

The people who make TV sets are technically skilled, tough buying, profit-minded, hard-headed and suspicious

That's why they insist on Mullard valves

Plan to have the best. Have Mullard valves always in stock. There's no need to send to your wholesaler four times a week or to overstock remember the top service types;

DY86/87 ER 84 PCC84 PCL86 ECC82 EY86/87 PCC89 PCF801 PCL805/85 PL504 PCL83 PC86 PCC189 PY81/800 PY33 PCL82 PFL200 EF1.83

for just full be this surprised at this performance

A.C. MICROVOLTMETERS

VOLTAGE & db RANGES: 15μV, 50μV, 150μV ... 500V f.s.d. Acc., ± 1% ± 1% f.s.d. ± 1μV at 1kHz. - 100, - 90 ... + 50dB, scale - 20dB/+ 6dB rel, to 1mW/600 Ω. RESPONSE: ± 3dB from 1 Hz to 3MHz, \pm 0.3dB from 4Hz to 1MHz above 500µV. Type TM3B can be set to a restricted B.W. of 10Hz to 10kHz or 100kHz INPUT IMPEDANCE: Above 50 mV : > 4·3M Ω $\,$ < 20pf. On $50 \mu \text{V}$ to 50 mV : > 5M Ω $\,$ < 50pf.

AMPLIFIER OUTPUT: 150mV at f.s.d.

type **£49** type **£63**

D.C. MULTIMETERS

VOLTAGE RANGES : $3\mu V$, $10\mu V$, $30\mu V$... 1kV. Acc. \pm 1% \pm 1% f.s.d. \pm 0·1 μV . LZ & CZ scales.

CURRENT RANGES: 3pA, 10pA, 30pA . . . 1mA (1A for TM9BP) Acc. \pm 2% \pm 1% f.s.d. \pm 0·3pA. LZ & CZ scales.

RESISTANCE RANGES: 3 Ω , 10 Ω , 30 Ω . . . 1kM Ω linear. Acc. \pm 1%, \pm 1% f.s.d. up to 100M Ω .

RECORDER OUTPUT: 1V at f.s.d. into $> 1k \Omega$ on LZ ranges.

type £89

BROADBAND VOLTMETERS

H.F. VOLTAGE & dB RANGES: 1mV, 3mV, 10mV . . . 3V f.s.d. Acc. $\pm 4\% \pm 1\%$ of f.s.d. at 30MHz. - 50dB, - 40dB, - 30dB to + 20dB. Scale - 10dB/+3dB rel. to 1mW/50 Ω . \pm 0.7dB from 1 MHz to 50 MHz. ± 3dB from 300kHz to 400 MHz.

L.F. RANGES: As TM3 except for the omission of $15\mu V$ and $150\mu V$.

AMPLIFIER OUTPUT: Square wave at 20Hz on H.F. with amplitude proportional to square of input. As TM3 on L.F.

type E85

type **£99**

Long battery life and large overload ratings are leading features of these solid state instruments. Mains units and leather carrying cases are optional extras. All A type instruments have 31 scale meters and case sizes $5''\times7''\times5''$, B type instruments have 5''' mirror scale meters and case sizes $7''\times10''\times6''$.

PORTABLE **VOLTMETERS**

LEVELL Electronics Ltd · Park Road · High Barnet · Herts. · Tel: 01-449 5028 Hire terms and leaflets covering our range of portable instruments are available.

WW-006 FOR FURTHER DETAILS

Erie's range of high stability tin oxide resistors has a new feature that makes them unique — PLUGGABILITY. They are the 259P and 259P2 Series and are, of course, close tolerance types.

Tin oxide's enhanced robustness and reliability, plus pluggable terminations combine to make them ideal for fast, easy handling on all flow-line operations. No bent leads with Erie pluggables. Plug-in simplicity at last for PCB's with holes on 0.25 or 0.4 in centres.

To us, close tolerance means $\pm 2\%$ or $\pm 5\%$. High stability means $\pm 3\%$ on load life at 70°C, maximum dissipation. Fully available in all values from 10Ω to $300k\Omega_{\rm r}$ these new pluggables are quite content operating up to 250V d.c. or 0.3W.

For broader tolerance requirements specify Erie's 9P2D Series solid carbon pluggables. Their values extend from 10Ω to $12M\Omega$ $\pm 10\%$ and they'll withstand 700V d.c.

From their wide experience of electronic

component design Erie pioneered the development of pluggable resistors so that

just plug them in. Simply. Let us send you full information without delay.

now, all you have to do is

ERIE ELECTRONICS LTD. Great Yarmouth, Norfolk. Telephone: 0493 4911

Telex: 97421

ERIE PLUGGABLE RESISTORS

You can view X-ray pictures in daylight using only a 5 micro-Röntgen dosage

What would it mean to you? An X-ray picture that is so bright you can view it in direct daylight as it happens. EEV's Image Isocon is now being used in X-ray equipment for this very purpose – reducing X-ray dosages to as little as 5 micro-Röntgens, allowing longer exposure times for 'live' X-ray picture study, saving time by eliminating the need for operators' eyes to become 'dark-adapted'.

The Image Isocon is so sensitive that it can

convert a very low dosage-level picture to a bright, clear picture on a cathode-ray tube. This in turn means simple direct-from-screen photography.

The Image Isocon is another product of EEV advanced tube technology. For complete data, please post the coupon.

English Electric Valve Co Ltd Chelmsford, Essex, England. Telephone: 0245 61777. Telex: 99103. Grams: Enelectico Chelmsford.

with the EEV Image Isocon

TUBE TYPE	UNIT PRICE DM US §	TUBE TYPE	UNIT	PRICE US \$	TUBE TYPE	UNIT F	PRICE US \$
GY 802	2.7669	PY 81 (17Z3)	1.24	31	P22	\$24	
GZ 32 (5V46)			1.32	33	1	3.40	85
GZ 34 (5AR4) GZ 37			1.24	31 43	ULTRI	DN 1.40	35 50
GZ 41	2.40 —.60	PY 301	5.60	1.40	1 DN J	2.—	50
HAA 91 = 12AL HABC 80 = 19T		PY 500 PY 800	5.44 1.72	1.36	1 G 3 GT 1 H 5 GT	1.20	35 30
HBC 90 = 12AT		UABC 80 (28AK8)	1.68	42	1 1 3	1.80	45
HBC 91 = 12AV HCC 85 = 17EV	RARRA	UAF 42 (12S7) UBC 41 (14L7)	2.56	64 	1 K 3	1 80	45 23
HF 93 = 12BA6	ULTRON	UBC 81 (15BD7.	- 1.	V. FR.			50
HF 94 = 12AU6 HK 90 = 12BE6	GELHOIA	UBF 80 (17C8) UBF 89 (19DC8)	1.80	45			75 44
HL 90 = 19AQ5		UBL 1	3 28	82	1 LD 5	1.28	32
HL 92 = 50C5		UBL 3	3.60	90	1 LE 3 1 LH 4	1.80	45
HL 94 = 30A5 HY 90 = 35W4		UBL 21 UC 92 (9AB4)	2.08	—.52 —.45	1 LN 5	2.48 1.40	62 3 5
KY 80	4	UCC 85 (26AQ8)	1.92	48	PRRR	RSS	
LC 900 (3H 5) LCF 80 (6L)	IA II		4.20 2.08	1.05 52	LUTE	1.60	40
LCF 801 (5G	62	(14K7)	2.72	68	CULIN		
LCF 802 (6LX8)		UCH 81 (19D8) UCL 11	1.64	41 80	1 T 4	1.32	- 33 30
LCL 84 (10DX8)	2.—50	UCL 81	2.40	60	1 U 4	1.20	30
LCL 85 (10GV8)	2.4060	UCL 82 (50BM8) UEL 51	1.84	46 90	1 U 5	2.60	65 53
LF 184 (4EJ7)	D0000	UEL 71			1×2A	Name and	33
LL 86 (10CW5)	0000	UF 5 UF 9	- 4				—,33 1.50
LY 88 (20AQ3) LFL 200 (11Y9)	ULTHON	UF 41 (12AC5)					52
PABC 80 (9AK8		UF 80 (19BX6)	1.68	42	2 A 7 2 AF 4 B	2.40	60 56
PC 86 (4CM4) PC 88 (4DL4)	2.68 —.67 2.92 —.7 3	UF 85 (19BY7) UF 89 (12DA6)	1.68	42 40	2 AH 2	3.36	84
PC 92 (3AB4)	1.28 —.32	UL 41 (45A5)	2.48	62	2 AS 2	3.36	84
PC 96 PC 97 (4FY	—.33	UL 84 (45B5)	1.60	40 50	1888	1.60	40
PC 900 (4H	111/4:	M 34/35	3.12	78 44	ULTR	DN 2.44 2.80	61 70
PCC 84 (7/ PCC 85 (9AQ8)	44	M 80 (19BR5) UY 1 (N)	1.76 1.20	30	2	2.08	52
PCC 88 (7DJ8)	2.32 —.58	UY 11 UY 41	2.40 1.60	60 40	2 DZ 4 2 GK 5	1.76	56 44
PCC 89 (7FC7) PCC 189 (7ES8		UY 42.	1.60	-40	HA Same	1.68	42
PCF 80 (9A8)	POOOD	UY 82 (55N3)	1.64	-01			56 50
PCF 82 (9U8A) PCF 86 (7HG8)		UY 85 (38A3) UY 89	1.24	-14	图 是 图 图		1.16
PCF 200 (8X9) PCF 201 (8U9)	ULTRON	U 50 = 5Y3GT U 52 = 5U4GB			FE 12 4 60 F		— .53
PCF 201 (809)	2.2055	U 70 = 6X5GT			3 AL 5	1.04	26
PCF 802 (9)W8 PCF 805 (7GV7		XC 900 (2HA5) XCC 82 (7AU7)	1.68	42 46	3 AT 2 3 AU 6	2.36	59 28
PCH 200 (9V9)		XCF 80 (4BL8)	2.72	68	3 AV 6	1,	25
PCL 81 PCL 82 (16 3)		XCE 80 5U8	1.64	41 56	RRR	SS \$ 2.24	56 36
PCL 83		Rende	2.56	64	ULTA	2.83	72
PCL 84 (15 DE PCL 85 (18 GV8		TITIE	1.76	44	3	2.64	50 66
PCL 86 (14GW	8) 2.08 — 52	XL 84 (8BQ5)	1.68	42	3 BZ 6	1.20	30
PCL 200 PCL 805	3.64 —.91 2.08 —.52	XL 86 (8CW5) XT 68 (16AO3)	1.92 2.40	48 60	3 C 4 = DL 9	1.20	30
PD 5				-			60
		is, we understand that SQ-Series of Television			JUTF		56 84
PL 3t tubes	gives you safety at		38				44 84
PL 8		mplete line of Europear	12	HE E	lectronic	GmbH	34
PL 81 and A		ng & industrial tubes for		1000			36 70
	wide export with of		8	5	chillerstr	. 40	44
PL 3 Name	us the sample tube	you want together with	1 30	8	Münche	n 15	44 42
I PL O	•	14 just off the press	30 30	1 2			45
PL 50 Write	to us please, it's w	orth it!		Ph	one 555321 •	Telex 0522456	49 59
PL 511 PM 84	5.68 1.42 1.84 —.46	1 AD 2 1 AH 5 = DAF 96	2.16	54	3 JD 6 3 JH 6	2.36 1.36	59 34

Experience:

Since the beginning of industrial r.f. heating, EEV have been the pace-setters. With this experience, backed by our equal know-how in the transmitter valve field, is it any wonder that we are so well known for power triodes?

EEV make power triodes for industrial heating applications from 1kW up to 250kW. They are all conservatively rated and realistically designed to give good length of life. Whatever your application -for drying paper, baking biscuits, welding plastic, treating metal-r.f. heating the EEV way is economical and dependable.

Our sales engineers are at your service to discuss designs and to recommend the best tube or combination of tubes for your particular application.

For full details just post the coupon or telephone Mr. M. J. Pitt.

English Electric Valve Co Ltd. Chelmsford Essex. England. Telephone: 0245 61777. Telex 99103. Grams: Enelectico Chelmsford

the vital factor of EEV's industrial r.f. heating power triode range

SINGLE SOURCE SENSE

OR How to get What you Want without Having to Try Very Hard

If your parts requirements are small, and your call-off irregular, you have a problem. If, as often happens, you want parts quickly, you have another problem.

We are in business to help you solve both, quickly.

As stockholders of an enormous range of Radio, Electronic and Electrical Components, Metal Pressings, Clips, Fasteners and Assemblies by Cinch Dot and FT, we are the "single source" for pretty well everything of this kind you want in whatever quantity you want and at short notice.

Two illustrated catalogues. Thousands of stock items are detailed in our two fully illustrated catalogues—Fasteners and Electronics—either of which will be sent, post-free, to firms and organisations. Send for yours now, stating which catalogue you require.

Make United-Carr Supplies vour

SINGLE

for Cinch Dot and FT Radio, Electronic and Electrical Components, Metal Pressings, Clips, Fasteners and Assemblies.

United-Carr Supplies Ltd., Frederick Road, Stapleford, Notts. Sandiacre 2828 STD 060 239 2828

Why do so many industries rely on EEV tubes?

Because they're so reliable.

You can specify each and every EEV tube with confidence. Whatever your industry, when it involves electronics you can be sure that EEV's expertise will provide the performance, the length of life and, above all, the reliability you want.

For industrial heating: EEV r.f. power triodes range from 1kW up to 250kW, and mercury vapour rectifiers are available with capabilities up to 30 amps at 21kV. All are conservatively rated, realistically designed and economical.

For TV monitoring: EEV vidicons are ideal for any closed-circuit TV application. They can be used in any position and are available with a choice of photosurfaces,

For power supplies: EEV make voltage stabilisers and voltage reference tubes to fit more than 80 different sockets.

For high-speed switching: EEV glass and ceramic hydrogen thyratrons provide greater accuracy and precision.

For motor control: EEV industrial thyratrons provide the degree of precision needed for motor speed control and similar applications. Both mercury vapour and xenon thyratrons are available,

For industrial welding: EEV ignitrons have long-life ignitors, and robustly constructed envelopes and water jackets of unique design giving supreme reliability.

English Electric Valve Co. Ltd. Chelmsford • Essex England

Telephone: 0245 61777 Telex: 99103. Grams: Enelectico Chelmsford.

ENGLISH ELECTRIC VALVE CO LTD

FOUR NEW COMPONENTS FROM ASSOCIATED AUTOMATION

1 Industrial Relay Type MR
A.C. or D.C. operation. Panel
mounting or plug-in to octal type
socket. Will last for up to 5 million
operations with 1, 2 or 3 poles
switching up to 10 amps.
Compact, lightweight and cheap.

2 Dry Reed Relay Type ERTN
Range of up to 12 poles.
Switching capabilities up to
50 VA; breakdown voltages up to
1500 V.A.C. Life expectancy at
contact rating 7 5 VA, 100 x 106
operations. Cheap to buy, capable
of fast action with low power
consumptions and bistable

3 Miniature Dry Reed Push Button Switch Series 500

Switching expability up to 4 poles, up to 0.5 amp. 30 watt. Wide range of con act arrangements and mounting styles. Angle bases for terrace keyboards, panel mounting for either single or multiple fixing Will last for at least 5 million operations. Easy to apply, readily evailable, economically proed.

4 Hermetically Sealed Commercial Relay Type TFC A T.0.5 transacr can envelope giving high-isolation switching. Resists shoot and vibrations, operates or powers down to 40 mW Switching expability 1 amp at 28 V.D.C. to owlevel (single and double pole). Economical price—though comparable with any military equalization.

Three relays and a switch, designed by Associated Automation to cut your switching costs. Built to the highest standards of engineering, these components join the already comprehensive range of switches and relays for all communication and control purposes. All economically priced and backed by Britain's most outstanding engineering service.

Send in the coupon and we'll let you have all the information you require.

To Associated Automation Limited, Electromagnetics
70 Dudden Hill Lane, London, N.W.10.

Please send me yourfully illustrated literature on (tick bos applicable)

1 2 3 4 NAME

COMPANY

ADDRESS

WW-013 FOR FURTHER DETAILS

Our tubes. Your cameras. They're made for each other.

Transformers, Chokes Saturable Reactors Voltmobile voltage regulators Rectifier Sets

Transformers

Air cooled power transformers from 0.5 to 300kVA at voltages up to 2kV. 1 or 3 phase, double or auto wound, step-up or step-down. We have manufactured transformers to over 5,000 different designs for many applications and the experience which has been accumulated from these designs is built into every Harm sworth, Townley transformer

Voltmobiles

The most robust and useful control device for loads such as furnaces, ovens, bar heating and high temperature research. Our Voltmobiles are in use in their thousands to control transformers and rectifier sets or they can be used directly between supply and load. 64 step on load switching. Voltmobiles are auto-transformers which give control from 1.6% to 100% of input volts. Over-Volts up to 125% of input is also available. Standard models are made for single and 3 phase supply and for outputs from 20 Amps to 200 Amps with on-load switching.

High Current Transformers

Years of experience have gone into the design and production techniques used in the manufacture of our low voltage, high current transformers for use in furnaces, high temperature research, heating and other applications. These techniques enable us to produce transformers with output currents up to tens of thousands of amps at economical prices

Rectifiers

Sturdily built air cooled equipment from 50W to 500kW for plating, plasma arc welding, electrolytic machining and many other applications. Equipment incorporates either silicon or şelenium rectifiers and can be built with fixed or variable output. Variable outputs are obtained by the use of continuously variable auto transformers, saturable reactors or Voltmobile regulator.

Saturable Reactors

From 5kVA up to 300kVA for controlling the outputs from transformers or rectifier units. Saturable reactors are infinitely variable reactors which can control outputs from transformers etc, from 10% to 100% of full output.

Chokes

A.C. and D.C. chokes

Specific enquiries are invited

HARMSWORTH, TOWNLEY & CO. LTD. 2 Hare Hill, Todmorden, Lancs.

Telephone Todmorden 2601 Extension 22

WW—015 FOR FURTHER DETAILS

TRIO's CS-1554 Passes The Most Rigid Testing Requirements

Waveform analysis and other electrical equipment and electronic installation testing is performed at the highest possible peak of efficiency with TRIO's CS-1554. This wide-band dual trace triggering oscilloscope operates at ultra-high sensitivity while also offering an over-all expansive range of test capabilities. Lightweight because of its all-solid state construction, this completely dependable instrument is remarkably versatile. For example, dual trace waveform analysis with very wide synchronization capabilities is possible from DC-10 MHz. It has no equal for speedy analysis efficiency.

CS-1553 130mm Oscilloscope

130mm Oscilloscope
An essential device for signal waveform analyses and TV alignment and
servicing. Complete solid state circuitry. Trigger sweep and automatic
sweep potential. Very high sensitivity with while frequency response
from DC to 10 MHz extremely versatile.

VT-106 High sensitivity Electronic Voltmeter

Voltmeter
This is a solid state electronic voltmeter employing IC and FLT for high sensitivity and stability, capable of measuring voltages from 0.02mV to 300V

ALL SOLID STATE CR type

low-frequency Oscillator
An all-transistor, compact CR
type wide-band low-frequency
oscillator, the AG-20T produces
sine waves with a minimum
of distortion and rectangular
waves with a quick rise time
at a low output impedance.

TRIO KENWOOD ELECTRONICS S.A.

160 Ave., Brugman, 1060 Bruxelles Belgium

Sole Agent for the U.K.

B.H. MORRIS & CO., (RADIO) LTD. 84/88. Nelson Street, Tower Hamlets, London E.1. Phone: 01-790 4824

DOMA HAVE DOME IT

a multimeter for only

MODEL 3800
ACCURACY TO 0.1%
MEASURING AC/DC, ohms/amps
OPTIONAL B.C.D. OUTPUT
SEE IT—TRY IT—NOW!

DANA ELECTRONICS LIMITED

Telex: 82430

Bilton Way, Dallow Road, Luton, Beds.

Telephone: Luton 24236

WW-017 FOR FURTHER DETAILS

FORD RA Modular type A designed to suit every application. Viewing systems include parallaxfree viewing during exposure Lenses f1.3, f1.5. f1.9. f2.8 and f3.5. Adaptors for all popular scopes. Wide range of fully interchangeable accessories. Film backs: Polaroid 10 second prints with roll, pack or cut film, conventional photo materials including 35mm. Inexpensive Type P LIGHTWEIGHT SIMPLE OPERATION **ATTRACTIVE APPEARANCE** LOWER PURCHASE **PRICE ECONOMY SIZE** POLAROID FILM TYPE 20 PRE-EXPOSURE VIEWING LENS f4.5 2.4" (61mm) lens provides reproduction of trace and graticule with good linearity. The object/image ratio is 1:07 (nom). SHUTTER SPEEDS include fixed exposure 1/25th sec. (nom) time and brief. ADAPTORS Camera models available for most popular ELFORD PRODUCT 4 WADSWORTH ROAD GREENFORD MIDDLESEX ENGLAND TEL: 01:998-1011

WW-018 FOR FURTHER DETAILS

THE PAYARE PHOTO-OPTICAL COMPANY OF THE BENTIMA GROUP

In just 2 minutes, find out how you can qualify for promotion or a better job in Engineering

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn on 'SATISFACTION OR REFUND OF FEE' terms. If you'd like to know how just a few hours a week of your spare time, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

•WHICH SUBJECT WOULD INTEREST*YOU?* •

Mechanical

A.M.S.E. (Mech.) Inst. of Engineers Mechanical Eng. Maintenance Eng. Welding General Diesel Eng. Sheet Metal Work Eng. Inspection
Eng. Metallurgy
C. & G. Eng. Crafts
C. & G. Fabrication

Draughtsmanship A.M.I.E.D.

Gen. Draughtsmanship Die & Press Tools Elec. Draughtsmanship Jig & Tool Design Design of Elec. Machines Technical Drawing Building

Electrical & Electronic A.M.S.E. (Elec.) C. & G. Elec. Eng. General Elec. Eng. Installations & Wiring Electrical Maths. Computer Electronics Electronic Eng.

Radio & Telecomms.

C. & G. Telecomms. C. & G. Radio Servicing Radio Amateurs' Exam-Radio Operators' Cert. Radio & TV Engineering Radio Servicing Practical Television TV Servicing Colour TV Practical Radio & Electronics (with kit)

Auto & Aero A.M.I.M.I. MAA/IMI Diploma C. & G. Auto Eng. General Auto Eng. Motor Mechanics A.R.B. Certs

Gen. Aero Eng. Management & Production

Computer Programming

Inst. of Marketing A.C.W.A.
Works Management Work Study Production Eng. Storekeeping Estimating Personnel Management Quality Control Electronic Data Processing Numerical Control Planning Engineering Materials Handling Operational Research Metrication

Constructional A.M.S.E. (Civ.) C. & G. Structural Road Engineering

Civil Engineering Building Air Conditioning Heating & Ventilating Carpentry & Joinery Clerk of Works Building Drawing Surveying Painting and Decorating. Architecture Builders' Quantities

C.E.I. Petroleum Tech. Practical Maths. Refrigerator Servicing Rubber Technology Sales Engineer Timber Trade Farm Science Agricultural Eng. General Plastics

General Certificate of Education

Choose from 42 'O' and 'A' Level subjects including: English Chemistr General Science Geology Mathematics Technical Drawing French German Russian Spanish
Biology
B.I.E.T. and its
associated schools have recorded well over 10,000 G.C.E. successes at 'O' and WE COVER A WIDE RANGE OF TECHNICAL

Over 3,000 of our Students have obtained City & Guilds Certificates. Thousands of other exam successes.

AND PROFESSIONAL

EXAMINATIONS.

THEY DID IT—SO COULD YOU

"My income has almost trebled . . . my life is fuller and happier." - Case History G/321.

"In addition to having my salary doubled, my future is assured." - Case History H/493.

A turning point in my career - you have almost doubled my standard of living." Case History K/662.

"Completing your Course meant going from a job I detested to a job I love." - Case History B/461.

FIND OUT FOR YOURSELF

These letters - and there are many more on file at Aldermaston Court - speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you.

7ree!

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

Dept D259, Aldermaston Court, Reading RG7 4PF.

(Write if you prefer not to cut this page)

POST THIS COUPON TO	עע,	A١	1
---------------------	-----	----	---

To: B.I.E.T., Dept D259 Please send me book as	Aldermaston Court, Reading RG7 4PF and details of your Courses in
Address	Age
	Occupation

B.I.E.T - IN ASSOCIATION WITH THE SCHOOL OF CAREERS - ALDERMASTON COURT, BERKSHIRE

S G BROWN NOW! FOR THE FIRST TIME ...

all-adaptable dual purpose MAGNETIC FIX

'CLASSIC' Microphone with instantaneous-stowing advantage

Dimensions Overall body length 5½" (14 cm) Maximum diameter $1.\frac{1}{4}$ " (3.17 cm) Weight

Approximately 5 oz (141.75 g) Inset - Moving coil-noise Cancelling 300 ohms Impedance

Magnetic Fix to standorcardashboardequallyfast

Output for normal speech Approx 1 mV true r.m.s. Magnetic adhesion

Measured on $\frac{1}{8}$ " (3.17 mm) flat mild steel plate with microphone mounted vertically. The vertical downward pull required to cause slipping is typically 14 oz (0.4 kg)

Type 1 C 601/1 is S G BROWN'S new 'Classic' dual-purpose microphone triumph.

- Fixed in split second
- Hand or fixed position microphone
- This instrument adapts to situation
- Clings magnetically to station stand or car dashboard

HAWKER SIDDELEY

COMMUNICATIONS

S. G. BROWN LTD., KING GEORGE'S AVENUE, WATFORD, HERTFORDSHIRE TEL: WATFORD 23301 TELEX 23412 TELEGRAMS RADIOLINK WATFORD

Hawker Siddeley Group supplies mechanical, electrical and aerospace equipment with world-wide sales and service.

WW-020 FOR FURTHER DETAILS

The AE PPM 3

The Audio Engineering Peak Programme Meter is designed well within the British Standards specification. This precision instrument is used throughout all major Broadcasting and Television Studios in the U.K. and Europe. The PPM 3 is always used where programme level must be accurately measured.

Printed circuit mounts directly to back of Ernest Turner 643 or 642 meter.

Three meter scales available: British Standard -BBC-European.

Nominal 24 Volts DC required.

High stability-all capacitors are Tantalum electrolytic.

Frequency response: 40 Hz-20 kHz ± 0.2 dB

10 Hz-40 Hz+2.0 dB

20 kHz-60 kHz + 2.0 dB

Integration time: 10 m secs. 'Fall back' time: 3 secs. Gold plated 10 way connector.

4 slave meters can be driven from 1 card.

Ferrous or Non-ferrous mounting.

Stereo PPM also available.

Manufactured by: Audio Engineering Ltd., 33 Endell Street, London, WC2.9BA.

01-836 9373

AUDIO MEASURING INSTRUMENTS

Two instruments having a superior performance than any others of this type regardless of price. Now accepted as standard equipment by Broadcasting Authorities, recording studios, magazine equipment test laboratories, and audio research and development laboratories all over the world.

LOW DISTORTION OSCILLATOR

An instrument of high stability providing very pure sine waves, and square waves, in the range of 5 Hz to 500 kHz. Hybrid design using valves and semiconductors.

Specification
Frequency Range:
Output Impedance:
Output Voltage:
Output Attenuation:
Sine Wave Distortion:

5 Hz-500 kHz (5 ranges)

Square Wave Rise Time:

5 Hz-500 kHz (5 ranges).
600 Ohms.
10 Volts r.m.s. max.
0-110 dB continuously variable.
0.005% from 200 Hz to 20 kHz increasing to 0.015% at 10 Hz and 100 kHz.
Less than 0.1 microseconds.
Scaled 0-3, 0-10, and dBm.
100 V.-250 V. 50/60 Hz.
17¼ × 11 × 8 in.
25 lb.

Square Wave Hise Time Monitor Output Meter; Mains Input: Size: Weight; Price:

DISTORTION MEASURING SET

A sensitive instrument for the measurement of total harmonic distortion, designed for speedy and accurate use. Capable of measuring distortion products as low as 0.002%. Direct reading from calibrated meter scale.

Specification

Frequency Range Distortion Range: Sensitivity: Meter:

0.01%-100% f.s.d. (9 ranges). 100 mV.-100 V. (3 ranges). Square law r.m.s. reading 100 kOhms.

Input Resistance: High Pass Filter: Frequency Response:

3 dB down at 350 Hz.
30 dB down at 45 Hz.
±1 dB from second frequency to 250 kHz. harmonic of rejection

Power Requirements:

Included battery. $17\frac{1}{4} \times 11 \times 8 \text{ in.}$ 15 lb.

Weight: Price £120.

Descriptive technical leaflets are available on request.

RADFORD LABORATORY INSTRUMENTS LTD.

BRISTOL BS3 2HZ

Telephone: 0272, 662301

WW-023 FOR FURTHER DETAILS

TRANSFORM

Over 200 types of standard transformers are stocked, some of which are shown

In addition, a fast production winding service is

Please send for full list of ex-stock transformers.

	12 AND/OR 24 VOLT RANGE											
	PRIMARY 200-250V SECONDARY I2V AND/OR 24V											
Ref.	Cur	rent	Secondary Windings	Dimensions	Weight	Pri						
No.	127	24V		inches	lb. oz.	1-24	25-99					
THE	0.5A	0.25A	0-12V @ 0.25A × 2	3 × 2± × 1±	12	14/10	13/9					
213	1.0A	0.5A	0-12V @ 0.5A × 2	$3! \times 2 \times 2$.1 0	17/6	16/2					
71	2.0A	1.0A	0-12V @ I Amp × 2	21 × 21 × 21	1 0	23/I	21/4					
68	3.0A		0-12V @ 3 Amp —	$31 \times 21 \times 31$	2 0	28/8	26/6					
18	4.0A	2.0A	0-12V @ 2 Amp x 2	31 × 21 × 21	2 4 3 2	32/4	29/11					
85	5.0A		0-12V @ 5 Amp	3 × 2 × 3	3 2	36/11	34/1					
70	6.0A	3.0A	0-12V @ 6 Amp —	4 × 3 × 31	3 12	39/-	36/1					
108	8.0A	4.0A	0-12V @ 4 Amp × 2	$4 \times 31 \times 31$	4 6	44/1	40/B					
72	10.0A	5.0A	0-12V @ 5 Amp × 2	$31 \times 41 \times 4$	6 3 7 8	51/3	47/5					
17	16.0A	8.0A	0-12V @ 8 Amp x 2	41 × 31 × 4	7 8	79/-	73/1					
115	20.0A	10.0A	0-12V @ 10 Amp x 2	41 × 41 × 4	11 13	100/6	92/11					
187	30.0A	15.0A	0-12V @ 15 Amp x 2	51 × 41 × 41	16 12	185/6	171/7					
	_											

	30 V	OLT RANGE PRIMAI	RY 200-250V—SECO	NDARY:	30V
Ref.	Current	Secondary Tabs	Dimensions	Weight	Price
No.			inches	lbs. ozs.	1-24 25-99
112	0.5A	0-12-15-24-30V	31 × 27 × 1 15	1 4	17/6 16/2
79	1.0A		21 × 21 × 21	2 0	23/7 21/10
l 'à	2.0A		31 × 21 × 3	3 2	31/10 29/4
20	3.0A	11	4 × 31 × 31	4 6	43/1 39/-
Žĭ	4.0A	13	4 × 31 × 31	6 0	51/3 47/5
î ŝi	5.0A		$43 \times 31 \times 4$	6 8	63/1 58/4
. 117	6.0A		48 × 38 × 4	7 8	75/10 70/1
88	8.0A	11	51 × 31 × 41	9 6	100/6 92/11
89	10.0A	11	51 × 4 × 41	12 2	124/1 114/8
٧,	10.07	"			
	50 V	OLT RANGE PRIMA	RY 200-250V—SECO	NDARY :	50V

Ref.	Current	Secondary Tops	Dimensions	Weight	Price
No.			inches	lbs. ozs.	1-24 25-99
102	0.5A	0-19-25-33-40-50V	21 × 21 × 21	1 [1]	23/1 21/4
103	1.0A	**	$3\frac{1}{2} \times 2\frac{7}{4} \times 2\frac{1}{4}$	2 10	33/10 31/4
104	2.0A	**	4 × 3 1 × 3 1	5 0	46/8 43/3
105	3.0A	**	4 × 4 × 3 ±	6 0	63/7 58/8
106	4.0A	**	$41 \times 41 \times 4$	9 4	84/- 77/8
107	6.0A	**	41 × 41 × 51	12 4	124/1 114/8
118	8.0A	21	$5! \times 5! \times 4!$	18 9	162/- 149/10
119	10.0A		61 × 41 × 61	19 12	203/- 187/8

112	10.0		01 / 41 / 01	17	12	203/- 1	0,,0	
	60 V	OLT RANGE PRIMARY	200-250V—SECO	NDA	RY			
Ref.	Current	Secondary Tabs	Dimensions	Weig	ht	Price		
No.			inches	Ibs. o	ozs.		25-99	
124	0.5A	0-24-30-40-48-60V	31 × 31 × 21	2	4	23/7	21/10	
126	1.0A	11	3 i × 3 × 3	3	0	32/10	30/4	
127	2.0A		4 × 3i × 3i	5	-6	51/3	47/5	
125	3.0A	**	41 × 31 × 4	7	0	75/10	70/t	
123	4.0A		$41 \times 31 \times 41$	10	6	100/6	92/11	
40	5.0A	3.9	51 × 5 × 51	13	4	121/- I	11/11	
120	6.0A	11	51 × 41 × 41	16	ıż		34/7	
121	8.0A	**	51 × 51 × 41	20	· ፯		77/8	
122	10.0A	11	61 × 5 × 61	23	5		23/-	
122	10.04	11		21	á		4716	

M.	MAINS ISOLATING RANGE PRIMARY 200-250V—SECONDARY 240V CENTRE TAPPED AND EARTH SHIELDED												
Ref.	Rating	For alternative 115 Vo.		Weight	Price								
No.	V.A.	Secondaries quote Ref.		lbs. ozs.	1-24 25-99								
100	60	191	4 × 31 × 31	4 10	37/5 34/7								
61	100	192	$4 \times 3\frac{1}{2} \times 3\frac{1}{2}$	5 12	45/7 42/6								
30	200	193	41 × 4 × 4	9 12	82/6 76/4								
62	250	194	3 × 5 × 4 ±	12 4	100/11 93/3								
55	350	195	51 × 51 × 41	17 6	137/4 127/-								
63	500	196	$6\frac{1}{4} \times 4\frac{1}{4} \times 6\frac{1}{4}$	27 0	194/8 180/1								
96	750	197	5 A × 61 × 61	31 0	277/8 256/9								
92	1000	198	7 × 6‡ × 8‡	40 0	358/8 331/8								
97	1250	199	7 × 7 × 8½	4 7 0	440/8 407/7								
128	2000	200	91 × 81 × 6	63 0	593/2 548/7								
129	3000	201	8½ × 8½ × 8	84 0	927/7 857/11								
190	6000	202	12‡ × 14 × 6‡	178 01,	524/2 1,409/7								

		AUTO WOUND	TRANSFORMER	RS	
Ref.	Current	Auto Tabs	Dimensions	Weight	Price
No.			Inches	lb. oz.	1-24 24-99
113	20	0-115-210-240V	2i × 1ll × 1i	11	14/10 13/9
64	75	0-115-210-240V	21 × 21 × 21	1 14	28/8 26/6
4	150	0-115-200-220-240V	$3\frac{1}{4} \times 2\frac{4}{7} \times 3$	3	34/10 32/3
65	200	11	$3! \times 4! \times 4$	4	49/3 45/6
66	300		4 × 4 × 3±	6	67/7 62/6
110	400	11	42 × 44 × 4	11	84/6 78/1
67	500	13	51 × 4 × 41	12 8	100/6 92/11
83	750	11	4± × 5± × 5±	13 4	142/5 131/8
84	1000	11	41 × 51 × 51	16	182/5 168/8
93	1500	11	5 作× 5 i × 6 i	28 9	264/5 244/6
94	1750	,,	5.4 × 61 × 61	31	297/3 274/11
95	2000	11	7 " × 61 × 81	40	345/2 319/2
99	2500	11	61 × 61 × 81	44	407/11 377/3
73	3000	b+	67 × 71 × 81	45 8	469/5 434/7

Please add 1/6 per lb. for Carriage and Packing.

- STOCKISTS OF ELECTROSIL GLASS TIN OXIDE RESISTORS
- COMPREHENSIVE RANGE OF INDUSTRIAL VALVES AND SEMICONDUCTOR DEVICES ALWAYS IN STOCK

LIND-AIR OPTRONICS (INDUSTRIAL) LTD.

ELECTRONIC COMPONENT DISTRIBUTORS
KIRKMAN HOUSE, 54A TOTTENHAM COURT ROAD, LONDON, W.1

Telephone: 01-637 1601 (10 lines)

WW-024 FOR FURTHER DETAILS

Telex 27931

The 155 gives you a clear picture of that weak signal lost in noise

Bradley's Type 155 Twin Channel D fferential Oscilloscope is expressly designed for use in research.

And it has many important features.

Guarded inputs for a start, which are used successfully for the first time on a differential oscilloscope.

There's 100dB common mode rejection with 100 - V/cm sensitivity on both channels. The sensitivity can be increased to 10 - V/cm by cascading the channels.

The 155 has a "COkHz bandwidth, so it's ideal for bio-medical investigation, strain gauge menitoring, the examination of transducer outputs and all research work involving the analysis of low-level signals.

And to get a good idea of the clear picture you get with the 155 take a look at the photograph above. It shows a 12mV peak to peak square wave extracted from an unbalanced signal containing 10V peak to peak common mode components. The common mode signal is displayed on the Y2 channel.

G & E BRADLEY LIMITED Electra House, Neasden Lane Londor NW10 Tel: 01-450 7811 Telex: 25583

A Lucas Company

Expect more from us

STOCKISTS OF B.P.O. COMPONENTS & ALLIED EQUIPMENT

TELEPHONE & WIRELESS COMPONENTS LTD. 147, The Broadway, London, N.W.9. Tel. 01-203 2814 Cables: Telwireco, London, N.W.9.

WW-026 FOR FURTHER DETAILS

DC300

DUAL-CHANNEL POWER AMPLIFIER

Frequency Response \pm 0.1db Zero-20KHz at 1 watt into 8 ohms, \pm 0.6db Zero-100KHz.

Phase Response Less than 5° 0-10KHz.

Power Response ± 1db Zero-20KHz at 150 watts RMS into 8 ohms.

Power at Clip Point Typically 190 watts RMS into 8 ohms, 340 watts RMS into 4 ohms per channel.

Total Output (IHF) Typically 420 watts RMS into 8 ohms, 800 watts RMS into 4 ohms.

T.H.D. Better than 0.03% at 1KHz at 190 watts level.

I.M. Distortion (60-7KHz 4:1) Less than 0.1% from 0.01 watt to 150 watts RMS into 8 ohms, typically below 0.05% (max

Damping Factor Greater than 200 (Zero to 1KHZ into 8 ohms at 150 watts RMS). Hum and Noise 100db below 150 watts RMS output (unweighted, typical 110db). (20-20KHz)

Slewing Rate 8 volts per micro-second. S-R is the maximum value of the first derivative of the output signal. 19in. standard rack mount (W.E. hole spacing), 7in. height, 93in. deep (from mounting surface). Dimensions

Weight 40 pounds net weight

Finish Bright-anodized brushed-aluminium front-panel with black-anodized front extrusion, access

door, and chassis

- **★** DC-Coupled throughout!
- **★** Short Circuit proof!
- **★** 500 Watts RMS Mono.
- **★** 70 Volt Balanced line out!
- **★ UNEQUALLED QUALITY!**
- **★ 3 YEAR PARTS WARRANTY!**
- * ONLY £320 inc. DUTY!

CARSTON ELECTRONICS LTD. SHIRLEY HOUSE **27 CAMDEN ROAD** LONDON, N.W.1 9LN 01-267 2748

Bradley Calibration Service

instruments must have a programme for regular maintenance and calibration, traceable to National standards. Organising adequate technical effort and the necessary test equipment is both difficult and expensive. Why not let Bradley Technical Services do it for you? We have well equipped modern facilities, backed up by experience accumulated over the last 15 years. Calibration, repair and maintenance can be provided for a simple instrument or for a complete inventory on a contract basis. These facilities are supported by a controlled environment Standards Laboratory, British Calibration Service approved for a wide range of d.c., a.c. and r.f. measurements—the first ever to get r.f. approval. Your instruments can be calibrated using standards traceable to National Physical Laboratory and National Bureau of Standards, and can be supplied with a British Calibration Service Certificate. We shall be pleased to send you our illustrated brochure.

G & E BRADLEY LTD Electral House, Neasden Lane London NW10 Tel: 01-450 7811 Telex: 25583

A Lucas Company

BRADLEY electronics

SOLDERING **IRONS?**

We are specialists. Whatsoever your particular application, we are most likely to have just the tool for the job.

Choose from:

The Litesold six-model range of rugged, lightweight, general purpose, soldering irons, from 10 watts to 60 watts, for all kinds of electronic work. Specially developed over many years to provide exceptionally good thermal stability, reliability and ease of maintenance.

The **Claimin** models—absolute gems of truly miniature soldering instruments, with interchangeable slip-on bits and precise performance. Unapproachable for sustained accuracy on small work.

Litestat thermostatic models, with fully adjustable control, available for all voltages. Two extremely versatile instruments, 55 and 70 watts, giving really generous soldering capacity on demand, with closely controlled idling temperature. Very attractively priced from £3-16-10 (£3.84).

All backed up by an excellent spares and repair service, and a wide range of ancillary tools and accessories. We would like you to have the whole story—please ask for our NEW CATALOGUE

5/1001/15

LIGHT SOLDERING DEVELOPMENTS LTD..

28 Sydenham Road, Croydon, CR9 2LL

Telephone: 01-688 8589 & 4559

resonant reed TACHOMETERS

for hand use or permanent mounting

Ranges and combinations of ranges from 900 to 100,000 r.p.m.

Descriptive Literature on Frahm Resonant Reed Tachometers and Frequency Meters available from the sole U.K. Distributors. Manufacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largest stocks in the U.K. for off-the-shelf delivery.

Anders means meters

ANDERS ELECTRONICS LIMITED

48/56 Bayham Place, Bayham Street, London NW1 Tel: 01-387 9092

WW-030 FOR FURTHER DETAILS

LITTLE A LAMPS?

When it comes to deciding where you will buy your miniature and sub-miniature lamps, there are powerful arguments as to why you should go to Vitality Bulbs Ltd.

The longest experience, the widest research and the largest specialist plant in Europe give Vitality Bulbs a pretty high rating by any one's standards.

A few minutes with our catalogue and samples of what you are seeking, which we will gladly send, will certainly convince you ... so, why not get that catalogue now.

VITALITY BULBS LTD.

The largest makers of the smallest lamps

Beetons Way, Bury St. Edmunds, Suffolk. Tel: 0284-2071, Telex 81295 A General Instrument Electro-Optical Products Group Company

WW-031 FOR FURTHER DETAILS

WW-029 FOR FURTHER DETAILS

Our new professional audio tapes, EMITAPE 815 and 825
have won the approval of broadcasting and recording studios
after rigorous evaluation on a wide range of tape transport units. EMITAPE 815
is standard-play. EMITAPE 825, the long play version, is ideal for portable
and low tension recorders. Both have a polyester base with a specially treated coating and a
new formulation that results in low modulation noise. Other
advantages are exceptionally good dynamic range and signal-to-print ratio.
EMITAPE quality is something you can prove to yourself now.
If you are a professional recording engineer and haven't heard our
new tape, send us your name and we'll send you a sample.

not just any tape - EMITAPE

EMI TAPE LIMITED · HAYES · MIDDLESEX · Telephone: 01-573 3888

WW-032 FOR FURTHER DETAILS

THE MOD 70 70 WATT R.M.S. PLUG-IN POWER AMPLIFIER

Wherever reliable audio reproduction power is required at better than average bandwidth specification, at lower than average cost, and in an extremely compact, well finished package, the Mod-70 is exceptional.

DESIGNED FOR MAXIMUM FLEXIBILITY, THE MOD-70 POWER AMPLIFIER MODULE WILL PERFORM AT 70 WATTS RMS CONTINUOUSLY IN AMBIENT TEMPERATURES TO 70°C, IS FULLY OUTPUT/INPUT PROTECTED, YET OCCUPIES LITTLE MORE THAN 70 CUBIC INCHES.

ALL I/P, O/P, AND SUPPLY CONNECTIONS ARE THROUGH AN INTERNATIONALLY STANDARD 8-PIN HEADER WHICH PROVIDES EASE OF INSTALLATION, WHILE FOUR CONVENIENT TIEDOWN POINTS SECURE FIXING AND QUICK RELEASE.

FOR FULL PERFORMANCE
AND COMPLETE TECHNICAL SPECIFICATIONS,
VOLFIELD LIMITED,
2A LANSDOWNE GARDENS,
LONDON, S.W.8.01-6227187

WW-033 FOR FURTHER DETAILS

ASSOCIATED ELECTRONIC ENGINEERS LTD.

ARE PLEASED TO ANNOUNCE

THAT DUE TO RE-ORGANISATION THEY HAVE INCREASED PRODUCTION FACILITIES FOR THE MANUFACTURE OF AUDIO AND POWER TRANSFORMERS TO CUSTOMERS' REQUIREMENTS.

QUOTATIONS AGAINST SPECIFICATIONS

APPROVED VACUUM IMPREGNATION PLANT

E.I.D. APPROVED

DALSTON GARDENS, STANMORE, MIDDLESEX HA7 1BL
TELEPHONE 01-204 2125 4 LINES

Many New Models! in the FREE HEATHKIT 1971 Catalogue ...

CONSUMER

HI-FI & AUDIO

MODEL R/C CARS

Here's the bumper Heathkit catalogue for you. Read about the wonder and fascination of kit building . . see in full colour the world's best values in Hi-Fi . . Radio, and even model radio control. Get up to date with what's new in scientific instrumentation . . instruments for test and service . . in fact there is a Heathkit for almost every purpose, in every walk of life. A wealth of information is all yours for the price of a postage stamp, in the Free Heathkit Catalogue.

- ★ No previous knowledge of electronics required.
- ★ The constructional manual supplied with every kit shows you how.
- Building Heathkit models is so economic.

- ★ Save up to 50% over factory built equipment.
- ★ Money saving direct from factory prices.
- ★ They make excellent seasonal gifts.

MARINE

TRENT SPEAKER

HEATH (Gloucester) LTD. GLOUCESTER GL2 6EE

a Schlumberger Company

Many other models in wide range FILL IN THE COUPON FOR YOUR FREE CATALOGUE TODAY

Name
Address

......

WW-035 FOR FURTHER DETAILS

Post Code

Just what <u>is</u> this ABR, that makes such a vital difference to the 'DITTON 15'?

The "DITTON 15"

Now firmly established as a superb high-fidelity loudspeaker. Design features include the exclusive CELESTION ABR (auxiliary bass radiator), HF1300 treble unit—as used in B.B.C. Monitor Loudspeakers—and specially developed mid/bass unit. Low loss L/C crossover.

Power handling: 15 watts r.m.s.; 30 watts peak. Impedance 4–8 ohms

Dimensions: 21 in. \times $9\frac{1}{2}$ in. \times $9\frac{1}{4}$ in. Choice of finish: Teak or walnut.

Recommended Retail Price NOW £32

- Studio quality high frequency unit (HF1300 Mk. 2).
 As used in B.B.C. Monitors.
- Anechoic cellular foam wedge and lining eliminates standing waves.
- High hysteresis panel loading material to eliminate structural resonances.
- Auxiliary Bass Radiator (ABR)
 —plastic foam diaphragm of high rigidity and low mass having a free air resonance of only 8 Hz, double roll suspension allowing
- excursions up to $\frac{3}{4}$ " with virtual absence of distortion.
- 5. 8" bass unit, with free air resonance of 25 Hz, and massive Ferroba II magnet structure for optimum magnetic damping and cone treated with viscous damping layer to suppress resonances.
- Units mounted flush to eliminate diffraction effects and tunnel resonances; covered by acoustically transparent grille cloth for maximum presence.
- 7. Full L-C Crossover network.

It's an interesting story—and worth enquiring about. Send for details of the three Celestion 'Ditton' Hi-Fi Speaker Systems, and the NEW 'Ditton 120' Loudspeaker.

Celestion

Studio Series

Loudspeakers for the Perfectionist

ROLA CELESTION LIMITED, FOXHALL ROAD, IPSWICH, SUFFOLK, 1P3 8JP, ENGLAND

Telephone: Ipswich 73131. Cables: Voicecoil Ipswich. Telex: 98365

WW-036 FOR FURTHER DETAILS

logarithmic amplifiers

- ☆ Hign gain operational amplifier and log function in a single encapsulation.
- ☆ Output voltage range ± 10 v.
- \Leftrightarrow Output current \pm 2 mA.
- ☆ Accuracy ± 0.25 db.
- ☆ Scale factor | I volt/decade
- ☆ Operating range In A—ImA
- ☆ 15LN-1
- Negative input
- ☆ 15LP-1
- Positive input

"Anti-log" module available

ancom limited

DEVONSHIRE STREET CHELTENHAM Telephone 53861

WW-037 FOR FURTHER DETAILS

INSULATION TEST SET

A portable lightweight insulation test set suitable for measuring the insulation resistance of all components, installations, etc. Cranking is obviated by the utilisation of a transistor converter; the power supply being two $4\frac{1}{2}\text{-volt}$ dry batteries. The test voltage and range are selected by push buttons which facilitate quick and easy reading of the resistance value.

The test voltages available are 100, 250, 500 and 1,000 volts. Overall measuring range, 0 to 10,000 Megohms.

£55-0-0 EX STOCK

Request full details from:

CROYDON PRECISION INSTRUMENT COMPANY

Hampton Road, CROYDON (Postal Code: CR9 2RU)

Telephone: THOrnton Heath 4025 and 4094

WW-038 FOR FURTHER DETAILS

DANAVOX (GT. BRITAIN) LTD.

Electro-Acoustic Components and Hearing Aids "BROADLANDS" BAGSHOT ROAD, SUNNINGHILL, ASCOT, BERKS.
TEL: 0990 23732/6; TELEX: 84584

- THE PROFESSIONAL APPROACH

A British Pre-Amplifier with an Unparalleled Specification

Five section graphic equalisers operate independently in each channel

Theoretical limits of low noise are reached via a unique noise cancelling pre-amplifier

"GRAPHIC STEREO"

£162·0

"POWER STEREO 70" Amplifier

£83·0

(35 watts R.M.S. per channel) "POWER STEREO 60" Amplifier

(80 watts R.M.S. per channel)

£97·0

AUDIX B.B.LIMITED STANSTED ESSEX Tel:STANSTED 3132/3437 (STD 027-971)

WW-040 FOR FURTHER DETAILS

STEPHENS

ELECTRONICS P.O. BOX 26 AYLESBURY, BUCKS.

S.A.E. FOR GUARANTEE LISTS Satisfaction or money refunded.

			THE PERSON NAMED IN			-			
	S	TY	LII		GARRARD EV26 Stereo GC2			Sapphire 2/6 2/6	Diamond 7/6 7/6
	ACOS		Sapphire	Diamond	GC8			2/6	7/6
	GP59		2/6	7/6	GCE12			2/6 2/6	7/6 7/6
			2/6	7/6	GC\$10/1			2/6	7/6
			2/6	7/6	GC\$10/2 \$ 1—2—3			6/6	9/6
			6/6	9/6				6/6	9/6
	GP73-1 GP73-2		6/6	9/6	TSI TS2	* * .		6/6	9/6
	GP79		2/6	7/6				6/6	9/6
	GP81-1		2/6	7/6	153			0/0	2,0
	GP91-1		6/6	9/6	GOLDRING				
	GP91-2	11	6/6	9/6	CM50			2/6	7/6
l	GP91-3		6/6	9/6	CM60			2/6	7/6
	GP91-ISc		6/6	9/6	MXI			2/6	7/6
	GP91-3Sc		6/6	9/6	MX2			2/6	7/6
1	HGP37		2/6	7/6	Stereo CS80			2/6	7/6
ı			·					•	
	B.S.R.				PERPETUUM	EBN	IER		
1					PE188	9.4		6/6	9/6
	BSR CI (ST3)		6/6	9/6					
ı	BSR TC8H		2/6	7/6	PHILIPS			2/6	7/6
	BSR TC8M		2/6	7/6	AG3016			2/6	7/6
ı	BSR ST8		6/6	9/6	AG3063			6/6	9/6
	BSR ST9		6/6	9/6	AG3306	1.7	* *		9/6
	BSR STIO			9/-	AG3310/3306		* *	6/6	7/6
	BSR XIM		6/6	9/6	AG3400	* *		2/6	7/0
ħ.	BSR XIH		6/6	9/6 9/6	RONETTE BI	NO			
	BSR X3M		6/6	9/6	BF40			2/6	7/6
8	BSR X3H	4.4	6/6	9/6	DC284	• •		2/6	7/6
	BSR X5H		6/6	9/6	DC264	• •		-,-	- / -
	BSR X4H	10.0	6/6	7/0	SONOTONE	=			
ı					2T			6/6	9/6
1					3T			6/6	9/6
1	COLLARO				8T4A			6/6	9/6
1	Collaro Studio 'C	o'	2/6	7/6	9TA			6/6	9/6
1	Collaro-Ronett T	X88	2/6	7/6	9TA/HC			6/6	9/6
1	Collel SK1		2/6	7/6	19T			2/6	7/6
ŧ	Dual CDS2/CDS3	(DN2		9/6	20T			2/6	7/6
	Dual CDS/320 (D		6/6	9/6					4b le
1	ELAC KST9 (PEI		6/6	9/6	The Diamond	Tip	is .007	in. radius	, thus mak-
1	ELAC KST9 (PE	B)	414	9/6	ing it compa	tible	to pl	ay stereo	records on
1	ER5MB	_,	414	9/6	mono equipi	weut	with	out dama	ige to the
1	CREMY		2/6	7/6	record; and o	of cou	rse fu	ili stereo.	

ID	PAC	KIN	IG F	OR	TE	RMS, C	A
in m re	g it cono ecord;	ompa equipr and o	tible t ment of cour NDE	o play withou se full	stereo r	ecords on se to the	
	20T		 Timir		, .	thus mak-	
	19T		1.2		2/6 2/6	7/6 7/6	
	9TA/H	C			6/6	9/6	
			× +	+ 4	6/6	9/6	
	8T4A				6/6	9/6	
	3T				6/6	9/6	
	2T	ONE			6/6	9/6	
	וסאכ	ONE					
	DC284				2/6	7/6	
	BF40				2/6	7/6	

CARTRIDGES									
	4~			_	In	c. P.T.			
ACOS						each			
GP79	2.0					12/6			
GP91-ISC -	Lin				W -	21/-			
2-				1.81		17/9			
12-						15/6			
50-5	00	*10	0.0			13/6			
GP91-2SC	415					s above			
GP91-3SC					A	s above			
Suitable to rep	olace TC8,	, etc.							
GP92			+ 1	4.4		26/5			
GP93-1		4.5				24/9			
GP94-I	- 47			4.7		31/-			
GP94-5				9.4		36/-			
GP95						24/9			
GP96	4.7					31/6			
Acos 104 1-						41/10			
11-						39/9			
25-	50					38/3			
51-4						35/5			
B.S.R.									
X3M	S/S					27/9			
X3H	S/S					27/9			
X5M	S/S					27/9			
X5H	S/S			7.1		27/9			
SX5M	S/S					36/3			
SX5H	S/S					36/3			
SX5M	D/S					39/11			
SX5H	D/S					39/11			
X4N	D/S	.,				27/3			
RONETTE	0/5								
105	S/S					19/10			
106	S/S					19/10			
DC400	S/S					14/-			
DC400SC	\$/\$	10				14/-			
105	D/S					22/4			
106	D/S			11		22/4			
	D/S		•			16/9			
DC400 DC400SC	D/S					16/9			
SONOTONE						, ,			
	D/S					25/-			
8TA	D/S		1.0		1.7	35/10			
9TA						35/10			
9TAHC	D/S	• •	• •	1.7	• •	33110			
GOLDRING	CE E A	м	adal C	ROOF		٤١5.0.0			
Model 850 £5.5.0 Model G800E £15.0.0 Model G800 £7.7.0 Model G800 Super E £19.10.0									
1 14/17/1	DDED	-	NILV	PC	CT	AND			

ADD 5d. PER ITEM FOR POST AND PACKING FOR ORDERS UNDER 24 PIECES

TERMS, CASH WITH ORDER ONLY. POST AND PACKING PAYABLE ON ORDERS UP TO £6. AFTER THAT, FREE EXCEPT C.R.T.'s

The surround of silence – the truth of pure sound

The best pick-up arm in the world

Write to SME Limited · Steyning · Sussex · England

With the 1971 edition of Hi-Fi Year Book you can be sure of really up-to-date references to British and imported hi-fi equipment. It is packed with descriptions, specifications, prices . . . everything you need to know. Separate, illustrated sections cover pick-ups, motors, tuners, amplifiers, microphones, recorders, speakers, cabinets, complete systems, construction kits and associated accessories. There is also a directory of dealers and a whole section containing specialist articles on various aspects of high quality sound reproduction.

ORDER YOUR COPY TODAY

20s. (plus 3s. postage)

ORDER FORM

To: Sundry Sales, IPC Business Press (Sales & Distribution) Ltd., P.O. Box 147, 40 Bowling Green Lane, London, EC1P 1DB

copy/copies of Hi-Fi Year Please send me.... Book 1971 (price 20s. each plus 3s. postage). I enclose remittance value £

Name (please print)

Address

Date

REPAIR SERVICE 7-14 DAYS

We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS.89.

Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments

LEDON INSTRUMENTS

76-78 DEPTFORD HIGH STREET, LONDON, S.E.8

Tel.: 01-692 2689

G.P.O. APPROVED

CONTRACTOR TO H.M. GOVT.

RANGE

SOLID STATE A.C. MAINS AM

employing only high grade components and transistors

LT55 6 WATT AMPLIFIER

A High Fidelity unit providing excellent results at modest output levels.

Output Rating I.H.F.M. 6 W.

Frequency Response 30-20,000 cps-2dB. Sensitivity 5 my (max.)

Harmonic Distortion 0.5% at 1,000 cps. Output for 3-8-15 ohm Loudspeakers.

Input Sockets for 'Mike' Gram and Radio Tuner/Tape Recorder.

Controls (5) Volume, Bass, Treble, Mains Switch, Input Selector Switch.

LT66 12 WATT STEREO AMPLIFIER

A twin channel version of the LT55 providing up to 6 watts High Fidelity output on each channel.

Switched Input Facilities Socket (1) Tape or crystal PU (2) Radio Tuner (3) Ceramic PU Microphone.

Controls (6) Volume, Bass, Treble, Balance, Mains Switch, Input Selector Switch, Stereo Mono Switch.

Facia Plate Rigid Perspex with black/silver background and matching black edged knobs with silver finish centres.

Retail price Size 91'x 21 x 51 in. Approx.

If required an attractive wood cabinet with veneer finish can be supplied for any model. Prices from \$3-10-0

Recommended Retail price Size 12 x 31 x 6 in. Approx

Available from your

Local Hi-Fi Dealer

PLEASE SEND A STAMPED ADDRESSED ENVELOPE FOR FULL DESCRIPTIVE DETAILS OF ABOVE UNITS.

Wholesale and Retail enquiries to: LINEAR PRODUCTS LTD

ELECTRON WORKS, ARMLEY, LEEDS

WW-043 FOR FURTHER DETAILS

FINEST PUBLIC ADDRESS SYSTEMS

FOR SCHOOLS, FACTORIES, HOTELS, RELIGIOUS PLACES PUBLIC MEETINGS, AND ENTERTAINMENT

SOLID STATE AMPLIFIERS (9 models to choose from)

Model UTR-30

30 watts output. Operates from 230/110 volts AC, 12 volts car battery or 9 volts flash light cells.

Model 50-PTR

60 watts output. "Professional" quality. Protected against open or shorted speaker lines. Operates from 230/110 volts AC or 12 volts car battery.

AC MAINS AMPLIFIERS (7 models to choose from)

Model A-75M

75 watts output. "Professional" quality. Most reliable operation. Solid state rectifier circuit.

Mixer & Pre-amplifiers are also available.

SPEAKER SYSTEMS

A variety of driver units, horns and column speakers are available to suit every application.

Driver Unit DU-35

Handling capacity: 35 watts.

16 ohms impedance. Distortionless reproduction of speech & music at high volumes.

Reflex Horn WFA

21 inch bell diameter. 160 c/s cut off frequency. Efficient, rugged and weather-proof.

Sound Columns

Excellent for auditorium, night clubs, stage shows, churches etc. Provide high intelligibility & uniform distribution of sound.

MICROPHONES

A wide range of uni-directional & non-directional microphones are available.

Model AUD-77

High impedance, high quality, uni-directional microphone. Ideal for indoor and outdoor installations.

Model AUD-501

Model AUD-511

Model AUD-511 is available with wind shield for rejecting wind & breath noises.

Model ADT-55X

A very popular non-directional, general purpose microphone. Very sensitive. High impedance.

- Ahuja—leader in sound systems for nearly 30 years—offers a complete line of public address systems.
- Exports to over 30 countries all over the world.
- Prices amazingly low.

For details & specifications please write to:

AHUJA RADIOS, 3778, NETAJI SUBHASH MARG, DARYA GANJ, DELHI-6.

Two important examples from the ADCOLA range—the world's most comprehensive range of modern soldering instruments. ADCOLA R 40 and R 80 both have 3/16" (4.75 mm) Bit Fittings and Neon Indicator Lamps as standard. ADCOLA unique heating elements cover any voltage range from 6v to 250v. Standard stock tempera-

ture is 360° c at 25 watts with special temperatures available from 250° c to 410° c.

ADCOLA

off-the-shelf Service.

SEND THIS COUPON for our complete range catalogue.

To: ADCOLA PRODUCTS LTD., (Dept H), ADCOLA HOUSE, GAUDEN ROAD, LONDON, S.W.4. Telephone: 01-622 0291/3 Telegrams: Soljoint London Telex • Telex: Adcola London 21851

NAME

ADDRESS

CALIBRATION PROBLEMS?

We specialise in the repair and calibration of all proprietary and commercial test equipment

We can provide the following services

- FULLY GUARANTEED REPAIR OF INSTRUMENTS
- CALIBRATION CARRIED OUT TO MANUFACTURERS' SPECIFICATION
- ALL TYPES OF MULTI-METERS, INC. AVOMETERS, REPAIRED
- REPAIR SERVICE 7 DAYS
- WIRING AND SHEET METAL FACILITIES

Write or 'phone

FIRNOR-MISILON LIMITED

MARSHGATE TRADING ESTATE, MARSHGATE DRIVE, HERTFORD.

TEL: HERTFORD 5584

WW-046 FOR FURTHER DETAILS

"The alternative to QUAD is not a colour television set but a seat in the concert hall"

QUAD

for the closest approach to the original sound

Send postcard for illustrated leaflet to-Dept WW Acoustical Manufacturing Co. Ltd., Huntingdon, Tel: (0480) 2561. QUAD is a Registered Trade Mark.

WW-048 FOR FURTHER DETAILS

New from Brenell...

'Type 19'—an industrial and scientific tape deck built to the highest standards!

breneil

BRENELL ENGINEERING COMPANY LTD. 231 5 Liverpool Road, London, N.1. Telephone: 01-607 8271

WW-049 FOR FURTHER DETAILS

Nombrex accuracy!

C.R. TEST BRIDGE MODEL 32 Price £10. 10. 0d

Every radio 'ham' needs one and at this low price you are buying a fully transistorised, high quality instrument. Write for full technical leaflets.

Note a few of the specification details below:-

- 6 Ranges covering 1Ω to 100 MΩ
 1 pF to 100μ F
- Accuracy 2½% at centre to 5% near ends.
- Separate and clear R & C scales
- Power Factor measurement up to 70%
- Neon indication for capacitance leakage
- Battery operated or external supply
- Guaranteed for 12 months

Trade and Export enquiries welcome Post & Packing 6/6 extra

NOMBREX (1969) LTD.

CAMPERDOWN TERRACE, EXMOUTH, DEVON. Tel: 03-952 3515.

WW-050 FOR FURTHER DETAILS

FOUR NEW STRIP-CHART RECORDERS FROM RUSSIA

Multi-range portable Universal AC/DC Ship-chart recorder type H390

8 AC/DC current ranges from 5 mA to 5Amps* 6 AC/DC voltage ranges from 5V to 500V* 1 DC only range 150 mV*

*All these ranges are selected by rotary switches

Chart width: 100 mm

Chart drive: Synchronous motor 220-250V Chart speeds: 20 to 5400 mm per hour, obtainable through change gears

PRICE £78.0.0

Switchboard Type Ten-Channel Event Recorder Type H30

Instrument will provide record of up to ten events. Syphon pens are driven by rotary 12V DC relays.

Chart drive: synchronous motor 220-250V Chart speeds: 20 to 5400 mm per hour, obtainable by means of change gears PRICE £52.0.0

Single channel and three-channel High Speed Recorders Types H320-1 and H320-3

Pen movement of the moving coil type has natural frequency of 5c/s and sensitivity of 8mA for full scale deflection. Syphon pens and large ink reserver ensure long periods between re-filling. Chart width 80mm per dhannel. Chart speeds, selected by push buttons on the front panel, are 1.2-6-12-30-60-120-300-600-3000 mm per minute. Chart drive 220-250V AC synchronous motor. Impedance of the movement 210 ohms.

PRICE Single channel Instrument £55 Three-channel Instrument £90

Z&IAERO SERVICES LTD

44A, WESTBOURNE GROVE, LONDON, W2

Tel: 727-5641/2/3

Cables: ZAERO LONDON

Telex: 261306

OUTPUT 0-265V ★ INPUT 240V 50/60 CPS ★ SHROUDED FOR BENCH OR PANEL MOUNTING

1 amp £5.10.0

2.5 amp £6.15.0 10 amp £18.10.0 £9.15.0 12 amp £21. 0.0 8 amp £14 10 0 20 amp £37. 0.0

Inset shows latest pattern Brush gear ensuring smooth continuous adjustment

SOLID STATE VARIABLE **VOLTAGE CONTROL**

- ★ Output 25-240V
- ★ Input 24CV 50 CPS
- ★ 5 amp & 10 amp model
- ★ Completely sealed

5 amp mode **£8.7.6** 10 amp model **£13.15.0**

0-24V DC LT. SUPPLY UNIT ★ Continuously Rated. ★ Large Ammeter and Voltmeter. ★ Ideal for Plating Units. ★ Fully protected with Instantaneous cut-out & Fuse. ★ Infinitely variable up to 24V DC. Size and weight 16" x 12" x 27" High—70lbs. Rear wheels fitted

£85 C & P (inland) £3.

COMPLETE PHOTO- ELECTRIC SENSOR in one unit

- ★ Reflective type with built-in light source
- Will also operate from remote light source
- Matchbox size
- Senses any object-colours, thick smoke

Operates from 12V AC. Output signal 0.2 amp. 100V.

Approximately £5.10.0 dependent on quantity

I.M.O. PRECISION CONTROLS. (Dept W W X) 313 EDGWARE ROAD, LONDON W.2. Tel 01-723 2232

WW-052 FOR FURTHER DETAILS

Give the stars their freedom!

ISR/10 UNIT Resio latest; fully transport able. Combined loudspeaker, p.a. system and radio mike receiver

TYPE LS100B LOUDSPEAKER Has five 8 (20.3 cm.) dia. P.M. units. Power handling capacity: 10 watts max

be believed. Ask for a demonstration. Transmitting, receiving or amplifying, Reslo sounds superb . . with ribbon microphones, boom arms, floor stands, amplifiers, loudspeakers, p.a. systems, many accessories. Illustrated catalogue freely

available.

Radio Microphone has to be heard to Peter Gordeno Des O'Connor

TYPE 530 TRANSISTORISED AMPLIFIER
3 low impedance mike inputs, 1 music input.

RESLO MIKES LTD 24 UPPER BROOK ST., LONDON, W.1

WW-053 FOR FURTHER DETAILS

A double 3-in-1 value from Sankyo. Micro motors, level meters, and magnetic heads. Now is the time to rely on one manufacturer for these important product integrals, instead of purchasing one here, another there. You will save time and money—and get quality and reliability on top of economy! Many other models available.

For further details contact:

SANKYO (EUROPE) EXPORT UND IMPORT G.m.b.H.: 4 Düsseldorf, Kölnerstr, 65a, West Germany. Tel: 350281-5 Telex: 8587097 Cables: SANKYORGEL DÜSSELDORF SANKYO SEIKI MFG. CO., LTD.

17-2, Shinbashi 1-chome, Minato-ku, Tokyo 105, Japan, Tel: Tokyo 591-8371 Cables: SANKYORGEL TOKYO

AMERICAN SANKYO CORP.:
95 Madison Ave., New York, N.Y. 10016, U.S.A.
Tel: LE-2-8020 Telex: 223060 Cables: AMESANKYO NEW YORK

VSMF

WW-054 FOR FURTHER DETAILS

Other frequencies available

Туре		Input	Output	Price .		
	C12/30S C12/60S B12/120S B12/200S	12 12 12	115/230 30W 115/230 60W 115/230 120W 115/230 200W	£19-80 £39-60 £51-80 £74-35	£19.16.0 £39.12.0 £51.16.0 £74. 7.0	

Models are available for inputs of 24, 50, 110, 220V DC. Square wave output is also available

Send for full information and technical details: WCII

VALRADIO LIMITED

Browells Lane · Feltham · Middlesex · England Tel: 01-890 4242/4837

> WW-055 FOR FURTHER DETAILS

You will find it in this new Vitality T-1 range.

Never have such small lamps been so reliable, so competitively priced. With a diameter of only 3mm, they are capable of up to 200,000 hours of life at rated voltage and come either wire ended or based to fit available holders. With wide application in peripheral equipment for the computer industry, this new range is also providing truly reliable integral lighting of instruments and is much used in equipment where space is minimal. Folder NPR details the whole range.

Vitality Bulbs Limited, a General Instrument Electro-Optical Products Group company. BEETONS WAY, BURY ST. EDMUNDS SUFFOLK. Tel: 0284-2071. Telex: 81295

WW-056 FOR FURTHER DETAILS

We're ready now for 1973.

As you know, in 1973 single side band operation becomes mandatory in marine communications. 1973 isn't very far away. We're ready now. And so can you be. So we announce the new TT100 beam tetrode. Primarily intended for use as a class AB power amplifier for S.S.B. transmitters in shipboard use.

Technical Data. A low cost power tetrode designed specifically for use as a linear power amplifier and suitable for

transistor drive. A rated continuous anode dissipation of 100W means that two tubes in parallel will meet the requirement of 400W Peak Envelope power while the low impedance design means that an anode voltage of 600–800V is adequate for most applications. Output is fully maintained up to 20MHz and falls only slightly at 30MHz.

We're ready now for 1973. How about you?

G.C. THE M-O VALVE COLTD

BROOK GREEN WORKS, HAMMERSMITH, LONDON W5 Telephone 01-503 3431. Tele∢ 23435

ENCAPSULATION -

low tool cost method for cylindrical coils and potting. Enquiries also for-

REED RELAYS SOLENOIDS COIL WINDING **TRANSFORMERS** to 8 K.V.A.

Relay module 12-way "MS" range

R. A. WEBBER LTD.

Knapps Lane, Bristol 5. 0272 657228

WW-058 FOR FURTHER DETAILS

LOW COST I.C. PATCHBOARD

ONLY £48

Educational Pack

also available

- **HIGH RELIABILITY**
- **® INTEGRAL CLOCK**
- INPUT SWITCHES
- LOGIC INDICATORS
- 14 or 16 PIN D.I.L.

LIMROSE ELECTRONICS (WW), LYMM, CHESHIRE.

WW-059 FOR FURTHER DETAILS

[RANSRADIO

183, PARK AVENUE, LONDON, N.W.10.

TEL: (01) 965 6281. TELEX: 923004

Subsidiary of Felten & Guilleaume Kabelwerke AG KÖLN-MÜLHEIM

CRIMP

STANDARD

"N"

"BNC"

R.F. CONNECTORS

A wide range of N, C, BNC, 83UHF, VMP, SM and MINI types. Crimp types in N, BNC & 83 UHF produced in addition to standard cable clamps. Other types for special applications.

R.G. and multi coaxial types. Miniature.

These are screened containers for attenuators etc. fitted with coaxial connectors.

"BNC"

"N"

CABLE-CONNECTOR ASSEMBLY

Annual call-off orders quoted. WW-060 FOR FURTHER DETAILS

JES AUDIO INSTRUMENTATION

Illustrated the Si453 Audio Oscillator **SPECIAL FEATURES:**

- very low distortion content-less than .05%
- an output conforming to RIAA recording characteristic
- battery operation for no ripple or hum loop
- square wave output of fast rise time

£37.0.0

Si451 Millivoltmeter

20 ranges also with variable control permitting easy reading of relative frequency response

£32.0.0

Si452 Distortion Measuring Unit

low cost distortion measurement down to .01% with comprehensive facilities including L.F. cut switch, etc.

£27.0.0

J. E. SUGDEN & CO. LTD., BRADFORD ROAD, CLECKHEATON, YORKS. Tel: Cleckheaton (OWR62) 2501

also available

NEW

3-PLUG-IN OSCILLOSCOPE

- **38** 60-MHz Bandwidth
- **B** Dual-Trace, 5 mV/div
- 5 ns/div Sweep Rate
- **2%** Accuracy
- **8** 8 x 10 cm Display
- Solid State

£1109 COMPLETE WITH PLUG-IN UNITS

The TEKTRONIX 7503 THREE-PLUG-IN OSCILLOSCOPE offers *more* measurement capability per pound than any other quality oscilloscope.

Easier to use. An exclusive peak-to-peak auto-triggering mode provides a triggered sweep throughout the 360° range of the level/slope control. The front panel is uncluttered, illuminated push-button switches are extensively used to conserve space. Controls are conveniently related to function through the use of a colour-keyed front panel

Faster measurements. Auto Scale-Factor Readout is exclusive to Tektronix! It labels the CRT with time or frequency/div; volts, ohms, C (temperature), or amps/div; invert and uncal symbols; and automatically corrects for 10X probes and magnifiers. Readout is required when using the NEW 7D13 Digital Multimeter and the NEW 7D14 Digital Counter plug-in units. It can be ordered initially or as a conversion kit, which is easily installed.

THE 7000-SERIES

An Integrated Test System! With the introduction of the 7D13 and 7D14 digital plug-in units, the 7000-Series becomes an Integrated Test System, ITS much more than an ordinary oscilloscope. SEVENTEEN plug-in units covering a wide performance spectrum are available to solve virtually all of your measurement problems. Some of the features offered are: dual-trace, differential comparator, 10-µV differential, sampling, current amplifier, digital multimeter and digital counter. For instance, plug-in units can be chosen to give the 7503 delaying sweep and 90-MHz bandwidth.

Greater versatility. The following 7000-Series mainframes offer unique four-plug-in versatility. The 7704 (150 MHz), R7704 (150-MHz rackmount), 7504 (90 MHz), and 7514 Storage (90 MHz). The 7000-Series does not require a full complement of plug-in units, you can start with only one horizontal and one vertical plug-in and add more as your measurement requirements change.

7503	Oscilloscope without readout, Option 1£661	£ 94
7A15	Single-Trace Amplifier£119	£ 17
7B50	Time Base£210	
7503	Oscilloscope with readout£842	£119

Your Tektronix field engineer will gladly demonstrate the complete versatility of the New Tektronix 7000-Series Oscilloscope System, in YOUR laboratories with YOUR signals.

Tektronix U.K. Ltd.

Beaverton House, P.O. Box 69, Harpenden, Herts. Tel: Harpenden 61251 Telex: 25559 Northern Region Office: Beaverton House, 181 A Mauldeth Road, Manchester 19. Tel: 061-224 0446 Telex: 668409

SPECIAL OFFER

FROM

THE TINSLEY PATCHETT

TYPE 52058

VERY HIGH PRECISION A.C. STABILISER . . . £250

FROM STOCK—DELIVERY 7 DAYS

This instrument has been designed to fill the need for a very stable supply with a high purity of waveform for precision A.C. measurements. The uhit is extremely simple in operation and is fitted with protective devices and alarms which automatically prevent any possibility of damage it does not require any adjustments in setting up other than the output voltage selection. Output current:— 1 ampere maximum for stabilisation range of $\pm~7\%$ change of input voltage

2 amperes maximum for a stabilisation range of \pm 3.5% change of input

* SEND FOR LEAFLET 215 H. TINSLEY & CO LTD · WERNDEE HALL SOUTH NORWOOD · LONDON SE25 · 01-654 6046

WW---063 FOR FURTHER DETAILS

Send for full details of Hatfield Attenuators and a copy of our Short Form Catalogue.

forward thinking in electronics

HATFIELD INSTRUMENTS LIMITED Burrington Way, Plymouth PL5 3LZ, Devon.
Tel. Plymouth (0/52) 72773/4 Grams: Sigjen, Plymouth. Telex: 45592 South-East Asia: for prompt service and deliveries, contact: Hatfield Instruments (NZ) Ltd., P.O. Box 561, Napier, New Zealand

WW-064 FOR FURTHER DETAILS

Cut costs with Sprague

36D SERIES CAPACITORS

High surge current capacity for discharge use. High ripple current rating for power supply use.

11,000 100V μF 14,000 42,000 36,000 75V μF 30V μF 30V 24,000 160,000 µF

Price Price 1-49

62/-34/-47/6 40/-31/-

64/-

50 up 59/-31/6 45/-38/-29/-

COMPONENTS LTD 5 LOVEROCK ROAD, READING, RG3 1DS Tel.580616/9 Telex 84529 MINISTRY OF TECHNOLOGY APPROVED DISTRIBUTOR

WW-065 FOR FURTHER DETAILS

B 500

B 641

Universal Bridge for 0.1% measurements of any LCR combination from 2 micro-ohms to 500 gigohms. Source/detector (1592Hz) operate from a.c. or internal rechargeable battery. Sockets for external 200Hz – 20kHz. Display

gives units, zeroes and decimal point.

Four-terminal connections for accurate

low impedance measurements,

for immediate readout of resistance, capacitance and shunt loss, inductance and series loss. C and R comparisons from —25% to +25%. Electrolytics tested with d.c. Accuracy 0.25% (R & C), 2% (L). Internal 1kHz source/detector.

Autobalance Component Bridge

B 224

B 421

Autobalance Universal Bridge for continuous 0.1% readout of in-phase and quadrature terms, with analog outputs of both. Backing-off facilities, DVM connections, optional BCD outputs. Push-buttons for optimum discrimination up to five figures. Illuminated readout.

WARD ALD

Autobalance Universal Bridge gives four-figure readout on all ten ranges covering every practical value of L, C, R & G. Sensitivity increases automatically when decade back-off controls are used but can be selected manually. External Standards sockets permit comparative measurements and increase discrimination to 5 or 6 figures. Accuracy 0.1%.

B 642

Autobalance Precision Bridge accurate of 0.01% though simple to operate. It measures virtually any meaningful immittance in any quadrant. Automatic compensation for measurement lead impedance. Six-figures discrimination. Analog outputs.

B 331 MkII

Wide range A.F. Bridges

Wayne Kerr Bridges provide accurate measurement of L, C and R values over an unusually wide range. They employ a minimum number of fixed stable Standards in association with precision tapped transformers giving voltage and current ratios. Speed and ease of operation are assured by functional styling.

WAYNE KERR

THE WAYNE KERR COMPANY LIMITED, Roebuck Road, Chessington, Surrey. Tel: 01-397 1131. Cables: Waynkerr, Chessington. Telex 262333

Magnetic shielding problems?

TELCON OFFER THREE SIMPLE ANSWERS

Standard shields

Telcon Metals offer an extensive standard range of high efficiency Mumetal shields, which fit most cathode ray, photo multiplier and radar tubes, together with a selection of boxes and cans for microphones pick-ups, transistors and transformers. These are normally supplied stove enamelled in hammer grey externally and matt black internally. Other finishes can be supplied by arrangement.

Fabricated shields

Telcon Metals offer complete facilities for fabricating special shields in Mumetal and composite shields in Mumetal/Radiometal to customers' individual requirements. All Telcon shields are made to close tolerances and have excellent finish and appearance. For the highest efficiency and extra close fitting tolerances, the 'Telform' technique is recommended. These shields can be produced in complex shapes with a minimum of welded seams and very close uniformity throughout batches. A comprehensive design/advice service is available to assist all customers.

'Telshield' wrap-around foil

Telshield' is an easy to use, feromagnetic shielding foil, which can be cut with scissors, wound into cylinders, cones, etc., and fixed with adhesive tape, clips or spot welds, to provide a permanent efficient shield. It is economical to use, especially for research, development and short-run applications which do not merit the tooling involved in the production of fully fabricated shields. 'Telshield' is supplied in a standard thickness of 0.05 mm,in widths of 150, 50 and 25 mm in convenient packs costing approximately £5. Other thicknesses and widths are available by arrangement.

Please send for further information to

TELGON

Telcon Metals Ltd., Manor Royal, Crawley, Sussex. (Crawley 28800)

WW-067 FOR FURTHER DETAILS

TELEPRINTERS PERFORATORS REPERFORATORS TAPEREADERS DATA PROCESSING EQUIPMENT

SALE OR HIRE

2-5-6-7-8 TRACK AND MULTIWIRE EQUIPMENT

Special Codes Prepared

Picture Telegraph, Desk-Fax, Morse Equipment: Converters and Stabilised Rectifiers; Line Transformers and Noise Suppressors; Tape Holders, Pullers and Fast Winders; Governed, Synchronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass Filters; Teleprinter, Morse,

Teletype Spares.

Ribbons; Polarised and specialised Relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Diversity; Fre-

W. BATEY & COMPANY

Gaiety Works, Akeman Street, Tring, Herts
Tel: Tring 3476 (STD 0442 82)
Cables: RAHNO TRING

Telex: 82362, A/B BATEY TRING
WW---068 FOR FURTHER DETAILS

In Universities, Churches, Schools, T.V. and Film Studios, the S.N.S. Mk.III Radio Microphone is proving daily that, while the cost of freedom is low, reliability and performance are high. This combination is the reason why more and more people are using our wide band and narrow band systems. We will gladly send you details, but would be even happier to demonstrate the unit to you, and arrange a free 7 day trial.

We also manufacture P.A. Amplifiers, Loudspeakers, Tuners, etc. For full details please contact: S.N.S. Communications Ltd., 851 Ringwood Road, Bournemouth. Telephone: Northbourne 5331

think of a sound... now make it.

VCS3

Designed for the exacting standards of electronic music, the VCS 3 is also ideal for a general purpose audio test instrument and for teaching and demonstrating all aspects of sound phenomena. Why pay for elaborate and expensive laboratory instruments when for only £330 you can make any audio signal from pulse trains to sine waves, and process it from filtering to modulation or reverberation. Everything is voltage controlled, with extremely good signal to noise ratio and high stability. There are three multiwaveform oscillators (.05 Hz - 20 KHz) single sweep of 1000 : 1, three filters, a ring modulator, noise generator, scope output and trigger input, a joystick control for any two parameters, cordless pin patching, and many more facilities.

No studio musician, whether technician, teacher, composer, performer or engineer, can afford to be without this amazing instrument, with its tremendous variety of sound effects, and which is a direct spin-off from the most advanced computerised music studio in the world.

Write or phone for details and free brochure to:
ELECTRONIC MUSIC STUDIOS (London) LTD
49 DEODAR ROAD
LONDON S.W.15
Telephone: 01-874 2363

WW-070 FOR FURTHER DETAILS

TRANSFORMERS

MAINS 2VA to 2kVA **AUTO**10W to 5000W

OLYMPIC TRANSFORMERS LTD 224 HORNSEY ROAD, LONDON, N.7 Tel. 01-607 2914

ULTRASONIC TRANSDUCERS

40kHz. Type 1405

Available from stock

25kHz. Type will be available shortly

ACTUAL SIZE

B. RIGOLD & BERGMANN LTD.,

54 OLD BROAD ST. LONDON E.C.2

Tel. 01-588 1604

Name	 		
Company	 	 	
Position		 	
Address		 	
_			

WW-072 FOR FURTHER DETAILS

XENON STROBOSCOPE

A Stroboscope designed primarily for laboratory, industrial and educational applications where the elaboration and expense of more complex equipment may not be required. Features include simplicity of operation, robust construction exceptionally low price and built in reliability.

The instrument is of modern appearance, small, light in weight, convenient to use and portable. A wide range of flashing rates is covered by the large accurately calibrated dial, allowing operation at low frequencies for strobo photographic experiments and at high speeds for observation of rapidly rotating or reciprocating phenomena.

The external triggering facility permits single shot operation by an external closing contact and also provides a synchronising input for high and low speed repetitive phenomena which might otherwise be difficult to maintain in exact phase.

Light source.
Flashing rate.

Triggering.

High intensity Xenon tube mounted in a para-

bolic reflector.

1-250 flashes/second in 3 ranges. Typically \pm 2% of each full scale. (a) by internal oscillator (b) by external closing contacts.

Price: £38.10s.0d.

Frequency accuracy.

Edwards Scientific International Ltd.
Knowle Road, Mirfield, Yorkshire. Tel: 092484 4242

WW-073 FOR FURTHER DETAILS

Tektronix Pulse Generators

The Type 114 is a general-purpose pulse and squarewave generator designed for laboratory and production test facilities. The broad operating range of the Type 114 makes it well suited for applications such as studying network response to changes in pulse period and/or width, or determining the step response of systems.

Price: £164 plus £23 duty

The Type 115 is a 10-MHz, 10-volt, general-purpose pulse generator with separately variable risetime, falltime, width, delay, period, amplitude and baseline offset. It is intended for use in applications where a variety of pulse amplitudes, polarities, shapes and other characteristics are required.

Price: £412 plus £58 duty

The Type 2101 is a compact, 25-MHz, 10-volt, general purpose generator with SIMULTANEOUS positive and negative going pulse outputs. Switch positions are provided for selection of a specific pulse period, duration and delay, within the calibrated range of the respective control. Weighs only $8\frac{3}{4}$ lb. Price £334 plus £47 cuty

committed to progress in waveform measurement

Please fill in Reader Reply Card or write, telephone or telex:

Tektronix U.K. Ltd.

Beaverton House, P.O. Box 69, Harpenden, Herts.

Tel: Harpenden 61251 Telex: 25559

Northern Region Office:

Beaverton House, 181A Mauldeth Road,

Manchester 19.

Telephone: 061 224 0446 Telex: 668409

It's only a year since we launched the record selling S54

Now we introduce the S54A

... a single beam oscilloscope with a sensitivity of 10mV/cm at 10MHz bandwidth

The S54A is an all solid state oscilloscope developed from the S54. Smartly styled yet ruggedly built, the S54A has a wide application in field work, in the laboratory and in production line testing. Look at the features

- 10MHz Bandwidth at 10mV/cm
- All Solid State Design
- Small Size Light Weight
- FET Inputs
- At £125 you will find no other oscilloscope of its
- Versatile Triggering including T.V. Line and Frame Sync.
- 6 x 10cm. Viewing Area
- Built-in Voltage Calibrator.

type which offers such features at such low cost. Write or phone for full specification NOW!!!!

Telequipment, 313 Chase Road, Southgate, London, N.14. Telephone: 01-882 1166. Telex: 262004 A Divisian of Tektronix U.K. Limited.

Wireless World

Electronics, Television, Radio, Audio

Sixtieth year of publication

January 1971

Volume 76 Number 1423

This month's cover picture depicts the high temperatures needed for semi-conductor diffusion. It illustrates one of the 26 diffusion furnaces, which normally operate in the 900 to 1200°C range, at the Toulouse manufacturing plant of Motorola Semiconductors. Primarily used for the diffusion of integrated circuits each furnace has an output of at least 10,000 wafers per week.

IN OUR NEXT ISSUE

Construction of a twelve-hour **digital clock** which employs twelve t.t.l. integrated circuits and four gas-filled numerical readout tubes, is simplified by the use of programmable universal elements.

High performance stereo decoder using f.e.ts in a sampling circuit.

30-watt class B amplifier design with new approach to cross-over distortion problem.

I.P.C. Electrical-Electronic Press Ltd Managing Director: George Fowkes Publishing & Development Director: George H. Mansell

Advertisement Director: Roy N. Gibb Dorset House, Stamford Street, London, SE1

© I.P.C. Business Press Ltd, 1970

Brief extracts or comments are allowed provided acknowledgement to the journal is given.

Contents

- 1 Criteria for Frequency Allocations
- 2 Loudspeaker Enclosures by E. J. Jordan
- 6 H.F. Predictions
- 7 U.H.F. Log-periodic Aerial by J. L. Eaton & R. C. D. Thoday
- 9 Circuit Ideas
- 10 News of the Month
- 13 Voltmeter using F.E.Ts Measures Capacitor Insulation Resistance

by Lloyd E. MacHattie

- 16 Letters to the Editor
- 19 High-quality Tape Recorder-3 by J. R. Stuart
- 22 Heat Sink Abac by J. Johnstone
- 23 Elements of Linear Microcircuits—4 by T. D. Towers
- 26 Conferences & Exhibitions
- 27 An Equation-solving Aid by V. J. Phillips
- 32 Books Received
- 33 The Long Run by Thomas Roddam
- 37 Negative Feedback in Transistor Amplifiers by S. W. Amos
- 41 Announcements
- 42 January Meetings
- 43 Electronic Building Bricks-8 by James Franklin
- 44 World of Amateur Radio
- 45 New Products
- 50 Literature Received
- 51 Personalities
- 52 Real & Imaginary by "Vector"
- A 89 APPOINTMENTS VACANT
- A110 INDEX TO ADVERTISERS

PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: 01-928 3333 (70 lines). Telegrams/Telex: Wiworld Bisnespres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home; £3 0s 0d. Overseas: 1 year £3 0s 0d. (Canada and U.S.A.; \$7.50). 3 years £7 13s 0d. (Canada and U.S.A.; \$19.20). Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notify a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 202, Lynton House, Walsall Road, 22b. Telephone: 021-356 4838. BRISTOL: 11, Elmdale Road, Clifton, 8. Telephone: OBR2 21204/5. GLASGOW: 2-3 Clairmont Gardens, C.3. Telephone: 041-332 3792. MANCHESTER: Statham House, Talbot Road, Stretford, M32 OEP. Telephone: 061-872 4211. NEW YORK OFFICE U.S.A.: 205 East 42nd Street, New York 10017. Telephone: (212) 689-3250.

EASY DRIVE through BRIMAR

The Dartford Tunnel
Joint Authority depend on a closedcircuit television system from Marconi to
regulate traffic flow and provide advanced warning
of potential hold-ups. The six-screen surveillance
consol depends on Brimar.

There are six Brimar M36-121W/S Monochrome Cathode Ray Tubes – each one providing a vital visual link between the Kent Control Centre and every zone of the tunnel.

Brimar manufacture the widest range of cathode ray tubes for industry to meet most specifications. Tomorrow's new and more complex demands are already being evaluated by Brimar. It's this kind of forward thinking that keeps Brimar ahead. Write for further details.

CRT reliability

Thorn Radio Valves and Tubes Limited

7 Soho Square, London, W1V 6DN. Tel: 01-437 5233.

Wireless World

Rditor-in-chief: W. T. COCKING, F.I.E.E.

Editor:

H. W. BARNARD

Technical Editor:

T. E. IVALL, M.I.E.R.E.

Deputy Editor:

B. S. CRANK

Assistant Editors:

J. GREENBANK, B.A. G. B. SHORTER, B.Sc.

Drawing Office:

L. DARRAH

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager) G. J. STICHBURY B. STOREY (Classified Advertisement Supervisor) Telephone: 01-928 3333 Ext. 533 & 246.

Criteria for Frequency Allocations

Somebody pointed out to us the other day that, of the radio frequency spectrum below 1000 MHz (the most widely used, and useful, for equipment design reasons), over fifty per cent is occupied by television broadcasting. What is your reaction to this? If you have none, don't bother to read on. If you do react, you may clap your hands and say television is an excellent contribution to our culture and this allocation is just as it should be. Or you may say 500-odd MHz is an unreasonable amount of space for a public entertainment that only occasionally rises above the trivial, and there are other services which could use it to much better purpose. In either case you will be alive to the fact that the division of spectrum space is basically a social matter. Many engineers get absorbed in the technical problems of allocation and tend to forget this.

New Year 1971 is an appropriate time to look at the radio spectrum because there is going to be quite a burst of official activity during the year. The E.B.U. will be holding a meeting in Britain at which it may be considering such things as the spacing of m.f. broadcasting channels. There is to be a world conference on space telecommunications, and the I.T.U. will be considering whether to start work on a new broadcasting frequency plan to replace the 1949 Copenhagen Plan. Within the U.K. there is the expected Government White Paper on broadcasting, while the Frequency Advisory Committee, a body representing interested users, has been woken from its slumbers and will be advising the new Minister of Posts and Telecommunications.

The recent argument in Wireless World's correspondence columns about a part of the u.h.f. band-which roughly may be summed up as amateurs vs. mobile radio—has been conducted solely on the level of technology and economics. The mobile radio manufacturers seem to be casting covetous eyes on some of the spectrum space at present occupied by amateurs, and are arguing that lack of frequencies will seriously inhibit technical development, sales and exports. The amateurs, defending their territory, are drawing attention to the value of the pioneering experimental work they have done in the past and are still doing. Both arguments are valid from their own limited points of view, which are views of utility. But it should be possible for any group of users to start with the fundamental attitude "we are a living section of the community, and we have a right to live, regardless of whether our activities are 'useful' or not". After this they must accept certain restrictions, imposed by socially determined laws. The radio spectrum is a natural resource. It is, of course, exploited for economic advantage by particular groups, but ethically it 'belongs' to nobody-or to everybody.

At present it is difficult to discern any guiding principle by which spectrum space is allocated, either nationally or internationally. Probably the shape of any given plan is determined by the relative strengths of the various lobbyists. To find some formula based on a measure of social value would certainly not be easy. How, for example, to weigh 8 MHz-worth of "Coronation Street" against 8 MHz-worth of ambulance radio communication? But it seems we are in fact quite willing to spend a lot of money on putting high quality brains to work on frequency allocations. What we question is whether delegations consisting exclusively of engineers and technocrats are the right

ones for the job.

Loudspeaker Enclosures

Types of baffle and the acoustical laws governing their application

by E. J. Jordan

Few subjects lend themselves so readily to amateur experiments as do loudspeaker enclosures. Almost any configuration of wooden panels will provide some obstruction to sound radiated from the rear of the loudspeaker cone, and will therefore contribute towards the first and foremost function of the enclosure, i.e. to prevent the radiation from the rear of the cone cancelling that from the front. A multitude of baffle arrangements and techniques can be used, but for the purpose of this article it is helpful to start by showing the relationships that exist between the more frequently used types. To this end the reader is referred to the lineage chart Fig. 1.

The "daddy" of them all is the infinitely large flat baffle (a). The two simplest derivatives of this are the finite flat baffle (b) and by folding the sides, the open backed box (c). Completely sealing the back of the box gives

Fig. 1. The lineage of loudspeaker baffles.

us the popular closed box infinite baffle (d)—leaving a small opening in the enclosure walls, results in the vented or reflex enclosure (e). If the sides of the open backed cabinet are extended we have the basic form of a tuned pipe (f), which may be tapered (g), flared to form a horn (h), or resistively loaded to provide an absorbing transmission line (i). Pipe systems may be combined with vented enclosures to produce various hybrids (j) (k) and (l). Forms shown are diagramatic only. Pipes and horns are usually folded.

These basic enclosure types have been with us for very many years, although variations of them are regularly re-invented. For example the closed box appeared in the "fifties" as the "acoustic suspension", what used to be known as the labyrinth has recently reappeared as the transmission line. No doubt sooner or later the flat baffle will be reincarnated as a "free field doublet".

Generally speaking enclosure systems fall into two broad categories. First there are those where the rear radiation from the loudspeaker cone is completely suppressed. The only two true examples of this are the infinite flat baffle and the completely closed box. Secondly there are the systems where the rear radiation is phase inverted, so that it is in phase with the radiation from the front of the cone and therefore augments it. Most types of enclosure, other than those just mentioned, fall into the second category although resistivity loaded systems such as (i) and (j) fall somewhere in between. We will now examine in detail the design and performance of each of the principal enclosure types and discuss their relative advantages.

Mechanical impedance

Any enclosure or baffle system will apply a mechanical impedance to the rear of the cone, and will appear as in series with the analogous circuit as shown in Fig. 2.

In the case of simple baffle systems, this impedance is due to the radiation impedance on the rear of the cone and is similar to that on the front of the cone. In all other systems however, the impedance applied to the rear of the cone is much higher than the radiation impedance and one of the major design considerations is the relationship between this impedance and the actual mechanical impedance of the cone. Before undertaking

the design of an enclosure system, therefore, we must know the values of the cone impedance components. We may have the design details of the loudspeaker driver units in question, if so, well and good, but if we have to design an enclosure for a loudspeaker where these parameters are not available as is often the case, then we need some means of determining them. The techniques described below may be used to determine all of the low-frequency parameters of a moving-coil loudspeaker unit.

- 1. Measure the d.c. resistance of the voice coil R_{EDC} .
- 2. Plot the voice coil impedance curve subtracting from every reading R_{EDC} . The resulting curve will look something like Fig. 3.
- 3. This will represent the motional impedance Z_{EM} having a peak value at resonance of $Z_{EM\ peak}$.
- 4. To find the total moving mass (L_{Ml}) , observe the resonant frequency (f_0) from the impedance curve. Apply a sufficient known weight (L_M) (a piece of plasticene) to

Fig. 2. Mechanical impedances applied to rear of cone by different enclosures. The impedance appears in series with the analogous circuit.

considerably reduce the resonant frequency (f_1) . Then

$$L_{Mt} = \frac{L_M f_1^2}{f_0^2 - f_1^2}$$

5. To find the Q of the mechanical circuit (Q_M) find frequencies either side of the impedance peak on the Z_{EM} curve where the impedance has fallen to 0.707 of its maximum value. Let these frequencies be f_h above and f_l below the peak, then

$$Q_M = \frac{f_0}{f_h - f_l}$$

6. To find the equivalent electrical capacitive reactance $X_{\it EM}$ due to the mechanical mass

$$X_{EM} = \frac{Z_{EM peak}}{Q_M} = \frac{1}{2\pi f_0 C_M}$$

7. To find transducing constant (Bl)

$$X_{EM} = \frac{B^2 l^2}{10^9} \cdot \frac{1}{X_M}$$
 where $X_M = 2\pi f_0 L_M$

$$\therefore Bl = \sqrt{X_{EM} \cdot X_M 10^9}$$

8. To find equivalent electrical inductance due to stiffness of suspension L_{EM}

$$f_0 = \frac{1}{2\pi \sqrt{L_{EM}C_{EM}}}$$

$$L_{EM} = \frac{1}{4\pi^2 f_0^{\ 2}C_{EM}}$$

9. To find compliance of suspension C_M

$$C_M = \frac{B^2 l^2}{10^9} \cdot \frac{1}{L_{EM}}$$

10. To find total closed circuit Q(QT)

$$Q_T = \frac{R_{Edc} + R_{Ea}}{X_{EM}}$$
$$= (R_{Edc} + R_{Ea})2\pi f_0 C_{EM}$$

 R_{Ea} is the amplifier resistance, usually $\ll R_{Eac}$ Calculations 6-9 above are based upon the electro-mechanical relationships discussed in November's article.

The closed box

Sometimes known as an infinite baffle, the closed box completely seals off the radiation from the rear of the loudspeaker cone. The sealed volume of air acts as an elastic cushion adding a stiffness impedance to the motion of the cone. Obviously the smaller the box, the higher the stiffness. In the analogous circuit, it appears as a capacitive reactance and, as would be expected, its effect is to increase the bass resonant frequency, above its free air value. Normally the total circuit Q will also be increased.

Many modern small bookshelf loudspeakers employ this approach. In fact where a small loudspeaker with high power handling capacity is required, the closed box is the obvious solution. We must be careful however, in discussing *electrical* power handling capacity, when the real criterion is *acoustic* power handling capacity, i.e. not how much power we can put in, but how much sound we can get out. Therefore we should never consider power handling capacity without considering efficiency. The

Fig. 3. Motional impedance circuit of moving coil loudspeaker in free air.

factor we are really concerned with is total available sound power over the required bandwidth. This is particularly relevant to small closed box systems, since in order to combat the rise in resonant frequency due to the enclosed air stiffness, the mass of the cone or diaphragm is usually made very high, resulting in a low efficiency system, even though as we shall see the Bl factor is normally increased to maintain a Q_T of unity at resonance. The inevitable mass of the cone and coil system limits the system to low frequency operation only, rendering the use of crossover techniques imperative.

An alternative to using heavy cones is to use a small cone. It can be shown that the impedance of any enclosure is proportional to the square of the cone area. The problem in this case however, is one of maintaining adequate power bandwidth down at the lowest frequencies.

The mechanical compliance (C_{Mb}) of an enclosed volume of air is

$$C_{Mb} = \frac{V_b}{\rho c^2 A^2}$$

where V_b is the volume of box in cm³; $\rho = 1.21 \times 10^{-3}$; $c = 3.44 \times 10^4$ and A is cone area.

The effect of the enclosure on the free air resonant frequency and Q must be determined by considering C_{Mb} in series with C_M

$$Q \propto f_0 \propto \sqrt{\frac{C_{Mb}C_M}{C_M + C_{Mb}}}$$

In the majority of small closed box systems C_{Mb} is very much smaller than C_M and both Q and f_0 become substantially proportional to $1/\sqrt{C_{Mb}}$.

The overall mechanical closed circuit $Q(Q_T)$ is

$$Q_T = \frac{2\pi f_0 L_{Mt} R_{Et}}{B^2 l^2}$$

where R_{Et} is the total electrical resistance. From this, if $Q_T = 1$ then

$$B^2 l^2 \propto f_0 L_{Mt}$$

Maintaining this relationship, it can be shown that the mid-range efficiency (η %) has the proportionality

$$\eta \% \propto f_0^3 V_b$$

Assuming the system is designed for maximum efficiency, i.e. there is no significant mechanical damping, then the above relationship is invariable for a moving-coil unit in a small closed box irrespective of whether the heavy cone or small cone approach is used. The point is, that any

attempt to increase the mid-range efficiency by using a higher value of Bl than specified above will result in a value of Q_T lower than unity which in turn will give a reduction in the low-frequency efficiency. The effect of changing Bl is shown in Fig. 5.

Having stated the invariability of the relationship for a moving-coil unit in a small box we can now throw a spanner into the works by pointing out that the relationship can be broken by using two units connected in series. In this case, the Q will always be higher than unity irrespective of the Bl factor, therefore this may be increased as much as economics will allow, with the pro-rata increase in overall efficiency. Some mechanical means of controlling the Q must be used. One way of doing this is to fill the enclosure with absorbant material. This has the additional effect of increasing the effective enclosure volume by up to 40%.

Observations. One cannot speak of designing a closed box in the sense that the enclosure dimensions are calculated. There is no critical volume for any given unit, simply for a given low-frequency extension, the smaller the box the lower will be the efficiency.

A first class example of trading efficiency for size, is the Goodman's Maxim. Within the limits of its sound power, its performance is very comparable with much larger units. The general quality of the low-frequency performance from closed box systems can be superlative. The finest bass performance I have heard or measured, is provided by the well known American AR 3. Unfortunately it is almost inevitable that cross over techniques have to be employed

Fig. 4. Variation of efficiency with cabinet volume V_b and low-frequency limit f_0 .

Fig. 5. Effect of Bl on response of small closed box.

in closed box systems, with the resulting problems discussed in the article in the November issue.

The vented enclosure

Sometimes known as reflex or phase inverter, the vented enclosure is in theory one of the neatest and most efficient forms of loudspeaker loading. In practice however, many reflex enclosure designs produce a bass response that wallows like a pregnant hippo in a mud bath. This is entirely due to incorrect design. Although no one ever seems to take any notice of anything I say I will once more cover this subject from the beginning.

The vented enclosure is closed except for the existence of a relatively small vent. Sometimes the vent is extended inwards by means of a duct. The enclosed air behaves in a manner very similar to that of the closed box, inasmuch that it provides an elastic cushion of air against which the cone has to work. The air in the vent or duct however, behaves as a mass which can "bounce" on the cushion, and therefore exhibits a resonant frequency of its own independently of the loudspeaker. When the air "brick" in the duct bounces on the cushion at its natural frequency, the reactive components are of course cancelled and the impedance to motion is only that provided by the friction of the sides of the vent, and the air load: the velocity is therefore very considerable.

When this resonance is excited by the loudspeaker cone, the enclosed air becomes subjected to compression and expansion by both the cone and the vent air mass, which at resonance operate in phase, i.e. moving into and out of the enclosure together. The effect from the point of view of the cone is that the stiffness of the enclosed air is increased enormously at this frequency, and the cone displacement is considerably reduced thus increasing the power handling capacity. The situation at the enclosure resonance therefore, is that the cone looks into a high impedance and the air load is fed mainly from the vent which is a lowimpedance source.

This gives us the key to the correct way in which to regard the vented enclosure, i.e. as a matching device, matching the high mechanical impedance of the cone to the low impedance of the air load.

How then do we deal with the terrifying value of enclosure Q, which in a good system ought to be between 10 and 20? One frequently used technique, is to stuff a sock (or equivalent) in the vent and call it resistive loading. This means that the efficiency of the system is completely destroyed and the air load or the cone is considerably reduced. A better way is to introduce a leakage resistance in the enclosure walls. The acoustical resistance I described in an article in 1956* was an example of this. The ideal way however, is to use the loudspeaker itself. Imagine the vent and cavity in a condition of resonance. Forget for the moment that the loudspeaker is the energy source. From the point of view of the enclosed air, the loudspeaker constitutes an opening in the cavity wall. The cone can be driven in and out by the internal air pressures. In doing this, energy is dissipated in driving the cone against its own electro-magnetic damping. (We are assuming the coil is still connected to the amplifier). The lower the magnetic damping the easier it will be to drive the cone, i.e. the cone will constitute a more transparent cover over the hole in the enclosure wall and more energy will be dissipated. If, for example, the electro-magnetic damping were infinite, the cone would not move and there would be no energy dissipation here and, therefore, no damping.

Here then we have the interesting situation where if the enclosure Q is controlled by the loudspeaker Q, the one will be inversely proportional to the other, i.e. if we increase Blto reduce the loudspeaker Q, the enclosure Q will increase. At some frequency above the resonance of the enclosure, the vent air mass will become too inert to move and the enclosure will behave as though it were completely closed. A resonance will occur exactly as described for the closed box. Radiation from the vent will be negligible. Below the resonance of the enclosure the vent air mass will be simply added to the mass of the cone and a further resonance will occur. The vent air mass will then be moving in anti-phase with that of the cone. The Q values of both the above secondary resonances will be a direct function of the loudspeaker Q.

We now have three resonant conditions to deal with, where the Q of two of the resonances is a direct function of the loudspeaker free air Q value, and one is an inverse function. Can we juggle this lot and get them under control? Yes, provided we accept the very important conclusion that the enclosure and loudspeaker unit are made parts of an integral design. In my early days in loudspeaker development, I was asked to "design a reflex enclosure for a 12 in loudspeaker", the BI factors of which could vary from 10,000 gauss on a 1 in coil to 17,500 gauss on a $1\frac{3}{4}$ in coil. I actually did it and mused awhile on hippos.

The aim in the case of correct reflex design is to ensure that all Q values are at unity. It can be shown that this condition is met by letting $C_{Mb} = 0.62C_M$, letting the free air Q of the loudspeaker be 0.62, and tuning the enclosure to the free-air resonance of the cone. The full approach is as follows

- 1. decide upon the required low-frequency limit f_0 .
- 2. decide upon the mass and dimensions of the cone from consideration of the required overall power bandwidth and economics.
- 3. determine the compliance of the cone suspension system (C_M) .
- 4. determine the volume of the enclosure air cavity (V_b) from:

$$V_b = \rho c^2 A^2 C_{Mb}$$

where $\rho=1.21\times10^{-3}, c=3.44\times10^4, A$ is cone area sq cm, and $C_{Mb}=0.62~C_{M}$.

5. design the magnet and coil system so that

$$Bl = \sqrt{\frac{2\pi f_0 L_{Mt} R_{Et}}{0.62}}$$

6. design a vent and duct system to reso-

Fig. 6. Effect of Bl on response of vented enclosure.

nate with V_b at f_0 . The basic equation here is

$$\frac{l + 1.7r_v}{r_v^2} = \frac{c^2}{4\pi V_b f_0^2}$$

where r_v is the effective radius of the aperture, and l is the length of aperture or duct. If the aperture is not circular, then

$$r_v \doteq \sqrt{\frac{A_v}{\pi}}$$

where A_{ν} is the cross sectional area.

It will be seen that there is an infinite range of values of l and r_v which will satisfy the above equation. The aim here is to make r_v as large as possible. It should not be less than about half the cone radius at the very least. The upper limit is set only by how big one can afford to make the box. It used to be said that it should not be longer than $\lambda/12$ at f_0 . This is because of the danger of the pipe not behaving as a true mass. The implication of this will be discussed later. The volume of the duct system must of course be added to the enclosure to give the overall cabinet volume.

This approach will ensure that the system will be non-resonant and that maximum power bandwidth and power handling capacity is obtained from the system. The effect of varying Bl is shown in Fig. 6.

Observations. In spite of their obvious advantages, vented or reflex enclosures are rarely used. There are various probable reasons for this. First there is the problem of having to design the loudspeaker and the enclosure specifically for each other. As far as I know, the design procedure described above is not generally used in spite of the fact that it was introduced in this country by my book† written in 1962. Certainly, I think, many incorrect designs have given the reflex enclosure a bad name. A further problem is that at subsonic frequencies the cone is virtually unloaded. This should not matter except where there is a high degree of turntable rumble.

The answer is, I would have thought, to use a better turntable, for even if the speaker can accommodate high-amplitude low-frequency swings, these will be using up available power in the amplifier. Another frequent source of high amplitude swing is the amplifier itself. Many transistor amplifiers exhibit a characteristic whereby if they

†Jordan, E. J., 'Loudspeakers', Focal Press.

^{*}Jordan, E. J., "Loudspeaker Enclosure Design", Wireless World, January and February 1956.

receive a large low-frequency transient component in the signal, the h.t. voltage momentarily falls causing a near d.c. pulse to be applied to the loudspeaker. With a well designed reflex enclosure even with a small loudspeaker unit, adequate power bandwidth is secured with peak cone displacements due to the signal of not more than $\frac{1}{8}$ in. Where displacements are much higher than this, these are observed. It will usually be due to one of the problems already mentioned.

Seldom realized, but a very real problem with vented enclosures, is the need to provide a decorative grille cloth over the front of the enclosure. Since the output impedance of the vent is (or should be) extremely low, almost anything in the way of a covering will constitute a substantial impedance. This could easily halve the efficiency of the system, and further the high air velocities will cause the cloth over the vent to flop. For many years the only really satisfactory grille material has been expanded metal which does not appeal much domestically. However, there are now available synthetic materials having a rather complex pore structure, which renders them almost acoustically transparent, whilst being optically opaque. These materials provide an interesting decorative texture and come in a variety of colours. They are unfortunately rather expensive.

The pipe systems

The simplest of these is the parallel sided tuned pipe. This, like the organ pipe, will exhibit series of resonances and anti-resonances. By choosing an appropriate length, the lowest anti-resonance of an open pipe can be used to load a loudspeaker cone in a manner similar to a reflex, inasmuch as the cone will look into a high impedance at one end of the pipe and the air load will see a low impedance at the other. The length of pipe required for a cone resonant frequency f_0 is given by

$$t = \frac{3.44 \times 10^2}{4f_0} - 1.7 \text{ radius}$$

where all dimensions are in metres.

The problem here is the existence of the other resonances and anti-resonances which exist at all frequencies where the length of the pipe is an integral number of quarter wavelengths. It is not really possible to "kill" these without impairing the efficiency of the pipe.

An improved system, very popular many years ago, was the tapered pipe with the loudspeaker mounted $\frac{1}{3}$ wavelength down from the closed end. The taper tended to reduce the Q values of the resonances, and the position of the speaker was such as to remove the third harmonic resonance.

The labyrinth

This is a variation of the tuned pipe approach, where the pipe is heavily loaded with resistive material, thus eliminating its resonance characteristics. The system is extremely inefficient. The load applied to the cone is high and resistive, this tends to provide constant velocity operation requiring the application of the correct degree of bass boost from the amplifier. The loud-speaker must be capable therefore, of handling high power inputs. The advantage of the system is, that it is completely resonance free.

The horn

This can provide the most efficient form of loudspeaker loading, the efficiency being limited only by its physical size. Like the reflex enclosure the horn is an impedance matching device between the loudspeaker cone and the air load. However, the efficiency can be much higher and extend over a much wider bandwidth. The load applied to the cone by the throat of the horn is, basically very high, and resistive. It takes over the control of the cone so we are free to make Bl anything we like, limited only by cost. Three types of horn are encountered conical, exponential and hyperbolic. These are determined by the particular flare law used.

In all cases the mouth diameter should not be less than $\frac{1}{3}$ wavelength at the lowest working frequency (f_0) .

The rate of flare is determined by the flare law used, and f_0 . In the case of the conical horn, the area A_x any distance (x) from the throat is given by

$$A_x = A_t x^2$$

where A_t is the throat area. The -3 dB point is given by

$$f_0 = \frac{9x}{A_x}$$
 or $x = \frac{f_0 A_x}{9}$

The impedance at the throat of an infinite conical horn is

$$Z_{At} = \frac{\rho c}{A_t} \left[\frac{(kx_t)^2}{1 + (kx_t)^2} + j \frac{kx_t}{1 + (kx_t)^2} \right]$$

where $x_i = \text{distance from throat to } A = 0$.

For similar overall dimensions, the exponential horn will extend the low-frequency limit by about three octaves compared with the conical horn.

In this case

where
$$A_x = A_t \varepsilon^{mx}$$

$$m = \frac{4\pi f_0}{3.44 \times 10^4}$$

and all dimensions are in cm.

The impedance at the throat of an infinite exponential horn is:

$$Z_{At} = \frac{\rho c}{A_t} \left[\sqrt{1 - \left(\frac{f_0}{f}\right)^2} - j \frac{f_0}{f} \right]$$

The hyperbolic horn will gain about one third of an octave over the exponential horn. The flare is given by

$$A_x = A_t \left[\cosh \frac{x}{x_0} + T \sinh \frac{x}{x_0} \right]^2$$

where x_0 is the distance of the throat back to where A = 0, and T = shape factor (typically 0.6).

