The people who make TV sets are technically skilled, tough buying, profit-minded, hard-headed and suspicious

That's why they insist on Mullard valves Plan to have the, brest. Have Mullard valves always in stook. There's no need to send th: your wholexsaler four times a week or to :overstock remember the tep service types

F1,83	EY86/87 PC86 PC88			PCL86 'PCL80'5 PFL200 ค'L3	81 .504 $81 / 800$ L80	

Mullard

A.C. MICROVOLTMETERS

VOLTAGE \& db RANGES: $15 \mu \mathrm{~V}$ $50 \mu V$, $150 \mu \mathrm{~V}$... 500 V f.s.d. Acc. $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 1 \mu \mathrm{~V}$ at 1 kHz $-100,-90 \ldots+50 \mathrm{~dB}$. scale $-20 \mathrm{~dB} /+6 \mathrm{~dB}$ rel. to $1 \mathrm{~mW} / 600 \Omega$. RESPONSE: $\pm 3 \mathrm{~dB}$ from 1 Hz to
 $3 \mathrm{MHz}, \pm 0.3 \mathrm{~dB}$ from 4 Hz to 1 MH
above $500 \mu \mathrm{~V}$. Type $T \mathrm{M} 3 \mathrm{~B}$ can be above $500 \mu \mathrm{~V}$. Type TM3B can be
set to a restricted B.W. of 10 Hz to set to a restricted B
10 kHz or 100 kHz .
INPUT IMPEDANCE: Above 50 mV : > $4.3 \mathrm{M} \Omega<20 \mathrm{pf}$. On $50 \mu \mathrm{~V}$ to 50 mV : $>5 \mathrm{M} \Omega<50 \mathrm{pf}$. AMPLIFIER OUTPUT : 150 mV at f.s.d.

type £49 wiwn $_{\text {w }} \mathbf{6 3}$

LEVELL
POBTABLE INSTRUMENTS

D.C. MULTIMETERS

VOLTAGERANGES: $3 \mu \mathrm{~V}, 10 \mu \mathrm{~V}, 30 \mu \mathrm{~V} \ldots 9 \mathrm{kV}$.
Acc. $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 0 \cdot 1 \mu \mathrm{~V}$. LZ \& CZ scales.
CURRENT RANGES: $3 \mathrm{pA}, 10 \mathrm{pA}, 30 \mathrm{pA} \ldots 1 \mathrm{~mA}$ (1 A for TM9BP) Acc. $\pm 2 \% \pm 1 \%$ f.s.d. $\pm 0.3 \mathrm{pA}$. $\mathrm{LZ} \& \mathrm{CZ}$ scales.
RESISTANCE RANGES: $3 \Omega, 10 \Omega, 30 \Omega 2 \ldots 1 \mathrm{kM} \Omega 2$ linear. Acc. $\pm 1 \% \pm 1 \%$ f.s.d. up to $100 \mathrm{M} \Omega$
RECORDER OUTPUT: 1 V at f.s.d. into $>1 \mathrm{k} \Omega$ on $L Z$ ranges.

\% $\mathbf{f 7 5}$ \% $\mathbf{w 8 9}$
 \%

BROADBAND VOLTMETERS

H.F. VULTAGE 8 dB RANGES: $1 \mathrm{mV}, 3 \mathrm{mV}, 10 \mathrm{mV}$. . . 3 V f.s.d Acc. $\pm 4 \% \pm 1 \%$ of $\mathrm{f} . \mathrm{s} . \mathrm{d}$. at $30 \mathrm{MHz} .-50 \mathrm{~dB},-40 \mathrm{~dB},-30 \mathrm{~dB}$ to +20 dB . Scale $-10 \mathrm{~dB} /+3 \mathrm{~dB}$ rel. to $1 \mathrm{~mW} / 50 \Omega . \pm 0.7 \mathrm{~dB}$ from 1 MHz to $50 \mathrm{MHz} . \pm 3 \mathrm{~dB}$ from 300 kHz to 400 MHz . L.F. RANGES : As TM3 except for the omission of $15 \mu \mathrm{~V}$ and $150 \mu \mathrm{~V}$ AMPLIFIER OUTPUT : Square wave at 20 Hz on H.F. with amplitude proportional to square of input. As TM3 on L.F
… $£ 85$ \% $\ldots 99$

Long battery life and large overload ratings are leading features of these solid state instruments. Mains units and eather carrying cases are optional extras All A type instruments have $3 \frac{1}{4}$ " scale meters and case sizes $5^{\prime \prime} \times 7^{\prime \prime} \times 5^{\prime \prime}$, B type instruments have $5^{\prime \prime}$ mirror scale meters and case sizes $7^{\prime \prime}$ \& $10^{\prime \prime} \times 6^{\prime \prime}$.

PORTABLE VOLTMETERS

Erie's range of high stability tin oxide resistors has a new feature that makes them unique - PLUGGABILITY. They are the 259P and 259P2 Series and are, of course, close tolerance types.
Tin oxide's enhanced robustness and reliability, plus pluggable terminations combine to make them ideal for fast, easy handling on all flow-line operations. No bent leads with Erie pluggables. Plug-in simplicity at last for PCB's with holes on 0.25 or 0.4 in centres.

To us, close tolerance means $\pm 2 \%$ or $\pm 5 \%$. High stability means $\pm 3 \%$ on load life at $70^{\circ} \mathrm{C}$, maximum dissipation. Fully available in all values from 10Ω to $300 \mathrm{k} \Omega_{\text {r }}$ these new pluggables are quite content operating up to 250 V d.c. or 0.3 W .
For broader tolerance requirements specify Erie's 9P2D Series solid carbon pluggables. Their values extend from 10Ω to $12 \mathrm{M} \Omega$ $\pm 10 \%$ and they'll withstand 700 V d.c. From their wide experience of electronic
component design Erie pioneered the development of pluggable resistors so that ERIE now, all you have to do is just plug them in. Simply. Let us send you full information without delay.

ERIE ELECTRONICS LTD.

Great Yarmouth, Norfolk.
Telephone : 04934911
Telex:97421

You can view X-ray pictures in daylight using onlya 5 micro-Röntgen dosage

What would it mean to you? An X-ray picture that is so bright you can view it in direct daylight as it happens. EEV's Image Isocon is now being used in X-ray equipment for this very purpose reducing X-ray dosages to as little as 5 microRöntgens, allowing longer exposure times for 'live' X-ray picture study, saving time by eliminating the need for operators' eyes to become 'dark-adapted'.

The Image Isocon is so sensitive that it can
convert a very low dosage-level picture to a bright, clear picture on a cathode-ray tube. This in turn means simple direct-from-screen photography.

The Image Isocon is another product of EEV advanced tube technology For complete data, please post the coupon.

English Electric Valve Co Ltd Chelmsford, Essex, England. Telephone: 024561777. Telex:99103. Grams: Enelectico Chelmsford.

with the EEV Image Isocon

Experience:

Since the beginning of industrial r.f. heating, EEV have been the pace-setters. With this experience, backed by our equal know-how in the transmitter valve field, is it any wonder that we are so well known for power triodes?

EEV make power triodes for industrial heating applications from 1 kW up to 250 kW . They are all conservatively rated and realistically designed to give good length of life. Whatever your application -for drying paper, baking biscuits, welding plastic,
treating metal-r.f. heating the EEV way is economical and dependable.

Our sales engineers are at your service to discuss designs and to recommend the best tube or combination of tubes for your particular application.

For full details just post the coupon or telephone Mr.M.J. Pitt.

English Electric Valve Co Ltd. Chelmsford Essex. England. Telephone: 0245 61777. Telex 99103. Grams: Enelectico Chelmsford

> the vital factor of EEV's industrial r.f. heating power triode range

SINGLE SOURCE SENSE

OR
 How to get What you Want without Having to Try Very Hard

If your parts requirements are small, and your call-off irregular, you have a problem. If, as often happens, you want parts quickly, you have another problem.
We are in business to help you solve both, quickly.
As stockholders of an enormous range of Radio, Electronic and Electrical Components, Metal Pressings, Clips, Fasteners and Assemblies by Cinch Dot and FT, we are the "single source" for pretty well everything of this kind you want in whatever quantity you want and at short notice.
Two illustrated catalogues. Thousands of stock items are detailed in our two fully illustrated catalogues-Fasteners and Electronics-either of which will be sent, post-free, to firms and organisations. Send for yours now,
stating which catalogue you require.

Make United-Carr Supplies

 your
SINGLE SOURCE

for Cinch Dot and FT Radio, Electronic and Electrical Components, Metal Pressings, Clips, Fasteners and Assemblies.

United-Carr Supplies Ltd.,
Frederick Road, Stapleford, Notts.
Sandiacre 2828 STD 0602392828

Qnes

 \qquad
 Stockists

```
UNITED-CARR
``` SUPPLIES

WW- 011 FOR FURTHER DETAILS

\title{
Whydo so many industries rely on EEV tubes?
}

\section*{Because they're so reliable.}

You can specify each and every EEV tube with confidence. Whatever your industry, when it involves electronics you can be sure that EEV's expertise will provide the performance, the length of life and, above all, the reliability you want.

For industrial heating: EEV r.f. power triodes range from 1 kW up to 250 kW , and mercury vapour rectifiers are available with capabilities up to 30 amps at 21 kV . All are conservatively rated, realistically designed and economical.

For TV monitoring: EEV vidicons are ideal for any closed-circuit TV application. They can be used in any position and are available with a choice of photosurfaces,

For power supplies: EEV make voltage stabilisers and voltage reference tubes to fit more than 80 different sockets.

For high-speed switching: EEV glass and ceramic hydrogen thyratrons provide greater accuracy and precision.

For motor control: EEV industrial thyratrons provide the degree of precision needed for motor speed control and similar applications. Both mercury vapour and xenon thyratrons are available,

For industrial welding: EEV ignitrons have long-life ignitors, and robustly constructed envelopes and water jackets of unique design giving supreme reliability.

English Electric Valve Co. Ltd. Chelmsford Essex England
Telephone: 024561777
Telex: 99103. Grams: Enelectico Chelmsford.

\section*{FOUR NEW COMPONENTS \\ FROM ASSOCIATED AUTOMATION}

1 Induetrial Relay Type NR A.C. or D.C. operation. Panel mounting erpluy-in to octal typa socket. Will tast for up to 5 million operations with 1,2 or 3 poles switching uf to 10 amps . Compact, lightweight and cheap.

\section*{2 Dry Reed helay Type ERTN} Range of uo to 12 poles.
Switching capabilities up to
50 VA ; breakdown voltages up to 1500 V.A.C. Life expectancy at contactrateg \(75 \mathrm{VA}, 100 \times 10^{6}\) operations. Cheap to buy, capatiz of fast acticr with low power consumption a nd bistable operation.
3 Miniz Are Dry Reed

\section*{To. Associated Aetomazion Limited,} Electromagnetics
70 Dudden Hill Lane London, N.W. 10
Please send me your fully illustrated

Push Butten Switch Series 500
Switching iepability up to 4 poles. up to 0.5 amp, 73 watt. Wide raisge of col azt arrangements and mountry 3 bles. Angle baser for terrace leybcards, panel mounting for either single or multiple fix rog Will last for at east 5 milliว 1 aperations. Easy in apply, readir available economica to priced.
4 Hermerisally Sealed Commercial Relay Type TFC A T.O.5 trapsistcr can envelope giving highereation swirching Resists sho:=and vibrations, operates or Jowers down to 40 mh Switching eepability 1 amp at 28 V.D.C. to on level (single and double pole) Economical pricethough conpareble with any military eqü=atert.

Three relays and a switch, designed by Associated Automation to cut vour switching costs. Built to the highest standards of engineering, these components join the already comprehensive range of switches and relays for all communication and control purposes. All economically priced and back enginaering service.
Send in the coupon and we'llet you have all the information you require.

\section*{Ourtubes.Yourcameras. They're madeforeach other.}

\section*{Trunsformers, Chotes}

\section*{Sauruble Renciors}

\title{
Volimobile voligee regulatiors
}

\section*{Recififer Sels}

Transformers
Air cooled power transformers from 0.5 to 300 kVA at voltagesup to 2 kV . 1 or 3 phase, double or auto wound step-up or step-down. We have manufactured transformers to over 5,000 different designs for many applications and the experience which has been accumulated from these designs is built into every Harmsworth, Townley transformer

High Current Transformers
Years of experience have gone into the design and production techniques used in the manufacture of our low voltage, high current transformers for use in furnaces, high temperature research, heating and other applications. These techniques enable us to produce transformers with output currents up to tens of thousands of amps at economical prices

\section*{Voltmobiles}

The most robust and useful control device for loads such as furnaces, ovens, bar heating and high temperature research. Our Voltmobiles are in use in their thousands to control transformers and rectifier sets or they can be used directly between supply and load. 64 step on load switching. Voltmobiles are aut0-transformers which give control from \(1.6 \%\) to \(100 \%\) of input volts. Over-Volts up to \(125 \%\) of input is also available. Standard models are made for single and 3 phase supply and for outputs from 20 Amps to 200 Amps with on-load switching.

\section*{Rectifiers}

Sturdily built air cooled equipment from 50 W to 500 kW for plating, plasma arc welding, electrolytic machining and many other applications. Equipment incorporates either silicon or şelenium rectifiers and can be built with fixed or variable output. Variable outputs are obtained by the use of continuously variable auto transformers, saturable reactors or Voltmobile regulator.

\section*{Saturable Reactors}

From 5kVA up to 300 kVA for controlling the outputs from transformers or rectifier units.
Saturable reactors are infinitely variable reactors which can control outputs from transformers etc, from \(10 \%\) to \(100 \%\) of full output.

Chokes

\section*{Specific enquiries are invited}

\author{
Hirmswarth. Townley \\ Transformers \\ Rettifiers
}

\section*{HARMSWORTH, TOWNLEY \& CO. LTD. 2 Hare Hill, Todmorden, Lancs. \\ Telephone Todmorden 2601 Extension 22}

\section*{TRIO's CS-I554 Passes The Most Rigid Testing Requirements}

Waveform analysis and other electrical equipment and electronic installation testing is performed at the highest possible peak of efficiency with TRIO's CS-1554. This wide-band dual trace triggering oscilloscope operates at ultra-high sensitivity while also offering an over-all expansive range of test capabilities. Lightweight because of its all-solid state construction, this completely dependable instrument is remarkably versatile. For example, dual trace waveform analysis with very wide synchronization capabilities is possible from \(D C-10 \mathrm{MHz}\). It has no equal for speedy analysis efficiency

VT-106
High sens
Voltmeter
Voltmeter
this is a solid state electionid voltmeler employing \(\mathbb{i C}\) and fit for nigh sensitivity and voluges from 0 은

ALL SOLID STATE CR type low-frequency Oscillator An all-transistor, compact \(C R\) type wide-band low-tequency oscillator, the \(A C-207\) produces sine waves with a minimum
of distortion and rectangular of distortion and rectangular
waves will a nuic- rise time Waves will a quic- rise time
at a low output impedance.

\section*{TRIO KENWOOD ELECTRONICS S.A.}

160 Ave.. Brugman. 1060 Bruxelles Belgium
Sole Agent for the U.K.
B.H. MORRIS \& CO., (RADIO) LTD.

84/88. Nelson Street. Tower Hamlels, London E.1. Phone: 01-790 4824

a multimeter for only

\section*{MODEL 3800 \\ ACCURACY TO 0.1\% \\ MEASURING AC/DC, ohms/amps \\ OPTIONALB.C.D. OUTPUT \\ SEE IT-TRY IT-NOW!}

DANA ELECTRONICS LIMITED

\title{
In just 2 minutes, find out how you can qualify for promotion or a better job in Engineering ...
}

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn on 'SATISFACTION - OR REFUND OF FEE' terms. If you'd like to know how just a few hours a week of your spare time, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

\section*{THEY DID IT-SO COULD YOU}
"My income has almost trebled . . . my life is fuller and happier." - Case History G/321.
"In addition to having my salary doubled, my future is assured." - Case History H/493.
"A turning point in my career - you have almost doubled my standard of living." Case History K/662.
"Completing your Course meant going irom a job I detested to a job I love." - Case History B/461.

\section*{FIND OUT FOR YOURSELF}

These letters - and there are many more on file at Aldermaston Court - speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you.

\section*{7ree!}

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

Dept D259, Aldermaston Court, Reading RG7 4PF.
(Write if you prefer not to cut this page)

\section*{S G BROWN}

NOW! FOR THE FIRST TIME all-adaptable dual purpose MAGNETIC FIX
'CLASSIC' Microphone with instantaneous-stowing advantage

Dimensions
Overall body length \(5 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}(14 \mathrm{~cm})\)
Maximum diameter \(1 . \frac{1}{4}^{\prime \prime}(3.17 \mathrm{~cm})\) Weight
Approximately 5 oz (141.75 g)
Inset-Moving coil-noise Cancelling
300 ohms Impedance

Output for normal speech Approx 1 mV truer.m.s. Magnetic adhesion Measured on \(\frac{1}{B^{\prime \prime}}(3.17 \mathrm{~mm})\) flat mild steel plate with microphone mounted vertically. The vertical downward pull required to cause slipping is tvpically \(14 \mathrm{oz}(0.4 \mathrm{~kg})\)
Magnetic Fix to stand or cardashboard equallyfast .

Type 1C 601/1 is S G BROWN'S new
'Classic' dual-purpose microphone triumph.
Fixed in split second
Hand or fixed position microphone
This instrument adapts to situation
Clings magnetically to station stand or car dashboard

\section*{HAWKER SIDDELEY}

\section*{COMMUNICATIONS}
S. g. brown ltd., king george's avenue, watford. hertfordshire

TEL: WATFORD 23301 TELEX 23412 TELEGRAMS RADIOLINK WATFORD
Hawker Siddeley Group supplies mechanical, electrical and aerospace equipment with world-wide sales and service.

\section*{The AE PPM 3}

The Audio Engineering Peak Programme Meter is designed well within the British Standards specification. This precision instrument is used throughout all major Broadcasting and Television Studios in the U.K. and Europe. The PPM 3 is always used where programme level must be accurately measured.

Printed circuit mounts directly to back of Ernest Turner 643 or 642 meter.
Three meter scales available: British Standard -BBC-European.
Nominal 24 Volts DC required.
High stability-all capacitors are Tantalum electrolytic.
Frequency response: \(40 \mathrm{~Hz}-20 \mathrm{kHz} \pm 0.2 \mathrm{~dB}\) \(10 \mathrm{~Hz}-40 \mathrm{~Hz} \pm 2.0 \mathrm{~dB}\) \(20 \mathrm{kHz}-60 \mathrm{kHz} \pm 2.0 \mathrm{~dB}\)
Integration time: 10 m secs.
'Fall back' time: 3 secs.
Gold plated 10 way connector.
4 slave meters can be driven from 1 card.
Ferrous or Non-ferrous mounting.
Stereo PPM also available.
Manufactured by: Audio Engineering Ltd.,
33 Endell Street, London, WC2.9BA.
01-836 9373

\section*{\(7^{\circ}\) RADFORD}

\section*{AUDIO MEASURING INSTRUMENTS}

Two instruments having a superior performance than any others of this type regardless of price. Now accepted as standard equipment by Broadcasting Authorities, recording studios, magazine equipment test laboratories, and audio research and development laboratories all over the world.

\section*{LOW DISTORTION OSCILLATOR}

An instrument of high stability providing very pure sine waves, and square waves, in the range of 5 Hz to 500 kHz . Hybrid design using valves and semiconductors.

Frequency Range
Output Impedance
Output Impedance
Output Voltage: Sine Wave Distorion :

Square Wave Rise Time Monitor Output Meter. Monitor Output Meter: Mains Input
Size:
Weight
Price:

\section*{DISTORTION MEASURING SET}

A sensitive instrument for the measurement of total harmonic
distortion, designed for speedy and accurate use. Capable of distortion, designed for speedy and accurate use. Capable of measuring distortion products as low as \(0.002 \%\). Direct reading from calibrated meter scale.

\section*{pecification}

Fistortion Range
Dist
Sensitivity:
Meter:
nput Resistance
High Pass Filter :
Fiequency Response:
Power Requirements:
Size
Weight
Price:

RADFORD LABORATORY INSTRUMENTS LTD.

Telephone: 0272, 662301
600 Ohms.
10 Volts r.m.s. max
\(0-110 \mathrm{~dB}\) continuously variable.
\(0.005 \%\) from 200 Hz to 20 kHz increasing to 0.0

Less than 0.1 microseconds.
100 V.-250 V. \(50 / 60 \mathrm{~Hz}\).
\(17 \frac{1}{4} \times 11 \times 8 \mathrm{in}\).
25 lb.
f 150.

\author{
BRISTOL BS3 2HZ
}

BRISTOL BS3 2HZ
```

20 Hz-20 kHz (6 ranges)
0.01%-100% f.s.d. (9 ranges)
100 mV.-100 V. (3 ranges).
Square law r.m.s. reading
100 kOhms.
3 dB down at 350 Hz
30 dB down at 45 Hz
\pm1 dB from second harmonic of rejection
quency to 250 kHz
Included battery.
17% \times 11 \times 8 in.
E120.

```


BRपDle?

\section*{The 155 gives you a clear picture of that weak signal lost in noise}

Bradley's - ype ' 55 Tuin Chanmel C fferen-ial Oscilloscope is expressly designed for use in research.
And it has many importent features.
Euarded inputs for a start, wh ch are used successfu ly for the first fime on a differentia osci loscope.
T iere's 03 dB commen mode rejection u th \(100-\mathrm{V} / \mathrm{cm}\) sensitivity on both channels. The sensitisi=, can te increased \(=010 \% \mathrm{~V} / \mathrm{cm}\) by casceding the channels.
The 155 7es a - CokHz Ja \({ }^{\text {didwidth, so it's }}\) ideal for bio-medical investiga=ion, strain geuye menitoring, the examination o \({ }^{=}\)transduzer out juts and all research work involving the analysis or low-level signals.
And to ce: a goad idea of the clear F cture \(\mathrm{O} \mathcal{A}\) get vith the 155 tare a look at t ee photograph above. it shows a 12 mV Fəak to peak sajare vare extracted from aา unba anced signal czntaining 10 V pzak to peak co nmor mode
components. Te common mode signal iミ displeyed on the YE channeL

G \& E ERADLEY LIMITED
Electra House, Neasden Lane
Londor MW1a
Tel: 01-450781 Telex: 25583
R Lucas Company
BRADLEY
electronics
Expect more from us

\section*{STOCKISTS OF B.P. O. COMPONENTS \& ALLIED EQUIPMENT TWC \\ TELEPHONE \& WIRELESS COMPONENTS LTD. \\ 147, The Broadway. London, N.W. 9. \\ Tel. 01-203 2814 Cables: Tetwireco, London, N.W.9.}

WW- 026 FOR FURTHER DETAILS

\section*{DC300}

\section*{DUAL-CHANNEL POWER AMPLIFIER}

Phase Response
Power Response
Power at Clip Point
Total Output (IHF)
T.H.D.
I.M. Distortion (\(60.7 \mathrm{KHz} 4: 1\))
Damping Factor
Hum and Noise (\(\mathbf{2 0 - 2 0 K H z)}\)
Slewing Rate
Dimensions
Weight

Finish Bright-anodized brushed-aluminium front-panel with black-anodized front extrusion, access door, and chassis.
\(\pm 0.1 \mathrm{db}\) Zero- 20 KHz at 1 watt into 8 ohms, \(\pm 0.6 \mathrm{dbZero}-100 \mathrm{KHz}\).
Less than \(5^{\circ} 0-10 \mathrm{KHz}\).
\(\pm 1 \mathrm{db}\) Zero- 20 KHz at 150 watts RMS into 8 ohms.
Typically 190 watts RMS into 8 ohms. 340 watts RMS into 4 ohms per channel
Typically 420 watts RMS into 8 ohms. 800 watts RMS into 4 ohms.
Better than \(0.03 \%\) at 1 KHz at 190 watts level.
Less than \(0.1 \%\) from 0.01 watt to 150 watts RMS into 8 ohms, typically below \(0.05 \%\) (max \(0.05 \%\).
Greater than 200 (Zero to 1 KHZ into 8 ohms at 150 watts RMS)
100 db below 150 watts RMS output (unweighted, typical 110 db)

8 volts per micro-second. S-R is the maximum value of the first derivative of the output signal.
19in. standard rack mount (W.E. hole spacing), 7 in. height, \(9 \frac{3}{9}\) in. deep (from mounting surface). 40 pounds net weight.

\author{
\(\star\) DC-Coupled throughout! \\ \(\star\) Short Circuit proof! \\ \(\star 500\) Watts RMS Mono. \\ \(\star 70\) Volt Balanced line out! \\ \(\star\) UNEQUALLED QUALITY! \\ * 3 YEAR PARTS WARRANTY! \\ * onLY \(\mathbf{f 3} \mathbf{2 0}\) inc. DUTY! \\ CARSTON ELECTRONICS LTD. \\ SHIRLEY HOUSE \\ 27 CAMDEN ROAD LONDON, N.W. 1 9LN \\ 01-267 2748
}

\section*{Bradley Calibration Service}

Any organisation using electronic instruments must have a programme for regular maintenance and calibration, traceable to National standards. Organising adequate techn cal effort and the necessary test equ pment s bo:h difficult and expensive. Why not let Bradley Technical Servises do it for you? We have well equipped modern facilities, backed up by experierce accumulated over the last 15 years. Calibration, repair and maintenance can be providec for a simple instrument or for a complete inven:ory on a contract basis. These facilities are supported by a controlled environment Standards Laboratory, British Calibration Ser sice approved for a wide range of d.c., a.z. and r.f. measurementsthe lirst ever to jet r.f. approval. Your instruments can be calibrated using standards traceable to National Physical Laboratory and National Bureau of Standards, and can be supplied with a British Calibration Service Certificate. We shall be pleased to send you our illustrated brochure.

G \& E BRADLEY LTD
Electral House, Neasden Lane London NW10
Tel: 01-450 7811 Telex : 25583

A Lucas Company

\section*{SOLDERING IRONS?}

We are specialists. Whatsoever your particular application, we are most likely to have just the tool for the job.

Choose from:
The fixayld six-model range of rugged, lightweight, general purpose, soldering irons, from 10 watts to 60 watts, for all kinds of electronic work. Specially developed over many years to provide exceptionally good thermal stability, reliability and ease of maintenance.

The Galamis models-absolute gems of truly miniature soldering instruments, with interchangeable slip-on bits and precise performance. Unapproachable for sustained accuracy on small work.

The Litestat thermostatic models, with fully adjustable control, available for all voltages. Two extremely versatile instruments, 55 and 70 watts, giving really generous soldering capacity on demand, with closely controlled idling temperature. Very attractively priced from £3-16-10 (£3.84).

All backed up by an excellent spares and repair service, and a wide range of ancillary tools and accessories. We would like you to have the whole story-please ask for our NEW CATALOGUE.

5/1001/15

\section*{LIGHT SOLDERING DEVELOPMENTS LTD.,}

28 Sydenham Road, Croydon, CR9 2LL
Telephone: 01-688 8589 \& 4559

\section*{NEW EMITAPE 815}

Our new professional audio tapes, EMITAPE 815 and 825 have won the approval of broadcasting and recording studios after rigorous evaluation on a wide range of tape transport units. EMITAPE 815
is standard-play. EMITAPE 825, the long play version, is ideal for portable and low tension recorders. Both have a polyester base with a specially treated coating and a new formulation that results in low modulation noise. Other advantages are exceptionally good dynamic range and signal-to-print ratio.

EMITAPE quality is something you can prove to yourself now.
If you are a professional recording engineer and haven't heard our new tape, send us your name and we'll send you a sample.

DESIGNED FOR MAXIMUM FLEXIBILITY, THE MOD-70 POWER AMPLIFIER MODULE WILL PERFORM AT 70 WATTS RMS CONTINUOUSLY IN AMBIENT TEMPERATURES TO \(70^{\circ} \mathrm{C}\). IS FULLY OUTPUT/INPUT PROTECTED, YET OCCUPIES LITTLE MORE THAN 70 CUBIC INCHES.

\section*{THE MOD 70}

70 WATT R.M.S. PLUG-IN POWER AMPLIFIER

Wherever reliable audio reproduction power is required at better than average bandwidth specification, at lower than average cost, and in an extremely compact, well finished package, the Mod-70 is exceptional.

ALL I/P, O/P, AND SUPPLY CONNECTIONS ARE THROUGH AN INTERNATIONALLY STANDARD 8-PIN HEADER WHICH PROVIDES EASE OF INSTALLATION, WHILE FOUR CONVENIENT TIEDOWN POINTS SECURE FIXING AND QUICK RELEASE.

FOR FULL PERFORMANCE
AND COMPLETE TECHNICAL SPECIFICATIONS, VOLFIELD LIMITED, 2A LANSDOWNE GARDENS, LONDON,S.W.8.01-6227187

WW-033 FOR FURTHER DETAILS

\section*{ASSOCIATED ELECTRONIC ENGINEERS LTD.}

ARE PLEASED TO ANNOUNCE

THAT DUE TO RE-ORGANISATION THEY HAVE INCREASED PRODUCTION FACILITIES FOR THE MANUFACTURE OF AUDIO AND POWER TRANSFORMERS TO CUSTOMERS'

REQUIREMENTS.
QUOTATIONS AGAINST SPECIFICATIONS APPROVED VACUUM IMPREGNATION PLANT
E.I.D. APPROVED

DALSTON GARDENS, STANMORE, MIDDLESEX HA7 1BL TELEPHONE 01-204 21254 LINES

\section*{Many New Modeles! in the FREE HEATHKIT 1971 Catalogue ...}

CONSUMER

HI-FI \& AUDIO

MODEL R/C CARS

MARINE

TRENT SPEAKER

Here's the bumper Heathkit catalogue for you. Read about the wonder and fascination of kit building . . see in full colour the world's best values in \(\mathrm{Hi}-\mathrm{Fi}\). . Radio, and even model radio control. Get up to date with what's new in scientific instrumentation . . instruments for test and service . . in fact there is a Heathkit for almost every purpose, in every walk of life. A wealth of information is all yours for the price of a postage stamp, in the Free Heathkit Catalogue.
* Save up to \(50 \%\) over factory built equipment. of electronics required.
* The constructional manual supplied with every kit shows you how.
* Building Heathkit models
is so economic.
* Money saving direct from factory prices.
* They make excellent seasonal gifts.

Many other models in wide range
FILL IN THE COUPON FOR YOUR FREE CATALOGUE TODAY
Namebiock capitais pleaseAddress
\(\qquad\)
\(\qquad\)

\title{
Just what is this ABR, that makes such a vital difference to the 'DITTON 15'?
}

The "'DITTON 15"
Now firmly established as a superb high-fidelity loudspeaker. Design features include the exclusive CELESTION ABR (auxiliary bass radiator), HF1300 treble unit-as used in B.B.C. Monitor Loudspeakers-and specially developed mid/bass unit. Low loss L/C crossover.
Power handling: 15 watts r.m.s.; 30 watts peak. Impedance \(4-8\) ohms.
Dimensions: \(21 \mathrm{in} \times 9 \frac{1}{2}\) in. \(\times 9 \frac{1}{4}\) in.
Choice of finish: Teak or walnut.
Recommended Retail Price NOW £32
1. Studio quality high frequency unit (HF1300 Mk. 2). As used in B.B.C. Monitors.
2. Anechoic cellular foam wedge and lining eliminates standing waves.
3. High hysteresis panel loading material to eliminate structural resonances.
4. Auxiliary Bass Radiator (ABR) -plastic foam diaphragm of high rigidity and low mass having a free air resonance of only 8 Hz , double roll suspension allowing
excursions up to \(\frac{3^{\prime \prime}}{4}\) with virtual absence of distortion.
5. \(8^{\prime \prime}\) bass unit, with free air resonance of 25 Hz , and massive Ferroba II magnet structure for optimum magnetic damping and cone treated with viscous damping layer to suppress resonances.
6. Units mounted flush to eliminate diffraction effects and tunnel resonances; covered by acoustically transparent grille cloth for maximum presence.
7. Full L-C Crossover network. It's an interesting story-and worth enquiring about. Send for details of the three Celestion 'Ditton' Hi-Fi Speaker Systems, and the NEW 'Ditton 120' Loudspeaker.

Studio
Series

\section*{Loudspeakers for the Perfectionist}

ROLA CELESTION LIMITED, FOXHALL ROAD, IPSWICH, SUFFOLK, 1 P3 8JP, ENGLAND
Telephone: Ipswich 73131. Cables: Voicecoil Ipswich. Telex: 98365

A portable lightweight insulation test set suitable for measuring the insulation resistance of all components, installations, etc. Cranking is obviated by the utilisation of a transistor converter; the power supply being two \(4 \frac{1}{2}\)-volt dry batteries. The test voltage and range are selected by push buttons which facilitate quick and easy reading of the resistance value.
The test voltages available are 100, 250, 500 and 1.000 volts. Overall measuring range, 0 to 10,000 Megohms.

\section*{£55-0-0 EX STOCK}

Request full details from:

\section*{CROYDON PRECISION INSTRUMENT COMPANY}

Hampton Road, CROYDON (Postal Code: CR9 2RU)
Telephone: THOrnton Heath 4025 and 4094

II - THE PROFESSIONAL APPROACH

\section*{A British Pre-Amplifier with an Unparalleled Specification}

Five section graphic equalisers operate independently in each channel
Theoretical limits of low noise are reached via a unique noise cancelling pre-amplifier
\begin{tabular}{lr}
"GRAPHIC STEREO" & \(\mathbf{£ 1 6 2 . 0}\) \\
"POWER STEREO 70"A Amplifier & \(\mathbf{£ 8 3 . 0}\) \\
(35 watts R.M. S. per channel) & \\
"POWER STEREO 60 "Amplifier & \(\mathbf{£ 9 7 . 0}\) \\
(80 watts R.M.S. per channel) &
\end{tabular}

\section*{The surround of silence - the truth of pure sound}

REPAIR SERVICE 7-14 DAYS

We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS. 89 .
Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments
LEDON INSTRUMENTS LTD
76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.: 01-692 2689

PLEASE SEND A STAMPED ADDRESSED ENVELOPE FOR FULL DESCRIPTIVE DETALLS OF ABOVE UNITS.
Wholesale and
Retail enquiries to: LINEAR PRODUCTS LTD ELECTRON WORKS, ARMLEY, LEEDS

\section*{AHUJA P.A. SYETEEM}

\section*{FINEST PUBLIC ADDRESS SYSTEMS}

\section*{FOR SCHOOLS, FACTORIES, HOTELS, RELIGIOUS PLACES PUBLIC MEETINGS, AND ENTERTAINMENT}

SOLID STATE AMPLIFIERS
(9 models to choose from)

Model UTR-30
30 watts output. Operates from 230/110 volts AC, 12 volts car battery or 9 volts flash light cells,

\section*{Model 50-PTR}

60 watts output. "Professional" quality. Protected against open or shorted speaker lines. Operates from 230/110 volts AC or 12 volts car battery.
AC MAINS AMPLIFIERS (7 models to choose from)

Model A-75M
75 watts output. "Professional" quality. Most reliable operation. Solid state rectifier circuit. Mixer \& Pre-amplifiers are also available.

\section*{SPEAKER SYSTEMS}

A variety of driver units, horns and column speakers are available to suit every application.

\section*{Driver Unit DU-35}

Handling cápacity : 35 watts. 16 ohms impe-
 dance. Distortionless reproduction of speech \& music at high volumes.

\section*{Reflex Horn WFA}
 \(60 \mathrm{c} / \mathrm{s}\) cut off frequency. Efficient, rugged and weather-proof.

\section*{Sound Columns}

Excellent for auditorium, night clubs, stage shows, churches etc. Provide high intelligibility \& uniform distribution of sound.

\section*{MICROPHONES}

A wide range of uni-directional \& non-directional microphones are available.

Model AUD-77

High impedance, high quality, uni-directional microphone. Ideal for indoor and outdoor installations.

Model AUD-501

Broadcast quality, offers wide frequency response (50 to \(15,000 \mathrm{c} / \mathrm{s}\)). High Impedance, uni-directional type. Excellent for musical concerts, auditoriums \& high quality P.A. jobs.
Model AUD-511
Model AUD-511 is available with wind shield for rejecting wind \& breath noises.

\section*{Model ADT-55X}

A very popular non-directional, general purpose microphone. Very
 sensitive. High impedance.
- Ahuja-leader in sound systems for nearly \(\mathbf{3 0}\) years-offers a complete line of public address systems.
- Exports to over 30 countries all over the world.
- Prices amazingly low.

For details \& specifications please write to :
AHUJA RADIOS; 3778, NETAJI SUBHASH MARG, DARYA GANJ, DELHI-6.

Two important examples from the ADCOLA range-the world's most comprehensive range of modern soldering instruments. ADCOLA R 40 and R 80 both have 3/16" \((4.75 \mathrm{~mm})\) Bit Fittings and Neon Indicator Lamps as standard. ADCOLA unique heating elements cover any voltage range from \(6 v\) to \(250 v\). Standard stock temperature is \(360^{\circ} \mathrm{c}\) at 25 watts with special temperatures available from \(250^{\circ} \mathrm{c}\) to \(410^{\circ} \mathrm{C}\)
ADCOLA

off-the-shelf Service.
SEND FMISCOUPOM for our complete range catalogue.

\section*{CALIBRATION PROBLEMS?}

We specialise in the repair and calibration of all proprietary and commercial test equipment

We can provide the following services
- FULLY GUARANTEED REPAIR OF INSTRUMENTS
- CALIBRATION CARRIED OUT TO MANUFACTURERS' SPECIFICATION
- ALL TYPES OF MULTI-METERS, INC AVOMETERS, REPAIRED
- REPAIR SERVICE 7 DAYS
- WIRING AND SHEET METAL FACILITIES

Write or 'phone
FIRNOR-MISILON LIMITED MARSHGATE TRADING ESTATE, MARSHGATE DRIVE, HERTFORD. TEL: HERTFORD 5584

WW- 046 FOR FURTHER DETAILS

\section*{"The alternative to QUAD is not a colour television set but a seat in the concert hall"}

\section*{QUAD}
for the closest approach to the original sound

\section*{New from Brenell....}
'Type 19'-an industrial and scientific tape deck built to the highest standards!

\section*{hrenell}

BRENELL ENGINEERING COMPANY LTD
2315 Liverpool Road, London, N.1. Telephone: 01-607 8271

\section*{WW- 049 FOR FURTHER DETAILS}

\section*{Nombrex accuracy!}

C.R. TEST BRIDGE MODEL 32

Price f10. 10. Od
Every radio 'ham' needs one and at this low price you are buying a fully transistorised, high quality instrument. Write for full technical leaflets.
Note a few of the specification details below:-
- 6 Ranges covering \(1 \Omega\) to \(100 \mathrm{M} \Omega\)

1 pF to \(100 \mu\) F
- Accuracy \(2 \frac{1}{2} \%\) at centre to \(5 \%\) near ends.
- Separate and clear R \& C scales
- Power Factor measurement up to \(\mathbf{7 0} \%\)
- Neon indication for capacitance leakage
- Battery operated or external supply
- Guaranteed for 12 months

Trade and Export enquiries welcome Post \& Packing 6/6 extra

|NOMBREX (1969) LTD.
CAMPERDOWN TERRACE, EXMDUTH, DEVON. Tel: 03-952 3515.

\section*{FOUR NEW STRIP-CHART RECORDERS FROM RUSSIA}

Multi-range partable Universal AC/DC Ship-chart recorder type H390
\(8 \mathrm{AC} / D C\) current ranges from 5 mA to 5 Amps * \(6 \mathrm{AC} / \mathrm{DC}\) voltage ranges from 5 V to 500 V 1 DC only range 150 mV *
*All these ranges are selected by rotary switches
Chart width: 100 mm
Chart drive: Synchronous motor \(220-250 \mathrm{~V}\) Chart speeds: 20 to 5400 mm per hour. obtainable through change gears PRICE \(£ 78.0 .0\)

Switchboard Type Ten-Channel Event Recorder Type H30
Instrument will provide record of up to ten events. Syphon pens are driven by rotary 12V DC relays.
Chart drive: synchronous motor \(220-250 \mathrm{~V}\) Chart speeds: 20 to 5400 mm per hour. obtainable by means of change gears PRICE £52.0.0

Single channel and three-channel High Speed Recorders Types H320-1 and H320-3
Pen movement of the moving coil type has natural frequency of \(5 \mathrm{c} / \mathrm{s}\) and sensitivity of 8 mA for full scale deflection. Syphon pens and large ink reserver ensure long periods between re-filling. Chart width 80 mm per ohannel. Chart speeds. selected by push buttons on the front panel, are 1.2-6-12-30-60-120-300-600-3000 mm per minute. Chart drive \(220-250 \mathrm{~V}\) AC synchronous motor. Impedance of the movement 210 ohms.
PRICE Single channel Instrument \(£ 55\)
Three-channel Instrument \(£ 90\)

\section*{Z \& \(\|\) AERO SERVICES LTD}

\section*{44A, WESTBOURNE GROVE, LONDON, W2}

Tel: 727-5641/2/3
Cables: ZAERO LONDON
Telex: 261306

\section*{VARIABLE TRANSFORMERS}
\(\star\) OUTPUT 0-265V \(\star\) INPUT 240V 50/60 CPS \(\star\) SHROUDED FOR BENCH OR PANEL MOUNTING

1 amp f5.10.0
2.5 amp f6.15.0 10 amp £ 18.10 .0 \(5 \mathrm{amp} \quad\) £9.15.0 \(\quad 12 \mathrm{amp}\) £21. 0.0 8 amp f14.10.0 20 amp £37. 0.0

Inset shows
latest pattern Brush gear ensuring smooth continuous adjustment

SOLID STATE VARIABLE VOLTAGE CONTROL \(\star\) Output 25-240V
* Input 24CV 50 CPS
* \(5 \mathrm{amp} \& 10 \mathrm{amp}\) model
\(\star\) Completely sealed
5 amp mode \(\mathbf{f 8 . 7 . 6}\)
10 amp model \(\mathbf{f 1 3 . 1 5 . 0}\)

0-24V DC LT. SUPPLY UNIT \(\underset{\text { Continuously Rated. }}{\star \text { Re Large eimmeter and }}\)
 * Infinitely variable up to 24 VOC Size and weigh \(16 " \times 12^{\prime \prime} \times 27^{\prime \prime}\) High-701bs. Rear wheels fitted
tor easse of handling or ease of handling.

COMPLETE PHOTO- ELECTRIC SENSOR in one unit
* Reflective type with built-in light source
* Will also operate from remote light source
■ Matchbox size
* Matchbox size thick smoke
Operates from 12 V AC. Output signal 0.2 amp .100 V .
Approximately \(\mathbf{£ 5} \mathbf{- 1 0 . 0}\) dependent on quantity

\title{
I.M.O. PRECISION CONTROLS. (Dept WWX) 313 EDGWARE ROAD;LONDON W.2. Tel 01-723 2232
}

WW-052 FOR FURTHER DETALS

\section*{Give the stars their freedom! \\ That's our motto, this is our method; with the} Reslo-Audac Radio Microphone, stars such as Des O'Connor and Peter Gordeno are freed from trailing cables. Movement is completely unhampered ideal for clubs, cabaret, theatres and

TYPE 530
output microphone.
TRANSISTORISED
AMPLIFIER
3 low impedance mike
inputs, 1 music input.

RESLO MIKES LTD 24 UPPER BROOK ST., LONDON, W. 1 many other applications, Reslo-Audac Radio Microphone has to be heard to be believed. Ask for a demonstration. Transmitting, receiving or amplifying, Reslo sounds superb with ribbon microphones, boom arms, floor stands, amplifiers, loudspeakers, p.a. systems, many

A double 3-in-1 value from Sankyo. Micro motors, level meters, and magnetic heads. Now is the time to rely on one manufacturer for these important product integrals, instead of purchasing one here, another there. You will save time and money -and get quality and reliability on top of economy! Many other models available.
For further details contact:

\section*{宛 \\ Sankyo}

\footnotetext{
SANKYO (EUROPEI EXPORT UND IMPORT G.m.b.H.:
4 Dusseldorf, K'Glnerstr, 65a. West Germany
Tel: \(350281-5\) Telex: 8587097 Cables: SANKYORGEL DÜSSELDORF SANKYO SEIKI MFG, CO., LTD.
17-2. Shinbashi 1 -chore, Minato-ku, Tokyo 105, Japan.
Tel: Tokyo 591-8371 Cables: SANKYORGEL TOKYO
AMERICAN SANKYO CORP.:
5 Madison Ave., New York: N.
Visimf vision sita
}

WW -055 FOR FURTHER DETAILS

\section*{You will find it in this new Vitality \(T-1\) range.}

Never have such small lamps been so reliable, so competitively priced. With a diameter of only 3 mm , they are capable of up to 200.000 hours of life at rated voltage and come either wire ended or based to fit available holders: With wide application in peripheral equipment for the computer industry, this new range is also providing truly reliable integral lighting of instruments and is much used in equipment where space is minimal. Folder NPR details the whole range.

\section*{VITALITY BULBS}

Vitality Bulbs Limited, a General Instrument Electro-Optical Products Group company. BEETONS WAY. BURY ST. EDMUNDS. SUFFOLK. Tel: 0284-2071. Telex: 81295 WW- 056 FOR FURTHER DETAILS

As you know, in 1973 single side band operation becomes mandatory in marine communications. 1973 isn't very far away. We're ready now. And so can you be. So we announce the new TT100 beam tetrode. Primarily intended for use as a class \(A B\) power amplifier for S.S.B. transmitters in shipboard use.

Technical Data. A low cost power tetrode designed specifically for use as a linear power amplifier and suitable for
transistor drive. A rated continuous anode dissipation of -00 W means that two tubes in parallel will meet the requirement of 400 W Peak Envelope jower while the low impedance design means hat an anode voltage of \(600-800 \mathrm{~V}\) is adequate for most applicatiors. Output is fully maintained up to 20 MHz and falls only slightly at 30 MHz .

We're ready now for 1973. How about you?

\section*{LOW COST I.C. PATCHBOARD}

- high reliability - integral clock - INPUT SWITCHES
- LOGIC INDICATORS
- 14 or 16 PIN D.I.L.

TRANSRADIO LTD 183, PARK AVENUE, LONDON, N.W.10. TEL: (01) 965 6281. TELEX: 923004

Subsidiary of Felten \& Guilleaume Kabelwerke AG KÖLN-MÜLHEIM

\section*{STANDARD}

\section*{R.F.CONNECTORS}

A wide range of N, C, BNC, 83UHF, VMP, SM and MINI types. Crimp types in N, BNC \& 83 UHF produced in addition to standard cable clamps. Other types for special applications.

\section*{R.F. CABLES}

Miniature, R.G. and multi coaxial types.

\section*{IN-LINE UNITS}

These are screened containers for attenuators etc. fitted with coaxial connectors.

CABLE-CONNECTOR ASSEMBLY
CRIMP

Annual call-off orders quoted.
ww-060 FOR FURTHER DETAILS

Si451 Millivoltmeter
* 20 ranges also with variable control permitting easy reading of relative frequency response

J F SUGDEN \& CO LTD BRADFORD ROAD, CLECKHEATON YORKS Tral Cecheat (OwRe2) 2501

\section*{JES AUDIO INSTRUMENTATION}

Illustrated the Si453 Audio Oscillator

\section*{SPECIAL FEATURES:}
* very low distortion content-less than . 05\%
\(\star\) an output conforming to RIAA recording characteristic
* battery operation for no ripple or hum loop
* square wave output of fast rise time
£37.0.0
also available
Si452 Distortion Measuring Unit
* low cost distortion measurement down to \(01 \%\) with comprehensive facilities including L.F. cut switch. etc.

Tel: Cleckheaton (OWR62) 2501

\section*{NEW \\ 3-PLUG-IN OSCILLOSCOPE}

50-MHz Bandwidth
Dual-Trace, \(5 \mathrm{mV} / \mathrm{div}\)
\(5 \mathrm{~ns} / \mathrm{div}\) Sweep Rate
(\(2 \%\) Accuracy
. \(8 \times 10 \mathrm{~cm}\) Display

\author{
\(\square\) Solid State
}
£1109
COMPLETE
WITH PLUG-IN UNITS
The TEKTRONIX 7503 THREE-PLUG-IN OSCILLOSCOPE offers more measurement capability per pound than any other quality oscilloscope.

Easier to use. An exclusive peak-to-peak auto-triggering mode provides a triggered sweep throughout the \(360^{\circ}\) range of the level/slope control. The front panel is uncluttered, illuminated push-button switches are extensively used to conserve space. Controls are conveniently related to function through the use of a colour-keyed front panel
Faster measurements. Auto Scale-Factor Readout is exclusive to Tektronix! It labels the CRT with time or frequency/div; volts, ohms, C (temperature), or amps/div; invert and uncal symbols; and automatically corrects for 10X probes and magnifiers. Readout is required when using the NEW 7013 Digital Multimeter and the NEW 7D14 Digital Counter plug-in units. It can be ordered initially or as a conversion kit, which is easily installed.

\section*{THE 7000-SERIES}

An Integrated Test System! With the introduction of the 7013 and 7D14 digital plug-in units, the 7000-Series becomes an Integrated Test System. ITS much more than an ordinary oscilloscope. SEVENTEEN plug-in units covering a wide performance spectrum are available to solve virtually all of your measurement problems. Some of the features offered are: dual-trace, differential comparator, \(10-\mu \mathrm{V}\) differential, sampling, current amplifier, digital multimeter and digital counter. For instance, plug-in units can be chosen to give the 7503 delaying sweep and \(90-\mathrm{MHz}\) bandwidth.

Greater versatility. The following 7000 -Series mainframes offer unique four-plug-in versatility. The \(7704(150 \mathrm{MHz})\), R7704 (150MHz rackmount), \(7504(90 \mathrm{MHz}\)), and 7514 Storage (90 MHz). The 7000-Series does not require a full complement of plug-in units, you can start with only one horizontal and one vertical plug-in and add more as your measurement requirements change. Duty
7503 Oscilloscope without readout, Option 1 \(£ 661\).......... \(£ 4\) 7A15 Single-Trace Amplifier …............................. \&119......... \& 17 7850 Time Base.. 1210 . 7503 Oscilloscope with readout ..£42 119

Your Tektronix field engineer will gladly demonstrate the complete versatility of the New Tektronix 7000-Series Oscilloscope System, in YOUR laboratories with YOUR signals.

\footnotetext{
Please thll in Reader Reply Card or write, telephone or telex

Tektronix U.K. Ltd.
Beaverton House, P.O. Box 69,
Harpenden, Herts.
Tel: Harpenden 61251 Telex: 25559
Northern Region Office:
Beaverton House, 181 A Mauldeth Road, Manchester 19.
Tel: 061-2240446 Telex: 668409
}

\section*{SPECIAL OFFER}

\section*{FROM}

THE TINSLEY PATCHETT TYPE 52058

\section*{VERY HIGH PRECISION A.C. STABILISER . . £250}

FROM STOCK—DELIVERY 7 DAYS

This instrument has been designed to fill the need for a very stable supply with a high purity of waveform for precision A.C. measurements The uhit is extremely simple in operation and is fitted with protective devices and alarms which automatically prevent any possibility of damage it does not require any adjustments in setting up other than the output voltage selection. Output current:-
1 ampere maximum for stabilisation range of \(\pm 7 \%\) change of input voltage 2 amperes maximum for a stabilisation range of \(\pm 3.5 \%\) change of input voltage.

* SEND FOR LEAFLET 215
H. TINSLEY \& CO LTD • WERNDEE HALL SOUTH NORWOOD • LONDON SE25
\(01-6546046\)

\section*{Wide range A.F. Bridges}

Wayne Kerr Bridges provide accurate measurement of \(L, C\) and \(R\) values over an unusually wide range. They employ a minimum number of fixed stable Standards in association with precision tapped transformers giving
voltage and current ratios. Speed and ease of operation are assured by functional styling.

\section*{WAYNE KERR}

THE WAYNE KERR COMPANY LIMITED
Roebuck Road, Chessington, Surrey. Tel: 01-3971131. Cables: Waynkerr, Chessington. Telex 262333

\section*{Magnetic shielding problems?}

\section*{TELCON OFFER THREE SIMPLE ANSWERS}

\section*{Standard shields}

Telcon Metals offer an extensive standard range of high efficiency Mumetal shields, which fit most cathode ray, photo multiplier and radar tubes, together with a selection of boxes and cans for microphones pick-ups, transistors and transformers. These are normally supplied stove enamelled in hammer grey externally and matt black internally. Other finishes can be supplied by arrangement.

\section*{Fabricated shields}

Telcon Metals offer complete facilities for fabricating special shields in Mumetal and composite shields in Mumetal/Radiometal to customers' individual requirements. All Telcon shields are made to close tolerances and have excellent finish and appearance. For the highest efficiency and extra close fitting tolerances, the 'Telform' technique is recommended. These shields can be produced in complex shapes with a minimum of welded seams and very close uniformity throughout batches. A comprehensive design/advice service is available to assist all customers.
'Telshield' wrap-around foil Telshield is an easy to use, feromagnetic
 shielding foil, which can be cut with scissors, wound into cylinders, cones, etc., and fixed with adhesive tape, clips or spot welds, to provide a permanent efficient shield. It is economical to use, especially for research, development and short-run applications which do not merit the tooling involved in the production of fully fabricated shields. 'Telshield' is supplied in a standard thickness of 0.05 mm , in widths of 150,50 and 25 mm in convenient packs costing approximately \(£ 5\). Other thicknesses and widths are available by arrangement.

Please send for further information to

Telcon Metals Ltd. Manor Royal, Crawley, Sussex. (Crawley 28800)

WW- 067 FOR FURTHER DETAILS

\section*{TELEPRINTERS•PERFORATORS REPPRFORATORS • TAPEREADERS DATA PROCESSING EQUIPMENT}

\author{
SALE OR HIRE
}

\section*{2-5-6-7-8 TRACK AND MULTIWIRE EQUIPMENT}

\author{
special Codes Prepared
}

TELEGRAPH AUTOMATION AND COMPUTER PERIPHERAL ACCESSORIES DATELMODEM TERMINALS, TELEPRINTER SWITCHBOARDS
Picture Telegraph, Desk-Fax, Morse Equipment: Converters and Stabilised Rectifiers; Line Transformers and Noise Suppressors; Tape Holders, Pullers and Fast Winders; Governed, Synchronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass Filters; Teleprinter, Morse, Teledeltos Paper, Tape and
 Ribbons; Polarised and specialised Relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment; Racks and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Connectors, Wires, Cables, Jack and Lamp strips, and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.

\author{
W. BATEY \& COMPANY \\ Gaiety Works, Akeman Street, Tring, Herts \\ \\ Telex: 82362, A/B BATEY TRING
}

WW- 068 FOR FURTHER DETAILS

We also manufacture P.A. Amplifiers, Loudspeakers, Tuners, etc.
For full details please contact
S.N.S. Communications Ltd., 851 Ringwood Road, Bournemouth.

Telephone: Northbourne 5331

\title{
think of a sound... now make it.
}

Designed for the exacting standerds of electronic music, the VCS 3 is also ideal for a general pursose audio test instrument and for teaching and demonstrating all aspects of sound pher omena. Why pay for elaborate and expensive laboratory instruments when for only \(£ 330\) you can make any audio signal from pulse trains to sine waves, and process it from
filtering to modulation or reverberation.
Everything is voltage controlled, with extremely good signal to noise ratio and high stability. There are three multiwaveform oscillators \((.05 \mathrm{~Hz}-20 \mathrm{KHz}\)) single sweep of \(1000: 1\), three filters, a ring modulator, noise generator, scope output and trigger input, a joystick control for any two parameters, cordless pin patching. and many more facilities.
No studio musician, whether technician,
teacher, composer, performer or engineer, can afford to be without this amazing instrument, with its tremendous variety of sound effects,
and which is a direct spin-off from the most advanced computerised music studio in the world.

Write or phone for details and free brochure to:
ELECTRONIC MUSIC STUDIOS (London) LTD
49 DEODAR ROAD
LONDON S.W. 15
Telephone : 01-8742363

\title{
TRANSFORMERS
}

\title{
OLYMPIC TRANSFORMERS LTD 224 HORNSEY ROAD, LONDON, N. 7 \\ Tel. 01-607 2914
}

\section*{ULTRASONIC TRANSDUCERS}

\section*{40kHz. Type 1405}

\section*{Available from stock}

25 kHz . Type will be available shortly

actual size
B. RIGOLD \& BERGMANN LTD.,

54 OLD BROAD ST. LONDON E.C. 2
Tel. 01-588 1604
Please send me details on the 1405.
Name
Company
Position \(\qquad\)
Address \(\qquad\)
1

\section*{XENON STROBOSCOPE}

A Stroboscope designed primarily for laboratory, industrial and educational applications where the elaboration and expense of more complex equipment may not be required. Features include simplicity of operation, 'robust construction. exceptionally low price and built in reliability.
The instrumient is of modern appearance, small, light in weight, convenient to use and portable. A wide range of flashing ratesis covered by the large accurately calibrated dial. allowing operation at low frequencies for strobo photographic experiments and at high speeds for observation of rapidly rotating or reciprocating phenomena.
The external triggering facility permits single shot operation by an external closing contact and also provides a synchronising input for high and low speed repetitive phenomena which might otherwise be difficult to maintain in exact phase.

Light source.
Flashing rate
Frequency accuracy
Triggering.
Price: \(£ 38.10 \mathrm{~s} .0 \mathrm{~d}\)

High intensity Xenon tube mounted in a paraolic reflector
1-250 flashes/second in 3 ranges.
Typically \(\pm 2 \%\) of each full scale.
(a) by internal oscillator
b) by external closing contacts.

Edwards Scientific International Ltd.
Knowle Road, Mirfield, Yorkshire. Tel: 0924844242

\section*{TathonikPulse Genardors}

The Type 114 is a general-purpose pulse and squarewave generator designed for laboratory and production test facilities. The broad operating range of the Type 114 makes it well suited for applications such as studying network response to changes in pulse period and/or width, or determining the step response of systems.

Price: \(£ 164\) plus \(£ 23\) duty

The Type 115 is a \(10-\mathrm{MHz}, 10\)-volt, general-purpose pulse generator with separately variable risetime, falltime, width, delay, period, amplitude and baseline offset. It is intended for use in applications where a variety of pulse amplitudes, polarities, shapes and other characteristics are required.

Price: \(£ 412\) plus \(£ 58\) duty

The Type 2101 is a compact, \(25-\mathrm{MHz}, 10\)-volt, generat purpose generator with SIMULTANEOUS positive and negative going pulse outputs. Switch positions are provided fo: selection of a specific pulse period, duration and delay, within the calibrated range of the respective control. Weighs only \(8 \frac{3}{4} \mathrm{lb}\).

Price \(£ 334\) plus \(£ 47\) cuty
committed to progress in waveform measurement

\section*{Tektronix U.K. Ltd.}

Beaverton House, P.O. Box 69,
Harpenden, Herts.
Tel: Harpenden 61251 Telex: 25559
Northern Region Office:
Beaverton House, 181A Mauldeth Road,
Manchester 19.
Telephone: 0612240446 Telex: 668409

\section*{It's only a year since we launched the record selling S54}

\section*{Now we introduce the S54A...}
... a single beam oscilloscope with a sensitivity of \(10 \mathrm{mV} / \mathrm{cm}\) at 10 WHz bandwidth

\footnotetext{
The S54A is an all solid state oscilloscope developed from the S54. Smarily styled yet ruggedly built, the S54A has a wide application in field work, in the laboratory and in production line testing. Look at the features
* 10 MHz Bandwidth at \(10 \mathrm{mV} / \mathrm{cm}\)
* All Solid State Design
* Small Size - Light Weight
* FET Inputs
* Versatile Triggering including T.V. Line
and Frame Sync.
* \(6 \times 10 \mathrm{~cm}\). Viewing Area
* Built-in Voltage Calibrator.
}

> Al \(£ 125\) you will find no other oscilloscope of its type which offers such features at such low cost. Wwrite or phone for full specification NOW! !!

\section*{TELEQUipment \ll >}

\title{
Wireless World
}

\author{
Electronics, Television, Radio, Audio
}

This month's cover picture depicts the high temperatures needed for semiconductor diffusion. It illustrates one of the 26 diffusion furnaces, which normally operate in the 900 to \(1200^{\circ} \mathrm{C}\) range, at the Toulouse manufacturing plant of Motorola Semiconductors. Primarily used for the diffusion of integrated circuits each furnace has an output of at least 10,000 wafers per week.

> IN OUR NEXT ISSUE
> Construction of a twelve-hour digital clock which mploys twelve t.t.l. integrated circuits and four gas-filled numerical readout tubes, is simplified by ihe use of programmable universal elements.
> High performance stereo decoder using f.e.ts in a sampling circuit.
> 30-watt class B amplifier design with new approach to cross-over distortion problem.

\section*{Contents}
\(\begin{array}{ll}1 & \text { Criteria for Frequency Allocations } \\ 2 & \text { Loudspeaker Enclosures by E. F. Fordan } \\ 6 & \text { H.F. Predictions } \\ 7 & \text { U.H.F. Log-periodic Aerial by 7. L. Eaton \& } R \text { R. C. D. Thoday } \\ 9 & \text { Circuit Ideas } \\ 10 & \text { News of the Month } \\ 13 & \text { Voltmeter using F.E.Ts Measures Capacitor Insulation Resistance }\end{array}\)
by Lloyd E. MacHattie
Letters to the Editor
High-quality Tape Recorder-3 by J. R. Stuart
Heat Sink Abac by f. fohnstone
Elements of Linear Microcircuits-4 by T. D. Towers
Conferences \& Exhibitions
An Equation-solving Aid by V. f. Phillips
Books Received
The Long Run by Thomas Roddam
Negative Feedback in Transistor Amplifiers by S. W. Amos
Announcements
January Meetings
Electronic Building Bricks- \(\mathbf{8}\) by fames Franklin
World of Amateur Radio
New Products
Literature Received
Personalities
Real \& Imaginary by "Vector"
appointments vacant
INDEX TO ADVERTISERS

\footnotetext{
PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: 01-928 3333 (70 lines). Telegrams/Telex. Wiworld Bisnespres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home; \&3 0s 0d. Overseas: 1 year \(£ 3\) Os 0d. (Canada and U.S.A.; \$7.50). 3 years \(£^{7}\) 13s 0d. (Canada and U.S.A.; \(\$ 19.20\)). Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notity a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 202, Lynton House, Walsall Road, 22b. Telephone: 021-356 4838. BRISTOL: 11, Elmdale Road, Clifton, 8. Telephone: OBR2 21204/5. GLASGOW: 2-3 Clairmont Gardens, C.3. Telephone: 041-332 3792. MANCHESTER: Statham House, Talbot Road, Stretford, M32 OEP. Telephone: 061-872 4211. NEW YORK OFFICE U.S.A.: 205 East 42rd Street, New York 10017. Telephone: (212) 689-3250.
}

Joint Authority depend on a closed-
circuit television system from Marconi to
regulate traffic flow and provide advanced warning of potential hold-ups. The six-screen surveillance consol depends on Brimar.

There are six Brimar M36-121 W/S Monochrome Cathode Ray Tubes - each one providing a vital visual link between the Kent Control Centre and every zone of the tunnel.

Brimar manufacture the widest range of cathode ray

\section*{CRT reliability} tubes for industry to meet most specifications. Tomorrow's new and more complex demands are already being evaluated by Brimar. It's this kind of forward thinking that keeps Brimar ahead. Write for further details.

Thorn Radio Valves
and Tubes Limited
7 Soho Square, London, W1V 6DN
Tel: \(01-4375233\). врт-।

\section*{Wireless World}

\section*{Editor-in-chief:}
w. T. COCKING, F.I.E.E

\section*{Rditor:}
H. W. BARNARD

Technical Editor:
T. E. IVALL, M.I.E.R.E.

Deputy Editor:
B. S. CRANK

\section*{Assistant Editors:}
J. GREENBANK, B.A.
G. B. SHORTER, B.Sc.

\section*{Drawing Office:}
L. DARRAH

\section*{Production:}
D. R. BRAY

\section*{Advertisements:}
G. BENTON ROWELL (Manager)
G. J. STICHBURY
B. STOREY (Classified Advertisement Supervisor) Telephone: 01-928 3333 Ext. 533 \& 246.

\section*{Criteria for Frequency Allocations}

Somebody pointed out to us the other day that, of the radio frequency spectrum below 1000 MHz (the most widely used, and useful, for equipment design reasons), over fifty per cent is occupied by television broadcasting. What is your reaction to this? If you have none, don't bother to read on. If you do react, you may clap your hands and say television is an excellent contribution to our culture and this allocation is just as it should be. Or you may say 500 -odd MHz is an unreasonable amount of space for a public entertainment that only occasionally rises above the trivial, and there are other services which could use it to much better purpose. In either case you will be alive to the fact that the division of spectrum space is basically a social matter. Many engineers get absorbed in the technical problems of allocation and tend to forget this.

New Year 1971 is an appropriate time to look at the radio spectrum because there is going to be quite a burst of official activity during the year. The E.B.U. will be holding a meeting in Britain at which it may be considering such things as the spacing of m.f. broadcasting channels. There is to be a world conference on space telecommunications, and the I.T.U. will be considering whether to start work on a new broadcasting frequency plan to replace the 1949 Copenhagen Plan. Within the U.K. there is the expected Government White Paper on broadcasting, while the Frequency Advisory Committee, a body representing interested users, has been woken from its slumbers and will be advising the new Minister of Posts and Telecommunications.

The recent argument in Wireless World's correspondence columns about a part of the u.h.f. band-which roughly may be summed up as amateurs vs. mobile radio-has been conducted solely on the level of technology and economics. The mobile radio manufacturers seem to be casting covetous eyes on some of the spectrum space at present occupied by amateurs, and are arguing that lack of frequencies will seriously inhibit technical development, sales and exports. The amateurs, defending their territory, are drawing attention to the value of the pioneering experimental work they have done in the past and are still doing. Both arguments are valid from their own limited points of view, which are views of utility. But it should be possible for any group of users to start with the fundamental attitude "we are a living section of the community, and we have a right to live, regardless of whether our activities are 'useful' or not". After this they must accept certain restrictions, imposed by socially determined laws. The radio spectrum is a natural resource. It is, of course, exploited for economic advantage by particular groups, but ethically it 'belongs' to nobody-or to everybody.

At present it is difficult to discern any guiding principle by which spectrum space is allocated, either nationally or internationally. Probably the shape of any given plan is determined by the relative strengths of the various lobbyists. To find some formula based on a measure of social value would certainly not be easy. How, for example, to weigh 8 MHz -worth of "Coronation Street" against 8 MHz -worth of ambulance radio communication? But it seems we are in fact quite willing to spend a lot of money on putting high quality brains to work on frequency allocations. What we question is whether delegations consisting exclusively of engineers and technocrats are the right ones for the job.

\title{
Loudspeaker Enclosures
}

\title{
Types of baffle and the acoustical laws governing their application
}

\author{
by E. J. Jordan
}

Few subjects lend themselves so readily to amateur experiments as do loudspeaker enclosures. Almost any configuration of wooden panels will provide some obstruction to sound radiated from the rear of the loudspeaker cone, and will therefore contribute towards the first and foremost function of the enclosure, i.e. to prevent the radiation from the rear of the cone cancelling that from the front. A multitude of baffle arrangements and techniques can be used, but for the purpose of this article it is helpful to start by showing the relationships that exist between the more frequently used types. To this end the reader is referred to the lineage chart Fig. 1.

The "daddy" of them all is the infinitely large flat baffle (a). The two simplest derivatives of this are the finite flat baffle (b) and by folding the sides, the open backed box (c) Completely sealing the back of the box gives

Fig. 1. The lineage of loudspeaker baffles.
us the popular closed box infinite baffle (d)-leaving a small opening in the enclosure walls, results in the vented or reflex enclosure (e). If the sides of the open backed cabinet are extended we have the basic form of a tuned pipe (\(f\)), which may be tapered (g), flared to form a horn (h), or resistively loaded to provide an absorbing transmission line (i). Pipe systems may be combined with vented enclosures to produce various hybrids (j) (k) and (l). Forms shown are diagramatic only. Pipes and horns are usually folded.

These basic enclosure types have been with us for very many years, although variations of them are regularly re-invented. For example the closed box appeared in the "fifties" as the "acoustic suspension", what used to be known as the labyrinth has recently reappeared as the transmission line. No doubt sooner or later the flat baffle will be reincarnated as a "free field doublet".

Generally speaking enclosure systems fall into two broad categories. First there are those where the rear radiation from the loudspeaker cone is completely suppressed. The only two true examples of this are the infinite flat baffle and the completely closed box. Secondly there are the systems where the rear radiation is phase inverted, so that it is in phase with the radiation from the front of the cone and therefore augments it. Most types of enclosure, other than those just mentioned, fall into the second category although resistivity loaded systems such as (i) and (j) fall somewhere in between. We will now examine in detail the design and performance of each of the principal enclosure types and discuss their relative advantages.

\section*{Mechanical impedance}

Any enclosure or baffle system will apply a mechanical impedance to the rear of the cone, and will appear as in series with the analogous circuit as shown in Fig. 2.

In the case of simple baffle systems, this impedance is due to the radiation impedance on the rear of the cone and is similar to that on the front of the cone. In all other systems however, the impedance applied to the rear of the cone is much higher than the radiation impedance and one of the major design considerations is the relationship between this impedance and the actual mechanical impedance of the cone. Before undertaking
the design of an enclosure system, therefore, we must know the values of the cone impedance components. We may have the design details of the loudspeaker driver units in question, if so, well and good, but if we have to design an enclosure for a loudspeaker where these parameters are not available as is often the case, then we need some means of determining them. The techniques described below may be used to determine all of the low-frequency parameters of a movingcoil loudspeaker unit.
1. Measure the d.c. resistance of the voice coil \(R_{E D C}\).
2. Plot the voice coil impedance curve subtracting from every reading \(R_{E D C}\). The resulting curve will look something like Fig. 3.
3. This will represent the motional impedance \(Z_{E M}\) having a peak value at resonance of \(Z_{E M \text { peak }}\)
4. To find the total moving mass (\(L_{M i}\)), observe the resonant frequency (\(f_{0}\)) from the impedance curve. Apply a sufficient known weight (\(L_{M}\)) (a piece of plasticene) to

Fig. 2. Mechanical impedances applied to rear of cone by different enclosures. The impedance appears in series with the analogous circuit.
considerably reduce the resonant frequency \(\left(f_{1}\right)\). Then
\[
L_{M t}=\frac{L_{M} f_{1}{ }^{2}}{f_{0}^{2}-f_{1}{ }^{2}}
\]
5. To find the \(Q\) of the mechanical circuit \(\left(Q_{M}\right)\) find frequencies either side of the impedance peak on the \(Z_{E M}\) curve where the impedance has fallen to 0.707 of its maximum value. Let these frequencies be \(f_{h}\) above and \(f_{l}\) below the peak, then
\[
Q_{M}=\frac{f_{0}}{f_{h}-f_{l}}
\]
6. To find the equivalent electrical capacitive reactance \(X_{E M}\) due to the mechanical mass
\[
X_{E M}=\frac{Z_{E M \text { peak }}}{Q_{M}}=\frac{1}{2 \pi f_{0} C_{M}}
\]
7. To find transducing constant (Bl)
\[
X_{E M}=\frac{B^{2} l^{2}}{10^{9}} \cdot \frac{1}{X_{M}} \quad \text { where } \quad X_{M}=2 \pi f_{0} L_{M}
\]
\[
\therefore B l=\sqrt{X_{E M} \cdot X_{M} 10^{9}}
\]
8. To fipd equivalent electrical inductance due to stiffness of suspension \(L_{E M}\)
\[
\begin{aligned}
f_{0} & =\frac{1}{2 \pi \sqrt{L_{E M} C_{E M}}} \\
L_{E M} & =\frac{1}{4 \pi^{2} f_{0}{ }^{2} C_{E M}}
\end{aligned}
\]
9. To find compliance of suspension \(C_{M}\)
\[
C_{M}=\frac{B^{2} l^{2}}{10^{9}} \cdot \frac{1}{L_{E M}}
\]
10. To find total closed circuit \(Q(Q T)\)
\[
\begin{aligned}
Q_{T} & =\frac{R_{E d c}+R_{E a}}{X_{E M}} \\
& =\left(R_{E d c}+R_{E a}\right) 2 \pi f_{0} C_{E M}
\end{aligned}
\]
\(R_{E a}\) is the amplifier resistance, usually \(\ll R_{E d c}\)
Calculations 6-9 above are based upon the electro-mechanical relationships discussed in November's article.

\section*{The closed box}

Sometimes known as an infinite baffle, the closed box completely seals off the radiation from the rear of the loudspeaker cone. The sealed volume of air acts as an elastic cushion adding a stiffness impedance to the motion of the cone. Obviously the smaller the box, the higher the stiffiness. In the analogous circuit, it appears as a capacitive reactance and, as would be expected, its effect is to increase the bass resonant frequency, above its free air value. Normally the total circuit \(Q\) will also be increased.

Many modern small bookshelf loudspeakers employ this approach. In fact where a small loudspeaker with high power handling capacity is required, the closed box is the obvious solution. We must be careful however, in discussing electrical power handling capacity, when the real criterion is acoustic power handling capacity, i.e. not how much power we can put in, but how much sound we can get out. Therefore we should never consider power handling capacity without considering efficiency. The

Fig. 3. Motional impedance circuit of moving coil loudspeaker in free air.
factor we are really concerned with is total available sound power over the required bandwidth. This is particularly relevant to small closed box systems, since in order to combat the rise in resonant frequency due to the enclosed air stiffness, the mass of the cone or diaphragm is usually made very high, resulting in a low efficiency system, even though as we shall see the \(B l\) factor is normally increased to maintain a \(Q_{T}\) of unity at resonance. The inevitable mass of the cone and coil system limits the system to low frequency operation only, rendering the use of crossover techniques imperative.

An alternative to using heavy cones is to use a small cone. It can be shown that the impedance of any enclosure is proportional to the square of the cone area. The problem in this case however, is one of maintaining adequate power bandwidth down at the lowest frequencies.

The mechanical compliance (\(C_{M b}\)) of an enclosed volume of air is
\[
C_{M b}=\frac{V_{b}}{\rho c^{2} A^{2}}
\]
where \(V_{b}\) is the volume of box in \(\mathrm{cm}^{3}\); \(\rho=1.21 \times 10^{-3} ; c=3.44 \times 10^{4}\) and \(A\) is cone area.

The effect of the enclosure on the free air resonant frequency and \(Q\) must be determined by considering \(C_{M b}\) in series with \(C_{M}\)
\[
Q \propto f_{0} \propto \sqrt{\frac{C_{M b} C_{M}}{C_{M}+C_{M b}}}
\]

In the majority of small closed box systems \(C_{M b}\) is very much smaller than \(C_{M}\) and both \(Q\) and \(f_{0}\) become substantially proportional to \(1 / \sqrt{C_{M b}}\).

The overall mechanical closed circuit \(Q\left(Q_{T}\right)\) is
\[
Q_{T}=\frac{2 \pi f_{0} L_{M} R_{E t}}{B^{2} l^{2}}
\]
where \(R_{E t}\) is the total electrical resistance. From this, if \(Q_{T}=1\) then
\[
B^{2} l^{2} \propto f_{0} L_{M t}
\]

Maintaining this relationship, it can be shown that the mid-range efficiency (\(\eta \%\)) has the proportionality
\[
\eta \% \propto f_{0}^{3} V_{b}
\]

Assuming the system is designed for maximum efficiency, i.e. there is no significant mechanical damping, then the above relationship is invariable for a moving-coil unit in a small closed box irrespective of whether the heavy cone or small cone approach is used. The point is, that any
attempt to increase the mid-range efficiency by using a higher value of \(B!\) than specified above will result in a value of \(Q_{T}\) lower than unity which in turn will give a reduction in the low-frequency efficiency. The effect of changing \(B l\) is shown in Fig. 5.

Having stated the invariability of the relationship for a moving-coil unit in a small box we can now throw a spanner into the works by pointing out that the relationship can be broken by using two units connected in series. In this case, the \(Q\) will always be higher than unity irrespective of the \(B l\) factor, therefore this may be increased as much as economics will allow, with the pro-rata increase in overall efficiency. Some mechanical means of controlling the \(Q\) must be used. One way of doing this is to fill the enclosure with absorbant material. This has the additional effect of increasing the effective enclosure volume by up to \(40 \%\).

Observations. One cannot speak of designing a closed box in the sense that the enclosure dimensions are calculated. There is no critical volume for any given unit, simply for a given low-frequency extension, the smaller the box the lower will be the efficiency.

A first class example of trading efficiency for size, is the Goodman's Maxim. Within the limits of its sound power, its performance is very comparable with much larger units. The general quality of the lowfrequency performance from closed box systems can be superlative. The finest bass performance I have heard or measured, is provided by the well known American AR 3. Unfortunately it is almost inevitable that cross over techniques have to be employed

Fig. 4. Variation of efficiency with cabinet volume \(V_{b}\) and low-frequency limit \(f_{0}\).

Fig. 5. Effect of Bl on response of small closed box.
in closed box systems, with the resulting problems discussed in the article in the November issue.

\section*{The vented enclosure}

Sometimes known as reflex or phase inverter, the vented enclosure is in theory one of the neatest and most efficient forms of loudspeaker loading. In practice however, many.reflex enclosure designs produce a bass response that wallows like a pregnant hippo in a mud bath. This is entirely due to incorrect design. Although no one ever seems to take any notice of anything I say I will once more cover this subject from the beginning.

The vented enclosure is closed except for the existence of a relatively small vent. Sometimes the vent is extended inwards by means of a duct. The enclosed air behaves in a manner very similar to that of the closed box, inasmuch that it provides an elastic cushion of air against which the cone has to work. The air in the vent or duct however, behaves as a mass which can "bounce" on the cushion, and therefore exhibits a resonant frequency of its own independently of the loudspeaker. When the air "brick" in the duct bounces on the cushion at its natural frequency, the reactive components are of course cancelled and the impedance to motion is only that provided by the friction of the sides of the vent, and the air load: the velocity is therefore very considerable.

When this resonance is excited by the loudspeaker cone, the enclosed air becomes subjected to compression and expansion by both the cone and the vent air mass, which at resonance operate in phase, i.e. moving into and out of the enclosure together. The effect from the point of view of the cone is that the stiffness of the enclosed air is increased enormously at this frequency, and the cone displacement is considerably reduced thus increasing the power handling capacity. The situation at the enclosure resonance therefore, is that the cone looks inṭo a high impedance and the air loadis fed mainly from the vent which is a lowimpedance source.

This gives us the key to the correct way in which to regard the vented enclosure, i.e. as a matching device, matching the high mechanical impedance of the cone to the low impedance of the air load.

How then do we deal with the terrifying value of enclosure \(Q\), which in a good system ought to be between 10 and 20? One frequently used technique, is to stuff a sock (or equivalent) in the vent and call it resistive loading. This means that the efficiency of the system is completely destroyed and the air load or the cone is considerably reduced A better way is to introduce a leakage resistance in the enclosure walls. The acoustical resistance I described in an article in 1956* was an example of this. The ideal way however, is to use the loudspeaker itself. Imagine the vent and cavity in a condition of resonance. Forget for the moment that the loudspeaker is the energy source. From the point of view of the enclosed air, the loudspeaker constitutes an opening in the cavity wall.

\footnotetext{
*Jordaǹ, E. J., "Loudspeaker Enclosure Design", Wireless World, January and February 1956.
}

The cone can be driven in and out by the internal air pressures. In doing this, energy is dissipated in driving the cone against its own electro-magnetic damping. (We are assuming the coil is still connected to the amplifier). The lower the magnetic damping the easier it will be to drive the cone, i.e. the cone will constitute a more transparent cover over the hole in the enclosure wall and more energy will be dissipated. If, for example, the electro-magnetic damping were infinite, the cone would not move and there would be no energy dissipation here and, therefore, no damping.

Here then we have the interesting situation where if the enclosure \(Q\) is controlled by the loudspeaker \(Q\), the one will be inversely proportional to the other, i.e. if we increase \(B /\) to reduce the loudspeaker \(Q\), the enclosure \(Q\) will increase. At some frequency above the resonance of the enclosure, the vent air mass will become too inert to move and the enclosure will behave as though it were completely closed. A resonance will occur exactly as described for the closed box. Radiation from the vent will be negligible. Below the resonance of the enclosure the vent air mass will be simply added to the mass of the cone and a further resonance will occur. The vent air mass will then be moving in anti-phase with that of the cone. The \(Q\) values of both the above secondary resonances will be a direct function of the loudspeaker \(Q\).
We now have three resonant conditions to deal with, where the \(Q\) of twa of the resonances is a direct function of the loudspeaker free air \(Q\) value, and one is an inverse function. Can we juggle this lot. and get them under control? Yes, provided we accept the very important conclusion that the enclosure and loudspeaker unit are made parts of an integral design. In my early days in loudspeaker development, I was asked to "design a reflex enclosure for a 12 in loudspeaker", the \(B l\) factors of which could vary from 10,000 gauss on a 1 in coil to 17,500 gauss on a \(1 \frac{3}{4}\) in coil. I actually did it and mused awhile on hippos.

The aim in the case of correct reflex design is to ensure that all \(Q\) values are at unity. It can be shown that this condition is met by letting. \(C_{M b}=0.62 C_{M}\), letting the free air \(Q\) of the loudspeaker be 0.62 , and tuning the enclosure to the free-air resonance of the cone. The full approach is as follows
1. decide upon the required low-frequency limit \(f_{0}\).
2. decide upon the mass and dimensions of the cone from consideration of the required overall power bandwidth and economics.
3. determine the compliance of the cone suspension system \(\left(C_{M}\right)\).
4. determine the volume of the enclosure air cavity \(\left(V_{b}\right)\) from :
\[
V_{b}=\rho c^{2} A^{2} C_{M b}
\]
where \(\rho=1.21 \times 10^{-3}, c=3.44 \times 10^{4}, A\) is cone area sq cm, and \(C_{M b}=0.62 C_{M}\).
5. design the magnet and coil system so that
\[
B l=\sqrt{\frac{2 \pi f_{0} L_{M} R_{E t}}{0.62}}
\]
6. design a vent and duct system to reso-

\(4 \rightarrow 2 \rightarrow 3\) Decreasing Bl
Fig. 6. Effect of Bl on response of vented enclosure.
nate with \(V_{b}\) at \(f_{0}\). The basic equation here is
\[
\frac{l+1.7 r_{v}}{r_{v}{ }^{2}}=\frac{c^{2}}{4 \pi V_{b} f_{0}{ }^{2}}
\]
where \(r_{v}\) is the effective radius of the aperture, and \(l\) is the length of aperture or duct.

If the aperture is not circular, then
\[
r_{v}=\sqrt{\frac{A_{v}}{\pi}}
\]
where \(A_{v}\) is the cross sectional area.
It will be seen that there is an infinite range of values of \(l\) and \(r_{v}\) which will satisfy the above equation. The aim here is to make \(r_{v}\) as large as possible. It should not be less than about half the cone radius at the very least. The upper limit is set only by how big one can afford to make the box. It used to be said that it should not be longer than \(\lambda / 12\) at \(f_{0}\). This is because of the danger of the pipe not behaving as a true mass. The implication of this will be discussed later. The volume of the duct system must of course be added to the enclosure to give the overall cabinet volume.
This approach will ensure that the system will be non-resonant and that maximum power bandwidth and power handling capacity is obtained from the system. The effect of varying \(B l\) is shown in Fig. 6.

Observations. In spite of their obvious advantages, vented or reflex enclosures are rarely used. There are various probable reasons for this. First there is the problem of having to design the loudspeaker and the enclosure specifically for each other. As far as I know, the design procedure described above is not generally used in spite of the fact that it was introduced in this country by my book \(\dagger\) written in 1962. Certainly, I think, many incorrect designs have given the reflex enclosure a bad name. A further problem is that at subsonic frequencies the cone is virtually unloaded. This should not matter except where there is a high degree of turntable rumble.

The answer is, I would have thought, to use a better turntable, for even if the speaker can accommodate high-amplitude low-frequency swings, these will be using up available power in the amplifier. Another frequent source of high amplitude swing is the amplifier itself. Many transistor amplifiers exhibit a characteristic whereby if they
†Jordan, E. J., 'Loudspeakers'. Focal Press.
receive a large low-frequency transient component in the signal, the h.t. voltage momentarily falls causing a near d.c. pulse to be applied to the loudspeaker. With a well designed reflex enclosure even with a small loudspeaker unit, adequate power bandwidth is secured with peak cone displacements due to the signal of not more than \(\frac{1}{8} \mathrm{in}\). Where displacements are much higher than this, these are observed. It will usually be due to one of the problems already mentioned.

Seldom realized, but a very real problem wit h vented enclosures, is the need to provide a decorative grille cloth over the front of the enclosure. Since the output impedance of the vent is (or should be) extremely low, almost anything in the way of a covering will constitute a substantial impedance. This could easily halve the efficiency of the system, and further the high air velocities will cause the cloth over the vent to flop. For many years the only really satisfactory grille material has been expanded metal which does not appeal much domestically. However, there are now available synthetic materials having a rather complex pore structure, which renders them almost acoustically transparent, whilst being optically opaque. These materials provide an interesting decorative texture and come in a variety of colours. They are unfortunately rather expensive.

\section*{The pipe systems}

The simplest of these is the parallel sided tuned pipe. This, like the organ pipe, will exhibit series of resonances and anti- resonances. By choosing an appropriate length, the lowest anti-resonance of an open pipe can be used to load a loudspeaker cone in a manner similar to a reflex, inasmuch as the cone will look into a high impedance at one end of the pipe and the air load will see a low impedance at the other. The length of pipe required for a cone resonant frequency \(f_{0}\) is given by
\[
I=\frac{3.44 \times 10^{2}}{4 f_{0}}-1.7 \text { radius }
\]
where all dimensions are in metres.
The problem here is the existence of the other resonances and anti-resonances which exist at all frequencies where the length of the pipe is an integral number of quarter wavelengths. It is not really possible to "kill" these without impairing the efficiency of the pipe.

An improved system, very popular many years ago, was the tapered pipe with the loudspeaker mounted \(\frac{1}{3}\) wavelength down from the closed end. The taper tended to reduce the \(Q\) values of the resonances, and the position of the speaker was such as to remove the third harmonic resonance.

\section*{The labyrinth}

This is a variation of the tuned pipe approach, where the pipe is heavily loaded with resistive material, thus eliminating its resonance characteristics. The system is extremely inefficient. The load applied to the cone is high and resistive, this tends to
provide constant velocity operation requiring the application of the correct degree of bass boost from the amplifier. The loudspeaker must be capable therefore, of handling high power inputs. The advantage of the system is, that it is completely resonance free.

\section*{The horn}

This can provide the most efficient form of loudspeaker loading, the efficiency being limited only by its physical size. Like the reflex enclosure the horn is an impedance matching device between the loudspeaker cone and the air load. However, the elficiency can be much higher and extend over a much wider bandwidth. The load applied to the cone by the throat of the horn is, basically very high, and resistive. It takes over the control of the cone so we are free to make \(B /\) anything we like, limited only by cost. Three types of horn are encounteredconical, exponential and hyperbolic. These are determined by the particular flare law used.

In all cases the mouth diameter should not be less than \(\frac{1}{3}\) wavelength at the lowest working frequency \(\left(f_{0}\right)\).
The rate of flare is determined by the flare law used, and \(f_{0}\). In the case of the conical horn, the area \(A_{x}\) any distance \((x)\) from the throat is given by
\[
A_{x}=A_{t} x^{2}
\]
where \(A_{t}\) is the throat area. The -3 dB point is given by
\[
f_{0}=\frac{9 x}{A_{x}} \quad \text { or } \quad x=\frac{f_{0} A_{x}}{9}
\]

The impedance at the throat of an infinite conical horn is
\[
Z_{A_{1}}=\frac{\rho c}{A_{t}}\left[\frac{\left(k x_{t}\right)^{2}}{1+\left(k x_{t}\right)^{2}}+j \frac{k x_{t}}{1+\left(k x_{t}\right)^{2}}\right]
\]
where \(x_{i}=\) distance from throat to \(A=0\).
For similar overall dimensions, the exponential horn will extend the low-frequency limit by about three octaves compared with the conical horn.

In this case
\[
A_{x}=A_{t} \varepsilon^{m x}
\]
\[
\text { where } \quad m=\frac{4 \pi f_{0}}{3.44 \times 10^{4}}
\]
and all dimensions are in cm .
The impedance at the throat of an infinite exponential horn is :
\[
Z_{A t}=\frac{\rho c}{A_{1}}\left[\sqrt{1-\left(\frac{f_{0}}{f}\right)^{2}}-j \frac{f_{0}}{f}\right]
\]

The hyperbolic horn will gain about one third of an octave over the exponential horn. The flare is given by
\[
A_{x}=A_{i}\left[\cosh \frac{x}{x_{0}}+T \sinh \frac{x}{x_{0}}\right]^{2}
\]
where \(x_{0}\) is the distance of the throat back to where \(A=0\), and \(T=\) shape factor (typically 0.6).

The low-frequency limit is given by
\[
f_{0}=\frac{c}{2 \pi x_{0}}
\]
and throat impedance by
\(Z_{A t}=\)
\[
\frac{\rho c}{A} \frac{f_{0}}{f}\left[\frac{\sqrt{\left(f / f_{0}\right)^{2}-1}}{f / f_{0}-(1-T)}+j \frac{f / f_{0}}{f / f_{0}-\left(1-T^{2}\right)}\right]
\]

From the throat impedance expressions, it is seen that in general horns apply a resistive air load to the cone above \(f_{0}\) and a mass reactive load below \(f_{0}\).

Observations. In spite of the fully documented theory showing the large dimensions necessary for the horn loading, there are horn systems much smatler than this that appear to work! It must be realized, however, that the efficiency of a full horn can be tremendous, i.e. of the order of \(30-50 \%\). This represents a gain of about twenty times higher than we are at present accustomed to, with modern loudspeakers. This may be very impressive, but do we need it? Is the average housewife going to accept a total of some hundred cubic feet or more in the shape of a loudspeaker system, so that hubby can use a one-watt amplifier, instead of twenty watts?

Further, a horn will only work over a restricted frequency range. Some other arrangements have to be made to deal with the middle and high frequencies. These again may be catered for with horn-loaded midrange, and treble units, but this introduces many problems of coloration and distortion. Securing a good diaphragm/throat match is extremely difficult at higher frequencies, therefore, we need not be too ambitious with our horn design. If we can evolve a design whereby an efficiency of a few percent can be maintained at the lowest frequencies, whilst loading the cone to keep the power handling capacity up, then we shall be achieving as much as is required. This can be secured with relatively small horns. There is a problem in that a small horn will exhibit resonances similar to those in the tuned pipe, but this can be overcome by the use of hybrid systems which are now described.

