microsecs to 100 msec ; Pulse Duration- 1 microsec to 100 msec ; Delay time- 1 microsec to 10 msec . All continuously variable in 5 ranges with fine control. Accuracy
$+10 \%$. Puise Amplitude $0.5 \mathrm{~V}-100 \mathrm{~V}$. Accuracy $+10 \%$ continuously variable $\pm 10 \%$. Pulse Amplitude- $0.5 \mathrm{~V}-100 \mathrm{~V}$. Accuracy $\pm 10 \%$ continuously variable in 4 ranges with fine control. Double Pulses; Pre-Pulse; Triggering; Square Wave O/put; Squaring Amplifier. Inpur- $100-250 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}$. New condition
with Manual. Price: 885 each $+£ 1 \cdot 25 \mathrm{carr}$.

USM-24C OSCILLOSCOPE: 3 in. oscilloscope with $2 \mathrm{e} / \mathrm{s}$ to $10 \mathrm{Mc} / \mathrm{s}$ vertical response, and $8 \mathrm{c} / \mathrm{s}$ to $800 \mathrm{Kc} / \mathrm{s}$ horizontal response. Sensitivity 50 mv . rms inch. Triggered sweep, built-in trigger pulses and markers. Mains input each, carr. £2.

OS-46/U OSCILLOSCOPE: A general purpose oscilloscope suitable for measuring signals from $0-1000 \mathrm{~V}$ d.c. to over $50,000 \mathrm{c} . \mathrm{p} . \mathrm{s}$. (Further details on request, S.A.E.) $£ 35$ each, carr. $£ 1.50$.

SIGNAL GENERATOR TS-510A/U: (Hewlett Packard). A generalpurpose signal generator designed to furnish signals with a very low spurious
energy content, suitable for alignment of narrow-band amplitude modulated receivers. It may be amplitude modulated by internally generated sine waves or by externally applied sine waves or pulses. Freq. Range- $10-420 \mathrm{Mc} / \mathrm{s}$ in 5 bands, $\pm 0.5 \%$ accuracy. Emission-AM, CW, Pulse. O/put Voltage $-0.1 \mathrm{~N}-$ 0.5 V , calibrated $\pm 2 \mathrm{db}$ accuracy. Modulation-Internal $400,1000 \mathrm{c} / \mathrm{s}$ ($0-$ 90%). Built-in Crystal calibrator ($1,5 \mathrm{Mc} / \mathrm{s}$). Price: $\mathbf{£ 1 5 0}$ each, complete with transit case, manual and all leads; OR E125 each, Sig. Gen. only. Carr. both types £2.

SIGNAL GENERATOR TS-403B/U (or URM-61A): (Hewlett Packard). A portable, self-contained, general-purpose test equipment designed for use with radio and radar receivers and for other applications requiring small amounts of RF power such as measuring standing-wave ratios, antenna and transmission line characteristics, conversion gain, etc. Both the output freq. and power are indicated on direct-reading dials. $115 \mathrm{~V}, \mathrm{AC}, 50 \mathrm{c} / \mathrm{s}$. Freq.-
$1800-4000 \mathrm{Mc} / \mathrm{s}$. CW, FM, Modulated Pulse- $40-4000 \mathrm{puses}$ $1800-4000 \mathrm{Mc} / \mathrm{s}$. CW, FM, Modulated Pulse-40-4000 pulses per sec. Pulse secs from external or internal pulse. O/put-1 milliwatt max., 0 to - 127 db variable. O/put Impedance- 50Ω. Price: $\mathbf{£ 1 2 0}$ each $+£ 2$ carr.

SIGNAL GENERATOR TYPE 902: (P.R.D.). A portable, general-purpose, broadband, microwave signal generator designed for testing and maintenance of aircraft radio and radar receivers in the SHF band. The RF output level is regulated by a variable attenuator calibrated in dbm. The frecuency dial is calibrated in Mc / s. Provision is made for external modulation. Power Supply$115 \mathrm{~V}, \pm 10 \% \mathrm{~A} . \mathrm{C} ., 50 \mathrm{c} / \mathrm{s}$. Freq.- $3650-7300 \mathrm{Mc} / \mathrm{s}$. Internal Transmission CW, Pulse, FM. External Transmission-Square Wave, Pulse. Power O/put0.2 milliwatts. O/put Attenuator: -7 to -127 dbm . Load- 50Ω. Price £135 each $+£ 2$ carr

TEST SET TS-147C: Combined signal generator, frequency meter and power meter for $8500-9600 \mathrm{Mc} / \mathrm{s}$, CW or FM signals of known fry. and power
or measurement of same. Signal Generator. O/put 7 to or measurement of same. Signal Generator: O/put -7 to - 85 dbm. Trans-
mission-FM, PM, CW. Sweep Rate- $0-6 \mathrm{Mc} / \mathrm{s}$ per microsec. Deviation$40 \mathrm{Mc} / \mathrm{s} \mathrm{per} \mathrm{sec}$. Phase Range Rate- $\mathbf{3}-50 \mathrm{mic}$. $40 \mathrm{Mc} / \mathrm{s}$ per sec. Phase Range- $3-50$ microsec. Pulse Repetition Rate-to
4000 pulses per sec. RF Trigger for Sawtooth Sweep- $5-500$ watts peak 40.2-6 pulses per sec. RF 1 rigger for Sawtooth Sweep- $5-500$ watts peak.
microsec. duration, 0.5 microsec pulse rise time. Video Trigger for Sawtooth Sweep-Positive polarity, $10-50 \mathrm{~V}$ peak. $0.5-20$ microsec duration at 10% max. amplitude, less than 0.5 microsec rise time between 90% and 10% max. amplitude points. Frequency Meter: Freq. $8470-9360 \mathrm{Mc} / \mathrm{s}$. Accuracy$+2.5 \mathrm{Mc} / \mathrm{s}$ per sec. absolute, $+1.0 \mathrm{Mc} / \mathrm{s}$ per sec. for freq. increments of less than $60 \mathrm{Mc} / \mathrm{s}$ relative, $\pm 1.0 \mathrm{Mc} / \mathrm{s}$ per sec. at $9310 \mathrm{Mc} / \mathrm{s}$ per sec. calibration point. Accuracy measured at $25^{\circ} \mathrm{C}$ and 60 humidity. Power Meter: Input: $\dagger 7$ to $+\mathbf{3 0} \mathrm{dbm}$. Output -7 to -85 dbm . Price: $\mathbf{£ 7 5}$ each $+£ 1$ carr.
SIGNAL GENERATOR TS-418/URM49: Covers $400-1000 \mathrm{Mc} / \mathrm{s}$ range. CW, Pulse or AM emission. Power Range- $0-120 \mathrm{dbm}$. Price: $\mathbf{1} 105$ each位
TELEMETRY AUDIO OSCILLATOR TYPE 200T: (Hewlett Packard): Freq.- $250 \mathrm{c} / \mathrm{s}$ - $100 \mathrm{Kc} / \mathrm{s}$. 5 over-lapping bands. High stability. O/put 160 mw
or 10 V into 600Ω Price: $\mathbf{£ 6 5}$ each $+1 \cdot 25$ carr.

SIGNAL GENERATOR TS-497B/URR: (Boonton). Freq. $2-400 \mathrm{Mc} / \mathrm{s}$ in 6 bands. Internal Mod. 400 or $1000 \mathrm{c} / \mathrm{s}$ per sec. External Mod. 50 to $10,000 \mathrm{c} / \mathrm{s}$ per sec. External PM. Percent Mod. O-30 for sine wave. Am or Pulse Carrier. O/put Voltage $0.1-100,000$ microvolts cont. variable. Impedance 50Ω.
Price: 885 each $+£ 1.50$ carr.

FREQUENCY METER TS-74 (same TS-174): Heterodyne crystal controlled. Freq. $20-280 \mathrm{Mc} / \mathrm{s}$. Accuracy $.05 \%$. Sensitivity 20 mV . Internal Mod. at $1000 \mathrm{c} /$ s. Power Supply - batteries 6 V and 135 V . Complete with calibration book. (Manufactured for M.O.D. by Telemax "As new" in cartons.) $£ 75$ each.
Fully stabilised Power Supply available at extra cost $£ 7.50$ each. Carr $£ 1.50$.

CT. 54 VALVE VOLTMETER: Portable battery operated. In strong metal case with full operating instructions. $2.4 \mathrm{~V}-480 \mathrm{~V}$. A.C. or D.C. in 6 Ranges, 1Ω to $10 \mathrm{Meg} \Omega$ in 5 Ranges. Indicated on 4 in . scale meter. Complete with
probe, excellent condition. $\mathbf{£ 1 2} \mathbf{5 0}$, carr. 75 p. probe, excellent condition. $\mathbf{E 1 2} \mathbf{5 0}$, carr. 75p.
CT. 381 FREQUENCY SWEEP SIGNAL GENERATOR: $85 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ and response curve indicator with 6in. CRT tube and separate power supply. Fully stabilised. Price and further details on request.

CANADIAN HEADSET ASSEMBLY: Moving coil headphones 100Ω with chamois leather earmuffs. Small hand microphone complete with switch and moving
coil insert. New Condition. $\mathbf{\varepsilon 1 . 7 5}$ each, post 25 p . coil insert. New
DLR. 5 HEADPHONES: $2 \times$ balanced armature earpieces. Low resistance.

