WirelessWorld

Television wohbulator design Recorded colour programmes

Tektronix 7000 Series

Antornatic Scale Factor Readout-

a character generator senses the position of volts/div, amps! div, time/div, polarity, and uncalibrated variable controls then accounts for probe attenuation and displays the correct scale factors for all channels directly on the CRT. In addition to this facility, illuminated push-button switching and true automatic triggering assure faster, more accurate, less complicated measurements.

150 MHz Bandwidth-

using the type 7704 main-frame, 90 MHz for the type 7504.

More Sensitivity-

higher sensitivities are achieved at greater bandwidths than ever before. $5 \mathrm{mV} /$ div at $150 \mathrm{MHz}, 1 \mathrm{mV} /$ div at 100 MHz and $10 \mu \mathrm{~V} /$ div at 1 MHz .

More Flexibility-

each mainframe accepts up to four plug-in units. Thirteen plug-in units are currently available to cover virtually all multi-trace, differential, sampling, and $\mathrm{X}-\mathrm{Y}$ applications Price of Mainframe (with scale factor readout) and the minimum of a single channel vertical and single time-base plug-in units
7504 from £1,459 delivered U.K
77 C 4 from £1, 764
Manufactured in Guernsey C.I

For detalled information on any of our products: please fill in reader reply card or write, telephone or telex
Tektronix U.K. Ltd. Beaverton House, P. O. Box 69, Harpenden, Herts. For overseas enquiries: Australia: Tektronix Australia Pty. Ltd., 80, Waterloo Rd., North Ryde, N.S.W. 2113 Canada: Tektronix Canada Ltd., Montreal, Toronto \& Vancouver. France: Relations Techniques Intercontinentales, S.A 91. Orsay, Z.I. Courtaboeuf, Route de Villejust (Boite Postale 13) Switzerland: Tektronix International A.G., P.O. Box 57, Zug, Switzerland. Africa, rest of Europe, and the Middle East: Tektronix Ltd., P.O. Box 36, St. Peter Port, Guernsey, C.I. All other territories: Tektronix Inc., P.O. Box 500, Beaverton, Oregon, U.S.A.

Wireless World

Electronics, Television, Radio, Audio

Although not exclusively associated with the subject of this month's main article (colour EVR) our cover illustration typifies colour television reproduction. The photograph of a Mullard tube was taken by students at the Polytechnic School of Photography, Regent Street, London.

IN OUR NEXT ISSUE

Inductorless stereo decoder which uses a phaselocked loop to regenerate the suppressed subcarrier.

Transistor breakdown-voltage meter providing direct reading at fixed reverse currents.

Increasing the bandwidth of the Hartley 13A double-beam oscilloscope.

August 1970

Contents

Editorial Comment
Colour Electronic Video Recording by Peter C. Goldmark and collaborators
Television Wobbulator-1 by W. T. Cocking
H.F. Predictions
The Video Disc by f. C. G. Gilbert
Electronic Morse Keyer by C. I. B. Trusson © M. R. Gleason
News of the Month
Letters to the Editor
100-MHz Frequency Divider by D. R. Bowman
Transient Trinity by Thomas Roddam
Announcements
Time Delays-2 by H. D. Harwood
B.B.C. Band-two Broadcasting Stations
Circuit Ideas
The Unijunction Transistor-2 by O. Greiter
Electronic Building Bricks-3 by fames Franklin
Letter from America
World of Amateur Radio
Personalities
411 New Products
416 Literature Received
a81 apponntments vacant
A102 INDEX TO ADVERTISERS

We regret Pt. 13 of Active Filters has had to be held over.

Chances are you'll find precisely
the industrial tube you want in the BRIMAR standard range

Wireless World

"Not without honour'"

Editor-in-chief:
w. T. COCKING, F.I.E.E.

Editor:

H. W. BARNARD

Technical Editor:

T. E. IVALL

Assistant Editors:
 B. S. CRANK
 J. H. WEADEN

Editorial Assistant:
J. GREENBANK, B.A.

Drawing Office:
H. J. COOKE

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
G. J. STICHBURY
R. PARSONS (Classified Advertisement Manager)

Telephone: 01-928 3333 Ext. 533 \& 246.
H.R.H. the Duke of Edinburgh, speaking at the dinner of the Institution of Electronic \& Radio Engineers at the Mansion House, London, in May said "The engineering professions are shirking their responsibilities if they only concern themselves with examinations and qualifications. They must take some part in the teaching process as well. Furthermore, it is quite useless merely laying down the rules for the engineering 'generals' and ignoring the qualifications for all the other ranks from 'private' upwards. The training and qualifications for each rank must be related to the requirements of the next rank up, and at each stage the vital factors of practical experience and performance in the job must be taken into account".

Under their present charters neither the I.E.E. nor the I.E.R.E. can embrace non-chartered engineers and technicians in their membership. However, both institutions have associated technician organizations (respectively the Institution of Electrical \& Electronics Technician Engineers and the Society of Electronic \& Radio Technicians) which they actively support. For some considerable time there has been a movement afoot to give greater recognition to the non-chartered engineer and it was, of course, primarily for this reason that these two technician organizations in our own field were established. It will be recalled that with the setting up of the Council of Engineering Institutions the title "chartered engineer" has been "granted to all members of the 14 constituent institutions in the C.E.I. The C.E.I. has been planning for some time the compilation of a register of all chartered engineers-but what of the "non-commissioned officers and other ranks"?

Nearly three years ago an ad hoc committee, representative of 42 different organizations with members in the technician and technician-engineer grades, was set up to establish in consultation with the C.E.I. basic qualifications for registration. This committee, the Standing Conference for National Qualification and Title (known colloquially as SQUINT) was faced with the tremendous task of finding a common denominator for technicians in as diverse trades as boilermaking and radio, building and baking, brewing and electrical installation, etc. etc. After two years of preparatory work by this ad hoc committee a limited liability company entitled the Standing Conference for Technician Engineers and Technicians was established to expedite the procedure necessary to give legal status to the association of professional bodies representing technicians. On July 1st an announcement was made stating that "today sees the first awards of the designation Registered Technician Engineer" under the authority of S.C.T.E.T. The designatory letters for the registered technician engineer are R.Tech.Eng. The statement goes on to say S.C.T.E.T. intends that these new registrants "shall form part of a single composite national register together with the chartered engineers and eventually with the registered technician. To this end S.C.T.E.T. is urgently pressing for constructive discussions with the Council of Engineering Institutions and other interested bodies".

It has been known for some time that there has been discontent among certain sectors of the technician fraternity at the way the C.E.I. had been dragging its feet and the move to "go it alone" did not come as a surprise. However, six days after the S.C.T.E.T. announcement the C.E.I. issued a statement saying that it was proposing changes in its charter and by-laws to enable it "to establish and maintain a composite register for the three sections of the engineering community . . . the chartered engineer, the non-chartered engineer, and the technician". The statement goes on to give the designatory letters "for those individuals nominated by their institutions or societies to the new sections of the C.E.I. register". They will be CEI.T.Eng. for non-chartered engineers and Tech.CEI for technicians.

The situation, therefore, is that the "n.c.os and other ranks" of the radio and electronics fraternity, who have been in something of a "no man's land" for far too long, now find that they are mentioned in despatches-or are they being offered terms for surrender?

Colour Electronic Video Recording

System providing vision and sound records which can be played into the domestic television set

by Peter C. Goldmark* and collaborators

Through a unique combination of photography, optics and electronics, Electronic Video Recording (EVR) allows recorded sound and vision programmes to be played through standard television receiverstruly a visual counterpart of the long-playing record. The nature of the recording medium lends itself to low cost, high volume production in monochrome or colour. The system, developed by CBS Laboratories, U.S.A., is compatible, in that a colour record can be reproduced on a monochrome player while a monochrome record will produce a black-and-white image on a colour receiver.
The recorded programme is contained in a cartridge, 7 inches in diameter, $\frac{1}{2}$ inch thick, with a large centre hole resembling that in a 45 r.p.m. gramophone record (Fig. 1). This cartridge contains 30 minutes of colour vision programme (25 minutes in the U.S.A.) with two sound tracks which may be used for stereophony or for two independent sound programmes. The video information is on a special photographic base, 8.75 mm wide and approximately
0.003 in thick. The sound is recorded on two narrow magnetic stripes, one on each side of the photographic film.

The EVR player, which operates by flying-spot scanning, can have a number of forms. The one described here (Fig. 1) is a separate unit from which an r.f. signal carries the combined video and audio information to the aerial terminals of a colour or monochrome television receiver. For stereo sound reproduction a separate jack is available in the player. Pushbuttons control the threading, stopping, fast forward, and rewinding operations of the cartridge. Methods are available to find a particular part of a programme and then stop automatically or manually to display a still picture for any length of time. Also, slow forward or reverse manual "browsing" is provided for. Since each picture is extremely small- $0.130 \mathrm{in} . \times$ 0.100 in .-the record has a large storage capacity with potential as a reference library of visual information. Picture quality is equivalent to the best seen on European and U.S. television receivers.

[^0]

Fig. 1. Prototype EVR colour player with cartridge in front. The machine is 22 in wide, 9 in high and 19 in deep.

On a suitable closed-circuit monitor, the monochrome resolution of EVR can reach 500 television lines in a horizontal direction. On a closed-circuit set-up, where full video bandwidth can be utilized, the resolution limit is set by the phosphordot structure of the picture tube.

The wear qualities of the cartridges are extremely good. Many hundred playings are possible without noticeable deterioration.

A major goal in the development of the system was to devise a film recording and duplication method that would permit large-quantity production of inexpensive film cartridges containing high quality programmes. After considerable study a special high resolution silver halide film was developed by Ilford Ltd. (a member of the EVR partnership in Europe). Stringent quality and size requirements resulted in the choice of direct electronography (exposing the film in a vacuum by finely focused electron beam) as the method of creating the master record. Modern films have a high capacity for information storage, and this applies particularly to those very fine grain films which are relatively insensitive to ordinary light but very responsive to the high energy present in an electron beam. The film used as the master for electron beam recording has a crystal size of less than one-tenth of a micron and the definition obtainable is of the order of 800 line pairs per millimetre. This master film too has been developed by Ilford.

With electronographic recording, modifications can be made to the original vision signal before the recording process so that the resolution and grey-scale produced on the film by the electron beam recorder are such as to give optimum overall performance. Thus, by adjusting the characteristics of the signals driving the electron beam it is possible to apply frequency pre-emphasis and to introduce grey-scale correction while restricting the density range to desired values. All these are not possible in a purely optical method of exposing the film.

The resulting picture on the film looks different from that on normal cinematography film, especially as colour pictures appear in monochrome and the colour information content is coded
(Fig. 2). An important further difference is in the number of pictures per second. In electron beam recording, and by the use of extremely fine grain print material, one is able to produce extremely small images. As a result it becomes economically possible to print 50 frames per second (60 in America). This leads to great simplification in the player machine and tends to provide a high degree of visual integration of spurious signals, such as grain or other imperfections.

The whole philosophy behind the EVR system has been to accept complexity in the recording system so as to obtain the maximum economy and simplicity in the play-back process.

Making the cartridge

There are three principal steps in making the cartridge record: preparing the original programme; making the master negative by electron beam photography; and printing and slitting the films and loading the cartridges.

Preparing the original programme is a matter of electronically pre-correcting the video signal for any losses that will occur throughout the entire system, including the player. Thus compensation is

Fig. 2. Section of EVR film, showing luminance information in left-hand track, chrominance information in right-hand track, and small synchronizing windows(white rectangles) running down the middle.
 to domestic television set.
provided for loss of resolution and divergence from the desired scale characteristic. The original programme material is converted into a colour television signal which is separated into its luminance and chrominance components. Both signals are enhanced by vertical and horizontal aperture equalization and both are gamma corrected to ensure that the entire system approaches unity gamma.

The format of the film can be seen in Fig. 2. There is a series of frames, each having a luminance-information area seen as a picture (left-hand strip) and a chrominance-information area recorded by its side (right-hand strip). Each area is 0.123 in . wide and 0.092 in . high. Between the frames are small rectangular "windows" (seen as white) spaced 0.100 in . apart. These are synchronizing marks indicating the start of each frame, and their purpose is to provide, in the player, a means of synchronization between the film transport and the flyingspot scanner. At the outer edges of the film are the magnetic stripes for sound.

It is essential to record the colour television signal in such a way that it can be reproduced independently of the recording and playback system's scanning linearity. In the chrominance-information areas there is recorded a colour carrier signal whose frequency is an integral multiple of the line scan frequency. In order to provide a reference carrier for the demodulation of the colour signal, an unmodulated pilot signal with a frequency exactly one half that of the colour carrier is also recorded in the chrominance-information areas of the film. Non linearity, raster size changes, film shrinkage, etc., thus will not interfere with the proper demodulation of the chrominance carrier, since the phase relationship between chrominance and pilot carriers is always maintained to the required accuracy

The synchronizing signal generation is arranged so that the colour carrier signal is the overall system clock frequency. All synchronizing signals, as well as the pilot carrier signal, are counted down from this colour carrier signal. Because of the integral relationship between the chrominance and pilot carriers and the electron beam recorder horizontal scan frequency, the pilot and chrominance signals are recorded on the master film as a series of vertical bars.

Electron beam recorders for commercial production of master films have recently been completed for use in Europe and the U.S.A. For colour EVR the same type of machine will carry the two electron guns necessary for recording side by side the luminance and chrominance signals. A $40-\mathrm{mm}$ wide film is used for the master and $35-\mathrm{mm}$ film for the print. The $35-\mathrm{mm}$ format accommodates four $8.75-\mathrm{mm}$ cartridge films which can carry eight monochrome or four colour programmes. They are printed simultaneously and are subsequently slit. The steps in the whole process are as follows:

Editing. Although the recording system could operate with signals directly from television cameras, video tape or film, the advantages of editing and colour balancing can be obtained by first recording all programme material on video tape. A master tape thus produced can be easily corrected prior to transcription and the technique ensures that the signal input always meets the prescribed standards

Video processing. The commercial sysirm for making a master is shown in the simplified block diagram Fig. 4. First, the video signal from a video tape recorder is separated into luminance and chrominance components. The luminance signal is fed to a video amplifier, from which one output is a direct (undelayed) signal while
the other is passed through a one-field period delay line. The purpose of this delay line is to permit video sampling at a constant rate between two successive fields. As a result, during each EVR frame, information corresponding to all 625 (or 525) lines of a television picture is recorded. The output from the delay line and the direct luminance signal are applied to independent video processing circuits. These are vertical and horizontal aperture correctors, a gamma corrector and sync "window" adder. Next, the delayed and undelayed video signals are applied to a sampling gate operating at a rate such that both fields are recombined in an EVR frame so that it contains the full 625- (or 525-) line information during a $1 / 50$ th sec. (or $1 / 60 \mathrm{th} \mathrm{sec}$.) television field interval. The sampled luminance signal is then applied through a video amplifier to one gun of the electron beam recorder.

The chrominance part of the v.t.r. signal, extracted from the luminance information by a filter, is translated from the television signal standard to the EVR system values. Next the chrominance signal is processed in the same manner as the luminance signal and finally is fed to the chrominance video amplifier and the second electron gun of the electron beam recorder.

The method by which an American 60 frames $/ \mathrm{sec}$. film is produced from a 30 pictures/sec. American television signal is shown in Fig. 5. The intercalation occurs in two steps. Using film as the programme source (though it could be video tape), the 24 frames $/ \mathrm{sec}$. film in the projector is changed to 30 frames $/ \mathrm{sec}$. as in American television and from 30 frames $/ \mathrm{sec}$. to a 60 frames $/ \mathrm{sec}$. EVR master film (the rate required for playback in the U.S.A.). The
top row shows the film frames, each frame being assigned a letter of the alphabet. Below the film frames the numbers $1,2,3$, etc. represent successive television camera vertical scan intervals, each $1 / 60$ th second. The projector pull-down is such that alternate film frames are scanned by two and three television fields respectively.

The third row down shows the numbered fields together with the letter that represents the frame of film scanned by that numbered field. The corresponding video signal is available at the output of the "direct signal" channel in Fig. 4. The fourth row shows the field information that exists at the output of the delay line. Hence, with information from two successive fields transformed to become available simultaneously during a given $1 / 60$ th second interval, it is possible to sample synchronously the information between the successive fields at a rate well above maximum video frequency and so retain the integrity of a given television picture. The bottom row shows the sampled information that will be recorded in each frame of the EVR master.

Electron beam recording. Fig. 6 shows in essence how electron beam recording takes place in a vacuum chamber. As can be seen, the film is exposed by two modulated electron beams. Fig. 7 shows the vacuum chambers and film transport of the recorder. (The film magazine capacity is 1800 feet of 40 mm film.) The two electrostatically focused and deflected electron guns can be seen in a gun chamber above the film transport mechanism. The gun chamber is supported on two trunnions and can be indexed to four discrete horizontal positions, thus making it possible to sequentially

Fig. 4. Simplified block diagram of system for making master film.

Fig. 5. Intercalation method for making an EVR film from a television (or cine film) programme source.

Fig. 6. Essentials of electron beam recorder.
record four dual tracks across the width of the 40 mm film.

Vertical deflection of the modulated electron beam follows the direction of film motion with twice the film velocity. As shown in Fig. 8, the vertical scan starts at the top (A) of the film image and after $1 / 50$ th (or $1 / 60$ th) second reaches the bottom of the frame while the film has moved from position 1 to position 2. During vertical blanking the electron beam returns to start the process over again with film frame No. 2.

During recording the beam is deflected vertically, between two adjacent lines, at a 14 MHz rate. The phase of this wobble signal is adjusted so that the video information from the delayed signal is recorded along one horizontal line on the film while the video information from the direct (undelayed) signal is recorded on an adjacent line on the film. A peak white synchronizing window signal and a grey scale test signal are gated in with the video signal and are recorded at the start of each luminance field.

The film drive used in the electron beam recorder provides accurately controlled continuous motion at $5 \mathrm{in} / \mathrm{sec}$. for Europe and $6 \mathrm{in} . / \mathrm{sec}$. for the U.S.A. An electronic servo causes the film to be driven at constant velocity while locked to the vertical scan and interlocked with the v.t.r. This servo has three closed loops. In one loop a 7 kHz signal from an optical tachometer on the drive motor shaft is fed to a discriminator circuit whose output controls the motor to compensate for speed variations. The same 7 kHz signal also provides one of the inputs to the second loop, in which the actual motor speed is set by comparing the tachometer output with a 7 kHz reference signal from a crystal controlled oscillator. The third loop establishes the spatial position of each frame on the film with respect to an associated perforation in the film. One edge of the film is perforated along its length at $0.1-\mathrm{in}$. intervals and is transported past an optical sensor which generates a pulse for each of the perforations. In the loop the phase of the vertical drive signal and a "perforation signal" from the film are compared in order to ensure accurate phase lock between the vertical scan and a given perforation.

Interlocking the electron beam recorder film drive with the v.t.r. is accomplished by
counting the vertical sync intervals on the magnetic tape and the perforations in the master film. The counts are compared, and the speed of the recorder drive is varied until they are equal. Interlocking between the two drives occurs within 12.5 seconds.

High speed duplication. For the production of EVR cartridges a special multi-head printer has been developed by Ilford Ltd. in the U.K. This equipment is capable of running at speeds of up to 200 feet per minute. The design minimizes light dispersion and protects the master film so that a large number of copies may be made.

Through the use of multiple heads, 16 colour programme reproductions, together with the sound, are obtained each time the master negative passes through the printing machine. Thus, the rate at which the printer produces EVR copies is approximately 125 times (in America 100 times) faster than the actual playing time of the original programme. If the programme is half an hour long it can be duplicated at the rate of one cartridge every 14.5 seconds.
The film is developed in black-and-white continuous film developing machines which will run at speeds of up to 200 feet per minute. The processed film then goes to a slitting machine which divides the 35 mm film into four 8.75 mm films. These are cleaned and wound directly on to EVR cartridges.
The sound is recorded on the two tracks during the printing process. Magnetic recording was chosen after careful consideration, the important factors being long life with high quality and low noise and the ability to change the sound track when required. The fact that magnetic reproduction in the player is less expensive than reproduction of optically recorded sound was another consideration. The sound recordings are made individually, and synchronizing marks are incorporated in the vision recording and the special sound recording so that when they are brought together in the printing machine the sound can be added in exact lip synchronism.

The player

Fig. 9 shows a laboratory prototype player with the cover removed, exposing
the cartridge deck, c.r.t. and associated circuitry, all of which are mounted on an internal metal frame independent of the cabinet. A cartridge is played by opening the door over the well, placing a cartridge on a hub and closing the top. To the right of the well are six pushbuttons for controlling deck functions. Pressing a "play" pushbutton causes the cartridge leader to thread through the deck. After the leader is securely fastened to a take-up reel (seen behind the cartridge) the machine automatically starts to play. Other controls on the top are a track selector and mains switch. The large knob on the front is for manual searching-to move the film backwards or forwards while viewing still pictures.

The 3 -in. diameter cathode-ray tube scans the film image through an optical system and the resulting modulated light is converted by photomultiplier tubes into luminance and colour signals. The c.r.t. scans each picture on the film once per television field. To accomplish this, a capstan and pressure roller pull the film past an optical gate at a constant velocity of 50 frames $/ \mathrm{sec}$. or $5 \mathrm{in} . / \mathrm{sec}$.

Optical scanning of the luminance track of the EVR film, shown in Fig. 10, employs a forward raster scanning technique. The colour track of the film is similarly scanned through a second objective lens by the same c.r.t. raster.

At the start of the field the light beam from the c.r.t. spot scans the head of the first picture (a). As the film moves at a constant speed of $5 \mathrm{in} . / \mathrm{sec}$. the beam also moves in the same direction but at twice the velocity. Thus, by the time picture 1 has moved to the position shown at (b), the light beam has completely scanned it and now rests at the foot of picture 1. At this instant, a vertical sync pulse, derived from light flashing through the clear "window" in the film (Fig. 2), initiates vertical flyback of the c.r.t. electron beam. As a result the c.r.t. spot and light beam returns and comes to rest at the top of picture 2 ready to start the next scanning period, as shown at (c).

Since the timing of the c.r.t. scanning spot is controlled by the film velocity, the film speed can vary within a limited range

Fig. 7. Details of film transport and vacuum chambers of the electron beam recorder.

Fig. 8. How the electron beam scans the film in the electron beam recorder.
without affecting the vertical position of the reproduced television picture. Ultimately, of course, the television receiver sets the limit by losing vertical hold if the film departs too much from the nominal speed of 50 fields $/ \mathrm{sec}$. To prevent this from happening, the film drive is servo locked to the 50 Hz mains by a circuit that compares the recorded film field pulses with the mains frequency.
The sync "windows" in the film are illuminated by a miniature incandescent lamp coupled through a plastic light pipe to the film gate. Each time a sync "window" passes the end of the light pipe, there is a flash of light through the film into a photodiode, the output of which is clipped to generate constant amplitude sync pulses.

Optical system. The luminance and colour tracks of the film are scanned through a dual optical system. The imaging optics (Fig. 11) comprise two lenses, two rhomboidal prisms, a lens mount which provides both focus and position adjustments for the two lenses, and a film gate which holds the film in a cylindrically curved image plane. Each lens images the $1.48 \mathrm{in} . \times 2.08 \mathrm{in}$. raster of the c.r.t. onto an area in the image plane 11.3 times smaller, thus forming two identical side-by-side small rasters with centres 0.141 in . apart. The prisms permit separation of the two lenses and a resulting larger lens diameter sufficient to obtain an aperture of $\mathrm{f} / 1.8$ for each lens. The collector optics are two light pipes which transmit the modulated light from the luminance and chrominance images on the film to two photomultipliers.

Player circuit. Anyone versed in television engineering should be at ease with an EVR player because it resembles a television receiver. Basic elements of a colour player for working into an American television set are shown in Fig. 12. These include: c.r.t. deflection and high voltage supply; transport deck and gate; dual photomultipliers and video amplifiers; chrominance translator for converting EVR signals to N.T.S.C.; pulse generation for blanking and composite sync; sound magnetic head, audio amplifier and intercarrier sound generator; r.f. link video and sound
modulators and carrier generators; and the motor control circuit.

The 3 -in. c.r.t., which is $9 \frac{3}{4} \mathrm{in}$. long, has a flat faceplate. The P-16 screen phosphor is uniformly fine grained and glows a dull blue because much of its energy is in the invisible ultraviolet region. Magnetic focusing and deflection are employed. Horizontal deflection is provided by a 15.75 kHz oscillator, amplifier, and magnetic yoke. Vertical scanning is from a synchronized multivibrator and amplifier. Unregulated 20 kV e.h.t. for the c.r.t. is derived by rectifying the line flyback pulse. Regulation is unnecessary because the unmodulated electron gun is a constant load drawing a maximum of $100 \mu \mathrm{~A}$. The horizontal deflection circuit also generates -600 V for the photomultipliers and +1 kV for the g_{2} of the c.r.t. Since failure of either the horizontal or vertical deflection current might burn the phosphor screen, the circuit is protected by a scan fail device that cuts off the c.r.t. beam current before damage can occur.

The raster light output is kept constant throughout the life of the c.r.t. by an automatic brightness control. It is known that the P-16 phosphor, as it ages, has a decreasing light output, and the initial beam current of $10 \mu \mathrm{~A}$ has to be increased to about $80 \mu \mathrm{~A}$ after 1000 to 2000 hours to maintain constant brightness. The closed loop of the automatic brightness control includes a photo-resistor, positioned to view the raster, and a circuit for controlling the bias of the c.r.t.

The deck transport in the player is mechanically more complex than an ordinary tape deck because of the automatic cartridge handling functions. The film drive, applied through a smooth capstan and rubber pressure roller, is similar to that of a standard tape recorder. The film runs in a gate, curved to make the film more rigid and with lands to protect the film picture. The capstan drive motor also supplies forward torque to the take-up
reel through a friction clutch. For rewinding, the torque is transferred to the cartridge spindle.

Video circuits. Modulated light transmitted through each light collection pipe is converted by the corresponding photomultiplier to a video signal of about 0.1 volt. As a result the succeeding video amplifiers have little effect on the signal-to-noise ratio. Video signals are pulse clamped to remove hum components and sent through white compressors to linearize the "whitestretched" film transfer characteristic. This is also a simple and effective way to reduce the visibility of c.r.t. phosphor structure and film grain clusters in the television picture (the individual film grain is far smaller than the resolving power of the player). Phosphor grain noise is predominantly visible in the white portions of the picture since the grain modulation is proportional to light output.

A programme selector switch for the user has three positions: Colour, Track A, and Track B. For colour cartridges, the switch directs the clamped luminance video signal into the Y channel and the signal to the translator. When a monochrome cartridge is played, either Track A or Track B can be switched into the Y channel.

Chrominance translator. As already explained, the colour track on the film carries the chrominance information together with the pilot signal. The chrominance is composed of two colour difference signals modulating a suppressed carrier in phase quadrature. The subcarrier frequency is 1.8 MHz and the bandwidth of the colour difference signal sidebands is $\pm 0.5 \mathrm{MHz}$.

No attempt is made to scan over the lines originally recorded on the film, and each picture is composed of 525 lines (625 in Europe). In order for the chrominance subcarrier to be a series of vertical bars

Fig. 9. The prototype player with cover removed and a cartridge inserted.
The take-up reel can be seen behind the cartridge. The c.r.t. lies between them.
rather than interleaved dots the EVR subcarrier is made a multiple of the line scan frequency. The scanning width and linearity of the electron beam recorder, as well as of the flying spot scanner, cannot possibly be uniform enough to ensure constant frequency and phase for the chrominance subcarrier in all parts of the picture. Therefore, as already mentioned, a continuous pilot signal is added to the chrominance sidebands during recording to make the system self-correcting on playback.

The EVR chrominance colour difference signal bandwidth is the same as the Q bandwidth in the N.T.S.C. system: -6 dB at 0.5 MHz . In EVR, the I and Q bandwidths are made equal because nearly all colour television receivers are designed with equally narrow bandwidth colour difference demodulators.

The reproduced chrominance could be demodulated to the baseband colour difference signals and re-encoded to N.T.S.C., but it is appreciably simpler to convert EVR to N.T.S.C. directly by frequency translation. The translator section of the player can be seen in the lower middle part of Fig. 12. The combined signal from the film is first separated into chrominance and pilot signals by filters. The chrominance channel uses a $1-2.5 \mathrm{MHz}$ bandpass filter and the pilot channel a $1-2.5 \mathrm{MHz}$ band-reject filter. The 0.9 MHz pilot signal is doubled to 1.8 MHz and applied to mixer A together with a locally generated 3.58 MHz sinusoidal oscillation. The 5.38 MHz sum signal output of mixer A is selected by a bandpass filter and applied to mixer B together with the chrominance signal centred on 1.8 MHz . The difference frequency of 3.58 MHz from mixer B is extracted by a bandpass filter and becomes the N.T.S.C. chrominance signal.

An analysis shows that, regardless of a shift in EVR chrominance frequency, the frequency of the chrominance output of the translator will remain constant at 3.58 MHz . Furthermore, if the 3.58 MHz carrier is frequency interleaved by being an odd multiple of half the line scanning frequency then the resultant N.T.S.C. chrominance is equally frequency interleaved.

Care is taken to keep the phase/frequency characteristics of the chrominance and pilot channels alike to prevent hue errors with scan velocity changes. If the chrominance and the doubled pilot signals undergo equal phase shifts, the errors cancel in the translator. Delay in the pilot channel is approximately $1.6 \mu \mathrm{~s}$ greater than in the chrominance channel, making it necessary to insert a delay line in the chrominance path.

The translator has a total delay of $2 \mu \mathrm{~s}$, thus requiring that the luminance channel be delayed an equal amount before the N.T.S.C. chrominance signal is added to the luminance signal. Following this, blanking, sync and burst signals are added to generate the composite N.T.S.C. signal. The colour burst is obtained by gating the 3.58 MHz locally generated signal with a pulse. Prior to this, the 3.58 MHz source

Fig. 10. Method of scanning the luminance track of the EVR film: (a), (b) and (c) are successive moments in time.

Fig. 11. Essentials of optical system in the player.

is set to the correct phase by the player's hue control.

A colour killer is used to disable the colour circuit whenever a monochrome cartridge is played, otherwise spurious beats would show in the picture. With monochrome film, the absence of the pilot signal is sensed and both the chrominance and colour burst are removed from the outgoing video signal. The absence of burst actuates the colour killer in the colour television receiver, thus cleaning up the monochrome picture. This feature is especially important when colour and monochrome portions are intermixed for certain educational programmes

Sound reproduction. For monochrome cartridges, a track selector switch automatically selects the appropriate audio amplifier channel for that programme. A specific recording and playback equalization for $6 \mathrm{in} . / \mathrm{sec}$. film speed provides a frequency response reasonably flat from 60 Hz to 10 kHz . Direct audio outputs at 600 ohms impedance are available at the rear of the player. Also, a single-channel audio signal is used to frequency modulate a 4.5 MHz oscillator to generate the intercarrier sound for the r.f. link.
R.F. link. The output of the player is fed to the television receiver through its aerial terminals by means of a miniature television transmitter operating on an unused v.h.f.
channel. Double-sideband video modulation is employed for economy, but television receivers accept the signal as if it were a vestigial sideband signal from a broadcasting station.

An improved r.f. unit is employed in the colour EVR player to satisfy requirements for low phase and intermodulation distortion. An r.f. carrier from a crystal oscillator is applied to one input of an analogue four-quadrant multiplier while the N.T.S.C. video and the 4.5 MHz sound intercarrier are applied to the other input. Since the multiplier normally generates a suppressedcarrier signal, the multiplier is intentionally unbalanced to produce the desired carrier.

Power supplies and motor control. Regulated low voltage power supplies keep the player performance constant when the mains voltage varies over wide limits. The alltransistor circuit draws 100 watts with an additional 35 watts for the motor.

Locking the film velocity to the mains reduces the visibility of hum bars. Also, this ensures that the field scanning rate stays within the vertical hold range of the receiver. The vertical stability of the EVR picture is primarily a function of the vertical synchronizing signal derived from the film rather than being dependent on the motor lock. Therefore the motor must be frequency locked, but need not be phase locked, to the mains. During playback, the four pole, shaded-pole, induction motor is servo controlled by a thyristor.

APPENDIX

Characteristics of the EVR encoded colour signal

The EVR colour signal, E_{m}, consists of the linear sum of a pilot signal, E_{p}, a chrominance signal, E_{c}, and a colour difference video signal, E_{v} :
$E_{m}=E_{p}+E_{c}+E_{\nu}$.
The pilot carrier frequency, f_{p}, is the 56 th harmonic of the line scan frequency, f_{h} :

$$
f_{p}=n f_{h} . \quad n=56
$$

The chrominance carrier frequency, f_{c}, is the second harmonic of the pilot carrier frequency:

$$
f_{c}=2 f_{p}
$$

The chrominance signal consists of the sidebands of two suppressed carriers in quadrature:

$$
E_{c}=E_{Q} \sin \left(2 \pi f_{c} t\right)-E_{I} \cos \left(2 \pi f_{c} t\right)
$$

The amplitudes of the quadrature carriers are obtained by matrixing the red, green, and blue video signals:
$E_{I}^{\prime}=0.60 E_{R^{\prime}}=0.28 E_{G^{\prime}}-0.32 E_{B}^{\prime}$
$E_{Q}{ }^{\prime}=0.21 E_{R}{ }^{\prime}-0.52 E_{G}{ }^{\prime}+0.31 E_{B}{ }^{\circ}$.
The pilot signal is given by:
$E_{p}=A_{p} \sin \left(2 \pi f_{p} t\right)$
A bandwidth limited colour difference video signal, E_{ν}, corresponding to $-E_{I}^{\prime}$ of amplitude k relative to E_{I}^{\prime} max is added to the pilot and chrominance signals to achieve minimum peak-to-peak excursion of the composite signal envelope: $E_{v}=-k E_{I}$.

Television Wobbulator

1. Principles

by W. T. Cocking*, F.I.E.E.

Correct alignment of a wideband amplifier, such as a television i.f. amplifier, can rarely be carried out successfully merely by adjusting the various tuned circuits for maximum output at certain specified frequencies. It is usually necessary for the response curve of the amplifier to have a certain required shape, and the circuits must be adjusted to produce this shape. This means that it is necessary to measure the response curve. To do this with a signal generator and an output indicator is quite a laborious process and one which takes a considerable amount of time.

It is not unreasonable to do it once as a check that an amplifier is indeed functioning correctly. To do it frequently, while aligning the amplifier is another matter. Fortunately, it is not necessary to do so if one has the proper equipment. It is not difficult to arrange for the response curve to be displayed on the screen of a cathoderay tube. One can then see how the shape of the curve varies with the various amplifier adjustments as they are made.

The requirement is to have an oscillator which is modulated in frequency so that its frequency sweeps repetitively over the required range. The output of the detector of the i.f. amplifier is applied after amplification, to the Y-plates of the c.r. tube, and the voltage applied to the X-plates is arranged to vary with time in the same way as the oscillator frequency varies with time. The actual law of variation with time does not matter at all as long as both obey the same law.

The curve is displayed in the usual way with frequency for the horizontal scale, but the vertical scale is normally a linear one. Most curves which are plotted as the result of point-by-point measurements are plotted with a decibel scale, which is a logarithmic scale. It is not impossible to obtain such a scale on a c.r. tube, but it is much more difficult because it requires the use of an amplifier which has an output accurately proportional to the logarithm of its input.

For 625 -line television the present standard for an i.f. amplifier is to have the vision carrier at 39.5 MHz with the sound carrier at 33.5 MHz . The amplifier usually has trap circuits to give specially high rejection at frequencies of 31.5 MHz and 41.5 MHz . To give a little in hand, therefore, the

[^1]frequency sweep needed is from 30.5 MHz to 42.5 MHz which is a band of 12 MHz centred on 36.5 MHz . The total sweep is almost one-third of the mid-band frequency and is thus very consider able indeed.

A great many methods have been used in the past in wobbulators, as swept-frequency oscillators of this type are usually called. Most of them are useless for a sweep as great as one-third of the mid-band frequency, especially when that frequency is as high as 36.5 MHz , and especially when transistors are used. One method which has been employed is to have the oscillator at a much higher frequency, perhaps 500 $1,000 \mathrm{MHz}$, so that the sweep is a much smaller fraction of the mid-band frequency. The output is then mixed with the signal from another oscillator having a frequency which differs by the required intermediate frequency, so that the frequency range is obtained as the difference frequency, just as in the ordinary superheterodyne.

This had the advantage that the output can be brought to any required frequency merely by altering the frequency of the beating oscillator. However, it is rather complicated and there is a risk of spurious responses arising from harmonics.

If it can be done at all, it is much simpler to modulate directly an oscillator operating at the required output frequency. Recently a new way of achieving such modulation has made its appearance as a result of the development of a new semiconducting device, the varactor diode. This is a diode which is specially designed to
provide a capacitance which varies with the voltage applied to it. It can be used, therefore, as a tuning capacitor, tuning being effected by varying a voltage. It is, in fact, becoming increasingly used as a tuning capacitor in domestic receivers.

When reverse-biased to be non-conductive, all semiconductor junction diodes have a capacitance which varies with the applied voltage. To put it rather crudely, a non-conductive diode has internal charges of opposite sign on the two sides of the junction, and the capacitance results from the electric field between these charges. If the reverse bias is increased, the charges are forced further apart and the capacitance decreases. It is as though a parallelplate capacitor had the separation of its plates varied by some control voltage.

The ordinary diode exhibits the effect, but the magnitude of the capacitance is usually rather small, the range of capacitance variation is much too small, and the capacitance is accompanied by quite high losses. It is another matter with a diode specially designed for use in this way.

One example, and the one which is used in this equipment, is the Motorola 1N5145A. It is rated for a maximum reverse voltage of 60 V , and a capacitance of 27 pF at 4 V with a normal capacitance ratio between these voltages of $3.4: 1$ and a minimum ratio of $3.2: 1$, and with a Q of not less than 200 . The frequency ratio required is $42.5 / 30.5=1.395$ and the capacitance ratio is thus 1.94 , which is almost 2:1.

Fig. 1. The heart of the wobbulator is shown here. Tr_{1} is a Colpitt's oscillator tuned by the varactor diode D_{1}. The control voltage for this is applied through R_{1} from the collector of Tr_{2}; this produces an output which is the exponential of its. input, its base-emitter path acting as the diode of Fig. 3 (b).

The oscillator circuit itself must have a capacitance which can hardly be much under 12 pF and it is necessary to have a blocking capacitor in series with the varactor to permit the application to it of a control voltage. This cannot be very large without causing excessive phase shift in the control voltage, and 330 pF is a reasonable compromise. These two capacitances greatly reduce the total capacitance ratio available for a given control voltage swing.
It is, moreover, impracticable to swing the diode to 60 V , for this is a maximum rating and it is not possible to operate at this voltage and at the same time guarantee that it will never be exceeded. The varactor is an expensive component and it is necessary to limit the voltage applied to it. Referring to Fig. 1, this can be done by a diode D_{2} returned to a zener diode stabilized supply of -.51 V . The tolerance on the zener voltage is $\pm 5 \%$, so the voltage is anywhere between 53.55 V and 48.45 V . At full conduction the forward drop across D_{2} may be 0.8 V , so the maximum voltage which can be applied to the varactor D_{1} is 54.35 V , which leaves about 5 V factor of safety. The maximum control voltage which can be applied to the varactor with a low limit zener is 48.5 V .

At the other end, it is not necessary to limit the minimum control voltage to 4 V , but the minimum voltage must not be so low that the varactor can conduct appreciably on the peaks of the r.f. waveform. The normal amplitude of oscillation is about 1.5 V r.m.s. or some 2.1 V peak. Appreciable conduction in a silicon diode does not usually occur until the anode is more than about 0.25 V positive to the cathode. This means that a minimum reverse voltage of $2.1-0.25=1.85 \mathrm{~V}$ is possible. Calculation shows that with 12 pF oscillator capacitance and 330 pF in series with the varactor, the total capacitance at 1.85 V is 45 pF and to obtain 22.5 pF ($2: 1$ ratio) 29 V bias is needed on the varactor. On the other hand, at 48.45 V the capacitance is 20.5 pF , and to obtain $4 \mathrm{l} \mathrm{pF}, 2.9 \mathrm{~V}$ is needed.

Thus, for the assumed capacitance values a $2: 1$ capacitance ratio is obtainable for a control voltage change of 1.85 V to 29 V , (27.15 V swing) or from 2.9 V to 48.5 V (45.6 V swing). The maximum possible capacitance swing is from 20.5 pF at 48.5 V to 45 pF at 1.85 V , or $2.2: 1$, with a voltage swing of 46.75 V . There is thus a reasonable latitude for component tolerances.

The swing required for the control voltage varies greatly for quite a small change of maximum capacitance, for 45 pF it is 27.15 V whereas for 41 pF it is 45.55 V . In practice, there are three variables involved, the coil inductance, the peak-to-peak control voltage of the varactor and a mean bias voltage. The latter two are adjusted to obtain the required frequency range, in conjunction with L and then finally L is adjusted in small steps, each time with readjustment of the other two variables for the proper frequency range, until linearity is secured.

By this is meant a linear relation between frequency and the displacement of the

Fig. 2. Measured oscillator frequency plotted against control voltage on the varactor diode. The points nearly all lie on a straight line, showing that the relation is almost perfectly logarithmic.

Fig. 3. The use of a resistor and diode to obtain an output voltage which is the logarithm of the input is shown at (a), while the arrangement to obtain an outpui which is the exponential of the input is shown at (b).
spot on the screen of the c.r.o. The law connecting oscillator frequency with control voltage on the varactor is apparently very complex, but it turns out experimentally to be very simple, at least over the range of interest. Fig. 2 shows a measured curve relating frequency and voltage and it can be seen that the frequency is almost exactly proportional to the logarithm of the voltage. This is very fortunate for a logarithmic relation is one of the easiest non-linear functions to generate.

There are two possible lines of attack. One is touse any convenient control voltage for the varactor and to produce from this voltage another voltage, for the sweep, which is the logarithm of the first. The other is to use any convenient voltage for the sweep and to generate from this another voltage which is the antilogarithm (or exponential) of the first for application to the varactor.

In both cases the waveform alteration can be effected by a junction diode. If the current is kept small, the current is proportional to the exponential of the voltage across the diode and conversely, the voltage across the diode is proportional to the logarithm of the current.

The relation between current I and voltage V is actually

$$
I=I_{s}\left(e^{k v}-1\right)
$$

where I_{s} is the reverse saturation current and K is a factor which is temperature dependent and has a value of about 40 reciprocal volts. The inverse relation is

$$
V=\frac{1}{\mathrm{~K}} \log _{e}\left(1+I / I_{s}\right)
$$

When the current exceeds a few milliamperes the voltage drop across the ohmic resistance of the semiconductor and its contacts starts to be comparable with the
voltage of the formulae and the law is consequently modified. At high currents the current-voltage relation tends to linearity.

Below a few milliamperes (the exact current depends on the particular type of diode) the exponential relation holds very accurately until the exponential term ceases to be large compared with unity. This is when the diode is approaching cut-off.

To produce a voltage which is the logarithm of another voltage the voltage is applied to the diode through a high series resistance and the output is the voltage developed across the diode, as in Fig. 3 (a). If the voltage drop across the resistance is very large compared with that across the diode, the current through the resistance and the diode is almost proportional to the applied voltage and so the output voltage is almost proportional to the logarithm of the applied voltage.

The practical difficulty is that the change of voltage across the diode is very small, probably no more than 0.2 V , and more likely some 0.05 V . The X -input of a typical oscilloscope is some 9 V peak-to-peak, so an amplifier of at least 45 times gain, and more likely 180 times, is required and must be highly linear.

With the second method an arbitrary sweep voltage is used and some small fraction of it is applied at low impedance to a diode. The diode current is then the exponential of the voltage. A very low resistance in series with the diode enables the current to produce a similar voltage, Fig. 3 (b), which can then be amplified to produce a voltage change of about 47 V to control the varactor.

This actually works out much better because the base-emitter path of a transistor can be used as the diode so that the diode current is the base current of the transistor and the collector current is the base current multiplied by the current amplification factor.

Suppose a transistor is used with a $200-\mathrm{k} \Omega$ collector load. A maximum change of some 47 V across this is wanted, so the change of collector current is $47 / 200$ $=0.235 \mathrm{~mA}$. If the current amplification factor is as small as 20 , the change of base current is $0.235 / 20=0.01175 \mathrm{~mA}=$ $11.75 \mu \mathrm{~A}$. Since the output required is a voltage change of 47 V the collector supply voltage must be greater, say 70 V . This in turn rules out the possibility of using most transistors. However, there are types rated for 100 V and even more, notably types designed for operation in video output stages.

The use of a transistor immediately solves the problem of coupling the current output of a diode to an amplifier. The need for a low impedance voltage feed also turns out to be not too difficult. Because the base current is so small, the source impedance feeding the transistor need be no lower than about $2 \mathrm{k} \Omega$. It is not, of course, possible to stabilize the base bias against temperature changes, because the use of an emitter resistance is inadmissible. The input would no longer be applied between base and emitter, but to the input of a feedback amplifier and the desired expon-
ential relation between input and base current would be seriously affected. In theory one could by-pass the emitter resistance, since the input will be some form of repetitive voltage (actually 50 Hz sinewave). It is however, very difficult to do so adequately.

What happens in practice, is that a rise of temperature shifts the oscillator frequencies to lower values. The response curve displayed on the oscilloscope drifts to the left. The drift is quite slow and may amount to a few MHz in normal operation. It can be corrected manually by adjusting a bias control, which is needed in any case to set up the proper operating conditions.