The low-frequency limit is given by

$$f_0 = \frac{c}{2\pi x_0}$$

and throat impedance by

$$Z_{At} =$$

$$\frac{\rho c f_0}{A f} \left[\frac{\sqrt{(f/f_0)^2 - 1}}{f/f_0 - (1 - T)} + j \frac{f/f_0}{f/f_0 - (1 - T^2)} \right]$$

From the throat impedance expressions, it is seen that in general horns apply a resistive air load to the cone above f_0 and a mass reactive load below f_0 .

Observations. In spite of the fully documented theory showing the large dimensions necessary for the horn loading, there are horn systems much smaller than this that appear to work! It must be realized, however, that the efficiency of a full horn can be tremendous, i.e. of the order of 30–50%. This represents a gain of about twenty times higher than we are at present accustomed to, with modern loudspeakers. This may be very impressive, but do we need it? Is the average housewife going to accept a total of some hundred cubic feet or more in the shape of a loudspeaker system, so that hubby can use a one-watt amplifier, instead of twenty watts?

Further, a horn will only work over a restricted frequency range. Some other arrangements have to be made to deal with the middle and high frequencies. These again may be catered for with horn-loaded midrange, and treble units, but this introduces many problems of coloration and distortion. Securing a good diaphragm/throat match is extremely difficult at higher frequencies, therefore, we need not be too ambitious with our horn design. If we can evolve a design whereby an efficiency of a few percent can be maintained at the lowest frequencies, whilst loading the cone to keep the power handling capacity up, then we shall be achieving as much as is required. This can be secured with relatively small horns. There is a problem in that a small horn will exhibit resonances similar to those in the tuned pipe, but this can be overcome by the use of hybrid systems which are now described.

The hybrids

There is an increasing number of these systems, from what I have read, and their designers are not always certain how they work. Being hybrids their manner of operation can be regarded from a number of points of view. Basically, the hybrid comprises a cavity coupled to a long duct. Varieties have appeared with straight sided ducts, and ducts which are tapered or flared in either direction. The most frequent analytical approach, is to place the emphasis on the duct design and regard the cavity as merely the coupling component to the cone. Another approach is to regard these systems as reflex enclosures with abnormally large ducts.

I propose to look at the system from both ends

From the point of view of the loudspeaker cone, the hybrid provides loading conditions similar to those encountered in a highly efficient reflex enclosure, and the design approach is identical with the one we have set out. The difference arises when we come to determine the duct dimensions. In the hybrid the duct may be up to several feet in

length with a pro-rata increase in its cross sectional area.

This offers a very great advantage over the conventional reflex enclosure, insomuch that very high volume velocities may be secured at the duct opening with relatively low particle velocities. High particle velocities may give rise to eddy current formation at the edges of the duct, in which case, the air moving into the vent will encounter a higher impedance than the air moving out resulting in a degree of rectification and consequent distortion. The use of a duct with a large cross sectional area reduces this, and increases the efficiency of the system.

Any duct will tend to resonate as a tuned pipe and in the case of the duct lengths being discussed, the resonant frequencies will be comparable to those due to the reflex mode of operation. Generally speaking, we need only be concerned with the lowest of these due to the fact that the cavity effectively decouples the duct above the enclosure resonance, so the higher duct resonances are not excited. What remains to be considered is that at the reflex resonance the air in the duct will not be operating as a pure mass.

This will give rise to three situations:

- 1. The resonant frequency of the enclosure will be modified. This can be countered by a readjustment of the duct dimensions.
- 2. The radiation from the end of the duct will be delayed in phase, but for the duct lengths under discussion, this will not be very significant and will favour the lower frequencies, i.e. the phase will move in retardation as frequency rises and the duct radiation becomes progressively unimportant.
- 3. The lowest of the duct resonances will be introduced into the system which could be dangerous, since there is no way of controlling it with the loudspeaker *Bl* factor.

This introduces us to the major problem of the hybrid-how to eliminate the lower resonances of the duct? The only thing that can be done is to introduce resistive material into the pipe. This however, tends to reduce the efficiency and throw away one of the principal advantages of the hybrid. The requirement is for the resistance introduced into the pipe to provide a high degree of absorption to pressure differentials within the pipe at the same time, offering a minimum resistance to the "through" air flow. Many compromise techniques have been developed to do this, but an almost perfect answer lies in the use of membrane absorbers. A membrane absorber consists basically of a layer of fibrous material covered with a thin impervious sheet, which acts as a membrane. If the membrane is subjected to air pressures it will compress the fibrous material and energy will be absorbed due to the mechanical friction between the fibres. This provides quite different absorption characteristics than would be obtained without the membrane.

In the latter case, energy is absorbed directly from air friction due to the air moving into and out from between the fibres which themselves are not displaced. Whereas a normal fibre-glass or wool lining becomes inoperative at low frequencies, the membrane absorber remains very effective and has the further great advantage that when used as a duct lining, the smooth surface of

the membrane offers very little resistance to the through passage of air. It is a fact that if the cost can be accommodated, the membrane absorber provides a far more satisfactory solution to cabinet lining than the normally used materials.

We have so far been discussing a straight sided duct. Further advantages may be secured by using a tapered or flared duct such that the narrow end is at the cavity and the mouth feeds the air load. This is not only further reduces the losses and eddy current formation, but a further small increase in efficiency is secured due to the duct acting as a horn. The rate of flare must be determined from the expressions given in the section on horns above. A further advantage is that the load on the cone at very low frequencies is increased, due to the throat impedance.

Conclusions

It is a great pity that even in our writing, we tend to separate loudspeaker units from loudspeaker enclosures. It is just not possible to provide a satisfactory design for the one without considering in detail the other. In order to design a loudspeaker unit, it is necessary to settle one or two minor details such as how big to make the cone or diaphragm, and how heavy it should be. What should the maximum displacement be? The magnetic circuit and voice coil dimensions? The stiffness of the suspension? It is not possible to settle any one of these parameters without a detailed knowledge of the loading conditions. The correct approach to loudspeaker system design is first to specify the largest room volume in which the loudspeaker is to be used. From this can be calculated the required acoustic power to produce sound pressures that are consistent with the expected programme

These sound pressures can be expressed in terms of the total volume of air that has to be moved into and out from the room; assuming the loudspeaker system is in the form of an enclosure, then the change of air volume in the room must equal the change in volume in the enclosure. The enclosure will have one aperture covered by the loudspeaker unit, it may or may not have one or more other apertures. The ingress and egress of air must take place through these apertures, and from this we can start to consider the relationship between the areas of the apertures (including the loudspeaker cone) and the air displacements through them. At this stage many other factors start to creep into the equations—the maximum permissible enclosure size, the available amplifier power economics etc.

All this may be very obvious but it is the fundamental mode of thinking that ought to govern loudspeaker designers. I am not seriously proposing going through this exercise in detail every time, but the concept of the loudspeaker system being an enclosure that sucks and blows a predetermined volume of air is I think one which will start the designer off in the right direction.

H.F. Predictions— January

At the time of predicting there is no sign of a rapid decrease in the solar index so we can expect frequencies up to 25MHz to be of some utility particularly for transequatorial routes. A secondary MUF (maximum usable frequency) peak before dawn is a seasonal feature observed on some long-distance paths. Large day/night frequency differential is characteristic of winter conditions although low latitude routes of less than 2000km may have lower daytime frequencies than in the summer when propagation is via the E layer.

The LUFs (lowest usable frequencies) shown were calculated by Cable and Wireless Ltd for reception in the U.K. of point-to-point telegraphy. For other services the curves would be displaced vertically, the exact amount depending on service and equipment parameters.

U.H.F. Log-periodic Aerial

Constructional details of wideband aerial for television reception

by J. L. Eaton*, B.Sc., M.I.E.E. and R. D. C. Thoday*, M.I.E.R.E.

It is obviously desirable that viewers should use the type of television receiving aerial which gives the best results for their location. This usually implies the installation of an outdoor or loft aerial connected to the set with good quality coaxial feeder. Available field strength of the transmissions is only one of the factors which influences the type of aerial required. It must also be capable of discriminating against unwanted co-channel signals and delayed reflections over as wide an arc as possible. In some areas, discrimination against delayed reflections is the most critical requirement. Receiving aerials as supplied by manufacturers can be obtained with adequate gain and their directivity is normally adequate to give protection against cochannel interference.

Delayed reflections, however, need greater suppression in general if ghost images are not to be visible on the received television picture. Directional receiving aerials of the yagi type, which are the most common, tend to have side and back lobes in their horizontal radiation patterns which vary with frequency and therefore differ from channel to channel. At locations where delayed reflections are potentially troublesome it may be impossible to position a yagi aerial to give sufficient protection against ghosts on all the available channels. The log-periodic aerial on the other hand, although its gain is somewhat lower than a yagi of comparable size, can be designed to have a horizontal radiation pattern with extremely small back and side lobes, which remains constant over a wide frequency band. It is therefore especially suitable for areas of reasonable signal strength where delayed reflections are a particular problem. This article describes the design of a log-periodic aerial for u.h.f. television reception.

Log-periodic principle

Du Hamel and Isbell¹ predicted that a frequency-independent aerial could be designed by making its configuration vary periodically with the logarithm of the frequency; that is by giving it a log-periodic structure. The dipole type described in this article is only one of a number of possible

Fig. 1. Schematic representation of log-periodic aerial with dipole elements connected to balanced feeder. Longest and shortest elements are made approximately $\lambda/2$ at lowest and highest frequencies.

configurations embodying this principle. A schematic representation of the log-periodic dipole array is shown in Fig. 1. The longest and shortest elements are made approximately half-a-wavelength long at the lowest and highest frequencies of the band to be covered. In operation the aerial has an active region involving a group of elements whose lengths are near to half-a-wavelength at the frequency of the incoming signal. At a given frequency in the band covered by the aerial three adjacent elements are fully ac-

tive, the contributions from other elements falling off rapidly away from this region.

In this type of log-periodic aerial, all the dipole elements are connected to a balanced line; adjacent elements being connected in an alternate manner as shown in Fig. 1. The drive point of the balanced line is at the high-frequency end of the aerial, the other end being terminated in a short circuit behind the longest element. With this method of feeding the main lobe of the aerial pattern is in the direction of the high-frequency end. This means that an incident wave arriving in the main lobe passes over short nonresonant elements before reaching the active region appropriate to its frequency. Further, the signal from the active region travels along the feeder in the opposite direction, again only encountering nonresonant elements. Thus the pattern of the aerial is substantially that of the elements in the active region.

Two parameters (somewhat arbitrary) are required to define the aerial configuration, which specify the logarithmic spacing of the elements and the taper. The parameters T and o defined in Fig. 1 are most often used for this type of aerial.

The design is based on data given by Carrel². Optimum values for T and σ giving the best radiation patterns were arrived at by experiment; these were T=0.93 and $\sigma=0.17$. Calculation showed that these values of T and σ would give a gain of approximately 9.0dB relative to a dipole. The design bandwidth was made 2:1; slightly in excess of that occupied by channels 21 to 68 inclusive. This gave some

 $T = \frac{t_{n-1}}{t_n} = \frac{r_{n-1}}{r_n} : \sigma = \frac{d}{2L} = \frac{r_n - r_{n-1}}{2t_n} : \tan \frac{\alpha}{2} = \frac{1 - T}{4\sigma}$

^{*} B.B.C. Research Department

Fig. 3. Aerial and mount adjustable for either horizontal or vertical polarization.

latitude for possible deterioration of the aerial performance at both ends of the working range. Fifteen elements were required to obtain this bandwidth. All elements in the aerial were made from rod of constant cross-section and consequently it was necessary to make some allowance for the effective lengths of elements due to the variation of the ratio H/a (H is the element half-length and a its radius). The impedance characteristic is optimized by adding some shunt susceptance to the terminals of the transmission line.

Mechanical construction

Construction and dimensions of the aerial are shown in Fig. 2. The balanced line on the axis of the aerial is made from a pair of 12.7-mm (0.5-in) square cross-section, light aluminium-alloy tubes separated by 9mm (0.354in) between adjacent faces. (This is a standard size of square tube which is obtainable from metal merchants.) The elements are made from 6.35-mm ($\frac{1}{4}$ -in) diameter aluminium-alloy rod flattened at one end and formed into a foot with a small turn-down as can be seen from Fig. 2. Elements are riveted with pop-riveting pliers to the square-section rods (rust-proof steel rivets are preferable). Self-tapping screws could be used in place of the rivets but the result would be less robust. The method for obtaining the alternating connection to the feeder can be seen in Fig. 2.

Aerial output is by way of an unbalanced feeder of 71-ohm characteristic impedance, carried through the centre of one of the balanced-line conductors to terminals at the drive point of the balanced line. Terminals are protected by a plastic moulding. Mechanical support for the aerial is provided by a bracket mounted on the balanced line behind the longest dipole element, which also acts as the terminating short

circuit. This arrangement of coaxial feeder, balanced lines and short-circuit termination acts as a balanced-to-unbalanced transformer which minimizes the effect of pick-up on the outer conductor of the down lead. Fig. 3 shows the aerial with its normal mount which is adjustable for either horizontal or vertical polarization. The weight of the aerial, without clamps, is 1.02kg.

Discussion

Measured radiation patterns are shown in Fig. 4 for horizontal polarization and in Fig. 5 for vertical polarization. Although these patterns were measured at 650MHz they are typical of patterns at any frequency in Bands 4 or 5. Table 1 summarizes the pattern performance of the aerial over its entire frequency range. Fig. 6 shows a typical v.s.w.r. characteristic referred to a 71-ohm connector cable.

The C.C.I.R. template³ for the recommended minimum directivity of u.h.f. receiving aerials is superimposed on the radiation patterns of the aerial in Figs. 4 and 5. The C.C.I.R. template is used as a criterion for planning purposes but greater rejection of signals from the back and side of the aerial than that implied by the template is necessary in certain areas to combat ghosting.

The E-plane pattern (horizontal polarization) meets this template although there is some transgression in the case of the H-plane pattern (vertical polarization). The aerial would therefore always be suitable for the reception of horizontally polarized transmissions, provided the gain is adequate. In general terms it will be satisfactory at locations having received field strengths in excess of 70dB (rel. la V/m). In situations where the received transmission is horizontally polarized but where the gain is marginal, the use of an aerial

TABLE 1 Summary of radiation pattern performance

	Half-power beamwidth (degrees)	Gain		Minor lobes (dB below maximum field)		
Frequency	Polarization		(dB rel.	Polarization Horizontal Vertical		
(MHz)	Horizontal	Vertical	λ/2 dipole)	Horizontal	Vertical	
450	27	34	8.6	26.7	23.5	
500	26	32	9.3	33.2	33.6	
550	26	33	8.9	30.0	25.6	
600	26	32	9.2	34.4	31.5	
650	26	32	8.9	30.2	30.0	
700	27	34	8.7	27.0	25.0	
750	27	35	8.4	25.0	25.5	
800	26	33	9.0	35.5	24.0	
850	26	33	8.7	26.0	24.0	

Fig. 4. Radiation pattern at 650MHz for horizontal polarization

Fig. 5. Radiation pattern at 650MHz for vertical polarization.

Fig. 6. Voltage standing-wave ratio referred to a 71-ohm connector cable.

pre-amplifier could be considered, as the benefits of the very low back and side lobes would be preserved.

For reception of vertically polarized transmissions the radiation pattern could be improved by using two aerials stacked side by side. In many situations where the transmission is vertically polarized, but where the advantages of low back and side lobes are needed, it is likely that the small transgression of the C.C.I.R. template will not be serious. The performance of the aerial indicates that the principal advantages claimed for the log-periodic form have been achieved, i.e. low back and side lobes and constancy of performance over all the u.h.f. television channels in use in the U.K.

We think there is a good case for introducing an aerial of this type to the public.

REFERENCES

- 1. Du Hamel, R. H. & Isbell, D. E. 'Broadband logarithmically periodic antenna structures'. *I.R.E. Nat. Conv. Rec.* March 1957, Part 1, p. 119.
- Carrel, R. 'The design of log-periodic dipole antennas'. I.R.E. Int. Conv. Rec. Vol. 9, 1961.
 C.C.I.R. Recommendation 419, Documents of the XIth Plenary Assembly, Oslo 1966, Vol. 5, p. 62.

Circuit Ideas

Voltage stabilizer

The "variable diode" (see for instance Peter Williams' letter to the editor, Feb. 1969) is a useful element for circuit work, and one application where it has been employed is in a stabilized power supply (Fig.1) used by the writer to provide a nearly constant 9V output from a nominal 12V car battery. The supply was found to vary from 12V to 14.5V under normal driving conditions and this was reduced to 9V ± 10mV by the

Fig. 1. Power supply giving 9V output from 12V input.

Fig. 2. Regulator with zero or negative output resistance.

stabilizer when supplying 150mA. The output voltage is also little affected by the output current, varying by less than 15mV when the output current varies from 0-150mA. The effective output resistance can be reduced to zero or made negative by modifying the circuit as shown in Fig.2. A negative resistance has been found to be desirable when a brush type d.c. motor, such as used in battery operated tape recor-

ders, record players and model trains, must maintain a nearly constant speed regardless of variable mechanical loading. A single speed (3.75 i.p.s.) battery operated tape recorder was modified to provide an extra speed of 1.875 i.p.s. by operating the motor below its mechanically governed speed from the circuit of Fig.2. The sliders of the $2k\Omega$ and 10Ω preset resistors were set to approximately mid. position for best results in the particular recorder used by the writer. The circuit would seem to be readily adaptable for many purposes, for higher or lower currents and for different transistors.

C. H. BANTHORPE, Northwood, Middx.

Two-way d.c. along single wire

The need arose for two d.c. signals to be conveyed in opposite directions along each wire of a multi-way cable 100 yards long. For each wire there is a control signal of 0 to 5V d.c. terminated into a high resistance $(1M\Omega)$ and a return signal of 0 to 5mA. Using the circuit shown it was found that: (1) With a change of I_v from 0 to 5mA (which corresponds to a change E_v of 1 to 5V) the change in E_x was less

than 20mV throughout the entire range of E_x from 0 to 5V. (2) With a change of E_x from 0 to 5V the change in I_y was less than 30μ A throughout the entire range of I_y from 0 to 5mA.

R. C. ALCINDOR, Canvey Island, Essex.

Phase splitter

It may not be well known that the split-load phase splitter can be designed to have approximately the same output impedance at each output point. This is achieved by making the emitter side a bootstrap follower. A glance at the diagram makes the principle clear. If a voltage is applied to the emitter of Tr_2 , very nearly the same voltage

appears at the base of Tr_2 , since the collector impedance of Tr_1 is much greater than R_1 . Consequently very little current flows in Tr_2 , and the output impedance is R_2 in parallel with a high resistance. The output impedance at output 2 is the parallel connection of R_3 , R_4 and the high collector impedance of Tr_2 . For balanced outputs R_2 is made equal to $R_3R_4/(R_3+R_4)$. If I_1 is the desired collector current of Tr_1 , R_1 is taken to be $0.8/R_1$ amps (assuming silicon transistors). The collector current of Tr_2 is $V-0.8-I_1(R_3+R_4)/R_4$.

The circuit has given good performance in a transistor amplifier, and is a useful alternative to the long-tailed pair.

L. R. SAUNDERS, Auckland 3, New Zealand.

News of the Month

B.A.C. to assist with the re-usable space shuttle

The British Aircraft Corporation have signed an agreement which means that they will be starting preliminary design studies with the North American Rockwell Space Division on an international space shuttle as conceived by the American National Aeronautics and Space Administration.

The space shuttle is a two-stage, re-usable, transport system and consists of a booster (mother ship) which carries an orbiter piggyback fashion. The assembly is launched vertically as with today's rockets and the two craft separate at about 200,000 ft. The booster then drops away to land at an airfield using ordinary jet engines like a conventional airliner. The orbiter with a crew of two and twelve passengers, or the equivalent in cargo, continues into space to either place a satellite in orbit, to assist in building a space station or to dock at a completed space station. The orbiter then returns to earth to land at an airfield after a subsonic cruise through the atmosphere.

The role of the B.A.C. teams will be to assist in an investigation into structures, aerodynamics and flight test instrumenta-

tion. B.A.C's experience with the mechanical and electronic aspects of Concorde, Lightning, TSR2, Jaguar, Rapier, Swingfire, Thunderbird and Bloodhound as well as various space projects will be of great value to them in this project.

The work carried out on the project by B.A.C. will be paid for by Britain and one is bound to ask what the returns are likely to be. It is difficult to see any returns in the form of hard cash in the near future but the benefits in terms of increased knowledge and experience could be enormous. Spin-off from the research could bring benefits in all sorts of fields not even remotely connected with space research as new materials and techniques are developed. When the large scale commercial utilization of space begins then Britain will have the advantage of being in at the ground floor.

Using the space shuttle the cost of putting an object into space will be about one-tenth of that at present. This means that even small nations will be able to design satellites and the like and have them launched into space at minimal cost.

The upper section of the television aerial constant for the new most at Emley Moor

The upper section of the television aerial system for the new mast at Emley Moor undergoing tests at E.M.I. The aerial system, which is 180ft long, will be hoisted up the centre of the 900ft concrete mast. The helical strakes are designed to reduce mechanical oscillation under severe wind conditions.

Space consortium

Seven European companies have agreed to collaborate in the field of international satellite programmes and have announced the formation of a new consortium. The new consortium brings together a group of companies whose capacities extend throughout the whole range of aerospace, telecommunications and electronic systems technology.

The members are: Marconi Space and Defence Systems Ltd, from the United Kingdom; Etudes Techniques et Constructions Aerospatiales (ETCA) from Belgium; Societe Nationale Industrielle Aerospatiale (SNIAS) and Societe Anonyme de telecommunications (SAT) from France; Messerschmitt-Bolkow-Blohm (MBB) and Siemens A.G. from the Federal Republic of Germany; and Selenia SpA from Italy.

Another British scientific satellite to be built

The Science Research Council, under the U.K./U.S. co-operative programme, is to finance a new scientific satellite project for the study of cosmic X-ray sources which will be known as UK-5. The satellite will carry six instruments, five to be contributed by British universities and one by the Goddard Space Flight Center of the N.A.S.A. In addition British scientists will be collaborating with several American astronomers to correlate X-ray observations from UK-5 with optical observations. The satellite will be the first in the Ariel series to use core stores in which all the experimental data will be assembled before transmission.

The Council will provide the finance and manage the project through its Space Research Management Unit. The Ministry of Aviation Supply will be agents for the Council and the Royal Aircraft Establishment, Farnborough, will be the research and development authority.

Marconi Space and Defence Systems

Ltd will be the prime contractor for the space craft. In the Ariel III and the UK-4 projects they were the subcontractors for the common user electronics.

The satellite is scheduled for launch by the National Aeronautics and Space Administration using a Scout launch vehicle in 1973. The project, including the experiments but excluding the cost of the launch, is expected to cost more than £2M.

The UK-5 will be approximately cylindrical in shape and will be about 1m in diameter and a little under 1m tall. It will be spinning at about 10 r.p.m. and will be attitude controlled by a propane gas jet system directed by on-board logic units which will be programmed by command from the ground stations. The attitude control sub-system is based on designs developed by R.A.E., Farnborough, and the other common user sub-systems are based on designs being developed by Marconi for R.A.E. initially intended for the Black Arrow spacecraft.

Einstein's theory of relativity upheld

Experiments carried out by the American National Aeronautics and Space Administration using the Goldstone tracking station and the Mars Mariner-6 and -7 space craft so far appear to uphold Albert Einstein's theory of relativity. The theory stated that the velocity of light should apparently be slower in the gravitational field of the sun; this theory should also be true for radio signals.

More recent theories, namely by Drs. Charles Brans and Robert H. Dicke, put Einstein's predictions in error by between 7 and 10%. The delay of radio signals to

the Mariner space craft were accurately measured once the Martian mission had been accomplished. The delay was $204\,\mu$ against a $200\,\mu$ prediction using Einstein's calculations. If the more recent theories were correct the delay would have been about $186\,\mu$

Airborne systems monitor

The DC-10, a three-engined jet airliner due to come into service next year, will have some new instrumentation on board which has been developed by the aerospace division of Honeywell. Called the performance and failure assessment monitor (Pafam) the new equipment provides the pilot and first officer with a prediction of touch-down point on two-colour c.r.t. displays when the aircraft is under the control of the all-weather automatic landing system.

Using data from a number of the aircraft's systems Pafam calculates the expected touchdown point as much as 150 seconds ahead and displays it as a cross on a drawing of the runway on the c.r.ts. If the predicted performance of the auto-land system, and this means all the equipment which feeds the auto-land system as well, is not satisfactory a 'take over' command replaces the landing symbols and the pilot has the choice of landing manually or over-shooting.

These passive electronic tags can be attached to animals so that they can be accurately identified later. The tags are 'read' by a hand-held instrument which has a digital readout as described below.

Giving farm animals and baggage electronic identities

In the farming world it is generally accepted that if an animal can be individually identified throughout its life farmers can increase their efficiency by up to 20%. Branding, number tags, etc, have been tried but without a great deal of success for one reason or another. Apparently the problems are particularly acute with pigs.

A partner in an electronics firm, Cotron Electronic Ltd at Coventry, decided to search for an electronic solution to the problem. His efforts have resulted in a laboratory prototype of an instrument which is called an electronic tag identifier.

A passive electronic circuit, or tag, which consumes no power, is implanted in the ear or under the skin of an animal. An associated instrument indicates the number of the animal when brought into proximity with the tag. So pigs, and like creatures are about to be digitized like almost everything else in this world nowadays.

Cotron Electronics have succeeded in obtaining a National Research Development Corporation grant so that they can further develop the idea and put it into production. They foresee many other uses for their system in security. baggage control, on production lines, etc. The main advantage lies in the passive nature and very small size of the tags.

Readers of Wireless World may see other industrial uses for the device and if so Cotron Electronics (Red Lane, Kenilworth, Warwickshire, CV8 IPD) would like to hear about them.

Ship-to-shore via satellite communications experiment

A series of tests carried out by the Post Office to assess the use of satellites in ship-to-shore communications has been successful. Signals have been passed from the Post Office radio station at Burnham-on-Sea, Somerset, through an application technology satellite (ATS-3), made available by N.A.S.A., to the Cunard-Brocklebank container ship Atlantic Causeway. Only simple aerials were employed on the v.h.f. link and the

use of Lincompex and Compandor speech processing techniques were tried out successfully. Speech, teleprinter, facsimile, data and selective call transmissions worked well over the link.

The major advantage to be gained in using a satellite for this purpose is that the link is only marginally affected by changing ionospheric conditions which can create havoc with conventional transmission systems.

The mutli-element crossed Yagi designed by Marconi for the shipto-shore link. It has the fairly wide beamwidth of 30° to allow for rolling of the ship. The frequencies used were 135.6 and 149.22 MHz, the shore station power was 250 W.

Electronic gearbox

A gearbox which has no direct transmission of mechanical power from input shaft to output shaft, but instead a rack of electronics and a motor, is a typical example of the work of the Cranfield Unit for Precision Engineering. It was demonstrated, among other exhibits, at the official opening of C.U.P.E. by Lord Stokes in December. The gearbox typifies the Unit's work because it illustrates the use of advanced electronic techniques to do things which traditionally have been the function of mechanical engineering. In

Publication date

We regret that, as a result of a recent printing dispute, this issue is a fortnight late appearing and the February issue will be published on January 25th instead of the 18th.

this case the object was to develop a gearbox which was extremely accurate (e.g. no transmission errors due to gear-wheel machining) for a machine-tool drive application.

The basic principle of the electronic gearbox (which is the subject of a patent application) is to convert input shaft rotation into a sequence of pulses by means of an optical digitizer, pass these into a digital divider set to give the required gearbox ratio, and use the output to operate a phase control servo which includes an electric motor driving the output shaft. For servo operation the output shaft also carries an optical digitizer, and the gearbox incorporates an ingenious logic system which receives the pulses from the two digitizers and automatically corrects errors resulting from eccentricity in the mounting of the digitizer discs. Transmission errors are claimed to be reduced by a factor of 5 to

C.U.P.E. is one of several industrial R & D units set up by the former Ministry of Technology at universities, and is on the campus of the Cranfield Institute of Technology, Bedfordshire. It is intended to bridge the gap between academic and industrial work in precision mechanical engineering, and at present has a bias towards machine tools and inspection machines. It does three main types of work-consultancy, investigatory development programmes, design and development of prototype machines-and makes charges to enable it to be financially self-supporting. So far it has finished 24 projects and has 29 in progress. On a personal note, the principal research engineer, and a member of the management, is Jack Dinsdale, designer of the well-known 'Dinsdale' audio amplifier. He is well equipped for the job, for, besides being an electronics man of considerable experience, he is a graduate mechanical and electrical engineer.

Shoenberg memorial lecture

The Royal Television Society has announced a new annual lecture, the 'Shoenberg Memorial Lecture', to be sponsored by EMI. Each year, an internationally recognized authority will be invited to speak on a 'significant aspect of the television industry'. The subject covered by the annual lecture will reflect the growing involvement of television in almost every facet of modern life and the rapid and complex developments taking place throughout the world in methods, equipment, techniques and scope of application.

The decision to commemorate Sir Isaac Shoenberg in an annual memorial lecture is a practical tribute to a man whose work led to the development of the electronic television system used in the world's first high-definition public service in the U.K. in 1936. He was knighted in 1962 for his services in the development of both television and sound recording. The first

lecture will be given in London on February 4th 1971 by Professor J. D. McGee and will be called 'The life and work of Sir Isaac Shoenberg'.

High-speed data link

The first of a new generation of Post Office leased data links is operating between an I.C.L. 4/50 computer at Bootle and a similar computer at Pudsey for the Midland Bank. The wideband system operates at a fixed speed of 48k-bits per second in both directions simultaneously and also provides two-way speech between the two terminals. Data are transmitted serially and at the 48k-bit rate the whole of the Bible could be transmitted in just sixteen seconds. Post Office leased data links are increasing rapidly; there are now about 12,000 data terminals operating at a slower rate in the U.K.

Exporting electrical goods

Most European countries have certain minimum standards regarding the quality of electrical goods that can be sold in that country. In some countries these standards are enforceable by law or, in others, they are applied voluntarily. The International Commission on Rules for the Approval of Electrical Equipment (CEE) have, until recently, insisted that approval tests should be carried out in two countries. A revised version of publication-21 sets out new rules, called procedure-2, which states that a test report from one testing station is now sufficient.

We have two such test stations, or certification bodies, in this country. One is the British Electrical Approvals Board's Appliance Testing Laboratory at Leatherhead and the other is the British Standards Institution's Hemel Hempstead Test Centre. B.S.I. is the U.K. agent of the CEE.

The whole object of the new procedure is to speed up the granting of approval certificates, to make exporting easier and to help remove the trade barriers existing between European countries.

Television relay up-converter

Subscribers to television v.h.f. relay systems face a problem when they come to purchase a new receiver because most of the new receivers being produced are single-standard u.h.f.-only types.

Realizing this problem Teleng are producing a v.h.f. to u.h.f. converter which

will allow single-standard u.h.f. receivers to operate from v.h.f. relay systems. The converter, which is contained in a plastic box 122 × 85 × 56mm (4.75 × 3.375 × 2.25 inches), consists of a wideband amplifier and mixer (with an overall gain of 4dB) which is connected between the relay aerial socket and the receiver's aerial input. The unit is mains powered and contains traps to eliminate 405-line signals. The converter will be available in a few weeks and will cost £8 10s. The type number is DN6328.

Microelectronics liaison unit

A new wing has been added to the Electrical Engineering Department of the University of Edinburgh greatly increasing the facilities the University has for research into various aspects of microelectronics. The new wing was made possible by a grant of £130,700 awarded to the University by the Wolfson Foundation under its technical award scheme. The existing microelectronics laboratories and the new wing is now called the Wolfson Microelectronics Liaison Unit and will foster the already strong collaboration between the growing number of science based industries in Scotland and the University.

The unit is aimed to help companies that lack adequate diagnostic services or whose research and development departments are overloaded with work and also assist them to tackle 'fringe areas' of microelectronics or likely speculative developments. Work is currently in progress on the following projects: amorphous semiconductors, silicon epitaxy, gallium arsenide epitaxy, growth of epitaxial films of cadmium sulphide, surface studies, integrated computer memories, microwave and h.f. devices, thin film thermistors, m.o.s. structures, electron beam technology, X-ray topography, lasers and holography, biomedical telemetry, m.o.s. circuit analysis and special purpose digital computing elements.

Come on now—speak English!

It is odd that since the electronics industry was founded on providing communications that one of its greatest problems is communications within itself. How easy it is when speaking of, or writing about, electronic devices to rely on jargon. The same old phrases are used over and over again, often five long words are used when two short ones would be better.

In a long-overdue recognition of this problem the Council of Engineering Institutions is including two new compulsory papers in its examination. These are 'The presentation of engineering information' and 'The engineer in society'.

^{*} CEE Publication 21, obtainable from B.S.I.

Voltmeter using F.E.Ts Measures Capacitor Insulation Resistance

Voltage follower circuit gives teraohm input impedance and low offset voltage

by Lloyd E. MacHattie.* BSc., Ph.D.

A good review of voltage following methods appeared about two years ago in the pages of this journal. As indicated, the ideal voltage follower is characterized by an infinite input impedance, zero output impedance and zero offset.

The field-effect transistor is the natural choice for the input device because of its inherently high input impedance. This can be raised further by feedback. Output impedance is made low by negative feedback, which may be further enhanced by positive feedback within the negative feedback loop^{1,2}. Low offset voltage (output minus input voltage) is best ensured by using a balanced long-tailed pair to compare the input and output voltages^{1,3}. Finally, a number of advantages will be realized by operation at constant tail current.

Basic circuit

These considerations lead to the type of circuit shown in Fig. 1. Transistor Tr_3 acts

Fig. 1. Basic voltage follower circuit. Field-effect-transistor differential amplifier gives high input impedance with low offset voltage. Low output impedance is achieved by both negative feedback from Tr_4 collector and positive feedback from Tr_5 collector.

as a constant-current tail for the differential pair of f.e.ts Tr_1 and Tr_2 which drive a second long-tailed pair (bipolar transistors) complementary to the first. One second

*Defence Research Establishment, Toronto, Ontario

stage collector supplies the in-phase output which is fed back to Tr_2 gate while the other makes possible a simple positive-feedback connection R_9 around the second stage.

Matching

Transistors Tr_1 and Tr_2 should be matched, since freedom from temperature and supply voltage effects depends directly on similarity of characteristics. A method will be described which provides compensation for a certain latitude in characteristics, hence only selection for rough matching is necessary. The results given below were obtained from two low-cost plastic n-channel f.e.ts (2N3819) which required 0.68 and 0.81V source-to-gate bias to give the desired operating drain current of 230 µA at about 5V. Examination of a number of these on a curve tracer revealed that mutual conductance at a given drain current tends to be fairly uniform from sample to sample although the required bias may vary rather widely. It would therefore appear that a pair could be effectively matched if a constant voltage device could be placed in the source lead of the higher-bias unit to make up the difference.

Fig. 2 shows a circuit which uses diodes to approximate constant voltage devices and is designed to accommodate bias differences of up to half a volt. Transistors Tr_{γ} and Tr_{8} act as diodes in the source leads of the f.e.ts, the drop across one (Tr_{8}) being fixed while the drop across the other (Tr_{γ}) is adjustable. R_{13} carries a constant current and provides the desired bias voltage between the bases of Tr_{γ} and Tr_{8} . The fact that many silicon transistors can be operated down to $V_{CE} = 0.1$ to 0.2 V before reaching saturation allows Tr_{γ} to exhibit a diode characteristic (V_{CE} vs I_{c}) which may be displaced by as much as 0.5 V, with little change of shape, by changing the V_{BC} bias voltage.

If the two f.e.ts have been selected to have a bias difference less than 0.5V, they can now be adjusted to have equal currents (and nearly equal mutual conductances) with their gates grounded. But there is a further source of unbalance which arises if the source-to-drain voltage is changed and the two f.e.ts differ in slope resistance. This effect can be cancelled by shunting the unit having the higher resistance with an appropriate resistor from source to drain (R_{12}) .

Fig. 2. Circuit compensates for bias differences by using diodes $(Tr_{\gamma} \& Tr_{s})$ to approximate constant voltage devices.

To minimize the effects of any temperature gradients, Tr_1 and Tr_2 are mounted side by side and a coil of copper wire wrapped about the pair. Tr_7 and Tr_8 are treated similarly for the same reason.

Transistor voltmeter

The most direct method of using the follower as a voltmeter is to insert the follower between the source of voltage and the meter. This impresses the input voltage across the meter; consequently the lowest or most sensitive range cannot be less than the meter voltage drop at full scale.

Alternatively if the follower is used to determine the current through the meter, the most sensitive range may be reduced below the meter voltage drop, the new limit being the point at which the follower offset error becomes unacceptably large in relation to full scale. At the same time, any error due to variation of meter resistance with temperature is eliminated. A further advantage accrues in the case of alternating voltage measurements. The follower is made to control an alternating current which is then passed through the meter in rectified form. The circuit is shown in Fig. 3.

Switching requirements are simplified by leaving the bridge rectifier in circuit for direct voltage measurements. As a result polarity selection is automatic. A momentary push-button switch is provided for interrogation if polarity is not already known. When this switch is closed the needle deflects up the scale for positive input and down the scale for negative input. With such an arrangement a direct voltage measurement is not affected by a superposed alternating voltage unless the peak alternating value exceeds the direct value. When this cannot be prevented by the usual low-pass filter in the input circuit, extra meter switching may be warranted.

The circuit shown omits the input range divider, function switch, etc., since there is no need to deviate from standard practice in this section. The follower is designed to accommodate input ranges of 0 to ± 0.5V for voltage measurement and 0 to + 1.5 V for resistance measurement (which allows use of a dry cell). A 22-V battery supplies the follower circuit through a simple emitter-follower regulator with a zener reference. Additional zener stabilization is provided for the constant-current transistor Tr_3 . The low total current drain of 1.8mA is made possible by the use of transistor emitter-base junctions for the zener diodes4. These retain good regulation down to about 5 µA. Incidentally, when a transistor is used as a zener, the collector should be left open circuit and not connected to the base, as there are some types for which the e-c characteristic may be lower than the e-b characteristic or the two may cross.

In several cases a specific transistor type has been used, not because it was uniquely suited to the application but because it was adequate and conveniently available. An exception is the 2N3563, found to have lower zener voltages than any

Fig. 4. Plot of offset voltage vs meter current for five scales ($\pm 15 \text{mV}$, $\pm 0.5 \text{V}$ and $\pm 1.5 \text{V}$) by changing R_s shows total variation in offset is within 0.1 mV on $\pm 15 \text{mV}$ scales. This shows feasibility of a + 5 mV scale at $\pm 1\%$ error.

of the other types examined and is preferred for the constant-current reference. Depending on the particular zener voltage used, Tr_3 emitter resistor may require adjustment to obtain satisfactory operating conditions. With input shorted and the meter on zero, Tr_5 collector should lie between, say, -0.5 and +0.5V.

Resistor R_s determines the sensitivity of the follower and meter combination. Its value for direct voltage scales is given by $R_s = \frac{\text{full scale voltage at follower input}}{\text{total scale voltage at follower input}}$

full scale meter current while for sinusoidal alternating voltages an additional factor of $(2\sqrt{2})/\pi$ must be applied in order to increase the reading from the average rectified value (to which the meter responds) to the desired root mean square value.

At zero input to the follower, the positive feedback resistor carries about $10\mu A$. Resistor R_{15} is intended to carry an equal current and thus maintain symmetry between Tr_1 and Tr_2 . Omission of R_{15} would not be serious as its benefit is only marginal. The small capacitor across the rectifier

Fig. 3. Circuit of follower voltmeter. Input range divider and function switch omitted. Leaving bridge rectifier in circuit for direct voltage measurement simplifies switching. Rs determines sensitivity. Values in parentheses depend on semiconductor devices used.

bridge supplies high-frequency negative feedback. Without it, operation becomes noisy in a narrow region near zero where the germanium diodes are non-conducting, with the result that the meter cannot be set to zero.

The zener voltage of D_1 will vary a certain amount because its current must change by twice the full scale meter current. Fortunately, it is a simple matter to prevent this from appreciably affecting the current in Tr_3 by introducing feedback from Tr_5 collector to Tr_3 base via R_{16} . The positive feedback is adjusted by means of R_9 so that the offset voltage variation over the operating range of the follower is at a minimum.

Voltmeter performance

Fig. 4 shows results obtained with a $200-\mu A$ 1200-ohm meter and with the same positive feedback setting for five scales: $\pm 15 \text{mV}$, $\pm 0.5 \text{V}$ and + 1.5 V. Offset values were measured directly with a digital voltmeter reading to 0.01 mV. (The inputs to the follower, for all but the + 1.5 V (ohms) range, were 10/11 of the values given because a $\times 10^6$ probe was used with a $\times 10^7$ range divider.) Total variation of offset is within a 0.1 mV range for the $\pm 15 \text{mV}$ scales. It therefore appears feasible, if we accept a $\pm 1\%$ error due to offset, to have $\pm 5 \text{mV}$ scales, whereas the meter drop at full scale is 0.24 V.

When measuring alternating voltage, this follower circuit and meter exhibit a flat response from 10Hz, the lowest frequency which the meter will average satisfactorily, to over 100kHz. Response is down 3dB at 320kHz. A consequence of the rectified average response is that alternating voltage readings are relatively insensitive to the zero setting.

Output impedance

Fig. 5 demonstrates the output characteristics of the follower. To obtain these data R_s was disconnected and Tr₄ collector connected to Tr_2 gate, shorting out the rectifier bridge and meter. Offset voltage is shown as a function of external current fed into or drawn from Tr_A collector. The three curves are for three values of input voltage to Tr_1 gate. Slope of the central portion is slightly negative in this case (-0.75 ohm) but can be made zero or positive by adjusting the positive feedback (R_9) . Again in the central portion, the ± 0.45 -V curves may be moved vertically to make either one coincide with the zero curve or with the other by adjusting the shunt across Tr_1 or Tr_2 , but curvature prevents coincidence of all three. The optimum adjustment is when the ± 0.45 -V curves coincide. The breadth of the central region can be increased or decreased by using more or less current in Tr₄ and Tr₅ by changing R_6 , R_7 and R_8 .

Input impedance

Method adopted for measuring the input current was as follows. With the follower connected as a voltmeter (without any input divider), a polystyrene capacitor C was placed across the input. After the voltmeter

Fig. 5. Follower output characteristics for three values of input voltage. Slope of central part is altered by adjusting R_9 . Curves for $\pm 0.45V$ are moved vertically by adjusting Tr_1 shunt and breadth altered by changing R_6 , R_7 & R_8 .

was set to the desired value by momentary connection to a variable voltage source, the rate of drift of the reading $\triangle V/\triangle t$ was observed. If, as was found to be the case. the capacitor leakage and dielectric absorption are negligible, the capacitor must be receiving a current $C \triangle V/\triangle t$, when the input is floating. When the voltmeter is connected to an external voltage source, this same current becomes the input current, with the sign convention that the current be positive when it flows out of the voltmeter. The observed value, 2×10^{-12} A, decreased linearly as the input voltage was raised which meant that the voltmeter input appeared (over the -0.5 to +0.5V range) as + 10 volts behind 5×10^{12} ohms.

Feedback

As the input impedance could obviously be raised still further by feeding back a current which would largely cancel the input current, an attempt was made to find out how much improvement could actually be realized in this way and how reproducible the results were. Feedback current was obtained by impressing a drop of several volts across the reverse-biased junction of a f.e.t. similar to Tr_1 . This voltage, which must vary as the input current varies, may be represented by $a + be_{in}$ where e_{in} is the input voltage to Tr_1 gate while a and b are constants which are adjusted to cancel the input current at two points, one near zero and the other near full scale. Values arrived at were a = -3.8V and b = 2.6V.

The circuit used is Fig. 6. Values of a

Fig. 6. Feedback circuit for raising input impedance. With this circuit voltmeter reading changed by only 1% of full scale in 30 min with a 0.01µF input capacitor (self time constant 400 days).

and b are adjusted by R_{18} (which varies both) and R_{19} (which varies chiefly a). Settings could be made such that the voltmeter reading would change by as little as 1% of full scale in 30 minutes with a $0.01\mu F$ input capacitor, but results were not reproducible. Measures were therefore taken to reduce or eliminate the influence of ambient temperature and humidity.

For subsequent measurements the voltmeter was put in an enclosure, operating several degrees above ambient, which maintained its temperature within $\pm 0.1^{\circ}$ C.

Guard ring

The chief effect of changes in humidity would likely be to change leakage currents flowing across the surfaces of insulators supporting the components of the input circuit. Such currents can be eliminated by the guard ring technique, which is particularly effective when the gain of the follower, as in this case, is accurately unity. Bands of conductive silver paint connected to Tr_2 gate were placed around the input turret lugs on both sides of the circuit board and around Tr_1 gate lead on the plastic transistor case, as well as around the middle of the input capacitor and the drain and source leads of Tr_0 . The input lead was a stiff wire supported only by the circuit board and extending almost to the centre of a hole in the metal instrument case. Shielding afforded by the instrument case was necessary, otherwise readings could be affected, for example, by shuffling one's feet.

Input impedance stability

With the above precautions and after near optimum adjustment of R_{18} and R_{19} , a series of measurements of input current was made, extending over a period of two weeks, to test for reproducibility. Drift runs are shown in Fig. 7. To speed up the measurements these were made with a 1250pF input capacitor. A more or less random component persists and description of the input characteristics in terms of a resistance and a voltage value would not be particularly apt. Input current remains within the limits $\pm 10^{-14} \rm A$ over the range 0 to $+ 0.45 \rm V$, and that compensation has reduced the input current by a factor of 200.

In lieu of temperature control, temperature compensation could be applied without much difficulty to the circuit of Fig. 6 to bring the temperature coefficient of the input current within $\pm 10^{-15}$ A/°C. Diodes introduced in series with R_{18} would make the temperature coefficient more positive while diodes in series with the upper end of R_{19} would make it more negative.

Application

With such a high impedance voltmeter it is possible to measure the insulation resistance of the best capacitors, some of which are nowadays very good indeed, the 0.01- μ F polystyrene capacitor mentioned above, a component available in Toronto for 20 cents (1s 6d), proved to have a self time constant of 400 days. It was initially charged to +0.45V and its voltage measured

Fig. 7. Measurements of follower input current over two-week periods show input current is within $\pm 10^{-14}A$ and that compensation reduces input current by 200.

daily, using the voltmeter with the 1250-pF input capacitor. The capacitor being measured was handled only by its ground lead and for a measurement its hot lead was touched momentarily to the voltmeter input after the latter had been preset at the expected reading. In this way a voltage reading could be made without appreciably changing the charge on the capacitor. During eight days when the relative humidity ranged between 45 and 60%, the capacitor voltage decreased by not quite 2%. Corresponding value for the insulation resistance is 3.5×10^{15} ohms.

REFERENCES

- 1. Williams, P. "Voltage following". Wireless World, Sept. 1968, p.295.
- Miller, J. M. "Combining positive and negative feedback". *Electronics*, March 1950, p. 106.
 Towers, T. D. "Balanced transistor d.c. amplifiers". *Wireless World*, August 1968, p.269.
- 4. Williams, P. "Ring-of-two reference". Wireless World, July 1967, p.318.

Eventful History

A History of the Marconi Company, by W. J. Baker. The history of a company can make dull reading for all but those who have been associated with its development, but this cannot be said of the history of the Marconi company for inextricably woven into it is the fascinating story of the development of wireless and its off-spring electronics. The book opens with a brief résumé of scientific discoveries setting the scene for the founding of the Wireless Telegraph & Signal Company (as Marconi's was first known) in 1897. The author, who has been with the company since 1952 and is now technical editor (research), stresses that the book is not a product of company sponsorship nor was commercial censorship exercised and it therefore records the setbacks as well as the successes. A selection of the chapter headings will give some idea of the variety of subjects covered in this very readable, lively review of the ups and downs in technical as well as commercial enterprise: Tuning: a great step forward; The invention of the diode; The directional antenna; 'The Marconi scandal'; The start of sound broadcasting in Britain; Short-wave beam system; Wireless and aviation; Evolution of radar; and, after two chapters covering World War II, the concluding six or more chapters deal with the developments in radar, aviation, sound and television broadcasting and communications in the period 1945-65. Pp. 414; 23 illustrations plus diagrams. Price £5. Methuen & Co. Ltd, 11 New Fetter Lane, London E.C.4.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

A desoldering tip

I was recently reading "TV Engineers' Pocket Book", by Hawker & Reddihough, when I noticed that no less than six pages are devoted to "servicing TV boards". Much of this is concerned with the awkward problem of removing components, particularly valve bases and i.f. transformers, that are mounted on a number of pins, each of which is individually soldered to the copper-foil circuit. To soften the solder on all of these joints simultaneously, without doing considerable damage, is difficult almost to the point of impossibility; even if one goes to the trouble of making such a curious modification to the soldering iron as is illustrated in Fig. 7 p. 224 of the above book. The other methods described, such as sucking or blowing the solder away pneumatically, or brushing it off with an old toothbrush, are, in my opinion, clumsy and not to be recommended either. They tend to scatter pellets of hot solder around.

There is, however, a method, in which capillary action and gravity are simultaneously enlisted, that I have found to be singularly effective. It has not been, to my knowledge, described anywhere, and I am sure it would be of value to many a gently perspiring technician. The illustration is self-explanatory.

The wire "brush" used should be of reasonably new and clean multi-strand flex, such as $23 \times$ No. 36 s.w.g. A 1 to $1\frac{1}{2}$ in. end should be stripped, gently twisted, and liberally treated with flux. The tip of the iron should be clean with, obviously, a minimum of solder on its surface. More than one application, using a fresh brush each time, may be needed if there is much

solder on the joint and in the neck of the hole. But the result will be to leave the pin standing clear in the hole, and the surrounding foil with no more than a thin film of solder on it.

Finally, may I make a plea to manufacturers of p.cs to use translucent boards? By placing a small light behind the printed side the circuit can easily be traced from the component side.

G. W. SUTTON, Cranleigh, Surrey.

E.M.F. and the volt

I do not feel that James Franklin's article "Electronic Building Bricks, 5, The Electronic Circuit" in the October issue can be allowed to pass without comment.

He states, while talking about sources of e.m.f. that: "A strong electro-motive force will move more electrons in a given time than a weak electro-motive force.

"The unit by which this force is measured is the volt. Thus in a given circuit 2 volts will move twice as many electrons in a given time (cause twice the current to flow) as I volt".

To say this as a general statement is very misleading. It is true only if the source of e.m.f. is connected to a component obeying Ohm's Law, and let us face it these are few and far between in the world of electronics.

The definition of the volt is:

I volt = 1 joule/coulomb

It is, therefore, a measure of the energy given to each one of the electrons as they pass through the source of e.m.f. A circuit may quite easily be devised where the application of two volts instead of one will have no effect on the current flowing. The only change being that each electron will have acquired twice as much energy.

ALAN E. SMITH, Watford, Herts.

The author replies:

Mr. Smith's qualification is, of course, essential for anyone studying the fundamentals of electricity. "Electronic Building Bricks", however, is not intended for this type of reader (see May 1970 issue, p. 225) and my explanation of e.m.f. and the volt

was quite deliberately "impressionistic" and linked to the layman's everyday experience of voltage.

I am surprised at Mr. Smith's statement that components obeying Ohm's Law are "few and far between in the world of electronics". From a rough count I would say there are two or three hundred of them shown in every issue of your journal.

JAMES FRANKLIN

Attenuators

I was interested to see Mr. Cocking's article on attenuators in the December issue.

Your readers, particularly television amateurs, may find it useful to know a few 75-ohm T and π attenuators made up from preferred value resistors.

The characteristic impedance of networks 1 and 2 is 75 ohms exactly. The characteristic impedances of the other three networks shown are not quite 75 ohms, but this may not be unduly disastrous for many applications. For the best match, of course,

one should select the resistors using a bridge, and not merely pick $\pm 20\%$ components at random from the spares box.

Constructional information may be found in "Attenuators for High Frequencies" by R. F. Privett in Wireless World, March 1954, page 141.

DONALD S. REID, Brentwood,

Essex.

"Direct Radiator Loudspeakers"

I have received a letter from Mr. R. C. Driscoll, of the Northern Polytechnic, questioning the use of the unrationalized electromagnetic system of units in my article "The Design & Use of Moving-coil Loudspeaker Units" in the November issue. He also states that all figures quoted in my expressions of power ratio on the dB scale "are a factor of two higher than would be obtained from the accepted

definition of this scale". I must thank him and stand corrected on both counts.

In the section of the article "Effect of mechanical impedance on radiated power", the expressions relating P_{MA} and f are correct, but the rates quoted in dB/octave should refer to 'pressure response' not P_{MA} , i.e. the vertical axes in Figs 5a, b and c should be 'pressure response' not P_{MA} . My apologies for this oversight.

E. J. JORDAN, Marlow,

Bucks.

Loudspeakers in corners

H. D. Harwood (Wireless World, April 1970) takes exception to my stated opinion that loudspeakers work better in a corner (February 1970 issue).

Submitted herewith is a pair of response curves, both of the same loudspeaker (not one of ours), one curve showing the response of the loudspeaker located against the wall (dihedral corner between wall and floor) and the other in a trihedral corner. This pair of curves is typical of the many we have run on loudspeakers ranging from a fraction of a cubic foot to several cubic feet, single driver, 2-way, 3-way, direct radiators and horns.

I'll concede one point to Mr. Harwood: corner placement may be excessively 'beneficial' if the loudspeaker has been heavily 'equalized', with the result that removal of some of the excess 'equalization' may be needed to restore a flat response. This of course is really beneficial, as the decreased overdrive results in smaller diaphragm excursions and consequently smaller total modulation distortion for a given sound pressure level output.

Back to the response curves. Lay a straight edge on the peaks between 40 and 400 in curve (a) and note that the line rises about 5dB; lay the straight edge along the peaks from 400 to 8,000 and note that the line recedes about 9dB. This 'gable roof' response results in a slightly 'honky' sound.

Now look at curve (b) for the same loudspeaker in the corner. First, the whole s.p.l. is up about 5 to 6dB, meaning that we can cut the input level and distortion to get the original (non-corner) s.p.l. Next

do the straight-edge act again and note that the 'gable roof' effect is 2dB and 5dB compared to 5dB and 9dB for the noncorner placement. The sound was noticeably less 'honky'.

The idea of corner placement was first called to my attention about 1933 when I was a graduate student in E. E. at Stanford University. I wish I could recall just who conveyed that idea; it may have been Madison R. Jones who was writing his thesis on loudspeakers. The explanation for the superiority of corner placement lies in the existence of a family of mirror images, each reinforcing the pressure from the original (actual loudspeaker) source.

A point to be considered important is the proximity of these mirror images. To be coherent, the images must be close together. That means the loudspeaker must be nested back into the corner with intimate wall contact. This explains why one speaker was drastically improved in performance—its instructions were to place it several feet (3 or 4) from one wall, slightly more or less from the other wall, 2 or 3 feet above the floor. A curve run in the prescribed location and another run with the speaker in a corner showed an improvement over the entire spectrum, and such a large increase in the bottom 2 octaves as to require re-equalization. Since this speaker exhibited over 10% total modulation distortion when placed as specified, corner placement reduced distortion for a given sound pressure level. In this case the 'recommended' location necessitated excessive bass compensation which could be reduced drastically.

The argument for the 'unusual' placement was creation of a 'reverberant field' but it has been shown that such a reverberant field is impossible to avoid in a listening room with normal listening quality. So corner placement has everything to gain and nothing to lose.

PAUL W. KLIPSCH,

Hope, Arkansas.

The author replies:

P. W. Klipsch queries my contention that conventional loudspeakers sound worse in a corner than in the centre of a wall and shows curves which he claims prove his point. First, let us get the fact clear.

We started our investigation into this problem because sound mixers complained that the sound from loudspeakers hung in corners sounded coloured. This effect was noticed in all rooms although some control rooms were worse than others. Furthermore, these complaints were by staff who were able to compare directly the real sound in the studio with that from the loudspeaker. An additional fact was that the mixers were quite content with the sound from the same loudspeakers when they were placed in a conventional though, in this case, inconvenient position. It was also noted that the better the loudspeaker, i.e. the freer it was of colouration itself, the more noticeable the effect was. The fact that colouration exists for corner mounting is therefore clear and not open to doubt. As the loudspeaker was absolved from being the cause and the facts pointed strongly to the location we did our best to measure the effect of this. We therefore employed warble tone and a cardioid type microphone, both factors designed to largely remove the effects of room modes in themselves. This was desirable not only because the unwanted colouration was present in rooms of varying shapes and sizes but also because it is a fact that we listen mainly to the sound coming from in front and relegate reverberation to a secondary place. If this were not so a person's voice would sound very different in different rooms and we know well that this is not so.

The curves we obtained thus agreed well with simple theory, see Fig. 4 in the article. Furthermore they accounted well for the colouration actually heard and finally, the measures which were designed to alleviate the trouble were found to be successful.

At no time did the article attempt to defy the laws of physics. It is clear that placing a loudspeaker in a corner will give rise to a bass lift; what we were after was quality not just quantity. Quantity can be achieved in a number of ways, quality is much more difficult to obtain. It is of course quite possible that if lower middle colouration is already present in the loudspeaker this additional colouration may pass unnoticed.

I have no doubt that by throwing away the measures we had taken to remove the effects of room modes on the curves, i.e. if we used pure tones and/or an omnidirectional microphone, we too could have produced curves such as those shown by Mr. Klipsch where the room modes effectively disguise the general trends. Even so I would not have thought negligible the crevasse shown in this curve (b) centred around 100Hz and 15dB deep, nor would I regard a single sharp peak at 60Hz as constituting a real bass response!

Since my article was published, the existence of colouration for a corner source has been clearly demonstrated in a neat way, due, I think, to Mr. J. Shuttleworth. A person talks, standing with his back at least 1 metre from the corner of a room, to give a standard of reference. He then moves into the corner so that the back of his head touches the two walls and

Response curves for a loudspeaker placed against a wall (a) and in a corner (b).

talks again. There is a rise in bass response but more important it is obvious even to the densest clothear that the sound is highly coloured. I therefore repeat my earlier statement that under these circumstances the presence of colouration is not open to doubt.

To sum up I have never questioned Mr. Klipsch's contention, well supported by theory, that corner placement gives more bass, but I have shown, clearly I hope, that such a position gives rise to a coloured quality and this too is supported by theory and easily observed by listening on good loudspeakers and to original sources.

H. D. HARWOOD, B.B.C. Research Dept., Surrey.

'Linear Scale Millivoltmeter'

If a car salesman, anxious to persuade you to change your Rover for a Jaguar, adduced that a Jaguar is better than a Cortina, he would be unlikely to make a sale. Yet this is the kind of argument put forward by A. J. Ewins (Dec., 1970 p.592). He invites us to add two transistors to D. E. O'N. Waddington's already excellent circuit for a feedback millivoltmeter because the end result gives a better performance than a non-feedback circuit.

So what? What is called for are measurements comparing the original Waddington circuit with the revised one. Not only are these absent, but the experienced eye notices two very significant differences between the circuit (Fig. 5) which Mr. Ewins used to convince himself that he was on to a good thing and the actual circuit (Fig. 2) in which the improvement is allegedly incorporated.

In the test circuit, the emitter resistor (9.1k) of the output transistor (Tr_1) is unbypassed. In the final circuit (Fig. 2) it is bypassed. The result is that the transistor in question presents a much lower output impedance in the final circuit than in the test circuit.

Secondly, there is a most important invisible component in Fig. 5. This is the impedance of the signal-source. It is important because it governs the amount of internal voltage feedback in Tr_1 . This feedback is negligible in most ordinary amplifier stages, but it is by no means negligible here. If the load on Tr_1 is indeed 'constant-current', i.e. infinite then the voltage gain of Tr_1 is equal to the voltage amplification factor, which is usually 1000 or more. In this case, a signal-source impedance of a few hundred ohms can make a significant reduction in the output impedance.

In the final circuit, the signal-source impedance seen by the base of Tr_5 (= Tr_1 in the test circuits) depends mainly on R_{17} (100k) and the current gain (h_{fe}) of Tr_4 , being roughly R_{17}/h_{fe} . This is 1k for a low-limit 2N3707 (Tr_4) , and is by no means negligible.

The idea of using an artificially high output impedance in voltmeters is not new. A logical development of Mr. Ewins'

arrangement is to drive the upper transistor (Tr_{γ}) in phase with Tr_{5} . This forms a high-impedance complementary pushpull output stage. Such a circuit has been described in *Wireless World* by G. Wareham ('Inexpensive Tape Recording Amplifier', March, 1966) and in a more elegant form by F. Butler ('Gyrators—Using Direct-Coupled Transistor Circuits', February, 1967).

In any case, the effect of the negative feedback in voltmeter circuits like Mr. Waddington's is also to increase the impedance seen by the meter. If the open-loop gain is high enough, effective meter-circuit impedances of several megohms can be obtained.

G. W. SHORT, Croydon, Surrey.

The author replies:

It would appear that the essence of Mr. Short's criticisms are that I am guilty of comparing the constant current loaded output transistor circuit with the conventional resistor loaded one under conditions which are not identical with the final circuit arrangement. I accept these criticisms, particularly with respect to the fact that the emitter resistor in the test circuit is un-decoupled; increasing, Mr. Short says, greatly the output impedance of the transistor. I must confess that I had not appreciated this point, if, in fact, it really is so. I do not, however, accept the implied criticism that the constant current loaded output transistor does not operate as well in the final circuit arrangement as in the test circuit. I am sure that no one will argue that the output impedance of the output transistor in my final circuit arrangement is not very much greater than the output impedance of the equivalent stage in Waddington's circuit.

The two test circuits were intended to illustrate the effect of a high-output impedance upon the linearity of the meter's scale and to give some idea of what might be expected from using a constant current source as the load instead of a resistor.

The constant current loaded test circuit may be biased in favour of better results than would be obtained by the equivalent stage in the final circuit design; the resistor loaded test circuit certainly is. The value of the collector resistor in the test circuit is ten times higher than the value in Waddington's equivalent stage, with the result that the output impedance of the stage in the test circuit is very much higher than in Waddington's final arrangement, improving the linearity of the meter's scale.

In the final circuit arrangement of my millivoltmeter design, the decoupled emitter resistor may reduce the effective output impedance of the final stage, but this is adequately compensated for by the fact that the voltage gain of the stage is greatly increased for the same reason. Mr. Short rightly points out that the effect of negative feedback in voltmeter designs of this sort is to increase the output impedance as seen by the meter stage. The output impedance as seen by the meter is roughly the product of the open loop output imped-

ance of the final stage and the amount of negative feedback applied. Thus, in my final circuit arrangement, what is lost in terms of output impedance of the final stage by decoupling the emitter resistor is more than compensated for by the increased amount of negative feedback that may be applied due to the increased voltage gain of the stage.

Mr. Short's criticism about the signalsource impedance is not really valid since the output impedance of the test oscillator used was 600 ohms, which is comparable with the source impedance seen by the output transistor in the final circuit arrangement.

Mr. Short says that a logical development of my circuit is to drive the upper transistor (Tr_7) in phase with Tr_5 , forming a complementary push-pull stage of high output impedance. In fact this was the first step that I took in designing the circuit and I soon found that my final circuit arrangement was simpler to construct, using fewer components, and that the net result of both methods was identical.

Finally, may I say that a comparison between my circuit and Waddington's is obviously what is required to convince readers like Mr. Short of the benefits to be obtained from my more complex circuits. Unfortunately I do not have these precise comparisons, but I invite readers who decide to construct my circuit to satisfy themselves of its benefits by replacing the constant current load with a 27kQ resistor, as in the test circuit, without alteration to any other values. If Mr. Short had challenged me on the need to improve Waddington's design I would have had a much more difficult case to answer. As it is 'the proof of the pudding is in the eating', and as I am unable to detect any non-linearity in the meter's scale of my design, even at 1% and 3% of f.s.d., I am satisfied that my design achieves what I set out to do.

A. J. EWINS

New names for old concepts

The tendency to invent new names for old concepts seems to increase faster than ever. The "Programmable Unijunction" described by Mr. Greiter in the September issue is, surely, none other than the silicon controlled switch minus its cathode gate.

The s.c.s. has been in use for many years, why give it a new name? The circuit shown above, using a General Electric 3N58, produces much the same result as Fig. 14 in Mr. Greiter's article.

A. G. JONES, Porthcurno, Cornwall.

High-quality Tape Recorder

3. Extensions and modifications

by J. R. Stuart, B.Sc.

The variable high-frequency bias allows optimum recordings to be made with a variety of tapes and speeds, and it is a simple matter to reset any bias condition with the meter. Although the A–B monitoring allows an excellent attempt to be made by ear, it is not always straightforward to discover the required bias initially. In particular, if the recording is to be replayed on another machine, it may be necessary to bias for maximum sensitivity, minimum distortion, or some arbitrary standard.

The normal criterion for low tape speeds is to increase the bias until the sensitivity at 1 kHz is 1 dB below maximum. To allow easy setting of this bias current many high-quality recorders include a 1 kHz reference oscillator.

Such an oscillator would either be an RC arrangement with amplitude definition and stabilization provided by a thermistor or field-effect transistor, or a current switching LC oscillator⁹ of the type shown in Fig. 25. The output of this oscillator is well defined by the dynamic impedance of the tuned circuit and the tail current. However the values of L and C required do not lead to accurate prediction of the frequency of oscillation.

To calibrate the recorder using a reference, switch the meter to record and set the input level to $-6 \, \mathrm{dB}$, then, while recording, switch the meter to replay and adjust the high-frequency bias for the required sensitivity. Note the bias voltage.

It is probable that in a large number of applications a simple stereo signal is not available. This will certainly be true of live or special-effect recordings, and for these a linear mixer is essential.

Fig. 26 shows a mixer which could be built as part of the recorder unit. For simplicity a CA 3048 integrated quad amplifier has been used, giving two inputs per channel. By extrapolation, further addition of i.c.s will give the required number of inputs.

The i.c. should be powered by a regulator identical to that shown in Fig. 17. Output M is satisfactory providing that it is not intended to cascade amplifiers in the same chip—to do so may cause low-frequency instability, so the dual output regulator (K, L) should be used.

This mixer is intended for a $250 \,\mathrm{mV}$ rated output, with a $12 \,\mathrm{dB}$ overload margin. R_x defines the gain of each mixer stage and a range of values is given in Fig. 26. However, if at any time high sensitivity is required, better noise performance would result from a lower gain mixer feeding the $25 \,\mathrm{mV}$ input.

Fig. 25. A current-switching oscillator.

R _∞	Stage gain (dB)	Mixer gain (dB)
œ	12	6
5-6k	20	14
2·2k	26	20
1k	30	24
560	36	30
390	40	34
56	50	44
		1

Fig. 26. Circuit of a linear mixer.

Superimposition was at one time a common facility on good quality recorders. However, this is extremely unsatisfactory as each recording erases to some extent the high frequency information of the previous recordings. By rearranging the track-switching and making use of the mixer and the logarithmic meter, signals may be superimposed by recording from one track to another. This allows the quality of the initial signal to be maintained through several superimpositions. For this two switches replace S_2 , one for record and the other for replay.

Discrete component version

Some constructors may prefer to build discrete amplifiers in place of the integrated version recommended and described in parts 1 and 2. This could be suitable for a mono record-only machine where all replay equalization is performed in the pre-amplifier.

A discrete-component replay amplifier is shown in Fig. 27 and the circuit values for equalization are given in Table 6.

Transistors Tr_{13-15} form a direct-coupled triple with a mid-band open-loop forward voltage gain of around 80 dB; the closed loop

Fig. 27. A discrete-component replay amplifier.

gain has been arranged to give an output of 250 mV r.m.s. at the rated input, with a signal-to-noise ratio of 70 dB.

Capacitor C_{31} should be paper or plastic to ensure low leakage and avoid polarization of the head, C_{34} stabilizes the loop at high frequencies and the maximum output is 4.5 V r.m.s.

There should be no discernible differences between the performance of this amplifier and the integrated version.

The recording pre-emphasis pre-amplifier can be replaced by the amplifier shown in Fig. 28. This is very similar in performance to that of Fig. 27 and the equalization components will be identical to those used in the integrated version. By replacing the equalization network with a $17 \text{ k}\Omega$ resistor the amplifier of Fig. 28 will have a forward gain of 140, to drive the meter.

Record output

It was stated in part 1, that the best method of ensuring a constant-current recording characteristic, is to include the head in the feedback loop of a high-gain amplifier. Such an arrangement is shown in Fig. 28. The performance of this circuit is excellent. Measured total harmonic distortion in the current waveform was less than 0.01 % at an output of 140 μ A r.m.s.

However the problem of bias rejection is considerable and it is strongly recommended that only an experienced constructor, with access to a good oscilloscope, should attempt this type of output stage. The problem arises because the rejection must take place at an input, where only 50 mV r.m.s. bias will switch the amplifier output between the rails.

Erase and bias oscillator

Although the oscillator described in part 2 performs very well on mono or stereo, a direct method of ensuring that bias and erase current calibration is retained in all modes, is to employ a separate output stage for each erase head, synchronizing these outputs by a master oscillator.

Considerable thought was given to the output stage. Class A and B were ruled out directly because of cost, and as it is extremely

TABLE 6. Equalization details for Fig. 27

time constants	R	R
μs	Ω	Ω
35+ ∞	2·2 k	90
50+3180	3.3 k	220 k
70+ ∞	4·7 k	90
50 + ∞	3 3 k	00
140+∞	9-1 k	00
90+3180	5.6 k	220 k
140+3180	9·1 k	220 k
90+ 00	5.6 k	00
280+ oo	18 k	00
120+1590	8-2 k	110 k
120+ ∞	8-2 k	00

Fig. 28. Recording equalized amplifier.

Fig. 29. A feedback recording output stage.

difficult to predict the performance of a class C amplifier, a current switching design was evolved. Fig. 30 shows an erase oscillator of this type; only one output stage has been drawn but several may be driven from the master oscillator without modification.

Transistors Tr_{22} and Tr_{23} form an emitter-coupled multivibrator which runs at 93 kHz. Tr_{24} is a buffer, the output of which is arranged to have a positive maximum a few hundred millivolts above $V_{\rm ref}$.

Frequency of oscillation is stabilized by the two zener diodes, and the long-term drift is less than 0.1%. A current, defined by $V_{\rm ref}$ and R_m is switched alternately between Tr_{25} and Tr_{26} and its magnitude must be arranged so that these transistors nearly saturate at the required output level.

In order that the bias waveform will decay slowly at switch-off, the time constants are arranged so that the multivibrator continues to oscillate on frequency until C_m has been discharged, allowing an exponential decay in the output current.

The transformer primary must have a high unloaded Q, and to achieve low distortion the loaded Q factor must be at least 10. The amplitude of the nth harmonic in the output for an ideal current-switching operation is

$$\frac{100}{(n^2-1).Q_l}$$
 %

where Q_t is the loaded Q factor. A good L/C ratio is necessary to allow reasonable loading of the tuned circuit. In Fig. 30 measured values for Q were 90 unloaded and 30 loaded, however the final

values are considerably affected by construction, in particular long cables connecting the oscillator to the head can radically modify the

Modification for alternative heads

The designs described in these articles were intended to be used with the Brenell Mk 6 deck, which incidentally, uses the same heads as the Mk 5 range. However a large number of readers may possess perfectly good decks which have recording, replay and erase heads whose parameters are very different from the Bogen heads.

It is expected that a large variety of heads can be accommodated with a few component changes, the critical parameters for the various heads are as follows:

(a) recording—a.f. current (μA)

bias current and voltage

-bias frequency

-inductance

(b) replay -playback level at 1 kHz, 7.5 i.p.s. and 32 mMx/mm

(c) erase voltage and current.

In Fig. 7 the transconductance of the output stage was expressed as $1/R_{12}$. Thus the input sensitivity can be deduced for any output current, and by calculation the constructor can decide whether or not sufficient output voltage swing is available. The recording sensitivity may be deduced as the pre-emphasis low-frequency gain is 7.25.

The only modification to the replay amplifier would be to adjust the forward gain to change the sensitivity from 2 mV

As the open loop gain of the input i.c. is only 50 dB it is not advisable to attempt to increase the closed-loop gain by more than 6 dB although it may be reduced by some 10 dB. Any further adjustment should be made in the gain stage by adjustment of R_{22} , as described in Fig. 30.

The closed loop gain G of the amplifier shown in Fig. 36 is given by

$$G = \frac{R_c}{R_d} \cdot \frac{R_b + R_c + R_d}{R_c} + j\omega t_1$$

$$1 + j\omega t_2$$

if $A \gg G$

where t_1 is the upper time constant = $C_a(R_b + R_d)$ e.g. 70 μ s, 140 μ s and t_2 is the lower time constant $= C_a R_c$ e.g. 3180 µs.

The appropriate equalization values may thus be determined.

It is not so simple to calculate the component changes to the erase oscillator

Ensure that Tr_6 and Tr_7 are allowed to saturate. If this is not the case excessive power will be dissipated probably resulting in device failure. Beware also of raising the supply voltage above 15 V as the theoretical peak collector potential could be $\pi \times$ supply voltage.

Mono and four-channel

To construct a single channel version of the recorder it is necessary only to re-arrange the i.c. amplifiers for one i.c., and to modify the erase oscillator. The author suggests that i.c. amplifiers 2 and 3 be used for the replay section and 1 and 4 for recording pre-emphasis and meter circuits. A block diagram is given in Fig. 32. For those wary of modification, the erase oscillator can be built in standard form with C_{26} and R_{56} permanently wired in. See Figs 3 and 15. Otherwise R_{56} may be omitted, along with one bias winding, and the circuit operated from a lower supply—around 7 V.

Only one bias chain will be used in the meter; thus R_{28} , R_{30} and D_2 are omitted, and the current will be set to 3 μ A by R_{29} .

At the time of writing the author knows of no source of decks fitted with four-track heads, for four channel recording, however it is straight forward to multiply the circuitry to cater for this—at any point in the future the replay and recording amplifiers can be duplicated, but the erase oscillator must be replaced by a design similar to Fig. 30, or by a more powerful version of Fig. 15. There are no strong arguments for re-arranging the i.c.s. The CA 3048 lends itself to a four channel cassette replay system, although at present no deck of suitable quality is available.

The author thanks Brenell Engineering Ltd, for valuable assistance given during the development of this recorder.

Fig. 30. Circuit diagram for an erase-bias oscillator.

Fig. 31. Replay amplifier equivalent circuit.

B

Erase/bias oscillator

Relay coil

Fig. 32. Block diagram for mono.

R

PO

5001

+20V Record

330

Bias adj

L **₹**-

+20V

Heat Sink Abac by J. Johnstone, B.Sc.

The abac given here has two uses. First it will find the heat sink thermal resistance required for a selected maximum transistor junction temperature and secondly it will give the area of matt black aluminium sheet needed.

In the instructions which follow θ_{sa} = thermal resistance of heat sink T_j = junction temperature T_{amb} = ambient temperature θ_{ja} = thermal resistance of device junction to ambient

 u_{jc} = thermal resistance of device junction to case

 $\theta_{\it cs}=$ thermal resistance of device to case heat sink

Using the abac

- 1. Calculate the maximum dissipation in the device.
- 2. Calculate the maximum junction temperature $(\triangle T_j)$ rise from $T_j T_{amb}$.
- 3. Set $\triangle T_j$ on scale A and the dissipation on scale B. Read θ_{ja} on scale C.

4. Calculate the required heat sink thermal resistance from $\theta_{sa} = \theta_{ja} - (\theta_{jc} + \theta_{cs})$. Typical values of θ_{cs} will be found in the table.

5. Join θ_{sa} on scale C to scale D via the construction point.

The heat sink is assumed to have a free air flow on both sides; to have sides of a ratio not exceeding 2:1 (i.e. a 50 sq.in heat sink may be 7.1×7.1 or 5×10 inches but not 2×25 inches). If bright aluminium is employed areas should be increased by 20%.

Typical values of θ_{cs}

direct contact	mica washer	hard anodized Al washer
0.05	2	0.15
0.4	2.4	0.6
3	6	_
1.2	2.2	
	contact 0.05 0.4 3	contact washer 0.05 2 0.4 2.4 3 6

It is assumed that a thermal compound, such as Jermyn Thermaflow or Dow Corning D340 is used in all cases. Cases 77 and 90 are Motorola plastic types.

Elements of Linear Microcircuits

4: Three generations of operational amplifiers

by T. D. Towers*, M.B.E.

Talk to the new breed of engineers practised in designing their circuits around readily available, economic, standard, monolithic operational amplifiers of the 1970s and you will find that for them op-amp is taking on a meaning different from the classical definition. Nowadays they think of it as a broadband, low-frequency, very-high-gain amplifier, for use from d.c. to about 1MHz in many circuit configurations.

If you look hard enough, you will find some 2.000 differently numbered operational amplifiers on the market. All but a few of these are of monolithic construction. The rest are specialist discrete-component or hybrid versions which designers turn to usually as a last resort when they cannot find the right monolithic.

First-generation

Until the appearance of monolithic op-amps in quantity in the late 1960s, a designer who needed such an amplifier would take conventional capacitors, resistors and transistors to make up a circuit something like Fig. 1. This employs a long-tail-pair balanced input followed by a long-tail-pair level shifter to return the single ended output to zero.

The first monolithic op-amp with a performance comparable to discretecomponent versions was introduced in 1965. This was the Fairchild μ A 709. It is now available from most semiconductor manufacturers under many different code numbers, but it is always spoken of as the '709'. In the U.K. there are many variants such as Motorola's MC1709, Mullard/ Philips TAA521, National Semiconductors' LM709, Newmarket's LIC709, ITT's MIC709, Texas Instruments' SN72709 and Transitron's TOA2709, as well as Fairchild's own 709 series with code numbers such as U6A 7709393.

Although the circuit of the 709, given in Fig. 2, achieved the same sort of performance as discrete circuits of the type of Fig. 1, it can be seen even under superficial inspection to be much more complex. This is because monolithic techniques for diffusing such an op-amp into a silicon chip (about 0.055 sq. inches) had difficulty producing directly the high-value resistors and the high-gain transistors of the discrete version. For those interested in design details, a brief description follows.

In Fig. 2, the input transistors, Tr_1 and

Tr₂ form a balanced long-tail pair with a fixed 40 µA tail current provided by the transistor Tr_{11} . This is biased as a constant current source by the emitter resistor R_{11} and the diode-connected transistor Tr_{10} which is forward-biased by current through R_8 , R_{10} . The collector load resistors of the long-tail pair, R_1 , R_2 , provide a balanced output.

The network Tr_7 , R_5 , Tr_3 , Tr_5 , R_3 , and Tr_{15} provide balanced stabilization against temperature and supply voltage changes. The single-ended output from R_2 drives the common-emitter Darlington pair, Tr₄, Tr₆, to give a further amplified signal level across R_6 . This is used to drive Tr_8 which in turn (via the common-base stage Tr_9) controls the pre-output common emitter driver Tr_{12} . The collector of the driver (with its collector resistor R_{14}) is directly connected to the bases of the complementary-symmetry class-B output pair, Tr_{13} , Tr_{14} . The output is taken from the common emitters of Tr_{13} , Tr_{14} , the d.c. level having been shifted back to zero through transistors 4, 6, 8, 9, 12, 13

In the discrete op-amp circuit of Fig. 1, capacitors C_1 and C_2 were included to cut the top frequency response of the circuit to avoid h.f. instability. In the 709 it was not

*Newmarket Transistors Ltd

Fig. 1. Discrete component operational amplifier.

possible to include capacitors and so terminals 1, 8 and 5 were provided to enable separate external compensation capacitors to be connected. The $220 \mathrm{k}\, \Omega$ resistor R_2 in Fig. 1 also could not be provided in the monolithic version, and was replaced by the constant current transistor, Tr_{11} , in Fig. 2.

Selections of the 709 are available, but the loosest specification version (and the most commonly used), the 709C, has the following characteristics on \pm 15V d.c. supply at 25°C ambient temperature:

 A_{VOL} (open loop d.c. voltage gain)= 94dB (\times 50,000) typ., 84dB min.

 V_{IOS} (off-set voltage, $10 \, \mathrm{k} \, \Omega$ source resistance) = 2.0 mV typ., 7.5 mV max. I_{IOS} (off-set current) 100 nA typ., 500 nA max.

 I_B (input bias current)= 300nA typ. 1,500nA max.

 R_{IN} (input resistance, differential)= 250k Ω typ., 50k min.

 R_{OUT} (output resistance)=150 Ω typ. V_{OUT} (output voltage available swing)

= ± 12 V min. $(R_L = 10$ k) = ± 10 V min. $(R_L = 2$ K)

c.m.r.r. (common mode rejection ratio) = 90dB typ., 65dB min.

v.s.r.r. (supply voltage rejection ratio)= $25\mu V/V$ typ., $200\mu V/V$ max.

 $V_{in}c.m.$ (common mode input voltage range) = $\pm 10 \text{V typ.}, \pm 8 \text{V max}.$

 V_{in} diff. (differential input voltage range) = \pm 5V max.

 V_S (supply voltage range)= ± 9 to ± 15 V.

SR (unity-gain slew rate)= $0.5V/\mu S$ typical.

 BW_{OL} (open loop bandwidth)= 100Hz typ.

 BW_{VF} (voltage follower or unity gain bandwidth) = 1 MHz typ.

These characteristics are given in some detail so that you can see how far the first generation operational amplifiers matched up with the five ideal characteristics of an op-amp i.e. infinite gain, zero current and voltage input offset, infinite input impedance, zero output impedance and

Balance C Compensation 0+Vs Tr2 R Tr4 300 Tr₈ Tr₁₆ Tr5 Tr6 Tr10 R-8Õ 10k R₅

Fig. 3. An example of an improved first generation op-amp, the LM101.

Fig. 4. The µA741. Note the diffused compensation capacitor.

zero response time (infinite bandwidth). They also set levels to judge how later generation op-amps improved.

Improved first-generation

Users found that the 709 had certain practical drawbacks. In ordinary use it was liable to latch up when the common mode input range of $\pm 8V$ was exceeded. It was liable to 'blow up' if the output was short circuited. Its input resistance of $50k\Omega$ min. was rather low. Without at least two external compensation capacitors it was virtually certain to oscillate on open loop. Its quiescent current consumption of about 2.5mA was too large.

The first improvement of the 709 was the LM101 brought out in 1967 by National Semiconductors with the circuit of Fig. 3. It is now almost as well known as the 709 and commonly referred to as the '101'.

The principal improvements incorporated in the 101 were frequency compensation by a single 30pF external capacitor, voltage supply range extended to ± 5 to ± 20 V, quiescent current reduced to 1.8mA typical, continuous output short-circuit protection provided, common mode input voltage limit raised to ± 15 V, and differential input voltage range raised to ± 30 V. Also a separate terminal was used for easy offset zeroing (balancing) with a single 5M Ω potentiometer.

These improvements were substantial, but the 101 is usually regarded merely as a slightly better 709, because the offset voltage and offset currents were only marginally improved. The Fairchild μ A748 has very similar specifications. The Motorola MC1533 is another well known improved 709.

First generation internallycompensated

The 101 still could not be used open-loop without an external compensating capacitor, and almost inevitably in 1968 there came out the first fully internally compensated op-amp, the μ A 741. This was followed soon by the LH101, or RM4101, (compensated 101).

In the case of the LH101, the modification to the LM101 was merely to diffuse a 30pF capacitor internally between the compensation and top balance terminals of Fig. 3.

In the case of the 741, a completely new circuit as Fig. 4 was used. In this the highgain n-p-n transistors Tr_1 , Tr_2 are used in combination with the low-gain lateral p-n-p transistors Tr_3 , Tr_4 to provide effectively a high-gain p-n-p input pair. Transistors Tr_8 and Tr_9 provide a constant-current long-tail source of about 30μ A total for this input pair. Transistors Tr_5 and Tr_6 are biased to act as $2M\Omega$ loads for the composite input transistors. The amplified signal appearing at the collector of Tr_4 is further amplified by the high-input-impedance Darlington pair Tr_{16} ,

 Tr_{17} . The collector load of this Darlington is the collector output resistance of the constant-current-biased transistor Tr_{13} . This drives the output complementary-symmetry, transistors Tr_{14} , Tr_{20} which are biased class AB to about $60\,\mu\text{A}$ quiescent current by the forward voltage drop across Tr_{18} . The forward bias on the output transistors eliminates the cross-over distortion of the 709 (where the bases of the output transistors are connected together—see Fig. 2).

The 741 is proof against continuous output short-circuits because the output is current limited. For positive excursions R_9 , Tr_{15} in Fig. 4 act as a 25mA current limiter. Above this output current, the voltage drop across R_9 brings Tr_{15} into conduction and limits the drive. For negative excursions the output current is limited by the $50-\Omega$ series resistor R_{10} combined with the transistor Tr_{22} shunted across the drive. On the negative excursion the current through R_{11} tends to turn Tr_{22} on and limit the drive to the output.

The completely new feature of the 741 op-amp was that the chip incorporates a 30pF m.o.s. capacitor (C in Fig 4). As a result the amplifier does not need any external frequency compensation, even for closed loop gains down to unity.

It has an internal 6dB/octave roll-off commencing at 10Hz, passing through unity gain at 800kHz, to ensure a typical 80° phase margin at unity gain.

The high emitter-base breakdown voltages of the lateral p-n-p transistors Tr_3 , Tr_4 means that the 741 circuit is able to withstand $\pm 30V$ differential input signals without breakdown (compared with the $\pm 5V$ max of the 709).

The process improvements of the 741 did not make much overall improvement in the characteristics of the 709 (except for slightly increased gain and higher input resistance). Improvements were rather that the 741 had protection against output short circuit damage and input latch up, a larger differential voltage range, internal frequency compensation, simple offset voltage nulling with a single $10k\Omega$ potentiometer (connected across emitters of Tr_s , Tr_s , in Fig. 4), wider operating voltage range (± 3 to ± 20 V) and lower quiescent supply current (1.7 as against 2.5mA typical).

The 741 appears under various numbers such as Motorola's MC1741, National Semiconductors' LM741, Newmarket's LIC741, Transitron's TOA2741, ITTs MIC 741 and Texas Instrument's SN72741.

As a parallel development, we find manufacturers providing two op-amps in one package with the useful characteristic of close thermal tracking between the chips. Well known examples of dual 709s are the Transitron TOA2809, and Motorola MC1437, and of dual 741s the TOA2841 and MC1558.

Second generation

All the op-amps discussed so far have input offset and bias currents measured in hundreds of nanoamps which led to un-

Fig. 5. Second generation example, the LM101A. Both bipolar and field effect transistors are used.

acceptable voltage drifts with temperature in high-impedance circuits.

The second generation of monolithic op-amps was characterized by an order of magnitude improvement in bias and offset currents. The National Semiconductor's LM101A was the archetype of these. It has 20nA max. offset current compared with the 500nA limit of the 709 and its previous successors. Similarly in the 101A the input bias current was improved from $1.5 \mu A$ to $0.25 \mu A$ max.

The circuit of the LM101A, given in Fig. 5, has several interesting features, making extensive use of transistors and f.e.ts as active collector loads, high-gain lateral p-n-p transistors and pinch resistors.

You can make your way through the circuit of the 101A in Fig. 5 by noting that Tr_5 and Tr_6 act as active collector loads for the balanced input stage Tr_1/Tr_3 , Tr_2/Tr_4 . The right hand transistor Tr_4 drives the common-emitter Darlington pair Tr_9 , Tr_{10} , whose collector load is Tr_{17} (via Tr_{13} , Tr_{14}). The drives to the bases of the output transistors Tr_{16} , and Tr_{11} are from Tr_{17} collector and from Tr_{19} collector via Tr_{12} .

The active collector loads Tr_5 , Tr_6 are better than resistor loads. They avoid the use of large resistances to achieve low current operation (important in reducing input bias currents and power consumption). They do not require much voltage to be dropped across them for correct operation, which leads to an increase in common-mode input range, an increase in voltage swing, a wider permissible range of supply voltages, and higher stage gains (lessening the number of stages required and simplifying frequency compensation).

Transistor Tr_{18} in Fig. 5 is an example of an f.e.t. used as an active constant-current-source collector load for transistor Tr_{20} .

Lateral p-n-p transistors first featured in the 709 (Tr_9 in Fig. 2) were originally very low-gain devices (with current gains much less than 10) and low frequency cut-offs (typically about 1MHz). By the

time the 101A was brought out in late 1968, processes had improved so much that lateral p-n-p current gains of greater than 100 were achieved. Tr_3 and Tr_4 in Fig. 5 are examples of such later transistors. A further development of the lateral p-n-p is the 'controlled gain' transistor in which the collector is split into two segments and one of them is connected back to the base. The effective current gain is determined by the relative areas of the two collector segments. Tr_{17} in Fig. 5 is such a controlled-gain transistor.

'Pinch' or 'pinched-base' resistors are special high-value diffused resistors originally developed to get round the fact that conventional base-diffused resistors of values above a few thousand ohms were impracticable. The cross sectional area of a base-diffused resistor is effectively reduced or 'pinched' by an emitter-diffusion on top of it. By this process resistor values up to $100 \text{k} \Omega$ are feasible. R_2 , R_5 , R_6 and R_7 in Fig. 5 are examples of such high-value 'pinch' resistors.

Further examples of other op-amps of this lower input current second generation are the well-known Motorola MC1539/1439 and the Sprague 2139.

Third Generation

The second generation 101A had given input bias and offset currents of 250nA and 20nA max. compared with 1,500 and 500nA in the first generation 709. By 1970, monolithic bipolar technology had enabled a further order of magnitude reduction in input currents in the 'third generation' op-amps. In them the National Semiconductors LM108 led the way. In this, input bias and offset currents dropped to 2nA and 0.2nA max.

This improvement is achieved by using 'super-gain' or 'punch-through' transistor at the input. The current gain of an n-p-n transistor in a monolith depends for one thing on the length of the emitter diffusion cycle in the manufacture.

Fig. 6. Third generation example, the LM108. Tr, and Tr, are 'super-gain' or 'punch-through' transistors which operate at very low voltages.

Devices emitter diffused for unusually long time exhibit increased current gain at the expense of collector breakdown voltage. Current gains of 4,000 can be obtained but with a collector breakdown voltage of 4V.

In Fig. 6, the circuit of the LM108, low-voltage super-gain transistors are used as Tr_1 , Tr_2 , the input transistors. To prevent voltage breakdown they are operated in cascode connection with Tr_5 and Tr_6 , which stand off the commonmode voltage. The bases of Tr_5 and Tr_6 are bootstrapped via Tr_{27} and Tr_{28} to the common-mode voltage seen by the input transistors. Thus the input transistors are always operated with near-zero collectorbase voltage, and high temperature leakage currents do not show up at the input.

The super-gain input transistors give other bonuses. The 108 input resistance is 30 M Ω min. compared with the 50k Ω min. of the 709. Voltage gain improves to 94dB min. instead of 84dB. Common mode rejection ratio becomes 80dB min. instead of 65dB. Typical supply current drops from 2.5mA to 0.15mA.

The Motorola MC1556 is another third generation op-amp. using super-gain input transistors, and you will also find similar transistors incorporated in the unity gain, voltage-followers LM102 and LM110.

High input impedance

The low input resistance of the 709 led to the development of special high R_{IN} monolithics along two lines-Darlington pairs and f.e.ts for the inputs.

At first sight a Darlington compound should give the same sort of result as a super gain device. However the Darlington pair voltage mismatch tends to be worse because it depends on current gains; also

it tends to be higher noise and exhibits lower common mode rejection. The Transitron TOA8709 is a well known example of such a Darlington input.

The f.e.t. input transistor approach is used in the Fairchild µA740 where an input resistance of $10^{12}\Omega$ is achieved with a typical offset current of only 20pA. Against this, f.e.t.-input op-amps exhibit offset voltages and voltage drifts about twenty times higher than the typical 1mV and $2\mu V/^{\circ}C$ of the super-gain transistor approach. (Even lower bias and offset currents have been obtained by hybrid assembly using selected matched f.e.t. chips at the input as in the Teledyne AD503.)

Higher slew rate

One of the defects of earlier generation op-amps was the limited small signal and power bandwidths, usually specified by unity gain bandwidth (for small signal) and unity gain slew rate for full output. The 709 had a 1MHz typical bandwidth and $0.5V/\mu s$ slew rate, the major restriction being the low gain, low frequency lateral p-n-p used (Tr₉ in Fig. 2). Process improvements in later generation generalpurpose op-amps pushed gain-bandwidths out to about 5MHz and slew rate to about $5V/\mu s$.

However for higher slew rate requirements, special op-amps have been developed such as the Signetic 531 (typical $40V/\mu s$) or the Optical Electronics 9694 $(100V/\mu s)$.

Micropower

Another area where specialist op-amps have been developed is low power consumption. In this area, the Solitron UC4250 indicates the sort of performance aimed at.

This micropower op-amp uses so little power that its batteries last as long as their shelf life. It can operate on rails from + 1V to ± 18V. It has typical input bias currents of only 3nA and zero input offset temperature drift. On $\pm 1V$ it has a power consumption of only $20\mu W$.

Conclusion

The second half of the 1960s was an astonishing time when the monolithic op-amp developed from the old-faithful 709 (which in 1970 still does well over half the op-amp. jobs around) through the 101A up to the 108. We now have a situation where the handy monolith is bidding fair to oust all discrete or hybrids of the balanced differential input type, is giving a performance near to chopper stabilized types, and could well in time even match the heights of the varactorbridge and electrometer valve.

Conferences and Exhibitions

Further details are obtainable from the addresses in parentheses

MANCHESTER Jan. 5-7

The University

Washington

Solid State Physics (I.P.P.S., 47 Belgrave Sq., London S.W.1)

OVERSEAS

Jan. 12-14 Reliability-Meeting the Demand

(J. W. Thomas, Vitro Laboratories, 14000 Georgia Ave, Silver Spring, Maryland 20910)

Jan. 14-20 Paris Audiovisual et Communication Salon (S.D.S.A., 14 rue de Presles, 75 Paris 15e)

Jan. 19-21 Oaxtepec, Mexico Systems, Networks and Computers (Dr. Roberto Canales, Instituto de Ingenieria, Ciudad Universitaria, Mexico 20, D.F., Mexico)

Jan. 26 & 27 Chicago

Soldering Technology (William Dunbar, Illinois Institute of Technology, 3241 South Federal Street, Chicago, Illinois 60616)

An Equation-solving Aid

Signal-flow graph methods applied to solution of simultaneous equations in up to six variables

by V. J. Phillips*, B.Sc.(Eng.), Ph.D., D.I.C., A.C.G.I., M.I.E.E.

Many techniques are available for the solution of simultaneous equations. The simple, schoolboy method involves multiplying the equations by various numbers and subtracting one from another so that the variables can be eliminated one at a time. Anyone who has tried to carry out such a procedure for a set of equations having more than three variables will know that it becomes very difficult to remember what one is multiplying by and subtracting from what—in fact, the difficulty increases very rapidly with the number of variables in the equations. The more advanced methods of solving equations, such as "triangulation of the matrix" procedures, Cramer's Rule, and matrix inversion, are a help because they lay down the procedure which has to be followed. One still has the task of performing the various arithmetical operations involved but at least one is relieved of the necessity of making decisions about the multiplying factors to be used and the order in which to use them.

In other words, the solution of a set of simultaneous equations can be divided into two parts:

(i) Deciding what steps to take, and

(ii) Actually performing the arithmetic involved in those steps.

If one is trying to solve a set of equations in, say, twenty variables, the only sensible course is to do it on a digital computer using one of the numerous routines available in the soft-ware library. However, if one wishes to solve a set of equations in five or six variables, one has to decide whether it is worth the effort of going to the computer centre, looking out the programme, punching up the cards or tape, correcting any errors, etc. or whether it is really much easier to press on and do the job by hand. Reference has already been made to some of the standard matrix methods for equation solving. These are easy enough in theory but when one is working out the determinant for a 5×5 matrix the expressions which result as the order of the matrix is reduced become more and more clumsy to handle, and there is always that pestilential business of remembering the signs and working them out correctly

The piece of equipment described here is an aid to manual solution of equations in reasonably small numbers of variables. The particular version constructed by the author will handle up to six variables, but there is no reason why the principle should not be extended up to higher numbers if required. The apparatus is based on the "signal flow graph" method of solving equations.

The signal flow method

The signal flow graph is a pictorial representation of a set of equations demonstrating the inter-relationships between the variables. Consider first the equations

$$4.x1 + 1.x2 + 2.x3 = 4
2.x1 - 1.x2 - 4.x3 = 4
3.x1 + 8.x2 - 1.x3 = 20$$
(1)

The first step is to rewrite these as

$$\begin{cases}
 x_2 = 4 - 4.x_1 - 2.x_3 \\
 x_1 = 2 + 0.5.x_2 + 2.x_3 \\
 x_3 = -20 + 3.x_1 + 8.x_2
 \end{cases}$$
(2)

The equations may be used in any order to produce expressions for x_1 , x_2 and x_3 . Obviously if a particular equation involves $1.x_n$ then it is sensible to use that equation for x_n to avoid fractions as far as possible. This is why the first equation above has been used for x_2 and the second for x_1 . Four dots called "nodes" are now marked on a piece of paper as shown in Fig. 1, one representing

Fig. 1. Signal-flow graph for equations (2).

unity, the others x_1 , x_2 , and x_3 . "Branches" are now drawn representing the contributions of the nodes to one another according to equation (2) as shown. For example, the first equation of (2) for x_2 says that the variable x_2 is made up of 1 multiplied by +4, x_1 multiplied by -4, and x_3 multiplied by -2. The relevant numbers are marked on the branches and are referred to as the "transmittances" of the branches. The arrows on the branches are read as "contributes to"—for example, the bottom branch would be interpreted as "node one contributes itself multiplied by -20 to node

 x_3 ". Note especially that it is not possible to reverse the arrow and alter the sign as one can when labelling currents in a circuit. Fig. 2 shows why; the first graph represents the

$$\begin{array}{cccc} x_1 & 2 & x_2 \\ & & & \end{array} \equiv x_2 = 2, x_1 \\ x_1 & -2 & x_2 \\ & & & \end{array} \equiv x_1 = -2, x_2$$

Fig. 2. Erroneous reversal of arrow and sign.

equation $x_2 = 2.x_1$, whereas the second represents $x_1 = -2.x_2$ which is not the same thing at all.

The complete graph shows the interrelationship between the variables, but it should be noted that there are several ways of writing equations (2), and hence there are several possible signal flow graphs to represent the original equations (1). The particular graph obtained depends on how the variables were selected in equations (2). The procedure used to solve the equations is very useful in that it enables the graph to be simplified in easy stages, a bit at a time. In order to explain the overall procedure for solution it is first necessary to establish a set of simple rules for graph manipulation.

RULE 1. For parallel branches

If there are two branches in parallel as shown in Fig. 3(i) this represents the equation

$$x_2 = a.x_1 + b.x_1$$

which equals, of course, $(a+b).x_1$ (3)

Fig. 3. Branches in parallel.

Thus the two branches may be replaced by the single branch labelled (a+b) as in Fig. 3(ii).

RULE 2. For cascaded branches

If two branches are simply in cascade as shown in Fig. 4(i), this graph represents the two equations

$$x_2 = c.x_1$$
 $x_3 = d.x_2$ (4)

^{*}University College of Swansea.

Fig. 4. Branches in simple cascade.

Thus $x_3 = cd.x_1$ as represented by Fig. 4(ii). Note that in order to apply this rule the branches must be in simple cascade with no other branches entering or leaving node x_2 .

RULE 3. For reduction of loops

Inspection of Fig. 1 will show that several loops appear in the complete graph. A "loop" may be formally defined as "a path which, following the arrows, starts and ends on the same node, and along which no node is encountered more than once". A loop such as that between x_1 and x_2 of Fig. 1 where there is a forward contribution of -4 and a backward contribution of 0.5 is often referred to as a "feedback" loop.

Consider now the equation

$$4x_1 + 3x_2 = 7$$

which may be rewritten as

$$x_1 = -3x_1 - 3x_2 + 7 \tag{5}$$

This is a rather unusual way of doing things, but nevertheless it is algebraically correct. Equation (5) may be represented by the signal flow graph of Fig. 5, and the "self

Fig. 5. A self-loop.

loop" on node x_1 can be interpreted as x_1 contributing to itself multiplied by -3. One would not normally choose to draw the signal flow graphs in this way, but such self-loops arise frequently in signal flow work and it is necessary to know how to handle them. The signal flow graph of Fig. 6(i) will be taken as an illustration of how loops are treated.

Fig. 6. Rules for feedback loops, self-loops and node elimination.

This graph corresponds to the equation

$$\begin{cases}
 x_1 = a + b + d \cdot x_2 \\
 x_2 = c \cdot x_1 \\
 x_3 = e \cdot x_2
 \end{cases}$$
(6)

 $a, b, \ldots e$ are constants; the first equation may be simplified using the parallel branch rule for a and b, but it will be left as it stands for the moment in order to illustrate a later point.

Simple manipulation of these equations reduces them to

$$\begin{cases}
 x_1 = a + b + d.c.x_1 \\
 x_2 = c.x_1 \\
 x_3 = e.x_2
 \end{cases}$$
(7)

The graph will now appear as shown in Fig. 6(ii), and it will be seen that the feedback loop has been transformed into a forward branch c and a self loop $d \cdot c$ on the x_1 node. This, in fact, constitutes the rule for dealing with simple feedback loops. By application of Rule 2, the graph reduces to Fig. 6(iii) corresponding to equations

$$\begin{cases} x_1 = a + b + d.c.x_1 \\ x_3 = c.e.x_1 \end{cases}$$
 (8)

The first of these equations is equivalent to

$$x_1(1-d.c) = a+b$$

or

$$x_1 = \frac{a}{1 - d.c} + \frac{b}{1 - d.c} \tag{9}$$

and the left-hand part of the graph of Fig. 6(iv). The rule for removal of a self-loop is now established. If the self-loop on a node has a transmittance T, every incoming branch to that node is multiplied by 1/(1-T).

Note here that $T \cosh \text{ never} = 1$ because this corresponds to the meaningless equation $x_1 = a + b + x_1$, so multiplication by infinity never arises for sensible equations.

RULE 4. For node elimination

The last equation of (8) may now be written

$$x_3 = \frac{c.e.a}{1-d.c} + \frac{c.e.b}{1-d.c}$$

and the graph appears in Fig. 6(v). Node x_1 has in fact been eliminated, and the rule for this operation may be expressed as follows: "when x_1 is eliminated two paths are destroyed, viz. from 1 to x_3 via the upper route, and from 1 to x_3 via the lower route. Replace these by the paths of Fig. 6(v)."

Finally, the two branches may be combined by Rule 1 as in Fig. 6(vi).

The simple rules for dealing with individual features of signal-flow graphs have now been established, but the reader should be warned that there are pitfalls in attempting to solve complete graphs using these as they stand. It is much better to embody them in a general set of procedures which will now be illustrated by solution of equations (1), corresponding to Fig. 1, and Fig. 7. It will be assumed that in the first instance the value of x_3 is required. The general procedure is to eliminate the nodes of the other variables in turn. At each elimination all paths passing through the eliminated node which are destroyed must be restored. First let x_1 be

Fig. 7. Solution of the signal-flow graph of Fig. 1 by successive node elimination.

eliminated from Fig. 1. The paths which are destroyed are:

From 1 to x_2 via x_1 ... replace by direct path transmittance -8

From 1 to x_3 via x_1 ... replace by direct path transmittance 6

From x_2 to x_3 via x_1 ... replace by direct path transmittance 1.5

From x_3 to x_2 via x_1 ... replace by direct path transmittance -8

From x_2 to x_2 via x_1 ... replace by self loop -2

From x_3 to x_3 via x_1 ... replace by self loop 6

The resulting graph now looks like that of Fig. 7(i) where the new replacement paths are shown dotted for clarity. This may be tidied up using the rule for parallel branches, producing the graph of Fig. 7(ii). Notice particularly the last two replacements listed above; this is how self loops appear in this sort of analysis, and it is important to remember them. The elimination process which has now been carried out is exactly equivalent to substituting for x_1 in the other two equations of (2). Such a substitution would yield two equations in x_2 and x_3 only, corresponding precisely to the graph of Fig. 7(ii).

The next stage is the elimination of node x_2 , but before this can be done the self loop on that node must be removed. This is done according to Rule 3 by multiplying each incoming branch to that node by

$$\frac{1}{1 - (-2)} = 1/3$$

resulting in Fig. 7(iii).

Node x_2 is now eliminated, replacing paths:

From 1 to x_3 via x_2 ... replace by -12.68From x_3 to x_3 via x_2 ... replace by self loop -31.68 Fig. 7(iv) shows the picture at this stage, and Fig. 7(v) shows the result after combining parallel paths.

Removal of the self loop according to the rule produces Fig. 7(vi) which says, simply, that $x_3 = -1 \times 1 = -1$, which is the solution required. Notice that if the value of x_2 is also wanted one does not have to start again from square one; elimination of node x_3 from Figs 7(ii) or (iii) will yield the value of x_2 .

A simple set of procedural rules for reducing these signal flow graphs may now be drawn up as follows:

- 1. Select a node to be eliminated.
- 2. If this node has a self-loop remove it by multiplying all incoming branches to that node by 1/(1-T) where T is the transmittance of the loop.
- 3. Eliminate the node, replacing all paths thus destroyed (remembering paths which result in self-loops—it's easy to forget these!).
- 4. Combine the new branches with any existing branches.

Repeat all these steps for the next node selected for elimination.

This is essentially a very simple procedure, but the one difficulty which does exist lies in making sure that every path destroyed is replaced. With a more complicated graph involving, say, eight or nine nodes this can be quite a tricky business. The only way to do it safely is to set about it in a logical manner. Take node 1 as a starting point and inspect in turn the paths to the other nodes $x_1, x_2 \dots x_n$ via the chosen node to be eliminated x_e . At each stage add the replacement branch to any direct branch which exists between the nodes. Next start at x_1 , and look for paths to $x_1, x_2, \ldots x_n$ via x_e , and so on using each node in turn as a starting node. In this way every combination of nodes is tested in logical order. Notice that there can never be a self loop on node 1, since all arrows point from that node. This is only to be expected since 1 is a constant uninfluenced by the values of the variables.

The apparatus which is to be described assists in this logical searching process and

reduces it to a simple repetitive procedure which can be carried out step by step. As the photograph Fig. 8 shows, it consists of a display board accompanied by one of two possible plug-in units. The first of these (in the foreground of Fig. 8) is a simple manual control unit; the other (actually connected to the display board in the photograph) is a fully automatic control unit.

Principle of simple manual model

The display unit consists of an array of torch bulbs connected to a matrix of wires as illustrated in Fig. 9. The circles on the crosspoints represent bulbs connected between the two wires. According to the settings of the switches S_r and S_c the source of e.m.f. can be connected between any horizontal (row)

wire and any vertical (column) wire, thereby lighting up the bulb at the junction of those two wires. However, the current path via the chosen bulb is not the only one which exists since all the other bulbs are connected to the e.m.f. in various series/parallel combinations. The net result of this is that the selected row and column glow with diminished brightness. Provided the number of rows in the matrix is the same as the number of columns, a cross of dimly-lit bulbs appears with the one bulb at the crossing glowing brightly. By correct selection of the resistance R (which in practice is a piece of resistance wire cut to the correct length) the light from the unwanted row and column bulbs can be reduced to a very dull glow while the required bulb still glows very prominently. Although this effect seems at first sight to be a nuisance, it is actually quite useful as a quick check to the correct operation of all the bulbs. If S_r is set to one position while S_c is rotated through all possible positions the faint glows provide a good indication that all is well and it saves having to run through all combinations of settings of S_r and S_c . It will be found that if a bulb should happen to go open-circuit it soon shows up, as the distribution of currents on the matrix is disturbed and various unusual combinations of lights appear.

The bulbs are mounted on a perspex sheet marked out in squares (see Fig. 10), each square being big enough to have a number written on it in easily-erased wax pencil. The rear of the perspex sheet is painted white for ease of visibility. The columns on the board are marked $1, x_1, x_2 \dots$ etc. (or whatever the variables may happen to be) and the rows are labelled $x_1, x_2 \dots$

The number of rows is one fewer than the number of columns, so in order to keep the current distributions in balance as previously mentioned, a further row of bulbs is also present but is hidden under the board.

Fig. 8. The complete apparatus.

These bulbs are indicated as black circles on the matrix of Fig. 9. Switches S_c and S_r are mounted on a separate box connected to the display board via multiway plugs and sockets. The transformer is under the display board.

The whole display unit provides a slightly amended way of representing a signal flow graph. The coefficients of the equations in signal flow form (equations 2) are written on to the board so that a row represents the contribution of the quantities at the head of the columns to the variable of that row. For example, the first row, representing x_1 , has 2×1 , $0.5 \times x_2$ and $2 \times x_3$. The equations can therefore be set out very simply and easily on the display board.

By setting the switches S_r and S_c one may now ask, for example, the question "is there a direct contribution from x_1 to x_3 ?" The switches are set as in Fig. 9 so that row x_3 and column x_1 are connected to the e.m.f. and the light indicates the required contribution which is the direct branch in signal-flow graph terms. If no such path exists, the blank square indicates that this is so.

The board now has to be modified so that one may ask the question "is there a path from x_1 to x_3 via some other chosen node (say x_2)?" The method of doing this is also indicated in Fig. 9. The rather complicated-looking switch S^* is actually just a way of obtaining a double-pole, 3-way switch with a convenient toggle action. It is mounted on the lower left-hand corner of the display unit. When the switch lever is in the central position the four changeover contacts are in the positions shown in Fig. 9. The incoming voltage from the transformer is thus applied to the rotary contacts of S_r and S_c .

A row of double-pole rotary switches called the "eliminate" switches is fixed to the right-hand side of the display, one switch for each variable. On the display board shown in Fig. 10 these are provided with the three settings "off", "eliminate" and "gone". (The "gone" setting is used in connection with the automatic control unit, and is inoperative with the simple manual plug-in.) When a variable, say x_2 , has been chosen for elimination the corresponding "eliminate" switch is closed. This connects lines U and L to row x_2 and column x_2 .

*Type S.W.11-002AHH made by S.T.C. and available from I.T.T. Electronic Services Ltd., Edinburgh Way, Harlow, Essex. When the lever of switch S is moved to one extreme position the two lower sets of contacts only change over so that the e.m.f. is now connected between column x_1 and row x_2 . When S is moved to the other extreme the e.m.f. is connected between column x_2 and row x_3 .

Therefore one may now ask the two questions:

- (i) "Is there a direct path from x_1 to x_3 ?" Answer: indicated by the light which glows when S is in its central position.
- (ii) "Is there an indirect path from x_1 to x_3 via x_2 ?" Answer: indicated by the two lights which flash when the switch S is moved from one extreme to the other.

One further facility is available. Before elimination of a variable can be carried out, any self-loop must be removed from the corresponding node. A row of push-button switches marked "test variable" is mounted above the variable columns. When switches S_c and S_r are set at the "test" position "T", depressing one of these buttons will light up the square on which the self-loop will be represented if present. These push buttons enable one to identify self loops very quickly.

The procedure for solving equations is thus as follows:

- 1. Write the equations in signal-flow form and enter the numbers on the board as described previously.
- 2. Select the first variable for elimination. Set switches S_r and S_c to "T", and use the push button to see if there is a self-loop on that variable. If so multiply all numbers in the row where the light appears by 1/(1-T), T being the self-loop transmittance, indicated by the light. If one has a choice of which variable to eliminate first, it clearly saves work if one picks a variable with no self-loop
- 3. Set the "eliminate" switch for the selected variable.
- 4. Set S_c to 1, and S_r to the other variables in turn. At each setting, move the lever of S up and down. Two lights will flash; take the product of the numbers in these squares (i.e. the transmittance of the path being destroyed) and add it to the number in the square illuminated when S is in the central position. The use of a wax pencil makes this easy. Do *not* erase any numbers at this stage except that in the "addition" square.
- 5. Set S_c to x_1 , and repeat step 4. Repeat again for all the rest of the settings of S_c so that all possible combinations are tested in logical sequence.

	1	\mathbf{x}_{i}	X ₂	X ₃	X+	X,	×		30
x,	2	0	-5	2	0	()	9	- 6	
X,	4	-4	0	-2	0	()	9	4	
x ₃	-20	3	8	9	0	a	9	-	
×4	0	C	0	0	0	0	0	- 5	
×s	G	0	0	0	0	9	0	-5	
×	0	0	O	0	9	i)	Q	- 5	0

Fig. 10. Detailed view of display board set ready for solution of equations (2).

- 6. When the last setting of S_c and S_r has been reached, rub out the numbers in the row and column of the eliminated variable. Restore the "eliminate" switch to its "off" position.
- 7. Select a new variable for elimination, and repeat steps 2 to 6 until all but the desired variable have been eliminated—the value of that variable can easily be obtained from the last remaining equation.

Note: once a variable has been eliminated there is no need ever to set either S_r or S_c to that variable again. Once it's gone, it's gone!

When one goes through this procedure step by step as described above, a little thought will show that occasionally one is asking the machine a nonsensical question. For example, if S_c was set to x_1 and S_c to x_3 , and the "eliminate" switch for x_1 was set, this would be asking the question "is there a path from x_1 to x_3 via x_1 ?" which really makes no sense. An even more pointless question is asked if S_r , S_c and the "eliminate" switch are all set to the same variable, say x_3 . This would correspond to the question "is there a path to x_3 from x_3 via x_3 ?"

Fortunately one does not have to remember to avoid these questions. When a sensible question is asked, three separate lights in three separate squares will light up for the three positions of S. For any nonsensical question the same light will be lit for two or more of the settings of S. The rule is thus simply this: only if three separate lights come up need multiplication and addition be carried out. In all other cases ignore the whole thing and carry on to the next setting of S_r and S_c .

As long as the procedure is followed—and it is one of these things that is really very much easier to do than to describe—the solution of the equations is reduced to a series of very simple multiplications and additions as described by the lights. As long as the machine knobs are rotated according to the strict logical sequence described above, it is deciding what steps should be taken; the operator merely has to take them as instructed.

Automatic model

The manual model just described is simple to construct, easy to operate and is ideal for instructional purposes, but it does demand a certain degree of alertness because of two minor operational disadvantages, viz.

- 1. When one has eliminated a variable, one must remember not to set the switches to that variable again. If one forgets this, nothing tragic happens to the calculations; one is merely carrying out unnecessary operations which will eventually be ignored.
- 2. Sometimes, following the strict logical procedure one is asking silly questions of the machine. These cases are easily spotted as previously indicated.

The more fully automated model about to be described was designed to remove these slight disadvantages thereby removing (almost!) all necessity for the operator to think, leaving him one job only; namely to carry out whatever operations the machine demands.