\section*{The hybrids}

There is an increasing number of these systems, from what I have read, and their designers are not always certain how they work. Being hybrids their manner of operation can be regarded from a number of points of view. Basically, the hybrid comprises a cavity coupled to a long duct. Varieties have appeared with straight sided ducts, and ducts which are tapered or flared in either direction. The most frequent analytical approach, is to place the emphasis on the duct design and regard the cavity as merely the coupling component to the cone. Another approach is to regard these systems as reflex enclosures with abnormally large ducts.

I propose to look at the system from both ends.

From the point of view of the loudspeaker cone, the hybrid provides loading conditions similar to those encountered in a highly efficient reflex enclosure, and the design approach is identical with the one we have set out. The difference arises when we come to determine the duct dimensions. In the hybrid the duct may be up to several feet in
length with a pro-rata increase in its cross sectional area.
This offers a very great advantage over the conventional reflex enclosure, insomuch that very high volume velocities may be secured at the duct opening with relatively low particle velocities. High particle velocities may give rise to eddy current formation at the edges of the duct, in which case, the air moving into the vent will encounter a higher impedance than the air moving out resulting in a degree of rectification and consequent distortion. The use of a duct with a large cross sectional area reduces this, and increases the efficiency of the system.

Any duct will tend to resonate as a tuned pipe and in the case of the duct lengths being discussed. the resonant frequencies will be comparable to those due to the reflex mode of operation. Generally speaking, we need only be concerned with the lowest of these due to the fact that the cavity effectively decouples the duct above the enclosure resonance, so the higher duct res onances are not excited. What remains to be considered is that at the reflex resonance the air in the duct will not be operating as a pure mass.

This will give rise to three situations:
1. The resonant frequency of the enclosure will be modified. This can be countered by a readjustment of the duct dimensions.
2. The radiation from the end of the duct will be delayed in phase, but for the duct lengths under discussion, this will not be very significant and will favour the lower frequencies, i.e. the phase will move in retardation as frequency rises and the duct radiation becomes progressively unimportant.
3. The lowest of the duct resonances will be introduced into the system which could be dangerous, since there is no way of controlling it with the loudspeaker \(B l\) factor.

This introduces us to the major problem of the hybrid-how to eliminate the lower resonances of the duct? The only thing that can be done is to introduce resistive material into the pipe. This however, tends to reduce the efficiency and throw away one of the principal advantages of the hybrid. The requirement is for the resistance introduced into the pipe to provide a high degree of absorption to pressure differentials within the pipe at the same time, offering a minimum resistance to the "through" air flow. Many compromise techniques have been developed to do this, but an almost perfect answer lies in the use of membrane absorbers. A membrane absorber consists basically of a layer of fibrous material covered with a thin impervious sheet, which acts as a membrane. If the membrane is subjected to air pressures it will compress the fibrous material and energy will be absorbed due to the mechanical friction between the fibres. This provides quite different absorption characteristics than would be obtained without the membrane.

In the latter case, energy is absorbed directly from air friction due to the air moving into and out from between the fibres which themselves are not displaced. Whereas a normal fibre-glass or wool lining becomes inoperative at low frequencies, the membrane absorber remains very effective and has the further great advantage that when used as a duct lining, the smooth surface of
the membrane offers very little resistance to the through passage of air. It is a fact that if the cost can be accommodated, the membrane absorber provides a far more satisfactory solution to cabinet lining than the normally used materials.

We have so far been discussing a straight sided duct. Further advantages may be secured by using a tapered or flared duct such that the narrow end is at the cavity and the mouth feeds the air load. This is not only further reduces the losses and eddy current formation, but a further small increase in efficiency is secured due to the duct acting as a horn. The rate of flare must be determined from the expressions given in the section on horns above. A further advantage is that the load on the cone at very low frequencies is increased, due to the throat impedance.

\section*{Conclusions}

It is a great pity that even in our writing, we tend to scparate loudspeaker units from loudspeaker enclosures. It is just not possible to provide a satisfactory design for the one without considering in detail the other. In order to design a loudspeaker unit, it is necessary to settle one or two minor details such as how big to make the cone or diaphragm, and how heavy it should be. What should the maximum displacement be? The magnetic circuit and voice coil dimensions? The stiffness of the suspension? It is not possible to settle any one of these parameters without a detailed knowledge of the loading conditions. The correct approach to loudspeaker system design is first to specify the largest room volume in which the loudspeaker is to be used. From this can be calculated the required acoustic power to produce sound pressures that are consistent with the expected programme sources.

These sound pressures can be expressed in terms of the total volume of air that has to be moved into and out from the room; assuming the loudspeaker system is in the form of an enclosure, then the change of air volume in the room must equal the change in volume in the enclosure. The enclosure will have one aperture covered by the loudspeaker unit, it may or may not have one or more other apertures. The ingress and egress of air must take place through these apertures, and from this we can start to consider the relationship between the areas of the apertures (including the loudspeaker cone) and the air displacements through them. At this stage many other factors start to creep into the equations - the maximum permissible enclosure size, the available amplifier power, economics etc.

All this may be very obvious but it is the fundamental mode of thinking that ought to govern loudspeaker designers. I am not seriously proposing going through this exercise in detail every time, but the concept of the loudspeaker system being an enclosure that sucks and blows a predetermined volume of air is I think one which will start the designer off in the right direction.

\section*{H.F. PredictionsJanuary}

At the time of predicting there is no sign of a rapid decrease in the solar index so we can expect frequencies up to 25 MHz to be of some utility particularly for transequatorial routes. A secondary MUF (maximum usable frequency) peak before dawn is a seasonal feature observed on some long-distance paths. Large day/night frequency differential is characteristic of winter conditions although low latitude routes of less than 2000 km may have lower daytime frequencies than in the summer when propagation is via the E layer.

The LUFs (lowest usable frequencies) shown were calculated by Cable and Wireless Ltd for reception in the U.K. of point-to-point telegraphy. For other services the curves would be displaced vertically, the exact amount depending on service and equipment parameters.

\section*{U.H.F. Log-periodic Aerial}

\title{
Constructional details of wideband aerial for television reception
}

\author{
by J. L. Eaton*, B.Sc., M.I.E.E. and R. D. C. Thoday*, m.I.E.R.E.
}

It is obviously desirable that viewers should use the type of television receiving aerial which gives the best results for their location. This usually implies the installation of an outdoor or loft aerial connected to the set with good quality coaxial feeder. Available field strength of the transmissions is only one of the factors which influences the type of aerial required. It must also be capable of discriminating against unwanted co-channel signals and delayed reflections over as wide an arc as possible. In some areas, discrimination against delayed reflections is the most critical requirement. Receiving aerials as supplied by manufacturers can be obtained with adequate gain and their directivity is normally adequate to give protection against cochannel interference.

Delayed reflections, however, need greater suppression in general if ghost images are not to be visible on the received television picture. Directional receiving aerials of the yagi type, which are the most common, tend to have side and back lobes in their horizontal radiation patterns which vary with frequency and therefore differ from channel to channel. At locations where delayed reflections are potentially troublesome it may be impossible to position a yagi aerial to give sufficient protection against ghosts on all the available channels. The log-periodic aerial on the other hand, although its gain is somewhat lower than a yagi of comparable size, can be designed to have a horizontal radiation pattern with extremely small back and side lobes, which remains constant over a wide frequency band. It is therefore especially suitable for areas of reasonable signal strength where delayed reflections are a particular problem. This article describes the design of a log-periodic aerial for u.h.f. television reception.

\section*{Log-periodic principle}

Du Hamel and Isbell \({ }^{1}\) predicted that a frequency-independent aerial could be designed by making its configuration vary periodically with the logarithm of the frequency; that is by giving it a log-periodic structure. The dipole type described in this article is only one of a number of possible

Fig. 1. Schematic representation of log-periodic aerial with dipole elements connected to balanced feeder. Longest and shortest elements are made approximately \(1 / 2\) at lowest and highest frequencies.
configurations embodying this principle. \(\mathrm{A}^{\text {, }}\) schematic representation of the log-periodic dipole array is shown in Fig. 1. The longest and shortest elements are made approximately half-a-wavelength long at the lowest and highest frequencies of the band to be covered. In operation the aerial has an active region involving a group of elements whose lengths are near to half-a-wavelength at the frequency of the incoming signal. At a given frequency in the band covered by the aerial three adjacent elements are fully ac-

tive, the contributions from other elements falling off rapidly away from this region.

In this type of log-periodic aerial, all the dipole elements are connected to a balanced line; adjacent elements being connected in an alternate manner as shown in Fig. 1. The drive point of the balanced line is at the high-frequency end of the aerial, the other end being terminated in a short circuit behind the longest element. With this method of feeding the main lobe of the aerial pattern is in the direction of the high-frequency end. This means that an incident wave arriving in the main lobe passes over short nonresonant elements before reaching the active region appropriate to its frequency. Further, the signal from the active region travels along the feeder in the opposite direction, again only encountering nonresonant elements. Thus the pattern of the aerial is substantially that of the elements in the active region.

Two parameters (somewhat arbitrary) are required to define the aerial configuration, which specify the logarithmic spacing of the elements and the taper. The parameters \(T\) and \(o\) defined in Fig. 1 are most often used for this type of aerial.

The design is based on data given by Carrel \({ }^{2}\). Optimum values for \(T\) and \(\sigma\) giving the best radiation patterns were arrived at by experiment; these were \(T=\) 0.93 and \(\sigma=0.17\). Calculation showed that these values of \(T\) and \(\sigma\) would give a gain of approximately 9.0 dB relative to a dipole. The design bandwidth was made 2:1; slightly in excess of that occupied by channels 21 to 68 inclusive. This gave some

Fig. 3. Aerial and mount adjustable for either horizontal or vertical polarization.
latitude for possible deterioration of the aerial performance at both ends of the working range. Fifteen elements were required to obtain this bandwidth. All elements in the aerial were made from rod of constant cross-section and consequently it was necessary to make some allowance for the effective lengths of elements due to the variation of the ratio \(H / a\) (\(H\) is the element half-length and \(a\) its radius). The impedance characteristic is optimized by adding some shunt susceptance to the terminals of the transmission line.

\section*{Mechanical construction}

Construction and dimensions of the aerial are shown in Fig. 2. The balanced line on the axis of the aerial is made from a pair of \(12.7-\mathrm{mm}(0.5-\mathrm{in})\) square cross-section, light aluminium-alloy tubes separated by 9 mm (0.354 in) between adjacent faces. (This is a standard size of square tube which is obtainable from metal merchants.) The elements are made from \(6.35-\mathrm{mm}\left(\frac{1}{4}-\mathrm{in}\right)\) diameter aluminium-alloy rod flattened at one end and formed into a foot with a small turn-down as can be seen from Fig. 2. Elements are riveted with pop-riveting pliers to the square-section rods (rust-proof steel rivets are preferable). Self-tapping screws could be used in place of the rivets but the result would be less robust. The method for obtaining the alternating connection to the feeder can be seen in Fig. 2.

Aerial output is by way of an unbalanced feeder of 71 -ohm characteristic impedance, carried through the centre of one of the balanced-line conductors to terminals at the drive point of the balanced line. Terminals are protected by a plastic moulding. Mechanical support for the aerial is provided by a bracket mounted on the balanced line behind the longest dipole element, which also acts as the terminating short
circuit. This arrangement of coaxial feeder, balanced lines and short-circuit termination acts as a balanced-to-unbalanced transformer which minimizes the effect of pick-up on the outer conductor of the down lead. Fig. 3 shows the aerial with its normal mount which is adjustable for either horizontal or vertical polarization. The weight of the aerial, without clamps, is 1.02 kg .

\section*{Discussion}

Measured radiation patterns are shown in Fig. 4 for horizontal polarization and in Fig. 5 for vertical polarization. Although these patterns were measured at 650 MHz they are typical of patterns at any frequency in Bands 4 or 5 . Table 1 summarizes the pattern performance of the aerial over its entire frequency range. Fig. 6 shows a typical v.s.w.r. characteristic referred to a 71 -ohm connector cable.

The C.C.I.R. template \({ }^{3}\) for the recommended minimum directivity of u.h.f. receiving aerials is superimposed on the radiation patterns of the aerial in Figs. 4 and 5. The C.C.I.R. template is used as a criterion for planning purposes but greater rejection of signals from the back and side of the aerial than that implied by the template is necessary in certain areas to combat ghosting.

The E-plane pattern (horizontal polarization) meets this template although there is some transgression in the case of the H-plane pattern (vertical polarization). The aerial would therefore always be suitable for the reception of horizontally polarized transmissions, provided the gain is adequate. In general terms it will be satisfactory at locations having received field strèngths in excess of 70 dB (rel. \(1 \mathrm{l} \mathrm{V} / \mathrm{m}\)). In situations where the received transmission is horizontally polarized but where the gain is marginal, the use of an aerial

TABLE 1 Summary of radiation pattern performance
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { Frequency } \\
& (\mathrm{MHz})
\end{aligned}
\]} & \multicolumn{2}{|l|}{Half-power beamwidth (degrees)} & \multirow[b]{3}{*}{Gain (dB rel. \(\lambda / 2\) dipole)} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Minor lobes \\
(dB below maximum field)
\end{tabular}} \\
\hline & \multicolumn{2}{|c|}{Polarization} & & \multicolumn{2}{|c|}{Polarization} \\
\hline & Horizontal & Vertical & & Horizontal & Vertical \\
\hline 450 & 27 & 34 & 8.6 & 26.7 & 23.5 \\
\hline 500 & 26 & 32 & 9.3 & 33.2 & 33.6 \\
\hline 550 & 26 & 33 & 8.9 & 30.0 & 25.6 \\
\hline 600 & 26 & 32 & 9.2 & 34.4 & 31.5 \\
\hline 650 & 26 & 32 & 8.9 & 30.2 & 30.0 \\
\hline 700 & 27 & 34 & 8.7 & 27.0 & 25.0 \\
\hline 750 & 27 & 35 & 8.4 & 25.0 & 25.5 \\
\hline 800 & 26 & 33 & 9.0 & 35.5 & 24.0 \\
\hline 850 & 26 & 33 & 8.7 & 26.0 & 24.0 \\
\hline
\end{tabular}

Fig. 4. Radiation pattern at 650 MHz for horizontal polarization

Fig. 5. Radiation pattern at 650 MHz for vertical polarization.

Fig. 6. Voltage standing-wave ratio referred to a 71-ohm connector cable.
pre-amplifier could be considered, as the benefits of the very low back and side lobes would be preserved.

For reception of vertically polarized transmissions the radiation pattern could be improved by using two aerials stacked side by side. In many situations where the transmission is vertically polarized, but where the advantages of low back and side lobes are needed, it is likely that the small transgression of the C.C.I.R. template will not be serious. The performance of the aerial indicates that the principal advantages claimed for the log-periodic form have been achieved, i.e. low back and side lobes and constancy of performance over all the u.h.f. television channels in use in the U.K.

We think there is a good case for introducing an aerial of this type to the public.

\section*{REFERENCES}
1. Du Hamel, R. H. \& Isbell, D. E. 'Broadband logarithmically periodic antenna structures'. I.R.E. Nat. Conv. Rec. March 1957, Part 1, p. 119.
2. Carrel, R. 'The design of log-periodic dipole antennas'. I.R.E. Int. Conv. Rec. Vol. 9, 1961. 3. C.C.I.R. Recommendation 419, Documents of the XIth Plenary Assembly, Oslo 1966, Vol. 5, p. 62.

\section*{Circuit Ideas}

\section*{Voltage stabilizer}

The "variable diode" (see for instance Peter Williams' letter to the editor, Feb. 1969) is a useful element for circuit work, and one application where it has been employed is in a stabilized power supply (Fig.1) used by the writer to provide a nearly constant 9 V output from a nominal 12 V car battery. The supply was found to vary from 12 V to 14.5 V under normal driving conditions and this was reduced to \(9 \mathrm{~V} \pm 10 \mathrm{mV}\) by the

Fig. 1. Power supply giving 9V output from 12 V input.

Fig. 2. Regulator with zero or negative output resistance.
stabilizer when supplying 150 mA . The output voltage is also little affected by the output current, varying by less than 15 mV when the output current varies from 0 150 mA . The effective output resistance can be reduced to zero or made negative by modifying the circuit as shown in Fig. 2. A negative resistance has been found to be desirable when a brush type d.c. motor, such as used in battery operated tape recor-
ders, record players and model trains, must maintain a nearly constant speed regardless of variable mechanical loading. A single speed (3.75 i.p.s.) battery operated tape recorder was modified to provide an extra speed of 1.875 i.p.s. by operating the motor below its mechanically governed speed from the circuit of Fig.2. The sliders of the \(2 \mathrm{k} \delta\) and \(10 \Omega\) preset resistors were set to approximately mid. position for best results in the particular recorder used by the writer. The circuit would seem to be readily adaptable for many purposes, for higher or lower currents and for different transistors.
C. H. Banthorpe,

Northwood,
Middx.

\section*{Two-way d.c. along single wire}

The need arose for two d.c. signals to be conveyed in opposite directions along each wire of a multi-way cable 100 yards long. For each wire there is a control signal of 0 to 5 V d.c. terminated into a high resistance (\(1 \mathrm{M} \Omega\)) and a return signal of 0 to 5 mA . Using the circuit shown it was found that: (1) With a change of \(I_{v}\) from 0 to 5 mA (which corresponds to a change \(E_{y}\) of 1 to 5 V) the change in \(E_{x}\) was less
than 20 mV throughout the entire range of \(E_{x}\) from 0 to 5 V . (2) With a change of \(E_{x}\) from 0 to 5 V the change in \(I_{y}\) was less than \(30 \mu \mathrm{~A}\) throughout the entire range of \(I_{y}\) from 0 to 5 mA .
R. C. ALCINDOR,

Canvey Island,
Essex.

\section*{Phase splitter}

It may not be well known that the split-load phase splitter can be designed to have approximately the same output impedance at each output point. This is achieved by making the emitter side a bootstrap follower. A glance at the diagram makes the principle clear. If a voltage is applied to the emitter of \(T r_{2}\), very nearly the same voltage

appears at the base of \(T r_{2}\), since the collector impedance of \(T r_{1}\) is much greater than \(R_{1}\). Consequently very little current flows in \(T r_{2}\), and the output impedance is \(R_{2}\) in parallel with a high resistance. The output impedance at output 2 is the parallel connection of \(R_{3}, R_{4}\) and the high collector impedance of \(T r_{2}\). For balanced outputs \(R_{2}\) is made equal to \(R_{3} R_{4} /\left(R_{3}+R_{4}\right)\). If \(I_{1}\) is the desired collector current of \(\operatorname{Tr}_{1}, R_{1}\) is taken to be \(0.8 / R_{1} \mathrm{amps}\) (assuming silicon transistors). The collector current of \(\operatorname{Tr}_{2}\) is \(V-0.8-I_{1}\left(R_{3}+R_{4}\right) / R_{4}\).
The circuit has given good performance in a transistor amplifier, and is a useful alternative to the long-tailed pair.
L. R. SAUNDERS,

Auckland 3,
New Zealand.
\[
E_{x}
\]
Fairchild

U6E 7709393

\section*{News of the Month}

\section*{B.A.C. to assist with the re-usable space shuttle}

The British Aircraft Corporation have signed an agreement which means that they will be starting preliminary design studies with the North American Rockwell Space Division on an international space shuttle as conceived by the American National Aeronautics and Space Administration.

The space shuttle is a two-stage, re-usable, transport system and consists of a booster (mother ship) which carries an orbiter piggyback fashion. The assembly is launched vertically as with today's rockets and the two craft separate at about \(200,000 \mathrm{ft}\). The booster then drops away to land at an airfield using ordinary jet engines like a conventional airliner. The orbiter with a crew of two and twelve passengers, or the equivalent in cargo, continues into space to either place a satellite in orbit, to assist in building a space station or to dock at a completed space station. The orbiter then returns to earth to land at an airfield after a subsonic cruise through the atmosphere.

The role of the B.A.C. teams will be to assist in an investigation into structures, aerodynamics and flight test instrumenta-
tion. B.A.C's experience with the mechanical and electronic aspects of Concorde, Lightning, TSR2, Jaguar, Rapier, Swingfire, Thunderbird and Bloodhound as well as various space projects will be of great value to them in this project.
The work carried out on the project by B.A.C. will be paid for by Britain and one is bound to ask what the returns are likely to be. It is difficult to see any returns in the form of hard cash in the near future but the benefits in terms of increased knowledge and experience could be enormous. Spin-off from the research could bring benefits in all sorts of fields not even remotely connected with space research as new materials and techniques are developed. When the large scale commercial utilization of space begins then Britain will have the advantage of being in at the ground floor.

Using the space shuttle the cost of putting an object into space will be about one-tenth of that at present. This means that even small nations will be able to design satellites and the like and have them launched into space at minimal cost.

\section*{Another British scientific satellite to be built}

The Science Research Council, under the U.K. /U.S. co-operative programme, is to finance a new scientific satellite project for the study of cosmic X-ray sources which will be known as UK-5. The satellite will carry six instruments, five to be contributed by British universities and one by the Goddard Space Flight Center of the N.A.S.A. In addition British scientists will be collaborating with several American astronomers to correlate X-ray observations from UK-5 with optical observations. The satellite will be the first in the Ariel series to use core stores in which all the experimental data will be assembled before transmission.

The Council will provide the finance and manage the project through its Space Research Management Unit. The Ministry of Aviation Supply will be agents for the Council and the Royal Aircraft Establishment, Farnborough, will be the research and development authority.

Marconi Space and Defence Systems

Ltd will be the prime contractor for the space craft. In the Ariel III and the UK-4 projects they were the subcontractors for the common user electronics.
The satellite is scheduled for launch by the National Aeronautics and Space Administration using a Scout launch vehicle in 1973. The project, including the experiments but excluding the cost of the launch, is expected to cost more than \(£ 2 \mathrm{M}\).

The UK-5 will be approximately cylindrical in shape and will be about 1 m in diameter and a little under 1 m tall. It will be spinning at about 10 r.p.m. and will be attitude controlled by a propane gas jet system directed by on-board logic units which will be programmed by command from the ground stations. The attitude control sub-system is based on designs developed by R.A.E., Farnborough, and the other common user subsystems are based on designs being developed by Marconi for R.A.E. initially intended for the Black Arrow spacecraft.

The upper section of the television aerial system for the new mast at Emley Moor undergoing tests at E.M.I. The aerial system, which is \(180 f \mathrm{f}\) long, will be hoisted up the centre of the 900ft concrete mast. The helical strakes are designed to reduce mechanical oscillation under severe wind conditions.

\section*{Space consortium}

Seven European companies have agreed to collaborate in the field of international satellite programmes and have announced the formation of a new consortium. The new consortium brings together a group of companies whose capacities extend throughout the whole range of aerospace, telecommunications and electronic systems technology.

The members are: Marconi Space and Defence Systems Ltd, from the United Kingdom; Etudes Techniques et Constructions Aerospatiales (ETCA) from Belgium; Societe Nationale Industrielle Aerospatiale (SNIAS) and Societe Anonyme de telecommunications (SAT) from France; Messerschmitt-Bolkow-Blohm (MBB) and Siemens A.G. from the Federal Republic of Germany; and Selenia SpA from Italy.

\section*{Einstein's theory of relativity upheld}

Experiments carried out by the American National Aeronautics and Space Administration using the Goldstone tracking station and the Mars Mariner-6 and -7 space craft so far appear to uphold Albert Einstein's theory of relativity. The theory stated that the velocity of light should apparently be slower in the gravitational field of the sun; this theory should also be true for radio signals.

More recent theories, namely by Drs. Charles Brans and Robert H. Dicke, put Einstein's predictions in error by between 7 and \(10 \%\). The delay of radio signals to
the Mariner space craft were accurately measured once the Martian mission had been accomplished. The delay was \(204 \mu\) against a \(200 \mu\) prediction using Einstein's calculations. If the more recent theories were correct the delay would have been about \(186 \mu\)

\section*{Airborne systems monitor}

The DC-10, a three-engined jet airliner due to come into service next year, will have some new instrumentation on board which has been developed by the aerospace division of Honeywell. Called the performance and failure assessment monitor (Pafam) the new equipment provides the pilot and first officer with a prediction of touch-down point on two-colour c.r.t. displays when the aircraft is under the control of the all-weather automatic landing system.

Using data from a number of the aircraft's systems Pafam calculates the expected touchdown point as much as 150 seconds ahead and displays it as a cross on a drawing of the runway on the c.r.ts. If the predicted performance of the auto-land system, and this means all the equipment which feeds the auto-land system as well, is not satisfactory a 'take over' command replaces the landing symbols and the pilot has the choice of landing manually or over-shooting.

These passive electronic tags can be attached to animals so that they can be accurately identified later. The tags are 'read' by a hand-held instrument which has a digital readout as described below.

\section*{Giving farm animals and baggage electronic identities}

In the farming world it is generally accepted that if an animal can be individually identified throughout its life farmers can increase their efficiency by up to \(20 \%\). Branding, number tags, etc, have been tried but without a great deal of success for one reason or another. Apparently the problems are particularly acute with pigs.

A partner in an electronics firm, Cotron Electronic Ltd at Coventry, decided to search for an electronic solution to the problem. His efforts have resulted in a laboratory prototype of an instrument

\section*{Ship-to-shore via satellite communications experiment}

A series of tests carried out by the Post Office to assess the use of satellites in ship-to-shore communications has been successful. Signals have been passed from the Post Office radio station at Burnham-on-Sea, Somerset, through an application technology satellite (ATS-3), made available by N.A.S.A., to the Cunard-Brocklebank container ship Atlantic Causeway. Only simple aerials were employed on the v.h.f. link and the
use of Lincompex and Compandor speech processing techniques were tried out successfully. Speech, teleprinter, facsimile, data and selective call transmissions worked well over the link.

The major advantage to be gained in using a satellite for this purpose is that the link is only marginally affected by changing ionospheric conditions which can create havoc with conventional transmission systems.

The mutli-element crossed Yagi designed by Marconi for the ship-to-shore link. It has the fairly wide beamwidth of \(30^{\circ}\) to allow for rolling of the ship. The frequencies used were 135.6 and 149.22 MHz , the shore station power was 250W.
which is called an electronic tag identifier.
A passive electronic circuit, or tag, which consumes no power, is implanted in the ear or under the skin of an animal. An associated instrument indicates the number of the animal when brought into proximity with the tag. So pigs, and like creatures are about to be digitized like almost everything else in this world nowadays.

Cotron Electronics have succeeded in obtaining a National Research Development Corporation grant so that they can further develop the idea and put it into production. They foresee many other uses for their system in security, baggage control, on production lines, etc. The main advantage lies in the passive nature and very small size of the tags.

Readers of Wireless World may see other industrial uses for the device and if so Cotron Electronics (Red Lane, Kenilworth, Warwickshire, CV8 IPD) would like to hear about them.

\section*{Electronic gearbox}

A gearbox which has no direct transmission of mechanical power from input shaft to output shaft, but instead a rack of electronics and a motor, is a typical example of the work of the Cranfield Unit for Precision Engineering. It was demonstrated, among other exhibits, at the official opening of C.U.P.E. by Lord Stokes in December. The gearbox typifies the Unit's work because it illustrates the use of advanced electronic techniques to do things which traditionally have been the function of mechanical engineering. In

\section*{Publication date}

We regret that, as a result of a recent printing dispute, this issue is a fortnight late appearing and the February issue will be published on January 25 th instead of the 18 th.
this case the object was to develop a gearbox which was extremely accurate (e.g. no transmission errors due to gear-wheel machining) for a machine-tool drive application.

The basic principle of the electronic gearbox (which is the subject of a patent application) is to convert input shaft rotation into a sequence of pulses by means of an optical digitizer, pass these into a digital divider set to give the required gearbox ratio, and use the output to operate a phase control servo which includes an electric motor driving the output shaft. For servo operation the output shaft also carries an optical digitizer, and the gearbox incorporates an ingenious logic system which receives the pulses from the two digitizers and automatically corrects errors resulting from eccentricity in the mounting of the digitizer discs. Transmission errors are claimed to be reduced by a factor of 5 to 10.
C.U.P.E. is one of several industrial R \& D units set up by the former Ministry of Technology at universities, and is on the campus of the Cranfield Institute of Technology, Bedfordshire. It is intended to bridge the gap between academic and industrial work in precision mechanical engineering, and at present has a bias towards machine tools and inspection machines. It does three main types of work-consultancy, investigatory and development programmes, design and development of prototype machines-and makes charges to enable it to be financially self-supporting. So far it has finished 24 projects and has 29 in progress. On a personal note, the principal research engineer, and a member of the management, is Jack Dinsdale, designer of the well-known 'Dinsdale' audio amplifier. He is well equipped for the job, for, besides being an electronics man of considerable experience, he is a graduate mechanical and electrical engineer.

\section*{Shoenberg memorial lecture}

The Royal Television Society has announced a new annual lecture, the 'Shoenberg Memorial Lecture', to be sponsored by EMI. Each year, an internationally recognized authority will be invited to speak on a 'signnificant aspect of the television industry'. The subject covered by the annual lecture will reflect the growing involvement of television in almost every facet of modern life and the rapid and complex developments taking place throughout the world in methods, equipment, techniques and scope of application.

The decision to commemorate Sir Isaac Shoenberg in an annual memorial lecture is a practical tribute to a man whose work led to the development of the electronic television system used in the world's first high-definition public service in the U.K. in 1936. He was knighted in 1962 for his services in the development of both television and sound recording. The first
lecture will be given in London on February 4th 1971 by Professor J. D. McGee and will be called 'The life and work of Sir Isaac Shoenberg'.

\section*{High-speed data link}

The first of a new generation of Post Office leased data links is operating between an I.C.L.' \(4 / 50\) computer at Bootle and a similar computer at Pudsey for the Midland Bank. The wideband system operates at a fixed speed of 48 k -bits per second in both directions simultaneously and also provides two-way speech between the two terminals. Data are transmitted serially and at the 48 k -bit rate the whole of the Bible could be transmitted in just sixteen seconds. Post Office leased data links are increasing rapidly; there are now about 12,000 data terminals operating at a slower rate in the U.K.

\section*{Exporting electrical goods}

Most European countries have certain minimum standards regarding the quality of electrical goods that can be sold in that country. In some countries these standards are enforceable by law or, in others, they are applied voluntarily. The International Commission on Rules for the Approval of Electrical Equipment (CEE) have, until recently, insisted that approval tests should be carried out in two countries*. A revised version of publication-21 sets out new rules, called procedure-2, which states that a teşt report from one testing station is now sufficient.

We have two such test stations, or certification bodies, in this country. One is the British Electrical Approvals Board's Appliance Testing Laboratory at Leatherhead and the other is the British Standards Institution's Hemel Hempstead Test Centre. B.S.I. is the U.K. agent of the CEE.

The whole object of the new procedure is to speed up the granting of approval certificates, to make exporting easier and to help remove the trade barriers existing between European countries.
* CEE Publication 2i, obtainable from B.S.I.

\section*{Television relay up-converter}

Subscribers to television v.h.f. relay systems face a problem when they come to purchase a new receiver because most of the new receivers being produced are single-standard û.h.f.-only types.

Realizing this problem Teleng are producing a v.h.f. to u.h.f. converter which
will allow single-standard u.h.f. receivers to operate from v.h.f. relay systems. The converter, which is contained in a plastic box \(122 \times 85 \times 56 \mathrm{~mm}(4.75 \times 3.375 \times\) 2.25 inches), consists of a wideband amplifier and mixer (with an overall gain of 4 dB) which is connected between the relay aerial socket and the receiver's aerial input. The unit is mains powered and contains traps to eliminate 405 -line signals. The converter will be available in a few weeks and will cost \(£ 810 \mathrm{~s}\). The type number is DN6328.

\section*{Microelectronics liaison unit}

A new wing has been added to the Electrical Engineering Department of the University of Edinburgh greatly increasing the facilities the University has for research into various aspects of microelectronics. The new wing was made possible by a grant of \(£ 130,700\) awarded to the University by the Wolfson Foundation under its technical award scheme. The existing microelectronics laboratories and the new wing is now called the Wolfson Microelectronics Liaison Unit and will foster the already strong collaboration between the growing number of science based industries in Scotland and the University.

The unit is aimed to help companies that lack adequate diagnostic services or whose research and development departments are overloaded with work and also assist them to tackle 'fringe areas' of microelectronics or likely speculative developments. Work is currently in progress on the following projects: amorphous semiconductors, silicon epitaxy, gallium arsenide epitaxy, growth of epitaxial films of cadmium sulphide, surface studies, integrated computer memories, microwave and h.f devices, thin film thermistors, m.q.s. structures, electron beam technology, X-ray topography, lasers and holography, biomedical telemetry, m.o.s. circuit analysis and special purpose digital computing elements.

\section*{Come on now-speak English!} It is odd that since the electronics industry was founded on providing communications that one of its greatest problems is communications within itself. How easy it is when speaking of, or writing about, electronic devices to rèly on jargon. The same old phrases are used over and over again, often five long words are used when two short ones would be better.

In a long-overdue recognition of this problem the Council of Engineering Institutions is including two new compulsory papers in its examination. These are 'The presentation of engineering information' and 'The engineer in society'.

\title{
Voltmeter using F.E.Ts Measures Capacitor Insulation Resistance
}

\title{
Voltage follower circuit gives teraohm input impedance and low offset voltage
}

\author{
by Lloyd E. MacHattie.* BSc., Ph.D.
}

A good review of voltage following methods appeared about two years ago in the pages of this journal'. As indicated, the ideal voltage follower is characterized by an infinite input impedance, zero output impedance and zero offset.

The field-effect transistor is the natural choice for the input device because of its inherently high input impedance. This can be raised further by feedback. Output impedance is made low by negative feedback, which may be further enhanced by positive feedback within the negative feedback loop \({ }^{1,2}\). Low offset voltage (output minus input voltage) is best ensured by using a balanced long-tailed pair to compare the input and output voltages \({ }^{1,3}\). Finally, a number of advantages will be realized by operation at constant tail current.

\section*{Basic circuit}

These considerations lead to the type of circuit shown in Fig. 1. Transistor Tr \(_{3}\) acts

Fig. 1. Basic voltage follower circuit. Field-effect-transistor differential amplifier gives high input impedance with low offset voltage. Low output impedance is achieved by both negative feedback from \(\mathrm{Tr}_{4}\) collector and positive feedbàck from \(\mathrm{Tr}_{5}\) collector.
as a constant-current tail for the differential pair of f.e.ts \(T r_{1}\) and \(T r_{2}\) which drive a second long-tailed pair (bipolar transistors) complementary to the first. One second

\footnotetext{
*Defence Research Establishment, Toronto, Ontario
}
stage collector supplies the in-phase output which is fed back to \(\operatorname{Tr}_{2}\) gate while the other makes possible a simple positive-feedback connection \(R_{9}\) around the second stage.

\section*{Matching}

Transistors \(T r_{1}\) and \(T r_{2}\) should be matched, since freedom from temperature and supply voltage effects depends directly on similarity of characteristics. A method will be described which provides compensation for a certain latitude in characteristics, hence only selection for rough matching is necessary. The results given below were obtained from two low-cost plastic n-channel f.e.ts (2 N 3819) which required 0.68 and 0.81 V source-to-gate bias to give the desired operating drain current of \(230 \mu \mathrm{~A}\) at about 5 V . Examination of a number of these on a curve tracer revealed that mutual conductance at a given drain current tends to be fairly uniform from sample to sample although the required bias may vary rather widely. It would therefore appear that a pair could be effectively matched if a constant voltage device could be placed in the source lead of the higher-bias unit to make up the difference.

Fig. 2 shows a circuit which uses diodes to approximate constant voltage devices and is designed to accommodate bias differences of up to half a volt. Transistors \(T r_{7}\) and \(T r_{8}\) act as diodes in the source leads of the f.e.ts, the drop across one (\(\operatorname{Tr}_{8}\)) being fixed while the drop across the other \(\left(T r_{\gamma}\right)\) is adjustable. \(R_{13}\) carries a constant current and provides the desired bias voltage between the bases of \(T r_{7}\) and \(T r_{8}\). The fact that many silicon transistors can be operated down to \(V_{C E}=0.1\) to 0.2 V before reaching saturation allows \(\operatorname{Tr}_{7}\) to exhibit a diode characteristic (\(V_{C E}\) vs \(I_{c}\)) which may be displaced by as much as 0.5 V , with little change of shape, by changing the \(V_{B C}\) bias voltage.
If the two f.e.ts have been selected to have a bias difference less than 0.5 V , they can now be adjusted to have equal currents (and nearly equal mutual conductances) with their gates grounded. But there is a further source of unbalance which arises if the source-todrain voltage is changed and the two f.e.ts differ in slope resistance. This effect can be cancelled by shunting the unit having the higher resistance with an appropriate resistor from source to drain (\(R_{12}\)).

Fig. 2. Circuit compensates for bias differences by using diodes (\(\operatorname{Tr}_{7} \& \operatorname{Tr}_{8}\)) to approximate constant voltage devices.

To minimize the effects of any temperature gradients, \(T r_{1}\) and \(T r_{2}\) are mounted side by side and a coil of copper wire wrapped about the pair. \(\operatorname{Tr}_{7}\) and \(T r_{8}\) are treated similarly for the same reason.

\section*{Transistor voltmeter}

The most direct method of using the follower as a voltmeter is to insert the follower between the source of voltage and the meter. This impresses the input voltage across the meter; consequently the lowest or most sensitive range cannot be less than the meter voltage drop at full scale.
Alternatively if the follower is used to determine the current through the meter, the most sensitive range may be reduced below the meter voltage drop, the new limit being the point at which the follower offset error becomes unacceptably large in relation to full scale. At the same time, any error due to variation of meter resistance with temperature is eliminated. A further advantage accrues in the case of alternating voltage measurements. The follower is made to control an alternating current which is then passed through the meter in rectified form. The circuit is shown in Fig. 3.

Switching requirements are simplified by leaving the bridge rectifier in circuit for direct voltage measurements. As a result polarity selection is automatic. A momentary push-button switch is provided for interrogation if polarity is not already known. When this switch is closed the needle deflects up the scale for positive input and down the scale for negative input. With such an arrangement a direct voltage measurement is not affected by a superposed alternating voltage unless the peak alternating value exceeds the direct value. When this cannot be prevented by the usual low-pass filter in the input circuit, extra meter switching may be warranted.

The circuit shown omits the input range divider, function switch, etc., since there is no need to deviate from standard practice in this section. The follower is designed to accommodate input ranges of 0 to \(\pm 0.5 \mathrm{~V}\) for voltage measurement and 0 to +1.5 V for resistance measurement (which allows use of a dry cell). A \(22-\mathrm{V}\) battery supplies the follower circuit through a simple emit-ter-follower regulator with a zener reference. Additional zener stabilization is provided for the constant-current transistor \(\mathrm{Tr}_{3}\). The low total current drain of 1.8 mA is made possible by the use of transistor emitter-base junctions for the zener diodes \({ }^{4}\). These retain good regulation down to about \(5 \mu \mathrm{~A}\). Incidentally, when a transistor is used as a zener, the collector should be left open circuit and not connected to the base, as there are some types for which the e-c characteristic may be lower than the e-b characteristic or the two may cross.

In several cases a specific transistor type has been used, not because it was uniquely suited to the application but because it was adequate and conveniently available. An exception is the 2 N 3563 , found to have lower zener voltages than any

Fig. 4. Plot of offset voltage vs meter current for five scales \((\pm 15 \mathrm{mV}, \pm 0.5 \mathrm{~V}\) and +1.5 V) by changing \(R_{s}\) shows total variation in offset is within 0.1 mV on \(\pm 15 \mathrm{mV}\) scales. This shows feasibility of \(a \pm 5 \mathrm{mV}\) scale at \(\pm 1 \%\) error.
of the other types examined and is preferred for the constant-current reference. Depending on the particular zener voltage used, \(\mathrm{Tr}_{3}\) emitter resistor may require adjustment to obtain satisfactory operating conditions. With input shorted and the meter on zero, \(\operatorname{Tr}_{5}\) collector should lie between, say, -0.5 and +0.5 V .

Resistor \(R_{s}\) determines the sensitivity of the follower and meter combination. Its value for direct voltage scales is given by \(R_{s}=\frac{\text { full scale voltage at follower input }}{\text { full scale meter current }}\) while for sinusoidal alternating voltages an additional factor of \((2 \sqrt{ } 2) / \pi\) must be applied in order to increase the reading from the average rectified value (to which the meter responds) to the desired root mean square value.

At zero input to the follower, the positive feedback resistor carries about \(10 \mu \mathrm{~A}\). Resistor \(R_{15}\) is intended to carry an equal current and thus maintain symmetry between \(T r_{1}\) and \(T r_{2}\). Omission of \(R_{15}\) would not be serious as its benefit is only marginal. The small capacitor across the rectifier

Fig. 3. Circuit of follower voltmeter. Input range divider and function switch omitted. Leaving bridge rectifier in circuit for direct voltage measurement simplifies switching. Rs determines sensitivity. Values in parentheses depend on semiconductor devices used.
bridge supplies high-frequency negative feedback. Without it, operation becomes noisy in a narrow region near zero where the germanium diodes are non-conducting, with the result that the meter cannot be set to zero.
The zener voltage of \(D_{1}\) will vary a certain amount because its current must change by twice the full scale meter current. Fortunately, it is a simple matter to prevent this from appreciably affecting the current in \(T r_{3}\) by introducing feedback from \(T r_{5}\) collector to \(T_{3}\) base via \(R_{16}\). The positive feedback is adjusted by means of \(R_{9}\) so that the offset voltage variation over the operating range of the follower is at a minimum.

\section*{Voltmeter performance}

Fig. 4 shows results obtained with a \(200-\mu \mathrm{A}\) 1200 -ohm meter and with the same positive feedback setting for five scales: \(\pm 15 \mathrm{mV}\), \(\pm 0.5 \mathrm{~V}\) and +1.5 V . Offset values were measured directly with a digital voltmeter reading to 0.01 mV . (The inputs to the follower, for all but the +1.5 V (ohms) range, were \(10 / 11\) of the values given because a \(\times 10^{6}\) probe was used with a \(\times 10^{7}\) range divider.) Total variation of offset is within a 0.1 mV range for the \(\pm 15 \mathrm{mV}\) scales. It therefore appears feasible, if we accept a \(\pm 1 \%\) error due to offset, to have \(\pm 5 \mathrm{mV}\) scales, whereas the meter drop at full scale is 0.24 V .

When measuring alternating voltage, this follower circuit and meter exhibit a flat response from 10 Hz , the lowest frequency which the meter will average satisfactorily, to over 100 kHz . Response is down 3 dB at 320 kHz . A consequence of the rectified average response is that alternating voltage readings are relatively insensitive to the zero setting.

\section*{Output impedance}

Fig. 5 demonstrates the output characteristics of the follower. To obtain these data \(R_{s}\) was disconnected and \(\operatorname{Tr}_{4}\) collector connected to \(\operatorname{Tr}_{2}\) gate, shorting out the rectifier bridge and meter. Offset voltage is shown as a function of external current fed into or drawn from \(\operatorname{Tr}_{4}\) collector. The three curves are for three values of input voltage to \(\operatorname{Tr}_{1}\) gate. Slope of the central portion is slightly negative in this case (-0.75 ohm) but can be made zero or positive by adjusting the positive feedback \(\left(R_{9}\right)\). Again in the central portion, the \(\pm 0.45\) - \(V\) curves may be moved vertically to make either one coincide with the zero curve or with the other by adjusting the shunt across \(T r_{1}\) or \(T r_{2}\), but curvature prevents coincidence of all three. The optimum adjustment is when the \(\pm 0.45-\mathrm{V}\) curves coincide. The breadth of the central region can be increased or decreased by using more or less current in \(\operatorname{Tr}_{4}\) and \(\operatorname{Tr}_{5}\) by changing \(R_{6}, R_{7}\) and \(\mathrm{R}_{8}\).

\section*{Input impedance}

Method adopted for measuring the input current was as follows. With the follower connected as a voltmeter (without any input divider), a polystyrene capacitor \(C\) was placed across the input. After the voltmeter

Fig. 5. Follower output characteristics for three values of input voltage. Slope of central part is altered by adjusting \(R_{9}\). Curves for \(\pm 0.45 \mathrm{~V}\) are moved vertically by adjusting \(T r_{1}\) shunt and breadth altered by changing \(R_{6}, R_{7} \& R_{8}\).
was set to the desired value by momentary connection to a variable voltage source, the rate of drift of the reading \(\Delta V / \Delta t\) was observed. If, as was found to be the case, the capacitor leakage and dielectric absorption are negligible, the capacitor must be receiving a current \(C \Delta V / \Delta t\), when the input is floating. When the voltmeter is connected to an external voltage source, this same current becomes the input current, with the sign convention that the current be positive when it flows out of the voltmeter. The observed value, \(2 \times 10^{-12} \mathrm{~A}\), decreased linearly as the input voltage was raised which meant that the voltmeter input appeared (over the -0.5 to +0.5 V range) as +10 volts behind \(5 \times 10^{12}\) ohms.

\section*{Feedback}

As the input impedance could obviously be raised still further by feeding back a current which would largely cancel the input current, an attempt was made to find out how much improvement could actually be realized in this way and how reproducible the results were. Feedback current was obtained by impressing a drop of several volts across the reverse-biased junction of a f.e.t. similar to \(T r_{1}\). This voltage, which must vary as the input current varies, may be represented by \(a+b e_{i n}\) where \(e_{i n}\) is the input voltage to \(\operatorname{Tr}_{1}\) gate while \(a\) and \(b\) are constants which are adjusted to cancel the input current at two points, one near zero and the other near full scale. Values arrived at were \(a=-3.8 \mathrm{~V}\) and \(b=2.6 \mathrm{~V}\).
The circuit used is Fig. 6. Values of \(a\)

Fig. 6. Feedback circuit for raising input impedance. With this circuit voltmeter reading changed by only \(1 \%\) of full scale in 30 min with a \(0.01 \mu \mathrm{~F}\) input capacitor (self time constant 400 days).
and \(b\) are adjusted by \(R_{18}\) (which varies both) and \(R_{19}\) (which varies chiefly \(a\)). Settings could be made such that the voltmeter reading would change by as little as \(1 \%\) of full scale in 30 minutes with a \(0.01 \mu \mathrm{~F}\) input capacitor, but results were not reproducible. Measures were therefore taken to reduce or eliminate the influence of ambient temperature and humidity.

For subsequent measurements the voltmeter was put in an enclosure, operating several degrees above ambient, which maintained its temperature within \(\pm 0.1^{\circ} \mathrm{C}\).

\section*{Guard ring}

The chief effect of changes in humidity would likely be to change leakage currents flowing across the surfaces of insulators supporting the components of the input circuit. Such currents can be eliminated by the guard ring technique, which is particularly effective when the gain of the follower, as in this case, is accurately unity. Bands of conductive silver paint connected to \(\mathrm{Tr}_{2}\) gate were placed around the input turret lugs on both sides of the circuit board and around \(T r_{1}\) gate lead on the plastic transistor case, as well as around the middle of the input capacitor and the drain and source leads of Tr \(_{9}\). The input lead was a stiff wire supported only by the circuit board and extending almost to the centre of a hole in the metal instrument case. Shielding afforded by the instrument case was necessary, otherwise readings could be affected, for example, by shuffling one's feet.

\section*{Input impedance stability}

With the above precautions and after near optimum adjustment of \(R_{18}\) and \(R_{19}\), a series of measurements of input current was made, extending over a period of two weeks, to test for reproducibility. Drift runs are shown in Fig. 7. To speed up the measurements these were made with a 1250 pF input capacitor. A more or less random component persists and description of the input characteristics in terms of a resistance and a voltage value would not be particularly apt. Input current remains within the limits \(\pm 10^{-14} \mathrm{~A}\) over the range 0 to +0.45 V , and that compensation has reduced the input current by a factor of 200.

In lieu of temperature control, temperature compensation could be applied without much difficulty to the circuit of Fig. 6 to bring the temperature cozfficient of the input current within \(\pm 10^{-15} \mathrm{~A} /{ }^{\circ} \mathrm{C}\). Diodes introduced in series with \(R_{18}\) would make the temperature coefficient more positive while diodes in series with the upper end of \(R_{19}\) would make it more negative.

\section*{Application}

With such a high impedance voltmeter it is possible to measure the insulation resistance of the best capacitors, some of which are nowadays very good indeed, the \(0.01-\mu \mathrm{F}\) polystyrene capacitor mentioned above, a component available in Toronto for 20 cents (1s 6d), proved to have a self time constant of 400 days. It was initially charged to +0.45 V and its voltage measured

Fig. 7. Measurements of follower input current over two-week periods show input current is within \(\pm 10^{-14} \mathrm{~A}\) and that compensation reduces input current by 200.
daily, using the voltmeter with the \(1250-\mathrm{pF}\) input capacitor. The capacitor being measured was handled only by its ground lead and for a measurement its hot lead was touched momentarily to the voltmeter input after the latter had been preset at the expected reading. In this way a voltage reading could be made without appreciably changing the charge on the capacitor. During eight days when the relative humidity ranged between 45 and \(60 \%\), the capacitor voltage decreased by not quite \(2 \%\). Corresponding value for the insulation resistance is \(3.5 \times 10^{15} \mathrm{ohms}\).

\section*{REFERENCES}
1. Williams, P. "Voltage following". Wireless World, Sept. 1968, p. 295.
2. Miller, J. M. "Combining positive and negative feedback". Electronics, March 1950, p. 106. 3. Towers, T. D. "Balanced transistor d.c. amplifiers". Wireless World, August 1968, p. 269 .
4. Williams, P. "Ring-of-two reference". Wireless World, July 1967, p.318.

\section*{Eventful History}

A History of the Marconi Company, by W. J. Baker. The history of a company can make dull reading for all but those who have been associated with its development, but this cannot be said of the history of the Marconi company for inextricably woven into it is the fascinating story of the development of wireless and its off-spring electronics. The book opens with a brief résumé of scientific discoveries setting the scene for the founding of the Wireless Telegraph \& Signal Company (as Marconi's was first known) in 1897. The author, who has been with the company since 1952 and is now technical editor (research), stresses that the book is not a product of company sponsorship nor was commercial censorship exercised and it therefore records the setbacks as well as the successes. A selection of the chapter headings will give some idea of the variety of subjects covered in this very readable, lively review of the ups and downs in technical as well as commercial enterprise: Tuning: a great step forward; The invention of the diode; The directional antenna; 'The Marconi scandal'; The start of sound broadcasting in Britain; Short-wave beam system; Wireless and aviation; Evolution of radar; and, after two chapters covering World War II, the concluding six or more chapters deal with the developments in radar, aviation, sound and television broadcasting and communications in the period 1945-65. Pp. 414; 23 illustrations plus diagrams. Price \(£ 5\). Methuen \& Co. Ltd, 11 New Fetter Lane, London E.C.4.

\section*{Letters to the Editor}

The Editor does not necessarily endorse opinions expressed by his correspondents

\section*{A desoldering tip}

I was recently reading "TV Engineers' Pocket Book", by Hawker \& Reddihough, when I noticed that no less than six pages are devoted to "servicing TV boards". Much of this is concerned with the awkward problem of removing components, particularly valve bases and i.f. transformers, that are mounted on a number of pins, each of which is individually soldered to the copper-foil circuit. To soften the solder on all of these joints simultaneously, without doing considerable damage, is difficult almost to the point of impossibility; even if one goes to the trouble of making such a curious modification to the soldering iron as is illustrated in Fig. 7 p. 224 of the above book. The other methods described, such as sucking or blowing the solder away pneumatically, or brushing it off with an old toothbrush, are, in my opinion, clumsy and not to be recommended either. They tend to scatter pellets of hot solder around.

There is, however, a method, in which capillary action and gravity are simultaneously enlisted, that I have found to be singularly effective. It has not been, to my knowledge, described anywhere, and I am sure it would be of value to many a gently perspiring technician. The illustration is self-explanatory.

The wire "brush" used should be of reasonably new and clean multi-strand flex, such as \(23 \times\) No. 36 s.w.g. A 1 to \(1 \frac{1}{2}\) in. end should be stripped, gently twisted, and liberally treated with flux. The tip of the iron should be clean with, obviously, a minimum of solder on its surface. More than one application, using a fresh brush each time, may be needed if there is much
solder on the joint and in the neck of the hole. But the result will be to leave the pin standing clear in the hole, and the surrounding foil with no more than a thin film of solder on it.

Finally, may I make a plea to manufacturers of p.cs to use translucent boards? By placing a small light behind the printed side the circuit can easily be traced from the component side.
G. W. Sutton,

Cranleigh,
Surrey.

\section*{E.M.F. and the volt}

I do not feel that James Franklin's article "Electronic Building Bricks, 5, The Electronic Circuit" in the October issue can be allowed to pass without comment.

He states, while talking about sources of e.m.f. that: "A strong electro-motive force will move more electrons in a given time than a weak electro-motive force.
"The unit by which this force is measured is the volt. Thus in a given circuit 2 volts will move twice as many electrons in a given time (cause twice the current to flow) as 1 volt".

To say this as a general statement is very misleading. It is true only if the source of e.m.f. is connected to a component obeying Ohm's Law, and let us face it these are few and far between in the world of electronics.

The definition of the volt is:
1 volt \(=1\) joule/coulomb
It is, therefore, a measure of the energy given to each one of the electrons as they pass through the source of e.m.f. A circuit may quite easily be devised where the application of two volts instead of one will have no effect on the current flowing. The only change being that each electron will have acquired twice as much energy.
Alan E. Smith,
Watford, Herts.

\section*{The author replies:}

Mr. Smith's qualification is, of course, essential for anyone studying the fundamentals of electricity. "Electronic Building Bricks", however, is not intended for this type of reader (see May 1970 issue, p. 225) and my explanation of e.m.f. and the volt
was quite deliberately "impressionistic" and linked to the layman's everyday experience of voltage.
I am surprised at Mr. Smith's statement that components obeying Ohm's Law are "few and far between in the world of electronics". From a rough count I would say there are two or three hundred of them shown in every issue of your journal.
James Franklin

\section*{Attenuators}

I was interested to see Mr. Cocking's article on attenuators in the December issue.

Your readers, particularly television amateurs, may find it useful to know a few 75 -ohm T and \(\pi\) attenuators made up from preferred value resistors.

The characteristic impedance of networks 1 and 2 is 75 ohms exactly. The characteristic impedances of the other three networks shown are not quite 75 ohms, but this may not be unduly disastrous for many applications. For the best match, of course,

one should select the resistors using a bridge, and not merely pick \(\pm 20 \%\) components at random from the spares box.

Constructional information may be found in "Attenuators for High Frequencies" by R. F. Privett in Wireless World, March 1954, page 141.
Donald S. Reid,
Brentwood,
Essex.

\section*{"Direct Radiator \\ Loudspeakers"}

I have received a letter from Mr. R. C. Driscoll, of the Northern Polytechnic, questioning the use of the unrationalized electromagnetic system of units in my article "The Design \& Use of Moving-coil Loudspeaker Units" in the November issue. He also states that all figures quoted in my expressions of power ratio on the dB scale "are a factor of two higher than would be obtained from the accepted
definition of this scale". I must thank him and stand corrected on both counts.

In the section of the article "Effect of mechanical impedance on radiated power", the expressions relating \(P_{M A}\) and \(f\) are correct, but the rates quoted in \(\mathrm{dB} /\) octave should refer to 'pressure response' not \(P_{M A}\), i.e. the vertical axes in Figs 5a, b and c should be 'pressure response' not \(P_{M A}\). My apologies for this oversight.
E. J. Jordan,

\section*{Marlow,}

Bucks.

\section*{Loudspeakers in corners}
H. D. Harwood (Wireless World, April 1970) takes exception to my stated opinion that loudspeakers work better in a corner (February 1970 issue).

Submitted herewith is a pair of response curves, both of the same loudspeaker (not one of ours), one curve showing the response of the loudspeaker located against the wall (dihedral corner between wall and floor) and the other in a trihedral corner. This pair of curves is typical of the many we have run on loudspeakers ranging from a fraction of a cubic foot to several cubic feet, single driver, 2-way, 3 -way, direct radiators and horns.
I'll concede one point to Mr. Harwood: corner placement may be excessively 'beneficial' if the loudspeaker has been heavily 'equalized', with the result that removal of sorme of the excess 'equalization' may be needed to restore a flat response. This of course is really beneficial, as the decreased overdrive results in smaller diaphragm excursions and conséquëntly smaller total modulation distortion for a given sound pressure level output.
Back to the response curves. Lay a straight edge on the peaks between 40 and 400 in curve (a) and note that the line rises about 5 dB ; lay the straight edge along the peaks from 400 to 8,000 and note that the line recedes about 9 dB . This 'gable roof' response results in a slightly 'honky' sound.

Now look at curve (b) for the same loudspeaker in the corner, First, the whole s.p.l. is up about 5 to 6 dB , meaning that we can cut the input level and distortion to get the original (non-corner) s.p.l. Next
do the straight-edge act again and note that the 'gable roof' effect is 2 dB and 5 dB compared to 5 dB and 9 dB for the noncorner placement. The sound was noticeably less 'honky'.

The idea of corner placement was first called to my attention about 1933 when I was a graduate student in E. E. at Stanford University. I wish I could recall just who conveyed that idea; it may have been Madison R. Jones who was writing his thesis on loudspeakers. The explanation for the superiority of corner placement lies in the existence of a family of mirror images, each reinforcing the pressure from the original (actual loudspeaker) source.
A point to be considered important is the proximity of these mirror images. To be coherent, the images must be close together. That means the loudspeaker must be nested back into the corner with intimate wall contact. This explains why one speaker was drastically improved in per-formance-its instructions were to place it several feet (3 or 4) from one wall, slightly more or less from the other wall, 2 or 3 feet above the floor. A curve run in the prescribed location and another run with the speaker in a corner showed an improvement over the entire spectrum, and such a large increase in the bottom 2 octaves as to require re-equalization. Since this speaker exhibited over \(10 \%\) total modulation distortion when placed as specified, corner placement reduced distortion for a given sound pressure level. In this case the 'recommended' location necessitated excessive bass compensation which could be reduced drastically.

The argument for the 'unusual' placement was creation of a 'reverberant field' but it has been shown that such a reverberant field is impossible to avoid in a listening room with normal listening quality. So corner placement has everything to gain and nothing to lose.
Paul W. Klipsch,
Hope,
Arkansas.

\section*{The author replies:}
P. W. Klipsch queries my contention that conventional loudspeakers sound worse in a corner than in the centre of a wall and shows curves which he claims prove his point. First, let us get the fact clear.

Response curves for a loudspeaker placed against a wall (a) and in a corner (b).

We started our investigation into this problem because sound mixers complained that the sound from loudspeakers hung in corners sounded coloured. This effect was noticed in all rooms although some control rooms were worse than others. Furthermore, these complaints were by staff who were able to compare directly the real sound in the studio with that from the loudspeaker. An additional fact was that the mixers were quite content with the sound from the same loudspeakers when they were placed in a conventional though, in this case, inconvenient position. It was also noted that the better the loudspeaker, i.e. the freer it was of colouration itself, the more noticeable the effect was. The fact that colouration exists for corner mounting is therefore clear and not open to doubt. As the loudspeaker was absolved from being the cause and the facts pointed strongly to the location we did our best to measure the effect of this. We therefore employed warble tone and a cardioid type microphone, both factors designed to largely remove the effects of room modes in themselves. This was desirable not only because the unwanted colouration was present in rooms of varying shapes and sizes but also because it is a fact that we listen mainly to the sound coming from in front and relegate reverberation to a secondary place. If this were not so a person's voice would sound very different in different rooms and we know well that this is not so.
The curves we obtained thus agreed well with simple theory, see Fig. 4 in the article. Furthermore they accounted well for the colouration actually heard and finally, the measures which were designed to alleviate the trouble were found to be successful.

At no time did the article attempt to defy the laws of physics. It is clear that placing a loudspeaker in a corner will give rise to a bass lift; what we were after was quality not just quantity. Quantity can be achieved in a number of ways, quality is much more difficult to obtain. It is of course quite possible that if lower middie colouration is already present in the loudspeaker this additional colouration may pass unnoticed.

I have no doubt that by throwing away the measures we had taken to remove the effects of room modes on the curves, i.e. if we used pure tones and/or an omnidirectional microphone, we too could have produced curves such as those shown by Mr. Klipsch where the room modes effectively disguise the general trends. Even so I would not have thought negligible the crevasse shown in this curve (b) centred around 100 Hz and 15 dB deep, nor would I regard a single sharp peak at 60 Hz as constituting a real bass response!

Since my article was published, the existence of colouration for a corner source has been clearly demonstrated in a neat way, due, I think, to Mr. J. Shuttleworth. A person talks, standing with his back at least 1 metre from the corher of a room, to give a standard of reference. He then moves into the corner so that the back of his head touches the two walls and
talks again. There is a rise in bass response but more important it is obvious even to the densest clothear that the sound is highly coloured. I therefore repeat my earlier statement that under these circumstances the presence of colouration is not open to doubt.

To sum up I have never questioned Mr. Klipsch's contention, well supported by theory, that corner placement gives more bass, but I have shown, clearly I hope, that such a position gives rise to a coloured quality and this too is supported by theory and easily observed by listening on good loudspeakers and to original sources.

\section*{H. D. Harwood,}
B.B.C. Research Dept.,

Surrey.

\section*{'Linear Scale Millivoltmeter'}

If a car salesman, anxious to persuade you to change your Rover for a Jaguar, adduced that a Jaguar is better than a Cortina, he would be unlikely to make a sale. Yet this is the kind of argument put forward by \(\mathbf{A}\). J. Ewins (Dec., 1970 p.592). He invites us to add two transistors to D. E. O'N. Waddington's already excellent circuit for a feedback millivoltmeter because the end result gives a better performance than a non-feedback circuit.

So what? What is called for are measurements comparing the original Wadington circuit with the revised one. Not only are these absent, but the experienced eye notices two very significant differences between the circuit (Fig. 5) which Mr. Ewins used to convince himself that he was on to a good thing and the actual circuit (Fig. 2) in which the improvement is allegedly incorporated.

In the test circuit, the emitter resistor (9.1k) of the output transistor (\(\operatorname{Tr}_{1}\)) is unbypassed. In the final circuit (Fig. 2) it is bypassed. The result is that the transistor in question presents a much lower output impedance in the final circuit than in the test circuit.

Secondly, there is a most important invisible component in Fig. 5. This is the impedance of the signal-source. It is important because it governs the amount of internal voltage feedback in \(\operatorname{Tr}_{1}\). This feedback is negligible in most ordinary amplifier stages, but it is by no means negligible here. If the load on \(\operatorname{Tr}_{1}\) is indeed 'constant-current', i.e. infinite then the voltage gain of \(T r_{1}\) is equal to the voltage amplification factor, which is usually 1000 or more. In this case, a signal-source impedance of a few hundred ohms can make a significant reduction in the output impedance.

In the final circuit, the signal-source impedance seen by the base of \(T r_{5}\left(=T r_{1}\right.\) in the test circuits) depends mainly on \(R_{17}(100 \mathrm{k})\) and the current gain \(\left(h_{f e}\right)\) of \(T r_{4}\), being roughly \(R_{17} / h_{f e}\). This is 1 k for a low-limit \(2 \mathrm{~N} 3707\left(\operatorname{Tr}_{4}\right)\), and is by no means negligible.

The idea of using an artificially high output impedance in voltmeters is not new. A logical development of Mr. Ewins'
arrangement is to drive the upper transistor (\(T r_{7}\)) in phase with \(T r_{s}\). This forms a high-impedance complementary pushpull output stage. Such a circuit has been described in Wireless World by G. Wareham ('Inexpensive Tape Recording Amplifier', March, 1966) and in a more elegant form by F. Butler ('Gyrators-Using Direct-Coupled Transistor Circuits', February, 1967).

In any case, the effect of the negative feedback in voltmeter circuits like Mr. Waddington's is also to increase the impedance seen by the meter. If the openloop gain is high enough, effective metercircuit impedances of several megohms can be obtained.
G. W. Short,

Croydon,
Surrey.

\section*{The author replies:}

It would appear that the essence of Mr . Short's criticisms are that I am guilty of comparing the constant current loaded output transistor circuit with the conventional resistor loaded one under conditions which are not identical with the final circuit arrangement. I accept these criticisms, particularly with respect to the fact that the emitter resistor in the test circuit is un-decoupled; increasing, Mr. Short says, greatly the output impedance of the transistor. I must confess that I had not appreciated this point, if, in fact, it really is so. I do not, however, accept the implied criticism that the constant current loaded output transistor does not operate as well in the final circuit arrangement as in the test circuit. I am sure that no one will argue that the output impedance of the output transistor in my final circuit arrangement is not very much greater than the output impedance of the equivalent stage in Waddington's circuit.

The two test circuits were intended to illustrate the effect of a high-output impedance upon the linearity of the meter's scale and to give some idea of what might be expected from using a constant current source as the load instead of a resistor.

The constant current loaded test circuit may be biased in favour of better results than would be obtained by the equivalent stage in the final circuit design; the resistor loaded test circuit certainly is. The value of the collector resistor in the test circuit is ten times higher than the value in Waddington's equivalent stage, with the result that the output impedance of the stage in the test circuit is very much higher than in Waddington's final arrangement, improving the linearity of the meter's scale.

In the final circuit arrangement of my millivoltmeter design, the decoupled emitter resistor may reduce the effective output impedance of the final stage, but this is adequately compensated for by the fact that the voltage gain of the stage is greatly increased for the same reason. Mr. Short rightly points out that the effect of negative feedback in voltmeter designs of this sort is to increase the output impedance as seen by the meter stage. The output impedance as seen by the meter is roughly the product of the open loop output imped-
ance of the final stage and the amount of negative feedback applied. Thus, in my final circuit arrangement, what is lost in terms of output impedance of the final stage by decoupling the emitter resistor is more than compensated for by the increased amount of negative feedback that may be applied due to the increased voltage gain of the stage.

Mr. Short's criticism about the signalsource impedance is not really valid since the output impedance of the test oscillator used was 600 ohms, which is comparable with the source impedance seen by the output transistor in the final circuit arrangement.

Mr. Short says that a logical development of my circuit is to drive the upper transistor (\(T r_{7}\)) in phase with \(T r_{5}\), forming a complementary push-pull stage of high output impedance. In fact this was the first step that I took in designing the circuit and I soon found that my final circuit arrangement was simpler to construct, using fewer components, and that the net result of both methods was identical.

Finally, may I say that a comparison between my circuit and Waddington's is obviously what is required to convince readers like Mr. Short of the benefits to be obtained from my more complex circuits. Unfortunately I do not have these precise comparisons, but I invite readers who decide to construct my circuit to satisfy themselves of its benefits by replacing the constant current load with a \(27 \mathrm{k} \Omega\) resistor, as in the test circuit, without alteration to any other values. If Mr. Short had challenged me on the need to improve Waddington's design I would have had a much more difficult case to answer. As it is 'the proof of the pudding is in the eating', and as I am unable to detect any non-linearity in the meter's scale of my design, even at \(1 \%\) and \(3 \%\) of f.s.d., I am satisfied that my design achieves what I set out to do.

\section*{A. J. Ewins}

\section*{New names for old concepts}

The tendency to invent new names for old concepts seems to increase faster than ever. The "Programmable Unijunction" described by Mr. Greiter in the September issue is, surely, none other than the silicon controlled switch minus its cathode gate.

The s.c.s. has been in use for many years, why give it a new name? The circuit shown above, using a General Electric 3N58, produces much the same result as Fig. 14 in Mr. Greiter's article.
A. G. JONES,

Porthcurno,
Cornwall.

\title{
High-quality Tape Recorder
}

\section*{3. Extensions and modifications}

\author{
by J. R. Stuart, B.Sc.
}

The variable high-frequency bias allows optimum recordings to be made with a variety of tapes and speeds, and it is a simple matter to reset any bias condition with the meter. Although the \(\mathrm{A}-\mathrm{B}\) monitoring allows an excellent attempt to be made by ear, it is not always straightforward to discover the required bias initially. In particular, if the recording is to be replayed on another machine, it may be necessary to bias for maximum sensitivity, minimum distortion, or some arbitrary standard.

The normal criterion for low tape speeds is to increase the bias until the sensitivity at 1 kHz is 1 dB below maximum. To allow easy setting of this bias current many high-quality recorders include a 1 kHz reference oscillator.

Such an oscillator would either be an \(R C\) arrangement with amplitude definition and stabilization provided by a thermistor or field-effect transistor, or a current switching \(L C\) oscillator \(^{9}\) of the type shown in Fig. 25. The output of this oscillator is well defined by the dynamic impedance of the tuned circuit and the tail current. However the values of \(L\) and \(C\) required do not lead to accurate prediction of the frequency of oscillation.

To calibrate the recorder using a reference, switch the meter to record and set the input level to -6 dB , then, while recording, switch the meter to replay and adjust the high-frequency bias for the required sensitivity. Note the bias voltage.

It is probable that in a large number of applications a simple stereo signal is not available. This will certainly be true of live or specialeffect recordings, and for these a linear mixer is essential.

Fig. 26 shows a mixer which could be built as part of the recorder unit. For simplicity a CA 3048 integrated quad amplifier has been used, giving two inputs per channel. By extrapolation, further addition of i.c.s will give the required number of inputs.

The i.c. should be powered by a regulator identical to that shown in Fig. 17. Output \(M\) is satisfactory providing that it is not intended to cascade amplifiers in the same chip - to do so may cause lowfrequency instability, so the dual output regulator (\(K, L\)) should be used.

This mixer is intended for a 250 mV rated output, with a 12 dB overload margin. \(R_{x}\) defines the gain of each mixer stage and a range of values is given in Fig. 26. However, if at any time high sensitivity is required, better noise performance would result from a lower gain mixer feeding the 25 mV input.

Fig. 25. A current-switching oscillator.

Fig. 26. Circuit of a linear mixer.

Superimposition was at one time a common facility on good quality recorders. However, this is extremely unsatisfactory as each recording erases to some extent the high frequency information of the previous recordings. By rearranging the track-switching and making use of the mixer and the logarithmic meter, signals may be superimposed by recording from one track to another. This allows the quality of the initial signal to be maintained through several superimpositions. For this two switches replace \(S_{2}\), one for record and the other for replay.

\section*{Discrete component version}

Some constructors may prefer to build discrete amplifiers in place of the integrated version recommended and described in parts 1 and 2. This could be suitable for a mono record-only machine where all replay equalization is performed in the pre-amplifier.
A discrete-component replay amplifier is shown in Fig. 27 and the circuit values for equalization are given in Table 6.

Transistors \(T r_{13-15}\) form a direct-coupled triple with a mid-band open-loop forward voltage gain of around 80 dB ; the closed loop

Fig. 27. A discrete-component replay amplifier.
gain has been arranged to give an output of 250 mV r.m.s. at the rated input, with a signal-to-noise ratio of 70 dB .

Capacitor \(C_{31}\) should be paper or plastic to ensure low leakage and avoid polarization of the head, \(C_{34}\) stabilizes the loop at high frequencies and the maximum output is 4.5 V r.m.s.

There should be no discernible differences between the performance of this amplifier and the integrated version.

The recording pre-emphasis pre-amplifier can be replaced by the amplifier shown in Fig. 28. This is very similiar in performance to that of Fig. 27 and the equalization components will be identical to those used in the integrated version. By replacing the equalization network with a \(17 \mathrm{k} \Omega\) resistor the amplifier of Fig. 28 will have a forward gain of 140 , to drive the meter.

\section*{Record output}

It was stated in part 1 , that the best method of ensuring a constantcurrent recording characteristic, is to include the head in the feedback loop of a high-gain amplifier. Such an arrangement is shown in Fig. 28. The performance of this circuit is excellent. Measured total harmonic distortion in the current waveform was less than \(0.01 \%\) at an output of \(140 \mu \mathrm{~A}\) r.m.s.

However the problem of bias rejection is considerable and it is strongly recommended that only an experienced constructor, with access to a good oscilloscope, should attempt this type of output stage. The problem arises because the rejection must take place at an input, where only 50 mV r.m.s. bias will switch the amplifier output between the rails.

\section*{Erase and bias oscillator}

Although the oscillator described in part 2 performs very well on mono or stereo, a direct method of ensuring that bias and erase current calibration is retained in all modes, is to employ a separate output stage for each erase head, synchronizing these outputs by a master oscillator.

Considerable thought was given to the output stage. Class A and \(B\) were ruled out directly because of cost, and as it is extremely

TABLE 6. Equalization details for Fig. 27
\begin{tabular}{ccc}
\begin{tabular}{c}
time constants \\
\(\mu \mathrm{s}\)
\end{tabular} & \begin{tabular}{c}
\(\boldsymbol{R}_{\boldsymbol{f}}\) \\
\(\Omega\)
\end{tabular} & \begin{tabular}{c}
\(\boldsymbol{R}_{c}\) \\
\(\Omega\)
\end{tabular} \\
\hline \(35+\infty\) & \(2 \cdot 2 k\) & \(\infty\) \\
\(50+3180\) & \(3 \cdot 3 k\) & \(220 k\) \\
\(70+\infty\) & \(4 \cdot 7 k\) & \(\infty\) \\
\(50+\infty\) & \(3 \cdot 3 k\) & \(\infty\) \\
\(140+\infty\) & \(9 \cdot 1 k\) & \(\infty\) \\
\(90+3180\) & \(5 \cdot 6 k\) & \(220 k\) \\
\(140+3180\) & \(9 \cdot 1 k\) & \(220 k\) \\
\(90+\infty\) & \(5 \cdot 6 k\) & \(\infty\) \\
\(280+\infty\) & \(18 k\) & \(\infty\) \\
\(120+1590\) & \(8 \cdot 2 k\) & \(110 k\) \\
\(120+\infty\) & \(8 \cdot 2 k\) & \(\infty\) \\
\hline
\end{tabular}

Fig. 28. Recording equalized amplifier.

Fig. 29. A feedback recording output stage.
difficult to predict the performance of a class \(C\) amplifier, a current switching design was evolved. Fig. 30 shows an erase oscillator of this type; only one output stage has been drawn but several may be driven from the master oscillator without modification.
Transistors \(\operatorname{Tr}_{22}\) and \(\operatorname{Tr}_{23}\) form an emitter-coupled multivibrator which runs at \(93 \mathrm{kHz} . \operatorname{Tr}_{24}\) is a buffer, the output of which is arranged to have a positive maximum a few hundred millivolts above \(V_{\text {ref }}\).

Frequency of oscillation is stabilized by the two zener diodes, and the long-term drift is less than \(0.1 \%\). A current, defined by \(V_{\text {ref }}\) and \(R_{m}\), is switched alternately between \(\operatorname{Tr}_{25}\) and \(\operatorname{Tr}_{26}\) and its magnitude must be arranged so that these transistors nearly saturate at the required out put level.

In order that the bias waveform will decay slowly at switch-off, the time constants are arranged so that the multivibrator continues to oscillate on frequency until \(C_{m}\) has been discharged, allowing an exponential decay in the output current.

The transformer primary must have a high unloaded \(Q\), and to achieve low distortion the loaded \(Q\) factor must be at least 10 . The amplitude of the \(n\)th harmonic in the output for an ideal currentswitching operation is
\[
\frac{100}{\left(n^{2}-1\right) \cdot Q_{t}} \%
\]
where \(Q_{I}\) is the loaded \(Q\) factor. A good \(L / C\) ratio is necessary to allow reasonable loading of the tuned circuit. In Fig. 30 measured values for \(Q\) were 90 unloaded and 30 loaded, however the final
values are considerably affected by construction, in particular long cables connecting the oscillator to the head can radically modify the levels.

\section*{Modification for alternative heads}

The designs described in these articles were intended to be used with the Brenell Mk 6 deck, which incidentally, uses the same heads as the Mk 5 range. However a large number of readers may possess perfectly good decks which have recording, replay and erase heads whose parameters are very different from the Bogen heads.

It is expected that a large variety of heads can be accommodated with a few component changes, the critical parameters for the various heads are as follows :
(a) recording-a.f. current (\(\mu \mathrm{A}\))
-bias current and voltage
-bias frequency
-inductance
(b) replay -playback level at \(1 \mathrm{kHz}, 7.5\) i.p.s. and \(32 \mathrm{mMx} / \mathrm{mm}\)
(c) erase -voltage and current.

In Fig. 7 the transconductance of the output stage was expressed as \(1 / R_{12}\). Thus the input sensitivity can be deduced for any output current, and by calculation the constructor can decide whether or not sufficient output voltage swing is a vailable. The recording sensitivity may be deduced as the pre-emphasis low-frequency gain is \(7 \cdot 25\).

The only modification to the replay amplifier would be to adjust the forward gain to change the sensitivity from 2 mV .

As the open loop gain of the input i.c. is only 50 dB it is not advisable to attempt to increase the closed-loop gain by more than 6 dB although it may be reduced by some 10 dB . Any further adjustment should be made in the gain stage by adjustment of \(R_{22}\), as described in Fig. 30.

The closed loop gain \(G\) of the amplifier shown in Fig. 36 is given by
\[
G=\frac{R_{c}}{R_{d}} \cdot \frac{\frac{R_{b}+R_{c}+R_{d}}{R_{c}}+j \omega t_{1}}{1+j \omega t_{2}}
\]

\section*{if \(A \gg G\)}
where \(t_{1}\) is the upper time constant \(=C_{a}\left(R_{b}+R_{d}\right)\) e.g. \(70 \mu \mathrm{~s}, 140 \mu \mathrm{~s}\) and \(t_{2}\) is the lower time constant \(=C_{a} R_{c} \quad\) e.g. \(3180 \mu \mathrm{~s}\).
The appropriate equalization values may thus be determined.
It is not so simple to calculate the component changes to the erase oscillator.

Ensure that \(\operatorname{Tr}_{6}\) and \(\operatorname{Tr}_{7}\) are allowed to saturate. If this is not the case excessive power will be dissipated probably resulting in device failure. Beware also of raising the supply voltage above 15 V as the theoretical peak collector potential could be \(\pi \times\) supply voltage.

\section*{Mono and four-channel}

To construct a single channel version of the recorder it is necessary only to re-arrange the i.c. amplifiers for one i.c., and to modify the erase oscillator. The author suggests that i.c. amplifiers 2 and 3 be used for the replay section and 1 and 4 for recording pre-emphasis and meter circuits. A block diagram is given in Fig. 32. For those wary of modification, the erase oscillator can be built in standard form with \(C_{26}\) and \(R_{56}\) permanently wired in. See Figs 3 and 15. Otherwise \(R_{56}\) may be omitted, along with one bias winding, and the circuit operated from a lower supply-around 7 V .

Only one bias chain will be used in the meter; thus \(R_{28}, R_{30}\) and \(D_{2}\) are omitted, and the current will be set to \(3 \mu \mathrm{~A}\) by \(R_{29}\).

At the time of writing the author knows of no source of decks fitted with four-track heads, for four channel recording, however it is straight forward to multiply the circuitry to cater for this-at any point in the future the replay and recording amplifiers can be duplicated, but the erase oscillator must be replaced by a design similar to Fig. 30, or by a more powerful version of Fig. 15. There are no strong arguments for re-arranging the i.c.s. The CA 3048 lends itself to a four channel cassette replay system, although at present no deck of suitable quality is available.

The a uthor thanks Brenell Engineering Ltd, for valuable assistance given during the development of this recorder.

Fig. 30. Circuit diagram for an erase-bias oscillator.

Fig. 31. Replay amplifier equivalent circuit.

Fig. 32. Block diagram for mono.

\section*{Heat Sink Abac by. Johnstone, \(B . S c\).}

The abac given here has two uses. First it will find the heat sink thermal resistance required for a selected maximum transistor junction temperature and secondly it will give the area of matt black aluminium sheet needed.

In the instructions which follow \({ }^{\prime}{ }_{s}\) sa \(=\) thermal resistance of heat sink \(T_{j}=\) junction temperature
\(T_{a m b}=\) ambient temperature
\(\dot{\theta}_{j a}=\) thermal resistance of device junction to ambient
\({ }^{j_{j c}}=\) thermal resistance of device junction to case
\({ }^{\theta} c s=\) thermal resistance of device to case heat sink

\section*{Using the abac}
1. Calculate the maximum dissipation in the device.
2. Calculate the maximum junction temperature (\(\Delta T_{j}\)) rise from \(T_{j}-T_{a m b}\).
3. Set \(\Delta T_{j}\) on scale A and the dissipation on scale B. Read \(\theta_{j a}\) on scale C.
4. Calculate the required heat sink thermal resistance from \(\theta_{s a}=\theta_{j a}-\left(\theta_{j c}+\theta_{c s}\right)\). Typical values of \(\theta_{c s}\) will be found in the table.
5. Join \(\theta_{s a}\) on scale C to scale D via the construction point.
The heat sink is assumed to have a free air flow on both sides; to have sides of a ratio not exceeding \(2: 1\) (i.e. a 50 sq.in heat sink may be \(7.1 \times 7.1\) or \(5 \times 10\) inches but not \(2 \times 25\) inches). If bright aluminium is employed areas should be increased by \(20 \%\).

\section*{Typical values of \({ }_{\theta}\) cs}
\begin{tabular}{llll}
\hline case & direct & \begin{tabular}{l}
mica \\
contact \\
washer
\end{tabular} & \begin{tabular}{l}
hard anodized \\
Al washer
\end{tabular} \\
T0-3 & 0.05 & 2 & 0.15 \\
T0-66 & 0.4 & 2.4 & 0.6 \\
case 77 & 3 & 6 & - \\
case 90 & 1.2 & 2.2 & - \\
\hline
\end{tabular}

It is assumed that a thermal compound, such as Jermyn Thermaflow or Dow Corning D340 is used in all cases. Cases 77 and 90 are Motorola plastic types.

\title{
Elements of Linear Microcircuits
}

\title{
4: Three generations of operational amplifiers
}

\author{
by T. D. Towers*, M.B.E.
}

Talk to the new breed of engineers practised in designing their circuits around readily available, economic, standard, monolithic operational amplifiers of the 1970s and you will find that for them op-amp is taking on a meaning different from the classical definition. Nowadays they think of it as a broadband, low-frequency, very-high-gain amplifier, for use from d.c. to about 1 MHz in many circuit configurations.
If you look hard enough, you will find some 2,000 differently numbered operational amplifiers on the market. All but a few of these are of monolithic construction. The rest are specialist discrete-component or hybrid versions which designers turn to usually as a last resort when they cannot find the right monolithic.

\section*{First-generation}

Until the appearance of monolithic op-amps in quantity in the late 1960s, a designer who needed such an amplifier would take conventional capacitors, resistors and transistors to make up a circuit something like Fig. 1. This employs a long-tail-pair balanced input followed by a long-tail-pair

\footnotetext{
*Newmarket Transistors Ltd
}
level shifter to return the single ended output to zero.

The first monolithic op-amp with a performance comparable to discretecomponent versions was introduced in 1965. This was the Fairchild \(\mu \mathrm{A} 709\). It is now available from most semiconductor manufacturers under many different code numbers, but it is always spoken of as the '709'. In the U.K. there are many variants such as Motorola's MC1709, Mullard/ Philips TAA521, National Semiconductors' LM709, Newmarket's LIC709, ITT's MIC709, Texas Instruments' SN72709 and Transitron's TOA2709, as well as Fairchild's own 709 series with code numbers such as U6A 7709393.

Although the circuit of the 709 , given in Fig. 2, achieved the same sort of performance as discrete circuits of the type of Fig. 1, it can be seen even under superficial inspection to be much more complex. This is because monolithic techniques for diffusing such an op-amp into a silicon chip (about 0.055 sq . inches) had difficulty in producing directly the high-value resistors and the high-gain transistors of the discrete version. For those interested in design details, a brief description follows.
In Fig. 2, the input transistors, \(T r_{1}\) and
\(T r_{2}\) form a balanced long-tail pair with a fixed \(40 \mu \mathrm{~A}\) tail current provided by the transistor \(T r_{11}\). This is biased as a constant current source by the emitter resistor \(R_{11}\) and the diode-connected transistor \(\operatorname{Tr}_{10}\) which is forward-biased by current through \(R_{8}\), \(R_{10}\). The collector load resistors of the long-tail pair, \(R_{1}, R_{2}\), provide a balanced output.

The network \(T r_{7}, R_{5}, T r_{3}, T r_{5}, R_{3}\), and \(T r_{15}\) provide balanced stabilization against temperature and supply voltage changes. The single-ended output from \(R_{2}\) drives the common-emitter Darlington pair, \(T r_{4}, T r_{6}\), to give a further amplified signal level across \(R_{6}\). This is used to drive \(T r_{8}\) which in turn (via the common-base stage \(T r_{9}\)) controls the pre-output common emitter driver \(\operatorname{Tr}_{12}\). The collector of the driver (with its collector resistor \(R_{14}\)) is directly connected to the bases of the complementary-symmetry class-B output pair, \(\operatorname{Tr}_{13}, \operatorname{Tr}_{14}\). The output is taken from the common emitters of \(T r_{13}\), \(T r_{14}\), the d.c. level having been shifted back to zero through transistors \(4,6,8,9,12,13\) and 14.

In the discrete op-amp circuit of Fig. 1, capacitors \(C_{1}\) and \(C_{2}\) were included to cut the top frequency response of the circuit to avoid h.f. instability. In the 709 it was not

Fig. 1. Discrete component operational amplifier.

Fig. 2. The popular '709'.
possible to include capacitors and so terminals 1,8 and 5 were provided to enable separate external compensation capacitors to be connected. The \(220 \mathrm{k} \Omega\) resistor \(R_{2}\) in Fig. 1 also could not be provided in the monolithic version, and was replaced by the constant current transistor, \(\operatorname{Tr}_{11}\), in Fig. 2.

Selections of the 709 are available, but the loosest specification version (and the most commonly used), the 709 C , has the following characteristics on \(\pm 15 \mathrm{~V}\) d.c. supply at \(25^{\circ} \mathrm{C}\) ambient temperature:
\(A_{\text {VOL }}(\) open loop d.c. voltage gain) \(=\)
94 dB (\(\times 50,000\)) typ., 84 dB min.
\(V_{I O S}\) (off-set voltage, \(10 \mathrm{k} \Omega\) source resis-
tance \()=2.0 \mathrm{mV}\) typ., \(7.5 \mathrm{mV} \max\).
\(I_{I O S}\) (off-set current) 100 nA typ., 500 nA max.
\(I_{B}\) (input bias current) \(=300 \mathrm{nA}\) typ. 1,500nA max.
\(R_{I N}\) (input resistance, differential)= \(250 \mathrm{k} \Omega\) typ., 50 k min.
\(R_{\text {OUT }}\) (output resistance) \(=150 \Omega\) typ.
\(V_{\text {OUT }}\) (output voltage available swing)
\(= \pm 12 \mathrm{~V} \min .\left(R_{L}=10 \mathrm{k}\right)\)
\(= \pm 10 \mathrm{~V} \min .\left(R_{L}=2 \mathrm{~K}\right)\)
c.m.r.r. (common moderejection ratio) \(=\)

90 dB typ., 65 dB min.
v.s.r.r. (supply voitage rejection ratio) \(=\) \(25 \mu \mathrm{~V} / \mathrm{V}\) typ., \(200 \mu \mathrm{~V} / \mathrm{V}\) max.
\(V_{i n} c . m\). (common mode input voltage range \()= \pm 10 \mathrm{~V}\) typ., \(\pm 8 \mathrm{~V}\) max .
\(V_{\text {in }}\) diff. (differential input voltage range) \(= \pm 5 \mathrm{~V}\) max .
\(V_{S}\) (supply voltage range) \(= \pm 9\) to \(\pm 15 \mathrm{~V}\).
\(S R \quad\) (unity-gain slew rate) \(=0.5 \mathrm{~V} / \mu \mathrm{S}\) typical.
\(B W_{O L}\) (open loop bandwidth) \(=100 \mathrm{~Hz}\) typ.
\(B W_{V F}\) (voltage follower or unity gain bandwidth) \(=1 \mathrm{MHz}\) typ.
These characteristics are given in some detail so that you can see how far the first generation operational amplifiers matched up with the five ideal characteristics of an op-amp i.e. infinite gain, zero current and voltage input offset, infinite input impedance, zero output impedance and

Fig. 3. An example of an improved first generation op-amp, the LM1O1.

Fig. 4. The \(\mu\) A741. Note the diffused compensation capacitor.
zero response time (infinite bandwidth). They also set levels to judge how later generation op-amps improved.

\section*{Improved first-generation}

Users found that the 709 had certain practical drawbacks. In ordinary use it was liable to latch up when the common mode input range of \(\pm 8 \mathrm{~V}\) was exceeded. It was liable to 'blow up' if the output was short circuited. Its input resistance of \(50 \mathrm{k} \Omega\) min. was rather low. Without at least two external compensation capacitors it was virtually certain to oscillate on open loop. Its quiescent current consumption of about 2.5 mA was too large.

The first improvement of the 709 was the LM101 brought out in 1967 by National Semiconductors with the circuit of Fig. 3. It is now almost as well known as the 709 and commonly referred to as the ' 101 '.

The principal improvements incorporated in the 101 were frequency compensation by a single 30 pF external capacitor, voltage supply range extended to \(\pm 5\) to \(\pm 20 \mathrm{~V}\), quiescent current reduced to 1.8 mA typical, continuous output short-circuit protirion provided, common mode input voltage limit raised to \(\pm 15 \mathrm{~V}\), and differential input voltage range raised to \(\pm 30 \mathrm{~V}\). Also a separate terminal was used for easy offset zeroing (balancing) with a single \(5 \mathrm{M} \Omega\) potentiometer.

These improvements were substantial, but the 101 is usually regarded merely as a slightly better 709 , because the offset voltage and offset currents were only marginally improved. The Fairchild \(\mu \mathrm{A} 748\) has very similar specifications. The Motorola MC1533 is another well known improved 709.

\section*{First generation internallycompensated}

The 101 still could not be used open-loop without an external compensating capacitor, and almost inevitably in 1968 there came out the first fully internally compensated op-amp, the \(\mu \mathrm{A} 741\). This was followed soon by the LH101, or RM4101, (compensated 101).

In the case of the LH101, the modification to the LM101 was merely to diffuse a 30 pF capacitor internally between the compensation and top balance terminals of Fig. 3.
In the case of the 741, a completely new circuit as Fig. 4 was used. In this the highgain n-p-n transistors \(T r_{1}, T r_{2}\) are used in combination with the low-gain lateral \(\mathrm{p}-\mathrm{n}-\mathrm{p}\) transistors \(\mathrm{Tr}_{3}, \operatorname{Tr}_{4}\) to provide effectively a high-gain p-n-p input pair. Transistors \(\operatorname{Tr}_{8}\) and \(\mathrm{Tr}_{9}\) provide a constantcurrent long-tail source of about \(30 \mu \mathrm{~A}\) total for this input pair. Transistors \(\operatorname{Tr}_{5}\) and \(T r_{6}\) are biased to act as \(2 \mathrm{M} \Omega\) loads for the composite input transistors. The amplified signal appearing at the collector of \(T r_{4}\) is further amplified by the high-input-impedance Darlington pair \(T r_{16}\),
\(T r_{17}\). The collector load of this Darlington is the collector output resistance of the constant-current-biased transistor \(\operatorname{Tr}_{13}\). This drives the output complementarysymmetry, transistors \(\operatorname{Tr}_{14}, \operatorname{Tr}_{20}\) which are biased class AB to about \(60 \mu \mathrm{~A}\) quiescent current by the forward voltage drop across \(T r_{18}\). The forward bias on the output transistors eliminates the cross-over distortion of the 709 (where the bases of the output transistors are connected together - see Fig. 2).