ROTARY CONVERTERS: Type $8 \mathrm{a}, 24$ v D.C., 115 v A.C. @ 1.8 amps , $400 \mathrm{c} / \mathrm{s} 3$ phase, $\mathbf{5 6} \cdot 50$ each, post 50 p. 24 v D.C. input, 175 v D.C. @ 40 mA . output, $\mathbf{E 1 \cdot 2 5}$ each, post 20 p.
CONDENSERS: $40 \mathrm{mfd}, 440 \mathrm{v}$ A.C. wkg. $\mathrm{C5} \mathrm{each}, 50 \mathrm{p}$ post. 30 mfd 600 v wkg.
 1000 v. 63p each, post 13 p . 10 mfd 600 v . 43 p each, 25 p post. 8 mfd 2500 v . $£ 5$ each, carr. 63 p .8 mfd 600 v. 43 p each, post $15 \mathrm{p}, 8 \mathrm{mfd} .1 \% 300 \mathrm{v}$. D.C. $\mathbf{~} 1.25$, post $25 \mathrm{p}, 4 \mathrm{mfd} .3000 \mathrm{v}$. wkg. 83 each, post 37 p . 4 mff 2000 v . £2 each, post 25 ,
 TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price $£ 1 \cdot 25$, post 25 p.
SOLENOID UNIT: 230 v . A.C. input, 2 pole, 15 amp contacts, $\mathbf{8 2} \mathbf{5 0}$ each. post 30 p .
CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps, $\mathbf{~} 2-50$ each, carr. 75 p. OHMITE VARIABLE RESISTOR: 5 ohms, $5 \frac{1}{2} \mathrm{amps}$; or 40 ohms at 2.6 amps . Price (either type) $£ 2$ each, 25 p post each.
TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$'s; complete with filament transformer 230 v . A.C. Mounted in 19in. panel, $\mathbf{£ 4} 40$ each, carr. 75 p . POWER SUPPLY UNIT PN-12A: 230V a.c. input $50-60 \mathrm{c} / \mathrm{s}$. 513 V and $1025 \mathrm{~V} @$ 420 mA output. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V and 10 Mfd 600 V . Filament Transformer 230 V a.c. input. 4 Rectifying Valves type $5 \mathrm{Z3}$.
$2 \times 5 \mathrm{~V}$ windings @ 3 Amps each, and $5 \mathrm{~V} @ 6 \mathrm{Amp}$ and $4 \mathrm{~V} @ 0.25 \mathrm{Amp}$. Mounted $2 \times 5 \mathrm{~V}$ windings @ 3 Amps each, and 5 V @ 6 Amp and 4 V @, 0.25 Amp . Mounted
on steel base $19^{\prime \prime} W \times 11^{\prime \prime} \mathrm{Hx} 14^{\prime \prime} \mathrm{D}$. (All connections at the rear.) Excellent condition on steel base $19^{\prime \prime} \mathrm{W} \times 11^{\prime \prime} \mathrm{Hx} 14^{\prime \prime} \mathrm{D}$. (All connections at the rear.) Excellent condition $\mathbf{\varepsilon 6} 50$ each, carr. $£ 1$.
AUTO TRANSFORMER: $230-115 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}, 1000$ watts. mounted in a strong steel case $5^{\prime \prime} \times 6 \frac{2}{n}^{\prime \prime} \times 7^{\prime \prime}$. Bitumen impregnated. 86 each, Carr. $63 \mathrm{p} .230-115 \mathrm{~V}$ $50-60 \mathrm{c} / \mathrm{s}, 500$ watts. $7^{\prime \prime} \times 5^{\prime \prime} \times 5^{\prime \prime}$. Mounted in steel ventilated case. $\mathbf{~} 3.50$ each, Carr. 50p.
LT TRANSFORMER: PRI 230 V . Output 4×6.3 at 3 amps each winding, $3 \frac{1}{\prime \prime}^{\prime \prime} \times 4^{\prime \prime} \times 5^{\prime \prime}$. Fully shrouded $\mathbf{£ 1} \cdot 50$ post 50 p.
MODULATOR UNIT: 50 watt, part of BC- 640 , complete with 2×811 valves, microphone and modulator transformers etc. $\mathbf{£ 7} \cdot \mathbf{5 0}$ each, 75 p carr.
CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG1 (CV1526) colour green, medium persistence complete with nu-metal screen, $\mathbf{£ 3} \mathbf{5 0}$ each, post 37 p .
APNI ALTIMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s}$. , complete with all valves 28 v . D.C. 3 relays, 11 valves, price $£ 3$ each, carr. 50 p.
ANTENNA WIRE: 100 ft . long. $75 \mathrm{p}+25 \mathrm{p}$ post.
APN-1 INDICATOR METER, 270° Movement. Ideal for making rev. counter. $\mathbf{~} 1 \cdot 25$, post 25 p.
VARIABLE POWER UNIT: Complete with Zenith variac 0-230V., 9 amps .; $2 \frac{1}{2} \mathrm{in}$. scale meter reading $0-250 \mathrm{~V}$. Unit is mounted in 19 in . rack. $£ 15$ each, E1.50p carr.
AIRCRAFT SOLENOID UNIT D.P.S.T.: 24V, 200 Amps, $£ 2$ each, 25p post. RADAR SCANNER ASSEMBLY TYPE 122A: Complete with parabolic reflector (24 in . diameter), motors, suppressors, etc. £ 35 each, $£ 2$ carr.
DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms. Tolerance $\pm 1 \%$ £3 each, 25 p post. 90 ohms per step. 10 positions,
total value 900 ohms. 3 Gang. Tolerance $+1 \%$ £3.50 each, post 25 p.

MARCONI DEVIATION TEST SET TE-934; 25-100M (
MARCONI DEVIATION TEST SET 1F-934; $2.5-100 \mathrm{Mc} / \mathrm{s}$ (can be extended up to $500 \mathrm{Mc} / \mathrm{s}$ on Harmonics). Dev. Range $0-75 \mathrm{Kc} / \mathrm{s}$ in modulation range $50 \mathrm{c} / \mathrm{s}$ 15Kc/s. $100 / 250 \mathrm{~V}$. a.c. £45 each, 21.50 carr.
CRYSTAL TEST SET TYPE 193: Used for checking crystals in freq. range $3000-10,000 \mathrm{Kc} / \mathrm{s}$. Mains $230 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. Measures crystal current under oscillatory
conditions and the equivalent parallel resistance. Crystal freq. can be tested in conditions and the equivalent parallel resistance. Cry
conjunction with a freq. meter. $\mathbf{£ 1 2 \cdot 5 0}$ each, $£ 1$ carr.
LEDEX SWITCHING UNIT: 2 ledex switches, 6 Bank and 3 Bank respectively, 6 Pos.; 1 Manual switch, 16 Bank 2 Pos. 44 each, 50p post.

GEARED MOTOR: 24 c . D.C., current 150 mA , output 1 rpm, $\mathbf{f 1} 50$ each,
25p post. ASSEMBLY UNIT with Letcherbar Tuning Mechanism and 25p post. ASSEMBLY UNIT with Letcherbar Tuning Mechanism and potentiometer, $3 \mathrm{rpm}, \mathbf{\ell 2}$ each 25 p post. SYNCHROS: and other special
purpose motors available. List 3 p . purpose motors available. List 3p.
DALMOTORS:
$\mathbf{8 5}$ each, 50 p post.
GEARED MOTOR: 28 V d.c. 150 rpm (suitable for opening garage doors). e4 each, 50p post.
SMALL GEARED MOTOR: 24 V d.c., output 200 rpm . Meas'm'ts $1 \frac{1}{2} \mathrm{in}$. dia. $\times 3 \frac{1}{2}$ in. long. $\mathbf{~} 2$ each, 23 p post.

FUEL INDICATOR Type 113R: 24V complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in 3in. diameter case. Price $\mathbf{£ 2}$ each, 25p post.

COAXIAL TEST EQUIPMENT: COAXWITCH—Mnftrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type " N " female connectors fitted to receive UG-21/U series plugs. New in ctns., E6.50 each,
post 37 p . CO-AXIAL SWITCH-Mnfrs. Transco Producs Inc., Type M1460-22, 2 pole, 2 throw. (New) $\mathbf{~} 6 \cdot 50$ each, post 25 p. 1 pole, 4 throw, Type M1460-4. (New) $66 \cdot 50$ each, post 25 p .
PRD Electronic Inc. Equipment: FIXED ATTENUATOR; Type 130c,
$2 \cdot 0-10.0 \mathrm{KMC} / \mathrm{SEC}$. New $\mathbf{~} 55$ each, 2.0-10.0 KMC/SEC. (New) \&5 each, po
Type $1157 \mathrm{~S}-1$ (New) 66 each, post 25p.

MOVING COIL INSERT: Ideal for small speakers or microphones. Box of 3 £1, post 23 p .
HAND MICROPHONE: (recent design) with protective rubber mouthpiece. £2, post 23p.
MICROLINE IMPEDANCE METER MODEL 201: $5300-8100 \mathrm{Mc} / \mathrm{s}$. £75 each, $£ 1$ carr.
MICROLINE DIRECTIONAL COUPLER MODEL 209: $5260-8100 \mathrm{Mc} / \mathrm{s}$. 24DB. £12.50 each, post 35p

CALLERS BY TELEPHONE
APPOINTMENT ONLY

3-b TRULOCK ROAD, LONDON, N17 OPG
Phone: 01-808 9213

HI-FI, AUDIO AND TAPE RECORDER DEALERS AROUND THE BRITISH ISLES

CHESHIRE Stockport

AUDIO CENTRE

We stock the full range of Hi-Fi Tape Recorders and special Transistor Radios
Fairbotham and Co. Ltd. 58/62 Lr. Hillgate, Stockport Tel:061-480 4872
fULL SERVICE FACILITIES

ESSEX

IIford

UNIQUE RADIO LTD.

HI-FI \& PUBLIC ADDRESS
6 the facade, high road GOODMAYES, ESSEX
\qquad SEVEN KINGS 5908277 A.P.A:E.

Loughton

SOUND SUPPLIES (Loughton) CO. LTD. TEL: 01-508-2715
MI-FI Showroom
BRODKLANDS PARADE, 309 HIGH RDAD, LOUGHTON
Spares and Repairs
12 SMART'S LANE, LOUGHTON, ESSEX.

Romford

We Give the Finest Hi-Fi Service in the Area
Romford Sound \& Vision Service Ltd. 78a BRENTWOOD ROAD ROMFORD
TEL. ROMFORD 41644 OR COME AND SEE

GLAMORGANSHIRE Cardiff
J. GOUGH \& CO. LTD.

DESIGNERS OF THE FAMOUS GOUGH LOUDSPEAKERS
THE LARGEST STOGKIST OF HI-FI EQUIPMENT AND FOR DEMONSTRATION IN SOUTH WALES
148-154 NDRTH ROAD, CARDIFF Telephone: 28473 Main dealers for Bang and Olufsen

Southport

Hi-Fi in West Lancashire WAYFARERS RADIO LTD

18-20/29 BURTON ARCADE,
LORD ST., SOUTHPORT • TeI. 4070

St. Helens

HAROLD STOTT LTD. 18 Westifid Street, St. Helehs
 Agents for leading makes of Tape Recorder, dic. Equipment Planned and Supplied.
 Telephone . . ST. HELENS 26791 or 23105

LONDON

North
HI-FI MAIL ORDER SPECIALISTS
C. C. GOODWIN (SALES) LTD.

7 THE BROADWAY
WOOD GREEN, LONDON, N. 22
TEL: 8OWES PK. 0077/8
All leading makes in stock

OXFORDSHIRE Oxford

| HIGH FIDELITY IN OXFORD | |
| :---: | :---: | :---: |
| HORNS | |
| SIXSOUTH PARADE
 Information
 Telephone: Oxford 55360 | OXFORD |

SURREY
Guildford
MERROW SOUND LTD.
Specialists in Hi-Fi \& Tape Recording Fully equipped for comparative demonstrations. Leading Agents for: 88 . ma TANDBERG. Early closing Wed. I p.m. EASY PARKING Early closing Wed. P.m. 229 Epsom Road, Merrow, Guildord.

Tel: Guildford 64171

WARWICKSHIRE Birmingham

GRIFFIN RADIO LTD.

021-692 $1359 \quad 021-6430867$
94 Bristol Street Birmingham 5

* Complete advisory facilifies for all makes of equipment.
* Full range of Classical and Light Music LPs.

South West
TAPE RECORDER HI-FI CEMTRE - - - (SHEEN) LTD - SPECIALISTS IN TAPE RECORDERS, ACCESSORIES, YOUR CENTRE FOR FRIENDLY HELP, SALES AND $3 \& 4$ STATION PARADE, SERVICE
3 \& 4 STATION PARADE, \quad Tel. 8760985 SHEEN LANE, SHEEN, Opposite Mortlake Station, S.R.
Closed Wednesdays
LONDON, S.W. 14 O

West

THast-ars 1nseacio Stockist for all the leading makes of Hi-Fi 33 TOTTENHAM CT. RD., W.1 33 TOTTENHAM CT. RD.̈, 2 $152 / 3$ FLEET STREET, E.C. 4 109 FLEET STREET, E.C. 4 01-636 2605 $01-3532833$ Home of High Fidelity
42-45 TOTTENHAM CT. RD., W.I

Coventry

ELECTRONIC SERVICES

HI-FI SPECIALISTS
33 CITY ARCADE COVENTRY
TEL: 24632

WORCESTERSHIRE Worcester
HIGH-FIDELITY SPECIALISTS JOHNSONS SOUND SERVCE
43 Friar Street, Worcester
Worcester 25740

SCOTLAND Edinburgh

EDINBURGH'S HI-FI SPECIALIST

Amplifiers, F.M. Tuners, P/Ups Speakers, etc. Demonstrations and Advice gladly given.