The basic machine is the same as before, but the two manually operated switches

Combined with

Eliminate switches of Fig. 9

 S_r and S_c in the control box are replaced by switches operated by rotary solenoids designated Sol_r and Sol_c in Fig. 11. Sol_c operates three banks of contacts; Sol_r operates four banks. Each bank is a one-pole 11-way switch. In the twelfth position the moving contacts are connected to themselves. The banks S_r and S_c are connected to the display board exactly as shown before in Fig. 9.

The solenoids can be operated in two ways. If voltage is applied to the terminal labelled d, the coil is energised and the solenoid moves on one step. It remains energised until the voltage is removed, and a further application of voltage is needed to move it on again. If the voltage is applied to the terminal labelled c, the voltage is applied via a set of cam-operated make/break contacts so that the switch will continue to step on until the voltage is removed.

When the "operate" switch of Fig. 11 is depressed, voltage is applied to the d terminal of Sol_r , so that it steps on one place. Thus by continued pressing and releasing of this switch the switches of Sol_r can be rotated as required. This particular machine is designed for 6 variables only. When the switches reach the seventh position, the last switch bank of Sol_r labelled "actuate Sol_r " applies voltage to terminal d of Sol_r stepping it one place. Further operation of the "operate" switch brings Sol_r on a further step. The "self actuate" bank then applies voltage to the c terminals of Sol_r , so that it quickly steps itself back to the starting position. The

arrangement thus far enables the whole array of lights to be scanned in sequence by continual depressing of the "operate" switch on the control unit. The "actuate Sol_c " bank acts as a sort of "carry" mechanism. When the lights have run through one complete sequence of all the columns and rows the S_c bank of Sol_c applies voltage to a bulb mounted on the control box, thereby indicating that one variable has been eliminated and that it is time to select another.

The "eliminate" switches on the display board are operated as three-pole, three-way switches when the automatic unit is in use. In the central "off" position, no connections are made at all. When the switch is set to the "eliminate" position, two of the poles operate exactly as in Fig. 9 and connect the appropriate rows and columns to the U and L lines. The other pole is used as indicated in Fig. 11 to connect a source of voltage to a position on "self actuate" switch banks. When either solenoid steps to this position, it is energised via its c contacts, thereby stepping it on one place. This ensures that disadvantage 2 is removed, so that the machine is never allowed to ask a nonsensical question. When a variable has been eliminated, the "eliminate" switch is set to the "gone" position. This releases the \boldsymbol{U} and L line connections, but continues to supply voltage to the "self-actuate" banks so that the machine remembers that the variable has gone and never sets the switches to that position again.

For convenience, the machine is supplied with a "reset" switch. When this is operated, it supplies voltage to the "reset" banks and the switches are automatically stepped back to the starting position. One or two other features of the circuit are worthy of note. It will be observed that the "operate" switch not only supplies current to the coil of Sol_r , but also disconnects the voltage from the rest of the circuit. Additionally, the contacts labelled MN isolate Sol_c from its self-actuate bank. These precautions are necessary to avoid stray current paths through the circuit producing unwanted operation of the solenoids. For example, let us say that both sets of switches happen to be in the x_2 position. When the "operate" switch is depressed, voltage is applied to the terminal d of Sol_r . Since the cam-operated contacts of this solenoid are closed at this time, current will flow to the self actuate bank of this solenoid, and hence via the "eliminate/gone" rail to the self actuate bank of Solc causing unwanted operation of Sol_c. By isolating Sol_c with the MN contacts and removing voltage from the rest of the circuit this possibility is avoided. A similar difficulty arises during reset if the voltage source is not removed from the other banks of Sol, causing stick-on of the solenoids.

Using this automatic plug-in, operation of the apparatus is very simple indeed, being reduced to continual operation of the "operate" switch. Each time this switch is pressed, one of the solenoids will operate, but if no light appears on the board, no further action needs to be taken other than pressing the "operate" switch again. When a light appears, the switch on the board is moved up and down and the usual multiplication and addition is carried out.

The complete procedure for solving a set of equations is as follows:

- 1. Set out the equations in signal-flow form and write them on to the display board as before. If less than the maximum number of variables is used (less than six on this board) set the "eliminate" switches for the unwanted rows to the "gone" position.
- 2. Operate the "reset" switch on the control unit, and keep it depressed until all solenoid clickings have ceased.
- 3. Select the first variable to be eliminated. Press the "test variable" button for that variable. If a number (T) appears in the square thus illuminated, multiply all entries

in that row by 1/(1-T). Set the switch for that variable to "eliminate". Note that it saves a bit of work if one selects a variable which does not show a self loop when tested.

- 4. Press the "operate" switch several times until the first light is illuminated on the board. Flick the switch on the display board to its two extreme positions; take the product of the numbers thus indicated and add to the square illuminated when the switch is in its central position.
- 5. Press "operate" again and repeat 4 above until the light labelled "select new variable" on the control unit glows.
- 6. Set the switch for the eliminated variable to "gone", and operate the "reset" switch. Select a new variable for elimination and repeat 3 to 5 above until all but one variable has gone.
- 7. At this stage, the board will still be filled with numbers, but only the numbers corresponding to the last remaining variable x_n are significant. The equation in row x_n will be of the form $x_n = \alpha(1) + \mu(x_n)$, from which the value of x_n is easily obtained. The appearance of the board at various stages in solution of equations (2) is shown in the appendix, and it is instructive to study this in conjunction with the signal-flow representation of Fig. 7.

Acknowledgement

The author wishes to express his thanks to R. Davies and A. G. Stone for their help in the wiring-up and testing of this apparatus.

Appendix

States of board for equations (2).

Initial state of board

	1	x_1	x_2	\boldsymbol{x}_3
x_1	2		0.5	2
x2	4	-4		-2
x3	-20	3	8	

After elimination of x_1

	1	x_1	x_2	x_3
x_1	2		0.5	2
x_2	-4	-4	-2	-10
X_3	-14	3	9.5	6

Removal of self-loop from x_2

	1	x_1	x_2	x_3
x_1	2		0.5	2
x_2	$-\frac{4}{3}$	$-\frac{4}{3}$		$-\frac{10}{3}$
x_3	-14	3	9.5	6

After elimination of x_2

	1	x_1	x_2	x_3
X_1	2		0.5	2
x_2	$-\frac{4}{3}$	$-\frac{4}{3}$		$-\frac{10}{3}$
x_3	- 26.68	3	9.5	-25.68

Since x_1 and x_2 have been eliminated, only x_3 remains and the last line represents

$$x_3 = -26.68 - 25.68x_3$$

or $x_3 = -1$

Books Received

Circuit Consultant's Casebook, by T. K. Hemingway, examines numerous circuit design errors. The examples given have all occurred frequently in the author's experience, and range from beginner's mistakes to the pitfalls encountered by experienced designers. Part 1 discusses basic problems and common errors, and part 2 deals with ways of meeting specification requirements not easily met by conventional circuits. This section brings to light some useful new configurations for multivibrators, triggers, timing circuits and constant current sources. This is a thoroughly practical book with a bibliography and very full index. Pp.210. Price 75s. Business Books, Mercury House, Waterloo Road, London S.E.1.

Amateur Radio Techniques (3rd Edition) by J. P. Hawker. The foreword to this book declares it is, "not a book which aims at competing with or displacing the standard handbooks-but rather at extending the readers' awareness of new techniques and providing a source-book for many useful circuits and aerials: an ideas book rather than a constructional manual or conventional text book". The sections cover semiconductors, components and construction, receiver topics, oscillator topics, transmitter topics, audio and modulation, power supplies, aerial topics, and fault finding and test units. An i.f. list is given in the appendix and a useful index provided. Pp. 208. Price 20s plus 2s for postage. R.S.G.B. Publications, 35 Doughty Street, London W.C.1.

Radio Valve and Transistor Data, ninth edition compiled by A. M. Ball, tabulates the characteristics of 3000 valves and c.r.ts, and 4500 transistors, diodes, rectifiers and i.cs. Also included are tables of base diagrams and case and pin connections for valves, transistors, diodes and i.cs; and index to valve and transistor types with suggested near equivalents or comparable types; and a list of trade names and manufacturers' addresses. Price 15s. (£0.75). Butterworth & Co. (Publishers) Ltd, 88 Kingsway, London WC2B 6AB.

eurolec Electronic components, materials and sub-systems, companies and contacts. This book is the first of four replacing the previous single 'eurolec' editions. Items and areas covered in the first four sections of this volume are manufacturers and importers of valves and semiconductors, integrated circuits, passive components, and motor and servo equipment. The next two sections cover manufacturers and importers of raw materials for components, and assembly equipment. Two further sections deal with services to component makers and representatives of these in the U.K. The final section introduces complex companies: the book ends with a list of 833 foreign companies operating in the component sector, an index with telephone directory, and a summary of the firms operating in the 15 main product areas. Pp.432. Price 35s plus 2s postage. David Rayner Associates, Little Waltham, Chelmsford CM3

Corrections

Variable power law video amplifier. Revised circuit is given below for the log amplifier of A. M. Pardoe's variable power law amplifier—published in the December issue, p.597. Fig. 6 should be disregarded. We apologise for the incorrect connections of the log and antilog transistors in Figs 5 and 7. The transistors should have their collector and base connections transposed. In Fig. 7 the emitter of the BFY90 antilog transistor should be joined to the emitter of the ME3002 transistor and some of the electrolytic capacitors should be reversed.

High-quality tape recorder. The following points should be noted with respect to part 2 (December). On p.587 the symbol μ was omitted in col.1 line 9 and col. 2 lines 4 and 15. On p.588 col.2, line 16 should read '24V r.m.s. at 0.7mA'. In the captions to Figs. 13 and 14 'connect R to A' should read 'connect R_{56} to A'. Table 5 is referred as Fig. 28 on Fig. 5. In Fig.15 the erase output should go to S_{kj} and S_{kk} —the first k is drawn as a 2. Table 2 (part 1 November issue) gives R_y as μ F instead of Ω

The Long Run

Stability in the time domain

by Thomas Roddam

In the long run we are all dead. Even if you disagree with Maynard Keynes you can hardly doubt that all human wisdom and civilization is centred on Yorkshire: if you do, you are not a Yorkshireman and your opinion is worthless anyway. Never do owt for nowt.* Both these statements are the basic definitions of a stable system, although the second includes the superposition principle. What is a stable system? If there is no input, in the long run there will be no output. More generally, there will only be an output which is directly dependent on the input. The system with which we are usually concerned when we begin to talk about stability is generally one which can be split into a forward path containing active elements and a return path which usually contains only passive elements. This makes sense, because we must have an energy supply if we are to get an output with no input, and active elements are the way in which power is coupled into the system from an outside source. The restriction of activity to the forward path is not necessary. It just happens that the results we want are usually obtained this way

The experienced reader will already be muttering $\mu/(1-\mu\beta)$ to himself. This old friend, the gain of a feedback amplifier, will, I am sure, crop up sooner or later. So will all that stuff about plotting $\mu\beta$ and seeing if it encircles the magic point. But μ and β do not contain any mention of time: what have they to do with what will be happening tomorrow?

Having mentioned feedback amplifiers it is necessary to say immediately that it is not necessary to have a feedback construction in order to have a system which is unstable. We can make use of two-terminal negative resistance devices. In studying these devices it is common practice to analyse them on a feedback basis, but this can be regarded as artificial, as a deliberate choice of a model which can be constructed out of other devices. We have, with the introduction of the transistor, spent much more time thinking about how active elements work than we ever did in the days of valves. In the pretransistor days we left the valve-maker alone to get on with his job, and accepted that somehow he had produced the characteristics shown in the data sheets. This disclaimer noted, it may still be convenient, though not

Any study of the stability of a system which is assumed to be linear must be independent of the size of the signals in the system. Reasonably, then, we might simplify matters by having no signal at all. This, oddly enough, just will not work. An unstable system can be poised at a balance point. Like a good sheriff in a bad Western, it is ready to ride off in all directions. A neurotic sheriff, however, like what's-his-name's ass, would be incapable of choosing any particular direction, and would remain at rest. A small shove is needed. In analytic terms, the essence of instability is that a signal will grow exponentially, but nothing can grow to nothing more than nothing. If we want to know whether a system is stable or is balanced at a point of instability like a needle standing vertically, we must apply a small disturbance.

One thing which I find repeatedly in writing these articles is that it is the obvious, simple, taken-for-granted things which are the awkward ones to discuss. When we are considering the behaviour of an amplifier we accept the idea of an input signal and an output. If we want to consider a two-terminal system we can get along with the idea of voltage as a cause, current as an effect. Without ever saying so explicitly we establish a set of rules which, because we have a pretty good idea of the answer, keep us out of a muddle. It is when we try to avoid relying on these instinctive, to engineers, rules that we begin to ask awkward questions. Just how awkward the questions can be has been shown fairly recently by the man who tried to build an un-ridable bicycle. Every schoolboy knows why a bicycle does not fall over as you ride it. The only trouble is that when you get rid of the schoolboy's stabilizing forces the bike is still stable.

As we are considering systems in terms of their behaviour in time, we may try to separate out cause and effect. Any real system will have some resistance somewhere in it. This is a less restricting assumption than appears at first sight: if it is an active system it can still have negative resistance elements which balance out the losses, but it must not simply store all the energy which has been put into it for ever. We now carry out our first bit of cheating. We know that an ideal

transmission line terminated in its characteristic impedance looks like a resistance (Fig. 1). I do not think that this assumption requires for its proof anything which we are about to prove, so that it is not much of a cheat. Accepting this as permissible, we can

Fig. 1. Viewed from AB these two circuits look the same.

Fig. 2. We can move R away from the system on the end of a line of characteristic impedance R.

cut out of our system one convenient resistance, R, and connect into the system a length of transmission line in the way shown in Fig. 2. We shall treat the whole system as a two-terminal system, although it may in fact have a number of links to the outside world, and indeed, the outside world may be part of the system. A public address system, for example, includes the air path from loudspeaker to microphone, including any reflections from the microphone user, in the stability criteria.

There are restrictions on the choice of the resistance. I have never seen this discussed, because I think it only appears when the configuration is one which is not necessarily a minimum phase amplifier structure. If we take the resistance corresponding to the detector arm of a perfectly balanced bridge

necessary, to mention feedback systems in the basic analysis.

^{*}This is a shortened version of the extract: if tha does owt for nowt, do it for tha self.

[†]Buridan's.

it is not really part of the network at all. The resistance value does not affect the performance of the bridge, at balance. The rule which we can make is that R is a resistance which matters to the network.

With Fig. 2 we are all ready to go. Let us apply a signal across R. A convenient way of stirring up the network is to follow the example of Albert on his last visit to Blackpool. A quick prod, though not with an umbrella. Let us apply the pulse shown in Fig. 3. The immediate result will be that a current pulse $I_R = V_0/R$ flows through R. In addition, a current $I_T = V_0/R$ flows into the transmission line. We can calculate in formal terms the result which I am going to express in anthropomorphic terms. Provided that the line is long enough, and long enough means that $l > c/2t_0$, where c is the velocity of electromagnetic waves in the line, and is about 3×10^{10} cm/sec, the generator will think that the line is terminated in its charac-

Fig. 3. Signal applied to terminals AB.

Fig. 4. Two possible results across AB.

teristic impedance. By the time we can get a message back from the far end of the line the generator has been disconnected. The system is completely isolated, but a current of V_0/R flows in at the terminals for a time t_0 . We have roused the lion.

Current begins to flow in all directions inside the system. Any current which would have normally passed through the resistance R flows out into the transmission line and, when it reaches the end, is not reflected. By watching across the resistance we can see what is happening. Two kinds of behaviour may be observed, and versions of these are shown in Fig. 4. In (a), as in (b), we see the initial shock, followed by a rest period up to time t_{2l} , the time taken for the message to pass down the line and the reply to come back. In (a) the returning current swings up and down a few times, but dies away. In (b) it grows and grows. Using conventional language, (a) represents a stable system, while (b) represents an unstable system.

The use of a transmission line to separate out the comings and goings of power is a convenient technique even when it involves some assumptions which are wholly unjustified. An example of this is in the use of

Fig. 5. Circulating pulse in feedback amplifier.

inverters with reactive loads. We can picture the reactive volt-amps heading down the line from the transistor and being reflected back. On reaching the inverter again we must provide a path for this energy, which means we must put in some diodes, and a reservoir for the resulting unidirectional "thing". The circuit configuration determines whether the reservoir is to be an inductance or a capacitance. If we fail to do this we find the reflected energy runs into a dead stop, and there is infinite current or voltage.

Pulse following can be applied to feed-back amplifiers. The simple treatment shows a pulse going through the amplifier, then through the feedback path back to the input, and then round again. This is shown in Fig. 5. In any practical situation, of course, we do not get an output which is a short sharp pulse. The finite bandwidth of the amplifier broadens the pulse, and broadens it to such an extent that the first output has not died away before the second has begun to arrive. Very often the output is a composite of a substantial number of passages round the loop.

We must return to the general matter of stability. It is clear that it is a matter of what happens after the system is given a momentary shock. Because the output of an unstable system increases continuously it is not really very important what kind of a trigger shock we apply, so long as we keep it and its direct consequences small. The instability will dominate the behaviour once it really gets going. It is usually convenient to make use of a constant input, that is, to insert a battery at some point in the system.

The usual elements of a system are characterized either by time-independent proportionality, like

$$E = R \times I$$

$$E_{out} = \mu \times E_{in}$$

$$E_{sec} = n \times E_{prim}$$

$$I_{sec} = \kappa \times E_{prim}$$

for a resistance, an amplifier, a transformer, or a gyrator: by differentiation or integration, like

$$E = L dI/dt$$
 $I = 1/L \int E dt$
 $I = C dE/dt$ $E = 1/C \int I dt$

by delay, $E_2(t) = E_1(t-t_0)$, for a line.

Non-linearity can make matters more difficult, but for linear systems we have a whole set of equations of this kind which can be taken together to give a function of time which is the true description of the system behaviour. For a series *LCR* circuit

$$L\frac{dI}{dt} + RI + \frac{1}{C} \int I \, dt = E$$

The expression on the left, which we can write as

$$\left[L\frac{d}{dt} + R + \frac{1}{C}\int dt\right]I$$

describes the way current flows following the application of E. It is a fairly simple expression, and all the problems which matter, once you have dealt with this one in the examination room, are a good deal more complicated. The problem then is to deal with these very unwieldy functions of time. We must now look in more detail at a topic discussed several months ago, though now we shall consider it rather more formally. We are dealing with a function of time: we can reach solutions to our problems by a roundabout route, in which we transform this function to a function of another variable, manipulate this, and then transform back to time. Although it may seem to be involved, it is the essential principle of the by-pass: even though the apparent route is longer, you will not get bogged down on the way. The transformation we use is the Laplace transform. The basic requirement which is imposed on the function of time, f(t), is that it must be defined and single valued almost everywhere for $t \le 0$ when t is real, and

$$\int_0^\infty f(t) \exp\left(-\sigma t\right)$$

for some real number σ . The requirement that f(t) is single valued almost everywhere allows for steps, but not for the odd functions one can dream up which seem to go on being in two places at once. In practice one can say that if an engineering function looks as though it is not transformable, look first for cross-talk between the X-plate and Y-plate connections of the oscilloscope.

Another feature of f(t) is, in plain words, that if it increases with time, as it will in some unstable systems, it should not increase faster than exponentially. As long as f(t) grows like exp (gt), where g can be as big as you like, we can choose a value of σ , say (g+1), such that f(t) exp $(-\sigma t)$ is decreasing. If we make the choice $\sigma = g+1$ we know that f(t) exp $(-\sigma t)$ is less than exp (-t), and the integral will be finite. For ordinary circuits we know, and can prove rather easily, that the exponential is the *natural* thing: in a plant control problem it could be wise to check that f(t) is not explosive.

Once f(t) is known to satisfy the rules, we must take a new variable s = a+jb, with $a = \sigma$. Then the Laplace transform is described by the equation

$$\int_0^\infty f(t) \exp(-st) dt = \mathcal{L} f(t) = F(s)$$

The Laplace transform of f(t) is a new function, a function of this new variable s, F(s).

The inverse transform is needed, and can be written as

$$f(t) = \mathcal{L}^{-1}[F(s)]$$

subject to a limitation that $t \ge 0$. This is because we have defined the original trans-

form as the integral from now to eternity, and it is too late to go raking up old promises, as the politicians say. In formal mathematical terms, we have

$$f(t) = \frac{1}{2\pi j} \int_{C-j\infty}^{C+j\infty} F(s) \exp(ts) ds$$

in which $C > \sigma$.

As we saw in a previous article, we can look up in tables the transform pairs we need. It will be useful here to consider one or two special cases. First let us take the unit step, at time t = 0. The unit step is unity almost everywhere: almost, because at t = 0 it is both zero, for $t \to 0$ from t < 0, and unity, for $t \to 0$ from t > 0. It is \mathcal{L} transformable, and if we call it u(t),

$$\mathcal{L}u(t) = \int_0^\infty 1. \exp(-st) dt$$
$$= \frac{1}{s} \exp(-st) \Big|_0^\infty = 1/s$$

Another transform worth looking at in the context of this article is the delayed function. Fig. 6 shows a quite arbitrary time function

Fig. 6. A function, and the corresponding delayed function.

f(t), and the delayed version, which is zero until t = a, and is then f(t-a). Notice that if f(t) has some shape at t < 0, this part of f(t) does not appear in f(t-a). To find the transform of f(t-a) we take a new variable $\tau = (t-a)$. Then

$$\mathscr{L} f(\tau) = \int_0^\infty f(\tau) \exp(-s\tau) d\tau = F(s)$$

Nov

$$\int_0^\infty f(\tau) \exp(-s\tau) d\tau =$$

$$\int_0^\infty f(t-a) \exp(-st) \exp(as) dt$$

We are integrating with respect to t, so the constant $\exp(as)$ can be taken outside. Furthermore, as f(t-a) is zero from t=0 to t=a we can take t=0 as the lower limit for the integration.

Then

$$\int_0^\infty f(\tau) \exp(-s\tau) d\tau =$$

$$\exp(as) \int_0^\infty f(t-a) \exp(-st) dt$$

and so

$$\mathscr{L} f(t-a) = \int_0^\infty f(t-a) \exp(-st) dt$$

$$= \exp(-as)F(s)$$
in which $F(s) = \mathcal{L} f(t)$

This, the shifting theorem, enables us to form the transform for the pulse shown in Fig. 3. Here we have

$$P(t) = V_0(u(t) - u(t - t_0))$$

$$\mathcal{L} P(t) = V_0 \left(\mathcal{L} u(t) - \mathcal{L} u(t - t_0) \right)$$

$$= V_0 \left(\frac{1}{s} - \frac{1}{s} \exp(-st_0) \right)$$

$$= \frac{V_0}{s} \left(1 - \exp(-st_0) \right)$$

If we want a very short impulse we can make t_0 very small. To keep some meat in such a short pulse we increase V_0 . If we make V_0t_0 constant, say $V_0 = 1/t_0$, we get

$$\mathcal{L}P_i(t) = \frac{1 - \exp\left(-st_0\right)}{st_0}$$

and now, as $t_0 \to 0$, the unit impulse at t = 0 becomes

$$\mathcal{L}\delta(t)=1$$

This extremely simple result is a great encouragement to the use of the unit impulse in problems in which the Laplace transform method is adopted.

It must be pointed out that nothing has been said about the variable s having any physical meaning. If you ask your bank to get you a 10 Eurodollar bill you will be told that there isn't such a thing, yet bankers will whisk Eurodollars round the world as fast as the electric telegraph will carry them. For us, s is just a thing we use in the mathematics, and to anyone who confuses physical reality with the state of being a thing I would remind you that it has been ruled by the British courts that a goldfish is not a thing. There's glory for you.

A very important piece of basic mathematics, known since at least 1833, connects the response of a system to a unit impulse and its response to any arbitrary function of time. It is called the convolution integral. I do not think we need go through the analysis and proof. The procedure for using it is more to the point.

Let the response to the unit impulse be $f_1(t)$ Find the Laplace transform $F_1(s)$ Let the actual excitation be $f_2(t)$ Find the Laplace transform of this $F_2(s)$ Multiply $F_1(s)$. $F_2(s)$ Find the inverse Laplace transform

$$\mathcal{L}^{-1} F_1(s) . F_2(s) = \mathcal{L}^{-1} F(s)$$

This f(t) is the response of the network. Having got this far without mentioning frequency or frequency response, it would be nice if we could go right on in the same way. The real justification of the purely formal approach will appear when, in a later article, we examine non-linear systems. At least, I hope we do. They are much more complicated than linear systems, and it will be quite a struggle to get the skeleton of the techniques out in a clean and recognizable form. With linear systems the problem is simply how to make a change to the old familiar frequency without letting it look too important

A procedure which will establish the "style" of F(s) is to look at the transforms of some probable time functions. The simplest of these is the exponential decay,

$$f(t) = \exp(-\alpha t)$$
For this $f(s) = \int_0^\infty \exp(-\alpha t) \exp(-st) dt$

$$= \int_0^\infty \exp[-(s+\alpha)t]$$

$$= 1/(s+\alpha)$$

This is finite for all values of s except $s = -\alpha$. It has a *pole* at $s = -\alpha$. This is shown as a diagram in Fig. 7.

If we work the other way round we can start off with two poles positioned along the

Fig. 7. The s-plane, (s = a+jb), showing the pole of s at $s = -\alpha$.

$$\begin{vmatrix} F(s) & f(t) \\ \frac{1}{(s+\alpha_1)(s+\alpha_2)} & \frac{1}{(\alpha_2-\alpha_1)} (\epsilon^{-\alpha_2 t} - \epsilon^{-\alpha_1 t}) \end{vmatrix}$$

Fig. 8. S-plane with two poles on the -a axis.

negative *a*-axis, shown in Fig. 8. Excluding all unnecessary constants, this is an *s*-function which is infinite for

$$s = -\alpha_1$$
 and $s = -\alpha_2$

It can be written

$$F(s) = \frac{1}{(s + \alpha_1)(s + \alpha_2)}$$

and the inverse Laplace transform will give

$$f(t) = \frac{1}{\alpha_2 - \alpha_1} \left[\exp(-\alpha_2 t) - \exp(-\alpha_1 t) \right]$$

Given this form of

$$F(s) = 1/[(s+\alpha_1)(s+\alpha_2)]$$

= 1/[s^2 + (\alpha_1 + \alpha_2)s + \alpha_1 \alpha_2]

it is not unreasonable to look at the general form

$$F(s) = 1/(s^2 + ls + n)$$

When we solve the quadratic we may find that we have not the two real roots, but a complex conjugate pair. For this case we can write

$$F(s) = 1/[(s+\alpha)^2 + \beta^2]$$

Fig. 9 shows the two poles at $(-\alpha \pm i\beta)$.

Perhaps one more, Fig. 10, showing a zero. I am not going to go into this except to point out that this gives us a reasonable basis for guessing the kind of functions we will normally encounter. Notice how in Figs 9 and

$$\frac{F(s)}{\frac{1}{(s+\alpha)^2 + \beta^2}} \frac{f(t)}{\beta} e^{-\alpha t} \sin \beta t$$

Fig. 9. S-plane with complex conjugate poles.

$$\frac{F(s)}{\frac{(s+\alpha_2)}{(s+\alpha_1)^2+\beta^2}} \quad \frac{f(t)}{\beta} e^{-\alpha_1 t} \sin(\beta t + \theta)$$

Fig. 10. Two poles and a zero in the s-plane.

10 the poles off the a-axis have brought in the sine function. This, the function which repeats itself over and over again, is where the frequency concept really does burst into the picture.

A useful theorem is the final value theorem. This tells us where f(t) will finish up at infinite time:

$$\lim_{t\to\infty}f(t)=\lim_{s\to0}sF(s)$$

The only trouble with this, for our purposes, is that there must be no singularities of sf(s) on the b-axis or in the right-hand half of the s-plane. Whichever way we turn we are faced with this basic reference back, in the end, to Cauchy. It would seem that one

should be able to determine the stability of a system in terms of time alone. In one sense you can, you can give it, the complete system, a tap. Equally you can write down all the equations and solve them by conventional means. There is nothing wrong with this as an approach. In ordinary circuits you take your stand on Maxwell or Kirchhoff and bulldoze your way through to the end. I do not know what the most convenient form of disturbance would be for this treatment.

But: the system is not stable and must be modified. It is here that time domain analysis turns out to be unprofitable. You simply cannot get any feel, any intuition, to guide you towards the necessary changes. Everyone who has worked with feedback systems knows how quickly one does get this intuitive feeling for the kind of behaviour, in the frequency domain, which can be made stable. Everything conspires to force us into the s-plane. Oddly enough, none of the economics texts I have looked at ever mentions anything of this kind: economists are apparently not interested in stability.

It is in the s-plane that we find it relatively easy to combine systems, to add on lag and lead networks. And so we are back to Nyquist. We have tried to stick to the time domain, we have introduced a transformation which will let us combine circuits and apply arbitrary inputs, and at every turn a mathematician has sprung up waving a placard which says "Hands off the right-hand half of the plane".

There is one feature of the Laplace transform approach which is not really made clear in some of the texts. In Fig. 8 we saw what happened with two poles at $-\alpha_1$ and $-\alpha_2$. Suppose that we run them together. When

$$F(s) = \frac{1}{(s+\alpha)^2}$$

we have $f(t) = t \exp(-\alpha t)$

We have seen that we can obtain roots which are off the axis, and we might expect that somehow, somewhere, we should get solutions of the form

$$f(t) = t \sin \omega t$$

In fact this is one of the odd cases which is just caught by Cauchy's theorem. It is of special interest, however, because it would appear that this kind of behaviour can be especially significant in systems which incorporate a gyrator or its mechanical equivalent, the gyroscope. In most circuit problems an increase in the losses will usually tend to shift the roots in the s-plane towards increased stability. If the system is held stable simply by the gyro action, an increase in losses may cause instability. The terminology I find for this is that the system is ordinarily stable but secularly unstable. It would appear to be a particular form of what we usually call conditionally stable.

All through this article I have had the feeling which I assume is experienced by a member of a crowd which is being "controlled" by the soft, sophisticated, technique. We all want to march thataway, but somehow we seem to be moving thisaway. What is there about the time function which makes it so difficult to get to grips with it. There seem to be several features which may

explain our trouble. When we are dealing with frequency we can adopt the root locus method, or a distant relation of it, and single out a critical factor which will dominate the stability in a particular range of parameters. While we are watching the movement of this root we do not care too much what the other roots are doing, provided always they stay to the left of the one we are following. It is not at all so easy to keep the critical term of the time function under surveillance.

Rather more fundamental, perhaps, is the fact that when we are working in the time domain we are working with functions, exponentials and sines are all over the place. The picture is a wavy line across the sheet of paper. In the s-plane the picture is simplified to fixed points arranged according to simple rules. Fig. 9 was easy to draw, but a damped sine wave, complete with phase shift, is not nearly so simple. It is much easier to answer the question "Where are you?" than to answer "Exactly what are you doing?". Although one can make a kind of fundamental case for refusing to use the Laplace transform or Fourier-Mellin or what have you, can you restrict your stand, or must you avoid sines and cosines and exponentials, remaining with the basic power series which these things represent? In modern engineering it takes all the mathematics you can learn to stay where you are. So, in the long run we are all dead, but meanwhile we are up the pole.

Ferrograph at work with BOAC: it will play as well for you at home

BOAC use Ferrograph Series 7 tape recorders at their Flight Control Centre, London Airport. You will see Ferrograph recorders in many situations where long-term reliability is vital. With its unique specification and combination of

facilities, the Ferrograph recorder is the ideal choice for any private or professional use—wherever you want quality, dependabilty, and exciting possibilities for imaginative recording.

Now Ferrograph has several new

features to add to its already impressive list, plus the extra bonus of a three-year guarantee on all parts.

Ferrograph Series 7 tape recorders are British made, available in mono and stereo, with and without end amplifiers. All instruments are solid state, three speeds. All have two inputs per channel with independent mixing. independent tone controls on each channel, signal-level meters for each channel on playback and record, re-record on stereo models. The output is 10 watts per channel. The VU meter is now illuminated. There is a new record lock device. Ferrograph recorders are available in elegant hardwood or vinyl-covered cases.

Follow the professionals, choose the recorder you know will serve you best at home or in your work: Ferrograph. Your local Ferrograph specialist will be pleased to demonstrate it to you. Alternatively, please write or ring for details and address of nearest stockist. The Ferrograph Co Ltd, The Hyde, Edgware Road, Colindale, London, NW9. Tel: 01-205 2241. Telex: 27774.

Ferrograph

 Now with 3-year guarantee on all parts

International Distributors

Leroya Industries Pty, 266 Hay Street, Subiaco, Western Australia 6008, Australia; Matelectric, Boulevard Leopold II, 199, 1080 Brussels, Belgium; H Roy Gray Ltd, 14 Laidlaw Boulevard, Markham, Ontario, Canada; Cineco, 72 Avenue des Champs Elysees, Paris 8e, France; Henry Wells & Co. K G, 1040 Wien 4, Danhausergasse 3, Austria; Ferropilot GmbH & Co., K G, Hamburg 39, Sierichstrasse 43, West Germany;

WW-077 FOR FURTHER DETAILS

www.americanradiohistory.com

Hi-Fi Installations, P.O. Box 2430, 276 Andries Street, Pretoria, South Africa; Elpa Marketing Industries Inc, New York Park, New York 11040, New York, U.S.A. There are Ferrograph Distributors also in most other countries.

Please obtain details from the London office.

It's new and great from Shure...

the most-for-your-money

588 Series Unisphere B

This is the one. The mike with the most.

A new fine quality Unisphere that gives you maxi features at a mini price.

See what you get

Negative Feedback in Transistor Amplifiers

Principles of single-stage and two-stage circuits

by S. W. Amos*, B.Sc., M.I.E.E.

There is little doubt that transistors will soon have replaced valves in all low-power applications—hardly surprising because in many respects they are superior. Transistors are, however, inferior to valves in that properties such as h_{fe} are subject to wide manufacturing spreads and to large variations with temperature. Moreover transistors have a leakage current which is highly dependent on temperature although at normal temperatures it is negligible in silicon devices. To manufacture transistor equipments with a consistent performance, the effects of differences in the value of h_{fe} must be minimized and the normal technique is to employ negative feedback. Provided sufficient feedback is used many significant properties of an amplifying stage can be made substantially independent of the parameters of the transistors, being determined instead by the components of the passive network used to apply feedback. Thus it is often possible to state the gain, transfer resistance, mutual conductance, etc., from an inspection of the component values. The use of negative feedback reduces gain, of course, but has advantages such as an improvement in linearity in amplifying

In this article various circuits which can be used to apply feedback are discussed and typical calculations are given.

Derivation and injection of feedback signal

In general negative feedback is applied to an amplifying stage by taking a signal from the output and returning it to the input in such a way that the returned signal is in antiphase to the input signal. The input to the amplifier is now the difference between the source and feedback signals. The larger source signal required for a given amplifier output expresses the effective reduction in gain due to feedback. The link which feedback establishes between the input and the output of the amplifier enables a number of deficiencies in the output to be reduced. For example, if the gain of the amplifier falls at high frequencies, so also does the feedback signal amplitude. If the source signal is of constant amplitude, the amplifier input is thus greater at high than at low frequencies. This tends to offset the reduced gain and maintain a constant output signal. In

this way negative feedback improves frequency response: it also brings about the other improvements in performance mentioned in the first paragraph.

The single-line diagram of Fig. 1 illustrates the principle of negative feedback

Fig. 1. Fundamental representation of negative feedback.

but does not show how the feedback signal is derived from the output or how it is injected into the input of the amplifier. The effect of feedback on the input resistance and output resistance of the amplifier is primarily determined by the way in which the feedback connections are made.

Two ways in which a feedback signal may be taken from the output of an amplifier are illustrated in Fig. 2. At (a) feedback is obtained directly from the output terminals

Fig. 2. General circuits for (a) parallel-derived and (b) series-derived feedback.

(or it can be taken from a potential divider connected across the output terminals). The significant feature is that the feedback circuit and the output circuit are in parallel and that the feedback signal is proportional to the output voltage. Any increase in the load resistor tends to increase the output voltage and hence the feedback signal. As a result the gain of the amplifier is reduced and the rise in output voltage minimized. Parallel-derived feedback thus tends to maintain a constant output voltage: in other words it effectively reduces the output resistance of the amplifier.

In Fig. 2(b) feedback is obtained from a resistor connected in series with the output load of the amplifier. The feedback signal is thus proportional to the output current of the amplifier. Any increase in the load resistor tends to reduce the output current and the feedback signal. As a result the gain of the amplifier is increased and the fall in output current is minimized. Series-derived feedback thus tends to maintain a constant output current: in other words it effectively increases the output resistance of the amplifier.

Two corresponding circuits for injecting the feedback signal into an amplifier are

Fig. 3. General circuits for (a) parallelinjected and (b) series-injected feedback.

shown in Fig. 3. At (a) feedback is injected directly into the input terminals via a series resistor so that the feedback circuit and the input circuit of the amplifier are in parallel. The input signal has to offset the current from the feedback circuit and to supply the input current for the amplifier. For a given input voltage therefore, a larger input current is required as a result of the addition of feedback: this is equivalent to a reduction

Table 1

Type of feedback connection	Effect on input resistance	Effect on output resistance
series-derived		increased (= $g_m R_e r_c$)
parallel-derived		decreased (= R_b/h_{f_0})
series-injected	increased (= $h_{te}R_{\theta}$)	
parallel-injected	decreased $(=R_b/A)$	
•		

The formulae given in the table are derived in the article

^{*}Head of Technical Publications Section, B.B.C.

in input resistance. Thus parallel-injected feedback effectively reduces the input resistance.

In Fig. 3(b) the feedback signal is connected in series with the amplifier input circuit. The input signal thus has to offset the voltage from the feedback circuit and to supply the input voltage for the amplifier. For a given amplifier input current, therefore, a larger input voltage is required as a result of adding feedback; this is equivalent to an increase in input resistance. Seriesinjected feedback effectively increases the input resistance of the amplifier.

The effects of the two types of feedback derivation and injection are summarized in Table 1.

Current and voltage amplification

A knowledge of the input resistance of an amplifier is necessary if it is to be matched to an external source, e.g. a microphone, to obtain maximum input signal. Similarly a knowledge of the output resistance is important if the amplifier is required to feed a line which must be accurately terminated.

However, the input and output resistance of the individual stages of a multi-stage amplifier are also important. When transistor stages are connected in cascade the performance of each stage should not be seriously affected by the coupling to the previous or the following stage. There are two ways in which this isolation can be achieved. One method is to ensure that a stage with a low output resistance is followed by one with a high input resistance, the high resistance being large compared with the low. The output voltage of the first stage is then also the input voltage of the second and this common voltage is little affected by variations in input or output resistance. In such inter-transistor coupling circuits the signal is clearly most conveniently regarded as a voltage and the design of such circuits is best carried out in terms of this voltage

Alternatively isolation can be achieved by arranging for a transistor with a high output resistance to be followed by one with a low input resistance, the high resistance again being large compared with the low. In a connection of this type the output current of the first transistor is the input current for the second and this current is little affected by variations in the two resistances. For transistor couplings of this type the signal is most conveniently regarded as a current and the design of the circuit is best carried out in terms of this current.

The input and output circuits of transistors can thus be classified as suitable for voltage or current operation depending on the magnitude of the resistance as indicated Table 2. However it is not the absolute magnitude of an input or output resistance which is of importance, but their ratio. For example a transistor stage with an input resistance of 2000 Ω is best regarded as a current amplifier if the source resistance is $100,000~\Omega$ but as a voltage amplifier if the source is only $50~\Omega$.

The input and output resistances of common-emitter and common-base transistor stages are such that a cascade of them is best regarded as a current amplifier.

Table 2

Signal best considered as	Input resistance	Output resistance
voltage	high	low
current	low	high

Fig. 4. General circuits for (a) parallel-derived, parallel-injected feedback and (b) series-derived, series-injected feedback.

Fig. 5. A single-stage amplifier with (a) parallel-derived, parallel-injected feedback and (b) series-derived, scries-injected feedback.

However, within limits we can make the input and output resistances what value we please by suitable choice of feedback circuit. Thus, by suitable design, we can make a transistor stage suitable for an input voltage or current and an output voltage or current. The performance of the stage can thus be measured by the values of I_{out}/I_{in} , V_{out}/V_{in} , I_{out}/V_{in} or V_{out}/I_{in} depending on the type of feedback applied to the stage.

Single transistor stage with base-collector resistor

By combining the circuits of Figs. 2(a) and 3(a) we can produce the circuit shown in Fig. 4(a) in which a single resistor bridges the input and output terminals. The resulting parallel-derived and parallel-injected feedback gives the amplifier a low input and a low output resistance.

Feedback of this type can be obtained by connecting a resistor R_b between base and collector of a common-emitter stage as shown in Fig. 5(a).

This resistor returns a current V_{out}/R_b (proportional to output voltage) to the base of the transistor and this gives rise to a collector current I_c where

$$I_c = h_{fe} V_{out} / R_b$$

from which

output resistance =
$$\frac{V_{out}}{I_c} = \frac{R_b}{h_{fe}}$$

In the absence of feedback the output resistance is the collector a.c. resistance of the transistor which can be of the order of

 $200 \text{ k}\Omega$ for silicon transistors. In a practical circuit R_b might be $50 \text{ k}\Omega$ and h_{fe} 150, giving an output resistance of 330Ω . This illustrates the effective reduction of output resistance brought about by parallel-derived feedback.

At the input circuit we have

$$I_{in} = I_b + I_{fb}$$

and if R_b is low enough, I_{fb} is large compared with I_b and we can say

$$I_{in} \approx I_{fb}$$

Now $I_{fb} = V_{out}/R_b$ and $V_{out} = AV_{in}$ where A is the voltage gain of the transistor from base to collector. Thus

input resistance =
$$\frac{V_{in}}{I_{in}} = \frac{R_b}{A}$$

which is less than in the absence of feedback.

This may be written R_b/g_mR_c where R_c is the external collector load resistance. In an amplifier in which $R_b = 50 \text{ k}\Omega$, $R_c = 5 \text{ k}\Omega$ and $g_m = 40 \text{ mA/V}$, the input resistance is 250Ω . In a practical circuit this may be effectively reduced by other resistors connected to the base for bias purposes.

By virtue of these low values of input and output resistance, the circuit is well suited for use with a current input and a voltage output and we are thus particularly interested in the value of V_{out}/I_{in} , the transfer resistance. We have already shown that if the degree of feedback is large I_{in} is approximately equal to I_{fb} . But $I_{fb} = V_{out}/R_b$.

$$\therefore \frac{V_{out}}{I_{in}} = R_b \tag{1}$$

For the chosen numerical values

$$\frac{V_{out}}{I_c} = 50 \text{ k}\Omega$$

The circuit can also be used as a current amplifier. Because $V_{out} = I_{out}R_c$ we have

$$\frac{I_{out}}{I_{in}} = \frac{R_b}{R_c} \tag{2}$$

and this has the value 10 for the numerical values used earlier.

Expressions (1) and (2) assume a current input but the circuit can be used with a voltage input provided a series resistor R_s is included as shown dotted in Fig. 5(a). R_s must be large compared with the input resistance of the amplifier so that the input current is given approximately by V_{in}/R_s . R_s could be the resistance of the signal source itself provided this is high enough and there is then no need to add a resistor to the circuit to provide the required high resistance. Substituting for I_{in} in (1) and (2) we have

$$\frac{V_{out}}{V_{in}} = \frac{R_b}{R_s} \tag{3}$$

$$\frac{I_{out}}{V_{in}} = \frac{R_b}{R_c R_s} \tag{4}$$

In the numerical example the input resistance was 250 Ω . R_s could then be 2.5 k Ω . From (3) the voltage gain is 20. From (4) the effective mutual conductance is 4 mA/V.

Circuit with emitter resistor

By combining the circuits of Figs. 2(b) and 3(b) we can produce the circuit shown in Fig. 4(b) in which a common resistor is included in the input and output circuits. The resulting series-derived and series-injected feedback gives the amplifier a high input and high output resistance.

Feedback of the type of Fig. 4(b) can be obtained by including a resistor R_e in the emitter circuit of a common-emitter stage as shown in Fig. 5(b). The voltage I_cR_e (proportional to output current) developed across R_e is applied between base and emitter of the transistor. This voltage is amplified by a factor $g_m r_c$ where r_c is the collector a.c. resistance of the transistor if, as assumed in calculations of output resistance, the output load is infinite.

Thus

$$V_{out} = g_m r_c R_e I_c$$

and

output resistance =
$$\frac{V_{out}}{I_c} = g_m r_c R_e$$

 $g_m R_e$ is normally greater than unity, confirming the effective increase in output resistance. As r_e is commonly of the order of 200 k Ω for a silicon transistor, this type of feedback can give very high output resistances.

At the input circuit

$$V_{in} = V_{fb} + V_{be}$$

and if R_e is large enough V_{fb} is large compared with V_{be}

$$\therefore V_{in} \approx V_{fb}$$

Now $V_{fb} = I_e R_e = (h_{fe} + 1)I_b R_e$. Thus the input resistance is given by

$$\therefore \frac{V_{in}}{I_b} = (h_{fe} + 1)R_e \approx h_{fe}R_e$$

The input resistance is given by $h_{fe}R_e$ approximately and, for a transistor with $h_{fe}=150\,\mathrm{and}\,R_e=1\,\mathrm{k}\Omega$, is equal to $150\,\mathrm{k}\Omega$. In a practical circuit this may be effectively reduced by resistors connected to the base e.g. for bias purposes.

By virtue of the high input and output resistances the amplifier is well suited for use with an input voltage and an output current and we are particularly interested in the value of I_{out}/V_{in} i.e. the mutual conductance g_m .

conductance g_m . We have already shown that if the degree of feedback is large V_{in} is approximately equal to V_{fb} . But $V_{fb} = I_e R_e \approx I_c R_e \approx I_{out} R_e$.

$$\therefore \frac{I_{out}}{V_{in}} = \frac{1}{R_e} \tag{5}$$

If, as assumed earlier, R_e is $1 \text{ k}\Omega$ the effective mutual conductance is 1 mA/V.

If the amplifier is required to give a voltage output, the low output resistance necessary is provided by R_c which can be given a suitably low value such as the $5\,\mathrm{k}\Omega$ assumed earlier. If, however, the amplifier is required to give a current output, R_c should be removed: the high value of the internal collector a.c. resistance then provides the required high value of output resistance. Alternatively when the amplifier is required to give a current output, R_c can be taken as representing the low input resistance of the following stage.

When R_c is present $V_{out} = I_{out}R_c$ and thus, as a voltage amplifier, the gain of the circuit is given by

$$\frac{V_{out}}{V_{in}} = \frac{R_c}{R_e} \tag{6}$$

For the numerical values quoted earlier the voltage gain is 5.

Expressions (5) and (6) are in terms of a voltage input but the amplifier can be used with a current input provided a low-value resistor R_p is connected across the input terminals as shown dotted in Fig. 5(b). Resistor R_p should be small compared with the input resistance of the amplifier so that $V_{in} = I_{in}R_p$. Resistor R_p could be the resistance of the signal source itself if this is small enough, and there is then no need to add a resistor to provide the required low resistance.

Substituting $I_{in}R_p$ for V_{in} in (5) and (6) we have

$$\frac{I_{out}}{I_{in}} = \frac{R_p}{R_e} \tag{7}$$

$$\frac{V_{out}}{I_{in}} = \frac{R_p R_c}{R_e} \tag{8}$$

If R_p is 5 k Ω , the current gain is 5 and the transfer resistance 25 k Ω .

Single-transistor circuit

The circuits so far discussed have been simplified by omission of all components except those essential for amplification or for feedback. In a practical circuit provision must be made for biasing the base to give the required value of mean collector current and for the stabilization of this current. For a single-stage amplifier a satisfactory means of meeting these requirements is that shown in Fig. 6 in which the base is returned to a potential divider across the supply. This, together with the emitter resistor (which

Fig. 6. Mean collector current stabilization by means of a potential divider and emitter

can be used for signal-frequency feedback also if desired) ensures reasonable stability of collector current and thus minimizes variations in performance due to variations in leakage current or in the value of h_{fe} . It also minimizes the effects of spreads in h_{fe} so permitting the construction of a number of circuits with consistent performance.

The circuit operates by impressing a constant potential on the base of the transistor. Any tendency of the emitter current to increase causes the voltage across R_e to rise and reduces the base-emitter voltage thus reducing the increases in emitter current. The circuit is an example of zero-frequency feedback. The effectiveness of the circuit in stabilizing collector current is increased by increasing the value of R_e and by decreasing the resistance of R_1 and R_2 in parallel (which is the effective internal resistance of the source of base voltage).

Stabilization could be improved by returning the potential divider to the collector instead of to the collector supply voltage because increase in collector current is now minimized in two ways. The emitter potential is raised (as in the simple potential divider circuit) as a result of the increased voltage generated across the emitter resistor. In addition, however, the base potential is lowered as a result of the increased voltage generated across the collector resistor by the increased collector current.

If however R_1 is simply transferred to the collector, difficulties arise from the potential-divider bleed current which now flows through R_c and from the unwanted signal-frequency feedback introduced by the potential divider. Because of these difficulties, collector feed of the potential-divider circuit is unlikely to be employed in this simple form. It is, however, the basis of a very effective form of stabilization used in two-stage amplifiers described later.

We will now consider the design of a practical single-transistor stage required to operate with a voltage input, to give a voltage output, the voltage gain being 20. The basic circuit of Fig. 5(b) is suitable and we will assume that a silicon n-p-n transistor with $h_{fe} = 150$ (at a collector current

of 1 mA) is to be used with a supply voltage of 24. For good stabilization the voltage at R_1R_2 junction should be large compared with changes in base-emitter voltage due to temperature and transistor tolerances. For a silicon transistor V_{be} is commonly 0.7 V and thus the voltage across R_e is 0.7 V less than that at the potential-divider junction. A suitable voltage across R_e is 7 and this gives the value of R_e as 7 k Ω . The voltage across R_c and the transistor is thus 17 and, to permit the greatest output voltage swing, this should be shared equally between them. Thus the no-signal voltage across R_c is 8.5 and R_c should be 8.5 k Ω .

The voltage gain of the stage is given by R_e/R_e and to give the required value of 20, R_e should be 420 Ω . Thus for zero-frequency feedback R_e should be 7 k Ω and for signal-frequency feedback it should be 420 Ω . This can be achieved as shown in Fig. 7 by

Fig. 7. Practical version of the circuit of Fig. 6, designed for a voltage gain of 20.

constructing R_e of $420\,\Omega$ and $6580\,\Omega$ in series and by decoupling the larger of the two resistors by a capacitor with a low reactance at the lowest signal frequency. The input resistance of the transistor at signal frequency is given by $h_{fe}R_e$ i.e. $73\,\mathrm{k}\Omega$ but this is effectively reduced by R_1 and R_2 .

For reasonable stability the current taken by the potential divider from the supply should be at least 10 times the standing base current of the transistor. I_b is approximately I_c/h_{fe}^* i.e. $7~\mu A$ and a convenient value for the potential divider current is $100~\mu A$. R_2 thus carries a current of 0·1 mA and the voltage across it is $7\cdot7$: the resistance is therefore $77~k\Omega$. R_1 carries 0·107 mA and the voltage across it is $27-7\cdot7$, i.e. $16\cdot3~V$: the resistance is therefore $152~k\Omega$. The input resistance of the amplifier is made up of $77~k\Omega$, $152~k\Omega$ and $73~k\Omega$ in parallel i.e. $30~k\Omega$. The output resistance is equal to R_c i.e. $8\cdot5~k\Omega$.

The stability factor of this circuit, using the calculated component values, is 0.04,† that is to say the variations in collector current due to changes in h_{fe} or in leakage current are reduced to 4% of what they would be without the stabilizing circuit. We can also say that a spread of $\pm 50\%$ h_{fe} gives only a $\pm 2\%$ spread in collector currents.

†This is calculated from the expression

$$K = 1/[1 + h_{fe}R_e/(R_e + R_b')]$$
 where $R_b' = R_1R_2/(R_1 + R_2)$.

Two-stage current amplifier

If we arrange for a Fig. 5(a) type of stage to feed into a stage of the type of Fig. 5(b) we obtain the two-stage amplifier shown in skeleton form in Fig. 8. The low input resistance and high output resistance

Fig. 8. Skeleton form of two-stage current amplifier.

of the two-stage circuit makes it suitable as a current amplifier. The input resistance of the second stage is high and it can be connected across the low output resistance of the first stage without mutual interaction. The output voltage of the first stage is the input voltage of the second.

The gain of the amplifier is easily assessed. We know from (1) that for Tr_1

$$\frac{V_{out}}{I_{in}} = R_{b1}$$

and for Tr_2 from (5)

$$\frac{I_{out}}{V_{in}} = \frac{1}{R_{e2}}$$

But V = V

$$\frac{I_{out}}{I_{in}} = \frac{R_{b1}}{R_{e2}}$$

If, as assumed earlier, $R_{b1} = 50 \text{ k}\Omega$ and $R_{e2} = 1 \text{ k}\Omega$ the current gain is 50.

Stability considerations

The signal at Tr_2 emitter is a copy of that at Tr_2 base which is directly connected to Tr_1 collector. Thus the performance of the circuit is unaffected if R_{b1} is transferred from Tr_1 collector to Tr_2 emitter as shown in Fig. 9. This modification is of considerable help in practical versions of this circuit because it makes possible a simple but very

Fig. 9. More detailed version of the circuit in Fig. 8, designed for a current gain of 50.

effective means of stabilizing the mean collector current of both transistors.

If R_{b1} is returned to a potential divider R_1R_2 included, in addition to R_{e2} , in Tr_2 emitter circuit its value can be reduced whilst keeping the gain (R_{b1}/R_{e2}) constant. The circuit is now very similar to that of the potential divider method of stabilization (Fig. 6) but Tr_1 requires an emitter resistor (R_{e1}) to complete the circuit. This should be decoupled because it is not required to give signal-frequency feedback. This is a particularly good circuit because R_{b1} , R_1 and R2 can be of low resistance and in addition the potential divider is returned in effect to the collector of Tr_1 by emitterfollower action in Tr_2 . Both factors, as mentioned earlier, make for good stabilization. R_{b1} can be reduced to 5 k Ω and, for a current gain of 50, R_{e2} should be 100 Ω .

Estimation of component values

Suppose a 24-V supply is available. A suitable value for the no-signal voltage at Tr_1 collector is 10, giving the voltage across R_{c1} as 14. If we decide on a mean collector current for Tr_1 of 0.5 mA, R_{c1} is 28 k Ω . Tr_2 base voltage is 10 but because of the standing 0.7 V base-emitter voltage of silicon transistors, Tr_2 emitter voltage is 9.3. If Tr_2 is to take a mean emitter current of 2 mA, the total emitter resistance is $4.65 \text{ k}\Omega$. Of this 100Ω must provide signal-frequency feedback R_{b1} being taken as 5 k Ω , and the balance could consist of two 2·2 kΩ resistors in series, decoupled, the centre point providing bias for Tr_1 base. The voltage across R_{b1} caused by Tr_1 base current can be neglected and thus we can say that Tr_1 base voltage is approximately 4.7. Because of the voltage across Tr₁ base-emitter path, the emitter voltage can be taken as 4·0. The emitter resistance is thus $8 k\Omega$.

Fig. 10. Skeleton form of two-stage voltage amplifier.

The input resistance of the amplifier is given by R_{b1}/A where $A=g_{m1}R_{c1}$. The mutual inductance of a transistor is directly proportional to emitter current and for a current of 0.5 mA is approximately 20 mA/V. A is thus 560 and the input resistance is $5 \text{ k}\Omega/560$ i.e. approximately 9Ω . The output resistance is given by $g_{m2}R_{e2}r_{e2}$. If g_m is taken as 80 mA/V, $g_{m2}R_{e2}$ is 40 and the output resistance is thus several megohms, r_{e2} being say $200 \text{ k}\Omega$.

Two-stage voltage amplifier

An amplifier consisting of a first stage of the type shown in Fig. 5(b) and a second stage

^{*}Strictly I_b is given by I_c/h_{FE} where h_{FE} is the static or d.c. current amplification factor. For simplicity we are assuming here that there is little difference between h_{fc} and h_{FE} .

of the type shown in Fig. 5(a) has a high input resistance and a low output resistance, making the amplifier (shown in skeleton form in Fig. 10) suitable for voltage amplification. At the inter-transistor coupling circuit the high output resistance of Tr_1 feeds into the low input resistance of Tr_2 . There is no interaction provided the inter-transistor signal is taken as a current.

For Tr_1 from (5)

$$\frac{I_{out}}{V_{in}} = \frac{1}{R_{e1}}$$

$$\frac{\overline{V_{in}}}{V_{in}} = \frac{\overline{R_{e1}}}{R_{e1}}$$
For Tr_2 from (1)
$$\frac{V_{out}}{I_{in}} = R_{h2}$$
But $I_{in} = I_{out}$

But
$$I_{in} = I_{out}$$

$$\therefore \frac{V_{out}}{V_{in}} = \frac{R_{b2}}{R_{c1}}$$

 R_{b2} is normally connected to Tr_1 emitter instead of to Tr₂ base. It is not immediately obvious that such an alteration makes little difference to the performance of the circuit. In fact the input current for Tr_2 is (provided R_{c1} is large enough) the output current of Tr_1 and this is also the emitter current of Tr_1 . Thus any current injected into Tr_1 emitter by R_{b2} is conveyed to Tr_2 base with

Suppose a voltage gain of 100 is required. Any values of R_{b2} and R_{e1} , provided their ratio is 100, will give this value of gain but high values of R_{b2} will give the amplifier an unnecessarily-high output resistance and low values of R_{e1} will give undesirably-low values of amplifier input resistance. A compromise such as $R_{e1} = 500 \Omega$ and $R_{b2} = 50 \,\mathrm{k}\Omega$ is suitable.

Finally, means must be provided for stabilizing the collector currents of both transistors and here the same technique of zero-frequency feedback from Tr₂ emitter to Tr_1 base can be used as in the two-stage current amplifier and very similar component values can be used also. The emitter circuit of Tr₂ should be fully decoupled because no signal-frequency feedback is required here. In Tr₁ emitter circuit, however, a resistor of $8 k\Omega$ is required for stability and $500\,\Omega$ for signal-frequency feedback. Both requirements can be met by using two resistors in series, the larger being decoupled as shown in Fig. 11. In the twostage current amplifier R_{b1} provided the zero-frequency feedback necessary for stability and the signal-frequency feedback required to give the desired gain. In this voltage amplifier R_{b1} provides only zerofrequency feedback and R_{b2} provides signalfrequency feedback.

The input resistance of transistor Tr_1 is $50 \,\mathrm{k}\Omega$ if h_{fe} is taken as 100 and R_{e1} as $500 \,\Omega$ but R_{b1} is in parallel with the base circuit. R_{h1} can be given any value within a wide range: high values degrade stability but give a high input resistance to the amplifier; low values give good stability but low input resistance. A compromise value such as 20 k Ω might be suitable and this gives an amplifier input resistance of $14 \text{ k}\Omega$

The output resistance of the amplifier is given by R_{b2}/h_{fe} i.e. 500 Ω if $h_{fe} = 100$.

Some departures from the calculated resistor values indicated in Figs. 7, 9 and 11

Fig. 11. More detailed version of the circuit in Fig. 10, designed for a voltage gain of 100.

may be desirable to permit the use of preferred-value resistors. Because of such departures and the spread of resistance likely to be encountered, it is advisable to use a preset component for one of the resistors in the amplifier and to adjust this to give the required working voltages. A suitable component to make preset is the decoupled part of Tr_1 emitter resistor.

No mention has been made in this article of the frequency range of the circuits discussed. Modern silicon planar transistors, even those intended for a.f. applications, have transition frequencies of hundreds of MHz and if these are used, the passband of the amplifiers will probably extend to several MHz. If the amplifiers are used for a.f. applications such a response could be an embarrassment (e.g. because of amplification of any r.f. signals present) and should be curtailed by making the feedback increase above say 15 kHz. This can be done, for example, by shunting R_{b2} in Fig. 11 by a capacitor so chosen that its reactance at 30 kHz equals the resistor value, i.e. approximately $0.005 \,\mu\text{F}$. For a.f. applications the decoupling capacitors should be large enough to perform adequately down to 30 Hz.

Announcements

Two six-week courses are to be held at Norwood **Technical College.** The first, commencing 2nd February, is entitled "Pulse Code Modulation Techniques". The second, "Single Standard Colour Television Receivers" commences 25th January. Further details are available from The Secretary. Norwood Technical College, Knight's Hill, London S.E.27. Fee 30s per course.

Japanese made EVR players may soon become available in Britain as a result of a licence agreement which the EVR Partnership has concluded with Mitsubishi Electric of Japan for the manufacture and distribution of EVR teleplayers internationally (with the present exception of the U.S.A. and Canada). A similar agreement has also been made with Hitachi.

By mutual agreement the arrangement whereby Siemens components and telecommunications test equipment was handled in the U.K. by Cole Electronics has been terminated. From January 1st Siemens (U.K.) Ltd, Great West House, Great West Road, Brentford, Middx, will handle these products.

MCP Electronics Ltd, Alperton, Wembley, HAO 4PE, Middx, have been appointed sole representatives and distributors for Telefunken semiconductors.

LST Components, 7 Coptfold Road, Brentwood, Essex. now distribute heat sinks manufactured by Marston Excelsior Ltd (Imperial Metal Industries Group) and the 20 W integrated circuit amplifier made by Toshiba.

Russian test and measuring equipment. Z & I Aero range of measuring equipment. Maintenance facilities are available. Z & I Aero Services Ltd, 44a Westbourne Grove.

GDS (Sales) Ltd, of Michaelmas House, Salt Hill, Bath Road, Slough, Bucks, have been appointed a franchised distributor by Radiatron Components Ltd. The agreement covers the Elma range of collet knobs and rotary stud switches and Jaquet stopwatches.

Semicomps Ltd, 5 Northfield Estate, Beresford Avenue, Wembley, Middx, have been appointed sole U.K. distributors for the EMC range of dual-in-line i.c. sockets by Teknis Ltd, of Guildford, Surrey.

An agreement has been signed which gives AB Sonab, of Sweden, the sole marketing rights in Northern Europe for Ultra Electronics' range of communications equipment.

Microsystems International, of Canada, specialists in standard and custom-designed microcircuits, have appointed Pinnacle Electronics Ltd, Achilles Street, New Cross. London S.E14, as their first U.K. distributor.

Jason Electronic Designs Ltd are no longer wholesaling stocks of Dansette and Perdio spares.

AB Electronic Components are to take over the entire European manufacturing and marketing operations of the American component manufacturer, CTS Corporation, in exchange for 10% of their equity.

Jasmin Electronics Ltd have moved from Hainault, Essex, to a new factory at Station Road, Quorn, Leics. LE12 8BP.

The sales and service divisions of Carston Electronics have moved from Chinnor to Shirley House, 27 Camden Road, London N.W.1 (Tel: 01-267 2748).

The Broadcast Division of Rank Precision Industries Ltd are moving from Welwyn Garden City to Watton Road, Ware, Herts. (Tel: Ware 3939).

Interscan Data Systems (UK) Ltd have moved from London to Hoechst House, Salisbury Road, Hounslow, Middx. Tel: 01-572 2871.

Spectra-Physics Ltd have moved to premises at 5 Wolsey Road, Hemel Hempstead, Herts.

The Avionics Division of Plessey Electronics Group has been awarded contracts valued at £227,000 for automatic and manual test equipment, from the Ministry of Aviation Supply.

Pve Telecommunications Ltd has received a £3M contract to supply a nationwide communications system for the Sierra Leone police.

Racal-BCC Ltd, of Bracknell has received an order valued at over £1,300,000 from the Malaysian Ministry of Defence. The order is for over 1,000 military radio telephones with accessories and spares.

January Meetings

Tickets are required for some meetings: readers are advised, therefore, to communicate with the society concerned

LONDON

6th. Hosp. Physicists Assoc./Bio. Eng.Soc./ IEE/IERE — Symposium on "Physiological transducers for measurement in vivo" at 17.30 at Savoy Pl., W.C.2.
6th. IERE — "Recent advances in microwave

ferrite devices" by E. Riches at 18.00 at 9 Bedford

Sq., W.C.1.
7th. IERE/IEE — Colloquium on "Optical character recognition and allied techniques" at 18.00

at 9 Bedford Sq., W.C.1.
7th. R.T.S. — "Marconi Mk VII colour camera" by W. T. Underhill at 19.00 at I.T.A., 70 Brompton Rd., S.W.3.

8th. IEE — Colloquium on "Non-linear circuit analysis" at 14.30 at Savoy Pl., W.C.2.

11th. IEE — "Amorphous semiconductors" by

R.W. Brander at 17.30 at Savoy Pl., W.C.2.

12th. 1ERE — "A review of computer control" by

S.L.H. Clarke at 18.00 at 9 Bedford Sq., W.C.1.

12th. SERT — "Next steps in computer system design" by F.J.M. Laver at 19.00 at the London School of Hygiene & Tropical Medicine, Keppel St.,

13th. IEE — "Developments in public data communication services" by M.B. Williams at 17.30

at Savoy Pl., W.C.2.

13th. IERE — "Integrated circuits for colour television" by J. C. MacKellar at 18.00 at 9 Bedford Sq., W.C.1.

15th, IEE - Colloquium on "Electronics on

trains" at 10.00 at Savoy Pl., W.C.2.

15th. IEE/IERE — Colloquium on "Display systems" at 17.30 at Savoy Pl., W.C.2.

18th. IEE - "A communication and control system for motorways" by E. H. Walker at 17.30 at Savoy Pl., W.C.2.

19th. IERE — "ADSEL — selectivity addressed

secondary radar" by C. Ullyatt at 18.00 at 9 Bedford

Sq., W.C.1.

20th. Inst. Navigation — Discussion on "Area

15 00 at the Royal Aeronautical navigation" at 15.00 at the Royal Aeronautical Society, 4 Hamilton Pl., W.1.

21st IEE — "The very early history of radio — from Faraday to Marconi" by Wing Cmdr G. R. M. Garratt at 17.30 at Savoy Pl., W.C.2.

27th. 1ERE — "Management of R.A.F. electronic

engineering projects" at 18.00 at 9 Bedford Sq.,

28th. IERE — Symposium on "Women in engineering?" at 18.00 at the London School of Hygiene & Tropical Medicine, Keppel St., W.C.1.

BATH

5th, Brit. Acous, S .- "Side-scan sonar applications" at 11.00 at the University.

6th. RTS-"Trends in television development" by A. V. Lord at 19.00 in the Viewing Theatre, ATV

Studio Centre, Bridge Street. 14th. IEE Grads.—"M.O.S. transistors and micro-electronics" by M.B. Bandali at 19.00 at the

Dept. of Electronic & Elect. Eng'g, the University.

19th. RTS—"Trade Union responsibility in the communications media" by Alan Sapper at 19.00 at

the ATV Centre, Bridge St.

25th. IEE/IPOEE—"Radio propagation in the higher GHz frequencies" by E. M. Hickin at 18.00 at the MEB Summer Lane.

26th. IEE Grads .- "Electronic organs" at 19.30 at the Grapes, Hill Street.

28th. IEE-"Circuit conventions and phasors" by M. G. Scroggie at 18.15 at Sumpner Bldg, the University of Aston.

BLETCHLEY

12th. IEE — "Current trends in radio astronomy" by M. J. S. Quigley at 19.30 at P.O. College, Horwood House.

12th. IEE — "Ultrasonics in medicine" by D. H. Follett at 19.30 at the Electricity House.

CAMBRIDGE

28th. IERE/IEE - "Flight recording" by R. Parsons at 18.30 at the University's Eng'g Labs.

13th. IERE — "Recent developments in television tuners" by T. L. Harcombe at 18.30 at the University of Wales Inst. of Science & Technology.

28th. IERE - "Control of projects" by S.C. Dunn at 19.00 at the Medway College of Technology.

CHELMSFORD

12th. IERE/IEE - "Management of a large electronics complex" by D. G. Smee at 18.30 at the Saracen's Head Hotel, High Street.

13th. IEE — "Electronics and the economy" by

1. Maddock at 18.30 at the King Edward VI Grammar School, Broomfield Rd.

12th. I.Prod.E. - "Fibre optics" by T. A. Clarke at 19.15 at the College of Technology, Waterdale.

21st IEE - "Colour television systems" by E. J. Galagher at 17.30 at Trinity College.

EDINBURGH

6th. IERE — "Television field store standards convertor" by E. Rout at 19.00 at Napier College of Science & Technology, Colinton Rd.

FARNBOROUGH

12th. IEE - "Electronics in archaeology" by E. T. Hall at 18.30 at the Technical College.

7th. IERE — "Television field store standards convertor" by E. Rout at 19.00 at the Inst. of Engrs

& Shipbldrs, 183 Bath St.
26th. IEE Grads. — "Electronics — its future in navigation" by F. S. Stringer at 19.30 at the Music Room Livingstone Tower, Strathclyde University.

GUILDFORD

26th. IERE - "Computer graphics and the common man" by B. S. Walker at 19.00 at the University of Surrey.

HEADINGTON

13th. IEE - "U.K. developments in electronic telephone systems" by J. Martin at 19.00 at the Oxford Polytechnic.

HEMEL HEMPSTEAD

12th. IEE - "Digital instrumentation" by A. R. Owens at 19.15 at the Dacorum College of Further Education.

LEICESTER

20th. IERE - "Linear integrated circuits" by P, J. Jefferson at 18.30 at the University.

LIVERPOOL

7th. IEE - Colloquium on "R and D in electronics" at 09.00 at the University.

25th. IEE Grads. - "Computer graphics and the electrical engineer" by M. Clayton and D. W. Davis at 18.30 at the Polytechnic, Byrom Street.

MAIDSTONE

7th. IEE—"Invention as part of education" by Prof. M. W. Thring at 19.00 at the Royal Star Hotel, High Street.

28th. IEE/IERE — "Laser applications in electronics" by Prof. W. A. Gambling at 19.00 at the Abbey Hotel.

MANCHESTER
6th. IEE — "Logic circuits and their design in the solid" by D. J. Kinniment and A. Bardsley at

18.45 at U.M.I.S.T.

12th. IEE — "The impact of communications on society" by Prof. E. C. Cherry at 18.15 at the Renold Bldg, U.M.I.S.T.

14th. IERE — "Training and careers of electronic

engineers in management" by H. Latham at 19.15 at

27th. IEE -- "Electronic techniques in archaeology" Silvanus P. Thompson lecture by M. J. Aitken at 18.45 at the Renold Bldg. U.M.I.S.T.

MIDDLESBROUGH
6th. IEE — "Tomorrow's world in telecommunications" by W. J. Bray at 18.30 at the Cleveland Science Institute.

NEWCASTLE-ON-TYNE
13th. IERE — "Marine science and the electronic engineer" by M. J. Tucker at 18.00 at the Main Lecture Theatre, Ellison Bldg, the Polytechnic.

NEWPORT, I.O.W.

29th. IEE/IERE - "History and development of marine radars" by H. Giles at 19.00 at the County

6th. RTS - "The Dolby noise reduction system" at 19.30 at the studios of Westward Television Ltd.

READING

28th. IERE - "Character generation" by G. Jones at 19.30 at the University.

27th. IEE — "Electronics in crime detection" by A. R. Torless at 18.15 at the Lanchester Polytechnic, Eastlands.

SALISBURY

25th. IEE - "Concorde electronics" by H. Hill at 18.30 at the Salisbury & South Wilts College of Further Education.

SOUTHAMPTON

13th. IEE /IERE - "Data transmission over radio links" by J. D. H. Alexander and J. S. Reynolds at 18.30 at the University.

STAFFORD

26th. IEE - "The Open University" by Prof. J. J. Sparkes at 19.00 at the North Staffordshire

STOKE ON TRENT

12th. Keele University — "Hardware in the"
British NIMBUS satellite" by Dr. Ellis at 20.00 in the Physics Dept.

19th. Keele University - "How much of science is worthwhile?" by Prof. Ziman at 20.00 in the Physics Dept.

WORTHING

19th. IEE - "Colour television" by B. J. Rogers at 18.30 at the College of Further Education.

Electronic Building Bricks

8. Power in signals

by James Franklin

Electronics is often described as the "light current" side of electrical engineering, to distinguish it from the "power" side. Both in fact use electrical power, but since very little power is needed to represent and convey information, compared with the power needed to drive rolling mills or to light cities, there is a tendency to forget that it comes into electronics at all. We have to consider power in electronics because signals always have to operate or "drive" something, whether it is a building brick such as an amplifier or an adder (Part 1) or an output transducer such as a loudspeaker (Part 4). When we design a complete system made up of functional units and transducers we have to ensure that the signal emerging from each "brick" has adequate power to operate the next in line, or to operate the transducer which makes the signal information perceptible.

Power is a property which we understand intuitively in such forms as muscle power in the human body or engine power in cars. In the home, a 100-watt lamp gives a more "powerful" light than a 60-watt lamp. In all these cases there is a conversion of energy from one form to another—chemical to mechanical in the muscles, chemical to thermal to mechanical in the car engine, and electrical to light and heat in the lamp.

When an engineer talks about power he means something more precise than our intuitive idea, and something which can be measured. He defines power as the rate at which work is done. Thus if you lift up a chair in a given time you are doing work at a certain rate—using a certain power—and your muscles are converting chemical energy into mechanical energy the purpose. If you lift up the chair the same distance in half the time, rate of work, hence the power used, is doubled. When power is generated one can think of it as flowing from the energy converter (say a dynamo) to the load (which might be a lamp or a motor)—or, in mechanical terms, being applied to the load through some mechanical device such as a piston (see Fig. 1).

The unit by which power is measured is the watt*. There are other units, such as the horse-power (which is equivalent, to 746 watts), but, with the coming of

metrication and SI (Système International) units, the watt is now being adopted as standard. Since power, as we have said, is defined as the rate of doing work, the unit of power, the watt, is defined as one unit of work done per second. Work done can be measured in units of energy—the energy which has done the work—and the SI unit of energy is the joule†. So watts = joules per second. But what exactly is a joule's worth of energy?

Energy exists in several forms—mechanical, thermal, chemical, electrical—and it can be converted from one form to another. We can therefore say, for example, that so much mechanical energy is equivalent to so much electrical energy; and the means by which we can equate them is the common unit, the joule. Mechanically, the joule is defined in terms of the work done in moving an object through a certain distance by the application of a certain force; thermally, in raising a certain mass of water through a certain temperature. Electrically, the joule

 † Named after the English physicist James Prescott Joule (1818–1889).

Fig.1. Concept of power being transmitted from an energy converter to a load. The amount of power flowing is the rate at which work is done in the system.

Fig. 2. Simple circuit illustrating work done by an e.m.f. source in moving electrons against resistance. The e.m.f. could be varied to form a signal.

is the work done in moving a quantity of electricity of 1 coulomb (see Part 3) through a resistance or reactance (Part 7) which is setting up an opposing e.m.f. of 1 volt

We can see how this electrical definition applies in practice if we look at the simple circuit in Part 7 which is repeated here as Fig. 2. The e.m.f. source causes current to flow in the circuit and this is controlled by the resistor which sets up an opposing e.m.f. If this opposing e.m.f.—the potential difference measured across the resistor by the voltmeter—is 1 volt, and the source has driven a quantity of 1 coulomb of free electrons past a given point in the circuit, the work done is 1 joule.

If the e.m.f. source does this in one second there will be an electron flow rate of 1 coulomb/second=1 ampere, and this will be indicated on the current meter

Fig.3. Graph of a signal in which information is represented by a variation of power with time.

("mA") as 1000 milliamperes. Also, the rate at which the source is doing the work of forcing electrons through the resistance is 1 joule per second, which is a power of 1 watt. Thus the power being generated by the e.m.f. source and delivered to the load (the resistor) during that one second is 1 watt.

The e.m.f. source in Fig. 2 could be made to produce a varying e.m.f. Or it could be replaced by an energy-conversion transducer (Part 4). If the e.m.f. then produced varied in accordance with some meaningful pattern it would be representing information—it would be a signal. Thus the power being generated delivered to the load (the resistor) would be signal power. As we saw in Part 2, a signal is any electrical variable which represents and conveys information; so here we have a variable, power, which has the dual purpose of representing information and "driving" a load. A graph of such a signal (power variation with time) is shown in Fig. 3. Since watts=joules/second, this graph also plots rate of doing work, or energy delivery, with time; so, over a given period of time we could work out the total energy delivered in the signal, on the principle joules = joules / second × seconds. In fact this is given by the area under the graph (shaded), which can be obtained by graphical integration.

Named after the Scottish engineer James Watt 1736-1819).

World of Amateur Radio

British slow-scan TV

What is believed to have been the first British international two-way slow-scan television contact is reported by Robert Skegg, G3ZGO and G6ADJ/T, of Acton, West London. On November 21st on 14.23 MHz he exchanged pictures with the Greek station, SV1AB of Athens, after receiving a special Minpostel permit covering slow-scan transmissions. His hybrid valve/transistor monitor uses a 3FP7 radar tube and for transmission he uses the monitor as a flying-spot scanner with a 931A photo-multiplier, all equipment being driven by a solid-state pulse generator.

His transmitter is the relatively low-power Heathkit HW32 with only a dipole in his loft. He is anxious to try a higher e.r.p. in order to attempt to transmit to America and New Zealand where there is considerable interest in amateur slow-scan television transmission. He would like to hear from any British amateurs having experience of s.s. television transmission (18 Eastbourne Avenue, Acton, London W3 6JN). His Minpostel permit covers also the 144 MHz band.

Australis-Oscar 5 mystery

Analysis of the many reports gathered on the 29 and 144 MHz beacon transmitters carried in the amateur satellite Australis-Oscar 5 (launched in January 1970) could well cause some revision to current beliefs concerning h.f. satelliteto-ground propagation through the F layer. Earlier professional experiments, based mainly on the top-side sounders, had suggested ionospheric h.f. blockage to over-the-horizon reception, other than the now firmly recognized antipodal propagation (signal reappearance as satellite passes over a point antipodal to the observer). A number of amateur stations reported antipodal propagation on Oscar 5, almost always during afternoon or early evening local time.

On this 910-mile-high amateur satellite, Raphael Soifer, K2QBW, has pointed out that about two-thirds of the reports showed that the h.f. signals could be held longer than those from the v.h.f. beacon

(contrary to some predictions), with well-equipped stations achieving pass durations well in excess of the theoretical 22.5 minutes. For example, Australian station VK3ATN, with large rhombic aerials, reported an average of 28 minutes, including one of 33 minutes 35 seconds. A comparison of stations achieving significant over-the-horizon results suggests that the signals were then arriving at extremely low angles to the horizon.

B.B.C. World Radio Club

The 15-minute World Radio Club broadcasts, which are transmitted on the B.B.C. World Service each week, are now being produced by Joy Boatman, who has taken over from John Pitman responsible for the programme for the past three years. Although intended primarily for short-wave listeners, the programmes often include items of interest to radio amateurs a number of whom regularly take part in the programme, as well as Doug Crawford (compere), Henry Hatch, G2CBB, and Marilyn Farthing. Each weekly programme is now broadcast first on Thursdays at 12.45 G.M.T., with repeats on Fridays at 23.45 G.M.T. and Sundays at 08.15 G.M.T.

Components for constructors

A browse through the advertisement columns of this journal would hardly suggest that home-construction by amateurs could possibly suffer from any shortage of suitable component parts. Never, it might seem, have so many parts been so readily available at such reasonable prices to the enthusiast. Yet, in practice, one of the thorniest problems facing those who wish to build their own equipment, often from designs published in books and periodicals, without extensive test and measuring equipment, has been the gradual disappearance of regular stock lines of components manufactured specifically for the transmitting amateur and those listeners wishing to build their own receivers. While this is particularly true of coils and coil packs, many other specialized parts are difficult to obtain from stock. In recent months, components specified for a number of popular designs have vanished from the market. Manufacturers undoubtedly are finding it difficult to justify products for which their is limited demand with high handling and postal charges.

This problem is by no means confined to the U.K. A recent article in the A.R.R.L.'s journal OST suggests that in the United States "the parts procurement situation seems to be going from bad to worse . . . parts are still available, but one must learn how and where to find them." The comment is made that the scarcity and high-cost of one-off parts mean that home-construction projects now often cost appreciably more than the comparable kits or manufactured gear. One West German publisher for the international amateur radio field is attempting to overcome the problem by offering kits and partial kits of the main designs in his periodicals—but this implies costs which amateurs, who traditionally like to build equipment basically from 'junk boxes' plus a few special parts, may find frustrating. Undoubtedly this is a problem which has played an important role in the greater dependence by many amateurs on manufactured equipment. All credit to those component firms who continue to cater for this specialized market.

In brief

Although over £500 has been raised by the Cheshire Homes Amateur Radio Network Fund-sufficient to equip 11 Homes with communications receiversthere are still 35 Cheshire Homes without equipment (secretary/treasurer W. M. Clarke, G3VUC, 66 Fillace Park, Horrabridge, Yelverton, Devon) The deaths of three well-known British amateurs have been reported recently: Fred Lambeth, G2AIW, who was the R.S.G.B's first v.h.f. manager: Norman Caws, G3BVG, who was for many years honorary treasurer of the R.S.G.B., and W. H. Martin, G15HV who pioneered v.h.f. activity in Northern Ireland Amateurs operating in West Germany as members of foreign military forces are now being given the pre-fix DA. For example, DAIRAF is located at the R.A.F. base at Gatow, near Berlin Portsmouth Polytechnic students are trying to arouse more interest in amateur television in the south of England and plan to hold a series of lectures on the subject (details; the secretary, Electropol, Students Union Offices, Union House, St. Pauls Road, Portsmouth) A new 50.098 MHz beacon, VESYT, on the north coast of Baffin Island has already been heard in Iceland and is thought likely to be heard in Europe during abnormal propagation conditions (reports to Larry Kayser, VE3QB, 59 Westfield Crescent, Ottawa 5, Ontario, Canada) The well-supported R.S.G.B. VHF National Field Day 1970 was won by the Mid-Essex VHF/UHF Contest Group —there were over 120 entries, with stations on 70, 144,432 and 1296 MHz.

PAT HAWKER, G3VA

New Products

High-performance op-amp

Model 3500 monolithic op-amp made by Burr-Brown Research, and available from Fluke International, uses a cancellation technique to reduce input bias current to 10nA and thermal drift to 0.3nA/°C. Slew rate is $1.5 V/\mu s$. This is accomplished by a feedback loop that senses the instantaneous in put current and supplies the appropriate compensating current. The technique compensates both the quiescent levels of bias current and its signal variations. Thus, the input impedance is boosted to $5,000 M\Omega$ common mode, and $10M\Omega$ differential. The device can operate at power supply levels from ± 3 to ± 20 V without significant change in its performance because it employs internal level-setting that is independent of power supply levels. Power supply sensitivities of 0.2 dB/V, $20 \mu V/volt$, and 0. ln A/volt are attained over the full operating range of supply voltages. Noise is 1µV pk-pk. Typical common-mode rejection is 90dB, and open loop gain is 100dB. Unity gain bandwidth is 1MHz, input offset voltage 1.5 mV, full power response 20kHz, and quiescent current 2.5mA. Input offset voltage drifts are limited to $\pm 5\mu V/^{\circ}C$, $\pm 10\mu V/^{\circ}C$, or $\pm 30 \mu V/^{\circ}C$, all guaranteed maxima. Rated output of the device is $\pm 10 \text{ volts}$, $\pm 10 \text{mA}$. Prices for the model 3500 start at £4 14s 0d in unit quantities. One hundred quantity prices start at £3 8s 0d each. Fluke International Corporation, Garnett Close, Watford WD2 4TT.

WW 328 for further details

Sub-miniature toggle switches

Two sub-miniature toggle switches with a rating of 6A at 125V or 3A at 250V a.c. are available from WEL. Both have a breakdown voltage of 1,000V a.c. with insulation resistance of more than $100M\Omega$ at 500V d.c. Contact resistance is typically less than $5m\Omega$ at 1A 2.4V d.c. The life expectancy is up to 10×10^4 operations at 1A rating and in excess of 2×10^4 at 3A 250V rating. Units are moulded in phenolic melamine with solder tag connections. Metal parts are bright plated. Two types are available: TS106D single-pole doublethrow, and type TS206N double-pole double-throw. Prices are 7s 6d and 9s 6d,

respectively, for TS106D and TS206N for quantities of 1-9. WEL Components Ltd, 5 Loverock Road, Reading, Berks. WW 330 for further details

Miniature resistors

Low cost 1/16 watt resistors are available from Solitronics of Hong Kong. They are made from metal glaze resistor paste and have a load life stability of $\pm 5\%$ over 500 hours. Voltage and temperature coefficients are $\pm 0.3\%/V$ and ± 7 in 104/degC. Available in ±5% tolerance, values range from 51Ω to $100 \text{k} \Omega$. Price is about \$25 (U.S.) per 1000 for orders of over 10,000 reducing to about \$15 for 500,000. Solitronics Engineering Ltd, 1531 Star House, Harbour Centre, Kowloon, Hong Kong.

WW 313 for further details

L.F. quartz crystals

A range of quartz crystal units from ITT covers the frequencies 54 to 65.499kHz; 65.5 to 83.999kHz; and 84 to 150kHz in three sizes of hermetically sealed metal holders. Each holder is supplied with either two-pin or two-lead-wire bases.

ITT Components Group Europe, Quartz Crystal Product Division, Edinburgh Way, Harlow, Essex. WW303 for further details

Op-amp dual power supply

Model 707 dual power supply from Microtest is designed for op-amps requiring equal positive and negative supply voltages. The voltages are set by one control and the negative supply tracks the positive master supply. As a result any change of the internal reference source (e.g. drift, ripple) will cause an equal change in the outputs of both the master and slave supplies. A maximum current of 100mA may be drawn from each line and the loads on each line need not be equal. Foldback current limiting, which starts at approximately 120mA, ensures protection of the positive master line which then causes the negative line to follow. The negative line is protected by constant current limiting which does not affect the positive line. The specification includes the following:

200V to 250V input voltage 50/400Hz dual output voltage $\pm 12V$ to $\pm 16V$ at 0 to 100mA mains regulation 0.01% load regulation 0.02%

ripple and noise < 250 µV peak to peak

output impedance at 10kHz < 0.1 short circuit protection indefinite tracking error < 1% temperature coefficient

 $0 - 70^{\circ}$ C 0.3%

 $210 \times 90 \times 50$ mm size Microtest Ltd, 28 Walker Lines Industrial Estate, Bodmin, Cornwall.

WW301 for further details

Low leakage current diode

A silicon diode, type BAV45 from Mullard, has a leakage current of not more than 10pA at a junction temperature of 25°C and a reverse voltage of 20V. At a junction temperature of 80°C and a reverse voltage of 5V it does not exceed 150pA. The diode's capacitance is 1.3pF. The maximum reverse voltage rating is 20V and maximum forward current 50mA. With a forward current of 10mA the voltage drop across the diode is less than 1V. The BAV45 is enclosed in a TO-18 encapsulation and has a thermal resistance from junction to ambient of 0.5°C/mW. Mullard Ltd., Mullard House, Torrington Place, London WC1E 7HD. WW307 for further details

Power transistors for v.h.f.

Three new 40W transistors manufactured by TRW Semiconductors Inc., California, are now available from MCP Electronics. They are the PT8711 (12.5V, 4.5dB gain). the PT 8712 (24V, 6dB gain) and the PT8701 (28V, 7.5dB gain). The first two devices are in a 4-lead diamond package, while the PT8701 is in the TO-128 package. A fourth new device—the PT8710—is a stud package with very wide, low inductance base and emitter leads. The latter device is rated at 25W and needs 8W drive power at 175MHz and V_{ce} of 12.5V. MCP Electronics Ltd, Alperton, Wembley, HAO 4PE.

WW 308 for further details

Digital error detector for p.c.m.

Designed for testing p.c.m. telephone links and terminal equipment, the new Marconi Instruments error detector can be used without breaking the signal path. The instrument, type TF2801, measures bipolar

errors in 24- and 32-channel equipment at bit rates of 1.536 and 2.048 Mbits/sec. A meter indicates presence of a signal and errors. A totalizer displays total errors over any period of time. It has an internal 9V battery. Marconi Instruments Ltd, St. Albans, Herts.

WW 310 for further details

RF spectrum analyser with 10Hz resolution

Hewlett-Packard i.f. section type 8552B gives their existing spectrum analyser a 10Hz resolution up to 110MHz. Used with the type 8553B r.f. section and the 141T display, 10-Hz resolution signals can be

displayed from 1kHz to 110MHz. Scan range can be varied between 200Hz and 100MHz. Dynamic range is 70dB and both linear and logarithmic scales can be used with scale factors from 0.1µV per division to 100mV per division. Sensitivity is 25nV (-140dBm). Photographs of displays contrast the 10Hz resolution (left) and 50Hz resolution (right). Left-hand trace shows a 30MHz double sideband a.m. signal with 400Hz sidebands at -26dB and 2nd harmonic distortion at -64dB. Hewlett-Packard Ltd, 224 Bath Road, Slough, Bucks SL1 4DS. WW 327 for further details

Portable video-recording system

The Akai VT100 video tape recording system, now available from Rank, employs a tape recorder smaller than most portable typewriters (using ¼in tape), and is able both to record and playback powered by its own internal batteries. The complete system—camera, recorder, clip-on monitor, and batteries—weighs less than 11kg. Twenty minutes recording is possible on one reel of tape costing £4. Price of system £568. Rank Audio Visual, Audio Products Department, P.O. Box 70, Great West Road, Brentford, Middx.

WW 333 for further details

U.h.f. power transistors

Intended for mobile u.h.f. communications systems, three new n-p-n transistors are announced by Mullard. The three differ in encapsulation. Types 351BLY and 352BLY have capstan-type encapsulations, the second being studless. Type 353BLY is

housed in a TO-39 package. The first two give an output of 3 watts at 470MHz from a drive of 350mW and a power supply at 13.8V. Output is limited to 2 watts in the

TO-39 case. As well as low power output stage applications they can also be used for driving types BLY35A and 266BLY in transmitters with outputs up to 17W. Mullard Ltd, Torrington Place, London WC1E 7HD.

WW 320 for further details

High-voltage m.o.s.f.e.t. switch

A p-channel enhancement m.o.s.f.e.t., the M119, from Siliconix will operate at high voltages and accept signal swings of 40-0-40V. The device is TO-72 packaged and includes an internal zener diode to protect the gate. The on resistance is about 230Ω under signal conditions where the minimum V_{GS} is -40V. The required gate control signal is 40V plus the pk-pk signal voltage. Siliconix Ltd, Saunders Way, Sketty, Swansea, Glam.

WW 329 for further details

Op-amp with f.e.t. input

Use of a dual field-effect transistor input stage in the latest National Semiconductor operational amplifier, type NH0022, gives high input impedance and closely matched input characteristics. The amplifier is specially suitable for precision integrators and sample and hold circuits. The f.e.ts are monolithic devices with an interwired geometry that ensures tight tracking over the operating temperature range. Bias currents range from a few picoamps at room temperature to a few nanoamps at high temperatures. An external potentiometer nulls offset. A variant amplifier, type NH0020, handles load currents up to 50mA, with an open loop gain of 100dB. Two versions of each type are available for the temperature ranges -55 to +125°C and 0 to 85°C. National Semiconductor Corporation, 2900 Semiconductor Drive, Santa Clara, California 95051, U.S.A. WW 325 for further details

Op-amp output stage

Power amplifier model 3329/03 for use with operational amplifiers allows currents of \pm 100mA to be controlled. The output stage is used inside the feedback loop and gives a low output impedance of ten ohms open loop. Output stage is protected against short-circuits at 85 deg C. Bandwidth is 5MHz with full output up to 500kHz. Input impedance is $10k\ \Omega$. Made by Burr-Brown, it is available in the U.K. from Fluke International Corporation, Garnett Close, Watford WD2 4TT. WW 316 for further details

Limiter diodes

The Sylvania DLA5544 and DLA6190 are limiter diodes in an O-23 varactor package and intended for $50\,\Omega$ stripline. They may be used as power sensitive attenuators. The incident r.f. power, which

From SE – the DVM's that mind your P's and Q's

SE's digital voltmeters look after Price as well as Quality, with a whole family of instruments — basic test and laboratory instruments, data logging units, right up to today's most accurate DVM representing the limits of present technology in stability, linearity and accuracy. You can specify exactly what you want from a wide choice of instruments each available in different versions, and pay only for what you need. All SE's integrating DVM's use an improved

tion of AC signals. For the ultimate in linearity and accuracy this system is combined, in the SM 215, with inductive divider successive approximation. Available options include floating input, stored display, BCD outputs, auto and command ranging. All have an accuracy

of at least \pm .01% of reading \pm 1 digit, 10 μ V resolution, 2,000 M Ω input impedance and typically less than 20 pA input current. All are elegantly styled, compact, with bright, maximum-visibility displays. Every one of them is top value. Write or ring for details.

SE measures up to tomorrow's technology

SE Laboratories (Engineering) Ltd., North Feltham Trading Estate, Feltham, Middlesex. Telephone: 01-890 1166 Telex: 23995

Transducers, recorders, oscilloscopes, digital instrumentation, data systems, medical electronic equipment, etc.

Vortexion

This is a high fidelity amplifier (0.3% intermodulation distortion) using the circuit of our 100% reliable—100 Watt Amplifier (no failures to date) with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for $3\text{-}30/60\,\Omega$ balanced line microphones, and a high impedance line or gram input followed by bass and treble controls. 100 volt balanced line output

THE VORTEXION 50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4-WAY MIXER USING F.E.T.s.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms—15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100K ohms.

THE 100 WATT MIXER AMPLI-

FIER with specification as above is here combined with a 4 channel F.E.T. mixer, 3 mic. 1 gram with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms—15 ohms and 100 volt line. Bass and treble controls fitted.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of 30 c/s-20 Kc/s ± 1 dB. Less than 0.2% distortion at 1 Kc/s. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output 100-120 V or 200-240 V. Additional matching transformers for other impedances are available.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to 20,000 cps within 2 dB and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1-low mic. balanced and Hi Z gram.

ELECTRONIC MIXERS. Various types of mixers available. 3-channel with accuracy within 1 dB Peak Programme Meter. 4-6-8-10 and 12-way mixers. Twin 2, 3, 4 and 5 channel stereo. Built-in screened supplies. Balanced line mic. input. Outputs: 0.5 V at 20K or alternative 1 mW at 600 ohms, balanced, unbalanced or floating. Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.

VORTEXION LIMITED,

257-263 The Broadway, Wimbledon, S.W.19

Telephone: 01-542 2814 and 01-542 6242/3/4

Telegrams: "Vortexion, London S.W.19"

is reflected or diverted to another load, is reduced to levels that will not saturate or burn out a mixer crystal. The former is primarily designed for use in X and J bands while the latter may be used from u.h.f. to J band. Impectron Ltd., 23-31 King Street, London W.3.

WW306 for further details

Portable tachometer

Multi-purpose tachometer with rechargeable battery and using integrated circuits is made by Sapphire Research & Electronics Ltd. It has two sensors, magnetic and photoelectric, which in most cases will work off irregularities in the rotating component. It covers rotational speeds of up to two million rev./min. with an accuracy of 0.5%. The instrument features a state-of-charge indicator, sup-

pressed zero meter for better resolution, automatic gain control and a chart recorder output. A charger unit is supplied with the tachometer, and because output voltage is low the terminals can be exposed on the charger—avoiding terminals on the hand-held unit. Price is £59. Sapphire Research & Electronics Ltd, Sapphire Works, Ferndale, Glam.

WW 309 for further details

Active filters

Butterworth, Bessel or Chebychev responses can be obtained with new active filters from Barr and Stroud by adding an external RC network. Although high-pass response can extend to 1MHz cut-off frequency range is 1Hz to 30kHz. High-pass filters are designated EF20 and low-pass EF10. Standard two- and three-pole modules can be combined to give networks of four, five or six poles. Attenuation is from 12 to 36dB/octave. Barr & Stroud Ltd, I Pall Mall East, London S.W.1.

WW 311 for further details

Miniature edge switches

A range of miniature edge switches, the 33 series, is now available from Plessey. The switches can be panel mounted from the front or rear, and illuminated versions are available. A wide range of switching codes is possible including decimal,

binary, and binary with complement. Multi-pole switching is achieved by coupling together a switch and up to four slave modules. Terminations are for direct wiring or for edge connectors and are numbered. Contact rating is 100mA at 50V d.c. Life is specified as being not less than 10⁶ operations. Dimensions of the switches are height 33mm, width 8mm. Professional Component Division, Plessey Components Group, Abbey Works, Titchfield, Fareham, Hants.

WW 305 for further details

14-lead socket

The A23/2041 socket from Jermyn will accommodate integrated circuits, relays and other electronic devices housed in 14-lead plug-in packages. Moulded from glass-loaded nylon, the socket is fitted

with pre-tensioned double wiper blade contacts. These have a life expectancy of up to 10,000 insertions with a typical contact resistance of 7 to $10 \text{m}\Omega$. Jermyn Industries, Vestry Estate, Sevenoaks, Kent.

WW304 for further details

Vidicon camera tube

A short 1 inch diameter vidicon tube, type 7262A, from English Electric Valve Co, is intended for use in monochrome or colour closed-circuit television systems. The construction is integral mesh with magnetic focus and deflection. The photoconductive surface has high sensitivity and low lag.

High voltage operation allows a limiting resolution of about 850 lines in the centre of the picture. Even when operated at low voltage, with minimum focus and deflection power, the centre resolution will normally

exceed 700 lines. The weight is approximately 60g. English Electric Valve Co Ltd, Chelmsford, Essex.

WW 334 for further details

Analogue multiplier

A monolithic four-quadrant multiplier made by Motorola is now available from Jermyn Industries. Type MC1595 gives a product of two input voltages with a linearity of 1%. It is useful for frequency doubling, as a balanced modulator and demodulator, for dividing, and taking the product, square root and mean square of functions. Input voltage is limited to \pm 10V. Jermyn Industries, Vestry Estate, Sevenoaks, Kent. WW 323 for further details

14-numeral display

Cold-cathode tube from Mullard can display 14 numerals in one envelope. The Pandicon type ZM1200 as it is called requires only 34 connections—as opposed to over 150 for separate tubes—and is

claimed to be more reliable than separate tubes. It uses a mixture of gases to give a luminance of 600cd/m². Coincident pulses of greater than 150µs are used to illuminate digits. Separate cathodes are provided for decimal points. Flicker can be eliminated by using an alternating supply of over 70Hz. Mullard Ltd, Torrington Place, London WC1E 7HD.

WW 324 for further details

Russian oscilloscope

Double-beam oscilloscope made in the U.S.S.R. is announced by Z & I Aero Services. Timebase generator provides for triggered operation and synchronization from an external source. A quartz crystal calibrator is included in the timebase. One of the vertical amplifiers can be switched to

narrow passband, increasing sensitivity four times.

vertical bandwidth 5MHz (-3dB) vertical sensitivity 500mm/V 0.5M/2, 45pF

input impedance (with attenuator) 5M , 13pF amplitude range 40mV-400V

timebase range 0.2μ s/cm to 100ms/cm sync/trigger voltage 500mV

crystal frequency 100kHz

With standard accessories of 10:1 attenuator, coaxial leads and jacks, and viewing hood, the C1-16 scope costs £87 from Z & I Aero Services Ltd, 44a Westbourne Grove, London W2.

WW 318 for further details

4GHz transistor

Interdigitated structure is used to optimize emitter periphery in a new microwave power transistor developed at GEC Hirst Research Centre. Interlocking emitter and base fingers with widths of $1.25\mu m$ have enabled transistors to produce $\frac{1}{2}$ watt at 4GHz with a gain of 6dB. The structure also incorporates emitter stabilization resistors to provide overload protection. This transistor is being further developed

to give this performance over the whole of C-band (up to 6GHz). GEC Hirst Research Centre, East Lane, Wembley, Middx. HA9 7PP.

WW315 for further details

Pulse generator

Type PG-71 pulse generator from Lyons Instruments features double pulse operation. Starting from a common rate generator two independent but mixable channels are provided. The pulse rates for each channel is 1Hz-5MHz. Delay and width are between 50ns and 1s. Pulse amplitude is 0.5-10V.

The period generator is gateable over burst rates from d.c. to 1MHz by a +2V input applied via rear panel socket to the inhibit circuit. Each of the two delay and width generators employs a single t.t.l. package as the only active device. Both main output stages, and also the sync output, employ discrete silicon devices. Each main output consists of a three-stage current amplifier, providing a pulse amplitude of $10V\ from\ 50\Omega$ source impedance (5V into 50Ω) with rise and fall times of less than 10ns.

The instrument measures $89 \times 235 \times 279 \,\mathrm{mm}$ and weighs approximately 3.2kg. Lyons Instruments Ltd, Hoddesdon, Herts.

WW 332 for further details

Heat sink resistors

The H.S. range of aluminium housed wirewound resistors recently introduced by C.G.S. is now available with resis-

tance values down to 0.01Ω in each of the 10, 15, 25 and 50W sizes. Tolerances available are $\pm 10\%$ 0.01Ω to 0.1Ω and $\pm 5\%$ 0.1Ω to 1.0Ω . Prices range from 3s 2d each. C.G.S. Resistance Co. Ltd., March Lane, Gosport Street, Lymington, Hants. SO4 9YO.

WW302 for further details

Improved plastic thyristor

Controlled rectifier type 2N5060 made by G-E (U.S.A.) is available in improved form, designated type C103 series. This 0.8A series has an increased surge rating of 8A and a lower forward blocking current of 1μ A. Gate sensitivity is 200μ A and the series has breakover voltages from 30 to 200V. In TO-18 plastic packages a typical price is about 11s for the 60-volt type. Jermyn Industries, Vestry Estate, Sevenoaks, Kent.

WW 321 for further details

Silicon photodiode

Photocurrent of 800pA per μ W/cm² is typical for IPL32 diodes from Integrated Photomatrix. The diode is Imm diameter and housed in a TO-5 case. Leakage current at 20°C is 50pA at 100mV, and InA at 10V. Breakdown voltage is 40V and the device costs 18s for 100+ orders. Integrated Photomatrix Ltd, Grove Trading Estate, Dorchester, Dorset.

WW 322 for further details

Transistors for television receivers

Three n-p-n transistors for video output stages are announced by Mullard. They can be used in both RGB and colour difference circuits and line scan driver stages as well as monochrome circuits. All three, BF336-8, have a minimum h_{FE} of 20 (I_c =30mA), minimum f_I of 80MHz, C_{re} of 3pF, power dissipation of 3W and a I_c maximum of 100mA. Maximum V_{CEO} is 180,200 and 225V for the three types and V_{CBO} is 185,250 and 300V. Package is TO-39. Mullard Ltd, Torrington Place, London WC1E 7HD.

WW 326 for further details

Silicon gate transistors

A range of silicon gate transistors is being produced by G.E.C. (Marconi-Elliott) Semi-conductors. Such devices are new and

provide low gate/drain and gate/source capacitance (typically 0.5pF) and low threshold voltage (-1 to -2V). The latter feature allows the device to be driven directly by 5V bipolar logic. Series-shunt gates and n-path filters can be produced simply. Three standard devices have been produced—the M1102 single, the M1202 monolithic pair with independent source and drain connections, and the M1402 dual pair where each pair has common source connections. The devices have integral protection diodes to eliminate handling problems. G.E.C. Semiconductors Ltd U.K. (Marconi-Elliott), Witham, Essex.

WW 331 for further details

Transistors for thin/thick film circuits

Four high-voltage transistors in subminiature plastic packages are announced by Mullard. Intended for film circuits they are low level general purpose types with

 V_{CEO} maximum ratings of 45V. Transistors measure $2.9 \times 1.3 \times 0.85$ mm excluding contacts. Types BCW69/70 are p-n-p types and BCW71/2 are n-p-n types. In the illustration they are compared with

	h_{FE}	f_T
	(2mA)	(10mA)
BCW69R	120-260	150MHz
BCW70R	215-500	**
BCW71R	110-220	300MHz
BCW72R	200-450	**

TO-5 packages. I_{CM} nax is 200 mA and P_{tol} nax 150 mW. Mullard Ltd, Mullard House, Torrington Place, London WC1E 7HD.

WW 312 for further details

P.V.C. coating for p.c. boards

Printed circuit boards can be protected against chemical attack and the effects of moisture by the application of Vycoat ACA60 or CA.90 Polyvinyl plastic coating, available from Plastic Coatings. Available either in aerosol form as ACA 60 or in bulk as CA90 Vycoat air dries and cures at ambient temperatures. A thin and uniform coating (white, black, or

clear) gives full protection, and yet allows components to be replaced by soldering through the layer. A quick respray to the affected area will restore the surface. It is usual practice to apply, in two stages, a film of approximately 100 microns, and at this thickness the layer will insulate against 3kV. Vycoat is available either in 14oz. aerosol cans or in 1 or 5 gallon drums. The safe working temperature range is $-25^{\circ}C$ to $+70^{\circ}C$. Plastic Coatings Ltd, Products Division, Trading Estate, Farnham, Surrey.

WW 340 for further details

Linear i.cs

Quarndon Electronics announce they have the following Signetics i.cs in stock:

**** * * * * * * * * * * * * * * * * * *	00	D III DECUME
function	Signetics typ	e equivalent
op-amp	5558	MC1558
multiplier	5595	MC1595
balanced m	od. 5596	MC1596
op-amp	531	
regulator	550	
function ger	n. 566	
•regulator	5723	μA 723
diff. amp.	5733	иA 733
op-amp	5741	αA 741
op-amp	5748	uA 748, LM101
Quarndon	Electronics	Ltd, Stock Lane
Derby.		

WW 319 for further details

Resistance bridge

Available from J. J. Lloyd Instruments is a battery Wheatstone bridge which features electronic null detection. It can be used by unskilled operators by virtue of an overload protector which operates

when the bridge is out of balance. Accuracy is $\pm 0.2\%$ ± 1 scale division. Resistance range is from 0.1 ohm to 1.1 megohms. J. J. Lloyd Instruments Ltd, Brook Avenue, Warsash, Southampton, Hants.

WW 314 for further details

Video oscillator

New Wayne Kerr oscillator type 0200 gives a sinusoidal output from 30kHz to 30MHz with an output level constant to within ± 0.5 dB. A 50ohm attenuator gives continuous adjustment of output level from -50dB to +10dB relative to 1V pk-pk.

Direct reading frequency scale is accurate to 1% and a secondary output is provided for connection of a frequency meter. Frequency is unaffected by the load impedance and affected by only 0.5% by the attenuator. The generator works from 110 or 240V mains and weighs 6kg. Wayne Kerr Ltd, Roebuck Road, Chessington, Surrey.

WS 341 for further details

Range of flash tubes

A range of xenon and neon flash tubes is available from Hivac. These tubes have a wide variety of possible applications. Uses for neon tubes include low cost car ignition systems, timing guns, and warning lights for use in low level lighting conditions. The

xenon tubes, which emit white light pulses of high intensity, are particularly suitable for aircraft navigation lights, marine beacons and roadway emergency beacons. Hivac Ltd, Stonefield Way, South Ruislip, Middx.

WW 342 for further details

VHF transistors

New devices made by Communications Transistor Corpn of California, an affiliate of Varian Associates, are primarily intended for mobile v.h.f. systems covering 150 to 175MHz. The range includes transistors with 10dB gain and an output of 3 watts (type B3-12), 6.8dB gain with 12 watts output (type B12-12 and 6.2dB gain with 24 watts output (type B25-12). An amplifier using one B3-12, one B12-12 and two B25-12s will give 50 watts output for an imput of 250W. The range will be extended shortly to include 12V u.h.f. transistors and 28V microwave transistors. These transistors are constructed to withstand infinite v.s.w.r. at all phase angles and include integral ballast resistors to give safe operation. Samples are available. Obtainable in the U.K. from EMI-Varian Ltd, Hayes, Middx.

WW 343 for further details

Literature Received

For further information on any item include the appropriate WW number on the reader reply card

A booklet 'Rectifier and thyristor quality' (TP1198) has been published by Mullard Ltd, Torrington Place, London WC1E 7HD. It explains how the conformity and reliability of these devices can be assessed and achieved by careful control and manufacture WW401

ACTIVE DEVICES

We have received the following literature from AEI Semiconductors Ltd, Carholme Rd, Lincoln:

Integrated linear circuit chips, 23 of them, manufactured by Silicon General Inc., of the U.S.A., are the subject of a leaflet from Rastra Electronics Ltd, 275 King St, Hammersmith, London W.6 WW 408

A. Marshall & Son (London) Ltd, 28 Cricklewood Broadway, London N.W.2, have sent us the following literature:

Semiconductors are also listed in the Comway catalogue mentioned in the next section.

PASSIVE COMPONENTS

'Connectors and connection systems' is the title of a booklet published by Ferranti Ltd, Dunsinane Ave,

A range of push-button switches manufactured by Alois Zettler is obtainable from the U.K. agents J. H. Associates Ltd, 1 Church St, Bishops Stortford, Herts. A leaflet describes the range WW 422

Technical bulletin No. 2 from Alkaline Batteries Ltd, P.O. Box 4, Redditch, is called 'Nickel cadmium alkaline batteries of the vented type'. The bulletin describes the operation, construction and performance

We have received the following literature from Electrosil Ltd, P.O. Box 37, Pallion, Sunderland, Co. Durham:

EQUIPMENT

Danavox (Gt Britain) Ltd, 'Broadlands', Bagshot Rd, Sunninghill, Berks, have the following two booklets

'Hearing-aid earphones and cords' WW429
'Hospital patients bedside listening sets' . WW430

A vast range of equipment for sound radio and television broadcasting equipment distributed by the Crow Company, P.O. Box 36, Reading RG1 4QD, is briefly described in their latest price list ... WW431

'Electronic speed variation control equipment for induction squirrel-cage motors' is the title of an article which was published in *Technique Suisse*. Reprints of

the article, in English, are available from Berco Controls Ltd, Queensway, Enfield, Middlesex WW433

The following two booklets are available from Ferranti Ltd, Microwave Component Sales, Dunsinane Avenue, Dundee DD2 3PN:

'Communications components' WW435
'Radar systems components' WW436

A data sheet which describes a low-cost angle position indicator with a five-digit display has been produced by North Atlantic Industries Inc., Terminal Drive, Plainview, New York 11803, U.S.A. WW438

From the National Research Development Corporation, Kingsgate House, 66-74 Victoria St, London S.W.1, we have received a leaflet describing a patent which covers a quarter wavelength coaxial cavity for an 8GHz Gunn-effect oscillatorWW439

A 10kW transmitter, type RF-745, providing independent sideband operation in 100Hz increments is described in a leaflet. RF Communications Inc., 1680 University Avenue, New York 14610, U.S.A. WW440

A 90MHz dual trace oscilloscope with twin-timebases (A & B sweep), called type R070, is the subject of a leaflet from Roband Electronics Ltd, Charlwood Works, Charlwood, Horley, Surrey WW441

Outline details of a range of spectrum analysers manufactured by the Federal Scientific Corporation, of the U.S.A., are given in a short-form catalogue (GS-005-80564) received from A.E.P. International Ltd, 14a High St, Staines, Middlesex WW442

GENERAL INFORMATION

The I.E.E. has prepared a series of pamphlets, contained in a pocket folder, which give careers information for boys and girls alike. Copies are available free of charge from The Secretary, The Institution of Electrical Engineers, Savoy Place, London WC2R OBL.

We have received the following literature from The British Standards Institution, 2 Park St, London WIA 2BS:

BS 9563:1970, Specification for rotary (manual) switches of assessed quality: generic data and

The following literature may be obtained from The Engineering Information Department, B.B.C., Broadcasting House, London W1A 1AA:

Information sheet 4919(7), map of B.B.C. u.h.f. TV main transmitting stations.

Information sheet 4003(11), list of B.B.C. u.h.f. TV transmitting stations

Information sheet 1919(4), map of v.h.f. radio transmitting stations; radios 2, 3 and 4.

Personalities

Christopher D. Colchester, B.A., has been appointed to the new post of chief scientist to Marconi Radar Systems Ltd and will relinquish his present position as assistant director of engineering in the Marconi Company. Educated at Rugby and Peterhouse, Cambridge, where he gained a 1st class honours degree in mechanical sciences, Mr. Colchester, who is 58, joined Marconi in 1933, to start work in the Telephone Laboratory. After the outbreak of war he was one of the group of Marconi engineers working in close association with the Admiralty on radar and was concerned with the development of radar aerials and associated equipment throughout the war years. Since 1965, Mr. Colchester has been the company's assistant director of engineering.

Two new executive directors have been appointed to the board of Marconi Elliott Avionic Systems Ltd. They are W. H. Alexander, B.Sc., A.Inst.P., and Peter F.
Mariner. B.Sc., A.R.C.S., Mariner, B.Sc., F.Inst.P., F.I.E.E., F.I.E.R.E., Mr. Alexander, who is 44 and a physics graduate of Edinburgh University, joined Elliott Brothers (London) Ltd in 1954 as a project leader engineer in the Aviation Division, and led the development work on gyro-stable platforms. In 1962 Elliott Flight Automation was formed at Rochester and Mr. Alexander was made joint general manager. He has been joint managing director since 1966. Mr. Mariner, 48, studied at the Royal College of Science where he obtained an honours degree in physics. After war service with the Fleet Air Arm he joined Elliotts in 1950 as group leader of the Aerials Laboratory. He became joint general manager of the Radar Group in Elliott-Automation in 1961 and managing director when the group became formally Elliott-Automation Radar Systems.

Giuliano Costamagna, the new 41-year-old general manager of SGS (United Kingdom) Ltd in succession to Laurence A. Curry, obtained a degree in electrical

engineering at the University of Milan in 1953. After two year's service as a commissioned officer in the Italian Signal Corps he joined the communications division of the Marconi Company in Chelmsford, in 1956. Two years later he joined the SGS Group in Milan and since November 1969 has been temporarily running the SGS factory at Falkirk. Mr. Curry has been appointed a director of SGS (U.K.) and will act as a consultant to the company while developing his private business interests.

D. M. McCallum, B.Sc., F.I.E.E., general manager of Ferranti's Scottish group of factories since 1968, has been appointed to the board of directors of the company. Mr. McCallum (48), after obtaining a first class honours degree in electrical engineering at Edinburgh University, joined the research staff of the Admiralty Signal Establishment to work on

D. M. McCallum

the development of communications equipment. In 1947, after a short period with Standard Telecommunications Laboratories, he joined Ferranti Ltd and later was responsible for development of their 'AIRPASS' radar systems. From 1960-68 Mr. McCallum was manager of the company's Electronic Systems Department in Edjnburgh.

