Sound and TV receiver techniques

 100-watt quality amplifier

From Bradley. A £340 DVM

 with six big extras at no extra cost.Bradley's compact 173 Digital
Yoltmeter will cost you only $£ 340$.
And at that price you mightn't expect any extras.
The 173 gives you six.
For instance, there's a scale length of $25 \mu \mathrm{~V}$ to $1,000 \mathrm{~V}$ d.c. and with. 50% overrange, maximum reading is 1500 V d.c. with annaccuracy of 0.01%
There's guarded input giving high common mode rejection $>140 \mathrm{~dB}$ at line frequency.

There's display storage.
And 1-2-4-8 BCD data outpute
There is a standard unsaturated céll as an internal calibration reference. And the. 173 gives you automatic indication of'polarity.
lh one small package, the 173 gives you a lot of DVM for your money.

All Bradley instruments can be supplied with a British Calibration Serviče Certificate.
Ask for details.

G\&EBRADLEYLTD

Electral House, Neasden Lane
London. NW10
Tely 01-450 7
Telex: 25583

A Lucas Company

BRADLEY
 electronies

Expect more from us

Wireless World

Electronics, Television, Radio, Audio

Sixtieth year of publication

This month's cover picture, showing the latest Burndept Electronics radiotelephone in use at an airport, draws attention to the continuing expansion in mobile radio communications, the technical problems of which are discussed in the report on page 494.

IN OUR NEXT ISSUE

Loudspeaker driver units. The fundamental parameters of moving-coil speakers will be examined and some new thinking introduced by Ted Jordan.

The first of a series of three articles on the design and construction of a high-quality tape recorder.

Details of an extra-versatile tone control.

October 1970
Volume 76 Number 1420

Contents

471 The Dehumanization of Broadcasting

472 Elements of Linear Microcircuits-1 by T. D. Towers

501 A MG Radiometer \& Temperature Controller by I. 7. Kampel

505 Active Filters-14 by F. E. 7. Girling \& E. F. Good
511 Current Generators by B. L. Hart

A142 INDEX TO ADVERTISERS

ibpa

I.P.C. Electrical-Electronic Press Ltd Managing Director: George Fowkes Publishing \& Development Director: George H. Mansell
Advertisement Director: Roy N. Gibb Dorset House, Stamford Street, London, SE1
© 1.P.C. Business Press Ltd, 1970
Brief extracts or comments are allowed provided acknowledgement to the journal is given.

PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: 01-928 3333 (70 lines) Telegrams/Telex: Wiworld Bisnespres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home; \& 3 Os Od. Overseas; 1 year $£ 30 \mathrm{~s} 0 \mathrm{~d}$ ((Canada and U.S.A.; $\$ 7.50$). 3 years $K 713 \mathrm{~s}$-Od. (Canada and U.S.A.; $\$ 19.20$). Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notuty a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 202, Lynton House, Walsall Road, 22b. Telephone: 021-356 4838. BRISTOL: 11, Elmdale Road, Clifton, 8. Telephone: OBR2 21204/5. GLASGOW: 2-3 Clairmont Gardens, C.3. Telephone: 041-332 3792. MANCHESTER: Statham House, Talbot Road, Stretford, M32 OEP. Telephone: 061-872 4211: NEW YORK OFFICE U.S.A.: 205 East 42nd Srreet, New York 10017. Telephone: (212) 689-3250.

How we made thyristors a commercial proposition for consumer products

Three years ago a Mullard design team was given the problem of developing thyristors for motor speed control in washing machines and drills. Thyristors offered important advantages over conventional power control methods, but at that time, production was confined to relatively expensive industrial devices. The high unit cost was essentially due to specialist production techniques.

Two Requirements The Mullard team set about designing inexpensive thyristors, together with triggering devices, for use on domestic mains supplies. Two current handling capabilities were identified as being necessary to meet the range of
applications-6.5A for washing machines and other heavy current loads, and 2A for drills and lighter loads.

Within six months two consumer type thyristors, BT101 and BT102, had been developed for 6.5 A applications, and they were soon in mass production. Now these devices, in the TO-64 studmounted metal encapsulation, are well established.

Low-cost Plastic After further design work, a new plastic device, the BT100A, was introduced to meet the lower current requirements. Plastic power device technology is highly specialised, and only intensive effort over many years has resulted in the highly automated manufacturing techniques which ensure extremely good reliability.

Computer Testing To cope with the necessary high rate of production, computer techniques were introduced to record test results and to allow automatic grading. The testing cycle was significantly shortened by the use of high-current pulses for directly heating the thyristor crystal. This is one of the best automated methods of testing breakdown voltages at the highest junction temperätures.

The result? A range of thyristors capable of meeting all the consumerappliance manufacturers' current needs,
and of improving both the efficiency of power-control and the usefulness of the units controlled. They offer consumer product manufacturers smooth, continuous and efficient power control.

Worth it? Right from the beginning we've had everything under our control, so that we can be sure the product will give consistent service. This also enables us to relate quality with the best possible price. Something which applies across the very wide Mullard component range. Our components find applications as unexpected as Astronomy and Zoology, giving us experience in many technologies. Experience our customers now take for granted.

Mullard

 components for consumér electronicsMullard Limited
Consumer Electronics Division
Mullard House Torrington Place
London WC1E THD

Editor-in-chief:

W. T. COCKING, F.I.E.E.

Editor:

H. W. BARNARD

Technical Editor:

T. E. IVALL

Assistant Editors:
B. S. CRANK
J. H. WEADEN

Editorial Assistant:
J. GREENBANK, B.A.

Drawing Office:
H. J. COOKE

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
G. J. STICHBURY
R. PARSONS (Classified Advertisement Manager)

Telephone: 01-928 3333 Ext. 533 \& 246.

The Dehumanization of Broadcasting

Karl Marx, were he alive today, might have written that famous aphorism of his as: "Television . . . is the opium of the people". The fact that television is an opiate is generally blamed on the programme producers: the broadcasting engineers are inclined to take a superior, professional attitude and disclaim any responsibility for the material that is passed through their channels. Indeed some engineers, particularly in America, treat the programmes with open contempt. (The slang word "canned" used for recorded programmes is an implicit grouping of the creations of art and intellect with beer, soup, baby-food and other mass-produced commodities of a sloppy nature.) But it is too easy for the engineers to shelter in their sectarianism. They must become more aware of the effects of their work, their aims and attitudes, on the quality of what is broadcast. These effects may be indirect but are nonetheless real.
Anyone who has worked in mass-production industries will know that there is a strong pressure on designers to fashion their goods not so much for the convenience of the human customers as for the convenience of the production machinery. This, of course, increases manufacturing efficiency. If the resulting goods are not exactly what the customer likes he can always be persuaded to think that they are, by clever advertising. Equally it is well known that people must be continuously pressurized into buying goods which they may not really need, in order to keep the manufacturing plant fully loaded and hence economic-and, incidentally, to avoid unemployment and loss of consumers. The engineer, of course, has a vested interest in the design, manufacture and operation of the production machinery.
A similar situation is now developing in broadcasting. The mental and spiritual "goods" are becoming subservient to the broadcasting machinery, which is designed and operated by engineers whose main purpose is to achieve the most efficient distribution of canned, pre-digested, brightly packaged, expertly timed, second-hand experience to a mass audience.

At all costs the broadcasting machinery must be made efficient-and this seemed to be the cry at the recent International Broadcasting Convention in London (see p.484), where one of the main themes was the application of automation to broadcasting. One American contributor proudly remarked that the on-line computer programme for his computer-controlled broadcasting system had been "developed and documented to the point where it can be used as a general purpose program for any industry such as planning the production of manufactured goods."
Automation is fine, in so far as it relieves people of monotonous work, reduces operating costs and improves the technical quality of the broadcast programmes. But experience from industry shows that it is also a means by which the human being is even more completely enmeshed and demoralized by the production machinery. He is not driving but being driven, as Charlie Chaplin showed in "Modern Times", and now his brain is involved as well as his reflexes.
Nevertheless, one speaker at the I.B.C., on being asked why he had expressed disquiet about too much automation in broadcasting, said "because it can be destructive of human initiative and art". This speaker was an engineer. So there is at least one man who understands that the true work of engineers is not simply the perpetuation of engineering.

Elements of Linear Microcircuits

\author{

1. What a linear microcircuit is, how it is made and packaged
}

by T. D. Towers*, m.B.E

What are these microcircuits that have revolutionized circuit design? In widest terms, they are a sort of supercomponent consisting of a number of circuit elements inseparably associated in a small package. In the ultimate they reduce the equipment designer's job to just fitting together a few prefabricated circuit blocks instead of designing a large complex of separate discrete components. No longer need the electronics experimenter puzzle out the design of a two-transistor 'Ridler' d.c. coupled pair for his tape replay amplifier; he just buys a ready built microcircuit.

Linear and digital: the difference

There are two classes of microcircuits (often called integrated circuits or just i.cs): digital and linear. Digitals are designed for on /off switching applications and provide the equipment designer with a range of complete logic elements, such as AND, OR, NAND, NOR gates, flip-flops and some extremely complex computertype sub-systems. Linear i.cs are for applications where the output is in some. way proportional to the input, and they provide the designer with ready-made d.c., a.f., r.f. and wideband amplifiers.

Digital microcircuits became generally commercially available in the mid-1960s and have been exhaustively discussed in the technical press since then. Linear i.cs did not become readily available until much later, and are only now finding wide use. This series of articles is aimed at the newcomer to the linear field.

Linear microcircuits can be 'multiplepurpose' or 'single-purpose'. Multiplepurpose units are gain-blocks which can be externally pin-programmed to perform a large variety of different circuit functions (usually by fitting different feedback networks). The archetype of these is the operational amplifier \dagger or op. amp. This is a very high gain d.c.-coupled amplifier with a response which is completely defined by feedback. It was the earliest linear microcircuit to become generally available and is the best known,

[^0]Most circuit designers prefer singlepurpose microcircuits, which are complete in themselves and do not need additional circuits designed around before they can be used (as is the case with multiple-purpose linear i.cs). Fortunately, more and more single-purpose linear i.cs are coming on the market, ranging from a simple package of a matched pair of transistors up to a complete $100-\mathrm{W}$ audio power amplifier.

Early developments

Before we look at current methods of microcircuit manufacture, it is of interest to look back over the past three decades at the landmarks in their evolution. Up until World War II, the normal methods of assembling electronic equipment was to mount all the heavier components on some form of chassis, and then interconnect them with point-to-point wiring, either directly or via tag boards.

The first major move towards presentday microcircuits began with the miniature proximity fuses developed for the nose-caps of artillery shells in World War II. These radio-controlled fuses were closely packed assemblies using special valves, but the technique never spread into large scale commercial use because of the bulky valve needed for amplification.

The development of microelectronics really started with the invention of the transistor in 1948. This got rid of the large wasted vacuum space inside the valve, its inefficient heater and the need for a high anode voltage. Assemblies could now be

Fig. 1. Circuit of 1962 linear silicon integrated circuit (Texas Instruments SN5 21 operational amplifier).
much smaller, but they were still only scaled-down versions of the old point-to-point inter-wiring of discrete components.

In the late 1940s, Sargrove in England started a move away from point-to-point wiring. He pioneered a development in which a radio receiver was built on a ceramic substrate \ddagger on which resistors and intercomponent wirings were printed and fired rather than separately mounted. This was one of the earlier experiments in the integration of circuitry, but in spite of it, point-to-point wiring continued unopposed.

Later printed circuit boards (more correctly printed wiring boards) became a commercial reality, and this form of integrated wiring provided another big step towards commercial microelectronics.

The 1950s also saw many different approaches to miniaturization, apart from assembling conventional miniature components on a small printed circuit board. They gave rise to names like 'Cordwood', 'Tinkertoy', 'Micromodule' and '2D', which are now largely of historical interest only. Details can be found in books such as 'Microelectronics' by E. Keonjian. (McGraw Hill, 1963.)

All these forms of microminiature assemblies developed in the 1950s were more expensive than-the standard printed circuit board and they were only used in equipment where cost was not the governing element, military equipment for instance.

Today's microcircuits

In 1958 a development occurred which changed the whole face of things. Kilby of Texas Instruments came up with an interconnected assembly of resistors and transistors made by diffusion in tiny silicon chips. The true monolithic silicon integrated circuit (s.i.c.) had been born. The first of these was a mesa-type r.t.l. (resistor transistor logic) bistable and it used only two chips interconnected by bonding wires in a single package.

In 1960 the celebrated Fairchild planar process for manufacturing transistors was developed which gave a strong impetus to

[^1]the production of monolithic s.i.cs. Early units were the easiest-to-make digital types such as the 1961 Texas Instruments Series-51 r.t.I. But linear s.i.cs were not long in arriving. By 1962, the Texas Series-52 linear i.cs were on the market. Typical of these was the SN521 general-purpose single-chip 62 dB differential amplifier the circuit of which is given in Fig. 1.
In the linear field, however, the general use of linear s.i.cs can be said to have started with the now well known Fairchild $\mu \mathrm{A} 709$ op. amp. which came on the market in quantity in 1965. Since then there has been a proliferation of multiple-purpose linear amplifiers, particularly of the operational amplifier type.
But the linear /s.i.cs available by the mid-1960s did not get the immediate wide usage that their high technical specifications invited. This was partly because production was small and the cost was much higher than a designer could achieve by using conventional component circuitry. Also, run-of-the-mill circuit designers were not skilled at using wideband, high-gain operational amplifier blocks for general purpose circuitry. They would rather have had low-cost single-purpose units.
In this climate, significant developments began along different lines. Techniques developed for producing prefabricated assemblies of resistors, capacitors and interconnections by printing on ceramics (thick film) or vacuum evaporation on glass (thin film) were married to specia! miniature semiconductor devices suitable for attaching to such substrates. Out of this marriage came the hybrid active linear microcircuit, which had advantages over monolithics in some areas. The two main ones were that the hybrid could be fabricated economically in small batches and that single-purpose units could be made up readily.

By the end of the 1960s, many semiconductor manufacturers had gone into monolithic s.i.cs. Cheap standard multiple-purpose linear i.cs had become widely available, but there were not many standard single-purpose units around. You could get a special s.i.c. custom built, but you would have to use very large quantities for it to be economic. As a result, many custom hybrid houses had sprung up. using thick and thin film techniques, to serve the smaller-run equipment manufacturer who could not use the existing standard monoliths and was too small to have a special monolith built for him. Almost as a by-product, these hybrid houses also put on the market standard commercial single-purpose linears.

It is anybody's guess how the demand for linear microcircuits will divide itself up in the future between standard single-purpose, standard multiple-purpose, and custom-built units. One estimate is that ih the 1970s linear applications will be met 50% by off-the-shelf single-purpose standards, 25% by multiple-purpose standards, and 25% by custom specials. As to how far the units will be monolithic and how far hybrid, again there is much
doubt. The chances are that most multiple-purpose standards will be monoliths, most custom units hybrid, and single-purpose units a mixture of monolithic and hybrid.

No reference has been made so far to m.o.s.t. (metal oxide semiconductor technique!) microcircuits which use f.e.ts (field effect transistors) instead of bipolar transistors as the basic circuit elements diffused into silicon chips. They are cheaper to produce than bipolar monoliths, and have already found wide use in low-cost digital applications. However, they are not as yet well suited directly to linear applications. and will not be discussed further here.

As to hybrid technologies, thin film is gradually being phased out for cost and technical reasons, and most hybrids are now thick film.

Monolithic silicon circuit manufacture

Manufacturing monolithic s.i.cs is a highly complex business and many books have been produced on the subject. If you are seeking detailed information, you should consult one of the standard texts, such as Motorola's 'Integrated Circuits-Design Principle and Fabrication', edited by M. Warner (McGraw Hill, 1965). In this article we will give only a sketchy outline of how s.i.cs are made.

The process starts with an ingot, usually about 250 mm (10 in) long and 25 mm (lin) diameter, of highly refined single-crystal silicon, shown in Fig.2(a). The ingot is sawn up into thin slices of which one is shown at- Fig.2(b), and the s.i.cs are made in these slices.

As shown in the enlarged view of a single slice in Fig.2(c), a large number of identical circuits are formed in a regular pattern. Various techniques are used, such as high-temperature diffusion of impurity gases into the slice, selective surface etching of photoresist masking, formation of protective 'glass' (silicon oxide) surface layers, and deposition of metallic interconnections and lead bonding pads on the surface by vacuum evaporation (thin film) techniques. Depending on the area of the individual circuit in the pattern, a single slice typically produces anything from 200 and 2000 identical integrated circuits at the one time.
The slice is next scribed along the dividing lines between the circuits and broken up into individual units. A single circuit then finally appears as at Fig.2(d)-enlarged-in the shape of a square chip between 0.5 mm (0.020 in) and 1.25 mm (0.050 in) across with visible metallization on the surface.
This chip is packaged by bonding it face-up on a support such as the multi-lead TO-5 header shown in Fig.2(e), with the'metallized bonding pads visible on the face. Connections are then made from the header leads to the pads by gold
\$We normally regard m.o.s.L as meaning metal oxide silicon transistor because this describes the structure of the device. That is a metal gate (aluminium) insulated from the drain/source silicon by a layer of silicon oxide. Ed
(a)

(c)

(d)

Fig. 2. Construction of silicon integrated circuits: (a) basic silicon crystal ingot from which process starts; (b) thin slice (wafer) cut from ingot; (c) enlarged view of slice after processing produces large number of identical circuits inside the silicon formed by repeated diffusion, oxidation, and selective etching with final evaporation of surface metallization for interconnections and bonding pads; (d) one of many single-circuit chips obtained by scribing and cracking the complete slice, and (e) individual circuit chip mounted on header with connections to header leads.
or aluminium wire about 0.025 mm (0.001 in) diameter. After being tested, the package is sealed. In the example shown, a metal top cap is fitted by welding round the rim.

From this necessarily brief summary, it should be evident that the basic element in a monolithic s.i.c. is a very small processed thin chip of silicon about the area of a grain of sugar. This makes it clear why high-power dissipation presents a major problem in s.i.cs, because of the difficulty in getting the heat away from the tiny chip. Normally, temperatures inside the chip must be kept below about 150 to $180^{\circ} \mathrm{C}$ and because of its small size it is hard to dissipate much power without exceeding this limit. This also explains why most of the commonly available s.i.cs have a power rating somewhere round 100 to 500 mW (very much the same as a single transistor), and also why most of the high power linear microcircuits on the market tend to use the hybrid fabrication to be described below.

Thick film hybrid fabrication

The assembly of a thick film hybrid starts with a smooth ceramic (aluminium oxide) blank substrate, typically about 25 mm
(1in) square and 0.375 to 0.875 mm (0.015 to 0.035 in) thick, as shown in Fig.3(a).

On to this ceramic (which is an insulator) a matrix of passive circuit elements is screen printed and fired, just like the decorations on a piece of pottery, as shown in Fig.3(b). This produces an identical pattern of resistors, capacitors, insulating layers and metal interconnection runs and bonding pads (the last for attaching discrete components and external leads) in each cell of the matrix.
The large substrate is then scribed along the cell dividing lines and cracked up into individual small circuit substrates. One of these is shown enlarged in Fig.3(c). The next step is to attach any subminiature discrete components required, such as the transistor shown in Fig.3(d), and the final substrate preparation is the attaching of external leads shown in Fig.3(e).
After being tested, the hybrid circuit is encapsulated in some form of protective package, as shown in Fig. 3(f). It can be seen that the dissipating semiconductors can be dispersed over a relatively wider area than is possible in an s.i.c. chip so
(a)

(b)
(c)

(d)

(e)

Fig. 3. Construction of thick-film hybrid microcircuits: (a) Starting ceramic substrate; (b) number of identical R,.C and conductor networks printed and fired on substrate; (c) single circuit substrate scribed and cracked from complete multiple-unit substrate; (d) discrete components such as transistors attached to substrate. (e) Leadout wires attached; (f) circuit encapsulated in protective package.
higher power dissipation is possible. On the other hand, it must also be clear that the overall package size will tend to be larger for hybrids.
The packaging of a microcircuit is of importance not only because it is all that the user sees of the device, but also because it has such an important bearing on cost and reliability. For this reason, the rest of this article will be devoted to packaging aspects.

Microcircuit packaging; the problems

Just as with transistors, microcircuit packages are of two basic types, 'hermetic'
(metal or ceramic and glass) and 'non-hermetic' (plastic). Non-hermetic are much cheaper than hermetic, but have not yet reached the stage where they can be regarded as satisfactory in extremes of temperature and humidity. Thus in high reliability applications, hermetic packages are the rule. Initially only hermetic packages were accepted for professional use, but recently plastics have improved so much that they are creeping in for the less demanding applications.

In commercial linear microcircuits, you will therefore find three grades in the market: (a) Entertainment or Consumer, suitable for use from 0 to $70^{\circ} \mathrm{C}$ and in low humidity environments (and almost always non-hermetic), (b) Industrial, suitable for use from -20 to $+100^{\circ} \mathrm{C}$ and in medium high humidity (mostly hermetic), and (c) Military for -55 to $+125^{\circ} \mathrm{C}$ and high humidity environments (until now always hermetic).
Unfortunately for the user, package standardization for microcircuits is a long way off. We are not yet in the comforting climate of transistors where you can take the same JEDEC standard TO-5 outline device from several different manufacturers and find that the case sizes varied by only a few thousandths of an inch and that the standard emitter-base-collector numbering of leads round the can obtained in every case.
For linear microcircuits at the time of writing there are over 700 different shapes, sizes and lead configurations available. In this chaos of packages offered, however, some trends are beginning to make themselves clear.

Monolithic s.i.c. packages show more standardization than hybrids because they have been around longer. But packages which have reached some acceptance for monoliths have had to be severely modified to encompass the generally larger hybrid element.

With regard to outlines, packages fall into four main classes: (1) low-power packages with leads to be inserted through circuit boards and soldered on the copper side; (2) low-power packages designed to be mounted directly on the copper side with leads attached flat to the metallization by soldering or welding; (3) medium-power packages with integral heat sinks for printed circuit board mounting; and (4) high-power packages designed for attachment to substantial metal chassis or heat sinks.

Low-power through-board-mounting packages

The most common low-power through-board-mounting microcircuit package is the dual-in-line, abbreviated to d.i.l. for the hermetic version and d.i.p. for the non-hermetic or plastic version b. Fig.4(a) shows the main dimensions of the most

[^2]

Fig. 4. Typical common low-power linear microcircuit packages for attachment to non-copperside of printed circuil board: (a) Dual-in-line; (b) single-in-line; (c) multilead TO-5.
common package, the 14 -lead dual-in-line. Variants of the package may have anything from 4 to 24 leads or more. The interlead spacing of $2.54 \mathrm{~mm}(0.1 \mathrm{in})$ in the line of leads is standard (to allow conductor runs between the lead lands on the board). The inter-row spacing of $7.62 \mathrm{~mm}(0.3 \mathrm{in})$ is standard for monolithic s.i.cs, but, for the generally larger hybrid, other spacings such as 15 mm (0.6 in) are common.
Dual-in-lines are not easy to unsolder from circuit boards for servicing, and there is growing up another package style for through-board mounting which is easier to unsolder. This is the single-in-line, of which an example will be found in Fig.4(b). This s.i.l. can be thought of as half of a dual-in-line with the leads straightened into the plane of the device. It too, like the d.i.l., tends to use lead spacings of $2.54 \mathrm{~mm}(0.1 \mathrm{in})$, and is more common in hybrids than monoliths.

Historically the earliest monoliths were developed by semiconductor manufacturers and it was natural that they should package them in modified transistor cases. Fig.4(c) gives an illustration of the multilead TO-5 which may have anything from six to twelve leads. Because of the close lead spacing and the difficulty of removal from a printed circuit board, it is now not very popular with designers.

Low-power copper-side mounting packages

In these days of double-sided printed circuit boards and the demand for space

Fig. 5. Typical low-power linear microcircuit packages for attachment to copper side of printed circuit board: (a) Flat pack; (b) ready-to-reflow dual-in-line with preformed leads.
saving, several packages have been developed for attaching to the copper side of the board. Two are fairly standard.

The flat pack shown in Fig.5(a) was developed by Texas Instruments for their early s.i.cs. With the general adoption of the dual-in-line package described earlier, users who wanted to mount them on the copper side of the board dressed their leads out flat as shown in Fig.5(b). This gave rise to the readv-to-reflow dual-in-line modification which manufacturers are now prepared to supply.

Medium-power microcircuit packages

The packages so far discussed usually cannot dissipate more than a few hundred milliwatts. Other packages had to be developed for higher powers, particularly in the linear field. These tend to fall into two main groups: (a) items designed for powers up to about 5 W without any special substantial external heat sinking, and (b) high-power packages capable of dissipating up to 50 or 100 W .

In the first, medium-power, category, several packages will be met with. Semiconductor manufacturers, accustomed to standard two-pin TO-3 outline power transistors, developed a multi-pin version of this outline, of which Fig.6(a) shows a typical example. On a printed circuit board this can dissipate up to about 2W (and on a substantial heatsink 10W).

Another transistor case used for medium-power microcircuits is the multilead TO-8 transistor package, of which Fig.6(b) is an example. This has twelve pins arranged in a square, but a sixteen-pin version is also available. This package can dissipate up to about 1 W in free air and about 2.5 W clipped to a substantial heat sink.

Fig. 6. Examples of medium-power linear microcircuit packages; (a) Modified multilead TO-3 power transistor package (2-5W); (b) modified multilead TO-8 intermediate power transistor package (1-2W); (c) modified dual-in-line with integral tongued heat $\operatorname{sink}(1 \mathrm{~W})$; (d) modified dual-in-line with integral heat sink for bolting to chassis (3W).

A different approach to a mediumpower package is the integral heat sink. Fairly typical of this is the package sketched in Fig.6(c). This is really a dual-in-line with the leads dressed for reflow soldering and with a strip of metal inside extending from one end for better removal of heat from the chip Permissible power dissipation can be increased by soldering the metal tongue to board metallization or some area of metal. Packages like these are typically capable of dissipations up to $1 W$.

The power dissipation capability of integral heat sink package can be extended by making provisions for bolting to a metal heat sink. One well known example of this is the chassis-mounting integral heat sinc given at Fig.6(D). This package is used for a linear monolithic amplifier with a power output capability of 3 W audio, which has been widely marketed in the United Kingdom. \#

High-power microcircuít packages

Package design becomes a critical problem when we come to linear i.c.s. capable of handling more than a few watts, whether they be monolithic or hybrid. At the time of writing no standard packages have been evolved, but the main features to be expected in such packages can be seen in the illustrative example of Fig.7. This is a $50-\mathrm{W}$ high-quality audio amplifier. In the casing outline at Fig.7(a), you can see that it is a fairly substantial package, $100 \times 50 \times 25 \mathrm{~mm}(4 \times 2 \times$ lin), with flanges for bolting to a chassis or heat sink. The terminals are stout pins issuing from one side of the package, to which connections can be made by soldering or by crimped-tag flying leads. The amplifier is of the quasicomplementary class-B type and the circuit used is shown in Fig.7(b). The main power-dissipating elements are the two output transistors. Some expertise is required to mount these in the package to ensure the most efficient removal of the heat-quite a problem when you realise that the power transistor chips are asked to dissipate internally 30 W apiece.

Sockets for microcircuits

In the early days of transistors, when designers were a little uncertain how to handle them, it was common to fit sockets for them on printed circuit boards. We see the same development with microcircuits, and there is a lot to be said for it.

Sockets for standard dual-in-line, single-in-line and multilead TO-5 packages are nowadays fairly readily available from electronics distributors. Apart from distributors, some firms specialize in the supply of microcircuit sockets, such as Jermyn Industries in the U.K. and Augat or Barnes in the U.S.A. (with agents in the U.K.).

If you are buying microcircuit sockets, remember that they come in two types: "test" sockets specially designed for

[^3]

Fig. 7. Typical commercial example of high-power linear microcircuil (Sanken Electric SI-1050A, 50Watt Hi-fi power amplifier). (a) Package; (b) hybrid circuit.
continuous repetitive use, and "production" sockets for once (or occasionally twice) use in equipment. Obviously production sockets will be cheaper than the test type.

Availability of Linear Microcircuits

From this preliminary look at the linear microcircuit field, it should be evident that nowadays the designer can look to a large. commercial armoury of such circuits around which to build his equipment. As later articles in this series will show, he will find linear i.c.s. for applications in frequencies from d.c. to $1,000 \mathrm{MHz}$, powers from 0.1 mW to 100 W and gains from $0 \mathrm{~dB}(\times 1)$ to $120 \mathrm{~dB}(\times 1,000,000)$. The article next month will deal with what is commercially available in the way of linear i.c.s. and how to set about finding them.

Editor's Note. The arrival of the first integrated circuit from Texas Instruments in 1958, referred to by the author on p. 472, was foreshadowed by a report in Wireless World in 1957 (November issue, p. 516) dealing with early British work by the Royal Radar Establishment and Plessey. The title of our article, "Solid Circuits", later involved our reporter in some legal business with Texas, as this company subsequently used these words as a trade name for their devices.

Circuit Ideas

Loudspeaker transmit/receive switch

In low-power radio transceivers it is customary to use the receiver output stage as the modulator when transmitting, a switch being used to disconnect the loudspeaker. The following circuitry allows this switching to be accomplished remotely without the use of a mechanical relay, and has been used in a four-metre portable transceiver in which all send/ receive switching is accomplished electronically. The basic circuit is shown in Fig. 1 and has a very much lower insertion loss than any diode or other system that was investigated. The power loss is only slight with a 3Ω loudspeaker and is unnoticeable with a 15Ω load. Almost any

Fig. 1. Basic electronic switch.
transistors can be used but silicon planar devices give the greatest attenuation when the gate is off. Because of the fairly low reverse emitter-base breakdown voltage ratings of such transistors (about 5 to 6 V), some breakthrough occurs if the input voltage swing is greater than 12 V pk-pk. When one side of the input or output is referred to one pole of the supply battery the circuit of Fig. 2 can be used. If only one switched h.t. supply is available, for example that for the transmitter, the modification shown in Fig. 3 can be used. The diode ensures that Tr $_{4}$ does not conduct when any audio peaks cause reverse breakdown current to flow into the base of Tr $_{2}$.
D. A. TONG,

Kirkintilloch, Dunbartonshire.

High-stability constant-current source

A convenient two-terminal constantcurrent source is a field-effect diode. Devices may be selected to have a temperature coefficient of less than $0.0005 \% /{ }^{\circ} \mathrm{C}$. However, the voltage coefficient of such diodes is typically $0.05 \% / \mathrm{V}$. This means that voltage variations may lead to larger errors in the con-

Fig. 2. Circuit for connection to two switched h.t. supplies. Fig. 3. Circuit arrangement for use with only one switched supply.
stant current than temperature changes. A way of isolating the diode from voltage changes using an f.e.t. with its gate held at a constant voltage is shown. The f.e.t should be chosen to have a low V_{p} consistent with an $I_{\text {DSS }}$ which exceeds the current passed

F.e.t. current source.

by the current limiting diode. A 2N4 340 or 2N4 341 is suitable for use with the CL4 710. The gate source voltage of a 2N4 341 changed less than 10% over a 30 V change in V_{c} giving a current stability of $0.0005 \% / \mathrm{V}$ and $0.0005 \% /{ }^{\circ} \mathrm{C}$.
J. A. Roberts and J. R. Jones, Swansea.

Cheap voltage reference

The base-emitter diode of most silicon transistors can be reverse-biased and made to operate as a zener diode. At currents of about 1 mA a positive coefficient of voltage with temperature is usually found

Temperature compensated 'zener' diode.
which is greater in magnitude than the negative temperature coefficient of the same diode when forward-biased. By operating a transistor in an 'amplified diode' arrangement the temperature coefficients of this diode and the zener can be made equal and opposite. With the two in series a very cheap temperature compensated zener diode can be produced which is the equal of most of the reference diodes available commercially for quite high prices. Using two 2 N 2484 transistors in a common heatsink a temperature coefficient of less than 10 p.p.m. over a ten degree temperature range can be achieved for 2 mA current and 12 V output. Resistors of the order of 10 k have been used.
E. R. Rumbo,

Chippendale,
New.South Wales,
Australia.

High-power Amplifier

A design with a bridge output stage delivering 100W into 8Ω

by Ian Hardcastle*, M.A., \& Basil Lane

Regular readers of Wireless World will recollect an earlier article of ours describing a simple 15-W power amplifiert. This article takes the design several stages further to provide an output power of 100 W .

In attempting to upgrade the original design (reproduced in Fig. 1) two alternatives could be adopted, either to use 8Ω speakers and raise the supply voltage or to use 4Ω speakers and accept a very high output current.

Table 1 lists the requirements in detail and from the data sheets of the output transistor range (TIP29A to TIP36A) it can be seen that the supply voltage equals the breakdown voltage in the case of the 4Ω version, and for the 8Ω version the supply rail is well above breakdown. In addition if we are to retain the same predriver the supply voltage is also well above the breakdown of the BC212L used. Any alternative device used as a pre-driver would represent a rise in cost as would be the case for the output transistors in the 4Ω version. Here the large peak current demands would necessitate the selection

[^4]TABLE 1. Voltage and current requirements for 100 watt amplifier

load impedance	r.m.s. voltage	peak voltage	pk-pk voltage	1.m.s. current	peak current	power supply
81	28.3V	40.1 V	80.2 V	3.53A	5.0A	90 V
4	20 V	28.3 V	56.6 V	5A	7.06A	64 V

of TIP35A/36A preceded by TIP29A/30A to give the base drive required by the output pair under peak output-current conditions. In turn, base drive for these devices, if derived from the existing pre-driver, would set a collector current requirement for this stage of around 20 mA giving a power dissipation beyond the capability of the low cost small signal devices. In addition the stage gain would be reduced and by a chain reaction reduce the ratio of open loop to closed loop gain giving a high level of distortion. A way round this problem is to insert another set of drivers using a further pair of TIP29A/30A as shown in Fig. 2.

To ensure sufficient overall current gain around the quiescent point, resistors R_{1} to R_{4} are added to the configuration to increase the running current of the output
stage to a point where the devices have developed useful gain. Since a 4Ω load is being employed the load coupling capacitor must be large and its current rating must be greater than 5A.

Finally the use of the $64-\mathrm{V}$ rail means that the transistors are operating at and beyond the limits of their voltage ratings making the production of such an amplifier a risky business. Furthermore, the unregulated supply previously specified would be unsuitable since its off-load voltage could well rise too far. A fresh look at the design is obviously required.

Argument for the bridge

At the sort of power levels under consideration we are stuck with the output current and voltage requirement already mentioned and any attempt at reducing this (with say an 8Ω load) will only result in a prohibitively high rail voltage to provide the large voltage swings required. The reason for this is that the use of the capacitor coupling arrangement to the load limits these voltages to peak values of + or - half the supply voltage. What is required is an arrangement that eliminates the coupling

Fig. 1. Circuit of amplifier described in October 1969.
capacitor without incurring the penalty of d.c. flowing in the loads.

Fig. 3 shows such an arrangement, where four output transistors are arranged as a bridge with the load connected across the d.c. null. If an anti-phase signal is applied to this configuration, on peak positive signals Tr_{1} and Tr_{4} are turned hard on, Tr_{2} and Tr_{3} are hard off, causing the full supply voltage to appear across R_{L}. With a peak negative input, $T r_{2}$ and $T r_{3}$ are turned hard on, causing the full supply voltage to again appear across the load but in the opposite direction. Taking another look at Table 1, we see that an r.m.s. voltage of 28.3 V is required to produce 100 W in 8Ω.

With the arrangement shown in Fig. 3, each half of the output stage only has to swing half of the required voltage. In this instance 14.15 V r.m.s., 20.05 V peak, or 40.1V peak to peak. This now allows the rail voltage to be lowered to 50 V enabling the same transistor families to be used in the output stage as were employed in the original $15-\mathrm{W}$ design. In addition, if at any time the power output of the amplifier needs to be raised, the rail voltage can be raised to achieve it. For example an 8Ω load with $60-\mathrm{V}$ supply would provide an output power of up to 175 W . Alternatively for a 4Ω load power in excess of 350 W should be obtained.

Fig. 4 shows a block schematic of the arrangement to be used in this instance together with a full circuit diagram in Fig. 5.

Considering one half

Referring to Fig. 5, the left-hand power amplifier will now be described, similar arguments being applicable to the righthand amplifier. Readers will recognize the configuration of the output stage, which is similar to that of the early $15-\mathrm{W}$ design. The transistors TIP35A and TIP36A would be suitable for use in this 100 -W version, but at the moment they are considerably more expensive than the metal can versions, the 2 N 3715 and 2 N 3791 . It is possible that at some time in the future the plastic encapsulated versions will become cheaper,

Fig. 3. Bridge output stage with the load across the d.c. null.
in which case they can be substituted without any modification. The latter transistors have a minimum current gain of 20 at 5A and hence a peak base current of 250 mA is required. This is above the power dissipation capabilities of the smaller plastic encapsulated transistors which were previously used but the substitution of a pair of TIP29A and TIP30A will serve the same purpose without the need for heat sinks, since the demand is well within their free-air current and power ratings. The current gain at their peak collector current is at least 40 , the peak base current required being about 5 mA .

This particular type of transistor, when operated at low quiescent collector currents has a somewhat low current gain, and to obviate any difficulties likely to be encountered by variations in gain in such a situation, resistors R_{21} and R_{23} are used to shunt the base-emitter diode of the output transistors. Under quiescent conditions, the collector current of the drivers is now set at about 4.5 mA giving them a current gain of around 100 . A point not mentioned in the previous article dealing with the $15-\mathrm{W}$ version, was the necessity for such resistors to be included to provide a path for the output transistors' collector-to-base leakage current.

Readers who have built the $15-\mathrm{W}$ version, will find it advantageous to insert resistors in a similar position, of value $1 \mathrm{k} \Omega$.

Two additional functions are performed by these resistors in both designs; they ensure thermal stability of the output stage and by providing a path for collector-base

Fig. 4. Block diagram of circuit employed.
leakage, decrease the turn-off time of the transistors thus reducing high-frequency cross-over distortion and dissipation.

The familiar transistor-potentiometer biasing arrangement has been used again to supply the necessary inter-base voltage to the drivers, thus causing the output stage to operate in class AB, giving a nominal output quiescent current of 20 to 50 mA . The pre-driver stage operates at a quiescent current of 10 mA , this current being well within the current and power handling capabilities of the devices specified in the $15-\mathrm{W}$ version. Referring to Fig. 1, the reader will see that a bootstrap resistor has been used as a constantcurrent sink, this resistor being connected between C_{5} and Tr_{4}. In this instance, at the cross-over point, the input impedance of the resistor tends to fall because the voltage on the collector of the driver 'transistor Tr_{3} changes more than the output voltage, thus a voltage imbalance occurs at either end of the resistor and the bootstrapping fails. An alternative providing a more satisfactory constantcurrent sink, is to replace the resistor by an additional small signal transistor suitably biased from a constant-current source. Such an arrangement is shown in Fig. 6 where the transistor Tr, $_{\text {g }}$ has a constant voltage at its base provided by a potential divider chain formed by the resistors R_{11} and R_{12} with diode D_{1}. The voltage developed by D_{1} approximately matches the base-emitter voltage of Tr_{9} over a range of ambient temperatures and thus ensures that the voltage across resistor R_{19} and in turn the current sink provided by transistor Tr_{9}, remains constant with changes in temperature. An improvement in the cross-over distortion figures (still present in spite of the output stage operating in class $A B$) is obtained, since the constant-current sink is no longer dependent upon feedback from the output mid point.

This arrangement has been used for the $100-\mathrm{W}$ amplifier for the reasons discussed above, and also because there is no output capacitor to transfer the output voltage from the output mid-point down to the earth rail. To provide such a point suitable for the connection of a bootstrap resistor, an extra capacitor and resistor would have to be inserted. All in all a comparison of costs between providing the additional transistor, or providing the capacitor-resistor arrangement shows that they are about equal, but the improvement in performance from using the transistor constant-current sink more than sub-

Fig. 5. Full circuit of $100-W$ amplifier. Resistors can be 10% types except R_{1}.
stantiates any reason for its selection. Additionally, small signal transistors are far more readily available than the electrolytic capacitors at the time of writing and in the foreseeable future. Since our $100-\mathrm{W}$ Figuration employs two identical power amplifiers, the cost of providing the constant potential divider chain for this additional transistor has been reduced by making use of the same bias chain for both amplifiers.

Input stage

To complete the power amplifiers, a different input stage is used from the version shown in Fig. 1. The long-tailed pair has been replaced by a single transistor with its collector connected directly to the base of $T r_{5}$, the base-emitter junction of which is partially shunted by \boldsymbol{R}_{13} to reduce variation in the collector current of Tr_{3} due to variations in the current gain of the driver transistor. Resistors R_{17} and R_{15}, together with capacitor C_{7} provide an a.c. feedback path to the emitter of Tr_{3} and set the somewhat low a.c. closed loop gain of 11. In our original article several benefits were claimed for using the longtailed pair as an input stage. These included good stability of d.c. level of output midpoint, and high input impedance to the input and feedback circuits.

In the $100-\mathrm{W}$ amplifier, the stability of the d.c. level of the two output mid-points is certainly worse than that of the $15-\mathrm{W}$ amplifier. The reason for this is that changes of both the base-emitter voltage to Tr_{3} and the current gain in Tr_{5} will affect the d.c. output level. Under normal conditions the results of these changes due to temperature variations would be expected to be small, for example, a $20^{\circ} \mathrm{C}$ change will cause an output level shift of 40 mV and a change in gain of $T r_{5}$ and $T r_{6}$ from 60 to 300 will cause the output level shift of 400 mV . However, this is not really important since what we are interested in
is any changes of voltage across the load creating a d.c. unbalance in the bridge, because at all costs large direct currents must be prevented from flowing in the load. However such currents are unlikely to occur since any temperature change affecting the left hand power amplifier will similarly affect the right hand power amplifier. Such changes in both amplifiers would simply result in a similar shift of output mid point voltage at both ends of the load, resulting in a cancellation of effect and the preservation of bridge balance.
The high impedance feature of the feedback circuits in the original design has become unnecessary in the $100-\mathrm{W}$ version, since the closed loop gain has been made small.

The advantage of having low value decoupling capacitors is retained since resistor R_{15} is relatively large (470Ω) and needs only a $32 \mu \mathrm{~F}$ decoupling capacitor to give a low-frequency -3 dB point at 10 Hz -once again comparing favourably with the $15-\mathrm{W}$ version. If this arrangement were used in a simple amplifier with a gain

Fig. 6. Replacement of bootstrap resistor by transistor.

Fig. 7. Single-stage phase splitter.
of, say 100 where the feedback loop encompassed the whole amplifier, a capacitor of ten times this value would be required to give the same - 3 dB frequency. Despite the change of configuration from long tailed pair to single transistor the input impedance looking in at the base of Tr_{3} is still high, due to the presence of the large in-phase feedback signal at the emitter. As the entire amplifier is d.c. coupled, the stability of the output midpoint voltage needs to be ensured by a d.c. reference provided at the base of Tr_{3}. Two alternatives present themselves at this point.
(a) To provide an independent potential divider bias chain for $T r_{3}$ and $T r_{4}$, the doubling up being necessary to allow compensation for individual variations in $V_{B E}$ of these two transistors together with the potential drop tolerance in \boldsymbol{R}_{17} and R_{18}.
(b) To make use of the d.c. level present at the output of the phase splitter as a reference.

The latter alternative represents a considerable simplification and has therefore been chosen.

Phase-splitter stage

Readers will note that the phase splitter used consists of a long-tailed pair formed by the transistors $T r_{1}$ and $T r_{2}$. Other
alternatives could have been used, such as a single transistor with equal collector and emitter resistors (see Fig. 7) one phase being taken from each output electrode. The preference for the phase splitter was set by the following considerations:

1. Voltage gain is obtainable from a long tailed pair allowing a reduced voltage gain in the power amplifier and making a simpler design. In addition, a greater ratio of open to closed loop gain is obtained, giving lower distortion.
2. In the case of the single transistor, the impedance seen by each of the identical power amplifiers would be different since the collector output impedance of the phase splitter is higher than that of the emitter. The long-tailed pair shows no such disadvantage and provides identical drive conditions for both power amplifiers.
3. A single transistor phase splitter presents different d.c. levels at emitter and collector thus complicating the problem of direct connection to the input of the power amplifiers. In the case of the phase splitter using a long-tailed pair, connection is made to collectors at the same d.c. level for both power amplifiers.

An examination of Fig. 5 reveals that the bias arrangements for the two halves of the phase splitter are different. Resistors R_{8} and R_{10} are of an order of ten times the value of R_{7} and R_{9}. One of the main reasons for this difference is that the input to the phase splitter is fed to the base of $T r_{2}$ and it is necessary to preserve a high input impedance (to avoid loading the output of the pre-amplifier). The source impedance seen by transistor Tr_{2} when taking noise into consideration will be low, since C_{4}, the input coupling capacitor
and the impedance of the source acts as a de-coupling network across R_{8} and R_{10}. Provision of a network of similar impedance at the base of $T r_{1}$ would mean that the source impedance seen by $T r_{\text {, }}$ would be too high for minimum noise output, and additionally, radiated interference would be easily picked up by this device. The values chosen for resistors R_{7} and R_{9} provide the optimum low-noise condition, capacitor C_{5} being used to de-couple the bias chain at high frequencies to eliminate noise from radiation sources.

In most conventional long-tail pair arrangements efforts are made to see that both halves of the pair are balanced in their current, voltage, and impedance characteristics. In this way such an arrangement takes advantage of the inherent self-balancing of d.c. conditions available from such a configuration. Since in this version of the long-tailed pair we have an impedance imbalance at the base of each half of the longtailed pair, gain changes in the transistors arising from temperature shifts is likely to result in a drift in the relative d.c. voltage levels of the two bases; this in turn appears at the output of the long-tailed pair and hence throws the power amplifiers into a state of imbalance. In practice, this effect is very small due to the selected high-gain characteristics of the transistors specified for $T r_{1}$ and $T r_{2}$. As an example, if a minimum gain transistor's gain doubles due to any changes in temperature, a differential change in the base voltage of $T r_{1}$ and $T r_{2}$ of about $120 \mu \mathrm{~V}$ can be expected. The resulting differential change in the output voltage of the whole amplifier is likely to be about 1.7 mV .

Fig. 8. Total harmonic distortion at different power levels.

As already mentioned, the input impedance of the power amplifier is high and thus though it shunts the collector resistors of each half of the long-tailed pair this need not be considered when calculating the gain of the phase-splitter stage. Gain is calculated by the ratio of the collector resistors \boldsymbol{R}_{3} and \boldsymbol{R}_{4} to the emitter resistors R_{5} and R_{6} and produces a value of 15.3. Resistor R_{1} is used to connect the complete phase-splitter stage to the positive rail. Since it is decoupled by C_{1}, ripple and noise is prevented from appearing at the inputs of the power amplifiers. Since the power amplifiers themselves are fully hum-proofed, noise appearing at the output source is extremely low. One could argue that the de-coupling of R_{1} is not strictly necessary, since any hum appearing at R_{3} and R_{4} will be in-phase and will thus appear at the output of each power amplifier still in phase, constituting a null in the load. This condition would only be true were the voltage gain of each power amplifier equal. In practice this is somewhat difficult to ensure, and anyway the cost of the additional decoupling is small ensuring low noise as well as incidentally improving the high-frequency stability of the amplifiers.

A further consideration in the selection of the value of the collector resistors in the phase splitter, was the requirement to provide the appropriate d.c. level to allow direct coupling into the power amplifiers. This voltage is 28.5 V allowing the mean d.c. level of the power amplifier output mid-points to be set at approximately +26.2 V . Since a 50 V supply rail has been specified, one might expect this output mid-point voltage to be nearer 25 V , however, the output voltage of the power amplifiers cannot swing as close to earth as it can to the positive rail because the emitters of the current-sink transistor Tr_{5} and $T r_{6}$ are set at 1.5 V .

As has already been stated it is undesirable for differences in the d.c. mid-point voltage levels to occur because of the resultant large direct currents flowing in the load. Component tolerances tend to create such a situation which is to a large extent compensated for by adjustment of the base voltage of transistor Tr_{2} using the potentiometer $R V_{1}$. This potentiometer allows the adjustment of the output mid-point voltage in the right hand power amplifier to the same level of the output mid-point voltage of the left hand power amplifier.

If low-cost wide-tolerance resistors are used throughout the system it may be found that the adjustment of $R V_{1}$ is insufficient to correct any imbalance in the output mid-point voltage. In such an instance resistor R_{7} should be reduced to $10 \mathrm{k} \Omega$ and a $4.4 \mathrm{k} \Omega$ potentiometer connected in series with it giving an additional adjustment to the left hand amplifier's output mid-point voltage.

High-frequency stability

Due to the high cut-off frequency of the transistors used throughout this design the whole amplifier has gain in the mega-
hertz region and is therefore unstable. Where straight resistive loads are to be connected stability may be ensured by connecting 100 pF capacitors between the collector and base of Tr_{5} and $T r_{6}$. However, if the load displays parallel capacitance the amplifier is again unstable and capacitors C_{2} and C_{3} have to be added and C_{10} and C_{11} increased to 330 pF . Unfortunately, although this stabilizes the amplifier, the maximum undistorted output frequency is limited to about 10 kHz . Naturally this is undesirable and to alleviate the situation and extend the frequency response beyond 20 kHz , capacitors C_{8}, C_{9}, C_{12} and C_{13} have to be added. In addition, a small inductor L_{1} completes the stabilization arrangement. This inductor can be made by winding 25 turns of 26 s.w.g. enamelled copper wire in a single layer on a high value 1W resistor.

It may seem that rather a large number of components have been used to ensure the high frequency stability of the amplifier, but this situation has arisen as a result of the large open-loop gain of the amplifier and the large current and voltage swings involved. Distortion characteristics for the amplifier are shown as a graph in Fig. 8. The main performance figures are given in Table 2 and intermodulation distortion readings in Table 3.

Construction

As is the case for the 15 W amplifier described in our previous article the layout of this amplifier is not very critical. However, some simple rules should be observed in the layout of the output stages. Transistors $\operatorname{Tr}_{11}, \operatorname{Tr}_{12}, \operatorname{Tr}_{13}$ and Tr_{14} should be mounted as close as possible to one another on the circuit board.

Short wires should be used to connect these stages to the output transistors. If possible separate leads from the emitters of the n-p-n output transistors should be taken directly to the reservoir capacitor. Alternatively if the power supply and reservoir capacitor are not close to the power amplifiers these leads could be connected to the circuit board at one point close to the driver stages with the negative lead from the power supply. A similar arrangement should be made for the emitters of the p-n-p output transistors.

As one may expect from an amplifier of such an output there is considerable heat dissipation in the output transistors. In fact this amounts to about 25 W , so efficient heat sinking should be employed. One heat sink should be used for each output pair.

A method of component layout employed in the prototype was to make use

TABLE 2. Performance Figures

power output	100 W
power output $(t . h . d .=10 \%)$	150 W
frequency response $(\pm 1 \mathrm{~dB})$	$10 \mathrm{~Hz}-20 \mathrm{kHz}$
signal-noise ratio $\left\langle R_{\text {source }}=600 \Omega\right)$	89 dB
signal-noise ratlo $\left\langle R_{\text {source }}=10 \mathrm{k} \Omega\right)$	84 dB
input impedance at 1 kHz	$56 \mathrm{k} \Omega$
output impedance at 1 kHz	0.08Ω
nominal input voltage $\left(P_{\text {our }}=100 \mathrm{~W} @ 1 \mathrm{kHz}\right) 180 \mathrm{mV}$	
power-supply current (at $100 \mathrm{~W} \& 1 \mathrm{kHz})$	$3.5 \mathrm{~A} \mathrm{r.m.s}$.

A complete amplifier. The four electrolytic capacitors used in the circuit are small enough to be wired directly to the Lektrokit board.
of the plain perforated Lektrokit board.
To avoid the inevitable rage and frustration in the event of turning your amplifier on for the first time and seeing large black clouds of smoke rising, the following setting up rules should be closely observed:-
(1) Terminate the input with a 10 k . resistor. Connect a voltmeter across the open circuit output terminals.
(2) Set $R V_{2}$ and $R V_{3}$ such that their wipers are at the end of their tracks connected to the collectors of Tr_{7} and $\boldsymbol{T r}_{8}$.
(3) Set the wiper of $R V_{1}$ at its midpoint.
(4) Connect a 3 W 5 k rheostat and a 250 mA meter in series with the positive supply lead. Set the rheostat to $5 \mathrm{k} \Omega$ and connect the amplifier to its power supply.
(5) Turn the power supply on, and slowly reduce the resistance of the rheostat to zero. Should the current drawn exceed 150 mA turn off and check the wiring.
(6) Connect a voltmeter across the output points and adjust $R V_{1}$ until the output voltage as read by the meter reads $0 \mathrm{~V}(\pm 50 \mathrm{mV})$.
(7) Switch off. Disconnect the rheostat and current meter, and connect a suitable resistive load. Switch on and re-check the differential output voltage. Re-adjust as necessary and then switch off.
(8) Connect a 100 mA current meter in series with the emitter of Tr_{15}. Switch on and adjust $R V_{3}$ until 50 mA is indicated. Switch off.
(9) Move the meter connections to the emitter of Tr_{16} and switch on. Adjust $R V_{2}$ until the meter indicates 50 mA . Switch off, and remove the meter.
(10) Switch on and re-check the d.c. differential output voltage. The amplifier is now ready to be used.

Overload protection

In an amplifier of this type, some form of protection is essential and the method shown in our earlier article is suitable for use here, though the number of items is doubled. In addition the fitting of fuse F_{1} is regarded as imperative in view of

TABLE 3. Intermodulation Distortion
ourput frequencies \& amplitudes intermodulation distortion

Hz	V		Hz	
V				
1100	14.4	900	14.4	0.16
11k	14.4	9 k	14.4	0.23
10k	24.0	1 k	6.0	0.14
10k	6.0	1 k	24.0	0.14
10k	24.0	120	6.0	0.15
10k	6.0	120	24.0	0.15
1k	24.0	120	6.0	0.135
1k	6.0	120	24.0	0.145

the fact that the output stage can still overheat under long-term overload conditions. The value of this fuse should be 4A.

Power supply

It is just feasible that an unregulated power unit could be used to supply this amplifier, but it is important that under no-load conditions the voltage does not rise above 60 V and at full power it does not drop below 50 V . Large currents are drawn from the supply making these requirements difficult to obtain and most readers may favour a regulated unit. A suitable design is given in Fig. 9, where the 50 V winding (rated at about 10 mA) provides a supply which when rectified and smoothed acts as a constant voltage source. Resistor R_{1} acts as a constant current source for the zener diode $Z D_{1}$ and the parallel arrangement of $R V_{1}$ and R_{2} in series provide a small measure of adjustment. Transistors Tr_{1} and Tr_{2} provide the necessary current gain to minimize the effect of the base current swing of Tr_{3} on zener diode $Z D_{1}$. The dissipation in $T r_{20}$ reaches a maximum of about 35 W , and so it should be mounted on a heat sink having a thermal resistance of less than $3.5^{\circ} \mathrm{C} / \mathrm{W}$. The leads from C_{16} to the emitters of the four output transistors should be kept as short as possible.

The three electrolytic capacitors used in this power supply cannot be eliminated or safely reduced in size. Separate transformers can of course be used to provide the 50 and 42 volt secondaries.

Avionics at Farnborough

Have you ever thought of all the things that occur when a modern aircraft is displaced slightly from its flight path by an air disturbance or for some other reason? As an airline passenger one is inclined to think only in terms of seating comfort and cabin service and to hope that the wings won't fall off or that engines won't pack up. It is interesting to look at the aircraft as a single unit, that is, to roll all the sub-systems into one.
The small disturbance mentioned above will cause a host of transducers of many types to give out a signal or to change their existing outputs. Innumerable gyros will measure the amount, rate and direction of the disturbance; accelerometers will measure the size and direction of the accelerations and decelerations involved in three dimensions; aneroid and other capsules will measure change in height, airspeed and rate of climb or dive; direction-finding aerials move slightly to stay aligned on the beacon they are tracking; doppler beats are generated proportional to the rate of the disturbance; flux valves measure the angle of the earth's magnetic field relative to the aircraft, and so on.

This flurry of signals is fed to a number of digital, analogue and hybrid computers. Trains of pulses are generated during the computations, analogue signals change in phase and amplitude in such a way as to describe the amount and direction of the displacement, scores of small motors turn to either drive pointers or to assist in the calculations by turning a shaft which mimics the aircraft's angle in a particular plane.

As a result of all these actions the gyro compass now indicates the new heading (true or magnetic) and updates all the navigation computers which will provide a read-out of position; the outputs of the accelerometers are changed into signals representing velocity and to distance flown in a given direction for the navigation system; the doppler radar will be giving an indication of ground speed and drift from which true track can be computed; and signals will be fed to limited authority motors in the flying control system to cause the hydraulics to apply control surface movement to limit the size of the displacement. With automatic control the automatic pilot will apply control surface movement, after taking into

Designed
primarily for air traffic control use by Solartron the interface equipment shown allows a standard television tape recorder to be used to record radar data for subsequent analysis on a radar display.
account the flying characteristics of the particular aircraft, in such a way as to correct the displacement practically before it occurs. During even a disturbance these and many other actions occur. For instance, signals from different sources, but describing the same thing, are compared and an error signal may be generated to correct one of the sources.

Apart from these systems there is the radar blind-landing and communication equipment as well as the electrical, electronic, hydraulic, pneumatic and mechanical systems needed to control and monitor cabin pressurization, fuel management, undercarriage, flying controls, flaps, dive brakes, engines, temperatures, etc.- etc.

All these systems have to be powered and the prime movers for this are of course the engines. The outputs of the engine-driven alternators have to be controlled in frequency and amplitude and distributed throughout the aircraft so a great deal of electrical equipment is required.

The preceding few paragraphs were presented so that the reader who is not familiar with aircraft systems could get some idea of how complex a modern aircraft is. Not all systems were mentioned and if a military aircraft had been taken as an example, instead of a civil one, the various weapon aiming systems would have increased the complexity by a very large factor.
. Britain's avionic industry can design, develop and build all the systems necessary including the engines and the airframe for any aircraft that is technically feasible by today's standards if it had the money to do so. The only other countries to have such a complete capability are Russia and America.

This lead cannot be maintained unless the industry designs and builds aircraft and at present its hopes are placed on perilously few products. Topping the list is of course the Anglo-French Concorde which stands to win $£ 4,000 \mathrm{M}$ worth of export orders if it comes up to its design performance. There is also the Anglo-French Jaquar and the European Multi role combat aircraft (MRCA) controlled by an Anglo, German, Italian company called Panavia. There is the successor to the BAC one-eleven, the three-eleven, which is a short/medium haul jet airliner capable of carrying about 250 passengers which could be ready by mid-1975. About $£ 200 \mathrm{M}$ is needed by BAC to get this project off the ground. Also awaiting money and policy decisions are two vertical take-off airliner projects the Westland WE. 01 /02 which employs a helicopter principle and the Hawker Siddeley H.S.141, a modified Trident with jet powered vertical take-off. If the British aircraft industry is to stay with the leaders it must have the money even if the costs are offset to some extent by Anglo-European co-operation. The benefits for the country in terms of exports could be enormous.

Not only can the British aircraft industry build aircraft but, as was
exemplified by the static exhibition of Farnborough, our own electronics industry is fully capable of meeting all the demands likely to be made upon it for the equipment so essential to today's aerospace technology.

At the show Marconi introduced a new computer called Myriad-3 which is designed around t.t.I. logic and is intended for handling radar data.

Myriad-3 is a parallel binary fixed-point machine with single address operation having a word length of 24 bits with facilities for double-length working. Extensive input/output facilities are available in the form of optional plug-in modules. Most single-length instructions take about $3.2 \mu \mathrm{~s}$ and the more complicated instructions, such as multiply, take around 11 us . Storage capacity is up to 256,000 words and two types of store are available; a 32 k word store with a 650 ns cycle time and a 16 k word store with a 1.6μ s cycle time. Because the store timing is controlled from within the store unit; it is possible to have both types of store in a system, with the slower (and cheaper) store carrying less urgent information.

The basic machine comprises a number of modular 'building bricks'. The main units are the central processing unit, store units, power units, operators' control unit, programmers'/engineers' control unit and a highway extension unit. A master peripheral unit, designed to accept standard control modules, accommodates the input/output control circuits for peripheral devices.

Among the many demonstrations on the Min-tech stand was the use of glass fibre light guides in an experimental optical communications system employing a gallium arsenide diode as the light

This floating beacon manufactured by Burndept, which has already captured orders worth $£ 50,000$ from Norway, operates on a primary battery and transmits on both the civil and military aviation distress frequencies (121.5 and 243 MHz) for a minimum of 48 hrs at $0^{\circ} \mathrm{C}$. It measures $670 \times 85 \mathrm{~mm}$ and weighs 2.89 kg .

A personal survival beacon, Sarbe 5, introduced by Burndept for military use. It allows two-way speech and a built-in test system.
source and an exhibit which showed how a c.r.t. and associated keyboard could be used on board an aircraft to communicate with a navigational digital computer.

Visitors to Farnborough were able to navigate their way round the airfield without moving from the Sperry pavilion. To do this, they went for a simulated run in a Land-Rover equipped with the Sperry Vehicle Navigator and Map Display which is currently being offered for airfield navigation duties.

The Land-Rover was driven in the normal. way; the wheels revolving against a dynamometer to provide a speed input for a computer. Turning the steering wheel produced heading change inputs for the computer, in place of the gyro or flux-valve normally employed. A map display unit was mounted on the bonnet for the demonstration and the position of the vehicle was indicated by hair line cursors. A digital computer monitored the process.

The helicopter version of the Solartron Simfire seen at the exhibition is one of a family of direct fire weapon effects simulators developed as aids for combat training. The system has two basic roles. As a method of training helicopter pilots in making the best use of ground and cover to avoid ground fire; and as a means of assessing the vulnerability of helicopters to ground fire, for operational analysis purposes. A laser-beam projector is aimed by the operator at a helicopter target. When the operator 'fires', a stream of pulses is directed towards the target. Detectors on the helicopter receive the laser beam impulses and illuminate indicator lamps which show the pilot that he is under attack. The direction of the attack is indicated by a lamp to the pilot who can then take avoiding action. If the helicopter target is held in the centre of the beam for a period exceeding one second, the helicopter is 'killed'.

Texas Instruments, as part of their Klixon range, were showing what they describe as a solid-state vane switch-a contradiction of terms if ever there was one. The device is designed to sense when
a supply of cooling air is stopped or reduced in a piece of equipment. The sensing element is a positive temperature coefficient thermistor built into a probe.
Sperry were showing a c.r.t. display intended to replace a number of instrument panel dials. The c.r.t displayed characters and symbols to give aircraft attitude, flight director information, altitude, airspeed and weapon aiming information either individually or as an integrated display.

Decca Navigator, who were rightly shouting about the recent order by America's Eastern Airlines for the Omnitrac Area Navigation System, were also displaying a new back-projection navigation display.

Elliott Automation Radar Systems introduced a new nose radar of advanced design capable of terrain following, mapping, ranging, and air-to-air operation in strike aircraft while Elliott Flight Automation had on display a digital automatic flight control system for civil use.

Ultra Electronics were displaying a personal radio location beacon designed to replace the larger beacon now in service with the armed forces. Called Sarah-B the beacon is capable of twin-frequency working and it is built using thin film circuit methods. It measures $110 \times 75 \times$ 25 mm and weighs less than 20 oz . Sarah-B transmits a tone on the distress frequency of 243 MHz and can be used for two-way communication over short ranges on 243 or 282 MHz ; battery life is in excess of 24 hr .
That completes our quick glance at a small percentage of products that were on show at Britain's biennial avionics supermarket at Farnborough.

Among the new items introduced by E.M.I. was a video map generator (Type VM101) which is designed to be an inexpensive adjunct to radar simulators or for use with real time radar displays for simulating stationary or moving clutter. It will also produce a video map. Patterns are generated by a flying spot scanner.

Elliott's stand contained a vast assortment of equipment for both military and civil applications and the Digital Systems Department introduced an airborne display control unit. Facilities provided by this unit include alphanumerics, lines and circles with 10 -bit angular and positional accuracy. Individual symbols can be made to flash or be made brighter, and several displays, each showing a different picture, can be driven simultaneously.

Plessey had an engine vibration monitor on show which was designed for Concorde. The system consists of eight piezo-electric transducers, one mounted on both the fore and aft bearings of each of the four engines. An eight-channel display of the flight deck gives immediate indication of increased vibration, often the first indication of serious engine trouble. Another item on the Plessey stand was a stall warning unit for use on the Hawker Harrier. Intended for use when the aircraft is hovering, the unit senses an incipient stall condition and warns the pilot by shaking the rudder bar

London Broadcasting Convention

Some developments in broadcasting seen at the September convention

With over 80 technical contributions the biennial International Broadcasting Convention in London in September attracted 1000 delegates. Most of the papers were about television-the big stride nearly a year ago when the U.K. passed out of the 405 -line monochrome age into the 625 -line colour age overshadowing developments in sound broadcasting.
Automation in broadcasting was one of the major themes of the convention and a good 25% of the papers dealt with some aspect of automatic control of equipment, ranging from closed loop servos for particular operations (e.g. automatic registration of colour-separation images in television cameras) to a vast data processing systẹm using several digital computers that controls the whole of the NHK (Japan) broadcasting network and even encompasses the audience. All this is becoming necessary, apparently, because of the increasing scope and complexity of broadcasting operations and equipment -human control is beginning to prove inadequate-and, in turn, because of the excessive cost of training and using technicians for these operations. The subject has become so important, and the automation techniques are so varied and complicated, that we intend to make a special report on this aspect of the I.B.C., to be published in the November issue of Wireless World.
Satellite broadcasting has its problems, some of which have been discussed before. One, discussed by P. L. Mothersole, is that of mains isolation in television receivers; a problem when thinking in terms of adding a converter to receive satellite broadcasts (such an add-on unit would convert from f.m. to a.m. as, well as frequency). But with a new receiver design a convenient way around this is to have an insulated winding on the line scanning transformer, at earth potential, providing the low-voltage supply that would be required for a converter. A possibility which Mr Mothersole foresaw is the use of a communal aerial and converter system. This would avoid mounting and aligning dish aerials in domestic installations, and could also help to keep cost down.

An interesting point touched on by J. Redmond, director of engineering, B.B.C., in his address was that of sound
broadcasting from satellites in the h.f. band. A study has shown this to be technically feasible in the 21 and 26 MHz bands. The satellite would probably be in a low-altitude orbit in such a scheme, because of the high power needed from a geo-stationary satellite-of the order of tens of kilowatts. A power in the region of 1 kW is thought feasible for a, low-orbiting satellite, and no doubt folding aerials would not present undue difficulties. Snag is the expense of maintaining orbiting satellites and with the limited number of sets able to receive 21 and 26 MHz broadcasting authorities might feel there would not be much return for an outlay which could be as high as $£ 10 \mathrm{M}$ p.a.
Speech clipping is used to increase the average modulation level in transmitters without overmodulation by reducing the peak-to-average energy ratio in speech waveforms. Normally this is done at speech frequency and results in trapezoidal waveforms. As well as imposing a linear phase response on the modulator this means a much wider bandwidth is needed and also power supply requirements would need to be increased. To avoid modifying older modulators to cope with the clipped speech, frequency translation can be used to ease filtering. The problem is of course that some harmonics of low-frequency speech signals in the clipped waveform are still within the speech spectrum and cari not be filtered out. By modulating the speech signal on to, say, a 20 kHz carrier (suppressed) and then clipping, filtering is made easy. This is because the highest upper-sideband frequency will be at, say, 25 kHz -well away from the lowest first harmonic at about 40 kHz . The signal is then demodulated in a product detector. With this kind of system, Radio Liberty (Federal Republic of Germany) has produced a clipper with harmonic distortion of less than 1%, even with an overload of 16 dBm .

Studio acoustics. The well-known technique of making models to predict acoustic properties of concert halls has been applied to studio design and fault correction by the B.B.C. Pioneered by Spandöck at the University of Munich, this is the first time it's been used with a good signal-to-noise ratio-at least

50 dB --allowing models to be listened to seriously. This method imposes severe constraints on experimental apparatus, severity depending on the scaling factor. Not least of these is the problem of air absorption, and to get the sound attenuation right a relative humidity of 3\% is needed. The usual way of doing this is with silica gel but it takes several weeks to achieve the required dryness. In the B.B.C. experiments H. D. Harwood and A. N. Burd have reduced drying time to half a day for the first drying and to 15 minutes for subsequent drying by using an artificial zeolite.

Using a scale model of a studio reverberation time in the model agreed with that in the studio to within $\pm 10 \%$ throughout the whole frequency range, this difference being inaudible. The model was also a success subjectively in that addition of an 'orchestra', made from polystyrene backed with felt, to the model was clearly apparent in recordings made from the model. An unexpected change in tonal quality from the model occurred when this orchestra was added, as well as the expected change in reverberation time. On checking against recordings made in the real studio this change was also apparent and although there is no obvious theoretical explanation for this change the fact that the model predicted it is a very satisfying validation of the modelling technique:

Another interesting development in studio design is the realisation that reverberation time need not be independent of frequency. Absorbers needed to keep low-frequency reverberation time low (say 0.35 s , the recommended value for talks studios) are expensive to make and install, bulky and make modifications difficúlt. Availability of a recently constructed studio with removable bass absorbers made experiments on how much bass r.t. could be increased possible. As a result of various subjective tests, \ddagger it's now recommended that r.t. can rise to 0.4 s at $500 \mathrm{~Hz}, 0.47 \mathrm{~s}$ at 125 Hz and 0.74 s at 62.5 Hz .

A discussion of new developments in television will be published in the November issue.
\ddagger Spring, N. F. \& Randall, K. E. "Permissible bass rise in talks studios". B.B.C. Engineering, July 1970, pp.29-34.

Domestic Receivers

New techniques seen at the London trade shows

Television

The design of domestic receivers is a compound of two elements: the available market and the available technology. To be more precise, the sales people are not interested in the electronic contents of the box provided the complete product is attractive for renting (and, to a smaller extent, owning); technical features, whether real or cooked up, are seen merely as fodder for sales promotion campaigns. The engineers have at their disposal new devices and techniques and would like to use them to the full in elegant, tidy circuits, but, being restricted by cost, usually end up with a design which to them is an unsatisfactory compromise.

What the engineers have in the back of their minds, as a sort of Volksfernsehempfänger, is a flat box producing coloured pictures and containing nothing more than a few integrated circuits. We are certainly on the way towards this ultimate, leaving behind as we go valves, round tubes, monochrome pictures, hybrid circuitry, dual standards and discrete components. Meanwhile, in our present confused state of transition, there exist side by side monochrome and colour; hybrid and semiconductor circuitry, dual-standard and single standard, picture tubes of different sizes and shapes, single chassis and modular construction, together with a variety of "furniture" styles and electronic circuit techniques which seem like tricks because they are individual to particular manufacturers and not yet standard. In this confused situation it is difficult to decide what is "typical".

To begin with the most obvious thing, the picture tube, the six main sizes available last year $(19 \mathrm{in}, 20 \mathrm{in}, 22 \mathrm{in}, 23 \mathrm{in}, 24 \mathrm{in}$ and 25 in) have now been supplemented by two more, 17 in (monochrome) and 26 in (colour). There are in addition the various portable battery sets with screen sizes of 12 in and smaller. The range, however, is not as embarrassingly large as it seems, as the 19 in and 23 in monochrome tubes have been superseded by the 20 in and 24 in sizes respectively, and the 25 in colour tube, though still being used in sets, is due to be replaced eventually by the 26 in type. The 17 in monochrome tube really takes the place of the 16 in type that has been
widely used in transportable and small "second sets". Thus one sees a general up-grading in size all round. Monochrome tubes have deflection angles of 110°, colour tubes 90°; but colour tubes with deflection angles of 110° and, consequently, a few inches off their length, are available on the Continent and it is only a matter of time before they appear in British sets.

The distribution of valves, transistors and i.cs in receiver circuitry varies considerably from maker to maker. British Radio Corporation and Rank Bush Murphy have all-transistor colour sets which are virtually the same as last year's designs, and a new transistor colour receiver has been introduced by Philips. In the hybrid receiver circuits, colour and monochrome, it is common practice to use valves for the line and field scanning oscillators, for the associated output stages and for the sound output, but there is some variability with other stages. In a Decca single-standard monochrome chassis, for example, valves are also used for the 1st and 2nd i.f. stages, video amplifier, sync separator and line pulse discriminator. This design is', however, very much up with the times in having an integrated circuit, the Motorola MC1351P, for the sound intercarrier i.f. amplifier and f.m. detector (followed by a transistor a.f. output stage). Some current monochrome sets are still all-valve designs except for the u.h.f. tuner. Generally speaking the U.K. manufacturers are not bothering to put design effort into producing alltransistor monochrome circuits, which will only be found in the small imported portable sets.

Integrated circuits, last year restricted to the intercarrier sound and colour decoding functions* have now blossomed out somewhat, and in the new Philips colour receiver mentioned above there are four: (1) intercarrier sound; (2) stabilization for the tuner; (3) video pre-amplification, line gated a.g.c., sync pulse separation, noise protection for a.g.c. and sync channels; and (4) PAL switch, identity circuit and colourdifference demodulators. These devices areavailable from Mullard under the general type-number prefix TAA. But the general

[^5]run of set makers is still rather wary about using i.cs, mainly for the reason that, as distinct from the digital computer field, there is a lack of standardization and "second sourcing" in the manufacture and supply of devices.

Two noticeable trends in circuit design this year are the use of variable-capacitance diode tuning and the replacement of wound components by equivalent circuitry using transistors, resistors and capacitors. Vari-able-capacitance diode tuning on both u.h.f. and v.h.f. has been used fairly extensively for some time in Continental television tuners but this is the first time it has appeared in sets on the British market. Examples of the technique were seen in receivers by Philips, Ekco, ITT and Teleton. The reason why varicap diodes, as they are called, have not been used here is a technological one and not, as might be thought, because U.K. makers were slow to appreciate the advantage of diode tuning. It is to do with the way in which channels are allocated.

In the U.K., u.h.f. channels are assigned to transmitters in groups of four. In most cases the four channels are $n, n+3, n+6$ and $n+10$, or $n, n+4, n+7$ and $n+$ $10, n$ being the lowest channel number for each station. For example: the channels assigned to Emley Moor are 41 (n), 44 ($n+$ $3), 47(n+6)$ and $51(n+10)$. Those assigned to Winter Hill are $55(n), 59(n+4)$, $62(n+7)$ and $65(n+10)$.

It will be seen that in each case the highest channel is spaced 10 channels from the lowest, which means that with the $8-\mathrm{MHz}$ channel spacing laid down by the European frequency plan the highest channel is 80 MHz away from the lowest. Now, for a receiver tuned to the lowest channel, the highest channel becomes the image frequency. This is because the agreed vision i.f. is 39.5 MHz . If the oscillator is tuned "high" as is usually the case, the image frequency is 39.5 Hz "on the other side of" (above) the oscillator or 79 MHz above the wanted station.

This figure is only 1 MHz short of the 80 MHz separation between n and $n+10$ and a signal radiating at $n+10$ if allowed to enter the pass band of a receiver tuned to
n channel would beat with the oscillator and cause severe interference at i.f., unless measures were taken to eliminate or greatly attenuate signals at image frequency. In the case of an oscillator tuned "low" the wanted channel and image channel would be in reverse, i.e. $n+10$ and n respectively. The presence of interference channels at image frequency is unavoidable because four of the forty-four available channels have to be allocated to several hundred stations, which necessitates the same channels being shared by many stations. The two stations quoted already share their channels with up to six others.
It is arranged for stations sharing channels to be sited geographically remote from each other, and mutual interference can also be alleviated by the use of directional aerials. Despite this, u.h.f. tuners have to be designed with specially selective r.f. circuits to reject signals outside the pass band, particularly those at image frequencies. By arrangement between BREMA (the association of set manufacturers) and the broadcasting authorities the specification for the magnitude of rejection or attenuation of image frequency signals is fixed at 53 dB. All makers try to achieve this.
Using valves and three variable tuned r.f. circuits controlled by a ganged capacitor,

53 dB image rejection is relatively easy to obtain over the u.h.f. bands. However, because of production spreads it is difficult to track the capacitance of four varicap diodes (three r.f. tuning and one oscillator) over the required frequencies to obtain the specified selectivity.

On the Continent, in Germany for instance, transmitter density is much less and the receiver i.f. is different (38.9 MHz vision), therefore the problem does notarise. The German specification for image rejection is 40 dB . This less stringent requirement allows the designer to use one less r.f. tuned circuit, and the incorporation of three varicap diodes instead of four, making tracking relatively easier.

In the varicap-diode tuner designed by Philips (Fig 1) the basic problem has been overcome in two ways. First, matched sets of five diodes with similar voltage/capacitance characteristics are selected for individual tuners. The fifth diode is employed to equalize the oscillator voltage over the tuning range. Secondly, a special image frequency rejection tuned circuit is built in. This is coupled to the aerial input inductor in the emitter of the r.f. amplifier transistor. It is automatically tuned to the image frequency as the aerial input is tuned to the wanted station.
 of the aerial input, bandpass primary and secondary, and oscillator respecttvely.

Push-button channel selector (left) and pre-set potentiometers (right) of the Philips varicapdiode tuner (Fig. 1), as used in the Philips G8 colour television receiver.

The big advantage to be had from using varicap diodes is, of course, that tuning is possible by means of a single simple potentiometer. The Philips receiver uses six preset potentiometers, each associated with a press-button switch, and so provides a six-programme station selector.
Two additional bonuses in the hands of the set designer are the smaller size of the tuner unit itself and the realization that the unit can be mounted anywhere in the cabinet. The press-buttons need be only simple switches remotely connected to the tuner via low-voltage wiring. In the Philips receiver the tuner unit is actually mounted on the i.f. printed panel and it appears in the unusual position in the centre of the chassis. The effort required to operate the "programmechange" buttons, as Philips call them, is surprisingly light when compared with mechanical systems.

The varicap diodes, being voltagedependent devices, are susceptible to variations in supply voltage. Since any variation in supply voltage would have a serious effect on tuning accuracy it has been found necessary to stabilize, not only the receiver power supply, but also the voltage line feeding the tuner itself. The tuner incorporates a simple i.c. stabilizer (see above).
In order to take station tuning out of the viewer's hands and make it into a preset adjustment, the six tuning potentiometers are concealed by a plastics cover at the rear of the receiver. Any tendency for the tuning to drift during reception is counteracted by an a.f.c. circuit which provides the large pull-in range of $1-2 \mathrm{MHz}$ either side of the correct tuning point. To prevent the receiver being "captured" by a strong transmission during programme changes the a.f.c. is cut while a button is pressed.
Avoidance of wound components was illustrated by a technique used in an ITT colour receiver, type CVC5, which is based on a Schaub Lorenz design that has been available in Germany for about a year. The circuit has $R-Y$ and $B-Y$ synchronous demodulators that dispense with the usual transformers needed to drive the electronic switching circuits (see for example, W.W. May 1969, p.223). The arrangement used is shown in Fig. 2. The demodulators proper function in the manner of a symmetrical phase discriminator. To one side of this is applied the subcarrier reference oscillation (for $R-Y$, via the 62 pF capacitors; for $B-Y$, via the 560Ω resistors), while to the other side is applied the signal voltage to be demodulated (at the common point of the 33 pF capacitor in each case). At the common point of the 470Ω resistors in each demodulator the demodulated colour signal appears without the reference oscillation because the reference oscillation is balanced out in the bridge network. As can be seen the $R-Y$ demodulator is preceded by a transformerless PAL reversing switch which operates on the chrominance signal from the delay line, not on the reference oscillation.
It has become customary with transistor colour receiver circuits to use $R G B$ drive to the c.r.t. cathodes, as this requires lower

voltage swings than do colour-difference signals, which are matrixed with the luminance signal by the c.r.t. In the new Philips set referred to above, for example, matrixing is carried out in the decoder i.c. (4) at low level and the $R G B$ outputs receive several stages of amplification through separate channels before being applied to the c.r.t. cathodes. This method relies on accurate setting of the grey scale for good monochrome reception and for this reason the colour drive adjustments are preset at the factory.

Colour television sets usually include a circuit for preventing the beam current of the colour c.r.t. from rising above a certain upper limit, the purpose being to save the tube's shadow mask from becoming overheated and consequently distorted in shape. In any case the shadow mask carries the major part of the beam current, and with certain types of picture content the electrical energy converted into heat could become excessive. Normally the beam current limiting is arranged as a form of automatic brightness control, but during operation this causes an error in colour saturation and also a loss of detail in the darker parts of the picture. To avoid this undesirable side effect, Decca, in their latest colour receiver chassis, have designed the beam limiter as a form of automatic contrast control. Fig. 3 shows how it is arranged. A potential proportional to beam current is derived from the cathode of the line output valve.and this is applied through the vision detector and other circuitry (not shown) to a video emitter follower and then to the a.g.c. circuit. The direct voltage from the a.g.c. circuit is fed back to bias the first vision i.i. amplifier transistor and so control i.f. gain in the normal manner, but is further controlled by the beam limiting circuit. Thus if the current through the line output valve starts to become excessive the effect is to reduce the amplitude of the i.f. signal and, consequently, reduce the drive to the c.r.t. and hence the beam current.
Numerous small u.h.f. television receivers from Japan were shown at the various trade shows we visited. Three new models from Standard included an all-transistor 3in portable, the SRV 307, employing 29

LINE OUTPUT STAGE. VISION DETECTOR

Fig. 3. System used for c.r.t. beam current limiting in the latest Decca colour receiver.

mechanically ganged, and there are separate diode detectors for vision and intercarrier sound. The e.h.t. pulse winding on the line output transformer of the latest Decca colour chassis is underneath the primary winding instead of on top-a cost saving feature. Automatic line hold, dispensing with the usual manual control, is employed in the Philips and ITT colour receivers.

Sound receivers and
 reproducers

The mere appearance of integrated circuits in receivers is no longer a matter for surprise, but as the art of usingi.cs progresses makers may find alternative or novel uses. A case in point is the use of the TAD100 circuit in the new Dynatron amplifier and a.m./f.m. tuner (HFC91), announced earlier this year. This i.c. is intended as an i.f. amplifier, detector, local oscillator and a.f. preamplifier, but in the Dynatron circuit the stage normally used for audio amplification is used instead as a d.c. amplifier feeding an a.m. moving-coil tuning meter. (Same meter acts as tuning indicator on f.m. straight from the discriminator.)

This tuner incorporates diode tuning on v.h.f. for four circuits, two back-to-back diodes each, with three pre-set potentio meters and another linked to the tuning scale. The scale covers $88-100 \mathrm{MHz}$, giving greater spread than with 108 MHz top

Fig. 4 (left). Interstation muting circuit in Dynatron tuneramplifier. Tuner uses diode tuning, five integrated circuits and dual-gate f.e.ts.

Fig. 5 (right). Hybrid thick-film highpower amplifier module made by Bendix is used in new Kellar amplifiers. Circuit shown gives r.m.s. output of 50 watts.

frequency, but the pre-set potentiometers extend to 108 MHz , in anticipation of this model being sold in the U.S.A. and Canada. Supply voltage for the tuning circuits is regulated with a TAAS50 i.c. between supply rail and ground. The three pre-set controls together with the displayed range allows a local station to be pre-set as well as the three national services, but we have seen some sets with four pre-set controls. (Incidentally, some local stations will be using 45° slant polarization with consequent benefits to car and 'pienic' radio reception-see p. 492.)

Interstation muting is achieved by switching back-to-back diodes in the signal path to the decoder from a d.c. amplifier following the discriminator (Fig. 4). Other features of this design are dual-gate f.e.ts in the f.m. tuner, four-i.c. Görler f.m.-i.f. amplifier, ceramic filter unit with the TAD100 a.m. i.f. amplifier, twin-T high and low-pass filters and negative feedback tone controls in the preamplifier. Extensive use is made of BC148 transistors (11) with BC149s as low-noise input transistors. The audio amplifier is a conventional quasi-complementary circuit giving $45+45$ watts into 3 ohms, or reduced powers into higher impedance loads, at low distortion (0.2%). It is typical of modern designs using silicon transistors which allow a high voltage supply with consequent high-power output. A thyristor overload protection switch reduces output to a safe level when safe operating limits of the transistors are exceeded, lighting an indicator lamp and reducing the supply voltage to the pre-amp emitter follower. Price of this tuner amplifier is $£ 165$.

A notable trend in this kind of quality tuner is the omission of a ferrite aerial for a.m. reception-or at least provision of a separate coil pack for an exterior aerial. This was also noted on the new B \& O Beomaster 1600 which, apart from the addition of f.e.ts and an f.m.-i.f. ceramic filter, is a re-styled version of the 1400. This new a.m./f.m. model, with a power output of $15+15$ watts, and including two short-wave bands, costs £122. Another new a.m./f.m. tuner-amplifier from B \& O is the Beomaster 1200. A new design, but along fairly conventional lines, it uses a cascode
f.e.t. input circuit and diode tuning. Sensitivity is better than that of the $1600(1, \mathrm{~V}$ for $26 \mathrm{~dB} \mathrm{~s} / \mathrm{n}$ ratio $\mathrm{f} . \mathrm{m} ., 7 \mu \mathrm{~V}$ for $3 \mathrm{~dB} \mathrm{~s} / \mathrm{m}$ ratio a.m.) and power output is $15+15$ watts. Price $£ 108$.

Latest Teleton tuner-amplifiers (made by Mitsubishi) acknowledge the difficulty in seeing vertical tuning scales in 'low-line' models by using a horizontal scale-in one case both types are used.

The Dynatron stereo decoder is fairly typical of current practice. Designers seem to have settled on the balanced switching demodulator, this only partially demodulating the $L-R$ signal of course. Correction to give 40 dB separation is made in a common-mode amplifier (one transistor in each channel with emitters bridged with a resistor). The Dynatron circuit has the added luxury of twin-T filters in each channel to reduce sub-carrier level.

First commercial amplifiers using a hybrid thick-film integrated circuit for the power amplifier are designed by Stanley Kelly, joint managing director (with Sidney Larholt) of Kellar Electronics Ltd (Maryland Works, 9 Brydges Road, London, E15 1NA). One of the series of amplifiers is used in the new Kellar cassette tape recorders using the Dolby ' B ' system for noise reduction above 2 kHz . The system gives a signal-to-noise ratio improvement of $10-15 \mathrm{~dB}$ (see p. 519). As well as using this system with the $25+25$ watt cassette tape recorder, it will be available separately for reel-to-reel tape recorders (to be shown at the Audio Fair). We expect the Dolby ' B ' system to appeai in equipment from various makers later this yearDecca, Rank and Metrosound are rumoured to be working on this.

The hybrid thick-film module used by Kellar-a Bendix circuit originally designed for industrial applications-has made possible a low-cost $15+15$ watt amplifier. Marketed under the name Nova by L. L. Electronics at $£ 33$ and with low distortion (about 0.2%) this could be the best value for money in terms of watts per $£$ at this power level. The circuit uses a conventional quasi-complementary output stage and complementary driver with discrete transistors on the thick-film circuit. Module measures $20 \times 45 \times 80 \mathrm{~mm}$. A slightly
larger 50 -watt module is available, circuit is shown in Fig. 5, and will be used in an amplifier to be released shortly.

In designing the regulated power supplies for this amplifier, Stanley Kelly found that by using two series transistors (OC22s) each feeding one amplifier, instead of operating them in parallel, and arranging feedback from one side of a long-tailed pair circuit, he obtained a worthwhile increase in channel separation.

Another Nova Design, the $10+10$ watt amplifier, currently using an AD161/2 output pair, is due for re-design around a Siemens TAA420 integrated circuit.

Another hybrid high-power amplifier is made by RCA (type TA7625) which operates from a split power supply and has a built-in limiting circuit.

Among the new tape recorders there is a profusion of cassette machines and medium quality reel-to-reel types. Three models from Sharp are of particular interest, having servo control of motor speed: a cassette recorder with slider controls for setting the recording level (model RD423, price $£ 5710 \mathrm{~s}$) and two 5 in reel-to-reel recorders with switched speed change (model RD513, price £39, and its push-button-control counterpart, the RD514, price $£ 42$). In each of these recorders the d.c. drive motor is in the collector circuit of a control transistor, the base circuit of which is fed from a generator coupled to the motor shaft. Speed change from $3 \frac{3}{8}$ to $1 \frac{7}{8}$ i.p.s. is accomplished by a switched resistor change in the bias circuit.

Sanyo now have thirteen cassette recorder models available ranging in price from $£ 1915$ s to $£ 9915$ s-some of these have an f.m. radio too.

Along with several new tape recorders, ranging in price from $£ 5515 \mathrm{~s} 7 \mathrm{~d}$ to $£ 157$ 14s, Grundig displayed the TK3200 threespeed battery recorder with a stick microphone priced at $£ 1783 \mathrm{~s}$. At $7 \frac{1}{2}$ i.p.s. the frequency response is said to be 40 Hz to 16 kHz and wow and flutter as 0.1%. Signal-to-noise ratio is claimed to be better than 48 dB at $1 \frac{7}{8}$ i.p.s. Outputs are 500 mV (into $15 \mathrm{k} \Omega$) with provision for driving an external 4Ω speaker with 2 W or the internal speaker with 0.8 W . This is a single channel recorder.

Mobile radio and amateur bands

I refer to the letter under the above heading which appeared in your September issue.

The second paragraph implies that some unofficial arrangement exists concerning the $70-\mathrm{MHz}$ amateur band. The Electronic Engineering Association seems unaware that the amateur service has been allocated frequencies between 70 and 71 MHz since 1956. Indeed, recent issues of your journal have carried news of propagation experiments by amateurs using these frequencies. It is implicit by the terms of the Radio Regulations that where the amateur service is the secondary user then this is subject to non-interference with the primary service.

The last'sentence of the third paragraph of your correspondent's letter shows a lack of knowledge of the occupancy of the $420-450 \mathrm{MHz}$ band. There are, of course, a number of amateur television stations using frequencies in this band, but, in addition, there are a far greater number of stations occupying the band for experimental work in connection with moonbounce, meteor scatter and satellite communication. Stations operating under the terms of the Amateur (Sound) Licence B are present in large numbers on both the $2-\mathrm{m}$ and $70-\mathrm{cm}$ bands.

The final sentence of the E.E.A. letter mentions "amateur associations". I would point out that the Radio Society of Great Britain is the organization recognized by the Ministry of Posts and Telecommunications as representing the stations of the amateur service in the United Kingdom.
There are regular discussions between the Ministry and the R.S.G.B. concerning licensing matters and frequency allocations and we have no doubt that at the correct time the Society will be approached by the licensing authority.
J. A. SAXTON,

President,
Radio Society of Great Britain.