The heart of the wobbulator thus comprises a frequency-modulated oscillator
and a wave-shaping stage to provide a linear scale of frequency on the display. The general form of this part of the circuit is shown in Fig. 1. The oscillator is $T r_{1}$ and is of the Colpitt's type; C_{2} is made 6.8 pF plus the collector-emitter capacitance of the transistor, which is 1.5 pF . The other capacitor, C_{3}, is 82 pF plus the 20 pF baseemitter capacitance. The effective capacitance ratio is thus $102 / 8.3=12.3$ so that in effect the base is well tapped down the tuned circuit.

The base is earthed to r.f. through C_{4}. The inductance L is in the collector circuit and has in shunt with it the capacitance of C_{2}, C_{3} and C_{4} all in series. This amounts to 7.5 pF . Also in shunt with L is the varactor diode D_{1} in series with C_{1} of

Typical vision i.f. response curve with markers at 34.5 MHz and 39.5 MHz (a). These markers do not show well in the photograph but are easily seen on the c.r.o. because a beat effect gives them movement. The second photograph is identical but with the c.r.o. gain increased about 10 times and Y-shift applied to show the effect of the trap circuits. The markers at 33.5 MHz and 41.5 MHz are visible (b). There is a double trace on the skirts due partly to mains hum and partly to the input coupling time constant (0.25 s) of the oscilloscope.

Here the marker is at 36.5 MHz (a) and in (b) the phase control has been deliberately misadjusted to illustrate the effect.

These photographs were taken with outputs from the sound channel. At (a) the output was taken from the a.f. output point; at (b) it was taken via a rectifier probe from the collector of the last i.f. stage. The circuit was not returned to correct for the probe capacitance.

330 pF ; this capacitor is needed to prevent L from short-circuiting the frequency control voltage, which is applied through R_{1} and R_{2}. Its presence slightly reduces the capacitance available from the varactor. The amplitude of oscillation is controllable by the supply voltage to the stage, which is shown in Fig. 1 as a nominal 10 V , but it is also controllable by the base voltage, which means the values assigned to R_{4} and R_{5}. These resistors, with R_{6}, provide the usual stabilizing network for temperature effects in $T r_{1}$. The emitter resistance R_{6} is, for r.f., effectively in shunt with the base-emitter path of the transistor. The transistor itself has a base input resistance of about $1.2 \mathrm{k} \Omega$. Taking R_{6} into account the effective base input resistance is about 550Ω only. This is one reason for the high ratio of C_{3} to C_{2}.

With a supply of 5.5 V the oscillator will produce about 0.8 V r.m.s. output, and with 10 V it gives some 1.5 V r.m.s. The output is taken off by a small coil coupled to L and not shown in Fig. 1; quite loose coupling is necessary and it is hard to secure more than 100 mV useful output. This is one limitation of the varactor. The minimum bias on the varactor restricts the voltage obtainable across the tuned circuit and so the maximum output of the whole wobbulator.

The wave-shaping stage is $T r_{2}$. This is simply a transistor with a high load resistor $R_{3}(220 \mathrm{k} \Omega)$ and its output is applied to the varactor through R_{1} and R_{2} of $330 \mathrm{k} \Omega \Omega$ each. Its base is fed by 50 Hz from a winding on the mains transformer and also with a d.c. bias. These are merely sketched in in Fig. 1. In practice more complex networks are used because the magnitudes of the voltages required are quite small. The a.c. needed is only around 60 mV , while the d.c. has to be variable only over a similar range.

One peculiarity of the circuit must be noted. Two supply voltages are needed, one of some 70 V and the other of some 17 V and they must have a common positive. This is very unusual for n-p-n transistors, and it arises because of the varactor. It is almost essential to use direct coupling between the wave-shaping transistor and the varactor, because otherwise the two elements would each need variable d.c. bias controls and their proper adjustment would be difficult. Also, an a.c. coupling would introduce appreciable phase shift which would probably be difficult to correct, because the waveform at this point is not sinusoidal.

While it is not necessarily impossible to arrange matters so that the negative supply lines are common, it is much easier to use common positive lines. There is, of course, no objection at all to this apart from the fact that most people are accustomed to thinking of the negati-re line as the earthy one.

With proper design and adjustment the arrangement of Fig. 1 produces a linear relation between the base voltage of Tr_{2} and the frequency generated by $T r_{1}$. In some measurements a frequency marker, of which more anon, was varied in steps of 0.5 MHz from 30.5 MHz to 42.5 MHz and the displacement of the marker on
the trace was measured using the calibrated X-shift control of the oscilloscope. The calibration of this control was not checked. There were also, of course, the usual setting and reading inaccuracies of the controls.

As one would expect, therefore, when the points were plotted on linear scales of frequency and marker displacement no straight line could be drawn through all of them. However, the maximum displacement of any point from a straight line drawn between 30.5 MHz and 42.5 MHz was 0.3% only. One would, in fact, be satisfied with an error of 1%, or even more.

A linear relation between frequency and displacement is one essential. Another is that the amplitude of oscillation should be the same at all frequencies. It does not matter at all if the amplitúde varies slowly with time, temperature or voltage, but for an undistorted response curve it is necessary that the amplitude be independent of frequency. The basic oscillator of Fig. 1 does by many standards provide a fairly constant amplitude. The output varies by about 1 dB over the band, but this is not good enough.

In actual fact, it is not essential that the output be constant over the whole frequency range. Where constancy is important is over the range of frequencies lying between the $-6-\mathrm{dB}$ points of the passband of the amplifier under test. With television amplifiers these will never be more than 5.5 MHz apart and in practice, constancy of amplitude between 39.5 MHz and 34 MHz will suffice. The shape of the response within the pass-band will then be accurately depicted. Outside the passband the response falls rapidly and quickly reaches $-25-\mathrm{dB}$ to $-50-\mathrm{dB}$ levels, an odd dB or so extra variation due to the instrument is there trivial and probably quite undetectable on the display.

Nevertheless it has been thought desirable to include a measure of stabilization. The output of the oscillator is fed to a diode detector and the output of this is fed to a single-stage d.c. amplifier which controls the base voltage of the oscillator. There is thus a negative feedback loop. The loop gain is not high because the detector efficiency is low and the gain of a single stage d.c. amplifier is also low if it is stabilized against temperature changes. It is sufficient, however, to keep the amplitude reasonably constant.

It is essential to have at least one frequency marker. The usual procedure is to couple the output of a signal gener ator loosely to the oscillator. Its output then passes with the f.m. signal through the i.f. amplifier under test and a beat between the two signals is produced in the detector of this i.f. amplifier. Assume that the marker is set at mid-band, 36.5 MHz . The difference frequency is 6 MHz when the oscillator is at 30.5 MHz , but as this frequency is outside the passband of the i.f. amplifier it is not appreciably passed. When the oscillator reaches 34 MHz , however, this frequency will usually be passed appreciably and the beat produced in the detector will be 2.5 MHz . As the frequency increases, the beat frequency falls and its amplitude increases. At exactly the

The completed prototype, showing the layout of the controls.
marker frequency the frequency and amplitude drop to zero, but the beat frequency is produced again when the oscillator becomes higher than the marker frequency. Instead of the trace on the oscilloscope being a line drawing out the response curve, therefore, it is wobbled vertically about this line by the beat frequency.

A marker with a total width of some 5 MHz is much too wide, of course, and a simple $R C$ filter is included between the detector of the i.f. amplifier and the oscilloscope to restrict the bandwidth to about 0.5 MHz at most. The appearance of the marker is then of a narrow blip on the trace, the centre of which gives the true frequency. In practice, there is usually a gap in the centre. In some cases, the width of this gap can be considerable, and this is undesirable. It arises because when the frequencies are nearly alike one oscillator pulls the other into synchronism and the two move together at zero beat until the natural frequencies become too far apart for the lock to hold. If both forward and return traces are presented on the screen, which can be done with a sinusoidal sweep, and the two are phased so that the two traces of the response curve coincide, then when oscillator pulling is present the two marker blips will not usually coincide. This is because two oscillators, once they are locked, normally hold in synchronism over a wider range of frequencies than the band over which one can capture the other. This means that when a gap appears its mid-point is not at the actual frequency of the marker.

A certain amount of locking around zero beat is not uncommon but it is not important as long as the gap between the two halves of the blip is small.

A major disadvantage of this form of marker is that with a constant amplitude of signal from the marker generator it is possible to obtain a reasonable marker blip only between the $-6-\mathrm{dB}$ points of the amplifier. If it is desired to use a marker on the skirts of the curve, the marker disappears because its frequency is atten-
uated by the amplifier, and the signal from the marker generator must be greatly increased. It does have the advantage, however, that as the marker need be only one-tenth or so of the f.m. signal, its actual strength in the pass-band need be only a few millivolts.
In the equipment to be described in subsequent articles in this series, a somewhat different system is adopted. The marker signal is not passed through the i.f. amplifier. A buffer amplifier of roughly $12-\mathrm{MHz}$ bandwidth at $-3-\mathrm{dB}$ is used and is fed through a simple attenuator with the signal from the winding on the oscillator coil L of Fig. 1 which feeds the i.f. amplifier. The impedance level at this point is only 75Ω and the variations of the input impedance of the buffer stage over the band do not seriously affect the oscillator output. The collector load of the buffer is a heavily-damped single-tuned circuit to which a signal generator is loosely coupled for the marker. A diode detector then rectifies the mixture to provide the beat and a simple low-pass filter restricts the bandwidth. This signal is then mixed with the output of the detector of the i.f. amplifier under test in another simple filter.

The marker blip then appears on the trace as before, but with an amplitude which is substantially independent of frequency. What amplitude variations do occur are those caused by the variation of gain of the buffer amplifier and are trivial. The marker appears on the trace independently of the i.f. amplifier.

The deflection due to the marker is, of course, entirely vertical but it is drawn out by the X-deflection to have width. As a result the appearance of the marker is quite different on the sides of the curve from what it is on the near horizontal parts. The sides are nearly vertical and so the vertical movement due to the marker tends to get lost in the near vertical movement due to the response curve. The writing speed of the spot, too, is higher, and the
marker is drawn out over a greater length of trace. When one has become accustomed to it, the marker is quite readable on the sides of the curve, although not so easily as on the flat parts. Unfortunately, there is no simple remedy.

In practice, it is useful to have two markers, which can be set at the two required $6-\mathrm{dB}$ points. Alignment can then be carried out so that the two markers come at the half-height points on the two sides of the curve, the correct shape of the curve between them being judged by eye.

The equipment thus has a built-in marker oscillator. This is a transistor oscillator which is basically the same as that of Fig. 1, but having a variable capacitor for tuning. It is also coupled to the coil of the buffer stage. The second marker is provided by an external signal generator.

The internal marker has a second use in connection with the alignment of the intercarrier sound channel. For this purpose it is connected to feed into the output with the f.m. signal and it is set to 39.5 MHz . The f.m. signal has its total deviation reduced from the usual 12 MHz to about 300 kHz by the sweep amplitude control, and its mid-frequency is set to 33.5 MHz by the bias control of Tr_{2}, Fig. 1 . The f.m. signal then represents the sound channel and the marker oscillator the vision channel. The two signals pass together through the vision i.f. amplifier and a $6-\mathrm{MHz}$ beat between them is produced in the detector, and fed to the intercarrier sound i.f. amplifier. The signal generator can still be used to provide a single frequency marker, but it is probably better to have it around 6 MHz and inject its output into some point of the sound i.f. amplifier. What can be done in this way obviously depends greatly on the design of this amplifier.

The use of a $50-\mathrm{Hz}$ sine wave from the mains has been mentioned for the sweep. This is done for its convenience. Two supplies are needed, one for the input to $T r_{2}$ in Fig. 1 and the other for the Xdeflection of the oscilloscope. The latter must normally have one side earthed. The supply for $T r_{2}$, however, must have one side at about -70 V . However, apart from this, two windings are really desirable since the phase of one may have to be reversed with respect to the other in order to obtain a trace in which movement to the right represents an increase of frequency.

On one half-cycle the spot moves to the right and the frequency increases; on the next half cycle it moves to the left and frequency decreases. Any phase shift in the complete chain from transformer through the wobbulator and i.f. amplifier under test to the Y-input of the oscilloscope, and any differential phase shift within the oscilloscope between the X - and Y -channels, will result in two traces of the response curve being produced displaced side by side. A simple phase-shifting circuit in the feed to the X-plates enables the two traces to be brought into coincidence. This has been found adequate, for any errors produce no more than a slight thickening of the trace along its near vertical sides.

An alternative would be to blank alternate half cycles, but some form of phase-shift control would still be needed to give a rough correction of phase and would be difficult to operate since its effect would visually be much the same as that of the d.c. bias control on $T r_{2}$.

The use of both traces also has its advantages since it can give an indication of some amplifier faults. If non-linear circuits are involved, as they are in the detector, and will be if there is overloading, then the rise and fall times of the output signal may not be the same. When the oscilloscope spot is moving to the right on one half-cycle a rise time is operative on the left-hand side of the response curve and a fall time on the right, whereas on the other half cycle the rise time is operative on the right and the fall time on the left. Therefore any difference in the response to rising and falling outputs will make it impossible to obtain complete coincidence of the two traces.

Corrections

"Sinusoidal Oscillator for High Temperatures" (July 1970). Pin 1 of the 701C op.amp. should, in addition to the connections shown, be joined to the 0 V line.
"Integrated Circuit Stereo Pre-amplifier" (July 1970). In Fig. 3 there are three mistakes: the wiper of $S_{1 b}$ is in the wrong position rel ative to $S_{1 a} ; S_{2}$ should have the lower contact (M) joined to the wiper of $S_{1 b} ; R_{12 b}$ should be $12 \mathrm{k} \Omega$ not $120 \mathrm{k} \Omega$. On p. 315 in the components list $V R_{3 a}, b$ and $V R_{4 a}, b$ are $100 \mathrm{k} \Omega+100 \mathrm{k} \Omega$ linear pots.

Communications Receiver (June issue). On page 310 the Racal RA1220 frequency stability should have read, one part in 10^{7} per day.

On page 303 (New Products) in the June issue, the illustration shown under the heading D.I.L. Reed Relay should have appeared with the note on the Reed Microswitch (WW 329).

Souriau Lectropon Transistors

Souriau Lectropon Ltd. apologize to readers for the delay in supplying transistors, which has occurred because of problems in obtaining sufficient supplies from the manufacturers. The company say they undertake to deliver all transistors promptly as there are now sufficient stocks on their premises.

H.F. Predictions -August

The Greenwich sunspot number for June is 117 , indicating a slight decline in the high level of solar activity since March of this year. This decline is not rapid and frequency usage over the next six months should be the same as for the corresponding months of 1968/69 and 1969/70.

Disturbances which have developed this year are expected to continue at the same level for the next twelve months. With regard to the charts the transequatorial routes have highest MUFs during equinox months and the values shown should be the highest for the next ten years.

The Video Disc

Vision programmes on 'gramophone’ records

by J. C. G. Gilbert* f.I.E.R.E.

The 24th June 1970 will become another important date in the history of the development of television, for on this day the world's first television recording on a "gramophone" record was demonstrated in Berlin. Although the equipment will not reach the public for another 18 months, technical information was released this year as it coincides with the 80th anniversary of the invention by Emil Berliner of the first flat record. Perhaps one should not forget the early experiments of Baird, in which he recorded the B.B.C. 30 -line transmission on a standard 78 r.p.m. record and the sound on a separate record.

Teldec is a research and development organization jointly owned by Decca in the U.K. and AEG-Telefunken in Germany. Since 1965 four German scientists headed by Horst Redlich, in conjunction with Arthur Haddy, the chief engineer of Decca Records, Ltd., have patiently developed a video recording system that will make a considerable impact on the educational, advertising and domestic entertainment fields.

Research teams throughout the world are currently working on methods of recording video information, and some demonstrations and technical information have been given to the public. In the U.S.A. the Columbia Broadcasting System has developed the EVR system (see p.366) the RCA Corporation the Selectavision system, Ampex in the U.S.A. video recording on magnetic tape, and there are other methods using photographic films. The table indicates the performance of each type.

In comparing the various systems note that only video tape and Super- 8 mm film allow the user to record his own programmes, while EVR, Selectavision and Teldec video disc limit the user to purchasing or hiring already recorded programmes; and of these only the Teldec video disc enables one to quickly locate any particular section of a programme. Also, in some systems it is not possible to show a stationary picture or a slow-motion picture. In the Teldec system each complete television picture (two frames) can be shown separately, and by stopping and starting the mechanism one

[^2]can show a sequence of individual pictures.

In any form of storage system, whether it be film, gramophone record or handwriting, it is necessary to arrange for a transient flow of information to be recorded and at a later time for the information to be displayed or reproduced. In sound recording the flow of information is at a rate of approximately 3×10^{5} bits per second, and a normal $33 \frac{1}{3}$ r.p.m. gramophone record has a data storage capacity of about 5,000 bits $/ \mathrm{mm}^{2}$ while a magnetic tape has a data storage
capacity of about 1,000 bits $/ \mathrm{mm}^{2}$. To store electrical picture information it is necessary to accommodate the information at a density about 100 times that required for a sound recording, the information flow rate being of the order of 3×10^{7} bits per sec. The first problem therefore is to devise a storage system capable of handling a greater information density, and then to develop a method of reproducing that information.

The Teldec video disc will allow a recording density of upwards of 500,000 bits $/ \mathrm{mm}^{2}$, or about 100 times the storage capacity of an audio record, and this is equivalent to a signal frequency of 3-4 MHz.

Fig. 1 and the photographs show the principle of the reproducer. The disc is made from thin plastic foil and is rotated at a speed of 1,500 r.p.m. for a $50-\mathrm{Hz}$ mains supply and $1,800 \mathrm{~Hz}$ for a $60-\mathrm{Hz}$ supply. The disc is located on a very accurately machined boss and positioned by three pins. It , will be seen from the photograph that the disc while stationary follows the contour of the fixed playing desk, and that this is curved and the apex of the curve is just under the reproducing stylus. Concentric with the rotating central boss is an annular slot through which air is forced and then exhausted at the periphery of the disc. Thus when the disc

	Video tape	EVR	Selectavision	8 mm film	Teldec video disc
Resolution	$\begin{aligned} & 250 \text { lines } \\ & 3 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 300 \text { lines } \\ & 4 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 250 \text { lines } \\ & 3 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 250 \text { lines } \\ & 3 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 250 \text { lines } \\ & 3 \mathrm{MHz} \end{aligned}$
Signal/noise ratio	$>40 \mathrm{~dB}$	$>40 \mathrm{~dB}$	$>40 \mathrm{~dB}$	> 40dB	$>40 \mathrm{~dB}$
Sound recording	Separate track	Separate track	Separate track	Separate track	Combined tracks
Playing time	approx. 60 m	$\begin{aligned} & 2 \times 25 \mathrm{~m} \\ & 25 \mathrm{~m} \text { colour } \end{aligned}$	approx. 60 m	approx. 30 m	$\begin{aligned} & 9 \mathrm{in} .5 \mathrm{~m} \\ & 12 \mathrm{in} .12 \mathrm{~m} \end{aligned}$
Recording \quad media	Magnetic tape	Special film	Plastic tape	Super- 8 film	Plastic foil
Playing time v . copying time	<50	<50	<50	<50	> 1.000
Material cost for one hour playing	approx. £ 12	approx. £ 12 colour £ 24	approx. £2 5s	approx. £ 24	less than f1 2s 6d
Pickup device	Magnetic head	f. spot scanning	Laser and vidicon	f.spot scanning	Ceramic p.u.
Reproducer cost (approx.)	£230	£350	£ 175	£230	£60-£115

Fig. 1. Principle of the video disc reproducer mechanism.
rotates it floats on a very thin air cushion and follows the contour of the curved platter.

The boss and shaft are belt-driven from a small synchronous motor which also drives a reduction gearbox. Attached to the output of the gearbox is a pulley which drives an endless tensioned cable. The pickup head is mounted on two parallel bars, and it is smoothly drawn across the disc by the tensioned cable. The video disc is a remarkable development, for in order to have a playing time of 5 minutes on a 9 -inch disc, or 12 minutes on a 12 -inch disc, the groove spacing is minute, there being between $120-140$ grooves per millimetre, and each revolution of the disc represents one complete television picture. The recording method is hill-and-dale, and one photograph shows a comparison between a normal stereo audio recording groove (on the right) and the frequency modulated video disc grooves that occupy an equivalent space (on the left). The accompanying sound is recorded during the blanking interval, using a pulse position modulation system. It is of interest that the groove on a 9 -inch disc is about 3 km long.

The pickup head that is mounted on the linear tracking bars carries a very fine tube, at the end of which is a microscopic diamond stylus--Fig. 2. Directly connected to the diamond is a piezo electric ceramic transducer which has an

Fig. 2. Details of the pickup, showing stylus and transducer at the end of the fine, support tube. The arrangement provides elastic suspension.

Fig. 3. Cross-sectional side view of the stylus (viewed along a radius of the disc), showing how the disc track is locally deformed where the disc is pushed up to the stylus by the air cushion. The stylus responds to the instantaneous load relief that occurs as the track passes the rear vertical face.

Reproducer mechanism, showing pickup carriage being drawn across disc by the tensioned cable. The convexity of the playing desk, taken up by the flexible disc, can just be seen.
output of about 2 mV , and the complete transducer can be seen suspended below the carrying head. The transducer is pressure operated, and, whereas in a normal audio system the record carries the weight of the pickup cartridge, in the Teldec machine the stylus is fixed in position and the video disc is floated up to it on the air cushion. A side view of the diamond stylus, Fig. 3, shows that it is gently radiused in front of the trailing vertical face, and as the disc glides below the stylus, the stylus purposely deforms the hill and dale track which, when it passes the stylus, immediately springs back to its original shape. Thus several bits of information are simultaneously presented to the pressure transducer. It is claimed that each disc can be played at least 1,000 times before the signal-to-noise ratio falls below 40 dB .

When one wishes to display a stationary picture a press button on the deck can be operated to disengage the pickup drive cable. As the groove is very shallow the stylus jumps the wall separating the grooves and repeats each complete picture as often as desired. Obviously during such a display there is no speech output as this is integral with each line. The wear of the disc is negligible and even after one has repeated a stationary picture for several hours there is no noticeable visual distortion. While slow motion is not possible in the true sense, it is possible to show complete pictures in slow sequence by operating the press button at regular intervals.

The obvious question is "how well does it perform?" Those fortunate enough to witness this world premiere were astonished at the fidelity of the pictures seen on a multiplicity of television monitors. At present the output from the reproducer is at video frequency, but for the domestic market the unit will embody a modulator so that the signal can be sent over cable to the aerial input of any domestic television receiver. The quality of the black-and-white signal is comparable in definition with the B.B.C./I.T.A. 405-line system although the picture is transmitted on 625 lines. It is confidently expected that colour video discs will be

A single groove of a normal stereo gramophone record (right) compared in size with the closely packed grooves of the video disc (left) which register information by a frequency modulated carrier, hill-anddale, recording technique. The carrier wavelength on the video disc varies with the video signal amplitude.
available a few months after the release of the black-and-white discs. Demonstrations were given of a number of programmes of an educational and instructional nature, extracts from advertisements, etc. As an example of use, a travel agency might have a selection of discs giving short programmes of "a weekend in Paris", a holiday on the Costa Brava and so on. The possibilities seem endless and AEG-Telefunken even suggest that in the future the daily newspaper might include a disc of the highlights of the previous day's sporting events.

As the video disc is capable of storing information up to 3 MHz while rotating at 1500 r.p.m. one can visualize that a modified system using the same basic principles could be employed for sound recording. At a playing speed of $33 \frac{1}{3}$ r.p.m. it should be possible to record up to about 70 kHz , and possibly the almost forgotten $16 \frac{2}{3}$ r.p.m. speed might come into its own. Using a slow speed, several hours of recording could be achieved on a 9 in disc; turntable rumble and anti-skating devices would become a relic of the past. Perhaps the most exciting possibility is the recording of multi-channel stereo programmes-two, three, four or more channels being possible with the Teldec multiplexing system.

Electronic Morse Keyer

Employs m.o.s. integrated circuits to produce dot-dash and space waveforms with precise mark-space ratios

by C.I. B. Trusson *, m.Sc., G3RVM, and M. R. Gleason*, b.Sc.

This article describes the design and construction of an electronic morse code keyer using four m.o.s. logic circuits. The dot and dash waveforms generated by the keyer are defined precisely by means of a two stage counter.

M.O.S. logic circuits

The circuit diagram of a p-channel m.o.s. inverter is shown in Fig. 1. Using the negative logic convention, with logic 0 input level less than the threshold voltage, the inverter m.o.s.t. is 'off' and only leakage current flows into the load m.o.s.t. The logic 1 output level is then a threshold voltage (plus an increment due to source-substrate bias) from the $V_{D D}$ supply. With a logic 1 input greater than the threshold voltage the inverter m.o.s.t. is 'on' and the output is pulled to a logic 0 level near 0 V . With a $V_{D D}$ supply of -24 V typical logic 0 and logic 1 levels are -2 V and -17 V . It should be noted that the output resistance in the logic 1 output state is very high and so this level can't be measured with a multimeter
Where it is required to interface an m.o.s.t. inverter with a bipolar transistor the circuit of Fig. 2 may be used. In the logic 0 output state the inverter m.o.s.t. supplies base current to the n-p-n transistor switching it 'on'. In the logic 1 output state the inverter m.o.s.t. is 'off' and the transistor is 'off' because of the base resistor to $V_{D D}$.

A NOR gate is simply obtained by connecting a number of inverter m.o.s.ts in parallel and a NAND gate by connecting them in series. The circuit diagram of a 3 -input NOR gate is shown in Fig. 3 and that of a 3 -input NAND gate in Fig. 4. Clearly, the NOR gate only gives a logic 1 output when all inputs are 0 and the NAND

[^3]

Fig. 1. The circuit of an m.o.s. inverter.
gate only gives a logic 0 output when all inputs are 1. The two gate circuits used in the electronic keyer are the Plessey MP104, a dual 3 -input NOR gate and the MP102, a dual 3 -input NAND gate. With these circuits, unused NOR gate inputs should be connected to $O V$ and unused NAND gate inputs should be connected to $V_{D D}$.

The keyer also uses two MP106 counter/register/bistable circuits. The MP 106 logic diagram is shown in Fig. 5 and its modes of operation will now be outlined. In its synchronous mode S is set at a 1 and data, D_{0}, is transferred to D_{1} and its inverse to D_{1} on the clock pulse transition $C P_{1} 0 \rightarrow 1$, assuming $C P_{2}$ is at 0 . In the steady state, with $C P_{1}$ at a 0 or a 1 , the outputs D_{1} and D_{1} cannot be affected by any change in D_{0}. In this mode the element operates as a shift register. To obtain a binary counter function the D_{1} output is connected back to the D_{0} input with S held at 1 , causing the D_{1}, D_{1} output states to change every $C P 0 \rightarrow 1$ transition. Asynchronous bistable operation is achieved by setting S to 0 . The data on the F input is then transferred to D_{T} and its inverse to D_{1} irrespective of D_{0} and $C P$.

Design of the electronic keyer

A morse transmission consists of a series of dots, dashes and spaces. Within a morse character (the code for a letter, number or punctuation) a dot consists of a $1: 1$ markspace pulse and a dash a 3:1 mark-space pulse. The waveform of Fig. 6 shows a dot followed by a dash, the code for the letter A. The dot, being the highest frequency component of morse code, is the most difficult for an operator to send and severely limits the maximum speed attainable with a conventional morse key.
The m.o.s. electronic morse keyer allows an operator to send perfect morse characters up to very high speeds by controlling accurately, with a multivibrator, all the periods within a character, i.e. dot, dash and space. In addition, the dot and dash can be 'made self completing such that the paddle only has to be touched momentarily on the dot or dash side of the key and they are completed automatically, leaving more than the period of a space to move the paddle from side to side.

The dot and dash waveform of the electronic keyer are obtained by gating the outputs from a two-stage MP106 counter

Fig. 2. Connecting a m.o.s. inverter to an $n-p-n$ transistor.

Fig. 3. A three-input NOR gate.

Fig. 4. A three-input NAND gate.

Fig. 5. Counter-register-bistable circuit type MP106.

Fig. 6. Morse code waveforms corresponding to dot dash.

Fig. 7. Dot dash waveform generation.
as shown in Fig. 7. For the dot waveform, the S input of the second counter is set at a 0 . This puts the second counter in its asynchronous mode with the data on F , a 1 , being transferred to D_{1} and its inverse, a 0 , being transferred to D_{1}. The first counter has its S input permanently at a 1 , and therefore counts with the $1: 1$ markspace ratio dot waveform. A 1 at the output corresponds to a space, a 0 , a dot.

The dot waveform is obtained from the output of a counter, rather than directly from a multivibrator so that the mark-space ratio is precisely $1: 1$ at all speeds. The multivibrator providing the clock to the counter does not need an accurate markspace ratio and, therefore, only a single gang potentiometer is required to vary its frequency. For the dash waveform, the $\$$ input to the second counter is set at a 1 . Now both counters are operating in the synchronous mode and the four output states at the two D outputs are $00,11,01$, 10. the NOR decoding gate decodes 00 to give a 1 output which corresponds to a space. In the remaining three states of the counter the NOR gate output is a 0 , giving the required $3: 1$ mark-space ratio dash.

The method of dot and dash waveform generation described above forms the basis of the electronic keyer. In addition a multivibrator is incorporated which is stopped
bet ween characters so that dots and dashès commence immediately the paddle is operated at the start of a new character. Other wise, with a free running multivibrator, there is always some uncertainty as to when the first dot or dash of a character is going to start. Logic to control the stopping of the multivibrator with the counter in the space state and to provide self completion of dots and dashes is also included.

The functioning of the keyer will now be described in detail. Its full logic/circuit diagram is shown in Fig. 8. Initially, at switch-on, the emitter coupled multivibrator provides clock pulses to the counters until the output of the decoding gate-1 is in the logic 1 space state and the output of the multivibrator has gone to a 0 . Gate-4 gives a 0 output which stops the multivibrator in its present state by clamping the 200Ω load to the -24 V supply with a saturated n-p-n transistor. When the paddle is pushed to the dot side the output of gate-3 goes to a 0 causing the output of gate- 4 to go to a 1 . This releases the multivibrator whose output instantly goes from $0 \rightarrow 1$ clocking the first counter and producing a dot at the output of gate- 1 . The paddle may then be moved from the dot side since the multivibrator continues until the space state has been reached and the output of the multivibrator is back at a 0 . The

output of gate-4 will then return to a 0 stopping the multivibrator unless the paddle has been transferred to the dash side, in which case the output of gate-4 remains at a 1 and the multivibrator continues. With the paddle on the dash side the output of gate-2 is a 1 , setting the second counter in its synchronous mode. The dash waveform is, therefore, produced at the output of gate1. As for the dot, once the dash has started the paddle may be moved and it is self completing, the S input to the second counter remaining at a 1 until the output of gate-1 returns to a 1 , the space state. Strings of dots and dashes within a character are produced by holding the paddle on the relevant side until after the start of the last dot or dash.

Normally the morse koy input to a transmitter is intendec to he driven by a mecharizal key. The cutput of gate-1,
therefore, is interfaced to a reed relay to drive the transmitter. The 100Ω resistor is included in series with the base of the n -p-n Darlington pair, since a logic voltage swing is required at the output of gate- 1 to drive gates- 2 and -4 . The reliability and contact bounce of a reed relay are both likely to be very much better than that of a mechanical key. However, a preferable solution would be to modify the transmitter to be keyed directly from gate-1.

With an electronic keyer it is not possible to hold the transmitter 'on' continuously for tuning purposes. A 'tune' switch is, therefore, provided which, when operated, sets the output of gate- 1 to a 0 , holding the reed relay 'on' until the switch is moved back to the 'operate' position. A push button may be more convenient than a toggle switch.

The keyer in use at G3RVM is built on
0.1 in . Veroboard and housed, complete with mains power supply in a $4.5 \times 7.25 \times 2$ inch die-cast box. The Veroboard layout is illustrated in Fig. 9.

The nominal -24 V power supply for the keyer does not need to be regulated, the tolerance being -20 to -26 V .

The MP100 range m.o.s. logic circuits used in the keyer are available from the Plessey microelectronics distributors: A. C. Farnell Ltd., Kirkstall Road, Leeds 3, or SDS (Portsmouth) Ltd., Hillsea Industrial Estate, Hillsea, Portsmouth, Hampshire.

REFERENCES

1. MP. 100 series Data Sheet.
2. Trusson, Ce. I. B., Foss, R. C. "Mosaic

Blocks for System Breadboarding".
(Both of these documents should be obteined from the Plessey distributors.)

News of the Month

Space-probe to Jupiter

Man's first venture (Mariner) beyond the orbit of Mars into the outer solar system will begin with the launch of two spacecraft, Pioneers-F and -G, in 1972 and 1973 on missions which will last about two years each.

These spacecraft will be the first to penetrate the asteroid belt and will spend about a week orbiting Jupiter with the period of closest approach, and maximum scientific interest, covering about 100 hours. Closest approach is planned to be about 100,000 miles.

One goal of the mission is to assess hazards in deep space and to develop technology and operations experience for missions to the outer planets-Jupiter, Saturn, Uranus, Neptune and Pluto -planned for the late 1970s.

Pioneers-F and -G will be identical spacecraft weighing about 550 pounds apiece and carrying 60 pounds of scientific instruments. Each will be capable of performing 13 scientific experiments in space including photographing Jupiter.

The Pioneers will be powered by four radioisotope thermoelectric generators
producing a total of 120 W . The spacecraft will be stabilized in space by spinning at five revolutions-per-minute in the plane of the Earth's orbit so that a nine-foot-diameter directional radio aerial is pointed constantly at Earth.

The thirteen scientific experiments will make a broad study of a number of interplanetary phenomena, possible hazards of flying through the asteroid belt, the Sun's influence on interplanetary space and the penetration of galactic cosmic radiation into the solar system.

They will measure hydrogen atoms; electrons; nuclei of hydrogen, helium and other elements; and the interplanetary magnetic field.

They will gather data on the heliosphere, the region of the Sun's influence on the space environment; and they will look for the boundary where the heliosphere ends and space begins.

Both spacecraft will spend six months to a year passing through the asteroid belt which circles the Sun from 180 to 330 million miles out. The experiments will measure the intensity and polarization of sunlight reflected from asteroids and cosmic

The pictures show a portable aerial mast which can be erected without the use of tools and without having to worry about loose parts. The masts can be made in aluminium or stainless steel in three diameters from 15 to 25 inches. Packaged they are one-thirtieth of their deployed height which can be up to $100-\mathrm{ft}$. The Astromast tower, as it is called, is manufactured by the Astro Research Group of California, U.S.A.

dust to allow calculations of overall quantities of cosmic debris.

Near Jupiter, the Pioneers will gather information on a number of mysteries surrounding the planet. In addition, scientists will perform a celestial mechanics experiment and a radiooccultation experiment by analysing the radio signals from the Pioneers just before and just after they pass behind the planet for about one hour as viewed from Earth. Earth-based studies of Jupiter have not yet revealed whether the surface of the giant planet is solid, liquid or gas.

Jupiter periodically emits huge surges of radio noise. It appears to have a magnetic field of its own, similar in shape to Earth but far stronger, and radiation belts an estimated one million times more intense than Earth's.

The planet is believed to be the only one in our solar system which radiates more energy than it absorbs from the Sun, current measurements indicating about twice as much. If these observations are correct, they show that Jupiter has a very dynamic interior and may have processes at work which are similar to a star's such as our Sun.

Much smoke at Which?

Which?, the journal of the Consumers' Association, recently carried out tests on battery eliminators for portable radios and tape recorders. The subsequent report, rather confusingly headed 'Mains Adaptors', told how the transformers of five of the nine units tested broke down when subjected to the tests laid down by British Standards and were labelled potentially dangerous. All five faulty units came from the far east and were the Aiwa $\mathrm{AC}-603$ and $\mathrm{AC}-606$, Eagle products LA-9P and LA-10S and the Sony AC-90E.

Of the four eliminators which were classed as safe, manufactured by Bang and Olufsen, Grundig, Philips and Radionette, the Philips N6502 was chosen as best value for money.

While on the subject of battery eliminators we would like to point out to readers the existence of even more dangerous examples than those tested by Which? The type we have in mind are usually very cheap and do not employ any isolating step-down transformer at all. The required voltage drop being obtained by capacitive or resistive means. These units could be lethal. Be warned!

In these eliminators a direct connection exists between the low battery-voltage output and one side of the mains-as in normal mains radio a.c. /d.c. practice. The low voltage equipment to be powered by battery eliminators (transistor radios, tape recorders, etc.) are not designed with mains voltages in mind so it is very possible that external metalwork and uninsulated sockets, etc., may be connected to some part of the internal circuitry-probably the common line.

A 4-metre transmitter
powered by a single Mallory mercury cell is being implanted in the rhino's horn, the single-turn aerial will be accommodated in a groove cut around the horn. After implantation the damage is made good with glass fibre and quick-setting resin. The electronic equipment was designed by the Council of Scientific and Industrial Research, Pretoria, in order that they may keep track of individual animals.

This means that a direct connection exists between this bare external metal and one side of the mains socket, an extremely dangerous situation. Also any external devices connected to the powered equipment, such as tape recorders, extension loudspeakers and earphones, are also likely to become live.

The moral? Do not try to save a few shillings, buy a reputable make at a fair price and satisfy yourself that the circuit arrangements are adequate.

Push-button telephone chips

In the April issue, in this section, the push-button touch-tone method of dialling was discussed. Pushing a button corresponding to a digit resulted in two tones being transmitted to the exchange for decoding. Push-button dialling is quicker and more convenient than the normal dial we use today, and with the touch-tone system it is possible to use the telephone to switch on equipment, from a remote point, merely by tapping out the required code after connection to the premises has been established.

A major disadvantage of the touch-tone system is the need for additional equipment at the telephone exchange to decode the tones.

The present method of dialling in this country is called the Strowger system. If the digit nine is dialled the telephone transmits nine pulses, one after the other, which are counted by the exchange equipment. A push-button telephone, to be compatible with the Strowger system and not demand any alteration in exchange equipment, must also transmit an identical serial pulse train.

It would indeed be difficult and expensive to design a push-button that, by mechanical means, caused nine pulses to be transmitted when it was pressed. But using digital methods such a task can easily be accomplished. The digit nine can be represented by four binary digits.

Pressing the button nine could result in the four bistables in a counter being set in the condition representing nine. A gating system could then allow pulses to the counter to cause it to count backwards: nine, eight, seven until zero is reached, the gating system could then be arranged to cut off the supply of pulses to the counter. Nine pulses would have been fed to the counter and these could also be transmitted to the exchange at a speed compatible with the equipment in use there.
Similar methods to these are now beng used in m.o.s. (metal-oxide-silicon) integrated circuits being produced by Marconi-Elliott and by T.M.C. These circuits store all the digits of a telephone number fed to them by push-buttons and transmit them in serial form to the Strowger exchange equipment.

The logic design for the Marconi-Elliott integrated circuit was carried out by the telephone division of G.E.C. and the chip design and layout was done by MarconiElliott Microelectronics.
T.M.C. adopted a different approach and designed the whole thing themselves including the structural details of the microcircuitry.

Both systems consist of two chips the difference being in the interconnections, the encapsulations, the logic design and the number of external discrete components required.

The Marconi-Elliott chips are mounted on the push-button unit to form an integral unit, whilst in the T.M.C. unit two circuit cards are employed in addition to the push-button unit.

The use of these m.o.s. dialling systems does not allow coded information from the push-buttons to be used to actuate external devices as is the case with the touch-tone system. It is said by exponents of the m.o.s. system that this does not matter much any way as any amount of data can be sent along the telephone lines by external equipment once connection has been established. An advantage of the m.o.s. system is that often used numbers could be stored in binary form in a small digital store
(an m.o.s. read/write memory chip) so that these numbers can be dialled automatically on pressing a single button.

Just recently T.M.C. have announced an order for $£ 0.5 \mathrm{M}$ worth of their m.o.s. equipment that will be used by operators in telephone exchanges.

Aerial for $1-3 \mathrm{~cm}$ communications

Radio communication in the 3 cm to 7 mm wavelength region, normally used only for radar, is one possibility to be investigated with an unusual steerable aerial mounted on the roof of Birmingham University's new Electrical Engineering building. This region, 10 GHz to 40 GHz , would accommodate 5,000 television or 7 million telephone channels, but, of course, the waves are subject to atmospheric absorption and propagation is dependent on the weather. Radio metereology is, in fact, another field of research for which the aerial will be used. Being sited in the environs of a large city, the aerial is surrounded by sources of man-made interference, but this was a deliberate choice, to permit study of communication in the presence of such interference. Apart from terrestrial communications, the aerial will allow research into the possibility of cities and smaller urban communities having their own satellite terminals. (Next year there will be geo-stationary satellites in orbit working in the $1-3 \mathrm{~cm}$ region.)

Built by Husband \& Co. and Markham \& Co. Ltd., the aerial is unusual because it has an offset Cassegrain configuration. The main parabolic reflector, which is 20 ft in diameter, can be considered as a piece cut out of the side of the reflector of a larger parabolic aerial. Hence the small hyperbolic sub-reflector is not within the beam of the main bowl. This means, for one thing, that the small reflector does not

The aerial on the roof of Birmingham University.

obstruct and scatter radiation passing into or out of the main bowl and, secondly, that it does not reflect local interference energy into the receiver.

The cabin can be rotated about the vertical axis to obtain azimuthal motion, while the main bowl support arm and small reflector can be turned about the slant axis, thereby rotating the aerial beam around a cone centred on the slant axis. In this way the beam, which has a width of 12 minutes of are at lem wavelength, can be aimed at any point above the horizon. An advantage of this design is that it reduces the length of waveguide required, and hence losses, from the aerial feed horn to the transmitter or receiver.

Digital position control is used, and for tracking communication satellites there will be an on-line digital computer with a "hill-climbing" optimising control programme.

At present no receiving or transmitting equipment is installed. The first experiments will use radiometers to map noise energy from natural and man-made sources.

The technology of music

Music is steadily becoming more closely linked with electronic engineering. Whenever a concert or other performance is broadcast or recorded a considerable burden of responsibility falls upon the sound engineer. Realizing this, the University of Surrey, is to start a "Tonmeister" course leading to B.Mus. (Tonmeister). For this course the music department will run in conjunction with the Department of Physics. The declared

A television remote controlled vehicle developed by the Communications Division of America's National Aeronautics and Space Administration. The vehicle simulates a lunar rover.

aim is to produce graduates who are fully competent in both the technical and artistic aspects of music reproduction. A Tonmeister must therefore be a musical, artistic personality having a well-trained musical ear as well as considerable technical knowledge, and he must be competent in handling microphones, mixers, recorders and other apparatus for sound reproduction. This course at the University of Surrey (Guildford) is due to begin in October of this year.

Experimental pacemaker

An experimental pacemaker which is powered by electrical energy generated by blood pressure now offers the hope that the thousands of people with pacemakers implanted in their bodies may avoid the need for periodic surgical battery changes. The new pacemaker was devised at Bell Laboratories and the New York Hospital-Cornell Medical Center. Much work remains to be done before the experimental pacemaker can be tested on humans. However, its feasibility has been demonstrated.

A pacemaker is an electronic "clock" about 2.5 inches in diameter which is usually implanted surgically beneath the skin below the shoulder. It produces about 70 electrical impulses a minute which travel down a long electrode wire inserted through a vein (such as the jugular vein) into the heart. These electrical impulses stimulate the heart.

The experimental pacemaker uses piezoelectric discs to convert variations in blood pressure into electricity. A small plastic tube is inserted through a vein into the right ventricle of the heart, following much the same path as the electrode in a conventional pacemaker. At the end of this tube inside the heart is a small 'balloon' filled with water. When the heart contracts and there is a change in blood pressure, the water is squeezed up the tube, producing a mechanical strain in the piezoelectric discs. The piezoelectric material converts the mechanical strain produced by the blood pressure into electricity, which is stored in a capacitor and used to run the pacemaker. Electrical impulses produced by the pacemaker travel down a pair of wires which are wrapped around the plastic tube.

Industrial information service

Information on the products, services and business structure of nearly 30,000 major U.K. companies is now offered by the Industrial Information Services conducted by Kompass Publishers Ltd., of R.A.C. House, Lansdowne Road, Croydon, RC9 2HE. The source of this information is the computer memory bank used in the compilation of the 2 -volume U.K. Kompass Register. Any permutation from various categories of data stored in the

An historic moment of 50 years ago; Dame Nellie Melba making the first advertised broadcast in this country from an improved studio of the Marconi Works at Chelmsford. This event took place on the 15 th June 1920 when Wireless World was about nine years old.
computer can be extracted and printed to customers' requirements, to provide a precise basis for marketing strategies or, in list or gummed label form, for direct mail operations. Cost of the service varies according to the amount of information required by the client.

Weather system for the Army

Under a $£ 3 \mathrm{M}$ Ministry of Defence contract GEC-Elliott Space and Weapons Division and Plessey are to manufacture an automated meteorological system for use by Army artillery sections. GEC-Elliott will be the prime contractor and will be responsible for the research and development required by the overall system and will supply all the data processing equipment. Plessey, as principal sub-contractors, will be the R\&D authority and supplier of the tracking radar and radiosonde subsystems.

The complete equipment is called AMETS (Automated METeorological System). It consists of an instrumentation vehicle containing the data processing equipment and a small trailer for the radar. Other vehicles would normally be employed as well to function as a command post, to carry stores and to carry out reconnaissance.

