WirelessWorld

Tape recorder design
*
Loudspeaker ditionem

COU 150

丸 Star products-Star award

STC is proud to announce that its entire range of Star equipment has received the award of the British Council of Industrial Design. Elegant and functional in design the Star Mobile Radiotelephone and Starphone Pocket Radiotelephone are milestones in the design of Radiotelephone products.

The rapid acceptance of Star Mobile Radiotelephones in the UK and in over 30 countries throughout the world is a forceful reminder of the importance of design in worldwide marketing success.

For further information
STC Mobile Radiotelephones Limited, New Southgate, London N. 11. Telephone: 01-368 1200. Telex:261912.

Wireless World

Electronics, Television, Radio, Audio

This month's cover picture has been produced by superimposing an oscillograph on a photograph of the instrument on which it was displayed.

IN OUR NEXT ISSUE

The boxcar detector is an instrument for retrieving repetitive signals which are buried in noise. An article will explain how the boxcar detector works and how it is used.

An ultra linear a.c. millivoltmeter will be described which is not expensive to build and overcomes the problem of non-linear rectifying diodes by using a constant current source.

Attenuators: some notes on the calculation and uses of resistance networks.

November 1970
Volume 76 Number 1421

Contents

ibpa

Iniecramiona bus limes
Piess Assocries
1.P.C. Electrical-Electronic Press Lid

Managing Director: George Fowkes
Publishing \& Development Director:
George H. Mansell
Advertisement Director: Roy N. Gibb Dorset House, Stamford Street, London, SE1
(C) I.P.C. Business Press Ltd, 1970

Bricf extracts or comments are allowed provided acknowledgement to the journal is given.

[^0]PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: 01-928 3333 (70 lines). Telegrams/Telex: Wiworld Bisnespres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home; $\mathbb{6} 3$ Os Od. Overseas; 1 year $\AA 3$ os 0d. (Canada and U.S.A.; $\$ 7.50$). 3 years $\AA 713 \mathrm{~s} 0 \mathrm{~d}$. (Canada and U.S.A.; $\$ 19.20$). Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notuty a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 202, Lynton House, Walsall Road, 22b. Telephone: 021-356 4838. BRISTOL: 11, Elmdale Road, Clifton, 8. Telephone: OBR2 21204/S. GLASGOW: 2-3 Clairmont Gardens, C.3. Telephone: 041-332 3792. MANCHESTER: Statham House, Talbot Road, Stretford, M32 OEP. Telephone: 061-872 4211. NEW YORK OFFICE U.S.A.: 205 East 42nd Street, New York 10017. Telephone: (212) 689-3250.

Editor-in-chief:
w. T. COCKING, F.I.E.E.

Editor:
H. W. BARNARD

Technical Editor:
T. E. IVALL, M.I.E.R.E.

Assistant Editor:
B. S. CRANK

Editorial Assistant:
J. GREENBANK, B.A.

Drawing Office:

H. J. COOKE

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
G. J. Stichbury
B. STOREY (Classifed Advertisement Supervisor)

Telephone: 01-928 3333 Ext. 533 \& 246.

Symbols for Active Devices

Active devices in common use now include valves, bipolar transistors and fieldeffect transistors. As far as their normal use is concerned all these can be considered as triodes. The valve, of course, exists in tetrode, pentode, hexode, heptode, octode and even nonode forms. Except for certain special applications where signals are applied simultaneously to more than one grid (e.g. frequency changers), most valves have only three signal electrodes, an emitting cathode, a collecting anode and a control grid.

In the case of the bipolar transistor the three electrodes corresponding to cathode, grid and anode of the triode valve are called emitter, base and collector, while the equivalents of the f.e.t. are source, gate and drain.

The standard symbols for 'electrode' voltages for the valve are $V_{g k}$ and $V_{a k}$ (often abbreviated to V_{g} and V_{a}, since the cathode as reference point is usually understood). For the bipolar transistor, they are $V_{B E}$ and $V_{C E}$, while for the f.e.t. they are $V_{G S}$ and $V_{D S}$. Currents are I_{g} and I_{a} (valve), I_{B}, I_{C} and I_{E} (bipolar) and I_{G}, I_{D} and I_{S} (f.e.t.). Notice that the convention of using capital letters for the subscripts to semiconductor quantities to indicate d.c. values, is not common with valves.

However different physically these devices may be and however different may be their internal operation, they are all fundamentally the same when considered as a three-terminal 'black box'. They can all be represented by the same equivalent circuit and the same set of equations. Why, then, should we have three sets of symbols for what are similar quantities from the point of view of the external circuit? Would it not be much simpler to have a common set for all?

This would probably have happened from the start had it not been that early transistors were p-n-p types. For an n-p-n transistor cathode and anode are as correct for the emitter and collector as they are for the valve, but since they mean the negative and positive electrodes to apply them to a p-n-p type would cause endless confusion.

What is really needed are three words, one to denote cathode (valve), emitter (bipolar) and source (f.e.t.); one to denote anode (valve), collector (bipolar) and drain (f.e.t.); and a third for control grid (valve), base (bipolar) and gate (f.e.t.).

Emitter and collector are equally suited to the valve and to the bipolar transistor. They may not appear so applicable to the f.e.t. However, in this device there is a source, which is the end of the semiconductor at which electrons or holes start to flow through it, and there is a drain at which their internal flow ceases. There is, of course, no emission as there is in a valve, but neither is there in a bipolar transistor: Emitter is really a misnomer for the latter, but eminently suitable for the valve!

At first sight 'source' would seem suitable for all three devices, but the term is commonly used in circuit theory for a signal source. To use the same word for an 'electrode' of an active device is to invite confusion. In our view, therefore, emitter and collector are the best words to use for all three devices.

The third electrode is more difficult. The 'grid' of a valve describes the physical form of the electrode. The 'base' of a bipolar transistor describes the physical form of the point-contact transistor but not that of the junction type. The 'gate' of an f.e.t. does in some measure attempt to describe what it does. Unfortunately, it implies an on-off type of control for one thinks of a gate as being open or closed, not as a regulator of flow. But for this, 'gate' could be used for all three devices. 'Control' is ruled out if collector is used, because it must have a different initial letter if the resulting symbolism is to follow. A word beginning with ' g ' is also undesirable because ' c ' and ' G ' are easily confused; lower case ' c ' and ' e ' are bad enough in handwriting. One possibility is 'regulate'. Our suggestion therefore is that we should standardize on emitter, regulator and collector for the three electrodes of valves, bipolar transistors and field-effect transistors, but readers may have other ideas.

High-quality Tape Recorder

1. Specification and design

by J. R. Stuart*, B.Sc.

Tape recorder construction has received relatively little attention over the years, and presumably one reason is the apparent complexity of the circuitry and alignment, compared with other items of domestic audio equipment. Two tape recorders have been described in these pages in a period of ten years, whereas several power amplifiers have been described in the last few months.
In view of the large interest in the construction of domestic audio equipment, it was decided to produce a design for a tape link which would be simple and cheap to build and easy to set up.

Reel-to-reel or cassette?

Continuing tape recorder development has resulted in commercial machines, using standard reeled tape, which give excellent performance at low speeds with or without crossfield bias.

Probably the most significant developments have been the large improvement in high-speed tape copying techniques, widespread acceptance of the Dolby noise reduction process, and the rapid growth of interest in four-channel stereo. These combine to create a situation in which tape will take over from disc as the major programme source particularly as no compatible coding can record four independent channels on a disc-although it can be done at the expense of crosstalk.

It is now possible to manufacture a cassette tape to run at $1 \frac{7}{8}$ i.p.s. which, with Dolby, gives a performance better than disc. However, at present no cassette tape transport is available which can offer the necessary low wow and flutter performance nor the retrieval capability of a high-quality deck of the conventional form.

The choice of a conventional deck for this design was made without hesitation, for the use of such a machine will not decline

[^1]TABLE 1
Specification of the complete recorder

Fig. 1. Maximally flat frequency response.

Fig. 2. Expected arrangement of the tape unit.
when live recordings are made for either amateur or professional applications, particularly those requiring editing. Further, many decks of this type are in use and may be adapted to this design.

Crossfield biasing was not considered in view of the extreme mechanical problems this would create for the constructor.

This tape recorder has been designed around the Brenell Mk 6 deck. Brenell Engineering Ltd have agreed to make this deck available in the required form.

Evolving a specification

Table 1 shows the performance of this tape recorder for the conditions described and Fig. 1 shows the frequency response for constant current record, C.C.I.R. play back at $7 \frac{1}{2}$ i.p.s. and 15 i.p.s. adjusted for a maximally flat response.

Equalization is described in detail later along with the corresponding setting-up and performance details.

In evolving a design the primary considerations were
(a) simplicity of design consistent with high performance
(b) non-critical construction
(c) the use of readily available components
(d) a minimum number of adjustments (the circuits deliberately leave very few parameters undefined and all calibration can be done with a multi-meter, although the full procedure is described)
(e) design, flexibility to enable ready extension to four-channel and cassette applications when such decks are available.
The unit described is a mains-powered tape link and is intended for use with an existing audio system of pre- and power-amplifiers, and mixer if required. Such a recorder receives its signal from the pre-amplifier or mixer and replays through the same system. Three tape heads are fitted to allow simultaneous recording and playback; this affords better performance and much extended monitoring facilities.

The unit is readily compatible with the designs published in Wireless World; in particular the signal levels have been chosen to match the Bailey ${ }^{2}$ and Nelson-Jones ${ }^{3}$ pre-amplifiers. Fig. 2 shows the expected arrangement.

It was decided that the standard tape recorder should be a stereo unit capable of recording or replaying mono on either of the channels, with extensive monitoring facilities.

In addition to the considerations above, the particular performance parameters are cost, bandwidth, dynamic range and simplicity, and to achieve a good overall performance these must be carefully examined at each stage of the design.
To achieve simplicity it has been necessary to produce noncritical alignment with the full manufacturers' spread of devices, and the construction is no more complex than a power-amplifier. A block diagram of the tape unit is shown in Fig. 3.

Bandwidth

The bandwidth of a tape recorder is determined by the tape transport mechanism at low frequencies, and at high frequencies, to a first order, by
(a) recording speed

Fig. 3. Block diagram of tape unit.
(b) h.f. bias level
(c) replay head gap
(d) alignment of record and replay gaps
(e) equalization standard (I.E.C., N.A.B., D.I.N., C.C.I.R., N.A.R.T.B.)
(f) magnetic domain size on tape
(g) head losses (copper, and iron, and leakage).

Second order effects include the recording-head gap.
The Brenell Mk 6 uses Bogen heads which have a hyperbolic face to ensure good tape-head contact. They also have pressure pads which nevertheless seem to allow good low-frequency response as is seen from Fig. 1.

In a given system the parameters which the designer may control are a, b, and e , and to some extent d .

Great care must be exercised in producing a bandwidth specification; it seems dangerous to rely as much as we do on these figures. The problem is that in most cases it is the published specification for bandwidth and noise which sells a tape recorder. The author feels that it is of limited value to reject a model with an upper -2 dB point of 15 kHz in favour of one which has the same point at 22 kHz ; the reasons are as follows.

The sensitivity of the human ear at 17 kHz is a mean of 10 dB below 4 kHz at listening level of 60 phons, and the 1% duration peak content in an orchestral piece at 15 kHz is 10 dB below $500 \mathrm{~Hz}^{4}$. It would seem that a variation of $\pm 2 \mathrm{~dB}$ at 20 kHz should have little effect, particularly as the threshold of hearing at 20 kHz is at a loudness of 80 phons (Robinson \& Dadson) and in the upper octave just noticeable distortion is greater than 1 phon.
The ear is however sensitive to transient 'slewing-rate' and to inharmonic products.

No recording system can easily retain the phase information required to reproduce the transient information in the way required; however a lot can be done to reduce the intermodulation products which are generated in the upper band. It seems evident that the perceived difference between the systems of different bandwidth, is due to distortion produced by the method of bandwidth reduction, causing intermodulation products to appear in the region $1-6 \mathrm{kHz}$, with obvious effect. Because the major control of bandwidth of a tape recorder is the high-frequency pre-emphasis, and since harmonic products in the upper octave are not retained, the intermodulation products here, and the bandwidth, are determined by the recording characteristic.

Dynamic range

In a well designed tape recorder the dynamic range is determined by the tape and defined by tape overload and inherent background noise.
Sources of noise in the recorder are the amplifiers (more than 10 dB below tape noise in this design) and recorded noise by the bias and erase waveforms. In order to minimize this the erase waveform must be very pure and free from even-order harmonics.

Another source of noise is hum. However, careful power supply design and overall construction have reduced basic amplifier hum to less than -80 dB . The hum level appears far below the amplifier noise, and is inaudible in the author's set-up at a gain setting equivalent to 40 W at a distance of 6 feet from the speakers.

Two-track operation was chosen to give a maximum dynamic range, however the Brenell Mk 6 deck is available with four-track heads and these may be used with no circuit modification giving about 3 dB less dynamic range.

Power supply

It was intended that the recorder should obtain raw d.c. from the power amplifier with which it is used, and a regulator is used to derive the system rail of +20 V . In case this power is not available a simple supply will be described in Part 2.

Choice of devices

The R.C.A. integrated circuit quad-amplifiers CA 3048 and CA 3052 were chosen for this design-which uses one of each. In

Fig. 5. Circuit diagram of recording stage.

(b)

Fig. 4. Data on the i.c. linear amplifiers type CA3048 and CA3052; (a) the circuit diagram of each amplifier section ($\frac{1}{4}$ i.c.); (b) pin connections; and (c) performance details of each amplifier.
the author's experience they have a highly predictable, reliable performance and offer a saving of a very large number of discrete components. Although there is no reduction in cost, the reliability of one of these chips for home construction, when compared with the minimum equivalent of twelve transistors and associated components, is high. The circuits should be carefully checked however for the cost of mistakes could be higher. Fig. 4 (a) \& (b) show the circuit diagram and specification for these devices. The transistors chosen are cheap silicon-planar devices of ready availability.

Recording section

The essential recording function is to produce a residual flux/ input voltage transfer function which is linear with respect to amplitude variations.
In the mid-band residual flux relates linearly to applied flux, which is in turn proportional to the current flowing in the recording head windings, and so it follows that the recording current should be proportional to the signal voltage.

It is also necessary to modify the amplitude/frequency response of the recording stage to obtain the optimum bandwidth as described earlier.

The recording amplifier falls readily into two sections, namely the equalization and output stages.

Fig. 5 shows the circuit diagram for the stereo recording section. Reference to Fig. 3 shows that the record gain control is placed at the input to the equalization stage, i.c.A $2 \& 3$, to maintain optimum conditions of dynamic range and distortion. $S_{2} g \& h$, and $S_{4} a \& b$ direct the input signals according to the selected function.

The open loop gain of i.c.A $2 \& 3$ is set to 45 dB by \boldsymbol{R}_{3}, and the low-frequency gain of this stage is

$$
\frac{R_{2}+R_{3}}{R_{3}} \approx 7.25
$$

This implies a sensitivity of 7 mV r.m.s. for 0 dB output level. Here 0 dB output was set for a flux density of 32 millimax wells per millimetre of tape at +1 dB bias and $7 \frac{1}{2}$ i.p.s.

The parallel tuned circuit formed by L_{1}, and C_{5-8}, increases the gain at the resonant frequency by an amount determined by R_{4-7}. Several combinations of frequency and boost may be used and these will be described in Part 2. Fig. 6 shows the frequency response of the equalizing stage when set for maximally flat response as in Fig. 1. This rising gain at high frequencies compensates to some extent for the losses in the recording head and tape, and ensures a "constant induction' characteristic. Noise and distortion are both very low in this stage, distortion at 1 kHz is less than 0.01% at rated input, and the noise is more than 70 dB down.
As the CA 3052 amplifier can give 2 V r.m.s. output with 0.65% distortion open loop, this equalizing stage is capable of producing 32 dB boost with less than 0.1% distortion. Because the recording head is a non-ideal inductor, it is an interesting problem to produce a 'constant current' drive at all frequencies in the pass-band; this implies an amplifier whose voltage gain is proportional to the head impedance.

A large number of designs have appeared, to produce this constant current drive for the head, and indeed to arrange this drive with a good 0 dB overload margin, to allow pre-emphasis, is quite difficult.

The Brenell Mk 6 deck is fitted with a Bogen UK202B record head, which has an inductance of 120 mH at 1 kHz and requires a recording current of $110 \mu \mathrm{~A}$ to induce a remanent flux of 32 $\mathrm{mMx} / \mathrm{mm}$; this head achieves its maximum impedance of $10 \mathrm{k} \Omega$ at about 14 kHz . Without pre-emphasis then the voltage across the head will be 1.1 V r.m.s. and as the output amplifier can provide 5.5 V r.m.s. across the head at this frequency the minimum preemphasis which can be applied to allow no overload at the 0 dB level is 14 dB at 14 kHz . It is worthwhile investigating the powerfrequency spectrum of the signal source, as many music sources have maximum peaks at 15 kHz 10 dB below $500 \mathrm{~Hz}^{4}$. Thus if necessary a further 10 dB boost could be applied with less than 1% duration overload at these frequencies.

Wherever possible the nature of the pre-emphasis has been designed to accept a 0 dB signal without overload. If this is not the case the amount of overload is stated. Traditionally 'constant

Fig. 6. Frequency response of recording pre-emphasis.

Fig. 7. Mid-band small-signal equivalent circuit of recording output amplifier.

Fig. 8. Circuit diagram of replay amplifier.

TABLE 2
(Replay equalization details.)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline speed \& standard \& time \& \begin{tabular}{l}
nstants \\
(\(\mu \mathrm{s}\)) \\
\(t_{2}\)
\end{tabular} \& gain@1kHz (approx) \& \[
\underset{\mu \mathbf{F}}{\mathbf{C x}}
\] \& \[
\begin{aligned}
\& \mathbf{R y}_{\mathbf{Y}} \\
\& \hline
\end{aligned}
\] \& Rp \& Rq \& Rs \& Rt \& \[
\underset{\mathbf{k} \Omega}{\mathbf{R m}_{2}}
\] \& Cz \\
\hline \multirow{4}{*}{15 i.p.s. \(38 \mathrm{~cm} / \mathrm{sec}\)} \& CCIR/DIN \& \multirow[b]{3}{*}{35} \& \multirow[b]{2}{*}{\(\infty\)} \& \multirow[t]{2}{*}{10} \& \multirow{3}{*}{-} \& \multirow[b]{3}{*}{-} \& \multirow{3}{*}{56} \& \multirow{3}{*}{-} \& \multirow{3}{*}{-} \& \multirow{3}{*}{-} \& \multirow[b]{3}{*}{\(\infty\)} \& \multirow{3}{*}{s/c} \\
\hline \& IEC94* \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \[
\text { BSI (1970) } \dagger
\] \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& NAB, IEC (USA) \& 50 \& 3180 \& 12 \& - \& - \& 100 \& - \& - \& - \& 9.5 \& \[
10 \mu
\]
\[
6 \mathrm{~V}
\] \\
\hline \multirow{6}{*}{\begin{tabular}{l}
\(7 \frac{1}{2}\) i.p.s. \\
\(19 \mathrm{~cm} / \mathrm{sec}\)
\end{tabular}} \& \multirow[t]{3}{*}{\begin{tabular}{l}
CCIR/DIN \\
IEC94 (GB) \\
BSI (1970)
\end{tabular}} \& \multirow{3}{*}{70} \& \multirow{3}{*}{\(\infty\)} \& \multirow{3}{*}{13} \& \multirow{3}{*}{0.5} \& \multirow{3}{*}{22} \& \multirow{3}{*}{-} \& \multirow{3}{*}{160} \& \multirow{3}{*}{-} \& \multirow{3}{*}{-} \& \multirow{3}{*}{\(\infty\)} \& \multirow{3}{*}{s/c} \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& NAB, IEC (USA) \& 50 \& 3180 \& 12 \& 0.5 \& 22 \& - \& 100 \& - \& - \& 9.5 \& \(10 \mu\) \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& 6 V \\
\hline \& IEC (FRANCE) \& 50 \& \(\infty\) \& 12 \& 0.5 \& 22 \& - \& 100 \& - \& - \& \(\infty\) \& \(s / c\) \\
\hline \multirow{5}{*}{\begin{tabular}{l}
\(3 \frac{3}{4}\) i.p.s. \\
\(9.5 \mathrm{~cm} / \mathrm{sec}\)
\end{tabular}} \& \multirow[t]{5}{*}{\[
\left.\begin{array}{l}
\text { CCIR } \\
\text { BSI (1970) } \\
\text { lEC94 (GB) } \\
\text { IEC94 (EUR) }
\end{array}\right\}
\]} \& \multirow[t]{5}{*}{140
90

140
or
90} \& \multirow[t]{3}{*}{${ }_{3180}^{\infty}$} \& \multirow[t]{3}{*}{15} \& \multirow[t]{3}{*}{1.0
1.0} \& \multirow[t]{3}{*}{22

22} \& \multirow{3}{*}{-} \& \multirow{3}{*}{-} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 390 \\
& 220
\end{aligned}
$$} \& \multirow[t]{3}{*}{二} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& \infty \\
& 9.5
\end{aligned}
$$
\]} \& s/c

\hline \& \& \& \& \& \& \& \& \& \& \& \& 10ر

\hline \& \& \& \& \& \& \& \& \& \& \& \& 6 V

\hline \& \& \& 3180 \& 15 \& 1.0 \& 22 \& - \& - \& 390 \& - \& 9.5 \& 10μ

\hline \& \& \& ∞ \& 14 \& 1.0 \& 22 \& - \& - \& 220 \& - \& \& $$
6 \mathrm{~V}
$$

\hline \multirow{5}{*}{$$
\begin{aligned}
& 1 \frac{7}{6} \text { i.p.s. } \\
& 4.75 \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$} \& \multirow[b]{5}{*}{\[

\left.$$
\begin{array}{l}
\text { CCIR } \\
\text { BSI (1970) } \\
\text { IEC94 }
\end{array}
$$\right\}

\]} \& \multirow[b]{5}{*}{\[

$$
\begin{aligned}
& 280 \\
& 120 \\
& \text { or } \\
& 120
\end{aligned}
$$

\]} \& \multirow{4}{*}{\[

$$
\begin{aligned}
& \infty \\
& 1590
\end{aligned}
$$

\]} \& \multirow[t]{4}{*}{\[

$$
\begin{aligned}
& 20 \\
& 15 \\
& 15
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 1.5 \\
& 1.5
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 22 \\
& 22
\end{aligned}
$$

\]} \& \& \multirow{4}{*}{—} \& \multirow{4}{*}{—} \& \multirow{4}{*}{\[

$$
\begin{aligned}
& 820 \\
& 330
\end{aligned}
$$

\]} \& \multirow[t]{4}{*}{\[

$$
\begin{aligned}
& \infty \\
& 19
\end{aligned}
$$
\]} \& \multirow[b]{5}{*}{s/c 10μ 6 V s / c}

\hline \& \& \& \& \& \& \& \multirow[t]{3}{*}{-} \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& ∞ \& 15 \& 1.5 \& 22 \& - \& - \& - \& 330 \& ∞ \&

\hline
\end{tabular}

* IEC94 inc. GB, USA. FRANCE.
\dagger BS 1568 (1970). NOTE: Measurements on this unit used the CCIR replay time constants. and were made before the publication in September of BS 1568 (1970).
current' was obtained by generating a very large signal voltage, and then swamping the head impedance with a large series resistance. Although simple to implement with valves this technique is inefficient and inelegant, although there are no problems with bias rejection

Others have made use of the high intrinsic collector impedance of a transistor, notable examples being P. W. Blick ${ }^{5}$, J. B. Watson ${ }^{6}$, and G. Wareham ${ }^{\text {? }}$.

Certainly the best method of ensuring accurate "constant current' drive is to include the head in the feedback loop of a high gain amplifier. However, this gives rise to considerable problems of bias rejection, and for this reason this technique was not employed in the basic recording unit. It will however be described in Part 3.

The circuit developed for this recorder is simple but effective. Tr_{1} is a common-emitter amplifier with local feedback in the emitter and this stage is biased by the current source Tr_{2}; this gives a high output impedance, and the load seen by $\boldsymbol{T r}_{1}$ is essentially the recording head. Fig. 7 shows the equivalent circuit of the output

Fig. 9. Output noise spectrum of replay amplifier.

Fig. 10. Replay frequency response.

Equalization circuit referred to in Table 2.
stage for small signals at mid-band. The trans-conductance is given by $I_{4} / V_{i n}=1 / R_{12} . \operatorname{Tr}_{3}$ is an emitter-follower stage arranged to set the d.c. conditions in the amplifier. The d.c. stability is excellent, and substituting for Tr_{1}, transistors with $h_{F E}$ between 30 and 475, causes a variation of only 200 mV on the standing d.c. level at the collector of Tr_{1}. Beware of measuring this with a meter of less than $10 \mathrm{M} \Omega$ resistance. The measured output impedance at 1 kHz is $420 \mathrm{k} \Omega$, falling to $390 \mathrm{k} \Omega$ at 20 kHz . Maximum output is 5.6 V r.m.s. and clipping occurs symmetrically at an output of 18 V pk-pk.

The frequency response measured with a $2.2 \mathrm{k} \Omega$ load was flat between 30 Hz and 100 kHz with -3 dB at 10 Hz and 220 kHz . At rated output the distortion in the current waveform in the head at 1 kHz was 0.01%.

It is strongly recommended that capacitors C_{1}, C_{3} and C_{9} be paper or polyester. In particular any leakage in C_{9} would cause a permanent polarization to build up in the recording head, degrading the performance. To avoid large currents flowing in the head during switch-on the d.c. level at the output rises slowly and the h.f. bias is arranged to decay slowly after switch-off to demagnetize the head.

Replay

Fig. 8 shows the circuit of the replay amplifier. It is arranged as an equalization stage and a 20 dB gain stage to raise the output level to 250 mV r.m.s. The input from the UK 202 B replay head is 2 mV r.m.s. for a 1 kHz tone recorded at $32 \mathrm{mMx} / \mathrm{mm}$ at $7 \frac{1}{2}$ i.p.s.

Careful power supply design has enabled a hum level of -80 dB to be achieved with a very low crosstalk. The amplifier crosstalk measured was -74 dB at 1 kHz , and -65 dB at 10 kHz , for rated output; distortion is less than 0.01% and is predominantly 2 nd harmonic; the overload capacity is 17 dB at 1 kHz with $7 \frac{1}{2}$ i.p.s. equalization. To obtain the best signal to noise ratio in this amplifier the CA 3048 amplifier is used; it has a tighter noise specification than the CA 3052 and is slightly more expensive. The measured noise was 66 dB below 0 dB level with $7 \frac{1}{2}$ i.p.s. C.C.I.R. replay equalization in a 20 kHz band and Fig. 9 shows the spectral density of the noise output of the replay stage.

R_{15} sets the open loop gain of the i.c. amplifier to 55 dB and the replay characteristic is determined by the equalizing network. This is shown in detail in Table 2, along with the values for the various standards. Fig. 10 shows the frequency response of the amplifier for the C.C.I.R. replay time constants. C_{x} and R_{y} can be added to lift the response at high frequencies. This is discussed fully in Part 2. As the power supply voltage at the i.c. terminal 12 rises slowly at switch-on, the charging current for C_{1}, through the head is less than $1 \mu \mathrm{~A}$, and if $C_{1 \mid}$ is a paper or polyester capacitor there should be no problem with polarization of the head. However, routine demagnetization will always be essential for high-quality work. The possibility of head magnetization is the only disadvantage with integrated or bipolar devices. An f.e.t. input would certainly eliminate the problem, but the circuit shown is far more convenient and this current has been reduced to an acceptable level. Those interested in the reduction of head polarization should refer to an article by P. F. Ridler ${ }^{8}$.

In Part 2 next month the design will be concluded and constructional details given.

REFERENCES

1. "Two Channel Quadraphony", David Hafler, Hi-Fi News, August 1970.
2. "High Performance Transistor Amplifier", A. R. Bailey, Wireless World, December 1966.
3. "Integrated Circuit Stereo Pre-amplifier", L. Nelson-Jones, Wireless World, July 1970.
4. High Quality Sound Reproduction by J. Moir, p.10, Chapman and Hall, 1961.
5, "Transistor Tape Recorder Amplifier", P. W. Blick, Wireless World, April 1960.
5. "Silicon Transistor Tape Recorder", J. B. Watson, Letters, Wireless World, August 1965.
6. "Inexpensive Tape Recording Amplifier", G. Wareham, Wireless World, March 1966.
7. "Tape Pre-amplifier using F.E.T.", P. F. Ridler, Wireless World, September 1967.

Home Video Again

Since we last reported on video recording and playback for home use ($p .340$ July issue) further announcements have been made. Ampex have declared that their Instavision recorders and players will be available in Europe by the end of 1971 and a little sooner in the U.S.A. Rank. Bush Murphy demonstrated their EVR Teleplayer-see p.562-and Sony have given a preview of their NTSC VCR cassette system.

The Ampex equipment is claimed to be the smallest cartridge-loading video recorder and player. Using $\frac{1}{2}$ in wide chromium dioxide tape the cartridges are compatible with conventional reel-type recorders employing the 'type 1 standard' of the Japanese E.I.A. being adopted by many manufacturers of $\frac{1}{2}$-in recorders. Cartridges have recording time of 30 min or 60 min in an extended play mode. Cost will range from $£ 320$ for a monochrome player to $£ 400$ for a colour recorder and player. A camera with zoom lens will be available for home recording. Compatible with 525 , and 625 -line television standards, the
resolution is 300 lines monochrome and 240 lines colour. Signal-to-noise ratio is 42 dB . Equipment will be made by Toshiba.

Sony demonstrated their home video recording system recently in London, although it is not clear why, as theirs is an NTSC-only system aimed at the U.S. and Japanese markets. Called a Videocassette system, it uses cassettes with two reels similar to those being made by Philips for use with the PAL colour television system. Sony expect to market their equipment in Japan in the autumn of 1971. Using chromium dioxide tape the $60-\mathrm{min}$ cassettes are expected to have a life of $100-200$ playings.
playback only systems

trade name	maker	type	price	estimated availability
$\left.\begin{array}{l} \text { EVR } \\ \text { Teleplayer } \end{array}\right\}$	CBS/RBM \dagger	film	£360	spring 1971
Selectavision	RCA	embossed plastic fìm	£175	late 1972
Teldec	Decca/AEGTelefunken	plastic disc	£60-120	1972

\dagger Motorola in U.S.A., Bosch in Germany.
record and playback systems

trade name	maker	type	price	estimated availability
VCR*	Sony	tape cassettes	£200	autumn 1971
VCR**	Philips	tape cassettes	£250	late 1971
CTV/Cartrivision	Avco	tape cartridge	£160-200	eárly 1971
Instavision	Ampex/Tnshiba	tape cartridge	£320-400	1971
Vidicord	Vidicord Holdings	$8-\mathrm{mm}$ film	£230-370	now
* NTSC system o	**PAL syst	m only		

Very soon the public will be confused about the variety of home picture recording and playback methods and equipment that will be available-assuming all the systems finally appear on the market. One rational element in the situation is the agreement amongst European makers AEG-Telefunken, Blaupunkt, Grundig, Loewe-Opta, and Philips to standardize on the Philips video cassettes for the European colour television system. The similar Sony cassettes will probably be used as a standard for NTSC-system cassettes. The accompanying tables show the present state of the systems. A table comparing technical features was published in an article discussing the Teldec disc system. \ddagger
\#Gilbert, J.C.G. "The video disc", Wireless World, August 1970, pp.377/8.

Ampex/Toshiba Instavision cartridge system which includes camera for home recording.

News of the Month

Communications
 in the 80s

Recently the press were invited to the Post Office Research Station, at Martlesham in Suffolk, to have a look at the work which is being done there on circular waveguides. Although the station is still very much in its infancy, most of the buildings being still under construction, the various groups have installed their equipment in temporary accommodation so that work can continue.

At Martlesham there is a 1 km run of circular waveguide on which initial experiments are being done. This will be supplemented by a 30 km run from Martlesham to Mendlesham where it will connect into the national microwave grid.
The waveguide is 50 mm (about 2 inches) in diameter and consists of a copper tube, wound from 40 s.w.g. enamelled copper wire, covered with a 'lossy' dielectric and encased in a steel
tube. The microwave energy is transmitted along the guide in what is called the TE_{01} mode which roughly means that the energy travels around circumference of the tube. Initial work is being carried out between 30 and 50 GHz with transmission rates of 500 M bits per second Later these figures will be raised to 90 GHz with up to a 2 G bits per second and later to 110 GHz . In terms of information carrying capacity this means about a third of a million two-way telephone calls or 200 two-way television channels or the equivalent in computer data. It was stated that if the system is employed on the British trunk routes a cost saving of one third to one quarter over normal methods per channel would result. However really this is rather a 'pie in the sky' figure because it assumes that the whole capacity of the guide is used all of the time and there are not many routes on which this could be achieved for quite a long time to come.

A technician at Martlesham making an experimental 3 m long section of 50 mm wave guide. A mandril has been wound with a coil of 40 s.w.g. enamelled copper wire. The machine is winding glass wool, which is steeped in epoxy resin with a powdered iron content, over the copper.

There are a lot of problems to be overcome before the waveguide can be employed-which will probably be towards the end of this decade. One of these is due to temperature changes causing the guide to buckle or snake, because of internal expansion and contractions, changing its characteristics.

While at Martlesham the opportunity was taken to have a quick look round the cable research department where work is going on on 60 MHz cable systems, amongst other things. One cable contains eighteen coaxial ways, or tubes, each with a 60 MHz bandwidth; such a cable will provide 97,200 telephone circuits between London and Birmingham in 1973. Exploratory measurements will be made on cables at up to 1 or 2 GHz and we saw the partly completed prototype of a gain, loss and group delay measuring set with an accuracy of a thousandth of a dB at a few tens of MHz falling to $\mathrm{a} \cdot \mathrm{dB}$ or so at 1 GHz . The instrument employs high performance coaxial changeover switches using mercury wetted relays which can switch 1 GHz signals. These switches are the result of a great deal of design development effort carried out when the group were at Dollis Hill.

Circular waveguides and coaxial cables are not in competition with one another because, when one comes to think about it, they are really complementary.

It is probable, in our estimation, that the circular waveguides will be used to carry inter-city communications and the waveguide runs will be along railway lines and motorways where maximum advantage can be taken of the long straight runs and gentle curves. At the outskirts of the cities wideband coaxial systems will take over to distribute the data to its various destinations as it would be uneconomic to employ circular waveguides in cities. Not only would sharp bends in the waveguide be necessary, not a good thing, but how many of the destinations would be able to take full advantage of the bandwidth of a circular waveguide? Smaller towns and villages would also be fed by coaxial systems.

Nothing has been said about optical waveguides which are also the subject of work at Martlesham. These are a step further on and will probably not be used on the scale we are talking about here in this decade, so that's another story.

New dielectric

Mervyn Geoffrey Harwood, a research scientist at the Mullard Central Materials Laboratory, Mitcham, has developed, with the support of the Ministry of Technology, a doped form of titanium oxide that has a wide range of properties depending on subsequent treatment. For example, one process produces a semiconductor material with a high temperature coefficient and a permittivity of about one million; another forms a dielectric with a permittivity of about 100 but
having much lower losses and greater stability than other materials with a comparable permittivity; and careful treatment of the material can give it any resistivity value in the range 10^{-5} to $10^{12} \Omega \mathrm{~cm}$.
The new material can be used to make capacitors that are more stable, have lower losses and, consequently, a longer life than present capacitors containing a titanium oxide dielectric. The improved stability will enable this type of capacitor to be produced with closer tolerances. Furthermore, it could be deposited on silicon chips to provide integrated circuits with built-in, high-value capacitances. The material is also particularly suitable for use in the manufacture of ballast resistors.

Titanium oxide, known to capacitor manufacturers as rutile, is widely used in small capacitors because of its high permittivity. The marked anistropy of single crystals makes it difficult to achieve consistent results and manufacture capacitances with close tolerances.

Pure rutile also has the disadvantage of not being very stable. Investigations have shown that single crystals at a temperature of $150^{\circ} \mathrm{C}$ and under a direct potential gradient of $100 \mathrm{~V} / \mathrm{mm}$ in one direction (001) rapidly break down after one minute. Stability in other directions (100) and (110) 'although better is not good.
Harwood has overcome these drawbacks by introducing small amounts of niobium and other elements into the lattice of the titanium crystal. Niobium in concentrations of 150 parts per million greatly increases the stability of the material, and a concentration of 250 parts per million has the added advantage of producing a marked reduction in the a.c. losses.

Under tests, the resistivity of the new material remained constant at $10^{12} \Omega \mathrm{~cm}$ for many months while subject to a voltage stress of $1 \mathrm{kV} / \mathrm{mm}$. Capacitors made with it in a ceramic form have a corresponding increase in capacitance stability.

Skynet-2 contract

Higher powered satellites for operation in the defence satellite system Skynet are to be developed by G.E.C.-Marconi Electronics Ltd with Philco-Ford, Palo Alto, California, who built the first Skynet satellites, as the principal sub-contractors.

Continuous

semiconductor lasers

Two research organizations, S.T.L. in the U.K. and Bell Labs in America, have made simultaneous announcements of semiconductor lasers capable of continuous operation at room temperature. These devices are extremely small and are intended mainly for use with optical
waveguides in wideband transmission systems.

Both devices are double heterostructure diodes constructed from four layers of gallium arsenide alternating with gallium aluminium arsenide. The American laser has a threshold current of $2700 \mathrm{~A} / \mathrm{cm}^{2}$ and an output of 20 mW while that at S.T.L. has a threshold current of $1000 \mathrm{~A} / \mathrm{cm}^{2}$ and an output of 10 mW .

Education in c.a.d.

Redac Software Ltd is now offering three electronics design programmes suitable for initial education in computer-aided design. These programmes are for general circuit analysis (REDAP 1), d.c. analysis (REDAP 15), and non-linear transient analysis (REDAP 16) of electronic circuits.

The cost of this educational package is $£ 500$, claimed to be a fraction of the current market price of even one programme. The package consists of Algol source-code programmes, together with 20 copies of the relevant REDAC user's manual, REDAC is making this offer to assist in electronics education and to allow universities, colleges, and other educational establishments to provide their students with the opportunity to use computer-aided-design as early in their careers as possible.

Science Research Council report

The Science Research Council's report* for the year 1969-70 expresses concern at the uncertainty in the Government's budgeting policy. 'What is really needed', says professor Sir Brian Flowerschairman of S.R.C. 'is a guaranteed growth rate for incoming funds for ten years ahead.' This would enable the S.R.C. to plan ahead with more certainty. However, the chairman thought that probably a more realistic approach would be to link S.R.C's growth rate to the science based industries it was serving rather than to the gross national product.

Capital spending on S.R.C. projects is now only 5.5% of income compared with over 16% in 1965-66; a fall of $£ 2 \mathrm{M}$ from £6M.
Failure to spend money now on research would be felt, not now, but in ten years' time, said professor Flowers.

Professor Flowers thought that the last Government's decision not to participate in the design and construction of a European 300 GeV proton synchrotron should be reversed. Other projects with the veil of uncertainty hanging over them mentioned by professor Flowers are a $£ 12 \mathrm{M}$ high flux beam reactor, the $£ 5 \mathrm{M}$ Jodrell Bank radiotelescope and the U.K. 5 research satellite.

An announcement was made that

[^2]South Africa and the U.K. are going to amalgamate their astronomy research facilities in South Africa at a new observatory at Karoo, near Sutherland.

N.A.S.A. go metric

The American National Aeronautics and Space Administration have issued a directive which says that all technical scientific publications will, from November 14th, use the metric system (Systeme Internationale or S.I. units). This will probably mean that the remainder of American industry will follow suit in due course making the S.I. system truly international.

By Jupiter! What a dish

A massive 210 ft diameter parabolic aerial supported on a concrete pedestal and a tracery of steel will soon appear on the skyline at Madrid in Spain. It will be the third in America's National Aeronautics and Space Administration's deep space tracking network designed to make it possible to monitor space probes twentyfour hours a day to the outer limits of the solar system. The first 210 ft dish, and the only one of the trio in operation, was built in 1966 in Goldstone, California.

At the second site, at Tidbinbilla in Australia, the 60 ft deep foundation has been filled with concrete and the base is nearly completed. The Madrid aerial will not need such a deep foundation because there is a bed of rock below the surface.

The network will be operational by 1973 in time for the flight of the spacecraft Pioneer-F which will pass near to the planet Jupiter.

Satellite contract

The Space Systems Group of the British Aircraft Corporation has received a \$1M contract from Hughes Aircraft Company for the manufacture of subsystems for the Intelsat-4 satellites F5 to F8. BAC are at present preparing similar equipment for the F2 and 4 models.

Dated data

The range of techniques available to publicity seekers is quite varied. There are some, perhaps short of something to write about, who will go through a catalogue and write about something they think, one supposes, will hoodwink editors. No doubt this works a lot of the time. One of the worst cases we have seen recently was the announcement of a range of avalanche rectifier diodes from General Instrument. A press release from the company's publicity agents claims this is a new range. Our records show that devices electrically identical with those described in the press release were available in 1965!

London

Audio Fair Exhibitors

The Audio \& Music Fair at Olympia will be open to the public between 10 a.m. and 9 p.m. from Tuesday 20th to Saturday 24th October. The admission price is 5 s . A list of exhibitors is given below.

Details of the demonstrations and presentations were given in last month's issue. Any visitor to our stand may obtain a ticket for the day's Wireless World lecture demonstration. Each ticket will admit one person, and 350 will be available for each session. The common theme of these lecture demonstrations is. 'what is fidelity in sound reproduction?'
The lecturers will be: Jack Dinsdale (Tuesday), Peter Baxandall (Wednesday), Arthur Bailey (Thursday), John Linsley Hood (Friday), and Ted Jordan (Saturday). These designers have made, and are still making, significant contributions in the development of audio equipment in this country.
Acoustical Manufacturing Co.
AEG (GB)
Akai Electric Co.
Alba (Radio \& Television)
Armstrong Audio
Arrow Tabs
Audix B. B.
Bang \& Olufsen
BASF (UK)
B.B.C.
Bell \& Howell
Billboard Publications
Bosch
B \& W Electronics
British Radio Corporation
BSR
Decca Record Co.
Denham \& Morley
Diamond Stylus
Dynatron Radio
EMI Electronics
Farnell-Tandberg
Fed. Brit. Tape Recording
Feldon Recording Co.
Ferrograph Co.
Garrard Engineering
General Gramophone Publications
Goldring Manufacturing Co.

Acoustical Manufacturing Co.
EG (GB)
Akai Electric Co.
Alba (Radio \& Television)
Arrow Tabs
Audix B. B.
Bang \& Olufsen
BASF (UK)

Bell \& Howell
Billboard Publications

British Radio Corporation BSR
Decca Record Co.
Denham \& Moriey
ond Stylus Dynatron Radio EMI Electronics Farnell-Tandberg Fed. Brit. Tape Recording Feldon Recording Co Ferrograph Co.

General Gramophone Publications Goldring Manufacturing Co.

Goodmans Loudspeakers

Grundig (GB)
Hacker Radio
Hansom Books
Hammond. C. E., \& Co.
Haymarket Press
Heath (Gloucester)
Highgate Acoustics
Howland West
I.P.C.

ITT Consumer Products
KEF Electronics
Kellar
Leak. H. J.. \& Co.
Lee Products
Link House Publications
Markovits. I.
Metrosound Sales
Minnesota Mining \& Mfg. Co.
Mordaunt-Short
Morris, B. H.
Mullard
Multicore Solders
National Radio
National Westminster Bank
Philips Electrical
Philips Records
Power Judd \& Co.

Practical Electronics

Precision Tapes
Protecta Systems
Pye Records
Radio London
Rank Wharfedale
Reslosound
Rogers Developments
Rola Celestion
Sanyo-Marubeni (UK)
Sharp Electronics
Shuro (UK)
Shure Electronics
Silber, J. J.
Sinclair Radionics
S.M.E.

Soho Record Co.
Sonab
Sony UK Division
Sugden A. R. \& Co.
Tannoy Products
Tape Music Distributors
Transcriptors
United Dominions Trust Vernitron
Whiteley Electrical Radio Wireless World

The Elisabethan Audio Chair-sonically somewhere in between headphones and bookshelf speakers.

Satin white continental version of the DM70 speaker from Bower and Wilkins-employing moving-coil and electrostatic drivers.

Farnell-Tandberg's Sound Film System provides for those 'wanting to produce

The Design and Use of Moving-coil Loudspeaker Units

A survey of facts and current theories

by E. J. Jordan

What is the aim of a loudspeaker? "To reproduce the electrical input signal as accurately as possible"! Try again. "To reproduce the original sound as realistically as possible"! The first is an objective definition, the second is subjective and much more appropriate for the following reason. No loudspeaker is perfect and distortion of the following kinds will always occur to some degree-frequency, transient, harmonic intermodulation, and phase.

Now it is often possible for the loudspeaker engineer to trade an increase in one kind of distortion for a reduction in another. How does he determine a balance? To add to the confusion the ear is much more sensitive to some kinds of distortion than others, and sensitivity varies with the individual, so we are back to the second subjective definition. But again this has its drawbacks. Some loudspeakers can achieve a breathtaking reality but only with certain inputs and in particular environments. They have what I would call prima donna temperaments. On the other hand, many modern loudspeakers rarely allow the listener to escape from the fact that the sound is "canned" but most of the time they are more than just acceptable and rarely intolerable. (Most of the monitor loudspeakers I have heard fit this category.) These two extremes are quoted to further illustrate the problem of defining the aim of a loudspeaker and until this is done, we cannot begin to discuss the design.--"The aim of a loudspeaker is to make money"! Now we're getting there. One may regret that loudspeaker manufacturers are not altruistic missionaries, but getting things into their right perspective we can now state "The aim of a loudspeaker is to provide a standard of quality judged by the widest possible market as providing the highest degree of realism, when fed from the signal sources available, consistent with economic viability." This means that the greatest number of people get the best value for money-so there is a measure of altruism after all.
To meet the above criteria a loudspeaker must always have its distortions in balance. The more expensive a loudspeaker the lower should be the various types of distor-tion-but still in balance. A loudspeaker costing the earth and sporting a very wide bandwidth will be most unacceptable if there is not for example an appropriate reduction

Fig. 1. The loudspeaker as a two-stage energy converter.
in transient and intermodulation distortion.
How then can we design to meet criteria that are so subjective? The road to loudspeaker design starts off with precise mathematical analysis: further along we have to rely on well established theory which itself reduces speculation, and finally we have the engineers "feel" for the subjectpure artistry!

Although we may have the most advanced equipment to help us on the way, in the end we must make the final analysis with the help only of a pair of experienced ears coupled to an open mind.

Objective analysis

The loudspeaker may be regarded as a twostage energy converter. It converts electrical. energy to mechanical energy, and this to acoustical energy as depicted in Fig. 1.

The overall conversion must be effected with the maximum efficiency and minimum
distortion. (Distortion is used here in the general sense).
One prerequisite would appear to be to match the load impedance to that of the generator. In practice this can only be achieved over a restricted frequency range but is nevertheless very relevant.

Opening up the boxes in Fig. 1 we have the circuits in Figs 2(a) and (b). Circuit (a) is how the system appears from the point of view of the air load on the cone and (b) shows it as seen by the amplifier. In both cases mechanical and acoustical components are represented by electrical symbols.

Radiation impedance

For the purpose of this article the loudspeaker is assumed to be on an infinite baffle. The air load appears in Fig. 2(a) as a mechanical impedance on the cone surfaces and is represented by the radiation resistance $R_{\text {MA }}$ and the radiation mass $L_{M A}$ in series. Unlike true electrical components, however, both these components vary strangely with frequency. This is shown in Fig. 3 and full expressions for these are developed in Appendix 1. It is also shown that the sound distribution pattern changes, becoming more directional at high frequencies.

(a)

Fig. 2. The effective speaker circuit as seen (a) by the air and (b) by the amplifier.

In the case of moving-coil systems the radiation mass may be neglected since it appears in series with and is very much less than the mechanical mass of the cone $L_{M A}$.

The radiation resistance $R_{M A}$ is the component in which we actually develop the sound power $P_{M A}$. This is given by the mechanical equivalent of Ohm's law

$$
P_{M A}=v^{2} R_{M A}
$$

where v is the velocity of motion. From Appendix 1 we see that the value of $R_{M A}$ is determined by the dimensions of the cone, the frequency, and a constant due to the air. The frequency at which the knee in the curve occurs is determined by the cone diameter. Fig. 4 shows normalized curves for 12 -in., 8 -in. and 4 -in. diameter cones.

For arithmetic convenience the sloping part of the curve and the horizontal part are treated separately and have their own approximate equations. From the appendix it is seen that over the sloping part $R_{M A}$ is proportional to f^{2} and the horizontal part is independent of f.

Mechanical impedance of cone assembly

The components of the impedance are shown in Fig. 2(a) and comprise the cone mass L_{M}, the suspension compliance C_{M} and some frictional losses R_{M}. The most significant resistive component however is usually due to the voice-coil resistance R_{E} in series

Fig. 3. Mechanical impedance of the air load on a piston surface in an infinite baffle.

Fig. 4. Normalized $\boldsymbol{R}_{\text {MA }}$ curves for cones of 12,8 and 4 in. diameter.
with its inductance L_{E} and the amplifier output resistance (which is negligible). From the derivations in Appendix 2 these series electrical components appear as parallel mechanical components $R_{M E}$ and $L_{M E}$ connected via the transducing element in series with the remaining mechanical components. The lower the actual electrical resistance the higher will be the effective mechanical resistance corresponding to it.

Effect of mechanical impedance on

 radiated powerIn general the overall mechanical impedance of the cone is very much higher than that of the air load so the velocity corresponding to the current in Fig. 2(a) will be determined almost entirely by the cone. We will examine the effects of each of the cone components in turn, assuming for the moment the cone is perfectly rigid. Consider first the cone mass L_{M}. The velocity v is given by

$$
v=\frac{F}{2 \pi f L_{M}}
$$

where F is the applied force.
Therefore radiated power is

$$
P_{M A}=\frac{F^{2}}{4 \pi^{2} f^{2} L_{M}{ }^{2}} \cdot R_{M A}
$$

Over the sloping part $R_{\text {MA }} \propto f^{2}$

$$
P_{M A} \propto \frac{1}{f^{2}} \cdot f^{2}
$$

i.e. $P_{M A}$ is independent of frequency.

Over the horizontal part $R_{M A}$ is constant with frequency.

$$
P_{M A} \propto \frac{1}{f^{2}} \cdot \text { const }
$$

i.e. $P_{M A}$ falls at the rate of $12 \mathrm{~dB} /$ octave.

This is shown in Fig. 5(a) and is known as the condition of mass control. Due to directivity effects the axial pressure response may tend to remain constant or even rise but this will be accompanied by a greater rate of fall off axis.

With very high damping factors the resistance $R_{\text {ME }}$ may tend to be in control. In this case:

$$
P_{M A}=\frac{F^{2}}{R_{M E}^{2}} \cdot R_{M A}
$$

Over the sloping part of $R_{\text {MA }}$

$$
P_{M A} \propto \text { const } \cdot f^{2}
$$

i.e. $P_{M A}$ rises at $12 \mathrm{~dB} /$ octave.

Over the horizontal part of $R_{M A}$

$$
P_{M A} \propto \text { const . const }
$$

i.e. $P_{M A}$ is independent of frequency.

This is shown in Fig. 5(b) and is known as the condition of constant velocity.

By similar reasoning if the suspension stiffiness were in control.

$$
P_{M A}=f^{2} 4 \pi^{2} f^{2} C_{M}^{2} \cdot R_{M A}
$$

Over the sloping part of $R_{\text {MA }}$

$$
P_{M A} \propto f^{2} \cdot f^{2}
$$

i.e. $P_{M A}$ rises at $24 \mathrm{~dB} /$ octave.

Over the horizontal part of $R_{\text {MA }}$

$$
P_{M A} \propto f^{2} \text { const }
$$

i.e. $P_{M A}$ rises at $12 \mathrm{~dB} /$ octave.

Fig. 5. Effect of mechanical impedance on radiated power assuming a rigid piston in an infinite baffle.

This is the condition of stiffness control and is represented in Fig. 5(c). This is a situation not normally encountered.

Observations (1). From this part of the work it is seen that in order to maintain a constant radiated power over the entire audio frequency range we may:
(a) Have mass control below the knee and constant velocity above it.
(b) Utilize the natural tendency for a practical cone to reduce its effective diameter as frequency rises.
(c) Use crossover techniques to bring into operation progressively smaller loudspeaker units as frequency rises.
In order to achieve (a) the cone would have to be infinitely rigid which is impossible. Method (b) relies on the fact that the cone is not infinitely rigid, and is therefore practicable. (c) is of course practicable. So we have two practicable solutions which we will discuss in detail later.

The transducing element

This is the part of the system which actually converts the electrical energy into mechanical and comprises the magnet and the voice coil. In one sense it behaves like a transformer having a turns ratio of $B l: l$, where B is the magnetic flux density and l is the length of wire in the magnetic gap. Its other characteristic is that it inverts impedances. For example the mechanical damping resistance $R_{M E}$ is related to the electrical resistance R_{E} by

$$
R_{M E} \propto \frac{B^{2} l^{2}}{R_{E}}
$$

The full derivation is given in Appendix 2 and it will be seen that series inductors on one side of the transducer will appear as parallel capacitors on the other and vice versa. This is illustrated by the difference in the circuits Figs. 2(a) and 2(b) and can be demonstrated by two practical effects.
(1) If the electrical impedance is noted at some low frequency and the cone is then touched, reducing its motion, the electrical impedance will be seen to decrease as a result of the increase in mechanical impedance.
(2) At resonance the cone velocity reaches maximum, indicating a minimum mechanical impedance characteristic of a series $L C R$ circuit The electrical impedance however will rise to a maximum characteristic of a parallel LCR circuit.
Regarded as an impedance-matching component the transducing element at a low frequency will have an optimum value for $\boldsymbol{B l}$. This should be such as to ensure that the cone maintains the condition of mass control down to the resonance of the system i.e. where the mass reactance of the cone equals the stiffness reactance of the suspension. This implies that for infinite baffle loading the Q of this resonance is unity. Often a Q of 0.5 is preferred since this gives the truly non-oscillatory condition and therefore secures the optimum transient performance. Also the mid and treble range efficiency is doubled. There is a 3 dB loss at the lowest working frequency but this is an acceptable sacrifice. The mechanical circuit Q is given by:

$$
Q_{M}=\frac{2 \pi f L_{M}}{R_{M}}
$$

If \boldsymbol{R} is mainly due to:

$$
\begin{gathered}
\frac{B^{2} l^{2}}{10^{9} R_{E}} \\
Q_{M}=\frac{2 \pi f L_{M} R_{E}}{B^{2} l^{2}} \cdot 10^{9} \\
B l=\sqrt{\frac{2 \pi f L_{M} R_{E}}{Q_{M}} \cdot 10^{9}}
\end{gathered}
$$

Units are given in Appendix 1.
The design of the coil and magnet system should be determined by the above expression. The value chosen for $Q_{M} /$ will in fact be determined by the type of loading used but the aim will be the same, i.e. to maintain an overall system Q of between 0.5 and unity.

Observations (2). There is no advantage whatever to be had from a value of $B l$ greater than that above. Although mid- and high-frequency efficiency will be further increased this will be at the expense of the low frequency efficiency. The resulting "tilt" in the response may give a subjective impression of a better high-frequency transient response. In fact the transient performance at these frequencies is determined by quite different factors and is virtually unaffected by the value of $B l$. In the case of all vented enclosure systems either increasing or decreasing $B l$ away from its optimum value will actually worsen the 1.f. transient performance. This will be made clear in the next article.
In our Q calculations we used R_{E} to represent the electrical resistance of the voice coil and have ignored the output resistance of the amplifier which appears in series with it. The reason is that this is normally many times smaller than $\boldsymbol{R}_{\boldsymbol{E}}$. Some amplifier manufacturers make this

Fig. 6. Concentric flexure resulting in a reduction in effective cone diameter as frequency rises.
resistance variable but if this is much less than R_{E} its precise value is of no consequence. If it is not much less than R_{E} then it is a very poor amplifier.

Loudspeaker cones

The foregoing analysis is restricted to the sloping part of the $R_{\text {MA }}$ curve where it may be reasonably assumed that the cone will work as a substantially rigid piston. At higher frequencies however this is not so and the cone moves with different amplitudes and phase over different parts of its surface. It is this fact which enables a single cone loudspeaker to operate over a wide frequency range instead of falling at 12 dB / octave at above the $R_{\text {MA }}$ knee as shown for the theoretical rigid piston in Fig. S(a). Fig. 6 shows how a cone flexes concentrically at various high frequencies where the side of the cone becomes comparable to, or longer than, a wavelength. If we can assume that the incident wave is attenuated as it travels up the cone it will be seen that the effective cone diameter d reduces as frequency is raised.
Above the knee $R_{M A} \propto A \propto d^{2}$
Cone mass $\quad L_{M} \propto A \propto d^{2}$
Radiated power $P_{M A}=v^{2} R_{M A} \propto \frac{1}{d^{4}} \cdot d^{2}$
Therefore the reducing effective diameter tends to increase the radiated power as frequency rises thereby offsetting the con-dition in Fig. 5(a) and at the same time it broadens the polar response, this being a function of d (Appendix 1). It is readily possible by careful cone design to use this feature.

Another type of cone flexure is radial or bell-mode, shown in Fig. 7. This flexure can result in a very irregular frequency response

Fig. 7. Radial flexure or bell modes. and transient ringing. This is particularly prevalent in straight sided cones but much less significant in sharply curved cones and can be virtually eliminated.

Observations (3). An interesting result occurs if we apply the above simple arithmetic proportionality argument to the situation below the $R_{\text {MA }}$ knee.

Below the knee $R_{M A} \propto A^{2} \propto d^{4}$
Cone mass $\quad L_{M} \propto A \propto d^{2}$
Radiated power $P_{M A}=v^{2} R_{M A} \propto \frac{1}{d^{4}} \cdot d^{4}$
This indicates that for a given cone material and a given applied force, the radiated power at low frequencies is independent of the cone diameter. However, there are two other considerations. If we use

a smaller diameter cone we can for the same material reduce its thickness proportionally. Therefore:

$$
\text { Cone Mass } L_{M} \propto d^{3}
$$

Further we saw that to maintain the correct Q value
$B l$ (and therefore the force) $\propto \sqrt{L_{M}} \propto d^{1 \cdot 5}$

$$
\text { radiated power } P_{M A} \propto \frac{d^{1 \cdot 5}}{d^{6}} \cdot d^{4} \propto \frac{1}{\sqrt{d}}
$$

which indicates that the smaller the cone the more efficient it is at low frequencies.

The problem here is that to maintain the same radiated power one would expect that the cone displacement would increase in inverse proportion to the cone area. A few people imagining cone displacements of $2-3$ in have cried "doppler distortion".

Now doppler distortion in this context, along with the Loch Ness monster, flying saucers and the Yeti, has provided a small band of devotees with an interest in life whilst the vast majority of people have been unaware of it. I am far too open minded to say these things do not exist. I can only say that after devoting a quarter of a century to the design and development of loudspeakers I have yet to encounter any significant distortion due to doppler effect. In any case with the far more efficient loading techniques practicable with small cones displacement need not normally exceed ± 0.125 in so the problem does not arise.

The single-cone loudspeaker

In order to achieve an extended coverage of the audio frequency range the cone needs to have a flared profile of hyperbolic form with the correct rate of flare. The effective reduction of area with increasing frequency can be arranged to compensate not only for the condition in Fig. 5(a) but also for the rising inductive reactance of the voice coil. The high-frequency limit of extension is approached when the reducing effective mass of the cone becomes comparable with the mass of the voice coil. There tends to be an efficiency maximum when these two are equal. In the case of the straight-sided cone the reduction of area is too rapid with the result that the output rises until again the effective cone mass equals the voice coil mass. The output then falls. This gives the peak usually around 5000 Hz , characteristic of these cones.

Polar distribution

This is very important. A level on-axis frequency response is quite useless if the -off-axis response is falling. If the ear is to experience an adequate high-frequency performance this must be maintained off axis. Having said this however, we can add that for normal domestic applications a response that is maintained through a polar angle of about 60° is perfectly adequate. With the loudspeakers placed in their usual corner
positions it would be unusual to find oneself listening outside this angle.

In this respect I would regard as excellent any loudspeaker that maintained a level treble response to 15 kHz or beyond at an angle of 30° off axis. I would also regard this as proving to be of much greater overall significance than the axial response since it gives a far better indication of h.f. power bandwidth.

Since the upper limit of the h.f. response is set by the voice-coil mass this must be kept as low as possible, consistent with reasonable efficiency. This compromise is usually resolved by the use of a.very large magnet having a deep gap in which is immersed a short coil.
The cone diameter should be chosen so that the knee of the $R_{\text {ma }}$ curve coincides with the effective area reduction.

The cone material poses some interesting problems. In general it needs to have a high stiffness-to-weight ratio and ideally a fairly high degree of internal friction. However, there is considerable likelihood that the normal mass, stiffness and internal friction properties of a material are vastly different when seen by a wave travelling in the material. Not only may these properties vary in a complex manner with frequency but also with amplitude. These problems started to interest me with the development of the titanium cone which provides much higher subjective definition than a corresponding aluminium cone. At the time of writing my article for the November 1966 issue of Wireless World I was unable to find an adequate explanation for this in terms of the normally measured parameters.
The likely explanation, which has since emerged, is that after the incidence of any waveform the cone material must restore immediately to its original static position. The very soft material from which the aluminium cone was made had almost no elasticity so the cone was not fully restoring. This is a hysteresis effect and is particularly significant in materials where the internal friction is high compared with the material stiffiness. Most mechanical damping materials exhibit a high degree of hysteresis.

Hysteretic distortion is a particularly insidious form of distortion upsetting frequency and transient response, and producing harmonic and intermodulation distortion. Usually the objective measurement of any one of these does not give any significant indication of hysteretic distortion but its combined effect on all these factors can make a complete mess of the subjective performance. Very often when faced with a resonant diaphragm it is tempting to apply some "gungy" damping material. This may certainly kill the ringing to the satisfaction of objective pulse tests. However, the resulting hysteretic distortion usually makes the subjective performance very much worse. Generally speaking hysteretic distortion is lower in metals than in papers, plastics or rubbers. These comments are applicable to all electromechanical transducers.

The cone surround is in every respect as important as the cone itself, in the effects
\dagger E. J. Jordan, "Titanium Cone Loudspeaker," Wireless World, Nov. 1966.
it can have on sound quality. It has to 1. provide a highly flexible support for the cone edge;
2. provide an acoustically opaque seal to the enclosure;
3. completely absorb the incident concentric waves travelling up the cone at high frequencies; and
4. be completely non resonant.

A suitable surround material will have high density, high internal friction and be extremely soft and flexible. One of the best materials is highly plasticized p.v.c. sheeting but this is not a stable material. Various acrylic coatings on to polyurethane foam are being used with moderate success but application is difficult in production since a precise degree of impregnation is required.

There has just become available a new coating material which has precisely the right properties and is remarkably good for this application. Coated on to almost any speaker the improvement in treble smoothness is quite noticeable. The coating is very stable over very wide temperature ranges and completely waterproof. Further the quantity and method of application is not critical. A patent may be taken out on this application.

Observations (4). The single-cone highquality loudspeaker has a great deal of objective argument in favour of it. Subjectively the approach can provide a sound quality that is outstanding, clean and well defined. Such loudspeakers can sometimes sound unkind on certain inputs and they have been criticized particularly by the American market as having inadequate power bandwidth. Further, the manufacturing processes are critical and unless close attention is paid to detail large variations between units and unreliability can result. I have often had the comment made to me, "Ted, the single cone loudspeakers are so very nearly right if only . . . etc."

According by request I have produced the design of a single cone loudspeaker which whilst broadly similar to previous units embraces a number of significant improvements. The high-frequency power response has been made smoother and more extended by redesign of cone and coil. The voice coil is both lighter and more efficient.

The radiated power at very low frequencies has also been very considerably increased by the use of a new type of loading. The power bandwidth is exceptionally wide. The overall performance has been balanced to provide a high standard of quality from first class inputs and an acceptable performance from indifferent inputs. The manufacturing processes have also been simplified with, it is hoped, an increase in repeatability and reliability. This loudspeaker is being manufactured by Audio Sound Techniques, of Leicester.

Cross-over systems

The alternative approach to securing a wide power bandwidth is to use separate loudspeaker units to cover discrete parts of the frequency range. A great deal of the loudspeaker design considerations already discussed apply also to the units used in
crossover systems. It would seem to be a fundamental truism to say that it is a retrograde step to use two or more loudspeakers with their associated crossover matrices if one unit could do the job. Therefore, we must examine the areas in which this approach is justified.

The most significant advantage to be secured by crossover systems is that due to the fact that the bass unit cone can be large and massive, the low-frequency powerhandling capacity may be extremely high. This is to some extent offset by the reduced efficiency which we have seen is characteristic of large heavy cones, but in many markets, particularly in the States where very high powered amplifiers are often used, the ability of a loudspeaker to handle these power levels without damage or noticeable distortion is of paramount importance.
The design of bass driver units follows exactly the same principles that we have already discussed. Their frequency range is normally limited to frequencies well below the knee of the $R_{M A}$ curve, so that they should operate in the mass-control condition with the $B l$ factor determined as before. Since the cones are not required to flex they are constructed of either extremely thick hard paper or very often are formed solid from expanded polystyrene. This is sometimes coated with an aluminium skin to increase the rigidity but while it may do so as far as static forces are concerned it makes little difference to the rigidity as seen by oscillatory and transient forces. The adhesive used to stick the aluminium, however, may serve as a useful damping medium to the polystyrene which is highly resonant.

Mid-range units are usually more conventional cones since these are often required to straddle the knee of the $R_{M A}$ curve and therefore need to flex in the way we have deścribed.

For the high frequencies plastic-domed tweeters are popular. Again the dimensions and frequency range of these is such as to straddle the $R_{M A}$ knee, and while such tweeters may be perfectly satisfactory on the slope of the $R_{M A}$ curve they may experience difficulty with the range above the knee where flexure is required. If a cone or diaphragm is to flex, it must have the form of a transmission line where the force is applied at one end and the correct termination is applied at the other. In the case of a cone, the coil applies force in the centre and the surround provides the termination at the edge. The dome tweeter cannot meet these conditions, so any damping must be as a result of the internal friction of the material and since, in the case of plastics this is likely to be hysteretic, we may have a potentially unsatisfactory situation.

Both ionic and push-pull electrostatic tweeters are used in currently available crossover systems and these provide excellent high-frequency performances.

Crossover matrix design must be carried out experimentally. The use of formulae expressing the various values of inductance and capacitance in terms of crossover frequency and nominal impedance is unsatisfactory since the amplifier impedance is nearly zero and the impedance of movingcoil units is complex (Fig. 2b).

The use of iron and ferrite cored inductors. is undesirable. Any such core exhibits a high degree of hysteresis. The voltage developed across a ferrous cored inductor will only follow the applied voltage if this is derived from a zero impedance source. In the case of output transformers in valve amplifiers this condition can be met but with crossover systems it is not; the inductors will eventually have other impedances in series with them. The resulting hysteretic distortion can result in a complete loss of sound definition. Once again objective testing may not reveal the problem. A further point to watch is that at any significant power level a ferrous cone may be driven readily into saturation.

Observations (5).The development of a really good crossover system is not easy. In addition to the problems discussed above there is the difficulty of phase differences due to the physical spacing between units. Further, at the crossover frequency the voltage across one unit will be in phase advance the other in phase retard according to the matrix and also there is inevitably a step in the radiated power and/or polar response at the crossover frequency. These factors do not help the production of firm transient wavefronts.

I am also of the opinion that the majority of manufacturers of crossover type systems do not make full use of the potential advantages of the technique. The relative dimensions of the constituent units and the choice of crossover frequencies ought to be closely related. Instead they often appear to be chosen at random.

In spite of the many intrinsic problems good crossover systems can be designed and the problems can be overcome. A design could be provided, for example, which would provide mass controlled piston operation throughout its entire frequency range.

Conclusions

We have reached a stage in the art where the basic distortion forms can be objectively measured and dealt with. Given an engineer with some feeling for his work, loudspeakers can be produced which very adequately satisfy objective measurement and provide a very pleasant sound. One may be tempted to say that this is the end of the matter. From a purely commercial point of view it probably is and loudspeaker manufacturers may well wish to leave it at that. However, sooner or later someone is. going to rock the boat. (Me for example).
Peter Walker caused a bit of a panic in the fifties with the full-range electrostatic loudspeaker. Every loudspeaker manufacturer frantically tried to catch him. However it was soon discovered that as a commercial proposition this approach was not on for the big boys. It was also discovered that you could not hit it with 35 W of șinewave at 30 Hz -which is a disadvantage in some markets. It is outside the scope of this article to discuss the design technology of the fullrange electrostatic loudspeaker in any detail but it is very relevant at this stage to make some mention of its performance. The two particular features of the design are first that the diaphragms are driven equally all over their surfaces-thus tending to provide
piston operation throughout the entire frequency range-and secondly, the diaphragms are driven under push-pull constant charge conditions.

Objectively the frequency response is smooth but not apparently better than that of many conventional systems. Nonlinearity distortion is acceptably low throughout most of the range but below 100 Hz is higher than normally expected from better class units. As we have already indicated the power bandwidth leaves something to be desired particularly in the extreme bass. The transient response is excellent and the reproduction of square waves is superior to that of any other unit I have measured.

Subjectively the full-range e.s.l. can provide a standard of naturalness and realism not matched by dynamic systems. The high degree of definition and absence of colouration is quite outstanding. A point of particular interest is that these comments about the full range e.s.l. are pretty well universally shared which indicate that if a loudspeaker is good enough, people will agree about it.
The use of a moving-coil bass system and an electrostatic middle and top is the obvious thought to overcome the problem of bass power bandwidth but while this approach can provide a smooth pleasant performance, the definition of detail so apparent in the full-range e.s.l. is, in my experience severely reduced. It is worth noting that whilst the full-range e.s.l. uses a crossover system this is quite different from the type of matrix employed in conventional systems. The only effective reactive component is the leakage inductance of the signal transformer. Since the primary of this transformer is connected directly to the amplifier output and the transformer core is of extremely high-quality hysteretic distortion is minimized.

It seems to me now that the aim of future development, should be to achieve the definition standard set by the full-range e.s.l. coupled to the wide-power bandwidth which we have come to associate with American loudspeakers. I, personally feel that this situation is most likely to be resolved for the time being by further development of the single-cone approach coupled to improved loading techniques. I believe I can also see the next major step in loudspeaker develop-ment-but that is a story for a later date.

APPENDIX 1

Radiation impedance

Radiation impedance is given by the Bessell series.

$$
\begin{aligned}
Z_{M A}= & \rho c \pi r^{2}\left\{\left[\frac{(2 k r)^{2}}{2 \cdot 4}-\frac{(2 k r)^{4}}{2 \cdot 4^{2} \cdot 6}\right.\right. \\
& \left.+\frac{(2 k r)^{6}}{2 \cdot 4^{2} \cdot 6^{2} \cdot 8} \cdots \text { etc. }\right] \\
& +j \frac{4}{\pi}\left[\frac{2 k r}{3}-\frac{(2 k r)^{3}}{3^{2} \cdot 5}\right. \\
& \left.\left.+\frac{(2 k r)^{5}}{3^{2} \cdot 5^{2} \cdot 7} \cdots \text { etc. }\right]\right\}
\end{aligned}
$$

where

$$
k=\frac{2 \pi f}{c} \text { and } c=3.44 \times 10^{4} \mathrm{~cm} / \mathrm{sec}
$$

From this the following approximate equations can be derived. Below the knee of the curve where $k r \ll 2$
$R_{M A} \approx \frac{\rho c k^{2}}{2 \pi}\left(\pi r^{2}\right)^{2}$
$X_{M A} \approx \frac{8}{3} \rho c k r^{3} \mathrm{~g}$
where

$$
\rho=1.21 \times 10^{-3} \mathrm{~g} / \mathrm{cc}
$$

Above the "knee" of the curve where $k r \gg 2$

$$
\begin{aligned}
& R_{M A} \approx \rho c \pi r^{2} \text { mech. ohms }(\mathrm{g} / \mathrm{cm} / \mathrm{sec}) \\
& X_{M A} \approx \frac{2 \rho c r}{k} \mathrm{~g}
\end{aligned}
$$

All the foregoing expressions are for mechanical impedance $Z_{M A}$ due to the air load. If the expressions are divided by $\left(\pi r^{2}\right)^{2},\left(=A^{2}\right)$ we obtain the acoustical impedance Z_{A}

Directivity

The ratio of pressure p_{θ} at an angle θ^{\prime} degrees off axis to the pressure p_{0} at the same radial distance on axis is given by

$$
\frac{p_{\theta}}{p_{0}}=1-\frac{k r \sin \theta}{8}
$$

APPENDIX 2

Relationship between mechanical and electrical impedances.

$$
\begin{aligned}
e_{b} & =\frac{B l v}{10^{8}} \text { volts } \\
v & =\frac{\text { Force }}{Z_{M}}=\frac{B l i}{10 Z_{\mathrm{M}}} \mathrm{~cm} / \mathrm{sec} \\
\therefore e_{b} & =\frac{B^{2} l^{2} i}{10^{9} Z_{M}}
\end{aligned}
$$

Electrical impedance $Z_{E M}$ due to mechanical impedance Z_{M} is given by

$$
\begin{aligned}
Z_{E M}=\frac{e_{b}}{i} & =\frac{B^{2} l^{2}}{10^{9} Z_{M}} \\
& =\frac{1}{R_{M}+j\left(\omega L_{M}-\frac{1}{\omega C_{M}}\right)} \cdot \frac{B^{2} l^{2}}{10^{9}}
\end{aligned}
$$

From this the following relationships can be derived.

$$
\begin{aligned}
R_{E M} & =\frac{1}{R_{M}} \cdot \frac{B^{2} l^{2}}{10^{9}} \text { ohms } \\
\omega C_{E M} & =\omega L_{M} \cdot \frac{10^{9}}{B^{2} l^{2}} \text { mhos } \\
\omega L_{M} & =\omega C_{M} \cdot \frac{B^{2} l^{2}}{10^{9}} \text { ohms }
\end{aligned}
$$

Also
$Z_{M E}=\frac{1}{Z_{E}} \cdot \frac{B^{2} l^{2}}{10^{9}}$ mech. ohms $(\mathrm{g} / \mathrm{cm} / \mathrm{sec})$
$R_{M E}=\frac{1}{R_{E}} \cdot \frac{B^{2} l^{2}}{10^{9}}$ mech. ohms $(\mathrm{g} / \mathrm{cm} / \mathrm{sec})$
$\omega C_{M E}=\omega L_{E} \cdot \frac{10^{9}}{B^{2} l^{2}}$ mech. mhos (cm/dyne)
$\omega L_{M E}=\omega C_{E} \cdot \frac{B^{2} l^{2}}{10^{9}}$ mech. ohms $(\mathrm{g} / \mathrm{cm} / \mathrm{sec})$.

Tone Control Circuit

Versatile circuit with independent cut and boost controls

by P. B. Hutchinson, B.Sc.

This article describes an extremely versatile yet simple tone control circuit which combines the functions of all tone control circuits known to the author in present use, with the exception of sharp cut-off filters.

The idea of the type of tone control network described has been in the author's mind for some time, and it was publication of the design for a 'Tone balance control' by R. Ambler in the March 1970 issue of Wireless World, which made the author decide to try it.

The normal kind of tone control circuit, for example the Baxandall design, has greatest effect at the extremities of the audio spectrum (Fig.1). But often it is desirable to provide correction in mid band without the severe correction at extreme frequencies. For example, it may be desirable to increase the crispness of speech but without making the sibilants and other high-frequency sounds seem unnaturally boosted. To do this it is necessary to provide treble boost to frequencies in the range say 1 kHz to 4 kHz , and to then hold the gain constant above 4 kHz . An approximation to this can be achieved by using a control such as the one described by R. Ambler. This control is designed to supplement the normal type of 'tone control network, and to a large extent the characteristics of the two networks overlap.

Another way is to include additional tone controls such as 'middle' and 'presence', similar to 'treble and bass controls except they operate on different parts of the frequency spectrum.

What is really needed is some sort of tone control in which a level amount of treble or bass boost (or cut) can be applied above or below a certain frequency, and with this frequency and the level of boost (or cut) variable. The circuit to be described achieves this together with certain other useful facilities. Circuit design is greatly simplified by using high-gain linear i.c. amplifier.

Principle

The circuit has four potentiometers (though a simplified version can be made using only two), best named treble boost, treble cut, bass boost, and bass cut, although their functions are slightly

Fig.1. Conventional kind of tone control circuit has greatest effect at spectrum extremities.
different from normal. They each control the $3-\mathrm{dB}$ frequency of a 6 dB /octave curve, the direction of the slope being in accordance with the name of the control.

As increasing treble boost is applied, with all other controls set flat, the 6 dB /octave treble boost curve is brought progressively down the frequency spectrum as shown in Fig.2. In this way one could just boost above say 5 kHz , with theoretically 12 dB boost at 20 kHz , or above say 500 Hz with theoretically 36 dB boost at 20 kHz . The increase in boost with frequency for any given setting is overcome by bringing in a -6 dB /octave treble cut. Where the two curves act together, the result is a flat response. This flat portion will be shifted up or down relative to mid-band frequencies by an amount corresponding to the difference between the $3-\mathrm{dB}$ frequencies of the two curves.

In this way, the desired treble boost or cut characteristic can be built up by using the treble boost and cut controls together. A typical resultant curve is shown in

Fig.2. Increasing treble boost with frequency is counteracted by a cut giving a resultant curve as shown.

Fig.2. The bass controls act in the same way, but at the other end of the audio spectrum.

A particularly important use of this type of bass control is in applying bass boost to compensate for deficiencies in loudspeaker performance at low frequencies. In this case it is required to boost only the frequencies below which the loudspeaker response begins to fall off.

There are three basic sections in the circuit-a variable frequency-selective network in the forward signal path, one in a feedback loop, and an operational amplifier.

Selective networks

In the frequency-selective network shown in Fig.3, C_{1}, R_{1} and $R V_{1}$, form a simple

Fig.3. Frequency-selective network used for high- and low-frequency attenuation and, by inserting in a negative feedback loop, for high- and low-frequency accentuation-see Fig. 4.
first-order bass cut circuit with a $-6 \mathrm{~dB} /$ octave slope. The $3-\mathrm{dB}$ frequency is given by $1 / C R$, where C is the value of C_{1} and R is the value of R_{1} in series with $R V_{1}$. The highest $3-\mathrm{dB}$ frequency is therefore 1.54 kHz . and the lowest is 28 Hz . The network comprising C_{2}, R_{2}, and $R V_{2}$, forms a simple first-order treble cut circuit with a $-6 \mathrm{~dB} /$ octave slope. In this case the highest $3-\mathrm{dB}$ frequency is 22.6 kHz and the lowest is 415 Hz . The network is arranged so that the mid-band response remains constant irrespective of the potentiometer settings, which independently vary the roll-off frequencies of the treble and bass cut slopes.

The control ranges have been made deliberately large and overlapping so that extreme settings of the tone control network could be investigated, although it is realised that such extreme settings (e.g. bass boost operating below 1.5 kHz with +36 dB boost at 20 Hz) will not be needed for most applications. An advantage of having the ranges of the treble and bass controls overlapping is that the slopes can be combined in the overlapping regions to give a resultant slope of 12 dB /octave. This can be used to give a 'tonal balance' type of response with greatly sharpened corners.

Treble and bass cut characteristics are obtained by putting the network directly in series with the signal path. The boost characteristics are obtained by putting an identical network in the negative feedback loop of the operational amplifier, which simply inverts the characteristics of the network (Fig.4). By using identical frequency-selective networks for both the boost and the cut slopes it is ensured that the two sets of slopes are approximately matched. This is important to achieve good levelling off when the two slopes are combined.
According to the settings of the potentiometers, the input impedance of the frequency-selective network can vary between 470Ω in parallel with 470Ω and $25.5 \mathrm{k} \Omega$ in parallel with $25.5 \mathrm{k} \Omega$. It is therefore necessary to feed the network from a low-impedance source of less than say 200Ω. Also, the output impedance of the network can vary between 470Ω and $25.5 \mathrm{k} \Omega$ and it is therefore necessary to feed the network into a high-impedance load of greater than say $50 \mathrm{k} \Omega$.

These are therefore two conditions which have to be met by the amplifier specification. The amplifier will also need to have a gain of at least 36 dB .

The demands made on the amplifier are therefore fairly stringent and, for this reason, an integrated-circuit operational amplifier is well suited to the application. The author used an SN72709, one of the well-known 709 series. The specification is more than adequate and these amplifiers are available very cheaply. This is the only active circuitry required for the basic tone control network, although for most applications it will be necessary to add an emitter-follower driver stage to provide the low-impedance source for the network.

Complete circuit

A complete circuit diagram of the tone control network, including the emitter follower, as shown in Fig. 5.

Fig.4. Block diagram of tone control. Both networks use the circuit of Fig.3.

Fig.5. Complete tone control circuit. Component tolerance of $\pm 5 \%$ is recommended. Listening tests have shown that linear-law potentiometers gave smoothest control. Amplitude response of this circuit is shown in Fig. 6.

The operational amplifier requires supplies at $\pm 15 \mathrm{~V}$, but for a.c.-coupled audio work, the need for a negative supply can be overcome by having a supply at +30 V with the input and output of the amplifier held at +15 V . Compensation of the amplifier is straightforward, and is achieved by C_{4} and R_{11}. Pin connections for the amplifier have not been given because they depend on the type of encapsulation.

Resistors R_{10} and \boldsymbol{R}_{12} provide d.c. feedback to maintain the output of the amplifier at +15 V . Capacitor C_{5} decouples audio frequencies from this d.c. feedback loop, but R_{13} provides a limit to this decoupling so that the a.c. closed-loop gain is limited to +36 dB . This was found necessary to avoid resonances at the extreme ends of the audio spectrum under conditions of maximum boost. The resonances are caused by interaction between the boost characteristics and the d.c. feedback loop at the bass end, and the high-frequency compensation at the treble end.
Resistors R_{7} and R_{8} give an attenuation factor of two on the positive input to the amplifier to compensate for the attenuation factor of two on the negative input to the amplifier produced by \boldsymbol{R}_{9} and R_{10}.

Construction

The circuit was constructed on 0.1-matrix Veroboard using a flat package integrated circuit. The complete circuit excluding potentiometers can easily be built into. a space $7.5 \times 5 \mathrm{~cm}$. There is no evidence to show that layout is critical.

Measured performance

Measured amplitude-frequency response of the tone control circuit is shown in Fig. 6. Fig.6(a) shows the response at extreme settings for each control, and also the resultant response with all the slopes brought in to the middle of the audio range. The small peaks at the extreme ends of the audio spectrum, due to the resonances described earlier, could probably be reduced by adjustment of R_{13}. Resultant response with all the slopes taken to the extreme ends of the audio range is flat to within $\pm 0.5 \mathrm{~dB}$.
Fig.6(b) shows some typical combined

Fig.6.(a) Amplitude-frequency response of circuit in Fig. 5 showing response for each control at maximum. Middle curve is with all controls at maximum. (b) Typical tone control response curves showing two kinds of bass boost.
characteristics of the network. Note in particular the two types of boost. Both the bass boost curves shown have approximately +14 dB boost at 30 Hz , and both treble boost curves have approximately +6 dB boost at 15 kHz . Note also the "tonal bala nce" cha racteristic and the flatness in the two halves of the audip spectrum.

Subjective tests

For experimental purposes, the tone control network was connected between the tape recording output and the tape monitor input socket of an amplifier. The before/after tape monitor switch on the amplifier enabled the tone control circuit to be switched in and out so that the effects of the circuit could be compared against the direct unaltered sound.

Results were extremely encouraging and gave a feeling of building up the exact sound wanted from scratch, as it were, rather than simply just patching up the original. On a recording which contained some complex percussion work, the effect of the normal treble control was just to increase rather unnaturally the "hiss" of the cymbals. With the tone control circuit described the main body of the cymbal sound could be brought out together with the sound of a cow bell.

It is worth pointing out that any standard tonal correction curve such as the R.I.A.A. magnetic pickup characteristic can be built up using the network.

Extreme settings of the controls were indeed very severe and would not need to be used for normal use. For those who enjoy experimenting with sound, however, the extreme settings may be useful.

Setting up

At first, the idea of having to set up four tone controls instead of the usual two may seem formidable, but in practice it is very easy, and for those interested in obtaining the exact sound they want the extra trouble is more than justified by the versatility of the system.

Accurate calibration of the controls is not necessary, and a guide to setting the controls to give a particular desired effect is as follows.

A "tonal correction" curve is obtained by setting both boost and cut slope into the middle of the audio spectrum, and then shifting one or the other out until the required effect is achieved. A 6 dB /octave curve is obtained by setting both slopes to the appropriate end of the spectrum and then shifting the appropriate one in towards the middle until the required effect is achieved.

Simplified version

For certain applications some of the controls can be left out. One system in particular which might be useful would be to leave out the cut controls and to set the maximum gain of the amplifier to say +10 dB by increasing R_{13}. The tone controls would then operate as shown

Fig.7. Response of simplified version with cut controls omitted and gain adjusted to 10 dB .
schematically in Fig. 7. This gives in effect variable frequency control of treble and bass boost rather than variable slope control.

November Meetings

Tickets are required for some meetings: readers are advised, therefore, to communicate with society concerned.

LONDON

2nd. I.E.E-"A calculable standard of capacitance" by G. H. Rayner at 17.30 at Savoy PI., W.C.2.
3rd. I.E.E.-"C.R.T. displays for road traffic control-West London experience" by K. W. Huddart at 17.30 at Savoy PI., W.C.2.

4th. I.E.E./I.E.R.E.-Colloquium on "Performance monitoring techniques" at 14.30 at Savoy P]., w.C. 2 .

4th. I.E.R.E.-"Microwave generation devices" by K. Wilson at 18.00 at 9 Bedford Sq., W.C.I.
5th. I.E.E. /Inst. Meas. \& Control.-Discussion on "Dynamics and identification of biological systems" at 14.30 at the Royal Free Hospital, Grays Inn Rd, W.C. 1 .

5th. I.E.E.--"The ionosphere and radio engineering" Appleton Lecture by G. Millington at 17.30 at Savoy PL., W.C.2.

6th. R.Inst.-"The Open University" by Dr. Walter Perry at 21.00 at 21 Albemarle St., W. 1 .
9th. I.E.R.E.I.E.E.-"Semiconductor gamma camera system" by E. Moss and W. Gore at 18.00 at 9 Bedford Sq., W.C.I.

11th. I.E.E.-Discussion on "Microwave holography" at 17.30 at Savoy P1., W.C.2.
12th. I.E.R.E.-Discussion on "What management expects from electronic engineers and what the young graduate expects from management" at 18.00 at 9 Bedford Sq., W.C.I.
17th. C.E.I.-Graham Clark Lecture "Engineers in a changing world" by Sir Henry Jones at 18.00 at the Inst. of Civil Engrs, Gt. George St., S.W.I.

18th. I.E.E.-"Sonar and underwater communications" by Prof. D. G. Tucker at 17.30 at Savoy PI., W.C.2.

18th. I.E.R.E.-"The application of ultrasonic holography in non-destructive testing" by E. E. Aldridge at 18.30 at 9 Bedford Sq., W.C.1.

19th. I.E.E.-"Helicopter aerials" by W. Kelly and A. Burberry" at 17.30 at Savoy PL., W.C.2.

19th. I.E.R.E.-"High fidelity loudspeakers and their evaluation" by Dr. A. R. Bailey at 18.30 at 9 Bedford Sq., W.C. 2.

19th. R.T.S.-Discussion on "The first year of 3-channel colour broadcasting" at 19.00 at the I.T.A. 70 Brompton Rd, S.W. 3 .
23rd. I.E.R.E.-"Microwave ultrasonic devices" by R. F. Humphryes at 18.30 at 9 Bedford Sq., W.C. 1 .

25th. I.E.E-Discussion on "Digital transducers" at 17.30 at Savoy PI., W.C.2.

26th. I.E.E.-"Digital synthesisers-a case history of an equipment design using special-to-type i.cs" by D. J. Martin and A. F. Evers at 17.30 at Savoy PI., W.C.2.

26th. R.T.S.-Discussion on "PAL tolerances" at 19.00 at the I.T.A., 70 Brompton Rd, S.W. 3.

30th. I.E.E.-Discussion on "Thick film technology" at 17.30 at Savoy PI., W.C.2.

ABINGDON

11 th. I.E.E.-"The electronic performance testing of motor vehicles" by D. C. Freeman at 19.00 at the Culham Laboratories, Culham.

BIRMINGHAM

4th. R.T.S.-"The impact of automation on television transmission" by H. Steele at 19.00 at ATV Studio Centre, Bridge St., I.

BRIGHTON

25th. I.E.E.T.E.-"Electronics in crime detection" by A. T. Torlesse at 19.30 at the Royal Albion Hotel.