Crisis in
 microelectronics

Your September editorial draws attention to the difficulties of the integrated circuit industry, but the conclusion one should draw depends rather on one's standpoint. The
U.S. microelectronics industry obviously has-excess production capacity for the foreseeable future, and the present marketing situation cannot be changed rapidly. Dr. F. E. Jones cites import duties as a reason for British companies not manufacturing in the Far East. From a quick enquiry I get the impression that duty on radio components entering Britain is at most 17% which is not decisive in comparison with price differentials quoted in your Editorial, and nil from Commonwealth territories. So why not use Hong Kong? In addition, I feel that more could be done to establish the facts about American manufacturing costs and selling prices, unless it is the desire of the British i.c. industry to befog the issue. If American i.cs which are packaged in the Far East are taken back into America on conditions which assume that the major part of the manufacture has taken place in America, then surely there is no doubt about the country of origin. But even if there is doubt about the country of origin in the manufacturing sense, it must be possible to establish the country in which the manufacturing company has its registered office. Before we worry too much about the difficulty of ascertaining the true country of origin, let us know at least the selling price in U.S.A.

If there is still a possibility of Britain joining the Common Market there might be a case for a European production facility. So far as concerns Britain as an isolated unit, however, the sensible thing might be to cut one's losses and abandon the whole of the British microelectronics industry as now understood. This sounds a rather staggering proposition, but surely the financial loss to be cut would be no greater than losses which have been cut on unsuccessful military development projects. When I say "the industry as now understood" I mean an industry producing logic units and simple linear amplifiers. These are the type of thing which can be bought cheaply from U.S.A., and so far as military strategy is concerned there could, well be either a factory operating under licence or an assembly and encapsulation plant in Britain. But I doubt however whether this is a serious concern: one plane load of integrated circuits could be enough to last for some time-longer than a nuclear war!

On the other hand, I think that large scale integration should be pursued in this coun-
try because by their nature large-scale-integrated-circuit chips are usually tailormade for a particular purpose. It is no novelty for an industry to cut down on the manufacture of a basic product in order to progress to more advanced products.

Another point is that we must not be mesmerized by the idea of integrated circuits using present techniques, which are essentially collections of junction semiconductor devices. There may be a big future for solid state devices which do not depend on junctions, and Britain might have the chance to take the lead in this field. The Gunn effect has already been put to extensive use. The DOFIC appears to have faded into obscurity after a brief appearance, but perhaps there may yet be possibilities of developing it further. There is also the acousto-electric amplifier based on the interaction of electrons and phonons in materials such as cadmium sulphide. These may well play a large part in the future of electronics and should not be overlooked in a moment of panic about the marketing of devices which although scientific marvels to the layman can now be manufactured as a matter of routine.
D. A. BELL,

The University of Hull.

Class AB amplifiers

I am grateful to Mr. Mitchell for his letter in the September issue concerning my class AB amplifier, but there are some points which he makes which, I feel, should not pass without challenge.
In particular he states that a Darlington pair output stage has a lower mutual conductance than the output transistor on its own. While, in theory, this could follow from the fact that the second transistor imposes an impedance in the emitter circuit of the first, this situation does not arise under any but near zero source impedance systems, as I have illustrated in the transfer characteristic graphs on the next page.

Curve A is the transfer characteristic of a simple (MJ481) transistor with a source (base input circuit) resistance of 10 ohms. Curve B shows the performance of the arrangement but with a source resistance of 100 ohms. Curve \mathbf{C} is that of the same output transistor, but with an input Darlington configuration using a BC182 input transistor. There is no measurable difference in performance, in this configuratior,, with source resistances of 10,100 or 1,000 ohms.
In the event, the slope of the Darlington pair, at 200 mA , which was my chosen quiescent current, is $3.6 \mathrm{amps} / \mathrm{volt}$ as compared with $2.8 \mathrm{amps} /$ volt for the simple output transistor.

The presence of as little as 100 ohms input circuit resistance reduces this to 1 A / V, which confirms the point I made in my article, which was concerned, implicitly, with the circumstances which would exist in a practical design.
The second point on which I differ from Mr. Mitchell concerns the conditions of operation of a class A stage. I believe this classification should be restricted to systems in which each component of the output stage operates in its linear region over the

whole of its effective output swing. The mere fact that one or other of the output transistors is not completely cut off is not enough to satisfy this requirement.

Although I had not mentioned this point specifically in the article, the use of the amplifier in true class A does bring about a reduction in the distortion typically to below some 0.01%, at power levels below 15 watts, over the frequency range $100 \mathrm{~Hz}-5 \mathrm{kHz}$, and the distortion content then decreases linearly with reduction in output signal magnitude.

My decision, in the design of the amplifier, to employ a variable resistor, as a .source of bias, between the bases of the output transistors, rather than a more complex temperature compensation network was based partly on the convenience of adjustment of such a biasing system, as compared with, say, a string of diodes (two forward biased silicon diodes will, in fact, give almost the correct quiescent current, and this arrangement was used in some of the prototypes in use by friends) and partly on its lesser proneness to catastrophic failure than transistor "amplified diode" systems.

My curve B indicates the relative insensitivity of the single transistor output stage to variations in forward bias (and the choice of 200 mA quiescent current very much reduces thermal effects, even with an 8 -ohm load!) as well as the excellent transfer linearity of such a system which contributes to the lower harmonic distortion figures obtainable with such an output stage in comparison with the more normal push-pull configurations.

Both Mr. Mitchell and Mr. Gibbs (letters, Aug. 1970) have taken me to task for my observation in the article that "the use of a complementary pair of emitter followers 'driven from a low source impedance' appeared to offer the best way of minimizing the several problems" described in the introduction.
The article in question was in fact written as one, rather lengthy, article which was divided in two for convenience
of publication, and this division, coupled with some editorial deletions, resulted in the observation above being given an unexpected degree of prominence. Since I was, at this stage, reviewing the thought processes which had led to the choice of this output stage configuration, it would have been better if I had continued "and this type of stage was therefore chosen as the starting point for this design".

In the event, both the preliminary calculations and the initial experiments indicated that it was neither practicable nor desirable, from the point of view of linearity of operation, that the output stage should have a low source impedance and the solution suggested by Mr. Mitchell in his letter, that of a relatively high driver impedance with a low inter-base impedance, was the configuration which had been adopted in the final design.

In reply to the letter from Messrs Smith and Walker in the September issue I would point out that the total harmonic distortion was quoted at 1000 Hz , because this is the recommendation of the B.S. and DIN specifications. The t.h.d. figures, at full output, at 100 Hz and 10 kHz , are typically 0.04% and 0.06% respectively. At low frequencies the harmonic distortion is mainly influenced by the impedances of the power supply bypass capacitor and the decoupling and 'bootstrap' capacitors; and an improvement can be made, if necessary, by increasing the value of these.

At high frequencies, the distortion content is mainly determined by the deliberate and necessary reduction in the open-loop gain, and feedback factor, required to maintain good reactive load stability, although the circuit layout and stray capacitances have some effect.
I apologise for the omission of the bandwidth limits for the noise figure measurements. These were effectively those imposed by the amplifier gain/frequency characteristics, as would be measured by a very wide bandwidth millivoltmeter. The use of a more restricted bandwidth, say $20 \mathrm{~Hz}-20 \mathrm{kHz}$, would allow an apparent
improvement in the specified noise figure. (It is, in fact, quite inaudible.) However, on looking through back numbers of Wireless World I find that other authors have been equally remiss in omitting measurement bandwidths when quoting noise levels. This point will, perhaps, be noted in the future.

I regret that the measurement parameter "square wave transfer distortion" was not accompanied by some further explanation. In practise, transfer distortion is measured by comparing electrically the waveforms at the input and output of the system under test, and then expressing the error arising in the transfer as a percentage of the input waveform, as measured on an r.m.s. calibrated voltmeter such as that used for conventional t.h.d. measurements. Any convenient waveform may be used for this purpose.

Typical values for transfer distortion with conventional audio amplifier designs using a 10 kHz square wave and a resistive load range from 0.2% to 10%. Squarewave transfer errors as high as 30% are fairly common under reactive load conditions, and this, in conjuction with the relatively high distortion levels sometimes found at low volume levels, may account for much of the so-called 'transistor sound'. Unlike harmonic distortion, transfer distortion with reactive loads may worsen as the amount of negative feedback is increased.
J. L. Linsley Hood,

Taunton,
Somerset.

Sine-wave power oscillator

The basic requirements for any circuit are that it should be comprehensible, designable and as simple as possible. The old rule, simplificate and add lightness, still applies. Mr. Armer's circuit (August p.402) and his explanation, do not seem to satisfy this.
It is rather easier to examine this circuit if the earth point is moved: indeed it is probably easier to use it if a second variation is adopted. Fig. A shows the circuit rearrang-

(a)
ed for conventional analysis, and Fig. B shows it with the collector of the transistor at an a.c. earth. In both circuits the tuning capacitor has been transferred to be in parallel with only the larger part-winding, simply to make the circuit look conventional.

Before discussing how it works, let us look at the numbers. L_{1} is tapped to give
$400 \mu \mathrm{H}$ in the one part, $200 \prime \mathrm{H}$ in the other. The total inductance is thus $200 \times$ $(1+\sqrt{2})^{2} \mu \mathrm{H}$, or 1.16 mH . This tunes with $C_{1}=0.05 \mu \mathrm{~F}$ to 21 kHz . It would seem that the frequency is not determined, as Mr. Armer suggests, by L_{1} and L_{2} in parallel. They are, in fact, in series, to give the reactance plot shown in Fig. C.

The feedback path when neither the diode nor the base emitter junction are conducting very much is a low-pass half-section with a cut-off frequency of below 1 kHz and an impedance of about 75 2 . When either diode is conducting it reduces to an induc-

(b)
tance of about 180%, to give a 90° phase shift.

The load for 13 W must be in the region of 10Ω. The reactance of C_{1} is about 160Ω, so that the Q of the circuit is very small indeed. Furthermore the value of $I_{d c}(L)^{\dagger}$ for the $400 \mu \mathrm{H}$ section would seem to require a ferrite core of some $30 \mathrm{~cm}^{3}$ volume.

In a push-pull circuit L_{2} would be identified as a constant current supply choke. Here its value is just low enough to avoid really awkward high voltages as the transistor is cut off, provided that the cut-off is

(c)
slow, and thus lossy. What Mr. Armer means by the statement that the base current controls the collector current while the transistor is saturated I cannot understand. The only way this can be done is by limiting emitter current and drawing much of it off into the base. But 2A base current?

Mr. Unsworth ("1000:1 Attenuator"same page), in offering us an output of 0.768 V , appears to neglect the fact that the 8 should be significant. He obtains his 0.7 0.8 V across an R which is loaded by roughly $100 R$. Thus if we look at the first step, nominally $0-0.1$ we shall have, in fact, $0-0.099$. Moreover, $V_{\text {out }}$ must be loaded by something like 5000 R-I have not worked it out-if the system is to be plausible.
T. RODDAM,

London.
R.S.G.B. Exhibition

Where have all the experimenters gone?

Seduced by sales talk every one!

Not so long ago under the heading of "Components, Cobiplaints and Complacency" we urged manufacturers to turn a sympathetic ear to the component needs of the home constructor. It would seem, however, that as far as the amateur radio enthusiast is concerned we should not have wasted the ink and the paper. There were only seven entries from the whole amateur radio fraternity for the home constructed equipment competition held at the recent R.S.G.B. Exhibition. A lamentable turnout.
Is it true that the ham of today does no more than gossip on the air while twiddling the spun aluminium knobs and peering at the gleaming Perspex dials of a shiny piece of commercially constructed equipment? If so the frequency bands allocated to amateurs are being wasted and should be re-allocated to a more deserving cause.
Today's home constructor has never had it so good. He can obtain at reasonable prices sophisticated components which were not even available to industry a few years ago. Is it that today's amateur does not want to risk his money on experiment? Or are the days of trial and error design over?
The winner of the Horace Freeman award for home constructed equipment this year was George Goldsmith, from Jersey, with a finely engineered communications receiver for the amateur bands. It employed both valves and semiconductors and incorporated three crystal filters. Sensitivity was $0.4 \mu \mathrm{~V}$ for a 10 dB signal-to-noise ratio. Other prizewinners were M. F. Taylor, of

Reading, with a $2-\mathrm{m}$ transceiver and J. R. Jessop, of Pinner, with a linear amplifier. This year the John Rouse Trophy was not awarded as there was not a single entry from the under-16 age group, a necessary qualification for this award.

The exhibition itself is still affectionately known as the R.S.G.B. Exhibition, rather than by its somewhat pretentious title (International Radio Engineering and Communications Exhibition). This year it sprouted the additional title Radiocom 70 as well. Attendance was just over 7000; about 800 less than last year. This may have been due to the show being held in August instead of later in the year as in the past. We do not question the value of the exhibition which, as a meeting place for the electronicsradio fraternity, is almost second to none. It is patronized by all types of people from home constructors and amateurs to engineers and academics. It is a pity that working equipment demonstrations were so thin on the ground this year. There were many bargains in surplus equipment to be found even though one exhibitor admitted that the exhibition gave an opportunity to get rid of a "pile of junk".
The Ministry of Posts and Telecommunications had a display which illustrated how interference can spread in large urban areas and the problems incurred in tracing, measuring and suppressing it. This year the Radio and Space Research Station had a stand which showed the work they are doing in the field of propagation of radio waves over a very wide band of frequencies.

The communtcations receiver built by George Goldsmith which this year won the Horace Freeman Trophy. It has a hybrid circuit and operates on the amateur bands.

News of the Month

Ceramic stores for information displays

Some interesting work currently being carried out at Bell Labs in America has resulted in a sort of re-usable slide for projection purposes. Images stored on the slide can be erased and replaced with a new image at will. At the present stage of development the device, or 'ferpic' as Bell Labs call it, would only be suitable for use in displays of written tẹxt and figures which do not require to be quickly altered. Not a great deal of information has been released but it does not take a great deal of thought to see that if the speed can be increased and if the devices can be manufactured at reasonable cost the ferpic could have a bright future.

The material used in the construction of the ferpics was first announced by an American concern called the Sandia Corporation. The device is a sandwich. A very thin plate of fine-grained ferroelectric ceramic is coated with a photoconductive film which in turn has a system of transparent electrodes deposited on it. The whole is then bonded to a flexible transparent substrate.

The release from America which describes the operation of the device is
rather sketchy and it is not clear exactly how the device works. Quoting directly from the American statement; "To change the stored information in this simple structure, a new technique, called 'strain-biasing' was developed by Bell Lab scientists. The ferpic sandwich is flexed so as to stretch or strain the material.
"In an ordinary film slide an image is stored in the form of variations of transparency across the film. In a ferpic the image is stored as a variation of the 'Birefringence' of the ceramic plate, i.e., as a variation in the way the plate transmits polarized light.
"In one mode of operation, a scanned laser beam records an image on the photoconductive film-one picture element at a time as in a TV picture. A voltage applied to the transparent electrodes develops a field across the ceramic. When the field is removed, the image remains stored on the ceramic plate. The image stored in the ferpic device can be viewed by putting light polarizing sheets over it, or the image can be projected on a screen using polarized light in a conventional projection system.
"To erase the image, the entire structure is flooded with light in the presence of a

Representatives of the Services, Ministry of Defence and industry watching a demonstration of the Eidophor large-screen displav system at the College of Air Traffic Control, Hurn Airport. This equipment was used by N.A.S.A.during Apollo 11 and 12 missions, and its pictures were retransmitted by practically every TV network throughout the world.
reversed electric field; the plate is then ready to store another image."

Bell Labs is exploring this device in the hope of obtaining efficient, low-cost solid-state information displays with features that are difficult to obtain in present display systems. Because the image store in the ferpic device can be projected, very large displays can be obtained. Also ferpic slides can retain images for a long time without electrical power, fading only slowly.

Slant polarization for local radio

Certain B.B.C. local radio stations will be using slant (45°) polarization instead of horizontal polarization. This follows successful tests by B.B.C. research department engineers in Kingswood and Nottingham areast. Reception in cars and in the open air with vertical aerials will be improved through the effective increase in transmitter power equivalent to about $6-9 \mathrm{~dB}$, at least doubling signal strength on average. Hitherto, satisfactory reception with vertical aerials has been largely a matter of luck. As a consequence, horizontal roof aerials will give a reduced signal-about 70% or -3 dB . If necessary, this could be recovered by slanting the aerial (clockwise by 45° when looking at the transmitter) but the national v.h.f. services, not using slant polarization, would suffer a loss.

Stations using slant polarization are: Manchester- 95.1 MHz ; and early in 1971 Blackburn- 96.4 MHz ; Derby - 96.5 MHz ; Leicester- $95.05-95.2 \mathrm{MHz}$ and Not-tingham- 94.8 MHz .
B.B.C. make the point that some rooflevel aerials may not be correctly oriented for the local station and some adjustment may be needed for best results.

Mullard's golden jubilee

As part of their Golden Jubilee celebrations Mullard Ltd. are to stage a 3 -week public exhibition in the Electronics Centre of their London headquarters, Mullard House, Torrington Place, London, WC 1E 7HD.

The exhibition will trace the history of electronics-linked with the company's own history-over the past 50 years.

The exhibition opens on October 5th, and will run until October 24th, opening every day (except Sundays) between 10.00 and 18.00 (21.00 on Thursdays). Admission will be free. Later, the exhibition, probably in a modified form, will tour Mullard establishments throughout the country.

The main window of the Electronics Centre will contain examples of vintage electronic equipment contrasted with their modern counterparts and supported by displays of Mullard components used in their manufacture.

Within the Centre one of the main attractions will be a radio transmitter built and operated by Mullard 'hams'. Some of the company's earliest valves will be used

[^6]in its construction. It is also hoped to show part of the original 2LO transmitter used by the B.B.C. for its first public broadcasts.

Another main feature will be entitled 'Mullard Through the Decades': This will show electronic products and their components of each era, beginning with the first Mullard high-power transmitting valve. Displays in the 'Today' section will feature many working exhibits including a microwave oven. Another section will provide a glimpse of some of the likely future applications of electronics. The exhibition will also include a section where visitors can test their skill and reflexes in various electronic games.

I.T.A. completes 405 -line network

The coming into service of a local v.h.f. relay station at Newhaven, Sussex, on August 3rd marked the completion of the I.T.A. network of 405 -line v.h.f. television transmitting stations. No further additions to this network, which operates solely in Band III, are currently envisaged. All I.T.A. station building plans are now concentrated on the rapid expansion of the new 625-line network of u.h.f. transmitters.

Since the original opening of the first I.T.A. Band III station at Croydon,
south-east London, on September 22nd, 1955, the 405 -line network has expanded steadily and now comprises 47 transmitting stations, of which 20 are manned, and 27 remotely controlled. The network provides television coverage for approximately 98.7% of the population of the United Kingdom.

Want to use a satellite?

The National Aeronautics and Space Administration is offering the use of six satellites which have long since fulfilled their original task but are still operational.

The six spacecraft are: OGO-1 (Orbiting Geophysical Observatory), ten experiments still operational, highly elliptical orbit 111,000 by 39,000 miles, inclination 58°; OGO-3 similar orbit to above, 13 experiments operational; Explorer-31 (direct measurements explorer) with five operational experiments and Explorer-33 (Interplanetary monitoring probe) orbit 410,600 by 109,000 miles, orbit period 32 days; finally the orbiting solar observatory satellites OSO-3 and OSO-4 are also available.

Interested scientific bodies should contact Code SG N.A.S.A. Washington D.C. 20546.

As a matter of interest the oldest satellite still transmitting useful information is the Canadian Alouette-1 which was launched on September 29th 1962.

Apollo colour TV camera

Under a $\$ 196,500$ contract R.C.A. will deliver two colour television cameras to the National Aeronautics and Space Administration which can be used under

the extreme lighting conditions found on the moon. The cameras, which weigh ten pounds each, not only operate in dim lighting conditions but they can be pointed directly at the sun without sustaining any damage!

The cameras employ silicon intensifier tubes, the imaging surface being made up of almost 400,000 silic on diodes. The colour system (525 lines per frame and 60 fields per second) is as used in earlier Apollo missions with a colour filter wheel arranged so that monochrome pictures corresponding to the red, blue and green brightness levels are transmitted sequentially for recombination at the
station, at Lahr in West Germany, is situated on a rather difficult site being ringed with mountainous country and suffering a high annual rainfall. The base will provide air traffic control terminal services for the Canadian bases at Lahr and Soellingen. In emergency the base will provide the German airfield at Bremgarten with assistance. Air traffic problems in the area are complicated by the civil airports at Strasbourg and Basle which are not very far away.

The radar installation, which cost $£ 425,000$, consists of a type S654 surveillance radar together with a temporary aerial which will be replaced by a dual beam aerial next year, a secondary radar system and a central operations control room. Under the contract the Canadian Marconi Company, acting as sub-contractors, modified the existing precision approach radar for remote operation from the central control room.

Announcements

"Compendium of Degree Courses 1970", providing information about more than 279 sandwich, fulltime and part-time courses, is available from the Council for National Academic Awards, 3 Devonshire Street, London WIN 2BA.

The following courses are to be held at Hendon College of Technology, London N.W.4. "Thyristor applications", six lectures commencing 15th October; "Electronics for non-electrical engineers", fourteen lectures commencing 13th October; "Construction and operation of digital computers", sixteen lectures commencing 15th October. Fees are $£ 3, £ 6$ and $£ 8$ respectively.

Two-day and three-day colour television training courses are being conducted at the Thames Hotel, Bridge Street, East Molesey, Surrey, by Electronic \& Colour Television Training Ltd, of 180 St . Johns Road, Woking, Surrey. Fees 15 gn and 20 gn .

Coincident with next year's Electronic Components Show at Olympia (May 18-21) an Electronic Components Conference is to be held at the Royal Garden Hotel, Kensington, under the auspices of the Electronic Components Board.
Truvox Ltd, which became part of the Racal group with the acquisition of Controls \& Communications Ltd, has ceased manufacture and their range of audio products will not be available in future. The service department will continue to operate from Hythe, Southampton, providing an advisory service, repairs and a supply of spare parts.

Philips and Brown Boveri.-An agreement has been reached between Philips' Telecommunicatie Industrie, of Hilversum, Holland, and Brown, Boveri \& Company Ltd, of Baden, Switzerland, by which the two companies will co-operate in the manufacture and development of sound broadcast transmitters.

REMO is the brand name of a new company, Rectifier Modules International Ltd, of Remo House, Rye Street, Bishops Stortford, Herts. The range of products will begin with three basic types: e.h.t. rectifiers and modules, encapsulated rectifiers and rectifiers to meet British Post Office specifications.

Mobile Radio Communication

Congestion of bands: Proposals for improving the service

The number of private mobile radio licences in the U.K. which at present stands at about 85,000 , is likely to double every five years according to figures given at a recent conference on mobile communications arranged by the Society of Electronic \& Radio Technicians. Sectors of the frequency spectrum allocated to this mode of communication are already saturated "and equipment manufacturers and users are desperately seeking means whereby they can increase the number of available channels.

Speaking before 130 delegates at the conference at Brunel University, Uxbridge, J. R. Brinkley, of S.T.C. suggested that one way out of the dilemma would be to extend the present u.h.f. mobile band $(450-470 \mathrm{MHz})$ to $420-512 \mathrm{MHz}$. This would entail, at the top end of the extended band, sharing television channel 21 in Band IV. Channel 21 has been assigned to 15 B.B.C. TV transmitters including three high-power stations at Rowridge (I.o.W.) Divis (N. Ireland) and Sandy Heath. D. B. Balchin, from the Ministry of Posts and Telecommunications, pointed out that the TV band was fixed by international agreement. There would be great difficulty in sharing this band with mobile radio. Undeterred Mr. Brinkley asserted that frequency sharing with TV broadcasts had been successfully introduced in America in three densely populated areas. The situation in the U.S.A. is somewhat different to the U.K. in that densely populated areas in the U.S. are more widespread than in this country. These areas are each served by a large number of relatively low-power transmitters. Therefore there would be little likelihood of interference from a mobile operator sharing the frequency of a TV station located several hundreds of miles away, but unused in his own area. In the U.K. on the other hand, an attempt is made to saturate the whole island with television signals, with most of the area covered by 8 high-power transmitters.

Users as a whole, however, cannot be unaware that v.h.f. television Bands I and III may be phased out of use for the existing programmes and the two broadcasting organizations are expected to present a convincing case for retention of the v.h.f. bands for broadcasting before their charters come up for renewal in 1976. Otherwise industry will have its sights firmly fixed on this substantial sector of the frequency spectrum. The threat by mobile radio to amateur frequencies was pointed out in "World of

Amateur Radio", in the July issue.
The conference posed the question, whose need is greater, mobile radio or television? This is a choice which may not necessarily have to be made because several delegates spoke of new technologies, or the updating of old ones, which can provide a greater number of effective communicating channels within the existing frequency allocation. There is, for example, the possibility of reducing the u.h.f. channel spacing (currently 25 kHz) to 12.5 kHz . This would virtually double the number of available channels but an increase in noise would result from a reduction in deviation ratio.

Frequency modulation is in general used on u.h.f. but systems might be improved by changes in the modulation characteristic. E. W. Crompton of the Home Office (police and fire services) described work his department was currently carrying out on double sideband diminished carrier amplitude modulation (d.s.b.d.c.) which has the desirable feature of concentrating most of the transmitted energy in the sidebands and not in the carrier as with conventional a.m. and f.m. A more complex detector than the simple diode demodulator would be required ${ }^{1}$ but the post detector circuits could be relatively simpler than in the conventional receiver. Delegates were played a tape recording of speech from the output of a d.s.b.d.c. receiver with a $1 \mu \mathrm{~V}$ signal input. Noise was virtually absent but the intelligibility of the speech left much to be desired. Mr. Crompton postulated that more than one information channel could be accommodated in a single transmission by quadrature modulation of a subcarrier, in the same way that colour TV systems carry. chrominance information, and the use of synchronous detection.

A system was described for dialling from a vehicle into a private telephone exchange and another for using the mobile radio as a data link. This latter can provide information on the location of up to 1000 vehicles by a hyperbolic system employing four fixed stations disposed round the vehicle movement area. By measuring the phase shift of a 2.7 kHz audio tone and collecting 600-2700-band data in a small computer at the base terminal, the system is capable of giving the positions of up to 2000 vehicles per minute.

[^7]
Electronic Building Bricks

5. The electronic circuit

by James Franklin

In order to transmit and process information, say in a television set or a computer, we must provide means for moving the lectrons which we are using to represent the information. In Part 3 we looked at the general nature of this movement--conduction. The medium most widely used for electron conduction is one in which the process can take place most freely-a metal-and which is also reasonably cheap, which means copper. A path for electron conduction is called a circuit, and the simplest form of electronic circuit is a continuous loop of wire as shown at Fig. 1. Almost all "electronic building bricks" are elaborations of this.

To cause the free electrons in a conducting path such as Fig. 1 to move,

Fig.1. Basic electronic circuit, a continuous loop of wire or other conduction path for electrons.
one must apply a force to them. Two forces which will act on electrons are the electric field (e.g. the region of "attraction" surrounding a plastic comb which has been rubbed to make it pick up pieces of paper) and the magnetic field (e.g. the region of "attraction" surrounding a magnet). For circuits we use principally the electric field. In practice this field is produced by the rotating generator (to which we make connection through the electricity mains) and the dry battery. These, of course, are both devices for converting some other form of energy-mechanical in the generator, chemical in the battery-into electrical energy. Because the electric field they produce is a force used for moving electrons it is known in the context of circuits as an electro-motive force (e.m.f.). A strong electro-motive force will move more electrons in a given time than a weak electro-motive force.

The unit by which this force is measured is the volt ${ }^{\text {* }}$ Thus in a given

[^8]circuit, 2 volts will move twice as many electrons in a given time (cause twice the current to flow) as 1 volt. There is a very precise scientific definition of the volt, but most people know from experience the relative strengths of different "voltages" by what can be "driven" by them- $4 \frac{1}{2}$ volts from a torch battery, 9 volts from a transistor radio battery, 12 volts from a car battery, 240 volts from the electricity supply mains-and these give some practical idea of the e.m.f. presented by the volt. (Anything above about 50 volts will give you a nasty jolt!)

Fig.2(a) shows how a source of e.m.f. is inserted into the Fig. 1 circuit to cause the free electrons in the metal to move. The insertion of the e.m.f. source breaks the loop of wire, but the electrons flow through the source, as indicated by the dotted lines. We may also insert some electronic component or device in the circuit, as indicated. The flow-rate of electrons (current) in the whole loop containing the e.m.f. source and the component can be measured by inserting a meter as shown at (b)-and, of course, to allow the current to continue to flow this meter must not break the circuit Such a meter for measuring current will be calibrated in amperes (Part 3) or, for small currents, milliamperes (thousandths of an ampere)

Fig. 2. The Fig. 1 loop with (a) a source of electro-motive force and an electronic component inserted; and with (b) a meter included to measure current.
or microamperes (millionths of an ampere).

As will be seen from other articles in Wireless World, circuits are normally drawn in a simplified form by the use of symbols. To draw the physical form of the wires and components, as was done in the early days of radio, would be extremely laborious for the more complex circuits, and in any case is unnecessary, except sometimes as an aid to the construction of equipment. All the essential information about the functioning of electronic circuits and systems-and this is what we are really interested in-can be given in the simplified, generalized form known as a theoretical circuit diagram (or just "circuit diagram"). Thus the simplified form of Fig.2(b) is shown at Fig.3. It will be seen

Fig.3. Theoretical circuit diagram, using graphical symbols, representing the actual circuit shown in Fig.2(b). (The rectangle symbolizes a particular type of component, to be explained later.)

Fig.4. Graphical symbol for a source of electro-motive force giving an alternating current (ac.).
that this takes no account of the physical size or shape of the wire, the source of e.m.f. or the meter. We have a generalized representation that could mean any type of conductor (e.g. areas of metal film), any type of e.m.f. source (battery, rotating generator, thermo-electric device, electrostatic machine) and any shape or size of meter. Thus with the removal of nonessentials, our attention is concentrated on the functional aspect.

It will be seen that diagram Fig. 3 contains some extra information, the + and - signs on the e.m.f. source. Without going into the full meaning of electrical "positive" and "negative", it is sufficient to say at this point that these signs on this particular source indicate (a) the direction in which the electrons are made to move round the loop by the e.m.f. and (b) the fact that this direction is always the same. A source of e.m.f. producing such a uni-directional current is called a direct-current (d.c.) source-a practical example is a battery- and the positive side of this source is identified as that towards which the electrons travel.

Another type of e.m.f. source used in electronics causes the electrons to flow alternately in opposite directions. This type of flow is called alternating current (a.c.), and the theoretical circuit symbol used to represent an a.c. source-which might be a power-station generator or a laboratory testing instrument (oscilla-tor)-is shown in Fig.4.

Personalities

Professor A. L. Cullen, O.B.E. Ph.D., D.Sc. (Eng.), Pender professor of electrical engineering, University College, London, is to receive from the Paul Instrument Fund Committee the sum of $£ 10,717$ over three years for the construction of a wideband microwave impedance bridge of high accuracy, using a new and very precise absolute impedance standard. Professor Cullen, who graduated at Imperial College, London, in 1940 and was for six years at R.A.E. Farnborough, occupied the chair of electrical engineering at Sheffield University from 1955 until his appointment to University College in 1966.

George Millington, M.A., B.Sc., F.I.E.E., who recently retired from the Marconi Company, has been appointed consultant to the Directorate of Radio Technology of the Ministry of Posts and Telecommunications. Mr. Millington is well known for his studies of radio-wave-propagation phenomena and was at one time international vice-chairman of the C.C.I.R. study group investigating the problems of ground-wave propagation. A graduate of Clare College, Cambridge, he joined Marconi's in 1931 and headed the company's propagation section for many years.
W. F. Hawes has been appointed general manager for marketing by Pye Telecommunications Ltd. Mr. Hawes, who is 49 , was formerly overseas marketing manager and succeeds J. C. Turnbull who has become managing director of the recently formed Pye Business Communications Ltd.

Alec Kravis, O.b.E., who is 51 , has been appointed sales manager of the Radio Communications Division of Marconi Communication Systems Ltd. He has been with the Marconi Company since 1950 and was at one time project co-ordinator in Research Division for advanced communication and radar projects. In 1964 he was appointed project co-ordinator for space communication studies, and when Marconi
won the contract for the first British military satellite communication stations Mr. Kravis was made project manager. After the completion of this project he became manager of administration and technical services in the Research Division, and since 1967 has been in the Computer Division, as deputy manager.

Donald W. Morrison, B.A., who joined the Sprague organization earlier this year as special assistant to G. V. Tremblay the president of Sprague World Trade Corp., has been appointed managing director of Sprague Electric (U.K.) Ltd, of Yiewsley, Middx. From 1960 to 1967 Mr. Morrison was director of marketing and general manager for the Far East of A.M.F. International after which he spent two years as regional manager for Europe with the American Air Filter Co.

Alan Hall has joined Marconi Communication Systems Ltd as sales manager of the Specialized Components Division at Billericay, Essex. After studying at, Sheffield University Mr. Hall, who is 45 , served in the Royal Signals from 1945 to 1948. He worked as a sales engineer with Solartron Electronic Group and with Muirhead, then as assistant to the technical manager in the Electronic Component Division of Johnson Matthey at Burslem, and latterly as sales manager for Oxley

Alan Hall

Developments Co. Ltd, of Ulverston, Lancs, Mr. Hall is an amateur radio trasmitter using the call G3UWA.

The appointment of John \mathbf{S}. Walker as managing director is announced by Cosmocord Ltd, of Waltham Cross, Herts, manufacturers of Acos electro-acoustic products. Mr. Walker has been associated with the electronics industry for nearly 20 years. He was until recently with De La Rue Instruments, before which he spent 10 years with Texas Instruments Ltd, where he was in turn responsible for the application laboratories and for research and development.

Ernest M. Hickin recently joined Microwave Associates Ltd where he is now responsible for co-ordinating all the technical activities of the Luton-based subsidiary of Microwave Associates Inc., of Burlington, Mass. Mr. Hickin was previously for six years with GEC-AEI Telecommunications Ltd at Coventry as chief radio engineer, Transmission Division, having earlier been responsible for transmission research at the GEC Hirst Research Centre, Wembley. He is vice-chairman of the I.E.E. South Midland Electronics \& Control Section.
J. D. Rhodes, B.Sc., Ph.D., an authority on microwave selective linear-phase filters, has been appointed design consultant to the Valve \& Microwave Group of Ferranti Ltd at Dundee, Scotland. Dr. Rhodes, who is 26 , is a lecturer in the Department of Electrical \& Electronic Engineering at Leeds University, where he graduated and obtained his doctorate. He then spent one year as a post-doctorial fellow before going to work for Microwave Development Laboratories Inc., Natick, Mass., U.S.A. There he was engaged upon general research and development into microwave techniques with the emphasis on linear-phase and elliptic function filters. During 1969, Dr. Rhodes returned to Leeds to take up his present post at the University.
J. E. Diggins, M.B.E., who joined Racal in 1963 as an electronics engineer at Bracknell, is appointed deputy managing director of Racal-BCC Ltd, the largest company in the Racal group. In 1966 he headed a team of engineers whose task was to develop a new h.f. mobile radio-telephone. The project was so successful that a separate company was formed, named Racal-Mobilcal Ltd, and production transferred to a new factory in Reading. E. T. Harrison is managing director of Racal-BCC Ltd, in addition to being chairman and managing director of the

Group. Following Mr Diggins appointment G. J. Lomer has become general manager in addition to being technical director of Racal-Mobilcal Ltd. D. C. Elsbury, formerly chief inspector and quality assurance manager of Racal-BCC, Bracknell, becomes production director of RacalMobilcal and E. Phillips, formerly production manager of RacalMobilcal becomes chief inspector and quality assurance manager of Racal-BCC Ltd.

The appointment of J. O. M. Jenkins, M.Sc., as applications engineer for digital integrated circuits is announced by Siliconix Ltd, of Swansea. After graduating in electrical engineering at the University of Swansea, Mr. Jenkins, who is 30 , went to the Steel Company of Wales in 1961. In 1966 he relinquished his appointment to study for his Master's degree at Cranfield Institute of Technology following which he joined Mullard, Southampton, to work on the development of integrated circuits.

James A. Scott, appointed sales manager of K. W. Electronics Ltd., Dartford, Kent, was previously assistant to the sales manager of the radio navigational aids division of Standard Telephones \& Cables Ltd. After studying at Oxford Technical College Mr. Scott, who is 41, joined the Scientific Civil Service at the Atomic Energy Research Establishment at Harwell. Following transfer to the Overseas Civil Service he held executive positions in the security services radio branch and in the civil aviation department in Kenya, until the independence of that country. He held an amateur radio call sign in Kenya, and now operates in this country with the call G3CMI.
J. R. Tillman, D.Sc., Ph.D., M.I.E.E., deputy director of research at the Post Office Telecommunications Headquarters, London, has been appointed a visiting professor in the Department of Electrical and Electronic Engineering of the City University, London. Dr. Tillman joined the Post Office Research Station in 1936 and was appointed deputy director of research there in 1965.
B. A. Paine, B.Sc., is appointed managing director of Booker Bowmar Ltd and its subsidiaries Reliance Controls Ltd and Bowmar Instruments Ltd. A graduate of California State Polytechnic College, Mr. Paine, who is 37, was, until his new appointment, operations manager with Spectral Electronics Corp., of Southern California. He succeeds L. M. Butler who has gone to California to become president and general manager of another Bowmar company.

3. Construction and operation

by W. T. Cocking, F.I.E.E.

The whole equipment has been built into a standard case (Olson Type 75B) with the power supply assembled on the back panel ($4 \frac{5}{8}$ in $\times 1 \frac{5}{8}$ in). This was mounted at one end on a hinge so that it could be opened out, but this proved to be quite unnecessary and would not be done in a second model. It is mentioned merely because the hinge may be evident is some photographs.

All other parts are mounted directly or indirectly on the front panel, which is of the same size as the back panel. Connection between the two is made by an 8 -way cable terminated by an 8 -way connector. Another identical connector is screwed beneath the box which contains the marker oscillator and the two joined together by short lengths of No. 16 wire. The cable is long enough to enable the front unit to be withdrawn from the case and turned over, and it can then be disconnected by slacking off eight screws.

In this way good screwed connections are obtained and, by using two connectors, there is no possibility of making wrong connections on rejoining them as there would be if wires were disconnected independently.

Components are not critical and an indication is given of a supplier of certain parts which have been used in the model described. Only one component is really important-the Motorola 1N5145-and this was obtained from Celdis Ltd. (37/39 Loverock Rd., Reading, Berks, RG3 1ED). The photographs show most of the constructional details. The marker oscillator is built on a piece of plain Veroboard with a 0.1 -in matrix of holes and measuring $2 \frac{1}{8} \mathrm{in}$ by $2 \frac{7}{8} \mathrm{in}$. The variable capacitor used (Home Radio type VC20, Jackson U101/SS, 25pF) is a split stator type of 25 pF each half; only one half is used. It is screwed to the Veroboard, on which the other parts are mounted in the usual way. A long 6BA screw for mounting to the box is fixed in each corner of the board and nuts are run on, not only to fix the screws to the board but so that the spacing of the underside of the board from the case can be adjusted.

The screening case for it is a metal box measuring 3 in $\times 3$ in $\times 2$ in (Home Radio Z127). This must have four holes drilled in its bottom to take the four screws from the Veroboard. A $\frac{3}{8}$ in hole must be drilled in

General view of the wobbulator showing all the external controls
one side as a clearance hole for the capacitor shaft extension and in the same side four 6BA holes for the screws by which the box is attached to the front panel. It is mounted with spacers so that the box lies lin behind the panel. It is desirable to tap the holes in the side, since this saves getting nuts on to the screws in rather awkward positions. An extension shaft of insulating material is used for the capacitor with the usual metal coupler inside the screening can.

A nother hole in the bottom is fitted with a grommet to take two power-supply leads and the twisted pair for the r.f. output. One connector is screwed to that side of the can which is at the bottom when it is mounted on the front panel.

The main assembly is on a piece of plain Veroboard, again with a 0.1 -in matrix of holes and measuring $3 \frac{3}{4}$ in x $6 \frac{7}{8} \mathrm{in}$. It is held to the panel by brackets. The layout is not critical but all connections within a tuned circuit should be kept short.

Printed circuits do not lend themselves at all well to development work and instead we used plain Veroboard with Cir-Kit for "wiring", for it permits easy alteration. It proved very successful, and we retained it in the final model. Cir-Kit comprises copper strip and is available in widths of $\frac{1}{16}$ in and $\frac{1}{8} \mathrm{in}$. It is coated on one
side with an adhesive and a paper backing to prevent it from sticking together. A piece of the required length is cut off the roll, the backing paper is peeled off and it is placed on the board in the required position and pressed firmly down. The $\frac{1}{8}$ in was used only for the earth, 17 V and 70 V lines, the $\frac{1}{\mathbb{K}}$ in being used for everything else.

It works very successfully as long as there is no push or pull on it which tends to separate it from the board. A component on the top of the board, therefore, should not be spaced from the board but should rest on it and its leads should be bent over flush with the board on the under side, so that the component and its leads tend to clamp the Cir-Kit strips to the board. It is wise to let a lead cross the copper strip and project a little on the other side. If it should be necessary to remove a component a knife blade can then be slipped under the projecting wire while the soldering iron is applied and the lead bent up without disturbing the copper strip.

The adhesive softens with heat and this can cause trouble when unsoldering a lead from a very small piece. It is then sometimes easiest to pull out the copper strip while it is hot and replace it with a new piece.

Connecting leads and any components on the under side of the boards should be
attached only at places where the leads from parts on the top of the board are providing a firm anchorage for the strip to the board. In other places, a connecting lead should be anchored to the board by enlarging two holes, passing the lead through one from bottom to top and then through the other from top to bottom.

It is worth while to check all components before mounting them, including semiconductors. Using the Model 8 Avometer on the ohms range most diodes and base-emitter junctions show from about 400Ω to $2 \mathrm{k} \Omega$ in the forward direction and appear to be open-circuit in the reverse direction. Other ohmmeters may give very different resistance values, but as long as the resistance in the forward direction measures much less than in the reverse direction there is a presumption that all is well. This applies to zener diodes as well as ordinary types, and also to the varactor diode.

Setting-up

Until further notice the vision-sound switch is to be in the vision position. No i.f.
amplifier need be connected. Connect a voltmeter across R_{11} Turn R_{22} for zero a.c. drive to Tr_{3}. Check that as R_{20} is rotated the voltage across R_{11} can be varied from almost zero to 70 V . Set \boldsymbol{R}_{20} for about 20 V .

Disconnect the voltmeter and connect the c.r.o. between earth and the junction of R_{9}, R_{10} and D_{3}. Turn up R_{22} to apply a.c. drive to Tr_{3}. Use the linear timebase of the oscilloscope and synchronize it to the waveform $(50 \mathrm{~Hz})$. The waveform should at first appear sinusoidal but, as the amplitude increases, it should more and more tend to very rounded positive half cycles with peaky negative half cycles. If the amplitude is too great or the bias on Tr_{3} is wrong, or both, there will be flats on the bottoms of the negative half cycles. This occurs when D_{3} conducts it and it shows that the safety circuit is functioning. Adjust \boldsymbol{R}_{20} and \boldsymbol{R}_{22} for the maximum possible amplitude of the waveform without overloading. This will be about 50 V p-p.

It is important to realize that the oscilloscope is connected to a high impedance point (about $0.4 \mathrm{M} \Omega$) with the

Upper part of the wobbulator unit.

Lower part of wobbulator.
result that unless the oscilloscope is of much higher impedance the voitage measured by it will be a good deal less than the true voltage. If R is the input resistance of the oscilloscope, the voltage indicated by it should be multiplied by $1+0.4 / R$. We used an oscilloscope of $1 \mathrm{M} \Omega 2$ input resistance and measured on it a maximum of 38 V p-p, making the true voltage 53 V approximately.

Connect the c.r.o. to the "Output to c.r.o. Y-amp" socket and set its Y sensitivity to about 1 V , or a little less, for full vertical deflection. Connect its X-input to "Output to c.r.o. X-amp" socket. Connect the signal generator to "Input from s.g.". The signal generator should have an open-circuit output impedance of 75Ω and an open-circuit output of at least 200 mV . Set it at full output at 36.5 MHz . Turn R_{56} to maximum. Set the internal marker oscillator control so that the variable capacitor vanes are fully unmeshed. Set the core of L_{4} so that its top is a little below the top of the former.

There may now be visible on the trace anything from none to three markers. If there are three the largest will usually be from the internal marker oscillator and the next from the signal generator. This may be checked by adjusting their controls independently; the markers will then move along the trace independently. The third marker is much smaller in amplitude and is always about half-way between the other two. Also it moves when either of the other markers is moved and in the same direction, but at half the rate. It arises because a frequency equal to the sum of the two marker frequencies is generated in the D_{4} circuit and it beats with the second harmonic of the wobbly oscillator. Its frequency is precisely half way between the two marker frequencies and it is useful in adjusting for linearity, for this third marker should be precisely half way between the other two markers on the trace.

For the moment we are concerned only with the marker at 36.5 MHz provided by the signal generator. If it is not visible adjust R_{20} to bring it on to the trace, and in any case adjust this control to bring this marker as nearly to the centre of the race as possible.

Unless the phase adjustment is by chance set correctly, each marker will be double. Adjust "Phase" to make the markers on the forward and return sweeps coincide.

Check that increasing the marker frequency makes the marker move along the trace to the right. If it moves to the left, reverse the leads to one of the 7-V transformer secondaries.

Adjust the signal generator towards 30.5 MHz while watching the trace. The marker may disappear from the left-hand end of the trace before this frequency is reached or it may not have reached the end at this frequency. In either case adjust R_{20} to bring the $30.5-\mathrm{MHz}$ marker precisely to the end of the trace. This is when the end of the trace comes to the middle of the marker, so that only half of the marker is visible.

Now turn the s.g. towards 42.5 MHz . There are now several possibilities. The marker may disappear beyond the right-hand end of the trace at some frequency above 42.5 MHz . If it does this readjust R_{20} and R_{22} so that when the s.g. is set in turn to 30.5 MHz and 42.5 MHz the marker is precisely on the left and right hand ends of the trace respectively.

If the marker stops before 42.5 MHz is reached, it may still be possible to make it reach the end while still keeping 30.5 MHz at the other end, just by adjustment of R_{20} and R_{22}. More likely, however, the third possibility will arise. This is that the marker will stop before 42.5 MHz is reached but, while its left-hand half will be undistorted, its right-hand half will be drawn out into an oscillation for the rest of the trace. If this happens unscrew the core of L_{1} a little and repeat the process.

Having obtained a sweep covering 30.5 MHz to 42.5 MHz , calibrate the internal marker oscillator against the signal generator. It is sufficient to do this in $1-\mathrm{MHz}$ steps. It is convenient to use the blank half of the dial with the slot of an adjacent screwhead as an indicator, and place a pencil mark on the dial for each calibration point.

Set the s.g. to the required frequency and turn the dial of the marker oscillator to superimpose its marker on that provided by the s.g. When the two are nearly equal in frequency a low-frequency oscillation will appear right across the trace and it will disappear at a very critical setting when the two are precisely equal. Mark this point on the dial, move the s.g. by 1 MHz and repeat, and so on until the calibration has been completed.

The calibration is easily checked in this way at any time, and if the marker is needed at any frequency in between calibration points it can be set there by reference to the s.g. When the marker is calibrated; the setting up procedure is very much easier because a marker can be set at each end of the range, and it is unnecessary to be continually turning the signal generator from one end of the range to the other, possibly by a tedious slow-motion control.

Set the internal marker oscillator so that its marker is off the trace. Set the s.g. to 36.5 MHz and adjust the core of \boldsymbol{L}_{4} for maximum amplitude of the marker. Check that the amplitude is about the same at 30.5 MHz and 42.5 MHz and is about 70% of that at 36.5 MHz . Readjust the core if the amplitudes at the two ends are not almost the same. The adjustment is not critical:

The next step is to check the linearity. This is done with the aid of the third marker. Set the s.g. and the internal marker to 30.5 MHz and 40.5 MHz and see that they lie precisely on the two ends of the trace; slight readjustment of R_{20} and R_{22} may be needed because of temperature drift. Measure the distance of the small centre marker to each of the two end markers. The two distances should be the same. If they are not adjust the core of L_{1} very slightly and readjust R_{20} and R_{22}, and measure the distances again. If the distances are more nearly equal continue

General view of the power supply unit.
adjusting the core in the same direction, each time readjusting R_{20} and R_{22} until they become equal. Of course, if the first adjustment to the core makes matters worse, it needs adjusting the other way.
As an example, it was found in one instance that the distance of the centre marker to the left was 35 arbitrary units, whereas the distance to the right was 32 units. About one turn only of the core was needed to bring the distances to equality.

The wobbulator is now set up on vision and can be used with an i.f. amplifier to depict its response curve. Proper alignment of the vision amplifier with its trap circuits must be achieved before any attempt is made to align the inter-carrier sound channel.

There are certain traps for the unwary in doing this. The first is a short-circuit on the mains supply! Never for one moment forget that the normal television receiver is live to the mains. To avoid the risk of shock, damage to equipment and even to obtain proper operation of equipment, there is really no alternative but to use a double-wound $1: 1$ ratio mains transformer to feed the television set. It is certainly the only safe thing to do. Otherwise the i.f. strip must be removed from the set and operated from a separate power unit containing a transformer.

Most television sets are designed to operate with the video detector giving an output of 2 V to 4 V . Care should be taken to see that the peak-to-peak output with the wobbulator is of this order. However, the input from the wobbulator must never be so great that overloading occurs.

It is essential that the connection of the video output to the wobbulator should not cause feedback in the i.f. amplifier. A well-screened lead is necessary and it is sometimes better to take the output from a video stage than from the detector itself. In the case of the Wireless World Colour Television Receiver it was found to be best, and certainly most convenient, to use the sync separator feed. This is a long screened cable which plugs into the sync separator board, and so it can just be unplugged and plugged into the wobbulator.

The r.f. output from the wobbulator must be by coaxial cable and its length

Here the markers are at 34 MHz and 40 MHz and half way between them there is a very small marker at 37 MHz . This arises from the sum of the main markers (74 MHz) beating with the second harmonic of the wobbly oscillator.

Taking the output from the luminance delay line of the W.W. Colour Television Receiver results in an inverted tràce.

The normal input coupling time constant of the oscilloscope is 0.25 sec . These photographs show the result of reducing it, at (a) to 0.04 sec and at (b) to 0.001 sec . Notice the double trace in the vertical direction in (a) and the gross distortion in (b).
should be as short as possible. It is not practicable to match the cable perfectly at each end. At mid-band only about 4 ft . of cable is needed for a quarter-wave section. It is well, therefore, to arrange the apparatus so that the cable is no more than 2 ft . long if possible. It is not often practicable to feed into the tuner of the television set, so that the first i.f. circuit, which is normally in the tuner, can be in circuit. It is useful, therefore, to have a dummy tuner built to the circuit of Fig. 1 to connect the wobbulator to the i.f. strip The cable from the dummy tuner to the i.f. strip must, of course, be the same length as that from the real tuner to the i.f. strip in the receiver.

Very often additional attenuation to that provided in the wobbulator will be needed. This is conveniently obtained from Belling Lee coaxial attenuators, which are available with attenuations of $3,6,12,18$ dB ; they plug into each other and to the normal cable plugs and sockets. It is particularly convenient to have three $6-\mathrm{dB}$ (L729/6) types available. Whenever possible one should be between the wobbulator cable and the dummy tuner. This is the point at which the cable has its greatest mismatch, because of the tuned circuit in the dummy tuner, and this mismatch is greatly reduced by introducing an attenuator at this point. Even when there is sufficient range on the internal attenuator, it may pay to include a $6-\mathrm{dB}$ attenuator at the cable end, and use a step or two less internal attenuation.

For the sound channel the overall picture including the discriminator is obtained by feeding the a.f. output of the sound detector to the "Input from i.f. amplifier" socket. For the alignment of the early circuits, however, it is advisable to make up an a.m. detector to the circuit shown in Fig. 2 and to take the output

The voltage waveform at the collector of the BF177 wave shaper is shown in these photographs. At (a) the waveform is shown with a sinusoidal timebase and the double trace is due to phase shift caused by the connection of the oscilloscope. Adjusting the phase control removes this (b). The waveform with the more familiar linear timebase is shown at (c).

Coil data

Details of windings: $L_{1} 10 t ; L_{2} 10 t ; L_{3} 1 t ; L_{4} 14 t ; L_{5} 1 t ; L_{6} 2 t ; L_{7} 10$; and $L_{8} 2 t$.
Formers are Neosid $7.22 / 1$ with terminal bases 5027 and Neosid long screw cores $4 \times 0.5 \times 12.7$. The former diameter is $\frac{3}{16}$ in. with an available winding length of $\frac{5}{8}$ in. Except L_{2}, all coils are wound with No. 24 enamelled wire: L_{2} is wound with No. 32.

In every case the start of the main winding is next to the base of the former and is the 'hot' end of the coil. All coupling coils, except L_{2}, are adjacent to the main winding at the earthy end. L_{1} and L_{2} are bifilar. Wind L_{1} first, close-wound with the start soldered to its pin. Leave the other end free. Solder the wire for L_{2} to its start pin and wind it in

between the turns of L_{1}. The turns of the latter will spread out to accommodate the wire and it will unwind very slightly. Terminate L_{2} on its earthy pin and then L_{1} on its earthy pin. Note that the "hot" and earthy pins of the two coils are not adjacent. It is important that the same ends of the two coils should be earthy. Reversed connections to one coil will prevent the proper frequency coverage from being obtained.

The pin spacing of the bases does not fit the hole spacing of Veroboard. It is advisable, therefore, to make a metal-template so that the Veroboard can be drilled in spite of the existing holes. The base is fixed to the board by putting small washers or loops of wire around four of the pins and soldering.

Fig. 1. Circuit of dummy tuner. The coil L can be 15 turns of No. 30 wire wound on a former like those used for the wobbulator coils.
from this. It is connected to the collector of the last sound i.f. transistor, for instance.

To operate the wobbulator on sound, set the vision-sound switch to sound. Set the s.g. to 39.5 MHz , and then set the marker oscillator to zero beat with it. This can be done even if there is no visible marker on the trace, because near the proper setting the low-frequency beat between them extends over the whole trace. It is necessary to do this because the calibration of the marker oscillator does not hold when it is switched to sound. It produces 39.5 MHz when it is set roughly to the $40.5-\mathrm{MHz}$ calibration point. If one wishes one can put on a special $\cdot 39.5-\mathrm{MHz}$ point for sound, but it is so easy to set the marker against the s.g. that it seems unnecessary. The change occurs because there is a change of loading on the marker oscillator between the two positions of S_{1}.

Turn the "Mid-band frequency control" R_{20} fully clockwise (if it is wired so that on vision a clockwise rotation shifts a response curve to the right) and then gradually back until the sound response curve appears. This is the correct one. If it is turned further another of less amplitude will appear, and if one goes on turning others will come into view, and there may even be several overlapping ones. The first and, usually, largest is the proper $6-\mathrm{MHz}$

Fig. 2. Circuit for connection between earth and the last sound i.f. collector to view the overall response apart from the discriminator.
inter-carrier beat between 39.5 MHz and 33.5 MHz in the vision i.f. detector. The second occurs between 39.5 MHz and 36.5 MHz , when the separation is 3 MHz , and it is the second harmonic of this produced in the detector which passes through the sound i.f. amplifier. The others occur for separations of $2 \mathrm{MHz}, 1.5 \mathrm{MHz}$, $1.2 \mathrm{MHz}, 1 \mathrm{MHz}$ and so on, with the third, fourth, fifth and sixth harmonics.

By adopting the above procedure the right setting is easily found and the spurious responses cause no trouble. Notice, however, that the proper response will not always be the largest. If the sound trap in the vision i.f. amplifier gives more attentuation than usual, the second response may be larger than the proper one.

On both vision and sound an increase of marker frequency moves the marker to the right. On vision a clockwise rotation of R_{20} moves the response curve to the right on the trace, but on sound it moves it to the left. This could be avoided by extra switch contacts to reverse the leads to R_{20} but did not seem worth while. Temperature drift is normally to the left on vision and to the right on sound.

One thing must not be overlooked. It is usually necessary in some way to put out of action any a.g.c. system of the amplifier under test and the way of doing this will depend on the receiver design.

A YIG Radiometer and Temperature Controller

Solid-state device for temperatures of $\mathbf{1 0 0 - 2 5 0}{ }^{\circ} \mathrm{C}$

by I. J. Kampel*

The radiation pyrometer or radiometer provides a convenient way of measuring surface temperature where more conventional sensing elements may not be employed. The system to be described also utilizes an experimental solid-state optical modulator-the YIG-and in so doing eliminates the bulky and inconvenient motorized chopper unit normally associated with such systems. Use of this new electrooptical component therefore answers the need for a sensing head requiring no maintenance, and provides a rugged, miniature solid-state construction.

All bodies emit electromagnetic radiation, the amount of radiant energy being dependent upon their temperature and emissivity. The maximum theoretical emission at any temperature is given by a black-body radiator, and the "emissivity" factor determines the ratio of emittance by a body to the emittance of a black-body at the same temperature.
The Stefan-Boltzman law states that the total spectral emittance of a black-body is directly proportional to the fourth power of its absolute temperature. The radio-meter-or radiation pyrometer-utilizes this principle. Emitted radiation is measured, and this is then equated to source temperature. A control is normally provided to allow for emissivity factor corrections.

While the disadvantage of temperature measurement by radiometer lies in the need for approximate evaluation of source emissivity, the system does offer unique advantages over more conventional techniques. The infrared sensing element represents the perfect measuring transducer: it in no way affects the object being measured since it is non-contacting. This particular versatility also allows the remote measurement of moving bodies. As measurement is by means of a photoelectric as opposed to the more common thermoelectric principle, a fast response may be realized. Many control systems do not require an absolute temperature indication, and in such cases the controller may be used without prior determination of source emissivity.
For accuracy, and the convenience of a.c. amplification in radiometer systems, it is normal to chop the incoming radiation

with a rotating segmented chopper-disc. The size of such a disc with its associated driving motor has necessarily led to rather bulky sensing heads in previous equipments, however the YIG solid-state optical modulator removes such size restrictions. The total absence of all moving parts has also eliminated the need for servicing.

YIG Modulator

Unbalance in electron spin of inner orbital electrons induces a magnetic moment in a crystal of yttrium iron garnet (YIG): it is therefore said to be ferrimagnetic. Magnetic domains of identically orientated magnetic dipoles form and take up a natural alignment. Theșe domains exhibit Faraday rotation; in the presence of a magnetic
field the plane of polarization of transmitted plane-polarized radiation is rotated through an angle proportional to the magnetic field strength. Faraday rotation is also proportional to path length through the material, and is inversely proportional to the wavelength of radiation.

The high transmission of YIG in the spectral range $1.1-4.5 \mu \mathrm{~m}$ is enhanced by the use of an anti-reflection coating. Its usefulness is limited by the rapid deterioration in Faraday rotation with increasing wavelength. The polarizing material normally employed in the modulator also limits the spectral response to about $2.3 \mu \mathrm{~m}$. Lead sulphide is the most suitable detector material to employ in radiometric applications due to its similar spectral response characteristic.

Current passing through a coil situated around the material provides the required magnetic field, with lines of flux lying parallel to the path of the traversing radiation. A square-wave current drive provides a suitable modulation of the plane of transmitted plane-polarized radiation, and by further passing this radiation through another polarizer-known as the analyser -an intensity modulation is derived. This principle is illustrated by Fig. 1.

A sectional diagram of the sensing head is shown in Fig. 2. Overall dimensions are 2 cm diameter by 3 cm length.
A glass lens is used to focus incident radiation on to the element of a 139 CPY chemical lead sulphide detector. In the path of this radiation is situated an experimental YIG modulator; this was housed within a modified Ferroxcube transformer pot core which served to provide a low reluctance path for external flux, so minimizing direct electromagnetic pick-up at the detector. Polarizer and analyser are located on the outer faces of this housing.

The plane of polarization of the analyser is situated at 45° relative to the polarizer. This requires a $\pm 45^{\circ}$ rotation of the plane-polarized radiation for full theoretical modulation, and this is approached by employing a true a.c. drive current in the YIG coil. A greater modulation depth for a given drive power may be achieved with this method than by any other.

System description

Output from the radiometer takes the form of a moving coil meter; output from the controller may either be a simple audible warning, or a change-over relay, but various operational modes may be selected to give this considerable flexibility.

A chemical lead sulphide detector was employed since this had a suitable spectral response, and was available in the small size of a TO-5 encapsulation. The system to be described is suitable for a black-body source temperature range of $100-250^{\circ} \mathrm{C}$, covered by two ranges; the addition of higher temperature ranges would be straightforward. An emissivity control covering the range $e=0.1$ to $e=1.0$ was provided.
Two integrated circuits are used to modulate the YIG coil with a true a.c. square-wave current at a frequency of 400 Hz as shown in Fig. 3. This frequency is sufficiently high to avoid mains pick-up problems, and low enough to allow optimum performance from a lead sulphide detector having a somewhat slow response.

A quadruple NAND gate ($\mathrm{FJH131}$) is interconnected to form a square-wave generator, where external $1-\mu \mathrm{F}$ capacitors set the periods as in a conventional multivibrator. Since the resistive component of the time-constant is contained within the integrated circuit, however, this is liable to production spreads and will introduce some spread in frequency. (See Fig. 3).

A dual buffer gate (FJH141) provides the required current drive to the YIG coil. The coil is d.c. coupled and driven in pushpull mode. The voltage amplitude from this

Fig. 3. Drive circuit for the YIG.

Fig. 4. Low-noise preamplifier circuit with compensatory detector bias.

Fig. 5. A simple coherent filter.

integrated circuit is also dependent upon production tolerances, and R_{p} is adjusted on test to give a coil current of approximately 20 mA (33-68 Ω typical). A capacitor in parallel with the coil reduces the spike caused by fast current switching in the inductive load.

Modulator and detector leads should be adequately screened from one another in order to avoid pick-up problems.

Pre-amplifier Circuit

Detector resistance varies with ambient temperature. Since responsivity is approximately proportional to the square of this resistance, it is necessary to provide some correction. By biasing the detector in a constant voltage mode and utilizing the
signal current, the output obtained is inversely proportional to the square of detector resistance and a much improved temperature stability is achieved.

An f.e.t. is used to provide detector bias, and was found preferable to a transistor, introducing far less current noise than the latter. The complete circuit is shown in Fig. 4. Noise from the zener diode is eliminated by decoupling the gate of the f.e.t. A second f.e.t. is used in a compound arrangement with a transistor to provide initial gain; this is also a low noise configuration. A voltage-dependent resistor in the transistor emitter allows a greater drain resistance for improved loop gain. A further gain of 10 or 100 is provided by the following virtual-earth amplifier, the gain being selected by the range switch.

A simple coherent filter is formed from two complementary germanium transistors as shown in Fig. 5. These effectively form a dynamically synchronized narrow-bandwidth filter. A gating waveform is taken from the YIG drive circuit and applied to switch these transistors in anti-phase. The output from the pre-amplifier is fed into the circuit, and is used to charge the $125-\mu \mathrm{F}$ capacitor through one or another of the $10-\mathrm{k} \Omega$ resistors.
The two transistors are switched in synchronism with the signal, and earth alternate sides of the capacitor so that a d.c. charge builds up which is proportional to the signal waveform. Any noise or spurious signals present at frequencies other than the modulating frequency average to zero. An output is taken from one side of the charge capacitor for further a.c. amplification.

It is important to ensure a true $1: 1$ mark-space ratio for optimum performance from the coherent filter. It will be obvious that drift of the chopping frequency will in no way affect performance. The transistors are connected in an inverted manner to minimize leakage current and breakthrough of the gating signal.

An operational amplifier (TAA811) is used to provide a further stage of variable gain and an emissivity control. The configuration of Fig. 6 will provide a linear emissivity scale calibration between 0.1 and 1.0 provided that the potentiometer is truly linear (selection normally required). Voltage gain will be 100 at e $=0.1$, and 10 at $e=1.0$.
The radiometer section of the instrument terminates in a peak detector circuit and is shown in Fig. 7. The $1-\mu \mathrm{F}$ capacitor charges to a d.c. potential proportional to the signal amplitude. This is fed to a moving-coil meter and provides the temperature indication. The zener diode is a protective device for the meter.

The d.c. level on the charge capacitor is also monitored by the controller circuitry. Provision is made to switch the meter to a variable d.c. potential independent of the signal: this greatly facilitates initial adjustment of the controller.

Temperature controller

Totally indepèndent adjustable maximum and minimum limits are provided, and either or both may be used. In the "basic" mode, if the meter pointer crosses either limit, the relay or audible warning switches on; hence the output does not distinguish
between maximum and minimum (although the meter indicator will). In the "cycle" mode, the relay or audible warning switches on when the pointer exceeds the maximum limit, and will remain on until the lower limit has been crossed.

Thus by using both limits in this mode, a cycling controller is available between preset temperatures. By using only one limit in this mode, a one-shot function is available provided that the initial state has been correctly set.

The input to the control circuit is taken directly from the output of the radiometer circuit, and responds either to a d.c. potential set by the signal waveform, or a potential manually set on the "meter-set"

Fig. 6. Main amplifier with emissivity control.

Fig. 7. Radiometer output circuitry.

The picture shows the temperature of a silica tube being measured while undergoing a production process. The chopper and temperature sensor form the small unit held in the operator's left hand and pointed at the hot part of the silica tube.
control; the latter considerably eases the accurate setting of limits.

Two integrated circuits (IC_{1} and IC_{2}, Fig. 8) monitor the input voltage, and both their outputs will be at 0 V until a limit has been crossed. When S_{1} is closed the maximum limit is set by adjusting V_{y} to a suitable level. If $V_{\text {in }}$ exceeds V_{x} then IC_{1} output rapidly switches to +30 V . When S_{2} is closed, the minimum limit is set by adjusting V_{y} to a suitable level. If $V_{\text {in }}$ falls below V_{y} then IC_{2} output switches rapidly to +30 V .

With S_{3} in the "basic" position, the - input of IC_{3} is referred to +15 V . The output of IC_{3} is normally at 0 V . If either limit is crossed, the anode of either D_{1} or D_{2} will be taken to +30 V , and the + input of IC_{3} will follow; thus the output of IC_{3} will then switch to +30 V .

Hysteresis circuit

With S_{3} in the "cycle" position, IC_{3} forms a hysteresis circuit, and the output voltage will switch to +30 V if IC_{1} output goes +ve , and will remain there until the output of IC_{2} goes +ve , whence it returns to 0 V .

When the output of IC_{3} switches to +30 V , the base of the output transistor rises from 0 V to a little above +15 V , and either the audible warning or the control relay will operate. The choice is selected by S_{4}.

A second small centre-zero meter ($\pm 100 \mu \mathrm{~A}$) may be used to give a constant indication of the control state under all conditions. The pointer will be centred until a limit is crossed, and will deflect when a limit is crossed, the direction of deflection being indicative of maximum or minimum.

Olympia Audio Fair Lectures

The 1970 International Audio and Music Fair, to be held from 19th to 24th October at Olympia, London, differs from previous fairs of this kind (in this country) in that there will be a programme of "presentations" sponsored largely by the audio press. The full list is given below.

It will be seen that Wireless World is sponsoring five , lecture-demonstrations. Each session will be given by a wellknown Wireless World author, who will relate engineering principles and procedures to the performance actually given by items of audio equipment. The lecturers will be Arthur Bailey, Peter Baxandall, Jack Dinsdale, John Linsley Hood and Ted Jordan. Tickets for each of these sessions will be available at the Wireless World stand at the Fair on the day of the lecture.

Tuesday, 20th

2.0 Types of recorded sound quality
by John Crabbe (Hi-Fi News)
Different musical and acoustical balances to be found on modern recordings will be discussed and demonstrated.
4.0 The progression of electronic music synthesizers
by Dr. Robert A. Moog
The inventor of the Moog Synthesizer will demonstrate the instrument used for the famous "Switched on Bach" LP.

6.0 The heart of hl-fi

by J. Dinsdale (Wireless World)
The important features of modern amplifier circuitry and specifications will be explained and demonstrated.

8.0 Cassettes and cartridges

by W. Woyda (Precision Tapes)
Cassette and 8-track cartridge formats will be described in detail and several recently released recordings will be played in both media.

Wednesday, 21st
2.0 Power levels, distortion and the enjoyment of music
by P. J. Baxandall (Wireless World)
The inventor of the Baxandall tone control will discuss the technical requirements of hi-fi equipment and relate them to musical enjoyment.

4.0 How good is your gramophone?

by John Borwick (The Gramophone)
The lecturer will play a selection of records and suggest how these can be used to assess the performance of record reproducing equipment.

6.0 Both sides of the record

by Joan Coulson (EMI Records)

All kinds of music on record with glimpses behind the scenes.
8.0 The progression of electronic music synthesizers
by Dr. Robert Ȧ. Moog (See Tuesday)
Thursday, 22nd
2.0 From cylinders to 78s to today
by G. Child (formerly of Decca Records)
A short history of the gramophone record with a display of vintage players and examples of records old and new.

4.0 Audio facts and fallacies

by A. R. Bailey (Wireless World)
The well-known designer examines hi-fi ideas and terminology.

6.0 Personal appearance of Sir Arthur Bliss

The Master of the Queen's Musick will introduce excerpts from the first recording of his "Pastoral" and "Knot of Riddles" to be issued in October by Pye Records.

8.0 Stereo for beginners

by Clement Brown (Hi-Fi Sound)
A simple introduction to the subject of stereophonic recording and reproduction.

Friday, 23rd

2.0 Cassettes and cartridges
by W. Woyda (Precision Tapes) (see Tuesday)
4.0 How good is your gramophone?
by John Borwick (The Gramophone)
(see Wednesday)

6.0 Little and good

by J. L. Linsley Hood (Wireless World)
An illustrated examination of the related subjects of power and quality in sound reproduction.

8.0 The funny side

by Donald Aldous (Hi-Fi News \& Record Review).
A light-hearted look at the record repertoire"in the groove, but out of the rut".

Saturday, 24th

2.0 Sound sense

by E. J. Jordan (Wireless World)
This well-known loudspeaker designer will talk about sound reproduction aims and play some recorded examples.

4.0 The funny side

by Donald Aldous (Hi-Fi News \& Record Review) (see Friday)
6.0 Types of recorded sound quality
by John Crabbe (Hi-Fi News)
(see Tuesday)
8.0 Live pop recital
presented by New Musical Express
Throughout the Exhibition there will also be a programme of semi-technical films.

Active Filters

14. Bandpass types

by F. E. J. Girling* and E. F. Good*

It has already been shown that low-pass filters can be made up from one or more feedback loops containing integrators, simple lags, or a mixture of the two. The band-pass counterparts of both integrators and simple lags are tuned circuits tuned to the chosen centre frequency. Consequently band-pass filters may be made by substituting such tuned circuits for the lags and integrators of suitable low-pass models, and the method is described for synthesis by factors and for active-ladder synthesis. A brief discussion of stagger tuning is also given.

A symmetrical band-pass characteristic may be considered as a transform of a lowpass characteristic, and all the methods of design used for low-pass filters may be carried over into b-p filter design, the most important being (a) by factors, (b) as a ladder structure. The nature of the transformation has been described in Part 2; and if, for clarity, frequency for the 1-p model is designated by the upper-case letter Ω, and for the b-p counterpart by the conventional ω, an algebraic statement of the transformation is

$$
\begin{align*}
\Omega & =\omega-\omega_{0}^{2} / \omega \\
& =\omega_{0}\left(\omega / \omega_{0}-\omega_{0} / \omega\right) . \tag{1}
\end{align*}
$$

This produces, Fig. 1, a b-p characteristic in which the bandwidth, $\omega_{1}-\omega_{2}$, between any two points of equal amplitude, and of equal but opposite phase shift, is equal to Ω_{1}, the bandwidth from zero to the corresponding point on the $1-\mathrm{p}$ characteristic. The b-p characteristic is centred on ω_{0} in the sense that $\omega_{0}=\sqrt{ }\left(\omega_{1} \omega_{2}\right)$, i.e. $\omega_{2}=\omega_{0}{ }^{2} / \omega_{1}$.

Realisation by factors

Since resolution of a $1-\mathrm{p}$ characteristic into 1 st- and 2 nd-order factors provides a basis for the design of a 1-p filter as a cascade of non-interacting simpler (i.e. lower-order) 1-p sections, transformation of the 1-p factors to $b-p$ provides a basis for the design of the corresponding b-p filter as a cascade of non-interacting simpler b-p sections.

1. Ist-order

The frequency response function for 1 storder l-p response (a simple lag)

$$
\begin{equation*}
G(\Omega)=1 /\left(1+j \Omega / \omega_{c}\right) \tag{2}
\end{equation*}
$$

[^9]

Fig. 1. Corresponding $b-p$ and $l-p$ responses: for any pair of points on the $b-p$ curve and the corresponding point on the l-p curve $\omega_{1}-\omega_{2}=\Omega_{1}$ and $\omega_{1} \omega_{2}=\omega_{0}{ }^{2}$.
transforms into
$\boldsymbol{G}(\omega)=1 /\left\{1+j \omega_{0}\left(\omega / \omega_{0}-\omega_{0} / \omega\right) / \omega_{c}\right\}$,
which may be simplified to

$$
\begin{equation*}
\boldsymbol{G}(\omega)=1 /\left\{1+j Q\left(\omega / \omega_{0}-\omega_{0} / \omega\right)\right\} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
Q=\omega_{0} / \omega_{c} \tag{5}
\end{equation*}
$$

the well known definition.
In transfer-function form the functions are

$$
\begin{align*}
& G(p)=\frac{1}{1+p T}(1-\mathrm{p}) \tag{6}\\
& G(p)=\frac{1}{1+Q\left(p T_{0}+\frac{1}{p T_{0}}\right)} \tag{7}
\end{align*}
$$

which rearranges into

$$
\begin{equation*}
G(p)=\frac{p T_{0} / Q}{1+p T_{0} / Q+p^{2} T_{0}{ }^{2}} \tag{8}
\end{equation*}
$$

the familiar form for "tuned-circuit" response. ($T_{0}=1 / \omega_{0}$). The transformation may be considered, therefore, to consist in replacing $p T$, where $T=1 / \omega_{c}$, by

$$
\begin{equation*}
Q\left(p T_{0}+\frac{1}{p T_{0}}\right) \tag{9}
\end{equation*}
$$

Physically this means, for example, that a differentiator (say the capacitor of a Blumlein integrator) has an integrator placed in parallel with it.

2. 2nd-order

2nd-order l-p response may be defined

$$
\begin{equation*}
G(p)=1 /\left(1+p T / q+p^{2} T^{2}\right) \tag{10}
\end{equation*}
$$

When $q>\frac{1}{2}$ the response cannot be resolved into real 1st-order factors, and when $q>1 / \sqrt{ } 2$ the response shows a resonant hump or peak. The corresponding b-p res-
ponse is of the type associated with coupled tuned circuits.
2nd-order l-p response may be obtained from an integrator-and-lag loop, a two-lag loop, etc. The b-p transform of a simple lag is a single tuned circuit of finite Q and tuned to ω_{0} (above), and it is a simple piece of reasoningt to show that the transform of an integrator is an infinite- Q tuned circuit, also tuned to ω_{0}. It follows that 2nd-order b-p responses may be obtained from feedback loops containing two tuned circuits tuned to the required centre frequency.
Tuned circuits of finite Q are matched to the lags of the 1 -p model so that the same bandwidths are obtained, and the gain at ω_{0} (the peak) is made equal to the gain of the 1 -p simple-lag circuits at zero frequency. Tuned circuits of infinite Q are matched to corresponding integrators in the $1-\mathrm{p}$ model by making the unity-gain bandwidth the same, Fig. 2.

In a b-p filter there is the possibility of a type of error which has no counterpart in the $1-\mathrm{p}$ model. There can clearly be no error in the position of zero frequency, but the centre frequencies of the constituent tuned circuits of a b-p filter can be misaligned both with respect to each other and with respect to the desired ω_{0}. In a loop containing an infinite- Q tuned circuit and a damped tuned circuit misalignment causes the loop gains in the critical regions near the band limits (where the Nyquist plot comes nearest to the $-1, j 0$ point, Fig. 3) to be different, with more phase shift on one side than on the other for points of equal magnitude of loop gain. This causes the response when the loop is closed to be unsymmetrical, showing more peaking on one side of the passband than on the other (i.e. show different equivalent values of q). Two tuned circuits of equal Q give a symmetrical response even when misaligned, Fig. 4, and consequently a symmetrical response with the feedback
\dagger The integrator has infinite gain at zero frequency and a constant 90° phase lag: the infinite- Q tuned circuit has infinite gain at ω_{0}, a constant 90° phase lag for $\omega>\omega_{0}$, and a constant 90° phase lead for $\omega<\omega_{0}$.

Fig. 2. Relationship between (a) a damped tuned circuit and a simple lag, (b) an infinite- Q tuned circuit and an integrator. For each pair $\omega_{1}-\omega_{2}=I / T$.

Fig. 3. Misalignment of tuned circuits of different Q gives an unsymmetrical loop response, which shows in the Nyquist plot.

Fig. 4. Misalignment of two tuned circuits of equal Q gives a still symmetrical loop response.
loop closed-although bandwidth and shape factor (q) are affected. In practice there may be errors in Q as well as in centre frequency, but the effect of error is still likely to be more tolerable than in a loop containing one infinite- Q circuit. It appears, therefore, that the preferable l-p model for a b-p filter is the loop with two equal lags.

The properties of such a loop have been considered in Part 4, and the important result obtained that closing the loop increases both q and bandwidth by the factor $\sqrt{ }\left(A_{0}+1\right)$, where A_{0} is the loop gain at zero frequency. For two equal lags the open-loop q is $\frac{1}{2}$. To obtain a closed-loop value of q, therefore,

$$
\begin{equation*}
\sqrt{ }\left(A_{0}+1\right)=2 q \tag{11}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
A_{0}=4 q^{2}-1 \tag{12}
\end{equation*}
$$

and for a closed-loop bandwidth $\omega_{c}=1 / T$, the open-loop bandwidth, which is also the bandwidth of the individual lags, must be $\omega_{c} / 2 q$, i.e. the time constant of the lags must be $2 q$ T. This is shown in Fig. 5(a).
Now the bandwidth of a tuned circuit $=\omega_{0} / Q$. So for the tuned circuits of Fig. 5(b) to have the same bandwidth as the lags in Fig. 5(a)
i.e.

$$
\frac{\omega_{0}}{Q}=\frac{\omega_{\mathrm{c}}}{2 q}
$$

$$
\begin{equation*}
Q=2 q \omega_{0} / \omega_{\mathrm{c}} . \tag{13}
\end{equation*}
$$

It is now convenient to define a measure of the relative sharpness or selectivity of a 2nd-order band-pass circuit,

$$
\begin{equation*}
Q_{B}=\omega_{0} / \omega_{\mathrm{c}} \tag{14}
\end{equation*}
$$

This is comparable with the definition of Q for a single tuned circuit, although now ω_{c} is the nominal bandwith equal to the corner frequency of the corresponding 2 nd-order l -p circuit, and the -3 dB bandwidth only for the particular case of $q=1 / \sqrt{ } 2$.

Making this substitution in equn. (14) gives

$$
\begin{equation*}
Q=2 q Q_{B} \tag{15}
\end{equation*}
$$

and substituting for Q in equn. (7) then gives for the transfer functions of the elementary tuned circuits of Fig. 5(b)

$$
\begin{equation*}
G(p)=\frac{1}{1+2 q Q_{B}\left(p T_{0}+\frac{1}{p T_{0}}\right)} \tag{16}
\end{equation*}
$$

Comparison with the transfer functions of the simple lags of Fig. 5(a)

$$
\begin{equation*}
G(p)=\frac{1}{1+2 q p T} \tag{17}
\end{equation*}
$$

shows that the transformation may be con-

(b)

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{4 q^{2}-1}{4 q^{2}} \cdot \frac{1}{1 \cdot+\frac{1}{q} Q_{B}\left(p T_{0}+\frac{1}{p T_{0}}\right)+Q_{B}^{2}\left(p T_{0}+\frac{1}{p T_{0}}\right)^{2}}
$$

Fig. 5.' A two-lag loop and its band-pass counterpart.
Fig. 6. Scheme for 3rd-order Butterworth filter.
sidered to be the replacement of $p T$, where $T=1 / \omega_{c}$, by

$$
\begin{equation*}
Q_{B}\left(p T_{0}+\frac{1}{p T_{0}}\right) . \tag{18}
\end{equation*}
$$

Transfer functions for corresponding 1-p and b-p 2nd-order sections may therefore be written

$$
\begin{equation*}
\frac{1}{1+\frac{1}{q} p T+p^{2} T^{2}}(1-p) \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{1+\frac{1}{q} Q_{B}\left(p T_{0}+\frac{1}{p T_{0}}\right)+Q_{B}^{2}\left(p T_{0}+\frac{1}{p T_{0}}\right)^{2}} \tag{24}
\end{equation*}
$$

(b-p)
though the method of synthesis just described does not depend on explicit statement of the b -p transfer function.

The rule for $1-\mathrm{p}$ to $\mathrm{b}-\mathrm{p}$ transformation given above, expression (18), is only apparently different from the tule given for 1st-order sections, expression (9). By dividing by $T\left(=1 / \omega_{\mathrm{c}}\right)$ both reduce to the basic rule: i.e. p is replaced by

$$
\begin{equation*}
\frac{1}{T_{0}}\left(p T_{0}+\frac{1}{p T_{0}}\right) \tag{21}
\end{equation*}
$$

Equation (15) and the well known relationship expressed by equn. (5) provide the basic theory for the design of any symmetrical simple (all-pole) band-pass filter as a cascade of active 1 st - and 2 nd-order bandpass sections.

It is also worth noticing for future reference that because of the identity
$\frac{p T_{1}}{D_{1}(p)} \times \frac{p T_{2}}{D_{2}(p)}=\frac{T_{1}}{T_{2}} \times \frac{1}{D_{1}(p)} \times \frac{p^{2} T_{2}{ }^{2}}{D_{2}(p)}$

Fig. 7. The band-pass response has twice as many ripples as the low-pass response used as model.
where in the present case

$$
\begin{align*}
& D_{1}(p)=1+p T_{1} / Q_{1}+p^{2} T_{1}^{2} \tag{23}\\
& D_{2}(p)=1+p T_{2} / Q_{2}+p^{2} T_{2}^{2}
\end{align*}
$$

two tuned circuits in tandem may be replaced by a low-pass circuit and a high-pass circuit also in tandem.

3. Higher-order filters

The general pattern for a higher-order filter realized as a cascade of sections designed as above is n tuned circuits all tuned to ω_{0} and connected in $n / 2$ feedback pairs, or when n is odd $(n-1) / 2$ feedback pairs with one single tuned circuit. The feedback pairs form the 2 nd-order sections, and the Q factors of the constituent tuned circuits and the degree of back coupling are chosen to give the required closed-loop bandwidth and q (shape factor). Similarly the $Q s$ of any single tuned circuits (the 1st-order sections) are chosen to give the required bandwidth.

Butterworth filters are a special case, as the nominal bandwidth of each section is equal to the -3 dB bandwidth of the complete filter. So $Q_{B 1}=Q_{B 2}=$ etc. $=\omega_{0} / \omega_{c}$; and for n odd the Q factor of the single tuned circuit is also equal to ω_{0} / ω_{c}. But the q of each 2 nd-order section is different, and, using equns (15) and (12), the Q factors of
the constituent tuned circuits and the loop gains must be calculated as follows:

$$
\begin{aligned}
& Q_{1}=2 q_{1} Q_{B}, \text { loop gain }=4 q_{1}^{2}-1, \\
& Q_{2}=2 q_{2} Q_{B}, \text { loop gain }=4 q_{2}^{2}-1, \text { etc. }
\end{aligned}
$$

Thus the block diagram for a 3rd-order Butterworth filter, which needs only one feedback pair (with $q=1$), may be drawn as in Fig. 6. Values of q for up to $n=10$ were given in Part 9, Table 6.
In general, however, both q and bandwidth will be different for each factor, as they are for the factors of an l-p filter, e.g. Table 8 of Part 9. The parameters q pass straight over into the, band-pass design. The parameters T are inversely proportional to the nominal bandwidths of the factors (ω_{c}), and consequently directly proportional to the band-pass parameters Q_{B} (or Q for a 1 st-order factor). As a b-p response repeats itself on the other side of ω_{0} it will show twice as many ripples as the $1-\mathrm{p}$ response, e.g. Fig. 7.

$1 / n$th octave filter

The bandwidth of a b-p filter is often specified as a fraction of an octave ($2: 1$ frequency ratio), especially when it is one of a bank of filters required to divide a broad spectrum into a number of relatively narrow contiguous bands.
If the filters all have the same relative bandwidth, and the first one is centred on $\omega_{0}=1$, the nth filter will be centred on $\omega_{0}=2$, Fig. 8 . Consequently

$$
\begin{gather*}
x^{2}=2^{\frac{1}{n}} \tag{25}\\
\frac{1}{Q_{B}}=x-\frac{1}{x}=\frac{2^{\frac{1}{n}}-1}{2^{\frac{1}{2 n}}} \tag{26}
\end{gather*}
$$

from which the figures shown in Table 1 may be calculated. The last row corresponds to one filter for each note of the equally tempered scale. Sometimes of course, the relative bandwidth is made different from the spacing between adjacent filters. This is so for B.S. $\frac{1}{3}$ rd-octave filters, which have a band width much less than the pitch between centre frequencies.

From the first column of Table 1 the Q factors required of individual tuned circuits may be calculated via equn. (15). Thus for 3rd-order Butterworth response Q factors

Fig. 8. (a) nfilters to the octave, each with a band width of $1 /$ nth of an octave. (b)
Frequency relationships for $1 / 3$ rd-octave filters.

TABLE 1
$1 / n$ th-octave filters $-Q_{B}$ against n

n	9	2	3	4	5	6	8	10	12
$\mathrm{Q}_{\mathbf{B}}$	1.414	2.87	4.32	5.76	7.21	8.65	11.55	14.47	17.3

Fig. 9. 2nd-order band-pass filter using two-integrator loops.

Fig. 10. (a) Schematic for $\frac{1}{3}$ rd-octave 2nd-order band-pass filter, centre frequency 159 Hz , peak gain 18 approx. (b) Enhanced emitter follower using three transistors. (c) Simple high-gain amplifier.
equal to $2 Q_{B}$ are needed. This gives a quide to the type of circuit needed.

Circuits

The most powerful type of active tuned circuit is the two-integrator loop, especially when high Q is needed. In its ordinary form (Parts 7 and 8) the circuit uses three amplifiers, and two circuits may be put together as in Fig. 9 to form a feedback 2 hd-order band-pass section. With the usual balance of component values shown each tuned circuit gives a peak gain of Q, not 1 as assumed in Fig. 5 for example. So the "gain" of the feedback path must be divided by Q^{2} to
compensate, and unless Q is very low the feedback resistor may have an inconveniently high value. This can be avoided by using a resistor of moderate value fed from a potential divider as shown inset. It may also be helpful to make the feedback variable over a small range. This will allow some adjustment of bandwidth, although not without varying q simultaneously.
The ease with which both tuning and Q can be adjusted in a two-integrator loop can also be made use of. Thus each tuned circuit can be individually adjusted to the centre frequency, allowing components of relatively broad tolerance to be used, or perhaps the nearest preferred value. Similarly

(c)

(d)

(f)

(g)

(h)

Fig. 11. Building up a 3rd-order b-p response. On the right, corresponding $l-p$ responses.

Fig. 12. Bisection of a symmetrical filter.
in a 3rd-order filter tilt in the passband can be corrected by adjusting the tuning of the single tuned circuit. If only a single resistor (or T) is varied, Q is varied with ω_{0}, but for a small range of adjustment this is likely to be unimportant. In any case it is quite easy to adjust Q also.

Probably most active band-pass filters at the present time use a balanced parallel-tee network (see Parts 10 and 11). Fig. 10 shows a circuit for a 2 nd-order filter which was designed for $\frac{1}{3}$ rd-octave bandwidth approximately. The tuned stages use the Sallen-andKey type of connection and are arranged as low-pass \times high-pass, which also usefully multiplies the forward gain by Q^{2}. An untuned input stage puts the necessary sign reversal into the loop, and allows adjustment of overall gain without affecting the tuned stages. Adjustment of the feedback is also provided, but if the required com-

Fig. 13. As first derived the integrators of the elementary tuned circuits have different Ts (CR products). This can be corrected by making the changes shown in (b).
bination of bandwidth and q is not obtained the damping of one or both stages must be adjusted.

As the bandwidth is over 20% of the centre frequency, a reasonable tolerance on the time constant of the tees is $\pm 1 \%$. To ensure that each twin tee is well balanced, however, so that the expected value of Q is obtained, it is advisable to make each up from matched pairs of components as explained in Part 11 (June). As a b-p system is not required to pass zero frequency, the amplifiers do not need to have low zero drift; and as Q is only moderate, the internal gain need not be very high. The amplifiers can, therefore, be quite simple-though they can be high-gain types provided they will give the required output at the highest frequency with low distortion.
The attenuation of a 2 nd-order Butterworth filter is given by $\left(1+x^{4}\right)^{\frac{1}{2}}$, where $x=$ actual bandwidth $/-3 \mathrm{~dB}$ bandwidth. So 20 dB is obtained at $x=99^{t}=3 \cdot 155$; 40 dB at $x=10$ approximately.

An advantage of the parallel-tee circuit is that zeros are easily added. Thus a 3rdorder b-p filter can be built up as in Fig. 11. The 2 nd-order loop contains a $1-\mathrm{p}$ and a $\mathrm{h}-\mathrm{p}$ stage, and these are given zeros (a) and (b) by feeding a fraction of the input to the other tee (Part 11, Fig. 11) so that an openloop response as (c) is obtained. If this is symmetrical it can be represented by the transfer function of the corresponding $1-\mathrm{p}$ response (d) of the form

$$
\frac{1+k^{2} p^{2} T^{2}}{1+p T / 2+p^{2} T^{2}}
$$

and the amount of feedback calculated which will give a l-p response such as (e) and to the b-p circuit an "over-coupled" response
(f). The hole in the middle can then be "filled up" with a single tuned circuit (g) corresponding to a simple lag (h).

A suitable model is a 3rd-order Darlington filter, Fig. 12(a). Being a symmetrical network it can be divided into two halves with $Z_{\text {out }(1)}=Z_{\text {in(2) }}$, and its transfer function may be written down as $\frac{1}{2}$ the product of the transfer functions of the subnetworks so formed, Figs 12(b) and (c). These are:

$$
\begin{gathered}
\frac{1}{1+p C_{1} R} \\
\frac{1+p^{2} L_{2} C_{4}}{1+p L_{2} / 2 R+p^{2} L_{2}\left(C_{1}+C_{4}\right) / 2}
\end{gathered}
$$

and can act directly as I-p models for the single tuned circuit and the 2 nd-order loop of the active b-p filter, the required bandwidths and q being obtained by comparing these transfer functions with transfer functions written in standard form, $1 /\left(1+p T_{1}\right)$ and $\left(1+a p^{2} T_{2}{ }^{2}\right) /\left(1+p T_{2} / q+p^{2} T_{2}{ }^{2}\right)$.