Appointment of D. Joseph Donahue, M.S., Ph.D., to the newly-created position of division vice-president (solid state) Europe, has been announced by RCA Corporation. Dr. Donahue will be responsible for all solid-state activities in Europe, including sales, engineering, manufacturing and warehousing. His headquarters will be in London. RCA's first electronic manufacturing facility in Europe is a new 80,000 square-foot semiconductor plant in the Province of Liege, Belgium. Dr. Donahue, who received his degrees in physical chemistry from the University of Michigan, has been manager, solid state department, for the Solid State Division of RCA since 1967. He joined RCA in 1951 and was appointed manager, advanced development for the Semiconductor and Materials Division in 1960 and in 1962 was named manager, engineering, for the industrial semiconductor operation.

B. A. Clarke, M.I.E.E., is appointed business planning executive of the recently formed Underwater & Communications Divisions of Plessey Electronics Group. Mr. Clarke, aged 50, joined Plessey in 1960. He was general sales manager in the Radio Systems Division for a number of years and more recently was divisional manager of the Civil Radio Division. Originally he trained as a transmission engineer with S.T.C., and later was employed by A.E.I.

John Glaser has joined Aerialite Ltd as head of marketing in the Aerials Division. He has spent 24 years in the radio and electrical industries. but has been absent owing to ill-health for the past year. Mr. Glaser has been sales director with both Antiference and J. Beam Aerials.

The GEC Electronic Tube Co. Ltd, the management company combining the activities of the M-O Valve Co. and English Electric Valve Co., has announced several board appointments. Roy H. Deighton, commercial director of EEV, becomes commercial director of GECET; F. C. Thompson, Ph.D., B.Sc., F.I.E.E., director of EEV, is appointed a director of GECET, with responsibilities for the coordination of administration: John Dain, M.A., F.I.E.E., manager of the Microwave Division, EEV, is elected to the board of EEV and appointed general manager, Chelmsford; and Frederick J. Munks, commercial director, M-OV, is appointed general manager, M-OV. Mr. Deighton joined the Marconi Company in 1930, becoming chief of sales in Aeronautical Division in 1945. He became commercial manager of EEV in 1956 and was appointed president of English Electric Valve

North America Ltd in 1968 and director of English Electric Valve Company in 1969. Dr. Thompson, a graduate of Liverpool University, served with A.A. Command before becoming a senior scientific officer at the Telecommunications Research Establishment, Malvern, in 1942. He joined EEV in 1945 as engineer in charge of microwave tube production, and was made manager of Radar Tube Division in 1956. He was appointed director of the English Electric Valve Company in 1969. Mr. Dain, after graduating from St. John's College, Cambridge, commenced his technical career as a scientific officer with the Telecommunications Research Establishment in 1942. In 1946 he transferred to the Atomic Energy Research Establishment and joined EEV in 1954 as chief of microwave research, subsequently becoming manager of the Microwave Tube Division. Mr. Munks joined M-OV in 1941. He became marketing manager in 1969.

Adam Hogg, M.I.E.R.E., has joined H. R. Smith (Technical Developments) Ltd, of Thame, Oxfordshire, as chief electronics designer. Mr. Hogg was with the Ministry of Defence (Air) for sixteen years engaged on design and development of group navigational aids and associated airborne equipment followed by five years as aerials project manager with C & S Antennas.

L. M. Thompson is appointed managing director of Rediffusion Vision Ltd and deputy chairman of Rediffusion Vision Service Ltd. He has succeeded Maurice Exwood who has been managing director of Rediffusion Vision Ltd since 1957. Mr. Exwood remains chairman of Rediffusion Vision and of Rediffusion Vision Service which is company within Rediffusion Group responsible for the television receiver retail business. Mr. Thompson, who is 53, joined Rediffusion in 1934 in Newcastle. He was appointed general manager of London Rediffusion Service Ltd. in 1958, general manager of Rediffusion Vision in 1962 and joined the board of Rediffusion Vision Service in 1963.

Sir Martin Ryle, F.R.S., Professor of Radio Astronomy in the University of Cambridge, is the 1971 recipient of the Morris N. Liebmann memorial prize award of the I.E.E.E., "for his contributions in applying aperture synthesis to extend the capabilities of radio telescopes, thereby increasing man's knowledge of the Universe. Sir Martin, who graduated at Christ Church, Oxford, in 1939, worked at the Telecommunications Research Establishment, Malvern, on radar systems and radio countermeasures throughout the war.

Real & Imaginary

by "Vector"

The cross of gold

I see that Mr. Bernard Hunn,* who was formerly one of Plessey's top men, has thrown in his hand at that establishment in order to start his own business. In this, I'm sure, we all wish him well, for it takes courage to abandon a safe job in favour of backing one's fancy. (Perhaps our technology might be in a healthier state if more of this went on, for I've a feeling that a lot of good ideas are mouldering in the graveyard-files of large companies for reasons which have nothing to do with lack of merit.)

Of the technical details of Mr. Hunn's idea I have no inside knowledge. In fact the only clue to its merits that I possess is that it is being backed financially by the Industrial and Commercial Finance Corporation, which, being an off-shoot of British banks, is not given to placing its money on also-rans. On the face of it, the project looks a sound one. It is, in essence, based on a credit card made of plastic in which are embedded strips of plastic tape having discrete blobs of magnetization imprinted on them. Each blob represents a monetary unit which can be used to buy goods.

As a pilot operation, Mr. Hunn plans to start with an unmanned petrol station. You drive up, insert the card into a suitable device and take what you want of petrol or other commodities. The are recorded appropriate number of magnetized blobs are erased. When the card is finished you throw it in the dustbin and buy another.

Naturally it isn't quite as simple as that; due regard, for instance, must be paid to the less honest citizens among us, otherwise stolen cards would become a thriving source of income. This, I believe, is taken care of by having your private identification number encoded on the card in such a way that only the machine-interrogator can read it. You manually insert your number (known only to yourself) and if the two tally you are home and dry (but not, let us hope, your petrol tank).

The aim of Mr. Hunn and others is to bring about a social revolution of some magnitude. The target is nothing less than that of a cashless society. You, sitting at home glumly surveying the year-end already with you; but that isn't quite what is meant. The basic problem began when Ug in

blizzard of bills, might be forgiven for

supposing that this state of affairs is

his cave developed an expertise in making flint-tipped arrows. Ig, his next-cave neighbour, couldn't make them for toffee, but had quite a knack at transforming skins into off-the-shoulder garments. So it wasn't long before an equitable rate of exchange was fixed between the two. Which was fine until a surfeit of arrows and tailor-mades was established; at that point not-so-near neighbours with other skills had to be persuaded to join the club.

This barter system worked quite happily even when trade assumed international proportions (and still persists today). Then some unknown genius (or fool, depending on your point of view) invented money. Now this, in concept, was a good thing. You sold your wares to someone who wanted them and instead of being lumbered with goods you didn't want in return, you were given a number of tallies (physically small and portable; usually of some precious metal) which could readily be exchanged elsewhere for goods you did want.

The system did, however, have its drawbacks. A merchant venturing out with a bag of gold was high up in the charts for being clobbered by footpads and so over the years to modern times there has been an increasing trend to keep the gold in a safe place and to issue pieces of paper-banknotes, cheques and so on-in lieu. But, while paper is more convenient to carry, banknotes are just as vulnerable to theft as gold, while cheques can be for ged.

The next step was the credit card, a device which is rapidly gaining ground over here and is the norm in the U.S.A. where it has produced the paradox that only the very poor pay cash for goods. It has also produced something of a crisis in data transfer; if, in your travels in the U.S.A. you come across a mountain made of paper, you will, if you dig industriously, find a bank buried underneath it.

What Mr. Hunn et al intend to do is to replace the paperwork by electronics and at the same time make it fraud-proof. There are differing ideas of how this should be done, but whichever way it is it will add up to an awful lot of microcircuits and general electronics hardware.

In ten or fifteen years' time, if the visionaries have their way, you will receive, at the end of the month, not the customary handful of rice, but a magnetically encoded credit card in token of your labours. When you wish to buy something you take your card to the shop, make your purchase and then shove the card into an interrogation terminal. The amount of the purchase is wiped from the card and simultaneously the record of the transaction is sent by data link to a central computer, where your bank account is debited with that figure while the shop's account is credited. A logical extension would be the card-reading domestic telephone which I believe is already in prototype existence.

This sounds all right in principle, although I'm not sure how the details will work out. For instance it seems an elaborate way of buying a box of matches or gaining access to a public lavatory. And every married man knows the susceptibility of the distaff side to the blandishments of the supermarket (Darling, I only went in for a tablet of soap and somehow I seem to have spent £7.10.0.) so it would be financial suicide to turn the little woman loose with the entire credit card. Presumably there would have to be sub-cards for such items as housekeeping, junior's pocket-money and so on. On the reverse side of the coin (or rather, credit card), however, the government is likely to welcome a system whereby every monetary exchange is officially recorded and therefore subject to taxation scrutiny. The wad of notes under the floorboards seems to be on the way

In fact, the individual devices for such a system are mostly already in being, but a nation-wide network is another cup of tea. To mention only one snag, the Post Office is already submerged up to its cross-bars communication problems (did somebody mention electronic exchanges?) The mind boggles at the task of data-linking 66 million people; and it boggles even more at the thought that the cost must inevitably be debited to your magnetic card and mine.

And this isn't all. Trade is international, so any system adopted must be world-compatible. It would be foolish for any one company (or even country) to go it alone in the vain hope of having its system adopted by every other nation. International co-operation at the design stage, and thereafter, would be vital.

One often hears that money is the root of all evil. This is a misquotation; what St. Paul wrote is 'the love of money is the root of all evil,' which is a different matter altogether. I should be the last to inflict a sermon upon you, so I'll merely suggest that the original concept of money as a convenient means of barter was torpedoed ages ago, when money was elevated to the rank of god. The cashless society concept does nothing to abolish the god; it merely makes him invisible.

*"Magnetic Credit for the Customer" New Scientist, 22nd Oct. p 173

WW-081 FOR FURTHER DETAILS

12 watts to 250 watts r.m.s. class AB

power amplifiers

off the shelf for as little as 2/- per watt, Maximum distortion 0.1% 20Hz to 20kHz. Full power bandwidth 10Hz up to 80kHz ±1dB. Complementary and quasi-complementary versions in all power ratings perform to the same high standard. Unconditionally stable. Fully protected against accidental misuse

- **Stereo Integrated Circuit Preamplifiers**
- **Stereo Headphone Amplifiers**
- **Toroidal Mains Transformers**

all designed to the exacting standards of the professional user.

Transaudio combines sophisticated design and no-nonsense engineering in semi-kit products incorporating *Motorola* transistors/ICs and other dependable components assembled on fibre glass circuit boards. Write today for full details.

Transaudio Limited

8 Elsworthy Rise London N W 3 "Setting the Standard for the Seventies" Looking for a safer breed of Connector?

You choose electrical equipment in much the same way you choose a dog: you scrutinise and examine carefully, and take it out for a trial run. And you ask to see

When you handle a Rendar product, you can see at once that it's a better breed: first class materials; precision machinery and assembly; sound design. Its pedigree is impeccable.

Just 1 winner from the Rendar kennel

The Rendar Safebloc saves time and saves life. There's no need to fit a plug for testing – just connect the apparatus direct. And there's no danger of shocks – no current can pass until the lid is closed.

Rendar pioneered this concept, and introduced the "Safebloc" to the British market over 12 years ago. It's indispensable on testing lines, and for all kinds of electrical demonstrations. Double Safebloc available for 3-phase applications

INSTRUMENTS

Burgess Hill, Sussex, England Tel. 2642-4, Cables RENDAR Burgess Hill

WW-083 FOR FURTHER DETAILS

METER PROBLEMS?

A very wide range of modern design instruments is available for 10/14 days' delivery.

Full information from:

HARRIS ELECTRONICS (London)

138 GRAYS INN BOAD, W.C.1

Phone: 01/837/7937

WW-085 FOR FURTHER DETAILS

AMPLIFIERS OF QUALITY AND RELIABILITY at the right price!

An extremely attractive solid state stereo amplifier, ideal for unit audio use. Facilities MAGNETIC include CERAMIC P.U. RADIO, TAPE etc. Output 6 watts per channel Freq. Response

40-40,000 c.p.s.-3 dB. Hum LeveldB. Controls include Input Selector, Volume, Balance, Bass, Treble and Stereo/Mono Switch. Black and silver facia panel with

24 Gns. Retail Price

satin silver control knobs. Slimline finish enhanced by good quality Teak cabinet housing.

ONLY 36 Gns.

Housed in Teak veneered Cabinet, Switched selection of Micro-phone, Magnetic P.U., Ceramic P.U., Radio Tuner, Tape Recorder.

'PHASE 32' SOLID STATE STEREO AMPLIFIER

15 + 15 WATT HIGH FIDELITY OUTPUT.

- ★ Excellent performance
- **High Grade components** and Transistors
- Impressive technical specification
- Attractive appearance
- ★ Modest cost

For leaflets on the above and other models in the FAL range, please send SAE to:

FUTURISTIC AIDS LTD, 104 Henconner Lane, Leeds, 13.

WW-084 FOR FURTHER DETAILS

THROUGHOUT WORLD. EXPERIENCE OF 30 YEARS ENSURES A
RELIABILITY, VERSATILITY, UNSURPASSED
PERFORMANCE COMES WITH EVERY SANWA.

6 Months' Guarantee, Excellent Repair Sei £3 7 Model K-30THD Model P.2.B. Model JP5D Model F-80THD Model 380-CE Model 430-ES Model U-50DN Model 360-YTR Model EM-700 Model A-3D3TRD Model R.1000, CB

Cases available with most meters

MDDEL U-5DDN

PLEASE WRITE FOR ILLUSTRATED LEAFLETS OF THESE SANWA METERS

SOLE IMPORTERS IN U.K; ELECTRONICS LTD. 47-49 HIGH STREET, KINGSTON-UPON-THAMES, SURREY, Tel: 01-546 4585

WW-086 FOR FURTHER DETAILS

PARK ROYAL, LONDON W5 TEL: 01-998 6171 TELEX: ATES LONDON 262401

WW-087 FOR FURTHER DETAILS

GOLDRING SERIES 800 and 850 STEREO MAGNETIC CARTRIDG

Our famous '800 Series' True Transduction cartridges, developed on the 'Free Field' principle, allow the most delicate groove-stored signals to be accurately relayed and re-created with uncompromising precision. And the

G.850 Free Field stereo magnetic cartridge, intended primarily for 'budget' hi-fi systems, offers all the advantages of a good quality magnetic cartridge at a very attractive price.

800 Super E For those aiming at perfectionextra low mechanical impedance for ultimate tracking is achieved by a duo-pivoting arrangement membrane-controlled to avoid longitudinal or torsional modes blemishing performance. Each cartridge supplied with individual curve and calibration certificate.

800/E Designed for transcription arms, a micro-elliptical diamond is fitted to a fine cantilever, end-damped against natural tube resonances, accurately terminated in a special conical hinge to give pin-point pivoting

800 The 800 is designed for standard arms and changers where the requirements for high fidelity and robustness usually conflict. Output is 5mV at 5 cm/sec. R.M.S. Recommended tracking weight 1½ to 21 grams.

800/H This Free Field Cartridge is designed for inexpensive changers to track between 2½ to 3½ grams and has a high output of at least 8mV.

G850 This relatively inexpensive Free Field stereo magnetic cartridge is capable of bringing out the very best performance that 'budget' hi-fi systems can provide.

Goldring Manufacturing Company (Great Britain) Limited, 10 Bayford Street, Hackney, London E8 3SE. Phone: 01-985 1152.

WW-088 FOR FURTHER DETAILS

HALLICRAFTERS **BC 610E** TRANSMITTERS

2-18Mc, 450W phone, 350W CW, Crystal and M.O. 3 pretuned channels, complete with speech amplifier, tuning unit, tank coils, connecting cables, microphone etc.

COLOMOR (ELECTRONICS) 170 Goldhawk Rd., London, W.12

Tel. 01-743 0899

ET 4336 MADE BY R.C.A. 350W CW 250W phone. 2mc-20mc. Complete installations and spares in stock.

WW-090 FOR FURTHER DETAILS

WW-089 FOR FURTHER DETAILS

Project 60

the world's most advanced high fidelity modules

With the introduction of an entirely new and original high fidelity stereo F.M. tuner, the Project 60 range can be said at this stage to be complete. It offers the constructor a most attractive choice of modular arrangements whereby a high fidelity system can be selected to suit the user's personal requirements. Equally, it is possible to use any Project 60 modules separately or partially grouped and so benefit greatly from the flexibility in use these modules afford. The chart below shows some of the most popular applications for constructors to assemble. The Project 60 manual (free with the modules) suggests others as well and its 48 pages are packed with valuable information. The new tuner, for example can be used with any good high fidelity system as well as Project 60.

Project 60 now falls into four interdependent groups: -1. The Z.30 and Z.50 amplifiers which have only 0.02% distortion at all output levels and are useful in a wide variety of other applications. 2. The control units comprising the Stereo 60 preamp and control unit and the Active Filter Unit (A.F.U.) with which both high pass and low pass filtering can be introduced between control unit and power amplifiers. 3. The Stereo F.M. tuner as described opposite; and 4. The power supply units PZ.5,

PZ.6 and PZ.8. For most requirements when using Z.30 power amplifiers, the PZ.5 will be perfectly adequate; if low efficiency (high quality) loud speakers are used, the PZ.6 stabilised power supply unit will be used. The PZ.8 will be needed with Z.50s which can be used for any Project 60 system.

Project 60 modules incorporate some of the most advanced circuitry in the world to achieve unsurpassed standards of high fidelity and modern manufacturing techniques enable these modules to be sold at exceptionally attractive prices. Assembling the modules requires no skill or previous experience since the manual supplied with the modules explains clearly how everything can be done with nothing more than the simplest of domestic tools.

Project 60 manuals

How to assemble and use Project 60 modules to best advantage in the above and other applications will be found in the fully descriptive Project 60 manual included with Project 60 systems. This 48 page manual is available separately, price 2/6d including postage.

	System	The Units to use	In conjunction with	Cost of Units	+ Project 60 tunes
A	Car Radio	Z.30	Existing carradio, Sinclair Micromatic	89/6	
В	Simple battery powered record player	Z.30	Crystal pick-up, 12V or more battery supply and volume control	89/6	,
С	Mains powered record player	Z.30 and PZ.5	Crystal or ceramic P.U. Volume control etc.	£9.9.0	£34.9.0
D	20+20 watts R.M.S. stereo amplifier for most needs	Two Z.30s, Stereo 60 and PZ.5	Crystal, ceramic or magnetic P.U., most dynamic speakers, F.M. tuner etc.	£23.18.0	£48.18.0
E	20+20 watts R.M.S. stereo amplifier for use with low efficiency (high performance) speakers	Two Z.30s, Stereo 60 and PZ.6	High quality ceramic or magnetic P.U., F.M. Tuner, Tape Deck, etc All dynamic speakers	£26.18.0	£51.18.9
F	40+40 watts R.M.S. de-luxe stereo amplifier	Two Z.50s, Stereo 60 PZ.8 and mains transformer	As for E	£32.17.6	£57.17.6
G	Outdoor public address system	Z.50	Microphone, up to 4 P.A. speakers, 12V car battery with converter, or 45V d.c., controls	£5.9.6	1
Н	Indoor P.A.	One Z.50, PZ.8 and mains transformer	Microphone, guitar, heavy duty speakers etc., controls	£17.8.6.	
J	High pass and low pass filters	A.F.U.	D, E or F as above	£5.19.6	

Sinclair Radionics Limited, 22 Newmarket Road, Cambridge
Telephone (0223)

Z.30 & Z.50 power amplifiers

The Z.30 together with the Z.50 are both of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at full output and all lower outputs. Whether you use the Z.30 or Z.50 power amplifiers in your Project 60 system will depend on personal preference. but they are the same physical size and may be used with other units in the Project 60 range equally well. For operating from mains, for the Z.30 use PZ.5 for most domestic requirements, or PZ.6 if you have very low efficiency loudspeakers. For Z.50, use the PZ.8 described below

SPECIFICATIONS (Z.50 units are inter-changeable with Z.30s in all applications) Power Outputs

2.30 15 watts R.M.S. into 8 ohms, using 35V 20 watts R.M.S. into 3 ohms using 30 volts. **2.50** 40 watts R.M.S. into 3 ohms from 40 volts 30 watts R.M.S. into 8 ohms, using 50 volts.

Prequency response 30 to 300,000 Hz ± 1dB

Distortion 0.02% into 8 ohms

Signal to noise ratio better than 70 dB unweighted Input sensitivity 250mV into 100 Kohms For speakers from 3 to 15 ohms impedance Size $3\frac{1}{2} \times 2\frac{1}{4} \times \frac{1}{2}$ ins.

Z.30

tested and guaranteed with circuits and Built. 89/6

Built, tested and guaranteed with circuits and 109/6

Stereo 60 pre amp/control unit

Designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout, achieving a really high signal-to-noise ratio and excellent tracking between channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs,

SPECIFICATIONS

- Input sensitivities Radio up to 3mV. Mag. p.u. 3mV; correct to R.I.A.A. curve ± 1dB: 20 to 25,000 Hz. Ceramic p.u. – up to 3mV: Aux. – up to 3mV.

 Output – 250mV.
- Signal-to-noise ratio better than 70dB
- ◆ Channel matching within 1dB. ◆Tone controls TREBLE +15 to —15dB at 10kHz: BASS +15 to —15dB at 100Hz.

- Front panel brushed aluminium with black knobs
- and controls.
 Size $8\frac{1}{4} \times 1\frac{1}{2} \times 4$ ins

Built, tested and quaranteed

£9.19.6

Active Filter Unit

For use between Stereo 60 unit and two Z.30s or Z.50s, the Active Filter Unit matches the Stereo 60 in styling and is as easily mounted. It is unique in that the cut-off frequencies are continuously variable, and as attenuation in the rejected band is rapid (12dB/octave), there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The Sinclair A.F.U. is suitable also for use with any other ampli-

Two stages of filtering are incorporated - rumble (high pass) and scratch (low pass). Supply voltage – 15 to 35V. Current – 3mA H.F cut-off (-3dB)

variable from 28kHz to 5kHz. L.F cut-off (-3dB) variable from 25Hz to 100Hz. Filter slope, both sections 12dB per octave. Distortion at 1kHz (35V supply) 0.02% at rated output.

£5.19.6

Power Supply Units

The units below are designed specially for use with the Project 60 system of your choice. Illustration shows PZ.5 power supply unit to left and PZ.8 (for use with Z.50s) to the right. Use PZ.5 for normal Z.30 assemblies and PZ.6 where a stabilised supply is essential.

PZ-530 volts unstabilised £4.19.6 PZ-635 volts stabilised £7.19.6

P7-8 45 volts stabilised (less mains transformers) £5.19.6

PZ-8 mains transformer £5.19.6

GUARANTEE If within 3 months of purchasing Project 60 modules directly from us, you are dissatisfied with them, we will refund your money at once. Each module is guaranteed to work perfectly and should any defect arise in normal use we will service it at once and without any cost to you whatsoever provided that it is returned to us within 2 years of the purchase date. There will be a small charge for service thereafter. No charge for postage by surface mail, Air-mail charged at cost.

Stereo FM tuner

first in the world to use the phase lock loop principle

Before production of this tuner, the phase lock loop principle was used for receiving signals from space craft because of its vastly improved signal to noise ratio over other systems. Now, for the first time the principle has been applied to an FM tuner with fantastically good results. By the inclusion of other original features such as varicap diode tuning, printed circuit coils and an I.C. in the specially designed stereo decoder, the tuner has an unsurpassed specification, which also incorporates a squelch circuit for silent tuning between stations, A.F.C. and A.G.C. Sensitivity is such that good reception becomes possible in difficult areas, foreign stations can be tuned in suitable conditions and often a few inches of wire are enough for an aerial. In terms of high fidelity, this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically as the tuning control is rotated, a panel indicator lighting up as the stereo signal is tuned in. Although the tuner is intended primarily for use with a Project 60 system, it can be used to advantage with any other high fidelity system. It is easily mounted into any cabinet as shown in the manual supplied with it.

Specifications

Number of transistors 16 plus 20 in I.C. Tuning range 87.5 to 108 MHz Capture ratio 1.5dB Sensitivity 2µV for 30dB quieting 7μV for full limiting

Squeich level 20µV A.F.C. range $\pm 200 \text{ KHz}$ Signal to noise ratio > 65dB Audio frequency response 10Hz-15kHz(±1dB) Total harmonic distortion 0.15% for 30%

modulation

Stereo decoder operating level 2µV Pilot tone suppression 30dB Cross talk 40dB I.F. frequency 10.7 MHz Output voltage 2 x 150mV R.M.S Aerial Impedance 75 Ohms Indicators Mains on : Stereo on ; tuning indicator Operating voltage 25-30 VDC

Price: £25 built and tested. Post free.

To: Sinclair Radionics Ltd., 22	Newmarket Road, Cambridge
Please send	NAME
	ADDRESS
for which I enclose cash/cheque money order	WW 1.71

Sinclair IC-10

the world's most advanced high fidelity amplifier

Specifications

Output: 10 Watts peak, 5 Watts R.M.S. continuous

Frequency response: 5 Hz to 100 KHz±1dB Total harmonic distortion: Less than 1% at full output.

Load impedance: 3 to 15 ohms.

Power gain: 110dB (100,000,000,000 times) total.

Supply voltage: 8 to 18 volts.
Size: 1 x 0.4 x 0.2 inches.
Sensitivity: 5mV.
Input impedance: Adjustable externally up to 2.5 M ohms.

Circuit Description

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class AB output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages, making battery operation eminently satisfactory.

Applications

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include oscillators, etc., whilst the pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick, has 5 watts R.M.S. output (10w. peak). It contains 13 transistors (including two power types), 2 diodes, 1 zener diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.

The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout), etc. Once proven, the circuits can be produced with complete uniformity which enables us to give a full guarantee on every IC-10, knowing that every unit will work as perfectly as the original and do so for a lifetime.

IC-10

with IC-10 manual Post free.

59/6

Please send	NAME
	ADDRESS
for which I enclose cash/cheque	

See now, play later.

If something's worth recording, it's worth recording well. The TVR 332 Video Tape Recorder gives a very high quality picture for just £820.

Its many features include audio monitoring and dubbing; push button controls; automatic playback and rewinding; instant stop-motion and 1500 hours video head life.

Whether you want to buy or hire, it's naturally backed by Dixons service.

Write or phone
Dixons CCTV Ltd
3 Soho Square, London W.1.
01-437-8811

Dixons CCTV...

We offer you more.

WW-094 FOR FURTHER DETAILS

Quality Parts for the discerning builder

BAILEY PRE-AMPLIFIER still offers lowest distortion level and best overload capability. Edge Connector Mounted Printed Circuit in Fibreglass or Paxolin material to choice. Highest quality parts including gain graded transistors.

BAILEY 30w POWER AMPLIFIER. Edge Connector Mounted Printed Circuit in Fibreglass or Paxolin material, size $4^{*}_{4} \times 2^{*}_{4}$. This unit and the above Pre-amplifier can both be used in our new Metalwork Assembly.

BAILEY 30w POWER SUPPLY. We have now designed a Printed Circuit Board for the power supply, again intended to be used with our Metalwork, which also has edge connector mounting. Available in Fibreglass material only.

BAILEY 20w AMPLIFIER. Special driver transformer and bifilar wound mains transformer. Printed circuits and all parts available for this design.

LINSLEY HOOD CLASS A. Full sets of parts now available to the new specification given in the December, 1970, Wireless World.

LINSLEY HOOD CLASS AB. We have some parts for this design but a Printed Circuit will not be available. We can supply information re thermal stability to constructors interested in this circuit.

SUGDEN CLASS A AMPLIFIER. A Hi-Fi News design. All parts are in stock except the Metalwork.

DINSDALE. We shall be putting the parts for this design into honourable retirement shortly, so please order quickly if there is anything you require.

 ${\bf J},\,{\bf R},\,{\bf STUART}$ TAPE CIRCUITS. We will be designing Printed Circuit Boards and supplying parts for this interesting design.

Full details are given in our Free lists. Please send foolscap s.a.e.

HART ELECTRONICS

321 Great Western Street Manchester M14 4AR

Personal callers are always welcome at our retail shop, but please note we are closed on Saturdays.

Low cost regulated DC power supplies Compact design providing optimum performance at low cost. Stabilised voltage and current outputs ranging from 0-10V to 0-60V and currents from ½A-5A. Units can be arranged for series or parallel operation. The new M.V. range

KSM Electronics Ltd. Bradmore Green
Brookmans Pk., Herts. Tel Potters Bar 59707

WW—095 FOR FURTHER DETAILS

TRANSFORMERS COILS

CHOKES

TRADE ENQUIRIES WELCOMED

SPECIALISTS IN

FINE WIRE WINDINGS

MINIATURE TRANSFORMERS
RELAY AND INSTRUMENT COILS
VACUUM IMPREGNATION TO APPROVED STANDARDS

ELECTRO-WINDS LTD.

CONTRACTORS TO G.P.O., L.E.B., B.B.C.

123 PARCHMORE ROAD, THORNTON HEATH, SURREY
01-653 2261 CR4 8L Z EST. 1933

WW--097 FOR FURTHER DETAILS

WW-098 FOR FURTHER DETAILS

**************************************	GZ30 0:35 PCF87 0:80 QVQ4/7 :63 U45 0:78 AA119 0:15 RCY34 0:23 GET872 :95 QC22 0:38
BENTLEY ACOUSTIC	GZ30
	GZ33 0.70 PCF800 0.65 R11 0.98 U49 0.59 AA129 0.15 BCY39 0.25 GET882 50 OC24 0.38
CORPORATION LTD.	GZ34 0.53 PCF801 0.35 R16 1.75 U50 0.28 AAZ13 0.18 BC107 0.13 GET887 23 OC25 0.38
	GZ37 0.75 PCF8020.45 R17 0.88 U76 0.24 AC107 0.15 BC108 0.13 GET889 23 OC26 0.25 HABC80.45 PCF8050.64 R18 0.50 U78 0.22 AC113 0.25 BC113 0.25 GET890 23 OC28 0.60
38 CHALCOT ROAD, CHALK FARM, LONDON, N.W.1	HABC80 45 PCF8050 64 R18 0.50 U78 0.22 AC113 0.25 BC113 0.25 GET890 23 OC28 0.60 HL13C 0.20 PCF806 0.64 R19 0.33 U107 0.92 AC114 0.40 BC115 0.15 GET896 23 OC29 0.63
THE VALVE SPECIALISTS Telephone 01-722-9090	HL23DD 40 PCF808 0 73 R20 0 59 U191 0 63 AC127 0 20 BC116 0 25 GET897 23 QC35 0 32
GLOUCESTER ROAD, LITTLEHAMPTON, SUSSEX, Littlehampton 6743	HL41DD 98 PCH200 62 R52 0.38 U193 0.34 AC128 0.20 BC118 0.23 GEX13 0.18 OC36 0.43
Please forward all mail orders to Littlehampton	HL42DD 50 PCL82 0 37 RG1/240A U251 0 73 AC154 0 25 BCZ11 0 38 GEX 35 0 23 OC38 0 43 HN309 1 37 PCL83 0 50 1 98 U281 0 40 AC156 0 20 BD119 0 45 GEX 36 0 50 OC41 0 50
Save postal costs! Cash and carry by callers welcome.	HVR2 0.53 PCL84 0.38 RK34 0.38 U282 0.40 AC157 0.25 BF154 0.28 GEX45 0.33 OC42 0.63
	HVR2A 53 PCL86 0-43 8P13C 0-63 U301 0-53 AC165 0-25 BF159 0-25 GEX55 0-75 OC44 0-10
OA2 0:30 6BR8 0:63 6V6GT 0:33 20F2 0:70 305 0:83 DM71 0:38 ECL84 0:60 OB2 0:30 6B87 1:25 6X4 0:22 20L1 0:98 306 0:65 DW4/350 ECL85 0:55	TWILLIAM TO THE TOTAL THE
OZ4 0.23 6BW6 0.72 6X5GT 0.25 20P1 0.88 807 0.59 0.38 ECL86 0.40	TW4/350
1A3 0.23 6BW7 0.65 6Y6G 0.55 20P3 0.90 956 0.10 DY86/7 0.29 EF22 0.63	IW4/500 PCL805/ TH233 0.98 U801 0.95 AC169 0.33 BF181 0.40 MAT100 39 OC70 0.13
1 1A5 0.25 6C4 0.25 6Y7G 0.63 20P4 0.93 1821 0.53 DY802 0.48 EF36 0.33 1A7GT 0.37 6C6 0.19 7B6 0.58 20P5 1.00 5763 0.50 E80F 1.20 EF37A 0.35	0.38 PCL85 0.45 TP2620 0.98 U4020 0.38 AC176 0.55 BF185 0.40 MAT101 43 OC71 0.13
	1 mg 1
1 D5 0.38 6C17 0.63 7C6 0.30 25L6G 0.29 7193 0.53 E88CC 0.60 EF40 0.50	KT8 1-73 PEN4DD UAF42 0-52 VP2B 0-48 ACY17 0-25 BFY51 0-19 MAT121 -43 OC74 0-23 KT41 0-98 1-38 UBC41 0-45 VP13C 0-35 ACY18 0-20 BFY52 0-20 OA5 0-28 OC75 0-13
	KT44 1 00 PEN45 0 35 UBC81 0 40 VP23 0 40 ACY19 0 19 BTX34/400 OA9 0 13 OC76 0 15
	KT63 0.25 PEN45DD UBF80 0.29 VP41 0.38 ACY20 0.18 2.00 OA10 0.43 OC77 0.27 KT66 0.83 0.75 UBF89 0.34 VR75 1.20 ACY21 0.19 RV100 0.18 OA47 0.10 OC78 0.15
	KT66 0.83 0.75 UBF89 0.34 VR75 1.20 ACY21 0.19 BY100 0.18 OA47 0.10 OC78 0.15 KT74 0.63 PEN46 0.20 UBI.21 0.55 VR105 0.33 ACY22 0.15 BY101 0.15 OA70 0.15 OC78D 0.15
1H5GT 0:35 6D3 0:38 9BW6 0:50 25Z6G 0:43 AC044 1:18 EA76 0:88 EF80 0:23	KT76 0 63 PEN453DD UC92 0 35 VR150 0 33 ACV28 0 18 BY105 0 18 OA73 0 15 OC79 0 40
1L4 0·13 6D6 0·15 9D7 0·78 30C1 0·30 AC2PEN 98 EABC80 33 EF83 0·48 1LD5 0·30 6F1 0·63 10C1 1·25 30C15 0·65 AC2PENDD EAC91 0·38 EF85 0·29	KT88 1.70 0.98 ITCC84 0.40 VT614 0.35 4 D 140 0.39 RVII4 0.79 0.479 0.00 0.00 0.39
1LD5 0·30 6F1 0·63 10C1 1·25 30C15 0·65 AC2PENDD EAC91 0·38 EF85 0·29 1LN5 0·40 6F6 0·63 10C2 0·50 30C17 0·80 0·98 EAF42 0·50 EF86 0·32	KTW61 63 PENA40-98 UCC85 0.37 VT501 0.15 AD149 0.50 BY126 0.15 OA81 0.09 OC81D 0.13 KTW62 63 PEN/DD UCF80 0.42 VU111 0.44 AD161 0.45 BY127 0.18 OA85 0.08 OC81M 0.25
INSGT 0.39 6F6G 0.25 10D1 0.50 30C18 0.64 AC6PEN 38 EB34 0.20 EF89 0.25	KTW63 -50 4020 0-88 UCH21 0-60 VU120 0-60 AD162 0-45 BVV23 1-00 0A86 0-20 0C82 0-13
1 1R5 0.28 6F12 0.17 10D2 0.73 30F5 0.80 ACPEN (7) EB41 0.50 EF91 0.17	L63 0 19 PFL200 59 UCH42 0 63 VU120A 60 ADT140 63 BYZ10 0 25 OA90 0 13 OC82D 0 15
	LN319 0.69 PL33 0.38 UCH81 0.33 VU133 0.35 AF106 0.50 BYZ11 0.25 OA91 0.09 OCR3 0.20
1U4 0.29 6F15 0.65 10F18 0.35 30FL12 0.80 AC/TP 0.98 EBC81 0.33 EF98 0.65	LN339 0-64 PL36 0-48 UCL82 0-35 W76 0-34 AF114 0-25 BYZ12 0-25 0A95 0-09 OC84 0-24 LZ319 0-30 PL81 0-48 UCL83 0-50 W81M 0-68 AF115 0-15 BYZ13 0-25 OA200 0-09 OC123 0-23
1U5 0.48 6F18 0.45 10LD11 0.53 30FL14 0.73 AL60 0.78 EBC90 0.20 EF183 0.30	LZ329 0.30 PL81A 0.63 UF41 0.50 W107 0.50 AF117 0.20 RVZ15 1.75 0A202 0.10 0C139 0.23
2D21 0·35 6F23 0·72 10P13 0·65 30L1 0·32 ARP3 0·35 EBC91 0·30 EF184 0·30 3A4 0·20 6F24 0·68 10P14 1·10 30L15 0·64 ATP4 0·12 EBF80 0·34 EFP60 0·50	M8162 0.63 PL82 0.33 UF42 0.60 W729 0.60 AF119 0.23 CG12E 0.20 OA210 0.48 OC140 0.95
	ME1400 74 PL83 0.33 UF80 0.35 XE3 5.00 AF121 0.30 CG64H 0.20 OA211 0.68 OC169 0.23 MHL4 0.75 PL84 0.33 UF85 0.34 XFY12 0.48 AF124 0.25 FSY11A 23 OAZ200 60 OC172 0.35
3B7 0.25 6F26 0.29 12A6 0.63 30P4MR 98 AZ31 0.48 EBF89 0.32 EK90 0.24	MHLD6 75 PL302 0 60 UF86 0 63 XH1 5 0 48 AF126 0 18 FSY28A 23 0 720 50 OC200 0 23
	MU12/14 PL500 0.68 UF89 0.34 X41 0.50 AF139 0.65 GD4 0.33 CAREO 0.00201 0.38
	0.38 PL504 0.68 UL41 0.59 X61 0.29 AF178 0.68 GD5 0.28 OAZ202 45 OC202 0.43 MX40 0.68 PL505 1.44 UL46 0.88 X65 0.50 AF180 0.48 GD6 0.28 OAZ203 48 OC203 0.30
384 0.29 6J5G 0.19 12AT6 0.23 30PL1 0.69 CV988 0.10 EC70 0.24 EL41 0.55	
3V4 0.32 6J6 0.18 12AT7 0.19 30PL13 0.78 CY1C 0.53 EC86 0.63 EL42 0.53	N108 1.39 PL509 1.44 UM80 0.33 X101 1.53 AF186 0.55 GD9 0.20 0.45 OC205 0.43
	N119 0·33 PL801 0·89 URIC 0·53 Z329 0·80 AF239 0·38 GD10 0·20 OAZ205 OC206 0·50 N142 0·59 PL802 0·75 UU5 0·38 Z749 0·72 ASY07 0·43 GD11 0·20 0·45 OC312 0·40
	N142 0.59 PL802 0.75 UU5 0.38 Z749 0.72 A8Y27 0.43 GD11 0.20 0.45 OC812 0.40 N154 0.33 PM84 0.39 UU9 0.40 Z759 2.50 A8Y28 0.33 GD12 0.20 OAZ206 OCP71 1.65
	N308 0.98 PX4 1.18 UU12 0.24 Transistors ASY29 0.50 GD14 0.50 0.45 ORP12 0.53
	N329 0.33 PX25 1.18 UY1N 0.50 and diodes R1121 0.50 and 0.15 0.40 OAZ207 SRM1 0.95
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
6A8G 0.33 6L7GT 0.63 12BH7 0.40 35Z3 0.50 DD4 0.53 ECC84 0.30 EM80 0.38	N379 0.33 PY81 0.27 UY85 0.29 2N966 0.53 BA116 0.25 GET113 20 0.35 SX1/6 0.18
6AC7 0·15 6L18 0·45 12E1 0·85 35Z4GT0·24 DF33 0·39 ECC85 0·28 EM81 0·42 6AG5 0·25 6L19 1·38 12J7GT0·33 35Z5GT0·30 DF91 0·14 ECC86 0·40 EM84 0·34	N/US U'24 Y 182 U'24 U10 U'45 2N1756 0.50 DA 190 A.19 APTIIR AA UAZZIS TII470R A.95
	Di noto de parco de la
6AK6 0:30 6N7GT 0:40 12K7GT 34 50C5 0:32 DF97 0:63 ECC1890:48 EY51 0:37	PC86 0.52 PY301 0.63 U17 0.36 2N2369A BCV12 0.50 GET573 38 0.83 V728 0.18
	PC88 0.52 PY500 1.08 U18/20 0.75 0.22 BCY33 0.20 GET587 0.43 OC19 1.25 ZE12V7 09
6AM4 0.83 6Q7G 0.30 128A7GT 50L6GT0.45 DH76 0.28 ECC807 1.35 EY83 0.55 6AM6 0.17 6Q7GT 0.43 0.40 72 0.33 DH77 0.20 ECF80 0.33 EY84 0.50	PC97 0.40 PV801 0.38 U19 173 ZN2013 U.39 MATCHED TRANSISTOR SEIS:—
6AQ5 0.28 6B7G 0.35 128C7 0.35 77 0.53 DH81 0.58 ECF82 0.33 EY86/7 0.33	PC900 0.38 PZ30 0.48 IT95 0.85 0.2161 0.50 LP10 (AULI3, AUL04, AUL07, AA120), '03
6AR6 1.00 6R7 0.55 128G7 0.23 85A2 0.43 DH101 1.25 ECF86 0.65 EY88 0.43	PCC84 0.32 00 VO2/10 T196 0.50 0 N 2702 0.10 1-OC81D and 2-OC81. 48
	PCC85 0 33 1 20 U31 0 30 2N3719 0 20 1 -OC44 and 2 -OC45, 43 PCC88 0 49 Q875/20 63 U33 1 48 2N3866 1 00 1 -OC82D and 2 -OC82, 48 Set of 3 -OC83 0 65
6AV6 0.30 68G7 0.33 128K7 0.24 90AV 3.38 DK91 0.28 ECH21 0.63 EZ40 0.40	P(X:89 0 48 0 8150/15) 1135 0 82 2 N 2088 0 50 S.T.C. 1 Watt Zener Diodes. 2.4v., 2./v., 3.0v.,
6B8G 0.13 68H7 0.53 128Q7GT 90CG 1.70 DK92 0.43 ECH35 0.29 EZ41 0.43	PCC189 0-49 0-63 U37 1-75 28323 0.5c 3.6v., 4.3v., 13v., 15v., 15v
	PCC805 0 64 All goods are new and subject to the manufacturers' guarantee. We do not handle manufacturers'
6BH6 0.43 68N7GT 23 18 0.63 150B2 0.58 DL35 0.24 ECH83 0.40 EZ90 0.22	PCE800 64 life. Business hours With a February Resident as "new and tested but have a limited and unreliable
	The string of business. Cash with order only, Post/packing us per item. Orders over 25 post/
6BQ5 0·24 6U4GT 0·60 19H1 2·00 301 1·00 DL94 0·32 ECL80 0·35 0·75 6BQ7A 0·38 6U7G 0·53 20D1 0·65 302 0·83 DL96 0·37 ECL82 0·33 FW4/800	PCF82 0.33 packing free. All orders cleared same day by first-class mail. Any parcel insured against damage in
6BR7 0.79 6V6G 0.18 20D4 1.02 303 0.75 DM70 0.30 ECL83 0.52 0.75	PCP84 0.40 PCP86 0.50 pc. All orders cleared same day on rest-class mail. Any parcel maured against damage in transit for only 03 extra. Complete catalogue of valves, transistors and compents with conditions of sale, price 05 post free. No enquiries answered unless S.A.E. enclosed for reply.
	100 mans, price 00 post free, no enquiries snawered unless S.A.E. enclosed for reply.

MIL S	YNCHRO	DS AVA	ILABLE F	ROM S	TOCK	
CONTROL	26v08CT4	LICT4	26v11CT4	ISCT4	ISCT4	23CT4
TRANS- FORMERS	26v08CT4a	i i CT4a	26vIICT4a	I5CT4a	IBCT4a I9CTB4a	23CT4a
400 Hz	26v08CT4b 26v08CT4c	IICT4b IICT4c	26v11CT4b 26v11CT4c	15CT4b	I8CT4b	23CT4b
		12CT4b				
60 Hz			26v11CT6 26v11CT6a		18CT6a	
			26V11C16a		19CTB6a	
CONTROL				15CX4		
TRANSMITTERS		IICX4a	26v11CX4a	15CX4a		23CX4a
400 Hz		IICX4b I2CXB4b IICX4c	26vIICX4b	15CXB4a		23CX46
60 Hz		IICX6b	26vIICX6b	I5CX6b		
CONTROL						
TRANSFORMER TRANSMITTERS 400 Hz				I5CX/CTa		(Slab)
CONTROL	26 00CDV4	HCDY4	24 116024	Ircov.		
TRANSMITTERS 400 Hz	26v08CDX4a	IICDX4a IICDX4b I2CDX4b	26vIICDX4a	15CDX42	18CDX4a 19CDX4a 18CDX4b	
60 Hz			26v11CDX6a			23CDX
TORQUE		IITX4				
TRANSMITTERS 400 Hz	26v08TX4a 26v08TX4B	IITX4a IITX4b	26v11TX4a 26v11TX4b	ISTX4b	18TX4a	23TX4a
60 Hz						23TX6a
TORQUE		IITR4		ISTR4	-	
RECEIVERS 400 Hz		IITR4a IITR4b	26vIITR4a	ISTR4a ISTR4b	18TR4a 19TRB4a	23TR4a 23TR4b
400 112		IITR4c	26vIITR4c	ISTR4c I6TRB4b	1911044	23TR4c
60 Hz					18TR6a	23TR6a
TORQUE	-			, , , , , , , , , , , , , , , , , , , ,	18TX/TR	4
TRANSMITTER RECEIVERS 400 Hz				ISTX/TR4a	1	
TORQUE		IITDX4			18TDX4a	
DIFFERENTIAL TRANSMITTERS 400 Hz				15TDX4b 16TDX4b	19TDX46	
RESOLVERS 400 Hz	08RS4 26v08RS4	IIRS4	26vIIRSF4	15RS4 15RSF4		
VARIABLE LINEAR TRANSFORMERS				15VLT10SL		
FUNCTIONAL	LY EQUIVA	LENT MA	GSLIP ELEMI	ENTS ALS	O AVA	LABLE

SPECIAL OFFER of AVOMETERS, Model 7

Fully reconditioned, with test certificate, in hide carrying case, £13.0.0 each. A few panclimatic 7X meters available at £15.10.0 each. (P.&P. either type 10/-.)

AVO MULTIRANGE ELECTRONIC TEST METERS CT38

£26.10.0

Carriage paid England & Wales

Servo and Electronic Sales Ltd

Electrical and Servo Control Engineers - Electrical Suppliers - Engineering Stockists - Aeronautical Suppliers
Post orders to 43 HIGH STREET, ORPINGTON, KENT. Phone: Orpington 31066/33976/33221
19 MILL ROAD, LYDD, KENT (Works). Phone: Lydd 252
67 LONDON ROAD, CROYDON, SURREY (Retail Branch and Instrument Repairs).
Phone: 01-688-1512 (Croydon)

Overall length 1.85" (Body length 1.1") Diameter 0.14" to switch up to 500 mA at up to 250v D.C. Gold clad contacts. 12/6d. per doz. 75/- per 100; £27.10.0 per 1,000; £250 per 10,000. All carriage paid.

EGTROVA

EVERYTHING BRAND NEW TO SPEC - LARGE STOCKS - NO SURPLUS

BARGAINS IN NEW SEMI-CONDUCTORS

MANY AT NEW REDUCED PRICES . ALL POWER TYPES WITH FREE INSULATING SETS 2N3707 2N3708 2N3709 2N3710 2N3711 2N3731 2N3794 2N3820 2N3820 2N3904 40602 BCI48 BSX20 40602 AC107 AC126 AC127 AC128 AC176 BC149 BC153 BC154 BC157 BC158 BC159 4/-1/9 4/-1/-2/6 2/6 2/6 3/6 IN4148 IN5054 CI06BI 14/6 1N5054 1S940 2N696 2N697 2N706 2N1131 2N1132 5/-21/-27/-MC140 3/6 3/6 2/9 6/3 6/6 4/-24/-AC1/6 ACY22 4 ACY40 4 AD140 19 AD142 14 AD149 12 AD161/AD162 MJ480 4/6 4/-19/-3/-MJ481 MJ491 MPF102 BC167 BC168 30/-7/6 BC169 BC177 BC178 BC179 2N1302 2N3906 2N4058 4/-4/6 4/6 2N1303 OA47 OA90 OA91 OA95 OA99 OA200 OA202 OC71 2N4059 2N4060 2N4061 2N4062 2N4284 2N4289 2N4291 2N4292 2N4410 2N5062 2N5163 2N5192 1/9 1/3 1/3 1/3 (matched) AFII4 14/ BC182L BC183L BC184L BC186 BC212L BC213L BC214L BC770 BD121 BD123 BD124 BF167 BF178 6/-7/-19/-2N1613 2N1711 2N2147 2N214/ 2N2218 2N2270 2N2483 2N2484 2N2646 2N2904 2N2924 9/3 12/9 6/3 9/6 10/9 11/-4/-4/6 2/3 5/6 14/3 1711 AFI24 AFI27 5/-5/3 AF127 AF139 AF180 AF239 ASY26 ASY27 ASY28 B5041 5/6 18/6 9/9 6/6 8/3 6/6 15/-TIP31A TIP32A TIS43 16/-20/-10/6 21/-20/-8/6 10/6 12/-7/-TIS43
ZTX300
ZTX301
ZTX302
ZTX303
ZTX304
ZTX500
ZTX501
ZTX502
ZTX503
ZTX504
ZTX503
ZTX530 2N2924 2N2925 2N2926 2N3053 2N3054 2N3055 2N5192 2N5195 2N5457 2N5458 2N5459 40250 28/3 9/9 9/9 9/9 14/3 12/6 16/-16/3 14/6 37/-39/-BA102 BA115 BA130BA BA156 BC107 BC108 BF180 **BFI94** BF194 BF195 BFX29 BFX84 BFX85 BFX87 BFX88 BFY50 BFY51 4/6 4/-2/9 2/6 2/9 6/9 5/-15/-2N3325 2N3663 2N3702 2N3703 2N3704 40361 40362 40406 40408 40430 40512 5/9 BC109 BC125 BC126 BC147 12/-5/5

PECISTORS

RE	313 I	UNS					
Code	Power	Tolerance	Range	Values available	1 to 9 (see n	10 to 99 ote below).	100 up
C C C C M W W W W W W W W W W W W W W W	1/20W 1/8W 1/4W 1/2W 1 W 1/2W 1/2W 1/2W 1/2W	5% 10% 5% 10% 2% 10% ± 1/20Ω 55%	$\begin{array}{c} 82\Omega - 220K\Omega \\ 4\cdot7\Omega - 330K\Omega \\ 4\cdot7\Omega - 10M\Omega \\ 4\cdot7\Omega - 10M\Omega \\ 4\cdot7\Omega - 10M\Omega \\ 10\Omega - 1M\Omega \\ 10\Omega - 1M\Omega \\ 0\cdot22\Omega - 3\cdot9\Omega \\ 12\Omega - 10K\Omega \\ 12\Omega - 10K\Omega \\ \end{array}$	E12 E24 E12 E24 E12 E24 E12 E12	18 2·5 2·5 3 6 9	16 2 2 2-5 5 8 6 all quantit 6 all quantit 9 all quantit	ies ies
Codes: C = carbon film, high stability, low noise. MO = metal oxide, Electrosil TR5, ultra low noise. WW= wire wound, Plessey.				of the sa	me ohmi	e each for q c value and ed values. ny on resisto	d power (Ignore
Malara-					A 14 E B A 4 A	TEDIAL	

2N3705 2N3706

Values: E12 denotes series: 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82 and their decades. E24 denotes series: as E12 plus 11, 13, 16, 20, 24, 30, 36, 43, 51, 62, 75, 91 and their decades.

ZENER DIODES 5% full range E24 values: 400mW: 2:7V to 30V, 3/9 each; IW: 6:8V to 82V, 9/- each; I-5W: 4-7V to 75V, 12/- each. Clip to increase I-5W rating to 3 watts (type

CARBON TRACK POTENTIOMETERS, long spindles. Double wiper ensures minimum noise level.

noise level. Single gang linear 220 Ω to 2.2M Ω , 2/6; Single gang log, 4.7K Ω to 2.2M Ω , 2/6; Dual gang linear, 4.7k Ω to 2.2M Ω , 8/6; Dual gang log, 4.7K Ω to 2.2M Ω , 8/6; Dual gang log, 4.7K Ω to 2.2M Ω , 8/6; Log/antilog, 10K 47K, 1M Ω only 8/6; Dual antilog, 10K only, 8/6. Any type with $\frac{1}{2}$ A D.P. mains switch, extra 2/3. Please note: only decades of 10, 22 and 47 are available within ranges quoted.

CARBON SKELETON PRE-SETS

Small high quality, type PR, linear only: 100Ω , 220Ω , 470Ω , IK, 2K2, 4K7, 10K, 22K, 47K, 100K, 220K, 470K, IM, 2M2, 5M, $10M\Omega$. Vertical or horizontal mounting, 1/- each.

COLVERN 3 watt Wire-wound Potentiometers. 10Ω , 15Ω , 25Ω , 50Ω , 100Ω , 100Ω , 100Ω , 100Ω , 100Ω , 10Ω ,

ENAMELLED COPPER WIRE even No. SWG only: 2 oz. reels: 16-22 SWG 4/3; 24-30 SWG 5/-; 32, 34 SWG, 5/6; 36, 38 SWG, 6/3. 4 oz. reels: 16-22 SWG only 7/6.

ENGLEFIELD 12 + 12**AMPLIFIER**

Stereo amplifier in modular kit form 12 watts per RMS channel into 15 Ω $\,$ £38/9/- ;

PEAK SOUND PRODUCTS

Cabinet kit only **£6.** These prices nett. As reviewed in *Hi Fi Sound* and other important journals.

BAXANDALL SPEAKER SYSTEM

Designed by Peter Baxandall. Superb reproduction for its size. Handles 10 watts with ease. Uses ELAC 15Ω 59RM109 speaker unit. Kit £13/12/nett; built £19/8/6 nett.

MAINLINE AMPLIFIER KITS

RCA/SGS designed main amplifier kits. Input sensitivity 500–700mV for full output into $8\Omega.$

Power	Kit price	Suitable unreg.
	including components	power supply kit
12W	 68 /- nett	92/
25₩	i 90 / nett	N/A
40W	210/- nett	115/1
70W	252/- nett	138/10

30 WATT BAILEY AMPLIFIER PARTS

Sensitivity I-2V for full output into 8Ω . Transistors and PCB for one channel £7/5/6
Transistors and PCBs for two channels £14/11/-Capacitors and resistors (metal oxide), 40/- per channel. Complete unregulated power supply pack, £4/15/-

INTEGRATED CIRCUITS

PLESSEY SL403A 3 watts into 7.5 ohms. Data book supplied FREE when two of these units are purchased. Price per unit, nett 42/6.

SINCLAIR IC.10 as advertised, complete with instructions and applications manual 59/6 nett. mponents pack for stereo inc. transformer, controls, etc.,

£4/15/0 nett

S-DeCs PUT AN END TO BIRDS NESTING
Components just plug in—saves time—allows re-use of components. S-Dec (70 points), 20/-.
Complete T-Dec, may be temperature-cycled (208 points), 50/-.
Also µ-Decs and IC carriers.

MEDIUM RANGE ELECTROLYTICS
Axial leads: 50/50, 1/9; 100/25, 1/9; 100/50, 2/6; 250/25, 2/6; 250/50, 3/9; 500/25, 3/9; 500/50, 4/6; 1000/25, 4/-; 1000/50, 6/-; 2000/25, 6/-.

SMALL ELECTROLYTICS Axial leads: 4·7/10, 4·7/25, 5/50, 1/- each; 10/10, 10/25, 10/50, 33/10, 50/10, 1/- each; 25/25, 25/50, 47/25, 100/10, 220/10, 1/3

ELECTROVALUE CATALOGUE

48 pages plus cover. Well printed and generously illustrated to show products, diagrams, etc. Crammed with thousands of items excellently classified for quick and easy reference. POST FREE 2/-. Add 4/- if required to be sent by air mail.

TYGAN SPEAKER MATERIAL 7 designs, 36 × 27 in. sheets, 31/6 sheet. Pattern book, S.A.E. plus 6d. stamp.

MULLARD polyester C280 series 250V 20%: 0-01, 0-022, 0-033, 0-047 8d. each; 0-068, 0-1, 9d. each; 0-15, 11d., 0-22, 1/-10%: 0-33, 1/5; 0-47, 1/8; 0-68, 2/3; 1μF, 2/9; 1-5μF, 4/2; 2-2μF, 4/9 MULLARD SUB-MIN ELECTROLYTICS

LARGE CAPACITORS

Harge CAPACITORS
High ripple current types: 1000/25, 5/6; 1000/50, 8/2; 1000/100, 16/3; 2000/25, 7/4; 2000/50, 11/4; 2000/100, 28/9; 2500/64, 15/5; 2500/70, 19/6; 5000/25, 12/6; 5000/50, 21/11; 5000/100, 58/3; 10000/15, 17/-; 10000/25, 24/6; 10000/50, 44/-; 10000/70, 61/-. COMPONENT DISCOUNTS

10% on orders for components for £5 or more. 15% on orders for components for £15 or more. (No discount on nett items.)

POSTAGE AND PACKING

Free on orders over £2. Please add 1/6 if order is under £2. Overseas orders welcome: carriage and insurance charged at cost.

ELECTROVALUE

DEPT. WW.171, 28 ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY, Phone: Egham 5533 (STD 0784-3) Telex 264475 Hours: 9-5.30, 1.0 p.m. Saturdays.

LOW COST ELECTRONIC & SCIENTIFIC

BRAND NEW MINIATURIZED AUTOMATIC STRIP CHART RECORDER

RUSTRAK of America. This recorder indicates the magnitude of applied currents or voltages by a continuous distortion-free line on pressure sensitive paper. Chart width 2% in. Chart speed ½ in. per min. Moving coil movement, scale calibrated 0-100 microamps. Int. resistance 4,600 ohms. Chart drive motor 12v. D.C. Supplied less case. C/W handbook. Price £40. P. & P. 10/-.

A BARGAIN IN NEW POWER SUP-PLIES, AT LESS THAN HALF MANU-FACTURERS PRICES

O/P Voltage 7.5v.-9v. Max. load current 10 Amps. Max ripple on full load approx. 60mV. p.p. Threshold current, 10.5A. Overvolt protection. OUR PRICE £19.10.0

Connects anything electrical in seconds without plugs or sockets. No more worries about dangerous live wires. Now you can make electrical connections safely, in seconds with the revolutionary new Keynector. Cuts out plugs, sockets and saves time. A hundred different uses in the home, and a must for the do-it-yourself enthusiast. Only 48/6 plus P. & P. B/-. Or send for a leasifet.

MOTORS

LOW TORQUE HYSTERESIS MOTOR MA23

Ideal for instrument chart drives. Extremely quelt, useful in areas where ambient noise levels are low. High starting torque enable relative high inertia loads to be driven up to 6 oz/in. Available in the following speeds and ranges: 240V 50 Hz, 1/30 r.p.m. 1 r.p.m., 1/5 r.p.m., 1/12 r.p.m., 1/20 r.p.m., 1/80 r.p.in., 1/40 r.p.m., 124 r.p.m., 1/30 r.p.m., 1/24 r.p.m., 1/30 r.p.m., 1/24 r.p.m., 1/30 r.p.m., 1/24 r.p.m., 1/30 r.p.m., 1/24 r.p.m., 1/24 r.p.m., 1/25 r.p.m., 1/24 r.p.m., 1/25 r.p.m.

SYNCHRONOUS MOTORS
Model 8 71 r.p.h. and 1/60 r.p.h. Self starting complete with gearing shart $\frac{1}{2}$ in. diag. 200/230V 50 Hz. New condition Ex-Equipment. 30/-. P. & P. 5/-.

D.C. TACHOGENERATOR Type 9c/106 16v. at 1000 r.p.m. Drive shaft dia. 3/16 in., 3/8 in. long. Price £16/10/0.

HIGH PRECISION MAINS SYNCHRONOUS MOTOR 3 Phase-I Phase

230V 50 Hz 1/8 h.p. continuously rated. 3000 r.p.m. Made by Croydon Engineering. Model KA 60 JFB. Suitable for capstan motor. Size S in. long. 41 in. diameter with 6 in. diameter flange and 4 fixing holes. 60/— each P. & P. 25/-.

ACTUATOR

By English Electric. Type 4519 Mk. 1 D.C. Motor AE 1560 Mk. 1 28V 3A, 500 r.p.m. Intermittent rating. £16. P. & P. £1.

NEW MINIATURE RELAYS

Alma Read type NSC 32/R/1A, 650 ohm coil. 23. P. & P. 5/-. Smiths Micro-Relay type 14 PCR/7/R 26.5 m/A. 23. P. & 5/-.

E.F. ATTENUATOR MARCONÍ TF 1073A DC—150 MHz 1dB steps 75 Ohms. Double Screened construction, Tested and in VG condition. £25.

CODER SHAFT POSITION
By Datex Corporation. Type 4166-7003 "Y" Scan Code National
Binary Diode Pos. Diameter: 1‡ in. x 2½ in. long. Servo Mounting.
g15. P. & P. 5/-.

ANALOGUE-DIGITAL CONVERTER

ty United Aircraft. Type 6-8PT-C. Model 13-BNRY-B. 3 Digit encoder Grays code. Length 3 in., diameter 12 in. Servo ype mounting. £15. P. & P. 7/6.

ACCELEROMETERS

Model LA 2 3C Potentiometric + or — 10 G operating Voltage 30V, Nominal resistance 17.5K and Model LA 2 3C + or — 100G 34V, Rel 20 K. Price £26. P. & P. 5/-.

MARIAN A. FRICE 2235. F. & F. D/S.

TYPE SE 55/A Range + or — 1G 226. P. & P. 5/s.

TYPE F by G.E.C. Up to 1,000 G. Ceramic type giving o/p of 23 mV. Supplied c/w technical leaflet. Weight 14.8 grammes. 2BA stud mounting. 23.15.0. P. & P. 5/s.

Many other types in stock

TAPE RECORDERS

E.M.I. Professional Audio tape recorder model BTR1C. This was the type of equipment used by the BBC. Fully overhauled and in excellent condition. Price £175.

DATA TAPE SYSTEM 14 CHANNEL
By Solartron. Versatile 14 Channel tape recorder having many applications. The installation is capable of recording and reproducing by analog i.e. Pulse Modulation of frequency modulated nethods. Capstan motor constant speed controlled by a tuning fork Oscillator. Tape speeds (1) \(\frac{1}{4}\) in. per sec. (2) \(\frac{3}{4}\) in., \(\frac{1}{4}\) in. \(\frac{1}{4}

Portable L.F. Tape Recorder, Exservice equipment consisting of Three Unit housed in transit cases (Tape Deck, Amplifer, P.S.U.). ‡ in. track speed 30 in., 16 in. 7 ‡ in. and ‡ in. min. Price £75. Many control facilities. This is a good quality recorder.

COUNTERS

VEEDER ROOT 6 DIGIT COUNTER

Sultable for counting all kinds of production runs, business machine operation. Mechanically driven Type K A1337. Reset manual knob. Ex-equipment buse condition. Special price 25/- plus 5/. P. & P.

MINIATURE SQUARE COUNTER 6 DIGIT

By Veeder Root. Rotary ratchet type, adds I count for each 36° movement of shaft. 9/8 plus 2/6 P. & P.

NEW 6 DIGIT ELECTRICAL IMPULSE COUNTER

With electrical and mechanical reset.
Counter driven by a 24 v. D.C.
500 ohms coil. Reset 24 v. D.C.
500 ohms coil. Housed in plastic-alloy case.
The units can be Interlocked with each other to give vertical or horizontal displays.

BERKELEY DECIMAL COUNTING UNIT 0-9

BERKELEY DECIMAL COUNTING UNIT 0-9
Direct reading octal base plug in unt electronic counter. The
number counts received is indicated by one of ten neon lamps
behind acctate panel. The unit counts from 0-9 the tenth pulse
resetting to zero and simultaneously generating an o/p signal.
Circuits can be connected in cascade. Power supply 6.3V D.C.
Cut on/Cut off. 15V. Price 70/-, P. & P. Free.

5 DIGIT COUNTER

4 warv sturdy counter. Coil resistance 100 ohms. Minimum

5 warv sturdy counter. Suitable

6 warv sturdy counter. Suitable

7 warving appeal 18 counts per sec. Suitable A very sturdy counter: Coil resistance 100 ohms. Minimum operational voltage 5v. Counting speed 13 counts per sec. Sultable for continuous counting with sine wave drive. Coincidence, recording and frequency meter 35/- p. & p. 5/-.

HI-SPEED ELECTRIC RESET ELECTRO MAGNETIC COUNTER
6 Digit 24v. D.C. 3½W. 20 counts/
second. Size 3½ × 2½. Panel Mounting. List £10/19/6.
Our Price £4/9/6. P. & P. 5/-.
4 Digit 24v. 79/6. P. & P. 5/-.

HIGH SPEED IMPULSE COUNTER
DAVIS WYNN and ANDREWS 4 in dial with pointer registering
up to 100 plus a 4 digit counter mounted in dial. Uses an inverse
air escapement. Coll resistance 100 ohms. 20V operation. £6.
P. & P. 7/6.

Many other types of counters are available ranging from 3-8 digit with various supply voltages. Ring our Sales Office for further information.

TEXTRONIX Plug in Unit Type E-BRAND NEW. Price £75.

GENERATORS

L.F. SIGNAL GENERATOR SG66 Frequency range 5 c/s to 125 kc/s in five bands. Accuracy $\pm (1\% + 1 \text{ c/s})$. Sine wave distortion less than 1% at 1W. Output Sine wave continuously variable, 0 to 30V r.m.s. Into 500 Ω . Sine wave 0 to 1W into 5 Ω . Square wave 0 to 30V pk.pk. Output impedance varies up to 5kg. depending on output level setting. Rise and fail times up to 0.75μ s maximum. Power requirements 100 to 130V add 200 to 260V, 40 to 60 c/s, 100W. Dimensions 19in. widex 104 in. high x8 \pm in. deep. Weight 32 \pm ib. Rack mounting. Price 275 carriage extra.

OSCILLATORS & SIGNAL GENERATORS

SOLARTRON DC 1015. 2. Single beam DC—15 MHz (—3 dB) and DC—21 MHz (—6 dB) Rise Time 23 Manosec. Sensitivity 56 mV/cm. Time Base 500 manosec/cm—26 msec/cm in 18 ranges. 34 inch CRT Green Phosper medium persistence. H13½ in. W10 in. D19 in. weight 36 lb. in VG condition (v/c cop) of handbook ... Price 285

weight 36 lb. in VG condition c/w copy of handbook. ... Price 285 (14) CRYSTAL CONTROLLED OSCILLATOR STC. 16-1.XU-52A Mk. II. 0-20 MHz. Sweep facilities. 0/p attenuation 0-70 dB. Complete with power supply unit 14-XU-52B ... Price 285 SOLARTRON CD 1290, DC-40 MHz 6 cm × 10 cm Display Delayed and Mixed Sweepe Plug in "V" Units. Dual Trace Displays. Time Base A 0.1 micro sec.—5 sec/cm 24 Ranges. B 2 u sec/cm—1 sec/cm in 18 Ranges. This Oscilloscope is offered with 7 plug in units. ... Offered at bargain price of £130 (1108)

Max. O/p 1W in 800Ω above 30 Hz... Trice \$\insert{\omega_0}\$ 20,000,000 MEGOHMETER MODEL 29A by E.I. This is a direct reading electronic megohmeter covering the range 0.3-20 million megohms in 7 decodes. Ideal testing resistors capacitors, cables and delectries. Uses 6 in. edgwise indicator with mirror scale. Test voltages applied are 85 V, 300 V or 500 V. Ext. facility up to 1000 V. Price £75 ... Price £45

(I13) R.C. OSCILLATOR AND AUTOMATIC FREQUENCY MONITOR—SMITHS, Oscillator range 10 Hz-100 KHz. Price 275

P. & r. 5/r.
 (183) SIGNAL GENERATOR CT 480 SANDERS, Range 7 KHz-12 KHz. O/p. 0-±50V. Attenuation range --10 to +100 dB. Price £85

(179) WOBULATOR GM 2877/02 PHILLIPS......Price £65

TRANSDUCER OSCILLATOR-AMPLIFIER-DEMODULATOR. An encapsulated unit for matching with S.E. Transducers. Suitable where space or adverse environmental conditions prevail. Supplied with a matching transducer a typical opp is ± 3% into 50 KOhms. Supply voltage 12v. D.C. Range of transducers available 6-50: 0-750: 0-1000: 0-4000 psi. Price 265
TRANSDUCERS ONLY. Ref. C.1. Price 215

Ref. C. 6. Frice 215

TRANSDUCER NEW EX-GOVERNMENT DISPLACEMENT BONDED

RESISTANCE STRAIN GAUGES. Range ± i mechanical displacement equivalent to 0.3% resistive change. 3.5 + 3.5 KOhms.

Model IT-2-31-35. Price 210

OSCILLATOR. High discrimination, by Marconi T.F. 1168. This instrument suitable for H.F. Communication. Due to its high discrimination makes it suitable for crystal filter response in Tx and Rx drive units. Frequency range 90-110 KHz. 2Hz discrimination. Crystal and Standardised centre frequency. Calibration accuracy ± 1% Ref. 1.6. Price £135

RECORDERS 4 PEN OSCILLOGRAPHS SOUTHERN INSTRU-MENTS M942C. 4 Channel fitted with 4 speed gear boxes giving 1, 5, 25, 100 m.m. per sec. Frequency response 0-55 Hz, sensitivity 0/m.m./M.A. 100 m.m. per sec. Frequency response 0-56 Hz, sensitivity 2 PEN OSCILLOGRAPH MR450 as per 4 Pen. Ref. 12. Price £150 PLUS CARRIAGE

PLUS CARRIAGE

NEW B.P.L. MULTIMETER T.V.M. 1063. Employing silicon planar F.E.T., this instrument gives long-term stability and negligible drift over a wide temperature range. Wide frequency band 0-300 MHz using B.PV 1063. Voltage range 0-30 K.V. Centre zero on DC ranges for differential circuit application. Input resistance 1 M.ohm/Volt on all DC ranges. Accuracy + 3% F.S.D. Meter scale 5 in. with 1M different colour for different scales. Special price £50 each. Carriage £1.10.0.

ELECTRONIC BROKERS L7

EQUIPMENT AND COMPONENTS

MEASURING INSTRUMENTS AND RECORDERS

NEW 6-CHANNEL TIME & EVENT RECORDER

A self-contained instru-ment, specifically for re-cording events without the need for a combined recorder. There is a separate recorder. There is a separate and independent paper drive, with a monitor lamp indicating when it is in operation. The pens are displaced 1/16 in., activated by a close contact system. Each of the 6 channels works independently of each other, with the pens writing at 72 hours per filling at a maximum speed of 10 pulses per second. £75. Send for leaflet.

FACSIMILE RECORDERS
D649 G/A 18 in. Chart Recorder. Helix speed: 60, 90, 120 rev./min.
Transmission speed: \$ in.; 15/16 in.; 1½ in. per min. Scanning rate

96 lines/in.

Ref. C.3...... Price £350. Completely overhauled + carriage

SINGLE PEN RECORDER By Record Electrical

3 in. chart, sensitivity 500 micro amps. Coil res. 1.53k. Fully interchangeable gears available to make a wide range of chart speeds. 200/250V. Size: 8×11×6 in. Almost new—complete with chart and ink. List over \$100. Our price. \$252.10.0

POWER	SUPPLY	LINITS

O/P V	O/P A	U.	Input volt,	Make	Туре	Dimensions W H L inches	Loca- tion	Ref No.
6						mones		
adj 4-16v 6	7	8	240	£30 Coutant	ELV700/6	$6\frac{1}{8} \times 5\frac{1}{8} \times 11\frac{1}{8}$	876	36
adj 3-15v	5	8	240	£25 Coutant £20	ELV500/6	4½×7 ×12	876	37
4-15v	5	8	240	Advance	PM7	4 × 5 × 9	876	38
12	1	8	240	£15 Farnell	88U12-1	4 × 6×10 5	876	39
±	150			£12		10		
200 28	mA	8	240	Roband	B101/200	71×61× 9	876	40
adj 26-37	7	ġ	240	£30 Coutant	E8700/28	81×7×12	875	42
$^{+30}_{-20}$	800 mA	8	240	£10 B.P.L.	3	19×84×12	875	41
12	20	8		£25 I.B.M.				66
			110	£25 I.B.M.	Ex. comp.		879	
12	20	8	110	£25	Ex. comp.	6 ×5½×16	878	70
12	20	8	110	I.B.M. £25	Ex. comp.	6 ×5½×16	878	57
12	20	8	110	I.B.M. £25	Ex. comp.	$6 \times 5\frac{1}{4} \times 16$	878	56
12	20	8	110	I.B.M.	Ex. comp.	6 × 5½ × 16	878	59
$1\overline{2}$	20	8	110	£25 T.B.M.	Ex. comp.	$6 \times 5\frac{1}{4} \times 16$	878	58
12	20	8	110	£25 I.B.M.	Ex. comp.	6 × 5½ × 16	877	67
6	16	8	110	£23 I.B.M.	Ex. comp.	6 × 5½ × 13½	879	54
48	6	В	110	£19.10 I.B.M.	Ex. comp.	6 × 5½ × 16	879	55
30	7	8	110	£17 I.B.M.	Ex. comp.	6 × 5½ × 13½	879	62
12	15	В	110	£22.10 I.B.M.	Ex. comp.	6 ×5½×13½	879	64
12	12	8	110	£22 I.B.M.	Ex. comp.	6 ×51×131	874	60
12	12	g	110	£22 I.B.M.	Ex. comp.	6 ×5½×13½	874	61
20	6	8	110	£18 I.B.M.	Ex. comp.	6 ×5½×13½	874	65
6	8	В	110	£12.10 I.B.M.	Ex. comp.	6 ×51× 91	874	68
	8	8	110	£12.10			874	63
6				I.B.M. £18	Ex. comp.			
12	4	8	110	I.B.M. £18	Ex. comp.	6 ×5½× 9½	874	72
12	4	8	110	I.B.M. £12.10	Ex. comp.	6 ×51× 91	874	71
6 20	8 41	8	110	I.B.M.	Ex. comp.	$6 \times 5\frac{1}{8} \times 9\frac{1}{8}$	874	69
-10	4	U/S S		£25 Power				
10	300 mA	8	240	Electron- ics	8P110	8 ×6 ×13½	877	43
Do.	Do.	Do.	240	Do. £18.10	Do.	Do.	877	44
48	4	U/S	240	Advance	DC8	5½×6 ×17	877	80
24	5	U/S	240	£18.10 Advance	DC22	51×6 ×17	873	73
48	2	U/8	240	£15 Advance	DC122	51×6 ×17	866	74
12/15	5	g	240		DCR12/12	51×8 ×17	873	53
6	20	8	240	£45 Coutant	R205	19×83×131	873	51
+ 6 - 6	10	8	240	£45 Coutant	R206	19×7 ×12	873	47
28	20	8	240	£50 Coutant	R204	19×81×14	870	85
190-	250			£16.10		•		
350	mA	8	240	Airmec	705	19×12× 8½	872	52

This is a small selection of our range. Further details on application.

PRECISION POTENTIOMETERS

TEN TURN 3600° BRAND NEW	ROTATION	(Ref. C5
Linearity		
Res. Ohms Per cent 100/100/100	Manufacturer	Model Price
100/100/100	.Beckman	.A 160/
100		
200 0.5		
500	. Beckman	.8 70/
500	.Colvern	.2501 45/
500		
500		
500	.Colvern	.26/1000/11 60/
500		
1K		
2K 0.5	.Beckman	.8A1101 60/
2K0.25		
2K		
2K	.General Controls	.GPA15/4 40/
5 K		
5K	.Colvern	.CLR2503 60/
10K	. Beckman	.A 60/
1 0K 0.1	. Beckman X	.A 70/
10K 0.1		
15K		
18K		
25K 0.5	. Helipot	.BAJ337 60/
29K	.Beckman	.8A1244 90/
30K		
30K		
30K 0.1	. Beckman	.A.88 70/
30K 0.5	.Beckman	.BA1692 60/
30K 0.25		
30K 1.0	.Colvern	.2402/1 30/
50K	. Reliance	.07.10 45/
50K		.07.5 45/
50K	.Colvern	.2503 45/
50K X	.Foxes	.PX4 45/
50K 0.5	. Beckman	. A 60/-
50K 0.1	. Beckman	.A 70/
100K/100K	.Ford	.A 100/
100K 0.1		.A 70/
100K 0.5		
100K		
100K	Colvern	
298K 0.1		.8A3902 70/
300K 0.1	. Beckman	.A 70/
THREE TURN 780	ROTATION	
100/100 0.5		
100/100		
300		
1K	For	.PX2/H3 . 45/
10K	Reakman	.C.88 45
20 K /20 K 0.1	Reckman	

 10K
 0.0
 Decama

 20K/20K
 0.1
 Beckman
 C.8

 10K/10K
 0.1
 Beckman
 C

 vol.
 0.5
 Beckman
 C.8
 FIFTEEN TURN 5400° ROTATION

| FIFTEEN TURN 5400* ROTATION | 25K/25K. | Beckman B | 10 watts 26/10/-40K/46K | Beckman B | 10 watts 26/10/-TWENTY TURN 7200* ROTATION | 1 Meg | General Controls | PXM130 | 80/-156 TURN 56160° ROTATION Hughes KTP0701 &9/10/FIVE TURN 1800° ROTATION

..... HELO7.05 500. Colvern CLR2505 40/-U1.5K Colvern CLR2505 40/-FIVE-AND-A-HALF TURN 500. SINE COSINE

 Maker
 Price

 Colvern
 £17/10/0

 Smith
 £22/10/0

 Colvern
 £17/10/0

 Colvern
 £22/10/0

 Colvern
 £21/10/0

 Colvern
 £17/10/0

 Kelvin-Hughes
 £17/10/0

 RMith
 £17/10/0

LOW FREQUENCY RESOLVED COMPONENT INDICATOR BY SOLARTRON

Type VP 263.2A. This instrument will indicate by means of two centre zero 6 in, scale meters the resolved components of a signal voltage with respect to the applied reference energisation. Frequency Range: 0.5 c/s.1 kc/s. Signal Voltage Rangees: 50MV, 150MV, 500MV, 1.5V, 5V, 15V, 50V and 150W with either balanced or unbalanced input. Signal Input Resistance: 10M Ω unbalanced, 20M Ω balanced. Reference Input. Voltage 90/130 or 230/240V. Standard Rack Panel, 19 in. 12½ in. high, £175, new condition, complete with manual.

VIBRON ELECTROMETER

This unit is a vibration condenser amplifier which is suitable for the measurement of small D.C. potentials covering the range of 1M-1V. This unit can also be used as high impedance null detector for the comparison of ironation currents of very high resistance. 289.10.0.

7 HOLE NON PARITY TAPE PUNCH

LOW SPEED 7 HOLE TAPE PUNCH

GO characters per second by well-known manufacturer.

TELETYPE 8 HOLE PAPER PUNCH BRPEII £260.

5/7 HOLE OPTICAL READER BY FERRANTI
20 characters per second \$20

LINEAR THRYRISTER CON-

TROLLED LIGHT DIMMER
400w, module. Ideally suitable for photo-dood or speed controller, etc. Will mount

A very handy miniature portable instrument for general purpose applica-tions. 2½ in. diam. tube. Wave form investigation from 10 Hz-20 MHz. Pulse monitoring duration 50 microseconds to 0.1 microsecond. Time base free running 10 Hz-40 kHz. Also single sweep facility from 50 microseconds to 3 microseconds.

Price £22/10/0, P. & P. 30/-

BRAND NEW COMPUTER TAPES AND

EMPTT SPOOLS	
Made by well known manufacturers	
in. certified 2,400 ft. 800 b.p.i	£8.10.0
in. 2,400 ft	£6.10.0
† in. Highest grade 2,400 ft	£3. 0.0
in. 10 in. dia, spool and cassette	£1.10.0
in. 81 in. dia. spool and cassette	£1.10.0
l in. metal 101 in. dia. spool and cassette	£2.10.0
in. N.A.B. centres 101 in. spool only	£1. 0.0

EICHNER 8 HOLE PUNCH OR READERS

Reader £29.10.0; Punch £49.10.0. Carriage 25/-.

PLATINUM RESISTANCE THERMOMETER

PROBES
SOLARTRON Type NT 1198/c and NT 1687. Accuracy ±1°C. Prohes in stainless steel case. † in. diameter. Temp. range NT 1198/C-50°C to + 250°C. Price £12.10 each. p. & p. 3/6.

FENLOW LOW FREQUENCY ANALYSER 0.3 Hz to 1 K Hz. Power density 0-10. Bandwidth switching range. .06: 0.3: 1.5: 7.5: 87.5 Hz. Price 2275.

SYNCHRONOUS

CHOPPERS
Base B-9. Coil 6.3 v., 50-60 Hz. Proportion of time contacts are closed 45%.
Models CK3, CK4 available. Also available 100 Hz and 400 Hz. Price 25. P. & P. 5/-.

AVO TRANSISTOR
ANALYSER CT 446
A portable direct-reading instrument capable of giving accurate transistor measurements in the grounded emitter configuration. Battery power unit 1.5v to 10.5v in 5 steps. Base current 0-1 mA, 1-40 mA. Collector current 250 mA, Size: 15½ × 9½ × 5 ins. Weight with batteries: 15 ibs. Price £42.10.0. Carriage extra.

(Ref. 13)

7-TRACK DIGITAL MAGNETIC TAPE STORAGE DECK
These machines, originally ex-computer, are nuitit-track recording units, ideal, ror data storage. Record and Replay heads encased in one common unit. Low resistance heads. Frequency responsapproximately 0 Kc/s. to 50 Kc/s. Bit density 557 b.p.l.; in, 10 in. spools 230 v. to 380 v. A.C. Capstan Motor speed 1,500 r.p.m. 49 v. D.C. Rewind motors. Finished in brush aluminium and matt-black. Size 27 in. × 26 in. 8 in. Welght 90 lb. Price £85. Carriage extra. extra.

MEMORY PLANES

PERMORY PLANES
Perrite core memory planes with wired
Perrite cores. Used for building your
own computer or as an interesting,
exhibit in the demonstration of a computer. Mounted on plastic material,
frame 5×8 in. Consisting of matrices
40×25×4 cores each one individually
addressable and divided into 2 halves
with independent sense and inhibit
wires. £6/10/0. P. & P. 3/-.

MINIATURE DIGITAL
DISPLAY
Operates on a rear projection 6.3 pilot
lamp. The lamp projects the corresponding digit on the condensing lens through
a projector lens, on to the viewing
screen at the front of the unit. 1 in.
width, 34 in. deep, 14 in. high. Weight
34 oz. Character size i in. high. Weight
84 right hand decimal point and degree.
Available to special order, words and
other characters of olour, at cost of
artwork or plates. List price 6 gns.
i in. characters 49/8, 1 in. characters
55/-, 4 in characters
28.12.0.

EAC DIGIVISOR Mk. II DIGITAL READ-OUT

Ideally suitable for use in conjunction with transistorised decade counting devices. No need for amplifiers or relays as only a few nilliwatts of power are required to charge the digits. The DIGIVISOR incorporates a moving coil movement which moves a translucent scale through an optical system and the resultant single plane image is projected on a screen. The translucent scale is made to represent digits 0.9. Specification: 6.3 volt, 250 microamp. Image height i in. Size 4 9/16×2 39/64×1‡ in. Our price £3/13/6 List price 8‡ gns.

NUMICATORS
Cold cathode gas-filled, in-line 0-9 digital display tubes. Long life expectancy. Maximum striking voltage 180v. Side reading type XN3 amber and red. XN7, 12, 23 (as XN24) amber and red. Price 18/6 each. P. & P. 2/6.

(Dept. W.W.) 49-53 PANCRAS ROAD, LONDON, N.W.I. Tel: 01-837 7781/2. Cables: SELELECTRO Telex No. 267307 (Open Mon-Fri 9 a.m. - 6 p.m.)

ALL ORDERS ACCEPTED SUBJECT TO OUR TRADING CONDITIONS A COPY OF WHICH MAY BE INSPECTED
AT OUR PREMISES DURING TRADING HOURS OR WILL BE SENT ON APPLICATION THROUGH THE POST. CURRENT RANGE OF BRAND NEW L.T. TRANS-FORMERS. FULLY SHROUDED (*excepted) TERMINAL BLOCK CONNECTIONS. ALL PRIMARIES 220/240v No. 25 22/4656 Amps Price Corr. Sec. T 25-33-40-50 25-33-40-50 25-33-40-50 25-33-40-50 25-33-40-50 4-16-24-32 4-16-24-32 4-16-24-32 25-30-35 25-30-35 25-30-35 12-20-24 12-20-24 12-20-24 12-20-24 3-12-18... 3-12-18... 48-56-60 Frice £10 10 27 12 £6 15 £4 0 5 £7 2 £5 7 2 £16 10 5 £2 10 £10 5 £4 2 £3 2 £13 0 £8 5 £4 5 £3 12 £9 12 £9 12 £7 5 £3 12 £9 12 £9 12 £9 12 £14 5 £13 12 * 9-15
6-3
30-25-0-25-30. 2 £3 14 0
te: By using the intermediate taps many tages can be obtained.
Example: No. 1 . 7-8-10-15-17-25-33-40-50v.
No. 2 . 4-8-12-16-20-24-32v.
No. 5 . 3-6-9-12-15-18v. intermediate taps many other

AUTO TRANSFORMERS 240v.-110v. or 100v. Completely Shrouded fitted with Two-pin American Sockets or terminal blocks. Please

state '	which type re	equired.		_
Type	Watts A	pprox. Weight	Price	Carr.
11	80	2½ lb	£I 19 6	5/6
ż	150	4 ib	£2 12 6	6/6
3	300	61 lb	€3 12 6	6/6
3	500	8 i lb	£5 2 6	8/6
2			£7 2 6	9/6
5	1000	15 lb		
6	1500	25 Іь	£9 15 0	10/6
7*	1750	28 lb	£14 15 0	12/6
8*	2250	30 lb	£17 17 6	15/-
*	-leadly andles	ed in bequeifully	finished metal	case fitted

Completely enclosed in beautifully finished metal case fitted with two 2-pin American sockets, neon indicator, on/off switch, and carrying handle.

T.E.C. 240-110v. ISOLATION TRANSFORMERS
Pri Tapped 10. 0. 200. 220. 240v. sec. Tapped 110-112.5-115v.
Conservatively rated at 9 amps. Tropicalised open frame type.
Terminal Board connections. Size 9 x 9 x 7 ins. Weight 60 lbs.
£15. Carr. 17/6.

ISOLATION TRANSFORMERS

By Magestic Winding Co. Pri 240v. Sec. 240v. Centre tapped. 2kva. Mounted in strong metal case. Size II × 9 × 8 ins. Conservatively rated. £27.10.0. Carr. 30/-

Samson's

9 & 10 CHAPEL ST., LONDON, N.W.I 01-262-5125 01-723-7851

GARDNERS HT TRANSFORMERS
Fully tropicalised "C" core table top connections all new and guaranteed. Primaries tapped 200-210-240V.
No. 1. 475-0-475V. 165 m/a. 215-0-215V. 60 m/a. 6-3V. 8-2a. 6-3V. 0.75 m/a. 5V. 3a. 89/6. F. 8. P. 9/6. No. 2. 130V. 185 m/a. twice. 200V. 350 m/a twice. 59/6. P. 8. P. 8/6.
No. 3. 300-0-300V. 60 m/a. 6-3V. 4a. 25/-. P. 8. P. 5/-.
No. 4. 350V. 44 m/a. 20V. 10 m/a. 6-3V. 3a. 17/6. P. 8. P. 4/6.
No. 5. Tapped 44-45-45V. 87. 5 m/a. 6-3V. 4-5a. 6-3V. 1-6a.
6-3V. 1-5a. 6-3V. 1-35a. 37/6. P. 8. P. 5/-.
SEC. 250-1-250V. 100 m/a. 250V. 300 m/a. 9V. 3a. 6-3V. 2A.
6-3V. 2a. 120-12V. 0-5a. 65/1. P. 8. P. 8/6. P. RI20O, 220-240V.
SEC. 500V. 30 m/a. 6-3V. 0-8a. 6-3V. 0-6a. 6-3V. 0-2a.,
6-3V. 2a. 120-12V. 0-5a. 65/1. P. 8. P. 8/6. P. RI20O, 220-240V.
SEC. 500V. 30 m/a. 6-3V. 0-8a. 6-3V. 0-6a. 6-3V. 0-2a.,
6-3V. 2a. 15a. 35/-. P. 8. P. 5/-.

PARMEKO C CORE TRANSFORMERS
Pri. tapped 110-200-240v. Sec. 1 250v. 197 m/a. Sec. 2 161v. 110 m/a. Sec. 3 152v. 76 m/a. Sec. 4 124v. 25 m/a. 5ec. 5 28v. 0-4a. Sec. 6 44v. 62a. 6 3v. 3 25a. 6 3v. 1-4a. Table top connections. Size 5 x 4 x 4 ins. Brand new boxed. 35/s. P. & F. 7/6. Special prices for qtys.

REDCLIFF 'C' CORE

Pri. 10-0-200-220-240v. Sec. 500-0-500v. 120 m/a. 6.3v. 2.5a.
6.3v. 1.6a. 6.3v. 0.6a. 6.3v. 0.45a. 5v. 3a. 55/-. Carr. 8/6.
Pri. 10-0-200-220-240v. Sec. tapped 370-390-400v. 6 m/a. 10/-.
p. & p. 3/6. 3 for 25/-- p. & p. 7/6.
Pri. 10-0-200-220-240v. Sec.
90-0-90v. 100 m/a. 17/6, p. & p. 4/6.

-0-90v, 100 m/a. 17/6, p. & p. 4/6.

SPECIAL OFFER OF PARMEKO
NEPTUNE SERIES TRANSFORMERS
ALL PRIMARIES TAPPED 115-230v.
Sec. 6·3v. CT 3a. 6·3v. CT 2a. 37/6 P. & P. 5/-.
S·c. 9-10v. 0·5a. 6·3v. 3·5a. 6·3v. 1·2a. 19/6 P. & P. 4/-.
S·c. 400-0-400v. 150 m/a. 50/- P. & P. 7/6.
S·c. 550-0-350v. 100 m/a. 3-8-12-18v. 5a. 63. 19.6 P. & P. 8/6.
S·c. 6·3v. CT 5a. 6·3v. 1·2a. 6·3v. 1·2a. 27/6 P. & P. 5/-.
S·c. 6·3v. 1/8a. 6·3v. 1a. 6·3v. 1a. 17/6 P. & P. 3/6.
S·c. 29·5-32·5v. 32/6 P. & P. 5/-.
S·c. 6·3v. CT 0-6a. 6·3v. 0·3a. 12/6 P. & P. 3/6.
J 200-220-240 S·c. 250.0-250v. 50 M/d. 6·3v. 1a. 27/6 P. & P.

i 200-220-240v. Sec. 250-0-250v. 50 M/A, 6·3v. Ia, **22/6** P. & P. -. Pri 230v. 4 2v. Ia, 10/6 P. & P. 3/6.

GRESHAM L.T. TRANSFORMERS
Pri tapped 115-230-240v, Sec. 6-3v. CT 5a. Twice 6-3v. CT Fully tropicalised "C" core. 32/6 P. & P. 5/-. Pri 200-220-2-Sec. 62v. 750. M/A. Potted type. Conservatively rated P. & P. 5/-.

P. & P. 5/
SPECIAL OFFER OF GRESHAM CHOKES
15H 300m/a 50 ohm, "C" Core Potted Type, 62/6. Carr. 10/10H 300m/a 60 ohm, "C" Core Potted Type. 55/-. Carr. 10/15H 180m/a. 200 ohm, "C" Core Potted Type. 45/-. P. & P. 8/6.
20H 350 m/a. 200 ohm, "C" Core Potted Type. 45/-. P. & P. 8/6.
1H 1a. 15 ohm. 69/6. Carr. 15/-.
Swinging Chokes. 20H 100m/a.-10H 450m/a. 55/-. Carr. 10/All Chokes supplied new and guaranteed.

PARMEKO CHOKES—NEPTUNE SERIES

10H. 180M/A., 25/-, P. & P. 5/-, 10H. 120M/A., 12/6, P. & P. 4/-,
10H. 75M/A., 15H. 75M/A., 15H. 50M/A., 5H. 120M/A., 5H.
60M/A., 50H. 25M/A., all types, 8/6 each, P. & P. 3/6. 0.7H.
450M/A. 12/6, P. & P. 4/6. 1H. 300M/A. 10/6 P. & P. 4/6. 5H.
150M/A. 17/6.

LOW TENSION SMOOTHING CHOKES
By Redcliffe, 100MH, 2 amps, 49/6, P. & P. 7/6, 5winging Type, 10MH, 6.5 amp—50 MH, 2 amps, 45/-, P. & P. 7/6. Both types less than ‡ ohm res, Hermetically sealed, Oil filled, Brand new. In makers cartons.

HEAVY DUTY L.T. TRANSFORMERS

Pri tapped 110v, 220-250v. Sec. 55v. 24a., 14v. 10a., 60v. 2a.
All windings very conservatively rated. Tropically finished.
Terminal connections. 5ize 9 × 7½ × 7ins. Weight 65lb. £10.19.6.
Carr. 15/-, Pri tapped 200-250v. Sec. 46v. V

Carr. 15/-. Pri tapped 200-250v. Sec. 46v. Very conservatively rated at 29 amps. Size 11 x 7 x 7in. Weight 75 lb. approx. Manufactured by Partridge. £12.19.6. Carr. 15/-.

GARDNERS H.T. TRANSFORMERS
Pri 200-220-240v. Sec. 375-0-375v. 250 M/A. 200-0-200v. 50 M/A. 60-0-60v. 125 M/A. 6-3v. 6-5a. 6-3v. 4a. 6-3v. 2a. 6-3v. 1-6a. 6-3v. 60-0-04/A. 5.v 3a. Unshrouded, Fully tropicalised. Table top connections. 85/- P. & P. 10/6.

T.C.C. OIL-FILLED BLOCK CAPACITORS
Type 82 BMFD 500v. wkg at 60 deg. C. 8/6 P. & P. 2/6. Visconol
4 MFD 1500v. wkg at 70 deg. C. 15/- P. & P. 2/6. 4 MFD 500v.
wkg at 60 deg. C. 4/6 P. & P. 1/6. 2 MFD 500v. wkg at 60 deg. C.
2/6 P. & P. 1/6. 2 MFD 1500v. wkg at 70 deg. C. 7/6 P. & P. 2/0-01 MFD 12 kv. wkg at 60 deg. C. 7/6 P. & P. 1/6.

G.P.O. TYPE RELAYS 3000 Type, 250 Ω 3 B. IM. H duty. M contacts 8/6, 200 Ω 6 M. contacts 8/6, 75 Ω 3 M. I B. I Co Contacts 6/6, 2000 Ω + 130 Ω 1 M. before B. contacts 6/6, 5000 Ω 1 Co. I M. contacts 6/6, 5000 Ω 1 Co. I M. contacts 6/6, 1000 Ω 6 M. contacts 8/6. All new and boxed. P. & P. I/- per relay. relay. 600 Type. 150 Ω 4 Co. Contacts. 7/6. 1700 Ω 3 M, contacts. 5/- P. & P. 1/-.

MAGNETIC DEVICES LTD SEALED RELAYS 5000 @ 48v. DC. 3 CO. Contacts. 8/6 P. & P. 1/6. Open type 3-6v. DC. 3 heavy duty makes. 7/6 P. & P. 1/6. AC 2-3v. I heavy duty Co. Contact. 7/6 P. & P. 1/6.

AMERICAN WILLARD

Miniature accumulators 6v. 1.2 A.H. Size ‡ × 1‡ × 4 ins. Wt.

5½ oz. These batteries were designed for meteorological balloon transmitters. Easily filled with a hypodermic syringe. Self sealing, 7/6. P. & P. 1/6.

MINIATURE 24v. D.C. GEARED MOTORS
500 rpm. Size 2 × 1½ × 1 in. Length of spindle 1 in., dia. ½ in.
15/-. P. & P. 2/-.

PULLEN SHUNT WOUND 24. D.C. REVERSIBLE MOTORS
Type 610 H.P. 1/75 r.p.m. 3,500 Cont./R. New and boxed. 15/-. P. & P. 3/6.

MAGNETIC DEVICES 6v. D.C. CONTACTORS

3 Heavy Makes contacts. Size $2 \times 1\frac{1}{2} \times 1$ in, 8/6, P. & P. 2/-.

ORGAN DIVIDER BOARDS, built to high industrial/computer standards. 5 octave set £15, complete with connection data and oscillator details.

COPPER LAMINATE PRINTED CIRCUIT

 $84 \times 5\frac{1}{4} \times 1/16$ in. 2/6 sheet, 5 for $10/-11 \times 6\frac{1}{4} \times 1/16$ in. 3/- sheet, 4 for $10/-11 \times 9 \times 1/16$ in. 4/- sheet, 3 for 10/- Offcut pack (smallest 4×2 in.) 10/- 300 sq. in.

RADIATION MONITORING EQUIPMENT. Portable and bench models (brand new) S.a.e literature. KLYSTRON POWER SUPPLY (Solartron AS562).

£40. Carr. 50/ KLYSTRON POWER SUPPLY (Elliott PKU1). £100 120 AMP. AUTO TRANSFORMERS. 190-270v. 50 c/s (tapped every 5 volts). £50 ea. (Carr. by arrangement.)

801A SIGNAL GENERATOR. 10-300 mc/s in 4 bands. Ext. 50 c/s-10 Kc/s. Output 200 m/v **£50** ea. P.P. 25/-.

SPEAKERS
"E.M.I." 19×14 in. 50 watts. 8 ohm (14A/600A.) Four tweeters mounted across main axis. Separate "X-over" unit belances both bass and h.f. sections. 20 Hz. to 20,000 Hz. Bass unit flux 16,500 gss. A truly magnificent system. £25. P.P. 50/E.M.I. 13×8 in. with two tweeters and cross-over. 8 or 15 ohm 75/-. P.P. 5/-.
"E.M.I." 13 × 8 in. Bass Unit. 10 watts 3-8-15 ohm models.

"E.M.I." 13 x 8 in. Bass Unit. 10 watts 3-8-15 ohm models. 50/- each. P.P. 5/"E.M.I." 6½ in. Rd. 10 watt woofers. 8 ohm. 30/- ea. P.P. 2/6.
"FANE" 12 in. 20 watt. 15 ohm. (122/10A.) With integral tweeter. £6 ea. P.P. 7/6.
SPEAKER SYSTEM (20×10×10 in.) Made to Spec. from ½ in. board. Finished in black leathercloth. 13×8 in. speaker with twin tweeters complete with "X-over" 50 Hz. to 20,000 Hz. £7 10s. P.P. 10/-.

EXTRACTOR FANS/BLOWERS
"AIRMAX" 7½ In. FAN. In aluminium diecast housing
(9 in.). 240v. Brand new. £4 10s. P.P. 10/-.
"PLANNAIR" 5½ In. FAN. (Type 5 PL 121-122.) Diecast
housing. 240v. Brand new. £6. P.P. 10/-.
"SOLARTRON" TANGENTIAL BLOWERS. Overall size
16 × 5½ × 3½ in. Air outlet 12 × 1½ in. 240v, Brand new.
50/- ea. P.P. 7/6.

buj.- ea. P.P. //b.

BULK COMPONENT OFFER. Resistors/capacitors. All types and values. All new modern components. Over 500 pieces, £2. (Trial order 100 pieces 10/-.) We are confident

GH SPEED MAGNETIC COUNTERS (4×1×1 in.) 4 digit 24/48v. (state which), 6/6 ea. P.P

LEVEL METERS (11 x 1 in.) 200 micro-amp. Made in

Germany. 15/- each.

MICROAMMETERS (4-in. sq. Weston). 25-0-25 micro-

amos 45/-, P.P. 5/-RELAYS H.D. 2 pole 3 way 10 amp. contacts. 12v.w. 7/6 ea. LIGHTWEIGHT RELAYS (with dust-proof covers) 4 c/o contacts, 24v. 500 ohm. 7/6 ea.

PRECISION CAPACITANCE JIGS. Beautifully made with Moore & Wright Micrometer Gauge. Type 1. 18.5 pf-1,220 pf. £10 ea. Type 2 9.5 pf-11.5 pf. £6 ea.

POT CORES LA1/LA2/LA3. 10/- ea.

71 WAY PLUG & SOCKET (Painton Series 159). Gold plated contacts with hood & retaining clips. 30/- pair. 50 WAY PLUG & SOCKET (U.C.L. miniature). Gold plated contacts 20/- pair. 34 way version 15/- pair.

12 VOLT H.D. RELAYS $(3 \times 2 \times 1 \text{ in.})$. 2 pole change-over (silver points) 8/- each, p. 8 p. 1/-.

COMPUTER BOARDS
4-0C23; 4-2N1091; 4-2G302; 4-0A10. 20/- ea
8-0C42 (long leads); 16-0A47. 7/6 ea
8-DA11A; 14-0A47. 5/- ea.
Bargain pack of 5 boards. Components too varied to enumerate. At least 100 transistors and diodes £2 lot.

TRANSFORMERS

L.T. TRANSFORMERS (shrouded). Prim. 200/250v. Sec. 20/40/60v. 2 amp. 42/6. P.P. 7/6. L.T. TRANSFORMERS. Prim. 200/250v. Sec. 20/40v.

L.T. TRANSFORMERS, Prim. 200/250V. Sec. 20/40V. 1.5 amp. 30/-. P.P. 5/-.
"ADVANCE" CONSTANT VOLTAGE, Prim. 190/250V. ±15%, Sec. 115V. 2,250 watts. £15 ea. P.P. 50/-.
H.T. TRANSFORMERS, Prim. 200/240V. Sec. 300-0-300V. 80 m/a. 6.3V. C.T. 2a. 30/- ea. P.P. 7/6. 350-0-350V. 60 M.A. 6.3V. C.T. 2a. 20/- ea. P.P. 5/-.
L.T. TRANSFORMER. Prim. 240V. Sec. 33-0-33V. 5 cmp. 45/-. P.P. 10/-.

45/-. P.P. 10/-

5 amp. 45/-. P.P. 10/-.

STEP DOWN TRANSFORMER. Prim. 200/240v. Sec. 115v. 100 watts. 20/- ea. P.P. 5/-.

L.T. TRANSFORMERS Prim. 240v. Sec. 8/12/20/25v. 3.5 amp models 20/-; P.P. 5/6.

L.T. TRANSFORMERS Prim. 240v. Sec 14v. 1 amp 10/- ea. P.P. 2/6.

LIQUID LEVEL DETECTOR. Detects even mildly conductive liquids, i.e. ether, etc. N.O./N.C. Contacts fails to safe. £10. S.A.E. literature.

ELECTRIC SLOTMETERS (1/-) 25 amp. L.R. 240v. A.C.

ELECTRIC SLOTMETERS (1/-) 25 amp. L.R. 240v. A.C. 85/- ea. P.P. 5/-.
QUARTERLY ELECTRIC CHECK METERS, 40 amp 240v. A.C., 20/- ea. P.P. 5/-.
"LONG LIFE" ELECTROLYTICS (screw terminal) 25,000 u.f. 40v. (4½ × 2½ in.). 20/- ea. P.P. 2/6. 10,000 u.f. 75v. (4½ × 2½ in.). 17/6 ea. P.P. 2/6. 3,150 u.f. 40v. (4½ × 1½ in.). 15/- ea. P.P. 2/6. 8. EXECUTIVE "SIXTY" AMPLIFIER. (60 w. r.m.s. into 8 ohm.) British designed and built. True hi-fi performance. Built-in filters to protect speakers. Three independently mixed inputs. High-Low impedance. Mic. Crystal-Caramic-Magnetic Cartridge, or aux. equipment. £55. P.P. 50/- S.a.e. literature.

TELEPHONE DIALS (New) 20/- ea.

RELAYS (G.P.O. '3000'). All types. Brand new from 7/6 each. 10 up quotations only TELEPHONE EXTENSION CABLE (ex. G.P.O.) 3 core/cream p.v.c. 100 yd. coil 40/-200 yd. coil 75/- P.P. 5/- coil.
UNISELECTORS (Brand new) 25-way 75 ohm. 8 bank ½ wipe 65/-. 10 bank ½ wipe 75/-. Other types from 45/-.

REED RELAYS 4 make 9/12v. (1,000 ohm.) 12/6 ea. 2 make 7/6 ea. 1 make 5/- ea. Reed Switches (1½ in.) 2/ea. £1 per doz.

SUB-MINIATURE REED RELAYS (1in.×½in.). Weight † oz. Type 1. 960 ohm, 3/9v. 1 make. 12/6 ea. Type 2. 1800 ohm, 3/12v. 1 make. 15/- ea.

SILICON BRIDGES, 100 P.I.V 1 amp. (\$x\$x\$ in.),

"ADVANCE" VOLSTAT TRANSFORMERS. Input 190-260v. Output 6v. R.M.S. 25 Watt. 40/- each. P.P. 5/-.

PLUG-IN RELAYS. (Siemans-Varley) 4 c/o. 700 ohm, 10/- ea. complete with base. (Other make-ups and coils available.)

PATTRICK & KINNIE

191 LONDON ROAD · ROMFORD · ESSEX RM79DD ROMFORD 44473

TYPE I3A DOUBLE BEAM OSCILLOSCOPES BARGAIN

An excellent general purpose D/B oscilloscope, T.B. 2 cps-750 Kc/s. Bandwidth 5.5 Mc/s Sensitivity 33 Mv/cm. Operating voltage 0/110/200/250 v. A.C. Supplied in excellent working condition, £22/10/-. Carriage 30/-

AVO CT471A MULTIMETER

Battery operated, fully transistorised. Sensitivity 100 MΩ/r. Measures A.C./D.C. curlent 12µA. to 1.20 V A.C./D.C. curlent 12µA. to 1.20 mΩ/r. deasures 12 ohn to 120 mΩ/H.F., V.H.F., U.H.F. voltage with multiplier 4V. to 400V. up to 50 Mc/s. 40 mV. to 4V. up to 1.000 Mc/s. 0ffered in perfect condition. £55 each. Carr. 10/-.

CRYSTAL
CALIBRATORS
NO. 10
Small portable crystal
controlled waveneter.
Size 7in. x 4jin. x 4in.
Frequency range 500
Kc/s=-10 Mc/s (up to
30 Mc/s on harmonles).
Calibrated dial. Power
requirements 300 V.D.C.
15mA and 12 V.D.C.
6.3A. Excellent condi-0.3A. Excellent condi-tion. 89/6. Carr. 7/6.

LELAND MODEL 27 BEAT
FREQUENCY OSCILLATORS
0-20 ke/s. Output 5K or 500 ohms. 200/250 v.
A.C. Offered in excellent condition, £12/10/-.
Carriage 10/-.

CLASS D. WAVEMETERS

A crystal controlled heterodyne frequency meter covering 1.7-8 Me/s. Operation on 6 v. D.C. Ideal for amateur use. Available in good used condition £5.19.6 Carr. 7/6. or Brand New £7.19.6 Carr. 7/9.

B.C. 221 FREQUENCY METERS

Latest release 125 KHz-20 MHz. Excellent condition. Fully tested and checked and complete with calibrator charts. £27.10.0 each. Carr. 10/-.

AM/FM SIGNAL GENERATORS

Oscilator Test No. 2. A high quality precision instrument made for the Ministry by Airmec. Fre-quency coverage 20-80 Mc/s. AM/ CW/FM. Incor-porates precision

CW/FM. Incorporate precision dial, level meter, precision attenuator \(\text{L} \text{V} = \text{V} \) Operation from 12 yot 1 D.C. or \(\text{O} = \text{V} = \text{V} \) Ox. \(\text{C} = \text{V} = \text{V} \) A.C. Size \(12 \times \text{B} \text{X} \) 9in. Supplied in brand new condition complete with all connectors, fully tested, \(\text{E45}, \text{Carr}, \text{20/-}. \)

AVO CT.38 ELECTRONIC MULTIMETERS

AVO Cl.35 ELECTRONIC MULTIMETERS High quality 97 range instrument which measures A.C. and D.C. Voltage. Current, Resistance and Power Output Ranges D.C. voltage 30 mV-10,0009. (10 meg Ω-110 meg Ω imput. D.C. current 10μ.Α-25 amps. Ohns. 0-1,000 meg Ω A.C. volt 100mv-255V (with R.F. measuring head up to 250 Mc/s) A.C. current 10μ.Α-25 amps. Power output 50 micro-watts-5 watts. Operation 0/110/200/250V. A.C. Supplied in perfect condition complete with circuit lead and R.F. probe. £25. Carr. 15/-

ADMIRALTY 62B RECEIVERS High

TO-2 PORTABLE
OSCILLOSCOPE
A general purpose low cost economy oscilloscope for everyday use. Y amp. Bandwidth
2 CF8-1 MHZ. Input Imp.
2 meg Ω. 25 PF. illuminated scale. 2' tube. 115 × 180 × 230 mm. Weight 8bs. 220/240v. A.C. Supplied brand new with handbook. £22/10f-.
Carr. 10f-.

TO-3 PORTABLE OSCILLOSCOPE, 3" TUBE

OSCILLOSCOPE. 3" TUBE

y amp. Sensitivity. 1v
p-p/CM. Bandwidth 1.5 cps
-1.5 MHZ. Input imp.
2 meg Ω. 25 FF. X amp
sensitivity. 9v p-p/CM.
bandwidth 1.5 cps—800
KHZ. Input imp. 2 meg Ω
20 PF. Time base. 5 ranges
10 cps—300 KHZ. Synchronization. Internal/external. Illuminated scale.
Weight 154bb. 220/240 V.
and new with handbook

215 x 330 mm A.C. Supplied brand £37.10.0 Carr. 10/-.

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES, ETC.

LOW COST OF QUICK DELIVERY OF OVER 200 RANGES IN STOCK OTHER RANGES TO ORDER

"SEW" DESIGNS!

CLEAR PLASTIC METERS

50-0-50µA 100μA 100-0-100μA

500μΑ

ImA.

TYPE SW. 100 100 x 80 mm.

20V. D.C	59/6
50V. D.C	59/6
300V. D.C	59/6
1 amp. D.C	59/6
5 amp. D.C., .	59/6
300V. A.C	59/6
VU Meter	75/-

BAKELITE PANEL METERS TYPE S-80

80 mm. square fronts

$50\mu\mathrm{A}$	62/6
$50-0-50\mu A$	59/6
100μΑ	59/6
$100 \cdot 0 \cdot 100 \mu A$	57/6
500μA	52/6
1mA	49/6
20V. D.C	49/6

50V. D.C	49/6
300V, D.C	49/6
1 amp. D.C	49/6
5 amp. D.C	49/6
300V. A.C	
VU Meter	67/6

10 amp.

27/6

27/6

27/6 27/6

27/6

27/6

"SEW" CLEAR PLASTIC METERS

Type MR.85P. 41in. × 47in. fronts.

65/-

62/6

59/8

50µA		٠.					
50-0-4	50μ	A					
100μ							
100-0		Dit	A	k			
200µ.	Α.		,				1
500µ.							
500-0	-50	θμ	A	L			
11nA		٠.	į,				
1-0-11	mA.						
5mA					v		

amount of the et amount	10mA	52/-
	50mA	52/-
1	100mA	52/-
Contract of the contract of th	500mA	52/-
mid.		
	1 amp	52/-
0[4	5 amp	52/-
200 7 Will 200	I5 amp	52/-
A 100	30 amp	52/-
	20V. D.C	52/-
THE REAL PROPERTY.	50V. D.C	52/-
Control of the second second second section is the	150V. D.C	52/-
4A 72/-	300V. D.C	52/-
0-50μA 62/-	15V. A.C	52/-
0μΑ 62/-	300 V. A.C	52/-
0-0-100μA 62 /-	8 Meter 1mA	57/6
0μ A 57/6	VU meter	72/-
0μΑ 55/-	1 amp. A.C	52/-
0-0-500µA 52/-	5 amp. A.C	52/-
A	10 amp. A.C	52/-
-ImA 52/-	20 amp. A.C	
A 52/- I	80 amp. A.C.*	52/-

Type MR.52P.	2 in. square fronts.	
50μΑ 62/-	10V. D.C	40/-
50-0-50μA 52/-	20V. D.C	40/-
100μA 52/-	50V. D.C	40/-
$100-0-100 \mu A \dots 47/6$	300V. D.C	40/-
500μA 45/-	15V. A.C	40/-
ImA 40/-	300V. A.C	40/-
5mA 40/-	B Meter 1mA	42/-
10mA 40/-	VU Meter	62/-
50mA 40/-	1 amp. A.C.*	40/-
100mA 40/-	5 amp A.C.*	40/-
500mA 40/-	10 amp. A.C.*	40/-
1 amp 40/-	20 amp. A.C.*	40/-
5 amp 40/-	30 amp. A.C.*	40/-

Туре	MR	65 P .	3gin.	×	31in.	fronts.
50μΑ		67/	6	101	7. D. C	
50-0-50µA		55	ř-	201	7. 1).0	
100µA		- 55	/- I	501	7. D.C	3

100-0-100μA 52/-	150V. D.C 42
200μA 52/-	300V. D.C 42
500μA 47/6	15V. A.C 42
500-0-500μA 42/-	50V. A.C 42
ImA 42/-	150V. A.C 42
5mA 42/-	300 V. A.C 42
10mA 42/-	500V. A.C 42
50mA 42/-	S meter 1mA 47/
100mA 42/-	VU meter 67/
500mA 42/-	50mA A.C.* 42
l amp 42/-	100mA A.C.* 42
5 amp 42/-	200mA A.C.* 42
10 amp 42/-	500mA A.C.* 42
15 amp 42/-	1 amp. A.C 42
20 amp 42/-	5 amp. A.C 42
30 amp 42/-	10 amp. A.C 42
50 amp 47/6	20 amp. A.C 42
5V. D.C 42/-	30 amp. A.C 42

*MOVING IRON -ALL OTHERS MOVING COIL

Type MR.38P. 1 21/32in. square fronts.