The 741 is proof against continuous output short-circuits because the output is current limited. For positive excursions \(R_{9}\), \(T r_{15}\) in Fig. 4 act as a 25 mA current limiter. Above this output current, the voltage drop across \(R_{9}\) brings \(\operatorname{Tr}_{15}\) into conduction and limits the drive. For negative excursions the output current is limited by the \(50-\Omega\) series resistor \(R_{10}\) combined with the transistor \(T r_{22}\) shunted across the drive. On the negative excursion the current through \(R_{11}\) tends to turn \(T r_{22}\) on and limit the drive to the output.

The completely new feature of the 741 op-amp was that the chip incorporates a 30pF m.o.s. capacitor (\(C\) in Fig 4). As a result the amplifier does not need any external frequency compensation, even for closed loop gains down to unity.
It has an internal \(6 \mathrm{~dB} /\) octave roll-off commencing at 10 Hz , passing through unity gain at 800 kHz , to ensure a typical \(80^{\circ}\) phase margin at unity gain.

The high emitter-base breakdown voltages of the lateral \(\mathrm{p}-\mathrm{n}-\mathrm{p}\) transistors \(T r_{3}, T r_{4}\) means that the 741 circuit is able to withstand \(\pm 30 \mathrm{~V}\) differential input signals without breakdown (compared with the \(\pm 5 \mathrm{~V} \max\) of the 709).

The process improvements of the 741 did not make much overall improvement in the characteristics of the 709 (except for slightly increased gain and higher input resistance). Improvements were rather that the 741 had protection against output short circuit damage and input latch up, a larger differential voltage range, internal frequency compensation, simple offset voltage nulling with a single \(10 \mathrm{k} \Omega\) potentiometer (connected across emitters of \(T r_{5}, T r_{6}\), in Fig. 4), wider operating voltage range (\(\pm 3\) to \(\pm 20 \mathrm{~V}\)) and lower quiescent supply current (1.7 as against 2.5 mA typical).

The 741 appears under various numbers such as Motorola's MC1741, National Semiconductors' LM741, Newmarket's LIC741, Transitron's TOA2741, ITTs MIC 741 and Texas Instrument's SN72741.

As a parallel development, we find manufacturers providing two op-amps in one package with the useful characteristic of close thermal tracking between the chips. Well known examples of dual 709s are the Transitron TOA2809, and Motorola MC1437, and of dual 741 s the TOA2841 and MC1558.

\section*{Second generation}

All the op-amps discussed so far have input offset and bias currents measured in hundreds of nanoamps which led to un-

Fig. 5. Second generation example, the LM101A. Both bipolar and field effect transistors are used.
acceptable voltage drifts with temperature in high-impedance circuits.

The second generation of monolithic op-amps was characterized by an order of magnitude improvement in bias and offset currents. The National Semiconductor's LM101A was the archetype of these. It has 20 nA max. offset current compared with the 500 nA limit of the 709 and its previous successors. Similarly in the 101A the input bias current was improved from \(1.5 \mu \mathrm{~A}\) to \(0.25 \mu \mathrm{~A}\) max.

The circuit of the LM101A, given in Fig. 5, has several interesting features, making extensive use of transistors and f.e.ts as active collector loads, high-gain lateral \(\mathrm{p}-\mathrm{n}-\mathrm{p}\) transistors and pinch resistors.

You can make your way through the circuit of the 101 A in Fig. 5 by noting that \(T r_{5}\) and \(T r_{6}\) act as active collector loads for the balanced input stage \(T r_{1} / T r_{3}, T r_{2} / T r_{4}\) The right hand transistor \(\operatorname{Tr}_{4}\) drives the common-emitter Darlington pair \(\operatorname{Tr}_{9}, T r_{10}\), whose collector load is \(\operatorname{Tr}_{17}\left(\right.\) via \(\left.\operatorname{Tr}_{13}, \operatorname{Tr}_{14}\right)\). The drives to the bases of the output transistors \(T r_{16}\), and \(\operatorname{Tr}_{11}\) are from \(\operatorname{Tr}_{17}\) collector and from \(\operatorname{Tr}_{10}\) collector via \(\operatorname{Tr}_{12}\).

The active collector loads \(\operatorname{Tr}_{5}, \operatorname{Tr}_{6}\) are better than resistor loads. They avoid the use of large resistances to achieve low current operation (important in reducing input bias currents and power consumption). They do not require much voltage to be dropped across them for correct operation, which leads to an increase in common-mode input range, an increase in voltage swing, a wider permissible range of supply voltages, and higher stage gains (lessening the number of stages required and simplifying frequency compensation).

Transistor \(\mathrm{Tr}_{18}\) in Fig. 5 is an example of an f.e.t. used as an active constant-current-source collector load for transistor \(\operatorname{Tr}_{20}\).

Lateral p-n-p transistors first featured in the 709 (\(\mathrm{Tr}_{\mathrm{g}}\) in Fig. 2) were originally very low-gain devices (with current gains much less than 10) and low frequency cut-offs (typically about 1 MHz). By the
time the 101 A was brought out in late 1968, processes had improved so much that lateral p-n-p current gains of greater than 100 were achieved. \(\operatorname{Tr}_{3}\) and \(\operatorname{Tr}_{4}\) in Fig. 5 are examples of such later transistors. A further development of the lateral \(\mathrm{p}-\mathrm{n}-\mathrm{p}\) is the 'controlled gain' transistor in which the collector is split into two segments and one of them is connected back to the base. The effective current gain is determined by the relative areas of the two collector segments. \(\operatorname{Tr}_{17}\) in Fig. 5 is such a controlled-gain transistor.
'Pinch' or 'pinched-base' resistors are special high-value diffused resistors originally developed to get round the fact that conventional base-diffused resistors of values above a few thousand ohms were impracticable. The cross sectional area of a base-diffused resistor is effectively reduced or 'pinched' by an emitterdiffusion on top of it. By this process resistor values up to \(100 \mathrm{k} \Omega\) are feasible. \(R_{2}, R_{5}, R_{6}\) and \(R_{7}\) in Fig. 5 are examples of such high-value 'pinch' resistors.

Further examples of other op-amps of this lower input current second generation are the well-known Motorola MC1539/ 1439 and the Sprague 2139.

\section*{Third Generation}

The second generation 101A had given input bias and offset currents of 250 nA and 20 nA max. compared with 1,500 and 500 nA in the first generation 709. By 1970, monolithic bipolar technology had enabled a further order of magnitude reduction in input currents in the 'third generation' op-amps. In them the National Semiconductors LM108 led the way. In this, input bias and offset currents dropped to 2 nA and 0.2 nA max.

This improvement is achieved by using 'super-gain' or 'punch-through' transistor at the input. The current gain of an n-p-n transistor in a monolith depends for one thing on the length of the emitter diffusion cycle in the manufacture.

Fig. 6. Third generation example, the LM108. Tr \(_{1}\) and Tr \(_{2}\) are 'super-gain' or 'punch-through' transistors which operate at very low voltages.

Devices emitter diffused for unusually long time exhibit increased current gain at the expense of collector breakdown voltage. Current gains of 4,000 can be obtained but with a collector breakdown voltage of 4 V .

In Fig. 6, the circuit of the LM108, low-voltage super-gain transistors are used as \(T r_{1}, T r_{2}\), the input transistors. To prevent voltage breakdown they are operated in cascode connection with \(T r_{5}\) and \(T r_{6}\), which stand off the commonmode voltage. The bases of \(T r_{5}\) and \(T r_{6}\) are bootstrapped via \(T r_{27}\) and \(T r_{28}\) to the common-mode voltage seen by the input transistors. Thus the input transistors are always operated with near-zero collectorbase voltage, and high temperature leakage currents do not show up at the input.

The super-gain input transistors give other bonuses. The 108 input resistance is \(30 \mathrm{M} \Omega \mathrm{min}\). compared with the \(50 \mathrm{k} \Omega \mathrm{min}\). of the 709 . Voltage gain improves to 94 dB min . instead of 84 dB . Common mode rejection ratio becomes 80 dB min . instead of 65 dB . Typical supply current drops from 2.5 mA to 0.15 mA .

The Motorola MC1556 is another third generation op-amp. using super-gain input transistors, and you will also find similar transistors incorporated in the unity gain, voltage-followers LM102 and LMIIO.

\section*{High input impedance}

The low input resistance of the 709 led to the development of special high \(R_{I N}\) monolithics along two lines-Darlington pairs and f.e.ts for the inputs.

At first sight a Darlington compound should give the same sort of result as a super gain device. However the Darlington pair voltage mismatch tends to be worse because it depends on current gains; also
it tends to be higher noise and exhibits lower common mode rejection. The Transitron TOA8709 is a well known example of such a Darlington input.

The f.e.t. input transistor approach is used in the Fairchild \(\mu \mathrm{A} 740\) where an input resistance of \(10^{12} \Omega\) is achieved with a typical offset current of only 20 pA . Against this, f.e.t.-input op-amps exhibit offset voltages and voltage drifts about twenty times higher than the typical 1 mV and \(2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) of the super-gain transistor approach. (Even lower bias and offset currents have been obtained by hybrid assembly using selected matched f.e.t. chips at the input as in the Teledyne AD503.)

\section*{Higher slew rate}

One of the defects of earlier generation op-amps was the limited small signal and power bandwidths, usually specified by unity gain bandwidth (for small signal) and unity gain slew rate for full output. The 709 had a 1 MHz typical bandwidth and \(0.5 \mathrm{~V} / \mu \mathrm{s}\) slew rate, the major restriction being the low gain, low frequency lateral p-n-p used (\(\mathrm{Tr}_{\mathrm{g}}\) in Fig. 2). Process improvements in later generation generalpurpose op-amps pushed gain-bandwidths out to about 5 MHz and slew rate to about \(5 \mathrm{~V} / \mu \mathrm{s}\).

However for higher slew rate requirements, special op-amps have been developed such as the Signetic 531 (typical \(40 \mathrm{~V} / \mu \mathrm{s}\)) or the Optical Electronics 9694 (\(100 \mathrm{~V} / \mu \mathrm{s}\)).

\section*{Micropower}

Another area where specialist op-amps have been developed is low power consumption. In this area, the Solitron UC4250 indicates the sort of performance aimed at.

This micropower op-amp uses so little power that its batteries last as long as their shelf life. It can operate on rails from \(\pm 1 \mathrm{~V}\) to \(\pm 18 \mathrm{~V}\). It has typical input bias currents of only 3 nA and zero input offset temperature drift. On \(\pm 1 \mathrm{~V}\) it has a power consumption of only \(20 \mu \mathrm{~W}\).

\section*{Conclusion}

The second half of the 1960s was an astonishing time when the monolithic op-amp developed from the old-faithful 709 (which in 1970 still does well over half the op-amp. jobs around) through the 101 A up to the 108 . We now have a situation where the handy monolith is bidding fair to oust all discrete or hybrids of the balanced differential input type, is giving a performance near to chopper stabilized types, and could well in time even match the heights of the varactor bridge and electrometer valve.

\title{
Conferences and Exhibitions
}

Further details are obtainable from the addresses in parentheses

\section*{MANCHESTER}

Jan. 5-7
The University
Solid State Physics
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

\section*{OVERSEAS}

Jan. 12-14
Washington
Reliability-Meeting the Demand
(J. W. Thomas, Vitro Laboratories, 14000

Georgia Ave, Silver Spring, Maryland 20910)
Jan. 14-20
Paris
Audiovisual et Communication Salon
(S.D.S.A., 14 rue de Presles, 75 Paris 15 e)

Jan. 19-21 Oaxtepec, Mexico
Systems, Networks and Computers
(Dr. Roberto Canales, Instituto de Ingenieria, Ciudad Universitaria, Mexico 20, D.F., Mexico)

Jan. 26 \& 27
Chicago
Soldering Technology
(William Dunbar, Winois Institute of Technology, 3241 South Federal Street, Chicago, Illinois 60616)

\title{
Signal-flow graph methods applied to solution of simultaneous equations in up to six variables
}

\author{
by V. J. Phillips*, B.Sc.(Eng.), Ph.D., D.I.C., A.C.G.I., M.I.E.E.
}

Many techniques are available for the solution of simultaneous equations. The simple, schoolboy method involves multiplying the equations by various numbers and subtracting one from another so that the variables can be eliminated one at a time. Anyone who has tried to carry out such a procedure for a set of equations having more than three variables will know that it becomes very difficult to remember what one is multiplying by and subtracting from what-in fact, the difficulty increases very rapidly with the number of variables in the equations. The more advanced methods of solving equations, such as "triangulation of the matrix" procedures, Cramer's Rule, and matrix inversion, are a help because they lay down the procedure which has to be followed. One still has the task of performing the various arithmetical operations involved but at least one is relieved of the necessity of making decisions about the multiplying factors to be used and the order in which to use them.
In other words, the solution of a set of simultaneous equations can be divided into two parts
(i) Deciding what steps to take, and
(ii) Actually performing the arithmetic involved in those steps.
If one is trying to solve a set of equations in, say, twenty variables, the only sensible course is to do it on a digital computer using one of the numerous routines available in the soft-ware library. However, if one wishes to solve a set of equations in five or six variables, one has to decide whether it is worth the effort of going to the computer centre, looking out the programme, punching up the cards or tape, correcting any errors, etc. or whether it is really much easier to press on and do the job by hand. Reference has already been made to some of the standard matrix methods for equation solving. These are easy enough in theory but when one is working out the determinant for a \(5 \times 5\) matrix the expressions which result as the order of the matrix is reduced become more and more clumsy to handle, and there is always that pestilential business of remembering the signs and working them out correctly.
The piece of equipment described here is an aid to manual solution of equations in reasonably small numbers of variables. The particular version constructed by the author

\footnotetext{
* University College of Swansea
}
will handle up to six variables, but there is no reason why the principle should not be extended up to higher numbers if required. The apparatus is based on the "signal flow graph" method of solving equations.

\section*{The signal flow method}

The signal flow graph is a pictorial representation of a set of equations demonstrating the inter-relationships between the variables. Consider first the equations
\[
\left.\begin{array}{l}
4 \cdot x_{1}+1 \cdot x_{2}+2 \cdot x_{3}=4 \\
2 \cdot x_{1}-1 \cdot x_{2}-4 \cdot x_{3}=4 \tag{1}\\
3 \cdot x_{1}+8 \cdot x_{2}-1 \cdot x_{3}=20
\end{array}\right\}
\]

The first step is to rewrite these as
\[
\left.\begin{array}{l}
x_{2}=4-4 \cdot x_{1}-2 \cdot x_{3} \\
x_{1}=2+0 \cdot 5 \cdot x_{2}+2 \cdot x_{3} \tag{2}\\
x_{3}=-20+3 \cdot x_{1}+8 \cdot x_{2}
\end{array}\right\}
\]

The equations may be used in any order to produce expressions for \(x_{1}, x_{2}\) and \(x_{3}\) Ohviously if a particular equation involves \(1 . x_{n}\) then it is sensible to use that equation for \(x_{n}\) to avoid fractions as far as possible. This is why the first equation above has been used for \(x_{2}\) and the second for \(x_{1}\). Four dots called "nodes" are now marked on a piece of paper as shown in Fig. 1, one representing

Fig. I. Signal-flow graph for equations (2).
unity, the others \(x_{1}, x_{2}\), and \(x_{3}\). "Branches" are now drawn representing the contributions of the nodes to one another according to equation (2) as shown. For example, the first equation of (2) for \(x_{2}\) says that the variable \(x_{2}\) is made up of 1 multiplied by +4 , \(x_{1}\) multiplied by -4 , and \(x_{3}\) multiplied by -2 . The relevant numbers are marked on the branches and are referred to as the "transmittances" of the branches. The arrows on the branches are read as "contributes to"-for example, the bottom branch would be interpreted as "node one contributes itself multiplied by -20 to node
\(x_{3}{ }^{\prime \prime}\). Notc especially that it is not possible to reverse the arrow and alter the sign as one can when labelling currents in a circuit. Fig. 2 shows why; the first graph represents the

Fig. 2. Erroneous reversal of arrow and sign.
equation \(x_{2}=2 . x_{1}\), whereas the second represents \(x_{1}=-2 . x_{2}\) which is not the same thing at all.

The complete graph shows the interrelationship between the variables, but it should be noted that there are several ways of writing equations (2), and hence there are several possible signal flow graphs to represent the original equations (1). The particular graph obtained depends on how the variables were selected in equations (2). The procedure used to solve the equations is very useful in that it enables the graph to be simplified in easy stages, a bit at a time. In order to explain the overall procedure for solution it is first necessary to establish a set of simple rules for graph manipulation.

\section*{RULE 1. For parallel branches}

If there are two branches in parallel as shown in Fig. 3(i) this represents the equation
\[
\begin{gather*}
x_{2}=a \cdot x_{1}+b \cdot x_{1} \\
\text { which equals, of course, }(a+b) \cdot x_{1} \tag{3}
\end{gather*}
\]

Fig. 3. Branches in parallel.
Thus the two branches may be replaced by the single branch labelled \((a+b)\) as in Fig. 3 (ii).

\section*{RULE 2. For cascaded branches}

If two branches are simply in cascade as shown in Fig. 4(i), this graph represents the two equations
\[
\begin{equation*}
x_{2}=c \cdot x_{1} \quad x_{3}=d \cdot x_{2} \tag{4}
\end{equation*}
\]

H. 4. Branches in simple cascade.

Thus \(x_{3}=c d . x_{1}\) as represented by Fig. 4(ii). Note that in order to apply this rule the branches must be in simple cascade with no other branches entering or leaving node \(x_{2}\).

\section*{RULE 3. For reduction of loops}

Inspection of Fig. 1 will show that several loops appear in the complete graph. A "loop" may be formally defined as "a path which, following the arrows, starts and ends on the same node, and along which no node is encountered more than once". A loop such as that between \(x_{1}\) and \(x_{2}\) of Fig. 1 where there is a forward contribution of -4 and a backward contribution of 0.5 is often referred to as a "feedback" loop.

Consider now the equation
\[
4 x_{1}+3 x_{2}=7
\]
which may be rewritten as
\[
\begin{equation*}
x_{1}=-3 x_{1}-3 x_{2}+7 \tag{5}
\end{equation*}
\]

This is a rather unusual way of doing things, but nevertheless it is algebraically correct. Equation (5) may be represented by the signal flow graph of Fig. 5, and the "self

Fig. 5. A self-loop.
loop" on node \(x_{1}\) can be interpreted as \(x_{1}\) contributing to itself multiplied by -3 . One would not normally choose to draw the signal flow graphs in this way, but such selfloops arise frequently in signal flow work and it is necessary to know how to handle them. The signal flow graph of Fig. 6(i) will be taken as an illustration of how loops are treated.

Fig. 6. Rules for feedback loops, self-loops and node elimination.

This graph corresponds to the equation
\[
\left.\begin{array}{rl}
x_{1} & =a+b+d \cdot x_{2} \tag{6}\\
x_{2} & =c \cdot x_{1} \\
x_{3} & =e \cdot x_{2}
\end{array}\right\}
\]
\(a, b, \ldots e\) are constants; the first equation may be simplified using the parallel branch rule for \(a\) and \(b\), but it will be left as it stands for the moment in order to illustrate a later point.
Simple manipulation of these equations reduces them to
\[
\left.\begin{array}{l}
x_{1}=a+b+d \cdot c \cdot x_{1} \tag{7}\\
x_{2}=c \cdot x_{1} \\
x_{3}=e \cdot x_{2}
\end{array}\right\}
\]

The graph will now appear as shown in Fig. 6(ii), and it will be seen that the feedback loop has been transformed into a forward branch \(c\) and a self loop d.c on the \(x_{1}\) node. This, in fact, constitutes the rule for dealing with simple feedback loops. By application of Rule 2, the graph reduces to Fig. 6(iii) corresponding to equations
\[
\left.\begin{array}{l}
x_{1}=a+b+d \cdot c \cdot x_{1} \tag{8}\\
x_{3}=c \cdot e \cdot x_{1}
\end{array}\right\}
\]

The first of these equations is equivalent to
\[
x_{1}(1-d . c)=a+b
\]
or
\[
\begin{equation*}
x_{1}=\frac{a}{1-d . c}+\frac{b}{1-d . c} \tag{9}
\end{equation*}
\]
and the left-hand part of the graph of Fig. 6 (iv). The rule for removal of a self-loop is now established. If the self-loop on a node has a transmittance \(T\), every incoming branch to that node is multiplied by \(1 /(1-T)\).

Note here that \(T\) cah never \(=1\) because this corresponds to the meaningless equation \(x_{1}=a+b+x_{1}\), so multiplication by infinity never arises for sensible equations.

\section*{RULE 4. For node elimination}

The last equation of (8) may now be written
\[
x_{3}=\frac{c \cdot e \cdot a}{1-d \cdot c}+\frac{c \cdot e \cdot b}{1-d \cdot c}
\]
and the graph appears in Fig. 6(v). Node \(x_{1}\) has in fact been eliminated, and the rule for this operation may be expressed as follows: "when \(x_{1}\) is eliminated two paths are destroyed, viz. from 1 to \(x_{3}\) via the upper route, and from 1 to \(x_{3}\) via the lower route. Replace these by the paths of Fig. 6(v)."

Finally, the two branches may be combined by Rule 1 as in Fig. 6(vi).

The simple rules for dealing with individual features of signal-flow graphs have now been established, but the reader should be warned that there are pitfalls in attempting to solve complete graphs using these as they stand. It is much better to embody them in a general set of procedures which will now be illustrated by solution of equations (1), corresponding to Fig. 1, and Fig. 7. It will be assumed that in the first instance the value of \(x_{3}\) is required. The general procedure is to eliminate the nodes of the other variables in turn. At each elimination all paths passing through the eliminated node which are destroyed must be restored. First let \(x_{1}\) be

Fig. 7. Solution of the signal-flow graph of Fig. 1 by successive node elimination.
eliminated from Fig. 1. The paths which are destroyed are:

From 1 to \(x_{2}\) via \(x_{1} \ldots\) replace by direct path transmittance -8
From 1 to \(x_{3}\) via \(x_{1} \ldots\) replace by direct path transmittance 6
From \(x_{2}\) to \(x_{3}\) via \(x_{1} \ldots\) replace by direct path transmittance 1.5
From \(x_{3}\) to \(x_{2}\) via \(x_{1} \ldots\) replace by direct path transmittance -8
From \(x_{2}\) to \(x_{2}\) via \(x_{1} \ldots\) replace by self
loop - 2
From \(x_{3}\) to \(x_{3}\) via \(x_{1} \ldots\) replace by self loop 6
The resulting graph now looks like that of Fig. 7(i) where the new replacement paths are shown dotted for clarity. This may be tidied up using the rule for parallel branches, producing the graph of Fig. 7(ii). Notice particularly the last two replacements listed above; this is how self loops appear in this sort of analysis, and it is important to remember them. The elimination process which has now been carried out is exactly equivalent to substituting for \(x_{1}\) in the other two equations of (2). Such a substitution would yield two equations in \(x_{2}\) and \(x_{3}\) only, corresponding precisely to the graph of Fig. 7(ii).

The next stage is the elimination of node \(x_{2}\), but before this can be done the self loop on that node must be removed. This is done according to Rule 3 by multiplying each incoming branch to that node by
\[
\frac{1}{1-(-2)}=1 / 3
\]
resulting in Fig. 7(iii).
Node \(x_{2}\) is now eliminated, replacing paths:
From 1 to \(x_{3}\) via \(x_{2} \ldots\) replace by -12.68
From \(x_{3}\) to \(x_{3}\) via \(x_{2} \ldots\) replace by self loop - 31.68

Fig. 7(iv) shows the picture at this stage, and Fig. 7(v) shows the result after combining parallel paths.

Removal of the self loop according to the rule produces Fig. 7(vi) which says, simply, that \(x_{3}=-1 \times 1=-1\), which is the solution required. Not ice that if the value of \(x_{2}\) is also wanted one does not have to start again from square one; elimination of node \(x_{3}\) from Figs 7 (ii) or (iii) will yield the value of \(x_{2}\).

A simple set of procedural rules for reducing these signal flow graphs may now be drawn up as follows:
1. Select a node to be eliminated.
2. If this node has a self-loop remove it by multiplying all incoming branches to that node by \(1 /(1-T)\) where \(T\) is the transmittance of the loop.
3. Eliminate the node, replacing all paths thus destroyed (remembering paths which result in self-loops-it's easy to forget these!).
4. Combine the new branches with any existing branches.

Repeat all these steps for the next node selected for elimination.

This is essentially a very simple procedure, but the one difficulty which does exist lies in making sure that every path destroyed is replaced. With a more complicated graph involving, say, eight or nine nodes this can be quite a tricky business. The only way to do it safely is to set about it in a logical manner. Take node 1 as a starting point and inspect in turn the paths to the other nodes \(x_{1}, x_{2} \ldots x_{n}\) via the chosen node to be eliminated \(x_{e}\). At each stage add the replacement branch to any direct branch which exists between the nodes. Next start at \(x_{1}\), and look for paths to \(x_{1}, x_{2}, \ldots x_{n}\) via \(x_{e}\), and so on using each node in turn as a starting node. In this way every combination of nodes is tested in logical order. Notice that there can never be a self loop on node 1 , since all arrows point from that node. This is only to be expected since 1 is a constant uninfluenced by the values of the variables.

The apparatus which is to be described assists in this logical searching process and

reduces it to a simple repetitive procedure which can be carried out step by step. As the photograph Fig. 8 shows, it consists of a display board accompanied by one of two possible plug-in units. The first of these (in the foreground of Fig. 8) is a simple manual control unit; the other (actually connected to the display board in the photograph) is a fully automatic control unit.

\section*{Principle of simple manual model}

The display unit consists of an array of torch bulbs connected to a matrix of wires as illustrated in Fig. 9. The circles on the crosspoints represent bulbs connected between the two wires. According to the settings of the switches \(S_{r}\) and \(S_{c}\) the source of e.m.f. can be connected between any horizontal (row)

Fig. 8. The complete apparatus.
wire and any vertical (column) wire, thereby lighting up the bulb at the junction of those two wires. However, the current path via the chosen bulb is not the only one which exists since all the other bulbs are connected to the e.m.f. in various series/parallel combinations. The net result of this is that the selected row and column glow with diminished brightness. Provided the number of rows in the matrix is the same as the number of columns, a cross of dimly-lit bulbs appears with the one bulb at the crossing glowing brightly. By correct selection of the resistance \(R\) (which in practice is a piece of resistance wire cut to the correct length) the light from the unwanted row and column bulbs can be reduced to a very dull glow while the required bulb still glows very prominently. Although this effect seems at first sight to be a nuisance, it is actually quite useful as a quick check to the correct operation of all the bulbs. If \(S_{r}\) is set to one position while \(S_{c}\) is rotated through all possible positions the faint glows provide a good indication that all is well and it saves having to run through all combinations of settings of \(S_{r}\) and \(S_{c}\). It will be found that if a bulb should happen to go open-circuit it soon shows up, as the distribution of currents on the matrix is disturbed and various unusual combinations of lights appear.

The bulbs are mounted on a perspex sheet marked out in squares (see Fig. 10), each square being big enough to have a number written on it in easily-erased wax pencil. The rear of the perspex sheet is painted white for ease of visibility. The columns on the board are marked \(1, x_{1}, x_{2} \ldots\) etc. (or whatever the variables may happen to be) and the rows are labelled \(x_{1}, x_{2}\)

The number of rows is one fewer than the number of columns, so in order to keep the current distributions in balance as previously mentioned, a further row of bulbs is also present but is hidden under the board.

These bulbs are indicated as black circles on the matrix of Fig. 9. Switches \(S_{c}\) and \(S_{r}\) are mounted on a separate box connected to the display board via multiway plugs and sockets. The transformer is under the display board.
The whole display unit provides a slightly amended way of representing a signal flow graph. The coefficients of the equations in signal flow form (equations 2) are written on to the board so that a row represents the contribution of the quantities at the head of the columns to the variable of that row. For example, the first row, representing \(x_{1}\), has \(2 \times 1,0.5 \times x_{2}\) and \(2 \times x_{3}\). The equations can therefore be set out very simply and easily on the display board
By setting the switches \(S_{r}\) and \(S_{c}\) one may now ask, for example, the question "is there a direct contribution from \(x_{1}\) to \(x_{3}\) ?" The switches are set as in Fig. 9 so that row \(x_{3}\) and column \(x_{1}\) are connected to thee.m.f. and the light indicates the required contribution which is the direct branch in signal-flow graph terms. If no such path exists, the blank square indicates that this is so.

The board now has to be modified so that one may ask the question "is there a path from \(x_{1}\) to \(x_{3}\) via some other chosen node (say \(x_{2}\))?" The method of doing this is also indicated in Fig. 9. The rather complicatedlooking switch \(S^{*}\) is actually just a way of obtaining a double-pole, 3 -way switch with a convenient toggle action. It is mounted on the lower left-hand corner of the display unit. When the switch lever is in the central position the four changeover contacts are in the positions shown in Fig. 9. The incoming voltage from the transformer is thus applied to the rotary contacts of \(S_{r}\) and \(S_{c}\).
A row of double-pole rotary switches called the "eliminate" switches is fixed to the right-hand side of the display, one switch for each variable. On the display board shown in Fig. 10 these are provided with the three settings "off", "eliminate" and "gone". (The "gone" setting is used in connection with the automatic control unit, and is inoperative with the simple manual plug-in.) When a variable, say \(x_{2}\), has been chosen for elimination the corresponding "eliminate" switch is closed. This connects lines \(U\) and \(L\) to row \(x_{2}\) and column \(x_{2}\).
*Type S.W. \(11-002\) AHH made by S.T.C. and available
from I.T.T. Electronic Services Ltd., Edinburgh Way, Harlow, Essex.

When the lever of switch \(S\) is moved to one extreme position the two lower sets of contacts only change over so that the e.m.f. is now connected between column \(x_{1}\) and row \(x_{2}\). When \(S\) is moved to the other extreme the e.m.f. is connected between column \(x_{2}\) and row \(x_{3}\).

Therefore one may now ask the two questions
(i) "Is there a direct path from \(x_{1}\) to \(x_{3}\) ?" Answer : indicated by the light which glows when \(S\) is in its central position.
(ii) "Is there an indirect path from \(x_{1}\) to \(x_{3}\) via \(x_{2}\) ?" Answer: indicated by the two lights which flash when the switch \(S\) is moved from one extreme to the other.

One further facility is available. Before elimination of a variable can be carried out, any self-loop must be removed from the corresponding node. A row of push-button switches marked "test variable" is mounted above the variable columns. When switches \(S_{c}\) and \(S_{r}\) are set at the "test" position " \(T\) ", depressing one of these buttons will light up the square on which the self-loop will be represented if present. These push buttons enable one to identify self loops very quickly.

The procedure for solving equations is thus as follows
1. Write the equations in signal-flow form and enter the numbers on the board as described previously.
2. Select the first variable for elimination. Set switches \(S_{r}\) and \(S_{c}\) to " \(T\) ", and use the push button to see if there is a self-loop on that variable. If so multiply all numbers in the row where the light appears by \(1 /(1-T)\), \(T\) being the self-loop transmittance, indicated by the light. If one has a choice of which variable to eliminate first, it clearly saves work if one picks a variable with no self-loop.
3. Set the "eliminate" switch for the selected variable.
4. Set \(S_{c}\) to 1, and \(S_{r}\) to the other variables in turn. At each setting, move the lever of \(S\) up and down. Two lights will flash; take the product of the numbers in these squares (i.e. the transmittance of the path being destroyed) and add it to the number in the square illuminated when \(S\) is in the central position. The use of a wax pencil makes this easy. Do not erase any numbers at this stage except that in the "addition" square.
5. Set \(S_{\mathrm{c}}\) to \(x_{1}\), and repeat step 4. Repeat again for all the rest of the settings of \(S_{c}\) so that all possible combinations are tested in logical sequence.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 & \(x_{1}\) & \(x_{2}\) & \(x_{3}\) & \(x_{0}\) & \(x_{y}\) & \(x_{2}\) \\
\hline\(x_{1}\) & 2 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(x_{1}\) & 4 & -4 & & -2 & 2 & & & \\
\hline\(x_{3}\) & -20 & 3 & 8 & & 0 & 0 & 0 & 0
\end{tabular}

Fig. 10. Detailed view of display board set ready for solution of equations (2).
6. When the last setting of \(S_{c}\) and \(S_{r}\) has been reached, rub out the numbers in the row and column of the eliminated variable. Restore the "eliminate" switch to its "off" position.
7. Select a new variable for elimination, and repeat steps 2 to 6 until all but the desired variable have been eliminated - the value of that variable can easily be obtained from the last remaining equation.

Note: once a variable has been eliminated there is no need ever to set either \(S_{r}\) or \(S_{c}\) to that variable again. Once it's gone, it's gone!

When one goes through this procedure step by step as described above, a little thought will show that occasionally one is asking the machine a nonsensical question. For example, if \(S_{c}\) was set to \(x_{1}\) and \(S_{r}\) to \(x_{3}\), and the "eliminate" switch for \(x_{1}\) was set, this would be asking the question "is there a path from \(x_{1}\) to \(x_{3}\) via \(x_{1}\) ?" which really makes no sense. An even more pointless question is asked if \(S_{r}, S_{c}\) and the "eliminate" switch are all set to the same variable, say \(x_{3}\). This would correspond to the question "is there a path to \(x_{3}\) from \(x_{3}\) via \(x_{3}\) ?"
Fortunately one does not have to remember to avoid these questions. When a sensible question is asked, three separate lights in three separate squares will light up for the three positions of \(S\). For any nonsensical question the same light will be lit for two or more of the settings of \(S\). The rule is thus simply this: only if three separate lights come up need multiplication and addition be carried out. In all other cases ignore the whole thing and carry on to the next setting of \(S_{r}\) and \(S_{c}\).

As long as the procedure is followed-and it is one of these things that is really very much easier to do than to describe-the solution of the equations is reduced to a series of very simple multiplications and additions as described by the lights. As long as the machine knobs are rotated according to the strict logical sequence described above, it is deciding what steps should be taken; the operator merely has to take them as instructed.

\section*{Automatic model}

The manual model just described is simple to construct, easy to operate and is ideal for instructional purposes, but it does demand a certain degree of alertness because of two minor operational disadvantages, viz.
1. When one has eliminated a variable, one must remember not to set the switches to that variable again. If one forgets this, nothing tragic happens to the calculations; one is merely carrying out unnecessary operations which will eventually be ignored.
2. Sometimes, following the strict logical procedure one is asking silly questions of the machine. These cases are easily spotted as previously indicated.

The more fully automated model about to be described was designed to remove these slight disadvantages thereby removing (almost!) all necessity for the operator to think, leaving him one job only; namely to carry out whatever operations the machine demands.

The basic machine is the same as before, but the two manually operated switches

2

For convenience, the machine is supplied with a "reset" switch. When this is operated, it supplies voltage to the "reset" banks and the switches are automatically stepped back to the starting position. One or two other features of the circuit are worthy of note. It will be observed that the "operate" switch not only supplies current to the coil of \(\mathrm{Sol}_{r}\), but also disconnects the voltage from the rest of the circuit. Additionally, the contacts labelled \(M N\) isolate Sol \(_{c}\) from its self-actuate bank. These precautions are necessary to avoid stray current paths through the circuit producing unwanted operation of the solenoids. For example, let us say that both sets of switches happen to be in the \(x_{2}\) position. When the "operate" switch is depressed, voltage is applied to the terminal \(d\) of Sol . Since the cam-operated contacts of this solenoid are closed at this time, current will flow to the self actuate bank of this solenoid, and hence via the "eliminate/gone" rail to the self actuate bank of \(\mathrm{Sol}_{c}\) causing unwanted operation of \(S o l_{c}\). By isolating \(S o l_{c}\) with the \(M N\) contacts and removing voltage from the rest of the circuit this possibility is avoided. A similar difficulty arises during reset if the voltage source is not removed from the other banks of \(\mathrm{Sol}_{r}\) causing stick-on of the solenoids.

Using this automatic plug-in, operation of the apparatus is very simple indeed, being reduced to continual operation of the "operate" switch. Each time this switch is pressed, one of the solenoids will operate, but if no light appears on the board, no further action needs to be taken other than pressing the "operate"' switch again. When a light appears, the switch on the board is moved up and down and the usual multiplication and addition is carried out.

The complete procedure for solving a set of equations is as follows:
1. Set out the equations in signal-flow form and write them on to the display board as before. If less than the maximum number of variables is used (less than six on this board) set the "eliminate" switches for the unwanted rows to the "gone" position.
2. Operate the "reset" switch on the control unit, and keep it depressed until all solenoid clickings have ceased.
3. Select the first variable to be eliminated. Press the "test variable" button for that variable. If a number (\(T\)) appears in the square thus illuminated, multiply all entries
in that row by \(1 /(1-T)\). Set the switch for that variable to "eliminate". Note that it saves a bit of work if one selects a variable which does not show a self loop when tested.
4. Press the "operate" switch several times until the first light is illuminated on the board. Flick the switch on the display board to its two extreme positions; take the product of the numbers thus indicated and add to the square illuminated when the switch is in its central position.
5. Press "operate" again and repeat 4 above until the light labelled "select new variable" on the control unit glows.
6. Set the switch for the eliminated variable to "gone", and operate the "reset" switch. Select a new variable for elimination and repeat 3 to 5 above until all but one variable has gone.
7. At this stage, the board will still be filled with numbers, but only the numbers corresponding to the last remaining variable \(x_{n}\) are significant. The equation in row \(x_{n}\) will be of the form \(x_{n}=\alpha(1)+\mu\left(x_{n}\right)\), from which the value of \(x_{n}\) is easily obtained. The appearance of the board at various stages in solution of equations (2) is shown in the appendix, and it is instructive to study this in conjunction with the signal-flow representation of Fig. 7.

\section*{Acknowledgement}

The author wishes to express his thanks to R. Davies and A. G. Stone for their help in the wiring-up and testing of this apparatus.

\section*{Appendix}

States of board for equations (2).

\section*{Initial state of board}
\begin{tabular}{c|c|c|c|c|}
& \multicolumn{2}{c}{1} & \multicolumn{1}{c}{\(x_{1}\)} & \multicolumn{1}{c}{\(x_{2}\)} \\
\(x_{3}\) & \(x_{3}\) \\
\(x_{1}\) & 2 & & 0.5 & 2 \\
\hline\(x_{2}\) & 4 & -4 & & -2 \\
\hline\(x_{3}\) & -20 & 3 & 8 & \\
\hline
\end{tabular}

\section*{After elimination of \(\boldsymbol{x}_{1}\)}
\begin{tabular}{c|c|c|c|c|}
\multicolumn{1}{c}{} & \multicolumn{1}{c}{1} & \(x_{1}\) & \(x_{2}\) & \(x_{3}\) \\
\cline { 2 - 5 }\(x_{1}\) & 2 & & 0.5 & 2 \\
\cline { 2 - 5 }\(x_{2}\) & -4 & -4 & -2 & -10 \\
\cline { 2 - 5 }\(x_{3}\) & -14 & 3 & 9.5 & 6 \\
\cline { 2 - 5 } & & &
\end{tabular}

Removal of self-loop from \(\boldsymbol{x}_{2}\)
\begin{tabular}{l|c|c|c|c|}
\multicolumn{1}{c}{} & \multicolumn{1}{c}{1} & \multicolumn{1}{c}{\(x_{1}\)} & \(x_{2}\) & \multicolumn{1}{c}{\(x_{3}\)} \\
\cline { 2 - 5 } & 2 & & 0.5 & 2 \\
\hline & \(x_{1}\) & \(-\frac{4}{3}\) & \(-\frac{4}{3}\) & \\
\(x_{2}\) & \(-\frac{10}{3}\) \\
\cline { 2 - 5 }\(x_{3}\) & -14 & 3 & 9.5 & 6 \\
\cline { 2 - 5 } & & & &
\end{tabular}
After elimination of \(\boldsymbol{x}_{2}\)
\begin{tabular}{c|c|c|c|c|}
& 1 & \(x_{1}\) & \(x_{2}\) & \(x_{3}\) \\
\cline { 2 - 5 } & 2 & & 0.5 & 2 \\
\(x_{1}\) & 2 & & \\
\(x_{2}\) & \(-\frac{4}{3}\) & \(-\frac{4}{3}\) & & \(-\frac{10}{3}\) \\
\(x_{3}\) & -26.68 & 3 & 9.5 & -25.68 \\
\cline { 4 - 5 } &
\end{tabular}

Since \(x_{1}\) and \(x_{2}\) have been eliminated, only \(x_{3}\) remains and the last line represents
or
\[
x_{3}=-26.68-25.68 x_{3}
\]

\section*{Books Received}

Circuit Consultant's Casebook, by T. K. Hemingway, examines numerous circuit design errors. The examples given have all occurred frequently in the author's experience, and range from beginner's mistakes to the pitfalls encountered by experienced designers. Part 1 discusses basic problems and common errors, and part 2 deals with ways of meeting specification requirements not easily met by conventional circuits. This section brings to light some useful new configurations for multivibrators, triggers, timing circuits and constant current sources. This is a thoroughly practical book with a bibliography and very full index. Pp.210. Price 75s. Business Books, Mercury House, W aterloo Road, London S.E.1.

Amateur Radio Techniques (3rd Edition) by J. P. Hawker. The foreword to this book declares it is."not a book which aims at competing with or displacing the standard hand-books-but rather at extending the readers' awareness of new techniques and providing a source-book for many useful circuits and aerials: an ideas book rather than a constructional manual or conventional text book". The sections cover semiconductors, components and construction, receiver topics, oscillator topics, transmitter topics, audio and modulation, power supplies, aerial topics, and fault finding and test units. An i.f. list is given in the appendix and a useful index provided. Pp. 208. Price 20s plus 2 s for postage. R.S.G.B. Publications, 35 Doughty Street, London W.C.I.

\section*{Corrections}

Variable power law video amplifier. Revised circuit is given below for the log amplifier of A. M. Pardoe's variable power law amplifier -published in the December issue, p. 597. Fig. 6 should be disregarded. We apologise' for the incorrect connections of the \(\log\) and antilog transistors in Figs 5 and 7. The transistors should have their collector and base connections transposed. In Fig. 7 the emitter of the BFY90 antilog transistor should be joined to the emitter of the ME3002 transistor and some of the electrolytic capacitors should be reversed.

Radio Valve and Transistor Data, ninth edition compiled by A. M. Ball, tabulates the characteristics of 3000 valves and c.r.ts, and 4500 transistors, diodes, rectifiers and i.cs. Also included are tables of base diagrams and case and pin connections for valves, transistors, diodes and i.cs; and index to valve and transistor types with suggested near equivalents or comparable types; and a list of trade names and manufacturers' addresses. Price 15 s . (£0.75). Butterworth \& Co. (Publishers) Ltd, 88 Kingsway, London WC2B 6AB.
eurolec Electronic components, materials and sub-systems, companies and contacts. This book is the first of four replacing the previous single 'eurolec' editions. Items and areas covered in the first four sections of this volume are manufacturers and importers of valves and semiconductors, integrated circuits, passive components, and motor and servo equipment. The next two sections cover manufacturers and importers of raw materials for components, and assembly equipment. Two further sections deal with services to component makers and representatives of these in the U.K. The final section introduces complex companies: the book ends with a list of 833 foreign companies operating in the component sector, an index with telephone directory, and a summary of the firms operating in the 15 main product areas. Pp.432. Price 35 s plus 2 s postage. David Rayner Associates, Little Waltham, Chelmsford CM3 3NU.

High-quality tape recorder. The following points should be noted with respect to part 2 (December). On p. 587 the symbol \(\mu\) was omitted in col. 1 line 9 and col. 2 lines 4 and 15 . On p. 588 col. 2 , line 16 should read ' 24 V r.m.s. at 0.7 mA '. In the captions to Figs. 13 and 14 'connect \(R\) to \(A\) ' should read 'connect \(R_{56}\) to \(A\) '. Table 5 is referred as Fig. 28 on Fig. 5. In Fig. 15 the erase output should go to \(S_{k j}\) and \(S_{k k}\) -the first \(k\) is drawn as a 2 . Table 2 (part 1 November issue) gives \(R_{y}\) as \(\mu \mathrm{F}\) instead of \(\Omega\)

\section*{The Long Run}

\title{
Stability in the time domain
}

\author{
by Thomas Roddam
}

In the long run we are all dead. Even if you disagree with Maynard Keynes you can hardly doubt that all human wisdom and civilization is centred on Yorkshire: if you do, you are not a Yorkshireman and your opinion is worthless anyway. Never do owt for nowt.* Both these statements are the basic definitions of a stable system, although the second includes the superposition principle. What is a stable system? If there is no input, in the long run there will be no output. More generally, there will only be an output which is directly dependent on the input. The system with which we are usually concerned when we begin to talk about stability is generally one which can be split into a forward path containing active elements and a return path which usually contains only passive elements. This makes sense, because we must have an energy supply if we are to get an output with no input, and active elements are the way in which power is coupled into the system from an outside source. The restriction of activity to the forward path is not necessary. It just happens that the results we want are usually obtained this way.

The experienced reader will already be muttering \(\mu /(1-\mu \beta)\) to himself. This old friend, the gain of a feedback amplifier, will, I am sure, crop up sooner or later. So will all that stuff about plotting \(\mu \beta\) and seeing if it encircles the magic point. But \(\mu\) and \(\beta\) do not contain any mention of time: what have they to do with what will be happening tomorrow?

Having mentioned feedback amplifiers it is necessary to say immediately that it is not necessary to have a feedback construction in order to have a system which is unstable. We can make use of two-terminal negative resistance devices. In studying these devices it is common practice to analyse them on a feedback basis, but this can be regarded as artificial, as a deliberate choice of a model which can be constructed out of other devices. We have, with the introduction of the transistor, spent much more time thinking about how active elements work than we ever did in the days of valves. In the pretransistor days we left the valve-maker alone to get on with his job, and accepted that somehow he had produced the characteristics shown in the data sheets. This disclaimer noted, it may still be convenient, though not

\footnotetext{
*This is a shortened version of the extract: if tha does owt for nowt, do it for tha self.
}
necessary, to mention feedback systems in the basic analysis.

Any study of the stability of a system which is assumed to be linear must be independent of the size of the signals in the system. Reasonably, then, we might simplify matters by having no signal at all. This, oddly enough, just will not work. An unstable system can be poised at a balance point. Like a good sheriff in a bad Western, it is ready to ride off in all directions. A neurotic sheriff, however, like what's-his-name's \(\dagger\) ass, would be incapable of choosing any particular direction, and would remain at rest. A small shove is needed. In analyticterms, theessence of instability is that a signal will grow exponentially, but nothing can grow to nothing more than nothing. If we want to know whether a system is stable or is balanced at a point of instability like a needle standing vertically, we must apply a small disturbance.

One thing which I find repeatedly in writing these articles is that it is the obvious, simple, taken-for-granted things which are the awkward ones to discuss. When we are considering the behaviour of an amplifier we accept the idea of an input signal and an output. If we want to consider a two-terminal system we can get along with the idea of voltage as a cause, current as an effect. Without ever saying so explicitly we establish a set of rules which, because we have a pretty good idea of the answer, keep us out of a muddle. It is when we try to avoid relying on these instinctive, to engineers, rules that we begin to ask awkward questions. Just how awkward the questions can be has been shown fairly recently by the man who tried to build an un-ridable bicycle. Every schoolboy knows why a bicycle does not fall over as you ride it. The only trouble is that when you get rid of the schoolboy's stabilizing forces the bike is still stable.

As we are considering systems in terms of their behaviour in time, we may try to separate out cause and effect. Any real system will have some resistance somewhere in it. This is a less restricting assumption than appears at first sight : if it is an active system it can still have negative resistance elements which balance out the losses, but it must not simply store all the energy which has been put into it for ever. We now carry out our first bit of cheating. We know that an ideal
transmission line terminated in its characteristic impedance looks like a resistance (Fig. 1). I do not think that this assumption requires for its proof anything which we are about to prove, so that it is not much of a cheat. Accepting this as permissible, we can

Fig. 1. Viewed from \(A B\) these two circuits look the same.

Fig. 2. We can move \(R\) away from the system on the end of a line of characteristic impedance \(R\).
cut out of our system one convenient resistance, \(R\), and connect into the system a length of transmission line in the way shown in Fig. 2. We shall treat the whole system as a two-terminal system, although it may in fact have a number of links to the outside world, and indeed, the outside world may be part of the system. A public address system, for example, includes the air path from loudspeaker to microphone, including any reflections from the microphone user, in the stability criteria.

There are restrictions on the choice of the resistance. I have never seen this discussed, because I think it only appears when the configuration is one which is not necessarily a minimum phase amplifier structure. If we take the resistance corresponding to the detector arm of a perfectly balanced bridge
it is not really part of the network at all. The resistance value does not affect the performance of the bridge, at balance. The rule which we can make is that \(R\) is a resistance which matters to the network.

With Fig. 2 we are all ready to go. Let us apply a signal across \(R\). A convenient way of stirring up the network is to follow the example of Albert on his last visit to Blackpool. A quick prod, though not with an umbrella. Let us apply the pulse shown in Fig. 3. The immediate result will be that a current pulse \(I_{R}=V_{0} / R\) flows through \(R\). In addition, a current \(I_{T}=V_{0} / R\) flows into the transmission line. We can calculate in formal terms the result which I am going to cxpress in anthropomorphic terms. Provided that the line is long enough, and long enough means that \(l>c / 2 t_{0}\), where \(c\) is the velocity of electromagnetic waves in the line, and is about \(3 \times 10^{10} \mathrm{~cm} / \mathrm{sec}\), the generator will think that the line is terminated in its charac-

Fig. 3. Signal applied to terminals \(A B\).

Fig. 4. Two possible results across \(A B\).
teristic impedance. By the time we can get a message back from the far end of the line the generator has been disconnected. The system is completely isolated, but a current of \(V_{0} / R\) flows in at the terminals for a time \(t_{0}\). We have roused the lion.

Current begins to flow in all directions inside the system. Any current which would have normally passed through the resistance \(R\) flows out into the transmission line and, when it reaches the end, is not reflected. By watching across the resistance we can see what is happening. Two kinds of behaviour may be observed, and versions of these are shown in Fig. 4. In (a), as in (b), we see the initial shock, followed by a rest period up to time \(t_{2 l}\), the time taken for the mossage to pass down the line and the reply to come back. In (a) the returning current swings up and down a few times, but dies away. In (b) it grows and grows. Using conventional language, (a) represents a stable system, while (b) represents an unstable system.

The use of a transmission line to separate out the comings and goings of power is a convenient tcchnique even when it involves some assumptions which are wholly unjustified. An example of this is in the use of

Fig. 5. Circulating pulse in feedback amplifier.
inverters with reactive loads. We can picture the reactive volt-amps heading down the line from the transistor and being reflected back. On reaching the inverter again we must provide a path for this energy, which means we must put in some diodes, and a reservoir for the resulting unidirectional "thing". The circuit configuration determines whether the reservoir is to be an inductance or a capacitance. If we fail to do this we find the reflected energy runs into a dead stop, and there is infinite current or voltage.

Pulse following can be applied to feedback amplifiers. The simple treatment shows a pulse going through the amplifier, then through the feedback path back to the input, and then round again. This is shown in Fig. 5. In any practical situation, of course, we do not get an output which is a short sharp pulse. The finite bandwidth of the amplifier broadens the pulse, and broadens it to such an extent that the first output has not died away before the second has begun to arrive. Very often the output is a composite of a substantial number of passages round the loop.

We must return to the general matter of stability. It is clear that it is a matter of what happens after the system is given a momentary shock. Because the output of an unstable system increases continuously it is not really very important what kind of a trigger shock we apply, so long as we keep it and its direct consequences small. The instability will dominate the behaviour once it really gets going. It is usually convenient to make use of a constant input, that is, to insert a battery at some point in the system.

The usual elements of a system are characterized either by time-independent proportionality, like
\[
\begin{aligned}
E & =R \times I \\
E_{\text {out }} & =\mu \times E_{\text {in }} \\
E_{\text {sec }} & =n \times E_{\text {prim }}
\end{aligned}
\]
for a resistance, an amplifier, a transformer, or a gyrator: by differentiation or integration, like
\[
\begin{array}{ll}
E=L d I / d t & I=1 / L \int E d t \\
I=C d E / d t & E=1 / C \int I d t
\end{array}
\]
by delay, \(E_{2}(t)=E_{1}\left(t-t_{0}\right)\), for a line.
Non-linearity can make matters more difficult, but for linear systems we have a whole set of equations of this kind which can be taken together to give a function of time which is the true description of the system behaviour. For a series \(L C R\) circuit
\[
L \frac{d I}{d t}+R I+\frac{1}{C} \int I d t=E
\]

The expression on the left, which we can write as
\[
\left[L \frac{d}{d t}+R+\frac{1}{C} \int d t\right] I
\]
describes the way current flows following the application of \(E\). It is a fairly simple expression, and all the problems which matter, once you have dealt with this one in the examination room, are a good deal more complicated. The problem then is to deal with these very unwieldy functions of time. We must now look in more detail at a topic discussed several months ago, though now we shall consider it rather more formally. We are dealing with a function of time : we can reach solutions to our problems by a roundabout route, in which we transform this function to a function of another variable, manipulate this, and then transform back to time. Although it may seem to be involved, it is the essential principle of the by-pass: even though the apparent route is longer, you will not get bogged down on the way. The transformation we use is the Laplace transform. The basic requirement which is imposed on the function of time, \(f(t)\), is that it must be defined and single valued almost everywhere for \(t \leqslant 0\) when \(t\) is real, and
\[
\int_{0}^{\infty} f(t) \exp (-\sigma t)
\]
for some real number \(\sigma\). The requirement that \(f(t)\) is single valued almost everywhere allows for steps, but not for the odd functions one can dream up which seem to go on being in two places at once. In practice one can say that if an engineering function looks as though it is not transformable, look first for cross-talk between the X-plate and Y-plate connections of the oscilloscope.

Another feature of \(f(t)\) is, in plain words, that if it increases with time, as it will in some unstable systems, it should not increase faster than exponentially. As long as \(f(t)\) grows like \(\exp (g t)\), where \(g\) can be as big as you like, we can choose a value of \(\sigma\), say \((g+1)\), such that \(f(t) \exp (-\sigma t)\) is decreasing. If we make the choice \(\sigma=g+1\) we know that \(f(t) \exp (-\sigma t)\) is less than \(\exp (-t)\), and the integral will be finite. For ordinary circuits we know, and can prove rather easily, that the exponential is the natural thing : in a plant control problem it could be wise to check that \(f(t)\) is not explosive.

Once \(f(t)\) is known to satisfy the rules, we must take a new variable \(s=a+j b\), with \(a=\sigma\). Then the Laplace transform is described by the equation
\[
\int_{0}^{\infty} f(t) \exp (-s t) d t=\propto \rho f(t)=F(s)
\]

The Laplace transform of \(f(t)\) is a new function, a function of this new variable \(s\), \(F(s)\).

The inverse transform is needed, and can be written as
\[
f(t)=\mathscr{\oiiint}_{[F(s)]}^{-1}
\]
subject to a limitation that \(t \geqslant 0\). This is because we have defined the original trans-
form as the integral from now to eternity, and it is too late to go raking up old promises, as the politicians say. In formal mathematical terms, we have
\[
f(t)=\frac{1}{2 \pi j} \int_{C-j \infty}^{C+j \infty} F(s) \exp (t s) d s
\]
in which \(C>\sigma\).
As we saw in a previous article, we can look up in tables the transform pairs we need. It will be useful here to consider one or two special cases. First let us take the unit step, at time \(t=0\). The unit step is unity almost everywhere : almost, because at \(t=0\) it is both zero, for \(t \rightarrow 0\) from \(t<0\), and unity, for \(t \rightarrow 0\) from \(t>0\). It is \(\mathscr{L}\) transformable, and if we call it \(u(t)\),
\[
\begin{aligned}
\mathscr{L} u(t) & =\int_{0}^{\infty} 1 \cdot \exp (-s t) d t \\
& =\frac{1}{s} \exp -\left.s t\right|_{0} ^{\infty}=1 / s
\end{aligned}
\]

Another transform worth looking at in the context of this article is the delayed function. Fig. 6 shows a quite arbitrary time function

Fig. 6. A function, and the corresponding delayed function.
\(f(t)\), and the delayed version, which is zero until \(t=a\), and is then \(f(t-a)\). Notice that if \(f(t)\) has some shape at \(t<0\), this part of \(f(t)\) does not appear in \(f(t-a)\). To find the transform of \(f(t-a)\) we take a new variable \(\tau=(t-a)\). Then
\[
\mathscr{\mathscr { L }} f(\tau)=\int_{0}^{\infty} f(\tau) \exp (-s \tau) d \tau=F(s)
\]

Now
\[
\begin{aligned}
& \int_{0}^{\infty} f(\tau) \exp (-s \tau) d \tau= \\
& \qquad \int_{a}^{\infty} f(t-a) \exp (-s t) \exp (a s) d t
\end{aligned}
\]

We are integrating with respect to \(t\), so the constant exp (as) can be taken outside. Furthermore, as \(f(t-a)\) is zero from \(t=0\) to \(t=a\) we can take \(t=0\) as the lower limit for the integration.

Then
\[
\begin{aligned}
& \int_{0}^{\infty} f(\tau) \exp (-s \tau) d \tau= \\
& \quad \exp (a s) \int_{0}^{\infty} f(t-a) \exp (-s t) d t
\end{aligned}
\]
and so
\[
\mathscr{\mathscr { L }} f(t-a)=\int_{0}^{\infty} f(t-a) \exp (-s t) d t
\]
\[
=\exp (-a s) F(s)
\]
in which \(F(s)=\mathcal{L}_{f(t)}\)
This, the shifting theorem, enables us to form the transform for the pulse shown in Fig. 3. Here we have
\[
\begin{aligned}
P(t) & =V_{0}\left(u(t)-u\left(t-t_{0}\right)\right) \\
\mathscr{L} P(t) & =V_{0}\left(\mathcal{L}^{\mathcal{L}} u(t)\right. \\
& =V_{0}\left(\frac{1}{s}-\frac{1}{s} \exp \left(-s t_{0}\right)\right) \\
& =\frac{V_{0}}{s}\left(1-\exp \left(-s t_{0}\right)\right)
\end{aligned}
\]

If we want a very short impuise we can make \(t_{0}\) very small. To keep some meat in such a short pulse we increase \(V_{0}\). If we make \(V_{0} t_{0}\) constant, say \(V_{0}=1 / t_{0}\), we get
\[
\mathscr{C} P_{i}(t)=\frac{1-\exp \left(-s t_{0}\right)}{s t_{0}}
\]
and now, as \(t_{0} \rightarrow 0\), the unit impulse at \(t=0\) becomes
\[
\mathscr{L} \delta(t)=1
\]

This extremely simple result is a great encouragement to the use of the unit impulse in problems in which the Laplace transform method is adopted.

It must be pointed out that nothing has been said about the variable \(s\) having any physical meaning. If you ask your bank to get you a 10 Eurodollar bill you will be told that there isn't such a thing, yet bankers will whisk Eurodollars round the world as fast as the electric telegraph will carry them. For us, \(s\) is just a thing we use in the mathematics, and to anyone who confuses physical reality with the state of being a thing I would remind you that it has been ruled by the British courts that a goldfish is not a thing. There's glory for you.
A very important piece of basic mathematics, known since at least 1833 , connects the response of a system to a unit impulse and its response to any arbitrary function of time. It is called the convolution integral. I do not think we need go through the analysis and proof. The procedure for using it is more to the point.
Let the response to the unit impulse be \(f_{1}(t)\)
Find the Laplace transform \(\quad F_{1}(s)\) Let the actual excitation be \(\quad f_{2}(t)\) Find the Laplace transform of this \(f_{2}(t)\)
\(F_{2}(s)\) Multiply \(F_{1}(s) . F_{2}(s)\)
Find the inverse Laplace transform
\[
\begin{aligned}
\mathscr{L}^{-1} F_{1}(s) \cdot F_{2}(s) & =\mathscr{L}^{-1} F(s) \\
& =f(t)
\end{aligned}
\]

This \(f(t)\) is the response of the network.
Having got this far without mentioning frequency or frequency response, it would be nice if we could go right on in the same way. The real justification of the purely formal approach will appear when, in a later article, we examine non-linear systems. At least, I
hope we do. They are much more complicated than linear systems, and it will be quite a struggle to get the skeleton of the techniques out in a clean and recognizable form. With linear systems the problem is simply how to make a change to the old familiar frequency without letting it look too important.

A procedure which will establish the "style" of \(F(s)\) is to look at the transforms of some probable time functions. The simplest of these is the exponential decay,
\[
\begin{aligned}
& f(t)=\exp (-\alpha t) \\
& \text { For this } f(s)=\int_{0}^{\infty} \exp (-\alpha t) \exp (-s t) d t \\
& \\
& =\int_{0}^{\infty} \exp [-(s+\alpha) t] \\
& \\
& = \\
& 1 /(s+\alpha)
\end{aligned}
\]

This is finite for all values of \(s\) except \(s=-\alpha\). It has a pole at \(s=-\alpha\). This is shown as a diagram in Fig. 7.

If we work the other way round we can start off with two poles positioned along the

Fig. 7. The s-plane, \((s=a+j b)\), showing the pole of \(s\) at \(s=-\alpha\).

\begin{tabular}{|cc|}
\hline\(F(s)\) & \(f(t)\) \\
\(\frac{1}{\left(s+\alpha_{1}\right)\left(s+\alpha_{2}\right)}\) & \(\frac{1}{\left(\alpha_{2}-\alpha_{1}\right)}\left(\epsilon^{-\alpha_{2} t}-\epsilon^{-\alpha_{1} t}\right)\) \\
\hline
\end{tabular}
Fig. 8. S-plane with two poles on the \(-a\) axis.
negative \(a\)-axis, shown in Fig. 8. Excluding all unnecessary constants, this is an s-function which is infinite for
\[
\begin{array}{ll}
& s=-\alpha_{1} \\
\text { and } & s=-\alpha_{2}
\end{array}
\]

It can be written
\[
F(s)=\frac{1}{\left(s+\alpha_{1}\right)\left(s+\alpha_{2}\right)}
\]
and the inverse Laplace transform will give
\[
f(t)=\frac{1}{\alpha_{2}-\alpha_{1}}\left[\exp \left(-\alpha_{2} t\right)-\exp \left(-\alpha_{1} t\right)\right]
\]

Given this form of
\[
\begin{aligned}
F(s) & =1 /\left[\left(s+\alpha_{1}\right)\left(s+\alpha_{2}\right)\right] \\
& =1 /\left[s^{2}+\left(\alpha_{1}+\alpha_{2}\right) s+\alpha_{1} \alpha_{2}\right]
\end{aligned}
\]
it is not unreasonable to look at the general form
\[
F(s)=1 /\left(s^{2}+l s+n\right)
\]

When we solve the quadratic we may find that we have not the two real roots, but a complex conjugate pair. For this case we can write
\[
F(s)=1 /\left[(s+\alpha)^{2}+\beta^{2}\right]
\]

Fig. 9 shows the two poles at \((-\alpha \pm j \beta)\).
Perhaps one more, Fig. 10, showing a zero. I am not going to go into this except to point out that this gives us a reasonable basis for guessing the kind of functions we will normally encounter. Notice how in Figs 9 and

Fig. 9. S-plane with complex conjugate poles.

\[
\begin{array}{|cc|}
\hline F(s) & f(t) \\
\frac{\left(s+\alpha_{2}\right)}{\left(s+\alpha_{1}\right)^{2}+\beta^{2}} & \frac{\ell}{\beta} \varepsilon^{-\alpha_{1} t} \sin (\beta t+\theta) \\
\hline
\end{array}
\]

Fig. 10. Two poles and a zero in the s-plane.

10 the poles off the \(a\)-axis have brought in the sine function. This, the function which repeats itself over and over again, is where the frequency concept really does burst into the picture.
A useful theorem is the final value theorem. This tells us where \(f(t)\) will finish up at infinite time:
\[
\lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0} s F(s)
\]

The only trouble with this, for our purposes, is that there must be no singularities of \(s f(s)\) on the \(b\)-axis or in the right-hand half of the s-plane. Whichever way we turn we are faced with this basic reference back, in the end, to Cauchy. It would seem that one
should be able to determine the stability of a system in terms of time alone. In one sense you can, you can give it, the complete system, a tap. Equally you can write down all the equations and solve them by conventional means. There is nothing wrong with this as an approach. In ordinary circuits you take your stand on Maxwell or Kirchhoff and bulldoze your way through to the end. I do not know what the most convenient form of disturbance would be for this treatment.

But : the system is not stable and must be modified. It is here that time domain analysis turns out to be unprofitable. You simply cannot get any feel, any intuition, to guide you towards the necessary changes. Everyone who has worked with feedback systems knows how quickly one does get this intuitive feeling for the \(k\) ind of behaviour, in the frequency domain, which can be made stable. Everything conspires to force us into the s-plane. Oddly enough, none of the economics texts I have looked at ever mentions anything of this kind : economists are apparently not interested in stability.

It is in the s-plane that we find it relatively easy to combine systems, to add on lag and lead networks. And so we are back to Nyquist. We have tried to stick to the time domain, we have introduced a transformation which will let us combine circuits and apply arbitrary inputs, and at every turn a mathematician has sprung up waving a placard which says "Hands off the righthand half of the plane".

There is one feature of the Laplace transform approach which is not really made clear in some of the texts. In Fig. 8 we saw what happened with two poles at \(-\alpha_{1}\) and \(-\alpha_{2}\). Suppose that we run them together. When
\[
\begin{aligned}
F(s) & =\frac{1}{(s+\alpha)^{2}} \\
\text { we have } \quad f(t) & =t \exp (-\alpha t)
\end{aligned}
\]

We have seen that we can obtain roots which are off the axis, and we might expect that somehow, somewhere, we should get solutions of the form
\[
f(t)=t \sin \omega t
\]

In fact this is one of the odd cases which is just caught by Cauchy's theorem. It is of special interest, however, because it would appear that this kind of behaviour can be especially significant in systems which incorporate a gyrator or its mechanical equivalent, the gyroscope. In most circuit problems an increase in the losses will usually tend to shift the roots in the \(s\)-plane towards increased stability. If the system is held stable simply by the gyro action, an increase in losses may cause instability. The terminology I find for this is that the system is ordinarily stable but secularly unstable. It would appear to be a particular form of what we usually call conditionally stable.

All through this article I have had the feeling which I assume is experienced by a member of a crowd which is being "controlled" by the soft, sophisticated, technique. We all want to march thataway, but somehow we seem to be moving thisaway. What is there about the time function which makes it so difficult to get to grips with it. There seem to be several features which may
explain our trouble. When we are dealing with frequency we can adopt the root locus method, or a distant relation of it, and single out a critical factor which will dominate the stability in a particular range of parameters. While we are watching the movement of this root we do not care too much what the other roots are doing, provided always they stay to the left of the one we are following. It is not at all so easy to keep the critical term of the time function under surveillance.

Rather more fundamental, perhaps, is the fact that when we are working in the time domain we are working with functions, exponentials and sines are all over the place. The picture is a wavy line across the sheet of paper. In the s-plane the picture is simpl ified to fixed points arranged according to simple rules. Fig. 9 was easy to draw, but a damped sine wave, complete with phase shift, is not nearly so simple. It is much easier to answer the question "Where are you?" than to answer "Exactly what are you doing?". Although one can make a kind of fundamental case for refusing to use the Laplace transform or Fourier-Mellin or what have you, can you restrict your stand, or must you avoid sines and cosines and exponentials, remaining with the basic power series which these things represent? In modern engineering it takes all the mathematics you can learn to stay where you are. So, in the long run we are all dead, but meanwhile we are up the pole.

\title{
Ferrograph at work with BOAC: it will play as well for you at home
}

BOAC use Ferrograph Series 7 tape recorders at their Flight Control Centre, London Airport. You will see Ferrograph recorders in many situations where long-term reliability is vital. With its unique specification and combination of
facilities, the Ferrograph recorder is the ideal choice for any private or professional use-wherever you want quality, dependabilty, and exciting possibilities for imaginative recording.
Now Ferrograph has several new

\section*{International Distributors}

Leroya Industries Pty, 256 Hay Street,
Subiaco, Western Australia6008, Australia Matelectric, Boulevard Leopold II, 199, 1080 Brussels, Belgium;
H Roy Gray Ltd, 14 Laidlaw Boulevard, Markham, Ontario, Canada;

Cineco, 72 Avenue des Champs Elysees, Paris 8 e, France;
Henry Wells \& Co. K G
1040 Wien 4, Danhausergasse 3, Austria; Ferropilot GmbH \& Co., K G,
Hamburg 39, Sierichstrasse 43 ,
West Germany;
features to add to its already impressive list, plus the extra bonus of a three-year guarantee on all parts.

Ferrograph Series 7 tape recorders are British made, available in mono and stereo, with and without end amplifiers. All instruments are solid state, three speeds. All have two inputs per channel with independent mixing, independent tone controls on each channel, signal-level meters for each channel on playback and record, re-record on stereo models. The output is 10 watts per channel. The VU meter is now illuminated. There is a new record lock device. Ferrograph recorders are available in elegant hardwood or vinyl-covered cases.

Follow the proiessionals, choose the recorder you know will serve you best at home or in your work: Ferrograph. Your local Ferrograph specialist will be pleased to demonstrate it to you. Alternatively, please write or ring for details and address of nearest stockist. The Ferrograph Co Ltd,
The Hyde, Edgware Road,
Colindale, London, NW9.
Tel:01-205 2241. Telex: 27774.
Ferrograph
* Now with 3-year guarantee
on all parts

\section*{It's new and great from Shure...}

\section*{the most-for-your-money 588 Series}

This is the one. The mike with the most.
A new fine quality Unisphere
that gives you maxi features at a mini price. See what you get

\title{
Negative Feedback in Transistor Amplifiers
}

\title{
Principles of single-stage and two-stage circuits
}

\author{
by S. W. Amos*, B.Sc., M.I.E.E.
}

There is little doubt that transistors will soon have replaced valves in all low-power applications--hardly surprising because in many respects they are superior. Transistors are, however, inferior to valves in that properties such as \(h_{f e}\) are subject to wide manufacturing spreads and to large variations with temperature. Moreover transistors have a leakage current which is highly dependent on temperature although at normal temperatures it is negligible in silicon devices. To manufacture transistor equipments with a consistent performance, the effects of differences in the value of \(h_{f e}\) must be minimized and the normal technique is to employ negative feedback. Provided sufficient feedback is used many significant properties of an amplifying stage can be made substantially independent of the parameters of the transistors, being determined instead by the components of the passive network used to apply feedback. Thus it is often possible to state the gain, transfer resistance, mutual conductance, etc., from an inspection of the component values. The use of negative feedback reduces gain, of course, but has advantages such as an improvement in linearity in amplifying stages.

In this article various circuits which can be used to apply feedback are discussed and typical calculations are given.

\section*{Derivation and injection of feedback signal}

In general negative feedback is applied to an amplifying stage by taking a signal from the output and returning it to the input in such a way that the returned signal is in antiphase to the input signal. The input to the amplifier is now the difference between the source and feedback signals. The larger source signal required for a given amplifier output expresses the effective reduction in gain due to feedback. The link which feedback establishes between the input and the output of the amplifier enables a number of deficiencies in the output to be reduced. For example, if the gain of the amplifier falls at high frequencies, so also does the feedback signal amplitude. If the source signal is of constant amplitude, the amplifier input is thus greater at high than at low frequencies. This tends to offset the reduced gain and maintain a constant output signal. In
this way negative feedback improves frequency response: it also brings about the other improvements in performance mentioned in the first paragraph.

The single-line diagram of Fig. 1 illustrates the principle of negative feedback

Fig. 1. Fundamental representation of negative feedback.
but does not show how the feedback signal is derived from the output or how it is injected into the input of the amplifier. The effect of feedback on the input resistance and output resistance of the amplifier is primarily determined by the way in which the feedback connections are made.

Two ways in which a feedback signal may be taken from the output of an amplifier are illustrated in Fig. 2. At (a) feedback is obtained directly from the output terminals

Fig. 2. General circuits for (a) parallelderived and (b) series-derived feedback.
(or it can be taken from a potential divider connected across the output terminals). The significant feature is that the feedback circuit and the output circuit are in parallel and that the feedback signal is proportional to the output voltage. Any increase in the
load resistor tends to increase the output voltage and hence the feedback signal. As a result the gain of the amplifier is reduced and the rise in output voltage minimized. Parallel-derived feedback thus tends to maintain a constant output voltage: in other words it effectively reduces the output resistance of the amplifier.

In Fig. 2(b) feedback is obtained from a resistor connected in series with the output load of the amplifier. The feedback signal is thus proportional to the output current of the amplifier. Any increase in the load resistor tends to reduce the output current and the feedback signal. As a result the gain of the amplifier is increased and the fall in output current is minimized. Series-derived feedback thus tends to maintain a constant output current: in other words it effectively increases the output resistance of the amplifier.

Two corresponding circuits for injecting the feedback signal into an amplifier are

Fig. 3. General circuits for (a) parallelinjected and (b) series-injected feedback.
shown in Fig. 3. At (a) feedback is injected directly into the input terminals via a series resistor so that the feedback circuit and the input circuit of the amplifier are in parallel. The input signal has to offset the current from the feedback circuit and to supply the input current for the amplifier. For a given input voltage therefore, a larger input current is required as a result of the addition of feedback: this is equivalent to a reduction

Table 1
\begin{tabular}{lll}
\hline \multicolumn{1}{l}{\begin{tabular}{l}
Type of feedback \\
connection
\end{tabular}} & \begin{tabular}{l}
Effect on input \\
resistance
\end{tabular} & \begin{tabular}{l}
Effect on output \\
resistance
\end{tabular} \\
\hline \begin{tabular}{ll}
series-derived \\
parallel-derived \\
series-injected \\
parallel-injected
\end{tabular} & & \begin{tabular}{l}
increased \(\left(=g_{m} R_{e} r_{c}\right)\) \\
decreased \(\left(=R_{b} / h_{t e}\right)\)
\end{tabular} \\
& increased \(\left(=h_{t e} R_{e}\right)\) & \\
decreased \(\left(=R_{b} / A\right)\) & \\
\hline
\end{tabular}

\footnotetext{
*Head of Technical Publications Section, B.B.C.
}
in input resistance. Thus parallel-injected feedback effectively reduces the input resistance.

In Fig. 3(b) the feedback signal is connected in series with the amplifier input circuit. The input signal thus has to offset the voltage from the feedback circuit and to supply the input voltage for the amplifier. For a given amplifier input current, therefore, a larger input voltage is required as a result of adding feedback; this is equivalent to an increase in input resistance. Seriesinjected feedback effectively increases the input resistance of the amplifier.

The effects of the two types of feedback derivation and injection are summarized in Table 1.

\section*{Current and voltage amplification}

A knowledge of the input resistance of an amplifier is necessary if it is to be matched to an external source, e.g. a microphone, to obtain maximum input signal. Similarly a knowledge of the output resistance is important if the amplifier is required to feed a line which must be accurately terminated.

However, the input and output resistance of the individual stages of a multi-stage amplifier are also important. When transistor stages are connected in cascade the performance of each stage should not be seriously affected by the coupling to the previous or the following stage. There are two ways in which this isolation can be achieved. One method is to ensure that a stage with a low output resistance is followed by one with a high input resistance, the high resistance being large compared with the low. The output voltage of the first stage is then also the input voltage of the second and this common voltage is little affected by variations in input or output resistance. In such inter-transistor coupling circuits the signal is clearly most conveniently regarded as a voltage and the design of such circuits is best carried out in terms of this voltage.

Alternatively isolation can be achieved by arranging for a transistor with a high output resistance to be followed by one with a low input resistance, the high resistance again being large compared with the low. In a connection of this type the output current of the first transistor is the input current for the second and this current is little affected by variations in the two resistances. For transistor couplings of this type the signal is most conveniently regarded as a current and the design of the circuit is best carried out in terms of this current.

The input and output circuits of transistors can thus be classified as suitable for voltage or current operation depending on the magnitude of the resistance as indicated Table 2. However it is not thẹ absolute magnitude of an input or output resistance which is of importance, but their ratio. For example a transistor stage with an input resistance of \(2000 \Omega\) is best regarded as a current amplifier if the source resistance is \(100,000 \Omega\) but as a voltage amplifier if the source is only \(50 \Omega\).

The input and output resistances of common-emitter and common-base transistor stages are such that a cascade of them is best regarded as a current amplifier.

Table 2
\begin{tabular}{ccc}
\hline Signal best considered as & Input resistance & Output resistance \\
\hline \begin{tabular}{ccc}
voltage \\
current
\end{tabular} & \begin{tabular}{c}
high \\
low
\end{tabular} & low \\
& high \\
\hline
\end{tabular}

Fig. 4. General circuits for (a) parallel-derived, parallel-injected feedback and (b) seriesderived series-injected feedhack.

Fig. 5. A single-stage amplifier with (a) parallel-derived, parallel-injected jeedback and (b) series-derived, scries-injected feedback.

However, within limits we can make the input and output resistances what value we please by suitable choice of feedback circuit. Thus, by suitable design, we can make a transistor stage suitable for an input voltage or current and an output voltage or current. The performance of the stage can thus be measured by the values of \(I_{\text {out }} / I_{i n}, V_{\text {out }} / V_{i n}\), \(I_{\text {out }} / V_{\text {in }}\) or \(V_{\text {out }} / I_{\text {in }}\) depending on the type of feedback applied to the stage.

\section*{Single transistor stage with base-collector resistor}

By combining the circuits of Figs. 2(a) and 3(a) we can produce the circuit shown in Fig. 4(a) in which a single resistor bridges the input and output terminals. The resulting parallel-derived and parallel-injected feedback gives the amplifier a low input and a low output resistance.

Feedback of this type can be obtained by connecting a resistor \(R_{b}\) between base and collector of a common-emitter stage as shown in Fig. 5(a).

This resistor returns a current \(V_{o u} / R_{b}\) (proportional to output voltage) to the base of the transistor and this gives rise to a collector current \(I_{c}\) where
\[
I_{c}=h_{f e} V_{o u l} / R_{b}
\]
from which
\[
\text { output resistance }=\frac{V_{o u t}}{I_{c}}=\frac{R_{b}}{h_{f e}}
\]

In the absence of feedback the output resistance is the collector a.c. resistance of the transistor which can be of the order of
\(200 \mathrm{k} \Omega\) for silicon transistors. In a practical circuit \(R_{b}\) might be \(50 \mathrm{k} \Omega\) and \(h_{f e} 150\), giving an output resistance of \(330 \Omega\). This illustrates the effective reduction of output resistance brought about by parallel-derived feedback.

At the input circuit we have
\[
I_{i n}=I_{b}+I_{f b}
\]
and if \(R_{b}\) is low enough, \(I_{f b}\) is large compared with \(I_{b}\) and we can say
\[
I_{i n} \approx I_{f b}
\]

Now \(I_{f b}=V_{o u} / R_{b}\) and \(V_{\text {out }}=A V_{\text {in }}\) where \(A\) is the voltage gain of the transistor from base to collector. Thus
\[
\text { input resistance }=\frac{V_{i n}}{I_{i n}}=\frac{R_{b}}{A}
\]
which is less than in the absence of feedback.
This may be written \(R_{b} / g_{m} R_{c}\) where \(R_{c}\) is the external collector load resistance. In an amplifier in which \(R_{b}=50 \mathrm{k} \Omega, R_{c}=5 \mathrm{k} \Omega\) and \(g_{m}=40 \mathrm{~mA} / \mathrm{V}\), the input resistance is \(250 \Omega\). In a practical circuit this may be effectively reduced by other resistors connected to the base for bias purposes.

By virtue of these low values of input and output resistance, the circuit is well suited for use with a current input and a voltage output and we are thus particularly interested in the value of \(V_{\text {out }} / I_{i n}\), the transfer resistance. We have already shown that if the degree of feedback is large \(I_{i n}\) is approximately equal to \(I_{f b}\). But \(I_{f b}=V_{o u l} / R_{b}\).
\[
\begin{equation*}
\frac{V_{o u t}}{I_{i n}}=R_{b} \tag{1}
\end{equation*}
\]

For the chosen numerical values
\[
\frac{V_{\text {out }}}{I_{\text {in }}}=50 \mathrm{k} \Omega
\]

The circuit can also be used as a current amplifier. Because \(V_{\text {out }}=I_{\text {out }} R_{c}\) we have
\[
\begin{equation*}
\frac{I_{\text {out }}}{I_{\text {in }}}=\frac{R_{b}}{R_{c}} \tag{2}
\end{equation*}
\]
and this has the value 10 for the numerical values used earlier.

Expressions (1) and (2) assume a current input but the circuit can be used with a voltage input provided a series resistor \(R_{s}\) is included as shown dotted in Fig. 5(a). \(R_{s}\) must be large compared with the input resistance of the amplifier so that the input current is given approximately by \(V_{i n} / R_{s}\). \(R_{s}\) could be the resistance of the signal source itself provided this is high enough and there is then no need to add a resistor to the circuit to provide the required high resistance. Substituting for \(I_{\text {in }}\) in (1) and (2) we have
\[
\begin{align*}
& \frac{V_{\text {out }}}{V_{\text {in }}}=\frac{R_{b}}{R_{s}} \tag{3}\\
& \frac{I_{\text {out }}}{V_{\text {in }}}=\frac{R_{b}}{R_{c} R_{s}} \tag{4}
\end{align*}
\]

In the numerical example the input resistance was \(250 \Omega\). \(R_{s}\) could then be \(2.5 \mathrm{k} \Omega\). From (3) the voltage gain is 20 . From (4) the effective mutual conductance is \(4 \mathrm{~mA} / \mathrm{V}\).

\section*{Circuit with emitter resistor}

By combining the circuits of Figs. 2(b) and 3(b) we can produce the circuit shown in Fig. \(4(\mathrm{~b})\) in which a common resistor is included in the input and output circuits. The resulting series-derived and seriesinjected feedback gives the amplifier a high input and high output resistance.

Feedback of the type of Fig. 4(b) can be obtained by including a resistor \(R_{e}\) in the emitter circuit of a common-emitter stage as shown in Fig. \(5(\mathrm{~b})\). The voltage \(I_{c} R_{e}\) (proportional to output current) developed across \(R_{e}\) is applied between base and emitter of the transistor. This voltage is amplified by a factor \(g_{m} r_{c}\) where \(r_{c}\) is the collector a.c. resistance of the transistor if, as assumed in calculations of output resistance, the output load is infinite.

Thus
\[
V_{\text {out }}=g_{m} r_{c} R_{e} I_{c}
\]
and
\[
\text { output resistance }=\frac{V_{\text {out }}}{I_{c}}=g_{m} r_{c} R_{e}
\]
\(g_{m} R_{e}\) is normally greater than unity, confirming the effective increase in output resistance. As \(r_{c}\) is commonly of the order of \(200 \mathrm{k} \Omega\) for a silicon transistor, this type of feedback can give very high output resistances.

At the input circuit
\[
V_{i n}=V_{f b}+V_{b e}
\]
and if \(R_{e}\) is large enough \(V_{f b}\) is large compared with \(V_{b e}\)
\[
V_{i n} \approx V_{f b}
\]

Now \(V_{f b}=I_{e} R_{e}=\left(h_{f e}+1\right) I_{b} R_{e}\). Thus the input resistance is given by
\[
\therefore \frac{V_{i n}}{I_{b}}=\left(h_{f e}+1\right) R_{e} \approx h_{f e} R_{e}
\]

The input resistance is given by \(h_{f e} R_{e}\) approximately and, for a transistor with \(h_{f e}=150\) and \(R_{e}=1 \mathrm{k} \Omega\), is equal to \(150 \mathrm{k} \Omega\). In a practical circuit this may be effectively reduced by resistors connected to the base e.g. for bias purposes.

By virtue of the high input and output resistances the amplifier is well suited for use with an input voltage and an output current and we are particularly interested in the value of \(I_{\text {out }} / V_{\text {in }}\) i.e. the mutual conductance \(g_{m}\).
We have already shown that if the degree of feedback is large \(V_{i n}\) is approximately equal to \(V_{f b}\). But \(V_{f b}=I_{e} R_{e} \approx I_{c} R_{e} \approx I_{o u t} R_{e}\).
\[
\begin{equation*}
\therefore \frac{I_{\text {out }}}{V_{\text {in }}}=\frac{1}{R_{e}} \tag{5}
\end{equation*}
\]

If, as assumed earlier, \(R_{e}\) is \(1 \mathrm{k} \Omega\) the effective mutual conductance is \(1 \mathrm{~mA} / \mathrm{V}\).
If the amplifier is required to give a voltage output, the low output resistance necessary is provided by \(R_{c}\) which can be given a suitably low value such as the \(5 \mathrm{k} \Omega\) assumed earlier. If, however, the amplifier is required to give a current output, \(R_{c}\) should be removed: the high value of the internal collector a.c. resistance then provides the required high value of output resistance. Alternatively when the amplifier is required to give a current output, \(R_{c}\) can be taken as representing the low input resistance of the following stage.

When \(R_{c}\) is present \(V_{\text {out }}=I_{\text {out }} R_{c}\) and thus, as a voltage amplifier, the gain of the circuit is given by
\[
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{R_{c}}{R_{e}} \tag{6}
\end{equation*}
\]

For the numerical values quoted earlier the voltage gain is 5 .

Expressions (5) and (6) are in terms of a voltage input but the amplifier can be used with a current input provided a low-value resistor \(R_{p}\) is connected across the input terminals as shown dotted in Fig. 5(b). Resistor \(R_{p}\) should be small compared with the input resistance of the amplifier so that \(V_{i n}=I_{\text {in }} R_{p}\). Resistor \(R_{p}\) could be the resistance of the signal source itself if this is small enough, and there is then no need to add a resistor to provide the required low resistance.
Substituting \(I_{i n} R_{p}\) for \(V_{\text {in }}\) in (5) and (6) we have
\[
\begin{align*}
& \frac{I_{\text {out }}}{I_{\text {in }}}=\frac{R_{p}}{R_{e}} \tag{7}\\
& \frac{V_{\text {out }}}{I_{\text {in }}}=\frac{R_{p} R_{c}}{R_{e}} \tag{8}
\end{align*}
\]

If \(R_{p}\) is \(5 \mathrm{k} \Omega\), the current gain is 5 and the transfer resistance \(25 \mathrm{k} \Omega\).

\section*{Single-transistor circuit}

The circuits so far discussed have been simplified by omission of all components except those essential for amplification or for feedback. In a practical circuit provision
must be made for biasing the base to give the required value of mean collector current and for the stabilization of this current. For a single-stage amplifier a satisfactory means of meeting these requirements is that shown in Fig. 6 in which the base is returned to a potential divider across the supply. This, together with the emitter resistor (which

Fig. 6. Mean collector current stabilization by means of a potential divider and emitter resistor.
can be used for signal-frequency feedback also if desired) ensures reasonable stability of collector current and thus minimizes variations in performance due to variations in leakage current or in the value of \(h_{f e}\). It also minimizes the effects of spreads in \(h_{f e}\) so permitting the construction of a number of circuits with consistent performance.

The circuit operates by impressing a constant potential on the base of the transistor. Any tendency of the emitter current to increase causes the voltage across \(R_{e}\) to rise and reduces the baseemitter voltage thus reducing the increases in emitter current. The circuit is an example of zero-frequency feedback. The effectiveness of the circuit in stabilizing collector current is increased by increasing the value of \(R_{e}\) and by decreasing the resistance of \(R_{1}\) and \(R_{2}\) in parallel (which is the effective internal resistance of the source of base voltage).

Stabilization could be improved by returning the potential divider to the coliector instead of to the collector supply voltage because increase in collector current is now minimized in two ways. The emitter potential is raised (as in the simple potential divider circuit) as a result of the increased voltage generated across the emitter resistor. In addition, however, the base potential is lowered as a result of the increased voltage generated across the collector resistor by the increased collector current.

If however \(R_{1}\) is simply transferred to the collector, difficulties arise from the potentialdivider bleed current which now flows through \(R_{c}\) and from the unwanted signalfrequency feedback introduced by the potential divider. Because of these difficulties, collector feed of the potential-divider circuit is unlikely to be employed in this simple form. It is, however, the basis of a very effective form of stabilization used in twostage amplifiers described later.

We will now consider the design of a practical single-transistor stage required to operate with a voltage input, to give a voltage output, the voltage gain being 20 . The basic circuit of Fig. 5(b) is suitable and we will assume that a silicon n-p-n transistor with \(h_{f e}=150\) (at a collector current
of 1 mA) is to be used with a supply voltage of 24 . For good stabilization the voltage at \(R_{1} R_{2}\) junction should be large compared with changes in base-emitter voltage due to temperature and transistor tolerances. For a silicon transistor \(V_{h e}\) is commonly 0.7 V and thus the voltage across \(R_{e}\) is 0.7 V less than that at the potential-divider junction. A suitable voltage across \(R_{e}\) is 7 and this gives the value of \(R_{e}\) as \(7 \mathrm{k} \Omega\). The voltage across \(R_{c}\) and the transistor is thus 17 and, to permit the greatest output voltage swing, this should be shared equally between them. Thus the no-signal voltage across \(R_{\mathrm{c}}\) is 8.5 and \(R_{c}\) should be \(8.5 \mathrm{k} \Omega\).

The voltage gain of the stage is given by \(R_{c} / R_{e}\) and to give the required value of 20, \(R_{e}\) should be \(420 \Omega\). Thus for zero-frequency feedback \(R_{e}\) should be \(7 \mathrm{k} \Omega\) and for signalfrequency feedback it should be \(420 \Omega\). This can be achieved as shown in Fig. 7 by

Fig. 7. Practical version of the circuit of Fig. 6, designed for a voltage gain of 20.
constructing \(R_{e}\) of \(420 \Omega\) and \(6580 \Omega\) in series and by decoupling the larger of the two resistors by a capacitor with a low reactance at the lowest signal frequency. The input resistance of the transistor at signal frequency is given by \(h_{f e} R_{e}\) i.e. \(73 \mathrm{k} \Omega\) but this is effectively reduced by \(R_{1}\) and \(R_{2}\).