Parallel-tee stages can be given variable tuning (Part 11); but this usually requires extra amplifiers, and the short-circuitedoutput time constants of the two tees must still be equal. So the practicability of a parallel-tee filter, or bank of filters, depends very much on the cost and difficulty of obtaining accurate components for the parallel-tee networks. As the price of gain comes down, therefore, the preference is likely to go to circuits which, while needing more amplifiers, have less severe requirements for passive components.

Active ladders

The first stage in preparing a design for a band-pass active ladder filter has already
been given (Part 13, Fig. 17). But when the centre frequency is much greater than the bandwidth $\left(\omega_{0} \Rightarrow \omega_{c}\right), L_{1} / R, C_{2} R, L_{3} / R$ of diagram (b); where L_{1}, C_{2}, L_{3}, come from the l-p filter of equal bandwidth, are much greater than $C_{1}{ }^{\prime} R, L_{2}{ }^{\prime} / R, C_{3}{ }^{\prime} R$, where $C_{1}{ }^{\prime}$ etc. are the reactances added to transform the $1-\mathrm{p}$ filter to $\mathrm{b}-\mathrm{p}$. Thus, for example, for 5th-order Butterworth response with $\omega_{c}=20 \mathrm{~Hz}, \omega_{0}=225 \mathrm{~Hz}{ }^{*} T_{1}=T_{5}=4.92$ and $T_{1}{ }^{\prime}=T_{5}^{\prime}=0.1017, T_{2}=T_{4}=12.88$ and $T_{2}^{\prime}=T_{4}^{\prime}=0.03885, T_{3}=15.92$ and $T_{3}{ }^{\prime}=0.03143$, (all in milliseconds). This is undesirable. As $T_{0}=1 / \omega_{0}=0.707 \mathrm{~ms}$, the integrators of low \boldsymbol{T} would work with voltage gains of up to twenty and more. So they would develop output voltages up to that number of times greater than the voltages at the outputs of the integrators feeding them, which is bad for dynamic range; and the elementary tuned circuits which they form with those integrators would be likely to have a lower Q factor than need be, since if the zero-frequency gains of the integrators are equal the best performance is obtained with $T \mathrm{~s}$ equal.
This condition is obtained by making the T of each integrator $=T_{0}$, and readjusting the linkages between the tuned circuits so that all loops have the same loop gains as before. If the T of one of the integrators in the forward path is changed from T_{1} (say) to T_{0}, the signal voltage at its output is multiplied by T_{1} / T_{0}. The loop gain of the minor loop, the elementary tuned circuit, has simultaneously been restored to its former value by changing the T of the other integrator from $T_{1}{ }^{\prime}$ to T_{0}-and $T_{1} T_{1}{ }^{\prime}=T_{0}{ }^{2}$ $=1 / \omega_{0}{ }^{2}$. Compensation in all other paths including the T_{1} integrator is effected by introducing a multiplying factor T_{0} / T_{1}, which may in practice mean multiplying one or more resistances by T_{1} / T_{0}, Fig. 13.
The ratios $T_{0} / T_{1}, T_{0} / T_{2}$ etc., although not in general equal, are all roughly equal to bandwidth/centre frequency, say $1 / Q_{B}$; and the ratios $T_{0} / T_{1}{ }^{\prime}, T_{0} / T_{2}{ }^{\prime}$ etc., roughly equal to Q_{B}. And, if more convenient, all the $T \mathrm{~s}$ of the first set of integrators may be multiplied by $1 / Q_{B}$, and all of the second set by Q_{B}, as this will bring them near enough together for the elementary tuned circuits to give good performance. The scaling factors to be introduced into the linkages between the tuned circuits will now all be $1 / Q_{B}$. It will still be practicable to use the same value of C for all the integrators, by obtaining the required spread of T by variation of R.
After scaling, a filter with a relatively narrow pass band $\left(Q_{B} \gg 1\right)$ is seen to consist of n two-integrator loops, where n is the order of the $1-\mathrm{p}$ filter used as model, loosely coupled together. This points to a rough analogy between a coupled-tunedcircuit filter and a ladder b-p filter, in which the loose coupling needed for a relatively narrow bandwidth is obtained by making the reactances of the shunt branches much smaller than those of the series branches.

The analogy may be put to use in a 3rdorder b-p filter as shown in Fig. 14. RV \mathbf{V}_{1} is placed so that the symmetry of the system is preserved and allows simultaneous adjustment of the loop gains of the two inter* $1 \mathrm{~Hz}=2 \pi$ radians/second.

$C=0.01 \mu, R=R^{\prime}-R^{\prime \prime}=100 k, R_{D}=16 R$
Amplifiers type 741
Fig. 14. 3rd-arider h-p filter with adjustable coupling.
meshing feedback loops. As it is increased from a low value the response changes from single-peaked, through a maximally flat response (Butterworth), to the overcoupled type of response, Fig. 15. Ideally the three peaks have equal height. This depends on the central tuned circuit having infinite Q. If it has appreciable damping the outer peaks are lower than the middle peak and may become only shoulders. Compensation can be made by applying to the central stage regeneration or positive feedback.
Other types of tuned circuit can be used in place of the two-integrator loops, provided the inside ones have high Q (approaching infinity). Thus Fig. 16 shows a 3rd-order filter using parallel-tee circuits. By making use of the identity expressed in equn: (22), and by making the middle stage sign-inverting and the outer stages not, the feedback loops have been closed in the right sense, without the use of separate inverting or adding stages. So the filter is economical in amplifiers, using only one third as many as the previous circuit. But although the equally terminated structure is some help against the effects of mistuning, the Q factors of the tuned circuits are still very dependent on accurate balance in the twin-tee networks, and at least twice as many capacitors are needed.

Electronic tuning

An all-integrator circuit lends itself to elec-tronic.(voltage-controlled) tuning (Part 8, Fig. 11). The electronic switches are equivalent to accurately ganged potentiometers, and the effective T of each integrator in series with a switch varies inversely with the mark/period ratio.

Fig. 15. Showing effect of increasing coupling in a 3 rd-order b-p ladder filter.

In the passive band-pass model (Fig. 17(a) of Part 13) centre frequency is determined by the $L C$ product of the elementary tuned circuits, $L_{1} C_{1}{ }^{\prime}=C_{2} L_{2}{ }^{\prime}=$ etc. $=$ $1 / \omega_{0}{ }^{2}$. The bandwidth is given by only L_{1} / R, $C_{2} R, L_{3} / R$, etc., L_{1}, C_{2}, L_{3}, and R, being the components derived from the l-p counterpart. If all reactances are multiplied by x, both $1 / \omega_{0}$ and $1 /$ bandwidth are multiplied by x; so the frequency response curve is moved down the frequency scale and keeps the same ratio of bandwidth to centre frequency. By analogy with a single tuned circuit this may be called constant $-Q$ tuning. Because of the linear relationship between x and $1 / \omega_{0}$, it is quite easy in the active ladder to reduce ω_{0} say ten times. But the tuning reduces the effective A (zero-frequency gain) of each integrator; so as the constant- Q nature of the tuning means that ideally the same Q factors are called for, some deterioration of the sharpness of the corners of the passband may be experienced.
If only the primed reactances are varied tuning is obtained with constant bandwidth. The centre frequency, $\omega_{0} \propto 1 / \sqrt{x}$; and, because of the constant bandwidth, the Q factors called for are proportional to ω_{0} and therefore fall as ω_{0} is reduced. It is likely,
therefore, that the tuning range found practicable will be smaller, and that in compensation deterioration of bandshape at the lowest frequency will also be less.

Once again we are indebted to Dr R. L. Ford for showing that the versatility of the active filter does not end here and that it is possible to vary bandwidth independently of ω_{0}. To do this it must be possible to increase the effective value of L_{1}, C_{2}, L_{3}, etc., for transmission round the larger loops, while leaving the tuning of the minor loops unchanged. The switches are therefore placed as shown in Fig. 17. Operation of switches k_{2} varies the bandwidth, operation of switches k_{1} varies the centre frequency, operation of both sets simultaneously gives the constant- Q type of tuning. If zeros are introduced by adding linkages as described in Part 13, these also move under the action of the switches, as their positions also depend on the effective T s of the integrators.

Stagger tuning

Consideration of symmetry shows that when two tuned circuits are staggered to give a 2 nd-order b-p response they must be of equal Q, and that the centre frequency of the combined response is the geometric mean of the centre frequencies of the two factors. Hence the pole positions are as shown in Fig. 18, and the normalized responses may be written

$$
\begin{align*}
& G_{1}(\omega)=\frac{1}{1+j Q(\omega / x-x / \omega)} \tag{27}\\
& G_{1}(\omega)=\frac{1}{1+j Q(\omega x-1 / \omega x)} \tag{28}
\end{align*}
$$

The product gives an expression for the overall gain, and from this by substituting $\Omega=\omega-1 / \omega$, which is equn. (1) when $\omega_{0}=1$, the frequency-response function for the corresponding $1-\mathrm{p}$ response is obtained as
$G(\Omega)$

$$
\begin{equation*}
=\frac{1}{1+Q^{2}\left(x-\frac{1}{x}\right)^{2}+j Q\left(x+\frac{1}{x}\right) \Omega-Q^{2} \Omega^{2}} \tag{29}
\end{equation*}
$$

If S is defined by

$$
\begin{align*}
& x-1 / x=1 / S \tag{30}\\
& x+1 / x=2 \sqrt{ }\left(1+1 / 4 S^{2}\right) \tag{31}
\end{align*}
$$

So equn. (29) becomes
$G(\Omega)$

$$
\begin{equation*}
=\frac{1}{1+Q^{2} / S^{2}+j 2 Q \sqrt{1+1 / 4 S^{2}} \cdot \Omega-Q^{2} \Omega^{2}} \tag{32}
\end{equation*}
$$

and comparison with

$$
\begin{equation*}
G(\Omega)=\frac{1}{1+j \Omega / q \omega_{c}-\Omega^{2} / \omega_{c}{ }^{2}} \tag{33}
\end{equation*}
$$

gives

$$
\begin{align*}
q & =\frac{1}{2} \sqrt{\frac{1+Q^{2} / S^{2}}{1+1 / 4 S^{2}}} \tag{34}\\
\omega_{\mathrm{c}} & =\frac{1}{Q} \sqrt{1+\frac{Q^{2}}{S^{2}}} \tag{35}
\end{align*}
$$

So, for example, if $S=Q$, the bandwidth obtained is $\sqrt{2} / Q$, i.e. $\sqrt{2}$ times the bandwidth that the tuned circuits would have if not staggered.
For the general case where the overall response is centred on ω_{0}

$$
\begin{equation*}
\omega_{e}=\frac{\omega_{0}}{Q} \sqrt{1+Q^{2} / S^{2}} \tag{36}
\end{equation*}
$$

Now ω_{0} / ω_{c} is the parameter Q_{B}. For brevity let $B=Q_{B}$. Equn. (36) may then be written

$$
C=0.05 \mu, R=50 k, C_{2}=1,250 p, R_{2}=2.0 \mathrm{M}, R_{3}=27 k, R_{4}=1 \cdot 2 k, R_{5}=470 k
$$

Fig. 16. 3rd-order b-p active ladder filter using parallel-T circuits.

Fig. 18. Pole positions for 2nd-order band-pass response.

$$
\begin{gather*}
\frac{1}{B}=\frac{1}{Q} \sqrt{1+Q^{2} / S^{2}} \tag{37}\\
\frac{1}{B^{2}}=\frac{1}{Q^{2}}+\frac{1}{S^{2}} . \tag{38}
\end{gather*}
$$

Thus q, the shape factor, and $1 / B$, the relative bandwidth, may be calculated for any combination of Q and S.
For relatively narrow bandwidths $1 / 4 S^{2} \ll 1$, so equn. (34) becomes

$$
\begin{equation*}
q=\frac{1}{2} \sqrt{1+Q^{2} / S^{2}} \tag{39}
\end{equation*}
$$

and substitution in equn. (37) gives

$$
\begin{equation*}
Q=2 q B . \tag{40}
\end{equation*}
$$

The above results may be used to analyse the performance of a h -p filter and a 1-p filter in tandem, using the identity already given, equn. (22). Thus equn. (34) shows that for very great staggering $\left(4 S^{2} \ll 1\right.$ and $\left.S^{2} \ll Q^{2}\right) q \rightarrow Q$; but that for $Q>\frac{1}{2}$, as S increases q falls, until for no stagger $q=\frac{1}{2}$.
Stagger tuning is not a good practical method of making a filter, as obtaining a flat pass band depends so much on balancing one slope against another (e.g. see Ref. 1, Fig. 10.16). But the analysis is of theoretical interest as it gives the resonant frequencies and Q factors of a b-p system.

REFERENCE

"Vacuum Tube Amplifiers" ed. by G. E. Valley and H. Wallman, McGraw-Hill, New York (1948).

Current Generators

Some circuit techniques used to design discrete component and integrated circuit current generators

by B. L. Hart, ${ }^{*}$ B.Sc., M.I.E.R.E.

Good approximations to voltage sources are commonplace in electronic circuits and are widely used in equipment design. Familiar examples are the low impedance d.c. power supply and the "follower" circuit in all its guises (cathode, emitter, etc.).

Less well known, but often very useful, are current source circuits or current generators. These are required in the measurement of semiconductor d.c. characteristics when a specified current is caused to flow between the terminals of a device and a breakdown voltage observed. Also a current source is required for the linear charging of a capacitor to produce an accurate linear sawtooth voltage waveform in timing applications. Such a scheme has the advantage over a conventional "Miller" circuit of producing no initial jump and not requiring a floating clamp.

Review of fundamentals

The first quadrant characteristics of an ideal controllable current generator are evident from Fig. 1(a); these are:
(i) Infinite 1.f. incremental resistance for $V \geqslant 0$.
(ii) The d.c. current is dependent on only one chosen variable λ. This parameter could represent the effect of variation in a circuit resistance, current, voltage, charge, applied pressure, or radiation intensity, etc. The practical situation corresponding to Fig. l(a) is shown, exaggerated for clarity, in Fig. 1(b). Curve (1) is now only approximately straight over a region between two arbitrarily defined points A and B being limited beyond these points by physical mechanisms such as voltage saturation and breakdown. The incremental output resistance at point $P, r_{0}\left[=\left.(\delta I / \delta V)\right|_{2}\right]$ is not infinite and may be a function of λ and V, depending on the precise nature and spacing of the curves. Furthermore, λ may not represent only the effect of one variable. It is desirable that the variable at our disposal, e.g. resistance, is dominant, and that there is a relative insensitivity, calculable in magnitude, of set current I, and resistance r_{0} with respect to the other variable parameters. In most cases of practical interest the disturbing functions are temperature and rail voltage variation.

Before passing to specific circuit realizations and assessing to what extent they *West Ham College of Technology.
succeed in satisfying the ideal criteria discussed above, it is worth noting that current generators may be simply paralleled. One easily-met requirement is that the common load resistance is much less than the r_{0} of each source.

Basic circuit schemes

One of the simplest and most frequently encountered current sources is that shown in Fig. 2(a), in which D_{2} is a zener diode (preferably temperature-compensated) operating in the breakdown region.
Normally $V_{z}>\delta_{1}, \delta_{2}$, and $\delta_{1} \approx \delta_{2}$: hence if $\alpha=$ common-base current gain of Tr_{1}, then for $B V_{C B O}>V \geqslant\left(V_{z}+\delta_{2}\right)$,

$$
\begin{gather*}
I \fallingdotseq \alpha V_{Z} /\left(R_{E}+R_{V}\right) \tag{1}\\
r_{o} \fallingdotseq 1 / h_{o b}=f(I) \tag{2}
\end{gather*}
$$

Potentiometer R_{V} is the controlling variable. This may be manually operated or mechanically driven, or might represent an f.e.t. operated in the pre-pinch-off region. The main disturbing influences are variations of temperature (T), and change in V_{1}. The latter produces a change in V_{Z} because of alteration in zener current; this may be reduced by replacing R_{B} by a similar current source using a $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistor. Since α and V_{Z} are weak functions of T, I is not sensibly dependent on this variable. Sometimes the lower limit of the voltage range is unacceptably high.

If a negative rail is available then the simple arrangement of Fig. 2(b) is useful. The stability of I is directly dependent on $-V_{1}$ for this configuration.
For the case where a negative rail voltage is not available the circuit of Fig. 3(a) may be used. This has been used by the author

(a)

(b)

Fig. 1. (a) First quadrant characteristics of ideal current source. (b) Characteristics of practical current source.

Fig. 2 (a) Popular current source circuit. (b) Current source using two rail supplies.
to obtain the maximum input voltage range in a long-tailed pair differential comparator.
Tr_{1} is a germanium transistor whilst D_{1} is a silicon diode.

It follows that, for $V_{u}>V \geqslant \delta_{2}$, where V_{u} in the upper limit of the voltage range,

$$
\begin{align*}
& I=\alpha\left(\delta_{2}-\delta_{1}\right) /\left(R_{E}+R_{V}\right) \tag{3}\\
& 1 / h_{o e}<r_{o}<1 / h_{o b} \tag{4}
\end{align*}
$$

\dot{V}_{u}, and the actual value of r_{o} both depend on $\left(R_{E}+R_{V}\right)$ and the incremental resistance of D_{1}.

Assuming a logarithmic volt-amp. relationship for D_{1}, a $\times 4$ change in V_{1} causes a change in I of about 10% for $\delta_{2} \approx 0.6 \mathrm{~V}$ and $\delta_{1} \approx 0.2 \mathrm{~V}$.

Because of the larger value of $I_{C B O}$ for germanium transistors and the fact that $\left|d \delta_{2} / d T\right| \neq\left|d \delta_{1} / d T\right|$ there is an increased temperature sensitivity for this configuration compared with that of Fig. 2(a).

To obtain the output characteristics, shown in Fig. 3(b), on a curve tracer (Tektronix 575) R_{B} is removed and the rest of the circuit treated as a transistor-the emitter of which is the junction of D_{1} and R_{V}-subject to base current drive in the common-emitter configuration. The logarithmic relationship between applied current and δ_{2} causes two effects which are visible on the photograph.

In the first place the curves become al-

Fig. 3. (a) Useful alternative circuit to Fig. 2(a). (b) Output characteristics for circuit of Fig. 2(b). Scale: vertical $1 \mathrm{~mA} /$ div; horizontal $2 \mathrm{~V} / \mathrm{div}$. Steps 0.5 mA .

(a)

Fig. 4. (a) Improved form of circuit in Fig. 3(a). (b) Load line construction for 4(a).

Fig. 5. (a) Integrated transistor pair in "current mirror" configuration. Emitter area ratio 1:m. (b) Current mirror characteristics using SL303A. Scales: vertical 1 mA/div; horizontal 2 V/div. Steps: I mA.
most parallel to the voltage axis at points successively shifted to the right by a small amount. This occurs because the saturation condition $V_{C B}=0$ is a function of drive current.

Secondly, the characteristics are unequally spaced in the vertical direction.

In a practical circuit a selected value of R_{B} corresponds to a particular base current step. The vertical spacing thus gives a measure of the effect of R_{B} tolerance on circuit performance. For predictable behaviour it is arranged that $\left(V_{1} / R_{B}\right) \geqslant(I / \beta)$ where $\beta=$ common emitter d.c. current gain of Tr_{1}. The results were obtained using an OCl 39 for Tr_{1} and a low cost 1N4148 for $D_{1} . R_{V}$ was set at a convenient value: in cases where R_{V} is dispensed with, a closer tolerance on a fixed I may be obtained by using a well-specified diode, such as the IN3595, for D_{1}.

If the magnitude of the minimum voltage across the terminals of the current source is not a problem the output resistance of the circuits in Figs. 2(a), 2(b) and 3(a) can be increased ${ }^{1}$ by employing a field-effect operated in the common gate mode (see Fig. 4(a)). The output resistance is now r_{o}^{\prime} where,

$$
\begin{equation*}
r_{o}^{\prime}=r_{d s}+(\mu+1) r_{o} \tag{5}
\end{equation*}
$$

$r_{d s}=$ incremental drain-source resistance of f.e.t.

$\mu=$ f.e.t. amplification factor.

For this scheme to be successful the f.e.t. must be a "normally-on" type working in the current saturation region.

A mathematical treatment of the d.c. circuit conditions is not difficult but a pictorial representation conveys the information most appropriate to a practical design. Curve (a) represents the baseemitter characteristic of Tr_{1}. The load line for R_{E} intersects this at $I_{\mathrm{D}}, \delta_{1}$. Curve (b) shows drain-source current, I_{DS}, as a function of source voltage. Since r_{o} is large relative to the impedance seen looking in at the source the actual source voltage, V_{s}, is found at the point on curve (b) corresponding to $I_{D S}=I_{0}$. Clearly it is required that $V_{S}>\delta_{2}$ if T_{1} is not to saturate.

Exploitation of the matching principle

One result of modern monolithic i.c. technology is the close parameter matching and temperature tracking of components of the same type fabricated on the same semiconductor slice. This feature is widely exploited in circuit design, giving rise to some arrangements which would not normally be encountered when using discrete components.

In Fig. 5(a), two transistors $\operatorname{Tr}_{1}, \operatorname{Tr}_{2}$, having an emitter area ratio $1: m$ respectively are made in close proximity on the same wafer. $T r_{1}$ is given a collector-base strap in order to function as a diode. The circuit has been variously described as a "compound diode-transistor structure", and "current mirror".

Ignoring base width modulation effects in Tr_{2} and the difference in power dissipation in the two devices-both legitimate assumptions for small values of collector-

Fig. 6. (a) "Enhanced" current mirror circuit. (b) Characteristics of Fig. 5(a) using SL303A. Scales as in Fig. 5(b).
emitter voltage- it follows (see Appendix 1) that,

$$
\begin{align*}
& I \tag{a}\\
& \text { or } \tag{b}\\
& I \approx m I_{B} /(m+\beta+1) \\
&
\end{align*}
$$

for the usual case $\beta \gg 1$ and $m \leqslant 5$. The effective current gain of the combination is $\beta^{*}=I / I_{B} \approx m$. Gain precision has thus been obtained at the expense of gain magnitude-a familiar feature in feedback systems.
Equation 6(a) is true provided T_{1} functions as a "well-behaved diode": in the present context this means a logarithmic current-voltage characteristic whatever the current level. Now the collector-base region of Tr_{1}, is, in fact, <0 by $\approx I R_{\text {sat }}$ where $R_{\text {sat }}$ is the collector saturation resistance: it is thus necessary to use low $R_{\text {sat }}$ devices, obtained for example by employing an n^{+} buried layer technique, in order that equation 6 (a) be valid.
Fig. 5(b) shows curve tracer results obtained using two matched devices of an SL303A (Plessey): in this case $m \approx 1$. Since m is a function of device geometry I is independent of T to a weak, calculable, extent. For the same approximations used in obtaining equation 6(b) from 6(a) it is simply shown that, at constant I_{B},

$$
\begin{equation*}
\left(1 / D(d I / d T) \fallingdotseq\left(1 / \beta^{2}\right)(d \beta / d T)\right. \tag{7}
\end{equation*}
$$

In fact the application of local heating to the T0-5 header (via a Thermoprobe) caused no noticable shift in the characteristics on

Fig. 7. Characteristics of Fig. 6(a) using sample X (Plessey). Scales : vertical $0.05 \mathrm{~mA} /$ div; horizontal $1 \mathrm{~V} / \mathrm{div}$. Steps: 0.1 A.
the scale used over a $50^{\circ} \mathrm{C}$ temp. range. However equation (7) must be used with caution since in a circuit I_{B} is not always fixed. If it is obtained by taking a resistor, R_{B}, from the collector of Tr_{1} to a constant positive rail voltage, V_{1}, then $-R_{B}$ and δ_{1} both vary with T. This means that, in principle, by suitable choice of a discrete component R_{B} variation of I_{B} with T can be made to almost cancel variation of β with T. One shortcoming of the current mirror so far described is the noticeable output resistance at the collector of Tr_{2} : this is not unexpected since as far as collector circuit of $T r_{2}$ is concerned the transistor is connected in the common-emitter configuration with only a small incremental resistance between emitter and base.
At low current levels a resistance in the emitter lead of $\boldsymbol{T r}_{2}$ gives negative feedback and a consequent increased output impedance: for this case, ${ }^{3}$

$$
\begin{equation*}
R_{E}=\left(V_{T} / I\right) \log _{e}\left(I_{B} / I\right) \tag{8}
\end{equation*}
$$

where $\quad V_{T}=$ "thermal voltage" $=(K T / q)$.
This approach permits the design of current sources in the $\mu \mathrm{A}$ range: this avoids the necessity of large values of R and the resulting expensive use of chip area in monolithic circuits.
The technique is not really suitable at current levels of a few milliamps because R_{E} becomes very small; this means no significant output impedance improvement due to feedback, and a significant lack of precision in I.
High output impedances for currents in the milliamp range can be achieved by using the circuit of Fig. 6(a). This scheme -which might be termed the "enhanced current mirror"-is a modification of Fig. 5(a), and appears to have been first used by Wilson. ${ }^{4}$ Analysis, in Appendix 2, shows that if all the devices have equal emitter areas,

$$
\begin{equation*}
I=I_{B} /[1+\{2 / \beta(\beta+2)\}] \tag{9}
\end{equation*}
$$

Fig. 6(b), which should be compared with Fig. 5(b), shows the increased output resistance occurring in this circuit.
To obtain the trace an SL303A was used : this contains two matched transistors (Tr_{1}, Tr_{2}) suitable for use in a long-tailed pair and a third transistor $\left(T r_{3}\right)$ suitable for use in its current tail. Fig. (7) shows results
for a specially supplied device in which the area ratio of the matched transistors used in the circuit of Fig. 6(a) is $1: 3$.

Feedback amplifier schemes

Some of the limitations of the simple current generators so far considered may be overcome by using circuits having a large amount of negative feedback. This condition is easily met if plenty of gain is available. Such gain is readily and cheaply obtained with i.c. operational amplifiers. The input stages of these amplifiers will, incidentally, almost certainly contain a current-mirror type of current source functioning as an emitter or common-emitter load.

Fig. 8(a) shows the arrangement of a class of precision current generators in which a discrete active device is combined with an i.c. amplifier. The device-represented by the pear shaped symbol ${ }^{5}$-may, in principle, be any amplifying element with three electrodes. Terminals X, Y, Z are defined in Fig. 8(b) for the three types of unit most likely to be used. Control is effected between Y and Z and the output current, I_{x}, appears at terminal X.
It follows from established operational

(a)

Thermionic valve	Bipolar transistor	Unipolar transistor	
X	Anode	Collector	Drain
Y	Grid	Base	Gate
Z	Cathode	Emitter	Source

(b)

Fig. 8 (a) Current Source using 0 p. amp. and active device. (b) Terminal identification for general active device of $8(a)$
(c) Circuit for obtaining precise current ratio.
amplifier theory that if $A \geqslant 1$ and commonmode effects are neglected,

$$
\begin{equation*}
I_{x} \approx \lambda\left(V_{\text {ref }}-V_{t}\right) / R \tag{10}
\end{equation*}
$$

The variables at our disposal for fixing I_{x} are thus $V_{1}, V_{\text {ref }}, R$. Suppose $V_{\text {ref }}$ is considered as the "input". Then I_{x} increases with $V_{\text {ref }}$. Also, the current supplied by $V_{\text {ref }}$ to the positive input is very low, being only the amplifier input bias current. The latter can be reduced to negligible proportions ($<1 \mathrm{pA}$) if an f.e.t. input stage is employed. Fig. 8(c) indicates a method whereby a current I_{2} may be made strictly proportional to I_{1}. This follows from Fig. 8(a) by making $V_{I}=0$ and $V_{r e f}=I_{1} R_{1}$. When V_{I} is regarded as the "input", I_{x} decreases with V_{I} and the current supplied by V_{I} is the output current $\left(I_{x}\right)$.
To reduce the current demanded of V_{I} while at the same time maintaining the same I_{x} as before the circuit of Fig. 9 may be used. V_{I} now exerts control over the current furnished through additional resistor R_{z} connected to constant supply $V_{z z} \cdot R^{\prime}(>R)$ gives a reduced input current.

It must be noted that I_{x} is only as constant as the d.c. source(s) which define it. The effect of feedback is to increase the output resistance of the active devicerand to reduce the sensitivity of I_{x} to parameter variations in the active device due to ageing, replacement, etc. This is shown, for $V_{I}=0$, by a more accurate expression for I_{x}, viz,

$$
\begin{equation*}
I_{x} \fallingdotseq \lambda\left(A V_{r e f}-V_{Y Z}\right) /(A+1) R \tag{11}
\end{equation*}
$$

$V_{Y Z}$ is thus effectively reduced by a factor $1 /(A+1)$.
The question arises as to whether it is better to use a bipolar transistor or an f.e.t. for the active device. This cannot be answered directly unless the requirements of the intended application are more closely specified. In some cases e.g. high current levels, a bipolar device is obligatory for current handling capability.
However, in making a choice the following points should be borne in mind. They apply to Fig. 8(a) for specified $V_{I}, V_{\text {re }}, R$, and A.

1. It is the current in R that is "sensed" and kept constant by the feedback connection. Now with an f.e.t. $\lambda=1$, so I_{x} is kept constant also. With a bipolar device $\lambda=\alpha$ (common-base current gain). Since α yaries with, T keeping the current in R constant will not ensure I_{x} 's constancy.
2, Errors due to $V_{Y Z}$ uncertainty will be

Fig. 9. Variation of Fig. 8(a) for reduced current from V_{I}.
slightly greater for an f.e.t. simply because $V_{Y Z}$ is in general much larger.
3. Because of the large impedance mismatch between the output of the amplifier and the input of the f.e.t. (operated at zero gate current) using an f.e.t. is likely to give marginally more voltage loop gain.

The extent to which the last two factors are troublesome is obviously dependent on the magnitude of A.

Appendix

1. "Current mirror" analysis

If, in Fig. 5(a), $I_{E 1}$ and $I_{E 2}$ are the emitter currents of $T r_{1}, T r_{2}$ respectively, current addition at the commoned base terminal yields,

$$
I_{B}=I_{E 1}+\left\{I_{E 2} /(1+\beta)\right\}
$$

but, $\quad I_{E 1}=I_{E 2} / m$ A. 2 .
$\therefore \quad I_{E 2}[(1 / m)+1 /(1+\beta)]=I_{B}$
now, $\quad I=\alpha I_{E 2}$
hence $I=\alpha I_{B} /[(1 / m)+1 /(1+\beta)]$
or, rearranging

$$
I=m \beta I_{B} /(m+\beta+1)
$$

and $\quad\left(I / I_{B}\right)=\beta^{*} \approx m$, for small " m " and $\beta \gg 1$
2. "Enhanced current-mirror" analysis If, in Fig. 6(a),

$$
\begin{aligned}
& I_{C 1}=\text { collector current of } T r_{1}, \\
& I_{E 3}=\text { emitter current of } T r_{3}
\end{aligned}
$$

then from A. 6 above, with $m=1$,

$$
I_{C 1}=\{\beta /(\beta+2)\} I_{E 3}
$$

summing currents at the base of $\boldsymbol{T r}_{3}$,

$$
\begin{array}{ll}
& I_{B}= \\
\text { or, } \quad & I_{C 1}+I_{E 3} /(1+\beta) \\
I_{B}= & I_{E 3}[\{\beta /(\beta+2)\} \\
& +\{1 /(1+\beta)\}] \\
\text { now } I= & \alpha I_{E 3} \\
I= & \alpha I_{B} /[\{\beta /(\beta+2\} \\
& +\{1 /(1+\beta)\}]
\end{array}
$$

$$
\text { A. } 10 .
$$

rearranging

$$
\begin{equation*}
I=I_{\mathrm{B}} /[1+\{2 / \beta(\beta+2)\}] \tag{A. 13}
\end{equation*}
$$

This gives $\left(I / I_{B}\right)$ closer to unity than A. 6 with $m=1$.

REFERENCES

1. Hart, B. L., "Current Generators using Unipolar-Bipolar Transistor Hybrids", Electronic Applications, Vol. 27, No. 1, 1966-67 pp. 30-37.
2. Davis, W. R., Lin, H. C., "Compound Diode -Transistor for Temperature Compensation", Proc. I.E.E.E. (Correspondence) July 1966, pp. 1201-2.
3. Widlar, R. J., "Some circuit design techniques for linear integrated circuits", I.E.E.E. Trans. Circuit Theory, Vol. CT-12 pp. 56890, Dec. 1965.
4. Wilson, G. R., "A monolithic junction f.e.t.-n-p-n operational Amplifier", 1968 ISSCC Digest Tech. Papers.
5. Cherry, E. M., Hooper, D. E., "Amplifying Devices and Low Pass Amplifier Design", J. Wiley 1968, p. 21.

H.F. PredictionsOctober

The curves show median standard MUF (frequency at which high-and low-angle ray paths coincide), optimum traffic frequency (MUF exceeded on 90% of days) and lowest usable frequency (LUF) for reception in the UK. LUF is the frequency above which the signal/noise ratio at receiver input exceeds a required value on 90% of days. The curves were drawn by Cable and Wireless Ltd for commercial telegraph operation using high power and directive aerials. Curves for a 50 kW broadcast service would be very similar and rough estimates for other services can be made by increasing LUF 1.5 MHz for each 10 dB drop in e.r.p.

Day-to-day variations in height and density of ionospheric layers and hence deviations from chart values are greatest during equinox months around sunspot maximum as at present.

World of Amateur Radio

Amateur radio in Poland

The Polish amateur radio society Polski Zwianek Krothofalowcow (PZK) is this year celebrating its 40th anniversary. A special jubilee meeting is being held on October 25th. Today there are 6000 members of PZK, about half of them licensed amateurs. Although the Polish authorities closed PZK in 1950, and then advised amateurs to join the official "League of friendship with the Army", the Polish amateurs re-established their own society in 1957 following internal changes in Poland in 1956. Current PZK activities include a journal, contests, QSL , bureau, maintaining regional amateur measuring laboratories, running amateur radio courses and supplying emergency communications during floods or forest fires. Over 400 local radio clubs are in affiliation with PZK which, in 1963, became the first Iron Curtain country to re-join the International Amateur Radio Union. There are now over 2500 Class I licenses (h.f./v.h.f.), 450 Class II (v.h.f. only) and 400 club stations. Class I permits range from 20 watts (age 15 to 18), 50 watts (over 18), 250 watts (after 6 years) to 750 watts (on request after 10 years).

Long distances on $\mathbf{M H z}$?

Two recent studies underline dramatically the potential of frequencies as high as 70 MHz to support long-distance ionospheric propagation at low-power. The Canadian amateur, Geoff Kennedy (VE2AI0), of Valois, Province of Quebec, has successfully received 70.275 MHz signals from the low-power TF3VHF beacon transmitter on Iceland, and is now striving to make a $50 / 70$ MHz cross-band contact with the U.K. or continental Europe (he transmits on 50.055 MHz c.w.). The Canadian, already well-known for his intensive work on 50 and 70 MHz , believes there may be a connection between auroral, sporadic E and transequatorial (t.e.) modes of propagation.

This theory receives support from the results of an extended Japanese investigation into t.e. propagation on 32,48 and 72 MHz over a $4850-\mathrm{km}$ path from

Darwin, Australia, to Yamagawa, Japan (K. Tao et al, Journal of the Radio Research Laboralories [Japan] January 1970). This demonstrates that, even in years of low sunspot activity, t.e. propagation frequently extends, particularly in the evening-to-midnight equinoctial periods, to at least 72 MHz . It is noted that t.e. conditions appear to follow "spread $\dot{\mathrm{F}}$ " occurrences and correlate with local sporadic E conditions. The Japanese team suggests that around 32 MHz there are two separate t.e. modes; one during daylight subject to a violent interference-type fading range of about 25 dB ; and the night-time mode with a fading range of about 10 dB . The interest of propagation research workers in t.e. was aroused initially by long-distance amateur contacts across the equator in the $50-\mathrm{MHz}$ band during the period 1947-51; this interesting "chordal hop" mode has since been confirmed by many professional and amateur studies-but there clearly remains much opportunity for further study of t.e. in the 28 -, 50 - (not available in the U.K.) and $70-\mathrm{MHz}$ amateur bands.

Rise in Morse Test charges

From October 1st, Minpostel is increasing the fee for the Morse Test needed to obtain a U.K. Amateur (Sound) Licence A from ten shillings to $£ 1$. The Federal Communications Commission has recently raised the fees charged to U.S. amateurs (who for many years paid no licence fees) though these remain modest by European standards. The charge is now $\$ 9$ for new, renewed or upgraded operator licenses, but this covers five years. No fees are charged for Novice licences.

Trans-arctic expedition lecture

Radio communications played a vital role in the four-man polar crossing, led by Wally Herbert, in 1968-69. At an R.S.G.B. lecture on Monday, September 28th at 18.30 at the I.E.E., Savoy Place, London W.C.1, Squadron Leader Freddy Church (the expedition's base station operator), Dennis Collins (G2FLG) and Roly Shears (G8KW)-who
organized and operated the G7AE "weekend" stations-are to describe the expedition's communications system.

In Brief: The Mullard Jubilee Exhibition at Mullard House, Torrington Street, London W.C. 1 (October 5th to 24th, excluding Sundays) is to feature an amateur station built and operated by Mullard radio amateurs and using some of the firm's earliest transmitting valves The Port Talbot R.S.G.B. group won the National Field Day shield with a score of 2386 points; Oxford and District Amateur Radio Society was the runner-up with 2174 points. The Bristol Trophy for the leading one-station entry goes to Cannock Chase society with 1633 points. . . An unusal callsignHG 100UA/D-has been frequently heard recently on h.f. bands; this is an exhibition station operating from various venues in Hungary to mark the centenary of the birth of Lenin Membership of the International Amateur Radio Club, with headquarters in Geneva, is now 394 A Scottish v.h.f. convention is being held at the Queen's Hotel, Dundee, on Sunday, October 11th. An afternoon programme of technical lectures will be followed by a dinner. Details from G. C. Somerville, GM3KYI 73 Balerno Street, Dundee A French biological study balloon, carrying beacon transmitters on 145.22 MHz (tone modulated) and 129.6 MHz (tone one-second pips) is to be launched in the Nancy area on Sunday, October 11th at 1400 G.M.T. and should reach maximum height about one hour later. Cardiac data on a rat will be telemetered on 27.4 MHz (reception reports to Georges Guinard, 15 Route de Villers, 54. Laxou).

PatHawker, G3VA

This $28 f t$ diameter dish was made by the Australian amateur VK3ATN for his moonbounce experiments. The reflector uses half-inch mesh. Gain is 38 dB at 1296 MHz and 28 dB at 432 MHz . The photo was taken by L. A. Moxon (G6XN) during a recent visit.

October Meetings

Tickets are required for some meetings: readers are advised, therefore, to communicate with the society concerned

LONDON

1st. I.E.R.E.-"Some aspects of the design of a universal radar viewing unit" by R. W. Elbourn at 18.00 at 9 Bedford Sq., W.C.1.

1st. S.E.R.T.-"Design and performance of modern loudspeakers" by R. L. West at 19.00 at the Royal Commonwealth Society, Craven St., W.C. 2 .

7th. I.E.R.E.-"Solid state h.f. communications receiver" by B. M. Sosin at 18.00 at 9 Bedford Sq., W.C.1.

8th. I.E.E-"Communication by glass fibre" by R. B. Dyott at 17.30 at Savoy Pl.. W.C.2.

14th. I.E.R.E-"The logistics of computer aided circuit design" by C. S. den Brinker at 18.00 at 9 Bedford Sq., W.C. 1 .

20th. I.E.E-Colloquium on "Integrated circuits for consumer products" at Savoy PI., W.C. 2 .

20th. I.E.E.-"Thyristor-bridge control systems analysis" by Dr. J. O. Flower and P. A. Hazell at 17.30 at Savoy Pl., W.C.2.

21 st. R.Aero.Soc./I.E.E.-Discussion on the "The impact of modern avionics on safety" 18.00 at 4 Hamilton PI, W.I.

21 st. I.E.E.-"Technology and the Universities" by Professor John Brown the Electronics Division chairman at 17.30 at Savoy Pl., W.C.2.

21 st. I.E.R.E.-"Continuing education for electronics engineers" by Dr. K. G. Stephens at 18.00 at 9 Bedford- Sq., W.C.1.

22nd. I.E.E.-"A state-space approach to modular circuit synthesis" by Dr. A. W. Keen at 17.30 at Savoy Pl., W.C. 2 .

26th. I.E.E.-"The training of systems engineers-a systems problem" by Dr. I. Cochrane at 17.30 at Savoy PI.. W.C. 2 .

28th. I.E.E.-"An introduction to image analysis" by G. Gardner and Dr Gibbard at 18.00 at 9 Bedford Sq., W.C. 1 .

29th. I.E.E.-"Developments in soft magnetic materials and their uses" by Prof. J. E. Thompson at -17.30 at Savoy PI., W.C.2.

29th. I.E.R.E.-"Space communications--the present and the future" by J. M. Brown at 18.00 at 9 Bedford Sq., W.C. 1 .

ABERDEEN

8th. I.E.R.E.-"High fidelity recording and reproduction at 19.30 at Robert Gordon's Inst. of Tech. Schoolhill.

29th. I.E.E./.E.R.E.-"Medical electronics" by J. M. Neilson at 19.30 at Robert Gordon's Inst. of Technology.

BANGOR

20th. I.E.E.-"Electronic measurement in the automobile industry" by M. H. Westbrook at 19.30 at the School of Eng'g Science, University College.

BATH

14th. I.E.E./I.E.R.E.-"Review of marine radio dèvelopment" by G. J. Macdonald and C. S. Burnham at 18.00 at the University.

BOLTON

15th. I.E.R.E.-"Coaxial-line cavity Gunn effect oscillators" by P. W. Crane at 19.15 at the Institute of Technology.

BRIGHTON

27th I.E.E.-Colloquium on "Advances in automatic pattern recognition" at 14.30 at the Polytechnic.

BRISTOL

19th. I.E.E.-"Telecommunications-past, present and future" by J. S. Williams at 18.00 at Queen's Bldg. the University.
27th. I.E.E.T.E.-"Zinc-air batteries" by G. W.
Walkiden at 19.30 at Royal Hotel, College Green.

CAMBRIDGE

15th. I.E.E.-"Design techniques for mobile and personal radio telephones" by P. A. Webster at 18.30 at the Eng'g Labs, Trumpington Street.

20th. I.E.E.-"Current electronic developments in the deep-sea fishing industry" by R. Bennett at 19.30 at the College of Arts \& Technology.

CARDIFF

1st. S.E.R.T.-"The all-transistor colour chassis" by T. Ayscough at 19.30 at Llandaff Technical College, Western Avenue.

21 st. I.E.E.T.E.-"Education and training of technicians" by Dr. H. L. Hazlegrave at I9:30 at the University of Wales Institute of Science \& Technology, Cathays Park.

28th. S.E.R.T.-"Test equipment for colour receiver servicing" at 19.30 at Llandaff Technical College, Western Avenue.

CATTERICK

13th. I.E.E.-"The teaching of digital techniques" by D. Brown at 18.30 at the Camp.

CHATHAM

22nd. I.E.R.E.-"Thick film microelectronics" by A. F. Dyson at 19.00 at the Medway College of Technology.

CHELMSFORD

7th. I.E.E./I.E.R.E.-"The new Post Office research station at Martlesham" by C. F. Floyd at 18.30 at the King Edward VI Grammar School, Broomfield Rd.

DUNDEE

20th. I.E.E. Grads.-"Computer memory systems" by J. Crabb at 19.30 at the University.

ENFIELD

29th. I.E.E.-"Microelectronics" by E. T. Emms at 18.30 at the College of Technology.

FARNBOROUGH

13th. I.E.E.-"Electronics character recognition" by R. H. Britt at 18.30 at the Technical College.

GUILDFORD

6th. I.E.R.E.- "A computer for teaching" by V. F. Thomas at 19.00 at the Technical College.

HULL

29th. I.E.E.-"Review of electronics in cars" by W. F. Hill, at 18.30 at the Y.E.B.

LEICESTER

6th. I.E.R.E./C.E.L.-"How an engineer can take part in the total management of a company" by Dr. F. E. Jones at 19.00 at the University.

14th. I.E.E.T.E-"Control systems, computer
simulation" by P. J. Lawton at 18.45 at the Hawthorn Bldg, the Polytechnic, The Newarke.

LETCHWORTH

21st. S.E.R.T.-"Art of computation" by C. Fleckney at 19.00 at ICL Engineering Training Centre, Icknield Way West.

LIVERPOOL

14th. I.E.R.E.-"Fast switching techniques as applied to automatic telephone exchange design" by J. Lewsley at 19.00 at the University, Dep. of Elec. Eng.

26th. I.E.E.-"The role of the polytechnics by G. Bulmer at 18.30 at the Polytechnic.

LOUGHBOROUGH

20th. I.E.E.-"Measuring the body's signals" by J. M. Ivison at 18.30 at Ed. Herbert Bldg, the University.

MALVERN

7th. I.E.R.E.-"Quasars-t the most powerful \&ransmitters in the Universe" by Dr. P. J. S. Williams at I9.00 at the Abbey Hotel.

MANCHESTER

12th. I.E.E.-"The polytechnics in perspective" by Sir Eric Richardson at 18.15 at Renold Bldg, U.M.I.S.T.

NEWCASTLE ON TYNE

7th. S.E.R.T.-" B.R.C. Colour TV 3000 power supplies" by K. R. Harris at 19.15 at Charles Trevelyan Technical College. Maple Terrace.

14th. I.E.R.E./I.P.P.S./R.T.S.-"Colour television" D. G. Packham at 18.00 at Tyne Tees Television Studios, City Road.

NEWPORT, I.O.W.

16th. I.E.R.E.-"The future of aircraft landing systems" by W. F. Winter at 19.00 at the Technical College.

23 rd. I.E.E.-"Electronic performance testing of motor vehicles" by D. C. Freeman at 18.30 at the Technical College.

POOLE

20th. I.E.E. Grads.-"Integrated circuits in hi-fi systems" by B. A. Reed at 18.30 at the Technical College.

READING

6th. I.E.E.-"Review of electronic telephone switching" by D. J. Harding at 19.30 at the J. J. Thomson Lab., the University.

15th. I.E.R.E.-"Computer aided instruction" by Dr. D. G. Bate at 19.30 at the J. J. Thomson Laboratory, the University, Whiteknights Park.

ST. AUSTELL

6th. I.E.E.T.E.-"Communications satellite" by S. Pitham at 19.30 at the English Clays Lovering Pochin Ltd, Staff Restaurant, John Keay House.

SHEFFIELD

28th. I.E.E./I.E.R.E.-"Large scale integrated circuits" by C. S. den Brinker at 18.30 at the University.

SOUTHAMPTON

21st. I.E.E.I.E.R.E.-"Digital techniques in moving target indication" by I. C. Walker at 18.30 at the University.

SWINDON

6th. I.E.R.E.-"Thyristor engineering " by D. B. Corbyn at 18.15 at the College.

TAUNTON

13th. I.E.E.-"Television communications" by A. James at 19.45 at the Castle Hotel.

WEYMOUTH

22nd. I.E.E.-"Holography" by A. E. Ennos at 18.30 at the South Dorset Technical College.

WHITBY

13th.- I.E.E-"Radio astronomy" by I. W. Sheffield at 19.00 at Botham's Cafe, Skinner St.

WOLVERHAMPTON

6th. I.E.R.E.-"What the C.E.I. means to the professional engineer" by H. F. Schwarz and Sir Arnold Lindley at 19.15 at the Polytechnic.

New Products

M.O.S. Multiplex Switches

High-performance m.o.s. multiplex switches for communications are available in two ranges from Marconi-Elliott Microelectronics, one with leakage currents of 10 nA and the other with leakages of the order of $0.1 n A$. Low-leakage types have been specially selected and are already used in a military message-switching application. Range includes single switches, with either high input or low 'on' resistance (M101, 103 and 106), dual switches, with either high input or low 'on' resistance (M203 or 206), dual pair used as multiplex switch and digital-analogue converter (M406), common-source sextet (M605), and triple pair digital-analogue converter (M606). Devices, all p-enhancement types, are made by the thick-oxide technique, used in high-voltage m.o.s. devices. Process allows increased oxide thickness by vapour deposition technique underneath non-active areas of aluminium conductors, thus avoiding spurious leakage. Marconi-Elliott Microelectronics Ltd, Witham, Essex.
WW319 for further details

Stabilized Power Supplies

The Roband ECO range of stabilized power supplies provides outputs of up to 50 V and 10A. All components are mounted on a single printed board. Stabilization is about 0.005% with ripple and noise typically $150 \mu \mathrm{~V}$ pk-pk. A modified re-entrant current characteristic maintains protection of loads and supplies, while preventing lock-out on linear and non-linear loads. They can also be externally programmed and used as
constant current supplies. Protection against overvoltage, without spurious shut-down, is made possible by an optional addition. The units range in price from $£ 20$ to £49. Roband Electronics Ltd, Charlwood Works, Charlwood, Horley, Surrey.
WW312 for further details

Logic-state Indicator

Hewlett-Packard model 10528A Logic Clip fits on to t.t.l. or d.t.l. integratedcircuit packages and instantly displays the

logic states of all 14 or 16 pins. The clip has 16 light-emitting diodes, each of which follows voltage-level changes on one pin.

A lighted diode indicates a high logic state (+5 V). The Logic Clip is selfcontained. It requires no power connections or adjustments, drawing its power from the circuit being tested, and contains logic circuitry for locating the ground and +5 V pins even if clipped on unsymmetrically. The buffered inputs put no more than one t.t.l. load on the circuit being tested. Hewlett-Packard Ltd, 224 Bath Road, Slough, Bucks.
WW313 for further details

Highly Accurate Digital Voltmeter

Digital voltmeter DSV4 from International Electronics has an accuracy of $\pm 0.01 \% \pm 1$ digit. Input resistance is $10 \mathrm{M} \dot{\Omega}$ on all ranges. There are $12 \frac{1}{2}$ readings per second. Calibration is automatic between each displayed heading and is effected by reference to a temperature compensated

Weston standard cell. Zero offset current and voltage are automatically corrected between each reading. Series-mode rejection at mains supply frequency and its harmonics is greater than 85 dB , and common-mode rejection 100 dB at mains frequency and d.c. with $1 \mathrm{k} \Omega$ imbalance in the input leads. The price is $£ 25$. International Electronics Ltd, Ewood Bridge, Haslingden, Lancs.
WW303 for further details

Quarter Squares Multiplier

Quarter squares multiplier type M3-5C from Computing Techniques obtains the product of two functions by implementing the relationship $\mathbf{X Y}=\frac{1}{4}(X+Y)^{2}$ $(\mathbf{X}-\mathbf{Y})^{2}$. Three built-in operational amplifiers perform the summing and inverting operations, while two function generators approximate the required parabolic transfer functions. Fourquadrant operation is provided. Using D1-2 amplifiers, the phase shift is less than 1° at 1 kHz ; this accuracy can be maintained up to 10 kHz , and full power can be obtained up to 30 kHz (with reduced accuracy) by using type F1-7 amplifiers. The required inputs are variable A, variable B and reference voltages; the input impedance is approximately $3 \mathrm{k} \Omega$. The available outputs, selected by miniature key switch, are $-\mathrm{AB}, \mathrm{A}^{\dot{2}}-\mathrm{B}^{2}$ as a voltage and $A^{2}+B^{2}$ as a current; multiplication accuracy is 2% f.s.d. The product output voltage is $\mathrm{AB} / 10$ and the output current is $\pm 5 \mathrm{~mA}$ at $\pm 10 \mathrm{~V}$. The multiplier is fitted with a standard

I.S.E.P. 33 -way plug and is intended primarily for use with the Comtec analogue/hybrid computers Vidac 336 and Vidac 169. It may, however, be built into any analogue system operating on a machine unit of 10 V . Computing Techniques Ltd, Westminster Bank Chambers, Bridge Street, Leatherhead, Surrey.
WW 330 for further details

Opto-electronic Switch for T.T.L.

Light-activated integrated switches have been produced with outputs compatible with both transistor logic and relays. Devices can be used in many applications of light beams including punched card reading and are said to be cheaper than photocells. Included in the TO-18 can is an m.o.s. Schmitt trigger circuit integrated into the same silicon chip. Response can be up to 40 kHz and switching threshold is variable over three orders of magnitude by an external $R C$ time constant. Devices are available with either $12-15 \mathrm{~V}$ or $24-30 \mathrm{~V}$ operating voltage and logic value of 0 or 1 in the dark state. Price is $£ 28 \mathrm{~s}$ for $1-50$ and $£ 110$ s for 5000 up. Arrays of 40 and 60 diodes for character recognition, edge sensing, etc., are also announced by Integrated Photomatrix Ltd, Grove Trading Estate, Dorchester, Dorset.
WW 321 for further details

U.H.F. Transistor

The latest addition to the Mullard range of u.h.f. transistors is intended for use as a driver in mobile telecommunications equipment or as an output stage in pocket transmitters. Type BFW98G, it will deliver an output of 500 mW at 470 MHz when operating with a supply voltage of 13.8 V

and a drive of 80 mW . The transistor is an n -p-n silicon planar device in a new stripline package. Mullard Ltd, Mullard House, Torrington Place, London W.C.1.
WW304 for further details

Cover for Power Transistors

A cover designed for use with the TO-66 packaged devices is available from Jermyn. Designated the A22/2005, it is moulded in black Rilsan BMNP40 which is capable of

withstanding temperatures up to $113^{\circ} \mathrm{C}$ and provides electrical insulation up to 1000 V . The cover has a lip to hold it in place, Jermyn Industries, Vestry Estate, Sevenoaks, Kent.
WW308 for further details

Dynamic Shift Register

A 512-bit dynamic shift register, the MM5016, from National Semiconductor operates on a standard +5 V and -12 V power supply and is compatible with bipolar transistors. The device has a 600 Hz guaranteed minimum operating frequency at $25^{\circ} \mathrm{C}$ and an input tap gives 500 or 512 bits. It is available in either TO-5 or dual-in-line packages. No pull-up or pull-down resistors are required on the input and output. Price is 50 s for the TO-5 version in lots of 100 or more. U.K. distributors: Athena Semiconductor Marketing Co., Egham, Surrey; Electronic

Component Suppliès (Windsor) Ltd, Thames Avenue, Windsor, Berks; Farnell Electronic Components Ltd, Canal Road, Leeds LS12 2TU; and ITT Electronic Services, Edinburgh Way, Harlow, Essex.
WW 332 for further details

M.O.S. Adaptive Logic for Pattern Recognition

Adaptive logic gate, originally intended for use in pattern recognition experiments at Kent University, is now commercially available from Integrated Photomatrix. The m.o.s. gate (MC901) decodes all possible logic functions of the four binary inputs and sets one of the 16 internal bistable stores. Outputs of these stores are OR-gated to form the output. The adaptive gates can be connected into an array that will 'learn'. If, say, the array is controlling a system, feedback loops can be provided from the system to the array. The output of the array will be a function of the current input and, because of the memory stores, also a function of previous inputs and results as defined by the feedback loops. A particular input pattern does two things. First, it gates the output of one of the stores providing an output if that store contains a ' 1 ', second, it gates the input of the same store allowing it to set or reset depending on which of two input lines a $1 \mu \mathrm{~s}$ pulse is applied. Two additional inputs allow all the stores to be reset. Available in dual in-line packages, price is $£ 7$ for 1-99 and $£ 410$ s for 1000 up. Supply voltage is 27V. Integrated Photomatrix Ltd, Grove Trading Estate, Dorchester, Dorset. WW 323 for further details

300-W Zener Diode

Type BZX86 zener diode from Mullard has a continuous power rating of 300 W at a mounting base temperature of $65^{\circ} \mathrm{C}$; and at an ambient temperature of $30^{\circ} \mathrm{C}$ it will withstand surges of 2 kW . It is intended for use in preventing large electrical transients causing damage to equipment. It has a maximum diameter of 27 mm and is 84 mm

high. Zeners with voltages between 10 and 75 V can be supplied. Mullard Ltd, Mullard House, Torrington Place, London W.C.1. WW 305 for further details

Pickup Cartridge

Aluminium stylus mounting is used on a new Bang \& Olufsen medium-compliance magnetic pickup cartridge (model SP14).

The cartridge is included in a turntable unit to be released later this year, but is available separately.

response	$15 \mathrm{~Hz}-25 \mathrm{kHz} \pm 4 \mathrm{~dB}$
	$20 \mathrm{~Hz}-16 \mathrm{kHz} \pm 2.5 \mathrm{~dB}$
	$40 \mathrm{~Hz}-10 \mathrm{kHz} \pm 1.5 \mathrm{~dB}$
separation	$>20 \mathrm{~dB}$ at 1 kHz
channel difference	$<2 \mathrm{~dB}$
compliance	$15 \times 10^{-6} \mathrm{~cm} /$ dyne
effective stylus	
mass	1 mg
stylus pressure	$1.5-2.5 \mathrm{~g}$
output	$1 \mathrm{mV} / \mathrm{cm} / \mathrm{sec}$
	(typically 5 mV$)$
impedance	$47 \mathrm{k} \Omega$
stylus	$15 \mu \mathrm{~m}$ radius, spherical

Price £8 10s. Bang \& Olufsen U.K. Ltd, Eastbrook Rd, Gloucester GL4 TDE.
WW 322 for further details

Monolithic Mica Capacitors

Using monolithic construction the MS611 series of capacitors available from WEL provides high stability over a wide frequency range. The units will operate over a temperature range -55 to $+100^{\circ} \mathrm{C}$. Insulation resistance is about 10^{5} megohms and $\tan d$ is better than 0.001 at 1 kHz and better than 0.002 at 1 MHz . The upper frequency limit is about 1 GHz . Voltage ratings up to 750 V are provided and the standard E12 range of values at : 1% tolerance is available from stock. Capacitance range is $10-10,000 \mathrm{pF}$. WEL Components Ltd, 5, Loverock Road, Reading, Berks.
WW 327 for further details

Crystal Filters for Marine Communications

Plessey have introduced a new standard range of crystal filters for use in marine communications equipment employing an i.f. of 1.4 MHz . Included in the standard

range are upper and lower sideband filters, and symmetrical filters for a.m. and c.w. applications. In each case, the design meets the selectivity requirements of the Post Office speciflcations, TSC105 or MPT1201. Operation is specified over the temperature range -10 to $+40^{\circ} \mathrm{C}$, and each filter is sealed in a metal case measuring $76 \times 27.5 \times 26 \mathrm{~mm}$. The new range is complemented by a 2.182 MHz sideband filter which has been specially designed for use on emergency marine equipment, and a broad-band LC filter giving selectivity from 1.6 MHz to 4.2 MHz while rejecting 1.4 MHz . Filter Unit, Plessey Components Group, Titchfield, Hants.
WW 334 for further details

1.5-MHz Recording Head

Gresham. Recording Heads have produced a high-frequency analogue recording head for operation at 1.5 MHz . The 14 -channel wideband head-sets are made with a gap of only $25 \|$-inches. They are designed for direct analogue recording at 1.5 MHz on 1 -in tape. The normal tape speed is 120 i.p.s. Gresham Recording Heads Ltd, Feltham Trading Estate, Feltham, Middx.
WW 328 for further details

Cassette Recorder

with Dolby System
A new cassette tape-recorder unit, the Kellar DTA 50 available from Kellar Electronics, incorporates the Dolby ' B ' noise reduction system, and is claimed to
give a performance as good as that obtained from gramophone records. The unit comprises a high-quality transport mechanism and a stereo amplifier capable of a continuous power output of 25W per channel. Ordinary cassette recordings can be played on the unit, but the Dolby circuit can be switched in to allow low-noise recordings to be made. The frequency response of the recorder is 40 Hz to $12 \mathrm{kHz} \pm 3 \mathrm{~dB}$. The wow and flutter is given as $0: 15 \%$ w.f.d. peak according to C.C.I.R. The use of the noise reduction system results in an increase of 5 dB in the signal-to-noise ratio. Price $£ 150$. Kellar Electronics Ltd, Maryland Works, 9 Brydges Road, Stratford, London E. 15.
WW 324 for further details

10-turn Precision Pot.

Bourns have introduced a new $\frac{7}{8}$ in diameter, 10 -turn, wirewound potentiometer with a glass-filled nylon housing and bushing, and a polycarbonate shaft with a screwdriver slot. Rotational life is guaranteed to 1 million shaft revolutions. The resistance range is 100% to $100 \mathrm{k}^{\prime}$, and tolerance $\pm 5 \%$. Deviation from linearity is $\pm 0.25 \%$ max. Maximum power dissipation is 2.0 W at $25^{\circ} \mathrm{C}$. The operating temper ature range is -55 to $+105^{\circ} \mathrm{C}$. Bourns (Trimpot) Ltd, Hodford House, 17/27 High Street, Hounslow, Middx.
WW311 for further details

Silicon Infra-red Light Detector

The MSP70 infra-red detector from MCP Electronics Semiconductor Division has, like its predecessors the MSP3 and MSP6, a black tubular housing $\operatorname{lin} \times 0.25 \mathrm{in}$. It will detect modulated infra-red up to 60 kHz . MCP Electronics Ltd, Alperton, Wembley, Middlesex, HAO 4PE.
WW 335 for further details

D.C. Multimeter

Multimeter measuring direct current down to picoamperes can now be supplied by Wayne Kerr. Model M300, first seen on the

Wayne Kerr stand during the I.E.A.exhibition earlier this year, also measures direct voltage and resistance. Amplifier uses photochopper stabilization with $40-\mathrm{Hz}$ switching to avoid beats with the $50-\mathrm{Hz}$ supply. Instrument also features a small reverse scale for null detection, overload protection, one set-zero control for all ranges, a recorder output of $0-1 \mathrm{~mA}$ at $1 \mathrm{k} \Omega$, and a hum rejection filter which rejects hum equivalent to $50 \times$ f.s.d.

current ranges	$30 \mathrm{pA}-100 \mathrm{~mA}$ in 20
	ranges
accuracy	$\pm 1.5 \%$
voltage	$30 \mu \mathrm{~V}-300 \mathrm{~V}$ in 15
	ranges
accuracy	$\pm 1 \%$
resistance	$10 \Omega-1 \mathrm{G} \Omega$
accuracy	$\pm 2 \%(\pm 5 \% 1 \mathrm{G} \Omega$
	range)
input Z	$100 \mathrm{M} \Omega$
common mode rej.	120 dB a.c. or d.c.
noise	$<1 \mu \mathrm{~V}$ or 1 pA r.m.s.
stability	$\pm 3 \mu \mathrm{~V}, \pm 3 \mathrm{pA}$
response time	$<1 \mathrm{~s}(2 \mathrm{~s}$ with filter)

Available for 110 V operation. Price $£ 150$. Wayne Kerr Co. Ltd., New Malden, Surrey.
WW317 for further details

Miniature Power Supply

The PS5 supply from A.D.M. Electronics measures $70 \times 70 \times 180 \mathrm{~mm}$ and provides up to 0.17 A over the voltage range $0-15 \mathrm{~V}$. The PS5 design has been developed to eliminate damaging transient overshoot at turn-on and turn-off. The supply is fully protected against short circuits and overloads. The transient response is less than $5 \mu \mathrm{~s}$ for a full load-current change and the regulation is claimed to be better

than 5000 to 1 . On full load the ripple and noise do not exceed $500 \mu \mathrm{~V}$, reducing to less than $30 \mu \mathrm{~V}$ for load currents below 50mA. A.D.M. Electronics, P.O. Box 3, Merthyr Tydfil, Glamorgan.
WW310 for further details

Range of Transformers

A series of low-voltage, double-insulated transformers from Adcola has a primarywinding range of 110 to 380 V and a secondary range of 6 to 115 V . Ratings are 25,40 or 60 W . The casing is secured by

clips so dismantling for access to internal parts is quick and does not require the use of a screwdriver. Adcola Products Ltd, Adcola House, Gauden Road, London S.W.4.

WW307 for futher details

Monolithic Tuning Indicator

An integrated circuit tuning indicator is available from Motorola. The addition of a miniature lamp bulb turns the i.c. into an aid to the fine-tuning of f.m. radio and colour television receivers. In use type MC1335 tuning indicator is connected across the f.m. ratio detector. When the receiver is correctly tuned equal voltages appear across each half of the ratio detector centre-tapped coil causing the lamp to light. Unequal voltages turn the lamp off. The device is encased in an eightlead dual-in-line plastic package and
requires a power supply of 20 V . The price is 27 s each in quantities of 100 or more. Motorola Semiconductors Ltd, York House, Empire Way, Wembley, Middx.
WW309 for further details

V.H.F. Personal Radiotelephone

A v.h.f. personal radiotelèphone consisting of a single lightweight unit suitable for emergency, public and private usage is available from Pye Telecommunications. It is known as the PF2FMB, and is equipped for three channel f.m. operation in the $68-88$ and $148-174 \mathrm{MHz}$ bands. It meets the Post

Office mobile specification and, with an adaptor, can be used in a car or other vehicle. Sockets on the top of the unit make connection with a small external loudspeaker/microphone unit, and an aerial. The unit can be clipped to the waist belt or carried in a specially designed case or harness slung from the shoulder with a flexible wire antenna fitted in the shoulder strap, its loudspeaker-microphone being clipped to the lapel. The whole unit, including battery, weighs only 28 oz . Power is from a single 15 V rechargeable nickel-cadmium battery with a capacity of 200 mAh , the unit incorporates a circuit to reduce battery drain when. no signal is received. Pye Telecommunications Ltd, Newmarket Road, Cambridge. WW 331 for further details

Distortion Factor Meter

Push-button controls make this new distortion factor meter easy to use especially for measurements on production radio and TV receivers and audio equipment.

Meter, type TF2337, is complementary to the more elaborate Marconi Instruments TF2331 announced in 1964 and intended for development work. Level is set to give adequate meter deflection at either 400 Hz or 1 kHz and distortion factor read directly from the other meter. Provision is made for injection of external fundamental frequency in the range $30 \mathrm{~Hz}-7 \mathrm{kHz}$.

level ranges	$10 \mathrm{mV}-30 \mathrm{~V}$ in
	8 ranges
accuracy	$\pm 5 \%$ f.s.d.
(10 mV range	$\pm 10 \%$)
distortion ranges	$1-30 \%$ in 4 ranges
accuracy	$\pm 5 \%$ f.s.d.
input Z	$100 \mathrm{k} \Omega$ plus 50 pF
fundamental rejection	56 dB
frequencies	400 Hz and 1 kHz
	plus external facility

Available for 110 V use. Price $£ 230$. Marconi Instruments Ltd, St. Albans, Herts.
WW316 for further details

Small Tantalum Capacitors

The Kemet Micron range of small tantalum capacitors, from Union Carbide U.K., are available in either rectangular or cylindrical cases with radial or axial leads. The capacitance range is 0.001 to $220 \mu \mathrm{~F}$, and voltage range 2 to 100 V . Standard capacitance

tolerances are $\pm 20 \%, \pm 10 \%$ and $\pm 5 \%$ and the operating temperature range is -55 to $+125^{\circ} \mathrm{C}$. The capacitors consist of very small tantalum anode assemblies with attached leads enclosed in insulated cases filled with epoxy resin. Union Carbide U.K. Ltd, 8 Grafton Street, London W1A 2LR.
WW302 for futher details

Video Signal Mixer

From Aston Micro-Electronics Ltd we have received details of a vision mixer TVM2 for cutting, fading and mixing the pictures from five cameras and one video tape recorder. Two rows of button switches allow any two vision sources to be selected for viewing before transmission. Automatic interlocks prevent accidental mixing of the video tape recorder picture with pictures from the cameras. Although designed for monochrome systems, the 8 MHz response of the TVM2 is adequate for colour television. It is claimed that PAL-encoded colour pictures can be mixed without

noticeable degradation of picture quality. Aston Micro-Electronics Ltd, Vapery Lane, Pirbright, Woking, Surrey.
WW314 for further details

Wideband Test Oscillator

Model 4200 oscillator, manufactured by Krohn-hite and available from Omega Laboratories, provides a sine wave in the range 10 Hz to 10 MHz with 0.5 W of power and 0.1% distortion. Frequency tuning is by means of a dial and six push buttons. Amplitude calibration of 0.2 dB accuracy is obtained by an eight-position pushbutton attenuator calibrated in 10 dB steps. A continuous output control combined with the attenuator provide 90 dB of attenuation. Frequency accuracy is 2%. A fixed 1V output independent of the main output is also available. Price $£ 235$. Omega Laboratories Ltd, 59 Union Street, London S.E.1.

WW301 for further details

Units Symbol Numicator Tubes

End-viewing indicator tubes are now made by Hivac which display special symbols-units in particular. Two tubes have the following symbols.

GR 8 M	GR 81 M
$\mathrm{pF}, \mathrm{nF}, \mu \mathrm{F}, \mathrm{mF}$	$\mathrm{n} \Omega, \mu \Omega, \mathrm{m} \Omega$
$\mu \mathrm{H}, \mathrm{mH}, \mathrm{H}$	$\Omega, \mathrm{k} \Omega, \mathrm{M} \Omega$
$\%$	$\mathrm{D} \%, \%$

Both operate with minimum strike voltage of 170 V and maintaining voltage of 140 V . Minimum cathode current needed is 2 mA with mean of 5 mA and maximum peak current of 20 mA . Because of the smaller area of the $\%, \Omega$ and H symbols, current

requirement is half of these figures. Base is B13B and tube height is 26.5 mm . Price is about $£ 2$ for 100 up . Hivac Ltd, Stonefield Way, South Ruislip, Middx.
WW318 for further details

Tape-transport Mechanism

Fitch Tape Mechanisms have developed and are now producing an endless-loop tape-transport mechanism using a new system of pinch wheel operation making tape stiction impossible even if the unit is

not actuated for long periods with the tape cartridge in the ready position. This mechanism, adaptable to all sizes of cartridge, can be battery or mains powered. It is fully automatic and can be remotely controlled. Fitch Tape Mechanisms, 7a Balham Grove, London S.W. 12. WW 333 for further details

Corrections

"Miniature Tape Recorder" (August p. 413): The complete address for Hayden Laboratories Ltd, who market the Nagra SN recorder, is East House, Chiltern Avenue, Amersham, Bucks.
"Switching Diode" (September p. 463): The diodes illustrated are not the Mullard BAV 44 type described.

Literature Received

For further information on any item include the appropriate WW number on the reader reply card

ACTIVE DEVICES

A range of zener diodes and varistors manufactured by Schauer Semiconductors is described in literature obtainable from LST Electronic Components Ltd, 7 Coptfold Rd, Brentwood, Essex. The varistors consist of two matched semiconductor junctions and are suitable for meter protection, fractional voltage regulators, etc. WW401

From REL Equipment and Components Ltd, Components Division, Croft House, Bancroft, Hitchin, Herts, a catalogue devoted to semiconductors, pot-cores, transformers, alkaline cells, capacitors and resistors

We have received the following data sheets from Marconi-Elliott Microelectronics, Witham, Essex. M101, MO3. Single metal oxide silicion p-enhancement transistor, 3.5 to 6 V threshold, 30 V breakdown and 2 nA max off leakage. WW403 M106. Single m.o.s.t. with low 'on' resistance $(30!)$, p-enhancement, $V_{D S}=-30 \mathrm{~V}$ and P_{D} $=350 \mathrm{~mW}$

WW 404 M206. Dual m.o.s.t. on a common substrate, similar to M106 WW405 M203, 406, 605. 30 V m.o.s.ts- 203 is a pair without gate protection; 406 consists of two common-source pairs; and M605 is six commonsource m.o.s.ts in a dil.l. package WW406

Integrated Photomatrix Ltd, Grove Trading Estate, Dorchester, have sent us a number of product data sheets.
IPL11. Light activated switch in TO-18 case consists of silicon planar diode and an m.o.s.t. i.c. for 28 V operationWW407 IPL1100. Similar to above for -12 V operation WW408 IPL13. Light-to-frequency convertor, planar diode and i.c. in TO-18 case, output 10 Hz to 100 kHz WW409 IPL14. Analogue light level sensor in TO-5 caseWW410 HA14. Paper tape reader head. Planar diodes and i.cs, no interface circuit required for driving t.t.l. or m.o.s. : WW411 IPL20. 50×1 light sensitive array. 50 silicon planar photodiodes and a 51 -bit shift register on a chipWW412 IPL30/D. Position-sensițive photocell system. Gives \mathbf{X} and Y output voltages proportional to the distance of a light spot from a central position. Accurate to better than $1 \mu \mathrm{~m}$.. WW413 WCM22. Material width monitor WW 414 IPL20R. 50×1 Photodiode array driver. WW415 IPL15. Light activated switchWW416 MR 103/4/5/6 A . 16 -bit shift register; t.t.l. compatible m.o.s. WW417 MC901. Adaptive logic gate WW418 Price list WW419

We have received a 111-page brochure from British Brown-Boveri Ltd, Glen House, Stag Place, London S.W.1, called "Thyristors-Data and Diagrams"
.. WW 420
American Diodes Incorporated have just started a company in the U.K. called Diodes Led at Fairacres Estate, Dedworth Rd, Windsor, Berks. The following literature is available

Short-form catalogue
WW421
Price list
WW422
The 1970 catalogue of Electrovalue, 28 St. Judes Rd, Englefield Green, Egham, Surrey, lists a variety of semiconductor devices together with many other components, Price 2 s .

PASSIVE COMPONENTS

We have received the following brochures from Tygadure, Littlebrough, Lancs.

Tygadure radio-frequency coaxial cables WW423
Tygaflor equipment wires
WW 424
Tygadure p.t.f.e. equipment wire, cable, sleeving, lacing cords and tapes, and glass braided yarn

WW425
Engineering Bulletin No. 7451 from Sprague is called "Beryllia-core silicone-coated Acrasil precision wirewound resistors". Sprague Electric (U.K.) Ltd, Sprague House, 159 High St, Yiewsley, West Drayton, Middlesex

WW426
Swift Hardmans Wholesale Supply (S-O-T) Ltd, P.O. Box 23, Hardale House, Baillie St, Rochdale, Lancs, have produced a catalogue of Belling-Lee components (plugs, sockets, fuse holders and the like) they stock
. WW427
Precision miniature wirewound resistors with either radial or axial leads are the subject of a booklet available from Electrothermal Engineering Ltd, 270 Neville Rd, London E. 7 WW428

B \& R Relays Ltd, Temple Fields, Harlow, Essex, have produced a leaflet describing their D-range of relays which have contacts rated at 6 A at 240 V a.c. or 30 V d.c.

WW429
The following data sheets on components manufactured by the American Wilbrecht Company are available from J. H. Associates Ltd, 1 Church St, Bishop's Stortford, Herts.
Model 170-S potentiometer with switch .. WW431
Model 170 R potentiometer WW432
Model 100 variable resistor (2.54 mm diameter)
Model 2000 miniatu..................... WW433
Model 2000 miniature slide switch WW434

APPLICATION NOTES

From Fairchild Semiconductor Lid, Kingmaker House, Station Rd, New Barnet, Herts, a leaflet (No.6) describing the use of the M $\mu \mathrm{L}$ L4102 16-bit associative memory cell and the $\mathrm{M} \mu \mathrm{L} 9035$ 64-bit read/write memory cell in a high-speed buffer memory system
. . WW435
Application report B61 from WEL Components Ltd, 5 Loverock Rd, Reading, Berks, examines the construction of the triac and looks at its application in several circuits. The report includes notes on protection and working. Post and packing 2 s .

Integrated Photomatrix Ltd, Grove Trading Estate, Dorchester, have produced an application note for the 50×1 light sensitive array mentioned in the Active Devices section.

EQUIPMENT

REL Equipment and Components Ltd, Microwave and Electronics Division, Croft House, Bancroft, Hitchin, Herts, have issued a short-form catalogue which lists a comprehensive range of test equipment

A logic trainer from Limrose Electronics which consists of 16-NAND/NOR gates, or five-switch input register and four indicator lamps is described in a leaflet CK1/02 from Limrose Electronics, Lymm, Cheshire

WW437
EMI Electronics Ltd, Television Equipment Division, Hayes, Middlesex, have produced a 44-page booklet on monochrome closed-circuit television systems for educational purposes WW438

A Mullard bookle, 'Do-it-yourself stereo', price 5s, gives constructional (wood-working) details of several possible stereophonic record reproducing assemblies using amplifier and power-supply modules (Mullard 'Unilex') that can be wired up using only a screwdriver.

Conferences and Exhibitions

Further details are obtainable from the addresses in parentheses

LONDON
Oct. 14-16
Savoy Place
Earth Station Technology
(I.E.E., Savoy Place, London WC2R OBL)

Oct. 19-24
Olympia
Audio \& Music Fair
(C. Rex-Hassan, 42 Manchester St., London W.1.)

BRIGHTON

Oct. 13-15
Hotel Metropole
INTER/NEPCON
(P. G. Saville, 21 Victoria Rd., Surbiton, Surrey)

MANCHESTER

Sept. 28-Oct. 2
Belle Vue
Electronics, Instruments and Components Show (Inst. Electronics, 659 Oldham Road, Balderstone, Rochdale, Lancs)

OVERSEAS

Oct. 5-7
Argonne
Pattera Recognition
(Prof. S. S. Yau, Dept. of Electrical Eng., Northwestern University, Evanston, Illinois 60201)
Oct. 5-7
Communications Conference
(J. R. Bretten, University of Missouri, 123 EE Bldg., Rolla, Missouri 65401)
Oct. 6-11
Ljublijana
Modern Electronics Exhibition
(Gospodarsko razstavisce, Ljubljana, Titova No. 50, Yugoslavia)
Oct. 7-9
Monticello
Circuit \& Systems Theory
(G. Metze, University of Illinois, Urbana, Illinois 61801)

Oct. 12-16
British Engineering Week
(London Chamber of Commerce, 69 Cannon Street, London E.C.4)
Oct. 13-15
Los Angeles
Telemetering Conference
(International Foundation for Telemetering, 19730
Ventura Blvd., Woodland Hills, California 91364) Oct. 14-16

Pittsburgh
Systems Science \& Cybernetics
(I.E.E.E., 345 E. 47th St., New York, N.Y. 10017)

Oct. 26-28
Washington
Electronics and Acrospace Systems
(Dr. R. Marsten, NASA Headquarters, Code SC, Washington D.C. 20546)
Oct. 28-30
Washington
Electron Devices
(I.E.E.E., 345 E. 47th St., New York, N.Y. 10017)

Morganite $0.75^{\prime \prime}$ Cermet Trimming Potentiometers are breaking all our sales records at the moment.
And we can't say we're surprised.
We designed our models 82.84 and 86 with a power rating of 0.33 W at $70^{\circ} \mathrm{C}$. We manufactured them to give a tolerance of $\pm 10 \%$ under rough, tough industrial conditions. We packed them into that tight little
$0.75^{\prime \prime}$ construction. And we trimmed down the price tag to match
Result, they sell like hot cakes. Ask us for samples for evaluation or development projects, and you'll see for yourself
What you won't see, though, is the work that's put into our record trimmers at our new, expanded cermet production set-up. The examination of components
at 50 -to- 500 times life size. The survival-of-the-fittest electrical testing. And all the crucial assembly stages in between.
All you'll see is the solid, high reliability that you're entitled to expect from each and every Morganite potentiometer. The reliability that makes us a leader in the field of cermet technology.
Don't settle for less.

MORGANITE RESISTORS LIMITED

SHRINK YOUR SWITCHING PROBLEMS...

 with 4 new improved miniature relays from Associated Automation

Mercury Wetted Contact Relay Type EBRM: Height only 10 mm for low profile pcb mounting; 20 mW bi-stable, 40 mW single-side-stable; operate time Ims nominal at max. coil power; life over 25×10^{9} operations at rated load of 100 VA ; bounce-free for both Form C or D contact resistance.

3

Hermetically Sealed Relay Type TF:
All-welded, T.O. 5 transistor can envelope giving high isolation switching with high shock and vibration characteristics; full CP.L approval for standard versions; switching capability 1 amp at 28 V D.C. to low level; single and double pole; operate powers down to 40 mW .

Dry Reed Relay Type ERMC/D/E:
Miniature open, shielded and encapsulated styles with up to 5 poles, offering all the advantages of reeds at low cost; standard relays operate from 35 mW depending on contact arrangement; electrostatic shielding, high voltage insulation and low thermal types can be specified; life expectancy 10×10^{6} operations at full load, contact rating 10VA

Enclosed Industrial Relay Series 20:
Wide range of coils, contact arrangements and mountings; up to 6 poles, up to 5 amp 100 W : life over 10×10^{7} operations; single or twin contacts in wide range of materials; low-priced, readily, available, easy to apply.
All these illustrations are full size.

Whatever your switching problem - we can reduce it to size. These new additions increase an already comprehensive range of switches and relays for all communication and control purposes. All competitively priced and backed by Britain's most outstanding applications engineering service. Try us . . . for size.

Why do so many industries rely on EEV tubes?

Because they're so reliable.

You can specify each and every EEV tube with confidence. Whatever your industry, when it involves electronics you can be sure that EEV's expertise will provide the performance, the length of life and, above all, the reliability you want.

For industrial heating: EEV r.f. power triodes range from 1 kW up to 250 kW , and mercury vapour rectifiers are available with capabilities up to 30 amps at 21 kV . All are conservatively rated, realistically designed and economical.

For TV monitoring: EEV vidicons are ideal for any closed-circuit TV application. They can be used in any position and are available with a choice of photosurfaces,

For power supplies: EEV make voltage stabilisers and voltage reference tubes to fit more than 80 different sockets.

For high-speed switching: EEV glass and ceramic hydrogen thyratrons provide greater accuracy and precision.

For motor control: EEV industrial thyratrons provide the degree of precision needed for motor speed control and similar applications. Both mercury vapour and xenon thyratrons are available,

For industrial welding: EEV ignitrons have long-life ignitors, and robustly constructed envelopes and water jackets of unique design giving supreme reliability.

English Electric Valve Co. Ltd. Chelmsford Essex
England
Telephone: 024561777
Telex: 99103. Grams:
Enelectico Chelmsford.

Point to Point Broadcasting Radio Relay Ground to Air Navigational Aids Business Radio

Design

Site layouts
Antenna System Design

Antennas

LF, ' T ' and ' L ' Antennas, Mast Radiators, HF Dipoles, Quadrants, Rhombics, Log Periodics, Conicals, Biconicals, Vertical Incidence Arrays, VHF \& UHF Yagis, Helices, Ground Planes, Colinears, Whips, Marine Antennas. TELEVISION Arrays to 100 kW e.r.p.
SHF Passive Reflectors, Dishes 3in. to 60ft dia.

Supporting Structures

Self-supporting Towers, Tubular and Lattice Masts, Telescopic Masts

Accessories

Coaxial and open wire Feeders, Filters, Antenna Switches, Lead-in panels, Earth Systems, Termination Networks, Air-cooled Transmitter Loads.

Installation

World Wide Service

C\&S Antennas provide a complete aerial service LF to Microwave

Shown above are three of the C. \& S. range of
telescopic masts which covers; Pull-out types, Air operated, Hand winch operated and Electric winch operated, with a height range from 10 ft to 90 ft .

EEV flash flash flash tubes make light of the toughest jobs

For pumping lasers. For strobing. For photography'. For any application in which quality, reliability and performance are vital, that's where you'll find EEV flash tubes.

There's almost certainly a flash tube in the EEV range that has the right characteristics for your application and if there isn't we can probably make one !

EEV flash tubes have extra heavy-duty electrodes. They, give you long life, with up to 10^{6} flashes, and they
give you high conversion efficiency. Our air-cooled xenon flash tubes have a wide range of input energy levels and can operate at high repetition rates.

Isn't it time you had the full facts about EEV flash tubes? Just post the coupon.

English Electric Valve Co Ltd, Chelmsford, Essex, England. Telephone:024561777 Telex:99103 Grams : Enelectico Chelmsford

Tronsformers, Chotes

Saturable Renctiors

Volimolile voligese regulatiors

Recilier Sels

Transformers
Air cooled power transformers from 0.5 to 300 kVA at voltages up to 2 kV .1 or 3 phase, double or auto wound step-up or step-down. We have manufactured transformers to over 5,000 different designs for many applications and the experience which has been accumulated from these designs is built into every Harmsworth, Townley transformer

High Current Transformers
Years of experience have gone into the design and production techniques used in the manufacture of our low voltage, high current transformers for use in furnaces, high temperature research, heating and other applications. These techniques enable us to produce transformers with output currents up to tens of thousands of amps at economical prices

Voltmobiles

The most robust and useful control device for loads such as furnaces, ovens, bar he ating and high temperature research. Our Voltmobiles are in use in their thous ands to control transformers and rectifier sets or they can be used directly between supply and load. 64 step on load switching. Voltmobiles are auto-transformers which give control from 1.6% to 100% of input volts. Over-Volts up to 125% of input is also available. Standard models are made for single and 3 phase supply and for outputs from 20 Amps to 200 Amps with on-load switching.

Rectifiers

Sturdily built air cooled equipment from 50W to 500kW for plating, plasma arc welding, electrolytic machining and many other applications. Equipment incorporates either silicon or selenium rectifiers and can be built with fixed or variable output. Variable outputs are obtained by the use of continuously variable auto transformers, saturable reactors or Voltmohile regulator.

Saturable Reactors

From 5 kVA up to 300 kVA for controlling the outputs from transformers or rectifier units. Saturable reactors are infinitely variable reactors which can control outputs from transformers etc, from 10% to 100% of full output.

Chokes
A.C. and D.C. chokes

Specific enquiries are invited

Aarmswarth. Townley
Trunstormers
Rectifiers

HARMSWORTH, TOWNLEY \& CO. LTD.

 2 Hare Hill, Todmorden, Lancs.Telephone Todmorden 2601 Extension 22

This is
 what you see.

This is what you can see with the EEV Image Isocon.

Even individual photons can be detected.

With an EEV Image Isocon you can achieve really high-quality TV pictures in the darkest nighttime conditions.

A combination of an EEV Isocon and an image intensifier fibre optically coupled operates satisfactorily at light levels equivalent to single photons.

The Isocon is reliable and able to stand up to active-duty conditions. It cannot be put out of action by bright flares.

The majority of existing orthicon systems can be easily converted.

For the full facts about the Image Isocon please post the coupon.

Proved for these important applications
Air: Aircraft navigation without transmission of detectable pulses. Night photography and reconnaissance (especially when information is required at a central control centre from remote locations such as unmanned outposts, aircraft etc).

Sea: Navigation without lights. Night operation on aircraft carriers.

Land: Navigation without lights. Target finding in the dark. Border surveillance and perimeter defence.
English Electric Valve Co Ltd, Chelmsford, Essex, England. Telephone: 0245 61777. Telex: 99103. Grams: Enelectico, Chelmsford

Ourtubes.Yourcameras. Theyre madeforeach other.

Whatever types of camera you are using, you can be sure that EEV have a camera tube that's made for the job. EEV's range of Vidicons and Image Orthicons includes every type you're likely to need, and new types are always being added. They incorporate all the outstanding performance features that we've pioneered and developed over the years. So do your cameras a favour - post the coupon for the latest details.

To: English Electric Valve Co Ltd, Chelmsford Essex, England, CM1 2.QU Telephone : 024561777 . Telex : 99103.
Grams: Enelectico Chelmsford,
Please send the latest details of EEV Vidicons and Image Orthicons. I am interested in a tube for camera type (details)

SSB communicating is an art with TRIO JR-310 artistry

Communicating with TRIO's JR-310 is indeed a pleasure. But with this SSB receiver, communication has been elevated to never-before-reached artistic heights. Amateurs everywhere are enthusiastic over the suppression of distortion to an all-time, low-low level. Premium tone reception ranks the JR-310 at the top of the SSB receiver list.

SPECIAL FEATURES OF JR-310

- High-stability VFO of 2 FET's and 2 transistors and easily handles QSO's for hours.
- Precision double gear dial-a TRIO innovation - with linear frequency variable capacitor. Possible to get finer reading 1 KHz . One dial rotation covers 25 KHz , makes SSB demodulation easier.
- Frequency range covers entire amateur band from 3.5 MHz to 29.7 MHz . One-touch selection system switches bands. WWV reception of 15 MHz possible.

SPECIFICATIONS OF JR-310

- Frequency Range: $\mathbf{3 . 5 - 2 9 . 7 \mathrm { MHz } \text { (} 7 \text { Bands) }) ~ (~}$
- Sensitivity: $\boldsymbol{\mu} \mathrm{V}$ (at $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$)
- Image Ratio: More than 50 dB
- Frequency Stability: $\pm 2 \mathrm{KHz}$ in $1-60 \mathrm{~min}$. after switching on; subsequently within 100 Hz per 30 min .

TRIO KENWOOD ELECTRONICS S.A. 160 Ave., Brugman, 1060 Bruxelles Belgium

Model 9R-59DE

BUILT IN MECHANICAL FILTER 8- TUBES COMMUNICATION RECEIVER

- 4 Bands Covering 540 KHz to 30 MHz .
- Two Mechanical Filters Ensure Maximum Selectivity.
- Product Detector for S.S.B. Reception.
- Automatic Noise Limiter.
- Large Tuning and Bandspread Dials for Accurate Tuning.
- Calibrated Electrical Bandspread.
- "S" Meter and B.F.O.
- 2 Microvolts Sensitivity for 10 dB S/N Ratio.

[^10]B.H. MORRIS CO., (RADIO) LTD.

84/88, Nolson Street, Tower Hamlets, London E. 1. Phone: 01.790 4824

We'reready now forl978.

As you know, in 1973 single side band operation becomes mandatory in marine communications. 1973 isn't very faraway. We're ready now. And so can you be. So we announce the new TT100 beam tetrode. Primarily intended for use as a class $A B$ power amplifier for S.S.B. transmitters in shipboard use.

Technical Data. A low cost power tetrode designed specifically for use as a linear power amplifier and suitable for
transistor drive. A rated continuous anode dissipation of 100 W means that two tubes in parallel will meet the requirement of 400 W Peak Envelope power while the low impedance design means that an anode voltage of $600-800 \mathrm{~V}$ is adequate for most applications. Output is fully maintained up to 20 MHz and falls only slightly at 30 MHz .

We're ready now for 1973. How about you?

for the amplification of sound or signal

It makes sound sense to talk to Whiteley. Not only for audio but all signals from d.c. to r.f. Firstly we generate or transduce signals as you require. Then we make them louder, softer, squarer, pulsed, smoother or whatever to send down your wire or co-ax. We can ease the signals into the line. Boost them when they are weak, filter or re-shape. If they get lost we provide equipment to find them. At the other end we can reproduce them in quantity and quality. From packages that are attractive or rugged, attractively rugged, or, ruggedly attractive. The facilities and know-how are at Mansfield - come and sound us out.