		3V. D.C
		10V. D.C
500.4	40/-	15V. D.C
	50μA 37/8	20V. D.C
	A 37/6	100V. D.C
	0-100μA 35/-	150V. D.C
	A 35/*	300V. D.C
	$30/-500\mu A 27/6$	500V. D.C.
lmA	27/6	750V. D.C
I-0-1	mA 27/6	15V. A.C
	27/6	50 V. A.C
	27/6	150V. A.C
	4 27/6	300V. A.C.
50m	A 27/6 A 27/6	500V. A.C
	A 27/6	8 meter 1mA
	4 0000	VIET modern

150mA 25	7/6	VU meter	4
Type MR.4	5P. 2ir	a. square fronts.	
50μA 4	5/-	5 anip	3
50-0-50μΑ 4	2/-	10V. D.C	8
100μΑ 4		20V. D.C	3
100-0-100µA 3	7/6	50 V. D.C	3
200μA3		20V. D.C. 50V. D.C. 300V. D.C. 15V. A.C.	3
500μA 3	2/-	15V. A.C	3
500-0-500µtA 3	0/-	300 V. A.C	Š
1mA 3		S meter lmA	
5mA 3		VU meter	
10mA 3		Lamp. A.C	9
	ŏ/-	5 amp. A.C.*	Š
100mA 3		5 amp. A.C.* 10 amp. A.C.* 20 amp. A.C.* 30 amp. A.C.*	Š
500mA 3		20 amp. A.C	Š
	ni-	30 amp. A.C	Š

"SEW" BAKELITE PANEL METERS

Type MR.65. 3 in. square fronts 500mA

$25\mu A$.					70/-
50μA.					
50-0-50	μ.	A.			45/-
100µA					45/-
100-0-1					45/-
$500\mu A$					42/-
lmA.					35/-
1-0-1m					35/-
5:nA .					35/-
					35/-
50mA		٠.			
100m A					35/-

	10V. D.C	31
	20V. D.C	3.5
	50V. D.C	3
	150V. D.C	20
,	1007. 17.0.	2
	300 V. D.C	33
	30 V. A.C.*	35
3	300 V. D.C. 30 V. A.C.* 50 V. A.C.*	3.5
	150V. A.C.*	21
	1007. A.O	υi
	300V. A.C.*	- 35
:	500mA A.C.*	35
	1 amp. A.C	31
	5 A.C.	8
	5 amp. A.C	36
	10 amp. A.C	33
- 1	20 amp. A.C	3!
	10 amp. A.C.* 20 amp. A.C.* 30 amp. A.C.*	33
	50 amp. A.C	3
•	30 amp. A.C	0.0
•	VU meter	6

1 amp. 5 amp. 15 amp. 30 amp.

EDGWISE METERS

SEND FOR ILLUSTRATED BROCHURE ON SEW PANEL **METERS—DISCOUNTS FOR QUANTITIES**

POWER RHEOSTATS

High quality ceramic construction. Windings embedded in vitreous enamel. Heavy duty brush wiper. Continuous rating. Wide range available ex-stock. Single hole fixing. Jin. dla. shafts. Bulk quantities available. 25 WATT. 10/25/50/100/220/500/1000/1500/2500 or 5000 ohms. 14/6. P. & P. 1/6. 50 WATT. 10/25/50/100/250/500/1000/2500 or 5000 ohms, 21/s. P. & P. 1/6 100 WATT. 1/5/10/25/50/100/250/500/1000 or 2500 ohms, 27/6, P. & P. 1/6

TRANSISTOR TESTER

Full capabilities for measuring A. B and I CO. NPN or PNP. Equally adaptable for checking diodes. Supplied com-plete with instructions, battery and leads. £6.19.6 & 3/- P. & P.

MARCONI TF.142E DISTORTION FACTOR METERS Excellent condition. Fully tested £20. Carr. 15/-.

TRANSISTORISED L.C.R. A.C MEASURING BRIDGE.

portable A new portable bridge offering excellent range and accuracy at low cost. Ranges: R, 1Ω — 11.1 MEG Ω 6

11.1 MEG G 6
Ranges ± 10%.
L 1µH—111 HEN.
2%. C. 10PF±
1110MFD.6 Ranges
± 2%. TURNS RATIO 1:1/1000—1:11100.
6 Ranges ± 10%. Bridge voltage at 1,000 CPS.
Operated from 9 volts. 100µA. Meter indication.
Attractive 2 tone metal case. Size 7½° × 8″ × 2″.
£20. P. & P. 5/-.

COSSOR 1049 DOUBLE BEAM

OSCILLOSCOPES

D.C. coupled. Band width 1 Kc/s. Perfect order. £25. Carr. 30/-.

tion manual a leads, £16.10.0. Carr. 7/6.

TY75 AUDIO SIGNAL GENERATOR

GENERATOR
SINE Wave 20 CIS-200 Kc/s. Square Wave 20 CP8-20
Kc/s. Righ and low impedance output. Output variable up to 6 votts. 220/240 votts A.C.
Brand new with instructions. 216. Carr. 7/6. Size 210 × 150 × 120 mm.

MARCONI TF885 VIDEO OSCILLATORS 0-5 mc/s Sine Square Wave £45. Carr. 20/-.

LAFAYETTE TE-46 RESISTANCE CAPACITY ANALYSER

2 pf-2,000 mfd. 2 oh;ps-200 mee-2 ohms-200 meg-ohms. Also checks Impedance turns ratio insulation. 200/250 v. A.C. Brand New, £17.10 Carr. 7/6.

270° 500 MICROAMP METER Incorporated in Radio Altitude Indicator 1D-14APN Ideal forrev. counteretc. 15/8. P. & P. 3/-.

TE-20D RF SIGNAL GENERATOR

Accurate wide range signal generator covering 120 Kc/s=500 Mc/s on 6 bands. Directly calibrated. Variable RF, attenuator, audio output. Xtal socket for calibration. 220/240V. A.C. Brand new with instru Brand nev tions. £15. Carr. 7/6 Size 140 x 215 x 170 mm

ADVANCE TEST EQUIPMENT JIB. AUDIO SIGNAL GENERATOR 15 c/s to 50 Kc/s. Sine wave. Output 600 ohms

or b ohms. 230.00.

VM79. UHF MILLIVOLT METER

100 Ke/s to 1,000 Me/s. A.C. 10 mV to 3v. D.C.

10 mV. to 3v. Current 0.01 uA to 0.3 mA. Resist
snce 1 ohm to 10 megohm. £125.0.0.

TTIS. TRANSISTOR TESTER
Full range of facilities for testing PNP
transistors in or out of circuit. £37.10.0. Carriage 10/- per item.

MARCONI TF195M BEAT FREQUENCY OSCILLATORS 0-40 kc/s. £20, Carr. 30/-.

Please add postage

42/ 42/ 42/

-CONDUCTORS/VALVES BRAND NEW & FU

TRANSISTORS							
IN914	1,6	ACY18	5/- I	BSY56	18/-		
IN 4001 IN 4002	1/6 1/6	ACY19	5/-	B8Y95A BY100	3/- 3/6		
IN 4003 IN 4004	2/-	ACY20 ACY21	4/6 4/6	BY124	3/-		
IN4005	2/6	ACY22 ACY28	3/6	BY126 BY127	3/-		
IN4006 IN4007	4/-	ACY40	3/-	BYZ10	8/-		
1N4148 1N5054	1/6 4/6	AD140 AD149	10/-	BYZ11 BYZ12	7 6		
2G301 2G302	4/-	AD161	7/6	BYZ13	5/-		
2G303 2G306	5/-	AD162 AF114	7/6 6/6	MJ480 MJ481	19/6 25/-		
2G308 2G309	6/- 6/- 4/6	AF115	6/-	MPF102	8/6		
2G371 2G374	4/6 5/6	AF116 AF117	6/6 5/-	MPF103 MPF104	7/- 7/6		
2G381 2N696	5/- 3/6	AF118	12/6	MPF105	8/-		
2N697	8/6	AF119 AF124	4/- 5/-	NKT213 NKT214	5/- 3/-		
2N698 2N706	8/6 2/-	AF126	3,6	NKT216 NKT217	7/6 8/-		
2N706A 2N708	2/6 3/- 4/6	AF127 AF139	3,6 6/-	NKT224	4/8		
2N914 2N916	4/6	AF178 AF180	9/6 10/6	NKT241	5/6		
2N918 2N929	7/6	AF181	8/6	NKT261 NKT271	4/- 5/-		
2N930 2N1131	5/8	AF186 AF239	8/- 8/6	NKT272	5/-		
2N1132 2N1302	6/- 6/- 4/-	A8Y26	5/-	NKT274 NKT275	4/- 5/-		
2N1303	4/6	ASY27 ASY28	6/6 5/-	NKT278	5/-		
2N1304 2N1305	5/- 5/-	A8Z17	8/6	NKT281 NKT403	5/6 15/-		
2N1306 2N1307	5/-	AUY10 BAY31	19/6 1/6	NKT404	12/6		
2N1308 2N1309	5/- 6/- 5/-	BC107	2/6	NKT405 NKT773	15/- 5/-		
2N1613 2N1711	4/6 5/-	BC108 BC109	2/6 2/6	NKT1043 OA5	39 7/6 3/-		
2N 1889 2N 1893	8/8 10/-	BC113	5/-	OA10	5/-		
2N2147 2N2160	15/- 12/6	BC116 BC125	8/- 11/-	OA47 OA70	2/-		
2N2193	9/6	BC126	11/-	OA79	2/-		
2N2217 2N2218	5/6 6/-	BC147 BC148	3/8 2/6	OA81 OA85	2/- 2/6		
2N2219	6/6	BC149	4/-	OA90	2/-		
2N2368 2N2369	3/6 4/-	BC167 BC172	3/- 3/6	OA91 OA95	1/6 1/6		
2N2369A 2N2484	4/-	BC177 BC186	7/6 7/6	OA200	1/6		
2N2613	7/-	BC182L	4, - 4/-	OA202 OA210	2, - 3/6		
2N 2646 2N 2904	10/6 6/-	BC184L BC212L	4/-	OC19	7/6		
2N2923	3/6	BCY30	5/-	OC20 OC22	19/6 9/6		
2N2924 2N2925	3/6	BCY31 BCY32	6/- 10/-	OC23 OC24	10/-		
2N2926G 2N2926Y	2/6	BCY33	4/-	OC25	7/6		
2N2926O	2/6	BCY34 BCY38	5/- 6/-	OC26 OC28	5/- 12/6		
2N3053 2N3054	5/- 10/-	BCY42 BCY43	3/- 4/-	OC29	12/6		
2N3055	15/-	BCY71	6/-	OC35 OC36	10/- 12/6		
2N3391A 2N3416	6/- 7/6	BCY72 BCZ11	3/6 7/6	0C41 0C42	5/- 6/-		
2N3702 2N3570	2/6 17/6	BD121	13/-	0C42	3/6		
2N3570 2N3703	2/6	BD123 BD124	16/6 12/-	OC45 OC46	3/- 5/6		
2N 3704 2N 3705	3/6	BF115 BF117	5/- 9/6	OC70	2/6		
2N3706	4/6	BF167	5/-	OC71 OC72	3/- 5/-		
2N3707 2N3708	3/- 3/6	BF173 BF180	6/- 7/6	OC73 OC74	6/- 6/-		
2N 3709 2N 3710	2/6 2/6	BF181	7/6	OC75	5/-		
2N3710 2N3711	2/6	BF182 BF184	6/6 5/-	OC76	5/- 8/-		
2N3819 2N3903	7/- 7/-		5/- 3/6	00.0	4/-		
2N3904	7/-	BF194 BF195	3/-		5/- 4/-		
2N3905 2N3906	7/6 7/6	BF200 BF224	7/6 6/-	OC83	5/-		
2N 4058	3/6	BF225	6/-	OC139	5/- 5/-		
2N4059 2N4061	5/- 3/-		9/8 4/6		7/8 4/-		
2 N4062	4/6	BFX13	4/6	OC170	5/-		
2N4286 2N4287	3/- 3/6	BFX29 BFX30	6/-		6/- 7/6		
2N4288 2N4289	3/ - 3/ 6	BFX44	7/6	OC201	9/6		
2N4290	3/-	BFX86	8/- 6/6		12/6 7/6		
2N4291 2N4292	3/-		6/6	OC204	8/-		
2N5354	5/6	BFY18	5/- 5/-		12/6 15/-		
2N5355 2S102	5/6 5/=		12/6		19/6		
28103	7,6	BFY51	4/-	ORP60	10/- 8/-		
28104 40250	7/6 10/-		4/6 13/6		5/- 2,9		
40361 40362	11/- 12/-	B8 X 19	3/6	PL4002	3/-		
AC107	7/6	B8X21	3/6 7/6		3/3 3/6		
AC126 AC127	5/- 5/-	BSX76	3/-	PL4005	3/9		
AC128	5/-	B8 120	3/6 4/-		4/-		
AC154 AC176	3/- 5/-	BSY28	3/6	TI843	8/-		
AC187 AC188	6/- 6/-	BSY38	4/-		2/6 3/6		
ACY17	6 _i -		6/6	T1846	3/6		

SEND SAE FOR FULL LISTS! DISCOUNTS:

10% on 12+ any one type 15% on 25+ any one type

Large quantity discounts on applica-tion. Postage: Semi Conductors 1/6; Valves 3/-.

LLY	G	IAR	ΔΝ	TEE	Ď
يحجي	7.7	ya			
		VAL	/ES		
OA2	6/6	30FL14	15/6	EY51	8/-
OB2	6/6	30L15	17/-	EY86	8/-
OZ4	6/-	30L17	17/-	EY87	8/4
1L4	2/6	30P12	16/-	EZ40	7/0
IR5	7/-	30P19	15/-	EZ41	9/-
185	5/-	30PL1	15/6		
IT4	4/6	30PL13	18/-	EZ80	5/6
IU4	6/-	30PL14	17/-	EZ81	5/6
IU5	9/6	35 L6	9/6	GZ32	9/0
2D21	6/6	35 W 4	5/-	GZ34	11/
3Q4	8/-	35 Z4 35 Z5	5/- 7/-	K T66	27/0
384 3V4	7/-	50B5	7/-	KT88	33/0
5R4	8/- 11/-	50C5	7/-		
5U4	6/-	80	9/-	MU14	8/-
5V4	8/-	85A2	7/6	PABC80	8/
5¥3	6/-	807	9/6	PC86	11/0
5Z4G	7/6	1625	6/-	PC88	13/
6/30L2	15/-	5763	13/-	PC97	8/4
6AC7	4/-	6146	30/-	PC900	9/0
6AG7	7/6	AZ31	10/-	PCC84	7/
6AK5	6/-	CY31	7/-		
6AK6	11/6	DAF91	5/6	PCC85	8/
6AL5	3/3	DAF96	7/9	PCC88	12/
6AM6	4/6	DF91	4/6	PCC89	10/
6AQ5	6/6	DF96	7/9	PCC189	11/
6 A B 6	6/-	DK91	7	DOM:00	011

PCF80 6A86 6AT6 6AV6 6AV6 6BA6 6BE6 6BH6 PCF82 PCF84 PCF86 PCF800 6/9 DK92 DL92 DL94 DL96 DM70 DY86 PCF801 6BJ6 6BQ7A 6BR7 6BR8 6BW6 6/8 PCF802 10/-DY87 PCF805 15/-PCF806 PCF808 PCL82 ESSCC 12/6 E180F 15/. 15/6 7/9 6BW6 6BW7 6BZ6 6C4 6CD6 6CL6 6CW4 EABC80 EAF42 EB91 13/6 6/6 6/-23/-10/-12/6 12/6 PCL83 13/-3/3 PCL84 8/9 PCL85 PCL86 PFL200 EBC41 10/6 EBC81 6/6 EBF80 EBF83 8/-8/6 6/6 5/-7/-12/-11/-8/-15/6 PL36 11/-EBF89 PL81 9/8 12/-EBL21 PL82 PL83 PL84 PL500 PL504 EC86 12/-EC88 12/-ECC40 ECC84 ECC85 ECC88 6J5GT 6J6 6J7 6K8G PY32 11/-PY80 PY80 PY81 PY82 PY83 PY88 12/8 ECF80 6/6 ECF82 71-6L6GT 6LD20 ECF86 12/6 ECH21 ECH35 ECH42 68A7 68A7 68G7 68K7 68K7 68K7 68K7 68V7 6V6G 6V6G 6X6G 6X5G 6X5G PY800 PY801 10/-ECH81 U25 U26 U50 U52 ECH83 8/6 15/-6/-6/-14/-ECL80 ECL82 ECL83 ECL86 U191 EF37A U281 8/-8/-EF39 11282 U282 U301 U801 UABC80 UAF42 UBC41 EF40 10/-11/8 EF41 19/6 14/-5/-7/-EF85 9/6 UBC81 EF86 6/6 EF89 5/6 UBF80 7/3 UBF80 UBF89 UCC84 UCC85 UCF80 UCH21 UCH42 UCH42 EF91 9/9 8/-10/6 11/-12BA6 12BE6 EF184 EH90 EL33 17/6 13/-EL34 10/6 6/6 EL41 EL42 EL81 EL84 11/ UCL82 UCL83 UF41 UF80 UF85 UF89 UL41 UL84 UY41 11/6 10/-5/-8/3 12/-EL85 EL91 25Z6 30C15 30C17 30C18 EL95 12/-6/6 UY85 VR105/30 VR150/30 11/-11/-**EM85** 30FL12 18/6 EM87

ZENER DIODES

400mw.	1.5 watt	10 watt
(3.3 to 33v)	(2.4 to 200v)	(3.9 to 100v)
3/-	4/-	5/-

THYRISTORS

I THIS I ORS

AMP 50PIV 5/-; 100PIV 5/6; 200PIV 7/6;
300PIV 8/-; 400PIV 9/6; 3 AMP 50PIV 6/-;
100PIV 7/6; 200PIV 8/-; 300PIV 9/-; 400PIV
10/- 5 AMP 100 PIV 11/-; 200PIV 13/-;
400PIV 15/-, 7 AMP 100PIV 11/-; 200PIV 13/-;
300PIV 14/-; 400PIV 19/6; 100 AMP 350PIV
50/-; 400PIV 55/-.

	TRIACS	
8C41A	8C41B	SC41D
100PIV 6A	6A 200PIV	400 PIV 6A
19/6	22/-	27/6

INTEGRATED CIRCUITS 25/6 FJH221 16/8 FJH231 36/6 FJH241 10/- FJH251 10/- FJJ121 10/- FJJ131 10/- FJJ131 10/- FJJ101 9/9 | CA3005 9/9 | CA3011 12/6 | CA3052 50/- | FCH131 42/6 | FCH161 52/6 | FJH141 55/- | FJH171 52/6 | FJH181 L900 L914 L923 IC-10

HI-FI EQUIPMENT SAVE UP TO 33% OR MORE SEND S.A.E. FOR-DISCOUNT PRICE LISTS AND PACKAGE OFFERS!

Full current range affered brand new and guaranteed at fantastic savings

		81.65B	£14.19.6
40 Mk II		SL72B	£24.19.6
Stereo	£8.8.0	AP76	£22.10.0
2025 T/C		SL75	£25.19.6
Stereo	£8.17.6	8L75B	£27.19.6
3000 Stereo	£9.19.6	8L95B	£37.10.0
SP25 Mk III	£11.15.0	A70/11	£11.19.6
		401	£25. 0.0

- Carriage 7/6 extra each item.

 TEAK BASES AND PERSPEX COVERS
 For 8P25, 8L155, 8L55, 3000, 2025T/C, 2025
 1004, 23.19.6.
 For AP75, 8L75, 8L95, 25.19.6.
 For AP75, 8L75, 8L95, 25.19.6.
 25.19.6. Carriage 7/6 extra each type.

SPECIAL

GOLDRING GL69/2 GOLDRING GL69/2 fitted Goldring G800 cartridge complete with de luxe base and cover. Total list price £50.16.0. OUR PRICE £39. Carr. 20/- OFFERS
Garrard SP25 Mk III fitted Goldring G800
cartridge and wooden plinth with
perspex cover, ready wired. Total list
price £35, OUR PRICE £22.10.0. Carr. 10/-

TELETON SPECIAL OFFER!

CRIOT AM/FM STEREO TUNER AMPLIFIER WITH MATCHING PAIR \$A1003 SPEAKER SYSTEMS Output 4 watts per channel. Excellent reception AFC, built-in MFX. Cerl.XTAL input. Total List £50/5/-. OUR PRICE £29/19/-Carr. 12/6. Also available with Garrard 2025T/C Record Changer, Plinth, cover and stereo cartridge. Ready wired. £45. Carr. 20/-.

GO	DR	ING	CAR	TRID	GES	!	
G850					£5	2	6
G800					£7	10	Õ
G800E						19	6
G800 Supe		8.5			£16	16	0

TRANSISTOR FM TUNER

**M TUNER TUNER BIZE ONLY 6in. × 4in. × 2jin. 3 1.F. stages. Double tuned discriminator, ample output to feed most amplifiers. Operates 88-108 Mc/s. Ready stic value for money,

TEREO MULTIPLEX ADAPTORS, 99/6.

AMERICAN RECORDING TAPES

	3in. 225ft. L.P. Acetate	3/6
First grade	3 in. 600ft. T.P. Mylar	10/-
quality	5in. 600ft. Std. plastic	8/6
American	6in. 900ft. L.P. acetate	10/-
tapes.	5in. 1,200ft. D.P. Mylar	15/-
Brand new	53in. 1.200ft. L.P. acetate	12/6
and	51in. 1,200ft, L.P. Mylar	16/-
guaranteed.	5 in. 1,800ft. D.P. Mylar	22/6
Discounts for	5fin, 2,400ft, T.P. Mylar	39/6
quantitles.	7in. 1,200ft. Std. acetate	12/6
-	7in. 1.800ft. L.P. acetate	15/-
Postage 2/	7in. 1.800ft. L.P. Mylar	20/-
Over £3 post	7in. 2.400ft. D.P. Mylar	25/-
paid.	7in 9 con tt T P Meler	AEI-

TAPE CASSETTES

Top quality in plastic library boxes.

C80— 60 min. 8/6 : 3 for 24/6.

C90— 90 min. 12/6; 3 for 36/—

C120—120 min. 15/—; 3 for 43/6.

Cassette Head Cleaner 11/3 All Post Extra.

ECHO HS-606 STEREO HEADPHONES

Wonderfully com-fortable. Light-weight adjustable vinyl headband, 6ft. cable and stereo cps., 8Ω imp. 67/6. P. & P. 2/6.

HOSIDEN DH-085 DE-LUXE STEREO

HEADPHONES HEADPHONES
Features unique
mechanical 2 way
units and fitted
adjustable levelcontrols 8 ohm impedance. 20-20,000cps.
Complete with
spring lead & stereo jack plug. £7.19.6. P. & P. 2/6.

SINCLAIR EQUIPMENT Project 60. Package Offers

2 × Z30 amplifier, stereo 60 pre-amp, PZ5 power supply, £19,0.0, Carr. 7/6, Or with PZ6 power supply, £21,0.0, Carr. 7/6 2 × Z50 amplifier, stereo 60 pre-amp, PZ8 power supply, £21,10.0, Carr. 7/6. Transformer 4 PZF, 59/6 extra. Add to any of the above £4,17.4 for notive filter unit and £16,0.0 for a pair of Q16 speakers. PROJECT 60 FM TUSER £20,19.8, Carr. 7/6. All other Sinclair products in stock: 2,000 amplifier £236.0, Carr. 7/6. 3,000 Amplifier £236.0, Carr. 7/6.

TELETON SAQ 203E STEREO

Popular solid state hi-fi amplifier incorporating 16 semi-conductors. Output 6 watte r.m.s. 1 pputs for magnetic ceramic, tuner and state r.m.s. 1 pputs for magnetic ceramic, tuner and state r.m.s. 1 pputs for magnetic ceramic, tuner and state r.m.s. 1 pputs for magnetic ceramic, tuner and state r.m.s. 1 pputs for magnetic ceramic results of the state of

Our latest edition giving full details of a comprehensive range of HI-FI EQUIPMENT COMPONENTS, TEST EQUIPMENT and COMMUNICATIONS EQUIPMENT. FREE DISCOUNT COUPONS VALUE 10/-. 248 rages, fully illustrated and detailing thousands of items at bargain prices.

SEND NOW! ONLY 7/6 P & P 1/6

BUSSIAN C1-16 DOUBLE BEAM OSCILLOSCOPE

5 mc/s Pass Band. Separate Y1 and Y2 amplifers. Rectargular 5in. x 4in. C.R.T. Calibrated triggered sweep from 2 µsec. to 100 milli-sec. per cm. Free running time base 50c/s-lmc/s. Built-in time base calibrator and amplitude calibrator. Supplied complete with all accessories and instruction manual. £87. Carr. paid.

MARCONI CT44 **TF956 AF** ABSORPTION WATTMETER

1 u/watt to 6 watts. £20. Carr. 20/.

TELLI DECADE RESISTANCE ATTENUATOR

Variable range 0-111 db. Connections. Unbalance of 1 and Bridge T. Impedance 600 ohms. Range (0.1 db × 10) + (1 d b × 10) + 10 + 20 + 30 + 40 db. Frequency: DC to 200 KHZ (-3db). Accuracy: 0.05 db. + Indication db × 0.01. Maximum input less than 4 watts (50 voits). Built in 600 (1) load resistance with internal external switch. Brand new £27/10/- P. & P. 5/-

BELCO AF-5A SOLID STATE SINE SQUARE WAVE C.R. OSCILLATOR

TE-16A TRANSISTORISED SIGNAL GENERATOR

Ranges 400 KHZ-30 5 Ran MHZ. MHZ. An inexpensive instrument for the handyinstrument for the handy-man. Operates on 9v. battery. Wide easy to read scale. 800 KHZ modulation. 5½" × 5½" × 3½". Complete with instructions and leads. £7/19/6. P/P 4/-.

BELCO DA-20 SOLID STATE DECADE AUDIO OSCILLATOR

New high-quality portable instrument Sine 1 Hz to 100 KHz. Square 20 Hz to 200 KHz. Output max. +10 db (10 k ohms). Operation 220/240 v. A.C. Stze 215 mm. × 150 mm. × 120 mm.

Price £27.10.0 Carr. 5/-

T.E.40 HIGH SENSITIVITY A.C. VOLTMETER

10 meg. input 10 ranges: .01/.03/.1/.3/10/30/100/300 v. R.M.S. 4 cps.-1.2 Mc/s. Decibels -40 to +50 dB. Supplied brand new complete with leads and instructions. Operation 230 v. £17/10/-, Carr. 5/-.

TE-65 VALVE VOLTMETER

High quality instrument with 28 ranges.
D.C. volts 1.5-1,500 v.
A.C. volts 1.5-1,500 v.
Resistance up to 1,000 Resistance up to ayoungohms. 220/240v. A.C. operation. Complete with probe and instructions £17/10/0. P. & P. 6/-. Additional Probes available; B.F. 35/- H.V. 40/6.

AUTO TRANSFORMERS

)/115/230v. Step up or step down. Fully 150 W. 47/6, P. & P. 3/6 300 W. 65/r. P. & P. 4/6 500 W. 24/15/6, P. & P. 4/6 500 W. 24/15/6, P. & P. 4/6 500 W. 24/15/6, P. & P. 4/6 500 W. 28/15/6, P. & P. 4/6 500 W. 28/15/6, P. & P. 20/r.

MULTIMETERS for EVERY purpose!

TECH PT-34, 1,000 P.V. 0/10/50/250/500/0 0.00 P.V. 0/10/50/250/500/0 0.00 P.V. 0/10/50 mA. d.c. 0/10/6 P. & P. & P. & P. & S. & 39/6

MODEL TE-200 20,000 O.P.V. Mirror scale, over-load protection 0/5/25/125/1,000 V.D.C. 0/10/50/250/1,000 V.A.C. 0/50 μΑ/250 MA. 0/60K/6 meg. + 20 to + 62 db. 75/- P. & P. 3/-

MODEL TE-80. 20,000 O.P.V. 0/10/50/100/500/1,000 v. A.C. 0/5/25/50/250/500/1,000 v. D.C. 0-503A. 5/50/500mA. 0/6K/66K/60K/60 meg. £4/17/6. P. & P. 3/-.

MODEL TE-70, 30,000 O.P.V. 0/3/15/60/300/600/1,200 v. D.C. 0/6/30/120/600/1,200 v. A.C. 0/30/µA/3/30/300mA. 0/16K/160K/1.6M/16 Meg. £5/10/0 P. & P. 3/-

TMK MODEL TW-50K 46 ranges, mirror scale. 50K /Volt D.C. 5K /Volt A.C. D.C. Volts: 1.25, 2.5, 1.25, 2.5, 5, 10, 25, 50, 125, 220, 500, 1000 V. A.C. Volts: 1.5, 3.5, 10, 2.5, 50, 120, 25, 50, 500, 1000 V. D.C. Current: 25, 50µA, 2.5, 2.5, 50, 25, 50, 250, 500m A, 5, 10 amp. Resistance 10K, 100K, 1 MEG, 10 MEG, Decibels: 20 to +81.5 dB. £8/17/8. P. & P. 3/6.

TE-900 20,000 Ω/VOLT GIANT MULTIMETER. Mirror scale and overbad protection. 6 in full view meter. 2 colour scale. 0/2.5/10/250/1.000/5,000 v. A.C. 0/25/12.5/10/50/250/1.00/6500m v. D.C. 0/59μΑ/0/1.0/10/0500m A/10 amp. D.C. 028/290K/20 MEG. OHM. £15 P. & P. 5/-

G. OHM. £15 P. & P. b/
MODEL 5025 57 Ranges,
Giant 5 ji. Meter, Polarity
Reverse Bwitch.
Bensitivity: 50K /Volt D.C.
5K /Volt A.C. D.C. Volts.
125, 25, 1.25, 5, 10, 25, 50,
125, 250, 500, 1,000V.
A.C. Volts: 1.5, 3, 5, 10, 25,
50, 125, 250, 500, 1,000V.
D.C. Current: 25, 50µA,
2.5, 52, 0, 026, 50µA,
5, 10 amp. Resistance: 2K,
10K, 100K, 1MEG, 10MEG
Decibels: -20 to + 85 db.
212/10/10, P. & P. 3/6. Decibels: -20 to + 85 d £12/10/0. P. & P. 3/6.

AVOMETER MOVEMENTS

Spare movements for Model 8 or 9. (Fitted with Model 9 scale) or basis for any multimeter.

Brand New and Boxed 69/6 P. & P. 3/6.

HONOR TE.10A. 20 k Ω /Volt 5/25/50/250/500/92,500 v. D.C. 10/50/100/500/1,000 v. A.C. 0/50 μ A/2.5 mA/250 mA D.C. 0/6K/8 meg. ohm. -20 to + 22 dB.10-0,100 mfd. 0.100-0.1 mfd. 69/6. P. & P. 3/-.

MODEL TE-300 30,000 O.P.V. Mirror scale, over-MODEL TE-300 30,000 O.P.V. Mirror scale, overload protection 0/.6/3/15/60/300/1.200 V.D.C. 0/6/39/120/600/1.200 V.A.C. 0/30/A/6mA/6 OmA/300mA/600mA. 0/8K/80K/80K/80K/8 meg. -20 to +63 db. 25/19/6 P. & P. 3/-.

MODEL TE:90 50,000 O.P.V. Mirror scale, overload protection. O(3/12/80/300/600), 200 v. D.C. 9(5/30/120/300/1,200 v. D.C. 9(5/30/120/300/1,200 v. D.C. 36/6/60/600 MA. D.C. 16k/160K/1.6/16 MEG. -20 to + 63 db. £7/10/0. P. & P. 3/.

TMK MODEL TW-20CB
PEATURES RESETTABLE
OVERLOAD BUTTON. Sensitivity: 20K O/Volt D. C. SK O/Volt A.C.
D.C. Volts: 0-0.5, 2.5, 10, 50, 250, 1,000V. A.C. Volts: 0-2.5, 10, 50, 250, 0.5, 5, 50, 500mA. - 10 amp.
Resistance: 0-5K, 50K, 0-500K.
5 MEG. Decibels: -20 to + 52db.
£11/10/0. P. & P. 3/6.

MODEL A8-100D. 100K Ω/Volt 5 in., mirror scale. Built-in meter protection |03/12|60/120/300/600 1,200 v. D.C. |03/12|60/120/300/600 v. D.C. |06/30/120/30/600 v. A.C. $|010_4A/6/69/300\text{MA}/12$ Amp. |02K/200K/20M/20M-20 to + 17 dB. £12/10/0. P. & P. 3/6

TMK LAB TESTER
100,000 0.P.V. 6\(\frac{1}{2}\) in. Scale
Buzzer Short Circuit Check.
Sensitivity: 100,000 OPV
D.C. 5 (Volt A.C. D.C.
Volts: 5, 25, 10, 50, 250,
1,000V. A.C. Volts: 3, 10,
50, 250, 500, 1,000V. D.C.
Current: 10, 100µA, 10,
100, 50mA, 25, 10 amp.
Resistance: 1K, 10K, 100K,
10MEG, 100MEG.
Decibels: -10 to + 49 db.
Plastic Case with carrying
handle. Bize 7\(\frac{1}{2}\) \times 6\(\frac{1}{2}\) \times 3\(\frac{1}{2}\)
in. £18/18/0. P. & P. 5\(\frac{1}{2}\)

SKYWOOD SW-500 50 K Ω/Volt. Mirror scale D.C. volts: 0.6/3/12/30/ 300/600. A.C. volts: 3/30/300/600. D.C. cur-rent: 20uA/6/60/600mA. rent: 200A/0/00/000mA.
Resistance: 10K/100K/1
Meg. Decibels: —20 to
+ 57db.
P. & P. 3/-.
27/10/0.

270° WIDE ANGLE ImA METERS MW1-6 60mm. square £3.19.6. MW1-8 80mm. square £4.19.6. P. & P. extra

"YAMABISHI" VARIABLE VOLTAGE TRANSFORMERS

iiii

O

90

1 Amp. £5/10/0
2.5 Amp. £6/15/0
5 Amp. £9/15/0
8 Amp. £14/10/0
10 Amp. £14/10/0
12 Amp. £21/ 0/0
20 Amp. £37/ 0/0

STOP PRESS!

NEW BRANCH OPENING AT 27 TOTTENHAM COURT ROAD. **DURING DECEMBER**

UNR 30 RECEIVER

4 Bands covering 550kc/s - 30mc/s. B.F.O. Built in Speaker 220/240v AC. Brand new with instructions. £15/15/0. Carr. 7/6.

WS62 TRANSCEIVERS
Large quantity available for EXPORT!
Excellent condition. Enquiries invited

UR-IA SOLID STATE

COMMUNICATION RELEIVEN
4 Bands covering 550kcjs - 30mcjs. FET, 8 Metr.
Variable BPO for 88B, Built in Speaker, Telescopic Aerial, Bandspread, Sensitivity Control.
220/240v AC or 12v DC. 12f × 4f × 7°. Brand
new with instructions. £25. Carr. 7/6.

LAFAYETTE HA-600 RECEIVER

coverage 150-400 kc/s, 550kc/s-30 mc/s. FET front end, 2 filters, product detector, eter, Band

detector, variable B.F.O., noise limiter, S. Meter, Bandespread, RF Gain. 15"×9\frac{1}{2}"×8\frac{1}{2}". 18 lb. 220/240v AC or 12v Dc. Brand new with instructions. 245 Carriage 10/-.

LAFAYETTE HA-800 SOLID STATE AMATEUR COMMUNICATION RECEIVER

3.5 · 4, 7 · 7.3, 14 · 14.35, 21 · 21.45, 28 · 29.7, 50 · 54 mc/s. Dual con-4 ٠

product detector, variable BFO, 8 Meter, 100kc/s calibra-tor. 220/240v AC or 12v DC. 15"×9\chi^*x\chi^*. 18 ib. Brand new with instructions. £57/10/0. Carr. Paid. (100kc/s Crystal 39/6 extra).

LAFAYETTE PF60 VHF FM RECEIVER

Solld State. 152 - 174mc/s. Fully tuneable or crystal con-trolled (not supplied). Built

Volume Controls. 220/240v AC or 12v DC. Brandnew with instructions. £37/10/0. Carr. 10/-.

FULL RANGE OF TRIO EQUIPMENT

EDDYSTONE V.H.F. RECEIVERS 770B. 19-165 Mc/s. excellent condition. £150.

INTERCOM BABY SITTER

 VOLTAGE
 STABILISER
 TRANS

 FORMERS.
 180-260v. laput. Output 230v.

 Available 150w
 or 225w. 212.10.0. Carr. 5/

SOLID STATE VARIABLE A.C. VOLTAGE REGULATORS

Compact and panel mounting. Ideal for control of lamps, Ideal for continuously variable from 20 v. 230 v. Model MR 2305 5 amp 68 ×46 × 43 mm. £8.7.6. Model MR 2310 10 amp 90 × 58 × 69 mm. £11 19.6. Postage 2/6.

27 TOTTENHAM CT. RD. LONDON, W.1 Tel: 01-636 3 LISLE STREET, LONDON, W.C.2 Tel: 01-437 34 LISLE STREET, LONDON, W.C.2 Tel: 01-437 311 EDGWARE ROAD, LONDON, W.2 Tel: 01-262 OPEN 9-6 MONDAY TO SATURDAY (EDGWARE ROAD 1/2 DAY THURSDAY)

Tel: 01-636 3715 Tel: 01-437 8204 Tel: 01-437 9155 Tel: 01-262 0387

All Mail Orders to 147, Church Street, London, W.2 Tel: 01-262 6562 (Trade supplied)

TECHNICAL TRAINING in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. & G. Telecommunication Techns'. Certs.
- C. & G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- **Radio Amateurs' Examination**
- P.M.G. Certs, in Radiotelegraphy
- General Certificate of Education, etc. Now available—Colour T.V. Servicing

Examination Students coached until successful

NEW SELF-BUILD RADIO COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5-valve receiver, transistor portable, and high-grade test instruments. All under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

Dept. 222, Intertext House, Stewarts Road, Low Please send me the ICS prospectus—free and without (state Subject or Exam.) NAME	
(state Subject or Exam.) NAME AC (BLOCK CAPITALS PLEASE)	it obligation.
(BLOCK CAPITALS PLEASE)	
ADDRESS	E
\$1111111111111111111111111111111111111	

NOW AVAILABLE AUDIO TRONICS 71

The 1971 edition of Lasky's Audio-Tronics catalogue is now available on request.

44 tabloid pages packed with 1,000's of items 44 tabloid pages packed with 1,000's of items from the largest stocks in Great Britain, everything for the Radio and Hi-Fi enthusiast. Electronics Hobbyist Servicemen and Communications Ham. Over half the pages are devoted exclusively to every aspect of Hi-Fi (Including Lasky's budget Stereo systems and a fabulous new range of Package Deals), Tape Recording and Audio accessories new

LASKY'S AMAZING MONEY SAVING **VOUCHERS THIS YEAR** WORTH **OVER £32**

This year, Lasky's introduce a great new Credit card scheme giving holders £50 interest free credit per month. All the/goods shown in the 1971 Audio Tronics Catalogue are available now from any of our branches or by Mail Order to any address in the U.K. or Overseas—bringing the benefits of shopping at Lasky's to you in the comfort of your home.

Don't delay send today your name and address plus 2/6 for post and inclusion in our regular mailing list.

MODEL C-1051 MULTIMETER

Miniaturised multimeter employing ultra compact slimline impact resistant cabinet. Buff/green finish, size 43 x 31

x 11in. Features-Large easy to read meter with mirror scale. D'Arsonval movement. Overload protection circuit. Fine calibration gives extremely high standard of accuracy on all ranges. Ohms zero adjustment. Click stop range selection switch. Colour coded scales.

- AC/V: 0-6-30-300—1.2KV at 10K/ohms/V
- DC current: 0-60/QA-300mA
- Resistance: 0-60K-6M/ohms
- Decibels: -20dB to +17dB
- Complete with battery and test leads.

LASKY'S PRICE

85/-POST 2/6

LASKY'S TM5

Another new look pocket multimeter from Lasky's providing quality and value. The "stimiline" impact resistant case—size $4\frac{3}{4}$ in. x $2\frac{1}{2}$ in. x $1\frac{1}{8}$ in. fitted with extra large $2\frac{1}{8}$ in square meter. Readability is superior on all low ranges; making this an excellent instrument for servicing transistorised equipment. Recessed click stop selection servicing transistorised equipment. Recessed click stop selection switch. Ohms zero adjustment. Buff finish with crystal clear meter

- DC/V: 3-15-150-300-1,200 at 5K ohms/V
 AC/V: 6-30-300-600 at 2.5K ohms/V

- DC/V: 5-130-300-600 at 2.5K ohms/V DC Current 0-300µA 0-300mA Resistance: 0-10K ohms, 0-1M ohms Decibels: -10dB to 16dB
- Complete with test leads, battery and instructions

LASKY'S PRICE 59/6 P& P 2/6

LASKY'S TM1

The first of Lasky's new-look top value meters, the TM1 is a really tiny pocket multimeter providing "big" meter accuracy and performance. Precision movement calibrated to ±3% of full scale. Click stop range selection switch. Beautifully designed and made impact resistant black case—with white and metallic red/green figuring. Ohms zero.

- DC/V: 0-10-50-250-1000 at 1K ohms/V
 AC/V: 0-10-50-250-1000 at 1K ohms/V
- DC CURRENT: 0-1mA, 100mA

- Resistance: 0-150K ohms
 Decibels: -10+22dB
 Complete with test leads, battery and instructions

Size only $3\frac{1}{4}$ in. x $2\frac{3}{8}$ in. x $1\frac{1}{4}$ in.

LASKY'S PRICE 39/6 P & P 2/6

207 EDGWARE ROAD, LONDON, W.2. 33 TOTTENHAM CT.RD, LONDON, WIP 9RB. 109 FLEET STREET, LONDON, E.C.4. 152/3 FLEET STREET, LONDON, E.C.4. HIGH FIDELITY AUDIO CENTRES 42-45 TOTTENHAM CT. RD, LONDON, WIP 9RD. 118 EDGWARE ROAD, LONDON, W.2. MAIL ORDERS AND CORRESPONDENCE TO 3-15 CAVELL STREET, LONDON, E1 2BN

P.O. BOX 26, **AYLESBURY, BUCKS.**

SEND S.A.E. FOR LISTS • GUARANTEE Satisfaction or money refunded

GUARANTEED VALVES BY THE LEADING MANUFACTURERS BY RETURN SERVICE I YEAR'S GUARANTEE ON OWN BRAND, 3 MONTHS ON OTHERS

														-	
AZ31	10/-	EF86	13/3	HL92	7/-	QQV02-0	42/-	384	7/-	6CY7	12/	6U8	7/-	25Z6GT	10/-
AZ50	12/-	EF89	8/⊸	HL94	8/-	QQV03-1		3V4	8/	6D3	8/-	6V6GT	6/6	30A5	8/-
CBL1	16/-	EF91	8/6	KT66	27/6		25/-	5R4GY	11/-	6DC6	13/6	6X4	5/-	30AE3	8/-
CBL31	17/-	EF92	10/-	KT88	33/-	QV03-12		5 U 4 G	6/-	6DK6	8/6	6X5GT	5/6	30C15	15/-
CY31	7/-	EF93	9/6	N78	21/-	R19	13/-	5U4GB	7/6	6DQ6B	12/-	6X8	11/-	30C17	16/-
DAF91	8/3	EF94	15/6	PABC80	8/-	R20	15/-	5V4G	8/-	6D84	15/-	6Y6G	12/-	30C18	15/~
DAF96	8/3	EF95	12/6	PC86/8	10/3	SU2150A	15/-	5 Y 3 GT	6/-	6EA8	11/-	7Y4	12/-	30F5	17/-
DF91	9/-	EF183	11/3	PC95	7/3	TT21	48/-	5 Z 3	9/-	6EH7	6/6	9BW6	8/6	30FL1	15/-
DF96	9/-	EF184	7/-	PC97	8/3	TT22	50/-	5Z4GT	8/-	6EJ7	7/-	10C2	10/-	30FL2	18/6
DK91	11/6	E280F	42/-	PC900	10/3	U18/20	13/6	6/30L2	15/-	6EW6	12/-	10D1	8/-	30FL13	10/-
DK96	11/6	EF800	20/-	PCC84	9/3	U20	13/6	6AB4	6/6	6F1	14/-	10D2	8/~	30FL14	15/6
DL92	7/6	EF804	20/-	PCC85	8/6	U25	15/-	6AF4A	9/6	6F5	8/-	10F1	18/-	301.1	7/-
DL94	7/6	EF811	15/-	PCC88	14/-	U26	15/	6AG7	7/6	6 F6G	5/-	10F9	10/-	30L15	17/-
DL96	9/3	EL34	10/6	PCC89	12/3	U31	9/-	6AH6	10/-	6F11	6/6	10F18	8/-	30L17	17/-
DM70	6/6	EL36	9/6	PCC189	12/3	U37	30/-	6AJ8	5/9	6F12	4/6	IOLI	8/-	30P12	16/ -
DY86/7	8/	EL41	11/-	PCF80	10/3	U50	6/-	6AK5	6/-	6F13	7/-	ioLD11	11/-	30P18	7/-
DY802	8/6	EL42	11/6	PCF82	10/6	U52	6/-	6AK6	11/6	6F14	12/-	10P13	11/-	30P19	15/-
E55L	55/-	EL81	10/-	PCF84	9/6	U76	5/-	6AL3	3/6	6F15	11/-	10P14	20/-	30PL1	15/6
E88CC	8/-	EL83	8/3	PCF86	12/3	U78	5/-	6AL5	3/3	6F18	8/-	12AB5	10/-	30PL13	18/-
E130L	90/-	EL84	7/9	PCF200/1		U191	15/-	6AM5	5/-	6F22	6/6	12AC6	7/8	30PL14	17/-
E180F	19/-	EL85	8/6	PCF801	12/3	U201	7/-	6AM6	4/6	6F23	15/6	12AD6	7/6	35A3	10/-
EABC80		EL86	8/6	PCF802	12/3	U281	8/-	6AQ5	6/6	6F24	13/6	12A15	8/-	35 A5	11/-
EAF42	10/-	EL90	6/6	PCF805	13/-	U282	8/-	6AQ6	10/-	6F25	15/-	12AQ5	8/-	35 B5	13/-
EBC33	11/-	EL91	5/-	PCF806	12/3	U301	11/6	6AR5	6/6	6F26	7/-	12AT6	5/~	35C5	7/-
EBC41	9/6	EL95	7/-	PCF808	13/6	U403	10/-	6AR6	6/6	6F28	14/-	12AU6	15/-	351)5	13/-
EBC81	8/6	EL360	23/-	PCH200	14/-	U404	7/6	6AS5	7/-	6F29	6/6	12AV6	6/-	35L6GT	9/6
EBC90	9/6	EL803	17/-	PCL82	10/3	U801	20/-	6AS7G	16/-	6F30	7/-	12AV7	9/-	35W4	5/-
EBF80	8/-	EL821	11/-	PCL83	12/3	UABC80	10/6	6AT6	9/-	6J4	9/6	12AX7	6/-	35Z3	11/-
EBF83	8/-	ELL80	15/-	PCL84	10/3	UBF89	8/-	6AU6	5/9	6J5GT	6/-	12A Y 7	13/6	35Z4G	5/-
EBF89	8/-	EM34	16/-	PCL85	10/6	UBC41	9/9	6AV6	6/-	6J7	8/6	12B4A	10/-	35Z5GT	7/6
EB91	5/3	EM71	12/6	PCL86	10/3	UCC85	9/3	6BA6	8/6	6K6GT	10/-	12BA6	6/6	50A5	13/-
EC53	10/-	EM80	8/-	PD500	30/6	UCH42	13/9	6BE6	12/-	6K7	6/6	12BA7	6/6	50B5	7/-
EC86	12/-	EM81	8/6	PFL200	14/9	UCHSI	10/9	6 BH 6	8/6	6K8G	6/-	12BE6	6/6	50C5	7/-
EC88	12/-	EM84	7/6	PL36	12/9	UCL82	10/3	6BJ6	8/6	6K23	10/-	12BH7	6/6	50CD6G	35/-
EC90	6/-	EM87	11/-	PL38	18/-	UCL83	12/3	6BK7A	10/-	6K25	15/-	12BY7	10/-	50L6GT	8/-
EC92	6/6	EN91	6/6	PL81	10/3	UF41/2	11/-	6BL8	7/-	6L6GT	9/-	12K5	10/-	83A1	18/-
EC93	9/6	EY51	8/-	PLSIA	12/6	UF80/5	7/6	6BN5	8/6	6L7	6/6	12K7GT	7/-	85A2	7/6
ECC81	8/-	EY80	9/-	PL82	7/3	UF89	8/3	6BN6	8/-	6Li8	6/-	12Q7G	5/-	90AV	48/-
ECC82/3	8/6	EY81	8/-	PL83	10/3	UL41	11/6	6BQ5	5/-	6LD20	8/6	128C7	5/-	90CI	12/~
ECC84/5	8/6	EY83	11/-	PL84	8/3	UL84	11/-	6BR7	15/-	6N7GT	7/-	128G7	7/~	90CV	25/-
ECC88	11/-	EY86	8/-	PL500	16/6	UM80/4	9/-	6BR8	19/-	6P1	12/-	128H7	5/-	807	9/6
ECF80/2	9/6	EY87	8/6	PL504	17/-	UY41	8/-	6BW6	16/6	6P25	21/-	128J7	5/-	811A	30/-
ECF86	11/-	EY88	8/6	PL505	29/~	UY85	6/9	6BW7	13/9	6P28	12/6	128K7	8/-	812A	65/-
ECH35	13/6	EZ35	5/6	PL508	20/-	U25	15/-	6BX6	5/-	607	7/6	128L7GT	8/-	813	75/-
ECH42	13/3	EZ40	9/-	PL509	30/9	U26	15/-	6BZ6	6/6	6R7G	7/-	128N7GT		866A	14/-
ECH81	10/3	EZ41	9/-	PL802	17/3	U191	14/6	6C4	6/-	682	8/-	12SQ7	8/-	5642	
ECH83	8/-	EZ80	5/6	PL805	17/3	U193	8/3	6C5GT	7/-	684A	11/-	128R7	6/6	6080	12/-
ECH84	9/6	EZ81	5/6	PY33	12/6	U301	17/-	6CD6G	28/-	68A7	7/6	1487		6146	27/6
ECL80	8/-	EZ90	5/-	PY80		W729		6CA4	5/6				16/~		30/-
ECL82	9/9	G810C	100/-	PY81	6/6		11/-			68G7	6/6	201)1	9/-	6146B	47/6
ECL83	11/6	GY501	16/-	PY800	8/3	Z759 OA2	24/6	6CA7 6CBC	10/6	68J7 68K7	7/8	20L1 20P1	20/-	6267	6/6
ECL86					8/3		6/6		5/6		8/6		10/-	6360	25/-
ECL L800	9/9	GZ30 GZ31	7/6 6/-	PY801 PY22	8/3	OA3	9/~	6CD6GA	237-	68L7GT	6/6	20P3	12/-	6939	42/-
EF39		GZ31				OB2	6/6	6CG7	9/-	68N7GT	6/-	20P4	20/-	7199	15/-
EF80	10/6		9/6	PY83	10/-	OB3	10/-	6CH6	11/-	68Q7	8/-	20P5	20/-	7360 -	36/-
EF83	8/-	GZ33	16/-	PY88	8/3	OC3	7/-	6CL6	10/-	68R7	7/6	25C5	9/-	7586	25/-
	10/-	GZ34	11/-	PY500	20/-	01)3	6/6	6CW4	12/6	6T8	6/6	25L6GT	7/6	9002	6/6
EF85	8/3	HK90	6/6	PZ30	16/-	3 Q 4	8/-	6CY5	8;-	6U4GT	12/6	25Z4G	6/-	9003	10/-

SEMICONDUCTORS	5
----------------	---

BRAN	ID NEW	MANUF	ACTURER	S' MARKI	NGS · NO	REMARKED	DEVICES
2 N 388 A	19/8 9N9813	7/- 1 9N3709	9/8 9N5967	K9/8 / A C199	4/- 1 PC115	8/8 L D D 199 10/8	I DEVSO AIR

211 000 A	14/0	21(201)	61-	2N3/08	3/0	2140207	92/U	I AUI28	4/-	BULL	0/0	BD132	19/0	1 BL X 20	4/6
2N 404	4/6	2N2614	6/-	2N3709	3/6	2N5305	7/6	AC154	4/6	BC116	12/6	BDY10	27/6	BFY51	4/6
2N696	4/-	2N2646	11/6	2N3710	4/-	2N5306	8/-	AC176	5/	BC116A	7/6	BDYII	37/6	BFY52	4/6
2N697	4/-	2N2696	6/6	2N3711	4/-	2N5307	7/6	ACI87	12/6	BC117	7/9	BUY17	37/6	BFY53	4/6
2N698	5/-	2N2711		2N3713											
2N699			6/-		30/-	2N5308	7/6	AC188	7/6	BC118	6/6	BDY18	49/6	BFY56A	
	12/6	2N2712	6/-	2N3714	35/-	2N5309	12/6	ACY17	5/6	BC121	4/-	BDY19	62/6	BFY75	6/-
2N706	2/6	2N2713	5/6	2N3819	7/-	2N5310	8/6	ACY18	5/-	BC122	4/-	BDY20	30/6	BFY76	8/6
2N706A	2/6	2N2714	6/-	2N3823	22/6	2N 5354	5/6	ACY19	5/-	BC125	11/-	BDY38	19/6	BFY77	11/6
2N708	3/-	2N2865	12/6	2N3826	6/-	2N5355	5/6	ACY20	5/-	BC126	11/-	BDY60	36/-	BFY90	13/6
2N709	12/6	2N2904	7/-	2N3854	5/6	2N5356	6/6	ACT21	5/-	BCI 34	11/6	BDY61	36/-	BFW58	5/6
2N718	5/-	2N2904A	8/-	2N384A	5/6	2N5365	9/6	ACY22	4/-	BCI 40	7/6	BDY62	27/6	BFW59	5/-
2N718A	6/-	2N2905	8/-	2N3855	5/6	2N5366	6/6	ACY28	4/-	BC147	3/6	BF115	5/-	BFW60	5/-
2N726	6/-	2N2905A	9/-	2N3855A	6/-	2N5367	11/6	ACY 40	4/-	BC148	3/-	BF117	9/6	BPX25	
2N727	6/~	2N2906	6/-	2N3856	6/-	2N5457				BC149		BF163			37/-
2N914							7/6	ACY41	5/-		3/6		7/-	BPX29	36/-
	3/6	2N2906A	6/6	2N3856A	7/-	28005	15/-	ACY44	8/-	BC152	3/6	BF167	5/-	BPY10	29/-
2N916	3/6	2N2907	8/-	2N3858	5/-	28020	37/6	AD140	8/-	BC157	4/-	BF173	6/6	B8X19	3/6
2N918	6/-	2N 29023	3/6	2N3858A	6/-	28102	6/6	AD149	11/6	BC158	3/6	BF177	6/6	B8X20	3/6
2N929	4/6	2N2924	3/6	2N3859	5/6	28103	6/6	AD150	12/6	BC159	4/-	BF177	6/6	BSX21	7/6
2N930	5/6	2N2925	3/6	2N3859A	6/6	28104	6/6	AD161	7/6	BC160	12/6	BF178	7/-	B8X26	9/-
2N987	10/6	2N2926		2N3860	6/-	28501	5/6	AD162	7/6	BC167	3/	BF179	14/8	B8X27	9/6
2N1131	5/6	Green	2/9	2N3866	30/	28502	5/6	AF106	8/6	BC168B	2/9	BF180	7/-	B8 X 28	6/8
2N1132	6/6	Yellow	2/8	2N3877	8/-	28503	5/8	AF114	5/-	BC168C	3/-	BF181	6/6	B8X 60	16/6
2N1302	3/6	Orange		2N3877A	8/-	3N83	37/6	AF115	6/-	BC169B	2/9	BF184	5/-	BSX61	12/6
2N1303	3/6	2N3011	6/-	2N3900	7/6	3N128				BC169C	3/-	BF185			
2N1304		2N3014					18/6	AF116	5/-				8/6	B8X76	4/6
	4/6		6/6	2N3900A	8/-	3N140	19/6	AF117	5/-	BC170	3/6	BF194	4/6	B8X77	5/6
2N1305	4/6	2N3053	5/6	2N3901	19/6	3N141	19/6	AF118	12/-	BC171	3/6	BF195	5/6	BSX78	5/6
2N1306	5/-	2N3054	11/-	2N3903	7/-	3N142	19/6	AF119	4/	BC172	3/6	BF196	8/6	BSY10	5/6
2N1307	5/-	2N 3055	15/-	2N3904	7/-	3N143	17/6	AF124	4/6	BC175	5/6	BF197	6/4	B8 Y11	5/6
2N1308	6/-	2N3133	6/-	2N 3905	7/6	3N152	22/8	AF125	4/-	BC182	4/6	BF198	8/6	BSY24	3/-
2N1309	6/-	2N3134	6/-	2N 3906	7/6	R.C.A.:		AF126	4/-	BC183	4/6	BF200	7/4	B8 Y25	3/-
2N1507	5/6	2N3135	5/-	2N 4058	5/6	40050	13/6	AF127	3/6	BC184	4/6	BF224	6/-	BSY26	3/6
2N1613	5/	2N3136	5/-	2N4059	5/-	40250	10/-	AF139	7/6	BC182L	4/-	BF225	6/-	BSY27	3/6
2N1631	8/6	2N3340	19/6	2N4060	5/-	40251	19/6	AF178	9/-	BC183L	3/6	BF237	6/6	BSY28	3/6
2N1632	8/6	2N3349	26/-	2N4061	4/6	40309	8/-	AF179	9/-	BC184L	4/-	BF238	6/6	BS Y 29	3/6
2N1637	8/6	2N3390	7/6	2N4062	4/6	40310	11/6	AF180	10/6	BC187	5/8	BF257	9/6	BS Y 32	
2N1638	7/6	2N3391	4/-	2N 4244	9/6	40311		AF181		BC212L		BF22A			5/-
							9/6		8/6		4/8		9/6	BSY36	5/-
2N1639	7/6	2N3391A	8/-	2N4245	8/6	40312	12/6	AF186	13/4	BC213L	5/4	BFX12	4/6	BSY37	5/-
2N1701	32/6	2N 3392	4/-	2N4254	8/6	40314	9/6	AF239	8/6	BCY10	5/6	BFX13	4/6	BS Y 38	4/6
2N1711	5/-	2N3393	4/-	2N4255	8/6	40315	9/6	AF279	9/6	BCY12	5/6	BFX13	4/6	B8Y39	4/6
2N1889	6/6	2N3394	4/-	2N4284	3/6	40316	12/6	AF280	12/6	BCY30	5/6	BFX29	7/-	BSY40	6/6
2N1893	8/6	2N3402	4/6	2N4285	3/6	40317	9/6	AFZII	6/6	BCY31	5/6	BFX43	7/6	BSY51	6/6
2N2147	14/6	2N3403	4/6	2N4286	3/6	40319	13/6	ASY26	5/-	BCY32	7/6	BFX44	7/6	B8Y52	6/6
2N2148	12/6	2N3404	7/8	2N4287	3/6	40320	9/6	ASY27	7/6	BCY33	4/-	BFX68	13/6	B8Y53	7/6
2N2160	11/6	2N3405	9/-	2N4288	3/6	40323	8/6	A8 Y28	5/6	BCY34	4/6	BFX84	6/-	B8Y54	8/-
2N2193	9/6	2N3414	5/6	2N 4289	3/6	40324	11/6	ASY29	5/6	BCY38	4/6	BFX.85	7/-	BS Y56	18/-
2N2193A		2N3415	5/6	2N4290	3/6	40326	19/6	ASY36	5/-	BCY39	8/6	BFX86	6/-	B8 Y78	9/6
2N2194A	4/6	2N3416	7/6	2N4291	3/6	40329	7/-	A8Y50		BCY 40	7/6	BFX87		B8Y79	
2N2217	5/6	2N3417							5/-			BFX88	6/-		9/-
			7/6	2N4292	2/6	40344	7/-	A8Y51	6/6	BCY42	3/-		. 5/-	BSY82	10/6
2N2218	6/6	2N3439	26/-	2N5027	10/6	40347	8/6	ASY53	5/-	BCY43	3/-	BFX89	12/6	BSY90	11/6
2N2219	6/6	2N3440	19/6	2N5028	11/6	40348	12/6	A8Y54	5/	BCY54	6/6	BFY10	6/6	BSY95A	2/6
2N2220	5/-	2N3570	17/6	2N 5029	9/6	40360	11/-	ASY62	5/-	BCY58	4/6	BFY11	8/6	BSW41	8/6
2N2221	5/-	2N 3572	17/6	2N5030	8/6	40361	12/6	ASY63	3/6	BCY59	4/6	BFY17	4/6	BSW70	5/6
2N2222	6/-	2N 3605	5/6	2N5172	3/-	40362	13/6	ASY72	5/-	BCY60	19/6	BFY18	6/6	D16P1	7/6
2N2287	21/6	2N3606	5/6	2N5174	10/6	40370	7/6	ASY83	5/-	BYC70	4/-	BFY19	6/6	D16P2	8/-
2N2297	6/-	2N3607	4/6	2N5175	10/6	40406	14/6	A8Y86	6/6	BCY71	8/6	BFY20	12/6	D16P3	7/6
2N2368	3/6	2N 3662	7/6	2N5176	9/-	40408	12/6	ASZ20	7/6	BCY72	3/6	BFY21	8/6	D16P4	8/-
2N2369	3/6	2N3663	7/6	2N5232A	6/-	40467	18/6	ASZ21	8/6	BYZIO	5/6	BFY24	9/-	GET102	6/-
2N 2369A	4/-	2N3702	3/6	2N5245	12/6	40467A	14/6	AUY10	30/~	BCZII	7/6	BFY25	5/-	GET113	4/-
211 2000 A	3/- 1	#L10104	0/0	2140240	TELO	4040/A	TA/0	AU 110	00/~	DOLL	4/0	111 6 20	0/-	CELLIO	4/-

	SEM	11COND	UCT	ORS (co	ontine	ued)			
GET880	6/~	NKT215	4/6	I NKT781		I OC72	2/6		
GET887	4/-	NKT216	7/6	NKT103	39 6/6	OC74	6/6		
GET889	4/6	NKT217	8/6	NKT104	19 6/-	OC75	4/6		
GET890	4/6	NKT219	6/-	NKT104	39 7/6	OC76	4/6		
GET896	4/6	NKT223	5/6	NKT105		OC77	5/6		
GET897	4/6	NKT224	5/~	NKT203		OC78	5/-		
GET898	4/6	NKT225	4/6	NKT801		OC81	4/-		
MAT100	6/-	NKT229	6/-		15/6	OC81D	4/-		
MAT101	6/-	NKT237	7/-	NKT801		OC83	5/-		
MAT120	6/-	NKT238	5/-	NITEMORE	19/6	OC84	5/-		
MAT121	6/-	NKT240	5/6	NKT801		OC139	6/6		
MJ400 MJ420	21/6	NKT241	5/6	NETTONO	22/6	OC140	6/6		
MJ 420 MJ 421	22/6 22/6	NKT242 NKT243	4/- 12/6	NKT802		OC169	4/8		
MJ430	20/6	NKT243	3/6	NKT802	18/6	OC170 OC171	6/-		
MJ 440	19/-	NKT245	4/-	118 1002	18/6	OC200	6/- 6/6		
MJ480	19/6	NKT261	4/-	NKT802		OC200 OC201	9/6		
MJ481	25/-	NKT264	6/-	NIK 1002	18/6	OC202	9/6		
MJ490	20/-	NKT271	4/-	NKT802		OC202	6/6		
MJ491	27/6	NKT272	4/-	1416 . 002	18/6	OC204	8/6		
MJ1800	43/6	NKT274	4/-	NKT8021		00205	8/6		
MJE340	12/6	NKT275	4,-	1	18/6	OC207	12/6		
MJE520	17/6	NKT281	4/-	NKT8021		OCP71	15/-		
MJE521	17/6	NKT401	17/6		18/6	P346A	4/6		
MPF102	8/6	NKT402	18/~	OC20	15/-	T1834	12/6		
MPF103	7/6	NKT403	15/-	OC22	10/-	T1843	8/-		
MPF104	7/6	NKT404	12/6	OC23	10/-	T1844	2/6		
MPF105	7/6	NKT405	15/-	OC24	11/6	T1845	3/6		
M P83638	6/6	NKT406	12/6	OC25	10/-	T1846	3/6		
NKT0013	9/6	NKT451	12/6	OC26	6/6	T1847	3/6		
NKT124	8/6	NKT452	12/6	OC28	12/6	T1848	3/6		
NKT125	5/6	NKT453	9/6	OC29	15/-	T1849	3/6		
NKT126	5/6	NKT603F	6/6	OC35	8/-	T1850	4/6		
NKT128	5/6	NKT613F	6/6	OC36	12/6	T1851	3/6		
NKT135 NKT137	5/6	NKT674F	6/-	0341	4/6	T1852	3/6		
NKT210	6/6 6/-	NKT677F NKT713	6/~ 5/~	OC42 OC44	5/- 4/-	T1853 T1860	6/-		
NKT211	6/-	NKT717	8/6	OC44	2/6	T1861			
NKT212	6/-	NKT734	5/6	OC46	3/-	T1P29A	6/- 13/6		
NKT213	6/-	NKT736	7/-	0070	3/-	T1P30A	15/-		
NKT214	4/8	NKT773	5/-	OC71	2/6	T1P3LA	16/6		
	1,0						10/0		
IN 461	9/ 1			ECTIFIE		Same o	0.1		
IN 461 IN 914	2/-	AA119	2/-	BAY38	2/6	FST3/8	6/-		
IN914 IN916	1/6	AA129	2/-	BY100	4/6	OA5	2/6		
IN4007	4/6	AAZ13	2/6	BY103	4/6	OA10	2/6		
18010	3/-	AAZ15 AAZ17	2/6	BY122 BY124	7/6 3/-	OA9 OA47	2/- 1/6		
18021	4/-	BA100	3/-	BY126	4/-	OA47	1,6		
18025	5/-	BA102	4/6	BY127	4/6	OA73	2/-		
1844	2/-	BA110	6/6	BYX10	4/6	OA79	1/9		
18113	3/-	BAI15	1/6	BYZ10	7/-	0.481	1/6		
18120	3/-	BA114	2/6	BYZII	6/6	OA85	1/6		
IS121	3/6			BYZ12	6/-	OA90	1/6		
IS130	2/6	BAX13	2/6	BYZ13	5/-	OA91	1/6		
18131	2/6	BAX16	2/6	BZY88 (S	eries)	OA95	1/6		
IS132	3/-	BAY18	3/6		6/6	OA200	2,-		
IS940	1/6	BAY31	1/6	FST3/4	4/8	OA202	2/-		
		CATHO	DE F	AY TU	RES				

1/6 BYZ10 2/6 BYZ11 2/6 BYZ12 2/6 BYZ13 BYZ13 BZY88 (Sc 1/6 FST3/4 BAX13 BAX16 BAX16 BAY18 BAY31 CATHODE RAY TUBES

New and Budget tubes made by the leading British manufacturers. Guaranteed for 2 years. In the event of failure under guarantee, replacement is made without the usual time wasting forms and postage expense.

expense.		_	
Туре		New £	Budget \$
MW36-20			4/10/~
MW36-21			4/10/-
MW43-69Z	CRM171		4/10/-
	CRM172	6/12/-	4/12/6
MW43-80Z	CRM173	6/12/-	4/12/6
AW43-80Z	CME1702	6/12/-	4/12/6
1	CME1703	6/12/-	4/12/6
	CME1706	6/12/-	4/12/6
	CITAA	6/12/-	4/12/6
}	CITAF	6/12/-	4/12/6
AW43-88	CME1705	6/12/-	4/12/6
AW47-90	CM 131 7 00	0/12/-	4/12/0
AW47-91	A47 14W	7/13/4	5/7/6
A47 14W	CME1901	7/13/4	5/7/6
22.77 2.717	CM E1902	7/13/4	
	CME1903	7/13/4	5/7/6
ĺ	C19AH	7/13/4	5/7/6
A47 13W	CME1906		5/7/6
A47-11W	CME1905	10/5/6	8/10/-
A47-26W	CME1905	8/17/3	7/-/-
A47-26W/R	CME1913R	8/17/3	7/15/~
A50-120W/R		9/6/8	
AW53-80	CME2013	10/17/-	
AW53-88	CME2101	8/18/8	6/5/-
AW59-90	CHEZIOL	8/18/8	6/5/-
AW59-91	CM E2303	0/11/0	M(A)
A59-15W	CM E2301	9/11/8	7/4/-
AJS-LJW	CM E2302		
	CM E2302 CM E2303	0/11/10	
A59-11W	CME2303 CME2305	9/11/8	7/4/~
A59-13W	CME2306	10/10/	10/10/0
A59-16W	CME2306	13/13/-	10/19/6
A59-23W		13/13/-	10/19/6
A59-23W/R	CME2305	12/12/-	10/10/-
PORTABLE 8	PM MIID PA	12/12/-	10/10/-
T8D217	ET TORES		4/25/
TSD217			6/15/-
A28-14W			6/15/-
CME1601		9/3/4	Not supplied
CME1602			7/15/~
	6 100/ :11	- 43	8/-/-
tubes at any or	f 10% is also given fo	r the purchase o	I 3 or more New
	ne ume. Lubes in stock Carrias		7 = 1

tubes at any one time.

All types of tubes in stock. Carriage and insurance 15/-.

TRANSISTORISED UHF TUNER UNITS

NEW AND GUARANTEED FOR 3 MONTHS

Complete with Aerial Sooket and wires for Radio and Allied TV sets but can be used for most makes.

Continuous Tuning, 90/-; Fush Button, 100/-.

SERVICE AIDS

Switch Cleaner, 11/-; Switch Cleaner with Lubricant, 11/-; Freeza, 12/6. P. & p. 1/6 per item.

PLUGS

Jack Plugs and Sockets
Standard Plugs

Standard Plugs

Standard Sockets

Standard Sockets DE BANKS MAGNETIC RECORDING TAPES

POLYESTER Length	Spool Size in.	Price	POLYESTE:	R Spool Size in,	Price
Standard Play			900 ft.	5	14/-
600 ft.	5	10/-	1200 ft.	52	17/-
850 ft.	51	12/6	1800 ft.	7	20/-
1200 ft.	7	14/-	Double Play		,
Long Play			1200 ft.	5	17/6
210 ft.	3	5/6	1800 ft.	51	22/-
450 ft.	4	8/6	2400 ft.	7	26/-
MPTY TA	PE REI	ELS	CASS	ETTES	
3 in.	1/6		Boxed in Plast	ic Library	Packs

P. & P. 1/6 on all orders.

ADD 5d. PER ITEM FOR POST AND PACKING FOR **ORDERS UNDER 24 PIECES.**

TERMS, CASH WITH ORDER ONLY. POST AND PACKING PAYABLE ON ORDERS UP TO £6, AFTER THAT, FREE EXCEPT C.R.T.'s.

VIKINSONS EST. 1921

for RELAYS P.O. TYPE 3000 **BUILT TO YOUR SPECIFICATION**

Contacts up to 8 changeover

- * QUICK DELIVERY
- * KEEN PRICES
- DUST COVERS—QUOTATIONS
 BY RETURN

EQUIPMENT WIRE P.V.C. covered 80/- per 1,000 yds. 7/.0076, 1/.024, 14/.0048 type I and 2, all colours, 14/0076 type I I, Red and Natural only £10 per I,000 yds.

MINIATURE BUZZERS, 12 volts, with tone adjuster 7/6 each as illustrated.

Quantity Rates on request.

LEDEX ROTARY SOLENOIDS AND CIRCUIT SELECTORS, size 55.
4 pole 11 way and off 110/-. 24 pole 11 way and off 210/-. 54 pole On/off 150/-. SINGLE FUSE HOLDERS. Belling Lee L356 one hole fixing. 2/10 each.

MULTI-INDICATORS 0 to 9, or A to K, or L to Z 5/8 in, characters, dimensions 1 in, wide, 3-5/16 in, deep, 1-5/16 in, high, illuminated by 28 v. single contact midget flanged lamps .08 amps, 50/- each, can be assembled in banks of five to your own specification (or £13.10). flanged lamps .08 amps, 5 specification for £13 10s.

BATTERY CHARGERS. Input 200/250 v. A.C., output 6 v. 15 amps with Ammeter fuses, regulated by a 4-position switch and sliding resistance 170/-, Cge. 20/-, GEARED MOTORS. 1 r.p.m. or 3 r.p.m. 4 watts very powerful, reversible 24v. A.C. 135/-, post 2/7, can be operated from 230 v. with our 20/- Transformer. Post 5/-. FREQUENCY METERS. 45/55 c.p.s. 230 v. A.C. 6 in. dia. flush round £10. Post 10/-. ROOM THERMOSTAT. Adjustable between 45 and 75 deg. Fahr., 250 v. 10 amp A.C. Ideal for greenhouses, etc., 35/-, post 4/6.

A.C. Ideal for greenhouses, etc., 35/-, post 4/6.
SUBMINIATURE MICRO SWITCHES HONEYWELL, IISMI-TN13, S.P.D.T.
Size .781 in. × .250 in. × .356 in. 7/6 each, Full details on request. Quantities available

JACK PLUGS. 2 point screw on cover, 2/7, post 1/-. PO 201 on headphone cord, 3/- each, post 2/-.

VEEDER-ROOT MAGNETIC COUNTERS WITH ZERO RESET 800 COUNTS PER MINUTE, 6 FIGURES, GENERAL PURPOSE TYPE, 110 v. A.C. 65/- post 3/-

HIGH SPEED COUNTERS

3½ in. x I in. 10 counts per second, with 4 figures. The following D.C. voltages are available, 6 v., 12 v., 24 v., 50 v., or 100 v.

Also supplied with auxiliary contacts. normally open, 8/- extra.

L. WILKINSON (CROYDON) LTD. LONGLEY HOUSE LONGLEY RD. CROYDON SURREY

Grams: WILCO CROYDON

Send I/- for New Comprehensive I.C. and Semiconductor price list (24 pages)

INTEGRATED

NEW LOW PRICES · FULLY GUARANTEED

DOA		MOTOROLA	1.9	10+	25+ 1	MULLARDI	INEAR
RCA	961	MOTOROLA				TAA241	32/6
CA3000	36/-	MC724P	13/3	12/6 46/-	11/1	242	85/-
05 7	24/-	MC780P	49/5	15/6	41/2	243	30/-
	53/-	MC788P	16/6	15/6 23/-	13/9	263	15/6
11 12	15/- 18/-	MC790P MC792P	24,9 13/3	12/6	20/8 11/1	293	19/6
		MC792P MC799P	13/3	12/6	11/1	300	35/-
13	21/-	MC1303L	13/3 54/-	12/6	45/-	310	25/-
14	25/-	MC1303L MC1304P	72/-	_	60/-	320	14/6
18	17/-	MC1305P	77/2	-	64/3	350	35/-
18A	22/-	MC838P	109/9		91/6	435	29/6
19	17/-	MC1435P	69/-		57/6	521	26/6
20	26/-	MC1552G	92/2	_	76/9	522	72/-
20A	32/-	MC1709CG	18/9	_	15/8	530	99/-
21A	32/-	DATA SHEET		R TYPE		811 TAB101	89/- 19/6
		MANY MORE	MOTOROL	A I.C.s IN 8	TOCK	TAD100	39/6
22	26/-	FAIRCHILD				TAD110	39/6
23	26/-	LUIROUILD	1-5 6-	11 12+	50+		
26	20/→	L900 Buffer		/- 7/6	-	MULLARD I FCH101	17/6
28A	15/-	L914 Dual Gate		7/6	=	FCH101	21/6
28B	21/-	L923 JK Flip Fl		1/9 11/-	_	FCH121	21/-
29	18/→	L702C		2/6 29/6	-	FCH161	21/-
29 A	33/-	L709C		19/6 18/-		FCH201	26/6
30	28/-	L710C	21/- 1	19/6 18/-	17/-	FCH211	26/6
		L711C	21/1	19/6 18/-		FCH231	30/-
35	25/-	L716C	56/- '8	50/	-	FCJ101	32/6
36	15/-	MULLARD TT	r.			FCJ111	31/-
39	17/-	FJH101		J101	27/6	FCJ141	105/-
41	22/-	FJH111		J111	24/-	FCJ201	36/-
42	22/-	FJH121		J121	37/6	FCJ211	55/- 87/6
43	28/-	FJH131		J131	32/6	FCK101 FCL101	57/6
44	24/-	FJH141		JJ141	62/6		04/0
45	25/-	FJH151	18/3 FJ	J181	46/-	PLESSEY	40.10
46	15/-	FJH161	17/6 FJ	JJ 191	37/6	8L403A	42/6
47	28/-	FJH171	18/3 FJ	JJ211	62/6	8L701C	20/- 20/-
		FJH181	17/6 FJ	IJ251	62/6	8L702C	20/-
48	41/-	FJH221		L101	87/6	GENERAL	
50	37/-	FJH231	17/6 FJ	TY 101	16/-	ELECTRIC	05:0
51	27/-					PA222	87/6
52	33/-	Data Sheets a		type except	L900/	PA230	20/- 20/-
53	10/-	914/923 and Pl		110		PA234	20/- 37/6
54	22/-	8 Pin To-5 I.C				PA237 PA246	52/6
55	48/-	10 Pin To-5 I.C				PA424	47/-
59	33/=	12 Pin To-5 I.C 14 Pin Dual-in	J. Holder, L	Jolders eie		PA264	89/6
		14 Pin Dual-in-	Line I.C. E	Tolders, 0/0		PA265	99/6
64	24/-	I TO LIE DASI-IE	·rune r.c. r	rotacts, 9/-		1 4 21 200	00,0

MOST TEXAS TTLS NOW IN STOCK Post and Packing 2/- per order.

TELEPHONE A. MARSHALL & SONS LTD. TELEX 21422

28 CRICKLEWOOD BROADWAY, LONDON, N.W.2 SATURDAY 9 - 5 CALLERS WELCOME 9-5.30

SEE OUR MAIN ADVERTISEMENT ON PAGE 86 FOR SEMICONOUCTORS

Brand New Fully Guaranteed Quantity TRANSISTORS & DEVICES

		N.A	1	1210		& DEVICE	
137.000	11	A A 771-	2/ 1	Davos	2/4	INTEGRATE	CIRCUITS
1N4001 1N4002	1/6	AAZ17 AC126	2/- 5/-	BSX21	3/6 4/-	Type 1-11 12+	Type 1-11 12+
1N4003	2/-	AC127 AC127Z	5/-	BSX78	3/- li	UL914 8/6 7/9	CA3014 29/6 27/- CA3018 22/6 20/-
1N4004 1N4005	2/6	AC128	5/	BSY27 BSY28 BSY29	5/-	SL403A 42/6 41/-	CA3020 27/6 25/-
1N4008 1N4007	3/-	AC154 AC169	3/-	BSY 29 BSY 50	5/-	MC1303 52/6 48/- MC1304 55/- 50/-	CA3028 24/6 22/6 CA3036 18/6 16/6
1N4009	1/6	AC153	4/-	BSY53	5/-	PA246 52/6 48/-	MFC4000P
1N4148 2G301	1/9	AC176 AC187	5/-	BSY66 BSY67	5/-	ANADER 4F/	22/6 20/ 0N2010 7/
2G302	4/6	AC188	6/-	BSY95A BSY95	4/6	2N3055 15/-	2N3819 7/-
2G303 2G306	5/- 6/-	ACY17 ACY18 ACY19	4/-	BY100	3/6	Mullard 115 watt	Texas F.E.T.
2G308 2G309	6/-	ACY19 ACY20	5/- 4/-	BY103 BY127	4/6	Silicon Power	25+6/- 100+5/3
2G371	4/6	ACY21 ACY22	4/6 3/6	BV128	3/-	25+13/- 100+11/-	500+4/9
2G381	5/6 5/-	ACY28	3/6	BYZ10 BYZ11 BYZ12	7/-	2N2926 2/6	2N2646 10/6
2G382 2G383	6/- 5/-	ACY28 ACY34 ACY36	4/- 5/-	BYZ13	6/-	NPN Planar	Motorola
2N404	4/6	ACY 39 ACY 40	3/-		20/-	All colours	Unijunction 25+8/9 100+7/6
2N696 2N697	3/6	AD140	10/-	GET102	6/-	25+1/8 100+1/6	500+6/9
2N698 2N706	8/6 2/-	AD149 AD161	7/6	GET103 MPF102	8/6		
2N706A	2/6	AD162	7/6	MPF103 MPF104	7/-		AF186 8/-
2N707 2N708	9/6 3/-	AF102 AF114	12/6 6/6	MPF105	8/-	Siemens V.H.F.	Mullard V.H.F.
2N914 2N916	4/6	AF115 AF116	6/-	OA5 OA7	3/- 4/-	25+5/3 100+4/6 500+3/9	25+7/- 100+6/-
2N918	4/6 7/6	AF117	5/-	OA9	2/- 5/-		500+5/-
2N919 2N920	4/- 5/-	AF118 AF124	12/6	OA10 OA47	2/-	OC170 5/-	BY126 3/-
2N922	8/6	AF125 AF126	5/- 4/-	OA70 OA71	2/-	25+4/3 100+3/6	Mullard 800v.
2N930 2N1131	5/- 6/-	AF127	4/-	OA73	2/-	OC171 6/-	1 amp, plastic
2N1132 2N1303	6/- 4/6	AF139 AF178	6/- 9/6	OA74 OA79	2/- 2/-	25+5/3 100+4/6	25+2/6 100+2/3
2N1304 2N1305	5/- 5/-	AF181 AF186	8/6 8/-	OA81 OA85	2/- 2/6	BY127 4/-	BYZ13 4/-
2N1306	5/-	AF239	8/-	OA86	4/-		Mullard 6A. 200v.
2N1307 2N1308	5/- 6/-	AFZ11	22/6 12/6	OA90 OA91	1/6	Mullard 1000v. 1 amp. plastic	25+3/6 100+3/2
2N1309 2N1613	5/- 4/6	AFZ12	15/- 5/-	OA95 OA200	1/6	25+3/3 100+3/-	500+2/10
2N2147	15/-	ASY26 ASY27	7/6	OA202	2/- 5/-	OC28 12/6	BC107/8/92/6 ea.
2N2160 2N2287	12/6	ASY28 ASY29	5/- 6/-	OA210 OA211	7/6	Mullard Power	I.T.T. Planars
2N2646 2N2904	10/6	ASY67 ASZ21	9/6 8/6	OAZ225 OAZ228	7/6	25+11/- 100+10/-	25+2/3 100+2/-
2N2905	7/6	AUY10	19/6	OAZ229 OAZ231	9/6 9/6	500+8/6	500+1/9
2N2925 2N2926	2/6	B3M BA110	19/6 5/-	OAZ234	7/6	DA200/DA2021/9	OCP71 19/6
2N3011 2N3053	5/- 5/-	BAY31 BC107	2/- 2/6	OAZ238 OC16	9/6 8/6	Silicon. Diodes	Mullard Photo
2N3054	10/-	BC108 BC109	2/6 2/6	OC16 OC19 OC20	7/6 19/6	25+1/6 100+1/3	
2N3055 2N3702	2/6	BC113	6/-	OC22	9/6 10/-	500+1/1	500+13/6
2N3703 2N3704	2/6 3/6	BC116 BC118	8/- 7/6	OC23 OC24	10/-	OC42 6/-	OC44 4/-
2N3705 2N3707	3/6 3/-	BC134 BC135	7/6	OC25 OC26	7/6 5/-	Mullard	Mullard
2N3709	2/6	BC136 BC137	6/- 7/- 8/-	OC28 OC29	12/6 12/6	25+5/3 100+4/9	25+3/3 100+2/9
2N3710 2N3794	2/6	BC138	8/-	OC35	10/-	500+4/3	500+2/4
2N3711 2N3730	3/6 10/-	BCY30 BCY31	5/6 6/-	OC36 OC41	12/6 5/- 6/-	OC45 3/6	0C71 3/-
2N3731 2N3819	12/6	BCY31 BCY32 BCY33 BCY34 BCY38	10/-	OC42 OC43	6/- 8/-	Mullard	Mullard
2N3820	17/6	BCY34	5/-	OC44	4/- 3/6	25+3/- 100+2/6	25+2/3 100+2/-
2N3823 2N4058	3/6	1 BCY 39	7/- 9/6	OC45 OC46	5/6	500+2/-	500+1/9
2N4061 2N4286	3/- 3/-	BCY40 BCY42	8/6 5/-	OC70 OC71	2/6 3/-	OC75 5/-	BCY34 5/-
2N4288	3/-	BCY43	5/-	OC72 OC73	5/- 6/-	Mullard	Mullard
2N4289 2N4290	3/-	BCY43 BCY70 BCZ11	4/- 7/6	OC74	6/-	25+4/3 100+3/6	25+4/3 100+3/9
2N4291 2N4292	3/- 3/-	BC147 BC148	3/9 2/9	OC75 OC76	5/- 5/-	500+3/-	500+3/6
40361 40362	11/- 12/-	BC149 BF152	4/- 6/-	OC76 OC77 OC78 OC81	8/-	OC20 19/6	IN4001/2/3 1/6
28001	10/-	BF194	3/6	0C81 0C81D	5/-	Mullard 100v.	1 amp. 100-300v.
28002 28003	10/6 9/6	BF195 BD124	3/- 12/6	OC82	4/- 5/-	25+15/9 100+14/6	
28004 28005	9/6 9/6 15/-	BEN30 BF115	005/- 5/-	OC83 OC84 OC122	5/- 5/-	500+13/3	500+1/-
28012	25/	BF154	8/-	OC122 OC123	10/- 10/-	IN4004/5 2/6	ZENER DIODES
$\frac{28013}{28017}$	20/- 15/-	BF158 BF159	6/- 12/-	OC139	5/-	400-600v, 1 amp.	400MW 5%
2S034 2S036	12/6 25/-	BF163 BF167	8/- 5/-	OC140 OC141	7/6 15/-	25+2/- 100+1/9	BZY88 RANGE
28320	9/-	BF173	6/- 7/6	OC141 OC169 OC170	4/- 5/-	500+1/6	All voltages
$\begin{array}{c} 28321 \\ 28322 \end{array}$	6/- 7/6	BF180 BF181	7/6	OC171	6/-		3.3v33v. 3/6
2S323 2S324	10/-	BFX30 BFX88	5/-	OC200 OC201	7/6 9/6	IN4006/7 3/-	
2S512 2S701	9/6 8/6	BFY50 BFY51	4/6 4/-	QC202	12/6 7/6	800-1000v, 1 amp.	500+1/9
28702	11/-	BFY52 BFY52	4/-	OC204 OC205	8/-	25+2/10 100+2/6	Any one type
$\frac{28731}{28732}$	8/6 8/6	BFY53			12/6 15/-		+
2S733 AA178	9/6 8/6	BFY64	8/6	OC207	15/-	OC139 5/-	0C140 7/6
AAY12	5/-	BLY10			19/6 10/-	Mullard	25+6/- 100+5/-
AAZ12 AAZ13	2/6				8/-	25+4/- 100+3/3	500+4/-
		DIF	ASE	NOTE	MIN	IMUM ORDER	
MILL	ADD		_	D CIRCU			1970 LIST. NEV
I WIUL	LAKU	INTEUL	171 1 1	D OILOO			

MULLARD INTEGRATED CIRCUITS 10-24

1-9 10-24 14/- 12/-14/- 12/-14/- 12/-14/- 12/-14/- 12/-14/- 12/-18/- 18/-32/- 27/6 56/6 48/6 77/6 67/6 10-24 12/-12/-12/-12/-12/-27/6 25/-48/6 48/6 FJH161 FJH171 FJH181 FJH221 FJJ111 FJJ191 FJJ251 FJL101 FJY101 FJH131 FJH141 FJH231 FJJ121 FJJ131 FJJ141 FJJ211

NEW AUTUMN 1970 LIST, NEW DEVICES NEW PRICES, ASK FOR LIST 36, SEND FOR YOUR FREE COPY TODAY!

Discounts 10% on 12 + any one type, 15% on 25 + any one type, 20 ANTITY PRICES PHONE (01) 723 0401 Ex. 4

ALL LISTED DEVICES ARE FROM STOCK ATTIME OF GOING TO PRESS. PLEASE ADD 1/6d. POST & PACKING TO YOUR ORDER

ENRY'S SEMICONDUCTOR DEPT 303 EDGWARE ROAD LONDON, W.2 01:723 1008-9 Ext 4

S RADIO

HENRYS RADIO

ORGANS - MAIL ORDER

NEW RANGE SELF-POWERED PRE-AMPLIFIERS

A Day

17

FET 154

FET 9/4

agada.

5,0,0,0

SLIM MODERN DESIGNS USING THE LATEST SILICON TRANSISTORS, FET's and IC's. DIN SOCKETS, ETC. fitted. PUSH-BUTTON SELECTION, ±20dB. Bass and treble boost and cut. All inputs provided plus TAPE RECORD and REPLAY. Specifically designed for use with PA25 and PA50 Amplifiers GOLD AND SILVER FINISH, Mains operated. Supplied with all plugs etc. AJDUSTABLE OUTPUT UP TO I VOLT. Simple mounting.

★ FET154 STEREO.

Magnetic cart., input, tuner, tape, etc. Beautiful stereo Price £16.10.0 p.p. 4/6.

All facilities plus headphone socket without amplifiers. Uses IC's, FET's etc. Price £24.0.0 p.p. 5/6

SIMPLICITY TO MOUNT—EASY TO USE—DESIGNED FOR QUALITY, PERFORMANCE AND PRICE

LOOK AT THE SPECIFICATIONS!

25 WATT & 50 WATT RMS SILICON **AMPLIFIERS**

■ Rise time 2 µ sec.

Short circuit proof

plus limiting cct.

HENRY'S RADIO LTD

- At full power 0.3% distortion.
- At full power—IdB IIc/s to 40 kc/s.
- Response—IdBII c/s to 100 kc/s.

PA 25 10 transistor all silicon differential input 400 mV sensitivity. 25 watts Rms into 8 ohms. Supplied with edge connector harness size $5'' \times 3'' \times 2''$.

PA 50 12 transistor version 50 watts Rms into 3 to 4 ohms. Size $5^{\circ} \times 3^{\circ} \times 4^{\circ}$.

MU 442. Power supply for one or two PA 25 or one PA 50. PA 25 £7.10.0. p.p. 4/-. PA 50 £9.10.0. p.p. 4/-. MU 442 £6. p.p. 6/-. All units. No soldering—just edge connectors and plugs.

BUILD THIS VHF FM TUNER

5 MULLARD TRANSISTORS 300 kc/s BAND-WIDTH. PRINTED CIRCUIT, HIGH FIDELITY REPRODUCTION, MONO AND STEREO. A popular VHF FM Tuner for quality and reception of mono and stereo. There is no doubt about it—VHF FM gives the REAL sound, All parts sold separately. PARTS TOTAL COST & 18.19.6 p.p. 3/6 ASK FOR BROCHURE No. 3. DECODER & 5.19.6 (FOR STEREO) p.p. 3/6

When in London

Call in and see the new **Component Store**

TEST EQUIPMENT

For Educational, Professional and Home Constructors SPECIAL PRICES FOR QUANTITIES

AF105 50k/volt multi-meter (illus.). Price £8.10.0 p.p. 3/6. Leather case 28/6.

200H 20k/volt. Price £3.17.6 p.p. 3/6. Case 12/6.

500 30k/volt multi-meter Price £8.17.6 p.p. 3/6. Leather case 30/-.

THL 33 2k/volt. Price £4.2.6 p.p. 3/-. Leather case 22/6.

TE65 Valve voltmeter (illus.). £17.10.0 p.p. 7/6.

VM51 Transistorised AF/RF millivoltmeter, Price £32.

TE20D RF generator (illus.). Price £15 p.p. 7/6

generator.
Price £17 p.p. 7/6. TE15 Grid dip meter. Price £12.10.0 p.p. 3/6.

TO3 Scope (illus.). 3" tube. 1.5 Mc/s. Price £37.10.0 p.p. 10/-.

JRC27A. WEIN BRIDGE RC AUDIO OSCILLATOR. Price £30.

PANEL METERS Complete range in stock, FREE List on request

0

SEE LATEST CATALOGUE CONTAINING OVER 30 PAGES OF TEST EQUIPMENT

HENRY'S STOCK EVERY TYPE OF COMPONENT YOU NEED A CATALOGUE IS A MUST! STOCKS CONTINUOUSLY ADDED TO—YOUR ENQUIRIES ADDED TO—YOUR ENQUIRIES INVITED FOR ALL QUANTITIES

PORTABLE GEIGER COUNTERS Carriage 15/-

£9.10.0.

EHS Carriage 15/FOR MEASUREMENT
OF RADIO ACTIVITY
Supplied complete
with instructions,
haversack, cables and
probe. List price £70.
Our price, new,
tested, complete
with 4 cell H.T.
Eliminator.
Plug in mains units 75/12/6. 0-150 r 10/-.

Plug in mains units 75/Dosimeters 0-50r 12/6, 0-150r 10/-.

HIGH CAPACITY **ELECTROLYTICS**

E.A.C. DIGIVISOR mk. II

At a fraction of normal price.
Moving Coil 0 to 9 Display.
One inch character size.
Light beam lens operated
meter. Movement 500LA.
Character lamp 6.3 volts.
Also lamp for decimal
point. Overall size: 4½ X
1½ X 2½. Brand new.
Price 79/6.

STC TIME DELAY MODULE

Ideal for experimenters, educational projects as well as for practical uses. Delay adjustable 3-15 secs. Operates 9-12 volts. Heavy Duty Relay Contacts. Complete with suggested applications sheet. Price 35/-, or 3 for 90/-.

GRAVINER FIRE DETECTOR UNIT

Fire Detector Unit containing 93 | A photo multiplier and cold cathode tube. Shock and fire proof, Originally made for £74, Price complete with data sheet £6, Brand new.

HENRY'S SEND NOW!

350 pages fully detailed and illustrated. All audio and electronics complete with 10/-value discount voucher for use with purchases. Price 7/6 p.p. 2/-.

A must for the home constructor and professional engineer.

FREE to schools, colleges and companies on written request.

SINCLAIR EQUIPMENT

SAVE

PROJECT 60 PACKAGE DEALS

2×Z30 amplifier, stereo 60 pre-amp, PZ5 power supply. £19.0.0. Carr. 7/6. Or with PZ6
power supply £21.0.0. Carr. 7/6. 2×Z50 amplifier, stereo 60 pre-amp, PZB power supply.
£21.10.0. Carr. 7/6. Transformer for PZB 59/6 extra. Any of the above with Active
Filter unit add 97/6 or with pair Q16 speakers add £16.* New FM tuner £22.19.6.

YOU CAN SAVE 25%

BRAND NEW AND FULLY GUARANTEED

SP25 Mk, III £12.10.0. AP75 £16.19.6.

SPECIAL OFFER. Above supplied with cartridge
97AH/C diam. add £2. magnetic 940 add £3. G850 or AT66
or above. Price £6.15.0 p.p. 6/-, standard for SP25. SL65B, 89/6 p.p. 4/6.

Goldring GL69 Mk. II deck. £23 p.p. 2/6. With G800 £30 p.p. 7/6. Mk. II GL69 add 30/-.

Garrard 30001 m £9.15.0. 2025T/C £8.17.6 (fitted 9TAHC diam. carts.) p.p. 7/6. Plinths covers 99/6 p.p. 6/-.

Goldring GL69 Mk. II fitted G800 with plinth/cover and cables. Price £35 p.p. 12/6.

SP25 fitted G800 with plinth/cover, cables etc., £20.19.6 p.p. 10/-. Mk. III £22.19.6.

2025T/C fitted 9TA H/C with plinth/cover, cables, etc., £13.19.6 p.p. 10/-.

MP60 (see above for cartridge) with plinth/cover, cables, etc., £17.12.6 p.p. 10/-.

HI-FI equipment to suit EVERY POCKET

★ PA AND DISCOTHEQUE EQUIPMENT Complete range now in stock ready to use, light and modular equipment, special effects.

Complete systems and individual units at special low prices—choose from 100 selected stereo systems.

Call in for a demonstration when in London.
★FreeI2-page stock/systems List No. 16/17 LOW CASH AND CREDIT/HP PRICES (Credit terms for purchases from £30-callers only.)

DEMONSTRATION

VISIT THE

NEW

ROOMS

(see below)

ELECTRONIC ORGANS

★MODERN ALL BRITISH TRANSISTORISED DESIGNS AVAILABLE AS KITS OR READY BUILT

★VENEERED CABINETS FOR ALL MODELS 449 NOTE, 61 NOTE SINGLE MANUAL DESIGNS ALSO TWO MANUAL 49 NOTE

*KITS AVAILABLE IN SECTIONS AS REQUIRED ★HP and CREDIT SALE FACILITIES

When in London call in and try for yourself.

*LET US quote for all your organ component requirements.

Électronic Components & Test Gear Centre 356 EDGWARE ROAD, LONDON, W.2. Tel: 01-402 4736

High Fidelity Sales & Demonstrations Centre
354 EDGWARE ROAD, LONDON, W.2. Tel: 01-402 5854

Electronic Organs, P.A. & Discotheque Centre 309 EDGWARE ROAD, LONDON, W.2. Tel: 01-723 6963

Mail Order and Industrial Sales Dept. 303 EDGWARE ROAD, LONDON, W.2. Tel: 01-723 1008/9 OPEN 9 a.m. to 6 p.m. MONDAY TO SATURDAY — 9 a.m. to 1 p.m. THURSDAYS — OPEN ALL DAY SATURDAY GEARED MOTORS

GEARED MOTORS
"Parvalux" Reversible 100
RPM Geared Motor. Type
S.D.14, 230/250v. A.C. 22 lb./in.
" spindle. 1st class condition.
£7.10.0 each. P. & P. 10/-. Also
limited number only as above.
Without spiggot. Brand New. £12.10.0 each. P. & P. 10/-.
ELECTRO CONTROL (CHICAGO). Shaded pole
240v. 50 Hz, 110 rpm, 16 lb./in. 45/-, P. & P. 5/-. 200 rpm
10 lb./in. 50/-. P. & P. 5/-.
MYCALEX. Open frame, shaded pole motors. 240v.
50 Hz, 7 rpm. 28 lb./in. 80 rpm. 12 lb./in. 45/- each.
P. & P. 5/- each.

P. & P. 5/- each.
SMITHS SYNCHRONOUS MOTORS. 12 r.p.h.
240v., 50 Hz, 2 watts. 17/6 each. P. & P. 5/-.
KLAXON, HEAVY DUTY. 240v. 50Hz. 250 rpm
Continuous rating. Torque 45 lb./in. Weight 36lbs.
£18.10.0. Carriage 30/-.

E18.10.9. Carriage 30/-.
"CARTER ELECTRIC" 12 rpm
MOTOR.—Non-reversible, \(\frac{1}{4}\)" spindle, 240v. A.C. Open frame with
cast aluminium cased gearbox. Stoutly
constructed. Approx. 25lbs./in. Size
(approx.) 3" × 3" × 4" plus spindle.
45/-. P. & P. 5/-. (approx.) 3" × 45/-. P. & P. 5/-.

SYLVANIA CIRCUIT BREAKERS gas filled provid-ing a fast thermal response between 80° and 180°C. SYLVANIA CIRCUIT BREAKENS gas filled providing a fast thermal response between 80° and 180°C. 10 amp. at 240v. continuous. Fault currents of 28 amps. at 120v. or 13 amp. at 240v. silver contacts. Supplied in any of the following opening temperatures: 90, 95, 100, 115, 120, 125, 130, 135, 140, 145, 150, 160, 170, 175, 3 for £1. £3.10.0 per dozen.

VINKOR POT CORE ASS. TYPE LA.2103. Normal price 29/6. Our price 15/- each. Special quote for quantity.

AMPEX. Dynamic stick microphone, high impedance, low noise. Offered well below makers price at £8.10.0. P. & P. 5/-.

P. & P. 5/-. Special offer of AMPEX professional tape heads, mu-metal shrouded. Full track record, or playback, £4.10.0. Erase head £2.10.0. Set of 3 with mounting bracket and cover £10.10.0. Half track record or playback only, £4.10.0. each or £8 per pair with bracket and cover. Carriage paid.

"TEDDINGTON" CONTROLS THERMOSTAT
TYPE TBB.—Adjustable between 75° and 120°C.
Circuit cuts in again at 3° below cut-out setting, 42"
capillary and sensor probe. The thermostat actuates a 15 amp. 250v. c/o switch. A second single pole on/off switch is incorporated in the adjustment mechanism.
17/6. Carriage Paid.
Painton Retary Switch Type 72 fro.

17/0. Carriage Paid.

Painton Rotary Switch. Type 72 (to P.O. spec. RC1416). 3 pole, 3 position, 2 bank. Offered at less than half normal price at 32/6. Carriage Paid.

"GOYEN" PRESSURE SWITCH. Incorporating differential adjustment between 2" and 12" water gauge (a max. of approx. 身 p.s.i.). A single pole change-over switch rated 15 amps. 250v. is actuated. Air inlet tube 元. On Projection 壮. Overall size: dia. 3½", depth 2" plus 元" (air tube). 25/-. Carriage Paid.

plus ½" (air tube). 25/-. Carriage Paid.

SYLYANIA MAGNETIC SWITCH—a magnetically activated switch operating in a vacuum. Switch speed—4ms, temperature—54 to + 200°C. Silver contacts normally closed rated 3 amps. at 120v. 1.5 amp. at 240v. 4 for £1, or 50/- per dozen. Special quotations for 100 or over. Reference magnets available 1/6 each.

"HONEYWELL" V3 Series. Flush microswitch 10 amp. c/o. The side panel is insulated. End plate size: 2" × ¥". 30/- per dozen. Carriage Paid.

THORN QUICK ACTION SWITCH. Type S800.
Current rating 16 amps. Nom. Contacts Hard Silver.
Operating speed Imm/Sec. Max. 28,000 Ops. per hour.
Service life 10 million Ops. Min. Weight 40 gr. 25/-.

DEAC. PERMA-SEAL Nickel-Cadmium Rechargeable Batteries Type 900B. 1.22v. at 900 ma. (10 hr. rate). Size 90 mm. × 3.5 dia. Weight 40 gr. Unused 12/6 each, P. & P. 2/6.

MOTORS

AMPEX 7.5v. D.C. MOTOR. This is an ultra-precision tape motor designed for use in the AMPEX model designed for use in the AMPEX model AG20 portable recorder. High torque at minimal consumption (60ma), 600 rpm ± 5% speed adjustment, internal AF/RF suppression. ½" dia. × 1.%". Original cost £16.10.0. Our price \$5/-. P. & P. 5/-. Large quantity available (special quotations). Mu-metal enclosure available 15/- each.

NEW HYSTERESIS MOTORS BY WALTER JONES. Type 14050/12, 240v. 50 c/s 1500 rpm cont. rating, output 2.0 oz./in. Size: $3\frac{1}{2} \times 2\frac{1}{2} \times 2\frac{1}{2}^*$. Spindle $1^* \times \gamma_0^2$. Weight 31b. Maker's price in region of £22.10.0. Our price £6.10.0. each. Carriage Paid.

Our price 26.10.0. each. Carriage Paid.

VACTRICPRECISION D.C. MOTOR. Type XO7P19.

10v. D.C. 0.66 amp. 8000 rpm. 30 gm/cm. Size 7. Original makers packing. Limited supply. £3,10.0. Carriage Paid.

VACTRIC PRECISION D.C. MOTOR AND COUPLED GEAR HEAD. Motor type 11P101, 28 volts, 5000 rpm, 120 gm/cm. Gear head type 15H102 ratio 300-1. Torque 10 lb./in. Makers packing. £14,10.0. Carriage Paid.

PULLIN. Type 18PM 187. 12 volt, 5000 rpm. 200 gm/cm. Makers packing. £5.10.0. Carriage paid.

MYCALEX MAINS. Shaded pole, 1425 rpm. 15 spindle. 2 for 25/-. Carriage Paid.

MAINS INDUCTION MOTOR. Open frame, 2x spindle, weight 3 lb. Powerful. 17/6 each. P. & P. 2/6. τ_4 spindle, weight $\frac{3}{4}$ lb. Powerful. 17/6 each. P. & P. 2/6. E.M.I. PROFESSIONAL TAPE MOTOR. 110/240 v. 50 Hz. 3000 rpm, reversible, silent running. $4\frac{1}{4}^{\prime\prime}$ dia. \times $4\frac{1}{8}^{\prime\prime}$ long. Spindle $\frac{1}{76}^{\prime\prime}$ \times 2°. Weight 6 lbs. 70/- each or £6 per pair. P. & P. 10/- each.

" DISCUS Brand New "DISCUS"
Centrifugal Blower by
Watkins & Watson. 240v.
50 Hz. Powered by A.E.I.
continuous rating 2850 rpm
motor. Cowl diameter 10".
Outlet flange 2" I.D. Coupling
flange supplied. These superb
precision units are ideally suited
for Oran construction. for Organ construction. Offered at approx. half makers price £15.10.0. Carriage 30/-.

PRECISION AND SERVO POTENTIOMETERS **PRECISION LINE (USA).** Size 15. $300\,\Omega\pm5\%$ LIN. Continuous track plat. wipers set at 180° . $45/\cdot$ each. Carriage Paid.

Carriage Paid.

PENNY & GILES. Size 15. 500 \(\Omega\$. Type Q26201-72/1.

Continuous track. 50/- each. Carriage Paid.

BECKMAN. Type AS.506, 10 turn. Tol. \(\pm 10\), LIN Tol. \(\pm 107\)%. 40k. Long spindle. 40/- each. Carriage Paid.

S.T.C. Type B330 CT. 2500 \(\Omega\$. 2\)\(\pm 4''\) dia. \(\times 1\)\(\pm 2''\). Completely copper encased. 25/- each. Carriage paid.

OXLEY P.T.F.E. BARB TERMINALS. Lead thro' 75" or \$". Stand-Off | 1/32" or \$". 55/- box of | 100 all types. HARWIN. Tapped (6 Ba) high voltage "stand off" insulators, length \(\frac{1}{2} \) or \(\frac{3}{4} \), tapped (8 Ba) \(\frac{1}{2} \) long. 60/per 100. Carriage Paid.

K.L.G. SEALED TERMINALS. Type TLSI AA, overall length \(\frac{1}{4}\)", box of 100, 20s. Type TLSI BB, overall length 1", box of 100, 30s. Carriage Paid.

"DECCO" MAINS SOLENOID. Compact and very werful. 16 lb. pull. \S'' travel which can be increased to by removing captive-end-plate. Overall size $2'' \times 2\S''$ $2\S''$ high. 27/6. P. & P. 5/-.

CRYSTAL OVENS G.E.C. Type QC940. 6/12v., AC/DC, 75°C. Takes 2½" min. crystals. Similar to above 12v. only by SNELGROVE (Toronto), 55/- each, carr. paid. BERCO. Rotary rheostat. Type L25. 100 Ω . 25 watt. $1\frac{1}{3}$ dia. $\frac{1}{4}$ spindle. 10/- each. 2/6 Carr.

PAINTON BOURNS TRIMPOTS. Ik, 2k, 2.5k, 5k, 10k, 20k, 50k, 500k. Other Trimmer pots in stock. RIL 10k, MORGANITE Ik. MEC 200 Ω (tubular) 50 Ω. Any 3 for 22/- carr. paid.

METERS

ERNEST TURNER 800 µ2 METER. 160 Ω movement, 2" case, eliptic plastic front. Uncalibrated Green-Red-Green uncalibrated scale. 30/-each. Carriage Paid.

ERNEST TURNER 5" \times 4" 0-1 ma scaled in 50 equal divisions, mirror scale, chrome escutcheon. Quality instrument. 85/-. Carriage Paid. 5" \times 4" 0-100 μ a 1000 Ω . Mirrored scale, few only. 95/-. Carriage Paid.

ELECTROLYTIC CAPACITORS MULLARD. 900μF 100ν. heavy ripple screw terminals $1\frac{7}{4\pi}$ " dia. $\times 3\frac{1}{2}$ ", 14/e ea., £6 per doz. 1600μF 64ν. $1\frac{3}{4}$ " dia. $\times 3$ ", 7/6 ea., 70/- per doz. 10,000μF 10ν. $1\frac{3}{4}$ " dia. $\times 3$ ", 7/6 ea., 70/- per doz. 1250μF 25ν. 1" dia. $\times 2$ ", 10/- ea., 90/- per doz. HUNTS 1000μF 50v. 1¾" dia. × 2", 5/- ea., 10,000μF 6v. 1¾" dia. × 2", 6/- ea., 60/- per doz. 16μF 350v. ½" × 1¾" wire ends, 40/- per doz. PLESSEY 5000μF, 50v. 1¾" × 4¼", 10/ ea., 90/- per doz. 1000μF 50v. 1¾" dia. × 2", 7/6 ea., 100μF 100v. 1" dia. × 2", 5/- ea.

ERIE. Ceramicon capacitor. Type CHV411P. 500 P.F. 30KV Size I.5" dia. × 1.44" long. 10/- each. Carriage Paid.

TIME ELAPSED REGISTER. 24v. D.C. Has a 5 digit readout plus dial reading I hour (60 I min. div.) metering. Total of 99,999 hrs. Non-reset sealed unit, chrome bezel, through panel mounting. Size 2½" dia. × 3½" overall.

RELAYS

Perspex enclosed, plug in, with base. Type MQ 308 600 Ω 24v. 4c/o. Size 1½" × 1½" × ½", 12/- ea., £5 per doz. Type MQ 508 10,000 Ω 100v. 4c/o. 10/- ea., 90/- per doz. Type MQ 208 150 Ω 12v. 4c/o. 13/6 ea., £6 per doz. Carriage Paid. SIEMENS. Miniature, plug in, Perspex cover, 1000 Ω 6/12v. 2 c/o., ¾" × ½" × ½" high. Complete with base. 14/- ea., £7 per doz. A.E. Perspex enclosed, plug in, with base. 50 Ω 6v. 2 c/o. 12/6 ea. 470 Ω 12v. 4 c/o. 14/6 ea. 1260 Ω 48v. 6 c/o. 14/6 ea. 7280 Ω 48v. 4 c/o. 14/6 ea. 1260 Ω 48v. 6 c/o. 16/6 ea. CLARE. Sealed relay. Type RP3716G4, 25/- ea. CLARE ELLIOTT. Sub-min 675 Ω 24v. Type W/1 2 c/o. Similar to above, 340 Ω 17.6v. 15/- ea. Carriage Paid. MAGNETIC DEVICES. Sub-min 24v. 2 c/o. 4/2 × ½" × ½", 15/- ea. Carriage Paid. MAGNETIC DEVICES. Sub-min 24v. 2 c/o. encapsulated ½" × 5/32" × ½" high. 25/- ea. SIEMENS. High speed type 89L. 1700 Ω + 1700 Ω, 12/6 ea. DIAMOND "H" sealed relay. Type BR115CIT-IC 26v. 150 Ω 4 c/o encapsulated in heavy brass case, glass sealed terminals. Robust. 15/- ea. SCHRACK. Octal base 24v. 2HD c/o. Perspex enclosed. 12/6 ea. E.R.G. 1000 Ω 6v. D.C. I make encapsulated reed type. Size ½" × ½" × ½" × ½", 4 for 20/-. SANGAMO WESTON. Moving coil relay 315 Ω 310µa. complete with base, 15/- ea. S.T.C. Midget sealed relay. Type 41/90EC. 12v., 40ma 170 Ω. Single HD make, 12/6 ea. LATCHMASTER. Miniature relay 6, 12, 24v. D.C. One make one break 5 amp contacts. Once current is applied relay remains latched until input polarity is reversed. ½" dia. x ½". Please state vertical or horizontal mount and voltage. Original cost £8, now offered at 32/6 ea. G.E.C. Sealed relay. Type M 1492. 24v. D.C. One make one break 5 amp contacts. Once current is applied relay remains latched until input polarity is reversed. ½" dia. x ½". Please state vertical or horizontal mount and voltage. Original cost £8, now offered at 32/6 ea. G.E.C. Sealed relay. Type M 1492. 24v. 670 Ω. New condition but ex-equipment. 20/- ea. Type M 1527. 80v. 7600 Ω. New. Few only, 25/- ea.

HELLER

KNOWLE (U.S.A.) MINIATURE MICROPHONE CAPSULES. Impedance approx. $200\,\Omega$, output 60 or 80 DB at 1 Kc. As used in deaf aids, bugging devices, etc. Size (60 DB) $\frac{1}{2}$ " \times $\frac{1}{2}$ " \times $\frac{1}{2}$ " (80 DB) $\frac{1}{2}$ " \times $\frac{1}{2}$ " \times $\frac{1}{2}$ ". Ex-equipment, all tested. 20/- each.

We welcome orders from established companies, educational depts., etc. (To cover invoicing costs minimum 50/-, please.) A discount of 10% may be deducted from all orders of £20 or over.

ELECTROTECH SALES

BUSINESS HOURS: 9.30-6 (1 p.m. Sats.)

264 PENTONVILLE ROAD, LONDON, N.1 (ONE MIN. FROM KINGS X STATION) Tel. 01-837 7401/2

WW-099 FOR FURTHER DETAILS

Your choice of **Live Sockets-**Instantly!

A Lexar DIS-BOARD gives you up to 6 sockets from one power outlet. Portable or permanent fixing, compact units, with safety neon. Over 1,000 socket combinations available from stock. All types of fittings and finishes.

brochure from LEXOR DIS-BOARDS LIMITED. Allesley Old Road, Coventry Telephone 72614 or 72207

VITAVOX

FOR HIGH QUALITY

MICROPHONES **LOUDSPEAKERS**

and ancillary equipment

Further information from:

VITAVOX LTD., Westmoreland Rd., London, NW9 5YB (Tel: 01-204 4234)

WW-101 FOR FURTHER DETAILS

BI-PAK=LOW COST I.C's VALUE ALL THE WAY

BI-PAK Semiconductors now offer you the largest and most popular range of I.C's available at these EXCLUSIVE LOW PRICES. TITL Digital 74N Series fully coded, brand new. Dual in-line plastic 14 and 16 pin packages.