For reasonable stability the current taken by the potential divider from the supply should be at least 10 times the standing base current of the transistor. \(I_{b}\) is approximately \(I_{c} / h_{f e} *\) i.e. \(7 \mu \mathrm{~A}\) and a convenient value for the potential divider current is \(100 \mu \mathrm{~A} . R_{2}\) thus carries a current of 0.1 mA and the voltage across it is 7.7: the resistance is therefore \(77 \mathrm{k} \Omega . R_{1}\) carries 0.107 mA and the voltage across it is \(27-7 \cdot 7\), i.e. 163 V : the resistance is therefore \(152 \mathrm{k} \Omega\). The input resistance of the amplifier is made up of \(77 \mathrm{k} \Omega .152 \mathrm{k} \Omega\) and \(73 \mathrm{k} \Omega\) in parallel i.e. \(30 \mathrm{k} \Omega\). The output resistance is equal to \(R_{c}\) i.e. \(8.5 \mathrm{k} \Omega\).

The stability factor of this circuit, using the calculated component values, is \(0 \cdot 04, \dagger\) that is to say the variations in collector current due to changes in \(h_{f c}\) or in leakage current are reduced to \(4 \%\) of what they would be without the stabilizing circuit. We can also say that a spread of \(\pm 50 \% h_{f e}\) gives only a \(\pm 2 \%\) spread in collector currents.
*Strictly \(I_{b}\) is given by \(l_{d} / h_{I_{E}}\) where \(h_{f E}\) is the static or d.c. current amplification factor. For simplicity we are assuming here that there is little difference between \(h_{f r}\) and \(h_{F t}\).
+ This is calculated from the expression
\[
K=1 /\left[1+h_{f e} R_{e} /\left(R_{e}+R_{b}{ }^{\prime}\right)\right]
\]
where \(R_{b^{\prime}}{ }^{\prime}=R_{1} R_{2} /\left(R_{1}+R_{2}\right)\).

\section*{Two-stage current amplifier}

If we arrange for a Fig. 5(a) type of stage to feed into a stage of the type of Fig. 5 (b) we obtain the two-stage amplifier shown in skeleton form in Fig. 8. The low input resistance and high output resistance

Fig. 8. Skeleton form of two-stage current amplifier.
of the two-stage circuit makes it suitable as a current amplifier. The input resistance of the second stage is high and it can be connected across the low output resistance of the first stage without mutual interaction. The output voltage of the first stage is the input voltage of the second.
The gain of the amplifier is easily assessed. We know from (1) that for \(\operatorname{Tr}_{1}\)
\[
\frac{V_{\text {out }}}{I_{\text {in }}}=R_{b 1}
\]
and for \(T r_{2}\) from (5)
\[
\frac{I_{\text {out }}}{V_{\text {in }}}=\frac{1}{R_{e 2}}
\]

But \(V_{\text {in }}=V_{\text {out }}\)
\[
\frac{I_{\text {out }}}{I_{\text {in }}}=\frac{R_{b 1}}{R_{e 2}}
\]

If, as assumed earlier, \(R_{b 1}=50 \mathrm{k} \Omega\) and \(R_{e 2}=1 \mathrm{k} \Omega\) the current gain is 50 .

\section*{Stability considerations}

The signal at \(T r_{2}\) emitter is a copy of that at \(T r_{2}\) base which is directly connected to \(T r_{1}\) collector. Thus the performance of the circuit is unaffected if \(R_{b 1}\) is transferred from \(T r_{1}\) collector to \(T r_{2}\) emitter as shown in Fig. 9. This modification is of considerable help in practical versions of this circuit because it makes possible a simple but very

Fig. 9. More detailed version of the circuit in Fig. 8, designed for a current gain of 50.
effective means of stabilizing the mean collector current of both transistors.
If \(R_{b 1}\) is returned to a potential divider \(R_{1} R_{2}\) included, in addition to \(R_{e 2}\), in \(T r_{2}\) emitter circuit its value can be reduced whilst keeping the gain (\(R_{b 1} / R_{e 2}\)) constant. The circuit is now very similar to that of the potential divider method of stabilization (Fig. 6) but \(T r_{1}\) requires an emitter resistor (\(R_{e 1}\)) to complete the circuit. This should be decoupled because it is not required to give signal-frequency feedback. This is a particularly good circuit because \(R_{b 1}, R_{1}\) and \(R_{2}\) can be of low resistance and in addition the potential divider is returned in effect to the collector of \(T r_{1}\) by emitterfollower action in \(T r_{2}\). Both factors, as mentioned earlier, make for good stabilization. \(R_{h 1}\) can be reduced to \(5 \mathrm{k} \Omega\) and, for a current gain of \(50, R_{e 2}\) should be \(100 \Omega\).

\section*{Estimation of component values}

Suppose a \(24-\mathrm{V}\) supply is available. \(\AA\) suitable value for the no-signal voltage at \(T r_{1}\) collector is 10 , giving the voltage across \(R_{c 1}\) as 14. If we decide on a mean collector current for \(T r_{1}\) of \(0.5 \mathrm{~mA}, R_{c 1}\) is \(28 \mathrm{k} \Omega\). \(T r_{2}\) base voltage is 10 but because of the standing 0.7 V base-emitter voltage of silicon transistors, \(\operatorname{Tr}_{2}\) emitter voltage is 9.3 . If \(T r_{2}\) is to take a mean emitter current of 2 mA , the total emitter resistance is \(4.65 \mathrm{k} \Omega\). Of this \(100 \Omega\) must provide signal-frequency feedback \(R_{b 1}\) being taken as \(5 \mathrm{k} \Omega\), and the balance could consist of two \(2.2 \mathrm{k} \Omega\) resistors in series, decoupled, the centre point providing bias for \(T r_{1}\) base. The voltage across \(R_{b 1}\) caused by \(T r_{1}\) base current can be neglected and thus we can say that \(T r_{1}\) base voltage is approximately 4.7. Because of the voltage across \(T r_{1}\) base-emitter path, the emitter voltage can be taken as 4.0 . The emitter resistance is thus \(8 \mathrm{k} \Omega\).

Fig. 10. Skeleton form of two-stage voltage amplifier.

The input resistance of the amplifier is given by \(R_{b 1} / A\) where \(A=g_{m 1} R_{c 1}\). The mutual inductance of a transistor is directly proportional to emitter current and for a current of 0.5 mA is approximately \(20 \mathrm{~mA} / \mathrm{V}\). \(A\) is thus 560 and the input resistance is \(5 \mathrm{k} \Omega / 560\) i.e. approximately \(9 \Omega\). The output resistance is given by \(g_{m 2} R_{e 2} r_{c 2}\). If \(g_{m}\) is taken as \(80 \mathrm{~mA} / \mathrm{V}, g_{m 2} R_{e 2}\) is 40 and the output resistance is thus several megohms, \(r_{c 2}\) being say \(200, \mathrm{k} \Omega\).

\section*{Two-stage voltage amplifier}

An amplifier consisting of a first stage of the type shown in Fig. 5(b) and a second stage
of the type shown in Fig. 5(a) has a high input resistance and a low output resistance, making the amplifier (shown in skeleton form in Fig. 10) suitable for voltage amplification. At the inter-transistor coupling circuit the high output resistance of \(T r_{1}\) feeds into the low input resistance of \(T r_{2}\). There is no interaction provided the inter-transistor signal is taken as a current.

For \(\mathrm{Tr}_{1}\) from (5)
\[
\frac{I_{\text {out }}}{V_{\text {in }}}=\frac{1}{R_{e 1}}
\]

For \(T r_{2}\) from (1)
\[
\frac{V_{\text {out }}}{I_{\text {in }}}=R_{b 2}
\]

But \(I_{\text {in }}=I_{\text {out }}\)
\[
\frac{V_{\text {out }}}{V_{i n}}=\frac{R_{b 2}}{R_{e 1}}
\]
\(R_{b 2}\) is normally connected to \(T r_{1}\) emitter instead of to Tr \(_{2}\) base. It is not immediately obvious that such an alteration makes little difference to the performance of the circuit. In fact the input current for \(\operatorname{Tr}_{2}\) is (provided \(R_{c 1}\) is large enough) the output current of \(T r_{1}\) and this is also the emitter current of \(T r_{1}\). Thus any current injected into \(T r_{1}\) emitter by \(R_{b 2}\) is conveyed to \(T r_{2}\) base with little loss.

Suppose a voltage gain of 100 is required. Any values of \(R_{b 2}\) and \(R_{e 1}\), provided their ratio is 100 , will give this value of gain but high values of \(R_{b 2}\) will give the amplifier an unnecessarily-high output resistance and low values of \(R_{e 1}\) will give undesirably-low values of amplifier input resistance. A compromise such as \(R_{e 1}=500 \Omega\) and \(R_{b 2}=50 \mathrm{k} \Omega\) is suitable.

Finally, means must be provided for stabilizing the collector currents of both transistors and here the same technique of zero-frequency feedback from \(\mathrm{Tr}_{2}\) emitter to \(T r_{1}\) base can be used as in the two-stage current amplifier and very similar component values can be used also. The emitter circuit of \(\operatorname{Tr}_{2}\) should be fully decoupled because no signal-frequency feedback is required here. In \(\operatorname{Tr}_{1}\) emitter circuit, however, a resistor of \(8 \mathrm{k} \Omega\) is required for stability and \(500 \Omega\) for signal-frequency feedback. Both requirements can be met by using two resistors in series, the larger being decoupled as shown in Fig. 11. In the twostage current amplifier \(R_{b 1}\) provided the zero-frequency feedback necessary for stability and the signal-frequency feedback required to give the desired gain. In this voltage amplifier \(R_{b 1}\) provides only zerofrequency feedback and \(R_{h 2}\) provides signalfrequency feedback.
The input resistance of transistor \(\operatorname{Tr}_{1}\) is \(50 \mathrm{k} \Omega\) if \(h_{f e}\) is taken as 100 and \(R_{e 1}\) as \(500 \Omega\) but \(R_{b 1}\) is in parallel with the base circuit. \(R_{h 1}\) can be given any value within a wide range: high values degrade stability but give a high input resistance to the amplifier; low values give good stability but low input resistance. A compromise value such as \(20 \mathrm{k} \Omega\) might be suitable and this gives an amplifier input resistance of \(14 \mathrm{k} \Omega\).
The output resistance of the amplifier is given by \(R_{b 2} / h_{f e}\) i.e. \(500 \Omega\) if \(h_{f e}=100\).
Some departures from the calculated resistor values indicated in Figs. 7, 9 and 11

Fig. 11. More detailed version of the circuit in Fig. 10, designed for a voltage gain of 100.
may be desirable to permit the use of preferred-value resistors. Because of such departures and the spread of resistance likely to be encountered, it is advisable to use a preset component for one of the resistors in the amplifier and to adjust this to give the required working voltages. A suitable component to make preset is the decoupled part of \(\operatorname{Tr}_{1}\) emitter resistor.

No mention has been made in this article of the frequency range of the circuits discussed. Modern silicon planar transistors, even those intended for a.f. applications, have transition frequencies of hundreds of MHz and if these are used, the passband of the amplifiers will probably extend to several MHz . If the amplifiers are used for a.f. applications such a response could be an embarrassment (e.g. because of amplification of any r.f. signals present) and should be curtailed by making the feedback increase above say 15 kHz . This can be done, for example, by shunting \(R_{b 2}\) in Fig. 11 by a capacitor so chosen that its reactance at 30 kHz equals the resistor value, i.e. approximately \(0.005 \mu \mathrm{~F}\). For a.f. applications the decoupling capacitors should be large enough to perform adequately down to 30 Hz .

\section*{Announcements}

Two six-week courses are to be held at Norwood Technical College. The first, commencing 2nd February, is entitled "Pulse Code Modulation Techniques". The second, "Single Standard Colour Television Receivers" commences 25th January. Further details are available from The Secretary, Norwood Technical College, Knight's Hill, London S.E.27. Fee 30s per course.

Japanese made EVR players may soon become available in Britain as a result of a licence agreement which the EVR Partnership has concluded with Mitsubishi Electric of Japan for the manufacture and distribution of EVR teleplayers internationally (with the present exception of the U.S.A. and Canada). A similar agreement has also been made with Hitachi.

By mutual agreement the arrangement whereby Siemens components and telecommunications test equipment was handled in the U.K. by Cole Electronics has been terminated. From January ist Siemens (U.K.) Ltd, Great West House, Great West Road, Brentford, Middx, will handle these products.

MCP Electronics Ltd, Alperton, Wembley, HAO 4PE, Middx, have been appointed sole U.K. representatives and distributors for Telefunken semiconductors.

LST Components, 7 Coptfold Road, Brentwood, Essex. now distribute heat sinks manufactured by Marston Excelsior Ltd (Imperial Metal Industries Group) and the 20 W integrated circuit amplifier made by Toshiba.

Russian test and measuring equipment. Z \& I Aero Services now market a range of measuring equipment. Maintenance facilities are available. Z \& I Acro Services Lid, 44a Wesibourne Grove, London W. 2.

GDS'(Sales) Ltd, of Michaelmas House. Salt Hill, Bath Road. Slough, Bucks, have been appointed a franchised distributor by Radiatron Components Ltd. The agreement covers the Elma range of collet knobs and rotary stud switches and Jaquet stopwatches.

Semicomps Ltd, 5 Northfield Estate, Beresford Avenue, Wembley, Middx, have been appointed sole U.K. distributors for the EMC range of dual-in-line i.c. sockets by Teknis Ltd, of Guildford. Surrey.

An agreement has been signed which gives AB Sonab, of Sweden, the sole marketing rights in Northern Europe for Ultra Electronics' range of communications equipment.

Microsystems International, of Canada, specialists in standard and custom-designed microcircuits, have appointed Pinnacle Electronics Ltd, Achilles Street, New Cross. London S.EI4, as their first U.K. distributor.

Jason Electronic Designs Lid are no longer wholesaling stocks of Dansette and Perdio spares.

AB Electronic Components are to take over the entire European manufacturing and marketing operations of the American component manufacturer. CTS Corporation, in exchange for \(10 \%\) of their equity.

Jasmin Electronics Ltd have moved from Hainault, Essex, to a new factory at Station Road, Quorn, Leics. LE12 8BP

The sales and service divisions of Carston Electronics have moved from Chinnor to Shirley House, 27 Camden Road, London N.W. 1 (Tel: 01-267 2748).

The Broadcast Division of Rank Precision Industries Ltd are moving from Welwyn Garden City to Watton Road, Ware, Herts. (Tel: Ware 3939).

Interscan Data Systems (UK) Ltd have moved from London to Hoechst House, Salisbury Road, Hounslow, Middx. Tel: 01-572 2871.

Spectra-Physics Lid have moved to premises at 5 Wolsey Road, Hemel Hempstead. Herts.

The Avionics Division of Plessey Electronics Group has been awarded contracts valued at \(£ 227,000\) for automatic and manual test equipment, from the Ministry of Aviation Supply.

Pye Telecommunications Ltd has received a \(£ \frac{3}{4} \mathrm{M}\) contract to supply a nationwide communications system for the Sierra Leone police.

Racal-BCC Lid, of Bracknell has received an order valued at over \(£ 1,300,000\) from the Malaysian Ministry of Defence. The order is for over 1,000 military radio telephones with accessories and spares.

\title{
January Meetings
}

Tickets are required for some meetings: readers are advised, therefore, to communicate with the society concerned

\section*{LONDON}

6th. Hosp. Physicists Assóc. /Bio. Eng.Sóc. / IEE/IERE - Symposium on "Physiological transducers for measurement in vivo" at 17.30 at Savoy Pl., W.C:2.

6th. IERE - "Recent advances in microwave ferrite devices" by E. Riches at 18.00 at 9 Bedford Sq., W.C.1.

7th. IERE/IEE -- Colloquium on "Optical character recognition and allied techniques" at 18.00 at 9 Bedford Sq., W.C.I.

7th. R.T.S. - "Marconi Mk VII colour camera" by W. T. Underhill at 19.00 at I.T.A., 70 Brompton Rd., S.W. 3 .

8th. IEE - Colloquium on "Non-linear circuit analysis" at 14.30 at Savoy Pl., W.C. 2.

11th. IEE - "Amorphous semiconductors" by R.W. Brander at 17.30 at Savoy PI., W.C.2.

12th. IERE - "A review of computer control" by S.L.H. Clarke at 18.00 at 9 Bedford Sq., W.C.1.

12th. SERT - "Next steps in computer system design" by F.J.M. Laver at 19.00 at the London School of Hygiene \& Tropical Medicine, Keppel St., W.C.I.

13th. IEE - "Developments in public data communication services" by M.B. Williams at 17.30 at Savoy PI., W.C.2.

13th. IERE - "Integrated circuits for colour television" by J. C. MacKellar at 18.00 at 9 Bedford Sq., W.C.1.

15th. IEE - Colloquium on "Electronics on trains" at 10.00 at Savoy Pl., W.C.2.

15th. IEE/IERE - Colloquium on "Display systems" at 17.30 at Savoy PI., W.C.2.

18th. IEE - "A communication and control system for motorways" by E. H. Walker lat 17.30 at Savoy PI., W.C.2.

19th. IERE - "ADSEL - selectivity addressed secondary radar" by C. Ullyatt at 18.00 at 9 Bedford Sq., W.C. 1.

20th. Inst. Navigation - Discussion on "Area navigation" at 15.00 at the Royal Aeronautical Society, 4 Hamilton PI., W.I.

21 st. IEE - "The very early history of radio from Faraday to Marconi" by Wing Cmdr G. R. M. Garratt at 17.30 at Savoy Pl., W.C. 2 .

27th. IERE - "Management of R.A.F. electronic engineering projects" at 18.00 at 9 Bedford Sq., W.C. 1 .

28th. IERE - Symposium on "Women in engineering?" at 18.00 at the London School of Hygiene \& Tropical Medicine, Keppel St., W.C.I.

\section*{BATH}

5th. Brit. Acous. S.-"Side-scan sonar applications" at 11.00 at the University.

\section*{BIRMINGHAM}

6th. RTS-"Trends in television development" by A. V. Lord at 19.00 in the Viewing Theatre, ATV Studio Centre, Bridge Street.

14th. IEE Grads.-"M.O.S. transistors and micro-electronics" by M.B. Bandali at 19.00 at the Dept. of Electronic \& Elect. Eng'g, the University.

19th. RTS "Trade Union responsibility in the cormmunications media" by Alan Sapper at 19.00 at the ATV Centre, Bridge St.

25th. IEE/IPOEE-"Radio propagation in the higher GHz frequencies" by E. M. Hickin at 18.00 at the MEB Summer Lane.

26th. IEE Grads.--"Electronic organs" at 19.30 at the Grapes, Hill Street.

28th. IEE--"Circuit conventions and phasors" by M. G. Scroggie at 18.15 at Sumpner Bldg, the University of Aston.

\section*{BLETCHLEY}

12th. IEE - "Current trends in radio astronomy" by M. J. S. Quigley at 19.30 at P.O. College, Horwood House.

\section*{BRISTOL}

12th. IEE - "Ultrasonics in medicine" by D. H. Follett at 19.30 at the Electricity House.

\section*{CAMBRIDGE}

28th. IERE/IEE - "Flight recording" by R. Parsons at 18.30 at the University's Eng'g Labs.

\section*{CARDIFF}

13th. IERE - "Recent developments in television tuners" by T. L. Harcombe at 18.30 at the University of Wales Inst. of Science \& Technology.

\section*{CHATHAM}

28th. IERE - "Control of projects" by S.C. Dunn at 19.00 at the Medway College of Technology.

\section*{CHELMSFORD}

12th. IERE/IEE - "Management of a large electronics complex" by D. G. Smee at 18.30 at the Saracen's Head Hotel, High Street.

13th. IEE - "Electronics and the economy" by I. Maddock at 18.30 at the King Edward VI Grammar School, Broomfield Rd.

\section*{DONCASTER}

12th. I.Prod.E. - "Fibre optics" by T. A. Clarke at 19.15 at the College of Technology, Waterdale.

DUBLIN
21st IEE - "Colour television systems" by E. J. Galagher at 17.30 at Trinity College.

\section*{EDINBURGH}

6th. IERE - "Television field store standards convertor" by E. Rout at 19.00 at Napier College of Science \& Technology, Colinton Rd.

\section*{FARNBOROUGH}

12th. IEE - "Electronics in archaeology" by E. T. Hall at 18.30 at the Technical College.

\section*{GLASGOW}

7th. IERE - "Television field store standards convertor" by E. Rout at 19.00 at the Inst. of Engrs \& Shipbldrs, 183 Bath St.
26th. IEE Grads. - "Electronics - its future in navigation" by F. S. Stringer at 19.30 at the Music Room Livingstone Tower, Strathclyde University.

\section*{GUILDFORD}

26th. IERE - "Computer graphics and the common man" by B. S. Walker at 19.00 at the University of Surrey.

\section*{HEADINGTON}

13th. IEE - "U.K. developments in electronic telephone systems" by J. Martin at 19.00 at the Oxford Polytechnic.

\section*{HEMEL HEMPSTEAD}

12th. IEE - "Digital instrumentation" by A. R. Owens at 19.15 at the Dacorum College of Further Education.

\section*{LEICESTER}

20th. IERE - "Linear integrated circuits" by P, J. Jefferson at 18.30 at the University.

\section*{LIVERPOOL}

7th. IEE - Colloquium on " \(R\) and \(D\) in electronics" at 09.00 at the University.

25th. IEE Grads. - "Computer graphics and the electrical engineer" by M. Clayton and D. W. Davis at 18.30 at the Polytechnic, Byrom Street.

\section*{MAIDSTONE}

7th. IEE-"Invention as part of education" by Prof. M. W. Thring at 19.00 at the Royal Star Hotel, High Street.

\section*{MALVERN}

28th. IEE/IERE - "Laser applications in electronics" by Prof. W. A. Gambling at 19.00 at the Abbey Hotel.

\section*{MANCHESTER}

6th. IEE - "Logic circuits and their design in the solid" by D. J. Kinniment and A. Bardsley at 18.45 at U.M.I.S.T.

12th. IEE - "The impact of communications on society" by Prof. E. C. Cherry at 18.15 at the Renold Bldg, U.M.I.S.T.

14th. IERE - "Training and careers of electronic engineers in management" by H. Latham at 19.15 at U.M.I.S.T.

27th. IEE - "Electronic techniques in archaeology" Silvanus P. Thompson lecture by M. J. Aitken at 18.45 at the Renold Bldg. U.M.I.S.T.

\section*{MIDDLESBROUGH}

6th. IEE - "Tomorrow's world in telecommunications" by W. J. Bray at 18.30 at the Cleveland Science Institute.

\section*{NEWCASTLE-ON-TYNE}

13th. IERE - "Marine science and the electronic engineer" by M. J. Tucker at 18.00 at the Main Lecture Theatre, Ellison Bldg, the Polytechnic.

\section*{NEWPORT, I.O.W.}

29th. IEE/IERE - "History and development of marine radars" by H. Giles at 19.00 at the County Hall.

\section*{PLYMOUTH}

6th. RTS - "The Dolby noise reduction system"
at 19.30 at the studios of Westward Television Ltd.
READING
28th. IERE - "Character generation" by G. Jones at 19.30 at the University.

\section*{RUGBY}

27th. IEE - "Electronics in crime detection" by A. R. Torless at 18.15 at the Lanchester Polytechnic, Eastlands.

\section*{SALISBURY}

25th. IEE - "Concorde electronics" by H. Hill at 18.30 at the Salisbury \& South Wilts College of Further Education.

\section*{SOUTHAMPTON}

13th. IEE/IERE - "Data transmission over radio links" by J. D. H. Alexander and J. S. Reynolds at 18.30 at the University.

\section*{STAFFORD}

26th. IEE -- "The Open University" by Prof. J. J. Sparkes at 19.00 at the North Staffordshire Polytechnic.

\section*{STOKE ON TRENT}

12th. Keele University - "Hardware in the British NIMBUS satellite" by Dr. Ellis at 20.00 in the Physics Dept.

19th. Keele University - "How much of science is worthwhile?" by Prof. Ziman at 20.00 in the Physics Dept.

\section*{WORTHING}

19th. IEE - "Colour television" by B. J. Rogers at 18.30 at the College of Further Education.

\title{
Electronic Building Bricks
}

\section*{8. Power in signals}

\author{
by James Franklin
}

Electronics is often described as the "light current" side of electrical engineering, to distinguish it from the "power" side. Both in fact use electrical power, but since very little power is needed to represent and convey information, compared with the power needed to drive rolling mills or to light cities, there is a tendency to forget that it comes into electronics at all. We have to consider power in electronics because signals al ways have to operate or "drive" something, whether it is a building brick such as an amplifier or an adder (Part 1) or an output transducer such as a loudspeaker (Párt 4). When we design a complete system made up of functional units and transducers we have to ensure that the signal emerging from each "brick" has adequate power to operate the next in line, or to operate the transducer which makes the signal information perceptible.

Power is a property which we understand intuitively in such forms as muscle power in the human body or engine power in cars. In the home, a 100 -watt lamp gives a more "powerful" light than a 60 -watt lamp. In all these cases there is a conversion of energy from one form to another-chemical to mechanical in the muscles, chemical to thermal to mechanical in the car engine, and electrical to light and heat in the lamp.

When an engineer talks about power he means something more precise than our intuitive idea, and something which can be measured. He defines power as the rate at which work is done. Thus if you lift up a chair in a given time you are doing work at a certain rate-using a certain power-and your muscles are converting chemical energy into mechanical energy for the purpose. If you lift up the chair the same distance in half the time, the rate of work, hence the power used, is doubled. When power is generated one can think of it as flowing from the energy converter (say a dynamo) to the load (which might be a lamp or a motor)-or, in mechanical terms, being applied to the load through some mechanical device such as a piston (see Fig. 1).

The unit by which power is measured is the watt \({ }^{*}\). There are other units, such as the horse-power (which is equivalent, to 746 watts), but, with the coming of

\footnotetext{
* Named after the Scottish engineer James Watt (1736-1819).
}
metrication and SI (Système International) units, the watt is now being adopted as standard. Since power, as we have said, is defined as the rate of doing work, the unit of power, the watt, is defined as one unit of work done per second. Work done can be measured in units of energy-the energy which has done the work--and the SI unit of energy is the joule \(\dagger\). So watts \(=\) joules per second. But what exactly is a joule's worth of energy?

Energy exists in several forms-mechanical, thermal, chemical, electrical -and it can be converted from one form to a nother. We can therefore say, for example, that so much mechanical energy is equivalent to so much electrical energy; and the means by which we can equate them is the common unit, the joule. Mechanically, the joule is defined in terms of the work done in moving an object through a certain distance by the application of a certain force; thermally, in raising a certain mass of water through a certain temperature. Electrically, the joule

Fig.1. Concept of power being transmitted from an energy converter to a load. The amount of power flowing is the rate at which work is done in the system.

Fig.2. Simple circuit illustrating work done by an e.m.f. source in moving electrons against resistance. The e.m.f. could be varjed to form a signal.
is the work done in moving a quantity of electricity of 1 coulomb (see Part 3) through a resistance or reactance (Part 7) which is setting up an opposing e.m.f. of 1 volt.

We can see how this electrical definition applies in practice if we look at the simple circuit in Part 7 which is repeated here as Fig. 2. The e.m.f. source causes current to flow in the circuit and this is controlled by the resistor which sets up an opposing e.m.f. If this opposing e.m.f.--the potential difference measured across the resistor by the voltmeter-is I volt, and the source has driven a quantity of 1 coulomb of free electrons past a given point in the circuit, the work done is 1 joule.

If the e.m.f. source does this in one second there will be an electron flow rate of 1 coulomb \(/\) second \(=1\) ampere, and this will be indicated on the current meter

Fig.3. Graph of a signal in which information is represented by a variation of power with time.
("mA") as 1000 milliamperes. Also, the rate at which the source is doing the work of forcing electrons through the resistance is 1 joule per second, which is a power of 1 watt. Thus the power being generated by the e.m.f. source and delivered to the load (the resistor) during that one second is I watt.

The e.m.f. source in Fig. 2 could be made to produce a varying e.m.f. Or it could be replaced by an energy-conversion transducer (Part 4). If the e.m.f. then produced varied in accordance with some meaningful pattern it would be representing information-it would be a signal. Thus the power being generated and delivered to the load (the resistor) would be signal power. As we saw in Part 2, a signal is any electrical variable which represents and conveys information; so here we have a variable, power, which has the dual purpose of representing information and "driving" a load. A graph of such a signal (power variation with time) is shown in Fig. 3. Since watts \(=\) joules \(/\) second, this graph also plots rate of doing work, or energy delivery, with time; so, over a given period of time we could work out the total energy delivered in the signal, on the principle joules \(=\) joules \(/\) second \(\times\) seconds. In fact this is given by the area under the graph (shaded), which can be obtained by graphical integration.

\section*{World of Amateur Radio}

\section*{British slow-scan TV}

What is believed to have been the first British international two-way slow-scan television contact is reported by Robert Skegg, G3ZGO and G6ADJ/T, of Acton, West London. On November 21 st on 14.23 MHz he exchanged pictures with the Greek station, SV1AB of Athens, after receiving a special Minpostel permit covering slow-scan transmissions. His hybrid valve/transistor monitor uses a 3FP7 radar tube and for transmission he uses the monitor as a flying-spot scanner with a 931 A photo-multiplier, all equipment being driven by a solid-state pulse generator.

His transmitter is the relatively low-power Heathkit HW32 with only a dipole in his loft. He is anxious to try a higher e.r.p. in order to attempt to transmit to America and New Zealand where there is considerable interest in amateur slow-scan television trans mission. He would like to hear from any British amateurs having experience of s.s. television transmission (18 Eastbourne Avenue, Acton, London W3 6JN). His Minpostel permit covers also the 144 MHz band.

\section*{Australis-Osear 5 mystery}

Analysis of the many reports gathered on the 29 and 144 MHz beacon transmitters carried in the amateur satellite Australis-Oscar 5 (launched in January 1970) could well cause some revision to current beliefs concerning h.f. satellite-to-ground propagation through the F layer. Earlier professional experiments, based mainly on the top-side sounders, had suggested ionospheric h.f. blockage to over-the-horizon reception, other than the now firmly recognized antipodal propagation (signal reappearance as satellite passes over a point antipodal to the observer). A number of amateur stations reported antipodal propagation on Oscar 5, almost always during afternoon or early evening local time.

On this 910 -mile-high amateur satellite, Raphael Soifer, K2QBW, has pointed out that about two-thirds of the reports showed that the h.f. signals could be held longer than those from the v.h.f. beacon
(contrary to some predictions), with well-equipped stations achieving pass durations well in excess of the theoretical 22.5 minutes. For example, Australian station VK3ATN, with large rhombic aerials, reported an average of 28 minutes, including one of 33 minutes 35 seconds. A comparison of stations achieving significant over-the-horizon results suggests that the signals were then arriving at extremely low angles to the horizon.

\section*{B.B.C. World Radio Club}

The 15 -minute World Radio Club broadcasts, which are transmitted on the B.B.C. World Service each week, are now being produced by Joy Boatman, who has taken over from John Pitman responsible for the programme for the past three years. Although intended primarily for short-wave listeners, the programmes often include items of interest to radio amateurs a number of whom regularly take part in the programme, as well as Doug Crawford (compere). Henry Hatch, G2CBB, and Marilyn Farthing. Each weekly programme is now broadcast first on Thursdays at 12.45 G.M.T., with repeats on Fridays at 23.45 G.M.T. and Sundays at 08.15 G.M.T.

\section*{Components for constructors}

A browse through the advertisement columns of this journal would hardly suggest that home-construction by amateurs could possibly suffer from any shortage of suitable component parts. Never, it might seem, have so many parts been so readily available at such reasonable prices to the enthusiast. Yet, in practice, one of the thorniest problems facing those who wish to build their own equipment, often from designs published in books and periodicals, without extensive test and measuring equipment, has been the gradual disappearance of regular stock lines of components manufactured specifically for the transmitting amateur and those listeners wishing to build their own receivers. While this is particularly true of coils and coil packs, many other specialized parts are difficult to obtain
from stock. In recent months, components specified for a number of popular designs have vanished from the market. Manufacturers undoubtedly are finding it difficult to justify products for which their is limited demand with high handling and postal charges.

This problem is by no means confined to the U.K. A recent article in the A.R.R.L.'s journal \(Q S T\) suggests that in the United States "the parts procurement situation seems to be going from bad to worse . . . parts are still available, but one must learn how and where to find them." The comment is made that the scarcity and high-cost of one-off parts mean that home-construction projects now often cost appreciably more than the comparable kits or manufactured gear. One West German publisher for the international amateur radio field is attempting to overcome the problem by offering kits and partial kits of the main designs in his periodicals-but this implies costs which amateurs, who traditionally like to build equipment basically from 'junk boxes' plus a few special parts, may find frustrating. Undoubtedly this is a problem which has played an important role in the greater dependence by many amateurs on manufactured equipment. All credit to those component firms who continue to cater for this specialized market.

\section*{In brief}

Although over \(£ 500\) has been raised by the Cheshire Homes Amateur Radio Network Fund-sufficient to equip 11 Homes with communications receivers-there are still 35 Cheshire Homes without equipment (secretary /treasurer W. M. Clarke, G3VUC, 66 Fillace Park, Horrabridge, Yelverton, Devon) . . . The deaths of three well-known British amateurs have been reported recently: Fred Lambeth, G2AIW, who was the R.S.G.B's first v.h.f. manager: Norman Caws, G3BVG, who was for many years honorary treasurer of the R.S.G.B., and W. H. Martin, G15HV who pioneered v.h.f. activity in Northern Ireland Amateurs operating in West Germany as members of foreign military forces are now being given the pre-fix DA. For example. DAIRAF is located at the R.A.F. base at Gatow, near Berlin . . . Portsmouth Polytechnic students are trying to arouse more interest in amateur television in the south of England and plan to hold a series of lectures on the subject (details; the secretary, Electropol, Students Union Offices, Union House, St. Pauls Road, Portsmouth)
50.098 MHz beacon, VE8YT, on the north coast of Baffin Island has already been heard in Iceland and is thought likely to be heard in Europe during abnormal propagation conditions (reports to Larry Kayser, VE3QB, 59 Westfield Crescent, Ottawa 5, Ontario, Canada) The well-supported R.S.G.B. VHF National Field Day 1970 was won by the Mid-Essex VHF/UHF Contest Group -there were over 120 entries, with stations on \(70,144,432\) and 1296 MHz .

PAT HAWKER, G3VA

\section*{New Products}

\section*{High-performance op-amp}

Model 3500 monolithic op-amp made by Burr-Brown Research, and available from Fluke International, uses a cancellation technique to reduce input bias current to 10 nA and thermal drift to \(0.3 \mathrm{nA} /{ }^{\prime \prime} \mathrm{C}\). Slew rate is \(1.5 \mathrm{~V} / \mu \mathrm{s}\). This is accomplished by a feedback loop that senses the instantaneous input current and supplies the appro'priate compensating current. The technique compensates both the quiescent levels of bias current and its signal variations. Thus, the input impedance is boosted to \(5,000 \mathrm{M} \Omega\) common mode, and \(10 \mathrm{M} \Omega\) differential. The device can operate at power supply levels from \(\pm 3\) to \(\pm 20 \mathrm{~V}\) without significant change in its performance because it employs internal level-setting that is independent of power supply levels. Power supply sensitivities of \(0.2 \mathrm{~dB} / \mathrm{V}, 20 \mu \mathrm{~V} /\) volt, and \(0 \cdot \ln \mathrm{~A} /\) volt are attained over the full operating range of supply voltages. Noise is \(1 \mu \mathrm{~V}\) pk-pk. Typical common-mode rejection is 90 dB , and open loop gain is 100 dB . Unity gain bandwidth is 1 MHz , input offset voltage 1.5 mV , full power response 20 kHz , and quiescent current 2.5 mA . Input offset voltage drifts are limited to \(\pm 5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}, \quad \pm 10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\), or \(\pm 30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\), all guaranteed maxima. Rated output of the device is \(\pm 10\) volts, \(\pm 10 \mathrm{~mA}\). Prices for the model 3500 start at \(£ 414 \mathrm{~s} 0 \mathrm{~d}\) in unit quantities. One hundred quantity prices start at \(£ 38 \mathrm{~s} 0 \mathrm{~d}\) each. Fluke International Corporation, Garnett Close, Watford WD2 4TT.
WW \(\mathbf{3 2 8}\) for further details

\section*{Sub-miniature toggle switches}

Two sub-miniature toggle switches with a rating of 6 A at 125 V or 3 A at 250 V a.c. are available from WEL. Both have a breakdown voltage of \(1,000 \mathrm{~V}\) a.c. with insulation resistance of more than \(100 \mathrm{M} \Omega\) at 500 V d.c. Contact resistance is typically less than \(5 \mathrm{~m} \Omega\) at 1 A 2.4 V d.c. The life expectancy is up to \(10 \times 10^{4}\) operations at 1 A rating and in excess of \(2 \times 10^{4}\) at 3 A 250 V rating. Units are moulded in phenolic melamine with solder tag connections. Metal parts are bright plated. Two types are available: TS106D single-pole doublethrow, and type TS206N double-pole double-throw. Prices are 7s 6d and 9s 6d,

respectively, for TS106D and TS206N for quantities of 1-9. WEL Components Ltd, 5 Loverock Road, Reading. Berks. WW 330 for further details

\section*{Miniature resistors}

Low cost \(\frac{1}{16}\) watt resistors are available from Solitronics of Hong Kong. They are made from metal glaze resistor paste and have a load life stability of \(\pm 5 \%\) over 500 hours. Voltage and temperature coefficients are \(\pm 0.3 \% / \mathrm{V}\) and \(\pm 7\) in \(10^{4} / \mathrm{degC}\). Available in \(\pm 5 \%\) tolerance, values range from \(51 s\) to 100 ks . Price is about \(\$ 25\) (U.S.) per 1000 for orders of over 10,000 reducing to about \(\$ 15\) for 500,000 . Solitronics Engineering Ltd, 1531 Star House, Harbour Centre, Kowloon, Hong Kong.
WW \(\mathbf{3 1 3}\) for further details

\section*{L.F. quartz crystals}

A range of quartz crystal units from ITT covers the frequencies 54 to 65.499 kHz ; 65.5 to 83.999 kHz ; and 84 to 150 kHz in three sizes of hermetically sealed metal holders. Each holder is supplied with either two-pin or two-lead-wire bases.

ITT Components Group Europe, Quartz Crystal Product Division, Edinburgh Way, Harlow, Essex.
WW303 for further details

\section*{Op-amp dual power supply}

Model 707 dual power supply from Microtest is designed for op-amps requiring equal positive and negative supply voltages. The voltages are set by one control and the negative supply tracks the positive master supply. As a result any change of the internal reference source (e.g. drift, ripple) will cause an equal change in the outputs of both the master and slave supplies. A maximum current of 100 mA may be drawn from each line and the loads on each line need not be equal. Foldback current limiting, which starts at approximately 120 mA , ensures protection of the positive master line which then causes the negative line to follow. The negative line is protected by constant current limiting which does not affect the positive line. The specification includes the following:
\begin{tabular}{|c|c|}
\hline input voltage & \[
\begin{gathered}
200 \mathrm{~V} \text { to } 250 \mathrm{~V} \\
50 / 400 \mathrm{~Hz}
\end{gathered}
\] \\
\hline dual output voltage & \[
\begin{aligned}
& \pm 12 \mathrm{~V} \text { to } \pm 16 \mathrm{~V} \\
& \text { at } 0 \text { to } 100 \mathrm{~mA}
\end{aligned}
\] \\
\hline mains regulation & 0.01\% \\
\hline load regulation & 0.02\% \\
\hline ripple and noise & \[
<\underset{\text { peak }}{250 \mu \mathrm{~V} \text { peak to }}
\] \\
\hline output impedance at 10 kHz & \(<0.1\) \\
\hline short circuit protection & indefinite \\
\hline tracking error & < \(1 \%\) \\
\hline temperature coefficient & \\
\hline \(0-70^{\circ} \mathrm{C}\) & 0.3\% \\
\hline size & \(210 \times 90 \times 50 \mathrm{~mm}\) \\
\hline
\end{tabular}

Microtest Ltd, 28 Walker Lines Industrial Estate, Bodmin, Cornwall.
WW301 for further details

\section*{Low leakage current diode}

A silicon diode, type BAV45 from Mullard, has a leakage current of not more than 10 pA at a junction temperature of \(25^{\circ} \mathrm{C}\) and a reverse voltage of 20 V . At a junction temperature of \(80^{\circ} \mathrm{C}\) and a reverse voltage of 5 V it does not exceed 150 pA . The diode's capacitance is 1.3 pF . The maximum reverse voltage rating is 20 V and maximum forward current 50 mA . With a forward current of 10 mA the voltage drop across the diode is less than 1 V . The BAV45 is enclosed in a TO-18 encapsulation and has a thermal resistance from junction to ambient of \(0.5^{\circ} \mathrm{C} / \mathrm{mW}\). Mullard Ltd., Mullard House, Torrington Place, London WC1E 7HD. WW307 for further details

\section*{Power transistors \\ for v.h.f.}

Three new 40W transistors manufactured by TRW Semiconductors Inc., California, are now available from MCP Electronics.

They are the PT8711 (\(12.5 \mathrm{~V}, 4.5 \mathrm{~dB}\) gain). the PT 8712 (\(24 \mathrm{~V}, 6 \mathrm{~dB}\) gain) and the PT8701 (\(28 \mathrm{~V}, 7.5 \mathrm{~dB}\) gain). The first two devices are in a 4 -lead diamond package, while the PT8701 is in the TO-128 package. A fourth new device-the PT8710-is a stud package with very wide, low inductance base and emitter leads. The latter device is rated at 25 W and needs 8 W drive power at 175 MHz and \(V_{c e}\) of 12.5 V . MCP Electronics Ltd, Alperton, Wembley, HA0 4PE.
WW 308 for further details

\section*{Digital error detector \\ for p.c.m.}

Designed for testing p.c.m. telephone links and terminal equipment, the new Marconi Instruments error detector can be used without breaking the signal path. The instrument, type TF2801, measures bipolar

errors in 24 - and 32 -channel equipment at bit rates of 1.536 and \(2.048 \mathrm{Mbits} / \mathrm{sec}\). A meter indicates presence of a signal and errors. A totalizer displays total errors over any period of time. It has an internal 9 V battery. Marconi Instruments Ltd, St. Albans, Herts.
WW 310 for further details

\section*{RF spectrum analyser with 10 Hz resolution}

Hewlett-Packard i.f. section type 8552B gives their existing spectrum analyser a 10 Hz resolution up to 110 MHz . Used with the type 8553B r.f. section and the 141T display, \(10-\mathrm{Hz}\) resolution signals can be
displaved from 1 kHz to 110 MHz . Scan range can be varied between 200 Hz and 100 MHz . Dynamic range is 70 dB and both linear and logarithmic scales can be used with scale factors from \(0.1 \mu \mathrm{~V}\) per division to 100 mV per division. Sensitivity is 25 nV \((-140 \mathrm{dBm})\). Photographs of displays contrast the 10 Hz resolution (left) and 50 Hz resolution (right). Left-hand trace shows a 30 MHz double sideband a.m. signal with 400 Hz sidebands at -26 dB and 2 nd harmonic distortion at -64 dB . Hewlett-Packard Ltd, 224 Bath Road, Slough, Bucks SL1 4DS.
WW 327 for further details

\section*{Portable video-recording system}

The Akai VT100 video tape recording system, now available from Rank, employs a tape recorder smaller than most portable typewriters (using \(\frac{1}{4}\) in tape), and is able both to record and playback powered by its own internal batteries. The complete system-camera, recorder, clip-on monitor, and batteries-weighs less than 11 kg . Twenty minutes recording is possible on one reel of tape costing \(£ 4\). Price of system \(£ 568\). Rank Audio Visual, Audio Products Department, P.O. Box 70, Great West Road, Brentford, Middx.
WW \(\mathbf{3 3 3}\) for further details

\section*{U.h.f. power transistors}

Intended for mobile u.h.f. communications systems, three new n-p-n transistors are announced by Mullard. The three differ in encapsulation. Types 351BLY and 352BLY have capstan-type encapsulations, the second being studless. Type 353BLY is

housed in a TO-39 package. The first two give an output of 3 watts at 470 MHz from a drive of 350 mW and a power supply at 13.8 V . Output is limited to 2 watts in the

TO-39 case. As well as low power output stage applications they can also be used for driving types BLY35A and 266BLY in transmitters with outputs up to 17 W . Mullard Ltd, Torrington Place, London WCIE 7HD.
WW 320 for further details

\section*{High-voltage m.o.s.f.e.t. switch}

A p-channel enhancement m.o.s.f.e.t., the M119, from Siliconix will operate at high voltages and accept signal swings of \(40-0-40 \mathrm{~V}\). The device is TO-72 packaged and includes an internal zener diode to protect the gate. The on resistance is about \(230 \Omega\) under signal conditions where the minimum \(V_{G S}\) is -40 V . The required gate control signal is 40 V plus the pk-pk signal voltage. Siliconix Ltd, Saunders Way, Sketty, Swansea, Glam.
WW 329 for further details

\section*{Op-amp with f.e.t. input}

Use of a dual field-effect transistor input stage in the latest National Semiconductor operational amplifier, type NH0022, gives high input impedance and closely matched input characteristics. The amplifier is specially suitable for precision integrators and sample and hold circuits. The f.e.ts are monolithic devices with an interwired geometry that ensures tight tracking over the operating temperature range. Bias currents range from a few picoamps at room temperature to a few nanoamps at high temperatures. An external potentiometer nulls offset. A variant amplifier, type NH0020, handles load currents up to 50 mA , with an open loop gain of 100 dB . Two versions of each type are available for the temperature ranges -55 to \(+125^{\circ} \mathrm{C}\) and 0 to \(85^{\circ} \mathrm{C}\). National Semiconductor Corporation, 2900 Semiconductor Drive, Santa Clara, California 95051, U.S.A.
WW 325 for further details

\section*{Op-amp output stage}

Power amplifier model 3329/03 for use with operational amplifiers allows currents of \(\pm 100 \mathrm{~mA}\) to be controlled. The output stage is used inside the feedback loop and gives a low output impedance of ten ohms open loop. Output stage is protected against short-circuits at 85 deg C . Bandwidth is 5 MHz with full output up to 500 kHz . Input impedance is \(10 \mathrm{k} \Omega 2\). Made by Burr-Brown, it is available in the U.K. from Fluke International Corporation, Garnett Close, Watford WD2 4TT.
WW 316 for further details

\section*{Limiter diodes}

The Sylvania DLA5544 and DLA6190 are limiter diodes in an \(\mathrm{O}-23\) varactor package and intended for \(50 \Omega\) stripline. They may be used as power sensitive attenuators. The incident r.f. power, which

\section*{fromSttheoviristhat mind your P'sandlds}

SE's digital voltmeters look after Price as well as Quality, with a whole family of instruments - basic test and laboratory instruments, data logging units, right up to today's most accurate DVM representing the limits of present technology in stability, linearity and accuracy. You can specify exactly what you want from a wide choice of instruments each available in different versions, and pay only for what you need. All SE's integrating DVM's use an improved version of the well proven dual ramp system giving high rejec-
 tion of AC signals. For the ultimate in linearity and accuracy this system is combined, in the SM 215 , with inductive divider successive approximation. Available options include floating input, stored display, BCD outputs, auto and command ranging. All have an accuracy of at least \(\pm .01 \%\) of reading \(\pm 1\) digit, \(10 \mu \mathrm{~V}\) resolution, \(2,000 \mathrm{M} \Omega\) input impedance and typically less than 20 pA input current. All are elegantly styled, compact, with bright, maximum-visibility displays. Every one of them is top value. Write or ring for details

SE Laboratories (Engineering) Ltd., North Feltham Trading Estate, Feltham, Middlesex. Telephone: 01-890 1166 Telex: 23995
Transducers, recorders, oscilloscopes, digital instrumentation, data systems, medical electronic equipment, etc.

\title{
Vortexion
}

This is a high fidelity amplifier (\(0.3 \%\) intermodulation distortion) using the circuit of our \(100 \%\) reliable- 100 Watt Amplifier (no failures to date) with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for \(3-30 / 60 \Omega\) balanced line microphones, and a high impedance line or gram input followed by bass and treble controls. 100 volt balanced line output

\section*{THE VORTEXION 50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4-WAY MIXER USING F.E.T.s.}

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.

THE 100 WATT MIXER AMPLI-
FIER with specification as above is here combined with a 4 channel F.E.T. mixer, 3 mic. 1 gram with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over \(25 \%\) and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

CP50 AMPLIFIER. An all silicon tränsistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Bass and treble controls fitted.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of \(30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{~dB}\). Less than \(0.2 \%\) distortion at \(1 \mathrm{Kc} / \mathrm{s}\). Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output \(100-120 \mathrm{~V}\) or \(200-240 \mathrm{~V}\). Additional matching transformers for other impedances are available.
20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to \(20,000 \mathrm{cps}\) within 2 dB and over 30 times damping factor. At 20 watts output there is less than \(0.2 \%\) intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1 -low mic. balanced and Hi Z gram.

ELECTRONIC MIXERS. Various types of mixers available. 3-channel with accuracy within 1 dB Peak Programme Meter. 4-6-8-10 and 12 -way mixers. Twin \(2,3,4\) and 5 channel stereo. Built-in screened supplies. Balanced line mic. input. Outputs: 0.5 V at 20 K or alternative 1 mW at 600 ohms, balanced, unbalanced or floating.
Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.
is reflected or diverted to another load, is reduced to levels that will not saturate or burn out a mixer crystal. The former is primarily designed for use in X and J bands while the latter may be used from u.h.f. to J band. Impectron Ltd., 23-31 King Street, London W.3.
WW306 for further details

\section*{Portable tachometer}

Multi-purpose tachometer with rechargeable battery and using integrated circuits is made by Sapphire Research \& Electronics Ltd. It has two sensors, magnetic and photoelectric, which in most cases will work off irregularities in the rotating component. It covers rotational speeds of up to two million rev. \(/ \mathrm{min}\). with an accuracy of \(0.5 \%\). The instrument features a state-of-charge indicator, sup-

pressed zero meter for better resolution, automatic gain control and a chart recorder output. A charger unit is supplied with the tachometer, and because output voltage is low the terminals can be exposed on the charger-avoiding terminals on the hand-held unit. Price is \(£ 59\). Sapphire Research \& Electronics Ltd, Sapphire Works, Ferndale, Glam.
WW 309 for further details

\section*{Active filters}

Butterworth, Bessel or Chebychev responses can be obtained with new active filters from Barr and Stroud by adding an external \(R C\) network. Although high-pass response can extend to 1 MHz cut-off frequency range is 1 Hz to 30 kHz . Highpass filters are designated EF20 and lowpass EF10. Standard two- and three-pole modules can be combined to give networks of four, five or six poles. Attenuation is from 12 to 36dB/octave. Barr \& Stroud Ltd, 1 Pall Mall East, London S.W.I.
WW 311 for further details

\section*{Miniature edge switches}

A range of miniature edge switches, the 33 series, is now available from Plessey. The switches can be panel mounted from the front or rear, and illuminated versions are available. A wide range of switching codes is possible including decimal,

binary, and binary with complement. Multi-pole switching is achieved by coupling together a switch and up to four slave modules. Terminations are for direct wiring or for edge connectors and are numbered. Contact rating is 100 mA at 50 V d.c. Life is specified as being not less than \(10^{6}\) operations. Dimensions of the switches are height 33 mm , width 8 mm . Professional Component Division, Plessey Components Group, Abbey Works, Titchfield, Fareham, Hants WW 305 for further details

\section*{14-lead socket}

The A23/2041 socket from Jermyn will accommodate integrated circuits, relays and other electronic devices housed in 14-lead plug-in packages. Moulded from glass-loaded nylon, the socket is fitted

with pre-tensioned double wiper blade contacts. These have a life expectancy of up to 10,000 insertions with a typical contact resistance of 7 to \(10 \mathrm{~m} \Omega\). Jermyn Industries, Vestry Estate, Sevenoaks, Kent.
WW304 for further details

\section*{Vidicon camera tube}

A short 1 inch diameter vidicon tube, type 7262A, from English Electric Valve Co, is intended for use in monochrome or colour closed-circuit television systems. The construction is integral mesh with magnetic focus and deflection. The photoconductive surface has high sensitivity and low lag.

High voltage operation allows a limiting resolution of about 850 lines in the centre of the picture. Even when operated at low voltage, with minimum focus and deflection power, the centre resolution will normally

exceed 700 lines. The weight is approxi mately 60 g . English Electric Valve Co Ltd, Chelmsford, Essex.
WW 334 for further details

\section*{Analogue multiplier}

A monolithic four-quadrant multiplier made by Motorola is now available from Jermyn Industries. Type MC1595 gives a product of two input voltages with a linearity of \(1 \%\). It is useful for frequency doubling, as a balanced modulator and demodulator, for dividing, and taking the product, square root and mean square of functions. Input voltage is limited to \(\pm 10 \mathrm{~V}\). Jermyn Industries, Vestry Estate, Sevenoaks, Kent.
WW 323 for further details

\section*{14-numeral display}

Cold-cathode tube from Mullard can display 14 numerals in one envelope. The Pandicon type ZM1200 as it is called requires only 34 connections-as opposed to over 150 for separate tubes-and is

claimed to be more reliable than separate tubes. It uses a mixture of gases to give a luminance of \(600 \mathrm{~cd} / \mathrm{m}^{2}\). Coincident pulses of greater than \(150 \mu \mathrm{~s}\) are used to illuminate digits. Separate cathodes are provided for decimal points. Flicker can be eliminated by using an alternating supply of over 70 Hz . Mullard Ltd, Torrington Place, London WC1E 7HD.
WW 324 for further details

\section*{Russian oscilloscope}

Double-beam oscilloscope made in the U.S.S.R. is announced by Z \& I Aero Services. Timebase generator provides for triggered operation and synchronization from an external source. A quartz crystal calibrator is included in the timebase. One of the vertical amplifiers can be switched to

narrow passband, increasing sensitivity four times.
\begin{tabular}{ll}
vertical bandwidth & \(5 \mathrm{MHz}(-3 \mathrm{~dB})\) \\
vertical sensitivity & \(500 \mathrm{~mm} / \mathrm{V}\) \\
input impedance & \(0.5 \mathrm{M}^{\prime}, 45 \mathrm{pF}\) \\
input impedance & \\
(with attenuator) & \(5 \mathrm{M}, 13 \mathrm{pF}\) \\
amplitude range & \(40 \mathrm{mV}-400 \mathrm{~V}\) \\
timebase range & \(0.2, \mathrm{~s} / \mathrm{cm}\) to \(100 \mathrm{~ms} / \mathrm{cm}\) \\
sync/trigger voltage & 500 mV \\
crystal frequency & 100 kHz
\end{tabular}

With standard accessories of \(10: 1\) attenuator, coaxial leads and jacks, and viewing hood, the CI-16 scope costs \(£ 87\) from Z \& I Aero Services Ltd, 44a Westbourne Grove, London W2.
WW 318 for further details

\section*{4 GHz transistor}

Interdigitated structure is used to optimize emitter periphery in a new microwave power transistor developed at GEC Hirst Research Centre. Interlocking emitter and base fingers with widths of \(1.25 \mu \mathrm{~m}\) have enabled transistors to produce \(\frac{1}{2}\) watt at 4 GHz with a gain of 6 dB . The structure also incorporates emitter stabilization resistors to provide overload protection. This transistor is being further developed

to give this performance over the whole of C-band (up to 6 GHz). GEC Hirst Research Centre, East Lañe, Wembley, Middx. HA9 7PP.
WW315 for further details

\section*{Pulse generator}

Type PG-71 pulse generator from Lyons Instruments features double pulse operation. Starting from a common rate generator two independent but mixable channels are provided. The pulse rates for each channel is \(1 \mathrm{~Hz}-5 \mathrm{MHz}\). Delay and width are between 50 ns and 1 s . Pulse amplitude is \(0.5-10 \mathrm{~V}\).

The period generator is gateable over burst rates from d.c. to 1 MHz by a +2 V input applied via rear panel socket to the inhibit circuit. Each of the two delay and width generators employs a single t.t.l. package as the only active device. Both main output stages, and also the sync output, employ discrete silicon devices. Each main output consists of a three-stage current amplifier, providing a pulse amplitude of 10 V from \(50 \Omega\) source impedance (5 V into \(50 \Omega\)) with rise and fall times of less than 10 ns .
The instrument measures \(89 \times 235 \times\) 279 mm and weighs approximately 3.2 kg . Lyons Instruments Ltd, Hoddesdon, Herts.
WW 332 for further details

\section*{Heat sink resistors}

The H.S. range of aluminium housed wirewound resistors recently introduced by C.G.S. is now available with resis-
tance values down to \(0.01 \Omega\) in each of the \(10,15,25\) and 50 W sizes. Tolerances available are \(\pm 10 \% 0.01 \Omega\) to \(0.1 \Omega\) and \(\pm 5 \% 0.1 \Omega\) to \(1.0 \Omega\). Prices range from 3s 2d each. C.G.S. Resistance Co. Ltd., March Lane, Gosport Street, Lymington, Hants. SO4 9YQ.
WW302 for further details

\section*{Improved plastic thyristor}

Cortrolled rectifier type 2 N 5060 made by G-E (U.S.A.) is available in improved form, designated type Cl 03 series. This 0.8 A series has an increased surge rating of 8 A and a lower forward blocking current of \(1 \mu \mathrm{~A}\). Gate sensitivity is \(200 \mu \mathrm{~A}\) and the series has breakover voltages from 30 to 200 V . In TO-18 plastic packages a typical price is about 11 s for the 60 -volt type. Jermyn Industries, Vestry Estate, Sevenoaks, Kent.
WW 321 for further details

\section*{Silicon photodiode}

Photocurrent of 800 pA per \(\mu \mathrm{W} / \mathrm{cm}^{2}\) is typical for IPL32 diodes from Integrated Photomatrix. The diode is 1 mm diameter and housed in a TO- 5 case. Leakage current at \(20^{\circ} \mathrm{C}\) is 50 pA at 100 mV , and \(\ln \mathrm{A}\) at 10 V . Breakdown voltage is 40 V and the device costs 18 s for \(100+\) orders. Integrated Photomatrix Ltd, Grove Trading Estate, Dorchester, Dorset.
WW 322 for further details

\section*{Transistors for television receivers}

Three n-p-n transistors for video output stages are announced by Mullard. They can be used in both RGB and colour difference circuits and line scan driver stages as well as monochrome circuits. All three, BF336-8, have a minimum \(h_{F E}\) of \(20\left(I_{c}=30 \mathrm{~mA}\right)\), minimum \(f_{I}\) of 80 MHz , \(C_{r e}\) of 3 pF , power dissipation of 3 W and a \(I_{c}\) maximum of 100 mA . Maximum \(V_{C E O}\) is 180,200 and 225 V for the three types and \(V_{C B O}\) is 185,250 and 300 V . Package is TO-39. Mullard Ltd, Torrington Place, London WCIE 7HD.
WW 326 for further details

\section*{Silicon gate transistors}

A range of silicon gate transistors is being produced by G.E.C. (Marconi-Elliott) Semiconductors. Such devices are new and

provide low gate/drain and gate/source capacitance (typically 0.5 pF) and low threshold voltage (-1 to -2 V). The latter feature allows the device to be driven directly by 5 V bipolar logic. Series-shunt gates and \(n\)-path filters can be produced simply. Three standard devices have been produced - the M1102 single, the M1202 monolithic pair with independent source and drain connections, and the M1402 dual pair where each pair has common source connections. The devices have 'integral protection diodes to eliminate handling problems. G.E.C. Semiconductors Ltd U.K. (Marconi-Elliott), Witham, Essex.

WW 331 for further details

\section*{Transistors for thin/thick film circuits}

Four high-voltage transistors in subminiature plastic packages are announced by Mullard. Intended for film circuits they are low level general purpose types with

\(V_{C E O}\) maximum ratings of 45 V . Transistors measure \(2.9 \times 1.3 \times 0.85 \mathrm{~mm}\) excluding contacts. Types BCW69/70 are p-n-p types and BCW71/2 are n-p-n types. In the illustration they are compared with
\begin{tabular}{llc}
\hline & \begin{tabular}{l}
\(h_{F E}\) \\
\((2 \mathrm{~mA})\)
\end{tabular} & \begin{tabular}{l}
\(f_{T}\) \\
\((10 \mathrm{~mA})\)
\end{tabular} \\
BCW69R & \(120-260\) & 150 MHz \\
BCW70R & \(215-500\) & \("\) \\
BCW71R & \(110-220\) & 300 MHz \\
BCW72R & \(200-450\) & \("\) \\
\hline
\end{tabular}

TO-5 packages. \(I_{C M} \max\) is 200 mA and \(P_{\text {tor }}\) max 150 mW . Mullard Ltd, Mullard House, Torrington Place, London WCIE 7HD.
WW 312 for further details

\section*{P.V.C. coating for p.c. boards}

Printed circuit boards can be protected against chemical attack and the effects of moisture by the application of Vycoat ACA60 or CA. 90 Polyvinyl plastic coating, available from Plastic Coatings. Available either in aerosol form as ACA 60 or in bulk as CA90 Vycoat air dries and cures at ambient temperatures. A thin and uniform coating (white, black, or
clear) gives full protection, and yet allows components to be replaced by soldering through the layer. A quick respray to the affected area will restore the surface. It is usual practice to apply, in two stages, a film of approximately 100 microns, and at this thickness the layer will insulate against 3 kV . Vycoat is available either in 14oz. aerosol cans or in 1 or 5 gallon drums. The safe working temperature range is \(-25^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\). Plastic Coatings Ltd, Products Division, Trading Estate, Farnham, Surrey.
WW 340 for further details

\section*{Linear i.cs}

Quarndon Electronics announce they have the following Signetics i.cs in stock:
\begin{tabular}{lrl}
function & Signetics type & equivalent \\
op-amp & 5558 & MC1558 \\
multiplier & 5595 & MC1595 \\
balanced mod. & 5596 & MC1596 \\
op-amp & 531 & \\
regulator & 550 & \\
function gen. & 566 & \\
-regulator & 5723 & \(\mu\) A 723 \\
diff. amp. & 5733 & "A 733 \\
op-amp & 5741 & "A 741 \\
op-amp & 5748 & uA 748, LM101
\end{tabular} A 748, LM101 Quarndon Electronics Ltd, Stock Lane, Derby.
WW 319 for further details

\section*{Resistance bridge}

Available from J. J. Lloyd Instruments is a battery Wheatstone bridge which features electronic null detection. It can be used by unskilled operators by virtue of an overload protector which operates

when the bridge is out of balance. Accuracy is \(\pm 0.2 \% \pm 1\) scale division. Resistance range is from 0.1 ohm to 1.1 megohms. J. J. Lloyd Instruments Ltd, Brook Avenue, Warsash, Southampton, Hants.
WW 314 for iurther details

\section*{Video oscillator}

New Wayne Kerr oscillator type 0200 gives a sinusoidal output from 30 kHz to 30 MHz with an output level constant to within \(\pm 0.5 \mathrm{~dB}\). A 50 ohm attenuator gives continuous adjustment of output level from -50 dB to +10 dB relative to \(1 \mathrm{~V} \mathrm{pk}-\mathrm{pk}\).

'Direct reading frequency scale is accurate to \(1 \%\) and a secondary output is provided for connection of a frequency meter. Frequency is unaffected by the load impedance and affected by only \(0.5 \%\) by the attenuator. The generator works from 110 or 240 V mains and weighs 6 kg . Wayne Kerr Ltd, Roebuck Road, Chessington, Surrey.
WS 341 for further details

\section*{Range of flash tubes}

A range of xenon and neon flash tubes is available from Hivac. These tubes have a wide variety of possible applications. Uses for neon tubes include low cost car ignition systems, timing guns, and warning lights for use in low level lighting conditions. The

xenon tubes, which emit white light pulses of high intensity, are particularly suitable for aircraft navigation lights, marine beacons and roadway emergency beacons. Hivac Ltd, Stonefield Way, South Ruislip, Middx.
WW 342 for further details

\section*{VHF transistors}

New devices made by Communications Transistor Corpn of California, an affiliate of Varian Associates, are primarily intended for mobile v.h.f. systems covering 150 to 175 MHz . The range includes transistors with 10 dB gain and an output of 3 watts (type B3-12), 6.8dB gain with 12 watts output (type B12-12 and 6.2 dB gain with 24 watts output (type B25-12). An amplifier using one B3-12, one B12-12 and two B25-12s will give 50 watts output for an imput of 250 W . The range will be extended shortly toinclude 12 V u.h.f. transistors and 28 V microwave transistors. These transistors are constructed to withstand infinite v.s.w.r. at all phase angles and include integral ballast resistors to give safe operation. Samples are available. Obtainable in the U.K. from EMI-Varian Ltd, Hayes, Middx.
WW 343 for further details

\section*{Literature Received}

\section*{For further information on any item include the appropriate WW number on the reader reply card}

\section*{ACTIVE DEVICES}

A booklet 'Rectifier and thyristor quality' (TP1 198) has been published by Mullard Ltd, Torrington Place, London WCIE 7HD. It explains how the conformity and reliability of these devices can be assessed and achieved by careful control and manufacture WW401

We have received the following literature from AEI Semiconductors Ltd, Carholme Rd, Lincoln:

List of U.K. distributors WW402
Data sheet, CR \(30 / 31 / 50^{\circ} 04 \mathrm{~A}\) thyristors, fast turnoff WW403 Data sheet, CR1'01C 1-amp thyristors . . WW'404 Data sheet, CR3003A 1.4 kV , 63 amp r.m.s. thyristors :........................WW405 Data sheet, CR \(50^{\circ} 03 \mathrm{~A} 1.4 \mathrm{kV}, 94\)-amp r.m.s. thyristorsWW 406

Claude Lyons Ltd, Hoddesdon, Herts, have available a technical data sheet (T-1092) which deals with Quadracs manufactured by the ECC Corp. of the U.S.A.

WW 407
Integrated linear circuit chips, 23 of them, manufactured by Silicon General Inc., of the U.S.A., are the subject of a leaflet from Rastra Electronics Ltd, 275 King St, Hammersmith, London W. 6 WW 408

Transistors, diodes and integrated circuits are listed in the catalogue of AEG-Telefunken, Fabereich Halbleiter, Vertrieb, 7100 Heilbronn, Postfach 1042, West Germany

WW 409
We have received a product data booklet from Intel Corp., Avenue Louise, 216-B-1050, Brussels, Belgium, which describes a fully decoded, m.o.s., l.s.i., random access, 1024 -bit memory in an 18 -lead di.i.l flat pack type number 1103. The access time is 300 ns and the cycle time is 580 nsec

WW4 10
'Cerberus elektronik, No. 33' describes the use of coldcathode relay tubes in sequence controllers. It is available from Cerberus Ltd, CH-8708 Männedorf Switzerland

WW 411
EMI Varian, Hayes, Middlesex, have a leaflet available which describes a range of microwave i.cs called 'microstrip circuits'

WW 412
A. Marshall \& Son (London) Ltd, 28 Cricklewood Broadway, London N.W.2, have sent us the following literature

Semiconductor price list
price \(2 s 6 \mathrm{~d}\)
Data sheets for the transistors and diodes manufac tured by Solid State Devices Incorporated of the U.S.A.

WW 413

Semiconductors are also listed in the Comway catalogue mentioned in the next section.

\section*{PASSIVE COMPONENTS}

The latest catalogue from Comway Electronics Ltd, Downshire Way, Bracknell, Berks RG12 1ND, is intended for hanging on the wall and contains details of capacitors, hardware, electromechanical components and semiconductors. It also contains a sporting calendar . WW 414
'Connectors and connection systems' is the title of a booklet published by Ferranti Ltd, Dunsinane Ave,

Dundee DD2 3PN
WW 415
We have received the following literature from the Consumer Electronics Division of Mullard Ltd, Torrington Place, London WCIE 7HD:

Leaflet 'New Mullard ceramic resonators revolutionise i.f. stages in radios' WW 416 Ceramic resonators 'Introductory notes' . WW 417 Data sheet, 540 series ceramic resonators 470 kHz and 10.7 MHz WW 418 Data sheet, LPI 175 block ceramic resonators 470 kHz . WW 419 Data sheet, TAD100 integrated circuit-complete receiver WW 420

Potentiometers and trimmers in all shapes and sizes are described in a 'Product guide' received from Reliance Controls Ltd, Drakes Way, Swindon, Wiltshire WW 421

A range of push-button switches manufactured by Alois Zettler is obtainable from the U.K. agents J. H. Associates Ltd, 1 Church St, Bishops Stortford, Herts. A leaflet describes the range WW 422

Technical bulletin No. 2 from Alkaline Batteries Ltd, P.O. Box 4, Redditch, is called 'Nickel cadmium alkaline batteries of the vented type'. The bulletin describes the operation, construction and performance WW 423

Series 610 three-phase transformers, rated from 5 to 4200 VA, are described in a leaflet from Gresham Transformers Ltd, Hanworth Trading Estate, Feltham, Middlesex WW 424

We have received the following literature from Electrosil Ltd, P.O. Box 37, Pallion, Sunderland, Co. Durham:

Data sheet T20/770, trimming potentiometers TO-5 size (-55 to \(+150^{\circ} \mathrm{C}\)) WW 425 Data sheet MT20/770 trimming potentiometer, TO-5 size (-20 to \(+125^{\circ} \mathrm{C}\)) WW 426
Data sheet \(\mathrm{T} 40 / 1070\), trimming potentiometers, oblong p.c. mountingWW 427 Leaflet describing a boxed selection of metal oxide type C3 resistors WW 428

\section*{EQUIPMENT}

Danavox (Gt Britain) Ltd, 'Broadlands', Bagshot Rd Sunninghill, Berks, have the following two booklets available:
'Hearing-aid earphones and cords’ WW429 'Hospital patients bedside listening sets'. WW430

A vast range of equipment for sound radio and television broadcasting equipment distributed by the Crow Company, P.O. Box 36, Reading RGl 4QD, is briefly described in their latest price list . . WW43

The 1971 catalogue of Heath (Gloucester) Ltd, Gloucester, GL2 6 EE , lists a wide range of equipment, from audio to marine, which can be purchased in kit form or ready built. Use the reader reply service or write direct

WW432
'Electronic speed variation control equipment for induction squirrel-cage motors' is the title of an article which was published in Technique Suisse. Reprints of
the article, in English, are available from Berco Controls Ltd, Queensway, Enfield, Middlesex WW433

A leaflet describes the coaxial connectors which are available from Microwave and Electronic Systems Ltd, Marketing Division, 66 Tilehurst Rd, Reading RG3 2LU .WW434

The following two booklets are available from Ferranti Ltd, Microwave Component Sales, Dunsinane Avenue, Dundee DD2 3PN:
'Communications components' WW435
'Radar systems components’ WW436

Mark-two versions of a single (B.140) and a dual (B.240) pen recorder manufactured by Rikadenki Kogyo Co. Ltd, of Japan, with twelve chart speeds and a 166 ms response time for \(\mathrm{f} . \mathrm{s} . \mathrm{d}\). \((250 \mathrm{~mm}\)) are the subjects of a leaflet from T.E.M. Sales Ltd, Gatwick Rd, Crawley, Susisex

WW437
A data sheet which describes a low-cost angle position indicator with a five-digit display has been produced by North Atlantic Industries Inc., Terminal Drive, Plainview, New York 11803, U.S.A. WW438

From the National Research Development Corporation, Kingsgate House, 66-74 Victoria St, London S.W.1, we have received a leaflet describing a patent which covers a quarter wavelength coaxial cavity for an 8 GHz Gunn-effect oscillator WW439

A 10 kW transmitter, type RF-745, providing independent sideband operation in 100 Hz increments is described in a leaflet. RF Communications Inc., 1680 University Avenue, New York 14610, U.S.A. WW440

A 90 MHz dual trace oscilloscope with twin-timebases (A \& B sweep), called type R070, is the subject of a leaflet from Roband Electronics Ltd, Charlwood Works, Charlwood, Horley, Surrey WW441

Outline details of a range of spectrum analysers mainufactured by the Federal Scientific Corporation of the U.S.A., are given in a short-form catalogue (GS-005-80564) received from A.E.P. International Ltd, 14a High St, Staines, Middlesex WW442

Details of all the accessories available for the ' 400 series' of signal recovery instruments are given in leaflet No. Al from Brookdeal Electronics Ltd, Market St, Bracknell, Berks

The latest Lasky's Radio 'Audiotronics' Catalogue lists a large range of audio and test equipment and other items. Lasky's Radio Ltd, 3-15 Cavell St, London EI 2BN . WW444

\section*{GENERAL INFORMATION}

The I.E.E. has prepared a series of pamphlets, contained in a pocket folder, which give careers information for boys and girls alike. Copies are available free of charge from The Secretary, The Institution of Electrical Engineers, Savoy Place, London WC2R OBL.

We have received the following literature from The British Standards Institution, 2 Park St, London WIA 2BS:

BS \(9500-\mathrm{N}-001-003\), B7G socket specification
BS \(9500-\mathrm{W}-004-006\) B9A socket specification
specification
BS 9563:1970, Specification for rotary (manual) switches of assessed quality: generic data and methods of test price 24 s
BS 9562:1970, Specification for microswitches (sensitive switches) of assessed quality: generic data and methods of test price 24 s .

The following literature may be obtained from The Engineering Information Department, B.B.C., Broadcasting House, London WIA IAA:

Information sheet 4919(7), map of B.B.C. u.h.f. TV main transmitting stations.
Information sheet 4003(11), list of B.B.C. u.h.f. TV transmitting stations
Information sheet \(1919(4)\), map of v.h.f. radio transmitting stations; radios 2,3 and 4.

The Redacal computer aided design service described in 'News of the Month' in our last issue is the subject of a leaflet. Redac Software Ltd, Newtown, Tewkesbury, Gloucestershire GL20 8HE

WW445

\section*{Personalities}

Christopher D. Culchester, B.A., has been appointed to the new post of chief scientist to Marconi Radar Systems Ltd and will relinquish his present position as assistant director of engineering in the Marconi Company. Educated al Rugby and Peterhouse, Cambridge, where he gained a 1 st class honours degree in mechanical sciences, Mr. Colchester, who is 58, joined Marconi in 1933, to start work in the Telephone Laboratory. After the outbreak of war he was one of the group of Marconi engineers working in close association with the Admiralty on radar and was concerned with the development of radar aerials and associated equipment throughout the war years. Since 1965, Mr. Colchester has been the company's assistant director of engineering.

Two new executive directors have been appointed to the board of Marconi Elliott Avionic Systems Ltd. They are W. H. Alexander, B.Sc., A.Inst.P., and Peter \(\mathrm{F}_{\text {. }}\) Mariner, B.Sc., A.R.C.S., F.Inst.P., F.I.E.E., F.I.E.R.E., Mr. Alexander, who is 44 and a physics graduate of Edinburgh University, joined Elliott Brothers (London) Ltd in 1954 as a project leader engineer in the Aviation Division, and led the development work on gyro-stable platforms. In 1962 Elliott Flight Automation was formed at Rochester and Mr. Alexander was made joint general manager. He has been joint managing director since \(1966 . \mathrm{Mr}\). Mariner, 48, studied at the Royal College of Science where he obtained an honours degree in physics. After war service with the Fleet Air Arm he joined Elliotts in 1950 as group leader of the Aerials Laboratory. He became joint general manager of the Radar Group in Elliott-Automation in 1961 and managing director when the group became formally Elliott-Automation Radar Systems.

Giuliano Costamagna, the new 41-year-old general manager of SGS (United Kingdom) Ltd in succession to Laurence A. Curry, obtained a degree in electrical
engineering at the University of Milan in 1953. After two year's service as a commissioned officer in the Italian Signal Corps he joined the communications division of the Marconi Company in Chelmsford, in 1956 Two years later he joined the SGS Group in Milan and since November 1969 has been temporarily running the SGS factory at Falkirk. Mr. Curry has been appointed a director of SGS (U.K.) and will act as a consultant to the company while developing his private business interests.
D. M. McCallum, B.Sc., F.I.E.E., general manager of Ferranti's Scottish group of factories since 1968, has been appointed to the board of directors of the company. Mr. McCallum (48), after obtaining a first class honours degree in electrical engineering at Edinburgh University, joined the research staff of the Admiralty Signal Establishment to work on

D. M. McCallum
the development of communica tions equipment. In 1947, after a short period with Standard Telecommunications Laboratories, he joined Ferranti Ltd and later was responsible for development of their 'AIRPASS' radar systems. From 1960-68 Mr. McCallum was manager of the company's Electronic Systems Department in Edjnburgh.

Appointment of D. Joseph Donahue, M.S., Ph.D., to the newly-created position of division vice-president (solid state) Europe, has been announced by RCA Corporation. Dr. Donahue will be responsible for all solid-state activities in Europe, including sales, engineering, manufacturing and warehousing. His headquarters will be in London. RCA's first electronic manufacturing facility in Europe is a new 80,000 square-foot semiconductor plant in the Province of Liege. Belgium. Dr. Donahue, who received his degrees in physical chemistry from the University of Michigan, has been manager, solid state department, for the Solid State Division of RCA since 1967. He joined RCA in 1951 and was appointed manager, advanced development for the Semiconductor and Materials Division in 1960 and in 1962 was named manager, engineering, for the industrial semiconductor operation.
B. A. Clarke, M.I.E.E.. is appointed business planning executive of the recently formed Underwater \& Communications Divisions of Plessey Electronics Group. Mr. Clarke, aged 50, joined Plessey in 1960. He was general sales manager in the Radio Systems Division for a number of years and more recently was divisional manager of the Civil Radio Division. Originally he trained as a transmission engineer with S.T.C., and later was employed by A.E.I.

Jolin Glaser has joined Aerialite Ltd as head of marketing in the Aerials Division. He has spent 24 years in the radio and electrical industries. but has been absent owing to ill-health for the past year. Mr. Glaser has been sales director with both Antiference and J. Beam A erials.

The GEC Electronic Tube Co. Ltd, the management company combining the activities of the M-O Valve Co. and English Electric Valve Co., has announced several board appointments. Roy H. Deighton, commercial director of EEV, becomes commercial director of GECET; F. C. Thompson, Ph.D., B.Sc., F.I.E.E., director of EEV, is appointed a director of GECET, with responsibilities for the coordination of administration; John Dain, M.A., F.I.E.E., manager of the Microwave Division, EEV, is elected to the board of EEV and appointed general manager, Chelmsford; and Frederick J. Munks, commercial director, M-OV, is appointed general manager, M-OV. Mr. Deighton joined the Marconi Company in 1930, becoming chief of sales in Aeronautical Division in 1945. He became commercial manager of EEV in 1956 and was appointed president of English Electric Valve

North America Ltd in 1968 and director of English Electric Valve Company in 1969. Dr. Thompson, a graduate of Liverpool University, served with A.A. Command before becoming a senior scientific officer at the Telecommunications Research Establishment, Malvern, in 1942. He joined EEV in 1945 as engineer in charge of microwave tube production, and was made manager of Radar Tube Division in 1956. He was appointed director of the English Electric Valve Company in 1969. Mr. Dain, after graduating from St. John's College, Cambridge, commenced his technical career as a scientific officer with the Telecommunications Research Establishment in 1942. In 1946 he transferred to the Atomic Energy Research Establishment and joined EEV in 1954 as chief of microwave research. subsequently becoming manager of the Microwave Tube Division. Mr. Munks joined M-OV in 1941. He became marketing manager in 1969.

Adam Hogg, M.I.E.R.E.. has joined H. R. Smith (Technical Developments) Ltd, of Thame, Oxfordshire, as chief electronics designer. Mr. Hogg was with the Ministry of Defence (Air) for sixteen years engaged on design and development of group navigational aids and associated airborne equipment followed by five years as aerials project manager with \(C \& S\) Antennas.
L. M. Thompson is appointed managing director of Rediffusion Vision Ltd and deputy chairman of Rediffusion Vision Service Ltd. He has succeeded Maurice Exwood who has been managing director of Rediffusion Vision Ltd since 1957. Mr. Exwood remains chairman of Rediffusion Vision and of Rcdiffusion Vision Service which is the company within the Rediffusion Group responsible for the television receiver retail business. Mr. Thompson, who is 53 . joined Rediffusion in 1934 in Newcastle. He was appointed general manager of London Rediffusion Service Ltd. in 1958, general manager of Rediffusion Vision in 1962 and joined the board of Rediffusion Vision Service in 1963.

Sir Martin Ryle, F.R.S., Professor of Radio Astronomy in the University of Cambridge, is the 1971 recipient of the Morris N . Liebmann memorial prize award of the I.E.E.E., "for his contributions in applying aperture synthesis to extend the capabilities of radio telescopes. thereby increasing man's knowledge of the Universe." Sir Martin, who graduated at Christ Church, Oxford, in 1939, worked at the Telecommunications Research Establishment, Malvern, on radar systems and radio countermeasures throughout the war.

\title{
Real \& Imaginary
}
by "Vector"

\section*{The cross of gold}

I see that Mr. Bernard Hunn,* who was formerly one of Plessey's top men, has thrown in his hand at that establishment in order to start his own business. In this, I'm sure, we all wish him well, for it takes courage to abandon a safe job in favour of backing one's fancy. (Perhaps our technology might be in a healthier state if more of this went on, for I've a feeling that a lot of good ideas are mouldering in the graveyard-files of large companies for reasons which have nothing to do with lack of merit.)

Of the technical details of Mr. Hunn's idea I have no inside knowledge. In fact the only clue to its merits that I possess is that it is being backed financially by the Industrial and Commercial Finance Corporation, which, being an off-shoot of British banks, is not given to placing its money on also-rans. On the face of it, the project looks a sound one. It is, in essence, based on a credit card made of plastic in which are embedded strips of plastic tape having discrete blobs of magnetization imprinted on them. Each blob represents a monetary unit which can be used to buy goods.

As a pilot operation, Mr. Hunn plans to start with an unmanned petrol station. You drive up, insert the card into a suitable device and take what you want of petrol or other commodities. The outgoings are recorded and an appropriate number of magnetized blobs are erased. When the card is finished you throw it in the dustbin and buy a nother.

Naturally it inn't quite as simple as that; due regard, for instance, must be paid to the less honest citizens among us, otherwise stolen cards would become a thriving source of income. This, I believe, is taken care of by having your private identification number encoded on the card in such a way that only the machine-interrogator can read it. You manually insert your number (known only to yourself) and if the two tally you are home and dry (but not, let us hope, your petrol tank).

The aim of Mr. Hunn and others is to bring about a social revolution of some magnitude. The target is nothing less than that of a cashless society. You, sitting at home glumly surveying the year-end *"Magnetic Credit for the Customer" New Scientist, 22nd Oct. p 173
blizzard of bills, might be forgiven for supposing that this state of affairs is already with you; but that isn't quite what is meant.

The basic problem began when Ug in his cave developed an expertise in making flint-tipped arrows. Ig, his next-cave neighbour, couldn't make them for toffee, but had quite a knack at transforming skins into off-the-shoulder garments. So it wasn't long before an equitable rate of exchange was fixed between the two. Which was fine until a surfeit of arrows and tailor-mades was established; at that point not-so-near neighbours with other skills had to be persuaded to join the club.

This barter system worked quite happily even when trade assumed international proportions (and still persists today). Then some unknown genius (or fool, depending on your point of view) invented money. Now this, in concept, was a good thing. You sold your wares to someone who wanted them and instead of being lumbered with goods you didn't want in return, you were given a number of tallies (physically small and portable; usually of some precious metal) which could readily be exchanged elsewhere for goods you did want.

The system did, however, have its drawbacks. A merchant venturing out with a bag of gold was high up in the charts for being clobbered by footpads and so over the years to modern times there has been an increasing trend to keep the gold in a safe place and to issue pieces of paper-banknotes, cheques and so on-in lieu. But, while paper is more convenient to carry, banknotes are just as vulnerable to theft as gold, while cheques can be forged.

The next step was the credit card, a device which is rapidly gaining ground over here and is the norm in the U.S.A. where it has produced the paradox that only the very poor pay cash for goods. It has also produced something of a crisis in data transfer; if, in your travels in the U.S.A. you come across a mountain made of paper, you will, if you dig industriously, find a bank buried underneath it.

What Mr. Hunn et al intend to do is to replace the paperwork by electronics and at the same time make it fraud-proof. There are differing ideas of how this
should be done, but whichever way it is it will add up to an a wful lot of microcircuits and general electronics hardware.

In ten or fifteen years' time, if the visionaries have their way, you will receive, at the end of the month, not the customary handful of rice, but a magnetically encoded credit card in token of your labours. When you wish to buy something you take your card to the shop, make your purchase and then shove the card into an interrogation terminal. The amount of the purchase is wiped from the card and simultaneously the record of the transaction is sent by data link to a central computer, where your bank account is debited with that figure while the shop's account is credited. A logical extension would be the card-reading domestic telephone which I believe is already in prototype existence.

This sounds all right in principle, although I'm not sure how the details will work out. For instance it seems an elaborate way of buying a box of matches or gaining access to a public lavatory. And every married man knows the susceptibility of the distaff side to the blandishments of the supermarket (Darling, I only went in for a tablet of soap and somehow I seem to have spent £7.10.0.) so it would be financial suicide to turn the little woman loose with the entire credit card. Presumably there would have to be sub-cards for such items as housekeeping, junior's pocket-money and so on. On the reverse side of the coin (or rather, credit card), however, the government is likely to welcome a system whereby every monetary exchange is officially recorded and therefore subject to taxation scrutiny. The wad of notes under the floorboards seems to be on the way out.

In fact, the individual devices for such a system are mostly already in being, but a nation-wide network is another cup of tea. To mention only one snag, the Post Office is already submerged up to its cross-bars in communication problems (did somebody mention electronic exchanges?) The mind boggles at the task of data-linking 66 million people; and it boggles even more at the thought that the cost must inevitably be debited to your magnetic card and mine.

And this isn't all. Trade is international, so any system adopted must be world-compatible. It would be foolish for any one company (or even country) to go it alone in the vain hope of having its system adopted by every other nation. International co-operation at the design stage, and thereafter, would be vital.

One often hears that money is the root of all evil. This is a misquotation; what St. Paul wrote is 'the love of money is the root of all evil,' which is a different' matter altogether. I should be the last to inflict a sermon upon you, so I'll merely suggest that the original concept of money as a convenient means of barter was torpedoed ages ago, when money was elevated to the rank of god. The cashless society concept does nothing to abolish the god; it merely makes him invisible.

off the shelf for as little as \(2 /-\) per watt. Maximum distortion \(0.1 \% 20 \mathrm{~Hz}\) to 20 kHz . Full power bandwidth 10 Hz up to \(80 \mathrm{kHz} \pm 1 \mathrm{~dB}\). Complementary and quasi-complementary versions in all power ratings perform to the same high standard. Unconditionally stable. Fully protected against accidental misuse.

* Stereo Integrated Circuit Preamplifiers
* Stereo Headphone Amplifiers
* Toroidal Mains Transformers
all designed to the exacting standards of the professional user.
Transaudio combines sophisticated design and no-nonsense engineering in semi-kit products incorporating Motorola transistors/ICs and other dependable components assembled on fibre glass circuit boards. Write today for full details.

Transaudio Limited
8 Elsworthy Rise London N W 3
"Setting the Standard for the Seventies"

You choose electrical equipment in much the same way you choose a dog: you scrutinise and examine carefully, and take it out for a trial run. And you ask to see its pedigree.
When you handle a Rendar product, you can see at once that it's a better breed: first class materials; precision machinery and assembly; sound design. Its pedigree is impeccable.
Just 1 winner from the Rendar kennel The Rendar Safebloc saves time and saves life. Thare's no need to fit a plug for lesting - just connect the apparatus direct. And there s no lid is closed.
dat lid is closed. "Safebloc" to the this concept, and intioduced the It's indispensable on testing lines, and for all kinds. of electrical demonstrations. Double Safebloc available for 3 -phase applications.

INSTRUMENTS LTD
Burgess Hill, Sussex, England Tel. 2642-4. Cables RENDAR Burgess Hill WW- 083 FOR FURTHER DETALLS

\section*{METER PROBLEMS?}

A very wide range of modern design instruments is available for \(10 / 14\) days' delivery.

Full Information from:

\section*{HARRIS ELECTRONICS \\ (London)}

\author{
138 GRAYS INN ROAD, W.C. 1 \\ Phone: 01/837/7937
}

AMPLIFIERS OF QUALITY AND RELIABILITY at the right price!

\section*{'PHASE 12'}

An extremely attractive solid state stereo amplifier, ideal for unit audio use. Facilities include MAGNETIC and CERAMIC P.U. RADIO. TAPE etc. Output 6 watts per channel Freq. Response 40-40,000 c.p.s. 3 dB . Hum Level- 74 dB. Controls include Input Selector, Volume, Balance, Bass, Treble. and Stereo/Mono Switch. Black and silver facia panel with
 Teak cabinet housing.

\section*{only 36 Gns.}

Housed in Teak veneered Cabinet, Switched selection of Microphone, Magnetic P.U., Ceramic P.U.,Radio Tuner, Tape Recorder.
'PHASE 32'
SOLID STATE STEREO AMPLIFIER
\(15+15\) WATT HIGH FIDELITY OUTPUT.
* Excellent performance
* High Grade components and Transistors
\(\star\) Impressive technical specification
* Attractive appearance
\(\star\) Modest cost
For leaflets on the above and other models in the FAL range, please send SAE to:-
FUTURISTIC AIDS LTD, 104 Henconner Lane, Leeds, 13.
WW-084 FOR FURTHER DETALS

\section*{SOLE IMPORTERS IN U.K;}

QUALITY ELECTRONICS LTD.
47-49 HIGH STREET, KINGSTON-UPON-THAMES, SURREY, TeI:01-546 4585
WW- 086 FOR FURTHER DETAILS

\title{
GOLDRING SERIES 800 and 850 STEREO MAGNETIC CARTRIDGES
}

Our famous ' 800 Series' True Transduction cartridges, developed on the 'Free Field' principle, allow the most delicate groove-stored signals to be accurately relayed and re-created with uncompromising precision. And the
G. 850 Free Field stereo magnetic cartridge, intended primarily for 'budget' hi-fi systems, offers all the advantages of a good quality magnetic cartridge at a very attractive price.

800 Super E For those aiming at perfectionextra low mechanical impedance for ultimate tracking is achieved by a duo-pivoting arrangement membrane-controlled to avoid longitudinal or torsional modes blemishing performance Each cartridge supplied with individual curve and calibration certificate.

800/E Designed for transcription arms, a micro-elliptical diamond is fitted to a fine cantilever, end-damped against natural tube resonances, accurately terminated in a special conical hinge to give pin-point pivoting.

80 C The 800 is designed for standard arms and changers where the requirements for high fidelity and robustness usually conflict. Output is 5 mV at \(5 \mathrm{~cm} / \mathrm{sec}\). R.M.S. Recommended tracking weight \(1 \frac{1}{2}\) to \(2 \frac{1}{2}\) grams.

800/H This Free Field Cartridge is designed for inexpensive changers to track between \(2 \frac{1}{2}\) to \(3 \frac{1}{2}\) grams and has a high output of at least 8 mV .

G850 This relatively inexpensive Free Field stereo magnetic cartridge is capable of bringing out the very best performance that 'budget' hi-fi systems can provide.