See us on Stand 21 at the S.B.A.C. Exhibition
WHITELEY ELECTRICAL RADIO CO. LTD., Mansfield, Notts, England. Tel. Mansfield 24762
London Office: 109 Kingsway, W.C.2. Tel. 01-405 3074

VALUABLE NEW HANDBOOK FREE EMGBIMERS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations, and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.

Advanced Electronic Eng. Gen. Electronic Eng. - Applied Electronics - Practical Electronics - Radar Tech. Frequency Modulation Transistors.

ELECTRICAL ENG.

Advanced Electrical Eng. Gen. Electrical Eng. - Installations - Draughtsmanship - Illuminating Eng. - Refrig-- Illuminating Eng. - RefrigSration - Elem. Electrical Science - Electrical Science Electrical Supply - Mining Electrical Eng.

CIVIL ENG.

Advanced Civil Eng. - Gen. Civil Eng.-Municipal Eng.Structural Eng. - Sanitary Eng. - Road Eng. - Hy draulics - Mining - Water Supply - Petrol Tech.

RADIO ENG.
Advanced Radio - Gen. Radio Radio \& TV Servicing TV Eng. - Telecommunications - Sound Recording Automation - Practical Radio -Radio Amateurs' Exam.
MECHANICAL ENG.
Advanced Mechanical Eng. Gen. Mechanical Eng. Maintenance Eng. - Diesel Shg. - Press Wool Design Sheet Metal Work - Welding Inspection Pattern Making -Inspection-Draughtsmanship-
-Metallurgy - Production Eng.
AUTOMOBILE ENG.
Advanced Automobile Eng. Gen. Automobile Eng. - Automobile Maintenance - Repair - Automobile Diesel Maintenance - Automobile Electrical Equipment - Garage Management.

We have a wide range of courses in other subjects inCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.

Which qualification would increase your earning power? $\begin{array}{llll}\text { A.M.I.E.R.E., B.Sc. (Eng.), A.M.S.E., R.T.E.B., A.M.I.P.E., } \\ \text { A.M.I.M.I. } & \text { A.R.I.B.A., }\end{array}$ A.M.I.M.I., A.M.R.I.B.A., A.M.I.Mun.E., C.ENG., C., CITY \& GUILDS, GEN. CERT. OF EDUCATION, ETC.
british institute of engineering technology 446A ALDERMASTON COURT, ALDERMASTON, BERKSHIIRE

THIS BOOK TELLS YOU

\star HOW to get a better paid, more interesting job. \star HOW to qualify for rapid promotion.

* HOW to put some letters after your name and become a key man . . . quickly and easily.
\star HOW to benefit from our free Advisory and Appointments Depts.
* HOW you can take advantage of the chances you are now missing.
\star HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

164 PAGES OF EXPERT CAREER-GUIDANCE

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES." Send for your copy now-FREE and without obligation.

POST COUPON NOW!

TO B.I.E.T., 446A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE,

Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).
\qquad
ADDRESS

R.F.Bridge reads R,L\&C without frequency-dependence

Versatility is the key-mark of the B602 - a wide range, 3 -terminal. universal bridge with a number of unique features
Direct readout of immittance at frequencies from 100 kHz to 10 MHz , with real and quadrature terms shown simultaneously. in equivalent series or parallel form as appropriate

Aperiodic measurements of C, R
and L, with facility for measuring C as equivalent negative L, and L as - C, if preferred. Also reads negative R and G.
Stable calibration assured by use of unique magnetic potentiometers, minimising trimming operations and giving an electrical discrimination of $0.1 \% \mathrm{f}$.s.d.
Source/Detector SR268 is ideal companion instrument, with
single-knob tuning from 100 kHz to $100 \mathrm{MHz}(46.5 \mathrm{kHz}$ to 46.5 MHz on SR268L). Push=button attenuators for output level and input sensitivity.

WAYNE KERR

THE WAYNE KERR COMPANY LIMITED Roebuck Road., Chessington, Surrey. England. Telephone 01-3971131 Cables Waynkerr, Chessington Telex 262333

Wholesalers are far-sighted, aware of seasonal demands and service consclous

That's why they stock-up with Mullard valves before the season starts . .. do you?
If you want to offer the same degree of service to your customers check your stocks of valves now and fill those gaps.
Remember the top service types are :

DY86/87	EF184	PCC84	PCF86	PCL86	PL81	PC97
ECC82	EY86/87	PCC89	PCF801	PCL805/85	PL504	PCL83
EF80	PC86	PCC189	PCL82	PFL200	PY81/800	PY33
EF183	PC88	PCF80	PCL84	PL36	ECL80	

Remember, to cut your call-backs insist on Mullard valves.

Mulard

HEATHKIT announce

PROFESSIONAL HI-FI EQUIPMENT from the kit people

Model AR-29. AM-FM multiplex stereo Tuner/ Amplifier. 50 watts (IHF) power output each channel, with less than 0.25% THD (8 ohm load). Inputs adjustable to accommodate all types of pick-up. FET FM front end plus integrated circuit design give tuner 1.8 uV sensitivity stereo separation 40 dB at midfrequencies. Special modular plug in units separate all circuits. KIT PRICE £168. 0.0 .

Model AA-15. Truly one of the best Stereo Amplifiers available. 150 watts total dynamic power. 0.5% distortion. Outstanding response $(\pm 1 \mathrm{~dB} 8 \mathrm{~Hz}$ to 40 kHz , 1 watt). Individual input level controls. Massive power supply, positive circuit protection, all silicon transistor circuitry. Five individual modules separate all circuits minimising hum and noise. KIT PRICE $£ 84.0 .0$.

Model AR-19. AM-FM multiplex stereo Tuner/Amplifier. 30 watts (IHF) power output each channel, with less than 0.25% THD (8 ohm load). Can be used with all types of pick-ups. Linear motion controls Tuner sensitivity 2.0 uV (IHF). FM stereo separation 35dB at midfrequencies. New FET front end. Four I/C stages. Electronically regulated power supplies. Choice of Walnut or Teak cabinet. KIT PRICE £118. O. O.

Model AJ-15. One of the most advanced Stereo Tuners. Features an exclusive design FET tuner with two FET RF amplifiers and an FET mixer for excellent sensitivity (1.8 uV) and reduced cross modulation. IF stages include two crystal filters. Two calibrated tuning meters, individual Squelch, Balance, Phase, and level controls. FM stereo separation better than 40dB. KIT PRICE £115.0.0.

> SEE THE COMPLETE RANGE OF HEATHKIT HI-FI AT THE 1970 AUDIO AND MUSIC FAIR OLYMPIA, LONDON. 19 to 24 th OCTOBER.

Reduced Prices! More New Models

Model AR-14. Modestly priced FM stereo Tuner/ Amplifier 30 watts total music power output with less than 0.5% distortion. Power response $\pm 1 \mathrm{~dB} 15 \mathrm{~Hz}$ to 50 kHz . Many features incorporated usually only found in more expensive receivers; all in a compact size-only 4 inches high by $15 \frac{1}{4}$ wide. KIT PRICE £59. O. 0 .

Model AR-15. Superb AM/FM multiplex stereo Tuner/ Amplifier Magnificent 150 watts total output. FM features:-FET front end tuner with six tuned circuits two integrated circuits plus two crystal filters in the IF amplifier. Two calibrated tuning meters. Automatic stereo indicator and FM squelch circuits. All controls conveniently sited on the front panel. Many other advanced features for the finest natural sound. KIT PRİICE £192. O. O.

Model AD-27. All the features of the AR-14 Stereo Tuner/Amplifier in the small space of a 'Compact'. The beautiful Teak or Walnut cabinet houses the high quality turntable, Tuner/Amplifier and it is only necessary to attach loudspeakers and you have an excellent stereo music system. KIT PRICE £88. 0 . 0 .

Model Ambassador. A speaker system incorporating three speakers to provide well-balanced sound. Will handle large scale choral or orchestral music and yet at the same time will produce excellent results at lower sound levels. Features $12^{\prime \prime}$ Bass $5^{\prime \prime}$ mid and $1^{\prime \prime}$ HF unit plus multi-element crossover. Finished in

Teak or Walnut with matching cloth and trim.
KIT PRICE £33. O. О.

Model Trent. A new addition to the Heathkit range of loudspeakers. Moderately priced yet providing excellent reproduction, this small speaker enclosure $\left(19^{\prime \prime} \mathrm{H} \times 10^{\prime \prime} \mathrm{W}\right.$ $x 8 \frac{1}{4}$ "D) will need the minimum room space. $8^{\prime \prime}$ Bass plus $4^{\prime \prime} \mathrm{HF}$ unit, 8 ohms. Finished in Teak or Walnut veneer. KIT PRICE £14. O. 0.

SINGLE SOURCE SENSE

OR
 How to get What you Want without Having, to Try Very Hard

If your parts requirements are small, and your call-off irregular, you have a problem. If, as often happens, you want parts quickly, you have another problem.
We are in business to help you solve both, quickly.
As stockholders of an enormous range of Radio, Electronic and Electrical Components, Metal Pressings, Clips, Fasteners and Assemblies by Cinch Dot and FT, we are the "single source" for pretty well everything of this kind you want in whatever quantity you want and at short notice.
Two illustrated catalogues. Thousands of stock items are detailed in our two fully illustrated catalogues-Fasteners and Electronics-either of which will be sent, post-free, to firms and organisations.
Send for yours now,
stating which catalogue you require.

Make United-Carr Supplies

 your
SINGLE SOURCE

for Cinch Dot and FT Radio, Electronic and Electrical Components, Metal Pressings, Clips, Fasteners and Assemblies.

United-Carr Supplies Ltd.,
Frederick Road, Stapleford, Notts.
Sandiacre 2828 STD 0602392828

and
 \square
 STOCKISTS

UNITED-CARR
SUPPLIES

Acoustic Research designed "Big Horn" to show the size of a horn-type speaker system that could match the bass response of the AR-3a.

a Big Horn; b AR-3a; c Acoustics by Beranek; all drawn to the same scale.

When the AR-3a is placed against a wall, its frequency response is flat to below 40 Hz , and continues even at lower frequencies with very low distortion. To design Big Horn, we turned to page 268 of the standard text, Acoustics by Leo Beranek", to find the equation used to calculate the size of a horn with a cutoff frequency of 40 Hz .
As shown in the scale drawing above, Big Horn is 7 feet high and 9 feet wide; its depth would have to be greater than either of these dimensions. A pair for stereo would take up slightly more space in a living room than two VW buses. Yet, played at the same loudness, the only audible difference between them and a pair of AR-3a systems would be the slightly rougher response of the Big Horns due to reflections inside them. Other than that, the Big Horns should sound excellent; they would simply be not quite as good, and much more costly than AR-3as.
The AR-3a speaker system is made by Acoustic Research and distributed in the U.K. by Bell \& Howell.

Complete technical specifications of the AR-3a and other AR high fidelity products are available free on request.
*McGraw-Hill, \$14.50.
BelleHowell

7V r.m.s. Sine or Square from 1 Hz to 1 MHz

FREQUENCY:
SINE WAVE OUTPUT:
DISTORTION:
AMPLITUDE STABILITY:
SQUARE WAVE OUTPUT: SYNC. OUTPUT:
SYNC. INPUT:
SIZE \& WEIGHT:

type TG200
 £42 type TG200D TG200D
 £45 type TG200M
 £52

Prices include batteries with 400 hour life. Mains power units are $£ 10$ extra.

Types TG200 and TG200M generate only sine waves. Types TG200M and TG200DM have a meter calibrated $0 / 2 \mathrm{~V}, 0 / 7 \mathrm{~V}$ and $-14 / 46 \mathrm{dBm}$. Types TG200 and TG200D have a calibrated control instead of a meter.

This is a high fidelity amplifier (0.3\% intermodulation distortion) using the circuit of our 100% reliable- 100 Watt Amplifier (no failures to date) with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for $3-30 / 60 \Omega$ balanced line microphones, and a high impedance line or gram input followed by bass and treble controls. 100 volt balanced line output

THE VORTEXION 50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4-WAY MIXER USING F.E.T.s.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.

THE 100 WATT MIXER AMPLIFIER with specification as above is here combined with a 4 channel F.E.T. mixer, 3 mic. 1 gram with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{~dB}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms . Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms -15 ohms and 100 volt line. Bass and treble controls fitted.
Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 dB and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1-low mic. balanced and Hi Z gram.

ELECTRONIC MIXERS. Various types of mixers available. 3-channel with accuracy within 1 dB Peak Programme Meter. 4-6-8-10 and 12-way mixers. Twin 2, 3, 4 and 5 channel stereo. Built-in screened supplies. Balanced line mic. input. Outputs: 0.5 V at 20 K or alternative 1 mW at 600 ohms, balanced, unbalanced or floating.

professionals are hard to please...

In this completely professional area of Magnetic Recording Equipment engineers set themselves high standards because they have extremely high standards to meet and maintain - every day of the year.
They demand truly dependable equipment for this tough, exacting work - equipment like the Plessey range that is technically excellent, flexible and thoroughly reliable under continuous operating conditions.
Plessey studio equipment includes reel-to-reel, portable, console and endless-loop cartridge recorders that have been time proven for twentytwo years by broadcasters around the world. This kind of equipment will fit into your system - and give definite operational and cost advantages. Keep us in mind when next you are considering new equipment.

A full range of technical literature is available on request, or better still, a technical representative will call if it's convenient.
Contact us now!

PLESSEY

Electronics

Sales and Service - Rola Recording Products Department Garrard Engineering Limited
Newcastle Street Swindon Wiltshire
Telephone Swindon 5381 Telex 44271 or the manufacturer
Plessey Electronics Pty Limited
Equipment Unit
Westbank Terrace Richmond Australia 3121
Telex 30383 Cables ROLA Melbourne

GT. 5 is an entirely new comprehensive brochure of Audio Transformers and contains details of a wider range of standard types. Recent introductions to Gardners Audio range described in this brochure include super-fidelity transformers with exceptionally low phase-distortion and the ability to handle steep side transient signals without generation of overshoot. Also listed is a range of high proof-voltage transformers for Post Office transmission lines and a new range of ultra miniature transformers with remarkably good performance. A frequency response linear from the lower audio frequencies to the supersonic band is standard to many of the newer types.

Gardners also have six other GT Catalogues.

Whatever your transformer requirement there is more than a possibility that we can supply something suitable from stock. We make the largest range of standard transformers in Europe.

Return the coupon to us. And we'll send you the GTs by return.

GARDNERS TRANSFORMERS LIMITED Christchurch Hampshire BH23 3PN
Tel: Christchurch 2284 (STD 02015 2284)
Telex 41276 GARDNERS XCH

Farnel|
 Digital Logic Systems Simulator for Education and Industry A Comprehensive Logic Instruction System

*FOR STUDENTS AND ENGINEERS to quickly learn and apply digital logic techniques.
*RUGGED, ROBUST CONSTRUCTION for trouble free operation under hard use.
*PROTECTED AGAINST OVERLOAD or short circuit. *COMPLETE WITH DETAILED INSTRUCTION manual introducing logic principles, binary arithmetic and boolean algebra and leading the student through a number of experiments and problems.
*COMPATIBLE WITH FARNELL INDUSTRIAL LOGIC HARDWARE. Actual control problems may be simulated before costly installation.
The system consists of a plinth, power supply, leads, capacitors, diode and a range of modules that can be purchased singly or in 'Logic Instruction Kit' or 'Nor Logic Kit: configurations.
For full details, please contact us at the address below. (Please state if you require literature on. our full range of power supplies.. electronic instruments and digital

under

an exhibition of electronic components by leading manufacturers

US TRADE CENTRE ST JAMES'S LONDON

OCT. 26-30

ELECTRO-MECHANICAL DIVISION

MICROWAVE DIVISION

INDUSTRIAL INSTRUMENT DIVISION

REFRIGERATION DIVISION

SEMICONDUCTOR DIVISION

AURIEMA LTD
23/31 King Street, London W3
Telephone: 01-9931461

Cosmetic they may not be. But for sheer volumetric efficiency . . . for packing more CV's per unit volume . . our aluminium electrolytics have a beauty of their own.
First, the secret of our unique success, a special high gain etched foil process that helps us pack each can with more capacitance. Then a design that recognises I.E.C. and B.S. recommenda-
tions on logarithmic capacitance ranges, and standardised voltage ratings. And now the basic data. 15 to $150,000 \mu \mathrm{~F}$, at 6.3 to 160 V dic. Ripple currents up to 7.5A. Single-ended cans up to 100 V ; double-ended axial lead types up to $15,000 \mu \mathrm{~F}$. Cans insulated if you wish.
And if you wish again, a visit from an Erie engineer. Or Catalogue data
sheets full of facts on quietly reliable
 smoothly - performing aluminium capacitors.

Write to us today.
ERIE ELECTRONICS LTD., Gt. Yarmouth, Norfolk. Telephone: 04934911
Telex: 97421

Ans ordinary
Copper bit after 12,500 joints

An
ADCOLA
Long-life bit
after
100,000 joints
... and reduced bit maintenance increases saving still further.

Too good
 to be true?

Send for free test sample NOW!

SOLDERING EQUIPMENT

[^11]28 Sydenham Road, Croydon, CR9 2LL
Telephone: 01-688 8589 \& 4559

DON'T WASTE MONEY
... on the purchase and maintenance of unnecessarily complicated and expensive soldering irons.

In probably 75\% of cases the LITESOLD range of lightweight high performance instruments provide the sensible choice. These wellbalanced quality tools reflect nearly twenty years development resulting from wide use in industry.

There are 7 models from 10 watts to 60 watts covering the whole field of electronic soldering, listed at from 32/- with quantity discounts. They are backed by a fast and inexpensive repair service, although servicing is simplicity itself, using ex-stock spares.

Full details of the LITESOLD models free on request, together with introductory details of our ADAMIN micro-instruments and LITESTAT Thermostatic models-for some of those other 25% of cases. Ask for literature L.5.
 \section*{LIGHT SOLDERING
 \section*{LIGHT SOLDERING DEVELOPMENTS LTD.,} DEVELOPMENTS LTD.,}

It's fully interchangeable with all known carbon level systems. No more of the 'snap, crackle and pop', just the message, clear and reliable, using our new noise-cancelling high quality moving-coil microphone with integral amplifiers.

AMPLIVOX COMMMUNICATIONS
 LIMITYED

AMPLIVOX COMMUNICATIONS LTD. BERESFORD AVENUE • WEMBLEY - MIDDX. TELEPHONE 01-902 8991 GRAMS AND CABLES • AMPLIVOX • WEMBLEY

The AE PPM 3

The Audio Engineering Peak Programme Meter is designed well within the British Standards specification. This precision instrument is used throughout all major Broadcasting and Television Studios in the U.K. and Europe. The PPM 3 is always used where programme level must be accurately measured.

Printed circuit mounts directly to back of Ernest Turner 643 or 642 meter.
Three meter scales available: British Standard -BBC-European.
Nominal 24 Volts DC required.
High stability-all capacitors are Tantalum electrolytic.
Frequency response: $40 . \mathrm{Hz}-20 \mathrm{kHz} \pm 0.2 \mathrm{~dB}$
$10 \mathrm{~Hz}-40 \mathrm{~Hz} \pm 2.0 \mathrm{~dB}$ $20 \mathrm{kHz}-60 \mathrm{kHz} \pm 2.0 \mathrm{~dB}$
Integration time: 10 m secs.
'Fall back' time: 3 secs.
Gold plated 10 way connector.
4 slave meters can be driven from 1 card.
Ferrous or Non-ferrous mounting.
Stereo PPM also available.
Manufactured by: Audio Engineering Ltd., 33 Endell Street, London, WC2.9BA.
01-836 9373

wW-034 FOR FURTHER DETAILS

TNOlinSolder

ENTHOVEN offers you Europe's Widest Range

One good reason for soldering with Enthoven - whatever your needs - is the Enthoven range. It gives you a wide choice of high quality products developed for use with modern techniques. It includes Flux Cored Solder Wires, Solder Pre-forms, Solid Solders, selective Fluxes, solder specialities, materials for printed Circuitry and for soldering Aluminium. For complete technical details of Europe's widest range, ask Enthoven Solders Limited, Dominion Buildings, South Place, [---- London EC2. Telephone 01-628 5030; telex 21457; cables: レ---7 ENTHOVEN LONDONEC2

SPECIAL PRODUCTS

BASE METAL EXTRUSIONS

 LEAD POTS, TUBES \& BRICKS LIQUID SOLDERS, PAINTS AND POWDERSALUMINIUM SOLDERS AND FLUXES
PRINTED CIRCUIT SOLDERS AND FLUXES

HIGH AND LOW MELTING POINT ALLOYS
SOLDERS FOR SPECIAL SERVICE
HIGH PURITY METALS-PRE-FORMS SOLDERING IRONS

If it's worth putting acrossit's worth aShure Microphone

Do yourself a favour.
And your audience.
Equip yourself with a microphone that lets you be heard the way you should be heard.
With every word faithfully reproduced. Every note.
Every subtle shade of sound.
Take your own Shure Microphone with you on every date. Just as the top stars do.

Reverberation Unit Type 636

After the fun of the Audio Fair then whatever amplifier equipment you have chosen you will no doubt be interested in the added advantages of incorporating Reverberation or Ambiophonic units. May we advise you on this?

We shall be pleased to supply further details on these two units, and indeed on any Audio equipments, including mixers, microphones and matching units etc.

Let GRAMPIAN know your requirements.

SOUND EQUIPMENT

GBAMPIAN REPRoDuchas ITD
hanWORTH TRAOING ESTATE,
FEITHAM MIOOLESEX
TELEPHONE: 018949141

WW-037 FOR FURTHER DETALLS

WW- 038 FOR FURTHER DETAILS

The SME model 2000 plinth system is more than a handsome and convenient housing for your turntable and SME precision pick-up arm. It meets the mechanical requirements under which the best performance will be obtained. High-quality workmanship is combined with ease of assembly. The basic unit is finished in selected veneers of teak, straight-grained walnut, or rosewood. A one-piece hinged lid in heavy acrylic is reinforced with a polished stainless-steel trim.

Write for details to: SME LIMITED • STEYNING • SUSSEX • ENGLAND

Motor boards in matching veneers are ready cut and drilled for screwdriver assembly with the appropriate pick-up arm and turntable. An uncut board is also a vailable.

Four-point spring suspension adjustable for height and damping protects the motor board from acoustic feedback and external vibration.

JTARSSONS

Radio and Electronic Components
(Made in England)

WAVEMASTER

'Wavemaster' variable capacitors have brass vanes and a single ceramic end plate. All have $0.248^{\prime \prime}$ spindles, extended both ends for ganging by means of our Universal Couplings. All are designed for S.W. working and for one hole fixing. 6 mm spindles to order if required. Various capacitances. Largest vane packs 300 pF 0.017 air gap, 50 pF 0.64 air gap.
Type 92 Modified S.L.C. Law (S.W.
Tuning) Plain bearings, $i^{* \prime}$ dia. fixing bush, Front areally" $\mathrm{w} . \times 1 \mathrm{z}^{\prime \prime} \mathrm{h}$.

STAND-OFF INSULATORS

Jackson stand-off insulators are designed to perform well in rigorous environments. Their insulation resistance exceeds 20 million megohms even when atmospheric humidity is high. (They meet British Services test specification DEF5334.) They will withstand high steady voltages and intense r.f. fields. Forty different types: ask for catalogue.

* Working voltages up to 10 kV .
\star Stoved-on silicone treatment: water repelient.
\star Ceramic bodies.
\star Silver-plated tags.
\star No solder. No plastic. No adhesives.

P. 30 3-GANG and P. 30 F.M. 3-GANG
- A.M. 8.5 min. 320 pf swing Timmers 25 pf swing
* FM. 25 pF swing
- Gear ratio 3:1 or 7:1 or 1:1
+ 1.75 in
* Ceramic insulation.
P. 20 2-GANG A.M.
* AM. 10 min 510 of swing
* Trimmerr 25 pp swing 1.75 in. $\times 1.8$ in $\times 2.5$ in.
P. 2 2-GANG A.M. F.M.
* Gear ratio $3: 1$ or $1: 1$
 * Capacitance F.M.4pf min. 10pF swing 1.75 in \star

It's reliable if it's
 made by Jackson!

Write for literature
JACKSON BROS. (London) LTD:
DEPT. W.W. KINGSWAY—WADDON CROYDON, CR9 4DG
Phone: Croydon 2754-5 (01-688) 'Grams: Walfilco, Croydon U.S. office : M. Swedgal, 258 Broadway. N. York, N.Y. 10007

TELCON METALS LTD., Manor Royal, Crawley, Sussex. Telephone: Crawley 28800 Member of the BICC Group of Companies.

WIRELESS WORLD

ENQUIRY SERVICE FOR

PROFESSIONAL READERS

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.

PLEASE USE CAPITAL LETTERS

Pour obtenir tout renseignement complémentaire sur les produits mentionnés dans les articles ou dans les pages publicitaires de ce numéros nous vous prions de remplir une ou plusieurs des cartes ci-jointes en inscrivant le ou les numeros de référence. Vos demandes de renseignement seront transmises aux fabricants intéréssés qui, en temps voulu, vous feront parvenir une réponse. Il est nécessaire d'affranchir les cartes postées a l'ētranger. Ces cartés de service sont valides pendant six mois à partir de la date de publication.

PRIĖRE D'ECRIRE EN LETTRES MAJUSCULES

Weitere Einzelheiten über irgendwelche Artikel, die auf Redaktion-oder Anzeigenseiten erscheinen, erhalten Sie, indem Sie eine oder mehrere der beigelegten Karten ausfüllen und die Kenn-Nummer(n) angeben, Ihre Anfrage wird an den Hersteller weitergeleiter, und Sie werden dann direkt von ihm hören. Karten die im Ausland aufgegeben werden, müssen frankiert werden. Diese Service-Karten sind sechs Monate vom Ausgabetag guiltig.

BITTE IN BLOCKSCHRIFT AUSFÜLLEN

Per ulteriori particolari in merito agli articoli menzionati nel testo o nelle pagine pubblicitarie di questo numero Vi preghiamo di completare una o più delle schede allegate citando il numero o i numeri di riferimento. La Vostra richiesta sarà inoltrata ai fabbricanti interessati che Vi_{i} risponderanno direttamente. Le schede dall'estero devono essere regolarmente affrancate. Questo scontrino di servizio é valido per sei mesi dalla data di pubblicazione.

SI PREGA DI COMPILARE LE SCHEDE STAMPATELLO

Con objeto de obtener mas detalles de cualquiera de los articulos mencionados en las páginas editoriales o de anuncios de este número sirvase rellenar una o más de las unidas tarjetas citando ef número o números de referencia. Sus consultas serán transmitidas a los fabricantes interesados de quines tendrán noticias directamente a su debido tiempo. Las tarjetas enviadas desde el extranjero requieren franqueo. Estas tarjetas de servicio son validas durante 6 meses a parir de la fecha de publicacion.

SIRVASE ESCRIBIR CON LETRAS MAYUSCULAS

ASTRONIC SERIES 1700

For the finest reproduction invest in Astronic Equipment built from standard modules for use in clubs, factories hospitals, sport centres, hotels, schools or where only the best will do

ASSOCIATED ELECTRONIC ENGS LTD. DALSTON GARDENS, STANMORE, MIDDX.

If you have a meter problem, share it with Anders. Our customers find the answer to most of their problems in our vast stock of standard meters. In fact the Anders range is the largest and most comprehensive in the country including, Panel Mounting and Portable Moving Coil, Moving Iron, Electrostatic, ThermoCouple, Moving Iron Motammeters, Frequency Meters, Wattmeters, Contact Meters . . . plus Current transformers, Shunts and other ancillary items. We also have the facilities for design and production of non-standard instruments, and printing Dial Faces with unusual Scales and Legends.
Where production deadlines loom large the need for meters in small or large quantities can present the kind of problem Anders will be glad to solve, fast and efficiently.

RIDDERS ELECTRDNICS LIMITED

Anders means meters

48/56 Bayham Place, Bayham Street, London, N.W.1. Telephone 01-387 9092.

Manufacturers and distributors of Electrical Measuring Instruments and Electronic Equipment. Sole U.K. distributors of FRAHM Resonant Reed Frequency meters and Tachometers.

OMRON PRECISION CONTROLS division of I.M.O. precision controls limited

process timers - level controls - limitswitches microswitches - sensors - proximity switches

313, EDGWARE ROAD, LONDON, W.3. TELEPHONE: 01•723 2231

$\mathbf{£ 6}$ dependent on quantity.

NSY PRECISION TIMER

New, modern timer for panel mounting, high accuracy with set and moving pointers.

- Synchronous motor and clutch mechanism
- Two output contacts rated at 5 amps
- Life in excess of 5 million operations
- Dial rañges from 0-10 seconds and up to 28 hours
- Repeat accuracy $\pm \frac{1}{2} \%$ of full scale
- Delivery from stock
$\mathbf{£ 8}$ dependent on quantity.

STP LOW COST TIMER

- Full range

Low cost, plug-in timer, with automatic reset, and impulse

- Very low cost start facilities.

All types of actuators

- Miniature size, plugs in to standard octal sockets
- Heavy and light duty switches
- Synchronous motor and clutch mechanism
- Coin-operated switches
- Dial ranges from 0-6 seconds, and up to 72 minutes
- New sub miniature switch
- Repeat accuracy $\pm \frac{1}{2} \%$ of full scale type SS5 breaks price barrier
- Delivery from stock for large quantity users.

MICROSWITCHES

- Full range
- Roller arms
- Plungers
- Coil spring
- Rod
- 10 amp rating
- 10,000,000 operations
- Delivery from stock

61 FGP FLOATLESS LEVEL CONTROLLER

Plug-in switch with stainless steel electrodes; senses changes in liquid levels through variations in resistance between electrodes. Controls pump operation to empty and fill tanks or other vessels to pre-determined levels.

- Simple to instal and maintain, even in flowing liquids
- No electrolytic action
- Solid state circuitry
- No immersed moving parts
- Extremely low in price
- Delivery from stock
$£ 3.14 \mathrm{~s} .0 \mathrm{~d}$. (price for switch only) dependent on quantity.
EX-STOCK EX-STOCK EX-STOCK EX-STOCK

VARIABLE TRANSFORMERS

\star OUTPUT $0-260 \mathrm{~V} \star$ INPUT $230 \mathrm{~V} 50 / 60 \mathrm{CPS} \star$ SHROUDED FOR BENCH OR PANEL MOUNTING

1 amp £5.10.0

2.5 amp £6.15.0 10 amp f 18.10 .0 $5 \mathrm{amp} \quad$ £9.15.0 $\quad 12 \mathrm{amp}$ £21. 0.0 8 amp f14.10.0 $20 \mathrm{amp} £ 37.0 .0$

Inset shows
latest pattern Brush gear ensuring smooth continuous

SOLID STATE VARIABLE VOLTAGE CONTROL * Output 25-240V * Input 240V 50 CPS

- $5 \mathrm{amp} \& 10 \mathrm{amp}$ model
- Completely sealed 5 amp model $\mathbf{1 8 . 7 . 6}$
10 amp model $\mathbf{f 1 3 . 1 5 .} \mathrm{n}$

COMPLETE PHOTO- ELECTRIC SENSOR in one unit
*Reflective type with built-in light source

* Will also operate from remote light source
- Matchbox size
* Senses any object-colours. thlek smoke
Operates from 12 V AC. Output signal 0.2 amp . 100 V .
Approximately $\mathbf{E 5} .10 .0$ dependent on quantity

I.M.O. PRECISION CONTROLS.
 (Dept WWX) 313 EDGWARE ROAD,LONDON W.2. Tel 01-723 2232

GOLDRING SERIES 800 and 850 STEREO MAGNETIC CARTRIDGES

Our famous ' 800 Series' True Transduction cartridges, developed on the 'Free Field' principle, allow the most delicate groove-stored signals to be accurately relayed and re-created with uncompromising precision. And the
G. 850 Free Field stereo magnetic cartridge, intended primarily for 'budget' hi-fi systems, offers all the advantages of a good quality magnetic cartridge at a very attractive price.

800 Super E For those aiming at perfectionextra low mechanical impedance for ultimate tracking is achieved by a duo-pivoting arrangement membrane-controlled to avoid longitudinal or torsional modes blemishing performance Each cartridge supplied with individual curve and calibration certificate

800/E Designed for transcription arms, a micro-elliptical diamond is fitted to a fine cantilever, end-damped against natural tube resonances, accurately terminated in a special conical hinge to give pin-point pivoting.

800 The 800 is designed for standard arms and changers where the requirements for high fidelity and robustness usually conflict. Output is 5 mV at $5 \mathrm{~cm} / \mathrm{sec}$. R.M.S. Recommended tracking weight $1 \frac{1}{2}$ to 2娄 grams.

800/H This Free Field Cartridge is designed for inexpensive changers to track between $2 \frac{1}{2}$ to $3 \frac{1}{2}$ grams and has a high output of at least 8 mV .

G850 This relatively inexpensive Free Field stereo magnetic cartridge is capable of bringing out the very best performance that 'budget' hi-fi systems can provide.

CUE: A completely new approach to high powered sound systems!

Module range includes:

Preamps for any impedance, Mic, Tape, Gram
Radio tuner, AM and FM
Paging tone
Factory timer with tone
Fire Alarm
Priority switching
VU and monitoring module
Standard announcement endless loop cartridge deck
Automatic voice operated faders

ILLUSTRATION SHOWS A COMPLETE 70 WATT RMS AMPLIFIER WITH 5 PLUG IN PREAMPS VU. MOTOR. BASE AND TREBLE CONTROLS AND MASTER GAIN CONTROL. £121 TRADE.
 \star Star Features:
 * Power range 5W to 1000 W
 \star Built to Broadcast Standard specification
 * Fully modular
 * Plug-in circuitboards with gold plated contacts
 \star Advanced circuitry using latest techniques
 \star Full circuit protection
 * Built in reliability
 \star Fully tropicalized
 * Computer quality components used for cool running.
 \star Modular construction permits adding functions as required

Applications:

PA in Factories, Stores, Fairgrounds, Stadiums
Sound reinforcement in Churches and Lawcourts
Paging and Music systems for Hotels, Motels, Restaurants Mixing consoles for Theatres, Clubs, Discotheques
Language Laboratories
Schools, Universities and Hospitals

Price is very competitive because you buy only what you need!
We operate a 24 hours module replacement by special delivery post.
For illustrated information catalogue write or ring:
CUE Electronics Ltd.
145 Oxford Street, London W1RTB, England. Telephone 4375362

Read any good meters lately?

Eagle offer some of the finest panel, edgewise and miniature meters that money can buy. And your money buys more with Eagle! Panel Meters like the KM series, in a range of seven sizes from 32 to 152 mm , square, are already used by many of the industries leaders because of their wide angle shadowless viewing and easy readability. The entire KM range is stocked in $100 \mu \mathrm{~A}$ and imA movements.

As far as edgewise meters are concerned we have the edge on everyone - in the general purpose and miniature class a unit can cost you as little as $£ 0.80$ and be on your doorstep within three days. When you receive it you can subject it to the same test as our more expensive instruments and you will still come up with the same answers.

For further information and catalogue, ring or write :
Industrial Division:-
Adler Micro Electronics
Coptic Street,
LOOK UP TO EAGLE FOR
London, WCiA INR
Tel: or-6360961 VALUE IN ELEGTRONIGS

Give the stars their freedom!

That's our motto, this is our method; with the Reslo-Audac Radio Microphone, stars such as Des O'Connor and Peter Gordeno are freed from trailing cables. Movement is completely unhampered

TYPE UD1 Modern-style high-

TYPE 530 output microphone

TRANSISTORISED
AMPLIFIER
AMPLIFIER
3 low impedance mike
inputs, 1 music input.

RESLO MIKES LTD 24 UPPER BROOK
ST., LONḊON, W. 1 Ideal for clubs, cabaret, theatres and many other applications, Reslo-Audac Radio Microphone has to be heard to be believed. Ask for a demonstration. Transmitting, receiving or amplifying, Reslo sounds superb with ribbon microphones, boom arms, floor stands, amplifiers, loudspeakers, p.a. systems, many accessories. Illustrated catalogue freely

WW- 050 FOR FURTHER DETALLS

used as standards in many industries

- Accurate to $\pm 0.3 \%$ or $\pm 0.9 \%$ as specified
Not sensitive to voltage or temperature changes, within wide limits
- Unaffected by waveform errors, load, power factor or phase shift
- Operational on A.C., pulsating or interrupted D.C., and superimposed circuits
- Need only low input power
- Compact and self-contained
- Rugged and dependable

Anders means meters
fRAHM Resonant Reed Frequency Meters are available in plastic and hermetically sealed cases to Byitish and U.S. Government approved specification. Ranges $10-1700 \mathrm{~Hz}$. Literature on these meters and Frahm Resonant Reed Tachometers available on request.
Manufacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largest stocks in the U.K. for off-the-shelf delivery.

mmoters electronits limited

48/56 Bayham Place, Bayham Street, London NW1. Tel: 01-3879092

This is the attractive new space maker, precision-built to get things organised for you ... loads of space to keep your hundreds of parts in perfect safety. This steel-strong 12-drawer unit comes to you in a lustrous finish of grey or deep bronze green. Size: $24^{\prime \prime}$ wide, $13^{\prime \prime}$ high and $12^{\prime \prime}$ deep. (Supplied with 12 special drawer-dividers free)
ORDER DIRECT FROM THE MANUFAGTURER - USE THE COUPON BELOW

N.C.BROWN LIMITED

Eagle Stedworks
Heywaod, Lanas.
Telephonia:69018

חin
\qquad
Cheque enclosed \boldsymbol{f}

NAME
ADDRESS
Send me your free brochure \square ww snaunammanmanap manamo pacesetters in storage equipment

With a detected system flatness within $\pm 0.05 \mathrm{~dB}$ over the full video range, and a battery of features to aid precise measurement, the new TF 2361 provides a standard of accuracy not usually associated with general purpose sweep generators.
This powerful new instrument is designed for use with video or .v.h.f. sweeper plug-ins to form accurate and comprehensive measurement systems - particularly in the TV field.
A wide range of sweep speeds from 0.01 Hz to 100 Hz make it ideal for use with X.Y plotters, display units or oscilloscopes.
The TF 2361 main unit, which contains common power supplies and circuitry for the plug-ins, features readily removable chassis units for straightforward servicing. Altogether an extremely comprehensive and well specified sweep generator.

VIDEO 2 Whz to 30 MHz * Uuique detected system flatness to within $\pm 0.05 \mathrm{~dB}$ over the full band make it ideal for wide range, accurate frequency response checks on receivers, amplifiers, filters and attenuators.

* Unique alternate-sweeps-at-different-levels feature complements the advantages of the flat output in making accurate frequency response checks.
* Unique TV lock facility locks sweep to a TV syne and blanking waveform to provide a TV video sweep system.
Price $£ 960$ f.o.b.U.K.
V.H.F. 1 MHz to 300 MHz * Comprehensive internal and external markers can be added to the detected output or can be used separately: positive or negative pulse or birdie markers can be selected.
* R.F. attenuator may be used separately.
* Comprehensive range of detectors and probes available. Price $£ 1128$ f.o.b.U.K.

ERIE'S DISTRIBUTORS HAVE YOU COVERED.

off the shelf deliveries of selected Erie Electronic Components

FARNELL ELECTRONIC COMPONENTSLTD
Canal Road, Leeds, LS12 2TU.
Teil : Leeds 636311 . Telex: 55147
HARPER ROBERTSON ELECTRONICS LṪD.。 82 Loanbank Quadrant, Glasgow, S.W.1. Tel: Douglas 2711. Telex : 77634

HAWNT \& COMPANY LIMITED.
112-114 Pritchet Street, Birmingham, 6.
Tel: 0213594301 . Telex: 338814

ITT ELECTRONIC SERVICES, Edinburgh Way.
Harlow, Essex.
Tel: Harlow 26777 Telex: 81146
LUGTON \& COMPANY LTD.
Radio House,
209-212 Tottenham Court Rd., London, W. 1.
Tel: Museum3261. Telex: 25618
S.A.S.C.O. LIMITED. P.O. Box 20, Gatwick Road, Crawley, Sussex.
Tel: 28481. Telex: 87131
WIRELESS-ELECTRIC LTD.
Wirelect House.
St. Thomas Street,
Bristol, BS1 6JW.
Tel: 294313. Telex: 449150

The Erie Distributor Guide is available on request from:

ERIE ELECTRONICS LTD.,
Distributor Division, South Denes,
Gr. Yarmouth, Norfolk.
Tel: 4911 P.B.X.
Telex: 97421

DC300

DUAL-CHANNEL POWER AMPLIFIER

Frequency Response $\quad \pm 0.1 \mathrm{db}$ Zero -20 KHz at 1 watt into 8 ohms, $\pm 0.6 \mathrm{db}$ Zero- 100 KHz .
Phase Response Less than $5^{\circ}, 0-10 \mathrm{KHz}$.
Power Response $\quad \pm 1 \mathrm{db}$ Zero-20KHz at 150 watts RMS into 8 ohms.
Power at Clip Poin Typically 190 watts RMS into 8 ohms, 340 watts RMS into 4 ohms per channel.
Total Output (IHF) Typically 420 watts RMS into 8 ohms, 800 watts RMS into 4 ohms.
I.M. Distortion Less than 0.1% from 0.01 watt to 150 watts RMS into 8 ohms, typically below 0.05%. (max ($60-7 \mathrm{KHz} 4: 1$)
Damping Factor Hum and Noise ($\mathbf{2 0 - 2 0 K H z)}$
Slewing Rate $\quad 8$ volis per micro-second. S-R is the maximum value of the first derivative of the output signal. Dimensions 19 in . standard rack mount (W.E. hole spacing), 7 in , height, $9 \frac{3}{8} \mathrm{in}$. deep (from mounting surface). Weight Finish

Bright-anodized brushed-aluminium front-panel with black-anodized front extrusion, access door, and chassis.
\star DC-Coupled throughout!
\star Short Circuit proof!
$\star 500$ Watts RMS Mono.
$\star 70$ Volt Balanced line out!
\star Only $£ 320$ inc. duty!

CARSTON ELECTRONICS LTD.

71 OAKLEY ROAD
CHINNOR, OXON.
Teiephone: Kingston Blount 8561.

WW-057 FOR FURTHER DETALS

TELEPRINTERS • PERFORATORS REPERFORATORS • TAPEREADERS
 'POP' RANGE OF LOUDSPEAKERS

 DATA PROCESSING EQUIPMENT

SALE OR HIRE

2-5-6-7-8 TRACK AND MULTIWIRE EQUIPMENT

Special Codes Prepared
TELEGRAPH AUTOMATION AND COM PUTER PERIPHERAL ACCESSORIES DATEL MODEM TERMINALS, TELEPRINTER SWITCHBOARDS
Picture Telegraph, Desk-Fax, Morse Equipment: Converters and Stabilised Rectifiers; Line Transformers and Noise Suppressors; Tape Holders, Pullers and Fast Winders; Governed, Synchronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass Filters; Teleprinter, Morse, Teledeltos Paper, Tape and

* Designed for General Purpose Public Address Systems
* Ideal for Vocal and Instrumental Groups
* Heavy Cast Chassis
* Latest High Efficiency Ceramic Magnets

P0P 15^{\prime}
$99 / 9 \begin{gathered}\text { Recommended } \\ \text { Retail Price }\end{gathered}$
fitted Tweater Cone
Retail Price
$12^{\prime \prime}$ FULL FREQUENCY RANGE Rating 15 Watts R.M.S. Imp. 15 ohms.

POP '30C' ${ }^{\text {f.tem }}$
Tweeter Cons
f5.19.9 Recommonder
$12^{\prime \prime}$ FULL FREQUENCY RANGE
Rating 25 watts R.M.S. Impedance 15 ohms.
Above types not intended for use with Electronic Organ or Bass Guitar
ULTRA HIGH POWER TYPES
Impedance 8-16 ohms. For general use inc. Bass Quitar and Electronlc Organ.
P0. "50' 12in 50 Warts R.M.S. Gauss 14,000 lines

10 Gns. POP '60

12 Gns.
 Sole Distributors to Wholesale and Retail Trades Racks and Consoles; P quency Shift, Keying Equipment other Switches; Cords, Connectors, Wires, Cables, Jack and Lamp strips, and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.

W. BATEY \& COMPANY

Garety Works, Akemen Street, Tring. Herts
Tol: Tring 3476 (STD 0442 82)
Cables: RAHNO TRING
Telex: 82362, NB BATEY TRING
WW-058 FOR FURTHER DETAILS
LINEAR PRODUCTS LTD., Electoon wons. afmer, Leos 12

Now hear this!

Goldring and Toa have a lot of valuable things to tell you on P.A.

Welcome the news that Goldring and Toa can offer you the most advanced range of P.A. systems. Nothing but the best-in high performance products .. P.A. Amplifiers-microphones-horn speakers-megaphones-power intercoms-meeting amplifiers-background music players, etc.

Goldring

Sole UK distributors of modern P.A. systems by Toa Electric Co., Ltd, Goldring Manufacturing Co. Ltd. (Great Britain) 10 Bayford St, Hackney, London E8 3SE. Write or Telephone 01-985 1152 For Full Details

Your choice of Live SocketsInstantly!
A Lexor DIS.BOARD gives you up to 6 sockets from one power outlet. Portable sockets from fixing, compact unlts, with safety nean. Over 1,000 socket safery neon. Over combinations available from stock. A types of fittings and finishes.
brochure from
brochure from
LEXOR DIS-BOARDS LIMITED,
Allesley Old Road, Coventry.
Allesley Old Road, Coventr
Telephone 72614 or 72207

WW-062 FOR FURTHER DETAILS

ELAPSED TIME INDICATORS

Current Integrators

The whole range of Elapsed Time Indicators (E.T.I.) consists of:-
CHRONISTOR (B)-Electro-chemical E.T.I. based on copper for $100.1,000$ and 10.000 hours This one is expendable after use.
MERCRON (9) Electro-chemical E.T.I. based on mercury for 100, 1.000 and 10.000 hours. Exists in six different models.
HOROCONTROL(B) Electro-mechanical E.T.I. for A.C., or D.C. for 9999.9. or 999.99 hours,

SALES AND LABS: STANLEY ROAD, BROMLEY, KENT. TEL: 01-460 9212/3 AND 01-464 5812
FACTORY: PONSWOOD INDUSTRIAL ESTATE, HASTINGS, SUSSEX. TEL: HASTINGS 7344/5/6

Nombrex accuracy!

R.F. SIGNAL GENERATOR MODEL 31 Price £12. 10. Od

We consider this instrument to be the best R.F. Signal Generator on the market today at its price. No amateur radio enthusiast or educational establishment should be without one.

Note a few of the specification details below:-

- Wide range $150 \mathrm{KHz}-350 \mathrm{MHz}$.
- Accuracy better than 2%.
- R.F. Output, or modulated 400 Hz .
- A.F. Signal available externally.
- Output average 100 mV overall.
- Continuously variable attenuator.
- Fully transistorised circuitry.
- Provision for external supply.

All Nombrex instruments are guaranteed against defective parts or faulty manufacture for 12 months.
|N
Trade \& Export enquiries welcome. Send for full technical leaflets. Post and Packing 6/6d. extra.

NOMBREX (1969) LTD. EXMOUTH DEVON Tel: 03-952 3515

CALIBRATION PROBLEMS?

We specialise in the repair and calibration of all proprietary and commercial test equipment

We can provide the following services

- fully guaranteed repair of INSTRUMENTS
- CALIBRATION CARRIED OUT TO MANUFACTURERS' SPECIFICATION
- ALL TYPES OF MULTI-METERS, INC. AVOMETERS, REPAIRED
- REPAIR SERVICE 7 DAYS
- WIRING AND SHEET METAL FACILITIES

Write or 'phone

FIRNOR-MISILON LIMITED MARSHGATE TRADING ESTATE, MARSHGATE DRIVE, HERTFORD.

Take a QUAD 50E Amplifier as agoos satat to sory insatataion

plug it into your monitor system and it bridges 600Ω lines to drive your speakers.
Take that same amplifier and, without changing it in any way, plug it into another installation to deliver 50 watts into 100 volt line * from a 0.5 volt unbalanced source. This versatility and its attendant easing of stocking and maintenance problems is one reason why large organisations use the Quad 50E.
*or indeed any other impedance from 5 to 250 ohms.

Other advantages appropriate to users of all sizes include:

Excellent power and frequency response Low distortion (0.1% at 1 kHz at all power levels) Low background (better than 83 dB referred to full output).
Pre-set level control adjustable from front panel.
Unconditionally stable with any load.
Proof against misuse including open or short circuited output.
Small size ($\left.4 \frac{3}{4}^{\prime \prime} \times 6 \frac{1}{4}^{\prime \prime} \times 12 \frac{3^{\prime \prime}}{4}\right)$ -
($120 \mathrm{~mm} \times 159 \mathrm{~mm} \times 324 \mathrm{~mm}$).

JUST TINI

Dinkicases are one of the most popular series of cases from the extensive Imhof-Bedco range. Each size being availablefor eitherverticalor horizontal use, they are suitable for a multitude of purposes. Supplied complete with front and rear panels and finished in attractive two-tone colour scheme. A fold-under leg (as illustrated) may be fitted as an optional extra

imhof-bedica

Full information on Dinkicases and over 200 other standard Imhof-Bedco cases are contained in our catalogues
 - send today for your free copies

Just what is this ABR, that makes such a vital difference to the 'DITTON 15'?

The "DITTON 15"

Now firmly established as a superb high-fidelity loudspeaker. Design features include the exclusive CELESTION ABR (auxiliary bass radiator), HF1300 treble unit-as used in B.B.C. Monitor Loudspeakers - and specially developed mid/bass unit. Low loss L/C crossover.
Power handling: 15 watts r.m.s.; 30 watts peak. Impedance 4-8 ohms.
Dimensions: 21 in. $\times 9 \frac{1}{2}$ in. $\times 9 \frac{1}{4}$ in.
Choice of finish: Teak or walnut.
Recommended Retail Price $\mathbf{£ 2 9}$

1. Studio quality high frequency unit (HF1300 Mk. 2).
As used in B.B.C. Monitors.
2. Anechoic cellular foam wedge and lining eliminates standing waves.
3. High hysteresis panel loading materia! to eliminate structural resonances.
4. Auxiliary Bass Radiator (ABR) -plastic foam diaphragm of high rigidity and low mass having a free air resonance of only 8 Hz , double roll suspension allowing
excursions up to $\frac{3}{4}$ " with virtual absence of distortion.
5. $8^{\prime \prime}$ bass unit, with free air resonance of 25 Hz , and massive Ferroba II magnet structure for optimum magnetic damping and cone treated with viscous dampinglayer to suppress resonances.
6. Units mounted flush to eliminate diffraction effects and tunnel resonances; covered by acoustically transparent grille cloth for maximum presence.
7. Full L-C Crossover network

It's an interesting story-and worth enquiring about. Send for details of the three Celestion "Ditton' Hi-Fi Speaker Systems.

WELWYN ELECTRIC LIMITED

(Founded 33 years ago)
Experlence counts - and greater experience counts more. In this exciting Electronics Industry where a time span of over three decades stretches back almost to the beginning... Welwyn Electric was there even then, pioneering the way ahead in the component sector of the market with their Vitreous Enamelled Power Resistors.
Today, Welwyn's ranges of Power Resistors have been improved and extended, and are accepted as the standard which others strlve to achieve. But by the time they do, it will be tomorrow and Welwyn will have moved further ahead by then!

Twonew models from Garrard

The SP 25 MkIII a single play unit cleanly styled in black and silver with performance to DIN 45-500 will be even more popular than its predecessor the SP 25 Mk II which dominates this market.

Single record play with fully automatic facility; three-speed with aluminium turntable; calibrated bias compensator; visçous-damped cue and pause system; a slide-in cartridge carrier; dynamically balanced, lowresonance tubular pick-up arm; and calibrated fine stylus force adjustment.
Recommended retail price-£12.12.6. plus £3.1. 8. P.T. satin black and silver. Finger-light tab controls; low resonance tubular pick-up arm dynamically counterbalanced by a

a PLESSEY quality product

WW- 071 FOR FURTHER DETAILS

J E S AUDIO INSTRUMENTATION

Illustrated the Si 451 Millivoltmeter - pk-pk or RMS calibration with variable control for relative measurements. 40 calibrated ranges $£ 32.0 .0$

Si 452 £27.0.0
Distortion Measuring Unit. $15 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s}-.01 \%$

Si 453
£37.0.0
Low distortion Oscillator. Sine - Square - RIAA
J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (OWR62) 2501 BRADFORD ROAD, CLECKHEATON, YORKSHIRE

AMPLIFIERS OF QUALITY AND RELIABILITY at the right price!

'DHASE 12'

An extremely attractive all silicon stereo amplifier, ideal for unit audio use. Facilities include MAGNETIC and CERAMIC P.U. RADIO, TAPE etc. Output 6 watts per channel Freq. Response 40-40.000 c.p.s.- 3 dB. Hum Level- 74 dB. Controls include Input Selector, Volume, Balance, Bass, Treble and Stereo/Mono Switch. Black and silver facia panel with

24. Gns.

 Recommended Retail Price satin silver control knobs. Slimline finish enhanced by good quality Teak cabinet housing.

'PHASE 50'

P.A. AMPLIFIER

A solid state A.C. mains unit for Vocal and Instrumental Groups and General Public Address use.

50 watts output (Peak) * High sensitivity Retail Price * 3-30 ohms matching * 3 separately controlled inputs

* Freq. Response 22 c.p.s.- 30 Kcs

For leaflets on the above and other models in the FAL range please send SAE to:-
FUTURISTIC AIDS LTD. 104 Henconner Lane, Leeds 13.
WW-074 FOR FURTHER DETAILS

WW-072 FOR FURTHER DETAILS
WW-075 FOR FURTHER DETALLS

HATFIELD SICHAL DHWHER

These VHF Signal Dividers offer an efficient and inexpensive method of dividing a signal between two outputs while maintaining optimum VSWR and insertion loss characteristics. Frequency range is d.c. to 1 GHz , through power 1 W maximum. Two impedances are available: Type 765/A 50 ohms; $765 / \mathrm{B} 75$ ohms. The Dividers are fitted with BNC connectors, and a four port model with a similar specification will be available shortly.

A range of low-loss passive couplers in both bridge and transformer types is also available. Both three and five port versions are available for use in the frequency range $10 \mathrm{KHz}-200 \mathrm{MHz}$ and these units may be used as couplers or splitters. Insertion loss of each channel is very small (in the region of 1 dB) and inter-channel isolation very large (typically greater than 20 dB). Ask for Leaflet B10/10/69. Enquiries welcomed for multi-couplers.

$2_{\text {into }} 1_{\text {can go! }}$

... provides the perfect integrated source needed for stereo. The Monitor Gold is two separate transducers in a single assembly fed by a sophisticated cross-over and treble control network.

TECHNICAL SPECIFICATION
Frequency Response: $30-20,000 \mathrm{~Hz}$. Power Handling Capacity: 15 " 50 watts, 12 " 30 watts. IIILZ 15 watts. Impedance: 8Ω nominal, 5Ω minimum.

The majority of
Recording and T.V. Studios use TANNOY monitors
 blue, with 18 -gauge front panel supplied with easy-to-strip protective covering for easy marking out. For ease of ordering Contil cases are described by their dimensions, i.e. 755 is $7 \times 5 \times 5$. Individually packed, including feet and screws.

Contil cases are also available with aluminium panels and Contilcote, which is applied afterdrilling and cutting.

CASE PRICES (All supplied with protective coated steel panels)
Nos. denote size in inches

755
867/975
1277 white or black panel 1277 unpainted
16127
191010 191010 D

1	5	10	25	50	100	$P \& P$
$48 /-$	$46 /-$	$45 /-$	$44 /-$	$43 /-$	$41 /-$	$6 /-$
$50 /-$	$49 /-$	$48 /-$	$46 /-$	$45 /-$	$43 /-$	$6 /-$
$55 /-$	$52 /-$	$51 /-$	$50 /-$	$49 /-$	$48 /-$	$8 /-$
$45 /-$	$44 /-$	$43 /-$	$40 /-$	$39 /-$	$37 /-$	$8 /-$
$106 /-$	$104 /-$	$102 /-$	$101 /-$	$99 /-$	$97 /-$	$9 / 6$
$143 /-$	$140 /-$	$137 /-$	$135 /-$	$134 /-$	$133 /-$	$10 / 6$
$199 /-$	$197 /-$	$196 /-$	$194 /-$	$192 /-$	$190 /-$	$18 /-$

Your third hand

The ONTOS UNIVERSAL VICE is a new type of multi-purpose, multi-position light engineering vice and stand, fully adjustable for any angle and location in any desired plane. Applications are virtually limitless within its size capacity; i.e. holding P.C. boards for assembly or testing, building up modules, as a micrometer or gauge stand, as a light general purpose vice, in the chemical laboratory, or in fact for all those occasions when you could use a third hand! The ONTOS TWIN TWO-IN-ONE UNIVERSAL VICE is a unique two-in-one version of the Ontos vice, with two sets of jaws, each capable of rotation through 360 deg , of every plane independently of each other. Positive locking enables any such setting to be maintained for repetition work. Ideal for copying P.C. boards, assembly, soldering, bonding, welding, laboratory testing, etc.

ONTOS: 68/- plus P\&P 4/6.
ONTOS TWIN: £5 180 plus P\&P 6/-

ADFT CUTS, NOTCHES AND TRIMS

The Adel cuts holes to virtually any shape and size. Starting with a $7 / 16^{\circ}$ hole it then 'nibbles' to the size required, cutting cleanly like a punch and die. The cutter is so designed that it causes little strain or distortion to the edges or to the original form. With the Adel any shape or size hole over $7 / 16^{\prime \prime}$ can be cut whether it be round, square or irregular. It is ideal for notching clearances on flanges of cabinets or chassis, or for trimming undersized holes to fit parts.

- ACCESSORIES

Flexible insulated test prods, colour red or black, at $13 /-$ each with fine steel clips at the sip, opened by button on top. High speed reserting counter including bezel and socket with speed of over 40 operations per tal relay, 24 volts, with two changeovers $17 / 6$.

ideal for development
cheaper for production
PVC COATED MATERIALS. No outside paint to be scratched. PVC easy to clean. surface is scutf resistant PVC/ALUMINIUM FOR FRONT \& BACK PANELS gIVes BOTTOM gives rigidity, low cost, ease of assembly, 3 HEIGHTS OF CASE, 4 WIDTHS. 2 DEPTHS, make 24 cases with screws on top and 24 cases with screws on side, that's 48 different cases. LOW COST. Prices include chassis. MODERN DESIGN. Metal work on front and back and chassis is made' easier by aluminium with PVC cladding. PVC/steel on sides and bottom for strength. GOOD DELIVERY. Off the
shelf range
coated cases.
NOTE THE LOW COST

X			Y		Z	1 off
A P. \& P.						
A	4.5	3	6.5	$34 /-$	$3 /-$	
B	4.5	7	6.5	$40 /-$	$4 / 6$	
C	4.5	10	6.5	$50 /-$	$4 / 6$	
D	9	3	6.5	$50 /-$	$4 / 6$	
E	9	7	6.5	$55 /-$	$4 / 6$	
F	9	10	6.5	$65 /-$	$4 / 6$	
G	13	3	6.5	$55 /-$	$4 / 6$	
H	13	7	6.5	$65 /-$	$4 / 6$	
I	13	10	6.5	$73 /-$	$6 /-$	
J	18	3	6.5	$65 /-$	$4 / 6$	
K	18	7	6.5	$89 /-$	$6 /-$	
L	18	10	6.5	$107 /-$	$6 /-$	
M	4.5	3	13	$40 /-$	$4 / 6$	
N	4.5	7	13	$55 /-$	$4 / 6$	
O	4.5	10	13	$73 /-$	$6 /-$	
P	9	3	13	$55 /-$	$4 / 6$	
Q	9	7	13	$73 /-$	$6 /-$	
R	9	10	13	$89 /-$	$6 /-$	
S	13	3	13	$73 /-$	$6 /-$	
T	13	7	13	$89 /-$	$6 /-$	
U	13	10	13	$109 /-$	$7 / 6$	
V	18	3	13	$89 /-$	$6 /-$	
W	18	7	13	$107 /-$	$7 / 6$	
X	18	10	13	$138 /-$	$7 / 6$	
	Sizes in inches					

Wonders of the modern world

Teonex products, of course! Over 3,000 of them, electronic valves, semi-conductors, and now - neons and indicators too ... all performing superbly in many climates . . . all at prices that are very competitive.

How do Teonex do it? Specialisation in one field. Concentration on export only. Very strict quality control.

Sold in sixty countries, on Government or private contract, Teonex offers you a comprehensive range, with most items immediately available.

For technical speciffcations and prices, please write to Teonex Limited, 2a Westbourne Grove Mews, London W.11, England. Cables: Tosuply London W. 11.
TEDIEK IEONEX

The extensive range of Oxley Snales now include an Eyelet version (which is ideally suited for mounting I.C. Packs and other components for experimental work). They augment the well known standard range of Oxley "Snales" suitable for mounting in 0.040 inches, 0.050 inches diameter holes.

Send for technical details and samples.
OXLEY DEVELOPMENTS CO. LTD.
Priory Park, Ulverston, North Lancs, England
Tel: Ulverston 2621 Telex: 6541 Cables: Oxley OXLEY ${ }^{\circ}$ (1). Ulverston

WW- 079 FOR FURTHER DETAILS

Send for informative brochure fully explaining:

1. Why a single motor. 2. Electrical performance. 3. Wow and flutter.

MAGNETIC TAPES LTD.
CHILTON WORKS, GARDEN ROAD, RICHMOND, SURREY Tel: 01-876 7957

WW- 080 FOR FURTHRR DETALS

USED THROUGHOUT THE WORLD. SANWA'S EXPERIENCE OF 30 YEARS ENSURES ACCURACY RELIABILITY, VERSATLIT, UNSURPASSEO TESTER PERFORMANCE COMES WITH EVERY SANWA.

Model P-IBf3 7 © Modelk-30TH0 \begin{tabular}{lllll|llll}
Model P-IB \& \cdots \& £3 \& 7 \& 6 \& Modelk-30THO \& 12 \& 0 \& 0

Modelel 1.500 N \& \cdots \& f5 \& 10 \& 0

E7 \& 10 \& 0 \& ModelF-80TRO \& \ldots. \& £13

\hline 15 \& 15 \& 0
\end{tabular}

 Modela-303TRO โ11 7 Model 430-Es Cases available with most meters
pLEASE WRITE FOR ILLUSTRATED LEAFLETS OF THESE SANWA METERS

SOLE IMPORTERS IN U.K;
ODALIT ELECTRONICS MID.
47-49 HIGH STREET, KINGSTON-UPON-THAMES, SURREY. Tel:01-546 4585 WW-082 FOR FURTHER DETAILS

ENCAPSULATION -

low tool cost method for cylindrical coils and potting. Enquiries also for-

REED RELAYS SOLENOIDS COIL WINDING TRANSFORMERS to 8 K.V.A.

Solenoid SBM. $3 \frac{3}{4} \mathrm{lbs}$ to 16 lbs at $1^{\prime \prime}$

Knapps Lane, Bristol 5. 0272657228

Things are looking up

Some stereo sophisticates have long looked down their noses at combination components and at slimline speaker systems. With reason.

But those same people had better start looking up. Now. Because that's where it's happening.

The most up-to-date compact stereo center you can find, for example, is the new three-in-one MC-50, from Sansui, a combination stereo tuner/ amplifier/turntable built with all the engineering know-how that has made Sansui components the most sought-after in the world.

Designed to influence a room without dominating it, the MC-50 incorporates a 30 watt high performance amplifier, sensitive FET-equipped tuner, and advanced turntable with Automatic Return and Cut systems.
such sophisticated devices as Sansui's exclusive Acoustic Control for superior performance regardless of the listening environment.

Things are looking up in speakers too. The newly-developed Sansui SL-7 system offers true high-fidelity sound for the first time ever in a slimline system, comes in lustrous pearl or natural wood and is suitable for wall mounting.

And for a peerless tape component, move up to the new Sansui 3-motor 4-head SD-7000, a 4-track. 2-channel deck with advanced relay/solenoid controlled tape transport system.

Things are looking up in stereo. And to get the complete picture, look up your nearest authorized Sansui dealer. He'll be glad to tell you more.

Plus it's got a concealed control box housing

[^12]

Mrs T speaking. Maybe she got IT from you. Where other people have built TV into their lives, the Ts have built their lives around TV.
To the Ts the telly is law, opinion, reality, conversation, home-life itself.

They can get by without a cooker. But when the TV is out of action their world collapses. The adults quarrel, the children run wild and the teenagers leave home. We know the trouble you have with the Ts. The rude words sometimes reach us.

So we take a lot of trouble to help you keep them happy, by going to extremes to make our components as reliable as they possibly can be.

For example, our integrated circuits gc through 24 stages of quality control. This involves some 25 million device ho of testing a year. As a result the failure ra has been cut to a twentieth of what it wa three years ago.

The Ts don't thank us for it. They're too busy watching IT.

Wireless World, October 1970

VMullard Components fortroublefreeTV

WELWYN TOOLS

For Inner Core Ejection and Heated Wirestripping Miniature Soldering and Electronic Instrument Work

USE W.T.C. Wire Ejectors, LUCO Electrically Heated Wire Strippers (see illustration), Finese Soldering Needles. Box Joint Miniature Cutters and Pliers including Tip Cutting Pliers, Prineed Circuit Crimping Pliers, Printed Circuit Crimping
and Cutting Pliers, Torque Wrenches and Piercing Punches. Wrenches and Piercing Punches,
if you require quality tools If you require quality tools
ask for Catalogue WW/7O

STONEHILLS HOUSE WELWYN GARDEN CITY WELWYN GARDEN 25403

WW- 085 FOR FURTHER DETAILS

ENAMELLED COPPER WIRE

S.W.G.
$\frac{1}{2} \mathrm{lb}$. Reel
1lb. Reel
18-22
11s. 3d.
16s. 6d.
23-30
11 s . 9 d .
17s. 6d.
31-35
12 s . 3d. 18s. 6d.
36-40
15s.
24s.
41-44
17s. 9d. 29s. 6d.

Orders despatched by return of post. Please add $1 /$ - per item P. and P.

Supplied by:

BANNER TRANSFORMERS

(Dept. WW), 84 Old Lansdowne Rd. West Didsbury, Manchester M20 8WX
ww-O86 For further detalls

TRANSFORMERS COILS
 CHOKES trade enquiries welcomed
 SPECIALISTS IN
 FINE WIRE WINDINGS
 miniature transformers relay and instrument coils
 VACUUM IMPREGNATION TO APPROVED STANDARDS
 ELECTRO-WINDS LTD.

CONTRACTORS TO G.P.O., LE.B., B.B.C.
123 PARCHMORE ROAD, THORNTON HEATH, SURREY 01.6532261 CR4 8LZ EST. 1933 WW-088 FOR FURTHER DETAILS

THE VERSATILE 8200 MSI SERIES IS FULLY COMPATIBLE WITH THE 7400 SERIES AND INCLUDES:- MULTIPLEXERS, SHIFT REGISTERS, DECODERS, ADDERS, and COUNTERS.

NOW AVAILABLE FROM

 telephone QUARNDON ELECTRONICS (0332) (SEMICONDUCTORS) LIMITED

This instrument has been designed to fill the need for a very stable supply with a high.purity of waveform for precision A.C. measurements. The uhit is extremely simple in operation and is fitted with protective devices and alarms which automatically prevent any possibility of damage: it does not require any adjustments in setting up other than the output it does not require any adjustments in
voltage selection. Output current:-
voltage selection. Output current:-
1 ampere maximum for stabilisation range of $\pm 7 \%$ change of input voltage 2 amperes maximum for a stabilisation range of $\pm 3.5 \%$ change of input voltage.

THE TINSLEY Patchett Type 51058
ia available from stock NOW-at a special price of $£ 250$ while stocks lāst Send for List 215

H. TINSLEY \& CO LTD - WERNDEE HALL SOUTH NORWOOD - LONDON SE25 • 01-654 6046

Other types available with outputs of up to 100 amps and DC voltages of up to 250 Y . Send for leaflet WPUII.

VALRADIO LTD.

BRDWELLS LANE . FELTHAM MIODLESEX E ENGLANO Telephone : 01-890 4242 or 4837

WW-092 FOR FURTHER DETALS

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:
HARRIS ELECTRONICS (London)

$5 h-h-h$ don't makeanoise!

Well how much noise can a digital voltmeter make?
Some of them quite a lot.
Spillback from the input terminals of a digital voltmeter can result in errors - errors often attributed to external noise - particularly in systems measuring low level inputs.
So down with spillback and welcome to the quiet one - the Racal 9075.
Still need convincing? Take a look.

And that's not all!
Full programmability. Accuracy 0.01%. Resolution 1 part in 30,000.
10 microvolt sensitivity. Scale length 29999 (over-range to 39999).
Totally passive input. Auto-range versions available.
p.s. If this isn"t the DVM for you, Racal have six others you can choose from.

Write or phone today for a demonstration

Based upon nuclear magnetić resonance principles, the proton magnetometer is a sensitive instrument capable of locating ferrous objects at depth. This is made possible by observing the variation in beat frequency produced by different rate precession in hydrogen atoms when the earth's local field intensity is upset by the presence of ferrous materials.
All solid state, portable and ruggedly designed, the proton magnetometer will prove invaluable for "in the field" searches and exploration.
See the October issue of PRACTICAL ELECTRONICS for full theoretical and constructional details.
for all temperature measurements, PORTABLE THERMOCOUPLE POTENTIOMETER

A Thermocouple Potentiometer to satisfy the demand for a really lightweight measuring instrument. With eight quickly interchangeable scales. Reads directly either in millivolts or degrees centigrade with cold junction compensation on all ranges.
Size: $7 \frac{1}{2}^{n \prime} \times 5 \frac{1}{2}^{\prime \prime}$ $\times 3^{\prime \prime}$
Weight: 3 lb .
Price: £38.0.0
Ex-stock

RANGES: 01030 mV
25 to 50 mV
o to $1760^{\circ} \mathrm{C}$ Platinum $/ 10 \%$ Rhodium v. Platinum
0 to $1760^{\circ} \mathrm{C}$ Platinum $/ 13 \%$ Rhodium v. Platinum
O to $540^{\circ} \mathrm{C}$ Copper v. Constantan
o to $726^{\circ} \mathrm{C}$ Chromel v. Alumel
600 to $1370^{\circ} \mathrm{C}$ Chromel v. Alumel
0 to $550^{\circ} \mathrm{C}$ Iron v. Constantan
460 to $950^{\circ} \mathrm{C}$ Iron v. Constantan
Request full details from

CROYDON PRECIISION INSTRUMENT COMPANY

Hampton Road, CROYDON (Postal Code: CR9 2RU)
Telephone 01-684 4025 and 4094
WW-096 FOR FURTHER DETAILS

Suppliers of Elliott, Cambridge and Pye instruments

LEDON INSTRUMENTS LTD

76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.: 01-692 2689
E.I.D. G.P.O. APPROVED

CONTRACTOR TO H.M. GOVT.

Take the Model 4311:
Apply It. The THRULINE ${ }^{\circledR} 4311$ Wattmeter, developed for air navigational aids such as DME, ATC, and other pulsed RF systems, will also measure and monitor almost any type of 50 -ohm RF transmission. Carry It. Direct reading and self-contained, the "4311" needs no additional instrumentation nor 60 or 400 Hz line power. Just pick it up, carry it to your equipment, connect and use.
Read It. The "4311" indicates CW or FM power up to 10,000 watts accurately, forward or reflected. Push the button and the " 4311 " scales the peak of pulsed or envelope power to 10,000 watts.
Compare It. There is no other like it. Scan the basic specs below hen, put a BIRD in your hand. Send for bulletin 4311-67.

SPECIFICATIONS

PEAK PULSE OF ENVELOPE POWER MODE
Frequency Ranges: $0.45 \cdot 2300 \mathrm{MHz}$
Power Ranges: 1 W to 10 kW .
Accuracy: $\pm 8 \%$ of full scale.
Minimum Pulse Parameters: From a duty factor of 1×10.4, a pulse width of 0.4 microseconds, and a rate of 30 Dps or higher, depending on the Element selected.

AVERAGE (CW) POWER MODE
Frequency Ranges: $0.45-2300 \mathrm{MHz}$ Power Ranges: IW to 10 kW . Accuracy: $£ 5 \%$ of full scale.

PRICE

Model 4311 THRULINE
Directional RF Wattmeter £ 335 Duty Paid Piug-in Elements from E17.10 Duty Paid

ELECTRONIC LIMITED
33A HIGH STREET RUISLIP, MIDDX.
PHONE: RUISLIP 74133

Please
 tell uswhat to dowith our

 mnemopolymerics"sleeving

Fit a Helashrink Sleeve, Marker, Tube or End Cap, apply heat and in seconds you have a cost-saving encapsulation. Hundreds of our customers use these to 'shrink the cost' of cable termination; terminal insulation; connector shrouding; identification and insulation of condenser and transistor cans; general electrical insulation; mechanical and environmental protection; neat covering of wire harnesses and busbars.

With a choice of materials varying in shrinkage temperature, heat resistance and flexibility, it is possible to provide shock and vibration protection plus resistance to contaminates over a range of operating temperatures from $-55^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$, offering wide scope for application engineers.
Have you any ideas up your sleeve? To trigger you off, why not post the coupon for the free Helashrink demonstration kit.

* Mnemopolymericsthe science of heatshrinkable polymers with a built-in memoryperfected after many years of intensive research and development by Hellermann-Electric.

TEKTRONIX TYPE 547 VERSATILITY WITH AUTOMATIC DISPLAY SWITCHING

For detailed information on any of our products, please fill in reader reply card or write, telephone or telex.
Tektronix U.K.Ltd, Beaverton House, P. O. Box 69, Harpenden. Herts. For overseas enquiries: Australia: Tektronix Australia Pty. Ltd., 80, Waterloo Rd., North Ryde, N.S.W. 2113 Canada: Tektronix Canada Ltd., Montreal, Toronto \& Vancouver. France: Relations Techniques Intercontinentales, S.A. 91, Orsay, Z.I. Courtaboeuf, Route de Villejust (Boite Postale 13) Switzerland; Tektronix International A.G., P.O. Box 57, Zug, Switzerland. Africa, rest of Europe, and the Middle East: Tektronix Ltd., P.O. Box 36, St. Peter
 Port, Guernsey, C.I. All other territories: Tektronix Inc., P.O. Box 500, Beaverton, Oregon, U.S.A.

TRANSFORMERS

Over 200 types of standard transformers are stocked, some of which are shown below.

In addition, a fast prototype and production winding service ls offered.

Please send for full list of ex-stock transformers.

Please add 1/6 per Ib. for Carriage and Packing. - STOCKISTS OF ELECTROSIL GLASS TIN OXIDE RESISTORS - COMPREHENSIVE RANGE, OF INDUSTRIAL VALVES AND SEMICONDUCTOR DEVICES ALWAYS IN STOCK

LIND-AIR OPTRONICS (INDUSTRIAL) LTD.

ELECTRONIC COMPONENT DISTRIBUTORS 6-12 TUDOR PLACE, LONDON, W. 1 (off Tottenham Court Road-rear of Woolworths). Telephone: 01-637 1601 (10 lines)
Telex 27931

aveley electric LTD are sole U.K. distributors for the
complete range of Rohde \& Schwarz instrumentation

The new Rohde \& Schwarz Test Assembly consists of a Signal Generator, Frequency Controller and Power Test Adapter, and is intended for use on land mobile Transceivers using the Signal Generator SMDF. The Signal Generator delivers RF signals (CW. AM/FM) of high frequency stability and high signal-tonoise ratio, both these features being essential for testing sensitive receivers with narrow channel spacings. The Frequency Controller, in addition to improving frequency stability, functions as a counter and discriminator for frequency deviation measurement on externally applied signals. The Power Measuring Adapter includes a 20 watt attenuator, power meter and RF monitoring circuit allowing measurements to be performed using one connecting cable

aveley electric LTD

ARISDALE AVENUE, SOUTH OCKENDON, ESSEX RM 15 5SR
Tei: South Ockendon 3444
Telex: 24120 Avel Ockendon WW-102 FOR FURTHER DETAILS

SSB IS OUR DAILY BREAD AND OUR PRICES ALMOST COMPARABLE TO THOSE OF THE BAKER.

THUS IT IS UNDERSTANDABLE THAT SOMMERKAMP COMMUNICATIONS EQUIPMENT FINDS WORLD WIDE APPLICATION NOT ONLY FOR AMATEUR RADIO ENTHUSIASTS BUT:-

IN INDUSTRY-PETROL CHEMICAL \& GEOLOGICAL EXPLORATION-WATER-GAS-ELECTRICITY-TRAFFIC CONTROL-ROAD BUILDING-THE RAILWAYSFIRE SERVICES-HOSPITALS-CONSTRUCTION COMPANIES-CONSULTANTSLONG DISTANCE OVERLAND BUSES \& TRUCKING SERVICES-BORDER PATROLSYACHTING AND QUITE NATURALLY YOUR APPLICATION.

TRANSCEIVER FT- 150
FOB USS 365
FOB USS 366 (1160)

TRANSCEIVER FT-500
FOB USS 375
($\mathbf{(1 6 7)}$

TRANSMITTER FL-500
FOB US\$ 250 FOB US\$ 250
$(£ 105)$

RECEIVER FR-500DX
FOB US\$ 225
(f94,10)

> VALID FOR ALL ABOVE MODELS
> FREQUENCY RANGES $3.5 \ldots 4 O \mathrm{MHz}, 7.0 \ldots 7.5 \mathrm{MHz}, 14.0 \ldots 14.5 \mathrm{MHz}, 28 \ldots 30 \mathrm{MHz}$ OPERATION MODES-SSB. CW \& AM. Built-in Power Supply for $110 / 240 \mathrm{~V}$ AC. Linear V.F.O.

FT-250 ADDITIONAL dATA TO ABOVE

FT-150 ADDITIONAL DATA TO ABOVE

FT-500 ADDITIONAL DATA TO ABOVE

FL-500 ADDITIONAL DATA TO ABOVE

FR-500 ADDITIONAL DATA TO ABOVE

FL dx 2000B
FOB US $\$ 200$
(モ84)
(£84)

[^13]2M FM HAND \& AUTO/TRUCK TRANSCEIVERS 2 CHANNEL VHF/FM $132 \ldots 174 \mathrm{MHz}$. CRYSTAL CONTROLLED TOLERANCE \pm 0.002% 2W POWER, 45 cm BUILT-IN ANTENNA (EXTERNAL CONNECTION FOR 50Ω ANTENNA). CHANNEL SEPARATION MAX 500 kHz . SENSITIVITY $0.5 \mu \mathrm{~V} / 20 \mathrm{db} / 0.3 \mu \mathrm{~V} / 12 \mathrm{db}$. INCL. ACCESSORIES 1 EXTRA QUARTZ CRYSTAL, LEATHER CASE, EARPHONE RECHARGEABLE BATTERY CASE, EARPHONE RECHARGEABLE BATTERY; WIDTH BO \times HEIGHT $220 \times$ DEPTH
WEIGHT 1 kg .145 .0 MHz .145 .15 MHz.
MODEL TA-101FG FOB US\$ 240 (E101)

11 M AM HAND TRANSCEIVERS
23-CHANNEL AM 27 OR 28 MHZ QUARTZ CRYSTAL CONTROLLED, TOLERANCE \pm O.OO5\% 5 W INPUT PLEWER INCORPORATING SUPERHETERODYNE RECEIVER RF AMPLIFIER SQUELCH, NOISE LIMITER, CENTRE LOADING TELESCOPIC ANTENNA.
MODEL TC-760
FOB US\$ 66 (£27.17)

6-CHANNEL VHF/FM-2OW, SENSIVITY $0.4 \mu \mathrm{~V} /$ 20db. FET's CERAMIC FILTER, FINAL END AMPLIFIER PROTECTION BUILT-IN DISCRIMINATOR METER. SUPPLY 12 V D.C.
MODEL IC-2F
FOB US\$ 240 (£101)

2-CHANNEL AM $26.965 \ldots 27.265$ \& 28.500 MHz CRYSTAL CONTROLLED, TOLERANCE \pm $0.005 \% ~ 1.6 \mathrm{~W}$ INPUT POWER, HIGHLY SENSITIVE RECEIVER, NOISE LIMITER, 137 cm BUILT-IN ROD ANTENNA INCLUSIVE OF ACCESSORIES DIMENSIONS. WIDTH $90 \times$ HEIGHT $210 \times$ DEFTH 40 mm . WEIGHT 1.2 kg .
MODEL TS. 510
FOB US\$ 50 (E21)

THE ABOVE UNIT PRICES ARE ALL TO BE UNDERSTOOD AS F.O.B. CADENAZZO-LUGANO, SWITZERLAND FOR DELIVERY WITHIN 24 HOURS FROM OUR CUSTOMS BONDED WAREHOUSE FROM FINANCIALLY FINALISED ORDER.
SOKA SRL
SOMMERKAMP ELECTRONICS

16 los of high quality performance for only £65

The S51B is the answer for a low cost, easy to use single-beam oscilloscope.

Here are some of the reasons why:

- Small size-light weight $8^{\prime \prime} \times 7^{\prime \prime} \times 15^{\prime \prime} .16 \mathrm{lb}$.
- 5" flat-faced P.D.A. tube.

Bandwidth DC-3MHz

- Auto sync and trigger level control.
- Proven performance of over 20,000 S51's in use throughout the world.
- Send for full specification now !!!

Telequipment

TELEQUIPMENT,

313 Chase Road, Southgate, London, N. 14 6JJ. Telephone: 01-882 1166

Wireless World

Electronics, Television, Radio, Audio

Sixtieth year of publication

This month's cover picture, showing the latest Burndept Electronics radiotelephone in use at an airport, draws attention to the continuing expansion in mobile radio communications, the technical problems of which are discussed in the report on page 494.

IN OUR NEXT ISSUE

Loudspeaker driver units. The fundamental parameters of moving-coil speakers will be examined and some new thinking introduced by Ted Jordan.

The first of a series of three articles on the design and construction of a high-quality tape recorder.

Details of an extra-versatile tone control.

October 1970
Volume 76 Number 1420

Contents

471 The Dehumanization of Broadcasting

472 Elements of Linear Microcircuits-1 by T. D. Towers

501 A MG Radiometer \& Temperature Controller by I. 7. Kampel

505 Active Filters-14 by F. E. 7. Girling \& E. F. Good
511 Current Generators by B. L. Hart

A142 INDEX TO ADVERTISERS

ibpa

I.P.C. Electrical-Electronic Press Ltd Managing Director: George Fowkes Publishing \& Development Director: George H. Mansell
Advertisement Director: Roy N. Gibb Dorset House, Stamford Street, London, SE1
© 1.P.C. Business Press Ltd, 1970
Brief extracts or comments are allowed provided acknowledgement to the journal is given.

PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: 01-928 3333 (70 lines) Telegrams/Telex: Wiworld Bisnespres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home; \& 3 Os Od. Overseas; 1 year $£ 30 \mathrm{~s} 0 \mathrm{~d}$ ((Canada and U.S.A.; $\$ 7.50$). 3 years $K 713 \mathrm{~s}$-Od. (Canada and U.S.A.; $\$ 19.20$). Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notuty a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 202, Lynton House, Walsall Road, 22b. Telephone: 021-356 4838. BRISTOL: 11, Elmdale Road, Clifton, 8. Telephone: OBR2 21204/5. GLASGOW: 2-3 Clairmont Gardens, C.3. Telephone: 041-332 3792. MANCHESTER: Statham House, Talbot Road, Stretford, M32 OEP. Telephone: 061-872 4211: NEW YORK OFFICE U.S.A.: 205 East 42nd Srreet, New York 10017. Telephone: (212) 689-3250.

How we made thyristors a commercial proposition for consumer products

Three years ago a Mullard design team was given the problem of developing thyristors for motor speed control in washing machines and drills. Thyristors offered important advantages over conventional power control methods, but at that time, production was confined to relatively expensive industrial devices. The high unit cost was essentially due to specialist production techniques.

Two Requirements The Mullard team set about designing inexpensive thyristors, together with triggering devices, for use on domestic mains supplies. Two current handling capabilities were identified as being necessary to meet the range of
applications-6.5A for washing machines and other heavy current loads, and 2A for drills and lighter loads.

Within six months two consumer type thyristors, BT101 and BT102, had been developed for 6.5 A applications, and they were soon in mass production. Now these devices, in the TO-64 studmounted metal encapsulation, are well established.

Low-cost Plastic After further design work, a new plastic device, the BT100A, was introduced to meet the lower current requirements. Plastic power device technology is highly specialised, and only intensive effort over many years has resulted in the highly automated manufacturing techniques which ensure extremely good reliability.

Computer Testing To cope with the necessary high rate of production, computer techniques were introduced to record test results and to allow automatic grading. The testing cycle was significantly shortened by the use of high-current pulses for directly heating the thyristor crystal. This is one of the best automated methods of testing breakdown voltages at the highest junction temperätures.

The result? A range of thyristors capable of meeting all the consumerappliance manufacturers' current needs,
and of improving both the efficiency of power-control and the usefulness of the units controlled. They offer consumer product manufacturers smooth, continuous and efficient power control.

Worth it? Right from the beginning we've had everything under our control, so that we can be sure the product will give consistent service. This also enables us to relate quality with the best possible price. Something which applies across the very wide Mullard component range. Our components find applications as unexpected as Astronomy and Zoology, giving us experience in many technologies. Experience our customers now take for granted.

Mullard

 components for consumér electronicsMullard Limited
Consumer Electronics Division
Mullard House Torrington Place
London WC1E THD

 times forget to shout it outloud enough. So memorise this and act upon it:
'MECPOT'बtype MP32X wirewound trimming potentiometers from Electrosil are manufactured to military standards but sold at industrial prices.

So you get more for the same money. then there's the assurance you get from knowing "MECPOT'® won't be the cause of costly computer downtime. Because at Electrosil we stake
 MECPOT'© is just one of Electrosil's high reliability trimming potentiometers for military and industrial applications.

' MECPOT' ${ }^{\text {® }}$ Ťpe No. MP32X

- Copper cored element giving 1 W at $70^{\circ} \mathrm{C}$ - Precious metal wiper and separate gold plated wiper-return track for low electrical noise PTFE leadscrew bearing ensuring stability under mechanical shock
- Welded internal connections unaffected by your soldering process \bullet Diallyl phthalate case with excellent solvent resistance and dimensional stability - Entirely British design and manufacture ELECTROSIL LIMITED, P.O. Box 37. Pallion, Sunderland, Co. Durham.
Telephone Sunderland 71481 . Telex 53273.

Electrosi

This bigger than average contact area, spring formed for extra low smooth insertion forces, is one of the major factors that gives the Cinch $0.1^{\prime \prime}$ Modular Edge Connector its reputation for optimum reliability. In addition, available platings include 5 microns of gold on the mating surfaces with 2 microns of gold overall.
Any number of ways, from 5 to 65 , can be supplied in the basic $0.1^{\prime \prime}$ module. High precision mouldings are in glass filled diallyl phthalate, and contact termination options are mini-wire wrap, solder slot, vee-form, or flow solder.

Polarising keys can be supplied to ensure instant correct positioning. End fixes are also available, in metal with open or closed end, and in plastic with closed end.
Rapid reliable deliveries in bulk quantities are assured. We'll gladly submit quotations for your requirements or send fully detailed data sheets. Cinch 0.1 pitch 'Greenline' Modular Edge Connecior No. of ways: 5 to 65 max.
Current Rating: 5 amps (d.c. or a.c. RMS) per contact at $25^{\circ} \mathrm{C}$. Working Voltage: 700 V . d.c. or a.c. peak. Insertion Force: 8 oz. max. per way on nominal board. Contacts: Phosphor bronze.

|ய||||||ய|||||||||||||||||||||
 -

6 18 watts. Fited $3 / 32^{\prime \prime}$ bit for miniature work on production lines. Interchangeable spare bits, $1 / 8^{\circ 0}, 3 / 16^{\circ \prime}$ and $1 / 4^{\prime \prime}$ available. For 240. 220 or 110 volts. $36 /$.

E20 watts. Fitted with $1 / 4^{\circ \circ}$ bit.

 interchangeable spare bits $3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}$ $3 / 16^{\prime \prime}$ available. For $240,220,110$ volts. $36 /$ -

ES25 watts. Fitted with $1 / 8^{\prime \prime}$ bit Interchangeable bits $3 / 32^{\prime \prime}, 3 / 16^{\circ}$ and $1 / 4^{\circ \prime}$ available. Ideal for high speed production lines. For $240,220,110,24$ or 12 volts. 36/-

F 40 watts. Fitted 5/16" bit.
Interchangeable bits $1 / 4^{\prime \prime}, 3 / 16^{\prime \prime}, 1 / 8^{\circ \prime}, 3 / 32^{\prime \prime}$ avail able. Very high temperatura iron. For $240,220,110,24$ or 20 vol is. $47 / 0$. Spare bits and elements for all models and voltages immediately svailable from stock.

Complete precision soldering kit

This kit-in a rigid plastic 'tool-box" - contains

- Model CN 15 watt miniature iron, fitted Iz" bit. Interchangeable spare bits. $\mathrm{H}^{\prime \prime}$. $\mathbf{3}^{2 \prime}$.
- Reel of resin-cored solder
- Fett cleaning pad
- Stand for soldering iron

From Electrical and Radio
$=55$
to Antex.
How-to-Solder"-a mine of information for amateur and professional.

15 watts -240 volts
Fitted with nickel plated bit ($3 / 32^{\circ}$) and in handy transparent pack. From Electrical
and Radio Shops or send cash to Antex.

(A) N) T E (x)

PRECISION MINIATURE SOLDERING IRONS Antex, Mayflower House, Plymouth, Devon. Telephone: Plymouth 67377/8.
Telex: 45296. Gifo No. 2581000.Please send me the Antex colour catalogue
\square Please send me the following irons Quantity Model. Bit Size Volts Price
enclose cheque/P.O./cash value

NAME
ADDRESS

Concentrated Performance

Inter-stage and head matching transformers. Where the very lowest hum levels must be achieved, bi-limboid construction and/or heavy Mumetal cans may be specified

Power transformers in simple and bi-limboid (hum cancelling) form

Gas-tight versions available with ceramic seals.

Magnetic recording and reproducing heads for both direct recording and instrumentation purposes

THE FERROGRAPH COMPANY LIMITED

(Incorporating Wright \& Weaire Ltd.)
London Sales Office: The Hyde, Edgware Road, Colindale, London N.W.9. Tel : 01-205 2241 Telex: 27774

There is an M in Decca

It stands for Motorola and you'll see it in the Decca single standard TV chassis. It's the mark of the Motorola quality and reliability that got radio on the road and helped to put men on the moon.