CAMBRIDGE

26th. I.E.R.E./I.E.E.-"New horizons in meteorological instrumentation" by Dr. H. T. Batl at 18.30 at the University Eng'g Labs, Trumpington St.

CARDIFF

26th. S.E.R.T.-"Television studio operation and maintenance" by H. Lewis at 19.30 at the Harlech Studios.

CHATHAM

26th. I.E.R.E-"Dynamic characteristics of silicon controlled rectifiers" by R. G. Dancy at 19.00 at the Medway College of Technology.

COLCHESTER

12th. I.E.E.-"Electronic aids in medicine" by J. L. Gedge at 18.30 at the University of Essex, Wivenhoe Pk.

DORKING

4th. I.E.E- "Thoughts on the future of world communications" by Prof. E. C. Cherry at 19.30 at the Martineau Hall.

25th. I.E.E.-"Continuing education for electronic engineers" by Dr. K. G. Stephens at 19.30 at the Star and Garter Hotel.

LIVERPOOL

9th. I.E.E.T.E.-Discussion on "Metrication and the engineer" at 19.30 at the Royal Institution, Colquitt St.

MANCHESTER

19th. S.E.R.T.-"Decca single standard colour receiver" by T. Bamford at 19.30 in Room 117 , U.M.I.S.T., Sack ville St.

NEWCASTLE-ON-TYNE

4th. S.E.R.T-"Electronically controlled fuel injection" by J. T. Davies at 19.15 at the Charles Trevelyan, Technical College, Maple Terrace

PLYMOUTH

11th. R.T.S.-"Colour tilting" by M. Cox at 19.30 at the Polytechnic.

READING

12th. I.E.R.E.- "Data communications" by E. B. Stuttard at 19.30 at the University, Whiteknights Pk.

TUNBRIDGE WELLS

26th. S.E.R.T.-"Sound reproduction" by D. Chave at 19.30 at the Masonic Hall, St. Johns Road.

New devices and techniques seen at Los Angeles

by Aubrey Harris*, M.I.E.E.

The 1970 WESCON (Western Electronic Show and Convention) opened at Los Angeles amidst an atmosphere of gloom. This was only partly due to the everpresent smog in the city; a more significant reason was that more than a mild recession is taking place in the electronics and associated industries. Just as the show was starting, it was announced by the Electronic Industries Association that in the firsst six months of this year the sales of colour television sets in the U.S. were 27.2 per cent lower than in the same period of last year. Black-and-white TV set sales were 10.2 per cent down, radio sales 6.9 per cent, and gramophone equipment almost 25 per cent lower. One brighter spot: sales of magnetic tape recorders were 26.7 per cent higher.

When Dr. John Granger, this year's president of the I.E.E.E., addressed the conference he gave no hopeful prognosis. Although the recession, which is now affecting all industry, may lift towards the end of 1970, the electronics industry, he said, will not start its recovery for two to three years. There seemed to be an antitechnology bias shared by all segments of society with a new emphasis on environmental considerations.

The attendance figures emphatically showed a decline: 36,700 this year compared to about 45,000 in 1969.

Despite all this, there was the usual variety of technical papers; a review of some of them follows.

The cost of semiconductor memories is being reduced and it is forecast that by 1972 they will be cheaper, in large quantities, than their equivalent magnetic core memories. Of the various types the metal-oxide-semiconductor (m.o.s.) will be the most economical. Some of the reasons for this are that the m.o.s. memory hās a high density, high yield percentage and uses low power. Offsetting these advantages somewhat is the lower speed of the m.o.s., limiting the range of application. A factor contributing to the speed limitation is the 'overlap' capacitance of the gate electrode. Photo-lithography has been tried in order to alleviate this problem but lower yields resulted. Another technique is the use of self-alignment, where the gate electrode acts as a mask for one edge of
the source and drain electrodes. The two last-mentioned are then produced by diffusion using a silicon gate as a mask, or by ion implantation with a metal gate as a mask.
L. F. Roman and A. C. Tickle (Zeion, Inc.) gave details of this technique. The process is to ionize dopant atoms and accelerate them by an electric field to velocities sufficient to permit penetration directly into the material to be doped. The implanted areas have a resistivity an order of magnitude higher than the p-diffusions in regular m.o.s. processing; the source and drain regions are kept as short as possible and connect to the normal p-diffusions.

Another advantage of ion implantation is in the production of resistors in 1.s.i. In an i.c. monolithic resistors cause problems in design; this is due to the low resistivity of the sheet material. Where a high ohmic value of resistance is required the area occupied by it is often larger than the transistors. In ion implanted m.o.s. circuits, high value resistors can take the place of the inefficient m.o.s. transistor loads. These last-mentioned are often non-linear and either they require separate bias for the gates or they absorb a substantial fraction of the supply voltage to turn them on.

Integrated circuits for consumer electronics
Solutions to some of the problem areas in integrated circuit application to consumer products have been found in the past few years, and much larger volume usage of i.cs is forecast between now and 1975. The areas where most progress will be made are considered to be in home entertainment equipment and motor vehicle control devices.

In a review of the status of i.cs in colour
television receivers Norman Doyle (Fairchild) estimated that the unit cost of digital and linear integrated circuits would be down to 60 to 80 cents (5 to 7 shillings) by 1975 . However, in the highly competitive field of consumer manufactured goods, it is not price alone which determines acceptance. Certainly the cost of the i.c. must be lower than the circuitry it is replacing but also the performance must be at least as efficient as the replaced system.

At present about 40% of colour television chassis are using at least one integrated circuit. System partitioning (separation of the receiver into logical areas for individual i.cs) has defined six or seven sub-systems: chrominance demodulator, chrominance processing, signal processing, video i.f., sound i.f., detector and output, a.f.t. and sync-video detector. It is predicted that the typical colour TV receiver in 1975 will contain six i.cs, three hybrid circuits, plus valve line output and high voltage sections.

Some details of an i.c. sub-system for video i.f. and detector were given by Gerald Lunn (Motorola). The video i.f. amplifier in a TV receiver is a wide-band high-gain a.g.c. controlled amplifier. This is followed by a high level detector, working at up to 3 volts peak-to-peak, which must operate with good linearity at up to 100% depth of modulation. Valve and transistor i.f. strips at present in use suffer from several disadvantages: tuned circuit design is critical because they are used for maximising power gain as well as bandshaping; input and output parameters vary with gain control; there are cross-modulation and inter-modulation problems due to high input levels at low gain; the simple diode envelope detector causes distortion and intermodulation at colour subcarrier frequencies.

The integrated circuit i.f. uses one i.c.

Fig.1. Block diagram of typical transistor i.f. circuitry.
having 50 dB gain with 60 dB a.g.c. range and an amplifier-detector i.c. A single selectivity filter block is used between the mixer and the i.f. amplifier, this combination effectively avoids the problems of the i.f. strips at present in use.

Comparison of Fig. 1, a discrete circuit i.f., and Fig. 2, an integrated circuit i.f., shows the simplication obtained, and Table I lists the improved operational characteristics.

The MC 1352 integrated circuit has sufficient gain to replace two stages of the discrete-component i.f. without any interstage matching. It is possible to design an input block filter having almost all selectivity required for the strip because of the high and constant input impedance of the input amplifier. The coupling between the i.f. amplifier and the i.f/ detector may be either a broadband tuned device or may add to the selectivity of the strip. Various techniques are being tried to find an economic solution for the production of the block filter, from conventional wire-wound coils with disc capacitors, coils and capacitors printed on substrates, to ceramic filters.

Probably the two separate i.cs used for the system described will eventually be built on a single chip. No solution has yet been found to the problem of obtaining a satisfactory layout of the strip combined with good mechanical construction, owing to the high i.f. gain.

It seems likely that this integrated circuit i.f. strip concept will come into common use, having as it does many advantages in predictability of response,

TABLE I

		Integrated circuit	Discrete circuit
		MC 1352	
I.F. amp	Input impedance Output impedance A.G.C. range	$\begin{aligned} & 1.4 \mathrm{k} \Omega \\ & 10 \mathrm{pF} \\ & 11 \mathrm{k} \Omega-11.4 \mathrm{k} \Omega \\ & 2.0-2.4 \mathrm{pF} \\ & 65 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 200-20 \text { ohms } \\ & 80-40 \mathrm{pF} \\ & 20 \mathrm{k} \Omega-200 \text { ohms } \\ & 3-1.3 \mathrm{pF} \\ & 60 \mathrm{~dB} \text { (two stages) } \end{aligned}$
		MC 1330	
I.F. and detector	Input impedance Output impedance Maximum linear output Bandwidth (1 dB)	$\begin{aligned} & 3.5 \mathrm{k} \Omega \\ & 4 \mathrm{pF} \\ & <200 \text { ohms } \\ & >7 \mathrm{volts} \mathrm{p}-\mathrm{p} \\ & 8 \mathrm{MHz} \end{aligned}$	80 ohms 40 pF $3 \mathrm{k} \Omega$ 4-7 volts p-p 3 MHz

tuning, colour sub-carrier distortion, intermodulation and cross-modulation characteristics and detector linearity.

Millimetre Waves

There has been increased activity in the development of devices and systems for millimetre wavelengths (30 to 300 GHz). Some of the reasons for this are that the crowding of the spectrum at lower frequencies is getting worse, greater bandwidths are required in communications channels, and there are needs for narrower beam widths.

Fig.2. Video if. using integrated circuits.

Fig.3. Arrangement for splitting the $40-110 \mathrm{GHz}$ spectrum into 120 channels by band and channel filters.

The disadvantages of millimetre wavesatmospheric transmission losses, low transmitter power, low receiver sensitivity and reliability-are gradually being overcome and considerable progress has been made in the aerial and solid-state fields. One unusual application of these short wavelengths is ground mapping from aircraft. The maps so produced have almost the resolution of optical photographs, with the added advantage of increased object discrimination. This discrimination is possible because of actual temperature differences (between buildings and open areas) and is also due to apparent temperature differences caused by the varying emissivity of, for example, calm and agitated water.

A feasibility study of a digital transmission system uising millimetre waves was described by E. T. Harkless (Bell Telephone Labs). This system is expected to have a capacity approaching a quarter of a million two-way telephone channels, using one circular, 2 -inch diameter, electric-mode waveguide. The error-rate objective is 10^{-7} over 4000 miles. A two-level pulse code, time division multiplex system will be used to phase-modulate the $40-110 \mathrm{GHz}$ signal, at a rate of 282×10^{6} bits per second. There are to be 58 two-way operating channels, each 550 MHz wide, yielding a total of 233,856 telephone channels or 2436 Picturephone (video telephone) signals. With a transmission loss of about 3 dB per mile and 100 milliwatts of transmitter power the received signal level is not expected to be worse than -53 dBm .
A significant design problem was that of splitting at the repeaters the circular waveguide port down to 120 rectangular ports each handling its own 550 MHz channel. An arrangement has been devised utilizing band splitting and channel dropping filters (Fig. 3). The band splitting filters are microwave circuits consisting of two high pass filters and two hybrid junctions; these junctions are formed of dielectric sheet, so that 50% of the power reaching it is reflected and 50% transmitted. Enlarged sections of
circular waveguide are used as resonant cavities for the channel dropping filters.

Optoelectronics

The word optoelectronics has been coined to embrace the interdisciplinary technology of optics and electronics. Included is a great range of applications: solid-state TV pickup tubes, punched card and tape readers, smoke and flame failure detectors, solid state displays and isolators, to name just a few.

Some innovations with light-emitting diodes were described by W. M. Otsuka and R. A. Hunt, Sr. (Monsanto). Lightemitting diodes (l.e.ds) have all the assets of solid state devices and have many advantages over filament and gas-filled display devices, namely, compactness, reliability, shock-resistance, low power requirements. A monolithic alpha-numeric display device measuring only 0.240 in . by 0.168 in . was described. It has mounting and interface compatibility with i.cs. It consists of seven light-emitting elements in the format of the familiar segmented display tube (Fig. 4). The light emitting areas are formed with standard planar technology by zinc diffusion into a single piece of n -type gallium arsenide phosphide. Each of the seven elements is made up of five light-emitting diodes interconnected in parallel by evaporating aluminum on the surface of the chip. The last-mentioned is attached to a lead frame pad which provides a common cathode connection. The segment anodes are bonded to frame leads to provide the segment address. The whole thing is then cast in clear epoxy.

The device can display all numerals from 0 to 9 as well as non-ambiguous letters and a decimal point. There are many applications where the display would prove useful: digital clocks/watches/ meters, pocket calculators, TV channel indicators, desk top computer readouts.

Each of the segments of the display device can be considered as a l.e.d with a

Fig.4. Monsanto GaAs light emitting diode seven-segment readout. Its size is only $0.24 \mathrm{in} \times 0.168 \mathrm{in}$.

Fig.5: Photon coupled silicon phototransistor /l.e.d.

Fig.6. Transfer characteristic of phototransistor /l.e.d.
voltage drop of 1.7 volts at 5.0 mA . This gives a brightness of $680 \mathrm{~cd} / \mathrm{m}^{2}$. The anode of each of the l.e.ds is brought out to a separate lead on the package. These can be connected to any suitable i.c. driver or to a specially designed decoder/driver.

Another application of the l.e.d. is for opto-isolators. There are many situations where electrical isolation is required between two parts of a circuit. Two conventional devices, the relay and the filament-lamp/photocell, are limited in speed of response and are not compatible with i.c. interfacing. Also, reliability is often low because of contact bounce, mechanical wear and corrosion of the relay contacts. The solid state optoisolator has superior characteristics as regards input/output isolation, transfer linearity, and speed of operation, and is easily integrated with transistor and i.c. circuits.
Typically, a GaAs l.e.d. control element is mounted in close proximity and photon-coupled to a silicon solid state detector, such as a pi.n. photodiode, phototransistor, photo-s.c.r. or photof.e.t. Photon coupling takes place only in one direction, from l.e.d. to the detector: there can be no feedback from detector to the 1.e.d. part of the circuit (Fig. 5). Forward current through the l.e.d. produces photon output proportional to the input current. The variation of photons falling on the detector gives a corresponding output current in the detector (Fig. 6). Isolation resistance between the input and output exceeds 10^{11} ohms, voltage isolation is of the order of 2.5 kV and capacitive coupling is less than 3 pF . The output/ input current ratio is 0.2 ; rise and fall times are in the region of 2 microseconds.

New hardware at the Show

Tektronix have expanded the usefulness of their 7000 -series oscilloscopes, introduced a year ago, with the announcement of two new plug-in units. The 7000 -series
becomes an 'integrated test system' with the 7D13 Digital Multimeter and the 7D14 Digital Counter (Fig. 7). \dagger This means it is possible for the user to measure frequency, temperature, resistance, voltage and current and simultaneously watch waveform displays. The plug-in units are the same size as the other plug-ins for the 7000 -series and will operate in any of the four positions.

The readings measured by the units are displayed on an alphanumeric scale factor readout on the c.r.t. The multimeter has four ranges of direct voltage (1.999 V , $19.99 \mathrm{~V}, 199.9 \mathrm{~V}$, and 1000 V full scale) and four ranges of direct current (up to 1.999A full scale). Polarity is automatically indicated. Temperature measurements can be made from $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ in one range and resistance in five ranges (199.9 ohms lowest range to 1.999 megohms on the highest range).

A typical application for this new assembly would be monitoring the internal temperature of a piece of equipment under test while displaying the output waveform. Another use would be measurement of the change in pulse amplitude (or width) and simultaneous display of bias voltage on a transistor while adjustments are made to the bias potential.

The digital counter plug-in can measure frequency from zero to 500 MHz , without prescaling, displaying an 8 -digit readout on the c.r.t. screen. Direct counting has an advantage over prescaling, in that with the last-mentioned, if, for example, a prescale division factor of ten is used the resolution of the counted signal would also be divided by ten. The input impedance of the counter is either 50 ohms or 1 megohm and its sensitivity is 100 mV pk-to-pk; accuracy is ± 0.5 p.p.m. ± 1 count. Display time can be varied from 0.1 to 5 seconds or fixed at infinite. The unit also has an externally gated mode; by using the oscilloscope in the delaying time-

[^3]

Fig. 7. Tektronix 7504 oscilloscope with the 7D13 digital multimeter and the 7D14 digital counter as well as a vertical amplifier and timebase.
base mode, the delayed sweep can be made to drive the external gate of the counter. In this mode a signal can be displayed on the screen with the intensified portion of the waveform being counted.

When the counter unit is used in conjunction with the multimeter it is possible, for example, to display the output waveform of an oscillator, while watching the readout on the screen of frequency count vs ambient or internal temperature.

A novel measuring device shown by Burr-Brown Research Corporation was their 4128 r.m.s module. This enables true value r.m.s readings of voltage to be made irrespective of waveshape. Its integrated circuits and other components are encapsulated in a $3 \mathrm{in} . \times 2.1 \mathrm{in} . \times 0.4 \mathrm{in}$. module. The device is capable of an accuracy of 0.5 per cent of reading; with external trimming this figure can be improved to 0.1 per cent. The voltage to be measured can be at any frequency from zero up to 10 kHz -the shape of the waveform is not critical. The measurands may be s.c.r. outputs, pulse trains, noise, distorted sinewaves.

Exact details of the operation are proprietary information but the block diagram (Fig.8) shows the general principles. The output voltage $E_{0}=K\left(E_{1}\right)$ r.m.s. where $\left|E_{1}\right|<10$ volts peak. The scale factor, K, is normally either unity or ten but can also be set externally to larger values. The scale factor and the crest factor are directly related. When there is a large crest factor, K should also be large for highest accuracy. The filter time constant $R C / 2$ must have a value of at least 100 times the period of the lowest input frequency, if the device is to average the squared input, accurately. Brief specification: peak input voltage $\pm 10 \mathrm{~V}$, input impedance $5 \mathrm{k} \Omega$, output $\pm 10 \mathrm{~V} \pm 5 \mathrm{~mA}$, power requirements $\pm 14 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$ at 30 mA .

General Radio Company showed the Type 1656 impedance bridge, an improved version of the 1650 . The 1656 has a basic accuracy of 0.1 per cent when measuring capacitance, inductance, resistance or
conductance with resolution down to $0.1 \mathrm{pF}, 0.1 \mu \mathrm{H}, 0.1$ milliohm and 0.1 nanohm, respectively. The familiary CGRL dial has been replaced by four lever-type digital switches (Fig.9). This type of adjustment reduces reading error as well as allowing rapid determination of balance.

Until recently, a digital filter necessitated a sizeable computer, special programming and input/output devices. Two companies showed digital filters in rack/bench cases no more than 7 inches high. The filters are in fact special purpose computers programmed to accept analogue signals and to digitize them with an a-d converter. The quantized signals are operated on in the computer and converted back to analogue signals. M.o.s. shift registers and t.t.l. logic are used for the filtering circuitry.

Fig.9. General Radio 1656 impedance bridge showing the digital CGRL controls.

The Rockland Corporation's 4100 has recursive (poles and zeros) and nonrecursive (zeros) characteristics, where the ECI 999 operates non-recursive only. This latter type provides with extreme accurancy phase/frequency characteristics which are some 100 times better than are available with analogue filters. Recursive digital filters can produce very sharp frequency cut-off almost to the theoretical "brick wall" function.

Fig.8. Block diagram of Burr-Brown r.m.s. meter module.

H.F. Predictions-

November

Predicted solar activity for November is the same as that observed 12 months ago. The relatively large number of disturbed days observed recently should decrease. High daytime MUFs continue on transequatorial routes and are becoming apparent on northern hemisphere routes so frequencies aboye 25 MHz remain of some utility.

The northern auroral zone passes through Alaska, Hudson Bay, Iceland and northern Norway. Paths crossing this zone are subject to periods of high, sometimes infinite, absorption.

All LUFs shown are for reception at good sites in the U.K. of commercial telegraphy from medium-power transmitters with directive aerials. LUFs for domestic reception of high-power broadcasts would be very similar.

Elements of Linear Microcircuits

2. Makers: Numbering codes: Obtaining information: Pitfalls

by T. D. Towers*, M.B.E.

If you are going to use linear microcircuits effectively in your designs, you should know what are available on the market, where to get them and what precautions to také in procuring them.

Supply sources for linear microcircuits Linear i.cs come on to the U.K. market from all over the world; the main manufacturing sources are: U.S.A., U.K., Western Europe, and Far East (Japan, Hong Kong, Korea and Taiwan).
U.K. products can be obtained direct from the manufacturers or from electronics distributors. Microcircuits of overseas manufacture reach the British user mostly through subsidiaries of the prime manufacturers, although more and more agents and distributors are handling imported linear devices direct from the overseas sources.

To help you in your search, I give in Table 1 a list of the major U.K. manufacturers of off-the-shelf linear microcircuits.

To complete the picture, Table 2 sets out the major overseas manufacturers (apart from those already appearing in the U.K. list).

It is impracticable to give details of the many distributors handling linear microcircuits, but most good distributors now hold stocks of what are rapidly becoming standard items. The sort of thing you will find is reflected in the catalogue of one U.K. national distributor currently offering a standard μ A 709 op. amp., a μ A 710 d.c. comparator, a $\mu \mathrm{A} 711$ dual d.c. comparator, a 3-W audio power amplifier and a 2 to $13 \mathrm{~V}, 100 \mathrm{~mA}$ d.c. power supply regulator module.

Microcircuit numbering codes

If you are new to the microcircuit game; you will find yourself confused and often frustrated by the huge variety of type numbers given to commercial units. Cynics have said that the numbers put on devices by manufacturers are designed to confuse. There might be some truth in this if we are to judge by the nowlegendary ' 709 ', which you could come across under about a hundred different
type numbers. You will find it easier to make your way in the world of microcircuits if you know and can recognize the different numbering systems you will come across.

There are three main systems current in the U.K.: 'House-code', 'Pro-electron' and 'Military'.

House-code numbers

Linear microcircuit manufacturers generally use their own in-house coding systems. For their commercially available off-the-shelf units they tend to adopt a coding which is identifiable with the company. For example, Newmarket Transistors, the company with which I am associated professionally, uses the three letters NMC (standing for Newmarket Micro Circuit) followed by a three-digit numerical reference for its standard range. But, in addition, most manufacturers also use a separate 'private' in-house coding for the special microcircuits they do not make generally commercially available. You may occasionally come across such private numbers in technical articles and may find it difficult to identify the manufacturer from the code alone. Table 3 gives a list of the more common commercial house-codings which can be readily identified.

Obviously the user would like a common number for interchangeable microcircuits, whatever the source, and the Pro-electron system to be described below is a useful move in this direction.

Pro-electron numbering

Pro-electron is an international organization in Belgium with which manufacturers register their microcircuits (and incidentally many other semiconductors and valves) according to a carefully designed coding system.

So far as linear microcircuits are concerned, the standard type designation code comprises three letters followed by three numerals, e.g. TAA263. This block of six elements breaks down into three sections, T . . AA26 . . 3, and each of the three sections has a special significance.

The initial letter T is always used for
purely linear microcircuits but there is provision in the system for the initial letter ${ }^{-} \mathrm{U}$ to be used for combined lineardigital circuits. Thus the code for a linear microcircuit always starts with T or U .

The middle two letters and two numerals comprise a serial registration number. In this, the letters start from AA and will continue through BA, CA up to ZA. The two digits in the middle section run from 10 through to 99.
The last figure, i.e. the third one in the full number, gives an indication of the operative temperature range for which the circuit can be used, and has the following meaning: $0=$ no temperature range indicated, $1=0$ to $+70^{\circ} \mathrm{C}, 2=-55$ to $+125^{\circ} \mathrm{C}, 3=-10$ to $+85^{\circ} \mathrm{C}, 4=+15$ to $+55^{\circ} \mathrm{C}, 5=-25$ to $+70^{\circ} \mathrm{C}$, and $6=-40$ to $+85^{\circ} \mathrm{C}$. If a circuit specification is for a wider temperature range, but does not qualify for a higher classification, the figure indicating the narrower temperature range is used.

Although the Pro-electron coding for a linear microcircuit is normally three letters followed by three numerals, a version letter can be added to a type number to indicate a different version of the same type; for instance encapsulated in another package with other interconnections or showing minor differences in ratings or electrical characteristics.

Referring back to the TAA263 mentioned earlier as an example of the Proelectron coding. Although registered with Pro-electron initially by Philips, any other manufacturer who can produce it to meet the registered specification can use the same number 26, and it is likely that there will be more than one supplier for many of the registered Pro-electron types. At present, however, the position is that most of the Pro-electron-registered linear microcircuits are obtainable only from the manufacturer who initially registered them. As a result, some of the Pro-electron codings have become associated in the minds of users with the originating company.

Military numbering systems

In the United Kingdom, just as valves and transistors for use in government equipments were registered under CV numbers, so microcircuits have been
covered by a CN numbering system. For example, the well-known differential voltage comparator, $\mu \mathrm{A} 710$, is designated CN431T (multi-lead TO-5 version) and CN432F (flat-pack version).

A system is also being developed under which industrial microcircuits will be allotted numbers under the BS9000 scheme.

Cost of linear microcircuits

Until 1969 linear microcircuits were very expensive but in the middle of 1970 a very heavy price slide took place and we experienced a very interesting situation where quite complex microcircuits were down hard on the heels of the price of single transistors. High-quality linear microcircuits can now be purchased at one-off prices from 7 s 6 d . A welcome situation has thus been reached where the amateur and home experimenter can "try his 'prentice hand" without being unduly out-of-pocket. And all indications are that the price decline is likely to continue, as more and more supplies come on the market.

Caveat emptor

There are several pitfalls in the path of the buyer of linear microcircuits. The first snare is interchangeability. You can buy a μ A709 operational amplifier from two different manufacturers, each meeting a common data sheet specification, and find that one works well in your circuit and the other does not. This may not be because anything is wrong with either of them, but because they differ materially in parameters not specified in the data sheet. All you can do is to try samples of the different makes and design your circuitry to give equal performance with both. The fact that two 709s from different manufacturers cannot be interchanged with certainty is not surprising when you consider that there is an assembly of 15 transistors and 15 resistors diffused into a tiny chip of silicon in this device.

However closely you study the specification of a microcircuit, you will not find some characteristics that can have a more than marginal influence on its operation in circuit. This is not because the manufacturer wishes to conceal them from you. It is because they are not measured on a production basis, and are held to be secondary characteristics that do not materially affect the operation of the device in the application for which it is designed.
Remember that it is almost impossible to produce a true low-frequency transistor in the sense of the old germanium alloy transistors when you fabricate by planar techniques. Cut-off frequencies below 100 MHz are most unusual in planar types. This means that you are dealing with a compact circuit with potentialities of high gain at very high frequencies. Because of these "unspoken" specifications, you can run into enormous

Table 1

U.K. manufacturers of off-the-shelf linear microcircuits
A.B. Electronics Co., Apemworks, St. Albans Road, Watford, Herts.

Erie Electronics Ltd., South Denes, Gt. Yarmouth.
Ferranti Ltd., Gem Mill, Chadderton, Oldham, Lancs.
Marconi-Elliott-Microelectronics Ltd., Witham, Essex.
Mullard Ltd., Mullard House, Torrington Place, London W.C.I.
Newmarket Transistors Ltd., Exning Road, Newmarket, Suffolk.
Plessey Microelectronics Ltd., Cheney Manor, Swindon, Wilts.
S. G. S. (U.K.) Ltd., Planar House, Walton Street, Aylesbury, Bucks.

Texas Instruments Ltd., Manton Lane, Bedford.

Table 2
Overseas manufacturers whose off-the-shelf linear microcircuits are available in the U.K.
Amelco Semiconductors, 1300 Terra Bella Avenue, Mountain View, California, U.S.A.

Beckman Instruments Inc., Helipot Div., 2500 Harbour Blvd., Fullerton, California, U.S.A.
Fairchild Semiconductors, 313 Fairchild Drive, Mountain View, California, U.S.A. General Electric Company, Northern Concourse Building, Northern Lights, Syracuse, New York, U.S.A.
General Instrument Corp., 600 West John St., Hicksville, New York, U.S.A.
ITT Semiconductors, 3301 Electronics Way, West Palm Beach, Florida, U.S.A. Mitsubishi Electric Corp., 1 Shuga-Ike, Ojika, Itami-Shi, Hygo-Ken, Japan. Motorala Semiconductor Products, Inc., 5005 E. McDowell Rd., Phoenix, Arizona, U.S.A.

National Semiconductor Corp., 2975 San Ysidro Way, Santa Clara, California, U.S.A.

Philips Gloelampenfabrieken, Building BFP; Eindhoven, Netherlands.
RCA, Electronic Components, Somerville, New Jersey, U.S.A.
Raytheon Company, 350 Ellis Street, Mountain View, California, U.S.A.
Sanken Electric Co., 1-22-8 Nishi, Ikebukuro, Toshima-Ku, Tokyo, Japan.
Siemens Aktiengesellschaft, Balanstrasse 73; 8000 Munich 8, West Germany.
Signetics Corp., 811 East Argues Avenue, Sunnyvale, California, U.S.A.
Siliconix Inc., 1140 W. Evelyn Avenue, Sunnyvale, California, U.S.A.
Sescosem, 101 Boulevard Murat, Paris, 16e, France.
Telefunken A.G., Postfach 1042, 7100 Heilbron/Neckar, West Germany. Tokyo Shibaura Electric Co., 1 Komuka Toshiba Cho, Kawasaki, Japan.
Transitron Electronic Corp., 168-182 Albion St., Wakefield, Massachusetts, U.S.A.
Table 3
House code prefixes

CA $=$ R.C.A.	PC $=$ General Instrument	
L $=$ S.G.S.	RC	$=$ Raytheon
LH	National Semiconductors	RM $=$ Raytheon
LM $=$ National Semiconductors	S	$=$ Signetics
M	Mitsubishi	SE

difficulties with high-frequency instability in low-frequency circuits.

Another point to be wary of is the question of 'pin compatability'. What this means is . . look carefully at the lead-out pin-numbering of your microcircuit in relation to the internal circuitry to ensure that an alternative you are trying is an exact drop-in replacement.

If you buy microcircuits direct from a reputable manufacturer, you can be fairly sure they will meet specification. However, the semiconductor industry is such that units can come on the market via other
outlets which may have the proper code number marked on them but may not meet the full data sheet specification. If you use such orphans, you must have the facility for testing them against specification. Since it can be quite difficult to test a linear i.c. satisfactorily, some guidance will be given in later articles how to set about this.

If you are seriously contemplating using linear microcircuits, there is a lot to be said for getting some practical handling experience. Make up a working circuit using a linear microcircuit. The old adage about
an ounce of practice is almost truer with microcircuits than with anything else in electronics.

Further reading

Manufacturer's application notes, data sheets and catalogues:
'Linear Integrated Circuit D.A.T.A. Book', Computing and software Inc., 32 Lincoln Ave, Grange, New Jersey 07050, U.S.A.
'Microelectronics Year Book', Shaw Publishing Co., London.
'The Applications of Linear Microcircuits', Fairchild Semi-conductors.
'Linear Integrated Circuit Applications Handbook', Marconi Elliott Microelectronics.
'The Application of Linear Microcircuits', s.G.S.
'Linear Applications', Signetics.
'Linear Integrated Circuit Fundamentals', R.C.A.
I. Eimbinder, 'Linear Integrated Circuits: Theory and Applications', Wiley.
I. Eimbinder, 'Designing with Linear Microcircuits', Wiley.
A. J. McEvoy and L. McNamara, 'Practical Integrated Circuits', Butterworth.
The following articles using linear integrated circuits have appeared in Wireless World: P. J. Forrest, 'I.Cs in Communication Equipment', Jan. 67, p. 23.
A. J. McEvoy, 'Integrated Circuit Stereo Mixer and Pre-amplifiers', July 67, p. 314.
G. J. Newnham, 'FM Tuner Using Integrated Circuits', June 69, p. 250.
F. C. Evans, 'Frequency Divider with Variable Tuning', July 69, p. 324.
G. B. C. Harrap, 'Driver Amplifier for Pen Recorder', Aug. 69, p. 379.
G. J. Newnham, 'R.F. Amplifier for F.M. Tuner', Nov.69, p. 525.
J. M. A. Wade, 'I.C. Driver for Power Amplifier', Nov. 69, p. 530.
A. Basak, 'Constant Amplitude Modulator', Nov. 69, p. 530.
D. Bollen, 'A Thermistor Hygrometer', Dec. 69, p. 557.
R. Hirst, 'The Future of Linear I.Cs, Jan. 70, p. 6 .
A. E. Crump, 'Instrumentation Amplifier', Feb. 70, p. 70.
M. V. Dromgoole, 'Op. Amp. A. C. Millivoltmeter', Feb. 70, p. 75.
J. Bryant, 'Linear Integrated Circuits', Feb. 70, p. 75.
L. Nelson Jones, 'Integrated Circuit Stereo Pre-Amplifier', July 70, p. 312.
P. Williams, 'Sinusoidal Oscillator for High Temperature', July 70, p. 332.
G. B. Clayton 'Operational Amplifiers'.

1. 'Device Characteristics', Feb. 69, p. 54.
2. 'Compensation Techniques', Mar. 69, p. 130.
3. 'Applications', Apr. 69, p. 154.
4. 'Applications', May 69, p. 213.
5. 'Applications', June 69, p. 270.
6. 'Integrators and Differentiators', July 69, p. 332.
7. 'Voltage Comparators and Multivibrators', Aug. 69, p. 384.
8. 'Selection of Practical Amplifiers', Sept. 69, p. 429.
9. 'Practical Circuits', Oct. 69, p. 482.
10. 'A Triangular Square-wave Generator', Dec. 69, p. 586.

Announcements

A graduate course in electronic design is to be held at Hendon College of Technology, The Burroughs, London N.W.4, commencing 4th November and terminating in early May 1971. Fee £30.

The 1972 I.E.A. Exhibition (Instruments, Electronics and Automation) will be held at Olympia, London, from 8th-12th May. The IEA Committee has decided not to open the exhibition on Saturday.

Motorola Semiconductors announce that they have set up an advanced facility for the custom design and production of m.o.s. I.s.i. arrays at their Phoenix, U.S.A. plant.

Plessey Dynamics Group has formed an association with AOA Apparatebau Gauting $\mathbf{G m b H}$, of Germany, for the joint promotion of a selected range of both companies' aviation products.

Pye TVT Lud has signed an agreement with Telecommunications Radioelectrique et Telephoniques, of Paris, to manufacture and sell under licence the range of T.R.T. radio and television transmitting equipment in the U.K. and certain overseas countries.
K.G.M. Vidiaids of Clock Tower Road, Isleworth, Middx, have signed an agreement to market in the U.K. the range of video data processing modules manufactured by Colorado Video Incorporated, of Boulder, Colorado, U.S.A.

The entire range of magnetic pickup cartridges made by the Empire Scientific Corporation of America is now available from Rank Aldis-Audio Products, P.O. Box 70, Great West. Road, Brentford, Middx.

LST Electronic Components Lid, 7 Coptfold Road, Brentwood, Essex, have been appointed sole U.K. distributors for the International Rectifier "Semiconductor Centre" range of products.

Guest International Ltd, of Thornton Heath, Surrey, are to become U.K. representatives of Jaco Electronies Inc., of New York, specialist distributors of capacitors.

V-F Instruments Ltd, Gloucester Trading Estate, Hucclecote, Glos, GL3 4AA; have been appointed U.K. representatives for Datawest Corporation, of Scottsdale, Arizona, U.S.A. The range of products available includes high- and low-level multiplex systems and computer interfaces.

Du Pont de Nemours International S.A., of Geneva, has appointed Richard Klinger Ltd, of Sidcup, Kent, as U.K. distributors of "Teflon" fluorocarbon film.

An order from the Ministry of Defence (Army), worth over $£ 500,000$, has been received by Marconi's Radio Communications Division. This contract is for the installation of a two-way tropospheric scatter system for telephone communication with London and the British Army in Germany.

Rank Precision Industries Ltd have been awarded a contract by Sumitomo Shoji Kaisha Ltd of Japan, for the supply of their two-way field store television standards converter and synchronizer to be installed in the earth station at Warwork, New Zealand.

Two destroyers recently ordered by the Argentine Navy are to be fitted with target tracking radars manufactured by Marconi Radar Systems, of Leicester. It is the first export order received for this radar and will be fitted at a cost of over $£ 3 \mathrm{M}$.

A contráct, valued in excess of $£ 3 \mathrm{M}$, has been signed between Decca Radar Lid and the British Aircraft Corporation. Decca are to manufacture and supply the surveillance radar and command link equipment for use in the Rapier air defence missile systems provided by B.A.C. to the Government of Iran.

Cossor's secondary surveillance radar equipment has been selected for Denmark's civil air traffic control.

Cable and Wireless Ltd announce that the main contract for a $£ 2.5 \mathrm{M}$ satellite earth station to be built in Barbados has been awarded to The Marconi Company Ltd, of Chelmsford, Essex (see also p.561).

The U.K. division of the G.T. Schjeldahi Company, of Minnesota, U.S.A., has become a limited company. The division was established in 1967 to manufacture laminates and flexible printed circuits. G. T. Schjeldahl Ltd are situated at Eastern Road, Bracknell, Berks.

Martin Audiokits, the constructional units for building amplifiers and f.m. tuners, are again in production. Full servicing facilities are available from Martin Audiokits, 154 High Street, Brentford, Middx. (Tel: 01-560 1161.)

Hitachi, of Japan, have set up a U.K. Sales organization, Hitachi Sales (U.K.) Ltd, at Park House, Coronation Road, Park Royal, London N.W.10, to market their range of radio and television receivers and audio equipment.

Russona Ltd, manufacturers of special education equipment for handicapped children, have occupied new offices at "The Firs", Rother Street, Stratford-upon-Avon, Warwickshire. The company have appointed GEC/Elliou Automation Lid, of P.O. Box 110, Crows Nest, New South Wales 2065, to handle sales and servicing of the "Russaid" v.h.f. radio teaching aid throughout Australia.

The Instant Starter Engineering Co. Ltd. have bought the Instrument Division of Coutant Electronics Lid and formed a new subsidiary company Exel Electronics Lid, with offices at Trafford Road, Reading.
Two companies in the Pye of Cambridge Group have changed their name. The Telephone Manufacturing Company becomes Pye TMC Lid and Ether Ltd, Pye Ether Ltd.

Corrections

YIG Radiometer (October p.501). In Fig. 4, the range switch should have only two positions; in the high setting the switch is open-circuit, and in the low setting connects the $4.7 \mathrm{k} \Omega$ resistor in parallel with the upper $47 \mathrm{k} \Omega$ resistor. In Fig. 8, a connecting link should be shown between pin 3 of IC_{3} and the switch contract on $S_{3 c}$ which is connected to $S_{3 b}$ pole via a $4.7 \mathrm{k} \Omega$ resistor. Thus the $56 \mathrm{k} \Omega$ resistor is placed in parallel with the $1 \mathrm{M} \Omega$ feedback resistor of IC_{3} when S_{3} is switched to the cycle position.

The DSV4 digital voltmeter from International Electronics mentioned in New Products last month (p.517) was incorrectly priced at $£ 25$. The correct price is $£ 190$. The $£ 25$ quoted is the cost of an optional b.c.d. interface unit which provides four decades of binary coded decimal information, together with sign and overload indication coding.
F.M. Tuners Survey (September, p.468). The price of the Korting T500 a.m/f.m. stereo tuner was wrongly given as $£ 79$ 15s Od. The correct price is, in fact, $£ 4815 \mathrm{~s} \mathrm{Od}$.

Circuit Ideas

Auto-change for d.c. meter

An instrument was required to measure d.c. and a.c. voltages; and for the d.c. an automatic change-over from positive to negative without the use of a centre-zero meter. The circuit shown uses economy type germanium transistors, except in the case of Tr_{1} where a silicon transistor was used for better thermal stability. The $10 \mathrm{k} \Omega / \mathrm{V}$ meter polarity is changed over by switching either positive or negative of the meter to earth. The resistors R_{1} and R_{2} are a matched pair of $1 \% \mathrm{~h} . \mathrm{s} . \boldsymbol{R}_{3}(10 \mathrm{k} \Omega)$ was chosen to ensure that the linear amplifier output was not loaded to more than 0.5 mA on full swing. The amplifier Tr_{1} (2N706) was backed off from earth by D_{1} and R_{4}. The value of R_{4} was selected so that the switching point of the circuit was around zero volts input. D_{1} can be almost any silicon diode giving the same forward voltage as the base-emitter junction of Tr_{1}. For greater stability D_{1} could have been replaced by another 2N706 connected in a 'long-tail pair' configuration. Tr_{2} and $T r_{3}$ operate as a Schmitt trigger driving the
switch Tr_{4}. The relay used has a 24 V coil but by careful adjustment of the contacts and return spring, it works very reliably on $6 \mathrm{~V} . \mathrm{Tr}_{5}$ is an emitter follower driving the inverters Tr_{6} and Tr_{7} which have as collector loads $6-\mathrm{V} \quad 10-\mathrm{mA}$ lamps for positive and negative indication. The voltage swing required at the linear amplifier output to give a change in indication is approximately 2 mV and the drift caused by Tr_{1} circuitry is less than 5 mV (1% of f.s.d.) checked at periods over the meter's three months use. In this application, it was considered quite sensitive and stable enough. The a.c. circuit is the F. P. Mason-G. W. Short design (see Wireless World, Dec. '69 and March '70) which gives very good results in this application. R_{6} was adjusted to give the appropriate full-scale r.m.s. reading to correspond with the d.c. thus making the linear amplifier attenuator simpler. The -6 V is an unstabilized supply.

D. GOODMAN,

Tel Aviv,
Israel.

Digital outputs displayed on a 'scope

When working with digital circuits it is often necessary to monitor the states of several outputs simultaneously. This unit samples each of the outputs in turn and displays them on an oscilloscope. The four states of a two-bit binary counter are gated out using NAND gates. The outputs of the circuit under test (A, B, C, D) are also fed to the NAND gates. The counter is driven from a pulse generator at a rate suitable for

both the circuit under test and the oscilloscope. The oscilloscope's timebase is triggered by one of the flip flops.

The counter/gating system selects each output in turn and, provided the sweep and trigger controls of the oscilloscope are correctly adjusted, the states of the four outputs will be displayed on the c.r.t. side by side. The same technique can of course be used to monitor more than four outputs.
N. F. Wilson,

London S.E. 26 .

Low-drain battery regulator

The circuit provides good regulation with low battery drain, and is employed in two instruments to drop the battery voltage to a required lower level. $T r_{1}$ is a germanium transistor with a low $V_{\text {CEsat }}$ giving good performance with 'low' battery; and a low $V_{E B}$ drop allowing better regulation. Tr_{2} is a silicon transistor having low leakage and

high gain. C reduces any noise generated in $T r_{2}$ and the zener diode, and reduces any surge at switch-on. R_{1} provides zener current control and a degree of short-circuit protection when the battery voltage is almost completely saturated. For an input change of $10-18 \mathrm{~V}$ the circuit gave an output variation of $<0.2 \mathrm{~V}$ using an OAZ206 zener diode, and the current drain alters by less than 5 mA .

P. LACEY,

Crediton,
Devon.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Mobile radio \& amateur bands

I wish on behalf of the British Amateur Television Club to answer the letter in the September issue from Capt. R. A. Villiers of the Electronic Engineering Association concerning frequency spectrum allocation.

It is now some 20 years since Britain lead the world in making televisiontransmission facilities available to amateurs. In these years amateurs, including those specializing in television, have broken new ground at u.h.f. They have exploited what many professional engineers previously considered an unusable part of the spectrum, much as amateurs did 50 years previously at h.f.

Today, television forms an active and growing part of the amateur communications scene, offering not only a most rewarding field for private research and development, but an invaluable training ground for young engineers entering the industry.

With the advent of colour and many new techniques the amateur stands on the threshold of valuable and exciting fields of investigation. We do not know what the future will bring, but we do know that in addition to those frequencies necessary for industry, it is essential that there must always be adequate frequencies available for private experimentation and selftraining, and a reasonable access to this part of our natural environment by the individual.

1. M. Waters, G6KKD/T,

Ely,
Cambs.

The i.c. industry

Your September editorial which warns of the danger to our i.c. industry through the import of American i.cs at almost giveaway prices, and your suggestion that import controls are required, raises in my mind a number of points.

Can we afford to keep out by price American technology? Would import controls raise prices enough to cause U.K. users to seek less sophisticated devices to
incorporate in their products and wouldn't the increased cost of incorporated U.S. integrated circuits raise the cost of the product and lower its export potential?
American companies have been and still are setting up distribution and manufacturing networks in the U.K. and on the Continent and a strong point provided by such an organization is the immediate availability of a spare in the user's area. Can this be matched by the U.K. industry?

Our industry must not be destroyed, so some Government help is required. Import controls are an immediate answer but perhaps a long-term one of "If you can't beat them buy them" might be the solution. If the Government would allow U.K.owned companies to keep some profit free of tax provided they used it to buy their way into U.S. companies we might stem the tide and gain benefit from the investment. Common Market or not, the Americans are already inside the stable and care not if the door is left open or closed.
R. V. Killick,

West Drayton,
Middx.

Sine-wave power oscillator

In reply to' Mr. Roddam's criticisms in the October issue of the circuit on p. 402 of the August 1970 issue, I agree that a circuit should be comprehensible, designable and as simple as possible, It was with this in mind that the circuit appeared as it did. After discussion with several colleagues, it was agreed that the circuit shown was the easiest to understand (the other two arrangements appear in the Patent Specifications).
As to designability, several different versions have been constructed and have functioned satisfactorily. Care in selection of components for the tuned circuit must be exercised if the maximum efficiency of around 90% is to be obtained, as the circulating current is considerable.
The question of whether L_{1} and L_{2} are in series or parallel is answered by the fact that both a.c. ends are virtually joined together when the transistor is conducting and the d.c. ends are joined via the low impedance path of the supply. Therefore
the inductors L_{1} and L_{2} must be in parallel to a.c. but in series to d.c.

As regards frequency, a change in value of L_{1} or L_{2} will cause the output frequency to change, therefore the frequency is determined by both.

Regarding the comment about lightness, there is very little difference in weight to a conventional oscillator, having the same output power and frequency.

In fairness it must be stated that, the circuit shown in the August issue did not include the method of connection to the 13-W fluorescent tube used. Also, the article was not intended to be used for the construction of a complete unit but to illustrate a new form of oscillator on which a fair amount of research and development work has been carried out.

The inductor L_{1} was an LA2 pot core with a core volume of $3.73 \mathrm{~cm}^{3}$ which is just about the limit for the $13-\mathrm{W}$ version. A further increase in output is possible using the LA7 with a core volume of $7.62 \mathrm{~cm}^{3}$. The inductor L_{2} was designed to keep the cut-off voltage low.

The comment about saturation is worthy of further discussion. If a transistor with its collector and emitter connected to a low impedance supply that can be adjusted over a range of zero to 1 volt, and the base is connected to the slider of a variable potentiometer, across the same supply, the collector current can be varied from zero to quite large values by varying the base current, the amount of variation being determined by the collector-emitter voltage. The voltage should be kept within the limits between zero base current and the knee in the base current characteristic.

In the oscillator, the collector-emitter voltage varies fractionally during the conduction period due to the current through the transistor and increases as the base current increases, the current gain being that of the type of transistor used.
H. L. Armer,

Feltham,
Middx.

Intolerable tolerance code

May I through the courtesy of your columns register a protest at the new ludicrous resistor code for tolerance. Had you asked a nine-year-old school boy to invent a code he would have had the intelligence to have avoided K and M at all costs (not really difficult as there are 26 letters in the alphabet.) Thus $6.8 \mathrm{k} \Omega$ 10% becomes 6 k 8 K and $4.7 \mathrm{M} \Omega 20 \%$ 4M7M!! Who is responsible for this travesty of commonsense?

I hope someone will enlighten me as to who the geniuses (or is it genii?) are! In the meantime am I a lone voice? I would have thought there must be a few other indignant electronics engineers besides myself.
A. Sproxton,

Home Radio Ltd., Mitcham,
Surrey.

Electronic Building Bricks

6. Storing information

by James Franklin

The most familiar information stores are, of course, documents-books, films, punched cards, gramophone records-in which patterns are permanently impressed on some physical medium. Some storage media can be used over and over again-the blackboard, magnetic tape. With each medium the information is' stored in a characteristic form or "code".

In electronics although permanent stores are sometimes used the biggest requirement is for temporary storage of information-perhaps for only fractions of a second. In a radio receiver, for example, a storage function analogous to persistence of vision is used to extract the sound signal from the radio signal. In a computer, an electrical codification of a number is temporarily held in a "register" while, say, another number is added to it. How we use electrons for storage depends on the manner in which the information is already represented electrically. One method has been shown in Part 2, Fig.3(a). A variable, such as air pressure, may be represented by a quantity of material held in a container. This material could be a quantity of electrons, and there are in fact devices which will store electrons. "The idea is further illustrated by the analogue Fig.1, in which quantity is measured in volume units.

Now if the outllow valve were closed the container would simply fill up and overflow, and thereafter cease to function as a store. This situation, for a constant

Fig. 1. Analogue of a device which stores information by holding electrical charge (quantity of electrons).

Fig. 2. Graphs of quantity stored for Fig.1: (a) with constant inflow; (b) with varying inflow, continuous and pulsating.
inflow rate (i.e. constant electric current), is illustrated by graph (1) in Fig.2(a). If, however, the stored contents were allowed to pass out through the outflow valve at a constant rate the overflow would be avoided. If the outflow rate were exactly equal to the inflow rate the quantity stored would remain constant, as shown by graph (2) in Fig.2(a). If the inflow rate varied with time the quantity stored would vary with time as shown by graph (3) in Fig.2(b). Thus we see the principle of a store in which the quantity of electrons held (charge) is proportional to the electron inflow rate (current).

In some electronic systems the charge inflow is not continuous but in pulses. Here the store works in a similar fashion -the contents being allowed to leak away between inflow pulses-and the resulting graph of quantity stored has a stepped shape as shown by (4) in Fig.2(b).

Fig. 3 is a functional block representing a store of this general type. The electrical charge stored is continuously indicated by the value of an electrical variable.

What about information that is encoded as numbers, events, letters, symbols, pictures-in short patterns in space or time? The principle of storage here is to use electrical states. What do we mean by this? In a car's mileage counter, for each digit there is a numbered wheel which can take up any one of ten mechanical states, indicated in a window by the numerals 0 , $1,2, \ldots . .9$. An electronic version of this would be a row of ten electronic switches \dagger labelled " 0 " to " 9 ": one of them is "on"-equivalent to a numeral appearing in the window-and the rest are "off". This principle can be used for an electronic counter (Part 2)-and in a sense such a counter can be regarded as a store in which the information held is a total of events counted.
The "on" and "off" states of an electronic switch, however, provide a very flexible system of storing information which can handle much more than just decimal numbers. All that is necessary, for any type of information, is to adopt or invent a suitable code. Two examples are shown in Fig.4. The Morse code can be further encoded into: dash = "on", dot = "off" and at (a) we see how this can be utilized to make a row of electronic switches store the letter "B" or numeral " 6 ". The international telegraph code (used for teleprinters) can be handled in a similar way, and, of course, so can the binary code (since it represents numbers by two symbols, 0^{\prime} and 1). Thus in Fig. 4(b) the row of electronic switches has an on / off pattern which can mean " J " in the telegraph code, if you are using that, or $11010(=26)$ in the binary code, if you are using that.
\dagger Switches which can be either "on" (conducting) or "off" (non-conducting) but are operated by electrical signals, not by hand.

Fig.3. Functional block for a store using electrical charge.

"J" in telegraph code

(b)

11010 in binary code $(=26)$
Fig.4. Using on /off patterns in rows of electronic switches for storing (a) Morse characters; (b) telegraph and binary code characters.

Automation in Broadcasting

New techniques revealed at the London broadcasting convention

The reason for needing automation in broadcasting is much the same as for needing it in industry. Broadcasting organisations, whether they be public service or commercial, want to increase the productivity of labour and capital investment in their manufacturing plants for sounds and images. Productivity is an output/input ratio, a measure of efficiency. In this case it means getting more output (e.g. programmes, broadcasting hours, signal complexity) from a given input (number of workers, quantity of broadcasting equipment) so that costs may be held reasonably stable. As everyone knows broadcasting is expanding, not only in terms of hardware-more transmitters, studios, equipment generally-but also in terms of the bits-per-second and complexity of the signal information put out: compare, for example, the PAL colour television signal of today with the a.m. sound signal with which broadcasting started in the 1920s. If this expansion is brought about simply by multiplying the equipment and workers using existing techniques, the cost of operation will become higher than the public service and commercial broadcasting organizations are willing to bear-not to mention us, the consumers, who pay for it all in the end. But by using new techniques-in particular automation-there is a good chance that the increased output may be obtained without an excessive rise in costs.

At least that is what the broadcasters are hoping for, to judge from many of the papers, discussions and equipment demonstrations at the recent International Broadcasting Convention in London. Here is how James Redmond, the B.B.C's director of engineering, put it in an introductory address: "We are, of course, looking for ways to cut our costs. Engineers, technicians and operators are becoming more scarce and more expensive-and sometimes more militant! We need equipment and facilities which are stable and reliable; which can be left unattended for long periods-and by that I mean a year or more - which can be aligned automatically, and which can be operated by the maker of the programme himself, whether he be a radio producer, a newsman, or even, ultimately, a television producer. In asking for these features I think you would agree that we are not asking for the moon".

It was clear from the contributions that followed that he was not asking for the moon, and that automation techniques and hardware are coming in fast. But what do we mean by automation in this context? It is a whole body of techniques, largely electronic, ranging from closed-loop servos on individual pieces of equipment, through automatic monitoring and control systems, to extensive data processing schemes using digital computers encompassing even the planning and organizational activities of broadcasting. In the following pages a few examples of these techniques are chosen from what was seen and heard at the I.B.C. starting with the individual automatic controls and ending with the comprehensive automation systems.

Colour television cameras are notorious for requiring lengthy manual alignment and colour balancing routines each day before they can be put into service in the studios. In the latest colour camera produced by Marconi, a small, light, three-tube design called the Mark VIII, these routines, and subsequent adjustments during programme time, are performed automatically by computer-like systems which are started simply by pressing buttons on the camera control unit.

Tokyo control centre of the Japan Broadcasting Corporation's computer system 'TOPICS' which organizes and operates two television and three radio networks. The display unit in the middle gives managers access to all information on programmes in the course of production.

One of the buttons initiates automatic registration and lining up of the red, green and blue pick-up tubes and their video channels. First a diascope test slide in the optical system of the camera is brought into operation by a motor-driven shutter which incorporates a mirror. The image of the test slide is reflected by the mirror into the light splitting optical system and so into the three camera tubes. A special-purpose computer then adjusts the gains of the red and blue channels so that their signals correspond with that from the green tube. Next a focus "rocking" voltage is applied to each tube, and the tube alignment currents are adjusted in sequence to produce the minimum displacement at the middle of the picture. The computer then examines the picture at a number of points, to detect any displacement of the red and the blue signals relative to the green. Adjustments are made to the width, height, rotation, skew, horizontal and vertical centring, and horizontal linearity to eliminate any discrepancies in the geometry of the three pictures.

All adjustments are made by means of small motor-driven potentiometers. Each of these units is fitted with a thumb-wheel to allow manual adjustments to be made for test purposes, or in an emergency. These motor-driven controls constitute mechanical information stores which cannot drift or be changed accidentally during operation.

Marconi say the complete sequence of automatic operations takes approximately three minutes in the worst case of misalignment, but will probably be well under a minute in normal day-to-day operation.
A further push-button initiates an automatic colour balancing sequence. The camera is pointed at a white object, occupying about 10 per cent of the picture area in roughly the middle of the picture. The iris is automatically set to give a peak green signal of 0.6 volt, and the red and blue channels are then adjusted to match
this level. This operation takes 10 seconds, and if required can be carried out during a transmission when the camera is temporarily not 'on air'.

An automatic process called dynamic centring provides a continuous check on the registration of the three tubes while the camera is in operation. The signals from the three colour channels are examined continuously for transitions in the picture waveform. The positions of these transitions are compared electronically, to ensure that they are accurately in registration on all three channels. If an error is detected, and confirmed by at least one other transition position error, at least 3 per cent of picture height away from the first, a correction is applied to the appropriate tube deflection circuit.

An automatic testing routine, replacing the normal maintenance testing procedure, is started by a further push-button. First, a pattern of white rectangles is displayed on the channel picture monitor. Each rectangle relates to either the supply voltages or video signals from a specific part of the camera channel. If any of these parameters fall outside specified limits, the appropriate area of the display will be blanked out. This automatic test routine takes a few seconds, and enables the operator to assess the state of the complete channel.

Detailed information on a technique for achieving automatic registration of colour camera tubes was given by.C. B. B. Wood of the B.B.C. Research Department. The basic principle is that a difference signal-for example the signal from the green tube subtracted from that of another tube-contains a minimum amount of detail when the picture is correctly registered. Picture detail for this purpose can be defined as the integral of the modulus of the derivative of the signal, and as such is a measure of the high-frequency content.

Fig. I (a) shows a difference signal $(A-B)$ obtained from two channels producing respectively signals A and B in a colour camera. The detail in this reaches a minimum at the point of correct registration. From this single response, however, it is not possible to determine in which direction the misregistration lies. In the B.B.C. method two separate difference signals are produced and the difference between the detail content of each is then used

Fig. 1. Principle of system for automatic registration of colour television cameras: (a) two similar responses offset from the original response by delaying signals A and B; (b) output resulting from subtraction of two offset responses in (a).

Fig.2. Basic principle of timebase corrector for video tape recorder.
to produce an output. One difference signal is derived by delaying signal B by a suitable period, τ and then subtracting it from signal A while the other is derived after delaying signal A and subtracting the undelayed signal B. The detail responses due to these two difference signals $\left(A-B_{\tau}\right)\left(A_{\tau}-B\right)$ are also shown in Fig. 1 (a). A direction-sensitive signal is then produced by subtracting one of these responses from the other, as shown in (b). It can be seen that the output is zero at the point of correct registration.

This principle is used to provide an electronic error detector. The output of the error detector is applied to two threshold detectors in the form of Schmitt triggers. One detector is set to change state when the output exceeds a predetermined positive threshold potential and the other is set to change state when the output exceeds a predetermined negative threshold potential. Thus when the error output exceeds one of the thresholds; the appropriate detector changes state and causes a correction process to start. This continues until the error output is reduced below the threshold.

Mr. Wood stated that one threshold detector could be used to cause a motorized potentiometer (as used in the Marconi camera) to turn in one direction and the other to cause it to turn in the opposite direction, and thereby adjust the shift in such a direction as to reduce the error which initiated the correction process. When there was no error information the correction potentiometer would remain at its last set position.

V.T.R. timebase correction

Another video signal source in which automatic control techniques are increasingly being used is the video tape recorder, and a process of particular importance here is the stabilization of the timebase. Professional v.t.rs have, for a number of years, relied on the use of electronically variable delay devices to remove the timing perturbations in the video output signal that arise from mechanical fluctuations in the recording and playback processes. These devices are necessary because of the need for a high degree of timing uniformity, particularly with colour, and because of the requirement that the output signal be synchronized with other video signal sources. Typical timebase correctors permit timing variations in the recorder of up to $1 \mu \mathrm{~s}$ peak-to-peak, or about $2-3 n s$ peak-to-peak for colour. By increasing the range of error correction, however, it is possible to achieve distinct operating advantages-for example, short starting-up time and quick recovery from timing disturbances such as splices-and C. Ginsburg of Ampex described a method by which the correction is increased to the period of a whole television line. This is used in the latest Ampex v.t.r., the type AVR1.

The technique utilizes switched, fixed delay lines, the delay times of which are arranged in binary order, the delay of each line being exactly twice that of the preceding one. If these are connected in cascade, utilizing any desired number of lines from the collection, then the total delay obtainable can be anything from zero (no delays in the path) to a maximum equalling the sum of all delays, going up in increments equal to the size of the smallest delay.

The Ampex corrector (Fig.2) has nine such delays, from $\frac{1}{8} u s$ to $32 \mu \mathrm{~s}$, thus giving a range from zero to $63 \frac{7}{8} \mu \mathrm{~s}$ in $\frac{1}{8} \mu \mathrm{~s}$ steps Electronic switching is provided to change the sequence of lines utilized as required. An incoming signal, after passing through this system, is therefore stabilized to within a time "spread" of $\frac{1}{8} u s$, assuming perfectly accurate delays. This residual timing error is further reduced by a continuously variable delay system similar to those utilized in existing colour timebase correctors.

Control of the switching of the fixed lines is by a system of digital logic, the function of which is to convert information about time separation between the signal and some reference sync pulses into multiple digital signals which will operate the delay-line electronic switches in the signal path. Basically, the logic system measures the time by which a sample of the leading edge of a line sync pulse leads the next following reference sync pulse, and converts this into suitable signals to control the switches. In the signal path, the video waveform is delayed by an amount that will cause a sync edge in the signal to emerge a fixed, known time after the specific reference sync pulse against which its time lead was measured. Making this fixed time equal to the sync pulse interval
results in the emerging video being synchronous with reference sync.

The tremendous proliferation of u.h.f. transmitters necessary to give adequate television coverage in the U.K. would result in extremely high costs if all these stations had to be manned. All the B.B.C's u.h.f. television transmitters have, however, been designed for unattended operation. This requires automatic monitoring and fault correction techniques. The B.B.C's approach to the requirement is that monitoring should be performed at each station rather than remotely, and that only necessary information should be sent to the nearest manned station.

Transmitter monitoring system

Fig. 3 is a simplified block diagram of an automatic quality monitoring and control system for a u.h.f. transmitter, as described by I. J. Shelley and D. J. Smart of the B.B.C. Designs Department. The general principle is to have a single monitoring equipment, consisting of a group of measuring units, switched sequentially to a number of test points. Under normal conditions the monitor input switch would be at position 1. If the monitor detects an 'urgent' fault the system automatically switches to position 2 and checks the incoming main video feed. It will then switch to position 3 , check the reserve video feed, and finally return to position 1, where it will ascertain if the fault is still present. If so, appropriate action will be taken, either by changing the input feed or by changing to the standby transmitter or both (sequentially). Also, details of the action taken and the reason for it can be sent out by a data transmission system to a manned station.

In order to allow for some inevitable signal impairment caused by the transmitter it is necessary to narrow the limits when the monitor is switched to positions 2 or 3 . Normally it is sufficient to use the 'urgent' alarm limits when monitoring the transmitter output and change to 'caution' alarm limits when monitoring the input video feeds, but the system is sufficiently flexible to enable additional limit units to be used if necessary. Faults can be reported back by two signalling methods: modulation of a 23 kHz sub-carrier radiated by the television sound transmitter; and digitally coded pulses inserted into the video waveform on one or more lines during the field blanking interval.

Putting together a day's television programmes requires hundreds of accurately timed signal switching operations on a large number of vision and sound sources-different studios, video tape recorders, film equipment and newsrooms. Doing this switching manually is becoming increasingly difficult-as the viewer can tell from the number of mistakes which appear on his screen-and it is obvious that any help from automation would be a good thing. Automatic switching, under the control of stored instructions, is in fact now possible by means of equipment which was shown by Marconi and described by R. W. Fenton of that company. This equipment, called a presentation switcher (Fig. 4), needs only to have the day's programme schedule fed into its digital store. From then on, it automatically switches up to 30 different programme sources onto transmission at the required times. The switching instructions stored in the system can be inspected at any time on an alpha-numeric c.r.t. monitor screen. If desired a change to the schedule can be entered at any time, and its effect on the schedule is immediately displayed.

Switching instructions are fed in to the store manually by a simple keyboard of push buttons. These instructions comprise the vision source to be selected, the timing of the event to the nearest second, and the type of transition, such as "cut", "mix" or "fade". In the store instructions for up to 15 consecutive future events can be held. When it is fully 'loaded' with instructions, its contents can be transferred to punched paper tape, by pressing a button. The store can then be reloaded with another series of events. Altogether 999 events-more than a full day's requirements-can be stored in this way. The alpha-numeric characters on the display screen are electronically generated, as patterns of bright points on a standard television raster.

For accurate time reference the system relies on an external timing source, such as the station clock. It this fails, it uses video field pulses as a temporary time reference-the change-over being automatic. Although the time normally displayed for each event is its real time of occurrence, the time instruction actually entered by the operator is the duration of the event. The real time is immediately computed from this and shown on the alpha-numeric

Fig. 3. Simplified block diagram of quality monitoring and control system for B.B.C. u.h.f. transmitters.

Fig. 4. Automatic programme switching system, controlled by instructions held in a store.
display. If the duration of an event is not known at the time of instruction, the real time computation for succeeding events can be withheld until it is known.

To make adjustments to previously entered instructions, a cursor line on the display is moved to the instruction to be altered, using push buttons on the keyboard. The new instruction is then entered, and appears on the display. An entire event can be erased from the stored instructions. When this is done, the air times of all succeeding events are automatically revised. Conversely, an additional event may be inserted between any two. existing ones.

Of course, programme sources such as video tape recorders and telecine machines require particular starting-up times. The system automatically makes allowance for this whenever one of these sources is selected. Up to seven different starting times, to a maximum of 59 seconds, can be provided. Each machine is turned off when its output is not in use.

In addition to automatic operation, the system allows for simple manual control. The operator can preview any vision signal or 'pre-hear' any sound signal before it is transmitted. If an emergency occurs, such as a signal failure, the equipment allows programme corrections to be made very quickly and without disrupting the rest of the programme schedule.

Computer aided broadcasting

What could be regarded as an extension of the Marconi automatic scheduling equipment is a programme control system described by N.W. Green of Thames Television. This has been developed for use in the company's recently built studio centre at Euston, London. It is an 'extension' in the sense that whereas the Marconi equipment. is centred on a digital store, the Thames Television system is centred on a complete process-control digital computer-a machine with 12 -bit word length, 8000 words of core storage and 32,000 words of disc storage. The need for such an elaborate system (Fig.5) arises basically from the complicated build-up and tightly controlled timing of a commercial company's

Fig. 5. A process-control digital computer is the heart of this Thames Television system for programme switching and timing.
programmes. The 15 programme contractors in Britain's independent television system produce a variety of programmes, some for local viewing only and some for national viewing; in addition, commercials and programme 'promotions' are locally inserted irrespective of the origination of the programmes. The timing of all this has to be extremely rigid and accurate, and is decided some weeks in advance.

The system in Fig. 5 operates in the following manner. At any time before the day of transmission, the programme schedule is typed out on a teleprinter and each item is verified by the computer and punched into paper tape. Information entered concerns the time of starting, duration, originating source, programme title and number, and whether the programme is for local or network transmission. Once the tape has been produced it is kept until the day of transmission, when it is fed into the system. The information is again verified and the appropriate 'roll' cues for telecine and v.t.r. machines are generated, i.e. a 6 -second cue for telecine machines and a 15 -second cue for v.t.r.

The status of v.t.r. and telecine machines is continually checked and when a reel of programme material is loaded onto a machine its "identity badge" is inserted into the badge reader. The system then reads the badge and searches the programme schedule for the corresponding number. Once this is located the machine number is inserted into the appropriate place on c.r.t. data displays. If the machines are not loaded 5 minutes before transmission time the corresponding line of information on the display starts to flash once every second until the machine is loaded. This flashing will start again if the machine is not put in the remote starting mode 3 minutes before 'roll' time. Any change of status in the machine will immediately be displayed to the transmission controller (a human being!) If the machines start to run and then for any reason stop, the programme automatically selects a stand-by slide.
The data displays indicate, on the top half of the screen, the next seven items to be actuated by the computer, and the bottom half can be used either to display a further 10 items following the already displayed items, or to display sections of the schedule for amendments, etc. The bottom line of the display is used for unsolicited messages from the computer regarding over-running or under-running on items, insertion of extra items creating shortage of time, or deletion of items causing a surplus of unfilled transmission time.

To cater with such problems, some programmés are identified as having fixed starting times because they are to be networked, and others--such as promotions, announcements and some local programmes-are designated as having variable start times. When there is some time to be absorbed, the computer searches between the two fixed items, looks at the variable items, and indicates to the transmission controller whether cuts could be made. Likewise, the reverse happens when there is an excess of time. The data displays show the current items "counting down" a second at a time.

What seems like the ultimate in computer control in broadcasting is the now famous 'TOPICS' system which has been
operated by the N.H.K. (Nippon Hoso Kyokai) broadcasting organization in Japan since 1968. This even embraces the audience in its information system (through audience-reaction results) and the IBM man who described it. G. J. Lissandrello, suggested that such a scheme could only be accepted and operate successfully in Japan-perhaps because of the philosophy of life that informs all developments in that country. 'TOPICS' is an acronym for Total On-line broadcasting Programme and Information Control System. installed at the N.H.K. headquarters in Tokyo, it plans and administers the entire production and scheduling operations of two television and three radio networks \dagger. It comprises several digital computers and can be regarded as a central file with two major sections, one concerned with planning and production, the other with the actual 'on the air' broadcasting operations and equipment.

Information in the 'file' includes details on what programmes are in production and what is their stage of completion; their subject matter; when they are scheduled for broadcasting; who is directing them, acting in them, building the sets and supplying the 'props' for them; when and where they will be rehearsed, when they will be recorded and on which machine; whether they are coming in on schedule or whether assistance is needed to bring them in on time; who worked for how long on them and how much he is to be paid.

The N.H.K. broadcasting workers communicate with each other through the system. A director, for example, no longer needs compile a schedule, duplicate it and distribute it. He compiles it and enters it into the central file-in fact with the help of the file, for it contains all the information he needs in the first place. Once in 'TOPICS', the schedule and the assignments for people and equipment are available to all workers. Anyone with a question goes to a computer, presses a few keys, and is immediately presented with information on a c.r.t. display. Paperwork is almost eliminated. Changes in schedules and programme are easily entered into the system. The display screen shows both 'output' and 'input', presenting what is in the system and showing input changes that are made to update it.

Control of machines

In its second major function, the system controls the immediate processes of broadcasting N.H.K's radio and television programmes. Every ten minutes this broadcastung control section receives orders from the organizational-section computer to cover the next period of broadcasting and recording activity. It expands the orders into the longer, more complex routines needed to translate them into action. Given the order to prepare a video tape recorder to receive the output of a specific studio, for example, the system finds a path through an array of switches, thereby connecting studio to recorder. The broadcasting control section then runs the recorder through a warm-up and check-out routine so that it is ready for recording when the performance is scheduled to begin. It then monitors the recording process, rewinds the tape when recording is finished, and shuts down the recorder.

After the performance, the recorded programme is registered in. TOPICS' computer files and stored to await broadcasting. At the approach of broadcasting time, the system displays a schedule that warns an operator to put the tape on a specified video tape recorder. Twenty minutes before 'air time' the control system establishes a path in the switching network, checks that the right reel of tape is on the tape recorder, and warms up and tests the machine. Ten seconds before 'air time' the system starts up the recorder, then 300 ms before 'air time', it switches the recorder into the broadcasting network and puts out the programme.

The broadcasting control system performs these functions simultaneously for the two television and three radio networks, and at the same time continues to co-ordinate the production of the other programmes in preparation.

Mr. Lissandrello concluded with the remark that TOPICS had given the N.H.K. management "an information system which enables them to improve their operation, decrease their expenses and serve the public in a much more efficient and timely way".

[^4]
Active filters

15. Simulated inductance

by F. E. J. Girling* and E. F. Good*

An active $C R$ equivalent of an inductance may

 be designed from consideration of the required external property: the current is proportional to the integral of the voltage; or from the premise that if a high $-Q$ tuned circuit has the tuning capacitor removed the network remaining must present the impedance of a high- Q inductor.Since in general the special reason for an active filter is the avoidance of inductance coils, and since also it has been shown that to obtain low sensitivity to errors in component values it is often beneficial to design an active filter to reproduce the internal workings of a passive prototype (and not merely to have the same overall response), it may be wondered why so far in this series active-filter design has not been treated as the problem of devising an active $C R$ simulated inductance, to replace on a one-for-one basis the inductance coils of a conventional passive filter. The principal reason is that in many cases the inductance to be replaced has neither end earthed, and that any straightforward active replacement needs a floating power supply or a rather complicated substitute (Ref. 1).
In a high-pass filter, however, inductances appear only in the shunt arms and can therefore have one end earthed. Thus Fig. 1 shows a $\mathrm{h}-\mathrm{p}$ structure which with suitable

Fig. 1. Structure for 5th-order Darlington $h-p$ filter.
values can give 5th-order Darlington response (the counterpart of the type of 1-p response shown in Figs. 1 of Parts 1 and 9) and which seems to call out for active realization by the simulated inductance method, since: (1) the active circuitry will have to perform the functions of only two reactances; (2) it will not in any exacting sense have to operate up to indefinitely high frequencies, since h.f. signals pass directly from input to output through the three series capacitances (which remain); (3) the
two capacitors which give the stop-band zeroes also remain. If, however, the two simulated inductances each need several amplifiers, it may turn out that the apparent simplicity and economy of the method is largely illusory. It is also worth keeping in mind that the inductances when connected into a filter form with the capacitances one or more resonant or tuned loops, which are a feature of any filter. It is unlikely, therefore, however novel the construction of the simulated inductances may seem, that the operation of the filter cannot be explained in the familiar terms established in earlier Parts, i.e. loops containing integrators, lags, and so on.
Shunt capacitance will clearly introduce a non-ideal element; but so it does in a passive $L C$ filter, and it seems reasonable to suppose that in some cases it may be advisable to adopt a design fed from a low or zero-impedance source, Fig. 2, rather

Fig. 2. Stray capacitance and conductance cause less h-f attenuation if the filter has no terminating resistance at the input end.
than an equally terminated design, even though this means losing the low sensitivity to errors given by a power-matched structure. The effect of shunt conductance on the transmission of frequencies well above cutoff will also be minimized.

The external characteristic of inductance is simply that of a two-terminal impedance which, in response to an applied sinusoidal voltage, draws a lagging quadrature current of magnitude inversely proportional to frequency. An active simulated inductance must duplicate this characteristic, and internally be some arrangement of amplifiers with feedback, with, in general, only capacitive reactance.

Integrator with voltage-to-current converter, the reactance valve

Inductance is defined by

$$
\begin{equation*}
i=\frac{1}{L} \int v d t \tag{1a}
\end{equation*}
$$

$$
\begin{equation*}
I=\frac{V}{p L} \tag{1b}
\end{equation*}
$$

So an integrator is needed, to integrate the applied voltage, and this may be followed by a voltage-to-current converter (or mutual conductance), Fig. 3(a). Since I should be the whole of the input current, the input admittance of the integrator and the output admittance of the V-to-I converter should be negligible. Practical circuits may, therefore, be designed on the lines indicated by the simplified diagrams of Figs 3(b) and (c).

When a capacitor is connected across the terminals, the V-to- I converter becomes an integrator, and the circuits are then twointegrator loops containing one integrator which is sign-inverting and one non-signinverting. One must be of the "constantcurrent" type, \dagger since its capacitor is pre-

Fig. 3. Inductance-simulating circuits using an integrator and a current source (or mutual conductance).
sented with one terminal already earthed, but the internal integrator may be of any type.

A simple version of this type of circuit is one of the two well known reactance-valve circuits (Part 1, Fig. 12) used for automatic frequency control. The V-to-I converter is a pentode valve using its natural mutual conductance, and the integrator is a passive simple lag ($R C$) working above its corner

[^5]frequency so that the phase shift approaches 90°. Similarly a transistor can present an inductive impedance, Fig. 4, the capacitance arising from charge storage in the base or from an added capacitor. But such inductances are too imprecise for serious filter use.

Fig. 4. In conjunction with a base resistance the base storage capacitance causes a lagging (i.e. inductive) component of collector current.

Circuits using voltage amplifiers

Amplifiers with voltage output (op. amps) can be used to make a simulated inductance by producing at the far end of a shunt feedback impedance a suitable voltage. The obvious choice of impedance is a resistance (Fig. 5), and to make $I=V / p L, G(p)=V_{\text {out }} / V$ must be such that

$$
\begin{equation*}
V-V_{\text {out }}=I R=V R / p L, \tag{2}
\end{equation*}
$$

i.e. $\quad V_{\text {out }}=(1-R / p L) V$,
which is of the form

$$
\begin{equation*}
V_{\text {oul }} / V=1-1 / p T \text {. } \tag{4}
\end{equation*}
$$

This calls, in effect, for two parallel paths, one aperiodic and with a gain of exactly one, the other giving integration with a negative sign-so that if V is a step, $V_{\text {out }}$ is as shown

Fig. 5. For $I=V / p L$ the voltage transfer ratio $G(p)$ must have the form $1-1 / p T$.
in Fig. 5(b) and the difference $V-V_{o u t}$ is a linear ramp as required

The aperiodic path may conveniently use unity-gain amplifiers of the nature of emitter followers or op. amps with 100% feedback and if a capacitance is placed as coupling between two of these, the integral part of the required transfer function can be added by building up a charge in the capacitance with the help of a cur rent source. This leads to a circuit as shown in outline in Fig. 6(a), and the alternative shown in Fig. 6(b). The action of each may easily be understood by supposing a step of voltage is applied to the terminals. Both are capable of good performance; but if C is not \gg than the stray capacitance from A to ground, the instantaneous voltage at the output B will be less than the input voltage, and a fraction $C_{s} /\left(C+C_{s}\right)$ of the input voltage will appear across R. This causes a resistive (or inphase) current to flow, with the effect that a conductance equal to the same fraction of

Fig. 6. Circuits for realizing Fig. 5.
$1 / R$ appears across the terminals and the simulated inductance is lossy. A gain less than one in the emitter followers has the same effect. Many other inductance-simulating circuits using op. amps can be devised, e.g. Fig. 6(c).

Low-Q circuits

When some conductance across the terminals is acceptable, a circuit such as Fig. 7 (a) may be used, giving the impedance shown in Fig. 7(b). If a capacitance is connected across the terminals an inte-grator-and-lag loop is formed (c.f. the

Fig. 7. A low-Q simulated inductance.
circuits of Fig. 3, which form two-integrator loops), and a copy of a 2 nd-order h-p filter can be made as shown in Fig. 8. It can be seen that the circuit is of a type which gives tuned-circuit response when the output is
taken from the output of the amplifier. Here the output is taken from a high-impedance point, and in a practical application a buffer such as an emitter follower may be needed.

In theory the Q factor can be made arbitrarily high by making R_{1} and R_{2} much higher than the reactance of C_{2}, and the reactance of C_{1} much higher again. In practice, however, such a move is severely limited: relatively large amplitudes would have to be developed at the output of the amplifier; and even if these can be accommodated, there is a value, $Q_{\max }$, determined by the available loop gain, which cannot be

Fig. 8. A low-Q simulated inductance-used in a 2 nd-order h-p filter.

Fig. 9. 3rd-order Butterworth h-p filter.
exceeded (Part 4). The circuit quickly runs out of steam, therefore, in higher-order filters; but Fig. 9 shows a 3rd-order filter in which a lossy "inductor" is acceptable.

Reactance valve with negative-resistance circuit

The weakness of the foregoing circuit is the inherent damping, and it is tempting to consider producing a pure inductive reactance by cancelling the positive conductance by a negative conductance of equal magnitude.

A shunt feed back impedance Z connected across an operational (or negative-gain) amplifier of gain $-A$ gives an input impedance $Z / A+1$), there being a mathematical equivalence as shown in Fig. 10. If the amplifier has positive gain K we may write

$$
\begin{equation*}
A+1=1-K \tag{5}
\end{equation*}
$$

and the diagram of equivalence may be relabelled as in Fig. 10 (b). If $K>1$ and Z is positive, $Z(1-K)$ becomes negative; and if $K=2, Z_{\text {in }}=-Z$ (Ref. 2). Thus with an amplifier of voltage gain 2 a positive resistance R is turned into a negative resistance $-R$ and the arrangement may therefore be used to cancel the damping caused by a second positive resistance R.

Fig. 10. Equivalent impedances obtained by shunt feedback.

(b)

Fig. 11. Cancellation of positive conductance by equal negative conductance.

Such a system is shown in Fig. 11(a), and the effects of using a cancellation method may be calculated with the help of Fig. 11(b), where the gain of the auxiliary amplifier is again assumed to have the general value $+K$

The auxiliary amplifier is a negative impedance converter, and its use is an application of straight positive feedback (as mentioned in Part 1) which must lead to exaggeration of any errors in certain component values. As, however, accurate cancelation depends only on having two pairs of matched resistances, the pair R_{2} and $R_{2}{ }^{\prime}$, and the pair which determine the gain of the auxiliary amplifier (Fig. 12), and as accurate and stable resistors are generally easier to come by than equally good capacitors, the method is not open to as serious practical objections as the general use of negative impedance converters, the

Fig. 12. When internal gain is high, overall gain is determined by the ratio of two resistances.
production of negative capacitance as well as negative resistance.
Errors in the cancellation leave an unwanted conductance, positive or negative, across the simulated inductance; and for accurate performance it is clearly desirable that the unwanted conductance should be small compared with the wanted conductance or damping: in other words the sensitivity to errors increases with the working value of Q factor.

The gyrator

If the internal capacitance is removed from a simulated inductance, e.g. Fig. 3(c), the ideally aperiodic circuit that is left is often considered by itself and called a gyrator. It can be described mathematically by four conductances. The input and output conductances are ideally zero; the forward and backward transconductances $\left(g_{m 1}, g_{m 2}\right)$ are non-zero, finite, and of opposite sign. Its wanted property is that an impedance Z connected across one pair of terminals gives an input impedance R^{2} / Z at the other pair. For this reason it is sometimes called a positive impedance inverter. The constant $R^{2}=-1 / g_{m 1} g_{m 2}$, which is positive, since one of the transconductances is negative.

For the schematic of Fig. 13

$$
\begin{align*}
-g_{1} V_{2} & =I_{1} \tag{6}\\
I_{2} & =g_{2} V_{1} \tag{7}
\end{align*}
$$

Hence

$$
\begin{align*}
Z_{i n}=V_{2} / I_{2} & =-I_{1} / V_{1} g_{1} g_{2} \tag{8}\\
& =1 / Z_{1} g_{1} g_{2},
\end{align*}
$$

since

$$
Z_{1}=-V_{1} / I_{1} .
$$

If then

$$
\begin{align*}
& Z_{1}=1 / p C_{1} \\
& Z_{i n}=p C_{1} / g_{1} g_{2} . \tag{9}
\end{align*}
$$

This may be equated to the impedance of an inductance, $p L$, showing that

$$
\begin{equation*}
L=C_{1} / g_{1} g_{2} \tag{10}
\end{equation*}
$$

For precision g_{1} and g_{2} will in a practical circuit be defined by passive resistances, for example the feedback resistances of current sources, so that $g_{1}=1 / R_{1}$ and $g_{2}=1 / R_{2}$. Eqn (10) then becomes

$$
\begin{equation*}
L=C_{1} R_{1} R_{2} . \tag{11}
\end{equation*}
$$

Implied in this analysis is the assumption of integrators with infinite zero-frequency gain. If leakage resistances $R_{1}{ }^{\prime}$ and $R_{2}{ }^{\prime}$ across the two pairs of terminals respectively
are allowed for, Fig. 13(b), the integrators are seen to have finite zero-frequency gains of magnitudes $R_{1}{ }^{\prime} g_{1}$ and $R_{2}{ }^{\prime} g_{2}$, i.e. $R_{1}{ }^{\prime} / R_{1}$ and $R_{2}{ }^{\prime} / R_{2}$. The Q factor of the system is therefore limited as shown in Part 7; and if $R_{1}{ }^{\prime} / R_{1}=R_{2}{ }^{\prime} / R_{2}=A, Q_{\max }=\mathrm{A} / 2$ and is obtained when $C_{1} R_{1}=C_{2} R_{2}$.

Synthesis of a floating inductance

Generally all the inductors in a 1 -p ladder and half those in a b-p ladder have neither end earthed. To produce a simulated floating inductance which does not need a floating power supply recourse is made to the leapfrog or active ladder system, Parts 12 and 18 . The modification needed is the replacing of the outer integrators by ones of constant current types so that the active part of the filter may have the same output and input impedances as the section of the passive model it replaces, as well as the same transfer function.

(a)

(b)

Fig. 13. Theoretical diagrams of a gyrator using two voltage-controlled current generators.

The method is illustrated in Fig. 14, which shows the procedure for a simple 3rd-order 1 -p filter, and where for convenience all stages are converted to the "constantcurrent" type. The result can be recognized as two intermeshing gyrators loaded by three capacitors and the two terminating resistors. The inverting stage is shared, and the identity of the two gyrators is seen more clearly in the alternative configuration shown in Fig. 15*, in which there are two separate inverter stages, one in each feedback link. This configuration was described by Holt and Taylor (Ref. 3) as an application of gyrators. A proof that it does produce a simulated floating inductance follows.

For Fig. 16

$$
\begin{align*}
V_{2} & =V_{1}+I p L \tag{12}\\
I & =I_{1}=I_{2} . \tag{13}
\end{align*}
$$

[^6]

Fig. 14. Replacing the operational amplifiers in a standard leapfrog or active ladder filter by voltage-operated current sources. The constant-current circuits which supply collector current are omitted. As they are in parallel with current sources in the signal path, they should present impedances at least as high.

Fig. 15. A method of simulating an unearthed inductance.

For Fig. 15

$$
\begin{align*}
V_{3} & =-I_{1} R \tag{14}\\
I_{3} & =-V_{1} / R \tag{15}\\
I_{4} & =V_{3} p C=-I_{1} R p C \tag{16}\\
I_{5} & =-I_{3}-I_{4} \tag{17}\\
& =V_{1} / R+I_{1} R p C \tag{18}\\
V_{2} & =I_{4} R=V_{1}+I_{1} p C R^{2} \tag{19}
\end{align*}
$$

which is of the form

$$
\begin{array}{ll}
& V_{2}=V_{1}+I_{1} p L \\
\text { and } & I_{2}=-V_{3} / R=I_{1} . \tag{21}
\end{array}
$$

Fig. 16. Two parts of a network joined by a series inductance.

These last two equations repeat eqns (12) and (13), so the proof is made.

If the $1-\mathrm{h}$ loop does not match the r-h loop, say because two resistors are in error as marked, eqn (17) gives

$$
\text { i.e. } \quad \begin{align*}
V_{2} /(1+x) R & =V_{1} / R+I_{1} p C R \tag{22}\\
V_{2} & =\left(V_{1}+I p L\right)(1+x) . \tag{23}\\
I_{2} & =I_{1} /(1+y) . \tag{24}
\end{align*}
$$

So, the impedance presented,

$$
\begin{align*}
V_{2} / I_{2} & =\left(V_{1} / I_{1}+p L\right)(1+x)(1+y) \tag{25}\\
& =\left(Z_{1}+p L\right)(1+x)(1+y) . \tag{26}
\end{align*}
$$

Thus the nature of the impedance is not affected, but scaling factors are introduced. This means, unless $(1+x)(1+y)=1$, that $R_{S}=R_{L}$ will no longer exactly represent optimum power matching; but for small errors the departure from the desired lowsensitivity condition will not be great. The effect is of course the same as for a parallel error in one of a pair of nominally equal
resistors in a standard active ladder, Part 12, Fig. 13. It should also be understood that Figs 14 and $15{ }^{\circ}$ are intended only to give a notion of practical circuits. For precision and near-ideal performance the single transistors will probably have to be replaced by compounds, perhaps of a junction f.e.t. and a bipolar transistor. Whether the property of being able to transmit signals in either direction is of practical use or no, we leave to our readers.

Derivations from the conventional twointegrator loop

Examples have been given showing that active circuits which behave as inductances are often easier to recognize when made into a resonant loop by the addition of a tuning capacitance. Conversely, the search for an active inductance may begin from consideration of an undamped resonant loop from which the tuning capacitance is removed. This self-evident proposition is shown in Fig. 17; and for a good practical circuit it is important that the one-to-one correspondence principle be observed (so that the value of the simulated inductance is directly proportional to a single capacitance in the active circuit).

The two integrator loop using operational amplifiers in the conventional virtual-earth type of connection meets the requirements in all respects (Fig. 18) save that both capacitors are floating. There is therefore no convenient way of connecting it as an active inductor into a filter network, even one using only earthed inductors. To correspond with Fig. 17, and so to be of

Fig. 17. If the tuning capacitance is removed from a tuned circuit, what is left is an inductance.

Fig. 18. The principle shown in Fig. 17 applied to the two-integrator loop.

(b)

(d)

(e)

(f)

(g)

Fig. 19. Relationship between various amplifier symbols.
practical value, the circuit must be rearranged so that the starred terminal can be earthed.

A model 3-terminal amplifier

A convenient amplifier model is required which allows choice of earthing point without changing the internal working. As in Part 6 a triode valve is suitable. It is a threeterminal amplifier, and it is to be understood that the broken-line boxes (Fig. 19) enclose self-contained amplifiers complete with power supplies and biasing arrangementsthough as these must be assumed to show negligible impedance at signal frequencies they are replaced in the diagrams by short circuits. The amplifiers are assumed to have output impedances negligible compared with any load, and to have infinite input impedance. The anode load resistance R_{L} is shown so that a complete circuit for the anode current may be seen even when there is no other load.