\section*{Goldring Goldring Manufacturing Company (Great Britain) Limited, Io Bayford Street, Hackney, London E3 3 SE. Phone: OI-985 1152.}

WW-088 FOR FURTHER DETAILS

\section*{HALLICRAFTERS BC 610 E TRANSMITTERS}
\(2-18 \mathrm{Mc}, 450 \mathrm{~W}\) phone. 350W CW. Crystal and M.O. 3 pretuned channels, complete with speech amplifier, tuning unit, tank coils, connecting cables, microphone etc.

COLOMOR (Etecrioncs)
170 Goldhawk Rd., London, W. 12 Tel. 01-743 0899

ET 4336 MADE BY R.C.A. 350W CW 250W phone. \(2 \mathrm{mc}-20 \mathrm{mc}\). Complete installations and spares in stock.

with CENTRALAB * tried and tested products.
Wafer switches in all sizes and ratings, for ultra-reliable signal switching. Wide range of poles and switch positions:: superb detent mechanisms for positive 'feel';: high VA ratings for power circuits: : multi-iayer construction for intricate arrangements.

All available from UECL - with the attractive "design and build your own" kit of parts. Send now for details, or ask for your wailchart of over 200 different types.

advertising design-mnA
WW-090 FOR FURTHER DETAILS

\section*{Project 60}

\section*{the world's most advanced high fidelity modules}

With the introduction of an entirely new and original high fidelity stereo F.M. tuner, the Project 60 range can be said at this stage to be complete. It offers the constructor a most attractive choice of modular arrangements whereby a high fidelity system can be selected to suit the user's personal requirements. Equally, it is possible to use any Project 60 modules separately or partially grouped and so benefit greatly from the flexibility in use these modules afford. The chart below shows some of the most popular applications for constructors to assemble. The Project 60 manual (free with the modules) suggests others as well and its 48 pages are packed with valuable information. The new tuner, for example can be used with any good high fidelity system as well as Project 60

Project 60 now falls into four interdependent groups :-1. The \(Z .30\) and Z.50 amplifiers which have only \(0.02 \%\) distortion at all output levels and are useful in a wide variety of other applications. 2. The control units comprising the Stereo 60 preamp and control unit and the Active Filter Unit (A.F.U.) with which both high pass and low pass filtering can be introduced between control unit and power amplifiers. 3. The Stereo F.M. tuner as described opposite: and 4. The power supply units PZ. 5.
\(P Z .6\) and \(P Z .8\). For most requirements when using \(Z .30\) power amplifiers, the PZ. 5 will be perfectly adequate ; if low efficiency (high quality) loud speakers are used, the PZ. 6 stabilised power supply unit will be used. The PZ. 8 will be needed with 2.50 s which can be used for any Project 60 system.

Project 60 modules incorporate some of the most advanced circuitry in the world to achieve unsurpassed standards of high fidelity and modern manufacturing techniques enable these modules to be sold at exceptionally attractive prices. Assembling the modules requires no skill or previous experience since the manual supplied with the modules explains clearly how everything can be done with nothing more than the simplest of domestic tools

\section*{Project 60 manuals}

How to assemble and use Project 60 modules to best advantage in the above and other applications will be found in the fully descriptive Project 60 manual included with Project 60 systems. This 48 page manual is available separately, price \(2 / 6 \mathrm{~d}\) including postage.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & System & The Units to use & In conjunction with & Cost of Units & + Project 60 tuner \\
\hline A. & Car Radio & Z.30 & Existing car radio. Sinclair Micromatic & 89/6 & \\
\hline B & Simple battery powered record player & 2.30 & Crystal pick-up. 12 V or more battery supply and volume control & 89/6 & \\
\hline C & Mains powered record player & Z.30 and PZ.5 & Crystal or ceramic P.U Volume controletc. & £9.9.0 & £34.9.0 \\
\hline D & \(20+20\) watts R.M.S. stereo amplifier for most needs & Two 2.30s, Stereo 60 and PZ.5 & Crystal, ceramic or magnetic P.U., most dynamic speakers, F.M. tuner etc. & £23.18.0 & £48.18.0 \\
\hline E & \(20+20\) watts R.M.S. stereo amplifier for use with low efficiency (high performance) speakers & Two Z.30s, Stereo 60 and PZ. 6 & High quality ceramic or magnetic P.U.. F.M. Tuner. Tape Deck, etc All dynamic speakers & ¢26.18.0 & £51.18.9 \\
\hline F & \(40+40\) watts R.M.S de-luxe stereo amplifier & Two 2.50s, Stereo 60 PZ.8 and mains transformer & As for \(E\) & £32.17.6 & £57.17.6 \\
\hline G & Outdoor public address system & 2.50 & Microphone. up to 4 P.A. speakers, 12 V car battery with converter, or 45 V d.c., controls & £5.9.6 & 1 \\
\hline H & Indoor P.A. & One 2.50, PZ. 8 and mains transformer & Microphone, guitar, heavy duty speakers etc.. controls & £17.8.6. & \\
\hline \(J\) & High pass and low pass filters & A.F.U. & D. E or F as above & £5.19.6 & \\
\hline
\end{tabular}

\section*{Z. 30 \& Z. 50 power amplifiers}

The \(Z .30\) together with the \(Z 50\) are both of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low \(0.02 \%\) at full output and all lower outputs. Whether you use the \(Z .30\) or 2.50 power amplifiers in your Project 60 system will depend on personal preference. but they are the same physical size and may be used with other units in the Project 60 range equally well. For operating from mains. for the \(Z .30\) use \(P Z .5\) for most domestic requirements. or \(P Z .6\) if you have very low efficiency loudspeakers. For Z.50. use the PZ 8 described below

SPECIFICATIONS (2.50 units are interchangeable with \(Z .30\) s in all applications) Power Outputs
Z. 3015 watts R.M.S. into 8 ohms, using 35 V 20 watrs R.M.S. into 3 ohms using 30 volts.
Z.50 40 watts R.M.S into 3 ohms from 40 volts 30 watts R.M.S into 8 ohms, using 50 valts
Frequency response 30 to \(300.000 \mathrm{~Hz} \pm 1 \mathrm{~dB}\) Distortion \(0.02 \%\) into 80 hms
Signal to noise ratio better than 70 dB unweighted input sensitivity 250 mV into 100 Kohms .
Input sensitivity 250 mV into 100 Kohms .
For speakers from 3 to 15 ohms impedance.
For speakers from 3
Size \(3 \frac{1}{2} \times 2 \frac{1}{4} \times \frac{1}{2}\) ins.

2.30

Built. tested and guaranteed with circuits and instructionsmanual 89/6 2.50

Built. lested and guaranteed with circuits and instructions manual \(109 / 6\)

\section*{Stereo 60 pre amp/control unit}

Designed for the Project 60 range but suitable for use with any high quality power amplifier Again silicon witaxial planar transistors are used throughout epitaxial pianar transistors are used throughout achieving a really high signal-io-noise ratio and excellent tracking between channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs.

\section*{SPECIFICATIONS}
- Input sensitivities - Radio - up to 3 mV . Mag. p.u. 3 mV : correct to R.I.A.A. curve \(\pm 1 \mathrm{~dB}: 20\) to 25.000 Hz Ceramic p.u -up to 3 mV . Aux -up to 3 mV Ceramic p.u-up to
- Output- 250 mV
- Signal-to-noise ratio-better than 70 dB
- Channel matching - within 1 dB .
- Tone controls - TREBLE + 15 to -15 dB at \(10 \mathrm{kHz}:\) BASS +15 to -15 dB at 100 Hz

\section*{Active Filter Unit}

For use between Stereo 60 unit and two 2.30 s or 2.50 s, the Active Filter Unit maiches the Stereo 60 in styling and is as easily mounted. It is unique in that the cut-off frequencies gre continuously variable and as attenuation in the rejected band is rapid (12dB/octave), there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The Sinclair A.F.U. is suitable also for use with any other ampli fier system.
Two stages of filtering are incorporated-rumble (high pass) and scratch (low pass). Supply voltage 15 to 35 V . Current -3 mA H.F cut-off \((-3 \mathrm{~dB})\)
- Front panel - brushed alumınium with black knobs and controls
- Size \(8 \frac{1}{4} \times 1 \frac{1}{2} \times 4 \mathrm{fns}\).

Built. tested and guaranteed
£9.19.6

variable from 28 kHz to 5 kHz . L.F cut-off \((-3 \mathrm{~dB})\) variable from 25 Hz to 100 Hz . Filter slope both varable fortions 12 dB per octave. Distortion at \(1 \mathrm{kHz}(35 \mathrm{~V}\) supply) \(0.02 \%\) at rated output.

Built. rested and guaranteed
£5.19.6

\section*{Power Supply Units}

The units below are designed specially for use with the Project 60 system of your choice Illustration shows PZ. 5 power supply unit to left and \(P Z .8\) (for use with \(Z .50\) s) to the right. Use \(P Z .5\) for normal \(Z .30\) assemblies and PZ. 6 where a stabilised supply is essential.
PZ-5 30 volts unstabilised \(£ 4.19 .6\)
PZ-6 35 volts stabilised \(\mathbf{£ 7 . 1 9 . 6}\)
PZ-8 45 volts stabilised
(less mains transformers) £5.19.6
PZ-8 mains transformer \(£ 5.19 .6\)

\section*{Stereo FM tuner}

first in the world to use the phase lock loop principle

Before production of this tuner the phase lock loop principle was used for receiving signals from space craft because of its vastly improved signal to noise ratio over other systems. Now. for the first time the principle has been applied to an FM tuner with fantastically good results. By the inclusion of other original features such as varicap diode tuning. printed circuit coils and an I.C. in the specially designed stereo decoder, the tuner has an unsurpassed specification. which also incorporates a squelch circuit for silent tuning between stations. A.F.C. and A.G.C. Sensitivity is such that good reception becomes possible in difficult areas, foreign stations can be tuned in suitable conditions and often a few inches of wire are enough for an aerial. In terms of high fidelity, this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically as the tuning control is rotated, a panel indicator lighting up as the stereo signal is tuned in. Although the tuner is intended primarily for use with a Project 60 system, it can be used to advantage with any other high fidelity system. It is easily mounted into any cabinet as shown in the manual supplied with it.

\section*{Specifications}

Number of transistors 16 plus 20 in \(1 . \mathrm{C}\).
Tuning range 87.5 to 108 M Hz
Capture ratio 1.5 dB
Sensitivity \(2 \mu \vee\) for 30 dB quieting
\(7 \mu \vee\) for full fimiting
Squetch level \(20 \mu \mathrm{~V}\)
A.F.C. range \(\pm 200 \mathrm{KHz}\)

Signal to noise ratio \(>65 \mathrm{~dB}\)
Audio frequency response \(10 \mathrm{~Hz}-15 \mathrm{kHz}(\pm 1 \mathrm{~dB})\)
Total harmonic distortion 0.15\% for 30\%
modulation
Stereo decoder operating level \(2 \mu \mathrm{~V}\)
Pilot tone suppression 30 dB
Cross talk 40 dB
I.F. frequency 10.7 M Hz

Output voltage \(2 \times 150 \mathrm{mV}\) R.M.S Aerial Impedance 75 Ohms
Indicators Mains on: Stereo on ; tuning indıcator Operating voltage \(25-30 \mathrm{VDC}\)
Size \(3.6 \times 1.6 \times 8.15\) inches : \(91.5 \times 40 \times 207 \mathrm{~mm}\)

Price: \(£ 25\) built and tested. Post free

GUARANTEE If within 3 months of purchasing Project 60 modules directly from us, you are dissatisfied with them, we will refund your money at once. Each module is guaranteed to work perfectly and should any defect arise in normal use we will service it at once and without any cost to you whatsoever provided that it is returned to us within 2 years of the purchase date. There will be a small charge for service thereafter. No charge for postage by surface mail. Air-mail charged at cost.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{To: Sinclair Radionics Ltd., 22 Newmarket Road Cambridge} \\
\hline Please send & NAME & \\
\hline & ADDRESS & \\
\hline for which I enclose cash/cheque money order & \multicolumn{2}{|r|}{ww 1.71} \\
\hline
\end{tabular}

\section*{Sinclair IC-10}

\section*{the world's most advanced high fidelity amplifier}

Specifications
Output: 10 Watts peak. 5 Watts R.M.S. con-
tinuous
Frequency response: \(\quad 5 \mathrm{~Hz}\) to \(100 \mathrm{KHz} \pm 1 \mathrm{~dB}\) Total harmonic distortion: Less than \(1 \%\) at full output.
Load impedance 3 to 15 ohms. Power gain: 110 dB (\(100,000.000,000\) times) total.
Supply voltage: \(\quad 8\) to 18 volts
Size: \(\quad 1 \times 0.4 \times 0.2\) inches.
Sensitivity: 5 mV .
Input impedance: Adjustable externally up to
2.5 M ohms.

\section*{Circuit Description}

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier Class \(A B\) output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages, making battery operation eminently satisfactory.

\section*{Applications}

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include oscillators, etc., whilst the pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.

The Sinclair \(I C-10\) is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick, has 5 watts R.M:S. output (10 w . peak). It contains 13 transistors (including two power types), 2 diodes, 1 zener diode and 18 -resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.

The \(I C-10\) is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout), etc. Once proven, the circuits can be produced with complete uniformity which enables us to give a full guarantee on every IC-10. knowing that every unit will work as perfectly as the original and do so for a lifetime.

\section*{SINCLAIR}

IC-10
with IC-10 manual
Post free.
59/6

\section*{See now,play later.}

If sonething's worth recording, it's worth recording well. The TVR 332 Video Tape Recorder gives a very high quality picture for just \(£ 820\).

Its many features include audio monitoring and dubbing; push button controls; automatic playback and rewinding; instant stop-motion and 1500 hours video head life.

Whether you want to buy or hire, it's naturally backed by Dixons service.

Write or phone Dixons CCTV Ltd 3 Soho Square, London W. 1 01-437-8811

We offer you more.

WW-0 04 FOR FURTHER DETAILS

\section*{Quality Parts}

\section*{for the discerning builder}

BAILEY PRE-AMPLIFIER still offers lowest distortion level and best overlaad capability. Edge Connector Mounted Printed Circuit in Fibreglass or Paxalin material to choice. Highest quality parts including gain graded transistors.

BAILEY 30w POWER AMPLIFIER. Edge Connector Mounted Printed Circuit in Fibreglass or Paxolin material, size \(44^{\frac{1}{\prime \prime}} \times 23^{\frac{3}{4} \text { ". This unit and the }}\) above Pre-amplifier can both be used in our new Metalwork Asserrbly,
BAILEY 30w POWER SUPPLY. We have now designed a Printed Circuit Board for the power supply, again intended to be used with our Metalwork, which also has edge connector mounting. Available in Fibreglass material only

BAILEY 20w AMPLIFIER. Special driver transformer and bifilar wound mains transformer. Printed circuits and all parts available for this design.

LINSLEY HOOD CLASS A. Full sets of parts now available to the new specification given in the December, 1970, Wireless World
LINSLEY HOOD CLASS AB. We have some parts for this design but a Printed Circuit will not be available. We can supply information re thermal stability to constructors interested in this circuit.

SUGDEN CLASS A AMPLIFIER. A Hi-Fi News design. All parts are in stock except the Metalwork

DINSDALE. We shall be putting the parts for this design into honsurable retirement shortly, so please order quickly if there is anything you require.
J. R. Stuart tape circuits. We will be designing Printed Circuit Boards and supplying parts for this interesting design.

Full details are given in our Free lists. Please send foolscap s.a.e.

\section*{HART ELECTRONICS}

321 Great Western Street
Manchester M14 4AR
Personal callers are always welcome at our retail shop, but please rote we are closed on Saturdays.

\section*{Low cost regulated DC power supplies}

Compact design providing optimum performance at low cost. Stabilised voltage and current outputs ranging from \(0-10 \mathrm{~V}\) to \(0-60 \mathrm{~V}\) and currents from \(\frac{1}{2} \mathrm{~A}-5 \mathrm{~A}\) Units can be arranged for series or parallel operation

KSM
KSM Electronics Ltd. Bradmore Green Brookmans Pk., Herts. Tel Potters Bar 59707

\section*{TRANSFORMERS}
coils
CHOKES TRADE Envuries welcomed
SPECIALISTS IN
FINE WIRE WINDINGS
MINIATURE TRANSFORMERS reLAY AND INSTRUMENT COILS VACUUM IMPREGNATION TO APPROVED STANDARDS
ELECTRO-WINDS LTD.
CONTRACTORS TO G.P.O., L.E.B., B.B.C.
123 PARCHMORE ROAD, THORNTON HEATH, SURREY
01.6532261 CR48LZ

EST. 1933
WW-097 FOR FURTHER DETALLS

IRadiospares

\section*{For \\ electronic components fast...}

\title{
ELECTROALUE
}

EVERYTHING BRAND NEW TO SPEC • LARGE STOCKS • NO SURPLUS
bargains in new semi-conductors
many at new reduced prices - all power types with free insulating sets
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline IN914 & 1/3 & 2N3707 & 2/6 & 40602 9/6 & BCl 48 & 31- & BSX20 & 3/9 \\
\hline IN3754 & 4/- & 2N3708 & 2/6 & AC107 14/6 & BC149 & 3/- & BY164 & 10/- \\
\hline IN4148 & 1/9 & 2N3709 & \(2 / 6\) & ACl26 4/- & BC153 & 7/- & BY238 & 3/6 \\
\hline IN5054 & 4/- & 2N3710 & 2/6 & ACl27 4/- & BC154 & 7/6 & Cl06BI & \(14 / 6\) \\
\hline IS940 & 1/- & 2N3711 & \(2 / 6\) & ACl28 6/- & BC157 & \(3 / 9\) & MC140 & \\
\hline 2N696 & 3/6 & 2N3731 & 24/- & ACl76 6/- & BC158 & \(3 / 6\) & MC140 & 51- \\
\hline 2N697 & 3/6 & 2N3794 & 3/- & ACY22 4/6 & BC159 & 3/9 & & \\
\hline 2N706 & 2/9 & 2N3819 & 7/- & ACY40 4/- & BC167 & 2/6 & MJ48 & 271- \\
\hline 2NII31 & 6/3 & 2N3820 & 12/- & ADI40 19/- & BC168 & 2/3 & MJ491 & 30/6 \\
\hline 2 NII 32 & 6/6 & 2N3904 & 7/6 & ADI42 14/3 & BC169 & 2/6 & MPFIO2 & \(7 / 6\) \\
\hline 2N1302 & 4/- & 2N3906 & 7/6 & ADI49 12/- & BCI77 & 6/3 & NKT403 & 15/6 \\
\hline 2 N 1303 & 4/- & 2N4058 & 4/- & ADI61/ADI62 & BC178 & 5/8 & NKT405 & 15/- \\
\hline 2N1304 & 4/6 & 2N4059 & 4/- & (matched) 14/- & BCI79 & 6/- & OA47 & \(1 / 9\) \\
\hline 2N1305 & 4/6 & 2N4060 & 4/- & AFI14 7/- & BC182L & 2/6 & OA90 & 1/3 \\
\hline 2N1613 & \(6 /-\) & 2N406I & 4/- & AFII5 7/- & BCl83L & 2/3 & OA91 & 1/3 \\
\hline 2 N 1711 & 7/- & 2N4062 & 4/3 & AF116 6/6 & BCI84L & 2/6 & OA95 & 1/3 \\
\hline 2N2147 & 19/- & 2N4284 & 3/- & AFII7 6/6 & BCI86 & 8/6 & OA99 & 3/- \\
\hline 2N2218 & \(9 / 3\) & 2N4286 & 3/- & AFI24 7/6 & BC212L & 5/- & OA200 & 1/11 \\
\hline 2N2270 & 12/9 & 2N4289 & 3/- & AF127 7/- & BC213L & 5/- & OA202 & 2/- \\
\hline 2N2483 & 6/3 & 2N4291 & 3/- & AFI39 9/6 & BC214L & 5/3 & OC71 & \(5 / 6\) \\
\hline 2N2484 & \(9 / 6\) & 2N4292 & 3/- & AFI80 18/6 & BCY70 & 4/- & & \\
\hline 2N2646 & 10/9 & 2N4410 & 4/9 & AF239 9/9 & BDI21 & 21/- & TIP31A & \\
\hline 2N2904 & 11/- & 2N5062 & 12/3 & ASY26 6/6 & BDI23 & 21/- & TIP32A & \\
\hline 2N2924 & 4/- & 2N5163 & 5/- & ASY27 8/3 & BDI24 & 20/- & TIS43 & 10/6 \\
\hline 2N2925 & 4/6 & 2N5192 & 25/- & ASY28 6/6 & BFl67 & 816 & ZTX300 & 3/6 \\
\hline 2N2926 & 2/3 & 2N5195 & 28/3 & B504I 15/- & BFI78 & 10/6 & ZTX301 & 3/6 \\
\hline 2N3053 & 5/6 & 2N5457 & 9/9 & BAl02 6/- & BFI80 & 12/- & ZTX302 & 4/6 \\
\hline 2N3054 & 14/3 & 2N5458 & 9/9 & BAll5 4/- & BFI94 & 7/- & ZTX303 & 4/6 \\
\hline 2N3055 & 15/- & 2N5459 & 9/9 & BAI30BA 4/6 & BFI95 & 7/6 & ZTX304 & 6/9 \\
\hline 2 N 3325 & 10/9 & 40250 & 14/3 & BAI56 4/- & BFX29 & 6/3 & ZTX500 & 5/- \\
\hline 2N3663 & \(11 / 6\) & 40361 & 12/6 & BC107 \(2 / 9\) & BFX84 & 5/9 & ZTX501 & 5 - \\
\hline 2N3702 & 2/6 & 40362 & 16/- & BCl08 \(\quad 2 / 6\) & BFX85 & 7/- & ZTX502 & 6/- \\
\hline 2N3703 & 2/6 & 40406 & 16/3 & BCl09 2/9 & BFX87 & 5/9 & ZTX503 & 5/- \\
\hline 2N3704 & \(2 / 6\) & 40408 & \(14 / 6\) & BCl25 11/- & BFX88 & 5/3 & ZTX504 & 12/- \\
\hline 2N3705 & \(2 / 6\) & 40430 & 37/- & BCI26 11/- & BFY50 & 4/6 & ZTX530 & 5/5 \\
\hline 2N3706 & \(2 / 6\) & 40512 & 39/- & BCl47 3/- & BFY51 & 4/- & ZTX531 & 6/9 \\
\hline
\end{tabular}

\section*{RESISTORS}

PEAK SOUND PRODUCTS

Stereo amplifier in modular kit form 12 watts per RMS channel into \(15 \Omega\) £38/9/-
As reviewed in Hi fi Sound and other important journals.

\section*{BAXANDALL SPEAKER SYSTEM}

Designed by Peter Baxan dall. Superb reproduc10 wates with ease. Uses ELAC \(15 \Omega\) 59RMI09 speaker unit. Kit fl3/12/nett; built \(£ 19 / 8 / 6\) nett.

\section*{MAINLINE AMPLIFIER KITS}

RCA/SGS designed main amplifier kits. Input sensitivity \(500-\) 700 mV for full output in \(8 \Omega\)
\begin{tabular}{lcc}
Power & \begin{tabular}{c}
Kit price \\
including components
\end{tabular} & \begin{tabular}{c}
Suitable unreg. \\
power supply kit
\end{tabular} \\
12 W & \(168 /-\) nett & \(92 /-\) \\
25 W & \(190 /-\) nett & \(\mathrm{N} / \mathrm{A}\) \\
40 W & \(210 /-\) nett & \(115 / 1\) \\
70 W & \(252 /-\) nett & \(138 / 10\)
\end{tabular}

\section*{30 WATT BAILEY AMPLIFIER PARTS \\ Sensitivity 1.2 V for full output into \(8 \Omega\) \\ Transistors and PCB for one channel \(\mathbf{8 7 / 5 / 6}\) \\ Transistors and PCBs for two channels \(£ 14 / 11 /\) \\ Capacitors and resistors (metal oxide), 40/- per channel \\ Complete unregulated power supply pack, \(£ 4 / 15 /\)}

\section*{INTEGRATED CIRCUITS}

PLESSEY SL403A 3 watts into 7.5 ohms. Data book supplied FREE when two of these units are purchased. Price per unit nett 42/6.

\section*{SINCLAIR IC. 10 as advertised, complete with instructions and applications manual \(59 / 6\) nett. \\ Components pack for stereo inc. transformer, controls, etc. \&4/15/0 nett \\ S-DeCs PUT AN END TO BIRDS NESTING \\ Components just plug in saves time-allows re-use of com- \\ ponents. S-Dec (70 points), 20 \\ erature-cycled (208 points), 50/}

MEDIUM RANGE ELECTROLYTICS
Axial leads: \(50 / 50,1 / 9 ; 100 / 25,1 / 9 ; 100 / 50,2 / 6 ; 250 / 25,2 / 6\); \(250 / 50,3 / 9 ; 500 / 25,3 / 9 ; 500 / 50,4 / 6 ; 1000 / 25,4 /-; 1000 / 50,6 /-\) 2000/25, 6/

\section*{SMALL ELECTROLYTICS}

Axial leads: \(4.7 / 10,4-7 / 25,5 / 50\), \(1 /\)-each; \(10 / 10,10 / 25,10 / 50\) \(33 / 10,50 / 10,1 /\)-each; 25/25, 25/50, 47/25, 100/10, 220/10, 1/3 each.

\section*{ELECTROVALUE CATALOGUE}

48 pages plus cover. Well printed and generously illustrated to show products, diagrams, etc. Crammed with thousands of item Add 4/-if required to be sent by air mail

LOW COST ELECTRONIC \& SCIENTIFIC

\section*{BRAND NEW \\ MINIATURIZED AUTOMATIC STRIP
CHART RECORDER}

by RUSTRAK of America. This recorder indicates the magnitude of applied currents or voltages by a continuous distortion-free line on pressure sensitive paper. Chart width \(2 \frac{1}{2}\). Chart speed \(\frac{1}{2}\) in, per min. Moving coil movement, scale calibrated \(0-100\) microamps. Int. resistance 4,600 ohms. Chart drive motor 12v. D.C. Supplied less case. C/W handbook. Price \&40. P. \& P. 10/-

\section*{MOTORS}

LOW TORQUE HYSTERESIS MOTOR MA23 Ideal for instrument chart drives, Extremely quiet, useful in areas
where anbient noise levels are low. High starting torque enable relative high inertia loads to be driven up to 6 -oz/in. Available in
the following speeds and ranges: \(240 \mathrm{~V} 50 \mathrm{~Hz} 1 / 30 \mathrm{p}\).

SYNCHRONOUS MOTORS

shaft +in. dla. + In. long. 200
Equipment. \(30 /=\), P. \(\&\). \(5 \%\).
D.C. TACHOGENERATOR Type \(9 \mathrm{c} / 10616 \mathrm{v}, \mathrm{at} 1000\) r.p.m. Drive
bhaft dia. \(3 / 16 \mathrm{in}\)., \(3 / 8 \mathrm{in}\), Iong. Pilce £16/10/0.

HIGH PRECISION MAINS SYNCHRONOUS MOTOR 3 Phase--I Phase \(230 \mathrm{~V} 50 \mathrm{~Hz} 1 / 8 \mathrm{~h} . \mathrm{p} . \operatorname{continuonsly}\) rated. 3000 r.p.m. Made by Croydon Engineer
ing. Model KA 60 JFB. Sultable for capstan motor. size 9 in . long, \(4 i \mathrm{in}\). diameter with 61 ln . dianeter flange and
4 fixing holes. \(60 /-\) each. P. \& P. 25/.,

\section*{ACTUATOR}

By English Electric. Type 4519 Mk . 1 D.C. Motor AE 1560 Mk ,
NEW MINIATURE RELAYS

E.F. ATTENUATOR MARCONI TF I073A

Do- 150 MHz 1 dB ateps 75 Ohms. Double Bcreened construction
CODER SHAFT POSITION
By Datex Corporation. Type \(4166-7003\) "V" \&can Code National
Binary Diode Pos. Diameter: 18 in. \(\times 2 \$\) In. long. Servo Mounting.
ANALOGUE-DIGITAL CONVERTER
By United Aircralt. Type 6-SPT-C. Model 13-BNRY-B.
13 Digit encoder Grays code. Length 3 in., diameter 14 in. Servo Type inounting. £15. P. \& P. 7/6. 3 in ., diameter 14 in . Servo
ACCELEROMETERS
Model LA 23 C Potentiometric + or - 10 G operating Voltage 30 V,
Nominal reaistance 17.5 K and Model LA \(2 \mathrm{C}+\) or - 110434 V , Nominal resibtance 17.5 K and Model LA \(23 \mathrm{C}+\) or -l luvd 34 V
Rel 20 K . Price \(£ 26\). P. \& P. \(5 /-\).
 mounting.
Many other types in stook

\section*{TAPE RECORDERS}
E.M.I. Profeesional Audio tape recorder model BTR1C. Thls was the type of equipment used by
excellent condition. Price £175.
DATA TAPE SYSTEM 14 CHANNEL
By Solariron. Verastile 14 Channel tape recorder having many applications. The installation is capable of recording and repro-
ducing by analog i.e. Pulse Modulation of frequency modulated methods. Capstan mntor constant speed controlled by a tuuing
fork Ocillator. Tape speeds (1) in in. per sec. (2) 8 in., 7 in in 15 in., fork Oscillator. Tape speeds (1) in. per sec. (2) \(\%\) in., 7 in in., is in.,
30 in ., 60 in. Maximum reel diameter: it in. Information on spplication. P.O.A.
E.M.I.

Portable L.F. Tape Recorder. Ex-gervice equipment consisting of
Three Unit housed in transit cases (Tape Deck, Amplither, P.8.U.).

\section*{GENERATORS}
L.F. SiGNAL GENERATOR SGB6
requency range 5 c/s to \(125 \mathrm{kc} / \mathrm{s}\) in five bands. Accuracy \(\pm(1 \%+1 \mathrm{c} / \mathrm{g})\). Bine wave diatortion leas than \(1 \%\) at 1 W . Outpu
Sine wave continuously variable, 0 to 30 V r.m. s . Into \(600 \Omega\) Sine wave 0 to 1 W into 5 n . Square wive 0 to 30 V pk.pk. Output. lmpedance varies up to \(\$ \mathrm{k} \Omega\) depending on ontput level setting,
Rise and fall times up to \(0.75 \mu \mathrm{~s}\) maxlmum. Power requirements 100 to 130 V and 200 to \(260 \mathrm{~V}, 40\) to \(60 \mathrm{c} / \mathrm{s}\), 100 W . Dimensions 19in. wide \(\times 10 \mathrm{jlin}\). high \(\times 88 \mathrm{in}\). deep. Weight 32 tb , Rack mounting. Price 875 carriage extra.
OSCILLATORS \& SIGNAL GENERATORS SOLABTRON DC 1015. \&. Single beam DC- \(15 \mathrm{MHz}(-3 \mathrm{~dB})\) and
DC- \(21 \mathrm{MHz}(-6 \mathrm{~dB})\) Rise Tinie 23 Manosec. Sensitivity \(50 \mathrm{mV} / \mathrm{cm}\) Tine Base 500 manosec \(/ \mathrm{cm}-20 \mathrm{msec} / \mathrm{cm}\) in 18 ranges. \(3 \$\) inch CRT Green Phosper medum persiatence. H13z in. W10 in. D19 In,
weight 36 ib. in V 9 condition c/w copy of haudbook. Price 885 (It) CRYBTAL CONTROLLED OSCLLLATOR STC. 16-LXU-52A Mk. II. 0.20 MHz. Sweep facillties, O/p attenuation 0.70 dB
Complete wilth power supply unit 14 -LXU-52B...... Price 885 80Lartron CD 1280. DC-40 MHz \(6 \mathrm{~cm} \times 10 \mathrm{~cm}\) Display Time Base \(A 0.1\) micro вec.- 5 sec/cm 24 Ranges. \(B 2\) u sec \(/ \mathrm{cm}\) -
 (I108) LOW FREQUENCY DECADE OBCILLATOR D-638-A
 20,000,000 MEGORMETER MODEL 29A by E.I. This is a direct reading electronle megohmeter covering the range 0.3-20 million megohms in 7 decodes. Ideal testing resistors capacitors, cables and
dielectries. Uses 6 in . edgwlse indicator with mirror acale. Test dielectries. Uses 6 in . edgwlse indtcator with mirror scale. Test
voltages applied are \(85 \mathrm{~V}, 500 \mathrm{~V}\) or 500 V . Ext, tacllity up to 1000 V .
Price \(\mathbf{E 7 5}\) (I13) R.C. OSCILLATOR AND AUTOMATIC FREQUENCY MONTOR-SMITHS. Oscillator range \(10 \mathrm{~Hz}-100 \mathrm{KHz}\). Price 275
 (118) sIGNAL GENERATOR CTR18. Range \(30-85 \mathrm{MHz}\) O/P MINLATURE UMTSEIECTORS 3 hat 12 way, 250 hm 24 V MINIATURE UNISELECTORS. \({ }^{3}\) bank, 12 way, 250 ohm. 24 V Type 2200 A . Supplied complete with piug-in base. Size \(3 \mathrm{in} . \times\)
1 in. \(\times 2 \mathrm{in}\). A very neat precision component. Price 84.19 .6 . (183) SIONAL GENERATOR CT 480 SANDERS, Range 7 KHz \(12 \mathrm{KHz} .0 / \mathrm{p} .0- \pm 50 \mathrm{~V}\). Attenuation range -10 to +100 dB . (178) WObULator GM 2877/02 Phillips........... Price 865

TRANSDUCER OSCILLATOR-AMPLIFIER-DEMODULATOR. AD encapsulated unit for matching with S.E. Tranaducers. Suitable where apace or adverse environmental conditions prevail. Bupplied supply voitage 12Y. D.C. Range of transducers available \(0-50\)
 TRANSDUCER-Now Renistive Bordon Tube Princlple presaure Trangducer by K.D. Instrument. Model TD 216 0-2000 psi.
Ref. C. 6... 15 TRANSDOCER NEW EX-GOVERNMENTDISPLACEMENT BONDED REAISTANCE 8TRAIN GADGES, Range \(\pm\) mechanical dis-

OSCILLATOR. High digcrimination, by Marcon! T.F. 1168. This instrument suitable for H.F. Communication. Due to its high
discriminatlon makes it suitable for crystal filer response in Tz discrimination makes it suitable for crystal filter response in Tz
and Rx drive units. Prequency range 90.110 KHz . Hz discrimina and Rx urive units. Frequency range gorin Kizz. Hz diacrimina-
tion. Crytal and Standardised centre frequency. Calibration
accuracy \(\pm 1 \%\) Ref. I.5...........................ice \(£ 135\) RECORDERS 4 PEN OSCLLLOQRAPH8 SOUTHERN IRSTRUMENTS M942C. 4 Channel fitted with 4 speed gear boxes giving
\(1,5,25,100 \mathrm{~m} . \mathrm{m}\). per sec. Frelluency response 0.53 Hz, sensitivity \(0 / \mathrm{m} . \mathrm{m} / \mathrm{M} . \mathrm{A}\)
2 PEN OSLLOGRAPH MR450 as per 4 Pen. Ref. I. 2 Price Price £ 1500
PLUE CARRIAGE
NEW B.P.L. MULTIMETER T.V.M. 1083. Employing silicon planar F.F.T., this instrument gives long term stablity and negligble
drift over a wide temperature range. Wide frequency band \(0-300\) MHz ueing HPV 1063. Voltage range 0.30 KV . Centre zero on DC ran geafor differentiai circuit application. Input reaistance 1 M. ohrm/Volt different colour for different scaies. Special price \(£ 50\) each.

\section*{}

EQUIPMENT AND COMPONENTS

\section*{MEASURING INSTRUMENTS AND RECORDERS}

FACSIMILE RECORDERS Dransmission speed: \(i n . ; 15 / 16 \mathrm{in}\).; \(1 才\) in. per min. scanning rate 96 linee/ in
Rel. C. 3

POWER SUPPLY UNITS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{O} / \mathrm{P}\) & \(\mathrm{O}_{\mathrm{A}} \mathrm{P}\) & & Input & & & 1)imensions & Lioca & \\
\hline & & & & Make & Type & \[
\underset{\text { Winches }}{\mathrm{H}}
\] & & \\
\hline 6 & & & & & & & & \\
\hline adj & & & & 230 & & & & \\
\hline \[
4 \cdot 165
\] & 7 & 8 & 240 & outant & Elv700/6 & \(6{ }^{2} \times 51 \times 11\) & 876 & 36 \\
\hline adj & & & & £25 & & & & \\
\hline 3-15v & 5 & 8 & 40 & Coutant & ELV500/6 & \(41 \times 7 \times 12\) & Bib & 37 \\
\hline 4.15 y & 5 & 8 & 240 & & PM7 & \(\times 5\) ¢ \(\times\) 9\% & 876 & 38 \\
\hline & & & & \(\underline{15}\) & & & & \\
\hline 12 & 1 & 8 & 240 & & U12.1 & + \(\times 6 \times 10\) 噽 & 87 & 39 \\
\hline \(\pm\) & 150 & & & ¢12 & & & & \\
\hline 200 & \(m \mathrm{~A}\) & 8 & 240 & Robard & B101/200 & \(7 \frac{1}{2} \times 64 \times\) & 376 & 40 \\
\hline 28 & & & & & & & & \\
\hline 26-37 & 7 & s & 240 & Coutant & E8700/28 & \(81 \times 7 \times 12\) & 87 & +2 \\
\hline +30 & 360 & & & & & & & \\
\hline -20 & mA & 8 & 240 & B.P.L.
\[
£ 25
\] & \({ }^{3}\) & \(19 \times 8 i \times 12\) & 875 & 41 \\
\hline 12 & 20 & 8 & 110 & I.B.M. & Ex. comp & \(6 \times 51 \times 16\) & 87 & 66 \\
\hline 12 & 20 & 8 & 110 & \(1 . \mathrm{B}\) & Ex. co & 6) \(\times 5 \pm \times 16\) & 878 & 70 \\
\hline 12 & 20 & \(s\) & 110 & I & Ex comp. & 6 \(\times 5 \pm \times 16\) & 878 & 57 \\
\hline & & & & ¢25 & & & & \\
\hline 12 & 20 & 8 & 110 & I.B.M & Ex. com & \(6 \times 51 \times 16\) & 878 & 56 \\
\hline 12 & 20 & 8 & 110 & I & Ex. comp. & 6 \(\times 5 \mathbf{5} \times 16\) & 878 & 69 \\
\hline 12 & 20 & 8 & 110 & \({ }_{\text {t. }}^{\text {B. M. }}\). & Ex. comp. & \(\times 51 \times 16\) & 878 & 68 \\
\hline 12 & 20 & 8 & 110 & I.B.M. & co & \(6 \times 5 \pm \times 16\) & \$7 & 67 \\
\hline 6 & 16 & s & 110 & I. E B. \({ }^{\text {M }}\) & & 3 & 879 & 64 \\
\hline 48 & 6 & 1 & & \(\pm 19\). & & & & \\
\hline & & & & \(\mathrm{E}_{1}\) & & & & \\
\hline 30 & 7 & 8 & 110 & & Ex. comp & \(6 \times 5 \pm \times 13 \pm\) & 879 & 62 \\
\hline 12 & 15 & 8 & 110 & I.B.M & Ex. & \(6 \times 5 \pm \times 13 \ddagger\) & 87 & 64 \\
\hline 12 & 12 & 8 & 110 & I.B.M. & & \(6 \times 5 \mathrm{t} \times 13\) & 874 & 60 \\
\hline & & & & & & & & \\
\hline 12 & 12 & \(s\) & 110 & I.B.M. & Ex.col & \(6 \times 5 \times 134\) & 874 & \({ }_{\text {fil }}\) \\
\hline 20 & 6 & 8 & 110 & 1.8.M. & Ex. comp. & \(6 \times 5 \pm \times 13\) & 874 & \(6 \overline{1}\) \\
\hline & & & & £12.10 & & & & \\
\hline 6 & 8 & B & 110 & I.B.M. & E & \(6 \times 5\} \times 91\) & S74 & 68 \\
\hline 6 & 8 & 8 & 110 & I.B.M. & Ex. comp. & \(6 \times 51 \times 91\) & 74. & 63 \\
\hline 12 & 4 & 8 & 110 & І.В.M. & Ex & \(6 \times 51 \times 91\) & 874 & 72 \\
\hline & & & & £18 & & & & \\
\hline 12 & 4 & 8 & 110 & I.B.M. & E & \(6 \times 51 \times 91\) & 74 & 71 \\
\hline & 8 & & 110 & £12.10 & & \(6 \times 5\) & & \\
\hline 20 & 4 & U/S & & ¢25 & & ¢ \(\times 1\) & & \\
\hline \(-10\) & d & - & & Power & & & & \\
\hline -10 & 300 & 8 & 240 & Electron- & 31110 & \(8 \times 6 \times 131\) & 87 & \\
\hline Do. & Do. & Do. & 240 & 1 l & Do. & Do. & 877 & 4 \\
\hline & & & & £18.10 & & & & \\
\hline 48 & 4 & U/9 & 240 & \begin{tabular}{l}
Advance \\
£18.10
\end{tabular} & DC8 & \(5 \frac{1}{} \times 6 \times 17\) & & 80 \\
\hline 24 & 5 & U/B & 240 & Advance & DC22 & \(5 t \times 6 \times 17\) & 873 & 73 \\
\hline 48 & 2 & U/8 & 240 & \({ }_{\text {Advan }}^{\text {£15 }}\) & DC1 & \(\times 6 \times 17\) & 866 & 4 \\
\hline & & & & £25 & & & & \\
\hline 12/15 & 5 & 8 & 240 & Advance £45 & DCR12/12 & \(5 \mathrm{t} \times 8 \times 17\) & 873 & 53 \\
\hline & 20 & 8 & 240 & Coutant & R205 & \(19 \times 8 \mathrm{j} \times 13 \mathrm{k}\) & 873 & 51 \\
\hline \[
\begin{aligned}
& \pm 6 \\
& -6
\end{aligned}
\] & 10
2 & 8 & 240 & \({ }_{\text {Coutant }}^{\text {E45 }}\) & R206 & \(19 \times 7 \times 12\) & 873 & \\
\hline & & & & ¢50 & & & & \\
\hline 28 & 20 & 8 & 240 & Coutant & R204 & \(19 \times 88 \times 14\) & 8:0 & 85 \\
\hline 350 & 250 & & 240 & £18.10 & 705 & \(19 \times 12 \times 8 \frac{1}{6}\) & 87 & 52 \\
\hline 50 & mA & 8 & & Airmec & & & & 82 \\
\hline
\end{tabular}

This is a amall selection of our range. Further details on application.

\section*{PRECISION \\ POTENTIOMETERS}
\begin{tabular}{|c|c|c|c|c|}
\hline TEN TU BRAND & URN \({ }^{3600}{ }^{\circ}\) NEW & ROTATION & \multicolumn{2}{|r|}{(Ref. C5)} \\
\hline Res. Ofms & Linearity
Per cent & Mamufacturer & Man & \\
\hline \(100 / 100 / 100\) & & Beckrıan & & 160- \\
\hline & 0.5 & Beckman & A. 8 & 60/- \\
\hline 2011 & 0.5 & Beekman & & 80/- \\
\hline 500 & n. 1 & Beckiman & & \\
\hline 500 & & Colver & & 45/- \\
\hline 500 & & Foxes & PX1 & 40/- \\
\hline 500 & & Colvern & 2610. & 501- \\
\hline 810 & & Colvern & \(26 / 1001 / 1\) & \\
\hline 510 & 10 & Relcon & HEL107-10 & 45/- \\
\hline 1 K & & & HELIT10 & \\
\hline \({ }_{2} \mathrm{~K}\) & & Beckma & 8A101 .. & 60 - \\
\hline 2 K & 0.25 & Beckiman & 7216 & \\
\hline 2 K & & Reliance & QPM15 .. & 401- \\
\hline 2 K & & General Controls & GPA15/4. & 401- \\
\hline & & Relcon & 07.10 & \\
\hline 5 K & & Colvern & CLR2503 & \\
\hline 10 K & 0.5 & Beckman & & \\
\hline 10 K & 0.1 & Beckman X & & \\
\hline 10 K & 0.1 & Colvern & CLR26fion & \\
\hline 15 K & & Colvern & CLR2492 & \\
\hline 18 K & & Beckrman & & \\
\hline \({ }^{2} 5 \mathrm{~K}\) & 0.3 & Helipot & 8AJ3:7 & \\
\hline 29 K & 0.05 & Beckman & SA124 & \\
\hline 30K & & Colvern & 2402 & \\
\hline 30 K & & Beckman & sa98C & \\
\hline \({ }^{30 \mathrm{~K}}\) & 0.1 & , Beckman & A.88 & \\
\hline 30 K & 1.5 & Beckma & 8A1699 & \\
\hline \({ }^{30 \mathrm{~K}}\) & 1.25 & - Beckrman & SA1679 & \\
\hline 30 K & 1.0 & Colvern & 24127 & \\
\hline \({ }_{50} 0 \mathrm{~K}\) & & - Reliance & 07.10 & \\
\hline 50 K & & & 17. & \\
\hline 50 K & & Colvern & \({ }^{2503}\) & \\
\hline \({ }^{50 \mathrm{~K}}\) & x & Foxes & Px 4 & \\
\hline 50 K & 0.5 & Beckm & A & \\
\hline \({ }_{100 \mathrm{~K}}^{50 \mathrm{~K}}\) & . 1 & Beckm & A & \\
\hline 100 K & & Ford & & 00- \\
\hline 110 K & 0.6 & Beckman & A & 60- \\
\hline 1 & & Colvern & 2501 & 45 \\
\hline \(1^{100} \mathrm{~K}\) & & Colvern & & 50 \\
\hline \({ }^{2985}\) & & Beckraar & 8A3902 & 30 \\
\hline THREE & TURN \(780^{\circ}\) & ROTATIO \({ }^{\text {Beckmar }}\) & A & 70 \\
\hline 114/100 &0.5 ... & Beckman. & & \\
\hline 100)/100 & & Beckma & T & 801- \\
\hline 301 & & Beckman & & \\
\hline 1 K & & Fox & Px2/H3 & \\
\hline 10 K & 0.5 & Beckman & & \\
\hline \({ }_{10 \mathrm{~K}}^{20 \mathrm{~K}} 12 \mathrm{~K}\) & 0.1 & Beckma & & \\
\hline \({ }_{50 \mathrm{~K}}^{10 \mathrm{~K}} 10 \mathrm{~K}\) & \[
0.1
\] & Beckrman & & \\
\hline
\end{tabular}

\section*{FIFTEEN TURN 5400 ROTATION} 2unk TWENTY TURN \(\mathbf{7 2 0 0}^{\circ}\) ROTATION
I Meg................eneral Controls...PXM130.. 80/156 TURN \(56160^{\circ}\) ROTATION Relince

 SINE COSINE
\begin{tabular}{|c|c|c|c|}
\hline Values & \(T_{y}\) & Maker & Prite \\
\hline \({ }_{6} 5\) Kohms & CLR 8601 & Colvert & £17/10/0 \\
\hline 14 Kohms & 8CP 5 & Bmith & £22/10/0 \\
\hline 15 Kohms & CLR 8601 & Colvern & £17/10/0 \\
\hline 20 Kohms & CLR 8602 & Colvern & 222/10/0 \\
\hline 25 Kohms & CLR 9602 & Colvern & £17/10/0 \\
\hline 30 Kohms & CLR 8601 & Colvern & 217/10/0 \\
\hline 32 Kohn 18 & 8CP 4 & Kelvin-H & £17/10/0 \\
\hline 35 Kohms & 8CP 1 & Smithe. & £17/10/0 \\
\hline
\end{tabular}

LOW FREQUENCY RESOLVED COMPO. NENT INDICATOR BY SOLARTRON
Type VP 233.2 A . This inatrument will indicate by means of two
centre zero 4 in . acale meters the resoliced components of a signal voltage with respect to the applied reference energisation. Fre
 balanced or unbelanced input. Sigual Input Reeistance: \(10 \mathrm{M} \Omega\)
unbalanced, \(20 \mathrm{M} \Omega\) balanced. Reference Input. Voltage 90130 or \(230 / 240 \mathrm{~V}\). Standard Rack Panel, 19 in. 12 i in . high, \(£ 175\) VIBRON

\section*{VIBRON ELECTROMETER}

This unit is a vibration condenser amplifler which is suitable for the measurement of small D.C. potentials covering the range of .omparison of irovation currents of very high resistance. £89.10.0.
7 HOLE NON PARITY TAPE PUNCH
LOW SPEED 7 HOLE TAPE PUNCH 601 characters per second by well-known manufacturer.
TELETYPE 8 HOLE PAPER PUNCH BRPEII \(\mathbf{2 6 0}\) Also available 5 hole punch BRPE-2 as above. This model ha interchangealle heads. Complete with spoler. Price £75.
5/7 HOLE OPTICAL READER BY FERRANTI 20 characters per second. \(£ 20\)

LINEAR THRYRISTER CON TROLLED LIGHT DIMMER Hoow. module.
Hor speed controller, etc. Will mount into standaml socket boxes
Our price \(59 /\). P. \& P. 5/

EICHNER 8 HOLE PUNCH OR READERS No motor drive required. Solenoid operated equipment using 48
Reader \(£ 29.10 .0\) : Punch \(\mathbf{£ 4 9 - 1 0}\). Carriage \(25 /\).
PLATINUM RESISTANCE THERMOMETER PROBES
Solartron Type NT \(119 R / c\) and NT 1687 . Accuracy \(\pm 1^{\circ} \mathrm{C}\). Prohe FEN
\(+250^{\circ} \mathrm{C}\). Price \(£ 12.10\) each. p. \& p. \(3 / 6\).
FENLOW LOW FREQUENCY ANALYSER 0.3 Hz to 1 K Hz . Power density 0.10 .
\(.06: 0.3: 1.5: 7.5: 37.5 \mathrm{~Hz}\). Price \(\mathbf{£ 2 7 5}\)

\section*{SYNCHRONOUS \\ CHOPPERS \\ a valahle 100 Hz and avallable. Also 400 Hz , Price
\&5. \\ AVO TRANSISTOR \\ ANALYSER CT 446}
 wires, \(£ 6 / 10 / 0\). P. \& \(P\).

\section*{MINIATURE DIGITAL \\ \section*{DISPLAY}}

Operates on a rear projection 6.3 pilot ing digit on the conecnsing lens throug
a projector lens, a projector lens, on to the viewing
screen at the front of the unt width, 3 h. in. dieep. 1 of the unit. 1 in ing. Weight
\(3 \pm\) oz. Character size in. high, 4.4 wit 8 right hand decirmal point and degree Available to special order, words and art work or plates. List price 6 gns

EAC DIGIVISOR Mk. II DIGITAL READ-OUT DISPLAY
Ideally suitable for use in confunction with transistorised decade counting devices. No
need for amplifiers or relays as only a few milliwatts of power are required to charge the digits. The MGGVisoR incorporates as
moving coil movement which mores a transmoving coil movement which mores a trans-
lucent scale through an opticalsystem and the resultant single plane image is projected on a
 represent digite 0.9 . Speciffcation: 6.3 volt, 250 microamp. Image
height in. Sizze \(+9 / 16 \times 239 / 64 \times 1\) in. Our price \(£ 3 / 13 / 6\)

\section*{NUMICATORS}

Cold cathode gas-tilled, in-line 0-9 digital dieplay tubes. Long life

\(40 \mathrm{v} .-110 \mathrm{v}\). or 100 v . Completely Shrouded fitted with Two-pin

Completely enelosed in beautifully finished metal case fitted and carrying handle.
T.E.C. 240-110v, ISOLATION TRANSFORMERS Conservatively rated at 9 amps. Tropicalised open frame type. Cerminal Board connections. 5 ize \(9 \times 9 \times 7\) ins. Weight 60 lbs .
Ci5. Carr. \(17 / 6\).

ISOLATION TRANSFORMERS

\(131 / 20{ }^{2} 9\)
9 \& 10 CHAPEL ST., LONDON, N.W.I

\section*{\(01.723-7851\)}

01-262-5125
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
GARDNERS HT TRANSFORMERS \\
Fully tropicalised "C" core table top connections \\
all new and guaranteed. Primaries tapped 200 \\
\(220-240 \mathrm{v}\). \\
\(6.3 \mathrm{v} .5 \mathrm{a} .6 .3 \mathrm{v} .0 .75 \mathrm{~m} / \mathrm{a} / 5 \mathrm{v} .3 \mathrm{a}\). \(89 / 6 \mathrm{v}\). P. \& P. \(9 / 6\). No. 2 . \\
\(130 \mathrm{v} .185 \mathrm{~m} / \mathrm{a}\). twice. 200 v . \(350 \mathrm{~m} / \mathrm{a}\) twice. \(59 / 6\). P. \& P. \(8 / 6\). \\
No. 3. \(300-0-300 \mathrm{v} .60 \mathrm{~m} / \mathrm{a} .6 \cdot 3 \mathrm{v}\). 4 a . 25/o. P. \& \& P. \(5 /\). \\
No. \(4.350 \mathrm{v} .44 \mathrm{~m} / \mathrm{a} .20 \mathrm{v}\). \(10 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v}\). \(3 \mathrm{a} .17 / 6 . \mathrm{P} . \& \mathrm{P} .4 / 6\).
No. 5 . Tapped \(44-45-46 \mathrm{v} .87 .5 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v} .4 .5 \mathrm{a}\). 6.3 v . 1.6 a . \\
\(6.3 \mathrm{v}, 1 \cdot 5 \mathrm{a} .6 .3 \mathrm{v}, 1.35 \mathrm{a}\). \(37 / 6\). P. \& \(\mathrm{P} .5 / \mathrm{F}\) \\
GARDNERS POTTED TYPE. PRI. 200-230-240v. \\
\(5 . E . C .250-1-250 \mathrm{v} .100 \mathrm{~m} / \mathrm{a} .250 \mathrm{v} .300 \mathrm{~m} / \mathrm{a} .9 \mathrm{v} .3 \mathrm{a} .6 \cdot 3 \mathrm{v} .2 \mathrm{~A}\). \\
 \\
\(6.3 \mathrm{v} .0 .4 \mathrm{a} .4 \mathrm{v}, 1.5 \mathrm{a}, 35 / \mathrm{F}\). P. \& P. \(5 /-\)
\end{tabular} \\
\hline \begin{tabular}{l}
PARMEKO C CORE TRANSFORMERS \\
Pri, tapped \(110-200-240 \mathrm{v}\). Sec. \(1250 \mathrm{v} .197 \mathrm{~m} / \mathrm{a}\). Sec. 2 161 v . \(110 \mathrm{~m} / \mathrm{a}\). Sec. \(3152 \mathrm{v} .76 \mathrm{~m} / \mathrm{a}\). \(\mathrm{Sec} .4124 \mathrm{v} .25 \mathrm{~m} / \mathrm{a}\). \(5 \mathrm{ec} .528 \mathrm{v} .0 \cdot 4 \mathrm{a}\). Sec. \(66.4 \mathrm{v} .6-2 \mathrm{a}\). \(6.3 \mathrm{v} .3 \cdot 25 \mathrm{a}\). 6.3 v . \(1 \cdot 4 \mathrm{a}\). Table top connections. Size \(5 \times 4 \times 4\) ins. Brand new boxed. \(35 /\).. P. \& P. 7/6. Special prices for atys.
\end{tabular} \\
\hline \begin{tabular}{l}
Pri. 10-0-200-220-240v. Sec. \(500-0-500 \mathrm{v} .120 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v} .2 .5 \mathrm{a}\). \\
\(6.3 \mathrm{v} .1 .6 \mathrm{a} .6 .3 \mathrm{v}, 0.6 \mathrm{a}\). 6.3 v . 0.45a. \(5 \mathrm{v} .3 \mathrm{a} .55 /-\). Carr. \(8 / 6\). \\
Pri. \(10-0-200-220-240 \mathrm{v}\). Sec. tapped \(370-390-400 \mathrm{v} .6 \mathrm{~m} / \mathrm{a} .10 / \mathrm{H}\) P. \& P. 3/6. 3 for 25/-, p. \& P. 7/6. Pri. 10-0-200-220-240v. Sec. \(90-0-90 \mathrm{v} .100 \mathrm{~m} / \mathrm{a} .17 / 6\), p. \& p. \(4 / 6\).
\end{tabular} \\
\hline \begin{tabular}{l}
SPECIAL OFFER OF PARMEKO \\
NEPTUNE SERIES TRANSFORMERS ALL PRIMARIES TAPPED \(115-230 \mathrm{v}\). \\
Sec. 6.3 v . CT 5a. 6.3 v . CT 3a. 6.3v. CT 2a. \(37 / 6\) P. \& P. \(5 /\) - \\
S 3c. 9-10v. \(0.5 \mathrm{a} .6 .3 \mathrm{v} .3 .5 \mathrm{a} .6 \cdot 3 \mathrm{v} .12 \mathrm{a}\). \(19 / 6 \mathrm{P}\). \& P. 41 F . \\
Sec. \(400-0-400 \mathrm{v} .150 \mathrm{~m} / \mathrm{a} .50 /-\mathrm{P} . \&\) P. \(7 / 6\). \\
Sec. \(350-0-350 \mathrm{v}, 100 \mathrm{~m} / \mathrm{a} .3-8-12-18 \mathrm{v} .5 \mathrm{a}\). 63.19 .6 P. \& P. 8/6. \\
Sec. 6.3v. CT 5a. 6.3v. 1.2a. 6.3v. 1.2a. 27/6 P. \& P. 5/-. \\
Sec. 6.3 v .1 .8 a .6 .3 v . Ia. 6.3 v . 1 a . \(17 / 6 \mathrm{P} . \&\) \& P. \(3 / 6\). \\
Sec. 29.5-32-5v. 32/6 P. \& P. 5 \\
Sec. \(4 v .0 .5 a\). four times. 15/- P. \& P. \(3 / 6\). \\
Sec. 6.3 v . СТ 0.6 a . 6.3v. 0.6 a . \(12 / 6\) P. \& P. \(3 / 6\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Pri 200-220-240v. Sec. \(250-0-250 \mathrm{v} .50 \mathrm{M}\)
\(51-\). Pri 230 v .42 v . Ia. \(10 / 6\) P. \& \(3 / 6\)}

GRESHAM L.T. TRANSFORMERS Pri tapped \(115-230-240 \mathrm{v}\). Sec. 6.3 v . CT 5 a . Twiee 6.3 v . CT 3a. Fully tropicalised "C" core. \(32 / 6\) P. \& P. 5/-. Pri 200-220-240v
Sec. 62 y . \(750 \mathrm{M} / \mathrm{A}\). Potted type. Conservatively rated \(30 /\)

SPECIAL OFFER OF GRESHAM CHOKES
\(15 \mathrm{H} 300 \mathrm{~m} / \mathrm{a} 50 \mathrm{ohm}\).
\(10 \mathrm{H} 300 \mathrm{~m} / \mathrm{a} 60 \mathrm{hm}\).
\(10 \mathrm{H} 300 \mathrm{~m} / \mathrm{a} 60 \mathrm{ohm}\).
\(15 \mathrm{H} 180 \mathrm{~m} / \mathrm{a} .200 \mathrm{ohm}\)

Swinging Chokes. \(20 \mathrm{H} 100 \mathrm{~m} / \mathrm{a}-10 \mathrm{H} 450 \mathrm{~m} / \mathrm{a}\). 55/-. Carr. \(10 /-\mathrm{C}\)
All Chokes supplied new and guaranteed.

PARMEKO CHOKES-NEPTUNE SERIES
 \(150 \mathrm{M} / \mathrm{A}\). \(17 / 6\).

LOW TENSION SMOOTHING CHOKES
By Redcliffe. 100 MH .2 amps. 49/6. P. \& P. 7/6. 5 winging Type.
\(10 \mathrm{MH} .6 .5 \mathrm{mp}-50 \mathrm{MH} .2\) amps. \(45 /-\) P. \& P. \(7 / 6\). Both types less than tohm res. Hermetically sealed. Oil filled. Brand new. In makers cartons.

\section*{Hei tapped 110 v . \(220-250 \mathrm{v}\). Sec. TRANSFORMERS 55 v . 24 a ., 14 v . \(10 \mathrm{a},{ }^{6} 60 \mathrm{v}\). 2 a All windings very conservatively razed. Tropically finished.
Terminal connections. 5ize \(9 \times 7!\times 7\) ins. Weight 651 b . \(\mathbf{f} 10.19 .6\). Carr. 15/- \\ Pri tapped \(200-250 \mathrm{v}\). Sec. 46 v . Very conservatively rated at} 29 amps. Size \(11 \times 7 \times 7\) in. Weight 75 lb . approx. Manufactured
by Partridge. 12.19 .6 . Carr. \(15 /\).

GARDNERS H.T. TRANSFORMERS

 . V V. \(600 \mathrm{M} / \mathrm{A} .5 . \mathrm{Y} 3 \mathrm{a}\). Unshrouded. Fully tropicalised. Table top
annections. \(85 /-\mathrm{P}\). \(\mathrm{P} .10 / 6\).
T.C.C. OIL-FILLED BLOCK CAPACITORS
 wkg at 60 deg. C. \(4 / 6\) P. \& P. i/6. 2 MFD 500 v . wkg at 60 deg . C.
\(2 / 6\) P. \& \(1 / 6\). 2 MFD 1500 v . wkg at 70 deg. C. \(7 / 6\) P. \& P. \(2 /\). \(2 / 6\) P. \& P. \(1 / 6.2\) MFD 1500 v . wkg at 70 deg. Cl
0.01 MFD 12 kv . Wkg at 60 deg. C. \(7 / 6 \mathrm{P}\). \& P. I

3000 Type. \(250 \Omega\) G.P.O. TYPE RELAY B duty. M contacts. 8/6. \(200 \Omega 6 \mathrm{M}\) contacts \(8 / 6.75 \Omega 3 \mathrm{M}\). I B. I Co Contacts \(6 / 6.2000 \Omega+130 \Omega\) M. before B. contacts \(6 / 6.5000 \Omega\) I Co. I M. contacts \(6 / 6\).
\(1000 \Omega 6 \mathrm{M}\). contacts \(8 / 6\). All new and boxed. P. \& P. \(1 /-\) per 600 Type. \(150 \Omega 4\) Co. Contacts. 7/6. \(1700 \Omega 3 \mathrm{M}\), contacts. 600 Type. 150
S/- P. \& P. \(1 /\).

MAGNETIC DEVICES LTD SEALED RELAYS \(5000 \Omega\). \(48 \mathrm{v}, \mathrm{DC}\). 3 CO . Contacts. \(8 / 6\) P. \& P. 1/6. Open type
3.6 v . DC. 3 heavy duty makes. \(7 / 6 \mathrm{P} . \& \mathrm{P}\). \(1 / 6\). AC 2.3 v . I heavy 3.6 V . DC. 3 heavy duty makes. \(7 / 6\).
duty Co. Contact. \(7 / 6 \mathrm{P}\). \& P. \(1 / 6\).

AMERICAN WILLARD
\(5 \ddagger\) oz. These batteries were designed for meteot \(\times 4\) ins. Wt. 5ioz. These batteries were designed for meteorological balloon
transmitters. Easily filled with a hypodermic syringe. 5elf
sealing. \(7 / 6\). \(P\). \(P\). \(1 / 6\).

MINIATURE 24v. D.C. GEARED MOTORS
500 rpm. Size \(2 \times 1 \frac{1}{2} \times 1 \mathrm{in}\). Length of spindle 1 in ., dia. \% in.
\(15 /-\) P. \& P. \(2 /\)..
PULLEN SHUNT WOUND 24. D.C.
Type 610 H.P. \(1 / 75\) r.p.m. \(3,500 \mathrm{Cont}\)./R. New and boxed. \(15 / \mathrm{H}\)
P. \& P. \(3 / 6\).
MAGNETIC DEVICES 6V. D.C. CONTACTORS
3 Heavy Makes contacts. 5ize \(2 \times 1 \frac{1}{2} \times\)

> ORGAN DIVIDER BOARDS, built to high idustrial/computer standards. 5 octave set \(£ 15\),
> COPPER LAMINATE PRINTED CIRCUIT BOARD
> \(8 \frac{1}{2} \times 5 \frac{1}{2} \times 1 / 16 \mathrm{in}\). \(2 / 6\) sheet, 5 for \(10 /-\)
> \(11 \times 6 \frac{1}{2} \times 1 / 16 \mathrm{in}\). \(3 /\) - sheet, 4 for \(10 /\)
> \(11 \times 9 \times 1 / 16 \mathrm{in} .4 /\)-sheet, 3 for \(10 /-\)
Offcut pack (smaliest \(4 \times 2 \mathrm{in}\).) \(10 /-300 \mathrm{sq}\) : in

> RADIATION MONITORING EQUIPMENT. Portable and bench models (brand new) S.a.e literature. KLYSTRON POWER SUPPLY (Solartron AS562). £40. Carr. \(50 /-\).
> KLYSTRON POWERSUPPLY (Elliott PKU1). \(£ 100\) \(\mathbf{1 2 0}\) AMP. AUTO TRANSFORMERS. \(190-270 \mathrm{v}\). \(50 \mathrm{c} / \mathrm{s}\) (tapped every 5 volts). \(£ 50\) ea. (Carr. by arrangement.)
> 801 A SIGNAL GENERATOR. \(10-300 \mathrm{mc} / \mathrm{s}\) in 4 bands. Ext. \(50 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s}\). Output \(200 \mathrm{~m} / \mathrm{v}\) \(\mathbf{£ 5 0}\) ea. P.P. \(\mathbf{2 5} /-\mathrm{l}\)

\section*{SPEAKERS}
E.M.I." \(19 \times 14 \mathrm{in} .50\) watts. 8 ohm (14A/600A.) Four tweoters mounted across main axis. Separate \(x\)-over Hz . Bass unit flux \(16,500 \mathrm{gss}\). A truly magnificent system Hz . Bass unit
E25. P.P. \(50 /-\). E.M.I. \(13 \times 8 \mathrm{in}\). with two tweeters and cross-over. 8 or
\(15 \mathrm{ohm} .75 /-\cdot P . P .5 /-\). E.M.I." \(13 \times 8\) in. Bass 50/- each. P.P. \(5 /-\)
E.M.I." \(6 \frac{1}{2}\) in. Rd. 10 watt woofers. 8 ohm. 30/. ea P.P. 2/6.

FANE" \(12 \mathrm{in}\).20 watt. 15 ohm (\(122 / 10 \mathrm{~A}\).) With integral tweeter. \(\mathbf{£} 6\) ea, P.P. 7/6
SPEAKER SYSTEM (\(20 \times 10 \times 10 \mathrm{in}\).) Made to Spec. from \(\frac{3}{4}\) in. board. Finished in black leathercloth. \(13 \times 8\) in 50 Hz to \(20,000 \mathrm{~Hz}\) w 7 10s complete with "X-over'

\section*{EXTRACTOR FANS/BLOWERS}

AIRMAX": 7立 In. FAN. In aluminium diecast housing (9 in.). 240 v . Brand new. £4 10s. P.P. \(10 /\)
PLANNAIR"' \(5 \frac{1}{2}\) In. FAN. (Type 5 PL 121-122.) Diecast housing. 240V. Brand new. E6. P.P. 10, OLAS. Overall size \(16 \times 5 \frac{3}{2} \times 3 \frac{1}{2}\) in. Air outlet \(12 \times 1 \frac{1}{2}\) in. 240 v , Brand new. \(16 \times 5 \frac{3}{4} \times 3 \frac{1}{2} \mathrm{in}\). Air outlet \(12 \times 1 \frac{1}{2}\) in. 240 V , Brand new.
\(50 /-\) ea. P.P. \(7 / 6\). BULK COMPONENT OFFER. Resistors/capacitors. All types and values. All new modern components. Over 500 pieces, £2. (Trial
you will re-order.

HIGHSPEED MAGNETIC COUNTERS (\(4 \times 1 \times 1 \mathrm{in}\).) 4 digit 24/4

LEVEL METERS (\(1 \frac{1}{2} \times \frac{1}{2} \mathrm{in}\).) 200 micro-amp. Made in Germany, 15/- each
MICROAMMETERS (4 -in. sq. Weston). 25-0-25 micro amps. 45/-. P.P. 5/-
RELAYS H.D. 2 pole 3 way 10 amp . contacts. \(12 \mathrm{v} . \mathrm{w} .7 / 6\) ea LIGHTWEIGHT RELAYS (with dust-proof covers) LIGHTWEIGHT RELAYS (with du
\(4 \mathrm{c} / \mathrm{o}\) contacts. 24 v . 500 ohm \(7 / 6\) ea.
PRECISION CAPACITANCE JIGS. Beautifully made with Moore \& Wright Micrometer Gauge. Type 1. 18.5 pf POT CORES LA1/LA2/LA3, 10/- ea.
71 WAY PLUG \& SOCKET (Painton Series 159). Gold plated contacts with hood \& retaining clips. 30/- pair. 50 WAY PLUG \& SOCKET (U.C.L. miniature). Gold plated contacts \(20 /\) - pair. 34 way version \(15 /\) - pair. 12 VOLT H.D. RELAYS (\(3 \times 2 \times 1 \mathrm{in}\)). 2 poie change-over (silver points) \(8 /-\) each, p. \& p. \(1 /\) -
COMPUTER BOARDS
4-OC23; 4-2N1091 ; 4-2G302; 4-OA10. 20/- ea
8-0C42 (long leads) ; 16-0A47. 7/6 ea
8-DA11A; 14-OA47. 5/- өa
Bargain pack of 5 boards.
Bargain pack of 5 boards. Components too varied to enumerate. At least 100 transistors and diodes \(£ 2\) lot.

\section*{TRANSFORMERS}

\section*{L.T. TRANSFORMERS (shrouded). Prim. 200/250v.} Sec. \(20 / 40 / 60 \mathrm{v} .2 \mathrm{amp} .42 / 6\). P.P. \(7 / 6\).
Sec. L.TRANSFORMERS. Prim. 200/250v. Sec. \(20 / 40 \mathrm{v}\). 1.5 amp. 30/-. P.P. \(5 /\)
"ADVANCE:" CONSTANT VOLTAGE. Prim. 190/250v. \(\pm 15 \%\). Sec. 115 v . 2,250 watts. E 15 ea. P.P. \(50 /-\)
H.T. TRANSFORMERS. Prim. 200/240v. Sec. 300-0-300v \(80 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v}\). C.T. 2 a . \(30 /\) - ea. P.P. \(7 / 6\).
350-0-350v. 60 M.A. ©. 3 v . С.T. \(2 \mathrm{a} .20 /-\) ea. P.P. \(5 /\)
L.T. TRANSFORMER. Pim. 240v. Sec. 33-0-33v. 5 amp. \(45 /-\) P.P. \(10 /\)
STEP DOWN TRANSFORMER. Prim. 200/240v. Sec. 115 v . 100 watts. \(20 /\) - ea. P.P. \(5 /-\) -
L.T. TRANSFORMERS Prim. 240 v . Sec. \(8 / 12 / 20 / 25 \mathrm{v}\). L.T. TRANSFORMERS Prim. 240 v . Sec. \(8 / 12 / 20 / 25 \mathrm{v}\).
3.5 amp models \(20 /-;\) P.P. \(5 / 6\). 3.5 amp models \(20 /-\) : P.P. \(5 / 6\).
L.T. TRANSFORMERS Prim. 240 v . Sec 14 v . 1 amp 10/.
ea. P.P. \(2 / 6\).

LIQUID LEVEL DETECTOR. Detects even miluly conductive liquids, i.e. ether, etc. N.O./N.C. Contacts fails to safe. \(\mathbf{£ 1 0}\). S.A.E. literature.

ELECTRIC SLOTMETERS (\(1 /-\)) 25 amp . L.R. 240 v . A.C. 85/- ea. P.P. 5/- QUARTERLY ELECRIC CHECK METERS, 40 amp 240V. A.C., 20/- ta. P.P. 5/-. LONG LIFE'" ELECTROLYTICS (Screw
25,000 u.f. 40 v . (\(4 \frac{1}{2} \times 2 \frac{1}{2}\) in.). \(20 /-\) ea. P.P. \(2 / 6\).
10,000 u.f. 75 v . (\(4 \frac{1}{2} \times 2 \frac{1}{2}\) in.) \(17 / 6\) ea. P.P. \(2 / 6\).
3,150 u.f. 40 v (\(\left(4 \frac{1}{4} \times 1 \frac{1}{2}\right.\) in.). 15/- \(\theta a\). P.P. \(2 / 6\).
EXECUTIVE "SIXTY" AMPLIFIER. (60 w. r.m.s. into 8 ohm.) British designed and built. True hi-fi performance Built-in fiters to protect speakers. Three independently mixed inputs. High-Low impedance. Mic. C55, PP 50/Magnetic Cantidg S.a.e. literature.

TELEPHONE DIALS (New) 20/- ea. RELAYS (G.P.O. '3000'). All types. Brand new from \(7 / 6\) each. 10 up quotations only TELEPHONE EXTENSION CABLE (eX. G.P.O.) 3 core/cream p.v.c. 100 yd. coil 40/200 yd. coil 75/-P.P. 5/-coil. 75 ISELECTORS (Brand new) 25-way 75 ohm. 8 bank \(\frac{1}{2}\) wipe \(65 /-10\) bank

REED RELAYS 4 make \(9 / 12 \mathrm{v}\). (1,000 ohm.) \(12 / 6\) ea 2 make 7/6 ea. 1 make 5/- ea. Reed Switches (13 in.) 2/ea. £1 per doz.
SUB-MINIATURE REED RELAYS (\(1 \mathrm{in} . \times \frac{1}{4} \mathrm{in}\).). Weight \(\frac{1}{6}\) oz. Type 1.960 ohm, \(3 / 9 \mathrm{v} .1\) mat
1800 ohm, \(3 / 12 \mathrm{v}, 1\) make. \(15 /\) - ea.

SILICON BRIDGES. 100 P.I.V 1 amp. (\((x) \times \frac{z}{8} \mathrm{in}\).), 8/6 ea.
"ADVANCE" VOLSTAT TRANSFORMERS. Input PLUG-IN RELAYS. (Siemans-Varley) \(4 \mathrm{c} / \mathrm{o} .700 \mathrm{ohm}\), \(10 \%\) ea, complete with base. (Other make-ups and coils available.)

PATTRICK \& KINNIE 19I LONDON ROAD - ROMFORD - ESSEX ROMFORD 44473

RM79DD

正

\section*{SEMI－CONOUCTORS／VALVES BRAND NEW \＆FULLY GUARANTEED}

\section*{transistors \\ 6}

倥

下ipur

2 N 219
2 N 221
2 N 221
2 N 221

2N236
2N26
2N26
2 N 2904
2 N 2923
2 N 2924
2 N 2925 2N2925 \({ }_{2}^{2 N 2926 Y}\) 2N：3053 2 N 3053 2N：3055雲昙 2N3702 2N 3703 2N 3704
2N 3705
\(2 N 3706\) 2N3706
2N 3707 2N3707
2N3708 2N3708
2N 3709 \begin{tabular}{l}
2 N 37 \\
-2 N 37 \\
\hline
\end{tabular} 2N3819 2N3903 \(2 N 3904\)
\(2 N\) 2N390 2 N 4058 2 N 4058 2N 406
2 N 406 2 N 4062
\(2 \mathrm{~N}+28\)
2 N 428 2N 2 N 42 2N4 2N429
 2N635 28102
28103 28103
28104 28104
40250 40361
40362 ACl 26
AC 27 ACl 28
ACl 54 AC176
AC187 ACY 1
\begin{tabular}{|l|l|}
\hline- & BSY56 \\
\hline\(\cdot\) & \(18 /-\) \\
B8Y95A & \(3 /-\) \\
BYI0 & \(3 / 6\)
\end{tabular} \begin{tabular}{l|l}
（． & BSY56 \\
B8Y95A \\
6Y1 & \\
BY
\end{tabular} \begin{tabular}{l|l|l}
8 & BY124 \\
BY126
\end{tabular} \(6 \begin{array}{lll}\text { BY1 } \\ \text { BYZ } & 4 /- \\ \text { BY } & 8 /-\end{array}\)

\footnotetext{
\(3 / 6\)
\(3 /-\)
\(3 / 6\)
28
}
\(3 /-\)
\(4 / 8\)
\(3 /-\)
\(\qquad\)
\begin{tabular}{l|l|l}
7／－ & BF19 \\
BF195 \\
BF & \\
BF20
\end{tabular}
雷言㐫
\begin{tabular}{l|l}
\(3 /-\) & BF \\
\(4 / 6\) & BF
\end{tabular}
\[
\begin{array}{l|ll|lr|r}
3 /- & \text { BFX } 24 & \text { B/- } & \text { OC171 } & 6 /- & 25 \\
3 / 6 & \text { BFX } 30 & 6 / 6 & \text { OC200 } & 7 / 6 & 30 \\
3 /- & \text { BFXX44 } & 7 / 6 & \text { OC201 } & 8 / 6 & 30 \\
3 / 6 & \text { BFX85 } & 8 /- & \text { Oc202 } & 12 / 6 & 30 \\
3 /- & \text { BFX86; } & 6 / 6 & \text { OC203 } & 7 / 6 & 30 \\
3 /- & \text { BFX87 } & 6 / 6 & \text { OC204 } & 8 /- & 30 \\
3 /- & \text { BFX88 } & 5 /- & \text { OC205 } & 12 / 6 & 30
\end{array}
\]

VALVES
\begin{tabular}{ll|l|l|l|}
& \multicolumn{4}{|c}{ VALVES } \\
OA2 & \(8 / 6\) & 30 FLI4 & \(15 / 8\) & EY51
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{THYRISTORS} \\
\hline \multicolumn{3}{|l|}{1 AMP S0PIV 5／－；100PIV 5／6；200PIV 7／6；} \\
\hline \multicolumn{3}{|l|}{300PIV 8／－： 400 PIV 9／6． 3 A MP 50PIV 6／－i} \\
\hline \multicolumn{3}{|l|}{\(10 /-5\) AMP 100 PIV ＇ \(11 / \mathrm{F}\) ； 200 PIV 18／－；} \\
\hline \multicolumn{3}{|l|}{400 PIV 15／－． 7 AMP 100PIV 11／－： 200 PI （V）13／－i} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & \\
\hline \multicolumn{3}{|c|}{TRIACS} \\
\hline SC41A & 8C41B & SC41d \\
\hline 100PIV 6A & 6A 200PIV & 400 PIV GA \\
\hline 19／6 & 22／－ & 27／6 \\
\hline
\end{tabular}

\section*{G 850
G 8100
G 800}

G810
G800
Gup

\footnotetext{
SEND SAE FOR FULL LISTS！ DISCOUNTS：

\section*{\(10 \%\) on \(12+\) any one type}
\(15 \%\) on \(25+\) any one type
Large quantity discounts on applica－ tion．Po
Valves 3
}

\section*{HI－FI EQUIPPMENT SAVE UP TO 33 \(\frac{1}{3} \%\) OR MORE SEND S．A．E．FOR DISCOUNT＇PRICE LISTS AND PACKAGE OFFERS！}

\section*{GARRARD}

SPECIALOFFERS
GOLDRING GL69／2 fitted Goldring Garrard SP25 Mk lll fitted Goldring Ga00 Gase cartridge complete with de luxe cartridge and wooden plinth with
base cover．Total list price \(£ 50.16 .0\) ，perspex cover，ready wired．Total list
OUR PRICE \(£ 39\) ．
 WITH MATCHING PAIR SA1003 SPEAKER
SYSTEMS Output 4 watts per channel．Excellent reception AFC，built－in MPX．Cer／XTAL Input．
 ligo asailahle with Garrard \(2025 \mathrm{~T} / \mathrm{C}\) Record Ready wired．\(£ 45\) ．Carr．20／－

TRANSISTOR FM TUNER
 £6／7／6．P．P．P／6．
BTEREO MULTIPLEX ADAPTORS，99／6． AMERICAN RECORDING TAPES

 \(\begin{array}{ccc}\text { Lhascounts for } & 5 i \mathrm{in}, 2,400 \mathrm{ft} \text { ．T．P．Mylar } & 39 / 6 \\ \text { quantitles．} & 7 \mathrm{jn} .1 .200 \mathrm{ft} \text { ．Std，acetate } & 12 / 8\end{array}\)

\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{Over
pald．
post} & \(7 \mathrm{in}\).2.400 ft ．D．P．Mylar \\
\hline & 7in． 3.600 ft ．T．P．Mglar \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \\
\hline
\end{tabular}
\[
\frac{\text { Careette Head Cleaner } 11 / 3}{\text { ECHO HS-606 STEREO }}
\]

\(2 \times 230\) amplifer，stereo 60 pre－amp，PZ
 ampliler，stereo 60 pre－amp，PZ8 power suppl／
\＆21．10．0．Carr， \(7 / 6\) ．Travslormer 4 PZ \({ }^{4}, 58 / 6\) filter PROJECT 60 FM TUNER \(£ 20.19 .6\) ．Carr． \(7 / 6\) All other Binclair provicts in stock：2，001 ampli－
fler \(£ 23.0 .0\) ．Carr．\(/ 6 / 6\) ． 3,010 Amplifer \(£ 36\) ．

TELETON SAQ \(203 E\) STEREO Popular solid state bi－fi armplifter incorporating Popular solid state hi－fi amplifer incorporating
16 semi－conductors．Output 6 watta r．m．s．Inputs for magnetic ceramic，tuner and aux．Stereo phone socket and tape output．Controls：Volume，balane bass，treble．Oiled Walnut case with bruahed
aluminium front panel．SPECIAL PRICE £20

Our latest edition giving full details of comprehensive range of HI－FI EQUIPMENT COMPONENTS，TEST EQUIPMENT and COMMUNICATIONS EQUIPMENT．FRE
DISCOUNT COUPONS VALUE \(10 /-.24\) pages，fully illustrated and detailing thousand of items at bargain prise

\section*{ \\ Recs canhoure}

MARCONI CT44
TF956 AF ABSORPTION WATTMETER
£20. Carr. \(20 /\)
TEIII DECADE RESISTANCE ATTENUATOR db. Connections. Unbalsaced T and
Brldge T. ImpedBrldge T . Imped-
ance
600
obrns. Range \((0.1 \mathrm{db} \times\)
\(10)+(11 \mathrm{db} \times 10)\)
\(+10+20+30\) \({ }_{40} 10{ }^{2}\). Frequenc

 Maxirnum input less than 4 watts (50 volts). Built it 600 \& load reaistance with internal/
external switch. Brand new \(227 / 10 /=\). P. \& P. \(5 /-\) -

BELCO AF-5A SOLID STATE SINE
SQUARE WAVEC.R. OSCILLATOR SQUARE WAVEC.R.OSCILLATOR
 (10 K ohwas). Opera-
tion internal batteries.
Attractlve Attractive 2 -tone case
\(71 \mathrm{mn}. \times 5 \mathrm{~m} . \times 2 \mathrm{in}\). rice \(£ 17.10 .0\)
Carr. \(3 / 6\)

TE-I6A TRANSISTORISED
SIGNAL GENERATOR

5 Ranges \(400 \mathrm{KHZ}-30\)
MHZ. An inexpensive
inat inatrument for the handyman. Operates on 9 v .
battery. Wide easy to battery. Wide easy to
read scale. \(800 \times 5 Z^{\circ}\)
modulation. \(51^{\circ} \times 52^{\circ}\) modulation. \(51^{\prime \prime} \times 51^{2}\)
\(\times 31^{\circ}\). Complete with
Inatructions and leads. E7/18/6. P/P \(4 /\).
BELCO DA-20 SOLID STATE DECADE AUDIO OSCILLATOR

New high-quality port-
able instument siae
1 Hz no 100 KHz . Aquare able instrument Biae
1 Hz to 100 KHz . Aquare
20 Hz to 20 KHz . Out. 20 Hz to 20 KHz . Out-
put max.
\(\mathrm{K} \quad 10 \mathrm{db}\) ohms).
Operation
 \(215 \mathrm{~mm} \times 150 \mathrm{~min} \times\)
120 mm. Price
Carr.
52\%.

TE-65 VALVE VOLTMETER

High quality Instriument D.C. Folts \({ }_{\text {1.5-1,500 }}\) A.C. volts \(1.6-1,500{ }^{\mathbf{v}}\).
Resistancs up to 1,000 Resistance up to 1,000
megohms. ac.
\(220 / 240 \mathrm{v}\). A.C. operation. Complete with probe and instructlons \(£ 17 / 10 / 0\). \(P\) \(\begin{array}{lll}\text { Additionad Probeas avail- } \\ \text { able: } & \text { E.F. } & 35 /- \\ \text { H.V. }\end{array}\) \(42 / 6\).

AUTO TRANSFORMERS \(115 / 230 \mathrm{v}\). Step up or step down. Fully shrouded 300 W. \(65 /-\) P, \& P. \(4 / 6\)
500 W . \(£ 4 / 19 / 6, \mathrm{P}\). \& P. \(8 / 6\)
.500 W. \(28 / 5 / 19, \mathrm{~B}\). P

\section*{MULTIMETERS for EVERY purposed}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{6}{*}{}} \\
\hline & \\
\hline
\end{tabular}

MODEL TE-70. 30.000 O.
\(0 / 3 / 15 / 40 / 300 / 600 / 1.200 \mathrm{z}\) 1.C. \(0 / 6 / 301120 / 60011.200\) / \(5 / 16 / 10 / 160 \mathrm{~K} / 1.6 \mathrm{M} / 16 \mathrm{Meg}\). \(\mathbf{4 5 / 1 0 / 0 ~ P . ~ \& ~} \mathrm{P}\)

\begin{tabular}{|c|}
\hline \multirow[t]{9}{*}{TE-906 \(20,0100 \mathrm{O} / \mathrm{VOLT}\) GIANT MULTIMETER. Mirror acale and overload protection. 6 in full view meter. 2 colour scale 0/2.5/10/250/1,000/5,000 v. A.C \(0 / 25 / 12.5 / 10 / 50 / 250 / 1,000 / 5,000\) v. 1D.C. \(0 / 50 / \mu \mathrm{A} / 0 / 10 / 100 / 500 \mathrm{~mA} /\)
10 amp. D.C. \(02 \mathrm{~K} / 200 \mathrm{~K} / 20 \mathrm{l}\) MEG. OHM. £15 P. \& P. 5/-} \\
\hline \\
\hline
\end{tabular}

\section*{HONOR TE. 10A. 20 k g/Volt
\(5 / 25 / 50 / 250 / 500 / 2,500\)
Y. D.C. \(10 / 50 / 100 / 500 / 1,1,60\)
\(0 / 50 \mu \mathrm{~A} / 2.5 \mathrm{~mA} / 250\)}

spare movements for Model 8 or 9. (Fitted with Model 0 scale) or basis for sny mult imeter.
Branil New and Boxed \(68 / 8\) P. \& \(P\). \(3 / 6\).

UNR 30 RECEIVER
4 Bands covering \(550 \mathrm{kc} / \mathrm{s}\) - \(30 \mathrm{mo} / \mathrm{s}\). B.F.O. Bullt in speaker \(220 / 240 \mathrm{v}\) Ac. Brand new with instruc
tions. \(£ 15 / 15 / 0\). Carr. \(7 / 6\).

WS62 TRANSCEIVERS
Largequantity available for EXPORT Excellent condition. Enquiries invited

UR-IA SOLID STATE
COMMUNICATION RECEIVER 4 Bands covering \(550 \mathrm{kc} / \mathrm{g}\) - \(30 \mathrm{me} / \mathrm{s}\). FET, \& Meter
Variable BFO for B8B, Built in Speaker, Tele scopic Aerial, Bandspread, Bensitivity Control.
\(220 / 240 \mathrm{AC}\) or \(12 v^{2}\), \(121^{\circ} \times+1^{\circ} \times 7^{0}\). Brand new with instructions. \(£ 25\). Carr. \(7 / 6\). \({ }^{2}\). Brand

LAFAYETTE HA-600 RECEIVER

ariable B.F.O., noise limiter, 8 detector, Cread. RF Gain. \(15^{\prime \prime} \times 9 z^{* \prime} \times 87^{-} .18 \mathrm{H} .220 / 240 \mathrm{v}\) Carriage 10
LAFAYETTE HA- 800 SOLID STATE AMATEUR RECEIVER

product
detector tor. \(220 / 240 \mathrm{~V}\) AC or 12 v DC. \(15^{\circ} \times 99^{\prime \prime} \times 81^{\circ}\)
18 ib . Brand new with instructions. \(55 / 10 / 0\)
Carr. Paid. (\(100 \mathrm{kc} / \mathrm{s}\) Crystal \(39 / 6\) extra \()\)

LAFAYETTE PF60 VHF FM
RECEIVER
Solld State.
\(152-174 \mathrm{nc} / \mathrm{s}\)
1 Fully tunteable
or cryatal conor cryatal con-
trolled (not supplie(i). Built
in
Bpeaker in Speaker
Bquelch and

nowne Controls \(220 / 240 \mathrm{y}\) AC or 12 v DC. Brand
new with instructions. £37/10/0. Carr. 10/..

EDDYSTONE V.H.F RECEIVERS EDOYSTONE V.H.F. RECEIVERS
770R. \(19-165 \mathrm{Mc} / \mathrm{s}\). excellent condition. \(£ 150\). INTERCOM BABY SITTER
 Transistorised
tercoms, ideal for
In tercoms, ideal for
home/office/work homop, ete. 2 -way
buzzer call For desk or wall
mountlig. Supplied complate with con-
necting wire necting wiry, bat
teries,
 VOLTAGE STABILISER TRANSFORMERS, 180-260\%. Input. Output 230v.
Available 150w or 225 w . \(\mathrm{E12.10.0} \mathrm{}. \mathrm{Carr}. \mathrm{6/} \mathrm{}\). SOLID STATE VARIABLE A.C. STAGE REGULATORS Counpact and panel mounting.
Ideal for control of lamps,
didel Ideal for control of lamps,
drilils, electrical applisncesete. drilis, electrical appliancesetc.
Input \(230 / 2+0 \nabla\). A.c. Output continuously variabie troma
\(20 \mathrm{v},-230 \mathrm{v}\). Model

\section*{TECHNICAL TRAINIIG in radio television and electronics}

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:
- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Now available-Colour T.V. Servicing
Examination Students coached until successful

\section*{NEW}

SELF-BUILD RADIO COURSES
Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments. All under expert tuition. Transistor Portable available as separate course.

\section*{POST THIS COUPON TODAY}
for full details of ICS courses in Radio, T.V. and Electronics.

\section*{THEST-तYS}

\section*{NOW AVAILABLE AUDIO TRONICS 71}

The 1971 edition of Lasky's Audio-Tronics catalogue is now available on request.