Motorola is one of the largest semiconductor manufacturers in the world. Its U.K. plant is at East Kilbride. Also in Europe there is a factory in France and another to be established in Germany, whilst the Company's European headquarters are in Geneva.

It's because Motorola understands quality and reliability that their equipment has provided the essential communication links (radio and TV) between the moon surface and earth.

That too is why there is an M in Decca - it stands for reliability.
Motorola Semiconductors Limited
York House, Empire Way, Wembley, Middx.
Tel:01-9030944. Telex: 21740
Motsem Wembley.
(M) MOTOROLA

Semiconductors

太 Star products-Star award

STC is proud to announce that its entire range of Star equipment has received the award of the British Council of Industrial Design. Elegant and functional in design the Star Mobile Radiotelephone and Starphone Pocket Radiotelephone are milestones in the design of Radiotelephone products.

The rapid acceptance of Star Mobile Radiotelephones in the UK and in over 30 countries throughout the world is a forceful reminder of the importance of design in worldwide marketing success.

For further information STC Mobile Radiotelephones Limited, New Southgate, London N. 11. Telephone: 01-368 1200.
Telex:261912.

The profersional one

Here it is, Solartron's outstanding 1240.

The multimeter that's not just a toy but a real step forward in instrument technology.

Now everyone can go digital!
You get Amps, Volts, Ohms a.c. and d.c. - down to 100 micro-
volts and dual slope integration for noise rejection.

Technology apart, the 1240 has automatic polarity indication and a straightforward control layout including a single range selector and fingertip function switches. It's the easy-to-handle go-anywhere
portable multimeter.
Go digital with the new 1240. From Solartron, European leaders in digital instrumentation.

Post the magazine's reply-paid card and we'll send you our data sheet of full details.

The Solartron Electronic Group Ltd Farnborough Hampshire England Telephone 44433

Chances are you'll find precisely
the industrial tube you want in the brimar standard range without the expense of a special.

Precision Electronic Components SIGNAL LAMPS

GENERAL PURPOSE MINIATURE AND NEON TYPES

Lst Number

List Number
0.736/Col.

List Number
0.795/Col.

List Number

This fine selection of Miniature Signal Fittings includes models accepting LE.S., S.8/8, and T.1., bulbs, together with types supplied complete with in-built neon lamps, the majority of which are fitted with the appropriate resistor for use on 110 or 250 V supply. The plastic lenses on filament lamp models are available in five brilliant transparent or translucent colours, whilst the neon types are available with Red, Amber or Clear lenses and the normal 'pink' glow neon or with a clear lens and a green glow neon. The various lens and body styles give a wide choice to the designer engineer. Most models are panel mounting. fixing by rear nuts, spring washer or inbuitt spring clips, but D. 965 - 966 is a NEW madel developed for direct connection to a printed circuit assembly.

SMALL AND MEDIUM TYPES

Small and medium models accept filament lemps with M.E.S., M.B.C., C.E.S., S.E.S., and S.B.C., caps and are suitable for a wide variety of use in all types of equipment. In most cases, there is a choice of plastic or glass lenses, each type being available in five transparent or five translucent colours. Red, Amber, Blue, Green and Clear or White. Many models can also be supplied with a choice of a black moulded or chrome plated metal bezel, and/or a choice of lampholder. Fixing is normally by a rear nut to a single panel hole, with cable connection to screw terminals or solder tags. Bulb replacement is normally from both the front and rear.

Heavy duty models accept E.S., or B.C., capped lamps and are of extremely robust construction for use on machine tools and heavy plant. Lenses are normally glass but are still available in the usual five transparent and translucent colours. The bodies are produced from heavy gauge metal or heavy duty plastics and fixing is normally by bolts rather than our usual rear-body-nut in addition to our standard heawy duty models, we can also supply special sevices grades of signal fitting, all with J.S. numbering and approval and D.E.F. 5,000 etc. finishes. A full list of all Bulgin Signal La mps is available on request-see below for the appropriate brochure number.

New for Project 60

Einclair

the world's first high fidelity phase lock loop FM tuner

It has always been our policy at Sinclair Radionics to employ new and highly advanced circuitry in our products so that we can offer better performance at competitive prices. Our new F.M. tuner is the first in the World to use the phase lock loop principle. We have also incorporated such advanced features as varicap diodes for the tuning, printed circuit coils for the tuner and I.F. strip. A.G.C., A.F.C., an excellent squelch circuit to silence the tuner between stations, an Integrated Circuit stereo decoder and the option of remote control and push button switching.
The phase lock loop principle was first applied to receivers for reception from satellites because of the important improvements, in signal to noise ratio that could be obtained by this technique. In addition there were the benefits of greatly improved selectivity and sensitivity. The Project 60 tuner, as the specifications show, is unsurpassed by any tuner now available yet we are able; because of the new circuitry. to sell the product at a fraction of the price.
From the high fidelity point of view this new circuit has the very important advantage of very much lower distortion than any other tuner known to us.
A voltage controlled oscillator (V.C.O.) in a phase lock loop tuner is kept in phase with the incoming signal by a phase comparator or detector which compares the two and feeds a control voltage to the oscillator. This control voltage is the audio output in the case of an F.M. signal. Since it is possible to design a V.C.O. which has an extremely linear voltage to frequency transfer characteristic excellent audio fidelity can be readily achieved. Furthermore, the oscillator can track a signal whilst completely rejecting a nearby stronger signal which would cause interference in a conventional receiver.
In use the tuner is especially attractive because the squelch circuit gives complete silence between stations and because fine tuning is accomplished automatically by the tuner. Accurate tuning is therefore ensured.
The use of an integrated circuit for the stereo decoder part of the circuit helps to give improved performance as it enables us to use a far more sophisticated circuit than would otherwise be-possible. In particular stereo separation is excellent. Switching from mono to stereo is automatic and is indicated by a bulb.
The Project 60 tuner is supplied completely built and tested and ready
to be mounted into any cabinet you choose. It may be used with any high fidelity amplifier including of course the Project 60 amplifier systems. The remarkable selectivity and sensitivity will make it possible to receive stereo transmissions in many more areas and foreign broadcasts will also be received far more readily. It is worth remembering that the Project 60 tuner will operate well on only a few inches of wire in most areas should this be necessary.

Project 60 F.M. tuner specifications

Project 60

Laboratory standard modular high fidelity

Sinclair Project 60 comprises a range of modules which connect together simply to form a compact stereo amplifier with really excellent performance. So good, in fact, that only 2 or 3 amplifiers in the world can compare in overall performance and now the constructor has choice of assemblies with either 20 or 40 watts output per channel, with or without filter facilities.
The modules are: 1. The $Z .30$ and $Z .50$ high gain power amplifiers. 2. The Sterea 60 preamplifier and control unit. 3. The Active Filter Unit. 4.4 supply units-PZ.5; PZ.6; $P Z .7$ and PZ.8. In a normal domestic application, there will be no significant difference between PZ. 5 or PZ. 6 unless loudspeakers of very low efficiency are being used, in which case the PZ. 6 will be required. For assemblies using two 2.50 's there is the PZ. 8 supply unit to ensure maximum performance from these amplifiers. No skill or experience are needed to build your system and the Project 60 manual gives all the instructions you can possibly want, clearly and concisely. Perhaps the greatest beauty of the system is that it is not only flexible now but will remain so in the future as new additions are made to the range. A stereo F.M. tuner is next to come. These and all other modules introduced will be compatible with those already available and may be added to your system at any time. And because Sinclair are the largest producers of constructor modules in Europd, Project 60 prices are remarkably low.

	System	The Units to use	In conjunction with	Your Projoct 60 Units will cost
A	Car Radio	2.30	Existing car radio, Sinclair Micromatic	89/6
B	Simple battery powered record player	2.30	Crystal pick-up, 12 V or more battery supply and volume control	89/6
C	Mains powered record player	Z.30 and PZ. 6	Crystal or ceramic P.U. Vol. control etc.	£9.9.0
D	$20+20$ watts RMS stereo amplifier for most needs	Two Z.30s, Stereo 60 and PZ. 5	Crystal, ceramic or magnetic P.U., most dynamic speakers, FM tuner, etc.	£23.18.0
E	$20+20$ watts RMS stereo amplifier for use with low efficiency (high performance) speakers	Two Z.30s, Stereo 60 and P2.6	High quality ceramic or mag. P.U., F.M. Tuner, Tape Deck, etc. All dynamic spkrs.	£26.18.0
F	$40+40$ watts RMS deluxe stereo amplifier	Two Z.60s, Stereo 60 PZ. 8 and mains transformer	As for E	£32.17.6
G	Outdoor public address system	Z. 60	Microphone, up to 4 P.A. speakers, 12 V car battery with converter, or 45 V d. $\mathrm{C}_{\text {. }}$ controls	. 55.9 .6
H	Indoor P.A	One Z.50, PZ. 8 and mains transformer	Mic., guitar, heavy duty speakers etc., controls	£17.8.6
J	High pass and low pass filters	AFU	D, E or F as above	£5.19.6
K	Stereo F.M. tuner	To be released shortly		

How to assemble and use Project 60 modules to best advantage in the above and other applications will be found in the fully descriptive Project 60 manual included with Project 60 systems. This 48 page manual is avallable separately, price $2 / 6 \mathrm{~d}$ including postage.

Z.30 \& Z.50 POWER AMPLIFIERS

The $Z .30$ together with the $Z .50$ are both of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at full output and all lower outputs. Whether you use the Z.30 or Z.50 power amplifiers in your Project 60 system will depend on personal preference, but they are the same physical size and may be used with other units in the Project 60 range equally well. For operating from mains, for the $Z .30$ use PZ.5 for most domestic. requirements, or PZ. 6 if you have very low efficiency loudspeakers. For Z.50, use the PZ. 8 described below.

SPECIFICATIONS 12.50 units are interchangeable with 2.30 s in all applications. Power Outputs
Z.30 15 watts R.M.S. into 8 ohms, using 35 V : 20 watts R.M.S. into 3 ohms using 30 volts.
Z.50 40 watts R.M.S. into 3 ohms from 40 volts: 30 watts R.M.S. into 8 ohms, using 50 volts.
Frequency response 30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
Distortion 0.02% into 80 hms
Signal to noise ratio better than 70 dB unweighted Input sensitivity 250 mV into 100 Kohms.
For speakers from 3 to 15 ohms impedance Size $3 \frac{1}{2} \times 2 \frac{1}{4} \times \frac{1}{2} \mathrm{ins}$.

Curve shows power versus distortion for 2.30 and 2.50
2.30

Built, tested and guaranteed with circuits and instructions manual

89/6
2.50

Buitt, tested and guaranteed with circuits and instructions manual

109/6

STEREO 60 Pre amp/Control Unit

Designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout, achieving a really high signal-to-noise ratio and excellent tracking between channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs. SPECIFICATIONS

- Input sensitivities - Radio - up to 3 mV . Mag. p. u. -3 mV : coprect to R.I.A.A. curve $\pm 1 \mathrm{~dB}: 20$ to $25,000 \mathrm{~Hz}$. Ceramic p.u. - up to 3 mV : Aux. up to 3 mV .
- Output -250 mV .
- Signal-to-noiseratio-better than 70 dB
- Channel matching - within 1 dB .
- Tone controls - TREBLE +15 to -15 dB at $10 \mathrm{kHz}: \mathrm{BASS}+15$ to -15 dB at 100 Hz .
- Front panel - brushed aluminium with black knobs and controls.
- Size $8 \frac{1}{4} \times 1 \frac{1}{2} \times 4$ ins. Built, tested and guaranteed
£9.19.6

ACTIVE FILTER UNIT

For use between Stereo 60 unit and two $Z .30$ s or $Z .50$ s, the Active Filter Unit matches the Stereo 60 in styling and is as easily mounted. It is unique in that the cut-off frequencies are continuously varlable, and as attenuation in the rejected band is rapid (12dB/octave), there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The Sinclair A.F.U. is suitable also for use with any other amplifier sysiem.

Two stages of filtering are incorporated-rumble (high pass) and scratch (low pass). Supply voltage- -15 to 35 V . Current- -3 mA . H.F cut-off (-3 dB) variable from 28 kHz to 5 kHz . L.F cut-off (-3 dB) variable from 25 Hz to 100 Hz . Filter slope, both sections 12 dB per octave. Distortion at 1 kHz (35 V supply) 0.02% at rated output.

POWER SUPPLY UNITS

The units below are designed specially for use with the Project 60 system of your choice. Illustration shows PZ.5 power supply unit to left and PZ.8 (for use with 2.60 s) to the right. Use PZ.5 for normal $\mathbf{Z . 3 0}$ assemblies and PZ.6 where a stabilised supply is essential.
PZ-5 30 volts unstabilised £4.19.6 PZ-8 45 volts stabilised (less mains transformers) £5.19.6 PZ-6 35 volts stabilised $£ 7.19 .6 \quad$ PZ-8 mains transformer $\mathbb{£} 5.19 .6$

GUARANTEE If within 3 months of purchasing Project 60 modules directly from us: you are dissatisfied with them, we will refund your money at once. Each module is guaranteed to work perfectly and should any defect arise in normal use we will service it at once and without any cost to you whatsoever provided that it is returned to us within 2 years of the purchase date. There will be a small charge for service thereafter. No charge for postage by surface mail Air-mail charged at cost

at the International Audio and Music Fair, 4, Olympla
 Stand

Sinclair IC-10

the world's most advanced high fidelity amplifier

Specifications
Output: 10 Watts peak, 5 Watts R.M.S. continuous
Frequency response: $\quad 5 \mathrm{~Hz}$ to $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$ Total harmonic distortion: Less than 1% at full
output.
Load impedance: $\quad 3$ to 15 ohms.
Power gain: 110 dB (100.000.000.000 times)
total.
Supply voltage: $\quad 8$ to 18 volts.
Size:
$1 \times 0.4 \times 0.2$ inches
Sensitivity: 5 mV .
Input impedance: Adjustable externally up to
2.5 M ohms.

Circuit Description

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class $A B$ output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages, making battery operation eminently satisfactory.

Applications

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include stabilised power supplies. oscillators, etc. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick, has 5 watts R.M.S. output (10 w , peak). It contains 13 transistors (including two power types), 2 diodes. 1 zener diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is enceapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.
The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout), etc. Once proven, the circuits can be produced with complete uniformity which enables us to give a full guarantee on every IC-10, knowing that every unit will work as perfectly as the original and do so for a lifetime.

SINCLAIR

Please send $|$| NAME |
| :--- |
| for which I enclose cash/cheque |
| money order |

At the International Audio and Music Fair, Olympia, Stand

O. 16 High fidelity loudspeaker

Developed out of the revolutionary and much praised design of the original Sinclair 0.14 comes this more advanced version to meet the requirements of even greater numbers of high fidelity enthusiasts. The 0.16 employs the same well proven acoustic principles in which a special driver assembly is meticulously matched to the physical characteristics of the uniquely designed housing. In reviewing this exclusive Sinclair design, technical journals have been loud in their praise for it and it comfortably stands comparison with very much more expensive loudspeakers. The shape of the 0.16 enables it to be positioned and matched to its environment to much better effect than is the case with conventionally styled enclosures, and with its improved styling. the 0.16 presents an entirely new and attractive appearance. A solid teak surround is used with a special all-over cellular black foam front chosen as much for its appearance as for its ability to päss all audio frequencies unimpaired.
The 0.16 is compact and slim and is the ideal shelf-mounted speaker, and brings genuine high fidelity within reach of every music lover.

Specifications

Construction:

Loading:
Input impedance: Frequency response:

A sealed seamless sound or pressure chamber is used with internal baffle, all of materials carefully chosen to ensure freedom from spurious tone coloration.
Up to 14 watts R.M.S. 8 ohms.
From 60 to 16.000 Hz , as confirmed.
by independently plotted B \& K curve.

Driver unit:

Size and styling:

Price:
 Specially designed high compliance unit
having massive ceramic magnet of 11,000 gauss, aluminium speech coil and special cone suspension. Excellent transient response is achieved.
$9 \frac{3}{4}$ " square on face $\times 4 \frac{3}{4}$ " deep with neat pedestal base. Black all-over cellular foam front with natural solid teak surround.

Micromatic Britain's smallest radio

Considerably smaller than 'an ordinary box of matches, this is a multi-stage A.M. receiver meticulously designed to provide remarkable standards of selectivity. power and quality. Powerful A.G.C. is incorporated to counteract fading from distant stations: bandspread at higher frequencies makes reception of Radio 1 easy at all times. Vernier type tuning plus the directional properties of the self-contained special ferrite rod aerial makes station separation very much easier than with many larger sets. The plug-in high fidelity type magnetic earpiece which matches exactly with the output of the Micromatic provides wonderful standards of reproduction both for speech and for music. Everything including the batteries is contained within the attractively designed case. Whether you build your Micromatic or buy it ready built and tested, you will find it as easy to take with you as your wristwatch. and deperidable under the severest listening conditions.

Specifications

Size:
Weight including
batteries:
Tuning:
Earpiece:
Battery
requirements:
Case:
Controls: Tuning dial, and on/off switching by means
Price:
$1 \frac{13}{6 "}^{\prime \prime} \times 1 \frac{7}{16}^{\prime \prime} \times \frac{1}{2}^{\prime \prime}(46 \times 33 \times 13 \mathrm{~mm})$. 1 oz. (28.35 gm) approx.

Medium wave band with bandspread at higher frequency end.
High-fidelity magnetic type.
Two Mallory Mercury Cells, type R.M. 675, for long working life.
Black plastic with anodised aluminium front panel, spun aluminium dial. of earpiece plug. Available in kit form complete with earpiece. case, instructions and supply of, solder in fitted pack. 49/6.
Ready built, tested and guaranteed. 59/6.

R.S.T. valve mail order co.

BLACKWOOD HALL, 16A WELLFIELD ROAD STREATHAM, S.W. 16

SEND S.A.E. FOR LIST of 6,000 TYPES VALVES, TUBES AND TRANSISTORS

Brand New Fully Guaranteed Quantity TRANSISTORS \& DEVICES

$303 \cdot 309 \cdot 354 \cdot 356$ EDGWARE ROAD LONDON W. 2 NEW RANGE SELF-POWERED PRE-AMPLIFIERS
 IC STEREO
 FET 154
 FET $9 / 4$

 SLIM MODERN DESIGNS USING THE LATEST
 SILICON TRANSISTORS, FET's and IC's. DIN SOCKETS, ETC. fited. PUSH-BUTTON SELECTION, $\pm 20 \mathrm{~dB}$.
 Bass and treble boost and cut. All inputs provided plus TAPE RECORD and REPLAY, Specifically designed for use with PA25 and PA50 Amplifler GOLD AND SILVER FINISH, Mains oporated. Supplied with all plugs ete. AJDUSTABLE OUTPUT UP TO I VOLT. SImple mounting.
 * FET9/4. Mono with bulle-in mle. mixar. Accepts ony ceramic or erystal cartridge. Pius tuner, tape, etc. Price $\mathbb{1} 12.10 .0$ p.p. 4/ - FETIS4 StEREO.
 Magnetie cart., Inpuz, tuner, tapa, etc. Beautiful stereo sound.
 Price $\mathbf{E} 16.10 .0$ p.p. $4 / 6$.
 \star I.C. STEREO
 AET's otc. SIMPLICITY TO MOUNT-EASYTOUSE-DESIGNED FOR QUALITY, PERFORMANCE AND PRICE
 - At full power $0,3 \%$ distortion. - Ac full power- $1 \mathrm{~dB} \mathrm{I} / \mathrm{e} / \mathrm{s}$ to $40 \mathrm{ke} / \mathrm{s}$.
 - Rlse time $2 \mu \mathrm{sec}$. - Response- $1 \mathrm{~dB} \mid 1 \mathrm{e} / \mathrm{s}$ to $100 \mathrm{ke} / \mathrm{s}$. LOOK AT THE SPECIFICATIONS!
 25 WATT \& 50 WATT RMS SILICON AMPLIFIERS 25 wates Rms into 8 ohms. Suppliad with edge connector hapness PA 5012 transistor version 50 wates Rms into 3 to 4 ohms. Slze $\times 3^{\prime \prime} \times 4^{\prime \prime}$
 MU 42. Power supply for one or two PA 25 or one PA 50 PA 25 £7,10.0. PA PA 50 £9.10.0. MU 442 . All units. No coldering-just adge connactors and plugt

 BUILD THIS VHF FM TUNER

 WIDTH: PRNTED CRCUIT BAND.
FIDELITY REPRODUCTIN. MONO AIGH STEREO. REPRODUCTION. MONO AND qualisy ind rocepusion of mono fund arereror. the REAL Iound. All partis sold separatecty. DECODER CS.19.6 (FOR STEREO) 3. $3 / 8$

When in London
Call in and see the new Component Store

HENRY'S LATEST CATALOGUE SNOM
 350 pages fully dotailed and Illustrated. All sudio and electronies complete with $10 /$-value discount vouchor for use with purchases. Price $7 / 6$ p.p. $2 /$
 A must for the home constructor and professional engincer,

FREE

TEST EQUIPMENT

For Educational, Professional and Home Constructors
special prices for quantities

AF 105 50k/vole mulsimacer (illus.). Price 88.10 .0 p.p. $3 / 6 . ~$
Leather case 28% 200H 20k/vols. Price $\mathbf{6 3 . 1 7 . 6}$ p.p. $3 / 6$ Case 12/6.
$50030 \mathrm{k} /$ volt multi-meter Price 68.17 .6 p.p. $3 / 6$.
Leather case $30 /-$.

THL $332 \mathrm{k} / \mathrm{vol}$.

Price 44.2 .6 P. P .

TE65 Valve volemeter (illus.). $£ 17.10 .0$ p.p. $7 / 6$.
VM5I Transistorised AF/RF millivoltmeter. Price 832
TE20D RF generator (illus.). Price $\mathrm{E} 15 \mathrm{p} . \mathrm{p} .7 / 6$ TE22D Matching audio goneratori7 price
Ei7
P.p.
7/6. TEIS Grid dip meter.
Price $\mathrm{EI2.10.0}$ p.p. $3 / 6$.

HENRY'S STOCK EVERY TYPE OF COMPONENT YOU NEED STOCKS CONTIN A MUSTY STOCKS CONTINUOUSLY ADDEDTO-YOUR ENQUIAIE

E.A.C. DIGIVISOR mk. II

TO3 Seop (illus.). Price Eube, $\mathbf{E 3 7 . 1 0 . 0}$
p.p. 10/-

ORC27A. WEIN BRIDGE RC AUDIO OSCILLATO

PANEL METERS Complete range in stock. FREE List on request

OVER 30 PAGES OF TEST EQUIPMENT

STC TIME DELAY MODULE Idoal for experimentera,
educational projecte as well as for practical uses. Delay satustar
ares 9.12 volts. Heavy Duty Rolay Contacta. Complete with suggested applications
sheer pelce 15 . sheer.
sol.

GRAVINER FIRE DETECTOR UNIT Flre Detector Unit con exining 931 A
photo multiplier and
chit photo multiplier and
cold cathode tube.
Shock and fire Shock and fire pubof
Originally made for 674. Price mamplete with data
Brand new

SINCLAIR Z 230 75/., project 60 amp E8.10.0, P_{25} 79/6, Pz6 66.19.6, z50 $\mathbf{E 5} 9.9$ EOUIPMENT P20 6519.1

YOU CAN SAVE 25\%

 BRAND NEW AND FULLY GUARANTEED SP25 mkll $£ 11.9 .6$. AP75 $\mathbb{1} 16.19 .6$. SL65 8 E14.19.6. SL72 B C25, SL75 B C31. SL95 B E39. P. P. $7 / 6$.SPECIAL OFFER. Above supplied with
\qquad
 9TAH/C diam. add $£ 2$, magnetic 940 add $E 3$, with $G 800$ edd E7.10.0. De-luxe plinths and covers for above. Price
E8. 10.0 P. P. 6/- peck only. E22 p.p. 2/6. With G800 629 p.p. $7 / 6$.
Goldring G69
MK. 11 GL69 add 30% Mk. 11 GL69 add 30/-
Garrard Model 50 and 30001 m E9.15.0 (fitted 9TAHC diam. carts.) p.p. 7/6. Plinths/ covers $99 / 6$ P.p. $6 /$.. Also for $5 P 25$ and SL 658 as above.
Goldring G 69 fitred GBOO with plinth/cover
Goldring GL69 fisted G800 with plinth/cover and cables (usually 851). Price 639 .

HI-FI equijoment to suit EVERY POGKET

\rightarrow PA AND DISCOTHEQUE EQUIPMENT Complete range now \ln stock ready to use and modular equlpment
\star Complete systems and individual units at special low prices-choose from 100 selected stereo systems. Call in for a demonstration when in London.
*Free12-page stock/systems List No. 16/17 LOW CASH AND CREDIT/HP PRICES (Credit terms for purchases from $\mathbf{£ 3 0 - c a l l e r s}$ only.)

ELECTRONIC ORGANS

ڤMODERN ALL BRITISH TRANSISTORISED DESIGNS AVAILABLE AS KITS OR READY - VENEERED CABINETS FOR ALL MODELS * 49 NOTE, 61 NOTE SINGLE MANUAL DESIGNS ALSO TWO MANUAL 49 NOTE *KITS AVAILABLE IN SECTIONS AS REQUIRED *HP and CREDIT SALE FACILITIES
When in London call in and try for yourself. \star LET US quote for all your organ component

VISIT THE
NEW
DEMONSTRATION ROOMS
(see below)

- electronic components and equipment - electronic drgans, public address

quirements by sperry Gyroscope Co. Size: Length i" guirements by Sperry Gyroscope Co. Size: Lengt, horizontal mount and voltage. $\mathbf{\ell 2 . 5 . 0}$ each. Carr. Paid.

SPECIAL OFFER. Enclosed Relay, complete with
base. Brand New. Type base. Brand
NQ 0 New
600Ω
$24 \mathrm{v} .4 \mathrm{c} / \mathrm{T}$. Size

Type MQ508 $10,000 \Omega 100 v$. 4c/o. E5 per dozen. 12/-each. typer per dozen, $13 / 6$ each.
 E6 per d
Carr. Paid.
NEW "FIIREE." PLUG-IN NEW "F.I.R.E." PLUG-IN
RELAY.-115v. Coil $50 / 60$ c.p.s. 3 heavy duty silver change-over contacts. Very robust. 17/6. Carr. Paid.

NEW DIAMOND "H" 240 v. A.C.
RELAY,-3 heavy duty silver changeover contacts. 17/6. Carr. Paid.

DIAMOND "H', Type. BR 115 C.I.T.| Trpe. BR 15 C.I.T.-T. |
| :--- |
| IC $26 \mathrm{v}, ~$ | Completely encapsulated in heavy gauge brass case, glass sealed

cerminals, very robust. Cerminals, very robust.
SEIMENS HIGH SPEED RELAY, Type 89L. $1,700 \Omega+1,700 \Omega$ coil. New 15/- each. Carr. Paid.
G.e.C. SEALED RELAY, Type MI492. $670 \Omega 24 \mathrm{v}$. Contacts: $4 \mathrm{c} / \mathrm{o}$. Ex-chassis, but unused. 20/.. Carr. Paid.

TIME ELAPSED REGISTER. This robust and accurate instrument
funcrions on 24 V . D.C. Has a 5 digit readout plus dial reading ${ }^{\text {a }}$ 1
Total
seal of of
of
99,9999 mivs. sealed unit, chrome bezel, throsugh

ATLAS MIDGET PANEL LAMPS URAvalled for indieation purposes requiring
cive
brilliant but tiny light source. Available with brilliant but tiny light source. Availiable with
flange cap or wire ended in the following ratings: Cap
Uncapped:
24i- per dozen or boxes of 50 at E4 per box
NDICATOR LAMP HOLDERS AND
CAPS for MIDGET PANEL LAMPS (Las above) available red, green,
blue, $2 / 6$ each (complete) minimum order 4 units. personal callers welcome.

VACTRIC. Precision D.C. motor and gear head.
 gear head, type 15 H 102 (size 15). Ratio $300-1$.
\longrightarrow
 Muirhead control transformer. IBCT4b. 400 HZ . 90/IV per degree 8.10 .0
Sperry AC tachogenerator. Type 11 MGGSL $400 \mathrm{HZ} / 15 \mathrm{v}$.
$0.5 \mathrm{~V} / 1000$ RPM. Lin. Range 0 - 600 RMP. E15.10.0.
MOore Reed synchro control differential transmitter
Moore Reed synchro control transmizter. VCX 23-36-46. Quantity discounts on application.

Muirhead- $\mathbf{3}$ in. Synchro Magslip. Type E-19-E// $110 / 50$ v. $0 . \mathrm{Hz}$. Recent manufacture in original makers packing.
16 pair.

PULLIN MOTOR. Type PMIC. 28 Volts D.C. Original makers packing. A4.5.0. Carr. Paid.

SERVO POTENTIOMETERS
Precision Line (USA). Size 15.30000°. 5% 士 5% LIN.
Continuous track plat. Wipers set at $180^{\circ} .75$ - each. Carr. Paid.
Penny \& Giles. Size 15.500 n. Type Q26201-72/1. Continuous track. 75/- each. Carr. Paid.
 OK. Long Spindle. $60 /-$ each. Carr. Paid
S.T.C. Servo Potantiometor. Type B330 CT. 2500 n.

PRECISION RESISTORS

Electro-Thermal Precistor $2.4 \mathrm{~K} \pm 0.1 \%$ 10/- each. Shallcross $3400 \Omega \pm 0.5 \% 6 /$ each.
Alma $141.46 \mathrm{~K} \pm 0.1 \% 10 \%$ each
RIL Type 2. $6.666 \mathrm{~K} \pm 0.01 \% \% 20-/$ each
RIL Type $9.560 \Omega \pm 2 / 6$ each.
Painton Rotary Switch. Type 72 (to P.O. spec. RC1416). pole, 3 position, 2 bank. Offered at less than half makers

New 75-0-75 Micro.
New 75-0.75 Micro.
ammeter by Sifam. 750 ohm movement, clear reading, 5μ divisions $\times{ }^{1 / \prime}$ ": plastic front, projection ${ }^{\frac{1}{2}}$

ERIE. Ceramicon capacitor. Type CHV4IIP. 500 P.F. 30 KV .
Size 1.5 in dia, $\times 1.44$ in. Iong $15 /$ each. Carr. Paid.

SYLVANIA CIRCUIT BREAKERS gas filled

 providing a fast thermal response between 80° and $180^{\circ} \mathrm{C}$. Will withstand pressures up to $2,000 \mathrm{lb}$. sq. $/ \mathrm{in}$, rated 10 amp . at 240 v . continuous. Fault currents of 28 amps . at 120 v . or 13 amp . at 240 v . silver contacts. Supplied in any of the following opening temperatures (degs. cent.) $80,85,95,100,105,110,120,125$, $130,135,140,145,150,155,160,170,175$.$10 /$ each or $80 /=$ per dozen. Carr. Paid.

CENTRIFUGAL BLOWER BY AIR CONTROL LTD. 240 v . AC. $9^{\prime \prime}$ dia. 2,850 RPM. I/IOth HP. Ideal for organ blowing, powerful, low noise level. Ist class
condition. Photo on request. $£ 12.10 .0$. Carriage $\mathrm{f1}$.

WE WELCOME OFFICIAL ORDERS FROM ESTABLISHED COMPANIES, EDUCATIONAL DEPTS ETC

TEDDINGTON" CONTROLS STAT TYPE TBB, Adjustable
between 75° and $100^{\circ} \mathrm{C}$. A further internal adjuster takes the maximum $4 p$ to $120^{\circ} \mathrm{C}$. Circuit cuts in again at 3° below cut-out setting. 42 capillary and sensor probe. The thermostat actuates a 15 amp. 250v. c/o switch. A second single pole on/off switch is incorporated in the adjustment
mechanism. I7/6. Carr. Paid.
OMRON MICROSWITCH. Type VV-15-IA.

$$
\begin{aligned}
& \text { Single c/o } 10 \text { amp. at } 250 \mathrm{v} \text {. } 1 \frac{1}{3}^{\prime \prime} \times 8^{\prime \prime} \times \frac{g^{\prime \prime}}{3^{\prime}} .30 /- \text { per dozen. } \\
& \text { Carr. Paid. }
\end{aligned}
$$

"HONEYWELL" MICROSWITCH.

push. Ideal for vendin machines, etc
Each bank comprises a change-over ated 15 amps .240 v . A.C. The through-panel mounting assembly is h heavy polythene surmounted by black knob. Neck dia. 5_{8}^{n}. Single $10 / 0$ only 3 bank 20% each. Carr. Paid

"GOYEN" PRESSURE SWITCH. -Incorporating differential adjustment of approx. $\frac{1}{2}$ p.s.i.). A single pole 250 v . is actuated. Air inted 15 amps . dia. Projection. Air inlet tube $H^{\frac{3}{16}}$.
 25/-. Carr Paid ${ }^{2 \prime}$ plus H (air tube). "HONEY YELL" V3 SERIES. Flush microswitch 10 amp . c/o. The side panel is insulated. End-plate size: $2^{\prime \prime} \times$ in $^{\prime \prime} .30 /$ per doz. Carr. Paid.
"HONEYWELL" TYPE 23AC-NE - 15 amp . change-over switch is fitred on angled metal mount with spring loaded plastic rod operating cam. 10/- each. Carr.' Paid.

S.T.C. Midget Sealed Relay. Type 4190 CC .
170Ω. Single H.D. make. $10 / 6$ each. Carriage $2 /$ -

GARDNERS AUTO-TRANSFORMERS. $110 / 115 /$ $200 / 250 \mathrm{v}$. 1500 watts. Weight 23 lb . Few only. $£ 10.10 .0$.

GARDNERS CASTLE SERIES. Isolation transformer type CAS 934. 240v. fused. Primary 24v. $4 \frac{1}{2}$ amps. out. These units are constructed for outside use with supplied. Brand New. Makers price 7.18 .6 plug price \&4.150. P \& P 15

GARDNERS CHOKES
Type C570 0.05H 3.5 A
Yppe C549 0.1 H 2.5 A
Type C576 0.05 H 7.5 A
Trpe C527 0.5H 1 A
Type SK7486 $35 \mathrm{MH} 3 A$ A D.C.
Type F9719 25 H 60 MA

PRECISION TRIMMER POTENTIOMETERS

All Carr. Paid.
Ernest Turner $5^{\prime \prime} \times 4^{\prime \prime}$ 0-1 Ma. mete scale, handsome chrome escurcheon flush mounting A quality inserument 64.5.0. Carr. paid
"DECCO" MAINS SOLENOID. Compact and very powerful. 16 lb . pull. $\mathrm{B}^{\prime \prime}$ travel which can be increased to $\mathrm{I}^{\prime \prime}$ by emoving captive-end-plate. Overall size $2^{\prime \prime} \times 22^{\prime \prime} \times 2 \frac{3}{3}^{\prime \prime} h i g h, 27 / 6$. P, \& P, 5/-

New "Magnetic Devices" solenoid 240 v . A.C. Type 42117, 1 to 3 lb . pult, frame size $1 \frac{1}{2 \prime} \mathrm{X}$ $1 \frac{1}{4}^{\prime \prime} \times 1$ ". 20/- each. Carr. Paid.

K.L.G. Sealed Terminals. Type TLSI AA overall length $11 / 16^{\prime \prime}$, box of $100,25 \mathrm{~s}$. Type TLSI BB, overall length
$I^{\prime \prime}$. box of $100,35 \mathrm{~s}$. Carr. Paid.
-
Welwyn high value Resistors Type GA 36501. Values between 9.4 and $10.9 \mathrm{kilo-meg} \pm 1 \%$, glass encapsulated 15/-. Carr. Paid.
WELWYN RESISTORS.-Type HI2. One value only. I kilo-meg $\pm 20 \%$. $5 / \mathrm{e}$ each. (Min. order 2.) Carr, Paid.

ALL ITEMS NEW AND UNUSED UNLESS

BI-PAK=LOW COST I.C's VALUE ALL THE WAY

Bl-PAK semiconductors now offer you the largest and most
popular range of I.Cs available at these EXcLUsive LOW
PRICES. TTL Digital 74N Geries fully coded, brand new. PRICES. TTL Digital 74N Series fulty coded, brand new.
Dual in-line plastic 14 and 16 plu packages.

\begin{tabular}{|c|c|c|c|c|c|}
\hline PAK \& Type \& Description \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Price and qty.
$\mathbf{1 - 2 4}$

$25-49$}}

\hline Cader No. \& Type \& \& \& \&

\hline BP00 \& 7400 N \& Quad 2-Input Nand gate \& 6/6 \& 5/6 \& 4/6

\hline BP01 \& 7401N \& Quad 2-Input NAND Gate-OPEN COLLECTOR \& 8/6 \& 5/6 \& 4/6

\hline BP04 \& 7404 N \& hex inverter \& 6/6 \& 5/6 \& 4/6

\hline BP10 \& 7410N \& Triple 3-Input Nand Gate \& $6 / 6$ \& $5 / 6$ \& 4/6

\hline BP20 \& 7420N \& Dual s-Input NAND GATE \& 6/6 \& 5/6 \& 4/6

\hline BP30 \& 7430N \& Bingle 8-Input NAND GATE \& 8/6 \& $5 / 6$ \& $4 / 6$

\hline BP40 \& 7440 N \& Dual 4-Input BUFPER GATE \& 8/6 \& 5/6 \& 4/6

\hline BP41 \& 7441AN \& BCD to decimal decoder and N1T Driver \& $22 / 6$ \& 201= \& $17 / 6$

\hline BP42 \& 7442N \& BCD to decimal deonde (TTL O/P) \& 22/6 \& 201- \& 17/6

\hline BP50 \& 7460 N \& Dual 2-Input NAND/OR/NOTGATE
expandable \& 6/6 \& 5/6 \& 4/6

\hline BP53 \& 7483 N \& Expandable 4-Wide 2-Input NAND/ OR/NOT GATE .. \& 8/6 \& 5/6 \& 4/6

\hline BP60 \& 7460 N \& Dual 4 Input-expandable \& 6/6 \& 5/6 \& 4/6

\hline BP70 \& 7470 N \& Bingle JK Plip-Flop-edge triggered \& 81- \& 81/ \& 71-

\hline BP72 \& 7472N \& Single Master Slave JK Flip-Fiop . . \& 8/- \& 8/- \& 71

\hline BP73 \& 7473 N \& Dual Master Slave JK Fllp-Flop \& 10/- \& 9/- \& 8/6

\hline BP74 \& 7474N \& Dual D Flip-Flop \& 101- \& 9/- \& 8/6

\hline BP75 \& 7475N \& Quad Biatable Latch \& 11/= \& 10/- \& $9 / 6$

\hline BP76 \& 7476N \& Dual Master Slave Flip-Flop with preset and clear \& 11/- \& 10/- \& 9/6

\hline BP88 \& 7483N \& Four Blt Binary Adder \& 28/- \& 22/6 \& 20/

\hline BP90 \& 7490 N \& BCD Decade Counter \& $22 / 6$ \& 20: \& 17/6

\hline BP92 \& 7492N \& Dlvide by 124 Bit binary counter. \& 22/6 \& 20/- \& $17 / 6$

\hline BP93 \& 7493 N \& Divide by 164 Bit binary counter. . \& 22/6 \& 20/- \& 17/6

\hline BP94 \& 7494 N \& Dual Entry 4 Bit Shift Register \& 22/6 \& 201- \& $17 / 6$

\hline BP95 \& 7495 N \& 4 Bit Up-Down Shift Regrister \& 22/6 \& 201- \& 17/6

\hline BP96 \& 7496N \& 5 Bit shift regiater \& 24/- \& 21/- \& $18 / 6$

\hline
\end{tabular}

eries of In
Price $2 / 6$

TTL INTEGRATED CIRCUITS

Manufacturers "Fall outs"-out of spec. devices including functionsl units and Manufacturers
part functional but classed as out of spec. from the mannfacturers
specifcations . Ideal fory rigid
vearning about I.C's and experimental work, on lesting

Packs cannot be split but 20 aseorted pleces (our mix) is available as PAK UICXI

DTL DIGITAL I.C's

MDTL dual in-line package.
Type MC845P Clocked Flip-Flop
FULL DATA supPLIED WITK UNITS

BRAND NEW, FU

JLL to manufacturers'

BP709
age Operatlonal Amplifler, dual-in-itpe 14 pin pack-
age $=8$ N72709 and similar to MIC709 and $\mathrm{ZLD7090}$ This is a high performannce operat

FAIRCHILD (U.S.A.) I.C's RTL

RTL Micrologic Cirevits

Fral datand circuits
PLABTIO asser To-5 6 lead un
Pul Data and Ciruuts avaibable.

	IC AMPLIFIER	
INTEGRATED CIRCUITS		
FFikRs		TALa33, ${ }^{\text {mene }}$
fr.	and	
herer (meth Zen		
${ }^{12}$	${ }_{\text {conal }}^{\text {capal }}$	
	and rua	
band		
321, Logarithm		
	OTHER Mowourtic ${ }^{\text {a }}$	
amplifer (TO-5 8 lead) (roitage or ourrent amp.)		
	A Ewillion Miliknat,	${ }_{\text {grate }}^{\text {grat }}$
Type 701C. Ideal for P.E.		

QUALITY-TESTED PAKS 6 Matched Trans. OC44/45/81/81D......10/6 Red Spot AF Trans. PNP.....
6 White fpot RF Trans. PNP... 5 silicon Rects. 3A $100-400$ PIV 210 A Bilicon Rects, 100 PIV.
20 Cl 140 Trans. NPN 8 witchi 2 OCI 140 Trans. NPN 8 witching.
112 A 8CB 100 PIV.
3 8il 3 811. Trans. 28803 PN
 4 Hygh Current Trane. OC42 Eqvt.....
2 Power Tranaistors 1 OC26 1 OC3s. 2 Power Transiators
5 silicon Recte 400 PIV $250 \mathrm{wA} .$.
4 OC75 Tranisiors 1 Power Trans. OC20 100 V .

4 Sil. Rectas. 400 PIV 500 mA .
5 GET884 Trans, Eqvt. OC44. ${ }^{5}$ GET884 Trank, Eqvt. OC44. 2 2N708 sil. Trans. $300 \mathrm{Mc/s}$ NPN....
3 GT31 LF Low Noise Germ Trans.
6 IN91 Lil Diod 6 IN914 sII. Diodes 75 PiV 75mAn. 8 OA95 Germ. Diodes Sub-min.
3 NPN Germ. Trans. NKT
2 OC22 Power Trase. Germ..... 2 OC22 Power Trans. Germ.
2 Oc25 Power Trans. Germ. 4 AC128 Trans. PNP High Gain.
AC127/128 Comp. pair PNP/ P 32 N1307 PNP Switching Trans....
7 CG62H Germ. Diodes Eqvt. OA ${ }_{2}$ AF116 Type Trans.
 3 AF117 Trang.....
70 Oc81 Type Trans.
5 2N2926 Aril. Epoxy Trans.
7 0c71 Type Trans........
2 28701 Bil. Trans. Texas.

3 BC108 BiL. NPN High Gain Trans.
2N910 NPN Eil. TTank. VCB 100.
 30 OZ200 811. Trans.
2 GEET880 Low Noise Germ. Tra.... APN Trangs 18100 and 2 MAT120
4 Madt's 2 MAT100 4 Madt's 2 MAT101 and 1 MAT121.
4 OC4
3 AC 4 OC44 Germ. Trans. AF
3 AC127 NPN Germ. Tra
1 AC127 NPN Germ. Trans.
1 2N306 sil. PNP Trane. Motoro.
2 8il. Power Rects. BYZ13.
1 Sil .
1 8id. Power Trans. NPN $100 \mathrm{Mi} /$
2 TK201A PNP Epitaxial Planar sil. 4 Germ. Power Trana, Eqvt. OC16..
1 Unljunction Trans. $2 \mathrm{~N} 2646 \ldots \ldots . .$.
2 日it. Trans. 200Me/8 $60 \mathrm{VCh} 7 \mathrm{Tr} 3 / 84$.
${ }_{8}^{2}$ Evp712. List Epory Planar HPEE225.. 8 BY100 Type 811.
25 Sil. $\begin{gathered}\text { and Germ. } \\ \text { marked, New. }\end{gathered}$

NEW LOW PRICE TESTEDS.CR'
 NEW LOW PRICE TESTED S.C.R'S

 SUPER PAKS NEW Blipha virsito

$\begin{aligned} & \text { Pak } \\ & \mathbf{U 1} \end{aligned}$	120 Glasa Sub-min. General Purpose Germanium Diode	
U2	E0 Mixed Germanium Transistors AF/RF.	O/-
U3	75 Germanium Gold Bonded Diodes sim. OA5, OA47....	10\%
U4	40 Germanium Transistors like 0081, AC128..........	101-
U5	60 200mA Sub-min. Sil. Diodes	10\%
U6	30 silicon Planar Transistors NPN sim. B8Y95A, 2N7	-
$\overline{07}$	16 silicon Rectifiers Top-Eat 760 rad up to $1,000 \mathrm{~V}$......	
U8	50 Sill. Planar Diodes 250 ma OA/200/202	10\%
U8	20 Mixed Volts 1 watt Zener Diodes. .	-
U11	25 PNP 8illicon Planar Transistors TO-5 sim. 2 N1132.	10
012	12 silicon Rectiliers EPOXY BY126/127.	-
U13	30 PNP-NPN 811. Transistors OC200 \& 28104. .	0\%
U14	150 Mixed gilicon and Germanium Diodes.	0\%
U15	25 NPN sillicon Planar Transistors TO-5 sim. 2N697....	10\%
016	10 3-Amp 8ilicon Rectifers Stad Type ap to 1000 PIV	101-
U17	30 Germanlum PNP AF Transistors TO-5 like ACY 17-22.	10/7
018	86. Amp silicon Rectifers BYZ13 Type up to 600 PI	0/2
U19	25 silicon NPN Transistors like BCl 08	
U20	12 1.3-amp Silicon Rectifiers Top-Hat ap to 1,000 PIV..	10\%
U21	30 A.F. Germanium alloy Transistors 2C300 Serles \& OC71	10/-
U23	30 Madt's lixe MAT Series PNP Transistors.	10\%
U24	20 Germanium 1-8mp Rectiters GJM up to 300 PIV....	
U25	$253600 \mathrm{Mc} / 8 \mathrm{~s}$ NPN silicon Transistors 2 N 708 , B8Y27	
U2	30 Fast switching 8illcon Diodes like IN914 Micro-min	,
U28	Experimenters' Assortment of Integrated Circuits, untested Gates, Flip-Flops, Registers, etc., 8 Assorted Pleces....	
U29	101 amp SCB's T0-5 can up to 600 PIV CR81/25-800.	
U30	15 Plastle gilicon Planar trans. NPN 2N2924-2N2926.	
U31	20 Sil. Planar NPN trand. low noise Amy 2N3707......	10\%
U32	25 Zener diodes 400 mW D07 case mixed Volts, 3-18....	10\%
U33	15 Plastic case 1 kmp 8ilicon rectilers 1 N 4000 series....	10/
U34	30 831. PNP alloy trans, TO-5 BCY26, 28302/4.........	10\%
U35	25 Sill Planar trans. PNP TO-18 2 N2906.	10/0
U36	25 8il. Planar NPN trans. T0-5 BFY\%0/51/52.	10\%
U37	30 Sil. alloy trans. 80-2 PNP, OC200 $28322 . \ldots \ldots \ldots$.	1010
U88	20 Fast Switching Sil, trans. NPN, 400Mc/9 2N3011.....	
U39	30 RF Germ. PNP trans. 2N1303/5 TO-5.............	10\%
U40	10 Dual trans. 6 lead T0-5 2N2060	10\%
U41	25 RF Germ. trans. To-1 OC45 NKT72.	10/
4	10 VHPP Germ. PNP trans. T0-1 NKT667 AF'117.....	10/-

Code Nos. mentioned above are given zA a guide to the type of device in
the Pab. The devices themselres are nonnslly unmarked.

ADI6I
ADPV
AD 162 PNP

DNPN DIFFUSED
SILICON PHOTO. SILICON PHOTO-
DUO-DIODE TYPE DUO-DIODE TYPE

Is701 (2N2175) for Tape OUR LOWESTORS | OFR $12 / 6$ WEST PRICE |
| :--- | HIGH POWER SILI-

CON PLANAR TRANSLETOR8. TO-3.
FERRANTI ZT147
 2N3055 115T WAT SLL OUR PRICE $12 / 6$ EA.
PULL RANGE OF
ZENER DIODES ZENER DIODES
OLTAGE RA NGE
2-16V. 400 mV (DO-7
Case) $2 / 6$ ea, IIW (Top-
Hat) $3 / 6$ ca. 10W (GOHat) $3 / 6$ ea. 10 w (so-
$10 \mathrm{stud} 5 \%$. All fully
tested 8% tol. and marked.
required.
BRAMD NEW TEXAS
GERM. TRANSISTORS
Coded and Guaranteed
Pak No
T1 8 G 371 EQV .
OC71
\qquad
\qquad
\qquad

	${ }^{2 N} 3819$.... 8/-	1/6 each. Fully tested and ${ }^{\circ}$ coded TO-18 crse.	
ORP12 $8 / 6$ $60,08 P 618 /-\mathrm{ea}$.	2N 3820 20/		
		BRHCON HMGH VOL	O
PHOTO TRANS.	8Y130	$\text { 10-Amp 3-K.F. } 3000$	$388-7006$

2N2060 MPN SRL DUAL
TRANS. CODE D1699 TRANS. CODE D1699
TEXAS. Our prioe $5 /-$
each.
Please send sll orders direct to our warehouse and despatch department.
Postage and packing add $1 /$, Overseas add extra for Airmail. Minimum order 10/-CAsh
with order please.
BI-PAK SEMICONDUCTORS P.O. BOX 6, WARE, HERTS.

120 TCE NIXIE DRIVER TRANSISTOR 8 Sim
BSX21 \& C407, 2N1893
FULLY TESTED AND B8XLLY CESTED AND
FULDED ND120. $1-24$
CODED.
3/6 each. To.5 NPN.,

KING OF THE PAKS BI-PAK
guarantee satisfaction or money back

Wilkinsons FOR RELAYS P.O. TYPE 3000 AND 600 BUILT TO YOUR REQUIREMENTS - QUICK DELIVERY

 COMPETITIVE PRICES-VARIOUS CONTACTS DUST COVERS-QUOTATIONS BY RETURNERICSSON CYLINDRICAL G.E.C. \& S.T.C. SEALED ABLE. UNEALED RELAYS IN STOCK, LIST AVAIL.
IN-LINE DIGITAL DISPLAY UNIT, 28 volts $5 \times 4 \times 1$ iln. five single Unite each displaying II message in letters, symbols and numbers, c25 complete. CLOCKWORK MECHANISM. Precision made. Contacte making and brasking swice par second in sound-
proof case with thermostat controllod heating. 12 or 24 v , 18/6, post $6 /$.
VACUUM GAUGES, 2/n. ecaled. 0/30 Inches of mercury, 20/- asch, past $2 / 6$.
PRESSURE GAUGES, $21 \mathrm{in}, 60,400$ or 600 p.sil, $25 / \mathrm{m}$
each. 4 in . flante $30,60,300$ p.s.l., $37 / 6,100$ p.s.i. with each. 4in. flantse $30,60,300$ p.s.1., $37 / 6,100$ p.bi.
$0 / 30$ ins. vac., $37 / 6$, poist $2 / 6$. AMAZING VALUE, I/6ch hp G.E.C. Frastional hp MOTOA butzon reset, ensures complese prozacsion against overheasing or burn-out, $1440 \mathrm{r} . \mathrm{p} . \mathrm{m}$, tin. ohate 1 tins. long. Fully guaranteed
$97 / 6$, carriage Turner Centrifugal Pumps. Nos.9, 10 and 12. Detalls available. GEARED MOTORS. I F.D.m. or 3 r.p.m. 4 wate very powerful, reversible $24 v$. A.C. $35 /$ pase $2 / 6$, can be oper-
ated from $230 v$. with our 2010 Tranuformer. Pose $5 /$. STANDARD LEVEA 4 C lock $/ 4 \mathrm{C}$ lock $17 / 6$ each. 5 C
2 C 2 M nonolock
2 C 2 M non-lock 4 C non-lock/6C lock 20/- each.
ONE HOLE FIXING. Stop/4 C.O. non-locking 2 position 10/6. 6 C.O. lock/2 C.O. lock 3 position $17 / 6$. ROBUST AIRCRAFT PUSH SC/898 of bakollte barral type construction, with 1 inn. square 4 hole bakelite circle to provent it bains used accidentally. 5 amples $5 / 6$ each, large quantitios avaliable.

MIOM SPEED COUNTRRS $31 \times 1 l \mathrm{ln.}$, cocond with Olourew. The
following D.C. follewins
voleates
avalibile voltalias

SUB-MINIATURE Microswlech Honaywoll S.P.D.T type il SMI TN 13 size jin. x in. x tin. $8 / 6$ oach, or
JACK PLUOS. 2 Point with
scraw-on cover, $2 / 6$, pase 9 d ,
PO 201 . on headphone cord $1 /=$, pose $1 / 6$.
PLUG-IN RELAYS. Londox 4 change.over HD coneacts
MAGNETIC COUNTERS. Veader Root with zaro resee. 800 counts per minute, counting to
or 110 voles D.C. $65 / \mathrm{s}$ each, pose $3 /$.
L. WILKINSON (CROYDON) LTD. LONGLEY HOUSE LONGLEY RD. CROYDON SURREY
 adjuster, $7 / 6$ eath as illustraced. Quanstyy Rases. RECTIFIER UNITS/BATTENY CHARGES-WESTA. to 6 voles 15 amps D.C. Heavily damped $0 / 20$ ammest outpue up coil 2 lin . reads true charging currens, whieh ls resulated by ifour positlon rotary switch and sllding reajgtance. A ballast
 fle to walf. C8.10.0. Carriage 20/-

> VARIABLE AUTO TRANSFORMER. Input 230 V. 21 amp: Outpue 57.5 so 230 V. In 16 wwitch steps. 25 . $212 m p$ Outpue 57.5 so 230 V. In 16 switeh steps. 425 .
SINGEE FUSE HOLDERS. Baling Lee L356 one hole fixing, $3 / 6$ each.
 Mleronmps $0 / 1100$ 2ilin. MC. Mleroampi $0 / 1502 \mathrm{iln}$. MC. . . . $70 /$ Mlcroamp: $0 / 2002$ in. MCR., $80 / \mathrm{m}$ MIllamp $0 / 50$ 2 Hn . MC.......33/Millismpe $0 / 500$ 34/n. MC.... 4/ Amp: 50-0-50 2in. MC. .
Amps $0 / 521 \mathrm{n} . \mathrm{MC}$.
Volts $0 / 202$ in. MC.
Volst $0 / 10$ In. MC.............42/6 "YISCONOL-CATHODRAY", CONDENSERS, 002
mid. 15 kV , $=.02 \mathrm{mfd} .10 \mathrm{kV}, 10 \% .025 \mathrm{mfd} .25 \mathrm{kV}, 5 \%$. $.05 \mathrm{mfd}, 5 \mathrm{kV}$. $9 / \mathrm{cj} 0.1 \mathrm{mfd} 4 \mathrm{kV}, 9 / ; 6 \mathrm{kV}, 17 / 6 ; 0.5 \mathrm{~m} / \mathrm{d}$, 2.5 kV . $17 / 6 ; 1 \mathrm{mid}, 2 \mathrm{kV}$. $17 / 6$.

PORTABLE VOLTMETERS 30v movins coll DC precision sub standard 8 rad $5 i n$. mirror seale, in polishad wood eate
ES.I7.6, post $8 / 6 . ; 160 \mathrm{v}$ moving Irón AC/DC Bin. mirror te.17.6, pose $8 / 6$. i 160 y moving iron AC/DC 81 n . mirro CRLL TESTING VOLTMETERS $3-0-3 y$ moving coll D.C, with laads and prods, in leazher case 3 in . scale $33 /$ - ea., post 46 CAMBRIDGE PRTABL MILLIAMMETER precision srade AC moving iron 7 in . scale rantes- 50 , 100 BRIDGE MEGGER I. WIth rasistance box and leads price k 189 . Our price E 60 . TRANSISTORS, DIODES, SCR'S ZENNERS, VALVES
 2 N 1671
2 N 698

[^14]OAZ242 5.6 V rosulacor.
SX645 400 PIV 190 mi
CG $48 / \mathrm{CV} 44880 \mathrm{PIV} 30 \mathrm{~mA}$ CG50H 100 PIV $30 \mathrm{~mA} . . .$.
VR525 A-B 5.25 V 0.4 Amps.

RESISTORS:
Carbon $\frac{1}{1} / \frac{1}{2} W$
Wirewound, Multitapped
1.3 W
5.7 W
5.7W
10 W

PAPER CONDENSERS:
TV types, 500 V
Miniature
ELECTROLYTIC CONDENSERS:
Mains radio/TV types
Transistor types
Mixed high/low voltage
POLYSTYRENE CONDENSERS
MULLARD POLYESTER CONDENSERS SILVER MICA
WIRE-WOUND PRE-SET SLIDERS
VOLUME CONTROLS: Double, Mixed
NUTS AND BOLTS: Mixed lengths/types 8 B.A.
4 B.A.
2 B.A.
METAL SPEAKER GRILLES: $7 \frac{1}{2} \mathrm{in}, \times 3 \frac{1}{2} \mathrm{in}$.
V.H.F./F.M. TUNERS: Need ECC85

VEROBOARD: Cutter $+52 \frac{1}{2} \mathrm{in} . \times 1 \mathrm{in}$. Bds.

50 10/-
100 10/-

100	$10 /-$
100	$10 /-$
10	$10 /-$
20	$10 /-$
15	$10 /-$
10	$10 /-$
50	$10 /-$
100	$10 /-$

10	$10 /-$
20	$10 /-$
15	$10 /-$
100	$10 /-$
50	$10 /=$
100	$10 /=$
15	$10 /-$
5	$10 /-$
100	$10 /=$
100	$10 /-$
100	$10 /=$
100	$10 /=$
6	$10 /=$
2	$10 /=$
	$10 /=$

TRANSISTORS:

P.N.P. Untested

N.P.N.

Light sensitive (OCP71)
Light sensitive diodes
OC44 Mullard. 1st grade
OC45 Mullard. 1st grade
OC22 Mullard. 1st grade
OC25 Mullard. 1 st grade 2N378
ASY22
BY127 Rectifieps
1 N4007 Rectifiers
STC3/4 200V
Unmarked 200V
Diodes. OA81
WIRE:
Solid core, insulated yards 100 10/-
Stranded core, insulated yards 50 10/-
SOLAR CELLS:
Selenium, large 2 10/=

Semi air spaced 15 yards 10/-
CRYSTAL TAPE RECORDER MIKES 1 10/-
EARPIECES
No plug . .
With 2.5 mm plug
With 3.5 mm plug

50 10/-
50 10/5 10/10 10\% 10/-10/-10/10%
10/-10/-10/4 10\% 10\% 10/=
6 10/ 10 10/
40 10/

COMPUTER MULTI-CORE CABLES 12, $14 / 0076$ copper cores, each one insulated by coloured ald together and P.V.C. covered overall making a cable juat under $1 \ln$. dia. but quite pllable. Price $7 / 6$ per ft. Ang
length cut. Other sizes avaliable 7 core $5 /-\mathrm{ft}$., 6 core $4 /-\mathrm{ft}$., 4 core $3 / 6 \mathrm{ft}$.

AC FAN

Small but very powertul maina motor with 5 in . blades. Idea! for cooling equipment or as extractor. Silent but very effllent. 17/8, post $4 / 6$. Mounts from back or tront with 4BA

Double Leaf Contac

DISTRIBUTION PANELS
Just what you need for work bench or lab. $4 \times 13 \mathrm{amp}$
anckets in metal box to take standard 13
 anckets in metal bor to take standard 13 amp insed
plugs and on/oar switch with neon warning light. 8up plugs and on/or switch with neon warning light. Supplied complete with 7 feet of heavy 15 amp plug, plus $4 / 6$ P. \& 1 .

VARIAC CONTROLLERS

With these you can vary the voltage applied to your circuit from application therefore is to dim lishting. We offer a range of thes ex-equipment but. little used and in every way as good as new
Any not zo, wul be exchanged or cash refunded. $2 \mathrm{amp} £ 4.19 .6$ Any not so, will be exchanged or cash refunded
$4 \mathrm{amp} £ 6.19 .6 .8 \mathrm{amp} \mathrm{E} 9.10 .0$. Carriage extra

\section*{

 A beautifully made precislon switch which probably cost in excess of $\mathbf{2 2 0}$. Limited TANGENTIAL HEATER UNIT effrcient, and quiet running. Is as atted in Hoover
and blower heaters costlog 215 and more. We have and blower heaters costing 215 and more. We have
 2 and 3kW. and with tharmal sadety cut-out. Can
be fitted Into any metal line case or cabinet. Only need control swy metal line case or cabinet. Onil
except 2 kllowatts. $39 / 6$. 2 kW . Moden as above and insurance except 2 kllowatts 38

25 Amp Electrical Prograrnme

 Learn in your sleepl Have Radio playing and kettle boiling as house to come home to. All these and many other thinge you can do if you invest in an Electrical Programmer. Made by the famous Smiths Instrument Company. This is ersentially a$230 / 240$ volt mains operated Clock and a 20 amp Switch, the $230 / 240$ volt masins operated Clock and a 20 amp switch, the
 switch-oft time of which can be delayed up to 12 hours (continuously variable not stepped)

INTEGRATED CIRCUITS

A pareel of integrated circuits made by the famous Piessey Company. A once in a lifetime
ofter of Mieroelectronic devices well below cost of manulacture. The parcel contain $\overline{\text { I IC }}$ IC orlir of Micro-electronic devices well below cost of manulature. The parcel contains 8 ICs all single silicon chip General Purpose Amplifers. Begular price of which li well over \&1
each. Full oircuit detalls of the ICs are included and to addition you will receive a list of each. Full oircuit detalls of the ICs are included and in addition you will receive a list of
50 diferent ICs araitable at bargain prices 5 s . upwands with circuits and technical data 50 dimerent ICs araitable at bargain prices 58 . upwands with circuits and
of each. Corpplete parcel only $\& 1$ post paid or list and all technical data.

RE-CHARGEABLE TORCH

Neat flat torch, its unobtrusively in your pocket, contains 2 Nicad cells and bull-i-In charger. Plugs into shaver adaptor and charges from our standard 200/240 volt mains. American mdid,
$19 / 6$ each.

BARGAIN OF THE YEAR

HI FI BARGAIN

PRINCESS AUTO CHANGER

 player od due to arroatrated dexporto order we are abie
Cooner the Ballour Princesa 4 Ppeed Autochanger-a realls the machline st about oneethird of its regular
Price The Beftour has two unlque features (1) A prented erach record playing and (2) st shut oft the plek--up locks

 manual and tault Anding ohart which ha so detalled that ii neeeesarfy you could completeis
rebuilid the changer.

MAINS TRANSFORMERS
Note all these are first grade Transformers and all have Note all these are frst grade Transfo
normal $200 / 240$ volt 50 cycle primary.
Mains Transformer Type No. 56788
Mains Transformar Type No. 56788
Upright mounting, size $3 \times 21 \times 2 \mathrm{in}$. approximately.
2 secondaries one 28 volt 1 amp and the other 5.5 volt 1.5 amp. Earth screen between primary and secondaries this transformer will power a p-5 watt atereo amplieer (circult dlagram available, price Q/B), Suitable output trana-
former lis type 56787 described below. Our price 17/6. Plus $1 / 6$ post.
Meins Transformer Type No. 58733
Chassis mounting type, size approximately $3 \times 21 \times 3 \mathrm{in}$.,
2 secondaries one 230 volt at 60 mA and;other 8.3 volts 2 secondaries one 230 volt at 60 mA and ather 6.3 volts This will power a 5 watt amplifler (circuit availabla $2 / 6$).
Matching-0PT. is 56734 deacribed below. Price $16 / 8$ plus ${ }^{4 / 6}$ poat.
 There is a screen between primary and secondaries. Thls is a partner to output cransformer
Price $19 / 6$ plus $4 / 6$ post OPT. ret. 68694
Chassis mounting-gize $2 \times 2 \times 2 \mathrm{in}$. approximately 7 watcs. A puah pull transtormer for matching $2 / \mathrm{ELsA}$ or similar
valves to 15 ohm Loud Speaker. $14 / 6$ no extrs for valves to 15 ohm Loud speaker. $14 / 6$ no extra for post 18
ondered with Tranaformer 56695. .ircuit diagram of amplifer available, price 2/6.
OPT. F.f. 88787
Upright mounting, size approximately $2 \frac{7}{5} \times 2 \times 2$ in
Matching impedance 60 ohms to 15 ohms. $5 \times 3 t$. using transistor type AD140 (Circuit diagrain output price $2 / 6$). Price $8 / 6$ each, no extra for postage if ordered
with mains transformer type 56786 . With mains trans
UPY. ret. mounting, size approximately $2 \times 2 z \times 2 i n$.
Primary impedance 60 ohm, secondary impedance 8 ohm, otherwise this is as 56787 . Price 8/6

OPT, rel. 58734

Chassis mounting, aize approximately $2 f \times 2 \times 1$ in
Primary. 500 ohna centre tapped. Ratio $27 / 1.5$ watts output using twin ELL80 or samilar. Price 12/6. No extra for
HEAVY DUTY MAINS TRANSFORMER.
30 V .37 A . Primary tapped $200 / 240 \mathrm{in}$ 10v. steps. A really 30 V.
37A. Primary tapped 200/240 in 107. 8teps. A really
beautiful "C" core transformer. Made by Parmeko, impregnated and varnished. Weight approx. 50 lb ., size approx. 8 in. wide 61 in. deep and 81 in. high. Metal framed for froo standing and fitted with E.S. screen. Probably priced
$\& 40-\mathrm{Ls} 0$

50 CYCLE TO 60 CYCLE INVERTERS
For operating American instruments and other equipment made for 60 cycles $115 v$. from $230 / 24050$ cycle mains. These units have an output of 116 volts A. ©. and will handle have a reed type frequency. Theter are wrecision made and frequency is exactly 60 c.p.s. Adjustment of the frequency is by a knob on control panel. Input by 3 core output from
3 pin socket. Original cost of this in excess of $\& 60$. A 11 mited 3 pin socket. Original cost of this i.
quantity a vailable $£ 17 / 10$. each.
MAINS OPERATED
CONTACTOR
$280 / 240 \mathrm{v}$. 50 cycle solenoid
with laminated core so very silent In operation. Closes 4
circuit ench rated at 10 amps. Extremely well made by a Gxiremety weltical Company-
Overall size $21 \times 2 \times 2 \mathrm{l}$

19/6 each.

SIMMERSTAT CONTROL SWITCH for automatic temperature regulation of electric hot plates up to 3 kW W. Officlal rating 15 A 200-200v A.C. size $2 \times 1 \% \times$ Aut.
AUTO-ELECTRIC CAR AERIAL
 positive or negative earth. Supplied complet board switch. $25 \cdot 18.6$ plus $5 /-$ post and ins.
(Co

5
MICRO SWITCH
5 amp. changeover contacts. 1/9 each
$18 /-$ doz. 15 ampmodel $2 /$ es. or $21 /$-doz. MINIATURE EAR PIECE
As used with imported pookst radios. V/ each $15 /-$ doz.

15/20 AMP CONNECTORS Polythene insulated 12 -way atrlp.
$2 / 6$ each $24 /$ - doz. 13 AMP FUSED SWITCH

Made by G.E.C. For connecting watar type $3 / 6$ each 30/- doa. Metal boxes for 3 AMP SPUR UNIT By G.E.C. For connectling clock, otc., to ring main. Pull-
out fuse. Fluah monnting. Cream. $2 / 6$ each; $24 /-\mathrm{doz}$.

MAINS MOTOR

Precision masde-as used in reoord
decks and tape recorders-ideal sleo decks and tape recorders-ideal sloo New and perfect. Bnip at $9 / 6$ - Postage 3/- for Aret one then 1 -for each ono

MINIATURE WAFER

SWITCHES
2 pole, 2 way- 4 pole, 2 way- 8 pole, 3 wis 4 pole, 3 way- 2 pole, 4 way-3 pole, 4 way2 pole, 6 way- 1 pole, 12 way. All at 3/6 MINIATURE SLIDE SWITCH 3 pole change-over. $3 /-$ each $30 /=$ doz.

Where postage is not stated then orders
over 55 are post free. Below $£ 5$ add $2 / 9$.
Semi-conductors add $1 /$ post. Over $£ 1$
post free. $\$$.A.E. with enquiries please.

ELECTRONICS (CROYDON) LTD

Dept. WW, 266 London Road, Croydon CRO-2TH Also $102 / 3$ Jamworth Road, Croydon

ELECTRONIC BROKERS LTD

HIGH STABILITY DC LABORATORY POWER SUPPLY UNIT

Type NOBATRON by Sorensen of U.S.A.
MODELS
QRC-40-8A i/p $110-120 \mathrm{~V} 50 \mathrm{~Hz} \mathrm{o/p} \mathrm{0-40V}$ at 8 amps . $\mathbf{£ 1 2 5}$.
DCR-40-10A i/p 200-240V 50 Hz o/p $0-40 \mathrm{~V}$ at 10 amps. $£ 160$.
DCR-150-5A 1/p 200-240V 50 Hz o/p

These are modern slim line rack mounting units incorporating many desirable features such as overload protection etc. Carriage extra.

HIGH GRADE COMPONENTS

GALYANOMETERS (PENCIL TYPE) SPECIFICATIONS Adaptors available to suit sll types of recorders, Low Freqneacy Types
Type No.
Natural

Type No.	Naturad Frequency Response $\pm 5 \% \mathrm{c} / \mathrm{c}$	Terminal Resistance in ohm:	Gcluanometer sensitividy for a 35 cm optical path MA/cm	Price
EB/20	20°	85	0.4 Micero A/cm	£33
EB/40	40	95	0.43 Micro A/cm	¢ 33
EBP/60	60	90	$0.7 \mathrm{Micro} \mathrm{A/cm}$	233
EB/ 100	100	75	2.7 Miero A/cm	833
EB/160	160	70	$5 \mathrm{Micro} \mathbf{A} / \mathrm{cm}$	233
EB/200	200	70	21 Micro A / cm	233
EB/300	300	120	25 Miero A / cm	233
EB/450.	450	120	B0 Micro A/cm	233
Bigh Frequ	Types			
EB/1,000	1,000	90	$0.46 \mathrm{MA} / \mathrm{cm}$	233
EB/1,400	1.400	85	$0.8 \mathrm{MA} / \mathrm{cm}$	¢33
EB/1,600	1,600	85	$0.9 \mathrm{MA} / \mathrm{cm}$	£33
EB/2,200	2,200	85	$1.9 \mathrm{MA} / \mathrm{cm}$	233
KB/2,500	2,500	42	$4.8 \mathrm{MA} / \mathrm{cm}$	233
EB/3,300	2,300	45	$6.3 \mathrm{MA} / \mathrm{cm}$	£33
EB/4,000	4.000	45	$7.2 \mathrm{MA} / \mathrm{cm}$	233
EB/5,000	B,000	45	$13.3 \mathrm{MA} / \mathrm{cm}$	£33
EB/8,000	8,000	45	$22 \mathrm{MA} / \mathrm{cm}$	233
EB/10,000	10,000	45	$26 \mathrm{MA} / \mathrm{cm}$	£33
EB/20,000	20,000	90	$85 \mathrm{ma} / \mathrm{cm}$	250

(No. 5) IMPEDANCE

 volts monitored and variables. Automatic detector senaitivivity control.
Bugged pan-climatio construction. Measedres Litrom 1 micront to 100 H . 0 frome 1 pF to 100 mileroF and resistance from 0.1 obm to 100 M ohm.
Price.
BRAND NEW HIGH CAPACITY ELECTROLYTIC CAPACITORS at a fraction of original prices by MALLORY or SPRAGUE

Oapacty	Workino	Surge	
itcofarads	Votage	Voltage 3	\%
5 5,000	${ }_{55}^{25}$		
7,750	10	15	-
20,000	80	45	-
25,000 25,000	${ }_{50}^{25}$		/-
25,000	50	65	-

MUTUAL
 INDUCTANCE BOX

TYPE R. 7005

Specification Range: $0-11.100 \mathrm{mH}$ in 0.002 mH divisions. Accuracy: $\pm\binom{ 0.3 \times 0.012}{\mathrm{M}} \%$ where $M=$ value of mutual inductance in mH set on the box. Frequency range: $0-2.5 \mathrm{Kc} / \mathrm{s}$ for all decades except $\mathrm{X1}=0-15 \mathrm{Kc} / \mathrm{s}$. Maximum current: 0.5 A for decades 1 A for variometer (both primary and secondary wingings). Case : Polished teak. List price $£ 65$. Our price $\mathbf{5 1 7 - 1 0 - 0}$.

delay line

Type MON 2484 D 2 micro second 4K obm. Lexgth: $2 \ddagger$ in. $x \&$ in.

ACTUATOR
By Engllsh Electric. Type 4519 Mk. 1. D.C. Motor AE 1560 Mk. 1 By Englig
28 V 3A. 500 r.p.m. m. Intermittent rating.
£16. P. \& P. \&. NEW MINIATURE RELAYS
 INDUSTRIAL LIGHT SWITCH
By Buradept. Model BE 290 . Transistorised unit Reliay o/p
Sensing head uses Mulard DCP 71 . Mains input. Dimeneions 71 in.

PROGRAMME SWITCH

 TRANSISTOR AMPLIFIER
TRANSISTOR AMPLIFIER
TYpe TA- $1 G$ by R. B. PULINT. \&5. P. \& P. $5 / \%$
CODER SHAFT POSITION
By Datex Corporation. Type $4166-7003$ " "T" Bcan Code National 815. P. \& P. St- Dismeter. 1 in. $\times 2 k$ in. long. Servo Mounting.

MULTILINE COMPARATOR
By Venuer. Type T8 39. Transistorised unit. As new condition. 25 .
ANALOGUE-DIGITAL CONVERTER
By United Aircraft. Type 6-8PT.C. Model 13-BNRY.B. 13 Digit encoder Grays code. Length 3 ino, diameter 12 in . Servo ACCELEROMETERS
Model LA 2 3C Potentiomentric + or- 10 G operating Voleage 30 V .
Nominal realstance 17.5 K and Model $\mathrm{LA} 23 \mathrm{C}+$ or -100034 V , Rel 20 K. Price £26. P. \& P. $0 / 0$
TYPE SE 55/A Range + or - 10 226. P. \& P. $0 / 0$
TPE F by G.E.C. Up to 1,000 G. Ceramic type giving o/p of 23 mV . supplied e/w technical leatet. Weight 14.8 grammes. 28A stud Many other types in stock
MAGNETIC AMPLIFIER
By Pullinkearlott. Type R603-1A and R601-1A-B. 26.10 .0 .

MOTORS

LOW TOR QUE HYSTERESIS MOTOR MA23. Ideal for instrument chart drives. Extremely qulet, use ful in areas
where amblent noise levela are low. Hugh starting torque enable where amblent noise levels are low. High starting torque ensble
relative hlgh inertia loads to be driven up to 6 -oz/in. Avallable to the following speeds and ranges: 240 V 50 Hz . $15 \mathrm{r}, \mathrm{p} . \mathrm{m}$. It r-p.m.

 /20 r.p.m., 25/- each. P. \& P. 3/

SYNCHRONOUS MOTORS
Model S 71 r.p.h. and $1 / 60$ r.p.h. Solf starting complete with gearing cart in. dia. in. long, 200/250V 50 Hz . Now condition Ex

DATA TRANSMISSION-SYNCHROS
A selection from our wide range

	Type	Maker	Foliape	Hz	Price
Torque Recelver	$11 \mathrm{TR}_{48}$		$90 / 116 \mathrm{v}$		${ }^{2} 78^{8} 100$
Torque Recelver	ACN 1550	Smith	26,12.3	400	7100
Torque Recelver	117R48	Pullin	$90 / 115 v$	400	7100
Control Tranaform	11CT4A	Mairhead	90\%	400	9100
Control Transforme	08CT4	Muirhead	26 v	400	10
Control Transformer	110T4.	8perry	90 v	400	
Control Tranaform	110X4*	Pullin	26v	400	610
Control Transformer	11CX4	Ketay	$115 / 90 \mathrm{v}$	400	
Torque Transmilter	ACs/aE	Emith	115/90\%	400	610
Torque Transmitter	11 MD 3	Muirnead	267	400	
Torque Transmitter	15M1B1	Muirbead	115/9	400	

8 DIGIT UNIVERSAL COUNTER TIMER MODEL 1037-5

By well knowr American maker in excellent condition. Scale 99,999,999 with illuminated units annunciator and auto-positioned decimal point indication. Display width 7 in . Range $0-50 \mathrm{MHz}$ (D.C. Input) ; $10 \mathrm{~Hz}-50 \mathrm{MHz}$ (A.C Input). Gate Time: 1 micro sec. to 10 sec . in decade steps. Accuracy: ± 1 count \pm time base accuracy. Sensitivity: 100 mV , RMS. Attenuator : Stepped factors of 1,10 and 100 . Impedance : 100 K ohm per volt with overload protection. Dimensions: Height $5 \frac{1}{4} \mathrm{in}$., Width $17 \frac{1}{2} \mathrm{in}$. Depth $17 \frac{3}{4}$ in. Weight: 42 lbs. Power Supply $\mathbf{2 0 0}-240 \mathrm{~V} 50 \mathrm{~Hz} 125 \mathrm{~W}$. Price £450. Carriage extra.

HYSTERESIS REVERSIBLE MOTOR

Incorporating two colle. Each coll when energised will produce
opposite rotstion of output shaft. $120 \mathrm{~V} 60 \mathrm{~Hz}, 1 / 10 \mathrm{r} . \mathrm{p} . \mathrm{mm} 30 / \mathrm{l}$ opposite rotation of output shaft. $120 \mathrm{~V} 60 \mathrm{~Hz}, 1 / 10 \mathrm{r} . \mathrm{p} . \mathrm{mm}$, $30 /=-$
each. P. \& P. $3 /$ -

HIGH PRECISION MAINS MOTOR 3 Phase-I Phase
$230 \mathrm{~V} 50 \mathrm{~Hz} 1 / 8 \mathrm{~h} . \mathrm{p}$ continuonty tated $230 \mathrm{~V} 50 \mathrm{~Hz} 1 / 8$ h.p. continuonsily rated
$3000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Mado by Croydon Engineer ing. Model KA 60 JFB. Sultable for capitan motor. size 8 in. Long, $4!$ in
diameter with 6 in. diameter flane and d jameter with 6 in. diameter flange and
4 fixing holes. $\& 4 / 10 / 0$ each. P. \& P. $25 / \%$

GENERATORS

L.P. BIGNAL GENERATOR SGB8

Frequency range 5 c/s to $125 \mathrm{kc} / \mathrm{s}$ In ave bands. Accuracy $\pm(1 \%+1$ e/s). Sine wave distortion less than 1% at iW. Output Sine wave 0 to 1 W into 5Ω. Square wave 0 to som pk.pk. Output. Bmpedance raries up to Bk o depending on output level setting.
iniae and fall times 0 to 0 75 $\mu \mathrm{s}$ maximum. Power requirements Elie and fall times 0 to $0.75 \mu s$ maximum. Power requirements
 ing. Price $£ 75$ carriage extra.

D.C. TACHOGENERATOR

 Type $9 \mathrm{c} / 10616 \mathrm{v}$. at $1000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Drive shaft dia.$£ 16 / 10 / 0$.

OSCILLATORS SIGNAL GENERATORS (1z) CRYSTAL CONTROLLED OSCILLATOR STC. 16-LXU-52A
Mk. II. $0-20 \mathrm{MHz}$. Sweep facilities. O/p attenuation 0.70 dB Mk. II. $0-20 \mathrm{MHz}$. Sweep facilities. O/p nttenuation 0.70 dB .
Complete with power supply unit $14-\mathrm{LXU}$ - 2 B Price $£ 85$ (Mi04) NEW AUTOMATIC CYCLING OSCILLATOR ACOS 1 MrE. Range ${ }^{5}$ Hz.5 KHz. 8weep mode 1 Cir/ming. ofp. $0-10$. (IIOS) LOW FREQDENCY DECADE OSCILLATOR D-838-A
 (H109) DECADE O8CLLLATOR D-850-B. Range $1 \mathrm{~Hz} \cdot 111 \mathrm{KHz}$,
Max. O/p 2 W lato $8 \mathrm{~K} \Omega$ above 20 Hz . $0 / \mathrm{p}$ 0-150V..... Price $£ 45$
 (H18) R.C. OSCLLLATOR AND AUTOMATIC FREQUENCY
MONTOR-SMITHS, Oscillator range $10 \mathrm{~Hz}-100 \mathrm{KHz}$. Price 275 (I130) AUDIO FREQUENCY O8CILLATOR-PYE. Range 20Hz.
O/p. 0-20V. Mains operated...............................ice \&15 (I49) GAUGE OSCILLATOR M 700L SOUTHERN INSTRUMENTS.

Cus gignal generator caz18. Range $85-30 \mathrm{MHz}$. Ofp Facilities inciude crystal calibrator, modulation........ . . Price £85
 (188) SIONAL GENERATOR CT 480 8ANDERS. Range 7 KHz
12 KHz . O/p. $0- \pm 50 \mathrm{~V}$. Attenuation range -10 to +100 dB . (I79) WOBULATOR GM $2877 / 02$ PHTLLIPS... Price $£ 85$ (142) NOISE GENERATOR CT 410 WAYNE KERE Range: $15 \mathrm{~Hz}-160 \mathrm{MHz}$. Timer $0-8$ mins. Diode current 0 . dB . At
BmA to +13 dB FM/AM SIGNAL GENERATOR. Type SG. B3D. ADVANCE. Kange $4 \mathrm{MHz}-100 \mathrm{MHz}$. O/p. 1 microv-100mV. Sweep faclity and line (IIOS) BIGNAL GENERATOR Mod. 68A TAYLOR. Range 100 KB in 4 steps............... O / p. and attenuation 0 to -80
A.C. MOTOR GENERATOR

\square ए $ए$ — $ए$

49-53 PANCRAS ROAD, LONDON, N.W.I. Tel: 01-837 778I/2. Cables: SELELECTRO TELEX NO. 267307

MEASURING INSTRUMENTS
AND RECORDERS

(R3) SINGLE PEN. DC MHLLIAMMETER. 0-1mA. Chart width 34 in . speed 1 in . and $6 \mathrm{in} / \mathrm{hr}$. Alarm contactis, Mating power

(R8) 2 PEN. DC MLLLAMMETER $0-15 \mathrm{~mA}$. Cbart withe 8 \&

 ouive plick up.. $0-100^{\circ} \mathrm{C}$ based on 0 -78mV F8D ualims Thermo-

 (R11) CAMBRIDGE TEMPREATVRE RECORDER SMGOLE

 anut. Chart dia. 11 in . Bpeed: 1 rev. /fr. Benativivity 50 miero Amp.

 Muitipoint. Generanal purpoes slow respone sultable Temperature,

 novement. chart whith 7 in in ipeed: 1 li.fhr. Clook wrik ditve

 In. speed: $1 \mathrm{in} / \mathrm{h}$ har Clock work drive. Teminal Resistance 1,687 (R5) gingil PEM. sERYORTTER MODEL PWS. Char wiath

 pens. Malna supply ampuliers to sint.

 (58) sivale pen. DC niliammeter. $0-2 \mathrm{~mA}$. Chirice ewith

 (R37 Foster strip ciart recorder trpe 3490\% firee
 depth 13 in. Weight 80 lo.......................... Frice $\varepsilon 80$

ALL TYPES OF PRECISION POTENTIOMETERS IN STOCK

TRANSITROL 2 POSITION INDICATING TRANSITROL ${ }^{2}$ POSITION MPERATURE CONTROLLER BY ETHER TYPE 990

couple bresk protection. Coppe com.
 ill at $100-260 \mathrm{~V}$. Control switching and Thermocouple connections all at back of case. Our prioe £22-10.0. List price £49. New

METERS

(1517) VIRRON ELECTROMETER. Mod. 33B. Electronic Inst. (1514) DH METER, CAMBRTDGE (506) AC/DC VOLTMETER. WISTON ETECPR Pre $£ 12.10 .0$ (I506) AC/DC VOLTMETER. WINSTON ELECTRONIC. Voltage
range -7.5 to $15 \mathrm{~V} .$. Price 212.10 .0 (IL08) FLUX METER Type 15A/AF. TL.G. ELECTBIC. Range
$96-12$ gauge, In wooden caben (1504) VERNIER POTENTIOMETER. Type 4383. A. TLNSLEY. (I513) WATTMETER. S 87 . SANGAMO WESTON. Range 0 -15W;
 Range 3raV-300mV: -10 to +3 dB , complete with probe. Flat esponse $30 \mathrm{~Hz}-30 \mathrm{MHz}$. Reading inmVs. dB. (1121) PORTABLE POTENTIOMETER. Type L192826 CAMBLWOE. Fitted with standard cell and thermometer. . Price £45
(I128) POTENTIOMETER AND GALVO. Type P. 3 -CROYDON
PKECISION PKECISION. Accuracy .0001 V
O123) 8MDE WIRE POTENTIOMETER. OAMBRIDGE. Voltage range $0.01 ; 0.1: 1.0$. Fitted with Galvo. Key. Absolute voltage @132) DECADE INDUCTOMETER. Type 230A. DAWE. Range (JL14) MILLIVOLTMETER. Type 264 . ATRMEC. Range 0.300
$\mathrm{~m} V$. Complete with amplifers and 75Ω probe........Price $£ 20$ miV. Complete with amplifers and 75Ω probe......... Price $£ 20$
(ロ111) VALVE' VOLTMETER. Type 712. AIRMEC. Range AC (II19) ABSORPTIO Hanger. 200 mplerow WW
 (II12) STANDARD FREQUENCY CHANGER. Type 203. AIRMEC.
 (194) DYNOMETER. Type 3206, TINSLEY Price 225
Price $£ 45$ (195) AC/DC VOLTMETER. Mod, 32. TURNER, Range Foltage wooden 220Ω /Voit. 5 in moving coll with mirtor seales, in (198) PHASE METER. Type K150. SOUTHERN NNST. $0-100^{\circ}$

 (I06) MICR OAMMETER. CA 138. Range 0-60 microA. . Price 210 (181) FREQUENCY METER 1176-A. GENERAL CAMBRIDGE (I80) AC/DC VOLTMETER KHz. Input 25-150V..... Price $£ 30$ (IS0) AC/DC VOLTMETER. S72.18. SANGAMO WESTON. Range
Voltage 0 -300V.......................................ice 828.10 .0 (199) FREQUENCY METER. ENGLISY ELECTRIC. Range $380-$ (172) TUNING FORK FREQ. METER. 4 volts. 2TS. 3877 . SMITHS Fitted with clock $1-12$ hrs. Freq. 50 eycles.......... Price $£ 25$
 (I519) PRECISION PHASEMETER. Model 901-MAXSON. Feclities include: phase lag. phase lead; fine, mediam and coarne
reference; balance and multiplier; meters...............ice f85 (I6) DYNAMOMETER. MI.P. Voltage range 0 -土4V; $0-200 \mathrm{~V}$. 5t mirror scale. PSD 220V at 400 Hz in wooden case with carry-
ing handle...ice 235 (IIR) R \& Q METER, Type $2 \theta 8$ XTE. BMTH. Reference and
 (190) VALVE VOLTMETER. Type 6. MARCONI. Range 0-150V.
Mains operated.....................................ice $£ 5.10 .0$ (ISO) AC/DC METER. Model 44. EIL. Range Voltages: 0.2007. $4 \mathrm{~W}:-10$ to $+19 \mathrm{~dB} . \ldots . . .$. . Current $1 \mathrm{~mA} \cdot 10 \mathrm{~A}$. Power 1 mW (I43) VERNIER POTENTIOMETER-CAMBRIDGE. Accuracy
0.00001 V. Standard Cell woltage aelection............ Price $£ 55$

AVOTRANSISTOR
 \section*{ANALYSER CT 446}

A portable direct-reading instrumen measurements in the grounded emitter contguration. Hattery prower unit 1.5 to 10.5 V in 5 steps. Base current $0-1 \mathrm{~mA}$ $1-40 \mathrm{~mA}$. Collector current 250 mA .
gize: $15 \$ \times 9\} \times 5$ ins. Weight with

MINIRACK MULTICHANNEL
OSCILLOGRAPH. MUR I2 crt, oscllloscope with recordligg facilitiea crt. oscllloscope with recording facilities,
The instrument consiat of two units.
The trolley mounted recording unit couprising 12 crts. with their reapective
controle and a 120 mm . continvous feed camera. The electronic console contalns the appropriate amplifiers, timee marker
time base, sind associated power supplles
 Price and full details on application.

MINIATURE PRECISION

POTENTIOMETERS BY BOURNS consisting of pretentiometer, knob and readout dial in one extremely compact
 Available in $100 \mathrm{~K}, 20 \mathrm{~K}, ~$
SK,
Resigtance
tolerance
5%.
Accuracy Resistance
corselation of dial reading to $0 / \mathrm{P} 0.5 \%$.
Weight 0.6 oz., overall length $111 / 16$ in..,
 diameter ${ }^{\text {t }}$ in. New price 87.16 .0
Our price $£ 4 / 10 / 0$. P. \& P. 2/6.
Amplifier X 0.1 to X 1000. Modale A3 LFF Amplitier X 0.1 to $X 100$. 2140/A1-B1 1000 V True RM8 Conyerrer. Frice $£ 175$. $2140 / \mathrm{A} 3-$
$\mathrm{E150}$.
NUMICATORS
Cold cathode gas-illed, in-line 0-9 digital display tubes. Long life

CLOSED CIRCUIT TELEVISION SYSTEM

 We can also offer a TV pattern generntor by Tideo Circult, Model Good condtheo...............................Rrice \&45 MICOVAC ELECTRONIC TEST METER
 volte FSD with facillty for centre zero measurement. A.C. volts,

 P.8. O. adaptor. Metal case. Prige \&40. Carriage extra.