When terminal c is earthed $G=-A$; when a is earthed, and the input still applied between b and earth, the cathode-follower connection is obtained and $K=A /(A+1)$, Figs 19(b) and (c). X marks the usual positions for the h-t battery. But for signal currents the anode circuit is unchangedand current in the grid is assumed to be zero. Corresponding diagrams for op. amps are shown at (d), (e), (f), and (g).

Bootstrapping

Substituting the triode-valve symbol into Fig. 18 gives Fig. 20(a), and the required change is the cutting of the earth connection

(a)

Fig. 20. Derivation of a circuit in which one of the capacitors is earthed.

Fig. 21. By changing the order of the three stages of the two-integrator loop, and then applying the same re-earthing procedure, other versions of the circuit can be derived.
to terminal c of amplifier 3 and the making of an earth connection to terminal a, as indicated. Terminal c is then the live output terminal ; and as it follows the potential of terminal b, redrawing of amplifier 3 to the conventional layout of a cathode follower as at (b) and (c) may be helpful. Amplifiers 1 and 2 with their power supplies now ride on the live output terminal and to avoid this inconvenient form of bootstrapping, amplifiers 1 and 2 may be replaced by amplifiers with differential input and working from earthed power supplies. If they are modern high-performance amplifiers, the input impedance at both input terminals will be very high and the need for amplifier 3 disappears. We are thus left with a two-amplifier version of the two-integrator loop, Fig. 20(e), in which, as required, one of the two capacitors is earthed. Except for the minor difference that the positive input terminal of amplifier 2 is fed directly from the earthed capacitor instead of from the same point as the negative input terminal of amplifier 1 , it is the same circuit as Fig. 6(c).
By permuting the sequence of the three stages of the basic two-integrator loop, and by applying the same re-earthing procedure, two more two-amplifier derivatives are obtained, Fig. 21-and from these, by making alternative connections, further variations. To a first approximation, i.e. if the signal voltages between the amplifier input terminals are assumed infinitesimal, all, like the basic loop, have an ideal intrinsic Q factor of infinity. When finite gain is allowed for differences are found.

For the circuit with triode valves, Fig. 20(a), it is assumed that an input voltage between terminals b and c is a fraction $(-1 / A)$ of the output voltage developed between a and c. For an amplifier with earthed power supplies and differential input the assumption is that the voltage
between its plus and minus input terminals is $1 / A$ of the voltage between its output terminal and earth. Therefore the two are not identical except when $A \rightarrow \infty$.

The effect of finite gain is that with differential-input amplifiers the bootstrapping is incomplete and equivalent to feeding back fractions K_{1} and K_{2} to the floating triode amplifiers (d), where $K_{1}=A_{1} /\left(A_{1}+1\right)$ and $K_{2}=A_{2} /\left(A_{2}+1\right)$. This effect can be set against the elimination of the factor K_{3} (i.e. the disappearance of amplifier 3). Thus for the particular case $A_{1}=A_{2}=A_{3}$ (and hence $K_{1}=K_{2}=K_{3}$) Fig. (d) is equivalent to (c), and consequently Fig. (e) with two amplifiers has the same damping as the original circuit with three.

Alternative connections to the input terminals of the differential amplifiers, e.g. Fig. $6(\mathrm{c})$, result in differences in the magnitude and sign of the additional damping terms. In some circuits the negative damping terms can outweigh the positive terms, giving a circuit which is unstable until damping is added.

It will be noticed that in Fig. 21(b) only two of the circuits can yield an earthed inductance (by removal of the earthed capacitance). All three, however, can act as a 2nd-order low-pass filter (or quadratic factor), and the most useful is then circuit 3, from which the output can be taken at low impedance from the output of the second amplifier as marked with an asterisk. Damping can be given by connecting a resistance as shown in addition 4.

Fig. 22. Two-amplifier derivative of two-differentiator loop, shown connected as h-p filter. Damping may be added by connecting a resistor from point A to earth.

A dual of the two-integrator loop is the two-differentiator loop. By following the same scheme of changing the earth point, and bootstrapping, circuits such as Fig. 22 may be obtained. With such circuits, however, difficulties with noise and instability may be found, because for each amplifier negative feedback at high frequencies comes via the other amplifier and not through a local feedback path.

REFERENCES

1. Sheahan, D. F., "Gyrator Flotation Circuit". Electronics Letters, Jan. 1967, Vol. 3, No. 1, pp. 39-40.
2. Gorski-Popiel, J., "RC Active Networks", Electronics Letters, Dec. 1965, Vol. 1, No. 10, pp. 288-9.
3. Holt, A. G. J., and Taylor, J., "Method of Replacing ungrounded inductors by grounded gyrators", Electronics Letters, June 1965, Vol. 1, No. 4, p. 105.

Engineers' Salaries

Guide to salaries and responsibility levels

Recommendations for salaries of professional engineers have been published by the Engineers Guild. Suggested salaries for 1970/1, shown in the diagram together with responsibility levels, are intended to guide professional engineers and employers throughout the U.K. engineering profession:

These recommendations are made possible by completion of a study \dagger of responsibility levels in engineering by the Guild with backing from the Organisation for Economic Co-operation and Development and MinTech. It is applicable to professional engineers as defined by associate or corporate membership of the 14 engineering institutions federated in the Council of Engineering Institutions.

One of the obvious advantages of having a guide of this kind is that it should remove doubts as to what a professional engineer does. All too often engineers are paid a technician's rate for a job because people do not understand what an engineer is.

The practice of rewarding engineers by promoting them out of engineering into management, where they may not be at their best, can now be circumvented as a result of the salary recommendations and the classification guide. The importance of a career ladder intended to run parallel with a management ladder is stressed so that engineers can continue up to the highest salary level, still remaining as engineers.

In the past, recommendations on salary levels have often been tied to age, data being taken from surveys made by the Guild and later by C.E.I./MinTech. The new recommendations, wisely, do not attempt to do this and in fact the only correlation point is the graduate starting salary level, currently about $£ 1200$, but recommended as a first step to be an absolute minimum of $£ 1350$.

Information extracted from the latest C.E.I. /MinTech survey relating salary to age is not entirely satisfactory as a guide
because of the lack of correlation with responsibility. In the survey respondents were asked to give their own interpretation of responsibility and the responses are usually over-estimates. A new survey being planned by the Engineers Guild/PEAL \ddagger will relate these by asking questions about responsibility and then coding the answers. This survey will give the first true indication of how salaries relate to responsibility in practice. We await the results with interest.
To establish levels of responsibility, the O.E.C.D. sponsored a study carried out by the Engineers Guild in 1965. Objectives were to identify principal responsibility levels from post-graduate to the highest technical level by reference to, for example, qualifications, duties, supervision and financial responsibility. Job descriptions were to be formulated for each level identified. This work was helped by publication of a Canadian classification guide which was simplified and extended to the U.K. situation by the Engineers Guild under a MinTech contract. This produced, in 1968, 116 model job summaries setting out requirements for civil, mechanical, electrical and chemical engineering in each of six levels of responsibility. Similarities between job summaries in any one level throughout the engineering disciplines made it possible to condense this unwieldy information into one simple guide comprising 46 job summaries in five responsibility levels for job functions in engineering. Functions are divided into research, development, design, production engineering, production control, maintenance, construction/installation, and marketing/sales.
-Recommended Salary Levels for Professional Engineers 1970-71, Engineers Guild Ltd. Price 5s.
†Guide to the Classification of Professional Engineering Responsibility Levels, Engineers Guild Ltd. Price 35 s .
\ddagger PEAL-an acronym for Professional Engineers Association Ltd, see p.428, September issue.

New Goonhilly Station uses Microstrip Circuits

Third aerial for the satellite station at Goonhilly Downs, Cornwall, has been ordered by the Post Office from Marconi. Worth about $£ 2.25 \mathrm{M}$ the order is for an aerial system to work with Intelsat IV satellites to be launched in 1971. The other two aerials work with Intelsat III satellites; one over the Atlantic and the other over the Indian Ocean. Even without the development of Intelsat IV a third aerial would have been needed to cater for the growth in Atlantic traffic. International communications are growing at 20% p.a. but the number of satellite circuits used by the U.K. rose from 30 to 276 over the last four years from the end of 1965 and is expected to reach 450 , by the end of this year.

The system will probably make the Goonhilly station the world's busiest when it comes into operation in May 1972. The Post Office estimates this to be the economic time for bringing this third system into operation.

Its receiving equipment will at first cater for 400 channels from 21 stations, but capacity can be increased to at least 1800 telephone circuits on seven transmitted carriers and 33 received carriers by plugging in new modules. Although use of frequency modulation and frequency division muliplex will continue, Goonhilly

3 will be suitable for pulse code modulation and phase shift keying.

Microstrip receivers

This new aerial system, the eighth Marconi system for Intelsat, has a number of differences from the existing ones at Goonhilly-also Marconi designed and built. Microstrip techniques are used for the channel branching circuits and in the mixer /amplifiers, which convert the received signal $(3.7-4.2 \mathrm{GHz}$) to 770 MHz and then to 70 MHz . Microstrip techniques mean that much of the bulky waveguides are eliminated (see photograph for size comparison), and this is the first time they have been used in a satellite ground station. Each carrier is then demodulated and the signals routed by conventional techniques.

Construction of the steel-backed aluminium dish and cabin is different from its predecessors-a concrete mass taking the force from the dish. Another difference, which helps keep reliability high at 99.8%, is the replacement of the mechanical conical-scanning feeds by four stationary horns. Performance of the system, measured by gain/noise temperature ratio, is better than the existing ones at 41.5 dB . There are four $6-\mathrm{GHz}$

Prototype double converter for new Goonhilly aerial comparing Marconi microstrip package against conventional waveguide equivalent (right). Microstrip circuit includes two circulators linked by bandpass filter on an alumina substrate.

Model of third Goonhilly aerial showing new technique of effectively bringing the ground up to the dish fulcrum.
transmitters with peak output power of 10 kW each, two for telephone traffic, one for television and the fourth for standby.

A station similar to this design has recent!y been ordered by Cable \& Wireless. For use with the Atlantic Intelsat IV it will be installed in Barbados and is due for completion in February 1972.

Conferences and Exhibitions

Further details are obtainable from the addresses in parentheses

LONDON

Nov. 4-6 \& 9-11 Royal Garden Hotel
Airlines Electronics Meetings
(Airlines Electronic Engineering Committee, 255 Riva Rd, Annapolis, Maryland 21401)

Nov. 4-8

Alexandra Palace
Communication 70 Exhibition
(E.T.V. Cybernetics Lid, 56 Poland St., London WIV 3DF)
Nov. 10-12 Middlesex Hosp. Med. Sch. Laboratory Automation
(I.E.R.E., 9 Bedford Sq., London W.C.1)

Nov. 19 \& 20
26 Portland Place, W. 1
Materials for Biomedical Use
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

OVERSEAS

Nov. 5-11
Electronica Exhibition
(Münchener Messe und Ausstellung, D-8000 Munchen 12, Theresienhohe 13)
Nov. 9-11
Munich
Congress on Microelectronics
(Internationaler Kongress Mikroelektronik, D-8000 Muchen 12, Theresienhohe 15)
Nov. 5-15
Argentina
British Industrial Exhibition
(Industrial and Trade Fairs, Commonwealth House, New Oxford St., London W.C.1)
Nov. 12 \& 13
Montreal
Symposium on Communications
(I.E.E.E., 345 East 47th St., New York, N.Y. 10017)

Nov. 15-19
Washington
Engineering in Medicine and Biology
(William T. Maloney, 6 Beacon St., Suite 620, Boston, Mass. 02108)
Nov. 20-26
Milan
Automation \& Instrumentation Conference \& Exhibition
(F.A.S.T.-Piazzale Rodolfo Morandi 2, 20121

Milano)

EVR to PAL from RBM

Player for reproducing Electronic Video Recording films on British colour or monochrome television sets

A machine for playing EVR vision records into British 625 -line television sets, colour or monochrome, has been developed by Rank Bush Murphy and will be in production next year. The Rank Teleplayer, as it is called, will be sold directly by R.B.M. at a price of $£ 360$. An explanation of the EVR (Electronic Vidéo Recording) system was given by Dr. Peter Goldmark in our August, 1970, issue, and this included a description of a prototype colour player for working into an American (N.T.S.C.) colour television set. The R.B.M. player is similar in broad principle but differs in engineering design and particularly in its chrominance translator which, of course, must provide an output signal conforming to the British 625 -line PAL colour television standard.

The EVR film is scanned by a Brimar 3 -inch flying-spot scanner c.r.t. at the normal $15,625 \mathrm{~Hz}$ line scan frequency and 50 Hz field scan frequency. The field scanning circuit is normally synchronized with impulses derived from the sync 'windows' in the film, but when the film is stopped to give a still picture, and, consequently, there are no sync pulses available from it, the field circuit is synchronized with the supply mains.

Light transmitted through the film and optical system, as described in the August issue, is picked up by two photo-electric cells incorporating electron multipliers. Each electron multiplier, itself providing signal amplification, is followed by an integrated circuit head amplifier which has a large range of adjustable gain so that the

The Rank Teleplayer for reproducing. EVR vision records, with a film cartridge on the right
spread of amplification of the photo-cells can be equalized. The signals are then passed to stages of amplification which provide amplitude law correction. This compensates for the EVR film characteristic, which exaggerates tonal range near to white in order to reduce noise.

The PAL chrominance translator

Fig.1. Block schematic of the chrominance translator (EVR to PAL) in the R.B.M. player
differs from the chrominance translator described in the August issue (p!370) in two main respects: the local oscillator operates at 4.43 MHz instead of 3.58 MHz ; and the required alternating phase of the PAL colour television signal is generated. In the translator (Fig. 1) the composite signal derived from the film is applied to a filter giving separate outputs of chrominance and pilot carrier signals. The pilot carrier is doubled in frequency to bring it to the same frequency as the chrominance carrier, approximately 1.8 MHz . The resulting signal is mixed with the output of a crystal oscillator operating at 4.43 MHz and gives rise to sum and difference products: the output in either case is a chrominance signal translated to the wanted output frequency spectrum, i.e.,
$1.8 \mathrm{MHz}+2.6 \mathrm{MHz}=4.43 \mathrm{MHz}$
$6.2 \mathrm{MHz}-1.8 \mathrm{MHz}=4.43 \mathrm{MHz}$
Although the 6.2 MHz and 2.6 MHz components both translate the EVR signal to the wanted band, there is an important difference in the resulting signal. When the sum signal is generated, simple translation
occurs; when the difference frequency is used the sign of the phase modulation components of the chrominance signal is reversed. These two output signals represent the alternating phase of a PAL signal. Thus the 6.2 MHz and 2.6 MHz components are electronically switched on a line sequential basis as shown schematically, and so the phase of chrominance signal alternates in sign, giving rise to a PAL chrominance signal.

A requirement of the separating filters is that, over the range of frequencies involved due to scanning effects, the signal must remain precisely in phase step, and the R.B.M. player uses a filter technique that fulfils this requirement. The mixers also have needed special attention since the input signals must not be passed to the output circuits and no spurious products must be generated. Spurious products could not be eliminated by selectivity since the input and output bands are very close together or overlap. The problem has been solved by the use of an analogue multiplier integrated circuit working as an accurate mixer.

A colour synchronizing burst is geperated in the player and added to the chrominance signal, which, in turn, is added to the luminance and scanning sync signals to give a composite PAL video signal. The sync pulses and blanking signals
are generated from the scanning waveforms. The composite signal is applied to a modulator, together with the sound signal frequency modulated at the intercarrier frequency, finally producing a complete r.f. double-sideband signal for feeding into a television set (at u.h.f. or v.h.f. as required). The video response of the luminance channel is claimed to be 5 MHz .

Controls seen in the photograph of the player are as follows. The large knob on the left is labelled 'search' and enables a still picture to be moved up or down on the screen; the next knob to the right is a three-position selector labelled 'auto' (scanning c.r.t. raster same size for moving and still pictures), 'normal' (raster for moving pictures twice the size as for still pictures), and 'repeat' (allowing a selected sequence in the film, located with the aid of a counter, to be repeated); the next knob to the right is 'focus' (for the flying-spot scanner tube); and the knob on the extreme right is a selector switch labelled 'off', 'colour' and 'mono', which are self-explanatory. On the left of the top of the control panel is a row of five push-buttons. These are marked with symbols meaning: 'play' (for threading the film and starting it running); 'fast forward'; 'fast reverse'; "still' (to obtain a stationary picture); and 'stop' (which must be used before 'fast forward' or 'fast

U.H.F. Tuner Design

Circuit with novel temperature compensation

Strip transmission-line resonant circuits are deposited by thick-film techniques in a new u.h.f. tuner design for television receivers. Four tuned circuits, deposited onto a ceramic substrate with palladium-silver conductive material, are
each tuned by a variable capacitance diode. The design was produced by B. L. Harcombe of Glamorgan Polytechnic in conjunction with AB Electronics as a higher-degree thesis and presented at the International Broadcasting Convention.

reverse').
The line-shown in Fig. 1-is $14-\mathrm{mm}$ long so that, with the diode, it can be accommodated on a standard $25-\mathrm{mm}$ wide alumina substrate. Needing a capacitance of 2 pF at 850 MHz and 8.5 pF at 450 MHz , the line is terminated with a $22-\mathrm{pF}$ capacitor in series with a tuning diode to give the required range, conveniently blocking the tuning voltage and increasing Q. Series bulk resistance (of the order of 0.5 ohm) and series lead inductance of the diodes limit Q factor to about 25 at 850 MHz . It seems there is little that can be done to reduce bulk resistance, governed by junction structure, so to keep Q high lead inductance must be kept low and a way of doing this is to use diodes with a type of beam-lead construction-such plastic encapsulated devices are recommended in this design.

Using this method of construction a single r.f. amplifier has a loaded Q factor of 47 at 470 MHz and 80 at 850 MHz . To ensure correct tracking between the four tuned circuits diode capacitance curves are matched to within $\pm 3 \%$ at four points. The four tuned circuits and associated resistors, capacitors and transistors are mounted on 50 mm of substrate, the complete tuner measuring $25 \times 50 \mathrm{~mm}$. Coupling to the mixer oscillator and to the r.f. amplifier are made with inductive pick-up loops close to the tuned circuit (Fig. 1). Transistors used in the common-base circuits are BF262/3 or BF279.

The most unusual aspect of this circuit is the temperature compensation method. This is necessary because of the temperature sensitivity of the voltagevariable capacitors. Also the oscillator frequency is susceptible to supply voltage variations-by changing transistor operating conditions and diode tuning voltage. Normally, variations in supply voltage are minimized by using a stabilized supply for the diodes, often with an i.c. regulator connected across the supply.

Another way of doing this is to bond a zener diode to the substrate to give a stable reference for the tuning potentiometers. The high thermal conductivity of the substrate and its low heat capacity allows its temperature to be readily stabilized by one of two methods. A bi-metallic strip can be attached controlling a thick-film heating element bonded to the substrate. Alternatively, the change in base-emitter voltage of a transistor can sense substrate temperature changes by comparing it with a voltage from a thick-film potential divider across the reference zener diode. The change in voltage can be amplified by a transistor acting as the heating element. Both methods have been tried and can stabilize substrate temperature to $40 \pm 1^{\circ} \mathrm{C}$, for an ambient temperature of $5-35^{\circ} \mathrm{C}$.

With two transistors, this design has an image rejection of 43 dB , which falls short of the recommended 52 dB . Addition of a further amplifying stage would increase this sufficiently, at the same time increasing power gain from $18-20 \mathrm{~dB}$ and decreasing the noise figure by 1 dB , from about 7 dB .

Battery Applications and Developments

International Power Sources Symposium, Brighton

Majority of business in supply batteries for cordless appliances is for Leclanché cells, amounting to something of the order of $£ 200$ million, with other types amounting to about only 25% of this figure. Perhaps the biggest advantage of the Leclanché cell is its relatively low initial cost compared with rechargeable systems. But its obvious disadvantages are its poor low-temperature performance, its voltage is variable and it has to be replaced. These factors no doubt account for the 12% p.a. growth (U.S.A.) in the market for sealed nickel-cadmium rechargeable cells.

Batteries for portable equipment

Competing with these power sources are unspillable and maintenance-free lead-acid batteries and although demand is small, it's expected to grow appreciably in the next ten years. There are applications of such batteries where energy density, extreme temperature, storage life and constancy of voltage reduce the advantage of low initial cost of the Leclanché cell and in these circumstances appliance makers are faced with deciding which of the nickel-cadmium, lead-acid and Leclanche systems is best. It turns out ${ }^{1}$ that the choice-depends on the load and whether the chief concern is continuous or intermittent discharges, temperature effects or open-circuit losses.

Comparing Leclanché, lead-acid and nickel-cadmium cells of the same size (R20 or "D" size - the size of the HP2 cell), it has been shown that for. continuous loads of $>0.5 \mathrm{~W}$ rechargeable cells give better discharge durations for shallow discharges, and $>0.8 \mathrm{~W}$ for deep discharges. Leclanché cells are superior for loads of 0.15 W or less and for loads of 0.5 W or less under deep discharge. For intermittent loads-say 2 h per day-the primary cell is better on deep discharge at loads of 1 W or less and on shallow discharge at loads of 0.3 W or less. At loads higher than these, rechargeable cells-especially nickel-cadmium-are superior.

Over a three-month storage period at $25^{\circ} \mathrm{C}$, the primary cell losses were 35%-less than either of the rechargeable cells, but this comparison is hardly fair as this is irreversible only in the case of
primary cells. For applications where weight must be kept to a minimum, energy density is important and the Leclanche cell is far superior to storage cells below 1.5 W .

Taking cost per cycle as a basis for comparison, there is a changeover point at about 10-30 cycles, below which Leclanché cells are cheaper per cycle- 1.5 s per cycle-but above this rechargeable cells are cheaper. Taking account of cost of a charger and charging electricity only adds 0.04 s to the cost of each cycle.

These figures relate only to. R20 (D-size) cells, and there are many applications not limited to this particular size of battery. There are four main areas, depending on power demand. For low-power uses-e.g. torches, portable radios, toothbrushes-the Leclanche cell is likely to remain supreme. For record players, dictaphones, and tape recorders, with average power demands of 3.5 W and with regular discharge patterns of less than 3 h at any one time, the alkaline cell is cheaper, provided initial cost is carried by the product. For televsion sets, military instruments, power needed could be 12 W for a 5 -h period and again nickel-cadmium batteries are favoured because of their 500 -cycle life. But for military use, where mechanical damage can limit life to $40-50$ cycles, the lead-acid cell would be an

Power and energy-density ratings of typical energy storage systems showing in particular how the lithium-sulphur battery relates to others., (From a paper by Ng \& Appleby.)
attractive alternative. For higher-power applications-electric drills and gardening equipment-where power demand is usually greater than 20 W , either rechargeable battery is suitable but the lower initial cost of lead-acid batteries may be the deciding factor where the power source cost is a significant proportion of the total.

Military application

Although sealed \dagger nickel-cadmium batteries with thin sintered plates have energy densities ($24-31 \mathrm{~Wh} / \mathrm{kg}$) less than either zinc-carbon ($77 \mathrm{~Wh} / \mathrm{kg}$) or silverzinc batteries $(120 \mathrm{~Wh} / \mathrm{kg})$ their low temperature performance makes them preferable in military applications. Their good shelf life is important too in peace time. Their large cycle life might be thought an advantage too, but it seems that because of mechanical stress their useful life in combat is limited to 50 cycles. Typical uses of these batteries include wire-guided anti-tank missiles, electrically firing the Chieftain tank main gun, Olifant back-pack radar sets, Clansman v.h.f. back-pack sets.

A departure from normal in the Clansman sets, is the retention of the battery in circuit when used off a vehicle battery. As well as keeping the battery fully charged this has the advantage of acting as a ripple sink and surge absorber, The method of determining end of charge in this set is by sensing the increase in temperature which results from the increase in heat generation. This is done by hot and cold sensors in a bridge circuit, inside and outside the battery. The sensors are two silicon diodes in one envelope giving a temperature coefficient of $4 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Optimum differential is $7^{\circ} \mathrm{C}$.

One problem with this method occurs when the battery is deeply discharged at a high rate and then connected to the charger. Nothing happens, because the rise in internal resistance when the battery is in this state results in a temperature rise, actuating the end-of-charge cut-out! This is of no consequence as the vehicle
†In view of the Trade Descriptions Act, makers must, we suppose, be careful in calling nickel-cadmium batteries "sealed" when a pressure release valve is incorporated.
charging unit provides the operating power.

Other power sources

New hope was given for nickel-zinc batteries, one of the better known alkaline systems along with nickel-cadmium, silver-cadmium and silver-zinc. Often thought of as combining the worst of nickel with the worst of zinc, this system is attractive because of its higher energy and power density compared with nickelcadmium. In spite of limitations of cycle life and discharge capability, related to construction and charging method, ${ }^{2}$ the system is claimed to be well suited to numerous industrial applications where high cell voltage and high discharge rate are needed. By limiting voltage on both charge and discharge a life of 150-250 cycles can be achieved for deep discharges -the same order as the high-energy silver-zinc couple. Separator degradation appears to be the most significant single factor in limiting life and research is under way to fabricate a non-cellulosic separator to give the long cycle life of nickel-cadmium batteries.
Main point of discussion on lead-acid batteries, still a focus for much research in spite of its ubiquity, was about grid composition. Grids are usually an alloy of lead and antimony, with amounts of antimony varying between 4.5 and 12% by weight. Lead by itself is too soft and addition of antimony gives strength. It has recently been shown that this also increases cycle life. Snag is that it's the main cause of self-discharge through poisoning the negative electrode. A critical review ${ }^{3}$ gives an up-to-date picture of the mechanism of this antimony transference, and will be published in the symposium proceedings. A possible alternative to antimony is lithium and although alloys would not be quite as strong as either
antimony or cadmium, lithium is more electro-negative to lead and should not cause self-discharge. There are difficulties in using lithium alloys though ${ }^{4}$ and its performance in overcharge and cycling tests needs to be improved before it could be a serious contender to antimony. Ternary lithium-lead alloys may be the solution and work on these is in progress.

The sodium-sulphur cell, suggested in 1967 by workers at Ford in the USA, is one of a family of high-energy density rechargeable systems. It is thought to be the most promising kind for electric vehicles, especially for buses and rail traction. The cells have an alkali metal as anode (sodium or lithium having lowest atomic weight and highest specific energy per unit weight) and usually a "chalcogen" as cathode (usually sulphur, selenium or tellurium, avoiding problems of handling compressed halides) with an electrolyte of a mixed halide (e.g. lithium iodide, floride and chloride). They operate at $300-400^{\circ} \mathrm{C}$ and at this temperature both reactants and products are liquids. Like other proposed high-temperature batteries it has a much higher specific power than aqueous or organic electrolyte systems. Lithiumsulphur couple is one stong contender in this family, with the promise of a reduced weight, but higher cost, than sodiumsulphur.

A recent development in this kind of battery is a solid or paste electrolyte. Although the paste electrolyte has been tested successfully with lithium tellurium and selenium cells, results with lithrum-sulphur are not yet available. Estimated specific power and energy of this battery based on recent cell designs are $415 \mathrm{~Wh} / \mathrm{kg}$ and $287 \mathrm{~W} / \mathrm{kg}$. It will be interesting to see whether batteries based on these cells live up to their expectations.

An interesting novel power source, though not reported at this symposium, is the biological cell. Not new by any means,
cells using yeast with carbon electrodes were described as long ago as 1911. Six parallel cells gave a current of 1.25 mA . A bacteria battery reported in 1931 gave a current of 2 mA . More recently work on a variety of fuel cell systems has been reported using hydrocarbons, fatty acids, alcohols, carbohydrates and even with bacteria catalysts. The most recent we have heard of uses blood sugar. With gold-palladium electrodes, glucose is broken down into hydrogen ions, an acid and electrons at the anode. At the cathode blood oxygen takes up these electrons forming hydroxyl ions. Laboratory cells have produced $20 \mu \mathrm{~W}$ of power and tests on animals are planned.

Gradual development is taking place in a number of other areas, for example, solar arrays for satellite transmitters and ground use, fuel cells, solid-state batteries, and readers with interest in these can follow-up the topics in the symposium proceedings.

Earlier symposia were also reported in Wireless World (December 1958, November 1962, 1964, 1966, and December 1968) and copies of the Proceedings for some are still available. The eighth symposium will be $26-28$ September 1972 in Brighton.

References

1. Harrison, A. I. \& Peters, K. "Batteries for cordless power equipment". Paper No. 11.
2. Kober, F. P. \& Charkey, A. "Nickel-zinc: a practical high-energy secondary battery". Paper No. 18.
3. Dawson, J. L., Gilibrand, M. I. \& Wilkinson, J. "Chemical role of antimony in the lead-acid battery". Paper No. 1.
4. Mao, G. W., Oswald, T. L. \& Sobczak, B. J. "Lithium-lead grid alloy in lead-acid batteries". Paper No. 4 .

R.F. Resistance and Electroplating

The conductivity of silver is higher than that of copper. At high frequencies skin effect comes into play and current tends to flow mainly in a thin outer layer of a conductor, which is the chief reason why the r.f. resistance of an inductor is much greater than the d.c. resistance. Silver is more costly than copper and so it is a common practice to use silver-plate on a copper base, the idea being that the current flowing only in the thin outer layer of silver this is as good as a solid silver conductor.

Although this practice has been common for many years, it is pointed out in a recent article (A. M. Fowler, "Radio Frequency Performance of Electroplated Finishes", Proc. Instn Radio \& Electronics Engns

Australia, Vol.31, No. 5 May 1970 Pp.148-164) that silver-plating a copper conductor does not, in fact, reduce the r.f. resistance but increases it. The reason is that electroplated silver and pure wrought silver are not the same.

It is brought out in the article that a very thin plating, of either very high or very low conductivity, on a copper base will have negligible effect on the r.f. resistance. If the plating has about one-half the conductivity of the copper base its effect is greatest.
In explaining how the practice of silverplating copper conductors grew up, the author says "It was more than likely, in the
early days of radio, that silver plating a coil would increase its Q because: (a) the available copper tubing had a higher inpurity content, and hence resistance, and (b) the silver plating processes available at the time produced a very pure silver deposit of high conductivity." The conductivity of modern copper has improved, while the bright silver plates in common use have a much lower conductivity than pure silver. The condutivity of pure silver is $62.5 \mathrm{Mv} / \mathrm{m}$; that of a plate-deposit is $0.07-55 \mathrm{M}$ r/m!

The position has thus changed and a silver-plated copper conductor may now give a higher r.f. resistance than a copper conductor alone.

World of Amateur Radio

Interference to television

Latest Minpostel statistics show that interference to television and radio reception by amateur stations continued to increase during 1969, although amounting to only 2% of all interference. Of a total of $71,311(70,254$ in 1968) cases closed by Post Office investigation teams during the year, 1442 were ascribed to amateur transmitters compared with 1151 in 1968. The distribution of these complaints was: l.w./m.w. radio, 48 (-13%); Band I, 821 ($+13 \%$); Band II, $44(+29 \%)$; Band III, $492(+54 \%)$; Band IV, 18 ($+100 \%$); Band V, 8 ($+166 \%$); mobile radio, $11(+83 \%)$. The substantial increase in interference in the higher frequency bands appears to result partly from increasing v.h.f./u.h.f. operation by amateurs but can also be ascribed to the significantly increased susceptibility of transistor TV tuners and v.h.f./f.m. sets to strong local raf. fields, compared with the older valve sets. Amateurs, however, remain hopeful that the gradual change to television viewing on Bands IV and V instead of Bands I and III will improve the situation.

American generation gap

With over half of the world's radio amateurs in America, trends there play a major role in determining the future of the hobby. Over the past 20 years, the total of U.S. amateurs has more than trebled (from 86,662 in 1950 to over 260,000)'but recent years have seen a marked slowing down (and even a reversal in some years) of this growth, accompanied by a noticeable redistribution of age groups. Many of the more active stations are those belonging to "senior citizens" or to teenage newcomers, with a sharp falling off of the important 20 to 40 age group-"those young enough to be enthusiastic but old enough to be doing something interesting and productive with it" to quote a recent article by John Frye on the future of amateur radio in Electronics World. While this trend is far less noticeable in Europe, there is some evidence of a weighting towards the upper age groups.

Grye points out that in the past "amateur radio has had a great deal to do with U.S. leadership in the field of elec-tronics-whistle CQ on the campus of any
great engineering university, in any major electronic research lab, or in a N.A.S.A. control centre, and you will get an answer; probably several answers". He believes that the apparent slackening of interest in the constructional and technical aspects of the hobby could be overcome by placing more emphasis on what amateur radio has to offer in the way of challenge to intelligence and skill, in world-wide comradeship, and in the diversity of amateur activities.

Minpostel licence figures for the year to the end of July, 1970, show the uneven distribution of new British licences. Although the overall increase in licences is about 5% per annum, Class A licences rose in the year from 13,221 to 13,537 or $+2.4 \%$, whereas Class B licences shot up from 1595 to 2188 , an increase of 37%. The latest batch of convictions for unlicensed operation show fines and costs in 22 cases reaching almost $£ 1100$, plus forfeiture of equipment in 18 cases.

R.S.G.B. president 1971

F.C. Ward, G2CVV, is to be the 1971 president of the R.S.G.B. For more than 20 years he has been honorary secretary of the Derby \& District Amateur Radio Society which, since it incorporates the original Derby Wireless Club of 1911, can claim to be Britain's oldest radio society. F. C. Ward obtained his amateur licence (initially for "artificial aerial" operation) in 1937 and during the $1939-45$ war served in R.E.M.E. and the R.A.F. After demobilization, he joined the Post Office Engineering Department and is currently with the radio investigation service. He operates on all bands from 1.8 to 144 MHz .

Microwave activity

Good tropospheric "openings" in late September resulted in many U.K./Continental contacts on v.h.f. and u.h.f., including a two-way 1296 MHz contact between G8AUE in Derbyshire and. DL9LU in West Germany. Almost 50 stations were operating on the $23-\mathrm{cm}, 13-\mathrm{cm}, 9-\mathrm{cm}$ and $3-\mathrm{cm}$ bands during the first R.S.G.B. "microwave contest" this summer; winner was Les Sharrock, G3BNL, operating near Cheltenham. For a recent contact with the Dutch station PAODTL, Phil Reynolds,

G3PQR, used a 1 -watt all-semiconductor transmitter on the $23-\mathrm{cm}$ band, with a 2N4429 transistor power amplifier driven by a BAY66 varactor tripler. Earlier this year, two-way amateur contacts in the United States pushed the microwave DX records for both 3300 and 5650 MHz to 214 miles. On 2300 MHz , American stations K1JIX and K2GRI have been regularly making contact over a 175 -mile path from locations 500 ft and 700 ft above sea level, despite intervening hills rising to over 3000 ft .

Slow-scan television

Slow-scan television (s.s.s.t.v.) transmissions can be heard most evenings at 19.00 G.M.T. on 14230 kHz . One of the leading European operators in this field is Franco Fanti, ILLCF, of Bologna, Italy, who has now received pictures from many countries including New Zealand (ZL1DW). He asks British phone amateurs to try to avoid causing interference to these s.s.t.v. transmissions, which are often not recognized as amateur signals. They sound like a warbling tone with a low-frequency buzz component and a blip every eight seconds. Also well received in the U.K. is Swedish s.s.t.v. station SM5DAJ. Ans.s.t.v.monitoris being used by the British amateur station G3ZGO (G6ADJ/T).

In brief

John Stace, G3CCH, made a $144-\mathrm{MHz}$ meteor-scatter contact with the Estonian station UR2BU during the Perseids meteor shower in August . . . Mergers have been announced recently by several major American suppliers of amateur equipment: Hy-Gain have linked with Galaxy; Radio Shack with Allied Radio . . . The 145.95 MHz beacon station GB3ANG is now operating from a new location at the I.T.A. transmitter near Tealing in the County of Angus \qquad During the recent exhibition tour of the United States of the Flying Scotsman, an amateur station WX5RRX operated from the train . . . The 25th Top Band Club Contest (MCC) organized by Short-wave Magazine takes place during the weekend November 7 to 8 -a weekend which also sees the R.S.G.B. $7-\mathrm{MHz}$ (phone) contest . . . The c.w. section of the CQ World Wide DX contest is on November 28 to 29 . . . British winners of the recent Bermuda Contest were H. E. Perkins, G3NMH (phone), and W. E. Russell, G5WP (c.w.)-both will receive complimentary visits to Bermuda . . . More than 600 stations were known to be active on 144 MHz during the 1970 open contest, with over 270 contacts made by two contestants . . . With the conclusion of the 1970 programme of mobile rallies, plans are being announced for next yearMaidstone Y.M.C.A. Amateur Radio Society will hold a rally at the "Y" Sportscentre, Melrose Close, Maidstone on May 30, 1971 (enquiries A. S. Walter, G3WXL, 31 Lansdowne Avenue, Maidstone).

Pat Hawker, G3VA

New Products

Digital Data Recording Equipment for Minicomputers

A medium-price computer tape handler, claimed to be cheaper than existing handlers of its kind, is announced by Racal-Thermionic Ltd. With a storage capacity of 60,000 characters per second it is suitable for use with any standard data processor and special purpose data collection equipment in, for example, nuclear research, stock control and payroll accounting. Designed for small and medium-size computer systems, the basic cost of the transport, type TDR7, is $£ 1250$. Racal-Thermionic, who are entering the computer peripheral market with this and digital cassette recorders, expect to exceed the current growth rate in this area of 20% p.a. The cassette recording system uses a Digideck, made at present by International Computers in Texas, which is a two-track digital data read/write transport system measuring about $11 \times 13 \times 17 \mathrm{~cm}$; it is much smaller than paper tape equipment. Using the standard Philips-type cassette it automatically moves the tape in either direction under program control. Although this deck can use the Philips audio cassette, giving a raw error rate of 1 in 10^{5}, it is strongly recommended that certified Racal-Thermionic cassettes are used, which use a better quality tape to give a raw error rate of 1 in 10^{7}. Available in four versions the basic deck costs around $£ 200$. A complete desk-top recorder using either one or two of these decks (called

Digicorder) can be easily interfaced with existing or projected computer installation and is especially useful for program storage. These peripherals are aimed at the mini-computer market, estimated to be worth around $£ 3,000 \mathrm{M}$ in Europe by 1975, with peripheral equipment amounting to about a half of this. Mini-computers are usually interpreted as computers costing under $£ 20,000$.
Racal-Thermionic Ltd, Hythe, Southampton SO4 6ZH.
WW 309 (tape handler), WW 310 (cassette decks) for further details.

Low-voltage Neon
 Indicator

Neon indicator operates from low voltages by virtue of a simple transistor converter built into the indicator package. Indicators are available for $5,6,12$ and 24 -volt operation taking a current of between 20 and 35 mA . Life is claimed to be $10,00 \mathrm{~h}$

and special versions are available, one which responds to a 2 -volt trigger pulse and another with a life of $15,000 \mathrm{~h}$. Neon type is NE-2, NE-200 or NE-2H. Unit price is $\$ 3$ and 1000 -up price is $\$ 2.50$. Solitronics Engineering Ltd, 1531 Star House, Harbour Centre, Kowloon, Hong Kong.
WW 307 for further details

Logic Function Analyser

The Metrix TX905A analyser from ITT tests the logic functions of d.t.l. and t.t.l. integrated circuits. It does this by comparing the circuit under test with a standard logic circuit. Interconnections can be made by inserting connection pins into the appropriate positions on an "xy" spreader matrix, or pre-wired circuits can be plugged directly into the matrix. Four operating modes are provided.

1. Automatic. The instrument produces inputs to the i.c. under test continuously
throughout the test cycle, and will then automatically recycle if necessary. Test results are shown by red and green indicator lights.
2. Stop on defect. Once the test cycle has started it will continue until a fault is found. This allows the operator to investigate the reason for the fault.
3. Step-by-step. This mode cycles the test combinations one by one to allow switching characteristics to be observed. Static analysis of the circuit under test is also permitted.
4. Predetermined. A test combination can be chosen to suit a particular circuit, which is then tested automatically until the final parameter has been reached.

The unit can accommodate custombuilt word generators for testing complex circuits with sequences out of the ordinary cycling, and two or more instruments can be arranged in series for testing complex circuits. ITT Electronic Services, Edinburgh Way, Harlow, Essex.
WW 312 for further details

Six-digit Systems D.V.M.

Model 5233/553 dual-slope integrating d.v.m. from Dana is designed specifically for systems use. The basic model is d.c. only, with a programmable 3-pole active filter which, together with the integrator, gives 100 dB of normal-mode rejection at 50 Hz . Optional plug-in cards are available to provide facilities that enable the user to build up a comprehensive systems instrument. A microvolt-sensitivity version is available-model $5233 \mathrm{~A} / 353 \mathrm{~A}$. A 'superfast' facility gives the user the unusually high display potential of up to 100 readings per second, although at reduced scale length. This figure includes settling time. B.c.d. output and programming are t.t.l. compatible, and command signals may be either direct or delayed. Delayed signals are programmed automatically in the d.v.m., and so remove the responsibility of delay generation (waiting for a.c. convertors etc. to settle) from the system. Price of the basic Model 5233/553 is $£ 880$. Dana Electronics Ltd, Bilton Way, Dallow Road, Luton, Beds.
WW 317 for further details

1-MHz p-i-n Diode as R.F. Attenuator

A p-i-n diode design from Hewlett-Packard operates as a current-controlled r.f. attenuator down to 1 MHz . Previous devices were intended for use at frequencies of the order of 100 MHz . The new devices, designated $5082 / 3080$, have application in a.g.c. circuits, communications receivers, TR switches and in many other areas where r.f. power needs to be controlled.

Cross modulation products are typically less than 0.5% and second-order distortion products are below 0.05%. Diode is cheaper by about a factor of two over earlier devices -just over $£ 1$ 10s for 1-99. Resistance is variable between 5 and 2,500 ohms depending on forward bias current.

Current carriers are retained in the middle layer of intrinsic semiconductor material after the applied voltage is switched from forward to reverse bias, the carriers giving a reverse current flow until depleted. If the voltage is changed to forward before all carriers are swept out the diode behaves as a resistor. The longer the lifetime of the carrier the longer the diode can be reverse biased before carriers disappear. Lifetime of $1.3 \mu \mathrm{~S}$ allows the diodes to be used down to 1 MHz before rectification introduces distortion. The circuit shows diodes varying resistance of bridged-T attenuator. Hewlett-Packard Ltd, 224 Bath Road, Slough, Bucks.
WW306 for further details

Simple Oscilloscope

Single-beam oscilloscope, type MSB-100, uses new rectangular c.r.t. with $5 \times 4 \mathrm{~cm}$ display. Vertical amplifier amplitude response extends from d.c. to 4.5 MHz at $100-\mathrm{mV} / \mathrm{cm}$ sensitivity and has an f.e.t. input stage. Sweep generator covers the range $10 \mathrm{~ms} / \mathrm{cm}$ to $100 \mathrm{~ns} / \mathrm{cm}$ in six ranges

with a 15:1 variable control. Synchronization is automatic for deflections greater than 1 cm , eliminating stability and trigger level controls. Price is $£ 56$. Meteronic Ltd, Birchen Napps Platt, Sevenoaks, Kent.
WW 322 for further details

18-GHz Detector Diode

New germanium 'backward' diode is made by AEI Semiconductors, part of GEC Semiconductors Ltd. The device-type DC3015-is intended for broadband
strip-line detector applications. Typical lead inductance of $0.2 \mu \mathrm{H}$ is achieved with a beam-lead construction, as opposed to $1 \mu \mathrm{H}$ for an inverted device. AEI Semiconductors Ltd, Carholme Road, Lincoln. WW 324 for further details

Power-supply Unit

Two types of current-limited power supply in the $£ 19-£ 25$ range are made by Farnell Instruments. One, described as a sub-unit, provides $15-30 \mathrm{~V}$ or $5-15 \mathrm{~V}$ without any form of indication, and the other is continuously variable from zero and includes a voltage and current meter. In the second case either voltage range can be selected.

The M series sub-units have four variants giving $15-30 \mathrm{~V}$ at 0.5 A or 1 A and

$5-15 \mathrm{~V}$ at 1 A or 2 A . Price is $£ 19-£ 21$. The E30 model, with case, costs $£ 25$.

The sub-unit is stabilized to 3 mV for $\pm 10 \%$ mains variation (1 mV for the E30) and load voltage is regulated to 10 mV from zero to full load (5 mV for the E30). Ripple and noise content is less than 1 mV r.m.s. Farnell Instruments Ltd, Sandbeck Way, Wetherby, LS22 4DH, Yorks. WW304 for further details

50 MHz Counter

A $50-\mathrm{MHz}$ counter type 3022B from Dawe Instruments has four functionsfrequency, period, count and time. It gives four-digit indication from zero to 50 MHz with an input sensitivity of 250 mV . Features included are a.c./d.c. input selection and control over trigger level. Internally the type 3022B is constructed from plug-in replaceable printed circuit boards. The performance is achieved using high-speed t.t.l. microcircuits together with a field-effect transistor input and tunnel-diode trigger circuitry. All functions are selected by push buttons. The price is £185. Dawe Instruments Ltd, Concord Road, Western Avenue, London W. 3.
WW 320 for further details

Inductor Cores for P.C. Boards

A range of high-quality, inexpensive inductor cores for direct mounting on printed circuit boards is announced by Mullard. The cores in this range, called LA4000R
have the characteristics of the Vinkor series. They are, however, designed to achieve a greater packing density and to reduce the time and cost of assembly. Each core consists of two halves held together by metal clips. As well as providing a quick and easy method of assembly, this arrangement has the advantage that it enables a faulty coil to be replaced by a good one, and the whole assembly need not be thrown away as happens when the halves are cemented together. The cores are held on a printed circuit board with a grid spacing of $2.54 \mathrm{~mm}(0.1 \mathrm{in})$ by means of pins in the coil former, these are also used as terminations for windings. Consequently, flying leads and the need for their identification are eliminated. An adjuster enables the inductance to be varied, thus facilitating either close control of inductance or the use of windings with wider tolerances. The adjuster, like the holding clips, is completely recessed within the ferrite cores. Mullard Ltd., Mullard House, Torrington Place, London W.C.1.
WW 318 for further details

D.C. Voltage Calibrator

The 2003 d.c. millivolt calibrator from Time Electronics employs a standard reference cell. No standardization is required, and up to 20 mA of output

current can be drawn without loss of accuracy. The price is $£ 90$ for an instrument having $\pm 0.1 \%$ accuracy ($£ 110$ for 0.05%, accuracy). Time Electronics Ltd, 199a High Street, Orpington, Kent. WW 331 for further details

Versatile Power Supplies

Variable-output power supply for general laboratory work, especially for schools and colleges because of its simplicity and low cost, is available from Advance Electronics. Voltage and current limit can be set and monitored by the panel meter. Two models give

	PP31	PP32
voltage	$0-30$ or 600 V	$0-15$ or 30 V
current	$0-0.5$ or 0.25 A	$0-1$ or 0.5 A
line reg.	$\pm(0.01 \% \pm 1 \mathrm{mV})$ for $\pm 10 \%$	
a.c. change		
load reg.	$0.02 \%+5 \mathrm{mV}$	
ripple	1 mV pk -pk	
price	$£ 27$	$£ 25$

Two further models meet more de-

manding applications. Voltage can be set accurately in 10,1 and 0.1 V steps with a digital thumbwheel switch, and down to 0 V with a continuously variable fine control. Output current is limited and monitored of course and a variable over-voltage control is provided together with an over-voltage indicator. Two versions give maximum current of 1 A (PP41) and 3A (PP42).

voltage	$0-60 \mathrm{~V}$
current	$0-1$ or 3 A

line reg
voltage mode $\pm(0.001 \% \pm 30 \mu \mathrm{~V})$ for $\pm 10 \%$
current mode $\pm(0.20 \% \pm 200 \mu \mathrm{~A})$ for $\pm 10 \%$
load reg.
voltage mode $0.02 \%+1 \mathrm{mV}$
current mode $0.1 \%+2 \mathrm{~mA}$
ripple
voltage mode $400 \mu \mathrm{~V}$ pk-pk max
current mode 0.1% pk-pk

These new units will eventually replace earlier models PP10, 11 and 16. Facility for remote control is provided and the supplies can work from 110 V mains. Advance Electronics Ltd, Raynham Road, Bishop's Stortford, Herts.
WW328 for further details

Instrument C.R.T.

The M-O Valve Co. has introduced a new single-gun spiral-p.d.a. (post deflection accelerator) cathode-ray tube, type 1400 C , for oscilloscopes. It has a flat rectangular face and an $80 \times 100 \mathrm{~mm}$ display. The screen has a thin aluminized backing for operation at 4 kV , and side-

connected deflection plates give wideband operation. Maximum X and Y deflection sensitivities are 15.5 and $8.5 \mathrm{~V} / \mathrm{cm}$ respectively. There is provision for deflection blanking, and a choice of internal graticules is offered. The M-O Valve Co. Ltd, Brook Green Works, London W.6. WW330 for further details

High-level Logic Elements

Five devices have been added to the SGS range of high-level logic. The H103 is a triple 3 -input NAND gate; the H113, a quad high-to-low level converter; the H114, a quad low-to-high level converter; the H122, a quad 2 -input NAND gate with resistor pull-up; and the H124, a dual 4 -input expandable NAND gate also with resistor pull-up. In addition to high input thresholds, advantages in using this family include large output logic swing, large supply voltage tolerance, and high fan-out. Encapsulation is ceramic dual in-line. SGS (United Kingdom) Ltd, Planar House, Walton Street, Aylesbury, Bucks. WW332 for further details

Microphone with
 Interchangeable Capsules

Interchangeable omni-directional and cardioid capsules are one feature of the new B \& O microphone. Called Beomic 2000 , this moving-coil microphone has feet concealed in its slim body that can be released by spring action to form a desk stand. Cardioid capsule has a response conforming to DIN 45, 500 BL. 5 and has $0.1-\mathrm{mV} / \mu$ bar sensitivity $(-80 \mathrm{~dB}$ below $1 \mathrm{~V} / \mu \mathrm{bar})$. Output impedance: 200Ω at 1 kHz ; front-back ratio 18 dB . Price is £14 10s. Bang \& Olufsen U.K. Ltd, Eastbrook Rd, Gloucester GLA 7DE.
WW337 for further details

1-amp Rectifiers

The SJO3H series of metal cased rectifiers from WEL Components has a range of $100-1200 \mathrm{~V}$ at 1 A and $100^{\circ} \mathrm{C}$. Typical
prices are 3 s 1d each for a 400 V 1 A device when purchased in quantities of 100. WEL Components Ltd, 5 Loverock Road, Reading, Berks.
WW $\mathbf{3 0 8}$ for further details

Precision Microwave Resistors

By specifying the series resistance of Sylvania's new p-i-n diodes (available from Impectron) over their operating range the exact resistance at any current level is predictable. This results in a series of precision current-controlled microwave resistors that are useful from 10 MHz to 10 GHz . The peak power handling level is 10 kW . Operating temperature is $150^{\circ} \mathrm{C}$. Impectron Ltd, 23-31, King Street, London W.3.
WW329 for further details

Integrated Circuit Socket

A 50 -lead dual-in-line socket has been introduced into the range of 1.s.i., d.i.l., and m.s.i. sockets made by Jermyn. The body is injection-moulded from glassfilled nylon and is available with a choice of contact material: type Y, phosphor bronze with $0.125 \mu \mathrm{~m}$ of gold over nickel; Z , heat-treated beryllium copper plated to $1 \mu \mathrm{~m}$ of hard gold over a. silver flash. Contact resistance is $5 \mathrm{~m} \Omega$ for type Z and $15 \mathrm{~m} \Omega$ for type Y, both offering up to 10,000 insertions. With row spacing of 2.25 cm and 2.5 mm between contacts, the A23/2027 has been designed for printed circuit board applications where high packaging densities are to be achieved. Jermyn Industries, Vestry Estate, Sevenoaks, Kent.
WW 314 for further details

Solderless Coaxial Plug

A solderless coaxial plug is now available from Belling-Lee. The plug has been designed specifically for cables with centre

conductor diameters up to 0.048 in. Belling and Lee Ltd, Great Cambridge Road, Enfield, Middx.
WW334 for further details

Electrolytic Capacitors

Steatite Insulations supply type EK plastic cased electrolytic capacitors with uniform lead spacing of 5 mm . The epoxy sealing is safe against soldering process temperat-
ures. All internal connections and wire ends are welded. Polarized and non-polarized versions are available. Steatite Insulations Ltd, Hagley House, Hagley Road, Birmingham 16.
WW 333 for further details

Galvanometer for Education

Incorporating a low-drift d.c. amplifier, this galvanometer from Educational Measurements has two calibrated ranges of 1 and 10 mV . Any f.s.d. between these two figures can be set so that the meter can be used with thermocouples to read temperature directly. Because input resist-

ance is 1000 ohms current can be measured, giving ranges of 1 and 10μ. A Output socket allows the d.c. amplifier to be used separately. The meter is protected against overloads of 1 million times. Consumption is 3 mA from a 9 V internal battery. Educational Measurements Ltd, Brook Avenue, Warsash, Southampton, SO3 6HP.
WW301 for further details

Relay in TO-5 Can

Contact rating of 1 A at 32 V is a feature of change-over relays in TO-5 packages by ITT. Life of 10^{5} operation can be increased to 10^{6} on low-level signals. Intended for military applications, two types

are available; one with operating power of 125 mW (MA type), and the other with operating power of 65 mW (MS type). Both have contact resistances of $100 \mathrm{~m} \Omega$ and insulation resistance of $5000 \mathrm{M} \Omega$. Operate and release times are respectively 2 and 1.5 ms (MA) and 4 and 2 ms (MS). Vibration tested to 30 G and shock tested to 80G, the relays conform to U.S. MIL specification R5757 and U.K. DEF 5165. ITT Components Group Europe, Power Components Division, West Road, Harlow, Essex.
WW302 for further details

Trimmer Pot for P.C. Board

Manufacturers of potentiometers and thick film circuits, Reliance Controls Ltd of Swindon, have introduced a $\frac{3}{8}$ in square wirewound fully-sealed trimmer which is designated CW60, CW61 or CW62, depending on the pin configuration. Resistance range covers 10Ω to $20 \mathrm{k} \Omega$. Mechanical adjustment is 28 turns and the temperature range -55 to $+155^{\circ} \mathrm{C}$. Wattage rating (whole element uniformly loaded) is 0.75 W at $70^{\circ} \mathrm{C}$ derating to 0 at $155^{\circ} \mathrm{C}$. Insulation resistance is $1000 \mathrm{M} \Omega$ at 500 V d.c. Reliance Controls Ltd, Drakes Way, Swindon, Wilts.
WW 336 for further details

Plastic GaP Light-emitter

Gallium phosphide light-emitting diode has a typical luminance of about $1000 \mathrm{~cd} / \mathrm{m}^{2}$ with a peak (red) emission at $0.66 \mu \mathrm{~m}$, and is intended for both indicator and modulator use. Dissipation is 100 mW at $25^{\circ} \mathrm{C}$. Plastic encapsulation. Price is 30s 11 d for $\mathbf{1 - 2 4}$. Made by Motorola (type MLED 600) and available from Jermyn Industries, Vestry Estate, Seveno aks, Kent. WW 327 for further details

1-12 GHz Mixer Diode

A Schottky-barrier gallium arsenide diode is intended for mixer and detector use in the frequency range $1-12 \mathrm{GHz}$. The plasticencapsulated device-type CAY17-has 'beam' leads giving low inductance and allowing easy mounting in strip-line circuits. When used as a low-noise mixer it has the advantage of being insensitive to local oscillator level changes. Mullard Ltd, Torrington Place, London W.C.1.
WW 325 for further details

3-W Audio Amplifier Uses I.C.

The latest packaged circuit from Newmarket Transistors is a 3-W a.f. amplifier and includes a $\mu \mathrm{A} 709$ operational amplifier. Designed to present a high impedance ($10 \mathrm{k} \Omega$, balanced) to a 600 -ohm line the amplifier has a sensitivity of 700 mV for 3 W at 1 kHz . Frequency response is 3 dB down at 70 Hz and 12 kHz . Three watts is delivered into an eight-ohm

loudspeaker load and reduced power into a 15 -ohm load. The power supply should be 21 V , centre-tapped, and deliver 0.5 A for full power. Newmarket Transistors Ltd, Exning Road, Newmarket, Suffolk.
WW303 for further details

Light-emitting Diode

Indicator with integral logic circuitry is now available through Litton Precision Products. As with other similar indicators, it interfaces with r.t., d.t. and t.t. microcircuit logic working from a 5 -volt supply. The long-life, high reliability and resistance to shock and vibration make these devices suitable for harsh industrial environments, especially airborne systems. The lamp is Monsanto gallium arsenidephosphide and the complete indicator is made by TEL Inc. Available at prices from £3 from Litton Precision Products, 95 High Street, Slough, Bucks.
WW 323 for further details

Dual-in-line Relay without Contact Bounce

Relays compatible with 5-volt d.t.1. and t.t.l. integrated circuits are available in 14 -pin dual-in-line packages. The mercury film contacts are bounce-free and can handle currents from $1 \mu \mathrm{~A}$ to 1 A . There are various

types in the 9000 series-with normally open and changeover contacts, with and without suppression diodes, and monostable and latching types. Made by Fifth Dimension Inc, they are available at prices from about $£ 4$ through F.R. Electronics, Wimborne, Dorset BH21 2BJ.
WW 326 for further details

Programmable 'Zener'

The D13V from Jermyn is an integrated voltage regulator in a standard TO98 package. It can be programmed as a
reference element over a voltage range of 10 to 40 volts with a continuous rating of 400 mW and withstand overloads of up to 1A. Typical temperature coefficient is 0.03% per ${ }^{\circ} \mathrm{C}$ with an operating T_{j} of $-15^{\circ} \mathrm{C}+125^{\circ} \mathrm{C}$. Main uses are as a lowpower settable zener reference which may be used simply or in conjunction with suitable power transistor(s) for regulated power supplies. It can also be used as part of a constant-current reference. Prices 8 s 6 d (1-24) and 4 s 11 d (500 and over). Jermyn Industries, Vestry Estate, Sevenoaks, Kent. WW 313 for further details

Photoconductive Cells

A range of cadmium sulphide photoconductive cells has power ratings from 30 mW to 600 mW . They are available in glass envelopes or with a lacquer covering. Illuminated resistance at a nominal illumination of 50 lux varies from $1.2 \mathrm{k} \Omega$ to

$125 \mathrm{k} \Omega$ and dark resistance is 1500 times the resistance at 50lux. Smallest unit measures about $5 \times 5 \times 2 \mathrm{~mm}$. Guest International Ltd, Nicholas House, Bridstock Road, Thornton Heath, Surrey. WW 311 for further details

Gunn-effect Devices

Three new Gunn-effect diodes have been added to the Mullard range of microwave solid-state devices. Two of them, types CXY19 and CXY20, are intended for use in the frequency range 8 to 12 GHz ; with an applied voltage of 8 to 15 V and a current of 200 to 375 mA , they will give an output not less than 50 mW at 9.5 GHz . The CXY19 is contained within a pill-type encapsulation, and the CXY20 within a threaded-type encapsulation. The third Gunn device, type $823 \mathrm{CXY} / \mathrm{A}$, is designed for use at 26 to 32 GHz . Output of not less than 4 mW can be obtained with an applied voltage of 3.5 V and a current of typically 250 mA . Mullard Ltd., Mullard House, Torrington Place, London W.C.1.
WW 315 for further details

Low-cost Power-supply Modules

LTH Electronics have introduced a series of low-cost power supply modules, known as the LRB range, available with current ratings of 0.5 A up to 30 A and two voltage ranges up to 50 V . The output from all
models can be reset to any other voltage in the range. A fast-acting, automaticreset, over-current circuit with re-entrant characteristics afford complete protection against short circuit and overload. LTH Electronics Ltd, Eltelec Works, Chaul End Lane, Luton, Beds.
WW 316 for further details

M.O.S. Shift Register for Delay Lines and Memories

Low-speed dynamic m.o.s. shift register has a capacity of 512 bits. Intended as a replacement for glass and magnetorestrictive delay lines and drum memory stores, the device can also be used to provide low-cost c.r.t. memories. Devices are compatible with bipolar circuits and work from +5 and -12 V power supplies. Minimum operating frequency is 600 Hz at $25^{\circ} \mathrm{C}$. Price ranges from $£ 210$ s for 100 up of MM5016 (-25 to $+70^{\circ} \mathrm{C}$ in TO-5 package) to $£ 18$ for $1-24$ of MM4016D (-55 to $+125^{\circ} \mathrm{C}$, dual in-line package). National Semiconductor Ltd, Precinct, Broxbourne, Herts.
WW319 for further details

Cermet Potentiometers

A new range of potentiometers made by Bourns with cermet resistance tracks is designed to replace the carbon counterparts. Metal-ceramic composite tracks are smaller with better stability, temperature coefficient and power rating than their carbon equivalents.

Two models are available, 3862 with 12.5 mm diameter and 1 W power rating and 3852 with 19 mm diameter and 2 W power rating, claimed to have the slimmest profile of any on the market.
Linearity and tolerance is $\pm 10 \%$ and temperature coefficient is ± 150 parts

	3862	3852
power rating	2 W at $70^{\circ} \mathrm{C}$	1 W at $125^{\circ} \mathrm{C}$
operatang temp. -65 to $+150^{\circ} \mathrm{C}$	-65 to $+175^{\circ} \mathrm{C}$	
resistance range $50 \Omega-1 \mathrm{MI}$	$100 \mathrm{I}-1 \mathrm{M}$ ।	
diameter	1.25 cm	1.9 cm

per million. Bourns (Trimpot) Ltd, 17 High Street, Hounslow, Middx.
WW305 for further details

Ceramic Capacitor Range

A range of small ceramic plate capacitors is available from Steatite Insulations. Capacitance values are from 1 pF to $0.05 \mu \mathrm{~F}$, and sizes range from $4 \times 4 \mathrm{~mm}$ up to $12 \times 12 \mathrm{~mm}$. Two typestemperature compensating and high permittivity-are available, with capacitance tolerances of $\pm 5, \pm 10$ and $\pm 20 \%$ for temperature compensating

types and ± 10 to $+80(-20 \%)$ for high permittivity types. The working voltage is 50 V . Steatite Insulations Ltd, Hagley House, Hagley Road, Birmingham 16.
WW 335 for further details

Digital Panel Meter

Single-range panel meter using number tubes is intended for use in any inktrument using this kind of display. Indicating up to 399 for an input of one volt, ranging circuits can be added to give readings from 399 mV to 399 V . With suitable external circuitry current ranges from 399nA can be obtained. Eight variants of the basic unit are available. Accuracy is ± 2 digits giving $\pm 0.5 \%$ of full scale reading. Sampling rate is 50 readings per second. Overranging is indicated by simultaneous display of 0 and 4 in the left-hand tube. Known as the Comtec DM1-1, price is from $£ 45$. Computer Techniques Ltd, Westminster Bank Chambers, Bridge Street, Leatherhead, Surrey.
WW 338 for further details

Flexible Magnetic Shield

High-permeability ferromagnetic shield material is thin enough $(0.05 \mathrm{~mm})$ to be cut with scissors. Two cylindrical wrappings of Telshield around a component measuring $32 \times 150 \mathrm{~mm}$ dia. will give a shielding factor of 40 . It can be used to shield meters, valves, c.r.ts, reed relays, cables, microphones and printed-circuit boards. Made by Telcon Metals Ltd, Manor Royal, Crawley, Sussex. WW 321 for further details

Encapsulated Bridge Rectifier

Range of one-amp encapsulated bridge rectifiers are available from International Rectifier with repetitive reverse voltage ratings from 50 to 1000 V . Package measures $15 \times 15 \mathrm{~mm}$ and is ideal for printed circuit mounting. With a maximum mean forward current of 1 A , bridge will pass 40 A for a single-cycle surge (20 ms). Peak repetitive surge current, for capacitative loads, is 12 A . Designated 1SB05-1SB 100, devices have $V_{R R M}$ of $50-1000 \mathrm{~V}$ and $V_{R S V}$ (for 5 ms) of $100-1200 \mathrm{~V}$. Leakage is between 200 and $500 \mu \mathrm{~A}$. Forward current of 1 A applies at $60^{\circ} \mathrm{C}$ ambient temperature, being linearly de-rated to zero at a temperature of $160^{\circ} \mathrm{C}$. International Rectifier, Hurst Green, Oxted, Surrey.
WW 339 for further details

Literature Received

For further information on any item include the appropriate $W W$ number on the reader reply card

ACTIVE DEvices

A.E.I. Semiconductors Ltd, Carholme Rd, Lincoln, have published additional data sheets on thyristors and rectifiers for the A.E.I. Semiconductor Data Book (Filing instruction 17) \qquad WW401

WEL Components Ltd, 5 Loverock Rd, Reading, Berks, have sent us a publication which describes microwave integrated circuits manufactured by A.E.I. Semiconductors \qquad .WW402

A 64-page catalogue and guide to E.M.I. photomultiplier tubes is available from the Tube Division of E.M.I. Electronics Ltd, Blyth Rd, Hayes, Middlesex

WW403
The range of products produced by Hivac Ltd (Stonefield Way, Victoria Rd, South Ruislip, Middlesex) are described in data sheets received. The range includes electrometer valves, cold cathode tubes, barretters, spark gap tubes, numicators, decatrons, flash tubes etc.
.WW404
A new book from the Educational Service of Mullard Ltd, Torrington Place, London WC1E 7HD, is called A Programmed Book on Semiconductor Devices'. It deals with the subject non-mathematically and costs 10 s, including p. and p .

Siliconix Ltd, Saunders Way, Sketty, Swansea SA2 8BA, have published a book called 'An Introduction to Field Effect Transistors' which costs 17s 6 d post free.

Many of the semiconductors mentioned in a publication called 'Hobby Circuits Manual' (HM90) are not commonly available in the U.K. An equivalents list may be obtained from LST Electronic Components Ltd, 7 Coptfold Rd, Brentwood, EssexWW407

The Industrial Electronics Division of Mullard Ltd, Torrington Place, London WCIE 7HD, have produced a 146 -page book called 'MOS Integrated Circuits and their Applications' which is intended for engineers engaged on system design using m.o.s. i.cs. Requests for copies should be made on company headed notepaper quoting ref.TP1108.

Ferranti Ltd, Gem Mill, Chadderton, Oldham, have published a new semiconductor price listWW408

Series $54 / 74$ t.t.l. integrated circuits are the subject of a 100 page book on m.s.i. complex arrays from Sprague Electric Co. (U.K.) Ltd, 159 High St, Yiewsley, West Drayton, Middlesex WW409

A data sheet describing a range of silicon transient suppressors, called TransZorbs, is available from The Semiconductor Division, Auriema Ltd, $23 / 31$ King St, London W. 3

WW4 10

PASSIVE COMPONENTS

We have received the following literature, mostly concerned with coaxial connectors and intended for inclusion in the Greenpar manual, from Greenpar Engineering Lid, Electronics Division, Station Works, Harlow, Essex.

Index / contents shee
Cross ref. list, US.................................WW411
. mil. to Greenpar number
codes

Cross ref. list, N.A.T.O. to Greenpar number codes ...WW413 Cross ref. list, Greenpar to U.S. mil. and N.A.T.O. codes ... WW414 .WW414
G.P. range of miniature connectors WW416 Series G.P. assembly instructionsWW417 Precision coaxial attenuatorsWW418 Passive probe d.c. to 200 MHzWW419 Precision coaxial transition (adaptors $50 \rightarrow 75 \Omega$ and $75 \rightarrow 50 \Omega$) \qquad WW420
Electrosil Ltd, .P.O. Box 37, Pallion, Suriderland, Co. Durham, have produced a wall chart dealing with wirewound trimming potentiometersWW421

Home Radio (Components) Ltd, 240 London Rd, Mitcham, Surrey CR4 3HD, have published a new catalogue which costs 10 s .

Cambion Electronic Products Ltd, Cambion Works, Castleton, Nr. Sheffield, Yorks, have issued a leaflet which describes an assortment of accessories for integrated circuit handling

WW422

APPLICATION NOTES

An interesting publication called 'Theory and Applications of Peak Electrical Measurements' has been produced by Sintrom Electronics Ltd, 2 Castle Hill Terrace, Maidenhead, Berks.WW423
'Ușes of Shif Registers for Data Storage' published by General Instrument Microelectronics, Stonefield Way, Ruislip, Middlesex, describes, in simple terms, the use of m.o.s. shift registers.
...WW424
A second edition (first edition 1968) of a booklet 'Noise Measurement Techniques' by W. V. Richings is available from Dawe Instruments Ltd, Concord Rd, Western Avenue, London W.3...............WW425

Application note 123 from Hewlett-Packard, 224 Bath Rd, Slough, Bucks, called 'Floating Measurements and Guarding' shows how guarded instruments will solve most common-mode problems. ...WW426

The following application notes have been received from Texas Instruments Ltd, Manton Lane, Bedford.

CA 101 'Operation and use of series 7520 N sense amplifiers'.
.WW427
B167 'Second breakdown and power transistor area of operation'WW428 B166 'Transistor output power test circuits at $175 \mathrm{MHz}^{\prime}$...WW429

EQUIPMENT

Counting Instruments Ltd, Elstree Way, Boreham Wood, Herts, have published a leaflet which describes their counter and display board type 70. This contains a decade counter, buffer store and indicator, reversible and synchronous versions of the counter are available

WW430
The first supplement to the Rhode \& Schwarz communication equipment catalogue is available from Aveley Electric, Arisdale Avenue. South Ock endon, Essex

WW431

A new Eagle Products catalogue is available from the Industrial Division, Adler Micro Electronics, Coptic St, London WC1A INR WW 434

A leaflet describing radio equipment for the amateur and a revised price list are available from K. W. Electronics Ltd, Vanguard Works, Heath Street, Dartford, Kent

Western Electronics, 24 Hook St, Hook, Swindon, Wilts, have published a catalogue called 'Radio Masts and Towers for amateur and commercial use
..WW438
North Atlantic Industries Inc., Terminal Drive, Plainview, New York 11803, have published 'a data sheet describing a phase-angle voltmeter which measures fundamental voltage, in phase voltage and quadrature voltage to 2% accuracy.

WW439
We have received the following data sheets from Calan Electronics Ltd, Crossroads, By Ormistón, East Lothian.

Speed check test set for tape recorders or record players. WW440
Decade counter module .WW441
Temperature alarm CTR6 \qquad WW442
4-digit counter/timer
WW443
A variety of test equipment is described in catalogue 1A from Hartman \& Braun (U.K.) Ltd, 897 Harrow Rd, Wembley, Middlesex

WW444

HARDWARE

Lub spray is an all-purpose dry lubricant which can be applied to any type of surface, wood, metal, plastic etc. It is described in a leaflet from A. V. Pound \& Co. Ltd, Kemp House, 154 /158 City Rd, London E.C. 1

WW446

GENERAL INFORMATION

Information sheet $4006(2)$ 'U.H.F. Television Reception' obtainable from the B.B.C. Engineering Information Department, Broadcasting House, London W1A 1AA, describes the u.h.f. network and gives advice on receiving aerials and other matters concerned with television reception.

Full details of the u.h.f. and v.h.f. transmitter chain of the I.T.A. are given in 'ITA Transmitters-a pocket guide' available from the Independent Television Authority, 70 Brompton Rd, London S.W.3.

We have received the $1970-71$ prospectus of courses run by the London Borough of Hounslow. Courses on electronics include radio hobbies, radio amateurs, basic electronics, and radio and TV servicing. Copies available from: Adult Education Office, Hounslow Manor School, Holloway St, Hounslow, Middlesex.

The $1970 / 71$ prospectus of the Hendon College of Technology (The Burroughs, Hendon, London N.W.4.) is available.

The English Electric Valve Co. Ltd, Chelmsford, Essex, have produced a camera tube test chart for use with closed-circuit television systems. It comes complete with instructions for useWW452

We have received the following publications from Norwood Technical College, Knights Hill, London S.E. 27

1970/71 prospectus of the Science Department.
1970/71 prospectus of technician courses in applied science.
1970/71 prospectus of the Department of Telecommunication and Electronics.
'Bulletin of Special Courses in Higher Technology Management Studies and Commerce-1970/71 published by the London and Home Counties Regional Advisory Council for Technological Education, Tavistock Square, London WC1H 9LR is available price 10 s.

BS833:1970 'Specification for Radio Interference Limits and Measurements for Electrical Ignition Systems of Internal Combustion Engines' is available, price 14s, from The British Standards Institution, 2 Park St, London WIY 4AA.

Personalities

Stanley Mullard, M.B.E., Hon.C.G.I.A., F.I.E.E., who founded the Mullard company 50 years ago, has retired from the Board. He has completed nearly 72 years with the electrical and electronics industry. Mr. Mullard, who will be 87 on November 1st, was apprenticed to an electrical engineering firm at the age of 15. In 1910 he joined Ediswan. Three years later he became head of their Lamp Laboratory. During World War I he was commissioned in the Royal Naval Volunteer Reserve and attached to the Royal Naval Air Service. As a member of a small team of scientists and technologists at H.M. Signal School, Portsmouth, he was involved

Stanley Mullard
with the invention and development of high-power transmitting valves in fused silica bulbs which were urgently needed by the Navy. In 1920 after demobilization, Mr. Mullard was invited by the Admiralty to produce these valves in quantity. The first company to bear his name-the, Mullard Radio Valve Company - was founded in 1920. Although he relinquished the leadership of the company nearly 40 years ago he has remained on the Board.

Edgar M. Lee, B.Sc., F.I.E.E., who founded Belling \& Lee Lid 48 years ago, is retiring from the position of managing director but he remains chairman of the Company. The new managing director of the company is John W. S. Payne, B.Sc., F.I.E.E. He was formerly director and general manager of A.E.I. Herr Ltd.

Charles B. B. Wood, head of the image scanning section of the B.B.C's Studio Group Research, has received an award from the Society of Motion Picture and Television

Engineers for his' paper "Some Considerations in the Television Broadcasting of Colour Film" published in the Society's journal. Mr. Wood joined the B.B.C. Research Department in 1946 after service with the Royal Air Force.

George W. Stephenson, appointed general manager of the plant of Emihus Microcomponents Ltd at Glenrothes, Fife, Scotland, is one of the original staff that formed the nucleus of the company when it was established as Hughes International (U.K.) Ltd four years ago. He joined as chief production engineer and in 1966 became production manager. Immediately prior to joining the Glenrothes plant, Mr. Stephenson, who is 41, was with Semiconductors Ltd, Swindon, for three years. From 1952 to 1957 he was with Plessey Co, Ilford.
J. P. Engels, chairman of Philips Electronic and Associated Industries Ltd, has been appointed a deputy president of the British Electrical and Allied Manufacturers' Association. Mr. Engels is also undertaking the chairmanship of the Europe Steering Committee being set up by B.E.A.M.A. to ensure that British manufacturers are kept informed of opportunities in Europe.

Alan E. Hutley has joined Advance Electronics Lid as product marketing manager. Mr. Hutley served in the R.A.F. as an apprentice in aircraft electronics and later joined DeHavilland where he worked on guided missile test equipment. He was at one time sales manager of the Control Systems Division of Gresham Electronics. Ltd, and latterly marketing manager of Lambda Electronics.
N. E. Weber-Brown, M.A., M.I.E.E., is general manager of the newly constituted Systems Division of IDM Electronics Ltd, of Reading. The Division combines the previous responsibilities of the Data Systems Division with the company's transducer activities. Mr. Weber-Brown, who was recently with Radyne, was previously divisional manager (metal industries) in the projects company of the GEC-English Electric Group.

Coutant Electronics have announced the appointment of two new directors to their board. Miles Rackowe, formerly technical manager, has become director and general manager of the company's Special Products Division in Reading, and Ken Weedon, previously works manager at the company's Ilfracombe plant, becomes works director at Ilfracombe. Mr. Rackowe, aged 34, joined Coutant as a senior design engineer in 1964, having previously spent two years with A.M.F. International Ltd as an electronics development
engineer. He was appointed chief engineer of Coutant in 1964, and became technical manager a year ago. Mr. Weedon also joined the company in 1964, as production manager of their Prototype Design Department. He had previously been with J. Langham Thompson for nine years as a planning engineer. He has been works manager at Ilfracombe since 1969.

Frank Grimm, M.I.E.R.E., aged 50, has been appointed technical director of Pye Telecommunications Ltd responsible for the company's research and development facilities and its systems department. He joined Pye Ltd in 1950 and four years later went to Pye Telecoms becoming chief engineer of the mobile laboratory and two years ago was appointed engineering manager.
A. D. Hudson is appointed divisional manager of the newly formed Radio Divisionts within Plessey's Electronics Group. The new division will concentrate on radio communication and allied equipments for the civil market at home and overseas. Mr. Hudson joined the Plessey

A. D. Hudson

Company in 1969 prior to which he was managing director of International Marine Radio at Croydon (an S.T.C. company). His own company, Hudson Electronics, was acquired by S.T.C. in 1963.

Geoff Coston, Assoc.I.E.R.E., has been appointed marketing manager of Electrautom, of Maidstone, Kent. He was previously sales manager of GEC /AEI Telecommunications, Printed Circuit Division and was a founder member and sales manager of Tectonic Printed Circuits. He is to head the marketing of the Microelectronics and Components Divisions of Electrautom.

Tel Inc International Ltd, the U.K. operation of the Electronics Group of Tennant of New York, which offers purchasing services in respect of American components and materials, announces the appointment of Bryan Kavanagh as sales executive for the U.K. He was a senior sales engineer with Painton Ltd, of Northampton, and prior to that was with G.E.C.

Dr. Jeremy Bray, former Parliamentary Secretary at the Ministry of Technology, has joined Mullard Ltd where he will be responsible for personnel affairs and corporate planning.

After 41 years' service with Dubilier Condenser Company (1925) Ltd, F. H. McCrea has retired from the Board. Mr. McCrea has been chairman since 1955 having previously been managing director for 16 years.

Real and Imaginary

by Vector

Good will towards dealers

As I write, there are only sixty shopping days to Christmas-and that number will have shrunk considerably by the time you read this.

Now you, in your innocence, might imagine that the advent of the nation's annual spending spree would be a shot in the arm for a radio dealer. One can visualize him on the night before Christmas Eve, dreaming beautiful dreams of a queue of customers outside his shop, waiting for opening time to dash in and buy a colour TV set apiece for spot cash.

Having wafted the queue into the arms of his sales staff he supervises the unpacking of a gross of colour sets and two gross of monochromes, ordered only the day before yesterday. They all work superbly. Outside, in the loading bay, his fleet of vans glides away, loaded to the gunwales with serviced receivers. All over town his outside engineers are gaily clearing up the remnants of pre-Christmas calls. And so the merry day goes by, until by closing time a veritable army of satisfied customers sit snug and content in their homes, while the shop looks like Old Mother Hubbard's cupboard and two Securicor vehicles wait outside to transport the day's loot to safer lodgings.

Surprisingly, a dealer friend of mine with whom I was chatting recently doesn't altogether agree with this picture. A shade overdrawn, in his opinion. In real life, he says gloomily, the dealer would probably be living over the shop and is more likely to be awakened at 6.30 a.m. by a frantic banging on the door. Poking his head out of the window he sees, by the light of the street lamp, not a milling queue of colourconscious citizens, but one irate night-shift worker just off duty, who demands to know when the asterisked 'ell his asterisked set is coming back-it came in for repair more than twenty-four hours ago.

Gathering his sleepy wits the dealer recalls that the set in question is a socalled "Civilian" of war-time vintage for which no valves are readily available. He says as much and tentatively suggests that the purchase of a new model is long overdue. This is met with impolite incredulity. 'The set was going fine up to the last time your out-of-wedlock service engineer mucked about with
it. . . . or words to that effect. Wearily the dealer bangs the window down and brews a cup of cocoa against what is patently going to be one of those days.

By lending a hand in the service department the mountain of repairs is reduced to a hillock and, by a superhuman effort, midnight sees the last one despatched in a borrowed van. Something attempted, something done, has earned a night's repose. Uritil 3.20 a.m. that is, when a thunderous banging on the door again brings him to the window. This time it is a gentleman in blue who courteously informs him that he (the aforesaid dealer, not the constable) has been the victim of a bad case of breaking and entering and may he (the constable, not the dealer) have some details for his notebook? It does not make the dealer's Christmas any happier to find that the bucket-shop up the road, which has opened up on an eightweek lease and a 20% discount on current models, is still virgo intacta.

Perhaps my dealer friend is taking too gloomy a view of the immediate future. It could be that the milk of human kindness, hitherto a marked feature of his character, has been soured by a recent series of unfortunate personal experiences, which with your permission I will relate (and here we depart rom fantasy to sober truth).

To start with, his shop has been done, not once, but four times by thieves, but this, curiously enough, is not the source of his depression. What does really gripe him is the cavalier attitude of some radio. manufacturers who seem deliberately to go out of their way to lose the dealers' confidence. Two examples of this, will show you what I mean.

The first underlines the whole matter of manufacturer-dealer-customer relationship. One of my friend's old-established customers wanted a stereo audio outfit but couldn't afford the outlay, so the dealer sold him a mono player which, in the maker's sales brochures, was advertised as being convertible to stereo by means of add-on units. Result-a satisfied customer.

Not long after the sale the customer reappeared and explained that a modest windfall now enabled him to convert to stereo. So my dealer friend ordered the add-on kit, only to be blandly told by the
manufacturer that the units had been discontinued.

Not unnaturally, the wrath of the customer fell upon the dealer from a great height. Eventually, after some pretty acrimonious correspondence, the manufacturer supplied his latest version of the stereo add-on units, but these were more expensive than the ones required and did not physically match the original main unit. The story ends reasonably happily in that, after considerable placation, the customer was persuaded to accept the new units as an act of grace. But it could so easily have been otherwise.

And this isn't an isolated instance. Like many retail radio establishments, this one also sells electrical goods. By pressurized sales methods my friend was induced to take into stock a couple of quite expensive food mixers. Again, much the same thing happened. A customer bought one, only to return later for some advertised accessories. Back came the reply that the model had been discontinued and that no bits and pieces were available.

On this occasion the dealer raised Cain with the manufacturer's representative and that hapless buffer state scoured the area in search of the required unit. Eventually one was located in the window of a large store and in the fullness of time this was delivered in a tatty alien box with no instruction booklet. It was invoiced at the full retail price.

So the customer is happy and the representative can congratulate himself on a job well done. But both he and the dealer were badly let down, for both in turn came within an ace of losing a valuable customer. In the final analysis, however, it was the dealer who bore the brunt, having been forced into a situation whereby he had to make a profitless sale, throwing in the considerable time spent by himself and his staff as a bonus. Not only this, but he is left with another appliance of the same type on his hands.

Now, such incidents are particularly maddening because they are unnecessary. They would be more understandable if the goods came from some obscure source but they are products of British factories with names which are household words.

It is axiomatic that you can't win 'em all in business. Every fruitless demonstration which a radio dealer gives is a monetary loss to him; so also is underguarantee maintenance and the location of ultra-sticky faults when the time taken cannot always be justified on the bill. These the dealer tries to minimize but accepts them as part of the business hazard. But he shouldn't be at the mercy of manufacturers who discontinue models without warning; a reasonable notice of intent should be obligatory. (Neither, incidentally, should he have to compete with the bucket shop up the road.)

From where I am-which is admittedly not on the field of play-it doesn't look as if the Radio and Television Retailers' Association is altogether on the ball. One-or even two-swallows don't make a summer, but I have a feeling that this dealer's experiences are not uncommon.

General Purpose

 Resistance Bridge (Cat. Ref. BR1 Accuracy $\pm 0.2 \%$)A low priced portable battery operated resistance bridge utilising a high discrimination solid state null detector giving overload protection even'under severe out of balance conditions.
To facilitate use, the final balance is obtained on a single dial with 100 subdivisions.

Range: $0-1 \cdot 1 \mathrm{M}$ ohm in 5 ranges
Accuracy at $20^{\circ} \mathrm{C} \pm 0.2 \% \pm 1$ subdivision.
Minimum subdivision 0.1 ohm .
Discrimination ± 0.5 scale division.
Price £29-18-0

Resistance Bridge

 (Cat. Ref. BR2 - Accuracy $\pm 0.03 \%$)A completely portable Wheatstone Bridge utilising a sensitive solid state null detector giving the high discrimination normally associated with more sophisticated laboratory instruments. Automatic current limiting protects the null detector from overloads even under severe out of balance conditions, making the instrument suitable for use by unskilled personnel.

Range: 0-1.111 M ohms in 5 ranges.
Accuracy at $20^{\circ} \mathrm{C} \pm 0.03 \% \pm 0.5 \mathrm{minimum}$
Discrimination ± 0.05 minimum subdivision.
Price $159-0-0$

Write for further details to :-

D.E.Eloyd

Mastraimenis Limmited
Brook Avenue, Warsash, Southampton SO 36 HP .
Tel: Locks Heath 4221.

What can the world's best lock-in amplifier systems do?

The full answer is in our new 1970 'Lock-in Systems' data sheet.

But to whet your appetite...

our new System 40, for example:
... can recover signals 100,000 times below noise level and give full scale deflection for a 10 nV input,
. . . requires no frequency setting up or calibration,
. . . provides calibrated phase, switched quadrature and frequency doubling,
... and its reference input circuits accommodate virtually any waveform and also reduce the effects of ground loops.

Brookdeal

System 40.
World's most advanced lock-in Amplifier system.

You may find fault with our free gift.

They say the camera can't lie. But we bet you've found a few camera tubes that distort the truth a little. Not so with EEV vidicons.

To let you see if you're getting the best possible performance from your tubes we offer you a specially-produced test card-free!

If you're not getting the high quality picture geometry and resolution that EEV vidicons give-this test card will show up the fault.

Get yours now, simply by completing and posting the coupon.
P.S. When you convert to EEV we'll give you a free $12^{\prime \prime} \times 10^{\prime \prime}$ test card, specially mounted and laminated, with your first vidicon.

EEV vidicons have been developed to cover all TV pick-up applications, in monochrome or colour. They are available in electrostatically focused and magnetically focused types with a range of photosurfaces. Magnetically focused types can have separate mesh or integral mesh-and some are available with special construction to withstand shock and vibration.

Eņglish Electric Valve Co Ltd,
Chelmsford, Essex, England.
Telephone: 0245 61777. Telex: 99103. Grams: Enelectico Chelmsford.

To: English Electric Valve Co Ltd, Chelmsford, CM1 2 QU. Please send me a free test card with no obligation.
Name \& Position
Company
Address

Tel : exchange or code

Number
Extension
The following short questionnaire is designed to help us continue our programme of product improvement and customer service. Your co-operation in completing it will be highly appreciated.

Do you wish to be included on our mailing list for vidicon information?

How many CCTV cameras do yóu have? \qquad
What are their makes?

How many operation hours do you average per month per camera?

Approximately how many vidicons have you purchased in the last three years?

Were these from EEV or another manufacturer? Please specify

Thank you.
ENGLISH ELECTRIC VALVE CO LTD

Erie's range of high stability tin oxide resistors has a new feature that makes them unique - PLUGGABILITY. They are the 259P and 259P2 Series and are, of course, close tolerance types.
Tin oxide's enhanced robustness and reliability, plus pluggable terminations combine to make them ideal for fast, easy handling on all flow-line operations. No bent leads with Erie pluggables. Plug-in simplicity at last for PCB's with holes on 0.25 or 0.4 in centres.

To us, close tolerance means $\pm 2 \%$ or $\pm 5 \%$. High stability means $\pm 3 \%$ on load life at $70^{\circ} \mathrm{C}$, maximum dissipation. Fully available in all values from 10Ω to $300 \mathrm{k} \Omega$, these new pluggables are quite content operating up to 250 V d.c. or 0.3W.
For broader tolerance requirements specify Erie's 9P2D Series solid carbon pluggables. Their values extend from 10Ω to $12 \mathrm{M} \Omega$ $\pm 10 \%$ and they ${ }^{\prime} l l$ withstand 700 V d.c.
From their wide experience of electronic
component design Erie pioneered the development of pluggable resistors so that ERIE now, all you have to do is just plug them in. Simply. Let us send you full information without delay.

ERIE ELECTRONICS LTD.
Great Yarmouth, Norfolk.
Telephone: 04934911
Telex: 97421

Experience:

Since the beginning of industrial r.f. heating, EEV have been the pace-setters. With this experience, backed by our equal know-how in the transmitter valve field, is it any wonder that we are so well known for power triodes?

EEV make power triodes for industrial heating applications from 1 kW up to 250 kW . They are all conservatively rated and realistically designed to give good length of life. Whatever your application -for drying paper, baking biscuits, welding plastic,
treating metal-r.f. heating the EEV way is economical and dependable.

Our sales engineers are at your service to discuss designs and to recommend the best tube or combination of tubes for your particular application.

For full details just post the coupon or telephone Mr.M.J. Pitt.