In operation a hydrogen filled balloon carrying a radar reflector and radiosonde, which transmits temperature measurements, is released. The computer, an Elliott 920B, receives temperature measurements from the radiosonde, details of the balloon's position and rate of movement from the radar, a measurement of surface atmospheric pressure from the
instrumentation vehicle and average humidity figures from its own memory. These figures are fed into the memory prior to the operation and depend on the area in which the equipment is located.

From all this information the computer calculates and prints out the required meteorological message two minutes after the radiosonde balloon reaches the required height. Earlier methods needed far more equipment to be carried by the balloon and the subsequent calculations took about an hour.

I.E.E.T.E. have a good year

The Institution of Electrical and Electronics Technician Engineers report of the council and accounts for the year ended 31st March 1970 shows that the Institution made further progress and that membership had advanced to nearly 12,000 . With the setting up of the Northern Ireland Region in May, 1969, the Institution now has ten regional centres.

Radar network for Africa

An air traffic control and meteorological radar network, valued at more than £1M, has been ordered from Plessey Radar Limited by the Directorate of Civil Aviation for the East African Community. The network will cover most of East Africa and is part of the modernization programme currently being carried out to re-equip the airports and air traffic control system of Kenya, Tanzania and Uganda.

The hub of the new air traffic control system will be a central area control radar station equipped with an AR-5 long-range radar and an automatic secondary surveillance radar system. These radars will be used for surveillance and control between the three major airports of East Africa: Entebbe (Uganda), Nairobi (Kenya) and Dar-es-Salaam (Tanzania).

Under the contract Plessey will also supply three AR-1 medium-range terminal area radars for Entebbe, Dar-es-Salaam and the new Kilimanjaro international airport.

Audio Fair

An innovation at this year's London Audio \& Music Fair, which is again being held in Olympia (October 19-24), is the presentation of lecturedemonstrations and concerts in one of the halls four times each day. Full details are not yet available but Wireless World has undertaken to put on a series of lecture-demonstrations on the general theme of "what is fidelity in sound reproduction?" These will be given by well-known designers who have contributed to the journal. We hope, as far as possible, to use equipment described in Wireless World for the demonstrations. Further details of the lectures and the procedure for obtaining tickets will be announced as soon as they become available.

We understand from the organizers that over 75% of the available space in the exhibition has already been booked by 80 manufacturers and dealers. "Sound-proof" demonstration booths will again be constructed adjacent to the exhibition stands.

Computer talk

Bell Laboratories engineers in America have programmed a computer to convert printed English text into synthetic speech. Recent experiments take advantage of an improved understanding of speech patterns-the way people really use their language and tailor it to match their intended meaning. Bell researchers gave the computer mathematical approximations of the shapes and motions the human vocal tract assumes when uttering common sounds and sound sequences. They programmed the computer with a basic dictionary of word categories and definitions in digital form. Then they approximated, for computer storage, the complex rules of timing, pitch and stress which people use naturally in everyday conversation.

In the experiments passages are typed and sent to the computer from a

[^4]

Under a $£ 73,000$ contract International Aeradio has designed and built system control equipment for the control centre of Britain's military satellite system, Skynet, at Oakhanger, Hampshire. The photograph shows a module which forms part of the channel switching console.
keyboard. The computer analyses the sentence, assigns stress and timing to each word, and finds a phonetic description of each word from a dictionary stored in the computer's memory. Mathematical descriptions of vocal-tract motions are computed. These descriptions are used to generate electrical speech signals which may be heard over a loudspeaker or a telephone. The typed sentence also can be stored in the computer for later use.

An oscilloscope connected to the computer produces a line drawing of the model vocal tract, and displays the change in position of the throat, jaw, tongue, and lips as different sounds are produced. The oscilloscope display, though unnecessary for text-to-speech conversation, aids researchers in monitoring the performance of the system.

An exercise in circuit maximization

Do you use a sledgehammer to crack a walnut? A circuit recently released by Motorola appears to do just this. The circuit is intended to eliminate component damage in a flashing-lamp warning indicator due to current surges caused by the low cold resistance of lamps. It also prevents any damage due to short-circuits within the lamps.

The engineer who designed the circuit must have had his eyes on the sales figures for he used five transistors, two diodes, one zener diode, four two-input gates, twelve resistors and three capacitors. This did not include the two transistors, two capacitors and four resistors needed for a multivibrator to drive the circuit.

It may be that a single resistor could have been used to keep the lamps warm to offset the low cold resistance problem and a simple ring-of-two constant current circuit may have been enough to cope with lamp short-circuit problems. Never mind, perhaps the report was issued on April Ist.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Symmetry in class B

I have carefully read Mr. King's letter in the July issue (p.330), and I am sorry to have to say that I think his argument has gone astray.

The signal voltage V_{s} shown in Fig. 2 of my September 1969 letter (on earthed circuit) is not the same as Mr. King's V_{s}. As I thought I had made clear, V_{s} in my Fig. 2 is intended to represent the e.m.f. of the floating signal-voltage source, of internal resistance $R_{1}{ }^{*}$, connected between points P and Q in my Fig. 1. A further point is that though Mr. King describes his Fig. 1 circuit as a simplified version of my circuit, it omits the vital and fundamental detail of a connection via a large capacitor from point B to a tapping on the top resistor shown in his diagram.

Mr. King feels that I have lost sight of the wood for the trees, and suggests also that it is impossible to produce shunt

Fig. A.
feedback with one resistor earthed at one end. Consider. however, the accompanying Fig. A, ignoring for the moment the resistor shown in broken line. This circuit looks like an emitter follower, at first sight, but can hardly be properly regarded as such, since there is no negative feedback. The current source, I_{s}, feeding its current into R_{1}, produces a floating voltage source, of internal resistance R_{1}, connected directly between base and emitter, and the circuit functions as a simple common-emitter amplifier. Now consider the effect of connecting the broken-line resistor across the current source. As the value of the resistor is lowered, conditions tend more and more towards those of an ideal voltage-driven emitter follower, and feedback is thus increasingly introduced.

The same circuit as in Fig. A, redrawn with the transistor emitter earthed, is

[^5]

Fig. B.
shown in Fig. B, and it is now seen that the broken-line resistor can, indeed, be very properly regarded as a shunt feedback resistor.

Though circuit B is exactly equivalent to A, the circuits remain nearly enough equivalent, for many purposes, if the lower end of the current source, in circuit B , is earthed rather than taken to R_{L} as shown. I_{s} is so small, at least in the present context of audio output stages using transistor pairs, that it makes very little difference whether I_{s} itself is added to the much larger load current in R_{L} or not.

While attention has thus been focused on my letter of last September, I would like to take the opportunity to correct a genuine mistake, pointed out to me by Mr. I. J. Kampel, of Bournemouth. In the caption to my Fig. 5(b), curve 3 is said to apply to "Mr. Shaw's scheme". Unfortunately I had not noticed that, with the switch S in my Fig. 2 closed, putting a power diode in series with R_{3} does not exactly convert the circuit to Mr. Shaw's arrangement. To get the latter, one should add a 100 -ohm resistor (using my value) between the lower driver emitter and the junction of R_{2} and R_{3} (i.e. earth), the lower end of R_{1} also going to this latter point. With these matters attended to, the input current characteristic becomes more like curve 2 , and is thus a good match to the curve for the upper, Darlington, pair. I must apologize to Mr. Shaw for any implication that his circuit has significantly inferior

Fig. C.
linearity to that given by my low-powerdiode scheme.

The connection of the 100 -ohm resistors to the junction of the 0.5 -ohm resistors, as Mr. Shaw does, is preferable, from the point of view of avoiding thermal runaway, to connecting them to the other ends of the $0.5-\mathrm{ohm}$ resistors, as in my circuit-though this consideration is of much reduced importance now that silicon power transistors have largely replaced germanium ones. Improved thermal stability can, however, also be obtained with the low-power-diode-type of circuit, by arranging it as in Fig. C. Note that, in either type of circuit, to preserve the utmost symmetry of behaviour, a third $0.5-\mathrm{ohm}$ resistor should be included at the bottom, as shown. Whether this small improvement is really worthwhile in practice, is, however, rather doubtful.
P. J. Baxandall,

Malvern,

Worcs.

Sonex '70 report criticized

It is always rather saddening to read opinionated drivel in a much-respected technical journal. Even more so, when it is factually inaccurate.
The author* of the smugly anonymous "report" on Sonex '70 in your June issue was either jaundiced by an outsize chip on his shoulder or otherwise coerced by commercial influences. I know of no other account of a technical exhibition which is opened with a discussion of the journey to the venue.

There follows a blistering attack on a handful of exhibitors and the remarks concerning the KEF demonstration imply a certain disregard of musical values. Now, it may interest you to know that the formula for that demonstration was evolved from a careful study of public preferences, following comments in the correspondence columns of a popular hi-fi magazine. As a result, KEF abandoned their previous demonstration format which used only two types of loudspeaker, and played a predominantly classical programme. Instead a very varied selection of shorter items was switched through all available speaker
*It is a widely accepted convention in journalism
that unsigned material is a statement by the journal. Ed.
systems. The preparation of this demonstration took about 200 man-hours, and if your reviewer did not like the result, we are naturally sorry and he is, of course, entitled to say so. But he is not entitled to assume or imply thoughtlessness on our part.

The statements regarding acoustic isolation are seriously in error, because the transmission loss between adjacent rooms was more than 20 dB better than the hardboard cubicles used in Olympia in 1969. When annoyance was caused, it was usually attributable to abnormally loud playback and open casement windows which reflected the sound along the outside of the building. The shipbuilder surely cannot be blamed for a sinking if the skipper insists on sailing with the seacocks open.

In the closing stages of his article, your reviewer calls for standardized reproducing equipment. This is a wonderfully Utopian concept in which we look forward to a British standard amplifier prescribed by a newly formed Ministry of Home Entertainment. In practical terms, however, I very much doubt that such a development is either probable or even desirable.
Raymond E. Cooke,
Managing Director,
KEF Electronics Ltd.

Class AB amplifier

Mr. Linsley Hood is quite correct when he states that the operation of transistor output stages in class $A B$ can cause increased distortion, because of the change in the slope of the transfer characteristic around the crossover point. However, I fear that he is wrong in supposing that a low source impedance overcomes the problem.

Fig. 1 shows a test circuit which I constructed to measure the transfer characteristic of the output stage under various bias conditions and the results are shown in Fig. 2 for $200 \mathrm{~mA}, 20 \mathrm{~mA}$ and 0 mA . Note the prominent change in slope at 200 mA bias. In the test circuit the transistors are operated in the common emitter mode to enable the changes in the slope of the transfer characteristic to be seen more easily, but this does not alter the validity of the results since the effect of putting the load into the emitter circuit is only to provide local negative feedback. Under the same conditions a push-pull emitter follower using an output stage with the transfer characteristic of Fig. 2(b) will produce less distortion than a similar output stage with the transfer characteristic of Fig. 2(c).

To check this I constructed Mr. Linsley Hood's amplifier and measured the distortion at 200 mA and 20 mA bias current with a Marconi TF2330 wave analyser and TF2100/1M1 low-distortion oscillator. The results are shown in Fig. 3 and show clearly the improvement in distortion at intermediate output levels produced by the lower bias current. However, in spite of the excellent results obtained I would not advise constructors of this amplifier to use

a bias current as low as 20 mA as it tends to be rather unstable. A bias of 50 mA would be about the optimum and at this level there would still be a "hump" in the distortion curve but it would be smaller than at 200 mA bias and removed to a lower power level. I would also consider the use of a temperature compensating diode or transistor in the bias network strongly advisable, to minimize thermal variations.

Mr. Linsley Hood is also incorrect when he states that the emitter follower driver $T r_{3}$ presents the output transistors with a low source impedance. This would be true if it were not for the bootstrap capacitor which raises the effective value of the $6.8 \mathrm{k} \Omega$ load resistor in Tr_{2} collector to around $50 \mathrm{k} \Omega$. Thus the source impedance seen by the output transistors is about $1 \mathrm{k} \Omega$, i.e. about twice their input impedance with an 8Ω emitter load.

A further point concerns the current gain of the output transistors. The specified gain spread for the MJ481/MJ491 devices used is $30-200$ at 1 A . As only 40 mA is available from the driver stage the peak collector current with minimum gain devices is only 1.2 A . This corresponds to an output power of about 8 watts into 15Ω and 5 watts into 8Ω. To achieve the output power claimed by the author the output transistors need to have a minimum current gain of around 80 at 1 A . Perhaps the author could suggest alternative component values for those unfortunate enough to get low-gain transistors.

One last point. The author obviously attaches great importance to "squarewave transfer distortion" but he has not yet told us how he defines it. It is well known that any network, whether it be active or passive, that does not have a linear phase/ frequency characteristic will produce transient distortion of a square wave. Does the author consider that, for example,

Fig. 2. Transfer characteristics at 200 mA bias (a), 20 mA (b), and 0 mA (c). Vertical scale $500 \mathrm{~mA} /$ division, horizontal scale $500 \mathrm{mV} /$ division.

Fig. 3.

Distortion

Versus output power for bias currents of 200 and 20 mA (load 8 Ω, frequency $(\mathrm{kHz}$).
an $L-C$ filter with a sharp cut-off at 50 kHz would produce audible distortion? The ringing produced by such a filter would be very similar to that produced by an audio amplifier with a load of 15Ω and $2 \mu \mathrm{~F}$.
D. S. Gibbs,

Bury,
Lancs.
The author replies:
Mr. Gibbs' letter raises a number of interesting points, with some of which I concur. However, I regret that he has misunderstood the argument in some cases.

To take his points separately.

1. Optimum quiescent current: The fact that there is an optimum value of quiescent current in a class B output stage for minimum harmonic distortion is well known and is not in dispute. This optimum current depends, among other things, on the current gain of the output transistors (or the product of the current gains if a Darlington pair or a similar output stage configuration is used) and, to a first approximation, the higher the effective current gain of the individual halves of the output stage the lower the optimum value of quiescent current. From the figures Mr. Gibbs quotes it would seem that the transistors he chose for this experiment had a high value of current gain.

However, this is not the point. I believe that the bulk of normal listening is done with output power levels which are of the order of only $50-250 \mathrm{~mW}$, only the very occasional transients demanding power levels in the 1-2 watt region. I also believe that it is advantageous for the amplifier to operate in true class A bias conditions for normal listening power levels, in that this avoids most of the ill-effects which can arise in class B, for example due to mismatched output transistor characteristics. These ill-effects produce the bulk of the high order harmonic and intermodulation distortions which appear to be objectionable to the ear.

Therefore, the question is simply which output stage configuration will operate best overall, with a forward bias of say, 200 mA (this being chosen to allow class A operation up to 600 mW), 1.2 watts with 8-15 ohm loads. The simple complementary emitter follower combination appears to be the best one for this purpose.

The measurement of very low order harmonic distortion levels is difficult, and is influenced by such things as h.t. supply impedances, lead connections, etc. and I am grateful therefore to find that Mr. Gibbs' measurements confirm my own findings that such a design, with such an output stage and forward bias does not give rise to harmonic distortion levels in excess of 0.02%. My own subsequent measurements with a harmonic analyser show that the distortion produced in the 'hump' region is mainly 3rd harmonic, whereas the higher magnitude of distortion produced by a more conventional complementary Darlington pair biased to 200 mA , in a similar circuit, also contains more of these audibly objectionable higher order harmonics (see my Fig. A). Whether one has 0.015% or 0.005% t.h.d. is probably only of academic interest to the user.
2. Base-emitter impedance: For good high-frequency and transient performance it is desirable, I believe, that the impedance between base and emitter of the output transistors should be low. In the case of the class AB amplifier circuit, this condition is met by the 100Ω potentiometer, $400 \mu \mathrm{~F}$ combination connected between the bases of the two output stage transistors, since when one of these is cut-off the other is conducting and provides the necessary base-to-emitter return path. The use of a relatively high driver impedance is actually advantageous in minimizing harmonic distortion due to the transistor base impedance non-linearity.
3. Output power: The question of the range of current gains to be found with the MJ 481-491 series transistors has been raised before in different contexts in these columns. My own experience with quite a large number of these is that the lowest current gain encountered, at 1 A , is of the order of 75, and most, in fact, lie in the 100-150 bracket. However, this is not really an important limitation under dynamic conditions, because the effect of the bootstrap connection to the emitter load of Tr_{3} allows adequate drive current even with low-gain transistors.
4. Audible effects of transient overshoots on reactive loads: My experimental findings are that there is an occasional audible difference between an amplifier whose

Fig. A. Measurements of Class AB amplifier with 200 mA quiescent current and 15 restive load. Second harmonic distortion below 0.01\% was similar in both circuits.
stability under reactive load conditions is such that no overshoots are produced with a transient input and one which 'rings'. I do not think that this has anything to do with the nature of the h.f. response curve although it is evident that a 'ring' can be produced by a steep-cut low-pass filter. In the case of an audio amplifier driving a loudspeaker load, my own hypothesis is that some loudspeaker systems, under some dynamic conditions, can provide a negative reactive impedance, and this, however transitory, can exaggerate incipient reactive load instabilities present in the amplifier, and introduce spurious (and audible) waveform distortions.

I will take this opportunity of adding a personal note. In the original draft of my article, I walked into a philosophical boobytrap on the output power calculations, through overlooking the fact that current can flow both ways through the load. On subsequent consideration I became aware of this error, and the calculations shown in the Appendix 1 are correct. That part of the article relating to this -the last half of the third paragraph on page 322 -is however, in error. The values 1.2 W and 640 mW should be substituted for the 300 and 160 mW figures shown and the remaining 35 words of that paragraph deleted. I apologize to readers for this contradiction appearing in the text.
J. Linsley Hood.

Aerial noise

I wish to disagree with a statement made by your contributor P. G. Baker in the article "Aperiodic Loop Aerial" appearing in your May issue. He states, "The aerial output noise comes primarily from atmospheric and galactic sources hence the thermal noise introduced by the aerial radiation resistance is insignificant by comparison, provided the resistance is assumed to be at ambient temperature."

I suggest this conception is entirely erroneous. The noise temperature which can be allotted to a radiation resistance is that of the media to which it is coupled, the atmosphere and galaxy at the frequencies under discussion. Radiation resistance is not a physical resistance but a hypothetical one, generating no ohmic noise, but having a noise temperature due to its surrounding environment, which is usually considerably above earth ambient.

The only noise an aerial system can generate of itself, is that attributable to ohmic and dielectric losses in the aerial and feeder. As this noise contribution is of a considerably lower order than that resulting from external sources in the range up to approximately 30 MHz , it can usually be ignored for design purposes. Furthermore as external noise is of a higher order than receiver noise at these frequencies it will remain the limiting factor in signal resolution, even for aerials with relatively inefficient space coupling. H. F. LewIS,

Ealing.

London W.5.

Extend the range of your digital frequency meter to 100 MHz with this circuit which employs a tunnel diode and emitter-coupled logic

by D. R. Bowman, m.I.E.R.E.

A large number of digital frequency meters with a limited frequency range are in use in laboratories throughout the world and it is to extend the range of these instruments that the 100 MHz frequency divider described here has been developed.

The circuit consists of a wideband r.f. amplifier with gain extending from about 5 to 120 MHz followed by a very fast pulse squaring circuit which in turn feeds the logic divider stages as shown in Fig. 1.

At an early stage in the development it was decided to use integrated circuits wherever feasible. After a search of the literature it was decided to try the Motorola range of e.c.1.-2 (emitter coupled logic) for the frequency divider stages. To achieve the maximum toggle frequency from the JK flip flops the drive waveform must have rise and fall times each of equal to or less than 2 nsec . To achieve this performance it is necessary to use a tunnel diode in a waveform squaring circuit. The original intention was to divide the input frequency by ten (dotted Fig. 1) but this circuit was found to have a maximum frequency of operation of about 70 MHz . This frequency limiting is due to the low input impedance of the divide-by-five circuitry loading the first flip flop. The divide-by-ten instrument is somewhat cheaper than the 100 MHz divide-by- 100 design and may be constructed as an alternative. The maximum frequency of operation is obtained, and the maximum impedance is presented by the JK flip flops when they are connected as binary dividers. The 100 MHz , divide-by-100, design overcomes its frequency limiting problem by operating the first two stages as divide-by-two, followed by two divide-by-five sections.

Wideband amplifier

The tunnel diode pulse shaper requires a signal with an amplitude greater than 0.5 V to switch correctly. It was decided to design for a 10 mV sensitivity which dictates 40 dB of voltage gain for the amplifier. The use of voltage gain in this description can be justified as both the amplifier's input and output is terminated in 50Ω. The idea of using emitter coupled pairs with ferrite wideband coupling transformers originated from some earlier work carried out by the author*. The previous work demonstrated

[^6]the feasibility of u.h.f. amplifiers with very wide bandwidths. The requirement for the amplifier is a voltage gain of 40 dB with a bandwidth of 7 to 100 MHz .

Mullard manufacture a range of ferrite cores and it was decided to use type FX2249. These cores are small and exhibit very low losses up to at least 100 MHz . BFY90 transistors are used in the amplifier as they had been found to give repeatable results in this type of circuit. The minimum f_{T} value to be expected from BFY90 is in excess of $1,000 \mathrm{MHz}$. The emitter coupled circuit (Fig. 2) displays a very sharp limiting characteristic which gives the unit a very wide dynamic range.

The amplifier input is protected from damage that might be caused from large voltage swings by a silicon diode connected across the first emitter base junction. The
effect of this in conjunction with the base emitter diode of the first transistor is to limit the input signal to $\pm 0.5 \mathrm{~V}$. To maintain interstage stability it is essential to isolate each stage of amplification by using Filtercons to decouple the individual supply leads. Erie Filtercons consist of a pi low-pass filter constructed by using two concentric ceramic capacitors separated by a ferrite bead threaded on the supply carrying wire. As the attenuation of these components is low at frequencies below 10 MHz it is necessary to bypass each one with a $0.1 \mu \mathrm{~F}$ disc ceramic capacitor. It is found that the emitter follower stages of each transistor pair, due to the high f_{T}, can under certain drive conditions generate spurious parasitic oscillations. This difficulty has been eliminated by reducing the Q factor of the collector stray inductance circuit. Connect-

Fig. I. Block diagram of the divider. The section shown dotted will divide by a factor of ten and may be used instead of the full divide-by-100 circuitry, however the maximum operating frequency will be reduced to 70 MHz .

Fig. 2. Wideband amplifier circuit. The transformers are wound with 24 s.w.g. enamelled wire, primary three turns, secondary one turn.
ing small 10Ω resistors in series with the collector lead achieves this.

A second source of instability can occur in the stray inductance associated with the emitter circuit if the tail resistor has too high a resistance value.

The design of the ferrite transformers must take into account the performance at both ends of the frequency range. The 1.f. performance depends upon the inductive reactance, stray effects only becoming important at the high frequency cut off of the transformer. These stray effects are mainly due to leakage inductance and lumped capacitance, both of which must be minimized to achieve the required h.f. performance. Leakage inductance is kept to a minimum by winding the primary and secondary of the transformer in very close proximity. The wire length per turn should also be as small as possible. The care used has two holes through which the primary and secondary should both be threaded. As each hole is common to both primary and secondary of the transformer, little increase in performance is gained by bifilar winding and, as this would be rather tricky, the author suggests that no attempt is made to twist the two windings together. The results achieved using a turns rario of $3: 1$ are shown in Fig. 3. It is seen that the frequency response of the terminated transformer is substantially constant over the range of 0.5 to 60 MHz rising to a peak at 125 MHz . This peak tends to compensate for the amplifier's reducing gain with frequency rise.

The amplifier's performance using two of these wideband transformers to interspace the two emitter coupled amplifier stages is shown in Fig. 4. The gain is constant within $\pm 3 \mathrm{~dB}$ over the range of 7 to 90 MHz . The graph shown in Fig. 5 indicates the instrument's performance and it can be seen that the signal required to drive the unit is never greater than 10 mV .

Pulse shaper

Following the amplifier is a common base connected stage (Fig. 6) whose purpose is to drive the tunnel diode pulse shaper

Fig. 3. Performance of the transformer wound on an FX2249 ferrite core.

Fig. 4. Wideband amplifier gain plotted against frequency.

Fig. 5. Minimum input signal plotted against frequency.

Fig. 6. Pulse amplifier, tunnel diode pulse shaper and first divide-by-two stage.

circuit. Tunnel diodes make very fast switches and can be expected to operate with rise times of anywhere from 100 to 2000 picoseconds. This time is mainly determined by the shunt capacitance of the diode together with the magnitude of the trigger pulse current. A pulse which raises the current through the tunnel diode to greater than the peak current will switch the device from its "on" to "off" state. If alternatively the pulse reduces the standing current to less than the valley current the diode will switch back to its "on" state. This process is clarified by studying the characteristic illustrated in Fig. 7. Diode switching time is defined as the period required for the voltage across the diode to rise from 10% to 90% of its maximum value.

This time t_{r} is derived as follows:

$$
t_{r}=\frac{\left(V_{p p}-V_{p}\right) C}{\left(I_{p}-I_{v}\right)} \sec
$$

where:
$C=$ the terminal valley-point capacitance. $V_{p p}=$ the positive voltage greater than V_{v} at which the static current I_{f} is equal to the peak-point forward current I_{p}.
$V_{p}=$ peak-point voltage where $\mathrm{d} I_{f} / \mathrm{dV}=0$ for the first time.
$I_{p}=$ the peak-point current occurring with V_{p} above.
$I_{v}=$ valley-point current. The value of forward current I_{f} flowing at the second lowest positive voltage V at which $\mathrm{d} I_{f} / \mathrm{dV}=0$.
Therefore the rise time for the diode used
(R.C.A. type 40566) is as follows:

$$
\begin{aligned}
t_{r} & =\frac{(0 \cdot 56-0 \cdot 09) 15 \cdot 10^{-12}}{(5-0 \cdot 6) \cdot 10^{-3}} \mathrm{sec} \\
& =\frac{0 \cdot 47 \cdot 15 \cdot 10^{-9}}{4 \cdot 4} \approx 1 \cdot 5 \cdot 10^{-9} \mathrm{sec} \\
t_{r} & =1 \cdot 5 \mathrm{~ns}
\end{aligned}
$$

This time is well within the 2 ns required to drive the first logic stage.

Divider stages

Both the MC1013 and MC1027 integrated circuits employed are from the Motorola high speed e.c. 1.-2 family. The MC1027 JK flip flop is guaranteed to toggle at frequencies up to 120 MHz although the author did experience some difficulty with this device above 100 MHz . The MC1013 toggled satisfactorily up to at least 85 MHz . These integrated circuits are intended for use with a negative 5.2 V supply and in the interest of maximum speed all unused input leads should be shorted to this line. A far simpler approach used by the author is to mount the dual-in-line devices on to copper laminated fibreglass board and by connecting the negative supply to earth all unused inputs can be simply soldered down to the earth plane. This does of course mean that $V_{c c}$ pin 14 must be used as the positive 5.2 V input terminal. This results in the logic input levels being referred to the $+5 \cdot 2 \mathrm{~V}$ line, but this difficulty is easily overcome by referring the tunnel diode pulse squaring network to the positive rail. It has been found that the integrated circuits
will operate quite satisfactorily with supply voltages anywhere between 3 and 6 V . The maximum toggle speed of 105 MHz is achieved by the author's unit with $\mathrm{a}+3.9 \mathrm{~V}$ supply.
The MC1027 and MC1013 devices are basically binary dividers and a form of feedback has to be employed to divide by five. The circuit of the counter is shown in Fig. 8. The output is taken from Q on IC_{7} giving a mark-space of $2: 3$ which will drive all digital frequency counters without any difficulty. A truth table for one divide-bytwo and one divide-by-five stage is given in table one. As the fanout of these logic blocks is adequate to drive a $2-\mathrm{ft}$ long coaxial cable leading to the associated counter the author
has not included a post divider amplifier. The output pulse has an amplitude of at least 0.3 V peak-to-peak.

Performance

The top three traces shown in Fig. 9 are oscilloscope pictures depicting the tunnel diode switching waveforms appearing at the input to the first logic divide-by-two stage. The first trace has a frequency of 100 MHz (10 nsec per cycle). The switching time is very short, of the order of 2 nsec . The second and third traces show similar waveforms of 55 and 10 MHz respectively. These waveforms were displayed using a Tektronix sampling oscilloscope with an effective
bandwidth of 1 GHz . The lower three traces show the output waveforms associated with the previous logic drive traces. These were displayed on a Tektronix 545B oscilloscope. The unequal mark-to-space ratio of the output signal is evident in these last three photographs, but has no detrimental effect on the following counter.
The frequency divider has been used to extend the operating frequency range to 100 MHz of both a Racal SA535 and a Venner TSA6636/2 digital counter. The minimum frequency at which the unit will reliably divide is about 4 MHz . Over the design range of 10 to 100 MHz the sensitivity is never worse than 10 mV across a 50Ω input termination. As the total component

Table 1

state	IC	IC	IC	IC
	1	2	3	4
0	0	0	0	0
1	1	1	0	0
2	0	1	0	0
3	1	0	1	0
4	0	0	1	0
5	1	1	1	0
6	0	1	1	0
7	1	0	0	1
8	0	0	0	1
9	1	0	0	0

Fig. 7. The static forward characteristic of a tunnel diode. $E_{B}=$ steady-state load line, $E_{B}+E_{p}=$ positive pulse level, $E_{B}=$ negative pulse level. Output pulse height $=2 E_{p}$.

Fig. 8. The logic circuit diagram. The first divide-by-two stage is on the pulse shaper circuit.

Fig. 9. Waveforms within the unit. The top waveforms are inputs to the divider and the lower traces are outputs.
cost of the instrument does not exceed $£ 20$ a considerable saving should be achieved as an equivalent performance commercial instrument is likely to cost upwards of $£ 120$.

Power supply

The power supply described here is a "universal" one based on a standard printed circuit board.* A version is described which will power the frequency divider, but the circuit can be used to supply any voltage from 3 to 30 V at up to 100 or 200 mA . If an "outboard" power transistor is employed the output current is increased to 3 A .

The basic circuit (Fig. 10a) consists of a differential transistor pair with one input tied to the stabilized supply output voltage with the other referred to a zener regulated reference voltage. The current flowing in the collector circuit of the zener diode stabilized transistor Tr_{2} is used to drive the series connected stabilizing device Tr_{1}. On no load I_{3} flows almost entirely through Tr_{3}, but as the load current increases I_{3} is divided between $T r_{2}$ and $T r_{3}$. As the load is further increased I_{2} becomes progressively larger until $I_{2}=I_{3}$. At this point Tr_{3} refuses to supply any further current as its base voltage is tied by the zener diode Z and more current would mean an increase in the potential across R_{2}, thus further switching off T_{2}. At this point $V_{\text {out }}$ begins to drop and the zener diode loses control further reducing the output voltage until the supply finally switches off. The fold-back characteristic is shown by both Figs 11 and 12. The circuit's voltage stabilizing action can be explained as follows. Assume a small reduction in load voltage which will, though
reduced in amplitude, be transferred to the base of $T r_{3}$. This will produce a small reduction in the emitter current of Tr_{3}, and as R_{2} is common to both $T r_{2}$ and $T r_{3}$, the emitter current of the former will increase. This increment in I_{2} will produce a current β times as great in I_{1}, thus restoring the load voltage.

Performance

The prototype provided the following performance figures which are by no means the best that can be achieved: 0 to 100 mA regulation $>1 \%$; ripple voltage $<1 \mathrm{mV}$ r.m.s.; output impedance $<1 \Omega$. 0 to 1 A version, regulation $>1 \%$; ripple voltage $<3 \mathrm{mV}$ r.m.s.; output impedance $<0.2 \Omega$. The circuit of the power supply for the frequency divider is shown in Fig. 13 and the layout is given in Fig. 14. It will be noticed that the common resistor R_{2} has been replaced by a potentiometer and a fixed resistor in series. Although not absolutely necessary it does allow the cut out current to be set accurately. The BD123 power transistor can be expected to exhibit a current gain of at least two even at 30 MHz . To avoid any suspicion of h.f. instability a limiting capacitor should be connected across the base to collector of $T r_{4}$. It will be found that the voltage control potentiometers R_{8} and R_{15} have an extended range which can be used to obtain best overall divider performance.

Design procedure for a power supply giving other voltages

If the power supply is to be used for other than the frequency divider then decide on

Fig. 10. (a) power supply basic circuit, (b) modification to increase current output.

Fig. 11. Input and output characteristics of the power unit. $100 \mathrm{~mA}, 9 \mathrm{~V}$ version.

Fig. 12. Input output characteristics of 1 A output version.
former and full-wave rectifier) at no load and full load. Layout as in Fig. 15.

Example one

Full load current $I_{1}=100 \mathrm{~mA}$; cut-out current $=400 \mathrm{~mA}$.
Let $V_{\text {out }}=9 \mathrm{~V}$
Then choose $Z \bumpeq 2 / 3 V_{\text {out }}=6 \mathrm{~V}$
Assume $\operatorname{Tr}_{1} \beta=50$ (BFY50)
and $T r_{2}, \operatorname{Tr}_{3} \beta=100$ (2 N 3702)
Full load $I_{2}=I_{1} / \operatorname{Tr}_{1} \beta$

$$
=\left(100 \times 10^{-3}\right) / 50=2.10^{-3} \mathrm{~A}
$$

Maximum Tr_{2} base current

$$
\begin{aligned}
& =I_{2} / \operatorname{Tr}_{2} \beta \\
& =\left(2 \times 10^{-3}\right) / 100=0.02 .10^{-3} \mathrm{~A}
\end{aligned}
$$

The minimum zener current for good stabilization is about 1 mA :
Let zener current $I_{6}=2 \mathrm{~mA}$

$$
\begin{aligned}
R_{1} & =\left(V_{\text {out }}-V_{z}\right) / I_{6} \\
& =(9-6) / 2 \cdot 10^{-3}=1.5 \mathrm{k} \Omega
\end{aligned}
$$

Decide upon required cut out current:

$$
\begin{aligned}
I_{\max } & =400 \mathrm{~mA} \\
R_{2} & =\operatorname{Tr}_{1} \beta\left(V_{z}-0 \cdot 5\right) / I_{\max } \\
& =50(6-0 \cdot 5) / 0 \cdot 4=690 \Omega \\
I_{3} & =\left(V_{z}-0 \cdot 5\right) / R_{2} \\
& =(6-0 \cdot 5) / 690=8 \cdot 10^{-3} \mathrm{~A} \\
I_{4} & =I_{3} / \operatorname{Tr}_{3} \beta \\
& =8.10^{-3} / 100=80.10^{-6} \mathrm{~A}
\end{aligned}
$$

If Tr_{3} base voltage is to remain substantially constant then I_{5} must be at least twenty times I_{4}; let $I_{5}=2 \mathrm{~mA}$
Total divider

$$
\begin{gathered}
R V_{1}+R_{3}=V_{\text {out }} / I_{5} \\
=9 / 2.10^{-3}=4.5 \mathrm{k} \Omega \\
R V_{1}=2.5 \mathrm{k} \Omega \quad \\
R_{3}=2.2 \mathrm{k} \Omega
\end{gathered}
$$

Under certain conditions this circuit will not switch on. To correct this deficiency R_{4} is connected across Tr_{1}. The value of R_{4} is dependent upon the load at the instant that the supply is switched on. If the value chosen is such that with Tr_{1} switched off the load is great enough to keep $V_{\text {out }}$ below about 1 V then the power supply will remain in a paralysed state. With $V_{\text {out }}$ less than 1 V $T r_{2}$ and $T r_{3}$ will be cut off thereby starving Tr_{1} of base current and the only
 divider. i.e. 90Ω. Therefore assuming a linear related load at 1 V output:
Load current

$$
\begin{aligned}
& =1 V\left(R V_{1}+R_{3}\right)+\left(1 V . J_{1}\right) / V_{\text {out }} \\
& =1 / 2.10^{-3}+(1 \times 0 \cdot 1) / 9=12.10^{-3} \mathrm{~A}
\end{aligned}
$$

Refer to Fig. 11. For a load current of 12 mA the input unstabilized potential is 19 V
$R_{4}=\left(V_{\text {in }}-1\right) /$ Total load current

$$
=(19-1) / 12 \cdot 10^{-3}=1 \cdot 5 \mathrm{k} \Omega
$$

Example two

Full load current $I_{1}=1$ A. Cut-out current $=2 \mathrm{~A}$.
$T r_{4}$ transistor type $\mathrm{BD} 123, \beta=20$
$R_{2}=\left[\left(V_{z}-0.5\right) \operatorname{Tr}_{1} \beta \times \operatorname{Tr}_{4} \beta\right] / I_{\max }$

$$
=[(6-0.5) 50 \times 20] / 2=2.75 \mathrm{k} \Omega
$$

There is no need to alter the component values derived in the first example with the exception of removing R_{4} and installing R_{5} as shown in Fig. 10(b)

Full load current $=1 \mathrm{~A}$
At $V_{\text {out }}=1 \mathrm{~V}$
Load current

$$
\begin{aligned}
& =1 \mathrm{~V} /\left(R V_{1}+R_{3}\right)+\left(1 \mathrm{~V} . I_{1}\right) / V_{\text {out }} \\
& =1 / 2.10^{-3}+(1+1) / 9=0 \cdot 1115 \mathrm{~A}
\end{aligned}
$$

Refer to Fig. 12. Unstabilized input voltage is 17 V at a load current of 0.1 A .
$R_{5}(17-1) /$ Total load current

$$
=16 / 0 \cdot 11=150 \Omega
$$

make $R_{5}=129 \Omega$
Note:
$T r_{4}$ must be adequately heat sinked.

REFERENCE

. Bowman, D. R., " 600 MHz intermediate frequency amplifiers", Electronic Engineering, August 1970.

Fig. 14. Layout of power supply on standard board, frequency divider unit version.

Fig. 15. Layout of power supply for other purposes.

Transient Trinity

Walkabout with Fourier, Laplace and Cauchy

by Thomas Roddam

One of the oddest features of the world of electronics engineers is the reluctance of many of them to do any mathematics. In large companies this does not show up very much, because the jobs are carved up into neat segments and the basic analysis is done by men who never even look at a soldering iron. In small companies it is a very different story, and one hears tales of some very rum goings-on indeed. The great advantage of the theoretical approach is that it is so much easier and quicker. The problem is that more and more of the literature is devoted to the reporting of new and highly sophisticated techniques. Now you need to run as fast as you can and you still will not stay where you are. And if you weren't anywhere in particular to begin with you do not know which way to run.

In this group of articles I have tried to look at some of the basic ideas and to follow where they led me. By asking what a capacitor and an inductor actually do I found why we use sine waves and why the damped sine wave is the real basic signal in our world. This led on to the idea of roots, the set of labels which characterize every circuit. There remains one topic which must be explored. In an article on transient response I took what may be called a fundamentalist approach. Now it seems appropriate to see how the formal treatment of transient behaviour has evolved.

Fourier analysis is the basis for something we do every day. We test circuits with sine waves and we assume that the results are meaningful when applied to practical signals. Practical signals are rarely longsustained sine waves. The reasoning behirid our behaviour is based on the Fourier series and on the principle of superposition. We start off by writing the series

$$
\begin{aligned}
& \frac{a_{0}}{2}+\left(a_{1} \cos x+b_{1} \sin x\right) \\
& \quad+\left(a_{2} \cos 2 x+b_{2} \sin 2 x\right)+\ldots \\
& \left(a_{n} \cos n x+b_{n} \sin n x\right)+\ldots
\end{aligned}
$$

It is assumed that the series converges uniformly when $0 \leqslant x \leqslant 2 \pi$. This amounts to saying that there are certain ground rules which must be obeyed, or the pure mathematicians will get you. What happens in a Cup Final, apart from a riot, if the ball bounces off a low-flying helicopter into the net? I haven't thought too much about this, but I do not think one can construct, with
real components, a non-convergent series signal. Strays will always save you. However, that's the rule, and if the function obeys it, it will converge uniformly for all values of x. It will also satisfy the equation:

$$
f(x)=f(x+2 \pi)
$$

From this it follows that

$$
\begin{aligned}
& f(x+2 \pi)=f(x+4 \pi) \\
& f(x+4 \pi)=f(x+6 \pi)
\end{aligned}
$$

and so on. It is, in fact, a periodic function with a period of 2π. When we write $x=\omega t$, it is periodic in $\omega \mathrm{t}$, and the period is $t=2 \pi / \omega$, or l / f.

In plain English, always dangerous in dealing with mathematical situations, a wave form which is periodic can be represented by a set of sine and cosine waves. The superposition principle says that if we have a linear system we can treat each of these separately and then add them up at the end. In a decent sound reproducing system you can take the signals from a number of instruments, apply them all to the input together, and you should still be able to tell the difference between a flute and a fiddle at the end. If the system is not linear each signal affects the progress of the others.

The mathematician shows us how to find the coefficients. We can write down $f(x)=a_{0} / 2+\left(a_{1} \cos x+b_{1} \sin x\right)$ etc., and multiply both sides by, say, $\cos n x$. This gives a rather long expression, containing terms of the forms

$$
\cos n x \sin m x, \cos n x \cos m x
$$

Now either $m=n$ or $m \neq n$. If $m \neq n$ we can show that

$$
\begin{array}{r}
\quad \int_{0}^{2 \pi} \cos n x \sin m x d x=0 \\
\text { If } m=n, \quad \int_{0}^{2 \pi} \cos ^{2} n x=1 / \pi
\end{array}
$$

Applying this to the series we get, rather simply

$$
\int_{0}^{2 \pi} f(x) \cos n x d x=\pi a_{n}
$$

and a similar term with $\sin n x$ if we multiply through by $\sin n x$:

$$
\int_{0}^{2 \pi} f(x) \sin n x d x=\pi b_{n}
$$

Very often we can carry out the calcula-
tions using just a slide rule. One simple example is if we want to know how much third harmonic there is in a square wave. The function $f(x)$ is 1 for $0-\pi$ and -1 for $\pi-2 \pi$. The integral for the third harmonic is seen at once to be one-third of that for the fundamental.

What we said above was that we start with a series, and go on to call it $f(x)$. When we start with $f(x)$ we can write down a Fourier series. The rule is that $f(x)$ and $d f / d x$ must be, as they say, piecewise continuous. This does not mean it cannot have any jumps in either $f(x)$ or $d f / d x$. It really means it must not be all jumps. Anyone who has seen the news reports coming in by teleprinter knows the difference between the odd letter that went wrong and the whole paragraph of total confusion. At any jump it is assumed that as $f(x)$ jumps from f_{1} to f_{2} it touches down to make

$$
f\left(x_{0}\right)=\left(f_{1}+f_{2}\right) / 2
$$

The elegant form of Fourier is obtained by writing

$$
\cos n x+j \sin n x=\exp (j n x)
$$

Then

$$
f(x)=\sum_{n=-\infty}^{\infty} C_{n} \exp (j n x)
$$

with $C_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) \exp (-j n x) d x$
Here n goes from $-\infty$ through 0 to $+\infty$.
Suppose we have a non-periodic waveform of the kind shown by the heavy line in Fig. 1. We are, however, only interested in what happens during a limited time, evenly spaced round the mid-morning coffee-break at $t=0$. We begin to observe the function at $t=-\pi / \Omega$, and stop at $t=\pi / \Omega$. With a bland smile we say it could just be repeating the bit we have observed, for all we care. It could, in fact, be the wave-form $\delta(t)$. I am not going to write down the mathematics, which contains double integrals and is the sort of thing which discourages the reader. The thing is that by manipulating the solution one can arrive at a pair of equations:

$$
\begin{aligned}
& f(t)=\int_{-\infty}^{\infty} F(j \omega) \exp (j \omega t) d \omega \\
& F(j \omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(t) \exp (-j \omega t) d t
\end{aligned}
$$

This nicely balanced pair is called a pair of Fourier transforms, and it relates the whole time history of the waveform to an infinite range of frequency, both negative and positive frequencies, of course. We can get rid of the negative frequencies, which appear in order to fill in the phase angles, by writing

$$
\begin{aligned}
& f_{1}(t)=\frac{1}{2}[f(t)+f(-t)] \\
& f_{2}(t)=\frac{1}{2}[f(t)-f(-t)]
\end{aligned}
$$

and then

$$
\begin{aligned}
F(j \omega)= & \frac{1}{2 \pi} \int_{0}^{\infty} f_{1}(t) \cos \omega t d t \\
& -\frac{j}{2 \pi} \int_{0}^{\infty} f(t) \sin \omega t d t
\end{aligned}
$$

There is a mate in which we find f_{1} and f_{2} with an integration of ω from 0 to ∞.

This continuous pattern is the Fourier Integral. To use it we assume that for the system with which we are concerned we know the frequency response in the form of the ratio of detected current to applied voltage for sinusoidal inputs at all frequencies: the frequency response, in fact. We write

$$
I(j \omega)=Y(j \omega) E(j \omega)
$$

Now we take some applied signal $f(t)$. We can find $E(j \omega)$ by means of the equation

$$
E(j \omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(t) \exp (-j \omega t) d t
$$

Multiply by $Y(j \omega)$ to get the solution $I(j \omega)$. Now write

$$
I(t)=\int_{-\infty}^{\infty} I(j \omega) \exp (j \omega t) d t
$$

and we know the time response to the input, expressed also as a time function.

It's a lot of work, it does not take account of initial conditions, and for a unit step there are convergence troubles. Heaviside did not worry about convergence, and although he usually got the right answer his contemporary mathematicians were so indignant about his informality that they refused to consider just why this was so. On the other hand he was not too fussy about the order in which he differentiated and integrated, which landed him in trouble with his initial conditions.