44 tabloid pages packed with 1.000 s of items from the largest stocks in Great Britain,
everything for the Radio and Hi-Fi enthusiast. everything for the Radio and Hi-Fi enthusiast. Electronics Hobbyist Servicemen and Communica-
tions Ham. Over half the pages are devoted exclusively to every aspect of Hi-Fi (including Lasky's budget Stereo systems and a fabulous new range of Package Deals). Tape Recording and Audio accessories plus
LASKY'S AMAZING MONEY SAVING VOUCHERS THIS YEAR WORTH OVER £32

This year, Lasky's introduce a great new Credit card scheme giving holders \(\mathbf{f 5 0}\) interest free credit per month. All the/goods shown in the 1971 Audio Tronics Catalogue are available now from any of our branches or by Mail Order to any address in the U.K. or Overseas-bringing the benefits of shopping at Lasky's to you in the comfort of your home.
Don't delay send today your name and address plus 2/6 for post and inclusion in our regular mailing list.

\section*{MODEL C-1051 MULTIMETER}
notr urimine
impact resistant cabinet. Buff/green finish, size \(4 \frac{3}{4} \times 3^{\frac{1}{4}}\) \(x \quad 1 \frac{1}{8}\) in . Features-Large easy to read meter with mirror scale. D'Arsonval movement. Overioad protection circuit. Fine calibration gives extremely high standard of accuracy on all ranges. Ohms zero adjustment. Click stop range selection switch. Colour coded scales.
- DC/V: 0-3-15-150-300—1.2KV at 20K/ohms \(/ \mathrm{V}\)
- AC/V: 0-6-30-300-1.2KV at \(10 \mathrm{~K} /\) ohms \(/ \mathrm{V}\)
- OL current: 0-600A-300mA
- Resistance: \(0-60 \mathrm{~K}-6 \mathrm{M} / \mathrm{ohms}\)

- Decibels: -20 dB to +17 dB
- Complete with battery and test leads

LASKY'S PRICE 85/- post 2/6

\section*{LASKY'S TM5}

Another new look pocket multimeter from Laskys providing top quality and value. The "slimline" impact resistant case size \(4 \frac{3}{2}\) in. \(\mathbf{x}\)
 is superior on all low ranges; making this an excellent instrument for servicing ohansistorised equipment.
cover DC/V: 3-15-150-300-1,200 at 5K ohms/V
- AC/V: 6-30-300-600 at \(\mathbf{2 . 5 K}\) ohms \(/ \mathrm{V}\)
- DC Current 0-300 \(A\) A 0.300 mA
- Resistance: \(0-10 \mathrm{~K}\) ohms, \(0-1 \mathrm{M}\) ohms
- Decibels:-10dB to 16 dB

LASKY'S PRICE 59/6 \({ }_{\text {p\& }{ }^{2} / 6}\)
LASKY'S TM1
The first of Lasky's new-look top value meters. the TM1 is a really tiny pocket multimeter providing "big" meter accuracy and performance.
Precision movement calibrated to \(\pm 3 \%\) of full scale. Click stop range selection switch. Beautifully designed and made impact resistant black case--with white and metalic red/green figuring. Ohms zero.
- DC/N: 0-10-50-250-1000 at 1 K ohms/V
- DCN: \(\mathbf{A C} / \mathbf{N}: 0-10-50-250-1000\) at 1 K ohms \(/ \mathcal{N}\)
- DC CURRENT: 0-1mA, 100 mA
- Resistance: \(0-150 \mathrm{~K}\) ohms
- Decibels: \(-10+22 \mathrm{~dB}\)
- Complete with test leads, battery and instructions

Size only \(3 \frac{1}{4} \mathrm{in} . \times 2 \frac{3}{8} \mathrm{in} . \times 1 \frac{1}{4} \mathrm{in}\).
LASKY'S PRICE 39/6 Р\& \({ }^{2 / 6}\)
207 EDGWARE RDAD, LONDON, W.2.
33 TOTTENHAM CT. RD, LONDON, WIP 9RB.
109 FLEET STREET, LONDON, E.C.4.
152/3 FLEET STREET, LONDON, E.C.4.
HIGH FIDELITY AUDIO CENTRES
42-45 TOTTENHAM CT. RD, LONDON, WIP 9RD.
118 EDGWARE ROAD, LONDON. W.2.
MAIL ORDERS AND CORRESPONDENCE TO
3-15 CAVELL STREET. LONDON. E1 2BN

\section*{Send I/- for New Comprehensive I.C. and Semiconductor price list (24 pages) \\ INTEGRATED CIRCUITS}

NEW LOW PRICES • FULLY GUARANTEED
rea
motorola

Data
\(914 / 923\) and Plessey 8/8.
\({ }_{10} 8\) Pin To-5 I.C. Holder, \(8 / 6\)
12 Pin To-5 I.C. Holder. 22/6
16 Pin Dual-in-Line I.C. Holders, \(8 / 6\)
MOST TEXAS TTLS NOW IN STOCK
mullard linea

\title{
HENBTYS RADIO LINITED Rema ENGLAND'S LEADING ELECTRONIC CENTRES -HI-FI • COMPONENTS - TEST • PA. DISCOTHEQUE • ELECTRONIC ORGANS • MAIL ORDER NEW RANGE SELF-POWERED PRE-AMPLIFIERS \\ SLIM MODERN DESIGNS USING THE LATEST TRANSISTORS, FET's and IC's. DIN SOCKETS, ETC, fitted PUSH-BUTTON SELECTION, 20dB. Bass and treble boost and cut designed for use with PA25 and PA50 Amplifiers GOLD A ppecifically designed for use with PA25 and PA50 Amplifiers GOLD AND SILVER OUTPUT UP TO I VOLT. Simple mounting. * FET9/4. Mono with built-in mic, mixer. Accepts any ceramic or * FETI54 STEREO. \\ Magnetic cart., input, tuner, tape, ete. Beautiful stereo sound.
Price \(£ 16.10 .0\) p.p. \(4 / 6\) \\ * I.C. STEREO \\ All facilities plus headphone socket without amplifiers. Uses IC's,
Price \(£ 24.0 .0\) p.p. \(5 / 6\) FOR QUALITY, PERFORMANCE AND PRICE \\ \\ \\ \section*{SIMPLICITY TO MOUNT-EASY TO USE-DESIGNED} \\ \\ \section*{SIMPLICITY TO MOUNT-EASY TO USE-DESIGNED} \\ At full power \(0.3 \%\) distortion. LOOK AT THE SPECIFICATIONS! \\ 25 WATT \& 50 WATT RMS SILICON AMPLIFIERS - Response-ldB \(11 \mathrm{c} / \mathrm{s}\) to \(100 \mathrm{kc} / \mathrm{s}\). - Short circuit proof PA 2510 transistor all silicon differential input 400 mV sensitivity. 25 watts Rms into 8 ohms. Supplied with edge connector harness PA 5012 transistor version 50 watts Rms into 3 to 4 ohms. Size \(5^{\prime \prime} \times 3^{\prime \prime} \times 4^{\prime \prime}\). \\ MU 442. Power supply for one or two PA 25 or one PA 50. PA 25 £7.10.0. p.p. \(4 /\)-. PA 50 £9.10.0. p.p. \(4 /\)-. M \(\cup 42\) £6. p.p. \(6 /\) PA 25 £7.10.0. p.p. \(4 /\)-. PA 50 E9.10.0. p.p. \(4 /\). Mectors and pluge. \\
}

\section*{TEST EQUIPMENT}

For Educational, Professionial and Home Constructors
special prices for quantities

\section*{HENRY'S LATEST CATALOGUE \\ SEND \\ 350 pages fully detailed and illustrated. All audio and electronics complete with \(10 /-\)
Price \(7 / 6\) p.p. \(2 /-\) \\ A must for the home constructor and professional engineer.}

\section*{FREE}
to schools, colleges and companies on written request.
SINCLAIR
SAVE £££'s
EQUIPMENT
PROJECT 60 PACKAGE DEALS
\(2 \times Z 30\) amplifier, stereo 60 pre-amp, PZ5 power supply. \&19.0.0. Carr. 7/6. Or with PZ6 power supply \(£ 21.0 .0\). Carr. 7/6. \(2 \times Z 50\) amplifier, stereo 60 pre-amp, PZ8 power supply,
£21.10.0. Carr. \(7 / 6\). Transformer for PZ8 \(59 / 6\) extra. Any of the above with Active £21.10.0. Carr. \(7 / 6\). Transformer for PZ8 \(59 / 6\) extra. Any of the above with Activ
Filter unit add \(97 / 6\) or with pair Q16 speakers add \(£ 16\). \({ }^{\text {New }}\) FM tuner \(£ 22.19 .6\).
YOU CAN SAVE 25\%
BRAND NEW AND FULLY GUARANTEED
SP25 Mk. III £12.10.0. AP75 £16.19.6.
SL65 B \(£ 14.9 .6\). SL72 B \(£ 25\). SL75 B \(£ 28\).

SL95 B \(£ 37.10 .0\). MP60 \(£ 10.19 .6\). MP610 £13.19.6.
SPECIAL OFFER. Above supplied with cartridge FREECOMPLETE LIST
9TAH/C diam. add \(£ 2\), magnetic 940 add \(£ 3\), G850 or AT66
ON REQUEST no. \(16 / 17\). 9TAH/C diam. add \(£ 2\), magnetic 940 add \(£ 3\), G850 or AT66
add \(£ 5\), with G800 add \(£ 7.10 .0\). De-luxe plinths and covers add \(\mathbb{1}\), with \(G 800\) add £7.10.0. De-luxe plinths and covers \(^{2}\)

 covers \(99 / 6\) p.p. \(6 /\).
Goldring \(G L 69 \mathrm{Mk}\). II fitted G800 with plinth/cover and cables. Price \(£ 35\) p.p. \(12 / 6\) SP25 fitted G800 with plinth/cover, cables etc., \(£ 20.19 .6\) p.p. \(10 /\)-. Mk. III \(£ 22.19 .6\). 2025T/C fitted 9TA H/C with plinth/cover, cables, etc., \&13.19.6 p.p. 10/.
MP60 (see above for cartridge) with plinth/cover, cables, etc., \(\{17.12 .6\) p.p. 10/-

\section*{HI-FI equipment to suit EVERYPOCKTI}
\(\star\) PA AND DISCOTHEQUE EQUIPMENT Complete range now in slock ready to use, light and modular equipment, special effects.
tComplete systems and individual units at special Call in for a demonstration when in London.
*Freel2-page stock/systems List No. 16/17. LOW CASH AND CREDIT/HP PRICES
(Credit terms for purchases from \(\mathbf{6 3 0}\)-callers only.)

\section*{ELECTRONIC ORGANS}

KMODERN ALL BRITISH TRANSISTORISED DESIGNS AVAILABLE AS KITS OR READY BUILT
*VENEERED CABINETS FOR ALL MODELS t 49 NOTE, 61 NOTE SINGLE MANUAL DESIGNS ALSO TWO MANUAL 49 NOTE *KITS AVAILABLE IN SECTIONS AS REQUIRED tHP and CREDIT SALE FACILITIES

VISIT THE
NEW
DEMONSTRATION ROOMS
(see below)

When in London call in and try for yourself.
*LET US quote for all your organ component requirements.

\section*{Electronic Organs. \\ P.A. \& Discotheque Centre \\ 309 EDGWARE ROAD, \\ LONDON, W. 2 \\ Tel: 01-723 6963}

METERS ERNEST TURNER \(800 \mu\) a METER. 60 \(\Omega\) movement, 2 case, eliptic Red-Green uncalibrated scale. 30/ each. Carriage Paid.

ERNEST TURNER \(5^{\prime \prime} \times 4^{\prime \prime} 0\)-Ima scaled in 50 equal divisions, mirror scale, chrome escutcheon. Quality instrumeht. 85/-. Carriage Paid.
\(5^{\prime \prime} \times 4^{\prime \prime} 0-100 \mu \mathrm{a} 1000 \Omega\). Mirrored scale, few only. 95/-. Carriage Paid.
ELECTROLYTIC CAPACITORS MULLARD. \(900 \mu \mathrm{~F} 100 \mathrm{v}\). heavy ripple screw terminats \(1 \frac{7^{\prime \prime}}{1^{\prime \prime}}\) dia. \(\times 3 \frac{1^{\prime \prime}}{2^{\prime \prime}}\)
 70/- per doz. \(10,000 \mu \mathrm{~F}\)
per doz. \(1250 \mu \mathrm{~F} 25 \mathrm{v}\). \(\mathrm{I}^{\prime \prime}\) dia. \(\times 2^{\prime \prime}\), \(10 /-\mathrm{ea}\)., \(90 /\) per doz. HUNTS \(1000 \mu \mathrm{~F} 50 \mathrm{v}\). \(1 \mathrm{l}^{\prime \prime}\) dia. \(\times 2^{\mu}, 5 /-\) ea. \(10,000 \mu \mathrm{~F}\) 6 v . \(1 \mathrm{l}^{\prime \prime}\) dia. \(\times 2^{*}\), \(6 /-\mathrm{ea} ., 60 /-\) per doz. \(16 \mu \mathrm{~F} 350 \mathrm{v}\). "*" \(\times\)

 \(3,6 /-\) ea., \(60 /-\mathrm{per}\) doz. \(32-32 \mu \mathrm{~F} 275\)
ea., \(100 \mu \mathrm{~F} 100 \mathrm{v}\). \(\mathrm{I}^{\prime \prime}\) dia. \(\times 2^{\prime}, 5 /-\mathrm{ea}\).
ERIE. Ceramicon capacitor. Type CHV4IIP. 500 P.F. 30 KV Size \(1.5^{*}\) dia. \(\times 1.44^{*}\) long. \(10 /-\mathrm{e}\) ach. Carriage Paid.

TIME ELAPSED REGISTER. 24v. D.C. Has a 5 digit readout plus dial reading I hour (601 min. div.) metering.
 65/-. Carriage Paid.

RELAYS
Perspex enclosed, plug in, with base. Type MQ \(308600 \Omega\) 24 r . \(4 \mathrm{c} / \mathrm{o}\). Size \(1 \frac{1}{4}^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime} \times \frac{3}{4 \prime \prime}^{\prime \prime}, 12 /-\mathrm{ea} ., 55 \mathrm{per}\) doz Type MQ \(50810,000 \Omega 100 \mathrm{v} .4 \mathrm{c} / \mathrm{o}, 10 /-\mathrm{ea} ., 90 /-\mathrm{per}\) doz Type MQ 208 150 \(\Omega\) 12v. 4c/o, \(13 / 6\) ea., \(\notin 6\) per doz. Carriage Paid. SIEMENS. Miniature, plug in, Perspex cover, \(1000 \Omega 6 / 12 \mathrm{v} .2 \mathrm{c} / 0,18 \times 1 \times 1\) plete with base. \(14 /\) - ea., \(\epsilon 7\) per doz. A.E. Perspex
enclosed, plug in, with base. \(50 \Omega 6 \mathrm{v} .2 \mathrm{c} / \mathrm{o}, 12 / 6 \mathrm{ea} .470 \Omega\) enclosed, plug in, with base. \(50 \Omega 6 \mathrm{v} .2 \mathrm{c} / \mathrm{o}, 12 / 6 \mathrm{ea} .470 \Omega\)
\(12 \mathrm{v} .4 \mathrm{c} / \mathrm{o}, 14 / 6 \mathrm{ea} .2780 \Omega 2 \mathrm{v} .4 \mathrm{c} / \mathrm{o}, 14 / 6 \mathrm{ea} .1260 \Omega 48 \mathrm{v}\). \(6 \mathrm{c} / \mathrm{o}, 16 / 6\) ea. CLARE. Sealed relay. Type RP3716G4 25/- ea. CLARE ELLIOTT. Sub-min \(675 \Omega\) 24v. Type WJ 2 c/o. Similar to above, \(340 \Omega 17.6 \mathrm{v}\). 15/-ea. Carriage Paid. MAGNETIC DEVICES. Sub-min 24v. 2 c/o \(\frac{3^{\prime \prime}}{\frac{3}{2}^{\prime \prime}} \times \frac{3}{1}^{\prime \prime} \times \mathrm{H}^{\prime \prime}\), 15/-ea. Carriage Paid. BOURNE. Trimpot sub-miniature relay 18 v . \(1000 \Omega\) I amp I c/o en
capsulated \({ }^{\prime \prime} \times 5 / 32^{\prime \prime} \times\) " \({ }^{\prime \prime}\) high. \(25 /-\) ea. SIEMENS. capsulated \(t^{\prime \prime} \times 5 / 32^{\prime \prime} \times{ }^{\circ \prime \prime}\) high. 25/- ea. SIEMENS.
High speed type 89 L . \(1700 \Omega+1700 \Omega\), \(12 / 6\) ea. DIAMOND "H" sealed relay. Type BRIISCIT-IC \(26 \mathrm{v} . ~\)
g \(50 \Omega\) c/o encapsulated in heavy brass case, glass sealed terminals. Robust. Perspex enclosed. \(12 / 6\)
Octal base 24 v . 2 HD c/o. Peal ea. E.R.G. \(1000 \Omega 6 \mathrm{v}\). D.C. I make encapsulated reed type. Size \(5^{\prime \prime} \times \frac{7}{7^{\prime \prime}} \times 1 \mathrm{l}^{\prime \prime}, 4\) for 20/-. SANGAMO
WESTON. Moving coil relay \(315 \Omega\) with with base, \(15 / \mathrm{e} \mathrm{ea}\). S.T.C. Midget sealed relay. Type
4190 EC . \(12 \mathrm{v} .140 \mathrm{ma} 170 \Omega\). Single \(H D\) mater F.I.R.E. Plug. \(40 \mathrm{ma} 170 \Omega\). Singe HD make, \(12 / 6\) ea silver LATCHMASTER Miniature relay \(6,12,24 \mathrm{v}\), D C On make one break 5 amp contacts. Once current is applied relay remains latched until input polarity is reversed. * dia. \(\times \mathbf{y}^{\prime \prime}\). Please state vertical or horizontal mount and voltage. Original cost \(£ 8\), now offered at \(32 / 6 \mathrm{ea}\) G.E.C. Sealed relay. Type M 1492. 24v. 670 \(\Omega\). New condition but ex-equipment. \(20 /-\)
\(80 \mathrm{v} .7600 \Omega\). New. Few only, \(25 /-\mathrm{ea}\)
HELLERMANN DEUTSCH. Type L26F18. Latching relay. Latch coil \(200 \Omega 26 \mathrm{v}\). D.C. Reset \(375 \Omega 6\) change over switching. A truly superb relay. Measuring only I */" \(\times\) I" dia. 75/- ea. Limited stock.
KNOWLE (U.S.A.) MINIATUREMICROPHONE CAPSULES. Impedance approx. 200 \(\Omega\), output 60 or

We welcome orders from established companies, educational depts., etc. (To cover invoicing costs minimum 50/-, please.) A discount of \(10 \%\) may be minimum \(50 \%\), please.) A discount of \(10 \%\)

\section*{Hectiritich Salle}

BUSINESS HOURS:
9.30-6 (1 p.m.Sats.)

\section*{Your choice of Live SocketsInstantly! \\ A Lexar DIS-BOARD gives you up to 6 sockets from one power outlet. Portable or permanent fixing, compact unity safety neon. Over 1,000 socket
combinations available from stock. All types of fittings and finishes. \\ brochure from \\ brochure from
LEXOR DIS-BOARDS LIMITED, Allesley Old Road, Coventry Allesley Old Road, Coventry
Telephone 72614 or 72207}

\section*{VITAVOX}

FOR HIGH QUALITY
MICROPHONES LOUDSPEAKERS

\section*{and ancillary equipment}

Further information from:
VITAVOX LTD., Westmoreland Rd., London, NW9 5YB
(Tel: 01-204 4234)

BRAND NEW and in original cases-A.C. mains input. 110 V or 250 V . Freq. in 6 bands \(535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}\). Output impedance \(2.5-600\) ohms. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control, R.F. \& A.F. variable controls. Price £87/10/each, carr. £2.
Same model as above : Fully Recond. by M.O.D. £65. ea., or sec. hand cond. (guaranteed working order) from \(£ 45\) to \(£ 60\), carr, \(£ 2\).
*SET OF VALVES : new, \(£ 3 / 10 /-\) a set, post \(7 / 6\); SPEAKERS: new, \(£ 3\) each, post \(10 /-\) *HEADPHONES: new, \(£ 1 / 5 /-\) a pair, 600 ohms impedance. Post 5/-.
AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L55. Price \(10 /-\) each, post \(2 / 6\). RF Coils \(13 \& 14\); \(17 \& 18 ; 23 \& 24\); and 27 and 28 . Price \(12 / 6\) each. \(2 / 6\) post. By-pass Capacitor K. \(98034-1\), \(3 \times 0.05 \mathrm{mfd}\). and M.980344, \(3 \times 0.01 \mathrm{mfd}\)., 3 for \(10 /-\), post \(2 / 6\). Trimmers \(95534-502,2-20\) p.f. Box of \(3,10 /-\), post \(2 / 6\). Block Condenser, \(3 \times 4 \mathrm{mfd}\)., 600 v ., £2 each, 4/- post. Output transformers \(901666-501\) 27/6 each, 4/- post.

\section*{FOR EXPORT ONLY}

\section*{BRITISH G AMERICAN} COMMUNICATION EQUIPMENT

VRC.19X Trans-ceiver, \(150-170 \mathrm{Mc} / \mathrm{s}, 2\) Channel, 20 Watts, Output \(12 / 24 \mathrm{~V}\) d.c. operation. General Electric Transmitter, \(410-419 \mathrm{Mc} / \mathrm{s}\), thin line tropo scatter system, with antennae. W.S. Type 88 , Crystal controlled, \(40-48 \mathrm{Mc} / \mathrm{s}\). W.S. Type \(\mathrm{HF-156}, \mathrm{Mk}\). II, Crystal controlled, \(2.5-7.5 \mathrm{Mc} / \mathrm{s}\). W.S. Type 62 , tunable, \(1.5-12\) \(\mathrm{Mc} / \mathrm{s} . \mathrm{C} .44\), Mk. II, Radio Telephone, Single Channel, \(70-85 \mathrm{Mc} / \mathrm{s}, 50 \mathrm{watts}\),
output, 230 V . a.c. input. G.E.C. Progress Line Tx Type DO36, \(144-174 \mathrm{Mc} / \mathrm{s}\), output, 230 V . a.c. input. G.E.C. Progress Line Tx Type DO36, \(144-174 \mathrm{Mc} / \mathrm{s}\),
50 watt, narrow band width. A.C. input 115 V . BC- \(640 \mathrm{Tx}, 100-156 \mathrm{Mc} / \mathrm{s}\), 50 50 watt, narrow band width. A.C. input 115 V . BC-640 Tx, \(100-156\) Mc/s, 50 watt output, 110 V or 230 V input. STC Tx/Rx Type 9X, TR1985; RT1986; TR1987 and TR1998, \(100-156 \mathrm{Mc} / \mathrm{s}\). TRC-1 TX/RX, Types T. 14 and R. 19 , FM \(60-90 \mathrm{Mc} / \mathrm{s}\). With associated equipment available. Redifon GR . SSB, 1.5-20 Mc/s. Sun-Air Tx/Rx Type T-10-R. Colins Tx/Rx/ ype 18S4A. Collins Tx/Rx Type ARC-27, \(200-400 \mathrm{Mc} / \mathrm{s}\), 28 . d.c. \(375 ; 433 \mathrm{G} ; 348 ; 718 ; 458\); \({ }^{\text {available. ARC-5; ARC-3; and ARC-2 }}\) Tx/Rx. Directional F:nding Equipment CRD. 6 and FRD. 2 complete Sets available and spares. Complete system with full set of Manuals.

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. \(85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}\) in 8 ranges. Incremental: \(\pm 1 \%\) at \(1 \mathrm{Mc} / \mathrm{s}\). Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms \(100 \mathrm{mV}-1\) volt -52.5 ohms. Internal Modulation: \(400 \mathrm{c} / \mathrm{s}\) sinewave \(75 \%\) depth. External Modulation: Direct or via internal amplifier. A.C. mains \(200 / 250 \mathrm{~V}\), \(40-100 \mathrm{c} / \mathrm{s}\). Consumption approx. 40 watts. Measurements \(194 \times\) \(124 \times 10 \mathrm{in}\). Secondhand condition. \(£ 25\) each, carr. 30/-.

TRIPLETT SIGNAL GENERATOR Model 1632: Contains an R.F. Oscillator calibrated in 10 fundamental bands, covering a freq. of \(100 \mathrm{Kc} / \mathrm{s}-\) \(120 \mathrm{Mc} / \mathrm{s}\). Also a buffer amplifier and modulator stage, a metering system, crystal Oscillator stage, and a self-contained Heterodyne Detector. The wide
frequency ranze covers broadcast, standard short-wave, T.V. and FM channels. frequency range covers broadcast, standard short-wave, T.V. and FM channels. Operates 115 V a.c. \(50 / 60 \mathrm{c} / \mathrm{s}\). Output Meter 0-0.3 V. Controls: Ext. Mod.
Int. Mod.; CW ; Het. Det.; Xtal.; AFO/put; RF Level; O/put Units; and Int. Mod.; CW, Het. Det. ; Xtal.; AFOput; RF Level; 0 put Units; and O/put Multiplier. Slow and Fast motion diarr. 15/-

SOLARTRON PULSE GENERATOR GP1101.2: Period- \(\mathbf{2}\) microsecs to 100 msec ; Pulse Duration- 1 microsec to 100 msec ; Delay time- 1 microsec to 10 msec . All continuously variable in 5 ranges with fine control. Accuracy in 4 ranges with fine control Double Pulses; Pre-Pulse: Triggering variable Wave O/put; Squaring Amplifier. Input-100-250V, 50-60 c/s. New condition with Manual. Price: \(\mathbf{8 5 . 0 . 0}\) each \(+£ 1.5 .0\) carr.

SPECTRUM ANALYZER MODEL TSA: (Polarad Electronics Corp.). A general-purpose superheterodyne receiver designed to provide a visual equipment includes determining the presence and measuring the frequency of RF Signals, determining the types of RF signal modulation, observing and measuring sidebands associated with modulated signals, determining RF pulse characteristics by spectrum analysis, checking the operation of pulsed magnetron oscillators, measuring noise spectra and checking the frequency difference between adjacent RF signals. RF signals are displayed on a cathode ray tube screen with amplitude plotted as a function of frequency. Complete With RF Tuning Unit type STU-2: Freq. Range- \(910-4560 \mathrm{Mc} / \mathrm{s}\). Sensitivity: -880 M 60 . \(1980-4560 \mathrm{Mc} / \mathrm{s}\) per sec
\(\mathbf{£ 1 5 0 . 0 . 0}\) each +£ 2 carr.

SIGNAL GENERATOR TS-510A/U: (Hewlett Packard). A generalpurpose signal generator designed to furnish signals with a very low spurious energy content, suitable for alignment of narrow-band amplitude modulated receivers. It may be amplitude modulated by internally generated sine waves or by externally applied sine waves or pulses. Freq. Range-10-420 Mc/s in 5 bands, \(\pm 0.5 \%\) accuracy. Emission-AM, CW, Pulse. O/put Voltage-0.1V0.5 V , calibrated \(\pm 2 \mathrm{db}\) accuracy. Modulation-Internal \(400,1000 \mathrm{c} / \mathrm{s}\) (0 \(90 \%\)). Built-in Crystal calibrator (\(1,5 \mathrm{Mc} / \mathrm{s}\)). Price: \(£ 150.0 .0\) each, complete with transit case, manual and all leads; OR £125.0.0 each, Sig. Gen. only
Carr. both types \(£ 2\).

SIGNAL GENERATOR TS-403B/U (or URM-61A): (Hevelett Packard) A portable, self-contained, general-purpose test equipment designed for use with radio and radar receivers and for other applications requiring small amounts of RF power such as measuring standing-wave ratios, antenna and and power are indicated on direct-reading dials. \(115 \mathrm{~V}, \mathrm{AC}, 50 \mathrm{c} / \mathrm{s}\). Freq \(1800-4000 \mathrm{Mc} / \mathrm{s}\). CW, FM, Modulated Pulse- \(40-4000\) pulses per sec. Pulse Width-0.5-10 microsecs. Timing-Undelayed or delayed from 3-300 microsecs from external or internal pulse. O/put-1 milliwatt max., 0 to - 127 db variable. O/put Impedance-50 \(\Omega\). Price: \(£ 120.0 .0\) each \(+£ 2\) carr.

SIGNAL GENERATOR TYPE 902: (P.R.D.). A portable, general-purpose, broadband, microwave signal generator designed for testing and maintenance of aircraft radio and radar receivers in the SHF band. The RF output level is regulated by a variable attenuator calibrated in dbm. The frequency dial is calibrated in Mc/s. Provision is made for external modulation. Power Supply\(115 \mathrm{~V}, \pm 10 \%\) A.C., \(50 \mathrm{c} / \mathrm{s}\). Freq. \(-3650-7300 \mathrm{Mc} / \mathrm{s}\). Internal TransmissionCW, Pulse, FM. External Transmission-Square Wave, Pulse. Power O/put-

TEST SET TS-147C: Combined signal generator, frequency meter and power meter for \(8500-9600 \mathrm{Mc} / \mathrm{s}\). CW or FM signals of known freq, and power or measurement of same. Signal Generat. Mc , s per microsec. Deviation\(40 \mathrm{Mc} / \mathrm{s}\) per sec. Phase Range- \(3-50 \mathrm{mic}\) rosec. Pulse Repetizion Rate-to 4000 pulses per sec. RF Trigger for Sawtooth Sweep-5-501 watts peak 0.2-6 microsec. duration, 0.5 microsec pulse rise time. Video Trigger for
 \(10 \%\) max. amplitude, less than 0.5 microsec rise time between \(90 \%\) and \(10 \%\) max. amplitude points. Frequency Merer: Freq. \(8470-9360 \mathrm{Mc} / \mathrm{s}\). Accuracy\(+2.5 \mathrm{Mc} / \mathrm{s}\) per sec . absolute, \(+1.0 \mathrm{Mc} / \mathrm{s}\) per sec . for freq. increments of less
than \(60 \mathrm{Mc} / \mathrm{s}\) relative, \(+1.0 \mathrm{Mc} / \mathrm{s}\). than \(60 \mathrm{Mc} / \mathrm{s}\) relative, \(\pm 1.0 \mathrm{Mc} / \mathrm{s}\) per sec. at \(9310 \mathrm{Mc} / \mathrm{s}\) per sec. calibration point. Accuracy measured at 25 and 00 humidity. Power Meter: Input : +7
to +30 dbm . Output 7 to 85 dbm . Price: \(\mathbf{~} 75.0 .0\) each \(+£ 1\) carr

SIGNAL GENERATOR TS-418/URM49: Covers \(400-1000 \mathrm{Mc} / \mathrm{s}\) range CW, Pulse or AM emission. Power Range-0-120 dbm. Price: \(\mathbf{\$ 1 0 5 . 0 . 0}\) each + £1.5.0 carr.

SIGNAL GENERATOR TS-419/URM64: Freq. 900-2100 Mc/s. CW or Pulse emission. Accuracy-freq. \(\pm 1 \%\). Power \(\pm 2 \mathrm{db}\). Price: \(£ 125.0 .0\) each \(+£ 1.5 .0\) carr.

TELEMETRY AUDIO OSCILLATOR TYPE 200T: (Hewlett Packard) Freq. \(-250 \mathrm{c} / \mathrm{s}-100 \mathrm{Ke} / \mathrm{s} .5\) over-lapping bands. High stability. O/put 160 mw or 10 V into \(600 \Omega\). Price: \(£ 65.0 .0\) each \(+£ 1.5 .0\) carr
SIGNAL GENERATOR TS-497B/URR: (Boonton). Freq. \(2-400 \mathrm{Mc} / \mathrm{s}\) in 6 bands. Internal Mod. 400 or \(1000 \mathrm{c} / \mathrm{s}\) per sec. External Mod. 50 to \(10,000 \mathrm{c} / \mathrm{s}\) per sec. External PM. Percent Mod. 0-30 for sine wave. Am or Pulse Carrier Price: \(£ 85.0 .0\) each \(+£ 1.10 .0\) carr.

FREQUENCY METER TS-74 (same TS-174): Heterodyne crystal controlled. Freq. \(20-280 \mathrm{Mc} / \mathrm{s}\). Accuracy \(.05 \%\). Sensitivity 20 mV . Internal Mod. at \(1000 \mathrm{c} / \mathrm{s}\). Power Supply-batteries 6 V and 135 V . Complete with calibration book. (Manufactured for M.O.D. by Telemax. "As new" in cartons.) £75.0.0 each. Fully stabilised Power Supply available at extra cost \(£ 7.10 .0\) each
Carr. \(£ 1.10 .0\). Carr. £1.10.0.

CT. 54 VALVE VOLTMETER: Portable battery operated. In strong metal case with full operating instructions. \(2.4 \mathrm{~V}-480 \mathrm{~V}\). A.C. or D.C. in 6 Ranges \(1 \Omega\) to \(10 \mathrm{Meg} \Omega\) in 5 Ranges. Indicated on 4 in. scale meter. Complete with probe excellent condition. £12.10.0. Carr. 15/-

ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C. @ 1.8 amps, \(400 \mathrm{c} / \mathrm{s} 3\) phase, \(\mathrm{E} 6 / 10 /-\) each, \(8 /-\) post. 24 v D.C. input, 175 v D.C. @ 40 mA output, \(25 /\)-each, post \(2 /-\)
CONDENSERS: \(40 \mathrm{mfd}, 440\) v A.C. wkg., 55 each, \(10 /-\) post. \(30 \mathrm{mfd}, 600 \mathrm{v} \mathrm{wkg}\) D.C., £3/10/- each, post \(10 /-.15 \mathrm{mfd}, 330\) v A.C. wkg., \(15 /-\) each, post \(5 /-.10 \mathrm{mfd}\), \(1000 \mathrm{v}, 12 / 6 \mathrm{each}\), post \(2 / 6.10 \mathrm{mfd}, 600 \mathrm{v}, 8 / 6\) each, post \(5 /-.8 \mathrm{mfd} .2500 \mathrm{c5}+\) \(12 / 6\) carr. \(8 \mathrm{mfd}, 1200 \mathrm{v}, 12 / 6 \mathrm{each}\), post \(3 /-.8 \mathrm{mfd}, 600 \mathrm{v}, 8 / 6 \mathrm{each}\), post \(2 / 6\) \(4 \mathrm{mfd}, 3000 \mathrm{v}\) wkg., \(\mathrm{£3}\) each, post \(7 / 6.4 \mathrm{mfd} 2000 \mathrm{v} . £ 2+5 /-\) post. 4 mfd .600 v 2 for \(£ 1.0 .25 \mathrm{mfd}, 2 \mathrm{Kv}, 4 /-\) each, \(1 / 6\) post. 0.01 mfd . MICA 2.5 Kv . Price \(£ 1\) for 5 . Post \(2 / 6\). Capacitor: \(0.125 \mathrm{mfd}, 27,000 \mathrm{v}\) wkg. \(\mathbf{x 3} 3.15 .0 \mathrm{each}, 10 /\) post.
TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec 6,000 ohms. Price \(25 /-\), post \(5 /\).
SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, £2/10/- each post \(6 /\).
CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps., £2/10/- each, carr. \(12 / 6\). OHMITE VARIABLE RESISTOR: 5 ohms, \(5 \frac{1}{2} \mathrm{amps}\); or 2.6 ohms at 4 amps . Price (either type) \(£ 2\) each, \(4 / 6\) post each.
TX DRIVER UNIT: Freq. \(100-156 \mathrm{Mc} / \mathrm{s}\). Valves \(3 \times 3 \mathrm{C} 24\) 's; complete with filament transformer 230 v . A.C. Mounted in 19 in . panel, \(£ 4 / 10 /\)-each, \(15 /\) - carr. POWER SUPPLY UNIT PN-12A: 230V a.c. input \(50-60 \mathrm{c} / \mathrm{s}\). 513 V and 1025 V @ 420 mA output. With 2 smoothing chokes \(9 \mathrm{H}, 2\) Capacitors, 10 Mfd 1500 V and 10 Mrd 600 V . Filament Transformer 230 V a.c. input. 4 Rectifying Valves type \(5 Z 3\). on steel base \(19^{\prime}\) Wxl \(1^{\prime \prime} H x 14^{\prime \prime}\) D. (All connections at the rear.) Excellent condition £6.10.0. each, Carr. £1.
AUTO TRANSFORMER: \(230-115 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}, 1000\) watts. mounted in a strong steel case \(5^{\prime \prime} \times 6 \frac{1}{2}^{\prime \prime} \times 7^{\prime \prime}\). Bitumin impregnated. £5 each, Carr. 12/6. 230-115V, \(50-60 \mathrm{c} / \mathrm{s}\), 500 watts. \(7^{\prime \prime} \times 5^{\prime \prime} \times 5^{\prime \prime}\). Mounted in steel ventilated case. \(£ 3\) each, Carr. 10/-
POWER UNTT: 110 v. or 230 v . input switched; 28 v. @ 45 amps . D.C. output. Wt. approx. 100 lbs., \(£ 17 / 10 /-\) each, \(30 /-\) carr. SMOOTHING UNITS suitable for above \(£ 7 / 10\) !- each, \(15 /\) - carr.
MODULATOR UNIT: 50 watt, part of BC-640, complete with \(2 \times 811\) valves, microphone and modulator transformers etc. \(\mathbf{8 7 / 1 0} /-\) each, \(15 /\) - carr

CANADIAN HEADSET ASSEMBLY: Moving coil headphones \(100 \Omega\), with chamois leather earmuffs. Small hand microphone complete with switch and moving coil insert. New condition. Price 35/- each, post 5/-
CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG1 (CV1526) colour reen, medium persistence complete with nu-metal screen, \(\mathbf{x 3 / 1 0} /=\) each, post \(7 / 6\). APNI ALTIMETER TRANS./REC., suitable for conversion \(420 \mathrm{Mc} / \mathrm{s}\)., complete with all valves 28 v. D.C. 3 relays, 11 valves, price \(£ 3\) each, carr. 10/-. ANTENNA WIRE: 100 ft . long. \(15 /-+5 /-\) post
APN-1 INDICATOR METER, \(270^{\circ}\) Movement. Ideal for making rev. counter 25/- each, 5/- post.
VARIABLE POWER UNIT: Complete with Zenith variac 0-230V., 9 amps . \(2 \frac{1}{2} \mathrm{in}\). scale meter reading \(0-250 \mathrm{~V}\). Unit is mounted in 19 in . rack. £15 each, \(30 /-\) carr.
AIRCRAFT SOLENOID UNIT D.P.S.T.: 24V, 200 Amps, \(£ 2\) each, 5/- post RADAR SCANNER ASSEMBLY TYPE 122A: Complete with parabolic reflector, (24 in. diameter), meters, suppressors, etc. £ 35 each, £2 carr.
DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms. Tolerance \(\pm 1 \% \mathrm{f} 3\) each, \(5 /\)-post. 90 ohms per step. 10 positions

MARCONI DEVIATION TEST SET TF-934: \(2.5-100 \mathrm{Mc} / \mathrm{s}\) (can be extended up to \(500 \mathrm{Mc} / \mathrm{s}\) on Harmonics). Dev. Range \(0-75 \mathrm{Kc} / \mathrm{s}\) in modulation range \(50 \mathrm{c} / \mathrm{s}\) 30/- carr
CRYSTAL TEST SET TYPE 193: Used for checking crystals in freq. range \(3000-10,000 \mathrm{Kc} / \mathrm{s}\). Mains \(230 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}\). Measures crystal current under oscillatory conditions and the equivalent parallel resistance. Crystal freq. can be tested in onjunction
LEDEX SWITCHING UNIT: 2 ledex switches, 6 Bank and 3 Bank respectively, 6 Pos.; 1 Manual switch, 16 Bank 2 Pos. \(£ 4\) each, \(10 /\) - post.

GEARED MOTOR: 24v. D.C., current 150 mA , output \(1 \mathrm{rpm}, 30 /-\mathrm{each}\), potentiometer, 3 rpm , \(\mathbf{e} 2\) each, \(5 /-\) post. SYNCHROS: and other special purpose motors available. List 6d.

FUEL INDICATOR Type 113R: 24V complete with 2 magnetic counters \(0-9999\), with locking and reset controls mounted in 3in. diameter case. Price £2 each, 5/- post.

COAXIAL TEST EQUIPMENT: COAXWITCH-Mnftrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type " \(N\) " female connectors fitted to receive UG-21/U series plugs. New in ctns., \(\mathbf{x} 6 / 10 /-\) each, post 7/6. CO-AXIAL SWITCH-Mnftrs. Transco Products Inc., Type M1460-22, 2 pole, 2 throw. (New) \(£ 6 / 10 /-\) each, \(4 / 6\) post. 1 pole, 4 throw, Type M1460-4. (New) £6/i0/- each, 4/6 post.
PRD Electronic Inc. Equipment: FREQUENCY METER: Type 587-A, \(0.250-1.0 \mathrm{KMC} / \mathrm{SEC}\). (New) £75 each, post 12/6. FIXED ATTENUATOR Type \(130 \mathrm{c}, 2.0-10.0 \mathrm{KMC/SEC}\). . (New) 15 each, post 4/-. FIXED ATTENU
ATOR: Type \(1157 \mathrm{~S}-1\), (new) \(\mathbf{x} 6\) each, post \(5 /-\).

CT. 381 FREQUENCY SWEEP SIGNAL GENERATOR: \(85 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}\) and esponse curve indicator with 6 in . CRT tube and separate power supply. Fully stabilised. Price and further details on request.

\section*{Bl-PRE-PAK} LIMITED
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{FULLY TESTED AND MARKED} \\
\hline AC107
AC126 & 3/6 & OC170
OC171 & 4/6 \\
\hline AC127 & 3/6 & OC200 & 3/6 \\
\hline \({ }_{\text {ACl }}^{\text {ACl16 }}\) & 2/6 & \({ }^{\circ} \mathrm{OC201}\) & \% \\
\hline ACY17 & 3/- & 26303 & 2/6 \\
\hline BC154 & 5/- & 2 N 11 & 10/- \\
\hline BC171-BC107 & 2/6 & 2N1302-3 & 4/- \\
\hline BC172=BC108 & \({ }^{2 / 6}\) & 2N1304-5 & 5 5/- \\
\hline \({ }_{\text {BF }}^{\text {BF2 } 194}\) & 3/- & 2N1306-7
2 N1308-9 & 8/- \\
\hline AF239 & 7/6 & 2N3819F.ET. & 9/. \\
\hline AF 186
AF139 & 10/6 & \({ }_{\text {Prewer }}^{\text {Prans }}\) & \\
\hline BFY50 & & OC2O & 10/- \\
\hline - SY 25 & 7/6 & OC23 & 10/- \\
\hline BSY26
BSY27 & \(3 /\). & OC25 & 5 \\
\hline BSY27 & 3/-1 & & 7/6 \\
\hline BSY29 & 3/- & OC35 & , 5/- \\
\hline - \({ }_{\text {BYY95A }}^{\text {OC41 }}\) & 3/6, & OC36
AD 149 & 7/6
1016
101 \\
\hline \(\bigcirc{ }^{\text {OC4 }} 4\) & 2/6 & & 10/- \\
\hline OC45 & 2/6 & 2 N 2287 & 20/- \\
\hline 0 C 71 & \(2 / 6\) & 2N3055 & 15/- \\
\hline - 072 & 2/6 & Diodes & \\
\hline - \({ }_{\text {OC73 }}^{\text {OC8? }}\) & 3/868 & AAY42 & 2/- \\
\hline \(\bigcirc{ }^{\circ} \mathrm{CB} 11^{\circ}\) & 2/6 & OA79 & 1/9 \\
\hline OC139
OC140 & +2/6 & OAB14
in914 & 1/9 \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{PACKS OF YOUR OWN CHOICE UP TO the value of 10/- With orders}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{THE VALUE OVER E4} \\
\hline
\end{tabular}

CLEARANCE LINES
DON'T MISS THIS LAST CHANCE, ONLY A FEW LEFT.
UHF/VHF T.V. TUNER UNITS TU. 2 CONTAINING 2 AF186's \& 2 AF178's PRICE 10/

P\&P 2/6 EACH UNIT
All the units have many other components. e.g. Capacitors. Resistors, Coils and tuning condensers, etc. Although these are manulacturers reject or proven by many of our customers.

ALL TUNER UNITS ARE SUPPLIED WITH CONNECTION DATA.
COLOUR T.V. LINE OUTPUT TRANSFORMERS.
Designed to give \(25 \mathrm{~K} . \mathrm{V}\), when used with PL509 and PY500 valves. As removed from colour receivers at the factory
ONLY f1 each ost and packing \(4 / 6\)

\section*{PECIAL LINE}

AMP. Briage rectifiers …................... Square.
100 PIV. \(=5 /-\quad 400\) PIV. \(=6 / 6 \quad 800\) PIV. \(=8 /-\)
1970 MULLARD DATA BOOKS.
Data and equivalents on semiconductors, valves and tubes.

PRICE 4/- P8P

\section*{BUMPER BUNDLES}

These parcels contain all types of surplus electronic components. Printed panels, switches potentiometers diodes transistors Post \(\&\) Packing \(4 / 6\)

\section*{OUR VERY POPULAR 6d TRANSISTORS} FULLY TESTED \& GUARANTEED

TYPE " \(A\) "
PNP Silicon alloy, metal To-5 can. \(2 S 300\) type, direct replacement for the OC200/203 range

TYPE "B' PNP Silicon plastic encapsulation, low voltage but good gain, these are of the 2N3702/3 and 2N4059/62 range.

TYPE "D NPN Silicon planar PLASTIC TO-18CASE. Audio preamplifier or 500 mV output stage of the BC113/4/5. the BC1 13/4/5
range.

TYPE "E
PNP Germanium af OR RF
please state on order. Fully marked and tested.

NEW UNMARKED UNTESTED PAKS
\begin{tabular}{|c|c|c|c|}
\hline 880 & 8 & Dual Trans. Matched \(0 / P\) pairs NPN. Sil. in TO-5 can & 10/- \\
\hline 883 & 200 & Trans. manufacturer's rejects all types NPN, PNP. Sil. and Germ & 10/- \\
\hline 884 & 100 & Silicon Diodes DO-7 glass equiv. to OA200. OA202 & 10/- \\
\hline 886 & 50 & Sil. Diodes sub. min. IN914 and IN916 types & 10/- \\
\hline B88 & 50 & Sil. Trans. NPN, PNP, equiv. to OC200/1. 2N706A. BSY95A. etc. & 10/- \\
\hline 860 & 10 & 7 watt Xener Diodes Mixed Voltages & 10/- \\
\hline н6 & 40 & 250 mW Zener Diodes DO. 7 Min. Glass Type & 10/- \\
\hline H10 & 25 & Mixed volts, \(1 \frac{1}{2}\) watt Zeners. Top hat type & 10/- \\
\hline B66 & 150 & Germanium Diodes min. glass type & 10/- \\
\hline H15 & 30 & Top Hat Silicon Rectifiers. 750 mA . Mixed volts & 10/- \\
\hline H16 & 8 & Experimenters' Pak of Integrated Circuits. Data supplied & 10/- \\
\hline H20 & 20 & BY 126/7 Type Silicon Rectifiers. 1 amp plastic. Mixed volts & 10/- \\
\hline
\end{tabular}
NEW TESTED \& GUARANTEED PAKS

\begin{tabular}{llll}
B81 & 10 & \begin{tabular}{l}
REED SWITCHES MIXED \\
TYPES LARGE \& SMALL
\end{tabular} & \(\mathbf{1 0 / -}\)
\end{tabular}

\begin{tabular}{lll}
\\
B93 & GET113 TRANS. EQUIV. TO \\
ACY17-21 PNP GERM. & \(\mathbf{1 0} /-\) \\
\hline
\end{tabular}

XB112 \& XB102 EQUIV. TO AC126
B98 \(10 \begin{aligned} & \text { AC156, OC81/2, OC71/2, NKT271, } \\ & \text { ETC. }\end{aligned}\) 10/-
\begin{tabular}{|c|c|c|c|}
\hline 899 & 200 & mixed capacitors. post \& packing 2i6. APPROX QuANTITY. COUNTED BY WEIGHT. & 0/- \\
\hline H4 & 250 & MIXED RESISTORS. POST \& PACKIMG 2 2APPRDX QuANTITY. COUNTED BY WEIGHT & 10/- \\
\hline H7 & 40 & WIREWOUND RESISTORS MIXED TYPES \& VALUES. POSTAGE \(1 / 6\) & 10/- \\
\hline H8 & 4 & BY127 Silicon Recs. 1000 P.I.V. I amp
Plastic. Replaces the BY 100 & 10/- \\
\hline H9 & 2 & OCP71 LIGHT SENSITIVE PHOTOTRANSISTORS & 10/- \\
\hline
\end{tabular}

Return of the unbeatable P. 1 Pak. Now greater value than ever

Full of Short Lead Semiconductors \& Electronic Components. approx. 170. We guarantee at least 30 really high quality factory marked Transistors PNP \& NPN, and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.

Please ask for Pak P.1. Only 10/-
2/-P \& P on this Pak.
Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any \(0-1 \mathrm{~mA}\) meter into a perfectly linear and accurate re \(\qquad\)
FREE CATALOGUE AND LISTS for: -

\section*{ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSIITUTION CHART}

MINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add \(1 /\) - post and packing per order. OVERSEAS ADD EXTRA FOR postage
P.O. RELAYS

VARIOUS CONTACTS AND COIL RESISTANCES.
NO INDIVIDUAL SELECTION.
POST \& PACKING 5/

8 for

EREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

DEPT. B, 222-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX TELEPHONE: SOUTHEND (0702) 46344

This superb stereo system is a real price breakthrough. It comprises the VISCOUNT F.E.T. Mk I amplifier on which full details are given below: the famous Garrard. SP 25 (including teak veneer base and transparent cover) with diamond carrridge or 2025.TC and the very successful DUO type 2 speakers.

Measuring \(17 \frac{1}{2}: 10_{4}, 6_{4}^{3}\). the Duo type 2 speakers are beautifully finished in leak veneer. They incorporate a \(10_{2}^{1}{ }_{2}^{\prime \prime} \quad 6_{4}^{1+}\) drive unit and high frequency speaker, both of which are of 3 olms impedance. The Duo speaker system is also available separately at £66.0. each plus \(15-\) P \& P Complete stereo system \(£ 41\) plus WITH MK II amplifier and magnetic cartridge \(\mathbf{E} 45 \mathrm{plus} \mathrm{t} 2.10 \mathrm{P} \& \mathrm{P}\)

High fidelity transistor stereo amplifier employing field effect transistors. With this feature \& accompanying guaranteed specifications below, the Viscount F.E.T. vastly surpasses amplifiers costing far more. Size: 12\(\}^{\prime \prime} \times 6^{\prime \prime} \times 2 a^{\prime \prime}\) in simulated teak case.

BUILT \& TESTED
Mk II (MAG. P.U.) £15.15.0 plus 10/- p\&p Specification same as Mk. I, but with the following inputs.
Mag. P.U. CER. P.U. Tuner. Spec. on Mag. P.U. 3mV @ 1 kHz input impedance 47 K . Fully equalised to within \(+\quad 1 \mathrm{~dB}\) RIAA. Signal to noise ratio- 65 dB (vol

Specification: Output per channel 10 watts r.m.s Frequency bandwidth 20 Hz to \(20 \mathrm{kHz} \pm 1 \mathrm{~dB}\) (@) 1 watt.
Total distortion: @ 1 kHz @ 9 watts 0.5\%
Input sensitivities: CER, P.U. 100 mV into 3 meg ohms Tuner 100 mV into 100 K ohms. Tape 100 mV into 100 K ohms.

Overload Factor: Better than 26 dB .
Signal to noise ratio: 70 dB on all inputs (with vol. max).
Signal to noise ratio: 70 dB on all inputs (with vol. max).
Controls: 6 position selector switch (3 pos. stereo \&
3 pos. monol. Separate Vol. controls for left \& right 3 pos. monol. Separate Vol. controls for left \& right
channels. Bass \(\pm 14 \mathrm{~dB}\) @ 60 Hz . Treble (with D.P.S. on/off) \(\pm 12 \mathrm{~dB}\) @ 10 kHz . Tape Recording output sockets on each channel.

\section*{SOUND 50}

\section*{SOUND 50 AMPLIFIER AND SPEAKER SYSTEM}
\(\begin{aligned} & \text { The Sound Fifty valve amplifier and speakers are sturdity } \\ & \text { constructed with smert housings and thoroughly tasted }\end{aligned}\)
\(\begin{aligned} & \text { constructed with smart housings and thoroughly tasted } \\ & \text { electronics. They are dasigned to last-to withstand the }\end{aligned}\)
\(\begin{aligned} & \text { electronics. They are designed to last-to withstand the } \\ & \text { knocks and bumps of life on the road. Buih for the } s \text { mall }\end{aligned}\)
\(\begin{aligned} & \text { knocks and bumps of life on the road. Buih for the small } \\ & \text { and medium sized gig, they are easy to handle and quick }\end{aligned}\)
\(\begin{aligned} & \text { and medium sized gig, they ara aasy to handle and quick } \\ & \text { to set up and can be relied upon to come over with all }\end{aligned}\)
the quality and power you need.
Output Power: 45 watts R.M.S. (Sine wave drive). Frequency
response. -3 dh points 30 Hz at 18 KHz Taral distortion:
less than \(2 \%\) at rated output. Signal to noise ratio: better
than 60 db . Speaker Impedance: 3. 8 or 15 ohms. Bass
Control Range: \(\pm 13 \mathrm{db}\) at 60 Hz . Treble Control Range:
\(\pm 12 \mathrm{db}\) at 10 KHz . Inputs: 4 inputs at 5 mV into 470 K .
Each pair of inputs controlled by sepaate volume control.
2 inputs at 200 mV into 470 K .
To protect the output valves, the incorporated fail safe
circuit will enable the amplifier to be used at half power
SPEAKERS: Size \(20^{\prime \prime} \times 20^{\prime \prime} \times 10^{\prime \prime}\) incorporating Baker's
12 " heavy duty 25 watt high flux, quality loudspeaker with
cast frame. Cabinets attractively finished in two tome
colour scheme-Black and grey.

The Dorset (600 mW)
7-transistor fully tunable M.W.-L.W. superhet portable with baby alarm facility. Set of parts. The makes this simple to build Sizes: \(12 \times 8 \times 3 \mathrm{in}\). MAINS POWER PACK KIT: \(9 / 6\) extra. Price \(\mathbf{£ 5 . 5 . 0}\) plus \(7 / 6\) P. \& P. Circuit \(2 / 6\) FREE WITH PARTS

Amplifier \(£ 28.10 .0+20 /-\mathrm{P}\) \& P . Speakers ea. \(£ 12.10 .0+30 /-\mathrm{P}\) \& P .

\section*{LIOUIDATED STOCK}

\section*{DANSETTE \\ TOURISTE MK3}

CAR RADIO
ALL TRANSISTOR
Beautifully designed to blend with the interiors of all cars. Permeability tuning and long wave loading coils ensures excellent tracking. sensitivity and selectivity on both wave bands. R.F. sensitivity at 1 MHz is better than 8 micro volts. Power output into 3 ohm speaker is 3 watts. Pre-aligned I.F. module and tuner together with comprehensive instructions guarantees success first time. 12 volts negative or positive earth. Size \(7^{\prime \prime} \times 2^{\prime \prime} \times 4 \frac{1_{2}^{\prime \prime}}{}\) deep. Orginally sold complately built for £15.4.6
SET OF PARTS Circuít diagram. 26. free f6.6.0 Plus \(7 / 6 \mathrm{P} . \& \mathrm{P} . \quad\) baffie and fixing kif
\(25 /-\) extra plus \(4 /-\mathrm{P}\) \& \(P\). Pastage on speaker tree when ordered with parts.

\section*{ELECTRONIC C■MPaNENTE LT = BETTER QUALITY, SERVICE,PPICES \& LARGEST STOCKS}

\section*{G. F. MILWARD Mail Orders: drayton bassett, tamworth, staffs}

\section*{ELECTRONIC COMPONENTS}

Wholesale/Retail: 369 Alum Rock Road, Birmingham B8 3DR. Tel. 021-327 2339
f5 WORTH OF COMPON ENTS FREE! ! ! We will GIVE you \(\mathscr{E} 5\) worth of components of your selection when you purchase a language

\section*{MULLARD POLYESTER CONDENSERS}

1,000 pf., 1,200 pf., 1,800 pf.i. 2,200 pf., 400 volts, 3 d. each. 25 per cent discount 100 any type
i5uf., 22 uf., 27 uf., 160 volts 6 d . each. 25 per cent discount 100 any one type

\section*{RESISTORS}
\(\ddagger\) and \({ }^{3}\) Watt. Most values in stock. \(10 /-\) per 100 of any one value. \(2 /\) - dozen. 3d. singles
MAINS DROPPER TYPE. Hundreds on values from 7 ohm upwards, 1 watt to 50 watrs A large percentage of these are multi-tapped droppers for radio/television. Owing, to th

SILVER MICA/CERAMICI POLYSTYRENE CONDENSERS
Large range in stock. 15/-per 100 of any one value. \(3 /\)-per doren. Singles 6d. each
RECORDING TAPE BARGAINI The very best British Made low-noise, high
 for this tape. Might we suggest that you order now whilst we still have a good stock

RECORD PLAYER AMPLIFIERS
1 watt, 8 ohm output. All transistor, complete with sereened input lead, volume contro enabling it to be used direct from any 6 to 9 volt bell transformer. Perfect for baby alarm or inter-com. Few only left. Cannot be repeared at \(30 /\) - each.

\section*{TRANSISTOR RADIOS}

Once again we have a supply of these excellent radios which offer superb quality sound battery, earpiece and carrying case. Each one is guaranteed. You would expect to pay a least \& -but our price due to a bulk purchase is only \(\mathbf{3 7 / 6 d .}\). Many of our customers
made a considerable profit by buying these radios and re-selling them to friends!

RECORD PLAYER CARTRIDGES. Well below normal shop pricel
ACOS GP \(67 / 215 /-\) (Mono). ACOS GP91/3 \(20 /\). (Compatible)/ACOS GP \(93 / / 25 /\) (Stereo) ACOS GP \(94 / 1\). \(30 /=\). (Stereo, Ceramic). ACOS GP \(93 /-\) DIAMOND \(32 / 6\). ACOS \(94 / 1\)
ACOS
DIAMOND \(37 / 6\).

TRANSISTORISED FLUORESCENT LIGHTS. 12 volt. All with Rovarse Polarity protection. 8 watt \(59 / 6\). 15 Watt \(79 / 6\). 13 . Watt \(99 / 6\). Postage \(3 /\) per fitting. These can

MULLARD 'UNILEX' AMPLIFIERS
In our opinion these units are the best value for money ever offered. A complete stereo unit consisting of Control unit, Pre-amplifier, Two Main Amplifiers and power Pack
complete and ready for use-NO extra components to buy-yours for fl5. (Normal GARRARD SP 25 UNITS afso offered at a discount. Our price only \(\mathbf{6 1 2 . 1 0 s}\). Postage 9/-
SINCLAIR AMPLIFIERS AND SPEAKERS. Complete range in stock. All at 10 per cent discount on list.
 Spot Face Cutter 7/6. Pin Insert Tool \(9 / 6\). Terminaf Pins (.1 or . 15) \(3 / 6\) for 36.
Special offer pack consisting of \(5 \mathbf{2 t i n . ~} \times 1\) in. boards and Spot Face Cutter
VOLUME CONTROLS
\begin{tabular}{|c|c|c|c|c|c|}
\hline 500k log & + 50k lin. + Switch & 3/- & 10k log & + 10k log & + Switch \\
\hline 50 k S/log & \(+1 \mathrm{mlog}+5\) witch & 3/- & \(1 \mathrm{M}_{1} \mathrm{lin}\). & + IM lin. & no Switch \\
\hline 100x lin. & + 100k log + Switch & 3/- & 500k lin. & + IM lin. & no Switch \\
\hline 100k log & \(+100 k \log +5\) witch & 3/- & IM lin. & + 2.5 M lin . & no Switch \\
\hline 250k log & \(+500 \mathrm{klog}+\) Switch & 3/- & 500k lin. & + 500\% log & no Switch \\
\hline 250 k log & + 100k lin. + Switch & \(3 /\) & 100k log & + 100k loz & no Switch \\
\hline 1 M log & +1500 ohm lin. +Sw & 3/- & 2 M log & + 2 Mlog & no Switch \\
\hline 1 M log & + 100k lin. + Switch & 3/- & & & \\
\hline
\end{tabular}

INTEGRATED CIRCUITS
\(\qquad\)
CA 3005 wide band R.F. Ampl.
3000 wiss 3012 wide band ampl. isomW
CA 3020 Audio power amp
\begin{tabular}{l}
STC \\
MC \\
MIC \\
\hline 009
\end{tabular}

 COMOR

The valve with
\begin{tabular}{|c|c|c|}
\hline \(30 \mathrm{L17}\) & 16/ & 2001 \\
\hline 30 Pl 2 & 18/- & 9002 4/6 \\
\hline 30P19 & 14!- & 9003 10/ \\
\hline 30PL1 & 131- & 9004 2/6 \\
\hline 30 PLL 13 & 18j- & 9006 \\
\hline 30 PL 14 & 17/- & C.R. Tubes \\
\hline 35 LGGT & 9/6 & VCE97 90/- \\
\hline 35 W 4 & \(51-\) & VCR517B \\
\hline \(35746 T\) & 9/- & 110/- \\
\hline 42 & 7/- & VCE517C \\
\hline 50C5 & 7- & 150 \\
\hline 50CD6G & 30/- & 6FP7 26/7 \\
\hline S0EH5 & 121- & 88D 180/ \\
\hline 75 & 5/6 & 88 J 180 \\
\hline 76 & 6/- & 88 L 180 \\
\hline 78 & \(51-\) & Photo T \\
\hline 80 & 9/- & CMG25 \\
\hline 3 & 601- & 9314 62 \\
\hline 5 & 160:- & 6097 C \\
\hline 807 & 91- & 63\% \\
\hline 813 & 75/- & Special \\
\hline 832A & 55/- & CV1031 \\
\hline 866 A & 15/- & \\
\hline 954 & 4/6 & CV2339 \\
\hline 955 & /- & JP9/7D \\
\hline 456 & 21- & 750 \\
\hline 957 & 6/- & K301 \\
\hline 991 & 6/- & E 305 \\
\hline 1622 & 171- & K308 116 \\
\hline 2051 & 10/- & K337 118 \\
\hline 5933 & 22/6 & KRN2A70/- \\
\hline 6057 & 10- & WLAI7A \\
\hline 6060 & \(7 / 8\) & 30 \\
\hline 6064 & 7/- & 3/192/E \\
\hline 6065 & 18!- & 837/10/- \\
\hline 6080 & 27/6 & 5 C 22 \\
\hline \[
\begin{aligned}
& 6146 \\
& 8020
\end{aligned}
\] & 28/- & 714AY \\
\hline
\end{tabular} hauled mechanically and electrically PLEASE NOTE Untatase ALL EQUIPMENT
 936 (No. 5). Measures L \& C at 80 Hz C. \(\mathrm{mF}=100 \mathrm{pF}\) R. 0 . \(10 \mathrm{Lms}-100 \mathrm{molm}\) C. \({ }^{\text {C }}\) Bridge volts monitored 100 mohms AC Bridge volts monitored and variable. Automatic F.M. DEVIATION METER TYPE TF934. Frequency range \(2.5-100 \mathrm{MHz}\) Can be used up to 500 MHz . Deviation
range \(0.75 \mathrm{kHz} \mathbf{E 6 7} / 10 / 0\). Carriage \(30 /\) -
TF IUG SIGNAL GENERATOR. To clear. In very good seen condition Complete with mains and battery cables

MARCONI TEST EQUIPMENT

 voltage range 300 MV
to 300 V in 7 ranges.
\(20 \mathrm{~Hz} 1500 \mathrm{Mz}, \mathrm{C} . \mathrm{C}\)
voltage ranges voleage ranges 300
MV-Io00V in \& ranges.
D.C. resistance 50 ohms to 500 Mohm Price 662.10 .0 TFI44H SIGNAL GEN. Freq. range 10
KHz-72 MHI R.F. output \(2 u V\) to \(2 V\) at
50 ohms 400 and 1000
internal
Limited aty- SIGNAL GENERATOR TF 801/A. able. Full spec \(10-300 \mathrm{Mc} / \mathrm{s}\). in 4 bands. Internal at 400 and price on \(\mathrm{c} / \mathrm{s}\). \(1 \mathrm{kc} / \mathrm{s}\). External \(50 \mathrm{c} / \mathrm{s}\) to \(10 \mathrm{kc} / \mathrm{s}\).
request. Output \(0-100 \mathrm{db}\) below 200 mV from 75 ohms source. 825 .
\(801 / \mathrm{A} / 1\) with additional high level 801/A/I with additional high leve
output. E99. Both P. \& P. 20/-, in eluding necessary connectors. pluss and instruction manual.

PRECISION VHF FREQUENCY METER TYPE 183. 20-300 Mc/s with accuracy \(0.03 \%\) and \(300-1,000 \mathrm{Mc} / \mathrm{s}\) with accuracy \(5.3 .6 .25 \mathrm{Mc} / \mathrm{s}\) with accuracy \(+2 \times 10-4\) Incorporating calibrating quartz \(100 \mathrm{kc} / \mathrm{s}+-5 x\)
\(10-120 / 200\) v. A.C. mains. 685 . \(10-6120 / 220\) v. A.C. mains. 685.
Carriage \(\notin 2\).
AVO'S METERS
Model 48A complete with multiplier
shunts, otc., in special fitted wooden case, 114.10 .0.

\section*{Carriage 7/6.}
REDIFON
Twinplex combiner type AFS 13 Es5 Twinplex converter type AFS 12 with P.S.W. 685 F.S.K. unit type GK 185A 658/10/0

\section*{P. C. RADIO LTD.}

\section*{SOLARTRON EQUIPMENT} Rezuluzed and stabilised P.S.U. SRS
I \(51 \mathrm{~A}, 20\) to 500 V positive at 300 mA in two ranges. Variable and fixed 170 V negative output, 635. Carriage 20/CD 7115.2 Double beam, D TMHz "scope, Ez5. Carrive 30/-
 appliation.

SIGNAL GENERATOR TYPE CT \(480.7-12 \mathrm{kMHz}\) in one range, square and pulse modulation and C.W. 665. SIGNAL GENERATOR TYPE CT 478. As abov

Ifin. DIA. PANEL METERS. 7t-15y -ideal for "Battery
indicators for cars 15/6. BOONTON O METEA TYPE 160A Freq, range 50 kHz to 75 MHz , main capaci
tor 30 to 500 pF . Vernier Gpacitor \(\pm 3 \mathrm{p}\) q range. o- 250
NOISE GENERATOR CT 207. 100 \(600 \mathrm{M} / \mathrm{c}\) with built-in 8 -min
Complete with cables. 67.10 .0 .

\section*{MULLARD PRECISIOM VARIABLE}

MULLARD PRECISION VARIABLE 15 pF to 336 pF . Supplied, with individual
calibration certificate. Brand new in calibration certificate. Erand new in
original packing. Ei7. Carriage 15/SUSPENSION GALVANOMETERS Pye E25. P. \& P. 12/-
Cambridge Instrumen
 MADLEYPORTABLEELECTIMETER TYPE CTATIB. This MULTIMETER TYPE CTAFIB. This
instrument operates from three IfV cells,
is fully transistorised and measures \(A . C\). is fully transistorised and measures A.C. and D.C. resistance. Built-in battery check
An request. Abot MODEL CT 47IA manufactured by AVO, full spec and price on
4,5 and 8 bank 25 way uniselectors 24 V guaranteed perfect, €3.15.6 ARes SPARES. We hold the la in U.K. Write for list

HARNESS "A" e "B" control units junction boxes, headphones, microphones, etc
29/4IFT. AERIALS each consisting of ten 3ft., tin. dia. cubular screw-in sections. Ilft. (6-section) whip aeria with adaptor to fit the 7 in , rod, insu lated base, stay plate and stay assemblies pegs, reamer, hammer, etc. Ady to erect in canvas bag, t4/0/0. P. \& P. \(10 /-\)
FIELD TELEPHONE TYPE "F" Housed in portable wooden cases Excellent for communication in and out doors for up to 10 miles. Pair including batteries, fully tested. E6.10.0, or
220 yds field cable in drum \(\mathbf{8 . 1 0 . 0}\).

FOR EXPORT ONLY
53 TRANSMITTERS. All \(\begin{gathered}\text { spares }\end{gathered}\) installations and sDare parts. 5 KW COLLINS TYPE 10 231D 5KW tune and manual tuning, Complete specification and price on application Complete installations and all
spares. No. 19 WIRELESS SETS spares. No. 19 WIRELESS SR 210
H.P. SETS and all spares R 210 H.P. SETS and all spares R 210
RECEIVERS with all necessary PYE PTC 2002 N A.M. Ranger Mobile Radio Telepho
new and complete, E45.
\begin{tabular}{|c|c|}
\hline EX COMPUTER PRINTED CIRCUIT PANELS 2* \(\times 4^{4 *}\) packed with semiconductors and top quality resistors,
capacitors,
diodes, etc.
Our
price,
10 capacitors boards 10 . P. \& P. P. \(1 / 6\). With a guaranteed minimum of 35 transistors. Transistor Data included. & \begin{tabular}{l}
BUMPER BARGAIN PARCEL \\
We suarantee that this parcel contains at least 1,750 components. Short-leaded on \\
 sisfors and switching types-data aupplied), The rest of the parcel is made up with:
\end{tabular} \\
\hline SPECIAL EARGAIN PACK. 25 boards for fl. P. \&P. 3/6. With a suaranteed minimum of es transistort. Transistor Data included. & \begin{tabular}{l}
Resistors 5 " or better (including some
10, mainly metal oxide, carbon film, and \\
 diodes, OMiniature silicon eyper capaito
\end{tabular} \\
\hline PANELS with 2 powor trancistors sim. to OC28 on each board plus components. 2 boarde (\(4 \times 0 \mathrm{O} 28\)) \(10 /\)-. P. \& P. \(1 / 6\). & including tantalum, electrolytice, coramics and polyesters. .. inductors, a belection of values. alto the odd transformer trim. \\
\hline \begin{tabular}{l}
9 OA5, 3 OA10, 3 Pot Cores, 26 Resistors, \\
 4 for \(20 /\) /, P. \&
\end{tabular} & \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
I2V 4A POWER SUPPLY \\
Extromely well made by FRAKO GmbH in rensformer, whith contitant volrage main 240 V . Full wave rectification and capacitor moothing. 5ize \(9^{\prime \prime} \times 6^{\circ} \times 5^{\prime}\), waizht 11 ib. suaranteed. Maker's price believed to be around 680. Our Price \(89,10,0\). Carr. 10/
\end{tabular}} & \multirow[t]{8}{*}{\begin{tabular}{l}
EX-COMPUTER \\
POWER SUPPLIES \\
Reconditioned, fully tested and guaranteed, Thesevery compact units arefully amoothed
with a ripple better than 10 mv , and resulation better than It in. Over voltage protection on all except 24v. unite. 120v.130 v, a.c. \(50 c / \mathrm{sinput}\). Main
suit \(\mathbf{8 3}\) exera if required, \\
We offer the following types:
\[
\begin{array}{ll}
6 \mathrm{v}, ~ 8 a . ~ & 10 \\
6 \mathrm{v}, ~ 15 \mathrm{a}, ~ 114 & 30 \mathrm{v}, ~ 15 \mathrm{a}, ~ \\
12 \mathrm{v}, 20 \mathrm{a} . & 15 \\
\text { Carriage } 15 / \text { - per unit. }
\end{array}
\]
\end{tabular}} \\
\hline & \\
\hline \(\frac{1}{4}\) and \(\frac{1}{2}\) Watt & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{lr}
DIODES & EXEAPT. \\
SILICON \\
I Amp I,000 PIV & 4 for \(10 /-\) \\
20 Amp 50 PIV & 4 for \(\notin I-\) \\
& P. \& P. I/-
\end{tabular}} & \\
\hline & 0 (High Seabs \(\ddagger\) \& and I Watt, \({ }_{\text {\% }}\) \\
\hline & \\
\hline & \(10,000 \mathrm{mfd} 30 \mathrm{~V}\) \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
EXTRACTOR/BLOWER \\
FANS (Papst)
\[
100 \text { cif.m. } 44^{2} \times 4
\]
\[
2 \text { ". } 2800 \text { r.p.m. } 240 \text { V AC }
\]
50/0 each. P.\& P, 5/\%
\end{tabular}} & \(44^{\circ} \times 3^{-}\)dia. \(8,000 \mathrm{mld} 55 \mathrm{~V}\)
\[
10 / \text { - each p. \& P. } 2 / 3 \text { each }
\] \\
\hline & F \\
\hline & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
RELAY OFFER Single Pole Changeover Silver Contacts \\

\end{tabular}} & \[
01
\] \\
\hline & These phones are extensions and do contain bells. \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
KEYTRONICS \\
MAILING ADDRESS \\
44 EARLS COURT ROAD, LONDON W. 8 WAREHOUSE AND DISPATCH 014788499
\end{tabular}} \\
\hline
\end{tabular}

WW-102 FOR FURTHER DETAILS NO EXCUSES! NO DELAYS! FROM STOCK!
YARIABLE YOLTAGE TRAMSFORMERS

INPUT 230 v. A.C. \(50 / 60\) OUTPUT VARIABLE \(0 / 260\) v. A.C. BRAND NEW. Keenest prices in the country. All Types (and spares) \(0-260 \mathrm{~V}\) I 1 mp . \(\begin{array}{lllll}0-260 \mathrm{v} \text {. at } 2 \mathrm{mpp} & \ell 5 \quad 15 & 0 \\ 0-260 \mathrm{v} \text {. at } 2.5 \mathrm{amps} \text {. .. } & \mathrm{E} & 15 & 0\end{array}\) \(0-260\) v. at 5 amps..... \(\in 915\) \(0-260 \mathrm{v}\). at 8 amps \(£ 1410\) \(0-260 \mathrm{v}\). at \(10 \mathrm{amps} . . . \mathrm{E} \mid 810 \quad 0\) \(0-260\) v. at 12 amps \(£ 21{ }^{2} 0\) \(0-260 \mathrm{v}\). at 15 amps . \(0-260 \mathrm{v}\). at 20 amps . \(0-260 \mathrm{v}\). at 25 amps . \(0-260 \mathrm{v}\). at 37.5 amps . 260 v. 50 mps. . 17200 \(0-260 \mathrm{v}\). at 50 amps . . . \(£ 9200\) 20 different types available FOR IMMEDIATE DELIVERY.

INSULATION TESTERS (NEW)

VAN DE GRAAF ELECTROSTATIC
Double Wound Variable

\section*{Transformers}
\{ Fully isolated, low tension secon\{ dary winding. Input 230 vóuS.C. \(\left\{\begin{array}{l}\text { OUTPUT CONTINU } \\ \text { VARIABLE } 0.36 \text { v.A.C. }\end{array}\right.\)
\(\left\{\begin{array}{l}0-36 \mathrm{v} . \text { at } 5 \mathrm{amp} . \text { £9.12.6- } \\ 0.8\end{array}\right.\)
\(\qquad\) \(15 /-\) p. \& c.
These fully shrouded Transior-
mers
mers, designed to our Transfor-
tion
\(\left\{\begin{array}{l}\text { tions, are ideally suited for Edica- } \\ \text { tional, Industrial and Laboratory }\end{array}\right\}\)
use.
(2) GENERATOR fitted with
motor drive for 230 drive
द A A.C. giving of approx. 50,000 voles. Supplied absolutely complece including acces-
sories for carrying out a number of inceresting experuments, This instrument is completely safe. and ideally suited for School demmonstrations. Price \(\mathrm{P}_{\mathrm{P}} \mathbf{8 7 / 7 / - :}\) plus \(4 /\)

500 VOLTS, 500 megohms Price \(£ 28\) carriage paid.

1,000 VOLTS, 1,000 megohms, £ 34 carriage paid.

\section*{LATEST TYPE SOLID STATE} VARIABLE CONTROLLER
Ideal for lighting and heating cir.
cuits, compact panel mounting. Buil
in fuse protection. CONTINUOUS. in fuse protection
LY VARIABLE
IY VARIABLE.
Input 230v AC output 25-230y

230 v. A.C. SOLENOID. Heavy duty type.
Approx. 316 b pull. \(17 / 6\) plus \(2 / 6\) P. \& P. 12 v D.c. SOLENOID. Approx. Ilb. pull. 10/6, P. \& P. \(1 / 6\).
50 v. D.C. SOL
10/6, p. \& P LENOID. Approx. llb, pull
50 v. D.C. SOLENOID.
Approx
P. \& P.
2l6.

SAN M/A MULTI RANGE

\section*{NEW MODEL LATEST TYPE} NEW MODEL U.50DN MULTI SCALED WITH OYEPV. MIRROR TECTION. Ranges: DC C OAD PRO. \(0.5 \mathrm{v}, 5 \mathrm{v} .250\) v.. 1,000 v. A.C. voles. \(0.5 \mathrm{~mA} 5 \mathrm{~mA} ., 50 \mathrm{~mA}\)., 250 mA . Size: \(5 \downarrow \times\) current: \(50 \mu \mathrm{~A}\). Complete with batteries TEN OTHER MODELS FROM Post paid

\section*{OELS FROM ST}

36 volt 30 amp . A.C. or D.C.
Variable L.T. Supply Unit
INPUT
\(220 / 240\) v. A.C.
OUTPUT
CONTINUOUSLY
VARIABLE 0.36 v .
Fully isolated. Fitted in robust metal case with Voltmeter, Am-
meter, Panel Indicator and chrome meter, Panel indicator and chrome
handles. Input and Output fully handles. Input and Output fully
fused. Ideally suited for Lab. or fused. Ideally suited for Lab. or
Industrial use. \(\$ 58\) plus \(40 /-\) p. \& c. Industrial use. \(\$ 58\) plus \(40 /-\) p. \& c.

\section*{SARVICE TRADING CO}

BODINE TYPE N.C. 1 GEARED MOTOR (Type 1) 71 r.p.m, torque 10
Reversible l/70 th h.p. 50 cyclat Reversible 1/p7ith h.p. 50 cycle
amp. (Type 2) 28 r.p.m. torque amp. (Type 2) 28 r.p.m. torque 20
1 b . in Reversible \(1 / 80\) th h.p. 50 cycle The above two precision made U.S.A. motors are offered in "as new' condition. Input voltage of motor
\(115 v\) A.C. Supplied complete with eransiormer for \(230 / 240 v\) A.C, input Price, either type \(£ 3.3 .0\) plus
former \(£ 2.2 .6\) plus \(4 / 6\). P. \& P.
Thase motors are ideal for rotating aerials, drawing curtains, display standi, vonding machines etc. erc. VENNER ELECTRIC
TIME SWITCH

\section*{RING TRANSFORMER}

Functional Versatile Educational
This multi-purpote Auto Trantformer with
large centre aperture, can be uned at a Double wound currant Transformer, Auto Traneformer, H.T, or L.T. T Tansfor mer, by simply hand windIng the required number of surne through the centre opening E,g. Uing the R1.100V.A. Model the output could be wound

- - - T- TRANSFORMERS All primaries \(220-240\) volts.

AUTO TRANSFORMERS. Step up, step down, \(110-200-220-240 \mathrm{v}\). Fully shrouded. New. 300 watt type \(£ 3 / 12 / 6\) each, P. \& P, \(4 / 6.500\) watt type \(65 / 2 / 6\) each,
P. \& P. 6/6. 1.000 watt type \(£ 7 / 2 / 6\) each, P. \& P. \(7 / 6\). LIGHT SENSITIVE SWITCHES Kit of parts including ORP. 12 Cadmium Sulphide Photocell. Relay Tansistor and High Speed Relay for 6 or 12 volt oper-
ations. Price \(25 /\) plus \(2 / 6 \mathrm{P}\). \& P. ORP. 12 and Circuit \(12 / 6\) post paid. 220/240 A.C. MAINS MODEL incorporates mains transformer rectifier and special circuit 47/6, plus \(2 / 6\) P. \& P.
LIGHT SOURCE AND PHOTO CELL MOUNTING
Precision engineered light source with adjustable lens assembly and ventilated lamp housing to rak明 MBC bulb. Separate photo cell mounting assembly for are single hole fixing. Price per pair \(£ 2 / 15 / 0\) plus \(3 / 6\)

INSULATED TERMINALS
Available in black, red, white, yellow, blue and
\(2 /-\) each. Post paid.

\section*{A.C. CONTACTOR}

2 make and 2 break (or \(2 \mathrm{c} / 0\)) 15 amp.
contacts. 230/240

PANEL METER AT BARGAIN PRICE A.C. VOLTMETER
\(0-300\) volts A.C. Rectified moving coil \(2 \frac{1}{21}\). Price \(29 /\)

\section*{GALVANOMETER}

300-0-300 microamp. Calibrated 30-0-30. Mounted in sloping front case \(£ 2 / 10 / \ldots\). P. \& P. \(3 / 6\) D.C. Voltmeter
\(0-3 V\) and \(0-15 . V 2\) plus \(3 / 6 P . \& P\). D.C. Ammeter. \(0-6\) amp. and \(0-3 \mathrm{amp}\). \&2 3/6 P. \& The set of 3 matching instruments \(£ 6, P\). \& \(P\). \(6 / 6\).

\section*{FSTHONER \\ (NEW) Coremic construction, wind-}

Pontage and Carrisge shown Pellaw anre inland only.
Overseas plene
 incue an oatalogue or llast.

UNISELECTOR SWITCHES NEW 4 BANK 25 WAY FULL WIPER
 E5.17.6, plus \(2 / 6\) P. \& P.
6 BANK 25 WAY FULL WIPER 25 ohm coil, 24 vV D.C.
8-BANK 25-WAY FULL WIPER

\section*{RELAYS NEW SIEMENS PLESSEY, etc.} miniature relays at competitive prices. SO Continuous duty, AVAILABLE FROM 100 WATT I ohm \(10 \mathrm{a} ., 5 \mathrm{ohm} 4.7 \mathrm{~m} ., 10 \mathrm{ohm} 3 \mathrm{a} .\), \(250 \mathrm{hm} 2 \mathrm{a} ., 50 \mathrm{ohm} 1,4 \mathrm{a} ., 100 \mathrm{ohm} 1 \mathrm{ar}, 250 \mathrm{ohm}\) '7a., 500 ohm '45a, I \(k\) ohm 280 mA ., 1.5 k ohm \(230 \mathrm{~mA}, \mathbf{2} 5 \mathrm{k}\) ohm \(2 \mathrm{2a}\). 5 k ohm 140 mA ., Diameter 50 WATT \(1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{~K} / 1 \cdot 5 \mathrm{~K} / 2 \cdot 5 \mathrm{~K}\))
5 K ohm. All at \(21 /=\mathrm{P}, \& \mathrm{P}\). \(1 / 6\).
25 WATT \(10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{~K} / 1 \cdot 5 \mathrm{~K} / 2 \cdot 5 \mathrm{~K}\) ohm. All at \(14 / 6, P, \&\) P. \(1 / 6\).
Black Sllver \(\overline{\text { sklrted }}\) knob calibrated in Nos. 1-9. If
in. dia. brass bush. Ideal for above Rheostats, \(3 / 6\) asch.
MOTOROLA MACII/6 PLASTIC TRIAC 400 PIV 8 AMP
Now avaliable EX STOCK suppled complete with full data and apelicatlons sheet. Price 21/= plus \(1 / 6\) P. \& P.
T.M.C. ILLUMINATED

LATCHING PUSH BUTTON
KEY SWITCH No. S525594
LOCK \(4 \mathrm{c} / \mathrm{o}\)
Complete with mounting
bracket, PushKnoband Lenses
GREEN, AMBER, RED or CLEAR

-state colour preference). PRICE \(14 / 6\) each excluding bulb, Post Paid. Discount for quantities of 200 or ovar.

\section*{}

ELECTRONIC ORGAN KIT

deal present for Electronically minded boy Easy to build, solid (less sharps and flats). Fitted hardwood case, batteries. Complete set of parts including speaker, etc. together with full instructions and 10 tunes. Have all the pleasure of building this instrument and finish with a functional, instructiver
\(\mathbf{E 3 . 0 . 0}\). P. \& P. \(4 / 6\).

\section*{50 in I ELECTRONIC PROJECT KIT} 50 easy to build Projects. No soldering, no special tools required. The Kit includes Speaker, meter, Relay page instruction leaflet. Some examples of the 50 possible Projects are: Sound level Meter, 2 Transistor Radio,

\section*{10 in I PROJECT KIT}

10 easy to build Projeces including: Radio, Morse Oscit lator, L F Oscillator etc. A Solar Cell is included in this 14 -page step by step instruction leaflet. Price \(£ 3.17 .6\).

STANDARD GPO DIAL TELEPHONES (black) with internal bell. \(17 / 6\) each. P. \& 1P. 5/:- Two for \(30 /=\)

TRANSISTORISED FIELD RATEMETER Type 1368A range 0.05 to \(25 \mathrm{mr} / \mathrm{hr}\) in 5 ranges size \(12 \times 31\) SURYEY METER RADIAC
size \(91 \times 5 \times 5\) ins 3 ranges (scale Hand portable size 3 R/H. Internal Ion Chamber. Nice condition \(\mathbf{E S}\)
CA. P. \& P. 10/-
ea. P. \&P. 10/-50R 0-150R and charger \(\pm 2\). I'. \& P.
DOSIMETER O-5
7/6. Charger only 30/-. P. \& P. 6/6.
PHOTOMULTIPLIERS. FMI 6097X at E8/10/- ea. 6097 B ES ea.
TRANSISTOR OSCILLATOR. Variable fremuency \(40 \mathrm{c} / \mathrm{s}\) to \(5 \mathrm{kc} / \mathrm{s}\). 5 volt square wave o/p. for 6 to 12 v DC input. Size \(1 / \times 11 \times 1\) in Not encapsulated. Brand
 60 secs. \(4^{-}\)dial. Hemote control stop/start reset \(£ 6.10 .0\). G.E.C. Sealed Relays High Speed 24V. 2 make 2 break. S.T.C. gealed 2 pole c/o. 2,500 ohms. (okay 24 v) \(2 / 6\) ea.: 12v-7!-ea.
CARPENTERS polarised Single pole c/o 20 and 65 ohm coil as new, complete with base \(7 / 6\) ca.
Single pole c/o 14 ohm coil \(6 / 6 \mathrm{ea}\). : Single pole c/o 45 ohm COIV 6/6 CR POTENTIOMETERS
COLYERN Brand new. 50; 100; 250; 500 ohms; 1 ; 2.5; 5; 10: \(25 ; 50 \mathrm{k}\) all at \(2 / 6\) ea. Special Hrand new. M/6RG.
INSTRUMENT \(3^{3}\) Colvern. 5: 25. 7/-e
INSTRUMENT 3 COIVErn. 5: 25. 7/- ea.
BOURNE TRIM POTS. 10: 20: 50: 100; 200: 250 : 500 ohms; 2.5 and 25 K at \(7 /=\) ea.
ALMA precision resistors 100 K ; \(400 \mathrm{~K} ; 497 \mathrm{~K}\); 998 K : \(1 \mathrm{meg}-0.1 \% 5 / 6\) ea. - \(3.25 \mathrm{~K}-0.1 \% 4 /-\) es.
DALE heat sink resistors, non-inductive 50 watt. Brand
new \({ }^{8.2 K}\) at \(2 / 6\) ea.
MULLARD
I2/- ear. LAALII \(9 /-\) er.i. IALA503 \(6 /-\mathrm{ea}\)
SILYER ZINC Non-spil. Brand new
if \(\times 1 \times 1 / 2 \mathrm{oz}\). weight fl ea. Single cell \(1.5 \mathrm{~s} \cdot 4 \mathrm{AH}\) size MALLORY CELLS. \(5 /-\) per set of 5.
CAPACITORS
ERIE feed through ceramicons \(22000 \mathrm{pf}-9 \mathrm{~d}\). ea.
Sub-min. TRIMMER if square. 8. 5pf. Bramil new \(2 / 6\) ea. Concentric TRIMMER 3/30 pf. Brand new \(1 / 6\) eas.
ELECTROLYTICS. Brand new. \(250 \mathrm{mfd} 70 \mathrm{~V} 4 / 6 \mathrm{ea}\) E.H.T. 2 mfd 5 KV. Brand new 30/- ea

Viscon enf. Bran 20 KV .605 25 kV . \(16 / \mathrm{e}\) es. Wego Caps 0.2 and 0.5 mfd 20 KV working. Brand new. E4 ea. P. \& P. \(15 /-\mathrm{i}\)
E.H.T. \(0.5 \mathrm{mfd} 5 \mathrm{KV}-11 /-\) ea.: \(0.5 \mathrm{mfl} 2.5 \mathrm{KV} 7 /\) ea. \begin{tabular}{|l|l|}
\hline DECADE DIAL UP SWITCH. Finger-tip. \\
Engraved \(0 / 9\). Gold plated contacts. Size \(2!^{\prime \prime}\) high.
\end{tabular} Engraved 0/9. Gold platen contacts. Size 2t high.
 PHOTOCELL equivalent OCP \(712 / 6\) ea.
Photo-resist type clare 703. (P05 Case). Two for \(10 /-\) BURGESS Micro Switches V3 5930. Brand new \(2 / 6\) ea. Brand new, \(3 / 6\) ea.
PANEL mounting lamp holders. Red. \(1 / 9\) ea.

BRAND NEW PLUGS AND SOCKETS
CANNON. 50 way DDM50P \(15 /-\) ea. ; DDM50S 10/-ea.
fi per pair. 25 way 10/- ea. plur; \(7 /\) eas. socket. \(15 /-\) per pair; 9 way \(6 / 6\) ea. plug and socket. \(10 /\) per pair. per pair: 9 way \(6 / 6\) ea. pug and socket.
U.H.F. Plugs ft UR57. 59.65 etc. \(8 /-\) ea.
B.N.C. to U.H.F. Adaptor \(27 / 6\) ea. ; Min. B.N.C. to U.H.F. B.N.C. to U.H.F. Adaptor \(27 / 6\) ea. ; Min. B.N.C. to U.H.F. plug \(£ i\) ea.; B.N.C. Right angle \(f i\) es. Min. B.N.C. right
anugle \(25 / \mathrm{ea}\); Min. socket nound \(i 0 /\) - es.: Standaril argle 25/- ea.; Min. socket round \(10 /-\) es.: Standari
B.N.C. round \(7 /=\) es. Many others too numerous to list All prices quoted for "one off.'
TRANSFORMERS. All standard inputs.
STEP DOWN ISOLATING trans. Standard 240 v AC to 120 V tapped \(60-0-60700 \mathrm{~W}\). Brand new. \(E 5\) es. Transformer \(0-215-250120 \mathrm{MA} ; 6.9 \mathrm{~V} 4 \mathrm{~A}\) CT \(\times 2: 2 \times 6.3 \mathrm{~V}\) \(0.5 A\) and separate \(90 \mathrm{v} 100 \mathrm{MA} 25 /-\) each \(P\). \(\$ \mathrm{P}\). \(4 /-\)
Matching contact choled bridge rectifler \(7 / 6\) each.
\(4.5 \mathrm{~V} 40 \mathrm{mp}(180 \mathrm{Va}) 35 /-\) ea . incl. postage or 3 for f4. 10.0 incl. postage. Designed to be series/paralleled.
 CHOKES. 5 H ; \(10 \mathrm{H} ; 15 \mathrm{H}\); up to \(120 \mathrm{~mA}, 8 / 6\) ea. Up to \(250 \mathrm{~mA} 12 / 6\) ea. Large quantity LT, EHT transformers. Your requirements, please.