English Electric Valve Co Ltd. Chelmsford Essex. England. Telephone: 0245 61777. Telex 99103. Grams: Enelectico Chelmsford

> the vital factor of EEV's industrial r.f. heating power triode range

Tronsómeres, Chokes

Saturable Renctors

Vollmolile voligee reaulators

Recilifer Sels

Transformers

Air cooled power transformers from 0.5 to 300 kVA at voltages up to 2 kV .1 of 3 phase, double or auto wound. step-up or step-down. We have manufactured transformers to over 5,000 different designs for many applications and the experience which has been accu mulated from these designs is built into every Harmsworth, Townley transformer

High Current Transformers

Years of experience have gone into the design and production techniques used in the manufacture of our low voltage, high current transformers for use in furnaces, high temperature research, heating and other applications. These techniques enable us to produce transformers with output currents up to tens of thousands of amps at economical prices

Voltmobiles

The most robust and useful control device for loads such as furnaces, ovens, bar heating and high temperature research. Our Voltmobiles are in use in their thousands to control transformers and rectifier sets or they can be used directly between supply and load. 64 step on load switching. Voltmobiles are auto-transfarmers which give control from 1.6% to 100% of input volts. Over-Volts up to 125% of input is also available. Standard models are made for single and 3 phase supply and for outputs from 20 Amps to 200 Amps with on-load switching.

Rectifiers

Sturdily built air cooled equip ment from 50 W to 500 kW for plating, plasma arc welding, electrolytic machining and many other applications. Equipment incorporates either silicon or selenium rectifiers and can be built with fixed or variable output. Variable outputs are obtained by the use of continuously variable auto transformers, saturable reactors or Voltmobile regulator.

Saturable Reactors

From 5 kVA up to 300 kVA for controlling the outputs from transformers or rectifier units.
Saturable reactors are infinitely variable reactors which can control outputs from transformers etc, from 10% to 100% of full output.

Chokes

Specific enquiries are invited

Harmswarth.
Tounley
Trunshomers
Rectifiers

HARMSWORTH, TOWNLEY \& CO. LTD. 2 Hare Hill, Todmorden, Lancs.
 Telephone Todmorden 2601 Extension 22

EEV thyratrons give greater accuracy and better performance in three major nuclear physics applications:

Linear accelerators

\square EEV thyratrons can withstand peak inverse voltages up to 20 kV following a pulse.
\square Their operation is unaffected by small reservoir voltage variations.
\square EEV thyratrons need no servicing and give trouble-free operation in oil-filled equipment.

Particle accelerators

\square EEV thyratrons ensure reliable firing. They give nano-second accuracy.
\square There are very few missing pulses. \square They require no external gas supply. \square Because they have an annular current flow EEV thyratrons can switch peak currents very rapidly without risk of arc extinction. When fitted into coaxial housings rates of rise of current up to 100kA/ $\mu \mathrm{sec}$ are possible.

English Electric Valve Co Ltd,
Chelmsford, Essex, England.
Telephone: 024561777 Telex: 99103.
Grams: Enelectico Chelmsford.

Spark chambers

\square Long life is important for spark chamber operation - and EEV thyratrons have given 10,000 hours service in some cases. \square Spurious firing is virtually eliminated. \square Jitter is kept as low as 1 ns .
\square They make possible repetition rates of up to 50 kHz due to very rapid deionisation characteristics.
\square EEV thyratrons operate over a wide range of H.T. voltages at currents up to 10 kA without change in characteristics - so drive units may be used with different chambers.
\square The low trigger voltage means that simple firing circuits are possible.
To: English Electric Valve Co Ltd, Chelmsford, Essex, England
I am interested in thyratrons for__ (application
Name \& Position
Company
Address

Tel: exchange or code
Number
ENGLISH ELECTRICVALVECOLTD

A.C. MICROVOLTMETERS

VOLTAGE \& db RANGES: $15 \mu \mathrm{~V}$.

 $50 \mu \mathrm{~V}, 150 \mu \mathrm{~V} \ldots 500 \mathrm{~V}$ f.s.d. Acc. $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 1 \mu \mathrm{~V}$ at 1 kHz . $-100,-90 \ldots+50 \mathrm{~dB}$. scale $-20 \mathrm{~dB} /+6 \mathrm{~dB}$ rel. to $1 \mathrm{~mW} / 600 \Omega$. RESPONSE: $\pm 3 \mathrm{~dB}$ from 1 Hz to $3 \mathrm{MHz}, \pm 0.3 \mathrm{~dB}$ from 4 Hz to 1 MHz above $500 \mu \mathrm{~V}$. Type TM3B can be set to a restricted B.W. of 10 Hz to set to a restricted10 kHz or 100 kHz .
INPUT IMPEDANCE: Above INPUT IMPEDANCE: Ab
$50 \mathrm{mV}:>4.3 \mathrm{M} \Omega<20 \mathrm{pf}$. $50 \mathrm{mV}:>4.3 \mathrm{M} \Omega<20 \mathrm{pf}$.
On $50 \mu \mathrm{~V}$ to $50 \mathrm{mV}:>5 \mathrm{M} \Omega$ On $50 \mu \mathrm{~V}$ to 50 mV : $>5 \mathrm{M} \Omega<50 \mathrm{pf}$.

D.C. MULTIMETERS

VOLTAGE RANGES: $3 \mu \mathrm{~V}, 10 \mu \mathrm{~V}, 30 \mu \mathrm{~V} \ldots 1 \mathrm{kV}$.
Acc. $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 0 \cdot 1 \mu \mathrm{~V}$. LZ \& CZ scales.
CURRENT RANGES: 3pA. $10 \mathrm{pA}, 30 \mathrm{pA} . .1 \mathrm{~mA}$ (1 A for TM9BP) Acc. $\pm 2 \% \pm 1 \%$ i.s.d. ± 0.3 pA. LZ \& CZ scales.
RESISTANCE RANGES: $3 \Omega, 10 \Omega, 30 \Omega \ldots 1 \mathrm{kM} \Omega$ linear. Acc. $\pm 1 \%, \pm 1 \%$ f.s.d. up to $100 \mathrm{M} \Omega$.
RECORDER OUTPUT: 1 V at f .s.d. into $\cdot>1 \mathrm{k} \Omega$ on LZ ranges.

ㄷ.. $\mathbf{~ f 7 5 ~}$

BROADBAND VOLTMETERS
H.F. VOLTAGE \& dB RANGES: $1 \mathrm{mV}, 3 \mathrm{mV}, 10 \mathrm{mV} . . .3 \mathrm{~V}$ f.s.d Acc. $\pm 4 \% \pm 1 \%$ of f.s.d. at $30 \mathrm{MHz},-50 \mathrm{~dB},-40 \mathrm{~dB},-30 \mathrm{~dB}$ to +20 dB . Scale $-10 \mathrm{~dB} /+3 \mathrm{~dB}$ rel. to $1 \mathrm{~mW} / 50 \Omega . \pm 0.7 \mathrm{~dB}$ from 1 MHz to 50 MHz . $\pm 3 \mathrm{~dB}$ from 300 kHz to 400 MHz .
L.F. RANGES: As TM3 except for the omission of $15 \mu \mathrm{~V}$ and $150 \mu \mathrm{~V}$ AMPLIFIER OUTPUT: Square wave at 20 Hz on H.F. with amplitude proportional to square of input. As TM3 on L.F.

TM6A
Long battery life and large overload ratings are leading features of these solid state instruments. Mains units and leather carrying cases are optional extras.
All A type instruments have $3 \frac{1}{4}^{*}$ scale meters and case sizes
$5^{\prime \prime} \times 7^{\prime \prime} \times 5^{\prime \prime}$, B type instruments have $5^{\prime \prime}$ mirror scale

PORTABLE VOLTMETERS

Voltage stabilisers and reference tubes in four easy pages.

Easy-to-check tables of performance facts and figures. Clearly laid-out dimension diagrams. An index of replacement equivalents containing over 80 items.

They're all here in EEV's four-page data digest on voltage stabilisers and voltage reference tubes.

Send for your copy now. Then, when you're looking for reliability plus extreme economy, you'll know where to find it.

English Eléctric Valve Co Ltd, Chelmsford, Essex, England. Telephone: 024561777.

Telex: 99103. Grams: Enelectico Chelmsford.

Winning Stable

These days, the circuit that wins out is the circuit that's more stable. And nobody knows iț better than we do at Morganite Resistors. You see, the stability of our business depends directly upon the stability we can offer you. And since low temperature coefficients
are important to the stability of your circuits, it's in our interest to make T.C.'s even lower whenever we can.
We just did.
We just reduced our T.C.'s to ± 100 p.p.m. $/{ }^{\circ} \mathrm{C}$ in the ohmic range 100 to 2 M ohms. That applies for
all our linear and rotary cermet ranges.
For you, the new Morganite specifications mean circuitry that's exceptionally stable ; from a company that's exceptionally sensitive to advances in the whole field of cermet technology. It's the breeding that counts.

FOUR NEW COMPONENTS
 FROM ASSOCLATED AUTOMATION

1 Industrial Relay Type MA A.C. or D.C. operation. Panel mounting or plug - in to octal type socket. Will last for up to 5 million operations with 1,2 or 3 poles switching up to 10 amps . Compact, lightweight and cheap.

2 Dry Reed Relay Type EnTN

 Range of up to 12 poleş.Switching capabilities up to 50 VA : breakdown voltages up to 1500 V.A.C. Life expectancy at contact rating $7.5 \mathrm{VA}, 100 \times 10^{\circ}$ operations. Cheap to buy, capable of fast action with low power consumption and bistable operation.

3 Mininture Dry Reod

Push Button Switch Series 500 Switching capability up to 4 poles, up to 0.5 amp . 10 watt. Wide range of contact arrangements and mounting styles. Angle bases for terrace keyboards, panel mounting for either single or multiple fixing. Will last for at least 5 million operations. Easy to apply, readily available, economically priced.
4 Hermetically Sealed Commercial Relay Type TFC A T.O. 5 transistor can envelope giving high isolation switching. Resists shock and vibrations, operates on powers down to 40 mW Switching capability 1 amp at 28 V.D.C. to low level (single and double pole). Economical price shough comparable

Three relays and a switch, designed by Associated Automation to cut your switching costs. Built to the highest standards of engineering, these components join the already comprehensive range of switches and relays for all communication and control purposes. All economically priced and backed by Britain's most outstanding engineering service.
Send in the coupon and we'll let you have all the information you reguits.

To: Associated Automation Limited, Electromagnetics
70 Dudden Hill Lane, London, N.W. 10.
Please send me your fully illustrated literature on (tick box applicable)

Distortion's Down-Reception's Up TRIO's 9P-59DE and JR-310

Tune in for total communications reception. Tune in with TRIO's 9R59DE and/or JR-310 SSB receivers. Amateur operators and short wave listeners the world over agree that TRIO's master engineers have ingeniously combined technique and design to achieve quality usually found in much higher-priced models. Distortion is hushed to an absolute minimum. Top-tone clarity at all times. Handy and expertly designed to help beginners easily enter the wide-wide world of communications.

9R-59DE

BUILT IN MECHANICAL FILTER 8 TUBES COMMUNICATION RECEIVER

- 4 Bands Covering 540 KHz , to 30 MHz .
- Two Mechanical Filters Ensure Maximum selectivity.
- Product Detector for S.S.B. Reception.
- Automatic Noise Limiter.
- Large Tuning and Bandspread Dials for Accurate Tuning.
- Calibrated Electrical Bandspread
- "S" Meter and B.F.O.
- 2 Microvolts Sensitivity for 10 dB S/N Ratio.

SSB COMMUNICATION RECEIVER

JR-310

- High-stability VFO of 2 FET's and 2 transistors and easily handles QSO's for hours.
- Precision double gear dial-a TRIO innova-tion- with, linear frequency variable capacitor. Possible to get finer reading 1 KHz . One dial rotation covers 25 KHz , makes SSB demodulation easier
- Frequency range covers entire amateur band from 3.5 MHz to 29.7 MHz . One-touch selection system switches bands. WWV reception of 15 MHz possible.
the sound approach to quality

TRIO KENWOOD ELECTRONICS S.A. 160 Ave., Brugman, 1060 Bruxelles Belgium Sole Agent for the U.K.
B.H. MORRIS \& CO.,(RADIO) LTD 84/88, Nelson Streat, Tower Hamlets, London E. 1 Phone: 01.7904824

In just 2 minutes, find out how you can qualify for promotion or a better job in Engineering ...

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast makes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn on 'SATISFACTION - OR REFUND OF FEE' terms. If you'd like to know how just a few hours a week of your spare time, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

Mechanical	Auto \& Acro	General
A.M.S.E. (Mech.)	A.M.I.M.I.	C.E.I.
Inst. of Engincers	MAA/IMI Diploma	Petroleum Tech.
Mechanical Eng.	C. \& G. Auto Eng.	Practical Maths.
Maintenance Eng.	General Auto Eng.	Refrigerator
Welding	Motor Mechanics	Servicing.
General Dissel Eng.	A.R.B. Certs.	Rubber Technology
Shect Metal Work	Gen. Acro Eng.	Sales Enginecr
Eng. Inspection		Timber Trade
Eng. Metallurgy	Management \&	Farm Science
C. \& G. Eng. Crafts	Production	Agricultural Eng.
C. \& G. Fabrication	Computer Programming Inst. of Markcting	Gencral Plastics
Draughtsmanship	A.C.W.A.	General Certificate
A.M.I.E.D.	Works Management	of Education
Gen. Draughtsmanship	Work Study	Choose from 42
Die \& Press Tools	Production Eng.	' O ' and ' A ' Level
Elec. Draughtsmanslip	Storekceping	subjects including:
Jig \& Tool Design	Estimating	English
Design of Elec. Machines	Personnel Management	Chemistry
Technical Drawing	Quality Control	General Science
Building	Electronic Data Processing	Geology Physics
Electrical \& Electronic	Numerical Control	Muhtematics
A.M.S.E. (Elec.)	Planning Engineering	Technical Drawing
C. \& G. Elec. Eng.	Matetials Handling	French
General Elec. Eng.	Operational Rescarch	German
Installations \& Wiring	Metrication	Russian
Electrical Maths.	Constructional	Spanish
Electrical Science	A.M.S.E. (Civ.)	
Computer Electronics	C. \& G. Structural	
Electronic Eng.	Road Engineering	have recorded zeell
	Civil Engineering	over 10,000 G.C.E.
Radio \& Telecomms.	Building	successes at ' O ' and
C. \& G. Radio Servicing	Air Conditioning	'A' level.
Radio Amateurs' Exam.		WE COVER A WIDE
Radio Operators' Cest.	Clerk of Works	RANGE OF TECHNICAL
Radio \& TV Enginçering	Building Drawing	AND PROFESSIONAL
Radio Servicing	Surveying	EXAMINATIONS.
TV Scrvicing	Painting and	
Colour TV	Decorating.	have obtained City \& Guilds
Practical Radio \&	Builders' Quantities	Certificates. Thousands of.
Electronics (with kit)	Bulders Quandides	other exam successes.

THEY DID IT-SO COULD YOU

"My income has almost trebled . . . my life is fuller and happier." - Case History G/321.
"In addition to having my salary doubled, my future is assured." - Case History H/493.
"A turning point in my career - you have almost doubled my standard of living." Case History K/662.
"Completing your Course meant going trom a job I detested to a job I love." - Case History B/461.

FIND OUT FOR YOURSELF

These letters - and there are many more on file at Aldermaston Court - speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's. no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you.

7ree!

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

> BRIISH IUSIIUITEF ERGIINERING IEEHNOLGGY

Dept D259, Aldermaston Court, Reading RG7 4PF.
(Write if you prefer not to cut this page)

B.IE.T-IN ASSOCIATION WITH THE SCHOOL OF CAREERS-ALDERMASTON COURT, BERKSHIRE

Small size perjormer!
 BIG

She lives with power units every day and knows the A.P.T. reliability and stability that makes the TCU 250 top of the pops. Phone for further details but don't ask for Vivien, she's marriedl

A.P.T. ELECTRONIC INDUSTRIES LTD.,

 Chertsey Road, Byfleet, Surrey. Tel: Byfleet 41131/4 WW-019 FOR FURTHER DETALS
Semi-rigid coaxial cable from UNIFIRMM TUPES

Over 30 standard types available in sizes from $.008^{\prime \prime}$ to $390^{\prime \prime}$ plus specials to order! In addition to 50 ohms; $93,75,70,25$ and 10 ohm cables are obtainable.

Uniform Tubes MicroCoax Solid Jacketed coaxial cable is manufactured in either copper or aluminium

Lowest possible attenuation* Eliminates radiation leakage* Strips and solders easily* Smaller than conventional* cables
Easily fabricated into infinite* variety of shapes

Available
MicroCoax Delay Lines. Write NOW for the latest catalogue, UT202D

WW- 020 FOR FURTHER DETALLS

Service managers are short of space, short of time and daren't waste money on call-backs

That's why they insist on Mullard valves

To provide the service your customers need insist on Mullard. It means fewer call-backs. Every time you call back, profits vanish. So naturally you replace valves-anybody's valves-with Mullard valves. You know how reliable they are.
Don't carry unnecessary stock and don't have receivers held up in your service bay.
Remember the top service types :

DY86/87	PC88	PCL82	PL504
ECC82	PCC84	PCL84	PY81/800
EF80	PCC89	PCL86	ECL80
EF183	PCC189	PL805/85	PC97
EF184	PCF80	PFL200	PCL83
EY86/87	PCF86	PL36	PY33
PC86	PCF801	PL81	
M			

Twonew models from Garrard

The SP 25 MkIII a single play unit cleanly styled in black and silver with performance to DIN 45-500 will be even more popular than its predecessor the SP 25 MkII which dominates this market.

Single record play with fully automatic facility; three-speed with aluminium turntable; calibrated bias compensator; viscous-damped cue and pause system; a slide-in cartridge carrier; dynamically balanced, low. resonance tubular pick-up arm; and calibrated fine stylus force adjustment.
Recommended retail price-£12.12.6. plus £3.1. 8. P.T.

The AP 76 is designed for the discerning customer. Its elegant styling matches its superb performance.

Only Garrard offer such a fine transcription turntable with as many features in this price range. A three-speed fully automatic or manual play unit styled in satin black and silver. Finger-light tab controls; low resonance tubular pick-up arm dynamically counterbalanced by a decoupled weight; gimballed rear arm pivotry. Slide-in cartridge carrier; bias compensator calibrated for spherical and elliptical styli; a calibrated fine stylus force adjustment; large diameter aluminium turntable and a viscous damped cue and pause system. All units individually tested to DIN 45-500 standards.
Recommended retail price-£21.1.11. plus £5.3.2. P.T.

Just five seconds per point for perfect fixing-neater, more compact, safe and permanent. The Cradleclip (8) system permits quick and easy wiring amendments-cuts costs all round. Comprises binders and clips for loose wiringcradles and clips for anchored wiring. Binders and cradles are in tough, virtually unbreakable nylon for all-climate insulation. Clips are in PVC, Neoprene (for special duties) or Butyl rubber (for aircraft applications). Post the coupon for samples by return.

Please send me samples of the three types of Insuloid Cradleclips ${ }^{\text {(8) }}$ and full descriptive literature.

MANUFACTURING CO. A division of Bowthorpe-Hellermann Ltd.,

LEESTONE RD.,WYTHENSHAWE, MANCHESTER. M22 4RH
Tel : Wythenshawe 5415
(A member of the Bowthorpe Holdings Group of Companies)
wn:10/70

New Constant Voltage/ Constant Current 'L' Series

Units Available

L.30B £36
L.30C $\quad 0-10 \mathrm{~V}$ at 3 A (with adjustable overvoltage crowbar circuit)
L.30D $0-30 \mathrm{~V}$ at 2 A £56
L.30E 0-30V at 5A \quad £82
L.30F $\quad 0-12 \mathrm{~V}$ at 10 A (with adjustable overvoltage
$\begin{array}{lll}\text { L. } 30 \mathrm{~A} / \text { T } & 2 \times 0-50 \mathrm{~V} \text { at } 500 \mathrm{~mA} & £ 86 \\ £ 72\end{array}$
L.30B/T $2 \times 0-30 \mathrm{~V}$ at $1 \mathrm{~A} \quad £ 72$
L.30D/T $\quad 2 \times 0-30 \mathrm{~V}$ at 2 A £112

Features

* Continuous variability of voltage and current settings
* Constant voltage or constant current operation
* Programmable output
- Extremely stable output against load/line variations
* Separate on/off switching of mains input and DC output
- Adjustable current limiting facility on all units
- Varlable SCR over-voltage crowbar circuit on L.30C and L.30F.
* Clean functional design with precise monitoring of voltage and current by clear scale meter

FARNELL INSTRUMENTS LTD., Sandbeck Way, Wetherby, Yorkshire

Telephone: 0937 3541/6
London Office: Telephone : 01 802/5359

Take a QUAD 50E Amplifier a good satat to say in mastataion

 plug it into your monitor system and it bridges 600Ω lines to drive your speakers.Take that same amplifier and, without changing it in any way, plug it into another installation to deliver 50 watts into 100 volt line $*$ from a 0.5 volt inbalanced source. This versatility and its attendant easing of stocking and maintenance problems is one reason why large organisations use the Quad 50E.
*or indeed any other impedance from 5 to 250 ohms.

Other advantages appropriate to users of all sizes include:
Excellent power and frequency response (-1dB). Low distortion (0.1% at 1 kHz at all power levels).
Low background (better than 83 dB referred to full output).
Pre-set level control adjustable from front panel.
Unconditionally stable with any load.
Proof against misuse including open or short circuited output.
Small size ($4 \frac{3^{\prime \prime}}{4} \times 6 \frac{1^{\prime \prime}}{4} \times 12 \frac{3^{\prime \prime}}{4}$) 一
($120 \mathrm{~mm} \times 159 \mathrm{~mm} \times 324 \mathrm{~mm}$).
Low price ($£ 47.0 .0$ each nett for 1 off to the professional user).

HEATHKIT announce

PROFESSIONAL HI-FI EQUIPMENT FROM THE KIT PEOPLE

Model AR-29. AM-FM multiplex stereo Tuner/ Amplifier. 50 watts (IHF) power output each channel, with less than 0.25% THD (8 ohm load). Inputs adjustable to accommodate all types of pick-up. FET FM front end plus integrated circuit design give tuner
1.8 uV sensitivity stereo separation 40 dB at midfrequencies. Special modular plug in units separate all circuits.
KIT PRICE £168. O. O.

Model AA-15. Truly one of the best Stereo Amplifiers available. 150 watts total dynamic power. 0.5% distortion. Outstanding response $(\pm 1 \mathrm{~dB} 8 \mathrm{~Hz}$ to 40 kHz . 1 watt). Individual input level controls. Massive power supply, positive circuit protection, all silicon transistor circuitry. Five individual modules separate all circuits minimising hum and noise. KIT PRICE £84. 0. 0.

Model AR-19. AM-FM multiplex stereo Tuner/Amplifier. 30 watts (IHF) power output each channel, with less than 0.25% THD (8 ohm load). Can be used with all types of pick-ups. Linear motion controls Tuner sensitivity 2.0 uV (IHF). FM stereo separation 35 dB at midfrequencies. New FET front end. Four I/C stages. Electronically regulated power supplies. Choice of Walnut or Teak cabinet. KIT PRICE $£ 118$. O. 0.

Model AJ-15. One of the most advanced Stereo Tuners. Features an exclusive design FET tuner with two FET RF amplifiers and an FET mixer for excellent sensitivity (1.8 uV) and reduced cross modulation. IF stages include two crystal filters. Two calibrated tuning meters, individual Squelch, Balance, Phase, and level controls. FM stereo separation better than 40dB. KIT PRICE £ 115 . 0 . 0 .

Reduced Prices! More New Models

Model AR-14. Modestly priced FM stereo Tuner/ Amplifier 30 watts total music power output with less than 0.5% distortion. Power response $\pm 1 \mathrm{~dB} 15 \mathrm{~Hz}$ to 50 kHz . Many features incorporated usually only found in more expensive receivers, all in a compact size-only 4 inches high by $15 \frac{1}{4}$ wide. KIT PRICE $£ 59$. 0 . 0 .

Model AR-15. Superb AM/FM multiplex stereo Tuner/ Amplifier Magnificent 150 watts total output. FM features:-FET front end tuner with six tuned circuits two integrated circuits plus two crystal filters in the IF amplifier. Two calibrated tuning meters. Automatic stereo indicator and FM squelch circuits. All controls conveniently sited on the front panel. Many other advanced features for the finest natural sound. KIT PRICE $£ 192$. O. O.

Model AD-27. All the features of the AR-14 Stereo Tuner/Amplifier in the small space of a 'Compact'. The beautiful Teak or Walnut cabinet houses the high quality turntable, Tuner/Amplifier and it is only necessary to attach loudspeakers and you have an excellent stereo music system. KIT PRICE $£ 88$. 0 . 0 .

Model Ambassador. A speaker system incorporating three speakers to provide well-balanced sound. Will handle large scale choral or orchestral music and yet at the same time will produce excellent results at lower sound levels. Features $12^{\prime \prime}$ Bass $5^{\prime \prime}$ mid and $1^{\prime \prime}$ HF unit plus multi-element crossover. Finished in

Teak or Walnut with matching cloth and trim.
KIT PRICE £33. O. O.

Model Trent. A new addition to the Heathkit range of loudspeakers. Moderately priced yet providing excellent reproduction, this small speaker enclosure $\left(19^{\prime \prime} \mathrm{H} \times 10^{\prime \prime} \mathrm{W}\right.$ $x 8 \frac{1}{4}{ }^{\prime \prime} \mathrm{D}$) will need the minimum room space. $8^{\prime \prime}$ Bass plus $4^{\prime \prime} \mathrm{HF}$ unit, 8 ohms. Finished in Teak or Walnut veneer. KIT PRICE \& 14. 0.0 .

PLEASE SEND ME YOUR FREE 1971 HEATHKIT CATALOGUE
NAME (Block letters)
ADDRESS
\qquad

THE Olawnis DE-SOLDERING TOOL

Self-contained-does NOT require the use of air-lines or pumps

- Simple, light and inexpensive

PERMABIT nozzle will not wear or become eroded by the solder
Standard nozzle $\frac{5}{64}$ in. bore. Alternative, $\frac{3}{64} \mathrm{in}$. bore

- Mains or low voltages

Please ask for colour catalogue A/5
LIGHT SOLDERING DEVELOPMENTS LTD 28 sylemam Road, Croydon, Cr9 24
Telephone: 01-688 8589 \& 4559

WW- 028 FOR FURTHER DETAILS

Abeurate and direet mersuremment of speri without coupling to moving parts

 FRAHM
 resonant reed TACHOMETERS

for hand use or permanent mounting
Ranges and combinations of ranges from 900 to 100,000 r.p.m.
Descriptive Literature on Frahm Resonant Reed Tachometers and Frequency Meters available from the sole U.K. Distributors. Manufacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largest stocks in the U.K. for off-the-shelf delivery.

When it comes to selecting a sound system you want a lot of things. Loud and clear sound to the farthest corner. 100 per cent reliability. The most modern components. Proper installation. Back up from a company with experience. And a minimum cost.

All that and more.

Altec sound systems have been selected by all types of users throughout the world. Large and small. Famous and not so famous. At indoor sports arenas. Outdoor stadiums. Fieldhouses and auditoriums. Concert halls and theatres. Airports. And all types of religious structures. Before you select your sound system, find out more about Altec.
Write for complete details and a free catalogue today.
LTV Ling Altec Ltd., Baldock Road, Royston, Herts; or LTV Ling Altec, International Division, 1515 S. Manchester Avenue, Anaheim, California, U.S.A. 92803.

A Quality Co. of LTV Ling Altec, Inc.

You can depend on Altec sound

To reproduce and record realistic and crystal-clear sound, it takes good equipment. And that is where we come in with a complete line of products for the broadcast and recording industries.
\square Monitor speaker systemslarge and small.
\square Speaker components.
\square Power amplifiers-transistorized and even portable.
\square Input equipment-including master studio control consoles, mixer-amplifiers and pre-amplifiers.
\square Audio controls-including mixers, equalizers, attenuators and custom console components.
\square A full line of professional and general-purpose microphones.

30 years of Altec experience is proof of quality performance in studios, concert halls, theatres, auditoriums and arenas throughout the world. You can depend on Altec-as a standard for performance, reliability and low operating expense.
Write for details to:
LTV Ling Altec Ltd., Baldock Rd., Royston, Herts; orLTV Ling Altec, International Division, 1515 S. Manchester Avenue, Anaheim, California, U.S.A. 92803.

Y Allit

A Quality Co. of LTVLing Altec, Inc.

This

new

range of
AIR SPACED VARIABLE CAPACITORS and TRIMMERS ...

CATALOGUE AVAILABLE NOW!

Send today for our NEW LIST 300 detailing our wide range-from miniature air spaced trimmers up to
large high voltage
transmitting capacitors.

SUB MINIATURE TRANSFORMERS

We have facilities for the manufacture of miniature transformers to customers' own designs-and would welcome any enquiries.

Write today for complete details
H. TINSLEY \& CO LTD • WERNDEE HALL

SOUTH NORWOOD • LONDON SE25 • 01-654 6046

A double 3-in-1 value from Sankyo. Micro motors, level meters, and magnetic heads. Now is the time to rely on one manufacturer for these important. product integrals instead of purchasing one here, another there. You will save time and money-and get quality and reliability on top of economy! Many other models available.For further details write

Sankyo (Europe) Export und Import G.m.b.H.A
4 Oüsseldort. Kölnerstr. 65-a, West Germany. Tel: 350281 Telex: 8587097 Cables: SANKYORGEL DUSSELOORF
Sankyo Selki Mfg. Co., Ltd.:
17-2. Shinbashi 1-chome, Minato-ku. Tokyo 105. Japan. Tel: Tokyo 591-8371 Cables: SANK YORGEL TOKYO
American Sankyo Corp.
95 Madison Ave.. New York. N.Y. 10016, U.S.A. Tel: LE - 2 - 8020
visubl hick

This is a high fidelity amplifier (0.3% intermodulation distortion) using the circuit of our 100% reliable- 100 Watt Amplifier (no failures to date) with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for $3-30 / 60 \Omega$ balanced line microphones, and a high impedance line or gram input followed by bass and treble controls. 100 volt balanced line output

THE VORTEXION 50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4-WAY MIXER USING F.E.T.s.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms -15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.

THE 100 WATT MIXER AMPLIFIER with specification as above is here combined with a 4 channel F.E.T. mixer, 3 mic. 1 gram with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{~dB}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms -15 ohms and 100 volt line. Bass and treble controls fitted.
Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 dB and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1-low mic. balanced and Hi Z gram.

ELECTRONIC MIXERS. Various types of mixers available. 3-channel with accuracy within 1 dB Peak Programme Meter. 4-6-8-10 and 12-way mixers. Twin 2, 3, 4 and 5 channel stereo. Built-in screened supplies. Balanced line mic. input. Outputs: 0.5 V at 20 K or alternative 1 mW at 600 ohms , balanced, unbalanced or floating.

OUER A QUARTER OF A MILLION COPIES SOLD SINCE 1948

LOUDSPEAKERS

Fifth edition-336 pages, 230 illustrations.
Cloth bound.
PRICE 30/- (32/6 post free).

A standard work on the subject of
loudspeakers, now in its 24th impression.

CABINET HANDBOOK

112 pages, 90 illustrations. PRICE 7/6 ($8 / 6$ post free). Semi-stiff cover.
Cloth bound 15/- (16/6 post free).
Practical information about woodworking,
veneering, polishing etc., plus 22 pages on loudspeaker cabinet design.

AERIAL HANDBOOK
 (Second Edition)

176 pages, 144 illustrations.
PRICE (semi-stiff cover) 15/- (16/6 post free).
Cloth bound 22/6 (24/- post free).
This revised edition includes explanations and requirements relating to colour TV and Multiplex stereo.

MUSICAL INSTRUMENTS AND AUDIO
240 pages, 212 illustrations. Cloth bound. PRICE 32/6 (34/6 post free).
Intended to appeal to both the concert-goer and the audiophile.

ABOUT YOUR HEARING

132 pages, 112 illustrations.
PRICE (semi-stiff cover) 15/6 (16/6 post free).
Cloth bound 22/6 (24/- post free).
Many aspects of audiology, age and noise effects are expertly covered, with guidance for the hard of hearing.

Compact power in rechargeable form

Various sizes and ratings for applications from electronics to emergency power supply systems. DRYFIT PC BATTERIES rechargeable d.c. power units featuring dry cell stability with wet cell capacity.
Extended shelf-life of 16 months at $20^{\circ} \mathrm{C}$ ambient, without recharging. Can be fitted and charged sideways, longways or upside-down:: long life - virtually indestructible.

AUDIO BIOGRAPHIES

344 pages, 64 contributions from pioneers and leaders in Audio, 112 illustrations. Cloth bound. PRICE 25/- (27/- post free).
Vital information on the development of radio, audio, hi fi etc., from the early days up to 1961.

ATOZIN AUDIO

224 pages, 160 illustrations. Cloth bound. PRICE 15/6 (17/- post free).

PIANOS, PIANISTS AND SONICS
190 pages, 102 illustrations. Cloth bound.
PRICE 18/6 (20/- post free).

```
ALL THE ABOVE BOOKS CONTAIN THE USUAL TOUCHES OF HUMOUR ASSOCIATED WITH THIS WRITER
```

[^7]Published by:
RANK WHARFEDALE LTD., IDLE, BRADFORD, YORKS.

AFUniversal Bridge reads to 6 figuresin 6 seconds

B331 Mk II is an Autobalance turly: und unves precise values uf sumfle componemts or any L.CRtambanation - moluding me:liat" we reststance.
Autobalance s ircurts give contmuous readout, even of changmy walues.

Analog Outputs from whe wase and quadirature channols for operatumg recorders.
Comparator faciitios and cuntinuutisly variable backing-off controis permit riscrimination to 10 parts per million.
Simplicity of operation : a flexible
lead arrangement gives 2, 3 or 4-terminal connections.
Automatic compensation for lead mimedance

WAYNE KERR

THE WAYNE KERR COMPANY LIMITED

DC300

DUAL-CHANNEL POWER AMPLIFIER

Frequency Response
Phase Response
Power Response
Power at Clip Point
Total Output (IHF)
I.M. Distortion ($60-7 \mathrm{KHz} 4: 1$)

Damping Factor
Hum and Noise $(20-20 \mathrm{KHz})$

Slewing Rate
Dimenslons
Weight
Finish
$\pm 0.1 \mathrm{db}$ Zero- 20 KHz at 1 wat into 8 ohms, $\pm 0.6 \mathrm{db}$ Zero- 100 KHz . Less than $5^{\circ}, 0-10 \mathrm{KHz}$.
$\pm 1 \mathrm{db}$ Zero- 20 KHz at 150 watts RMS into 8 ohms
Typically 190 watts RMS into 8 ohms, 340 watts RMS into 4 ohms per channel.
Typically 420 watts RMS into 8 ohms, 800 watts RMS into 4 ohms.
Less than 0.1% from 0.01 watt to 150 watts RMS into 8 ohms, typically below 0.05%. (max 0.05%.
Greater than 200 (Zero to 1 KHz into 8 olums at 150 watts RMS). 100 db below 150 watts RMS output (unweighted, typical 110db).

8 volts per micro-second. S-R is the maximum value of the first derivative of the output signal. 19 in . standard rack mount (W.E. hole spacing), 7 in . height, $9 \frac{3}{4} \mathrm{in}$. deep (from mounting surface) 40 pounds net weight.

Bright-anodized br ushed-aluminium front-panel with black-anodized front extrusion, access door, and chassis.
\star DC-Coupled throughout!
\star Short Circuit proof!
$\star 500$ Watts RMS Mono.
$\star 70$ Volt Balanced line out!
\star Only $£ 320$ inc. duty!

CARSTON ELECTRONICS LTD.
71 OAKLEY ROAD
CHINNOR, OXON.
Telephone: Kingston Blount 8561

WW- 038 FOR FURTHER DETAILS

TELEPRINTERS •PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSNG EUUPMENT

sALE OR HIRE

2-5-6-7-8 TRACK AND MULTIWIRE EQUIPMENT

Special Codes Prepared

TELEGRAPH AUTO MATION AND COMPUTER PERIPHERAL ACCESSORIES DATELMODEM TERMINALS, TELEPRINTER SWITCHBOARDS

Picture Telegraph, Desk-Fax, Morse Equipment: Converters and Stabilised Rectifiers; Line Transformers and Noise Suppressors; Tape Holders, Pullers and Fast Winders; Governed, Synchronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass Filters; Teleprinter, Morse, Teledeltos Paper, Tape and Ribbons; Polarised and specialised Relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment; Racks and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Connectors, Wires, Cables, Jack and Lamp strips, and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.

W. BATEY \& COMPANY

Sprague low cost ATB features all welded connections, ultra low leakage, and stable life under severe conditions.

サー EDNMDONENTS LTD 5 LOVEROCK ROAD, READING, RG3 $10 S$ Tel. 580616/9 Telex 84529 MINISTRY OF TECHNDI OGY APPROVED DISTAIBUTOA WW-040 FOR FURTHER DETAILS

Confidere. v, (Lat.)

WELWYN ELECTRIC LIMITED

(Founded 33 years ago)

ADEOLA slash soldering bit costs by upto 50\%

An ordinary Copper bit after 12,500 joints

An
 ADCOLA

Long-life bit after
100,000 joints

Too good to be true?

Send for free test sample NOW!

 SOLDERING EQUIPMENT
 ADCOLA
 Mead Tradr MaFk

[^8]and reduced bit maintenance increases saving still further.

Save yourself time by talking about your applications (PCM, TV, Puise, HF, etc.) to our specialist engineers. If we can't meet your requirements from our own extensive range, then we'll tell you who can.

Thescope specialists

[^9]East Mains Industrial Estate,
West Lothian, Scotland.
Tel. Broxburn 2631
World Wide Sales \& Scrvice

Dynamco a division of DCA

Announcing audio event of this generation:

4-channel stereo from 2-channel sources

Sansui, Japan's most distinguished maker of fine audio products, takes pride in announcing an event of epochal dimensions in recorded sound - the new Sansui Quadphonic Synthesizer (QS-1).

It represents the beginning of a revolution in the enjoyment of recorded music.
And happily, it will be an inexpensive revolution.
Widely hailed-in its "sneak preview" at the prestigious New York Consumer Electronics Show in June, the QS-1 actually succeeds - through a technique known as "phase modulation" - in converting 2-channel stereo to 4-channel stereo in establishing a "sound field" as opposed to the sound-originating points in conventional systems.

Perhaps the most significant aspect of this historic achievement is that it does not render obsolete existing stereo equipment and program sources. With the Sansui QS-1, all can continue to be used and enjoyed. As no other existing system - including expensive, so-called "real" 4-channel stereo-can be enjoyed. Whether your tastes run to the classical, rock or whatever, the QS-1 permits a liveliness, a "presence" that is astounding even veteran audio technicians.

The Sansui QS-1 Quadphonic Synthesizer - the audio event of this generation - is already on its way to distributors and dealers the world over.

Watch these pages for announcements about when you can hear it.

How much is your company paying for multimeters?

Eagle multimeters offer top quality, accuracy and years of faithful service but still cost less - ask top companies like NCR or Addressograph - Multigraph. The two dramatic examples below show you what we mean - compare the specifications and performance, then check the price tag !

	KEW 66	BRAND X	K1400	BRAND X
OC OHMS PER VOLT:	20.000	10.000	20.000	20.000
AC OHMS PER VOLT:	10.000	1.000	5,000	1.000
OC VOLTS	$0-1.000$ volis in 10 ranges	$0 \cdot 1,000$ volts in 7 ranyes	0-5.000 volts in 8 ranges	0.2 .500 volts in 8 ranges
AC VOLTS	$0 \cdot 1.000$ volts in 10 ranges	$0-1.000$ volts in 5 ranges	$0.5,000$ volts in 6 ranges	$0-2.500$ volts in 7 ranges
DC CURRENT:	$0-500 \mathrm{~mA}$ in 4 ranges	$0-14$ in 5 ranges	$0-10 \mathrm{~A}$ in 6 ranges	$0-10 \mathrm{~A}$ in 7 ranges
AC CURRENT:	-	-	$0-10 \mathrm{~A}$ in 4 ranges	0.10 A in 4 ranges
RESISTANCE:	$0-5 \mathrm{M}$ OHM in 4 ranges	$0-2 \mathrm{M}$ OHM in 2 ranges	O-20M OHM in 3 ranges	0.20 M OHM in 3 ranges
ACCURACY:				
OC VOLTS 6 CURRENT	2.5\% of FSO	2.25\% of FSD	3\% of FSO	2% of FSO
AC VOLTS	3\% of FSD	2.75\% of FSD	3\% of FSO	2.25\% of FSD
dVERLOAD PROTECTION:	YES	NO	YES	YES
FITTED CASE:	YES	YES	OPTIONAL EXTRA	OPTIONAL EXTRA
SIIE:	$185 \times 102 \times 44 \mathrm{~mm}$	$197 \times 102 \times 41 \mathrm{~mm}$	$203 \times 164 \times 96 \mathrm{~mm}$	$204 \times 185 \times 115 \mathrm{~mm}$
LIST PRICE:	[10.4.0.	OVER f12	f23.14.0.	DVER 537

These are just two examples. The wide, wide Eagle range offers a lot more! Ring or write for more information and the 40-page Eagle electronics catalogue.
Eagle International
Coptic Street
London, WCiA inR.
Tel: oi-636 096i

LOOK UP TO EAGLE FOR VALUE IN ELEGTRONIGS

WW-045 FOR FURTHER DETALLS

LITTLE 風LAMPS?

When it comes to deciding where you will buy your miniature and sub-miniature lamps, there are powerful arguments as to why you should go to Vitality Bulbs Ltd.
The longest experience, the widest research and the largest specialist plant in Europe give Vitality Bulbs a pretty high rating by any one's standards.
A few minutes with our catalogue and samples of what you are seeking, which we will gladly send, will certainly convince you ... so, why not get that catalogue now.

VITALITY BULBS LTD.

The largest makers of the smallest lamps

Beetons Way, Bury St. Edmunds, Suffolk.
Tel: 0284-2071, Telex 81295
A General Instrument Electro-Optical Products Group Company.

CALIBRATION PROBLEMS?

We specialise in the repair and calibration of all proprietary and commercial test equipment

We can provide the following services

- fully guaranteed repair of INSTRUMENTS
- calibration carried out to MANUFACTURERS' SPECIFICATION
- ALL TYPES OF MULTI-METERS, INC. AVOMETERS, REPAIRED
- REPAIR SERVICE 7 DAYS
- WIRING AND SHEET METAL FACILITIES

Write or 'phone
FIRNOR-MISILON LIMITED MARSHGATE TRADING ESTATE, MARSHGATE DRIVE, HERTFORD. TEL: HERTFORD 5584

WIRELESS WORLD

ENQUIRY SERVICE FOR

PROFESSIONAL READERS

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.

PLEASE USE CAPITAL LETTERS

Pour obtenir tout renseignement complémentaire sur les produits mentionnés dans les articles ou dans les pages publicitaires de ce numéros nous vous prions de remplir une ou plusieurs des cartes ci-jointes en inscrivant le ou les numeros de référence. Vos demandes de renseignement seront transmises aux fabricants intéréssés qui, en temps voulu, vous feront parvenir une réponse. Il est nécessaire d'affranchir les cartes postées a l'étranger. Ces cartés de service sont valides pendant six mois à partir de la date de publication.

PRIĖRE D'ECRIRE EN LETTRES MAJUSCULES

Weitere Einzelheiten über irgendwelche Artikel, die auf Redaktion-oder Anzeigenseiten erscheinen, erhalten Sie, indem Sie eine oder mehrere der beigelegten Karten ausfüllen und die Kenn-Nummer(n) angeben, Ihre Anfrage wird an den Hersteller weitergeleiter, und Sie werden dann direkt von ihm hören. Karten die im Ausland aufgegeben werden, müssen frankiert werden. Diese Service-Karten sind sechs Monate vom Ausgabetag gültig.

BITTE IN BLOCKSCHRIFT AUSFÜLLEN

Per ulteriori particolari in merito agli articoli menzionati nel testo o nelle pagine pubblicitarie di questo numero Vi preghiamo di completare una o più delle schede allegate citando il numero o i numeri di riferimento. La Vostra richiesta sarà inoltrata ai fabbricanti interessati che Vi risponderanno direttamente. Le schede dall'estero devono essere regolarmente affrancate. Questo scontrino di servizio é valido per sei mesi dalla data di pubblicazione.

SI PREGA DI COMPILARE LE SCHEDE
STAMPATELLO

Con objeto de obtener mas detalles de cualquiera de los articulos mencionados en las páginas editoriales o de anuncios de este número sirvase rellenar una o más de las unidas tarjetas citando el número o números de referencia. Sus consultas serán transmitidas a los fabricantes interesados de quines tendrán noticias directamente a su debido tiempo. Las tarjetas enviadas desde el extranjero requieren franqueo. Estas tarjetas de servicio son validas durante 6 meses a parir de la fecha de publicacion.

SIRVASE ESCRIBIR CON LETRAS MAYUSCULAS

10-12 Watts - 25 kVA
 DRAKE TRANSFORMERS

INCORPORATING

Mains Transformers
Chokes

Audio Output Transformers
Audio Input Transformers
Saturable Reactors

Current Transformers

We trust we will be forgiven by the makers of the world famous 57 varieties for our claim that ANDERS MEANS METERS. When it comes to variety, the Anders range of meters is the largest and most comprehensive in the country - Panel Mounting and Portable ... Moving Coil, Moving Iron, Electrostatic, Thermo-Couple, Motammeters,

Frequency Meters, Wattmeters, Contact Meters . . . plus Current transformers, Shunts and other ancillary items. Many requirements can be supplied off the shelf. Fast delivery of non-standard instruments, in small or large quantities.

AnDERS ELECTRONILS LIMITED

48/56 Bayham Place, Bayham Street, London, N.W. 1 Telephone 01-3879092.

Manufacturers and distributors of Electrical Measuring Instruments and Electronic Equipment. Sole U.K. distributors of FRAHM
Resonant Reed Frequency meters and Tachometers.

OMRON PRECISION CONTROLS

 division of I.M.O. precision controls limited process timers - level controls - limitswitchesmicro switches - sensors - proximity switches

313,EDGWARE ROAD, LONDON, W.2. TELEPHONE: 01•723 2231

SYS PRECISION TIMER

High accuracy timer, with automatic reset, and impulse start facilities

- Instantameous and timed-out contacts rated at 6 amps
- Life in excess of 10 million operations
- Dial ranges from 0-10 seconds, and up to 28 hours
- Repeat accuracy $\pm \frac{1}{2} \%$ of full scale
- Delivery from stock
$\mathbf{£ 1 1}$ dependent on quantity.

TDS TRANSISTORISED TIMER

- Full range

Fully transistorised timer, with built-in output relay and plugin base.

- Instantaneous and timed-out contacts
- Life in excess of 50 million operations
- Dial ranges up to 180 seconds. linear time scale
- On/off signal lamps fitted
- Delivery from stock
£10 dependent on quantity.
LIMIT SWITCHES

- Roller arms
- Plungers
- Coil spring
- Rod
- 10 amp rating
- 10,000,000 operations
- Delivery from stock

MICROSWITCHES

New, modern timer for panel mounting, high accuracy with set and moving pointers.

- Synchronous motor and clutch mechanism
- Two output contacts rated at 5 amps
- Life in excess of 5 million operations
- Dial ranges from $0-10$ seconds and up to 28 hours
- Repeat accuracy $\pm \frac{1}{2} \%$ of full scale
- Delivery from stock
$£ 8$ dependent on quantity.

- Full range

STP LOW COST TIMER

Low cost, plug-in timer. with automatic reset. and impulse

- Very low cos start facilities.
- All types of actuators
- Miniature size. plugs in to standard octal sockets
- Heavy and light duty switches
- Synchronous motor and clutch mechanism
- Coin-operated switches
- Dial ranges from 0-6 seconds, and up to 72 minutes
- New sub miniature switch
- Repeat accuracy $\pm \frac{1}{2} \%$ of full scale
- Delivery from stock
£6 dependent on quantity. type SS5 breaks price barrier for large quantity users.

61 FGP FLOATLESS LEVEL CONTROLLER

Plug-in switch with stainless steel electrodes; senses changes in liquid levels through variations in resistance between electrodes. Controls pump operation to empty and fill tanks or other vessels to pre-determined levels.

- Simple to install and maintain, even in flowing liquids
- No electrolytic action
- Solid state circuitry
- No immersed moving parts
- Extremely low in price
- Delivery from stock
$£ 3.14 \mathbf{s . 0 d}$. (price for switch only) dependent on quantity.

VARIABLE TRANSFORMERS

\star OUTPUT $0-260 \mathrm{~V} \star$ INPUT $230 \mathrm{~V} 50 / 60 \mathrm{CPS} \star$ SHROUDED FOR BENCH OR PANEL MOUNTING

$1 \mathrm{amp} £ 5.10 .0$

$2.5 \mathrm{amp} \quad$ f6.15.0 $\quad 10 \mathrm{amp} £ 18.10 .0$ $5 \mathrm{amp} \quad £ 9.15 .0 \quad 12 \mathrm{amp}$ £21. 0.0 8 amp £14.10.0 20 amp £37. 0.0

Inset shows latest pattern Brush gear ensuring smooth continuous adjustment.

SOLID STATE VARIABLE VOLTAGE CONTROL * Output 25-240V * Input 240 V 50 CPS * $5 \mathrm{amp} \& 10 \mathrm{amp}$ model

* Completely sealed

5 amp model $\mathbf{f 8}$ 8. 6
10 amp model $£ 13.15 . \mathrm{C}$

COMPLETE PHOTO- ELECTRIC SENSOR in one unit

* Reflective type with built-in light source
* Will also operate from remote light source
* Matchbox size
* Senses any object-colours. thick smoke
Operates from 12 V AC. Output signal 0.2 amp .100 V .
Approximately $\mathbb{E} 5.10 .0$
dependent on quantity

I.M.O. PRECISION CONTROLS.
 (Dept WWX) 313 EDGWARE ROAD,LONDON W.2. Tel 01-723 2232

WW-049 FOR FURTHER DETALLS

Give the stars their freedom!

That's our motto, this is our method; with the Reslo-Audac Radio Microphone, stars such as Des O'Connor and Peter Gordeno are freed from trailing cables. Movement is completely unhampered
 Reslo latest ;
fully transport able. Combined loudspeaker. p.a. system and radio mike receiver.

TYPE LS100B LOUDSPEAKER Has five $8^{\prime \prime}$ (20.3 cm .) dia P.M. units. Power handling capacity: 10 watts max.

TYPE UD1 Modern-style highoutput microphone

TYPE 530
TRANSISTOAISED
AMPLIFIER
3 low impedance mike inputs, 1 music input

Hall Electric Limited
Haltron House, Anglers Lane
London. N. W. 5
Telephione: 01-485 8531 (10 lines) Telex: 2-2573 Cables: Hallectric, London, N.W.5.

'Astronic' SOUND REPRODUCING EQUIPMENT

SUPPLIED ALL OVER
THE WORLD
WHEN ONLY THE BEST WILL DO. Send to the address below, for literature on the complete range.

ASSOCIATED ELECTRONIC ENGINEERS LTD DALSTON GARDENS, STANMORE, MIDDLESEX, HA7-1BL. TELEPHONE 01-204 2125

WW- 052 FOR FURTHER DETALS

S G BROWN

NOW! FOR THE FIRST TIME
all-adaptable dual purpose MAGNETIC FIX
'CLASSIC' Microphone with instantaneous-stowing advantage

Dimensions

Overall body length $5 \frac{1}{2}{ }^{\prime \prime}(14 \mathrm{~cm})$
Maximum diameter $1 \frac{1}{4}^{\prime \prime}(3.17 \mathrm{~cm}$)
Weight
Approximately $5 \mathrm{oz}(141.75 \mathrm{~g}$) Inset - Moving coil-noise Cancelling 300 ohms Impedance

Type 1 C 601/1 is S G BROWN'S new
'Classic' dual-purpose microphone triumph.

- Fixed in split second
- Hand or fixed position microphone

This instrument adapts to situation - Clings magnetically to station stand or car dashboard

HAWKER SIDDELEY

COMMUNICATIONS

S. G. BROWN LTD., KING GEORGE‘S AVENUE, WATFORD, HERTFORDSHIRE

TEL: WATFORD 23301 TELEX 23412 TELEGRAMS RADIOLINK WATFORD

PRESTON X-MOD 723 DIGITAL MULTIMETER

The X-MOD 723 Multimeter combines maximum performance with high accuracy at a most competitive price.

- Accuracy:
$\pm 0.01 \%$ of reading and of full scale
- 4 digits with 100% overrange:
scale length ± 19997
- DC Volts:

10 microvolts to 1000 Volts (5 ranges)

- Ohms:

100 milli-ohms to 1000 Megohms (8 ranges)

- AC Volts: (Plug-in Option)

100 microvolts to 750 Volts rms

- BCD Outputs:
(Rlug-in Option) DTL Compatible
- Readings/sec.:

10 (internal), or 50 (External Trigger)

- Display:
$\frac{7}{8}$ inch in-line neon edge-lit digits
- Automatic polarity and decimal point
- Common Mode Rejection: 120 dB at 60 Hz Operation Temperature: $0^{\circ} \mathrm{C}$ to
$+50^{\circ} \mathrm{C}$

Britec Ltd, 17 Charing Cross Road, London WC2H OER Tel: 01-930 3070 Telex: 915854

Vertical terminals

> Underwriter terminal blocks thequick safe way to save money

The Underwriters range of terminal blocks make quick, safe connections with the consequent saving of time and money during installation! They will also allow you to alter terminals at will-to give you great flexibility of circuit arrangement. There are now three sizes of terminal available- $250^{\prime \prime}$, $\cdot 187^{\prime \prime}$ and $110^{\prime \prime}$. Check the other features-then send for the full facts!

FLEXIBLE because terminals can be obtained in vertical or horizontal configuration FAST because of 'quick-connect' style terminals
SAFE because operating temperature is $120^{\circ} \mathrm{C}$.
SAFE because of completely shrouded terminations
SAFE because minimum breakdown voltage between terminals is 5 KV D.C. (2KV D.C. for 110^{*} terminal)
SAFE-fully approved by the Underwriters Laboratories and the Canadian Standard Association.
HIGH CURRENT ratings of $25 \mathrm{amps}\left(-250^{\prime \prime}\right.$ terminal), $15 \mathrm{amps}\left(187^{\prime \prime}\right)$ and $5 \mathrm{amps}\left(-110^{\prime \prime}\right)$. COST SAVING because insulating sleeves are not required.

This range of termenal blocks is manulactured and sold under Icence from He Underwriters Safory Device Company

mamurdo great facility for service
 Member of the Lovis Nownark Groun with access to the combined facillitias with access to the combined of all other member companies.

McMurdo Instrument Co. Ltd., Rodney Road, Portsmouth, Hants. Telephone: Portsmouth 35361. Telex: 86112

Authorised stockists: Lugton \& Co. Ltd., 209/210, Tottenham Court Road, London W.1. Tel: 01-636-3261. I.T.T. electronic services, Standard Telephones \& Cables Ltd., Edinburgh Way, Harlow, Essex. Tel: Harlow 26777 and agents in principal overseas countries.

INSULATION TEST SET

A portable lightweight insulation test set suitable for measuring the insulation resistance of all components, installations, etc. Cranking is obviated by the utilisation of a transistor converter; the power supply being two $4 \frac{1}{2}$-volt dry batteries. The test voltage and range are selected by push buttons which facilitate quick and easy reading of the resistance value.
The test voltages available are $100,250,500$ and 1.000 volts. Overall measuring range, 0 to 10.000 Megohms.
f55-0-0 EX STOCK
Request full details from:
CROYDON PRECISION INSTRUMENT COMPANY
Hampton Road, CROYDON (Postal Code: CR9 2RU)
Telephone: THOrnton Heath 4025 and 4094
WW-057 FOR FURTHER DETAILS

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:

HARRIS ELECTRONICS (London)

138 GRAYS INN ROAD, W.C. 1
Phone: 01/837/7937

果四居

The best pick－up arm in the world

Now you can set up a complete CCTV studio with just
 operated portable camera and video tape recorder . . at the fully inclusive price of $\mathbf{f} 590$.

Yes it's true. With the outstanding range of SHIBADEN CCTV equipment you can install your own CCTV Studio-all from one source.

THE SHIBADEN range includes eight individually designed cameras, four video tape recorders, including one battery model, seven monitors and receivers, plus a full selection of vision mixers.
General Video Systems Ltd. are the main U.K. importers: there are accredited agents throughout the U.K. A complete maintenance contract of SHIBADEN equipment is offered by RCA Limited, part of the world's largest Service Organisation.
Write today for a fully detailed brochure and price list of the SHIBADEN range.

HERE'S ONE EXAMPLE OF WHAT YOU CAN GET FOR $£ 3000$ Two viewfirider cameras with 5-1 zoom lenses. One caption camera (1 in . lens) Three preview monitors 9 in: one transmission monitor 16 in . Mixer and sync generator. A complete vision system for
Optional extras: SV700 VTR
6 CH sound mixer
.. $\quad 290$ studio set up for a little over $£ 3000$.
GENERAL VIDEO SYSTEMS LTD.
Main Distributors of SHIBADEN Equipment
61-63 Watford Wav. Hendon, London NW4, 01-202 8056

WW- 060 FOR FURTHER DETAILS

ENCAPSULATION -

low tool cost method for cylindrical coils and potting. Enquiries also for-

REED RELAYS SOLENOIDS COIL WINDING TRANSFORMERS to 8 K.V.A.

Knapps Lane, Bristol 5. 0272657228
WW- 061 FOR FURTHER DETAILS

J E S AUDIO INSTRUMENTATION

Illustrated the Si452 Distortion Measuring Unit —low cost distortion measurement dowri to .01\%
£27.0.0

Si451
£32.0.0
Si453
£37.0.0
Comprehensive Millivoltmeter
350μ Volts
20 ranges
Low distortion Óscillator
sine - square - RIAA.
J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (OWR62) 2501 BRADFORD ROAD, CLECKHEATON, YORKSHIRE.

WW-062 FOR FURTHER DETAILS

A slice from the exclusive High-power Diode range by IRThe Current Slicers. What IR don't know about high-power silicon diodes isn't worth knowing. Which is hardly surprising, since IR are the world's largest independent manufacturers of power semiconductors. The world's largest. And often the cleverest, too. IR offer you the reliable, high-performance, state-of-the-art power diodes you need, deliver them fast anywhere in the world, and back them up with comprehensive technical, test and applications data.

If you'd like a slice (or a million), contact IR or your

$\mathrm{I} \otimes \mathrm{R}$ the current slicers

International Rectifier • Oxted • Surrey

WW-065 FOR FURTHER DETAILS

Wonders of the modern world

Teonex products, of course! Over 3,000 of them, electronic valves, semi-conductors, and now - neons and indicators too... all performing superbly in many climates ... all at prices that are very competitive.

How do Teonex do it? Specialisation in one field. Concentration on export only. Very strict quality control.

Sold in sixty countries, on Government or private contract, Teonex offers you a comprehensive range, with most items immediately available.

For technical speciffcations and prices, please write to Teonex Limited, 2a Westbourne Grove Mews, London W.11, England. Cables: Tosuply London W.11.
TEOMEX Hinux

RE-ENTRANT HORNS FOR P.A. SYSTEMS

ALL SHAPES, ALL SIZES, FROM STOCK

 SAFIDEL OF FRANCE MAKE THEM-MILLBANK MARKET THEM. COMPETITIVE, RELIABLE.
At Millbank we've got it-made

Millbank Electronics

Forest Row: Sussex : England.
Telephone Forest Row 2288 (0342-82-2288).

WW- 067 FOR FURTHER DETALLS

You will find it in this new Vitality T-1 range.
Never have such small lamps been so reliable, so competitively priced. With a diameter of only 3 mm , they are capable of up to 200,000 hours of life at rated voltage and come either wire ended or based to fit available holders. With wide application in peripheral equipment for the computer industry. this new range is also providing truly reliable integral lighting of instruments and is much used in equipment where space is minimal. Folder NPR details the whole range.

Vitality Bulbs Limited, a General Instrument Electro-Optical Products Group company. BEETONS WAY, BURY ST. EDMUNDS,

[^10]
Now hear this!

Goldring and Toa have a lot of valuable things to tell you on P.A.

Welcome the news that Goldring and Toa can offer you the most advanced range of P.A. systems. Nothing but the best-in high performance products.. . P.A. Amplifiers-microphones-horn speakers-megaphones-power intercoms-meeting amplifiers-background music players, etc.

Goldring

Sole UK distributors of modern P.A. systems by Toa Electric Co., Ltd,
Goldring Manufacturing Co. Ltd. (Great Britain) 10 Bayford St, Hackney, London E8 3SE.
Write or Telephone 01-985 1152 For Full Details

TRANSFORMERS
 MAINS2VA to 2kVA
 AUTO
 10W to 5000W

OLYMPIC TRANSFORMERS LTD 224 HORNSEY ROAD, LONDON, N. 7
 Tel. 01-607 2914

WW-07I FOR FURTHER DETAILS

NOW., YOU TOO CAN TEACH COMPUTERS!

at a cost you can afford / /

Compukit 1 Deluxe Model
"STUDENT PROOF" Electronics SOLDERLESS System
Comprehensive Instruction Book Accessories for classroom use. LIMROSE ELECTRONICS (WW), LYMM, CHESHIRE

WW-073 FOR FURTHER DETAILS

ELAPSED TIME INDICATORS Current Integrators

The whole range of Elapsed Time Indicators (E.T.I.) consists of:-
CHRONISTOR (B)-Electro chemical E.T.I. based on copper for $100,1,000$ and 10,000 hours This one is expendable after use.
MERCRON (9) Electro-chemical E.T.I. based on mercury for 100, 1.000 and 10,000 hours. Exists in six different models.
HOR OCONTROL (A) -Electro-mechanical E.T.I. for A.C., or D.C. for 9999.9 , or 999.99 hours.

INDUSTRIRL INSTRUMENTS LIMITED

TRANSIPACK ${ }^{\circ}$
STATIC POWER
CONVERSION
EQUIPMENT

SOLDERING INSTRUMENTS

DONT WASTE MONEY

. . on the purchase and maintenance of unnecessarily complicated and expensive soldering irons.

In probably 75\% of cases the LITESOLD range of lightweight high performance instruments provide the sensible choice. These wellbalanced quality tools reflect nearly twenty years development resulting from wide use in industry.

There are 7 models from 10 watts to 60 watts covering the whole field of electronic soldering, listed at from $32 /$ with quantity discounts. They are backed by a fast and inexpensive repair service, although servicing is simplicity itself. using ex-stock spares.

Full details of the LITESOLD models free on request, together with introductory details of our ADAMIN micro-instruments and LITESTAT Thermostatic models-for some of those other 25% of cases. Ask for literature L. 5 .

LIGHT SOLDERING DEVELOPMENTS LTD.,
28 Sydenham Road, Croydon, CR9 2LL Telephone: 01-688 8589 \& 4559

"ONE MUST KEEP THE THING IN ITS PLACE"

Major C de Q is secretly scared of his TV. He doesn't have time for it really. He thinks one has to be careful. One doesn't want to find oneself watching a lot of rubbish. Decide what you are going to watch. Switch on. Rugger, Panorama, News. Switch off. Keep the thing in its place.

Maybe you've provided quite a few Major Cs with their sets. And you know how awkward they can get when the set fails
to deliver their selected rations. We work hard to help you keep them happy. None harder. We are fanatical about quality control.

For example, we insist on making the glass for our tubes. And to do this we have one of the country's largest glass making plants.

The Brigade of Guards couldn't have more control.

GOLDRING SERIES 800 and 850 STEREO MAGNETIC CARTRIDGES

Our famous '800 Series' True Transduction cartridges, developed on the 'Free Field' principle, allow the most delicate groove-stored signals to be accurately relayed and re-created with uncompromising precision. And the
G. 850 Free Field stereo magnetic cartridge, intended primarily for 'budget' hi-fi systems, offers all the advantages of a good quality magnetic cartridge at a very attractive price.

800 Super E For those aiming at perfectionextra low mechanical impedance for ultimate tracking is achieved by a duo-pivoting arrangement membrane-controlled to avoid longitudinal or torsional modes
blemishing performance Each cartridge supplied with individual curve and calibration certificate.

800/E Designed for transcription arms, a micro-elliptical diamond is fitted to a fine cantilever, end-damped against natural tube resonances, accurately terminated in a special conical hinge to give pin-point pivoting.

800 The 800 is designed for standard arms and changers where the requirements for high fidelity and robustness usually conflict. Output is 5 mV at $5 \mathrm{~cm} / \mathrm{sec}$. R.M.S. Recommended tracking weight $1 \frac{1}{2}$ to 2t grams.

800/H This Free Field Cartridge is designed for inexpensive changers to track between $2 \frac{1}{2}$ to $3 \frac{1}{2}$ grams and has a high output of at least 8 mV .

G850 This relatively inexpensive Free Field stereo magnetic cartridge is capable of bringing out the very best performance that 'budget' hi-fi systems can provide.

Goldring Goldring Manufacturing Company (Great Britain) Limited, io Bayford Street, Hackney, London E8 3SE. Phone: OI-985 II52.

"Q-MAX" sheet metal punches FOR QUICK AND CLEAN HOLES

\author{

- Simple operation
 - Ouick, clean holes (up to 16 gauge mild steel)
 - Saves time and energy
 - Burr-free holes--no jagged edges
 - Special heat treatment maintains keen cutting edge
 - Anti-corrosive finish prevents rusting
 - Used all over the world
}

Used by all government services-Atomic, Military, Naval, Air, G.P.O. and Ministry of Works: Radio Motor and Industrial Manufacturers, Plumbing and Sheet Metal Trades, Garages, etc.
Obtainable from Radio, Electrical and Tool Dealers
WHOLESALE \& EXPORT ENQUIRIES ONLY TO

"I-MAX" (Clectronios) LTD. Napier House, High Holborn, London, w.c.1.

We'reready now for 1973.

As you know, in 1973 single side band operation becomes mandatory in marine communications. 1973 isn't very far away. We're ready now. And so can you be. So we announce the new TT100 beam tetrode. Primarily intended for use as a class $A B$ power amplifier for S.S.B. transmitters in shipboard use.

Technical Data. A low cost power tetrode designed specifically for use as a linear power amplifier and suitable for
transistor drive. A rated continuous anode dissipation of 100 W means that two tubes in parallel will meet the requirement of 400 W Peak Envelope power while the low impedance design means that an anode voltage of $600-800 \mathrm{~V}$ is adequate for most applications. Output is fully maintained up to 20 MHz and falls only slightly at 30 MHz .

We're ready now for 1973 . How about you?

Just what is this ABR, that makes such a vital difference to the 'DITTON 15'?

The "DITTON 15"
Now firmly established as à superb high-fidelity loudspeaker. Design features include the exclusive CELESTION ABR (auxiliary bass radiator), HF1300 treble unit-as used in B.B.C. Monitor Loudspeakers-and specially developed mid/bass unit. Low loss L / C crossover.
Power handling: 15 watts r.m.s.; 30 watts peak. Impedance 4-8 ohms.
Dimensions: $21 \mathrm{in} . \times 9 \frac{1}{2}$ in. $\times 9 \frac{1}{4} \mathrm{in}$.
Choice of finish: Teak or walnut.
Recommended Retail Price $\mathbf{E 2 9}$

1. Studio quality high frequency unit (HF1300 Mk. 2).
As used in B.B.C. Monitors.
2. Anechoic cellular foam wedge and lining eliminates standing waves.
3. High hysteresis panel loading material to eliminate structural resonances.
4. Auxiliary Bass Radiator (ABR) _plastic foam diaphragm of high rigidity and low mass having a free air resonance of only 8 Hz , double roll suspension allowing
excursions up to $\frac{3^{\prime \prime}}{4}$ with virtual absence of distortion.
5. $8^{\prime \prime}$ bass unit, with free air resonance of 25 Hz , and massive Ferroba II magnet structure for optimum magnetic damping and cone treated with viscous dampinglayer to suppress resonances.
6. Units mounted flush to eliminate diffraction effects and tunnel resonances; covered by acoustically transparent grille cloth for maximum presence.
7. Full L-C Crossover network.

It's an interesting story-and worth enquiring about. Send for details of the three Celestion 'Ditton' Hi-Fi Speaker Systems.

Loudspeakers for the Perfectionist

ROLA CELESTION LIMITED. FOXHALL ROAD, IPSWICH, SUFFOLK. 1 P3 8JP, ENGLAND
Telephone: Ipswich 73131. Cables: Voicecoil Ipswich. Telex: 98365
WW- 079 FOR FURTHER DETAILS

STEPHENS
 SEND S.A.E. FOR LISTS
 Satisfaction or money refunded.

The AE PPM 3

The Audio Engineering Peak Programme Meter is designed well within the British Standards specification. This precision instrument is used throughout all major Broadcasting and Television Studios in the U.K. and Europe. The PPM 3 is always used where programme level must be accurately measured.

Printed circuit mounts directly to back of Ernest Turner 643 or 642 meter.
Three meter scales available: British Standard -BBC-European.
Nominal 24 Volts DC required.
High stability-all capacitors are Tantalum electrolytic.
Frequency response: $40 \mathrm{~Hz}-20 \mathrm{kHz} \pm 0.2 \mathrm{~dB}$ $10 \mathrm{~Hz}-40 \mathrm{~Hz} \pm 2.0 \mathrm{~dB}$ $20 \mathrm{kHz}-60 \mathrm{kHz} \pm 2.0 \mathrm{~dB}$
Integration time: 10 m secs.
'Fall back' time: 3 secs.
Gold plated 10 way connector.
4 slave meters can be driven from 1 card.
Ferrous or Non-ferrous mounting.
Stereo PPM also available.
Manufactured by: Audio Engineering Ltd., 33 Endell Street, London, WC2.9BA.
$01-8369373$

Listen-Look and Measure with LOEWE-OPTA

The En-Coder-you must have for

- Servicing purposes, checking of stereo-radio receivers and alignment of stereo-decoders.
- For demonstration of FM-stereo-receivers with, in accordance to the pilot-tone-system, standardized Multiplex-signal.
- All-transistor technique secures instantaneous readiness for operation.
Remarkably Low Trade Price:
£102.10.0
Write for further details to:
HIGHGATE ACOUSTICS
184-188 Great Portland Street, London, W1 01 -636 2901/4

who wants af2,000+p.a. opportunity in the dynamic new computer industry?

In only 4 weeks you're in - and only the incredible Eduputer can make it possible.
Now for the first time anybody can train outside the computer industry for a lucrative career as a computer operator, with actual experience on an Eduputer.
Who created Eduputer? The internationally famous company Programming Science International. They developed it to the specific requirements of the massive New York city training board and its practical results have been one amazing success story.
We are proud to have been selected as the only commercial training organisation permitted to use the Eduputer in the U.K.
Thanks to Eduputer, nine out of every ten can learn to operate the most advanced computers in only four weeks. Unlike Computer Programming, no special educational qualifications and no maths required. Just you and the incredible Eduputer!
Jobs galore! The moment you qualify, our exclusive computer appointments bureau introduces you to computer users everywhere with good jobs to offer (up to $£ 40$ a week full-time, $£ 50$ a week as a temporary). More than enough to go round, toobecause 144,000 new operators will be needed over the next five years alone.
This is your big opportunity to get out of a rut and into the world's fastest-growing industry. And remember-LCOT is the only commercial computer school to have Eduputer. It means a lot to employers.
Telephone: (01) 4379906 NOW!
Or post the coupon today for full details FREE and without obligation.

$\square \square \square$

London Computer Operators Training Centre,

B12 Oxford House, 9/15 Oxford Street. London W. 1.
Telephone: (01) 4379906.
127/131 The Piaza, Dept. B12, Piccadilly Plaza, Manchester 1. Telephone : (061) 2362935.
Please send me your free illustrated brochure on exclusive Eduputer "hands on" training for computer operating.
Name
Address

SMK's HIGHLY DEPENDABLE COMPONENTS

PUSH BUTTON

SWITCHES

SJ-4162

- Rating: 4 amp. 125 V AC
- Contact Resistance: $20 \mathrm{~m} \Omega$ or less at 1 amp 2.5 V DC
- Insulation Resistance: $100 \mathrm{M} \Omega$ or more at 500 V DC
- Insulation Withstand Voltage One minute of 1500 V AC - DPST

SJ-4158

- Rating: 3 amp. 125 V AC
- Contact Resistance: $100 \mathrm{~m} \Omega$ or less at 1 amp . 5V DC
Insulation Resistance: $500 \mathrm{M} \Omega$ or more at 500 V DC
- Insulation Withstand Voltage: One minúte of 1000 V AC
- SPST

Rating: 1 amp. 15V.DC DPDT

- Rating: 0.5 amp .125 V

3PDT

SJ-4253

AMPLIFIERS OF QUALITY AND RELIABILITY at the right price!

"DHASE 12'

An extremely attractive all silicon stereo amplifier, ideal for unit audio use. Facilities include MAGNETIC and CERAMIC P.U. RADIO, TAPE etc. Output 6 watts per channel Freq. Response $40-40.000$ c.p.s. -3 dB . Hum Level- 74 dB. Controls include Input Selector, Volume, Balance. Bass, Treble and Stereo/Mono Switch. Black and silver facia panel with

24 Gns.

 Recommended Retail Price satin silver control knobs. Slimline finish enhanced by good quality Teak cabinet housing.
'PHASE 32' SOLID STATE STEREO AMPLIFIER
$15+15$ WATT HIGH FIDELITY OUTPUT.

- Excellent performance
\star High Grade components and Transistors

only 36 Gns.

Housed in Teak veneered Cabinet, Switched selection of Microphone, Magnetic P.U., Ceramic P.U., Radio Tuner, Tape Recorder. * Impressive technical specification

* Attractive appearance
\star Modest cost

For leaflets on the above and other models in the FAL range, please send SAE to:-
FUTURISTIC AIDS LTD, 104 Henconner Lane, Leeds, 13.
WW- 086 FOR FURTHER DETAILS

MODEL 8 MK. III

REPAIR SERVICE 7-14 DAYS

We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS. 89.

Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments
LEDON INSTRUMENTS LTD
76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.: 01-692 2689
E.I.D. \& G.P.O. APPROVED

CONTRACTOR TO H.M. GOVT.

Presenting part of a wide range of components used throughout the world by the electronics engineer in search of quality and reliability.

Further information available.

WW-087 FOR FURTHER DETAILS
 EXPERIENCE OF 30 YEARS ENSURES ACCURACY EXPERIENCE OF 3O YEARS ENSURES ACCURACY. PERFORMANCE COMES WITH EVERY SANWA.
Model PalB Months' Guarantee. Excellent Repair Service

Model P.2. £4 17 Model FBOTHD 513150

$\begin{array}{llllll}\text { Model AT-1 } & \ldots & \text { In } & 11 & 7 & 0 \\ 7\end{array}$ Model R.1000. CB
Cases available with most meter
MODEL 360-YTR PLEASE WRITE FOR ILLUSTRATED LEAFLETS OF THESE SANWA METERS

SOLE IMPORTERS IN U.K;

QUALTY ELEGTRONICS LTD.
47-49 HIGH STREET, KINGSTON-UPON-THAMES, SURREY. Tel:01-546 4585 WW-089 FOR FURTHER DETALS

TRANSFOBMERS

coils
CHOKES
TRADE ENQUIRIES WELCOMED
SPECIALISTS IN
FINE WIRE WINDINGS
MINIATURE TRANSFORMERS
RELAY AND INSTRUMENT COILS
VACUUM IMPREGNATION TO APPROVED STANDARDS

ELECTRO-WINDS LTD.

CONTRACTORS TO G.P.O., L.E.B., B.B.C.
123 PARCHMORE ROAD, THORNTON HEATH, SURREY
CR48LZ
EST. 19532261

- $1-6532261$

DIFFERENTIAL D.C. AMPLIFIERS
 For use with d.c. energised Transducers

150 strhes
modular or cased versions
versatile, high performance instrumentation amplifiers for use with low or high level signals. Two outputs available to drive all U-V galvanometers, indicators, recorders and control devices.

FE-154-BD modular $£ 69$ FE-154-BD/C cased mains powered $£ 99$

Complementary units:-

Bridge Supplies and Conditioning Units, Sample and Hold and Bridge Amplifiers.

Electronic Laboratories Limited. Oakham Court, Preston. PR1 3XP
Telephone: Preston (0772) 57560

Keesthase Contacts CLEAN DIACROM SPATULA

The "Diacrom" is a metal spatula upon which diamond powder has been deposited by a special process. No deep scratches are possible because density is controlled and the polishing of the contacts is achieved by a gentle brushing motion. With coloured nylon handle for complete insulation and easy size identification.

Manufactured in France British Patents applied for

Grain size 200, thickness $55 / 100 \mathrm{~mm}$., both faces diamonded. For quick cleaning of industrial relays and switching equipment, etc. Grain size 300 , thickness $55 / 100 \mathrm{~mm}$., both faces diamonded. For smaller equipments, like telephone relays, computer relays, etc.

- Grain size 400 , thickness $25 / 100 \mathrm{~mm}$., one face diamonded. For sensitive relays and tiny contacts. Two close contacts facing each other can be individually cleaned, because only one face of the spatula is abrasive.
Sole Distributors for the United Kingdom
SPECIAL PRODUCTS (IISTRIBUTORS) LTD. 81 Piccadilly, London, W.I. Phone: 01-629 9556.
As supplted to the War Office, UK A.R.A., Electricty Generating Board, Britioh Railways and ofther As supphed to the War ofleo,

HATFIELD IMPEDANCE MATCHING TRANSFORMERS

With a standard range of over 200 different types and one of the most experienced design teams in Europe to advise on applications, Hatfield Instruments, largest U.K. manufacturers in this field, probably already have the answer to your impedance matching problems. Contact us now with details of your requirements or a request for our data sheets.

HATFIELDINSTRUMENTS LTD.,

Depr. WW, Burrington Way, Plymouth, Devon PL5 3 LZ
Telephone: Plymouth (0752) $72773 / 5$
Telex: 45592
Cables: Sigien Plymouth

HATFIELD BALUN

WW-093 FOR FURTHER DETALS

Send for informative brochure fully explaining:

1. Why a single motor. 2. Electrical performance. 3. Wow and flutter,

MAGNETIC TAPES LTD.
CHILTON WORKS, GARDEN ROAD, RICHMOND, SURREY Tel: 01-876 7957

Trainfortomorrow'sworld in Radio and Television at The Pembridge College of Electronics.

The next full-time 2 year College Diploma Course which gives a thorough fundamental training for radio and television engineers starts on 5th January, 1971.
The course includes theoretical and practical instruction on Colour Television receivers and is designed to cover the syllabus of the new City and Guilds Radio, Television and Electronics Technicians' Course. Pembridge College diplomas are awarded to successful students.
The way to get ahead in this fast growing in-dustry-an industry that gives you many farreaching opportunities is to enrol now. Minimum entrance requirements: Senior Cambridge or ' O ' Level, or equivalent in Mathematics and English.

To: The Pembridge College of Electronics (Dept. WW14), 34a Hereford Road, London, W. 2 5AJ
Please send, without obligation, details of the Full-time Course in Radio. Television and Electronics.

NAME
ADDRESS ...
\square

We also manu facture P.A. Amplifiers, Loudspeakers, Tuners, etc. For full details please contact:
S.N.S. Communications Ltd., 851 Ringwood Road, Bournemouth. Telephone: Northbourne 4845

WW-095 FOR FURTHER DETALLS

Low cost regulated DC power supplies

Compact design providing optimum performance at low cost. Stabilised voltage and current outputs ranging from $0-10 \mathrm{~V}$ to $0-60 \mathrm{~V}$ and currents from $\frac{1}{2} \mathrm{~A}-5 \mathrm{~A}$. Units can be arranged for series or parallel operation.

The best plug in the business

Electrical Who's Who. Contacting you with all the key names in all branches of the Electrical electrical industry: supply, WHO'S manufacturing, contracting, consulting and trading-as well WHO 1970/71 as in Universities, Technical Colleges and other bodies. Electrical Who's Who. A unique publication An invaluable guide to the best electrical contacts. Fill in the coupon now

Please send me
copies of Electrical Who's Who at 69/6 per copy. I enclose cheque/P.O. for /Please invoice me for

Obtainable from
Electrical Who's Who, Dorset House, Stamford Street, London SE1
Name
Company address

Please send a stamped addressed envelope for full descriptive details of above units, also TUNER/AMPLIFIERS and MONO.
Wholesale and
Retoil enquiries to:
LINEAR PRODUCTS LTD
ELECTRON WORKS, ARMLEY, LEEDS

Your choice of Live SocketsInstantly!

A Lexor DIS-BOARD gives you up to 6 sockets from one power outlet. Portable or permanent fixing, compact units, with safety neon. Over 1,000 socket combinations available from stock. All types of fittings and finishes.
brochure from
LEXOR DIS-BOARDS LIMITED
Allesley Old Road, Coventry.
Telephone $\mathbf{7 2 6 1 4}$ or $\mathbf{7 2 2 0 7}$

WW-098 FOR FURTHER DETAILS

VITAVOX

FOR HICH QUALITY
MICROPHONES LOUDSPEAKERS and ancillary equipment

Further information from:
VITAVOX LTD., Westmoreland Rd., London, N.W. 9
(Tel: 01-204 4234)

teghingal training in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc. Now available-Colour T.V. Servicing

Examination Students coached until successful

NEW self-build radio courses

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments. All under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

CHEERS:

How to get a quart out of a pint pot

Here is the power supply that's well worth drinking to. The new Kingshill TR115 is unique. It is the only true twin unit available in such a compact body, and can be used in series or parallel. The TR115 offers new design flexibility at a remarkable price. Two models are available with the following specifications:

PRESETTABLE OUTPUT VOLTAGE (IN RANGE) MAX. CURRENT

STABILISATION RATIO REGULATION
RIPPLE
MAX. AMBIENT TEMP.
MAINS TOLERANCE
SIZE
WT.
PRICE
$\begin{array}{ll}\text { TR115 } & \text { TR130 } \\ 5 \mathrm{~V} \text { to } 15 \mathrm{~V} & 5-30 \mathrm{~V}\end{array}$

5 V to 15 V	$5-30 \mathrm{~V}$
150 mA	150 m

150 mA Protection 10.000:1
$\frac{1}{2} m V p-p . \quad \frac{1}{2} m V p-p$.
$60^{\circ} \mathrm{C}$. $\quad 60^{\circ} \mathrm{C}$. $\pm 10 \% \quad \pm 10 \%$
 $\begin{array}{ll}2 \frac{1}{4} \mathrm{lbs} & 2 \frac{1}{4} \mathrm{lbs} . \\ £ 18.10 .0 & \text { E21.10.0 }\end{array}$

Send for catalogue giving complete range of bench variable and modular power supplies

KIIGSSHIIL

KINGSHILL ELECTRONIC PRODUCTS LIMITED
TORRENS STREET, LONODN E.C.I.
Tel: 01-837 9865

The D51 is a new oscilloscope incorporating all the current requirements of a general purpose oscilloscope. Of strong construction and simple controls, the D51 can be easily operated by non-technical personnel and is an ideal oscilloscope.to satisfy the demands of A-level syllabuses and the needs of Technical Colleges.
Look at these features and then send for full details NOW!!!

- True Dual Beam Large display area $6 \times 10 \mathrm{~cm}$ Wide Bandwidth (DC-6MHz channel 1, DC-3MHz channel 2) $10 \mathrm{mV} / \mathrm{cm}$ Sensitivity (DC-2MHz) Exceptionally Bright Trace Small Size - Lightweight All this for only $£ 98.0 .0$

Telequipment < idil

Wireless World

Electronics, Television, Radio, Audio

This month's cover picture has been produced by superimposing an oscillograph on a photograph of the instrument on which it was displayed.

IN OUR NEXT ISSUE

The boxcar detector is an instrument for retrieving repetitive signals which are buried in noise. An article will explain how the boxcar detector works and how it is used.

An ultra linear a.c. millivoltmeter will be described which is not expensive to build and overcomes the problem of non-linear rectifying diodes by using a constant current source.

Attenuators: some notes on the calculation and uses of resistance networks.

November 1970
Volume 76 Number 1421

Contents

ibpa

Iniecramiona bus limes
Piess Assocries
1.P.C. Electrical-Electronic Press Lid

Managing Director: George Fowkes
Publishing \& Development Director:
George H. Mansell
Advertisement Director: Roy N. Gibb Dorset House, Stamford Street, London, SE1
(C) I.P.C. Business Press Ltd, 1970

Bricf extracts or comments are allowed provided acknowledgement to the journal is given.

[^11]PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: 01-928 3333 (70 lines). Telegrams/Telex: Wiworld Bisnespres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home; $\mathbb{6} 3$ Os Od. Overseas; 1 year $\AA 3$ os 0d. (Canada and U.S.A.; $\$ 7.50$). 3 years $\AA 713 \mathrm{~s} 0 \mathrm{~d}$. (Canada and U.S.A.; $\$ 19.20$). Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notuty a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 202, Lynton House, Walsall Road, 22b. Telephone: 021-356 4838. BRISTOL: 11, Elmdale Road, Clifton, 8. Telephone: OBR2 21204/S. GLASGOW: 2-3 Clairmont Gardens, C.3. Telephone: 041-332 3792. MANCHESTER: Statham House, Talbot Road, Stretford, M32 OEP. Telephone: 061-872 4211. NEW YORK OFFICE U.S.A.: 205 East 42nd Street, New York 10017. Telephone: (212) 689-3250.

Ferrograph at work with BOAC: it will play as well for you at home

- BOAC use Ferrograph Series 7 tape recorders at their Flight Control Centre, London Airport. You will see Ferrograph recorders in many situations where long-term reliability is vital. With its unique specification and combination of
facilities, the Ferrograph recorder is the ideal choice for any private or professional use-wherever you want quality, dependabilty, and exciting possibilities for imaginative recording.
Now Ferrograph has several new

International Distributors
Leroya Industries Pty, 266 Hay Street,
Subiaco, Western Australia 6008, Australia; Matelectric, Boulevard Leopold II, 199, 1080 Brussels, Belgium;
HRoy Gray Ltd, 14 Laidlaw Boulevard, Markham, Ontario, Canada;

Cineco, 72 Avenue des Champs Elysees, Paris 8 e, France:
Henry Wells \& Co. KG,
1040 Wien 4, Danhausergasse 3, Austria; Ferropilot GmbH \& Co., KG,
Hamburg 39, Sierichstrasse 43, West Germany;
features to add to its already impressive list, plus the extra bonus of a three-year guarantee on all parts.

Ferrograph Series 7 tape recorders are British made, available in mono and stereo, with and without end amplifiers. All instruments are solid state, three speeds. All have two inputs per channel with independent mixing, independent tone controls on each channel, signal-level meters for each channel on playback and record, re-record on stereo models. The output is 10 watts per channel. The VU meter is now illuminated. There is a new record lock device. Ferrograph recorders are available in elegant hardwood or vinyl-covered cases.

Follow the professionals, choose the recorder you know will serve you best at home or in your work: Ferrograph. Your local Ferrograph specialist will be pleased to demonstrate it to you. Alternatively, please write or ring for details and address of nearest stockist. The Ferrograph Co Ltd, The Hyde, Edgware Road, Colindale, London, NW9. Tel:01-205 2241. Telex: 27774.

Ferrograph

[^12]Hi-Fi Installations, P.O. Box 2430 , 276 Andries Street, Pretoria, South Africa; Elpa Marketing Industries Inc, New York Park, New York 11040, New York, U. S. A. There are Ferrograph Distributors also in most other countries.
Please obtaindetailsfrom the Lond on office.

The woidd bigerest selling, fass senting, modulated synhasirat

When it comes to synthesizers, setting speeds can be really important. Our FSM 535 sets frequency, modulation and level really fast. Accurately tool The ovened crystal gives stabilities of 3 in 10-9 per day. The all-transistor FSM 535 uses solid state techniques enabling instant operation and the use of internal or external battery supply.

It has a wide frequency range covering 300 Hz to 470 MHz in 100 Hz increments with fine tuning filling the gaps. You can even make frequency and FM deviation measurements. Add to that full modulation - AM, FM, PhaseMod, PulseMod, Sweep, even SSB

- and the facility to extend frequencies with add-on units to 1.5 GHz with the same accuracy and resolution and you have a truly world-beating synthesizer.
Small wonder it's being used by post and telegraph authorities throughout Europe and for Military satellite ground stations.
Post the magazine's reply-paid card and we'll send you our data sheet of full details.

Now you can purchase a laboratory stock of 600 of Electrosil's C3 resistors ($\mathrm{a}^{2} \mathrm{~W}$ at $70^{\circ} \mathrm{C}$) in a smart kit designed to give you quicker selection of the values you need right through from 10Ω to $150 \mathrm{k} \Omega$.

The new pack, which is strongly made in Perspex, provides the design engineer with 20 resistors in each of 30 values all conveniently held in clearly labelled plastic tubes.

Measuring approximately $15^{\prime \prime}$ by $4^{\prime \prime}$ by $2 \frac{1}{2}^{\prime \prime}$ the C3 lab kit is offered at a price of only $£ 49$ (carriage paid) - much less than you would pay for a similar selection of C3 resistors bought separately.