BI-PAK Order No.	Sim. Type	Description	Price 1-24	and qty. 25-99	prices
B P00	7400N	Quad 2-Input NAND GATE	6/6	5/6	4/6
B P01	7401N	Quad 2-Input NAND Gate—OPEN COLLECTOR	6/6	5/6	4/6
B P02	7402	Quadruple 2-Input NOR GATE	6/6	5/6	4/6
BP04	7404N	HEX INVERTER	6/6	5/6	4/6
BP10	7410N	Triple 3-Input NAND GATE	6/6	5/6	4/6
B P20	7420N	Dual 4-Input NAND GATE	6/6	5/6	4/6
BP30	7430N	Single 8-Input NAND GATE	6/6	5/6	4/6
BP40	7440N	Dual 4-Input BUFFER GATE	6/6	5/6	4/6
BP41	7441AN	BCD to decimal decoder and NIT Driver	22/6	20/-	17/6
BP42	7442N	BCD to decimal decode (TTL O/P)	22/6	20/-	17/6
B P50	7450N	Dual 2-Input NAND/OR/NOT GATE	6/6	5/6	4/6
BP53	7453N	Expandable 4-Wide 2-Input NAND/ OR/NOT GATE	6/6	5/6	4/6
BP60	7460N	Dual 4-Input—expandable	6/6	5/6	4/6
B P70	7470N	Single JK Flip-Flop-edge triggered	9/-	8/-	7/-
BP72	7472N	Single Master Slave JK Flip-Flop	9/-	8/-	7/-
BP73	7473N	Dual Master Slave JK Flip-Flop	10/-	9/-	8/6
BP74	7474N	Dual D Flip-Flop	10/-	9/-	8/6
BP75	7475N	Quad Bistable Latch	11/-	10/-	9/6
BP 76	7476N	Dual Master Slave Flip-Flop with	11/-	10/-	9/6
BP83	7483N	TI D14 D1	26/-	22/6	20/-
BP90	7490N	BOD Devide Co. A -	22/6	20/-	17/6
B P92	7492N	Divide by 12 4 Bit binary counter.	22/6	20/-	17/6
B P93	7493N	Divide by 16 4 Bit binary counter.	22/6	20/-	17/6
BP94	7494N	Dual Entry 4 Bit Shift Register	22/6	20/-	17/6
B P95	7495N	4 Bit Up-Down Shift Register	22/6	20/-	17/6
B P96	7496N	5 Bit shift register	24/-	21/-	18/6

Data are available for the above Series of Integrated Circuits in booklet form. Price 2/6

TTL INTEGRATED CIRCUITS

Manufacturers' "Fall outs"—out of spec. devices including functional units and part functional but classed as out of spec. from the manufacturers' very rigid specifications. Ideal for learning about I.C's and experimental work, on testing some will be touch prefer.

some will be found perfect.		
PAK No.	PAK No.	PAK No.
$UIC00 = 5 \times 7400 N$ 10/-	$U1C42 = 5 \times 7442N \ 10/-$	$UIC80 = 5 \times 7480 \text{ N } 10/-$
$UIC01 = 5 \times 7401N 10/-$	$UIC50 = 5 \times 7450 \text{N } 10/-$	$UIC82 = 5 \times 7482N \ 10/-$
$UIC02 = 5 \times 7402N 10/-$		$UIC83 = 5 \times 7483N \ 10/-$
$UIC03 = 5 \times 7403N 10/-$		$UIC86 = 5 \times 7486 N \ 10/-$
	$UIC70 = 5 \times 7470N \ 10/-$	$UIC90 = 5 \times 7490N \ 10/-$
$UIC05 = 5 \times 7405N 10/-$		$UIC92 = 5 \times 7492 N 10/-$
$UIC10 = 5 \times 7410N 10/-$		$UIC93 = 5 \times 7493N \ 10/-$
$UIC20 = 5 \times 7420 N 10/-$		$UIC94 = 5 \times 7494N \ 10/-$
$UIC40 = 5 \times 7440N$ 10/-		$UIC95 = 5 \times 7495N \ 10/-$
$UIC41 = 5 \times 7441AN10/-$		$UIC96 = 5 \times 7496N \ 10/-$
PAK No.	IIICY1 - 90 v Assorted 7:	'a 90/-

Packs cannot be split but 20 assorted pieces (our mix) is available as PAK UICX1 Every PAK carries our BI-PAK Satisfaction or money back GUARANTEE.

BRAND NEW. FULL TO MANUFACTURERS'		Price eacl	h
SPECIFICATION	1-24	25-99	100 up
BP709 Operational Amplifier, dual-in-line 14 pin pack-			1
age = SN72709 and similar to M1C709 and ZLD709C	10/6	9/-	9:/-
This is a high performance operational amplifier with his	h inip	edance dif	Terential.
inputs and low impedance output.	,		

BI-PAK WAREHOUSE CLEARANCE

Over I Million Semiconductors must be sold. Order any or all of these. Bargain "SALE" PAKS Listed Below "NOW"

UNSORTED/UNTESTED/UNCODED/UNBEATABLE VALUE

PAK.			Price
Order No.	Qty.	Description	per PAK
8A1	150	Germ. Trans PNP Mixed lots	. 10/-
SA2	200	Germ. & Sil. Alloy Trans. PNP	10/-
BA3	100	Germ. A.F. Trans. 300mW PNP	10/-
SA4	200	Sil. Alloy Low gain switching Trans. PNP	. 10/-
8A5	100	Sil. planar plastic trans. PNP	10/-
BA6	100	Sil. plastic planar trans. NPN.	10/-
8A7	100	Sil. planar Trans. TO5 plastic PNP 800mW	
8A8	100	Sil. planar trans. TO18 plastic NPN 500mW	20/-
BA9	100	Sil. planar trans. plastic NPN med. & high gain	20/-
i		DIODES	20/-
8B1	200	GERM. Diodes Gen.P	10/-
8B2	200	GERM. Gold Bonded	10/-
8B3	200	Sil. Switching Diodes 50mA	10/-
8B4	200	Sil. Gen.P. Diodes 200mA	10/-
8B5	300	Sil. & Germ. Mixed Diodes	10/-
TTD - 4-11			10/-
The follow:	ing are all	new and Fully Tested Transistor Packs.	
ST1 ST2	50	PNP Trans. Mixed all coded Germ	
	40	NPN Germ. To-5 2G339 Eqvt. 2N1302 AC127	20/-
ST3	40	PNP Germ. AF 2G371B OC71-75 type	20/-
ST4	30	PNP Germ. VHF-20407L=AF117=OC176	
O.m.r		uncoded	20/-
8T5	30	PNP Metal Alloy VHF 800m/cs Trans	
ST6	40	PNP/NPN Assorted Trans. all coded	20/-
ST7	40	D1374 RF Trans. Eqvt. ASY52 OC44/45	20/-
ST8	40	2N706 NPN Switching Sil. Trans	20/-
ST9	30	2N708 NPN Sil. Trans	
8T10	30	BSY28 NPN Sil. Trans	20/-
STIL	25	2N3703 PNP Sil. Trans	20/-
ST12	25	TIS48 = 2N2368 NPN 400m/cs	20/-
8T13	25	8E/2N3646 NPN TO-18 plastic 350m/cs	20/-
BT14	40	283010 Sil. Alloy Trans. PNP TO5	20/-
WHENOR	DERING	PLEASE MENTION PAK. ORDER NO. IN ALI	LCASES.
OLUBS, SC	HOOLS	& OTHER ORGANISATIONS REQUIRING I	ARGER
WAY OTTO	155 (100)	MIN.; 100 MIN. STI to STI4; 1,000 MIN. SAI	to 83B5)
MAY SUB	MII THE	IR OFFERS NOT LATER THAN 1st FEBRUAL	RY, 1971.

QUALITY-TESTED PAKS

17		
	6 Matched Trans. OC44/45/81/81D. 20 Red Spot AF Trans. PNP. 16 White Spot RF Trans. PNP. 5 Bilicon Rects. 3A 100-400 PIV. 2 I OA Silicon Rects. 100 PIV. 2 OC1 140 Trans. NPN Switching. 1 12 A SCR 100 PIV. 3 Sil. Trans. 28303 PNP. 3 200 Mc/9 Sill. Trans. NPN B8Y26/27 3 Zener Diodes IW 33V 5% Fol. 4 High Current Trans. OC42 Eqvt 2 Power Transistors 1 OC26 1 OC35. 6 Silicon Rects. 400 PIV 250mA. 4 OC75 Transistors.	10
	20 Red Spot AF Trans. PNP	
	16 White Spot RF Trans. PNP	10
П	10 White Spot RF Trans. PNP	10
J	5 Bilicon Rects. 3A 100-400 PIV	10
	2 10 A Silicon Rects, 100 PIV	īñ
П	2 OCL 140 Trans NPN Switching	10
ij	1 10 A COD 100 DIV	
١l	1 12 A BCK 100 PIV	·· TÔ
1	3 Sil. Trans. 28303 PNP	10
ł	3 200 Mc/s Sil. Trans. NPN RSV26/27	īñ
ı	3 Zener Diodes 1W 33V 59/ Pol	10
ı	4 High Current Trans. OC40 Fact	‡ 0
1	4 Eigh Current Trans. OC42 Eqvt	··ŤÕ
ı	2 Power Transistors 1 OC26 1 OC35	10
1	5 Silicon Rects. 400 PIV 250mA	10
1	4 OC75 Transistors	10
1	4 OC75 Transistors 1 Power Trans. OC20 100V 10 OA202 Sil. Dlodes Sub-min. 2 Low Noise Trans. NPN 2N929/30. 1 Sil Trans. NPN VCR 100 2TS6	10
1	1 Tower Trans. OC20 100V	. 10
ı	10 OA202 Sil. Diodes Sub-min	- 10
ı	2 Low Noise Trans. NPN 2N929/30	. 10
ı	1 Sil. Trans. NPN VCB 100 ZT86	10
ı	8 OA81 Diodes	10
ı		
1	4 OC72 Transistors	-10
3	4 OC77 Transistors	-10
1	4 Sil. Rects. 400 PIV 500mA	. īč
J	5 GET884 Trans Fort OC44	10
1	5 CPT000 Trees Park OCA	- 10
J	0 GE 1003 Trans. Eqvt. UC45	.10
1	2 2N/08 Sil. Trans. 300Mc/s NPN	.10
į	3 GT31 LF Low Noise Germ Trans	.10
1	6 IN914 Sil Diodes 75 PIV 75m A	10
1	9 O A O S Clarge Diades Sub min TNCO	- 40
ł	6 OASS Germ. Diodes Bub-min. 1Nos	.10
ı	3 NPN Germ. Trans. NKT773 Eqvt	- 10
ı	2 OC22 Power Trans. Germ	.10
ı	2 OC25 Power Trans. Germ.	10
ı	4 AC198 Trans PNP High Cain	10
ı	4 ACTOSTICO COMPANIE DEPARTMENT	-10
1	4 AC121/128 Comp. pair PNP/NPN	. 10
ı	3 2N1307 PNP Switching Trans	-10
1	7 CG62H Germ. Diodes Egyt. OA71	.10
1	3 AF116 Type Trans	10
1	12 Assorted Germ. Diodes Marked	10
ı	12 Assorbed Germ. Diodes Marked	· 10
1	4 ACI26 Germ. PNP Trans	.10
ı	4 Silicon Rects. 100 PIV 750mA	- 10
ı	3 AFI17 Trans.	. 10
Ļ	7 OCSI Tune Trans	10
Į	4 8il. Rects. 400 PIV 500mA 5 GET884 Trans. Eqvt. OC44 5 GET884 Trans. Eqvt. OC45 5 GET883 I. Trans. Sqvt. OC45 2 2N708 8il. Trans. Sqvt. OC45 6 IN914 8il. Diodes 75 PIV 75mA. 8 0.495 Germ. Diodes 8ub-min. IN69. 8 0.495 Germ. Diodes 8ub-min. IN69. 3 NPN Germ. Trans. NKT773 Eqvt. 2 OC22 Power Trans. Germ. 4 AC128 Trans. PNP High Gain. 4 AC128 Trans. PNP High Gain. 4 AC127 I28 Comp. pair PNP/NPN. 3 2N1307 INP Switching Trans. 7 C062H Germ. Diodes Eqvt. OA71. 3 AF116 Type Trans. 4 AC126 Germ. Piodes Eqvt. OA71. 4 ASIIcon Rects. 100 PIV 750mA. 5 AF117 Trans. 7 OC81 Trans.	+ Y
į	o OCIAL TRANS	. 10/
ı	o 2N2926 Bil. Epoxy Trans	- 10/
ì	7 OC71 Type Trans	.10/
ı	2 28701 Sil Trans Tevas	10
ı	9 10 A 800 DIV GIL Donte TO CED	100
ı	2 TO A OLO FIV SH. Rects, 1545 R	10/
ı	5 DUIUS Bil. NPN High Gain Trans	- 10/
1	1 2N910 NPN Sil. Trans. VCB 100	. 10/
1	2 1000 PIV Sil. Rect. 1.5 A R53310 AF	. 10/
ı	3 BSV95 A Sil Trong NPN 200Male	10
1	2 OCOGO GII T	10/
1	o OCZIN BII. ITABS	.10/
1	ZUL1550 LOW Noise Germ. Trans	.10/
1	1 AF139 PNP High Freq. Trans	.10/
۱	3 NPN Trans. 1 ST141 and 2 ST140	.10/
Ī	4 Modt's 9 MAT100 and 9 MAT100	10/
ı	O Mande S Z MAI 100 MIN Z MAI 120	10/
ı	3 AF117 Trans. 7 OC81 Type Trans. 7 OC81 Type Trans. 5 2N2926 Sil. Epoxy Trans. 2 28701 Sil. Trans. 2 28701 Sil. Trans. Texas. 2 10 A 600 PIV Sil. Rects, 1845 R 3 BC108 Sil. NPN High Gain Trans. 1 2N910 NPN Sil. Trans. VCB 100. 2 1000 PIV Sil. Rect. 1.5 A R53310 AF. 3 BC108 Sil. Trans. NPN 2000Mc/s. 3 OC206 Sil. Trans. 2 GET880 Low Noise Germ. Trans. 1 AF139 PNP High Freq. Trans. 1 AF139 PNP High Freq. Trans. 3 NFN Trans. 1 ST141 and 2 ST140. 4 Madt's 2 MAT101 and 1 MAT121. 4 OC44 Germ. Trans. AF 3 AC127 NPN Germ. Trans. 2 N3906 Sil. PNP Trans. Motorola.	. 10/
ı	4 OC44 Germ. Trans. AF	.10/
ı	3 AC127 NPN Germ, Trans.	. 10/
ı	1 2N3906 Sil. PNP Trans. Motorola	.10/
ı	2 Sil. Power Rects. BYZ13	. 10/
ı	2 Bit. 10wel Rects. B1ZIa	TO/
۱	1 Sil. Power Trans. NPN 100Mc/	8
f	TK201A	. 15/
ı	2 2N1132 PNP Epitaxial Planar Sil	.10/
ſ	3 2N697 Epitavial Planar Trans Sil	15/
1	A Clare Power Trans Fant Cole	45
1	Tower Trans. Eqvt. OC16	15/
1	1 Unijunction Trans. 2N2646	.15/
ř	2 Sil. Trans. 200Mc/s 60Vch ZT83/84	.15/
ı	TK201A 2 2N1132 PNP Epitaxial Pianar Sil. 3 2N697 Epitaxial Pianar Trans. Sil. 4 Germ. Power Trans. Eqvt. OC16. 1 Unijunction Trans. 2N2646. 2 Sil. Trans. 200Mc/s 60Vch ZT83/84. 20 NKT Trans. AP, RF, VHP, Coded Bayt. List	
ı	Egyt. List.	10/
ı	9 9N9719 Gil Proper Diames DEPOSE	10/
ı	C Daylor M. Lpoxy Planar HFE225	· TO/
ĭ	5 B 1 100 Type Sil. Rects	. 20/
۱	25 Sil. aud Germ. Trans. Mixed, a	11
۱	Eqvt. List 2 2N7112 Sil. Epoxy Planar HFE225 8 BY100 Type Sil. Rects. 25 Sil. and Germ. Trans. Mixed, a marked, New	.30/

KING OF THE PAKS Unequalled Value and Quality SUPER PAKS NEW BI-PAK UNTESTED

Satisfaction GUARANTEED in Every Pak, or money back.

U1	No. 120 Glass Sub-min. General Purpose Germanium Diodes	10
U2	60 Mixed Germanium Transistors AF/RF	10
U3	75 Germanium Gold Bonded Diodes sim. OA5, OA47	10
U4	40 Germanium Transistors like OC81, AC128	10
U5	60 200mA Sub-min. Sil. Diodes	10
Ū6	30 Silicon Planar Transistors NPN sim. BSY95A, 2N706	10
U7	16 Silicon Rectifiers Top-Hat 750mA up to 1,000V	10
U8	50 Sil. Planar Diodes 250mA OA/200/202	10
U9	20 Mixed Volts 1 watt Zener Diodes	10
U 11	25 PNP Silicon Planar Transistors TO-5 sim. 2N1132	10
U12	12 Silicon Rectifiers EPOXY BY126/127	10
U13	30 PNP-NPN Sil. Transistors OC200 & 28104	10
U14	150 Mixed Silicon and Germanium Diodes	10
U15	25 NPN Silicon Planar Transistors TO-5 slm, 2N697	10
U16	10 3-Amp Silicon Rectifiers Stud Type up to 1000 PIV.	10
U17	30 Germanium PNP AF Transistors TO-5 like ACY 17-22.	10
U18	8 6-Amp Silicon Rectifiers B YZ13 Type up to 600 PIV.	10
U19	25 Silicon NPN Transistors like BC108	10
U20	12 1.3-amp Silicon Rectifiers Top-Hat up to 1,000 PIV.	10
U21	30 A.F. Germanium alloy Transistors 2G300 Series & OC71	10
U23	30 Madt's like MAT Series PNP Transistors	10
U24	20 Germanium 1-amp Rectifiers GJM up to 300 PIV	10
U25	25 300Mc/s NPN Silicon Transistors 2N708, BSY27	10
U26	30 Fast Switching Silicon Diodes like IN914 Micro-min	10
U28	Experimenters' Assortment of Integrated Circuits, untested Gates, Flip-Flops, Registers, etc., 8 Assorted Pieces	20
U29	10 1 amp SCR's TO-5 can up to 600 PIV CRSI/25-600	20
U30	15 Plastic Silicon Planar trans. NPN 2N2924-2N2926	10
U31	20 Sll. Planar NPN trans. low noise Amp 2N3707	10
Ü32	25 Zener diodes 400mW D07 case mixed Volts, 3-18	10
J33	15 Plastic case 1 amp Silicon rectifiers 1N4000 series	10
J34	30 Sil. PNP alloy trans. TO-5 BCY26, 28302/4	10
J35	25 Sil. Planar trans. PNP TO-18 2N2906	10
J36	25 Sil. Planar NPN trans. TO-5 BFY50/51/52	10
J37	30 Sil. alloy trans. SO-2 PNP, OC200 28322	10
J38	20 Fast Switching Sil. trans. NPN, 400Mc/s 2N3011	10
J39	30 RF Germ. PNP trans. 2N1303/5 TO-5	10
J40	10 Dual trans. 6 lead TO-5 2N2060	10
J 41	25 RF Germ. trans. TO-1 OC45 NKT72	10
J42	10 VHF Germ. PNP trans. TO-1 NKT667 AF117	10
J43	25 Sil. trans. Plastic TO-18 AF BC113-114	10
J44	20 Sll. trans. Plastic TO-5 BC115-116	10

Code Nos. mentioned above are given as a guide to the type of device in the Pak. The devices themselves are normally unmarked.

FREE One 10/- Pack of your own choice free with orders valued £4 or over. FREE

NEW LOW PRICE TESTED S.C.R's SIL. RECTS.TESTED 1A 3A 7A 16A (TO-5 (TO-66 (TO-48 (TO-48 Case)
PIV each
50 4/6
100 5/200 7/400 8/6
600 10/6
800 12/6 CTO-66 (TO-48 case) case) each each 6/6 10/6 7/6 11/6 9/6 13/6 11/6 14/- 18/-(TO-48 casé)
each PIV each
10/6 25 20/7
12/6 50 23/15/- 100 28/18/6 200 32/25/- 400 35/30/- 600 80/-

2A POTTED BRIDGE RECTIFIERS 200V..10/- 600V..15/- 800V..20/-

DIACS

FOR USE WITH TRIACS

PRINTED CIRCUITS
EX-COMPUTER
Packed with semiconductors and components. 10 boards give a guaranteed 30 trans. and 30 diodes.
Our price 10 boards 10(-, plus 2/- P. & P.

 DUAL-IN-LINE
 LOW
 PROFILE
 SOCKETS

 14
 AND
 16
 Lead
 Sockets for use with

 Dual-in-Line
 Integrated
 Circuits
 Price
 each

 Order No.
 1-24
 25-99
 100 up

 T8014
 14
 pin
 type
 7/6
 6/ 5/3

 T8016
 16
 pin
 type
 10/ 8/6
 7/9

CADMIUM CELLS FET'S ORP12 8/6 2N 3819 ORP60, ORP61 8/- ea. MPF105

PHOTO TRANS. BY130 OCP71 Type 8/6

PIV 750mA 3A 10A 30A
50 1/- 2/9 4/3 9/6
100 1/3 3/3 4/615/200 1/3 3/3 4/615/200 1/3 3/3 4/6 16/22/300 2/3 4/6 6/6 22/500 3/3 6/9 8/-37/800 3/6 7/611/-40/1000 5/- 9/3 12/6 50/1200 6/6 11/6 15/-

TRIACS
4 2A 6A 10A
(TO- (TO- (TO1) 66) 48)
14/- 15/- 22/6
17/6 20/- 28/20/- 24/- 35/4 Blocking voltations 200 400 VBOM

SILICON DIAC For use with Triacs BR100 7/8 each

LUCAS 35A SIL. RECTS. Branded. 400 PIV. Special Price, stud type, dying lead...22/6 each UNIJUNCTION UT46. Eqvt. 2N2646, Eqvt. TI843. BEN3000 5/6 each; 25-99 5/-; 100 up 4/-.

NPN SILICON PLANAR BC107/8/9, 2/- each; 50-99, 1/10; 100 up, 1/8 each; 1,000 off, 1/6 each. Fully tested and coded TO-18 case.

SILICON HIGH VOL-TAGE RECTIFIERS 10-Amp 3-K.V. 3000

AP239 PNP GERM BIEMENS VHF TRAN BISTORS. RF MIXER & OSC. UP TO 900 MHZ. USE AS RE PLACEMENT FOR AP139-AF186 Q 100'0 OF OTHER USES IN VHF. OUR SPECIAL LOW PRICE: 1-24 7/6 each. 25-99 6/9 each 100+6/-each.

MULLARD AF 117 TRANSISTORS

Large can 4 lead Type

IN21B and IN21BR
MATCHED PAIR 8.
BAND MIXER. Max.
overall noise faction
13.7 dB at 3000 m/cs.
BRAND NEW AND BOXED, CLEARANCE PRICE.... 6/- PAIR

★ GIRO No. 388-7006 ★

ADI61 NPN ADI62 PNP

MATCHED COMPLE-MENTARY PAIRS OF GERM. POWER TRANSISTORS OUR LOWEST PRICE OF 12/6 PER PAIR

HIGH POWER SILI-CON PLANAR TRAN-SIRTORS. TO-3. FERRANTI ZT1487 NPN

VCB60 1c6A fT, 1M/cs
VCE40 Ptot, 75W
VEB8 hFE15-45
PRICE 15/- EACH.

2N3055115T WAT SIL. OUR PRICE 12/6 EA.

Leads cut short but still
usable. Real value at
15 for 10/-.

Silicon MICROWAVE

DIODES—SYLVANIA
(U.S.A.)

IN21B and IN21BR

BEAND NEW TEXAS GEEM. TRANSISTORS Coded and Guaranteed Pak No. EQVT. TI 8 26371A OC71 TZ 8 26374 OC78 T3 8 26374A OC81D T4 8 26381A OC81 T5 8 26381A OC44 T7 8 26344A OC44 T7 8 26345A OC45 T8 8 26378 OC78 T9 8 26397A 2N1302 T10 8 26417 AP117 All 10/- each pack.

2N2060 NPN SIL. DUAL TRANS. CODE D1699 TEXAS. Our price 5/-each.

120 VCB NIXIE DRIVER
TRANSISTOR. Sim
BSX21 & C407, 2N1895
FULLY TESTED AND
CODED ND120. 1-24
3/6 each. To-5 NPN.,
25 up 3/- each.

Please send all orders direct to our warehouse and despatch department. Postage and packing add 1/-. Overseas add extra for Airmail. Minimum order 10/-. Cash with order please.

BY RETURN POSTAL SERVICE

> **BI-PAK SEMICONDUCTORS** P.O. BOX 6, WARE, HERTS.

KING OF THE PAKS BI-PAK GUARANTEE SATISFACTION OR MONEY

VALVES CV44014 7/- DLS19 30/- A61 9/6 CV44024 6/- DY86 6/- AGT8 500/- CV4024 6/- DY87 6/6 8/- AGT8 500/- CV4024 6/- DY802 12/6 ARP83 16/- CV4031 7/- ESSCC 12/- ARB10 17/6 CV4033 7/- ESSCC 12/- ARB10 ESSCC 12/- BT9 60/- CV4044 12/- ESSCC 22/- BT9 50/- CV4044 10/- ESSCC 22/- BRDF 50/- CV4044 10/- ESSCC 22/- BRDF 50/- CV4044 10/- ESSCC 22/- BRDF 50/- CV4048 12/6 CCH35 16 CV464 10/- EAC480 6/- 6/- 6/- 6/- 6/- 6/- 6/- 6/- 6/- 6/- 12/- ARB05 10/- CV402 37/- CV402 37/- <th> EVIL 26 EV51 7/8 PC97 8/9 EV51 7/8 PC97 8/9 8/6 EV59 7/8 EV59 7/8 PC98 8/6 EV59 7/8 PC98 8/6 EV59 7/8 PC98 8/6 EV59 PC98 8/9 EV59 PC98 8/9 PC98 8/9 EV59 PC98 PC9</th> <th>PY88 7/- PY800 18/6 PY809 9/6 PY809 19/6 PY809 9/6 PY809 19/6 PY809 19/6</th> <th> 13/9 2D21 6/8 6AQ4 4/- 7/6 2E36 20/- 6AQ5 6/3 68 6/3 68 6/4 6AQ5 6/3 68 6/4 6AQ5 6/3 6/4 6AQ5 6/4 </th> <th> LISWOB</th>	EVIL 26 EV51 7/8 PC97 8/9 EV51 7/8 PC97 8/9 8/6 EV59 7/8 EV59 7/8 PC98 8/6 EV59 7/8 PC98 8/6 EV59 7/8 PC98 8/6 EV59 PC98 8/9 EV59 PC98 8/9 PC98 8/9 EV59 PC98 PC9	PY88 7/- PY800 18/6 PY809 9/6 PY809 19/6 PY809 9/6 PY809 19/6	13/9 2D21 6/8 6AQ4 4/- 7/6 2E36 20/- 6AQ5 6/3 68 6/3 68 6/4 6AQ5 6/3 68 6/4 6AQ5 6/3 6/4 6AQ5 6/4	LISWOB
Transistors ACV20 4/8 ACV21 4/6 ACV2	EC100 2;8 NKT216 7/6 OA91 1/8 BCY72 3;6 NKT217 8/- OG18 8/8 BY100 3;6 NKT217 8/- OG19 7/8 BY50 4;6 NKT218 OG29 19/8 BFY51 4/- NKT403 OC24 10/- DD003 3/- 15/- OC25 7/8 GET875 5/- NKT404 OC25 5/- GET875 5/- NKT211 OC25 13/6 NKT211 5/- NKT215 OC29 12/6	OC35 10/- OC81 5/- OC171 OC44 3/6 OC81D 4/- OC200 OC45 3/- OC81M 3/- OC910 OC71 3/- OC81M 3/6 ORP12 OC72 5/- OC82 5/- SX642 OC75 5/- OC82 5/- SX642 OC76 5/- OC84 5/- 2N3052 OC77 8/- OC169 4/- 2N3052 OC78 4/- OC170 5/- 2N3707	7/8 2N4286 3/8 3FP7 29/- 1 19/8 2N4289 3/9 30P1 40/- 2 10/- 1 7/8 4/6 5FP7 35/- 4/6 1CP31 122/8 88L 80/- 5 15/- 2AP1 80/- 0 2/6 3DP1 40/- C27A 180/-	CV960 76/- CV968 36/- CV1526 66/- CV1526 66/- CV1527 60/- CV1528 66/- CV1528 66/- CV1528 66/- CV1528 36/- CV1528 36/- CV1528 36/- O9L 80/- CV1528 36/- VCR17A

VALVE MAIL ORDER CO.

BLACKWOOD HALL, 16A WELLFIELD ROAD, LONDON, S.W.16

SEND FOR LIST OF 6,000 TYPES VALVES. TUBES & TRANSISTORS

Express postage 9d. per valve. Over £5 postage free. Tel, 01-769 0199/1649.

Open to callers Mon. to Sat., 9 a.m.—5.30 p.m. Closed Sat., 1—2.30 p.m. Complete range of TV Tubes available from £4.5.0.

Manufacturers and Export enquiries welcomed

LATEST RELEASE OF RCA COMMUNICATION RECEIVERS AR88

BRAND NEW and in original cases—A.C. mains input. 110V or 250V. Freq. in 6 bands 535 Kc/s-32 Mc/s. Output impedance 2.5-600 ohms. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control, R.F. & A.F. variable controls. Price £87/10/each, carr. £2.

Same model as above: Fully Recond. by M.O.D. £65. ea., or sec hand cond. (guaranteed working order) from £45 to £60, carr. £2.

*SET OF VALVES: new, £3/10/- a set, post 7/6; SPEAKERS: new, £3 each, post 10/-. *HEADPHONES: new, £1/5/- a pair, 600 ohms impedance. Post 5/-.

AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L55. Price 10/- each, post 2/6. RF Coils 13 & 14; 17 & 18; 23 & 24; and 27 and 28. Price 12/6 each. 2/6 post. By-pass Capacitor K.98034-1, 3×0.05 mfd. and M.980344, 3×0.01 mfd., 3 for 10/-, post 2/6. Trimmers 95534-502, 2-20 p.f. Box of 3, 10/-, post 2/6. Block Condenser, 3×4 mfd., 600 v., £2 each, 4/- post. Output transformers 901666-501 27/6 each, 4/- post AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscil-

4/- post.

* Available with Receiver only.

If wishing to call at Stores, please telephone for appointment.

FOR EXPORT ONLY BRITISH & AMERICAN COMMUNICATION EQUIPMENT

VRC.19X Trans-ceiver, 150-170Mc/s, 2 Channel, 20 Watts, Output 12/24V d.c. operation. General Electric Transmitter, 410-419Mc/s, thin line tropo scatter system, with antennae. W.S. Type 88, Crystal controlled, 40-48 Mc/s. W.S. Type HF-156, Mk. II, Crystal controlled, 2.5-7.5 Mc/s. W.S. Type 62, tunable, 15-12 Mc/s. C.44, Mk. II, Radio Telephone, Single Channel, 70-85 Mc/s, 50 watts, output, 230V. a.c. input. G.E.C. Progress Line Tx Type DO36, 144-174 Mc/s, 50 watt, narrow band width. A.C. input 115V. BC-640 Tx, 100-156 Mc/s, 50 watt output, 110V or 230V input. STC Tx/Rx Type 9X, TR1985; RT1986; TR1987 and TR1998, 100-156 Mc/s. TRC-1 Tx/Rx, Types T.14 and R.19, FM 60-90 Mc/s. With associated equipment available. Redifion GR410 Tx/Rx, SSB, 1.5-20 Mc/s. Sun-Air Tx/Rx Type T-10-R. Collins Tx/Rx/Type 1854A. Collins Tx/Rx Type ARC-27, 200-400 Mc/s, 28V d.c. With associated equipment available. ARC-5; ARC-3; and ARC-2 Tx/Rx. BC-375; 433G; 348; 718; 458; 455 Tx/Rx. Directional Finding Equipment CRD.6 and FRD.2 complete Sets available and spares. Complete system with full set of Manuals.

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. 85 Kc/s-25Mc/s in 8 ranges. Incremental: ± 1% at 1Mc/s. Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms 100mV - 1 volt - 52.5 ohms. Internal Modulation: 400c/s sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains 200/250V. 40-100c/s. Consumption approx. 40 watts. Measurements 191 × 121 × 10 in. Secondhand condition. £25 each, carr. 30/-.

TRIPLETT SIGNAL GENERATOR Model 1632: Contains an R.F. Oscillator calibrated in 10 fundamental bands, covering a freq. of 100 Kc/s-120 Mc/s. Also a buffer amplifier and modulator stage, a metering system, crystal Oscillator stage, and a self-contained Heterodyne Detector. The wide frequency range covers broadcast, standard short-wave, T.V. and FM channels. Operates 115V a.c. 50/60 c/s. Output Meter 0-0.3 V. Controls: Ext. Mod.; Int. Mod.; CW; Het. Det.; Xtal.; AFO/put; RF Level; O/put Units; and O/put Multiplier. Slow and Fast motion dial. Price £12.10.0 very good second-hand cond.; or £15.10.0 "as new" cond. Carr. 15/-.

MILLS 3-B TRULOCK ROAD, LONDON, N17 DPG

SOLARTRON PULSE GENERATOR GP1101.2: Period—2 microsecs to 100 msec; Pulse Duration—1 microsec to 100 msec; Delay time—1 microsec to 10 msec. All continuously variable in 5 ranges with fine control. Accuracy ±10%, Pulse Amplitude—0.5V-100V. Accuracy ±10% continuously variable in 4 ranges with fine control. Double Pulses; Pre-Pulse; Triggering; Square Wave O/pur; Squaring Amplifier. Input—100-250V, 50-60 c/s. New condition with Manual. Price: £85.0.0 each + £1.5.0 carr.

SPECTRUM ANALYZER MODEL TSA: (Polarad Electronics Corp.). A general-purpose superheterodyne receiver designed to provide a visual display of the spectral distribution of RF energy. Typical application of the equipment includes determining the presence and measuring the frequency of RF Signals, determining the types of RF signal modulation, observing and measuring sidebands associated with modulated signals, determining RF pulse characteristics by spectrum analysis, checking the operation of pulsed magnetron oscillators, measuring noise spectra and checking the frequency difference between adjacent RF signals. RF signals are displayed on a cathode ray tube screen with amplitude plotted as a function of frequency. Complete with RF Tuning Unit type STU-2: Freq. Range—910-4560 Mc/s. Sensitivity:—95 to—95 dbm from 910-2200 Mc/s per sec. —75 to—87 dbm from 1980-4560 Mc/s per sec. RF Attenuation Range—0-100 decibels. Price: £150.0.0 each + £2 carr.

SIGNAL GENERATOR TS-510A/U: (Hewlett Packard). A general-purpose signal generator designed to furnish signals with a very low spurious energy content, suitable for alignment of narrow-band amplitude modulated receivers. It may be amplitude modulated by internally generated sine waves or pulses. Freq. Range—10-420 Mc/s in 5 bands, ±0.5% accuracy. Emission—AM, CW, Pulse. O/put Voltage—0.1V-0.5V, calibrated ±2 db accuracy. Modulation—Internal 400, 1000 c/s (0-90%). Built-in Crystal calibrator (1, 5 Mc/s). Price: £150.0 each, complete with transit case, manual and all leads; OR £125.0.0 each, Sig. Gen. only. Carr. both types £2.

SIGNAL GENERATOR TS-403B/U (or URM-61A): (Hewlett Packard). A portable, self-contained, general-purpose test equipment designed for use with radio and radar receivers and for other applications requiring small amounts of RF power such as measuring standing-wave ratios, antenna and transmission line characteristics, conversion gain, etc. Both the output freq. and power are indicated on direct-reading dials. 115V, AC, 50 c/s. Freq.—1800-4000 Mc/s. CW, FM, Modulated Pulse—40-4000 pulses per sec. Pulse Width—0.5-10 microsecs. Timing—Undelayed or delayed from 3-300 microsecs from external or internal pulse. O/put—I milliwatt max., 0 to —127 db variable. O/put Impedance—50 Ω. Price: £120.0.0 each + £2 carr.

SIGNAL GENERATOR TYPE 902: (P.R.D.). A portable, general-purpose, broadband, microwave signal generator designed for testing and maintenance of aircraft radio and radar receivers in the SHF band. The RF output level is regulated by a variable attenuator calibrated in dbm. The frequency dial is realibrated in Mc/s. Provision is made for external modulation. Power Supply—115V, $\pm10\%$ A.C., 50 c/s. Freq.—3650-7300 Mc/s. Internal Transmission—CW, Pulse, FM. External Transmission—Square Wave, Pulse. Power O/put—0.2 milliwatts. O/put Attenuator: —7 to —127 dbm. Load—50 Ω . Price: £135.0.0 each \pm £2 carr.

TEST SET TS-147C: Combined signal generator, frequency meter and power meter for 8500-9600 Mc/s. CW or FM signals of known freq. and power or measurement of same. Signal Generator: O/put —7 to —85 dbm. Transmission—FM, PM, CW. Sweep Rate—0-6 Mc/s per microsec. Deviation—0-40 Mc/s per sec. Phase Range—3-50 microsec. Pulse Repetition Rate—to 4000 pulses per sec. RF Trigger for Sawtooth Sweep—5-500 watts peak. 0.2-6 microsec. duration, 0.5 microsec pulse rise time. Video Trigger for Sawtooth Sweep—Positive polarity, 10-50V peak. 0.5-20 microsec duration at 10% max. amplitude, less than 0.5 microsec rise time between 90% and 10% max. amplitude points. Frequency Meter: Freq. 8470-9360 Mc/s. Accuracy—+2.5 Mc/s per sec. absolute, +1.0 Mc/s per sec. at 9310 Mc/s per sec. calvalvation point. Accuracy measured at 25° C and 60 humidity. Power Meter: Input: +7 to +30 dbm. Output —7 to —85 dbm. Price: £75.0.0 each + £1 carr

SIGNAL GENERATOR TS-418/URM49: Covers 400-1000 Mc/s range. CW, Pulse or AM emission. Power Range—0-120 dbm. Price: £105.0.0 each + £1.5.0 carr.

SIGNAL GENERATOR TS-419/URM64: Freq. 900-2100 Mc/s. CW or Pulse emission. Accuracy—freq. \pm 1%. Power \pm 2 db. Price: £125.0.0 each \pm £1.5.0 carr.

TELEMETRY AUDIO OSCILLATOR TYPE 200T: (Hewlett Packard). Freq.— 250 c/s-100 Kc/s. 5 over-lapping bands. High stability. O/put 160 mw or 10V into 600 Ω . Price: **£65.0.0** each + £1.5.0 carr.

SIGNAL GENERATOR TS-497B/URR: (Boonton). Freq. 2-400 Mc/s in 6 bands. Internal Mod. 400 or 1000 c/s per sec. External Mod. 50 to 10,000 c/s per sec. External PM. Percent Mod. 0-30 for sine wave. Am or Pulse Carrier, O/put Voltage 0.1-100,000 microvolts cont. variable. Impedance $50~\Omega$. Price: \$85.0.0 each +~ £1.10.0 carr.

FREQUENCY METER TS-74 (same TS-174): Heterodyne crystal controlled. Freq. 20-280 Mc/s. Accuracy .05%. Sensitivity 20 mV. Internal Mod. at 1000 c/s. Power Supply—batteries 6V and 135V. Complete with calibration book. (Manufactured for M.O.D. by Telemax. "As new" in cartons.) £75.0.0 each. Fully stabilised Power Supply available at extra cost £7.10.0 each. Carr. £1.10.0.

CT.54 VALVE VOLTMETER: Portable battery operated. In strong metal case with full operating instructions. 2.4V-480V. A.C. or D.C. in 6 Ranges, 1Ω to $10 \, \text{Meg} \, \Omega$ in 5 Ranges. Indicated on 4in. scale meter. Complete with probe, excellent condition. £12.10.0. Carr. 15/-.

ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C. @ 1.8 amps, 400 c/s 3 phase, £6/10/- each, 8/- post. 24 v D.C. input, 175 v D.C. @ 40mA output, 25/- each, post 2/-.

CONDENSERS: 40 mfd, 440 v A.C. wkg., £5 each, 10/- post. 30 mfd, 600 v wkg. D.C., £3/10/- each, post 10/-. 15 mfd, 330 v A.C. wkg., 15/- each, post 5/-. 10 mfd, 1000 v, 12/6 each, post 2/6. 10 mfd, 600 v, 8/6 each, post 5/-. 8 mfd, 2500 £5 + 12/6 carr. 8 mfd, 1200 v, 12/6 each, post 3/-. 8 mfd, 600 v, 8/6 each, post 2/6. 4 mfd, 3000 v wkg., £3 each, post 7/6. 4 mfd 2000 v. £2 + 5/- post. 4 mfd. 600 v. 2 for £1. 0.25 mfd, 2Kv, 4/- each, 1/6 post. 0.01 mfd. MICA 2.5 KV. Price £1 for 5. Post 2/6. Capacitor: 0.125 mfd, 27,000v wkg. £3.15.0 each, 10/- post.

TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price 25/-, post 5/-.

SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, £2/10/- each post 6/-.

CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps., £2/10/- each, carr. 12/6. OHMITE VARIABLE RESISTOR: 5 ohms, 5½ amps; or 2.6 ohms at 4 amps. Price (either type) £2 each, 4/6 post each.

TX DRIVER UNIT: Freq. 100-156 Mc/s. Valves 3 \times 3C24's; complete with filament transformer 230 v. A.C. Mounted in 19in. panel, £4/10/- each, 15/- carr.

POWER SUPPLY UNIT PN-12A: 230V a.c. input 50-60 c/s. 513V and 1025V @ 420 mA output. With 2 smoothing chokes 9H, 2 Capacitors, 10Mfd 1500V and 10Mfd 600V. Filament Transformer 230V a.c. input. 4 Rectifying Valves type 5Z3. 2 × 5V windings @ 3 Amps each, and 5V @ 6 Amp and 4V @ 0.25 Amp. Mounted on steel base 19 Wx11 Hx14 D. (All connections at the rear.) Excellent condition £6.10.0. each, Carr. £1.

AUTO TRANSFORMER: 230-115V, 50-60c/s, 1000 watts. mounted in a strong steel case $5^{\prime\prime}\times6^{\prime\prime}\times7^{\prime\prime}$. Bitumin impregnated. £5 each, Carr. 12/6. 230-115V, 50-60c/s, 500 watts. $7^{\prime\prime}\times5^{\prime\prime}\times5^{\prime\prime}$. Mounted in steel ventilated case. £3 each, Carr. 10/-

POWER UNIT: 110 v. or 230 v. input switched; 28 v. @ 45 amps. D.C. output. Wt. approx. 100 lbs., £17/10/- each, 30/- carr. SMOOTHING UNITS suitable for above £7/10/- each, 15/- carr.

MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves, microphone and modulator transformers etc. £7/10/- each, 15/- carr.

CANADIAN HEADSET ASSEMBLY: Moving coil headphones $100\,\Omega$, with chamois leather earmuffs. Small hand microphone complete with switch and moving coil insert. New condition. Price 35/- each, post 5/-.

CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG1 (CV1526) colour green, medium persistence complete with nu-metal screen, £3/10/- each, post 7/6.

APNI ALTIMETER TRANS./REC., suitable for conversion 420 Mc/s., complete with all valves 28 v. D.C. 3 relays, 11 valves, price £3 each, carr. 10/-.

ANTENNA WIRE: 100 ft. long. 15/- + 5/- post.

APN-1 INDICATOR METER, 270° Movement. Ideal for making rev. counter. 25/- each, 5/- post.

VARIABLE POWER UNIT: Complete with Zenith variac 0-230V., 9 amps.; 2½ in. scale meter reading 0-250V. Unit is mounted in 19 in. rack. £15 each, 30/-

AIRCRAFT SOLENOID UNIT D.P.S.T.: 24V, 200 Amps, £2 each, 5/- post. RADAR SCANNER ASSEMBLY TYPE 122A: Complete with parabolic reflector, (24 in. diameter), meters, suppressors, etc. £35 each, £2 carr.

DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms. Tolerance $\pm 1\%$ £3 each, 5/- post. 90 ohms per step. 10 positions, total value 900 ohms. 3 Gang. Tolerance $\pm 1\%$ £3/10/- each, 5/- post.

MARCONI DEVIATION TEST SET TF-934: 2.5-100Mc/s (can be extended up to 500Mc/s on Harmonics). Dev. Range 0-75Kc/s in modulation range 50c/s-15Kc/s. 100/250V a.c. £45 each, 30/- cart.

CRYSTAL TEST SET TYPE 193: Used for checking crystals in freq. range 3000-10,000Kc/s. Mains 230V, 50c/s. Measures crystal current under oscillatory conditions and the equivalent parallel resistance. Crystal freq. can be tested in conjunction with a freq. meter. £12.10.0 each, £1 carr.

LEDEX SWITCHING UNIT: 2 ledex switches, 6 Bank and 3 Bank respectively, 6 Pos.; 1 Manual switch, 16 Bank 2 Pos. £4 each, 10/- post.

GEARED MOTOR: 24v. D.C., current 150mA, output 1 rpm, 30/- each, 5/- post. ASSEMBLY UNIT with Letcherbar Tuning Mechanism and potentiometer, 3 rpm, \$2 each, 5/- post. SYNCHROS: and other special purpose motors available. List 6d.

FUEL INDICATOR Type 113R: 24V complete with 2 magnetic counters 0-999, with locking and reset controls mounted in 3in. diameter case. Price £2 each, 5/- post.

COAXIAL TEST EQUIPMENT: COAXWITCH—Mnftrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type "N" female connectors fitted to receive UG-21/U series plugs. New in ctns., \$6/10/- each, post 7/6. CO-AXIAL SWITCH—Mnftrs. Transco Products Inc., Type M1460-22, 2 pole, 2 throw. (New) \$6/10/- each, 4/6 post. 1 pole, 4 throw, Type M1460-4. (New) \$6/10/- each, 4/6 post.

PRD Electronic Inc. Equipment: FREQUENCY METER: Type 587-A, 0.250-1.0 KMC/SEC. (New) £75 each, post 12/6. FIXED ATTENUATOR: Type 130c, 2.0-10.0 KMC/SEC. (New) £5 each, post 4/-. FIXED ATTENUATOR: Type 1157S-1, (new) £6 each, post 5/-.

CT.381 FREQUENCY SWEEP SIGNAL GENERATOR: 85Kc/s-30Mc/s and response curve indicator with 6in. CRT tube and separate power supply. Fully stabilised. Price and further details on request.

CALLERS BY TELEPHONE APPOINTMENT ONLY

W. MILLS

3-B TRULOCK ROAD, LONDON, N17 OPG

Phone: 01-808 9213

BI-PRE-PAK

FULLY TESTED AND MARKED 3/-2/6 3/6 2/6 OC170 OC171 4/6 3/6 7/-2/6 OC200 OC201 2G301 76 2G303 2/6 20303 2N711 2N1302-3 2N1304-5 2N1306-7 2N1308-9 10/-2/6 4/-BF274 7/6 AF239 2N3819 F.E.T. Power 9/-AF186 10/ AF186 AF139 BFY50 BSY25 BSY26 BSY27 7/6 Transistors OC20 OC23 OC25 OC26 10/-10/-8/-7/6 BSY28 BSY29 BSY95A OC28 7/6 OC35 OC36 AD149 7/6 10/-10/-0C41 0C44 2/6 2/6 25034 0C45 0C71 0C72 0C73 0C81 2N2287 2N3055 Diodes 20/-15/-3/6 2/6 2/6 AAY42 2/-OA95 OC81D OA79 OA81 1/9 1/9 IN914 1/6

PACKS OF YOUR OWN CHOICE UP TO

THE VALUE OF 10/- WITH ORDERS

OVER £4

CLEARANCE LINES DON'T MISS THIS LAST CHANCE, ONLY A FEW LEFT.

TU.2 CONTAINING 2 AF186's & 2 AF178's PRICE 10/-

UHF/VHF T.V. TUNER UNITS

P&P 2/6 EACH UNIT

All the units have many other components, e.g. Capacitors. Resistors, Coils and tuning condensers, etc. Although these are manufacturers rejects they are not beyond repair as has been proven by many of our customers.

ALL TUNER UNITS ARE SUPPLIED WITH CONNECTION DATA.

COLOUR T.V. LINE OUTPUT TRANSFORMERS.

Designed to give 25 K.V. when used with PL509 and PY500 valves. As removed from colour receivers at the factory. ONLY f1 each

post and packing 4/

	SPECIAL LINE	
1 AMP. Bridge	rectifiers 3" Square	
100 PIV. $= 5/-$	400 PIV. = 6/6 800 PIV. = 8/-	

1970 MULLARD DATA BOOKS.

Data and equivalents on semiconductors, valves and tubes. PRICE 4/- P&P 6d.

BUMPER BUNDLES

These parcels contain all types of surplus electronic components. Printed panels, switches, potentiometers, diodes, transistors etc. Each parcel has a minimum weight of 2lbs and costs £1. Post & Packing 4/6

OUR VERY POPULAR 6d TRANSISTORS FULLY TESTED & GUARANTEED

TYPE "A"

PNP Silicon alloy, metal T0-5 can. 2S300 type, direct replacement for the OC200/203 range TYPE "B"
PNP Silicon

PLASTIC ENCAPSULATION, low voltage but good gain, these are of the 2N3702/3 and 2N4059/62 range.

TYPE "D" NPN Silicon planar PLASTIC TO-18 CASE.

Audio preamplifier or 500 mV output stage. of the BC113/4/5. range.

TYPE "E"
PNP Germanium
AF OR RF

please state on order. Fully marked and tested.

SPECIAL OFFER GERMANIUM BRIDGE RECTIFIERS GEX 541 FINNED SINGLE PHASE 12 ANP 12 ANP 14 VOLTS OFFERED AT FRACTION OF MAKERS COST POST & PACKING 2/6

B80	8	Dual Trans. Matched O/P pairs NPN. Sil. in TO-5 can	10/-
B83	200	Trans. manufacturer's rejects all types NPN, PNP, Sil. and Germ.	10/-
B84	100	Silicon Diodes DO-7 glass equiv. to OA200, OA202	10/-
B86	50	Sil. Diodes sub. min. IN914 and IN916 types	10/-
B88	50	Sil. Trans. NPN, PNP, equiv. to OC200/1, 2N706A, BSY95A, etc.	10/-
B60	10	7 watt Xener Diodes Mixed Voltages	10/-
Н6	40	250mW. Zener Diodes DO-7 Min. Glass Type	10/-
H10	25	Mixed volts, $1\frac{1}{2}$ watt Zeners. Top hat type	10/-
B66	150	Germanium Diodes min. glass type	10/-
H15	30	Top Hat Silicon Rectifiers, 750mA. Mixed volts	10/-
H16	8	Experimenters' Pak of Integrated Circuits. Data supplied	10/-
H20	20	BY126/7 Type Silicon Rectifiers. 1 amp plastic. Mixed volts	10/-
	B83 B84 B86 B88 B60 H6 H10 B66 H15	B83 200 B84 100 B86 50 B88 50 H6 40 H10 25 B66 150 H15 30 H16 8	Bas 200

NEW UNMARKED UNTESTED PAKS

NEV	V TE	STED & GUARANTEED 1N400 / Sil. Rec. Diodes, 1,000 P.J.V.	PAKS
B79	4	1 amp. Plastic.	10/-
B81	10	REED SWITCHES MIXED TYPES LARGE & SMALL	10/-
B89	2	5 SP5 LIGHT SENSITIVE CELLS LIGHT RES. 400 Ω DARK 1 M Ω	10/-
B92	4	NPN SIL. TRANS. A06=BSX20, 2N2369, 500MHz, 360mW	10/-
в93	5	GET113 TRANS. EQUIV. TO ACY17-21 PNP GERM.	10/-
B96	5	2N3136 PNP SIL. TRANS. TO—18 HPE100-300 IC, 600mA, 200MHz	10/-
B98	10	XB112 & XB102 EQUIV. TO AC126 AC156, OC81/2, OC71/2, NKT271, ETC.	10/-
B99	200	MIXED CAPACITORS. POST & PACKING 2/8. APPROX. QUANTITY. COUNTED BY WEIGHT.	10/-
Н4	250	MIXED RESISTORS. POST & PACKING 2/ APPRDX. QUANTITY. COUNTED BY WEIGHT.	10/-
Н7	40	WIREWOUND RESISTORS MIXED TYPES & VALUES. POSTAGE 1/6	10/-
Н8	4	BY127 Silicon Recs. 1000 P.I.V. 1 amp Plastic. Replaces the BY100	10/-
Н9	2	OCP71 LIGHT SENSITIVE PHOTOTRANSISTORS	10/-

Return of the unbeatable P.1 Pak. Now greater value than ever

Full of Short Lead Semiconductors & Electronic Components, approx. 170. We guarantee at least 30 really high quality factory marked Transistors PNP & NPN, and a host of Diodes & Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.

Please ask for Pak P.1. Only 10/-2/- P & P on this Pak.

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any 0-1mA meter into a perfectly linear and accurate rev. 20/-each

FREE CATALOGUE AND LISTS for: -

ZENER DIODES
TRANSISTORS, RECTIFIERS
FULL PRE-PAK LISTS
& SUBSTITUTION CHART

MINIMUM ORDER 10/- CASH WITH ORDER PLEASE, Add 1/- post and packing per order. OVERSEAS ADD EXTRA FOR POSTAGE

P.O. RELAYS ARIOUS CONTACTS AND

VARIOUS CONTACTS AND COIL RESISTANCES.
NO INDIVIDUAL SELECTION.
POST & PACKING 5/-

8 for **20/-**

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

BI-PRE-PAK LTD

DEPT. B, 222-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX TELEPHONE: SOUTHEND (0702) 46344

ete Stereo System **£41**

This superb stereo system is a real price breakthrough. It comprises the VISCOUNT F.E.T. Mk I amplifier on which full details are given below, the famous Garrard SP 25 (including teak veneer base and transparent cover) with diamond cartridge or 2025 TC and the very successful DUO type 2 speakers.

the Duo type 2 speakers are Measuring 171 beautifully finished in teak veneer. They incorporate a 10; 61 drive unit and high frequency speaker, both of which are of 3 ohms impedance. The Duo speaker system is also available separately at £6.6.0, each plus 15 · P & P. Complete stereo system £41 plus

£2.10 P & P.

WITH MK II amplifier and magnetic cartridge £45 plus £2.10 P & P.

High fidelity transistor stereo amplifier employing field effect transistors. With this The Viscount F.E.T. Mk | £14.5s. plus 7/6 P. & P. feature & accompanying guaranteed specifications below, the Viscount F.E.T. vastly surpasses amplifiers costing far more. Size: 12% × 6" × 23." in simulated teak Case. surpasses amplifiers costing far more. Size: 12!" × 6" × 2!" in simulated teak Case.

BUILT & TESTED.

Specification: Output per channel 10 watts rms Frequency bandwidth 20 Hz to 20 kHz ± 1 dB @ 1 watt.

Total distortion: @ 1 kHz @ 9 watts 0.5%.
Input sensitivities: CER, P.U. 100mV into 3 meg ohms.

Tuner 100mV into 100K ohms. Tape 100mV into 100K ohms

Overload Factor: Better than 26 dB.

Signal to noise ratio: 70 dB on all inputs (with vol. max) Controls: 6 position selector switch (3 pos. stereo & 3 pos. mono). Separate Vol. controls for left & right channels. Bass \pm 14 dB @ 60 Hz. Treble (with D.P.S. on/off) \pm 12 dB @ 10 kHz. Tape Recording output sockets on each channel.

Mk II (MAG. P.U.) £15.15.0 plus 10/- p&p Specification same as Mk. I, but with the following inputs.
Mag. P.U. CER, P.U. Tuner. Spec. on Mag. P.U. 3mV @

1 kHz input impedance 47K. Fully equalised to within ± 1 dB RIAA. Signal to noise ratio—65 dB (vol.

Elegant Seven Mk 3 (350mW)

7 transistor fully-tunable M.W.-L.W. superhet portable Set of parts. Complete with all components, including ready etched and drilled printed circuit board—back printed for foolproof construction. MAINS POWER PACK KIT: 9/6 extra. Price £5.5.0 plus 7/6 P. & P.

Circuit 2/6 FREE WITH PARTS

The Dorset (600 mW)

7-transistor fully tunable M.W.-L.W. superhet portable—with baby alarm facility. Set of parts. The latest modulised and pre-alignment techniques makes this simple to build. Sizes: 12 x 8 x 3in. MAINS POWER PACK KIT: 9/6 extra.

Price £5.5.0 plus 7/6 P. & P. Circuit 2/6 FREE WITH PARTS

SOUND 50 AMPLIFIER AND SPEAKER SYSTEM

The Sound Fifty valve amplifier and speakers are sturdily constructed with smart housings and thoroughly tested electronics. They are designed to last—to withstand the knocks and bumps of life on the road. Built for the small and medium sized gig, they are easy to handle and quick to set up and can be relied upon to come over with all

to set up and can be relied upon to come over with all the quality and power you need.

Output Power: 45 watts R.M.S. (Sine wave drive). Frequency response: —3 db points 30 Hz at 18 KHz. Total distortion: less than 2% at rated output. Signal to noise ratio: better than 60 db. Speaker Impedance: 3, 8 or 15 ohms. Bass Control Range: ±13 db at 60 Hz. Treble Control Range: ±12 db at 10 KHz. Inputs: 4 inputs at 5 mV into 470 K. Each pair of inputs controlled by senarate volume control Each pair of inputs controlled by separate volume control. 2 inputs at 200 mV into 470 K.

To protect the output valves, the incorporated fail safe circuit will enable the amplifier to be used at half power. SPEAKERS: Size 20" x 20" x 10" incorporating Baker's 12" heavy duty 25 watt high flux, quality loudspeaker with east frame. Cabinets attractively finished in two tone colour scheme—Black and grey.

COMPLETE SYSTEM **£45**

Amplifier £28.10.0 + 20/- P & P. Speakers ea. £12,10.0 + 30/- P & P. LIQUIDATED STOCK

DANSETTE TOURISTE MK3 CAR RADIO

ALL TRANSISTOR

Beautifully designed to blend with the interiors of all cars. Permeability tuning and long wave loading coils ensures tracking, sensitivity excellent and selectivity on both wave bands. R.F. sensitivity at 1 MHz is better than 8 micro volts. Power output into 3 ohm speaker is 3 watts. Pre-aligned I.F. module and tuner together with comprehensive instructions guarantees success first time. 12 volts negative or positive earth. Size 7" x 2" x $4\frac{1}{2}$ " deep. Originally sold completely built for £15,4,6

SET OF PARTS £6.6.0

Circuit diagram .2/6. Free with parts. Speaker, baffle and fixing kit 25/- extra plus 4/- P & P.

RADIO & TV COMPONENTS (Acton) LTD 21a High Street, Acton, London, W.3. 6.NG

Also 323 Edgware Road, London, W.2. ALL ORDERS BY POST to Acton Goods not dispatched outside U.K. Terms C.W.O. All enquiries S.A.E.

ELECTRONIC COMPONENTS LTD

BETTER QUALITY, SERVICE, PRICES & LARGEST STOCKS

AGGG177 AGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	6 5/- BC126 77 4/- BC138 8 4/- BC137 77 8/- BC147 8 66 8 6149 8 66 5/- BC147 8 66 BC149 8 76 BC149 8 76 BC149 8 76 BC167 8 BC167 8 BC167 8 BC167 8 BC168 8 6/- BC167 8 BC188 8 7/6 BC182 8 3/8 BC1884 8 7/6 BC182 8 3/8 BC1884 8 7/6 BC182 8 3/8 BC183 8 BC183	11 BFX88 11 BFY18 8/6 BFY50 12 BFY51 13/3 BFY50 13/3 BFY50 3/9 BFY53 3/9 BFY53 3/9 BFY53 3/9 BFX19 12 BFY51 12 BFY58 3/6 BFW58 3/9 BSX19 12 BSX20 12.3 BSX21 11.0 BSX20 12.1 BSX20 12.1 BSX20 12.1 BSX20 12.1 BSX20 12.1 BSX20 12.1 BSX20 10 BSX77 10 BSX77 10 BSX78 5 BSY27 10 BSY27 10 BSY33 5 BSY29 10 BSY33 5 BSY29 10 BSY33 5 BSY29 10 BY21 1 GET102 12 GET103 12 GET103 12 GET103 12 MI481 13 MI480 5 MI481 13 MI490 9 MPF102 15 MI491 15 MPF103 5 MPF104 5 MF104 5 MF104 5 NKT12 7/6 NKT12 7/6 NKT12 7/6 NKT35 7/6 NKT3	C 10(6/- NKT451 6/- NKT452 6/- NKT452 6/- NKT635 3/9 NKT613F 3/9 NKT613F 4/7 NKT676 3/7 NKT676 3/7 NKT676 9/- NKT713 6/- NKT117 4/7 NKT34 6/- NKT174 3/7 NKT036 6/- NKT774 3/7 NKT036 6/- NKT10419 3/11 NKT10419 6/- NKT10419 3/11 NKT10419 6/- NKT10419 6/-	9 4/5 S4M 9 4/7 ST2 9 5/5 T1407 9 8/5 T1C45 9 10/6 TIS34 9 3/11 TIS44 9 3/11 TIP31A 9 8/5 TIP32A 9 6/8 V205	F 15/- 2N911 19/- 2N918 33/6 2N918 9/9 2N929 9/8 2N930 8/- 2N1131 17/6 2N1132 1/9 2N1302 12/4 2N1303 14/10 2N1304 20/- 2N1304	10/9 2N2217A 7/3 2N2218A 9/3 2N2218A 9/3 2N2219 4/9 2N2369A 7/3 2N2219 4/9 2N2369A 7/6 2N2613 8/6 2N2646 8/6 2N2646 9/6 2N2646 11/6 2N2904 11/6 2N2905 11/3 2N2906 11/3	2N4058 2/- 2N4059 12/6 2N4059 12/6 2N4061 5/- 2N4061 12/6 2N4061 12/6 2N4284 15/- 2N4288 6/- 2N4289 28/6 2N4291 27/6 2N4291 27/6 2N4287 5/- 2N5027 5/- 2N5027 4/9 2N5027 5/- 2N5027 5/- 2N5027 5/- 2N5029 4/9 2N5027 5/- 2N5029 1/9 2N5021 1/9 2N5021	2/6 2S321 7/- 2S322 18/9 2S323 6/- 2S702 5/6 2S702 5/6 2S703 5/6 2S711 6/- 2S712 6/- 2S7303 6/- 3S7303 6/- 3S7303 3/- ZZTX3303 3/- ZZTX3313 3/- ZZTX3303 3/- ZZTX3313 3/- ZZTX3313 3/- ZZTX3313 3/- ZZTX3313 3/- ZZTX3313 3/- ZZTX3313 3/- ZZTX3313 3/- ZZTX3313 3/- ZZTX3311 3/- ZZTX3311 3	6/- BC 143 8/- BC 143 8/- BC 143 10/- BC 143 11/- BC 1	0 2 10 0 3 9 25 -3 31 9 6 - - - - - - - - - - - - - - - - -
AFII AFII AFII AFII AFII	77 3/6 BF173 19 15/- BF178 18 9/6 BF179 9/16 BF189 10 12/6 BF181 16 8/- BF184 16 8/- BF184 19 7/6 BF185 19 22/6 BF196 22/6 BF196 24/5 BF229 26/- BFX29 27/6 BFX29 20 6/- BFX29 21 3/6 BFX84 110 30/- BFX86 15/- BFX86	6/- MPF105 10/6 NKT11 12/6 NKT12 7/6 NKT32 7/6 NKT42 5/- NKT43 5/- NKT72	8/- NKT227 7/6 NKT228 5/5 NKT229 6/- NKT231 6/- NKT232 6/- NKT237 3/9 NKT238	9/6 NKT10339 6/6 NKT10439 3/11 NKT12329 6/- NKT13429 5/9 NKT13429 4/- NKT16229	9 4/7 ST2 9 5/5 T1407 9 8/5 T1C45 9 10/6 T1S34 9 3/11 T1S44 9 3/11 T1P31A 9 8/5 T1P32A 9 6/8 V205 9 6/4 V405A	9/9 2N929 9/8 2N930 8/- 2N1131 17/6 2N1132 1/9 2N1302 12/4 2N1303 14/10 2N1304	5/3 2N3404 6/- 2N3414 6/- 2N3415 6/- 2N3416 3/7 2N3436 4/6 2N3525 4/11 2N3528	5/6 25001 6/- 25002 7/6 25003 15/- 25004 21/9 25005 19/- 25006	10/- AAZ12 12/6 AAZ13 12/6 BA102 15/- BA110 15/- BA111	6/- 1 N87A 3/2 1 N914 9/- 1 N3713 6/- 1 N3717 6/- 1 N4001 18/- 1 N4002	4/6 3/6 30/- 30/- 1/6 1/6

BC107/8/9 2/6 NPN Planar transistors 25+2/3 100+2/-

2N4871 6/9

Motorola unijunction 25 + 5/9 100 + 4/9

15/-2N3055

115 watt silicon power transistor, Westinghouse 25 + 13/- 100 + 11/-

2N3819 7/-Texas FET 25 + 6/- 100 + 5/3

2/-2N2926

NPN Planar transistors 25+1/8 100+1/6

BF195 2/6

Mullard lock-fit AM/FM Input & Mixer Transistor 25 + 2/- 100 + 1/9

120 WATT IC AMP!! TOSHIBA TH9013P

INTEGRATED CIRCUIT AMPLIFIER as described WW December. Now available ex stock.

£4 9s. 6d. each QUANTITY DISCOUNTS

SPECIAL 0A91 Mullard Diode 25 + 9d. 100 + 7d.

CHEAP LOGIC!! (FAIRCHILD USA)

1-11 12-24 25-99 100 + uL 900 Buffer 8/- 7/- 6/6 5/6

uL 914 Dual 2 input Gate 8/- 7/- 6/6 5/6 uL 923 J-K Flip Flop 10/6 10/- 9/6 9/-

Data and circuits article, 5-page, at 2/6. Article "30 Sug-gested Circuits for Micro-logic", at 3/-. TO5 to DIL conversion spreaders/adap-

SILICON RECTIFIERS

I Amp Miniature Moulded Junction Rectifiers

	PIV	1-24	25 +	100 +	500 +	
I N 400 I	50	1/6	1/4	1/2	1/-	
N4002	100	1/6	1/4	1/2	1 -	
IN4003	200	2/~	1/9	1/6	1/3	
N4004	400	2/-	1/9	1/6	1/3	
I N 4005	600	2/6	2/-	1/9	1/6	
IN4006	800	3/-	2/10	2/6	2/3	
1111007	1000	4.1	2/2	3/0	3/4	

In the event of any IN4000 series going temporarily out of stock we reserve the right to send higher voltage types at

1000 + and over prices on application:

ZENER DIODES

400mW	10% GL	ASS	CASE.	TE>	(AS	Mfr.
152036	3.6 vol	t	1820	82	8-2	volt
152039	3.9 vol	t	1521	00	10	volt
152043	4-3 vol	t	152	10	11	volt
152047	4.7 vol	t	1521	20	12	volt
152056	5.6 vol	t	1521	60	16	volt
152062	6.2 vol	t	1521	80	18	volt
152068	6.8 vol	t	1522	70	27	volt
152075	7.5 vol	t	1523	00	30	volt
Prices:	1-24, 3/6	: 25-	99, 2/9	: 10	0+.	2/3
	, -, -		,			

ULTRASONIC TRANSDUCERS

Operate at 40kc/s. Can be used for remote control systems without cables or electronic links. Type 1404 transducers can transmit and receive.

FREE: With each pair our complete transmitter and receiver circuit.

PRICE £5.18.0 Pair (Sold only in pairs)

INTEGRATED CIRCUITS

		Some I	R.C.A.	Linear	Typ	es			
CA3005	23/6	CA3020	25/3	CA30	28B	21/-	CA30		27/6
CA3011	14/9	CA3021	31/3	CA30	35	24/6	CA30		24/-
CA3012	17/9	CA3022	26/-	CA30	36	14/6	CA30	145	24/6
CA3013	21/-	CA3023	25/3	CA30	39	16/9	CA30		15/2
CA3014	24/9	CA3026	20/-	CA30	41	21/9	CA30	148	40/9
CA3018	16/9	CA3028A	14/9	CA30	42	21/9	CA30)5 I	26/9
Application	on Notes fo	or each indi	ividual t	ype 2/6	d. pe	r copy.			
A234	GEIC I V	Watt Ampli	fier						17/6
A237	GEIC 2 V	Natt Ampli	fler						37/6
PA246	GEIC 5 V	Natt Ampli	fier						52/6
PA424	GE IC Ze	ro Voltage	Switch	7.		18.5		7.9	49/6
SL403A	Plessy 3 V	Vatt Ampli	fier						42/6
SL702C	Plessy Lin	lear					- 6	1.0	29/6
TAA263	Mullard L	inear	× -	x -	2.0				15/-
TAA293	Mullard G	Seneral Pur	pose An	nplifier		2.4	1.0		20/-
TAA310	Record/PI	layback Am	plifier	2.00	8.0				30/-
TAA320		Amplifier							13/-
TADI00	Mullard If	C Receiver		+ 6	4.5			214	39/6
TADIIO	Mullard I	C Receiver							39/6
3N84		n Controlle		h				4.0	26 -
		403A 2/6. I			ld se	parately).		

Prices quoted are current at time of going to press. E. & O.E. and may be subject to variation without notice. Items listed not in current production will be withdrawn when stocks advertised are sold. Semi-conductors offered corry full imanufacturer's guarantee where applicable. Data sheets will be suppolied on request 1/- per copy. Price breaks apply at 25 + and 100 + Please contact Sales Dept. for Price and Availability. Tel.: Brentwood 226470/1. Terms of Business: Retail Mail Orders—cash with order only please. Trade—Net Monthly Account on receipt of satisfactory references.

Despatch: Goods quoted ex stock are normally despatched within one working day by first class post.

Despatch: Goods quoted ex stock are normally despatched within one working day by first class post.

Post and Packing: Allow 1/- per order inland; 4/- Europe: 12/- Commonwealth.

A55 STEREO SYSTEM AUDIOTRINE OWALITY

5 + 5 WATT OUTPUT

GARRARD **5200 CHANGER**

with low mass pick-up arm and Stereo Cartridge. CONT-ROLS: TREBLE, BASS, VOLUME STEREO BALANCE. Operation on 200 · 250 v. A.C. ains. Output rating

PAIR OF LOUDSPEAKER UNITS

incorporating high flux 8in. \times 5in. speaker. Size approx. $13 \times 7\frac{1}{2} \times 8\frac{3}{2}$ ins.

PRICE COMPLETE ONLY Carr. 25/- 40 Gns.

Terms: Deposit £5,10.0 and 9 monthly payments £4.10.0 (Total £46.0.0).

FANE 807 HIGH FIDELITY Unit for excellent sound quality in suitable enclosure. Roll P.V.C. cone surround and long throw volce coil to achieve very low fundamental resonance at 30 c.p.s. Tweeter cone is fitted to extend high note response. Prequency range 25-16 KHz. Imp. 30 or 8-15 Q. Cast chassis. Remarkable value.

70/-

AUDIOTRINE HIGH FIDELITY

LOUDSPEAKERS Heavy construction. Latest high efficiency ceramic magnets. Treated Cone surround or "D" indicates Roll Rubber surround. "D" indicates Roll Rubber surround. "D" indicates Tweeter Cone providing sxtended frequency range up to 15,000 c.p.s. Exceptional performance at low cost. Impedance 3 or 8-16 ohms.

mains. Output rating and 9 monthly payments f4.10.0 (Total £46.0.0).

A REALLY SURPRISING STANDARD OF QUALITY IS OBTAINABLE FROM THIS COMPACT LOW PRICED SYSTEM HF 1920 12* 15W 25/15/-

000

FANE ULTRA HIGH POWER LOUDSPEAKERSAll power ratings are

years' guarantee, High flux ceramic magnets. Heavy cast chassis. All carriage free. 'POP' 100| 'POP' 60

18in. 100 watt 14,000 gauss 8/15Ω

21Gns. Dep.: 26 and 9 Dep.: 3 gns. and monthly pay. 9 monthly pay-ments 26/6 (Total monthly pay-ments £2 (Total FOR BASS GUITAR OR ELECT. ORGAN, ETC.

15in, 60 watt i4,000 gauss 8/15Ω 12in. 50 watt 13,000 gauss £12. 18. 0.

10Gns. Dep.: 22 and 9 monthly pay-ments 22/6 (Total

'POP' 50

15Ω

FANE LOUDSPEAKERS POP'25/2 ual cone 160 (for uses other pure 12in. 25watt gan. Carr. free. or dep.: 22/-26 6 . 15 . 0 cotal \$7.12.6).

(Total \$7.12.6).

R.S.C. TA6 6 Watt High Fidelity Solid State Amplifier

State Amplifier

200-250v. A.C. mains operated
Frequency Response 30200,000 c.p.s. — 2dB. Harmonic Distortion 0.3% at
1,000 c.p.s. Separate Bass and
ontroils. 3 input sockets for
Mike, Gram. Radio or Tape. Input selector switch
Output for 3-15 ohm speakers. Max. sensitivity 5mV.
Output rating I.H.F.M. In fully enclosed enamelled case,
approx. 94 × 24 × 64in. Attractive brushed silver finish
facia plate 104 × 34in. and matching knobs.
Complete kit of parks with full wiring
diagrams and instructions.

OR FACTORY BUILT with 12 months' gitee. 28,19.9 OR FACTORY BUILT with 12 months' g'tee

R. S.C. BATTERY/MAINS CONVERSION UNITS

R.3. DAILERI/MAINS CUNTY
Type BMI. An all-dry battery eliminator. Size 5½ ×4½ ×2in. approx. Completely replaces batteries supplying 1.5 v. and 90 v. where A.C. majins 200/250 v. 50 c/s. is available. Complete kit with diagram BN/or

HIGH QUALITY LOUDSPEAKERS

In teak or afrormosia veneered cabinets. L13 3 or 15 ohms

M o d e 1 Gauss 10,000 5 Gns. lines, Carr. 7/6 5 Gns.

R.S.C. COLUMN

R.S.C. COLUMN
SPEAKERS
Covered in Rexine and
Vynair, ideal for vocalists and Public Address. 15 ohm matching.
TYPE C488, 30 watts.
Fitted four 8in. high
flux 8w. speakers. Or
dep. #3. 14 Cen. ep. £3 16 Gns. mthly pmts 35/6 (Tot sl £18/19/6). Car.10s TYPE C4128, 50 watts

20 Watt Model. Fitted four 12in. 11,000 lines 600 lines. 8ize 10 ln. approx. Or dep. 24 and 9 26 Gns. 28/19/9 mthly. symte. of 28/19/9 58/8 (Total £30/8/0). carr. 15/-

AUDIOTRINE HI-FI SPEAKER SYSTEMS
Consisting of matched 12in. 11,000 line 15 watt
15 ohn high quality speaker, cross-over unit and
tweeter. Smooth response and extended frequency range ensure surprisingly realistic reproduction.
Or SENIOR 15 WATT inc. HF 126
15,000 line Speaker £6/15. Carr. 6/6.

HI-FI LO UDSPEAKER ENCLOSURES
Teak or Afrormosia veneer finish. Modern design.
Acoustically lined, All sizes approx. Carr. 7/6 extra.
JE8 8ize 16 x 11 x 9ln. Pressurised.
Gives pleasing results with any 8in. 44.14.6
BE8 For optimum performance with 45.15.0
any 8in. HI-Fi 'speaker. 22 x 15 x 9ln. Ported
SE10 For outstanding results with Hi-Fi 10in. 45.19.9
speaker. 24 x 15 x 10in. Ported
SE12 For high performance with 12in. Hi-Fi speaker 46.19.9
and Tweeter. 8ize 26 x 16 x 10 tln. Pressurised.

TAI2 MK III 6.5 + 6.5 WATT STEREO AMPLIFIER
FULLY TRANSISTORISED, SOLID STATE CONSTRUCTION HIGH FIDELITY
OUTPUT OF 6.5 WATTS PER CHANNEL
Designed for optimum performance with
any crystal or ceramic Gram P.U. cartridge,
Radio tuner, Tape recorder, 'Mike' etc.

† 3 separate switched input sockets on each
channel † Separate Bass and Treble controls

† Slide Switch for mono use † Speaker
Output 3.15 ohms † For 200-250 v.
A.C. mains † Frequency Response 2020,000c.ps. - 2dB † Harmonic Distortion 0.3% at 1000c.ps. Hum and noise

- 70dB † Sensitivities (I) 50 mV (2) 400 mV (3) 100 mV † Handsome finish
Facia Plate and Knobs. Output rating I.H.F.M. Complete kit of parts with
full wiring diagrams and instructions 13; GNS. Carr. 7/9.
FACTORY BUILT WITH 12 MTH ONTEE 17 gms. Or dep. 23 and 9 mthly
pymts. 38/- (Total 220.11.0) Or in Teak or Afrormosia veneer housing
20; GNS. or Dep. 3 GNS. and 9 mthly. pymnts. 47/- (Total 224.8.0).

SELENIUM RECTIFIERS F.W. Bridged 6/12v. D.C. Output Input Max. 18v A.C. la., 4/3; 2a., 6/11; 3a., 9/9; 4a., 12/9; 6a., 15/9

R.S.C. G66 6+6 WATT HIGH QUALITY STEREO AMPLIFIER

Individual Ganged controls: Bass, Treble, Volume and Balance, Printed circuit construction employing 10 Transistors plus Diodes. Output rating I.H.F.M. Suitable for Crystal Pick-ups etc., and for loudspeaker output impedances of 3 to 15 ohms. For standard 200-250 v A.C. mains operation. Attractive silver finished metal facia plate and matching control knobs. Complete KIT of PARTS INCLUDING FULLY WIRED PRINTED CIRCUIT and companying wiring diagram and instructions 29.19.

R.S.C. A10 30 WATT ULTRA LINEAR

R.S.C. A10 30 WAII ULIRA LINEAK
HI-FI AMPLIFIER Highly sensitive. Push-Pull high
output, with Pre-amp./Tone Control Stages. Hum level —704B. Frequency response ±3dB
30-20,000 c/s. All high grade components. Valves EF86, EF86,
ECC33, 807.807, GZ34. Separate Bass and Treble Controls.
Sensitivity 36 millivolts. Suitable for High Impedance mic. or
pick-ups. Designed for Clubs, Schools, Theatres, Dance Halls or
Outdoor Functions, etc. For use with Electronic Organ, Guitar,
String Bass, etc. Gram, Radio or Tape. Reserve L.T. and H.T. for Radio Tuner. Two inputs with
associated volume controls so that two separate inputs such as Gram and "Mike" can be mixed.
200-250 v., A.C. mains. For 3 & 15 ohm speakers. Complete Kit parts wiring diagrams, instructions
15 gns. Twin-handled perforated cover 35/s... Or factory built with EL34 output valves and
12 months guarantee for 18 gns. Tech. figs. apply to factory built units. Carr. 12/6.
TERMS: Deposit \$3,9.0 and 9 monthly payments of \$2 (Total 221/9/0). Send S.A.E. for leaflet.

0 0

0 0

RSC BASS-REGENT 50 watt AMPLIFIER

00000

A powerful high quality, all purpose unit. For lead, rhythm, base guitar, vocalists, gram., radio, tape. Peak output rating. Employing current valves and reliable components. FOUR JACK INFUTS and TWO VOLUME CONTROLS for simultaneous use of up to 4 pick-ups or ONLY £30 mikes'. SEPARATE BASS AND TREBLE CONTROLS. OR SUPPLIED COMPLETE WITH MATCHED TWIN Carr. 17/6 LOUDSPEAKER UNIT as illustrated FOR £60, carr. 30/. Terms available

THE 'YORK' HIGH FIDELITY 3'SPEAKER SYSTEM

Moderate size (approx. 25 × 14 × 10 in.). Range 30-20,000 c.p.s. Impedance 15 ohms. Performance comparable with units costing considerably more. Consists of (1) 121n. 15 watt Bass unit with cast chassis. Roll rubber cone surround for ultra low resonance, and ceramic magnet. (2) 3-way quarter section series cross-over system. (3) 8 × 51n. high flux middle range speaker. (4) High efficiency tweeter. (5) Appropriate quantity acoustic damping material. (6) Teak veneered cabinet. (7) Circuit and full instructions.

REMARKABLE VALUE

Complete kit

12 Gns. 1276

13 Gns. 1276

16 Sns. 1276

18 Gns. 1276

19 Gns. 1276

AVAILABLE

R.S.C. MAINS TRANSFORMERS FULLY GUARANTEED. Interleaved and Impregnated. Primaries 200-250v. 50c/s. Screened

INTEREST CHARGES REFUNDED

On Credit Sales settled In 3 months

MIDGET OLAMPED TYPE 21 × 21 × 21 in. 250 v., 60 mA, 6.3 v. 2 a. 250-0-250v., 60 mA, 6.3 v. 2a. 17/11 18/11 250-0-250v. 60mA, 6.3v. 2a.

PULLY SHROUDED UPRIGHT MOUNTING
250-0-250v. 60mA, 6.3v. 2a., 0.5-6.3v. 2a.
250-0-250v. 100mA, 6.3v. 4a., 0-5-6.3v. 3a.
300-0-300v. 100mA, 6.3v. 4a., 0-6-0.3v. 3a.
300-0-300v. 100mA, 6.3v. 4a., 0-6.3v. 3a.
500-0-300v. 100mA, 6.3v. 4a., 0-6.3v. 3a.
300-0-350v. 100mA, 6.3v. 4a., 0-5-6.3v. 3a.
350-0-350v. 100mA, 6.3v. 4a., 0.5-6.3v. 3a.
425-0-425v. 200mA, 6.3v. 4a., 0.5-0.3v. 3a.
425-0-425v. 200mA, 6.3v. 4a., 6.3v. 3a.
426-0-450v. 200mA, 6.3v. 4a., 6.3v. 3a.
450-0-450v. 200mA, 6.3v. 4a., 6.5v. 3a 39/9 39/9

TOP SHROUDED DROP-THROUGH TYPE

TOP SHROUDED DROP-THROUGH TYPE 250-0-250v. 70m. 4, 6.3v. 2a., 0.5-6.3v. 2a. 250-0-250v. 100m.4, 6.3v. 3, 5a. 250-0-250v. 100m.4, 6.3v. 2a., 6.3v. 1a. 350-0-350v. 100m.4, 6.3v. 2a., 6.3v. 1a. 350-0-350v. 100m.4, 6.3v. 4a., 0.5-6.3v. 2a. 300-0-300v. 100m.4, 6.3v. 4a., 0.5-6.3v. 3a. 300-0-300v. 130m.4, 6.3v. 4a., 0.5-6.3v. 1a. Suitable for Mullard 510 Amplifier 360-0-350v. 100m.4, 6.3v. 4a., 0.5-6.3v. 1a. 350-0-350v. 100m.4, 6.3v. 4a., 0.5-6.3v. 3a. 350-0-350v. 100m.4, 6.3v. 4a., 0.5-6.3v. 3a.

FILAMENT or TRANSISTOR POWER PAGE Types 6.3 v. 1.5a. 8/9; 6.3 v. 2a. 9/9; 6.3 v. 3a. 13/9; 6.3 v. 6a. 22/9; 12 v. 1a. 9/11; 12 v. 3a. or 24 v. 1.5a. 23/9; 0-9-18 v. 14a. 19/11; 0-12-25-42 v. 2a. 31/9.

CHARGER TRANSFORMERS 0-9-15v. 14a. 18/9; 24a 19/11; 3a. 21/11; 5a. 25/11; 6a. 29/9; 6a. 36/9-4UTO (Sep UP/Step DOWN) TEARSFORMERS 0-110/120v.-200-230-250v. 50-80 watts 19/9 100 watts 33/8; 250 watts 49/9; 500 watts 105/

150 watts, 33/6; 250 watts 49/9; 500 watts 105/OUTPUT TRANSFORMERS
Standard Pentode 5,000 p or 7,000 p to 30
Push-Pull 8 watts ELS4 to 30 or 150
Push-Pull 10 watts 64 ECL85 to 3, 5, 8 or 15
Push-Pull 11.5 18 watts, sectionally wound 51.0, etc.
KT66, etc., for 3 or 150
Push-Pull 20 watt high quality sectionally wound ELS4, 81.6 KT66, etc. to 3 or 150
9/9/9

59/9 SMOOTHING CHOKES SMOOTHING CHOKES 150mA. 7-10H. 250 \(\text{10} \) 12/9; 100mA. 10H. 200 \(\text{10} \) 10/9; 80mA. 10H. 350 \(\text{1} \) 8/9; 60mA. 10H. 400 \(\text{1} \) 4/11. R.S.C. PLINTHS

39/9

Superior Solid

Natural Wood Construction for R Playing 3 Gns AT60

Available with Trans- 6 Gns.

RECORD PLAYING UNITS MONEY SAVING UNITS MONEY SAVING UNITS Ready to plug into Amplifier. RP2C Consisting of Garrard C890 high compliance ceramic Stereo/Mono cartridge with diamond stylus. Mounted on plinth. Transparent plastic cover included £24-12-6

Carr. 10/8 LZT LZ

RP5C Garrard 2025 Auto Unit
RP5C Garrard 2025 Auto Unit
Cartridge with diamond tip.
Plinth and Cover as I5Gns.
OTHER TYPES with Magnetic
P.U. Carridges and 'Lift off'
or 'Roll over' transparent covers
at lowest prices.

R.S.C. SUPER 30 Mk II HIGH FIDELITY STEREO AMPLIFIER

HIGH GRADE COMPONENTS.
SPECIFICATIONS COMPARABLE WITH
UNITS COSTING CONSIDERABLY MORE Employing Twin Printed Circuits. 200/250v A.C. mains operation.

TRANSISTORS: 9 high-quality types per channel. OUTPUT (Per channel): 10 Watts R.M.S. continuous into 15Ω 15 Watts R.M.S. continuous into 3Ω . Ceramic P.U. 35 m.v. Tape Amp. 400 m.v. Aux. 100 m.v. Mic. 5 m.v. Tape Head 2.5 m.v.

FREQUENCY RESPONSE: ±2dB. 10-20,000 c.p.s.
TREBLE CONTROL: +17 dB to —14 dB at 10 Kc/s.
BASS CONTROL: +17 dB to —15 dB at 50 c/s.
HUM LEVEL: —90 dB.

HARMONIC DISTORTION: 0.1% at 10 Watts CROSS TALK: 52 dB at 1,000 c.p.s.

BRADFORD 10 North Parade (Half-day Wed.). Tel. 25349 BLACKPOOL (Agent) O & C Electronics 227 Church St.

BIRMINGHAM 30/31 Gt. Western Arcade. Tel.: 021-236 1279, Half-day Wed.

HI-FI CENTRES LTD.

CONTROLS: 5-position Input Selector, Bass, Treble, Vol., Bal., Stereo/
Mono Sw., Tape Monitor Sw., Mains Sw.
INFUT SOCKETS: (1) P.U. (2) Tape Amp. (3) Radio. (4) Mic. or Tape
Head. (Operation of Input Selector assures appropriate equalisation.)
CHASSIS: Strong Steel construction. Approx. 12 × 3 × 8in.
PACIA PLATE: Attractive design in rigid "Perspex" with silver background. Spun silver matching control knobs as available. Or in Teak or Afrormosia veneer 32 Gns. housing as illustrated. Carr. 15/-. Terms: Deposit £4 and 9 monthly payments \$3.14.0. (Total £37.6.0). Send S.A.E. for leaflet. LEICESTER 32 High Street (Half-day Thurs.). Tel. 56420 LEEDS 5-7 County (Mecca) Arcade, Briggate
(Half-day Wed.) Tel. 28252
LIVERPOOL 73 Dale St. (Half-day Wed.).
Tel. CENtral 3573

EMINENTLY SUITABLE FOR USE WITH ANY MAKE OF PICK-UP OR MIC. (Ceramic or Magnetic,

SUPERB SOUND OUTPUT QUALITY CAN BE OBTAINED BY USE WITH FIRST-RATE ANGILLARY EQUIPMENT.

COMPLETE KIT OF PARTS, point to point wiring diagrams & detailed instructions 22 Gns.

UNIT FACTORY BUILT 29 Gns.

Or deposit £4 and 9 mthly, payments £3.6.6. (Total £33.18.6).

Ribbon or Crystal) CHERENTLY

LONDON 238 Edgware Road, W.2 (Half-day Thurs.). Tel. PAD 1629

DERBY 26 Osmaston Rd. The Spot (Half-day Wed.).

DARLINGTON 18 Priestgate (Half-day Wed.). Tel. 41361

DARLINGTON 18 Priestgate (Half-day Wed.). Tel. 68043

EDINBURGH 133 Leith St. (Half-day Wed.).

Tel. Waverley 5766

GLASGOW 326 Argyle St. (Half-day Thurs.). Tel. 20505

MAIL ORDERS to:
106 Henconner Lane,
106 Henconner Lane,
106 Henconner Lane,
107 March 18 Edgware Road, W.2 (Half-day Med.) Tel. PAD 1629

MANCHESTER 60A Oldham Street (Half-day Wed.).
Tel. CENtral 2778

MIDDLESBROUGH 106 Newport Rd. (Half-day Yed.).
Tel. Wed.). Tel. 47096

NEW CASTLE UPON 41 Blackett Street (opp. Fenwicks Branches open all day Sats.
MIL ORDERS to:
106 Henconner Lane,
107 March 18 Edgware Road, W.2 (Half-day Thurs.).
107 MANCHESTER 60A Oldham Street (Half-day Thurs.).
108 MANCHESTER 60A Oldham Street (Half-day Thurs.)
109 MANCHESTER 60A Oldham Street (Half-day Thurs.)
119 March 197 March 19

www.americanradiohistory.com

G. F. MILWARD Mail Orders: DRAYTON BASSETT, TAMWORTH, STAFFS

ELECTRONIC COMPONENTS

Wholesale/Retail: 369 Alum Rock Road, Birmingham B8 3DR. Tel. 021-327 2339

					_
WIRE-ENDED TYPES			QUOTED WHEN ORDERING T	HESE CAPACITORS	
REF. No. G1/II 20/450V G1/II 20/450V G2/13 40/50V G2/6 8/12V (REV) G3/7 100/25V G3/14 100/180V G5/9 8/8/450V H1/I 1/6V H1/3 4/4V H1/1 40/450V H1/7 20/6V H1/9 50/6V	REF. NO.	REF. No. 6d G.4/14 500/4V 9d H5/3A 500/4V 9d H5/3A 500/2SV 1/- H5/6A 40/3V 1/- H5/77 30/6V 1/- H5/11 320/10V 1/6 H6/1 100/50V 1/6 H6/1 100/50V 1/6 H6/1 200/3V 6d H6/7 200/16V 2/- H6/13 500/3V 1/6 H6/1 100/50V	REF. NO. 1- H7/2 20/15V 9d H7/2 20/16V 2/- H7/3 25/12V 6d H7/4 25/25V 9d H7/5 40/15V 1/- H7/6 50/3V 6d H7/6 26/50V 1/6 H7/7 50/10V 9d H7/7 50/10V 9d H7/8 50/10V 9d H7/8 50/15V 9d H7/9 60/12V	REF. NO.	1/6 1/6 1/6 1/- 1/- 1/- 1/6 1/6 1/- 1/6 2/-
CAN TYPES					
REF. NO. G2/I 6,000/30V G2/I 125/200V (REV) G2/I 50/50V G2/II 100/350V G3/12 200/200/350V G3/2A 200/200/350V G3/4 650/300V G3/9 100/200/250V G3/10 40/20/10/10/350V G3/10A 200/350V G3/10A 200/350V	REF. NO. 5/6 G4/1 300/700/320V 5/- G4/5A 60/350V 1/- G4/6A 60/200/275V 2/- G4/7 40/40/275V 2/- G4/7 40/40/275V 7/6 G4/11 2,000/25V 7/6 G4/11 150/30V 7/6 G5/1 8,000/70V 3/- G5/2 300/300/350V 3/- G5/2 30,000/40V 2/- G5/3 35,000/15V 5/- G5/3 35,000/10V	REF. NO	REF. NO. REF. NO.	REF. NO. H3/4 NO. H3/6 NO. H3/6 NO. H3/9 NO. H3/9 NO. H3/9 NO. H3/9 NO. H3/9 NO. H3/9 NO. H4/5 NO. H4/5 NO. H4/5 NO. H4/5 NO. H4/5 NO. H4/1 NO.	6/- 3/- 2/6 4/- 2/- 1/6 2/- 1/- 7/6 1/6 4/-
TAG ENDS					
REF. NO. G1/4 4/150V G1/5 8/275V G1/5A 32/350V G1/7 16/16/275V G1/12 40/450V	REF. NO.	REF. NO. 1/6 G4/9 8/8/350V 1/- G4/10 350/25V 1/6 G6/1A 3,000/15V 1/- G6/4 1,000/50V	REF. NO. 2/- G6/7 100/275V 2/- G6/12 1,000/12V 3/- H1/9A 50/150V 6/- H3/5 250/150V	REF. NO. 2/ H4/2 250/25V 2/ H4/7A 32/32/275V 1/ H4/12 500/50V 2/ H5/6 250/50V	1/6 2/6 2/- 2/-
PRINTED CIRCUIT. CAN				Terra van	
REF. NO. G1/6 16/32/450V G1/8A 16/350V G1/10 32/275V G1/10 100/100/350V G2/10 100/100/350V G2/12 100/150V G2/14 20/10/10/450V G3/1 60/100/350V G3/6A 50/50/250V G3/6A 50/50/25V, 100/12V G3/11 100/250V G3/11 100/250V	REF. NO.	REF. NO. 5 G5/14 8/8275V 2/- G6/44 1,000/25V 2/- G6/11 40/350V 2/- G6/11 40/350V 2/- G6/12 250/25V 2/- H1/10 10/10/350V 2/- H1/13 250/150V 3/- H2/4 50/80/300V 2/- H2/4 50/80/300V 2/- H2/4 50/80/300V 2/- H2/5 100/100/100/275V 2/6 H2/6 50/275V 2/6 H2/11 32/32/250V 2/6 H2/12 50/50/150V	REF. NO. 1/3/9 100/275V 2/6 H3/19 100/275V 2/6 H3/19 100/250V 1/- H3/13A 6/16/275V 2/- H4/3A 500/50V 1/6 H4/4 400/6 (REV) 2/- H4/6 64/275V 2/- H4/6 64/275V 2/- H4/7 32/32/350V 2/- H4/8 8/8/8/275V 1/6 H4/10 10/10/425V 1/6 H4/13 400/250V 1/6 H5/1 150/200V 1/6 H5/1 H5/1	REF. NO. REF. NO.	2/- 2/6 1/6 2/- 2/- 3/- 1/6 2/- 3/- 1/6 2/-
PRINTED CIRCUIT TYPE			15		
REF. NO. G1/9 16/275V H2/7 10/25V H2/12A 350/12V H2/15 12.5/40V	REF. NO. 1/6 H3/15 350/12V 1/- H5/1 150/30V 1/- H5/14A 1,100/10V 1/6 H6/5 150/25V	REF. NO. 1/6 H6/10 300/9V 1/6 H6/11 300/15V 1/6 H6/14A 900/15V	REF. NO. 1/- H7/12 65/15V 1/6 H7/15 100/16 2/- H8/1 1/350V	REF. NO. H8/4 5/15V 1/6 H8/8 20/9 H8/9 40/15	1/- 1/- 1/6

£5 WORTH OF COMPONENTS FREE!!!!
Thinking of learning another language? If so, apply to us for details of Linguaphone courses.
We will GIVE you £5 worth of components of your selection when you purchase a language

SCREENED LEADS. Specially designed to fill the demand for the most popular types—all leads consist of 9 ft. screened lead—except SL 11 which has 10 ft. co-axial cable. SL 12 hono plug to Phono plug by the phono plug to Phono plug to Standard Jack Plug to Standard Jack Plug to Phono Plug 1/2 SL 12 3-pin DIN to 3-pin DIN 9/2 SL 43-pin DIN to 3-pin DIN 10 Phono Plug 1/2 SL 12 3-pin DIN to 3-pin DIN 10 Phono Plug 1/2 SL 12 3-pin DIN to 3-pin DIN 10 Phono Plug 1/2 SL 12 3-pin DIN to 3-pin DIN 10 Phono Plug 1/2 SL 12 3-pin DIN to 3-pin DIN 10 Phono Plug to Wander Plugs 9/2 SL 16 3-Simm Jack to Wander Plugs 1/2 SL 63-pin DIN to Wander Plugs 1/2 SL 16 3-Simm Jack to Standard Jack Plug to Wander Plugs 1/2 SL 16 3-pin DIN to S-pin DIN 10 Plug 1/2 SL 18 3-pin DIN to 5-pin DIN 1/2 SL 19 3-pin DIN to 5-pin DIN 1/2 SL 10 Co-ax Plug 1/2 SL 21 5-pin DIN 18 to 2 Phono 9/2

MULLARD POLYESTER CONDENSERS 1,000 pf., 1,200 pf., 1,800 pf., 2,200 pf., 400 volts, 3d. each. 25 per cent discount 100 any type. .15uf., .22uf., .27uf., 160 volts 6d. each. 25 per cent discount 100 any one type.

RESISTORS

A part Mest Values in stock. 10/- per 100 of any one value. 2/- dozen. 3d. singles. MAINS DROPPER TYPE. Hundreds on values from .7 ohm upwards. I watt to 50 watts. A large percentage of these are multi-tapped droppers for radio/television. Owing to the huge variety these can only be offered 'assorted'. 10/- per dozen.

SILVER MICA/ CERAMIC/ POLYSTYRENE CONDENSERS Large range in stock. 15/- per 100 of any one value. 3/- per dozen. Singles 6d. each

RECORDING TAPE BARGAIN! The very best British Made low-noise, high-quality Tape! Sin. Standard, 7/6d. Long-play 9/-. 5lin. Standard 9/-. Long-play 12/-7in. Standard 12/-. Long-play 16/3. We are getting a fantastic number of repeat orders for this tape. Might we suggest that you order now whilst we still have a good stock available?

RECORD PLAYER AMPLIFIERS

I watt, 8 ohm output. All transistor, complete with screened input lead, volume control and speaker leads. This excellent unit has built-in rectifier and smoothing components enabling it to be used direct from any 6 to 9 volt bell transformer. Perfect for baby alarm or inter-com. Few only left. Cannot be repeated at 30/- each.

TRANSISTOR RADIOS

TRANSISTOR RADIOS
Once again we have a supply of these excellent radios which offer superb quality sound and excellent sensitivity. They are packed in a colourful presentation box complete with battery, earpiece and carrying case. Each one is guaranteed. You would expect to pay at least £5—but our price due to a bulk purchase is only 37/6d. Many of our customers have made a considerable profit by buying these radios and re-selling them to friends!

RECORD PLAYER CARTRIDGES. Well below normal shop price! ACOS GP 67/2 15/-, (Mono). ACOS GP 91/3 20/-, (Compatible) ACOS GP 93/1 25/- (Stereo) ACOS GP 94/- 30/-, (Stereo, Ceramic). ACOS GP 93/- DIAMOND 32/6. ACOS 94/I DIAMOND 37/6.

TRANSISTORISED FLUORESCENT LIGHTS. 12 volt. All with Reverse Polarity protection. 8 watt 59/6. 15 watt 79/6. 13 watt 99/6. Postage 3/- per fitting. These can be sent on approval against full payment. Thousands already sold.

MULLARD 'UNILEX' AMPLIFIERS
In our opinion these units are the best value for money ever offered. A complete stereo unit consisting of Control unit, Pre-amplifier, Two Main Amplifiers and Power Pack complete and ready for use—NO extra components to buy—yours for £15. (Normal retail price is £16.10s.)

GARRARD SP 25 UNITS also offered at a discount. Our price only £12.10s. Postage 9/-.

SINCLAIR AMPLIFIERS AND SPEAKERS. Complete range in stock. All at 10 per cent discount on list.

VEROBOARD			
2½in. × lin. × .15 3½in. × 2½in. × .45 3½in. × 3½in. × .15 3;in. × 2½in. × .15	3/3 17in. x 2≩in. x .l 3/11 17in. x 3≹in. x .l	5 11 <i> -</i> 5in. 5 14/8 5in.	× 3½in. × .1 4/5 × 2½in. × .1 4/7 × 3½in. × .1 5/6
Spot Face Cutter 7/6	5. Pin Insert Tool 9/6. Termin sisting of 5.2½in. × Iin. board	nal Pins (,1 or .15) 3	

	CONTRO		concentric	Spindles.				
500k log 50k S/log 100k lin. 100k log 250k log 250k log	+ 50k lin. + Im log + 100k log + 100k log + 500k log + 100k log + 100k lin.	+ Switch + Switch + Switch + Switch + Switch + Switch lin, + Sw	3/- 3/- 3/- 3/- 3/- 3/- 3/-	10k log IM lin. 500k lin. IM lin. 500k lin. 100k log 2M log	++++	IM lin. 2.5M lin. 500k log 100k log	+ Switch no Switch no Switch no Switch no Switch no Switch no Switch	4/6 2/6 2/6 2/6 2/6 2/6 3/6

SPECIAL 10/- PACKS, ORDER 10 PACKS AND WE WILL INCLUDE AN EXTRA

ONE FREE 1111					
RESISTORS. 1/1 watt assorted	100	10/-	TRANSISTORS		
Wire-wound I to 3 watt	20	10/-	P.N.P. Untested but mainly O.K. 50	10/-	
5 to 7 watt	15	10/-	N.P.N. Untested but mainly O.K. 50	10/-	
10 watts	10	10/-	OCP 71 equivalent 5		
Multi-tapped	12	10/-	Light-sensitive Diodes 10	10/-	
PAPER CONDENSERS TV types	50	10/	(These produce up to Ima from light)		
Miniature		10/-	OC 44 Mullard 1st grade 4	10/-	
ELECTROLYTIC CONDENSERS			OC 45 Mullard Boxed 4	10/-	
Suitable for Mains Radio/TV	10	10/-	2G378 Output, Marked	10/-	
Transistor types	20	10/-	2G371 Driver, Marked	10/-	
Mixed (both types)	15	10/-	ASY 22. Marked 5	10/-	
POLYSTYRENE CONDENSERS	100		BY 127 Rectifiers	10/-	
MULLARD POLYESTER COND.	50		IN4007 Rectifiers (1200V peak)	10/-	
SILVER MICA	100	10/-	STC 3/4 Rectifiers 6	10/-	
WIRE WOUND 3-Watt SLIDERS		10/-	DIODES (0A 81 & 0A 91) 40		
VOLUME CONTROLS. Assorted		10/-	WIRE, Solid Core, Insulated 100yds,	10/-	
NUTS AND BOLTS, Mixed lengt			Stranded ditto 50yds.	10/-	
- 8 B.A.	100	10/-	SOLAR CELLS, Large Selenium 2	10/-	
6 B.A.	100	10/-	Small 3	10/-	•
4 B.A.	100	10/-	(6 cells will power a Micromatic radio)	
2 B.A.	100	10/-	CO-AXIAL CABLE.		
METAL SPEAKER GRILLS			Semi Air-spaced 15yds	, 10/-	•
71in. × 31in.	6	10/-	CRYSTAL TAPE RECORDER		
EARPIECES. Magnetic No Plug	6	10/-	MIKES	10/-	
2.5mm Plu			CRYSTAL EARPIECES 3.5mm Plug	10/-	
3.5mm Plu		10/-	TRANSISTORISED Signal Injector	10/-	
500 MICRO-AMP LEVEL METERS	5 1	10/-	TRANSISTORISED Signal Tracer	10/-	ì
VERO-BOARD, TRIAL PACK			TRANSISTORISED CAR REV.		
5 BOARDS + CUTTER		10/-	COUNTER KIT (Needs Ima.	101	
· · · · · · · · · · · · · · · · · · ·			meter as indicator)	10/-	•

G. F. MILWARD, Drayton Bassett, Tamworth, Staffs. Postage (minimum) per order 2/-.

	1 / 11 4	GZ34 10/6
1/8/	1/1 ()	KT66 32/-
*****	III.	KT88 35/-
V LI	ML /	N78 25/-
		OA2 7/-
7/1		OB2 7/-
B12H 85/-	RCH83 8/6	PABC80 7/6
CY31 7/-	ECH84 7/6	PC97 8/-
DAF96 7/9	ECH200	PC900 9/6
DF96 7/6	12/6	PCC84 7/6
DK96 8/3	BCL80 9/-	PCC89 9/-
DL92 6/6	ECL82 6/6	PCC189 11/-
DL94 8/-	ECL83 18/-	PCE800
DL96 8/3	ECL86 8/-	15/-
DM70 6/-	RF36 3/6	PCF80 6/-
DM71 7/6	RF37A 9/-	PCF82 6/9
DY86 6/-	RF39 8/-	PCF84 9/8
	RF40 10/-	
DY87 6/6	RF41 12/6	PCF86 11/6 PCF200
DY802 9/9		
E89CC/01		PCF201
27/-	EF83 9/7	
E180CC 9/-	EF85 6/6	15/6
E181CC 9/-	EF86 6/3	PCF801 9/9
E182CC 28/-	RF89 5/2	PCF802 9/9
RABC80 6/6	RF91 3/-	PCF805
EAF42 10/-	RF92 7/6	14/6
RB91 2/-	RF95 5/-	PCF806
RBC33 10/-	EF183 6/6	13/-
RBC41 10/6	EF184 7/-	PCF808
BCC81 4/-	EFL200	14/6
EBF80 7/6	15/6	PCH200
EBF83 6/-	EL34 10/6	14/-
RBF89 6/-	ELA1 11/6	PCL81 9/6
ECC81 4/-	EL42 10/6	PCL82 7/6
ECC82 5/9	EL84 4/9	PCL83 13/-
ECC83 5/6	EL85 7/3	PCL84 8/6
ECC84 6/-	EL86 8/-	PCL85 8/6
ECC85 12/-	EL90 6/-	PCL86 8/6
ECC86 7/6	RL95 7/-	PFL20011/6
ECC88 7/-	EL500 17/-	PL36 10/9
ECC189 9/9	EM31 5/-	PL81 10/-
ECF80 6/6	EM80 8/-	PL82 8/-
ECF82 6/6	EM84 7/-	PL83 8/6
ECF83 15/6	RM87 11/-	PL84 7/-
ECF801	EY51 8/-	PL500 14/9
1.8/6	EY86 7/-	PL504 13/9
ECF802	EY81 7/-	PX25 40/-
12/6	EY88 8/-	P¥33 12/-
ECH35 12/-	RZ41 8/6	PY80 7/-
ECH42 13/-	EZ80 5/-	PY81 5/6
ECH81 5/9	EZ81 5/6	PY82 5/6

INTEGRATED CIRCUITS

MAN OTHERS IN STOC	•
RCA	
CA 3005 wide band R.F. Ampl.	
300mW diss	27/-
CA 3012 wide band ampl. I50mW	
diss	22/-
CA 3020 Audio power ampl	27,6
CA 3036 Audio pre-ampl	19/-
STC	
MIC 9301B Digital dual 4 imput gates	86/-
MIC 709-1C Linear operational ampl.	190/-
MIC 9005D Highspeed flip-flop	54/-
General Electric	
PA 230 22/6; PA 234 20/-; PA 237	37/6.

lulland AA 300 38/6; TAA 320 11/6. lessey. SL402A 2-5W 42/6 SL403A 3-5 52/6 VALVE VOLTMETER TYPE TF 958

Measures AC 100mV; 20 c/s to 100 mc/s, DC 50mV to 100V, multiplier extends ac range to 1.5kV. Balanced input and centre-zero scale for DC. AC up to 100MHz.

range of the control of the control

SPECTRUM ANALYSER TYPE OA1094

Freq. range: 3 to 30MHz in 9 bands. Selectivity: 6, 30 and 150Hz at 3db. Spectrum width: 0-30kHz. Sweep Duration: 0., 0.3, 1, 3, 10 & 30 secs. Complete as illustrated, with manuals, etc. Price upon application.

AERIAL TUNING UNIT BC 939

Originally made to work with Hallicrafters BC 610E transmitters. 2mc to 18mc, for output up to 450 watts. Brand new £8.10.0. Carriage 20/-.

PRECISION VHF FREQUENCY METER TYPE 183. 20-300 Mc/s with accuracy 0.03% and 300-1,000 Mc/s with accuracy 0.3%. Additional band on harmonics 5.0-6.25 Mc/s with accuracy + -2×10-4 Incorporating calibrating quartz 100 kc/s + -5×10-4 120/220 v. A.C. mains. £85. Carriage £2. Carriage £2.

AVO'S METERS
Model 48A complete with multiplier shunts, etc., in special fitted wooden case, £14.10.0.
Carriage 276.

REDIFON

winplex combiner type AFS 13 £65 winplex converter type AFS 12 with S.W. £85 F.S.K. unit type GK 185A £58/10/0

U801 26/-UABC80 7/-UAF42 16/6 UBC41 2/6 UBF80 7/-UCR5 8/-UCF80 16/-UCH42 12/6 ECH81 #/-PY83 7/-PY88 7/6 PY800 10/6 PY801 10/6 QQV03-10 25/-QQV06-40 85/-QQV06-40A 105/-B17 8/-B19 7/6

UL41 18/-

OC38 8/6
OC44 4/OC45 2/6
OC70 2/6
OC70 2/6
OC70 3/6
OC71 3/6
OC73 8/OC73 8/OC75 4//6
OC81 D 4/OC81 D 5/OC82 3/OC83 B 3/OC84 3/OC84 3/OC122 10/OC172 7/6
OC171 7/6
OC200 7/

TITES

6/-**UL84**

R17 8/ R19 7/ STV280/40

STV280/40 60/-STV280/80 180/-TT21 51/-U25 14/6 U26 14/6

SPECIAL OF

0A74 2/-0A79 1/9 0A81 1/6 0A91 1/3 0A200 1/9 0A202 2/-0A211 5/-0A210 5/-0A220110/-0AZ202 to 0AZ202 to 0AZ208 8/6 0AZ201 8/6 0AZ203 to

8/6 8/6 7/6 5/-12/6 12/6 10/-

TT21 U25 U26 U27 U191

6/-6/-VR150/30 6/-Z759 35/-Z800U 29/-Z801U 25/-Z803A 25/-Z900T 12/-Z801U Z803A Z900T IL4 IR5 IR4 183 IT4 1X2A 1X2B 3A4 3D6 UCH42 12/6 UCH81 6/-UCL82 7/-UCL83 12/-UF41 10/-UF80 7/3 UF89 6/9

VR105/30

IN43 2/-IN70 1/6 IN702-725 7/3

MANY OTHERS IN STOCK include Cathode Ray Tubes and Special Values. U.K. P. & P. up to 10/- 1/-; to £1 2/-; over £1 2/- in £, over £2 post free. C.O.D. 4/- extra.

IN746A IN746A series 5/3 IN821A 21/-IN823A 26/-IZMT5 7/-IZMT10 6/9 IZT5 12/2

FERTRANSISTORS, ZENER DI

82.903 10,3P100 12,6
3P100 12,6
3P105 16,6
3N128 17,6
3N140 19,6
3N159 39,12FR60 14,9
10D1 34,4
10595 27,6
10688 27,-

40668 27/40669 29/AC126 4/6
AC127 4/6
AC128 4/AC176 5/ACY17 5/ACY28 4/AD149 11/AD161 7/AD162 7/AF118 6/6

AF127 3/6 AF139 7/6

6AQ5W 9/-6AB6 6/-6AB7G 16/-6AT6 4/6 6AU6 5/-6AX4 8/-5B254M 38/5B/255M 35/5R4GY 10/6 5U4G 5/6
5V4G 7/6
5V4G 7/5V3GT 7/5V3GT 7/5V3GT 14/5Z4GT 12/6AB7 4/6AC7 3/6AB6 11/6
6ALS 9/6ALS 9/6ALS 9/6ALS 6/6AM8 10/6AM8 10/6AM5 6/-5B254M 6AX5GT

6CL6 6D6 6EA8 6EU7 6F23 6F33 6H6M 6AX5GT 13/6B7 5/8
6BK7 8/6BA6 4/6
6BA6 4/6BJ6 3/6
6BQ7A 6/9
6BW7 18/6BW7 13/6C4 5/9
6C6 4/6CH6 11/-

6CL6 9/9 6D6 3/-6EAR 11/-6EU7 7/-6F23 15/-6F33 20/-6H6M 3/-6J4WA 14/-6J5GT 7/-6J6GT 5/-6J7G 5/-6J7G 3/-6K7G 8/-6K7G 2/-6K8GT 8/-6K7G 2/-6K8GT 4/-6K8GT 4/-6K8GT 4/-6K8GT 4/-6K8GT 4/-6K8GT 7/-6K8GT 6/-6K8GT 6/-6K8GT 6/-6K8GT 7/-6K8GT 6/-6K8GT 7/-6K8GT 6/-6K8GT 6/-6K8GT 6/-6K8GT 7/-6K8GT 6/-6K8GT 6/-6K8GT 6/-6K8GT 6/-6K8GT 6/-6K8GT 6/-6K8GT 6/-6K8GT 6/-6K8GT 6/-6K8GT 7/-6K8GT 6/-6K8GT 7/-6K8GT 6/-6K8GT 6/-6K8GT 6/-6K8GT 6/-6K8GT 7/-6K8GT 6/-6K8GT 7/-6K8GT 6/-6K8GT 7/-6K8GT 7/-6K9GT 7/-6K9GT 7/-6K9GT 7/-6K9GT 7/-6K9GT 7/-6K9GT 7/-6K9GT 7/-

68C7 18/-68C7GT 5/-68G7 6/-68J7 7/6 68J7GT 6/6 68K7 7/-68L7GT 6/6 68N7GT 7 68N7GT 7/-68Q7 7/9 68Q7GT 7/9 6V6G 3/8 6V6GT 6/3 6X5G 5/-6X5GT 5/6 6Y6G 11/-6-301.2 14/-6Z4 5/-6Z4 7B7

ODES CRS1/40 9/6 CR83/05 6/-CB83/20 7/6 CR83/30 B/6 CB925/025 15/-CR83/40 10/-GET103 4/-

GET105 4/GET115 9/GET116 10/GEX66 15/NKT304 7/8D918 5/3
8D928 6/3
8D938 6/6
8D94 4/4

3/6 ea. All preferred voltage ½W 3/6 1W 7/6 1-5W 5/-7W 7/6 1 W 1.5 W 7 W

7C5 7C6 7H7 7Y4 7Y4 9D6 11E2 12AT6 12AT7 12AU7 12AV6 12AX7 12BA6 12BE6 12AV6 5/8 12AV6 5/8 12AV7 5/8 12BA7 5/8 12BB7 3/8 12CS 5/8 12CS 10/9 12ES 17/1-12ES 10/9 12ESGT 7/8 12GGT 7/7-19AG 7/9 19G3 70/-19G3 70/-19G4 17/8 20F4 17/8 20F4 17/8 20F4 17/8 20F4 17/8 20F4 17/8

30FL13 9/8

30FL14 15/6

30L15 17/-

30P12 16/-30P19 14/-30PL1 13/-30PL13 18/-5/-7/-14/6 6/-5/6 12/-7/6 30/-4/6 4/-5/9 30PL14 17/-35L6GT 9/6 35Z4GT 9/-42 50C5 50CD6G30/-50EH5 12/-78 80 803 805 807 813 832A 15/-866A 954 4/6 955 956 957 991 1622 17/-2051 5933 6057 30C18 6060 30FL12 18/6

9006 C.R. Tubes VCR97 90/-VCR517B VCB517C 150/-5FP7 28/7 88D 180/-88T. 180/-CMG25 25/-931A 6097C 350/-Special Vivs. CV1031 10/-22/6 10/-7/6 7/-13/-27/6 6146

THE VALVE WITH A

GUARANTEE

9002

4/6 10/-2/6 2/6

110/-

to Tubes

62/6

100/-

30L17 16/-

CV2339 \$20 JP9/7D 750/-K 301 \$5 \$12 \$16 \$12 K305 K308 K337 KRN2A. WL417A 30/-KRN2A70/-3J/92/E £37/10/-5C22 £15 714AY £4 725A £10

PLEASE NOTE Unless offered ALL EQUIPMENT hauled mechanically and electrically in our own laboratories

AF178 9/6 AF186 9/-AFY19 22/6

A8Y26 5/6 A8Y28 5/6

A8¥67

ABY67 9/8
BAW19 5/6
BC107 3/BC108 3/BC118 7/6
BC118 7/6
BC118 7/6
BF115 5/BF173 6/BF187 10/BFY51 4/6
BFY52 4/6
BSO5 7/6
BS 9/1
BS2 9/3
BSY29 3/6
BUI00 36/BYZ13 4/BYZ16 12/6
CRS1.10 5/-

MARCONI TEST EQUIPMENT

TFI041C VTVM A.C., voltage range 300 MV to 300V in 7 ranges. 20 Hz-1500 MHz, D.C. voltage ranges 300 voltage ranges 300 MV-1000V in 8 ranges. D.C. resistance 50 ohms to 500 Mohms. Price £62.10.0.