SPECTRUM ANALYSERS Marconi. OA. 109A. Spectrum ADalysers. extension unit $100 \mathrm{~Hz}-3 \mathrm{M} \mathrm{Hz}$. Display continuously varlable up to 30 K Hz .
ipectrum scan time varihble from 0.1 t . Apectrum scan time variable from 0.1 to
30 secs. Long peraistence $\mathbf{G B}$ tube. Complete with trolley and power PLATINUM RESISTANCE PROBES
 SET OF MEASURING INSTRUMENTS
Brand new high grade moving coil
meters. Ideal suto-electrice and other seneral D.C. applications. 8upplled with 3 shunts in neat attache type
 D.C. Lhear mirgor geal 3 mA FgD. Ammeter unshunted 7.5 mA PSD. $\begin{array}{lll}\text { Used with } 3 \text { shunts to give ranges of } \\ 0-0.3 \mathrm{~A}, & 0-0.75 \mathrm{~A}, & 0-1.5 \mathrm{~A}, \\ 0-7.5 \mathrm{~A},\end{array}$ $0-15 \mathrm{~A}, 0-30 \mathrm{~A}$. The ammeter can alo, be used as
Scale fength 83
mma. Accuracy Case moulded plastic. Meteraize 41% in. $\times 1 \frac{\mathrm{~m}}{} \mathrm{l}$. Let price
E 5.18 .6 . P. $\&$ P. $30 /=$.
FENLOW LOW FREGUENCY' ANALYSER . Hz to K .06: 0.3: 1.5: 7.5: $37.5 \mathrm{~Hz}^{\text {. Price } £ 275 .}$

CHOPPRONOUS

CHOPPERS
Base B-9. Coil $6.3 \nabla ., 50-60 \mathrm{~Hz}$, Propor-
tion of time contacts are che Aso available 100 Hz and 400 Hz . Price $88 / 10 / 0$. P. \& P. $5 /$

INKWELL OPERATION
20 and 40 channel Multipen (Projecting supply. Chart width of in. Electro magnet pens. Voltage range $6-125 \mathrm{~V}$.
Price $£ 85$.

VIBRATION EQUIPMENT Goodmans Vlbration Control Amplitior E501 Goodmang Power Osclllator $5 \mathrm{~V} . \mathrm{A}$ Savage 'G' Amplifiers.
 savage Acceleration Control Unit. soci, $12 \mathrm{H} x$-10K Hz . Iaput Pye Ling. Power Amplifer. B0V.A......................... PHOTOMULTIPLIER VMPII/44 (CV 23I7) by 20th Century Electronice DARK current $0.004 \mu \mathrm{~A}$. $£ 9 / 10 / 0$. E.M.I. 6097 and 20th Century OV 2317 20/10/O. P. \& P. $5 /$. LINEAR THYRISTER CON-
TROLLED LIGHT DIMMER 600 w . module. Ideally suitable for photolitood or upeed controller, etc. Will mount into atandard
Our price 58/6. P. \& P. $3 /-$

AUTOMATIC CRYSTAL
THICKNESS SORTING
MACHINE Pully automatio dice gauging and sorting system, eliminates all
manual operations. This instrument is of extreme interest to manufacturers of semiconductors. It is offered tn good condition at a quarter of its original list price. It is suitable for the soruing of germanium and pieces an, hour. Our price $£ 450$. Further information available on request. Com-
plete with manual and spares.

All orders accepted subject to our trading conditions a copy of which may be inspected at our premises during trading hours or will be sent on application through the post.

TEGHNIGAL TRAINING in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Now available-Colour T.V. Servicing

Examination Students coached until successful

NEW self-build radio courses

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments. All under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

EXCLUSIVE

DIGITAL CLOCK MECHANISM

- Made especially for Lasky'e by famous - Maker
- 12 hour alarm
- Auto "sleep" switch
- Hours, minutes and seconds read-off
- Forward and backward time adjustment - Silent operation synchronous motor - Shock and vibration proof

This unique DIGITAL CLOCK is now available EXCLUSIVELY FROM LASKY'S in chassis form for you to mount In any housing that you choose. All settings are achieved by two dual-concentric controls at the front including: ON-OFFAUTO and AUTO ALARM. "sleep" switch. 10 minute division "click" set alarm (up to 12 hour delay). time adjustment. Ultra simple mechanism and high quality manufacture guarantee reliable operation and long life.
The sleep switch will automatically turn off-any appliance-radio. TV. light, etc.. at any pre-set time up to 60 min . and in conjunction with the AUTO setting will swhich on the appliance agaln next morning.
The clock measures $4 \frac{3}{4} \mathrm{~W} \times 1 \frac{3}{4} \mathrm{H} \times 3 \frac{3}{8} \mathrm{D}$ (overall from front of drum to back of switch). SPEC: $210 / 240 \mathrm{VAC}$ 50 Hz operation: switch rating 250 V . 3 A . Complete with instructions. HUNDREDS OF APPLICATIONS. COMPLETE WITH KNOBS
LASKY'S PRICE £6.19.6
p\&pa/6
SPECIAL QUOTATIONS FOR QUANTITIES

LASKY'S TM5

Another new look pocket multimeter from Lasky's providing top quality and value. The "slimline" impact resistant case-size $4 \frac{3}{3}$ in. x $2 \frac{1}{2} \mathrm{in} . \times 1 \frac{1}{\mathrm{i}}$., fitted with extra large 2 Z in . square meter. Readability is superior on all low ranges: making this an excellent instrument for switch. Ohms zero adjustment. Buff finish with crystal clear meter cover.

- DCN: 3-15-150-300-1, 200 at EK ohms/
- AC/N: 6-30-300-600 at $2.5 \mathrm{~K} \mathrm{ohms} / \mathrm{V}$
- DC Current $0-300 \mu \mathrm{~A} 0-300 \mathrm{~mA}$
- Resistance: $0-10 \mathrm{~K}$ ohms, 0.1 M ohms
- Decibels: -10 dB to 16 dP ,

LASKY'S PRICE 49/6 P\& P $2 / 6$

LASKY'S TM1

The first of Lasky's new-look top value meters, the TM. 1 is a really tiny pocket multimeter providing "big" meter accuracy and performance, selection switch. Beautifully designed and made impact resistant black selection white and metallic red/green figuring ohms zero tant black

- DC/V: 0-10-50-250-1000 at 1 K ohms $/ V$
- DC CURRENT: $0-1 \mathrm{~mA}, 100 \mathrm{~mA}$
- Decibels : $-10+22 \mathrm{~dB}$
- Complete with test leads, battery and instruction

Size only $3 \frac{1}{4} \mathrm{in} . \times 2 \frac{3}{8} \mathrm{in} . \times 1 \frac{1}{4} \mathrm{in}$.
LASKY'S PRICE 39/6 P\& $^{2} 2 / 6$

TMK 200 METER KIT

This meter kit by TMK offers the unique opportunity of building a really first-class precision multimeter at a worthwhile saving in cost. The cabinet is supplied with the selector in position. The highest quality components and 1% tolerance resistors are used throughour. Supplied complete with full constructionat, circuit and operating instructions.
20.000 O.P.V. Multimeter. Features 24 measurement ranges with mirror scale. Large $3 \times 2 \mathrm{in}$. meter. Full scale accuracy. OCV and curfent: $\pm 2 \% \mathrm{ACV}: \pm 3 \%$, resist ance: $\pm 3 \%$. Special 0.6 V OC range for transistor circuit measurements. SPECIFICATION
$-0 C V: 0-0.6-6-30-120-600-1.200 \mathrm{~V}$ at 20K/OPV. ACV: 0-6-30-120-600-1.200V
at $10 \mathrm{~K} / \mathrm{OPV}$. 0.0 C current: $0-0.6-6-600 \mathrm{~mA}$. Resistance: $0-10 \mathrm{~K}-100 \mathrm{~K}-1 \mathrm{M}-10 \mathrm{M} /$ otims (58-580-5.8K-58K at mid-scale). Capacitance: 0.002-0.2 $\mu \mathrm{F}$ (AC CV range). Decibels: $\mathbf{- 2 0}$ to +63 dB . © Output: $0.05 \mu \mathrm{~F}$ blocking capacitor. Uses two 1.5 V (U) type) batteries. Black bakelite cabinet-Size $5+\times 37 \times 1 \mathrm{lin}$. Complete with test lead

KIT PRICE ONLY 92/- P\& P//6 $^{\text {O }}$

Audio-Tronics 71

Send your name and address now to receive immediately the new 1971 edition of LASKYS famous Audio-Tronics pictorial catalogue. Larger and more comprehensive than ever before. Packed with 1000's of items for the Radio and Hi.Fi enthusiast. Electronics Hobbyist, Serviceman and Communications Ham. Covers every aspect of Hi-Fi fincluding Lasky's budget Stereo Systems and Package Deals). plus Lasky's amazing monev saving vouchers wo

> 207 EDGWARE ROAD, LONDON, W. 2
> 33 TOTTENHAM CT. RD, LONDON, WIP 9RB. 109 FLEET STREET, LONDON, E.C.4.
> 152/3 FLEET STREET, LONDON, E.C.4.
> HIGH FIDELITY AUDIO CENTRES
> 42-45 TOTTENHAM CT. RD, LONDON, WIP 9RD.
> 118 EDGWARE ROAD, LONDON, W.2.
> MAIL ORDERS AND CORRESPONDENCE TO
> 3-15 CAVELL STREET. LONDON. E1 2BN

TELEPHONES. Two-tone grey. Brand new boxed. Standard GPO Dial Telephones (black) with internal MULLARD MX 115 GM TUBE with holder. Plat app 300 volte, $30 /=$ ea. P. \& P. $8 / 6$,
PHOTOMULTIPLIERS. EMI 6097 X at $\mathrm{EB//10/-}$ ea, TRANSISTOR OSCILLATOR. Variable frequency
 new. Bozed. $11 / 6$ ea.
RACAL Diveralty unlt. $£ 10$ each. Carrlage $£ 1$.
PYE RADIO TELEPHONES. Rangers $3 / 10$ and 8/20A finals. Prices less ralves from E5. Complete, tested and working from c8. Callers please
CRAMER TIMER 28V DC Sweed $1 / 100$ th sec \&o sweep,
B0 secs. 4^{*} dial. Remote control stop/atart reset \&6.10. 60 secs. 4^{*} dial. Remote control st
 G.E.C. ${ }^{4}$ pole $\mathrm{c} / 0$ 8/12v operation 180
contacts. Brand new. Boxed. $10 /$ each.

Minlature STC Plus in ralays Plastio duat cover, 4 pole o/0 $7.5 \cdot 18$ v. operation. 185 Ohms $8 /=$ each.
S.T.C. sealed 2 pole o/0, 2,500 ohms, (okay 24 v) 2/6 ea.: 127-7/-es.
CARPENTERS Dolarlsed Single pole $0 / 020$ and 83 ohm coll as new, complete with base $7 / 6$ ea. Single pole
c/0 $680,1,110$ and $1,570 \mathrm{obm}$ coll. As new $0 / 6$ ea. SIngle pole o/o 14 ohm coll $6 / 6$ ea.; Slngle pole $/ / 0.45 \mathrm{ohm}$ coll 616 ea.
Brand New. Single Pole c/0 (type SA2). 2×1200 ohms.

COLVERN Brand new. $5 ; 10 ;$ s0; 100; $250: 600$
ohmsit $1: 2.5 ; 5 ; 10 ; 25 ; 50 \mathrm{k}$ ail at $2 / 6$ ea. Speclal Brand
 sealed. $3 / 6 \mathrm{ea}$.
INSTRUMENT 8° Oolvern. $5: 26: 100$ ohms, 7/- ea, BOURNE TRIM POTS. Solder lugs b, 10 \& 25 K at 3/- each: PIns 10; 20; 50; 100; 200; 250; 500 ohms; 2.5 and 20K at 7 , each

ALMA precision reasitors $100 \mathrm{~K} ;{ }^{400 \mathrm{~K} ;}{ }^{107 \mathrm{~K} ;}$; 008 K ; $0.05 \%-7 /=$ each.
DALE heat sink resistors, non-jnductive 50 watt. Brand new. 18 ohms $/ 6 / 6$ ea. 8.2 K 8/6 ea. Excellent dummy load.
K.L.G Sealed terminals. Brand new boxed. Type
TLSI AA fil per 100 : type TLSI BB $30 /$ per 100 . TLSI AA fl Der 100: type TLSI BB 30/- per 100.
Wheatatone BrIdge by TINSLEY type 1138 260. CAPACITORS
MRIE feed through ceramicons 2200 pf-9d. ea.
 ELECTROLYTICS. Brand new, $260 \mathrm{mfd} 70 \mathrm{~V} 4 / 6$ ea.; $2000 \mathrm{mfd} 16 \mathrm{~V} 7 /$ ea.
EHT 2 mfd 5 KV . Brand new $\mathbf{E 2}$ each.
VISCONOL EHT. Brand new $0.000525 \mathrm{kV}, 16 / \mathrm{ea}$. E.H.T. 0.02 mfd 8 KV . $6 /=$ ea.; $0.5 \mathrm{mfd} 5 \mathrm{KV}-11 /=$ eß.; $0.5 \mathrm{mfd} 2.5 \mathrm{KV} 7 /$ ea.
DhOTOC Lu

PHOTOCELL equivalent OCP $712 / 6$ esk
Photo-resist type Clare 703 . (TO5 Case) B URGESS Mlcro 8 witches Vs 5990 . Brand new $2 / 6 \mathrm{ea}$. HONEYWELL Sub-min. Microswitches type 118Ms-T. Brand new. 3/6 ea.
PANEL mounting lamp holders. Red. Brand new 2/3 ea.
TRANSISTORS BO 114-NPN Low nolse high gaif audlo, etc.: BO 110-PNP General purpose $200 \mathrm{mc} / \mathrm{s}$. Ex brand new equipment. Guaranteed perfect Good
lead length. $2 / \%$ ea. MINIATURE SPEAKERS 15 ohm
Brand now. $7 /=$ each. P. \& P. $2 / 6$ each.

SCALERUCLEONIC INSTR UMENTS

SCALER type 1009 by Dynation. Sultable Beta/ gammaicounts. Built in test signal. Callhrated adjuat-
able discriminator. Read out 2 decade neons and able discriminator. Rear out 2 decade neons and Carr. 30 /-.
As above but with resettable counter $£ 8$ ea. Carr. $80 /$ Few only RATEMETER type 11018 Complete with bultit in EHT supply. Separate metering EHT and Count. ERT a alillable for external equipment 0 to 8 kv . As new ens. Carr. $30 /$ Portable GEIGER COUNTER in haversack, late
model. complete with vibrator, P. U. and batteries model.
100 CHANNEL PULSE HEIGHT analyger type ECKO PULSE HEIGHT ANALYSER trpe N101 625. Carr. $30 /$-.

CINTEL Transistorised Nucleonic scaler with adjustable discriminator. 8 meter dlaplay 0-9 giving count of 10 to the 5. New Condition. Now ONLY $£ 18$.
PUULSE Generator type 1147A. ©8. Carr. 80/-

SPECIAL BGS Fairchlld Blicon Epltaxial Tran-
gistor. NPN
80 BC110. Guaranteed Brand New. Fuil Length leads. NOT refects. Perfect. Brapec. Sheet supplied. $1 /$ eadh, minimum order K . P. © © P. $2 /$. Also SGS Fairchild sillcon Epltaxlal Trangistor
type BCI14. NPN low nolse high gann. $3 / 6$ ea. type BC114. NPN low nolse hish galn. $3 / 6$ ea.
ki5 per 100 . AMPEX VR7000. New heads, drum, ceramlo tips, rotary transformer. In superb conditlon. 6700,

TEST GEAR

TEKTRONIX OSCILLOSCOPES

E.M.I. WMIX DB- 24 megs each chan

SOLARTRON 7118. 2 D.B. $\mathrm{DC}-9 \mathrm{mo} / \mathrm{s}$. In fine SOLARTRON $648 \mathrm{DC}-15 \mathrm{molg}$ NOW only E 55 .

cosso HARTLEY 18A DB. E20.
All carefuly ohecked and tested. Carrlage 80/- extra. TF 956 (CT44) Audio Frea. Wattmeter 415 . Carr. 10/ TF 886 Marnilcation Meter $£ 45$ Carr. 11 . TF 144 G 81gnal Generator, Serviceable. Clean $\mathrm{E} / 5$
 TF $1348 /{ }^{\text {' }}$ ' X^{\prime} ' Band gon. $\operatorname{E35}$ Carr. $80 /-$

OLARTRON
Pume generator POS $100 \mathrm{C} 50 \mathrm{C} / \mathrm{AN}-1 \mathrm{mo} / \mathrm{e}$ \&18 Carr. E 1

Stabulised P.U.AS 516 \& AS 517 \&3, and 66 Corr. 10/ Calibration Unit trpe AT208. 225 . Carr. $80 /$ Process Response Analyser. Fine Condition E250
Osellator type 0 101. $\mathbf{E 3 0}$. Carr. 30/-.

avo
AVO TRANSISTOR ANALYSER-E40 only. Teatmoter No. 1 \& 14 Carr, 15 /CINTEL
Wide Raige Capacitor Brldge $£ 25$ Carr. $16 /$.
Slue and Pulse Generator type 1873 \& 25 Carr, $13 / 0$
 Counter type 885.6 decades. Bricht Vertical display
gate facilites, Very good condition E25. Carr. $30 /$ gate facilities. Very good condition 625 . Carr. 30/. Klystron Power supply 698 E E25 Carr. $\mathrm{E}^{2} 1$
OSCILLOSCOPE CAMERA. Shackman 25 ft . Exp 270 frames. Times from $1 / 250$ to 1 secs auto. Dalmere F1. ocal 1 zin . with standard 4 in . to Sin . fitting. $\mathrm{C3O}$.
BRADLEY ATTENUATORS $0 / 500 \mathrm{meg}$ cycles.
$0 / 12 \mathrm{db}$ and $0 / 120 \mathrm{db}-\mathrm{C} 25$ per pair. HEWLETT PACKARD. Attenuators $0 / 500$ meg ycles. $0-182 \mathrm{db} .1 \mathrm{db}$ step
BECKMAN MODEL A. Ten turn pot complete with dial. $100 \mathrm{k} 8 \%$ Tol 0.1%-only $52 / 6$ ea.
E.H.T. Base B0A in Polystyrene holder with cover. ZENITH E,H.T. Teater, with Probes, Metered $0-3.5 \mathrm{kv}$. 625 Carr. 80%.
DVM type BIE 2116. 650.
DENCO S band low noise traveling Wave amplifier 225. Carr. 301 -

FREQUENCY Meter LM 14. Modulated version of SWEEP OSCILIATOR CT202 70 to $10 \mathrm{mc} / \mathrm{s}$ sweep. Standard mains input. Can be used with any coope for TV, FM. Allgnment. In fline condition with lead. Instructions etc., 625 . Carr. \&1.
SPECIAL FURZEHILL V200A SPECIAL. FURZEHILL V200A Valve millivolt
meter, 10 mv. to 1 kF C20, Carr. \&1.
FURZEHILL Valve Voltmeter type $378 B / 2$. Range FURZEHILL Valve Voltmoter type $978 \mathrm{~B} / 2$. Range
 each. P. \& P. 10%
 me/s with pr
HEWLETT PACKARD 5° oscilloscope tube with built-ln graticule $10 \times 10 \mathrm{~cm}$. Length $16 \mathrm{i}^{\circ}$. Brand new. DISTRIBUTED AMPLIFIER type $2 \mathrm{C} / 850 \mathrm{c} / \mathrm{s} 100 \mathrm{mo} / \mathrm{s}$ Gain 800 . 630 each.
Gain 300 . 130 each.
DAWE Wide Range osclilator type 400 A .20 ca to $20 \mathrm{kc} / \mathrm{s}$ DiNe wave. 500,600 and 2000 ohm. Fine condition. $E 20$.
Carr, $80 /$.

PAIGNTON ATTENUATORS 0.1 db , to 100 db . In 3 decades, 800 ohm, 10^{*} rack mounting, 620 ea. Carr, $15 /$. PISTON ATTENUATOR in carrying case. 30-140 mo/s calibratod $0 / 70 \mathrm{db}$. 10 ea . Carr. $£ 1$

Preciston THERMISTOR by YSL. 100 k . at $25^{\circ} \mathrm{C}$. | Range |
| :--- |
| for each degree over entire range. Brand new, $30 /=$ each. | baud ly on

CLAUDE LYONS Main Stabilizer. Trpe 7000C. 58 amps. 840 . Carriage at cost. ROBAND. P.U. Type M39A. Stabilized 300 volts 2 amps. $k 22$ inc. carriage.
HOLGATE 6 channel Event recorder, 1 in . or 101 in . inches per second, Bize $4 \times 5 \times 8 i n$. Excellent condition. 820.

HEWLETT PACKARD Disital printer complete with KELVIN HUGHES 4 channel recorder with amplifers, kilo.
 19n. Rack Mounting CABINETS 6ft. hlfh 18 in , deep. side and rear doors. Fully tapped, complete with bsise and wheels. \& $12 / 10 / 0$ Carriace at cost.
Double Bay complete with doors. Fine condition, $£ 25$. Carrlage at cost.
MULLARD Transistortsed Analogue to Disital ConSUNVIC DC Amplifer type DCA1. Thermo-couple. CINTEL Unlversal Counter 830 . Carr, 80%

One only MARCONI TF867 standard slgnal Generator. In. fine condition. $\mathbf{1 2 0}$. Carr, at cost. One only MARCONI TFI $44 \mathrm{H} / 4 \mathrm{~S}$. Bignal Generator. $10 \mathrm{kc} / \mathrm{s}$ to $72 \mathrm{MC} / \mathrm{s}$. Superb condition. $\$ 165$ only.
ISOLATING TRANSFORMERS 240 V in 240V 7 KVA out. As new. $\mathbf{c 2 5}$ ea. Carr. $\mathrm{\varepsilon 2} / 10 /-$
DIECAST ALLOY bozes. Size $\times 21 \times 14 \mathrm{in}$. Druled endd for Bealing coar socket. 8 compartmenta link holes
 table auto paper feed. BMV each direction. $£ 500$.

4 DIGIT RESETTABLE COUNTERS, 1000 hmm . coll. Slize $1 \frac{1}{} \mathrm{t} \times 4 \mathrm{in}$. As new, by sodeco of Geneva, $\$ 2 / 10 / 0$ each.
As above but 850 ohm. 63/10/0 ea.
METERS-Model ${ }^{9700}{ }^{9705}{ }^{25.0 .25}$ microamp. Scaled. SANGO 60 micro amp $3^{\prime \prime}$ round maters. EI brand
new radition equip. \&1 ea. P. \& P. $8 / 6$.
 AO to 120 F tapped $80-0 \cdot 60700 \mathrm{w}$. Brand new. \&o ea. 75 WATT Constant voitage transformer. 195 to 255
volto-240v out. 30/• each. P. \&. P. b)-.
AMERICAN Auto sted-down transformer ${ }^{2}$ kW.

 Matching contact cooled bridge rectifier $7 / 6$ each.
 As new. 9/6 ea. P. \& P. s/- в.
 $0.75 \mathrm{~A}: 5 \mathrm{\nabla} 3 \mathrm{~A}$. AB new. 63 ea.
Gardners/Gresham. Potted $450-400-0-400-450 \quad 180 \mathrm{ma}$; $0-4-6.38 \mathrm{~A} x 2 ; 0.4-6.84 \mathrm{~A} ; 0-4-5 \mathrm{~V} 8 \mathrm{~A}$. In origina! bozes 64 ea. incl. postage
Parmeko 6.8v $2 \mathrm{amp} \times 4-22 / 6$ each.
Gard/Parm/Part. $450-400 \cdot 0-400-450,180 \mathrm{MA} .2 \times 6.8 \mathrm{~F}$. G3 ea.
ADVANCE Constant Voltage Trans. $1 \mathrm{~kW}, \mathrm{c} 20$.
 Large quantity LT, HT, EHT transformers. Your requirements, please.
TRANSISTOR EHT INVERTORS, 12 Volt in , O/D
 supplled. Brand new at $£ 6 / 10 /=$ es. P. \& P. $5 /$. Panel switches DPDT ex eq, 2/6 ea.; DPST Brand new
3/6 ea.; DPST twice, brand new 5/- es. SPECIAL. 813 valves. Brand new, boxed $\leqslant 2 / 10 / 0$.
 MOTOR DRIVEN SWITCHES. 4 to 24 volt, 6 Dole.

PRECISION continualiy rotarable stud switches. single pole. 80 way. can be otacked if required. 23 ea, PRECISION rotary stud switches 2 pole L2W size $2^{\prime \prime}$
Bq.e,
to
Bhaft. $[2 / 10 / 0$ ea. Bq.e ${ }^{\text {B }}$,

Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order
FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd units, etc., at 'Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day.

7-9-11 Arthur Road . Reading . Berks . Tel. No. 582605 (rear Tech. College) 300 yds. east of 22 Sun Street • Reading 65916

PACKS OF YOUR OWN CHOICE UP TO THE VALUE OF 10／－WITH ORDERS OVER ${ }^{4} 4$

ANOTHER SCOOP FOR BI－PRE－PAK

JUST RELEASED FROM STOCK
These are brand new genuine surplus stocks，marked and guaranteed to full makers specification and not remarked rejects．

NE808A Single $8 \mathrm{I} / \mathrm{P}$ Nand Gate TTL

NE818A Dual 4 I／P Nand Gate TTL
$\begin{array}{ll}\text { NE825A } & \text { D．C．Clocked J－K Filp－Flop TTL } \\ \text { NEB40A } & \text { Dual } 4 \text { VP Exclusive OR Gate TTL }\end{array}$
NE855A Dual 4 Power Gate TTL
NE870A Triple 3 I／P Nand TTL
SN7430
SP616A Dual 4 Nand Gate DTL
SP631A Quad 2 I／P Gate Expander DTL．
SP670A Triple 3 Nand Gate DTL
SP806A Dual I／P Expander TLL
SP808A Single $8 \mathrm{I} / \mathrm{P}$ Nand Gato TL
SP816A Dual 4 I／P Nand Gate TL
$\begin{array}{ll}\text { SP825A } & \text { D．C．Clocked J－K Flip－Flop TTL } \\ \text { SP840A } & \text { Dual } 41 / P \text { Exclusive OR Gate TLL }\end{array}$
$\begin{array}{ll}\text { SP840A } & \text { Dual } 4 \text { I／P Exclusive OR Gate TTL } \\ \text { SP855A } & \text { Dual } 4 \text { Power Gate TTL }\end{array}$
$\begin{array}{ll}\text { SP855A } & \text { Dual } 4 \text { Power Gate } T \mathrm{IL} \\ \text { SP870A } & \text { Triple } 31 / P \text { Nand } T \mathrm{~L}\end{array}$
$\begin{array}{ll}\text { SP870A } & \text { Triple } 31 / \mathrm{P} \text { Nand TTL } \\ \text { SP880A } & \text { Quad } 21 / P \text { Nand TTL }\end{array}$
NE500K Video Amplifier
NE501K Video Amplifier 40 MHz
NE806J Dual 4 I／P Expander TTL
NEBOB」 Single 8 I／P Nand Gate TL
NE816J Dual I／P Nand Gate TTL
NE825J D．C．Clocked J－K Flip－Flop TTL

NE840」	
NE8555J	Dual 4 I／P Exclusive OR Gate TLL

NE855」 Dual 4 Power Driver TTL
ST620A J－K Flip－Flop DTL
Suffix：$A=$ DIP 14 toad $\quad K=10$ lead T0．5
$J=$ Flat Pack

NEW TESTED \＆GUARANTEED PAKS
$8794 \quad \begin{aligned} & 1 \text { Na007 Sit．Rec．Diodes．} 1,000 \text { P．I．V．} \\ & 1 \text { amp．Plastic．}\end{aligned}$ 10／＝

B81	10	REED SWITCHES MIXED TYPES LARGE \＆SMALL	10／－
B89	2	5 SP5 LIGHT SENSITIVE CELLS LIGHT RES． 400Ω DARK $1 \mathrm{M} \Omega$	10／－
B92	4	$\begin{aligned} & \hline \text { NPN SIL. TRANS. AO6 }=\mathrm{BSXLU} \\ & 2 \mathrm{~N} 2369.500 \mathrm{MHz} .360 \mathrm{~mW} \\ & \hline \end{aligned}$	10／－
893	5	GET113 TRANS．EQUIV．TO ACY17－21 PNP GERM．	10／－
896	5	＇2N3136 PNP SIL．TRANS．TO－ 18 HPE100－300 IC， $600 \mathrm{~mA}, 200 \mathrm{MHz}$	10／－
B98	10	X8112 \＆XB102 EQUIV．TO AC126 AC156，OC81／2，OC71／2，NKT271． ETC．	10／－
899	200	CAPACITORS，ELECTROLYILLS． PAPER，SILVER MICA，ETC． POSTAGE ON THIS PAK $2 / 6$.	10／－
H4	250	MIXED RESISTORS POST \＆PACKING $2 /$－	10／－
H7	40	WIREWOUND RESISTORS MIXED TYPES \＆VALUES．POSTAGE $1 / 6$	10／－
H8	4	$\begin{aligned} & \text { BY127 Silicon Recs. } 1000 \text { P.I.V. } 1 \text { amp } \\ & \text { Plastic. Replaces tha BY100 } \end{aligned}$	10／－
H9	2	OCP71 LIGHT SENSITIVE PHOTOTRANSISTORS	10／－

Return of the unbeatable P． 1 Pak．
Now greater value than ever
Full of Short Lead Semiconductors \＆Electronic Components，approx．170．We guarantee at least 30 really high quality factory marked Transistors PNP \＆NPN，and a host of Diodes \＆Rectifiers mounted on Printed Circuit Panels．Identification Chart supplied to give some information on the Transistors．

Please ask for Pak P．1．Only 10／－
2／－P \＆P on this Pak．
Make a Rev．Counter for your Car．The ＇TACHO BLOCK＇．This encapsulated block will turn any 0－1 mA meter into a perfectly linear and accurate rev．
counter for any car．

FREE CATALOGUE AND LISTS for：－

ZENER DIODES

 TRANSISTORS，RECTIFIERS FULL PRE－PAK LISTS \＆SUBSTITUTION CHARTMINIMUM ORDER 10／．CASH WITH ORDER PLEASE．Add 1 ／－post and packing per order．OVERSEAS ADD EXTRA FOR AIRMAIL．

P．O．RELAYS

VARIOUS CONTACTS AND COIL RESISTANCES
NO INDIVIDUAL SELECTION．
POST \＆PACKING 5／－

FRE르 A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

 DEPT．B，222－224 WEST ROAD，WESTCLIFF－ON－SEA，ESSEX TELEPHONE：SOUTHEND（0702） 46344

INTEGRATED CIRCUITS

CAANY OTHERS IN STOCK
RCA 3005
CA 3005 wide band R.F. Ampl.
300 mW diss
CA 3012 wide band ampl. isomw CA 3020 Audo power ampl
STC 9301 B Digital dual 4 imput gates 27/-
$\begin{array}{lr}\text { MIC } 9301 \text { B Digital dual } 4 \text { imput gates } & 86 / \mathrm{F} \\ \text { MIC } 709.1 \mathrm{C} \text { Linear operational ampl. } & 190 /-\end{array}$ Plesser. SL402A 2.5W $42 / 6$ SL403A 3.5 52/6
VALVE VOLTMETER Measures $\mathrm{AC} 100 \mathrm{mV} ; 20 \mathrm{c} / \mathrm{s}$ to $100 \mathrm{mc} / \mathrm{s}$,
DC 50 mV to 100 V , multiplier extends ac range to 1.5 kV . Balanced input and centre-
zero scale for DC. AC up to 100 MHz . zero scate
E.10.0.
SPECTRUM ANALYZER TYPE OA
 SIGNAL GENERATOR TF 801 D
$10-485 \mathrm{MHz}$, sine and pulse modulation
0.1 microvolt to 600 mV output, price $10-485 \mathrm{MHz}$, sine and pulse modulation
0.1 microvolt to 600 mV output, price
on application.

VIDEO OSCILLATOR TF 885A \& ${ }^{885 \mathrm{~Hz}}$ to 5 MHz and $25 \mathrm{~Hz}-12 \mathrm{MHz}$ respectively, fine and square wave output up to
$31 v \mathrm{E} 55$ and $£ 85$ resp. Carriage $30 /$.

AVO SIGNAL GENERATOR CT $378,2-450 \mathrm{MHz}, £ 38.10 .0$. Carriage $18 /$ AVO'S METERS Model 48A complete with multiplier shunts, etc., in special fitted wooden Model 47A 112.
Model 47A $\mathrm{El2}$. Carriage for
Twinplex combiner type AFS is 665 Tw.S.W. 885
F.S.K. unit type GK 185A E58/10/0

UAF
UBC4
UBF8
UBF8
UCF8
UCB
UCE8
UCL8
UCR8
UF41
UF80
UF89
ULA1
UL84
UC5
UY41
UY85
VR10
VR15

the valve with a gURANTEE

30P12	16i-	9002	18
$30 \mathrm{P19}$	14/-	9003	10/-
30RL1	13/-	9004	2/6
30PL13	18/-	9006	2/6
$30 \mathrm{PL14}$	17\%	C.R.	Tubes
351.6GT	9/6	VCR97	7 32/6
35 W 4	51-	VCR51	1750 ${ }^{\text {- }}$
3574GT	91-	VCR51	178
42	$71-$	V	55
5005	$71-$	VCRE1	170
500 D 6 G	330-		45/-
50EH5	121-	5FP7	28,7
75	5/6	88D	180/-
76	61-	88 J	80/-
78	$51-$	88 L	901-
80	9/-	Phato	Ta
803	60/-	CMG25	25/\%
805	160!-	9314	62/6
807	95-	${ }^{6037}$ C	3501-
813	751-		
832 A	55/-	Special	1
8664	15/-	CV1031	
954	4/6		100/
955	4/-	Cv2339	39220
956	\%-	JP9/7D	
957	6/-		750/-
991	61-	K301	c4
1622	171-	K305	£12
2051	10/-	K308	218
5933	22/6	K337	812
8057	10-	KRN2	2A70/-
6060	7/8	WL417	7A
6064	71-		30/-
6068	13/-	3/192/E	
6080	27/6		37/10/-
8146	28/-	5 C 22	815
8020	35/-	714A ${ }^{\text {P }}$	I
9001	3/-	7254	210

PLEASE NOTE Nisame ALL EQUIPMENT
ordered from us is completely over

MARCONI TEST EQUIPMENT
 2izubirati
 ohms to 500 M
Price $£ 62.10 .0$. TFI44H SIGNAL
GEN. Freq. range 10
KHzo 10

only avail- SIGNAL GENERATOR TF 801/A. able. Fullspec $10-300 \mathrm{Mc} / \mathrm{s}$. in 4 bands. Internal at 400
and price on c / s. $1 \mathrm{kc} / \mathrm{s}$. External $50 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$.
 75 ohms source. ©85. DITTO but $801 / \mathrm{A} / 1$ with additional high level output. E89. Both P. \& P. 20/-, including necessary connectors, plugs, BRADLEYPORTABLEELECTRONIC instrument operates from three $1 \left\lvert\, \begin{aligned} & \text { Tells, }\end{aligned}\right.$ is fully eransistorised and measures A.C. and D.C. current, A.C. and D.C. voleage and calibration check. Full spec., and price on request.
As above but MODEL CT 47IA manurequest.
4, 5 and 8 bank 25 way uniselectors;
 ARA8 SPARES. We hold the largest stock in U.K. Write for lis
WEE MEGGERS. 250 v ¢ 120.0 . GENERAL RADIO AMPLITUDE $230 \mathrm{v}, 3$ pole, 10 amp plug in change 25er relays. II pin base, perspex cover. 25/-. P. \& P. / /
PHASE MONITOR ME-63/U. Manu= actured recently by Control Electronics nc. Measures directly and displays on a panel meter the phase angle between two applied audio frequency signals within the range from $20-20,000$ c.p.s. to an accuracy of $\pm 1.0^{\circ}$. Input signals can be sinusoidal or non-sinusoidal between 2 and 30 v . peak. In excellent condition. E75. Carriage 30/..
HARNESS "A" \& "B" control units, junction boxes, headphones, micro phones, etc.

TF 144 G SIGNAL GENERATOR. TO Complete with mains and battery cables

SOLARTRON EQUIPMENT

 Regulated and stabilised P.S.U. SRS$151 \mathrm{~A}, 20$ to 500 V positive at 300 mA in $151 \mathrm{~A}, 20$ to 500 V positive at 300 mA in
two ranges. Variable and fixed 170 V negative output, ©35. Carriage 20/-. CD 7115.2 . Double beam, DC to
7 MHz scope, c85. Carriage $30 /-$. CD 643.2 . Single beam Laboratory application.
QD 910 . Storage Oscilloscope, as new.

SIGNAL GENERATOR TYPE CT 480.7 .12 kMHz in one range, square and

SIGNAL GENERATOR TYPE CT 478. As above but $1.3-4.2 \mathrm{kMHz}$ in two ranges 655.
$1 \frac{1}{2} \mathrm{in}$. DIA. PANEL METERS. $7 \frac{1}{2}-15 \mathrm{v}$ ideal for "Battery

BOONTON Q METER TYPE 160 A . Freq. range 50 kHz to 75 MHz , main capaci-
tor 30 to 500 pF . Vernier capacitor $\pm 3 \mathrm{pF}$; q 85 range. 0 plus carriage.
NOISE GENERATOR CT 207. 100 $600^{\prime} \mathrm{M} / \mathrm{c}$ with built-in 8 -minut
Complete with cables, 657.10 .0 .

TS 418 B/U SIGNAL GENERATOR $400-1000 \mathrm{MHz}$. E105. Carr. $30 /$.

IMPEDANCE BRIDGE TYPE TF 936 (No. 5). Measures k a Ct 80 Hz C: $1 \mathrm{mF}=100 \mu \mathrm{~F}$. R: 0.1 ohms-100mohms AC Bridge volts monitored and vari able. Automatic detector sensitivity control. $£ 105$. Carriage $30 /$ F.M. DEVIATION METER TYPE TF934. Frequency range $2.5-100 \mathrm{MHz}$ Can be used up to 500 MHz . Deviation
range $0-75 \mathrm{kHz} \quad 67 / 10 / 0$. Carriage $30 /-$

29/4IFT. AERIALS each consisting of ten 3ft-, Zin. dia. tubular serew-in
sections. Ilit. (6-section) whip aeria with adaptor to fit the 7in. rod insu lated base, stay plate and stay assemblies pegs, reamer, hammer, etc. Absolutely brand new and' complete ready to erect
in canvas bag. $£ 4 / 0 / 0$. P. \& P. $10 /-$. FIELD TELEPHONE TYPE "FP" Excellent for porsable wooden cases doors for up to 10 miles. Pair includins batteries, fully tested fs, 10.0 , or with 220 yds field cable in drum E7,10.0.

FOR EXPORT ONLY

 53 TRANSMITTERS. All spares Installations and spare parts, R.C.ATRANSMITTERS ET 4336. Complete TRANSMITTERS ET 4336. Complete
installations and all spares. BC 610 E
\& I TRANSMITTERS. COLLINS TYPE 2310 5KW
TRANSMITTERS. 10 channel, auto tune and manual tuning. Complete with very comprehensive spares. Ful Complete installations and all spares. No. 19 WIRELESS SETS. RECEIVERS with all necessary accessories.
PYE PTC 2002N A.M. Ranger Mobile Radio Telephone, brand new and complete, $£ 45$.

P. C. RADIO LTD.
 170 GOLDHAWK RD., W. 12 01 -743 4946

Open 9-12.30, 1.30-5.30 p.m. except Thursday 9-1 p.m.
 To view TEST EQUIPMENT please phone for appointment

LIQUID LEVEL DETECTOR．Datects even mildly con ductive ilquids，i．e．ether，etc．N．O．／N．C．contacts．Falls to safe．£10 ea，S，a，e．liferature．
MODULAR POWER SUPPLIES．Fully stabllised 8.5 to 9,5 volt． 10 amp ．（ $12 \times 6 \times 4 \mathrm{ln}$ ．）Brand now． Individual spec．with oach unit．£10 oв．
RADIATION MONITORING EQUIPMENT．POR
ble and bench models（brand new）S．a．e literature
KLYSTRON POWER SUPPLY（Solartion ASE62）
E40．Carr．50／
KLYBTRON POWER SUPPLY（EllIOttPKU1），£100
120 AMP．AUTO TRANBFORMERS．190－270v
$50 \mathrm{c} / \mathrm{s}^{\prime}$（tapped every 5 volts）．£50 ea．（Carr，by
arrangement．）
8O1A SIGNAL GENEHATOR． $10-300 \mathrm{mc} / \mathrm{s}$ in
bands．Ext． $50 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s}$ ．Output $200 \mathrm{~m} / \mathrm{v}$
cso e8．P．P．25／＝

SPEAKERS

E．M．I．： $19 \times 14 \mathrm{ln} .50$ watts． 8 ohm（14A／600A．）Four tweeters mounted across maln axis，Separate＂X－over Hz balances both bsss and hf ．sections． 20 Hz ．to 20,000 E25．P．P． 50 ／
E．M．i． 13×8 in．whe two tweeters and cross－over． 8 or 18 ohm． $78 /=$ P．P． $5 /$
E．M．I．＂ $8 \frac{1}{} \mathrm{In}$ ．Rd． 10 watt wooters． 8 ohm ．30／－Ba ＂FANE＂ 12 in .20 watt． 15 ohm （ $122 / 10 \mathrm{~A}$ ．）With Integra tweeter． 26 e日，P．P． $7 / 6$ ．
spanken system（ $20 \times 10 \times 10 \mathrm{ln}$ ．）Made to Soec rom zin，board．Finished in black leathercloth． 13×8 in speaker whith twin tweeters complate with＂X－over＂ 50 Hz ，to $20,000 \mathrm{~Hz}$ ．$£ 7$ 10s．P．P． $10 /$－
SPEAKER CABINET KIT．Above mentioned cabinet only， in kit form which you may assemble and cover to your ow cholce．40／－，P．P．8／－
EXTRACTOR FANS／BLOWER8
＂AlRMAX＂ 71 In．FAN．In aluminlum dlecast housing （ 8 in. ）． 240 v ．Brand now．E410e．P．P． $10 /$
PLANNAI＂Bt In．FAN．（Type 5 PL 121－122）Dlecast housing．240v．Brand new．\＆B．P．P．10／－． $18 \times 51 \times 3+$ in Air outlet 12×1 in． 240 y ．Brand new． 80／－ea．P．P． $7 / 8$.
BULK COMPONENT OFFER．Resistors／capacitors．All types and values．All new modern components．Over 500 pleces，E2．（Trial order 100 pleces $10 /-$ ．）We are confident you will re－order．

HIGM SPEED MAGNETIC COUNTER8（ $4 \times 1 \times 1$ ln．） 4 diglt 1／\％．

LEVEL METERS（ $1 \frac{1}{\frac{1}{2}} \times \frac{1}{\mathrm{t}}$ In．）． 200 micro－amp．Mado In Germany．18／• each．
SILICON PHOTOVOLTIC CEELS（MS2BE） $550 \mathrm{~m} . \mathrm{V}$ $35 \mathrm{mic} .30 /-8 \mathrm{e}$
RELAYS H．D． 2 pole 3 way 10 amp．contacts． $12 \mathrm{v}, \mathrm{w}, 7 / 8 \mathrm{ea}$ ． LIGMTWEIGMT RELAYS（with dutt－proof covere） $4 \mathrm{c} / 0$ contacts．24v． $500 \mathrm{ohm} 7 / 6$ e8．
PRECISION CAPACITANCE JICS．Beautifully made with Moore \＆Wrlght Micrometer Gauge．Type 1.18 .5 pf $1,220 \mathrm{pf}$ ．$£ 10$ e8．Type $29.5 \mathrm{pf}-11,8 \mathrm{pf}$ ．$\Sigma 6$ ea． POT CORES LA1／LA2／LA3．10／－ea．
71 WAY PLUG \＆sOCKET（Painton＇Serles 169）．Gold piated contacts with hood \＆retaining cllps，30／－palr． BO WAY PLUG \＆SOCKET（U．C．L．miniature）．Gold plated contacts $20 /$－palr． 34 way version 18／＊palf．
CO－AX RELAYS（magnetlc devices） 1 change－over 12 v．w 201－e日
COMPUTER BOARDS
4－OC23；4－2N1091；4－2G302；4－OA10．20／－e日，
8－0C42（long leady）；16－0A47．7／6 ea．
8－DA11A；14－OA47．B／－ва．
Bargain pack of 5 boards．Components too varled to enumerate．At least 100 translstors and diodes．$£ 2$ lot

TRANSFORMERS

L．T．TRANSFOMMERS（shrouded）．Prim．200／250v． Sec．20／40／60v， $2 \mathrm{amp}, 42 / 6$. P．P． $7 / 6$ ．
L．T．TRANSFORMERS，Pilm．200／250v．Sec． $20 / 40 \mathrm{v}$ $1.5 \mathrm{amp} .30 / \%$ P．P． $8 /$
＂ADVANCE＂＂CONSTANT VOLTAGE．Prlm，190／250v， $\pm 16 \%$ ．Sec． $11 \mathrm{Fv}, 2,260$ watts．£1
H．T．TRANSFORMERS．Pilm．200／240v．Sec．300－0－300v． $80 \mathrm{~m} / \mathrm{s}, 6.3 \mathrm{v}$, C．T． $2 \mathrm{a}, 30 / \mathrm{e}$－ 8 ．P．P． $7 / 6$ ． $350-0-350 \mathrm{v}, 60 \mathrm{M} . \mathrm{A}$. ©．3v．C．T．2ヵ．20／－es．P．P． $5 /$ L．T．TRANSFORMER．Prim．240v．Sec， $33-0-33 v$, 5 amp．48／－，P．P．10／－．
STEP DOWN TRANSFORMER．PIIm．200／240v．Sec．
$115 v .100$ WAtts．20／．E日．P．P． $5 /$. $115 v .100$ watts， $20 /$ e ea．P．P． $5 /$ ．

L．T．TRANSFORMERS Prim．240v．Sec 14v． 1 amp 10／e

COPPER LAMINATE PRINTED CIRCUIT BOARD $\left(8 \frac{1}{2} \times 5 \frac{1}{2} \times \frac{1}{1} \ln\right.$ ．）， $2 / 6$ sheet， 5 for $10 /$
Also $11 \times 8 \frac{1}{2} \ln ., 3 /=0 a, ., 4$ for $10 /=$ ．

ELECTRIC 8 LOTMETER＇S（ $1 /-$ ） 25 amp ．L．R． 240 v ．A．C 85／－өa，P．P．B／－ QUARTERIY ELECTRIC CMECK METERS， 40 mmp LONG LIFE＂ELECTROLYTICS（screw terminal） 28,000 u．f． 40 v ．（ $4 \frac{1}{2} \times 2$ In In ），20／－ea，P．P， $2 / 6$
3，150 u．f． 40 v ．（ $4 \frac{1}{2} \times 1+\ln$ ．）．18／e ea．P．P． $2 / 6$
EXECUTIVE＂gIXTY＂AMPLIFIER．（ 80 w．r．m．s．Into 8 ohm．）British designed and bull．True hl－fl performance Gulli－In filters to protect speakers．Three Independently mixed inputs．High－Low Impedance．Mlc．Crystai－Ceramic－ Magnetle Cartrld

TELEPHONE DIALS（New）20／－ea． RE LAYS（G．P．O．＇ 3000^{\prime}＇．Al types，Brand
new from $7 / 6$ each． 10 up quatatlons only． EXTENSION TELEPHONE（TYP 70Ḅ） Black or 2 tone Grey，65／．，P．P，5／－．
UNISELECTORS（Brand now）25－way 75 ohm． 8 bank i wipe 68／－． 10 bank

REED RELAYs 4 make 9／12v．（1，000 ohm，）12／6 eब． 2 make 7／0 ea， 1 make B／－ea．Reed Swltches（14 In．） $2 / 6$ ea．£1 por doz．
SUB－MINIATURE REED RELAYS（ $1 \mathrm{ln} . \mathrm{x} / \mathrm{ln}$. ），Wolgh \＄oz．Type 1.980 ohm， $3 / 9 \mathrm{v} .1$ make．12／6 oa．Type 2

SILICON BRIDGES． 100 P．I．V 1 amp．（ $4 \times 4 \times 4 \cdot(\mathrm{n}$.$) ）$ 8／6 ea

PLUG－IN RELAYS．（Slemans－Varloy） $4 \mathrm{c} / \mathrm{o} .700 \mathrm{ohm}$ ． 0／－es．complete with base．（Other make－ups and colls 10／：

PATTRICK \＆KINNIE

191 LONDON ROAD • ROMFORD • ESSEX
ROMFORD 44473

Imhoff dif－cast instrument cases；finlshed stove enamel cream． 2 for $10 /-($ leas lids），p．p． $2 / 6$ ．

Miniature solenold driven wafer switches，type－Ledex single pole， 7 poss， 3 wafers．Primarily used for channel singitching in Radio－Telephones，Wafers may be sub－
stituted for any typ．Solenoid voltage， 12 or 24 V ． stitutud for any type．Solenold voltage，
Brand new． $30 /$－each，p．p．2／6．
S．T．C．Crystal alters．Frequency 10.7 MHz ．，trpe $445 /$
LQU．Price $85 /-$ each．
Eplcyclic slow－motion drives．bit－1 ratio．Brand new， Eplcyellic slow－mot．
2 for $10 /-$ inc．p．p．
U．G．panel mounting VHF sockets type SO239 amphenol．
Brand new，Bealed， 2 for 10% on
Burndept RF Plugs still avallable．These hard to find plugs are used on a multitude of equipment，especially 2 for $10 / \mathrm{m}$ ．inc．D．p．

Nife traction Batterles Nlckel Iron．1．2V．per cell rated at 180 A．H．Bold in crates of three ceils or crates of tive cells．$£ 4$ per cell．Guaranteed best buy．
Meters，new U．S．A．type，high quality panel hounting $2 \downarrow$ ins．dia．，matching pair－ $0-800 \mathrm{~V}$ ．DC．，and Ampmeter

Auto electrical test seta．All you want for a complete check out on car electrical syytems etc，sold c / F all
leads etc．，housed in polished wooden case．ONLY ES leads ett．，housed in polilshed wooden case．ONLY 65
plus $10 /$ postake and packlng． plus 10／－postage and packling．
Lucas car relays，12V．one heary duty make contact， rated at 5 A ．Torminated for push－at connectors．Has many uses for auto－electrics such as spot－lights，horns，
over－drlves，head－lamp flash，etc．，etc．，etc． $10 /$－each inc．p．p．

Voltage and Current regulators－heary duty rheostats－ 1 ohm rated at 10 A ．Brand new by famous manufacturer． 12／6 each．Also 1.5 ohm at 7A．，12／6，p．p． $1 / 8$ ．
Lucas dfode rectifers－full wave bridge rectiflor mounted on special heat－sink． 50 V ．-60 V ．operation rated at 50 A ． rectifiers，etc，etc．Per pair $\& 8$（two complete brídge rectifiers，etc．，etc．
etc．

OSCILLOSCOPES
18A Hartley Double Beam as featured in last month＇s W／W complete with instructions，leads，etc：ready to
work and good condition，price $/ 22 / 10 / \mathrm{p}$, p．p．30／－．

Consor Double Beam Type 1049，Ideal cheap scope for ready to work in good conded bandwlath $30 /$ condition，225，D．p．30／

Coseor type 1076 complete with 3 plug in unite no－less For the man who has everything you can gtill impress your friends with this plece of electronic wizardry， cost over－£1，000 complete，yours for 6100 ．In good condition and working order，p．p．40／－

Solartron CD7118．2．Double Beam DC to 9 MHz band－ width recalibrated and offered in flrat class working order．Price $¢ 75$

Solartron CD1012．DC to 25 MHz bandwidth recall－ Solartron CD1012．DC to 25 MHz bandwidth recall－
brated and serviced in good working order， E85．

We have many other types of oscllioscopes in stock， We have many other types of oscilloscopes
including Tektronix，Cossor，Telequipment etc．

Precision Multi Turn Indicating Dials sultable for 10 turn Hellical Pots，machined from solld dural with the skirt engraved 0 to 100 and lnner dial engraved
0 to 10 suitable for standard $\frac{1}{\text { Inch }}$ infindies．these small dials are as easy to fix as screwing on an instrument knob，size $1 \frac{1}{2}$ in．for skirt， $1 \frac{1}{2} \mathrm{in}$ ．dia． A General Controls Manufacture．

OSCILLATORS

Alrmec Type 858．Frequency range 90 kHz to 30 MHz ． +1 db better than .5 m Constant output level Ideal unit for callibration work．Small slze for rack or bench mounting．Price $£ 35$ ．

Solartron Constant output．Oscillator type DO905． Frequency range 50 kHz to 50 MHz ，output metered 0 to 5 v in 1 db steps，excellent order．Price $\$ 50$ ．

Marconi TF 995／1／8 AM／FM RF signal generator． －Frequency range 1.5 to 220 MHz with built in crystai calibrator．Output range 200 mV to 0.1 micro V．Offered
in perfect condition ready to work．Price $£ 175$ ． Airmec portable RF signal generator．AM／FM THpe CT212． Frequency range 85 kHz to 30 MHz ．Accurate scale calibration．\＃Variable output from 1 micro V 100 mV 0 to 80 db ．Offered in excellent condition．Only 645 ．

Marconi TF 144 H ．Range 10 kHz to 72 MHz ，a prectsion instrument at of list price，$\& 195$.

Marconi TF887 Standard RF Bignal Generator，range
15 kHz to 30 MHz ．Varisble output from 4 micro V to 4 Volts．Extremely eccurste attenustor high output stability and discrimination make the generator very suitable for prectsion measurements on networks and filters．Modulation up to 100% may be applled at 400 or 1000 Hz ．Built in crystal calibrator．Offered in

Marconi Video Oscllators TF 885A， 25 Hz to 12 MHz sine wave． $50 \mathrm{H}_{z}$ to 150 kHz square wave．$O P 31 \mathrm{v}$ to micro v．Price 635 ．
Hilger \＆Watts Microspin X Band Bridge．Type W957． Microspin Proton Head Frequency Meter．Type FAZ08． Microspin Modulator．Type FA 210 ．
Microspin 1 cm Wave guide directional couplers．asso－ clated measuring equipment． Hilger \＆Watts Absorbance Convertor，and many othe items of interest offered．Brand now equipment
High Voltage Generator， 0 to 10 kV at 2 mA ，both current and voltage indicated fully variable and offered brand new．Price $\mathbf{5 3 5}$ ．

Resolved Components Indicator VP 253／1a．Solartron Low Frequency Decade Oscillators．Solartron OS 103 and associated equipment． 2 Phase Low Frequency Oscillator type Bo 607．Solartron．Solartron Synchro test set．
type CT 428．Solartion AC Millivolt meter．Preclsion．

CHRONOTRON TIME INTERVAL METER
Suitable for setting up relays and other applications where a precise time measurements are required，simple to use time interval indicated on large meter acaled in miliseconds．Range 0.1 millisecond to 10 seconds．

MUIRHEAD D－S14－A TRANSMISSION Designed for the maintenance and adjustment of carrier telephone equipment，portable for use on 12 v DC
and mains voltages．Perfect condfilion．C／W power supply and mains
Price 650 ．

> ELECTRONIC，MULTIMETER TYPE CTATIC for sale at the very low price of $\mathrm{E} / 2 / 10 /$ in min condition minus outside cases and probes these fully transistorised meters were built to very high standards and measure AC current and volts．DC current and volts plus DC reslatance etc．Offered complete p．p．10／．Try not to miss thls month＇s best bur．

SENSITIVE DC AMPLIFIERS TGA2 Modular construction all solld scate, gains in the order of 10 M ohms 5 voltage gain ranges and variable control provides continuous adjustment over each range make these units very sultable for increasing the sensitivity of chart and pen recorders,
offered brand new at only $£ 15$. P, \& P, $4 / 6$. ADVANCE VOLT STAT CV500/31 Input $162-276$ v. A.C., $50 \mathrm{c} / \mathrm{s}$. I phase output 115 V . constant at 410 watt. Offered These items are double wound.
OSCILLOSCOPE PROBE TM8119 High impedance $100 / 1$ resistive attenuated probe for accurate display of HF waveforms or short rise time pulse signals, offered brand new with all accessories and instruction manual. List price $£ 17$. TM8194. A MARCONI PRODUCT HIGH VOLTAGE TRANSFORMERS Input 240 V ., output 2560 v . and 2820 at I amp. Weight 75 lb . Price Él5.
TELEMAX HIGH VOLTAGE INSULATION TEST SET. Model E.II5. likv. to 15 kv . Used for the detection and
measurement of leakage current and the measurement of leakage current and the output voltage used is measured on a large $3 \frac{1}{2} \mathrm{in}$. meter, any leakage which flows in the test circuit is indicared on the same calibarted meter. The instrument is nonlethal and may be short circuited withou damage, small portable mains operated

MARCONI TF I073A RF ATTENUATOR
Range $0-100$ in IdB steps. Frequency range d.c. to 100 MHz . Input 0.25 watts accuracy each 1 dB step 0.2 dB . Offered
perfect condition 75 ohm version 635 perfect
each.
MATRIX SWITCH ASSEMBLEY Five rows of 17 contacts (gold plated). working voltage 250 v between adjacent row I amp. Applications are many in Process Control data handling and card reading. Offered brand new at only $50 /$ each. P. \& P. 3/6. Diode Pins $3 / 6$ each
 Temperature Compensated RF Power Meter, Model B83IB, for the accurate measurement of CW or Pulsed RF power in six full scale ranges from .01 to 3.0 milliwatts. These measurements can be made over the frequency range from
0.01 to 40 GHz using a series 218 Thermistor Head. All measurements are read mistor head. All measurements are read meter which has a mirror backed scale. These wnits are offered in as new condition, some of which have been used as demonstration models only. Price only E75, complete with wave guide type
thermistor head and fully detailed manual. thermistor head and fully detailed manual. VSWR INDICATOR MODEL 812A Precision equipment used to measure VSWR and relative power, over the frequency range of 1 GHz to 220 GHz electrical parts, a high gain, tuned amplifier, a precision, attenuator and a precision meter, the tuned audio amplifier is tuned to a centre frequency of kHz adjustable between 950 - 1050 cps .
Band Width 20,40 and 400 cps selectable. Band Width 20,40 and 400 cps selectable.
Sensitivity 0.1 micro volt for full scale Sensitivity 0.1 micro voit for full scale
deflection. Offered as new at only f45 each.
A.E.I. MINIATURE UNISELECTOR SWITCHES
No waiting, straight off the shelf and No waiting, straight of the shelf and
into your equipment the Catalogue Nos. are 2202 A , $4 / 33 \mathrm{~A} 63 / 1$; coil resistance is
250 ohms. Complete with base, and the price is £4.19.6. Limited quantity only available.
Also: 2203A, 2200A. 2202A.

FOSTER VOLTAGE REGULATING EQUIPMENT TYPE I2A80 Input 250 A.C. max., input variation
$\pm 5-15 \%$ output 250 v . A.C. constant.

SPECIAL OFFER

"Insulation testers" tYpe No. II METROHM by famous British manufacturer. All solid state. No handles to crank Runs off 9 volt transistor battery. Simply press button for function. Range 0.1 to 25 M ohms for insulation testing. Also 0.1 to 100 ohms for resistance and continuity checking. Clear, conclse scale Small size modern instrument, complete with carrying strap and protecting cover. Offered in good used condition with battery
ready to work. For 250 volt pressure only. List Price C19.10.0. ready to work. For 250 volt pressure

Rhode \& Schwarz ESM300 UHF Receiver AM/FM $85 \mathrm{MHz}-300 \mathrm{MHz}$
Rhode \& Schwarz BNI5031 Field strength test receiver AM/FM $90 \mathrm{MHz}-470 \mathrm{MHz}$ Rhode\&SchwarzBN4151/2"60 Noise generator 3 MHz - 1000 MHz . Rhode \& Schwarz BNI8042 Unbalanced standard Attenuator 0-100db 50 ohm $0 \mathrm{MHz}-600 \mathrm{MHz}$.
Rhode \& Schwarz BN33664/50 UHF Load resistor 100 watt 50 ohm $0 \mathrm{MHz}-600 \mathrm{MHz}$. Rhode Schwarz BN4521 Vibration Meter $30 \mathrm{~Hz}-12 \mathrm{KHz}$.
Rhode \& Schwarz
ZD Diagraph.
$100 \mathrm{kHz}-100 \mathrm{MHz}$.
$50 \mathrm{kHz}-50 \mathrm{MHz}$.
Advance Q meter type T.I.
Marconi Q meter type 329
$15 \mathrm{MHz}-170 \mathrm{MHz}$
Farnell Stabilised P.S.U. Model MSB 24/2 RHODE \& SCHWARZ POLYSKOP
Modular unit for incorporating into your
(SWOB 2) equipment. Variable between 3-24 v. @ 2
(SWOB 2)
With accessories for sale or hire.

RF GENERATORS

Marconi Standard Signal generator TF867 $15 \mathrm{kHz}-30 \mathrm{MHz}$
E 200 Marconi UHF signal generator TF762C $300-600 \mathrm{MHz}$ 167 Marconi FM/AM Signal Generator $2-216 \mathrm{MHz}$ TF995A/3 2 MHz P.U.R. Services type CT212 AM/FM signal generator $85 \mathrm{kHz}-32 \mathrm{MHz}$ \&45 Services type CT2II AM/FM signal generator $20-80 \mathrm{MHz}$ © 40 Avo Signal generator portable $50 \mathrm{kHz}-80 \mathrm{MHz}$ 15 Hewlett Packard $616 \mathrm{~B} \quad 1.8 \mathrm{GHx}-4 \mathrm{GHz}$, also special generators up to X band Marconi signal generator TFI44H/4. Range 10 kHz to $72 \mathrm{MHz} \ldots .$. . P.U.R. Advance Model SLI. Range $300-1000 \mathrm{MHz}$ $E 150$

D.C./A.C. ELECTRONIC VOLTMETERS

Philips GM6010 Sensitive D.C. Millivolt Meter IMV/FSD to 300 volts in twelve
 Philips
etc.

Philips GM6016 $3 \mathrm{mv}-1000 \mathrm{v}$. I kHz- 30 mHz .
Philips GM60141 mv-300 v. $1 \mathrm{kHz}-30 \mathrm{mH}$
Rohde \& Schwarz UHF Millivoltmeter type URV with insertion unit for measure
ments up to 2400 mHz
Hatfield Millivoltmeter LE48C $0.3 \mathrm{MV}-30$ volts. Large eight inch scale indication balance and unbalanced inputs

Price

CAMBRIDGE INSTRUMENT Co. Ltd. Precision test meters. Electrodynamic A.C. Ammeter 0 to 15 amps with test certificate

Dynamometer A.C. Ammeter range 0 to 15 amps
645
445
ambridge Dynamometer A.C. test set $0-225$ Watt $\bar{j} / 0-330 \quad \ddot{\text { v. }} / 0-30$.
± 45

Tinsley Universal Shunt type 4309 C
Tinsley Vernier Potentiometer type 4363E Auto
Foster Thermocouple potentiometer type DX
${ }_{6}^{65}$

Digital Voltmeter Solartron LM902.2 four digit readout
Digital Voltmeter Solartron LM902.2 four digit readout
Solartron A.C. Convertor LM 903 matching unit for LM902 Hewlett Packard DVM 405CR four digit readout auto polar ity Glouster DVM.BIE 2123 A.C./D.C. transistor portable $0-1000 \mathrm{~V}$

Frequency Counters Analogue/Digital
Marconi TF1345/2 digital 10 Hz to 220 mHz C/W full complement plug in's Racal Digital frequency meter type older valve model $10 \mathrm{~Hz}-300 \mathrm{kHz}$ Rank Cintel Counter/timer transistorised model $10 \mathrm{~Hz}-1 \mathrm{mHz}$
Venner Counter/timer type TS a3 Mains or portable Digital meter readout
U.S.A. BC221 Heterodyne frequency meter $125 \mathrm{kHz}-20 \mathrm{mHz}$ new or used from U.S.A. TSI75/U $85-1000 \mathrm{mHz}$ Modulated, reception/emission CW. MCW, as new Marconi TF $1417 / 2$ counter/timer 10 mHz transistorised

SOLARTRON YF252/NSL
PRECISION ACMILLIVOLT METER Range 1.5 milli valt (for full scale deflection) to 15 volts in eight ranges input impedance 30 M ohms. The meters offered are of the very latest type not to be confused
Price only 875 .
Price only 875.

ELECTRONIC VOLTMETERS RF AND DC

Marconi TF 1041 C 25 mV . to 300 v .20 Hz to $1,550 \mathrm{mHz}$, measures DC 10 mV . to 1,000 v. Measures ohms 0.02 to 500 M ohms. High input resistance. A smal compact instrument for mains operation, supplied in excellent condition and working order. Price $\quad \ddot{\text { erween I } k H z}$ to $30 \ddot{\mathrm{M} H z}$ for mains operation Philips GM60141 mV. to 300 v . between I kHz to 30 MHz for mains operation Philips GM6010 DC Voltm
OPERATED PORTABLE
Hatfield LE48C p. 3 mV . to 30 v .600 ohms. Large scale indication mains operated Marconi TF $1100100 \mathrm{micro-volt}$ to 300 v . 10 Hz . to 10 MHz . $10 \mathrm{~m}=\mathrm{ohm}$ input resistance can also be used as wide band amplifier with gain up to 400

P. F. RALFE

10 Chapel St London N.W.I
Phone 01-723 8753
A.T.E. 12 KHz QUARTZ CRYSTAL -B7G envelope, with flying lead connec-
BRAND NEW. tions-easily removed. BRAND NEW
Price $10 /$ each.

BARGAIN OFFER 200-yard reels equipment wire, size $1 / 024$ STC quality, various colours. Brand new

who wants af2,000+p.a. opportunity in the dynamic new computer industry?

In only 4 weeks you're in - and only the incredible Eduputer can make it possible.
Now for the first time anybody can train outside the computer industry for a lucrative career as a computer operator, with actual experience on an Eduputer.
Who created Eduputer? The internationally famous company Programming Science International. They developed it to the specific requirements of the massive New York city training board and its practical results have been one amazing success story.
We are proud to have been selected as the only commercial training organisation permitted to use the Eduputer in the U.K. Thanks to Eduputer, nine out of every ten can learn to operate the most advanced computers in only four weeks. Unlike Computer Programming, no special educational qualifications and no maths required. Just you and the incredible Eduputer!
Jobs galore! The moment you qualify, our exclusive computer appointments bureau introduces you to computer users everywhere with good jobs to offer (up to $£ 40$ a week full-time, $£ 50$ a week as a temporary). More than enough to go round, toobecause 144,000 new operators will be needed over the next five years alone.
This is your big opportunity to get out of a rut and into the world's fastest-growing industry. And remember-LCOT is the only commercial computer school to have Eduputer. It means a lot to employers.
Telephone: (01) 4379906 NOW!
Or post the coupon today for full details FREE and without obligation.

London Computer Operators Training Centre,

B11 Oxford House, 9/15 Oxford Street, London W. 1 Telephone: (01) 4379906.
127/131 The Piazza, Dept. B11, Piccadilly Plaza, Manchester 1 Telephone: (061) 2362935.
Please send me your free illustrated brochure on exclusive
Eduputer "hands on" training for computer operating.
Name
Address

Send an S.A.E. for New Comprehensive I.C. and Semiconductor price Ilsis.

INTEGRATED CIRCUITS

NEW LOW PRICES • FULLY GUARANTEED
rca

MOTOROLA MOTOROL
MC724P MC724P
MC780P MC780P
MC788P
MC788P
MC790P
MC792P
MC792P
MC799P
MC799P
MC1303L
MCl304P
MC1305P
MC838P
MCI43P
MC552
MC1552G
MC1709L
FAIRCEILD

	$1-5$
L900	$9 / 8$
L914	$9 / 8$
L923	$18 / 6$
L702C	$361 / 8$
L709C	$21 /$.
L710C	$81 /=$
L7116	$81 /=$
L716C	$58 /=$

MULLARD TTL $\begin{array}{ll}\text { FJH101 } & 17 \\ \text { FJH111 } \\ \text { FJH121 } & 17 \\ \text { PJH131 } & 17\end{array}$
FJHE121
FJH131
FJH141
FJH151
PJH161
FJH171
FJH181
FJH221
FJH231
$1-9$
$13 / 3$
$49 / 5$
$16 / 6$
24,9
$13 / 3$
$13 / 3$
$54 /$
$72 /$
$72 / 1$
109
$69 / 1$ $9 / 9$
$9 / 8$
$9 / 6$
$8 / 6$
$1 / 6$
10
$1-9$
$13 / 3$
$49 / 8$
$16 / 6$
24,9
$13 / 3$
$13 / 3$
$54 /-$
$72 /-$
$77 / 2$
$109 / 8$
$69 /-$
$92 / 2$
$18 / 9$

$6-11$
$9 /-$
$9 /-$
$11 / 9$
$32 / 8$
$19 / 6$
$19 / 6$
$11 / 6$
$50 /-$ $\begin{array}{ll}\text { 17/6 } & \text { PJJ10 } \\ 17 / 6 & \text { FJJ11 }\end{array}$

$17 / 6$	FJJ101
$17 / 6$	FJJ111
$17 / 6$	FJJ121
$17 / 6$	FJJ181
$17 / 6$	FJJ141
$18 / 3$	FJJ181
$17 / 6$	FJJ191
$18 / 3$	FJJ211
$17 / 6$	FJJ281
$17 / 6$	FJL101
$17 / 6$	FJY101

Data sheete all $1 /-$ per
8 Pin To-5 I.C. Holders, 10
8 Pin To-3 I.C. Holders, 1016
14 Pin Dual-in-Line I.C. Holders, $8 / 6$
16 Pin Dual-in-Line I.C. Holders,

mullard linear	
TAA241	82/6
242	85/-
243	30\%
263	15/6
293	19/6
300	35/-
310	25/-
320	14/6
350	35/-
433	29/6
521	28/6
522	72/-
530	99/-
811	89/-
TAB101	19/6
TAD100	39/6
TAD110	39/6
MULLARD DTL	
FCH101	17/6
FCH121	21/6
FCH141	21/-
FCH161	21/-
FCH201	28/6
FCH211	28/8
FCH231	301-
FCJ101	32/8
FCJ111	31/-
FCJ143	105\%
FCJ201	38/-
FCJ211	55/-
FCK 101	87/6
FCL101	57/6
PLEASEP	
8L402A	42/6
SLu43A	42/6
\$L7010	20/-
8L7020	20\%-
GENERAL	
PA222	87/8
PA230	20/-
PA234	20/-
PA237	32/8
PA246	58/6
PA424	47/-

Post and Packing $1 / 6 \mathrm{~d}$. per order. Data sheet Iree If ordered with ICS. Send $2 / 6 \mathrm{~d}$. For calalogue

28 CRICKLEWOOD BROADWAY, LONDON, N.W. 2 CALLERS WELCOME 9-5.30 SATURDAY 9.5 SEE OUR MAIN ADVERTISEMENT ON PAGE 110. FOR SEMICONDUCTORS

HEAVY DUTY L.T. TRANSFORMERS
Twickenham PRI 220, $235,255 \mathrm{v}$. Secs $55 \mathrm{v} 24 \mathrm{a}, 14 \mathrm{v}$. 10a, 22v. 2a,
25v. la. Panel terminal block connecsions. Conservatively tminal block connections. CRI 220-240v. Sec tapped 7, \& 9vi, 45a. Open frame Type. Heavy terminal connections 18.10 .0 . Carr. $12 / 6$.
Parmeko Neptune Series. PRI 200, 220, 240v. Sec. tapped 3, B, Parmeko Neptune series. PR1 200, 220, 240v. Sec. tapped 3, 8 , 12 , 18 y . 5 a. Potted C core type. Conservatively rated, $59 / 6$.
Carr. $8 / 6$. PRI 230 v Sec. 20v. Aa. Open Frame Type. 45/., P. \& P. 5/-.
Special Clearance Offer. 95, 110 . 120 v . Primary only. Sec. 46 v . 29 Vary conservatively rated. Size $10 \$ \times 8 \times 8$ inches. 28.io.0. Carr. 15/-.

E.H.T. TRANSFORMERS
Parmeko Nepture. Pri. $115-230 \mathrm{v}$. Sec. $2000 \mathrm{v}, 5 \mathrm{~m} / \mathrm{s}$,
4v. 1a. 47/6. P. \& P. 5/-. Gardners Pri. 200-240v.
Sec. 2250v. $22 \mathrm{~m} / \mathrm{a}$. $75 / \mathrm{m}$, P. \& P. 7/6. Pri, 200-240v.
Sec. 1650v. $25 \mathrm{~m} / \mathrm{a}$. $75 /$-. P. \& P. 7/6. Pri. 200-240v.
Sec. rapped 3000-3300v. $10 \mathrm{~m} / \mathrm{a}$. 4.6 .3 vv 11.5 a . 3 kv .
Ca

$\begin{aligned} & \text { Table top connections. Size } \$ \times 4 \times 4 \text { ins. Brand new } \\ & \text { boxed. } 35 /-\mathrm{P} \text {. } \mathrm{P} \text {. } 7 / 6 \text {. Special prices for atys. }\end{aligned}$

SPECIAL OFFER OF GRESHAM CHOKES

 $15 \mathrm{H} 300 \mathrm{~m} / \mathrm{a} 50 \mathrm{ohm}$. "C". Core Potted Type. 62/6. Car
 AHInging Chokes supplied new and guaranted.

LOW TENSION SMOOTHING CHOKES Y Redelifre. 65 MH. 2 amps. 49/6. P. AP. 76 . Swinging Type. Oess than t ohm res. Hermetically sealed. Oil fillied. Brand new. in makers cartons.
 2/6. P. \& P. $3 / 6$

 60 mid. 275 v . 30%. P. \& P. $6 /-.2+4+6 \mathrm{mfd} .400 \mathrm{v} .12 / 6$.

 A.E.I. LIGHTING CAPACITORS 2.85 mid. 440 v , wkg., tubular. $5 / /$, P. \& $12 / \mathrm{P} .2 / \mathrm{m}$. 250v. A.C. wkg. SPECIAL OFFER OF OIL FILLED CAPACITORSGEC. 8 mfd . 600 v . D.C. Wkg. Six for 29/6. Carr $7 / 6$. Dubilier
Nitrogol. 8 mfd .350. D.C. wkg. Six for $2 \$ /$. Carr. $7 / 6$

AIR MINISTRY SLIDING RESISTORS

 ixed type. 7/6. P. \& P. 2/6. 10040 la Single tube slider. $47 / 6$
 $2 / 6$.

GPO 3000 TYPE RELAYS
 Post free.

WESTERSTRAND

 CLOCKWORK TIMERSSwitch contacts, 15 amps ., 250 volts A.C. Control knob can be set between 30 secs. and 6 mins

AMERICAN WILLARD

Miniature accumulators 6 v . 1.2 A.H. Size $: 1 \frac{1}{3} \times 4$ ins. We 5it oz. These batteries were designed for meteorological balloon
transmitters. Easily filled with a hypodermic syringe. Self cransmitters. Easily fil
sealing. 7/6. P. \& P

MINIATURE 24v. D.C. GEARED MOTORS 500 rpm . Size $2 \times$ it $\times 1 \mathrm{in}$. Length of spindle 1 in ., dia. it in

Sameson's

 (ELECTRONICS) LTD.LONDON, N.W.
9 \& 10 CHAPEL. ST., LONDON, N.W.I $01-723-7851$

01-262-512

240 v - 110 v . or AUTO TRANSFORMERS 100 v . Completely Shrouded fitted with Two-pln American Sackets or terminal blocks. Please state which type required. Wighe
Type

Type	Watts	Approx. Weighr	Price		Corr.
1	80	21 lb	419	6	5/6
2	150	4 lb	4212	6	6/6
3	300	$6{ }^{1} \mathrm{lb}$	f1 12	6	6/6
4	500	8, lb	45	6	$8 / 6$
5	1000	15 lb	67 2	6	$9 / 6$
6	1500	25 lb	6915	0	1016
7*	1750	28 lb	1415	0	12/6
8 *	2250	30 lb	1717		15/-

- Completely enclosed in beautifully finished metal case firted with two 2-pin American sockets, neon indicator, on/off switch, and carrying handle.

DOUBLE WOUND ISOLATIÓN TRANSFORMERS $240-240 \mathrm{v}, 240-110 \mathrm{v}$. Up to 2 kkva . Let us know your require ments.

ISOLATION TRANSFORMERS

By Magestic Winding Co. Pri 240v, Sec. 240v, Centre tapped 2 kva . Mounted in strong metal case. Size $11 \times 9 \times 8$ in Conservarively rated $627,10.0$. Carr, 30 .

eransformer with Variac controlled primary, 3 in. scale位meter. Neon Indicator. Housed in stron metal case. Size $17 \times 17 \times 6 \frac{3}{3} \mathrm{in}$. 632.10.0. Carr. $15 /$.

VARIABLE TRANSFORMERS

Input 240v, output $0-260 \mathrm{v}$. Large selection of new and recon ditioned transformers available.

GARDNERS HT TRANSFORMERS
 ORMERS

ec. $450-0-450 \mathrm{v} .180 \mathrm{~m} / \mathrm{a} .6 \cdot 3 \mathrm{v}$. CT $4 \mathrm{a} .6 \cdot 3 \mathrm{v}, \mathrm{la} .5 \mathrm{v}, 3 \mathrm{a}$. 64.15 .0 .
 Carr. 8/6. 27/6. P. \& P. $5 /-\mathrm{v}, 8 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v}, 2 \mathrm{a}$. 6.3v, 2a. 5v 2a. Fully
 Sec. $63 \mathrm{v}, 1.6 \mathrm{a} .24 \mathrm{v}$. $0.8 \mathrm{a}, 6.3 \mathrm{v}, \mathrm{Ia}$. Open type. Table top connections. 65/\%, P. \& P. 7/6: $\mathrm{Sec} .12 \mathrm{v}, \mathrm{Ia}$. Twice open type T.T. connections. 17/6. P. \& P. 3/6. $\mathrm{Sec} .3 .75 \mathrm{v}, 9 \mathrm{a} .6 .3 \mathrm{v}, 0.5 \mathrm{a}$. Fully shrouded. 17/6, P, \& P, 3/6.
 $\mathrm{Sec} .370-390-410 \mathrm{v} .6 \mathrm{~m} / \mathrm{a}$. Open 'C' core sype. 12/6, P. \& P. $2 / 6$. Sec. 12v. 6a. and $15.6 \mathrm{v}, 1.5 \mathrm{a}$. Fully shrouded. 57/6. P. \& P, $7 / 6$. Sec . tapped $20-40-700-760 \mathrm{v}, 50 \mathrm{~m} / \mathrm{a} .6 \cdot 3 \mathrm{v} .1 \cdot 5 \mathrm{a}$. Fully shrouded. 600 watts auto tapped 200-210-220-230-240-250v. Open
type. T.T. connections. $45 /-$. P. \& P. 5/-.

GRESHAM HT TRANSFORMERS

Oil filled potted type. Pri 240 v . sec. $475-0-475 \mathrm{v}$. $220 \mathrm{~m} / \mathrm{a}$

 sec. $15 \mathrm{v}, 2 \cdot 5 \mathrm{a}$ and 13 v .6 a .
frame type. $50 /-$, P. \& P. $8 / 6$.

REDCLIFFE HEAVY DUTY HT TRANSFORMERS Pri 220-220-240v. see. 635 v I amp twice. Suitable for high power
audio equipment. Oil filled potted type, ete. 88.15 .0 . Carr. 15%.

SPECIAL OFFER A.E.R.E. TRANSFORMERS

 Pri 200, 220, 240 v . sec. tapped. $370,390.410 \mathrm{v} .6 \mathrm{~m} / \mathrm{c}$. C. core.
Pri 200, 220240 v . Sec. $350-0-350 \mathrm{v}, 25 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v}$, Ia, $6.3 \mathrm{v}, 0.6 \mathrm{a}$.
Sealed ealed potted sype $15 /=$ P. \& P. $4 / 6$

ADVANCE CIV TRANSFORMERS

Trpe CV $15 / 95$. Ingut $95-130 \mathrm{v}$., $190-260 \mathrm{v}$. Output Av. rms + Type MTI40. Input $190-260 \mathrm{v}$. Output 230v. 150w. \&5.15.0. Type MT161, Input 190-260v. Output 230v. rms, 60w. \&3.15.0.

BURGESS MICRO SWITCHES

Type MK 3BR/74. Norm closed or Norm open, in, raisec
Press Button. $8 / 6$ for three. P. \& P . $2 / 6$.

HONEYWELL 250 v . 10 A . A.C. Lever
operated. Make or break (3 tags). Three
for 12/6. P. \& P. $2 /=$. Many other types
available.

VENNER SYNCHRONOUS BIO-DIRECTIONAL

 MOTORS220-240v. 50 cycles 40 r.p.m. automatically reverses wherever spindle stop is placed overall size $21 \times 2 \times$ lins. Spindle
length in. dia. $1 / 16$. An ideal motor for display, giving a
forward and reverse motion. $12 / 6$. R. \& P. $2 / 6$.
A.C. 220-240v. Shaded Pole Motors. 1,500 r.p.m., double spindle. 0.9 in . and 0.6 in . overall. Size ${ }^{3} \times{ }^{31} \times 2 \mathrm{in}$. As used in
hot air blowers, new and boxed. $10 / 6$. P. $\&$ P. $3 / 6$. A.E.I. Adjustable Thermostats. Type TS2, stem 6 in.
60 deg. C. Contacts N. O . new and boxed, 27/6. P, \& P. $3 / 6$. 12 in . stem, 32/6. P. \& P. 4/6

RANCO REFRIGERATION THERMOSTATS

 Type A. $10.100-250 \mathrm{v}$. A.C. $\mathrm{H} . \mathrm{P} .15 /-\mathrm{P}$. \& P. 2/-. Teddington type Q1, $100-150 v$. A.C. h.p.$2 t$ in. N.A.B. spools for 1 in. tape. $10 / 6$ each. P, \& P. $4 / 6$.

SCOTCH MAGNETIC TAPE

Type 3 M 459 in. $\$.600$ feet. Supplied new in maker's cartons

LONDEX PLUG-IN RELAYS

Sealed type, 28v. D.C. Three heavy duty silver contacts. Size $2 \times 2 \times 1$ in. Complete with base, 8/6. P, \& P, $2 /$

SUNVIC TANK THERMOSTATS

Type TQP. 250 v .15 amps NC. 5 amps. NO. $190-70$ deg. F
Length of stem $10 \frac{1}{1}$ ins, 25%, P. \& P. 5%.

WEYRAD

 COILS AND I.F. TRANSFORMERS IN
LARGE-SCALE PRODUCTION

 FOR RECEIVER MANUFACTURERSP. 11 SERIES $10 \mathrm{~mm} . \times 10 \mathrm{~mm} . \times 14 \mathrm{~mm}$. Ferrite cores $3 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
P. 55 SERIES $12 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores $4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
T. 41 SERIES $25 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores $4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Double-tuned 1st and 2nd I.F.s and Single-tuned 3rd I.F. complete with diode and by-pass capacitor.

These ranges are available to manufacturers in versions suitable for most of the popular types of Transistors. The Oscillator coils can be modified to enable specific tuning capacitors to be used provided that bulk quantities are required.

OUR WINDING CAPACITY NOW EXCEEDS 50,000 ITEMS PER WEEK

On the most up-to-date and efficient machines backed by a skilled assembly labour force for all types of coils and assemblies.

EVERYTHING BRAND NEW AND TO SPECIFICATION • LARGE STOCKS
BARGAINS IN NEW SEMI-CONDUCTORS
ALL POWER TYPES SUPPLIED WITH FREE INSULATING SETS

RESISTORS

Code	Power	Tolerance	Range
c	1/20W	5\%	82 Ω-220K Ω
c	1/8W	5\%	4.7 Ω-330k Ω
C	1/4W	10\%	$4.7 \Omega-10 \mathrm{M} \Omega$
c	1/2W	5 \%	$4.7 \Omega-10 \mathrm{M} \Omega$
C	iw	0\%	$4.7 \Omega-10 \mathrm{M} \Omega$
MW	${ }_{1}^{12 \mathrm{~W}}$	10\% ${ }^{2} / 2 / 20 \Omega$	$0.22 \Omega-3.9 \Omega$
ww	3W		128-10k Ω
ww	7W	5\%	12,-10k

Codes: $\mathrm{C}=$ carbon film, high stabiliey, low noise. MO = metal oxide, Eiectros|| TR5, ultra low nolse. $\mathrm{WW}=$ wira wound, Plessey.

Valuos:
E12 donotos series: $10,12,15,18,22,27,33,39$, 47, 56, 68, 82 and their decades.
E24 denotes series: as E12 plus $11,13,16,20,24$, 30, 36, 43, 51, 62, 75, 91 and thelr decades.
ZENER DIODES 5% full range E24 values: $400 \mathrm{~mW}: 2.7 \mathrm{~V}$ to $30 \mathrm{~V}, 4 / 6$ each; $1 \mathrm{~W}: 6.8 \mathrm{~V}$ to
9/- each: $1.5 \mathrm{~W}: 4.7 \mathrm{~V}$ to $75 \mathrm{~V}, 12 /-$ each, Cllp to increase j .5 W rating to 3 watts (ty $266 \mathrm{~F}_{\text {) }} 9 \mathrm{~d}$.

CARBON TRACK POTENTIOMETERS, long spindlas. Double wipar ansures minimum noise level.
Singlo gang linear 220 Q to $2.2 \mathrm{M} \Omega, 2 / 6$; Slnglo gang log 4.7K Ω to $2 \cdot 2 \mathrm{M} \Omega, 2 / 6 ;$ Dual gang linear,
 2.2MA, 8to; Log/antiol, $8 / 6$. Any type with A D.P. malns switech, extra $2 / 3$.

Ploase note: only docades of 10,22 and 47 are available within rangos quoted.

CARBON SKELETON PRE-SETS

Small hish quality kype PR, liner onlys 1000, 220Ω, 4700, $1 \mathrm{~K}, 2 \mathrm{~K} 2,4 \mathrm{K7}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}$,

COLVERN 3 watt WIrs-wound Potantiomaters. $10 \Omega, 15 \Omega, 25 \Omega, 50 \Omega, 100 \Omega, 250 \Omega, 500 \Omega, 1 \mathrm{~K}, 1 \cdot 5 \mathrm{~K}$. 2.5K, $5 \mathrm{~K}, 10 \mathrm{~K}, 15 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 5 / 6$ each.

ENAMELLED COPPER WIRE even No. SWG onlys 2 oz. reela: $16-22$ SWG 4/3; 24-30 SWG 5/-; 32, 14 sWG, 16 , 36,38 SWG, $6 / 3$.

> Values
available
E12
E24
E12
$E 24$
E12
E14
E12
E12
E12

Prices are In pence all quantieles of the same ohmic value and power rating. NOT mlxed values, (ignore fractions of one penny on resistor order.)

TYGAN SPEAKER MATERIAL
7 designs, $36 \times 27 \mathrm{in}$. sheors, $31 / 6$ sheat.
Pattern book, S.A.E. plus 6d. stamp.
MULLARD polyester C280 serias $250 \mathrm{~V} 20 \%: 0.01,0.022,0.033,0.047$ 8d. each; $10 \%: 0.33,1 / 5 ; 0.47,1 / 8 ; 0.68,2 / 3 ; 1 \mu \mathrm{~F}, 2 / 9 ;$ 1. 5 \% F, 4/2; $2 \cdot 2 \mu$ F, $4 / 9$

MULLARD SUB-MIN ELECTROLYTICS
 nives (μ / $5: 0 \cdot 64 / 44 ; 40 ; 1 \cdot 6 / 25 ; 2 \cdot 5 / 16 ; 2 \cdot 5 / 64 ;$
$4 / 10 ; 4 / 40 ; 5 / 64 ; 6 \cdot 4 / 6 \cdot 4 ; 6 \cdot 4 / 25 ; 8 / 4 ; 8 / 40 ; 10 / 2 \cdot 5 ;$ 10/16; 10/64; 12-5/25; 16/40; 20/16; 20/64; 25/6.4; 25/25; 32/4; 32/10; 32/40; 32/64; 40/16; 40/2.5; $5016.4 ; 50,25 ; 50 / 40 ; 64 / 4 ; 54 / 10 ; 80 / 2.5 ; 80 / 16 ;$ 80/25; 100/6.4; 125/4; 125 / $10 ; 125 / 16 ; 1602.5$; 200/6.4; 200/10; 250/4; 320/2.5; 320/6•4; 400/4;

LARGE CAPACITORS
High rlpple current typas: 1000/25, 5/6; 1000/50, 8/2; 1000/100, 16/3; 2000/25, 7/4; 2000/50, 11/4; 2000/100, 28/9; 2500/64, $15 / 5 ; 2500 / 70$, 19/6; $5000 / 25,12 / 61^{\prime} 5000 / 50,21 / 11 ; 5000 / 100,50 / 3 ;$ $10000 / 5,17 /-\mathrm{i} 19000 / 25,24 / 6 ; 10000 / 50$, 4/न: MEDIUM RANGE ELECTROLYTICS
Axial lands: 50/50, $1 / 9 ; 100 / 25,1 / 9 ; 100 / 50,2 / 63$ $220 / 25,2 / 3 ; 250 / 25,2 / 6 ; 250 / 50,3 / 9 ; 500 / 25,3 / 9$
$500 / 50 ; 4 / 6 ; 1000 / 25,4 / 0 ; 1000 / 50,4 /=2000 / 25,6 /=$

SMALL ELECTROLYTICS

Axill loads: 4.7/10, 4.7/25, 5/50, 1/- each; 10/10, 10/25, 10/50, 33/10, 50/10, 1/- each; 22/25, 25/50,

PEAK SOUND PRODUCTS ENGLEFIELD CABINET KITS

Stereo amplifier in modular kit form 12 watts per channel 438/9/-; 25 watts $65 \mathrm{l} / 15 /-$.
Cabiner kit only 6 . Inese prices nett.

BAXANDALL SPEAKER SYSTEM

Designed by Peter Baxan dall. Superb reproduc ton for its size. Handles ELAC 15id 59RM109 ELAC 15 5 59RM109 neaker unit. $19 / 8 / 6$ neet

STEREO AMPLIFIER SA.IO-IO.

Notran
 amplification featuring separate volume controls. 10 watts per channel into 5 to 8Ω. Kit $£ 19 / 7 / 6$ nett; built $\epsilon 24 / 16 / 8$ nett. Suitable 8Ω wide range speakers available $\{13 / 15 /-$ each nett

MAINLINE AMPLIFIER KITS

RCA/SGS designed main amplifier kits. Input sensitivity 500700 mV tor full output into 8 .

Power	Klt price	Suitable unreg.
12 W	including components	power supply kit
25 W	$168 /-$ nett	$92 /-$
40 W	$190 /-$ nett	N / A
70 W	$210 /-$ nett	$1 / 5 / 1$
	$252 /-$ nett	$138 / 10$

30 WATT BAILEY AMPLIFER PACK Special summer reduction (eo Sept. 30th 1970 only) Sensitivity 1.2 V for full output into 8Ω
Transistors for one chańnel $\mathbf{6 7 / 5 / 6}$ list, $\{6$ only nett
Transistors for two channels $\{14 / 11 /$ - list, \&II only nete
Capacitors and resistors (metal oxide), 30/- per channel nett. Complete unregulated power supply pack, $87 / 6$ nett.

INTEGRATED CIRCUITS

PLESSEY SL403A 3 wates into 7.5 ohms. Data book supplied FREE when two of these units are purchased. Price per unit nate 48/6.