When we introduced the idea of complex frequency it became clear that the pure sine wave is really an oddity. Over the whole complex frequency plane there is just that one line on which there is neither damping nor growth. In a passive system there must be some loss: the frequencies must die away. Mathematical solutions are always easier if we can keep away from special situations:
reserve these for dealings on the Stock Exchange. The more elegant approach is the more realistic. First of all, we are in charge. Until we decide to switch on at $t=0$, the excitation $e(t)=0$. Secondly we write

$$
s=\alpha+j \omega
$$

We determine a function

$$
E(s)=\int_{0}^{\infty} e(t) \exp (-s t) d t
$$

This is almost the same as we had before, but now we have put $\alpha+j \omega$ where he had $j \omega$, and we drop the integration from $-\infty$ to 0 because $e(t)$ is zero before $t=0$. Also the $1 / 2 \pi$ is omitted. This is written as

$$
E(s)=\mathscr{L}[e(t)]
$$

and is called the Laplace transform of $e(t)$. The use of the complex frequency makes it possible to control the convergence of the integral. Obviously one can work the other way round, and in quite a few reference books you will find tables of Laplace transforms. I have picked out a few only:

$$
\begin{array}{cc}
f(t) & \mathscr{L}[f(t)] \\
\varepsilon^{-\alpha t} & \frac{1}{s+\alpha} \\
t \varepsilon^{-\alpha t} & \frac{1}{(s+\alpha)^{2}} \\
\frac{1}{a-b}\left(\varepsilon^{-b t}-\varepsilon^{-a t}\right) & \frac{1}{(s+a)(s+b)} \\
\frac{1}{b} \varepsilon^{-a t} \sin b t & \frac{1}{(s+a)^{2}+b^{2}} \\
\sin \omega t & \frac{\omega}{s^{2}+\omega^{2}} \\
\cos \omega t & \frac{s}{s^{2}+\omega^{2}} \\
\left(\varepsilon^{-\alpha t} \text { as } \alpha \rightarrow 0\right) & \frac{1}{s}
\end{array}
$$

Without going into too much detail, suppose that we apply a signal $e(t)$ to an $L C R$ circuit. We can write, and initial charge is neglected,

$$
E(s)=I(s)\left(s L+R+\frac{1}{s C}\right)
$$

and $\quad E(s)=\mathscr{L}[e(t)]$
If $e(t)$ is, say, 1 volt of d.c. switched in at $t=0$

$$
\begin{aligned}
E(s) & =1 / s \quad \text { and so } \\
I(s) & =\frac{1}{s}-\frac{s}{s^{2}+(R / L) s+1 / L C} \cdot \frac{1}{L C}
\end{aligned}
$$

Fig. 2. Only on the ω axis is there a pure sinusoid.

$$
=\frac{1}{L C} \cdot \frac{1}{s^{2}+(R / L) s+1 / L C}
$$

If we extract the roots of

$$
s^{2}+(R / L) s+1 / L C=0
$$

we find that we have either

$$
\frac{1}{(s+a)(s+b)} \text { or } \frac{1}{(s+a)^{2}+b^{2}}
$$

Now we transform back to get

$$
\begin{aligned}
i(t)= & \text { either } \kappa(\exp (-b t)-\exp (-a t)) \\
& \text { or } \kappa \exp (-a t) \sin b t
\end{aligned}
$$

Not much gained over a formal full analysis, you may think. But if there are a lot of roots it becomes rather easier this way. You find the roots and then break the whole thing up into separate functions which are transformable. This is simpler in practice because it is a routine and can be performed without thinking about decisions. There are many situations in which the advantages show up even more strongly. If you are studying the transient behaviour of filters you will have designed your filter in terms of its roots: you know the roots, not the frequency response, function-wise, that is. Of course your tables relate one to the other. But you are half-way towards this approach as soon as you decide between Tchebycheff and Butterworth. Active systems which are being handled by the root locus method are also easily studied to see how transient response changes as the roots are moved about.

Another important feature of the Laplace transform must be considered. We have seen that it enables us to dodge backwards and forwards between responses on the time axis and responses in the complex frequency plane. The mathematics is quite rigorous and has nothing to do with what we call the symbols. The reason for using rigorous mathematics is simply that it is easier, as you do not need to check up. Non-rigorous mathematics is like working out $2 \times 2=3.99$ on the slide-rule: you need to keep thinking. We can give the symbols different names, provided the basic equations are suitable. One such pair of names can be found in the design of aerial systems. I am not going into any detail, but a uniformly illuminated slot transforms, just as an ideal low-pass filter does, into a $(\sin x / x)$ response. Instead of the ringing of the time response we have the side-lobes of the space response. Just

Fig. I. Non-periodic waveform (heavy line) of which part under observation, $-\pi / \Omega$ to π / Ω, could belong to a periodic waveform.
as we can shape the frequency response to reduce ring, so we shape the illumination to reduce side-lobes. The advantages are tremendous. Measurements on a practical aerial must be carried out in the open on a wet and windy day. This is an observed fact, lacking theoretical justification. Mathematics is an indoor sport. It is also a set of general-purpose tools.

The search for flexibility goes one stage further. At first it looks as though it took one step back. The Laplace transformation equation can be written as

$$
F(s)=\int_{0}^{\infty} f(t) \exp (-s t) d t
$$

and the rule is that $f(t)=0$ if $t<0$. It will not matter, therefore, if we change the integration limits and take

$$
F(s)=\int_{-\infty}^{\infty} f(t) \exp (-s t) d t
$$

Next we fix α at α_{1} into expression $s=\alpha+j \omega$, and we call this version of F

$$
\begin{gathered}
F^{\prime}(s)=\int_{-\infty}^{\infty}\left[f(t) \exp \left(-\alpha_{1} t\right)\right] \\
\exp (-j \omega t) d t
\end{gathered}
$$

Compare this with the Fourier form

$$
F(j \omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(t) \exp (-j \omega t) d t
$$

The $1 / 2 \pi$ factor is simply the result of the pure mathematician's taking over. The inverse equation gives us

$$
\begin{aligned}
& f(t) \exp \left(-\alpha_{1}^{t}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F^{\prime}(j \omega) \\
& \exp (j \omega t) d \omega
\end{aligned}
$$

We are allowed to move the $\exp \left(-\alpha_{1} t\right)$ term, because we are integrating with $d \omega$, and so

$$
f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F^{\prime}(j \omega) \exp \left(\alpha_{1}+j \omega\right) t d \omega
$$

Finally we change variables, putting back $s=\alpha_{1}+j \omega$, and thus

$$
d s=j d \omega \quad d \omega=(1 / j) d s
$$

We emerge with

$$
f(t)=\frac{1}{2 \pi j} \int_{\alpha_{1}-j \infty}^{\alpha_{1}+j \infty} F(s) \exp (s t) d s
$$

Fig. 3. The integration path for

$$
f(t)=\frac{1}{2 \pi j} \int_{\alpha_{1}-j \infty}^{\alpha_{1}+j \infty} F(s) \exp (s) d s
$$

Fig. 4. At every point $f(z)=f(x+j y)$ is analytic and single-valued. Then $f(z) d z=0$ as you go round from P back to P.

Fig. 5. Three-dimensional view of a function which, even if you smooth out the steps, is not analytic.

A good many readers will have regarded all this as a pretty complicated ritual. The object of going through the formality is to have this last expression to talk about, and to help to identify the fuller treatment you can find in the textbooks. In the expression above we integrate along the line shown in Fig. 3. For each value of s we work out $F(s) \exp (s t)$, multiply by $d s$ and sum. We choose α^{1} to have a value which makes this a meaningful procedure. But are we any better off.

At this point we introduce one of those odd bits of mathematics which crop up all over. This is Cauchy's Theorem. This says that if you integrate round a contour, and if, in formal language, the function is analytic and single-valued everywhere inside and on the contour,

$$
\int_{C} f(z) d z=0
$$

Another bare diagram, Fig. 4. If you walk to work and back by a different route, without falling through an open man-hole, you finish up at the same height above sealevel. If you cycle it does not feel like this, and if you find a function like Fig. 5 you know it can't be analytic, even if steps are replaced by a ramp.

Cauchy's theorem, simple as it looks, is tremendously important in the theory of the complex variable - in our case the theory of complex frequencies. In consequence it must be proved with the utmost vigour and the proof is not too easy. We shall not bother with it here. What we want is this result that if you walk round a perimeter and there is nothing odd going on inside it you get back to where you started.

We were integrating along the line $s=\alpha_{1}$. If we close the ends by a semi-circle joining ω_{1} to $-\omega_{1}$ and integrate round the
whole loop, Cauchy's theorem tells us that if there are no poles inside the area the integral will be zero. We choose α_{1} to make sure that this is true. This integration round the right-hand semi-circle is used for the response when $t \leqslant 0$. When the radius of the semi-circle is allowed to approach infinity, the integral along the semi-circle is also zero. This last statement is also true for integration along the semi-circle to the left, which we shall follow for $t \geqslant 0$. Now, however, the integral round the contour is no longer zero. Inside the contour there are poles, as we see in Fig. 7. Again the integral is zero round the semi-circle, when it is big enough, but the integral we really want is still left.

First of all, what can we do to make use of the properties of the contour integral? In Fig. 8 we see a pole, P, and a biggish circular contour round it. At $A B$ we snip the contour and go off from B down to C, round the small circle to D, and then back to A. The pole is no longer inside this new contour and so the integral round it must be zero. $B C$ and $D A$ are very close together, and the integrals along these bits cancel out. The integral round the full big circle must therefore equal the integral round the small circle. We can do this with each pole, and we finish up by having small circles round the poles and zero for the rest of the contour integral.

We need to know a specific contour integral,

Fig. 6. Closing the path C_{1} with a semicircle C_{2}.

Fig. 7. Inside this contour are poles. Here be singularities.

Fig. 8. Isolating a pole.

For $m \neq 0$ this is zero, but if $m=0$,

$$
\begin{gathered}
\int_{c^{z}} \frac{d z}{z}=2 \pi j \\
\text { and equally } \int_{c} \frac{d z}{z-a}=2 \pi j
\end{gathered}
$$

We have embarked on what is called the calculus of residues. Suppose that we have a double pole at $s=-a$. This means that $F(s)$ contains a term $A /(s+a)^{2}$. The function we are integrating is then $\exp (s t) /(s+a)^{2}$, and we turn this into a series for values of $s \simeq a:$

$$
\begin{aligned}
\frac{\exp (s t)}{(s+a)^{2}}= & \frac{a_{-2}(t)}{(s+a)^{2}}+\frac{a_{-1}(t)}{s+a} \\
& +a_{0}(t)+\text { terms in }(s+a)^{n}
\end{aligned}
$$

The residue of the function at $s=-a$ is $a_{-1}(t)$. This means that

$$
\int_{c} A \exp (s t) /(s+a)^{2} \cdot d s=a_{-1}(t) \times 2 \pi j
$$

To make life easier, we have an expression for the residue:

$$
a_{-1}(t)=\frac{1}{\lfloor n-1} \cdot \frac{d^{n-1}}{d s^{n-1}} \cdot \exp (s t)
$$

$$
\text { with } s=-a \text {. }
$$

For $n=2 \quad a_{-1}(t)=t \exp (-a t)$.

$$
f(t)=A t \exp (-a t)
$$

The prospect of being hanged in a fortnight concentrates a man's mind wonderfully. This article is not a "how to fix your own operational calculus", but a "what's it all about". We begin with a network, a system, and we want to know how it behaves with real signals. The sine wave is a nice simple signal and so we try to build up our real signal with pure sine waves. On paper it is quite satisfactory. We call it Fourier analysis, and go gaily ahead until some awkward details appear. All the mathematics is based in eternity. We switched on yesterday and may not switch off tomorrow. If we get an infinite of circuit, a pole on the $j \omega$ axis, we can't be too sure what to do.

The mathematics is manipulated to make it more clearly defined, and to allow us to start up today, at $t=0$. The frequencies we use are still on a line, but we can move it sideways to dodge trouble. We hardly know we have done this, because we can choose any line to the right of a critical one, and our choice disappears anyway in the table of Laplace transforms.

To widen our scope we consider what happens with every possible complex frequency, varying both α and ω. Cauchy's theorem leads us on to the conclusion that now we need only look at the poles themselves. The broadest possible input signal concentrates attention on the minimum number of points. All we need is a table of residues:

Nyquist's criterion in feedback amplifier theory, especially when dealing with conditional stability. This leads on to the rules for dealing with negative resistance circuits. Like sodium glutenate, Cauchy's theorem seems to be in everything nowadays.

Some engineers seem to consider mathematics as too detached from real work. It is quite profitable, even for the so-called

	$\exp s t / s$	$\exp s t / s^{2}$	$\exp s t /(s+a)$
Residue	$\exp s t /(s+a)^{2}$		
1	t	$\exp (-a t)$	$t \exp (-a t)$

and we can work out the transient response. The hard work comes in getting to grips with the procedure, once and for all. It is true to say that solving problems this way is cheaper by the dozen.

Cauchy's theorem can be extended to deal with contours which go round a given point several times, and which include poles and zeros. This is the theoretical basis for

Announcements

The Electrical Research Association's Circuit Design Department has initiated a return-of-post information service on techniques and components. A consultancy service is also available to clients who wish to discuss specific design and application problems. All enquiries should be addressed to Colin Ray, Design Information Engineer, E.R.A., Cleeve Road, Leatherhead, Surrey.

Centralab Ltd, of Co. Antrim, Northern Ireland, jointly owned by Joseph Lucas (Industries) Ltd and Globe Union Inc. of Milwaukee, U.S.A., has acquired the whole of the issued capital of Stability Radio Components Ltd and its subsidiary Stability Capacitors, of Basildon, Essex, at a price of approximately $£ 727,000$.

Pye have relinquished the Ferranti trade mark for radio and television products, and the right to use the name has been returned to Ferranti Ltd, of Manchester.

Tele-Nova Lid, a company in the Shipton Automation Group, have signed a further agreement with Hasler Ltd, in Berne, Switzerland, for the sale in the U.K. and Eire of Hasler radio staff location systems.

The Telephone Manufacturing Co. Ltd has been appointed sole marketing agent in the U.K. for the range of switch and light units manufactured by the Dialight Corporation, of America.

An agreement has been signed between Cossor Electronics Lid, of Harlow, Essex, and the Raytheon Service Company, of Massachusetts, to market the full range of Cossor oscilloscopes in the United States.

Guest International Ltd announce that Best and Raynor have ceased to act as their distributors. Full stocks are still being held by the company's other distributors: GDS (Sales) Ltd., G.S.P.K. Ltd., and E.C.S. (Windsor) Ltd.
practical man, to get some idea of these theoretical techniques. Even if you are going to look at the responses on an oscilloscope, a knowledge of the underlying theory will save an awful lot of wasted effort by suggesting which way to vary components to get the cut-and-try answer. Who knows, in the end you may realize that it's easier to do the job properly from the beginning.

Daystrom Lid, of Gloucester, manufacturers of the Heathkit range of products, have changed the name of the company to Heath (Gloucester) Ltd.

The former range of Dansette and Perdio record reproducers, radiograms and audio equipment is now being manufactured and marketed under the trade name of "Tonesta". Electro-Impex, of 4 Carlisle Avenue, London E.C.3, have been appointed by Tonesta Lid as the sole selling agents for the U.K. and all overseas markets.

The Electrotech Instrument Division of Coutant Electronics Ltd has been acquired by Instant. Starter Engineering Co. Ltd. The division has been formed into a new limited company, Exel Electronics Ltd, and becomes a wholly owned subsidiary of I.S.E.

EMI is to acquire all the shares of Recording Designs Lid, of Camberley, Surrey, who specialize in magnetic tape data storage equipment for military and commercial use.

Sprague factory in Scotland: Sprague Electric Company, of Massachusetts, U.S.A., is to build a factory in Galashiels, initially to produce aluminium electrolytic capacitors. The company hopes to have the factory ready for occupancy by the autumn.

Tektronix UK Ltd has opened regional offices and a repair and recalibration centre at Beaverton House, 181A Mauldeth Road, Manchester 19. (Tel: 06 1-224 0446.)

The U.K. sales office of EMI-Varian Ltd has moved from Walton-on-Thames to the head office and factory site at Blyth Road, Hayes, Middx. (Tel: 01-573 5555.)
Mullard Lid are to build a second factory for the production of television picture tubes at Belmont, near Durham.

2. Delay tubes, storage devices, quartz thread, ceramic piezoelectric delay lines.

by H. D. Harwood, b.Sc.

Last month's article on ways of producing time delays was devoted to all-pass electric circuits and ultrasonic methods. This month we start by looking at delay tubes.

Acoustic delay tubes

This is the oldest form of time delay but it still finds occasional use because of the large values possible. The velocity of sound in a tube is similar to that in free air, namely 340 metres per second at $20^{\circ} \mathrm{C}$. In narrow tubes a certain amount of dispersion takes place but attenuation at high frequencies usually limits the use of such a tube before dispersion becomes serious. The amplitude at a distance x is given by:

$$
A=A_{0}^{-\alpha x}
$$

where A_{0} is the amplitude at the beginning of the tube,

$$
\alpha=\frac{\gamma^{\prime}}{R c} \quad \frac{\omega}{2 P}
$$

R is the radius of the tube in cm , c is the velocity of sound in cm / s, $\omega=2 \pi f$,
$f=$ frequency in hertz
$P=$ density in $\mathrm{gm} / \mathrm{cm}^{3}$
$\gamma^{\prime}=1+1 \cdot 58\left(\gamma^{\frac{1}{2}}-\gamma^{-\frac{1}{2}}\right)$,
and $\gamma=$ the ratio of specific heats.
The maximum level is dictated by nonlinearity effect in the air in the tube; distortion in a uniform tube is proportional to the length. The maximum length is determined by attenuation at high frequencies which leads to poor signal-to-noise ratio in the receiving microphone. As can be seen from the formula given above, attenuation is inversely proportional to the tube diameter but this cannot be increased beyond the point at which radial modes of resonance occur in the pipe with a consequent change in the characteristic impedance and production of serious echoes. The maximum diameter can be used is thus found in practice to be about 25 mm .
The termination of the tube is formed by means of graduated lengths of wool forming, in effect, a tapered absorber. Reflections are mainly troublesome in the middle frequency band as absorption at the bass is very good and air attenuation at high frequencies rapidly reduces any reflected wave. It is possible to improve the signal/
noise ratio at high frequencies by inserting the receiving microphone in the end of the tube and constructing the termination at right angles to it. At low and medium frequencies the sound turns the corner and is absorbed by the termination, whilst at high frequencies the inertance of the bend is too great and the sound is reflected from the microphone giving a rise in pressure of 6 dB . The reflected sound is heavily attenuated by the tube and does not cause any trouble from echoes.

In practice, the tube is usually coiled into a helix to conserve space. Delays of up to 100 ms are feasible over the audio band.

Applications are for artificial reverberation ${ }^{18}$ and for delaying the onset of added reverberation to give the impression of a larger echo room.

Storage devices

Storage devices differ from the preceding delay lines in that no inherent velocity of propagation is involved, the storage being a static effect. Various storage media have been proposed including homogeneous surfaces such as phosphors, magnetic tape, and electrostatic storage surfaces. However, the amount of energy associated with information stored by such means tends to be low with a result that the signal to noise ratio of the delayed signal is marginal by the best broadcasting standards. They share the advantage however that quite long delay times may be achieved, adequate for television field storage purposes. Discrete storage elements such as capacitors or inductors are able to store much larger quantities of energy and hence provide a better signal-to-noise ratio, but require individual switching and hence rather involved circuitry to handle the very large number of programme samples which would have to be stored for the delay period in any programme application. Furthermore, owing to the large number of picture elements it is not practicable to store a picture field and only a line store is convenient at present. A store of each type will now be described.

Storage on cathode ray tube phosphors: The storage of information on the phosphor of a cathode-ray tube dates back to the first computer stores. The total amount of information which could be stored by this
means, however, was small and the method is no longer used for this purpose.
It is however still useful for converting television pictures from one field rate to another. In this type of standards converter ${ }^{19}$ the usual procedure is to display the picture on tube and photgraph it using a television camera. Ideally in order to avoid a variation of picture brightness due to the difference in the number of fields per second the display tube should maintain constant brightness until one frame has been photographed and is replaced by the next. Unfortunately tubes of this type are unable to satisfy other requirements of standards conversion and phosphors with a finite decay time must be employed. A phosphor having an afterglow of about 9 ms gives the best compromise between the blurring of moving objects and gain due to the decay of picture brightness.

Magnetic recording devices: When a signal is recorded on a magnetic tape the record is permanent and can therefore be reproduced afterwards without any change of signal-tonoise ratio, reduction in bandwidth or echo due to the magnitude of the delay: long delays can therefore be obtained without any difficulty. The shortest absolute delays on a single track are determined by the minimum spacing between the recording and reproducing heads and by the tape speed. Shorter (relative) delays can be obtained by using two tracks and arranging the head spacing so that the difference between them corresponds to the desired delay. For very short delays however tape is not a very suitable medium as it is not sufficiently homogeneous; variations in thickness and elasticity causing variations in tape stretch and hence delay. The effects of wow and flutter also become important. For example, with a delay of 200μ s at a tape speed of $38.1 \mathrm{~cm} / \mathrm{s}(15 \mathrm{in} / \mathrm{s})$ the difference between the spacing of the reproduce heads, for an in-line record head, would be 0.075 mm (0.003 in) and this would have to be maintained to a high degree of precision. This is very difficult and for accurate short delays it is necessary to use a drum with magnetic coating instead of a tape. In this case the heads are used out of contact with the recording medium, and a frequency modulation system is employed to overcome the consequent loss in signal-to-noise ratio and the effects of wow and flutter.

In autocorrelation it is necessary to be able to vary a time delay continuously over a wide range and magnetic recording lends itself admirably to this purpose. As used in B.B.C. Research Department ${ }^{20}$, for example, in measuring the sound insulation between two rooms, a smooth variation in delay between 100 ms and 250μ s is required and this is obtained with a two track tape system.

Further applications are in ambiophony ${ }^{21}$ for delaying added reverberation to give the impression of a larger echo room and in an artificial reverberation machine ${ }^{18}$.

Line store using capacitors: In the capacitor line store the storage takes place in a group of capacitors which is approximately equal in number to that of the picture elements capable of existing in a line of the television picture. A different capacitor is connected to the incoming video signal during each picture element by a system of electronic switches and each capacitor is thus charged to a potential proportional to the amplitude of the input signal at the time of its connection. At the end of one line period all the capacitors have thus been charged and this information may be subsequently read out at any required time.

When used in a line store converter, the number of storage elements is theoretically twice the number of line harmonics which lie within the video bandwidth as phase and magnitude must each be taken into account.

After allowing for the fact that the position of the line occupied by blanking needs no storage, for practical filter design, the number used is 576 . A similar number of input and output switches are therefore required.
The requirements for the switches are quite stringent, timing errors and those due to a potential difference between switches can both cause visible defects in the picture and should be below 5 ns for the former and -49 dB in the latter case. In addition, crosstalk due to resistance coupling must be held below -45 dB and that due to capacitive coupling below -16 dB .

The time constant of capacitor plus switch should exceed 10 ms if leakage is not to be a serious factor at 3 MHz . It is evident from these considerations that the design of appropriate switching is a major problem.

The size of a capacitor store of this type is about that of an enclosed bay and with the associated switching the cost is necessarily high and is about $£ 10,000$.

The main use for a store of this kind is in standard converters from 625 to 405 -line and vice versa. A suggestion has also been made ${ }^{22}$ that it could be used to synchronize two pictures when the timing error is less than one line and also to remove timing errors from the output of a video tape recorder.

Although reflections are not present in this type of delay, other sources of defects have been indicated. In practice these are

	$10 \mathrm{Os} 100 \quad 1 \mu \mathrm{~s} \quad 10 \quad 100 \mu \mathrm{~s} 1 \mathrm{~ms} 10 \mathrm{~ms} 100 \text { is } 10 \mathrm{~s} \text { Time scale }$
(a)	Coaxial cable - 0 to 100 ns
(b)	L.C. circuits $-\longmapsto 50 \mathrm{~ns}$ to $10 \mu \mathrm{~s}$
(c)	Speciol delay cable - 0 to $50 \mu \mathrm{~s}$
(d)	Ceramic piezoelectric delay lines. Line store using capocitors \qquad 100 ns to $100 \mu \mathrm{~s}$
(e)	Mercury ultrasonic delay - $10 \mu \mathrm{~s}$ to 1 ms
(t)	Glass and quartz blocks $-10 \mu \mathrm{~s}$ to 4 ms
(g)	Ultrasonic wire - $10 \mu \mathrm{~s}$ to 10 ms
(h$)$	Pnosphor on c.r.t. $\square 1 \mu \mathrm{~s}$ to 20 ms
(i)	Transverse vibration of wire - $100 \mu \mathrm{~s}$ to 100 ms
(j)	Magnetic tope - $100 \mu \mathrm{~s}$ to 2 s or more
(k)	Storage devices $-\longrightarrow 10 \mu$ to 2 s

Summary of time delays and performance. (a) Coaxial cable-0 to 100 ns -cheap, low echo level, bulky for longer delays. (b) LC circuits-50 ns to $10 \mu s$-medium price, low echo level, compact, can easily be made to exact delay, variable length available. (c) Special delay cable-0 to $50 \mu s$-cheap, echoes can be troublesome, matching amplifiers needed. (d) Ceramic piezoelectric delay lines- 100 ns to $100 \mu \mathrm{~s}$ cheap fixed delays. Line store using capacitors- 100 ns to $100 \mu s$-very expensive, delay fixed. (e) Mercury ultrasonic delay-10 $\mu \mathrm{s}$ to 1 ms -expensive but easy method of obtaining variable delay over wide bandwidth, associated equipment needed, echoes fairly low. (f) Glass and quartz blocks- $10 \mu \mathrm{~s}$ to 4 ms --expensive but only means of obtaining long delays over wide bandwidth. Associated equipment needed, echoes low, generally fixed delay. (g) Ultrasonic wire- $10 \mu \mathrm{~s}$ to 10 ms -medium price, medium bandwidth, high echo level, adjustable. Greater delays and bandwidths may be possible using quartz thread. (h) Phosphor on c.r.t.-1 $\mu \mathrm{s}$ to 20 ms -expensive as associated equipment required, no definite cut-off so blurring of moving images occurs.
(i) Transverse vibration of wire- $100 \mu s$ to 100 ms -cheap but would require development. Adjustable. (j) Magnetic tape- $100 \mu \mathrm{~s}$ to 2 s or more-medium price for a.f., expensive for TV. Adjustable delay. (k) Storage devices- 10 us to $2 s$-theoretically infinite delay, expensive, no echoes; extensive associated equipment needed.
made so small as to be invisible in converting a 625 -line picture to 405 -line but are. just visible when conversion the other way round is effected.

Other possible developments

Quartz thread: This is an extension of the wire delay line already discussed. One of the limiting factors of wire delay lines is that, as the attenuation is proportional to f^{4}, the high frequency range is limited. It has been suggested by R. E. Davies and G. D. Monteath and others that the wire should be replaced by a quartz thread. With this material the losses are proportional to f^{2} as there are no crystal boundaries to reflect the torsional waves. A line would have to be only about 0.5 mm in diameter to pass 10 MHz without the appearance of high order modes of transmission and it would be difficult te use piezoelectric transducers or normal magneto-striction drives. There is the possibility of using a short length of nickel wire as a Wideman form of transducer or of using coils of the Scarratt and Naylor type. If difficulty is found in making the coils as short as indicated by the formula given last month, i.e. up to half a wavelength long, it should be possible to use them in the range one wavelength to one and a half wavelengths. It appears that delays of up to 20 ms over a bandwidth of 10 MHz could be produced by this method.
Transverse mode in wires: The velocity of a transverse mode along a thin flexible wire or string is proportional to $\sqrt{T / m}$ where T is the tension and m the mass for unit length. It will be seen that the velocity is independent of frequency, and this mode of propagation is therefore suitable for a delay line. These is also the advantage that the delay can be easily adjusted by changing the tension.

One of the simplest methods of driving the wire is to place it between the poles of a magnet and to pass a current along the wire. Other methods include moving coil, moving iron and piezoelectric transducers. The wire must be terminated in a mechanically resistive medium at the far end and means for applying a tension provided. Electrostatic transducers can be employed for extracting the signal at any position along the line and delays of up to 100 ms should be feasible for a line 1.5 m long.

Some protection would be required against building vibrations but this should not prove unduly difficult.

Low velocity materials: There are a few materials in which the velocity of sound is lower than it is in air and it is of interest to see whether these differences are great enough to be worthwhile exploiting in delay tubes.

Liquid helium III: This liquid has the lowest velocity of any liquid known, the value being less than one tenth of that of water. At the triple point the velocity is about 130 ms and therefore the length of a delay tube could be reduced to about a third of one using air as the conducting medium. The diameter would have to be reduced in
the same ratio to avoid cross modes and would thus be about 0.3 in . A tube of this length and diameter could be coiled into quite a small volume but the necessary cryogenic apparatus would be very expensive.

Uranium hexafluoride: This is a substance which is produced in large quantities by the U.K.A.E.A. in the course of their activities and appears to have the largest atomic weight of any gas. The liquid boils at room temperature and the vapour is stable except that hydrogen fluoride is formed in the presence of water vapour; the radioactivity is quite low. The velocity of sound in the vapour is about 0.3 of that of air; the scaling factor with this medium would therefore be similar to that mentioned in the last section for liquid helium but the absence of cryogenic equipment would make the application much simpler. The high density would make the radiation impedance correspondingly large with a consequent increase in efficiency of the sound generators.

Variable LC delay lines: Reference was made last month to the Amtec $L C$ delay line in which the capacitors consist of backbiased diodes whose capacitance can be varied by changing the bias. The available range of $\pm 20 \%$ in the delay cannot be utilized in practice owing to the changes in the impedance of the line with the bias applied and the consequent mismatch of the termination. For example, for a 6μ s line the echoes from a matched line were about 40 dB below the main signal but when the delay was changed to 5μ s the echoes were about 10 dB worse; the frequency response was also appreciably degraded. These effects can be overcome by employing two variable resistors, such as the drain-to-source impedance of a field effect transistor, as the source and load impedances of the line. A portion of the bias supplied to the line diodes is applied to the gates in such a way as to keep the termination correct over the whole range of adjustment. Other variable resistors such as light sensitive devices or thermistors could also be used for this purpose, the choice depending on the speed of response required. The variation in gain brought about by the change in termination can be taken up in a variable gain amplifier stage controlled by the same voltage.

Ceramic piezoelectric delay lines: It is possible to make the mechanical equivalent of the electrical lumped-constant low-pass filter type of delay line. In one form ${ }^{23}$, using a rotational mode, it consists of a series of spaced coaxial discs joined axially by a corresponding number of rods as shown in Fig. 8. The discs are the mechanical equivalent of the inductances and the rods of the capacitors in the electrical circuit and the velocity of propagation and the image im-

Fig. 8. Mechanical torsional delay line.

pedance are given by corresponding expressions. Recently, however, the elements of such a line have been made of ceramic piezoelectric materials so that the device contains its own input and output transducers. At least one firm is experimenting with such a line for use in PAL colour television receivers but no details are available yet as to the performance achieved.

Magnetic memory stores: The use of these for delays can be regarded as an alternative to the capacitor store method. Unlike the capacitor store, however, the magnetic type is fully magnetised in one direction or the other and thus has the advantage of holding the recorded information indefinitely. On the other hand to use the magnetic type of store it is necessary first of all to digitize the signal and this appreciably increases the complexity of the auxiliary apparatus. Increased delay can be obtained by simply adding to the size of the store and this can be done without any of the difficulties such as attenuation, change in frequency response, signal-to-noise ratio or echo levels associated with other types of delay.

There are several types of magnetic store in production and developments in this field are so rapid that any survey is liable to be out of date by the time it is published. One type extensively used in computers consists of a series of minute ferrite rings about 450 microns in diameter with conductors threaded through a centre hole. Stores of this type can be made large enough to store a whole television field but in practice the $\mathrm{read} / \mathrm{write}$ cycle time of 500 ns is too great for this application. On the other hand, a store of 36,000 -bits would enable 100 ms of audio frequency programme to be handled and this would be adequate for some applications. Such a store would cost about £250.

A faster design has been brought out employing two cores per bit. This has a cycle time of about 300 ns but because of the added complication costs appreciably more than its simpler counterpart.

A second type of store was introduced by the Sperry Rand Corp. ${ }^{24}$ It consists of a number of wires plated with an anisotropic magnetic medium with the hard direction of magnetization along the wire. On either side at right angles to the direction of the wires is a strip of conductor. The passage of current along the conductor causes the magnetic field in the wire to change direction. The strips are about 0.1 mm wide and are spaced about 1.5 mm between centres so the packing is about 80 -bits to the square cm . The store, with a cycle time of about 150 ns , is fast enough for some television purposes. Very large stores, $16,000,000$ bits, of this type are being developed; the cost per bit is expected to be less than ferrite by 1972.

Active stores: Metal oxide silicon transistors, (m.o.s.t.) and metal nitride silicon transistors (m.n.s.t.) have an insulated input electrode and this gives them an exceedingly high input resistance. The input capacitance is several picofarads and any charge deposited on this will therefore be held for a considerable time. The presence or absence of this charge can be determined by an examination of the current flowing in the output electrode and thus a nondestructive readout is possible. These stores are being developed by most of the semiconductor firms. The cost is expected to come down to about 1 d or 2 d per bit.

Another variety is the bipolar flip flop type. This is faster than the static capacitor type and clock rates of 50 MHz are feasible.

Active networks: One type of active delay system which seems to offer some promise is the resistance-capacitance all pass network. Sections of these networks are separated by operational amplifiers with a very high input impedance, a very low output impedance and unity voltage gain. A line of this type has been built by Standard Telephone Laboratories for the Admiralty to give a 700μ s delay over a bandwidth up to 6 kHz and occupies a space of only $200 \mathrm{~cm}^{3}$. The line consists of 14 stages and uses thin
film circuits, the components being made to a 1% tolerance. The system will deliver a signal level of 22 V into 2Ω and has a noise level over the operational bandwidth of $15 \mu \mathrm{~V}$ r.m.s.; the attenuation over the whole line is only 0.4 dB . The price at the moment is high but it is expected that it will come down to $£ 1$ per section for the thin film circuits, with extra for the operational amplifiers. It is calculated that this line occupies only one tenth of the volume of a line made of conventional components.

Multiplication of delay times by recirculation: Although long delay times can sometimes be achieved by the simple process of adding delays in series a more elegant method, which can be used where the bandwidth of the line is sufficient, is that of recirculation.

In this process the signal is converted into pulses with a small mark to space ratio and applied to the line. The pulses are received
at the end of the delay line, further delayed by a fraction of cycle as shown in Fig. 9 and retransmitted down the line again. The number of times this process can be repeated obviously depends on the pulse repetition rate of the original signal and the maximum pulse repetition rate the line will transmit.

In one example an audio frequency signal was digitized and converted into pulses at a rate of 100 k pulses per second. Using an ultrasonic delay line of 10 ms having a maximum pulse repetition rate of 1 MHz the pulses were recirculated eight times giving a total delay of 90 ms . The form of circuit used is illustrated in Fig. 9.

Conclusions: A description has been given of the various types of time delay used in the B.B.C. and of others which are potentially useful. Owing to the wide variety of requirements there is no one method which can be recommended above the others.

REFERENCES

18. Axon, P. E., Gilford, C. L. S. and Shorter, D. E. L. "Artificial Reverberation", Proc. IEE Vol. 102 Part B, No. 5, Sept. 1955.
19. Rout, E. R. and Vigurs, R. F. "A wide range standards converter", Jour. Tel. Soc. October-December 1961, Vol. 9, No. 12.
20. Burd, A. N. "Correlation Techniques in Studio Testing", Radio and Electronic Engineer, Vol. 27, No. 5, May 1964, pp. 387-395.
21. Kleiss, D. "Modern Acoustical Engineering", Philips Technical Report, Vol. 20, No. 11, pp. 309-326, 1958/59 and Vol. 21, No. 2, pp. 52-72, 1959-60.
22. Rainger, P. and Rout, E. R. "Television standards converter using a line store", Proc. IEE, Vol. 113, No. 9, Sept. 1966, pp. 1437-1455.
23. Mason, W. P. "Electromechanical Transducers and Wave Filters", Van Nostrand, 1942, p. 92.
24. Fedde, G. A. "Plated Wire Memories; Univac's bet to replace toroidal ferrite cores". Electronics, May 15th 1967.

B.B.C. Band-two Broadcasting Stations

	Frequencies (MHz)			Maximum ERP	Orkney	89.3	91.5	93.7	20 kW *
	Radio 2	Radio 3	Radio 4	(Each Prog)	Oxford (Midland)	89.5	$91.7{ }^{\text {S }}$	93.9	22 kW *
Ashkirk	89.1	91.3	93.5	18 kW*	(South and West)			95.85	$22 \mathrm{kW*}$
Ballachulish	88.1	90.3	92.5	15 W*	Penifiler	89.5	91.7	93.9	$6 \mathrm{~W}^{*}$
Bally castle	89.0	91.2	93.4	40 W *	Perth	89.3	91.5	93.7	15 W*
Barnstaple	88.5	90.7	92.9	150 W*	Peterborough	90.1	92.3	94.5	$20 \mathrm{kW*}$
Bath	88.8	91.0	93.2	35 W*	Pitlochry	89.2	91.4	93.6	200 W*
Belmont	88.8	90.9	93.1	$8 \mathrm{~kW} *$	Pontop Pike	88.5	90.7	92.9	60 kW
Betws-y-Coed	88.2	90.4	92.6	10 W*	Redruth	89.7	91.9	94.1	$9 \mathrm{kW*}$
Blaenplwyf	88.7	90.9	93.1	60 kW	Rosemarkie	89.6	91.8	94.0	$12 \mathrm{kW*}$
Brecon	88.9	91.1	93.3	10 W*	Rowridge	88.5	90.7	92.9	60 kW
Bressay	88.3	90.5	92.7	$10 \mathrm{kW*}$	Sandale (Scottish)	88.1	90.3	92.5	120 kW
Brighton	90.1	$92.3{ }^{\text {S }}$	94.5	150 W*	(North)			94.7	120 kW
Brougher Mountain	88.9	91.1	93.3	2.5 kW	Scarborough	89.9	92.15	94.3	25 W*
Cambridge	88.9	91.1	93.3	20 W*	Sheffield	89.9	$92.1{ }^{\text {s }}$	94.3	60 W
Campbeltown	88.2	90.4	92.6	35 W*	Skriaig	88.5	90.7	92.9	10 kW*
Carmarthen	88.5	90.7	92.9	10 W*	Sutton Coldfield	88.3	$90.5{ }^{\text {S }}$	92.7	120 kW
Churchdown Hill	89.0	91.2	93.4	25 W*	\dagger Swaledale	89.6	91.8	94.0	35 W*
Divis	90.1	92.3	94.5	60 kW	Swingate	90.0	$92.4{ }^{\text {S }}$	94.4	7 kW *
Dolgeliau	90.1	92.3	94.5	15 W*	Tacolneston	89.7	91.9	94.1	120 kW
Douglas	88.4	90.6	92.8	$6 \mathrm{~kW} *$	Thrumster	90.1	92.3	94.5	$10 \mathrm{kW*}$
Ffestiniog	88.1	90.3	92.5	50 W*	Toward	88.5	90.7	92.9	250 W*
Forfar	88.3	90.5	92.7	$10 \mathrm{kW*}$	Ventnor	89.4	91.6	93.8	20 W*
Fort William	89.3	91.5	93.7	1.5 kW	Weardale	89.7	91.9	94.1	100 W*
Grantown	89.8	92.0	94.2	350 W*	Wensleydale	88.3	90.5	92.7	25 W*
Haverfordwest	89.3	91.5	93.7	$10 \mathrm{kW*}$	Wenvoe (Welsh)	89.95	96.8	94.3	120 kW
Hereford	89.7	91.9	94.1	25 W*	(South and West)			92.125	120 kW
Holme Moss	89.3	$91.5{ }^{\text {s }}$	93.7	120 kW	Whitby	89.6	91.8	94.0	40 W *
Isles of Scilly	88.8	91.0	93.2	20 W*	\dagger Windermere	88.6	90.8	93.0	20 W *
Kendal	88.7	90.98	93.1	25 W*	Wrotham	89.1	$91.3{ }^{\text {S }}$	93.5	120 kW
Kilkeel	88.8	91.0	93.2	25 W *	Local radio stations				
Kingussie	89.1	91.3	93.5	35 W *	\dagger Birmingham		95.6		$5.5 \mathrm{~kW}{ }^{\text {c }}$
Kinlochleven	89.7	91.9	94.1	2 W	\dagger Blackburn		96.4		$1.5 \mathrm{~kW} *$
Kirk o'Shotts	89.9	92.1	94.3	120 kW	Brighton		88.1		75 W *
Larne	89.1	91.3	93.5	15.W*	\dagger Bristol		95.4		$5 \mathrm{~kW}{ }^{\text {c }}$
Les Platons	91.1	94.75	97.1	$1.5 \mathrm{~kW}{ }^{\text {c }}$	\dagger Derby		96.5		$5.5 \mathrm{kW*}$
Llanddona	89.6	91.8	94.0	$12 \mathrm{kW*}$.	Durham		96.8		2.6 kW*
Llandrindod Wells	89.1	91.3	93.5	1.5 kW	\dagger Humberside		95.3		4.5 kW*
Llangollen	88.85	91.05	93.25	$10 \mathrm{~kW}{ }^{\text {W }}$	Leeds		94.6		140 W
Llanidloes	88.1	90.3	92.5	5 W	Leicester		95.05		140 W
Lochgilphead	88.3	90.5	92.7	10W*	\dagger London		95.3		16.5 kW*
Londonderry	88.3	90.55	92.7	$13 \mathrm{kW*}$	\dagger Manchester		95.1		. $4 . \mathrm{kW*}$
Machyndleth	89.4	91.6	93.8	60 W*	\dagger Medway		97.0		$5.5 \mathrm{kW*}$ $2.5 \mathrm{kW*}$
Maddybenny More	88.7	90.9	93.1	30 W*	Merseyside		95.85		2.5 kW*
Meldrum	88.7	90.9	93.1	60 kW	\dagger Newcastle		95.4		3.5 kW 140 W
Melvarg	89.1	91.3	93.5	$22 \mathrm{kW*}$	Nottingham		94.8		140 W
Morecambe Bay	90.0	$92.2{ }^{\text {S }}$	94.4	$4 \mathrm{~kW} *$	+Oxford		95.0		4.5 kW
Newry	88.6	90.8	93.0	30 W*	Sheffield		${ }_{9}^{88.6}$		30 W 9 W*
Northampton	88.9	$91.1{ }^{\text {S }}$	93.3	60 W *	Sheffield (Rotherham)		95.05		$9 \mathrm{W*}$
North Hessary Tor	88.1	90.3	92.5	60 kW	\dagger Solent		96.1		5 kW
Oban	88.9	91.1	93.3	1.5 kW	Stoke-on-Trent		94.9		2.5 kW*
Okehampton	88.7	90.9	93.1	15 W*	\dagger Teesside		96.6		$5 \mathrm{~kW} *$

Circuit Ideas

Sine-wave power oscillator

This form of oscillator can give a considerable increase in power output compared with conventional oscillator circuits when using low-power transistors. A typical example is that of an OC72 type transistor giving a sine wave output at 50 kHz with a power output of 1 W . The circuit uses three separate inductors, there being no inductive coupling between them. The collector inductor L_{1} is tuned by C_{1}. The emitter inductor L_{2} forms part of the tuned circuit when the transistor is conducting and is in saturation. The third inductor L_{3} provides a drive current that is in phase with the collector current. C_{2} is a d.c. blocking capacitor. C_{3} in conjunction with D_{1} provides bias. D_{1} also prevents a large voltage appearing across the base/emitter junction during cut off as well as providing a path between L_{1} and L_{2} via

13-W $20-\mathrm{kHz}$ power oscillator.
the collector /base diode as the output voltage is falling from positive to zero and cut off. The successful operation of the circuit is due to the fact that it is possible to control the collector current by the base current whilst the transistor is in saturation and that large currents can flow without exceeding the dissipation limit of the transistor. A typical saturation voltage is about 0.5 V , and using an OC72 transistor it is possible to obtain a current of 125 mA ; and using an AD162, 2A. From the circuit it will be seen that L_{1} and L_{2} are in series to d.c. but in parallel to a.c., as the a.c. voltage appearing at the collector and emitter are nearly the same voltage when the transistor is in
saturation. The other ends of L_{1} and L_{2} are at the same potential a.c.-wise, both being earthy. The transistor is not tied to either positive or negative and can swing virtually unlimited above and below earth provided the transistor limits are not exceeded during cut off. Short circuiting the output stops oscillation and the current drops to zero until the short is removed.
H. L. Armer

Mastertape (Magnetic) Co. Ltd.,
Slough,
Bucks.

1000: 1 attenuator

Three thumb-wheel switches can be connected as a $1000: 1$ attenuator with 1000 positions. The combination employs two 10 -way 2 -pole switches and one 10 -way single pole switch. In the circuit
diagram the output has been set to 0.768 of the applied input voltage.
L. Unsworth

Southport, Lancs.