Order now from your usual Electrosil distributor or write to us for full details of the lab kit offer.
C3- the smallest glass tin oxide resistor.
Electrosil Limited, P.O. Box 37, Pallion, Sunderland, Co. Durham.
Telephone Sunderland 71481. Telex 53273.

5h-h-h don't makeanoise!

Well how much noise can a digital voltmeter make?
Some of them quite a lot.
Spillback from the input terminals of a digitál voltmeter can result in errors - errors often attributed to external noise - particularly in systems measuring low level inputs.
So down with spillback and welcome to the quiet one - the Racal 9075.
Still need convincing? Take a look.

And that's not all!
Full programmability. Accuracy 0.01%. Resolution 1 part in 30,000. 10 microvolt sensitivity. Scale length 29999 (over-range to 39999).
Totally passive input. Auto-range versions available.
p.s. If this isn't the DVM for you, Racal have six others you can choose from.

Write or phone today for a demonstration

The professional one

Here it is, Solartron's outstanding 1240.

The multimeter that's not just a toy but a real step forward in instrument technology.

Now everyone can go digitall
You get Amps, Volts, Ohms a.c. and d.c. - down to 100 micro-
volts and dual slope integration for noise rejection.

Technology apart, the 1240 has automatic polarity indication and a straightforward control layout including a single range selector and fingertip function switches. It's the easy-to-handle go-anywhere
portable multimeter.
Go digital with the new 1240. From Solartron, Eurropean leaders in digital instrumentation.

Post the magazine's reply-paid card and we'll send you our data sheet of full details.

The Solartron Electronic Group Ltd Farnborough Hampshire England Telephone 44433

EM102-a troubled computer's best friend

Where an oscilloscope has to be precise, reliable, able to go places, engineers choose the S.E.'s EM 102 Series. It is used widely for on-site testing and servicing
 by many manufacturers. It has the advantage of being a true double-beam (not prone to triggering ambiguities), all solid-state oscilloscope giving laboratory precision in a rugged, portable mains- or battery-operated instrument. The EM 102 Series includes the option of delayed sweep with bright-up and a selection of plug-in modules including $15 \mathrm{MHz}, 30 \mathrm{MHz}$, double differential or high-gain differential amplifiers incorporating a wide range of facilities to cover the most exacting user requirements. Full use of the instrument is ensured by after-sales back-up including the attention of skilled applications engineers and fast turn-round, onsite servicing facility. The product itself, and the hidden assets that go with it, make sure every S.E. scope gives your good value for money. Write or ring for details.

SE Laboratories (Engineering) Ltd., North Feltham Trading Estate, Feltham, Middlesex. Telephone: 01-890 1166. Telex: 23995
Transducers, recorders, oscilliscopes, digital instrumentation, data systems, medical electronic equipment, etc.

The new Ferrograph stereo amplifier F307- Mark II

With 3-year guarantee on all parts

Ferrograph's F307 is renowned as one of the finest stereo amplifiers in the world. The new F307 Mark II incorporates further improvements and refinements: distortion has been still further reduced, to less than 0:18\% up to full power at 1 kHz ; the noise level is even lower; there are new high. outputtransistors; a new low. noise, high-gain pre-amplifier transistor; still greater power reserve; new 3 -year guarantee on all parts.

As before, the F307 integrated stereo amplifier provides a unique combination of performance and facilities. Power output is 20 watts RMS per channel into a load of 8 ohms. Silicon solid-state devices are used throughout, with F.E.T.'s in certain input stages to provide high input impedances and large overload margins, and to accommodate a wide range of input sources, including radio, tape, and -in the Mark II-pickups with any type of cartridge. The signal-to-noise ratio with

volume control at maximum is better than 65 dB . Controls include four-input selector switch, switched mains outlets, pressbutton HF filter, comprehensive mono/stereo input and output switching. Independent volume, bass, treble controls enable you to compensate for room acoustics and system discrepancies. Themain controls are readily to hand on the front panels; allothers are conveniently|placed under a hinged flap.

With its clean, uncluttered lines, the F307 Mark II makes an
ideal visual and technical match for the Ferrograph Series 7 recorder. However, it is equally compatible with most other good recorders and hi-fi installations, suits innumerable amateur and professional uses.

Your local Ferrograph specialist will gladly demonstrate this impressive amplifier. Alternatively, write or ring for details and address of nearest stockist. The Ferrograph Co Ltd, The Hyde, Edgware Road, Colindale, London NW9. Tel:01-205 2241. Telex:27774.

International Distributors: Leroya Industries Pty, 266 Hay Street, Subiaco, Western Australia 6008, Australia; Matelectric,
Boulêvard Leopold II, 199,
1080 Brussels, Belgium:
H Roy Gray Ltd,
14 Laidlaw Boulevard,
Markham, Ontario, Canada;
Cineco,
72 Avenue des Champs Elysees,
Paris 8e, France;
Henry Welis \& Co.KG,
1040 Wien 4, Danhausergasse 3, Austria;

Ferropilot GmbH \& Co. KG, Hamburg 39, Sierichstrasse 43, West Germany; Hi-Fi Installations, P.O. Box2430, 276 Andries Street, Pretoria, South Africa;
Elpa Marketing Industries Inc,
New York Park, New York11040, New York, U.S. A.
There are Ferrograph Distributors also in most other countries. Please obtain details from the London office.

Ferrograph

Supreme reliability in a smaller size (the first " square potentiometers to be designed and made in the U.K.) that's the big thing about this Electrosil/M.E.C. Multiturn, wirewound series. They are the obvious choice where high density packaging is important. The T40P (top adjusting, side mounting) the T42P (side adjusting, side mounting) and the T43P (side adjusting, flat mounting) provide the the T43P (side adjusting, flat mounting provide the most precise adjustment possible and the lowest T.C. is necessary and extreme environmental conditions are prevalent. Recent substantial reductions give you an extra small price too.

Temperature coefficient 50 p.p.m. per degree \mathbf{C}_{α} Thickness 0.150 ins., fully sealed. Industrial, defence and aircraft applications Resistance range 10 ohms to 50 K . ohms. Rating 0.75 w $+85^{\circ} \mathrm{C}$. Temperature range -55° to $+150^{\circ} \mathrm{C}$. Write now for full details of Electrosil Trimming Potentiometers. ELECTROSIL LIMITED, P.O. Box 37, Pallion, Sunderland, Co. Durham. Telephone Sunderland 71481. Telex 53273.

This bigger than average contact area, spring formed for extra low smooth insertion forces, is one of the major factors that gives the Cinch $0.1^{\prime \prime}$ Modular Edge Connector its reputation for optimum reliability. In addition, available platings include 5 microns of gold on the mating surfaces with 2 microns of gold overall.
Any number of ways, from 5 to 65 , can be supplied in the basic $0.1^{\prime \prime}$ module. High precision mouldings are in glass filled diallyl phthalate, and contact termination options are mini-wire wrap, solder slot, vee-form, or flow solder.

Polarising keys can be supplied to ensure instant correct positioning. End fixes are also available, in metal with open or closed end, and in plastic with closed end.
Rapid reliable deliveries in bulk quantities are assured. We'll gladly submit quotations for your requiremenṭs or send fully detailed data sheets. Cinch 0.1 pitch 'Greenline' Modular Edge Connecior No. of ways: 5 to 65 max. Current Rating: 5 amps (d.c. or a.c. RMS) per contact at $25^{\circ} \mathrm{C}$. Working Voltage: 700 V . d.c. or a.c. peak. Insertion Force: 8 oz. max. per way on nominal board. Contacts: Phosphor bronze.

Project 60

the world's most advanced high fidelity modules

With the introduction of an entirely new and original high fidelity stereo F.M. tuner, the Project 60 range can be said at this stage to be complete. It offers the constructor a most attractive choice of modular arrangements whereby a high fidelity system can be selected to suit the user's personal requirements. Equally, it is possible to use any Project 60 modules separately or partially grouped and so benefit greatly from the flexibility in use these modules afford. The chart below shows some of the most popular applications for constructors to assemble. The Project 60 manual (free with the modules) suggests others as well and its 48 pages are packed with valuable information. The new tuner, for example can be used with any good high fidelity system as well as Project 60.
Project 60 now falls into four interdependent groups : -1 . The $Z .30$ and $Z .50$ amplifiers which have only 0.02% distortion at all output levels and are useful in a wide variety of other applications. 2. The control units comprising the Stereo 60 preamp and control unit and the Active Filter Unit (A.F.U.) with which both high pass and low pass filtering can be introduced between control unit and power amplifiers. 3. The Stereo F.M. tuner as described opposite ; and 4. The power supply units PZ.5.
$P Z .6$ and $P Z .8$. For most requirements when using $Z .30$ power amplifiers, the PZ. 5 will be perfectly adequate : if low efficiency (high quality) loud speakers are used. the PZ. 6 stabilised power supply unit will be used. The PZ. 8 will be needed with $Z .50$ s which can be used for any Project 60 system.
Project 60 modules incorporate some of the most advanced circuitry in the world to achieve unsurpassed standards of high fidelity and modern manufacturing techniques enable these modules to be sold at exceptionally attractive prices. Assembling the modules requires no skill or previous experience since the manual supplied with the modules explains clearly how everything can be done with nothing more than the simplest of domestic tools

Project 60 manuals

How to assemble and use Project 60 modules to best advantage in the above and other applications will be found in the fully descriptive Project 60 manual included with Project 60 systems. This 48 page manual is available separately, price $2 / 6$ d including postage.

	System	The Units to use	In conjunction with	Cost of Units	+ Project 60 tuner
A	Car Radio	2.30	Existing car radio. Sinclair Micromatic	89/6	
B	Simple battery powered record player	Z.30	Crystal pick-up. 12 V or more battery supply and volume control	89/6	
C	Mains powered record player	Z.30 and PZ.5	Crystal or ceramic P.U. Volume'control etc.	£9.9.0	£34.9.0
D	$20+20$ watts R.M.S. stereo amplifier for most needs	Two Z.30s, Stereo 60 and PZ.5	Crystal, ceramic or magnetic P.U.. most dynamic speakers. F.M. tuner etc.	£23.18.0	£48.18.0
E	$20+20$ watts R.M.S. stereo amplifier for use with low efficiency (high performance) speakers	Two Z.30s. Stereo 60 and PZ. 6	High quality ceramic or magnetic P.U..'F.M. Tuner. Tape Deck, etc All dynamic speakers	£26.18.0	£51.18.9
F	$40+40$ watts R.M.S. de-luxe stereo amplifier	Two Z.50s, Stereo 60 PZ. 8 and mains transformer	As for E	£32.17.6	£57.17.6
G	Outdoor public address system	2.50	Microphone, up to 4 P.A. speakers, 12 V car battery with converter, or 45 V d.c. controls	£5.9.6	
H	Indoor P.A.	One Z.50, PZ. 8 and mains transformer	Microphone, guitar, heavy duty speakers etc., controls	£17.8.6.	
J	High pass and low pass filters	A.F.U.	D, E or F as above	£5.19.6	

Z. 30 \& Z. 50 power amplifiers

The $Z .30$ together with the $Z .50$ are both of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at full output and all lower outputs. Whether you use the 2.30 or $Z .50$ power amplifiers in your Project 60 system will depend on personal preference. but they are the same physical size and may be used with other units in the Project 60 range equally well. For operating from mains. for the $Z .30$ use PZ. 5 for most domestic requirements. or PZ. 6 if you have very low efficiency loudspeakers. For $Z .50$. use the PZ. 8 described below.
SPECIFICATIONS (2.50 units are interchangeable with 2.30 s in all applications). Power Outputs
Z. 3015 watts R.M.S. into 8 ohms, using 35 V : 20 watts R.M.S. into 3 ohms using 30 volts.
2.5040 watts R.M.S. into 3 ohms from 40 volts 30 watts R.M.S. into 8 ohms, using 50 volts. Frequency response 30 to $300.000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$ Frequency response 30 to 300
Distortion 0.02% into 8 ohms
Signal to noise ratio better than 70 dB unweighted Input sensitivity 250 mV into 100 Kohms .
For speakers from 3 to 15 ohms impedance. Size $3 \frac{1}{2} \times 2 \frac{1}{4} \times \frac{1}{2}$ ins.

2.30

Built. tested and guaranteed with circuits and instructions manual 89/6
2.50

Built. tested and guaranteed with circuits and instructionsmanual $109 / 6$

Stereo 60 pre amp/control unit
 Designed for the Project 60 range bui suitable for use

 with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout. achieving a really high signal-to-noise ratio and excellent tracking between channels. Input selection is by means of push buttons and accurate equalisa. tion is provided for all the usual inputs.
SPECIFICATIONS

- Input sensitivities - Radıo up to 3 mV . Mag. p.u. 3 mV : correct to R.I.A.A. curve $\pm 1 \mathrm{~dB}: 20$ to 25.000 Hz . Ceramic p.u. -up to 3 mV : Aux. - up to 3 mV
- Output - 250 mV .
- Signal-to-noise ratio-better than 70 dB
- Channel matching - within 1 dB .
- Tone controls - TREBLE +15 to - 15 dB at $10 \mathrm{kHz}:$ BASS +15 to -15 dB at 100 Hz

- Front panel - brushed aluminium with black knobs and controls.
- Size $8 \frac{1}{4} \times 1 \frac{1}{2} \times 4$ ins

Built. tested and guaranteed
£9.19.6

Active Filter Unit

For use between Stereo 60 unit and two 2.30 s or Z.50s. the Active Filter Unit matches the Stereo 60 in styling and is as easily mounted. It is unique in that the cut-off frequencies are continuously variable. and as attenuation in the rejected band is rapid ($12 \mathrm{~dB} / 0 \mathrm{ctave}$). there is less loss of the wanted signal than has previously been possible. Amplitude and phase distartion are negligible. The Sinclair A.F.U. is suitable also for use with any other ampli fier system.
Two stages of filtering are incorporated-rumble Two stages of filtering are incorporated - rumble
(high pass) and scratch (low pass). Supply voltage 15 to 35 V . Current - 3 mA . H.F cut-off $(-3 \mathrm{~dB}$)

Stereo FM tuner

first in the world to use the phase lock loop principle

Before production of this tuner, the phase lock loop principle was used for receiving signals from space craft because of its vastly improved signal to noise ratio over other systems. Now, for the first time the principle has been applied to an FM tuner with fantastically good results. By the inclusion of other original features such as varicap diode tuning, printed circuit coils and an I.C. in the specially designed stereo decoder, the tuner has an unsurpassed specification, which also incorporates a squelch circuit for silent tuning between stations. A.F.C. and A.G.C. Sensitivity is such that good reception becomes possible in difficult areas, foreign stations can be funed in suitable conditions and often a few inches of wire are enough for an aerial. In terms of high fidelity. this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically as the tuning control is rotated, a panel indicator lighting up as the stereo signal is tuned in. Although the tuner is intended primarily for use with a Project 60 system. it can be used to advantage with any other high fidelity system. It is easily mounted into any cabinet as shown in the manual supplied with it

Specifications

Number of transistors 16 plus 20 in I.C
Tuning range 87.5 to 108 MHz
Capture ratio 1.5 dB
Sensitivity $2 \mu \mathrm{~V}$ for 30 dB quieting
$7 \mu \vee$ for full limiting
Squelch level $20 \mu \mathrm{~V}$
A.F.C. range $\pm 200 \mathrm{KHz}$

Signal to noise ratio $>65 \mathrm{~dB}$
Audio frequency response $10 \mathrm{~Hz}-15 \mathrm{kHz}(\pm 1 \mathrm{~dB})$
Total harmonic distortion 0.15% for 30%
modulation
Stereo decoder operating level $2 \mu \mathrm{~V}$
Pilot tone suppression 30 dB
Cross talk 40dB
I.F. frequency 10.7 MHz

Output voltage $2 \times 150 \mathrm{mV}$ R.M.S
Aerial Impedance 75 Ohms
Indicators Mains on: Stereo on ; tuning indicator Operating voltage $25-30$ VDC
Size $3.6 \times 1.6 \times 8.15$ inches: $91.5 \times 40 \times 207 \mathrm{~mm}$

Price: $£ 25$ built and tested. Post free.

Power Supply Units

The units below are designed specially for use with the Project 60 system of your choice.
Illustration shows PZ. 5 power supply unir to left and PZ. 8 (for use with 2.50 s) to the right. Use PZ. 5 for normal $Z .30$ assemblies and PZ. 6 where a stabilised supply is essential.

PZ-5 30 volts unstabilised £4.19.6
PZ-6 35 volts stabilised $£ 7.19 .6$
PZ-845 volis stabilised
(less mains transformers) $£ 5.19 .6$
PZ-8 mains transformer $£ 5.19 .6$

GUARANTEE If within 3 months of purchasing Project 60 modules directly from us, you are dissatisfied with them. we will refund your money at once. Each module is guaranteed to work perfectly and should any defect arise in normal use we work perfectly and should any defect arise in normal use we
will service it at once and without any cost to you whatsoever provided that it is returned to us within 2 years of the purchase date. There will be a small charge for service thereafter. No charge for postage by surface mail., Air-mail charged at cost.

Sinclair IC-10

the world's most advanced high fidelity amplifier

Specifications

Output: 10 Watts peak, 5 Watts R.M.S. continuous
Frequency response: $\quad 5 \mathrm{~Hz}$ to $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$ Total harmonic distortion: Less than 1% at full
output.
Load impedance: 3 to 15 ohms
Power gain: 110 dB (100,000,000,000 times)
total.
Supply voltage: $\quad 8$ to 18 volts
Size: $\quad 1 \times 0.4 \times 0.2$ inches. Sensitivity: 5 mV .
Input impedance: Adjustable externally up to 2.5 M ohms.

Circuit Description

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier Class $A B$ output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages, making battery operation eminently satisfactory.

Applications

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include stabilised power supplies, oscillators, etc. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick, has 5 watts R.M.S. output (10 w . peak). It contains 13 transistors (including two power types), 2 diodes, 1 zener diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion

The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. However, it is so designed that it-may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout), etc. Once proven, the circuits can be produced with complete uniformity which enables us to give a full guarantee on every IC-10. knowing that every unit will work as perfectly as the original and do so for a lifetime.

NAME

ADDRESS. \qquad
DDRESS.
\square
\square

At the International Audio

 and Music Fair, Olympia, Stand
Q. 16 High fidelity loudspeaker

Developed out of the revolutionary and much praised design of the original Sinclair 0.14 comes this more advanced version to meet the requirements of even greater numbers of high fidelity enthusiasts. The 0.16 employs the same well proven acoustic principles in which a special driver assembly is meticulously matched to the physical characteristics of the uniquely designed housing. In reviewing this exclusive Sinclair design, technical journals have been loud in their praise for it and it comfortably stands comparison with very much more expensive loudspeakers. The shape of the 0.16 enables it to be positioned and matched to its environment to much better effect than is the case with conventionally styled enclosures, and with its improved styling. the $Q .16$ presents an entirely new and attractive appearance. A solid teak surround is used with a special all-over celfular black foam front chosen as much for its appearance as for its ability to pàss all audio frequencies unimpaired.
The 0.16 is compact and slim and is the ideal shelf-mounted speaker, and brings genuine high fidelity within reach of every music lover.

Specifications

Construction

Loading:
'Input impedance:
Frequency response
A sealed seamless sound or pressure chamber is used with internal baffle, all of materials carefully chosen to ensure freedom from spurious tone coloration.
Up to 14 watts R.M.S.
8 ohms.
From 60 to $16,000 \mathrm{~Hz}$, as confirmed.
by independently plotted B \& K curve.
Driver unit:

Size and styling unit having massive ceramic magnet of 11,000 gauss, aluminium speech coil and special cone suspension. Excellent transient response is achieved.
$9 \frac{3}{4}$ " square on face $\times 4 \frac{3}{4}$ " deep with neat pedestal base. Black all-over cellular foam front with natural solid teak surround.
Price:

Micromatic Britain's smallest radio

Considerably smaller than an ordinary box of matches, this is a multi-stage A.M. receiver meticulously designed to provide remarkable standards of selectivity. power and quality. Powerful A.G.C. is incorporated to counteract fading from distant stations: bandspread at higher frequencies makes reception of Radio 1 easy at all times. Vernier type tuning plus the directional properties of the self-contained special ferrite rod aerial makes station separation very much easier than with many larger sets. The plug-in high fidelity type magnetic earpiece which matches exactly with the output of the Micromatic provides wonderful standards of reproduction both for speech and for music. Everything including the batteries is contained within the attractively designed case. Whether you build your Micromatic or buy it ready built and tested, you will find it as easy to take with you as your wristwatch, and dependable under the severest listening conditions.

Specifications

Size:
Weight including
batteries:
Tuning:
Ėarpiece:
Battery
requirements:
Case:
Controls: Tuning dial, and on/off switching by means of earpiece plug.
Price: \quad Available in kit form complete with earpiece. case, instructions and supply of solder in fitted pack. 49/6.
Ready built, tested and guaranteed. 59/6.
$1 \frac{13^{\prime \prime}}{10^{\prime \prime}} \times 1 \frac{7}{10^{\prime \prime}} \times \frac{1^{\prime \prime}}{\mathbf{n}^{\prime}}(46 \times 33 \times 13 \mathrm{~mm})$. 1 oz. (28.35 gm) approx.

Medium wave band with bandspread at higher frequency end
High-fidelity magnetic type.
Two Mallory Mercury Cells, type R.M. 675, for long working life.
Black plastic with anodised aluminium front panel. spun aluminium dial.

OSCILLOSCOPE PROBE TM8II9 High Impedance $100 / 1$ resistive attenuated
probe for accurate display of HF waveforms probe for accurate dis play of HF waveforms
or short rise time pulse signals, offered brand new with all accessories and

instruction manual. List price fi7 instruction manual. List price $£ 17$. | Our priee E7.10 including earth bayonet |
| :--- |
| TM8194. A MARCONI PRODUCT |

HIGH VOLTAGE TRANSFORMERS at I amp. Weight 75 lb . Price $£ 15$.
TELEMAX HIGH VOLTAGE IN-
SULATION TEST SET. Model E.II5. SULATION TEST SET. MOdel E. I 15 .
Ikv. to 15 kv . Used for the decection and 1 kv. to 15 kv . Used for the detection and
measurement of leakage current and the operation of high voltage apparatus, the output voltage used is measured on a arge 34 in . meter, any leakage which flows in the test circuit is indicated on the same
calibrated meter. The instrument is noncalibrated meter. The instrument is non-
lethal and may be shore circulted without
 supplied in first class condition. Price E30.

SOLARTRON OSCILLOSCOPE

The best of the surplus scopes for E52, fully serviced and calibrated, compare the specification with others. Bandwidth DC-10MHz at 3 dB . Sensitivity is $1 \mathrm{MV} / \mathrm{cm}$. Time Base 0.1 usec- $1 \mathrm{~cm} / \mathrm{sec}$ in 7 decades with fine control on ach range. Uses resolution flat face PDA CRT and many resor features make this scope very suitable for colour televlsion servicing and many other applications. Price 652
P. \& P. 25%.
INSTRUMENT CASES IMHOFF Manufacture. Brand new cases finished in pale Blue/Green rivelled stove enamel, with anodised front trim and recessed side handles, the case front has been angled downwards 2 inches to prevent the front panel, which is finished in $11 g h t$ grey stove enamel with pair of chrome
angled Instrument handles. Overall size of case depth $14 \frac{1}{2}$ angled to $12 t$ height 12 in. width 192 in. Front panel $19 \times 10 \times \frac{1}{2}$ in. These cases were obviously built to house very expensive equipment prise
E7. 10.0, P, \& P. $10 /$-.

SCHOMANDL FREQUENCY METER TYPE FD.I AND

 METER TYPE FD.I ANDCONVERTER UNIT TYPE FDM.I Range I $\mathrm{KHz} t 0900 \mathrm{MHz}$ an approved standard for telecommunications equip-
ment. Offered calibrated to manument. Offered calibr
facturers specifications.

CROYDON INSTRUMENTS
Precision Kelvin Wheatstone Bridge,
type KWi. Measurements can be made type 0,0001 of an ohm. 100,000 ohms
from $0, ~$ consains insitu Sullivan Galvo, four decade ranges, four standards and six
Kelvin divide/multiply ratio's offered in excellent condition ready for use. Price 695.
MARCONI 100 KHz QUARTZ CRYSTAL Type Qmi 20/F coneained in Brand new only 20/- each.
MORGANITE GLASS ENCLOSED RESISTORS Value 2.5 k . meg ohms.
tolerance 10%. $25 /=$ per carton of four.

STABILISED VARIABLE VOLTAGE

 P.S.U. Model 700 series. ExcellentStability $1,000-1$. Low riple content Stability $1,000-1$. Low ripple content
better than 1 MV . Small size only $4+4+13$ in. deep. Fully variable throughout range. Protected and fused. Intended for bench use in the following voltages:

0.20 v . at 1.5 amps
$0.16 \mathrm{v} at$.
0.5 gmps
$0 .-16 \mathrm{v}$. at 1.0 amp
0.0 mp

0.16 v at 2.0 ampp
0.18 v , at 2.0 amps
P. \& P. on any unit 10%
R.D.O. UHF. RECEIVER. $38-1000 \mathrm{mHz}$ offered with 3 tuning units to cover full
frequency range. Ideal communications frequency range, Ideal communications
recelver/or can be supplied with Panrecivery can be supplied with
adaptor for laboratory work. 95. WATSON MARLOW ORBITAL
LOBE PUMPS Specially designed for corrosive liquids
etc. Rated output against 10 ft . headette. Rated output against 10 ft. head-
110 G.P.H. direction of flow reversible. Supply 240 Y. A.C. mains. Nett weight
14 Ib. Supplied as new. Price E12. 10.0 P. \& P. IOP. List $£ 22.10 .0$.

Voltage and Current regulators-heavy duty rheostats- 1 ohm rated at 10A. Brand new by famous manufacturer, $12 / 6$
each. Also 1.5 ohm at 7A., 12/6, p.p. 1/6. Lucas diode rectifiers-full wave bridge
rectifier mounted on special heat-sink. rectifier mounted on special heat-sink.
50 V .60 V . Operation rated at 50 A . Has many uses for heavy duty charging plants,
plating rectifiers, etce., etc. Per pair EB plating rectifiers, etc., etc. Per pair $\mathbb{E 8}$
(two complete bridge rectifiers), p.p. $7 / 6$.

SPECIAL OFFER

"INSULATION TESTERS" TYPE No. II METROHM by famous British manufacturer. All solid state. No handles to crank Runs off 9 volt transistor battery. Simply press button for function. Range 0.1 to 25 M ohms for insulation testing. Also 0.1 to 100
ohms for resistance and continuity cheeking. Clear, concise scale. ohms for resistance and continuity cheeking. Clear, concise scale.
Small size modern instrument, complete with carrying strap and Small size modern instrument, complete with carrying strap and
protecting cover. Offered in good used condition with battery protecting cover. Offered in good used condition with battery
ready to work. For 250 volt pressure only. List Price 19.10 .0 . Our Price $£ 5.19 .6$ plus $4 / 6$ post/packing.

Rhode \& Schwarz ESM 300 UHF Receiver AM/FM $85 \mathrm{MHz}-300 \mathrm{MHz}$
Rhode \& Schwarz BNI5031 Field strength test recelver AM/FM $90 \mathrm{MHz}-470 \mathrm{MHz}$. Rhode \& Schwarz BN4ISI/2"60 Nolse zenerator ${ }^{3} \mathrm{MHz-1000} \mathrm{MHz}$.
Rhode \& Schwarz BNI 8042 Unbalanced standard Atrenuacor 0 -I00db 50 ohm $0 \quad 0 \mathrm{MHz}-600 \mathrm{MHz}$.
Rhode \& Schwarz BN33664/50 UHF Load resistor 100 wate 50 ohm $0 \mathrm{MHz}-600 \mathrm{MHz}$. $\begin{array}{ll}\text { Rhode \& Schwarz BN4521 Vibration Meter } \\ \text { Rhode \& Schwarz } & 30 \mathrm{~Hz}-12 \mathrm{KHz} \\ \text { ZD Diagraph! }\end{array}$

> Advance Q meter type $T .1$. Marconl Q meter type 39 G Marconl Q meter type 886 A
$100 \mathrm{kHz}-100 \mathrm{MHz}$.
$50 \mathrm{kHz}-50 \mathrm{MHz}$.
$15 \mathrm{MHz}-170 \mathrm{MHz}$.
 equipment. Variable between $3-24 \mathrm{v}$.@ 2 equipment.
amps. Supplied New. Price....6I7.10.0

Airmec portable RF signal generator. AM/FM Type CT212. Spectally deatgned for fild use for mains or $12 v$ operation.
Frequency
ranke
85 kHz
to
80 MHz . Accurate scale Frequeney range 85 kHz to 80 MHz . Accurate scale
calbration. ${ }^{*}$ Variable output from 1 micro V 100mV

RCA AR88D R/X, 0 to 80 db . Offered in excellent condition. Only c 45 PRICE 652

WAVE ANALYSER
 MARCONI 455E RANGE 20 Hz -16kHz,
 CONDITION

Marconit TF887 standard RF Signal Generator, range
15 kHz to 30 MHz , Variable output from 4 micro V to 4 Volta. Extremeely accurate attenuator, hilgh output
stabilty and diecrimination make the genator very stability and discrimination make the generator very
suitable for precision measurements on networks and suitable for precision measurements on networks and
filters. Modulation up to 100% may be anilied at filters. Modulation up to 100% may be applied at
400 or 1000 Hz . Bullt in crystal callbrator. Offered in
first class condition. Price ci75.

Precision Multi Turn Indicating Dials suitable for 10 turn Hellcal Pots, machined from solld dural with 0 to 10 suitable for standard t ineher spindles. these small dalas are as easy to fix as screwing on an for counter knob depth fin. Brand new, only $15 / 6$. | TEKTRONIX 545A |
| :--- |
| WITH TYPE CA PLUG |
| WN. WORKS RECON. |
| DITONED ANDCALI- |
| BRATED LIKE NEW | A General Controls Manufacture.

> | TEKTRONIX 515A |
| :--- |
| PERFECT CONDDI- |
| TION. CALIBRATED |

Minature solenold driven waffr switches, type-Tedex single pole, 7 pos, 3 wafers. Primarilly used for channel
switching in Radio.Telephones. Wafers may be sub. switching in Radio. Telephones. Wafers may be sub.
stituted for any type. Solenold voltage, 12 or 24 V . stituted for any type. Solenoid voltage, 12 or 24 V .
Brand new. $30 /=$ each, p.p. $2 / 6$.

CAMBRIDGE INSTRUMENT Co. Led. Precision test meters. Electrodynamic A.C. Ammeter 0 to 15 amps with test certificate
Dynamometer A.C. Ammeter range 0 to 15 amps

Cambridge Dynamometer A.C. test set $0-225$ Watt $\bar{j} / 0-330^{\circ} \stackrel{\rightharpoonup}{\mathrm{v}} / 10-30^{\circ}$
635
645
455
Tinsley Universal Shune type 4309 C
Tinsley Vernier Potentiometer type $4363 E$ Auto
Foster Thermocouple potentiometer type DX
Digital Volemeter Solartron LM902. 2 four digit readout
Solartron A.C. Convertor LM 903 matching unis for LM 902° Hewlett Packard DVM 405CR four digit readout auzo polarity
Glouster DVM BIE 2123 A.C./D.C. transistor portable 0.1000 v.

Frequency Counters Analogue/Digital
Marconi TF1345/2 digital 10 Hz to $220 \mathrm{mHz} \mathrm{C} / \mathrm{W}$ full complement plug in's Racal Digital frequency meter type older valve model 10 Hz - 300 kHz.
Rank Cintel Counter/timer transistorised model $10 \mathrm{Hz-1} \mathrm{mtz}$
Rank Cintel Counter/timer transistorised model $10 \mathrm{~Hz}-1 \mathrm{mHz}$
U.S.A. BC221 Heterodyne frequency meter $125 \mathrm{kHz}-20 \mathrm{mHz}$ new readout U.S.A. SC175/U $85-1000 \mathrm{mHz}$ Modulated, recer U.S.A. TS186/D Heterodyne frequency meter $100-10,000 \mathrm{mHz} \mathrm{CW}, \mathrm{MCW}$, pulse Marconi TF $1417 / 2$ counter/timer 10 mHz transistorised

SOLARTRON VF252/NSL

PRECISION ACMILLIVOLT METER
Range 1.5 milli volt (for full scale defleccion) to 15 voles in eight ranges input impedance 30 M ohms. The meters offered are of the very latest type not to be confused with the older models.
Price only 675 .

LUCAS CAR RELAYS. 12 v. Heavy duty make. Suitable for spotlights,
horns, overdrives, ete. Brand Only $7 / 6$. Special price for quantisies. BARGAIN OFFER 200-yard reels equipment wire, size 1/024, STC quality, various colours, Brand new
reels only $15 /$. reels only $15 /$.. P. \& P. $2 / 6$.
ELECTRONIC VOLTMETERS RF AND DC
Marconi TF 1041 C 25 mV . to 300 V . 20 H to $1,550 \mathrm{mHz}$. measures DC 10 mV . to 1.000 v . Measures ohms 0.02 to 500 M ohms. High input resistance. A small
 Philips GM6010 DC Voltmeter 1 mV . to 300 v . in 12 ranges BATTERY OPERATED PORTABLE
 Marconi TF 1100100 miero-vole to 300 v .10 Hz . to $10 \mathrm{MHz}, 10 \mathrm{~m}-\mathrm{ohm}$ input resistance can-also be used as wide band amplifier with gain up to 400

50DECO IMPULSE COUNTERS DIGIT RESETT 10 Impulses per second. 27MA 220 V COIL AC/DC OFFERED BRAND NEW AT 40/- EACH

ELECTRONIC MULTIMETER TYPE CTA7IC We have a quantity of these very popular lnatrument condition minus outside cases and probes these fully transistorised meters were built to very high standarde and measure AC current and volts. DC current and volts plus DC resistance etc. Offered complete p.p. 10/-. Try not to miss thls month's best buy.

MATRIX SWITCH ASSEMBLY Five rows of 17 contacts (gold plated)
Working voltage 250 v between adjacent Working voltage 250v between acjacen row I amp. Applications are many in Process Control data handling and card reading. Offered brand new at only 50/-
each. P. \& P. 3/6. Diode Pins $3 / 6$ each. A.E.I. MINIATURE UNISELECTOR SWITCHES
No waiting, straighe off the shelf and into your equipment the Catalogue Nos 250 ohms. Complete with base, and the price is $£ 4.19 .6$. Limited quantity only available.
Also: 2203A, 2200A, 2202A.
Resolved Components Indicator VP 253/la. Solartron Low Frequency Decade Oscillators. Solartron OS 103 and associated equipment. 2 Phase Low Frequency
Oscillator, eype Bo 567 . Solartron Oscillator, eype Bo 567 . Solartron.
Solartron Synchro test set, type CT 428 . Solartron Synchro test set, type CT 428.
Solartron AC Millivolt meter. Precision. Solartron $A C$
Type VF 252.
CHRONOTRON TIME INTERVAL METER MODEL 25 B
Suitable for setting up relays and other applications where precise time mea'stime intorval indicated on large meter scaled in milliseconds. Range 0.1 milli. second to 10 seconds. Mains operated. Price 630, p.p. $10 / 6$.

MUIRHEAD D-5I4-A TRANS Designed for the maintenance Designed for the maintenance and
adjustment of carrier telephone equip adjustment of carrier telephone equip: mains voltage. Perfect condition. C / W power supply. Prise $\mathbf{\$ 5 0}$.
Marconi Video Oscillators TF 885A. 25 Hz to 12 MHz sine wave. 50 Hz to $150 \mathrm{kHz} 5 q$
Price $\& 35$.
Hilger \& Watts Microspin X Band Bridge. Frequency Meter. Type FAZ08, Micro. spin Modulator. Type FA 210. Microspin $I \mathrm{~cm}$ Wave guide directional couples, associated measuring equlpment. High Voltage Klyst
Units. Type FA 80.
Units. Type FA 80.
Hilger a Watts Absorbance Convertor, and many other items of interest offered
Brand new equipment.
Epicyclic slow-motion drives. To I ratio. Brand new, 2 for $10 /$, ins. P.p. U.G. panel mounting VHF sockers type SO239 amphenol. Brand new, sealed,
2 for $10 /=$ inc. p.p.

Burndept RF Plugs still available. These hard to find plugs are used on a multitude of equipmene. especially Londex aerial 2 for $10 /=$, inc. p.p.
Nife traction Bacteries Nickel Iron. I.2V per cell rated at 180 A.H. Sold in crates of three cells or crates of five cells. \&4
per cell. Guaranteed best buy.
Meters, new U.S.A. type, high quality panel mounting $2 \frac{1}{2}$ ins. dia., matching pair- $0-300 \mathrm{~V}$. DC., and Ampmeter sealed

MUIRHEAD DECADE

This Precision Instrument has an 60 B

 of 0.2 per cent with a frequency coverage of i cps to 111.100 kHz continuous. Max output 2 watts into 8k ohms harmonic content less than I per cent.Hourly stability 0.02 per cent. Offered in Hourly stability 0.02 per cent. Offered in
as new condltion, list price $£ 350$. Our price 695.

SPECIAL OFFER
Temperature Compensated
B83IB, for the accurate measurement of CW or Pulsed RF power in six full scale ranges from . 01 to 3.0 milliwatts. These measurements can 0.01 to 40 GHz using a series 218 Thermistor Head. All measurements are read directly in milliwatts or DBM on the These units are offered in as new condition, some of which have been used as demonstration models only. Price only Et5, complete with wave guide type
thermistor head and fully decailed manual. PAXOLIN PC BOARDS contains five Mullard OC36 power transistors-made up as solenoid drive unit. Guaranteed.
Brand new, only $30 / \mathrm{m}$ inc.

PAXOLIN PC BOARD contains ten GETII3 transistors with polythene holders, ten miniature glass diodes and 25
iW. resistors. BRAND NEW $19 / 6$.
P. \& P. 6d.

BI-PAK=LOW COST I.C's VALUE ALL THE WAY

BI-PAK	sim.	Description	$\begin{gathered} \text { Price } \\ 1-24 \end{gathered}$	and qty.	rices 100 up
BP00	7400 N	Quad 2-Input Nand ante	8/6	5/6	$4 / 6$
BP01	7401N	Quad 2-Lpput NAND Gate-OPEN COLLECTOR	$6 / 6$	5/6	4/6
BP04	7404N	HEX INVERTER ..	6/6	5/6	4/8
BP10	7410N	Triple 3-Input NaND GATE	6/6	$5 / 6$	4/8
BP20	7420 N	Dual 4 -Input NAND GATE	8/6	5/6	$4 / 6$
BP30	7430N	Single 8-Input NaND Gate	$6 / 6$	$5 / 6$	$4 / 6$
BP40	7440N	Dual 4-Input BUFFER GATE	8/6	5/6	4/6
BP41	7441 AN	$\begin{array}{cc}\text { BCD to decimal decoder and NIT } \\ \text { Driver } & . . \\ & . . \\ . . & .\end{array}$	22/6	20/-	1718
BP 42	7442N	BCD to decimal deode (TTL O/P)	22/6	201-	17/6
BP50	7450 N	Dual 2-Input NAND/OR/NOTGATE -expandable	6/6	5/6	$4 / 6$
BP53	7453N	Expandable 4-Wide 2-Input NAND/ or/not gate ..	6/6	5/6	4/6
BP60	7460 N	Dual 4-Jnput. expandable	6/6	5/6	$4 / 6$
BP70	7470N	Singte JK Flip-Flop-dge triggered	9/-	8/-	710
BP72	7472N	Single Master slave JK Flip-Flop ..	9/-	8/-	$71-$
B273	7473N	Dual Master Slave JK Flip-Flop	10/-	9/-	$8 / 6$
BP74	7474N	Dual D Flup-Flop ..	10/-	9/-	8/6
BP75	7475N	Quad Bintable Latch . .	11/-	10/-	$8 / 8$
BP76	7476N	Dual Master Slave Flip-Flop with preset and clear	11/-	10/-	9/6
BP83	7483N	Four Bit Binary Adder	26/-	22/6	201-
BP90	7490N	BCD Decade Counter	22/8	20/-	$17 / 6$
BP92	7492N	Divide by 124 Bit binary counter. .	22/6	80/-	$17 / 6$
BP93	7483N	Divide by 164 Bit biplary counter. .	22/6	20/-	$17 / 8$
BP94	7494N	Dual Entry 4 Bit shift Register	22/6	20/-	$17 / 6$
BP95	7495N	4 Bit Uy.Down Shift Register	22/6	201-	1716
BP96	7496N	5 Bit shift register	24/-	21/-	$18 / 8$

Data are available for the above Series of Int
 TTL INTEGRATED CIRCUITS

DTL DIGITAL I.C's

MDTL dual in-line packag
Type MC844P expandahle dual 4-input NAND Power Gate

BRAND NEW, FULL TO MANUFACTURERS'
SPECIFICATION
Amplifier, dual-in-line 14 pin pack-1-24 Price each
$25-99$ BP709 Operatlonal Amplifier, dual-In-line 14 pin pack
age $=$ BN72709 and similar to MIC709 and ZLD 10/6 9/This is a high performazice operat
inputis and low impedance output.

FAIRCHILD (U.S.A.) I.C's RTL

RTL Micrologic Circuits
Epoxy case To-5 temp. $\mu \mathrm{L} 900$ Buffer
$\mu \mathrm{L} 914$ Dual two-linput GÄTE

$\begin{array}{cr}\text { cly. prices each } \\ 12-24 & 25-99 \\ 7 /- & 6 / 6 \\ 7 /- & 8 / 8\end{array}$
 100 u $5 / 6$ $5 / 6$ $9 /-$

QUALITY-TESTED PAKS 6 Matched Trans. OC44/45/81/81D. 6 White Spot RF Trans PN 5 Bilison Recta. 3A $100-400$ PIV 10 A silicon Rects. 100 PIV. 2001140 Trans. NPN
112 A sCE 100 PIV. 3 sii. Trans. 28303 PNP $3200 \mathrm{Mc} / \mathrm{s} 8 \mathrm{si}$. Trans. NPN B8Y26/27 3 Zcner Diodes 1W 33v 5\% Fol.
4 High Current Trans. 0 C 42 Eqvt Yigh Current Trats. OC42 Eqve...
2 Power Transigtors 1 OC26 1 OC35 2 Power Transiatore 100261
5 gilicon Rects. 400 PIV 250 mb 4 OC75 Transistors.
1 Power Trans. OC20 $100 \vee$
o Power Trans. 2 Low Noise Trans. NPN 2Ng2930.
1 G11. Trans. NPN VCB 100 ZT86... 4 OC72 Tranaiseors
4 OC77 Transistors
4 SUL, Rects, 400 PIV 300 mA
5 GET884 Trana. Eqvt. OC44
5 GET883 Trang. Eqvt. OC45
5 GET883 Trans. Eqwt. OC4.
2 2N708 sil. Trans. $300 \mathrm{Mc} / \mathrm{s}$ NPN..
3 GT31 LF Low Noise Gerra Trans
3 GT31 LF Low Noise Germa Trans.
6 IN914 Bil. Diodes 75 PIV 75 mA ..
 2 OC22 Power Trans. Germ. 2 OC25 Power Trans. Germ..
4 AC128 Trans. PNP High
 7 CG 62 H Germ. Dithing Trans... 3 AFl16 Type Trans.
4 Absorted Germ. Diodes Marked 4 Adilon Genm. PN P Trank....
B AF117
7 AF117 Trans.....
70 C 81 Type Tra.
$30 \mathrm{OCl17}$ Trans...
2N2926 S11.
3
7
7
ON2021
OC71
Stan, Epoxy Trans. 7 0c71 Type Trana.... 310 A 600 PIV Sil. Bects. $18 t 5$ R.. 12 N910 NPN SNI. Trans. VCB $100 .$. 21000 PIV Sill. Rect. 1.5 A R53310 AF 3 OC200 sil. Trans. 1 AFI 39 PNP High Freq. Trans: 10
 3 Madt's 2 MAT101 and 1 MA 3 ACl27 NPN Germ. Trans. 1 2N3906 8il. PNP Trann, Motorola....
2 Sil. Power Bects. BYZ 3 .
1 Bil. Power Trans. NPN 100 Mic 2 2N1132 PN P Epitaxial Planar gil. 3 2N697 Epitaxial Planar Trans. sil. 4 Germ. Power Trann. Eqve. OCl

 8 BY100 Type 811.
25 sil. and Germ.
marked, New
marked, New30/

NEW LOW PRICE TESTED S.C.R'

TRANSTSTOR EQVT, BOOK, A complete
cross reference and equivalent book for
European, American Rnd Jnpariese Trisie
tors. Exclusive to BI-PAK.....15/- each
PRINTED CIRCUTTS
EX-COMPUTER

Packed with
Packed with semiconductors and coms
ponents. 10 boans give a guaranteed
30 trans. and 30 diodes.
30 trans. and 30 diodea.
Our price 10 boards $10 /-$
DUAL-N-LINE LOW PROFILE SOCKETS 14 AND 16 Lead Sockets for
Dual-in-Line Integrated Circuthe.
Price
$\begin{array}{ll}250-99 & 100 \text { up } \\ 8 /- & 5 / 3\end{array}$

CADMIUM CELLS $/$ FET'S

PHOTO TRANS.
OCP71 Type $8 / 6$ |Flying Leads..18/-each
Please send all orders direct to our warehouse and degpatch department.
Postage and packing add $1 /-$ - Orerseas add extra for Airmall. Minimum order $10 /$. Cash
with order please.

BI-PAK SEMICONDUCTORS
 P.O. BOX 6, WARE, HERTS.

KING OF THE PAKS Unequalled Value and Quality SUPER PAKS $\begin{gathered}\text { new bemiconductors } \\ \text { semed }\end{gathered}$

Codo Nos. mentioned above are given as a gulde to the type of dovice in
the Pak. The devices thernaelves are normally unmarkod.

FREE

ADI6I
ADI 62
$P N P$
MATCEED COMPLE-
MENTARY PAIR MENTARY PAIRE
OF GERM. POWER TRANSISTORE
OUR LOWEST PRICE
OF $12 / 6$ PRR PAIR

HIGR POWER GILI. CON PLANAR TRAN-

 CON PLANAR TRAS18TORA. TO.3.
FERRANTI ZT1487

2 2N3055 115 P WAT SIL. OUR' PRIOE 12/6EA. VOLTAGE RANGE
$2-18 V, 400 \mathrm{mV}$ (DO-7
Case) $2 / 8$ ea, $1+$ (TOp. Hat) $3 / 8$ ea. 10 W (80-
10 stud) $5 /-$ ea. All fully
lested 5% tol. and marked. State voltage
required. BRAND NEW TEXAS
GRRM. TRANSISTORS

Coded and Guaranteed | Coded and Guaranteed |
| :--- |
| Pak No. |
| T1 826371 EQVT. |
| OC71 |
| T2 |
| 820374 | 820374

$8293744 \mathrm{AC75}$
82 CO 81
829814
 2N2060 NPN 8IL. DUAL
TRANS, CODE D1699 TRANS. CODE DDA9
TEXAS. Our price $5 /$ each
120 VGB MIXIE DRIVEAT TRANSISTOA.
BEX21 \& C407,
SN 1893 FOLLY TESTED AND CODED ND120. 1-24

OVER 3,000 INANSFORMERS, CHOKES listed in Wireless World October issue. REDCLIFFE 'C' CORE TRANSFORMERS

 GARDNERS 'C' CORE TRANSFORMERS
Grimaries tapped $200-220-240 \mathrm{v}$, Sec. 130 v , $185 \mathrm{M} / \mathrm{A}$ All primaries tapped $200-220-240 \mathrm{v}$. Sec. 130 v . $185 \mathrm{M} / \mathrm{A}$ tw
$200 \mathrm{v} .350 \mathrm{M} / \mathrm{A}$. twice. $59 / 6$, carr, $8 / 6$. Sec. $415-015 \mathrm{v}$. 178 M

GARDNERS EHT TRANSFORMERS
Pri. 205-225-245v, Sec. 3200 v . 2M/A Sealed potted eype. 52/6. P. \& P. $6 / 6$," Parmeko. Pri, 2V. $200-220$

GARDNERS LT TRANSFORMERS Pri. 200-220-2 24 v . Sec. 65 v . 1 A , and $18-24 \mathrm{v}, 0.5 \mathrm{~A}$. Conservatively
rated open frame type, table top connections, 49/6. P, \& P, 6/6.

 TCC LECTROPACK ELECTROLYTIC CAPACITORS SPECIAL OFFER OF GRESHAM CHOKES

 Swlnging Chokes. $20 \mathrm{H} 100 \mathrm{~m} / \mathrm{a} .-10 \mathrm{H} 450 \mathrm{~m}$
All Chokes supplied new and guaranteed.
PARMEKO CHOKES-NEPTUNE SERIES
$10 \mathrm{H} .180 \mathrm{M} / \mathrm{A}$, , 25/. P. \& P. $5 / \mathrm{F}, 10 \mathrm{H}, 120 \mathrm{M} / \mathrm{A}$, , 12/6. P. 8

 JUH GUPITER SERIES SWINGING CHOKE $34 \mathrm{H} .60 \mathrm{M} / \mathrm{A} .-70 \mathrm{H} .35 \mathrm{M} / \mathrm{A}$, , 2 -8kv., D.C. Wkg. $25 / \mathrm{m}, \mathrm{P}$, \& P. $6 /-$ LOW TENSION SMOOTHING CHOKES
By Redellife. $100 \mathrm{MH}, 2 \mathrm{amps}, 49 / \mathrm{P}$. \& P. $7 / 6$. SWinging Type.
IOMH. $6,5 \mathrm{amp}-50 \mathrm{MH}, 2 \mathrm{amps}, 45 / \mathrm{m}, \mathrm{P}$ P. $7 / 6$. Both types lomH. 6.5 a mp- $50 \mathrm{MH}, 2$ amps. $45 /$. P. \& P. $7 / 6$. Both types
less than 1 ohm res. Hermetically sealed. Oil filled. Brand new. less than ohm res. Hermetically sealed. Oil filled. Brand new. OIL FILLED BLOCK CAPACITORS
 voltage shown are at 60
$12 \mathrm{mld} .600 \mathrm{v} .12 / 6$. P. \&
$8 \mathrm{mfd} .1500 \mathrm{v} .17 / 6$. P. \&

Samson's
9 \& 10 CHAPEL ST., LONDON, N.W.I 01-723-785|

01-262-5125

FORMENT RANGE OF BRAND NEW L.T TRANS-
 Note: By using the intermedlate taps many
voltages can be obtained.
Example: No. $1 \ldots-10-15-17-25-33-40-50 \mathrm{v}$

$240 \mathrm{v} .-110 \mathrm{v}$. or AUTO TRANSFORMERS 100 v . Completely Shrouded fitted with Two-pin American Sockets or terminal blocks. Please state which type required $\begin{array}{ccc}\text { Type } & \text { Watts Approx, Weight } \\ & 80 & 21 \\ & 15\end{array}$

gURGESS MICRO SWITCHES
Type MK 3BR/74. Norm closed or Norm open. 1 in. ralsed
Press Button. $8 / 6$ for three. P. \& P. 2/6.
HONEYWAL 20.

NEWMARK SYNCHRONOUS
$220-240 \mathrm{v}, 50$ cycles, 3 wates 8 r.p.m
Overall size $2 \times 2 \times 2$ ins. $10 / 6$. . \& P. P. $/ 6$
LONDEX 220-240v. A.C. RELAYS
Open frame type 12 heavy make con-
Open frame type 12
eacts. 27/6. P. \& P. 5/

VENNER SYNCHRONOUS BIO-DIRECTIONAL MOTORS
 spindle stop is placed overall size $21 \times 2 \times$ lins, Spindle
length tin. dia. $1 / 16$ th. An ideal mozor for display, giving a length tin. dia. 1/16th. An ideal mozor for display, giving
forward and reverse motion, $12 / 6$. P, \& P, 2/6.
A.C. $220-240 \mathrm{v}$. Shaded Pole Motors. $1,500 \mathrm{r} . \mathrm{p} . \mathrm{m}$., double
spindle. 0.9 in , and 0.6 in. overall. Size $3 \times 3 \mathrm{i} \times 2 \mathrm{in}$. As used in hot air blowers, new and boxed. 10/6. P. \& P. 3/6.
A.E.I. Adjustable Thermostats. Type TS2, seem 6 in.,
60 deg. C. contacts N.O., new and boxed, 27/6. P. \& P. $3 / 6$, 60 deg. C. contacts N.O. ne
12 in stem. $32 / 6$. P. \& P. $4 / 6$.

RANCO REFRIGERATION THERMOSTATS

SCOTCH MAGNETIC TAPE

LONDEX PLUG-IN RELAYS
Sealed type, $28 y$. D.C. Three heavy duty silver contacts, Size

SUNVIC TANK THERMOSTATS

Type TQP. 250 v . 15 amps NC. 5 amps. NO. $190-70 \mathrm{deg}$. F.
Length of stem 101 ins. $25 / \mathrm{m}$. P. \& $P .5 \%$.

Fantastic package deal of 8 bigh-grade motors, speotally made for a tamous British manufacturer of Slot-ear Racers, on Railrose, and contgurations to make power packs to suit hundreds of models. Seven motors operate from 11 to B volt batteries to give wide range of speeds and powers. Set also includes a 12 voit direct replacement
motor and treck pick-ap for a Scaiextrie Slot-car Raver, alone valued at more than this bargain offer for the whole collection. All motors are Brand New.

QUARTZ HALOGEN
 AMP OFFER $17 / 6$ post paid 12 Volts, 50 Watts operation

High-grade British manufacture complete with hlgh temperature ceramic bage fitted with ffying leads. Euitable for prompector, car spotlamp adaptation, or bigh intensity lighting applications. New
and fully guaranteed.

GUARTZ HALOGEN

Standard tubular pattorn with ceramic end-contact fittings and sapplled complete with ceramic holders. For 200/240 volts main operation, 1500 watts; Length overall 255 mm . Diam. 10 mm ,
Filament length 175 mm . post .

TOP QUALITY LIGHT GUIDE
Set length. Bargain offer: only $17 / 6$ each post free New, high-grade 3 mm diam, glass tibre optical light gulde made by a famous Brtinh manuseturer for an importans compater organisa
tion and suiplue to requirements. Total length is 22 in. with one end ground and bonded into a 5 mm . $\times 50 \mathrm{~mm}$. long brass ferrale Remaintag length is contained in plastic enclosed flexible mets brald. Can be cut off at any length required and bonded with Araldite to complete, or braid can be timmed oft and unit used as
multi-light array for diaplay purposes.

INFRA-RED TRANSMITTERS \& RECEIVERS Unique deviees in a brand new electronlo field that can be exploited
in a wide ranse of applications. Miniaturized construction and solid In \& wide range of applications. Miniatarized oonstruction and solid switching capabilities to provide infinite possibilities as short distance speech and data links, remote relay controls, satety devices, burgla
alarms, batch counters, level detectors, etc, eto.

MGA 100
allium arsemtde liget source Mga 100
Filamentless infra-red emitter in a robuat, sealed cylluder coaxial Max Ratings:
Forward curreat IF max.* D.C.: 400 moA . Forward peak current IF max. " (pk): 6 A . Power dissipation ": 600 mW . Derating factor
for T amb greater than $25^{\circ} \mathrm{C} .7 .5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Reverse voltage VR max. for T amb greater than $25^{\circ} \mathrm{C}: 7.5 \mathrm{~mW} / /^{\circ} \mathrm{C}$. Reverse voltage VR max.
1.0 V .
. When mounted on an aluminlum heat aink $1 \mathrm{in}, x+$ to $x+$ in

INFRA-RED PHOTO RECEIVER-MSP3
Ultra aensitive detector/amplifier for infra-red (Gallium Arsenide) or visible light optical links reception. Spectral response 9500 A optical alignment and beat sinking.
Max Ratings:
Total disslpatlon (in free $a 1 \mathrm{r}, \mathrm{T} \mathrm{amb}=25^{\circ} \mathrm{C}$.) 100 mW . Derating actor: $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Output current intensity: 100 maN . Voltage supplizd complete with suitsble from -30° to $+125^{\circ} \mathrm{O}$. application aheets, juinduding line of sight speech link.

Standard cradle trpe

standard type complete with dial and approx. 10 it. cord. Good second hand
condition, in guaranteed working order.

SPECIAL OFFER OF IMAGE FIBRESCOPES

45 post free
Botween 50,000 and 80,000 coherently arranged, 15 micon glass nto otherwise inaccessible areas. Originally made by Rank TaylorHobson tor use in industrinal and medical fibrascopes at 872 each, dese have suight, superticially impercoptible taults and are assembled usual. Ends are ground polished and metal capped, Absolutely ddeal for demonstration in achools and technioal colleges and for many other applications that require highly sophisticated mesay of aocess

LOW COST CROFON FLEXIBLE LIGMT Newly developed plastic light transmitting medta by Dupont, which can nexpensive prototype work. Ends with epooxy resin. Temperature range :
 appisations Mult-strand- 04 special plastic fibres, tightly bundled together in tough, Aexble conduit. $8 / 6$ per toot. Minimum order two feet,

GENERAL PURPOSE PUMP

£7. 10.0 P. \& P. $5 /$
Compact, totally enclosed unit bas stainless asteel British continuously rated motor to eosure long operating lite ander rigorous outdoor and marine use. Maximum head 10 ft . Output in excess of 300 g.p.h. Ideal for use as bige pump in small etc. Size overall only 12 in long $\times 2 \phi \mathrm{in}$. dlam. Complete with stand-off mountlig bracket. available. Gogranteed 12 months.

ELECTRIC BLANKET

HEATER CABLE
Min. order 20 yds, of one type, plus $2 / 6 \mathrm{P}$. \& P. Nickel alloy ribbon spirally wound on to a fibre core and lasulated by an outer cover os clear, siliconized plaatic. Originslly intended an undersoil heating in propagating trays and many other low temperature applieations, Cable diam. 2.5 mm . Available in varions resistance ranges as foliows: 14.5, 15.9, 21.5, 28.9, 41, 48, 151 and 177 ohms
(2) =betiter oualiv, senvice, Prices a Lapeest stocks

[^13]
Electro-Jeck Sales

"Parvalux" Reversible
I00 RPM Geared Motor
Type S.D. $14,230 / 250 \mathrm{v}$. A.C
22 Ib. $/ \mathrm{in}$. Standard foot
mounted, variable angle
final drive. Removable 9 .
tooth chain spiggot on $3 / 16^{*}$
spindle. Ist class condition.
E7.10.0 each. P. \& P. $10 /$.
 Also limited number only as above. Without spiggot. Brand New. §12.10.0 each. P. \& P. Io/.

NEW "CARTER ELECTRIC" 12 r.p.m. MOTOR.-Non-reversible, cast aluminlum cased gearbox. Stoutly constructed. Approx. 25 lbs ./in. Overall size (approx.)
spindle. 45 -. P. \& P. $5 /-2$

SPECIAL OFFER. Enclosed Relay, complete with base. Brand New. Type
MO308 600 2 4 y .4 c . Size $1 \frac{1}{2}^{\prime \prime} \times 1 \frac{1}{2}^{\circ} \times \mathbf{3}^{3^{\prime \prime}}, \mathbf{E 5}$ per dozen. Type MQ508 $10,000 \cap 100 \mathrm{v}$. 4 clo .65 per dozen. $12 /$ - each Type MQ108 $40 \Omega 6 v .4 \mathrm{c} / \mathrm{o}$
E 6 per dozen, $13 / 6 \mathrm{each}$ Type MQ208 $150 \Omega 12 \mathrm{v} .4 \mathrm{ch}$ E6 per do
Carr. Paid.

NEW "F.I.R.E." PLUG-IN RELAY.-ll5v. Coil $50 / 60$ c.p.s. 3 heavy duty silver change-over contacts. Very robust. 17/6. Carr. Paid.

NEW DIAMOND "H" 240v. A.C RELAY.-3 heavy duty sllver changeover contacts. $17 / 6$. Carr. Paid.

.

ERIE, Ceramicon capacitor. Type CHV4IIP. 500 P.F. 30 KV
Size 1.5 in . dia. $\times 1.44 \mathrm{in}$. long, 10/* each. Carr. Paid.
Painton Aotary Switch. Type 72 (to P.O. spec. RC1416)
3 pole, 3 position, 2 bank. Offered at less than half maker 3 pole, ${ }^{3}$ position, 2 ban
price at $32 / 6$. Carr. paid.

PERSONAL CALLERS WELCOME.

Hilectionter Salle

4.STATION INTERCOM

Solve your communication problems with this new 4-Station Transistor Intercom system $(1$ master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ isten from Master to Subs and Subs to Master. Operates on one 9 v . battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hos pital, Shop, etc., for instant inter-departmental pital, Shop, etc., for instant inter-departmental each 66 ft . and other accessories. Nothing else to buy. P. \& P. $7 / 6$ in U.K

THORN DIGITAL INDICATOR. A modular unit easily read through a wide angle of view even under bright lighting,
12 characters, 0 to 9 decimal 12 characters, 0 to 9 , decimal point and minus sign. Characters
$13 / 16^{\circ}$ high on acrylic, edge-lit by I watt midget lamp. Front panel 1 watt midget lamp. Front panel black finish. Supplied with 12 lamps. Choice of the following ratings-6v. IA. or $12-14 \mathrm{v}$.08A. \&4.0.0 each, spare lamps 24/-per dozen. Carr. Paid.

SPECIAL OFFER-BRAND NEW ENGLISH
ELECTRIC MAGNETRONS, TYPE 2JS5. NEW IN FACTORY SEALED TAANSIT PACKING. ABLE. E27.10.0 EACH. CARRIAGE PAID U.K.

VACTRIC. Precision D.C. motor and gear head.
Motor type IIPIOI (size II) 28 volss Motor type IIPIOI (size 11) 28 volss operation.
500 RPM Torque $120 \mathrm{G} . \mathrm{CM}$. 0.54 amp. Coupled to 5000 RPM Torque 120G. CM. 0.54 3mp. Coupled to
gear head, type 15 H 102 (size 15). Rasio $300 \cdot 1$. gear head, type 15H102 (size 15), Rasio 300.1 . ¢16. 10.0 . Carr. Paid. Quantiey discounts on appli-

 Muirhead control transformer. $18 \mathrm{CT4b}, 400 \mathrm{HZ}$. 90月V Muirhead control
Sperry AC tachogenerat ór. Type IIMGGSL $400 \mathrm{HZ} \| 5 \mathrm{v}$.
$0.5 \mathrm{y} / 1000 \mathrm{RPM}$. Lin. Range 0-600 RMP. E15.10.0. Moore Reed synchro control differentlal transmitter
VCDX Moore Reed synchro control transmitter. VCX 23-36-46.
400 HZ . $115 / 90$ volts. E8. 10.0 Quantity discounts on application.

Muirhead-3 in. Synchro Magslip. Type E-19-E/I $110 / 50 \mathrm{v}$,
50 HZ. Recent 50 Hz.
CI6 pair.
PULLIN MOTOR. Type PMIC. 28 Volts D.C. Original makers packing. £4.5.0. Carr. Paid

Precision Line (USA). Size 15,300 PE $\pm 5 \% \pm 5 \%$ LIN Precision Line (USA. Size $15.3000 . \pm 5 \% \pm 5 \%$ LIN.
Continuous track plat. Wipers set at $180^{\circ} .75 / \%$ each. Carr. Paid. Penny \& Giles. Size 15. 500 O. Type Q26201-72/1. Continuous
erack. $75 /$ - each. Carr. Paid.

PRECISION POTEMTIOMETER
Beckman. Type AS.506. 10 turn. Tol $\pm 1 \%$. LIN Tol $\pm .07 \%$
40 K . Long Spindle. $60 /$.

2) dia.

Type HMIG/4. 3 phase. 400 Hz . $115 \mathrm{v} .270 \mathrm{Gm} / \mathrm{cm}$. 12,000 r.p.m. At in. length. $2 t$ in. dia. Square flange mounting.

VATRIC PRECISION D.C. MOTOR
Type \times OTPI9. 10 v . D.C. 0.66 amp . $8,000 \mathrm{r}$. p.m. 30 Size 7 . Original maker's packing. Limited supply. \&4.15.0
"HONEYWELL" V3 SERIES.Flush microswitch 10 amp . c/o. The ide panel is insulated. End-plate size

WE WELCOME OFFICIAL ORDERS FROM ESTABLISHED COMPANIES,
"TEDDINGTON" CONTROL STAT TYPE TBB.-Adjustable between 75° and $100^{\circ} \mathrm{C}$. A further up to $120^{\circ} \mathrm{C}$. Circuit cuts in max 3° below cut-out setting. 42° capillary and sensor probe. The thermostat actuates a is amp. 250 v . c/o switch. A second single pole onjoff switch is incorporated in the adjustment mechanism. 17/6. Carr. Paid.
"GOYEN" PRESSURE SWITCH. -Incorporating differential adjustment between $2^{\prime \prime}$ and $12^{\prime \prime}$ water gauge (a max. of approx. ${ }^{\frac{1}{2}}$ p.s.i.). A single pole change-over switch rated 15 amps. 250v. Is actuated. Air inlet rube ${ }^{\frac{1}{4}}{ }^{\text {² }}$
dia. Projection H^{*}. Overall size: dia. Projection $H^{\prime \prime}$. Overall size: 25/.. Carr. Paid ${ }^{2 \prime}$ plus $\mathrm{t}^{\prime \prime \prime}$ (air tube) 25/-. Carr. Paid

$\%$

"KNOWLE" (U.S.A.) MINIATURE MICRO. PHONE CAPSULES. Impedance 2000S. Types A and C: output approx. 60 dB at 1 Kc ; Type B : 100 dB at IKc. Actual sizes as illustrated. As used in miniature hearing aids, bugging devices, etc. Ex-equipment. All tested. 20/- each. Carr. Paid
Motor Driven Variable Voltage Transformers by Ohmite Transformers $120 / 240 \mathrm{v}$. $50 / 60$.
(U.S.A.). Input 120 v . c.p.s. Output $0-240 \mathrm{v}$. at 480 v.a.
A reversible 1 I 5 v . a.c. geared motor drives the contact sweep arm in the direction required. There is a micro switch mounted at each end of the
track which is cam-operated and
 track which is cam-operated and intended to be connected as a safety-stop. First class condition. £7.10.0. P. \& P. 10/-

BERCO. Rotary rheostat. Type L25.
dia. t in. spindle. $12 / 6$ each, Carr. Paid.

S.T.C. MIdget Sealed Relay. Type 4190 EC. I70 Ω. Single H.D. make. $10 / 6$ each. Carriage 2%

SYLVANIA MAGNETIC SWITCH-a mag netically activated switch operating in a vacuum Switch speed-4ms. temperature - 54 to + 3 amps. at 120 v . 1.5 amp at 240 v . Price reduction. We are now able to offer this item at $7 / 6$ each or $60 /$ dozen. Special quotation at $7 / 00$ or over. Reference Magnets available. 1/6 each. Carr. Paid.

\& SYLVANIA CIRCUIT BREAKERS gas filled

 providing a fast thermal response between 80° and $180^{\circ} \mathrm{C}$. Will withstand pressures up to $2,000 \mathrm{lb} . \mathrm{sq} . / \mathrm{in}$. rated 10 amp . at 240 v . continuous. Fault currents of 28 amps . at 120 v . or 13 amp . at 240 v . silver contacts. Supplied in any of the following opening temperatures $130,135,140,145,150,155,160,170,175$. 10/- each or 80/- per dozen. Carr. Paid.

ALL ITEMS NEW AND UNUSED UNLESS

BUSINESS HOURS:
 9.30-6 (1 p.m. Sats.)
 264 PENTONVILLE ROAD, LONDON, N. 1
 (ONE MIN. FROM KINGS X STATION) Tel. 01-837 7401

Special total price. Four fully wred units ready to "plug-1n". 86 BIS. Really superb performanco. Sond S.A.E. for brochure Carr. $30 /$ EXTREMELY ATTRACTIVE PLINTHS Anished ln Teak or Afrormosis vene TInted Tranaparent Plastic cover.
 DIOTRINE HR HIOH Cover. \star Goidring CS90 Ceramic diamond tipped Cartridge. \& Pair of Stanway II Loudspeaker Units.
 76 Gns.

LOINE HIGH FIDELITY
LOUDSPEAKERS structlon, Latest hish officlency cerame magnets. Treated Cone murround orar "LL"
indicates Roll Bubber surround " nancates roll subber burround. " D '
indicates Tweeter Cone providing
extended extended frequenoy range up to 15,00
o.p.s. Exceptional pertormance et e.p.e. Exceptional Deriformance at low
cost. Impledance 8 or 8.15 ohms WHEN ORDERING PLEASE STATE IMPEDANCE HF 8010 8° BW
HF $1020100^{\prime} 10 \mathrm{~W}$
EF $12012^{\circ} 16 \mathrm{~W}$

R.S.C. HIGH FIDELITY LOUDSPEAKER UNITS

Cabinets of latest styling Satin Teas on Afrormosia veneer Acoustioally lined or flled

 appropriate. Credit terms available.| DORCHESTER Sizo $16 \times 11 \times 91 \mathrm{n}$. Appr. Fitted High flux is $\times 8$ in. 9 GnS. Dual cone speaker. Impe- Carr. $7 / 6$ dance 3 or 18 ohms. STANWAY II size $20 \times 10 \frac{1}{4} \times 9$ in . sppros. Ratlag 10 watts, lnoluding $13 \times 8 \ln$, apeaker with highly flexible cone surround, long throw Yolce coll and 11,000 line magnet. High flum tweeter, Bandsome Scandinarian dealgn cablnet. Range $35-20,000$ o.p.n. Impedance 15Ω. 16 G SS . Gives arnooth realistic sound output. Inc. carr,
 Treble "IIft" and 'cut" controln. 3 input socket for Mike, Gram, Kadio or Tape. Input selector awitch. Output for $8-15$ ohm speakers. Max, seasitivity $\delta \mathrm{mV}$. Output rating I.H.F.M. In fully enclosed enarnelled case, facia plate 104×3 inn. and matching knobs. 7 SIS. Complete kit of parts wit OR PACTORY BUILT with 12 monthe g^{\prime} tee. 88.19 .9 |
| :---: |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

HI-FI LOUDSPEAKER ENCLOSURES Teak or Afrormosia venser finish. Modern design. Acouatically lined. All ilzes approx. Carr. $7 / 6$ extra. JE8 8ize $16 \times 11 \times 910$. Pressurised, Gives pleasing results with any 8 in. $\mathbf{~ 4 . \| 4 . 6 ~}$ ro speaker. ses For optimum performance with 55
日E12 Por high performanee with 12in. Hi-FH ppeakeer $\mathbf{4 6 . 1 9 . 9}$

- TA $126.5+6.5 \mathrm{~W}$ Amplifier in veneered housing * Pair of Dorchester Loudspeaker Units. * Garrard SP25 Mk II 4-speed Player on Plinth. \star Goldring CS90 Ceramic P.U. Certridge with diamond Stylus. Speclal total price. 54 Gns Terms Dep. $£ 6.19 .6$ and 9 monthly payments E6.4.6 (Total 80 Gns.) Carr. 25 TRANSPARENT PLASTIO COVERS 3Gns EXTRA
 nd creo. Terms: Dep. 28/0/0 and 9 monthly payments $£ 5.14 .0$ Total e57.6.0). Carr. 26/.

THE'YORK' HIGH FIDELITY 3 'SPEAK
 \qquad

(2) 3-way quarter section serlee croses-over system. (a)
speaker. (4) Hygh effleiency tweeter. (5)

Indilvidual Ganged controls: Bass, Treble, Volume and Bal-
ance, Printed circuit construction employing 10 Tranalistors
 15 ohms. For standard 200.250

 wiring diagram and Instructions. Or FACTORY Bunit in Tenk veneered cablnet as Hilustrate

 R.S.C. AlO 30 WATT ULTRA LINEAR HI-FI AMPLIFIER Highly eensitive. Panb-Pull hlgh trol Stages. Hurn level -70 dB . Frequency response $\pm 3 \mathrm{~dB}$
$30-20$, Sensitivity 36 millivolts. Sultable for High Impedance mato. or
ptck-ups. Designed for Olubs, Schooin, Theatres, Dance Halls or
 String Base, etc. Gram, Radio or Tape. Reserve L. . and He.t.
for Radio Tuner. Two inputs with asocociated volume controlip so that two separate inputs such as Gram and "Mike"' can be mixed. 200-250 v., A.C. mains. For 8 \& 15 ohm speakers. Complete
Kit parts wiring diagrams, instructions, 15 gns. Twin-handled perforated cover 35%. Or factory bult units. Carr. 12/6. R.S.C. TFM1 SOLID STATE VHF/FM RADIO TUNER
 Ample for any mamplitior (approx.
 oircultry. A quallty product at considerably less the Printed Termp: Deposiit $26 / 1 /$ and 9 monthr 18 gis. Or
STEREO VERSION 234 gns.

 uhh-Puill 20 watt high quality sectionailis 35 WMOUnd ELL34, 6L6. K K K86, etc. to 3 or $150 \quad 59 / 8$ $150 \mathrm{~mA}, 7-10 \mathrm{H}, 250 \mathrm{n} 12 / 9 ; 100 \mathrm{~mA}, 10 \mathrm{H}, 200 \Omega$
$80 \mathrm{~mA}, 10 \mathrm{H}, 350 \Omega, 8 / 9,60 \mathrm{~mA}, 10 \mathrm{H}, 400 \Omega, \frac{9}{4 / 11}$

SHORT WAVE MAGAZINE

The journal for the Radio Amateur, established in 1937 and now circulating in all English-speaking countries. In the last 25 years it has become the most widely-read radio amateur magazine in the U.K. Includes regular SWL feature and much operating news covering all bands HF/VHF. Also articles on theory, design and construction of amateur-band equipment. At least 64 pages every month. Price 4 s . by order through any newsagent (subscription 45 s . year of 12 issues, post free).

Our Publications Dept. also offers a wide range of books of radio amateur and SWL interest, including the international DX Call Book (58s. 3d.), ARRL Handbook (55s.), World Radio/TV Handbook (43s. 6d.), DX Zone Map (14s. 9d.) Latest editions, post free, from stock-and many others, as listed in any issue of Short Wave Magazine.

Editor: Austin Forsyth, OBE (G6FO)
SHORT WAVE MAGAZINE, Ltd. (GB3SWM) 55 Victoria Street - London - S.W. 1 (Tel: 01-222 5341/2)
EQUIPMENT WIRE P.V.C. covered $80 /-$ per 1,000 yds. $71,0076,1 / .024,14 / .0048$
type I and 2, all colours. $14 / .0076$ type 11 Red and Natural 88 per 1,000 yds.
MINIATURE BUZZERS, 12 volts, with tone adjuster, $7 / 8$ each as illustrated.
Quantity Rates.
VARIABLE A UTO TRANSFORMER. Input $230 \mathrm{v}$.21 amp. Output 57.5
SINGLE FUSE HOLDERS. Belling Lee L356 one hole fixing. $3 / 6$ each.

MULTI-INDICATORS 0 to 9 , or A to K, or L to $Z 5 / 8 \mathrm{in}$, characters, dimensions

 flanged lamps .08 ampz,
specification for $£ 13$ 10s.
VACUUM GAUGES, 2 in . scaled. 0/30 inches of mercury, 20/- each, post $2 / 6$
PRESS URE GA UGES, $2 /$ in., 60,400 or 600 p.s.i., $25 /-$ each. 4in. flange $30,60,300$ p.s.i.
$37 / 6,100$ p.s.i. with $0 / 30$ ins. vac., $37 / 16$, post $2 / 6$. $37 / 6,100$ p.s.i. With $0 / 30$ ins. vac., $37 / 6$, post $2 / 6$.
GEARED MOTORS. I r.p.m. or 3 r.p.m. 4 watts very powerful, reversible
A.C. $35 /$, post $2 / 6$, can be operated from 230 v , wish our $20 /$ Transformer. Post $5 /-$. FREQUENCY METERS. $45 / 55$ c.p.s. 230 v. A.C. 6 in. dia. Hush round $\$ 10$. Post $10 /$ ROOM THERMOSTAT. Adjustable between 45 and 75 deg. Fahr., 250 V . 10 amp SUBMINIATURE MICRO SWITCHES HO
SUBMINIATURE MICRO SWITCHES HONEYWELL. IISMI-TNI3. S.P.D.T. at low prices. PER MINUTE. 6 FIGURES. GENERALPURPOSE TYPE. IIOV. A.C. $65 /$ POSE $3 /-$

HIGH SPEED COUNTERS

$3 t$ in. $X I$ in. 10 counts per second, voltages are available, $6 \mathrm{v}, 12 \mathrm{v}$ 24 v ., 50 v ., or 100 v .

Grams: WILCO CROYDON

Brand New Fully Guaranteed Quantity TRANSISTORS \& DEVICES

$303 \cdot 309 \cdot 354 \cdot 356$ EDGWARE ROAD LONDON W. 2

NEW RANGE SELF-POWERED PRE-AMPLIFIERS

SLIM MODERN DESIGNS USING THE LATEST
SILICON TRANSISTORS, FET's and IC's. DIN SOCKETS, ETC. fitted. PUSH-BUTTON SELECTION, $\pm 20 \mathrm{~dB}$.
Bass and treble boost and cut. All inputs provided plus TAPE RECORD and REPLAY. Specifically designed for use with PA25 and PA50 Amplifiers ADUSTABLE OUTPUT UP' TO I VOLT. Simple mounting.
\star FET9/4. Mono with buile-in mic. mixer. Accepts ony ceramic or crystal cartridge. Plus tuner, tape, etc. Price $£ 12.10 .0$ p.p. $4 /$-. \star fetis4 stereo.

Magnetic cart., input, tuner, tape, etc. Beautiful stereo sound. Price $\mathbf{1 1 6 . 1 0 . 0}$ p.p. $4 / 6$
\star I.C. STEREO
All facilities plus headphone socket without amplifiers. Uses IC's,
FET's etc.

SIMPLICITY TO MOUNT-EASYTOUSE-DESIGNED

 FOR QUALITY, PERFORMANCE AND PRICE

- At full power 0.3% distortion. - At full power- $1 \mathrm{~dB} / \mathrm{l} \mathrm{c} / \mathrm{s}$ to $40 \mathrm{kc} / \mathrm{s}$. - Response- $1 \mathrm{~dB} / 1 \mathrm{c} / \mathrm{s}$ to $100 \mathrm{kc} / \mathrm{s}$.

LOOK AT THE SPECIFICATIONS!
25 WATT \& 50 WATT RMS SILICON AMPLIFIERS

- Rise time 2μ sec. 2510 transistor all silkon diferential input 400 mV sensitivity. watts Rms into 8 ohms. Supplied with edge connector harness A 50 I2 transistor version 50 wates Rms Into 3 to 4 ohms. Size $5^{\prime \prime} \times 3^{\prime \prime} \times 4^{n}$
MU 442. Power supply for one or two PA 25 or one PA 50 . $442 \in 6$ PA 25 E7.10.0. All units. No soldering-just edge connectors and plugs.

BUILD THIS VHF FM 5 MULLARD TRANSISTORS $300 \mathrm{KC//}$ BAND WIDTH. PRINTED CIRCUIT. HIGH FILELHTY REPRODUCTIGN. MONO ANO Tuatiry and reception of mono and sereo
EST EQUIPME

For Educational, Professional and Home Constructors
special prices for quantities

AFlo5 50k/vole multimeter (illus.). Price $£ 8.10 .0$ p.p. $3 / 6$. Leather case 28/6.
200H $20 \mathrm{k} / \mathrm{vol}$.
Price $£ 3.17 .6$ p.p. $3 / 6$.
Case $12 / 6$. Case 12/6.
$50030 \mathrm{k} /$ volt multi-meter Price £8.17.6 p.p. $3 / 6$

Leather case 30/
THL $332 \mathrm{k} / \mathrm{vole}$. Price ©.2.6 p.p.

TE65 Valve volrmeter (illus.). $£ 17.10 .0$ p.p. $7 / 6$. VM5I Transistorised AF/RF millivoltmeter. Price 632.

TE20D RF generator (illus.). Price \& 15 p.p. $7 / 6$ TE22D Matching audio grice fil p.p. $7 / 6$. TEIS Grid dip meter. C12.10.0 p.p. 3/6.

TO3 Scop (illus.). ${ }^{3}$ Price $£ 37.10 .0$ p.p. 10/-

ORC27A. WEIN BRIDGE RC AUDIO OSCILLATOR

PANEL METERS Complete range in stock. FREE List on request

OVER 30 PAGES OF TEST EQUIPMENT

HENRY'S LATEST CATALOGUE SEND
 350 pages fully detailed and illustrated. All audio and electronics complete with $10 /$-value discount voucher for use with purchases. p.p. 2/

A must for
 SINCLAIR Z30 75/-, project 60 amp E8.10.0, Pz5 79/6, Pz6 C6.19.6, $\mathbf{z 5 0}$ ¢5.9.6, EQUIPMENT P28 65 19. t Two Z30, P25 and 60 pre-amp (usually $\mathbf{2 2 3 . 1 0 . 0) ~ (o r ~ w i t h ~ P z 6 ~ i n ~ p l a c e ~ o f ~}$

YOU CAN SAVE 25\%

BRAND NEW AND FULLY GUARANTEED SP25 mkll £11.9.6. AP75 $£ 16.19 .6$. SL65 B $£ 14.19 .6$. SL72 B ©25. SL75 B ©31. SL95 B \&39. P.p. 7/6. SPECIAL OFFER. Above supplied with cartridge 9TAH/C diam. add $\subset 2$, magnetic 940 add $£ 3$, with $G 800$ add
©7.10.0. De-luxe plinths and covers for above. Price 67.10.0. De-luxe plinths and covers for above. Price E8. 10.0 p.p. $6 /-$ -
Goldring GL 69 deck only. $\mathbf{C 2 2}$ p.p. 2/6. With G800 29 p.p. $7 / 6$. Mk. II GL69 add 30/Garrard Model 50 and 30001 m £9.15.0 (fitted 9TAHC diam. carts.) p.p. 7/6. Plinths Goldring GL69 fitted G800 with plinth/cover and

FII-FI equipment to surit EVERY POGKET

\star PA AND DISCOTHEQUE EQUIPMENT Complete range now in stock ready to use and modular equipment
tComplete systems and individual units at special low prices-choose from 100 selected stereo systems. Call in for a demonstration when in London.
*Freel2-page stock/systems List No. 16/17. LOW CASH AND CREDIT/HP PRICES
(Credit terms for purchases from $\{30$-eallers only.)

ELECTRONIC ORGANS

*MODERN ALL BRITISH TRANSISTORISED
DESIGNS AVAILABLE AS KITS OR READY BUILT
*VENEERED CABINETS FOR ALL MODELS + 49 NOTE 61 NOTE SINGLE MANUAL DESIGNS A SO TWO MANUAL 49 NOTE +KITS AVAILABLE IN SECTIONS AS REQUIRED tHP and CREDIT SALE FACILITIES
When in London call in and try for yourself.

VISIT THE
NEW
DEMONSTRATION ROOMS
(see below)

[^14]ELECTROLYTIC CONDENSERS

LIGHT CELLS

VALVES 0 CTC 0 NUMBERING VALVES
CONTROLLED RECTIFIERS

AEI	\cdots	\cdots	CRR. 10101 B	10 amp	100 V		\cdots	\cdots
STC	\cdots	$10 /-$						
TRASITRON	\cdots	3140	TCR 1010	3 amp	400 V	\cdots	\cdots	$10 /-$
		8 amp	100 V	\cdots	\cdots	$10 /-$		

RELAYS

MINIATURE SIEMENS 4 C.O. 2 Coils. 2 K each

ẄIRE LA'TCHIN̉G REL̈AY ${ }^{2} 4$ Change-over. Mäin coil' 600 oh'm. Release
coil (if used) 300 ohm. 2 for 10

ROTARY RHEOSTATS

CRESSALL 100 WATTS 1500 ohm
350 ohm (with black instrument knob)
mounting screws and black instrument control knob!
SONOTONE 9TA HC CARTRIDGES, DIAMOND STYLUS 48/-
EXTRACTOR FANS
PLANNAIR. 230 V I.PH. 50 ohm. $9 \frac{1}{2} \times 8^{\prime \prime}$ DIA. 12 TURBINE FAN BLADES 6^{*} DIA.

UNISELECTORS

8 WAY 25 BANK 75 ohm COIL
16 WAY 52 BANK OPERATING COILS $44 \circ{ }^{\circ} \mathrm{m}$, LÖCKING் COIL 100 ohm

PLUG

MeMURDO. RED RANGE 24 WAY

SOCKET

McMURDO. RED NANGE 32 WAY
COMPUTER TAPE SERIES 5000
RCA TYPE. ${ }_{557-24}{ }^{\frac{3}{4}} 2400 \mathrm{ft}$. CASSETTE. COMPLETE ..
HY 14083 PHILIPS ASPIRATED SOLDER IRON
COMPLETE UNIT COMPRISING SOLDER IRON, STAND/CLAMP, FOOT. PUMP AND RESERVOIR/BIT SPANNER, 200/220V. IIO/115V. AC. HALF WHOLESALE PRICE. £3.15.0. Box/Post, etc. 5/-extra.

RUSSIAN RADIO

ASTRAD AURIGA PORTABLE. £12.19.6. Box/Post, etc., $8 / 6$ extra. BATTERY MODEL. 8 WAVEBAND. 12 SEMICONDUCTORS. WORLD. WIDE RECEPTION.
WHERE POSTAGE AND PACKING IS NOT ADVISED ADD $2 /-$ IN POUND FOR HANDLING AND POSTAGE (IN U.K.).
> W. \& B. MACFARLANE
> (TRADING \& ELECTRONICS)
> 5 SHAKESPEARE ROAD, FINCHLEY, N. 3 TEL: 01-346 8543

ENAMELLED

 COPPER WIRES.W.G. $\frac{1}{2} \mathrm{lb}$. Reel

1 lb . Reel
18-22
11 s . 3d.
16s. 6d.
23-30
11 s .9 d .
17s. 6d.
31-35
12s. 3d.
18s. 6d.
36-40
15 s .
24s.
41-44
17s. 9d.
29s. 6d.

Orders despatched by return of post. Please add $1 /$ - per item P. and P.

Supplied by:

BANHER TRANSFORMERS

(Dept. WW), 84 Old Lansdowne Rd. West Didsbury, Manchester M20 8WX

FULLY TESTED AND MARKED			
AC107	3/-	OC170	4/6
AC126	2/6	OC171	4/6
AC127	3/6	OC200	3/6
AC128	2/6	OC201	7/-
AC176	5/-	$2 \mathrm{G301}$	2/6
ACY17	3/-	2 G 303	2/6
BC 154	5/-	2N711	1.0/-
BC171=BC107	2/6	2N1302-3	4/-
BC172 $=$ BC108	2/6	2N1304-5	5/-
BF194	3/-	2N1306-7	6/-
BF274	3/-	2N1308-9	8/-
AF239	7/6	2N3819F.E.T.	9/-
AF186	10/-	Power	
AF139	7/6	Transistors	
BFY50	4/-	OC20	10-'
BSY25	7/6	0 C 23	10/-
BSY26	3/-	OC25	8/-
BSY27	3/-	0 O 26	5/-
BSY28	3/-	OC28	7/6
BSY29	3/-	OC35	5/-
BSY95A	3/-	OC36	'7/6
OC41	2/6	AD149	10/-
OC44	2/6	25034	10/-
OC45	2/6	2N2287	20/-
OC71	2/6	2N3055	15/-
OC72	$2 / 6$	Diodes	
-C73	3/6	AAY42	2/-
OC8 1	2/6	OA95	2/-
OC810	2/6	OA79	1/9
OC139	2/6	OAB 1	1/9
OC140	3/6	IN914	1/6

PACKS OF YOUR OWN CHOICE UP TO THE VALUE OF 10/- WITH ORDERS OVER I^{4}

CLEARANCE LINES

DON'T MISS THIS LAST CHANCE,

 ONLY A FEW LEFT.UHF/VHF T.V. TUNER UNITS TU. 2 CONTAINING 2 AF 186 's \& 2 AF178's PRICE 10/-
TU. 3 CONTAINING 2 AF186's \& 2 AF178's
PLUS WAVEBAND SLIDER SWITCH
PRICE 12/6
P\&P $2 / 6$ EACH UNTT
All the units have many other components. e.g. Capacitors. Resistors. Coils and tuning condensers, elc.. Although these are manuaculu rows

ALL TUNER UNITS ARE SUPPLIED WITH CONNECTION DATA.
COLOUR T.V. LINE OUTPUT TRANSFORMERS.
Designed to give 25 K.V. when used with PL509 and PY500 valves. As removed from colour receivers at the factor.

ONLY f1 each
post and packing 4/6.

SPECIAL LINE

1 AMP. Bridge rectifiers
100 PIV. $=5 /-$
$400 \mathrm{PIV} .=6 / 6$
f" Square 1970 MULLARD DATA BOOKS.
Data and equivalents on semiconductors, valves and tubes. PAICE 4/- P\&P $6 d$ I.C. PANELS-FEW ONLY-50/- EACH Each panel contains:-
16-Dual 2 I/P NOR gates MC714G. 1-Dual 3 i/P NOR gate MC715G. 1-J.K. flip ilop MC723G. 29-8SY95A or 2S95A and 1 V 405 A transistors.