\section*{NUCLEONIC INSTRUMENTS-JUST}

Pulse snalyser N101; Scaler 1009E; Coincidence unit 1036C: Anti coincidence unit Pranax AU460;
Amplifier N567: A/B/G Radiation Monitor 1257 A Amplifler N567: A/B/G Radiation Monitor 125/A;
complete 1339A system A/B/G; EHT Potentiometer unit 1007: 1430 amplifier CF and head: Some 9cintillation castles: radiation monitor 1320 , and Ratemeter scintillation 1413A and 1368A; Fast neutron 1262 C ; Fluori-meter 1080 A and many others Also 2000 SERIES, Amp 2002A: Low level amp 2024; PU's 2004: 2005B; nanosec time amplitude convertor 2011 A ; pulse amplitude analyser 2010 B
discriminator 2007 B ; high level amp 2025 and others. Imformation available.

AMPEX VR7000. New heads, drum, ceramic tips AMPEX TV CAMERA CC3324. As new \(£ 150\). The Pair 6550.

\section*{TEST GEAR}

\section*{TEKTRONIC OSCILLOSCOPES 5 -VEry fast 5 nan/secs} E.M.I. WM16 DH: 24 megs each chan-
 E.M.İRTRON CMI 8 ELSO. 10 to 25 megr. Very SOLARTRON \(711 \mathrm{~s} .25 \mathrm{D} . \mathrm{B}, \mathrm{DC}-9 \mathrm{mc} / \mathrm{s}\). In the SOLARTRON G043itic- 150 me's NOW only 665 . SOLARTRON DC- \(10 \mathrm{mc} / \mathrm{s}\). CD513- \(235,513.2\) COSSOR \(1049 \mathrm{Mk} .3 . \mathrm{DB} .525\)
HARTLEY 13 A DB. \(\mathbf{E} 20\).
All carefully checked and tested. Carriage 30/- extra.
MARCONI
TF 801A Sigmal generator \(\in 35\)
TF 801A Sigual generator \(£ 35\). Carr. \(30 /\)
TF 369 N . 5 Impediance Bridge \(£ 55\) Carr. 30
TF 144 G . Simnal Generator. Serviceable. Clean \(\leq 15\) In exceptionsa condition 125 . Carry. SolTF 885 Video Oscillator Sine/Square \(\epsilon 3\)
Laboratory amplifler AWS51A. \(15 \mathrm{c} / \mathrm{s}-350 \mathrm{kc} / \mathrm{s} \leq 35\)
Generator DO905 \(50 \mathrm{kc} / \mathrm{s}\) to 50 mexs. \(£ 40\).
Resolver Cornponent Indicator VP 253.2 A and OS103.2A \(\notin 120\) the pair.
Stsbivised P. U. SRS 151 A 620 Carr. \(30 /-\)
Stabilived P. U. SRS 152 E15 Carr. 30/-
Precision Millivoltmeter VP252 25 . Carr. f
Precision Millivoltmeter V15252. \(\mathbf{E 2 5}\). Carr. \(\mathrm{£1}\).
Propess Response Anal yser. Fine Condition
\(\mathbf{2} 250\)

D.C. Amplifler type AAgov. \(\mathbf{1 3 0 \text { . Ca }}\)
Testmeter No. \(1 £ 12\) ea. Carr. 15/.

Testmeter No. \(1 \notin 12\) eas. Carr. 15/.
Electronic Testmeter CT 38. Complete \(\mathbf{f 1 8}\) Carr. £1
Wide Range Capacitor Bridge \(£ 25\) Carr. 15/Sine and Pulse Generator type 1873 £25 Carr. 15/Signal Generator type 701. E25. Carr. 30/-
MARCONI TF 1277. Colour studio soope. will line select. In superb condition \(£ 120\).

LIMMITED QUANTITY
TELEQUIPMENT D43R. Brand new with TD41
TB. 680 with \(15 \mathrm{mc} / \mathrm{s}\) amp. f 105 .
BRADLEY ATTENUATORS 0!500 meg cycles O/12 dband 0/120 db-c20 per pair.
HEWLETT PACKARD, Attenuators \(0 / 500 \mathrm{meg}\)
cycles. \(0-132 \mathrm{db} .1 \mathrm{db}\) steps. 40 ,

\section*{\begin{tabular}{|l|}
\hline BECKMAN MODEL A. Ten turn pot complete \\
with dial. \(100 k 3 \%\) Tol \(0.25 \%-0\) only \(42 / 6 \mathrm{ea}\).
\end{tabular}}
E.H.T. Base B9A in Polystyrene holder with cover. Brand new. \(2 / 6\) ea
DVM's BIE \(2114 £ 50\) ea.: BIE 2116 £ 50 ea.; Solartron TM923 \(£ 30\). Carr. 80
AMERICAN TRIPLETT Generators type 1632. 100 \(\mathrm{kc} / \mathrm{s}\) to 120 megs. \(£ 12\). 10.0 . Carr. £1.
BC221 with correct charts in fine condition \(f 15\) ea Carr. s1.
PANAX Pulse generator G100H. Mint. \(\mathbf{£ 4 0}\). Carr. 30/BRAND NEW INSTRUMENTS HOUSING. Size \(8 \times 6 \times 7\) deep. Comprisiny of anodised aluminium fron rear panels. Detachable dark grey vinyl covered alurninium covers. Price \(37 / 6\) ea. P. \& P. 5/:.
FIBRE GLASS PRINTED CIRCUIT BOARD. Brand new Single side 3d. per sq. inch. Double sided 4d. per sq. inch. Cut to size. Postage 1/- per order.
BERCO miniature variac type 31C. \(0-250 \mathrm{~V} 1 \mathrm{amp}\) pointer. As new \(\in 3\). P. \& P. \(7 / 6\).
SEQUENTIAL TIMERS 240 V synchronous motor i rpm. 12 cam operated 2 pole micro switches. Individually adjustable from \(0^{\circ}\) to \(180^{\circ}\). £6 eas.
TIMER UNIT by Labgear 1350A. 0-1000 mins. preset stops. Brand new. e15. Carr. \&1.
Standard 240V MOTORS with reduction gearbox 14 lbs. per sy. inch. \(\in 3\) ea.
Modern replacement for VCR 138 tube. Flat face 3 in . 6 32/6 ea. P.
\(\$ / 6\). Hases \(3 / 6\) ea.
Sub-miniature IF"s \(465 / 470 \mathrm{kcs}\). Size \(1 \times \ddagger \times 1^{\text {² }}\) high Set of \(3-12 / 6\).
Sub-min. Vitality bulbs 8 V 1.2W 5 mm Clear L.E.S. I/6 es. 100 of \(1 / 3\) es
DUNFOSS—solenoid valves. 240V \(50 \mathrm{c} / \mathrm{s}\). Type EVJ 2.
Brand new boxed \(£ 5\); Second hand \(£ 3\). \& P. 6/-.

Precision THERMISTOR by YSI. 100 k . at \(25^{\circ} \mathrm{C}\). Range: \(40^{\circ} \mathrm{C}\). to \(150^{\circ} \mathrm{C}\). Supplied with charts giving ohms a a doe over entire range. Brand new. CLAUDE LYONS Main Stabilizer. Type 7000C. 53 amps. \(£ 40\). Carriage at cost.
 ROBAND P.U. Type M39A. Stabilized 300 volts
2 amps. E 22 inc. carriage.
E.H.T. Unit by Brandenburg model S.0530/10. \(\operatorname{ES5}\). KELVIN \& HUGHES 4 channel recorder. 530 ea. SMITHS twin channel recorder. Transistorised. \(£ 65\). Various othe EVERSHED \& VIGNOLES Kecording paper, Brand new boxed. 1618H4 \(7^{*}\) wide. \(1 \mathrm{I}^{\prime \prime}\) dia. \({ }^{3 / 6}\) roll; \(6^{*}\) dia. \(\mathrm{E}^{\text {w }}\)
19in. Rack Mounting CABI NETS 6ft. high 19 in . deep. side and rear doors. Fully tapped. complete with base and wheels. \(£ 12 / 10 / 0\) Carriage at cost.
Double Bay complete with doors. Finc condition. 125. Carriage at cost.
TIME CALIBRATOR unit by Cawkell any or all time intervals from 0.5 microeecond to 1.000 microsecond. Internal calibration; gate generation \(\mathbf{E} 50\). Carr. 30/-.
DIECAST ALLOY boxes. Size \(4 \times 21 \times 1 / \mathrm{in}\). Drilled ends for Belling cosx socket. 3 compartments link holes between. 6/6 each. P. \& P. 2/-.
4 DIGIT RESETTABLE COUNTERS. 1000 ohm. coil. Size \(1 \mathrm{f} \times \underset{2}{ } \times 4 \mathrm{in}\). As new, by Sodeco of Geneva, \(\mathbf{6 2 / 1 0 / 0}\) each.
As above but 350 ohm. \(\mathbf{6 3 / 1 0 / 0} \mathrm{ea}\)
METERS Model 3705, 25-0-25 microamp. Scaled. \(100-0+100.51^{-1} \times 4^{-} . \pm 3\) es.
Kound \(4^{*}\) scale. 100 micro amp 0-1.000 \& 0-50 \(£ 1\) ea: 1 Ma movement scaled \(0-1 \mathrm{~ms} 12 / 6\) es. I'. \& P. \(8 / 6\)
SANGO 50 micro amp rectangular meter. Size \(2 \ddagger \times 3^{\prime \prime}\) with 4 separate scales, lever operated. \(0 / 6\) wh
RECTANGULAR WESTON \(5^{*}\) mirror hack. Scaled 0.7501 ma hasic \(30 /-\) ea; 100 micro amp scaled \(0-50\)

SANGO 50 micro amp \(3^{*}\) round meters. Ex brand
new radiation equip. fi ea. P. \&P. \(3 / 6\).

TRANSISTOR EHT INVERTORS. 12 volt in , o/p (+ or -) 1.5 KV 2 MA and \(3 \mathrm{KV}+100\) micro amp, supplied. Brand new at \(£ 6 / 10 /-\) ea. P. \& P. 5/-. Also, as above but 1.5 KV AC \(20 \mathrm{kc} / \mathrm{s} . £ 3.10 .0\)

Panel switches DPDT ex eq. \(2 / 6\) ea.: DPST Brand new 3/6 ea: : DPST twice, brand new 5/- ea.
Switches 4 pole 2 way 2/6 ea.
ALBRIGHT Heavy Duty Contactor. Single make 200 amp . 24 V coil. Brand new, boxed. \& ea. incl. P. \& P MOTOR DRIVEN SWITCHES. 4 to 24 volt. 6 pole.
24 way. Brand new. \(£ 3\) ea. P. \& P. \(5 /-\). 24 way. Brand new. \(£ 3\) ea. P. \& P. \(5 /-\).
100 CHANNEL PULSE HEIGHT ANALYSER. Type 1363 C . Complete equipment in enclosed \(4^{\circ} 6^{\circ}\)
cabinet. Tested, working with manual. Must go \(£ 35\) cabinet. Teste

Official Orders Welcomed, Gov.|Educational Depts., Authorities, etc., otherwise Cash with Order
FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd units, etc., at 'Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day.

\section*{OSCILLOSCOPE PROBE TM8119 High impedance \(100 / 1\) resistive attenuated probe for accurate display of HF waveforms or short rise time pulse signals, offered brand new with all accessories and
instruction manual. List price \(\mathbb{1 7}\). Our price \(\mathbf{6 7 . 1 0}\) including earth bayonet HIGH VOLTAGE TRANSFORMERS Inpur 240 y ourpur 2560 y and 2820 v. at 1 amp. Weight 75 lb . Price El 5 . \\ TELEMAX HIGH VOLTAGE IN. SULATION TEST SET. Model E.IIS. 1 kv . to 15 kv . Used for the detection and measurement of leakage current and the operation of high voltage apparatus, the output voltage used is measured on a large the test circuit is indicated on the same calibrated meter. The instrument is nonlethal and may be short circuited without supplied in first class condition. Price \(£ 30\). \\ SOLARTRON OSCILLOSCOPE 5235.2 \\ The best of the surplus scopes for \(£ 52\), fully serviced and calibrated, compare the specification with others. Bandwidth DC. 10 MHz at 3 dB . Sensitivity is \(1 \mathrm{MV} / \mathrm{cm}\). Time Base \(0.1 \mathrm{usec}-\mathrm{lcm} / \mathrm{sec}\) in 7 decades with fine control on each range. Uses
\(C\) Core mains transformers \(/ 4\) in. High \(C\) Core mains transformers/4 in. High resolution flat face PDA CRT and many suitable for colour television servicing and many other applications. Price \(£ 52\) P. \& P. 25/-. \\ HIGH STABILITY LOAD RESISTOR Specially designed for use in R.F. power meters rated continuously at 25 watts by convection cooling or greater by oil immersion or forced air cooling. Connection of the power source is made to fed to the top of the load resistor by an fed to the top of the load resistor by an
outward taper constant impedance
ind section, specification \(D C\) to 500 MHz impedance 50 ohms, rating 25 watts. Offered brand new. Price 95/-.}

\section*{SCHOMANDL FREQUENCY \\ METER TYPE FD.I AND}

CONVERTER UNIT TYPE FDM.I Range I KHz to 900 MHz an approved standard for telecommunications equipment. Offered calibrated to manu
facturers specifications. facturers specifications.

CROYDON INSTRUMENTS Precision Kelvin Wheatstone Bridge, type KWI. Measurements can be made
from 0.0001 of an ohm. 100,000 ohms from 0.0001 of an ohm. 00,000 ohms decade ranges, four standards and six decade ranges, four standards and six
Kelvin divide/multiply ratio's offered in excellent condition ready for use. Kexcellent
Price \(£ 95\).
MARCONI 100 KHz QUARTZ CRYSTAL Type Qmi20/F contained in B7G envelope with flying lead connections.
Brand new only 20/- each.

MORGANITE GLASS ENCLOSED RESISTORS value 2.5k. meg ohms tolerance \(10 \%\). \(25 /\) - per carton of four.

WATSON MARLOW ORBITAL LOBE PUMPS
Specially designed for corrosive liquids etc. Rated output against 10 ft . head-
110 G.P.H. direction of flow reversible. Supply 240 v. A.C. mains. Nett weight Supply 240 . A.C. mains. Nett weight
14 lb . Supplied as new. Price \(£ 12.10 .0\) P. \& P. IO/-, List \(\mathbf{2} 22.10 .0\).

Voltage and Current regulators-heavy duty rheostats-I ohm rated at 10A. Brand new by famous manufacturer, \(12 / 6\)
each. Also 1.5 ohm at 7A., 12/6, p.p. 1/6

Lucas diode rectifiers full wave bridge rectifier mounted on special heat-sink.
\(50 \mathrm{~V}-60 \mathrm{~V}\). 50V. 60 V . operation rated at 50A. Has many uses for heavy duty charging piants,
plating rectifiers, etc., etc. Per pair \(£ 8\) plating rectifiers, etc., etc. Per pair \(\mathbf{8 8}\)
(two complete bridge rectifiers), p.p. \(7 / 6\). SATIC INVERTORS 24 v . DC input. 240 AC output at 150 watts continuous duty high quality units sine wave output suitable for mobile instrumentation.
Offered new and unused. Price \(£ 27.10 .0\).

RF SIGNAL GENERATORS AM AVO Led. Model CT 378 .
AVO Led. Model CT 378. Good quality AM generator \(2-225 \mathrm{MHz}\) in seven ranges
- calibrated output level I uV to 10 V frequency range directly calibrated with set level meter. Small size modern instrument complete with instructions. RF leads and mains lead for price only \(£ 35\). Airmec Led. Model CT-212 AM/FM signal generator 85 kHz to 32 MHz directly calibrated output level calibrated 1 uV
to I \(\vee\) deviation \(0-30 \mathrm{kHz}\), fully portable to 24 deviation \(0-30 \mathrm{kHz}\), fully portable for 24 DC and 240 v . AC operation in first
class condition. Our price, only \(£ 45\).

\section*{SPECIAL OFFER}
"INSULATION TESTERS" TYPE No. II METROHM by famous British manufacturer. All. solid state. No handles to crank. Runs off 9 volt transistor battery. Simply press button for function. Range 0.1 to 25 M ohms for insulation testing. Also 0.1 to 100 ohms for resistance and continuity checking. Clear, concise scale. Small size modern instrument, complete with carrying strap and protecting cover. Offered in good used condition with battery ready to work. For 250 volt pressure only. List Price \(\mathbf{E 1 9 . 1 0 . 0 .}\)
Our Price \(\mathbf{E 5 . 1 9 . 6}\) plus \(4 / 6\) post/packing.

Rhode \& Schwarz ESM300
UHF Receiver AM/FM \(85 \mathrm{MHz}-300 \mathrm{MHz}\).
Rode \& Schwarz BNI5031 Field strength test receiver AM/FM \(90 \mathrm{MHz}-470 \mathrm{MHz}\). Rhode \& Schwarz BN4I51/2" 60 Noise generator \(3 \mathrm{MHz}-1000 \mathrm{MHz}\). Rhode \& Schwarz BN18042 Unbalanced standard Attenuator \(0-100 \mathrm{db} 50\) ohm \(0 \mathrm{MHz}-600 \mathrm{MHz}\).
UHF Load resistor 100 watt \(50 \mathrm{ohm} \quad 0 \mathrm{MHz}-600 \mathrm{MHz}\).
 Rhode \& Schwarz BN4521 Vibration Meter \(30 \mathrm{~Hz}-12 \mathrm{KHz}\). Rhode \& Schwarz

Advance \(Q\) meter type \(T\)
\(100 \mathrm{kHz}-100 \mathrm{MHz}\).
\(\begin{array}{ll}\text { Marconi Q meter type } 329 \mathrm{G} & 50 \mathrm{kHz}-50 \mathrm{MHz} . \\ \text { Marconi Q meter type } 886 \mathrm{~A} & 15 \mathrm{MHz}-170 \mathrm{MHz}\end{array}\)
\begin{tabular}{|c|c|}
\hline Farnell Stabilised P.S.U. Model MSB 24/2 Modular unit for incorporating into your equipment. Variable between 3-24 v. @ 2 amps. Supplied New. Price.... \(\mathbf{C 1 7 . 1 0 . 0}\) & \begin{tabular}{l}
RHODE \& SCHWARZ POLYSKO \\
(SWOB 2) \\
With accessories for sale or hire.
\end{tabular} \\
\hline \multirow[t]{2}{*}{Airmec portable RF signal generator. AM/FM Type CT212.
Specially designed for fleld use for mains or 12v operation.} & \multirow[t]{4}{*}{RCA AR88D R/X, AS NEW CONDITION PRICE \(£ 52\)} \\
\hline & \\
\hline \multirow[t]{2}{*}{Frequency range 85 kHz to 30 MHz . Accurate scale
calibration. *Variable output from 1 micro V 100 mV} & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

> MARCONI BOID GENERATOR \(10-470\) GENERATOR
MHZ OUTPUT \(0.1 \mu \mathrm{~V}\) to IV

Marconi TF867 Standard RF Signal Generator, range 15 kHz to 30 mHz . Extrem accurate attenuator. hish output stability and discrimination make the generator very suitable for precision measurements on networks and filters. Modulation up to \(100 \%\) may be apylied at
400 or 1000 Hz . Built in crystal calitrator. Offered in 400 or 1000 Hz . Built in cryst.
first class condition. Price El 175.

\begin{abstract}
Precision Multi Turn Incicating Dials suitable for the skirt engraved 0 to 1 on and inner dial engraved 0 to 10 suitable for standard \(\ddagger\) inch spindles, these small dials are as easy to fix as screwing on an
instrument knob, size \(1 \frac{1}{2}\) in. for skirt, \(1 \frac{1}{6}\) in. dia nstrument knob, size \(1 \frac{1}{2}\) in. for skirt, \(1 \frac{1}{6}\) in. dia.
for counter knob depth \(\frac{1}{2}\) in. Brand new, only \(15 / 6\). A General Controls Manufacture.
\end{abstract}

\section*{TEKTRONIX 58I} WITH TYPE 80 PLUG IN AND PROBE AS NEW CONDITION

Minlature solenoid driven wafer switches, type-Iedex single pole, 7 pos. 3 wafers. Primarily used for channel switching in Radio-Telephones. Wafers may be sub-
stituted for any type. Solenoid voltage, 12 or \(\mathbf{2 4 V}\). stituted for any type. Soleno
Brand new. \(30 /=\) each. p.p. \(2 / 6\).

CAMBRIDGE INSTRUMENT Co. Led. Precision test meters. Electrodynamic
A.C. Ammeter 0 to 15 amps with test certificate

Dynamometer A.C. Ammeter range 0 to 15 amps Cambridge Dynamometer A.C. test set \(0-225\) Watts \(/ 0-330\) v. \(/ 0-30 \%\)
\(£ 35\)
\(£ 45\)
\(\mathbf{6 5 5}\)

Tinsley Universal Shunt type 4309 C
Foster Thermocouple pozentiometer type DX
\begin{tabular}{c}
655 \\
\\
\hline 75 \\
75 \\
\hline
\end{tabular}

Digital Voltmeter Solartron LM902-2 four digit readout
Solartron A.C. Convertor LM 903 matching unit for LM902
Hewlett Packard DVM 405CR four digit readout auto polarity
Glouster DVM BIE 2123 A.C./D.C. transistor portable \(0-1000 \mathrm{~V}\)
Frequency Counters Analogue/Digital
Raral
Racal Digital frequency meter type older valve model
Rank Cintel Counter/timer transistorised model \(10 \mathrm{~Hz}-1 \mathrm{mHz}\)
Venner Counter/timer type TS a3 Mains or portable Digital meter readout
U.S.A. BC221 Heterodyne frequency meter \(125 \mathrm{kHz}-20 \mathrm{mHz}\) new or used from
U.S.A. TSI75/U \(85-1000 \mathrm{mHz}\) Modulated, reception/emission CW, MCW, as new
U.S.A. TS \(186 / \mathrm{D}\) Heterodyne frequency meter \(100-10,000 \mathrm{mHz} \mathrm{CW}, \mathrm{MCW}\), pulse Marconi TF \(1417 / 2\) counter/timer 10 mHz transistorised

\section*{SOLARTRON VF252/NSL}

PRECISION ACMILLIVOLT METER Range 1.5 milli volt (for full scale deflection) to 15 volts in eight ranges input impedance 30 M ohms. The meters offered are of the very latest type not to be confused with the older models. Price only \(£ 75\).

\section*{LOW VOLTAGE POWER SUPPLY} UNITS
To supply \(12-15-20-24\) and 30 volts at continuous 5 amps with current control and ammeter employs silicon heavy duty
rectification and high quality components rectification and high quality components
very suitable for light duty plating and very suitable for light duty plating and
charing duties. 240 v . AC supply, fully charing duties. \(240 \mathrm{v}\). AC supply, fully fused. Smal size only
Offered brand new units. Price \(£ 12.10 .0\).

LUCAS CAR RELAYS. 12 v. Heavy duty make. Suitable for spotlights, horns, overdrives, etc. Brand new.
Only \(7 / 6\). Special price for quantities.

\section*{BARGAIN OFFER}

200-yard reels equipment wire, size 1/024, STC quality various colours. Brand new

HUNTER MAGSLIPS 3 inch Series, Type E-18-V/2. Very suitable for servo operation of hydraulic valves radar aerials
and other applications for 50 volt 50 cycle operation. Offered brand new in transit boxes, at only 65/- each.

\section*{MUIRHEAD PHASEMETER}

D-729-bm. Complete with supply and D925A Tunable Filter. Offered as new, with manual. Price \(£ 275\).

\section*{ADVANCE DC STABILIZED P.S.U. TYPE PM8}

Fully stabilized power module PM8 15 to 30 volts 5 amps offered brand new, Price \(£ 25\)

SODECO IMPULSE COUNTERS 4 DIGIT RESETT
10 Impulses per second. 27MA 22OV COIL AC/DC OFFERED BRAND NEW AT 40/- EACH

EIMAC SK-600A, Air spaced Valve Holders suitable for \(4 \times 250\), etc. Power tetrodes, brand new, boxed, complete with clamps, screws; heavy silver plaze finish
\(50 /\).
A.E.I. MINIATURE UNISELECTOR SWITCHES
No waiting, straight off the shelf and into your equipment the Catalogue Nos are 2202A, 4/33A63/1; coil resistance is 250 ohms. Complete with base, and the
price is \(£ 4.19 .6\). Limited quantity only price is £4.19.6. Limited quantity only
available. Also: 2203A, 2200A, 2202A.
Resolved Components Indicator VP 253/la. Solartron Low Frequency Decade Oscillators. Solartron OS 103 and associated equipment. 2 Phase Low Frequency Oscillator, type Bo 567. Solartron Solartron Synchro test set, type CT 428 Solartron AC Millivolt meter. Precision
Type VF 252 Type VF 252.
AERIAL CHANGE/OVER RELAYS current manufacture designed espec 12 v ., frequency up to 250 MHz at 50 watts. Small size only, 2 in. \(\times \frac{7}{\frac{7}{i n}}\) in. Offered
brand new, boxed. Price \(30 /-\) inc. P. \& P.

\section*{MUIRHEAD D-514-A TRANS}

MISSION MEASURING SET Designed for the maintenance and adjustment of carrier telephone equip-
ment, portable for use on \(12 v D C\) and ment, portable for use condition mains voltage. Perfect
power supply. Price \(£ 50\).

Coaxial Switches American Manufacture Suitable for aerial changeover and high frequency switching up to \(1,000 \mathrm{MHz}\) miniacure Vacuum drawn type 110 vd operation connections BNC and N types.

Hilger \& Watts Microspin \(\times\) Band Bridge Type W957. Microspin Proton Hea requency Mere Typ FA 210 . pin Modular. Whpe 210. Microspin cm Wave guide directional High Voltage Klystron Power Supply Units. Type FA 80
Hilger \& Watts Absorbance Convertor and many other items of interest offered Brand new equipment.
Lead-acid equipment batteries 10 v .8 AH Transparent casing. Size \(2 \frac{1}{4} \times 5 \times 7\) in. Offered brand new and boxed, 2 batteries per box, complete with links and full instructions. Can supply voltages in the
range from \(2-20 \mathrm{v}\). Price \(45 /-\), incl. P. \& P.

Burndept RF Plugs still available. These Burnd 0 find plugs are used on a multitud of equipment especially Londex aerial c/o relays. Offered new ex. equipment 2 for \(10 /\)-, inc. p.p.
Nife eraction Batteries Nickel Iron. 1.2 V per cell rated at 180 A.H. Sold in crates of three cells or crates of five cells. E4
per cell. Guaranteed best buy.

\section*{BT91-500R THYRISTORS} 500 PIV Max rect. Current 16 amps
Guaranteed perfect. Price \(25 /\) each HELICAL POTENTIOMETERS 10 TURN. Colvern type CLR 2402/lIS. Value 20 k . ohms.' dia. \(\mathrm{t} \times 2\) in. \(35 /\) -
BOURNS \(3507 \mathrm{~S}-3-103\). 10 k at \(0.5 \%\) 10 turn, dia. \(\frac{3}{4}\) in., length 2 in . incl. spindle. Brand new. 45/-.
Many other types available
Marconi Impedance Bridge TF368. Price W75. Kerr Impedance Bridge B52I Price 645 .
Electronic Voltmeters for low level signal sources.
PYE High Impedance DC Amplifier for measurements better than 20 uV to 10 volts centre zero. Price 656
Phillips GM 60101 mV FSD to 300 V in 12 ranges. Price \(£ 45\)
Phillips PM 25201 mV FSD to 300 V in 12 ranges RMS voltmeter 10 Hz to 1 MHz . Price \(£ 45\).
Dawe Model 616A transistorised Volt-
meter 10 mV FSD to 300 volts. In 10 meter 10 m
ranges. \(£ 27\).
ranges. ©27. meter 1.5 mV FSD to 500 volts. \(\mathbf{E 2 2}\). Solartron VF-252. AC millivoltmeter 1.5 \(\mathrm{m} V\) for FSD to \(15 \vee 30 \mathrm{M}\) ohms imped-
ance. Price \(£ 65\). ance. Price \(£ 65\)
H. W. SULLIVAN STANDARD AIR SPACED CONDENSERS Capacitance range 0 to 100 pf fully
screened with engraved vernier subdivided into 100 equal divisions complete with vernier index and original manu-
facturers seal
only \(£ 25\) each.
P.F. RALFE

CHOICE OF IOOOS OF ITEM LARGEST SELECTION LOW PRICES AND RETURN OF POST SERVICE

TRANSISTORS Brand now end fully zuarantead. PLEASE NOTE:-A large number of our transistors ha
now been reduced In prlce. Many more semi-conductors in atock. Plazse enquire for types not liated.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline PlV & \% & 2/6 & 3/- & 100
\(3 / 3\) & 500
\(3 / 6\) & \({ }^{800}\) & \[
\begin{aligned}
& 1000 \\
& 4 / 5
\end{aligned}
\] & 200 & 1400 \\
\hline 3 A & 3/- & & & \(4 / 6\) & & 9/9 & & & \\
\hline \({ }^{\text {6AA }}\) & & & 5/1. & \({ }^{61 \%}\) & 16 & \(17 / 5\) & \(1{ }^{\circ}\) & & \\
\hline & & & & & 1416 & \(17 / 16\) & 21 & & \\
\hline & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1 Ng 1 & \(1 / 6\) & AAZ17 & 2/6 & BAY38 & 2/6 & \\
\hline 1 N & \(1 / 6\) & BA100 & 3/- & BY100 & \(3 / 6\) & OA10 \\
\hline & \({ }^{4} 2\). & bal02 & 4/6 & BY103 & \(4 / 6\) & OA9 \\
\hline ISti & 31. & ballo & 6/6 & BY & \(7 / 6\) & 0 A47 \\
\hline 15120 & 31- & ballis & \(1 / 6\) & \({ }^{\text {BYI } 124}\) & 3/- & OA70 \\
\hline 1512 & 3/6 & BA141 & 6/6 & BY126 & 3. & OA73 \\
\hline 15130 & \(2 / 6\) & BA142 & \(6 / 6\) & BY127 & 3/6 & \\
\hline (15131 & & BA144 & \(2 / 6\) & BY164 & \(11 / 6\) & OABI \\
\hline 15940 & \(1 / 6\) & \({ }^{\text {BAA }}\) B4 \({ }^{\text {BAI }}\) & \(2 / 6\) & BY×10 & \(4 / 6\) & \({ }^{\circ} \mathrm{A}\) BS \\
\hline AAl19 & 21. & BAX \({ }^{3}\) & \(2 / 6\) & BYZ11 & \(6 / 6\) & -A90 \\
\hline AAI & 2 & BAX16 & 2/6 & BYZ \({ }^{\text {BY }}\) & 6 & \\
\hline AAZI5 & \(2 / 6\) & BAY31 & 1/6 & EST3/4 & 4/6 & OA202 \\
\hline
\end{tabular}

MAINS TRANSFORMERS
1 amp Charger, Sec. 0-3.5-9-18v

Post and pocking \(4 / 6\). 107 s.
5 amp (Douglas) MT107 Sec. tappings from 6v to 50v .. \(110 /\) stock (details in catalogue).
TRIACS

40 S 12 TO- 5 mod .6 amp 400 V .
40430 TO .666 mp 400 v
40430 TO. 666 amp 400 v . 40 v
Eeonomy Range Trlacs
TC \(4 / 20\) (Pressft) 4 amp 200 PIV
\(\mathrm{TC} 4 / 40\) (Pressfit) 4 amp 400 PIV
TC4/40 (Pr
ST2 DIAC

\begin{tabular}{|c|c|c|c|c|}
\hline THYRISTORS & 100 & 200 & 300 & 400 \\
\hline \(14 \quad 51\). & 5/6 & 716 & \(8 /\) & 916 \\
\hline 4 A 9/6 & \(11 /\) & \(11 / 6\) & & \(13 / 6\) \\
\hline 5A & \(11 \%\) & \(13 /\) & & 15\%. \\
\hline 7A & \(11 /\) & 13/- & - & 19/6 \\
\hline
\end{tabular}
\(\begin{array}{llll}\text { TAC47 } & 0.6 \text { amp } \\ \text { Also } 12 \text { Amp } 100 \text { PIV } \\ \text { 15/-, } \\ 200 & \text { N } 3525 \text { at } 22 / 6\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline VEROBOARD & & & & & Mat & 1 Matrix \\
\hline & .. & \(\cdots\) & . & & \(3 / 6\) & 4/9 \\
\hline 210. \(\times 1{ }^{\circ}\) & \(\because\) & \(\cdots\) & . & . & \(4 / 3\) & 4/9 \\
\hline \(33^{3} \times 1{ }^{\circ} \times{ }^{\circ}\) & \(\because\) & \(\because\) & & \(\because\) & 4/3 & 4/9 \\
\hline 210 \(\times 17^{\prime \prime}\) & \(\because\) & \(\because\) & \(\ldots\) & & \(12 / 6\) & \\
\hline \(35^{\prime \prime} \times 17^{\circ}\) & . & . & . & & 16/- & \(21 / 6\) \\
\hline \(5^{\circ} \times 17^{\circ}\) & & \(\cdots\) & & & & \(26 / 6\) \\
\hline \(3^{35^{*} \times} \times 17^{* \prime}\) (Plain) & . & \(\cdots\) & & & & \(11 / 6\) \\
\hline 21* \(\times 17^{\prime \prime}\) (Plain) & & \(\cdots\) & & & & \\
\hline
\end{tabular}

Vero Pins (Bag of 50) \(5 / \ldots\) (Bag of 100) \(8 /\) -
Pin Insertion Toola (.1 and 15 matrix) at \(11 / \%\)

\section*{REsistors
Carbon Film}

Wire Wound
2.5 watt \(5 \%\) (Up to 270 ohms only)
5. watt \(5 \%\) (Up to \(8,2 k\) ohms only)
\(10 \mathrm{watt} 5 \%\) (Up to \(25 k\) ohms only)
\(1 / 6\)
\(2 / 6\)
\(2 / 6\)
CAPACITORS. Polyester, coramic:, Polyatyrene, ailver mica, Electrol trimmors etc.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline MFD. & \(\checkmark\). & & MFD. & V. & & MFD. & V. & \\
\hline & is & 1/6 & 25. & 50 & 1/6 & 400 & 16 & 219 \\
\hline 1.6 & 25 & \(1 / 6\) & 32 & 40 & 1/6 & 500 & 6 & 2/6 \\
\hline 2 & 350 & 2/- & 32 & 450 & 5/6 & 500 & 25 & \(3 / 9\) \\
\hline 2.5 & 16 & \(1 / 6\) & 40 & 16 & 1/6 & 500 & 50 & \(4 / 9\) \\
\hline 4 & 10 & \(1 / 6\) & 50 & 12 & \(1 / 6\) & 640 & 16 & 31 \\
\hline 4 & 450
30 & \(1 / 6\)
\(2 / 3\) & 50
50 & 25 & \(1 / 6\) & 1000 & 16 & 5/- \\
\hline 5 & 18 & \(1 / 6\) & 50 & 50 & 2/- & 1000 & 25 & 5/\% \\
\hline 5 & 50 & 1/6 & 64 & 25 & 1/6 & 1000 & 50 & \(7 / 6\) \\
\hline 6.4 & 6.4 & \(1 / 6\) & 80 & 16 & 1/6 & 2000 & 25 & \(8 / 6\) \\
\hline 8 & 40 & 1/6 & 80 & 25 & 1/6 & 2000 & 50 & 12/6 \\
\hline 8 & 450 & \(3 / 6\) & & 6.4 & & 2550 & 12 & 5/2. \\
\hline 10 & 12 & \(1 / 6\) & 100 & 12.4 & \(1 / 16\) & 2500 & 25 & \(9 / 6\) \\
\hline 12.5 & 25 & \(1 / 6\) & 100 & 25 & 2\%- & 2500 & 50 & 13/6 \\
\hline \(1{ }_{16}\) & 10 & \(1 / 6\) & 100 & 50 & 2/6 & 2500 & 64 & 15/6 \\
\hline 16 & 15 & \(1 / 6\) & 125 & 10 & \(1 / 6\) & 3000 & 25 & \(10 / 6\) \\
\hline 16 & 450 & 3/3 & 200 & 10 & \(1 / 6\) & 4000 & 100 & 47/6 \\
\hline 25 & 6.4 & 1/6 & 250 & 25 & \(2 / 9\) & 4500 & 75 & 45/0 \\
\hline 25 & 10 & 1/6 & 250 & 50 & \(3 / 9\) & 5000 & 25 & 12/6 \\
\hline 25 & 25 & 1/6 & 320 & 10 & 1/6 & 5000 & 50 & 19/6 \\
\hline
\end{tabular}
 R53 (STC) \(25 / 6\) K 151
mens)
(Sie-
IK
leasa noto:-Due to bulk buyligg
Please note:-Due to bulk buying we can
now offer Texas RCA and Newmarket Semiconductors at Industrial distributor prices. New quantity Price List available for Industrial users upon request.

\section*{FLUORESCENT CONTROL KITS}

Fach kit compriaes aeven Itens-Choke, 2 tube ends tinnter, starter holder and 2 tube clips, with wiring instruc-
tinns. suithe for nomnal floorecent tubes or the new

 isw. miniature tube, \(20 /=\). Poatage on Kits \(A\) and \(B\) 4/is
 kit then \(3 / / 6\) on euch two kits orlered.
\(\mathbf{3}\) amp 12 vv . Battory Charger Kh-comprising \(230 / 40\) mains
trankformer with 3 anp secondary and 3 nmp rectitler 22/6 plus \(4 / 6 \mathrm{pos}\)
18 volt 18 amp Power Pack. This comprises ilouble-wound
\(231 / 2+1 \mathrm{ny}\), ming tranformer with full wave rectifier and 2:31) 2 2thv. mains tranaformer with
2014 m. m. d . smonthlng. Price 27/6.
12 volt Cer Battory Trickle Charger. Made in Japan, this is very anhall and neat. Regular uate will keep your car hattery
In gond trim throughout the winter. silly price, 25/- plis \(4 / 6\) postage und insurance.
Sonotone Stereo Cartridge. Turnover type, ref. No. 19 TI.
This fite most British plck-uph and is a really excellent reproslucer. Limited quantity, 19/6.
5 amp 3 pin Sockets. These are always good atock, you never
know when you will need mome. Pannuas make, brown hakelite, atandard size, 12 for \(13 /=\) plus d/6 pos Ditto but with 2 witch. 12 for El plus \(4 / 6\) poat 13 amp socketh, tlush mounting. Bakelite, cream, less Bakelite Panels, many thicknentes. We have just taken
delivery of approvimately in tons of bakelite in varying thicknesses from 2 m . to a few thou. If yon have a need for any of thia then we would be glad to supply. The thlckest
is very heary and could be used, for lnstance, ss in heil for a
 plus (i). cutting charge.,
 100 Assorted silicon Rectifieri G.P. and Switching Diodes. \(12 / 6\) per 100 .
Mainu Snppreanon Adaptor for preventing mains interference caused by vacuum cleaners, razors, sewing machines, etc,
rated at 4 amps, simply plug this into your 5 amp 3 pin rated at 4 amps, simply plug this into your 5 amp 3 pin
socket, \(8 /-\) each. 5 in . Cathode Ray Tube, Sylvania type, No. SE. S
replacentent in many scopes and instruments, brand new replacement in many scopes and instruments, brand new Metal shielit tor this tube, 22 . 10.0 .

\section*{ELECTRIC CLOCK WITH
25 AMP SWITCH} 25 AMP SWITCH
Made by finlth's, these unlta are as
fited to many top qually cookers to contron the oven. The clock lis matiss
diven and frequency controlled bo it is ext remely accurat. The two small
dials enable switch on and oft times to dials enable switch on and off times to
be accurately set. Ifeal for switching
on tape recorders. Ontered nt only
 on tape recorders. Offered at only a

\section*{MULTS-SPEED MOTOR \\ Replacement in many well-known fond
misera. Six speedg are available \$ik, R50 and \(1,100 \mathrm{r} . \mathrm{p} . \mathrm{m}\). from either or both \\ of the food mixers nomnally go) and poliahing ppeeds 12 irom the main drive and approximately 1 in . Iong. A further \\ }解 wound ita speed may be further controlled with the use
of our Thyrister controller. Thly is a very powerful and useful motor size approx. 2 in . dia. \(x\) sin. long, mains
\(2: 30 / 241 \mathrm{v}\). Price \(17 / 6\) plus \(+/ 6\) postage and insurance. 12 or Nicad Battery Charger. This plugs into a shaver socket, has switch in 2 nllue-in compartments denigned to take of 7 mA atandard Nicads, but by using wabiers or rings these charger can be easily moditied to the
plete with adaptor, \(8 / 6\).
Quadrupie Recording Tape. On a 3 in . apool giving fintift. of
 pintrable equipment. Regular price about \(31 / /\) per sprol Our price, \(7 / 6\) or \(21 /-\operatorname{Por} 3\) spoula if ordered together. 8 ohm Speaker. sin. rimul.
tranxistor anapliters, \(14 / 6\) ea

biblir mirrel, B.C. cap Grundig Stenorettor. Portahble ontice dictating machine.
German made and very efticlent. We have a few ouly oin these, secondhand hut in periect work ing order, miy not so
would be exchanged. \&10 each. Rechargeable Nicad Eattery Packs for this machine, \(\mathbf{£ 3 . 1 0}\) ench.
110 r.p.m. Geared Motora. This is a powerful 2 poie mains. mperuted induction mutor as used in record players but much
mure powerful (?in. stack). The geariox is sealed and th
 Main Oporated Relay. A smali size reliy but with 3 puirs of 141 fimp contacts. \(12 / 6\) each.
 welding heads, foot switch and auth cut out. Not many in
these available, price f40 complete phas carringe at cout. 6-way ghorting switch. Thls resemble日 an ordinary rotary
wave change with, but the tags instead of being switched
separately, are prugressively ghorted cogether. This is separately, are prugressively shorted together. This
gometines known as an incremental switch, 4/6 each.
gometines known as an incremental switch, \(4 / 6\) each. Buzzer. This in a normal size bakelte buzzer, made for the
a, Po. no obvioualy very good. Ex-equipinent but perfect orler. \(4 / 6\) each or 48 /- dozen.
Miniature Fluorenoent Tubas. These have a dlameter of only upproximately 1 in . and are available as follows: Hin.
(i) watt, 12 in . 8 watt, 21 ln . -12 watts. All \(10 / 6\) euch or 9/-dozen lots. Control gear for these is atailable, MF1 for
bind 12 in , tubes and MF2 for 21 in . tubes, \(18 / 6\) per set 2 speed 12 volt glowers. Made by Delco these are very
porweritul at full speed. deal if you are makling a blower heater for car or caravan or for extracting bud air where heater for car or caravan or for extracting bad air where
only i 12 yolt supply is avallable. \(38 / 8\) plus \(+/ 6 \mathrm{p}\). s p . Panel Lamp Holders. These rejulre only one hole through the panel, removeable glass front and buck, users nombat
sinall M.E.s. bulb, \(1 / 3\) ench, \(12 /\) dozeli. 8partan Radio. lang and mediunn wave 7 translatur radio,
had size approx, \(0 \times 4 \times 1\) in., with larger than average speaker, better than average tone. Also telescoplc aerial for recelving distant suations. A good set. complete with leather
case and carrying aling. © 15 each plas 5 . post anil Ins. 13 Amp Fuses for ring main pluge. Made by (I.E.C. these ar

\section*{ERGOTROL UNITS}

\section*{HORSTMANN "TIME \& SET" SWITCH} (A 30 Amp Switch.) Just the thing if you waut to come home to a warltch on thine of your electric fires, etc., up to. 14 hours from setting tine or you can ure the awitch tor give a borot on period of up to 3 hours. Equally suitable to control processing. Regular price proball

FULL Fi 12" LOUDSPEAKER

model 88/-. Portage
wwitch 8/6.

\section*{RESETTABLE FUSE}

How long does it take you to renew a fuse' Time yourself when next one blows: Then reckoning your time at al per hour see how guickly our resettable fowe (suto circuit breaker) witl pay for itself. Price only \(£ 1\) each or \(\& 11\) per dozen, apecity \(\bar{\Delta}\), 10 or \(1 \overline{5}\) amp-simply ft it place of arriteh.

THYR\|STOR LIGHT DIMMERS Will dim Incandeacent lighting up to bino watta from full brillance to out. Suitahle to mount on M.K. switch plate, same size and fisting as standard wall switch, so may be fitted in place of this
mount on surface. Price conplete with control knol 59/6.

\section*{INTEGRATED CIRCUITS}
\(\begin{aligned} & \text { A parcel of integrated circuits made by the famous Plessey Company. A once in a Hfctime } \\ & \text { offer of Micro-electronic devices well below cost of manufacture. The parcel contains } 5 \text { ICs }\end{aligned}\)
all new and perfect, first grade derice definitely not sub-standard or seconds. The ICsare
\(\begin{aligned} & \text { all single silicon chip General Purpose Amplifiers. Regular price of which is well over } \mathrm{zl} \\ & \text { each. Full circuit detaifs of the ICs are included and in addiltion you will recelve a ilat ot }\end{aligned}\)

\section*{DISTRIBUTION PANELS}

Juat what you need for work bench or tab, \(4 \times 13\) minp

 cable. Wir od up ready to work, \(38 / 6\) less plug ; 4

\section*{COMPUTER TAPES}

COMPUTER TAPES Whe, alnost unbreatable aud on a lolin. metal computer npool. Usery have chainued succesuful resulte with wideo as well as sound recordinga. 19/6

\section*{MAINS TRANSISTOR POWER PACK}

Designed to operate transistor sets and amplitiera. Adjustable output fiv., 9 v., 12 v. for up
 foad resistur, condemeers ind inat ructions. Real snlp at only 18/6 plus \(3 / 6\) postage. Probable cont from the makers over
50/6. Brand new in makers' cartons.

\section*{switch, malis ç}

A.C. Ammeter. These are very useful in the workshop un
they will read very high currente in fact 1.250 ampa, but they will read very high currents in fact (1-250 ampa, but
heing moving iron the moat useful sectlon of the scale perheing moving iron the most usetul section of the scale per-
nita sccurate readings between \(5-3\) amps. These are
lieautifully made. lieautifully made, sing dial, made by sangamo Weston.
probable cost frim the makers over \(\pm 110\) each. Our price
58/6. Brand new in thakers cartons.
Case Bande. Bakelte with metal attachments. Ideal for all
purtable equipment and for tool boxep, etc., \(1 / 3\) each, \(12 /-\)

\section*{EXTRACTOR FAN}
eans the air at the rate of 10,000 Cieans the air at the rate of 10,000
cabic ft. per hour. At the pull of a
cord it extracts grease, cord it extracts gresse, grime ond
cooking smells before, they dirty decorations. Suituble for kitchents,
bathrooms,
factories,
changing
 Wherever it is necessary to move
air fast. Kit comprisea motor, fann
blules, sheet steel casing. pull

Be first this year!
SEED AND PLAN ED AND PL
RAISING Soil heating wire ardi tranatormer.
Sultable for standari size garin BLANKET SWITCH
Duuble pole with reon let intoside so luminous in inrk. Ideal for dark room light or for use with waterproof element-new plastic case. 5/6
Waterproof hatating klement.

\section*{21 k W FAN HEATER}

Three position switching to suit
changes in the weather. Switch up changes in the weather. Switch up
for full heater (2 2 kW), Buitch down
for half heat for half heat (1 1 kW), switch central
blows cold for summer conlingcontrol and safety cut-out. Complete
kit \(£ 3.15 .0\). Post and ins. THERMOSTATS
Type \(A\) in amp. for controllitg room heaters, green. houser, Hiring cupboard. Has spintle fol pointer knolss
Quickly adjutable foom \(30-80\) deg. \(\mathbf{F}\). \(9 / 8\) plus \(1 /\). post. Type "B" 15 amp. This is a 1 Fin. long mod type nuade by

Type "D". We call this the Ice-stat as It cuts in and out at around freezing point, \(2 / 3\) anps. Has many uses, oure
of which would be to kecp the loft pipes from freezing, if of which would be to kecp the loft piper from freezing, if \(h\)
length of our blanket wire (16 yd . 10 / - is wound round the Type "E". This is standard refrigerator thermoatat. Bpindle adjustments cover normal refrigerator temperature. \(8 / 6\),
plus \(1 /\). post. plus 1/. post. lifquid-particularly those in glass tanks, vats or aink s-
thermostat is held (half submerged) by rubher sucker or wireclip-ldeal forfish tanks-deve bopers and chemicear buthe
of all types. Adjustable over range 3 il les. to 150 deg. F. of all types. Adjustable over range sty deg. to 150 dtg . F.

\section*{3 STAGE PERMEABILITY TUNER}

Thí Tuner is a precision lingtrument made
Ior the fanmons Radionobile Car Radio. It
iba medium wave tuner (but set of long wave isa medium wave tuner (but net of long wave
coils availabie as an extra if required) with it

 suitable for ca

ARMAT URE EAR PIECE \(5 / 6\) each Rod Thermostati. As normally us
lengths 1uin. and 1 tin. \(12 / 6\) each.
13 amp Ivory Socketh. Unawitched, \(3 / 6\) each, switched \(4 / 8\) each. Mioro 8 gitoh. Made by Burgess this is standari, 15 amp Mioro 8 ittoh. Made
13 antp on/ofn, \(2 / 8\) each. \(27 /\) dozen.
Rosettabie mpule Countor, 24 volt operated and each Impulse Rosettabie mpule Countor, instrunent is resettable by puish button. Ideal for any countlng operatlons, 48/
Error in Lat Month's A.A. Nown. Sone copien of this
described a 12 volt imp Pow Pr Pack at \(29 / \mathrm{h}\). This ahoultid degeribed a 12 volt amp Pow ir Pack at \(29 / \hbar\). This should
have read 12 volt 1 amp Power Puck at \(29 / 4\). Borry for thin mistake.

\footnotetext{
Where postage is not stated then orders over 5 are post iree. Below \(\mathbf{E 5}\)
}

ELECTRONICS (CROYDON) LTD
Dept. WW, 266 London Road, Croydon CRO-2TH
Also 102/3 Tamworth Road, Croydon

TYPE 4313－high sensitivity for general electronic and TV－radio repsir applications．
Sensitivity： 20,000 o．p． DC and 2,000 o．p．v． AC ．
D．C．ranges： \(75 \mathrm{mV}-1.5-3-7.5-15-30-60-150-300-6.00 \mathrm{~V}\)
D．C．Tanges．
A．C．ranges： \(1.5-3-7.5-15-30-60-150-300-600 \mathrm{~V}\)
\(600 \mu \mathrm{~A} \cdot 3-15-60 \cdot 300 \mathrm{~mA}-1.6 \mathrm{~A}\)
Resitance： \(0.5-5-50-500 \mathrm{k} \Omega\)
Capacity and Transmiasion level scales．
Accuracy： \(1.5 \%\) D．C．；； \(2 \%\) A．C．
PRICE，with carrying case and leads \(£ 10.50\)
Both instruments have knife edge pointers and mirror bcales
WHEN ORDERING BY POST PLEASE ADD \(0.12 \frac{1}{2}\) （2／6）IN \(\mathcal{L}\) FOR HANDLING AND CO．D．ORDERS ACCEPTED
ALL MAIL ORDERS MUST BE SENT TO HEAD

\section*{ZENER DIODES}

TWO NEW OSCILLOSCOPES FROM RUSSIA

CI－5SINGLE BEAM \(10 \mathrm{mc} / \mathrm{s}\) passband，trigger sweep from \(1 \mu\) sec．to 3 milli－ from \(20 \mathrm{c} / \mathrm{s}\) to \(200 \mathrm{kc} / \mathrm{s}\) ．Built－in time marker and amplitude calibrator， 3 －in．cathode ray lube with telescopic viewing
nood．

\section*{CI－16 DOUBLE BEAM}

OSCILLOSCOPE
Y 1 mo／s passband．Separate rectangular \(5 \mathrm{in} . \times 4 \mathrm{in}\) ． cathode ray tube．Cali－ brated triggered sweep from \(0.2 \mu \sec _{\text {．}}\) to 100 milli－ ec．per cm ．Free running Built－in time base calibra－ tion and amplitude cali－ tion and amplitude \(\underset{\text { cali－}}{ }\) Full details on request．
 spares available．

OUR NEW CATALOGUE 1970／1971 18 NOW
PLEABE SEND B．A．E．FOR YOUR FREE COPY

 FULLY
GUARANTEED

zuent
FIRST QUALITY VALVES

会

嵒

\section*{\begin{tabular}{|l}
PC \\
\hline
\end{tabular}} 2
0
0.30
0.33登管
\(\qquad\)

 \({ }_{3}^{2}\)
please note that all prices are quoted in decimal currency．

Please note that valves listed above are not necessarily of u．k．Origin
Head Office：
44a WESTBOURNE GROVE，LONDON，W． 2

Tel．：PARK \(5641 / \mathbf{2 / 3}\)
Cables：ZAERO LONDON
Cables：ZAERO LONDON
Retail branch（personal callers only）
85 TOTTENHAM COURT RD．
LONDON W．2．Tel：LANgham 8403

WE WANT TO BUY：
SPECIAL PURPOSE VALVES．PLEASE OFFER US YOUR SURPLUS STOCK．MUST BE UNUSED

A．R．B．Approved for inspection and release of electronic valves，tubes，
klystrons，etc．

\section*{APPOINTMENTS VACANT}

DISPLAYED SITUATIONS VACANT AND WANTED: \(£ 3\) per single col, inch
LINE advertisements (run-ou): 45p [9/-] per line (approx. 7 words), minimum two lines.
Where an advertisement includes a box number (count as 2 words) there is an additional charge of 25 p [5/-].
SERRES DISCOUNT: \(15 \%\) is allowed on orders for twetve monthly insertions provided a contract is placed in advance.
BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, e/o Wireless World, Dorset House, Stamford Street, London, S.E.1.
No responsibility accepted for errors.

New post at Southerngas
Headquarters, Southampton.

\section*{RADIO TECHNICIAN}

Salary \(£ 1,563-£ 1,845\) per annum

Will assist with installation and surveying of new radio and trunk network schemes. Should have HNC Telecommunications or City and Guilds Certificate in an appropriate subject plus formal training with telecommunications manufacturer or major user plus several years experience; also knowledge of VHF, UHF, Microwave and Radio Multiplex techniques essential.
Salary within range shown according to qualifications, experience and ability.
Assistance with cost of removal will be given.
Application forms may be obtained from the Senior Personnel Officer, The Southern Gas Board, 164 Above Bar, Southampton SO1 0DU to whom they should be returned by 15 th January 1971. Please quote reference P560/4.

\section*{WESSEX REGIONAL HOSPITAL BOARD ELECTRONIC TECHNICIANS I \& III}

Required for the following Hospital Groups:
Bournemouth and East
Dorset Group Hospital
Management Committee1 - Technician I
North Hants Group Hos-
pital Management Com-
mittee 1-Technician III
Portsmouth Group Hos-
pital Management Com-1 - Technician I mittee 1 -Technician III
Salisbury Group Hospital
Management Committee1-Technician II!
Southampton Group Hos-
pital Management Com-
mittee 1-Technician I
Salaries:
Electronics Technician I: \(£ 2,070\), by 5 increments to \(£ 2,445\) p.a.
Electronics Technician III: \(£ 1,356\), by 8 increments to \(£ 1,764\) p.a.
Applicants start at the minimum of the scale except in certain special circumstances; previous hospital experience desirable.

\section*{Qualifications:}

Electronics Technician 1-Higher National Certificate (Electronics) or equivalent.
Electronics Technician III-Ordinary National Certificate or preferably Higher National Certificate (Electronics) or equivalent.
Successful candidates will work in Departments of Electronics concerned with the installation, testing, maintenance and development of a wide range of medical, electronic and allied equipment.
Application forms, job descriptions and specifications available from the Secretary, Wessex Regional Hospital Board, Highcroft, Romsey Road, Winchester. Closing date: 13th January, 1971.

\section*{Cib-meraniil tehtronitas}

\section*{TECHNICIANS AND ENGINEERS FOR ST. ALBANS AND LUTON QUALIFIED OR NOT!}

VACANCIES exist for work on testing and calibrating valve and solid-state electronic measuring equipments embracing all frequencies up to u.h.f. in Production, Service and Calibration departments.
APPLICATIONS are invited from people of all ages with experience or formal training in electronics and from ex-Armed Services technicians.
HIGHLY COMPETITIVE SALARIES, negotiable and backed by valuable fringe benefits.
RE-LOCATION EXPENSES available in many instances. CONDITIONS excellent; free life assurance, pension schemes, canteen, social club.
\(37 \frac{1}{2}\)-hour, 5 -day, office-hours week.
WRITE or phone Personnel Department stating age, details of previous employment, training, qualifications, approximate salary required, quoting WW 10

MARCONI INSTRUMENTS LIMITED,
Longacres, St. Albans, Herts.
Tel:St. Albans 59292
Luton Airport, Luton, Beds.
Tel : Luton 31441.
A GEC-Marconi Electronics Company

\title{
Gilbert and Ellice Islands Colony TELECOMMONIGATIONS TEGHNIGAN \\ Up to \(£ 2498\) + Gratuity
}
*Salary up to £2498
*Low Taxation
*25\% gratuity
*Appointments Grant payable in certain circumstances
*Subsidised accommodation
*Education allowances
*Contract two years in the first instance

Required by the Posts and Telecommunications Dept. to be directly responsible to the Senior Telecommunications Technician for the installation and maintenance of the installations in his charge and to give formal and/or practical training to local officers.

Candidates should possess the City \& Guilds Final Certificate (Telecommunications) or equivalent and have experience in the installation and maintenance of H.F., M.F. and V.H.F. communications and navigation equipment, operation in C.W. and S.S.B. modes, experience of both valve type and transistorised solid state radio beacons, radio teleprinter using both tone on off and two tone keying and multi-channel V.H.F. equipment. Applicants lacking formal qualifications but with extensive experience may be considered.

M2K/701115/WF

\section*{Malawi}

ENEINEERING OFFICER ICARRIER \& V.H.F.J Up to \(£ 2149\) + Gratuity
*Salary up to £2149
*Low Taxation
*25\% gratuity on completion of 30 month tour
*Appointments Grant \(£ 100\) or \(£ 200\) in certain circumstances
*Contract 24-36 months
*Subsidised accommodation
*Education allowances

Required by the Posts \& Telecommunications Department for the maintenance of carrier telephone and V.H.F. equipment and to give guidance and assistance to local staff under training.
Candidates, 28-45 years, must have received a minimum of two years approved training plus not less than five years experience on the maintenance of carrier systems and V.H.F. radio.

M2K/700207/WF

\title{
fora profitable change of scene?
}

\section*{East African Community \\ SEGTIONAL ENGMEERS GRADE II Up to \(£ 2718\) + Gratuity}
*Salary £2341 - £2718
(according to experience)
*Low Taxation
*25\% gratuity
*Contract 21-27 months
*Subsidised accommodation
*Education allowances
*Appointments Grant payable in certain circumstances

The Meteorological Department requires officers to undertake the installation, operation and maintenance of radio telecommunications and radar equipment.

Candidates, up to 45 years, must possess either O.N.C. or City and Guilds Final Certificate in Telecommunications or have equivalent experience in the armed services and should have a good theoretical and practical knowledge of F.S.K., I.S.B. and S.S.B. receivers and transmitters, Mufax and facsimile transmitters and recorders. A good working knowledge of radar systems is essential.

M2K/690413/WF

\section*{East African Posts \& Telecommunications Corporation ASSISTANT ENGINEERS GRADE I Up to \(£ 2718\) + Gratuity}
*Salary up to \(£ 2718\)
*25\% gratuity
* Low Taxation
*Subsidised accommodation
*Education allowances
*Contract 24 months
*Overseas Installation Grant payable in certain circumstances

The officer's duties will be connected with the installation and maintenance of radio stations and will involve travelling to outlying stations at a considerable distance from their headquarters.
Candidates, 28-45 years, should possess the City and Guilds Intermediate Certificate (Telecommunications) plus a pass in Radio Grade 2 or hold an equivalent qualification. They must have a thorough knowledge of the installation and maintenance of H.F. and V.H.F. radio equipment ; a knowledge of microwave, carrier and telegraph equipment would be an advantage.

M2K/690815/WF

\section*{FLICHT SIMULATOR SERVIGE ENGINEERS}

Redifon Flight Simulator Division are designers and manufacturers of highly sophisticated simulators of current civil and military aircraft and linked products for use in the United Kingdom and world-wide export markets.

We need skilled service engineers to keep th is complex and hard-worked equipment in continuous firstclass operation.
You should preferably have a minimum of O.N.C. or City \& Guilds Certificate and theoretical and practical experience of digital computing, hardware. software and computer peripherals, and/or a sound knowledge of pulse techniques. However, applications will be considered from those with relevant practical experience gained in the appropriate fields but who do not possess formal qualifications.
A knowledge of analogue computing and hydraulics would be advantageous. We will train those who have good experience in transistorised and integrated circuits.
The job is varied and interesting and in an expanding business. Promotion prospects are good. You must expect to travel anywhere in the United Kingdom and Overseas at short notice, possibly for extended periods. Excellent welfare benefits include contributory pension scheme coupled with free life assurance.

There are vacancies at both Aylesbury. Bucks. and Crawley. Sussex locations. Applications should be made in the first place to

\section*{H. C. Hall}

Personnel Manager
REDIFON LIMITED
Gatwick Road, Crawley, Sussex. Tel : Crawley 28811
REDIFON
A Member Compary of the Reditlusion Oiganisation

\section*{Perkin-Elmer Ltd, of Beaconsfield}

Who are members of an international organisation actively engaged in the development and manufacture of a wide range of analytical instruments have a vacancy for an

This is a staff appointment in a department engaged in the testing of advanced analytical instruments involving a wide variety of electronic techniques.

The post offers an interesting and challenging appointment to a young engineer who after familiarisation with the product being manufactured is capable of working with minimal supervision.

Formal qualifications whilst desirable are not essential as practical experience of modern circuits using discrete components and integrated techniques is essential.

The minimum starting salary will be \(£ 1,400\) per annum. Usual fringe benefits
Write or telephone for an Application Form to:-
L. H. Oates, Personnel/Training Manager, Perkin-Elmer Limited, Post. Office Lane, Beaconsfield, Bucks.
Tel: Beaconsfield 5151

\section*{ISLE OF MAN CIVIL SERVICE}

Applications are invited for the post of Telecommunications Technical Officer on the staff of the Isle of Man Airports Board at Ronaldsway Airport.

Candidates must be at least 25 years of age on the 1st April. 1971 and must either:-
(a) have an Ordinary National Certificate in Engineering including a pass in Electrical Engineering " A ". or
(b) have obtained the City and Guilds Institute Intermediate Certificate in Telecommunications Engineering and the City and Guilds Institute Certificate in Radio II, or
(c) have obtained the City and Guilds Institute Intermediate Telecommunications Technicians Certificate and the City and Guilds Institute Certificate in Mathematics B, Telecommunications Principles \(B\) and Radio and Line Transmission B, or
(d) produce evidence of an equivalent standard of technical education
and
in addition to any of the above be able to show that they have sufficient experience in radio, radar or other electronic work.

The post is permanent and pensionable on a non-contributory basis (subject to medical fitness) and arrangements exist for the transfer of certain pension rights.

The standard rate of Manx income tax is 4s. 3d in the \(£\) and there is no surtax, capital gains tax or estate duty.

Further particulars and forms of application are obtainable from the Secretary, Civil Service Commission, Government Office, Douglas, Isle of Man.

\section*{If you're a telecommunications man and match up to the qualifications below cut yourself into a slice of Britain's future}

Become a

\section*{in the fast-growing world of Air Traffic Control}

Please send me an application form and details of how 1 can join the fascinating world of Air Traffic Control Telecommunications.

Name

Address

Not applicable to residents outside the United Kingdom
To: A J Edwards, C Eng, MIEE
The Adelphi, Room 705, John Adam Street, London WC2N 6BQ marking your envelope Recrultment'

Sending this coupon could be your first step to a job that's growing in importance every year.

The National Air Traffic Control Service needs Radio Technicians to install and maintain the vital electronic aids that help control Britain's ever-increasing air traffic

This is the kind of work that requires not only highly specialised technical skills but also a well developed sense of responsibility, and candidates must be prepared to undergo a rigorous selection process. Those who succeed are assured a steadily developing career of unusual interest and challenge Starting salary varies from \(£ 1044\) (at 19) to \(£ 1373\) (at 25 or over) : scale maximum \(£ 1590\) (higher rates at Heathrow). There is a good annual leave allowance and a non-contributory pension for established staff.

You must be 19 or over, with at least one year's practical experience in telecommunications, ('ONC' or 'C and G' qualifications preferred)

National Air Traffic Control Service

\section*{...then you could become aCustomer Engineerat IBM.}

Wherever there are computers, people are needed to keep them running. These people are known as either Service Engineers Field Engineers or Maintenance Technicians. Because of their close involvement with the customer. IBM calls them Customer Engineers.

Today. computers are becoming essential to industry. science. government and commerce. And no computer manufacturer can operate without Customer Engineers. So the field is wide open, and this could be your opportunity to move into today's major growth industry
What you will do
There are four groups of Customer Engineers. Three are in Data Processing and cover between them the entire range of D.P. equipment from card punching and Teleprocessing to highly sophisticated computer systems. The fourth group is the Office Products division which covers basic electric typewriters and typewriting systems, dictating equipment and composer systems. Whichever group you may join you will be given a first class training

\section*{Qualifications}

You should be between 20 and 35 , educated to 'O' Level standard. In addition to a knowledge of basic electronics, a good mechanical aptitude is also necessary as part of the work involves repair and maintenance of the electro-mechanical devices. For engineers who will be trained for computer systems, a basic knowledge of electronics is also necessary. If you also have a logical mind then you could have a career as a Customer Engineer with IBM

\section*{Your prospects}

Starting salaries are excellent. IBM offers many fringe benefits such as non-contributory pension scheme, free Life Assurance and an excellent career-path. And it is IBM policy to promote from within.

\section*{Write now}
interested? Then write with details of your age, qualifications and experience to: Mr. D. J. Dennis, IBM United Kingdom Limited, 389 Chiswick WW/958.

\section*{Electronic Test Engineers}

Pye Telecommunications of Cambridge has immediate vacancies for Production Test Engineers.
The Work entails checking to an exacting specification VHF/UHF radio-telephone equipment before customer delivery; applicants must therefore have experience of fault finding and testing electronic equipment, preferably communications equipment. Formal qualifications while desirable, are not as important as practical proficiency. Armed service experience of such work would be perfectly acceptable.
Pye Telecommunications is the world's largest exporter of radiotelephone equipment and is engaged in a major expansion programme designed to double present turnover during the next five years. There are therefore excellent opportunities for promotion within the company. Pye also encourages its staff to take higher technical and professional qualifications.
These are genuine career opportunities in an expansionist company, so write or telephone without delay for an application form to:
Mrs. A. E. Darkin,
Pye Telecommunications Limited, Cambridge Works, Haig Road, Cambridge.
Telephone: Cambridge 51351 Ext. 355

\section*{霉 Pye Telecommunications Ltd}

\section*{RADIO \& TELEVISION SERVICING RADAR THEORY \& MAINTENANCE}

\section*{REDIFFUSION}

\section*{COLOUR TELEVISION FAULTFINDERS \& TESTERS}

We have a number of vacancies in our Production Test Departments for experienced faultfinders and testers.
Knowledge of transistor circuitry and experience with Colour Receivers together with R.T.E.B. Final Certificate or equivalent qualifications required.
These will be staff appointments with all the expected benefits.
Applications to:

> Works Manager, Rediffusion Vision Service Ltd., Fullers Way South, Chessington, Surrey (near Ace of Spades).

Phone: 01-397 541I

\section*{UNIVERSITY OF ABERDEEN TELEVISION SERVICE}

Applications are invited for the following posts:
(a) SENIOR TELEVISION ENGINEER (b) TELEVISION ENGINEER/ TECHNICAL OPERATIONS (I) \& (II)
Senior Television Engineer:
The initial responsibility will be to co-ordinate the design specification, installation and equipping of a colour outside broadcast unit and the associated studio complex, both of which will be equipped to broadcast standards.

Candidates should be Chartered Engineers with professional engineering qualifications with a minimum of seven years experience in television broadcast engineering. They must be able to demonstrate wide experience ranging from colour studio operations to basic maintenance and installation techniques. It is essential that candidates have experience of studio lighting operations.

\section*{Television Engineer/Technical}

Operations (I):
Candidates, who should have a minimum of five years experience in broadcast engineering, must be able to demonstrate an understanding of the principles and current practices of colour studio and outside broadcast operations.

Experience of first line maintenance and studio lighting operations is essential.
Television Engineer/Technical Operations (II):
The successful candidate will be primarily concerned with the technical management of the new 600 seat Arts Lecture Theatre sited at King's College. He will be responsible to the Senior Television Engineer for the efficient operation and maintenance of all audio/ visual aid facilities installed in the building. Opportunities exist for the successful candidate to work alongside other Television Service staff involved in the production of high quality teaching material.
O.N.C. or equivalent qualification desirable.
Normal colour vision is a requirement for all posts.

\section*{Salary on scale:}
\[
\text { Post (a) } \quad-£ 3210 \times 100-£ 3810
\]
\[
\text { Post (b) (I)-£ } 2105 \times 125-£ 2605
\]
\[
\text { (II) }-£ 1160 \times 85-£ 1670
\] all with initial placing according to qualifications and experience. Superannuation (F.S.S.U.) and removal allowance.

Further particulars from The Secretary, The University, Aberdeen, with whom applications (8 copies) should be lodged not later than 19th January. 1971.

\section*{Electronics Maintenance Engineers}

There are excellent opportunities in the Installation and Maintenance Division of U.K. Electronics and Industrial Operations of E.M.I. Ltd., at Hayes, Middlesex, for engineers to carry out maintenance work on a wide variety of electronic equipments including laboratory test gear and trans-ceivers.

Candidates should be between 21 and 45 years of age and have some experience in this type of work. Consideration will be given to experienced Radio and Television servicing technicians and to ex service personnel.

Commencing salaries of up to \(£ 1,500\) per annum will be paid and staff conditions include contributory pension scheme and free life assurance.

Please apply in writing giving brief personal and career details to.
J. J. Sweetman, Personnel Department, U.K. Electronics \& Industrial Operations, E.M.I. Ltd., Blyth Road, Hayes, Middlesex.
Tel: 01-573 3888, Ext. 411.

\section*{coumputer cingincering}

NCR requires additional ELECTRONIC, ELECTRO MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.

Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.
Starting salary will be in the range of \(£ 900 / £ 1,350\) per annum, plus bonus. Shift allowances are payable, after training, where applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.

Excellent holidav, pension and sick pay arrangements. Please write for Application Form to Assistant Personnel Officer
NCR, 1,000 North Circular Road,
London, NW2
quoting publication and month of issue.
Pang you f tuture with \(\mathbf{N}\) C R

RACAL - BCC LIMITED,

\section*{ASSISTANT TO PRODUCT PLANNING MANAGER}

Racal BCC Limited, leaders in professional communications equipment are seeking an Assistant to the Product Planning Manager.

The successful candidate will assist in the preparation of technical specifications to CCIR. or similar standards, for equipment in the Racal range.

He will also generally assist in commercial activities related to the marketing and development of h.f. radio communications equipment and systems, and will liaise with engineering staff on technical aspects of equipment applications.

The applicant should have operational; installation or planning experience in telecommunications with some specialisation in radio systems. He should be capable of writing notes of meetings and of assisting generally in the administrative activities of the section.

Please apply in writing enclosing brief details of experience and qualifications to :-

Mr. L. A. Jemmett, Personnel Manager, Racal-BCC Ltd. Western Road, Bracknell, Berks.

\title{
Sea-going Radio Officers can now make sure of a shore job and good pay.
}

If you'd like a job ashore, at a United Kingdom Coast Station, the Post Office will start you off on \(£ 1,080-£ 1,360\), depending on age, with annual rises up to \(£ 1,850\). There are good prospects of promotion to higher posts, opportunities exist for overtime and you would receive additional remuneration for attendance during the late evenings, at night and on Saturday afternoons and Sundays.

You will need to be 21 or over, with a 1 st Class Certificate of Competence in Radiotelegraphy issued by the Postmaster General or the Ministry of Posts and

Telecommunications, or a
Radiocommunication Operator's General Certificate issued by the Ministry of Posts and Telecommunications, or an equivalent certificate issued by a Commonwealth administration or the Irish Republic.

Find out more by writing to:
The Inspector of Wireless
Telegraphy, External
Telecommunications Services,
Wireless Telegraph Section (W.W.), Union House,
St. Martins-le-Grand, London, EC1A 1AR.

\section*{JUNIOR TECHNICIAN}
required at our Hampstead Laboratories, Holly Hill, N.W.3. Suitable for applicant in early 20's with some experience of workshop practice and an interest in electronic instrumentation. Minimum qualifications 4 G.C.E. 'O' Levels to include English, Maths and a science subject. Salary according to age on scale \(£ 706\) to \(£ 1144\) p.a.
Please apply quoting our reference WW78/I to: Mrs. A. Harrell, National Institute for Medical Research, The Ridgeway, Mill Hill, London, N.W.7. 1AA Tel: 9593666 967

\section*{VOCATIONAL TRAINING CIVILIAN INSTRUCTIONAL OFFICERS (GRADE III) RADIO AND TELEVISION SERVICING}

\section*{required at}
H.M. PRISON, NOTTINGHAM.
H.M. BORSTAL, PORTLAND, Dorset.
H.M. PRISON, STAFFORD.
H.M. PRISON, THE VERNE, Portland, Dorset.

Salary: The commencing salary is \(£ 1,415\) (at age 26) ; \(£ 1,625\) (at age 30 or over) rising to \(£ 1,790\). An additional allowance of \(£ 92\) a year is also paid. The posts carry the prospect of pensionable employment.
Hours: A 40 -hour, 5 -day week is worked with 18 working days annual leave in addition to the usual 9 public and privilege holidays.
Qualifications: Full apprenticeship plus at least five years practical experience in the Radio and Television and/or Electronics servicing industry. City and Guilds Certificate (or equivalent) is desirable. Teaching, instructing or colour TV experience are added advantages Duties: The successful candidates will tra:n inmates in Radio and Television servicing and prepare them for City and Guilds examinations.
The candidate selected for the post at THE VERNE will be required to perform some relief duties at other Prison and Borstal Service establishments.
PLEASE WRITE FOR APPLICATION FORM TO: The Establishment Officer, Home Office, Portland House, R.9/4/42T, Stag Place, London, S.W.1, stating for which post you apply. Closing date for the receipt of completed application forms: 15 January, 1971.

\section*{CIIY OF leeds and carnegie college Senior Workshop Technician T3 £1,089-£1,272}

Applications are invited for this post in the Audio Visual Aids section of the College, to be responsible for the maintenance of all electronic equipment including a closed circuit television apparatus and to assist in the other work of the section.

Application forms and further particulars from the Senior Administrative Officer, City of Leeds and Carnegie College, Beckett Park, Leeds, LS6 3QS, to whom completed applica tions should be returned as soon as possible.

945

\section*{CITY OF LEICESTER POLYTECHNIC}

Applications are invited from Graduates for the post of

\section*{LECTURER (GRADE II)}
\({ }^{1 N}\)
ELECTRONICS \& COMMUNICATION ENGINEERING
for courses up to degree level, in Schonl of Electrical Engineering.

Industrial, research or teaching experience in elecronics, digital electronic systems or communication engineering desirable. Interest in digital communication techniques particularly appropriate.
Research and consultancy encouraged. Opportunity to join a small team studying applications of a smal computer in communication engineering

Salary: £1947-£2537 per qualifications, and experience.

Application form and further particulars from Chief Administrative Officer (Dept. Est.), City of Leicester Polytechnic, P.Q. Box 143, LEICESTER, LE1 9BH. 982

\section*{Elentronits Encinger
}

EMI Electronics have a vacancy for an Electronics Maintenance Field Engineer to work on numerical machine-tool control.
The work entails installation and maintenance of tape control systems in customers' workshops. Applicants should be prepared to travel. Experience in machine-tool control systems is preferable, but an engineer with experience of fieldwork in other branches of electronics may be suitable.
Starting salary around \(£ 1,850\) p.a. according to qualifications and experience.
Apply in writing or ring:
J. J. Sweetman, Personnel Department,
Electric \& Musical
Industries Ltd., Blyth Road,
Hayes, Middx. Tel: 01-573 3888, Ext. 2523
Fand CAPEERS

\section*{RADIO} TECHNICAL OFFICERS

\section*{Up to \(\mathbf{£ 2 , 5 0 5} \mathbf{p . a}\).}

The P.L.A. operate a wide telecommunications network from Tower Pier to the outer Thames Estuary, and vacancies exist at Gravesend and the King George V Dock for Radio Technical Officers to maintain the equipment at maximum efficiency.

To ensure adequate coverage, a shift system is operated.
Salary scale: \(£ 2,005-£ 2,505\).
Minimum qualifications:

> O.N.C. Electrical Engineering
or City \& Guilds Intermediate Certificate in Telecommunications Engineering plus Radio II
or equivalent Service qualifications.
Applicants should have at least 5 years' experience in semiconductors and in at least two of the following fields:-
V.H.F. and U.H.F. Radio

Radar and Microwave Links
Telemetry and Digital
Teleprinters and Message Switching.
Application forms may be obtained from:-
The Chief Engineer (Personnel),
Port of London Authority,
P.O. Box 242, Trinity Square,

London, E.C. 3P 3BX

PORT OF LONDON AUTHORITY

Join us now as a Computer Service Engineer, and after six months' paid specialist training, you will be responsible for ensuring that our computers are in peak condition.

We are Britain's leading computer manufacturer; we give men who want a rewarding career an excellent basic salary whilo we train them in every aspect of customer engineering in the computer industry. You'll learn to deal with operational problems, and to use the most intricate machinery.

HNC or C\&G in electronics engineering, a Forces' training in electronics, or similar qualifications, are your passport to our opportunities.

How far you progress is up to you-the experience you get will stand you in good stead for your future career development. You'll gain knowledge of new methods and techniques on the most sophisticated equipment.

To add to your basic salary, you can get generous overtime and shift rates There is a special allowance for working in central London. You will be operating in a computer environment on customers' premises in conditions well above the average for industry.

Age: 21/35
Locations: Central London, Middlesex, Surrey, Essex, Hertfordshire, Manchester, Cardiff and Coventry.

Write giving brief details of your career, and quoting ref.WW630C to: A. E. Turner, International Computers Limited, \(85 / 91\) Upper Richmond Road, Putney, London SWI 5.

ERGONOMICS Research Technician for Test Equipment

He will join a small team of physiological, psychological and environmental researchers being formed at British Rail headquarters in London.
The department works on human factors problems of modern railway operations, passenger amenities and comfort, and personnel testing.
He should have a talent for constructing test rigs, mock-up simulations and minor electronic apparatus and will operate and maintain research equipment, assist in preparation of experiments and processing of data, make technical drawings and diagrams for reports and presentations.
Salary will be in the range \(£ 1,290\) to \(£ 1,845\), plus \(£ 70\) London allowance per annum, depending on experience and qualifications. There is a contributory pension scheme and the transfer of existing pension rights can be accepted. There are also free and reduced rate rail travel facilities.
Applications giving age, education, qualifications, experience and present salary should be sent to the Headquarters Staff \& Services Manager (quoting reference B.ID/ZH), British Railways Board,
222 Marylebone Road, London, NW1 6JJ.

are looking for an

\section*{ENGINEER}
to work on closed circuit television equipment in the Service Department of the Commercial and Industrial Division at Bedfont in Middlesex. The work includes cameras, monitors and video tape recorders, both monochrome and colour.

Please write to:-
Mr. M. T. Morcom, Service Manager
Commercial and Industrial Division
Sony U.K. Limited
Ascot Road, Bedfont, Middlesex

\section*{RADIO TECHNICIANS}

The Air Force Department has vacancies for Radio Technicians at
RAF Sealand, Near Chester
RAF Henlow, Bedfordshire and RAF Carlisle
Interesting and vital work on RAF radar and radio equipment.
Applicants must be experienced technicians in the electronics field.
Starting pay according to age up to \(£ 1373\) p.a. (at age 25) rising to \(£ 1590\) p.a. with prospects of promotion.
5 day week-good holidays-help with further studies-opportunities for pensionable employment.

Write for further details to:
Ministry of Defence, CE3H (Air),
Sentinel House, Southampton Row, London WC1
Applicants must be UK residents.

\section*{RADIO \\ OPERATORS}

There will be a number of vacancies in the Composite Signals Organisation for experienced Radio Operators in 1971 and subsequent years.
Specialist training courses lasting approximately 8 months are held at intervals. Applications are now invited for the course starting in September 1971.

Salary Scales
During training with free accommodation provided at the Training School:

Age 21
Age 21
" 22
\(" 23\)
\(" 24\)
\(" 25\) and over
£848 per annum
" 24 and over
£943
£981
On successful completion of course:
\begin{tabular}{ccc}
Age 21 & \(£ 1023\) per annum \\
" 22 & \(£ 1,087\) & \("\) \\
\(" 23\) & \(£ 1,150\) & \("\) \\
\(", 24\) & \(£ 1,214\) & " \\
" 25 (highest & & \\
age point) & \(£ 1,288\) & \("\)
\end{tabular}
then by 6 annual increments to a maximum of £1,749 per annum.

Excellent conditions and good prospects of promotion. Opportunities for service abroad.

Applicants must be United Kingdom residents, normally under 35 years of age at start of training course, -and must have at least 2 years' operating experience or PMG qualifications. Preference given to those who also have GCE ' \(O\) ' level or similar qualifications.

Interviews will be arranged throughout 1971.
Application forms and further particulars from : Recruitment Officer, Government Communications Headquarters, Oakley, Priors Road, CHELTENHAM, Glos., GL52 5AJ. Tel: Cheltenham 21491 Ext. 2270

\section*{SERVICE TECHNICIAN}
required in the Education Department of the London Borough of Croydon for the installation. repair and maintenance of tape recorders, radio receivers and other A.V.A. apparatus and equipment. Wages 623 6s. 8 d . 5 -day weok (40 hours). Applications giving full details of previous employ Storas, Princess Road, Croydon, CRO 2QZ.

\section*{UNIVERSITY OF SURREY}

\section*{Lecturer/Senior Lecturer}

\section*{Recording Techniques}

Applications are invited for the pose of Lecturer/ Senior Lecturer in Recording Techniques in the Music Department. The Lecturer will be responsible recording for the Tonmeister Course leading to the degree of B.Mus. (Surrey) (Tonmeister).

Applicants should have a thorough knowledge and experience of studio work in the recording industry and should preferably be also qualified to lecture on some aspect of music in the general B. Mus. course.
Salary will be in the Lecturer/Senior Lecturer range: Lecturer, \(1730-63105\) p.a. Senior Lecturer f295S-¢4000 p.a. with F.S.S.U. benefits.

Applications should be sent not later than Friday, 29th January, 1971, to the Academic Registrar (LFG), University of Surrey, Guildford, Surrey, from whom further particulars may be obtained.

\title{
The Hatfield Polytechnic
}

Department of Electrical Engineering and Physics
EXPERIMENTAL OFFICER
for work on Research in Digital Communication Systems.
The project, sponsored by the Ministry of Aviation Supply (Signals Research and Development Establishment), has been running successfully for a year. The work involves the construction and testing of digital integrated circuit systems. Applidigital integrated circuit systems. Applicants should preferably be educated to at
least HNC standard and have a good least HNC standard and have a good
Electronics background. The post is offered initially for one year but there are good prospects of a permanent appointment.
Salary in a range up to \(£ 1,766\) p.a., depending on qualifications and experience.
Apply giving full relevant details, to the Secretary and Academic Registrar, The Hatfield Polytechnic, Hatfield, Herts. Quote ref.: 452/WW.

\section*{UNIVERSITY COLLEGE GALWAY, IRELAND}

Applications are invited for 2 posts of Senior Technicians as follows:
Dept. of Oceanography: Advanced certificate in electronics of City \& Guilds or equivalent is required together with appropriate experience. Dept. of Experimental Medicine: electronic expertise and appropriate biological experience together with an advanced technical certificate. Salary scale \(£ 1,536\) - \(£ 1,800\). Further particulars from head of department concerned.

\section*{LONDON BOROUGH OF} RICHMOND-UPON-THAMES

\section*{TWICKENHAM COLLEGE OF TECHNOLOGY}

LABORATORY TECHNICIAN required for Electronics Laboratory, to be responsible for producing and testing experimental equipment and maintenance and repair of Oscilloscopes, Signal Generators etc. Should hold suitable qualification. Salary Tech 4 (\(£ 1,362-£ 1,605\)).

\section*{Forms from:}

Bursar,
Twickenham College of Technology, Egerton Road, Twickenham,
Middlesex, returnable within 14 days
(01-892 6656).

\section*{AERIAL DEVELOPMENT ENGINEER}

Duties include Research and Development, Site Work, Propagation, etc., in connection with a V.H.F., U.H.F. and Microwave Laboratory.
Pleasant expanding town within easy reach of M1, and a large choice of cheap housing in the area.
Applicants should write giving details of experience and education to:
J. Beam Engineering Limited, Rothersthorpe Crescent, Northampton NN4 9JD

\section*{Junior Television Engineer}

To assist in the operation and maintenance of Colour Telecine and allied equipment in Major Advtg. Agy. Applicant must have a basic knowledge of electronic equipment and some experience in its use, although experience of colour television is not essential as we are prepared to train the right applicant. Salary approx. \(£ 1,000\) according to experience etc. Day release considered. Write or phone Doug Huxtable, Leo Burnett-LPE Ltd., 48 St. Martin's Lane, London, W.C.2. Tel.: 01-836 2424.

\section*{SENIOR TEST ENGINEERS}

The leading U.K. Manufacturers of high grade T.V. monitors and ancillary T.V. studio equipment require Senior Test Engineers for their rapidly expanding test department. Situated in the Berkshire town of MAIDENHEAD the company offers pleasant working conditions, good salarles, and a friendly environment.

Duties will cover the testing and troubleshooting of our complete range of equipment Previous experience on television equipment is not essential but candidates must have a thorough knowledge of electronics and testing procedures. Reply to:
PROWEST ELECTRONICS LTD.,
Boyn Valley Road, Maidenhead, Berks.
Telephone: Maidenhead 29612

\section*{CHIEF TEST ENGINEER}

Laser Associates, the leading laser manufacturers in Europe, require a capable Chief Test Engineer to systematically organise the testing and quality control of our range of lasers and laser systems. Although some experience of lasers would be an advantage, this position does call for someone with substantial experience in electronic circuitry as the power supply requirements of the laser systems and accessories are extensive. The successful applicant would be required to work in Slough until the end of 1971 when the two divisions of the company will be integrated in a new factory in Rugby, salary negotiable to \(£ 2,000\) p.a. A vacancy also occurs for a test engineer to act as his assistant.
Please forward résumé to:
Mr. G. S. Bellis
LASER ASSOCIATES LIMITED
697 Stirling Road, Trading Estate, Slough, Bucks.

Tenders Invited

\section*{TENDER NOTICE No. I62-20/70-TPL (CP) DUE ON 4th FEB., I97I}

Sealed Tenders are invited on behalf of the President of India for supply of:
1. UHF Radio Terminals complete with transmitters, receivers, branching filters installation materials, spares for 3 years requirement.
2. 'Yagi' or corner reffector antennae complete with matching balloon, cable harness and clamping materials etc.

72 sets
cable hamess and clamping materials etc.
70 sets
in installation material etc. (Input AC 230 V 50 Hz single phase and output DC 38.70 V).
4. Field Strength meters.

45 sets
5. UHF Signal Generators 4 Nos
6. UHF Relay Test Equipments and accessories.

4 Nos.
7. UHF Foam dielectric Coaxial feeder cable with terminations, splices and jointing kits.

6000 meters N.B.
1. The cost of the equipment will be financed under the World Bank Loan and the relevant procedure will be followed.
2. The detailed specifications of each of the above items are available in the Tender Documents.
Intending Tenderers may obtain a copy of Invitation to Tender from Assistant Chief Engineer (CP), P \& T Directorate, New Delhi, 1, on payment of Rs 20/- (Rs Twenty only). The payment will be accepted only in the form of a crossed Indian Postal Order (encashable in Parliament Street Post Office New Delhi) or Crossed Demand Draft (Drawn on any scheduled Bank in New Delhi). The Postal Order/Demand draft shall be drawn in favour of the Accounts Officer (\(C\) \& A) Office of the Director-General of Posts and Telegraphs, New Delhi-1. The particulars of the Postal Order/Demand draft should be indicated in the Tender.

\section*{APPOINTMENTS}

\section*{RADIO TECHNICIANS}

With sound knowledge of at least three of the following types of equipment required immediately for Meteorological Office Ocean Weather Ships: Single Side-Band Transmitter, Radar (Navigational), Radar Height Finding, Echo Sounders, Radio Receivers, Automatic DF, VHF and Low Voltage Servo Recorders, Digital Teiemetering Equipment.
Salary scale \(£ 938\) - \(£ 1.590\) per annum according to age, plus \(£ 120\) overtime allowance. Free food and accommodation provided on board ship. Applicants must be natural born British subjects.
Full details from:
Shore Captain, Ocean Weather Ship Base,
Great Harbour, Greenock. Telephone: Greenock 24291.

\section*{UNIVERSITY COLLEGE LONDON MULLARD SPACE SCIENCE LABORATORY Holmbury St. Mary ELECTRONICS ENGINEER}

We have a vacancy for an Electronics Engineer to take charge of a small group constructing and testing instruments to be flown in rockets and satellites. Candidates should be of H.N.C. standard with several years experience. The appointment will be in the salary range of \(£ 1,278\) £1,909 depending upon qualifications and experience.

Applications should be sent to :
Professor R. L. F. Boyd, f.R.S. Mullard Space Science Laboratory Holmbury St. Mary, Dorking

\section*{AUDIO TESTERS/ TROUBLE SHOOTERS}

Required for interesting position in electro-musical equipment. Audio amplifiers of up to 100 watts. Echo Units (Copicat) S/S and valve, etc. Please phone in first place. WEM LId., 66 Offley Road, London, S.W.9. 735-6568. 937

\section*{SITUATIONS VACANT}

A FULL-TIME techatcal experlenced salesman reprevious experience. salary write giving details of age, previous experlence, salary required to-The Manager,
Henry's Radio. Ltd., 303 Edgware Rd.. London. W. .
\([67\)

A RE YOU INTERESTED IN HI FI? If so, and you A have some experience of selling in the Retail Radio Lrade, an excelent opportunity awaits you at Telesonic 01-387 7467/8.