Unijunction generator

square-pulse

The unijunction square-pulse generator circuit submitted by Mr. Paul (Circuit Ideas, March 1970) is rather unpredictable in its operation. In the circuit below, the timing capacitor charges via $R_{3} R_{4}$ and the forward biased D_{1} from the supply. When the capacitor reaches the trigger voltage the unijunction goes into conduction. When this occurs, the positive end of C becomes

Unijunction pulse circuit.
referred to the negative of the supply and therefore D_{1} becomes reversed biased. The capacitor C can then only discharge via $\boldsymbol{R}_{1}, \boldsymbol{R}_{2}$, the emitter-base junction and R_{6}.
P. J. Granger

Sevenoaks, Kent.

Thumb-wheel switch attenuator.

The Unijunction Transistor

2. Using the unijunction

by O. Greiter

Last month I discussed the properties of the double base diode, the unijunction transistor, with particular reference to its use in a very simple relaxation oscillator circuit. There are two reasons for treating this device in this way. First of all, this is how unijunctions are generally used-in one or other variation of the trigger and reset mode: secondly it brings out the character defects of the device-its dependence on temperature and supply voltage. Readers who have been around for twenty years will remember how we all began with common base class-A amplifiers when transistors came our way, and how we struggled to bias the first germanium junction transistors so that we could get the same answer two days running.

The discussion was limited, because it did not consider how we could extract the signal. There is our pulse, or our sawtooth, on the oscilloscope, but we want it to do some work - to be, as we say, at a prescribed power level. Taking out a pulse can be easy. If you are using the unijunction to control a thyristor (which is a very common way of designing controlled rectifier circuits) you simply set up the arrangement of Fig. 1(a). If you need to keep the two circuits isolated you can use a pulse transformer, as shown in Fig. 1(b). The value needed for R_{1} depends on the characteristics of the thyristor on the voltage available for $V_{B B}$, and on the capacitance. For G.E. thyristors the information is easily available in both their Transistor Manual and their SCR Manual.

Fig. 1. (a) Unijunction triggering a thyristor with a common negative supply. (b) A pulse transformer may be used to separate the two circuits.

Fig. 2. Pulses are available in any of these five ways.

Curves show that when the capacitance is less than $0.1 \mu \mathrm{~F}$ for the smaller thyristors and $1 \mu \mathrm{~F}$ for the bigger ones, the necessary voltage gets squeezed between the limits of what the unijunction will stand and the minimum needed to get the extreme limit thyristor to turn on when it is really cold.

Pulse points

Since we have started to consider pulse circuits, we may as well continue along the same line, but without the restriction of applying the pulses to a thyristor. Fig. 2 shows a number of possible outlet points, and indicates the corresponding pulse polarities. In (a, 1), (b), (c) and (d) the source impedance is relatively low, because it is essentially the capacitor discharge current which is presented at the output. In $(a, 2)$ we have only the increase in base-two current, but the actual voltage may be higher. This is a relatively high impedance.

Whichever circuit is used there may be the need to buffer the unijunction system from what we may call the working load. The various low impedance circuits will offer us a pulse of about 2 V across 20Ω in circuits using $0.1 \mu \mathrm{~F}$, rising to 4 V in circuits using $1 \cdot 0 \mu \mathrm{~F}$. We can feed this into a buffer transistor to get a very large output. The more powerful transistors in the TO-3 size, for example, can be driven to saturation at 100 mA with a drive of only 5 mA , which implies that we can put 200Ω in series between the trigger point and the transistor base. By keeping the amplifier input impedance well above the source impedance we reduce the chance that the transistor will affect the stability of the oscillator circuit. It is also possible to use this impedance section, if that is the right expression, to do some pulse shaping. Inevitably this implies

Fig. 3. The leading edge of the pulse at B (c) depends mainly on the speed with which the unijunction switches into the conducting state, and on the speed of the transistor. The trailing edge is determined by the transition of the LC "ring" across the base characteristic of the transistor. For a supply voltage of 10 V we should have $V_{\text {Amax }} \approx 5 \mathrm{~V}$ and $V_{B E} \approx 0.25 \mathrm{~V}$. This would make the ratio of on-time to fall time about $90^{\circ} / 3^{\circ} \approx 30$.
pulse lengthening. To get pulses shorter than the natural unijunction transistor falltime it is necessary to differentiate or to use an edge-sensitive triggered circuit. One interesting form which gives a pulse with fast rise and fall times is shown in Fig. 3. In this circuit R_{1} is replaced by an inductor,
and for a particular example the rise and fall times were $0.3 \mu \mathrm{~s}$ with a pulse length of $11-12 \mu \mathrm{~s}$. Replacing the inductor by a 47Ω resistor gave a pulse rising in $0.3 \mu \mathrm{~s}$ but then falling in $3 \mu \mathrm{~s}$. The pulse length is roughly one-quarter cycle of the natural frequency of the $L C$ network, so that if we write

$$
\begin{aligned}
\omega^{2} L C & =1 \\
4 \pi^{2} f^{2} L C & =1 \\
t & =\frac{1}{4} f \\
\frac{4 \pi^{2}}{16 t^{2}} L C & =1
\end{aligned}
$$

and

$$
L=0 \cdot 4 t^{2} / C
$$

The rapid fall time is the result of the clip-. ping action in the transistor. You cannot use an emitter follower.

A low frequency circuit in a hot environment is very awkward when, for some reason, short pulses are needed. To get the low frequency we use, we really must use, a fairly large value of capacitance. At high temperatures the fall time with a $1 \mu \mathrm{~F}$ capacitor is $30 \mu \mathrm{~s}$, so that we must be prepared for a current pulse lasting $50 \mu \mathrm{~s}$ or more. There are situations in which this is not tolerable. One such situation is when the pulse is to drive units which are also used at higher frequencies and which are thus designed for short pulses. To avoid redesigning these parts of the system, and losing all the advantages of standardization, we must convert the long pulse into a short one.
The regenerative unijunction amplifier shown in Fig 4 will do this quite simply.

Fig. 4. Unijunction used as pulse repeater.

The capacitance here is small, so that the fall time is correspondingly low. The emitter is held by the voltage divider at just below the voltage $\eta V_{B B}$ which will trigger the circuit.

Pulling a sawtooth

Although one might reasonably describe the output of a multivibrator as a pulse train it seems to me to be carrying classification too far. I propose, therefore, to leave the long-pulse unijunction circuits and turn to the immediate extraction topic, although now it will be a matter of extracting the sawtooth. Two very simple ways of doing this are shown in Fig. 5. The direct connection here is almost invariably safe because V_{E} drops only to around the valley points which is high enough to keep the $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistor in conduction and the p-n-p transistor clear of saturation. The input impedance of the emitter follower is the first disturbing factor to consider. It has a value

Fig. 5. The use of an emitter follower as sawtooth buffer amplifier.
of about $h_{F E} R_{L}$, and R_{L} must not be too large, because we want to do something with the sawtooth. In the circuit of Fig. 5(a) the term βR_{L} is part of a voltage divider with R_{T}, and if

$$
\frac{\beta R_{L}}{R_{T}}<\frac{\eta}{1-\eta}
$$

the emitter voltage will never reach the trigger point. Long before this condition is reached, however, the effect on the operating frequency and on the waveform will have been devastating. I find it easiest to make the rough calculations in the following way. Let us take a 20 V supply, and $R_{T}=30 \mathrm{k} \Omega . V_{E}$ will have an average value of about 5 V , so that the average current in R_{T} is $500 \mu \mathrm{~A}$. Suppose the transistor has an $h_{F E}$ of 100 . For $R_{L}=1000 \Omega$ the base current will be $50 \mu \mathrm{~A}$: for $R_{\mathrm{L}}=10 \mathrm{k} \Omega$ the base current will be $5 \mu \mathrm{~A}$. It does not really matter all that much whether this current is added to the charging current through R_{T}, as it is with the p-n-p transistor, or subtracted, as it is with the n-p-n transistor. It is still a rather large proportion if we are concerned with good frequency stability. However, we must not overlook the unijunction emitter current in the region below the peak point. This is of the same order of magnitude, but of the opposite sign, and has about the same temperature coefficient. There is some possibility of matching these two currents, but I think that it will be much easier to use a really high value of R_{L}, the lowest possible value of R_{T}, and a second stage of amplification.

It is difficult to think of situations in which very high frequency stability is needed for a sawtooth which is not particularly linear. And if one has more than half an exponential rise it really is not the sort of linearity we are usually needing. A number of circuits have been devised to give better linearity: some of them I rather dislike. Four circuits are given in Fig. 6. The constant current circuit in Fig. 6(a) does not
provide a buffer output, but uses the transistor simply to charge the capacitance with a current of

$$
\left(V_{Z}-V_{B E}\right) / R_{T}
$$

The frequency is not given by the expression roughly approximated as $1 / R_{T} C_{T}$, but is readily calculated from the linear charging characteristic. Notice that it now depends sharply on the supply voltage, because the charging current is constant while the trigger point, V_{p}, is still $\eta V_{B B}$.
The two bootstrap circuits give a buffered output and use the output sawtooth to lift the charging voltage, keeping the voltage across the timing resistance nearly constant. With the zener diode we introduce a voltage which does not depend on the supply, $V_{B B}$, and the result is that variations in supply cause inverse variations in frequency. This does not happen with the capacitor bootstrap. The final circuit, Fig. 6(d), uses an integrating $R C$ network fed from the emitter follower to add a concave-upwards voltage across $C_{T 2}$ to the normally concave-downwards voltage at the emitter of the unijunction.

The problem with these three circuits is that the need for a good big output at the emitter means a low value of emitter load resistance, and thus a rather heavy drain at the base. The relatively low cost of the circuits is a factor which must not be overlooked. The oscillator can easily be synchronized to a more stable source. Operational amplifiers can be used to give a really linear sawtooth. These are cheap bread-and-butter circuits which show the swings and roundabouts trade-off which is normally encountered with this class of circuit.

Triggering with the unijunction

Pulse generators (and we have seen that the unijunction transistor is an excellent choice for the active element in a pulse generator) are widely needed to trigger binary counter stages. The use as a regeneration amplifier is fairly obvious, and this is an area of interest in slow counting problems. Binaries are also used as square wave generators. The advantages of using an independent trigger and a resistance coupled pair rather than a multivibrator are the ease with which the frequency can be varied and the exact equality of the two halves of the waveform. Unless the highest stability is needed the triggering arrangements can be very simple. Fig. 7 shows the two versions, for $n-p-n$ and $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistors. It is important in the design of this

Fig. 6. Linearization circuits for sawtooth generator: (a) constant current; (b) zener bootstrap; (c) capacitor bootstrap; (d) integrator feedback.
type of circuit to ensure that the transistors are not oversaturated - so that the trigger pulse can lift the emitters to cut-off-and to ensure that there is enough drive-that is a big enough timing capacitor. It is not very difficult to get this system to work at around the 50 mA level.
If the timing resistance is returned to one of the transistor collectors rather than to one positive line, either of the circuits in Fig. 7 can be used as a single-shot timer. The initiating pulse is fed to the other transistor and must be such that it drives the end of the timing resistor positive. This rather involved wording covers both the p-n-p and n-p-n systems. After a time of about $C_{T} R_{T}$ (about meaning the η-dependent factor) the unijunction will trigger

Fig. 7. Triggering a simple bistable pair from a unijunction transistor. Small "memory" capacitors are needed across the two collector-base feedback resistors. The emitter current pulse in R must knock the "on" transistor off.
and the system will return to its original state. If precautions are taken to fix the low level of the unijunction emitter this arrangement has virtually no memory and the shot time does not change significantly with the duty cycle.

Frequency division, low-level current detection, and long-term timing

The simplicity of the unijunction relaxation oscillator circuit, the fairly high stability of its frequency and the fact that it is a non-linear system combine to make it a very attractive frequency divider. If we consider one basic relaxation oscillator, in its simplest form of Fig. 2(a), we know that the emitter voltage rises exponentially towards the supply voltage until it reaches a value

Fig. 8. Triggering a divider.
of $\eta V_{B B}$. In order to have some numbers to talk about, let us take $V_{B B}=20 \mathrm{~V}$ and $\eta=0.5$. Then, forgetting the need for a fraction of a volt to get the peak current through, the emitter will trigger at 10 V . Let us take the value of the resistance from base 2 to the positive supply as 100Ω. We inject into this resistance an extra 10 mA , so that $V_{B B}$ looks like 19 V . If the emitter has reached 9.5 V it will trigger. The pattern is shown in Fig. 8. Once the circuit triggers it is completely re-set and the whole process repeats itself.
Although it is not too difficult to make the calculation an exact one, an approximate approach gives a reasonably reliable answer and shows the solvent features more easily. If the run-up were linear, it would be at the rate of $\eta V_{B B} f$ volts per second, where f is the natural frequency of the divider. For a division ratio of n, the critical moment is $1 / n f$ seconds before the natural trigger point, when the emitter voltage will be $\eta V_{B B} / n$ below triggering. The pulse applied to B 2 must be less than $V_{B B} / n$ if it is not to trigger the oscillator. If the pulse is a bit bigger than this, the triggering will take place after $n-1$ pulses instead of after n. If the pulse is more than twice this size

Fig. 9. Triggering details for pulse, squarewave, and sine-wave locking. If the square wave is roughly differentiated we can even (as shown on the right) get an improvement over pulse behaviour.
we shall divide by $n-2$, or even worse
This is an order of magnitude calculation for dividing with a trigger pulse. If we are triggering from a square wave we must avoid the trailing edge of the triggering signal. With a sine wave the ideal, which is not shown in Fig. 9, is that the slope of the sine wave should equal the slope of the emitter voltage. For a sine wave of $A \sin 2 \pi n f t$ the slope is, at its maximum,

$$
A .2 \pi n f
$$

and thus $A=V_{B B} / 2 \pi n$, provided that the locking signal is applied at B2. The least critical situation of all is to use a square wave with capacitance coupling to get a pulse top running parallel to V_{ε}.

One source of a negative lockjng pulse is, of course the emitter of a preceding unijunction oscillator. The capacitor needed to couple this point to the base 2 of the

Fig. 10. Diode-pump divider.
following stage then forms part of the timing circuit. With transistors at their present prices the simplicity of a buffer amplifier is almost certainly worth the extra couple of shillings.

Any detailed design must take into account the stability of the locked oscillator itself. If this is taken as 1%, and if the supply voltage is also held to 1% in order to stabilize the size of the locking pulse it is plausible to talk about division ratios of $50: 1$, and realistic to think about $20: 1$.
This type of frequency divider is essentially a constant frequency type (Fig. 10). One application is for use with a crystal oscillator, to obtain a low frequency of very high stability. The unijunction is also useful for dividers of the diode-pump type. Each input pulse raises the emitter voltage by $V_{s} C_{1} /\left(C_{1}+C_{2}\right)$, until the emitter reaches ηV_{s}. The unijunction triggers, and discharges C_{2} to re-set the pattern. The drive pulse must be long enough for C_{1} to be cleared out through D_{1} and the transistor, and the space between the pulses must allow C_{1} and C_{2} to reach equilibrium through R and D_{2}. The loss of charge by C_{2} due to diode and unijunction leakage is the limitation on the low frequency end, but within the limits set in this way the circuit will be independent of frequency. A more complicated version, obtained by adding a bootstrap amplifier, gives equal steps in place of the steadily diminishing ones familiar to all diode-pump users.
Closely related to the frequency divider circuits are some circuits which have very high sensitivity and can be triggered by very small input currents. The peak point current
of a unijunction is somewhere in the range $2-20 \mu \mathrm{~A}$, depending on the price you pay and on your luck. Confining our attention to a unit with $\eta=0.5$ operated at 20 V we see that in a relaxation oscillator designed for very low frequencies a resistance of $5.1 \mathrm{M} \Omega$ in the emitter supply will never be able to get the emitter junction quite over the top. As it is not too convenient to use timing capacitances much above $1 \mu \mathrm{~F}$, timing circuits are limited to the odd second or two. It is therefore necessary to separate out the circuit which supplies the peak point current from the $C R$ circuit which does the timing, so that the timing resistance does nothing but charge the capacitance.

Fig. 11. (a) Heart of long period timer, and (b) steady state unijunction characteristic.

The essential features are shown in Fig. 11. The resistor R_{2} is of the order of $10-20 \mathrm{M} \Omega$, if the expensive low-leakage type of unijunction transistor is used. This is chosen to hold the emitter at its peak point, as shown in Fig. 11(b). Typically the current, I_{p}, will be $1 \mu \mathrm{~A}$. As it stands this is a perfectly stable situation. The timing capacitance C_{1} is charged through R_{1}, and for most of the time the diode D is reverse biased. Obviously D must be a very good diode. If C_{1} is $1 \mu \mathrm{~F}$ and R_{1} is $1000 \mathrm{M} \Omega$ the time constant will be 1000 s , about a quarter of an hour. C_{1} must have a leakage resistance of at least $10,000 \mathrm{M} \Omega$ for this situation to make sense.

As it stands, this circuit will not work. When the voltage across the capacitance equals ηV_{s} the diode will be ready to come into conduction, but the net load line in Fig. 11(b) will shift only slightly as R_{1} appears in parallel with R_{2}.

At this stage one frequency divider technique comes into play. When a pulse is injected, in the way shown in Fig. 8, the emitter voltage remains at its original value, while the unijunction peak voltage is moved down. The only stable intersections for $V_{E}>V_{B B}$ is away on the rising part of the characteristic where the current is tens, or

Fig. 12. Very sensitive current detector.
hundreds, of mA . The main timing circuit triggers in the ordinary way. It might be feared that one could get a marginal situation in which each quick test of the circuit just took away enough leakage to hold the C_{1} voltage on the threshold. The look lasts only the odd $\mu \mathrm{s}$, however, and if we are timing 1000s we should hardly look more often than once a second. The wastage duty cycle is too small to worry about. The test pulses are, of course, produced by another unijunction oscillator, using a cheap unijunction. Time delay circuits of this kind are normally used to trigger a thyristor, either directly from base one or through a trigger transformer. There is no reason why the pulses, at one a minute or one an hour, should not operate a binary, or a ring counter, to produce a sequence which switches regularly at these intervals.

The technique used to detect a very small current is similar to the long period timer. The circuit, this time with the test pulse generator included, is shown in Fig. 12. Both capacitors charge quickly to a voltage set by the potentiometer. This must not be high enough for the circuit to trigger. If current is fed in through the $100 \mathrm{M} \Omega$ resistor at the top of the diagram it will lift the emitter voltage and at the next test pulse the circuit will trigger. As soon as the $0.01 \mu \mathrm{~F}$ capacitor has supplied the full peak point current and the trigger operation is under way, the $0.1 \mu \mathrm{~F}$ capacitor will be able to discharge and provide a healthy pulse at base 1.

All the circuits discussed so far have been designed to have one stable state. The action of the circuit consists of moving the working points into an unstable region, whereupon the triggering is followed by a resetting operation. Like all negative resistance systems the unijunction circuit provides a negative resistance only in a limited current range and unlike some negative resistance circuits can be safely operated outside these margins. An example of a negátive resistance which is not safe is a power transistor up in the avalanche or second breakdown area. This is bounded on the upper side by the small positive resistance of a total loss. With the unijunction we can construct a bistable element. The distorted-in-scale unijunction characteristic is shown in Fig. 13(a) and the circuit which goes with it in Fig. 13(b). The load line for R_{1} and V_{1} intersects this characteristic in three points, so long as $V_{1}<\eta V_{E}$, and neglecting the effect of R_{2} and R_{3}. The intersection in the negative resistance region, at B, is not stable, but the other two intersections, at A and C, will be stable. Notice that C is to the right of the valley point. We have

$$
\begin{gathered}
V_{1}<\eta V_{E} \\
I_{C}>I_{V}
\end{gathered}
$$

Rather roughly, since $V_{\text {valley }}$ is small

$$
R_{1}<\eta V_{E} / I_{V}
$$

A typical value of R_{1} would be $1-2 \mathrm{k} \Omega$. This gives a safe dissipation level at C. The transition from one state to the other is easy. If we are at A, a positive pulse applied to the emitter, or a negative pulse applied to B2, will unlatch the system, leaving only an intersection in the region of C. If the circuit

Fig. 13. (a) Bistable load line. (b) Bistable circuit.
is at C, a negative pulse at the emitter will drain off current to leave only one intersection, somewhere below A. By using Thevenin's theorem in reverse we can establish the emitter conditions for a bistable in the way shown in Fig. 14. R_{4} is small and is there to detect the changeover. Suppose that R_{3} is a $1-\Omega$ resistor and that the effective value of V_{1} is just 1 V below the peak point. The current through R_{3} will be in the region of 5 mA . Let us use R_{3} also as the return path for another piece of equipment which shares the negative line, but not necessarily

Fig. 14. Single supply bistable.
the positive line, with the circuit of Fig. 14. Should this outside system pass more than about $1 \cdot 5 \mathrm{~A}$, the emitter will be lifted up to above V_{p} and the circuit will trigger. A capacitor connected to the emitter can be added to give some extra current when triggering first takes place, although this will slow down the detection process. If the capacitance is across R_{2} a sharp rise in $I_{R 3}$ will get straight through to the emitter. The pulse at R_{4} triggers the shut-down device. Just how delicate you care to make this arrangement is a matter of detailed design. A 1-V margin is very robust indeed.

To monitor for the absence of a signal $R_{2} R_{3}$ can be replaced by a transistor. So long as the base is held positive the circuit stays at point A. Loss of the voltage at the base will cut off the transistor and trigger the circuit.

The uses of this bistable in ring counters, and one or two other applications of the unijunction, will be taken up in a later article, which will also describe the programmable unijunction transistor. This is an attractive variant, which has many advantages and, unfortunately, some disadvantages when compared with the ordinary unijunction transistor.

Electronic Building Bricks

3. The electron and how it moves

by James Franklin

So far we have talked about electrical energy (Part 2) and about the electron (Part 1). The connection, if the reader has not already realized it, is that electrons are the "stuff" by which electrical energy becomes evident as such. Electrical energy can be understood intuitively because it can be experienced and seen in action -but what exactly is the electron?

The sad truth is, that although a multi-million-pound industry is built on what you can do with the electron, nobody really knows what it is. We only infer that the electron exists from certain natural phenomena which have been observed and measured.

Basically the concept is that the electron is the smallest unit of what we call electricity, and is also one of the constituents of all atoms. A familiar, simplified picture of electrons in an atom is shown in

Fig. 1. Simplified diagram of an atom of silicon, an element used to make transistors. (The orbits of the electrons round the nucleus are not actually in the same plane and concentric as shown.)

Fig.1. As such the electron is represented as a particle. But a particle of what material? According to our theory of the structure of matter, all materials are made up of atoms and the atom is the smallest possible unit of any element. Something which is only a constituent of the atom cannot therefore be a particle of recognizable substance. If it is not a thing, perhaps it is an event. At any rate we will agree that it is an entity. Whatever its real nature, the electron has mass-the same familiar property as possessed by a cricket

[^7]

Fig. 2. Atom with "free" electron travelling in large, outer orbit. (For simplicity the inner electrons and nucleus are shown as a solid sphere.)
ball. (And, in fact, the electron can be made to behave in much the same way as a cricket ball--propelled, accelerated, decelerated, brought into collision, deflected and stopped.)

When we say "the smallest unit" we mean the electron is the smallest unit that can be used as a measure of quantity of electricity. (Analogy: in a quantity of ball bearings the smallest unit into which the total weight or volume could be divided is a single ball bearing.) Quantity of electricity is called charge, so the electron is the basic unit of electric charge. A larger and more practical unit by which charge can be measured is the coulomb \dagger, which is 6.24×10^{18} electrons. A stationary charge is one form of electrical energy --potential energy. As such it can be used to represent static information (Part 2).

A more easily understood property of electricity is the electric current-one thinks analogously of a current of water. An electric current is, in fact, a general

[^8]movement of many electrons-a process known as conduction. It takes place freely through certain materials, such as copper, less freely through others such as water, and hardly at all through others such as nylon. This brings us back to the dual role of the electron as a small quantity of electricity and as a constituent particle of atoms. The atoms of good electrical conductors, such as copper, have "free" electrons travelling in large, outer orbits, as shown in Fig.2; these are not fully engaged in holding together the atoms of the material, and so are available to take part in the process of electrical conduction. In a cubic centimetre of copper there are about 10^{23} such "free" electrons.

Considered in detail the process of conduction is extremely complicated. It is something like what happens in a tightly packed crowd of people in a room with a door at each end (Fig.3) if fresh people keep pushing in at one door. As each fresh person pushes in all the people already in the room are forced to change position slightly-in random directions according to where little spaces open up around them-but the net result of all this movement is that people nearest the far door are pushed out of the room.

In a piece of material in which conduction is occurring, each free electron of an atom moves into the nearest "space" in an adjoining atom (made available by a free electron moving elsewhere). The pattern of movement in a small volume is random, but over the whole material there is an aggregate of movement in a given direction. This movement of electrons is another form of electrical energy-kinetic energy-and, as we saw in Part 2, can be used to represent dynamic information.

When we speak of the "speed of electricity" we mean the speed of the aggregate movement-that is, the speed at which a disturbance (e.g. "switch-on", the start of electron movement) travels through the material. This speed varies slightly with different materials but is about 3×10^{8} metres per second.

When we speak of "current" we mean the rate of aggregate movement-that is the total number of electrons moving in a given direction past a certain point in a given period of time. Since, then, electric current is really electron flow rate, it could be measured in electrons per-second, but in practice coulombs-persecond are more convenient. A current of one coulomb (6.24×10^{18} electrons) per second is called an ampere, \ddagger or "amp".

[^9]

Fig. 3. Human-cum-mechanical analogy of the movement of electrons in a material.

Letter from America

The alleged TV radiation hazard is still provoking arguments here and set-makers are all claiming that their sets are harmless anyway . . As I said before, it's not the radiation that worries me-it's the programmes! Sylvania recently announced details of a high-voltage multiplier device which is said to significantly reduce radiation in colour sets. As a bonus they also say it reduces the chance of fire! The device consists of diodes and capacitors housed in an epoxy enclosure and it replaces the high-voltage rectifier and shunt regulator. Many readers will note the similarity to the EY52 ladder network which supplied the high-voltage potential (25 kV , if my memory serves me right) to the old Mullard TV projection tubes. I still have one of the original Schmidt lens systems which I brought across the Atlantic 'in case I could use it for something'. But there it sits gathering dust in the basement-occasionally to be shown to an American unbeliever.

Talking about tubes reminds me of the fantastic new camera tube from RCA. This uses the Silicon Intensifier Target (SIT) with a built-in electronic light amplifier. Basically, it consists of a vidicon-type scanning electron gun and image intensifier separated by a special silicon target with an integrated circuit consisting of no less than $600,000 \mathrm{p}-\mathrm{n}$ junction diodes. A brightness magnification of 150,000 is easily achieved enabling a bright television picture to be produced from very low ambient lighting. In fact, it is claimed that useful pictures can be picked up from a scene that is illuminated by a light level equivalent to that supplied by a 100 -watt bulb two miles away! Obviously, such a tube will have many industrial and military applications but could be used for ordinary broadcast purposes where the reduction in studio lighting would be very much worth while. Fig. 1 shows a cross-section through one of the diodes. Three types of tube are available at the moment- 16,25 and 40 mm .

Morgan Electronics, of Chicago, have released details of an interesting automatic telephone answering system suitable for high-speed voice and data transmission. The recorder/transcriber is a modified Uher U-5000 and the idea is to record at a very low speed ($15 / 16$ i.p.s.) transmitting and receiving at a high speed and then playing back at the original speed. Thus,

(A) Sylvania's voltage multiplier which

 reduces radiation in colour television sets.transmission time and telephone charges are reduced considerably. Reproduction is said to be better than normal 'phone conversation as connections are made direct to the 'phone circuits, by-passing the hand receiver. Features include automatic level control, a three-digit index counter, full remote control of tape motion and a single button on the microphone for selection of replay and rewind functions so that information can be added or errors corrected.
Quadraphonic sound is still the big topic in audio circles and I suppose at least 70% of the exhibitors at the July Consumer Electronic Show in New York's Americana
and Hilton hotels will be demonstrating some kind of 4 -channel sound. Among the contending systems are Harman-Kardon's 'Orban' synthetic idea which uses reverberation and phase-shifting networks, the Hafler which is a fairly simple matrix system, and the Dorren and Feldman systems-both multiplex. Several disc systems are being developed but so far the only one to leave the lab. is the Scheiber which has been demonstrated to various groups including the Audio Engineering Society. Like the Harman-Kardon, it is a synthetic or psycho-acoustic system. In other words, although it definitely produces four discrete channels the sound may not be an accurate reproduction of the original performance. RCA are backing the 8 track cartridge for their first venture into the quadraphonic market and they say at least 30 tapes will be on sale in August. Complete systems (tape player, radio and four speakers) were demonstrated back in May. Motorola and Lear-Jet are also putting their faith in the 8 -track (Quad-8) format, but Wollensak have just announced a 4-channel cassette recorder! Almost every maker of reel-to-reel machines-Sony, Teac, Telex, Crown, etc-have 4 -channel models, although, as yet, few tapes are available apart from Vanguard's series of 14. Fisher will be demonstrating a new 4-channel receiver at the Consumer Show. This is model 701 which is rated at 40 watts (genuine r.m.s. watts) per channel.

While all this flurry and excitement over quadrasonics has been going on, news has come from Mexico of - wait for it - stereo on a.m. in the medium waveband. It seems that station XTRA down in Tijuana, just across the border, has been broadcasting real, genuine two-channel stereo on 690 kHz using a new system with one sideband handling the left channel and the other carrying the right. The only snag is that two receivers are needed, one tuned higher than normal, and the other lower. (I'd hate to ask my wife to do that!) The result, according to L. R. Kahn, XTRA president, is "true stereo performance."
G. W. Tillett

Fig. 1. Target cross-section through one diode of the RCA silicon intensifier tube.

World of Amateur Radio

International prefixes

Until recently, the national prefix, used compulsorily by all amateur stations since 1928, has had as its primary purpose the immediate identification of the country from which the station is transmitting. Lately, however, this seems to play a secondary role to that of attracting special attention as a result of novelty. The Canadians used 3C, instead of VE, to mark their centenary, now AX and ZM respectively replace VK and ZL to celebrate the discovery of Australia and New Zealand by Captain Cook. European "liberation" anniversaries have been marked by 3 Z (Poland), OM (Czechoslovakia) and YT (Yugoslavia). Russian club stations have all been allocated new call signs, all having the prefix UK but with a country identification concealed in the number or call-letters. Many amateurs must by now be saying "enough" to this form of organized chaos, and hanker after the days when a prefix was a prefix was a prefix!

Encouraging c.w. operation

Despite the increased use in recent years of s.s.b. on the h.f. bands and the domination of the various telephony modes on v.h.f., hand Morse remains a basic and popular element of amateur radio communication. Because of the possibility of extreme narrow-band reception (of the order of 25 to 50 Hz bandwidth) which is becoming more practicable with the better stability of transmitters and receivers, c.w. continues to offer considerably more scope for weak signal operation than any alternative mode, as well as largely overcoming the language barriers to international communication. But increasingly, apart from maritime and some military communications, the pool of professionally experienced operators is shrinking.

A group of c.w. enthusiasts which, for over 30 years, has aimed at encouraging the use of Morse, and raising the standards of operating (though not without running into some controversy in so doing) has been the "First Class C.W. Operators' Club". Membership of this club is limited to 500 . Currently there are members in more than 50 countries. The club imposes a rigorous system of
nominations for membership-every new member has to be recommended by at least five sponsors from at least two continents. Members are expected to be able to operate at speeds of not less than 25 words per minute and to be able to operate on at least two bands. Members are encouraged to work between 25 and 35 kHz from the low-frequency limits of the bands. Secretary of the club since 1967 has been W. H. Windle (G8VG), 121 Laburnum Avenue, Dartford, Kent.

R.S.G.B. "Radiocom 70"

With the amateur radio exhibition this year moving forward in the calendar to August 19th-22nd (Royal Horticultural Society's New Hall, Greycoat Street, London S.W.1) several new features are being introduced, in addition to the normal trade and club exhibits. Vouchers totalling up to $£ 50$ are to be awarded for outstanding mobile and portable station performance as judged by contacts with the exhibition stations which will be active on $3.5,70$ and 144 MHz . This contest, under the jurisdiction of Phil Thorogood (G4KD), the exhibition organizer, requires application forms to be obtained in advance from R.S.G.B., 35 Doughty Street, London WC1N 2AE. There is also to be a competition for the best club-constructed equipment. Small "ministands" are being introduced both for the trade and to allow non-trade members to exhibit or sell equipment. The traditional "draw" will be for a Hammarlund HQ215 transistor communications receiver.

Band activities

During a sporadic E opening associated with a severe solar storm on June 12th-13th TF3VHF, the 2.5 W Icelandic beacon station on 70 MHz , was heard for the first time by many British stations. A $144-\mathrm{MHz}$ 'first' established during this period was a link between Scotland (GM3EOJ) and the Faeroes (OY2BS). The solar storm introduced a signal black-out on some h.f. bands (reported particularly from the United States), and conditions on h.f. continued patchy for most of the remainder of the month,
though this may have been due to the normal summer increase in signal attenuation in the D layer. The $144.950-\mathrm{MHz}$ beacon station near Dundee, GB3ANG, is again operational. The first new Nigerian licence for five years has been issued to Kaduna Polytechnic (5N2KPT). One of the most active amateur television groups in the United States is the Indiana Amateur TV and UHF Club whose members are now operating some 15 amateur television stations, with pictures regularly received over distances of 50 to 200 miles. This group includes W9NTP who (apart from his slow-scan work described in the March issue) operates a 300 -watt u.h.f. transmitter with a 64 -element collinear aerial array mounted at a height of 50 ft . There now appear to be only two countries (Cambodia and Vietnam) that retain their objections lodged with I.T.U. to international amateur radio operation by their citizens; but for many years there seems to have been little or no amateur licensing by China.

Mobile rallies

With British mobile licences now reported as past the 3000 mark, good attendances are expected at the August mobile rallies. These include: R.S.G.B. National Mobile Rally (9th) at Woburn Abbey (talk-in stations GB2VHF, G3VHF and GB3RS on 144, 70 and 1.8 MHz); Derby (16th) at Rykneld School, Bedfort Street; Swindon (23rd) at No 15 M.U., and R.A.F. Wroughton, near Swindon; Preston (30th) at Kimberley Barracks, Deepdale (talk-in stations on 1.8 and 144 MHz). Firms interested in exhibiting at the Wroughton rally should get in touch with G. Windsor, 26 St. Gregory's Road, Deepdale, Preston.

In brief: A. C. Morris, G3SWT, recently became honorary treasurer of the R.S.G.B. following the resignation, due to ill-health, of Norman Caws, G3BVG. One of his immediate concerns will be an "extraordinary general meeting" of the Society in August, called to authorize an increase in subscriptions. . . . The annual convention of the International Amateur Radio Club will be held in Geneva from September 16th to 18th (I.A.R.C., P.O. Box 6, 1211 Geneva 20, Switzerland). . . As a result of the recent appeal seven Cheshire Homes now have amateur-band receivers. The Homes Amateur Radio Network Fund would welcome the offer of amateur equipment in reasonable working order (offers to W. M. Clarke, G3VUC, 66 Fillace Park, Horrabridge, Yelverton, Devon). What must surely be an exceptionally amateur radio conscious family has been noted recently by A.R.R.L.: comprising grandfather (W8BU), grandmother (WA8EBS), son (WA8ZOD), son-in-law (W8WJC), daughter-in-law (WA8ZOC) and two grandsons (K8TND and WA8ZOA).

Pat Hawker, G3VA

Personalities

W. E. Hobbs has been appointed manager of the Marconi ElectroOptical Systems Division, at Basildon, of which he was formerly technical manager. He succeeds J. E. H. Brace who has resigned. Mr. Hobbs joined Marconi in 1952, working in the Research Department on colour television. In 1954 he moved to the Broadcasting Division and in 1957 to what was then the Closed Circuit Television Division. In 1962 he became development group leader responsible for the development of the vidicon colour camera and the large screen colour projector. A year later he was made deputy development manager, and since 1965 has been technical manager of the Electro-Optical Systems Division where for the past two years he has been responsible for the development and production of the Martel missile system. M. B. House succeeds him as technical manager of the Division. Educated at Queen Mary College, London University, Mr Howe joined Marconi in 1951 as a development engineer. He worked in the Broadcasting Division, first on film scanners and television film recorders, and later on vidicon cameras until he joined Closed Circuit Television Division in 1959. He was appointed development manager in 1968.

Colin Yendell has been appointed product sales manager of the Semiconductor Division of Auriema Ltd, representatives of several American semiconductor manufacturers, the main one being Philco-Ford. Prior to joining Auriema Mr. Yendell was with Marconi-Elliott Microelectronics at Witham as commercial manager of the bipolar i.c. product group.

Alexander M. Poniatoff, founder and chairman of the board of directors of Ampex Corporation, is to retire as chairman on August 25 th. He will continue to direct the Alexander M. Poniatoff Laboratory, a specialized research and development organization within Ampex. Mr. Poniatoff founded Ampex (originally Ampex Electric and Manufacturing Company) in
1944. Ampex, which takes its name from his initials plus EX for excellence, was originally formed to produce electric motors and generators for World War II navy radar systems. In 1946, Mr. Poniatoff decided to devote the small company's efforts to development work in the experimental field of magnetic recording. Born in Russia in 1892 Mr. Poniatoff studied mechanical engineering and received an M.E. degree at the technical college, Karlsruhe, Germany.

Henri Busignies, senior vicepresident and chief scientist of International Telephone and Telegraph Corporation, has received the Award in International Communication of the I.E.E.E. "for his outstanding leadership and technical contributions in the fields of electronic technology and communication techniques". An authority on radio navigation and radio direction finding, Dr. Busignies has been associated with I.T.T. for more than 40 years. The annual award consists of a plaque, certificate and $\$ 1,000$. Dr. Busignies developed the high-frequency radio directionfinding system, known as "huff-duff", used in World War II against enemy submarines. He also invented moving target-indicator (MTI) radar.

James Redmond, F.I.E.E., director of engineering of the B.B.C., has been elected president of the Society of Electronic \& Radio Technicians. Mr. Redmond joined the Council of the Society in 1965 and was elected vice-president in 1968. He succeeds Sir Ian Orr-Ewing, Bt. O.B.E., M.A.
inspector and transferred to Montevideo, returning to Glasgow in 1946. He became Liverpool depot manager in 1951, and moved to the company's head office at Chelmsford in 1955 to take over as manager of the newly formed export sales division. Mr. Maguire is also a director of Norsk Marconikompani, A/S, Oslo, and of Coastal Radio Ltd.
T. B. McCrirrick, F.I.E.E., F.I.E.R.E., is to be the new chief engineer, radio broadcasting, in the B.B.C. on the retirement of A. P. Monson who joined the Corporation in 1933 as an engineer in the London Control Room. Mr. Monson's appointments have included those of head of the transcription recording unit, superintendent engineer (recording), superintendent engineer (radio broadcasting), and since 1963. chief engineer, radio broadcasting. Mr. McCrirrick joined the B.B.C. in 1943 and after serving in studios in Edinburgh, Glasgow and London, he transferred in 1949 to the Television Service where he was latterly engineer-in-charge, television studios, and head of engineering, television recording. He left the Television Service in 1969 on his appointment as head of studio planning and installation department. C. R. Longman, F.I.E.R.E., Mr. McCrirrick's successor, joined the B.B.C. in 1943 and has been with the Televison Service since 1950. Since 1967 he has been head of engineering, television studios, in which position he is succeeded by R. B. Mobsby who has been with the B.B.C. since 1943 initially at the Tatsfield Receiving Station and for the past 15 years in the Television Service. He has been head of engineering, television network, since 1967.
R. Monger, who was until recently in charge of digital voltmeter development in Dynamco, has joined Racal Instruments Ltd as chief engineer, d.c. measurements. Racal also announce the appointment of three other senior engineers-all of whom have been with Racal several years. They are P. Sample, chief engineer (r.f. measurements); G. Taylor, chief engineer (pulse and digital instruments); and E. W. Parker, group leader, product engineering group.
H. G. Maguire, general manager of the Marconi International Marine Co. Ltd., since January 1962, has been appointed a director of the company. He began his career with Marconi when he joined as a seagoing radio officer in 1927. He served at sea until 1936, when he won promotion to the shore technical staff at the Glasgow depot. In 1943 he was promoted to

BIRTHDAY HONOURS

Among those upon whom honours were conferred on H.M. The Queen's birthday were:

Knights Bachelor

David C. Martin, C.B.E., executive secretary, the Royal Society.
Arnold Weinstock, managing director, General Electric and English Electric Companies.

C.B.

E. V'. D. Glazier, Ph.D.(Eng.), B.S.c.. M.I.E.E., director, Royal Radar Establishment.

C.B.E.

W. D. H. Gregson, assistant general manager, Ferranti (Scotland) Ltd.

O.B.E.

D. J. Harris, B.Sc., Ph.D., M.I.E.E., lately professor and head of electrical engineering, Ahmadu Bello University, Zaria, Nigeria.
A. P. Monson, chief engineer, radio broadcasting, B.B.C.
T. S. Robson, M.B.E., assistant director of engineering, I.T.A.
J. Sieger, chairman and managing director, J. \& S. Sieger Ltd.
Wing Cdr. R. H. Smith, M.I.E.R.E., R.A.F.
F. N. L. Williams, head of school radio broadcasting, B.B.C.

M.B.E.

D. R. Cockbaine, M.I.E.R.E., British Technical Asst. Officer, Turkey.
Major J. Drennan, M.I.E.R.E., Corps of R.E.M.E.
M. Johnston, engineer-in-charge. Post Office Radio Station, Baldock.
G. D'A. Prichard, manager. information services, HIrst Research Centre.
E. A. Rust-D'Eye, telecoms technical officer, Ministry of Defence.
D. H. A. Scholey, F.I.E.R.E., lately engineer-in-chief, East African Posts \& Telegraphs Corp.
T. Shepherd, formerly project leader, C. \& W. Bahrain Earth Station.
J. W. N. Yeomans, chief engineer, Redifon Air Trainers Ltd.

OBITUARY

Kenneth Joseph Ayres, managing director of International Aeradio Ltd, died on 4th June aged 48. He served as a navigator in the R.A.F. Bomber Command from 1942 to 1945 when he transferred to air traffic control becoming senior air traffic control officer at the R.A.F. Elementary Flying School, Hullavington, and subsequently at Flying Training Command Headquarters. In 1947 Mr. Ayres joined International Aeradio as an air traffic control officer and after serving at a number of stations overseas became air traffic services manager at the company's headquarters. He was appointed deputy general manager, and then general manager, technical services, and in June 1968 was elected to the board of directors. He had been managing director since August last year.
are 120 and 40 microwatts for the two types. Continuous operation is possible up to 25 mA with increased brightness, and pulsed operation of the diodes is possible up to 1 A subject to a mean dissipation of 50 mW . The response time is 300 ns. The Plessey Company Ltd, Microelectronics Division, Optoelectronic and Microwave Unit, Wood Burcote Way, Towcester, Northants NN 12 7JN.
WW327 for further details

V.H.F./U.H.F. Power Transistors

Three power transistors for v.h.f./u.h.f. class C amplifiers have been introduced by RCA. Two of the devices, designated the 2N5914 and 2N5915, are incorporated in a radial-lead stud package and are designed for stripline or lumped-constant circuits. The third device, designated the 2N5913, is built into a three-lead TO-39

type package. All three devices are epitaxial silicon n-p-n planar transistors with an overlay emitter electrode construction. Typical ratings of the 2 N 5913 device at 12.5 V is 2 W at 250 MHz (9 dB gain) and at 8 V is 1.5 W at 250 MHz (7 dB gain). These devices are available from Electronic Components Division, RCA Ltd, Sunbury-on-Thames, Middlesex, and from RCA's distributors in the UK: Semicomps Northern Ltd, ECS Ltd and REL Equipment and Components Ltd.
WW319 for further details

Triple Output Power Supply

A triple output, stabilized power supply is announced by Oltronix. The unit-designated B60-IT-has output ranges of $0-6 \mathrm{~V}, 0-30 \mathrm{~V}$ and $0-60 \mathrm{~V}$ at 4,2 and 1 A respectively. Stability is 0.005% or 1 mV for 10% line change. Noise is 0.05 mV r.m.s. Recovery time from 100% overload is $50 \mu \mathrm{~s}$. Environmental temperature coefficient is less than $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Adjustment is provided by a 10 -turn potentiometer which gives a dial reading of the chosen output voltage to an accuracy of $\pm 250 \mathrm{mV}$ on the 30 V and 60 V ranges and $\pm 25 \mathrm{mV}$ on the 6 V ranges. Range selection is by front panel switch which simultaneously indicates selected voltage and current, potentiometer scale factor and full scale value for the output monitoring meter. This is a
dual meter which shows voltage and current on separate scales. Also on the front panel are constant-voltage and current-limit indicators, monitoring-meter range expansion push buttons, a control for setting the current limit between 10 and 110% of rated output and graphs of voltage/current characteristics. A new overvoltage protection circuit is incerporated on the six-volt range which clamps the output at 7 V and automatically resets to the chosen output after an overvoltage condition is cleared. A sensor lights a "hot" lamp on the front panel and switches the supply off if a long high voltage condition occurs. Input can be $110,117,220$ and 235 V a.c. $\pm 10 \%$, $50-60 \mathrm{~Hz}$. Dimensions are 165 mm long X 133 mm high $\times 228 \mathrm{~mm}$ deep. Oltronix UK Ld, Hunting Gate, Hitchin, Herts.
WW323 for further details

5W, 7 to 12.5 GHz Pulsed Gunn-effect Diode

An X-band high power pulsed Gunn-effect diode, Type TEPO 1, has been introduced by Plessey to their range of pulsed and c.w. Gunn diodes. Power outputs are available in the frequency range 7 to 12.5 GHZ . Typical operating conditions are bias voltages from 25 to 40 V , and currents in the range 2 to 5 A and an efficiency of about 5%. The maximum pulse repetition frequency is dependent on the pulse length-e.g. for a 0.5μ s pulse the maximum p.r.f. is 10 kHz . Fast switch-on of the device is possible if the full supply voltage can be fed to the Gunn diode in about 1 ns. The device is suitable for operation in a waveguide or coaxial cavity, and is available in a standard S4 package. The Plessey Company Ltd, Microelectronics Division, Optoelectronic and Microwave Unit, Wood Burcote Way, Towcester, Northants NN 12 7JN.
WW325 for further details

Potentiometer for P.C. Boards

An addition to Plessey's MP range of moulded carbon-track potentiometers, designated type MP WT, has been specifically designed for use with 0.1 in (2.54 mm) grid printed circuit boards, and its 3.175 mm long pins conform to this configuration. This potentiometer offers $0.25-\mathrm{W}$ rating at $70^{\circ} \mathrm{C}$, with standard resistance values from $1 \mathrm{k} \Omega$ to $2.2 \mathrm{M} \cap$. A wide range of non-standard values is also

available. The Plessey Company Ltd, Resistor Division, Cheney Manor, Swindon, Wilts.
WW322 for further details

Mobile Radio Test Set

Marconi Instruments have introduced a versatile mobile radio test set which combines in one unit, many functions normally only found in a number of different instruments. This compact instrument, type T F 2950, is operated from rechargeable internal batteries. It can be used to check, service and calibrate a.m./ f.m. mobile radio equipment designed for the frequency ranges $65-180 \mathrm{MHz}$ and 420 470 MHz , with maximum transmitter powers of 15 W continuous or $15-25 \mathrm{~W}$ short term. The $65-180 \mathrm{MHz}$ range is covered in three steps.