Hi-Fi Corner 1 Haddington Place EDINBURGH. Phone 031-556 7901 W. G. Graham, Assoc. Brit. I.E.R.E

Glasgow

G. H. STEELE LTD.

Scotland's leading Tape Recorder, and Hi-FI Speclalist Main Bang \& Olufzen Dealer. Agente for: Armstrong, Leak. Rogers Quad. Sony, Akai. Sanyo. Tandberg. Uher. Goldring, Garrard, Thorens. Goodmans. Wharfedale, Sonab, Sansui, Earphones, Tapes. Accessories, Repairs and Servicing. Credit Terms. Part Exchanges. 141 St. Georges Road, Glaagow C.3. Tel. 041.3327124

LANCASHIRE Bury

J. SMITH \& SON HI-FI EQUIPMENT TAPE RECORDERS STEREOGRAMS 2 SHOWROOMS B. \& O. Dynatron, Hacker, Qudu. Leak, B. \& W., Tandberg, Sony, Rogers, Stax. Armstrong, Ferrograph, Gariard. Thorens. Goodmans, etc. Comparator Dems. Closed all Tuesday. Specialists in 'SOUND' for 36 years. 184 THE ROCK, BURY. Tel: 1242	

West Central

 repair applicetions.
Bensitivity: 20,000 op. DC and 2,000 o.p.v. AC.
D.C. ranges: $75 \mathrm{mV}-1.5-3-7.5-15-30-60-150-300-600$
D.C. ranges: $7 \mathrm{mmV-1.5-3-7.5-15-30-60-150-150}$
A.C. Tanges: $1.5-3-7.5-15-30-60-150-300-600 \mathrm{~V}$
$600 \mu \mathrm{~A}-3-15-60-300 \mathrm{~mA}-1.5 \mathrm{~A}$.
Reaistance $0.5-5-50-50 \mathrm{k}$
Reeistance: $0.5-5-50-500 k$ n
Capacity and Transmission level scales.
Accuracy: 1.5% D.C.; $; 2 \%$ A.C.
PRICE, with carry ing case and leada $\mathbf{1 1 0 - 5 0}$.
Both instruments have knife edge pointers and mirror scales.
WHEN ORDERING BY POST PLEASE ADD $0 \cdot 12 \frac{1}{2}$ (2/6) IN $£$ FOR HANDLING AND POSTAGE.
ALL MAIL ORDERS MUST BE SENT TO HEAD OFFICE AND NOT TO RETAIL SHOP.

MINIATURE WIRE ENDED SILICON

0.10
0.12
0.15

MVIOB LIGHT EMITTING DIODE
To 18 outline. Brightness 500 Ft.L at 50 mA . Forward To 18 outhine. Brightiess 500 Ft.L at 50 mA . Forward voltage
$1-65$ to $2 \mathbf{V}$. Spectral length 6300 to 7000 A (red 1 lght). Lens
diameter 0.170 in. PRICE 21.05 plus 0.10 P. P.

INTEGRATED MONOLITHIC DUAL
OPERATIONAL AMPLIFIER MCI435P
Two identical amplifters in 14 -pin dual-in-line epoxy package.
400 m W disaipation. Typical open loop voltage gain 7000 . Max.

MIN|ATURE CERAMIC CAPACITORS 25V D.C. WORKING 5% tolerance: $22-27-33-39$
$180-220-270-330-390-470-560$
$6810 \% 20-1004 \mathrm{pF}$ torance: $1500-2200 \mathrm{pF}$
$20 \%+500$ to
$340-4700-6800-10,000 \mathrm{pF}$ $3300-4700-66000-10,000 \mathrm{pF}$
$20 \%+80 \%$ tolerance $0.015 \mu \mathrm{~F}$ $0.022 \mu \mathrm{~F}$
$0.033 \mu \mathrm{~F}$
$0.047 \mu \mathrm{~F}$
Note: Minimgm ordera sccepted 20 per type.

TWO NEW OSCILLOSCOPES FROM RUSSIA

CI-5 SINQLE BEAM OBCILLOSCOPE $10 \mathrm{mc} / \mathrm{s}$ passband, triggered sweep from 1μ sec. to 3 millisec. Free running time base trome marker and amplitude calibrator 3 -in. cathode ray tube with telescopic viewing CI-16 DOUBLE BEAM OSCILLOSCOPE $5 \mathrm{me} / \mathrm{s}$ passband. Separate
Y 1 and Y2 amplifiers, I1 and Y2 amplifiers, rectangular
cathode ray tube, Calibrated triggered sweep sec. per cm . Free running time base $50 \mathrm{c} / \mathrm{s}$ to $1 \mathrm{mc} / \mathrm{s}$. Built-in time base calibra-

tion and amplitude calibrator Full servicing facilities and spares available

OUR NEW CATALOGUE 1970/1971 Is NOW READY OUR NEW CATALOGUE 1070/1971 IS NOW
PLEASE SEND S.A.E. FOR YOUR FREE COPY.
20 p per 20
22 p per 20
22p per 20
22p per 20
24p per 20
22 p per
25p per 20
250
26 p per 20
28 p per 20
30 p per 20

PLEASE NOTE THAT ALL PRICES ARE QUOTED IN DECIMAL CURRENCY.

Abstract

 0 0.35 1.15 1.00 0.55 0.90 0.76 0.90 0.75 0.40 0.60 0.85 1.00 0.56 4.00 3.50 1.50 0.35 0.40 0.45 0.40 0.85 0.65 0.40 0.43 0.43 0.35 0.45 0.45 0.25 0.28 0.30 4.50 00 0.75 00 0.75 3.75 1.50 1.50 5.00 5.76 3.10 7.00 8.00 1.75 0.80 0.40 0.33 0.48 0.70 0.80 80 0.45 HF93 HF94 HK90 HK

FULLY GUARANTEED
 Zuerdx
 AchX FIRST QUALITY VALVES

APPOINTMENTS VACANT

DISPLAYED SITUATIONS VACANT AND WANTED: $£ 8$ per single col. inch.
LINE advertisements (run-on): 45p per line (approx. 7 words), minimum two lines.
Where an advertisement includes a box number (count as 2 words) there is an additional charge of 25 p.
SERIES DISCOUNT: 15% is allowed on orders for twelve monthly insertions provided a contract is placed in advance.
BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London, S.E.1. No responsibility accepted for errors.

Straight talking electronics engineers

Listen to us for a few well-paid months, then with computer expertise added to your thorough understanding of general electronics, you'll be a well qualified Service Engineer Instructor.

We're looking for that rare ability to make others see exactly what you're getting at. We want people who know their stuff inside out-who can pass on practical information that trainees would otherwise take years of experience to acquire.

It will be your responsibility to make sure that when your pupils leave the Training Centre as computer service engineers, they're (almost) as good at their jobs as you are now at yours!

Some travelling will be involved in the UK, and possibly overseas, and during this time a salary premium is paid in addition to all normal expenses.

Most of you will be based at Letchworth in the pleasant Hertfordshire countryside, and only an hour's drive from London. Relocation expenses will be considered.

Please write, quoting ref WW666C to A. E. Turner, International Computers Limited, 85/91 Upper Richmond Road, Putney, London, SWr 5.

RADIO OPERATORS

There will be a number of vacancies in the Composite Signals Organisation for experienced Radio Operators in 1971 and subsequent years.
Specialist training courses lasting approximately 8 months are held at intervals. Applications are now invited for the course starting in September 1971.

Salary Scales

During training with free accommodation provided at the Training School:
Age 21
£848 per annum

22	$£ 906$
23	$£ 943$
24	$£ 981$

. 25 or over $£ 1.023$
On successful completion of course

Age	21	$£ 1.073$ per annum	
".	22	$£ 1,140$	"
".	23	$£ 1.207$	".
".	24	$£ 1.274$	(highest
".			
		age point)	$£ 1.351$

then by 6 annual increments to a maximum of $£ 1,835$ per annum.
Excellent conditions and good prospects of promotion. Opportunities for service abroad.

Applicants must be United Kingdom residents, normally under 35 years of age at start of training course, and must have at least 2 years operating experience or PMG qualifications. Preference given to those who also have GCE ' O ' level or similar qualification. Exceptionally well qualified candidates aged from 36-40 may also be considered.

Interviews will be arranged throughout 1971.

Application forms and further particulars from:
Recruitment Officer, Government Communications Headquarters, Oakiey, Priors Road, CHELTENHAM, Glos.,
GL52 5AJ. Tel: Cheltenham 21491 Ext 2270

TEST TECHNICIAN

Required for Final Production Testing and Fault Finding of Digital Voltmeters, and analogue to digital converters.
Experience of similar work or of Digital Systems is essential. Qualifications to H.N.C. advantageous, although opportunities exist for completion of professional qualifications.
Full staff status including pension scherme and attractive salary.

Reply to: Head of Test Section,
Headow Electronics Lid., Jessamy Road,
WEYBRIDGE, Surrey
Tel : Weybridge 48177.

Sea-going Radio Officers can now make sure of a shore job and good pay.

If you'd like a job ashore, at a United Kingdom Coast Station, the Post Office will start you off on $£ 1,080-£ 1,360$, depending on age, with annual rises up to $£ 1,850$. There are good prospects of promotion to higher posts, opportunities exist for overtime and you would receive additional remuneration for attendance during the late evenings, at night and on Saturday afternoons and Sundays.

You will need to be 21 or over, with a 1st Class Certificate of Competence in Radiotelegraphy issued by the Postmaster General or the Ministry of Posts and

Telecommunications, or a
Radiocommunication Operator's General Certificate issued by the Ministry of Posts and
Telecommunications, or an equivalent certificate issued by a Commonwealth administration or the Irish Republic.

Find out more by writing to:
The Inspector of Wireless
Telegraphy,
I.M.T.R.

Wireless Telegraph Section (W.W.) Union House,
St. Martins-le-Grand, London,
EC1A 1AR.

Posk O ORCDCS
Telecommunications

ASSISTANT ENCINEER GRADE II (BRoadcasing Boiswana

\star Salary up to $£ 2,387$
\star Low taxation
\star Appointments grant $£ 100$ or £200 in certain circumstances $\star 25 \%$ gratuity on basic salary
\star Contract 24-36 months
\star Subsidised accommodation \star Education Allowances

The Posts and Telecommunications Department requires an officer to undertake operational duties including the installation and maintenance of broadcasting equipment in transmitting stations and to assist with the training of junior engineering staff.

Candidates must possess the City and Guilds Intermediate Certificate (Telecommunications) or equivalent and have had five years relevant practical experience, (additional to any period of approved training) of technical broadcasting equipment including M.F. and H.F. transmitting equipment up to 10 KW .