LOOK! TRANSISTORS ONLY 6d EACH

T.YPE A

PNP SILICON ALLOY to-5 CAN
Spec:-
ICER AT VCE $=20 \mathrm{v}$ 1 mA MAX. HFE. 15-100
These are of the 2 S 300 type which
OC200/205 range.

TYPE B

PNPSILICON PLASTIC ENCAPSULATION Spec:-

ICER AT VCE $=10 \mathrm{v}$ 1 mA MAX. These are of the $2 \mathrm{~N} 3702 / 3$ and These are of
2N4059/82 range.

8 8о	8	Dual Trans. Matched O / P pairs NPN. Sil, in TO. 5 can	10/-
883	200	Trans manufacturer's rejects all types NPN. PNP. Sil. and Germ.	10/-
884	100	Silicon Diodes DO. 7 glass equiv. to OA200. OA202	/-
${ }^{886}$	50	Sil, Diodes sub. min. IN914 and IN916 types	10/-
888	50	Si. Trans. NPN, PNP, equiv. to OC200/1. 2 NTOACA, BSYY5A. etc.	10
860	10	7 watr X Xener Diotes Mixed Vollages	10/-
н6	40	50 mW . Zener Diodes D0-7 Min. Glass Type	10/-
H10	25	Mixed volts, $1 \frac{1}{2}$ watt Zeners. Top hat type	10/-
H11	30	MAT Series "alloy" $\rho n \rho$ Transistors	10/-
H15	30	Top Hat Silicon Rectifiers. 750 mA . Mixed volts	10/-
H16	8	Experimenters' Pak of Integrated Circuits. Data supplied	10/-
H2	20	BY126/7 Type Silicon Rectifiers. I amp plastic. Mixed volts	/-

NEW TESTED \& GUARANTEED PAKS B79 $4 \quad 1$ amp. Plastic.

881	10	REED SWITCHES MIXED TYPES LARGE \& SMALL	10/-
889	2	5 SP5 LIGHT SENSITIVÉ CELLS LIGHT RES. 400Ω DARK $1 \mathrm{M} \Omega$	10/-
892	4	NPN SIL. TRANS. AO6 $=\overline{B S X Z U}$. 2N2369, 500 MHz .360 mW .	10/-
893	5	GET 113 TRANS. EQUIV. TO ACY17-21 PNP GERM.	10/-
896	5	2N3136 PNP SIL TRANS. TO- 18 HPE $100-300 \mathrm{IC}, 600 \mathrm{~mA} .200 \mathrm{MHz}$	10/-
B98	10	XB112 \& XB102 EQUIV. TO AC126 AC156. OC81/2, OC71/2, NKT271. ETC.	10/-
B99	200	CAPACITORS, ELECTROLYTICS, PAPER, SILVER MICA, ETC. POSTAGE ON THIS PAK $2 / 6$.	10/-
H4	250	MIXED RESISTORS POST \& PACKING $2 /$ -	10/-
H7	40	WIREWOUND RESISTORS MIXED TYPES \& VALUES. POSTAGE $1 / 6$	10/-
H8	4	BY127 Silicon Recs. 1000 P.I.V. 1 amp Plastic. Replaces the BY 100	10/-
H9	2	OCP71 LIGHT SENSITIVE PHOTOTRANSISTORS	10/-

Return of the unbeatable P. 1 Pak. Now greater value than ever

Full of Short Lead Semiconductors \& Electronic Components. approx. 170. We guarantee at least 30 really high quality factory marked Transistors PNP \& NPN, and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.

Please ask for Pak P.1. Only 10/-
2/- P \& P on this Pak.
Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any 0-1mA meter into a perfectly linear and accurate rev 20/-ach

FREE CATALOGUE AND LISTS for: -
 ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add $1 /$-post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

P.O. RELAYS

 VARIOUS CONTACTS AND8 for COIL RESISTANCES.
NO INDIVIDUAL SELECTION. $20-$
POST \& PACKING 5/-

FREE: A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS
 in chassis form for you to mount in any housing that you choose. All settings
are achieved by two dual-concentric controls at the front including: ON.OFF. AUTO and AUTO ALARM, "sleep" switch. 10 minute division "click" set alarm (up to 12 hour delay). time adjustment. Ultra simple mecharism and high quality manufacture guarante日 reliable operation and The sleep switch will automatically turn off any appliance-radio. TV. light, etc., at any, pre-set time up
morning.
The clock measures $43 \mathrm{~W} \times 13 \mathrm{H} \times 33 \mathrm{D}$ (overall from front of drum to back of switch). SPEC: $210 / 240 \mathrm{~V}$ AC . 50 Hz operation: switch rating 250V. 3A. Complere with instructions. HUNDREDS OF APPLICATIONS

LASKY'S PRICE £6.19.6 р\&рз/6
SPECIAL QUotations

LASKY'S TM5

Another new look pocket multimeter from Laskys providing top
 is superior on all low ranges: making this an excellent instrument for servicing transistorised equipment. Recessed click stop selection switch.
cover.

- DC/V: 3-15-150-300-1,200 at 5K ohms/N
- AC/N: 6-30-300-600 at 2.5 K ohms $/ \mathrm{N}$
- Resistance: $0-10 \mathrm{~K}$ ohms, 0-1
- Decibels:-10dB to 16 dE

LASKY'S PRICE 49/6

LASKY'S TM1

pocket multimeter providing "big" meter accuracy and performance. Precision movement calibrated to $\pm 3 \%$ of full scale. Click stop range selection switch. Beautifully designed and made impact resistant black case-with whit and melalic redgraen figuring. Ohms zero.

- DC/V: 0-10-50-250-1000 ar 1 K ohms $/ \mathrm{V}$
- ACN: O-10-50-250-1000 at 1 mA

Resistance: $0-150 \mathrm{~K}$ ohm
Decibels: $-10+22 \mathrm{~dB}$
Size only $3 \frac{1}{4}$ in. $\times 2 \frac{3}{3} \frac{\mathrm{in}}{1} . \times 1 \frac{1}{4}$ in
LASKY'S PRICE 39/6 p\& P $2 / 6$

TMK 200 METER KIT

This meter kit by TMK offers the unique opportunity of building a really first-class neter scale and movement mounted in positilon: the Model 200 also has the range selector in position. The highest quality components and 1% tolerance resistors are used throughout
instruction
20,000 O.P.V. Multimeter. Features 24 measurement ranges with mirror scale. ance: $\pm 3 \%$. Special 0.6 V DC range for transistor circuit measurements.

SPECIFICATION

DCV: 0-0.6-6.30.120-600-1.200V at 20K/OPV. ACV: 0-6-30-120-600-1.200 V ohms (58-580-5.8K-58K at mid-scale). Capacitence: 0.002-0.2 $\mu \mathrm{F}$ (AC 6V range) Decibels: -20 to +63 dB . Output: $0.05 \mu \mathrm{~F}$ blocking capachor. Uses two 1.5 V

KIT PRICE ONLY 92/- р\&

Audio-Tronics 71 AVAILABLE SHORTLY

Send your name and address now to receive immediately the new 1971 edition of LASKY'S famous

 Audio-Tronics pictorial catalogue. Larger and more comprehensive than ever before. Packed with 1000 's of items for the Radio and Hi-Fi enthusiast, Electronics Hobbyist, Serviceman and Communications Ham.Covers every aspect of H1-Fi (including Lasky's budget Stereo Systems and Package Deals) plus Lasky's Covers every aspect of H1-FI (including Lasky's budget Stereo Systems and Package Deals). plus Lasky's clusion on our regular mailing list.

BLANKET SWITCH
Double pole with neon let into aide so luminous In dark. Ideal for dark room Hght or for use with each. 3 heat model 7/6.

BLANKET SIMMERSTAT Although looking like, and Atted ss, sin

 the blanket on for varying time periods, thuag giving ${ }^{\text {of }}$ is
complete control from ofl to full heat. Aiso uultable for complete controltomperature of any other appliances
controlling the temperal ning up to 1 amp. Lhated at q7/8 each, Wro of
these while our stocks last at only $12 / 6$ each.
\longrightarrow REED SWITCHES Glasy oncased, witches operated by external maguel-gold
تelded contacts. We can now ofter 3 types: minnature, lin long x approximately ill . make and breaik op to 1 A ap to 300 volts. Price $8 / 8$ eact.
 $18 / 1$
 mately tin. wide. The Btandard Type flattened out, so that
it can be fitted into a mailer apace or larger auntity may

 dmall ceramic magzets to operate these reed owitches

HIGH CAPACITY ELECTROLYTICS

ర్రిక్రి

-

1000
1000
2000
5000
500

FLEX BARGAINS

Screened 2 Core Flex. Each core 14/0076 Copper P.V.C. bralded overall. Price 22.15 per 100 yds. coil.
16 Amp 8 Core Non-kink Fies. $70 / 7076$ insulated coloured cores, protected by tough rubber sheath, then black cotton
braided with white tracer. A normal domestic fiex as fitted to 3 kw fires. Regular price $3 / 6$ per yd . 50 yd . coll $£ 4.10$, or cut to your length $2 / 6$ per yd.
10 Amp 3 Core Nom-ldnt
Amp 3 Core Nom-ldit Flid. As above but cores are
$20 / 0076$ Copper. Normal price $2 / 6$ per yd. 100 yd. coll $£ 7.10$, or cut to your length $1 / 9$ per yard.
6 Amp 2 Core Flez. As above, but 2 cores $23 / 0076$ as used for Vacium Cleanera, Electric Blankets, etc., $39 / 8$ 230 yd . coll. 3 STAGE PERMEABILITY TUNER This Tuner is a precislon instrument made
for the famou Radiomobile Car Radio. It Is a medjum wave tuner (but sef of ladio. wave
coils available as an ertra if requi red) with a

 suitable for car radio or as a general purpose taner for use Buitable for car
with Amplifer.
 Fluoreacent lighting units made by the famous Atlis company, with super allent
polyester flled ohoke and radio suppolyester filed ohoke and radio sup-
pressed stater. The tube springs in and
out and the whole unit is beatifully mado and finlahed white enamel. Amazingly economical, 2 tt model, Ideal
Kitchen, Bedroom, Haliway, Porch, Loft, etc. Don't miss the amazing ofrer, $39 / 6$ with tube. Assembied ready to install.

230 VOLT MAINS OPERATED KLAXON HORN

 Thisis emall (about 10 th. long) but has a very plercing and offective note, hence it would make good Fize Alarm or Works stop and etatt siren. Also usoful for inatance to scare birds of crops. Madefor the G.P.O. Bo obvously beat quality. silghtly uned but OK. $39 / 6$ plus $1 / 6$ p. \& p

40 WATT 18in. EI-FI speaker. Is undoubtedly one of the finest loudupeakers that we have ever oftered, produced by one
of the country's most tamous makere. It has a die.cast metai th ame and sa strongly i ecommended for Hi-Fi and public addreas. Handling 40 watte R.M.S.-Cone mouided Abre-Freq. response $30-10,000$ c.p.s.-specify 8 or 15 ohms. Chassis diam. 12in.12 in . over mounting lugs, Overall height 5 in. A
offered thls month for $£ 5.19 .6$ plus $7 / 6$ post and ins.

MOTORISED CAM SWITCH

These have a normal maina $200-240 \mathrm{y}$ motor which drives a ratchet mechanism geared to give one ratchet actlon every $\frac{8}{}$ minute approx. The cam operates 8 switchas (6 changever and 2 on/ofic thus approx
600 chrcult changes per hour are possible). Contacts, rated at 15 amp have been set for certain awitch combinations but can, no doubt, be altered to suit a special Job. Also other awitch wafers or devices can be
attached to the ahaft which extends approximately one inch. $47 / 6$.
Post and tos. $4 / \mathrm{e}$.

INFRA-RED MONOSCOPE

This equipment is complete and portable. Basically it consiste of an infra-sed Image converter tube with optical lenses for foctsing the roage and a zambind pile to provide the necessary E.A.T. The
monoscope io housed in a hide case size $9 \times 6 \times 4$ in. approx. made originally for the army for night observations, suiplag, etc., Made orginaly for the arny for night observations, snipiag, etc., limited quantity only is avallable in original bealed carton. Price
fQ.10.6. otr. Although unused, in fact stiu in origias seated the Zambini pile may not now be operating. Drying out might help but a bettes diea might be to replace

ERGOTROL UNITS
These ing sume contling de Mulard Group are for ment from A.C. mains.
Thyristors are used and these supply a variable d... reaulting in motor speed control and operating The units are contained in wall mounting fuses push buttons for on/off and the variable

HORSTMANN "TIME \& SET" SWITCH (A 30 Amp switch.) Just the thing if you want to come home to a switch on time of your electric fires, etc., up to 14 hours from setting thme or you can use the awitch to give a boost on period of up to 3 hours. Equalty suitabie to control processing. Regular price probably phee 29;6. Post and ins. 4/6

On feet with holes for screw-down fixing. To drive models, oven, blower heat
post free.

DIAMOND H OVEN THERMOSTAT
Type 20 TH with capilliary tube and seasor. 20 amp A.C. type as
fitted to many coolers. Adjustable by control knob (not gupplied). 12:6 each.

I HOUR MINUTE TIMER

Made by famous Smiths company, these have a large clear 1 dial, ,ize 4 tha. $\times 3$ in.., which can be set in minutes up to a memory logger or, by adding simple lever, would oyerate micro-switch. 22/6.

3kW TANGENTIAL HEATER UNIT

This heater unit is the very latest type, most
efficient, end quiet running. Is as Itted in Hoover efficient, snd quiet running. 8 a 8 itted in Hoover priser motor, tmpeller, 2 kW , element and 1 kW . priser motor, mapeler,
element anllowing swithing itement 2 and 3 kW . and
with thermal safety cut-gut. Can be ftted into any metal line case or cabinet. Only need control model $49 / 6$ plus $6 / 6$

Where postage is not stated then orders
over $£ 5$ are post free. Below $£ 5$ add $2 / 9$. S.A.E. with enquiries please.,

MAINS CONNECTOR A quick way to connect equipment
to the malns safely and flrmiydisconnection by plugs prevents aecidental switching on; has sockets
Fhich sllow fnsertion of meter without disconnection; cable Inlets firnly hold one halr wire on up to four 7.029 cables. $12 / 6$ each.

DRILL CONTROLLER Electroncally changes speed trom approximately 10 revy speeds by figer-tip control Kit licludes all parts, case, everything and fall instruc,
tlons $10 / 8$, plus $2 / 6$ post and
urance. Made up model also insurance. Made up model also
available $37 / 6$ plue $2 /{ }^{6}$ p. \& p.

BALANCED ARMATURE UNIT

 300 ohm, operates speaker or microphone, souseful in intercom or similar circuits, $8 / 8$ eash, £3.10.0 doz, 80 ohm model 5/6, 8/6 eaoh THERMOSTATS
Type "A" 15 amp. for controlling room heaters, green-
houses airing cuphoard. Has spindie for polnter linobs housea, airing cuphoard. Has spindie ton polnter lnobs,
Quicky sifuatable tiom 30.80 deg. F. $8 / 6$ plua $1 /$ - post. Sultable box for wall mounting, $5 /-$. P. © $\mathbf{P} .1 /-$. Typpe "B" 15 amp . This is a 17 ln . long rod type made by
the famous unvic Co. Spindleadjuata this from $00-500 \mathrm{~d}$ eg.F. Internal screw alters the setting so tha could
be adjuatable over 33 deg. to 100 deg. F.
suitable for controliting furnace, oven. filin, mmersion heater or
to make flame-stat or fire alarme-stat 886
plus $2 / 6$ pest and

Type "D". We call this the Ice-stat as it cuts in and out
at around treering point, $2 / 3$ amps. Has many uses, one of which would be to keep the loft pipes from freezing, it a length of our bianket wire ($\mathbf{1 6} \mathbf{y d .} \mathbf{1 0 / - i s}$ wound round the
pipes. $/ / 6$. P. \& P. $1 /$., Type "E". This is standard refrlgerator thermostat. Spindle plus 1/- post.
Type "F". Qlass encased for controlling the temperature of liguld-particularly those in glass tanks, Fatt or ainke thermostat is held (half submerged) by rubber sucker or
wireclip-ideal forfich tanka developers and chemical bath of all types. Adjustable over isnge 50 deg. to 150 deg . F. Price 18/- plus $2 /$ - post and insurance.

BATTERY OPERATED TAPE DECK

 With Capatan oontrol. This unit isextremely well made and measures
 approx, $6 \times 8 \times 2$ tit. deep. Has three approx, $\times 8 \times 2$ th. deep. Has three
plano key type controls for Record,
Playback and Rewind. Motor is a Playback and Rewind. Motor is a
apecial heary duty type intended apecial heavy duty type intended
for operatlon ofll $4 / 5$ volts. Supplied cor operation of $4 / 5$ volts. Supplied
complete with 2 spools ready to imstalt. Record, Reploy head is the
sensitive M4 type latended for use senaitive M4 type latended for use
with trapistor amplifer. Price
70/6. Pobt and lisurance $4 / 6$.
PROTECT VALUABLE DEVICES Thyristora, rectiflera, tranisis. Cars, oton which une heat-sinks make the contact thermostat and equipment generally, can by having thermostats in strategic spots on the casing.
Our contact thermostat has a
callibrated dial for setting calibrated dial for setting
between 90 deg. to 100 deg. F. or with the dial removed rang
setting lo between 80 to 800

THYRISTOR LIGHT DIMMERS Will dim incandescent lighting
up to 600 watts from full
brillian
 flueh plate, same alzed and fxing as atandard wall awitch, so may
be fitted in place of thls, or mount on surface. Price com. plete in heavy plas
control knob $59 / 6$.

MINIATURE WAFER

 SWITCHES2 pole, 2 way- 4 pole, 2 way- 3 pole, 3 way2 pole, 6 way- 1 pole, 12 way, ail at $3 / 6$
each, $38 /-$ dozen, your asortmentin
WATERPROOF REATHG
ELEMENT
26 yards length 70W. Eelfregulating
temperature control. 10/- post free.

MAINS TRANSISTOR POWER PACK
 working). Takes the place of any of the following batterle PP1, PP3, PP4, PP6, PP7, PP9, and others, Kit comprises malne tranaformer rectifier, smoothing and load resistor,
condensers and instructlons. Real anip at only $16 / \mathbf{6}$, plus $3 / 6$ postage.

MICRO SWITCH
5. amp. changeover contacts. $1 / \theta$ each
$18 /=$ doz. 15 amp model $2 /$-ea. or $21 /-$ doz.

SUPPRESSOR

CONDENSER TCC
1 mifd. 260 v . A.C. Working metal cased
with fixing lug. $1 / 8$ each $18 /-$ dos.

ELECTRONICS (CROYDON) LTD
Dept. WW, 266 London Road, Croydon CRO-2TH Also 102/3 Tamworth Road, Croydon

SIRA 4-PART SURVEY OF LEVEL MEASUREMENT

1.Liquid Continuous 2.Granular Solid Continuous 3.Liquid Switched 4.Granular Solid Switched

Prepared by Instrument and Control Engineering in co-operation with the SIRA Institute's 'Siraid' information and consultancy service. Self-contained . . comprehensive . . . up-to-date . . . a technical survey and buyers' guide to Level Measurement instruments and practice. Contains: names and addresses of manufacturers: trade-name index, bibliography: guide to British Standards and glossary of standard terms: techniques review section; cross-tabulated lists of instruments and suppliers. This survey of Level Measurement is the first separate
reprint from the series of surveys currently appearing in Instrument and Control Engineering. The whole seriès will cover virtually all branches of measurement science, and is perhaps the most ambitious publishing programme ever entered into by a technical journal. Further reprints from the series will be made available in the coming months.
Meanutile, demand for this first one is expected to be high as no comparable source of information exists. So you are advised to order your requirements without delay.

ORDER FORM

To: Sundry Sales Department, IPC Business Press (Sales \& Distribution) Ltd., 40 Bowling Green Lane, London EC1
Please supply.............complete set(s) of SIRA Level Measurement Survey reprints. Please supply individual parts as follows (tick appropriate box)
\qquad \square Granular Solid Continuous Liquid Switched
\square Granular Solid Switched
I enclose remittance value
PRICE (postage included) Per set 16 s . Od. Per individual part 6 s .0 d .
Bulk discount (sets only) $10-19$ sets 14 s . 6 d . each.
Over 20 sets 10s.0d each.

Name

Position
Company
Address

Signature

Date

Send an S.A.E. for New Comprehensive I.C. and Semiconductor price lists.
INTEGRATED CIRCUITS
NEW LOW PRICES • FULLY GUARANTEED

Post and Packing $/ / 5 d$. pef order, Data sheet free If ordered with ICS.

[^15]

WW-119 FOR FURTHER DETAILS

This superb stereo system is a real price breakthough. It comprises the VISCOUNT F.E.T. Mk 1 amplitier on which lill details are given balow. the famous Garrard SP 25 lincluding teak veneer base and transparent cover) with dramenal cantridge or 2025 TC and the very successful DUO iype 2 speakers,

Measuring $17^{\frac{10}{\prime \prime}} \times 10^{3 n}$ " $6_{4 \prime 3}^{3 \prime}$. the Duo type 2 speakers are beautultly linished in teak veneer with matching vynair grills. They incorporate a $10_{2}^{1 "}$, $6_{4}^{\text {" }}$ " crive unit and high Irequency speaker. both of which are of 3 oluns impedance. The Duo speaker system is also available separately at £6.6.0. each plus $15 /-\mathrm{P} \&$ P. Complete slereo system $£ 41$ plus $£ 2.10 \mathrm{P}$ \& P .

High fidelity transistor stereo amplifier employing field effect translstors. With this . feature \& accompanving guaranteed specifications below. the Viscount F.E.T. vastly surpasses amplifiers costing far more. Slize: $12 i^{\prime \prime} \times 6^{\prime \prime} \times 2^{3}$ " in simulated teak case.

Specification: Output per channel 10 watts r.m.s. Frequency bandwidth 20 Hz to $20 \mathrm{kHz} \pm 1 \mathrm{~dB}$ (e) 1 watt.

Total distortion: @ 1 kHz @ 9 watts 0.5%.
Input sensitivities: CER, P.U. 100 mV into 3 meg ohms. Tuner 100 mV into 100 K ohms. Tape 100 mV into 100 K ohms.

BUILT \& TESTED.
Mk II (MAG. P.U.) £15.15.0 plus 10% p\&p Specification same as Mk. I, but with the following inputs.
Mag. P.U. CER. P.U. Tuner. Spec. on Mag. P.U. 3 mV @ Mag. P.U. CER. P.U. Tuner. Spec. on Mag. P.U. 3 mV @
1 kHz input impedance 47 K . Fully equalised to with in 1 kHz input impedance 47 K . Fully equalised to within
$\pm 1 \mathrm{~dB}$ RIAA. Signal to noise ratio- 85 dB lvol.

Elegant Seven Mk 3 (350 mW) transistor tullwtunat MW.W.

 7 transistor fully-tunable M.W.CL.W. superhet portable Set of parts. Complete with all components able Set of parts. Complete with all components.
including ready erched and drilled printed circuit incluaing ready elchad and drilled printed circuif
board-back printed for foolproof construction. MAINS POWER PACK KIT: $9 / 6$ extra. Price $£ 5.5 .0$ plus $7 / 6 P$ \& P Clicuit $2 / 6$ FREE WITH PARTS

The Dorset (600 mW)
7-rransistor fully tunable M.W.-L.W. suparher portable-with baby alarm facility. Set of parts. The latest modulised and pre-alignment $\begin{aligned} & \text { techniques } \\ & \text { makes this simple to build. Sizes: } 12 \times 8 \times 3 \text { in. }\end{aligned}$ Makes this simple to build. Sizes:
MAINS POWER PACK KIT: 9/6 extra. Price $\mathbf{f 5 . 5 . 0}$ plus $7 / 6 \mathrm{P}$. \& P Clicuih $2 / 6$ FREE WITH PARTS

SOUND 50

SOUND 50 AMPLIFIER AND SPEAKER SYSTEM

The Sound Fifty valve amplifiar and spaskers are sturdily construciad with smart housings and thoroughly tested electronics. They are designed to last-to withstand the knocks and bumps of life on the road. Builh for the small and madium sized gig, they are easy to handle and quick and medium sized gigg, they are easy to hande and quick
to set up and can be reliad upon to come over with all to set up and can bo reliag
the quality and power you nead.
the quaify and power you nesd.
Output Power: 45 watts R.M.S. (Sine wave drive). Frequency response: -3 db points 30 Hz at 18 KHz . Total distortion: lass than 2% at rated output. Signal to noise ratio: better than 60 db. Spesker Impedance: 3,8 or 15 ohms. Bass Control Range: ± 13 db at 60 Hz . Treble Control Range: $\pm 12 \mathrm{db}$ at 10 Khz. Inputs: 4 inputs at 5 mV into 470 K . Each pair of inputs controlled by separats volume control. 2 inputs at 200 mV into 470 K .
To protect the output valves, the incorporated fail safe circuit will enable the amplifier to be used at half power. SPEAKERS: Size $20^{\prime \prime} \times 20^{\prime \prime} \times 10^{\prime \prime}$ incorporating Baker's $12^{\prime \prime}$ heavy duty 25 watt high flux, quality loudspeaker with cast frame. Cabinets attractively tinished in two tone cast frame. Cabinets ant
colour scheme-Black and grey.
COMPLETE SYSTEM

Amplifier $£ 28.10 .0+20 /-P$ \& P.

DANSETTE

TOURISTE MK3

CAR RADIO

ALL TRANSISTOR
Beautifully designed to blend with the interiors of all cars. Permeability tuning and long wave loading coils ensures excellent tracking, sensitivity and selectivity on both wave bands. R.F. sensitivity at 1 MHz is better than 8 micro volts. Power output into 3 ohm speaker is 3 watts. Pre-aligned I.F. module and tuner together with comprehensive instructions guarantees success first time. 12 volts negative or positive earth. Size $7^{\prime \prime} \times 2^{\prime \prime} \times 4 \frac{1}{2}$ " deep. Originally sold complete for f 15.4 .6 SET OF PARTS
f6. 60
Ciruvil diagiam 26 . Free wilh pans. Speaker.
 Postagn on speaker tree when ordered with parts.

RADIO \& TV COMPONENTS (Acton) LTD 21a High Street, Acton, London, W.3.
Alsó 323 Edgware Road, London, W.2. ALL ORDERS BY POST to Acton Goods not dispatched outside U.K. Terms C.W.O. All enquiries S.A.E.

ELECTROLYTIC CAPACITORS

Wholesale/Retail: 369 Alum Rock Road, Birmingham B8 3DR. Tel. 021-327 2339

	BUMPER BARGAIN PARCEL including tanalum, electroivtics, ceramics
I2V 4A POWER SUPPLY Extremely well made br FRAKO GmbH in smoothing. Size ${ }^{\circ} \times 6^{\circ} \times 5^{\circ}$. weight 11 ibl These units 	EX-COMPUTER POWER SUPPLIES Reconditioned, fully tested and guaranteed. These very compact units are fully smoothed with a ripple better than 10 mv , and regulation better than 1%. Over voltage pro tection on all except 24 v . units. 120 v ,- 130 v . a.c. $50 \mathrm{c} / \mathrm{s}$ input. Mains transformer to suit ES^{3} extra if required. We offer the following types:
MIXED RESISTORS $\frac{1}{1}$ and $\frac{1}{2}$ Watt $\quad 12 / 6$	
DIODES EXEQPT. I Ampli,00 PIV SILICON 4 for $10 /-$ 20 Amp 150 PIV 4 for $\mathrm{EI}-$ P. \& P. $1 /-$	
	LARGE CAPACITY ELECTROLYTICS
EXTRACTOR/BLOWER FANS (Papst) 100 c.f.m. $4 i^{*} \times 44^{*} \times$ $2^{*}, 2800$ r.p.m. 50/- each. P.\& P. 5/-.	
	EXTENSION TELEPHONES
RELAYOFFER 25 to sov. 8 for iot... P. $\&$ P. P. $1 / 6$.	35/- for 2 These phone contain bells.

KEYTRONICS

TELEPHONES. Two-tone grey. Brand new boxed. Current type. E5.5.0 each. P. \& P. $5 /-\mathrm{ck}$) with internal Standard GPO Dial Telephones (black) with internal
bell. 17/6 each. P. \& P. $5 /-$ Two for $30 /=$. P. \& P. $7 / 6$. bell. $17 / 6$ each. P. \& P. $5 /-$. Two for $30 /$-. P. \& P. $7 / 6$ MULLARD MX 115 GM TUBE with holder.
Plat app 300 volts. $30 /$ ea. P. \& P. $3 / 6$.
PHOTOMULTIPLIERS. EMI 6097 X at $\mathrm{E} / 10 / \mathrm{ea}$. TRANSISTOR OSCILLATOR. Variable frequency
 new. Boxed. $11 / 6$ ea
CRAMER TIMER 28V DC Sweep $1 / 100$ th sec \& sweep RELAYS
G.E.C. 4 pole e/o 6/2v operation 180 ohms. Platinum contacts. Brand new. Bozed. 10/- each.
Miniature STC Plug in relays Plastic dust cover, 6/- each per 100 .
S.T.C. sealed 2 pole c/o, 2.500 ohms. (okry 24 v) $2 / 6$ ea. CARPENTERS polarised Single pole c/o 20 and 65 ohm coll as new. complete with hase 7/6 ea. E.M.I. PhotoChopper type ACPC1. Size 1 q $\dot{\times} 1 \times \frac{t^{\prime \prime}}{}$. $10 /-$ ea. P. \& P. $2 / 6$.
COLVERN POTENTIOMETERS
.5: 5: 10: 25: 50k new. 50; 100; $250 ; 500$ ohms; 1; MORGAN1TE 2.5 K ; 250 K ; 500 K 2.5 meg . 1^{2} gealed.

NSTRUMENT 3^{*} Colvern. 5 ; 25 ; 100 ohms. $7 /$ - ea BOURNE TRIM POTS. Solder lugs 5, 10 \& 25 K at 3/- each: Pins 10: 20; 50; 100; 200; 250; 500 ohms; 2.5 and 25 K at $7 /=$ each.

ALMA precision resistors 100 K ; 400 K ; 497 K : 998 K ; $1 \mathrm{meg} 0.1 \% 5 / 6$ each: $3.25 \mathrm{~K}-0.1 \% \mathrm{4} / \mathrm{-}$ each; i meg0.05% 7/- each.
DALE heat sink resistors. non-inductive 50 watt. Brand new. 15 ohms $6 / 6$ ea.; $8.2 \mathrm{~K} 4 / 6$ ea. Excellent dummy K.L.G. Sealed terminals. Brand new boxed. Type
TJSI AA \&I per 100; type TLSI BB $30 /$ per 100 . Wheatatone Bridge by TINSLEY type 1138 £60. CAPACITORS
ERIE feed through ceramicons $2200 \mathrm{pf}-9 \mathrm{~d}$. ea.
Sub-min. TRIMMER \& square. 8, 5pf. Brand new $2 / 6$ ea. Concentric TRIMMER $3 / 30 \mathrm{pf}$. Brand new I/6 ear.
ELECTROLYTICS. Brand new. $250 \mathrm{mfd} 70 \mathrm{~V} 4 / 6 \mathrm{ea}$.
E.H.T. 2 mfd 5 KV. Brand new 30/- ea.

VISCONOL EHT. Brand new 0.000525 kV . $16 / \mathrm{e}$ es,
E.H.T. $0.5 \mathrm{mfd} 5 \mathrm{KV}-11 /-$ eas.; $0.5 \mathrm{mfd} 2.5 \mathrm{KV} 7 /-$ eat E.H.T. $0.5 \mathrm{mfd} 5 \mathrm{KV}-11 /-\mathrm{ea}. ; 0.5 \mathrm{mfd} 2.5 \mathrm{KV}$ 7/- ea.
DECADE DIAL UP SWITCH Fingr-tip. Engraved 0/9. Gold plated contacts. Size $2 t^{\circ}$ high, $2 t^{\prime \prime}$ deep $\frac{1}{}^{\prime \prime}$ wide. $15 /-$ ea. Bank of 4 with eacutcheon.
plates, etc. $2 \frac{1}{*}^{\prime \prime}$ high, $2 t^{\prime \prime}$ deep, $2 t^{\prime \prime}$ wide $\epsilon 2,10.0$.
PHOTOCELL equivalent OCP $712 / 6$ ea.
Photo-resist type Clare 703. (TO5 Case). Two for 10% BURGESS Mlero Switches V3 5930. Brand new $2 / 6$ ea. HONEYWELL. Sub-min. Microswitches type 11SM3-T. Brand new, $3 / 6$ ea.
PANEL mounting lamp holders. Red. Brand new
2/3 ea. TRANSF ORMERS. All standard inputs
STEP DOWN ISOLATING trans. Standard 240 v 75 WATT Constant voltage transforner 195 . 120 ea. 5 W- 240 vout. $30 /$ - each. P. \&. P. $5 /-$. 195 to 255 AMERICAN Auto step-down tranaformer 2 kW. Transformer $0-215-250120 \mathrm{MA} ; 6.3 \mathrm{~V} 4 \mathrm{~A}$ CT $\times 2 ; 2 \times 6.3 \mathrm{v}$
$0.6 A$ and separate $90 \mathrm{v} 100 \mathrm{MA} 25 /-$ each P . \& $\mathrm{P} .4 /=$. Matching contact cooled bridge rectifier $7 / 6$ each.
Gardners $6.3 \mathrm{v} 2 \mathrm{~A} ; 6 \cdot 3 \mathrm{~V} 1 \cdot 5 \mathrm{~A} ; 6 \cdot 3 \mathrm{v} 0 \cdot 1 \mathrm{~A}$. Size $3 \times 1 \frac{1}{2} \times 4 \frac{1}{8} \mathrm{~m}$. As new. $9 / 6$ ea. P. \& P. $3 /-$ ea.
Parmeko/Gardners, Potted, 475-60-0-80-475 at 160 mA separate winding $215-0215$ at 45 mA ; 6.3 v 5 A ; 6.3 ISOLATING TRANSFORMER. Radio spares 500 W ISOLATING TRANSFORMER. Radio spares $500 W$ As new 28 amp (180Va) 35/- ea. incl. postage or 3 fo
4.5 V 40 and.
4. 10.0 incl. postage. Designed to be series/paralleled.
Parmeko 6.3v $22 \mathrm{amp} \times 4-22 / 6$ each.
Gard/Parm/Part. $450-400-0-400-450.180$ MA. $2 \times 6.3 \mathrm{v}$.
AD ea.
ADVANCE Constant Voltage Trans. $1 \mathrm{~kW} . \mathrm{E}_{2} 20$.
CHOKES; $5 \mathrm{H} ; 10 \mathrm{H} ; 15 \mathrm{H}$; up to $120 \mathrm{~mA}, 8 / 6 \mathrm{ea}$. Up
Large quantity LT, HT, EET transformers. Yous Large quantity L

NUCLEONIC INSTRUMENTS

SCALER type 1009 by Dynatron. Suitable Beta, gamma counts. Buin in test signal. Calibrated adjust4 digit counter. Supplied in as new condition at 65 e . Carr. 30/.
As above but with resettable counter $\mathbf{C 8}$ ea. Carr. 30/Few only RATEMETER type 1181B Complete with bullt in EHT supply. Separate metering EHT and Count. EHT available for external equipment 0 to 3 kv . As new E35. Carr. 30/-
Portable GEIGER COUNTER in haversack, late model, complete with vibrator, P.U. and batteries

SPECIAL OFFER
SGiS Fairchild Silicon Epltaxial Transistor BC114. SGS Fairchild Silicon Epitaxial Transistor BC114.
NPN High gain low noise audio. $200 \mathrm{mw} 20 \mathrm{mc} / \mathrm{s}$ NPN High gain low noise audio. $200 \mathrm{mw} 20 \mathrm{mc} / \mathrm{s}$
30 V hfe $200.2 / 6 \mathrm{ea}$. Min. order I .
SGS Fairchild Silicon Epitaxial Transistor NPN SGS Fairchild Silicon Epitaxial Transistor NPN
$30 \mathrm{~V}: 300 \mathrm{mw}$. Spec. sheet supplied. $/ /=$ ea. Min. order $£ 1$ P. \& P. 2/
order \& P \& \& P. $2 /$-.
Both above transitors are brand new. guaranteed
SGS Fairchild spec.
AMPEX Y R7000. New heads, drum. eeramic tips. rotary transformer. In superb condition. $\mathrm{E700}$,
AMPEX TV CAMERA CC 3324. As new $£ 200$.
EMI/BRC $21^{\prime \prime}$ video monitor $£ 35$. Or complete system C850.

TEST GEAR

TEKTRONIX $524 A D$ Colour scope, $£ 110$. E.M.I. WM16 DB-24 megs each chanE.M.I. We. $\frac{\text { WM }}{2} \mathrm{DC}-13 \mathrm{mc} / \mathrm{s} \mathrm{E} 25$ E.M.I. SOLARTRON 643 DC-15 me/s NOW only $\mathrm{C65}$. SOLARTRON DC-10 mc/s. CD $513-\mathbb{3 5}, 513.2$ COSSOR $1049 \mathrm{Mk} .3 . \mathrm{DB} . £ 30$ $\begin{array}{ll}\text { COSSOR } & 1049 \mathrm{Mk} .3 . \mathrm{DB} \\ \text { HARTLEY } & 13 \mathrm{DB} . \mathrm{E20} \text {. }\end{array}$ All carefully checked and tested. Carriage 30/- extra. MARCONI
TF 801 A Slgnal qenerator $£ 35$. Carr. 30/-
TF 886 Magniffcation Meter $\& 45$ Carr. £1
TF 309 N. 5 Impedance Bridge $£ 55$ Carr. 30
TF 144 G : Signal Generator, Serviceable. Clean $£ 15$ In excentional condition $£ 25$. Carr. 30/TF 885 Video Oscillator Sine/Square 635 Carr. 30/. TF $934 / 2$ FM Deviation Meter $£ 25$. Carr. 30/SOLARTRON
Laboratory amplifer AWS51A. 15c/s-350kc/s $£ 35$ Stabilised P.U. SRS 151 A $£ 20$ Carr. 30/-
Stablliged P.U. SRS 152 f 15 Carr. 30/-
Calibration Unit type AT203. $£ 25$. Carr. 30/Process Responise Aralyser. Fine Condition $£ 250$ D.C. Amplifier type AA900. £30. Carr. £1.

Testmeter No. $1 £ 12$ ea., Carr.
Electronic Testmeter CT 38. Complete $£ 18$ Carr. £1 CINTEL
Wide Range Capacitor Bridge $£ 25$ Carr. $15 /-$ Sine and Pulse Generator type 1873 £25 Carr, 15/.
AIRMEC
Signal Generator type 701 . $£ 35$. (arr. 30/-
BRADLEY ATTENUATORS $0 / 500$ meg cycles. $0 / 12 \mathrm{db}$ and $0 / 120 \mathrm{db}$ - 255 per puir
HEWLETT PACKARD. Attenuators $0 / 500$ meg
BECKMAN MODEL A. Ten turn pot complete
with dial. $100 \mathrm{k} 3 \%$ Tol 0.25% - only $52 / 6$ ea.
E.H.T. Base B9A in Polystyrene holder with cover, Brand new. $2 / 6$ ea.
DVM's BIE $2114 \subset 50$ ea.; BIE $2110<50$ ea.; Solartron TM923 \& 30 . Cart. 30/-
AMERICAN TRIPLETT Generators type 1832. 100 c/s to 200 mess. $£ 12.10 .0$ ea. Carr. £1
BC221 with correct charts in fine condition $£ 15$ ea. arr. £1
HF version of BC221 type TS174 $\mathbf{E 2 5}$ ea. Carr. £1
SWEEP OSCILLATOR CT202. 7 to $70 \mathrm{mc} / \mathrm{s}, 0$ to $10 \mathrm{mc} / \mathrm{s}$ sweep. Standard mains input. Can be used with any biope for TV. FM. Alisnment. In flne condition with lead. instructions euc., L23. Carr. 21.
MIC-O-VAC type 22 (CT54) Volts; Ohms. DC to 200 mefs with p.
HEWLETT PACKARD 5^{*} oscilloscone tube with uilt-in graticule $10 \times 10 \mathrm{~cm}$. With 2 mm . sub-divisions. BERCO miniature variac type $31 \mathrm{C} .0-250 \mathrm{~V} 1 \mathrm{amp}$. $5 / 16$ th " $^{\prime \prime}$ depth, $3^{\prime \prime}$ diameter. Complete with dial and
SEQUENTIAL TIMERS 240V synchronous motor rmm .12 cam operated 2 pole micro switches. Individually
Standard 240 V MOTORS with reduction gearbox
14 ibs, per gq, inch. $£ 5$ ea. 4 lbs. per sq. inch. 45 es
PRECISION rotary stud switches 2 pole 12 way. Size
2^{*} Bq. $\frac{1}{*}^{\prime \prime}$ shaft. $E 2.10 .0$ ea.
DISTRIBUTED AMPLIFIER type $2 \mathrm{C} / 3 \mathrm{B0} \mathrm{c} / \mathrm{s} 100 \mathrm{mc} / \mathrm{s}$ Gain 300. 630 each
ype $2 \mathrm{C} 50 \mathrm{c} / \mathrm{s}$ to $100 \mathrm{mc} / \mathrm{s} £ 16 \mathrm{each}$.
DAWE Low Frequency Sine Wave oscillator type $400 \mathrm{C} .0 .1 \mathrm{c} / \mathrm{s}$ to $\frac{1}{\mathrm{kc} . \text { Built-in oscilloscope tube for }}$ precision setting $\mathbf{E 2 0}$. Carr. 30/-
DUNFOSS-solenoid valves. 240V 50 c/s. Type EVJ 2.
Brand new boxed $\mathrm{E5}$: Second hand £3. P. \& P. 0/-.

PAIGNTON ATTENUATORS 0.1 db . to 100 db . In 3 decades, 600 ohm. 19° rack mounting. $£ 20$ ea. Carr. $15 /$ PISTON ATTENUATOR in carrying case. 30.140 me/s calibrated $0 / 70 \mathrm{db} .110$ ea. Carr. $£ 1$
Precision THERMISTOR by YSI. 100 k . at $25^{\circ} \mathrm{C}$ Range: $40^{\circ} \mathrm{C}$. to $150^{\circ} \mathrm{C}$. Supplled with charts giving ohm for each degree over entire range. Brand new. 30/- each. CLAUDE LYONS Main Stabilizer. Type 7000C. Input $212-252$ volts $47 / 65 \mathrm{c} / \mathrm{s}$. Output 238 vol ts 0.5% 53 amps. $£ 40$. Carriage at cost.
ROBAND P.U. Type M39A. Stabilized 300 volts 2 Rmps. $£ 22$ inc. carriage.
HOLGATE 6 channel Event recorder. 1 in . or 10 in ninches per second. Size 4i $\times 5 \times 8$ in. Excellent condition HEWLETT PACKARD Digital printer complete with KEIVIN
KELVIN 8
amplifiers. 870 . HUGHES 4 channel recorder with amplifiers.
SMITHS twin channel recorder. Transistorised. $£ 65$. Various other single and twin track recorders from $£ 20$. 19in. Rack Mounting CABINETS 6ft. high 19in. deep.
Side and rear doors. Fully tapped, complete with base Side and rear doors. Fully tapped, complete with base and wheels. E12/10/0 Carriage at cost.
Double Bay complete with doors. Fine condition, 625. Carriage at cost.
MULLARD Transistorised Analogue to Digital Con SUNVIC DC Amplifier type DCA1. Thermo-couple, SUNVIC DC Amplifi
CINTEL Universal Counter $\mathbf{1 N 3 0}^{2}$. Carr. 30/
One only MARCONI TF867 Standard Signal Generator. In fine condition. ©120. Carr. at cost One only MARCONI TFI44H/4S. Signal Generator. $10 \mathrm{kc} / \mathrm{s}$ to $72 \mathrm{MC} / \mathrm{s}$. Superb condition. $£ 165 \mathrm{only}$
ISOLATING TRANSFORMERS 240V in 240 V KVA out. As new. $\mathbf{2} 25$ ea. Carr. $£ 2 / 10 /$
DIECASTALLOY hozes. Size $4 \times 2 \uparrow \times 1 \& \mathrm{in}$. Drllied ends for Belling Coax socket. 3 compartments tink holes between. 6/6 each. P. \& P. 2/

4 DIGIT RESETTABLE COUNTERS. 1000 ohm. coll. Size $1 \frac{1}{6}+4$ in. As new, by Sorleco of Geneva. $82 / 10 / 0$ each.

As above but 350 ohm. © $\mathbf{3} / 10 / 0$ ea.
METERS-Model
$-100-0-+100.5 t^{\prime \prime} \times 4^{\prime \prime}$. . 4 ea.
SANGO 50 micro amp $3^{\prime \prime}$ round meters. Ex brand
new radiation equip. $£ 1$ ea. P. \& P. $3 / 6$.

SEEING IS BELIEVINGI
 First come, first served

PYER/T all at 43 ea.
COSSOR 1049 Mk . I \& II. Tested $£ 8$ ea
COSSOR 1035 . Tested $£ 10$ ea
RACAL Diversity unit $£ 7$ ea.
CINTEL Transistorised counter. 6 meter display Ideal conversion frequency counter $£ 12$ ea MARCONI Absorption Wattmeter 1 micro watt to 6 watts. Type TF956. ONLY \& 10 ea, meter TF $428 \mathrm{~b} / 1$ only 62 each.
SOLARTRON Pulse generator OPS 100 C £8 eat SOLARTRON Stab. PU AS516 \& AS517. CIrcuite supplied. Fantastic value at $£ 2$ and $£ 4$ each VERY SPECIAL OFFER. AVO Transistor Ans lysers in superb condition ONLY. $\in 30$ each. Ap to 1 Counter type 865 . Bright 6 digit display UP to 1 me responae. ELEhill VzooA Valve muluvolt meter 10 mv to 1 kv . $\leqslant 12$ ea. Furzehill Valve volt meter $378 B / 2$. 10 mv to 100 volts 67 ta, MEGA Ohm Meters-check earths, bonding etc. Ridiculous at 65 ea.
DAWE Wide range oscillator type $400 \mathrm{~A} .20 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$ E 12 ea.
SUNVIC DC Amplifier type DCA1, Thermo-couple edd CABiNETS from $19^{\circ} 6 \mathrm{ft}$. racks down to 'matchbox' size. Must go ! new, no rubbish) $30 / 5$ P. \& P P new. no ruboish) $30 /-\mathrm{P}$. \& P Pb/b. $7 /$. Brand new boxed -will fit any $\mathbf{3 0 0 0}$ type relay. $2 /$ - ea. incl. postage Carriage extra.

TRANSISTOR EHT INVERTORS. 12 volt in, o/p (+ or -) 1.5 KV 2 MA and $3 \mathrm{KV}+100$ micro amp supplied. Brand new at $£ 6 / 10 /-$ ea. P. \& P. $5 /$. Also, as above but 1.5 KV AC $20 \mathrm{kc} / \mathrm{s}, \mathbf{£ 3 . 1 0 . 0 \mathrm { ea } \text { . P. \& } \mathrm { P }}$

Panel switches DPDT ex eq. $2 / 6$ ea.; DPST Brand new 3/6 ea.; DPST twice, brand new 5/-ea.
ALBRIGHT Heavy Duty Contactor. Single make MOTOR DRIVEN SWITCHES, 4 to 24 volt, 6 pole. MOTOR DRIVEN SWITCHES. 4 to 24 volt. 6 pole.
24 way. Brand new. 43 ea.P. \& P. $5 /$.

Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order
FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd units, etc., at 'Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day.

CHILTMEAD LTD.

7-9-11 Arthur Road
Reading
Berks
Tel. No. 582605 (rear Tech. College) 300 yds. east of 22 Sun Street • Reading 65916

LIQUID LEVEL DETECTOR．Detects even mildly con ductive liquids，l．e．ether．etc．N．O．／N．C．contacts．Fails safe．£10 ea．S．a．e．literatur
MODULAR POWER SUPPLIES．Fully stablised 8.5 9.6 vort 10 amp．（ $12 \times 6 \times 4$ ln．）Brand new Indlvidual spec．with each unit．E10 ea．

> RADIATION MONITORING EQUIPMENT，Port－ able and bench models（brand new）S．a．e literature． KLYSTRON POWER SUPPLY（Solartron AS562） £40．Carr．50／－．
> KLYSTRON POWER SUPPLY（EIllott PKU1），£100 120 AMP．AUTO TRANSFORMERS．190－270V $50 \mathrm{c} / \mathrm{s}$（tapped every 5 volts）．£50 ea．（Carr，by arrangement．）
> 801A SIGNAL GENERATOR． $10-300 \mathrm{mc} / \mathrm{s}$ In 4 bands．Ext． $60 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s}$ ．Output $200 \mathrm{~m} / \mathrm{v}$

SPEAKERS
E．M．I．＂ $19 \times 14 \mathrm{ln} .50$ watts． 8 ohm（14A／600A．）Fou weoters mounted across maln axis．Separate X－over Hz ．Bass unit flux 16,600 gss．A truly magnificent system E25，P．P．50／－
E．M．1． $13 \times 8 \mathrm{in}$ ．wlth two tweeters and cross－over． 8 or 15 ohm．78／－．P．P． $5 /$
＂E．M．1．＂ $6 \frac{1}{2}$ in．Rd． 10 watt woofers． 8 ohm．30／－ 88. ＂P．P．2／8．
＂FANE＂ 12 In .20 watt． $16,0 \mathrm{hm}$ ．（122／10A．）With Integrs SPEAKER SYSTEM 6
SPEAKER SYSTEM $(20 \times 10 \times 10 \mathrm{in}$ ．）Made to Spec rom zin．board．Finished in black leathercloth． 13×8 in speaker with twin tweeters complete with
SPEAKER CABINET KIT．Above mentloned cabinet only In klt form which you may assemble and cover to your own
cholce．40／－．P．P．5／－．
EXTRACTOR FANS／BLOWERS
＂AlRMAX＂7！In．FAN．In aluminium diecast housing （ 9 ln. ）． 240 v ．Brand new．£ 410 s ．P．P．10／－
＂PLANNAIR＂ $5 \frac{1}{\frac{1}{2}}$ In．FAN．（TYpe 5 PL 121－122．）Dlecas housing．240v，Brand new．E6．P．P．10／－
SOLARTRON＂TANGENTIAL BLOWERS．Overall size $16 \times 5 \frac{3}{4} \times 3 \frac{1}{2} \mathrm{In}$ ．Alr outlet $12 \times 1 \frac{1}{2} \mathrm{In} .240 \mathrm{v}$ ．Brand new $16 \times 6 \frac{1}{4} \times 3 \frac{1}{2} 1 \mathrm{ln}$.
$50 /-$ e日．P．P． $7 / 6$.
BULK COMPONENT OFFER．Resistors／capacitors．All types and values．All new modern components．Over 600 pleces，£2．（Trlal order 100 pleces $\mathbf{1 0} / \cdot$ ．）We are confident you will re－order．

HIGH SPEED MAGNETIC COUNTERS（ $4 \times 1 \times 1 \mathrm{in}$ ．） 4 digit $24 / 48 \mathrm{v}$ ．（state which），6／6 ea．P．P $1 /-$ 1／－

LEVEL METERS（ $1 \frac{1}{2} \times \frac{1}{2}$ In．） 200 micro－amp．Made in Germany．15／－each．
SILICON PHOTOVOLTIC CELLS（MS2BE） $560 \mathrm{~m} . \mathrm{V}$ 35 m．a．30／－es．
RELAYS H．D． 2 pole 3 way 10 amp ．contacts． $12 \mathrm{v} . \mathrm{w} .7 / 6$ ea， LIGHTWEIGHT RELAYS（with dust－proof covers） $4 \mathrm{c} / 0$ contacts． 24 v ． $500 \mathrm{ohm} 7 / 6 \mathrm{ea}$ ．
PRECISION CAPACITANCE JIGS．Beautifully made with Moore \＆Wright Micrometer Gauge．Type 118.5 pf POT CORES LA9／LA2／LA3，10／－日a，
POT CORES LA1／LA2／LA3．10／－ 9 WAY PLUG \＆SOCKET（PaInto 71 WAY PLUG \＆SOCKET（Painton Series 159）Gold plated contacts with hood \＆retalning cllps 30／－pali EO WAY PLUG \＆SOCKET（U．C．L．mInlature）．Gold plated contacis $20 /$－palr． 34 way version $15 /-$ palr．
CO－AX RELAYS（magnetic devices） 1 change－over 12 v．w 20／－өа．
COMPUTER BOARDS
4－OC23；4－2N1091；4－2G302；4－OA10．20／－88．
8－0C42（long leads）；16－OA47，7／6 ea．
8－DA11A；14－OA47．5／－ea．
Bargain pack of 5 boards．Components too varied to enumerate．At least 100 translstors and dlodes．$£ 2$ lot．

TRANSFORMERS

L．T．TRANSFORMERS（shrouded）．Prim，200／250V，

 Sec． $20 / 40 / 60 \mathrm{v}, 2 \mathrm{amp} .42 / 6$ ．P．P． $7 / 6$. L．T．TRANSFORMERS．Pilm．200／250v，Sec，20／40v， 1.6 amp ．30／－．P．P． $6 /-$＂ADVANCE＂：CONSTANT VOLTAGE．Prim．190／250v． $\pm 15 \%$ ．Sec． 118 v ． 2,250 watts．£15 ea．P．P． $50 /$－ H．T．TRANSFORMERS．Pilm．200／240v．Sec．300－0－300v $80 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v}$ ．C．T．2a．30／－ea．P．P． $7 / 6$ ． $350-0-350 \mathrm{v}$ ． $60 \mathrm{M} . \mathrm{A}$. o．3v．C．T．2a．20／－өа．P．P．5／－ L．T．TRANSFORMER．Prim．240v．Sec．33－0－33v． 5 amp．45／．．P．P．10／－．
STEP DOWN TRANSFORMER．Prim．200／240v．Sec $115 \mathrm{v}, 100$ watts． $20 /-$ ea，P．P． $5 / \%$ ．
L．T．TRANSFORMERS PrIm． 240 v ．Sec． $8 / 12 / 20 / 25 \mathrm{v}$ ． 3.5 amp models $20 /-: 5 \mathrm{amp}$ modal 25／－．P．P． $5 / 6$ ．

L．T．TRANSFORMERS Prim．240v．Sec 14 v .1 amp 10／ ea．P．P．2／6．

COPPER LAMINATE PRINTED CIRCUIT BOARD （ $8 \frac{1}{2} \times 5 \frac{1}{2} \times \frac{1}{1} \mathrm{in}$ ．）， $2 / 6$ sheet， 5 for $10 /-$ Also $11 \times 6 \frac{1}{2}$ in．， $3 /-$ ea．， 4 for $10 /=$ ．

ELECTRIC．SLOTMETERS（ $1 /-$ ） 25 amp ．LR． 240 v, AC．
 240v．A．C．20／－ea P．P．5／－．
LONG LIFE＂ELECTROLYTICS（screw ierminal） 25,000 u．f． 40 v ．（ $\left.4 \frac{1}{2} \times 2 \frac{1}{2} \ln \right), 20 /$ e ea．P．P． $2 / 6$ 10,000 u．f． 75 v ．$\left(4 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{In}.\right) 17 / 6$ өa．P．P． $2 / 6$ ．
3.150 u．f． 40 v ．（ $4 \frac{1}{\mathrm{t}} \times 1 \frac{1}{2} \mathrm{In}$ ）．15／－өa．P．P． $2 / 6$ EXECUTIVE＂SIXTY＂AMPLIFIER．（ 60 w．r．m．s Into 8 ohm．）British deslgned and bult．True hi－fl performance Bult－in filters to protect speakers．Three independently mixed inputs．High－Low impedance．Mic．Crystal－Ceramic－ Magnetic Cartridge，or aux．equlpment．£55．P P．50／－ S．a．e．Ilterature

TELEPHONE DIALS（New）20／－ea．

 RELAYS（G．P．O．＇3000＇）．All types．Brand年 from $7 / 6$ each． 10 up quotations only EXTENSION TELEPHONE（Type 706） Black or 2 tone Gray．65／＝，P．P．5／－．UNISELECTORS（Biand new）25－way 76 ohm． 8 bank $\frac{7}{\frac{7}{3}}$ wipe 65／－． 10 bank
$\frac{1}{2}$ wlpe $75 /=$ Other types from $45 /-$ ．

REED RELAYS 4 make 9／12v．（1，000 ohm．）12／6 e8． 2 make 7／8 ea． 1 make $8 /-$ ea．Reed Switches（ $1 \frac{1}{2} \ln$. ）2／． e8． 11 per doz．
SU－MINIATURE REED RELAYS（ $1 / \mathrm{ln}, \times \frac{1}{4} \mathrm{n}$ ．）．Welght \dagger oz．Tyos 1.950 ohm， $3 / 9 \mathrm{v}$ ． 1 make． $12 / 6$ ea．Type 2.

ILICON BRIDGES． 100 P．IV 1 amp ．（ $\frac{8}{8} \times \frac{9}{8} \times \frac{7}{8} \ln$, ）， 8／6 ө日．

PLUG－IN RELAYS．（Siemans－Varley） $4 \mathrm{c} / \mathrm{o} .700$ ohm， 10／－ea．complete with base．（Other make－ups and colls avallable．）

PATTRICK \＆KINNIE
19I LONDON ROAD • ROMFORD • ESSEX
ROMFORD 44473
RM79DD

NO EXCUSES！NO DELAYS！FROM STOCK！ UARIIABLE YOLTAGE TRANSFORTUERS

INPUT 230 V．A．C．50／60

OUTPUT VARIABLE $0 / 260$ v．A．C． BRAND NEW．Keenest prices in the country．All Types（and spares） $0-260 \mathrm{v}$ ．at I amp．．．．．$\angle 5100$ $0-260 \mathrm{v}$ ．at 2.5 amps ． $0-260 \mathrm{v}$ ．at 5 amps ． $0-260 \mathrm{v}$ ．at 8 amps ． $0-260 \mathrm{v}$ ．at 10 amps． $0-260 \mathrm{v}$ ．at 12 amps $0-260 \mathrm{v}$ ．at 15 amps ． $0-260 \mathrm{v}$ ．at 20 amps ． $0-260 \mathrm{v}$ ．at 25 amps ． $0-260 \mathrm{v}$ ．at 37.5 amps ． $0-260$ v．at 50 amps． 17200 20 DIFFERENT 50 mps．．．． 1920 FOR IMMEDIATE DELIVERY

Double Wound

 Variable
Transformers

 Fully isolated，low tension Secon－ dary winding．input 230 Y．A．C． VARIABLE $0-36$ v．A．C．$0-36 \mathrm{v}$ ．at 5 amp ．£9．12．6－
p．\＆p． 8
15／－p．\＆C
These fully shrouded Transior－
These fully shrouded Transíor－
mers，designed to our speclfica－ tions，are ideally suited for Educa．
tional，Industrial and Laboratory
use．

INSULATION
TESTERS（NEW）

500 VOLTS， 500 megohms Price $£ 28$ carriage pald．

1,000 VOLT $5,1,000$ megohms §34 carriage paid．

VAN DE GRAAF ELECTROSTATIC （e）GENERATOR fitted with motor drive for 230 v． of approx． 50,000 volts． Supplied absolutely com－ plete including acces－ number of interesting experiments，and full instructions．This instru－ ment is completely safe， and ideally suited for School demonstrations．

LATEST TYPE SOLID STATE
VARIABLE CONTROLLER
Ideal for lighsing and heating ci
cuits compaec cuits，compact panel mounting．Built in fuse protectio
LY VARIABLE．
nput 230v AC output 25－230v A 5 amp model 88.7 .6

230 v．A．C．SOLENOID．Heavy duty type
Approx． 316 ．pull． $17 / 6$ plus $2 / 6$ P．\＆P． 12 v． D．C．SOLENOID．Approx． 1 lb ．pull．10／6， lib ．pull． $10 / 6$, P．\＆P． $1 / 6$ ．
50 v．D．C．SOLENOID． Approx．2lb．pull．12／6，
Approx．
P．\＆P．$/ 6$ ．

36 volt 30 amp．A．C．or D．C． Variable L．T．Supply Unit INPUT $220 / 240$ v．A．C．
OUTPUT
CONTINUOUSLY
VARIABLE 0－36
Fully isolated．Fitted in robust metal case with Voltmeter，Am－ meter，Panel Indicator and chrome handle fused．

SERVICE TRADING CO
 VEEDER ROOT COUNTER 230 v. A.C. 50 cycle 5 figure counter (non resetable). $18 / 6, P_{\text {a }}$ \& $1 / 6$. - HOSIDEN DH-02-S STEREO HEADPHONES Outstandin pedance and head band. head band, price only 47/6. P. \& P. $2 / 6$.
 BODINE TYPE N.C. 1 GEARED MOTOR
 (Type I) 71 r.p.m. \&orque 10 Ib Reversible 1/70rh h.p. 50 cycle. 38 amp . (Type 2) 28 r.p.m. torque 20 lb . in (Type 2) 28 r.p.m. corque 20 lb . in reversible $1 / 80 \mathrm{th}$ h.p. 50 eycle .28 mp .
 The above two precision made U.S.A. motors are offered $I I \mathrm{~V}$ as new condition. Input voltage of motor 15 V . Supplied complete with transformer for $230 / 240 \mathrm{v}$ A.C. input
 Price, either type $\in 3.3 .0$ plus $6 / 6$ P. \& P. or less trans former $£ 2.2 .6$ plus $4 / 6$. P. \& P.
 These motors are ideal for rocating aerials, drawing

RING TRANSFORMER

Functional Versatile Educational
This multi-purpose Auto Translormer, wit large centre aperture, can be used as a Double
wound current Transiormer, Auto Translormer H.T. or L.T. Transformer, by simply hand winding the required number of surns through the centre opening

L.T. TRANSFORMERS

 All primaries $220-240$ volType No.
Sec. Taps

	12 v . at 5 A
2	30, 32, 34, 36 v . at 5 amps .
3	$30,40,50 \mathrm{v}$. at 5 amps .
4	$10,17,18 \mathrm{v}$, at 10 amps .
5	6, 12 v . at 20 amps .
6	17. 18, 20 v . at 20 amps .
7	$6,12,20 \mathrm{v}$, at 20 amps .
8	24 v . at 10 amps .
9	4, 6, 24, 32 v . at 12 amps .

```
M
```

AUTO TRANSFORMERS
Fully shrouded Up, step down.左 500 wast type $65 / 2 / 6$ each

LIGHT SENSITIVE SWITCHES Kit of parts including ORP. 12 Cadmium Sulphide Photocell. Relay Transistor and Circuit. Now supplied with new Siemens High Speed Relay for 6 or 12 volt operORP. 12 and Circuit $12 / 6$ post paid.
220/240 A.C. MAINS MODEL
 (i) RONER (i) RONER $\left\{\begin{array}{l}\text { (NLW) Ceramic conseruetion, wind- } \\ \text { ing embedded in Viereous }\end{array}\right.$ Enamel, heavy duty brush assembly designed
for STOCK IN THE FOLLOWING II VALUES: 100 WATT I ohm 10a., 5 ohm 4.7a., 10 ohm 3a. 25 ohm 2a., 50 ohm l.4a., 100 ohm la., 250 ohm $7 \mathrm{a} ., 500$ ohm 45 a ., ik ohm 280 mA ., 1.5 k ohm 230 mA ., 2.5 k ohm 2 2a., 5 k ohm 140 mA ., Dlameter 3 tin. Shaft length $\frac{3}{2}$ in. dia. 38 in ., 27/6. P. \& P. I/6
50 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{~K} / 1.5 \mathrm{~K} / 2.5 \mathrm{Ki}$ 50 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{~K} / 1 \cdot 5 \mathrm{~K} / 2 \cdot 5 \mathrm{~K} /$ 5 K ohm. All at $21 /$, P. \& P. $1 / 6$. 25 WaTT $10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{~K} / 1 \cdot 5 \mathrm{~K} / 2 \cdot 5 \mathrm{~K}$ ohm.
Black Silver Skirted knob calibrated in Nos. 1-9. I $\frac{1}{2}$

MOTOROLA MACII/6 PLASTIC TRIAC 400 PIV 8 AMP
Now available EX STOCK supplied complete with full data and applications sheef. Price 21/-plus $1 / 6$ P. \& P.
T.N.C. ILLUMINATED

LATCHING PUSH BUTTON
KEY SWITCH No. S525594
LOCK $4 \mathrm{c} / \mathrm{o}$

Complete with mounting brackel, Push Knobandlenses

Posiage and Carriage shown below ate inland only.
overseas please quotabion. please we do fo issue a catalogue or list. UNISELECTOR SWITCHES NEW 4 BANK 25 WAY FULL WIPER 25 ohm coil, 24 v . D.C. ope
C5.17.6, plus 216 P. \& P .
6 BANK 25 WAY FULL WIPER 25 ohm coil, 24 v. D. peration. 6610.0 , plus $2 / 6$ P. \&
8-BANK 25 -WAY FULL WIPER
24 v. D.C. operation, 67.12 .6 , pius 4/- P. \& P.
RELAYS NEW SIEMENS PLESSEY, erc MINIATURE RELAYS AT COMPETITIVE PRICES. COIL WORKING

MINIATURE UNISELECTOR 3 banks of 11 positions, plus homing bank. 40 ohm coil $24-36$ v. D.C. operation. Carefully removed from equipment and tested. 22/6. plus $2 / 6 \mathrm{P}$. \& P .

-	D.C. VOLT CONTACTS	PRICE
S2	6-9 6M	12/6
180	6-12 $2 \mathrm{c} / 0$ Ex-Eq.I.B.	8/6
185	$6-12$ 4 c/o Ex-Eq. I.B.	10\%
230	6-12 $2 \mathrm{c} / \mathrm{o}$	12/6
280	6-12 2 c/o incl. base	14/6
700	16-24 4 M 2 B incl. base	$12 / 6$
1250	36-45 6M	12/6
2500		12/6
5800	$80-85 \quad 4 \mathrm{c} / \mathrm{o}$	12/6
9000	40-70 2 c/o incl. base	10\%

MINIATURE RELAYS
9-12 volt D.C. operation. $2 \mathrm{c} / 0500 \mathrm{M}, \mathrm{A}$. contacts Size only lin. $\times 7 \times \frac{1}{2}$ in. Price $11 / 6$ Post pald.
$30-36$ v. D.C. operation. 2 c/o 500 M.A. contacts. $30-36$ v. D.C. operation. 2 c/o 500 M.A. contacts.

RECHARGEABLE NICKEL CAD. BUTTON CELLS.

COMPLETE NI. CAD. BATTERY OUT FIT (EX W.D.)
2 metal carrying cases
each containing 10×1.2
each containing 10×1.2
volt 7 AH (12v) batteries
also $10 \times 1.2 v 22 \mathrm{AH}$
(12v) batteries
$(40$ bat-
teries in all). I Dual
hyriszor controlled

charging unit. Designed
or charging the 7AH and 22AH batteries simul taneously. Input voltage can be adjusted between power supply for field work. Offered at fraction of set E45 c. \& D. 30 ..

NICKEL CADMIUM BATTERY
1.2 v. 35 AH. Size 8 l high $\times 3 \times 1 \mathrm{t} .30 \%$ each, plus $4 /-$ sintered Cadmium Type 1.2 r . 7AH. Size: height $3 z$ in. Tested $12 / 6$. P. \& P. P. $2 / 6$.
widt: approx. 13 ozs. Ex-R.A.F. NEW MODEL - HIGH FREQUENCY TRANSISTORISED MORSE OSCILLATOR Adiustable tone control. Fitted with moving coil speaker lso earpiece for personal monitoring. Complete with
SEMI-AUTOMATIC "BUG" SUPER SPEED MORSE KEY
adjustments,
speed adjustable

high as desired. Weight $2 \frac{1}{2} 1 \mathrm{~b}$. $\mathrm{E} 4 / 12 / 6$ post paid.

INSULATED TERMINALS Available in black, red, white, ellow, blue and green. New
A.C. CONTACTOR

2 make and 2 break (or $2 \mathrm{c} / \mathrm{o}$) 15 amp . contacts. $230 / 240$ V. A.C. operation. Ex-equipment, Tested. 22/6 plus 1/-P. \& P.

PANEL METER AT BARGAIN PRICE

IO in I PROJECT KIT

10 easy to build Projects including: Radio, Morse Oscillator, L F Oscillator etc. A Solar Cell is included in chis 14-page step by step instruction leaflet. Price $\mathbf{6 3 . 1 7 . 6}$.
P. \& P. 4/6.

A.C. VOLTMETER

BENTLEY ACOUSTIC CORPORATION LTD.

38 CHALCOT ROAD, CHALK FARM, LONDON, N.W. 1 THE VALVE SPECIALISTS Telephone 01-722-9090 Please forward all mail orders to Littlehampton

FW
GZ,
GZ
GZ
GZ
G
B
B

LATEST RELEASE OF

 RCA COMMUNICATION RECEIVERS AR88

BRAND NEW and in original cases-A.C. mains input. 110V or 250 V . Freq. in 6 bands $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$. Output impedance 2.5-600 ohms. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control, R.F. \& A.F. variable controls. Price £87/10/each, carr. £2.
Same model as above in secondhand cond. (guaranteed working order), from $£ 45$ to $£ 60$, carr. $£ 2$.
-SET OF VALVES: new, £3/10/- a set, post 7/6; SPEAKERS: new, $£ 3$ each, post 10/-. HEADPHONES: new, £1/5/- a pair, 600 ohms impedance. Post $5 /$.
AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L55. Price 10/- each, post 2/6. RF Coils 13 \& 14 ; $17 \& 18 ; 23 \& 24$; and 27 and 28 . Price $12 / 6$ each. $2 / 6$ post. By-pass Capacitor K. $98034-1,3 \times 0.05 \mathrm{mfd}$. and M.980344, $3 \times 0.01 \mathrm{mfd}$., 3 for $10 /$, post $2 / 6$. Trimmers $95534-502,2-20$ p.f. Box of 3, $10 /$, post $2 / 6$. Block Condenser, $3 \times 4 \mathrm{mfd}$., 600 v , £2 each, 4/-post. Output transformers 901666-501 27/6 each, 4/- post.

- Available with Receiver only.

If withing to call at Stores, please telephone
W. MILLS

3-B TRULOCK ROAD, LONDON, N1T OPG
for appointment.

> HRO RECEIVER. Model 5T. This is a famous American High Frequency superhet, suitable for $C W$, and MCW, reception crystal filter, with phasing oncro. AVC and signal strenguh in hew 18/10/- each, carr. £1 COMMAND RECEIVERS; Model $6-9 \mathrm{Mc} / \mathrm{s}$., as new, price $\mathrm{E} 5 / 10 /-$ each, post 5/-.
> COMMAND TRANSMITTERS, BC-458; 5.3-7 Mc/s., approx. 25 W output, directly calibrated. Valves 2×1625 PA; 1×1626 osc.; 1×1629 Tuning Indicator; Crystal $6,200 \mathrm{Kc} / \mathrm{s}$. New condition- $83 / 10 /-$ each, $10 /-$
> (Conversion as per "Surplus Radio Conversion Manual, Vol. No. 2," by R. C. Evenson and O. R. Beach.)

> AIRCRAFT RECEIVER ARR. 2: Valve line-up $7 \times 9001 ; 3 \times 6$ AK5; and $1 \times 12 \mathrm{~A} 6$. Switch tuned $234-258 \mathrm{Mc} / \mathrm{s}$. Rec. only $\mathrm{E3}$ each, $7 / 6$ post; or Rec. with 24 v . power unit and mounting tray $\mathrm{e} 3 / 10 /-$ each, $10 /$-post.
> RECEIVERS: Type BC-348, operates from 24 v D.C., freq. range 200-500 Kc / s, 1.5-18 Mc/s. (New) 235.0.0 each; (second hand) £20.0.0 each, good condition, carr. 15/-both types.

ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C. @ 1.8 amps , $400 \mathrm{c} / \mathrm{s} 3$ phase, $86 / 10 /-$ each, $8 /-$ post. 24 v D.C. input, 175 v D.C. @ 40 mA output, 25/- each, post $2 /$-.
CONDENSERS; $40 \mathrm{mfd}, 440 \mathrm{v}$ A.C. wkg., 85 each, $10 /-$ post. $30 \mathrm{mfd}, 600 \mathrm{v}$ wkg. D.C., £3/10/- each, post $10 /-15 \mathrm{mfd}, 330 \mathrm{v} \mathrm{A.C}. \mathrm{wkg.} 15 /$,- each, post $5 /-10 \mathrm{mfd}$, $1000 \mathrm{v}, 12 / 6$ each, post $2 / 6.10 \mathrm{mfd}, 600 \mathrm{v}, 8 / 6$ each, post $5 /-.8 \mathrm{mfd} .2500 \mathrm{e5}+$ $12 / 6$ carr. $8 \mathrm{mfd}, 1200 \mathrm{v}, 12 / 6$ each, post $3 /-.8 \mathrm{mfd}, 600 \mathrm{v}, 8 / 6$ each, post $2 / 6$.
$4 \mathrm{mfd}, 3000 \mathrm{v}$ wkg., $£ 3 \mathrm{each}$, post $7 / 6.4 \mathrm{mfd} 2000 \mathrm{v} . \mathrm{£} 2+5 /-$ post. 4 mfd .600 v . $4 \mathrm{mfd}^{2} 3000 \mathrm{v}$ wkg., $£ 3$ each, post $7 / 6.4 \mathrm{mfd} 2000 \mathrm{v} . \mathrm{£} 2+5 /-$ post. 4 mfd .600 v . 2 for $£ 1.2$ mid, 3000 v wkg., $£ 2$ each, post $7 / 6.0 .25 \mathrm{mfd}, 2 \mathrm{Kv}, 4 /-\mathrm{each}, 1 / 6$ post.
$0.01 \mathrm{mfd} . \mathrm{MICA} 2.5 \mathrm{Kv}$. Price $£ 1$ for 5 . Post $2 / 6$. Capacitor: $0.125 \mathrm{mfd}, 27,000 \mathrm{v}$ wkg. £3.15.0 each, $10 /$-post.
OSCLLLOSCOPE Type 13A, $100 / 250$ v. A.C. Time base $2 \mathrm{c} / \mathrm{s} .-750 \mathrm{Kc} / \mathrm{s}$. Bandwidth up to $5 \mathrm{Mc} / \mathrm{s}$. Calibration markers $100 \mathrm{Kc} / \mathrm{s}$. and $1 \mathrm{Mc} / \mathrm{s}$. Double Beam tube. Reliable general purpose scope, $£ 22 / 10 /$ each, $30 /$ - carr.
COSSOR 1035 OSCILLOSCOPE, £30 each, 30/- carr
COSSOR 1049 Mk. 111, £45 each, 30/- carr.
RELAYS: GPO Type 600 , 10 relays @ 300 ohms with 2 M and 10 relays @ 50 ohms with 1 M ., $£ 2$ each, $6 /-$ post.
12 Small American Relays, mixed types £2, post 4/-
Many types of American Relays available, i.e., Sigma; Allied Controls; Leach; etc. Prices and further details on request 6 d .

> GEARED MOTORS: 24 v. D.C., current 150 mA , output I r.p.m., $30 /-$ each, $4 /-$ post. Assembly unit with Letcherbar Tuning Mechanism and potentiometer, 3 r.p.m., \&2 each, $5 /-$ post.
> SYNCHROS: and other special purpose motors available. British and American ex stock. List available $6 d$.

TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price $25 /$-, post $5 /$ -
SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, £2/10/m each post 6/-.
CONTROL PANEL: 230 v. A.C. 24 v.D.C. @ 2 amps., $22 / 10 /=$ each, carr. $12 / 6$.
OHMITE VARIABLE RESISTOR: 5 ohms, $5 \frac{1}{2}$ amps; or 2.6 ohms at 4 amps. Price (either type) $£ 2$ each, $4 / 6$ post each.
TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$'s; complete with flament transformer 230 v . A.C. Mounted in 19 in . panel, $84 / 10 /=$ each, $15 /$ - carr. POWER SUPPLY UNIT PN-12A: 230V a.c. input $50-60 \mathrm{c} / \mathrm{s} .513 \mathrm{~V}$ and 1025 V @ 420 mA output. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V and 10 Mfd 600 V . Filament Transformer 230 V a.c. input. 4 Rectifying Valves type $5 \mathrm{Z3}$.
$2 \times 5 \mathrm{~V}$ windings @ 3 Amps each, and $5 \mathrm{~V} @ 6 \mathrm{Amp}$ and $4 \mathrm{~V} @ 0.25 \mathrm{Amp}$. Mounted $2 \times 5 \mathrm{~V}$ windings ${ }^{\circ}$ on steel base $19^{\prime \prime} \mathrm{F} 11^{\prime \prime} \mathrm{Hx} 14^{\prime \prime} \mathrm{D}$. (All connections at the rear). Excellent condition \&8.10.0, each, Carr. £1.
AUTO TRANSFORMER: $230-115 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}, 1000$ watts. mounted in a strong
 $50-60 \mathrm{c} / \mathrm{s}, 500$ watts. $7^{\prime \prime} \times 5^{\prime \prime} \times 5^{n}$. Mounted in steel ventilated case. 83 each, Carr. 10/-.
POWER UNIT: 110 v . or 230 v. input switched; 28 v . @ 45 amps. D.C. output. Wt. approx. $100 \mathrm{lbs} ., £ 17 / 10 /$ e ea
for above $£ 7 / 10 /-$ each, $15 / \mathrm{c}$ carr.

TRIPLETT SIGNAL GENERATOR Model 1632: Contains an R.F. Oscillator calibrated in 10 fundamental bands, covering a freq. of $100 \mathrm{Kc} / \mathrm{s}$ $120 \mathrm{Mc} / \mathrm{s}$. Also a buffer amplifier and modulator stage, a metering system,
crystal Oscillator stage, and a self-contained Heterodyne Detector. The wide crystal Oscillator stage, and a setr-contained freterodyne Detector. The wide Operates 115 V a.c. $50 / 60 \mathrm{c} / \mathrm{s}$. Output Meter $0-0.3 \mathrm{~V}$. Controls: Ext. Mod.; Int. Mod.; CW; Het. Det.; Xtal.; AFO/put; RF Level; O/put Units; and O/put Multiplier. Slow and Fast motion dial. Price $£ 12.10 .0$ very good secondhand cond.; or £15.10.0 "as new" cond. Carr. 15/-.

CORPORAL ROCKET ELECTRONIC GUIDANCE EQUIPMENT: Beacon Radio DRN.7. Rec/Trans. Assembly MX.2048DPW-8. Electronic Control Ampliner AM15ionailable.
MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves, microphone and modulator transformers etc. $87 / 10 / \mathrm{e}$ each, $15 /$ - carr.
FUET INDICATOR Type 113R: 24 v . complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in a 3 in. diameter case. Price 30/- each, postage 5 /-

ALL GOODS OFFERED WHILST STOCKS LAST IN

CANADIAN HEADSET ASSEMBLY: Moving coil headphones 100 n , with chamois leather earmuffs. Small hand microphone complete with switch and moving coil insert. New condition. Price 35/- each, post $5 /$-.
AUDIO OSCILLATOR 382/F: Input 115 v . A.C., $50 \mathrm{c} / \mathrm{s}, 20-200,000 \mathrm{c} / \mathrm{s}$ per sec. in 4 ranges. Cont. wave. Output $0-10 \mathrm{v}$. in 7 ranges. Power output 100 mW .
Output impedance $1,000 \Omega$. $£ 27 / 10 /-$ each, $£ 1$ carr.
U.S.A. UHF TEST EQUIPMENT: TS-13 Signal Generator and Dummy Load. TS-36/A X-Band Power Output Meter. TS-117/GP S-Band Frequency and Freq. Meter. Range $8500-9600 \mathrm{Mc} / \mathrm{s}$ FM. TS-155 Signal Generator $2700-2900 \mathrm{Mc} / \mathrm{s}$. TS-174 Frequency Meter $20-280 \mathrm{Mc} / \mathrm{s}$. TS-186D/UP Frequency Meter, $115 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$. TS S 355 A Special Purpose Instrument for measuring Receiver sensitivity and Transmitter power output in the range of
$150-240 \mathrm{Mc} / \mathrm{s}$ and Mk. III IFF systems. TS-375A Multipurpose Test Set. $150-240 \mathrm{Mc} / \mathrm{s}$ and Mk. III IFF systems. TS-375A Multipurpose Test Set. TS-403 (AN/URM-61) Signal Generator $1800-4000 \mathrm{Mc} / \mathrm{s}$. (Hewlett Packard type 616 A). TS $452 \mathrm{~A} / \mathrm{U}$ Signal Generator combined Wavemeter FM, 5$100 \mathrm{Mc} / \mathrm{s} 6$ Bands. TS-497B/URR General purpose Signal Generator, $2-400 \mathrm{Mc} / \mathrm{s}, 2$ Bands. TS-510 (AN/USM-44) Signal. Generator, $10-420 \mathrm{Mc} / \mathrm{s}$, URM-67 Phase Monitor.

CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG1 (CV1526) colour green, medium persistence complete with nu-metal screen, £3/10/= each, post 7/6. APNI ALTIMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s}$., complete with all valves 28 จ. D.C. 3 relays, 11 valves, price £3 each, carr. $10 /$. ANTENNA WIRE: 100 ft . long. $15 /-+5 /-$ post.
SIMPSON OUTPUT VOLTMETER A.F., Model $427: 3$ ranges, 2, 10 and 50 Volts, $\$ 3$ each, $+4 /-$ post.

PYE D.C. MICROVOLTMETER, suspended Galvanometer movement. Range multiplier $\times 1 \times 10 \times 100 \times 1000$. Mains operated $200 / 250 \mathrm{~V}$. $\mathbf{£ 2 5}+\mathrm{El}$ carr.
GR FREQUENCY METER Type 720A. $10 \mathrm{Mc} / \mathrm{s}-3000 \mathrm{Mc} / \mathrm{s}$, with \cdot P.U. $115 / 230 \mathrm{~V}$ a.c. $£ 27 / 10 /=+$ £1 carr.
SIGNAL GENERATOR OSCILLATOR TEST SET NO. 2. AM/FM, Frequency $20-80 \mathrm{Mc} / \mathrm{s}, 2$ ranges. $£ 40+15 /$-carr.
DAWE OCTAVE BAND ANALYSER TYPE 1410A. Portable Battery operated. Attenuator $0-50 \mathrm{Db} .6$ ranges. $£ 25+£_{1}$ carr.

LABORATORY VALVE VOLTMETER E.I. LTD. Model 26: 6 ranges, 1V-250V a.c./d.c. Ohms 4 ranges $0.1-1$ meg., with probe. £22/10/- $+15 /$-carr. MARCONI TF-1377 SUPPRESSED ZERO VOLTMETER: Meter
Range $50 \mathrm{mV}, 0.5 \mathrm{~V}, 5 \mathrm{~V}, 50 \mathrm{~V}$, all centre zero. Input range $10 \mathrm{~V}, 100 \mathrm{~V}, 100 \mathrm{~V} \times 2$, Range $50 \mathrm{mV}, 0.5 \mathrm{~V}, 5 \mathrm{~V}, 50 \mathrm{~V}$, all centre zero. Input range $10 \mathrm{~V}, 100 \mathrm{~V}, 100 \mathrm{~V} \times 2$,
$100 \mathrm{~V} \times 5$. Zero supression indicator $0-999.540+15 /-$ carr.
COSSOR OSCILLOGRAPH VOLTAGE CALIBRATOR, Model 1433: 5 ranges, $3-300 \mathrm{mV}$, and $1-100 \mathrm{~V} . £ 15+15 /-$ carr.

APN-1 INDICATOR METER, 270° Movement. Ideal for making rev. counter. 25/- each, 5/-post.
VARIABLE POWER UNIT: Complete with Zenith variac 0-230V., 9 amps.; $2 t$ in. scale meter reading $0-250 \mathrm{~V}$. Unit is mounted in 19 in. rack. £15 each, 30/carr.
AIRCRAFT SOLENOID UNIT D.P.S.T.: $24 \mathrm{~V}, 200 \mathrm{Amps}, \mathrm{f}_{2} 2$ each, $5 /$ post. RADAR SCANNER ASSEMBLX TYPE 122A: Complete with parabolic (24. dameter), meters, suppressors, etc. $\mathbf{2 3 5}$ each, $£ 2$ cart

DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms. Tolerance $\pm 1 \% £ 3$ each, $5 /$ - post. 90 ohms pér step. 10 positions, total value 900 ohms. 3 Gang. Tolerance $\pm 1 \% ~ 23 / 10 /-$ each, $5 /-$ post.
COAXIAL TEST EQUIPMENT: COAXWITCH-Mnftrs. Bird Electronic
Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type "N" female
corp. Mectors fitted to receive UG-21/U series plugs. New in ctns., \&s/10/- each,
connectors fitted to receive WG-21/ $7 / 6$. CO-AXIAL SWITCH Mnftrs. Transco Products Inc., Type
$\begin{aligned} & \text { M1460-22, } 2 \text { pole, } 2 \text { throw. (New) } £ 6 / 10 /- \text { ea } \\ & \text { Type M1460-4. (New) } £ 6 / 10 /- \text { each, } 4 / 6 \text { post. }\end{aligned}$
PRD Electronic Inc. Equipment: FREQUENCY METER: Type 587-A,
$\begin{aligned} & 0.250-1.0 \mathrm{KMC/SEC} \text {. (New) £75 each, post } 12 / 6 \text {. FIXED ATTENUATOR: } \\ & \text { Type } 130 \mathrm{c}, 2.0-10.0 \mathrm{KMC} / \mathrm{SEC} \text {. (New) } 55 \text { each, post } 4 / \approx \text {. FIXED ATTENU: }\end{aligned}$
$\begin{aligned} & \text { Type } 130 \mathrm{c}, 2.0-10.0 \mathrm{KMC} / \mathrm{SEC} \text {. (New) } 55 \mathrm{each} \text {, } \\ & \text { ATOR: Type } 1157 \mathrm{~S}-1 \text {, (new) \& } 6 \text { each, post } 5 / \text {. }\end{aligned}$

FOR EXPORT ONLY BRITISH \& AMERICAN COMMUNICATION EQUIPMENT

VRC.19X Trans-ceiver, $150-170 \mathrm{Mc} / \mathrm{s}, 2$ Channel, 20 Watts , Output $12 / 24 \mathrm{~V}$ d.c.
operation. General Electric Transmitter, $410-419 \mathrm{Mc} / \mathrm{s}$, thin line tropo scatter operation. General Electric Transmitter, $410-419 \mathrm{Mc} / \mathrm{s}$, thin line tropo scatter
system, with antennae. $W . S$. Type 88 , Crystal controlled, $40-48 \mathrm{Mc} / \mathrm{s}$. W.S. Type system, with antennae. W.S. Type 88 , Crystal controlled, $40-48 \mathrm{Mc} / \mathrm{s}$. W.S. Type
$\mathrm{HF}-156, \mathrm{Mk}$. II, Crystal controlled, $2.5-7.5 \mathrm{Mc} / \mathrm{s}$. W.S. Type 62 , tunable, 1.5-12 MF / s. C. 44 , Mk. II, Radio Telephone, Single Channel, $70-85 \mathrm{Mc} / \mathrm{s}$, 50 watts, Mc/s. C. 44 , Mk. II, Radio Ielephone, Single Channel, $10-85 \mathrm{Mc} / \mathrm{s}$, 50 Warts ,
 50 watt, narrow b or 230 V input. STC Tx/Rx Type 9X, TR1985; RT1986;
watt output, 110V
TR1987 and TR1998, $100-156 \mathrm{Mc} / \mathrm{s}$. TRC-1 Tx/Rx, Types T.14 and R.19, TR1987 and TR1998, $100-156 \mathrm{Mc} / \mathrm{s}$. TRC-1 Tx/Rx, Types T.14 and R.19,
FM $60-90 \mathrm{Mc} / \mathrm{s}$. With associated equipment available. Redifon GR410 Tx/Rx, SSB, $1.5-20 \mathrm{Mc} / \mathrm{s}$. Sun-Air Tx/Rx Type T-10-R. Collins Tx/Rx/Type 18S4A Collins Tx/Rx Type ARC-27, $200-400 \mathrm{Mc} / \mathrm{s}, 28 \mathrm{~V}$ d.c. With associated equipment available. ARC-5; ARC-3; and ARC-2 Tx/Rx. BC-375; 433G; 348; 718; 458; 455 Tx/Rx. Directional Finding Equipment CRD. 6 and FRD. 2 complete Sets available and spares, Complete system with full set of Manuals. Mobile Consisting of $3 x A R C-27 \mathrm{~T}_{\mathrm{x}} / \mathrm{Rx}$ with all associated equipment (as new).

CALLERS BY TELEPHONE APPOINTMENT ONLY

3-B TRULOCK ROAD, LONDON, N17 OPG
Phone: 01-808 9213

STEPHENSKateme P.0. BOX 26, AYLESBURY, BUCKS.