The instrument is composed of a signal generator, an audio-frequency voltmeter,

a modulation monitor, a power meter and an audio-frequency oscillator. The voltmeter measures between 0 and 300 mV in four ranges and $0-10 \mathrm{~V}$ in three ranges. The modulation monitor measures amplitude and frequency modulation over the same ranges as the signal generator but in two bands instead of four. The amplitude modulation depth measurement range is $0-80 \%$ and f.m. deviation is measured in two ranges with maximum readings of 5 kHz and 25 kHz . The power meter measures both forward and reflected power up to 15 W continuously, and up to 25 W for short periods. The audiofrequency oscillator generates a 1 kHz signal variable by $\pm 1 \%$ and its output can be chosen from one of four ranges between $0-3 \mathrm{~V}$ and is indicated on the main meter. Battery state is also shown on the main meter. Price of the TF 2950 is $£ 800$ f.o.b. U.K. It weighs 16 kg and measures $315 \times 420 \times 230 \mathrm{~mm}$. Marconi Instruments Ltd, St. Albans, Herts.
WW336 for further details

U.H.F. and I.F. TV'Transistors

Four new transistors from SGS cover the requirements of the u.h.f. converter and i.f. amplifier stages of single- or dual-standard TV receivers. All are encapsulated in TO- 72 packages. The two u.h.f. types, the BF272 and BF316 are intended for grounded base operation and have standard connections. These two devices, by using a p -n-p configuration, are
claimed to give a performance not previously equalled by silicon transistors. The main advantage is the low noise figure-typically 3.5 dB at 800 MHZ added to very low. reverse transfer capacitance ($C_{r b}=0.09 \mathrm{pFmax}$) giving a high power gain (13 dB typical at 800 MHz) with adequate stability. The two v.h.f. devices-BF270 and BF271are intended for grounded emitter operation and have the base and emitter connections reversed, resulting in reduced feedback capacitance and isolation of input from output circuits, giving improved stage gain. The BF270 is for use as an a.g.c. i.f. amplifier giving a stability limited gain of 28 dB at 36 MHz and an a.g.c. control range of 60 dB with low base-current drive requirements. The BF271 is designed for the final i.f. amplifier stage. Its power dissipation (240 mW at $25^{\circ} \mathrm{C}$ ambient) allows more than adequate output without excessive temperature rise and nonlinearity. It has a gain of 28 dB at 36 MHz . SGS (United Kingdom) Ltd, Planar House, Walton Street, Aylesbury, Bucks. WW321 for further details

Gain-tracking T.W.T.

Latest addition to the series of ITT gaintracking, low-noise travelling wave tubes is type W3MT/4A. Tubes already available cover the frequency ranges 2-4 and 4-7.5 GHz , and the W3MT/4A now extends this range from 7.5 to 12 GHz . Gain varies over the operating frequency band from 30 to 36 dB and all tubes follow a mean gain-with-frequency curve to within $\pm 1.5 \mathrm{~dB}$. A fixed input voltage of $+1,300 \mathrm{~V}$ with respect to earth is required, plus 6.5 V d.c. supply for the cathode heater. Saturated output power is +7 to +17 dBm and noise less than 15 dB . ITT Components Group Europe, Valve Product Division, Brixham Road, Paignton, Devon.
WW332 for further details

Reversible Decade Counters

A reversible, or up/down, counter module type DCM1711, announced by Quarndon Electronics, incorporates t.t.l. logic i.cs and a numerical indicator tube to provide readout. It is intended for industrial control and counting applications at up to 15 MHz in either direction. A carry/borrow circuit provides a zero-sense output for sign change purposes. Another decade counter, model DCM1709, will operate up to 10 MHz and an alternative version of this module,

the DCM1708, is wired with a discrete component display decoder to improve the clarity. Quarndon Electronics (Semiconductors) Ltd, Slack Lane, Derby DE3 3ED.
WW334 for further details

R, C and L Boxes

A wide range of resistance, capacity and inductance boxes are available from Lionmount \& Co. Ltd, having one to five decades. Resistance boxes cover the range 0.1Ω to $11 \mathrm{M} \Omega$ with an accuracy of 0.1% :

capacitor boxes span the range 8 pF to $111 \mu \mathrm{~F}$ and inductance boxes using ferrite materials are available up to 11 H . Lionmount \& Co. Ltd, Bellevue Road, New Southgate, London N. 11.
WW339 for further details

Miniature Zener Diodes

Latest additions to the Mullard range of miniature components are some zener diodes with voltages of 5.6 to 12 V . Called type BZX84, the new diodes are intended for use with thick and thin film circuits, but they can also be used with advantage in many other applications. The BZX84 diodes have a voltage tolerance of $\pm 5 \%$ and a dissipation rating of 150 mW at an ambient temperature of $25^{\circ} \mathrm{C}$ when mounted on a ceramic substrate $5 \times 5 \times 1 \mathrm{~mm}$. The maximum permissible forward current is 100 mA , and the thermal resistance $0.5^{\circ} \mathrm{C} / \mathrm{mW}$. Mullard Ltd, Mullard House, Torrington Place, London, W.C.1. WW333 for further details.

M.O.S. Shift Registers

Two new m.o.s. static shift registers are available from Plessey. The MP220B can be programmed on a package pin to be either 80 bits or 56 bits long. Data-stream select logic is incorporated on the input to the register, thus facilitating recirculation of data. The device also features an equivalence gate enabling data in the final bit to be compared with external data, and an appropriate output derived. The device is available in either flat pack or d.i.l. packages. The MP225B is a 100 -bit static shift register which also incorporates data-stream select logic on the input. The device is available in a TO-5 package. Both devices operate from d.c. to 1 MHz over the temperature range
-20 to $+70^{\circ} \mathrm{C}$, and interfacing with t.t.l. can be achieved with a few discrete components. The shift registers are completely compatible with the MP100 series m.o.s. logic. Microelectronics Division, Plessey Components Group, Cheney Manor, Swindon, Wilts.
WW330 for further details.

Reference Voltage Cell

A robust miniature reference cell which can be soldered to a printed circuit board has been introduced by Muirhead. Designated type K-391-A, this new cell is claimed to have performance characteristics equal to those of the best reference cells available. It measures only $70 \mathrm{~mm} \times$ 11 mm , and can be mounted or transported in any position. The e.m.f. is 1.019 to 1.0193 V at $25^{\circ} \mathrm{C}$ and the temperature coefficient (10 to $40^{\circ} \mathrm{C}$) is less than $-3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Each cell is supplied with a certificate of test with e.m.f. stated to the nearest $10 \mu \mathrm{~V}$. This value is traceable to the National Physical Laboratory Volt with an estimated uncertainty not exceeding $10 \mu \mathrm{~V}(0.001 \%)$. Muirhead Ltd, Beckenham, Kent.
WW335 for further details

Digital Probe

A pocket-size digital probe has been announced by Aircraft Supplies. It is suitable for on-the-spot checking of electronic equipment and it replaces the oscilloscope where this instrument is unavailable or inconvenient to use. The probe is light and easy to handle and is powered by rechargeable nickel cadmium cells. There are two modes of operation: as an indicator of static logic levels (0 and 1 corresponding to lamp on and off respectively); and as an indicator of pulse trains. Retail price is $£ 19$ 15s. Aircraft Supplies Ltd, 506 Wallisdown Road, Bournemouth, Hants.
WW338 for further details

Miniature Tape Recorder

The Nagra SN miniature tape recorder, available from Hayden Laboratories, will fit into a coat pocket, has a signal-tonoise ratio (relative to 2% 3rd harmonic

distortion) of 60 dB , and a frequency response of $80-16000 \mathrm{~Hz} \pm 2 \mathrm{~dB}$ at 3.75 i.p.s. Average speed stability is $\pm 0.5 \%$, and wow and flutter $\pm 0.1 \%$ at 3.75 i.p.s. The recorder uses 3.81 mm (0.15 in) tape and will play for 52 minutes at 1.875 and 26 \min at 3.75 i.p.s. Power can be supplied from manganese batteries, alkaline sealed accumulators, or from an optional mains operated power supply. An omnidirectional capacitor microphone ($48 \times 18 \times$ 10 mm) is also available as an extra. Price of basic recorder is $£ 365$. Hayden Laboratories Ltd, East House, Chiltern Avenue, Bucks.
WW337 for further details

Watchkeeping Receiver

A new watchkeeping receiver for use on the international $2182 \mathrm{kHz} \mathrm{R} / \mathrm{T}$ distress frequency is available from Redifon. Designated R.492, the receiver is crystal controlled, simple to operate, and compact. It is completely independent of other radio .

equipment and can be preset to a volume low enough to avoid annoyance, while still producing full volume whenever a twotone alarm signal is received. A receiving range control provides adjustment of the receiver to suit the particular aerial in use. Protection against damage to the receiver input circuits from powerful signals is provided by a fast-acting muting system. An external speaker output is provided. The receiver operates from a ship's main a.c. supply or from a 24 V d.c. source. Redfon Ltd, Broomhill Road, Wandsworth, London, S.W. 18.
WW329 for further details

High-level Gate-turnoff S.C.Rs

Transitron has introduced a series of highlevel gate-turnoff thyristors. Design features of the new devices-designated RTGD02 -include pulse turnoff up to 5A; typical 5A turnoff gain of 10-15; typical turnoff time under $5 \mu \mathrm{~s}$; and operating temperatures up to $125^{\circ} \mathrm{C}$. Repetitive peak-off-state voltages and repetitive peak reverse voltages for the five devices in the range are: RT GD0206, 60V; RTGD0210, 100V; RTGD0220, 200V; RTGD-
$0230,300 \mathrm{~V}$; and RTGD0240, 400 V . Absolute maximum ratings include (at $80^{\circ} \mathrm{C}$) average on-state current, 1 A ; r.m.s. on-state current, 1.6A; peak one-cycle surge current $(60 \mathrm{~Hz}), 10 \mathrm{~A}$; peak reverse gate voltage, 5 V ; peak gate power, 500 mW ; and average gate power, 100 mW . Packaging is in standard TO 5 cans. Transitron Electronics Ltd, Gardner Road, Maidenhead, Berks.
WW331 for further details.

64-pole P.C.B. Connector

A sixty-four-pole electrical connector for the indirect connection of printed circuit boards has been introduced by ITT Components Group Europe. The GO7 connector is designed for use with the ITT Standard Equipment Practice (ISEP)

system and complements the existing ISEP connector range. Within the connector's overall length of 94 mm (3.7in), sixty-four contacts are arranged in two rows of thirty-two with a contact pitch of 2.54 mm (0.1 in). By the use of external coding pins, polarization without loss of contact is possible. The connector is available to special order equipped with only thirty-two poles, either in line on one side or staggered. ITT Components Group Europe, ITT Manufacturing Services Division, Equipment Practice Sales Office, Edinburgh Way, Harlow, Essex.
WW311 for further details

2-GHz Transistor

TRW Semiconductors Inc. has added another member to its GHz transistor family-the PT8610. This provides 10W output at 2 GHz , with 7 dB gain and 15% bandwidth. It is a single chip device in a low parasitic package. Companion transistors are the PT8611, at the 5 W level, the PT8612, at 2.5 W , and the PT8613, at 1 W . These devices are designed for use in common-base circuits. MCP Electronics Ltd, Alperton, Wembley, Middlesex, HAO 4PE.
WW3 10 for further details

Low Phase-distortion Audio Transformers

Gardners Transformers have announced a new standard range of low phase-shift audio transformers capable of handling steep-sided transient signals. The transformers employ toroidal winding and nickel-iron ribbon of extremely high permeability. Phase-shift over the audiofrequency band is less than five degrees
from 20 Hz to 20 kHz , and frequency response is within 0.5 dB from 10 Hz to 80 kHz (13 octaves). A steep-sided transient signal can be handled without generation of overshoot up to +12 dBm at 20 Hz and +20 dBm at 50 Hz . One type in particular, the MU7590, which is designed for $600-\Omega$ line-bridging applications, will handle voltage levels up to +24 dBm at 20 Hz . The transformers are electrostatically and magnetically shielded, and are assembled in a cylindrical mumetal case 60.5 mm in diameter and 71 mm high and mounted on an international octal plug-in base. Gardners Transformers Ltd, Christchurch, Hants.

WW318 for further details

50A Complementary

Transistors

Two pairs of complementary silicon power transistors, $\mathrm{p}-\mathrm{n}-\mathrm{p}$ types 2 N 5683 and 2N5684 and n-p-n types 2N5685 and 2N5686, introduced by Motorola, are each rated at a maximum collector current of 50 A . Together with a collector breakdown voltage of 60 to 80 V , this high current rating makes the transistors suitable for high-power amplifying applications. Minimum current gains of 15 at 25 A and 5 at 50 A are exhibited. The devices can also be used in switching circuits such as 1 kW inverters and converters, motor controllers and lamp drivers, a maximum collector-to-emitter saturation voltage of only IV at 25A ensuring low-loss operation in saturated switching circuits. Transition frequency is 2 MHz (max.) at 5 A . Housed in a TO-3 case, each device dissipates a total of 300 W at a case temperature of $25^{\circ} \mathrm{C}$. Motorola Semiconductors Ltd, York House, Empire Way, Wembley, Middx.

WW3 13 for further details

Microphone Amplifier

I.C. type TAA970 from Mullard can be used with piezoelectric and dynamic microphones as an amplifier for telephone circuits. The gain of the amplifier is independent of the polarity of the supply. Typical voltage gain and output impedance is either 180 dB and 115Ω or 130 dB and 80Ω depending on pin interconnections. The encapsulation is TO-74. Mullard Ltd, Mullard House, Torrington Place, London W.C. 1.
WW 304 for further details

High C.M.R. Differential Amplifier

A new differential amplifier type E71, by Computing Techniques, has an input bias current of 10 pA , common mode rejection of 100 dB and a common mode voltage range of $\pm 10 \mathrm{~V}$. It has an overload recovery time of $1 \mu \mathrm{~s}$. slew rate of $2.5 \mathrm{~V}_{41} \mathrm{~s}$, open loop gain of 10^{5} and will drive a $2 \mathrm{k} \Omega$ load to $\pm 10 \mathrm{~V}$ from $\pm 15 \mathrm{~V}$ supplies without limiting. Using silicon,
transistors throughout, the E71 is protected against damage by short circuits from output to earth. It is especially suitable for applications requiring an f.e.t. input stage with good common mode performance and fast overload recovery time. Computing Techniques Ltd, Westminster Bank Chambers, Bridge Street, Leatherhead, Surrey.
WW317 for further details

V.H.F. Communications Aerial

An addition to the Panorama range of v.h.f. communications aerials is the FX helical spring which is only one-third the length of a comparable quarter-wave rod. Its flexibility, ruggedness and low profile provide considerable protection against rough handling and accidental breakage,

especially when used with portable equipment. Available with 4B.A. end stud as standard or fitted with customer designated connector, the FX aerial is supplied to specified frequencies within the range $70-240 \mathrm{MHz}$. Panorama Radio Co. Ltd, 73 Wadham Road, London S.W. 15 .

WW312 for further details

Reflex Klystron

English Electric has added a low-voltage, rugged reflex klystron (type K3078) to their range of oscillator klystrons. A direct equivalent to the VA203B/6975, this tube has improved vibration f.m. performance, and will operate under severe environmental conditions. The frequency range is 8.5 GHz to 9.6 GHz , mechanically tuned by a single screw. Output power (typical) is 35 mW . English Electric Valve Co. Ltd, Chelmsford, Essex.
WW315 for further details

Dual-in-line Sockets

A range of 14 -pin dual-in-line sockets is now available from EF Electronics, Tovil, Maidstone, Kent. The new socket features a generous lead-in for easy loading and a large central channel for easy removal of i.cs. The body is glass-filled nylon. Contacts are beryllium or phosphor bronze, both with 1 micron of hard gold over a nickel flash, or phosphor bronze with no finish. Contact resistances are $15 \mathrm{~m} \Omega, 25 \mathrm{~m} \Omega$ or $50 \mathrm{~m} \Omega$ maximum according to contact finish and measured after 1000 insertions. Insulation is
$10^{3} \mathrm{M} \Omega$ at 500 V and capacitance is 2 pF maximum measured between any two adjacent contacts. Cost varies from 2s 9d to 6 s 0 d according to quantity. EF Electronics, Church Road, Tovil, Maidstone, Kent.
WW314 for further details

High Noise-immunity I.Cs

Two t.t.l. integrated circuits announced by Mullard have a noise immunity figure of not less than $\pm 6 \mathrm{~V}$. The integrated circuits, types GRL111 and GRL101 are intended to provide interface connections with a balanced pair cable, the GRLI 11 acting as the transmitter and the GRL101 as the receiver. They can be used to complete a compatible link between two independent logic systems. Although designed for use with the Mullard FJ family of integrated circuits, they can be used with almost all saturated logic families. Typical propagation delay for GRL111 is 14 ns , and 25 ns for GRL101. Mullard Ltd, Mullard House, Torrington Place, London W.C.I. WW316 for further details

High Current Thyristors

Two new series of 10 A and 20 A silicon controlled rectifiers, for power switching, voltage regulation and control applications, are available from RCA. Thel0A s.c.rs, designated 40737 to 40748 , are intended for $120-\mathrm{V}$ line, $240-\mathrm{V}$ line and high voltage operation and are incorpora ted in metal packages of press fit, stud, or isolated stud design. The 20 A s.c.rs, designated 40749 to 40760 are also available in press fit, stud and isolated package designs. Vdrom (repetitive peak off-state voltage) is $100 \mathrm{~V}, 200 \mathrm{~V}, 400 \mathrm{~V}$, and 600 V for both series which are available from RCA's distributors: Semicomps Northern Ltd, of Kelso; E.C.S. Ltd, of Windsor; and R.E.L. Equipment and Components Ltd, of Bancroft, Herts.
WW 303 for further details

X-Y Display Oscilloscope

Marconi Instruments have produced an $X-Y$ display monitor with a screen area of $170 \times 220 \mathrm{~mm}$. The unit, TF 2212 , complements the existing range of the

company's sweep generators. Vertical sensitivities are calibrated $5 \mathrm{mV} / \mathrm{cm}$ and $50 \mathrm{mV} / \mathrm{cm}$ positions with continuously variable control. The vertical bandwidth is from d.c. to 10 kHz . Horizontal sensitivity is $100 \mathrm{mV} / \mathrm{cm}$ (approx.) with continuously variable control. The horizontal bandwidth is d.c. to 1 kHz . Price about $£ 180$ in U.K. Marconi Instruments Ltd, St. Albans, Herts.
WW 302 for further details

Power Microcircuits

The PM range of power hybrid microcircuits from WEL is designed for low-cost power control applications. They are particularly suited for stepless speed control of universal motors and variable power supplies. Various combinations of thyristors and /or diodes are encapsulated in epoxy resin mounted on a heat sink with connections made by spade tags. Due to the high thermal conductivity of the heat sink, currents of up to 12 A may be handled by the circuits. Three types of circuit are in production: the PM5, a thyristor and diode combination with current load capability up to 12 A , for use as a half-wave motor speed control system; PM7, a full-wave rectifier bridge; and PM6, diode pairs. From these two latter types a variety of d.c. power supplies can be produced with outputs up to 9 A . They can also be combined to form three-phase bridges, solid state a.c./d.c. switches and high voltage stacks. All three microcircuits are available with a variety of operating voltages--PMS from $200-800 \mathrm{~V}$, PM6 and 7 from 200-1400V. The price of a 5 A 400 V universal motor controller type PM7, output 9 amps, is 16 s 9 d (100 pieces). WEL Components Ltd, 5 Loverock Road, Reading, Berks.

WW 301 for further details

Broadband Suppressors

A range of interference suppressors-the Ammonite range-is available from Birch-Stolec. Although designs are possible for cut-off frequencies as low as 2 kHz , it is expected, by the manufacturers, that the most frequent applications will be in the $20-100 \mathrm{kHz}$ region. The range has a voltage rating up to 250 V a.c. 50 Hz , rated current of 0.5 to 15 A and a cut-off frequency from 5 kHz to 50 kHz . In the discoidal (grommet) Ammonite, interference energy is converted to heat. Birch-Stolec Ltd, Ponswood Industrial Estate, Windmill Road, Hastings, Sussex.
WW 307 for further details

8-track Magnetic Recording Head

Multi-track operation in small computers is now made possible, claim Phi Magnetronics, by their new $8 / 8$ magnetic head. Gap scatter is claimed to be better than $25 \mu \mathrm{~s}$ at $7 \frac{1}{2}$ i.p.s. Designed for use with quarter-inch tape, the new head, type

DHM /030, has a track width of 0.5 mm and track spacing of 0.81 mm . Inductance at 1 kHz is $30 \mathrm{mH} \pm 20 \%$. Playback full level is $85 \mu \mathrm{~V} \pm 1.5 \mathrm{~dB}$. Crosstalk from a tape recorded to saturation level on seven tracks, measured on the unrecorded track, is better than -20 dB . Signal current is $300 \mu \mathrm{~A}$ r.m.s. and peak bias 1.7 mA at 50 kHz . Phi Magnetronics (Sales) Ltd, Penwerris Lane, Falmouth, Cornwall.
WW 305 for further details

M.O.S. Random Access Memory

A low-cost 64-bit semiconductor random access memory constructed with m.o.s. transistors (type MC1170L) has been introduced by Motorola. Access time is 400 ns . Organized as 16 words of four-bits each, it uses a four-input binary address and contains full decoding circuitry. An ENABLE input is provided for easy address expansion. Read/write buffer circuits on the output bit lines, which allow as many as 20 -bit lines to be "wired ORed", simplify the design of larger memory systems using this unit. Further simplification is afforded by the single-phase clock used by the device. Designed for use in memory systems with access times of less than 500 ns , the MC1170 L is intended primarily for small buffer memories but, because the stored data is read nondestructively, it can find application in systems where destructivereadout delay-line memories are used. Motorola Semiconductors Ltd, York House, Empire Way, Wembley, Middx. WW 309 for further details

F.E.T. Op. Amp

A low-cost f.e.t.-input differential amplifier, the Fairchild Controls ADO-84/10, announced by G.D.S. (Sales) has 50 pA maximum initial bias current, 25 pA offset current and $50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum offset drift. Open-loop gain is 100 dB with a small-signal bandwidth of 1 MHz . Full output bandwidth is 75 kHz . at $\pm 10 \mathrm{~V}$ and $\pm 5 \mathrm{~mA}$, slew rate being $4 \mathrm{~V} / \mu \mathrm{s}$. Full short circuit protection is built in. Both common-mode and differential input impedances are $10^{12} \Omega$ with 60 dB commonmode rejection. The amplifier is suitable for operation over the temperature range $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and needs $\pm 15 \mathrm{~V}$, 10 mA supply. A mating socket (ASO-2) is also available. Price $£ 7$ 2s 10 d . G.D.S. (Sales) Ltd, Michaelmas House, Salt Hill, Bath Road, Slough, Bucks.
WW 306 for further details

Literature Received

For further information on any item include the WW number on the reader reply card

ACTIVE DEVICES

We have received two pocket books from Newmarket Transistors Ltd, Exning Rd, Newmarket, Suffolk.

Custom hybrid microcircuits WW401
Products mini portfolio
WW402
A frequency-sensitive switch microcircuit type FX 101 is described in leaflet D/026 from Consumer Microcircuits Ltd, 142/146 Old St , London, E.C.I.

WW403
The phase-locked-loop microcircuit type NE560B and NE561B manufactured by Signetics is described in a leaflet from LST Electronic Components Ltd, 7 Coptfold Rd, Brentwood, Essex.
. WW404
National Semiconductor, 2900 Semiconductor Drive, Santa Clara, California 95051 , U.S.A., have produced an interesting brochure called "Reliability report-m.o.s. integrated circuits". The data is compiled from $1,479,000$ life test device hours

WW405
A 36-page publication giving data on the AEG range of thyristors, triacs and diodes may be obtained from Electronic Component Services (Worcester) Ltd, Victoria House, 63-66 Foregate St, WorcesterWW406

Over 200 c.r.t. types are covered in the new brochure from Brimar (Thorn Radio Valves and Tubes Ltd, 7 Soho Square, London, W.1.). The brochure is called "Brimar industrial cathode ray tubes" and consists of 30 pages WW407

Application note No. 3 from Hivac Ltd, Stonefield Way, Ruislip, Middlesex, discusses a glow diode for photocell switching, describes flash tubes and gives details on calculating the operating conditions of neon lampsWW408

Full circuit diagrams and component lists with relevant constructional information for a complete multi-channel proportional radio control system is given in the publication "A six-channel digital proportional radio control system" which costs 3 s 6d from Ferranti Ltd, Gem Mill, Chadderton, Oldham, Lancs.

A new application note from Mullard (TP 1149) describes a high input impedance f.e.t. input stage for an operational amplifier. I.E.D., Mullard Ltd, Mullard House, Torrington Place, London, W.C.I.
. WW409
"A novel shaper circuit for d.t.l. and t.t.l. input interfacing" is the title of an application note produced by ITT Semiconductors,

Footscray, Sidcup, Kent
.WW410
We have received a variety of application notes from RCA Electronic Components, Harrison, New Jersey 07029, U.S.A.

AN4124. "Handling and mounting RCA moulded plastic transistors and thyristors"WW411
1CAN6218. "Gate-oxide protection circuit in RCA cos/m.o.s. digital integrated circuits" $\ldots .$.WW412
AN4242. "A review of thyristor characteristics and applications"WW413
1CAN6267. "Astable and monostable oscillators using RCA cos/m.o.s. digital integrated circuits"WW414
AN4277. "Description and application of RAC Numitrons"WW415 We have also recieved from RCA their "Receiving Tube manual" (RC 27) consisting of 672 pages devoted to entertainment valves and tubes. Price $\$ 2$.

Filing Instruction No. 16 is available for the AEI Semiconductors Technical Data Handbook. AEI Semiconductors Ltd, Carholme Rd, LincolnWW416

Ferranti, Gem Mill, Chadderton, Oldham, Lancs, have sent us a good deal of literature on their 7400 series t.t.l. for industrial temperature rangesWW417
"Electronic component selector guide" from Celdis Ltd, 37-39 Loverock Rd, Reading, Berks RG31ED, lists a wide range of products, mostly semiconductor, from a large number of manufacturers
.WW4 18

PASSIVE COMPONENTS

Rank-Bush-Murphy have produced their first catalogue of electronic components. The catalogue, which is not a catalogue of replacement parts for $\mathrm{R}-\mathrm{B}-\mathrm{M}$ receivers, lists 1,800 components. Rank-Bush-Murphy Ltd, Drayton Rd, Boreham Wood, Herts .. WW4 19

The current ITT Electronic Services (Edinburgh Way, Harlow, Essex) stock catalogue has been enlarged to 1168 pages and lists a vast range of electronic components ..WW420
"Advance Data-No.18" from AMP of Great Britain Ltd, Terminal House, Stanmore, Middlesex, is devoted mainly to the "Termitwist" connection system

WW428
We have received the following literature from
F. C. Lane Electronics Ltd, Slinfold Lodge, Horsham, Sussex.

Short-form catalogue (plugs and sockets) .WW421
Rendar price listWW422
Ether price list
.WW423
A smart set of cards in a cardboard wallet describes the expanded range of Amphenol min-rac 17 plug and socket connectors. Amphenol Ltd, Thanet Way, Whitstable, Kent .WW424

A 26-page catalogue containing details of a variety of switches is available from Carlingswitch Ltd, Victoria Works, Water Lane, Watford, Herts.
.WW425
Heat sinks, racks, printed cards and reed and mercury relays are listed in a catalogue, in French, available from S.E.E.M., 8, rue Boutard, 92-Neuilly, France .WW426

West Hyde Developments Ltd, Ryefield Cres., Northwood Hills, Northwood, Middlesex, have produced a range of illuminated pushbutton switches which are described in a leaflet

WW427

EQUIPMENT

"Dana-A world of measurement capability" is the short-form catalogue of Dana Electronics Ltd, Bilton Way, Dallow Rd, Luton, Beds. It lists a variety of test equipmentWW429

The latest short-form catalogue from the Croydon Precision Instrum.ent Company, Hampton Rd, Croydon CR9 2RU, lists ranges of bridges, precision potentiometers, resistance boxes and standards, supply units, voltage ratio boxes, etc

Spectrum analysers, noise and field intensity meters, a.c.-d.c. standards and precision measuring equipment, syncro test equipment, voltmeters, frequency meters and generation equipment are featured in the new short-form catalogue from Singer Instrumentation which is available from Roberts Electronics, 17 Hermitage Rd, Hitchin, Herts
. . WW431
"Keithley engineering notes" Vol.18, No.1, describes a d.c. current source $(0.005 \%$ regulation, 0.02% resolution and 500 V capability), a picoampere source $\left(10^{-14}\right.$ to $10^{-4} \mathrm{~A}$, accuracy 0.25%) and a unity gain isolating amplifier ($10^{12} \Omega$ input isolation, $\pm 0.3 \%$ gain linearity). It is available from Keithley Instruments Inc., 28775 Aurora Rd, Cleveland, Ohio 44139, U.S.A.

WW432
A logic tutor, Computakit-1, is described in a leaflet from Limrose Electronics, Lymm, Cheshire
.WW433

GENERAL INFORMATION

A directory of the laboratories approved by the British Calibration Service can be obtained from: The British Calibration Service, Stuart House, 23-25 Soho Square, London, W.I.

Anyone . interested in joining the British Amateur Electronics Club should send for the latest copy of the B.A.E.C. Newsletter to C. Bogod, "Dickens", 26 Forest Rd, Penarth, Glamorgan.

This little fellow gets all the tough assignments

Redcap Capacitors are ready for any assignment. As part of the Monobloc Ceramicon range, they can pack 10 to 100 times the capacitance/volume ratio of conventional components. They tolerate temperatures from $-50^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. They cover a broad range of values from 10 pF to $470,000 \mathrm{pF}$ (up to $2,200 \mathrm{pF}$ in high stability NPO, with the remainder of the range in

Hi-K Dielectric), at voltage ratings of 50 or 100 Volts d.c.
Redcaps are now made in Britain. The technique is the fusion of Thin Ceramic Films and Platinum Electrodes. The result is an inherently stable dielectric, and volumetric efficiencies as high as $380 \mu \mathrm{~F}$ per cubic inch.
Finished in Jetseal Phenolic Insulating coating, with weldable solder-coated
copperclad steel leads, Redcaps are
 equipped to perform their tasks with complete reliability.

Send for details to :-
ERIE ELECTRONICS LTD,
Gt. Yarmouth, Norfolk. Telephone : 04934911 Telex:97421

Vortexion

These electronic Stereo Mixers range from $2+2$ to $5+5$ input channels, with left and right outputs at 500 millivolts into 20 K ohms up to infinity.
Separate control knobs are provided for L \& R signals on each stereo channel so that a Mono/ Stereo changeover switch provided can give from four to ten channels for monaural operation, in which state the L \& R outputs provide identical signals.
A single knob ganged Master Volume control is fitted, plus a pilot indicator.
The units are mains powered and have the same overall dimensions as monaural mixers.

STEREO MIXERS

Also available Monaural Electronic Mixers:-

4 Way Monaural Mixers
6 Way Monaural Mixers
8 Way Monaural Mixers
10 Way Monaural Mixers

3 Way Monaural Mixers with P.P.M.
4 Way Monaural Mixers with P.P.M.
6 Way Monaural Mixers with P.P.M.
8 Way Monaural Mixers with P.P.M.

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4 WAY MIXER USING F.E.T.'s. This is a high fidelity amplifier (0.3% intermodulation distortion) using the circuit of our 100% reliable 100 Watt Amplifier (no failures to date) with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for $3-30 / 60 \Omega$ balanced line microphones, and a high impedance line or gram. input followed by bass and treble controls. Since the unit is completely free from the input rectificationdistortion of ordinary transistors, this unit gives that clean high quality that has tended to be lost with most solid state amplifiers.
100 uV on $30 / 60$ ohm mic. input. 100 mV to 100 volts on gram/auxiliary input $100 \mathrm{~K} \Omega$.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Bass and treble controls fitted. Models available with 1 gram and 2 low mic. inputs. 1 gram and 3 low mic. inputs or 4 low mic. inputs.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms and 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 v on 100 K ohms.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 m W 600 ohms. Output $100-120 \mathrm{v}$ or $200-240 \mathrm{v}$. Additional matching transformers for other impedances are available.

30/50 WATT AMPLIFIER. With 4 mixed inputs, and bass and treble tone controls. Can deliver 50 watts of speech and music or over 30 watts on continuous sine wave. Main amplifier has a response of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db} .0 .15 \%$ distortion. Outputs $4,7.5,15$ ohms and 100 volt line. Models are available with two, three or four mixed inputs for low impedance balanced line microphones, pick-up or guitar.

UHF klystron efficiency? You can rely on it with EEV.

For reliable UHF klystron performance choose from the largest range available today. The EEV range. $40 \mathrm{~kW}, 25 \mathrm{~kW}, 10 \mathrm{~kW}, 7 \mathrm{~kW}$ and 5 kW .

Each one offers economy and ease of use, solid-state compatibility and, above all, efficiency-even at low drives.

Broadcasting authorities around the world are using

e

 ay

EEV klystrons for UHF television - proving their operational flexibility, reliability and efficiency in climatic conditions as varied as those of Australia and Finland. To get the full facts about the tube you need, please post the coupon. English Electric Valve Co Ltd, Chelmsford, Essex, England. Telephone 024561777. Telex:99103. Grams:Enelectico Chelmsford

To: English Electric Valve Co Ltd, Chelmsford, Essex, England Please send EEV data on UHF television amplifier klystrons. I am interested in a klystron with the following parameters: Frequency \qquad Bandwidth \qquad Power \qquad

Name \& position

Company
Address

The great EEV radardisplay

These radar components represent just part of our total radar capability, and they indicate the size of our investment in radar. We know radar from thyratrons to magnetrons, from duplexers to klystrons. And we have the resources to back this immense fund of knowledge. EEV's advanced tube technology is at your service. If a device to suit your equipment is not already in our catalogue, we would consider making one specially for you.

So that we can send you the latest, up-to-date information, please return the coupon opposite.

English Electric Valve Co. Ltd., Chelmsford, Essex, England. Telephone: 0245 61777. Telex:99103. Grams: Enelectico, Chelmsford.

1. Magnetrons

2. High power klystrons

3. High-power travelling-wave tubes

4. Hydrogen thyratrons

5. Pulse tetrodes

6. Low-power travelling-wave tubes

7. Low power klystrons and backward wave oscillators

8. Duplexer devices

9. Voltage stabilisers

10. Storage tubes

Just five seconds per point for perfect fixing-neater, more compact, safe and permanent. The Cradleclip® system permits quick and easy wiring amendments-cuts costs all round. Comprises binders and clips for loose wiring cradles and clips for anchored wiring. Binders and cradles are in tough, virtually unbreakable inylon for all-climate insulation. Clips are in PVC, Neoprene (for special duties) or Butyl rubber (for aircraft applications). Post the coupon for samples by return.

Never Built a Kit Before？ Why not prove how easy it is the HEATHKIT way． Build one of these beginner kits．

See for yourself how EASY it is to build a HEATHKIT model ．．．Why not purchase a construction manual now，ONLY 10／－EACH．Simply order the manual for the model of your choice on the order form below．If you order the kit later the manual price may be deducted from the price of the kit．

Deluxe SW Receiver Many extras for price
Kit K／GR－54 f48－16
Carr．91．

For Hobbyists－Householders Kit K／IM－17 f14－8 Carr．6／．

FM Mono Receiver

Modest Price—Natural Sound	$\begin{array}{l}\text { Kit K／AR－27 } \\ \text {（Cab Extra）}\end{array}$	f22－10 Carr． $1 / \%$

2－Speaker and Cross over System Build into own Cabinet Kit K／SCM－3 f12－6 Car． 6 ／－

ORDER YOUR MANUAL PRICE ONLY 10／－EACH TODAY！

A Schlumberger Company

HEATH（Gloucester）LTD．
GLOUCESTER GL2 6EE Tel． 29461 Telex． 43216

Deluxe Car Radio Top Value－Powerful output $\begin{array}{lll}\text { Kit K／CR－1 } \\ \text {（Spkr．Extra）} & \text { £12－12 Carr．} 5 / \text { ．}\end{array}$

12w＋ $12 w$ Stereo Amplifier 8 or 15Ω outputs

HEATH（Gloucester）LTD． gloucester gl2 6 ee．

Tel． 29451 Telex． 43216
Tick requirements
－Please send me FREE Catalogue
\square Please send me manual（s）for model（s）
I enclose a remittance for
\square Full details models

NAME
ADDRESS

MICROPHONES \& ACCESSORIES

Our range of microphones includes all types, ribbon, omnidirectional and cardioid, with or without switches, for hand or stand use. All microphones are manufactured in a special section of our works, under strictly controlled conditions with stringent test and inspection at every stage. Each and every microphone is individually tested both aurally and on Bruel \& Kjoer visual and graphic recording test equipment for conformity to a prescribed performance. Accessories such as desk or floor stands, wind shields and parabolic reflectors are also well catered for.
Besides microphones, every need of Public Address is met by a wide range of amplifiers, both mains and battery operated, mixers and ambiophonic units, loudspeakers and associated equipment, disc recorder amplifiers and cutter heads.

Please send for fully descriptive literatume to the firm who back you with SERVIGE

Grampian

SOUND EQUIPMENT

GRAMPIAK REPRODUCERB ITD HANWORTH TRADING ESTATE FELTHAM, MIDDLESEX. TELEPHONE 018949141.

JACW/X/59 (M22) WW-014 FOR FURTHER DETAILS

ASTRONIC SERIES 1700

For the finest reproduction invest in Astronic Equipment built from standard modules for use in clubs, factories hospitals, sportcentres, hotels, schools or where only the best will do

ASSOCIATED ELECTRONIC ENGS LTD. DALSTON GARDENS, STANMORE, MIDDX. TEL: 01-204 2125

Not oplybeautiful, but...

* Lightweight
* Tropicalized
* Practically unbreakable
* High impedence, high level phones * Carbon microphones available * Extremely comfortable
* Simple to service.

The new 'Astrolite' headset has been adopted by many of the leading Television, Broadcasting and Programme companies for studio and O.B. use, and no wonder

It's fully interchangeable with all known carbon level systems. No more of the 'snap, crackle and pop', just the message, clear and reliable, using our new noise-cancelling high quality moving-coil microphone with integral amplifiers.

AMPLIVOX COMMUNICATHONS LIMTTBD

AMPLIVOX COMMUNICATIONS LTD. BERESFORD AVENUE • WEMBLEY • MIDDX. TELEPHONE 01-902 8991 GRAMS AND CABLES • AMPLIVOX WEMBLEY

For noise-free communications, without 'carbon' crackles. Write or telephone for a free demonstration, at your premises, without any obligation.

Name \qquad
Title
Address

COLUMN LOUDSPEAKERS

L. 470 (LEFT) A 4^{\prime} line source loudspeaker providing the highest quality audio reproduction available from a column unit. Designed specifically for outside broadcast use, the L 470 has an exceptional directional characteristic, and will ensure good intelligibility, even under poor acoustic conditions.

Power Rating: 8 watts.

LM 204 (CENTRE) A 2' line source loudspeaker having an all metal construction, and designed for use in churches, conference halls, etc., where top quality speech reproduction is required.

Power Rating: 6 watts.
'200' Series (FAR RIGHT) This range of column loudspeakers are constructed in matt finished solid afrormosia timber. The acoustic venting and high flux speaker units incorporated, provide top quality sound distribution over the entire audio range. Models are available with power outputs between 7 and 45 watts, varying in height between 2 and 7'respectively.

INTERMODULATION DISTORTION ANALYSER

Residual Distortion below 0.005\%! Internal Generators! 1 Minute Calibration! FET Circuitry ! Price £496!

The IMA Intermodulation Distortion Analyser made it possible for Crown International to produce the World's finest Power Amplifier, the DC300! Now the unique facilities of the IMA are available to you. Your Laboratory or your production line can benefit from 1 minute Inter-Mod measurements. Phone us now for a data sheet, or a demonstration.

Carston Electronics Limited,

Why Mullard chose the high-voltage solution for transistorised TV

One of the major decisions that manufacturers of TV components have faced is the choice between high and low voltage line output circuitry. On the basis of an extended evaluation programme, Mullard settled for the high-voltage solution some three years ago, and started work to solve the specific device problems. This decision was based on the specialised knowledge which our Central Applications Laboratory had of the advantages this solution would bring to Setmakers.
Once the development tasks had been set, all our resources were co-ordinated to make a concentrated effort to develop these necessary and most complex devices-the TV line output transistor BU105 and the BT106 thyristor.

The BU 105 is technically outstanding. It can operate at a maximum peak collector-to-emitter voltage of 1.5 kV , and one device can supply the scanning and e.h.t. power for 110° monochrome TV,
which can be as high as 3000 VA . For colour TV, where the VA can rise to 5000 VA , two BU105's are usually used in series, and the nominal peak operating voltage of $2 \mathrm{k} Y$ is well within the combined ratings of the two transistors. The peak collector current requirement is adequately covered by the BU105's 2.5 A rating.

At the same time that the BU105 was being developed, a second team was working on the problems of providing a fully protected and regulated power supply for TV. This was built around the rugged Mullard Thyristor BT106. The circuit was developed using techniques our designers have employed for the speed control of domestic appliances, and is designed to supply a stabilised line of up to 200 V at up to 700 mA . A number of special passive components are used in these circuits; and these were developed at the same time within the Mullard organisation.

Why the Mullard High-Voltage Solution is the Answer. By using our line output transistor BU 105 and thyristor BT 106, Setmakers are able to build receivers of excellent stability, and at the same time save on component costs, space, and lower the heat level within the television cabinet. The old bulky and expensive mains transformer can be eliminated together with its incumbent magnetic field.
Uniquely the BU105 transistor also acts as its own efficiency diode with no loss of
linearity, thereby saving yet more components.

The BT 106 power supply circuitry has a high safety factor even under fault conditions. It is compact and has extremely low dissipation. Together, the BU105 and BT106 and their associated circuits represent what is probably the most advanced television scanning plus power supply concept in the world today.

Worth it? Our unique experience in components for consumer electronics allows us to bring many resources to bear on individual problems and in this case made possible an outstanding TV circuit solution. We can also be sure that our products will give continuous and consistent service-our detailed knowledge of their use helps us to relate the highest quality with the best possible price, and this is something which applies across the very wide Mullard component range.

Mullard
 components for consumer electronics

[^10] London WCl

TRANSFORMERS

We hold in stock a standard range of over 200 types of Transformers, a few of the more populartypes are represented here.

paimaty voltage 12 volt range
PRIMARY VOLTAGE 200-250V-SECON DARY YOLTAGE 12 V

PRIMARY VOLTAGE 24 VOLT RANGE $200 \mathrm{~V}-5 E C O N D A R Y$ VOLTAGE 24 V

ent	Secondory Windings	Dimensions inches		ight OT5		25-99
0.25 A	0-12V@ $250 \mathrm{~m} / \mathrm{A} \times 2$	$\times 2 \% \times 18$		12	1410	13/9
1.04	$0-12 \mathrm{~V}$ @ 1 Amp $\times 2$	$24 \times 21 \times 24$		7	23/1	21/4
2.0 A	$0-12 \mathrm{~V}$ @ $2 \mathrm{Amp} \times 2$	$3 \frac{1}{2} \times 2 \frac{2 z}{3} \times 2$	2	4	$32 / 4$	2911
3.04	$0-12-24 V$ (3) 3 Amp	$2 \mathrm{x} \times 3 \times 3$	3	6	391-	$36 / 1$
4.0A	$0-12 \mathrm{~V}$ @ $2 \mathrm{Amp} \times 2$	$4 \times 3 t \times 3$ 1	4	6	44!1	$40 / 8$
5.0 A	$0-12 \mathrm{~V}$ (9) 5 Amp $\times 2$	$4 \times 4 \frac{1}{4} \times 31$	5	12	$51 / 3$	$47 / 5$
6.0A	$0-24 \mathrm{~V}$ (9) 6 Amp -	$4 \times 3 t \times 3 t$	6	3	61/6	$56 / 11$
8.0 A	$0-12 \mathrm{~V}$ (9) $8 \mathrm{Amp} \times 2$	$4{ }^{4} \times 3$ \% $\times 4$	7	8	791-	7311
10.0A	$0-12 \mathrm{~V}$ (9) 10 Amp $\times 2$	$4 . \times 4 \times 4$	11	13	$100 / 6$	$92 / 11$
15.0A	$0-12 \mathrm{~V}$ (c) $15 \mathrm{Amp} \times 2$	$5 \frac{1}{6} \times 4 \times 4 \frac{1}{4}$	16	12	185/6	171/7

 Ref.
No.
102
103
104
105
105
107
1

- -

PRIMARY VOLTAGE 200-250V-SECONDARY WINDINGS 240 V

WE ALSO OFFER A PROTOTYPE AND PRODUCTION WINDING SERVICE.