SINCLAIR IC. 10 as advertised, complete with instructions and applications manual $59 / 6$ nete
Components pack for stereo inc. mains eransformer, controls,
etc., nott $4 / 15 / 0$.
S-DeCe PUT AN END TO BIRDS NESTING
Components just plug in-saves time-allows re-use of components. S-Ouc (70 points), 30/-.
Complate T-Dec, may be temperatura-cycled (208 points), $50 /-$
Also μ-Decs and IC carriers.

ELECTROVALUE CATALOGUE

48 pagas and cover well printed and excellenty lllustrated. Thousands of itema fully dotalied, POST FREE $2 /-$. Overseas

COMPONENT

DISCOUNTS
10% on orders for
for CS or more.
15% on orders for
15\% on orders for componente
(No' discount on nate items)
postage and
PACKING
Free on orders over E2 Please add $1 / 6$ if order is under. Ovarseas ordors wolcome carriage and Insurance charged

 BC107/8/9 2/6
 NPN Planar transistors $25+2 / 3100+21$.
 Motorola uniiunction
 $25+5 / 9100+4 / 9$
 MGA100 35/31F2 28/6 Infra-Red Emilter \& Detector
 SILICON RECTIFIERS
 Amp Miniature Moulded Junction
 Piv $1-2425+100+500+$
 in 4003
 $\begin{array}{llllll}1 N & 400 & 2 /- & 1 / 9 & 1 / 6 & 1 / 3\end{array}$

 - $\frac{1}{2}$

 NEWS NEWS NEWS NEWS
 L.S.T. Electronic Components Limited are proud to announce their official appointment by Newmarket Transistors Led.- All Newmarket products now available at Industrial User prices. All R.C.A. Semi-conductors and now available at Industrisi aver prices. Alf R.C. A. Semi-conductors and Many Mullard, General Electic, Texas types also ex stock at L.S.T. at Industrial User prices and better. Iskra resistors, Mullard Capacitors, Veroboard, Rapanco colisand other miscellaneous components stocked in large
 INTEGRATED CIRCUITS

2N3055 15/-
115 watt silicon power
trans sistor, Westinghouse
$25+13 /-100+11 /-$

Ant. Recillifer Thyristor, 200 piv
$25+6 /-100+5 /$
2N2926 2/-
NPN Planar transistors
$25+1 / 8 \quad 100+1 / 6$
BY 127 4/=
Mullard Plastic HV rectifier
800 piv ${ }^{8}{ }^{1}$ amp (similar
$25+3 / 3100+3 /$
2N3819 $\quad 7 /$
Texas FET
$25+6 /-100+5 / 3$

OCP 71 19/6
Mullard Phototransistor
$25+17 / 3 \quad 100+14 / 9$

New low integrated circuit prices microgic R.T.L. epoxy case TO5 temperature range 15° C. to $55^{\circ} \mathrm{C}$. UL 900 Buffer 8/- 7/- 6/6 5/6 uL 914 Dual 2 input Gate $8 /-\quad 7 /-6 / 6 \quad 5 / 6$ uL 923 J-K Flip Flop 10/6 10/- 9/6 91- Data and circuits article, 5 pase, at 2/6. Article " 30 Suggested Circuits for Microi logic", at $3 /$. TOS to DIL conversion -spreaders/adapters at $1 / 6$ each.

$\begin{array}{llllll}\text { IN } 4005 & 600 & 2 / 6 & 2 /- & 1 / 6 & 1 / 6 \\ \text { IN4006 } & 800 & 3 /- & 2 / 10 & 2 / 6 & 2 / 3\end{array}$
$\begin{array}{llllll}\text { IN } 4007 & 1000 & 4 /- & 3 / 3 & 2 / 9 & 2 / 6\end{array}$
In the event of any IN4000 series going temporarily out of stock we reserve the
right to send higher voltage types at no extra charge.
$1000+$ and over prices on application.

ZENER DIODES

$400 \mathrm{~mW} 10 \%$ GLASS CASE. TEXAS MFr

This superb stereo system is a real price breakthrough. It comprises the VISCOUNT F.E.T. Mk I amplifier on which full details are given below, the famous Garrard SP 25 Mk II linctuding teak veneer base and transparent cover) with diamond cartridge or 2025 TC and the very successful DUO iype 2 speakers.
-Measuring $17_{2}^{1 \prime \prime}$: $10_{8}^{3 " 1} \quad 6_{4}^{3 " \prime}$. The Duo type 2 speakers are beãutufully finished in teak veneer with matching vynair grills: They meorporate a $10^{\frac{1}{2}}-6_{4}^{1 "}$ drive unit and high trequency speaker both of which are of 3^{2} ohms impedance. The Duo speaker system is also :ivailable separately at I6.6.0. each plus 15, -P \& P. Complete streusystem £41 plus f 2.10 P \& P
WITH MK 11 amplifier and magnetic cartridge $£ 45$ plus $\lceil 2.10$ P \& P
High fidelity transistor sterso amplifier employing field effect transistors. With this feature \& accompanying guaranteed specifications below, the Viscount F.E.T. vastly surpasses amplifiers costing, far more. Size: $12 \frac{1}{2^{\prime \prime}} \times 6^{\prime \prime} \times 2 \frac{3}{4}{ }^{\prime \prime}$ in teak-finished case.

BUILT \& TESTED. MK II (MAG. P.U.) £15.15.0 p/us $10 /-p \& p$ Specification same as Mk. I. but with the following inputs.
Mag. P.U. CER. P.U. Tuner. Spec. on Mag.P.U. 3 mV @ 1 kHz input impedance 47 K . Fully equalised to within $\pm 1 \mathrm{~dB}$ RIAA. Signal to noise ratio 65 dB (vol.
Specification: Output per channel 10 watts r.m.s. Frequency bandwidth 20 Hz to $20 \mathrm{kHz} \pm .1 \mathrm{~dB}$ @ 1 watt.
Total distortion: @ 1 kHz @ 9 watts 0.5%.
Input sensitivities: CER, P.U. 100 mV into 3 meg ohms. Tuner 100 mV into 100 K ohms.
Tape 100 mV into 100 K ohms.

Overioad Factor: Better than 26 dB .
Signal to noise ratio: 70 dB on all inputs iwith vol. max). Controls: 6 position selector switch (3 pos. stereo \& 3 pos. monol. Separate Vol. controls for left \& right channels. Bass $\pm 14 \mathrm{~dB}$ @ 60 Hz . Treble (with D.P.S. on/off) $\pm 12 \mathrm{~dB}$ @ 10 kHz . Tape Recording output sockets on each channel.

LIQUIDATED STOCK
 LIQUIDATED

TOURISTE MK3 CAR RADIO

Beautifully designed to blend with the interiors of all cars. Permeability tuning and long wave loading coils ensures excellent tracking, sensitivity and selectivity on both wave bands. R.F. sensitivity at 1 MHz is better than 8 micro volts. Power output into 3 ohm speaker is 3

ORIGINALLY SOLD COMPLETE FOR £15.4.6.

SET OF PARTS Circuit diagram 2/6. Free with parts. Plus 7/6 P. \& P.

The Dorset $(600 \mathrm{~mW})$

7-transistor fully tunable M.W.C.L.W, supartiet portable-with baby alarm facility. Set of parns. The latest modulised and pre-alignment techniques makes this simple to build. Sizes: 12
MAINS POWER PACK KIT; 9/8 extra.
Price $\mathbf{£ 5 . 5 . 0}$ plus $7 / 6$ P. \& P Circuit $2 / 6$ FREE WITH PARTS

watts. Pre-aligned I.F. module and tuner together with comprehensive instructions guarantees success first time. 12 volts negative or positive earth. Size $7^{\prime \prime} \times 2^{\prime \prime} \times 4 \frac{1}{2}$ " deep.

50 WATT AMPLIFIER

AC MAINS
f28 10 s .
plus 2% p. \& p.
An extremety reliable general purpose vative amplifier. Its nugad construction ret space age strying and design makes it by far the best value for mongy.
TECHNICAL SPECRFICATIONS
3 electroncelly mixed channels with 2 inputs per channal, emables' the use of 6 zeparate instruments at the same time The volume controis for each channel are locatod directhy above the conresponding input
sockers SENSITMITES AND INPUT IMPEDANCES. Channels 1 \& 24 mV at 470 K . These 2 channats 14 Imputs) are suitable for mucrophone or ouitars. Chamels
 instruments (gram. tuner, organ. etc.l. Input sensitivity
reiative to 10 O output. TONE COMTRDLS ARE COMMON TO ALU INPUTS. Bass Boost +12 do at 60 Hz Buss Cur- 13 dB at 60 Hz Treble Boost at
+11 dB at 15 KHz Freble $\mathrm{Cut}-12 \mathrm{~dB}$ at 15 KHz With bass and reble compols central - 3 dB points are 30 Hz and 20 KHz POWER DUTPUT: For speech and music 50 watts rms. 100 wetts peak For sustanned music 45 watts rms. 90 watts peak for sinc wave 38.5 watts rms. Nearly 80 watts peak. Total distortion at rated outpun 3.2% at 1 KHz Total distortion at 20 watts 0.1 E\% at 1 KHz NEGATIVE FEEDBACK 20dB at 1 KHz SIGMAL TO NOISE RATIO GOCB. MAINS A protective fuse is located to the rear of uniL Outout A protective luse is located at the rear of unit Output
impedance 3.8 and 15 ohms.

A WIDE SELECTION OF SERVOMOTORS NOW AVAILABLE INCLUDES THE FOLLOWING TYPES:
Mil sixe $11-400 \mathrm{~Hz}$ versions for 26 and 115 v , operazion wish MIl slze 08 , 10 , 15 V . control phase windings. 400 Hz operation wish 26 , 15 and $115 v$. energised tacho generators. M1f alize $08,10,15$ and 18 wo phase sarvomotors also avait-
able with 400 Hz windings and a limited rango in 50 Hz types.
 15 and 18 with supply voltages from 6 to 50 V , D.C.
MII Tachogenerators Size 08 and 10 for 400 Hz supply. Mil sixe 11 . Servomotor searhoads available in various ratlos from lo:t $1000: 1$
All items available ex stock end at extremely competizive
EVERSHED AND VIGNOLES' SERVOMOTORS AND SERVOMOTOR-GENERATORS We hold stocks of this well known manufacturer's item your brosd design considerations will bring a reply by return indicazing ex stock aveilabilley of the motor mose nearly meeting your requiroments.
Write for our Data shoots A 131 onwards for dotails of
MIL SYNCHRO
MIL SYNCHROS AVAILABLE EX STOCK
In sizes $08,11,15,16$, 18 and 23 for 50,60 and 400 Hz opuration
Synchro Control Transmiteor
Synchro Control Differantial Transmitters Synchro Torque Transmittors and Recoivere
EQUIVALENT MAGSLIP ELEMENTS more sultable for educetionsl ure also In atock. Write for our Data Sheete A 001 onwarda for Synchro

PRECISION POTENTIOMETERS
Numeroys instrument sypas, continuous rotaNion potentiometors for control application and HELIPOTS in stock. List on application.

PLUGS, SOCKETS \& CONNECTORS Over $150,000 \mathrm{O}$ toms In stock includins Plessoy Mk. A\& 6 , 7 , Loo, Amphenol, Tranaradio, efce. Enquiries for specific items to Orpington or Lydd.

FULLY TRANSISTORISED G \& E BRADLEY ELECTRONIC MULTIMETER TYPE CT471B

DRY REED INSERTS

Overall length 1.85° (Body length 1.11°) Diameter 0.14 zo

 4 pole make contacts. Small size. $7 / 6$ each (post and packing 1/.). Many gether types availible (see July W.W.) Fully

 SX 76 FAST SWITCHING n.p.n. TRANSISTORS
 PAST SWITCHING LOGIC DIODES BAY 38 (CVBGI7) TANTALUM CAAACLTORS We hold large stecks by S.T.C.T.T.C.C., Dubilior, Komac, Plessey, G.E.0 etc., ,end for
 SCP4, SCPS CLR96 CLR66 in Brock.
CLASS WAVEMETENS No. $21.2-19 \mathrm{Mc}$ with charta. CLASSD WAVIMETEMS No. 2 I.2-19 Mc with charts. Brand now ils (carriage 30/') MHz in 4 bandis E48 (carriage 30/-).
SANGAMO-WESTONIPORTABLE sub-ntandard FREQUENCY METERS $51051200-2.000 \mathrm{~Hz} 95-135 \mathrm{~V}$. $\$ 12.10 .0$.
 crary acale, Sealod. $150-0-150 \mu \mathrm{~A}, 0-300 \mu \mathrm{~A}$ or $0-500 \mu \mathrm{~A}$. Either ypo 351- each (post and packing 2/6).
gertach COMPLEX RATIO bRIDGE Model CRB2B, six digites in phase, four digiza in quadraure. Our Pries $£ 200$. ms unless indicated otherwise.

Servo and Electronic Sales Ltd

Electrical and Servo Control EngIneers - Electrical Suppliers. Engineering Stockists - Aeronautical Suppliers post orders to 43 HIGH STREET, ORPINGTON, KENT. Phone: Orpington 3 I066/33976/33221 19 MILL ROAD, LYDD, KENT (Works), Phone: Lydd 252 67 LONDON ROAD, CROYDON, SURREY (Retall Branch and Instrument Repairs). Phone: 0 - $-888-1512$ (Croydon)
 These interesting $27 v 0.5 A$ units (will happily provide 700 mA ment case, provilt Into an attractive gre oide mounting. Cable entry grommeta are mounted in the base of the unit. The choke capaciey amooched output it solid state stabillsed against variation in input voltage and output current, and oporates a bullt-in S.P.C.O. relay to switch for inssance an
alarm circule. Inpus voltage is $200-250 v$ D. alarm circule. Inpus voltage is 200-250v D.C. in 10 v steps, whie the transiormer secondery carries two saps. All
terminazions ars ransfarred over to a Grolco block. There is sdequate room for other equlpment within the vensilated case, which is $12^{\circ} \times 10^{\circ} \times 6^{\circ}$ deep. Our price, brand now

PRECISION SIGNAL GENERATORS

 F.M./A.M. SIGNAL GENERATOR ET218 Cryseal Check at 2 MHz and 100 KHz pointa.
Devlationt 5 or 15 KHz on Range C ; 10 or 30 K
D: 30 or 90 KHz on rangea E, F, G and H. A.M. Modulation $1,000,1,600$ or $3,000 \mathrm{~Hz}$. Output voltages $\backslash \mu \mathrm{V}-1 \mathrm{~V}$ in 6 rang ${ }^{2}$ and iV-10V in 20 ranges. Wish provision for external
modulation. In excellent condicion. 655 each (carriage $30 /-$).
P.M./A.M. SIGNAL GENERATOR CT320 As above but with addicional L.F. range $35-85 \mathrm{KHz}$ and lass
the $18.5-30 \mathrm{MHz}$ range (Ranges A-H) and with additiong mod. frequency 300 Hz . Deviaslon: 5 and 15 KHz , rance D : 10 and 30 KHz range $\mathrm{E} ; 30$ and $90 \mathrm{Kz}, \mathrm{F}$, G \& H . In excellent condition. 165 each (carriage 301 -).

10 cm . SIGNAL GENERATOR SPERRY PT. No. 16116-0
Modulated Microwave Generator covering the range 7.8 to merit may also be used as a CW Generator. The inseruate nuator is calibrated 0-130 dB. Coaxial outpue. In execellent condition $\& 50$ each (carrlage 30%).

LATEST RELEASE OF
RCA COMMUNICATION RECEIVERS AR88

BRAND NEW and in original cases-A.C. mains input. 110 V or 250 V . Freq. in 6 bands $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$. Output impedance 2.5-600 ohms. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control, R.F. \& A.F. variable controls. Price £87/10/each, carr. £2.
Same model as above in secondhand cond. (guaranteed working order), from $£ 45$ to $\$ 60$, carre $£ 2$.

- SET OR VALVES: new, $£ 3 / 10 / \mathrm{m}$ a set, post 7/6; SPEAKERS: new, \&3 each, post 10/-. HEADPHONES: new, $£ 1 / 5 /$ a pair, 600 ohms impedance. Post $5 /-$
AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscile lator coil L55. Price 10/- each, post 2/6. RF Coils 13 \& 14; $17 \& 18 ; 23 \& 24$; and 27 and 28 . Price $12 / 6$ each. $2 / 6$ post. By-pass Capacitor K.98034-1, $3 \times 0.05 \mathrm{mfd}$. and M. 980344 , $3 \times 0.01 \mathrm{mfd}$., 3 for $10 /=$, post $2 / 6$. Trimmers $95534-502,2-20$ p.f. Box of 3, 10/m, post 2/6. Block Condenser, $3 \times 4 \mathrm{mfd}$., 600 v.s e2 each, $4 /$ post. Output transformers $901666-501$ 27/6 each, 4/- post.
- Available with Recciver only.

If whahing to call at Stores, please solephone for appointment.

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental : $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms $100 \mathrm{mV}-1$ volt -52.5 ohms. Internal Modulation: 400c/s sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}$, $40-100 \mathrm{c} / \mathrm{s}$. Consumption approx. 40 watts. Measurements $191 \times$ $12 \frac{1}{5} \times 10 \mathrm{in}$. Secondhand condition. $£ 25$ each, carr. 30/-.

LAVOIE PORTABLE ABSORPTION FREQUENCY METER TYPE TS-127/U: Freq. $375-725 \mathrm{Mc} / \mathrm{s}$. Circuit: Piston-capacitor type tuning Resonator working direct into a 957 detector valve, R.C. coupled to a 2 stage amplifier (1S5 \& 3S4): Microammeter Resonance Indicator: Time switch to select operating time up to 15 mins. Average ' Q '-3000: Power Requirements: 1.5 V dry batteries and 45V. Price $£ 20$ each, 10/-post.

CT. 49 ABSORPTION AUDIO FREQUENCY METER: Freq. range $450 \mathrm{c} / \mathrm{s}-22 \mathrm{Kc} / \mathrm{s}$., directly calibrated. Power supply 1.5V-22V d.c. $£ 12.10 .0$ each, 15/- carr.

3-B TRULOCK RDAD, LONOON, N17 OPg
Phone: 01-808-9213

HRO RECEIVER. Model 5T. This is a famous American High Frequency superhet, suitable for CW , and MCW, reception crystal filter, with phasing superhet, suitable for CW, and MCW, reception crystal filter, with phasing
control. AVC and signal strength meter. As new $18 / 10 /-$ each, carr. £1. COMMAND RECEIVERS; Model $6-9 \mathrm{Mc} / \mathrm{s}$., as new, price $£ 5 / 10 /$ e each, post 5/-.
COMMAND TRANSMITTERS, BC-458: $5.3-7 \mathrm{Mc} / \mathrm{s}$., approx. 25 W output, directly calibrated. Valves 2×1625 PA; 1×1626 osc.; 1×1629 post
(Conversion as per "Surplus Radio Conversion Manual, Vol. No. 2," by R. C. Evenson and O. R. Beach.)
AIRCRAFT RECEIVER ARR. 2: Valve line-up $7 \times 9001 ; 3 \times 6 A K 5$; and $1 \times 12 \mathrm{~A} 6$. Switch turied $234-258 \mathrm{Mc} / \mathrm{s}$. Rec. only $£ 3 \mathrm{each}$, $7 / 6$ post; or Rec. with 24 v. power unit and mounting tray $£ 3 / 10 /$ each, $10 /$-post.
RECEIVERS: Type BC-348, operates from 24 จ D.C., freq. range 200-500 Kc / s, 1.5-18 Mc/s. (New) \&35.0.0 each; (second hand) $£ 20.0 .0 \mathrm{each}$, good condition, carr. $15 /$ - both types.
MARCONI RECEIVER 1475 type 88: $1.5-20 \mathrm{Mc} / \mathrm{s}$, with a.c. Power supply, second hand condition £13/10/- each, carr. 25/-.
RACAI, EQUIPMENT: Frequency Meter type SA20: 835 each, carr. £1. Electronic VHF Type S.A. 80 (for use with the SA .20): $25 \mathrm{Mc} / \mathrm{s}-160 \mathrm{Mc} / \mathrm{s}, \$ 40$ each, carr. 11.

ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C.@ 1.8 amps, $400 \mathrm{c} / \mathrm{s} 3$ phase, $88 / 10 /$ e each, $8 /-$ post. 24 v D.C. input, 175 v D.C. @ 40 mA output, 25/- each, post 2/-.
CONDENSERS: $150 \mathrm{mfd}, 300$ v A.C., $27 / 10 /-$ each, carr. $15 /-.40 \mathrm{mfd}, 440 \mathrm{v}$ A.C. wkg., $\& 5$ each, $10 /-$ post. $30 \mathrm{mfd}, 600 \mathrm{v} w \mathrm{~kg}$. D.C., $83 / 10 /-$ each, post $10 /-$-:
$15 \mathrm{mfd}, 330 \mathrm{v}$ A.C. wkg., $15 /-$ each, post $5 /-10 \mathrm{md}, 1000 \mathrm{v}, 12 / 6$ each, post $2 / 6$. $15 \mathrm{mfd}, 330 \mathrm{v}$ A.C. wkg., $15 /-$ each, post $5 /-10 \mathrm{mfd}, 1000 \mathrm{v}, 12 / 6$ each, post $2 / 6$.
$10 \mathrm{mfd}, 600 \mathrm{v}, 8 / 6$ each, post $5 / \mathrm{m} .8 \mathrm{mfd}, 1200 \mathrm{v}, 12 / 6$ each, post $3 /-8 \mathrm{mfd}, 600 \mathrm{\nabla}$, $10 \mathrm{mfd}, 600 \mathrm{v}, 8 / 6$ each, post $5 /-8 \mathrm{mfd}, 1200 \mathrm{v}, 12 / 6 \mathrm{each}$, post $3 /-8 \mathrm{mfd}, 600 \mathrm{v}$, $8 / 6 \mathrm{each}$, post $2 / 6.4 \mathrm{mfd}, 3000 \mathrm{v}$ wkg., $£ 3 \mathrm{cach}$, post $7 / 6$. $2 \mathrm{mid}, 3000 \mathrm{v}$ wkg., 22 each, post $7 / 6.0 .25 \mathrm{mfd}, 2 \mathrm{Kv}, 4 /-\mathrm{each}, 1 / 6$ post. 0.01 mfd . MICA 2.5 Kv . Price
£1 for 5 . Post $2 / 6$. Capacitor: $0.125 \mathrm{mfd}, 27,000 \mathrm{v}$ wkg. $£ 3.15 .0$ each, $10 /$ post.
OSCILLOSCOPE Type 13A, $100 / 250$ v. A.C. Time base $2 \mathrm{c} / \mathrm{s} .-750 \mathrm{Kc} / \mathrm{s}$. Bandwidth up to $5 \mathrm{Mc} / \mathrm{s}$. Calibration markers $100 \mathrm{Kc} / \mathrm{s}$. and $1 \mathrm{Mc} / \mathrm{s}$. Double Bandwidth up to 5 Mc/s. Calibration markers $100 \mathrm{Kc} / \mathrm{s}$. and
COSSOR 1035 OSCIILLOSCOPE, $£ 30$ each, $30 /$ carr.
COSSOR 1049 Mk. 111, £45 each, $30 /$ - carr.
RELAYS: GPO Type 600, 10 relays @ 300 ohms with 2 M and 10 relays @ 50 ohms with 1 M ., 22 each, $6 /$ - post.
12 Small American Relays, mixed types \&2, post 4/-.
Many types of American Relays available, i.e., Sigma; Allied Controls; Leach;
étc. Prices and further. details on request 6 d .

> GEARED MOTORS : 24 v. D.C., current 150 mA , output 1 r.p.m., $30 /-$ each, $4 /-$ post. Assembly unit with Letcherbar Tuning Mechanism and potentiometer, 3 r.p.m, $\$ 2$ each, $5 /$-post.
> SYNCHROS: and other special purpose motors available. British and American ex stock. List available $6 d$.

TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price 25/-, post 5/-.
SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, £2/10/- each post $6 / \mathrm{m}$.
CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps., £2/10/- each, carr. 12/6.
OHMITE VARIABLE RESISTOR: 5 ohms, $5 \frac{1}{2}$ amps; or 2.6 ohms at 4 amps . Price (either type) $£ 2$ each, $4 / 6$ post each.
TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$'s; complete with filament transformer 230 v . A.C. Mounted in 19 in . panel, \&4/10/-each, 15/- carr. POWER SUPPLY UNIT PN-12A: 230V a.c. input $50-60 \mathrm{c} / \mathrm{s} .513 \mathrm{~V}$ and 1025 V @ 420 mA output. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V and 10 Mrd 600 V . Filament 3 Aransformer 230 V a.c. input. 4 Rectirying a 65 Amp. Mounted on steel base $19^{\prime \prime} \mathrm{Wx} 11^{\prime \prime} \mathrm{Hx} 14^{\prime \prime} \mathrm{D}$. (All connections at the rear). Excellent condition £6.10.0. each, Carr. £1.
AUTO TRANSFORMER: $230-115 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}, 1000$ watts, mounted in a strong steel case $5^{\circ} \times 6 \frac{1}{2}^{\prime \prime} \times 7^{\prime \prime}$. Bitumin impregnated. £5 each, Carr. 12/6. 230-115V,
$50-60 \mathrm{c} / \mathrm{s}, 500$ watts. $7^{\prime \prime} \times 5^{\prime \prime} \times 5^{\prime \prime}$. Mounted in steel ventilated case. £3 each, 50-60c/s, 50
POWER UNTT: 110 v. or 230 v. input switched; 28 v.@ 45 amps. D.C. output. Wt. approx. 100 lbs., $£ 17 / 10 /$ - each, $30 /$ carr. SMOOTHING UNITS suitable or above $27 / 10$-- each, 15/- carr.
CORPORAL ROCKET ELECTRONIC GUIDANCE EQUIPMENT: Beacon Radio DRN.7. Rec/Trans. Assembly MX.2048DPW-8. Electronic Control Amplifier AM1510/DJW3. Transmitter C-1493/MRQ.1. Power Units and miscellaneous spares available.
MODULATOR UNIT: 50 wart, part of BC-640, complete with 2×811 valves, microphone and modulator transformers etc. \&7/10/- each, 15/- carr.
NIFE BATTERIES: $4 \mathrm{\nabla} .160 \mathrm{amps}$, new, in cases, $\mathbf{~ f 2 0}$ each, $\mathrm{EL} 10 /$ - carr.
FUEL INDICATOR Type 113R: 24 v . complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in a 3 in. diameter case. Price $30 /-$ each, postage $5 /-$.

FREQUENCY METERS: BC-221, meter only $£ 30$ each, BC-221 complete with stabilised power supply $£ 35$ each, carr. $15 / \mathrm{F}$. LM13, $125-20,000 \mathrm{Kc} / \mathrm{s}$., e25 each, carr. 15/-. TS.175/U, £75 each, carr. \&1.
CANADIAN HEADSET ASSEMBLY: Moving coil headphones 100Ω, with chamois leather earmuffs. Small hand microphone complete with switch and moving coil insert. New condition. Price 35/- each, post $5 /$-.
AUDIO OSCILLATOR $382 / \mathrm{F}$: Input 115 v . A.C., $50 \mathrm{c} / \mathrm{s}, 20-200,000 \mathrm{c} / \mathrm{s}$ per sec. in 4 ranges. Cont. wave. Output $0-10 \mathrm{v}$. in 7 ranges. Power output 100 mw . Output impedance 1,000న. £27/10/- each, \&1 carr.
RACK CABINETS (totally enclosed) for std. 19 in . panels. Size: 6 ft . high \times 21 in . wide $\times 16 \mathrm{in}$. deep. With rear door. f 12 each, $£ 2 / 10 /$ - carr. OR 4 ft . high \times $23 i n$. wide $\times 19 \mathrm{in}$. deep. With rear door. $£ 8 / 10 /$ each, $£ 2$ carr.
CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG1 (CV1526) colour green, medium persistence complete with nu-metal screen, $\mathbf{2 3 / 1 0 / - ~ e a c h , ~ p o s t ~ 7 / 6 . ~}$ APNI ALTIMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s}$., complete with all valves 28 v. D.C. 3 relays, 11 valves, price e_{3} each, carr. $10 /$ ANIENNA WIRE: 100 ft . long. $15 /-+5 /-$ post.
SLMPSON OUTPUT VOLTMETER A.F., Model 427: 3 ranges, 2, 10 and 50 Volts, 53 each, $+4 /$ post.

PYE D.C. MICROVOLTMETER, suspended Galvanometer movement Range multiplier $\times 1 \times 10 \times 100 \times 1000$. Mains operated $200 / 250 \mathrm{~V}$ $\mathrm{E} 25+£ 1$ carr.

GR FREQUENCY METER Type 720A. $10 \mathrm{Mc} / \mathrm{s}-3000 \mathrm{Mc} / \mathrm{s}$, with P.U 115/230V a.c. £27/10/- + £1 carr.
SIGNAL GENERATOR OSCILLATOR TEST SET NO. 2. AM/RM,
Frequency $20-80 \mathrm{Mc} / \mathrm{s}, 2$ ranges. $£ 40+15 /-\mathrm{cars}$. Frequency $20-80 \mathrm{Mc} / \mathrm{s}, 2$ ranges. $£ 40+15 /$ - carr.
DAWE OCTAVE BAND ANALYSER TYPE 1410A. Portable Battery operated. Attenuator 0-50 Db. 6 ranges. $£ 25+£ 1 \mathrm{carr}$.
LABORATORY VALVE VOLTMETER E.I. LTD. Model 26: 6 ranges, IV-250V a.c./d.c. Ohms 4 ranges $0.1-1$ meg., with probe. $£ 22 / 10 /-+15 /$-carr

MARCONI TF-1377 SUPPRESSED ZERO VOLTMETER: Meter Range $50 \mathrm{mV}, 0.5 \mathrm{~V}, 5 \mathrm{~V}, 50 \mathrm{~V}$, all centre zero. Input range $10 \mathrm{~V}, 100 \mathrm{~V}, 100 \mathrm{~V} \times 2$, $100 \mathrm{~V} \times 5$. Zero supression indicator $0-999$. $£ 40+15 /$-carr.
COSSOR OSCILLOGRAPH VOLTAGE CALIBRATOR, Model 1433 5 ranges, $3-300 \mathrm{mV}$, and $1-100 \mathrm{~V}$. $815+15 /$ - carr.
ADVANCE L1 SIGNAL GENERATOR: Freq. $300-1000 \mathrm{Mc} / \mathrm{s} .0-120 \mathrm{Db}$ Attenuation. Modulation Pulse or Sinewave Pulse with $15-100$ or $80-600$ micro/secs. £45 + £1 carr.

APN-1 INDICATOR METER, 270° Movement. Ideal for making rev. counter. 25/- each, 5/-post.
VARIABLE POWER UNITs Complete with Zenith variac 0-230V., 9 amps; 2 fin . scale meter reading $0-250 \mathrm{~V}$. Unit is mounted in 19 in. rack. £15 each, $30 /$ carr.
ATRCRAFT SOLENOID UNIT D.P.S.T.: 24V, 200 Amps, $£ 2$ each, $5 /$-post.
RADAR SCANNER ASSEMBLY TYPE 122A: Complete with parabolic reflector, (24 in . diameter); meters, suppressors, etc. $\mathbf{\&} 35$ each, $£ 2$ carr.
DECADE RESISTOR SWITCHI 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms. Tolerance $\pm 1 \%$ £ 3 each, $5 /$-post. 90 ohms per step. 10 positions,

TELESCOPIC ANTENNA: In 4 sections, adjustable to any height up to 20 ft Closed measures 6 ft . Diameter 2 in . tapering to 1 in . \&5 each $+10 /-\mathrm{carr}$. Or $£ 9$ for two $+£ 1$ carr. (brand new condition).

COAXIAL TEST EQUIPMENT: COAXWITCH-Mnftrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type " N " female
connectors fitted to receive UG-21/U series plugs. New in ctns., $£ 6 / 10 /-$ each connectors fitted to receive UG-21/U series plugs. New in ctns., $66 / 10 /-$ each,
post $7 / 6$. CO-AXIAL. SWITCH-Mnftrs. Transco Products Inc., Type post 7/6. CO-AXIAL. SWITCH-Mnftrs. Transco Products Inc., Type Type M1460-4. (New) £6/10/- each, $4 / 6$ post.
PRD Electronic Inc. Equipment: FREQUENCY METER: Type 587-A, P250-1.0 KMC/SEC. (New) £75 each, post $12 / 6$. FIXED ATTENUATOR
Type $130 \mathrm{c}, 2.0-10.0 \mathrm{KMC}$ SBC. (New) 85 each, post 4/-. FIXED ATTENU Type 130c, $2.0-10.0 \mathrm{~K}$ KC/SBC. (New) 85 each,
ATOR: Type $1157 \mathrm{~S}-1$, (new) 26 each, post $5 /-$.

FOR EXPORT ONLY BRITISH \& AMERICAN COMMUNICATION EQUIPMENT

VRC.19X Trans-ceiver, $150-170 \mathrm{Mc} / \mathrm{s}, 2$ Channel, 20. Watts, Output 12/24V d.c. operation. General Electric Transmitter, $410-419 \mathrm{Mc} / \mathrm{s}$, thin line tropo scatter
system, with antennae. W.S. Type 88, Crystal controlled, $40-48 \mathrm{Mc} / \mathrm{s}$. W.S. Type system, with antennae. W.S. Type 88, Crystal comtrolled, $40-48 \mathrm{Mc} / \mathrm{s}$. W.S. Type
$\mathrm{HF}-156$, Mk. II, Crystal controlled, $2.5-7.5 \mathrm{Mc} / \mathrm{s}$. W.S. Type 62 , tunable, $1.5-12$ $\mathrm{HF}-156, \mathrm{Mk}$. II, Crystal controled, $2.5-7.5 \mathrm{Mc} / \mathrm{s}$. W.S. Mc / s. C.44, Mk. II, Radio Telephone, Single Channel, $70-85 \mathrm{Mc}$, tus, 50 watts ,
 50 watt, narrow band width. A.C. input 115 V . BC-640 Tx, $100-156 \mathrm{Mc} / \mathrm{s}, 50$ watt output, 110 V or 230 V input. STC Tr/Rx Type 9X, TR1985; RT1986; TR1987 and TR1998, $100-156 \mathrm{Mc} / \mathrm{s}$. TRC-1 Tx/Rx, Types T.14 and R.19, FM $60-90 \mathrm{Mc} / \mathrm{s}$. With associated equipment available. Redifon GR410 Tx/Rx, SSB, $1.5-20 \mathrm{Mc} / \mathrm{s}$. Sun-Air Tx/Rx Type T-10-R. Collins Tx/Rx/Type 18S4A. Collins Tx/Rx Type ARC-27, $200-400 \mathrm{Mc} / \mathrm{s}, 28 \mathrm{~V}$ d.c. With associated equipment available. ARC-5; ARC-3; and ARC-2 Tx/Rx. BC-375; 433G; 348; 718; 458; $455 \mathrm{Tx} / \mathrm{Rx}$. Directional Finding Equipment CRD. 6 and FRD. 2 complete Sets available and spares. Telephone Installation type X matic Telephone Exchange. Complete system with full set Manuals. Mobile matic Telephone Exchange. Complete system with full set of Manuals. Mobile Consisting of $3 x A R C-27 \mathrm{Tx} / \mathrm{Rx}$ with all associated equipment (as new).

ALL GOODS OFFERED WHILST STOCKS LAST IN "AS IS" CONDITION UNLESS OTHERWISE STATED

CALLERS BY TELEPHONE APPOINTMENT ONLY
 Phone: 01-808 9213

SEMI-CONDUCTORS/ VALVES BRAND NEW \& FULLY GUARANTEED

\section*{AI-FI EQUIPPMENT SAVE UP TO 33 $\frac{1}{3} \%$ OR MORE
 SEND S.A.E. FOR. DISCOUNT 'PRICE LISTS AND PACKAGE OFFERS!
 GARRARD} | rull current range offer | | |
| :--- | :---: | :---: |
| 1025 stereo | 27.18 .6 | SL65B |
| 40 Mk II | | SL72B |

 \$P26 Mk II 210.19.6 \qquad

TEAX BASES AND PERSPEX CONERS For SP25, 8L65, 8L55, 3000,
1000, \&4.10.0.
For AP75, BL75, BL95, 55.19 \&
For AP7B, SL75, 日L95, \&5.19.6.
Por SP25 eto, to operate with id in place
\&5.19.6. Carriak $7 / 6$ extra each eype.

SPECIAL
GOLDRING GL69/2 fitted Goldring

OFFERS
Garrard SP23 Mk 11 fitted Goldring G800

TEIII DECADE RESISTANCE ATTENUATOR Variable range 0.111
db. Conneetiona. Unbalaneed $\mathbf{T}^{\text {sand }}$
Bridge To. Imperl-
 $10)+(1 \mathrm{db} \times 10$
$+10+20+30+$

 Maximum input less thas 4 watta (50 voits) Bult to 600 a load reiitance witb internal/ BELCO AF-5A SOLID STATE SINE SQUARE WAVEC.R. OSCILLATOR

TE-IGA TRANSISTORISED
SIGNAL GENERATOR

MHZ 400 KHZ-30 MHZ An loexpensive instrument for the havdy-
man. Operates on $9>$ man. Operates on Pr.
battery. Wide easy to
 resd scale. 800 KH2,
modnlation. $83^{\circ} \times 57^{\circ}$
$\times \quad 37^{\circ}$ $\times 38^{\circ}$. Complete with
instructions and leads. E7/19/6. P/P 4/-.
BELCO DA-20 SOLID STATE

New
able
high-quality
inbrtument port${ }_{1}^{2 b l e}$ Hz to 100 KkHz Kquare 20 Hz to 20 KHz . Out

 $\underset{120 \mathrm{~mm} .}{2015} \times 150 \mathrm{~mm} \times$

Price $£ 227.10 .0$
Cart. $5 /$.

MULTIMETERS for EVERY PUrposel

	TECH PT-34. 1,000 1.000v. a.c. and d.e. $011 / 1001500 \mathrm{~mA}$ d.c. $0 / 100 \mathrm{~K}$ 3818 P. \& P. $2 / 6$.

HONOR TE.10A. $20 \mathrm{k} \Omega /$ Volt 5/25/50/250/500/2,500 v. D.C. 10/50/100/500/1,000 v. A.C. $0 / 6 \mathrm{~K} / 6$ meg, ohm -20 to +22 dB. $10-0,100 \mathrm{mfd}$. $0.100-0.1 \mathrm{mfd}$. 69/6. P. \& P. 3/.	

	TMK MODEL TW-50K 48
33	125, 250, 500, 1000, A. A. . Voilis:
	1000v. D. C. Current: $25,5004 \mathrm{~A}, 2.5$,
	dB. $£ 8 / 17 /$ B. P. \& P. $3 / 6$.

MODEL TE-200 20,000
MODEL TE-200 20,000

load protection.
$0,5 / 25 / 1251,1000$
Y. D.

$0110 / 50 / 250 / 1,000$ V.A.C.
mex. +20 to +62 db .
$751-$ P. \& $\mathbf{P} .3 /$

MODEL TE 90 B0,000 O.P.V
 $0 / 6 / 301120130011,200$ v.
$.03 / 6 / 60 / 600$ MA. D.C. $16 \mathrm{~K} / 180 \mathrm{~K} / 1.6 / 18$ MEG
-20 to $+63 \mathrm{db} .87 / 10 / 0$

MODEL A8-100D. 100 K 日 T Volt 3 in., mirror scalle. Built-in meter 1.200 v . D.C. $0 / 6 / 30 \cdot 1201300 / 600$ 下. A.C.
 $012 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{M} / 20 \mathrm{M} .20$ to

LAFAYETT RECEIVER

TMK LAB TEATER
100,000 O.P.V. 61 in. 8 sale
Buzzer Sho.
Buzzer Short Clroutit Check.
Beneitivity 1100,000 opv
D.C. $5 /$ Vilt

 Resistance: 1K, 10K, 100K
$10 \mathrm{MEG}, 100 \mathrm{MEG}$.
Dectbels: $-10 \mathrm{to}+49 \mathrm{db}$
Plastic Case with caitylin

LAFAYETTE HA. 800 SOLID STATE
AMATEUR

variable | B.F.O., nolse limiter, s Meter, Band $\begin{gathered}\text { detector, }\end{gathered}$
 Carringe 10%.
RCA COMMUNICATIONS
RECEIVER AR88D

Brand new.
${ }_{635 \mathrm{kc} / \mathrm{s} \text { - }}^{6 \text { bands }}$
Fully tested 32 mc
$110-250 \mathrm{v}$ AC.
£85 Carr. ${ }^{2}$.

product
 18 lb . Brad new with instructions. $267 / 10 / 0$

LAFAYETTE PF60 VHF FM RECEIVE
Aolld Btate.
$152.174 \mathrm{mc} / \mathrm{s}$.
Fully tuneable
or crystal con.
trolled (not
supplied). Built
mupplied).

Bquelch and
Volume Controls. 220/240v AC or 12v IV. Brand
new with instructions. £37/10/0. Carr. 10\%.
"YAMABISHI"

VARIABLE VOLTAGE TRANSFORMERS Excellent quality - Low price - Immediate delivery MODEL 8.280 \mathbf{B}

UNR 30 RECEIVER
Band covering 550ke/s - $\mathbf{3 0} \mathrm{mc} / \mathrm{B}$. B.P.O. Bullt In Speaker 220/240v AC. Brand new with ibstrucWS62 TRANSCEIVERS Large quantity available for EXPORT Excellent condition. Enquiries invited

UR-IA SOLID STATE
COMMUNICATION RECEIVER 4 Bands covering $550 \mathrm{ke} / \mathrm{s}$ - $30 \mathrm{mc} / \mathrm{s}$. NET, S Mete Variable BFO Ior g8B, Bult in speaker, Tele-
scopic Acrial, Bandspread, Seniltvity Control scopic Aerial, Basdspread,
$220 / 240 \mathrm{t}$ AC orpitivity or 12 v DC. $12 t^{\circ} \times 44^{\circ} \times 7^{\circ}$. Brant new with instructions. 224 . Carr. $7 / 6$.

LAFAYETTE LA. 324 STEREO
AMPLIFIER
Solld State. 12.8w rms per channel. 20-20,000 Hz
 Brushed Aluminium Front Panel. 10t" $\times 33^{\prime \prime} \times 8$ an 224. Carr. 7/6.

FULL RANGE OF CODAR EQUIPMENT IN STOCK

TRIO 9R59DS
COMMUNICATION RECEIVER 4 bands $600 \mathrm{kc} / \mathrm{s}$. $30 \mathrm{mc} / \mathrm{a}$. \& Meter, Variable Brand new with znstructions. £42. Carr. Paid Full range of other Trio products to stock.

FULL RANGE OF PARTRIDGE JOYSTICK AERIALS IN STOCK

EDDYSTONE V.H.F. RECEIVERS 770R. $19-165$ Mc/s.e. 2150 .
Both types in excellent condition
Both types in excellent cond TWO-WAY TELEPHONE INTERCOM

Operative over amazlogly long dintances. geparate call and

 press to talk buttone. $\frac{\text { and }}{}$-wire connection. $1000^{\prime \prime}$ of of spliin ebony. supplied complete \#lth bstterlen end wall bracketa.$\$ 6 / 19 / 6$ pair. P. © \mathbf{P}. $3 / 6$.

VOLTAGE STABILISER TRANS
 SOLID STATE YARIABLE A.C.
olta
 continuously variable from
20 v. 230∇. Model MR 2305 amp $68 \times 46 \times 43 \mathrm{~mm}$

C.W.SIITH:\&GO. (RADRO) FID
 All Mail Orders to-
 197, Church Street, London, W. 2 Tel: 01-2626562
 (Trade supplied)
 3, LISLE STREET, LONDON, W.C. 2
 34, LISLE STREET, LONDON, W.C. 2
 311, EDGWARE ROAD, LONDON, W. 2
 OPEN 9-6 MONDAY TO SATURDAY (EDGWARE ROAD 1/2 DAY THURSDAY)

SIRA 4-PART SURVEY OF LEVEL MEASUREMENT

1.Liquid Continuous 2.Granular Solid Continuous 3.Liquid Switched 4.Granular Solid Switched

Prepared by Instrument and Control Engineering in co-operation with the SIRA Institute's 'Siraid' information and consultancy service. Self-contained . . . comprehensive . . . up-to-date . . . a technical survey and buyers' guide to Level Measurement instruments and practice. Contains: names and addresses of manufacturers; trade-name index, bibliography: guide to British Standards and glossary of standard terms: techniques review section; cross-tabulated lists of instruments and suppliers. This survey of Level Measurement is the first separate
reprint from the series of surveys currently appearing in Instrument and Control Engineering. The whole seriès will cover virtually all branches of measurement science, and is perhaps the most ambitious publishing programme ever entered into by a technical journal. Further reprints from the series will be made available in the coming months Meanwhile, demand for this first one is expected to be high as no comparable source of information exists. So you are advised to order your requirements without delay.

ORDER FORM

To: Sundry Sales Department, IPC Business Press (Sales \& Distribution) Lid, 40 Bowling Green Lane, London EC1
Please supply.............complete set(s) of SIRA Level' Measurement Survey reprints. Please supply individual parts as follows, (tick appropriate box)
\qquad \square Granular Solid Continuous
\square Granular Solid Switched
I enclose remittance value
PRICE (postage included) Per set 16 s . Od. Per individual part 6s. Od
Bulk discount (sets only) 10-19 sets 14s. 6d. each.
Over 20 sets 1.0 s.0d. each.

Name
Position
Company
Address

Signature

For the best electrical contacts

This latest edition of Electrical Who's Who is completely updated. Over 8,500 entries include key names in all branches of the industry: supply, manufacturing, contracting, consulting and trading-as well as in Government Departments, Universities, Technical Colleges and other bodies. It is the only publication of its kind. Absolutely indispensable to all who need an up-to-date guide to individuals, firms and organizations.
Size: $9^{\prime \prime} \times 6^{\prime \prime} .512$ pages. Price 65 s . By post 69 s . 6 d Obtainable from: Electrical Who's Who, Dorset House, Stamford St., London SE1

Electrical

R.S.G. HIGH FIDELITY STEREO 'PAGKAGE’ OFFERS

Matching as recommended for optimum per-
formance, Compare prices with equipment and formance, Compare prices with eq
cabinets purchased individually.

* Super 30 Amplifier ($15+15$ Watt) in veneered housing. * Goldring Transcription Turntable on Plinth. * Shure or Goldring Magnetic Pick-up Cartridge. * Pair of Stanway II Loudspeaker Units.
 Send S.A.E. for leaflet. Carr. 30/-

Tinted Transparent Plastic cover.
AUDIOTRINE HIGH FIDELITY
 LOUDSPEAKERS Heavy conmagnets. Trested Cone surroand or 'a ${ }^{\text {I }}$ ",
indicates Roll Rubber gurround.
D' indicates Tweeter Cone providing c.p.a. Exceptional performanco at low

HEN ORDERING PLIEASE STATE IMPEDANCE

HIGH FIDELITY LOUDSPEAKER UNITS
mosia veneer. Acoustically lined or filled with appropriate. Credit terms avaliable.

- orchester Size $16 \times 11 \times 9 \mathrm{~m}$. Appr, Range $45-15,000$ C.D.s. Rating
$8-10$ watts. Fitted High fux 18×8 in. Dual cone speaker. Im- $\mathbf{~ p e d a n c e ~} 8$ or 15 ohms.
pe.9
Stanway II Slze $20 \times 104 \times 98 \mathrm{in}$. approx. Rating 10 wattig, including one surround, long throw voice coll and 11,000 line magnet. High fux tweeter, Handsome
Scandinavian design cabinet. Range $35-20.000$ c.p.s. Impedance 15 o . Gives 16 Gis .
smooth realistle sound output. Inc. carr.
R.S.C. TA6 6 Watt High Fidelity Solid $\widehat{O} \bar{Q}{ }^{20}$ Freguence. A. maino oppated.
 Oatput for $8-18$ ohm speakers, Max. sensitivity δ mph.
Output rating LiH.F.M. In fully enolosed approx. of $\times 28 \times 5 \sin$. Attractive brushed silver canish racia plate $10 t \times 3 \frac{1}{2}$ lo. and matching knobs. 7 Gns.
 HIGH OUALITY HIGH QUALITY
LOUDSPEAKERS

- Super 30 Amplifier ($15+15$ Watt) in veneered housing, Bpecial total priee. * Garrard SP25 Mk. II Turntable on Plinth. * Goldring CS90 Ceramic diamond tipped Cariridge. \star Pair of Stanway II Loudspeaker Units.
ADIOTRINE HIFI SPE

76 Gins.

太 TA $126.5+6.5 \mathrm{~W}$ Amplifier in veneered housing. \star Pair of Dorthester Loudspeaker Units \star Garrard SP25 Mk II 4-speed Player on Plinth. * Goldring CS90 Ceramic P.U. Cartridge with diamond Stylus. Special total price. 53 Gns .
Terms Dep. 57 and 9 monthly payments £6.2.8 (Total 59Gns.) Carr. $25 /$ Transparent Plastic cover 3 gns extra
 and cs80. Special total proo Terms: Dep. 28/0/0 and 9 m
(Total $258 / 2 / 81$. Carr. $28 /-$ -
Transparent cover 3 gna, extra.

OTRINE HI-FI SPEAKER SYSTEMS Consisting of matched 121 Ln . 11,000 tre 16 Wht tweeter. Smooth response and extended froquener range ensure surprisiagly realistio reproOr SENIOR 15 WATT inc. HF 126 £5.15.0 15,000 lune Bpeaker $\& 8 / 15$. Carr. 6/6.
HI-FI LOUDSPEAKER ENCLOSURES Teak or Afrormosia veneer finlah. Modern design Acoustically lined. All sizes approx. Charr. 7/6 extra. $J E 8$ Slae $16 \times 11 \times 910$. Pressurised. Gives pleasing results with any $8 \ln$. 4.14 .6 Hi-Fi speaker.
10 For outstanding results mith El-Fi 10 inc $£ 5.19 .9$

 Facia Plate and Knobs. Outpat rating I.G.F.M. Complete kit of parts with full wiring diagrams snd instructions 134 GNs. Carr, $7 / 9$.
FACTOR BULT with 12 miths, gnteo. 17 GNs. Or Dep. 23 and 8 melly pymats, $38 / 10$ (Total $10 t$ mass.) or in Teak or Afrormosia veneer housing SELEMIUM RECTIFIERS. F.W. Bridged $6 / 12 v$. DO. Output Input Max

Individual Ganged controls: Bass, Treble Volume and ance. Printed circuit construction employing 10 Transistors
Plck-upa etc., and for loudspeaker output lmpedances of 3 to
15 ohnas. For standard $200-250$ v A.C. mains operation Attractive silver faished metal facla plate and matching
control, knobs. Complete KIT of PART8 INOLUDING

control, knobs. Complete KIT of PART8 INOLUDIN FULL WIRED PRINTED CIBCUIT and comprehensiv

218/10/0. Carr. 7/9. Or Depost $37 / 6$ and 9 monthly payments of $29 / 2$ (Total \&15)

R.S.C. AIO 30 WATT ULTRA LINEAR HI-FI AMPLIFIER Hikhly senisitive. Puat.Pull hligh

 8tring Beas, etc. Gram, Ratio with assoclated volume controls so that two separato inputs such a Gram and "Mike" can be mixed. 200-250 V., A.O. mnains. For 3 \& 15 ohm speakern. Complete fectory bullt with EL34 output valves and 12 months guarantee for 18 gns .15 ChS TERMS: Deposiif $£ 3.9,0$ and 9 monthly paymenta of 22 (Total £21/9/0), Send 8.A.E. for leaflet R.S.C. TFM1 SOLID STATE VHF/FM RADIO TUNER \star Eikh-sengityity. \ddagger 200-250. A.C. Mains operation.
 Visually matching our super 15 and 30 amplifera, Printed
of comparable units. FACTORY BUILT 18 ens, Or in Teak fnished cablnet 88 illus. 21 gns

INTEREST CHARGES REFUNDED On Credil Sales settled in 3 months

 R.S.C. MAINS TRANSFORMERS FULLY G UARANTEED. Interleaved andImpregated. Primarien
ROO-250v. $500 / \mathrm{s}$. Sereened MTDGET OLAMPED TYPE $24 \times 8 ; \times 8$ \&in.
 FULLY SHROUDED UPRIGET MOUMTIN ${ }_{17811}^{17}$

25

30
30 \qquad

 CHARGER TRANEFORMERS $0.9-15 \mathrm{z}$. 1 ta.
 $\begin{array}{ll}150 \text { watbs, } 33 / 6 ; 250 \text { watts } 48 / 8 ; 500 \text { watto } & 105 / 9 \\ \text { OUTPUT TRANSFORMER }\end{array}$ Standard Pentode $5,000 \mathrm{D}$ or $7,000 \mathrm{C}$ to 3Ω
Puoh-Pull 8 watte EL84 to 80 Puah-Pull 8 watte EL84 to 80 or 150 to 3Ω
Push-Pull 10 Push-Pull 10 wstio 8 V ECLL 8 to $8,5,8$ or
Puhh-Pull EL84 to 3 or $15 \Omega 1012$ waits
Pubh-Pull Ultra Linear for Mullard 510 ,
KT86, etce, for 3 or 15Ω, 15
Push-Pull 20 watt high quality sectionaliy

150 mA 7elot 250 Ezs , eto. to 3 or $150 \quad 59 / 9$

Quautr +

ALLEN BRADLEY resistors are selected by most of the World's manufacturers of really top class instrumentation and this includes the APOLLO Moon shot equipment and similar projects where component failure is unthinkable.

AVAILABILITY

Orders can usually be shipped exMilwaukee within ten days. If you can't wait that long, extensive stocks are held closer by in London and Manchester.

Write or phone for an up to date stock list.

ALLIED INTERNATIONAL COMPANY LIMITED 59, Union Street, London, SE1
Tel: 01-407 4567
or
Tel: 061-643 5548

ULTRASONIC TRANSDUCERS

40kHz. Type 1405

Available from stock
25 kHz . Type will be avallable shortly

B. RIGOLD \& BERGMANN LTD.,

54 OLD BROAD ST. LONDON E.C. 2
Tel. 01-588 1604

Please send me details on the 1405.
| Name
Name_
Company
Position
Address
1
-

VITAVOX

FOR HIGH QUALITY
MICROPHONES LOUDSPEAKERS and ancillary equipment

Further information from:
VITAVOX LTD., Westmoreland Rd., London, N.W. 9
(Tel: 01-204 4234)

FAEQUENCY METERS. SIG. GENERATORS. WATTmeters. audio oscillator. scopes. echo BOX. SPECTRUM ANALYSER, FREQUENCY COUNTERS \& OTHER ARMY SURPLUS PRECISIOK TESTING EQUIPMENT IN GOOD CONDITION.
all offers considered but cannot despatch equipment.
Callers by appointment
CLIVE
30 Cyprus Road, Finchley N. $3 \quad 01-3461147$

TYPE 709 OP. AMP. 14/6d.
TYPE 741 OP. AMP. 24/-d.
AUDIO INTEGRATED CIRCUITS TRIACS AND SILICON RECTIFIERS JEF ELECTRONICS (w.w.10) York House, 12 York Drive, Grappenhall, Warrington, Lants.

Solve your communication problems with this new 4-8tation Transistor Intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to 8ubs and 8ubs to Master. Operates on one 9 v . battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hospital, Shop, etc., for instant inter-departmental contacts. Complete with 3 connecting wires, each 66 ft . and other accessories. Nothing else to Uuy. P. \& P. 7/6 in U.K.

A top quality DE-LUXE transistorised intercom consists of MASTER and SUB for desk/wall mounting. Call, talk or listen from either unit. On/Off switch, volume control. Ideally suitable as "BABY SITTER" or Door Phone. A boon for spastics and invalids. Useful in the home, surgery or business for instant 2 -way conversations, effective range 300 ft . Unsurpassed in QUALITY AND PERFORMANCE. Complete with 66ft. connecting lead. Battery $2 / 6$ extra. P. \& P. 4/6. Price Refund if not satisfied in 7 days.

Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Portable Transistor TELEPHONE AMPIIFIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/off switch. Volume Control. Operates on one 9 v. battery which lasts for months. Ready to operate. P. \& P. 3/6 in U.K. Add $2 / 6$ for Battery.
Full price refunded if returned in 7 days.

COMPUTER SALES AND SERVICES

49-53 PANCRA8 RD., LONDON, N.W.1. Tel: 01-2785571 Telex No. 267307 (low cost computers and peripherals)

ELLIOTT 803 DIGITAL COMPUTER

Typical
Configuration:
Central Processor with 4096 Core Store. Type 3 Paper Tape Station. One Tape Reader 500 characters per sec. (Elliott TS/93). One Tape Punch 100 characters per sec. (Teletype BRPE E11). Keyboard console and associated desk. Creed Teleprinter. Automatic Floating Polnt Unit.

This is a well proved solid state digital computer, with well over 200 systems sold in the UK and abroad. Reliability has been proved by long perlods of operation. It has many advantages, such as low running costs, compact design, automatic programming, extensive librarles of programmes available and a wide variety of Input and output devices and auxilliary equipment can be coupled maklng this system suitable for use In all classes of work.

Lector Automatic Document Reader
A photo electric document reader sensing contrast between marks and background, transposing on to 7 or 8 channe paper tape. Suitsble for ranscribing order forms, meter reading sheets, stock control forms and market research

8100 DOCUMENT

READER
A low cost, singla pocket machine with reject outstacking facilitios. Permits data entry Into the comsource documents. Handles up to 1,200 documents per minute and is suitable for use with a wide varlety of character recognition systems and optical mark readputer printing and menual data entry

COMPLETE AIR CONDITIONING SYSTEMAVAILABLEBY WORTHINGTON U.S.A. COST OVER E8K WHEN NEW. P.O.A.

SERVICE TRADING CO

INPUT 230 v. A.C. 50/60 OUTPUT VARIABLE 0/260 v.A.C. BRAND NEW. Keenest prices in the country. All types (and spares) from stock. $0-260 \mathrm{v}$. at 1 amp .
-260 v . at 2.5 amps
-260 v . at 5 amps $0-260 \mathrm{v}$, at 10 amps $0-260 \mathrm{v}$. at 12 amps -260 v . at 15 amps -260 v . at 20 amps $0-260 \mathrm{v}$. at 37.5 amp -260 v , at 50 amps 20 Different types immediate delivery

RING TRANSFORMER

Functional Versatile Educational This multi-purpose Auto Transformer, with wound current Transformer, Auto Transformer H.T. or L.T. Transformer, by simply hand wind $\begin{array}{lll}65 & 10 & 0 \\ 66 & 15 & 0\end{array}$

he required number of eurns through give 8 V . (a) $12 \downarrow \mathrm{Am}$. A. Model the output could be wound to give 8 VV . (121Amp, 12 V . (9) 25Amp. or 2 V . (3) 50 Amp ., etc.
Price: RT. 100 VA 3.18 turns per volt, $\varepsilon 2 \quad 50+3 / 6 \mathrm{p}$. and p.
 $\begin{array}{lll}\text { RT.2KVA } & 1.5 \text { turns per volt, } £ 10 & 10\end{array} 0+9 / 6 p$. and p.

L.T. TRANSFORMERS

\qquad

Carr	
6	$5 / 6$
6	$6 /$
6	$6 / 6$
0	4
6	6
6	$6 / 6$
6	$7 / 6$
6	$5 / 6$
0	

te colour preference). PRICE $14 / 6$ each exeluding bulb, Post Paid. Discount for quantities of 200 or over

sidilisplatisprat

ELECTRONIC ORGAN KIT

Ideal present for Electronically minded boy. Easy to build, solid (less sharps and flats). Fitted hardwood case, using two penlite $1 \frac{1}{2} v$. batteries. Complete set of parts including speaker, etc., together with full instructions and lo unes. Have all the pleasure of building this iftructive gift for boy or girl, Price £3.0.0. P. \& P. $4 / 6$.

BODINE TYPE N.C. 1

 GEARED MOTOR(Type 1) 71 r.p.m. torque 10 lb . in Reversible 1/70th h.p. 50 cycle .38 amp . (Type 2) 28 r.p.m. corque 20 lb . in
reversible $1 / 80$ th
reversible $1 / 80$ th h.p. 50 cycle .28 amp .
offered in 'as new' condition. Input vi. motors are 115 V A.C. Supplied complete with transformer for $230 / 240 \mathrm{v}$ A.C. input Price, either type $£ 3.3 .0$ plus $6 / 6$ P. \& P. or less trans former $\mathbf{2 2 . 2 . 6}$ plus $4 / 6$. P. \& P .
These motors are ideal for rotating aerials, drawin

300 one

 MINIATURE UNISELECTOR 3 banks of 11 positions, plushoming bank. 40 ohm coil. homing bank. 40 ohm coil removed from equipment and

UNISELECTOR SWITCHES NEW

4 BANK 25 WAY FULL WIPER
25 ohm coil, 24 V. D.C. Op
$£ 5.17 .6$, plus $2 / 6$ P. \& P.
6 BANK 25 WAY FULL WIPER 25 ohm coll, 24 v . D.

8-BANK 25-WAY FULL WIPER

REAMS NEW SIEMENS PLESSEY, etc. MINIATURE RELAYS AT COMPETITIVE PRICES

MINIATURE RELAYS

9-12 volt D.C. operation. 2 c/o $500 \mathrm{M} . \mathrm{A}$. contacts. Size only lin. $\times \frac{7}{8} \times \frac{1}{2} \mathrm{in}$. Price $11 / 6$ Post paid. 30-36 V. D.C. operation. 2 c/o 500 M.A. contacts 3.200 ohm coil. Size only $1 \times \frac{7}{16} \times \frac{18}{6} \mathrm{in} .8 / 6$ post paid

> SPECIAL OFFER

Relay $18 / 24 \mathrm{~V}$. D.C. 2 clo 3 Amp contacts.
400 ohm coil. NEW. $9 / 6$ P. \& P. $1 / 6$ or 3 for $30 /=$ post paid.
TYPE A.G.C. IM IB 12 v . A.C. 3 amp
NEW $9 / 6+1 / 6 \mathrm{p}, \mathrm{\&}$ p: or 3 for $30 / \mathrm{post}$ paid

RECHARGEABLE NICKEL
CAD. BUTTON CELLS.

2×1.2 V. $250 \mathrm{MA} / \mathrm{HR}$ Nickel Cad. Cells, connected to give 2.4 Y , at 25 milliamp/lo hour

 rate, complete with $200 / 250$unused. Price $9 / 6$ each plus units for $£ 1$ post paid.

6 p. \& p. or

COMPLETE NI. CAD. BATTERY OUT FIT (EX W.D.)
2 metal carrying cases
each containing 10×1.2 volt 7 AH (12 V) batteries, (12 v) batteries (40 batvoltage, dual mezer, charging unit. Designed
for charging the 7AH
 22AH batteries simul-$100-250 v$ AC. Built to can be adjusted between power supply for field work. Offered at fraction of makers price. 2 sets of batteries, I charging unit. The set 45 c. \& P. $30 /$-.

NICKEL CADMIUM BATTERY
1.2 v. 35 AH. Size $8 \frac{1}{8}$ high $\times 3 \times 1 \frac{1}{1}$. 30% each, plus $4 /-$ P. \& P
wintered Cadmium Type I. 2 v. 7AH. Size: height 37 in.

NEW MODEL

HIGH FREQUENCY
TRANSISTORISED MORSE OSCILLATOR
Adjustable tone control. Fitted with moving coil speaker morse key. $45 /=$ plus $3 / 6 \mathrm{~d}$. p. \& p.
SEMI-AUTOMATIC "BUG" SUPER SPEED
MORSE KEY
7 adjustments, precision. tooled, 10 speed adjustable 10 w.p.m. to as
speed
high as desired. Weight $2 \frac{1}{2} 1 \mathrm{~b}$. \&4/12/6 post paid.

VENNER ELECTRIC TIME SWITCH
$200 / 250$ volt. Ex-GPO. Tested, perfect
condition. Two OX, two OFF, every 24 hrs.
 ON at dusk, OFF

INSULATION TESTERS (NEW) Test to I.E.E. Spec. Rugged metal con struction, suitable for bench or field L. 8 in.. W.4,in. H.6in., weight 61 lb . 500 VOLTS, 500 megohms E28 1,000 VOLTS, 1.000 megohms,

"AVO' MODEL 48A

Ex-Admiralty in good condition with instructions, leads, plus D.C. Shunes for 120 Amp. and 480 Amp.
60 Amp. C. Transformer for
240 Amp. Multiplier for 3600 60 Amp. and 240 Amp. Multiplier for 3600
volt. Complete outfit in fitted case. \& $15 / 0 / 0$, P. \& P. $10 /-$

IN8ULATED TERMINALS

Available in black, red, white, yellow, blue and green. New

57 BRIDGMAN ROAD
LONDON, W.4. Phonc:
Closed Soturdoys.

ECTOR DIODES.							
		6 Ma	0				
A A 120	1 V	8.5 ma	0.05	OA79	30 V	35 mA	
- D223	-	${ }^{50 \mathrm{mama}}$			115 V	${ }^{60 \mathrm{max}}$	
- D223B	150 V	50 ma		OA86	60	38 ma	
OA5	100 V	115 ma	. 1	OA90	20 V	40 mA	
OA6	${ }^{60 \mathrm{~V}}$	${ }^{1150 \mathrm{~mA}}$	O. 20 0.30	OA91 OA95		50 ma 50 mA	0.10 0.10
OA47		110 mA					

EPOXY WIRE ENDEN HALF-WAVE SILICON RECTIFIERS				
DD006	400 p.i.v.	500 mA	(45A)	
- ${ }_{\text {BY127 }}^{\text {DD058 }}$	${ }_{800}^{600}$ p.i.v.v.	1500	(25A)	
1N5399	1000 p.i.j.		(500 A)	- 0.25
Figures in brackets refer to max. charge current. 0.50				
E.H.T. SILICON CARTRIDGE TYPE RECTIFIER TYPE HS32 10,000 p.i.v. at 350 mA DC max. Max. range current 30 Amps				

SPECIAL OFFER OF TRANSISTORS

WHEN ORDERING BY POST PLEASE ADD $0.12 \frac{1}{2}$ (2/6) IN \mathcal{E} FOR HANDLING AND POSTAGE. ALL MAIL ORDERS MUST BE SENT TO HEAD
OFFICE AND NOT TO RETAIL SHOP.

ZENER DIODES

BZY88 series from 3.5 V to $9.1 \mathrm{~V} \pm 5 \% 400 \mathrm{~mW}$ BZ Y94 series, from 10.0 V to $12.0 \mathrm{~V} \pm 8 \% 410 \mathrm{~mW}$
D814 seriee, from 7.5 V to $13.0 \mathrm{~V} \pm 10 \% 340 \mathrm{~mW}$ D814 series, from 7.0 V to $13.0 \mathrm{~V} \pm 10 \% 34 \mathrm{~mW}$ D815 series, from 4.7 V to $18.0 \mathrm{~V} \pm 10 \% 8$ Watts D817 series, from 56 V to $100 \mathrm{~V} \pm 10 \% 8$ Watta 17teach 0.20 each $0_{0.35 \text { each }}^{0.15 \text { each }}$ ${ }_{0}^{0.35}$ each 0.35 each
0.35 each Outlines: BZX series-minibturn -wire ended

D814-'Top Hat' type
D815.D817-stud mounted, supplied complete with
Please state voltage required-nearest standard voltage will be supplied.

TWO NEW OSCILLOSCOPES FROM RUSSIA

CI-5 SINQLE BEAM $10 \mathrm{me} / \mathrm{s}$ passband, triggere sweep from 1μ sec. to 3 millifrom $20 \mathrm{c} / \mathrm{s}$ to $200 \mathrm{kc} / \mathrm{s}$. Built-in time marker and ampllturie calibrator, 3 -in. cathode ray tube with telescople viewing
tub
hood.

CI-16 DOUBLE BEAM

 $5 \mathrm{mc} / \mathrm{s}$ passband. Separate rectangular 52 in. $\times 4 \mathrm{in}$. cathode ray tube. Calibrated triggered sweep from 0.2μ see. to 100 millisec. per cm. Free running Built-in time base callbration and amplitude caliFull ietails on request. Full servicing facilities and
our new catalogue 19701971 1s Now ready PLEABE SEND S.A.E. FOR YOUR FREE COPY

FULLY GUARANTEED

zuent
FIRST QUALITY VALVES

 0No HM 0,

 O00000にル000000000000000000001,

£

PLEASE NOTE THAT ALL PRICES ARE QUOTED IN DECIMAL CURRENCY.

	PCL82	0.35	0.70	UFL8
PCL83	0.65	0.60		
PCL84	0.65	0.70	UF11	0.50
PCL85	0.40	QY4-400A	UF41	0.60
UF42	0.60			

0.50
2.00
 PEN45

	PL802	0.75	U404	0.40	$X C 12 T$	0.40
PLL80	0.5	U801	1.00	X	XCIE	0.25

 142 | PY500 | 0.40 | UBF80 0.40 | Z329 | 0.50 |
| :--- | :--- | :--- | :--- | :--- |
| UBF89 0.35 | Z520M | 1.50 | | |

QQV02.6	UC92	0.35	$Z 719$	0.25
QQV03-10	UCC85	0.40	$Z 729$	0.30
UCF80	0.55	$Z 74$	0.80	

QQV03-20A	UCH21 0.60	Z 2800 U	1.75

$5-25$	UCH420.70	Z801U	1.75
QQV06-40A	UCH 430.75	Z803U	0.90

.75	QQV06-40A	UCH430.75	Z803U	0.90
5.50	UCE 810.35	Z900T	0.75	

-

PLEASE NOTE THAT YALYES LISTED ABOVE ARE NOT NECESSARILY OF U.K. ORIGIN

Head Office:

44a WESTBOURNE GROVE, LONDON, W. 2

Cables: ZAERO LONDON
Retail branch (personal callers only)
85 TOTTENHAM COURT RD.,
LONDON W.2. Tel: LANgham 8403

WE WANT TO BUY:

SPECIAL PURPOSE VALVES. PLEASE OFFER US YOUR SURPLUS STOCK. MUST BE UNUSED.
A.R.B. Approved for inspection and
release of electronic valves, tubes, klystrons, etc. E.I.D. Approved stockists.

APPOINTMENTS VACANT

DISPLAYED SITUATIONS VACANT AND WANTED: $£ 7$ per single col. inch
LINE advertisements (run-on): $8 /$ - per line (approx. 7 words), minimum two lines.
Where an advertisement includes a box number (count as 2 words) there is an additional charge of $5 /$.
SERIES DISCOUNT: 15% is allowed on orders for twelve monthly insertions provided a contract is placed in advance.
BOX NUMBERS: Replies should be addressed to the Box mumber in the advertisement, e/o Wireless World, Dorset House, Stamford Street, London, S.E.1.
No responsibility accepted for errors.

Sea-going Radio Officers can now make sure of a shore job and good pay.

GET AHEAD WTH SIEMENS

Siemens, one of Europe's major growth companies, is expanding fast in Britain.
Spearheading this expansion is our electronics business, and so we are always in need of able and ambitious engineers, sales and service men. Even if your specific assignment isn't listed here, therefore, you are invited to send a brief curriculum vitae We may have precisely the opportunity for career development you are looking for.

SERVICE ENGINEER

We urgently need a Service Engineer to work on high-quality telecommunications test equipment. This is an important assignment: the successful applicant will have had extensive experience of servicing and calibrating this type of equipment. HNC is desirable, bu appropriate experience is more important. The job is based in Croydon, and an attractive salary will be negotiated.

INTERNAL TECHNICAL SALES ENGINEER

(Electronic Components)
A man with a sound technical background in electronic components (min . O.N.C.) is required in our Croydon office. The job entails solving customers' technical problems (frequently by telephone) and liaising between our engineers and works. The successful applicant will be capable of working well under
pressure. An attractive salary will be negotiated, appropriate to age and qualifications.
Write to the Personnel Officer at this address:
Siemens (U.K.) Limited,
Great West House,
Great West Road,
Brentford,
Middx.
Tel: 01-568 9133

RADIO
 OPERATORS

There will be a number of vacancies in the Composite Signals Organisation for experienced Radio Operators in 1971 and subsequent years.

Specialist training courses lasting approximately 8 months are held at intervals. Applications are now invited for the course starting in September 1971
Salary Scales
During training with free accommodation provided at the Training School:

Age 21	¢848 per annum	
\% 22	¢906	",
. 23	£943	"
. 24	£981	"
25 and over	£1,023	.
On successful completion of course:		
Age 21	f1 023 per annum	
., 22	£1.087	,
. 23	£1,150	"
$\because 24$	£1,214	"
i. 25 (highest	£1,288	

then by 6 annual increments to a maximum of £1,749 per annum.

Excellent conditions and good prospects of promotion. Opportunities for service abroad.

Applicants must be United Kingdom residents, normally under 35 years of age at start of training course, and must have at least 2 years' operating experience or PMG qualifications. Proference given to those who also have GCE 'O' level or similar qualifications.

Interviews will be arranged throughout 1971.
Application forms and further particulars from: Reicruitment Officer, Government ComRecruitment
munlcations Headquarters, Oakley, Priors Road, CHELTENHAM, GIos., CL52 5 AJ. Tel: Cheltenham 21491 Ext. 2270

DIEHL CALCULATING SYSTEMS
 require additional ELECTRONIC AND ELECTROMECHANICAL ENGINEERS

to maintain a range of electronic/electromechanical printing calculating systems in London and the Home Counties. The range includes the Diehl Combitron Desk Computer, Punch tape inpul/output equipment, and interfacing equipment. Full training will be given to successful applicants who should have either technical background to ONC/HNC level, City and Guilds or Radio/Radar experience in the forces.
Realistic salaries which will be related directly to experience and capabilities. Transport will be provided. Please send full details of experience to:

Service Manager,

Calculating Systems Lid.,
Pyramid House,
956 High Road, FInchley, N. 12.

Management Consultants in Human Resources

17 Stratton Street London W1

Design Engineers

South Africa

TV and Radio

for a well established company having a substantial share of the local markets for radio, radiogram, record player and hi-fi equipment, and now moving into the manufacture of domestic television receivers. These are three new posts to deal with specialist design needs, as follows:

Design Engineer

Car/Portable Radio

to initiate and develop designs and circuits for the mass production of FM/AM radio receivers. Reporting to the Technical Manager he will be responsible for optimising designs by the application of transistor circuitry: he will be supported by drawing office staff and facilities. Candidates should be qualified at HNC level in electrical engineering or electronics and have at least 5 years' experience in circuit and component design of radio receivers. Reference ZH .1759.

Design Engineer

TV Receivers

to initiate and develop designs and circuits for domestic television receivers for both black and white and colour. Reporting to the Technical Manager he will be responsible for the complete electronic designs of sets to meet local systems. He will be supported by drawing office staff and facilities. Candidates should be qualified at HNC level in electrical engineering or electronics and have at least 5 years' experience in designing television or associated electronic equipment. Reference•ZH. 1760.

Industrial Designer

Entertainment Equipment

To co-operate with technical designers in the final designs of radio, TV and similar equipment to suit market trends and local production methods. In this post technical qualifications are less important than the proved ability to modify and dress technical designs to meet sales requirements, without degrading their technical performance. Candidates must have at least 5 years' experience as industrial designers in the light electrical appliances or electronics industries. Reference ZH:. 1761.

For all three posts the starting salary is negotiable up to $£ \mathbf{£ 3 , 0 0 0}$. Free life insurance, contributory provident fund and medical aid scheme. Appointed candidates will be expected to emigrate to South Africa with the assisted passage scheme. Telephone or write to P. H. L. Thomas quoting the appropriate reference.

The MSL Consultant has analysed each appointment
Further information will be sent if you provide your name and address by telephoning 01-629 1844 or writing to the consultant quoting the reference. Your enquiry will be in confidence.

If you're a telecommunications man and match up to the qualifications below cut yourself into a slice of Britain's future

Become a

in the fast-growing world of Air Traffic Control
Please send me an application form and details of how I can join the fascinating world of Air Traffic Control Telecommunicatlons.

Name

Address

Not applicable to residents outside the United Kingdom
WWT/E 2
To: A J Edwards, C Eng, MIEE,
The Adelphi, Room 705, John Adam Street, London WC2 marking your envelope 'Recruitment'

Sending this coupon could be your first step to a job that's growing in importance every year.

The National Air Traffic Control Service needs Radio Technicians to install and maintain the vital electronic aids that help control Britain's ever-in creasing air traffic.

This is the kind of work that requires not only highly specialised technical skills but also a well developed sense of responsibility, and candidates must be prepared to undergo a rigorous selection process. Those who succeed are assured a steadily developing career of unusual interest and challenge. Starting salary varies from $£ 1044$ (at 19) to $£ 1373$ (at 25 or over) : scale maximum $£ 1590$ (higher rates at Heathrow). There is a good annual leave allowance and a non-contributory pension for established staff.

You must be 19 or over, with at least one year's practical experience in telecommunications, ('ONC' or 'C and G' qualifications preferred).

Work as a RADIO TECHNICIAN attached to Scotland Yard

You'd be based at one of the Metropolitan Police Wireless Stations. Your job would be to maintain the portable VHF 2 -way radios, tape recorders, radio transmitters and other electronic equipment, which the Metropolitan Police must use to do their work efficiently.

We require a technical qualification such as the City \& Guilds Intermediate (telecommunications) or equivalent.

Salary scale: £1,161 (age 21), rising by increases to $£ 1,590$ plus a London Weighting Allowance. Promotion to Telecommunication Technical Officer will hring you more.

For full details of this worthwhile and unusual job, write to: Metropolitan Police, Room 733 (RT), New Scotland Yard, Broadway, London, S.W.1.

656

NCR requires additional ELECTRONIC, ELECTRO MECHANICALENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.

Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.

Starting salary will be in the range of $£ 900 / £ 1,350$ per annum, plus bonus. Shift allowances are payable, after training, where applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.

Excellent holiday, pension and sick pay arrangements. Please write for Application Form to Assistant Personnel Officer
NCR, 1,000 North Circular Road, London, NW2
quoting publication and month of issue.
Plan your future with

RADIO TECHNICAL OFFICERS

Earnings in excess of $£ 2,000$ p.a.

The P.L.A. operate a wide telecommunications network from Tower
Pier to the outer Thames Estuary, and vacancies exist at the King George V Dock for Radio Technical Officers to maintain the equipment at maximum efficiency.
To ensure adequate coverage, a shift system is operated.

Salary scale:
£1,400-£1,520 p.a.
Plus pay supplement:
£160 p.a.
Plus allowance for week-end and
£275 p.a.
public holiday working:
Payment at enhanced rates for overtime working when required.
Earnings in excess of $£ 2,000$ p.a. are possible.
Minimum qualifications:-O.N.C. Electrical Engineering
or City \& Guilds Intermediate Certificate
in Telecommunications Engineering
plus Radio II
or equivalent Service qualifications.
Applicants should have at least 5 years' 'experience 'in semi-
conductors and in at least two of the following fields:-
V.H.F. and U.H.F. Radio

Radar and Microwave Links
Telemetry and Digital
Teleprinters and Message Switching.
Application forms may be obtained from:-
The Chief Engineer (Personnel),
Port of London Authority,
P.O. Box 242, Trinity Square,

London, E.C. 3P 3 BX

PORT OF LONDON AUTHORITY

One of the subsidiaries of a large international trading organisation operating in
East Africa, requires the services of an:

X-RAY SERVICE ENGINEER

(to be stationed in Nairobi, Kenya)
Candidates for thls position must be prepared to travel extensively and have a thorough and practical experience with the installation and maintenance of:

X-RAY EQUIPMENT, ELECTRO MEDICAL and HOSPITAL EQUIPMENT

A working knowledge of Electronic Calculators will be an added advantage.

The successful applicant will be on contract for a tour of three years In the first instance with three months paid overseas leave. Salary will be dependant on experience and qualifications in the scale of K.£1,800-K. £2,100 with an annual bonus payment. Terms include annual local leave, free housing, medical scheme, company's pension fund and car, children and education allowances.
Written applications, giving full details of education, qualificatlons, age and experience should be forwarded to:

TOM MANAGEMENT LTD
P.O. Box 12186 NAIROBI, Kenya

Interviews for this position will be arranged in the United Kingdom or The Netherlands
-••••

DP AND DATA TRANSMISSION SERIICE ENGINEERS

News is our busiriess at Reuters-we gather it from all over the world, sift it, edit it, and then get it to our thousands of subscribers just as fast as we can, twenty-four hours a day, every day of the year. We couldn't begin to cope without sophisticated data handling systems and computers. We are dependent on our communications and need more data processing or data transmission engineers to service our equipment comprising the following

- PDP8 electronic message switching systems.

- STOCKMASTER and electronic brokerage systems, including remote display terminals.
Reuters international data transmission systems - Peripheral and ancillary equipment.

Qualifications. Preferably HNC. or equivalent, in relevant subjects. Consideration will also be given to Retiring Service personnel with Service qualifications, or engineers without formal qualifications but trained by a leading computer or communications company.
Experience. Two years or more in the mainte nance of digital equipment-Processing. Retrieval or Data Transmission. Preference will be given to applicants who have experience in all three areas of operation.
Salary and Conditions. Starting salary will depend on experience and ability, and holidays and general conditions of employment are among the best in industry. Some vacancies will require shift working on a two shift system which operates from $8-4$ and 2-10 alternate weeks. These positions are at our Head Office in London and for those applicants who measure up to our requirements we can promise an interesting and busy life where rewards will match performance.
Write or telephone for an application form, to

Brian Heywood,

REUTERS Limited,

85 Fleet Street, London, EC4
Telephone: 01-3536060

Communications Technicians

Home and Overseas

The Diplomatic Wireless Service requires men capable of working without supervision for the installation, modification, maintenance and operation of (a) radio transmitters and receivers, remotely tuned aerial systems, teleprinters and voice frequency telegraph equipment over a worldwide network, or (b) very high power transmitters, receiving equipment, tape-recorders, generating plant, etc., at several high power broadcasting stations, or (c) a wide variety of telephone subscribers" apparatus; machine telegraph and other specialised equipment, or (d) microwave receivers, assoclated test equipment, recorders and audio amplifiers, or (e) machine telegraph and electronic ancillaries.

Initial appointment will normally be at Hanslope Park (Bucks), or Crowborough (Sussex) or in London, but successful candidates must be prepared to serve anywhere in the United Kingdom or overseas.

QUALIFICATIONS: ONC in Engineering, including a pass in Electrical Engineering, or equivalent standard of technical education; and at least 5 years' appropriate training and experience.

SALARY (National) : $£ 1,224$ (at 21) to $£ 1,352$ (at 23) to $£ 1,643$ (at 28 or over on entry), rising to $£ 1,839$, with prospects of increases to $£ 2,730$ on promotion. (London rates are $£ 75$ or $£ 125$ more). Non-contributory pension.

For full details and an application form (to be returned by 8 October, 1970), write to Civil Service Commission, Alencon Link, Basingstoke, Hants, quoting S/7554/70

Installation Design Draughtsmen

This senior appointment (with appropriate salary) involves responsibility for preparing radio station installation plans and supporting lists of installation materials.

Resulting from expansion of Pye Telecom Radio Systems business, the position demands considerable experience. Probably in your early 30 's and having served a workshop apprenticeship, you should have as a minimum O.N.C. or equivalent in mechanical engineering. You'll need in addition a sound background in the mechanical design of light electronic or electrical equipment, preferably in the telecommunications industry; ability to read architectural drawings as applicable to installation design; familiarity with industrial procedures; and awareness of the market position for the supply of proprietary equipment used in large radio installations.

Please write, including details of your previous career to: Mr. M. W. Timmins, Senior Personnel Officer,

MEDICAL ENGINEERING IN HOSPITALS MEDCAL ELECTRONICS TECHINCIAN

required in the Northampton Group of Hospitals to service, repair and calibrate a wide range of electronic equipment used in hospitals for medical, surgical and engineering purposes.
Candidates should have good practical experience in radio/telecommunications, pulse generation, automatic control systems or electro-medical equipment. Possession of HNC or HND in electronics or a comparable qualification would be an advantage.
Opportunities for further study and training available. Salary scale: $\{1,356-\mathbb{1}, 764$ p.a.
If you are interested in receiving further details of this opportunity, please write to the Group Secretary, Northampton \& District Hospital Management Committee, General Hospital, Northampton, NNI 5BD.

783

UNIVERSITY OF LANCASTER ELECTRONICS TECHWICIAN

The Department of Engineering invites apolications from suitably qualified persons for a post as Laboratory Electronics Technician who must be experienced in solid state electronics and instrumentation ; duties will include assisting in the design and making of new equipment for teaching or research and the maintenance of laboratory equipment.
Application forms (retumable by October 3, 1970) and further Information avallable from the staff Otficar, University of Lancaster, Balligg, Lancaster.

802

JUNIOR TECHNICIAN

required at our Hampstead Laboratories, Holly Hill, N.W.3. Suitable for applicant in early 20's with some experience of workshop practice and an interest in electronic instrumentation. Minimum quallfications 4 G.C.E. ' O ' Levels to include English, Maths and a Seience subject. Salary according to age on scale $\mathrm{E706}$ to $\mathrm{K1,144}$ p.a. Please apply quoting our reference WW 62/1 to: Miss A. Furber, National Institute for Modical Research, The Ridgeway, Mill Hill, London, N.W.7. Tel.: 9593666.

758

West Sussex County Council INDUSTRIAL TRAINING CENTRE, CRAWLEY
 TRAINING INSTRUCTOR

Qualified applicant required to instruct Electrical Craft and Technician Engineer apprentices during first two years of apprenticeship. Good qualifications and experience in electronics are essential.

Salary scale:

£1,362-£1,902-£2,052 per annum Further particulars and application form from: Head of Centre, Industrial Tralning Centre, College Road, Crawley. Completed form to that address within 14 days of the appearance of this advertisement. 794

Design/Development Engineers -come and make ourproducts obsolete.

Today's new developments at Pye Telecom will be old hat within 5 years. That's the attitude which has put this company on top of the radio-telephone manufacturing league.

Now Pye Telecom are hotting the pace up further still. With massive expansion. And, hopefully, your help. You will be in the midst of exciting innovations-new products, new techniques, new components. Everything your work demands will be there-including computers for use as design aids and on-line Europe-wide research facilities.

In return for your talents . . . rewards, promotion opportunities and conditions of service which match the very best in industry today. There's a choice of 2 pleasant locations--Cambridge or Southend-and relocation expenses will naturally be company paid.

So how about it? You'll need an electronics degree or equivalent, circuitry experience, and preferably $2 / 3$ years of VHF/UHF radio-telephone design experience. It will help, alternatively to have experience in other fields such as radar broadcasting or television.
Please phone for an application form or write giving full details of your experience and salary requirements to:
Mike Timmins, Senior Personnel Officer,

Electronic Video Recording

EVR is being jointly developed by a consortium of CIBA, the international chemical group, ICl and CBS of America; llford is a member of the CIBA group, and we
now require the following additional staff for this project at Basildon in Essex :

SENIOR AUDIO ENGINEER and AUDIO ENGINEER

for the operation and maintenance of high quality magnetic and optical sound equipment.
A good theoretical knowledge and practical experience of audio recording and reproduction is essential. Candidates should also have experience of interlock system, multiple track recording, frequency modulation, audio dubbing facilities, compression, expansion and frequency equalisation equipment, measurement of distortion, wow and flutter and all other parameters in an audio system. An appropriate qualification would be an advantage.
Applicants for the above position must be prepared to work on shifts in due course. Commencing salaries will be in the range $£ 1800$ to $£ 2500$, according to qualifications and experience. We
operate a contributory pension scheme, free life assurance and sickness schemes. Assistance will be given with relocation expenses where appropriate.
Applications, quoting reference ZH.39, giving details of qualifications and career to date, should be addressed to: The Personnel Manager, Ilford Limited, Christopher Martin Road, BASILDON, Essex.

Electronic Video Recording

EVR is being jointly developed by a consortium of CIBA , the international chemical group, ICl and CBS of

America ; Ilford is a member of the CIBA group. The EVR Unit at Basildon in Essex requires a:

SHIFT CONTROL ENGINEER

to be responsible for the supervision of the overall operation of the video tape and sound transfer facilities on a shift basis.
The successful applicant will preferably have experience of video tape recording and editing, telecine operation, tele-recording and film characteristics, optical and magnetic sound transfer, vision and sound mixing apparatus and the control of staff in a senior television engineering capacity.
Applicants must be prepared to work on shifts in due course. Commencing salary will be negotiable in line with experience. Assistance will be given with relocation expenses where appropriate and rented accommodation can be arranged under the Basildon New Town scheme.

We operate a contributory pension scheme, free life assurance and sickness schemes
Applications, quoting reference ZH.42, giving details of qualifications and career to date, should be addressed to The Personnel Manager, Ilford Limited, Christopher Martin Road, BASILDON, Essex.

SENIOR TEST ENGINEERS

The leading U.K. Manufacturers of high grade T.V. monitors and ancillary T.V. studio equipment require. Senior Test Engineers for their rapidly expanding test department.

Situated in the Berkshire town of MAIDENHEAD the company offers pleasant working conditions, good salaries, and a friendly environment.

Duties will cover the testing and troubleshooting of our complete range of equipment.
Previous experience on television equipment is not essential but candidates must have a thorough knowledge of electronics and testing procedures.

Reply to:

PROWEST ELECTRONICS LTD.,

Boyn Valley Road, Maidenhead, Berks.
Telephone: Maidenhead 29612

TELECOMMUNICATIONS ENGINEERS WEST AFRICA

Qualified Telecommunicalions Engineers are required for servicing and maintenance of radiotelephone equipment and associated items in tropical West Alrica. Qualifications: HNC or higher
Contract: One year plus leave extensible.
Salary: According to age, experiense and qualifications. Commencing at not less than equivalent $£ 2000$ sterling. Free accommodation and passages. Prelerence for bachelors with tropical experience but not essential.

Interested? Apply for application form to:
C.O.D.E.C.O.

2b-Sussex Road New Malden

THE UNIVERSITY OF LEEDS

Applications are invited for posts in the followina Department: PHYSICS
(i) EXPERIMENTAL OFFICER/

SENIOR EXPERIMENTAL OFFICER
The successful applicant will be responsible for the design of a wide range of electronic apparatus covering DC and pulse amplifiers and digital recording systems. Minimum qualification; Degree in Physics or Electrical Engineering, together with appropriate experience. A well-equipped laboratory is available. Reference number 22/6/C1.
(ii) RESEARCH FELLOW/

RESEARCH ASSISTANT
Applicants should have a Ph.D. or appropriate research experience and should be interested in applying their knowledge and experience to the analysis and interpretation of data from the Haverah Park Extensive Air Shower Array. This Array has now been running for ten years and is vielding results on primary cosmic ray particles with energies in excess of 1017 eV . The post will be tenable for two years. Reference number 22/7/C1. SALARY SCALES: Experimental Officer/Senior Experimental Officer: $£ 995-£ 2,235$; Research Fellow/Research Assistant: $£ 900-£ 1.600$. Applications $\{2$ copies) stating age, qualifications and experience and naming three referees, should be sent to the Registrar. The University of Leeds, Leeds LS2 9JT. Please quote appropriate reference number.