SEND S.A.E. FOR LISTS • GUARANTEE Satlsfaction or money refunded GUARANTEED YALVES BY THE LEADING MANUFACTURERS BY RETURN SERVICE

I YEAR'S GUARANTEE ON OWN BRAND. 3 MONTHS ON OTHERS

[^16]

COUNTERS

VEEDER ROOT 6 DIGIT
 COUNTER

Suftable for counting all kinds of pro-
diction runs, businees machlne
 tion. Mecbanically driven Type KA1337.
Reset manual knob. Ex-equipment but

$\mathbf{8 / - P}$. \& \mathbf{P}.

MINIATURE

SQUAR 6 DIGIT

By Veador Root. Rotars, ratchet type,
shaft. $8 / 6$ plus $2 / 6$ P. \& \mathbf{P}.

BERKELEY DECIMAL COUNTING UNIT 0-9 4 valves double triode type 5065 special quality Unit plugs into standard octal base, Modular conatruction with 10 miniature neon
lampa on display panel. Power supplies 6.38 . A.C. 150 D D.C. Cut-

5 DIGIT COUNTER

A very aturdy counter. Coll resistance 100 ohms. Minimum
operational voltage 5 v . Counting speed 13 counts per sec. Sultable for contlnuous counting witb sine wave drive. Colncidence, recording and trequency meter $35 /-$ p. \& p. $5 /-$.

HI-SPEED ELECTRIC RESET ELECTRO MAGNETIC
COUNTER
 second. size 3 ; $\times 2$). Panel Mounting.
List $\mathrm{E} 10 / 19 / 6$. Our Price R4/8/6. P. \& P. $5 /-$ -
4 Digit 24v. 78/6. P. \& P. $5 /$.

HIGH SPEED IMPULSE COUNTERS
by Davis, Wynn andrews, 4 in. dial and polnter registers up to the counter ls by air lnverse escapement so that there lis no loading of the polnter mechanism when digits are changed and adjustable pawls are unnecessary. Coll resistance 100 ohms for nominal volt
operation, but the device works reliably from 20 volts at rates up operation, but the device work reliably from 10 lmpuses/sec. In oircuit with a thy ratron or neostron counting ratei up to $100 \mathrm{impulses} / \mathrm{sec}$, are possible provided pulse width is restricted to keep mean current to 100 mA . Brand new in individuatly sealed boxes. Price $£ 6.0 .0$ P \& P 7/6d.

BRAND NEW HIGH CAPACITY ELECTROprices by MALLORY or SPRAGUE

A bargain in NEW Power Supplies.

At less than half manufacturers prices.
$0 / \mathrm{P}$ Voltage $7.5 \mathrm{~V}-9 \mathrm{~V}$.
Max load current 10 Amps. Max ripple on full load 60 mV p.p. Threshold Current. 10.5A. Overvolt Protection.

OUR PRICE: £30.0.0

DELAY LINE

Type MON 2484 D 2 micero
$\times \quad$ in. $£ 1.10 .0$. P. \& P.
ACTUATOR
By English Electric. Type 4519 Mk .1 D.Cl Motor AE 1560 Mk .1

NEW MINIATURE RELAYS

INDUSTRIAL LIGHT SWITCH
By Burndept. Model BE 290. Transistoriged unit Relay o/p

PROGRAMME SWITCH

Graseby Instruments. Model G1 $408 / 6$ consists of 4 Banks $\times 48$ Way 1 Revolution in 239 sec . Supply 115 V 400 Hz \&10. P. \& P. $7 / 6$.

TRANSISTOR AMPLIFIER
Type TA-1G by R. B. PULLINT. \&5. P. \& P. $5 /-$
CODER SHAFT POSITION
y Datex Corporation. Type $4166-7003$ " V " 8can Code National inary Diode Pos. Diameter: 11 in. $\times 2 \frac{1}{5}$ in. long. Servo Mountling. £15. P. \& P. $8 /$-.
MULTILINE COMPARATOR
By Venner. Type T\& 39. Transistorised unit. As new condition. 25.

ANALOGUE-DIGITAL CONVERTER

By United Aircraft. Type 6.SPT-C. Model 13-BNRY-B. 3 Digit encoder Grays code. Length 3 in., diameter $1 f$ in. Servo Type mounting. ©15. P. \& P $7 / 6$.

ACCELEROMETERS
Model IA 23 C Potentiomentric + or -10 G operating Voltage 30 V .
Nominal resistance 17.5 K and Model $\mathrm{LA} 23 \mathrm{C}+$ or -100034 V , Nominal resistance 17.5 K and Model LA $23 \mathrm{C}+$ or -100 G 34 V , TYPE SE 55/A Range + or - 1 G £28. P. \& P. 51 -.
amic type giving o/p of 23 mV . supplifed c / w technlcal lenflet. Weight 14.8 grammes. 2 BA stud mounting. $£ 3.15 .0$. \mathbb{P}. \& \mathbb{P}. $5 /-1$.
Many other sypes in stock

MAGNETIC AMPLIFIER
${ }^{\text {By }}$ Pullinkearfott. Type R603-1A and R601-1A-B. 86.10 .0 .

MOTORS

LOW TORQUE HYSTERESIS MOTOR MA23 Ideal for lnst-rument chart drives. Extremely quiet, useful th areas where amblent noise levels are low. High starting torque enable
relative high inertia loads to be driven up to 6 -oz/in. Available in

 20 r.p.m., 25/- each. P. \& P. 3/-

SYNCHRONOUS MOTORS

Model S 71 r.p.h. and $1 / 60 \mathrm{r}$.p.h. Solf starting complete with gearing haft in, dia. in. long, $200 / 250 \mathrm{~V} 50 \mathrm{~Hz}$. New condition Ex-

DATA TRANSMISSION-SYNCHROS A selection from Type wide range

Torque Receiver 11 TR4a Bperty

Torque Receiver
Torgue Receiver
Control Traustormer 11CT4A
Control Transformer 08CT 4 A
Control Transformer 11CT4a Control Trasaformer 11CX4a
Control Transformer 11C Control Tranaformer 11CX 4 Torque Transmitter 11MD3 Torque Transmitter 16M1B1

ker	Voltage	Hz	Price
Sperry	$90 / 115 \mathrm{v}$	400	7100
ith	26/12.3	400	7100
Pullin	90/115v	400	7100
uulrhead	90 Y	400	9100
Mulrbead	26 v	400	9100
perry	90v	400	9100
Pallm	26.	400	6100
Ketay	116/90v	400	9100
mith	115/90v	400	6100
irhead	26 v	400	9100
irhead	115/90v	400	9100

BRAND NEW
DIGIT RESETTABLE COUNTER with paper print out by soDECO of Bwitzerland. Type 1 Tpb $3-240$ volt 50 Hz .10 impulse $/$ /sec. Paper
width
if
in. 3
in. dia. roll. Overall dimensions width 1 il in .3 in . dia. roll. Overall dimensions:

D.C. TACHOGENERATOR Type $9 \mathrm{c} / 10616 \mathrm{v}$. at 1000 r r.p.m. Drive shaft dia. ${ }^{3}$

HIGH PRECISION MAINS

MOTOR 3 Phase--I Phase 330 V 50 Hz $1 / 8 \mathrm{~h} . \mathrm{p}$. continnonnsly rated. ing. Model KA 60 JFB. Suitable for cepsitan motor, size 8 im . long, $4 \frac{1}{2} \mathrm{in}$.
diameter with 6 in. dianeter flange and diameter with 6 in. dianeter flange and
4 axing holes. $£ 4 / 10 / 0$ each. P \& P. $25 /$.

GENERATORS

L.F. SIGNAL GENERATOR SGEB

Frequency range $15 / 8$ to $125 \mathrm{kc} / \mathrm{s}$ in five bands. Accuracy
($1 \%+1$ c/s). Sine wave distortion less than 1% at 1 . Output Sline wave continuoualy variable, 0 to 30 V r.m. s . Into 600 R . Sine wave 0 to 1 W into 5 . Square wave 0 to 30 V pk. pk. Output impedance varies up to $6 \mathrm{k} \Omega$ depending on output level setting.
Riae and fall times 0 to $0.75 \mu s$ maximum. Power requirements Rise and fall times 0 to $0.75 \mu s$ maximum. Power requirement
100 to 130 V and 200 to $260 \mathrm{~V}, 40$ to $60 \mathrm{c} / \mathrm{s}$, 100 W . Dimensions 19 in . wide $\times 10 \mathrm{jin}$. high $\times 88$ in. deep. Weight 32 flb . Rack mount ng. Price £75 carriage extra.

OSCILLATORS \& SIGNAL GENERATORS (IE) CRYSTAL CONTROLLED OSCILLATOR STC. 16-LXU-E2A Mr. I. $0-20 \mathrm{MHz}$. 8 weep iaciuties. $\mathbf{0 / p}$ atitenuation $0-70 \mathrm{~dB}$. (I104) NEW AUTOMATIC CYCLING OSCILLATOR. ACOS 1.

H08) LOW FREQUENCY DECADE OSCILLATOR D-B38-A Max. O/p $1 \mathbf{W}$ in 600 Q above $30 \mathrm{~Hz} . \ldots \ldots . .$. (II09) DECADE OSCILLATOR D-850-B. Range 1 Hz-111 KHz,
Max. O/p 2 W into 8 K § above 20 Hz . O/p $0-180 \mathrm{~V}$..... Price e4. (II10) L.F. OSCHLATOR G 420 FURZEHILL. Range 1.4 Hze (I18) R.C. OSCILLATOR AND AUTOMATIO FREQUENCY
MONITOR-sMITHS. Oscillator range $10 \mathrm{~Hz}-100 \mathrm{KHz}$. Price \&75 (1130) AUDIO FREQUENCY OSCILLATOR-PYE. Range $20 \mathrm{H}_{3}$ (I49) GAUGE OSCLLLATOR M 700L SOUTHERN INSTRUMENTS.

O18 SIGNAL GENERATOR CT218. Range $85-30 \mathrm{MHz}$. O / p
Facilites include crystal calibrator, modulation........ Price £85 (115) ADDIO FREQUENCY GENERATOR. Type J2. ADVANCE
Range 15 Hz-50 KHz. O/p. 0.40 V (183) gIGNAL OENERATOR CT 480 SANDERS. Range 7 KHz (I79) wOBTEATOR GM 2877/02 PHILLIPs Range: $15 \mathrm{~Hz}-160 \mathrm{MHz}$. Timer $0-8$ mins. Diode current 0 . dB. a -

Price $£ 50$

BRAND NEW
 MINIATURIZED

AUTOMATIC STRIP CHART RECORDER ndicate s the magnitude This recorder currents or voltages by a continuous distortion-free line on pressure sensitive paper. Chart width $2 i$ in. Chart speed ith.
per min. Moving coll movement, scale pallbrated Moving coil movement, scale 4,600 ohme. Chart drive motor 12 V D.C. Supplited less case. C/W handbook.
Price 850 . P. \& \quad P. 10%

 $=$

EQUIPMENT AND COMPONENTS

MEASURING INSTRUMENTS AND RECORDERS

(R3) sinale PEN. DC MiLLIAMMETER. O-1mA. Chart width 3 inh Speed 1 ln . and 6 in. Fhr . Alarn conlact. Price 852.10 .0

 (R8) 2 PEN. DC MILLIAMMETER. $0-15 \mathrm{~mA}$. Chart Price \& 8 In

 (B11) CAMBRIDQE TEMPERATUE RECRBDER SNGLE

 turret head to enabio conversloo to to 4 polint. Uses copactitive sensining
input. Chart dia. 11 in . Speed: 1 rev./hr. Sensitvity 50 micro Amp. Reaistance 1 , 950 ohms. Naing supply................ Price e 295
(R14) KENT Mk. II SINGLE POINT,
 k.e. $0-600^{\circ} \mathrm{C}$. $0.1,000^{\circ} \mathrm{C}, 50 \mathrm{to}-200^{\circ} \mathrm{C}, 0-10{ }^{\circ}{ }^{\circ}$. Aloo a ailable:
 230V Autotransformer availible.

 width 2 in. speed: 6 in.fhr. Uses typewriter ribbon marker. Maing

 8 in . Speed: $1 \mathrm{im} . / \mathrm{hr}$. Clo

 (R7) PORTABLH BINGLE AND FOUR PEN: Sultable recording
quantities with high rate of change, Speeda: Single pen fo in. min .

 (RSO) SNGLE PEN. DC MILIAMMETER, 0-0.5mA. Chart width $8 \ln$. Speed: 1 in. and 6 in. $/ \mathrm{lr}$. Terminal Resistance 4,500 ohme. (b8) SNNGLE PEN. DC MLLLIAMMETER, 0-2mA. Char widh
 0 MaWW. Chart width 4 in. Clockwork drive. 8 -day moverent. Maximum cirrent: 38 ampa
R34) CAMBRIDE SINGLE PEN STRIP CHART RECORDER COMPLETE WTTH CONTROL UNIT. A general pripoee potentio-

 ${ }_{50} \mathrm{lb}$ b (R36) FOXBOBO FTO

 (R37) FOSTER STRIP CEART RECORDER TYPE 3490 P .

ALL TYPES OF PRECISION
POTENTIOMETERS IN STOCK
TRANSITROL 2 POSITION INDICATING TYPE 990
Completely tranaistorised sell-con-
tained direct deffecting units for

 Suitable where a sifr al can be con-
verted into D.C. Sensitivity 10 ohms verted into D.C. Seasitivity 10 ohms
per M.V. Minimum F.S.D. 8 M.V. Cold linction compensation, thermo-
 penaation. Callbrated scale leng th, 6.5 in, $0-800$ degrees centigrade
 nut rit brick of chse. Our price 222.10 .0 . List price 249 . New
condition

METERS

 (I514) DH METER, CAMBRIDGE Price 212.10 .0
 (I508) FLUX METER Type 15A/AP. TL,G. ELECTRIO. Range (I504) VERNIER POTENTIOMETER. TYpe 4383. A. TINSLEY, (I513) WATTMETER. S 67 , SANGAMO WESTON, Range 0.15 W ; $150-300 \mathrm{~V} ; 0.25-0.5 \mathrm{~A}$
(II7) WIDEBAND MLVOLTMETER. TP Price ER9.10.0. 1371 MARCONI. Range $3 \mathrm{mV}-30 \mathrm{mV}$: -10 to +3 dB complete with probe. Flat
response 30 Hz -30 Mzz . Reading in (I112) PORTABLE POTENTIOMETER. Type Lige826 CAMBRIDGE. Fitted with standard cell and thermometer.. Price fft
(II122) POTETIOMETER AND GALVO. Type P.3-CROYDON (II23) SLIDE WIRE POTENTIOMETER. CAMBRIDGE. Voltage Fited with Galvo. Key. Absolute voltage (II 132) DECADE INDUCTOMETER. TYPe 230A. DAWE, Range (II4) MLLVVOLTMETER. Type 264. AIBMEC. Range 0 -300
 (H19) ABSORPTION WATTMETER A.F No. 1 MR 4. Power Kanges, 200 microw-6W. scaled in watts and dB. Impedance
$2.5 \Omega-20 \mathrm{~K} \Omega \ldots \ldots .$. Price
$£ 15$ (III2) STANDARD FBEQUENCY OBANGER. TYpe 203. ALRMEC. Range Volts 0 .
1 MHz - 0 MHz .
(T94) DYNOMETER. Type 3200, TIN\&LEY

 (T92) PHASE METER. TYPe IT, 1-3, MCMICHAEL RADIO $£ 35$ with reverse $0 / \mathrm{p}$, switch ing.rice \&20 (IBB) MICROAMMETER. CA 138. Range 0 -60 microA. . Price $£ 10$ (IB1) FREQUENCY METER $1176-\mathrm{A}$. GENERAL OAMBRIDGE (IBO) AC/DC VOLTMETER. 872.16. SANGAMO WESTON. Range (169) FREQUENCY METER EGISH ELECTRIC R 410 Hz . Input Volugg: 115 and 208 VPrice ${ }^{2} 5$
 Fitted with clock $1-12$ hrs. Freq. 50 oyclen.ice £25
(I51) MILLIAMMETER. CAMBRIDGE. Range 0 -200mA. Freq. (IS19) PRECISTON PHASEMETER Model Pille Elio Facilltes include: phase lag, phase lead; fine, medlum and coarse referenee; blanance and multplitier; metera.............Price $£ 85$
 ing mandle................................... Price $£ 35$
 phase reading $1 / \mathrm{p} 0-15 \mathrm{~V}$.........................Price \&il15
 (I50) AC/DC METER. Model 44. E.I. Range Voltagee: 0.200 V .

AVO TRANSISTOR
 ANALYSER CT 446

A portable dreet-reading instrument
capable of giving accurate measurements in the grounded emilter
configuration. Rattery power unit 1.5 V coniguration. Ratery power unit 1.5 V
to 10.5 V in 5 steps. Bese current 0.1 mA , 8 Bize: $15 \ddagger \times 94 \times 5$ tor batterles: 15 lbe. Price e42.10.0.

MINIRACK MULTICHANNEL
OSCILLOGRAOLChannel oscllo MUR

 comprising 12 crts. with their respective
 the appropriate amplifers, time marker
time base, and asecollated power mupller
 Price and full detallis on application.

MINIATURE PRECISION

POTENTIOMETERS BY BOURN
New 10-turn precinton potentiometers readout dial lin one extremely oompact finlshed in black plastio with white disl. Available in $100 \mathrm{~K}, 20 \mathrm{~K}, 5 \mathrm{~K}, 1 \mathrm{~K} .1 \frac{\mathrm{~W}}{}$.
Resistance tolerance 5%. Accuracy correlation of dial reading to $0 / \mathrm{P} 0.5 \%$. Weight 0.6 oz., overall length $111 / 16$ in.

Our price $£ A / 10 / 0$. P. \& P. $2 / 6$.
 $2140 / 41 \cdot B 11000 \mathrm{~V}$ True RMB Converter. Price $£ 175$ $2140 / \mathrm{A} 3$
E 150.

NUMICATORS

 Cold cathode gas-Alled, in-ine 0.9 digita! diaplay tubes, Long lifeexpectancy. Minimum etrikity voltage 180v. Side reading type
XN 13 and XN3 amber fitter, Price $18 / 6$ each. P. \& P. $2 / 6$.

OSCILLOSCOPE TYPE CT 52 ary handy miniature portable instrument for general purpose $10 \mathrm{~Hz}-20 \mathrm{MHz}$. Pulse monitoring duration 50 mileroseconds to 1 weep faclily from 50 microseconds to 3 microseconds mingle Amplifier. Delay Line Cailbration Voltage. Power supply 110 H, 81 n ., W, 51 in . Weight 141 lb . Prictal carrylng case. L. 13 ln ,

BATTERY OPERATED

NEW: L TRANSISTOR TESTERS
Type R228s for checking leakage current and gain current of Our price .. $88 / 10 / 0$

SPECTRUM ANALYSERS Marconi. OA. 109A. Spectrum Analyeers. extension unit $100 \mathrm{~Hz}-3 \mathrm{M} \mathrm{Hz}$. Display continnously variable up to 30 K Hz . pectrum scan time varlable from 0.1 to 0 seca. Long peralstence CR tube. upplies. Price $\mathbf{2 7 5 0}$.

PLATINUM RESISTANCE THERMOMETER PROBES
SOLARTRON Type NT $1198 / 0$ and NT 1687. Accurscy $\pm 1^{\circ} \mathrm{C}$. Probe m stainless aleel case. it in. diameter. Temp. range NT $1188 / \mathrm{C}-50^{\circ} \mathrm{C}$ to

AVOMETERS

These well-known portable test instruments have been overMods. 7
Model 7 Mk. Ii
Model 7X
Model 48A
Model 47 A
Model 48 A complete with voltage mutiplier for 480 v sid 3600 D Current shunts for 120 A and 480 A . A.C. Current tranaformer for
20 A and 60A. In special wooden box. $814 / 10 / 0$. P. de P. 15/-

NEW OSCILLOSCOPE PROBES
By famous Manuracturer.
Type P. 6000 . Complete with handbook.
Type P.6008. Complete with handbook.
FENLOW LOW FREQUENCY ANALYSER 3 Hz to 1 K Hz . Power density 0 -10 $\mathrm{B}_{\text {en }}$ 6: 0.3: 1.5: 7.5: 37.5 Hz . Prioe £275.

SYNCHRONOUS
CHOPPERS
ase B-9. Coll $6.3 \mathrm{v} ., \mathrm{B0}-60 \mathrm{~Hz}$. Proporion of time contacth are closed 45% -
lso avallable 100 Hz and 400 Hz . Price
$26 / 10 / 0$. P. \& P. $\mathrm{E} /$.

INKWELL OPERATION 20 and 40 channel Multipen (Prolecting
Pattern) Recorder. Driven from a 24 V Pattern) Recorder. Driven from a 24V mapply. Chart widit 9 in. Fens. Voltage range $6-125 \mathrm{~V}$.
Price 865 .

VIBRATION EQUIPMENT
 Soodmsns Power Oscil
avase Acceleration Control Unit scci 12Hz-10K Price sA5 impedance IM 0 . Output impedanes 600 Price 245
Pye Ling. Power Ampliffer. 50V.A.................. Price 880

PHOTOMULTIPLIER VMPII/4 (CV 2317) by 20th Century Electronice DARK current $0.004 \mu \mathrm{~A}$. Le/10/O.
E.M.I 6097 and 20 th Century CV 2317 29/10/0. P. \& P. 5/-

AUTOMATIC CRYSTAL
THICKNESS SORTING
MACHINE Folly automatio dice gauging and sorting system, eliminstes all extreme interest to manufacturers of semiconductors. It is offered in good condition at a quarter of lts original list price. It is
sultable for the sorting of germannium and sultable for the sorting of germanium and
stliton dices. The unit can sort up to 2,400 pleces an hour. Our price e450. Further plete with masual and spares.

All orders accepted subject to our trading conditions a copy of which may be inspected at our premises during trading tion through the post.
(Dept. W.W.) 49-53 PANCRAS ROAD, LONDON, N.W.I. Tel: 01-837 7781/2. Cables: SELELECTRO Telex No. 267307
(Open Mon - Fri 9 a.m. - 6 p.m.)

ELEOTROVIUE EVERYTHING BRAND NEW TO SPEC • LARGE STOCKS • NO SURPLUS BARGAINS IN NEW SEMI-CONDUCTORS
 many at new reduced prices . ALL power types with free insulating sets
 pEAK SOUND ENGLEFIELD CABINET KITS

| MANY AT | NEW REDUGED PRICES |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

RESISTORS

Values:

12 denotes series: $10,12,15,18,22,27,33,39$, E24,56, 68, 82 and their decades. $13,16,20,24$ $30,36,43,51,62,75,91$ and their decades.
ZENER DIODES 5% full range E24 values: $400 \mathrm{~mW}: 2.7 \mathrm{~V}$ to 30 V , $4 / 6$ each; $1 \mathrm{~W}: 6.8 \mathrm{~V}$ to 82 V Clip to increase 1.5 W rating to 3 watts (type 266f), 9d.
CARBON TRACK POTENTIOMETERS, long spindles. Double wiper ensures minimum noise level.
Single gang linear 220Ω to $2 \cdot 2 \mathrm{M} \Omega, 2 / 6$; Single gang log. $4.7 \mathrm{~K} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega$, 2/6; Dual gang linear, $4 \cdot 7 \mathrm{k} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega ; 8 / 6 ;$ Dual gang log, $4 \cdot 7 \mathrm{~K} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega, 8 / 6$; Log/antilog, $10 \mathrm{~K}, 47 \mathrm{~K}, \mathrm{IM} \Omega$ only $8 / 6$; Dual antilog, IOK only, $8 / 6$. Any type with $\frac{1}{8} A$ Please note: only decades of 10,22 and 47 are available within ranges quoted.
CARBON SKELETON PRE-SETS
Small high quality type PR, linear only: 100 . $220 \Omega, 470 \Omega, 1 K, 2 K 2,4 K 7$, $10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}$, $220 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M} 2,5 \mathrm{M}, 10 \mathrm{M} \Omega$. Vertical or horizontal mounting, I/- each.

COLVERN 3 watt Wire-wound Potentiometers. 10』, 15 , 25 , 50 , 100 , 250 , 500 , IK, 1•5K, $2 \cdot 5 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 15 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 5 / 6$ each.
ENAMELLED COPPER WIRE even No. SWG only: 2 oz. reels: $16-22$ SWG 4/3; 2430 SWG 5/-: 32, 34 SWG, $5 / 6$; 36,38 SWG, $6 / 3$.

TYGAN SPEAKER MATERIAL
7 designs, 36×27 in. sheets, $31 / 6$ sheet
Pattern book, S.A.E. plus 6 d . stamp.
MULLARD polyester C280 series
$250 \mathrm{~V} 20 \%: 0.01,0.022,0.033,0.0478 \mathrm{~d}$. each; $0.068,0.1$, 9 d each: $0.15,11 \mathrm{~d} ., 0.22$, $1 / \%$ $10 \% ; 0.33,1 / 5 ; 0.47,1 / 8 ; 0.68,2 / 3 ; 1 \mu \mathrm{~F}, 2 / 9$; 1. M , 4/2, 2.2 $\mu, 4 / 9$

\section*{MULLARD SUB-MIN ELECTROLYTICS} C426 range, axial lead 14 . $1.6125 .2 .5161 / 3$ each Valves ($\mu \mathrm{F} / \mathrm{V}$): $0.64 / 64 ; 1 / 40 ; 1-6 / 25 ; 2.5 / 16 ; 2.5 / 64$; $4 / 10 ; 4 / 40 ; 5 / 64 ; 6 \cdot 4 / 6 \cdot 4 ; 6 \cdot 4 / 25 ; 8 / 4 ; 8 / 40 ; 10 / 2 \cdot 5 ;$ 25/25; 32/4; 32/10; 32/40; 32/64; 40/16; $40 / 2 \cdot 5$; $50 / 6 \cdot 4$: 50 . 25 , $50 / 40$. $64 / 4$; $64 / 10$; $80 / 16$; . $40 / 2 \cdot 5$; | $50 / 6 \cdot 4 ;$ | $50 / 25 ;$ | $50 / 40 ;$ | $64 / 4 ;$ |
| :--- | :--- | :--- | :--- |
| $80 / 25 ;$ | $100 / 6 \cdot 4 ;$ | $25 / 4 ;$ | $125 / 10 ;$ | $200 / 6 \cdot 4 ; 200 / 10 ; 250 / 4 ; 320 / 2 \cdot 5 ; 320 / 6 \cdot 4 ; 400 / 4 ;$ 20016.4;

$500 / 2 \cdot 5$.

LARGE CAPACITORS
High ripple current types: 1000/25, 5/6; 1000/50, 8/2; $1000 / 100$, 16/3; 2000/25, 7/4; 2000/50, 11/4; $\begin{array}{ll}2000 / 100, & 28 / 9 ; 2500 / 64,15 / 5 ; 2500 / 70, \\ 5000 / 25,12 / 6 ; 5000 / 50,21 / 11 ; 5000 / 100, & 58 / 3 ;\end{array}$ $10000 / 15,17 /=; 10000 / 25,24 / 6 ; 1000 / 50,44 /=$ 10000/70,61/=.

COMPONENT DISCOUNTS

10% on orders for components for $£ 5$ or more 15\% on orders for components for \&15 or more. (No discount on nett items.)

POSTAGE AND PACKING

Free on orders over $£ 2$.
Please add $1 / 6$ if order is under $E 2$:
Overseas orders welcome: carriage and insurance charged at cose.

Stereo amplifier in modular kit form 12 watts per channel C38/9/-; 25 watts $658 / 15 /$
Cabinet kit only $\mathbf{6 6}$. These prices nett.
As recently revlewed in Hi Fi Sound.

BAXANDALL SPEAKER SYSTEM

Designed by Peter Baxandall. Superb reproduc tion for its size. Handles ELAC 15Ω 59RM109 speaker unit, Kit $£ 13 / 12 /$ nett; built $19 / 8 / 6$ nete.

MAINLINE AMPLIFIER KITS

RCA/SGS designed maln ampliffer kits. Input sensitivity $500-$

 700 mV for full output into 8Ω.| Power | Kit price
 including components | Suitoble unreg.
 power supply $k i$
 12 W |
| :--- | :---: | :---: |
| 25 W | $168 /-$ nett | $92 /-$ |
| 40 W | $190 /-$ nett | N / A |
| 70 W | $210 /-$ nett | $115 / 1$ |
| | $252 /-$ nett | $138 / 10$ |

30 WATT BAILEY AMPLIFIER PACK

 Special summer reductionSensitivity $1 \cdot 2$ for full output into 80
Transistors and PCB for one channel $\mathbf{E 7 / 5 / 6}$ nett
Transistors and PCBs for two channels $£ \mid 4 / I I /-$ list, nett.
Capacitors and resistors (metal oxide), $40 /$ - per channel nett Complete unregulated power supply pack, $\$ / 15 /-$ nett.

INTEGRATED CIRCUITS

PLESSEY SL403A 3 wates into 7.5 ohms. Data book supplied FREE when two of these units are purchased. Price per unit, nett $42 / \delta$.

```
SINCLAIR IC. 10 as advertised, complete with instructions and applications manual \(59 / 6\) nett. Components pack for stereo inc. transformer, controls, etc. 44/15/0 net
```


S-DeCs PUT AN END TO BIRDS NESTING
 Components just plug in saves time-allows re-use of come ponents. S-Dec (Complete T-Dec, mayts), 20/-
 Complete T-Dec, may be temperature-cyeled (208 points), 50/Also μ-Decs and IC carriers

MEDIUM RANGE ELECTROLYTICS

Axlal leads: $50 / 50,1 / 9 ; 100 / 25,1 / 9 ; 100 / 50,2 / 6 ; 250 / 25,2 / 6$. $250 / 50,3 / 9 ; 500 / 25,3 / 9 ; 500 / 50,4 / 6 ; 1000 / 25,4 / \sim ; 1000 / 50,6 /-$ 2000/25, 6/-.

SMALL ELECTROLYTICS

Axial leads: 4.7/10, 4.7/25, 5/50, 1/- each; 10/10, 10/25, $10 / 50$ $33 / 10,50 / 10,1 /$-each; 25/25, 25/50, 47/25, 100/10, 220/10, 1/3

ELECTROVALUE

 CATALOGUE48 pages plus cover. Well printed and generously illustrated to show products, diagrams, etc. Crammed with thousands of items excellently classified for quiek and easy reference. POST FREE 2/Add 4/- II required to be sent by air mail.

SEMI－CONOUCTORI／VAIVES
 BRAND NEW \＆FULLY GUARANTEED

	RANSISTOR				
	${ }^{1 / 6}$	Acy18	$51-$		
IN 4002	218	$\stackrel{A C}{A C}$	（8，		
		Ac	st		
	$\sqrt[3 / B]{3 /[}$	AO	4		
	40				
		AD	8 8－		
		AD	$11 / 8$		
		AD	${ }_{78} 7$		
		AD	76		19／8／8／80
		AP	\％－		，
		AFl	\＄2		
		AP	5－		
			12／8		
			迷		
		AF128	4.		76
	8，8		$4 /-$		d
			$8 /$		
			$1 /-$		
			10，6		
${ }^{\text {N2929 }}$					
	${ }_{5 / 6}$	${ }_{\text {A }}$	${ }_{8 / 8}^{8 / 8}$		
	${ }_{\substack{8,18 \\ 1 / 8}}$	${ }^{\text {ABY }}$ \％${ }^{\text {a }}$	$81-$	NET	
			$7 / 6$		
		A8	88		析
	${ }^{6} 1$	${ }_{\text {BAY }}{ }^{\text {a }}$	$1 / 8$		135－
					8t－
	${ }^{8 / 6}$	BCl^{13}	8／8	OA10	
	${ }_{\text {14，}}^{14}$		12／8		
	11／6		112－		
		${ }_{\text {BCC }}$	13.		
${ }_{2 \times 218}$	${ }_{8 / 8}$	BC148	$3 /$	0 088	
${ }^{2} \mathbf{N 2 2 1 9}$	${ }^{8 / 8}$			00^{30}	
	818		3.		
		BC172	\％		
	$8 / 6$		$7 / 8$	Oaz	
	${ }^{118}$				
	8／6	${ }_{\text {BCY }}$	${ }_{5 / 6}$	OC	10／
		всу			
	8／6	${ }^{\text {bC }}$			析
${ }^{2} \mathbf{N} 29296$	21日	BC	4－		
	2／6	${ }^{\text {BCY }}$			B／
3083	216		4		120／6
3084	121－	bey	${ }_{3 /-}$	${ }^{\text {oc35 }}$	${ }_{8 /-1}$
			8 8／6		12／8
		${ }^{\text {BCr72 }}$	316	cal	
	$8 / 8$		$3 /$		
	17／6		8／8		
		${ }^{\text {BD }}$	12／－		
	$4{ }_{4}{ }^{4}$－	${ }_{\text {BP117 }}^{\text {Br17 }}$	\％／8		
	2／6		8／－		
	4）．				
${ }_{\text {2N8720 }}$	${ }^{8 / 6}$	${ }^{\text {Br }}$	77.		
${ }_{2 \times 3} \mathbf{2} 70$	4 4－	BF1	${ }_{8 / 6}$	oct	
2N3711	4．1．		${ }_{8 / 6}^{81 / 6}$		
	71－	䂙	8，		
	7				
		BF200	10，6		
		${ }_{\text {Bre22 }}$			
		bp2	9／6		
	4,6	${ }^{\text {BFP }}$	${ }^{6}$	oci69	
${ }^{2 N+1288}$	${ }_{3 / 8}$	${ }_{\text {BP }}^{\text {BP }}$	7		
	3／6				寿
	3／8	${ }^{\text {Brx }}$	${ }^{2 / 8}$		
${ }_{2 \mathrm{~N} 42}$			8 －		
	3／8	bpx	8j－		8／6
	2／6．	${ }^{\text {BPX }}$	5）－		
2ns36	518	3FY	${ }^{8 / 6}$		\％e8
	8		1816		
28103	$8 / 6$	brys	4／8	OR	－
	8／8		$1 / 8$		
	1218	FY90	13／6	PLA	
	1316	${ }_{\substack{\text { B8x } \\ \text { B8x }}}$			
	－	B8x 2	7／8		8
	4.		／8		
	）		3／6		
Ac154	4／8	88Y27	3／6	PLA007	9
${ }^{\text {Ac176 }}$	8／		${ }^{3 / 6}$		
187	${ }^{1218}$	\％	46		$2 / 8$
17			4，6		

SEND SAE FOR FULL LISTS！ DISCOUNTS：

＋any one type

Large quantity discounts on applica－ tion．Postage：Semi Conductors $1 / 6$ ；
 \section*{\section*{VALVES}
 \section*{\section*{VALVES}
 | 8／6 | 30FL14 |
| :--- | :--- |
| $6 / 8$ | $30 \mathrm{LL15}$ |
| $6 /-$ | |
| $2 / 8$ | $30 \mathrm{OL17}$ |
 }

8／－

HI－FI EQUIPMENT SAVE UP TO 33 $\frac{1}{3} \%$ OR MORE
 SEND S．A．E．FOR． DISCOUNT＇PRICE LISTS AND PACKAGE OFFERS！

GARRARD

rull current range offered brand new and guaranteed at fantastic savings | 1025 | Stereo | |
| :--- | :--- | :--- |
| 40 Mk 11 | $£ 7.19 .6$ | gLabB |
| | gis | |

 TEAK BASES AND PERSPEX OOVERS

 £5．18．6．Carriane $7 / 6$ extra each type．

SPECIAL OFFERS

GOLDRING GL69／2 fitted Goldring Garrard SP25 Mk II fitted Goldring G800 G800 cartridge complete with de luxe cartridge and Wooden plinth with
base and cover．Total list price 650.16 .0 ．perspex cover．Total liet price 635.
OUR PRICE 639.

controls，Switched input for p．u．（magnetic and ceramic），mike and radio．Will also accept tape
head．Operates from $9 \mathrm{~V}-12 \mathrm{~V}$ bsttery $(20 \mathrm{~V}$ ．max． head．Operates from $9 \mathrm{~V}-12 \mathrm{~V}$ bettery（ $20 \mathrm{~V} . \mathrm{max}$ ．
7.5 mA ）．Frequency responee $26 \mathrm{~Hz}-30 \mathrm{kHz} \pm 1 \mathrm{db}$ ． Noise level better than－50db on all Inputs． Principally designed for use with Z12 Amplifier
but full lastructlons are aupplled to enable it to be used with any amplifer．Size $6 \dagger \times 24 \times 2 t \ln$ ． overall plus knobs．Brushed and polished alu－
minium front panel with mastching knobs．Supplied brand new sad guaranteed，with full instructions．
Original price E9．19．6．OUB PRICE 24．18．6．
P．\＆P． $3 /$－ G8800
G800
6800 E

DE－LUXE STEREO HEADPHONES Festures unlque
mechanical 2 wRy
units and
fitted adjustable leveicon－ trols． 8 ohm kinped－
nce． $20-0,000 \mathrm{cps}$ ．
Oomplete with epring lead \＆stereo
jack plug．\＆\％－18．6．
P．\＆P． $2 / 6$ ．

TAPE CASSETTES Top quality tn plastic library bozes． C60－ 60 min ． $8 / 6 ; 8$ for $24 / 6$ ． C90－ $90 \mathrm{~min} .12 / 6 ; 3$ for $38 /=$ C120－ $120 \mathrm{maln} .15 /-: 3$ for $43 / 6$ ． Cansette ELead Cleaner $11 / 3$ All Post Extra．	
ECHO HS－606 HEADPHO	STEREO NES
	Wooderfuily com fortable． weight adjustable vinyl beadband，6ft． cable and sterea jack plug，25－17，000 сря．， 80 tmp． $67 / 8$. P．\＆P．2／6．

2×230 amplifier，stereo 60 pre－amp，P25
power supply． 819.0 .0 ．Carr． $7 / 6$ Or with PZ2
 smpllier，日tereo 60 pre－amp PZ8 power supply． xira．Add to any of the fibove $£ 4.17 .8$ for active All other Siacladr products in in etock： 2,000 aropll－ her，${ }^{\text {£23．0．0．Carr．7！6．Neotertic amplifier }}$（46．0．0．Carr．7／6．

AMERICAN RECORDING TAPES

MARCONI CTA TF956 AF absorption WATTMETER
e20. Carr. 20
TEIII DECADE RESISTANCE ATTENUATOR db. Conneetlons. Unbalanced Tr and
Bridge T. Tmped-

 $+10+20+30+$ 40 db . Frequency: DC to $200 \mathrm{KHZ}(-3 \mathrm{db})$.
Accuracy: $0.05 \mathrm{db} .+$ tedication db
$\times 0.010$ Marimum loput less than 4 watts (50 voite).

BELCO AF-5A SOLID STATE SINE SQUARE WAVEC.R. OSCILLATOR Sine $18-200,000$ Hz; बquare $18-50,000 \mathrm{~Hz}$.

TE-I6A TRANSISTORISED
SIGNAL GENERATOR

${ }^{5}$ MHZ Rages $400 \mathrm{KHZ}-30$ instrument forthe handyman. Operstes on 9 v . battery. Wlde easy to
read scale. 800 KHZ read scale. 800 KHZ
modulation. $57^{\circ} \times 5 f^{\prime}$ $\times 3 \mathbf{3}^{\circ}$-Complete with instructions and
\& $7 / 19 / 6$. P/P $4 /$.

BELCO DA. 20 SOLID STATE

New high-quality port-
able
instrument
Sine 1 Hz to 100 KHz . Square ${ }^{20} \mathrm{~Hz}$ to ${ }^{20} \mathrm{KHzz}_{\text {. }}$ Out-
 $120 \mathrm{~mm} \times 150 \mathrm{~mm} \times$

Price 227.10 .0
Carr. $5 / 0$

TE-65 VALVE VOLTMETER

High quality instrument With 28 ranges. A.C. volta $1.5-1,500$. ${ }^{\mathbf{V}}$. megohnis. $220 / 240 \mathrm{~F}$.
Com.
A.C. operation. Complete with probe and
instructions £1\%/10/0. P. instructions $£ 17 / 10 / 0$. P_{4} Additional Probes availv
able; \quad R.F. $35 /-\quad \mathrm{H} . \mathrm{V}$. 42/6.

AUTO TRANSFORMERS $115 / 230 \mathrm{v}$. Step up or step down. Fully shrouded $150 \mathrm{~W} .42 / 6, \mathbf{P}$. \& P. P. $3 / 8$
$300 \mathrm{~W} .65 /-$ P. ${ }^{2}$ P. $4 / 6$
1.000 W. \&8/10/0, P. \& P. $7 / 6$

MULTIMETERS for GVERY purposed

MODEL TE-200 20,000 O.P. V. Mirrorscale, overlosd protection.
los/25/125/1,000
V.D. $0 / 5 / 25 / 125 / 1,000$ V.D.O. meg. +20 to +62 db 75/- P. \& P. 3/.

MODEL TE-70. 30,000 O.P. $0 / 3 / 15 / 60 / 300 / 600 / 1,200$ r.
D.C. $0 / 6 / 301120 / 600 / 1200$ A.C. $0 / 30 \mu \mathrm{~A} / 3 / 30 / 300 \mathrm{~mA}$. $0 / 16 \mathrm{~K} / 160 \mathrm{~K} / 1.6 \mathrm{M} / 16 \mathrm{Meg}$
$55 / 10 / 0 \mathrm{~F}$. \& F. $3 /-\mathrm{M}$
 and overload protection 6 in full riew meter. 2 colour, $\begin{aligned} & \text { scale, } \\ & 0 / 2.5 / 10 / 250 / 1,00 / 5,000 \\ & \nabla . A . C .\end{aligned}$ $0 / 25 / 12.5 / 10 / 50 / 250 / 1,000 / 5,000$ V. D.C. $0 / 60 \mu \mathrm{~A} / 0 \mathrm{Oi} 10 / 100 / 500 \mathrm{~mA}$
10 amp . D. $02 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{l}$ 10 amp. D.C. $02 \mathrm{~K} / 200 \mathrm{~K} / 2$
MEG. OHM. 815 P. \& P.
MODEL $5025 \quad 57$ Ranges,
 Reverse Iwitch.
 Sensitivity: $50 \mathrm{~K} /$ Volt D.C.
Mirror scale, overlo, 50,000 O.P.V. $0 / 3 / 12 / 60 / 300 / 600 / 1,200$ pection. $0 / 6 / 30 / 120 / 300 / 1,200$
$03 / 6 / 60 / 600 \mathrm{MA}$. D.C. D.C $16 \mathrm{~K} / 160 \mathrm{~K} / 1.6 / 16 \mathrm{MEG}$.

TME
FE
OVE
OVATURES RESETTABLE

OVERLOAD BUTTON. Sensi-
tivity: $20 \mathrm{~K} \Omega /$ Volt D.C. $5 \mathrm{~K} ~$

Resistance: $0-5 \mathrm{~K}, 50 \mathrm{~K}, 0-50 \mathrm{~K}$.
5 MEG. Declbels: -20 to +52 db .

TMK LAB TESTER
100,000 O.P. V. 61 in. Bcale Bensitivity: 100,000 OPV
 $50,250,500,1,000 \mathrm{~V}$. D.C.
Current: $10,100 \mu \mathrm{~A}, 10$,
$100,500 \mathrm{~mA} .2 .5,10 \mathrm{amp}$ $100,500 \mathrm{~mA}$.
Resistace: $2.5,10,10 \mathrm{amp}$
, $10 \mathrm{~K}, 100 \mathrm{~K}$ Resistance iK, 10 K
10MEG, 100 MEG. Declbels: -10 to +49 db
 D.C. Current: $26, ~$
$20 \mu \mathrm{~A}$
2. $, 5,25,50,200,500 \mathrm{~mA}$,
, 5, 10 amp. Resistsnce: 2 K, \&12/10/0. P. \& $\$$ P. $3 / 6$.

LAFAYETTE HA-600 SOLID STATE RECEIVER

LAFAYETTE HA 800 SOLID STATE AMATEUR COMMUNICATION RECEIVER coverage
$150-400$ $550 \mathrm{kc} / \mathrm{s}$.
$30 \mathrm{mc} / \mathrm{s}$.
.

YAMABISHI"

VARIABLE VOLTAGE TRANSFORMERS Excellent quallty - Low price Immediate dellvery

MODEL $8 \cdot 260$ B
Panel Mounting
${ }_{2}{ }^{2} \mathrm{Amp}$ Please add postage $£ 5 / 10 / 0$
$£ 8112 / 6$ INPUT 230 VOLTS, ${ }_{50 / 60}$ OYCLES OUTPUT VARIABLE 0 ©- 260 VOLTS

UNR 30 RECEIVER

4 Bands covering $550 \mathrm{kc} / \mathrm{B}$ - $30 \mathrm{mo} / \mathrm{s}$. B.F. O. Built In Speaker 220/240v AC. Brand new with instruc-
\qquad
WS62 TRANSCEIVERS Large quantity available for EXPORT Excellent condition. Enquirles invited

UR-IA SOLID STATE
COMMUNICATION RECEIVER 4 Bands covering $650 \mathrm{lc} / \mathrm{s}$ - $30 \mathrm{me} / \mathrm{s}$. FET, 8 Meter Scoplic Aerial, Bandspread, Gensitivity Control $220 / 240 \mathrm{v}$ AC or 12 v DC. $12 \overbrace{}^{\circ} \times 41^{\prime \prime} \times 7^{\prime}$. Brand

LAFAYETTE LA- 324 STEREO AMPLIFIER
olid Stste. 12.5w rma per channel. $20-20,000 \mathrm{~Hz}$ $\pm 1 \mathrm{db}$. Inputs Mag/Cer/Tuner/Aux. Output 4-16. Headphone Socket, Tape Output. Black ${ }^{\text {and }}$
Brushed Aluminium Front Panel. $101^{\circ} \times 3 \mathbf{1}^{*} \times 8$ 8 e24. Cart. 7/6.

FULL RANGE OF CODAR EQUIP. MENTIN STOCK

TRIO 9R59DS
COMMUNICATION RECEIVER
 B.F.O, Bandspread, $7^{*} \times 15^{\circ} \times 10^{0}$. $115 / 250 \mathrm{v}$. AO.
Brand new Fith instructions. © 42 . Carr. Paid.
Full range of other Trio products to Full rage of otber Trio products to stock.
JR5/ 5008 E
Amateur Recelver
 $\begin{array}{llr}\text { GP5D } & \text { Matching Speaker } & \text { \& } \\ \text { HS4 } & \text { Headphones } & 55 / 19 / 6\end{array}$

FULL RANGE OF PARTRIDGE JOYSTICK AERIALS IN STOCK

EDDYSTONE V.H.F. RECEIVERS 770R. 19-165 Me/s. £150.

INTERCOM BABY SITTER

 Transistorsed Im tercoms, ideal for
home/oticice tercoms, ideal for
 Tor deals or wal countling. Bupplied 2 stations, 59/8. P. \& P. $\begin{gathered}\text { teries, } \\ \text { instructlons. } \\ 4 \text { station } \\ 26 / 12 / 6 \text {. }\end{gathered}$

VOLTAGE STABILISER TRANS. FORMERS, 180-280v, OHRT Available 150 w
or 225 w . 818.10 .0 . Carr. $8 / 1$ SOLID STATE VARIABLE A.C.
VOLTAGE REGULATORS
 Compact and panel mountling.
Ideul for control of lamps,
drills, electrical appliancesetc. drins, electrical appliancesetc
Iqput $230 / 240 \mathrm{v}$. A.C. Outpu continuously variable from
 $10 \mathrm{amp} 90 \times 68 \times 60 \mathrm{~mm}$
$£ 1110.6$. Postage 2,6 .

All Mail Orders to-
147, Church Street, London, W. 2 Tel: 01-2626562 (Trade supplied)

3, LISLE STREET, LONDON, W.C. 2 Tel: 01-437 8204 34, LISLE STREET, LONDON, W.C. 2 Tel: 01-437 9155 311, EDGWARE ROAD, LONDON, W. 2 Tel: 01-262 0387 open 9-6 monday to saturday (edgware road $1 / 2$ day thursday)

A WIDE SELECTION OF SERVOMOTORS NOW AVAILABLE INCLUDES THE FOLLOWING TYPES
Mil size $11-400 \mathrm{~Hz}$ versions for 26 and 115 v . operation with $0 / 20$. $13 / 26$ and $57.5 / 115 \mathrm{v}$, control phase wihdings. Mil siza 08, 10,11 , 15 and 18 mozor generators for 400 Hz Mil size $08,10,15$ and 18 two phase servomotors also avail able with 400 Hz windings and a limited range in 50 Hz types. Mil Permanent Magnet Field Servomotors Size 08, 11 5 and 18 with supply voltages from 6 to 50 v . D.C Mil Tachogenarators Size 08 and 10 for 400 Hz supply. Mil Size 11 Servomotor gearheads available in various atlos from 10:1 to lo00:1.

EVERSHED AND VIGNOLES' SERVOMOTORS AND SERVOMOTOR-GENERATORS
We hold stocks of this well known manufacturer's items amounting to about 100 different types-an enquiry stating your bread design considerations will bring a reply by nearly meeting your requirements.
Write for our Data Sheets A 131 onwards for detalis of vailable Servomotors.
MIL SYNCHROS AVAILABLE EX STOCK in sizes 08, $11,15,16,18$ and 23 for 50,60 and 400 Hz operation. synchro Control Transformers

Synchro Control Differentia ial Transmitters esolvers
EQUIVALENT MAGSLIP ELEMENTS more suitable for educational use also In stock. Write for our Data Sheets A 001 onwarde for Synchro

PRECISION POTENTIOMETERS Numerous instrument types, continuous rotation potentlometers for control applieation and HELIPOTS In stock. List on application.

PLUGS, SOCKETS \& CONNECTORS
Over 150,000 items in stock including Plessey Mk. 4, $6,7,{ }^{6}$, 104 . U.K.A.N., Painton, Electromethods, Cannon, Belling ee Amphenol, Transradio, etc. Enquiries for specific leem to Orpington or Lydd.

FULLY TRANSISTORISED

 G \& E BRADLEY ELECTRONIC MULTIMETER A.C./D.C. Volts: 12 mV , $40 \mathrm{mV}, 120 \mathrm{mV}, 400 \mathrm{mV}$, 1.2 V , 4 V , $12 \mathrm{~V}, 40 \mathrm{~V}, 120 \mathrm{~V}, 400 \mathrm{~V}, 1,200 \mathrm{~V}$, is, A A.C. jD, C, current: $12 \mu \mathrm{~A}$, $400 \mathrm{~mA}, 1.2 \mathrm{~A}$. R.F. Volts: 40 mV to 4 V (4 mp to $1,000 \mathrm{MHz}$). D.C. Resistance Rexges: $0-100,0-10 \mathrm{~K} \Omega$, $0-1 \mathrm{M} \mathrm{a}, 0-100 \mathrm{M} \mathrm{n}$,$0-1,000 \mathrm{Ma}$. In excellent conditlon. fully checked. © 45 ,
carrlage El .

DRY REED INSERTS

Overall length 1.85° (Body length 1.1°) Diameter 0.14° to swizch up 50500 mA at up to 250 V D.C. Gold clad contacts.
$12 / 6 \mathrm{~d}$. per doz. $75 /$ per $100 ; \mathrm{K7.10.0}$ per 1,$000 ; \mathrm{E} 250$ per 0,000. All carriase paid.
4 pole makecontacts. Small 200 ohm coil (3v operation).
 I/-) Many other types avaiabM (see july Model 7. Fully reconditioned, with test certificate, in hide carrying case, meters available 15.10 .0 10/-). A few panclimatic 7 X BSX 76 FAST 5 SITYCHING n.p.n. TRANSISTORS (CV8615). For quankities up to 1,000 i/6 each; up to 5,000 3d.; over $5,0001 /$ each. Minimum order 10 off. In makers Facks. SWITCHING LOGIC DIODES BAY 38 (CV86I7) C16 per 1,000 (post paid). TANTALUM CAPACITORS We hold large stocks by tock list with lowest prices for immediate delivery. SINE-COSINE POTENTIOMETERS TYPES SCPI, SCP4, SCP5, CLR96, CLR66 in stock. 1.219 Mc with charts. Brand now ${ }^{\text {E15 }}$ (carriage 30/-).
MARCONI SIGNAL GENERATOR TF801A
$10-300$ MHz in 4 bands. C45 (carriage 30/-).
SAN GAMO. WESTON PORTABLE sub-standard FREQUENCY METERS S 105 1200-2,000 Hz 95-135V. $\{12.10 .0$. Post ${ }^{\text {SUB-MINIATURE I in. DIAMETER METERS. Arbi- }}$ trary scale. Seal (post and packing 2/6).
type $35 / \%$ each (pill
Gertsch COMPIEX RATIO BRIDGE Model CRETB Gertsch COMPLEX RATIO BRIDGE Model CRB2B.
Six digits in phase, four digits in quadrature. Our Price 6200 . six digits in phase, four digis

MAINS 27V D.C. POWER SUPPLY UNITS These interesting 27 V 0.5 A units (will happily provide 700 mA ment case, provision being made for base or side mountingCable entry grommets are mounted in the base of the unit. The choke capacity smoothed outpur is solid state stabilised against variation in input voltage and output current, and operates a built-in S.P.C.O. relay to switch for instance an alarm circuit. Input voltage is $200-250 \mathrm{v}$ D.C. in 10 v steps, while the transformer secondary carries two taps. All is adequate room for other equipment within the ventilated case, which is $12^{\prime \prime} \times 10^{-} \times 6^{\circ}$ deep. Our price, brand new解

PRECISION SIGNAL GENERATORS F.M./A.M. SIGNAL GENERATOR CTZ18

 Crystal Check at 2 MHz and 100 KHz points. $\mathrm{D}_{\mathrm{i}} 30$ or 90 KHz on ranges $\mathrm{E}, \mathrm{F}, \mathrm{G}$ and H . A.M. Modulation: $1,000,1,600$ or $3,000 \mathrm{~Hz}$. Ourput voltage: $1,1 \mathrm{~V}-1 \mathrm{~V}$ in 6 ranges and $1 V-10 \mathrm{~V}$ in 20 ranges. With provision for external F.M./A.M. SIGNAL GENERATOR CT320 As above but with additional L.F. range $35-85 \mathrm{KHz}$ and less
the $18.5-30 \mathrm{MHz}$ range (Ranges $\mathrm{A}-\mathrm{H}$) and with addieional the 18 , 10 and 30 KHz range $\mathrm{E} ; 30$ and $90 \mathrm{Kz}, \mathrm{F}$, G \& H . In excelient condition. 465 each (carriage 30/-).

10 cm. $16118-0$

MO. SIGNAL GENERATOR SPERAY PT. NO. Modulated Microwave Generator covering the range 7.8 to ment may also be used as a CW Generator. The precision attenuator is calibrated $0-130 \mathrm{~dB}$. Coaxial outpur. In excellent condition. 650 each (carriage $30 /$).

waneit ELECTRONICS AND TELECOMMUNICATIONS

Vol. 3
-Problems in Telecommunications B. HOLDSWORTH, B.Sc., C.Eng., M.I.E.E., M.Sc. and Z. E. JAWORSKI, Dip.Eng:, D.I.C., C.Eng., M.I.E.E., M.I.E.R.E.

This, the third of four volumes, has been written to meet the needs of students preparing for the B.Sc. Final examination in Telecommunications, for Part III of the I.E.E. Line and Radio Course, and for the C.E.I. Part II examination in Communications Engineering. 278 pp. 162 illustrations

592027856 25s. 1968

PRINCIPLES OF PAL COLOUR TELEVISION

H. V. SIMS, C.Eng., M.I.E.E., F.I.E.R.E.

This book discusses the principles concerning the transmission of colour as well as reception and particularly the effects due to non-linearity and its correction. Other aspects covered are the failure of constant luminance, differential phase distortion and the production of Hanover bars. The book covers City and Guilds 300 Series (Television Broadcasting). 154 pp. 59 illustrations

1969
35s. case
592059448
21 s . limp
592059707

Further information available on request
obtainable from your bookseller or:
THE BUTTERWORTH GROUP
88 KINGSWAY LONDON WC2B 6AB
01-405 6900

Valves

 Measures AC 100 mV ; $20 \mathrm{c} / \mathrm{s}$ to $100 \mathrm{mc} / \mathrm{s}$, DC 50 mV to 100 V multiplier extends ac range to 1.5 kV . Balanced input and centrerange to 1.5 kV . Balanced input and centre- zero scale for DC. AC UR to 100 MHz .

INTEGRATED CIRCUITS
 CA 3012 wide band ampl. isomw
CA 30 A Aüdio power ampl...
271-
 MiC 9005 D Highsped fiop-fop.... 54/Plessey. SL402A 2.5 W 42/6 SL403A 3.5 52/6 AVO SIGNAL GENERATOR CT $378,2-450 \mathrm{MHz}$. $\mathbf{E 3 8 . 1 0 . 0 \text { . Carrlage } 1 8 / - \text { - } , ~}$ AVO'S METERS
Model 48A complete with multiplier shunts, etc., in special fitted wooden Model 47A $£ 12$
Model 47A $\mathbf{C l} \mathrm{Cl}^{2}$. $7 / 6$.
Carriage for
Twinplex combiner type AFS 13 ¢65 P.S.W. E85
F.S.K. unit type GK 185A $£ 58 / 10 / 0$

P. C. RADIO LTD.
 170 GOLDHAWK RD., W. 12

$$
\overline{\text { © }}
$$

IE Yalve with GUARANTEE

PLEASE NOTE Unless ofieres as as as sen in our laboratories
MARCONI TEST EQUIPMENT

9002 10/6 $\begin{array}{lr}9003 & 10 /- \\ 9004 & 2 / 8 \\ 8008 & 2 / 6\end{array}$ C.R. Tuber VOR97 88/8 FOR517B VORE17B vathblig
45 $\begin{array}{lr} & 45 / \\ \text { SFP7 } & 28 / 7 \\ \text { B8D } & 180 /-\end{array}$ $\begin{array}{ll}88 \mathrm{~J} & 180 / \\ 88 \mathrm{~L} & 801 \\ 88 & 901\end{array}$ Photo Tubel
CMG25 $25 /$ 081A $62 / 8$ 60070 350/Speohal VITR
CV1081 CV23s9 $100 /-$ JP9/7D 780 $\begin{array}{lr}\text { K801 } & 84 \\ \text { K805 } & 812 \\ \text { K808 } & 818\end{array}$ $\begin{array}{ll}\text { K808 } & 212 \\ \text { K337 } \\ \text { 212 }\end{array}$ KRN2A70/-
\qquad
887/10
$\begin{array}{ll}3 \mathrm{C} 22 & 816 \\ 714 \mathrm{AX} & \mathrm{A} 4\end{array}$

IMPEDANCE BRIDGE TYPE TF 936 (No. 5). Measures L \& C at 80 Hz $1 \mathrm{kHz}, 10 \mathrm{kHz}$. Ranges:-L: $1 \mu \mathrm{H}-100 \mathrm{H}$. C: ImF-100 1 F. R: 0.1 ohms -100 mohms. AC Bridge volts monitored and variable. Automatic detector sensitivity control. © 105 . Carriage 30/-
Limited aty, SIGNAL GENERATOR TF $801 / \mathrm{A}$.
only
able. Fullspec
avaic
$10-300 ~ M e / s . ~ i n ~$ 4 bands. Internal at 400 and price on c / s. $1 \mathrm{kc} / \mathrm{s}$. External $50 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$. Output $0-100 \mathrm{db}$ below 200 mV from 75 ohms source. \&85. DITTO but F.M. DEVIATION METER TYPE TF934. Frequency range $2.5-100 \mathrm{MHz}$. Cange $0-75 \mathrm{kHz} \mathrm{E} 67 / 10 / 0$. Carriage $30 / \mathrm{m}$
clear. In very good "as seen" condizion.
Complete with mains and battery cables,
atc. EIS. 801/A/I with additional high level ourput. 889. Both P. \& P. E . eluding necessary connectors, plugs,

SOLARTRON EQUIPMENT Regulated and stabilised P.S.U. SRS
$151 \mathrm{~A}, 20$ to 500 V posisive at 300 mA in $151 \mathrm{~A}, 20$ to 500 V positive at 300 mA in
two ranges. Variable and fixed 170 V negative output, ©35. Carriage 20/\%. CD MHz 'scope, $\mathrm{C85}$. Carriage $30 /$-. 7MHz'scope, 685 . Carriage 30/-.
CD 643.2 , Single bearn Laboratory Model, DC to 14 MHz price upon
application.
QD 910 . Storage Oscilloscope, as new. Price on request.

SIGNAL GENERATOR TYPE CT 480. $7-12 \mathrm{kMHz}$ in one range, square and pulse modulation and C.W. TYP. 478. As above but $1.3-4.2 \mathrm{kMHz}$ in ewo ranges $£ 55$.
I $\frac{1}{3} \mathrm{in}$. DIA, PANEL METERS. 7 7 " 15 y indicators for cars $15 / 6$.
BOONTON Q METER TYPE IGOA BOONTON Q METER TYPE I60A. tor 30 to 500 pF . Vernier capacitor $\pm 3 \mathrm{pFF}$;
range, 0.250 with $2.5 \times$ multiplier. g_{85} range. 02250
NOISE GENERATOR CT 207. 100. $600 \mathrm{M} / \mathrm{c}$ with built-in 8 -minute timer TS 4 I8 B/U SIGNAL GENERATOR, $400-1000 \mathrm{MHz}$. $\$ 105$. Carr. 30%. VACUUM CONDENSERS
$12,50,55 \mathrm{p}$ each $20,000 \mathrm{v} 30 / \mathrm{e}$.

BRADLEYPORTABLEELECTRONIC
MULTIMETER TYPE CTATIB. This instrument operates from three iov cella, and D.C. currene, A.C., and D.C. Voltage and calibration check. Full spec. and price
As above but MODEL CT 471A manu
factured by AVO, full spec and price on factured by AVO, full spec and price on 4,5 and 8 bank 25 way uniselectors $\mathbf{2 4 V}$ io guaranteed perfect,
$\mathbf{4 4} \mathbf{1 0 . 0}$; ©6.17.6 respectlvely.
AR88 SPARES. We hold the largest stoc ,
WEE MEGGERS. 250V $\mathbf{\&} 12.0 .0$.
GENERAL RADIO AMPLITUDE MO31A. \&45 plus carriage.
$230 \mathrm{v}, 3$ pole, 10 amp plug in change over relays. II pin base, perspex cover 25/-. P \& P.

PHASE MONITOR ME-63/U. Manufactured recently by Control Electronics Inc. Measures directly and displays on a panel meter the phase angle between two applied audio frequency signals within the range from $20-20,000$ c.p.s. to an accuracy of $\pm 1.0^{\circ}$. inpur signais ean be sinusoidal or non-sinusoid between 2 us 30 75 .periage 30/HARNESS " A " \& " B " control units junction boxes, headphones, micro

29/4IFT. AERIALS each consisting of ten 3 ft . 7 jin . dia. tubular screw-in sections. Ilft. (6 -sectlon) whip aerial with adaptor to fit the 7 in . rod, insulated base, stay plate and stay assemblies. pegs, reamer, hammer, etc. Absolutely brand new and complete ready to erec
in canvas bag. \&4/0/0. P. \& P. $10 /-$.

FIELD TELEPHONE TYPE "F" Housed in portable wooden cases Excellent for communication in and outdoors for up to 10 miles. Pair including batteries, fully tested. $\mathbf{6 6 , 1 0 . 0 \text { , or wi }}$
220 yds field cable in drum $\mathbf{E 7}, 10,0$.

FOR EXPORT ONLY
 installations and spare parts. R.C.A.
TRANSMITTERS ET 4336 . Complete installations and all
\& ITRANSMITTERS.
COLLINS TYPE 23ID 5 KW tune and manual tuning. Complete with very comprehensive spares. Full Complete installations and all spares. No. In all spares R 210 RECEIVERS with all necessary accessories.
PYE PTC 2002N A.M. Ranger Mobile Radio Telephone, brand
new and complete, $£ 45$.

Open 9-12.30, 1.30-5.30 p.m. except Thursday 9-1 p.m.

To vlew TEST EQUIPMENT please phone for appointment

All overseas enquiries \& orders please address to: COLOMOR (ELECTRONICS) 170 Goldhawk Rd., London, W. 12 Tel. 01 - 7430899

> E.H.T. SILICON CARTRIDGE TYPE RECTIFIER TYPE HS32 10,000 p.i.v. at 350 mA DC max. Max. range current 30
SPECIAL OFFER OF TRANSISTORS
2N2923， 2 N 2924 ， 2 N 3392 ． 2 N 3415 at el 1.80 per 24 pieces，
post paid．
WHEN ORDERING BY POST PLEASE ADD $0 \cdot 12 \frac{1}{2}$ （2／6）IN F FOR HANDLING AND POSTAG ALL MAIL ORDERS MUST BE SENT T HEAD

INTEGRATED CIRCUIT AMPLIFIERS

CA3012 Wide Band Amplifler for IF applications

 OA 3020050 mW Aurio Amplifler CA3036 Two super－alpha pairs for stereo piek－up systems CA3052 lateat addition to RCA range．Four－In－one PA 2221.2PA2s4 1 watt Audlo Ampliffer PA237 2 wattin Audio Amplifer MC1709G－G．P．operational Armplifier TAA263 3 －stage direct coupled Amplifer TAA293 3－stage direct coupled Ampline AA A30 M08T input＋bl－polar stage TAD100 All ac BL403A 3 watte Audio Amplifier2.25

ZENER DIODES

BZ Y88 serles．from 3．3V to $9.1 \mathrm{~V} \pm 5 \% 400 \mathrm{~mW}$ ．． 0.17 leach BZY94 serles，irom 10.0 V to $12.0 \mathrm{~V} \pm 5 \% 400 \mathrm{~mW} \quad \cdots 0.20$ each D814 series，from 7.5 V to $13.0 \mathrm{~V} \pm 10 \% 340 \mathrm{~mW} \quad 0.15$ each D815 series，from 4.7 V to $18.0 \mathrm{~V} \pm 10 \% 8$ Watts ．． 0.35 each D810 series，from 22 V to $\pm 18.0 .35$ each der 0.35 each $\begin{aligned} \text { Outlines：} & \text { BZY series－ministure } \\ & \text { D81 } 4-\text {－Top Hat＇type }\end{aligned}$

D815－D917
hand ware
voltage required－neareat standard voltage will be supplled．

TWO NEW OSCILLOSCOPES FROM RUSSIA

CI－5 SINGLE BEAM
OSCILLOSCOPE
$10 \mathrm{mc} / \mathrm{s}$ passband，triggered sweep from $1 \mu \mathrm{sec}$ ．to 3 milli－ sec．Free running time base from $20 \mathrm{c} / \mathrm{s}$ to $200 \mathrm{kc} / \mathrm{s}$ ．Built－in hme marker and ampitude tube with tolescopio re ray hood．With lelescopic viewing

CI－16 DOUBLE BEAM OSCILLOSCOP $5 \mathrm{mc} / \mathrm{s}$ passband．Separate rectangular 5 in $\times 4$ in， cathode ray tube．Cali－ brated triggered sweep from 0.2μ sec．to 100 milli－ sec．per cm ．Free running time base $50 \mathrm{c} / \mathrm{s}$ to $1 \mathrm{mc} / \mathrm{s}$ ． Built－in time base callbra－ tion and amplltude cali－ Frator details on request． Frull servicing facilities and

OUR NEW CATALOGUE 1970／1971 IS NOW READY． PLEABE BEND B．A．E．FOR YOUR FREE COPY．

FULLY GUARANTEED

FIRST QUALITY
VALVES

$\begin{array}{ll} & \\ \text { ECL86 } \\ \text { ECLL } \\ \text { ECLI } \\ \text { EF9 } & 1 \\ \text { EP37A } \\ \text { EF39 } \\ \text { EF39 }\end{array} 0$

 но́v心の

${ }^{23} 1$
$\begin{array}{ll}\text { KT44 } & 0.50 \\ \text { KT45 } & 2.00 \\ \text { KT66 } & 1.70 \\ \text { KT71 } & 0.50 \\ \text { KT76 } & 0.40 \\ \text { KT88 } & 1.75\end{array}$
为

PLEASE NOTE THAT ALL PRICES ARE QUOTED IN DECIMAL CURRENCY．
PLEASE NOTE THAT VALVES LISTED ABOVE ARE NOT NECESSARILY OF U．K：OAIGIN

Head Office：

44a WESTBOURNE GROVE，LONDON，W． 2

Tel．：PARK 5641／2／3

Cables：ZAERO LONDON
Retail branch（personal callers only）
85 TOTTENHAM COURT RD．，
LONDON W．2．Tel：LANgham 8403
release of electronic inspection and
klystrons，etc．

WE WANT TO BUY：

SPECIAL PURPOSE VALVES．PLEASE OFFER US YOUR SURPLUS STOCK．MUST BE UNUSED．

COMPUTER SALES AND SERVICES

49-53 PANCRAS RD., LONDON, N.W.1. Tel: 01-2785571 Tolex No. 267307 (low cost computers and peripherals)

Lector Automatic Document Reader

A photo electric document reader sensing contrast between marks and background, transposing on to 7 or 8 channel paper tape. Suitable for transcribing order forms, meter reading sheets, stock control forms and market research returns, etc.

PHOTO-ELECTRIC KEYBOARD
Supplied with phoro-electrically encoded keys and supplementary keys which operate microswitches. Solenoid operated power assist and keyboard lock bail to mechanically staticise the data. The photo-electric encoding of the code producing keys ensures reliability and freedom from wear. Price ex. stock £110.

ICT HOLLERITH Type 029.80 column Punch A well-proven electro-mechanical card punch with dupllcating, spacing, and skipping facilities, with dupllcating, spacing, and skipping facilities, Two types of keyboard are availa
Alpha/Numeric and Alphabetic.
Alpha/Numeric and Alphabetic. The alphabetic largely resembles a typewriter
keyboard, enables alpha punching by the operation keyboard, enables alpha punching by the operation
of one key. With choice of keyboard and coding of one key. With choice
including ICL 1900 code.
Supplies 110 v . D C. mains for card feed motor. FEATURES: Motor cut-out switch for clearlng card jams. Stop Lever for stopping card at the 80th column. Also available H129 card verifiers.

FRIDEN FLEXOWRITERS

Flexowriter programmatic automatic writing machine for automatic letter writing. Data preparation work, invoice format paper work, edge punching cards, cutting continuous cards, preparing unit cards, preparing stub cards, reading edge punched cards, reading/copying punched tape. Price from $£ 175$.

RCA 301 TAPE DECK MODEL 381
Technical Data. $\frac{1}{2}$ " wide Magnetic Tape. Power supplies: Input $208-230 \mathrm{~V}$ AC $60 \mathrm{c} / \mathrm{s}$. Single phase Magnetic recording head read/write and erase. Magnetic recording head Sead $30^{\prime \prime} / \mathrm{sec}$. forward or Seven channels each head. Speed 30 " $/ \mathrm{sec}$. forward or
reverse. $90^{\prime \prime} / \mathrm{sec}$. during rewind. The recording density reverse. $90^{\prime \prime} / \mathrm{sec}$. during rewind. The recording density
of 333 characters per inch is maintained, thus giving the nominal read and write rate of 10,000 characters per second. Maximum diameter of 8° tape reel. Accommodates 1200 ft . of Magnetic Tape, which gives a minimum of $1,150 \mathrm{ft}$. available for recording. Price £195 ex. stock.

MAGNETIC TAPE
COMPUTER QUALITY $\frac{1}{2}{ }^{\prime \prime}$ MAGNETIC TAPE CERTIFIED 550 B.P.1. 800 B.P.1. ON 2,400-ft. REELS. GUARANTEED REPLACEMENT IF FAULTED. £6.10.0
${ }^{\frac{3}{3}}$ in. Highest grade 2,400 ft. . . £3. 0.0 $\frac{1}{2} \mathrm{in} .10^{\frac{1}{2}} \mathrm{in}$. dia. spool and cassette £1.10.0 $\frac{1}{2}$ in, $8 \frac{1}{3}$ in. dia. spool and cassette $£ 1.10 .0$ 1 in . metal $10 \frac{1}{2}$ in. dia. spool and cassette $£ 2.10 .0$ $\frac{1}{2} \ln$ N.A.B. centres $10 \frac{1}{2} \mathrm{in}$. spool only...... . $£ 1.0 .0$

REFURBISHED HAND PUNCHES-

 80 COLUMNThe Punch
is a table-mounted model punch. For the Serial Punching of alpha-numerlc Data, Alpha or Multi Hole Punching is made Dy depressing two or more keys simultaneously. Also available refurblshed ICT 10380 col. verifiers. With full warranty.

PART-USED COMPUTERS AVAILABLE SHORTLY
ICL 1500; PDP 8; IBM 1440; IBM 1401; SDS 930; ELLIOTT 803; EMIDEC 1100; HONEYWELL 200; NCR 400; UNIVAC 1004.

For the best electrical contacts

This latest edition of Electrical Who's Who is completely updated. Over 8,500 entries include key names in all branches of the industry : supply, manufacturing, contracting, consulting and trading-as well as in Government Departments, Universities, Technical Colleges and other bodies. It is the only publication of its kind. Absolutely indispensable to all who need an up-to-date guide to individuals, firms and organizations.
Size: $9^{\prime \prime} \times 6^{\prime \prime} .512$ pages. Price 65 s. By post 69 s. 6d
Obtainable from: Electrical Who's Who, Dorset House,
Stamford St., London SE1
Electrical
WHO's WHO
1970/71

BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, $c / 0$ Wireless World, Dorset House, Stamford Street, London, S.E.1.
No responsibility accepted for errors.

ELECTRONIC

 TEST TECHNICIANSVacancies exist at our Hainault factory for Test Technicians who are capable of fault finding on sophisticated Marine Radar and Echo sounding equipment. Applicants should preferably be qualified to H.N.C. level or equivalent Experience of Radar and/or Echo sounding equipments is highly desirable although specific training in the equipment involved will be given.
These positions carry staff status and overtime is paid. The Company operates a contributory pension scheme with allied benefits and there are generous illness and holiday payments.
Write or telephone for appointment to : Personnel Officer.
KELVIN HUGHES
Division of Smiths Industries Ltd., New North Road,
Hainault, Ilford, Essex.
Telephone : 01-500 1020

TELECOMMUNICATIONS

HOME OFFICE

£2,484-£3,226

Engineers (men only) are required in the Directorate of Telecommunications, London. Those appointed will be responsible for technical direction and control of staff engaged in the examination of problems associated with a wide variety of telecommunications systems. Duties also include the study of existing systems and of current commercial developments and preparation of specifications for new equipments.
QUALIFICATIONS: Normally corporate membership of IEE or IERE or a degree in electrical engineering, physics or applied physics (2nd class honours or higher). Experience in one or more of the following essential : mobile radio systems ; message switching; networks interfacing with large data processing systems: closed-circuit television; digital techniques; radar and allied techniques; control room design for fixed locations; and large scale maintenance organisation.
Starting salary may be above minimum of quoted scale. Promotion prospects. Non-contributory pension.
For full details and an application form, write to Civil Service Commission, Alencon Link, Basingstoke, Hants., or telephone BASINGSTOKE 29222, ext. 500, or LONDON 01-734 6464 (24 hour "Ansafone" service), quoting S/7537/70. Closing date 9 November 1970.

SUCCESS!

That's what we are achieving with a completely new range of Mobile Radio equipment. It's been in production less than two years and already we've proved it's a winnerlast year it won the Council of Industrial Design award. The problem now is to ensure that the quality, maintenance and service of this advanced compact and competitive equipment is as good as our design. We need Testers and Service Engineers NOW.
Duties include test, fault-finding and alignment on U.H.F. pocket phones and base stations. Senior Testers will also take on systems test and trouble-shooting work.
Service engineers are responsible for the repair and maintenance of our complete range of U.H.F. and V.H.F. equipment. A clean driving licence is essential as travel is involved.

If you have experience of testing or servicing radio equipment this is your chance to link your success story with ours.
The Company offers a good salary plus the opportunity to progress with this large international group with its fine pension scheme benefits.

Write or phone:

P. I. Ashcroft (WVV),
Personnel Officer,
Standard Telephones \& Cables Ltd., Oakleigh Road,
New Southgate, N. 11.
01-368 1234, Ext. 2578

Required by the Posts and Telecommunications Department to be directly responsible to the Telecommunications Engineer for the implementation of telecommunications planning, the installation and maintenance of all telecommunications facilities in the Colony, the control of stores and the technical training of local staff.

Candidates should possess the City and Guilds Full Technological Certificate (Telecomms.) or H.N.C. and have at least 10 years relevant experience in the provisioning installation and maintenance of HF, MF, and VHF communications installations in the AM, CW and SSB modes; both valve type and transistorised solid state radio beacons; radio teleprinter using
both tone on/off and two tone keying; multi channel VHF equipment and manual CB telephone exchanges.

Salary in scale $\$ 2928$ to 3408 (Approx. £Stg. 1366 to 1590) a year plus an Inducement Allowance of EStg .1038 to 1152 a year, normally TAX FREE, payable direct into the officer's bank in the U.K. An Atoll Allowance of £Stg. 200 a year, normally TAX FREE is also payable. Contract 24 months in the first instance. Gratuity 25% total salary and Inducement Allowance drawn. Appointments Grant $£ 100$ or $£ 200$ in certain circumstances. Subsidised accommodation. Outfit and Education Allowances. Generous leave. Free passages. M2K/7008100/WF.

East African Railways Corporation SENIDR TELEGOMMUNIRATIDIS ASSHTANT Up to $£ 2,807$ + Gratuity

Required by the Civil Engineering Department to supervise the installation and maintenance of equipment, to set up radio workshop facilities and to train and supervise local staff under training.

Candidates 25-40, must possess the City and Guilds Full Technological Certificate (Telecommunications) or the Radio 'B' Certificate. Relevant training to an equivalent standard in the Armed Forces would also be acceptable. Candidates must also have had at least 5 years experience in the installation and maintenance of the following equipment:- (a) Low-power HF/SSB transmitters and receivers. (b) Low-power VHF/AM and FM transmitters and receivers. (c) Marine radar equipment.

Experience of carrier telephone and telegraph equipment would be an advantage.
Salary E.A. Shg. 29,400 (Approx. £Stg.1715) a year inclusive of Housing Factor. An Inducement Allowance of $£ S t g .990$ a year if single or $£ 1092$ if married, normally TAX FREE, is also payable direct into the officer's bank account in the U.K. Gratuity 25\% of total salary drawn. Appointments Grant $£ 100$ or $£ 200$ in certain circumstances. Generous leave. Subsidised accommodation. Education Allowances. Free Passages. Contract 24 months in the first instance. M2K/700926/WF.

for a profitable change of scene?

East African Community

SEETIONAL ENEMEEFSS GRADE II I RADIO/RADARII
 Up to £2,718 + Gratuity

\square Salary $£ 2,341$ - $£ 2,718$ according to experience \square Low taxation $\square 25 \%$ gratuity \square Contract 21-27 months \square Subsidised Accommodation \square Education Allowances \square Appointments Grant payable in certain circumstances.

The Meteorological Department requires officers to undertake the installation, operation and maintenance of radio telecommunications and radar equipment.

Candidates, up to 45 years, must possess either O.N.C. or City and Guilds Final Certificate in Telecommunications or have equivalent experience in the armed services and should have a good theoretical and practical knowledge of F.S.K., I.S.B. and S.S.B. receivers and transmitters, Mufax and facsimile transmitters and recorders. A good working knowledge of radar systems is essential. M2K/690413/WF.

Malawi

ENGINEERING OFFICERS
 Up to £2,149 + Gratuity

\square Salary up to $\mathrm{f} 2,149 \square$ Contract 24-36 months $\square 25 \%$ Gratuity on completion of 30 months tour \square Low taxation \square Subsidised accommodation \square Education Allowances \square Appoint-
ments Grant $£ 100$ or $£ 200$ in certain circumstances.

The following vacancies exist in the POSTS AND TELECOMMUNICATIONS Department:-

ENGINEERING OFFICER (TRAINING)

Required to undertake the field training of local technical officers in all aspects of installation and maintenance of H.F. and V.H.F. radio equipment particularly H.F. - Marconi; S.T. \& C; Plessey; Racal ; V.H.F. - G.E.C.; Pye; A.T. \& E. The successful officer may also be expected to lecture at the Post Office Training School at a basic level on Transmission Principles.

ENGINEERING OFFICER (CARRIER \& V.H.F.)

Required for the maintenance of carrier telephone and V.H.F. equipment and to give guidance and assistance to local staff under training.

Candidates must hold appropriate City and Guilds Certificates or an equivalent qualification and have had considerable experience in the installation and maintenance of the abovementioned equipment. M2K/7004116/WF.

Candidates $28-45$ years, must have received a minimum of 2 years approved training plus not less than five years experience on the maintenance of carrier systems and V.H.F. radio. M2K/700207/WF.

Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London,

RADIO \& TELEVISION SERVICING RADAR THEORY \& MAINTENANCE

This private College provides efficient theoretical and practical training in the above subiects. One-year day courses are available for beginners and shortened courses for men who have had previous training.
Write for details to: The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.5. Tel.: 01-373 8721.

84

APPOINTMENTS

...then you could becomeaCustomer Engineer at IBM.

Wherever there are computers, people are needed to keep them running. These people are known as either Service Engineers, Field Engineers or Maintenance Technicians. Because of their close involvement with the customer IBM calls them Customer Engineers.

Today, computers are becoming essential to industry, science, government and commerce. And no computer manufacturer can operate without Customer Engineers. So the field is wide open, and this could be your opportunity to move into today's major growth industry as there are opportunities for more engineers mainly in Central and South London areas.

What you will do?

There are now opportunities within Customer Engineering in the General Systems group which covers medium and large scale computer systems. And the Data Recording group who are responsible for servicing and maintenance of the entire key punch and verifier range of machines, data collection systems and Teleprocessing terminal units.

You will have a good deal of personal contact with customers' staff, and be servicing some of the most advanced equipment in the world.

Qualifications

You should be between 20 and 35 . educated to ' O ' level standard, with basic electronic knowledge and a good mechanical aptitude. You should also have some experience of repair and maintenance of electromechanical devices.

Your Prospects

Starting salaries are excellent. IBM offers many fringe benefits, such as non- contributory pension scheme, free Life Assurance and an excellent career. It is also IBM policy to promote from within.

Write Now

Interested? Then write with details of your age, qualifications and experience to : Mr. D. J. Dennis, IBM United Kingdom Limited, 389 Chiswick High Road. London W. 4. quoting reference WW/90561

IBM

ATV NETWORK LIMITED

has vacancies in its new television
studio complex in BIRMINGHAM for
SOUND ASSISTANTS

APPLICANTS should have wide experience of television sound techniques including boom operation and the use of disc and tape machines. A good knowledge of basic electronic theory is essential.

IN the event of there being no suitable applicants to fill these vacancies, consideration will be given to TRAINEES, the basic qualifications for which are 4 G.C.E. ' O^{\prime} ' level passes and an interest in electronics.

APPLY in writing to Head of Staff Relations, ATV Network Limited, 150 Edmund Street, Birmingham 3.

HAMMERSMITH HOSPITAL AND THE ROYAL POSTGRADUATE MEDICAL SCHOOL

Du Cane Road, London, W. 12 ELECTRONICS TECHNICIAN
for maintenance and development work in Radiotherapy Supervoltage Department. Equipment includes a 6 MV Linear Accelerator, two Cobalt Therapy Units and a Treatment Simulator. Successful candidate could become involved in future research projects. Commencing salary according to experience, within range $£ 1,446-£ 1,854$. Detailed applications, naming two referees, to: Establishment Officer, Hammersmith Hospital, Du Cane Rd., London, W.12, within 10 days.

Ministry of Defence (Air Force Department)' require

CIVILIAN INSTRUCTORS (male)

in the following trades and at the Units stated:

Electronic Fitter (Radar)	R.A.F. Cosford, Wolverhampton R.A.F. Locking, Somerset R.A.F. Sealand, Flintshire
Electronic Fitter (Communications)	R.A.F. Locking, Somereset R.A.F. Cosford, Wolverhampton
Electronic Fitter (Navigational Instruments)	R.A.F. Cosford, Wolverhampton
Candidates must be BRITISH SUBJECT ractical experience and ability to teach es	Training in the appropriate subject, tial. Salary $£ 1,155$ rising to $£ 1,790$.
5 -day week and 3 weeks and 3 days annual prospects of becoming pensionable. Write	ave. Appointments unestablished but ferably on postcard) for application
forms to Ministry of Defence, CE3g(Air),	ntinel House, Southampton Row,
London WC1 B 4AX, quoting (Civ Inst RC/B	trade in which interested). Completed

RADIO
 OPERATORS

There will be a number of vacancies in the Composite Signals Organisation for experlenced Radio Operators in 1971 and subsequent years.
Specialist training courses lasting approximately 8 months are held at intervals. Applications are now invited for the course starting in September 1971.
Salary Scales
During training with free accommodation provided at the Training School:

Age 21	¢848 per annum	
", 22	¢906	
- 23	¢943.	"
24	£981	
25 and over	£1,023	"

On successful completion of course :

then by 6 annual increments to a maximum of $£ 1,749$ per annum.

Excellent conditions and good prospects of promotion. Opportunities for service abroad.

Applicants must be United Kingdom residents, normally under 35 years of age at start of training course, and must have at least 2 years' operating experience or PMG qualifications. Preference given to those who also have GCE. ' 0 ' level or simitar qualifications.

Interviews will be arranged throughout 1971.
Application forms and further particulars from: Recruitment Officer, Government Communications Headquarters, Oakley, Priors Road, CHELTENHAM, Glos., GL52 5AJ. Tel: Cheltenham 21491 Ext. 2270

ELECTRONICS TECHNICIAN

required to assist in the development, construction and installation of electronic instruments used in biochemistry. Applicants should possess H.N.C. or equivalent and be able to construct and test equipment from circuit diagrams. Salary according to age and experience in the range of $£ 1,448$ to $£ 1,841$ p.a. Superannuation scheme, good conditions of service. Applications in writing to Departmental Superintendent, Department of Biochemistry, MRCMetabolicReactions Unit, Imperial College, London, S.W. 7

863

NORTH EAST LONDON POLYTECHNIC AUDIO TECHNICIAN (GRADE T.4.)

required to manage language laboratory complex. Must have several years practical experience in Sound Radio, Television and/or tanguage laboratory work. HNC or C.G.L.I. Final certificate desired. Salary $£ 1,362-£ 1,603$ qualification allowance ($£ 50$ or $£ 30$) may also be paid.
Apply by detter in the first instance to:
The Staffing Officer,
North East London Polytechnic,
Romford Road,
Stratford, E. 15
864

WIARONS ENGINJヨRE install yourselves in the Lake District

Engineers with experience in equipment or systems design or commissioning on radar, sonar or digital computers are required. Formal qualifications are desirable, together with two or more years relevant experience; but there is scope for candidates whose experience is particularly applicable to projects in hand. There are opportunities for overseas appointments.

Systems Draughtsmen

are also required, for preparation of guidance information on weapons systems. Applicants should preferably be familiar with Ministry of Defence standards, and should
have an electrical/electronics background. All these appointments involve interesting specialist duties, the nature of which will be discussed fully at the interview, logether with the extent of our order book.

Location

All these appointments are based at Barrow-in-Furness, on the southern fringe of the Lake District where, in addition to ample facilities for outdoor recreation, there are excellent living conditions, housing and education.
Write in first instance, giving details of qualifications. experience and present salary to:
C. H. Purkiss, Staff Personnel Manager (Ref: S.119/WE/DQ)
Vickers Ltd., Barrow Shipbuilding Works.
P.O. Box 6, Barrow-in-Furness, Lancs.

UNIVERSITY OF KENT AT CANTERBURY THE LANGUAGE CENTRE

Applications are invited for the post of

TECHNICIAN

in the Language Centre. The person appointed will assist in the maintenance of the language laboratories and ancillary audio-visual equipment, and will be required to carry out recording and editing techniques. An interest in foreign languages would be an advantage. The salary scale is $£ 935$ to $£ 1,303$ p.a
Further particulars and application forms may be obtained from:
The Director, The Language Centre, Cornwallis Building, The University, Canterbury, Kent. Quoting ref. T70/14

RADIO COMMUNICATIONS INSTALLATION ENGINEERS

We need men with experience of modern Radio Communications Transmitters and Receivers, preferably in the Marine field, who must be able to work with minimum supervision.

The positions are based at Wandsworth and Monthly Staff Conditions will apply.

Please phone or write to:

Electronic Test Engineers

Opportunities exist at our Haverhill Plant for Electronic Test Engineers who are capable of fault finding on VHF/UHF mobile and fixed equipment. Applicants should have either; C \& G Final Certificate in Electronic Radio/TV Servicing or Telecommunications Technicians Intermediate Certificate.
The Company is the UK's leading manufacturer of radio-telephone equipment and is engaged in a major expansion programme designed to double present turnover over the next five years. Opportunities for promotion are therefore excellent. The factory is situated in an expanding town and assistance with housing through the Local Council is possible, together with relocation expenses where appropriate. The successful applicants will join our permanent staff and will enjoy the benefits of a Company which is offering first class financial rewards, pension and sick schemes.
Please apply to:
Mrs. C. M. Dawe, Personnel Officer, Pye Telecommunications Ltd., Colne Valley Road, Haverhill, Suffolk Telephone: Haverhill 2321 Ext. 26

Pye Telecommunications Ltd

Telecommunications Technicians for South Africa

Testers, crossbar step by step, switching, outside plant, pbx, microwave, multiplex, and Service Technicians, permanent employment with leading international company in South Africa, noted for healthy growth and results oriented management.