TF 144G SIGNAL GENERATOR. To clear, In very good "as seen" condition. Complete with mains and harrange collections. clear. In very good "as seen" condition. Complete with mains and battery cables, etc. £15.

ohms to 500 Mohms.

Price £62:10.0.

TFI44H SIGNAL
GEN. Freq. range 10
KHz-72 MHz, R.F.
output ZuV to 2V at
50 ohms 400 and 1000
Hz internal
Limited qty,
only available, Full spec
and price on request.

OR. To
ondition,
y cables,

OR. To
ondition,
y cables,

and instruction manual.

Mohms.

Price £62:10.0.

Mohms.

SIGNAL GENERATOR TF 801/A.

Output 0-100 db below 200 mV from
75 ohms source. £85. DITTO but
801/A/I with additional high level
output. £89. Both P. & P. 20/-, including necessary connectors, plugs,
and instruction manual.

IMPEDANCE BRIDGE TYPE TF 936 (No. 5). Measures L & C at 80Hz, IkHz, 10kHz. Ranges:—L: IµH-100H. C: ImF-100µF. R: 0.1ohms-100mohms. AC Bridge volts monitored and variable. Automatic detector sensitivity control. £105. Carriage 30/-. F.M. DEVIATION METER TYPE TF934. Frequency range 2.5-100MHz. Can be used up to 500MHz. Deviation range 0-75kHz £67/10/0. Carriage 30/-

HARNESS "A" & "B" control units, innerion hoxes headphones, micro-

boxes, headphones,

SOLARTRON EQUIPMENT

Regulated and stabilised P.S.U. SRS. ISIA, 20 to 500V positive at 300mA in two ranges. Variable and fixed 170V negative output, £35. Carriage 20/-. CD 711S.2. Double beam. DC to 7MHz 'scope, £85. Carriage 30/-. CD 643.2. Single beam Laboratory Model, DC to 14MHz price upon application.

SIGNAL GENERATOR TYPE CT 480. 7-12kMHz in one range, square and pulse modulation and C.W. £65.

SIGNAL GENERATOR TYPE CT 478. As above but 1.3-£2kMHz in two ranges £55.

Itin. DIA. PANEL METERS, 71-15v—ideal for "Battery Condition" indicators for cars 15/6.

BOONTON Q METER TYPE I60A.
Freq. range 50kHz to 75MHz, main capacitor 30 to 500pF. Vernier capacitor ± 3pF; q range. 0-250 with 2.5 × multiplier. 685 plus carriage.

£85 plus carriage.

NOISE GENERATOR CT 207. 100600 M/c with built-in 8-minute timer
Complete with cables. £57.10.0.

MULLARD PRECISION VARIABLE
CAPACITOR TYPE F.2.
15 pf to 336 pF. Supplied with individual
calibration certificate. Brand new in
original packing. £17. Carriage 15/-

SUSPENSION GALVANOMETERS
Pye £25, P, & P, 12/-,
Cambridge Instruments £112, P, & P, 12/-,

Open 9-12.30, 1.30-5.30 p.m. except Thursday 9-1 p.m.

VACUUM CONDENSERS
12, 50, 55pF each 20,000v 30/-. P. & P. 4/-.
BRADLEY PORTABLE ELECTRONIC
MULTIMETER TYPE CT471B. This
instrument operates from three 1½V cells,
is fully transistorised and measures A.C.,
and D.C. current, A.C. and D.C. voltage
and D.C. resistance, Built-in battery check
and calibration check. Full spec. and price

and callor account and on request.
As above but MODEL CT 471A manufactured by AVO, full spec and price on

request.
4, 5 and 8 bank 25 way uniselectors,
24V, guaranteed perfect, £3.15.6;
£4.10.0; £6.17.6 respectively.
AR88 SPARES. We hold the largest stock in U.K. Write for list.

AVO VALVE CHARACTERISTIC complete with

phones, etc.

29/4IFT. AERIALS each consisting of ten 3ft., in. dia. tubular screw-in sections. Ilft. (6-section) whip aerial with adaptor to fit the 7in. rod, insulated base, stay plate and stay assemblies, pegs, reamer, hammer, etc. Absolutely brand new and complete ready to erect, in canvas bag, £4/0/0. P. & P. 10/-.

FIELD TELEPHONE TYPE "F". Housed in portable wooden cases. Excellent for communication in and outdoors for up to 10 miles. Pair including batteries, fully tested. £6.10.0, or with 220 yds field cable in drum £7.10.0.

FOR EXPORT ONLY

53 TRANSMITTERS. All available, COLLINS TCS. Constallations and spare parts. II spares Complete

COLLINS TYPE 231D 5KW
TRANSMITTERS. 10 channel, autotune and manual tuning. Complete
with very comprehensive spares. Full
specification and price on application. Complete installations and all spares. No. 19 WIRELESS SETS. H.P. SETS and all spares R 210 RECEIVERS with all necessary

PYE PTC 2002N A.M. Ranger Mobile Radio Telephone, brand new and complete, £45.

All overseas enquiries & orders please address to COLOMOR (ELECTRONICS)

170 Goldhawk Rd., London, W.12 Tel. 01 - 743 0899

P. C. RADIO LTD.

TELEPHONE ENQUIRIES relating to TEST EQUIPMENT should be made to 01-748 8006 Extension 23.

To view TEST EQUIPMENT please phone for appointment

EX COMPUTER PRINTED CIRCUIT PANELS 2° x 4° packed with semiconductors and top quality resistors, capacitors, dlodes, etc. Our price, 10 boards 10′-. P. & P. 1/6. With a guaranteed minimum of 35 transistors. Transistor Data included.

SPECIAL BARGAIN PACK. 25 boards for £1, P. & P. 3/6, With a guaranteed minimum of 85 transistors. Transistor Data included.

PANELS with 2 power transistors sim. to OC28 on each board plus components, 2 boards (4 × OC28) 10/-. P. & P. 1/6.

9 OA5, 3 OA10, 3 Pot Cores, 26 Resistors, 14 Capacitors, 3 GET872, 3 GET872B, I GET875. All long leaded on panels 13" x 4". 4 for 20/-, P. & P. 5/-,

12V 4A POWER SUPPLY

Extremely well made by FRAKO GmbM in W. Germany, with constant voltage mains transformer, tapped input from 115V to 240V. Full wave rectification and capacitor smoothing. Size 9" x6" x5", weight 11 lb. These units are brand new, unused and fully guaranteed. Maker's price believed to be around £80. Our Price £9.10.0. Carr. 10/-.

250 MIXED RESISTORS

DIODES EX EQPT. SILICON

I Amp I,000 PIV

4 for 10/-4 for £1 -

20 Amp 150 PIV P. & P. I/-

EXTRACTOR/BLOWER FANS (Papst)

100 cifim. 4½" × 4½" > 2", 2800 r.p.m. 240V AC 50/- each, P.& P. 5/-,

Single Pole Changeover Silver Contacts 2" x 6" x 7", 2.5K \(\) Coil operates on 25 to 50V. 8 for 10/-, P. & P. 1/6.

BUMPER BARGAIN PARCEL

BUMPER BARGAIN PARCEL
We guarantee that this parcel contains at least 1,750 components. Short-leaded on panels, including a minimum of 350 transistors (mainly NPN and PNP germanium, audio and switching types—data supplied). The rest of the parcel is made up with: Resistors 5% or better (including some 1%) mainly metal oxide, carbon film, and composition types. Mainly and 2 watt. o. doddes, miniature silicon types OA30, OA91, OA95, IS130, etc. . . . capacitors including tantalum, electrolytics, ceramiciand polyesters . . . inductors, a selection of values . . . also the odd transformer, currently to date, professional, top quality components. Don't mist this parcel of our best offers yet I Price, 651, P. & P. 616—U.K. New Zealand 20/- P. & P. Limited stocks only.

EX-COMPUTER POWER SUPPLIES

POWER SUPPLIES

Reconditioned, fully tested and guaranteed.

These very compact units are fully smoothed with a ripple better than 1%. Over voltage protection on all except 24v. units. 120v.-130v. at., 50c/s input. Mains transformer to suit 43 extra if required.

We offer the following types:

6v. 8a. £10

6v. 15a. £14

10v. 10a. £15

6v. 15a. £14

Carriage 15/- per unit.

Carriage 15/- per unit.

150 High Stabs 1 4 and 1 Watt, 5% and Better 12/6

LARGE CAPACITY ELECTROLYTICS

43" x 2" dia. 10,000 mfd 30V 5,000 mfd 55V 16,000 mfd 12V P. & P. 1/6 x 3" dia 8.000 mfd 55V

10/- each P. & P. 2/3 each

EXTENSION TELEPHONES 19/6 ea. P. & P. 35/- for 2 P. & P.

These phones are extensions and do not contain bells.

KEYTRONICS MAILING ADDRESS 44 EARLS COURT ROAD, LONDON W.8 WAREHOUSE AND DISPATCH 01 478 8499

WW-102 FOR FURTHER DETAILS

EXCUSES! DELAYS! FROM STOCK! NO

50 AMP

LAMP

INPUT 230 v. A.C. 50/60 OUTPUT VARIABLE 0/260 v. A.C. BRAND NEW. Keenest prices in the country. All Types (and spares) from ½ to 50 amp. available from stock.

0-260 v. at 1 amp. ... £5 10 0-260 v. at 2.5 amps. ... £6 15 0-260 v. at 5 amps. £9 15 -260 v. at 8 amps. . . . £14 10 0-260 v. at 10 amps. . . . £18 10 0-260 v. at 12 amps. . . . £21 0 0-260 v. at 15 amps. . . . £25 0 0-260 v. at 20 amps. . . . £37 0 0 0 0 0-260 v. at 25 amps. ... £49 0 0-260 v. at 37.5 amps. . £72 0

0-260 v. at 50 amps. . . . £92 0 20 DIFFERENT TYPES AVAILABLE FOR IMMEDIATE DELIVERY.

Double Wound Variable **Transformers**

Fully isolated, low tension Secondary winding. Input 230 v. A.C. OUTPUT CONTINUOUSLY VARIABLE 0-36 v. A.C.

0-36 v. at 5 amp. £9.12.6p. & p. 8/6 0-36 v. at 20 amp. £21.0.0—

15/- p. & c.

These fully shrouded Transformers, designed to our specifications, are ideally suited for Educational, Industrial and Laboratory

INSULATION TESTERS (NEW)

Test to I.E.E.
Spec. Rugged
metal construction,
suitable for
bench or
field work,
constant
speed clutch.
Size L. 8in,
W. 4in. H.
6in. Weight
6ib.

500 VOLTS, 500 megohms. Price £28 carriage paid.

1,000 VOLTS, 1,000 megohms, £34 carriage paid.

VAN DE GRAAF FLECTROSTATIC **GENERATOR**

fitted with motor drive for 230 v.
A.C. giving a potential of approx. 50,000 volts.

Supplied absolutely com-Supplied absolutely com-plete including acces-sories for carrying out a number of interesting experiments, and full instructions. This instru-ment is completely safe, and ideally suited for School demonstrations. Price £7/7/-, plus 4/-P. & P. L't. on req.

OPEN TYPES

Designed for Panel Mounting. Input 230 v. A.C. 50/60 Output variable. 0-260 v.

‡ amp £3 18 6 1 amp. ... £5 10 0 2½ amp. ... £6 12 6 2½ amp. P. 8. P. 7/6

I AMP. AMP.

<u>SA</u>NWA

MULTI RANGE

TESTERS

LATEST TYPE

NEW MODEL U-50DN MULTI
TESTER, 20,000 O.P.V. MIRROR

SCALED WITH OVERLOAD PROTECTION. Ranges: D.C. volts: 100mV,
0.5 v., 5 v., 250 v., 1,000 v. D.C. current: 50 μA.,
0.5 mA., 5 mA., 50 mA., 250 mA. Size: 5½ × 3½ × 1½ in.
Complete with batteries

48.0.0 TEN OTHER MODELS FROM STOCK. LEAFLET ON REQUEST.

'AVO' MODEL 48A

Ex-Admiralty in good condition with instructions, leads, plus D.C. Shunts for 120 Amp and 480 Amp. A.C. Transformer for 60 Amp. and 240 Amp. Multiplier for 3600 volt. Complete outfit in fitted case. £15/0/0, P. & P. 10/r.

LATEST TYPE SOLID STATE VARIABLE CONTROLLER

Ideal for lighting and heating cir-cuits, compact panel mounting. Built in fuse protection. CONTINUOUS-LY VARIABLE. Input 230v AC output 25-230v AC 5 amp model £8.7.6 10 amp model £13.5.0

230 v. A.C. SOLENOID. Heavy duty type.
Approx. 3lb. pull. 17/6 plus 2/6 P. & P.
12 v. D.C. SOLENOID. Approx. Ilb. pull.
10/6, P. & P. 1/6.
50 v. D.C. SOLENOID.
Approx. 2lb. pull. 12/6,
p. & P. 1/6.

36 volt 30 amp. A.C. or D.C. Variable L.T. Supply Unit

INPUT 220/240 v. A.C. OUTPUT CONTINUOUSLY VARIABLE 0-36 v.

Fully isolated. Fitted in robust metal case with Voltmeter, Ammeter, Panel Indicator and chrome handles. Input and Output fully fused. Ideally suited for Lab. or Industrial use. £58 plus 40/- p. & c.

VICE TRADING COMPA

SERVICE TRADING

GEARED MOTOR

(Type 1) 71 r.p.m. torque 10 lb. in.

Reversible 1/70th h.p. 50 cycle .38

amp. (Type 2) 28 r.p.m. torque 20

lb. in Reversible 1/80th h.p. 50 cycle .28 amp.

The above two precision made U.S.A. motors are offered in 'as new' condition. Input voltage of motor 115v A.C. Supplied complete with transformer for 230/240v A.C. input

Price, either type £3.3.0 plus 6/6 P. & P. or less transformer £2.2.6 plus 4/6. P. & P.

These motors are ideal for rotating aerials, drawing curtains, display stands, vending machines etc. etc.

VENNER ELECTRIC TIME SWITCH

200/250 volt. Ex-GPO. Tested, perfect condition. Two ON, two OFF, every 24 hrs. at any manually pre-set time. Price: 10amp. 42.15 0, 15amp. 43/15/0, P. & P. 4/6. Also available with Solar Dial ON at dusk, OFF at dawn. Prices as above.

RING TRANSFORMER

Functional Versatile Educational

Functional Versatile Educational
This multi-purpose Auto Transformer, with
large centre aperture, can be used as a Double,
wound current Transformer, Autority Transformer,
H.T. or L.T. Transformer, by simply hand windling the required multiple of turns through the centre opening.
Est. Using the RT.100 V.A. Model the output could be wound
to sive w 121Amp., 4V. @ 25Amp. or 2V. @ 50Amp., etc.
RT.100VA 3.18 turns per volt, £4 9. + 0.5(6.p. and p.
RT.1 KVA 1.82 turns per volt, £4 0.0 + 6/6.p. and p.
RT.2 KVA 1.5 turns per volt, £10 10. + 9/6.p. and p.
RT.3 KVA 1.5 turns per volt, £10 10. + 9/6.p. and p.
RT.3 KVA 1.5 turns per volt, £10 10. + 9/6.p. and p.
RT.3 KVA 1.5 turns per volt, £10 10. + 9/6.p. and p.

L.T. TRANSFORMERS

	I primaries 220-240 volts.			_	
Τv	pe No. Sec. Taps	Price		Carr.	
-i'	12 v. at 5A	£I	17	6	5/6
ż	30, 32, 34, 36 v. at 5 amps	£4	13	6	6/-
2	30, 40, 50 v. at 5 amps	66	17	6	6/6
4	10, 17, 18 v. at 10 amps	64	19	ŏ	4/6
3	10, 17, 10 v. at 10 amps	27	'n	ě	6/6
5	6, 12 v. at 20 amps	FO	9		
6	17, 18, 20 v. at 20 amps	£7	5	٥	6/6
7	6, 12, 20 v. at 20 amps	£6	17	6	7/6
à	24 v. at 10 amps	£5	4	6	5/6
9		€7	3	0	6/6
7	7, 0, 27, 32 V. at 12 allips		•	•	0,0

AUTO TRANSFORMERS. Step up, step down. 110-200-220-240 v. Fully shrouded. New. 300 watt type £3/12/6 each, P. & P. 4/6. 500 watt type £5/2/6 each, P. & P. 7/6.

LIGHT SENSITIVE SWITCHES

Kit of parts including ORP.12 Cadmium Sulphide Photocell. Relay Transistor and Circuit. Now supplied with new Siemens High Speed Relay for 6 or 12 volt operations. Price 25/s, plus 2/6 P. & P. ORP. 12 and Circuit 12/6 post paid.

220/240 A.C. MAINS MODEL
incorporates mains transformer rectifier and special
relay with I make, I break, H.D. contacts. Price inc.
circuit 47/6, plus 2/6 P. & P.

LIGHT SOURCE AND PHOTO CELL

MOUNTING
Precision engineered light source
with adjustable lens assembly and 化生 with adjustable lens assembly and ventilated lamp housing to take MBC bulb. Separate photo cell mounting assembly for ORP.12 or similar cell with optic window. Both units are single hole fixing. Price per pair £2/15/0 plus 3/6 P. & P.

INSULATED TERMINALS

Available in black, red, white, yellow, blue and green. New 2/- each. Post paid.

A.C. CONTACTOR

2 make and 2 break (or 2 c/o) 15 amp. contacts. 230/240 v. A.C. operation. Ex-equipment, Tested. 22/6 plus 1/- P. & P.

PANEL METER AT BARGAIN PRICE A.C. VOLTMETER Latest type | 17" × | 1"

0-300 volts A.C. Rectified moving coil 2½ in. Price 29/each. Plus 1/6 P. & P.

GALVANOMETER

300-0-300 microamp. Calibrated 30-0-30. Mounted in sloping front case £2/10/-. P. & P. 3/6 D.C. Voltmeter 0-3 V and 0-15. V £2 plus 3/6 P. & P. D.C. Ammeter. 0-6 amp. and 0-3 amp. £2, 3/6 P. & P. The set of 3 matching instruments £6, P. & P. 6/6.

10 easy to build Projects including: Radio, Morse Oscillator, L F Oscillator etc. A Solar Cell is included in this Kit as alternative power for some of the circuits also a 14-page step by step instruction leaflet. Price £3.17.6. P. & P. 4/6. SERVICE TRADING CO.

SHOWROOMS NOW OPEN AMPLE PARKING

UNISELECTOR SWITCHES NEW 4 BANK 25 WAY FULL WIPER

25 ohm coil, 24 v. D.C. operation. £5.17.6. plus 2/6 P. & P.

Postage and Carriage shows below are inland only. For Overseas please ask for quotation. We do no

quoration. We do not issue a catalogue or list.

OWER

(NEW) Ceramic construction, winding embedded in Vitreous Enamel, heavy duty brush assembly designed for continuous duty. AVAILABLE FROM STOCK IN THE FOLLOWING II VALUES: 100 WATT I ohm 10a., 5 ohm 4.7a., 10 ohm 3a., 25 ohm 2.3., 50 ohm 1.4a., 100 ohm 1a., 250 ohm 7.3., 500 ohm 1.5a., 1k ohm 280mA., 1.5k ohm 230mA., 2.5k ohm 2a., 5k ohm 140mA., Diameter 3½in. Shaft length \$\frac{1}{2}\text{in.}\$ dia. \$\frac{1}{2}\text{in.}\$ give 1.7(6. P. & P. 1/6. 50 WATT 1/5/10/25/50/100/250/500/1K/1.5K/2.5K/5K ohm. All at 21/-, P. & P. 1/6.

25 WATT 10/25/50/100/250/500/1K/1.5K/2.5K ohm. All at 14/6, P. & P. 1/6.

Black Silver Skirted knob calibrated in Nos. 1-9. 14

Black Silver Skirted knob calibrated in Nos. 1-9. 13 in, dia, brass bush, Ideal for above Rheostats, 3/6 each.

MOTOROLA MACII/6 PLASTIC

TRIAC 400 PIV 8 AMP

Now available EX STOCK supplied complete with full data and applications sheet. Price 21/- plus 1/6 P. & P.

KEY SWITCH No. S525594

- state colour preference). PRICE 14/6 each excluding bulb, Post Paid. Discount for quantities of 200 or over.

STROBE! STROBE! STROBE!

THREE EASY TO BUILD KITS USING XENON WHITE-LIGHT FLASH TUBES. SOLID STATE TIMING + TRIGGERING CIRCUITS. PROVISION FOR EXTERNAL TRIGGERING. 230-250v. A.C. OPERATION. The Strobe is one of the most useful and interesting instruments in the laboratory or workshop. It is invaluable for the study of movement and checking of speeds. Many uses can be found in the psychiatric and photographic fields, also in the entertainment business. It is used a great deal in the motor industry and is a real tool as well as an interesting scientific device.

device.

EXPERIMENTERS "ECONOMY" KIT

Adjustable 1 to 36 Flash per sec. All electronic components including Veroboard S.C.R. Unijunction

Xenon Tube + instructions . £5.5.0 plus 5/- P. & P.

Xenon Tube + instructions 15.5.0 plus 5/- P. & P.

NEW INDUSTRIAL KIT

Ideally suitable for schools, laboratories etc. Roller
tin printed circuit. New trigger coil, plastic thyristor
Adjustable 1-80 f.p.s. Price 9 gns. 7/6 P. & P.

HY-LYGHT STROBE

This strobe has been designed for use in large rooms, halls and the photographic field, and utilizes a silica tube for longer life expectancy, printed circuit for easy assembly, also a special trigger coil and output acapacitor. Speed adjustable 1-30 f.p.s. Light output approx. 4 ioules. Price £10.17.6. P. & P. 71.6.

7-INCH POLISHED REFLECTOR. Ideally suited for above Strobe Kits. Price 10/6 and 2/6 P. & P. or post paid with kits.

ELECTRONIC ORGAN KIT

state. Two full octaves (less sharps and flats).

Sitted hardwood case, using two penlite live, together with full instructions and 10 tunes. Have all the pleasure of building this instrument and finish with a functional, instructive gift for any boy or girl. Price £3.0.0. P. & P. 4/6.

50 in 1 ELECTRONIC PROJECT KIT

50 easy to build Projects. No soldering, no special tools required. The Kit includes Speaker, meter, Relay, Transformer, plus a host of other components and a 56-page instruction leaflet. Some examples of the 50 possible Projects are: Sound level Meter, 2 Transistor Radio, Amplifier etc., etc. Price £7.15.0. P. & P. 6/-.

Ideal present for Electronically minded boy.
Easy to build, solid
state. Two full octaves

T.M.C. ILLUMINATED

Complete with mounting bracket, Push Knoband Lenses (GREEN, AMBER, RED or CLEAR

HY-LYGHT STROBE

Parabeter Control

LOCK 4 c/o

LATCHING PUSH BUTTON

RHEOSTATS

6 BANK 25 WAY FULL

WIPER 25 ohm coil, 24 v. D.C. operation. £6.10.0, plus 2/6 P. & P. 8-BANK 25-WAY FULL WIPER

24 v. D.C. operation, £7.12.6, plus 4/- P. & P

RELAYS NEW SIEMENS PLESSEY, etc. MINIATURE RELAYS AT COMPETITIVE PRICES.

MINIATURE RELAYS

9—12 volt D.C. operation, 2 c/o 500 M.A. contacts. Size only lin. X \$ X \$ In. Price 11/6 Post paid. 30-36 v. D.C. operation, 2 c/o 500 M.A. contacts. 3.200 ohm coil. Size only I × 🕆 × 🚼 in 8/6 post paid.

SPECIAL OFFER
Relay 18/24 v. D.C. 2 c/o 3 Amp contacts.
400 ohm coil, NEW. 9/6 P, & P. 1/6 or
3 for 30/- post paid.

TYPE A.G.C. IM IB 12v. A.C. 3 amp contacts. NEW 9/6 + 1/6 p. & p. or 3 for 30/- post paid.

MAINS RELAY
230 v. A.C. coil 3 c/o, 10 amp. A.C. contacts. 14/6
+ 1/6 p. & p. Similar to above illustration.

RECHARGEABLE NICKEL CAD. BUTTON CELLS.

2 x 1.2 v. 250 MA/HR Nickel Cad. Cells, connected to give 2.4 v., at 25 milliamp/10 hour rate, complete with 200/250 v. A.C. charger, unused. Price 9/6 each plus 1/6 p. & p. or 2 units for £1 post paid.

HOSIDEN DH-02-S Stereo Headphones

Outstanding performance, 8 ohm impedance and 20-12,000 cps. Adjustable head band, Price only 47/6, P. & P. 2/6. Complete with lead and stereo jack plug.

BURGESS MICRO SWITCH

Lever operated, c/o contacts, Price 4/- plus 9d. P. & P. 10in. maker's carton. 35/- post paid.

200-250 VOLT AC I R.P.M. GEARED MOTOR

Dimensions: 4" × 3" × 21" Spindle length 13/16", diameter it. Manufactured by SEC, Price 22/6 plus 3/6 p. & p.

VEEDER ROOT COUNTER

230 v. A.C. 50 cycle 5 figure counter (non resetable). 18/6, P. & P. 1/6.

COMPLETE NI. CAD. BATTERY OUT-FIT (EX W.D.)

2 metal carrying cases each containing 10 x 1.2 volt 7 AH (12v) batteries, also 10 x 1.2v 22 AH (12v) batteries in all). I Dual voltage, dual meter, thyristor controlled

thyristor controlled charging unit. Designed for charging the 7AH and 22AH batteries simultaneously. Input voltage can be adjusted between 100-250v AC. Built to ministry specification. Ideal power supply for field work. Offered at fraction of makers price. 2 sets of batteries, I charging unit. The set £45 c. & p. 30/-.

NICKEL CADMIUM BATTERY

1.2 v. 35 AH. Size 87 high x 3 x 11. 30/- each, plus 4/-Sintered Cadmium Type 1.2 v. 7AH. Size: height 3½ in., width 2½in. X 1-½in. Weight: approx. 13 ozs. Ex-R.A.F. width 2 in. X 1 in. Weight Tested 12/6. P. & P. 2/6.

NEW MODEL

HIGH FREQUENCY TRANSISTORISED MORSE OSCILLATOR

Adjustable tone control. Fitted with moving coil speaker, also earpiece for personal monitoring. Complete with morse key. 45/- plus 3/6d. p. & p.

SEMI-AUTOMATIC "BUG" SUPER SPEED MORSE KEY

MORSE KEY
7 adjustments, precision tooled, speed adjustable 10 w.p.m. to as high as desired. Weight 2½1b. £4/12/6 post paid.

PERSONAL CALLERS ONLY 9 LITTLE NEWPORT STREET, LONDON, WC2H 7JJ. Tel.: 01-437 0576

ALL MAIL ORDERS, ALSO CALLERS AT:

57 BRIDGMAN ROAD, LONDON, W4 5BB. Phone: 01-995 1560 Closed Saturdays.

10 in 1 PROJECT KIT

STANDARD GPO DIAL TELEPHONES (black) with internal bell. 17/6 each. P. & P. 5/-. Two for 30/-. P. & P. 7/6.

TRANSISTORISED FIELD RATEMETER type 1368A range 0.05 to 25 mr/hr in 5 ranges size $12 \times 31 \times 71$ ins. £10 each. P. & P. 10/-. SURVEY METER RADIAC No. 3. Hand portable

size 91 × 5 × 51 ins. 3 ranges (scale changes) 0.03; 0.3; 3 R/H. Internal Ion Chamber. Nice condition £5

ea. P. & P. 10/-DOSIMETER 0-50R 0-150R and charger £2. P. & P. 7/6. Charger only 30/-, P. & P. 6/6.

PHOTOMULTIPLIERS. EMI 6097X at £8/10/- ea

6097B—45 ea.

TRANSISTOR OSCILLATOR. Variable frequency 40 c/s to 5 kc/s. 5 volt square wave o/p, for 6 to 12v DC input. Size 11 × 11 × 11 in. Not encapsulated. Brand new. Boxed. 11/6 ea.

CRAMER TIMER 28V DC Sweep 1/100th sec & sweep 60 secs. 4" dial. Remote control stop/start reset £6.10.0.

RELAYS

G.E.C. Sealed Relays High Speed 24V. 2 make 2 break. 4/6 ea.

S.T.C. sealed 2 pole c/o, 2,500 ohms. (okay 24v) 2/6 ea.; 12v—7/- ea.

CARPENTERS polarised Single pole c/o 20 and 65 ohm coil as new, complete with base 7/6 ca.
Single pole c/o 14 ohm coil 6/6 ca.; Single pole c/o 45 ohm coil 6/6 ca.

POTENTIOMETERS COLVERN Brand new. 59: 100; 250; 500 ohms; 1; 2.5; 5; 10; 25; 50k all at 2/6 ea. Special Brand new. MORGANITE 2.5K; 250K; 500K 2.5 meg. 1" sealed.

INSTRUMENT 3" Colvern. 5; 25. 7/- ea.

BOURNE TRIM POTS. 10; 20; 50; 100; 200; 250;.

500 ohms; 2.5 and 25K at 7/- ea.

ALMA precision resistors 100K; 400K; 497K; 998K; 1 meg-0.1% 5/6 ea.; 3.25K-0.1% 4/- ea.

DALE heat sink resistors, non-inductive 50 watt. Brand new 8.2K at 2/6 ca.

new 8.2K at 2/6 ca.

MULLARD VINKORS. Brand new boxed. LA2104
12/- ca.; LA2411 9/- ca.; LA2503 6/- ca.

SILVER ZINC Non-spill. Brand new. 7½V 5 cell. Size
1½ × 1 × 1½ 2 oz. weight £1 ca.

MALLORY CELLS. 5/- per set of 5.

ZAPACITORS

MALLORY CELLS. 9/- per set of 2. CAPACITORS ERIE feed through ceramicons 2200 pf—9d. ea. Sub-min. TRIMMER i square. 8, 5pf. Brand new 2/6 ea. Concentric TRIMMER 3/30 pf. Brand new 1/6 ea.

CONCENTIC I NIMITER 5/30 pt. Brand new 1/6 ea.

ELECTROLYTICS. Brand new 250 mfd 70V 4/6 ea.

E.H.T. 2 mfd 5 KV. Brand new 30/- ea.

VISCONOL EHT. Brand new 0.0005 25 kV, 16/- ea.

Wego Caps 0.2 and 0.5 mfd 20 KV working. Brand new.

44 ea. P. & P. 15/
E.H.T. 0.5 mfd 5 KV—11/- ea.; 0.5 mfd 2.5 KV 7/- ea.

DECADE DIAL UP SWITCH. Finger-tip. Engraved 0/9. Gold plated contacts. Size 2! * high. 2! * deep ‡ * wide. 15.-ca. Bank of 4 with secutcheon plates, etc. 2! * high, 2! * deep, 2! * wide £2.10.0.

PHOTOCELL equivalent OCP 71 2/6 ea.
Photo-resist type Clare 703. (TO5 Case). Two for 10/-.
BURGESS Micro Switches V3 5930. Brand new 2/6 ea.
HONEYWELL. Sub-min. Microswitches type 11SM3-T.

Brand new, 3/6 ea.
PANEL mounting lamp holders. Red. 1/9 ea.
BRAND NEW PLUGS AND SOCKETS
CANNON. 50 way DDM50P 15/- ea.; DDM50S 10/- ea.;

CANNON. 50 way DDM50P 15/-ea.; DDM50S 10/-ea.; £1 per pair.
As above but 25 way 10/- ea. plug; 7/- ea. socket, 15/per pair; 9 way 6/6 ea. plug and socket, 10/- per pair.
U.H.F. Plugs fit UR57, 59, 65 etc. 8/- ea.
B.N.C. to U.H.F. Adaptor 27/6 ea.; Min. B.N.C. to U.H.F.
30/- ea.; T' junction B.N.C. £1 ea.; B.N.C. plug £0 B.N.C.
plug £1 ea.; B.N.C. Right angle £1 ea.; Min. B.N.C. right angle 25/- ea.; Min. socket round 10/- ea.; Standard
B.N.C. round 7/- ea. Many others too numerous to list.
All prices quoted for 'one off.'

TRANSFORMERS. All standard inputs.

STEP DOWN ISOLATING trans. Standard 240v
AC to 120V tapped 60-0-60 700W. Brand new. £5 ea.

Transformer 0-215-250 120 MA; 0.3V 4A CT × 2; 2×6.3v
0.5A and separate 90v 100 MA 25/- each P. & P. 4/-.

Matching contact crooled bridge rectifier 7/6 each.
4.5V 40 amp (180Va) 35/- ea. incl. postage or 3 for
£4,10.0 incl. postage. Designed to be series/paralleled.
Parmeko 6.3v 2 amp×4—27/6 each.
Gard/Parm/Part. 450-400-0-400-450. 180 MA. 2×6.3v,
£3 ea.

CHOKES. 51 to 250mA 12/6 5H; 10H; 15H; up to 120mA, 8/6 ea. Up

Large quantity LT, HT, EHT transformers. Your requirements, please.

NUCLEONIC INSTRUMENTS—JUST ARRIVED

Pulse analyser N101; Scaler 1009E; Coincidence unit 1036C; Anti coincidence unit Panax AU460; Amplifier N567; A/B/G Radiation Monitor 1257A; complete 1339A system A/B/G; EHT Potentioneter unit 1007; 1430 amplifier CF and head; Some scintillation castles; radiation monitor 1320C and 1320X (X-ray); survey meters no. 2; 3 and N555; Ratemeter scintillation 1413A and 1368A; Fast neutron 1282C; Fluori-meter 1080A and many others. Also 2000 SERIES. Amp 2002A; Low level amp 2024; PU's 2004; 2005B; nanosec time amplitude convertor 2011A; pulse amplitude analyser 2010B; discriminator 2007B; high level amp 2025 and others. Imformation available.

AMPEX VR7000. New heads, drum, ceramic tips, rotary transformer. In superb condition. Bargain at £500.

AMPEX TV CAMERA CC3324. As new £150.

The Pair £550.

TEST GEAR

OSCILLOSCOPES
TEKTRONIC 517A—Very fast 5 nan/secs sweep. £250.

E.M.I. WM16 DB—24 megs each channel. £175 only.

E.M.I. WM 2 DV—13 mc/s £25

E.M.I. WM 8—£50.

SOLARTRON CD1012. DC to 25 megs. Very fine. £85.

SOLARTRON 7118.2 D.B. DC—9 mc/s. In fine condition £50.

SOLARTRON 643 DC—15 mc/s NOW only £65.

SOLARTRON DC—10 mc/s. CD513—£35, 513.2
—£40. CD5238—£45.

COSSOR 1049 MR. 3. DB. £25

HARTLEY 13A DB. £20.

All carefully checked and sested. Carriage 30/- extra.

All carefully checked and tested.

MARCONI ed. Carriage 30/- extra.

TF 801A Signal generator £35. Carr. 30/TF 886 Magnification Meter £45 Carr. £1
TF 369 N. 5 Impedance Bridge £55 Carr. 30/TF 1446 Signal Generator. Serviceable, Clean £15
In exceptional condition £25. Carr. 30/TF 885 Video Oscillator Sine/Square £35 Carr. 30/TF 1343/2 'X' Band gen. £35 Carr. 30/SOLARTRON
Laboratory amplifier AWS51A. 15c/s—350kc/s £35
Carr. £1

Generator DO905 50 kc/s to 50 megs. £40. Resolved Component Indicator VP253.2A and Generator DO905 50 kc/s to 50 megs. £40.
Resolved Component Indicator VP253.2A and OS103.2A. £120 the pair.
Stabilised P.U. SRS 151A £20 Carr. 30/Stabilised P.U. SRS 152 £15 Carr. 30/Precision Millivoltmeter VP252. £25. Carr. £1.
Process Response Analyser. Fine Condition £250 oscillator type OS 101. £30. Carr. £1.
D.C. Amplifier type AA900. £30. Carr. £1.
AVO
Testmeter No. 1 £12 ea. Carr. 15/Electronic Testmeter CT 38. Complete £18 Carr. £1

Electronic Testmeter CT 38, Complete £18 Carr, £1 CINTEL Wide Range Capacitor Bridge £25 Carr, 15/-Sine and Pulse Generator type 1873 £25 Carr, 15/-AIRMEC Signal Generator type 701, £25, Carr, 30/-

MARCONI TF 1277. Colour studio scope, will line select. In superb condition. £120.

LIMITED QUANTITY
TELEQUIPMENT D43R. Brand new with TD41
TB. £80 with 15 mc/s amp. £105.

BRADLEY ATTENUATORS $0/500~{
m meg}$ cycles. $0/12~{
m db}$ and $0/120~{
m db}$ — $\ell 20~{
m per}$ pair.

HEWLETT PACKARD. Attenuators 0/500 meg cycles, 0-132 db. 1 db steps. £40.

BECKMAN MODEL A. Ten turn pot complete with dial. 100k 3% Tol 0.25%—only 42/6 ea.

E.H.T. Base B9A in Polystyrene holder with cover. Brand new. 2/6 ca.

DVM's BIE 2114 £50 ea.; **BIE** 2116 £50 ea.; Solartron TM923 £30, Carr. 30/-. AMERICAN TRIPLETT Generators type 1632, 100 kc/s to 120 megs. £12.10.0. Carr. £1.

BC221 with correct charts in fine condition £15 ea.

PANAX Pulse generator G100H. Mint. £40, Carr. 30/-. BRAND NEW INSTRUMENTS HOUSING. Size 8×6×7′ deep. Comprising of anodised aluminium front $8 \times 6 \times 7'$ deep. Comprising of anodised aluminium f and rear linked frame with recessed light blue front rear panels. Detachable dark grey vinyl cover aluminium covers. Price 37/6 ea. P. & P. 5/.

FIBRE GLASS PRINTED CIRCUIT BOARD, Brand new Single side 3d. per sq. inch. Double sided 4d. per sq. inch. Cut to size. Postage 1/- per order.

BERCO miniature variac type 31C. 0-250V 1 amp. 2 5/16th depth, 3 diameter. Complete with dial and pointer. As new £3. P. & P. 7/6.

SEQUENTIAL TIMERS 240V synchronous motor † rpm. 12 cam operated 2 pole micro switches. Individually adjustable from 0° to 180°. £6 ea.

TIMER UNIT by Labgear 1350A. 0-1000 mins. preset stops. Brand new. £15. Carr. £1. Standard 240V MOTORS with reduction gearbox 14 lbs. per sq. inch. £3 ea.

Modern replacement for VCR 138 tube. Flat face 3 in, 6 32/6 ea. P. & P. 5/-. Nu-metal screen 7/6 ea. P. & P. 3/6. Bases 3/6 ea.

Sub-miniature IF's 465/470 kcs. Size $\frac{1}{4}\times\frac{1}{4}\times\frac{1}{4}''$ high. Set of 3—12/6.

Sub-min. Vitality bulbs 8V 1.2W 5 mm Clear L.E.S. 1/6 ea. 100 of 1/3 ea.

DUNFOSS—solenoid valves. 240V 50 c/s. Type EVJ 2. Brand new boxed £5; Second hand £3. P. & P. 6/-.

Precision THERMISTOR by YSI. 100 k, at 25°C. Range: 40°C, to 150°C. Supplied with charts giving ohms for each degree over entire range. Brand new. 30/- each.

CLAUDE LYONS Main Stabilizer. Type 7000C. Input 212-252 volts 47/65 c/s, Output 238 volts 0.5 % 53 amps. £40. Carriage at cost.

Panel mounting VARIAC 20 amp. £15. Carr. at cost.

ROBAND P.U. Type M39A. Stabilized 300 volts 2 amps. £22 inc, carriage,

E.H.T. Unit by Brandenburg model S.0530/10. £55. KELVIN & HUGHES 4 channel recorder. £30 ea.

SMITHS twin channel recorder. Transistorised. £65. Various other single and twin track recorders from £20. EVERSHED & VIGNOLES Recording paper, Brand new boxed. L618H4 7" wide, 11" dia. 3/6 roll; 6" dia, £1 roll. JI.900H4 7" wide, 11" dia. 5/- roll,

19in. Rack Mounting CABINETS 6ft. high 19in. deep. Side and rear doors. Fully tapped, complete with base and wheels, £12/10/0 Carriage at cost.

Double Bay complete with doors. Finc condition. £25. Carriage at cost.

TIME CALIBRATOR unit by Cawkell any or all time intervals from 0.5 microsecond to 1,000 microsecond. Internal calibration; gate generation £50. Carr. 30/-.

DIECAST ALLOY boxes. Size $4\times2\frac{1}{2}\times1\frac{1}{2}$ in. Drilled ends for Belling Coax socket. 3 compartments link holes between. 6/6 each. P. & P. 2/-.

4 DIGIT RESETTABLE COUNTERS. 1000 ohm. coil. Size $1\frac{1}{4} \times \frac{3}{4} \times 4\frac{1}{4}$ in. As new, by Sodeco of Geneva, £2/10/0 each,

As above but 350 ohm. £3/10/0 ea.

METERS—Model 3705, 25-0-25 microamp, Scaled, -100-0-+100, $5\frac{1}{2}$ × 4", £3 ea.

Round 4" scale. 100 micro amp 0-1,000 & 0-50 £1 ea; 1 Ma movement scaled 0-1 ma 12/6 ea. P. & P. 3/6.

SANGO 50 micro amp rectangular meter. Size 21 × 3" with 4 separate scales, lever operated, 0/6 white, 0/60 blue, 0/600 red and set zero. 35/- ea. P. & P. 3/6.

RECTANGULAR WESTON 5" mirror back. Scaled 0-750 1 ma basic 30/- ea; 100 micro amp scaled 0-50 £2/10/0 ea, P. P 3/6.

SANGO 50 micro amp 3° round meters. Ex brand new radiation equip. 41 ca. P. & P. 3/6.

SEEING IS BELIEVING!

SEEING IS BELIEVING!
First come, first served

AMERICAN oscilloscope type T534/AP. Size

7 × 61 × 151' deep with viewing hood. Tested, good working condition. Ideal general purpose scope. 117 volt mains therefore only £12.10.0. Carr. £1.

COSSOR D.B. Scopes—some models from £15.

RACAL Diversity unit £5 ea.
CINTEL Transistorised counter. 6 meter display. Ideal conversion frequency counter £12 ea.

MARCONI Absorption Wattmeter 1 micro watt to 6 watts. Type TF956. £ANTASTIC at £7 ea.

SOLARTRON Stab. PU AS516 & AS517. Circuits supplied. Fantastic value at £2 and £4 each. VERY SPECIAL OFFER. AVO Transistor Analysers in superb condition ONLY £30 each. SUPERB BUYS. Furzehill V200A Valve millivolt meter 10mv to 1 ky. £10 ea. Furzehill Valve voltmeter 378B/2. 10 mv to 100 volts £7 ea.

MEGA Ohm Meters—check earths, bonding etc. Ridiculous at £5 ea.
Damaged 801A generator, mint condition, basically requires time only £15 ea. Carr. 30/.
SUNYIC DC Amplifier type DCA1, Thermo-couple etc. £9 ea.

Odd CABINETS from 19° 6 ft. racks down to

etc. 19 ca.
Odd CABINETS from 19' 6 ft. racks down to 'matchbox' size. Must go!
COMPONENT PACK consisting of 2-2 pole 2 amp push on/off switches; 4 pots 1 double; 1-small double pole vol control; 250 resistors 1 and 1 watt many high stabs. Fine value at 10/- per pack. P. 8 P. 3/6.

Many ages and the P. 3/6.

3000 Series relays—15 mixed values (new and as new, no rubbish) 30/- P. & P. 7/6.

3000 Type 2 pole c/o assembly. Brand new boxed—will fit any 3000 type relay. 2/- ea. Incl. postage.

Carriage extra.

TRANSISTOR EHT INVERTORS. 12 volt in, o/p (+ or -) 1.5 KV 2 MA and 3 KV +100 micro amp. Ideal CRT supply, photomultipliers etc. Full information supplied. Brand new at £6/10/- ea. P. & P. 5/-. Also, as above but 1.5KV AC 20 kc/s. £3.10.0 ea. P. & P. 5/-.

Panel switches DPDT ex eq. 2/6 ea.; DPST Brand new 3/6 ea.; DPST twice, brand new 5/- ea.

Switches 4 pole 2 way 2/6 ea.

ALBRIGHT Heavy Duty Contactor, Single make, 200 amp, 24V coil, Brand new, boxed, £1 ea, incl. P. & P. MOTOR DRIVEN SWITCHES. 4 to 24 volt, 6 pole, 24 way. Brand new. £3 ea. P. & P. 5/-.

100 CHANNEL PULSE HEIGHT ANALYSER.
Type 1363C. Complete equipment in enclosed 4' 6' cabinet. Tested, working with manual. Must go 435.
Carr. at cost.

Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order

FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd units, etc., at 'Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day.

CHILTMEAD

Berks Tel. No. 582605 7-9-11 Arthur Road Reading (rear Tech. College) 300 yds. west of 22 Sun Street · Reading 65916

OSCILLOSCOPE PROBE TM8119 OSCILLOSCOPE PROBE TM8119
High impedance 100/1 resistive attenuated
probe for accurate display of HF waveforms
or short rise time pulse signals, offered
brand new with all accessories and
instruction manual. List price £17.
Our price £7.10 including earth bayonet
TM8194. A MARCONI PRODUCT

HIGH VOLTAGE TRANSFORMERS Input 240 v., output 2560 v. and 2820 v. at I amp. Weight 75 lb. Price £15.

TELEMAX HIGH VOLTAGE IN-SULATION TEST SET. Model E.IIS. Ikv. to 15kv. Used for the detection and measurement of leakage current and the operation of high voltage apparatus, the output voltage used is measured on a large 3½ in. meter, any leakage which flows in the test circuit is indicated on the same calibrated meter. The instrument is non-lethal and may be short circuited without damage, small portable mains operated supplied in first class condition. Price £30.

SOLARTRON OSCILLOSCOPE 523S.2

The best of the surplus scopes for £52, fully serviced and calibrated, compare the specification with others. Bandwidth DC-10MHz at 3 dB. Sensitivity is 1 MV/cm. Time Base 0.1 usec-1cm/sec in 7 decades with fine control on each range. Uses C Core mains transformers/4 in. High resolution flat face PDA CRT and many other features make this scope very suitable for colour television servicing and many other applications. Price £52 P. & P. 25/-.

HIGH STABILITY LOAD RESISTOR Specially designed for use in R.F. power meters rated continuously at 25 watts by convection cooling or greater by oil immersion or forced air cooling. Connection of the power source is made to N type coaxial socket the input being fed to the top of the load resistor by an outward taper constant impedance section, specification DC to 500 MHz impedance 50 ohms, rating 25 watts. Offered brand new. Price 95/-.

SCHOMANDL FREQUENCY
METER TYPE FD.I AND
CONVERTER UNIT TYPE FDM.I
Range I KHz to 900 MHz an approved
standard for telecommunications equipment. Offered calibrated to manufacturers specifications.

CROYDON INSTRUMENTS
Precision Kelvin Wheatstone Bridge,
type KWI. Measurements can be made
from 0.0001 of an ohm. 100,000 ohms
contains insitu Sullivan Galvo, four
decade ranges, four standards and six
Kelvin divide/multiply ratio's offered in
excellent condition ready for use.
Price £95.

MARCONI 100 KHz QUARTZ CRYSTAL Type Qm120/F contained in B7G envelope with flying lead connections. Brand new only 20/- each.

MORGANITE GLASS ENCLOSED RESISTORS Value 2.5k. meg ohms, tolerance 10%. 25/- per carton of four.

WATSON MARLOW ORBITAL LOBE PUMPS

Specially designed for corrosive liquids etc. Rated output against 10 ft. head—110 G.P.H. direction of flow reversible. Supply 240 v. A.C. mains. Nett weight 14 lb. Supplied as new. Price £12.10.0 P. & P. 10/-, List £22.10.0.

Voltage and Current regulators—heavy duty rheostats—I ohm rated at IOA. Brand new by famous manufacturer, 12/6 each. Also 1.5 ohm at 7A., 12/6, p.p. 1/6.

Lucas diode rectifiers—full wave bridge rectifier mounted on special heat-sink. 50V-60V. operation rated at 50A. Has many uses for heavy duty charging plants, plating rectifiers, etc., etc. Per pair £8 (two complete bridge rectifiers), p.p. 7/6.

SATIC INVERTORS 24 v. DC input. 240 AC output at 150 warrs consistency 240 AC output at 150 watts continuous duty high quality units sine wave output suitable for mobile instrumentation. Offered new and unused. Price £27.10.0.

RF SIGNAL GENERATORS AM AND FM

AND FM

AVO Ltd. Model CT 378. Good quality AM generator 2-225 MHz in seven ranges calibrated output level I uV to I0 V—frequency range directly calibrated with set level meter. Small size modern instrument complete with instructions. RF leads and mains lead for price only £35. Airmec Ltd. Model CT-212 AM/FM signal generator 85 kHz to 32 MHz directly calibrated output level calibrated I uV to I V deviation 0-30 kHz, fully portable for 24 DC and 240 v. AC operation in first class condition. Our price, only £45.

SPECIAL OFFER

"INSULATION TESTERS" TYPE No. II METROHM by famous British manufacturer. All solid state. No handles to crank. Runs off 9 volt transistor battery. Simply press button for function. Range 0·1 to 25M ohms for insulation testing. Also 0·1 to 100 ohms for resistance and continuity checking. Clear, concise scale. Small size modern instrument, complete with carrying strap and protecting cover. Offered in good used condition with battery ready to work. For 250 volt pressure only. List Price £19.10.0. Our Price £5.19.6 plus 4/6 post/packing.

Rhode & Schwarz ESM300
Rhode & Schwarz BN15031
Rhode & Schwarz BN15031
Rhode & Schwarz BN18042
Rhode & Schwarz BN18042
Rhode & Schwarz BN33664/50
Rhode & Schwarz BN33664/50
Rhode & Schwarz BN3464/50
Rhode & Schwarz BN3464/50
Rhode & Schwarz BN3464/50
Rhode & Schwarz BN3464/50
Rhode & Schwarz BN4921
Rhode & Schwarz BN492

N4521 Vibration Meter 30Hz—12 KHz.

ZD Diagraph.

Advance Q meter type 71.

Marconi Q meter type 329G

Marconi Q meter type 886A 15 MHz—170 100 kHz—100 MHz. 50 kHz— 50 MHz. 15 MHz-170 MHz

Farnell Stabilised P.S.U. Model MSB 24/2 Modular unit for incorporating into your equipment. Variable between 3-24 v. @ 2 amps. Supplied New. Price....£17.10.0

RHODE & SCHWARZ POLYSKOP (SWOB 2) With accessories for sale or hire

Airmec portable RF signal generator, AM/FM Type CT212. Specially designed for field use for mains or 12v operation. Frequency range 85kHz to 30MHz. Accurate scale calibration. "Variable output from 1 micro V 100mV 0 to 80db. Offered in excellent condition. Only £45.

RCA AR88D R/X, AS NEW CONDITION PRICE £52

MARCONI 801D A.M. SIGNAL GENERATOR 10-470 MHz OUTPUT 0.I μV to IV

Marconi TF867 Standard RF Signal Generator, range 15kHz to 30MHz. Variable output from 4 micro V to 4 Volts. Extremely accurate attenuator, high output stability and discrimination make the generator very suitable for precision measurements on networks and filters. Modulation up to $100\,^\circ_0$ may be applied at 400 or 1000 Hz. Built in crystal calibrator. Offered in first class condition. Price £175.

Precision Multi Turn Indicating Dials suitable for 10 turn Helical Pots, machined from solid dural with the skirt engraved 0 to 100 and inner dial engraved 0 to 10 suitable for standard 1 inch spindles, these small dials are as easy to fix as screwing on an instrument knob, size 1½ in. for skirt, 1½ in. dia. for counter knob depth 1 in. Brand new, only 15/6. A General Controls Manufacture.

TEKTRONIX 581 WITH TYPE 80 PLUG IN AND PROBE AS NEW CONDITION

WANTED. GOOD QUALITY TEST EQUIPMENT

Miniature solenoid driven wafer switches, type-Ledex single pole, 7 pos., 3 wafers. Primarily used for channel switching in Radio-Telephones. Wafers may be substituted for any type. Solenoid voltage, 12 or 24V. Brand new. 30/- each, p.p. 2/6.

CAMBRIDGE INSTRUMENT Co. Ltd. Precision	test	meters	. Elec	trodyn	amic	
A.C. Ammeter 0 to 15 amps with test certificat	:e			7.7		£35 £45
Dynamometer A.C. Ammeter range 0 to 15 amps		20 /0	20			£55
Cambridge Dynamometer A.C. test set 0-225 Wa	tts/0-3	30 4./0-	30 V.		* 1	
Tinsley Universal Shunt type 4309C						£5
Tinsley Vernier Potentiometer type 4363E Auto		4.5	110	2.5		€95
Foster Thermocouple potentiometer type DX	* -	- 21	×** = 1			£75
Digital Voltmeter Solartron LM902-2 four digit re	17 J			£85		
Solartron A.C. Convertor LM 903 matching unit f			9.4	£75		
THE RESERVE AND COLUMN TO A STATE OF THE STA	0.5			£75 £75		
Hewlett Packard DVM 405CR four digit readout Glouster DVM BIE 2123 A.C./D.C. transistor por						

Frequency Counters Analogue/Digital
Marconi TFI345/2 digital IO Hz to 220 mHz C/W full complement plug in's
Racal Digital frequency meter type older valve model IO Hz-300 kHz
Rank Cintel Counter/timer transistorised model IO Hz-1 mHz
Venner Counter/timer type TS a3 Mains or portable Digital meter readout
U.S.A. BC221 Heterodyne frequency meter 125 kHz-20 mHz new or used from
U.S.A. TSI75/U 85-1000 mHz Modulated, reception/emission CW, MCW, as new
U.S.A. TSI86/D Heterodyne frequency meter 100-10,000 mHz CW, MCW, pulse
Marconi TF 1417/2 counter/timer IO mHz transistorised

OLARTRON VF252/NSL PRECISION ACMILLIVOLT METER

Range 1.5 milli volt (for full scale deflection) to 15 volts in eight ranges input impedance 30 M ohms. The meters offered are of the very latest type not to be confused with the older models. Price only £75.

LOW VOLTAGE POWER SUPPLY UNITS

To supply 12-15-20-24 and 30 volts at continuous 5 amps with current control and ammeter employs silicon heavy duty rectification and high quality components very suitable for light duty plating and charing duties. 240 v. AC supply, fully fused. Small size only 10×7×6 in. Offered brand new units. Price £12.10.0.

LUCAS CAR RELAYS. 12 v. Heavy duty make. Suitable for spotlights, horns, overdrives, etc. Brand new Only 7/6. Special price for quantities.

BARGAIN OFFER

200-yard reels equipment wire, size 1/024, STC quality, various colours. Brand new reels only 15/-. P. & P. 2/6.

HUNTER MAGSLIPS 3 inch Series, Type E-18-V/2. Very suitable for servo operation of hydraulic valves radar aerials and other applications for 50 volt 50 cycle operation. Offered brand new in transit boxes, at only 65/- each.

MUIRHEAD PHASEMETER D-729-bm. Complete with supply and D925A Tunable Filter. Offered as new, with manual. Price £275.

ADVANCE DC STABILIZED P.S.U. TYPE PM8

Fully stabilized power module PM8 15 to 30 volts 5 amps offered brand new, Price £25

50DECO IMPULSE COUNTERS 4 DIGIT RESETT 10 Impulses per second. 27MA 22OV COIL AC/DC OFFERED BRAND NEW AT 40/- EACH

PALF 10 CHAPEL ST. LONDON N.W.1 Phone 01-723 8753

EIMAC SK-600A. Air spaced Valve Holders suitable for 4X250, etc. Power tetrodes, brand new, boxed, complete with clamps, screws; heavy silver plate finish. Normal list price 130/-. Our price 501.

A.E.I. MINIATURE UNISELECTOR SWITCHES

No waiting, straight off the shelf and into your equipment the Catalogue Nos. are 2020.A, 4/33A63/1; coil resistance is 250 ohms. Complete with base, and the 250 ohms. Complete with base, and the price is £4.19.6. Limited quantity only

Also: 2203A, 2200A, 2202A.

Resolved Components Indicator VP 253/la. Solartron Low Frequency Decade Oscillators. Solartron OS 103 and associated equipment. 2 Phase Low Frequency Oscillator, type Bo 567. Solartron. Solartron Synchro test set, type CT 428. Solartron AC Millivolt meter. Precision. Type VF 252.

AERIAL CHANGE/OVER RELAYS ARRIAL CHANGE/OVER RELATS of current manufacture designed especially for mobile equipments, coil voltage 12 v., frequency up to 250 MHz at 50 watts. Small size only, 2 in. × ½ in. Offered brand new, boxed. Price 30/-, inc. P. & P.

MUIRHEAD D-514-A TRANS-MISSION MEASURING SET
Designed for the maintenance and adjustment of carrier telephone equipment, portable for use on 12v DC and mains voltage. Perfect condition. C/W power supply. Price £50.

Coaxial Switches American Manufacture. Suitable for aerial changeover and high frequency switching up to 1,000 MHz miniature Vacuum drawn type 110 vdc operation connections BNC and N types.

Hilger & Watts Microspin X Band Bridge. Type W957. Microspin Proton Head

Hilger & Watts Microspin X Band Bridge. Type W957. Microspin Proton Head Frequency Meter. Type FAZ08. Microspin Modulator. Type FA 210. Microspin I cm Wave guide directional couples, associated measuring equipment. High Voltage Klystron Power Supply Units. Type FA 80.
Hilger & Watts Absorbance Convertor, and many other items of interest offered. Rrand new equipment.

Brand new equipment.

Lead-acid equipment batteries 10 v. 8AH. Lead-acid equipment batteries 10 V. 8AH. Transparent casing. Size $2\frac{1}{2} \times 5 \times 7$ in. Offered brand new and boxed, 2 batteries per box, complete with links and full instructions. Can supply voltages in the range from 2-20 v. Price 45/-, incl. P. & P.

Burndept RF Plugs still available. These hard to find plugs are used on a multitude of equipment, especially Londex aerial c/o relays. Offered new ex. equipment. 2 for 10/-, inc. p.p.

Nife traction Batteries Nickel Iron. 1.2V per cell rated at 180 A.H. Sold in crates of three cells or crates of five cells. £4 per cell. Guaranteed best buy.

BT91-500R THYRISTORS 500 PIV Max rect. Current 16 amps. Guaranteed perfect. Price 25/- each.

HELICAL POTENTIOMETERS 10 TURN. Colvern type CLR 2402/IIS. Value 20 k. ohms., dia. $\frac{1}{8} \times 2$ in. 35/-. BOURNS 3507S-3-103 10 k. at 0.5%. 10 turn, dia. $\frac{3}{8}$ in., length 2 in. incl. spindle. Brand new. 45/-. Many other types available.

Marconi Impedance Bridge TF368. Price Wayne Kerr Impedance Bridge B521. Price £45.

Electronic Voltmeters for low level signal sources.

signal sources.

PYE High Impedance DC Amplifier for measurements better than 20 uV to 10 volts centre zero. Price 456.

Phillips GM 6010 I mV FSD to 300 V in 12 ranges. Price 445.

Phillips PM 2520 I mV FSD to 300 V in 12 ranges RMS voltmeter 10 Hz to I MHz. Price £45.

Dawe Model 616A transistorised Voltmeter 10 mV FSD to 300 volts. In 10 ranges. £27.

ranges. £27. Levell Model TM2A transistor AC Volt-meter 1.5 mV FSD to 500 volts. £22. Solartron VF-252. AC millivoltmeter 1.5 mV for FSD to 15 V 30 M ohms imped-ance. Price £65.

H. W. SULLIVAN STANDARD AIR SPACED CONDENSERS Capacitance range 0 to 100 pf fully screened with engraved vernier sub-divided into 100 equal divisions complete with vernier index and original manu-facturers seal offered brand new, at only £25 each.

CHOICE OF 1000S OF ITEM		OW PRICES AND RETURN OF POST SERVICE
	14/6 BC140	
PANEL METERS 38 Series—FACE SIZE 42 × 10	25/- 25/- 25/- 25/- 25/- 25/- 25/- 25/-	16
SPEAKERS (3ohm) 10" × 6" ·	10 Watt (from 3.9v to 100v)	Please note:—Due to bulk buying we can now offer Texas RCA and Newmarket Semiconductors at industrial distributor prices. New quantity Price List available
	MARSHALL & SRICKLEWOOD BROADWAY,	

FLUORESCENT CONTROL KITS

FLUORESCENT CONTROL KITS

Each kit comprises seven items—Choke, 2 tube endsstarter, starter holder and 2 tube ellps, with wiring instructions. Suitable for normal fluorescent tubes or the new
"Groins" tubes for this tanks and indoor plants. Chokes are
super-silent, mostly resin filled. Kit A—15-20 w. 19/6.
Kit B—30-40 w. 19/6. Kit C—50 w. 23/6. Kit E—15 v.
23/6. Kit F for 8ft. 125 w. tube 35/— Kit MF1 is for 6in.,
9fn. and 121n. miniature tubes. 19/6. Kit MF2 for 21in.
13 w. miniature tube, 20/—. Postage on Kits A and B 4/6
for one or two kits then 4/6 for each two kits ordered.
Kits C. D and E 4/6 on first kit then 3/6 for each kit ordered.
Kits Chen 4/6 for each kit ordered. Kit MF1 3/6 on each two kits ordered.

3 amp 12v. Battery Charger Kit—comprising 230/40 mains transformer with 3 amp secondary and 3 amp rectifier

3 amp 12v. Battery Charger Kit—comprising 230/40 mains transformer with 3 amp secondary and 3 amp rectifier 22/6 plus 4/6 post.

12 volt 1½ amp Power Pack. This comprises double-wound 230/240v. mains transformer with full wave rectifier and 2000 m.f.d. smoothing. Price 27/6.

12 volt Car Battery Trickle Charger. Made in Japan, this is very small and neat. Regular use will keep your car battery in good trim throughout the winter. Silv price, 25/—plus 4/6 postage and insurance.

postage and insurance.

Sonotone Stereo Cartridge, Turnover type, ref. No. 19 TI.

This fits most British pick-ups and is a really excellent reproducer. Limited quantity, 19/6.

5 amp 3 pin Sockets. These are always good stock, you never know when you will need some. Famous make, brown bakelite, standard size, 12 for 13/- pius 4/6 post.

Ditto but with switch. 12 for £1 plus 4/6 post.

13 amp sockets, flush mounting. Bakelite, cream, less switch. 6 for £1.

switch, 6 for 21.

Bakelite Panels, many thicknesses. We have just taken delivery of approximately 10 tons of bakelite in varying thicknesses from 2 in. to a few thou. If you have a need for any of this then we would be glad to supply. The thickest is very heavy and could be used, for instance, as a bed for a motorised unit. Medium thickness is useful for front panels of instrument, etc., etc., Cut to your size price is 6/- ib. plus 6/- cutting charge plus carriage. But it is a proper supplies to the plus carriage. The plus carriage mounting, brown bakelite. Made by famous maker, 2/6 each or 24/- dozen. 100 Assorted Sillson Rectifiers G.P. and Switching Diodes. Small and very small sizes. A real sulp for experimenters, 12/6 per 100.

Mains Suppression Adanter for presenting mains interference.

Mains Suppression Adaptor for preventing mains interference caused by vacuum cleaners, razors, sewing machines, etc., rated at 4 amps, simply plug this into your 5 amp 3 pin socket, 6/— each.

Science, 6,—each.

5 in. Cathode Ray Tube. Sylvania type, No. 8E5 J31, replacement in many scopes and instruments, brand new and unused, 26,0.0 plns 10/6 postage and insurance. Mu Metal shield for this tube, 22, 10.0.

ELECTRIC CLOCK WITH 25 AMP SWITCH
Made by Smith's, these units are as fitted to many top quality cookers to control the oven. The clock is mains driven and frequency controlled so it is extremely accurate. The two small dials enable switch on and off times to be accumitely set. Ideal for switching on tape recorders. Offered at only a fraction of the regular price—new and unused only, 39/6 less than the value of the clock alone—post and insurance 2/9 MULTI-SPEED MOTOR

MULTI-SPEED MOTOR

MULTI-SPEED MOTOR

Replacement in many well-known food mixers. Six speeds are available 500, 850 and 1,100 r.p.m. from either or both of the nylon sockets (where the beaters of the food mixers normally go) and 8,000, 12,000 & 15,500 r.p.m. (ideal polishing speeds) from the main drive shaft. This drive shaft is \$\frac{1}{1}\text{in}\$ diameter and approximately lin. long. A further point about this motor is that being 230/240v. AC-DC series wound its speed may be further controlled with the use of our Thyrister controller. This is a very powerful and useful motor size approx. 2in. dia. \times 5in. long, mains 230/240v. Price 17/8 plus 4/6 postage and insurance. 12 or more post free.

more post free.

Nicad Battery Charger. This plugs into a shaver socket, has switch for 240 or 115 v. mains, has a charge rate of 7 mA and 2 slide-in compartments designed to take 120 mAH, standard Nicads, but by using washers or rings these charger can be easily modified to take mercury deaf aid cells, committed with abortor 40%.

standard Nicada, but by using washers or rings these charger can be easily modified to take mercury deaf aid cells, complete with adaptor, \$9(8).

Quadruple Recording Tape. On a 3in, spool giving 600ft, of very good quality tape. Made by a famous company for talking books, especially suitable for message tapes and portable equipment. Regular price about 30% per spool. Our price, 7/6 or 21/- for 3 spools if ordered together.

8 ohm Speaker, 5in, round, made by E.M.I. Suit most transistor amplifiers, 14/46 ea.

Heat and Light Lamp 275 watt, internal mirrored, B.C. cap, 16/8 plus 3/6 post & ins.

Grundig Stenorettor. Portable office dictating machine, German made and very efficient. We have a few only of these, accordand but in perfect working order, any not so would be exchanged. £10 each.

Rechargeable Nicad Battery Packs for this machine, £3.10

Rechargeable Nicad Battery Packs for this machine, £3.10

each.

110 r.p.m. Geared Motors. This is a powerful 2 pole mainsoperated induction motor as used in record players but much
more powerful (fin. stack). The gearbox is sealed and the
final drive shaft is 1in. long and jin. diameter. Overall size
of motor and gearbox 3 × 3 × 4in. approx., 35/- each, post
and ins. 4fc.

Mains Operated Relay. A small size relay but with 3 pairs of 10 amp contacts. 12/6 each.

The amp contacts, 12/6 each.

Spot Welders. These comprise step-down transformer, welding heads, foot switch and auto cut-out. Not many of these available, price £40 complete plus carriage at cost. Approx. weight 401b.

Alprox. weight some.

6-way Shorting Switch. This resembles an ordinary rotary
wave change switch, but the tags instead of being switched
separately, are progressively shorted together. This is
sometimes known as an incremental switch, 4/6 each.

sometimes known as an incremental switch, 4/6 each to Buzzer. This is a normal size bakelite buzzer, made for the (i.P.O. so obviously very good. Ex-equipment but perfect order, 4/6 each or 48/- dozen.

Miniature Fluorescent Tubes. These have a diameter of only approximately \$\frac{1}{2}\text{in.}\$ and are available as follows: \$\frac{1}{2}\text{in.}\$—8 watt, \$2\text{in.}\$—2 watts. All \$10/6\$ each or \$9/- dozen lots. Control gear for these is available, MF1 for and 12\text{in.} tubes and MF2 for \$2\text{in.}\$ tubes, \$19/6\$ per set plus 3/6 post.

2 ansed 12 volt Blowers. Made by Balco these are approximately \$\frac{1}{2}\text{in.}\$ and \$\frac{1}{2}\text{in.}\$ with \$\frac{1}{2}\text{in.}\$ post.

6 and 12in, tubes and MF2 for 2lin, tubes, 19/8 per set plus 3/6 post.

2 speed 12 volt Blowers, Made by Delco these are very powerful at full speed, ideal if you are making a blower heater for car or caravan or for extracting bad air where only a 12 volt supply is available, 39/6 plus 4/6 p. & p. Panel Lamp Holders. These require only one hole through the panel, removeable glass front and back, uses normal small M.E.S. bulb, 1/3 each, 12/3 dozen.

Spartan Radio, Long and medium wave 7 translator radio, and size approx. 6 × 4 × 1 lin., with larger than average speaker, better than average tone. Also telescopic aerial for receiving distant stations. A good set, complete with leather case and carrying sling, 23.15 each plus 5/7 post and ins.

13 Amp Fuse for ring main plus, Made by G.E.C. these are

13 Amp Fuses for ring main plugs. Made by G.E.C. these are very good, 5/- per dozen, 50/- gross.

ERGOTROL UNITS
These units made by the Mullard Group are for operating and controlling d.e. Motors and equipment from A.C. mains.
Thyristors are used and these supply a variable d.e. resulting in motor speed control and operating efficiency far superior to most other methods.
The units are contained in wall mounting cabinets with front control panel on which are fusee—push buttons for on/off and the variable thyristor fring control.

4 models are available—all are brand new in makers cases:

4 models are available—all are brand ne makers case; Model 2410 for up to 5 amps \$217.10.0 Model 2411 for up to 10 amps \$227.10.0 Model 2413 for up to 45 amps \$247.10.0 Model 2413 for up to 80 amps \$295.00 Note: 2415 is a floor mounting unit.

HORSTMANN "TIME & SET" SWITCH

(A 30 Amp Switch.) Just the thing if you want to come home to a warm house without it costing you a fortune. You can delay the switch on time of your electric fires, etc., up to 14 hours from setting time or you can use the switch to give a boost on period of up to 3 hours. Equally suitable to control processing. Regular price probably around £5. Special snip price 29,6. Post and Inc. 4/6.

FULL FI 12" LOUDSPEAKER.

FULL F1 12" LOUDSPEAKER.

This is undoubtedly one of the finest loudspeakers that we have ever offered, produced by one of the country's most famous makers. It has a discost metal frame and is strongly recommended for Hi-Jead and Rhythm Geltar and public address. Plux Density 11,000 gause—Total Plux 44,000 Maxwells-Power Handling 15 watts R.M.S. Cone Moulded fibre—Freq. response 3-010,000 (p.p. =—Specify 3 or 15 ohns—Mains resonance 60 c.p.s.—Chresis Dism. 12h.—122h. over mounting lugs—Bartle hole III. Dism.—Mounting holes 4, holes—Jin. dism. on pitch circle 1 h. dism.—Overal heights of the control of the dism.—Overal heights of models with equally good specification: 12h. 40 watt 25.19.8 plus Ng p. & p. 15h. 25 watt 27.19.8 plus 10/6 p. & p.; 18in. 100 watt 218.10 plus 30/- p. & p.

STANDARD WAFER SWITCHES

No. of Pol	es 2 way	3 way	4 way	5 way	6 way	8 way	9 way	10 way	12 way
1 pole	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6
2 poles	6/6	6/6	6/6	6/6	6/6	6/6	6/6	10/6	10/6
3 poles	6/6	6/6	6/6	6/6	10/6	10/6	10/6	14/6	14/6
4 poles	6/6	6/6	6/6	10/6	10.6	10/6	10/6	18/6	18/6
5 poles	6/6	6/6	10/6	10/6	14/6	14/6	14/6	22/6	22/6
6 poles	6/6	10/6	10/6	10/6	14/6	14/6	14/6	26/6	26/6
7 poles	6/6	10/6	10/6	14/6	18/6	18/6	18/6	30/6	30/6
8 poles	10/6	10/6	10/6	14/6	18/6	18/6	18/6	34/6	34/6
9 poles	10/6	10/6	14/6	14/6	22/6	22/6	22/6	38/6	38/6
10 poles	10/6	10/6	14/6	18/6	22/6	22/6	22/6	42/6	42/6
11 poles	10/6	14/6	14/6	18/6	26/6	26/6	26/6	46/6	46/6
12 poles	10/6	14/6	14/6	18/6	26/6	26/6	26/6	50/6	50/6

TANGENTIAL HEATER UNIT

These heater units are the very latest type, most efficient, and quiet running. As fitted in Hoover and blower heater leading 213 from 10 Converse the control of the contr

THIS MONTH'S SNIP.

THIS MONTH'S SNIP

HONEYWELL PROGRAMMER

This is a drum type timing device, the drum being calibrated in equal divisions for switch purposes with trips which are infinitely adjustable for position. They are also arranged to allow 2 operations per switch per rotation. There are 15 changed over micro switches seah of 10 amp type operated by the trips thus 15 circuits may be changed per revolution. Drive motor is mains operated 5 revs. per min. Some of the many uses of this timer are Machinery control, Boiler firing, Dispensing and Vending machines, Display lighting animated signs, Signalling etc. Price from Makers probably over £10 each. Special snip price £5-15 plus 5/- post and ins. Don't miss this territic bargain.

RESETTABLE FUSE

How long does it take you to renew a fuse? Time yourself when next one blows: Then reckoning your time at £1 per hour see how quickly our resettable fuse (auto circuit breaker) will pay for itself. Price only £1 each or £11 per dozen, specify.5, 10 or 15 amp-simply fit in place of switch.

THYRISTOR LIGHT DIMMERS

Will dim Incandescent lighting up to 600 watts from full brilliance to out. Suitable to mount on M.K. switch plate, same size and fixing as standard wall switch, so may be fitted in place of this, or mount on surface. Price complete with control knob 59/6.

INTEGRATED CIRCUITS.

A parcel of integrated circuits made by the famous Plessey Company. A once in a lifetime offer of Micro-electronic devices well below cost of manufacture. The parcel contains 5 ICs all new and perfect, first grade device definitely not sub-standard or seconds. The ICs are all single silicon chip General Purpose Amplifiers. Regular price of which is well over £1 each. Full circuit details of the ICs are included and in addition you will receive a list of 50 different ICs available at bargain prices 5s, upwards with circuits and technical data of each. Complete parcel only £1 post paid or List and all technical data.

DISTRIBUTION PANELS

è .- | .- | .- | .-Just what you need for work bench or lab. 4×13 simp sockets in metal box to take standard 13 amp fused plurs and on/off switch with neon warning light. Supplied complete with 7 feet of heavy cable. Wired up ready to work, 39/8 less plug; 45/- with fitted 13 amp plug; 47/8 with fitted 15 amp plug, plus 4/6 P. \propto I.

COMPUTER TAPES

2,400ft. of the best magnetic tape money can buy. Made by E.M.I., 1in. wide, almost unbreakable and on a 104 in. metal computer spool. Users have claimed successful results with video as well as sound recordings. 19/8 plus 6/6 post. Cassette to hold spool 10/- extra.

Designed to operate transistor sets and amplifiers. Adjustable output 6 v., 9 v., 12 v. for up to 500 mA (class B working). Takes the place of any of the following batteries: PPI, PP3, PP4, PP6, PP7, PP9 and others. Kit comprises: mains transformer rectifier, smoothing and load resistor, condensers and instructions. Real snip at only 16/6 plus 3/6 postage.

A.C. Ammeter. These are very useful in the workshop as they will read very high currents in fact 0.250 amps, but being moving iron the most useful section of the scale permits accurate readings between 5-50 amps. These are heautifully made, 3in. dial, made by Sangamo Weston. Probable cost from the makers over £10 each. Our price 59/6. Brand new in makers' cartons.

Case Handle. Bakelite with metal attachments. Ideal for all portable equipment and for tool boxes, etc., 1/3 each, 12/-

EXTRACTOR FAN

Cleans the air at the rate of 10,000 enble ft. per hour. At the pull of a cord it extracts grease, grime and cooking smells before they dirty decorations. Suitable for kitchens, bathrooms, factories, changing rooms, etc., it's so quiet it can hardly be heard. Compact, 5\(\frac{1}{2}\) casing with 5\(\frac{1}{2}\) fan blades. Suitable wherever it is necessary to move air fast. Kit comprises motor, fan blades, sheet ateel casing, pull switch, mains connector, and fixing brackets 3\(\frac{1}{2}\) fap blades.

DOOR INTERCOM

Know who is calling and speak to them without leaving bed, or chalr. Outfit comprises microphone with call push button, connectors and master intercom. Simply plugs together. Originally sold at £10. Special snip price 49/6, plus 3/6 postage.

Be first this year! SEED AND PLANT RAISING

Soil heating wire and transformer. Suitable for standard size garden frame. 19/6, post and ins. 5/6.

BLANKET SWITCH

Double pole with neon let into side so luminous in dark. Ideal for dark room light or for use with waterproof element-new plastic case. 5/6 each. 3 heat model 7/8.

WATERPROOF HEATING ELEMENT, 26 yards length 70W. Self-regulating temperature control. 10/- post free.

2½kW FAN HEATER

Three position switching to suit changes in the weather. Switch up for full heater (24kW), switch down for half heat (14kW), switch down for half heat (14kW), switch central blows cold for summer cooling—adjustable thermostat acts as autocontrol and safety cut-out. Complete kit £3.15.0. Post and ins. 7/6.

THERMOSTATS

THERMOSTATS

Type "A" 15 amp. for controlling room heaters, green. houses, airing cupboard. Has spindle for pointer knobs-Quickly adjustable from 30-80 deg. F. 9/8 plus 1/- post. Suitable box for wall mounting, 5/-. P. & P. 1/-.

Type "B" 15 amp. This is a 17 in. long rod type made by the famous Sunvic Co. Spindle adjusts this from 50-550 deg. F. 8 adjustable over 30 deg. to 1000 deg. F. 8 uitable for controlling furnace, oven, kiln. immersion heater or to make flame-stat or fire alarm. 8/6 plus 2/9 post and insurance.

Type. "D". We call this the Ice-stat as it cuts in and out

insurance.

Type "D". We call this the Ice-stat as it cuts in and out at around freezing point, 2/3 amps. Has many uses, one of which would be to keep the loft pipes from freezing, if a length of our blanket wire (16 yd. 10/-) is wound round the pipes. 7/6. P. & P. 1/-.

Type "B". This is standard refrigerator thermostat. Spindle adjustments cover normal refrigerator temperature. 9/6, puls 1/- rot.

adjustments cover normal refrigerator temperature. 9/6, plus 1/- post.

Type "F". Glass encased for controlling the temperature of liquid—particularly those in glass tanks, vats or sinks—thermostat is held (half submerged) by rubber sucker or wire clip—ideal for fish tanks—developers and chemical baths of all types. Adjustable over range 50 deg. to 150 deg. F. Price 18/- plus 2/- post and insurance.

This Tuner is a precision instrument made for the famous Radiomobile Car Radio. It is medium wave tuner (but set of long wave coils available as an extra if required) with a frequency coverage 1802 Kc/s-S25 Kc/s and intended to operate with an I.F. value of 470 Kc/s. Extremely compact (size only 121×2×in. thick) with reduction gear for fine tuning. 12/8, with circuit of front end sultable for car radio or as a general purpose tuner for use with Ampliner.

TELESCOPIC AERIAL

For portable, car radio or transmitter. Chrome-plated—six sections extends from 7½ to 47in.
Hole in bottom for 6BA screw. 7/8

TOGGLE SWITCH 3 amp 250v, with fixing ring. 1/6 each 15/- doz

80 OHM BALANCED ARMATURE EAR PIECE
Usable as microphone or loudspeaker. 5/6 each.
Rod Thermostats. As normally used in water heaters, 2 lengths 10in. and 18in. 12/6 each.
13 amp Ivory Sockets. Unswitched, 3/6 each, switched 4/6 each.

each. 15 amp Micro Switch. Made by Burgess this is standard, 15 amp on/off, 2/6 each, 27/- dozen.

io amp on/off. 2/6 each. 27/- dozen. Resettable mpulse Counter, 24 volt operated and each impulse moves one digit and the instrument is resettable by pixsh button, ideal for any counting operations, 49/6. Error in Last Month's A.A. News. Some copies of this described a 12 volt ½ amp Power Pack at 29/6. This should have read 12 volt 1½ amp Power Pack at 29/6. Sorry for this mistake.

ELECTRONICS (CROYDON) LTD

Dept. WW, 266 London Road, Croydon CRO-2TH Also 102/3 Tamworth Road, Croydon

AERO SERVICES LTD

TWO NEW

MULTIMETERS FROM RUSSIA

TYPE 4312—low sensitivity (6870 p.v.) extremely sturdy instrument for general electrical use.
10.C. ranges: 0.3-1.5-7.5-30-60-150-300 μα-1.5-6-150-600 mA 1.5-6-150-600 mA 1.5-600 mA

60-150-600 MA 1.5-6 6 amps. A.C. ranges: 0.3-1.5-7.5-30-60-150-300-600-900V. 1.5-6-15-60-160-600mA. 1.5-6 amps. Resistance: 0.2-3-30kΩ. Accuracy: D.C. 1%; A.C. 1.5%; PRICE, with carrying case and leads £9.75

and leads 29.75

TYPE 4313—high sensitivity for general electronic and TV-radio repair applications.

Sensitivity: 20,000 o.p.v. DC and 2,000 o.p.v. AC.

DC. ranges: 75mV-1.6-3-7.5-15-30-60-150-300-600V.

60-120-600μA-3-15-60-300mA-1.5Amp.

AC. ranges: 1.5-3-7.5-15-30-60-150-300-600V.

600μA-3-15-60-300mA-1.5A.

Resistance: 0.5-5-50-300mA

Capacity and Transmission level scales.

Accuracy: 1.5% D.C.: 27% A.C.

PRICE, with carrying case and leads 210.50.

Both instrumenta have knife edge pointers and mirror scales.

Both instruments have knife edge pointers and mirror scales.

WHEN ORDERING BY POST PLEASE ADD 0-12½ (2/6) IN £ FOR HANDLING AND POSTAGE.

NO C.O.D. ORDERS ACCEPTED
ALL MAIL ORDERS MUST BE SENT TO HEAD
OFFICE AND NOT TO RETAIL SHOP.

INTEGRATED CIRCUIT

CA3005 RF amplifier, 100mc/s l	andwidt.	h		
CA3012 Wide Band Amplifier fo				
				41.1
CA3020 550mW Audio Amplifier			10.0	
CA3036 Two super-alpha pairs f	or stereo	pic	k-up syste	ms
CA3052 Latest addition to l		ige.	Four-in-	one
PA222 1.2 watt Audio Amplifier		1.4		
PA234 1 watt Audio Amplifier	4.5			
PA237 2 watts Audio Amplifier				
MC1709G-G.P. operational Am	plifler			200
TAA263 3-stage direct coupled	Amplifler	٠		
TAA293 3-stage direct coupled a	Amplifier	٠		
TAA320 MOST input + bi-pola	r stage			
TAD100 All active components	required	l to	construct	an
AM receiver				
SL403A 3 watts Audio Amplifie	٠ ٦			

ZENER DIODES

hardware

Please state voltage required—nearest standard voltage will be supplied.

TWO NEW OSCILLOSCOPES FROM RUSSIA

CI-5 SINGLE BEAM OSCILLOSCOPE

OSCILLOSCOPE
10 mc/s passband, triggered sweep from 1 μ sec. to 3 millisec. Free running time base from 20 c/s to 200 kc/s. Built-in time marker and amplitude calibrator, 3-in. cathode ray tube with telescopic viewing hood.

£39.00

CI-16 DOUBLE BEAM OSCILLOSCOPE

OSCILLOSCOPE

5 mc/s passband. Separate
Y1 and Y2 ampliflers,
rectangular 5 in. × 4 in.
cathode ray tube. Calibrated triggered sweep
from 0.2 \(\mu \) sec. to 100 millisec. per cm. Free running
time base 50 c/s to 1 mc/s.
Built-in time base calibration and amplitude calibrator

\$87.50
Full details on request.
Full servicing facilities and
spares available.

OUR NEW CATALOGUE 1970/1971 18 NOW PLEASE SEND S.A.E. FOR YOUR FREE COPY. READY.

£ OA2 0.38 5B/255M 6BN6 2 4 OA3 0.45 2.00 6BQ5 0.25 OA4G 1.15 5CP1 5.00 6BQ6 0.25 OBB 0.85 5D21 5.00 6BQ6TB 0.85 OBB 0.85 5D21 5.00 6BQ6TR 0.85 OC3 0.93 5BCP 0.33 6BR7 0.85 OC3 0.38 5V4G 0.42 6BS 0.85 1L3 0.30 5W4GT 0.42 6BS 1.30 1L3GT 0.35 5V4G 0.42 6BS 0.75 1B3GT 0.35 5V4G 0.40 6BW 0.75 1B3GT 0.35 6KAG 0.25 0.56 6KX7OT 70 1B3GT 0.35 6KAG 0.35 6CA 0.35 1CC5GT 0.35 6KAG 0.35 6CA 0.35 1L4 0.22 6ALAS 0.35 **FULLY**

FIRST QUALITY

	1			4 1 4 1	
î	0			PCF8010-50 QQV03-20A UC	CH43 0.75
0.5	FULLY	FaeruX FI	RST QUALITY		CH81 0.35
GTB 0-6	FULLI	/Enonix/	NOT QUALITY		L82 0-35
A 0.4	o l	Juliu II		PCF8080-75 QS83/3 0-40 UC	CL83 0.60
0.1	GUARANTEED		VALVES	PCH200 QV03-12 UF	
0.6 1.0	a a a a a a a a a a a a a a a a a a a	224112	TALTES	PCL81 0.50 QY3-125A UF	
6 0.8		BRAND	1	PCL82 0.35 8.00 UF	
7 0 7				PCL83 0.65 QY4-400A UF	
3 0 5 7GT	5 6R7G 0.45 12AT7 0.33 30C15 0.80 329	1-15 AC/TH1 E180F 0-95 H	CH84 0.45 EL91 0.32 HBC90 0.30	PCL84 0.45 16.00 UF PCL85 0.40 R10 1.00 UF	
0.7	5 682 0.40 12AU6 0.30 30C17 0.85 329A		CL80 0 40 EL95 0 35 HBC91 0 33	PCL86 0.45 R18 0.55 UF	
0.			CL81 0.45 EL360 1.15 HF93 0.35	PCL88 0.90 RG3-250A UL	
0		T # 00 OIL TOOOT 0 10 7	CL82 0.35 EL803 1.00 HF94 0.30 CL83 0.65 EL821 0.55 HK90 0.35	PCL800 0 93 0 75 UL PCL801 0 70 RL18 0 50 UM	
GA.	68G7 0.35 12AX4GTB 30FL12 0.93 807	0.50 CDLI 0.80 EA50 0.90 E	CL84 0.55 EL822 0.90 HL23 0.40	PCL805 0 50 8130 1 75 UM	
1.			CL85 0.55 ELL80 0.75 HL23DD CL86 0.40 EM34 0.90 0.40	PD500 1:50 G190D 1.74 UU	
0.			CL186 0.40 EM34 0.90 0.40 CLL800 EM71 0.75 HL42DD	PEN4DD 8P2 0.50 UY	71N 0-50 711 0-65
0.	0 68L7GT 12B4A 0.55 30L17 0.80 833A	17 00 CY31 0 35 EAF42 0 55	1.50 EM80 0.40 0.50	PEN45 0-40 8P4 0-50 UY	
0.			F9 0.50 EM84 0.35 HL92 0.40	PEN45DD SP41 0 45 UY	
4 0.		0.75 DAF91 0.25 0.50 E 3.00 DAF92 0.50 EB34 0.20 E	EF37A 0 60 EM85 1 00 HL94 0 45 EF39 0 40 EM87 0 55 KT8 2 00	PEN46 0 40 SP61 0 55 UY	785 0.30 8631 1.90
0.	5 68Q7 0 40 12BH7 0 40 30PL13 0 93 884	0.60 DAF96 0.42 EB91 0.20 F	F40 0.50 EN10 4.00 KT36 1.00	PEN383 TP22 0.60 VP	41 0.75
0.1		Indian I de Impara e se la	F41 0.65 EN11 3.50 KT44 0.50 F42 0.70 EN32 1.50 KT45 2.00		133 1.00
6 0·4	6T9 0.9K 10E1 1.9E SERE 0.8E		EF42 0.70 EN32 1.50 KT45 2.00 CF80 0.25 EN91 0.35 KT66 1.70	PEN384 TT21 2.65 VR 0.60 TT22 2.80	175/30 0·45
0.	5 6U4GT 0.60 12E14 8.57 35C5 0.40 32	0 50 DF96 0.42 EBC90 0.30 E	F83 0.55 EY51 0.40 KT71 0.50	PEN453DD U17 0.75 VR	105/30
7 0	8 000% 0 1240 0 00 15000 0 70	[DH to 0.90 PDCar 0.90 F	EF85 0.35 EY80 0.45 KT76 0.40 CF86 0.30 EY81 0.40 KT88 1.75	0.60 U18/20 0.75 PF86 0.60 U19 2.50 VR	0.38
0.	0 5111		F89 0.28 EY83 0.55 KTW630.50	PF818 0.85 U20 0.75	150/30 0:35
0.	0 6X8 0.55 12K5 0.55 35Z3 0.60 4687	1 75 DK40 0 55 EBF89 0 30 E	F91 0.33 EY84 0.55 ME91 0.45	PFL2000.70 U25 0.75 VU	33 0.60
0	- 074 0 0E 1 ***** DECC OTTO 40 VET1 4		EF92 0.40 EY86 0.40 MH4 0.50 CF93 0.25 EY87 0.43 ML4 0.45		739A 0-60
0	0 7B5 0.75 0 00 49 0.50 1	16 00 DK96 0 42 EC86 0 60 E	F94 0.25 EY88 0.43 ML6 0.40		1120 0-80
0.0	5 7B0 0.70 10070 000 50A5 0.70 5054		F95 0.30 EZ35 0.35 M8PEN/T		7133 0.60
0.4	3 100			PL83 0-45 U52 0-33 W1 PL84 0-40 U76 0-30 W7	
0.	5 7F8W 0.85 128G7 0.35 50CD6G 5763	. 0.70 DL91 0.27 EC93 0.50 E	F98 0.65 EZ80 0.25 MU12/14	PL302 0.80 U78 0.30 X6	
0			F183 0 80 EZ81 0 28 0 60 F184 0 35 EZ90 0 30 N78 1 15	PL504 0.80 U191 0.75 X6	
0.1	5 9BW6 0.50 128J7 0.30 50L6GT0.50 5894			PL508 0.90 U201 0.35 X7 PL509 1.30 U281 0.40 XC	
0.7	5 10C2 0.50 12SK7 0.45 52KU 0.40 6072	0 85 DL95 0 40 ECC70 0 85 E	F804 1 25 FW4/500 NSP2 4 00	PL801 0.60 U282 0.40 XC	
0.0			F811 0.75 0.75 PABC80 F812 0.80 FW4/800 0.40		112T 0.40
0 1	Olimia I di laggo I di litta I di litta			PLL80 0.55 U403 0.50 XC PM84 0.50 U404 0.40 XC	015 0.25 1 015T 0.40
T 0	0 10F9 0.50 128R7 0.35 80 0.50 6293		H90 0 40 GC10B 3 75 PC88 0 60	PX25 2.00 U801 1.00 XC	23 0.90
0-4 1-0-1			CK32 0.45 GN4 1.50 PC900 0.48 CK90 0.30 GR10M 1.50 PCC84 0.40	PY31 0 30 UABC80 XC PY33 0 63 0 35 XF	725 0·35 R1-1600
0.5	5 10LD110-60 20CV 3-15 85A3 0-50 6883		L5 0.55 G810C 5.00 PCC85 0.40	PY80 0.35 UAF41 0.50	14.00
0.0			L33 1.25 G810D 5.75 PCC88 0.55	PY81 0-30 UAF42 0-55 XF	R1-3200
5-0 TH		F82F 1.10 ECC91 0.20 F	2L34 0 50 G810H 3 10 PCC89 0 50 CL35 0 40 G812D 7 00 PCC189 0 55	PY82 0-30 UB41 0-60 PY83 0-38 UBC41 0-50 Z35	6.50 29 0.85
0.7	5 11D5 0.45 20P3 0.60 00CV 1.25 75014	1.00 E84L 0.50 ECC189 0.80 E	L36 0.50 G847X 3.00 PCC805 0.85		29 0.85 20M 1.50
T 0.4	5 11E2 2.50 20P4 1.10 108C1 0.35 7895	1 05 15000 0.90 150100 0 00 15	L41 0.55 GU50 1.75 PCC806 0.80 L42 0.58 GY501 0.80 PCE8000.70	PV500 1.00 UBF80 0.40 Z70	00U 0.40
0.4	11E3 4.00 20F0 1.20 150P0 0.00 9005	2 00 E00C 1.19 ECLO7 0.00 L	21.42 0.58 GY501 0.80 PCE8000.70 CL81 0.55 GZ30 0.40 PCF80 0.30	PY800 0.50 UBF89 0.35 Z70	00W 0.75
0 0.4	12AC6 0 40 25L6GT0 45 150B3 0 60 9002		L83 0.42 GZ31 0.33 PCF82 0.35	PY801 0.50 UBL21 0.60 Z7	
T 0.4	1 12AH7GT 25Z4G U-30 150C4 0-60 9003	0.50 1.90 ECH35.0.60 E	L84 0 25 GZ32 0 48 PCF84 0 50	PZ30 0-85 UC92 0-35 Z7	
0.6	0 12AL5 0 45 30A5 0 45 310A 1 50 A2293		L85 0.43 GZ34 0.60 PCF86 0.60		00U 1.75 01U 1.75
0.6	5 12AQ5 0 43 30AE3 0 40 311A 2 00 AC/HI	L/DD E91H 0.60 ECH81 0.30 F	L86 0 40 HABC80 PCF87 0 85	QQV03-10 UCH21 0-60 Z80	03U 0.90
0 - 4	0 12AT6 0 30 30C1 0 30 328A 2 00	0.50 E130L 5.00 ECH83 0.40 E	L90 0.35 0.45 PCF800 0.80	1-25 UCH42 0-70 Z9	00T 0.75

PLEASE NOTE THAT ALL PRICES ARE QUOTED IN DECIMAL CURRENCY.

PLEASE NOTE THAT VALVES LISTED ABOVE ARE NOT NECESSARILY OF U.K. ORIGIN

Head Office: 44a WESTBOURNE GROVE, LONDON, W.2

Tel.: PARK 5641/2/3 Cables: ZAERO LONDON

6BL7GTA 6P28 0 65 6Q7

Retail branch (personal callers only) 85 TOTTENHAM COURT RD LONDON W.2. Tel: LANgham 8403

A.R.B. Approved for inspection and release of electronic valves, tubes, klystrons, etc.

WE WANT TO BUY:

SPECIAL PURPOSE VALVES, PLEASE OFFER US YOUR SURPLUS STOCK, MUST BE UNUSED

TELEX 261306

APPOINTMENTS VACANT

DISPLAYED SITUATIONS VACANT AND WANTED: £3 per single col, inch, LINE advertisements (run-ou): 45p [9/-] per line (approx. 7 words), minimum two lines. Where an advertisement includes a box number (count as 2 words) there is an additional charge of 25p [5/-].

SERIES DISCOUNT: 15% is allowed on orders for twelve monthly insertions provided a contract

BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London, S.E.1.
No responsibility accepted for errors.

Advertisements accepted up to MONDAY, 12 p.m., 11th JAN., for the FEBRUARY issue, subject to space being available.

New post at Southerngas Headquarters, Southampton.

RADIO TECHNICIAN

Salary £1,563—£1,845 per annum

SOUTHERNGAS

Will assist with installation and surveying of new radio and trunk network schemes. Should have HNC Telecommunications or City and Guilds Certificate in an appropriate subject plus formal training with telecommunications manufacturer or major user plus several years experience; also knowledge of VHF, UHF, Microwave and Radio Multiplex techniques essential.

Salary within range shown according to qualifications, experience and ability.

Assistance with cost of removal will be given.

Application forms may be obtained from the Senior Personnel Officer, The Southern Gas Board, 164 Above Bar, Southampton SO1 0DU to whom they should be returned by 15th January 1971. Please quote reference P560/4.

WESSEX REGIONAL HOSPITAL BOARD ELECTRONIC TECHNICIANS I & III

Required for the following Hospital Groups: **Bournemouth and East**

Dorset Group Hospital Management Committee1 - Technician I North Hants Group Hos-

pital Management Committee 1 - Technician III

Portsmouth Group Hos-

pital Management Com-1 - Technician I

1 - Technician III

mittee Salisbury Group Hospital

Management Committee1 - Technician III

Southampton Group Hos-

pital Management Committee

1 - Technician I

Salaries:

Electronics Technician I: £2,070, by 5 increments to £2,445 p.a.

Electronics Technician III: £1,356, by 8 increments to £1,764 p.a.

Applicants start at the minimum of the scale except in certain special circumstances; previous hospital experience desirable.

Qualifications:

Electronics Technician I—Higher National Certificate (Electronics) or equivalent. Electronics Technician III-Ordinary National Certificate or preferably Higher National Certificate (Electronics) or equivalent.

Successful candidates will work Departments of Electronics concerned with the installation, testing, maintenance and development of a wide range of medical, electronic and allied equipment.

Application forms, job descriptions and specifications available from the Secretary, Wessex Regional Hospital Board, Highcroft, Romsey Road, Winchester, Closing date: 13th January, 1971.

GEC-Marconi Electronics

TECHNICIANS AND ENGINEERS FOR ST. ALBANS AND LUTON

QUALIFIED OR NOT!

VACANCIES exist for work on testing and calibrating valve and solid-state electronic measuring equipments embracing all frequencies up to u.h.f. in Production, Service and Calibration departments.

APPLICATIONS are invited from people of all ages with experience or formal training in electronics and from ex-Armed Services technicians.

HIGHLY COMPETITIVE SALARIES, negotiable and backed by valuable fringe benefits.

RE-LOCATION EXPENSES available in many instances. **CONDITIONS** excellent; free life assurance, pension schemes, canteen, social club. 37½-hour, 5-day, office-hours week.

WRITE or phone Personnel Department stating age, details of previous employment, training, qualifications, approximate salary required, quoting WW 10

MARCONI INSTRUMENTS LIMITED. Longacres, St. Albans, Herts. Tel: St. Albans 59292 Luton Airport, Luton, Beds. Tel: Luton 31441. A GEC-Marconi Electronics Company

Gilbert and Ellice Islands Colony **TELECOMMUNICATIONS TECHNICIAN**Up to £2498 + Gratuity

- *Salary up to £2498
- *Low Taxation
- *25% gratuity
- *Appointments Grant payable in certain circumstances
- *Subsidised accommodation
- *Education allowances
- *Contract two years in the first instance

Required by the Posts and Telecommunications Dept. to be directly responsible to the Senior Telecommunications Technician for the installation and maintenance of the installations in his charge and to give formal and/or practical training to local officers.

Candidates should possess the City & Guilds Final Certificate (Telecommunications) or equivalent and have experience in the installation and maintenance of H.F., M.F. and V.H.F. communications and navigation equipment, operation in C.W. and S.S.B. modes, experience of both valve type and transistorised solid state radio beacons, radio teleprinter using both tone on off and two tone keying and multi-channel V.H.F. equipment. Applicants lacking formal qualifications but with extensive experience may be considered.

M2K/701115/WF

Malawi

ENGINEERING OFFICER (CARRIER & V.H.F.) Up to £2149 + Gratuity

- *Salary up to £2149
- *Low Taxation
- *25% gratuity on completion of 30 month tour
- *Appointments Grant £100 or £200 in certain circumstances
- *Contract 24-36 months
- *Subsidised accommodation
- *Education allowances

Required by the Posts & Telecommunications Department for the maintenance of carrier telephone and V.H.F. equipment and to give guidance and assistance to local staff under training.

Candidates, 28—45 years, must have received a minimum of two years approved training plus not less than five years experience on the maintenance of carrier systems and V.H.F. radio.

M2K|700207|WF

Crown Agents

for a profitable change of scene?

East African Community

SECTIONAL ENGINEERS GRADE II Up to £2718 + Gratuity

- *Salary £2341 £2718 (according to experience)
- *Low Taxation
- *25% gratuity
- *Contract 21-27 months
- *Subsidised accommodation
- *Education allowances
- *Appointments Grant payable in certain circumstances

The Meteorological Department requires officers to undertake the installation, operation and maintenance of radio telecommunications and radar equipment.

Candidates, up to 45 years, must possess either O.N.C. or City and Guilds Final Certificate in Telecommunications or have equivalent experience in the armed services and should have a good theoretical and practical knowledge of F.S.K., I.S.B. and S.S.B. receivers and transmitters, Mufax and facsimile transmitters and recorders. A good working knowledge of radar systems is essential.

M2K/690413/WF

East African Posts & Telecommunications Corporation

ASSISTANT ENGINEERS GRADE | Up to £2718 + Gratuity

- *Salary up to £2718
- *25% gratuity
- *Low Taxation
- *Subsidised accommodation
- *Education allowances
- *Contract 24 months
- *Overseas Installation Grant payable in certain circumstances

The officer's duties will be connected with the installation and maintenance of radio stations and will involve travelling to outlying stations at a considerable distance from their headquarters.

Candidates, 28—45 years, should possess the City and Guilds Intermediate Certificate (Telecommunications) plus a pass in Radio Grade 2 or hold an equivalent qualification. They must have a thorough knowledge of the installation and maintenance of H.F. and V.H.F. radio equipment; a knowledge of microwave, carrier and telegraph equipment would be an advantage.

M2K|690815|WF

Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.1., for application form and further particulars stating name, age, brief details of qualifications and experience and quoting relevant reference number.

www.americanradiohistorv.com

FLIGHT SIMULATOR **SERVICE ENGINEER**

manufacturers of highly sophisticated simulators of current civil and military aircraft and linked products for use in the United Kingdom and world-wide export

We need skilled service engineers to keep this complex and hard-worked equipment in continuous firstclass operation.

You should preferably have a minimum of O.N.C. or City & Guilds Certificate and theoretical and practical experience of digital computing, hardware, software and computer peripherals, and/or a sound knowledge of pulse techniques. However, applications will be considered from those with relevant practical experience gained in the appropriate fields but who do not possess formal qualifications.

A knowledge of analogue computing and hydraulics would be advantageous. We will train those who have good experience in transistorised and integrated circuits.

The job is varied and interesting and in an expanding business. Promotion prospects are good. You must expect to travel anywhere in the United Kingdom and Overseas at short notice, possibly for extended periods. Excellent welfare benefits include contributory pension scheme coupled with free life assurance.

There are vacancies at both Aylesbury, Bucks, and Crawley, Sussex locations. Applications should be made in the first place to H. C. Hall

Personnel Manage REDIFON LIMITED

Gatwick Road, Crawley, Sussex. Tel: Crawley 28811

Perkin-Elmer Ltd, of Beaconsfield

Who are members of an international organisation actively engaged in the development

Electronics

This is a staff appointment in a department engaged in the testing of advanced analytical instruments involving a wide variety of electronic techniques.

The post offers an interesting and challenging appointment to a young engineer who after familiarisation with the product being manufactured is capable of working with minimal supervision.

Formal qualifications whilst desirable are not essential as practical experience of modern circuits using discrete components and integrated techniques is essential.

The minimum starting salary will be £1,400 per annum. Usual fringe benefits.

Write or telephone for an Application Form to:-

L. H. Oates, Personnel/Training Manager, Perkin-Elmer Limited, Post Office Lane, Beaconsfield, Bucks.

Tel: Beaconsfield 5151

ISLE OF MAN CIVIL SERVICE

Applications are invited for the post of Telecommunications Technical Officer on the staff of the Isle of Man Airports Board at Ronaldsway Airport.

Candidates must be at least 25 years of age on the 1st April, 1971 and must either:-

- (a) have an Ordinary National Certificate in Engineering including a pass in Electrical Engineering "A", or
- (b) have obtained the City and Guilds Institute Intermediate Certificate in Telecommunications Engineering and the City and Guilds Institute Certificate in Radio II, or
- (c) have obtained the City and Guilds Institute Intermediate Telecommunications Technicians Certificate and the City and Guilds Institute Certificate in Mathematics B, Telecommunications Principles B and Radio and Line Transmission B, or
- (d) produce evidence of an equivalent standard of technical education

and

in addition to any of the above be able to show that they have sufficient experience in radio, radar or other electronic work.

The post is permanent and pensionable on a non-contributory basis (subject to medical fitness) and arrangements exist for the transfer of certain pension rights.

The standard rate of Manx income tax is 4s. 3d. in the £ and there is no surtax, capital gains tax or estate duty.

Further particulars and forms of application are obtainable from the Secretary, Civil Service Commission, Government Office, Douglas, Isle of Man.

970

If you're a telecommunications man and match up to the qualifications below cut yourself into a slice of Britain's future

Become a

Radio Technician

in the fast-growing world of Air Traffic Control

Please send me an application form and details of how I can join the fascinating world of Air Traffic Control Telecommunications.

Name

Addres

Not applicable to residents outside the United Kingdom

WWT/E3

To: A J Edwards, C Eng, MIEE, The Adelphi, Room 705, John Adam Street, London WC2N 6BQ, marking your envelope 'Recruitment'

Sending this coupon could be your first step to a job that's growing in importance every year.

The National Air Traffic Control Service needs Radio Technicians to install and maintain the vital electronic aids that help control Britain's ever-increasing air traffic.

This is the kind of work that requires not only highly specialised technical skills but also a well developed sense of responsibility, and candidates must be prepared to undergo a rigorous selection process. Those who succeed are assured a steadily developing career of unusual interest and challenge. Starting salary varies from £1044 (at 19) to £1373 (at 25 or over): scale maximum £1590 (higher rates at Heathrow). There is a good annual leave allowance and a non-contributory pension for established staff.

You must be 19 or over, with at least one year's practical experience in telecommunications, ('ONC' or 'C and G' qualifications preferred).

NATCS

National Air Traffic Control Service

...then you could become a Customer Engineer at IBM.

Wherever there are computers, people are needed to keep them running. These people are known as either Service Engineers, Field Engineers or Maintenance Technicians. Because of their close involvement with the customer, IBM calls them Customer Engineers.

Today, computers are becoming essential to industry, science, government and commerce. And no computer manufacturer can operate without Customer Engineers. So the field is wide open, and this could be your opportunity to move into today's major growth industry.

What you will do

There are four groups of Customer Engineers. Three are in Data Processing and cover between them the entire range of D.P. equipment from card punching and Teleprocessing to highly sophisticated computer systems. The fourth group is the Office Products division which covers basic electric typewriters and typewriting systems, dictating equipment and composer systems. Whichever group you may join you will be given a first class training.

Qualifications

You should be between 20 and 35, educated to 'O' Level standard. In addition to a knowledge of basic electronics, a good mechanical aptitude is also necessary as part of the work involves repair and maintenance of the electro-mechanical devices. For engineers who will be trained for computer systems, a basic knowledge of electronics is also necessary. If you also have a logical mind then you could have a career as a Customer Engineer with IBM.

Your prospects

Starting salaries are excellent. IBM offers many fringe benefits such as non-contributory pension scheme, free Life Assurance and an excellent career-path. And it is IBM policy to promote from within.

Write now

Interested? Then write with details of your age, qualifications and experience to: Mr. D. J. Dennis, IBM United Kingdom Limited, 389 Chiswick High Road, London W.4. quoting reference WW/958.

Electronic Test Engineers

Pve Telecommunications of Cambridge has immediate vacancies for Production Test Engineers.

The Work entails checking to an exacting specification VHF/UHF radio-telephone equipment before customer delivery; applicants must therefore have experience of fault finding and testing electronic equipment, preferably communications equipment. Formal qualifications while desirable, are not as important as practical proficiency. Armed service experience of such work would be perfectly acceptable.

Pye Telecommunications is the world's largest exporter of radiotelephone equipment and is engaged in a major expansion programme designed to double present turnover during the next five years. There are therefore excellent opportunities for promotion within the company. Pye also encourages its staff to take higher technical and professional qualifications.

These are genuine career opportunities in an expansionist company, so write or telephone without delay for an application form to:

Mrs. A. E. Darkin,

Pye Telecommunications Limited,

Cambridge Works, Haig Road, Cambridge.

Telephone: Cambridge 51351 Ext. 355

Representations Programme Programme

RADIO & TELEVISION SERVICING RADAR THEORY & MAINTENANCE

This private College provides efficient theoretical and practical training in the above subjects. One-year day courses are available for beginners and shortened courses for men who have had previous training.

Write for details to: The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.5. Tel.: 01-373 8721.

REDIFFUSION

COLOUR TELEVISION FAULTFINDERS & TESTERS

We have a number of vacancies in our Production Test Departments for experienced faultfinders and testers.

Knowledge of transistor circuitry and experience with Colour Receivers together with R.T.E.B. Final Certificate or equivalent qualifications

These will be staff appointments with all the expected benefits.

Applications to:

Works Manager, Rediffusion Vision Service Ltd., Fullers Way South, Chessington, Surrey (near Ace of Spades). Phone: 01-397 5411

93

UNIVERSITY OF ABERDEEN TELEVISION SERVICE

Applications are invited for the following

(a) SENIOR TELEVISION ENGINEER (b) TELEVISION ENGINEER/ TECHNICAL OPERATIONS (I) & (II)

Senior Television Engineer:

The initial responsibility will be to co-ordinate the design specification, installation and equipping of a colour outside broadcast unit and the associated studio complex, both of which will be equipped to broadcast standards.

Candidates should be Chartered Engineers with professional engineering qualifications with a minimum of seven years experience in television broadcast engineering. They must be able to demonstrate wide experience ranging from colour studio operations to basic maintenance and installation techniques. It is essential that candidates have experience of studio lighting operations.

Television Engineer/Technical Operations (I):

Candidates, who should have a minimum of five years experience in broadcast engineering, must be able to demonstrate an understanding of the principles and current practices of colour studio and outside broadcast operations.

Experience of first line maintenance and studio lighting operations is essen-

Television Engineer/Technical Operations (II):

The successful candidate will be primarily concerned with the technical management of the new 600 seat Arts Lecture Theatre sited at King's College. He will be responsible to the Senior Television Engineer for the efficient operation and maintenance of all audio/ visual aid facilities installed in the building. Opportunities exist for the successful candidate to work alongside other Television Service staff involved in the production of high quality teaching material.

O.N.C. or equivalent qualification desirable.

Normal colour vision is a requirement for all posts.

Salary on scale:

Post (a) $-£3210 \times 100 -£3810$ Post (b) (I)-£2105 \times 125 -£2605 (II)-£1160 \times 85 -£1670 all with initial placing according to

qualifications and experience. Superannuation (F.S.S.U.) and removal allow-

Further particulars from The Secretary, The University, Aberdeen, with whom applications (8 copies) should be lodged not later than 19th January, 1971.

Electronics Maintenance Engineers

There are excellent opportunities in the Installation and Maintenance Division of U.K. Electronics and Industrial Operations of E.M.I. Ltd., at Hayes, Middlesex, for engineers to carry out maintenance work on a wide variety of electronic equipments including laboratory test gear and trans-ceivers.

Candidates should be between 21 and 45 years of age and have some experience in this type of work. Consideration will be given to experienced Radio and Television servicing technicians and to ex service personnel.

Commencing salaries of up to £1,500 per annum will be paid and staff conditions include contributory pension scheme and free life assurance. Please apply in writing giving brief personal J. J. Sweetman, Personnel Department, U.K. Electronics & Industrial Operations, E.M.I. Ltd., Blyth Road, Hayes, Middlesex. Tel: 01-573 3888, Ext. 411.

836

NCR requires additional ELECTRONIC, ELECTRO MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.

Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.

Starting salary will be in the range of £900/£1,350 per annum, plus bonus. Shift allowances are payable, after training, where applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.

Excellent holiday, pension and sick pay arrangements. Please write for Application Form to **Assistant Personnel Officer** NCR, 1,000 North Circular Road, London, NW2 quoting publication and month of issue.

Plan your future with N C

RACAL - BCC LIMITED,

ASSISTANT TO PRODUCT PLANNING MANAGER

Racal BCC Limited, leaders in professional communications equipment are seeking an Assistant to the Product Planning Manager.

The successful candidate will assist in the preparation of technical specifications to CCIR. or similar standards, for equipment in the Racal range.

He will also generally assist in commercial activities related to the marketing and development of h.f. radio communications equipment and systems, and will liaise with engineering staff on technical aspects of equipment

The applicant should have operational, installation or planning experience in telecommunications with some specialisation in radio systems. He should be capable of writing notes of meetings and of assisting generally in the administrative activities of the section.

Please apply in writing enclosing brief details of experience and qualifications to:-

Mr. L. A. Jemmett, Personnel Manager, Racal-BCC Ltd. Western Road, Bracknell, Berks.

Sea-going Radio Officers can now make sure of a shore job and good pay.

If you'd like a job ashore, at a United Kingdom Coast Station, the Post Office will start you off on £1,080—£1,360, depending on age, with annual rises up to £1,850. There are good prospects of promotion to higher posts, opportunities exist for overtime and you would receive additional remuneration for attendance during the late evenings, at night and on Saturday afternoons and Sundays.

You will need to be 21 or over, with a 1st Class Certificate of Competence in Radiotelegraphy issued by the Postmaster General or the Ministry of Posts and

Telecommunications, or a Radiocommunication Operator's General Certificate issued by the Ministry of Posts and Telecommunications, or an equivalent certificate issued by a Commonwealth administration or the Irish Republic.

Find out more by writing to:
The Inspector of Wireless
Telegraphy, External
Telecommunications Services,
Wireless Telegraph Section (W.W.),
Union House,
St. Martins-le-Grand,
London,
EC1A 1AR.