Installation Engineers Technicians \& Testers

Ref. 25720
To test and commission Multiplex, Co-axial Line and Microwave Radio Systems.
Ideal candidates will be less than 45 years of age with practical experience on some of the above equipment. These challenging posts call for drive, initiative and common sense. It is necessary for applicants to be prepared to work anywhere in the U.K.

Applications should be addressed to The Personnel Officer, STC Chester Hall Lane, Basildon, Essex.

CONTINUOUS

 ExpansionStandard Telephones \& Cables, Microwave and Line Division based at Basildon are growing fast. In order to keep pace with this consistent growth rate we require

Test Technicians

Ref. 27221
The diversity of products manufactured at the Basildon Plant demands experienced testing staff for work on complex transmission systems.
Candidates should hold an ONC in electrical engineering and be able to offer considerable practical experience in the field of testing and fault clearing all types of land-unit, pcm and microwave equipment.

RADO SPECIALST POLICE DEPARTMENT ZAMBIA

* Salary $£ 2,310$ to $£ 2,590$ according to experience
* Low Taxation
* Contract of 36 months
* 25\% Tax Free Gratuity
« Educational Allowances
* Subsidised Housing

Duties will involve the maintenance and Installation of police radio equipment throughout Zambia, travelling by road and air.
The equipment includes modern tow and medium power H.F. equipment, S.S.B. equipment and V.H.F equipment including multiplex links. Knowledge of maintenance of teleprinters, diesel and petrol generators preferred.
Candidates, who will serve in the rank of Inspector of Police (non-uniformed), must have completed a five year apprenticeship or hold a service trade certificate or equivalent qualification and have at least six years post qualification experience.

Communications Technician Libya

For installation and maintenance work on all types of equipment including UHF/VHF, teleprinter, and telephone exchange. This is a bachelor posting with 17 days home leave after each 45 days and very generous terms and conditions.
Candidates should possess a minimum of City and Guilds Telecommunications Certificate PL 49 or equivalent, and have experience of telephone and teleprinter equipment.
Please write briefly quoting reference $2 H 166$, to:
P. J. Montanjees, Recruiting Officer, The British Petroleum

Company Limited, Britannic House, Moor Lane, London, EC2Y 9BU.

ELECTRONIC SERVICE ENGINEER

Required to assist in the Servicing, Maintenance and Development of electronic and electro-magnetic equipment in the Printing industry.
Although formal technical qualifications are not vital, applicants must have a wide experience in press register and drive controls, complex relay logic, computer peripheral' equipment, etc. The position also necessitates light mechanical work.
It is intended that the engineer will be engaged on shift duties.
Salary by negotiation.
Apply in writing to:- PERSONNEL OFFICER HAZELLS OFFSET LIMITED, Leigh Road, SLOUGH, Bucks.

Member of The British Printing Corporation Limited

Metropolitan Police Office

TELECOMMUNICATIONS TECHNICIANS

Five posts in the Lines Section of the Telecommunications Branch at New Scotland Yard involving co-ordination and planning in connection with the provision, development and maintenance of line communications and associated equipment.

Candidates (men or women) should normally be aged at least 23. They must have ONC in Engineering, including a pass in Electrical Engineering, or have attained an equivalent standard of technical education, and at least 5 years' appropriate training and experience.

SALARY: $£ 1,477$ (at age 23)- $\{1,768$ (at 28 or over on entry); rising to £l,964. Promotion prospects. Non-contributory pension.

For full details and an application form (to be returned by 8 October 1970), write to Civil Service Commission, Alencon Link, Basingstoke, Hants. quoting S/7544/70.

CIRCUIT DESIGNERS

Required for Television and Communication Development, dealing with broad spectrum of circuit techniques embracing solid-state technology from discreet components to L.F.I.
The positions are with the engineering designs subsidiary of a leading television organisation, preferred qualifications are B.Sc., H.N.D. or H.N.C. and the membership of an appropriate professional body. Company insurance and pension scheme, three weeks leave, salary which is competitive with comparable industry levels, will be paid.

Reply to the:
Managing Director, DYNAMIC TECHNOLOGY LIMITED, Station House, Harrow Road, Wembloy, Middlesex.

785

UNIVERSITY OF ST. ANDREWS Department of Psychology

Applications are invited for the post of

CHIEF TECHNICIAN

in the Department of Psychology tenable for three years in the first instance. The person appointed should hold a Higher National Certificate or its equivalent and possess special skills in the design and construction of electronic control apparatus. Salary scale $£ 1676$ to $£ 1909$; starting salary according to qualifications and experience. Pension scheme. Applications, with the names of two referees, should be lodged not later than 15 October, 1970, with the

Secretary of the University
College Gate, St. Andrews
from whom further particulars may be obtained.
789
SITUATIONS VACANT
A FULL-TIME technlcal experienced salesman re-
previoused for retall sales; write giving detalls of age,
Henry's Radio, Ltd., 303 Edary required to-The Manager Rd., London. W.
A PPLICATIONS are Invited for the post of electronic A technician in the Department of Psychology. Candidates should have or be completing Final City and Guilds in Electronic Servicing, or an equivalent quallflcation. Candidates with ET4 or O.N.C. and with Familiarty with electrophysiological equipment or interest in or experience with small computers would be an advantage. The salary will be on the scale $£ 935-$ $£ 1,303$ per annum. The initial point of entry will depend on quallications and experience. Apply in writing, quoting ref. T2A, to Assistant Bursar (Per-
sonnel), University of Readigg, Whiteknights, Reading, Berkshire.
A RE YOU INTERESTED IN HI PI? If so, and you Trade, an excellent opportunity awalts the Retall Radio Ltd.. 82 Tottenham Court Rywalts you at Telesonic 01-387 7467/8.
A SENIOR Transformer/Rectifler design Engineer is A. required for varied and interesting projects associated with equipment up to $150 / \mathrm{kVA} / \mathrm{KW}$. We are an expanding company of Manufacturing Electrical Engineers located in South Herts, Box W.W. 97,
Wireless World,
CANADA. Thousand Islands Tourist Region. TV - engineer for expanding, modern service department. Starting salary $\$ 5,200-\$ 5,500$. Write, Atkinson Sheridan
Service Co, 139 King St. W., Brockville, Ontario, or phone 613-342-3573.
ZLECTRONIC ASSEMBLY and wiring accepted by
or manufacturing workshop, phone Workshop Manager Pan wholesale Ltd., 33-37 Wardour 8treet, W.1. Phon ELECTRONICS TECANICIAN required in Department C of Medicine. Work involves development and mainPhysiology sections of group. Experience in Analog and digital techniques desirable. Salary range £1.235-£1,535 per annum.. Appllcations to Secretary, Royal Postgraduate Medical School, Ducane Road, London, W. 12 , quoting ref. 2/444.
JUNIOR ELEGTRONICS TEGENICIAN REquired for construction and repair of electronic Instruments and matntenance of a Linear Accelerator G.C.E. "O' level in Physics and Maths required; "A" levels or possible. Salary according to age and experience. Apply With iull details to the Director. Medical Research Councll Cyclotron Unit, Hammersmith Eospital, London W. 12 .

Electronic Video Recording

EVR is being jointly developed by a consortium of CIBA, the international chemical group, ICl and CBS of

America'; llford is a member of the CIBA group and our plant at Basildon, Essex, requires a :

TECHNICAL ASSISTANT

for the operation and maintenance of Television and Audio Equipment

A good knowledge of radio and television theory together with some practical experience in television engineering or allied fields is essential. HNC or equivalent would be an advantage.

Commencing salary will be from $£ 1300$ according to qualifications and experience. We operate a contributory pension scheme, free life assurance and sickness schemes.
Applications, quoting reference $\mathbf{Z H}, 40$, giving details of qualifications and career to date, should be addressed to

The Personnel Manager, Ilford Limited, Christopher Martin Road, BASILDON, Essex.

* ILFORD \%

DEVELOPMENT ENGINEER

Urgently required-a dynamic young Development Engineer to join a design team working on H.F. Single Side Band Transceivers. Must be thoroughly familiar with the application of integrated circuits, field effect transistors and other state-of-the-art techniques. Attractive salary, Staff Pension Scheme, Canteen facilities, etc. Please apply giving a summary of your experience in this field of, activity to The Personnel Manager, Labgear Ltd., Cromwell Road, Cambridge. Tel. No. Cambridge 47301.

760

Applications are invited from qualified candidatos for the following post in the Electronics Department at Poole General Hospital:

ELECTRONICS TECHNICIAM III

Qualifications: O.N.C., H.N.C., City \& Guilds or equivalent.
Salary: $£ 1,180 \times 8$ Increments to $£ 1,500$ per annum.
The Department will be primarily concerned with the installation, testing and maintenance of an extensive range of diagnostic/therapeutic and allied electronic equipment, and ultimately with research and development of bio-medical equipment in consultation with medical staff.
The position offers adequate scope for initiative and career progression, including the possibility of assistance with further training.
Applications, giving full details, including qualifications, experience and the names and qualresses of two referees, to the Hospltal addresses of two referees, to the Hospital

Supervisory Systems Technicians

A progressive, well-paid career could be yours, in our expanding Systems Design Department. We have vacancies at junior and intermediate levels, with opportunities for promotion to Engineer grades, for technicians who have experience of industrial instrumentation ordigital electronics and the ability to work on detail logic design.
Applicants should have, or be studying for, a City \& Guilds, ONC or HNC qualification in electronic engineering.
Write or telephone D. J.W. Barker, Training \& Recruitment Officer, for a full job specification and application form.

Serck Serck Controls
systems division
Queensway, Leamington Spa, Warwickshire
Tel: Leamington Spa 27030.

BED-Markonideatroniss

TECHNICIANS AND ENGINEERS FOR ST. ALBANS AND LUTON QUALIFIED OR NOT!

VACANCIES exist for work on testing and calibrating valve and solid-state electronic measuring equipments embracing all frequencies up to u.h.f. in Production, Service and Calibration departments.
APPLICATIONS are invited from people of all ages with experience or formal training in electronics and from ex-Armed Services technicians.
HIGHLY COMPETITIVE SALARIES, negotiable and backed by valuable fringe benefits.
RE-LOCATION EXPENSES available in many instances. CONDITIONS excellent; free life assurance, pension schemes, canteen, social club.
$37 \frac{1}{2}$-hour, 5 -day, office-hours week.
WRITE or phone Personnel Department stating age, details of previous employment, training, qualifications, approximate salary required, quoting WW6

MARCONI INSTRUMENTS LIMITED, Longacres, St. Albans, Herts.
Tel: St. Albans 59292
Luton Airport, Luton, Beds.
Tel : Luton 31441.

A GEC-Marconi Electronics Company

Telecommunications Engineer Up to £2,438

The Meteorological Office is looking for an engineer to work at its headquarters in Bracknell, Berks, on the planning, provisioning and installation of landline and radio telecommunications systems. These systems transmit data and analogue/digital facsimile, some of the input being received via satellites and the output being fed into computers. The work is varied, interesting and involves the use of the most modern techniques.
Applicants must have satisfied the training and examination requirements of an appropriate Institution (or be Corporate Members) or hold a degree in engineering or physics. Some relevant experience expected.
STARTING SALARY: up to $£ 2,438$ according to qualifications and experience. Non-contributory pension.

Write to Civil Service Commission, Alencon Link, Basingstoke, Hants, for appilication form, quoting S/7546/70. Closing date 8 October, 1970.

WE KNOW YOU WANT A BETTER JOB and what is more WE WILL HELP YOU FIND IT.

Experienced engineers in Design and Development, Systems Test. Technical Sales. Production Engineering, Field Service or Technical Writing should
Contact Electronics Appointments Ltd.
and we will help you.
Our placement service is professional, specialised and completely confidential. We are in consultation with over 800 companies on all aspects of electronics engineering. Phone or write at any time quoting WW 101.
NORMAN HOUSE • 105/109 STRAND • LONDON • W.C. 2 TEL: 01-836 5557

Maintenance engineer required for major Mrecording studio in London. Preferably experienced in setting up and maintaining professional equipment, but appucant with a sultable background considered A.T.V. House, Gt. Cumberland Place, London, W.1. [759 M EDICAL PHYSICS TECHNICIAN III required in Main responsibilitidaey Unit at St. James's Hosptal electronic equipment associated with hosplal and home dialysis. Salary and conditions of service in accordance With appropriate Whitley Council recommendations Applications stating age, experfence and qualification Secretary, St. James's Hospital, Leeds LS9 7 TF. ${ }^{7796}$ PLYMOUTH POLYTECHNIC, DEPARTMENT OF GINEERING. Required. Techniclan Grade III to maintain, service and assemble electronic instrumentatlon and equipment. Candidates must possess Fina Clty and Gullds or equivalent qualifications and have had appropriate Industrial Experience. Would probably suit Ex-Servicemen wich approp (s. Aperience. Par the Governors, Education Department. Municipal Offces plymouth, PLi 2EW, to whom they should be returned within 10 days.
REDIFON LTD. require fully experienced TELE$R^{\text {COMMUNICATIONS TEST }}$ ENGINEERS and ELECTRONICS INSPECTORS. Good commencing salaries. We would particularly welcome enquiries from ex-Service personnel or personnel about to leave the Services. Piease write giving full details toWandsworth, S.W. 18 .
$S^{\text {ENIOR TECHNICIAN/TECHNICIAN required for the }}$ S construction, development and surveying of an interesting variety of electrontc apparatus in modern chemistry teaching and research laboratories. Salary in ranges $£ 1,248-£ 1,556$ p.a. and $£ 905-£ 1,273$ p.a. according to age and experience, plus London Weighting £125 p.a. and possible $£ 30$ or $£ 50$ p.a. qualification
allowance. Five-day week. Four/fye weeks annual leave. Pension scheme. Letters only to Registrar (C/T/ST), Queen Mary College (University of London). Mile End Road, London, E1 4NS, stating which post applied for, age, past and present experience, any qualifcations.
TECHNICAL OFFICER in ELECTRONICS required circuitry the design and development of solid state circuitry involved in the development and use of a
cyclotron for medical research. Applicants should have a Pass Degree or HNC, and experience in the use of integrated circults, switching circuits, or data handling techniques. Age under 35. Salary in range $£ 1,723-$ $£ 2,057+£ 90 \mathrm{~L} . \mathrm{W}$. Apply to Director, Medical Research Councll Cyclotron Unit, Hammersmith Hospital, London,
THE UNIVERSITY OF MANCHESTER INSTITUTE OR OF SCIENCE AND TECHNOLOGY. TECHNICIAN OR SENIOR TECHNICIAN (ELECTRONICS). REF. Optics. The successful candidate will be required to Optics. The successful candidate will be required to and other research equipment. Current research with the Department includes studies and applied optics and neurophysiological behavioural work on visual percep-
 annum; Senior Techniclans, $£ 1,248$ - $£$ 1,556 per annum. tlonal qualifications. Commencing grade and salary will be dependent upon qualifications and expertence.) Requests for application forms, quoting above Reference, should be made to the Registrar, U.M.I.S.T., Sackville Street, Manchester M60 10D. Completed forms to be
returned by 5th October, returned by 5th October, 1970.
TV RETAIL BUSINESS of the highest standing, quires PERSONAL ASSISTANTT with servicing experiquires Geod position and prospects for keen and experiman. State 8 ge and detalls of experience. Box W.W. ${ }_{537}$ Wireless world.
$W^{\text {IRELESS}}$ Technicians. There are vacancles at Whe Home Office Wireless Depots throughout England and Wales for Wireless Techniclans to assist With the installation and maintenance of VHF and p.a., 5-day, 40-hour week with overtime payable and
 pects. QUALIFICATIONS-City and Guilds Intermediate Telecommunications Certifcate or equivalent, or good experience in Telecommunications. For further details Write to Directorate of Telecommunications,
Home office, 60 Rochester Row, London, S.W.1.
[804 X-ray tube engineer or technictan for XAMERIOA. Candidate must have minimum of souTt AMERRIOA. Candidate must have minimum of 7 years' experience in productlon of fixed and rotating anode
x-ray tubes. No language requirement. Salary will be minimum $£ 4,000$ annually plus use of car and other benefits. Outstanding opportunity, for right person. Write full details to "XRay Tubes," Box No. 762, Wireless World.

[^15]
Electronic Video Recording

EVR is being jointly developed by a consortium of CIBA , the international chemical group, ICI and CBS of

America ; Ilford is a member of the CIBA group. The EVR Unit at Basildon in Essex now requires additional:

VTR ENGINEERS

They must possess operational and maintenance experience of $2^{\prime \prime}$ quadruplex video tape recorders and have a thorough knowledge of colour television principles.
Applicants must be prepared to work on shifts in due course Commencing salaries will be negotiable according to qualifications and experience. Assistance will be given with relocation expenses where appropriate. Rented accommodation can be arranged under the Basildon New Town scheme. We operate a contributory pension scheme, free life assurance and sickness schemes.

Applications, quoting reference ZH.41, giving details of qualifications and career to date, should be addressed to: The Personnel Manager, llford Limited, Christopher Martin Roads BASILDON, Essex.

AGRICULTURAL RESEARCH COUNCIL

 Food Research InstituteElectronics technician required. The work is concerned with the construction and testing of electronic equipment together with some mainfenance of existing instrumentation.
Applicants should have served an apprenticeship and possess a good theoretical and practical electronic background together with some workshop experience. An O.N.C. in electronics will be an advantage.
Salary on Technical Works Grade III, starting salary according to age, from $£ 1,092$ to $£ 1,442$ at age 28 , rising by annual increments to a maximum of $£ 1,643$.
Optional contributory superannuation scheme. Application forms fromSecretary, Food Research Instifute, Colney Lane, Norwich, NOR 70F, quoting 70/18.

JUNIOR TECHNICIAN

required at our Hampstead Laboratories, Holly Hill, N.W.3. Suitable for applicant in early 20 's with some experience of workshop practice and interest in electronic instrumentation. Minimum qualifications 4 G.C.E. ' O ' Levels to include English, Maths and a science subject.
science subject.
Salary according to age on scale $£ 706$ to Salary accor
El, 144 p.a.
Please apply quoting our reference WW64/I Plea
to:

Miss A. Furber,
NATIONAL INSTITUUTE for MEDICAL RESEARCH,
The Ridgeway, Mill Hill, London, N.W.T. Telephone: 9593666

COUNTY BOROUGH OF BRICHTON EDUCATION COMMITTEE

Tenders are invited for the Supply of Close Circuit Television Equipment for the Brighton Polytechnic (Technology).

[^16]

Radio and Electronic Engineers

for 'Air Traffic Control Systems

The National Air Traffic Control Service requires radio and electronic engineers to work on sophisticated electronic systems custom built to meet highly specialised operational requirements.
These systems include primary and secondary surveillance radars, strategically sited, which send automatically a continuous stream of data over wide band or narrow band links to Air Traffic Control Centres for processing and display; modern computer based installations now being introduced to speed up data extraction and display: radio aids to en-route navigation; instrument landing systems of high integrity to facilitate automatic approach and landing at major airfields; advanced radiotelephone networks linking pilots and air traffic controllers; automatic telegraph relay centres for passing messages about the movements of aircraft and for handling meteorological information; closed circuit television installations and other automatic data transfer systems.

Engineers help in systems planning, work on equipment specification, procurement and evaluation, and on installation planning, maintenance policy and direction. They may also be required to take part in the day-to-day running of the organisation in the field, for example, at an air traffic control centre, an airport or at a signals centre.

Qualifications: 1st or 2nd class honours degree in Electrical Engineering or Physics, or have passed or obtained exemption from the examinations for MIEE, MIERE, or AFRAeS. You should be aged between 23 and 35 on 31 st December 1970 (extensions if you are ex-H.M. Forces or Overseas Civil Service).

Starting salary can be as high as $£ 2,425$, (Inner London) depending on qualifications and experience. Prospects of promotion within 3 years are outstanding.

For more details and an application form, (which must be returned by 8th October 1970) write to: The Civil Service Commission, Alencon Link, Basingstoke, Hants., quoting ref. no. S/85/ASO/787

(

㗜

INTEGRATED CIRCUIT AUDIO AMPLIFIER KIT

Power output:-3 Watts R.M.S. per channel. Sensitivity:-160 mv. input for 3 watts output. Output load:-7.5 to 15. Frequency response -15 Hz to 50 KHz (3 db down). Treble cut and boost -18 db to +12 db . Bass cut and boost -14 db to +12 db . Noise level -80 db . max. (referred to 3 watts output). Hum -70 db . max. (referred to 3 watts output). Crosstalk -40 db . Distortion at 3 watts output 1% max. (Total harmonic).
Price of kit of parts and full constructional details $£ 15$.

TELEVISION CITY.

Dept. WW 1, 50, Richmond Road, Kingston, Surrey.
Tel. O1. 5463961 (100 yds. from Station)
Dally 9.30-5.30; Friday 9.30-7; Closed Monday.

\section*{casbar
 61 SMITHFIELD ROAD UTTOXETER • STAFFS offer

the opportunity of working in an up-to-date service department on Uher recording equipment. The applicant should be familiar with the latest transistorised circuitry as well as being able to carry out mechanical work on such equipment.
We offer a good salary, non-contributory pension scheme, subsidised canteen facilities and some free local transport.
If you are interested, please write giving brief details about your qualifications and experience to:

The. Personnel Officer, BOSCH LIMITED, Rhodes Way, Watford, Herts.

HEGTRONG ENGNEERS

Service Engineers required for Offices, throughout the United Kingdom, of well-known Company manufacturing Electronic Desk Calculating Machines. Applicants should possess a sound knowledge of basic Electronics with experience in Electronics, Radar, Radio and T.V. or similar field. Position is permanent and pensionable. Comprehensive training on full pay will be given to successful applicants. Please send full details of experience to the Service Manager, Sumlock Comptometer Ltd., 102/108 Clerkenwell Road, London, E.C.1.

We offer

A TAPE RECORDER ENGINEER

S.W.G.'s 24; 30; 38 and 40

6d. PER REEL DISCOUNT.

TRADE ENQUIRIES WELCOME

TERMS:- CASH WITH ORDER ONLY. PLEASE ADD 1'- PER REEL P. \& P.

815
$60 \mathrm{kc} / \mathrm{s}$ Rugby \& $75 \mathrm{kc} / \mathrm{s}$ HBG Neuchatel Radio Re units, celvers. Signal and Audio outputs. Small compac

FDR SALE-CARBON FILM RESISTORS
 ... 6RANSISTORS 10%... 9 d. $2 N 3055$... 14\% . 2N3054 ... 10\%. Cash with order.
Send 106d. for Comprehensive Price List. HENDEN BLAISE \& CO., 21 Shrewsbury Road Beckenham, Kent. Tel: 01-650 1173

MUllard Li01/3 D.T. Scope, trolley, circuits $£ 68$. Arself $£ 20.109$ Wiggenhall Road, Watford.
[781 NEW CATALOGUE No. 18, containing credt vouchers surplus electric and mechanical components prew and post tree. Arthur Sallls Radlo Control Ltd.. 28 Gardner Street, Brighton, Sussex.

Simulator Engineers

BOAC has vacancies in its Flight Simulator Branch at Heathrow Airport for Simulator Engineers.
Duties will include fault diagnosis in both analogue and digital computers and the incorporation of modifications. Applicants must have experience in some or all of the following related fields:

> Analogue and/or Digital Computers
> Servo Mechanisms
> Principles of Flight
> Aircraft Systems
> Hydraulic Control Systems
> Radio and Navigational Aids

An ONC or equivalent standard of education is desirable and candidates should be prepared to work shifts, including nights.
Salary, according to qualifications and experience, will be in the range $£ 1,872$ to. $£ 2,418$ per annum including London Weighting. Shift premium will be paid in addition.
There is an excellent contributory pension scheme and opportunities exist for holiday air travel.
Write with brief details of training, experience and qualifications to:
Manager Selection Services (WW/357), BOAC, PO Box 10, Hounslow, Middlesex.

CAPACITOR DISCHARGE IGNITION

(W.W. JAN.)

Invertor transformer 30VA 15:1 ratio. CWO 32/- + 5/- p.\&p. Also available with $30: 1$ ratio for 6 V systems, cost as above. MAGTOR LTD., 68 Date Street, MANCHESTER

Cossor CC 400M marine V.H.F. 6 channel F.M Radio Telephone suitable for conversion to 25 Kcs. Kits available shortly- $\mathbf{\$ 1 7 5 .}$
Cossor CC 300 M mar ine V.H.F. 6 channel F.M. Radio Telephone - $\mathbf{\$ 1 4 5 .}$
Two Cossor MES 12428 channel marine Radio Telephone, completely crystallized for all 28 channels. One at $\mathbf{\Sigma 5 0 0}$. One at $\mathbf{\$ 5 0}$.
Also available plenty of spares for Cossor CC40 Transmitter'Receiver.
Standard Cabinets $21 \frac{1_{2}}{}{ }^{n}$ wide $\times 18^{\prime \prime}$ high $\times 15^{\prime \prime}$ deep manufactured by Imhof at $\mathbf{\$ 1 5}$ each. Microwave cooker manufaclured by Caterwave, brand new, $\mathbf{3 5 0}$.
Microwave cooker manufactured by Caterwave, automatic, $\$ 375$.
JRC 10 weather facsimile equipment, $\mathbf{£ 5 0} \mathbf{5}$.

COSALT LTD.,
 Marine Radio Division, Grimsby.

Telephone: Grimsby 58881800

BUSINESS OPPORTUNITIES

A LONDON RETATH TELEVISION and Electrical A Business of the highest standing requires Executive Director. Eventual complete take-over of business enFissaged on retirement of present managing director. This is an exceptional opportunity to acquire a sound prontable business estabilshed over ay years. Princlpais only should write in confdence, stating age and of capital available. Box W.W. 538 Wireless World.

TEST EQUIPMENT - SURPLUS

 AND SECONDHAND
PHILIPS RECORDS LIMITED

Stanhope House, Stanhope Place, W. 2

Technical Department Assistant -RECORDING STUDIO

We are seeking a young man aged 22-30 as an Assistant in the Technical Department attached to our Recording Studio in Central London.
Duties will include the servicing and maintenance of recording equipment, assistance in preparation of equipment for outside recording activlties and technical assistance during recordings as necessary. Job expansion will involve planning and modification of equipment and electronic design and development.
Practical knowledge of basic electronics and experience with transistor clrcuitry and techniques essential, combined with general knowledge of recording and test equipment. O.N.C. In telecommunicatlons would be an advantage.
Salary will be negotiable according to age and experlence; excellent employment benefits and conditions.
Please apply in writing giving detalls of age, education and experience to the Personnel Officer at the above address.

766

APPOINTMENTS

NORTHWICK PARK HOSPITAL

 Watford Road, Harrow, Middlesex, HA1 3UJ Tel: 018645311
ELECTRONICS TECHNCIAN

One ELECTRONICS TECHNICIAN is required by the Maintenance Department to undertake the servicing and calibration of a wide range of electronic equipment used in hospitals for medical, surgical and engineering purposes. Previous hospital experience is desirable.
The successful applicant will be required to liaise with medical and other professional staff.

Qualifications: H.N.C. in electronics, physics or electrical engineering, or equivalent. Applicants in the course of obtaining final qualifications will be considered. Salary Scale: £1,270-£1,590.

Write for Application Form and Job Description to Mr. J. Sully, Staffing Officer.

AIR FORCE DEPARTMENT RADIO TECHNICIANS

Starting pay according to age, up to $£ 1,373$ p.a, (at age 25) rising to $£ 1,590$ p.a. with prospects of promotion.
Vacancies at RAF Sealand, near Chester and RAF Henlow, Bedfordshire.
Interesting and vital work on RAF radar and radio equipment.
Minimum qualifications, 3 years' training and practical experience in electronics.
5 day week-good holidays-help with further sludies-opportunities for pensionable employment.

Write for further details to:-

Applicants must be UK residents.

> Ministry of Defence, CE3h (Air), Sentinel House,
> Southampton Row, London, WC1

ENGINEERS. Have you considered a

 career in Technical Authorship? If you have sound experience in electronics, radar or computers and ability to write clear concise English, then we have vacancies as Technical Authors in the Home Counties and Midlands. Salaries range from $£ 1,650$ to $£ 2,200$ with prospects of high rewards. BOX W.W. 799 WIRELESS WORLDChELTON ELECTROSTATICS LTD. RADIO FREqUENCY LABORATORY ENGINEER (about $£ 2,500$) and
ASSISTANT (up to $£ 1,800$) basic
Knowledge and experience of R.S. Measurements, particularly of lines antennas and wide band matching.
FIELD HOUSE LANE, MARLOW, BUCKS.

RECEIVERS AND AMPLIFIERS I

SURPLUS AND SECONDHAND
$\mathrm{H}^{\mathrm{RO}} \mathrm{Rx5}$ s, etc., AR88, CR100, BRT400, G209, 5640 , Ashville Old Hall, Ashville Rd., London, E.11. Let Ashvi
4986.

NEW GRAM AND SOUND
 EQUIPMENT

CONSULT first our 76-page illustrated equipment Catalogue on H1-Fi (6/6). Advisory service, generous Assoclation, 18 Blenheim Road, London, W.4. 01-995 1661.
GLASGOW.-Recorders bought, sold, exchanged; versa.-Victor Morris, 343 Argyle St., Glasgow, Cice-

SHURE GOLDRING cartridges post free, G800 f7 $\mathbf{S}_{\text {M3D }} £ 5.5 .0$. M44/5/7 $£ 7.10 .0$. M44E $£ 8.19 .6$. M55E £9.19.6. M75E/2 £16. Oltimate Electronics, 38 Achilles Road, London, N.W.6. Mail Order Only.

TAPE RECORDING ETC

F quallty, durabllity matter, consult Britain's oldest transfer service. Quality records irom your sultable tapes. (Excellent tax-free fund ralsers for schools, churches.) Modern studio facilities with Steinway Grand.-Sound News, 18 Blenheim Road, London, W. 4. 01-995 1661.
YOUR TAPES TO DISC- £6,000 Lathe. From 25/1 Studio/Location Onit. S.A.E. Leaflet. Deroy Studios, High Bank, Hawk St., Carnforth, Lancs.

VALVES

WALVE cartons by return at keen prices; sead 1/for all samples and H.st.-J. \& A. Boxmakers, 75a Godwin St., Bradford, 1

FOR HIRE

FOR HIRE CCTV equipment, including cameras, Σ monitors, video tape recorders and tape-any period. -TDetalls from Zoom Television, Chesham 6777 [75

SINGLE PHASE to Three Phase Changers, D.C. to S A.C. Rotary Converters, and D.C. Motors any size Universal Electric; $43 / 47$ Rivington Street., Shoreditch,
London. E.C.2. London, E.C.2.
VALVES AND TRANSISTORS required in new condition. Any quantity purchased. Quotations by return. Langrex, 16 A Wellfield Road, Streatham,
S.W.16.
01-769-0199.
VEFF $80-180 \mathrm{MHz}$. Integrated receiver, tuner, converter Kit. Remarkable results from single semiconductor. Comprehensive kit $£ 4$ post paid or send for free literature enclosing s.a.e. Johnsons (Radio)
Worcester, WR1 2DT.
W ANTED, all types of communications recelvers Wand test equlpment.-Detalls to R. T. \& I. Electronics, Ltd., Ashville Old Hall, Ashville Rad, London, E.11. Ley. 4986.
WANTED, televisions, tape recorders, radiograms, High St., West Bromwich, Staffe. etctan Willetts, 37
TMANTED.-Cossor 1035 H.T. Transformer Mc413037.
W. Woodcock, Electronics Dept., Southampton University, Southampton.

VALVES WANTED

We buy new valves, transistors and clean new components, large or small quantities, all detalls, quotation by return.-Walton's' Wireless il dores, 55 Worcester St., Wolverhampton.

SERVICE \& REPAIRS

WMALL servicing and repair contracts undertaken. Field service any distance. Best possible rates for top-quality work. Cambrian Electronics, 96a High $8 t .$,
Frimley, Surrey.

HF CAPAOITY avallable

A irtronics LTD., for Coil Winding-large or small - production runs. Also PC Boards Assemblles. Sup3a Walerand Road, London, S.E.13, Tel. 01-852 1706 [61 A QUA-GEM ELECTRONICS have capacity available board work. We offer prompt delivery at competitive prices. Telephone North Benfleet 531. [702 METALWORE, all types cabinets, chassis, racks, or smali milling and capstan work up to tin barPHILPOTT'S METALWORKS, Ltd., Cpapman St., Loughborough
TECHNICAL drawing, specialising in circuitry only, Let us quote you for one off or any number of prints, any slze up to $30^{\circ} \times 24^{\prime \prime}$. Hamgear Electronics, 29 Carlyle Road, Norwich.
We undertake the manufacture of transformers work guaranteed for 12 months any speciflication. All Co. Ltd., 820 a Harrow Road, Kensal Rise, N.W. 10. Tel. 01-969 0914.

[^17]
APPOINTMENTS

TECHNICAL TRAININC

$B^{\text {ECOME "Technically qualifled" to your spare time }}$ in radio. TV, servicing and maintenance. R.T.E.B City \& Guilds, etc. highly informative 120 -page Guide-free.-Chambers College (Dept. 837K), College House (dept 837 K), Aldermaston Court, Reading, RG7

CITY \& GULLDS (Electrical, etc.), on 'Satlsfaction Cor Refund of Fee" terms. Thousands of passes. For details of modern courses in all branches of electrical engineering, electronics, radio, T.V., automation, etc.: send for 132 -page handbook-- ree.-B.I.E.T

Tegennical Training in Radio, TV and Electronica 1 through world-famous ICS. For detalls of proven home-study courses write: ICS, Dept. 443, Intertext
House, London, S.W.8.
TV and radio 'A.M.I.E.R.E., Clty \& Guilds, R.T.E.B.; 1 certs., etc., on satisfaction or refund of fee terms; thousands of passes; for full detalls of exams and home
training courses (including practical equipment) in all branches of radto, TV, electronics, etc., write for 132page handbook-free; please state subject.-British Institute of Engineering Technology (Dept. 150K), Aldermaston Court, Aldermaston, Berks.

TUITION

ENGINEERS.-A Technical Certificate or qualifaEtion will bring you security and much better pay. ${ }_{\text {Elem. }}^{\text {A.M.I.E.R.E., A. A.M.S.E. }}$ (Mech. \& Elearses for C.Eng. Guilds, A.M.I.M.I., A.I.O.B., and G.C.E. Exams. Diploma courses in all branches of EngineeringMech.. Elec., Auto, Electronics. Radio, Computers, Draughts, Bullding, etc.- For full details write for FREE 132 -page gulde: British Institute of Engineering Technology (Dept. 151K), Aldermaston Court,
Ald
Ald KINGSTON-UPON-RULL Education Committee, K. College of Technology. Principal: E. Jones, M.Sc., F.R.I.C.

FULL-TIME courses for P.M.G. certificates and the Radar Maintenance certificate. Information from College of Technology, Queen's Gardens, Kingston-upon Hull.

BOOKS, INSTRUCTIONS, ETC.

MANDALS, circults of all British enw.D. 1939-45 R.E.W.E. instructions; 8 .a.e. for 11 st , over 70 original R.E.M. Bailey, 167 a Mofiat Road, Thornton Heath Surrey, CR4-8Pz.

REDIFFUSION

COLOUR TELEVISION FAULTFINDERS \& TESTERS

We have a number of vacancies in our Production Test Departments for experienced faultfinders and testers.
Knowledge of transistor circuitry and experience with Colour Receivers together with R.T.E.B. Final Certificate or equivalent qualifications required.
These will be staff appointments with all the expected benefits. Applications to:
Works Manager,
Rediffusion Vision Service Ltd.,
Fullers Way South,
sington, Surrey (near Ace of Spades).
Phone: 01-397 5411

CLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wants

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.I

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

Rate: 8/- PER LINE. Average seven words per line.

- Name and address to be included in charge if used in advertisement.
- Box-No. Allow two words plus $1 /-$.
- Charges .etc., payable to "Wireless World" crossed "\& Co."
- Press Day 19th Oct for November 1970 issue.

NAME
ADDRESS \qquad
\qquad
\qquad
P|-

Please write in block letters with ball pen or pencil.
NUMBER OF INSERTIONS

LOJDSPEAKERS. New, boxed, famoun maker, 25 watt, 110/-

 crobiover network 3,8 and 15 ohms, $79 / 6$.
LOUDSPEAKERS. Ex- equipment per
LOUDSPEAKERS. Ex equipment, perfect, Elac etc., 6 ins.,
 $10 / 6 ; 6000 \mathrm{mfd} 15 \mathrm{v}, 4 / 8 ; 1500 \mathrm{mtd} 150 \mathrm{v}, 10 / 8 ; 64 \mathrm{mfd} 450 \mathrm{v}$, $80 \mathrm{mid} 450 \mathrm{v}, 5 /-; 32 \mathrm{midd} 500 \mathrm{v}, 5 /-; 100 \times 400 \mathrm{mfd} 275 \mathrm{v}, 6 /-$

 chasaie guaranteed for $£ 12.10 .0$ plus $10 /$ p.p.
Oarriage oxtra all orderg.
8.A.R ALL ENQUIRIES PLEASE. MALL ORDER ONLY 4 KEMILWORTH ROAD, EDGWARE, MIDDX. HA8 8YG

WW-126 FOR FURTHER DETALLS

WANTED

surplus transistors, semiconductors, capacitors, cable, electrical goods, radio television and èlectrical equipment, wire, aluminium, motors, recording accessories and all surplus equipment for SPOT CASH.

Buyer will call to inspect anywhere. Concord Instrument Co.
28 Cricklewood Broadway London, N.W. 2
Telephone: 01-452 0161/2/3 Telex: 21492 Cables: CONIST LONDON
WW-128 FOR FURTHER DETAILS

AMERICAN

test and communications equipment * General Catalogue an/104 $1 / 6$ * manuals offered for most U.S. equipments

SUTTON ELECTRONICS

Salthouse, Nr. Holt, Norfolk. Cley 28

[^18]

TH/ ${ }^{\text {Betanten }}$ Components

RCA Semi conductors from stock

Cat. \& Price List by return Hams-free OSL cards with every order.

This month's suggestion
A 25w. AC/DC Transformer coupled amplifier comprising
Transistors
40231
40320
40321 (2)
40322 (2)
5/3 each
7/3 each
11/6 each
20/- each

Diodes
1N 3194 (4)
3/6 each
PP. and Ins. 4/-per order:
ISend for leaflet ST. 3103 for circuit
details price $2 /-1$

A wide range of semiconductors always in stock
Make sure of your three FREE QSL cards by plecing your order with us NOW.
Send for catalogue to:

EQUIPMENT AND COMPONENTS LTD: Croh House, Bancroft Hitchin, Herts Telephone: Hitctin 50551/2/3 and 52202

WW-129 FOR FURTHER DETALLS

$N D=A$	
OPTRONICS (INDUSTRIAL) LTD. ELECTRONIC COMPONENT DISTRIBUTORS Stockists of ELECTROSIL GLASS-TIN OXIDE RESISTORS - TRANSFORMERS-standard range of over 200 types, plus a production winding service - SEMICONDUCTOR DEVICES - VALVES \& C.R.T.s - PANEL METERS \& MULTIMETERS - POTENTIOMETERS-Precision, Standard, Helical \& Trimmer types available 6/12 TUDOR PLACE (off Tottenham Court Road) LONDON, W. 1 Tel: 01-637 1601 (10 lines) Telex: 27931 WW- 127 FOR FURTHER DETAILS WE PURGHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC. CHILTMEAD LTD. 7, 9, 11 Arthur Road, Reading, Berks. Tel: 582.605	

WE PURCHASE

COMPUTERS, TAPE READERS AND ANY SCIENTIFIC TEST EOUIPMENT. PLUGS AND SOCKETS, MOTORS, TRANSISTORS. RESISTORS, CAPACITORS, POTENTIOMETERS, RELAYS TRANSFORMERS ETC ELECTRONIC BROKERS LTD. 49 Pancras Road, London, N.W.1. 01-837 7781

QUARTZ CRYSTAL UNITS

Manufactured to your requirements
Fast Delivery
Freg, range $1 \cdot 4-20 \mathrm{MHz}$
Phone Hythe 8961 for Leaflet AT-1
McKNIGHT CRYSTAL COMPANY
SHIPYRRD ESTRTE, HYTHE, SOUTHAMPTON

ENTHUSIASTS
for tape recording subscribe to the only Magazine devoted
exclusively to the exclusively to th

subion

30/- (U.S.A.) \$3.75 yrly. incl. postage.

- FREE SPECIMEN COPY ON REQUEST

7 alVerstone avenue, east barnet, herts
PRINTID CIRCUITS
PROTOTYPE AND BATCH PRODUCTIONS Instrument panels and dlals In Metal and Perspex
\star SCREEN PROCESS PRINTERS $\quad \star$
Brooklands Plating Co. Ltd.
splce's Yard, south End, Croydon CRO IBF 01-688-2128

WE BUY
any type of radio, television, and electronic
equipment, components, meters, plugs
and sockets, valves and transistors, cables,
electrical appliances, copper wire, screws,
nuts, etc. The larger the quantity the
better. We pay Prompt Cash.
Broadfields \& Mayco Disposals,
21 Lodge Lane, London, N. 12
RING 4452713
4450749
9587624

SURPLUS HANDBOOKS 10 set Circuit and Notes
1155 set Curcult H.R. Ret Technical Instructlons 38 set Technical Instructions
88 eet Worklag Instructions ${ }^{88}$ 8e eet Techinical Instruction BC. 221 Circuit and Notes . 18 eet Circuit and Notes BC. 1000131 Ret) Crircut and Notes CR. 100/B. 28 Circuit and Note
R. 107 Circuit and Notes AR. 88 D Instruction Manua ${ }_{82}$ Ret Circult and Notes $\quad \therefore \quad \because \quad . .1816$ p/p 10 d d.
 R.F. 24, 26 and 26, A.1114, T.1154. CR.300, BC.312. BC. 342 , ${ }_{52}$ aet Bender and Recelver BC.624, 22 1475(88), 1392.
Colour Code Indicator 2/6. p / p 日d. 8 . post tree.
8.A.E. With Bll Penquir

Postage rates apply to U.K. only.
Hall order only to:
INSTRUCTIONAL HANDBOOK SUPPLIES Dept. W.W. Talbot House, 28 Talbot Gardens, LEEDS 8

WANTED-

Redundant or Surplus stocks of Transformer materials (Laminations, C. cores, Copper wire, etc.), Electronic Components (r ransistors, Diodes, etc.),

Good prices paid J. BLACK

44 Green Lane, Hendon, N.W. 4 Green Lane, Fendon, N. \mathbf{T}

ECONOMICAL accurate RELIABLE

Private enquiries, send two 5d stamps for brochure THE QUARTZ CRYSTAL CO. LTD a.C.C. Works, Wellington Crescent New Malden, Surrey (01-942. 0334 \& 2988) WW-131 FOR FURTHER DETALS

Tha Mitr-Lite dimmorswich will dim up to
400 walts ot incterncont 400 watts af incon doestent tigh hing trom
 thy nor med light mict, nond is suppriad dopth is cravired.
Price built ond tented 63\%.
complate hit 55/.

 PRINTED CIRCUIT PROBLEMS ?

 Complite desision and manufecturn trom elircuilt dibgrama Faire hild QUOTE WW4 WHEN ORDERING
 Quadrac soov an (is used in our lamp dimmar) 29/6 Untested SCR': 300v 1A TOE cabe 2f. SAE lof full lisi.
 other scale
configurations available 0-1 $0.5,0-10,0.14$

1400.

-4
$37 / 6$ ea, $2 / 5$ post. 3 or more carriage free 'CHANDOS'. HIGH STREET. NEW MILLS. NR. STOCKPORT, CHESHIRE. TELEPHONE NEW MILLS (Derbyshire) 2345

ELECTRONIC DESIGNER'S HANDBOOK

 A PRACTICAL GUIDE TO TRANSISTOR CIRCUIT DESIGNby T. K. Hemingway

Abstract

68/. Postage $1 / 6$

SOURCEBOOK OF ELECTRONIC CIRCUITS by John Markus. 190/-. Postage Free.
TRANSISTOR AUDIO \& RADIO CIRCUITS by Mullard. 30/-. Postage I/-.

FUNDAMENTALS OF INTE. GRATED CIRCUITS by Lothar Stern. 50/-. Postage $1 / 6$.
THE SEMICONDUCTOR DATA BOOK by Motorola. 60/-. Postage $4 / 6$. SCR MANUAL by General Electiric Company. 25/-. Postage 2/-.
TRANSISTOR MANUAL by General Electric Company. 21/., Postage $1 / 6$.
INTRODUCTION TO LOGIC CIRCUIT THEORY by I. Aleksander. 32/-. Postage 1/-.
TAPE RECORDER SERVICING GUIDE by Robert C. Middleton. 35/-. Postage 1/-.

THE MODERN BOOK CO.

britain's lakgest stockist
of British and American Technical Books
|9-2| PRAED STREET, LONDON, W. 2 Phone PADdington 4185 Closed Sat. 1 p.m.

HIGHLY STABLE PARAMETERS LONG OPERATIONAL LIFE

electronic components receiving valves for radio and TV receivers picture tubes guns for TV getters

from Poland

are offered by

Foreign Trade Enterprise

Warszawa, AI. Jerozolimskie 44, Poland P.O. Box Warszawa 1 No 370 Telex No 814431

CAPACITOR DISCHARGE IGNITION SYSTEM

Using the article as published in the January 1970 issue of Wireless World, a universal printed-circuit board has been designed, incorporating the author's approved modification. This is suitable for both positive and negative earth ignition systems, thus enabling simple conversion to opposite polarity if the vehicle is subsequently changed.
The printed-circuit board incorporates Cinch printed-circult mounted screw terminal blocks for the input and output connections, togather with a printed-circuit mounted fuse carrier with fuse.
A complete complement of components and semiconductors are supplied together with a ready drilled and fluxed printedcircuit board. drilled heatsink. hardware and suitable transformer.
Although wiring details are supplied for both positive and negative earth versions, customers must state which version they require so that the correct semiconductors can be supplied.

Price E9-5-0 plus 10/- carriage.
Trade Enquiries Invited.
Mail Order Only.
DABAR ELECTRONIC PRODUCTS
98a, Lichfield Street, Walsall, Staffs.

LAWSON
 NEW TUBES

Lawson "Century 99" are brand new tubes. Using silver activated screens, micro fine aluminizing, high definition electron guns. resulting in superb performance and very long life.

LAWSON TUBES IB CHURCHDOWNRD:
MALVERN, WORCS.
Telephone: MALVERN 2100

 TELEVISION TUBES REBULTT TUBES
Lawson "Red Label" rebuilt crts are particularly useful where cost is a vital factor such as in older sets or rental use. Red Label are completely rebuilt from REBUILT selected glass and are exact TUBES replacements.
4. 0.0
4.12 .6
4.12 .6
4.17 .6
4.17 .6
6.10 .0

2 years Guarantee both new and rebuilt FULL TUBE FITTINGS INSTRUCTIONS SUPPLIED CARR.INS.BYEXPRESS PASSENGER 14-19 $12 / 6^{\circ} \mathrm{d} .21-23^{\circ} 15 /$.

SALES
P.O. BOX 5 WARE, HERTS TEL. WARE 3442

SEMICONDUCTORS IGNITION SYSTEM $2 N 3525$.
$2 N 3055$.
2N 2055
$2 N 3302$
2N3302 $^{2 N} 3704$.
IN $N 401$
iN4005
New and fully guaranteed
\qquad
S.C.R'E 16 AMP (unplated)

$1-24 \quad 25-99$ | 100 PIV | -24 | $25-99$ | 100 up |
| :--- | :---: | :---: | :---: |
| 100 | $6 / 6$ | | | All tested perfect functional evices guaranteed.

TOP MAT SILICON RECTIFIERS. All good. No
short or open circult devices. short or open circultdevices.
Yoltage range 24400 PlV
750 mA 750 mA . 33 per $100,612.10$
per 500 . PLASTIC PNP SILICON TRANSISTORS. Manufacturer's seconds from trans, for manufacturing etc,
C8 $\$ 00, ~$
$13.10 \quad 1,000$ pieces. PLASTIC NPN SILIManufacturers' seconds from 2N3707-3711 family. Idem
cheap trans, for manufacturcheap trans, for manufactur-
ing etc. $67.10500,612.10$ ing etc.
1,000 pleces.

//6

TESTED TRANSISTORS
1/6
One price only PNP. NPN Silicon
Planar or Germ. Fully Tested and
similar to each. similar to the following types:

ACl 25 ACi26 $A C 128$AC 130 ACY19 $A C Y 20$ ACY2ACY2ACY 27 ACY ACY29 ACY30 ACY34 ACY35	ACr36BCl BCl 109 BFY50 BFY51 BFX84 BFX86 BF $\times 88$ NKT141 NKT142 NKT213 NKT214 NKT271 NKT677	NKT713 ${ }^{N} \mathrm{CT} 7{ }^{2} 3$ OC45 0 C 71 0 O 72 0 C8I OC82 TIS44 $2 G 301$ 2 G 302 2G308 2G374	$\begin{aligned} & 2 \mathrm{G} 381 \\ & 2 \mathrm{G} 382 \\ & 2 \mathrm{G} 399 \mathrm{~A} \\ & 2 \mathrm{~N} 696 \\ & 2 N 697 \\ & 2 N 706 \\ & 2 N 708 \\ & 2 N 929 \\ & 2 N 930 \\ & 2 N 1131 \\ & 2 N 1132 \\ & 2 N 1613 \\ & 2 N 1711 \\ & 2 N 2904 \\ & 2 N 2905 \\ & 2 N 2924 \end{aligned}$	$\begin{aligned} & \text { 2N2926 } \\ & 2 \mathrm{~N} 2220 \\ & 2 \mathrm{~N} 3707 \\ & 2 \mathrm{~N} 3711 \\ & 2 \mathrm{~N} 2906 \\ & 2 \mathrm{~N} 2907 \\ & 2 \mathrm{~N} 2696 \\ & 2 \mathrm{~N} 3391 \\ & 2 \mathrm{~N} 370 \\ & 2 N 3703 \\ & 25102 \\ & 25103 \\ & 25104 \\ & 25732 \\ & 25733 \end{aligned}$

TRANSISTOR EQVT. BOOK
2,500 eross references of eransistors- British, European, American and Japanese. A must for every transistor user.
Exelusively distributed by DIOTRAN SALES. IS/- EACH.

Vatt mixad lot of subminiature glase dlodes. Com-
prising of Silicon, Germ, Point Contatt and Gold prising of Silicon, Germ, Point Contact and Gold
Bonded types plus some Zunars. 500,000 available at Lowest of Low Price.
1,000 pieces $£ 3.0 .0 .5,000$ pieces $\mathbf{~} \mathbf{1 3}, 10.0 .10,000$ pieces $\mathbf{C 2 1}$.

BRAND NEW FULLY TESTED EPOXY CASE BEN 3000 and replacement for 2N2646. Full data available. LOWEST PRICE AVAILABLE ANYWHERE. 100 of $4 /$. each $=$ E20; 500 of $3 / 6$ each $=£ 87.10 ; 1,000$
= $£ 150$. Sample devices $7 \mid$ - each on request.

HIGH OUALITY SILICON PLANAK DIODES. SUB-MINIATURE DO-7 Glass TYpe, sultable raplace ments for OA200, OA202, BAY38, 15130 , $15940,200,000$ to clear
et 44 per 1,000 pieces. GUARANTEED 80% GOOD.

GULLY TESTED DEVICES AND QUALITY OAZ22 Silicon Diode, Fully Coded.
150 PIV 250 mA Qey. Price $\in 30$ per 1,000 pieces.
$0 A 200$ Silicon Diode. Fully Coded.
50 PIV 250 mA . Qty. Price K 25 per 1,00
BYI00 SIL. RECT'S 800 PIV 550 mA .
$1-492 / 6$ each; 50-99 $2 / 3$ esch; 100-999 2/= each; 1,000 up
$1 / 10$ each. Fully Coded. First Quality.
Post and Packing costs are continually rising. Please add I/e towards same. GIRO No. 30-102

OVERSEAS QUOTATIONS BY RETURN. SHIP-
MENTS TO ANYWHERE IN THE WORLD.

TELEVISION TUBES
2 YEAR GUARANTEE
1703 110'= $1903130 \% \cdot 2303165 /=$ carriage 12 '6 per fube RADIO \& TV VALVES
SOLAR TUBES (FARNBOROUGH) LTD.
28 ALEXANDRA ROAD, FARNBOROUGH, HANTS. Telephone 42590 是 49101

TRAIN TODAY FOR TOMORROW

Start, training TODAY for one of the many first-class posts open to technically qualified men in the Radio and Electronics industry. ICS provide specialized training courses in all branches of Radio, Television and Elec-tronics-one of these courses will help YOU to get a higher paid job. Why not fill in the coupon below and find out how?
Courses include:

- RADIO/TV ENG. \& SERVICING
- COLOUR TV SERVICING
- AUDIO FREQUENCY
- ELECTRONICS
- ELECTRONIC MAINTENANCE
- INSTRUMENTATION AND

CONTROL SYSTEMS

- NUMERICAL CONTROL

ELECTRONICS

- COMPUTERS
- PRACTICAL RADIO (with kits)

Guaranteed Coaching for:

- C. \& G. Telecom. Techns' Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/TV Servicing Cert.
- Radio Amateur's Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education

LOWEST PRICE
 DESPITE RECENT INCREASES

LATEST NEW \& IMPROVED "JULIETTE" NA5018A COMMUNICATIONS RECEIVER (with AFC)
5 BAND MAINS/BATTERY
SOLID STATE PORTABLE OUR 36 PRICE 30 yIS.
RECEIVER
OPTIONAL EXTRA BFO $+35 /$.

- AM BAND: 540-1600 KC's Full Medium wave cover - MARINE BAND: 1.6-4.6 MC's Shipping. Hams. S.W. etc. FM/VHF: 88-108 MC's Radios 2, 3, 4: TV Sound, Public Services, etc.

- AIRCRAFT (im. proved sensitivity): 108-134 MC's Airlines and Ground Control
- PB thigh VHF Band): 148-174 MC's. TV Sound,
Fire. Ambulance. etc., Taxis, Shlpping Fuel Boards, Oil
Rigs. Gas and Rigs. Gas and
Electric Boards, Local Hams. Industrial and Commercial Mobiles, Military Aircraft, etc. (DEPENDING ON LOCALITY)
FEATURES-4" Dynamic PM Speaker. Directional telescopic VHF aerial. Internal Ferrite rod aerial. lluminated Dial, size $9 \frac{1}{2}^{\prime \prime} \times 5 \frac{34^{\prime \prime}}{} \times 4^{\prime \prime}$. Weight $5 \frac{1}{2}$ lbs. Impressive and sturdy design in Chrome and Black Leatherette. Ultra sensitive 19 transistor/diode circuit. Earpiece and Socket. Leather carrying and shoulder straps, Batteries incl. (Standard Ever-Ready Type) RETAIL TRADERS SUPPLIED

Enquiries to wholesale dept.
STOCKTON PARTNERS (DEPT. WW) BRIGHOWGATE, GRIMSBY, LINCS.

Tel: 0472 64196/58815
Imports. Wholesale Electronic Equipment Distributors.

SILICON TRANSISTTORS 1,000,000 FOR SALE

Clearance of pnp Sllicon Alloy Transistors from the 25300 (TO-5) and 25320 (SO-2) range and similar to the OC200205 and BCY30-34 series. Avallable only from us at a fraction of the manufacturing cost. All these devices would normally be subject to re-selection for industrial use but owing to company policy change have been made available to us surplus to requirements. Offering these transistors in varied quantities make them ideal for Amateur Electronics, Radio Hams and for experimental use in Schools, Colleges and Industry.
Supplied uncoded (no warranty by the manufacturers). But our assurance given that a minimum of 80% will be found to be good usable Silicon Alloy Transistors. Please state preference of type, i.e., TO-5 2S300 or SO-2 2 S320.
Approximate count by weight:
100 off-15s. (plus p. \& p. 2s.)
300 off- $\$ 115 \mathrm{~s}$. (plus p. \& p. 3s.)
500 off- $\angle 2$ 10s. (plus p. \& p. 3s. 6d.)
1,000 off- $£ 4$ (plus p. \& p. 5s.)
10,000 off- $\& 35$ (plus p. \& p. II s.)
Large quantities quoted for on request.
EXPORT ENQUIRIES WELCOME
All correspondence, cheques, postal orders, etc., to:

DIOTRAN SALES

P.O. BOX 5

63a High Street, Ware, Herts.

$$
\text { Tel: WARE } 342
$$

LINSLEY HOOD PRE-AMPLIFIER

Complete kit including PCB approved by Linsley Hood, polyester \& electrolytic cap's, $\pm 5 \%$ hi-stab R's, pre-sets, SGS \& Amelco matched Tr's, Radiospares hi-qlty sw's, pots $(\pm 2 \mathrm{~dB})$ \& drilled front panel. MONO \&5. 12.6 net STEREO $\mathbb{1} 10.7 .6$ net
LINSLEY HOOD CLASS AB AMP
Send SAE detailed lists including other WW Designs. BCIO9/BC182L $3 /=, \quad$ BCI $25 / 6 \quad 11 /=$, BC212L $\quad 4 /-$, MJ480 20/=, MJ481 25/6, MJ491 28/\%, MJES21 15/-, 40361 12/=, 40362 14/6, 2 N 1613 6/=, 2N3906 6/6, $2 N 4058$ 4/6. Matching \& mica washers, etc., FREE. Matched 10 Tr's \& zener Texas 15 W amp. E3.9.6. Postage/packing $1 /-$ minimum on all orders, GUARANTEED DESPATCH BY FIRST CLASS RETURN A.IFAGTOAS, 72 BLAKE ROAD, STAPLEFORD. NOTTS.

MAKES 5 DIFFERENT TRANSISTOR RADIOS
 Last 250

 total building price 39/6 Amazing Radlo Construction 39/6. A complete Home Radio Course. No experience needed. Parts including instructions for each design. Step-by-stes plan, sil Transistors, resistors, condensors. knobs, screws, etc.,
and all you need, Box size $14^{\prime \prime} x$ and all you need. Box slize $14^{\prime \prime} x$
$10^{\prime \prime} \times 2^{\prime \prime}$ (parts available seperately). Send only available seperately). Send only $39 / 6+$
$4 / 6$ P. B. P. Money back guarantee. P. Monay back
CONCORD ELECTRONICS LTD. (W.W.11) (nr. Bayswater Tube)
(Callers $9 \cdot 6$ inc.

VACUUM

OVENS, PUMPS, PLANT, GAUGES, FURNACES, ETC., GENERAL SCIENTIFIC EQUIPMENT EX-STOCK, RECORDERS, PYROMETERS, OVENS, R. F. HEATERS. FREE CATALOGUE.

V. N. BARRETT \& CO. LTD.

1 MAYO ROAD, CROYDON.
CRO 2QP. 01-6849917

NEW! HANDY! TIDY! multi-drawer

I-N-T-E-R-L-O-C-K-I-N-G
storage
units

A PLACE
 FOR

EVERYTHING

EVERYTHING

IN ITS.
PLACEI

Newest, neatest. system ever devised for storing small parts and components: resistors. capacitors, diodes, transistors, etc. Rigid plastic units, interlock together in vertical and horizontal combinations. Transparent plastic
drawers have label slots/handles on front. Build up any drawers have label slots/handles on front. Build up any size cabinet for wall. bench or table top.

BUY AT TRADE PRICES!

SINGLE UNITS (5ins $\times 2$ tins $\times 2$ inins)
OUR PRICES: $24 /$ DOZEN DOUBLE UNITS (5ins $\times 4 \frac{1}{2}$ ins $\times 2$ ifins)
Usually $4 / 6$ each. \quad OUR PRICES: $40 /-$ DOZEN

PLUS QUANTITY DISCOUNTS!

Orders $£ 5$ and over DEDUCT $1 /$ - in the $£$ Orders $£ 10$ and over DEDUCT $1 / 6$ in the $£$ Orders E2O and over DEDUCT $2 /$ - in the \mathbf{E} PACKING/POSTAGE/CARRIAGE: Add 6/. to all orders under £3. Orders $£ 3$ and over, packing/postage/carriage QUOTATIONS FOR LARGER QUANTITIES

(Dept. WW9), 31, ALBERT ROAD, HENDON, LONDON, N.W. 4.

WW-135 FOR FURTHER DETAILS

NW BDINE

MAKING \& REPAIRING TRANSISTOR RADIOS

by W. G. Oliver (G.3XT)
(Pub. by Foulshom Technicel) (Oct)

SECURITY ELECTRONICS

by John E. Cunningham (Oct)

101 QUESTIONS AND ANSWERS ABOUT

 TRANSISTOR CIRCUITS by Leo. G. Sands (Oct)
HI-FI STEREO

SERVICING GUIDE
by Robert G. Middleton (Nov)
101 EASY HAM RADIO PROJECTS
by Robert M. Brown and Tom Kneitel (Nov) 30/-

> FOULSHAM-SAMS TECHNICAL BOOKS (W. FOULSHAM \& CO.LTD.) YEOVIL RD., SLOUEH, BUCYS, ENGLAND

Learn at home... First Class Radio and TV Courses

After brief, intensely interesting studyundertaken at home in your spare tlmeYOU can secure a recognised qualification or extend your knowledge of Radio and TV. Let us show you how. FREE GUIDE
The New Free Guide contains 120 pages of information of the greatest importance to both the amateur and the man employed in the radio industry. Chambers College provides first-rate postal courses for Radio Amateurs' Exam., R.T.E.B. Servicing Cert., C. \& C. Telecoms., A.M.I.E.R.E. Guide also glves details of range of certificate courses in Radio/TV Servicing, Electronics and other branches of engineering, together with particulars of our remarkable terms of
"Satisfaction or Refund of Fee" Write now for your copy of this valuable publication. It may well prove to be the turning point in your career.
Founded 1885 -Over 150,000 successes
CHAMBERS COLLEGE
(Incorp. National Inst. of Engineering)
(Dept. R16), College House, 29-31 Wrights
(Dent Lane, Kensington, W.B.

RONDON CENTRAB Leablo storiss

ELEECRICITY SLOT METER ($1 /$ - In alot) for A.O. malns. Fixed
 $10 \Delta .80 /-104.80 /-20 \Delta .100 /-$. P.P. $7 / 6$. Othe WIRELESS SET No. 38 A.F.V. Freq, range 7.8 to 9.0 Mc/s. Work-

 MODERN DESE FRONES, red, green. blue or topaz, 2 tone grey of black, with interna bell and handset with $0-1$ dia. £4/10/-. P.P. 7/6.
10-WAY PRESS-BUTTON ITTEER-COM TELEPPRONES in Bake。 Guaranteed. $\mathrm{E} 6 / 10 /-$ per unit.
20-WAY PRESS-BUTTON INTER-COM TELEPHONES In BakeLite case with junction box. Thoroughly overhailed. Guaranteed. £7/15/ per unlt
TRLEPRONE COLLRD BAIN SET LEADS, 3 core, 5/6. P.P. 1/Q ${ }^{2} 9$ new. 200/250 v. 10 A . $42 / 6 ; 15, \mathrm{~A}$, $52 / 6 ; 20 \mathrm{~A}$. $57 / 6$. Other amperuges svallabie. 2 years guarantee....P.P. $\overline{1} /$.
B-BANK OWISELECTOR 8WITCHEB, is contacta, Bitcrnate Wiping $£ 2 / 15 /=; 8$ bank half wipe e8/15/a; 6 bactik half wlpe, 25 contacts 47/6. P.P. 3/6.
Receivera in stock. All for callerm only.
23 LISLE ST. (GER 2969) LONDON W.C. 2
Closed Thursday 1 p.m. Opon all day Saturday

TRANSFORMER LAMINATIONS enor mous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large selection of stranded single p.v.c. covered Wire $7 / 0048,7 / 0076,14 / 0076$ etc. P.T.F.E, covered Wire, and Silicon rubber covered wire, etc.

J. Black

OFFICE: 44 GREEN LANE, HENDON, N.W. 4 Tel: 01-203 1855. 01-203 3033 STORES: 30 BARRETTS GROVE, N. 16 Tel: 01-254 1991

* Very accurate-linearity - 1%
\star Bidirectional output to $\frac{1}{4}$ of 1% tolerance
\star Brush life 100,000 hrs. or 10 years continuous operation
\star Low driving torque
* Temperature compensated
\star Ideal as speed transducers

NECO ELECTRONICS (EUROPE) LIMITED WALTON ROAD, EASTERN ROAD COSHAM P06 1SZ, HANTS.
 Tel: COSHAM 71711/5. Telex. 86149

All for
only $\mathbf{7 5 / -}$ Post $4 / 6$

- ALL PURPOSE TRANSISTOR PRE-AMPLIFIER
 or transistor equipmont, Full instructions. IT/6 Post

BAKER 12 in. MAJOR £9
30-14,500 c.p.S., 12 in . double cone, woofer and tweeter cone together with a BAKER ceramic magnet assembly having a flux density of 14,000 gauss and a total flux of 145,000 Maxwells. Bass resonance 40 c.p.s. Rated 20 watts. Voice coils
available 3 or 8 or 15 ohms. Post Free. a vailable 3 or 8 or 15 ohms. Post Free.
Module kit, $30-17,000$ c.p.s. Size Module kit, $30-17,000$ c.p.s. Size
$19 \times 12+$ in. with tweeter, crossover, $19 \times 12 \frac{1}{2}$ in. with tweeter, crossover, Ideal for Hi fior P.A. 18 in . wide, $3 /$ per for 18 in. wide, $3 /$ - per ft. run.
E.M.I. TAPE MOTOR
(Illus.) $120 / 240 \mathrm{v}$. A.C. 1,200 R.P.M., 4 pole 135 mA . $25 / \mathrm{m}$

BALFOUR MOTORS ${ }^{2 / 6}$
$120 / 240 \mathrm{v}$. A.C.
1,200 R.P.M. Heavy duty 4 pole 50 mA . Spindle $\frac{3}{2} \times \frac{1}{2} \times 2 / 20$ in. diameter. Size
$\times 2 \frac{1}{2} \times 17 / 6$ TRANSISTOR AMPLIFIER WITH LOUDSPEAKER A self-contained portable mini p.a. syatem. Many uses-Parties, Baby Alarm, Intercom, Telephone or
Record Player Amplifier. Attractive rexine covered cabinet size $12 \times 9 \times 4$ in.,
with powerful 7×4 with powerful 7×4 in.
speaker and four eransistor Ope wate power amplifier. Sies wate power battery. Brand new with maker'sguarantee.
THE INSTANT BULK TAPE
ERASER AND RECORDING HEAD
DEMAGNETISER
$\begin{array}{lll}\text { 200/250 A.C. } & 47 / 6 & \begin{array}{l}\text { Post } \\ \text { Leaflet S.A.E. }\end{array} \\ 2 / 6\end{array}$
RETURN OF POST DESPATCH - CALLERS WELCOME HI-FI STOCKISTS - SALES - SERVICE - SPARES
RADIO COMPONENT SPECIALISTS
337 WHITEHORSE ROAD, CROYDON. Tel: 01-684 1665

Various types of two- and four-track playback heads for real, cassette and professional tape recorders are offered by

Foreign Trade Enterprise Warszawa, AI. Jerozolimskie 44, Poland

On demand we work out and execute playback heads with requested parameters as well as subassemblies and technical details for tape recorders.

Makers: the Kasprzak Radio Equipment Works
Warszawa, Kasprzaka 18/22, Poland

BAILEY PRE-AMPLIFIER

High quality pre-amplifier circuit deseribed by Dr. A. R. Bailey in the December, 1966, "Wireless versatility with a a suitable for driving Bailey 20W and 30W Amplifiers, suirabley Hood Class A Amplifier and many others. Al normal preamplifier facilities and controls. are incorporated. A new Printed Circuit Board containing latest modifications 7 in . by 3 in. features edge connector mounting, roller tinned finish and silk screened component locations. This board is available in S.R.B.P. material or fibreglass and the complete Kit for the unit contains gain graded BC. 109 transistors, polyester capacitors and metal oxide resistors where specified.

BAILEY 3OW AMPLIFIER
All parts are now available for the 60 -vole single supply rail version of this unit. We have also designed a. new Printed Circuit intended for edge connector mounting. This has the component locations marked smaller at $4 \frac{1}{2}$ in. by 2 zin . Price in SRBP material $11 / 6 \mathrm{~d}$. in Fibreglass $14 / 6 \mathrm{~d}$.

BAILEY 20W AMPLIFIER
All parts in stock for this Amplifier including specially designed Printed Circuit Boards for pre-amp and power amp. Mains Transformer or mono or stereo
with biflar wound secondary and special 218 V primary for use with CZ6 Thermistor, 35/6d post 5/-.
Trifilar wound Driver Transformer, 2
Power Amp. PC Board, 12/6d., post 9 d .
Reprint of "Wireless World " articles, $5 / 6 \mathrm{~d}$. post free.
DINSDALE IOW AMPLIFIER
All parts still available for thls design.
Reprint of articles $\mathbf{5 / 6 d}$., post free.
LINSLEY HOOD CLASS A AMPLIHIER
Parts now available for this unit including special matt black anodised Metalwork and all power supply components.

PLEASE SEND S.A.E. FOR ALL LISTS.

HART ELECTRONICS,

32I Great Western St., Manchester 14
The firm for quality.
Personal callers welcome, but please note we are elosed all day Saturday.

Thanks to a bulk purchase we can offer BRAND NEW P.V.C. POLYESTER and mylar recording tapes
Manuiactured by the world-famous reputable British tape firm, our tapes are boxed in polythene good as any other on the market in no way are the tapes faulty and are not to be confused with imported, used or sub-standard tapes, 24-hour despatch service.
Should goods not meet with full approval, purchase price and postage will be refunded.

Postage on all orders $1 / 6$
COMPACT TAPE CASSETTES AT
HALF PRICE
60,90 , and 120 minutes playing time, in original plastic library boxes.

STARMAN TAPES

28 LINKSCROFT AVENUE, ASHFORD, MIDD்

Ashford 53020
WW-138 FOR FURTHER DETAILS

We can't wait to expand your laboratory

in $\mathbf{2 4}$ hours you can hire some of the World's top instruments at competitive prices

Southern Office: Station Approach, Bourne End, Bucks.
Northern Office: Shearer House, Dunham Road, Altrincham, Cheshire

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 120-135

	Page		Page
A1 Facto	140	Gardners Transformers Ltd.	23
Acoustical Mfg. Co., Ltd.	47	Garrard Eng. Led.	50,51
Adcola Products, Lid.	26	Goldring Mig. Co. Ltd;	36,45
Adler Micro Electronics	38	Grampian Reproducers Ltd.	30
'Allied Int. Co. Ltd.	116	Greenwood, W., (London) Ltd..	39
Amplivox Lid.	27	Greenwood, W., (London) Ltd..	
Anders Electronics, Ltd.	34,40	H.H. Electronic.	30
A.K.G. Equipment Led.	139	Harmsworth Townley \& Co.	6
A.N.T.E.X. Ltd.	75	Harris Electronics (London) Ltd.	62
Associated Automation Ltd.	2	Harris, P.................	139
Associated Electronic Engineers Lid.	33	Hart Electronics	141
Ates Electronics Led.	52	Hatfield Instruments Ltd.	52
Audio Eng. Led.	28	Heath (Gloucester) Ltd. .	16,17
Auriema Ltd.. . . .	24	Henrys Radio Ltd.	88,89
Aveley Electric Ltd.	68	Henson, R., Ltd. . .	137
Banner Transformers.	60		
Barrett, V. N.	140	I.C.S. Ltd.	6, 138
Batey, W., \& Co.	44	1.M.O. (Electronics)	, 36
Bell \& Howell Ltd. (Acoustic Research)	19	Imhof-Bedco	48
Bentley Acoustical Corporation Ltd.	104	Industrial Insts. Ltd.	.46,56
B.I.E.T.	13	Instructional Handbook Supplies	137
Bi-Pak Semiconductors	91	Instrument \& Control Eng.	114
Bu-Pre-Pak, Ltd.	98	Ivoryet Ltd.	140
BirdıElectronic Ltd.	65		
Black, J.........	137, 140	Jackson Bros. (London) Ltd. J.E.F. Electronics.	$\begin{array}{r} 32 \\ 116 \end{array}$
Bowthorpe-Hellerman Ltd.	66	J.E.F. Electronics.	
Bradley, G. \& E., Ltd.	Cover ii	Keytronics.	102
Brooklands Plating Co. Ltd.	136		
Brown, N. C., Lid. .	40	Labhire Ltd.,	142
Bulgin, A. F. \& Co. Ltd.	82	Lasky's Radio Ltd.	96
		Lawson Tubes.	
C. \& S. Antennas Ltd.	4	Ledon Instruments Ltd.	64
Calan Electronics.	60	Levell Electronics Ltd.	20
Carr Fastener Co. Ltd.	74	Lexor Electronics Ltd.	Cover iii
Carston Electronics Ltd.	44	Lexor Dis-boards Ltd.	46
Cesar Products Ltd. (Yukan)	141	Light Soldering Developments Lid.	26
Chambers College.	140	Lind-Air Optronics (Industrial) Ltd. .	68,136
Chandos International.	137	Linear Products Ltd... 44
Chilmead Ltd.	97, 136	Lloyd, J. J., Instruments Lid.	37
Clive.	117	London Central Radio Stores.	140
Colomor (Electronics Led.)....	$\begin{array}{r}199 \\ \hline 17\end{array}$	London Computer Training Services.	102
Computer Sales and Service Ltd.	117	L.S.T. Components Ltd.	106
Concord Electronics.	140	L.S.T. Component Lt.	
Concord Instrument Co.	136	Magnetic Tapes Lid..	
Croydon Precision Ins. Co.	64	Marconi Instruments Lid.	41
Cue Electronics.	38	Marshall, A., \& Sons (London) Ltd.	102, 110
		McKnight Crystal Co..	136
Dabar Electronic Prod	137	Mills, W.............	108, 109
Diotran Ltd..	-138, 140	Milward, G. F..	92
Douglas Electronic Industries Litd.	... 138	M.O. Valves Ltd.	
Douglas Electronic Industries Ltd.	138	Modern Book Co.	137
E.B. Instruments	139	Morganite Resistors Ltd.	1
Electrical Who's Who 1970/1971.	114	Motorola Semiconductors Ltd.	
Electro-Tech. Sales	90	Mullard Ltd.	8, 59, 72
Electronic Brokers.	4, 95, 136	Multicore Solders Lid.	Cover iv
Electronics (Croydon) Ltd.	93		
Electrosil Ltd.	.73,81	Neco Electronics (Europe) Ltd.	
Electrovalue .	105	Nombrex Ltd.	
Electro-Winds Lid.	60	Omron Precision Controls	35,36
English Electric Valve Co. Ltd.	3, 5, 7, 9	Osmabet Ltd.	136
Enthoven Soldiers Ltd.	28	Oxley Developments Lid..	
Erie Electronics Ltd..	. 25,42	Oxily Developments Lid.	
Farnell Instruments Ltd.	24	Parker, A. B.....	46
Ferrograph, The, Co. Ltd..	96	Pattrick \& Kinnie	
Firnor-Misilon Ltd..	46	P.C. Radio Ltd.	
Futuristic Aids Ltd.	52	Plessey Electronics Pty. Ltd.	
Foulsham, W., \& Co. Ltd. .	140	Practical Electronics.	

Gardners Transformers Ltd Page
Garrard Eng. Led. 0,51
Goldring M. Co. Lid.
Grampian Reproducers Ltd. 30
36,45
H.H. Electronic

Harmsworth Townley \& Co
6
62
139
52
8, 89
96,138
35,36
48
137
114

32
116
102

56

	Page
Quality Electronics Ltd.	56
Quarndon Electronics Ltd.	61
Quartz Crystal Co. Ltd.	137
Racal Insts. Ltd.	3
Radio \& TV Components Ltd.	107
Radio Components Specialists L	141
Radio Exchange Co. Lid. .	136
Radiospares Ltd.	60
Ralfe, P. F.	101
Rank Audio Visual Lid.	52
R.E.L. Equipment \& Components	136
R.S.C. Hi-Fi Centres Letd.	115
R.S.T. Valves Ltd.	88
Reslo Mikes	40
Rigold \& Bergmann Ltd.	116
Samsons (Electronics) Ltd.	103
Sansui Electric Co. Ltd.	51
S.D.C. Electronics.Ltd.	8
Service Trading Co.	118
Servo \& Electronic Sales Ltd.	108
Shure Electronics Ltd.	29
Sinclair Radionics Ltd.	6,87
S.M.E. Ltd.	31
Smith, G. W. (Radio), Ltd.	113
Soka (SRL) Sommerkamp Electr	69
Solar Tubes (Farnborough) Ltd.	138
Solartron Electronic Group Ltd.	79
S.T.C. Mobile Radio Telephone.	78
Starman Tapes.	141
Stockton Partners	138
Sugden, J. E., Ltd.	52
Sutton Electronics Lad.	136
Tannoy Products Ltd.	53
Tape Recording Magazine	136
Tektronix U.K. Ltd..	67
Telcon Metals Ltd.	32
Telequipment Ltd.	70
Teleradio, The, (Edmonton) Lid.	136
Teonex Lid.	55
Thom Radio Valves \& Tubes Ltd	80
Tinsley, H., \& Co. Ltd.	62
Trio Corporation Ltd.	10
Turner, E., Electrical Insts. Led	39
Ultron	43
United-Carr Supplies Ltd.	18
Universal.	141
Valradio Ltd.	62
Vitavox Ltd.	116
Vortexion Ltd.	21
Watts, Cecil E., Lrd.	138
Wayne Kerr, The, Co. Led	14
Webber, R. A., Ltd.	56
Welwyn Electric Ltd.	49
Welwyn Tool Co. Ltd.	60
West Hyde Developments Ltd.	54
West London Direct Supplies	116
Weyrad (Electronics) Lid.	104
Whiteley Electrical Radio Co. Ltd	12
Wilkinson, L., (Croydon) Ltd.	92
Z. \& I. Aero Services Ltd.	119

what delay value?

SOLUTION use Lexor cascadable modules

Lexor
 uniline
 build-a-delay system

Engineers with a delay problem will swiftly recognise the value and flexibility of Lexor uniline cascadable modules.
The wide range of incremental values makes delay building simple, quick and economical. An exact delay required for a circuit can be established instantly in-situ.

Lexor THE DELAY LINE SPECIALISTS

With the uniline system the required delay value can be achieved by adding or subtracting modules in steps as small as 5 nS . These miniature encapsulated units are designed to mount directly on to printed circuit boards on a $0 \cdot 1^{\prime \prime}$ matrix and their small uniform size allows them to be positioned in any configuration which can be accommodated by an existing circuit layout.
They are available from Stock.
Having resolved the problem of delay value, take further advantage of the Lexor service by ordering-

Sets of uniline modules made up in composite blocks or a custom-built single unit to an equivalent value in any form required.
Leaflet L2 gives full technical specification and application notes.

KWP L2

OVER 400 SPECIFICATIONS USED IN MORE THAN 63 COUNTRIES FOR FAST RELABLE SOLDERED JOINTS

COMPATIBLE PRINTED CIRCUIT SOLDERING MATERIALS

EXTRUSOL High Purity Extruded Solder
 provides the most

 economical soldering. Its high purity and freedom from oxides, sulphides and other undesirable elements result in the following advantages:- Less dross on initial melting.
- More soldered joints per pound of solder purchased.
- Less reject joints. - Improved wetting of electronic components \& printed circuit boards.
- More uniform results. All Extrusol is completely protected by plastic film packaging from the moment of manufacture until it is used. Available in bars and pellets. Can be released under AID authority and supplied to USA QQ-S-571d.

PC. 2 MULTICORE TARNISH REMOVER

 removes tarnishes and inorganic residues as the second half of a precleaning process before soldering. It leaves the copper unaffected.PC. 90 MULTICORE PEELOFF SOLDER RESIST
is a temporary solder resist which can be peeled off with tweezers after soldering, leaving the original clean surface. It can be used for masking gold plated edge connections and holes to which heat sensitive or other components must be added later

PC. 41 MULTICORE

 ANTI-OXIDANT SOLDER COVER which forms a liquid cover on the solder bath either side of the solder wave, largely preventing the formation of dross.
PC. 80 MULTICORE SOLVENT CLEANER

 removes organic contaminants such as grease, perspiration and residues of organic solutions from prior processes, as a precleaning process before soldering. It is also very efficient in removing rosin-based flux residues after soldering.
PC. 10 A MULTICO

ACTIVATED

 SURFACE PRESERVATIVE is a pre-soldering coating for preserving the clean surfaces established by the PC. 80 Multicore Solvent Cleaner and PC. 2 Multicore Tarnish Remover. PC. 10 A does not need to be removed before soldering and in fact contributes to the efficiency of the soldering process. PC.10A should be used whenever there is a delay between cleaning and soldering.

SEVEN STANDARD
 MULTICORE LIQUID FLUXES

are now available, five of which are new :PC. 21 A Multicore NonCorrosive Liquid Flux is normally recommended for wave, dip, brush, spray and roller flux application methods. PC. 25 Multicore Rosin Foam Flux is designed for foam fluxing and

Aerosols PC. $21 \mathrm{AA} . \mathrm{PC} .10 \mathrm{~A}$ and PC. 52 avaliable in 160 ar

PC. 52 MULTICORE PROTECTIVE COATING

is a lacquer which should be applied after soldering for protecting printed circuits from deterioration or failure in service. It can easily be soldered through if modifications or repairs are necessary at a later date.
exhibits an unusually stable foam with a fine bubble size.

SOLDERING HANDBOOK

The most comprehensive book on soldering for industrial use,containing 120 pages with 100 illustrations and invaluable reference charts. Features practical and theoretical methods of soldering in electronics and allied industries, and is divided into three headings.

Part 1. Making a joint
Part 2. Choosing Methods and Materials.
Part 3. Reference Tables.
Published by lliffe Books and available from Technical Bookshops.

Section 10. A simple precision instrument for assessing the solderability of component termination wires. Complies with B.S 2011 Part 2 Test T and comparable international standards Essential for quality control.
 SOLDERABILITY TEST MACHINE MARK
 Use for testing to B.S 4393 : 1969 ,

 is on your company's letter-head, "for the products which 'interest you to. RS ETD. HEMEL ISMPSTEAD;HERTS. MBLIGORSOLDERS ET1. NEMEL HEMDTel! Hemel Hempsteãd 3636 Telex 82363

[^0]: *Newmarket Transistors Ltd.
 tOperational amplifiers were dealt with at some length by G B. Clayton in a series of articles which appeared in the February to December issues of Wireless World.

[^1]: \ddagger Some details of this development are given in an article "Automatic Receiver Production" which appeared in the April 1947 issue of Wireless World.

[^2]: bAlthough di.p. always means a plastic package, we often find that in the various manufacturer's data sheets we receive, d.i.l. is also used to describe plastic packages. If your application needs a hermetically sealed microcircuit always check the data sheet for the type of package material used. Ed.

[^3]: \#Plessey type SL403A.

[^4]: * Texas Instruments Ltd.
 \dagger "Low-cost 15-W Amplifier", Wireless World, October 1969.

[^5]: *"Colour Receiver Integrated Circuit" Wireless World, August 1968, p. 263.

[^6]: \dagger Spencer, J. G. Tests of mixed polarization for v.h.f. sound broadcasting. B.B.C. Engineering, July 1970, pp.4-12.

[^7]: ${ }^{1}$ Macario, R.C.V. "How Important is Detection" Wireless World, April 1968.

[^8]: - Named after Alessandro Volta, (1745-1827), Italian physicist and inventor of the electric battery, which was originally known as a Voltaic pile

[^9]: * Royal Radar Establishment.

[^10]: Sole Agent for the U.K.

[^11]: TO: ADCOLA PRODUCTS LTD., (DeptH). ADCOLA HOUSE GAUDEN ROAD. LONDON, S.W.4. Telephone: 01-622 0291/3 Telegrams: Soljoint London Telex• Telex: Adcola London 21851 Please send me free Long-life bit.
 name POSITION NAME OF COMPANY ADDRESS

[^12]: England: VERNITRON (UK) LTD. Thornhill, Southampton S09 1QX Tel: Southampton 45166 / Ireland: RADIO CENTRE 122A, St. Stephen's Green, Dublin 2 / West Germany: COMPO HI-FI G.M.B.H. 6 Frankfurt am Main, Reuterweg 65 / Switzerland \& Liechtenstein: EGLI, FISCHER \& CO. LTD. ZURICH 8022 Zurich, Gotthardstr. 6, Claridenhof / France: HENRI COTTE \& CIE 77, Rue J.-R. Thorelle, 77, 92-Bourg-la-Reine / Luxembourg: LUX Hi-Fi 3, rue Glesener, Luxembourg / Austria: THE VIENNA HIGH FIDELITY \& STEREO CO. A 1070 Wien 7, Burggasse 114 / Belgium: MATELECTRIC S.P.R.L. Boulevard-Léopold II, 199, 1080 Brussels / Netherlands: TEMPOFOON N.V. Tilburg, Kaplteln Hatterasstrat 8, Postbus 540 / Greece: ELINA LTD. 59 \& 59A Tritis Septemvriou Street, Athens 103 / Italy: GILBERTO GAUDI s.a.s. Piazza Mirabello 1, 20121 Milano / South Africa: GLENS (PTY) LTD. P.O. Box 6406 Johannesburg / Cyprus: ELECTROACOUSTIC SUPPLY CO., LTD., P.O. Box 625, Limassol/Portugal: CENTELEC Avenida Fontes Pereira de Melo, 47, 4d., Llsboa-1/ SANSUI ELECTRIC CO., LTD. FRANKFURT OFFICE 6 Frankfurt am Main, Reuterweg 93, West Germany / SANSUI ELECTRIC CO., LTD. 14-1, 2-chome, Izumi, Suginami-ku, Tokyo, Japan

[^13]: -TRANSMITTING POWER; SSB/CW = 2OOW PEP INPUT, AM = BOW INPUT, SENSITIVITY O. $3 \mu \mathrm{~V}$ FOR $10 \mathrm{db} / \mathrm{SN}$ STABILITY 100 Hz , VOX, CRYSTAL FILTER $2.1 \mathrm{KHz} / 6 \mathrm{db}, 3.4 \mathrm{~Hz} / 60 \mathrm{db}$. ANTENNA π FILTER MATCHING 50 . 120Ω. WEIGHT 8kg. LENGTH $335 \times$ HEIGHT $140 \times$ DEPTH 280 mm ., delivered with power supply extra price FOB US\$ 60 ($£ 25.4$)
 -TRANSMITTING POWER: 150 W PEP INPUT, SENSITIVITY BETTER THAN $1 / \mathrm{V}$ FOR $10 \mathrm{db} / \mathrm{SN}$ STABILITY 500 Hz , VOX CRYSTAL FILTER 3.18 KHz , ANTENNA π FILTER MATCHING $50 \ldots 75 \%$ WEIGHT 14 kg . LENGTH $340 \times$ HEIGHT $155 \times$ DEPTH $260 \mathrm{~mm}, 12 \mathrm{VDC}$ OPERATION, $26.9 \ldots 27.5 \mathrm{MHz}$.
 -TRANSMITTING POWER: $\mathrm{SSB} / \mathrm{CW}=500 \mathrm{~W}$ PEP INPUT, $A M=200 \mathrm{~W}$ INPUT. SENSITIVITY 0.5 V FOR 6db/SN STABILITY 100 Hz , CRYSTAL FILTER 3.18 KHz , ANTENNA π FILTER MATCHING $50 \ldots 100 \Omega$. WEIGHT 18 kg . LENGTH $400 \times$ HEIGHT $160 \times$ DEPTH 350 mm .
 -TRANSMITTING POWER: $\operatorname{SSB} / \mathrm{CW}=240 \mathrm{~W}$ PEP INPUT, $A M=100 \mathrm{~W}$ INPUT, STABILITY 100 Hz , VOX RTTY BY EXTRA EXTENSION. TELEGRAPHIC bK CIRCUIT. ANTENNA MATCHING 50...100 Ω WEIGHT 15kg. LENGTH $370 \times$ HEIGHT $160 \times$ DEPTH 290 mm
 ——SENSIVITY $0.5 \mu \vee$ FOR 1 Odb/SN ADDITIONAL FREQUENCIES TO ABOVE 1.7 2.3. 919 . . 10.5 WWV 26.9 27.5 MHz FM WITH OPTIONAL EXTRA DEM ODULATOR.

 WEIGHT 15 kg . LENGTH $370 \times$ HEIGHT $160 \times$ DEPTH 290 mm

 - 1 kW LINEAR AMPLIFIER MATCHING ALL TRANSCEIVERS AND TRANSMITTERS ABOVE.
 -WEIGHT 2Okg. LENGTH $370 \times$ HEIGHT $160 \times$ DEPTH 290 mm .

[^14]: | $2 / 2$ | 12 BH 76 |
 | :--- | :--- |
 | $1 / 2$ | |

[^15]: ## ARTICLES,FOR SALE

 A Vo Mk. 4 Valve Characteristlc Meter, mint conA ditlon, £95 o.n.o. Wanted, modern Pye Radio| telephone Equlpment.-Austen, I Valebridge Road, |
 | :--- |
 | Burgess Hul. |
 | 75409 (day). |

 BUILD IT in a DEWBOX quality plastics cabinet. B_{2} in. $\times{ }^{21}$ 2a. \times any length. D.E.W. Ltd. (W). Ringwood Rd. FERNDOWN, Dorset. S.A.E. for leaflet. ppsyton por
 $\mathrm{E}^{\text {PSYLON }}$ clor viosed circult $T V$ channel VC10T tranmonitors, any reasonable offer consldered. $01-892$-4076. HI-FI equipment-Radio Tape Recorders, completo R-systems supplied and installed. Spares \& components. Rhone Farnborough (Hants)
 phesso/49101.
 M Cymbal miracles. Send S.A.E. for detalls of bass pedal unit Drum Modules, versatile independent bass pedal unit for organs, pianos or solo, musical nents list reed switches btc. D.E.W. Ltd., 254 Ringwood Road, Ferndown, Dorset.

[^16]: Forms of Tender are available from the Director of Education, 54 Old Steine, Brighton, BN1 1EQ.

[^17]: Wiring and assembly, sub assemblies, P.C boards equipment etc. Immediate capacity, design and drafting facilities also available at Electronic Industries Services (Herts), 91 Tilehouse St., Hitchin, Herts.
 Tel. Hitchin 3592.

[^18]: COMPONENT PARTS EX STOCK FOR FOLLOWING HI FI DESIGNS BAILEY, LINSLEY-HOOD, TEXAS INSTRUMENTS
 For list of parts and other information send S.A.E. to TELERADID ELECTRONICS 325 FORE STREET, N. 9 8073719