- STOCKISTS OF ELECTROSIL GLASS TIN OXIDE RESISTORS
- COMPREHENSIVE RANGE OF INDUSTRIAL VALVES AND SEMICONDUCTOR DEVICES ALWAYS.IN STOCK

Valluable new handoook Fhat EOAMBIIIIENS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations, and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS
 YOUR PET SUBJECT?

ELECTRONIC ENG.
Advanced Electronic Eng. Gen. Electronic Eng. - Applied Electronics - Practical Electronics - Radar Tech. Frequency Modulation Transistors.

ELECTRICAL ENG.
Advanced Electrical Eng. -
Gen. Electrical Eng. - Instal-
lations - Draughtsmanship - Illuminating Eng. - Refrigeration - Elem. Electrical eration - Electrical Science Science - Electrical Science -
Electrical
Supply Mining Electrical Supp

CIVIL ENG.

Advanced Civil Eng. - Gen. Civil Eng.-Municipal Eng.Structural Eng. - Sanitary Eng. - Road. Eng. - Hydraulics - Mining - Water Supply - Petrol Tech.

RADIO ENG.
Advanced Radio - Gen. Radio Radio \& TV Servicing TV Eng. - Telecommunications - Sound Recording Automation - Practical Radio -Radio Amateurs' Exam.
MECHANICAL ENG.
Advanced Mechanical Eng. Gen. Mechanical Eng. Maintenance Eng. - Diesel Eng. - Press Tool Design Sheet Metal Work - Welding Inspection-Draughtsmanship-Inspection-Metargy - Production Eng.
AUTOMOBILE ENG.
Advanced Automobile Eng. Gen. Automobile Eng. - Automobile Maintenance - Repair -Automobile Diesel Maintenance - Automobile Electrical Equipment - Garage Management.

WE HAYE A WIDE RANGE OF COURSES IN OTHER SUBJECTS IN: CLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
 M.R.S.M.I A.M.I.E.D.' ATION. ETC.
british institute of engineering technology
446A ALDERMASTON COURT, ALOERMASTON, BERKSHIRE

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES." Send for your copy now-FREE and without obligation.

POST COUPON NOW!

TO B.I.E.T., 446A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE.

Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

NAME
ADDRESS

WRiTE F YOU PREFER NOT TO CUT THIS PAGE

" RADFORD

AUDIO AMPLIFIERS

A range of high quality audio amplifiers is available to comprise a complete system for the recording and reproduction of sound from any type of input source. Amplifiers are of modular construction using plug-in printed wiring boards having hard electro-gold plated contacts and immersion gold plated conductors. Mechanical build is of the highest standard. The quality of materials and components is to MIL specification where possible, or the best available. Performance characteristics are unmatched and in advance of present day requlrements. Performance diagrams of the SC24 preamplifier, and PA50 and SPA50 power amplifiers below illustrate this

Pre-amplifier Control Unit SC24

A comprehensive stereophonic pre-amplifier control unit having extensive facilities and flexibillty. Total distortion less than 0.01% at 1 Volt output with progressive reduction with input level. Price: $£ 80.0 .0$

SC.24. SOUARE WAVE PERFORMANCE INCLUDING TONE CONTROLS

Power Amplifiers PA50 and SPA50
Single or dual channel amplifiers having identical characteristics. Low distortion true complementary symmetry output stage. Fully protected by voltage and current sensing in the power amplifier proper, and current limiting in the power supply. Rating 50 watts per channel continuous sine wave output. Price: PA50 £55.0.0; SPA50 £85.0.0

Radford audio equipment is available for home use through franchised dealers in the U.K. and for professional and commercial use direct.

(10)
 STOCKISTS

MODEL 8 MK. III

REPAIR SERVICE 7-14 DAYS

We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS. 89 .

Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments
LEDON INSTRUMENTS LTD
76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8 Tel.: 01-692 2689
E.I.D. \& G.P.O. APPROVED

CONTRACTOR TO H.M. GOVT.

WW-024 FOR FURTHER DETALLS

the choice in over 50 different countries!

Teonex electronic valves and semi-conductors are supplied all the world over where quality and reliability count.
Teonex offer a comprehensive range of receiving, professional and special quality valves. Whether you require a device to mil specifications for government work or a commercial device for replacement in a television set, Teonex products are equally suitable.

For technical specifications and price lists, please write to Teonex Limited 2a Westbourne Grove Mews London W. 11 - England
Cables: Tosuply London W.11.
TEOIEK
electronic valves \& semi-conductors

	TEONEX
EXPORT ENQUIRIES ONLY	

WAYNE KERR

A.F. Transformer Ratio-Arm Bridges

Slide-rule LCR Bridge has ten overlapping ranges for rapid 1% measurements of any component, also tolerance and phase angle. Switch selects 1 kHz or $100 / 120 \mathrm{~Hz}$ operation. 2, 3 and 4-terminal connections

B500

Universal Bridge for 0.1% measurements of any LCR combination from 20 micro-ohms to 500 gigohms. Source/ detector (1592 Hz) operate from a.c. or internal rechargeable battery. Sockets for external $200 \mathrm{~Hz}-50 \mathrm{kHz}$. Display gives units, zeroes and decimal point. Four-terminal connections from Adaptor Q221 for accurate low impedance measurements. B221

Autobalance Universal Bridge for continuous 0.1% readout of in-phase and quadrature terms, with analog outputs of both. Backing-off facilities, DVM connections, optional BCD outputs. Push-buttons for optimum discrimination up to five figures. Illuminated readout.

8641

Autobalance Precision Bridge accurate to 0.01% though simple to operate. It measures virtually any meaningful immittance in any quadrant. Automatic compensation for measurement lead impedance. Six-figure discrimination. Analog outputs.

WW- 027 FOR FURTHER DETAILS

TELEPRINTERS • PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUIPMENT

SALE OR HIRE

2-5-6-7-8 TRACK AND MULTIWIRE EQUIPMENT

TELEGRAPH AUTOMATION AND COMPUTER PERIPHERAL ACCESSORIES DATEL MODEM TERMINALS, TELEPRINTER SWITCHBOARDS

Picture Telegraph, Desk-Fax, Morse Equipment: Converters and Stabilised Rectifiers; Line Transformers and Noise Suppressors; Tape Holders, Pullers and Fast Winders; Governed, Synchronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass Filters; Teleprinter, Morse, Teledeltos Paper, Tape and Ribbons; Polarised and specialised Relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment; Racks and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Connectors, Wires, Cables, Jack and Lamp strips, and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.

W. BATEY \& COMPANY

An easily adjusted hand tool for the accurate bending of resistor, capacitor, diode leads, etc., for printed circuits. Will bend leads to within $\frac{1}{16}{ }^{\prime \prime}$ of ends of components and up to $3 \frac{1}{4}{ }^{\prime \prime}$ centres.
Infinitely adjustable between $0^{\prime \prime}$ and $1 \frac{3}{4}$ " to suit component body length. All type lead diameters accommodated. Overall Dimensipns $\frac{7}{8}^{\prime \prime} \times 3 \frac{1}{2}{ }^{\prime \prime} \times 4 \frac{1}{2}{ }^{\prime \prime}$.
Price: 57/6d.
TRIO INSTRUMENTS LTD.,
BURNHAM ROAD.
DARTFORD, KENT. Telephone: Farringham 2082

Mnemo-

*Mnemopolymericsthe science of heat-shrinkable polymers with a built-in memory perfected after many years of research and development by Hellermann-Electric.

The Helashrink ${ }^{\circledR}$ range of Moldanized (1) Shapes gives you the fast, low-cost answer to encapsulation of electrical connectors; water sealing of cable glands; cable jointing; sealing crutches on power cables; covering spurs in wire harnesses and cable.

More than 70 standard shapes are available and specials can be supplied to meet your particular needs.

Shrinking is fast - by heat gun, gas flame or infra-red ovens.

Moldanized Shapes have excellent electrical properties. They add strength, insulation, abrasion and moisture protection - resist acids, alkalis and contaminants.

「Shrink-it-yourself kit FREE
(All you need is a match)
Please send me your free Mnemopolymerics Demonstration Kit - plus full details of Helashrink Moldanized Shapes.
Name
Company
Address

A member of the Bowthorpe Holdings Group of Companies

TRIO KENWOOD ELECTRONICS S.A.
160 Ave., Brugmann, 1060 Bruxelles, Belgium
Sole Agent for the U.K.

B.H: MORRIS \& CO., (RADIO) LTD.

84/88, Nelson Street, Tower Hamlets, London E.1. Phone: 01-790 4824

- RADFORD

AUDIO MEASURING INSTRUMENTS

Two instruments having a superior performance than any others of this type regardless of price. Now accepted as standard equipment by Broadcasting Authorities, recording studios, magazine equipment test laboratories, and audio research and development laboratories all over the world,

LOW DISTORTION OSCILLATOR

An instrument of high stability providing very pure sine waves, and square waves, in the range of 5 Hz to 500 kHz . Hybrid design using valves and semiconductors.
Specification
Frequency Range:
Output Impedance:
Output Voltage. Sine Wave Distortion:

Square Wave Rise Time: Monltor Output Meter: Mains Input:
Size:
Weight :
Price:
$5 \mathrm{~Hz}-500 \mathrm{kHz}$ (5 ranges)
600 Ohms.
10 Volts r.m.s. max
$0-110 \mathrm{~dB}$ continuously varlable.
0015%. ess than 0.1 microseconds.
Scaled $0-3,0-10$, and dBm .
100 V. -250 V. $50 / 60 \mathrm{~Hz}$.
$17 \frac{1}{2} \times 11 \times 8 \mathrm{ln}$.
25 lb.
f 50.

DISTORTION MEASURING SET

A sensitive instrument for the measurement of total harmonic distortion, designed for speedy and accurate use. Capable of measuring distortion products as low as 0.002%. Direct reading from calibrated meter scale.

Specification
Frequency Range
Distortion Range :
Sensitivity :
Meter:
Input Resistance:
High Pass Fllter :
Frequency Response:
Power Requirements :
Size :
Weight:
Descriptive techn
RADFORD LABORATORY INSTRUMENTS LTD. BRISTOL BS3 2 HZ

Telephone: 0272, 662301
$20 \mathrm{~Hz}-20 \mathrm{kHz}$ (6 ranges).
$0.01 \%-100 \%$ i.s.d. (9 ranges)
$100 \mathrm{mV} .-100 \mathrm{~V}$. (3 ranges).
Square law r.m.s. reading.
100 kOhms.
3 dB down at 350 Hz .
30 dB down at 45 Hz .
$\pm 1 \mathrm{~dB}$ from second harmonle of rejection frequency to 250 kHz .
included battery
$17 \frac{1}{4} \times 11 \times 8 \mathrm{ln}$.
£120.
£120.
available on raues

SINGLE sOURCE SENSE

OR How to get What you Want without Having to Try Very Hard

If your parts requirements are small, and your call-off irregular, you have a problem. If, as often happens, you want parts quickly, you have another problem.
We are in business to help you solve both, quickly.
As stockholders of an enormous range of Radio, Electronic and Electrical Components, Metal Pressings, Clips, Fasteners and Assemblies by Cinch Dot and FT, we are the "single source" for pretty well everything of this kind you want in whatever quantity you want and at short notice.
Two illustrated catalogues. Thousands of stock items are detailed in our two fully illustrated catalogues-Fasteners and Electronics-either of which will be sent, post-free, to firms and organisations.
Send for yours now,
stating which catalogue you require.

Make United-Carr Supplies

 your
SINGLE SOURCE

for Cinch Dot and FT Radio, Electronic and Electrical Components, Metal Pressings, Clips, Fasteners and Assemblies.

United-Carr Supplies Ltd.,
Frederick Road, Stapleford, Notts.
Sandiacre 2828 STD 0602392828

(anes) (FTockists

UNITED-CARR
SUPPLIES

* SEND FOR LEAFLETS 175/2049 and 175/2047
H. TINSLEY \& CO LTD • WERNDEE HALL

SOUTH NORWOOD • LONDON SE25 • 01.654 6046

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

WW-039 FOR FURTHER DETAILS

J E S AUDIO INSTRUMENTATION

Si451
£32.0.0
Si453
£37.0.0
Comprehensive Millivoltmeter
350μ Volts
20 ranges
Low distortion Oscillator
sine - square - RIAA
J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (OWR62) 2501

BRADFORD ROAD, CLECKHEATON, YORKSHIRE.
WW-040 FOR FURTHER DETAILS

Your choice of Live SocketsInstantly!

A Lexor DIS-BOARD gives you up to 6 sockets from one power outlet. Portable or permanent fixing, compact units, with safety neon. Over 1,000 socket
combinations available from stock. All types of fittings and finishes.
brochure from
LEXOR DIS-BOARDS LIMITED,
Allesley Old Road, Coventry.
Telephone 72614 or 72207

Trunsformers, Chokes

Saturable Renctors

Volimobile vollage regulatiors

Recilifer Sels

Transformers

Air cooled power transformers from 0.5 to 300 kVA at voltages up to 2 kV . 1 or 3 phase, double or auto wound, step-up or step-down. We have manufactured transformers to over 5,000 different designs for many applications and the experience which has been accumulated from these designs is built into every Harmsworth, Townley transformer

High Current Transformeŕs

Years of experience have gone into the design and production techniques used in the manufacture of our low voltage, high current transformers for use in furnaces, high temperature research, heating and other applications. These techniques enable us to produce transformers with output currents up to tens of thousands of amps at economical prices

housands of amps at economical pic

Saturable Reactors
From 5 kVA up to 300 kVA for controlling the outputs from transformers or rectifier units. Saturable reactors are infinitely variable reactors which can control outputs from transformers etc, from 10% to 100% of full output.

Chokes

Specific enquiries are invited

Harmswarth. Townley

Trunsformers
Rectifiers

HARMSWORTH, TOWNLEY \& CO. LTD. 2 Hare Hill, Todmorden, Lancs. Telephone Todmorden 2601 Extension 22

Voltmohiles

The most robust and useful control device for loads such as furnaces, ovens, bar heating and high temperature research. Our Voltmobiles are in use in their thousands to control transformers and rectifier sets or they can be used directly between supply and load. 64 step on load switching. Voltmobiles are auto-transformers which give control from 1.6% to 100% of input volts. Over-Volts up to 125% of input is also available. Standard models are made for single and 3 phase supply and for outputs from 20 Amps to 200 Amps with on-load switching.

Rectifiers

Sturdily built air cooled equip ment from 50 W to 500 kW for plating, plasma arc welding, electrolytic machining and many other applications. Equipment incorporates either silicon or selenium rectifiers and can be built with fixed or variable output. Variable outputs are obtained by the use of continuously variable auto transformers, saturable reactors or Voitmobile regulator.

Take a QUAD 50E Amplifier (a good start for any installation)

plug it into your monitor system and it bridges 600Ω lines to drive your speakers.
Take that same amplifier and, without changing it in any way, plug it into another installation to deliver 50 watts into 100 volt line * from a 0.5 volt unbalanced source. This versatility and its attendant easing of stocking and maintenance problems is one reason why large organisations use the Quad 50E.
*or indeed any other impedance from 5 to 250 ohms.

Other advantages appropriate to users of all sizes include:
Excellent power and frequency response (-1dB). Low distortion (0.1% at 1 kHz at all power levels). Low background (better than 83 dB referred to full output).
Pre-set level control adjustable from front panel.
Unconditionally stable with any load.
Proof against misuse including open or short circuited output.

for the closest approach to the original sound

Small size ($4 \frac{3}{4}{ }^{\prime \prime} \times 6 \frac{1^{\prime \prime}}{4} \times 12 \frac{3^{\prime \prime}}{4}$)-
($120 \mathrm{~mm} \times 159 \mathrm{~mm} \times 324 \mathrm{~mm}$).
Low price ($£ 47.0 .0$ each nett for 1 off to the professional user).

릎IIn.! ロIN

2 CHANNEL AUDIO RECORDER

* 10 watts continuous per channel
* Fully transistorised on 10 printed circuit boards
* 3 head system and 3 speeds 19-9.5-4.75 cms
* Mechanism operated by 4 DC solenoids
- Provision for full remote control

Robust construction and attention to detail make this an outstanding British tape recorder for industrial or domestic use.
Portable 4 speaker version
Oiled Teak surround version
RELIAbLE
SHORT CIRCUIT PROOF

MK II UNBEATABLE IN VALUE

Send for informative brochure fully explaining:

1. Why a single motor. 2. Electrical performance. 3. Wow and flutter.

MAGNETIC TAPES LTD. CHILTON WORKS, GARDEN ROAD, RICHMOND, SURREY Tel: 01-876 7957

WW- 044 FOR FURTHER DETALLS

CALIBRATION PROBLEMS?

We specialise
in the repair and calibration of all proprietary and commercial test equipment

We can provide the following services

- FULLY GUARANTEED REPAIR OF INSTRUMENTS
- CALIBRATION CARRIED OUT TO MANUFACTURERS' SPECIFICATION
- ALL TYPES OF MULTI-METERS, INC. AVOMETERS, REPAIRED
- REPAIR SERVICE 7 DAYS
- WIRING AND SHEET METAL FACILITIES

Write or 'phone
FIRNOR-MISILON LIMITED 10 COMMERCE LANE, LETCHWORTH, HERTS Tel: 6069

The S 20 range of metal oxide resistors is $1 / 2 \mathrm{Watt}\left(70^{\circ} \mathrm{C}\right)$ rating, available in E24 range of values from 10 Ohms to 1 Megohm with a 2% tolerance. They may be used as general purpose, high stability or semi-precision resistors dependant on the rating employed. Identical in format with established types they are readily available at a competitive price, for example, 4d each at 100 pieces. Wels Fargo get your shipment through.
IIE COMPONENTS LTD 5 LDVERDCK ROAD. READING, RG3 1DS Tel.580616/9 Telex 84529
MINISTAY OF TECHNOLOGY APPROVED DISTRIBUTOR WW-047 FOR FURTHER DETAILS

"CONTROLOX" PROGRAMMING SYSTEM

The "Controlox" Programming System is provided In modular form and offers up to six planes of contact. The programming area can be supplied to customers' configurations, utilising the standard 10×10 socket point modules. The system features many ancillaries, including fully colour-coded component and shorting pins and a bezel frame to facilitate fixing.

Applications include

- computer memories
- cordless patch panels
- machine tool control
- vending machinos
- data channelling and logging
- studio lighting control
- process control

OXLEY DEVELOPMENTS COMPANY LTD.
Priory Park, Ulverston, North Lancs., England
$O X L E Y^{\circ} D$
Tel: Ulverston 2621 Telex: 6541 Cables: Oxley Uliverston
WW-048 FOR FURTHER DETAILS

We supply B.A. Screws, etc. in brass, steel, stainless, phosphor bronze and nylon to laboratories throughout the Commonwealth.
Whitworth, unified and metric threads are also available from stock in many sizes. Please send for List W2/69 (WW)
WALKER-SPENCER COMPONENTS LTD.
5, High Street, Kings Heath, Birmingham, 14. Telephone: 021-444 3155 (Sales) and 5278
WW-050 FOR FURTHER DETAILS

ENCAPSULATION -

low tool cost method for cylindrical coils and potting. Enquiries also for-

> REED RELAYS SOLENOIDS COIL WINDING TRANSFORMERS to 8 K.V.A.

Relay module 12-way "MS" range

It's new and great from Shure...

the most-for-your-money 588 Series

This is the one. The mike with the most.
A new fine quality Unisphere that gives you maxi features at a mini price.

See what you get

Superior "Pop"
Rejection
Built-in filter suppresses explosive breath sounds and wind noise without additional windscreens.

Convenient Built-In On-Of Switch With a useful provision for locking the switch in the "ON" position.

Plus shock-mounted cartridge for quiet operation. 15 ft . cable. Swlvel adapter. Rugged construction. Easy on-the-spot servicing.
You can use the Shure 588 anywhere. Indoors or out. For any purpose. Public speakers Orchestras. Small combos. Vocalists. Every time you.get natural, lifelike reproduction It's a Unisphere through and through!

at a mini price...

Model 588SA (high impedance) \& 588SB (low impedance) Unisphere B undirectional dynamic mlcrophones.

Superb Feadback
Control
Truacardioid pickup pattern symmetrical about axis and uniform at all frequencies. .

used as standards in many industries

- Accurate to $\pm 0.3 \%$ or $\pm 0.1 \%$ as specified
- Not sensitive to voltage or temperature changes, within wide limits
Unaffected by waveform errors, load, power factor or phase shift
- Operational on A.C., pulsating or interrupted D.C., and superimposed circuits
Need only low input power
- Compact and self-contained - Rugged and dependable

FRAHM Resonant Reed Frequency Meters are available in plastic and hermetically sealed cases to British and U.S. Government approved specification. Ranges $10-1700 \mathrm{~Hz}$. Literature on these meters and Frahm Resonant Reed Tachometers available on request. Manufacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largest stocks in the U.K. for off-the-shelf delivery.

AMDERS ELECTRONIES LIIITEI

48/56 Bayham Place, Bayham Street, London NW1. Tel: 01-3879092 WW- 053 FOR FURTHER DETALS

PRONOUNCED R-TEZ
SEMICONDUCTORS

Write now for catalogue
ATES ELECTRONICS LTD., MERCURY HOUSE, PARK ROYAL, LONDON W5
TEL: 01.9986171 TELEX:ATES LONDON 262401

For the best electrical contacts

This latest edition of Electrical Who's Who is completely updated. Over 8,500 entries include key names in all branches of the industry: supply, manufacturing, contracting, consulting and trading-as well as in Government Departments, Universities, Technical Colleges and other bodies. It is the only publication of its kind. Absolutely indispensable to all who need an up-to-date guide to individuals, firms and organizations.
Size: $9^{\prime \prime} \times 6^{\prime \prime} .512$ pages. Price 65 s. By post 69 s. $6 d$ Obtainable from : Electrical Who's Who, Dorset House, Stamford St., London SE1

Electrical
MーO

1970/71

Presenting the

A versatile, simple, hand operated machine specifically designed for cutting a large variety of shapes in light gauge sheet metal.
The ease of operation and range of easily interchanged attachments provides a wide application of uses for the cutting, punching, bending and forming of sheet metal and other similar materials, and it is this versatility that makes it particularly suitable for the radio, T.V. Electronics Industries, and Research Establishments.
For further details write or phone:
ESMANCO LTD BROOK STREET
GLOSSOP
DERBYSHIRE. Telephone Glossop 5427
WW- 055 FOR FURTHER DETAIS

communications antenna matching

 Completely New Range!

 Completely New Range!

 - POWER BALUNS

 - POWER BALUNS

 - PASSIVE MULTICOUPLERS

 - PASSIVE MULTICOUPLERS - HYBRID TRANSFORMERS - HYBRID TRANSFORMERS
 Features of the 1 kW Power Balun illustrated include pressurised construction, corrosion-resistant cases, frequency range to 30 MHZ , power range to 3 kW P.E.P., alternative terminations. Write now for Data Sheets and for the latest edition of the Hatfield Short Form Catalogue.

Crash Dive

This was a Morganite type 81E Cermet Trimming Potentiometer that didn't make it.
Shame really.
The more so because this particular specimen had already survived several rigorous mechanical and electrical tests. But then, we are unusually strict at

Morganite, because our customers like it that way. Another thing they like is having the right products at the right time, complete with full technical information to match. So our constant research and development is more than an ivory-tower luxury-it's a common-sense necessity.

We reckon that reliable delivery makes sense too. As you'll see when you ring us for samples for evaluation or development projects. Then you can put our Cermet Trimming Potentiometers through your test routine and watch how they stand up to it.
You'll like what you see.

MORGANITE RESISTÓRS LIMITED

Bede Industrial Estate, Jarrow, County Durham
Telephone: Jarrow 897771 Telex: 53353
${ }^{2}$ Morgan

Which has a d.c. sensitivity of 20,000 ohms per volt? Which has an a.c. sensitivity of 2,000 ohms per volt? Which has a d.c. accuracy $+2 \frac{1}{4} \%$ F.S.D.?
Which has an a.c. accuracy $+2 \frac{3}{4} \%$ F.S.D.?
Which maintains a.c. accuracy to $20 / \mathrm{kcs}$?
Which provides high voltage probes to extend the range to 25 or 30 kV d.c. for testing electronic equipment with high source impedance? Which provides probes that can be used with any other meter of similar sensitivity?
Which type of case would you like? Leather or Vinyl. Both available. Which meter makes every user a devil's advocate for it's performance and handiness?

The pocket size Minitest
 Get the catalogue for a full briefing.

SALFORD ELECTRICAL INSTRUMENTS LIMITED
Peel Works, Barton Lane, Eccles, Manchester M30 OHL Telephone O61-7895081 Telex 66711
A Member Company of GEC Electrical Components Lid.

STANDARD RESISTANCE BOXES *

LABORATORY QUALITY EXCEPTIONALLY STABLE, SUPPLIED WITH INDIVIDUAL TEST CERTIFICATES

STANDARD MEGOHMS

P401	$1 \mathrm{M} \Omega$	$\pm 0.05 \%$	$£ 52$
P4010	$1 \mathrm{M} \Omega$	$\pm 0.02 \%$	$£ 60$
P4020	$10 \mathrm{M} \Omega$	$\pm 0.02 \%$	$£ 60$
P4061	$100 \mathrm{M} \Omega$	$\pm 0.02 \%$	$£ 75$

PLUG-IN MEGOHM DECADE BOX P400
Range $0-1000 \mathrm{M} \Omega \pm 0.2 \%$, In $100 \mathrm{M} \Omega$ steps $£ 190$

SWITCHED 'MEGOHM'RESISTANCE BOX P4002
4 decades $0.01-0.1-1-10 \mathrm{M} \Omega \pm 0.05 \%$. All decades and sweeping contacts are accessible through separate terminals.
f98

AVAILABLE EX STOCK FROM:
Z \& I AERO SERVICES LTD, 44A, WESTBOURNE GROVE, LONDON, W. 2

Tel: 01-727 5641/2/3

The answer-everything.
It took years of intensive research and development to perfect every little part that goes to make the Hawker Harrier.

And these specially developed components include Gardners Transformers.
Many people seem to think that Gardners only provide 'off-the-shelf' equipment.
It isn't true-80\% of our production is for special components.
We design and develop highly specialised transformers for Defence projects, Radar, Sonar, electronics, control systems and similar sophisticated equipments.
Of course, we don't expect everyone to be making things like aircraft that don't need runways.
They wouldn't be special any more.

Incidentally, Gardners manufacture the largest standard range of transformers in Europe.
So even our un-specials are special !
Comprehensive publications available on request include.
Microphone and Line Matching Transformers GT22. Microminiature Transformers GT12.
Audio Transformers GT4.
Inverters GT21.
Saturable Reactors GT1.
Low Voltage, Isolating and Audio Transformers GT17.
Transformers for Tube Type Circuits GT24.

GARDNERS TRANSFORMERS LIMITED, Christchurch, Hampshire BH23 3PN.
Tel: Christchurch 2284. (STD 02015 2284) Telex 41276 GARDNERS XCH.

JACBSONS

Radio and Electronic Components
(Made in England)

WAVEMASTER

Type 95 S.L.C. Law Ball bearings, 규" dia. fixing bush. Front area $17^{\prime \prime}$ w. $\times 1 \frac{1}{\frac{1}{2}}$ h.

Type 87 S.L.C. Law Plain bearings, íc $^{\prime \prime}$ fixing bush front areal| for $^{*} w . \times 17^{\prime \prime} h$.

STAND-OFF INSULATORS
lackson stand-off insulators are designed to perform well in rigorous environments. Their insulation resistance exceeds 20 million megohms even when atmospheric humidity is high. (They meet British Services test specification DEF5334.) They will withstand high steady voltages and intense r.f. fields. Forty different types: ask for catalogue.

* Working voltages up to lokV.
* Stoved-on silicone treatment: water repellent. *'Ceramic bodies.
* Silver-plated tags.
\& No solder. No plastic. No adhesives.

NEW FLEXIBLE SHAFT COUPLING

This new shaft coupling embodies the same well tried principles used in our Couplings. Only $\frac{3}{4}$ in. diameter, ${ }_{5}^{5} \mathrm{i}$. long, permits constant velocity coupling and mis-alignment of $\cdot 005 \mathrm{in}$. and 15°. Robust too. Can take 15 lbs in. torque.

Write for literature
JACKSON BROS. (London) LTD. DEPT. W.W. KINGSWAY-WADDON CROYDON, CR9 4DG
Phone: Croydon 2754-5 (01-688) 'Grams: Walfilco, Croydon U.S. office : M. Swedgal, 258 Broadway, N. York, N.Y. 10007

SOLDERING IRONS?

Whatever your particular application we are almost certain to have just the tool for the job.

ADAMIN - featherweight instruments with the slip-on bits and the big performance.

LITESOLD-the best-selling seven-
model range of top-quality 'conventional' irons.

THERMOSTATIC CONTROL?
The new LITESTAT instruments are surely the most advanced available at not so advanced prices.

YOU ought to get the whole story. Ask for catalogue G/5. Free.

LIGHT SOLDERING DEVELOPMENTS LTD

28 Sydenham Road, Croydon, CR9 2LL
Telephone 01-688 8589 and 4559

Sonnenschein dryifitPC batteries

Combining the high electrical capacity of the lead-acid cell with the undoubted advantages of the dry cell. Sonnenschein DRYFIT PC batteries provide virtually indestructible sources of d.c. power. Featuring extended shelf-life of 16 months at $20^{\circ} \mathrm{C}$ ambient without recharging. Models available in various sizes and ratings: : cells can be fitted and charged how and where required - sideways, longways and upside-down : : no spillage, no gassing
: : high overload capacity

- steady discharge rate.

Specify Sonnenschein and forget your problems.
Write now for your catalogue

Sonnenschein DRYFIT PC BATTERIES

Sole U.K. Agents F.W.O. Bauch Ltd. 49 Theobald St, Boreham Wood, Hertfordshire. Tel: 01-953 0091

ENQUIRY SERVICE FOR

PROFESSIONAL READERS

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.

PLEASE USE CAPITAL LETTERS

Pour obtenir tout renseignement complémentaire sur les produits mentionnés dans les articles ou dans les pages publicitaires de ce numéros nous vous prions de remplir une ou plusieurs des cartes ci-jointes en inscrivant le ou les numeros de référence. Vos demandes de renseignement seront transmises aux fabricants intéréssés qui, en temps voulu, vous feront parvenir une réponse. Il est nécessaire d'affranchir les cartes postées a l'étranger. Ces cartes de service sont valides pendant six mois à partir de la date de publication.

Prière d'ecrire en lettres majuscules

Weitere Einzelheiten über irgendwelche Artikel, die auf Redaktion-oder Anzeigenseiten erscheinen, erhalten Sie, indem Sie eine oder mehrere der beigelegten Karten ausfüllen und die Kenn-Nummer(n) angeben, Ihre Anfrage wird an den Hersteller weitergeleiter, und Sie werden dann direkt von ihm hören. Karten die im Ausland aufgegeben werden, müssen frankiert werden. Diese Service-Karten sind sechs Monate vom Ausgäbetag gïltig.

BITTE IN BLOCKSCHRIFT AUSFUULLEN

Per ulteriori particolari in merito agli articoli menzionati nel testo o nelle pagine pubblicitarie di questo numero $\mathbf{V i}$ preghiamo di completare una o più delle schede allegate citando il numero o i numeri di riferimento. La Vostra richiesta sarà inoltrata ai fabbricanti interessati che Vi risponderanno direttamente. Le schede dall'estero devono essere regolarmente affrancate. Questo scontrino di servizio é valido per sei mesi dalla data di pubblicazione.

> SI PREGA DI COMPILARE LE SCHEDE STAMPATELLO

Con objeto de obtener mas detalles de cualquiera de los articulos mencionados en las páginas editoriales o de anuncios de este número sirvase rellenar una o más de las unidas tarjetas citando el número o números de referencia. Sus consultas serán transmitidas a los fabricantes interesados de quines tendrán noticias directamente a su debido tiempo. Las tarjetas enviadas desde el extranjero requieren franqueo. Estas tarjetas de servicio son validas durante 6 meses a parir de la fecha de publicacion.

SIRVASE ESCRIBIR CON LETRAS MAYUSCULAS

We trust we will be forgiven by the makers of the world famous 57 varieties for our claim that ANDERS MEANS METERS. When it comes to variety, the Anders range of meters is the largest and most comprehensive in the country - Panel Mounting and Portable ... Moving Coil, Moving Iron, Electrostatic, Thermo-Couple, Motammeters,

Frequency Meters, Wattmeters, Contact Meters . . . plus Current transformers, Shunts and other ancillary items. Many requirements can be supplied off the shelf. Fast delivery of non-standard instruments, in small or large quantities.

anders electranics limited

48/56 Bayham Place, Bayham Street, London, N.W. 1 Telephone 01-387 9092.

Manufacturers and distributors of Electrical Measuring Instruments and Electronic Equipment. Sole U.K. distributors of FRAHM Resonant Reed Frequency meters and Tachometers.

Tandale

SYS TIMER

- SYNCHRONOUS MOTOR \& CLUTCH * 10 MILLION OPERATIONS - Instantaneous \& Timed out

5 AMP contacts
\star Repeat Accuracy

- Dial ranges 0.10 sacs up to
0.28 hrs. May also be used as impulse start.
\& 1 dependent - on quantity.

STP TIMER
SYNCHRONOUS MOTOR \& CLUTCH Matchbox size frontal area Automatic re-set

* PLUG-IN OCTAL BASE - INSTANTANEOUS AND TIMED OUT 2 AMP CONTACTS
- RANGES 6 secs to 72 mins \&6 dependent

NSY TIMER

$\star 2$ sets 5 amp changeover output contacts

- 5 Million operations
\star Repeat accuracy $\pm \frac{1}{2} \%$
*Set time can be altered whilst in operation. Dial ranges from seconds to hours
Approx.
E8.10.0 $\begin{gathered}\text { ench depantity. }\end{gathered}$
CONTROLS PROXIMITY SWITCHES
IMMEDIATE DELIVERY OF LIMIT \& MICRO SWITCHES, FLOATLESS LIQUID LEVEL CONTROLS PROXIMITY SWITCHES

OMRON PRECISION CONTROLS CSA US Mil Spec. SEV. UL

* OUTPUT 0-260V
* INPUT 230 V 50/60 CPS.
* SHROUDED FOR BENCH OR PANEL MOUNTING

$1 \mathrm{amp} £ 5.10 .0$
$2.5 \mathrm{amp} £ 6.15 .0$
$10 \mathrm{amp} £ 18.10 .0$ $5 \mathrm{amp} £ 9.15 .0$ 12 amp £21. 0.0 8 amp f14.10.0 20 amp £37. 0.0

I.M.O. PRECISION CONTROLS

313, EDGWARE ROAD,LONDON. W.2. TELEPHONE 01-723 2232
WW- 063 FOR FURTHER DETAILS

Just what is this ABR, that makes such a vital difference to the 'DITTON 15'?

The "DITTON 15"

Now firmly established as a superb high-fidelity loudspeaker. Design features include the exclusive CELESTION ABR (auxiliary bass radiator), HF1 300 treble unit-as used in B.B.C. Monitor Loudspeakers - and specially developed mid/bass unit. Low loss L/C crossover.
Power handling: 15 watts r.m.s.; 30 watts peak. Impedance 4-8 ohms. Dimensions: 21 in. $\times 9 \frac{1}{2}$ in. $\times 9 \frac{1}{4}$ in.
Choice of finish: Teak or walnut.
Recommended Retail Price $\mathbf{£ 2 9}$

1. Studio quality high frequency unit (HF1 300 Mk. 2). As used in B.B.C. Monitors.
2. Anechoic cellular foam wedge and lining eliminates standing waves.
3. High hysteresis panel loading material to eliminate structural resonances.
4. Auxiliary Bass Radiator (ABR) -plastic foam diaphragm of high rigidity and low mass having a free air resonance of only 8 Hz , double roll suspension allowing
excursions up to $\frac{3 \text { " }}{4}$ with virtual absence of distortion.
5. $8^{\prime \prime}$ bass unit, with free air resonance of 25 Hz , and massive Ferrobà Il magnet structure for optimum magnetic damping and cone treated with viscous dampinglayer to suppress resonances.
6. Units mounted flush to eliminate diffraction effects and tunnel resonances; covered by acoustically transparent grille cloth for maximum presence.
7. Full L-C Crossover network

It's an interesting story-and worth enquiring about. Send for details of the three Celestion 'Ditton' Hi-Fi Speaker Systems.

Studio
Series

Loudspeakers for the Perfectionist

Telephone: Ipswich 73131. Cables: Voicecoil Ipswich. Telex: 98365

"ME CAII IT THE ODEON"

Ever since Sidney and Hilda met Ginger Rogers in the front room it's been love at first sight.

So, if the TV set refuses to give them their regular dose of Hollywood, the headaches start. And, if you provided them with their private Odeon, they'll probably work their suffering out on you. We'd gladly run them a movie in our theatre, but that's not how they take their oldies.

So we'll stick to helping by making o TV components as reliable, efficient and easy to get as they can be. Which means for example, insisting on using the lates and best equipment. This year we are investing £5.4 millions on production equipment for TV components, magne passive components and integrated circt

It won't put our name on the credits. But it should polish up yours.

© Mullard Components for troublefreeTV

STRUMECH

 VF马, B/ SMETVNStrumech Engineering Limited Portland House, Coppice Side Brownhills, Walsall. Staffs, England Telephone: Brownhills 3651

SN74N STANDARD TTL-EX STOCK* SN74HN HIGH SPEED TTL-EX STOCK SN74LN LOW POWER TTL-EX STOCK

THE FULL TEXAS INSTRUMENTS TTL RANGE

come QUICKER from QUARNDON

* AT NEW LOW PRICES

No other

Tile
DUALEEAM

osciloscope

call

compete

 in price
...except the D51,

 by Telequipment of course

The D52 is a tough little portable oscilloscope at the remarkably low price of $£ 130$.

Here are a few of its outstanding characteristics:
\star True Dual-Beam

* Large $5^{\prime \prime}$ flat faced PDA Tube
* Matched Y Amplifiers-
$100 \mathrm{mV} / \mathrm{cm}, \mathrm{DC}-6 \mathrm{MHz}$
$10 \mathrm{mV} / \mathrm{cm}, \mathrm{DC}-1 \mathrm{MHz}$
* Calibrated Sweep Speeds18+ (+ variable)
* Triggering Modes-full range including TV sync.
\star Weight 24 lb .
This is one of a range of fifteen oscilloscopes at prices from $£ 28$ to the sophisticated DM53A Storage Oscilloscope for laboratory use at $£ 560$: send for detai's and short-form catalogue NOWIII

TELEQUIPMENT \ll 需>

Telequipment,
313, Chase Road, Southgate, London, N. 14.
Telephone 01-882 1166. Telex 262004.
A Division of Tektronix U.K. Limited.

Wireless World

Electronics, Television, Radio, Audio

WirelessWorld

Although not exclusively associated with the subject of this month's main article (colour EVR) our cover illustration typifies colour television reproduction. The photograph of a Mullard tube was taken by students at the Polytechnic School of Photography, Regent Street, London.

IN OUR NEXT ISSUE

Inductorless stereo decoder which uses a phaselocked loop to regenerate the suppressed subcarrier

Transistor breakdown-voltage meter providing direct reading at fixed reverse currents.

Increasing the bandwidth of the Hartley 13A double-beam oscilloscope.

August 1970
Volume 76 Number 1418

Contents

ibpa

nietrauional Busines
Prats Associzes
I.P.C. Electrical-Electronic Press Ltd Managing Director: Kenneth Tett Editorial Director: George H. Mansell Advertisement Director: George Fowkes Dorset House, Stamford Street, London, SE1
C I.P.C. Business Press Lid, 1970
Brief extracts or comments are allowed provided acknowledgement to the journal is given.

We regret Pt. 13 of Active Filters has had to be held over.
Editorial Comment
Colour Electronic Video Recording by Peter C. Goldmark and collaborators
Television Wobbulator-1 by W. T. Cocking
H.F. Predictions
The Video Disc by 7. C. G. Gilbert
Electronic Morse Keyer by C. I. B. Trusson \&o M. R. Gleason
News of the Month
Letters to the Editor
$100-\mathrm{MHz}$ Frequency Divider by D. R. Bowman
Transient Trinity by Thomas Roddam
\section*{Announcements}
Time Delays-2 by H. D. Harwood
B.B.C. Band-two Broadcasting Stations
Circuit Ideas
The Unijunction Transistor-2 by O. Greiter
Electronic Building Bricks-3 by fames Franklin
Letter from America
World of Amateur Radio
Personalities
New Products
Literature Received

PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: 01-928 3333 (70 lines). Telegrams/Telex: Wiworld Bisnespres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home; $£ 3$ 0s Od. Overseas; 1 year \AA_{3} 0s 0d. (Canada and U.S.A.; $\$ 7.50$). 3 years $£ 713 \mathrm{~s} 0 \mathrm{~d}$. (Canada and U.S.A.; $\$ 19.20$). Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notuty a change ot address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 202, Lynton House, Walsall Road, 22b. Telephone: 021-356 4838. BRISTOL: 11, Elmdale Road, Clifton, 8. Telephone: OBR2 21204/5. GLASGOW: 2-3 Clairmont Gardens, C.3. Telephone: 041-332 3792. MANCHESTER: Statham House, Tatbot Road, Stretford, M32 OEP. Telephone: 061-872 4211. NEW YORK OFFICE U.S.A.: 205 East 42nd Street, New York 10017. Telephone: (212) 689-3250.

Chances are you'll find precisely
the industrial tube you want in the BRImAR standard range without the expense of a special.
THoAN Thom Radio Valves and Tubes Limited 7 Soho Square, London, WiV 6DN. Telephone: 01-4375233

 types of neons at more than competitive prices

TYPE	POLYCARBONATE
PC/A	$6^{\prime \prime}$ leads, red dome cap. 1" diameter.
PC/B	$6^{\prime \prime}$ leads. amber dome cap. $\mathbf{f}^{\prime \prime}$ diameter.
PC/C	$6^{\prime \prime}$ leads, clear dome cap. ${ }^{\prime \prime}$ ' diameter.
PC/D	$6^{\prime \prime}$ leads, red top hat cap. ${ }^{\prime \prime}$ diameter.
PC/E	$6^{\prime \prime}$ leads, amber top hat cap. ${ }^{\prime \prime}$ ' diameter.
PC/F	$6^{\prime \prime}$ leads, clear top hat cap. i' diameter. ',
PC/G	$6^{\prime \prime}$ leads, red square cap. $\mathrm{l}^{\prime \prime}$ diameter.
PC/H	$6^{\prime \prime}$ leads, amber square cap. ${ }^{\prime \prime \prime}$ diameter,
PC/I	$6^{\prime \prime}$ leads, claar square cap. $1^{\prime \prime}$ diameter.
	POLYPROPYLENE
PP/A	6 " leads, red dome cap. $\frac{1}{2}{ }^{\text {n }}$ diameter.
PP/B	$6^{\prime \prime}$ leads. white dome cap. $\frac{1}{2}$ " diameter.

PRICE: All the above are 10 @ $3 /-50$ © $2 / 10,100$ @ $2 / 8,500$ @ $2 / 6$, 1000 (2) $2 / 4,10,000$ @ $2 / 3$ each.
Varlations are available with 110 volt or 500 voit and $30^{\prime \prime}$ leads.
Also spare caps and bodies.
N neon only: 10 @ 1/-. 50 @ 10d, 100 @ $9 \mathrm{~d}, 500$ @ $8 \mathrm{~d}, 1000$ @ 7d
M neon resistor assembly for 230 v.$] 10$ @ $1 /-50$ @ 11 d .100 @ 10 d .
M110 neon resistor assembly for 110v. 500 @9d, 1000 @ 9d, 10,000@ 9d.
Neon Oscillator-runs neons from 6 v to 24 v DC 25/-
Neon illuminated push buttons:
Single Microswitch 1 @ 12/6, 10@ 11/-, 1,000@ 9/-
Double Microswitch 1 @ 14/6, 10@13/3, 1,000@11/3.
Single MSW. No neon 1 @ 8/6, 10@ 7/6.1.000 @ 6/ Ex Stock. Return of post. Send for details.
"Brightlife" neons, being of the high intensity type, give greater brightness and 25,000 hours average life. All can operate at $120^{\circ} \mathrm{C}$ at panel and $75^{\circ} \mathrm{C}$ at leads. Versions operating at even higher temperatures are available. The $\frac{1_{2}^{\prime \prime}}{2}$ dia neons are moulded in polypropylene which diffuses the light and the $3_{8}^{\prime \prime}$ dia. types are moulded in polycarbonate which gives higher light transmission. Both types give a glow behind the panel to warn maintenance staff. One hole fixing $\frac{1}{2}$ " and $\frac{3_{8}^{\prime \prime}}{}$ dia. D.C. breakdown- 135 v . maximum. A.C. breakdown 95 v . maximum. Light output, .15 lumens per mA.

uss me cor

Develop the art of good listening

MONOLITHIC INTEGRATED CIRCUIT AMPLIFIER AND PRE-AMP

A 13 transistor circuit measuring only one twentieth of an inch square by one hundredth of an inch thick!

the world's most advanced high fidelity amplifier

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick, has 5 watts R.M.S. output (10 w . peak). It contains 13 transistors (including two power types), 2 diodes, 1 zener diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.