Telecommunications

JUNIOR TECHNICIAN

required at our Hampstead Laboratories, Holly Hill, N.W.3. Suitable for applicant in early 20's with some experience of workshop practice and an interest in electronic instrumentation. Minimum qualifications 4 G.C.E. 'O' Levels to include English, Maths and a science subject. Salary according to age on scale £706 to £1144 p.a.

and a science subject. Salary according to age on scale £706 to £1144 p.a.

Please apply quoting our reference WW78/1 to: Mrs. A. Harrell, National Institute for Medical Research, The Ridgeway, Mill Hill, London, N.W.7. 1AA

Tel: 959 3666

VOCATIONAL TRAINING

CIVILIAN INSTRUCTIONAL OFFICERS (GRADE III) RADIO AND TELEVISION SERVICING

required at

H.M. PRISON, NOTTINGHAM.

H.M. BORSTAL, PORTLAND, Dorset.

H.M. PRISON, STAFFORD.

H.M. PRISON, THE VERNE, Portland, Dorset.

Salary: The commencing salary is £1,415 (at age 26); £1,625 (at age 30 or over) rising to £1,790. An additional allowance of £92 a year is also paid. The posts carry the prospect of pensionable employment.

Hours: A 40-hour, 5-day week is worked with 18 working days annual leave in addition to the usual 9 public and privilege holidays.

Qualifications: Full apprenticeship plus at least five years practical experience in the Radio and Television and/or Electronics servicing industry. City and Guilds Certificate (or equivalent) is desirable. Teaching, instructing or colour TV experience are added advantages.

Duties: The successful candidates will train immates in Radio and Television servicing and prepare them for City and Guilds experience.

prepare them for City and Guilds examinations.

The candidate selected for the post at THE VERNE will be required to perform some relief duties at other Prison and Borstal Service establishments.

PLEASE WRITE FOR APPLICATION FORM TO: The Establishment Officer, Home Office, Portland House, R.9/4/42T, Stag Place, London, S.W.1, stating for which post you apply. Closing date for the receipt of completed application forms: 15 January, 1971.

978

CITY OF LEEDS AND CARNEGIE COLLEGE

Senior Workshop Technician

T3 £1,089 - £1,272

Applications are invited for this post in the Audio Visual Aids section of the College, to be responsible for the maintenance of all electronic equipment including a closed circuit television apparatus and to assist in the other work of the section.

Application forms and further particulars from the Senior Administrative Officer, City of Leeds and Carnegie College, Beckett Park, Leeds, LS6 3QS, to whom completed applications should be returned as soon as possible.

945

CITY OF LEICESTER POLYTECHNIC

Applications are invited from Graduates for the post of

LECTURER (GRADE II)

IN

ELECTRONICS & COMMUNICATION ENGINEERING

for courses up to degree level, in School of Electrical Engineering.

Industrial, research or teaching experience in electronics, digital electronic systems or communication engineering desirable. Interest in digital communication techniques particularly appropriate.

Research and consultancy encouraged. Opportunity to join a small team studying applications of a small computer in communication engineering.

Salary: £1947—£2537 per annum, according to qualifications and experience.

Application form and further particulars from Chief Administrative Officer (Dept. Est.), City of Leicester Polytechnic, P.Q. Box 143, LEICESTER, LE1 9BH.

982

Electronics Engineer FOR N.C. MACHINE INSTALLATION

EMI Electronics have a vacancy for an Electronics Maintenance Field Engineer to work on numerical machine-tool control.

The work entails installation and maintenance of tape control systems in customers' workshops. Applicants should be prepared to travel. Experience in machine-tool control systems is preferable, but an engineer with experience of fieldwork in other branches of electronics may be suitable.

Starting salary around £1,850 p.a. according to qualifications and experience.

Apply in writing or ring:

J. J. Sweetman, Personnel Department, **Electric & Musical** Industries Ltd., Blyth Road, Hayes, Middx. Tel: 01-573 3888, Ext. 2523

EM/CAREERS

RADIO TECHNICAL OFFICERS

Up to £2,505 p.a.

The P.L.A. operate a wide telecommunications network from Tower Pier to the outer Thames Estuary, and vacancies exist at Gravesend and the King George V Dock for Radio Technical Officers to maintain the equipment at maximum efficiency.

To ensure adequate coverage, a shift system is operated.

Salary scale: £2,005-£2,505.

Minimum qualifications:

O.N.C. Electrical Engineering

City & Guilds Intermediate Certificate in Telecommunications Engineering plus Radio II

equivalent Service qualifications.

Applicants should have at least 5 years' experience in semiconductors and in at least two of the following fields:-

> V.H.F. and U.H.F. Radio Radar and Microwave Links Telemetry and Digital Teleprinters and Message Switching.

Application forms may be obtained from:

The Chief Engineer (Personnel), Port of London Authority, P.O. Box 242, Trinity Square, London, E.C. 3P 3BX

PORT OF LONDON AUTHORITY

Light engineering/ electronics and in the dark about computers?

Join us now as a Computer Service Engineer, and after six months' paid specialist training, you will be responsible for ensuring that our computers

are in peak condition.

We are Britain's leading computer manufacturer; we give men who want a rewarding career an excellent basic salary while we train them in every aspect of customer engineering in the computer industry. You'll learn to deal with operational problems, and to use the most intricate machinery.

HNC or C&G in electronics engineering, a Forces' training in electronics, or similar qualifications, are your passport to our

opportunities.

How far you progress is up to you—the experience you get will stand you in good stead for your future career development. You'll gain knowledge of new methods and techniques on the

most sophisticated equipment.

To add to your basic salary, you can get generous overtime and shift rates There is a special allowance for working in central London. You will be operating in a computer environment on customers' premises in conditions well above the average for industry.

Age: 21/35.

Locations: Central London, Middlesex, Surrey, Essex, Hertfordshire, Manchester, Cardiff and Coventry.

Write giving brief details of your career, and quoting ref. WW630C to: A. E. Turner, International Computers Limited, 85/91 Upper Richmond Road, Putney, London SW15.

International Computers

ERGONOMICS Research Technician for Test Equipment

He will join a small team of physiological, psychological and environmental researchers being formed at British Rail headquarters in London.

The department works on human factors problems of modern railway operations, passenger amenities and comfort, and personnel testing.

He should have a talent for constructing test rigs, mock-up simulations and minor electronic apparatus and will operate and maintain research equipment, assist in preparation of experiments and processing of data, make technical drawings and diagrams for reports and presentations.

Salary will be in the range £1,290 to £1,845, plus £70 London allowance per annum, depending on experience and qualifications. There is a contributory pension scheme and the transfer of existing pension rights can be accepted. There are also free and reduced rate rail travel facilities.

Applications giving age, education, qualifications, experience and present salary should be sent to the Headquarters Staff & Services Manager (quoting reference B.ID/ZH), British Railways Board, 222 Marylebone Road, London, NW1 6JJ.

SONY

are looking for an

ENGINEER

to work on closed circuit television equipment in the Service Department of the Commercial and Industrial Division at Bedfont in Middlesex. The work includes cameras, monitors and video tape recorders, both monochrome and colour.

Please write to:-

Mr. M. T. Morcom, Service Manager Commercial and Industrial Division Sony U.K. Limited Ascot Road, Bedfont, Middlesex

975

RADIO TECHNICIANS

The Air Force Department has vacancies for Radio Technicians at RAF Sealand, Near Chester RAF Henlow, Bedfordshire and RAF Carlisle

Interesting and vital work on RAF radar and radio equipment.

Applicants must be experienced technicians in the electronics field.

Starting pay according to age up to £1373 p.a. (at age 25) rising to £1590 p.a. with prospects of promotion.

5 day week—good holidays—help with further studies—opportunities for pensionable employment.

Write for further details to:

Ministry of Defence, CE3H (Air), Sentinel House, Southampton Row, London WC1

Applicants must be UK residents.

944

RADIO O PERATORS

There will be a number of vacancies in the Composite Signals Organisation for experienced Radio Operators in 1971 and subsequent years.

Specialist training courses lasting approximately 8 months are held at intervals. Applications are now invited for the course starting in September 1971.

Salary Scales

During training with free accommodation provided at the Training School:

Age 21	£848 per annur
,, 22	£906 ,,
,, 23	£943 ,,
,, 24	£981 ,,
,, 25 and over	£1,023 ,,

On successful completion of course:

Age	21	£1 023 per annum
,,	22	£1,087 ,,
"	23	£1,150 ,,
,,	24	£1,214 ,,
,,	25 (highest	,
	age point)	£1.288

then by 6 annual increments to a maximum of £1,749 per annum.

Excellent conditions and good prospects of promotion. Opportunities for service abroad.

Applicants must be United Kingdom residents, normally under 35 years of age at start of training course, and must have at least 2 years' operating experience or PMG qualifications. Preference given to those who also have GCE 'O' level or similar qualifications.

Interviews will be arranged throughout 1971.

Application forms and further particulars from: Recruitment Officer, Government Communications Headquarters, Oakley, Priors Road, CHELTENHAM, Glos., GL52 5AJ.

Tel: Cheltenham 21491 Ext. 2270

92

SERVICE TECHNICIAN

required in the Education Department of the London Borough of Croydon for the installation, repair and maintenance of tape recorders, radio receivers and other A.V.A. apparatus and equipment. Wages £23 6s. 8d. 5-day week (40 hours). Applications giving full details of previous employment and experience to Stores Assistant, Education Stores, Princess Road, Croydon, CRO 2QZ.

UNIVERSITY OF SURREY Lecturer/Senior Lecturer

in

Recording Techniques

Applications are invited for the post of Lecturer/ Senior Lecturer in Recording Techniques in the Music Department. The Lecturer will be responsible for teaching practical and theoretical aspects of recording for the Tonmeister Course leading to the degree of B.Mus. (Surrey) (Tonmeister).

Applicants should have a thorough knowledge and experience of studio work in the recording industry and should preferably be also qualified to lecture on some aspect of music in the general B.Mus. course.

Salary will be in the Lecturer/Senior Lecturer range: Lecturer, £1730-£3105 p.a. Senior Lecturer, £295S-£4000 p.a. with F.S.S.U. benefits.

Applications should be sent not later than Friday, 29th January, 1971, to the Academic Registrar (LFG), University of Surrey, Guildford, Surrey, from whom further particulars may be obtained.

959

The Hatfield **Polytechnic**

Department of Electrical Engineering and Physics

EXPERIMENTAL **OFFICER**

for work on Research in Digital Communication Systems.

The project, sponsored by the Ministry of Aviation Supply (Signals Research and Development Establishment), has been running successfully for a year. The work involves the construction and testing of digital integrated circuit systems. Applicants should preferably be educated to at origital integrated circuit systems. Applicants should preferably be educated to at least HNC standard and have a good Electronics background. The post is offered initially for one year but there are good prospects of a permanent appointment.

Salary in a range up to £1,766 p.a., depending on qualifications and experience.

Apply giving full relevant details, to the Secretary and Academic Registrar, The Hatfield Polytechnic, Hatfield, Herts. Quote ref.: 452/WW.

UNIVERSITY COLLEGE GALWAY, IRELAND

Applications are invited for 2 posts of Senior Technicians as follows:

Dept. of Oceanography: Advanced certificate in electronics of City & Guilds or equivalent is required together with appropriate experience. Dept. of Experimental Medicine: electronic expertise and appropriate biological experience contacts, with an educated combined continuous. together with an advanced technical certificate. Salary scale £1,536—£1,800. Further particulars from head of department concerned.

LONDON BOROUGH OF RICHMOND-UPON-THAMES

TWICKENHAM COLLEGE OF **TECHNOLOGY**

LABORATORY TECHNICIAN required for Electronics Laboratory, to be responsible for producing and testing experimental equipment and maintenance and repair of Oscilloscopes, Signal Generators etc. Should hold suitable qualification. Salary Tech 4 (£1,362-£1,605).

Forms from:

Bursar,
Twickenham College of Technology, Egerton Road, Twickenham, Middlesex, returnable within 14 days (01-892 6656).

987

AERIAL DEVELOPMENT ENGINEER

Duties include Research and Development, Site Work, Propagation, etc., in connection with a V.H.F., U.H.F. and Microwave Laboratory.

Pleasant expanding town within easy reach of M1, and a large choice of cheap housing in the area.

Applicants should write giving details of experience and education to:

J. Beam Engineering Limited, Rothersthorpe Crescent, Northampton NN4 9JD

Junior Television Engineer

To assist in the operation and maintenance of Colour Telecine and allied equipment in Major Advtg. Agy. Applicant must have a basic knowledge of electronic equipment and some experience in its use, although experience of colour television is not essential as we are prepared to train the right applicant. Salary approx. £1,000 according to experience etc. Day release considered. Write or phone Doug Huxtable, Leo Burnett-LPE Ltd., 48 St. Martin's Lane, London, W.C.2. Tel.: 01-836 2424.

SENIOR TEST ENGINEERS

The leading U.K. Manufacturers of high grade T.V. monitors and ancillary T.V. studio equipment require Senior Test Engineers for their rapidly expanding test department. Situated in the Berkshire town of MAIDENHEAD the company offers pleasant working conditions, good salaries, and a friendly environment.

Duties will cover the testing and troubleshooting of our complete range of equipment. Previous experience on television equipment is not essential but candidates must have

a thorough knowledge of electronics and testing procedures. Reply to:

PROWEST ELECTRONICS LTD.,

Boyn Valley Road, Maidenhead, Berks.

Telephone: Maidenhead 29612

955

CHIEF TEST ENGINEER

Laser Associates, the leading laser manufacturers in Europe, require a capable Chief Test Engineer to systematically organise the testing and quality control of our range of lasers and laser systems. Although some experience of lasers would be an advantage, this position does call for someone with substantial experience in electronic circuitry as the power supply requirements of the laser systems and accessories are extensive. The successful applicant would be required to work in Slough until the end of 1971 when the two divisions of the company will be integrated in a new factory in Rugby, salary negotiable to £2,000 p.a. A vacancy also occurs for a test engineer to act as his assistant.

Please forward résumé to:

Mr. G. S. Bellis LASER ASSOCIATES LIMITED 697 Stirling Road, Trading Estate, Slough, Bucks.

972

Tenders Invited

TENDER NOTICE No. 162-20/70-TPL (CP) DUE ON 4th FEB., 1971

Sealed Tenders are invited on behalf of the President of India for supply of

1. UHF Radio Terminals complete with transmitters, receivers, branching filters installation materials, spares for 3 years requirement.

Yagi' or corner reflector antennae complete with matching balloon, cable harness and clamping materials etc.

 Static type no break power plant, excluding battery, complete with installation material etc. (Input AC 230V 50Hz single phase and output DC 38.70V).

4. Field Strength meters.

5. UHF Signal Generators6. UHF Relay Test Equipments and accessories.

7. UHF Foam dielectric Coaxial feeder cable with terminations, splices and joining kits.

 The cost of the equipment will be financed under the World Bank Loan and the relevant procedure will be followed.

The detailed specifications of each of the above items are available in the Tender Documents.

Intending Tenderers may obtain a copy of Invitation to Tender from Assistant Chief Engineer (CP), P & T Directorate, New Delhi, 1, on payment of Rs 20/- (Rs Twenty only). The payment will be accepted only in the form of a crossed Indian Postal Order (encashable in Parliament Street Post Office New Delhi) or Crossed Demand Draft (Drawn on any scheduled Bank in New Delhi). The Postal Order/Demand draft shall be drawn in favour of the Accounts Officer (C & A) Office of the Director-General of Posts and Telegraphs, New Delhi-1. The particulars of the Postal Order/Demand draft should be indicated in the Tender.

984

72 sets

70 sets

45 sets

4 Nos.

4 Nos.

6000 meters

APPOINTMENTS

RADIO TECHNICIANS

With sound knowledge of at least three of the following types of equipment required immediately for Meteorological Office Ocean Weather Ships: Single Side-Band Transmitter, Radar (Navigational), Radar Height Finding, Echo Sounders, Radio Receivers, Automatic DF, VHF and Low Voltage Servo Recorders, Digital Telemetering Equipment.

Salary scale £938—£1,590 per annum according to age, plus £120 overtime allowance. Free food and accommodation provided on board ship. Applicants must be natural born British subjects.

Full details from:

Shore Captain, Ocean Weather Ship Base, Great Harbour, Greenock. Telephone: Greenock 24291.

878

UNIVERSITY COLLEGE LONDON MULLARD SPACE SCIENCE LABORATORY Holmbury St. Mary

ELECTRONICS ENGINEER

We have a vacancy for an Electronics Engineer to take charge of a small group constructing and testing instruments to be flown in rockets and satellites. Candidates should be of H.N.C. standard with several years experience. The appointment will be in the salary range of £1,278-£1,909 depending upon qualifications and experience.

Applications should be sent to:

Professor R. L. F. Boyd, F.R.S. Mullard Space Science Laboratory Holmbury St. Mary, Dorking

AUDIO TESTERS/ TROUBLE SHOOTERS

Required for interesting position in electro-musical equipment. Audio amplifiers of up to 100 watts. Echo Units (Copicat) S/S and valve, etc. Please phone in first place. WEM Ltd., 66 Offley Road, London, S.W.9. 735-6568.

SITUATIONS VACANT

A FULL-TIME technical experienced salesman required for retail sales; write giving details of age, previous experience, salary required to—The Manager, Henry's Radio, Ltd., 303 Edgware Rd., London, W.2.

ARE YOU INTERESTED IN HI FI? If so, and you have some experience of selling in the Retail Radio Trade, an excellent opportunity awaits you at Telesonic Ltd., 92 Tottenham Court Road, London, W.1. Tel. 01-387 7467/8.

ARE YOU looking for an opportunity to apply your technical skills to medical research? Could you combine mechanical and electronic work? We would provide some supervision and allow time for your further training. Should you like animals (e.g. monkeys), this would be an advantage. If you are keen and bright please apply for the post of Junior Technician (salary £577 to £1,054) plus London Weighting. Application forms from The Secretary, Institute of Psychiatry, De Crespigny Park, Denmark Hill, London, S.E.5 (Ref. GE).

A SENIOR Transformer/Rectifier design Engineer is required for varied and interesting projects associated with equipment up to 150/kVA/kW. We are an expanding Company of Manufacturing Electrical Engineers located in South Herts. Box W.W. 97.

A UDIO TECHNICIAN with experience of modern electronics and mechanical systems associated with audio equipment required for Language Centre, UNIVERSITY OF KENT. The salary scale is £935-£1,303 p.a. Further particulars and application forms from Director, Language Centre, Cornwallis Building, The University, Canterbury, Kent, quoting reference T70/19. Closing date for completed applications—15th February, 1971.

DIPLOMATIC WIRELESS SERVICE offers a career of Home and Foreign Service to men preferably between the ages of 21 and 45 with PMG first class certificate. Salary according to age, e.g. at 21 £1,023 p.a., 25 (or over) £1,288 p.a., rising in annual stages to £1,749 p.a., with additional allowances overseas. Write to the Personnel Officer, Diplomatic Wireless Service, Foreign and Commonwealth Office, Hanslope Park, Wolverton, Bucks.

PRAUGHTSMEN. Mechanical and Electrical required by expanding electronics company specialising in lighting control and audio visual products. This position is salaried and gives ample opportunity for advancement. Please apply Electrosonics Ltd., 47 Old Woolwich Road, Greenwich, London, S.E.10. Tel. 858 4764. [22]

ELECTRONICS TECHNICAL OFFICER required to work on data processing equipment related to diagnostic apparatus using radio-active isotopes, also data transmission and other interesting electronics work connected with medical research. Graduate electronics engineer with experience of digital circuits preferred. Salary £1,465 to £2,425 per annum. Applications to Secretary, Royal Postgraduate Medical School, Hammersmith Hospital, Ducane Road, London, W.12, quoting ref. 8/104.

FREELANCE TECNICAL WRITER. A Freelance Writer with practical knowledge of audio technology is required for contribution work on hi-fi publication. He must own or have access to test equipment suitable for up to date audio test procedures, we will expect him to examine objectively items of equipment and to report his findings in a clear and easily readable manner with a minimum of technical jargon in addition he will be expected to produce articles of a more general nature on the same subjects. Telephone: 01-734 0450 or write to Box No. W.W. 949.

HI-FI and Tape (Video knowledge an advantage) technical Salesman required for retail sales. Attractive post in congenial atmosphere. Write giving details of age, experience, salary required, etc., to John King, 71 East Street, Brighton.

MARLBOROUGH College has a variety of A.V. Equipment including C.C.T.V., Video and Language Laboratory. A serviceman is needed to maintain such equipment in good order and to establish facilities in the large new A.V. Room. Permanent position offered. Please apply to Assistant Bursar, outlining qualifications and salary expected to Marlborough College, Marlborough, Wiltshire.

PLYMOUTH General Hospital MEDICAL PHYSICS DEPARTMENT, Electronics Technician required. Preferred qualifications H.N.C. or equivalent but applications will be considered from persons with lower levels of qualifications if they have had good experience in electronics (preferably in the medical field) and have proven ability such as to be able to work with minimal supervision. Duties include the maintenance and development of a range of specialised electronic equipment in conjunction with the scientific and medical staff. The post is offered in one of the following grades according to qualifications and experience: Medical Physics Technician IV £1206-£1509; Medical Physics Technician IV £1206-£1509; Medical Physics Technician III £1356-£1764. Detailed written applications to the Hospital Secretary, Plymouth General Hospital. North Friary House, Greenbank Terrace, Plymouth, PL4 8QQ. Two referees must be named at least one of whom must be familiar with the applicant's recent work. [961]

REDIFON LTD. require fully experienced TELE-COMMUNICATIONS TEST ELECTRONICS INSPECTORS. Good commencing salaries. We would particularly welcome enquiries from ex-Service personnel or personnel about to leave the Services. Please write giving full details to—The Personnel Manager. Redifon Ltd., Broomhill Road, Wandsworth, S.W.18.

ARTICLES FOR SALE

£5 TELEVISIONS! £5

Delivered anywhere in Great Britain 17" 12 channel. Complete & tested. Excellent condition. Carriage & ins. £1 17" Untested TVs 12 channel.... 30/-Carriage £1. All makes.

		70/-
Pius 10/	/- carriage	90/-
	makes	Guaranteed 6 months makes

VALVES EX EQUIPMENT

	(auaran	teed	6 mo	nths		
ARP12	1/-	PCC84	1/6	PL36	4/6	688	1/-
EB91	3d.	PCF80	1/6	PL81	3/6	68W7	2/-
EBF89	2/6	PCC89	2/6	PY81	1/-	6U4	3/6
ECC82	2/6	PCL85	4/6	PY800	3/-	20D1	2/6
ECL80	1/-	PCL84	3/6	PY82	1/-	20Pi	4/6
EF183	2/6	PCL82	3/6	PY33	4/6	20P3	2/-
EF184	2/6	PCF86	3/6	U191	3/6	30PL1	4/6
EY86	3/6	PCL83	2/6	6F23	3/6	30P12	4/-
	-, -		,			30F5	2/3

On 2 valves or more 6d. postage & packaging.

UHF TUNERS to suit most models i.e. FERGUSON 850 900 Chassis K.B., G.E.C. etc. 50/-. P. & P. 10/-.

VHF TUNERS most makes
20/- delivered. (Discount for quantity).
THORNBURY TRADE DISPOSALS
Dept. T.S., Thornbury Roundabout, Leeds Road,
BRADFORD. Telephone 665670

...

BC221 frequency meter. Complete calibration charts and service/instruction manual. Little used. £20 plus £1 carriage.—Gamer Eng. Co., Coombe Works, Sherborne, Dorset. [969]

Bulld IT in a DEWBOX quality plastics cabinet. B 2 in. × 24 in. × any length. D.E.W. Ltd. (W), Ringwood Rd., FERNDOWN, Dorset. S.A.E. for leaflet. Write now—Right now.

CABLE TRAYS, perforated metals from stock, contact Perforated Metal Co. Limited (London), 18 Clerkenwell Close, London, E.C.1. Telephone 01-253 6015. [952

COPPER Covered Formica Sheets suitable for Printed Circuits 4 ft. \times 3 ft. \times 1/16" thick. 100 sheets brand new. Offers for whole or part. Box No. W.W. 951.

FIVE MURPHY R/T's MR 820 Low Band Mobiles and 25 watt Main Station. Offers to H. J. Sawyer (Dover) Ltd., 83 High Street, Dover. Phone 777. [938]

MARCONI Valve Voltmeter type TF428B/1 surplus to requirements. Five ranges 0-1-5V 5V/15V/50V/150V. Strong steel case 14"×9"×7", Ex-Govt. but good condition, offers. Box W.W. 940 Wireless World.

MUSICAL MIRACLES. Send S.A.E. for details of Cymbals and Drum Modules, versattle independent bass pedal unit for organs, planos or solo, musical novelties, waa-waa kits (49/-). Also bargain components list reed switches etc. D.E.W. Ltd., 254 Ringwood Road, Ferndown, Dorset.

NEW CATALOGUE No. 18, containing credit vouchers value 10/-, now available. Manufacturers' new and surplus electric and mechanical components, price 4/6, post free. Arthur Salls Radio Control Ltd., 28 Gardner Street, Brighton, Sussex.

NEW P.S.U.s Roband, etc. Third list. Other bargains. S.a.e. list. Don Smith, 12 Channel Heights, Bleadon, Weston-super-Mare. Tel. Bleadon 672. [963

22. OFF Redifon G.R.336 Portable TX/RX VHF Pack sets complete and crystal controlled. May be viewed at Trinity House Workshops, Orchard Place, Blackwall, E.14, between 10.00-16.00 hours Monday to Priday. Form of Tender to be obtained from the above address.

ONE Burndept U.H.F. Base Station type B. 363.F. One Remote Control Unit type B.E.366. Four Transceivers type B.E.357. One Battery Charger type B.E. 364. Eight Rechargeable batteries. One Filter Duplexer, Airtech, M.450-3A-5-7. Complete with four element all round aerial. £ 750 the lot. Cosalt Limited. Marine Radio Division, Fish Dock Road. Grimsby, Lincs. [9GG.

OSCILLOSCOPE Cossor 1076 with 6 plugins 60 MHZ, one M.V. sens. Delay, etc. Fine condition, £125 o.n.o. Buyer Collects. Heath, R.F. 1U sig. gen. New £10. Heath 6 in. V.V. T.M. little used £15. View evenings. Mr. St. Aubyn, 107A New Zealand Avenue. Walton on Thames.

S-DECS only 19/-. T-Decs 42/-. Modern Miniature Meters, 13 in. square, similar to Sew 38P, 50 or 100 microamps, 30/-. Sinclair Micromatic receivers complete with earpiece, etc., kit 44/-, assembled 54/-. Batteries 5/6 extra. Sinclair 1C-10 with instructions, 48/11. PNP Silicon Transistors 25300 series. Untested, unmarked but at least 80% are good. 50 for 8/-, 100 for 14/- Postage 2/- per order.—Swanley Electronics, Dept. WW3, 32 Goldsel Road, Swanley, Kent. [960

TWO Cossor twin beam C.R.O.'s type 1049,3 complete with 1043 monitor units, £30 each. One only 35 mm camera type 1428/2 to fit the above, £5. Room A2, Institute of Neurology, WC1N 3BG. Tel. 837 3611. Ext. 50.

UHF, COLOUR and TV SERVICE SPARES. Integrated colour decoder unit incl. circuits 25/- P/P 2/-, Leading Brit. Makers surplus colour Line, Frame & EHT units £7.10.0 (less valves £5), Carriage 10/-, Colour scan coils £3.10.0 P/P 6/-, Chrominance panels 20/- P/P 4/6. UHF tuners transistorised, rotary slow motion drive or push button £5.5.0 P/P 4/6. Integrated UHF/VHF 6 position push button transistorised tuner easily adjusted as 6 position UHF tuner. incl. circuit £4.10.0 P/P 4/6. Transistd. UHF/VHF IP panels £4.15.0 (or salvaged £2.10.0) P/P 4/6. MURPHY 600/T00 series complete UHF conversion kits incl. tuner, drive assy., 625 IF amplifier, 7 valves, accessories, housed in special cabinet plinth assembly, £7.10.0 or less tuner £2.18.6 P/P 10/- SOBELL/GEC 405/625 switchable IF amplifier and output chassis, 32/6 P/P 4/6. Ultra 625 IF AMP chassis and circuit, 25/- P/P 4/6. Ultra 625 IF AMP panel and circuit, 30/- P/P 4/6. SOBELL/GEC 2015 series 405/625 printed circuit IF panel incl. circuit 35/- P/P 4/6. UHF list available on request. VHF tuners AB miniature with UHF injection sitable KB, Baird, Perguson 25/- P/P 4/6, Cyldon C 20/- P/P 4/6, Pye 13 ch. incremental 25/- P/P 4/6, Ekco, Ferranti, Plessey 4 position push button tuner with UHF injection incl. valves 58/6 P/P 4/6. New freball tuners Ferguson, HMV, Marconl type 37/6 P/P 4/6. Philips export continental turret tuners 15/- P/P 4/6. Many others available. Large selection channel coils, LOPTs, Scan Coils, FOPTs available for most popular makes. Surplus Ultra, Murphy 110 Scan coils 18/6 P/P 4/6. Sobell frame o/p transformers 17/6 P/P 4/6. Transistorised time base panel for Ferguson portable 50/- P/P 4/6. Sobell frame o/p transformers 17/6 P/P 4/6. Surplus BBC2 Beiling Lee "Skyline" distribution amplifiers £3 (Callers only).—MANOR SUPPLIES, 172 WEST END LANE, LONDON, N.W.6 (No. 28 Bus or W. Hampstead Tube Station). MAIL ORDER: 64 GOLDERS MANOR DRIVE, LONDON, N.W.11. Tel. 01-794 8751.

VHF 80-180 MHz. Integrated receiver, tuner, converter Kit. Remarkable results from single semi-concluctor. Comprehensive kit £4 post paid or send for free literature enclosing s.a.e. Johnsons (Radio) Worcester, WR1 2DT.

60 kc/s Rugby & 75 kc/s HBG Neuchatel Radio Receivers. Signal and Audio outputs. Small compact units, £35. Toolex, 6 Warwick Close, Hertford (4856).

BUSINESS OPPORTUNITIES

Have you an idea for a new product, preferably chemically orientated? We are a chemical company and would like to hear from you with regard to our developing and manufacturing new lines. Write and tell us about your ideas, it could be worth while. Box W.W. 852 Wireless World.

TEST EQUIPMENT — SURPLUS AND SECONDHAND

SIGNAL generators, oscilloscopes, output meters, wave voltmeters, frequency meters, multi-range meters, etc., etc., in stock.—R, T. & I. Electronics, Ltd., Ashville Old Hall, Ashville Rd., London, E.11. Ley. 4986.

RECEIVERS AND AMPLIFIERS L

HRO Rx5s, etc., AR88, CR100, BRT400, G209, S640, etc., etc., in stock.—R. T. & I. Electronics, Ltd., Ashville Old Hall. Ashville Rd., London, E.11. Ley [68]

NEW GRAM AND SOUND EQUIPMENT

CONSULT first our 76-page illustrated equipment catalogue on Hi-Fi (6/6). Advisory service, generous terms to members. Membership 7/6 p.a.—Audio Supply Association, 18 Blenheim Road, London, W.4. 01-995 1661.

GLASGOW.—Recorders bought, sold, exchanged; cameras etc., exchanged for recorders or viceversa.—Victor Morris, 343 Argyle St., Glasgow, C.2. [11]

TAPE RECORDING ETC.

IF quality, durability matter, consult Britain's oldest transfer service. Quality records from your suitable tapes. (Excellent tax-free fund raisers for schools, churches.) Modern studio facilities with Steinway Grand.—Sound News, 18 Blenheim Road, London. W.4. 01-995 1661.

YOUR TAPES TO DISC.—£6,000 Lathe. From 30/-. Studio/Location Unit. S.A.E. Leaflet. Deroy Studios, High Bank, Hawk St., Carnforth, Lancs. [70]

FOR HIRE

FERROGRAPH, Uher, etc., tape recorders for hire. Full details from Magnatape Hire Services, 191/193 Plashet Road, London, E.13. 01-472 2185/2110. [25

FOR HIRE CCTV equipment, including cameras, monitors, video tape recorders and tape—any period.

—Details from Zoom Television, Chesham 6777 [75]

ARTICLES WANTED

HIGHEST CASH PRICES for good-quality Tap Recorders 9.30-5.00. Immediate quotations. 61-67: 2185.

HIGHEST CASH PRICES for tape recorders. 9.30-5. [102

PYE BANTAM HP1 AM required. Relss, 34 Nursery Lane, Leeds 17 OLE-683884. [962]

R EASONABLY sized Portuguese Company would like to hear from Wholesalers who could supply the following equipment. Resistors, condensers and electronic components in general; urgently required: Apply to GRETE, R. Artilharia UM, 29 6° D. To Lisbon 1 [990]

WANTED, all types of communications receivers and test equipment.—Details to R. T. & I. Electronics, Ltd.. Ashville Old Hall, Ashville Rd., London, E.11. Ley. 4986.

WANTED one of the latest trimphone type telephones any colour with dial. T. Howard, 22, The Pits, Isleham, Cambs. [950]

WANTED, televisions, tape recorders, radiograms, new valves, transistors, etc.—Stan Willetts, 37 High St., West Bromwich, Staffs. Tel. Wes. 0186. [72]

VALVES WANTED

SCRAP Valves Wanted, type TY5-500, TY6-800, TY6-801, TY7-6000A, TY5-5-3000, ESA 1500, 16P13, BW1169, also similar types. Electronic Heat Co., 352 Lower Addiscombe Road, Croydon. 01-654-7172. [831]

WE buy new valves, transistors and clean new components, large or small quantities, all details, quotation by return.—Walton's Wireless Stores, 55 Worcester St.. Wolverhampton. [62]

SERVICE & REPAIRS

CHASSIS, engraving, plating and finishing reliable delivery estimates, contact Holborn Plating Co. Limited, 18 Clerkenwell Close, London, E.C.1. Telephone 01-253 2503.

ELECTRONIC and TV service organisation on North-West Lancashire coast would undertake contract work, or service agency for manufacturer, or importer. Well equipped and staffed dept. W.W. 887 Wireless World.

CAPACITY AVAILABLE

Electronics Reliability Advisory Service

Designers, Manufacturers and users. Assessments, Evaluations and Arialyses. Assistance in Test and Manufacturing Planning. Guidance on Quality Assurance Activities.

G. MAYES, 28 Collier Drive, Edgware, Middlesex 01-952 3055

A IRTRONICS LTD., for Coil Winding—large or small production runs. Also PC Boards Assemblies. Suppliers to P.O., M.O.D., etc. Export enquiries welcomed. 3a Waterand Road, London, S.E.13. Tel. 01-852 1706 [61]

DESIGN, development, repair, test, and small production of electronic equipment, low rates. YOUNG ELECTRONICS, 54 Lawford Rd., London, N.W.5. [916

METALWORK, all types cabinets, chassis, racks, etc., to your own specification, capacity available for small milling and capstan work up to lin bar.—
PHILPOTT'S METALWORKS, Ltd., Chapman St., Loughborough.

WE undertake the manufacture of transformers singly or in quantities to any specification. All work guaranteed for 12 months.—Ladbroke Transformer Co. Ltd., 820a Harrow Road, Kensal Rise, N.W.10. Tel. 01-969 0914.

WIRING assembly PCB's sheet metal turning milling transformers to your specification. Deane Electricals. 19b Station Parade, Ealing Common, London, W.5. 992-8976. [965

TECHNICAL TRAINING

A.M.S.E. (ELEC.), City & Guilds, R.T.E.B. Cert., Radio Amateurs' Cert., etc., on "Satisfaction or Refund" terms. Wide range of Courses in Elec. Engineering, Design, Installation, Repairs, Refrigeration, Electronics, Radio & TV, etc. Send for full details and illustrated book—FREE.—BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, Dept. 152K, Aldermaston Court, Reading RG7 4PF. [13]

BECOME "Technically Qualified" in your spare time, guaranteed diploma and exam. homestudy courses in radio, TV servicing and maintenance. R.T.E.B., City & Guilds, etc., highly informative 120-page Guide—free.—Chambers College (Dept. 837K), Aldermaston Court, Reading RG74PF.

R.T.E.B. CERTS., City & Guilds, Colour TV, Radio, Computers, Radio Amateurs' Cert., Practical Electronics (with kit). Thousands of successes. Send for full details of Home Study Courses and Illustrated book—FREE. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, Dept. 180K, Aldermaston Court, Reading RG7 4PF. [15

TECHNICAL TRAINING in Radio, TV and Electronics through world-famous ICS. For details of proven home-study courses write: ICS, Dept. 443, Intertext House, London, S.W.S. [24]

TUITION

COLOUR TV Servicing. Be ready for the coming Colour TV boom. Learn the techniques of servicing colour TV sets through new home-study courses specially prepared for the practical TV engineer technician, and approved by leading manufacturer. Full details from ICS (D.589), Intertext House, London SW8, or phone 01-720 1983.

HUNDREDS of top paid jobs in Engineering await qualified men. Get a certificate through B.I.E.T. Home Study—Mech., Elec., Auto, Radio, TV, Draughts., Electronics, Computers, Building, etc. Send for helpful FREE book.—B.I.E.T., Dept. 151K, Aldermaston Court, Reading RG7 4PF. [14]

K INGGSTON-UPON-HULL Education Committee, College of Technology Principal: E. Jones, M.Sc., F.R.I.C.
FULL-TIME courses for P.M.G. certificates and the Radar Maintenance certificate.—Information from College of Technology, Queen's Gardens, Kingston-upon-Hull. [18]

TRANSLATIONS—German and Spanish—Technical and Commercial Dexter, 4 Lime Grove, Hoole, Chester. [979]

BOOKS, INSTRUCTIONS, ETC.

MANUALS, circuits of all British ex-W.D. 1939-46 wireless equipment and instruments from original R.E.M.E. instructions; s.a.e. for list, over 70 types.—
W. H. Bailey, 187a Moffat Road, Thornton Heath, Surrey, CR4-8PZ.

Guide to Broadcasting Stations

(16th Edition)

This is the sixteenth edition of a useful book listing European long and medium wave stations of the world and all the short wave stations of the world, including VHF sound broadcasting stations. The stations are presented both in order of frequency and geographically. The text is introduced by five chapters which aim to give advice and guidance on how to receive these stations.

0 592 08131 1 164 pages 1971 **£0.50** (10s.)

Available from leading booksellers or

The Butterworth Group

88 Kingsway • London

WC2B 6AB

912 **0**

-CLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wants

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.I

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

Rate: 45p (9/-) PER LINE. Average seven words per line.	NAME	•••••	•••••
 Name and address to be included in charge if used in advertisement. 	ADDRESS		•••••
Box No. Allow two words plus 25p (5/-).			
Cheques etc., payable to "Wireless World" and crossed "& Co."	/	• • • • • • • • • • • • • • • • • • • •	••••••
Press Day 10th January for February 1971 issue,		•	•••••
		Ì	
		ļ	
1	RE	MITTANCE VALUE	ENCLOSED

Please write in block letters with ball pen or pencil.

NUMBER OF INSERTIONS.....

Solve your communication problems with this new 4-Station Transistor Intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/listen from Master to Subs and Subs to Master. Operates on one 9 v. battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hospital, Shop, etc., for instant interdepartmental contacts. Complete with 3 connecting wires. each 66 ft. and other accessories. necting wires, each 66 ft. and other accessories. Nothing else to buy. P. & P. 7/6 in U.K.

A top quality DE-LUXE transistorised intercom consists of MASTER and SUB for desk/wall mounting. Call, talk or listen from either unit. On/Off switch, volume control. Ideally suitable as "BABY SITTER" or Door Phone. A boon for spastics and invalids. Useful in the home, surgery or business for instant 2-way conversations, effective range 300ft. Unsurpassed in QUALITY AND PERFORMANCE. Complete with 66ft. connecting lead. Battery 2/6 extra. P. & P. 4/6. Price Refund if not satisfied in 7 days.

Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Portable Transistor TELEPHONE AMPLI-FIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/off switch. Volume Control. Operates on one 9 v. battery which lasts for months. Ready to operate. P. & P. 3/6 in U.K. Add 2/6 for Battery. FIER which enables you to take down long

Full price refunded if returned in 7 days.

WEST LONDON DIRECT SUPPLIES (W.W.) 169 KENSINGTON HIGH STREET, LONDON, W.8

Practical Aerial Handbook Gordon J. King, Assoc. IERE, MIPRE, MRTS.

In recent years, aerial systems for radio and television reception have begun to assume a new importance. Their efficiency, more than anything else, is the key to dealing with problems introduced by the growing use of the u.h.f. band, the congestion of signals in broadcast bands, ever-increasing electrical interference and the need to supply millions of homes with good quality sound and vision signals over a wide range of frequencies. This book examines these problems and, indeed, every practical aspect of aerial work. By far the most comprehensive and up-to-date treatment available, it has been written by an author with unrivalled experience of the whole field.

408 00001 5 234 pages Illustrated

Available from leading booksellers or:

The Butterworth Group, 88 Kingsway, London WC2B 6AB

WANTED

surplus transistors, semiconductors, capacitors, cable, electrical goods, radio television and electrical equipment, wire, aluminium, motors, recording accessories and all surplus equipment for SPOT CASH.

Buyer will call to inspect anywhere.

Concord Instrument Co.

28 Cricklewood Broadway London, N.W.2

Telephone: 01-452 0161/2/3 Telex:

Cables:

21492 CONIST LONDON

ECONOMICA ACCURATE RELIABLE Private enquiries, send two 5d stamps for brochure

THE QUARTZ CRYSTAL CO. LTD

Q.C.C. Works, Wellington Crescent, Ilden, Surrey (01-942 0334 & 2988) New Malden, Surrey WW-103 FOR FURTHER DETAILS

CASH IMMEDIATELY AVAILABLE

for redundant and surplus stocks of

radio, television, telephone and electronic

equipment, or in component form such as meters, plugs and sockets, valves, transistors, semi conductors, capacitors, resistors, cables, copper wire, screws and

nuts, speakers, etc.
The larger the quantity the better we

BROADFIELDS & MAYCO

DISPOSALS 21 Lodge Lane, London, N12.

Evenings: 01 958 7624

01 445 0749

like it.

WE PURCHASE

COMPUTERS, TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGS AND SOCKETS, MOTORS, TRANSISTORS, RESISTORS, CAPACITORS, POTENTIO-METERS, RELAYS TRANSFORMERS ETC. ELECTRONIC BROKERS LTD.

49 Pancras Road, London, N.W.1. 01-837 7781

MUSICAL MIRACLES

WAA-WAA PEDAL. Complete kit of all parts, robust cabinet, mechanism & instructions. Huge sales, well proven design. ONLY 49:- complete. Or built & tested &4.15 post free. RHYTHM BOX. Build your own from our pre-built electronic circuit modules, e.g. box giving waltz, foxtrot etc., cost under £17. ORGAN PERCUSSION units £14. Bass pedal and other fascinating effects, fuzz, tremolo etc. Send s.a.e. for list. D.E.W. LTD. 254 Ringwood Road, Ferndown, Dorset.

PL4003 WO2

WW-104 FOR FURTHER DETAILS

PRINTED CIRCUITS PROTOTYPE AND BATCH PRODUCTIONS

instrument panels and dials In Metal and Perspex

SCREEN PROCESS PRINTERS

AMERICAN

Telephone: 01 445 2713

TEST AND COMMUNICATIONS EQUIPMENT ★ GENERAL CATALOGUE AN/104 1/6 ★

Manuals offered for most U.S. equipments SUTTON ELECTRONICS

JEF ELECTRONICS (WWI) York House, 12 York Drive, Grappenhall, Warrington, Lancs. Mail Order Only. C.W.O. P. & P. 1/- per order. Overseas 7/6. Money back if not satisfied. Brooklands Plating Co. Ltd. Saithouse, Nr. Holt, Norfolk, Cley 289 Spice's Yard, South End, Croydon CRO IBF 01-688-2128

www.americanradiohistory.com

INTERCONTINENTAL COMPONENTS

for:

Electrolytic Capacitors

from 6V to 500V DC wkg 5 mfd to 10,000 mfd

Available from stock

INTERCONTINENTAL COMPONENTS

Electric House, 18 King St., Maidenhead, Berks. 5L6 IEG

Tel: MAIDENHEAD 32466

WW-105 FOR FURTHER DETAILS

SURPLUS HANDBOOKS

19 set Circuit and Notes					41-		
1155 set Circuit and Notes					7/-		
II.R.O. Technical Instructio	118				6/-		
38 set Technical Instructions	B				6/-		
46 set Working Instructions					6/-		
88 set Technical Instruction	8				7/6	p/p	9d.
BC.221 Circuit and Notes					6/-		
Wavemeter Class D Tech. In	ıst.				6/-	p/p	9d.
18 set Circuit and Notes					6/-	p/p	9d.
BC, 1000 (31 set) Circuit and	1 Notes				6/-	p/p	9d.
CR. 100/B.28 Circuit and No					0/6		
R.107 Circuit and Notes					7/6	p/p	9d.
AR.88D Instruction Manual			× × 1	1	8/6	p/p	1/-
62 set Circuit and Notes							
Circuit Diagram 5/6 each po	st free.	R.111	6/A, R	122	4/A.	R.1;	355,
R.F. 24, 25 and 26, A.113	4. T.11	54. CF	300.	BC.3	12.	BC.:	342.
BC.348J, BC.348 (E.M.P.),							
52 set Sender and Receiver	circuit	8 8/- 1	oost fre	e.			
Colour Code Indicator 2/6							
C A D	-11	. a. siela	a rlan				

S.A.E. with all enquiries please.
Postage rates apply to U.K. only.
Mail order only to:
INSTRUCTIONAL HANDBOOK SUPPLIES
Dept. W.W. Talbot House, 28 Talbot Gardens, LEEDS 8

WANTED-

Redundant or Surplus stocks of Transformer materials (Laminations, C. cores, Copper wire, etc.), Electronic Components (Transistors, Diodes, etc.), P.V.C. Wires and Cables, Bakelite sheet, etc., etc.

Good prices paid

J. BLACK

44 Green Lane, Hendon, N.W.4 Tel. 01-203 1855 and 3033

NEONS. PRINTED CIRCUIT BOARDS. INSTRUMENT CASES. MOULDED REED SWITCHES and PIDAM logic modules. CONTIL and BRIGHTLIFE products are all ex-stock. For details see Dec., 1970 and Feb., 1971 issues, advertisements. For further details use reader service card. New prices on new leaflet. All customers on mailing list will receive these automatically.

WEST HYDE DEVELOPMENTS LIMITED, RYEFIELD CRESCENT, NORTHWOOD HILLS, NORTHWOOD, MIDDX. Telephone: Northwood 24941/26732 Telex: 923231

SILICON TRANSISTORS 1,000,000 FOR SALE

Clearance of pnp Silicon Alloy Transistors from the 2S300 (TO-5) and 2S320 (SO-2) range and similar to the OC200-205 and BCY30-34 series. Available only from us at a fraction of the manufacturing cost. All these devices would normally be subject to re-selection for industrial use but owing to company policy change have been made available to us surplus to requirements. Offering these transistors in varied quantities make them ideal for Amateur Electronics, Radio Hams and for experimental use in Schools, Colleges and Industry.

Supplied uncoded (no warranty by the manufacturers). But our assurance given that a minimum of 80% will be found to be good usable Silicon Alloy Transistors. Please state preference of type, i.e., TO-5 2S300 or SO-2 2S320.

Approximate count by weight:
100 off—15s. (plus p. & p. 2s.)
300 off—£1 15s. (plus p. & p. 3s.)
500 off—£2 10s. (plus p. & p. 3s. 6d.)
1,000 off—£4 (plus p. & p. 5s.)
10,000 off—£35 (plus p. & p. 1s.)
Large quantities quoted for on request.
EXPORT ENQUIRIES WELCOME
All correspondence, cheques, postal

P.O. BOX 5

orders, etc., to:

63a High Street, Ware, Herts. Tel: WARE 3442

FLUIDICS

COMPONENTS & CIRCUITS

by K. Foster & G. A. Parker

RADIO VALVE & TRANSISTOR DATA by A. M. Ball. New 9th Ed. 15/-. Postage 2/-.

PRINTED CIRCUIT BOARDS FOR MICROELECTRONICS by J. A.

TUNERS & AMPLIFIERS by J. Earl.

ELECTRONICS FOR TECH-NICIAN ENGINEERS by W. W. Smith. 55/-. Postage 3/6.

TRANSISTOR MANUAL by G.E.C.

RCA LINEAR INTEGRATED CIR-

TRANSISTOR AUDIO & RADIO

CIRCUITS by Mullard. 30/-. Postage 1/-.

RADIO COMMUNICATION HANDBOOK by R.S.G.B. 63/-. Post-

LOGIC CIRCUITS by Morris. 42/-.

CUITS by R.C.A. 25/-. Postage 1/6.

Scarlett 80/-. Postage 2/-.

42/-. Postage 1/6.

21/-. Postage 1/6.

age 4/6.

Post Free

CAPACITOR DISCHARGE IGNITION SYSTEM

Using the article as published in the January 1970 issue of Wireless World, a universal printed-circuit board has been designed, incorporating the author's approved modification. This is suitable for both positive and negative earth ignition systems, thus enabling simple conversion to opposite polarity if the vehicle is subsequently changed. The printed-circuit board incorporates Cinch printed-circuit mounted screw terminal blocks for the input and output connections together with a printed-circuit mounted fuse rarrier with fuse.

A complete complement of components and semi-conductors are supplied together with a ready drilled and fluxed printed-circuit board, drilled heatsink, hardware and suitable transformer.

Although wiring details are supplied for both positive and negative earth versions, customers must state which version they require so that the correct semi-conductors can be supplied.

Price £9-5-0 plus 10/- carriage.

Trade Enquiries Invited. Mail Order Only.

100 WATT AMPLIFIER

The latest addition to the DABAR range of equipment is a 4 channel integrated Preamplifier and Power amplifier, delivering a full 100W.m.s. into a 4 ohm load. The amplifier has 4 inputs, each with their own gain control and a further master gain control, treble and bass control. A unique feature of this amplifier is in its versatility of uses. It has been designed to accept plug-in pre-amp cards for each channel thus covering a wide range of applications. The basic unit is supplied with 4 input modules of your choice, but further modules may be purchased at moderate cost, thus enabling, with the minimum of time, effort and outlay the conversion of any one or all channels to accept an entirely different input.

Modules available include: P/U cartridges—crystal, ceramic, and magnetic (equalised R.I.A.A.); Microphones—30-60 Ω 300-600 Ω and $50K\Omega$ types. Guitar and two modules for high impedance outputs from tape, tuner, etc., 100mV f.e.t. and IV input. Case size: $13in \times 7in \times 9in$.

Price complete with 4 modules £109.0.0. Extra modules £5.0.0 each.

Trade Enquiries Welcome

Callers by appointment only. Carriage extra.

DABAR ELECTRONIC PRODUCTS

98a LICHFIELD STREET, WALSALL, STAFFS. WS1 1UZ

Tel: WALSALL 34365

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technical Books

19-21 PRAED STREET, LONDON, W.2

Phone PADdington 4185 Closed Sat. 1 p.m.

LONDON CENTRAL

EECOED STORAGE UNITS, Brand new, Anti-warp, 'Compact 200' stores 200 records, £11/13/6, P.P. 26/-, 'Compact 100' stores 100 records £5/5/5, P.P. 10/6, Leaflets available.

ELECTRICITY SLOT ENTER (1/- in slot) for A.C. mains. Fixed tariff to your requirements. Suitable for hotels, etc. 200/250 v. 10 A. 90/-, 15 A. 100/-, 20 A. 110/-, P.P. 7/6. Other amperages available. Reconditioned as new, 2 years guarantee.

10 A. 90/-, 15 A. 100/-, 20 A. 110/-, P.F. //b. Other amperages available. Reconditioned as new, 2 years guarantee.
WIRELESS SET NO. 38 A.F.V. Freq. range 7.3 to 9.0 Mcs. Working range 4 to 2 miles. Size 10½ × 4 × 6 fin. Weight 6jlb. Includes power supply 8fb.—and spare valves and vibrator also tank aerial with base. 28 per pair or 2½ single. P.P. 25/-.
MODERN DESK PHONES, red, green, blue or topas, 2 tone grey or black, with internal bell and handset with 0-1 dia. 24/10/-. P.P. 7/6.
10.WAY PRESS-BUTTON INTER-COM TELEPHONES in Bakelite case with junction box handset. Thoroughly overhauled. Cuaranteed. 25/10/- per unit.
20.WAY PRESS-BUTTON INTER-COM TELEPHONES in Bakelite case with junction box. Thoroughly overhauled. Guaranteed. 27/15/- per unit.
QUARTERLY ELECTRIC CHECK METERS. Reconditioned as new. 200/250 v. 10 A. 42/8; 15 A. 52/6; 20 A. 57/6. Other amperages available. 2 years guarantee. P.P. 5/8-BANK UNISKLECTOR SWITCHES. 25 contacts, alternate

amperages avanance. 2 years guarantee. P.F. 5/8-BAMK UNIBELICTOR SWITCHES. 25 contacts, alternate wiping £2/15/-; 8 bank half wipe, 25 contacts 47/6. P.P. 3/6.

23 LISLE ST. (GER 2969) LONDON W.C.2 Closed Thursday 1 p.m. Open all day Saturday

WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC.

CHILTMEAD LTD.

7. 9. 11 Arthur Road, Reading. Tel: 582 605 Berks.

ENAMELLED COPPER WIRE

S.W.G.	Per ½lb. reel	Per 11b. reel
18-22.	11/3d.	16/6d.
23-30.	11/9d.	17/6d.
31-35.	12/3d.	18/6d.
36-40.	15/-	24/-
41-44.	17/9d.	29/6d.

Orders despatched by return of post. Please add 1/- per item P. & P.

Supplied by: Banner Transformers, Brooks St., Higher Hillgate, Stockport, Cheshire.

TRADE ENQUIRIES INVITED

de air drying GREY HAMMER **BLACK WRINKLE** (CRACKLE) finishes

Dept: Q1 YUKAN, 307a, EDGWARE ROAD, LONDON, W.Z.

Various types of two- and four-track playback heads for reel, cassette and professional tape recorders are offered by

UNITYERSSA

Foreign Trade Enterprise Warszawa, Al. Jerozolimskie 44, Poland

On demand we work out and produce playback heads with requested parameters as well as subassemblies and technical details for tape recorders.

> Makers: the Kasprzak Radio Equipment Works Warszawa, Kasprzaka 18/22, Poland

> > WW-107 FOR FURTHER DETAILS

BUILD YOURSELF A Transistor radio

ROAMER EIGHT Mk 1 WITH TONE CONTROL SEVEN WAVEBANDS— MW1, MW2, LW, SW1, SW2, SW3 AND TRAWLER BAND, 8 transistors and 3 diodes. Ferrite rod aerial and telescopi perial. Socket for car aerial. 7 x 4 in Speaker Airspaced ganged tuning condenser.
Earpiece socket and earpiece Selectivity
switch. Size 9 x 7 x 4 in. Total Building
Cests £6.19.6. P & P 7/6. Plans and Parts ist 5/- (free with parts).

POCKET FIVE, MED. AND LONGWAVES 8 TRAWLER BAND WITH SPEAKER 5 transistors and 2 diodes, ferrite rod aerial, tuning condenser, moving coil speaker, etc. 5½ x 1½ x 3½in. Total Building Costs 44/6. P. & P. 3/6. Plans and Parts list 1/6 (free with parts). ROAMER SEVEN Mk 4, 7 WAVE-BANDS MW1, 'MW2, LW, SW1, SW2, SW3, AND TRAWLER BAND, 7 transistors and 2 diodes errite rod aerial and telescopic aerial Socket for car aerial. 7 x 4in. speaker Airspaced ganged tuning condenser etc.

Size 9 x 7 x 4in. Total Building Costs

65/19/6. P. & P. 7/6. Personal earpiece
with switched socket for private listening 5/ extra. Plans and Parts list 3/- (free with

FRANSONA FIVE MEDIUM, LONG AND TRAWLER BAND WITH SPEAKER 5 transistors and 2 diodes. Ierrite rod aerial. noving coil speaker, $6\frac{1}{2} \times 4\frac{1}{2} \times 1\frac{1}{2}$ in. Total Building Costs 47/6. P. & P. 3/9. ns and Parts list 1/6 (free with parts

CONSTRUCTORS BARGAIN!
FAMOUS MAKERS PORTABLE WOODEN
RADIO CABINET. See 11½" x 3¾" x ½". with chromet handle and fittings. Slotted wood front, rexine covered padded sides. Dial calibrated Medium and Long Wave stations. Complete with 2 printed circuit boards and Elac 5° x 3° 25 ohm Heavy Duty P.M. Speaker, Brand New.

Only 49/6 P&P 7/6. Must be worth at least

RADIO EXCHANGE CO. LTD. Dept WW. 61 High Street, Bedford. Phone 0234 52367

● Open 10-1, 2.30-4.30, Sat. 9-12

THE NEW "JULIETTE

MPR 3065

(replaces NA 5018A)

IS A HIGH QUALITY COMMUNICATIONS RECEIVER

IT NOT ONLY RECEIVES . . . AIRCRAFT, SHIPPING (VHF & SW), TAXIS, AMBULANCES, FIRE SERVICE, T.V. SOUND, HAMS, GAS & ELECTRIC BOARDS, PUBLIC SERVICES & MANY OTHER RADIO TELEPHONE MOBILES. BUT ALSO . . . CLASSICAL MUSIC, POP & ALL THAT JAZZ. NOT ONLY RECEIVES

REC. PRICE £42

OUR 36 gns

(CASH ONE) p/p
Complete with standard
batteries and earpiece BFO (optional extra) ADD 35/

TURN ON ANO
TUNE-IN!!!

The MPR 3065 is a communications receiver and entertainment source in one neat, transistorised

portable keeps Aircraft, Shipping, RT mobiles. FM & AM broadkeeps Aircraft, Snipping, it intomas, riving an observed casts at your fingertips. Features a colour-coded illuminated tuning dial & band selector. AFC. Squelch external aerial socket BFO (optional extra). Large

speaker. Works off mains or batteries. Size 10" x 6" x 4". Weight 4.7 lbs. 22 transistors/diodes. FREQUENCIES ... Medium Wave 540-1600 Kcs: Marine 1.6-4.6 Mcs: FM/VHF 88-108 Mcs: Aircraft 108-136 Mcs (Military, Civil & Ground Control).
High VHF/PB 146-176 Mcs (Commercial & Industrial RT Mobiles). (Availability of Mobile transmissions depend on operators in each area).

Trade Supplied STOCKTON PARTNERS (W.W.) Brighowgate, Grimshy, Lincs. Tel: 0472 64196/58815

Importers & Distributors

Wonders of the modern world

Teonex products, of course! Over 3,000 of them, electronic valves, semi-conductors, and now—neons and indicators too...all performing superbly in many climates . . . all at prices that are very competitive.

How do Teonex do it? Specialisation in one field. Concentration on export only. Very strict quality control.

Sold in sixty countries, on Government or private contract, Teonex offers you a comprehensive range, with most items immediately available.

For technical specifications and prices, please write to Teonex Limited, 2a Westbourne Grove Mews, London W.11, England. Cables: Tosuply London W.11.

EONEX

electronic valves semi-conductors neons & indicators for export

WW-108 FOR FURTHER DETAILS

LAWSON

NEW TUBES

Lawson "Century 99" are brand new tubes. Using silver activated screens, micro fine aluminizing, high definition electron guns.

resulting in superb performance and very long life.

LAWSON TUBES **18 CHURCHDOWN RD.** MALVERN, WORCS. Telephone: MALVERN 2100

NEW TUBES 4.10.0 6.10.0 7.10.0 8.15.0 9.15.0 8.15.0 11.19.0 9,17.6 13.10.0 14' 17' 19' 21' 23' 19' PANORAMA PANORAMA 23' 19' 23'

TELEVISION TUBES REBUILT TUBES

Lawson "Red Label" rebuilt crts are particularly useful where cost is a vital factor such as in older sets or rental use. Red Label are completely rebuilt from selected glass and are exact replacements.

REBUILT TUBES 4, 5.0 4.12.6 4.17.6 6.10.0

6.19.0

2 years Guarantee both new and rebuilt FULL TUBE FITTINGS INSTRUCTIONS SUPPLIED CARR.INS. BY EXPRESS PASSENGER 14-19* 12/6d. 21-23* 15/-

ww—109 FOR FURTHER DETAILS

OSMABET LTD.

WE MAKE TRANSFORMERS AMONGST OTHER THINGS AUTO TRANSFORMERS. 0-110-200-220-240 v a.c. up or down, fully shrouded fitted insulated terminal blocks. 30 w 26/6; 50 w 34/-; 75 w 41/6; 100 w 49/-; 150 w 80/-; 200 w 75/-; 300 w 97/6; 400 w 120/-; 500 w 122/6; 600 w 165/-; 750 w 195/-: 1000 w 240/-; 1500 w 345/-; 2000 w 480/-; 3000 w 600/-; 4000 w 825/-; and up to 8000 watts available to order.

4000 w 825/-; and up to 8000 watts available to order.

MAIRS TRAMSFORMESES. Prim 200/240 v a.c. TX2, 250-0-250 v 150 Ma, 6.3 v 4a, CT, 0-5-6.3 v 3 a, 78/6; TX5 300-0-300 v 120 Ma, 6.3 v 2a CT, 6.3 v 2 a, 6.3 v 1 a, 78/6; TX6 250-0-250 t 20 Ma, 6.3 v 1.5 a, 42/-; MTI 200 v 30 Ma, 6.3 v 1 a, 24/-; MTI 200 v 30 Ma, 6.3 v 1 a, 24/-; MTI 200 v 30 Ma, 6.3 v 1 a, 24/-; MTI 200 v 30 Ma, 6.3 v 1 a, 24/-; MTI 200 v 30 Ma, 6.3 v 2 a, 45/-...

37/6; MT3 Prim 110/240 v Sec 250 v 100 Ma, 6.3 v 2 a, 45/-MULTIVOLT TRANSPORMERS, Prim 200/240 v a.c. OMT4/1
One tapped sec, 5-20-30-40-60 v giving 5-10-15-20-25-30-35-4055-60, 10-0-10, 20-0-20, 30-0-30 v.a.c. 1 amp, 45/-; ditto transformer 2 amp OMT4/2, 67/6; OMT5/1 One tapped sec, 40-6080-90-100-110 v giving 10-20-30-40-50-00-70-80-90-100-110
-0-0-10, 20-0-20, 30-0-30, 40-0-40, 30-0-50 v.a.c. 1 amp, 67/6:
OMT40/3 One sec 40 v CT 3 amp, 67/6.
DUOVOLT TRANSFORMERS, Prim 200/240 v a.c. "D12V"
2 secs 12 v 4 a each, 71/6; "D25V" 2 secs 10-20-25 v 2 amp, each
71/6.

71/6.
24 v AUTO TRANSFORMERS, Input 200/240 v a.c. output 24 v 150 watt, 90/-; 250 watt 135/-; for quartz todine lamps.
LOW VOLTAGE TRANSFORMERS, Prim 200/240 v a.c. 6.3 v

LOW VOLTAGE TRANSPORMERS. Prim 200/240 v a.c. 6.3 v 15.a, 16/9; 3 a 20/e; 6 a CT 34/e; 12 v 1.5 a 2/f; -6 a CT 34/e; 2 v 1.5 a CT, 34/e; 6 a CT, 45/e; 18 v 1.5 CT a, 26/6; 5 a .75/e; 8 a, 112/6; 12 a, 165/6.

MIDGET RECTIFIER TRANSPORMERS, for F.W. rectification, size 1 ½ × 2 v 14 ins., Frim 200/240 v ac. output PPII 3-0-9 v 0.3 a, PPT2 12-0-12v 0.25 a, PPT3 20-0-9v 0.15 a, 22/6 each. MT9V 9-0-9 v 1 a, MT2V 12-0-12 v 1 a, MT2OV 20-0-0 v, 0.75 a size 2 × 2½ × 1½ ins., 22/6 each.

OUTPUT TRANSFORMERS. Mullard 5/10 UL, 67/6; 7 watt stereo UL, 60/-; 3 watt PP3, 30/-; push pull 11K 3-8-15 ohms, 21/-; Mulli ratio 7/10 watt, 33/-; Standard 3-4 watt of 5K/3 ohm or 10K/3 ohm, 14/6; auto matching transformers 10 watt, 3-8-15 ohm up or down, 15/-; 100 vot line transformers to watt. W.W. IGNITION CIRCUIT TRANSFORMER to spec, 50/- plus 4/6 p.p.

W.W. COLOUR TELE. Choke L1, 60/-; Tran T1, 57/6; Field O/P, 60/-. Carriage extra on all transformers 4/6 minimum.

2. 60/-. Carriage extra on all transformers 4/6 minim

TRANSFORMERS FOR POWER AMPLIFIERS
OUTPUT TRANSFORMERS for use with KT68, KT58,
EL34, 807, etc. 8ec. tapped 3-7.5-15 ohms.
30 watt A-A load 6.6K, 78/8; 50 watt A-A load 3K,
135/-; 100 watt A-A load 3K, 225/MAINS TRANSFORMERS
TX500, Prim. 200/240 v a.c., 8ec. 425-0-425 v 500 Ma,
6.3 v 6 a CT; 6.3 v 6 a CT; 6.5, 6.3 v 3 a, 250/TXI, Prim. 200/240 v a.c., 8ec. 425-0-425 v 250 Ma,
6.3 v 4 a CT; 6.3 v 6 a CT; 6.5 v 6 a CT; 6.5 v 3 v 3 a, 135/W.W. 100 WATT TRANSISTOR AMPLIFIER, Prim.
200/240 v, Sec. 42 v 4 a; 50 v 10 Ma, 150/W.W. 100 WATT TRANSISTOR AMPLIFIER, Prim.
200/240 v, Sec. 42 v 4 a; 50 v 10 Ma, 150/ENGLISH STAND STAN

LT FLUORESCENT LIGHTING, inputs 6, 12, 24v. DC; 12v fittings with tube 8 watt 75/-; 13 watt 125/-; etc, Inverters 12v DC 20 watt 150/-; single 40 or twin 20 watt 180/-; single 50 watt or twin 30 watt, 220/-, etc, extensive range. Lists SAE.

S.A.E. ALL ENQUIRIES PLEASE. MAIL ORDER ONLY.
46 KENILWORTH ROAD, EDGWARE, MIDDX. HAS 8YG
Carriage extra all orders.
Tel: 01-958 9314

WW-110 FOR FURTHER DETAILS

DEIMOSLTD TAPE RECORDERS FOR

RESEARCH, INDUSTRY AND PROFESSIONAL AUDIO single and multichannel

8 CORWELL LANE, HILLINGDON, MDX.

TRANSFORMERS

20004110 001111111111					
	12 or 24 Volts				
Output V. & Amps.	Ref. No.			P. & P.	
12V x 2 250 mA x 2	MT 111 CB*†		15/-	1/6	
12V x 2 500 mA x 2	MT 213 CT*:		17/6	3/-	
12V x 2 1 A x 2	MT 71 AT 1		23/-	3/6	
12V x 2 2A x 2	MT 18 AT		32/3	3/6	
12V x 2 3A x 2	MT 70 AT		39/-	5/-	

30 volts. All tapped at 0-12-15-20-24-30 V.
Output Ref. No. Price P.P. Output Ref. No. Price P.P. Amps. Amps. 600mA MT112 CT1 17/6 3/- 4A MT91 AT 51/3 6/6
11A MT 79 AT2 23/6 4/6 5A MT51 AT 63/- 6/6
2A MT 3 AT 33/- 5/- 6A MT88 AT 102/- 7/6
3A MT 20 AT 43/- 5/- 10A MT88 AT1 122/- 8/3

50 volts. All tapped at 0-19-25-33-40-50 V, 500mA MT 102 AT 23/- 3/6 3A MT 105 AT 63/6 1A MT 103 AT 34/- 5/- 4A MT 106 AT 84/-2A MT 104 AT 46/9 5/- 6A MT 107 AT 124/-

60 volts. All tapped at 0-24-30-40-48-60 V.
500mA MT 124 AT 23/6 3/3 2A MT 127 AT 51/3 5/1A MT 126 AT 33/- 5/- 3A MT 125 AT 75/9 6/6

	AUTO-WOUL	ID KANGE		
ower	Winding tapped at	Ref. No.	Price	P. & P.
utput 20 VA	0-115-210-240	MT 113 CT	15/6	1/6
75 VA	11 11	MT 64 AT	28/7	5/-
50 VA	0-115-200-220-240	MT 4 AT	34/9	ō/-
00 VA	13 11	MT 65 AT	49/4	5/-
00 VA	99 99	MT 66 AT	67/7	6/6
00 VA	19 99	MT 67 AT	87/6	' 8/

SAPETY ISOLATORS. 240 V. IN; 116 V. OUT; C.T.
VA Ref. No. Price P.P. VA Ref. No. Price
60 MT 191 AT 45/4 5/- 250 MT 194 AT 106/6
100 MT 192 AT 49/6 5/- 350 MT 195 AT 150/200 MT 193 AT 84/- 8/- 500 MT 196 AT 201/400 V. Output at 50 HZ. Ref. IT3 AT C-D Ignition system by R. M. Marston Esq. 30/6

C-D Ignition system by R. M. Marston Esq. 30/8 5/

SPEAKER OUTPUT RANGE

Primary Lead Sec. impedance Ref. No. Price P & P
& Output

4K to 16K \(\Omega \) at 40 mA \(\Sigma \) 3,7.5 & OT 1CT 12/9 2/in 5 stages. 15 \(\Omega \) 3.5W OT 4EL 37/
× 2, 43% U.L. Taps. 1
100V Line Matching. 15 \(\Omega \), 2.5 to OT 8CT 22/8 3/-

LEAD ACID BATTERY CHARGING 2-6-12V. LEAD ALID SATTERY CHARGING 2-8-18Y.

Output Ref. No. Price P & P Output Ref. No. Price P & P Amps (D.C.)

1.5A MT 45AT 22/9 3/6 4A MT 5AT 36/6 5/3A MT 47AT 32/6 5/- 7A MT 48AT 51/3 6/6

For use with Selenium Bridge Rectifiers.

AT indicates open universifixing with tags; CT is open U-clamp fixing with tags; CS is open U-clamp fixing with P.C. spills; * with interwinding screen; * untapped 240 V Primary; * Primary tapped at 210-240 V; other Primaries tapped at 200-220-240 V.

Over 200 types in stock through agents or direct. Send for lists

DOUGLAS ELECTRONICS INDUSTRIES LTD., Dept. MO7,
Thames Street, LOUTH, Lincs.

WW-111 FOR FURTHER DETAILS

MACLEANS 6" FAN 230 v. AC. 3 Amp. 2,800 rpm. 55/- pp 6/-. IMLOCK COLLAPSIBLE ALUMINIUM.
CHASSIS FRAMES 10½" x 8½" x 6½". 20/- pp 3/-.
CROMPTON PARKINSON ½ HP 1440 RPM
SINGLE PHASE ELECTRIC MOTORS
£6, 0s. 0d. ea.; 20/- pp. 2800 rpm also available HP 1425 RPM ELECTRIC MOTORS 3 HP 1425 RPM ELECTRIC MOTO Single phase £3 18s. Od.: 15/- pp. Ex-equip. New condition. 3 HP 1425 RPM ELECTRIC MOTOR Single phase £2 2s. 6d.; 12/- pp. Ex-equip. New condition. SMITHS 12-VOLT CAR HEATER FANS 30/- ea.: 6/- pp. 30/- ea.: 0/- pp.

1 AMP VARIAC/ 0-240v in 0-270v out or 0-270v in 0-270v out. Bench or panel mounting. No calibrated scale 45/- ea.: 10/- pp.

20-WAY 3-POLE P.O. TYPE JACK STRIPS 10½" × 3½". 19/6 pp 3/6. Ex-equip.

12 VOLT SOLEMOIDS PULL ACTION Size 2" × 1" × ½". 4/6 each pp 1/6. STC SEALED RELAYS DOUBLE POLE CHANGEOVER 48v 2 500 Ω Ex-equip. 2/6 each pp 1/6. SIEMANS MINIATURE RELAYS Double pole changeover, dust cover/base. 48v. 2500 \(\Omega\$ 10/6 ee.: 1/6 pp. NEW. 1/6 pp. NEW.

OMRON MIDGET POWER RELAYS Type Mk. I
230v. AC. coil: Single pole changeover contacts
5 amp 440v. AC., 250v. DC. 10/6 pp. 1/6.

DIAMOND 'H' MINIATURE 3 POLE CHANGEOVER RELAY 240v. AC. coil. Heavy duty contacts,
sliver plated. 12/6 each; pp. 1/6.

HONEYWELL MICRO-SWITCH, LEVER
ONERWALD OPERATED
10A 250v. AC
Lever action ex-equip. 3/6 each pp 2/ANALEX POWER SUPPLIES
Size 7" x 19" x 13", 230v AC Input.
Output 6v 5 amp x 2; 18v. 7.5 Amp. DC
Fully Translatorised
Marginal adjustment on output
£35 0s. 0d plus £3 carriage. OPERATED ANALEX POWER SUPPLY
Size 13" x 19" x 5½", 230v. AC, 36v. 14 amp DC out
Stabilized/ex-equip, tested.
£27 10s. 0d. £2 10s. 0d. carriage. EZ7 103. 06. L2 103. 00. carriage.

VEEDER-ROOT MECHANICAL COUNTERS
5 digit; lever operated; resettable.
3" × 1½" × 1½". Ex-equip. 10/6 pp 2/6.

SMITH'S CIRCULAR TAPE POSITION
INDICATOR Resettable: 10/6 each; 1/6 pp DORMAN LOADMASTER 250/44v AC. 5 amp triple pole circuit breaker 29/6 plus 5/- pp. Brand new with fixing bracket. G.E.C. 5-AMP CIRCUIT BREAKER 20/- each; 3/- pp. NEW. TRANSFORMERS TRANSFORMERS
Input 230v. Output: 6.6v 122Amp
Size 6½" × 7½" × 9" including terminals
Brand new. £15 Os. Od. plus £2 carriage.
GARDNERS: Potted input 0-250v. AC. Output:
18v. 500M/A: 50v. 150M/A: 6v. 250 M/A.
Size 3" × 2½" × 2½". Ex-equip. Tested. 20/- ea.: 4/- pp SIMPSON TRANSFORMERS
Auto type: 240v/110v 10 amp.
Size 9½" × 10½" × 10½". £12 0s. 0d. ea. 2 only. Auto type: 240V/110V to amp.
Size 9½" x 10½" x 10½" £12 0s. 0d. ea. 2 only.

TEXAS INST./ ZENNER DIODE

56v. ± 2½% 10 Watts. 6/- ea. pp. 1/-.

TEXAS INST./ 2N3710/BC107 Trans.: 2/- ea.: pp. 1/-. Min. 3 off.

BECKMAN THERMOMETERS with switch.

Calibrated 0-100 C. £6 0s. 0d. ea.: pp. 10/6. NEW

OXLEY BARB INSULATED TURRET TAGS
Type 150/50/LP Box 100 20/-, pp. 3/-; 2/6 6d. pp. 1/6

GARRARD 2 TRACK TAPE DECKS MAG TYPE

Solenoid operated 230v, 1/½ lps 50v Solenoid loads for contin. tape players atc

£7 10s. 0d. each. Brand new in manufacturers cartons. pp. 22/6d.

RUBBER CABLE CONNECTORS
3 pin 5 amp non-reversible 8/-; 1/6 pp.

BELLING LEE 1.5 amp in-line rubber-covered Interference Suppressor 5/- ea.; pp. 1/6

TELESCOPIC AERIALS CHROMED

7" closed 28" extended. 6 section TELESCOPIC AERIALS CHROMED
7" closed 28" extended. 6 section
Ball jointed base 4/6d. each pp. 1/6d. New
4 MULLARD DM160 INDICATORS
Size approx. 12" x 12" x 2" in plastic holder;
green plastic cover ex-equipment. 7/6. pp 1/6.
PRINTED CIRCUIT BOARD/ 19 ACY 19's
10,0A200 Diodes: 1 Reed relay: 1,0AZ 229 Zenner
Ass. capacitors/Resistors. Power supply 22v. 250m/a
DC.: Out/240v. AC. 20/-; pp. 4/-. Ex-equip.
CERAMIC STEREO CARTRIDGE
Output 135 m/y at 1 cm/sec.

CERAMIC STEREO CARTRIDGE
Output 135 m/y at 1 cm/sec.
Freq. response 40-12 000 cps. Load 1 meg.
Separation better than 15db.
Tracking weight 5-6 grams, 30/-, pp 2/6
MALLORY ELECTROLYTICS
25,000, MFD 25v DC
40,000, 10v DC
27,000, 30v DC
32,000, 32,000, 25v DC

Screw terminals.
TOGGLE SWITCHES, single pole, double throw
Ex-equip. New condition. 10/- doz., pp 2/6,
C.W.O. Please

3 SHENLEY ROAD, BOREHAMWOOD, HERTS.

Adjacent Elstree Mainline Station. Callers welcomed Tel: 01-953 6009

15v DC

All at 10/- each, p.p. 2/6 each condenser.

Nalla

THE ONLY COMPREHENSIVE MAINTENANCE EQUIPMENT

Send P.O. 2/6 for 48 page booklet providing all necessary information on Record Care

CECIL E. WATTS LIMITED

Darby House Sunbury-on-Thames, Middx

MILLIAMMETERS

100 Q Movements—all with same sensitivity FSD=1 mA (calibrated arc approx 3¼") other scale 100 () Maye configurations available 0-1, 0-5, 0-10, 0-14. 0-250, 0-700, 0-1400.

37/6 ea. 2/6 post, 3 or more carriage free 'CHANDOS', HIGH STREET, NEW MILLS, NR. STOCKPORT, CHESHIRE. TELEPHONE NEW MILLS (Derbyshire) 2345

www.americanradiohistory.com

LIND-AIR OPTRONICS

(INDUSTRIAL) LTD.

ELECTRONIC COMPONENT I DISTRIBUTORS

Stockists of

- **ELECTROSIL GLASS-TIN OXIDE RESISTORS**
- TRANSFORMERS—standard range of over 200 types, plus a production winding service
- SEMICONDUCTOR DEVICES
- VALVES & C.R.T.s
- PANEL METERS & **MULTIMETERS**
- POTENTIOMETERS-Precision. Standard, Helical & Trimmer types available

KIRKMAN HOUSE, 54a, TOTTENHAM COURT ROAD, LONDON, W.1

Tel: 01-637 1601 (10 lines) Telex: 27931

П

PRINTED CIRCUITS

ELECTRONIC EQUIPMENT MANUFACTURERS Large and small quanti-Full design and Prototype Service, Assemblies at Reasonable P.O. Approved Prices.

Let us solve your problems
K. J. BENTLEY & PARTNERS 18 GREENACRES ROAD. OLDHAM Tel: 061-624 0939

RANGE OF RECORD

IN THE WORLD!

Precision Instrumentation and Data TAPE DECKS

EXCLUSIVE OFFERS

AMPEX

TYPE FR 100A° Six speeds, 1½°, 3½°, 7½°, 15°, 30° and 60° per second, 5 tracks, ½° tape (easily changed to ½° or 1° by changing rollers and heads), 10½° reel caspacity, Fush button control. Precision serve control to 0.75 \(\mu \) see, track timing 5 \(\mu \) see. Drift free within 1 per cent. Accuracy 10° per week, Power input 106/135′ 48 to 400 cycles. Rack mounting.

TYPE FR 1100, as above but 4 speeds, 3\footnote{t}, 7\footnote{t}, 10\footnote{t} and 80\footnote{t} per second, and 4 track, easily per second, and 4 track, easily hanged to \footnote{t} or 1\footnote{t} and of lighter and more modern contraction and the track of the truth of truth of the truth of the

HIGHEST QUALITY RACK MOUNTING CABINETS

Totally Enclosed

Type A* 84* high × 24* deep × 24* wide.

Type B* 78* high × 30* deep × 24* wide.

Type B* 78* high × 30* deep × 24* wide.

DUBLE SIDED. These cabinets will take rack panels both sides, that is back and front and are drilled and tapped all the way down every \$* for this purpose. They are fitted this 'Instantit' patent Inily adjustable rack mounts which are vertically and horizontally adjustable—these allow the panels to be recessed when they are fitted with projecting components and it is desired to enclose them by doors.

★Other features include—all corners and edges rounded. Interior fittings tropicalised. Removable built in cable ducts. Removable built in hower ducts. Ventilated and insect proced tops. Detachable side panels. Full length instantly detachable doors fitted expanding boils if ordered with achinets. Made in U.S.A.—cost the American Government £107 before devaluation, Finished in grey primer and in new condition.

PRICE £286.10.0 each (Carriage extra)

Full length door £5 each extra

Doors are not needed if panels are mounted back and front and they are not required to be enclosed.

and they are not required to be enclosed.

TYPE C: 80° high × 27° deep × 22° wide. American Standard First Grade totally enclosed ventilated 18° rack panel mounting cabinets, made by Dukane, U.S.A. Open front fitted rack mounts drilled and tapped all the way down every ½°. Full length rear door with latch. Finished in grey these cabinets have been used but are in good condition but if decoration is of importance it is recommended they are re-sprayed before use.

PRICE 215.0.0 sach (Carriage extra)

TYPE D: 76° high × 18° deep × 22° wide. These are slightly smaller and finished in black otherwise they are similar in construction and condition to Type C above. Made by R.C.A. of U.S.A.

PRICE 212.10.0 sach (Carriage extra)

ALSO OTHER TYPES 80" TO 88" HIGH AVAILABLE Full details of all above available on request.

TRANSPORT: We have made special economical transport arrangements for these cabinets to ensure they arrive undamaged and to avoid expensive crating. Full details on request.

-FREE-

40-page list of over 1,000 different items in stock available—keep one by you.

		ك
*Labgear Stabilised Power Units D.4140, 3200 v 7 m/a.	£	35
★All Power Regulated Power Supplies 500 v	_	
500 m/a ★Marconi BD-971 C.C. T.V. Channel Camera	£	40
Control Unit, Monitor Cables complete	014	25
working order	£1:	
*Dawe Wide Range Oscillators 0/20,000 eye.		25
★Flann Microwave Attentuators 4/12 G/mc ★Marconi Universal Bridges TF-868A		50 45
★Marconi TF-893A Output Power Meters	_	
0-10W	227/	
★Elliott Recording A.C. Voltmeters 180/260 v	£	40
★CR-150/2 Marconi Communications Re-		_
oeivers. 1.5 to 22.0 m/cs	£24	U
★E.H.T. 40KV Transformers and associated		_
Equipment up to 6KW available	P.U	
*Xerox 1385 Plate Maker	£95	0
★E.M.I. (U.S.A.) } Finest Quality Computer		
tapes suitable video work. 2400 ft. spooled		_
and in transparent outer plastic case	£4	0
★10 foot long 6" sides Triangular Lattice Steel		
Mast Sections with mating lugs for joining	OF	0
up to 200 feet. New condition	£7	U
★Collins R-390 Communications Receivers	£325	0
0.5/30.0 m/os	£125	ŏ
★E.M.I. Tape Recorders BTR-1.	£2	ŏ
★ Weston 21-D.B. Meters -10/+6	20.20	v
Lattice lightweight steel triangular Aerial Masts 12 to 16 inch sides up to 200 ft. high	Accordi	ne
maste to to to mon sides up to 200 ter men	to hel	

WALTED IT VIDEO TAR

Good price paid	
54 inch, dia. Meteorological Balloons	£1 10
E.M.I. (USA) 3600 tt on N.A.B. Spools	£5 10 £4 0
8 Track Data High Speed Tape Readers	£40 0
Mason Illuminated Drawing Tables 50" × 36" TS-497/URE Signal Generators 2/400 m/cs	£17 10 £45 0 £3 0
kSarah Trans/Receivers and Aerials	
Precision Mains Filter Units new.	£3 0 £1 10
Avo Geiger Counters new	£7 10
All goods are ex-Government stores.	

We have a large quantity of "bits and pieces" we cannot list—please send us your requirements we can probably help—all enquiries answered.

P. HARRIS ORGANFORD — DORSET

BHI6 6ER WESTBOURNE 65051

"W.W." HI-FI KITS

* LINSLEY HOOD MODULAR PRE-AMP

July 1969 no-compromise design for the purist. Compactly built on Lektrokit. Layout details. Kit price from £7.5.0 (mono, mag.p.u. +2 1/P.s).

LINSLEY HOOD SIMPLE PRE-AMP

Designer-approved PCB (marked component locations) gives excellent results with ceramic pick-up. Kit includes all parts as in May 1970 article plus front panel. Mono £6.5.0. Stereo £11.8.0 inc. p.p.

★ BAILEY 30W AMPLIFIER (Nov. '68)

Mk. IV PCB has extra pre-set for quiescent current. Output capacitor and PCB mount directly and compactly on specially designed generous heat-sink.

LINSLEY HOOD IS-20W AMPLIFIER

July 1970 latest and ultimate design. O/P capacitor, PCB, Tr3, 4 & 5 mount compactly onto heat-sink Our kit personally tested and approved by the designer. Gain of O/P TR's > 100.

POWER SUPPLIES (simple and stab'd) available.

HIGH QUALITY components inc'g Mullard, Hunts, TCC capacitors, Plessey moulded pre-sets. O/P Tr's matched $\pm\,10\%$ @ lc=1 amp.

AFTER-SALES SERVICE at reasonable cost.

REPRINTS of articles at 6/- per copy post free.

DETAILED PRICE LISTS at I/- (Refundable with

PERSONAL CALLERS WELCOME—BY APPOINTMENT. DESPATCH BY FIRST CLASS RETURN

A.1 FACTORS

72 Blake Road, Stapleford, **Nottingham**

Tel. Nottingham 46051 Giro No. 487 6008

(8 a.m.-10 p.m. 7 days/week)

Thanks to a bulk purchase we can offer

BRAND NEW P.V.C. POLYESTER AND MYLAR RECORDING TAPES

Manufactured by the world-tamous reputable Manufactured by the world-tamous reputable British tape firm, our tapes are boxed in polythene and have fitted leaders, etc. Their quality is as good as any other on the market, in no way are the tapes faulty and are not to be confused with imported, used or sub-standard tapes. 24-hour despatch service. Should goods not meet with full approval, purchase price and postage will be refunded.

		160ft. 900ft.		5in. 7in.	600ft. 1,200ft.	6/- 9/-
L.P.	{3in. 5∄in.	225ft. 1,200ft.	2/6 10/-		500ft. 1,800ft.	8/6 13/-
D.P.	{3in. 5∄in.	350ft. I,800ft. ostage on	4/6 16/-	5in. 7in.	1,200ft. 2,400ft.	12/- 20/-
		ostage on	all or	ders (1/0	

COMPACT TAPE CASSETTES AT HALF PRICE

60, 90, and 120 minutes playing time, in original plastic library boxes. MC 60 9/- each, MC 90 12/6 each, MC 120 18/3 each.

STARMAN TAPES

28 LINKSCROFT AVENUE, ASHFORD, Ashford 53020 MIDDX.

WW-113 FOR FURTHER DETAILS

PHASE LOCKED STEREO DECODER

Complete designen approved kit, containing Fibreglass PCB, 62 low noise resistors, 15 Ferranti transistors, 3 Fairchild IC's 8 diodes, 23 capacitors and 4 preset pots.

Full instructions. £8.19.6 pp 2/6

Decoder PCB only £1.5.0

U6F7709393 €1 U6A747459X €1.7.6

STABILISED POWER SUPPLY

Complete kit for ± 6V at 50mA Suitable for above £2.19.0 pp 3/6.

Transistors: ZTX500 4/- ZTX108 equiv. 2/-.

INTEGREX LIMITED PO BOX 45 DERBY DE1 1TW

DIOTRAN

SALES P.O. BOX 5 WARE, HERTS

SEMICONDUCTORS FOR W.W. CAP-DIS IGNITION SYSTEM Each 2N3525 . 15/-2N39055 . 23/-2N3702 . 3/-2N3704 . 3/-1N4001 . 1/6 IN4005 . 4/-TOP HAT SILICON RECTIFIERS. All good. No short or open circuit devices. Voltage range 24-400 PIV, 750mA. £3 per 100, £12.10 per 500

New and fully guaranteed. S.C.R's 16 AMP (unplated)

(unplated) 1-24 25-99 100 up 100 PIV 9/6 7/6 6/-400 PIV 14/- 12/- 10/-All tested perfect functional devices guaranteed.

PLASTIC PNP SILICON TRANSISTORS, Manufac-turer's seconds from 2N3702-3 family, Ideal cheap trans. for manufacturing etc. £8 500, £13.10 1,000 pieces.

PLASTIC NPN SILI-CON TRANSISTORS. Manufacturers' seconds from 2N3707-3711 family. Ideal cheap trans. for manufactur-ing etc. £7.10 500, £12.10 1,000 pieces.

TESTED TRANSISTORS One price only PNP. NPN Silicon Planar or Germ. Fully Tested and similar to the following types:

ACI25	ACY36	NKT713	2G38I	2N2926
ACI26	BC108	NKT773	2G382	2N2220
ACI27	BC109	OC44	2G399A	2N3707
ACI28	BFY50	OC45	2N696	2N3711
ACI30	BFY51	OC7I	2N697	2N2906
ACY19	BFX84	OC72	2N706	2N2907
ACY20	BFX86	OC75	2N708	2N2696
ACY21	BFX88	OC81	2N929	2N3391
ACY22	NKTI4I	OC82	2N930	2N3702
ACY27	NKTI42	TIS44	2N1131	2N3703
ACY28	NKT212	2G301	2N1132	25102
ACY29	NKT213	2G302	2N1613	25103
ACY30	NKT214	2G303	2N1711	25104
ACY31	NKT215	2G308	2N2904	25732
ACY34	NKT271	2G371	2N2905	25733
ACY35	NKT677	2G374	2N2924	l

TRANSISTOR EQVT. BOOK

2,500 cross references of transistors—British, European, American and Japanese. A must for every transistor user. Exclusively distributed by DIOTRAN SALES. 15/- EACH.

Vast mixed lot of subminiature glass diodes. Com-prising of Silicon, Germ, Point Contact and Gold Bonded types plus some Zeners. 500,000 available at Lowest of Low Price. 1,000 pieces £3.0.0.5,000 pieces £13.10.0.10,000 pieces £23.

BRAND NEW FULLY TESTED EPOXY CASE UNIJUNCTION TRANSISTORS. Type TIS43 and BEN 3000 and replacement for 20/2646, Full data available. LOWEST PRICE AVAILABLE ANYWHERE. 100 off 4/each = £29, 500 off 3/6 each = £87.10; 1,000 off 3/e each = £150. Sample devices 7/e each on request.

HIGH QUALITY SILICON PLANAR DIODES. SUB-MINIATURE DO-7 Glass Type, suitable replacements for OA200, OA202, BAY38, IS130, IS940, 200,000 to clear at 44 per 1,000 pieces. GUARANTEED 80% GOOD.

FULLY TESTED DEVICES AND QUALITY GUARANTEED—SURPLUS TO REQUIREMENTS OA203 Silicon Diode. Fully Coded.
SO PIV 250mA Qty. Price £30 per 1,000 pieces.
OA200 Silicon Diode. Fully Coded.
SO PIV 250mA. Qty. Price £35 per 1,000.
BY100 SIL. RECT'S 800 PIV 550mA.
1-49 2/6 each; 50-99 2/3 each; 100-999 2/- each; 1,000 up 1/10 each. Fully Coded. First Quality. Post and Packing costs are continually rising. Please add I/- towards same. CASH WITH ORDER, PLEASE. GIRO No. 30-102

OVERSEAS QUOTATIONS BY RETURN, SHIP-MENTS TO ANYWHERE IN THE WORLD.

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" & "E" cores. Case and

MULTICORE CABLE IN STOCK CONNECTING WIRES

Large selection of stranded single p.v.c. covered Wire 7/0048, 7/0076, 14/0076 etc. P.T.F.E. covered Wire, and Silicon rubber covered wire, etc.

J. Black

OFFICE: 44 GREEN LANE, HENDON, N.W.4 Tel: 01-203 1855. 01-203 3033 STORES: 30 BARRETTS GROVE, N.16 Tel: 01-254 1991

why pay **MO**

true! We offer brand new

BASF, PHILIPS, SCOTCH

tapes and cassettes at prices AT LEAST 5% LOWER THAN ANY OTHER 'CUT PRICE' ADVERTISER.

Send for price lists NOW!

Dent. WW1. 17 Leigh Park Road. Leigh-on-Sea,

Please send me details of your exclusive offer:

Name	•	•	٠		-	۰	٠	٠	٠		٠	٠	*	٠	•	•	•	•	•	٠		٠	•	٠	٠	•	•	٠	•	٠	
Address				-			,	٠	٠		*					,							5		٠					٠	
										ļ		ı				,				je.							,				

RX/IND APN-9

RX/IND APN-9
This is a swt tuned Rx with CRT Ind unit, the Rx covers 1.8 to 2. Mc/s in 4 channels, the Ind section uses CRT type 3BPI 3in, green screen, also 34 octal type valves various types as follows: 65N7, 65L7, 65K7, 65L7, 66K6, 65C, 32X2, VR.IOS, 6N7, 65A7, chere is also an high grade 100Kc xtal, all contained in case size 20 x 12x Bin, black crackle finish. These units are for 115x 400 c/s supply, the tube is well suited to scope use or possible mods, to 1.6 Mc/s. Pan adap. Supplied new with circ., magnifier & visor. £8 plus 15/- carr.

DIE CAST ALI BOXES

Heavy duty box with lid and sealing gasket, size internal 17 × 12 × 5 jin., external size 19 × 14 × 8 in., semi weather-proof, ex. equip. 50/-, plus 10/- carr.

TEKTRONIX SCOPE TROLLIES

Type 500/53A with drawer shelf, stowage for amps, good mech. order slightly soiled through storage, few only left. £14.10.0 plus 10/- carr.

H.V. CONDS

.5 Uf 50Kv. D.C. Wk, made by Wego, one pair only with some H.V. fittings, ex equip. £28 the pair plus £2 carr.

RACK BLOWERS

Heavy duty twin outlet blower in 19in, rack cabinet, 115v. 50c/s I/P at 4a, 2700 r.p.m., 2 phase motor with cap. Ex. equip U.S.A.F. surplus, £3.10.0 plus 12/6 carr.

RX UNIT 16048

V.L.F. Rx unit part of aircraft landing system contains large number of modern parts as follows, 8 type LA2503 Vinkors, 4 OC450 transistors, 6 EF72 valves, 5 min. printed circ. type relays, 2 high res. relays, 082 & 85A2 Stab valves, 7 400 PIV diodes, Tant conds, pots, 1% conds, plugs & sks. etc., supplied in new condition, 42/- plus 7/6 post.

S.A.E. for list or enquiry.

A. H. SUPPLIES 57 Main Road, SHEFFIELD. S9 5HL

Frame assemblies.

NEW! HANDY! TIDY! multi-drawer

I-N-T-E-R-L-O-C-K-I-N-G

storage

units

A PLACE FOR **EVERYTHING**

EVERYTHING IN ITS PLACE!

Newest, neatest, system ever devised for storing small parts and components: resistors, capacitors, diodes, transistors, etc. Rigid plastic units, interlock together in vertical and horizontal combinations. Transparent plastic drawers have label slots/handles on front. Build up any size cabinet for wall, bench or table top.

BUY AT TRADE PRICES!

SINGLE UNITS (5ins x 2½ins x 2½ins)
Usually 2/11 each. OUR PRICES: 27/- DOZEN Usually 2/11 each. OUR PRICES: 27/- DOZEN DOUBLE UNITS (5ins x 4½ins x 2½ins)
Usually 4/11 each. OUR PRICES: 45/- DOZEN

PLUS QUANTITY DISCOUNTS!

Orders £5 and over DEDUCT 1/- in the £ Orders £10 and over DEDUCT 1/6 in the £ Orders £20 and over DEDUCT 2/- in the £

PACKING/POSTAGE/CARRIAGE: Add 6/- to all orders under £5. Orders £5 and over, packing/postage/carriage

QUOTATIONS FOR LARGER QUANTITIES

(Dept. WW1) 31 ALBERT ROAD, HENDON, LONDON, N.W.4

WW-114 FOR FURTHER DETAILS

* ALL PURPOSE TRANSISTOR PRE-AMPLIFIER *

ALL FURTUSE IMMISISION FINE-NITE ITTEM ## FOR MIKE, TAPE, P.U., GUITAR

Battery 9-12v. or 200-300v. H.T. Line. Size 12×12×2 in.

Response 23 c.p.s. to 23 Kc/s, 26 db gain. For use with valve or transistor equipment. Full instructions. 18/— Post Brand new. British made. Details S.A.E.

BAKER 12 in, MAJOR £9

2 In. MAJOR £9
30-14,500 c.p.s., 12in. double cone,
woofer and tweeter cone together
with a DAKER ceramic magnet
assembly having a flux density of
14,000 gauss and a total flux of
145,000 Maxwells. Bass resonance
40 c.p.s. Rated 20 watts, Voice coils
available 3 or 8 or 15 ohms. Post Free.

Module kit, 30-17,000 c.p.s. Size 19×12½ in. with tweeter, crossover, baffle, instructions. £11.10.0 LOUDSPEAKER CABINET WADDING 18 in, wide, 3/- per ft, run. Post 2/- per order.

E.M.I. QUALITY TAPE MOTORS Post 3/-BALFOUR GRAM MOTOS 120/240v. A.C. 1,200 r.p.m. Heavy duty 4 pole 50mA. Spindle 0.15 \times 0.75 in. Size $2\frac{1}{2} \times 2\frac{1}{3} \times 1\frac{1}{2}$ in. 17/- F

WITH LOUDSPEAKER

All for 75/- Post 5/-

THE INSTANT BULK TAPE ERASER AND RECORDING HEAD DEMAGNETISER

200/250 A.C. 47/— Leaflet S.A.E.

RETURN OF POST DESPATCH -- CALLERS WELCOME HI-FI STOCKISTS -- SALES -- SERVICE -- SPARES

RADIO COMPONENT SPECIALISTS 337 WHITEHORSE ROAD, CROYDON. Tel: 01-684-1665

100W AMPLIFIER

All parts now available for this latest addition to high performance amplifiers as described in Wireless World.

22 transistors and diode (overload protection £17.5.0 included) Resistors, Capacitors, pots, Choke 25/6 Fibreglass P.C.B. 19/-P.C.B. and components £19.5.0 $4'' \times 4.6'' \times 1.3''$ Drilled H/Sink 8/-2 full kits with H/Sinks £38 30W Bailey (single power rail)

10 transistors £5.12.0 Resistors, capacitors and pot 26/-Linsley-Hood Class AB 5 transistors, Zener 67/6 (MJ 481, MJ 491, MJE 521, BC 182L,

BC 212L) 44/6 Resistors, capacitors and pots Linsley-Hood Class A

4 transistors 57/- $(MJ 481 \times 2, 2N 3906, 2N 1613)$ 28/6 Resistors and capacitors

Please state 8Ω or 15Ω for L.H. Amps. All transistors matched and with mica washers.

Resistors except power types, ½W 5% low noise carbon film.

Semiconductors 2N 3055 12/-MJ 481 24/ 26/6 2N 3715 45/-MJ 491 2N 3716 57/-MJE 521 14/6 2N 3791 84/-TIP 29A 11/-TIP 30A 40361 10/-13/-IROST20 40362 12/-12/-BC 125 BC 126 9/6 IB40K20 32/-9/6

Brand new top quality components. Instant Service. Mail Order Only. Instant Service. Post Free.

POWERTRAN ELECTRONICS 2 KENDALL PLACE, LONDON, W.1

WW-115 FOR FURTHER DETAILS

Stereo Tape

A project specifically designed with the constructor in mind, this PRACTICAL WIRELESS Stereo Tape Recorder can be used with almost any tape deck which can be fitted with the specified Marriott tape heads. The prototype is based on the R.T.C. 249 push button, three speed deck. Simple switching is made possible by using an unusual equalisation principle. Although 16 transistors are used, the cost of the complete project should be only around £30.

FREE! Second Wall Chart on **AUDIO STANDARDS**

A must for all hi-fi enthusiasts!

PORTABLE SIGNAL TRACER

A further addition to the PRACTICAL WIRELESS "build your own" test equipment series. This unit has three probes: for checking a.f., r.f. and e.h.t. —the latter for checking corona and high voltage breakdown.

Plus other constructional articles and all the regular features.

ALL SEMICONDUCTORS WARRANTED

Prices 1-9 as quoted, 10-99 less 10%, 100 up 15%, larger quantities special quote

TRANSISTORS								RS		DIODES								
2N697			3/-	2\$305		90	13/-	BCZII	 	11/~	IN746A			4/6	IN914			1/-
2N706			2/-	2\$306	- 20		14/-	BFY51	 	3/6	IN752A			4/6	I N 4003			1/6
2N708			2/6	25324			12/-	C444	 	20/-	IN703A			6/6	AAZI5		400	2/-
2N1308	1412		5/-	2\$325			15/-	GET102	 	5/-	157062			5/-	BA 129			2/-
2N1715		. 16	10/-	25502			5/-	GET104	 	6/-		• •		- 1	BA 145			3/-
2N2308			10/-	28732			8/-	MPS3638A	 	7/6	BZX10			3/-	BAY31			1/-
2N2410			7/6	2S733			9/-	MPS3642	 	3/-	BZY88			5/-	HS3110			6/-
2N3693			8/-	2S3040			10/-	MPS3646	 	3/6	MZ27			8/-				
25301			8/6	BC109			2/6	OC139	 	4/3	OAZ201			10/-	FET	N. CI	11	
25302		1.1	9/-	BCI14	19.9		6/6	OC203	 	4/6	Z2A120F			8/-			annell	
25303			9/6	BC116			11/-	OC204	 	6/6	Z2A56F			8/-	2N5485	* * *	5/6 e	ach
25204			12/-	BCA36			Q/											

CHILTMEAD LIMITED

7-9 Arthur Road, Reading · Telephone 582605

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 89-102

Page	Page	PAGE
Al Factors 108 Acoustical Mfg. Co., Ltd. 31 Adcola Products, Ltd. 30 A. H. Supplies 108 Ahuja Radio's 29 Ancom Ltd. 24 Anders Electronics, Ltd. 20, 34 Associated Automation Ltd. 8 Associated Electronic Engineers Ltd. 22 Ates Electronics Ltd. 54 Audio Eng. Ltd. 14 Audix B.B. Ltd. 26	Harmsworth Townley & Co. 10 Harris Electronics (London) Ltd. 54 Harris, P. 107 Har Electronics 59 Hatfield Instruments Ltd. 40 Heath (Gloucester) Ltd. 23 Henrys Radio Ltd. 70, 71 Henson, R., Ltd. 103 Hi-Fi Year Book 28 I.C.S. Ltd. 68	Radford Laboratory Insts. Ltd. 16 Radio & TV Components Ltd. 77 Radio Components Specialists Ltd. 109 Radio Exchange Co. Ltd. 105 Radiospares Ltd. 59 Ralfe, P. F. 85 Rank Audio Visual Ltd. 53 R.S.C. Hi-Fi Centres Ltd. 79 R.S.T. Valves Ltd. 74 Rendar Insts. Ltd. 54 Reslo Mikes 35 Rigold & Bergmann Ltd. 44
Banner Transformers	I.M.O. (Electronics) Ltd. 35 Industrial Insts. Ltd. 30 Instructional Handbook Supplies 104	Roband Electronics Ltd
Battey, W., & Co. 42 Bentley Acoustical Corporation Ltd. 60 Bentley, K. J. 107 B.I.E.T. 13 Bi-Pak Semiconductors 73 Bi-Pre-Pak Ltd. 76	Integrex Ltd.	Samsons (Electronics) Ltd. 64 Sankyo Seiki Mfg. Co. 36 S.E. Laboratories (Eng.) Ltd. 51 Service Trading Co. 82,83 Servo & Electronic Sales Ltd. 60 Shure Electronics Ltd. 50
Black, J. 104, 108 Bradley, G. & E., Ltd. 17, 19 Brenell Eng. Co. Ltd. 32 Brooklands Plating Co. Ltd. 103 Brown, S. G., Ltd. 14	J.E.F. Electronics 103 Keytronics 82 K.S.M. Electronics Ltd 59	Sinclair Radionics Ltd. 56, 57, 58 S.M.E. Ltd. 27 Smith, G. W. (Radio), Ltd. 65, 66, 67 S.N.S. Communications Ltd. 42 Smith, J., Ltd. 82
Carston Electronics Ltd. 18 Cesar Products Ltd. (Yukan) 105 Chandos International 108 Chiltmead Ltd. 84, 110 Colomor (Electronics Ltd.) 55 Colomor (Electronics Ltd.) 55	Lasky's Radio Ltd. 68 Lawson Tubes 106 Leda Tapes. 108 Ledon Instruments Ltd. 28	Starman Tapes 108 Stephens Electronics 26, 69 Stockton Partners 105 Sugden, J. E., Ltd. 38 Sutton Electronics Ltd. 103
Concord Instrument Co. 103 Croydon Precision Ins. Co. 24 D.E.W. Ltd. 103 Dabar Electronic Prods. 104 Dana Electronics Ltd. 12 Danavox (G.B.) Ltd. 25 Deimos Ltd. 106 Diotran Ltd. 104, 108 Dixons Technical (CCTV) Ltd. 59 Douglas Electronic Industries Ltd. 106	Levell Electronics Ltd. 1 Lexor Dis-boards Ltd. 72 Light Soldering Developments Ltd. 20 Limrose Electronics. 38 Lind-Air Optronics (Industrial) Ltd. 16, 107 Linear Products Ltd. 28 London Central Radio Stores 105 L.S.T. Components Ltd. 78 Marshall, A., & Sons (London) Ltd. 70, 86 McKnight Crystal Co. 103	Tektronix U.K. Ltd. 39, 45 Telcon Metals Ltd. 42 Telephone & Wireless Comps. Ltd. 18 Telequipment Ltd. 46 Telford Products Ltd. 12 Teonex Ltd. 106 Thorn Radio Valves & Tubes Ltd. 48 Tinsley, H., & Co. Ltd. 40 Transaudio Ltd. 53 Transradio Ltd. 38 Trio Corporation Ltd. 11
E.B. Instruments 103 Edwards Scientific Insts. Ltd. 44 Electronic Brokers 62, 63, 103 Electronic Music Studios (London) Ltd. 43	Mills, W. 74, 75 Millward, G. F. 80 M.O. Valves Ltd. 37 Modern Book Co. 104 Mullard Ltd. Cover it Multicore Solders Ltd. Cover iv	Ultra Electronics (Components) Ltd. 55 Ultron 4 United-Carr Supplies Ltd. 6 Universal 105
Electronics (Croydon) Ltd. 87 Electro-Tech Sales 72 Electro-Winds Ltd. 59 E.M.I. Tape Ltd. 21 English Electric Valve Co. Ltd. 3, 5, 7, 9 Erie Electronics Ltd. 2	Nombrex Ltd	Valradio Ltd. 36 Vitality Bulbs Ltd. 20,36 Vitavox Ltd. 72 Volfield Ltd. 22 Vortexion Ltd. 52
Ferrograph, The, Co. Ltd.	Osmabet Ltd. 106 Pattrick & Kinnie 64 P.C. Radio Ltd. 55, 81 Powertran Electronics 109 Practical Wireless 109	Watts, Cecil E., Ltd. 107 Wayne Kerr, The, Co. Ltd. 41 Webber, R. A., Ltd. 38 Wel Components Ltd. 40 West Hyde Developments Ltd. 104 West London Direct Supplies 103 Wilkinson, L. (Croydon), Ltd. 70
Goldring Mfg. Co. Ltd. 55 Grampian Reproducers Ltd. 106	Quality Electronics Ltd.54Quartz Crystal Co. Ltd.103	Z. & I. Aero Services Ltd

Printed in Great Britain by Southwark Offset, 28 Lavington Street. London, S.E.1, and Published by the Proprietors, I.P.C. Electrical-Electronic Press, Ltd., Dorset House, Stamford St., London, S.E.1, telephone of 1-928 3333. Wireless World can be obtained abroad from the following: Australia and New Zealand: Gordon & Gotch, Ltd. Inda: A. H. Wheeler & Co. Canada: The Wm. Dawson Subscription Service, Ltd.: Gordon & Gotch Ltd. South Africa: Central News Agency, Ltd.: William Dawson & Sons (S.A.) Ltd. United States: Eastern News Co., 306 West 11th Street, New York 14. CONDITIONS OF SALE AND SUPPLY: This periodical is sold subject to the following conditions, namely that it shall not, without the written consent of the publishers first given, be lent, re-sold, hired out or otherwise disposed of by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

The Roband 1500 is a low cost quality engineered Digital Voltmeter having a single control for ease of use and a specification designed to eliminate tedious calculations and adjustments. Silicon semiconductors and high grade components are used in a carefully conceived circuit to ensure long term stability with reliability. This results in the most accurate unit of its class.

- Range: from ImV to IKV
- Accuracy: 0.2° , (includes allowance for a.c. supply and temperature variations) or 0.1° , (Roband 1600 option)
 - Polarity: Automatic colection and display.
- Calibration: NOT REQUIRED Input Impedance: 100Mα on 1.5V range 10Mα on other ranges.
- Noise Rejection: 120dB at d.c. (10K½ unbalanced)
- M.T.B.F. (calculated): 11,000 hours. So you're still not sure? Why not try one—ring Crawley 20172, there's no obligation.

Roband Electronics Ltd Charlwood Horley Surrey England Telephone: 20172 Telex: 87434

Professiona DVM

THIS MAN is using a Digital Voltmeter.

You—chemist, engineer, biologist—your laboratory—research, production, testing—routine multiple measurements—tedious—repetitive—in fact your problem
This man is USING a Digital Voltmeter.

convenient—robust—precise—easy—reliable—use not store—in fact a work

This man is using a **DIGITAL** Voltmeter quick—non-ambiguous—accurate—easy to read—in fact the best solution.
This man is using a **ROBAND** Digital Voltmeter

ow cost—the result of roband reseach—

n fact the right decision

appropriate performance—dependable

Manufacturers of high quality Power Supplios, Digital Instruments and Assillnscopes.

OVER 400 SPECIFICATIONS USED IN MORETHAN 63 COUNTRIES FOR FAST RELIABLE SOLDERED JOINTS

- Contains 5 cores of non-corrosive high speed Ersin flux. Removes surface oxides and prevents their formation during soldering. Complies with B.S. 219, 441, DTD 599A, Din 1707, U.S. Spec. QQ-S-571d.
- Saybit an exclusive Multicore Alloy which is saturated with copper to prevent absorption of copper from copper wires, circuit boards and soldering iron bits. Ministry approved under Ref: DTD 900/4535.
- Solder Tape, Rings, Preforms and Washers, Cored or Solid, are available in a wide range of specifications.

STANDARD ALLOYS INCLUDE | HIGH AND LOW MELTING POINT ALLOYS

STAND	AND ALL		JIDUS		AND LOW MEETING		
TIN/LEAD	B.S. GRADE	MELTIN °C.	IG TEMP	ALLOY	DESCRIPTION	MELTING °C.	G TEMP
60/40	K	188	370	T.L.C.	Tin/Lead/Cadmium with very low melting point	145	293
Savbit No 1	_	215	419				
50/50	F'	212	414	L.M.P.	for soldering silver coated surfaces	179	354
45/55	R	224	435		Made from Pure Tin for		
40/60	G	234	453	P.Ť.	use when a lead free solder is essential	232	450
30/70	J	255	491		High melting point	296-	565-
20/80	V	275	527	н.м.р	solder to B.S. Grade 5S	301	574

PRINTED CIRCUIT SOLDERING MATERIALS

economical soldering. Its high purity and freedom from oxides, sulphides and other undesirable elements result in the following advantages:-

- Less dross on initial melting.
- More soldered joints per pound of solder purchased.
- Less reject joints.
- Improved wetting of electronic components & printed circuit boards.
- More uniform results. All Extrusol is completely protected by plastic film packaging from the moment of manufacture until it is used. Available in bars and pellets. Can be released under AID authority and supplied

to USA QQ-S-571d.

PC.2 MULTICORE **TARNISH REMOVER**

removes tarnishes and inorganic residues as the second half of a precleaning process before soldering. It leaves the copper unaffected

PC.90 MULTICORE **PEELOFF SOLDER** RESIST

is a temporary solder resist which can be peeled off with tweezers. after soldering, leaving the original clean surface. It can be used for masking gold plated edge connections and holes to which heat sensitive or other components must be added later.

PC.41 MULTICORE ANTI-OXIDANT **SOLDER COVER**

which forms a liquid cover on the solder bath either side of the solder wave, largely preventing the formation of dross

PC.80 MULTICORE SOLVENT CLEANER

removes organic contaminants such as grease, perspiration and residues of organic solutions from prior processes, as a precleaning process before soldering. It is also very efficient in removing rosin-based flux residues after soldering.

PC.10AMULTICORE **ACTIVATED SURFACE PRESERVATIVE**

is a pre-soldering coating for preserving the clean surfaces established by the PC 80 Multicore Solvent Cleaner and PC.2 Multicore Tarnish Remover, PC.10A does not need to be removed before soldering and in fact contributes to the efficiency of the soldering process PC.10A should be used whenever there is a delay between cleaning and soldering.

Gallon Containers

All liquid chemicals and fluxes supplied in 1 gallon polythene 'easy pouring' containers, with carrying handle.

Aerosols PC.21 A, PC.10 A and PC.52 available in 16 oz. aerosol sprays.

SEVEN STANDARD MULTICORE LIQUID FLUXES

are now available, five of which are new PC.21A Multicore Non-Corrosive Liquid Flux is normally recommended for wave, dip. brush. spray and roller flux application methods PC.25 Multicore Rosin Foam Flux is designed for foam fluxing and exhibits an unusually stable foam with a fine bubble size

PC.52 MULTICORE **PROTECTIVE** COATING

is a lacquer which should be applied after soldering for protecting printed circuits from deterioration or failure in service. It can easily be soldered through if modifications or repairs are necessary at a later date.

SOLDERABILITY TEST MACHINE MARK3

Use for testing to B.S 4393: 1969, Section 10. A simple precision instrument for assessing the solderability of component termination wires. Complies with B.\$ 2011 Part 2 Test T and comparable international standards. Essential for quality control

SOLDERING HANDBOOK

The most comprehensive book on soldering for industrial use, containing 120 pages with 100 illustrations and invaluable reference charts. Features practical methods of soldering in electronics and allied industries, and is divided into three headings.

Part 1. Making a joint. Part 2. Choosing Methods and Materials

Part 3. Reference Tables. Published by Hiffe Books and available from Technical Bookshops.

Write for technical bulletins on your company's letter-head, for the products X.ULTICORE SOLDERS LTD. HEMEL HEMPSTEAD, HERTS.

Tel: Hamel Hempstead 3636 Telex 82363