ENGINEERS

SERVICE AREA PLANNING

The INDEPENDENT TELEVISION AUTHORITY is looking for engineers with a keen sense of responsibility and initiative to join a test team concerned with planning the expansion of our VHF colour television service.
It is expected that the men selected will be aged 23-35, qualified to H.N.C. level, have had experience in television, R.F. measurements or an associated field and feel they would like the opportunity of working throughout the United Kingdom enjoying an open air life. They should, in addition, be experienced drivers with a clean and current licence. The ability to climb aerial support structures would be an advantage. There are currently two vacant posts

1. The more senior post for which candidates should have a good working knowledge of radio wave propagation and basic television prinćiples. The job will also involve taking charge of a small team.
Salary-on a scale $£ 211 \mathbf{5 - £ 2 5 7 4 .}$
2. For the junior post we would consider less experienced candidates who can show good potential.
Salary-on a scale $£ 1623$ - $£ 1965$.
Although based at our Knightsbridge Headquarters the selected candidates will be expected to work in any part of the United Kingdom for periods generally not exceeding two to three weeks at a time.
If you are interested in either of these posts please write or telephone for an application form, quoting Ref. WW/1605, 1 or 2, to

The Personnel Officer,
INDEPENDENT TELEVISION AUTHORITY,
70 Brompton Road, London, S.W. 3.
Tel. 01-584 7011. Ext. 482.
Closing date for completed application forms : 31st March, 1971

CIRCUITRY DESIGNER

Experienced in design of analog and digital circuitry to join research team developing electronic music synthesisers. H.N.C. or graduate.
Write or'phone: ELECTRONIC MUSIC STUDIOS (LONDON) LTD 49 Deodar Road, London S.W.15. Tel: 01-874 2363

1080

Data Line Officer

BOAC's world wide computer system requires expert control. We need a Data Line Officer to complete a team responsible for the operation of the terminal system. The appointed candidate will be based at London (Heathrow) Airport working on a rotating shift basis. He will occasionally be expected to travel to operational locations in North America and Europe.
Candidates should have qualified in electronics or data communications to H.N.C. standard or City \& Guilds full certificate, and those with GPO line transmission experience will be given preference. Candidates qualified to O.N.C. standard will be considered only if they have appropriate experience.
Salary, including London Weighting, is in the range $£ 1789$ to $£ 2179$ per annum plus shift allowance of $£ 383$ per annum. zAdditional benefits include facilities for holiday air travel. Please contact:
Selection Services, BOAC, Comet House (S Block 1st Floor), London (Heathrow) Airport, Hounslow, Middlesex. (Adjacent to Hatton Cross), or phone 01-759 5511 extn 2637 for an application form.

TEST ENGINEERS

This rapidly expanding company requires Test Engineers for test and alignment of transistorised V.H.F. Communications equipment.
Applicants should be familiar with V.H.F. techniques and capable of fault diagnosis.
Salaries offered will be commensurate with knowledge and experience. $38 \frac{1}{2}$ hour week, 3 weeks paid holiday. Non-contributory pension scheme. Ample opportunities for promotion.
Write or telephone
R. Trimmer, Chief Inspector,

DYMAR

Dymar Electronics Ltd., Colonial Way, Radlett Road, Watford, Herts.
Tel. : Watford 21297

BUSINESS OPPORTUNITY

Earn a substantial extra income through a fascinating part-time business of your own that you could share
with your wife and operate from your own home. This is an outstanding business opportunity with rewards exceeding E500 per annum at the higher levels. Telephone for an appointment.
VISTA MARKETING MAIDENHEAD $\underset{1002}{28754}$

East Suffolk Education Committee LOWESTOFT COLLEGE OF FURTHER EDUCATION

Principal: A. E, BODDY, B.Sc. (Econ.) F.R.G.S

LECTURER II

required in connection with work associated with City required in connection with work associated with City
and Guilds Technicians course biased towards RADIO and ELECTRONICS, and for the Crafts Studies course in ELECTRICAL and ELECTRONIC ENGINEERING City and Guilds 500 series.
Salasy in accordance with the Burnham scale $£ 1.947$ $£ 2,537$. plus allowances for approved training and qualifications. Starting point within the scale determined by past teaching experience and/or appropriate industrial experience. Applicants with teaching experience, appropriate qualifications and industrial experience should apply to the Principal, Lowestoft College of Further Education, St. Peter's Street, Lowestoft, telephone Lowestoft 4177, for further particulass and application forms.

Cambridge Audio

a member of AIM ASSOCIATES CAMBRIDGE GROUP

Cambridge Audio Laboratories Ltd., has a reputation for making state-of-the-art advances in the field of high quality domestic and professional audio equipment. We are looking for an exceptional Senior Engineer to lead our F.M. tuner research and development program. The location is St . Ives, Huntingdonshire.

The company's policy is one of continuous research and development and thus, after completion of the existing F.M. tuner design project, the successful applicant will have ample opportunity to pursue more open-ended research in this field.

Candidates must already have had considerable experience in the relevant technology and should be sufficiently qualified to be capable of providing original and theoretically sound solutions to design problems.

We are prepared to pay well for the right man and the starting salary will be up to $£ 2,500$. In addition, relocation expenses will be paid where appropriate.

Travelling expenses will be paid to interviewees.
Please telephone or write without delay to
Ian Quayle, Technical Manager,
Cambridge Audio Laboratories Ltd.,
The River Mill, St. Ives,
Huntingdon PE17 4EP
telephone: St. Ives (04806) 2901

BRITISH /RELAY

TELEVISION and RADIO DISTRIBUTION SYSTEMS

We are expanding our activities in the field of wired installations in hotels, both at home and overseas. For this,

WEREQUIRE ENGINEERS

with the necessary specialist knowledge and experience, for duties which include:-

- SYSTEM PLANNING
- SCHEDULING and ESTIMATING
- INSTALLATION CONTROL
- COMMISSIONING

If you have experience which is relative to any aspects of this type of work, and would like information on staff vacancies, please apply to the address below.
All enquiries will be treated in strict confidence.
THE GENERAL MANAGER,
SPECIAL SERVICES DIVISIÓN,
British Relay House - 41 Streatham High Road London, S.W.16.
Tel: 01-6779681

Light engineering/ electronics and in the dark about computers?

Join us now as a Computer Service Engineer, and after six months' paid specialist training, you will be responsible for ensuring that our computers are in peak condition.

We are Britain's leading computer manufacturer; we give men who want a rewarding career an excellent basic salary while we train them in every aspect of customer engineering in the computer industry. You'll learn to deal with operational problems, and to use the most intricate machinery.

HNC or C\&G in electronics engineering, a Forces' training in electronics, or similar qualifications, are your passport to our opportunities.

How far you progress is up to you-the experience you get will stand you in good stead for your future career development. You'll gain knowledge of new methods and techniques on the most sophisticated equipment.

To add to your basic salary, you can get generous overtime and shift rates There is a special allowance for working in central London. You will be operating in a computer environment on customers' premises in conditions well above the average for industry.

Age: 21/35.
Locations: Reading, Bracknell, Middlesex, Hertfordshire, Surrey, Central London, Manchester, Kidsgrove and Dublin.

Write giving brief details of your career, and quoting ref.WW668eto : A. E. Turner.
International Computers Limited, 85/91 Upper Richmond Road, Putney, London SW 15.

INSTRUMENT FOREMAN ${ }_{\text {bavs }}$

required at WYLFA NUCLEAR POWER STATION, Cemaes Bay, Anglesey.

The Central Electricity Generating Board wishes to appoint to the above post an experienced electronics technician who has received a recognised formal training. including a City $\&$ Guild
Certificate or its equivalent. in a branch of instrument work.

Applicants should have several years experience of installation, maintenance and/or production of instruments or control equipment. in particular, experience in one or more of the following fields would be valuable

Power Station instrumentation and control systems Television or telecommunications systems
Nucleonic instrumentation
Electronic development
The successfut candidate will head a small team of development in the wide range of electronic equipment found in a modern nuclear power station.
Rate of pay will be $£ 29.17 .5 \mathrm{~d}$. for a 40 hour. 5 day week. working Monday-Friday.
Conditions of service are in accordance with the National Joint Industrial Council Agreement for the Electricity

Supply industry.

ACT NOW

FOR INTERVIEW APPOINTMENT. RING MR. HALSALL. STATION PERSONNEL OFFICER WYLFA NUCLEAR POWER STATION. telephone no. camaes bay 471.

Engineers
 Do you want to get into sales?

We require a development engineer without previous sales training for an internal sales engineer. This position offers excellent scope for personal advancement into the sales field. Salary negotiable plus special bonus and pension schemes.

Please 'phone T. Jermyn or P. Baker at Sevenoaks (0734) 51174.

Jermyn Industries
Vestry Estate Sevenoaks Kent
JERMYN

ngeth

RESEARCH AND DEVELOPMENT ELECTRONICS ENGINEER
Applications are invited for this appointment at the Wyeth Institute of Medical Research, Taplow. The successful applicant preferably will have experience in the application of advanced electronic principles to biological sciences and will be expected to design, develop and construct prototype apparatus for medical research.
Please apply to the Personnel Officer,
John Wyeth and Brother Limited,
Huntercombe Lane South,
Taplow, Maidenhead, Berks.
SL6 OPH
Telephone Slough 28311

University of Stirling

TECHNICAL OFFICER

(Electronics)
Applications are invited from electronic engineers qualified to H.N.C. level or equivalent to assist with research and development work. Salary scale $£ 1,827$ $£ 2,061$. Placing according to age, qualifications and experience. Further particulars may be obtained from the Deputy Secretary (Ref. W.W.), University of Stirling, Stirling, to whom applications together with the names of two referees should be sent by 5th April, 1971. Failing settlement of postal dispute, telephone brief details to Stirling 3171, extension 2159.

SITUATIONS VACANT

A FULL-TIME technical experienced salesman reprevtous experience, salary required to-The Manager, Henry's Radio. Ltd., 303 Edgware Rd.. London. W. 2 .
A UTOMATIC BÜSINESS MACHINES Limited A require electronic technicians for interesting work in the service department repairing Cafo Calculators. Applicants should preferably have experience in the
repair of desktop calculators or a sound electronic knowledge. Salary according to age and experience, contact V. E. Knight at 01-385 3311. [1105 D RAUGHTSMEN. Mechanical and Electrical required lighting expantrol and audio visual products. This position is salaried and gives ample opportunity for advanceRoad, Greenwich, London, S.E.10. Tel. 858 4784.
[22 ELECTRONICS TECHNICIAN required for research project due to be completed in two ycars. Salary
£1,390 per annum. Applications giving full details to Hospital Secretary, The Hospital for Sick Children, Great Ormond Street, London, W.C.1. Tel. 01-242 9789 LEEDS AND BRADFORD AIRPORT. A vacancy Loccurs for a Radio/Radar Technician to undertake maintenance of alt ground equipment including radar maintenance experience essential. Salary in accordance with LOCAL GOVERNMENT GRADE Technical 5/6 ($£ 1,515-£ 2,025$ per annum), commencing salary between £1,515-£1,776, dependent upon experience and quallit cations. Appointment subject to Local Government cations, stating age, education, and full details of experience and technical courses appended, together with name and addaress of two people to whom reference can be made, should hes ent to the Airport Director, Leeds and Bradrord Airport Yeadon, Nr. Leeds. TeleABINE 391
MARINE Radio Engineer with experience of R.T., installations. Must be based in London area but able to work anywhere without supervision. Salary $£ 1,300-£ 1,500$ according to exper:ence. Telesonic Ltd. 01-387 7467. [1101 MEN! You can earn £50 p.w. Learn Computer Computer Operations Training CREE brochure-London Computer Operations Training Centre, C.96, Oxford
House, $9-15$ Oxford Street, London, W.1.
$\lceil 1070$ UNIVERSITY OF OXFORD Department of Psychiatry UNIVERSITY OF OXFORD Department of Psychiatry. University Department of Psychiatry, The work will include maintenance and operating polygraphic recording equipment and construction and electronic apparatus. Salary to be negotiated according to age and experience in the range of $£ 1,000-£ 1,400$ per annum. Apply by
phoning Mr . Mathews at Oxford 41221 extension 62 .
YOUNG ELECTRONIC ENGINEER inventive, 〔1088 L perienced in I.C.s and logic circuitry, required for R. and D, Young company with new product; prospects unlimited for right man; Central London; commence mid-April-Phone 01-886 9455

AUDIO TESTERS/ TROUBLE SHOOTERS

Required for interesting position in electro-musical equipment. Audio amplifiers of up to 100 watts. Echo Units (Copicat) S/S and valve, etc. Please phone in first place. WEM Ltd., 66 Offley Road, London, S.W. 9 735-6568.