Excellent wages, plus full benefits, pension scheme, relocation expenses and bonuses.
Reply in writing giving details of age, qualifications and experience.

> Technical Resources (U.K.) Ltd. Suite 5, 110 German St., London, S.W. 1

ELECTRONIC ENGINEERS

Service Engineers required for Offices, throughout the United Kingdom, of well-known Company manufacturing Electronic Desk Calculating Machines. Applicants should possess a sound knowledge of basic Electronics with experience in Electronics, Radar, Radio and T.V. or similar field. Position is permanent and pensionable. Comprehensive training on full pay will be given to successful applicants. Please send full details of experience to the Service Manager, Sumlock Comptometer Ltd., 102/108 Clerkenwell Road, London, E.C.1.

REDIFFUSION

COLOUR TELEVISION FAULTFINDERS \& TESTERS

We have a number of vacancies in our Production Test Departments for experienced faultfinders and testers.
Knowledge of transistor circuitry and experience with Colour Receivers together with R.T.E.B. Final Certificate or equivalent qualifications required.
These will be staff appointments with all the expected benefits.
Applications to:
Works Manager, Rediffusion Vision Service Ltd., Fullers Way South, Chessington, Surrey (near Ace of Spades).

Phone: 01-397 54II

PRESTON COUNTY BOROUGH

 HARRIS COLLEGE(Proposed Polytechnic)
Department of Electrical and Electronic Engineering Required:
SENIOR LABORATORY TECHNICIAN
on salary grade Technical 3 £1,089 to $£ 1,272$ p.a. Applicants should have experience in electronics. The successful applicant will be responsible for the supervision of $£ 50$ p.a. for Ordinary or Higher National Certificaze or aceeprable equlvalent Post superannuable.
Details and application forms from the Registrar, Harnis College, Corporation Street, Preston. Closing date 7th November, 1970.

830

SURREY COUNTY COUNCIL Brooklands Technical College

LECTURER GRADE 1 required as soon as possible in the Department of Technology to teach in Electrical Technicians and Electrical Craft Courses. Full technological certificate ánd teaching experience desir able but consideration given to other suitably qualified candidates
Salary within scale $£ 1,230-£ 2,075$ depending on qualifications and experience. Generous relocation assistance available in approved cases.
Application forms and further particulars from the Principal at the College, Heath Road, Weybridge, Surrey.

834

DIGITAL AND LINEAR ENGINEERS

required for unusual and interesting work. Minimum of 5 years experience in design essential. Very attractive remuneration offered to right men.
Tel: 01-485 4100 ext. 106
for interview arrangements.
835

University Research Assistant post for ELECTRONIC ENGINEER

available for development and main-

 tenance of electron micro-analyser and other specialised equipment. Thorough knowledge of both linear and digital transistor circuitry essential. H.N.C. standard or equivalent experience required.
Full details from

Dr. E. T. HALL,
Research Laboratory for Archaeology, 6 KEBLE ROAD, OXFORD

TECHNICAL ASSISTANTS

Chartered Patent Agents require a young electronics engineer having a degree or H.N.C. coupled with an interest in describing the latest inventions in clear and concise language. The position will involve advising Clients on matters both Technical and Legal and the successful applicant will be encouraged to become a Chartered Patent Agent for which proper training facilities will be provided. A salary commensurate with age and experience will be paid. Applications in writing to P. C. Booth Esq., Tregear, Thiemann \& Bleach, Melbourne House, Aldwych, London, WC2B 4LR.

Sea-going Radio Officers can now make sure of a shore job and good pay.

INDUSTRIAL SCREEN PRINTERS NAME PLATES, DIALS
Calibration, Self-Adhesive Labels and Foils, etc.
3 Gray Street Northampton Northampton 32385
INSTRUMENT TECHNOLOGIST

OPPORTUNITIES

in a fast-growing Company, in a permanent and pensionable job.

ELECTRONICS MAINTENANCE ENGINEERING

A Technician is required to maintain sophistieated flaw detection gear, with the capability to set up to standards and assess severity of flaws, on a shift basis. A knowledge of electronics is essential and some knowledge of Non-Destructive Testing would be an advanfage.

If you are interested please apply:-
Personnel Manager,
FINE TUBES LTD.,
Plymbridge Road, Crownhill, Plymouth.
Tel. Plymouth 75851
The duties of the post will cover the following main items:1. The diagnosing of system faults
2. Carrying out of special investigations
3. Assisting instrument craftsmen in unit repairs
4. Originating modifications to plant
5. Designing special test equipment and calibration rigs.

The successful candidate will almost certainly be working or have worked in one or more of Industrial T.V., Data Processing or Industrial Instrumentation.
Applicants should possess academic qualifications leading to Graduate Membership of the I.E.E. or I.E.R.E. or. alternatively, have good practical experience to outweigh their lack of formal qualifications.
Salary will be within the range $£ 1644-£ 2061$ per annum in accordance with the National Joint Board Agreement for the Electricity Supply Industry.

Applications in writing giving details of age, experience, qualifications etc., to the Personnel Manager, CENTRAL ELECTRICITY GENERATING BOARD, 825 Wilmslow Road, East Didsbury, Manchester M20 8RU, to arrive not later than 26th October, 1970. Please quote Vacancy No. E.952/448/W.

Worthwhile Vacancies

There are vacancies for Electro-Mechanical and Electronic Equipment SERVICING TECHNICIANS.
The duties are for corrective and preventative maintenance of remote control equipment in substations and generating stations. The work includes on-site testing of equipment involving Post Office type relays, uniselectors and solid state switching logic. Also workshop testing, adjustment and repair of relays and electronic equipment associated with remote control equipment.
Applicants should hold suitable qualifications in subjects appertaining to the work, or be taking a recognised course leading to such qualifications.
Salary $£ 1,523$ 1Os. Od. Valuable free travel facilities, sick pay and superannuation fund.

Please apply in WRITING to:
Chief Electrical Engineer (Ref. S.T.),
London Transport Board,
263A Regent Street,
London, W. 1;
giving details of age, qualifications and experience.

RADIO and/or TELEVISION SERVICE ENGINEERS

required to join expanding service team in progressive company. 5 day week. No Saturdays. No field work. Salary according to experience but within the scale $£ 1,100-£ 1,500$ p.a.

For further information apply to:

Service Manager TELETON ELECTRO (U.K.) CO. LTD.

Teleton House, Robjohns Road
Widford, Chelmsford
CHELMSFORD 62442 Ext. 6

ELECTRONICS ENGINEER

based at Hornsey

A vacancy exists at the Board's Central Radiochemical Laboratory for an instrument/electronics Engineer to join a small team which maintains and develops sophisticated nuclear counting equipment. Candidates should possess HNC or equivalent qualification and preferably have had experience of the type of work described.
Salary within a range rising to $£ 2,136$ per annum (NJB Agreement), according to experience and qualifications.
Applications, quoting vacancy No $1273 / 70$ giving age, details of qualifica. tions and experience should be sent to Personnel Officer (Recruitment), Central Electricity Generating Board, South Eastern Region, Bankside House, Sumner Street, London, SE1, to arrive by 23 October, 1970.

THE UNIVERSITY OF LEEDS

Applications are invited for a post in the following department

FOOD \& LEATHER SCIENCE
 SENIOR EXPERIMENTAL OFFICER

funds have been made available from the Sainsbury Centenary Grant for the advancement of Research and education in food science for the appointment of an experienced Graduate Electrical (Electronics) Engineer or similarly qualified person to join a research group investigating the chemistry of the substances responsible for the flavour of foods using combined gas chromato graphy-mass spectrometry. His main duty would be to care for the sonhisticated instruments involved and to
develop the Instrumentation further. He would be available also for consultation by other research groups in the also for consultation by orher research groups in the deparment.
CLOSING
SALARY SCALE: $£ 1,460-£ 1.940$
Applications (two copies) stating age, qualifications and experience should be sent to the Registrar.
The University, Leeds LS2 9JT.
Please quote reference number.

NEVE ELECTRONIC LABORATORIES

LTD.
A rapidly growing and diversifying company, and international leader in the manufacture of professional sound mixing consoles and allied equipments for the broadcasting, television and music recording studios of the world, seek the following staff:

SECTION LEADER, DESIGN AND
DEVELOPMENT
To take charge of a small design team engaged on a wide range of activities from the design of ultra linear amplifiers to novel uses of digital logic and embracing the development of conventional circuits for current contracts and the evaluation of specialised components.
If you are over 28, and a graduate or hold H.N.D./
H.N.C. in Electronic Engineering, have five or more years' experience in these or related fields, and are seeking a challanging opportunity in an expanding company, get into contact with us immediately.

MECHANICAL DESIGN ENGINEER
To undertake the progressive updating and improvement in the design (technical, ergonomic and aesthetic) of the whole range of the Company's products.
A considerable and wide ranging experience, not A considerable and wide ranging experience, not
necessarily in our field, but definitely including the necessarily in our field, but definitely including the
techniques of toollng for production, together techniques of tooling for production, together
with proven achievement will count far more than with proven achievement will
qualifications in this case.
ELECTRONIC DESIGN ENGINEER
Preferably with $3-4$ years' experiance in the design of linear electronic circults. The job offers good scope for a man with ideas and enthusiasm.
PROJECT DESIGN ENGINEERS
Responsible for the design, production and installation on site of our major equipments. Supervision of all production stages including test, and liaison with the customer in conjunction with the sales engineer.

BROADCAST SYSTEMS ENGINEER

Wide experience in television and sound broadcasting audio systems desirable. Minimum qualifications H.N.C. Experienced in technical lialson and interpretation of customer requirements, preparation of system block diagrams, etc.
Attractive salaries, by negotiation in accordance with ability and experience. Achievement is the key to progress in a rapldly growing group of companies. There will be ample opportunity for expansion of activities.
Assistance with removal expenses and housing may be arranged.

Application forms obtainable from:
Personnel Manager,
NEVEELECTRONICLABORATORIES LTD. Cambridge House, High Street, Melbourne, Nr. Royston, Herts.

APPOINTMENTS

conimputer chgincering

NCR requires additional ELECTRONIC, ELECTRO MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.
Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.
Starting salary will be in the range of $£ 900 / £ 1,350$ per annum, plus bonus. Shift allowances are payable, after training, where applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.
Excellent holiday, pension and sick pay
arrangements. Please write for Application Form to Assistant Personnel Officer
NCR, 1,000 North Circular Road,
London, NW2
quoting publication and month of issue.

85

SENIOR TECHNICIAN IN ELECTRONICS

SCHOOL OF ELECTRONIC AND ELECTRICAL ENGINEERING

ROBERT GORDON'S INSTITUTE OF TECHNOLOGY, ABERDEEN

Applications are invited for the above post. Candidates should preferably have at least an Ordinary National Certificate or equivalent and have had a wide experience in the construction and maintenance of electronic equipment. The Senior Technician will be assisted by two technicians and be responsible to the Chief Technician. The post is superannuable and the salary scale is $£ 1,278-£ 1,586$ per annum.

Forms of application and further details may be obtained from the undersigned at Schoolhill, Aberdeen, to whom they should be returned on or before 30th October, 1970.

CHARLES BIRNIE,
Secretary

RADIO TECHNICAL OFFICERS

Up to $£ 2,505$ p.a.

The P.L.A. operate a wide telecommunications network from Tower Pier to the outer Thames Estuary, and vacancies exist at Gravesend and the King George V Dock for Radio Technical Officers to maintain the equipment at maximum efficiency.

To ensure adequate coverage, a shift system is operated.
Salary scale: $£ 2,005-£ 2,505$.
Minimum qualifications:
O.N.C. Electrical Engineering
or City \& Guilds Intermediate Certificate in Telecommunications Engineering plus Radio II
or equivalent Service qualifications.
Applicants should have at least 5 years' experience in semiconductors and in at least two of the following fields:-

V.H.F. and U.H.F. Radio

Radar and Microwave Links
Telemetry and Digital
Teleprinters and Message Switching.
Application forms may be obtained from:-
The Chief Engineer (Personnel),
Port of London Authority,
P.O. Box 242, Trinity Square,

London, E.C. 3P 3BX

PORT OF LONDON AUTHORITY

electronics..radio.. electrical engineers

You probably don't realise that your experience and training could put you in line for a key job in the computer world. Right now, you could be a T.V. or telephone maintenance engineer, an ex-Serviceman with an electronics background or simply have an electrical or electronics qualification. Providing you have the ability and ambition we'll help you mould your talents into a specialised skill.

Burroughs, one of the largest international electronics companies will train you to become a member of a highly experienced team of Computer Field Engineers-men who install and maintain some of today's most advanced computer systems. You can work in your own home area. and at the same time find variety through working with our many clients in the course of your job. And, of course, you will earn a good salary. But, most important of all, you will
have true career prospects-because we believe in quickly rewarding talent. Promotion to senior management is purely dependent upon ability. The opportunity is here--if you have the will then we have the way. The rewards are undoubtedly high and we offer a number of excellent employment benefits. including a special company-assisted car purchase scheme.

For men up to 30 (35 for service personnel) here are the brief facts and we will tell you more at an interview. Please send details of your age, qualifications and experience to
Geoff Lewis, Personnel Manager,
Burroughs Machines Ltd.,
Dept. WW N. Heathrow House, Cranford, Hounslow, Middlesex.

B Burroughs

A FULL-TIME techntcal experienced salesman reprevious expertence, salary required to-The Manager, previous expertence, salary required
Henry's Radio, Ltd., 303 Edgware Rd., London,
[.27

A RE YOU INTERESTED IN HI FIT If so, and you A have some experience of selling in the Retall Radio Trade, an excellent opportunity awaits you at Telesonic
Ltd., 92 Tottenham Court Road, London, W.1. Tel. Ltd, 92 Tottenham Court Road, London, W.1. Tel.
$01-387767 / 8$.

A SENIOR Transformer/Rectifier design Engineer is clated with equipment up to $150 / \mathrm{kVA} / \mathrm{KW}$. We are an clated with equipment up to Monufacturing Electrlcal
expand Engineers located in South Herts. Box W.W. 97

A SSISTANT LECTURER IN MARINE RADIO required A by the COLLEGE OF I.M.R. COMMUNICATIONS, Brooks' ${ }^{\text {Bar }}$, MANCHESTER
Jan. M16. 7 WT, Jan. 1971. P.M.G. or M.P.T. Certiflcate and ablility to
handle the syllabus for same essential. Other qualificahandle the syllabus for same essentigl. Other qualifica-
tions and prevlous experlence taken into account in tions and previous experience taken into account in Axing starting point on scale $21,030-$ \& 1,720 (under
review)
for
5 -day week increments of $£ 55$ and $7 / 8$ weeks' pald holidays. Write Principal, giving in confidence full details of experience,
education, present salary, etc. education, present salary, etc.
$\mathbf{E}^{\text {STIMATING }}$ supervising Engineer required, exDerience essential all types of contracts from inquiry
to final account. Write stating experience and salary required to Powis Electrical Co., Ltd., 221 St. John's Street, E.C.1.

HI-FI and Tape (Video knowledge an advantage) 11 technical Salesman required for retail sales. Attractive post incensenial armosphere. otc, to John King ${ }_{71}$ East Street, Brighton.

M $\begin{gathered}\text { ANAGER } \\ \text { required. } \\ \text { Tube/Seml-Conductor } \\ \text { Unlimited } \\ \text { Export }\end{gathered}$ Division commencing $£ 2,500-£ 3,000$ p.a., attractive fringe benefits. Ring Nicholas, A.E.L., Gatwick 029-34 5353. [851
$\mathbf{R}^{\text {EDIFON }}$ LTD. require fully experlenced TELE$R^{\text {COMMUNICATIONS }}$ TEST ELECTRONICS INSPECTORS. GOod commencing salaries. We would particularly welcome enquiries from ex-Service personnel or personnel about to leave
the Services. Please write the Services. Please write giving full detalls to-
The Personnel Manager, Redifon Ltd., Broomhill Road Wandsworth, S.W.18.

W HITELANDS COLLEGE, West Hill, London, S.W. 15 , ment maintenance. Salary within Engineer for equip| Full particulars from the Secretary. |
| :--- |
| $[838$ |

CONTINUOUS

 EMPANSSIOwave and Line Division based at Basildon are growing fast. In order to keep pace with this consistent growth rate we require the following
Installation Engineers
Technicians \& Testers
Ref. 25720
To test and commission Multiplex, Co-axial Line and Microwave Radio Systems.
Ideal candidates will be less than 45 years of age with practical experience on some of the above equipment. These challenging posts call for drive, initiative and common sense. It is necessary for applicants to be prepared to work anywhere in the U.K.

Applications should be addressed to
The Personnel Officer, STC Chester Hall Lane, Basildon, Essex.

Test Technicians
 Ref. 27221

The diversity of products manufactured at the Basildon Plant demands experienced testing staff for work on complex transmission systems.
Candidates should hold an ONC in electrical engineering and be able to offer considerable practical experience in the field of testing and fault clearing all types of land-unit, pcm and microwave equipment.
articlestror sale
THORNBURY TRADE DISPOSALS BRADFORD $£ 5$ TELEVISIONS! £5
Delivered anywhere in Great Britaln
$17^{\prime \prime} 12$ channel. Complete \& tested. Excellent condition. Carriage \& ins. £1
17" Untested TVs 12 channel 30/Carriage $£ 1$. All makes.

TUBES! TUBES!
Guaranteed 6 months
17" \& 19" All makes
23"
19" Bonded
30/-
$23^{\prime \prime}$ Bonded
Plus 10/- carriage.
SPEAKERS P.M. 3 ohm. Perfect condition EX T.V
$5^{\prime \prime}$ Round $2 /-.6^{\prime \prime} \times 4^{\prime \prime} 2 /-.7^{\prime \prime} \times 4^{\prime \prime} 4 /$-. VALVES EX EQUIPMENT Guaranteed 6 months

ARP12	1/-	PCC84	1/6	PL36	4%	688	1/-
EB91	3 d	P6F80	1/8	PL81	3/8	68W7	$2 \cdot$
EBF89	2/6	PCC89	$2 / 8$	PY81	1/-		$3 / 6$
HCC82	218	PCL85	4/8	PY800	8/-	20 D 1	2/6
ECLPO	1/-	PCL84	3/8	PY82	1 1-	${ }^{20 \mathrm{P}}{ }_{3}$	4
EF183	2/6	PCL82	3/8	PY33	$4 / 8$	20 P 3	2/-
EF184	2/8	PCF86	3/8	U191	$3 / 6$	${ }^{30 P L 1}$	4/6
Eysi	3/8	PCL83	2/8	${ }_{6}{ }^{2} 3$	3/6	12	

UHF TUNERS to suit most models i.e. FERGUSON 850900 Chassis K.B., G.E.C. etc. 50/-. P. \& P. 10/VHF TUNERS most makes
20/- delivered. (Discount for quantity).
THORNBURY TRADE DISPOSALS
Dept. T.S., Thornbury Roundabout, Leeds Road,
BRADFORD.
Telephone 665670
A CHANCE to own a complete two-way V.R.F radio A communication system, Sale two Pye Bantam V.H.F. quency range $25-174 \mathrm{~mm} / \mathrm{cs}$ xtl controlied. Bult in
telescoplc antennae. Power supply 9.6 volt battery. telescoplc antennae. Power supply $9 \cdot 6$ volt battery.
Output approz. munication up to three miles. Each set weighs approx. $41 \mathrm{lh}$.12 oz, lin carrying case. Reasonable offers please
to Box. W.W. 843 . $\mathrm{B}_{2}^{\mathrm{UILD}} \mathrm{in} . \mathrm{XT} \mathrm{in}$ in DEWBOX quality plastics cabinet. Ringwood Rd. FERNDOWN, Dorset. S.A.E. for leafiet. Write now-Risht now.
COLOUR TV COMPONENTS, all parts for home conStructed colour recelvers. Also CoLour, TV basis for a professional quality colour recelver. Panels
supplled in groups with circults R.G.B.-Vidio Chain
 Timebase panels include linne OSClDrive feld T.B.
Sync. etc., at 55 plus $4 / 6 \mathrm{p}$. and p . Also convergence Sync., etc., at $£ 5$ plus $4 / 6 \mathrm{p}$. and p. Also convergence
units and mains Transformers. Catalogue: Forgestone Components. Ketteringham, Wymondham, Nortolk. 8859 L ABORATORY Oscilloscope C.R.T. Type D65Q with zero to 500 volts $250 \mathrm{M} / \mathrm{A}$ with handbook $\& 20.39 \begin{gathered}\text { Horse- } \\ \text { brook Lane, Brewood, Stafford, Brewood } 760\end{gathered}$
[826 $\mathrm{M}_{\text {Cymbals and Drum Modules, versatile independent }}^{\text {USICAL MIRACLES }}$ bass pedal unit for organs, pianos or solo, munsical

$\mathrm{N}^{\text {EWP Calue }}$ CATALOGUE No. 18, containing credit vouchers surplus electric and mechantcal components, price and $4 / 6$ surplus electric and mechantcal components, price $4 / 6$,
post free. Arthur Salls Radio Control Ltd., 28 Gardner
Street, Brighton, Sussex. Street, Brighton, Sussex.
$\mathrm{O}_{\mathrm{M} . \mathrm{V}}^{\text {SCILLOSCOPE cos or }} 076$ with 6 plugins 60 Mz , one collect. Heath R.F. 10 sig. Fine condition. £125 o.n.0. By

 S-DECS only 22/-. T-DECS 42/- METERS 50 ohmA Sew 38P, 32/-. SINCLAIR micromatic Teceivers compete with earplece etc. Kit $44 /$,- assembled $54 /-$. Bat-

series $5 / 6$ extra. SINCLARR 1 C -10 with instructions 48/11. PNP silicon transistors 25300 series. Untested, unmarked but at least 80% good. 50 for $8 /-100$ for 14/-. EMI PROFESSIONAL recording tape, with leaders Standard play $1,200 \mathrm{ft}$. $19 / 11,600 \mathrm{ft}$. $12 / 11$. ALL TTEMS ARE BRAND NEWW. 48 -HOUR SERVICE. CARRIAGE | 2/- PER ORDER. Swanley Electronics, Dept. WW1, |
| :--- |
| 32 |
| Goldsel Road, Swanley, Kent BR8 8Ez. |
| [846 | TRANSISTORS 2 N 3055 and 4063 tested 15/- each. Wire wound pots 25 ohm and 30 ohm 1 watt Colvern type $5 /-$ each. Electronic capacities 100 mF . 450 V .

Dubilier Cans at $7 /-$ each. Pan Musical
(Wholesale)

UHF, COLOUR and TV SERVICE BPARES. Leading
British makers' surplus Colour Frame and Ehe time base units incl. EHT transformer, \&5, carrlage
10/ integrated UHF/VHF 6 position push bution tuner, 4 transistors, knobs, circult, data. Easily adjusted for use as 6 position UER tuner, $£ 4 / 10 / \cdots$, P / P R $1 / 6$. incl. tuner, drive assy, 625 IF amplifier, 7 valves ancl, tuner, drive assy, 625 IF amplifer, 7 Valves. accessories, housed in special cabinet plinth assembly,
$£ 7 / 10 /-$ or less tuner $£ 2 / 18 / 6, \mathrm{P} / \mathrm{P} 10 /-$. SOBELL/GEC 05/625 switchable IF amplifier and output chassis, 32/6,
$25 / \mathrm{P} / \mathrm{P}$ 4/6. Ultra 625 IF AMP chassis and circuit,
P/
4/6. Phllips 625 IF AMP panel and circuit 30/:- P/P 4/6. UHF tuners, transistorised, slow motion rive assy, aerlai panel, $£ 5 / 10 /-$ P/P $4 / 6$. New or
nanufacturer tested VHF
tuners, AT7639 Peto Scott Decca, Ekco, Ferranti, Cossor, 38/6, Cyldon C 20/-, AB miniature with UHF injection 25/-. Ekco 283/330, Ferranti 1001/6 25/-, New Areball tuners, Ferguson, HMV, Marconi type $37 / 6$, Plessey 4 position push button
tuners with JHF injection, incl. valves, $58 / 6$. Many tuners with THF Injection, incl. valves, 58/6. Many
others avallable. P / P all tuners $4 / 6$. Large selection channel coils. Surplus Pye, Uitra, Murphy, 110° scan colls $30 /-$ Sobell 110° Frame $0 /{ }^{\circ}$ P transformers $17 / 6$, P / P 4/6. Transistorised time base panel for Ferguson
portable $50 /-$ P/P $1 / 6$. TOPTs, Scan Colls, FOPTs portable 50/- P/P 1/6. TOPTs, Scan Colls, FOPTs
available for most popular makes. PYE/LABGEAR available for most popular makes. PYE/LABGEAR
transistorised booster units B1/B3 or UHF, battery perated $75 /-$ Mable MANOR SUPPLIES END LANE, LONDON, N. W. \mathcal{C} (No. 28 Bus or W. Hampstead Tube Station), MAIT. ORDER: 64 GOLDERS MANOR DRIVE, LONDON, N.W.11. Tel. 01-794 8751. VHF $80-180 \mathrm{MHz}$. Integrated recelver, tuner, cononductor. Comprehensive kit \&\& post pald or send for iree llterature enclosing s.a.e. Johnsans (Radio)
Worcester, WR1 2DT.
[99

VIDEO studio equipment comprising, VTris-Shibaden Cameras-MC920-2 in . and lenses and 1 in. video camera with lens, spare used tube and new unused tube. Also 12 in . oft-air monitor (12 or $230 \mathrm{~V}-\mathrm{AC} / \mathrm{DC}$).
OFFERS. Axco Instruments Ltd., 228 Regents Park OFFERS. Axco Instruments Litd., 228 Regents Park
Road, London, N 3. $236-8302$.
$60 \mathrm{kc} / \mathrm{s}$ Rugby \& $75 \mathrm{kc} / \mathrm{s}$ HBG Neuchatel Radio Reunits, $\&$ celvers. Signal and Audio outputs. Small compact

BUSINESS OPPORTUNITAES

HAVE you an fidea for a new product, preferably and would like to hear from you with regard to our developing and manufacturing new lines. Write and tell ss about your Ideas, it could be worth while. Boz

TEST EQUIPMENT - SURPLUS ANDSECONDHAND.

CINTEL 388 Electronic Counter with signal generator Spingbank, Lowther Street, Penrith, Cumberland.

SIGNAL generators, oscilloscopes, output meters, wave vol tmeters, irequency meters, muli-range moters. ville Old Hall, Ashville Rd., London, E.11. Ley, 4986.

FEGGIVERS AND AMPDLFIERST:

 Ashville, elc., in stock.-R. T. \& I. Electronics, Ltd., Ashville Rd., London, E.11. Ley,

NEW GRAM AND SOUND

CONSULT first our 76-page illustrated equipment catalogue on $\mathrm{Ex}-\mathrm{Fl}$ (6/6). Advisory service, generous Association, 18 Blenheim Road, London, W. W. 1-995 1661 .
GLABGOW.-Recorders bought, sold, exchanged cameras, etc., exchanged for recorders or vice-
versa.-Victor Mortis, 343 Argyle St., Glasgow, C.2.

SHURE GOLDRING, cartridges post free, G800 £7.17.6. SM3D $_{\text {M }}$ £5.5.0. M44/5/7 $£ 7.10 .0$. M44E $\quad £ 8.19 .6$. M55E £9.19.6. M75E/2 £16. Ultimate Electronics, 38 Achilles
[90ad, London, N.W.6. Mall Order Only.

TAPE RECORDING ETC.

IF quallty, durablity matter, consult Britain's oldest transfer service, Quality records from your sultable tapes. (Excellent tax-free fund ralsers for schools,
churches.) Modern studlo facllities with Stelaway Grand.-Sound News, 18 Blenhelm Road, London, W. 4 01-995 1651.

YOUR TAPES TO DISC- $£ 6,000$ Lathe. From $25 /-$ | Studio/Location Unit. S.A.E. Leaflet. Deroy Studios, |
| :--- |
| High Bank, Hawk St., Carnforth, Lancs. |
| 70 |

FOR HIRE

COR HIRE CCTV equipment, Including cameras, -Donitors, vldeo tape recorders and tape-any period.

ARTICLESWANTED

HIGHEST CASH PRICES for good-quality Tape 2185.

WANTED, all types of communications receivers Electronics, Ltd; Ashville Oid Hall, Ashville Rd., Lon-

WANTED, televisions, tape recorders, radiograms, new valves, transistors, etc.-Stan Wllletts, 37
Eigh St., West Bromwich, Stalls. Tel. Wes. 0186. [72
WANTED Wireless World. February \& March 1970. N12 7NL. Charmiey,
66 MRELLESS WORLD" back numbers needed to 1958-December.
1958-December.
1959-April, May, June, August and December.
1960-January, February, March
1960-January, February, March, May, June
1961-January, Aprll, July and August.
1962 -February, March and July.
1963-June.
1966-September
Offers (only) of any Issues avallable to Damerell, 15 Frays Avenue, West Drayton, Middlesex. (Telephone
West Drayton 3337.)

VALVES WANTED
SCRAP Valves Wanted, type TY5-500, TY6-800, TY $6-1$
1250A. TY7-6000A, TYS $5-3000$ ESA $1500,16 \mathrm{P} 13$ BW1250A. TY7-6000A, TYS-5-3000, ESA 1500, 16P13, BW1169, also stmilar types. Electronic Heat Co., 352
Lower Addiscombe Road, Croydon, 01-654-7172.

We buy new valves, transistors and clean new comquotation by return.-Walton's Wireless Stores, sis Worcester St, Wolverhampton

C.CAPACITY•AVAILABLE

A IRTRONICS LTD, for Coil Winding-large or small production runs. Also PC Boards Assemblies. Sup plters to P.O.. M.O.D., etc. Export enauiries welcomed.
A qua-GEM ELECTRONICS have capacity avallable board work. We offer prompt delvery at in printed prices. Telephone North Benfleet 531.
[702
DRAWING and DESIGN. Freelance wort required in Home Counties or London. Circults, PC boards Injection moulds, Presstools, Production plans, Detall ing, etc.-R. G. Young, so Roderick Avenue, Peacenaven,
Newhaven, Sussex.
MFTALWORK, all types cablnets, chassls, racks, forc., to your own specification, capacity avallable for small milling and capstan work up to lin bar.-
W^{E} undertake the manufacture of transformers work singly or in quantities to any speciftcation. Al Co. Lrd. F20a Harrow Road, Kensal Rise, N.W. 10 .

Oथnytechnical traininc in A M.S.E. (Elec.), City \& Guilds, R.T.E.B. Cert., Radio terms. Wide range of Courses in Elec. Engineering,
Design, Instaulation, Repairs, Refrigeration, Electronics, Radio and TV. etc. Send for full detalls and illustrated book-FREE BRITISH INSTITUTE OF ENGINEER Reading RG7 4PF.
BECOME "Technically Qualifed" in your spare time, B guaranteed diploms and exam. home-study courses In radio. TV, servicing and maintenance. R.T.E.B., City \& Guilds, etc., highiy informative ${ }^{120-p a g e}$ House (dept 837 K), Aldermaston Court, Reading, RG77
4 PE .
R.T.E.B. Certs., City \& Guilds, Colour TV, Radio tronics (with kit). Thousands of successes Sal Electronics with kit). Thousands of successes. Send fo f FREE, BRITISH INSTITUTE OF ENGINEERINO TECENOLOGY, Dept. 150K, Aldermaston Court, Read-
Ing RG7 4PF.

TECHNICAL TRAINING IN Radio, TV and Electronics home-stugy courses write: ICS, For detalls of proven Home-study courses w.

TUITION

COLOUR TV Servicing. Be ready for the coming colour TV sets through new home-study courses spectall prepared for the practical TV engineer technician and approved by leading manufacturer. Full details from ICS (D.558), Intertext House, London SW8, or phone
[853

CITY \& GUILDS and R T.R.B. exams. Specialised details home-study course will ensure success. For Radio. TV and Electronics, also and diploma courses ical courses with kits, write to ICS (Dept 442), Intertext House,
London SW8. London SW8
HUNDREDS OF TOP-PAY JOBS In Engineering B. awalt qualifed men, Get a Certificate through B.I E.T. Home Study-Mech., Elec., Auto., Radio, Sen Draughts, Electronics, Computers, Building, etc. Sen
for helpful FREE book: B.T.E.T. (Dept 151K). Aldermaston Court, Reading RG7 4PF.
KINGSTON-UPON-RULL, Education Committee.
College of Technology. Principal: E. Jones, M.Sc.,
FULL-TIME courses for P.M.G. certiflcates and the
Radar of Technology, Queen's Gardens, Kingston-upon Full. [18

BOOKS, INSTRUCTIONS, ETC.
MANUALS, circults of all British ex-W.D. 1939-45 R.E.M.E. instructions; s.a.e. for list, over 70 types.Surrey, Baliey, 167 a Moflat Road, Thornton Heath,

Is this
 your man in Amsterdam?

When the tulips begin to bloom, Holland stretches and breathes deep. Even your hardest-driving Dutchman detours from his rigid routine. He cycles down to the dikes, strolls along bright canals. Roots up to his cuffs in window boxes. Or just relaxes under café awnings, puffing a bolknak, sipping icy jenever. Local interests and national holidays can make workaday considerations (like your business promotion) take a back seat.
What you ought to know is where you can get direct, uncomplicated sales promotion that can cope with people's customs and diversions anywhere and still get the job done. That's IBPA.
you'll sell more abroad through

IBPA is the biggest international publishing complex in the world. It comprises nine companies, centred in key business areas of Europe, USA and South East Asia. Between them they produce 320 publications, covering virtually every trade and technical field that nceds a journal.
IBPA offers you as many of these journals in as many industries in as many countries as you wish to cover.
Arrangements are easy with one point of contact, total readership information, translation assistance, and group discounts. See how you can put fresh élan into your overseas promotion: contact Doug. Jens Smith at our UK office-

IPC Business Press (Overseas) Limited, 161 Fleet Street, London EC4. Tel: 01-393 1011

THE NEW
 "JJULIETTE"

MPR 3065
 (replaces NA 5018A) IS A HIGH QUALITY COMMUNICATIONS RECEIVER

IT NOT ONLY RECEIVES . . . AIRCRAFT, SHIPPING (VHF \& SW), TAXIS, AMBULANCES, FIRE SERVICE, T.V. SOUND, HAMS, GAS \& ELECTRIC BOARDS, PUBLIC SERVICES\&MANY OTHER RADIO TELEPHONE MOBILES. BUT ALSO . . CLASSICAL MUSIC, POP \& ALL THAT JAZZ.

REC. PRICE $\mathbf{f 4 2}$ OUR 36 yICE PRICE

ICASH Oin'.
Complete with
with
standard
batteries and earplece BFO (optional extra) ADO 35/-
TURN ON AND

The MPR 3065 is a communications receiver and entertainment source in one neat, transistorised portable package. RT mobiles, FM \& AM broadcasts at your fingertips. Features a colour-coded illuminated tuning dial \& band selector. AFC, Squelch. BFO (optional extra). Large speaker. Works off mains or batteries. Size $10^{\prime \prime} \mathrm{x}$ $6^{\prime \prime} \times 4^{\prime \prime}$. Weight 4.7 lbs .
FREQUENCIES . . . Medium Wave 540-1600 Kcs: Marine 1.6-4.6 Mcs: FM/VHF 88-108 Mcs: Aircraft 108-136 Mcs (Military, Civil \& Ground Control). High VHF/PB 146-176 Mcs (Commercial \& Industria RT Mobiles). (Availability of Mobile transmissions depend on operators in each area).

STOCKTON PARTNERS
Brighowgate, Grimsby, Lincs. Tẹ!: 0472 64196/58815 Importers \& Distributors
\square WE PURCHASE
COMPUTERS, TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGS AND SOCKETS, MOTORS, TRANSISTORS, RESISTORS, CAPACITORS, POTENTIOMETERS, RELAYS TRANSFORMERS ETC.
ELECTRONIC BROKERS LTD. 49 Pancras Road, London, N.W.1. 01-837 7781

TF 762 Cl 300-600 mcs Signal Generator ..	$\text { E00 p.p. } 30 /{ }^{-1}$
TF 937 (TU 218) 85 kkss - 30 mcs Generator	E60 p.p. 301
CT 378 2-225mes Avo Signal Generator.	c30 P.p. 15 -
BC 221 Frequency Meter	c30 p.p. $20 /-$
CD 513 Solartron Oscilloscope. 1035 Mk 2 2 DE Cossor Oscillosco	$\underline{620} \mathrm{p.p} .30 /-$
CR 30015 kes -2	-
Communication Receiver	22 p,p. 30)-
	630 p.p. 30/-
Re50kcs	
SP 6000 JX TMMOdel H Hammerlund Receiver	$\begin{aligned} & 216 \text { p.p. } 20 /-1 \\ & 665 \text { p.p. } 50 /-1 \end{aligned}$
\$36A 28-145mcs AM/FM Hallicraft	
Receiver Radio Noise Filter (Dubilier)	7/6d. p.p. 2 /6
R1520 $115-145 \mathrm{cms}$ A ircraft Tr	E10 p.p. 20/-
sets MK, ${ }^{\text {che }}$ 6-9mcs Fully	-
19 Sers 1.8-8mcs Trans	64 p.p. 201-
19 Sets with V.H.F. Tr	E6 p.p. 650 p.p. $30 /-$
${ }^{31}$ Sets 40-48mes Kk. 2 Tuneable	
	$\begin{aligned} & 63 \text { p.p. } 15 /-1 \\ & 25 \text { p.p. } 40 /- \end{aligned}$
EASTLAKE ELECTRONICS Eastlake,	nor Regis.

PROTOTYPE AND BATCH PRODUCTIONS
Instrument panels and dials
in Metal and Perspex

STABILISED POWER UNITS

Either $4.5-8.0$ Volts $\}$ at $\frac{1}{2} \mathrm{Amp}$
or $7.5-15$ Volts
0. 5% Regulation

* Ripple < $2 m V p k-p k$
* Variable output
* Low cost

Prices:-Single $£ 9.10 .0 \mathrm{~d}$.
Double £18.0.Od.
VER CONTROLS (St Albans) LTD, 27b Townsend Drive, St Albans, Herts.

SURPLUS HANDEOOKS	
19 set Clircuit and Notes 7/- p/p 9d.	
1155 set Circuit and Notes .i.	
${ }_{88}^{48 \text { set Workidig } \text { Instructions }}$	$\because \quad \therefore \quad 6 / \mathrm{p} / \mathrm{p} 9 \mathrm{~d}$.
${ }^{88}$ set Technical Inatructions	
R. 107 Circuit and Notes $\quad . . \quad$.	
52 set Sender and Receiver circuits $8 /$ - post free. Colour Code Indicator $2 / 6, \mathrm{p} / \mathrm{p} 6 \mathrm{~d}$.	
	8.A.E. with all enquiriea please.
INSTRUCTIONAL HANDBOOK SUPPLIES Dept. W.W. Talbot House, 28 Talbot Gardens, LEEDS 8	

Thanksto a bulk purchase we can offer BRAND NEW P.V.C. POLYESTER AND MYLAR-RECORDING TAPES
Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polythene and have fitted leaders, etc. Their quality is as ghe tapes faulty and are not to be confused with imported, used or sub-standard tapes. 24-hour despatch service.
Should goods not meet with full approval, purchase price and postage will be refunded.

Postage on all orders $1 / 6$
COMPACT TAPE CASSETTES AT HALF PRICE
60,90 , and 120 minutes playing time, in original Plastic library boxes. $12 / 6$ each. MC $12018 / 3$ each.

STARMAN TAPES

28 LINKSCROFT AVENUE, ASHFORD, MIDDX.

-SMABET LTD.

WE MAKE TRANSFORMERB AMONGST OTHER THLNGS AUTO TRANSFORMERS. 0.10 .200 .200 .240 V a ac. up or down,
fully shrouded Atted insulated terminal blocks. 30 w 28/8: 50 w $34 /-75 \mathrm{w} 41 / 8 ; 100 \mathrm{w} 49 /-150 \mathrm{w} 60 /-200 \mathrm{w} 75 /-; 300 \mathrm{w}$
 $1000 \mathrm{w} 240 /-150 t \mathrm{w} 345$
up to 8000 wate to order
MARNS TRANSEORMERS. Prim $200 / 240 \mathrm{v}$ a.c. TX1 $425-0 \cdot 425 \mathrm{v}$

 $64 / \vee 2 \mathrm{a}, 37 / 6 ; \mathrm{MT3}$ Prim $110 / 240 \vee 8 \mathrm{Bec} 250 \mathrm{~V} 100 \mathrm{Ma}, 6,3 \mathrm{v} 2 \mathrm{a}$, $45 /$-; MT4 sec $18 \vee 0.25 \mathrm{amp} 6.3 \vee 1 \mathrm{amp}, 17 / 8$. MOLTVOLT TRANSFORMERS. PTIm 2001240 \& B.c. OMT4/1

 doovolt transformers. Prima 20
 $71 / 8$.
24 V ADTO TRANSFORMERS, Input $200 / 240 \mathrm{~V}$ a.c. output 24 V

 58/8; 5 a, $75 /-: 8 \mathrm{a}, 112 / 6 ; 12 \mathrm{a}, 165 / 6$.
MIDOET RECTIFIER TRANSFORMERS, for F.W. rectification

 OUTPUT TRANSFO

 ohm or $10 \mathrm{~K} / 3$ ohm, 14,6 ; auto matching transtormers 10 watt, $3.8-15$ ohm up or down, $15 /-; 100$ volt ine trans frrmers to order.

SMOOTHNGG CHOKES. $10 \mathrm{H}, 65 \mathrm{Ma}, 14 / 6 ; 85 \mathrm{Ma} 18 /-150 \mathrm{Ma}$, | SMOOTHING CHOKES. |
| :--- |
| $23 / 6 ; 5 \mathrm{E}$ |
| 50 Ma |

W.W. IGNTION CIRCOIT TRANSFORMER to apec, $50 /$ - plus

O/P, 60/-. Oarriage extra on at trannformen minim
TRANSFORMERS FOR POWER AMPLIFIERS
 $135 /-; 100$ watt AAA load 3K, $225 /-$ -
TX 500 . Prim. 200/240 va.c., See. $425-0-425$ v 500 Ma

 $200 / 240$ 甲, Bec. 42 マ 4 a; 50 r $10 \mathrm{Ma}, 150$
$10 \mathrm{H}, 150 \mathrm{Ma}, 23 / 6 ; 5 \mathrm{FH}, 250 \mathrm{Ma}, 1.3 \mathrm{~B}, 750 \mathrm{Ma}, 60 /-$ New boxed famous makes for public addresa systems,

 crossorer network, 3,8 and 15 ohms,
Horm tweeter, $2-16 \mathrm{KHz}, 15$ ohms, $301-$.
 $10 / 6 ; 600 \mathrm{~m}, 5 /-: 32 \mathrm{mfd} 500 \mathrm{v}, 5 /-100 \times 400 \mathrm{mfd} 275 \mathrm{v}, 6 /-;$
$80 \times 100 \mathrm{mfd} 450 \mathrm{v}, 7 / 6 ; 4 \mathrm{mfd} 350 \mathrm{v}, 1 / 6: 10000 \mathrm{mid} 25 \mathrm{v}, 17 / 6$. S.A.E. ALL ENQUIRIES PLEASE. MAIL ORDER ONLY.

WW-124 FOR FURTHER DETAILS

WE BUY

any type of radio, television, and electronic equipment, components, meters, plugs and sockets, valves and transistors, cables, electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields \& Mayco Disposals, 21 Lodge Lane, London, N. 12

RING 4452713
4450749
9587624

SALES
P.O. BOX 5 WARE, HERTS TEL. WARE 3442

SEMICONDUCTORS
TOP HAT SILICON RECTIFIERS, Allgood. No short or open circuirdevices.
Vottage range $24-400$ PIV
755
 per 500. PLASTIC PNP SILICON
TRANSISTORS. Manufac-
 2N3F72-3 factill. Ideal cheap
rrans. for manufacturing eac. trans. For manufacturing etc.

$$
8500, \pm 13.90 \quad 1,000 \text { pieces. }
$$ PLASTIC NPNSSLL.

CON TRANSISTORS. Manufarin sistors 2N3707-3711 family. loceal cheap trans for manufacturing otc.
1,000 pieces.

1/6
 TESTED TRANSISTORS
 1/6
 One price only PNP. NPN silicon similar to the. Fullly Tested and sing types: each.

TRANSISTOR EQVT. BOOK 2,500 cross references of transistors-British, European, American and Japa nese. A must for every ira nsistor user:
Exclusively distributed by DIOTRAN SALES.
IS/-EACH.

Vast mixod lot of aubminiature glass diodes. ComPrising of silicon, Germ, Point Contact and Gold Bonded types pllys some'Zeners. 500,000 available at Lowest or Low Price,
$\mathbf{1 , 0 0 0}$ pieces $£ 3.000 .5,000$ pieces $\$ 13.10 .0 .10,000$ pieces $\$ 23$.

BRAND NEW FULLY TESTED EPOXY CASE UNIJUNCTION TRANSISTORS. TYpe TISG 3 . and BEN 3000 and replacement for 2 N2646. Full data available.
COWEST PRICE AVAILABLE ANYWHERE, 100 if each = $520 ; 500$ of $3 / 6$ each $=287.10 ; 1,000$ off $3 /$ e each $=\measuredangle 150$. Sample devires 71 e each on request.
HIGH QUALLTY SILICON PLANAR DIODES. SUB-MINIATUREDO-7 Glass TYPe, suitable replacements
for OA $200, \mathrm{OA} 202, \mathrm{BAY} 38$, IS 30 i
IS $940,200,000$ to elear at \& 4 per 1,000 pieces. GUARANTEED 80% GOOD.

FULLY TESTED DEVICES AND QUALITY GUARANTEED-SURPLUS TO REQUIREMENTS OA202 Silicon Diode, Fully Coded.
50 pIV 250 mA Qty. Price E30 per 1,000 pieces.
OA200 Silicon Dlade. Fully Coded
50 PIV 250 mA Qty Price 25 per i, 000 .
BYIOO SIL. RET'S 800 PIV 550 m .

1/49 2/6 each; $50-99$ 2/3 each; 100-999
$1 / 10$ each. Fully Coded. First Quality.

OVERSEAS QUOTATIONS BY RETURN SHIP.

WANTED

surplus transistors, semiconductors, capacitors, cable, electrical goods, radio television and electrical equipment, wire, aluminium, motors, recording accessories and all surplus equipment for SPOT CASH.
Buyer will call to inspect anywhere'.
Concord Instrument Co.
28 Cricklewood Broadway London, N.W. 2
Telephone: 01-452 0161/2/3
Telex: 21492
Cables: CONIST LONDON

AMERICAN

TEST AND COMMUNICATIONS EQUIPMENT * GENERAL CATALOGUE AN/104 1/6 * Manuals offered for most U.S. equipments

PHASE LOCKED STEREO DECODER
Complete designer approved kit, containing Fibreglass PCB, 62 low noise resistors, 3 Fairchild IC's 15 Ferranti transistors, 8 diodes. 23 capacitors and 4 preset pots.
Full instructions. £8.19.6 pp 2/6
Decoder PCB only $£ 1.5 .0$
U6E7709393 £1 U6A747459X £1.7.6
STABILISED POWER SUPPLY
Complete kit for $\pm 6 \mathrm{~V}$ at 50 mA Suitable for above
£2.19.0 pp 3/6.
Transistors: ZTX500 4/- ZTX108 equiv. 2/-
INTEGREX LIMITED PO BOX 45 DERBY DE1 1TW

QUARTZ CRYSTAL UNITS from

- 1.4-20 MHZ
- fast deliverr - HIGH STABILITY
- TO DEF 5271-A

WRITE FOR LEAFLET AT-1 McKNIGHT CRYSTAL Co. SHIPYARD ESTATE HYTHE, SOUTHAMPTON

HARDCASTLE \& LANE 100W AMP (w.w. ост.)

Transistor/Diode kit with Lektrokit board and drilled finned h/sinks. MONO $£ 18.15$. STEREO $\$ 35.10$ Resistor/Capacitor kit with choke. MONO £1.17.6. STEREO E3.5. C.W.O. Postage \& Packing included.
Send 6d. for complete list of components, kits (BAILEY, LINSLEY, HOOD, efc.)

BARDON ELECTRONICS

Carlton Chambers,
13 Victoria Street, Nottingham

Various types of two- and four-track playback heads for real, cassette and professional tape recorders are offered by

Foreign Trade Enterprise
Warszawa, AI. Jerozolimskie 44, Poland

On demand we work out and execute playback heads with requested parameters as well as subassemblies and technical details for tape recorders.

Makers: the Kasprzak Radio Equipment Works
Warszawa, Kasprzaka 18/22, Poland

RELAYS - RELAYS - RELAYS LARGE STOCKS ALWAYS AVAILABLE

POST OFFICE RELAYS TYPE 3,000
BUILT UP TO YOUR REQ UIREMENTS Type 600 also available/ Quotationsfor any bulldRelay. Component parts can be supplied separately Special offer G.P.O. type 3.000 Relays, 175 ohms, 4 make 4 break. 12/-, P. \& P, 2/-.
S.T.C. MINIATURE SEALED PLUG.IN RELAYS
Type 4184 GD. 24 volts, 700 ohms, 2 C. 15% Type 4184 GD .24 volts, 700 ohms, 2 C.O. 15/2
Type 1186 EB. 6 volts, 45 ohms, I make. $15 /-$
Type 4186 EB .6 volts, 45 ohms, make. 15/-
G.E.C. SEALED RELAYS
Type MRIO54. 2 ohms, 1.3 volts, 2 make $H . D$

Type MR1054. 2 ohms, 1.3 vols, 2 make H.D.
Type MR1059. 2 ohms, 1.3 volsts, 1 make, 1 break
Type MR1063. 2 ohms, 1.3 volts, 2 make, 2 break Type MRI063. 2 ohms, 1.3 volts, 2 make, 2 break Type MRI079. 40 ohms, 6 volts, 2 make, 2 break $20 / 0$
Type MR1080. 40 ohms, 6 voles, 1 make, I break Type MR 1080. 40 ahms, 6 voles, 1 make, 1 break $17 / 6$
Type MRI081, 40 ahms, 6 volts, 2 make. $16 / 6$ Type MR1088. 180 ohms, 12 volts, 1 make, 1 break. 186 Type MR1089. 180 ohms, 12 volts, 2 make. Type MRI095. 670 ahms, 24 volss, 2 make, 2 break. $24 /-$
Type MR1096. 670 ohms, 24 volts, 1 make I break, H.O.
Type MRI 099.670 ohms, 24 volts, 2 make
Philips Tape Cassette Motors. $25 /$. $2 /$ - each.
Rhilips Tape Cassette Motors. 25/4. Po \& P. $1 / 6$. 250 volts D.C. $125 \mathrm{M} / \mathrm{A}$. Consumption 31 watts. 50%. P. \& P. $7 / 6$.
Dynamator

Oytput 285 Rotary Transformer. Input 27 vales D.C.
 Miniature Motors on Mounting Cradile, 1-3 volts, r. p.m. Miniature Motors on Mounting Cradle,
at 2 voles, $6,500-8,500: 6 \%$. P. \& P. $1 / 6$.
Manufacturers-Direct your enquiries to us as we can Manulacturers-Direct your enquiries to us as we can
usually help. Trade and Retail Lists now available, post Usually he have a lot of bargains for callers.

ELEKON ENTERPRISES
12 A Tottenham St., London W1P 9PQ
TELEPHONE O1-580 7391
WW-126 FOR FURTHER DETAILS

100W AMPLIFIER

All parts now avallable for thls latest addition of high performance amplifiers as mentioned in the October 1970 Issue of Wireless Worid.

22 transistors and diode (overload protection included)
£17.5.0
Resistors, Capacitors, pots 25/6
Fibreglass P.C.B.
19/-
P.C.B. and components $£ 19.5 .0$

30W Bailey (single power rail)
10 transistors
£5.12.0
Resistors, capacitors and pot 26/-
5 transistors Linsley-Hood Class AB $67 / 6$
Resistors, capacitors and pots 44/6
Linsley-Hood Class A
4 transistors (M J 481's)
57/-
Resistors and capacitors 28/6
Please state 8Ω or 15Ω for L.H. Amps. All transistors matched and with mica washers.
Resistors except power types. $\frac{1}{2}$ W 5\% low noise carbon film.

Semiconductors			
2N 3055	$12 /-$	40362	$12 /-$
2N 3791	$84 /-$	IBO8T20	$12 /-$
MJE 521	$14 / 6$	2N 3716	$57 /-$
40361	$10 /-$	MJ 491	$26 / 6$
BC 126	$9 / 6$	TIP 30A	$13 /-$
2N 3715	$15 /-$	BC 125	$9 / 6$
MJ 481	$24 /-$	IB40K20	$32 /-$
TIP 29A	$11 /-$		

Brand new top quality components. Instant Service. Mail Order Only. Post Freo.

POWERTRAN ELECTRONICS 2 KENDALL PLACE, LONDON, W. 1

WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC.

CHILTMEAD LTD.

7, 9, 11 Arthur Road, Reading, Berks.

Tel: 582 605

WANTED FOR PRODUCTION

ELECTRICAL or ELECTRONIC product to manufacture and sell. Reply in first inslance to Box No. 860 .

LINSLEY HOOD PRE-AMPLIFIER

Complete kit including PCB approved by Linsley Hood, polyester \& electrolytic cap's, $\pm 5 \%$ hi-stab R's, pre-sets, SGS \& Amelco matched Tr's, Radiospares hi-qlty sw's, pots $(\pm 2 \mathrm{~dB})$ \& drilled front panel. MONO 5.12 .6 net

STEREO $£ 10.7 .6$ net

LINSLEY HOOD CLASS AB AMP

Send SAE detalled lists including other WW Designs. BC109/BC182L 3/-, BCI25/6 II/-, BC212L 4/-, MJ480 20/, MJ481 25/6, MJ491 28/\%, MJES21 $15 /=$, 40361 12/, 40362 14/6, 2N1613 6/=, 2N3906 6/6, 2 N 4058 4/6. Matching \& mica washers, etc., FREE. Matched 10 Tr's \& zener Texas 15 W amp. $£ 3.9 .6$. Postage/packing $1 /-$ minimum on all orders. GUARANTEED DESPATCH BY FIRST CLASS RETURN A.I FACTORS, 72 BLAKE ROAD, STAPLEFORD,NOTTS.

WANTED-

Redundant or Surplus stocks of Transformer materials (Laminations, C. cores, Copper wire, etc.), Electronic Components (Transistors, Diodes, etc.) P.V.C. Wires and Cables, Bakelite sheet, etc, etc Good prices paid d. BLACK

44 Green Lane, Hendon, N.W. 4
Tel. 01-203 1855 and 3033

Mullard
 TECHNICAL BOOKS

Power Engineering using Thyristors

Part 1. Techniques of Thyristor Power Contral A new book to bridge the gap between electrical power engineering and electronics. Including postage 32/

Data Book 1970

Gives Mullard abridged data on valves, picture tubes, semiconductors and components used in consumer electronics.
Paper bound. Including postage $4 / 9$
Transistor Audio
and Radio Circuits
For radio receivers, radiograms, record players, tape recorders, hi-fi equipment.
Over 200 pages packed with the most up to date information.
Bound in cloth. Including postage 32/-

Dlectronic Counting

Circuits. Techniques. Devices. The increasing use of mechanization and automation in factories has given rise to an increased interest in counting. This present book is intended to help engineers to use electronics to solve their counting problems as simply or as cheaply as possible.
220 pages fully illustrated. With diagrams. Including postage 29/-

Semiconductor Devices

This book is an introduction to Semiconductor Electronics and its contents should be readily understood. The subject is treated non-mathematically. Numerous Illustrations and diagrams. Including postage $8 / 6$.

A programmed book on Semiconductor Devices This book is an Integral programme which is a form of self instructional text.
 Size 12 ins. x 8ins. Numerous illustrations and diagrams. Including postage 14/-
 Magnadur magnets
 for dc motors
 Magnadur is a ceramic magnetic material character. ised by an exceptionally high coercive force and extremely high resistivity. The book deals solely with the use of permanent magnets in D.C. motors. Bound in board. Numerous illustrations and diagrams. Inclui: •f: - tige 16/6.
 Post now to: Dept. M SELRAY 800 COM PANY 60 Mayes Hill Bromley BR2 7HP

COMPONENT PARTS EX STOCK FOR FOLLOWING HI FI DESIGNS BAILEY, LINSLEY-HOOD, TEXAS INSTRUMENTS
 For list of parts and other information send S.A.E. to: TELERADID ELECTRONICS
 325 FORE STREET. N. 9
 8073719

```
MILLIAMMETERS
100 Q Movements-all with same
sensitivity \(\mathrm{FSD}=1 \mathrm{~mA} / 4^{\prime \prime}\) scale \()\).
other scale
configurations available 0-1 \(0-5,0-10,0-14\).
\(0.250,0.700,0-1400\)
```



```
\(37 / 6\) ea, \(2 / 6\) post. 3 or more carriage free. CHANDOS'. HIGH STREET, NEW MILLS. NR. STOCKPORT, CHESHIRE. TELEPHONE NEW MILLS (Derbyshire) 2345
```


CTEYNECTOR

The safe quick way to connect electrical equipment to the mains

electrical in seconds.
No plugs, sockets o
bare wires Takes. mult
parallee conmections up
to 13 amps.
ior leatlet
EB INSTRUMENTS
49-53 PANCRAS ROAD LONDON N.W. 1
$46 / 6$

WW-129 FOR FURTHER DETAILS

NEONS. PRINTED CIRCUIT BOARDS. INSTRUMENT

 CASES. MOULDED REED SWITCHES and PIDAM logic modules. CONTIL and BRIGHTLIFE products are ali ex-stock. For details see October and December, 1970 issues, advertisements, For further details use reader on mailing list will receive these automatically.WEST HYDE DEYELOPMENTS LIMITED, RYEFIELD CRESCENT, NORTHWOOD MILLS, NORTHWOOD, MIDDX Telephone: Northwood 24941/26732 Telex: 923231

ROMDON CENTRAZ RadIO STORES

ELECTRICITY SLOT METER ($1 /$ - in slot) for A.O. mainn. Fired 10 A . $80 /-.15 \mathrm{~A} .80 /-20 \mathrm{~A} .100 /$ for hotels, ete. $200 / 250 \mathrm{~F}_{\text {. }}$. a vailable. Recond itioned as new, 2 yeara guarantee. WIRELESS SET No. 38 A.F.V. Freq. range 7.8 to $9.0 \mathrm{Mo} / \mathrm{s}$. Working range $\frac{1}{2}$ to 2 milles. Size $101 \times 1 \times 61 \mathrm{~lm}$. Weight $\times 1 \mathrm{lb}$, Includes power supply 8 llh - and spare valves and vibrator a
tank aerial with base. 88 per palr or $\$ 4$ singie. P.P. $25 /$. MODERN DESK PHOYES T C grey or black, with internal bell and handset with $0-1$ dila.
24/10/-, P.P. $7 / 6$.
10-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bakeilte case with Junction box handset. Thoroughly overhauled. Guaranteed. $58 / 10 / \sim$ per unit. TTON INTER-CON TELEPHONES in Bake teed. $87 / 15 /=$ per unit.
TELEPHONE COILED HAND SET LEADS, 3 core, 5/6. P.P. 1/-. QUARTERLY ELECTRIC CHECE METERS. Reconditioned as new, $200 / 250 \mathrm{v}$. 10 A . $42 / 6 ; 15 \mathrm{~A}$. $52 / 6$; $20 \mathrm{~A}-57 / 6$. Other 8-BANE UNISELECTOR SWITCHES. wiping $22 / 15 /-; 8$ bank half wipe $\mathrm{E} \dot{2} / \mathbf{1 8 / - ;} 6$ bank hall wipe 25 contacts $47 / 6$. P.P. $3 / 8$.
FINAL END SELECTORS. Relays, various callers, also 10 Recelvers in stock. All for callers only,
${ }^{23}$ LISLE ST. (GER 2889) LONOON W.C. 2 Closed Thursday 1 p.m. Open all day Saturday

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E", cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large selection of stranded single p.v.c. covered Wire $7 / 0048,7 / 0076,14 / 0076$ etc. P.T.F.E. covered Wire, and Silicon rubber covered wire, etc.

J. Black

OFFICE: 44 GREEN LANE, HENDON, N.W. 4 Tel: 01-203 1855. 01-203 3033 STORES: 30 BARRETTS GROVE, N. 16

Tel: 01-254 1981

MAKES 5 DIFFERENT

 TRANSISTOR RADIUSTRANSISTOR RADIQS
Last tOTAL BUILDING PRICE 39/6

from Poland

are offered by

Foreign Trade Enterprise

Warszawa, Al. Jerozolimskie 44, Poland P.O. Box Warszawa 1 No 370 Telex No 814431

Amazing Radio Construction setl Become a radio expert for 39/6. A complete Home Radio Course. No experience needed. Parts including instructions for each design. Step-by-ste,
plan, all Transistors speaker, personal speaker, personal 'phone,
knobs, screws, otc., and all you knobs. screws, otc., and ally you
need. Box size 14 $10^{\prime \prime} \times 2^{\prime \prime}$ (parts available separately). Send only 39/6 + 4/6 P. \& P. Money back guarantee.

CONCORD ELECTRONICS LTD. (W.W. 12)

gwestbourne Grove, London, W.2. (or. Bayswater Tube) (Callers 9-6 inc. Sat.)

Automatic Voltage Regulators and Stabilizers

G. N. PATCHETT

This new edition takes into account the availability of electronic voltage-sensitive relays for operating tap-change transformers, and the improvements made in transistorized power supplies.
90s ($£ 4.50$) net

Electric Wiring Diagrams

R. H. LADLEY

Much expanded, to include the material necessitated by the 14th edition of the I.E.E. Wiring Regulations. Indispensable for the student, teacher and practical man.
28s (11.40) net
Paperback 15s (75p) net

Systematic Electronic Fault Diagnosis

T. H. WINGATE

Already validated in use on R.N. Training courses. Will be of help for courses such as City and Guilds R.T.E.B. Certificate.
27s 6d (f1.37) net
Paperback 17s 6d (87p) net

Worked Radio
 Calculations

A. T. WITTS

Over 300 worked examples, with the solutions to typical mathematical problems occurring in exams for radio mechanics and wireless operators. Plus a new chapter on calculations in transistor circuitry and servicing.
$16 s(80 p)$ net

Storage Batteries
 G. SMITH

An up to date survey, now established as a guide for the user and student and lecturer.
30s (£1.50) net

Radio Upkeep and Repairs

A. T. WITTS

A handbook on servicing and receiver maintenance, full of valuable hints . . "an invaluable guide and store of information." Practical Wireless.
20s (51.00) net

PITMAN PUBLISHING 39 PARKER STREET
LONDON WC2 B 5PB

SILICON TRANSISTORS 1,000,000 FOR SALE

Clearance of pnp Silicon Alloy Transistors from the $2 S 300$ (TO-5) and $2 S 320$ (SO-2) range and similar to the OC200205 and BCY30-34 series. Available only from us at a fraction of the manufacturing cost. All these devices would normally be subject to re-selection for industrial use but owing to company policy change have been made avallable to us surplus to requirements. Offering these transistors in varied quantities make them ideal for Amateur Electronics, Radio Hams and for experimental use in Schools, Colleges and Industry.
Supplied uncoded (no warranty by the manufacturers). But our assurance given that a minimum of 80% will be found to be good usable Silicon Alloy Transistors. Please state preference of type, i.e., TO-5 2S300 or SO-2 2 S320.
Approximate count by weight:
100 off-15s. (plus p. \& p. 2s.)
300 off- 1115 s . (plus p. \& p. 3s.)
500 off- 62 10s. (plus p. \& p. 3s. 6d.)
1,000 off- $\mathrm{C4}$ (plus p. \& p. 5s.)
10,000 off- 635 (plus p. \& p. Ils.)
Large quantities quoted for on request.
EXPORT ENQUIRIES WELCOME
All correspondence, cheques, postal orders, etc., to:

DIOTRAN SALES

P.O. BOX 5

63a High Street, Ware, Herts. Tel: WARE 3442

LAN-0				TELTMON 1 WES	
NEW TUBES Lawson "Century 99" are brand now tubes. Using silver activated screens, micro fine aluminizing, high definition electron guns. resulting in superb				REBUILT TUBES Lawson "Red Label" rebuilt crts are partlcularly useful where cost is a vital factor such as in older sets or rental use. Red Label are completely rebuilt from REBUILT selected glass and are exact TUBES replacements.	
long life.	$\begin{aligned} & 14 \prime \\ & 17{ }^{\prime \prime} \\ & 19^{\prime \prime} \\ & 21 \prime \end{aligned}$			$\begin{aligned} & 4.10 .0 \\ & 4.12 .6 \\ & 4.17 .6 \\ & 6.10 .0 \\ & 6.19 .0 \end{aligned}$	2 years Guarantee
LAWSON TUBES		6.19 .0			
I8CHURCHDOWNRD.	$23:$	8.15 .0 9.15			FULL TUBE FITTINGS
18CHURCHDOWNRD.	19 "	8.10 .0	PANORAMA		INSTRUCTIONS SUPPLIED
MALVERN, WORCS.	23'	11.10 .0 917.6	PANORAMA		CARr.ins.ey express passenger
Telephone: MALVERN 2100	$23^{\prime \prime}$	13.10 .0	TWIN PANEL		14-19' 12/6d. 21-23' $15 /-$

TRANSFORMERS douglas guaranteed

$\square \begin{cases}\boxed{\circ} & \square \\ \square & \square\end{cases}$
 PRINTED circuits

electronic equipment manufacturers Large and small quanti ties. Full design and Prototype Service, Assemblies at Reasonable Prices. P.O. Approved Let us solve your problems
K. J. BENTLEY \& PARTNERS 18 Greenacres road. oldham

Tel: 061-624 0939

LOW COST TRANSISTORS

Type LA102 N.P.N. Silicon planar equivalent to 2N2926 and 2N3708. Data sheet supplied with all
orders or Free on request
sample $1 / 9 \mathrm{~d}$. orders or Free on request

$\mathbf{1}$ - Each per $\mathbf{1 , 0 0 0}$

 I'3 Each per 100LANTERN electronics
17 Buckrldge, Portpool Lane, London, E.C. 1

WW-134 FOR FURTHER DETAILS

VACUUM

OVENS, PUMPS, PLANT, GAUGES, FURNACES, ETC. GENERAL SCIENTIFIC EQUIPMENT EX-STOCK, RECORDERS, PYROMETERS, OVENS, R. F. HEATERS. FREE CATALOGUE.
V. N. BARRETT \& CO. LTD. I MAYO ROAD, CROYDON, CRO 2RP. 01-6849917

WW-135 FOR FURTHER DETAILS

NEW 5th EDITION

 REFERENCE DATA FOR RADIO ENGINEERSby I.T.T.
19.10 .0

Post Free
RELIABLE ELECTRONIC AS SEMBLY PRODUCTION by C. E. Jowett. 85/-. Postage $2 /$-.

THE ALL-IN-ONE TAPE RECORDER BOOK by J. M. Lloyd. 20/-. Postage 1/-.
AUDIO CYCLOPEDIA by Howard M. Tremaine. 14.5 .0 . Postage Free.

COLOR FILM FOR COLOR TELEVISION by Rodger J. Ross. 40/Postage I/-
FUNDAMENTALS OF INTE GRATED CIRCUITS by Lothar Stern. 50/-. Postage 2/-.

TELECOMMUNICATIONS POCKET BOOK edited by T. L. Squires. 24/-. Postage 1/-.

AMATEUR RADIO TECHNIQUES by Pat Hawker. 20/-. Postage I/-

SCR MANUAL by General Electric Company. 25/-. Postage I/6.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
|9-2| PRAED STREET,
LONDON, W. 2
Phone PADdington 4185
Closed Sat. I p.m.

NEW! HANDY! TIDY! multi-drawer

I-N-T-E-R-L-O-C-K-I-N-G
 storage
 units
 A PLACE
 FOR
 EvERYTHING
 Evervthing
 IN ITS
 PLACE!

Newest, neatest, system ever devised for storing small parts and components: resistors. capacitors. diodes.
ransistors, etc. Rlgid plastic units, interlock together in rransistors. etc. Rigid plastic units. interlock together in
vertical and horizontal combinations. Transparent plastic drawers have label slots/handies on frons. Build up any size cabinet for wall. bench or table top.

BUY AT TRADE PRICES!

SINGLE UNITS (5ins $\times 2 \frac{1}{4}$ ins $\times 2 \frac{1}{4}$ ins)
Usually $2 / 6$ each. OUR PRICES: 24/- DOZEN DOUBLE UNITS (5 ins $\times 4 \frac{1}{2}$ ins $\times 2$ itins)
Usually $4 / 6$ each. OUR PRICES: $40 /-$ DOZEN
PLUS QUANTITY DISCOUNTS!
Orders $£ 5$ and over DEDUCT $1 /$ in the $£$
Orders $\mathbf{E 2 0}$ and over DEDUCT $2 /$ in the \mathbf{E}
PACKING/POSTAGE/CARRIAGE: Add $6 /-$ to all orders PACKING/POSTAGE/CARRIAGE: Add $6 /-$ to all orders
under $£ 3$. Orders $£ 3$ and over, packing/postage/carriage QUOTATIONS FOR LARGER QUANTITIES
(Dept. WW9). 31, ALBERT ROAD.
HENDON, LONDON, N.W.4.
\star GENERAL TRANSISTOR PRE-AMPLIFIER \star

BAKER 12 in. MAJOR £9
 30-14,500 c.p.s., 12 in . double cone, woofer and tweeter cone together with a BAKER ceramic magnet assembly having a flux density of 14,000 gauss and a total flux of 145,000 Maxwells. Bass resonance 40 c.p.s. Rated 20 watts. Voice coils available 3 or 8 or 15 ohms. Post Free. Module kit, 30-17,000 c.p.s. Size $19 \times 12 \frac{1}{2}$ in. with tweeter, crossover, baffle, instructions. \&||.|0.0 Ideal for HI Fi or P.A. LOUDSPEAKER CABINET WADDIN
18 in . wide, $3 /-$ per ft . run. 18 in . wide, $3 /-$ per ft. run
Post $2 / 6$ per order.

THE INSTANT BULK TAPE
ERASER AND RECORDING HEAD DEMAGNETISER
$\begin{array}{lll}\text { 200/250 A.C. } & 47 / 6 & \text { Post } \\ \text { Leaflet S.A.E. } & 2 / 6\end{array}$
RETURN OF POST DESPATCH - CALLERS WELEOME HI-FI STOCKISTS - SALES - SERVICE - SPARES
RADIO COMPONENT SPECIALISTS
337 WHITEHORSE ROAD, CROYDON. Tel: 01-684-1665

BAILEY PRE-AMPLIFIER

High quality preamplifier circuit described by Or. A. R. Bailey in the December, 1966, "Wireless World. This is a low distortion circuit of great versatility with a maximum output of 30 W Amplifiers,
suitable for driving Bailey 20 W and 30 W . Linsley Hood Class A Amplifier and many others. All normal pre-amplifier facilities and controls are incorporated. A new Printed Circuit Board containing latest modifications 7 in . by $3 \frac{3}{4} \mathrm{in}$. features edge connector mounting, roller tinned finish and silk screened component locations. This board is available in S.R.B.P. material or fibreglass and the complete Kit for the unit contains gain graded BC. 109 transistors, polyester eapacitors and metal oxide resistors where specified.

BAILEY 30W AMPLIFIER
All parts are now available for the 60 -volt single supply rail version of this unit. We have also designed a new Printed Circuit intended for edge connector mounting. This has the component locations marked and is roller cinned for ease of assembly. Size is a/so in Fibreglass 14/6d.

BAILEY 20W AMPLIFIER

All parts in stock for this Amplifier including specially designed Printed Circuit Boards for pre-amp and power amp. Mains Transformer for mono or stereo primary for use with CZ6 Thermistor, $35 / 6 \mathrm{~d}$., post prim
$5 /-$.
Trifilar wound Driver Transformer, 22/6d., post $1 / \%$ Power Amp. PC Board, 12/6d., post'9d.
Reprint of "Wireless World " articles, 5/6d. post free.
DINSDALE IOW AMPLIFIER
All parts still available for this design.
Reprint of articles $5 / 6 \mathrm{~d} .$, post free.
LINSLEY HOOD CLASS A AMPLIFIER
Pares now available for this unit including special matt black anodised Metalwork and all power supply components.

PLEASE SEND S.A.E. FOR ALL LISTS.

HART ELECTRONICS,

32I Great Western St., Manchester 14 The firm for quality.
Personal callers welcome, but please note we are closed all day Saturday.

CLASSIFIED ADVERTISEMENTS

 Use this Form for your Sales and WantsTo "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.I
PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

Rate: 8/w PER LINE. Average seven words per line.
NAME
ADDRESS
in advertisement.
Box No, Allow two words plus $1 /-$
Charges etc, payable to "Wireless World" and crossed "\& Co."

Press Day 5th November for December 1970 issue.

I				
	-			
			REMITTANCE VALUE.ENCLOSED

Please write in block letters with ball pen or pencil.
NUMBER OF INSERTIONS

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 113-125

	Page		Page
A1 Factors.	129	Garrard Eng. Ltd.	16, 17
Acoustical Mfg. Co. Lid. .	19	General Video Systems Ltd..	42
Adcola Products Ltd.	30	Goldring Manufacturing Co. Ltd..	47, 52
Adler, B. \& Şons (Radio) Ltd.	32	Grampian Reproducers Lid..	130
A.K.G. Equipment Ltd.	132	Greenwood, W. (London), Ltd.	39
Altec Lancing International.	23	Hall Electric Ltd.	37
Anders Electronics Ltd. .	22, 34	Harmsworth Townley \& Co.	
A.P.T. Electronics.	14	Harris Electronics (London) Lid.	40
Associated Automation Lid.	11	Harris, P.	131
Associated Elec. Eng. Ltd..	38	Hart Electronics.	133
Ates Electronics Ltd.	48	Hatield Instruments Ltd.	60
Audio Eng. Ltd.	56	Heath (Gloucester) Ltd.	20, 21
Auriema Ltd.		Henry's Radio Ltd.	86, 87
Banner Transformers	88	Henson.	
Bantex Ltd..	46	Hi-Fi Year Book.	59
Bardon Electronics	128	Highgate Acoustics.	56
Barrett, V. N.	132	I.C.S. Ltd.	63
Batey, W., \& Co.	28	I.M.O. (Electronics) Ltd.	35, 36
Bauch, F. W. O., Ltd. .	26	Industrial Instruments Ltd.	48
Bentley Acoustical Corporation	98	Instructional Handbook Supplies.	127
Bentley, K. J., \& Partners.	132	Instrument Control Eng.	92
B.I.E.T	13	Integrex Ltd.	128
Bi-Pak Semiconductors	81	International Rectifier Co. Ltd.	43
Bi-Pre-Pak Lid.	89	Ivoryet	133
Black, J.	9, 130		
Bowthorpe-Hellerman Led.	18	J.E.F. Electronics.	130
Bradley, G. \& E., Ltd.	er iii	Keytronics.	
Britec Ltd.	39	Kingshill Electronics	63
Brookdeal Electronics Ltd.	2	K.S.M. Electronics.	61
Brooklands Plating Co. Lid.	127		
Brown, S. G., Lid.	38	Lantern Electronics	132
		Lasky's Radio Ltd.	90
C.W.C. Equipment Ltd.	12	Lawson Tubes.	132
Carr Fastener Co. Ltd.	75	Leda Tapes.	131
Carston Electronics Led.	28	Ledon Instruments Ltd.	58
Cesar Products Lid. (Yukan)	128	Levell Electronics Ltd.	8
Chandos International		Lexor Dis-Boards Ltd. .	62
Chilmead Ltd.	5, 129	Light Soldering Developments Ltd.	22, 49
Colomor (Electronics) Ltd.	2, 109	Limrose Electronics.	48
Computer Sales \& Service Ltd.		Lind-Air Optronics (Industrial) Ltd.	44, 132
Concord Electronics.		Linear Products Ltd..	62
Concord Instrument Co.	128	Lloyd, J. J., Insts. Ltd..	
Croydon Precision Inst. Co		London Central Radio Stores	130
		London Computer Training Services.	
Deimos Ltd. . Diotran Ltd.		L.S.T. Components.	
Douglas Electronic Ind. Ltd.		Macfarlane, W. \& B. (Trading \& Elect	
Drake Transformers Ltd.	33	Magnetic Tapes Ltd.	60
Dynamco Ltd.	30	Marshall, A., \& Son (London) Lid.	92, 100
		McKnight Crystal Co.	128
Eagle International.	32	McMurdo Instrument Co. Ltd.	40
Eastlake Electronics.	127	Millbank Electronics.	46
E. B. Instruments.	130	Mills, W.....	98,99
Electrical Who's Who.		Milward, G. F. .	
Electronic Brokers.	3, 127	M.O. Valve Ltd. .	53
Electronics (Croydon) Ltd.		Modern Book Co..	132
Electrosil Led. .	69, 74	Morganite Resistors Ltd.	10
Electrovalue.		Mullard Ltd.. .	15, 50, 51
Electro-Tech. Sales.		Multicore Solders Lrd.	Cover iv
Electro-Winds Ltd..			
Elekon Enterprises.		Nombrex Lid.	
English Electric Valve Co. Lrd.	5, 7, 9	Olympic Transformers Ltd..	48
Erie Electronics Ltd..	4	Omron Precision Controls.	35,36
Farnell Instruments Ltd..		Osmabet Ltd.	127
Ferrograph, The, Co. Ltd.	67, 73	Pattrick \& Kinnie .	96
Firnor-Misilon Ltd.		P.C. Radio Ltd. .	109
Futuristic Aids Ltd. .	58	Pembridge College, The.	60
Fylde Electronic Laboratories.	59	Pitman Publishing.	131

Powertran Electronics
Page
Powertran Electronics 129
Practical Electronics. 61
Proops Bros. Lrd. 82
Q. Max (Electronics) Ltd. 52
Quality Electronics Ltd. 58
Quartz Crystals Co. Ltd 130
Racal Instruments Ltd. 70
Radio \& T.V Components Ltd. 93
Radio Components Specialists 133
Radio Exchange Co. 129
Radiospares Ltd. 88
Ralfe, P. F. 80
Rank Wharfedale Lid. 26
Rendar Instruments Ltd. 58
Reslo Mikes Ltd. - 36
Rola Celestion Ltd. 54
R.S.C. Hi-Fi Centres Lid. 85
R.S.T. Valves. 90
Samsons (Electronics) Lid. 82
Sankyo Seiki Mfg, Co. Ltd. 24
Sansui Electric Co. Lid. 31
S.E. Laboratories (Eng.) Ltd. 72
Selray Book 129
Service Trading Co. 96, 97
Servo \& Electronic Sales Lrd. 108
Short Wave Magazine Ltd. 86
Showa Musen Kogyo Co. 57
Sinclair Radionics Led. 76, 77, 78, 79
S.M.E. Ltd. 41
Smith, G. W. (Radio), Ltd. 105, 106, 107
Smith, J., Ltd. 56
S.N.S. Communications Ltd. 61
Solartron Electronic Group Ltd. 68, 7,1
Special Products Lid. 59
Starman Tapes 127
S.T.C. Mobile Radio. Cover ii
Stephens Electronics 54, 101
Stockton Partners. 127
Sugden, J. E.. 42
Sutton Electronics 128
Telequipment ${ }^{\circ}$ Ltd. 64
Teleradio, The, Co. (Edmonton) Ltd. 130
Telford Products Ltd 44
Teonex Lid. 45
Thorn Radio Valves \& Tubes Ltd. 66
Tinsley, H... 24
Trio Corporation. 12
Ultron. 55
Universal. 128,130
Valradio Ltd. 22 127
Ver Controls (St. Albans) Ltd.
Ver Controls (St. Albans) Ltd.
Vitality Bulbs Ltd. 32, 46
Vitavox Ltd. 62
Vortexion Lid.. 25
Watts, Cecil E., Lid. 127
Wayne Kerr, The, Co. Lid. 27
Webber, R. A., Ltd. 42
Wel Components Ltd. 28
Welwyn Electric Ltd. 29
West Hyde Developments Lrd. 130
West London Direct Supplies. 84
Wilkinson, L. (Croydon), Ltd. 86
Z. \& I. Aero Services Lid. 110

From Bradley. A Modular Pulse Generator

The two modules on the left form a complete square wave generator giving outputs up to 6 V into 50 hms . over the range 1 Hz to 50 MHz
The four on the right form a sophisticated pulse generator giving full variable pulse width and delay facilities, with double pulse output over the same range of p.r.i,
If all this can be done with a blank space in the main frame, think what you can do when you add the other five missing modules . . The
Bradley 176 provides an almost limitless variety of complex pulse patterns. The UK price of this
instrument is $£ 350$ in standard form.
All Bradley instruments can be supplied with a
British Calibration Service Certificate. Ask for details.

The world's industry uses a mile of Ersin Multicore solder every... 3minutes? 3hours? 3days?

The answer is every 3 minutes !
A mile of Ersin Multicore Solder is used every 3 minutes during normal working hours. That shows how the world's leading electronic manufacturers rely on Ersin Multicore 5 core Solder for thousand upon thousand of fast, economic and consistently reliable joints.

If in Britain or overseas you make or service any type of equipment incorporating soldered joints, and do not already use Ersin Multicore Solder, it must be to your advantage to investigate the wide range of specifications, which are available.

Besides achieving better joints-always - your labour costs will be reduced and substantial savings in overall costs of solder may be possible. Solder Tape, Rings, Preforms, and Pellets - Cored or Solid - and an entirely new type of cored disc, can assist you in high speed repetitive soldering processes.

EXTRUSOL The first oxide free high purity extruded solder for printed circuit soldering machines, baths and pots, is now available to all international specifications, together with a complete range of soldering fluxes and chemicals.

Should you have any soldering problems, or require details on any of our products, please write on your company's note paper to:
MULTICORE SOLDERS LTD., HEMEL HEMPSTEAD, HERTS.
Tel. No. Hemel Hempstead, 3636, Telex : 82363.

EXTRUSOL

Extrusol high purity extruded solder, available in 1 lb . and 2 lb . bars, and also Extrusol pellets, for printed circuit soldering machines, pots and baths, polythene protected.

GALLON CONTAINERS

All liquid chemicals and fluxes supplied in 1 gallon polythene 'easy pouring' containers, with carrying handle.

7lb.REELS

Available in standard wire gauges from 10-22 swg., on strong plastic reels.

1lb.REELS

Available in all standard wire gauges from 10-34 swg., on unbreakable plastic reels. (From 24-34 swg. only $\frac{1}{2}$ lb. is wound on one reel)

THiE FINEST CORED SOLDER IN THE WORLD

[^0]: Symbols for Active Devices
 High-quality Tape Recorder by 7. R. Stuart
 Home Video Again
 News of the Month
 London Audio Fair Exhibitors
 The Design \& Use of Moving-coil Loudspeaker Units by E. F. Fordan
 Tone Control Circuit by P. B. Hutchinson
 November Meetings
 WESCON Show 1970 by Aubrey Harris
 H. F. Predictions

 Elements of Linear Microcircuits - 2 by T. D. Towers
 Announcements
 Circuit Ideas
 Letters to the Editor
 Electronic Building Bricks - 6 by fames Franklin
 Automation in Broadcasting
 Active Filters - 15 by F. E. f. Girling \&o E. F. Good
 Engineers' Salaries
 New Goonhilly Station uses Microstrip Circuits
 EVR to PAL from RBM
 U.H.F. Tuner Design

 Battery Applications and Developments
 R.F. Resistance and Electroplating

 World of Amateur Radio
 New Products
 Literature Received
 Personalities
 Real \& Imaginary by Vector
 APPOINTMENTS VACANT
 INDEX TO ADVERTISERS

[^1]: *Marconi Instruments Ltd.

[^2]: *H.M.S.O. 8s 6d

[^3]: \dagger Now available in the U.K, from Tektronix UK Lid. -Ed.

[^4]: * Buddhism has been a strong influence in Japan, and a characteristic feature of this philosophy/religion is the lack of importance of the individual and the "one-ness" of all living creatures.
 \dagger A lecture on 'TOPICS' will be given at a Royal Television. Society meeting on 3rd December by Eric Rout of the B.B.C. Research Department (7.00 p.m., I.T.A., 70 Brompton Road, London, S.W.3.)

[^5]: *Royal Radar Establishment.

[^6]: *Which corresponds to a ladder of the type shown in Fig. 13(c) of Part 12 (July 1970).

[^7]: Please send orders and enquiries to
 RANK WHARFEDALE BOOK DEPT. B.W.S. 13 WELLS ROAD ILKLEY YORKS LS29 9AZ
 Telephone: ILKLEY 4246

[^8]: To: ADCOLA PROOUCTS LTO., (Depth). AOCOLA HOUSE TO: ADCOLA PROOUCTS LTD.: (Dept H), AOCOLA HOUSE,
 GAUDEN ROAD, LONDON, S.W.4. Telephone: $01-622$ 0291/3 Telegrams: Soljoint London Telex - Telex: Adcola London 21851

 - Please send me free Long-life bit.
 - NAME

 POSITION.
 NAME OF COMPANY \qquad
 ADDRESS

 TYPE OF SOLDERIMG INSTRUMENT
 \square

[^9]: Dynamco, Broxburn,

 DYNAMCO

[^10]: All over the 5 continents and the 7 seas Bantex aerials are helping to maintain reliable communications. Day in and day out.

 Bantex aerials are selected because of their established reputation for reliability. A reputation earned over many years.

 Bantex manufacture all types of marine aerials and for land use they have a range of mobile and base station aerials which operate through all bands and are used by the armed forces, police, taxi networks and industry.

 Bantex are best known for glass fibre aerials made by a unique process giving high strength. Other designs utilise metallic and other materials.

 The photograph shows two boats of the Ford team in the 1969 Round Britain Power Boat Race. Both used Bantex aerials.

[^11]: Symbols for Active Devices
 High-quality Tape Recorder by 7. R. Stuart
 Home Video Again
 News of the Month
 London Audio Fair Exhibitors
 The Design \& Use of Moving-coil Loudspeaker Units by E. F. Fordan
 Tone Control Circuit by P. B. Hutchinson
 November Meetings
 WESCON Show 1970 by Aubrey Harris
 H. F. Predictions

 Elements of Linear Microcircuits - 2 by T. D. Towers
 Announcements
 Circuit Ideas
 Letters to the Editor
 Electronic Building Bricks - 6 by fames Franklin
 Automation in Broadcasting
 Active Filters - 15 by F. E. f. Girling \&o E. F. Good
 Engineers' Salaries
 New Goonhilly Station uses Microstrip Circuits
 EVR to PAL from RBM
 U.H.F. Tuner Design

 Battery Applications and Developments
 R.F. Resistance and Electroplating

 World of Amateur Radio
 New Products
 Literature Received
 Personalities
 Real \& Imaginary by Vector
 APPOINTMENTS VACANT
 INDEX TO ADVERTISERS

[^12]: * Now with 3-year guarantee on all parts

[^13]: Prices quoted are current at time of going to press, E. \& O.E. and may be subject to variation without notice. Address your order to:
 Items listed not in current production will be withdrawn when stocks advertised are sold. Semi-conductors offiered Ad
 Terms of Businessi Retail
 of satisfactory references.

 7 COPTFOLD ROAD, BRENTWOOD, ESSEX

[^14]: FIEMi's RAD|O LTDOMAIL ORDER AND INDUSTRIAL SALES DEPT. 303. EDGWARE ROAD LONDON W. 2 01.723 1008/9

 - ELECTRONIC COMPONENTS AND EQUIPMENT

 AUDIO AND TEST GEAR
 356 EDGWARE ROAD LONDON W. 2
 TEL. 01.4024736

 - ELECTRONIC ORGANS, PUBLIC ADDRESS

 DISCOTHEQUE EQUIPMENT
 309 EDGWARE ROAD LONDON W. 2
 TEL. 01. 7236963

 - high fidelity sales

 AND DEMONSTRATIONS
 354, EDGWARE ROAD LONDON W. 2 TEL. $01 \cdot 4025854$

[^15]: 28 CRICKLEWOOD BROADWAY, LONDON, N.W. 2
 CALLERS WELCOME $9-5.30$
 SATURDAY 9.5 28 CRICKLEWOOD BROADWAY, LONDON, N.W. 2
 CALLERS WELCOME $9-5.30$
 SATURDAY 9.5 28 CRICKLEWOOD BROADWAY, LONDON, N.W. 2
 CALLERS WELCOME $9-5.30$
 SATURDAY 9.5 SEE DUR MAIN ADVERTISEMENT ON PAGE 100 fOR SEMICONDUCTORS

[^16]: ADD 5d. PER ITEM. FOR POST AND PACKING FOR ORDERS UNDER 24 PIECES.