A RE YOU looking for an opportunity to apply your A technical skills to medical research? could you combine mechanical and electronic work? We would provide some supervision and allow time for your further training. Should you like animals (e.g. monkeys), this would apply for the post of Junior Technician (salary £577 to \(\mathbf{f} 1,054\)) plus London Weighting. Application forms from The Secretary, Institute of Psychiatry, De Crespigny Park, Denmark Hill, London. S.E. 5 (Ref. GE).
[942

A SENIOR Transformer/Rectlifer design Engineer is ciated with equipment up to \(150 / \mathrm{kVA} / \mathrm{KW}\). We are an expanding Company of Manufacturing Electrical Engineers located in South Herts. Box W.W. 97.

A UDIO TECHNICIAN with experience of modern A electronics and mechanical systems associated with UNIVERSITY OF KENT. The salary scale is \(\boldsymbol{f} 935\) \(£ 1,303\) D.a. Further particulars and application forms from Director, Language Centre, Cornwallis Building The University. Canterbury, Kent. quotirg reference T70/19. Closing date for completed applications-15th
February, 1971 .

DIPLOMATIC WIRELESS SERVICE offers a career Dof Home and Foreign Service to men preferably between the ages of 21 and 45 with PMG first class certificate. Salary according to age, e.g. at 21 £1.023 p.a., 25 (or over) \(\mathrm{E} 1,288\) p.a., rising in annual stages Write to the Personnel Officer. Diplomatic Wireless Service, Foreign and Commonwealth Offee. Hanslope Park, Wolverton, Bucks.

DRAUGHTSMEN. Mechanical and Electrical required by expanding electronics company specialising in tion is salaried and gives ample opportunity for advancement. Please apply Electrosonics Ltd., 47 Old Woolwich Road, Greenwich, London, S.E.10. Tel. 8584764 . [22

CLECTRONICS TECHNICAL OFFICER required to work on data processing equipment related to data transmission and other interesting electronics work connected with medical research. Graduate electronics engineer with experience of digital circuits preferred. Salary \(£ 1,465\) to \(£ 2,425\) per annum. School, Hammersmith Hospltal, Ducane Road, London W.12, quoting ref. 8/104. \(\quad\) [939

FREELANCE TENNICAL WRITER. A Freelance Writer with practical knowledge of audio technology is required for contribution work on hi-fi publication. for up to date audio test procedures, we will expect him to examine objectively items of equipment and to report his findings in a clear and easily readable manner with a minimum of technical jargon in addition he will be expected to produce articles of a more general nature on the same subjects. Telephone: 01-734 0450 or write to
Box No. W.W. 949 .
\(\mathrm{H}^{I-F I}\) and Tape (Video knowledge an advantage) H technical Salesman requilred for retail sales. Attractive post in congenial atmosphere. Write giving details of age, experience, salary required, etc., to John
71 East
\([837\)
King,
Street, Brighton. Marlborough College has a varlety of A.V. Laboratory. A serviceman is needed to maintain such equipment in good order and to establish facilities in the large new A.V. Room. Permanent position offered. Please apply to Assistant Bursar, outlining quallifcations Marlborough, Wiltshire. \(\quad[986\)

PLYMOUTH General Hospital MEDICAL PHYSICS Department. Electronics Technician required cations will be consldered from persons with lower levels of qualifications if they have had good experience in electronics (preferably in the medical fleld) and have proven ability such as to be able to work with minimal supervision. Duties include the maintenance and development of a range of speccallsed electronic equipment in conjunction with ore the post is offered in one tollowing grades according to qualifications and experience: Medical Physics Technician V £ \(1035-£ 1335\); Medical Physics Technician IV £1206-£1500; Medical Physics Technician III £ 1356 - E 1764. Detailed written applications to the Hospital Secretary, Plymouth General Hospital, North Two referees must be named at least one of whom must be famlliar with the applicant's recent work. [961
\(\mathbf{R}^{\text {EDIFON LTD, }}\) Lequire fully experienced TELEELECTRONICS INSPECTORS. Good commencing salaries. We would particularly welcome enquiries from ex-Service personnel or personnel about to leave the Services. Please write giving full details to The Personnel Manager. Redifon Ltd., Broomhill Road,
[26

\section*{ARTICLESFOR SALE}

\section*{\(£ 5\) TELEVISIONS: £5}
\(17^{\prime \prime} 12\) channel. Complete \& tested. Excellent condition. Carriage \& ins. £1 \(17^{\prime \prime}\) Untested TVs 12 channel . . . 30/Carriage \(£ 1\). All makes.

TUBES! TUBES!
Guaranteed 6 months
17" \& 19" All makes
\(23^{\prime \prime}\). Bonded
\(13^{\prime \prime}\)
30/-
50/-
\(70 /-\)
23" Bonded
Plus 10/- carriage
VALVES EX EQUIPMENT Guaranteed 6 months

UHF TUNERS to suit most models i.e. FERGUSON 850900 Chassis K.B., G.E.C. etc. 50/-. P. \& P. \(10 /-\)

VHF TUNERS most makes 20/- delivered. (Discount for quantity). THORNBURY TRADE DISPOSALS Dept. T.S., Thornbury Roundabout, Leeds Road,
\(\mathbf{B}^{\text {C221 }}\) frequency meter. Complete calibration charts \(\mathbf{B}_{\text {and service/instruction manual. Little used }} £ 20\) plus £1 carriage.-Gamer Eng. Co., Coombe Works, Sher-
borne. Dorset.
 Ringwod R2. FERNDOWN, Dorset. S.A.E. for leaflet.
[76
Write now-Right now.

CABLE TRAYS, perforated metals from stock, contact Perforated Metal Co. Limlted (London), 18 Clerkenwell Close, London, E.C.1. Telephone 01-253 6015. [952

COPPER Covered Formica Sheets suitable for Printed \(C_{\text {Circuits }} 4 \mathrm{ft} . \times 3 \mathrm{ft} . \times 1 / 16^{\prime \prime}\) thick. 100 sheets brand new. Offers for whole or part. Box No. W.W. 951
\(\mathrm{F}^{\text {IVE MURPHY }}\) R/T's MR 820 Low Band Mobiles and F 25 watt Main Station. Offers
(Dover) Ltd., 83 High Street, Dover. Phone 777 . Sawyer
[938

MARCONI Valve Voltmeter type TF428B/1 surplus \(\mathrm{M}_{150 \mathrm{~V}}^{\text {to }}\) requirements. Five ranges \(0-1.5 \mathrm{~V} 5 \mathrm{~V} / 15 \mathrm{~V} / 50 \mathrm{~V} /\) 150 V . Strong steel case \(14^{\prime \prime} \times 9^{\prime \prime} \times 7^{\prime \prime}\), Ex-Govt. but
condition, offers. Box \(\mathbf{W}\). . 940 wireless World.

Musical miracles. Send s.a.E. for detalls of \(M_{\text {Cymbals and }}\) Drum Modules, versatile independent bass pedal unit for organs, planos or solo. musical
novelties. waa-waa kits (49/-) Also bargain components list reed switches etc.
wood Road. Ferndown, Dorset.

NEW CATALOGUE No. 18, containing credit vouchers surplus electric and mechanical components. price \(4 / 6\) surplus electric and mechanita compol Ltd., 28 Gardner
post free. Arthur Sallis Rado Control Street, Brighton, Sussex.

NEW P.S.U.s Roband, etc. Third list. Other bar \(\underset{\text { Bleadon. }}{\text { S.a.e. }}\) Weston-super-Mare. Tel. Bleadon 672 . \({ }_{\text {[963 }}\)
22. GFF Redifon G.R. 336 Portable TX/RX VHF Pack 22. sets complete and crystal controlled. May be viewed at Trinity House Workshops, Orchard Place,
Blackwall, E.14, between \(10.00-16.00\) hours Monday to Friday. Form of Tender to be obtained from the above address.
\([977\)

NE Burndept U.H.F. Base Station type B. 363.F. One Remote Control Unit type B.E.366. Four Trans364. Eight Rechargeable batteries. One Filter Duplexer Airtech M.450-3A-5-7. Complete with four element all round aerial. \(£ 750\) the lot. Cosalt Limited, Marine Radio Division, Fish Dock Road. Grimsby, Encs. [9GG

SCILLOSCOPE Cossor 1076 with 6 plugins 60 MHZ one M.V. Sens. Delay, etc. Fine condition, £ 125 o.n.0. Buyer Collects. Heath. R.F. 1 U sig. gen. New
£10. Heath 6 in. V.V. T.M. 1 ittle used \(£ 15\). View evenings. Mr. St. Aubyn, 107 A . New Zealand Avenue Walton on Thames.

S-DECS only \(19 /\)-. T-Decs \(42 /-\) Modern Miniature 00 microamps, \(30 /\). Sinclair Micromatic receivers complete with earpiece, etc., kit 44/-, assembled 54/Batteries \(5 / 6\) extra. Sinclair \(1 \mathrm{C}-10\) with instructions 48/11. PNP Stlicon Transistors 2S300 series. Untested, unmarked but at least \(80 \%\) are good. 50 for \(8 /-\), 100
for \(14 /\) Postage \(2 /-\) per order. Swanley Electronics, for 14/ Postage
Dept. WW3, 32 Goldsel Road. Swanley. Kent.
[960 Wo Cossor twin beam C.R.O.'s type 1049,3 com-
 Ext. 50.

UHF, COLOUR and TV SERVICE SPARES, InteUgrated colour decoder unit tncl. circuits 25/- P/P 2/- Leading Brit. Makers surpivs colour Line, Frame Colour scan coils \(\boldsymbol{£ 3 1 0 . 0} \mathrm{P} / \mathrm{P} 6 /-\). Chrominance panel 20/- P/P 4/6. UHF tuners transistorised, rotary slow \(\mathrm{UHF} / \mathrm{VHF} 6\) position push button transistorised tuner easily adjusted as 6 position UHF tuner. incl. circuit
f4.10.0
4/6/P. Transistd. UHF/VHF
 \(600 / 700\) serles complete UHF conversion kits incl. tuner, drive assy., 625 IF ampliffer, \({ }^{7}\) valves, accessories
housed in special cabinet plinth assembly, \(£ 7.10 .0\) or less tuner \(£ 2.18 .6 \mathrm{P} / \mathrm{P} \quad 10 /-\) SOBELL/GEC \(405 / 625\) switcfable IF amplifler and output chassls. \(32 / 6 \mathrm{P} / \mathrm{F}\) 4/6. Ultra 625 IF AMP chassis and circuit, \(25 /-\mathrm{P} / \mathrm{P}\) 4/6. Philips 625 IF AMP panel and circuit. 30/P/P \(4 / 6\). SOBELL/GEC 2015 series \(405 / 625\) printed cir-
cuit IF panel incl. circuit \(35 /-\mathbf{P} / \mathbf{P}\)
\(4 / 6\). UHF cuit IF panel incl. circuit \(35 /-\mathrm{P} / \mathrm{P}\)
available on request. VHF tuners AB miniature wist available on request. VHF tuners AB mison UHF injection suitable KB, Baird, Ferguson \(25 /-\mathrm{P} / \mathrm{P}\) 4/6, Cyldon C \(20 /-\mathrm{P} / \mathrm{P} 4 / 6\), Pye 13 ch incremental \(25 /\) \(P / P\) 4/6. Ekco, Ferranti, Plessey 4 position push button tuner with UHF injection incl. valves \(58 / 6 \mathrm{P} / \mathrm{P} 4 / 6\). New freball tuners Ferguson, HMV Marcont type
\(37 / 6 \mathrm{P} / \mathrm{P}\)
\(4 / 6\). Philips export continental turret tuners \(37 / 6 \mathrm{P} / \mathrm{P}\) 4/6. Philips export continental turret tuner
\(15 /-\mathrm{P} / \mathrm{P}\)
\(4 / 6\). Many others available. Large selection 15/- P/P 4/6. Many others avallable. Large selection
channel coils. LOPTs, Scan Coils. FOPTs available fo most popular makes. Surplus Ultra, Murphy \(110^{\circ}\) Scan colls \(18 / 6\) P/P 4/6. Sobell frame o/p transformers \(17 / 6\) \(\mathrm{P} / \mathrm{P}\) 4/6. Transistorised time base panel for Ferguson portable 50/- P/P 4/6. Pye/Labgear transistd. mast £7.18.6. Wolsey masthead amplifier power unit \(50 /-\) \(\underset{P}{\mathbf{P} / \boldsymbol{P}} 4 / 6\). Surplus BBC2 Belling Lee "Skyline" dis tribution ampliflers \(£ 3\) (Callers only).-MANOR SUPPLIES, 172 WEST END LANE, LONDON, N.W. (No. 28 Bus or \(\mathbf{W}\). Hampstead Tube Station). MaIt NW.11. Tel. 01-794 8751. MANOR DRIVE, LOND

VHF 80-180 MHz . Integrated receiver, tuner, con\(\square\) verter Kit. Remarkable results from single semi concuctor. Comprehensive kit \(£ 4\) post paid or send for free literature enclosing s.a.e. Johnsons (Radio
\(60 \mathrm{kc} / \mathrm{s}\) Rugby \& \(75 \mathrm{kc} / \mathrm{s}\) HBG Neuchatel Radio Reunits, £35. Toolex, 6 Warwick Close, Hertford (4856)

BUSIMESS OPPORTUNITIES
HAVE you an idea for a new product, preferably 1 chemically orientated? We are a chemical company and would like to hear from you with regard to ou us about your ideas. it could be worth while. Box \(\mathrm{W} . \mathrm{W} .852\) Wireless World.

\section*{TEST EQUJPMENT - SURPLUS}

SIGNAL generators, oscilloscopes, output meters, wave voltmeters, frequency meters, multi-range meters ville Old Hall, Ashville Rd. Isondon, E.11. Ley. 4986.

\section*{TECEIVERS AND AMPLIFIERS-
SURPLUS AND SECONDHAND}

HRO Rx5s, etc., AR88, CR100, BRT400. G209, S640, Hetc., etc., in stock.-R. T. \& I. Electronics, Ltd.
Ashville Old Hall. Ashville Rd., London, E.11. Ley

\section*{NEW GRAM AND SOUND EOUIPMENT}

CONSULT first our 76-page illustrated equipment catalogue on Hi-F1 (6/6). Advisory service, generous terms to members. Membership \(7 / 6\) p.a.-Audio Supply Assoctation,
\(01-9951661\).

GLASGOW.-Recorders bought, sold, exchanged cameras etc., exchanged for recorders or vice

\section*{TAPERRECORDING ETC}

FF quality, durabllity matter, consult Britain's oldest transfer service. Quality records from your suitable
tapes. (Excellent tax-free fund raisers for schools, churches.) Modern studio facllities with Stelnway Grand.-Sound News, 18 Blenheim Road, London. W.4.
01-995
[2861.

YOUR TAPES TO DISC.- \(£ 6,000\) Lathe. From 30/ Ltudio/Location Unit. S.A.E. Leaflet. Deroy Studios,
High Bank, Hawk St., Carnforth, Lancs.

\section*{FOR HIRE}

FERROGRAPH, Uher, etc., tape recorders for hire Full details from Magnatape Hire Services. 191/193 FOR HIRE CCTV equipment, including cameras monitors, video tape recorders and tape-any period

\section*{VALVES WANTED}

SCRAP Valves Wanted, type TY5-500, TY6-800, TY6S1250A, TY7-6000A, TYS-5-3000, ESA 1500, 16 P 13 , BW1169, also similar types. Electronic Heat Co., 352
Lower Addiscombe Road, Croydon. \(01-654-7172\). 8831

We buy new valves, transistors and clean new com ponents, large or small quantities,
quall details,
quotation by
Worcester St., Wolverhampton.s

\section*{SERVICE \& REPAIRS}

CHASSIS, engraving, plating and finishing reliable delivery estimates, contact Holborn Plating Co.

EILECTRONIC and TV service organisation on NorthWest Lancashire coast would undertake contract Well equipped and staffed dept. W.W. 887 Wireless world

\title{
Electronics Reliability Advisory Service Available to \\ Designers, Manufacturers and users. Assessments, Evaluations and Arialyses. Assistance in Test and Manufacturing Planning. Guidance on Quality Assurance Activities. \\ G. hayes, 28 Collier Drive, Edgware, Middlesex
}

A iRTRONICS LTD., for Coil Winding-large or smal pllers to P.O. M O.D., etc PC Exort enquirtes welcomed 3a Walerand Road, London, B.E.13. Tel. 01-853 1706 [61

DESIGN, development, repair, test, and small production of electronic equipment, low rates. YOUNG ELECTRONICS, 54 Lawford Rd., London, N.W.5. 01-267-0201.

METALWORK, all types cabinets, chassis, racks, for smail miling and capstan work up to lin bar. for small milling and capstan work up to lin bar.-
PHILPOTT'S METALWORKS, Ltd., Chapman St., Loughborough.
\(W^{E}\) undertake the manufacture of transformers work guaran or in quantities to any specification. All Co. Ltd., 820a Harrow Road, Kensal Rise, N.W. 10 Tel. 01-969 0914.

W IRING assembly PCB's sheet metal turning milling 7 transformers to your specification. Deane Elec tricals, 19 b Station Parade, Ealing Common, London

\section*{H TECHNHCALTRAININC}
A.M.S.E. (ELEC.), City \& Guilds, R.T.E.B. Cert., R Radio Amateurs' Cert., etc., on "Satisfaction or Refund terms. Wide range of Courses in Elec. EnginElectronics, Radio \& TV, etc. Send for full details and illustrated book-FREE.-BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, Dept. 152 K , Alder-
maston Court, Reading RG7 4PF.

BECOME "Technically Qualtfed" in your spare time, D guaranteed diploma and exam. homestudy courses in Guilds, etc., hishly informative 120 -page Guide-free Chambers College (Dept. 837 K), Aldermaston Court Reading RG74PF.
R.T.E.B. CERT8., Clty \& Guilds, Colour TV, Radio, R Computers, Radio Amateurs' Cert., Practical Electronics (with kit). Thousands of successes. Send for -FREE. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, Dept. 150K, Aldermaston Court, Readlng RG74PF.

TECHNICAL TRAINING in Radio, TV and Electronics home-study world-famous ICS. For detalls of proven \begin{tabular}{l}
home-study courses write: ICS, Dept. 443. Intertext \\
[24 \\
\hline
\end{tabular}

\section*{TUITION}

COLOUR TV Servicing. Be ready for the coming colour TV sets boom. Learn the techniques of servicing prepared for the practical TV engtneer techniclan, and approved by leading manufacturer. Full details from ICS (D.558), Intertext House, London SW8, or phone 01-720 1983.

HUNDREDS of top paid jobs in Engineering await Home Study-Mech., Elec., Auto, Radio, TV, Draughts. Electronics, Computers, Bullding, etc. Send for helpful FREE book.-B.I.E.T., Dept. 151K, Aldermaston Court,
Reading RG7 4PF.
\(K\) INGGSTON-UPON-HULL Education Committee F. College of Technology. Principal: E. Jones, M.Sc. F.R.I.

FULL-TIME courses for P.M.G. certificates and the College of Technology, certificate.-Information from Hull.

TRANSLATIONS-German and Spanish-Technical Chester. Commercial. Dexter, 4 Lime Grove, Hoole

BOOKS, INSTAUCTIONS, ETC
ManUals. circults of all British ex-w.D. 1939-45 R.E.M.E. Instructions; s.a.e. for list, over 70 types.W. H. Balley, 167a Moflat Road, Thornton Heath. Surrey, CR4-8PZ.

\section*{CLASSIFIED ADVERTISEMENTS} Use this Form for your Sales and Wants

\author{
To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.I
}

\section*{PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW}

Rate: 45p (9/-) PER LINE. Average seven words per line.

Name and address to be included in charge if used in advertisement.
Box No. Allow two words plus 25p (5/-).
- Cheques etc., payable to "Wiroless World" and crossed " \& Co."
- Press Day 10th January for February 1971 issue.

NAME

ADDRESS \(\qquad\)

Solve your communication problems with this new 4-8tation Transistor Intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk listen from Master to Subs and Subs to Master. Operates on one 9 v . battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Waremodernise Office, Factory, Workshop, Warehouse, Hospital, Shop, etc., for instant interdepartmental contacts. Complete with 3 connecting wires, each 66 ft . and other accessories.
Nothing else to buy. P. \& P. \(7 / 6\) in U.K.

A top quality DE-LUXE transistorised intercom consists of MASTER and SUB for desk/wall mounting. Call, talk or listen from either unit. On/Off switch, volume control. Ideally suitable as "BABY SITTER" or Door Phone. A boon for spastics and invalids. Useful in the home, surgery or business for instant 2 -way conversations, surgery or business for instant 2 -way conversations, effective range 300 ft . Unsurpassed in QUALITY AND
PERFORMANCE. Complete with 66 ft . connecting PERFORMANCE. Complete with 66ft. connecting
lead. Battery \(2 / 6\) extra. P. \& P. \(4 / 6\). Price Refund if not lead. Battery \(2 / 6\) e
satisfied in 7 days.

Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Portable Transistor TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for ard of hearing persong On/off switch. hard of hearing persons. On/off switch. Volume Control. Operates on one 9 v. battery which lasts for months. Ready to operate.
Full price refunded if returned in 7 days.

\section*{WEST LONDON DIRECT SUPPLIES (W.W.) I69 KENSINGTON HIGH STREET, LONDON, W. 8}

\section*{Practical Aerial Handbook Gordon J. King, Assoc. IERE, MIPRE, MRTS.}

\section*{WANTED}
surplus transistors, semiconductors, capacitors, cable, electrical goods, radio television and electrical equipment, wire, aluminium, motors, recording accessories and all surplus equipment for SPOT CASH.
Buyer will call to inspect anywhere.
Concord Instrument Co.
28 Cricklewood Broadway London, N.W. 2
Telephone: 01-452 0161/2/3
Telex: 21492
Cables: CONIST LONDON

Private enquiries, send two 5d stamps for brochure
THE QUARTZ CRYSTAL CO. LTD
Q.C.C. Works. Wellington Crescent.

New Malden, Surrey \(\quad\) (01-942 0334 \& 2988) WW-103 FOR FURTHER DETALS

\section*{QUARTZ CRYSTAL}

UNITS from
- 1.4 - 20 mHz
- fast delivery

\section*{- HIGH STABILITY}

\section*{- TO DEF 5271-A}
TEL. HYTHE 8961 \begin{tabular}{l}
WRITE FOR \\
\begin{tabular}{l}
LEAFLET AT- 1 \\
MCKNIGHT \\
CRYSIAL Co. \\
SHIPYARD ESTATE \\
SYTHE, \\
SOUTHAMPTON
\end{tabular} \\
\hline
\end{tabular}

\section*{WE PURCHASE}

COMPUTERS, TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGS AND SOCKETS, MOTORS, TRANSISTORS, RESISTORS, CAPACITORS, POTENTIORESISTORS, CAPACITORS, POTENTIO-
METERS, RELAYS TRANSFORMERS ETC. ELECTRONIC BROKERS LTD.
49 Pancras Road, London, N.W.1. 01-837 7781
MUSICAL MIRACLES
WAA-WAA PEDAL. Complete kit of all parts, robust cabiner, mechanism \& instructions, Huge sales, well
proven design. ONLY \(49 /\). complete. Or built \& proven design. ONLY RHYTHMP BOX. Build your own from our pre-built electronic circuit modules, e.s. box giving waltz, foxtrot etc., cost under 117 . ORGAN PERCUSSION units A14. Bass pedal and

Send s.a.e. for list. D.E.W. LTD.
254 Ringwood Road, Ferndown,
 WW-104 FOR FURTHER DETAILS

PRINTED CIRCUITS PROTOTYPE AND BATCH PRODUCTIONS Instrument panels and dlals
In Metal and Perspex
\(\star \quad\) SCREEN PROCESS PRINTERS *
Brooklands Plating Co. Ltd.
Sples's Yard, South Ind, Croydon CRO IBF Ol-688-2128

CASH IMMEDIATELY AVAILABLE for redundant and suıplus stocks of radio, television, telephone and electronic equipment, or in component form such as meters, plugs and sockets, valves, transistors, semi conductors, capacitors resistors, cables, copper wire, screws and nuts, speakers, etc.
The larger the quantity the better we like it.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, London, N12. Telephone: 014452713014450749 Evenings: 019587624

AMERICAN
test ano communications equipment \(\star\) GENERAL CATALOGUE AN/104 1/6 * Manuals offered for most U.S. equipments
SUTTON ELEGTRONICS
Salthouse, Nr. Halt, Norfolk. Cley 289

\section*{INTERCONTINENTAL COMPONENTS for:}

\section*{Electrolytic Capacitors}
from 6 V to 500 V DC wkg 5 mfd to \(10,000 \mathrm{mfd}\)

Available from stock

\section*{INTERCONTINENTAL COMPONENTS}

\author{
Electric House,
}

18 King St., Maidenhead, Berks. 5L6 IEG

Tel: MAIDENHEAD 32466
WW-105 FOR FURTHER DETAILS

\section*{WANTED-}

Redundant or Surplus stocks of Transformer materials (Laminations, C. cores, Copper wire, etc.) \({ }_{2}\) Electronic Components (Transistors, Diodes, etc.), P.V.C. Wires and Cables, Bakelite sheet, etc. etc. Good prices paid J. BLACK

44 Green Lane, Hendon, N.W. 4
Tel. 01-203 1855 and 3033

NEONS. PRINTED CIRCUIT BOARDS. INSTRUMENT CASES. MOULDED REED SWITCHES and PIDAM logic modules. CONTIL and BRIGHTLIFE products are all
ex-stock. For details see Dec., 1970 and Feb.. 1971 ex-stock. For details see Dec., service card. New prices on new leaflet. All customers on mailing list will receive these automatically.

WEST HYDE DEVELOPMENTS LIMITED, RYEFIELD CRESCENT, NORTHWOOD HILLS, NORTHWOOD, MIDDX. Telephone: Northwood 24941/26732 Telex: 923231

\section*{SIILCON TRANSISTTORS 1,000,000 FOR SALE}

Clearance of pnp Silicon Alloy Transistors from the 2S300 (TO-5) and 2S320 (SO-2) range and similar to the OC200205 and BCY \(30-34\) series. Available only from us at a fraction of the manufacturing cost. All these devices would normally be subject to re-selection for industrial use but owing to company policy change have been made available to us surplus to requirements. Offering these transistors in varied quantities make them ideal for Amateur Electronics, Radio Hams and for experimental use in Schools, Colleges and Industry.
Supplied uncoded (no warranty by the manufacturers). But our assurance given that a minimum of \(80 \%\) will be found to be good usable Silicon Alloy Transistors. Please state preference of type, i.e., TO- 5 25300 or SO-2 2 S320.
Approximate count by weight:
100 off-15s. (plus p. \& p. 2s.)
300 off- 1115 s . (plus p. \& p. 3s.)
500 off-E2 10 s . (plus p. \& p. 3s. 6 d .)
\(\mathrm{I}, 000\) off- \(£ 4\) (plus p. \& p. 5s.)
10,000 off- \(\& 35\) (plus p. \& p. |1s.)
Large quantities quoted for on request.
EXPORT ENQUIRIES WELCOME
All correspondence, cheques, postal orders, etc., to:

DIOTRAN SALES P.O. BOX 5

63a High Street, Ware, Herts. Tel: WARE 3442

\section*{CAPACITOR DISCHARGE IGNITION SYSTEM}

Using the article as published in the January 1970 issue of Wireless World, a universal printed-circuit board has been designed, incorporating the author's approved modification. This is suitable for both positive and negative earth ignition systems, thus enabling simple conversion to opposite polarity if the vehicle is subsequently changed. The printed-circuit board incorporates Cinch printed-circuit mounted screw terminal blocks for the input and output connections together with a printed-circuit mounted fuse carrier with fuse.
A complete complement of components and semi-conductors are supplied together with a ready drilted and fluxed printedcircuit board, drilled heatsink, hardware and suitable transformer.
Although wiring details are supplied for both positive and negative earth versions, customers must state which version they require so that the correct semi-conductors can be supplied.

Price f9-5-0 plus 10/- carriage.
Trade Enquiries Invited. Mail Order Only.

The latest addition to the DABAR range of equipment is a 4 channel integrated Preamplifier and Power amplifier, delivering a full inOW r.m.s. into a 4 ohm load. The amplifier has 4 inputs, each with their own gain control and a further master gain control, treble and bass control. A unique feature of this amplifier is in its versatility of uses It has been designed to accept plug-in pre-amp cards for each channel thus covering a wide range of applications. The basic unit is supplied with 4 input modules of your chaice, but further modules may be purchased at moderate cost, thus enabling, with the minimum of time. effort and outlay the conversion of any one or all channels to accept an entirely different input.
Modules available include: P/U cartridges-crystal, ceramic, and magnetic lequalised R.IA.A.I: Microphones-30-60 \(\Omega\) \(300-600 \Omega\) and \(50 \mathrm{k} \Omega\) types. Guitar and two modules for high impedance outputs from tape, tuner, etc., 100 mV t.e.t. and IV input. Case size: 13 in \(\times 7\) in \(\times 9\) in
Price complete with 4 modules \(£ 109.0 .0\). Extra modules \(\mathbf{£ 5 . 0 . 0}\) each. Trade Enquiries Welcome
Callers by appointment only. Carriage extra.

\section*{FLUIDICS} COMPONENTS \& CIRCUITS
by K. Foster \& G. A. Parker \(£ 7\)

Post Free
RADIO VALVE \& TRANSISTOR DATA by A. M. Ball. New 9th Ed. 15/-. Postage 2/-.

\section*{PRINTED CIRCUIT BOARDS FOR} MICROELECTRONICS by J. A. Scarlett 80/-. Postage 2/-
TUNERS \& AMPLIFIERS by J. Earl. 42/-. Postage \(1 / 6\).
ELECTRONICS FOR TECHNICIAN ENGINEERS by \(W\). W. Smith. 55/-. Postage \(3 / 6\).
TRANSISTOR MANUAL by G.E.C. 21/-. Postage 1/6.
RCA LINEAR INTEGRATED CIRCUITS by R.C.A. 25/-. Postage I/6.
TRANSISTOR AUDIO \& RADIO CIRCUITS by Mullard. 30/-. Postage I/-.
RADIO COMMUNICATION HANDBOOK by R.S.G.B. 63/.. Postage 4/6.
LOGIC CIRCUITS by Morris. 42/-.
Postage 1/-

\section*{THE MODERN BOOK CO.}

BRITAIN'S LARGEST STOCKIST
of British and American Technical Book

LONDON, W. 2
Phone PADdington 4185
Closed Sat. I p.m.

\section*{GONOON CENTRAS RADIO Storiss}

RRCORD STORAGR UNITS. Brand new. Anti-warp. 'Compact \(200^{\circ}\) stores 200 records. \(511 / 13 / 6\). P.P. \(226 /-\) 'Compact \(100^{\circ}\) stores 100 records \(55 / 5 / 5\). P.1'. 10/6. Leaflets available
 tarift to your requirementa. Suitable for hotels, etc. \(200 / 250 \mathrm{v}\).
\(10 \mathrm{~A} .90 /-15 \mathrm{~A} .100 /-20 \mathrm{~A} .110 /-\) P.P. \(7 / 6\). Other amperages 10 A. \(90 /-15 \mathrm{~A} .100 /-20 \mathrm{~A} .110 /\)-. P.P. \(7 / 6\). Other
a vaila bue. Reconditioned as new, 2 y eara guarantee. WIRELESSS SET Mo. 38 A.F.V. Preq, range 7.3 Lo \(9.0 \mathrm{Mc} / \mathrm{m}\). Worktog range \(t\) to 2 miles. size \(10 \ddagger \times 4 \times 64 \mathrm{in}\). Weight 61 lb . Includea power supply 8lb.- and spare valves and vilirato
tank aerial with bape. f8 per pair or cA single. P. P. \(25 /\). tank aerial with base. 88 per pair or 14 single. P.P. 25/LODERH DESE PROFES, red, green, blue or topaz, 2 tone
grey or black, with internal bell sad handget with \(0-1\) dian grey or black, with
fA/10/-. P.P. \(7 / 6\).
10-WAY PRESS-BUTTON IITER-CON TELEPPEOIRS in Rakelite case with junction box handset. Thoroughly overtauled. Guaranteed cel 10 - per mit
20-WAY PRERS-BUTTOH IFTER-COM TELEPPHONES in Bakethed. £ \(7 / 15 /\)-per unit.
QUARTERLY RLIECTRIC CHIGCE METRRS. Reconditioned as new. 200/450 v. 10 A. 42/6; \(15 \mathrm{~A} .52 / 6 ; 20 \mathrm{~A} .57 / 6\). Other araperages available. 2 years' guarantee. P.P. \(5 /\) 8-BAMK
wiping \(2 / 15 /-; 8\) bank half wipe \(22 / 15 /-; 6\) bank half wipe, Wiping e22 15/-; 8 bank halt
25 contacts 47/6. P.P. 3/6.
23 LISLE ST. (GER 2969) LONDON W.C. 2
Closed Thursday 1 p.m. Open all day Saturday
ENAMELLED COPPER WIRE
\begin{tabular}{lcl}
S.W.G. & Per \(\frac{1}{2} \mathrm{lb}\). reel & Per 1 lb. reel \\
\(18-22\). & \(11 / 3 \mathrm{~d}\). & \(16 / 6 \mathrm{~d}\). \\
\(23-30\). & \(11 / 9 \mathrm{~d}\). & \(17 / 6 \mathrm{~d}\). \\
\(31-35\). & \(12 / 3 \mathrm{~d}\). & \(18 / 6 \mathrm{~d}\). \\
\(36-40\). & \(15 /-\) & \(24 /-\) \\
\(41-44\). & \(17 / 9 \mathrm{~d}\). & \(29 / 6 \mathrm{~d}\).
\end{tabular}

Orders despatched by return of post. Please add \(1 /-\) per item P. \& P.
Supplied by: Banner Transformers, Brooks St., Higher Hillgate, Stockport, Cheshire.

TRADE ENQUIRIES INVITED

Various types of two- and four-track playback heads for reel, cassette and professional tape recorders are offered by

Foreign Trade Enterprise Warszawa, Al. Jerozolimskie 44, Poland

On demand we work out and produce playback heads with requested parameters as well as subassemblies and technical details for tape recorders.

Makers: the Kasprzak Radio Equipment Works
Warszawa, Kasprzaka 18/22, Poland

\section*{BUILD YOURSELF A TRANSISTOR RADIO}

\section*{THE NEW "JJULIETTE"}

MPR 3065
(replaces NA 5018A)
IS A HIGH QUALITY
COMMUNICATIONS RECEIVER
IT NOT ONLY RECEIVES . . AIRCRAFT, SHIPPING (VHF \& SW). TAXIS, AMBULANCES, FIRE SERVICE, T.V. SOUND, HAMS, GAS 8 ELECTRIC BOARDS, PUBLICSERVICES\&MANY OTHER RADIO TELEPHONE MOBILES. BUT ALSO . . CLASSICAL MUSIC, POP \& ALL THAT JAZZ.
 (CASH ONL,
Complete with standard Complete with standa
batteries end earpiece

BFO (optional extra) ADD 35/TURN ON ANO TUNE-IN 111
The MPR 3065 is a communications receiver and entertainment source in one neat. transistorised portable package. keeps Aircraft. Shipping. RT mobiles. FM \& AM broadcasts at your fingertips. Features a colour-coded illuminated tuning dial \& band selector. AFC. Squelch extemal aerial socket BFO (optional extra). Large speaker Works off mains or batteries. Size \(10^{\circ \prime} \times\) \(6^{\circ} \times 4^{\circ}\). Weight 4.7 lbs. 22 transistors/diodes. FREQUENCIES .. . Medium Wave 540-1600 Kcs: FREQUENCIES NedIMW 88 108 Mcs. Mir: Marine 1.6-4.6 Mcs: FM/VHF 88-108 Mcs: Air craft 108-136 Mcs (Military. Civil \& Ground Control). High VHF/PB 146-176 Mcs (Commercial \& Industrial
RT Mobiles). (Availability of Mabile transmissions depend on operators in each areal.

STOCKTON PARTNERS (w.w.) Brighowgate, Grimshy, Lincs. Tel: 0472 64196/58815

\section*{Wonders of the modern world}

Teonex products, of course! Over 3,000 of them, electronic valves, semi-conductors, and now - neons and indicators too ... all performing superbly in many climates... all at prices that are very competitive.
How do Teonex do it? Specialisation in one field. Concentration on export only. Very strict quality control.

Sold in sixty countries, on Government or private contract, Teonex offers you a comprehensive range, with most items immediately available.

For technical speciftcations and prices, please write to Teonex Limited, 2a Westbourne Grove Mews, London W.11, Engiand. Cables: Tosuply London W.ll.

\section*{TEONEK}
electronic valves
semi-conductors
neons \& indicators for export TEONEX

WW-108 FOR FURTHER DETALLS

\section*{LAWSON NEW TUBES}

Lawson "Century 99" are brand new tubes. Using silver activated screens, micro fine aluminizing, high definition electron guns. resulting in superb performance and very long life.
LAWSON TUBES I8CHURCHDOWNRD.
MALVERN, WORCS.
Teloohone: MALVERN 2100

\begin{tabular}{l}
TUES \\
\(14^{\prime \prime}\) \\
\(17^{\prime \prime}\) \\
\(19^{\prime \prime}\) \\
\(21^{\prime \prime}\) \\
\(23^{\prime \prime}\) \\
\(19^{\prime \prime}\) \\
\(23^{\prime \prime}\) \\
\(19^{\prime \prime}\) \\
\(23^{\prime \prime}\) \\
\hline
\end{tabular}

TELEVISION TUBES REBUILT TUBES
Lawson "Red Label" rebuilt crts are particularly useful where cost is a vital factor such as in older sets or rental use. Red Label are completely rebuilt from REBUILT selected glass and are exact TUBES replacements.
4. 5.0
4.12 .6
4.17 .6
4.17 .6
6.10 .0
6.10 .0
6.19 .0

2 years Guarantee both new and rebuilt FULL TUBE FITTINGS INSTRUCTIONS SUPPLIED CARR.INS. BYEXPRESS PASSENGER
14-19" \(12 / 6 \mathrm{~d} .21-23^{\prime \prime} 15 /\).

\section*{WW—109 FOR FURTHER DETALLS}

\section*{OSMABET LTD.}

WE MAKA TRANBFORMRRS AMONGBT OTHER THINGB AUTO TRANSFORMERR, 0 -110-200-220-240 va.c. up or down, fully shrouded fitted insulated ternolaal blooks. 80 w 28/6; 50 w
\(84 /-75 \mathrm{w} 41 / 6 ; 100 \mathrm{w} 48 / \mathrm{m} ; 150 \mathrm{w} 60 /-; 200 \mathrm{w} 75 /-800 \mathrm{w}\)

 \(4000 \mathrm{w} 825 /\); and up to 8000 watts available to order
KADTS TRAMSFORMERS. Prim 200/240 va.c. TX \(2,250-0-280 \mathrm{v}\)
 \(\mathrm{Ma}, 8.3 \mathrm{v} 1.5 \mathrm{a}, 42 / \mathrm{m} ; \mathrm{MT1} 200 \mathrm{v} 30 \mathrm{Ma}, 6.3 \mathrm{v} \quad 1 \mathrm{a}, 24 /-;\)
\(\mathrm{MT2} 230 \mathrm{v} 45 \mathrm{Ma}, 6.3 \mathrm{~F} 1.6 \mathrm{a}, 29 / 6 ; \mathrm{MT2A} 250 \mathrm{v} 60 \mathrm{Ma}, 6.4 \mathrm{a} 2\), \(\mathrm{MT2} 230 \mathrm{v} 45 \mathrm{Ma}, 6.3 \mathrm{~F} 1.6 \mathrm{a}, 29 / 6 ; \mathrm{MT} 2 \mathrm{~A} 250 \mathrm{v} 60 \mathrm{Ma}, 6.4 \mathrm{v} 2 \mathrm{a}\), 37/8; MT3 Prim \(110 / 240\) v \(\sec 250\) v \(100 \mathrm{Ma}, 8.3\) v 2 a, \(45 /-\). MULTIVOLT TRANSPORMERS. Prim 200/240 v a.c. OMT4/1 One tapped sec,
\(68-60,10 \cdot 0 \cdot 10,20-0.20, ~ 30-0.30 \mathrm{v}\)
a.c. 1 amp, \(45 /-\); ditto trans. formaer 2 amp OMT4/2, 67/6; OMTE/1 One tapped sec, \(40-50-60-\)

 mi4 2 gecs 12 v 4 a each, 71/6; "D25V" 2 secs \(10-20-25 \mathrm{v} 2 \mathrm{amp}\), each 2 81/8.
 LOO watt, \(90 /\)-; 260 watt 135 -- for quartz lodine lamps.

 56/6; \(5 \mathrm{a}, 75 /-; 8 \mathrm{a}, 112 / 6 ; 12 \mathrm{a}, 165 / 6\).
MIDGET RECTIFIER TRANSFORMERS, for F.W. rectification,

 OUTPUT TRANSFORMERS. Mullard 5/10 UL, B7/6; 7 matt stereo OL, \(60 /-\); 3 watt PP3, \(30 /-\); push pull \(11 \mathrm{~K} 3-8-16\) ohms,
21/-; Multi ratio \(7 / 10\) watt, \(33 /-\); Btandard \(3-4\) watt o/p \(5 \mathrm{~K} / 3\) 21/-; Multi ratio \(7 / 10\) watt, \(33 /\)-;
ohm or \(10 \mathrm{~K} / 3\) ohm, \(14 / 6 ;\) auto mitching transformers 10 watt, W.W. IONFTION CIRCUIT TRANSFORMER to spec, 50/- plus \(4 / 6 \mathrm{p} . \mathrm{p}\)
W.W. COLOUR THLE. Choke L1, \(80 /-\); Tran \(\mathrm{Tl}, 57 / 6\); Field
\(\mathrm{O} / \mathrm{P}, 60 /-\) Carriage extra on all tranaformers \(4 / 6\) minimum

TRANSFORMERS EOR POWER AMPLIFIERS OUTPUT TRANSFORMERS for use with KTG6, KT88,
EL 34 , 807, etc. Sec. tapped \(3.7 .5-15\) ohms 30 watt A-A load \(6.6 \mathrm{~K}, 78 / 6 ; 50\) W8tt \(\mathrm{A}-\mathrm{A}\) losd 3 K , 135/-; 100 watt A-A load 3 KK , \(225 /-\)
TX 500 , Prim. \(2001240 \mathrm{va.c}\). , Sec. \(425-(0-425 \vee 500 \mathrm{Ma}\),

\(10 \mathrm{H}, 150 \mathrm{Ma}, 23 / 8 ; 5 \mathrm{H}, 260 \mathrm{Ma}, 1.3 \mathrm{H}, 750 \mathrm{Ma}, 60 /-\)
New boxed lamous makes for publl
bass guitars, electronic organs, Hi-Fi, etc. 12 in . 15 watt \(\mathrm{W} /\) Tweeter cone, \(95 /-; 12 \mathrm{in}\).25 watt,

 \(134 \times 8 \operatorname{lin}\). HI-FI 10 watt fitted twin tweeters with
crossover network, 3,8 and 15 ohms, \(80 /-\) each. Horn tweeter, 2-16 KHz 8, \(15 \mathrm{ohms}, 30 /-\)

LT PLUORESCEST LIGBTING, Lnputs \(6,12,24 v\), DC; \(12 v\) fittings with tube 8 watt \(75-; 13\) watt \(1251-\); etc, Inverters 12 v DC 20 watt \(150 /-;\) single 40 or twin 20 watt, \(180 /-;\) single 8.A.E. ALL ENGUIRIES PLEABE. MAIL ORDER ONLY. 46 KENILWORTM ROAD, EDGWARE, MIDDX. HA8 8 BY
Oarriage extra all orders.

WW-110 FOR FURTHER DETAILS

DEIMOS \({ }_{\text {Lid }}\) TAPE RECORDERS FOR RESEARCH, INDUSTRY AND PROFESSIONAL AUDIO single and multichannel BCORWELLLANE,HILLINGOON,MDX. \(01-5733561\)

WW-111 FOR FURTHER DETAILS

MACLEANB © FAN
230 v AC. 3 Amp. \(2,800 \mathrm{rpm}\). EB/- pp 6/IMLOCK COLLAPSIBLE ALUMINIUM CHAB8IS FRAMES \(10 \frac{1^{\prime \prime}}{} \times 8 \frac{1}{* *}^{\prime \prime} \times 6 t^{\prime \prime}\) 20/-pp 3/CROMPTON PARKINSON HP 1440 RPM SINOLE PHASE ELECTRIC MOTOR\& f6. Os. Od. os.; 20/-pp. 2800 rpm also avallable same pilce.
I HP 1425 RPM ELECTAIC MOTORS Single phase \(£ 3\) 18s. Od.: 15/- pp.
Ex-equlp. Now condition
I HP 1425 RPM ELECTRIC MOTOR Slngle phase \(£ 2\) 2s. ©d.;
Ex-equip. New conditlon.
Ex-equip. Now condition. 8MITHS 12 -Vo
\(30 /-\) es. \(: 8 /-\mathrm{pp}\).
30/- ea.: 8/- pp.
1 AMP VARIAC/ \(0-240 \mathrm{v}\) in \(0-270 \mathrm{v}\) ou: or \(0-270 \mathrm{~V}\) in 0-270 out. Bench or panel mounting. No callbrated scale 48/- oa. : 10/- pp.
20-WAY 3-POLE P.O. TYPE JACK ETRIPS \(104^{* *} \times 33^{*}\) " 18/6 pp 3/6. Ex-equlp.
12 VOLT 8OLINOID8 PULL ACTION

CHC EEALED RELAYS DOUBLE POLE
CHANGIOVER
SIEMANS MINIATURE RILAYS DOUDle DOIE
 Chengeover,
\(1 / 8 \mathrm{DPD}\). NEW.
OMRON MIDOET POWIR RELAYS TYDE MK, I 230 V . AC. coll: SIngle pole changeover contacts 5 amp 440 v . AC., 280 v . DC. \(10 / 6 \mathrm{pp} .1 / 6\)
DIAMOND 'H' MINIATUME 3 POLE CHANOROVEA RILAY 240 V , AC. coll. Heavy duty contacte. silver plated. 12/6 each; pp. 1/6.
HONEYWELL MICRO-8WITCH, LEVER

\section*{OPIEATED}

Lever action ex-equip. 3/6 enoh pp \(2 /\).
ANALEX POWER SUPPLIES
Slze \(7^{\prime \prime} \times\) 19" \(^{\times 1} \times 13^{\prime \prime} .230 \mathrm{v}\) AC Input.
Output \(6 \mathrm{v} 5 \mathrm{amp} \times 2 ; 18 \mathrm{v}, 7.5 \mathrm{Amp}\). DC
Fully Translstorlsed
Marginal adjustment on output
E3B Os. Od plus \(£ 3\) carriage.
ANALEX POWES SUPPLY
SIze \(13^{\prime \prime} \times 19^{\prime \prime} \times 5 t^{\prime \prime} .230 \mathrm{v}, ~ A C\)
Slze \(13^{\prime \prime} \times 19^{\prime \prime} \times 51^{\prime \prime} .230 \mathrm{v}\). AC. 36 v .14 amp DC out

VEEDER-ROOT MECHANICAL COUNTERS
VEEDER-ROOT MECHANICAL
5 digit; lever operated; resestable.
\(3^{\prime \prime} \times 1 \frac{1}{t^{\prime \prime}} \times 1 \frac{1}{\prime \prime}^{\prime \prime}\). Ex-oqulp. 10/6 2/6.
SMITH'S CIRCULAR TAPE POSITION
SMITH'S CIRCULAR TAPE POSITION
INDICATOR Resettable:10/6 each; \(1 / 6 \mathrm{pp}\)
DORMAN LOADMASTER
\(250 / 44 \mathrm{v}\) AC. 5 a mp triple pole clrcuit breaker 29/6 plus 5/- pp. Brand new with fixing bracket G.E.C. 5-AMP CIRCUIT BREAKER

20/- each ; 3/-pp. NEW.
TRANSFORMERS
Input 230v. Output: 6.6 v 122 Amp
Size \(6 \frac{1}{2}{ }^{\prime \prime} \times 77^{1}{ }^{\prime \prime} \times 9^{\prime \prime}\) including terminals
Brand new. \(\mathbf{£ 1 5} \mathbf{0 s}\). Od. plus \(£ 2\) carriage
GARDNERS: Pottod input 0-250v. AC. Output:
\(18 \mathrm{v} .500 \mathrm{M} / \mathrm{A}: 50 \mathrm{v} .150 \mathrm{M} / \mathrm{A}: 6 \mathrm{v} .250 \mathrm{M} / \mathrm{A}\).
Size \(3^{\prime \prime} \times 2 t^{\prime \prime} \times 2 t^{\prime \prime}\). Ex-equip. Tested. 20/- oa.: 4/-pp SIMPSON TRANSFORMERS
Auto type: 240v/110V10 amp.
Size \(9 t^{\prime \prime} \times 10 t^{\prime \prime} \times 10 t^{\prime \prime} . £ 12\) os. od. ea. 2 only TEXAS INST./ ZENNER DIODE
56 v . \(\pm 2 \frac{1}{2} \% 10\) Watts. 6/- ea. pp. 1/-
TEXAS INST/ 2N3710/BC107 Trans.: 2/- ea. BEGKMAN THER
BECKMAN THERMOMETERS with switch.
 TYDE 150/50/LP Box 100 20/- DD. \(3 /-\mathrm{I}^{2 / 6}\) doz GARRARD 2 TRACK TAPE DECKS MAG TYPE Solenoid operated \(230 \mathrm{~V}, 1 / 3 \mathrm{lps} 50 \mathrm{~V}\) Solenold
Ideal for contin. tape players otc
£710s. Od. each. Brand new in manufacturers cartons. pp 22/6d.
RUBBER CABLE CONNECTORS
3 pin 5 amp non-reversible s/-; \(1 / 6\) pp.
BELLING LEE 1.5 amp in-line rubber-covered Interference Suppiessor 5/- ea. ; PD. \(1 / 6\)
\(7^{\prime \prime}\) closed 28" extended. 6 section
Balliontad base 4/6d. each pp. \(1 / 6 \mathrm{~d}\). New
4 MULLARD DM160 INDICATORS
Size approx. \(1 \frac{7}{3}^{\prime \prime} \times 1 \frac{1}{4}^{\prime \prime} \times \frac{1^{\prime \prime}}{}{ }^{\prime \prime}\) in plastic holder; green plastic cover ex-exuipment. 7/6. pp 1/6.
PRINTED CIRCUIT BOARD/ 19 ACY 19's
10,0A200 Diodes: 1 Reed retay: 1,0AZ 229 Zenner Ass. capacitors/Resistors. Power supply \(22 \mathrm{v} .250 \mathrm{~m} / \mathrm{a}\) CERAMIC STEREO CARTRIDGE-QQip
CERAMIC STEREO CARTRIDGE
Output \(135 \mathrm{~m} / \mathrm{v}\) at \(1 \mathrm{~cm} / \mathrm{sec}\).
Feq. response 40-12000 cps. Load 1 meg.
racking better than 15 db .
MALL
25,000, MFD 25 VTR DOLYTICS
40,000 , MFD 25 V DC \(\quad 55,000, \mathrm{MFD} 15 \mathrm{~V}\) DC
20,000 27.000, .. 15 V DC
\(37,500, \quad 15 \mathrm{~V}\) DC
All at 10/- each. p.p. \(2 / 6\) each condenser
TOGGLE SWITCHES, single pole, double throw Ex-equip. New condition. 10/- doz., DP 2/6.
c.W.O. Ploase

\section*{FIELDELECTRICLTD.}

3 SHENLEY ROAD, BOREHAMWOOD, HERTS. Adjacent Elatree Malnilne Station. Callers welcomed Tel: 01-953 6009

Stockists of
- ELECTROSIL GLASS-TIN OXIDE RESISTORS
- TRANSFORMERS-standard range of over 200 types, plus a production winding service
- SEMICONDUCTOR DEVICES
- VALVES \& C.R.T.s
- PANEL METERS \& MULTIMETERS
- POTENTIOMETERS-Precision, Standard, Helical \& Trimmer types available
KIRKMAN HOUSE,
54a, TOTTENHAM COURT ROAD, LONDOÑ, W. 1
Tel: 01-637 1601 (10 lines) Telex: 27931

electronic equipment manufacturers Large and small quantities. Full design and Prototype Service, Assemblies at Reasonable Prices. P.O. Approved Let us solve your problems
K. J. BENTLEY \& PARTNERS 18 Greenacres road. oldham

Tel: 061-624 0939

\section*{the onty COMPREHENSIVE RANGE OF RECORD MAINTENANCE EQUIPMENT IN THE WORLD!}

Send P.O. \(2 / 6\) for 48 page booklet providing all necessary inormation on Record Care.

CECIL E. WATTS LIMITED
Darby House
Sunbury-on-Thames, Middx

\footnotetext{
MILLIAMMETERS
sensitivity FSD 1 -all with same
sensitivity \(\mathrm{FSD}=1 \mathrm{~mA}\) (calibr
arc apporox \(3 \mathrm{t}^{\prime \prime}\)) other scale
arc approx \(3 \mathrm{t}^{\prime \prime}\)) other scale
configurations available 0-1 \(0-5.0-10,0-14\).
\(0.250,0-700,0-1400\)
-250, 0-700, 0-1400
37/6 ra, 2/6 post, 3 or more carriage free 'CHANDOS. HIGH STREET, NEW MILLS. NR STOCKPORT. CHESHIRE. TELEPHONE NEW MILLS (Derbyshire) 2345
}

EXCLUSIVE OFFERS
AMPEX
Precision Instrumentation and Data TAPE DECKS

TYPE FR 100A* 8ix speed \({ }^{2}\)

 Weelk. Power input \(105 / 1285\)
400 cyoles. Rmok mounting.

 Highter and more modern onPRIOX 8880 \&or deok and serfo control tor either type morour and Cablnets arallabl

HIGHEST QUALITY RACK MOUNTING CABINETS Totally Enclosed

\section*{}

DOUBLE SIDED. These cablnets will tuke rack panele both sides, that is backe gad front snd are drilled and are fitted with Int Intantity patent fully adjustable rack
 Aitted with projeoting componentes abd It Is desired to enolose them by doore
\(\star\) Other features incolude-all cornera and edges rounded.
 ingeot proofed tops. Detachable side panela. Full leasth Instanty detachabie doora fittod expanding bolts 19
 primer and in new condition.

Full leogth door 5
Doors are not needed ty parala are mounted
and they are not required to be encloeed.
TYPE C: \(80^{\circ}\) high \(\times 27^{\circ}\) deep \(\times 22^{\circ}\) wide. American panel mounting cablnets, made by Dukane U.8.A Open front fitted rack moints drilled and tapped all the way down every \(1^{\prime \prime}\). Full length rear door with latch. Finished in grey these cabinets iave been used but are in recommended they sre re-sprayed before use.
TYPE D: \(76^{*}\) high \(\times 18^{\prime \prime}\) deep \(\times 22^{\circ}\) wide. These are slightly smaller and finished in black otherwise they are Made by R.C.A. of U.8.A. \({ }_{\text {PRICE }}^{212.10 .0}\) each (Carriage extra) ALSO OTHER TYPES \(80^{\circ}\) TO 88* HIGH AVAILABLE Full detalls of all above available on request. TRANSPORT: We have made ppecial economicaltransport
arrangements for these cabinets to ensure they arrive undamaged and to avoid expensive crating. Full detaila on request.
-FREE
40-page lint of over 1,000 diferent item in atock available-keep one by you.
*Labzaar Stabilised Power Units D. 4140 *Al Power Regulated Power Supplies \(500{ }^{32}\) v \(\star\) Marcond BD-g71 c.c. T.v. Channal Camers working order

 \(0-10 \mathrm{~W}\)
\(\star\) Elliott Reoording A.c. Voltmeters \(180 / 260\) v

 Equipmont up to 6KW available.
 tapes wuitabio video work. 8400 ft . spooled 10 and in trangparent outer plantio case...... \(\star 10\) toot long \(8^{\prime \prime}\) gides Triangriar Lattice Steel up to 200 feet. New condition. \(\ldots \ldots \ldots\)....... \(\star\) Collina R-380 Commaniontions Receivers -E.M.I. Tape Reoorders BTR-1.
太 Wenton 2P-D.B. Metert \(101+B\).
Lattoe lightwaight steel trangular Aerial 220
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{WANTED \(\frac{1}{2}\) " VIDEO TAPE Good price paid} \\
\hline t54 inch, dia. Meteorologioal & 2110 \\
\hline New Magnetio Reoording Tape made & \\
\hline E.M.I. (USA) 3800 & \\
\hline Used atto sootob Brand 4800 t . & \\
\hline Mason Iluminated Drawing Tablos \(50{ }^{*} \times 36^{\prime \prime}\) & 21710 \\
\hline T-497/URR Signal Generatora \(2 / 400 \mathrm{~m} / \mathrm{ca}\) & \\
\hline & 0 \\
\hline Jniselentora 10 bank 25 way tull wipe ex. & \\
\hline recision Mains Fi & \\
\hline vo Gelger & 2710 \\
\hline & \\
\hline
\end{tabular} Carriage ertra at cont on all above.

We have a large quantity of "blts and pieces" we cannot list-please wend ua your requirements
we can probably help-sil enquiries answored.
P. HARRIS

ORGANFORD - DORSET
WESTBOURNE B505

\section*{"W.W." HI-FI KITS}
\(\star\) LINSLEY HOOD MODULAR PRE-AMP July 1969 no-compromise design for the purist. Compactly built on Lektrokit. Layout details
LINSLEY HOOD SIMPLE PRE-AMP
Designer-approved PCB (marked component locations) gives excellent results with ceramic pick-up. front panel. Mono \(\mathbf{6 . 5 . 0}\). Stereo ©ll.8.0 inc. p.p.
* BAILEY 30W AMPLIFIER (Nov. "68)

Mk. IV PCB has extra pre-set for quiescent current. Output capacitor and PCB mount directly and LINSIEY HOOD I5-20W AMPIIFIER
July 1970 latest and ultimate design. O/P čapacitor PCB, Tr3, \(4 \& 5\) mount compactly onto heat-sink Our kit personally tested and approved by the
designer. Gain of \(O / P T R\) 's \(>100\).

POWER SUPPLIES (simple and stab'd) available
HIGH QUALITY components inc's Mullard, Hunts, TCC capacitors, Plessey moulded pre-sets. O/P Tr's matched \(\pm 10 \%\) @ \(\mathrm{lc}=1\) amp.
AFTER-SALES SERVICE at reasonable cost
REPRINTS of articies at 6/- per copy post free.
DETAILED PRICE LISTS at \(1 /-\) (Refundable with order).

PERSONAL CALLERS WELCOME-BY APPOINTMENT. DESPATCH BY FIRST CLASS RETURN

\section*{A. 1 FACTORS}

\section*{72 Blake Road, Stapleford, Nottingham}

Tel. Nottingham 46051 Giro No. 4876008 (8 a.m. -10 p.m. 7 days/week)

Thanksto a bulk purchase we can offer
BRAND NEW P.V.C. POLYESTER AND MYLAR RECORDIHG TAPES
Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polythene and have fitted leaders, etc. Their quality is as the tapes faulty and are not to be confused with imported, used or sub-standard tapes. 24-hour despatch service.
Should goods not meet with full approval, purchase price and postage will be refunded.
 L.P. \(\left\{\begin{array}{lllll}5 i n i n . & 900 f t & 8 /- & 7 i n . & 1,200 \mathrm{f} . \\ 3 \mathrm{in} . & 225 \mathrm{ft} . & 2 / 6 & 5 \mathrm{Sin} . & 500 \mathrm{ft} . \\ 5 & 8 / 6\end{array}\right.\)
 D.P. \(\left\{\begin{array}{l}3 \text { itin. } 1,800 \mathrm{ft} .16 \% 7 \mathrm{in} .2,400 \mathrm{ft} .20 \%\end{array}\right.\) Postage on all orders \(1 / 6\)
COMPACT TAPE CASSETTES AT HALF PRICE
60,90 , and 120 minutes playing time, in original plastic library boxes. \(12 / 6\) each. MC \(12018 / 3\) each.

\section*{STARMAN TAPES}

28 LINKSCROFT AVENUE, ASHFORD, MIDDX. Ashtord 53020

WW-113 FOR FURTHER DETAILS

PHASE LOCKED STEREO DECODER

Complete designerapproved kit, containing Fibreglass PCB, 62 low noise resistors, 3 Fairchild IC's 15 Ferranti transistors, 8 diodes, 23 capacitors and 4 preset pots.
Full instructions. \(\quad\) E8.19.6 pp 2/6
Decoder PCB only \(£ 1.5 .0\)
U6E7709393 £1 U6A747459X £1.7.6

\section*{STABILISED POWER SUPPLY}

Complete kit for \(\pm 6 \mathrm{~V}\) at 50 mA Suitable for above
£2.19.0 pp 3/6
Transistors: ZTX500 4/- ZTX108 equiv. 2/-
INTEGREX LIMITED PO BOX 45 DERBY DE1 1TW

DIOTRAN
SALES
P.O. BOX 5 WARE, HERTS

SEMICONOUCTORS IGNITION SYSTEH 2N3525.
\begin{tabular}{l}
2N3055. \\
2 N 3702. \\
\hline
\end{tabular}
2N3702
2N374
IN 4001 .
IN4005.
IN4005
\[
\begin{aligned}
& \text { TOP HAT SILICON } \\
& \begin{array}{l}
\text { RECTIFIERS. All good. No } \\
\text { short or open circuit devices. }
\end{array} \\
& \begin{array}{l}
\text { short or open circuit devices. } \\
\text { Voltage range } 24400 \text { PIV. } \\
750 \mathrm{~mA}
\end{array} \\
& \begin{array}{l}
750 \mathrm{~mA} \text {. } 63 \text { per } 100,41210 \\
\text { per } 500 \text {. }
\end{array} \\
& \text { PLASTIC PNP SILICON } \\
& \begin{array}{l}
\text { turer's seconds from } \\
\text { 2N } 3702-3 \text { family. Ideal cheap }
\end{array} \\
& \begin{array}{l}
\text { trans. for manufacturing eap. } \\
\text { f8 } 5 \text {. }
\end{array} \\
& \begin{array}{l}
\text { trans. for manulacturing etc. } \\
\text { ES } 500 \text {, } 113.10 \quad 1.000 \text { pieces. }
\end{array} \\
& \begin{array}{l}
\text { PLASTIC NPN SILI- } \\
\text { CON TRANSISTORS. }
\end{array} \\
& \text { Manufacturers' seconds from } \\
& \begin{array}{l}
\text { Manufacturers seconds from } \\
2 \mathrm{~N} 3707-3711 \text { family. Ideal }
\end{array} \\
& \begin{array}{l}
\text { cheap trans. for manufactur- } \\
\text { ing etc. } \mathbf{~} 7.10 \$ 00, ~ \\
\hline 12.10
\end{array} \\
& \begin{array}{l}
\text { ing etc. } 67.10 \\
1,000 \text { pieces. }
\end{array}
\end{aligned}
\]
.- \(\quad 4 / 6\)

TRANSISTOR EQVT. BOOK
2,500 cross references of transistors-British, European, American and Japanese. A must for every transistor user.
Exclusively distributed by DiOTRAN SALLES. \(15 /-\) EACH.

Vast mixed lot of subminiature glase diodes. Comprising of Silicon, Germ, Point Contact and Gold
Bonded types plus some Zenors. 500.000 available at Bonded typas plus some Zenars. 500.000 available at
Lowest of Low Price.
1,000 pieces \(£ 3,0.0 .5,000\) pieces \(£ 13.10 .0 .10 .000\) pieces 223.
BRAND NEW FULLY TESTED EPOXY CASE
UNIJUNCTION TRANSISTORS. TYPE TIS43 and BEN 3000 and replacement for 2N2646. Full data available
LOWEST PRICE AVAILABLE ANYWHERE. 100 off \(4 /\). each \(=\mathbf{E}\) e20; 500 off \(3 / 6\) each \(=27,10 ; 1,000\) off \(3 /-\mathrm{each}\)
\(=\mathrm{C} 150\). Sample devices \(7 /\)-each on request.

HIGH QUALITY SILICON PLANAR DIODES. SUB-MINIATURE DO-7 Glass TYpe, suitable replacements

GULLY TESTED DEVICES AND QUALITY
OA202 Silicon Diode. Fully Coded.
150 PIV 250 mA Qty. Price \(E 30\) per 1,000 pieces.
OA 200 silicon Diode. Full

BYI00 SIL. RECTY 8000 PIV 550 mA .
\(1-492 / 6\) each; \(50-992 / 3\) each; 1000999 2/- each; 1,000 up 1/10 each. Fully Coded. First Quality
Post and Packing costs are continually rising. Please add
\(1 / /\) towards same. CASH WITH ORDER, PLEASE 1/- towards same. GIRO No. 30-102

OVERSEAS QUOTATIONS BY RETURN. SHIP-
MENTS TO ANYWHENE IN THE WORLD.

TRANSFORMER LAMINATIONS enor-
mous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large selection of stranded single p.v.c. covered Wire 7/0048, 7/0076, 14/0076 etc. P.T.F.E. covered Wire, and Silicon rubber covered wire, etc.

\section*{J. Black}

OFFICE: 44 GREEN LANE, HENDON, N.W. 4 Tel: 01-203 1855. 01-203 3033
STORES: 30 BARRETTS GROVE, N. 16
Tel: 01-254 1991
whypaymore?

Incredible but true! We offer brand new
BASF, PHILIPS, SCOTCH
tapes and cassettes at prices AT LEAST 5\% LOWER THAN ANY OTHER 'CUT PRICE' ADVERTISER

Send for price lists NOW!

\section*{RX/IND APN-9}

This is a swt tuned Rx with CRT Ind unit, the Rx covers type 3 BPI 3 in. green screen, also 34 octal type valves
 6Y6, \(523,2 \times 2\). YR1OS, \(6 N 7,6 S A 7\), there is also an hish
grade \(100 \mathrm{Kc} \times\) cal, all contained in case size \(20 \times 12 \times 8\) in. grade 100 Kc xal, all contained in case size \(20 \times 12 \times 8 \mathrm{in}\),
black crackle finish. These units are for \(115 \mathrm{v}, 400 \mathrm{c} / \mathrm{s}\) supply, the tube is well suited to scope use or possible mods. to \(1.6 \mathrm{Mc} / \mathrm{s}\). Pan adap. Supplied new with circ.

DIE CAST ALI BOXES
Heavy duty box with lid and sealing gasket, size interna \(17 \times 12 \times 5 \mathrm{fin}\)., external size \(19 \times 14 \times\) Bin.., semi weather proof, ex. equip. 50/-, plus 10/-car
TEKTRONIX SCOPE TROLLIES
Type \(500 / 53\) A with drawer shelf, stowaze for amps good mech. order slishty soiled through storage, few
only left. 14.10 .0 plus \(10 /-\) carr. H.V. CONDS
.5 Uf 50 Kv . D.C. Wh. made by Wego, one pair only with
some H.V. fittings, ex equip. 20 the pair plus \(£ 2\) carr RACK BLOWERS
Heavy duty twin outlet blower in 19 in . rack cabinet \(115 v\). \(50 \mathrm{c} / \mathrm{s}\) I/P at 4 a, 2700 r.p.m. 2 phase motor with
cap. Ex. equip U.S.A.F. surplus. E3.10.0 plus \(12 / 6\) carr. RX UNIT 16048
V.L.F. Rx unit part of aircraft landing system contains large number of modern parts as follows. 8 type LA250
Vinkors. 4 OC 450 transistors, 6 EFTh valves 5 printed circ. type relays, 2 high res. relays. OB2 \& 85A2 Stab valves, 74000 PIV diodes, Tant cands, pots. \(1 \%\) conds., plugs \& sks. etc., supplied in new condition

\section*{S.A.E. for list or enquiry.}

\section*{A. H. SUPPLIES \\ 57 Main Road, \\ SHEFFIELD. S9 5HL}

\section*{NEW! HANDY! TIDY! multi-drawer}

\author{
I-N-T-E-R-L-O-C-K-I-N-G
}
storage
units

\section*{A PLACE}

FOR
EVERYTHING
EVERYTHING
IN ITS
PLACE!

Newest, neatest. system ever devised for storing smal parts and components: resistors, capacitors, diodes transistors, etc. Rigid piastic units. interlock together in drawers have label slots/handles on front. Build up any drawers have label slotshandies on front.
size cabinet for wall, bench or table top.
BUY AT TRADE PRICES! SINGLE UNITS (5 ins \(\times 2\) tins \(\times 2 \frac{1}{4}\) ins) Usually \(2 / 11\) each. OUR PRICES: 27/- DOZEN Usually 4/11 each. OUR PRICES: 46/. DOZEN

\section*{PLUS QUANTITY DISCOUNTS!}

Orders \(£ 5\) and over DEDUCT \(1 /\) in the \(£\) Orders \(£ 20\) and over DEDUCT \(2 /\) - in the \(£\)
PACKING/POSTAGE/CARRIAGE: Add 6/- to all orders under \(£ 5\). Orders \(£ 5\) and over, packing/postage/carriage free.

QUOTATIONS FOR LARGER QUANTITIES

(Dept. WW1) 31 ALBERT ROAD. HENDON, LONDOM, N.W.4.
\(\star\) ALL PURPOSE TRANSISTOR PRE-AMPLIFIER \(\star\)

 BAKER 12 in. MAJOR £9
 30-14,500 c.p.s., 12 in. double cone, woofer and tweeter cone togèther with a BAKER ceramic magnet assembly having a flux density of 14,000 gaiuss and a total flux of 145,000 Maxwells. Bass resonance c.p.s. Rated 20 watts. Voice coils vaila Module kit, \(30-17,000\) c.p.s. Size \(19 \times 12 \frac{1}{2}\) in. with tweeter, crossover. baffle, instructions. \(\mathrm{El} \| .10 .0\) COUDSPEAKER CABINET WADDING LOUDSPEAKER CABINET WADD
18 in. wide, \(3 /\) - per ft . run. 18 in wide, \(3 /-\) Der
Post \(2 /\) per order.

\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \text { Allfor } \\
& \text { only }
\end{aligned}
\] & & \\
\hline & & with \\
\hline
\end{tabular}

THE INSTANT BULK TAPE
ERASER AND RECORDING HEAD DEMAGNETISER
\[
\begin{array}{ll}
200 / 250 \text { A.C. } & 47 \\
\text { Leaflet S.A.E. Post } \\
3 /-
\end{array}
\]

RETURN OF POST DESPATCH - CALLERS WELCOME
HI-FI STOCKISTS - SALES - SERVICE-SPARES
RADIO GOMPONENT SPEGIALISTS 337 whitehorse road, croydon. Tel: 01-684-1665

\section*{100W AMPLIFIER}

All parts now available for this latest addition to high performance amplifiers as described in Wireless World.
22 transistors and diode (overload protection included)
£17.5.0
Resistors. Capacitors. pots. Choke 25/6
Fibreglass P.C.B
19/-
P.C.B. and components
£19.5.0
\(4^{\prime \prime} \times 4.6^{\prime \prime} \times 1 \cdot 3^{\prime \prime}\) Drilled H/Sink 8/-
2 full kits with H/Sinks £ \(\quad \mathbf{8 8}\)
30W Bailey (single power rail)
10 transistors
£5.12.0
Resistors, capacitors and pot 26/-
Linsley-Hood Class AB
5 transistors. Zener
67/6
(MJ 481. MJ 491. MJE 521, BC 182L. BC 212L)
Resistors, capacitors and pots
44/6
Linsley-Hood Class A
(MJ \(481 \times 2,2 N 3906,2 N 1613\))
Resistors and capacitors
57/-
28/6 L.H. Amps All transistors matched and with mica washers.
Resistors except power types. \(\frac{1}{2} \mathrm{~W} 5 \%\) low noise carbon film.
\begin{tabular}{llll}
\multicolumn{4}{c}{ Semiconductors } \\
2N 3055 & \(\mathbf{1 2 / -}\) & MJ 481 & \(\mathbf{2 4 / -}\) \\
2N 3715 & \(\mathbf{4 5 / -}\) & MJ 491 & \(\mathbf{2 6 / 6}\) \\
2N 3716 & \(\mathbf{5 7 / -}\) & MJE 521 & \(\mathbf{1 4 / 6}\) \\
2N 3791 & \(\mathbf{8 4 / -}\) & TIP 29A & \(\mathbf{1 1 / -}\) \\
40361 & \(\mathbf{1 0 / -}\) & TIP 30A & \(\mathbf{1 3 / -}\) \\
40362 & \(\mathbf{1 2 / -}\) & IBO8T20 & \(\mathbf{1 2 / -}\) \\
BC 125 & \(\mathbf{9 / 6}\) & IB40K20 & \(\mathbf{3 2 / -}\)
\end{tabular} BC \(126 \quad 9 / 6\)
Brand new top quality components. Instant Service. Mail Order Only. Post Free.
POWERTRAN ELECTRONICS
2 KENDALL PLACE, LONDON, W. 1
WW-115 FOR FURTHER DETAILS

\title{
Stereo Tape Recorder
}

A project specifically designed with the constructor in mind, this PRACTICAL WIRELESS Stereo Tape Recorder can be used with almost any tape deck which can be fitted with the specified Marriott tape heads. The prototype is based on the R.T.C. 249 push button, three speed deck. Simple switching is made possible by using an unusual equalisation principle. Although 16 transistors are used, the cost of the complete project should be only around \(£ 30\).

FREE! Second Wall Chart on
AUDIO STANDARDS
A must for all hi-fi enthusiasts!
PORTABLE SIGNAL TRACER
A further addition to the PRACTICAL WIRELESS
"build your own" test equipment series. This unit has three probes: for checking a.f., r.f. and e.h.t. -the latter for checking corona and high voltage breakdown.

January issue OUT NOW 3/6 (171 \(\left.\frac{1}{2} p\right)\)

Plus other constructional articles and all the regular features.

\section*{ALL SEMICONDUCTORS WARRANTED}

Prices \(1-9\) as quoted, \(10-99\) less \(10 \%, 100 \mu p 15 \%\), larger quantities special quote

\section*{CHILTMEAD LIMITED}

7-9 Arthur Road, Reading • Telephone 582605

\section*{INDEX TO ADVERTISERS}

\section*{Appointments Vacant Advertisements appear on pages 89-102}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Page & & Page & & Page \\
\hline Al Factors & 108 & Harmsworth Townley \& Co. & 10 & Radford Laboratory Insts. Ltd. & 6 \\
\hline Acoustical Mfg. Co., L & 31 & Harris Electronics (London) Lt & 54 & Radio \& TV Components Led. & 77 \\
\hline Adcola Products, Ltd. & 30 & Harris, P.. & 107 & Radio Components Specialists Ltd. & 09 \\
\hline A. H. Supplies & 108 & Hart Electronics & 59 & Radio Exchange Co. Led. & 105 \\
\hline Ahuja Radio's. & 29 & Hatfield Instruments Ltd. & 40 & Radiospares Ltd. & 59 \\
\hline Ancom Ltd. & 24 & Heath (Gloucester) Ltd. & 23 & Ralfe, P. F....... & 85 \\
\hline Anders Electronics, Ltd. & 20,34 & Henrys Radio Letd... & .70, 71 & Rank Audio Visual Ltd. & 53 \\
\hline Associated Automation Ltd..... & 8 & Henson, R., Ltd. & . 103 & R.S.C. Hi-Fi Centres Lt & 79 \\
\hline Associated Electronic Engineers Lt & 54 & Hi-Fi Year Book & - 28 & R.S.T. Valves Lid. & 74
54 \\
\hline Ates Electronics Ltd & 54 & & & Rendar Insts. Ltd. & 54 \\
\hline Audio Eng. Ltd.. & 14 & & & Reslo Mikes....... & 35 \\
\hline Audix B.B. Ltd. & 26 & I.C.s. Ltd. & 68 & & \\
\hline & & I.M.O. (Electronics) Lid. & 35 & Roband Electronics Ltd. & Cover iii \\
\hline & & Industrial Insts. Ltd. . . & 30 & Rola Celestion Ltd. & \\
\hline Banner Transformers. & 105 & Instructional Handbook Supplies & 104 & & \\
\hline Batey, W., \& Co. & 42 & Integrex Ltd. & 107 & & \\
\hline Bentley Acoustical Corporation Lid & 60 & Intercontinental Components. & 104 & Samsons (Electronics) Lt & 64 \\
\hline Bentley, K. J. & 107
13 & Italtel S.P.A.... & 15 & S.E. Laboratories (Eng.) Lit & 36
51 \\
\hline \({ }_{\text {Bi -Pak }}\) Bemiconduct & 73 & Ivoryet Ltd. & 109 & Service Trading Co...) & 82, 83 \\
\hline Bi-Pre-Pak Ltd. & 76 & & & Servo \& Electronic Sales Ltd & 60 \\
\hline Black, J. & 104, 108 & J.E.F. Electronics & 103 & Shure Electronics Ltd. & \(\cdots{ }_{56}{ }_{57}{ }_{58}^{50}\) \\
\hline Bradley, G. \& E., Ltd & .17,19 & J.E.F. Electronics. & 103 & Sinclair Radionics Ltd. & 56, 57, 58 \\
\hline Brenell Eng. Co. Ltd. & & & & & \\
\hline Brooklands Plating Co. L Brown, S. G., Ltd. & - 103 & & & Smith, G. W. (Radio), L & \(\begin{array}{r}65,66,67 \\ \hline . .42\end{array}\) \\
\hline Brown, S. G., Ltd.... & - 14 & K.S.M. Electronics Ltd. & 59 & Smith, J., Ltd. . . & 82 \\
\hline & & & & Starman Tapes. & 108 \\
\hline Carston Electronics L & 18 & & & Stephens Electronics & 6,69 \\
\hline Cesar Products Ltd. (Yukan) & 105 & Lasky's Radio Ltd. & 68 & Stockton Partners. & \\
\hline Chandos International. & 108 & Lawson Tubes & 106 & Sugden, J. E., Ltd. . & \\
\hline Chiltmead Ltd. & 84, 110 & Leda Tapes. & 108 & Sutton El ectronics Ltd. & \\
\hline Colomor (Electronics Ltd.) & 55 & Ledon Instruments Ltd.. & 28 & & \\
\hline Concord Instrument Co. & 103 & Levell Electronics Ltd. & \({ }^{1}\) & & \\
\hline Croydon Precision Ins. Co... & .. 24 & Lexor Dis-boards Ltd. & \[
\begin{aligned}
& 72 \\
& 20
\end{aligned}
\] & Telcon Metals Lidd. & \\
\hline & & Limrose Electronics. & 38 & Telephone \& Wireless Comps. Ltd & 18 \\
\hline & & Lind-Air Optronics (Industrial) Ltd. & 16, 107 & Telequipment Ltd. & 46 \\
\hline Dabar Electronic Prods. & 104 & Linear Products Led... & 28 & Telford Products Ltd & 12 \\
\hline Dana Electronics Ltd. & 12 & London Central Radio Stores & 105 & Teonex Ltd. \({ }^{\text {Thorn }}\) Radio Valves \& Tubes L & . 106 \\
\hline Danavox (G.B.) Ltd & 25 & L.S.T. Components Ltd. & & Tinsley, H., \& Co. Ltd. & 40 \\
\hline Deimos Lid. & 106 & & & Transaudio Ltd. & 53 \\
\hline Diotran Ltd.. & 104, 108 & & & Transradio Led. & 38 \\
\hline Dixons Technical (CCTV) Ltd. & -. \(\begin{array}{r}59 \\ 106\end{array}\) & Marshall, A., \& Sons (London) Ltd. & & Trio Corporation Lid. & 11 \\
\hline Douglas Electronic Industries Ltd Drake Transformers Ltd. & . 33 & Mills, W........... & .74,75 & & \\
\hline & & Milward, G. F. & 80 & & \\
\hline & & M.O. Valves Ltd & 37 & Ultran.etronics (Components) Ltd. & 55 \\
\hline E.B. Instruments & 103 & Modern Book Co. & 104 & United-Carr Supplies Ltd & \\
\hline Edwards Scientific Insts. Lt & 44 & Mullard Ltd. \({ }^{\text {a }}\). & Cover ii & Universal. & 105 \\
\hline Electronic Brokers. & 62, 63, 103 & Multicore Solders Ltd. & Cover iv & & \\
\hline Electronic Music Studios (London) Ltd. & - 43 & & & & \\
\hline Electronics (Croydon) L & 87 & & & Valradio Ltd. & 36 \\
\hline Electro-Tech Sales. . & 72 & Nombrex Ltd. & 32 & Vitality Bulbs Ltd. & 20,36 \\
\hline Electrovalue & 61 & & & Vitavox Ltd. & 72 \\
\hline Electro-Winds Ltd & 59 & & & Volfield Lid. & 22 \\
\hline E.M.I. Tape Ltd. & 21 & Olympic Transformers Ltd. & 44 & Vortexion Ltd. & 52 \\
\hline English Electric Valve Co. Ltd. & 3, 5, 7, 9 & Omron Precision Controls. & 35 & & \\
\hline Erie Electronics Ltd.. & 2 & Osmabet Ltd. & . 106 & & \\
\hline & & & & Watts, Cecil E., Ltd. ... & \\
\hline & & & & Wayne Kerr, The, Co. Ltd. & 41 \\
\hline Ferrograph, The, Co. Ltd. Field Electric & & Pattrick \& Kinnie
PC. Radio Ltd. & \(\cdots 55,84\) & Webber, R. A., Lid. & 38 \\
\hline Fird Electric. & 107
30 & \(\xrightarrow{\text { P.C. Radio Ltd. }}\) Power \({ }^{\text {Pran }}\) & [.55,81 \({ }^{109}\) & Wel Components Ltd..... & 40
104 \\
\hline Futuristic Aids Ltd, & 54 & Practical Wireless. & 109 & West London Direct Supplies & \\
\hline & & & & Wilkinson, L. (Croydon), Ltd.... & . 70 \\
\hline Goldring Mfg. Co. Ltd. & 55 & Quality Electronics Led. & 54 & & \\
\hline Grampian Reproducers Ltd. & 106 & Quartz Crystal Co. Ltd. & 103 & Z. \& I. Aero Services Ltd. & 32,88 \\
\hline
\end{tabular}

\footnotetext{

 at a price in excess of the recommended maximum prlee ahown on the cover; and that it shall not be lent, re-sold, hired out or otherwise disposed of in a mutilated condition or in any unaithorised cover by way of Trade
}

\section*{tersion Cit} THIS MAN is using a Digital Voltmeter. You-chemist, engineer, biologist-your laboratory-research, production, testingroutine multiple measurements-tediousThis man is UsiNG a pinital Voltmeter. convenient-robust-precise-easy-reliable-use not store-in fact a work horse.
This man is using a DIGITAL Voltmeter quick-non-ambiguous-accurate-easy to read-in fact the best solution. This man is using a ROBAND Digital. Voltmeter
appropriate performance-dependablelow cost-the result of roband reseachin fact the right decision

robendManufacturers of high quality Power Supplioo, Digital Instruments and Oseillinsenpas.

\title{
OVER 400 SPECIFICATIONS USED IN MORE THAN 63 COUNTRIES FOR FAST RELIABLE SOLDERED JOINTS
}

Contains 5 cores of non-corrosive high speed Ersin flux. Removes surface oxides and prevents their formation during soldering. Complies with B.S. 219, 441, DTD 599A, Din 1707, U.S. Spec. QQ-S-571d.
8
Savbit an exclusive Multicore Alloy which is saturated with copper to prevent absorption of copper from copper wires, circuit boards and soldering iron bits. Ministry approved under Ref: DTD 900/4535.
Solder Tape, Rings, Preforms and Washers, Cored or Solid, are available in a wide range of specifications.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{STANDARD ALLOYS INCLUDE} & \multicolumn{4}{|l|}{HIGH AND LOW MELTING POINT ALLOYS} \\
\hline \multicolumn{8}{|c|}{LIOUIDUS} \\
\hline TIN/LEAD & \[
\begin{aligned}
& \text { B.S. } \\
& \text { GRADE }
\end{aligned}
\] & \[
\begin{aligned}
& \text { MELT } \\
& { }^{\circ} \mathrm{C} .
\end{aligned}
\] & TEMP F. & ALLOY & DESCRIPTION & \[
\left\lvert\, \begin{gathered}
\text { MELTI } \\
{ }^{\circ} \mathrm{C} .
\end{gathered}\right.
\] & TEMP \({ }^{\circ} \mathrm{F}\). \\
\hline 60/40 & K & 188 & 370 & T.L.C. & Tin/Lead/Cadmium with very low melting & 145 & 293 \\
\hline Savbit No 1 & - & 215 & 419 & & point & & \\
\hline 50/50 & \(F\) & 212 & 414 & L.M.P. & Contains 2 \% Silver for soldering silver & 179 & 354 \\
\hline 45/55 & R & 224 & 435 & & coated surfaces & & \\
\hline 40/60 & G & 234 & 453 & P. & Made from Pure Tin for use when a lead free solder is essential & 232 & 450 \\
\hline 30/70 & \(J\) & 255 & 491 & HM.P & High melting point & 296 & 565. \\
\hline 20/80 & V & 275 & 527 & H.M.P & solder to B.S. Grade 5S & 301 & 574 \\
\hline
\end{tabular}

\section*{COMPATBIE PRINTED CRICUIT SOLDERING MATERIALS}

\section*{EXTRUSOL} High Purity Extruded Solder
provides the most economical soldering. Its high purity and freedom from oxides, sulphides and other undesirable elements result in the following advantages :-
- Less dross on initial melting.
More soldered joints per pound of solder purchased.
- Less reject joints. - Improved wetting of electronic components \& printed circuit boards.
- More uniform results. All Extrusol is completely protected by plastic film packaging from the moment of manufacture until it is used. Available in bars and pellets. Can be released under AID authority and supplied to USA QQ-S-571d.

\section*{PC. 2 MULTICORE} TARNISH REMOVER removes tarnishes and inorganic residues as the second half of a precleaning process before soldering. It leaves the copper unaffected.

PC. 90 MULTICORE PEELOFF SOLDER RESIST
is a temporary solder resist which can be peeled off with tweezers after soldering, leaving the original clean surface. It can be used for masking gold plated edge connections and holes to which heat sensitive or other components must be added later.

\section*{PC. 41 MULTICORE} ANTI-OXIDANT SOLDER COVER which forms a liquid cover on the solder bath either side of the solder wave, largely preventing the formation of dross.

\section*{PC. 80 MULTICORE} SOLVENT CLEANER removes organic contaminants such as grease, perspiration and residues of organic solutions from prior processes, as a precleaning process before soldering. It is also very efficient in removing rosin-based flux residues after soldering
PC. 10 AMULTICORE ACTIVATED SURFACE PRESERVATIVE
is a pre-soldering coating for preserving the clean surfaces established by the PC. 80 Multicore Solvent Cleaner and PC. 2 Multicore Tarnish Remover. PC.10A does not need to be removed before soldering and in fact contributes to the efficiency of the soldering process PC. 10A should be used whenever there is a delay between cleaning and soldering.

Gallon Containers All liquid chemicals and fluxes supplied in 1 gallon ootythene
easy pouring containecs, with carrying handle

Aerosols
PC. 21 A. PC. 10 A and PC. 52 avarlable in 160 ar
aerosol sprays.

\section*{SEVEN STANDARD MULTICORE LIQUID FLUXES}
are now available, five of which are new :PC. 21 A Multicore Non. Corrosive Liquid Flux is normally recemmended for wave, dip, brush. spray and roller flux application methods PC. 25 Multicore Rosin Foam Flux is designed for foam fluxing and exhibits an unusually stable foam with a fine bubble size

\section*{PC. 52 MULTICORE PROTECTIVE COATING}
is a lacquer which should be applied after soldering for protecting printed circuits from deterioration or failure in service. It can easily be soldered through if modifications or repairs are necessary at a later date.

Part 2. Choosing Methods and Materials.
Part 3. Reference Tables.
Published by lliffe Books and available from Technical Bookshops

\footnotetext{
SOLDERING HANDBOOK
The most comprehensive book on soldering for industrial use, containing 120 pages with 100 illustrations and invaluable reference charts.
Features practical methods of soldering in electronics and allied industries, and is divided
into three headings.

SOLDERABILITY TEST MACHINE
MARIK 3
Use for testing to B.S \(4393: 1969\),
Section 10 . A simple precision
instrument for assessing the solder-
ability of component termination wires.
Complies with B. 52011 Part 2 Test T
and comparable international standards.
Essential for quality control.
SOLDERABILITY TEST MACHINE
MARIK 3
Use for testing to B.S \(4393: 1969\),
Section 10 . A simple precision
instrument for assessing the solder-
ability of component termination wires.
Complies with B. 2011 Part 2 Test T
and comparable international standards.
Essential for quality control.
SOLDERABILITY TEST MACHINE
MARIK 3
Use for testing to B.S \(4393: 1969\),
Section 10 . A simple precision
instrument for assessing the solder-
ability of component termination wires.
Complies with B. 2011 Part 2 Test T
and comparable international standards.
Essential for quality control.
SOLDERABILITY TEST MACHINE
MARIK 3
Use for testing to B.S \(4393: 1969\),
Section 10 . A simple precision
instrument for assessing the solder-
ability of component termination wires.
Complies with B. 2011 Part 2 Test T
and comparable international standards.
Essential for quality control.
SOLDERABILITY TEST MACHINE
MARIK 3
Use for testing to B.S \(4393: 1969\),
Section 10 . A simple precision
instrument for assessing the solder-
ability of component termination wires.
Complies with B. 2011 Part 2 Test T
and comparable international standards.
Essential for quality control.
SOLDERABILITY TEST MACHINE
MARIK 3
Use for testing to B.S \(4393: 1969\),
Section 10 . A simple precision
instrument for assessing the solder-
ability of component termination wires.
Complies with B. 2011 Part 2 Test T
and comparable international standards.
Essential for quality control.
SOLDERABILITY TEST MACHINE
MARIK 3
Use for testing to B.S \(4393: 1969\),
Section 10 . A simple precision
instrument for assessing the solder-
ability of component termination wires.
Complies with B. 2011 Part 2 Test T
and comparable international standards.
Essential for quality control.
SOLDERABILITY TEST MACHINE
MARIK 3
Use for testing to B.S \(4393: 1969\),
Section 10 . A simple precision
instrument for assessing the solder-
ability of component termination wires.
Complies with B. 2011 Part 2 Test T
and comparable international standards.
Essential for quality control.
SOLDERABILITY TEST MACHINE
MARIK 3
Use for testing to B.S \(4393: 1969\),
Section 10 . A simple precision
instrument for assessing the solder-
ability of component termination wires.
Complies with B. 2011 Part 2 Test T
and comparable international standards.
Essential for quality control.
}
ins on your comphiny s lêtter-head, for the pro

Tel: Homel Hempsteaid 3636 Telex 82363```