937

ARTICLES FOR SALE

[^15] Write now-Right now.

APPOINTMENTS

TEST EQUIPMENT ENGINEER

An opportunity occurs for a man aged 20/25 to join the Test Equipment Department of a company which is part of the Thorn Group who are among the leaders in their industry.
The job will involve assisting a small team in the development of test equipment used in the mass production of commercial radio and hi-fi sets.

Candidates should preferably hold, or be studying for, a Telecommunications Technicians Certificate or H.N.C. in Electronics. Some experience of development work and an understanding of digital techniques will be an added advantage.
The salary offered will depend on the experience and qualifications held by successful candidate.
Applications, outlining career details to:-

Personnel Officer,

BRITISH RADIO CORPORATION
(Chigwell) Ltd.,
60/72 Fowler Road,
Hainault,
Ilford, Essex
Tel: 01-500 1080

NCR requires additional ELECTRONIC, ELECTRO MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.

Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.

Starting salary will be in the range of $£ 900 / £ 1,350$ per annum, plus bonus. Shift allowances are payable, after training, where applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.

Excellent holiday, pension and sick pay arrangements. Please write for Application Form to Assistant Personnel Officer
NCR, 1,000 North Circular Road,
London, NW2
quoting publication and month of issue
Plan your future with

Transmitter Shift Engineers

Of course, not all our television transmitters are quite as large as the one described below, but they all require the same skill and expertise in operation and maintenance. And this is where you could come in.

Right now, we're on the lookout for more ambitious Shift Engineers to work on our nation wide network of television transmitters; men with HNC or equivalent qualifications and at least two years experience with broadcasting equipment, preferably UHF and VHF.

If this is your background, there will be a short orientation period to make sure you have all the experience you need to work on the equipment we use. Then you'll join a compact two man shift, based at one of our transmitter stations anywhere in the U.K., which means plenty of opportunity both to prove ability and demonstrate initiative. What's more, you'll share the responsibility for maintaining a large number of satelite stations.

Salary? On a scale between $£ 1734-£ 2277$ with provision for movement subject to qualifications and experience on a higher scale rising to £2607, but it needn't stop there. Interested? Then write or 'phone for an application form quoting reference W.W./1579. The Personnel Officer, Independent Television Authority, 70 Brompton Road, London S.W.3. 01-584 7011 Ext. 482.

1,000ft. of mast and 1,000 k.w. effective radiated power-

 that's about thesize of it

OPPORTUNITIES IN θ TELECOMMUNICATIONS

Men with good telecommunications knowledge are required to be responsible for electronic equipment on London Transport.
The work consists of maintaining, testing and fault finding on Radio, Television and associated electronic equipment. A sound knowledge of the work is required and the possession of City and Guilds certificates (or equivalent) in telecommunications subjects 49 and 300 would be an advantage. The rate of pay including a variable incentive bonus averages $£ 28$ for a 5 day 40 hour week. Additional payments are made for overtime.
These positions offer:-
Free travel on and off duty, sick pay and pension schemes.
Please ring 01-992 7801 ext. 29-Signal Engineers' Department, any weekday, Monday to Friday, between 10 a.m. and 4 p.m. for an appointment.

TEST ENGINEERS

The leading U.K. Manufacturers of high grade T.V. monitors and ancillary T.V. studio equipment require Test Engineers for their rapidly expanding test department.

Situated in the Berkshire town of MAIDENHEAD the company offers pleasant working conditions. good salaries, and a friendly environment.

Duties will cover the testing of our complete range of equipment.
Previous experience on television equipment is not essential but candidates must have a thorough knowledge of electronics and testing procedures.

Reply to:
PROWEST ELECTRONICS LTD.,
Boyn Valley Road, Maidenhead, Berks.
Telephone: Maidenhead 29612

T. B. TECHNICAL LTD. CONSULTANCY•INSTALLATION•MAINTENANCE

Our service covers:

Broadcast, Recording, Film, Audio and Video Electronics, also Electro-Acoustic Design.
Experienced Technicians available for installation, wiring, routine and emergency maintenance.
Test equipment hire and contract service.
T. B. TECHNICAL LTD.

38 HEREFORD ROAD, LONDON, W. 2 Telephone: 01-229 8054

FERRITE CORD loudspeaker chokes $0.2 \mathrm{mH}, 0.4 \mathrm{mH}$, $2.0 \mathrm{mH},{ }^{4.0} \mathrm{mH}, 30 \mathrm{p}$ each. Reversible Electrolytic
Capacitors 30 msd . 50 v . $17 \frac{1}{2}$. Prices include y . \& p . Capacitors 30 msd. 50v. 171p. Prices include y. \& $\mathrm{F}_{\text {. }}$,
Transmisslon Electronics Ltd., $495 / 9$ Oxford Road, Reading.
[1079
M USICAL MIRACLES. Send S.A.E. for details of bass pedal unit for organs, pianos or solo, musical noveltles, waa-taa kits ($£ 2 \cdot 45$). Also bargain components list reed switches etc. D.E.W. Ltd., 254 Ringwood Road. Ferndown, Dorset.
NEW CATALOGUE No. 18, containing credit vouchers value 50 p , now available. Manufacturers' new and surplus electric and mechanical components, price $22 \frac{1}{2}$, post Iree. Arthur Salss Radio Control Litd.. 28 Carrner
Street, Brighton, Sussex.
$\mathbf{R}^{\text {ELAYS, contactors, timers. From cooking to co-ax, }}$ Refoolscap S.A.E. for inst please. Watsons, 78 Ple
Street, Lee-on-Solent, Hants, PO 13 9LD. $V^{\text {ACUUM }}$ pumps, coating plant, pyrometers, recorders spectrophotometers/ovens, etc. Free catalogue.

VHF $80-180 \mathrm{MHz}$. Integrated receiver, tuner, converter Kit. Remarkable Tesults from single semifree literature enclosing s.a.e. Johnsons (Radto) Worcester, WR1 2DT.
$[99$
$60 \mathrm{kc} / \mathrm{s}$ Rugby \& $75 \mathrm{kc} / \mathrm{s}$ HBG Neuchatel Radio Reunits, £35. Toolex, 6 Warwick Close, Hertford (4856).

UHF, COLOUR and TV SERVICE SPARES. UHF UF, push button £5.25 P/P 25p. Integrated UHF/VHF 6 position push button transistorised tuner easily adjusted as 6 position UHF tuner, inci. circuit $£ 4.50 \mathrm{P} / \mathrm{P} 50 \mathrm{p}$. Transistd. UHF/VHF IF panels $£ 4 \cdot 75$ (or salvaged £2.50)
P/P 25 p . MURPHY $600 / 700$
series complete UHF conversion kits incl. tuner, drive assy., 625 IF amplifier, 7 valves, accessories, housed in special cabinet plinth assembly, $\kappa 7.50$ or less tuner $£ 3$ P/P 50p. SOBELL/ GEC $405 / 625$ switchable IF amplifier and output chassls, ${ }^{£ 1.65} \mathrm{P} / \mathrm{P}$ 30p. Ultra 625 IF AMP chassis and circult £1 P/P 30p. SOBELL/GEC 2015 series $405 / 625$ printed circuit IF panel incl. circuit $£ 1.95 \mathrm{P} / \mathrm{P} 30 \mathrm{p}$. UHF list available on request. VHF tuners AB miniature with UHF injection suitable K.B., Baird, Ferguson $\& 1 \cdot 25$ P/P 30 p, Cyldon C £1 $P / \mathrm{P} 30 \mathrm{p}$, Pye 13 ch . incremental $£ 1 \cdot 25$ P/P 30p. Ekco, Ferranti, Plessey 4 position push
button tuner with UHF injection incl. valves $£ 2 \cdot 90 \mathrm{P} / \mathbf{P}$ button New freball tuners Ferguson, HMV, Marconl type £1.90 P/P 30p. Philips export continental turret tuners 75 p P/P 30p. Many others available. Large selection channel colls, LOPTs, Scan Colls. FOPTs available for most popular makes. Surplus Ultra, Murphy 110° Scan P/P 30p. Transistorised time base panel for Ferguson portable £2.50 P/P 30p. Pye/Labgear transistd. masthead UHF booster $\mathbf{E 5} \cdot 25$, UHF/VHF set back booster £7.90. Wolsey masthead amplifler power unit $£ 2.50 \mathrm{P} / \mathrm{P}$ 25 p . Surplus BBC 2 Belling Lee "Skyline" distribution 172 WEST END LANE, LONDON, N.W. 6 (No. 28 Bus or W. Hampstead Tube Station). MAIL ORDER: 64 GOLDERS MANOR DRIVE, LONDON, N.W.11. Tel.
01-794 8751 . 01-794 8751.

Thanks to a bulk purchase we can offer
BRAND NEW P.V.C. POLYESTER AND MYLAR RECORDING TAPES
Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polythene and have fitted leaders, etc. Their quality is as good as any ulty and are not to be confused with imported, used or sub-standard tapes. 24-hour despatch service.
Should goods not meet with full approval, purchase price and postage will be refunded.

S.P. $\{3 \mathrm{in}$.		ft.	10p	5 in .	600 f	
		900 ft .	40p	7in.	200	
L.P	3 in .	225 ft .	$12 \frac{1}{2}$	5 n .	500 ft .	42
	53 ${ }^{3} \mathrm{in}$	200 ft .	50p	7 in.	1,800ft	65
	3 in	350 ft .	22 $\frac{1}{2}$ P	5 in .	1,200ft.	60
D.P	tin,	1,800ft.	$80 \mathrm{p}$	7 in .	2,400ft.	flo 0
COMPACT TAPE CASSETTES ATHALF PRICE						

60,90 , and 120 minutes playing time, in original plastic library boxes.

STARMAN TAPES

28 LINKSCROFT AVENUE, ASHFORD, MIODX.

A ${ }^{\text {and }} \mathrm{F}$ ford 5020

A small quantity of IMHOF rack type cabinets available, all as brand new £25 each.

Apply Works Manager at

EPSYLON INDUSTRIES LTD.

Telephone 01.890 5091
TEST EQUIPMENT - SURPPLUS
ANDSECONDHAND
SIGNAL generators. oscilloscopes, output meters, wave voltmeters, frequency meters, multi-range meters, ville Old Hall, Ashville Rd., London, E.11. Ley. ${ }_{[64}{ }^{686}$

RECEIVERS AND AMPLIFIERS-
 SURPLUS AND SECONDHAND

 Ashville Old Hau, Ashville Rd., London, E.11. Le, | Ashis. |
| :--- |

NEW GRAM AND SOUND EQUIPMENT
$\mathbf{G}_{\text {cameras, }}^{\text {LASGOW,-Recorders }}$ bought, \(\begin{gathered}sold,
exchanged;\end{gathered}\) versa.-Victor Morris, 343 Argyle St., Olasgow, C. 2

Abstract

TAPE RECORDING ETC IF quality, durability matter, consult Britain's oldest Itransfer service. Quality records from your suitable tapes. Modern studio faclint ties with Steinway Grand schools. News, 18 Blenheim Road London w 4 01- 995 - Sound YOUR TAPES TO DISC.- 26,000 Lathe. From 1.50. I Etudio/Location Unit. S.A.E. Leaflet Deroy Studios High Bank, Hawk St., Carnforth, Lancs.

FOR HIRE

$\mathbf{F}_{\text {monitors, }}^{\text {OR HIdeo tape recorders, inclualng cameras, }}$ -Detalls from Zoom Television, Chesham 6777 prity

ARTICLES WANTED

 ${ }^{2185}$ ANTED, all types of communications receivers Electronlcs, test equipment.-Dentall to R. Thville Old Hall, Ashvilie Rd., Lon Electronlcs, Ltd., Ashville Old Hall, Ashville Rd., London, E.11. Ley. 4986 W new valves, transistors, recorders, radiograms, High new valves, transistors, etc.-Stan Willetts, ${ }^{37}$ $\mathbf{W}^{\text {anted redundant }}$ TV Tube regunning plant.
 PYe BANTAM HP1AM required. Relss, 34
Lane, Leeds
$\underset{y}{\text { Nursery }}$
$[962$

SERVICE \& REPAIRS

PSYCHO/MEDICAL INSTRUMENTATION

For Design • Development • Manufacture ANDOR ELECTRONICS LTD.,
178 Higher Hillgate, Stockport, Cheshire Tel: 0614809791

VALVES WANTED

$\mathbf{W}^{\text {E buy new valves, transistors and clean new com- }}$ ponents, large or small, quantities, all detalls,
quotation by
return.-Walton's
Wireless
Stores
55 quotation by
Worcester
St. Wolverhampton.

CAPACITY AVAMLABLE

A IRTRONICS LTD., for Coil Winding-large or small pliers to P.O.. M.O.D., etc. Export enquirles weicomed. pliers to P.O. M.O.D., etc. Export enquiries weicomed
3a Walerand Road, London, S.E.13. Tel. $01-852$ 1706 [61 CoIL winding capacity. Transformers, chokes R.F. Ltd Fristol Rosd, Malmesbury, wilts, or Te Malmesbury 3491.
$\mathbf{D}^{\text {ESIGN, development, repair, test, and small pro- }}$ LECTRONICS, 54 Lawford Rd., London, N.W. 61-267-0201. $\mathrm{M}^{\text {ETAL }}$ enORE, all types cabinets, chassis, racks, or smail milling and capstan work up to tin bar PHILPOTT:S METALWORKS, Work ${ }^{\text {Ltd. }}$, Chapman St. Loughborough
TURNED parts, automatic capstan capacity available 1 also milling. grinding, fitting. Low rates, Ministry

$\mathbf{W}^{\text {E }}$ undertake the manufacture of transtormers singly or in quantities to any specification. All work guaranteed for 12 months.-Ladbroke Transforme2 Tel. Ltd. ${ }_{01} 969{ }^{82014}$

DEETECHNICALTRAININC
A.M.S.E. (ELEC.), City \& Guilds, R.TE.B. Cert., Refund" Amateurs' Cert., etc., on "Satisfaction or Refund" terms. Wide range of Courses in Elec. EnginElectronics, Radio \& TV, etc. Send for full details and lllustrated book-FREE,-BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, Dept. 152K, Aldermaston Court, Reading RG7 4PF.
BECOME "Technically Qualifled" in your spare time, Buaranteed diploma and exam. homestudy courses in
radio, TV servicing and maintenance. R.T.E.B., City \& Guilds, etc., highly informative 120-page Guide-free. Chambers College (Dept. 837K), Aldermaston Court. Reading RG74PF. City \& Guilds, Colour TV [16 R.T.E.B. CERTS., City \& Guilds, Colour TV, Radio, tronics (with kit). Thousands of successes. Send for rulics (with kit). Thousands of successes, Send for full cetails of Home Study courses and illustrated book TECKNOLOGY, Dept. 150K, Aldermaston Court, ReadIng RG7 4PF.
TECHNICAL TRAINING in Radio, TV and Electronics 1 through world-famous ICS. For details of proven home-study courses wr w.
House, London, S.W.8.

TUITION

KINGSTON-UPON-HULL Education Committee, K College of Technology. Principal: E. Jones, M.Sc., F.R.I.C. Radar Maintenance certffcate.-Information from College of Technology, Queen's Gardens, Kingston-upon-

BOOKS, INSTRUCTIONS, ETC.

M $\begin{gathered}\text { ANUALS, circuits of all British ex-W.D. 1939-45 }\end{gathered}$ R.E.M.E. Instructions; s.a.e. for list, over 70 original R.E.M.E. Instructions; s.a.e. for list, over
W. H. Balley, 167 a Moflat Road, Thornton Heath,
Surrey, CR4-8PZ.

TELEVISION AND RADIO TRAINING

(DAY ATTENDANCE COURSES)

This private College provides theoretical and practical training in Radio and TV Servicing. Courses of one year's duration, with daily attendance, are available for beginners and shorter courses for men with previous training in Electronics and Radio. Training courses in Radar and Radio Transmission are also available following the TV course. Write for prospectus to: London Electronics College, Dept. B/5, 20 Penywern Road, Earls Court, London, S.W.5. Tel. 01-373 8721,

SURPLUS HANDBOOKS
 19 set Circult and Notes 1165 set Circuit and Notes
 H.R.O. Technical Instruction
 38 set Technical Instructions 46 set Working Instructions
 88 set Terkuikal Instruction
 BC. 221 Circuit and Notes Wavemeter Class D Tech. Inst.
 Wavernetrer Class D Tech. I 18 set Circuit and Notes
 BC. 1000 (31 set) Circuit and Note
 CR. $100 / \mathrm{B} .28$ Circuit and Notes R. 107 Circuit and Notes
 R. 107 Circuit and Notes AR. 88 D Instruction Manu
 62 set Circuit and Notes
 82 est sender and Receiver circuitst 40 p poot free. Colour Code Indicator $12 \dagger \mathrm{p} / \mathrm{p} 24 \mathrm{p}$. B. A.E. with all enquiries, please. Portage rates apply to U.K. only.
 INBTRUCTIONAL HANDBOOK SUPPLIES Dept. W.W. Talbot House, 28 Talbot Gardens, LEEDS 8

MUSICAL MIRACLES

Cabinet, cabinet, mechanism ${ }^{\&}$ instructions. Huge sales, well tested $\mathbf{6 4 . 7 5}$ post free. RHYTHM BOX. Build $\&$ own from our pre-built electronic circuit modules,
e.g. box giving waltz, foxtrot etc., cost under f 17 . ORGAN PERCUSSION units ≤ 14. Bass pedal and other fascinating efrects, fuzz, tremolo ete. Send sa, e. for lise. D.E.W. LTD.
254 Rinewood Road, Ferndown,

THE ONLY
COMPREHENSIVE
RANGE OF RECORD
MAINTENANCE
EQUIPMENT
IN THE WORLD!
Send P.O. 15 p for 48 page booklet providing all necessary information on Record Care

CECIL E. WATTS LIMITED
Darby House
Sunbury-on-Thames, Middx

RACK CABINETS

These are a fully enclosed $19^{\prime \prime}$ rack, overall size $38 \times 22 \times 22$ usable size $32^{\prime \prime}$ high, $19^{\prime \prime}$ deep. Fitted hinged rear door, with lock, removable side panels and adjustable front panel mounting positions. These are a modern top quality unit finished in light hammer grey, made by Ferranti. Supplied in new cond., ex stock
Price $£ 8.00$ plus $£ 1.00$ carr. with pull-out drawer or $\mathbf{6 7 . 0 0}$ plus $£ 1.00$ carr. less drawer. S.A.E. for list or enquiry:
A. H. SUPPLIES

57 Main Road, Sheffield S9 5HL

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large quantities of miniature potentiometers (flat pots) 20 ohm to 10 K . Various makes. Wholesale and Export only.
All component parts including laminations for the manufacture of 80,000 small motors, the lot $£ 800$.

J. Black

DFFICE: 44 GREEN LANE, HENDDN, N.W.4. 2AH Tel: 01-203 1855. 01-203 3033 STORE: LESWIN RDAD, N. 16

Tel: :01-249 2260

WW-117 FOR FURTHER DETAILS

QUARTZ CRYSTAL UNITS from

- 1.4 - 20 MHZ - fast deliverr - HIGH STABILIT - TO DEF 5271-A

TEL. HYTHE 8961

WRITE FOR
LEAF:LET AT McKNIGHT CRYSTAL Co. Shipyard estate HYTHE HYTHE,
SOUTHAMPTON

OSMABET LTD.

WE MAKE TRANBFORMERS AMONGST OTHER THINGS AUTO TRANSFORMERS, $0=110-200 / 220 / 240 \mathrm{v}$ a.c. up or downo filly ghrouded, fitted insulated term 8.5 ; 150 w £3-15; 200 w

 order.
MAINS TRANSFORMERS. Prim 200/240v R.c. TX2. $250-0250$ $150 \mathrm{~mA}, 6.3 \mathrm{~F}, 4 \mathrm{~A}, \mathrm{CT}, 0-5-6 \cdot 3 v 3 \mathrm{~A}, \mathrm{E} 4 \cdot 05$; TX5 $300-0.0300$
 MT2 $230 \mathrm{v} 45 \mathrm{~mA}, 6.3 \mathrm{v} 1.5 \mathrm{~A}, £ 1.50$: MT2A $250 \mathrm{v} 60 \mathrm{~mA}, 6.4 \mathrm{v}$ 2A, £1.95; MT3 Prim $110 / 240 \mathrm{~F}$. $\sec 260 \mathrm{v} 100 \mathrm{~mA}$, B. 3 v 2 A , £2. 25 MULTTVOLT TRANSFORMER8. Prim $200 / 240 \vee, \Omega .0$. OMT4/L one tapped sec. $5-20-30-40-60 \mathrm{~V}$ giving $50-10-10,20-0-20,20-0-30 \mathrm{~F}$ a.c. 1 amp, 82.20 .25 - ditto trans former 2 amp OMT4/2, £3-45; OMT5/1 One tapped sec. $40-50$ $60-80-90-100-110 \mathrm{v}$ giving $10-20-30-40-50-60-70-80-90-100-110$
 DUOVOLT TRANSFORMERS. Prim 2001240v ace "D12V
 ع3. 60
 50w $£ 4 \cdot 50 ; 250 \mathrm{w}$ £6.\%5; for quartz fodine lamps. LOW VOLTAGE TRANSFORMERS. PrIm 200/240v a.c. 6.3 V
 3 A CT $£ 2 \cdot 70 ; 5 \mathrm{~A}$ £3;75;8A $£ 6$; $12 \mathrm{~A} £ 8$.
MIDGET RECTIFIER TRANSFORMERS, for F.W. Tectification,

 0.75 A . size $2 \times 2 i \times 17$ ins., $£ 1 \cdot 20$ each.

WIRE WOUND RESISTANCES. Hitw, 68 ohms, 220 ohmas, 55 hms, 3W, 68 K . 68 ohmes, 20 w 1000 ohms at 50 p dozen. MULTI WAY CONNECTORS (BELLING LEE). 18 way, new OLT TAPE CRASER Int demagnetizing of tape headid. 200/240v t.c., $£ 2 \cdot 40$, p.p. 15 p W.W. IGMTION CIRCUIT TRANSFORMERS to epeo., $£ 2$-50 w.w. COLOUR TELE. Choke 1a, 23; Trans T1, 87tp; Field Carriage exira on
TRANSFORMERS FOR POWER AMPLIFIERS

TX500, Prim. 200/240v anc. Sec. $425 \cdot 10-425 v 500 \mathrm{~mA}$, TX1, Prim. $200 / 240 \mathrm{v}$ a.c., Bec. $425 \mathrm{~V} 0-425 \mathrm{v}$ £ 250 mnA ,
 CHOKES ${ }_{\mathrm{c} 3}^{10 \mathrm{H}} \mathrm{i} 5$. LOUDSPEAKER
New boxed fanous makes for public address systems, base guilarb, electronic organs, Hi-Fi. etc.
$12 \mathrm{in} . \mathrm{in} .5 \mathrm{w}$. W/Tweeter cone, $£ 4.75 ; 12 \mathrm{w}$,

 $13!\times 8 \mathrm{in}$. Hi-Pi, 10 w fited twin tweeters with cross-
over network, 3,8 and 15 ohnos, \&4, each. Horn
tweeter. $2-16 \mathrm{KHz} 8.15$ ohms ol. 50 . LT FLUORESCENT LIGRTING, inputs 6, 12 , 24 v , d.c.; 12 V attings with tube $8 \mathrm{w} £ 3 \cdot 75 ; 13 \mathrm{w} 26 \cdot 25 ;$ etc. Inverters 12
d.c., $20 \mathrm{w} ~ £ 7.50 ;$ mingle 40 or twin 20 w ; $£ 8$; single 50 w or
 SA.E, ALL ENQUIRIES PLEASE. MAIL ORDER ONLY. 48 KENILWORTR ROAD, EDGWARE, MIDDX. HA8 8YG,
Corriage extra all orders.
Tel. $01-988$ 9314

WW-118 FOR FURTHER DETAILS

Private enquiries, send two $5 d$ stamps for brochure THE QUARTZ CRYSTAL CO. LTD
Q.C.C. Works, Wellington Crescent New Malden. Surrey (01-942 0334 \& 2988)

WW-119 FOR FURTHIER DETAILS

WE PURCHASE

Fon spot cash redundant and surplus stocks of telpphone and electronic components, plugs and ockets, fransistors, relays, cables, efc.
T.W.C. LTD.

147 The Broadway, London, N.W. 9 -01-203 2814

BUILD YOURSELFA TRANSISTOR RADIO

Printed circuits for the Bailey amplifier Balley 3 amp, Balley $3 \mathrm{amp}+$ Linsley hood class A amp., and for Texas designs. Parts also avallable.
TELERADIO ELECTRONICS
325 FORE STREET, N. 9 Tel: 018073719

will dim in to $\mathbf{4 0 0}$ watts of iecawlasesat lightiag fram zort ta fall militance. This unit stmply raplaces un hormal fint sitien, and is filtol in a matter al cinutes. An ink manating frame is suppliof, for use then mort dath is ropuirad.

PRICE:
Comploto Kit: $£ 2.85$
Built \& testal: $£ 3.35$ com

Diathane Ltd.

111 Sheffiedd Road Wrmontham: NORFOLK
Please add $£ 0.10$ postage and packing

We are a Polish company exporting high stability electronic components which have good mechanical characteristics and long life expectancy.

Valves
Electron Guns
TV Picture Tubes
Sub-assemblies

Tape Recorder Heads

We can offer production capacity and the ability to produce tape recorder heads to meet our customers own specifications.

> Elektrim

EXPORTER:

Polish Foreign Trade Company for Electrical Equipment Ltd. Warszawa 1, Czackiego 15/17, Poland. Telegrams: ELEKTRIM-WARSZAWA

Phone: 26-62-71, Telex: 814351 P.O. Box: 638

If you are interested, please send for catalogues and quotations.

LAWSON
 NEW TUBES

Lawson "Century 99" are brand new tubes. Using silver activated screens, micro fine aluminizing, high definition electron guns. resulting in superb performance and very long life.

LAWSON TUBES

I8CHURCHDOWNRD.
MALVERN, WORCS.
Telephone: MALVERN 2100

WW-121 FOR FURTHER DETAILS

WEST LONDON'S NEW ELECTRONIC COMPONENT SHOP

Wide range of components in stock including Metal Oxide Resistors, Relays from 50p each. For Sale
EMI Professional tape recorder, type B.T.R.4. EMI Oscilloscopes, complete with trolleys, type WM2, WM8 plus amplifier type 8, WMI6. D.B. plus diff. amp.
Brand new Rank Taylor Hobson Vidital T.V. Camera Lenses.
Wanted
Surplus equipment, components, etc. Cash paid.
C.T. ELECTRONICS

267 Acton Lane, W.4. Tei: 01-994 6275

TAPES \& CASSETTES
Incredible but truel We offer these famous brands at prices at least 5% tower than any other "cut-price"

Dept. WW4 17 Leigh Park Road, Leigh-on-Sea, Essex. London Office:
1.2267004

CASH IMMEDIATELY AVAILABLE
for redundant and surplus stocks of radio, television, telephone and electronic equipment, or in component form such as meters, plugs and sockets, valves, transistors, semi conductors, capacitors, resistors, cables, copper wire, screws and nuts, speakers, etc.
The larger the quantity the better we like it.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, London, N12. Telephone: 014452713014450749 Evenings: 019587624

WE PURCHASE

COMPUTERS, TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGS AND SOCKETS, MOTORS, TRANSISTORS, RESISTORS, CAPACITORS, POTENTIOMETERS, RELAYS TRANSFORMERS ETC. ELECTRONIC BROKERS LTD.
49 Pancras Road, London, N.W.1. 01-837 7781

WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC.

CHILTMEAD LTD.

7, 9. 11 Arthur Road, Reading, Berks.

Tel: 582605

All devions direet from manaleoturer. No sab-atandard or Types available laclude remarked units.
Types arailable Include:
RF/IF Amp. Type $\mu 703$ to 5 opoxy package. Op. Amp. Type 4709 C D.I. L. package.
N-Channel F.E.T.
DC-200Mhy Type $2 N 3823 E ; ~ D C-400 M b z ~ T y p e ~$
$2 N 4416 E-~$ to 18 epoxy paeksge.
Pricen
$\mu 703$ 35D, $\mu 709 \mathrm{C}(40 \mathrm{D}) 2 \mathrm{~N} 3826 \mathrm{~S}$ 28), 2N4416E 40 D
Send atamp for complate list deapoxy transintors and integ-
rated circults currently availsble. TRADE ENQUIRIES INVITED
$\begin{aligned} & \text { Rodhawk Salos, } 33 \text { Hizhfild Road, Fiackwol! Heath } \\ & \text { Bucks. } \\ & \text { Talophone: 06-285 } 25854\end{aligned}$

VALVES -TELETUBES

 NEW TUBESFrom $£ 5.50$ BLACK \& WHITE Two Year Guarantee

REBUILT TUBES

From £4.00 BLACK \& WHITE Two Year Guarantee

COLOUR TUBES

From $£ 30 \cdot 00$ REBUILT From $£ 48.00$ NEW One Year Guarantee

VALVES

British Made-Highest Quality Very attractive prices Send for lists
-free delivery in our van area-
Otherwise carriage and packing extra at cost. Send for full details of all Tubes and Valves etc.

VACUONICS LTD. NEWTOWN ST. - CRADLEY HEATH WARLEY - WORCS.
'Phone Cradley Heath 69138 for real service
WW-122 FOR FURTHER DETAILS

AMERICAN
 test and communications equipment * GENERAL CATALOGUE AN 104 1/6 * Manuals offered for most U.S. equipments
 SUTTON ELECTRONICS
 Salthouse. Nr. Holt, Norfolk. Cley 289

GOMOON CENTRAL RADLO STOREE

EECORD BTORAGE ONITS. Brand new, Ant1-warp. 'Compact

 ELECTRICTTY SLOT METER (sp in slot) for A.C. mains. Fixed | tarifi to your requiremente. Buitable for hotels, etc. $200 / 250 \mathrm{\nabla}$ |
| :--- |
| $10 \mathrm{~A} .50 .15 \mathrm{~A} . ~$ | ages avallable. Reconditioned as nem. 2 years' guarantee. WIRELESS SETT Wo. 38 A.F.V. Freq. range 7.3 to $9.0 \mathrm{Mc} / \mathrm{s}$. WorkIng range t to 2 milles. Size $10 t \times 4 \times 61 \mathrm{~h}$. Weight $6 \not 11 \mathrm{~b}$, Includes power aupply 81 l -and aparo ralves and Fibrator also

tank aerial with base 88.00 per palr or $84: 00$ iligle. $P . P .125 \mathrm{p}$ MODERN DESK PHONEB, red, green, blue or topax, 2 tone grey or black. with internal bell and handset with $0-1$ dia.
ع4.50. P.P. 37 tit. £4.50. P.P. 37 tp.
10-WAY PRESS-BUTTON INTER-COM TELEPRONES in Bakelite case with Junction box handset. Thoroughly overhauled.
20-WAY PRERS-BUTTON INTER-COM TELEPEONES in Bakelite case with junction box. Thoroughly overhauled. Guaran-
teed. $\& 7.75$ per unit. bed. 2775 per unit.
QUARTERLY ELECTRIC CEECK METERS. Reconditioned
 8-BANK UNISMLECTOR 8 WITCHES. 25 contacts, alternate

23 LISLE ST. (GER 2969) LONDON W.C. 2 Closed Thursday 1 p.m. Open all day Saturday

NEW! HANDY! TIDY! multi-drawer

I-N-T-E-R-L-O-C-K-I-N-G

storage
units

A PLACE

FOR
EVERYTHING
EVERYTHING
IN ITS
PLACE!

Newest, neatest. system ever devised for storing small parts and components: resistors. capacitors. diodes. transistors. etc. Rigid plastic units. interlock together in
vertical and horizontal combinations. Transparent plastic vertical and horizontal combinations. Transnarent plastic
drawers have label slots/handles on front. Build up any size cabinet for wall, bench or table top.
BUY AT TRADE PRICES! SINGLE UNITS (5 ins $\times 2+1$ ins $\times 2$ ins)
USualify 15 p each.
OUR PRIC DOUBLE UNITS (5ins $\times 4 \frac{1}{2}$ ins $\times 2 \frac{1}{4}$ ins)
sually 25 p each. OUR PRICES: $\mathbf{£ 2 . 2 5}$ DOZEN

PLUS QUANTITY DISCOUNTS!

Orders $£ 10$ and over DEDUCT 7 in the $£$
Orders $£ 10$ and over DEDUCT $7 \frac{1}{2} \%$ in the $£$
Orders $£ 20$ and over DEDUCT 10% in the $£$
PACKING/POSTAGE/CARRIAGE. Add $35 p$ to all orders under £5. Orders $£ 5$ and over. packing/postage/carriage free.

QUOTATIONS FOR LARGER QUANTITIES

WITMTM

(Dept. WW4) 124 CRICKLEW000 BROAOWAY, LONDON, N.W.2.

THE SEMICONDUCTOR DATA BOOK

by Motorola

E3.00

Postage 25p
SEMICONDUCTOR BASIC THEORY \& DEVICES I. J. Kampel 62.50 Postage 9p

20 SOLID STATE PROJECTS FOR
THE CAR \& GARAGE R. M. Marston LI 20

Postage 6p
ELECTRONIC DESIGNER'S HANDBOOK T. K. Hemingway $\mathbf{E 3} \mathbf{4 0}$ Postage 10p
ELECTROACOUSTICS
M. L. Gayford $\mathbf{6 4 . 5 0}$ Postage 10p

ELECTRONIC INTEGRATED CIRCUITS \& SYSTEMS Franklin C. Fitchen 66.05

Postage 15p
F.M. RADIO SERVICING HANDBOOK 2nd Ed. Gordon J. King $\mathbf{£ 3 . 0 0}$ Postage 10p
TELEVISION SERVICING HANDBOOK 3rd Ed. Gordon J. King $\mathbf{~} 3.80$ Postage 10p

RADIO VALVE \&	TRANSISTOR
DATA A. M. Ball 75p	Postage 9p

THE MODERN BOOK CO.

of British and American Technical Books

19-21 PRAED STREET,

LONDON, W. 2
Phone PADdington 4185
Closed Sat. I p.m.
\star ALL PURPOSE TRANSISTOR PRE-MMPLIFIER \star
 Response $25 \mathrm{c}, \mathrm{p}, \mathrm{s}$ to $25 \mathrm{Kc} / \mathrm{s}, 26 \mathrm{db}$ gain. For use with valve
or transistor equipment. Full intructions. or transistor equipment. Full instructions. $90 p$ Post
Brand new. British made. Details S.A.E.

BAKER 12 in. MAJOR $£ 9$
 $30-14,500$ c.p.s., 12 in . double cone, woofer and tweeter cone together with a DAKER ceramic magnet assembly having a flux density of
14,000 gauss and a total flux of 145,000 Maxwells. Bass resonance 40 c.p.s. Rated 20 watts. Yoice coils available 3 or 8 or 15 ohms. Posit Free. Module kit, 30-17,000 c.p.s. Size $9 \times 12 \frac{1}{2}$ in. with tweeter, crossover baffle, instructions.
Ideal for Hi Fi or P.A. $\$ 1.50$ LOUDSPEAKER CABINEY WADDING 18 in. wide, 15p oer ft. run.
Post extra l0p per order.
E.M.I. QUALITYTAPE MOTORS Post 15p
$120 / 240 \mathrm{v}$. A.C. 1,200 r.p.m.,
Heavy Duty 4 pole 135 mA .
Spindle $0.187 \times \quad 0.75 \mathrm{in}$.

BALFOUR GRAM MOTORS
120,240v. A.C. I,200 r.p.m. Heavy duty 4 pole 50 mA . Spindie $0.15 \leqslant 0.75 \mathrm{in}$. Size $2 \frac{1}{2} \times 2 \frac{1}{8} \times 1 \frac{1}{2}$ in. 85 p Post $15 p$

THIS ELAC CONE TWEETER IS OF THE VERY LATEST DESIGN AND GIVES THAN MORE EXPENSIVE UNITS.
The moving coil diaphragm gives a good radiation pattern to the higher frequen. cies and a smooth extension of total res ponse from $1,000 \mathrm{cps}$ to $18,000 \mathrm{cps}$. Sixe $3 \frac{1}{2} \times 3 \frac{1}{2} \times 2$ in. deep. Rating 10 watts. 3 ohm or $15 \mathrm{ohm} \leq 1.90$ Post

THE INSTANT BULK TAPE ERASER AND RECORDING HEAD DEMAGNETISER
$\begin{array}{ll}\text { 200/250 A.C. } \\ \text { Leaflet S.A.E. } & \left.\mathbf{2} \cdot 35 \begin{array}{l}\text { Pos } \\ 15 p\end{array}\right]\end{array}$

RETURN OF POST DESPATCH - CALLERS WELCOME HI-FI STOCKISTS - SALES - SERVICE - SPARES
RADIO COMPONENT SPECIALISTS 337 WHITEHORSE ROAD. CROYDDN. Tel:01-684-1665

"W.W." HI-FI KITS

* LINSLEY HOOD MODULAR PRE-AMP July 1969 no-compromise design for the purist, Compactly built on Lektrokit. Layout details. Kit price from $\mathbf{6 7} \mathbf{7 5}$ (mono, mag.p.u. $+21 / \mathrm{P} . \mathrm{s}$)
\star LINSLEY HOOD SIMPLE PRE-AMP
Designer-approved PCB (marked component locations) gives excellent results with ceramic pick-up. Kit includes all parts as in May 1970 article plus front panel. Mono $£ 6.25$ Stereo $\notin 1140$ inc. p.p.
\star BAILEY 30W AMPLIFIER (Nov. '68)
Mk. IV PCB has extra pre-set for quiescent current
Output capacitor and PCB mount directly and Output capacitor and PCB mount directly and
compactly on specially designed generous heat-sink. * LINSLEY HOOD 15-20W AMPLIFIER July 1970 latest and uleimate design. O/P capacitor PCB, $\operatorname{Tr} 3,4$ \& 5 mount compactly onto heat-sink Our kit personally tested and approved by the
designer. Gain of O/PTR's >100.

POWER SUPPLIES (simple and stab'd) available.
HIGH QUALITY components inc'g Mullard Hunts, TCC capacitors, Plessey moulded pre-sets. O/P Tr's matched $\pm 10 \%$ @ $1 \mathrm{c}=1$ amp.
AFTER-SALES SERVICE at reasonable cost
REPRINTS of articies at 30 p per copy pose free. DETAILED PRICE LISTS at 5p (Refundable with order).

PERSONAL CALLERS WELCOME-BY APPOINTMENT. DESPATCH BY FIRST CLASS RETURN

A. 1 FACTORS

72 Blake Road, Stapleford, Nottingham

Tel. Notlingham 46051 Giro No. 4876008 (8 a.m.-10 p.m. 7 days/week)

INTERCONTINENTAL COMPONENTS

 for:
Electrolytic Capacitors

from 6 V to 500 V DC wkg
5 mfd to $10,000 \mathrm{mfd}$

Available from stock

INTERCONTINENTAL COMPONENTS

Electric House, 18 King St., 'Maidenhead, Berks. 5L6 IEG

4 STATION INTERCOM

Solve your communication problems with this new 4-8tation Translstor Intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to Subs and Subs to Master. Operates on one 9 v . battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hospital, Shop, etc., for instant interdepartmental contacts. Complete with 3 connecting wires, eaoh 66 ft . and other accessories. Nothing else to buy, P. \& P. $£ 0 \cdot 40$ in U.K

TLTEROW/BABYALARM

A top quality DE-LUXE transistorised intercom consists of MASTER and SUB for desk/wall mounting. Call, talk or listen from either unit. On/Off switch, volume control. or listen from either unit. On/Off switch, volume control.
Ideally suitable as "BABY SITTER" or Door Phone. Ideally suitable as "BABY SITTER" or Door Phone.
A boon for spastics and invalids. Useful in the home, A boon for spastics and invalids. Useful in the home, surgery or business for instant 2-way conversations, effective range 300 ft . Unsurpassed in QUALITY AND PERFORMANCE. Complete with 66 ft . connecting lead. Battery $£ 0 \cdot 12$ extra. P. \& P. £0.25. Price Refund if not satisfied in 7 days.

Foosto TEIEPHONEAMPITIER
£2.98

Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Portable Transistor TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without loping the handset. A useful office aid. A ung for every telephone user Useful for must for every telephone user. Useful for hard of hearing persons. On/off switch. Volume Control. Operates on one 9 v . battery which lasts for months. Ready to
operate. P. \& P. £0.18 in U.K. Add $£ 0 \cdot 12$ for operate.
Full price refunded if returned in 7 days.

WEST LONDON DIRECT SUPPLIES (W.W.) 169 KENSINGTON HIGH STREET, LONDON, W. 8

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 114-121

[^16]

Is your business held together bysoldered joints?

If you are manufacturing or servicing electronic equipment your business quite literally depends on solder. You need to be sure that every joint is sound. Ersin Multicore Solder gives you that assurance and reliability. Made from the purest metals, the finest fluxes and the accumulated knowledge of 30 years experience of supplying the electronics industry in more than 63 countries throughout the world, Ersin Multicore Solders minimize the chance of failure. Multicore Solders are available in over 400 specifications and if you are not already using one it would be to your advantage to investigate the wide range. Besides achieving better joints your labour costs will be reduced.

If you have any soldering problems or require details on any of our wide range of solder products please contact us at Multicore Solders Limited, Hemel Hempstead, Herts. Telephone Hemel Hempstead 3636, Telex 82363.

the reliable solder

[^0]: More details of the new PG-71 please
 Name
 Position
 Company
 Address:
 LYONS INSTRUMENTS
 Lyons Instruments Ltd. Hoddesdon England Telephone Hoddesdon 67161 Telex 22724 A Claude Lyons Company
 w.W.4/71

[^1]: ## Published monthly on 3rd Monday of preceding month, $17 \frac{1}{2} \mathrm{p}$ (35 6d).

 Editorial \& Advertising offices: Dorset House, Stamford Street, London S.E. 1. Telephone 01-928 3333. Telegrams / Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London S.E.1."
 Subscription \& Distribution offices: 40 Bowling Green Lane, London E.C.1. Telephone 01-837 3636.
 Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.
 Subscription rates: Home, $£ 4.00$ a year. Overseas, I year $£ 4.00 ; 3$ years $£ 10.20$ (U.S.A. \& Canada 1 year $\$ 10$, 3 years $\$ 25.50$).

[^2]: * The Torrington Diaries (Eyre \& Spottiswoode)

[^3]: A gramophone pickup of 1925. "Tons per square inch on a refined macadamised roadway".

[^4]: -Technical Editor (Research), The Marconi Company; and author of the recently published book "A History of the Marconi Company".

[^5]: *The partnership was dissolved in 1948.

[^6]: \dagger Scatter links are exceptions.

[^7]: * Old method of classifying stages in a receiver; first numeral, number of r.f. stages; letter ' V ', detector; second numeral, number of a.f. stages.

[^8]: Crescent Ro; EGE Components; Garland Crescent Rac Iadio; Hi-Fi \& Components; H. C. Bros; Gurneys R; Bros; Newbury Radio; Odeon Smith; Loverin६adio Unlimited; Servio Radio; Electronics; R. Radio: T. R. Radio; Watts Radio; Radio Comr

[^9]: W-095 FOR FUKTHER DETAILS

[^10]: - Deputy Editor, Wireless World

[^11]: *Newmarket Transistors Ltd

[^12]: *University of Sussex

[^13]: ${ }^{2}$ Millmar \& Holkias, 'Electronic devices and circuits', pp. 502, 3 .

[^14]: TR1ACS
 2N5756
 $\begin{array}{ll}\text { 2N5756 } & 2.5 \mathrm{Amp} \text { (RMS) } 400 \text { PIV TO-5 Mod. } \\ 60486 & 6 \text { Amp (RMS) } 400 \text { PIV TO-5 Mod }\end{array}$

 $\begin{array}{ll}\text { SCl } 468 & 10 \text { Amp } 200 \text { PIV Plastic Flat-pack } \\ \text { SCl } 146 \mathrm{D} & 10 \text { Amp } 400 \text { PIV Plastic Flat-pack } \\ \text { ST2 } & \text { Bi-lateral avalanche trigger diode }\end{array}$

[^15]: $\mathrm{B}_{2}^{\text {UILD }}$ IT in a DEWBOX quality plastics cabinet. B_{2} in. $\times{ }^{21}$ in. x any length. D.E.W. Ltd. (W),
 Ringwood Rd., FERNDOWN, Dorset. S.A.E. for leaflet.

[^16]:

 at a pricoin excess of the recommended maximump price shown on the sover; and that it shall not be or amized to or as part of any pubilcation or adverthing, iterary or pletorlai matter whateocver.