The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout), etc. Once proven, the circuits can be produced with complete uniformity which enables us to give a full guarantee on every IC-10, knowing that every unit will work as perfectly as the original and do so for a lifetime.

SPECIFICATIONS

Output:

Frequency response: Total harmonic distortion: Load impedance:
ver gain: Supply voltage: Size:
Sensitivity:
Input impedance:

5 Hz to $100 \mathrm{KHz}+1 \mathrm{~dB}$ Less than 1% at full output.

3 to 15 ohms.
$110 \mathrm{~dB}(100,000,000,000$ times) total.
8 to 18 volts. $1 \times 0.4 \times 0.2$ inches.

5 mV .
Adjustable externally up to 2.5 M ohms.

CIRCUIT DESCRIPTION

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class $A B$ output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages, making battery operation eminently satisfactory.

APPLICATIONS

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include stabilised power supplies, oscillators, etc. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.

SINCLAIR

IC-10
with IC-10 manual
Post free.
$59^{\prime} 6$

Project 60

laboratory-standard high fidelity modules

Sinclair Project 60 comprises a range of modules which connect together simply to form a compact stereo amplifier with really excellent performance. So good, in fact, that only 2 or 3 amplifiers in the world can compare in overall performance. Now with the addition of three new modules to the range, the constructor has choice of assemblies with either 20 or 40 watts output per channel, with or without filter facilities.
The modules are: 1. The $\mathrm{Z}-30$ and $\mathrm{Z}-50$ high gain power amplifiers, each of which is an immensely flexible unit in its own right. 2. The Stereo 60 pre-amplifier and control unit. 3. The Active Filter unit with both high and low audio frequency cut-offs. 4. The PZ-5 and PZ-6 power supplies. A complete system could comprise, for example, two Z-30's, one Stereo-60, and a PZ-5. The P-Z6 is stabilised and should be used where the highest possible continuous sine wave rating is required. An A.F.U. may be added as required. In a normal domestic application, there will be no significant difference between using a PZ-5 or PZ-6 unless loudspeakers of very low efficiency are being used, in which case the PZ-6 will be required. For assemblies using two Z-50's there is the new PZ-8 stabilised supply unit to ensure maximum performance from these more powerful amplifiers.

All you need to assemble your Project 60 system is a screwdriver and soldering iron. No technical skill or knowledge whatsoever is required and, in the unlikely event of you hitting a problem, our customer service and advice department will put the matter right promptly and willingly. Project 60 modules have been carefully. designed to fit into virtually all modern plinth or cabinets and only holes need be drilled into the wood of the plinth to mount the control unit and the A.F.U. Any slight slip here will be covered by the aluminium front panels of these two units.
The Project 60 manual gives all the building and operating instructions you can possibly want, clearly and concisely. Perhaps the greatest beauty of the system is that it is not only flexible now but will remain so in the future as the latest additions to the range show. A stereo F.M. tuner is next to come. These and all other modules we introduce will be compatible with those already available and may be added to your system at any time. And because Sinclair are the largest producers of constructor modules in Europe, Project 60 prices are remarkably low.

Z. 30

20 Watt R.M.S. POWER AMPLIFIER (40 WATTS PEAK)

The Z.30, together with the higher powered $Z .50$ are both of advanced design using silicon epitaxial planar transistors to achieve unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at full output and all lower outputs. Whether you use the $\mathbf{Z . 3 0}$ or $\mathbf{Z} 50$ power amplifiers in your Project 60 system will depend on personal preference. But they are both the same physical size and may be used with other units in the Project 60 range equally well. The Z .30 is unique in that it may be used with any power source between 8 and 35 volts without need for adjustment and may thus be driven from a car battery for example. For operating from mains, for the Z.30 use PZ.5 power supply unit for most domestic requirements, or P.Z. 6 if you have very low efficiency loudspeakers. For Z.50, use the PZ.5, PZ. 6 or PZ. 8 described below.

specifications

Power Outputs $Z .3015$ watts R.M.S. into 8 ohms, using 35 v ., 20 watts R.M.S Into, 3 ohms using 30 voits.
Z. 5040 watts R.M.S. Into 3 ohms : $\mathbf{3 0}$ watts R.M.S. into 8 ohms both continuous, operating on 50 v .
Frequency response- 30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
Distortion 0.02% Into 8 ohms
Slgnal to nolse ratio better than 70 dB unweighted
Input sensitivlty 250 mV into 100 K ohms
For speakers from 3 to 15 ohms Impedance
Size $3 \mathrm{im} . \times 2 \mathrm{fin} . \times \mathrm{tin}$.
Z. 30 and $Z .50$ power amplifiers are interchangeable in all applications and differ only in power outputs (and power requirements if necessary).

STEREO 60 Pre-amp Control Unit

The Stereo 60 is a stereo preamplifier and control unit designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout and great attention has been paid to achieving a really high signal-to-noise ratio and excellent tracking between the two channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs. The tone controls are also very carefully designed and tested.

ACTIVE FILTER UNIT

The purpose of the filter unit is to reject frequencies above (scratch) or below (rumble) specific cut off frequencies when they contain unwanted interference. The sinclair A.F.U. is unique in that the cut off frequency is continuously variable for both the scratch and rumble units and, as the attenuation in the rejection band is rapid (12 dB per octave), the removal of interference can be achieved with less loss of the wanted signal than has previously been possible. Each channel has an overall gain of unity and the unit may be connected between the pre-amplifier and power amplifier sections of any system. Both amplitude and phase distortion have been made quite negligible by careful design and generous negative feedback employed.

SPECIFICATIONS

Employs two Sallen \& Kev type active filter stages, one rumble (high pass) and one sclatch (low pass)
The two stages use complementary trensistors to minimise distortion.
Supply voltage 15 to 35 V Current 3 mA max
Gain at 1 kHz , filters flat $0.98(-0.2 \mathrm{~dB})$
H.F. cut off (-3 dB) variable from 28 kHz to 5 kHz at 12 dB /octave L.F. cut off $(-3 \mathrm{~dB})$ variable from 25 Hz to 100 Hz at $12 \mathrm{~dB} /$ octave Distortion at 1 kHz (35 V supply) 0.02% at rated output Built, tested and guaranteed
£5.19.6

SINCLAIR POWER SUPPLY UNITS

PZ-5 30 volts unstabilised-sufficient to drive two $\mathbf{Z . 3 0}$'s and a Stereo 60 for the majority of domestic applications.......................... $£ 4.19 .6$ PZ-6 35 volts stabilised-ideal for driving two $\mathbf{Z} .30$'s and a Stereo 60 when very low efficiency speakers are employed £7.19.6 PZ-8 45 voits stabilised power supply unit for use with Z-50 amplifiers (less mains transformer)
£5.19.6 PZ-8 Mains Transformer
£5.19.6

GUARANTEE

2.50
 Built, tested
 guaranteed, with manual

Power versus distortion curve for $Z .30$ and $\mathbf{Z 5 0}$

Treble and bass cut and boost curves

SPECIFICATIONS FOR STEREO 60

- Input sensitivities-Radlo-up to 3 mV Magnetic P.U.3 mV : correct to R.I.A.A. curve $\pm 1 \mathrm{~dB} ; 20$ to $25,000 . \mathrm{Hz}$ Ceramic P.U.-up to 3 mV . Aux.-up to 3 mV . Output- 250 mV
Slgnal-to-noise ratio-better than 70 dB
Channel matching-withiln 1 dB .
Tone Controls-TREBLE+15 to -15 dB . at 10 kHz BASS+15 to - 15 dB at 100 Hz
Front pane-brushed aluminlum with black knobs and Size $8 \frac{1}{4} \times 1 \frac{1}{2} \times 4$ Ins.

BUILDING A PROJECT 60 ASSEMBLY

The illustration here shows quite clearly how easily Project 60 can be contained in one of today's slim, modern pilinths. Very little space is required to house these Sinclalr units, and within the space of the motor plinth. you can install a stereo ampifier of the very highest quality. If, for example you have already put together an assembly as Hlustrated here, adding the Active Fllter Unit would be very easy.

If any IIme within 3 months of purchasing Project 60 modules from us, you are dissatisfied with them, we will refund your money at once. Each module is guaranteed to work perfectly and should any defect arise in provided that it is returned to us within without any cost to you whatsoeve will be a small charge for services thereafter. No charge for postage by surface mail. Alr-mall charged at cost.

SINCLAIR RADIONICS LIMITED, 22 NEWMARKET ROAD, CAMBRIDGE

PROJECT 60 MANUAL of instructions, circuits, applications etc. 50 pages plus assembly template

PHOTOCONDUCTIVE CELLS
Cadmium Sulphide Cells (Cds)
Inexpen sive lught senaidive resislors which renuire only simple
circuitry to work as light trigzering nuits in a wide range ol derice inch as: Ilashinz or breakizown lights, oxposure meters, brightness

MEYT1
Epony sealed. I in. diam. $\times i$ in. thick. Resistance at 100 Lux--sum
to 2,000 ohms. Maximum poltarce 150 A.C. or D.C. Maximum

 length 1 in Resirtance at 100 L. Lux- 50 Kohmas to 150 Kohms.
Maximum voltage 150 A.C. or D.C. Maximum current 75 mW .

PHOTOGENERATIVE CELLS

Seienium cellh ia whion light energy in converied into olectrioity directly measurable on mioroammeter of ured with amplitioe ${ }^{\text {as }}$
light trigger tor alarm and counting devices, laminous 1 nuxmetern exposare meters, colorimetors, ete. Spectral response covers rixible light ranke.

Type $1-1 \mathbf{1 d} \times 1 \frac{3}{6} \mathrm{in}$. Output 1 mA at 0.6
 REED SWITCH COILS and capsules

Compact ansembliey of reed switches nad operating coils that permit the design of on thifinte variety of muttipe switch circuits la tan edremeay small space. They eliminate the bulk and open contact
disadvantage of eleciro-mechanical relays; hernetically nealed contact isolation en sures longlife reliability. 8 mall cnough to combine
with solld- - tate components on printed circult boards. Idenl for switching matrices, binanry kite, control systems, tect Thees were
removed intsct from hlghly expenalve computer mechanisma and
 of a rare-metal screened, 24 volt D.C. operating coil on a nylon
former with one detachable end for the removal and repiacement of reed switches.
Types apailsble:
$\mathbf{R} / C 2$ Two reed swithes, contacts normally open. gize overall: R/CA Yo I $\times 1$ in

RCA TRIAC CA40432

45/- post free
Scuitble for likht dimming and motor control oirouits
Gate-controlled, full-wave, A.C. sticicon switcoh with integral trigger
that blocks or conducts ingtantly by applying reverse polarity voltase. Buitable tor A.C. operation up to 250 volts controls curreats on to 1440 watto size only t in, ditam. x If in. bigh. Complete

VARIABLE SPEED
 VARIABLE SP FOOD MIXER

MOTOR ASSEMBLY P. 25/-
Exoeptionally robust, brush-type, series wound motor hesignod ne power mint for
quaily Britigh food mixer and rupplied with
 struction terminates in tin. diameter drve
shatt at one end and diectast, encloeed gearbox with twin ihaft output into right-aggled
drive shatten other. Tapped wind ding provide
 switch selection of any of three speeds.
switch
not supplied.
Size overall
δi bong $\times 2 \mathrm{tin}$. diam. $\times 8 \mathrm{t} \mathrm{in}$. New.

LOW VOLTAGE SOLENOIDS SPECIAL OFFER

PRICE - 2 FOR 12/6

Exceptionally powertol pull-type solenold for 4t-8 volts D.C. operation. Compact, shrouded constraction with tapped holes at
side and rear to provide veratile mounting it in pong sides and rear to provide versatile mounting. 14 in. long $\times \frac{8}{8}$ in.
diam. bolt has connical tapered plunger to ensure maximum pulind

QUARTZ HALOGEN

Standard subular pattern with ceramic end-contáct bittings and

 ${ }^{\text {Filament }}$ length 70 mm . length 178 mmo.

CONTROL THERMISTOR

Type A25 by 8 TC retamed on $1 \times 1 ; \mathrm{il}$. paxolinn captive screws. Bead type thermistoria contained in 1 in. long x oh in. diam. gas-Alled glass bulb and in particulariy nitable for amplitude control, timing devices, current surge suppression, ett. Safe
power disaipation, 60 mW . Bensitvity $3.5^{\circ} \mathrm{C} / \mathrm{mW}$. Maxirnuro temperature: Ambient j5 ${ }^{\circ}{ }^{\circ}$ C., Bead

 Uaunl price $15 / 9$ each. Brand new. Special barrain
offer: 5 for $15 /-$ pont tree.

POWER TRANSISTOR HEAT SINKS

Heavy gauge aluminium extrusions with itment for one pair of power transistors. Size overall: $4 \times 3!\times 1 \frac{\mathrm{in}}{} \mathrm{in}$ high.
Base is ot th. thick and ready punched to sccept all standard types, Seven moling fin surfaces ensure adequate
heat dissipation. Brand new. Special offer: two tor $12 / 8$ post free.

INFRA-RED TRANSMITTERS \& RECEIVERS Unique dericer in a brand new electronio theld that can be exploited In aide range of applloations. Miniaturized construction and solid switching oapabilities to provide infinite possibilitiee as ohort distance speeob and data hinks, remote reley controls, saloty devices, burglar

\$3 MaA 100
$85 /-$ MSP 3
gallium arsenide light source-mai 100
Fllame enteng infra-red emirter in al robust, , ealed cyllinder coaxial Max Ratick:

INFRA-RED PHOTO RECEIVER - MSP3

Ontra senaiitve detectorfamplifier for infra-red (GAllium Arwenide)
 Robust, eyllidrical package is coaxik
optical alignment and heat sinking.
optical aliznm
Totan diasipation (in free air, $\mathrm{T}_{\mathrm{T}} \mathrm{mb}=25^{\circ} \mathrm{C}$.): 100 mW . Derating

 supplication theetat, inoluding line of night ppeeoh link.

INDUCTION

$12 /-$
P. \& P. $2 / 6$
High.grade ualt with diecast rotor frame itted wilh llifelime lubricated bearings and 1t it. long x

EXTRACTOR FANS

Brand new. $230 / 250$ P. \& P. 3/6
Brand new, $230 / 250$ Volts A.C. maln operated fans, complate except for
external ahroading which can be readily made up from simple sheet metal wrapping to suit any particular instaliation. and other domestic and light industrial purposes. Continuously rated, smooth,
silent manning induction motor: balanced
 4 in. deep.

HIGH GRADE MINIATURE 12 Volt D.C. MOTOR
Two for $12 / 6$ post paid

Top quality, all-British manufacture, 12 -volt D.C. permanent magnet rootors. Wave-wound armature has 5 -segment machined copper commutator contacted by spring-losded, long-life carbon
bruahes tim heavy brass holders. Steel rotor shaft runs in lifetime brushes in heavy brass holders. Steel rotor shaft runs in lifetime
lubricated bronve bearings. Totally enclosed in tough plastic case lubricated bronze bearings. Totally enclosed in tough plastic case
with flying lead connectiong. Size: $1 t$ in. diamo $\times 2 \ddagger \mathrm{im}$. long

ELECTRIC BLANKET

MEATER CABLE
Min. order 20 yds. of one type, plus $2 / 6$ P. \& \& P.
Nickel alloy ribbon apirally wound onto a fibre core and insulated by an outer cover of clear, siliconized plastic. Originally intended as heating elomonts for high-grade electrio blanketn but suitable also for
undersoil hesting in propagating trays and many other low tomperaundersoil hasting in propagating trays and many ot her low tempera-
ture applitations. Cable diam. 2.5 mm . Avaliable ln various resistance ranges as follows: $14.5,15.9,21.5,28.8 ; 41,48,151$ and 177 ohms
per yard, per yard. State type required.

STANDARD CRADLE TYPE TELEPHONES Two for 35/-
standard type complete with dial and approx. 10 itt eord. Not new, but guarano
teed unbroken and serviceable.

FIBRE OPTICS
Highly Ilexible light guides that transmit light to inaccessible places it possible to control, miniaturize, split, reflect or transler lizht from one soureo to many places at onee and to operate photo devices, logric eircuita, or Muminate in ways never belore possible. Proops ofler
both glasa fibre optics or inexpensive Crolon plastic fibres for oth glass tibre optics or inexpensive croton plastic fibres for
hundreds of experiments or serious applicetions in a fascinating new scienoe.
Rank Taylor-Hobson Engincers' Kits
Basic fibre optic components
 - rmploying light in serious nppli-

- titions. Two kits are availible: ach contains high-grade glasslibre light guldes consisting of
thousands of fibres tighty hundled in filexible sheaths with corruled, optically polished ends, ligelher with connecting and supht source components. Each
sumplled $\begin{aligned} & \text { complete with card } \\ & \text { unllet contalning technical and }\end{aligned}$ 4.

Kit I
Contains: $1.5 \mathrm{~mm} \times 24 \mathrm{in} ., 3 \mathrm{~mm} . \times 18 \mathrm{in}$. and $6 \mathrm{~mm} \times 16$ post free
$\times 12 \mathrm{in}$. Contains: $1.3 \mathrm{~mm} \times 24 \mathrm{in} ., 3 \mathrm{~mm} . \times 18 \mathrm{ln}$. and $6 \mathrm{~mm}, \times 12 \mathrm{in}$. or coding applications. Also bettery opernted light source, 2 -way "Y" adaptor with non-random separation and $3 \mathrm{~mm} . / 3 \mathrm{~mm}$. and Kit $\mathbf{2}$ E28 post free
 coding of punched card applications, 24 in. lengths of Crofor 64 flament and monofilament plastic light guide. Also, coherent anlids mage conduit with polished ends, 4 mm . $\times 25 \mathrm{~mm}$. image finvertor. Complete witb 2-way adaptor, Abre optic torch and batteries,

SPECIAL OFFER OF
 IMAGE FIBRESCOPES

45 post free
Botween $\$ 0,000$ and 80,000 coherently arranged, 15 micron alass
tibres that provide (with appropriate tibres that provide (with 8 ppropriate optics) perfect visual inspection
into otherwise inaccessible areas. Originally made by Rank TaylorHobson for use in industrial and medical itbrescopes at $£ 72$ each. hn transparent, lay-flat tubialy imperceptible faults and are assering as usual. Ends are ground polished and matal eapped. Absolutely ideal
for demonstration in schools and techniagl colleges and for many or demonstration in schools and technioal colleges and for many to enolosed, diflloult to get st places. Length overall: 3 Ht. Cross sectionsl area; $3 \times 8 \mathrm{~mm}$. Resolution: $10 \mathrm{LP} / \mathrm{mm}$, to $20 \mathrm{LP} / \mathrm{mm}$.

LOW COST CROFON FLEXIBLE LIGHT GUIDES

Newly developed plastic light trana-
 mitting media by Dupont, which can inexpensive prototype work. Ends
ran be ground flat, dyed or capped
with epory with epoxy rasin. Temperature range:

- 40° to $+170^{\circ} \mathrm{F}$. No logs of light
thmugh bending. 12 page Data and thrrugh bending, 12 page Data and
Applications
supplied with each order.
Typen availsble:
Multi-strand-64 special plastic fibres, tightly bundled together in tough, flexible conduit. $8 / 6$ per loot. Miblmam order two feet, $17 /-\mathrm{P}$. \& $P .1 / 6$. Monofilament- Bingle 0.040 in . plastic fibre which Is specially order three feet. 18/- P. in P. $1 /=$

SIXTEENTH H.P.
MAINS MOTOR
MAINS MOT
35/- Carr. $1 / 6$ Superb quality motor to BS1906 spec. by A.E.I. Ior IBM enmputez
installationt. Exceptionally quiet ruaning. Complete with mounting
cradie with resilient mounts and starting relay. Plain $\#$ in. diam. drive ehaft ftited with 14 in. and 1 l . d dam. double palley. Size overall: $7 \ddagger \times 41 \times 5 \mathrm{in}$. high. For 230 .25

GENERAL PURPOSE PUMP

C7. 10.0 P. \& P. 5/-
Compact, totally onelosed unit has stainless steel and tough plastic construotion, with poweritul ail
British oontinuously rated motor to ensure lon operating life under rigorous outdoor and marin use. Maximum head 10 ft . Output in excess
$300 \mathrm{~g} . \mathrm{p} . \mathrm{h}$. Idesl for use an bige pump in amal 3os.p.h. Ideal for use an bilge pump in amal
boats, caravan showcrs, drainage, fuel tranafor
etc. Bize overall only 12 in long x in. etc. size overall only 12 in long $\times 2 \neq$ in. diam Complete with stand-off mounting bracket.
Btandard model, 12 V. D.C. 30 watta. 24 V. model araliable. Guaranteed 12 months.

QUARTZ HALOGEN 12 Yolts, 50 W atts $17 / 6$ post paid

High-grade British manufacture complete with high temperature
ceramic bage fitted with fiying leadg. Auitable for profector, car ceramic base fitted with fying leads. Buitable for projector, car
spotlamp adaptation, or high intensity lighting applications. New spotlamp adaptation,
and fully guaranteed.

COMPACT LOW GEAR MOTOR
17/6 Post and packing $2 / 6$

Totally enclosed synchromous motor has built-in gearbox providing output speed of li rip.m. Drive is $28-$-tooth, 1 in . dismo pearwheel, remorabie to leave $\frac{1}{2 n}$ diam. spllned shaft. $81 z e: 17 \mathrm{in}$ diam. in in. deep, plus drive and mo

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES, ETC.

- LOW cost quick delivery over 200 ranges in stock o other RANGES TO ORDER

"SEW" CLEAR PLASTIC METERS

EDGWISE METERS

Type PE.70. 3 17/32in. $\times 115 / 32 \mathrm{in} . \times 2 \% \mathrm{in}, ~$
deep.

SEND FOR ILLUSTRATED BROCHURE ON SEW PANEL METERS-DISCOUNTS FOR QUANTITIES
U.K. DISTRIBUTORS OF TMK multumeters This range of Multimeters, manufactured by Tachikawa Radio Instrument Co, of Japan,
offers excellent value for money combined with quality and accuracy of measurement. - IMMEDIATE DELIVERY DISCOUNTS FOR QUANTITIES - TRADE ENQUIRIES INVITED

MD. 120

PL. 436

TW. 50k

LAB TESTER

500

5025
\star All models fitted overload
protection and supplied with batteries, prods and instructions.

MODEL TW 20CB FEATURES RESETTABLE OVERLOAD BUTTON	
	7
Normally only found on meters costing over $£ 25$.	
Senaitivity: $20 \mathrm{k} \mathrm{O} /$ Volt D D.C. Yolts: 00.E, 2.5, 10 A.C. Yolts: $0.2 .5,10$, 10 amp. Resistance: $0-\mathrm{b}$ 5 MEan. Decibels: -20 case with carrving handle $\times 2 \ddagger$ in, approx. \&11.10.0	C. 5k g/Volt A.C. $50,200,1,000 \mathrm{~V}$. $5,50,500 \mathrm{~mA}$. , $50 \mathrm{~K}, 0-500 \mathrm{~K}$. alze 5 /in. Plastio /p 3/6

 10MEG Ω. Declbels : -20 to +46 db . Rugged High Impact Plastic Case with Handle.

 10MEO O. Decibels: -20 to $+85 d \mathrm{db}$. Plastic Case with Carry ing Handle, size 6 ith. \times

 101m. $\times 3$ in.

SOLE U.K. AGENTS FOR JAPAN'S PREMIER MANUFACTURER
"YAMABISHI"
VARIABLE VOLTAGE TRANSFORMERS

- Excellent quality - Low price - Immediate delivery

ALL MODELS

INPUT 230 VOLTS, 50/60 CYCLES.
MODEL S-260
General Purpose
Bench Mounting

1 Amp	65.10.0	MODEL S-260 BPanel Mounting	
2.5 Amp	C6.15.0		
5 Amp	69.15 .0	1 Amp	45
8 Amp	C14.10.0	2.5 Amp	6
10 Amp	$¢ 18.10 .0$	Please add postage.	
12 Amp	C21.0.0	Please add	tag
20 Amp	637.0.0	Special discounts for quamtity.	

OUTPUT VARIABLE $0-260$ VOLTS

ELEGTROVALUE

EVERYTHING BRAND NEW AND TO SPECIFICATION • LARGE STOCKS BARGAINS IN NEW SEMI-CONDUCTORS
ALL POWER TYPES SUPPLIED WITH FREE INSULATING SETS

RESISTORS

Code	Power	Tolerance	Range
c	1/20W	5%	82 $2-220 \mathrm{~K} \Omega$
c	1/8W	5\%	4.7S2-330K Ω
c	1/4W	10\%	4.78-10M Ω
C	1/2W	5\%	4.7 -10M
c	iw	10\%	$4.7 \Omega-10 \mathrm{M} \Omega$
MO	1/2W	2\%	10ת-1M
WW	IW	10\% $1 / 20 \Omega$	0.222-3.9@
WW	3W	5\%	$12 \Omega-10 \mathrm{~K} \Omega$
WW	7W	5\%	12,-10K

PEAK SOUND PRODUCTS ENGLEFIELD CABINET KITS

Stereo amplifier in modular kit form 12 watts per channel 638/9/-: 25 watts 658/15/-
Cabinet kit only 66. These prices nett.
As recently reviewed in Hi Fi Sound.

B BAXANDALL SPEAKER SYSTEM

Designed by Peter Baxandall. Superb reproduction for its size. Handles 10 watts speaker unit. Kit $13 / 12 /-$ netr; buile speaker unit.
fly $/ / 8 / 6$ nett.

STEREO AMPLIFIER SA.IO-IO.

Developed from the very successful SA.8-8 amplifier giving first-class stereo controls for each channel, bass and treble controls. 10 watts per channel into 5 to 8Ω. Kit $£ 19 / 7 / 6$ nett; buile $624 / 16 / 8$ nett. Suitable 8Ω wide range speakers available $613 / 15 /-$ each nett.

MAINLINE AMPLIFIER KITS

RCA/SGS designed main amplifier kits. Input sensitivity 500700 mV for full output into 8Ω.

Power	Kit price including components	Suitable unreg. power supply kit
12 W	$168 /-$ nett	$92 /-$
25 W	$190 /-$ nett	N / A
40 W	$210 /-$ nett	$1 / 11$
70 W	$252 /-$ nett	$138 / 10$

30 WATT BAILEY AMPLIFIER PACK
 Special summer reduction (to Sept. 30 th 1970 only) Sensitivity $1 \cdot 2 \mathrm{~V}$ for full output into 8Ω.
 Transistors for one channel $દ 7 / 5 / 6$ lise, $\mathbb{C} 6$ only nett.
 Capacitors and resistors (metal oxide), 30/- per channel nett. Complete unregulated power supply pack, $87 / 6$ nett.

Values:
E12 denotes series: $10,12,15,18,22,27,33,39$, $47,56,68,82$ and their decades.

$$
30,36,43,51,62,75,91 \text { and their decades. }
$$

ZENER DIODES 5% full range E24 values: $400 \mathrm{~mW}: 2.7 \mathrm{~V}$ to $30 \mathrm{~V}, 4 / 6$ each; IW: 6.8 V to 82 V , 9/- each; 1.5W: 4.7 V to 75 V , 12 V - each.
\qquad 266F), 9d.

CARBON TRACK POTENTIOMETERS, long spindles. 'Double wiper ensures minimum noise level.
Single gang linear 220Ω to $2 \cdot 2 \mathrm{M} \Omega, 2 / 6$; Single gang $\log _{\text {p }} 4.7 \mathrm{~K} \Omega$ to 2.2 MS , 2/6; Dual gang linear, $4.7 \mathrm{k} \Omega$ to $2.2 \mathrm{M} \Omega, 8 / 6$; Dual gang log, $4.7 \mathrm{~K} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega, 8 / 6$; Log/antilog, $10 \mathrm{~K}, 47 \mathrm{~K}, \mathrm{IM} \Omega$ only 8/6; Dual antilog, loK only, $8 / 6$. Any type with $\frac{1}{2} A$
D.P. mains switch, extra $2 / 3$. D.P. mains switch, extra $2 / 3$.
are
CARBON SKELETON PRE-SETS
Small high quality, type PR, linear only: 100Ω, $220 \Omega, 470 \Omega, 1 \mathrm{~K}, 2 \mathrm{~K} 2,4 \mathrm{~K} 7,10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}$, $220 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M} 2,5 \mathrm{M}, 10 \mathrm{M} \Omega$. Vertical or horizontal mounking, $1 /$ - each.
COLVERN 3 watt Wire-wound Potentiometers. $10 \Omega, 15 \Omega, 25 \Omega, 50 \Omega, 100 \Omega, 250 \Omega, 500 \Omega, 1 \mathrm{~K}, 1 \cdot 5 \mathrm{~K}$, $2.5 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 15 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 5 / 6$ each.

ENAMELLED COPPER WIRE even No. SWG only: 2 oz. reels: 16-22 SWG 4/3; 24-30 SWG 5/-; 32,34 SWG, 5/6; 36, 38 SWG, $6 / 3$.

TYGAN SPEAKER MATERIAL

 7 designs, $36 \times 27 \mathrm{in}$. sheets, $31 / 6$ sheet. Pattern book, S.A.E. plus 6d. stamp.$250 \mathrm{~V} 20 \%: 0.01,0.022,0.033,0.0478 \mathrm{~d}$. each; $\begin{array}{llll}0.068, & 0.1, & 9 \mathrm{~d}, & \text { each; } 0.15,11 d . ; \\ 10 \%: & 0.33,22,1 / 5 ; & 0.47,1 / 8 ; 0.68,2 / 3 ; & 1 \mu \mathrm{~F}, 2 / 5 ;\end{array}$ $1.5 \mu \mathrm{~F}, 4 / 2 ; 2.2 \mu \mathrm{~F}, 4 / 9$
MULLARD SUB-MIN ELECTROLYTICS C426 range, axial lead Valves $(\mu F / V): 0.64 / 64 ; 1 / 40 ; 1 \cdot 6 / 25 ; 2 \cdot 5 / 16 ; 2 \cdot 5 / 64$. $4 / 10 ; 4 / 40 ; 5 / 64 ; 6 \cdot 4 / 6 \cdot 4 ; 6 \cdot 4 / 25 ; 8 / 4 ; 8 / 40 ; 10 / 2 \cdot 5$; $10 / 16 ; 10 / 64 ; 12 \cdot 5 / 25 ; 16 / 40 ; 20 / 16 ; 20 / 64 ; 25 / 6 \cdot 4 ;$ 25/25; 32/4; 32/10; 32/40; 32/64; 40/16; 40/2.5; $50 / 6 \cdot 4 ; 50 / 25 ; 50 / 40 ; 64 / 4 ; 64 / 10 ; 80 / 2 \cdot 5 ; 80 / 16 ;$ 200/6.4. 200/10. $250 / 4$; $320 / 2.5$; $320 / 6 \cdot 4$; 400/4; 200/6.4; 200/10; 250/4; 320/2.5; 320/6-4; 400/4;

LARGE CAPACITORS

High ripple current types: $1000 / 25,5 / 6 ; 1000 / 50$, 8/2; $1000 / 100,16 / 3 ; 2000 / 25,7 / 4 ; 2000 / 50,11 / 4 ;$ $2000 / 100,28 / 9 ; 2500 / 64,15 / 5 ; 2500 / 70,19 / 6 ;$ $10000 / 15,17 / \mathrm{F}: 10000 / 25,24 / 6$; $10000 / 50$, $41 /$ $10000 / 15,17 /-: 10000 / 25,24 / 6 ; 10000 / 50,4 / /=;$
$10000 / 70,61 /-$
COMPPNENT DISCOUNTS
10% on orders for components for 65 or more. 15% on orders for components for $\mathbb{1} 15$ or more. (No discount on nett items)

POSTAGE AND PACKING

Free on orders over $\mathbb{\ell 2}$

Please add $1 / 6$ if order is under $\mathbb{E 2}$
Overseas orders welcome: carriage and insurance charged at cost.

ELECTROVALUE 1970

CATALOGUE NOW READY
48 pages plus covers, well printed and illustrated, crammed with thousands of items. Post free 2/

INTEGRATED CIRCUITS

PLESSEY SL403A 3 watts into 7.5 ohms. Data book supplied FREE when two of these units are purchased. Price per unit nett 48/6

SINCLAR IC. 10 as advertised, complete with instructions and

 Complications manual $59 / 6$ nett.S-DeCs PUT AN END TO BIRDS NESTING
Components just plug in-saves time-allows re-use of com(70 points), 30/-.
(208 points), $50 /$

MEDIUM RANGE ELECTROLYTICS
Axial leads: $50 / 50,1 / 9 ; 100 / 25,1 / 9 ; 100 / 50,2 / 6$; $250 / 25,2 / 6 ; 250 / 25,2 / 6 ; 250 / 50,3 / 9 ; 500 / 25,3 / 9 ;$
$500 / 50,4 / 6 ; 1000 / 25,4 /-1000 / 50,6 /-; 2000 / 25,6 /-$

SMALL ELECTROLYTICS
Axial leads: 4.7/10, 4.7/25,5/50,1/- each; $10 / 10$,
$10 / 25,10 / 50,33 / 10,50 / 10,1 /$ - each; $25 / 25,25 / 50$, $47 / 25,100 / 10,220 / 10,1 / 3$ each.

De BANKS ELECTRONICS CHURCH SQUARE, TRING, HERTS.

We like discussing supplies of valves to all kinds of people. For example we have an excellent service to the Independent Retailer who is looking for small quantities of everything with personal attention and in most areas a call from our representative. And an advance stock as well-THINK OF THE CAPITAL SAVING!

As well as this our dependable service is spreading throughout the world. We will quote you for the supply of valves in 1 or 1,000 quantities. Our stocks extend to industrial users and colleges etc.

In addition to our vast stocks of valves we can offer:-
CATHODE RAY TUBES SEMICONDUCTORS
STYLII
CARTRIDGES
MAGNETIC RECORDING TAPE, ETC.

WHY DON'T YOU CONTACT US FIRST? TRING 2777

LIQUID LEVEL DETECTOR. Detects even mildly conductive hiquids, i.e, ether, etc. N.O./N.C. contacts. Fails to safe. £10 ea, S.a.e. literature.
MODULAR POWER SUPPLIES. Fully stabillsed 8.5 to 9.5 valt. 10 amp . ($12 \times 6 \times 4 \mathrm{in}$.) Brand new. Individual spec. with each unit. £10 ea.

RADIATION MONITORING EQUIPMENT. POTTable and bench models (brand new) S.a.e literature.

KLYSTRON POWER SUPPLY (Solartron AS562). E40. Carr. 50/-.
KLYSTRON POWER SUPPLY (Elllot PKU1). £100
20 AMP. AUTO TRANSFORMERS. 190-270v. $50 \mathrm{c} / \mathrm{s}$ (tapped every 5 volts). £50 ea. (Carr. by arrangement.)
801 A SIGNAL GENERATOR. $10-300 \mathrm{mc} / \mathrm{s}$ in 4 bands. Ext. $50 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s}$. Output $200 \mathrm{~m} / \mathrm{v}$ E50 өа. P.P. 25/-

SPEAKERS
"E.M.I." 19×14 in. 50 watts. 8 ohm (14A/600A.) Four tweeters mounted across main axis. Separate "X-over" unlt balances both bass and h.f. sections. 20 Hz , to 20,000 $\mathbf{H z}$. Bass unit flux $\mathbf{1 6 , 5 0 0}$ gss. A truly magnificent system E25. P.P. 50/-
E.M.I. $13 \times 8 \mathrm{in}$. 10 watt with Integral tweeter. 15 ohm . 55/- өa. P.P. 5/-
"E.M.I." $6 \frac{1}{3}$ in. Rd. 10 watt woofers. 8 ohm. 30/\% ea, P.P. 2/6.
"FANE* $12 \mathrm{in}, 20$ watt. 15 ohm. (122/10A.) With integral tweeter. E6 ea, P.P. 7/6.
SPEAKER SYSTEM ($20 \times 10 \times 10 \mathrm{in}$.) Made to Spec. from $\frac{3}{4} \mathrm{in}$. board. Finished \ln black leathercloth. $13 \times 8 \mathrm{in}$. speaker with twin tweeters complete with "X-over" Hz. to 20,000 Hz
SPEAKER CABINET KIT. Above mentloned cabinet only, in kit form which you may assemble and cover to your own choice. 40/-. P.P. 5/-.
EXTRACTOR FANS/BLOWERS
AIRMAX ${ }^{\circ \prime}$ 7 $\frac{1}{2}$ In. FAN. In aluminlum diecast housing (9 in.). 240 v . Brand new. E4 10 s . P.P. 10/-
"PLANNAIR" $5 \frac{1}{2}$ In. FAN. (Type 5 PL 121-122.) Dlecast housing. 240v, Brand now. E6. P.P. 10/-.
"SOLARTRON" TANGENTIAL BLOWERS. Overall size $16 \times 5 \frac{3}{4} \times 3 \frac{1}{2} \mathrm{in}$. Alr outlet $12 \times 1 \frac{1}{2} \mathrm{in} .240 \mathrm{v}$. Brand new 50/- ea. P.P. 7/6.
BULK COMPONENT OFFER. Resistors/capacitors. All types and values. All new modern components. Over 500 pleces, E2. (Triai order 100 pleces 10/-.) We are confldent
you will re-order.

HIGH SPEED MAGNETIC COUNTERS $(4 \times 1 \times 1 \mathrm{in}$.) 4 dlght . $24 / 48 \mathrm{v}$. (state which), $6 / 6$ ea. P.P. 1/-.

LEVEL METERS ($1 \frac{1}{2} \times \frac{1}{2} \ln$.). 200 micro-amp. Made in Germany. 15/- each
SILICON PHOTOVOLTIC CELLS (MS2BE) $550 \mathrm{~m} . \mathrm{V}$. 35 m.a. 30/- ea.
RELAYS H.D. 2 pole 3 way 10 amp . contacts. $12 \mathrm{v} . \mathrm{w}, 7 / 6$ ea, LIGHTWEIGHT RELAYS (with dust-proof covers) $4 \mathrm{c} / 0$ contacts. $24 \mathrm{v}, 500 \mathrm{ohm} 7 / 6 \mathrm{ea}$.
PRECISION CAPACITANCE JIGS. Beautitully mede with Moore \& Wriphi Mlcrometer Gauge Type 18.5 pi with Moore \& Wright Micrometer Gauge. Type 1.18 .5 pf POT CORES LA1/LA2/LA3. 10\% 日日
71 WAY PLUG \& SOCKET (Painton Serles 159) Gold plated contacts with hood \& retalning clips. $30 /-$ palr. 50 WAY PLUG \& SOCKET (U.C.L. minlature). Gold plated contacts $20 /$ - pair. 34 way verslon $15 /$ - pair.
CO-AX RELAYS (magnetic devices) 1 change-over 12 v.w 20/- ea.
COMPUTER BOARDS
4-OC23; 4-2N1091; 4-2G302; 4-OA10. 20/- ea. 8-OC42 (long leads) ; 16-OA47, 7/6 еа.
8-DA11A; 14-OA47. 5/- өa.
Bargain pack of 5 boards. Components too varied to enumerate. At least 100 transistors and diodes. £2 lot.

TRANSFORMERS

L.T. TRANSFORMERS (shrouded). Prim. 200/250v Sec. 20/40/60v. 2 amp. 52/6. P.P. $7 / 6$.
L.T. TRANSFORMERS. Prim, 200/250v, Sec. 20/40v, 1.5 amp . 30/-. P.P. 5/-.
"ADVANCE" CONSTANT VOLTAGE. Pilm. 190/250v. $\pm 15 \%$. Sec. $115 \mathrm{v} .2,250$ watts. $£ 15$ ea, P.P. $50 /-$ L.T. TRANSFORMER 20v. $1.5 \mathrm{amp} .15 / \mathrm{-}$. P.P. $2 / 6$ ISOLATION TRANSFORMERS, 250 watts. 45/P.P. 10/-
T. TRANSFORMER. Prim. 240v. Sec. 33-0-33v 5 amp. 45/-. P.P. 10/-
STEP-DOWN TRANSFORMERS Pilm. 200/250v. Sec, $145 \mathrm{v}, 1.25$ amps, 25/- ea. P.P. 5/-
.T. TRANSFORMERS Pilm. 240v. Sec. 8/12/20/25v 3.5 amp models $20 /-; 5 \mathrm{amp}$ model $25 /-$. P.P. $5 / 6$.
L.T. TRANSFORMERS Prim. 240v. Sec 14v. 1 amp 10/. ea. P.P. 2/6.

ELECTRIC SLOTMETERS (1/-) 25 amp. L.R. 240 v . A.C. 35/- ea. P.P. 5/-
QUARTERLY ELECTRIC CHECK METERS, 40 amp 240 v. A.C. 20/- ea. P.P. $5 /$

25,000 LIFE ELECTROLVTICS (screw terminal). 25,000 u.f. 40 v , ($4 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{in}$.). 20/- ea, P.P. $2 / 6$. | 3,150 u.f. 75 v . $\left(4 \frac{1}{3} \times 2 \frac{1}{2} \mathrm{in}\right.$. $\left(4 \frac{1}{4} \times 1 \frac{1}{2} \mathrm{In}\right.$). $15 / 6$ ea. P.P. $2 / 6$. |
| :--- |
| 15. ea. P.P. $2 / 6$. |

EXECUTIVE "SIXTY" AMPLIFIER. (60 w. r.m.s. into 8 ohm.) British designed and built. True hi-fi performance. Built-in filters to protect speakers. Throe independently mixed inputs. High-Low Impedance. Mic. Crystal-CeramicMagnetic Cartrldge, of aux. equlpment. E55. P.P. 50/-. S.a.e. literature.

TELEPHONE DIALS (New) 20/-'ea.

RELAYS (G.P.O. '3000'). All types. Brand new from 7/6 each. 10 up quotations only. EXTENSION TELEPHONE (Type 706) Black or 2 tone Grey. 65/-. P.P. $5 /-$
UNISELECTORS (Brand now) 25-way 75 ohm .8 bank $\frac{1}{2}$ wipe $65 /$ - 10 bank $\frac{1}{2}$ wipe $75 /$. Other types from $45 /$.

REED RELAYS 4 make $9 / 12 \mathrm{v}$. (1,000 ohm.) 12/6 ea. 2 make 7/6 ea. 1 make 5/-ea. Reed Switches ($1 \frac{3}{4}$ In.) 2/oa. 11 par doz.
SUB-MINIATURE REED RELAYS ($1 \mathrm{in}, \times \frac{1}{4} \mathrm{in}$.). Welght $\frac{1}{6}$ oz. Type 1,960 ohm, $3 / 9 \mathrm{v}$. 1 make. $12 / 6$ ea. Type 2 .
1800 ohm, $3 / 12 \mathrm{v} .1$ make. $15 /$ - ea.

SILICON BRIDGES. 100 P.I.V 1 amp. ($\left(\frac{1}{2} \times \frac{7}{8} \mathrm{in}\right.$.). /6 a
H.T. TRANSFORMERS. Prim. 200/240v. Sec. 300-0-300v. $80 \mathrm{~m} / \mathrm{a}$. 6.3v. C.T. 2a, 6.3v, 2a, 30/- өa, P.P. $7 / 6$. $350-0-350 \mathrm{v}, 60 \mathrm{~m} / \mathrm{a}, 6.3 \mathrm{v} . \mathrm{C}$.T. $2 \mathrm{a}, 20 /-$ e8, P.P, $5 /-$

PATTRICK \& KINNIE I91 LONDON ROAD • ROMFORD • ESSEX
ROMFORD 44473
RM79DD

PACKS OF YOUR OWN CHOICE UP TO THE VALUE OF 10/- WITH ORDERS OVER E4

LOOK! TRANSISTORS ONLY 6d EACH

TYPE A
PNP SILICON ALLOY to-5 CAN
Spec:-
ICER AT VCE $=20$ 1 mA MAX.
These are of the 25300 type which
is a direct equivalent to the

TYPE B

 PNP SILICONplastic encapsulation Spec:-

CER AT VCE $=10 \mathrm{v}$
1 mA MAX.
HFE, 10-200
These are of the 2 N3702/3 and 2N4069/62 range.

ANOTHER SCOOP FOR BI-PRE-PAK

JUST RELEASED FROM STOCK.

```
brand new genuine surolus stocks, marked and
```

guaranteed to full makers specification and not remarked
NE808A Single 8 IVP Nand Gate TTL
NE816A Dual $41 / P$ Nand Gate TTL
NE825A D.C. Clocked J-K Fllp-Flop TL
NE840A Dual 4 I/P Exclusive OR Gate TL
NE855A Dual 4 Power Gate TTL
NE870A Triple 3 I/P Nand TT
NE8816A Quad 2 Nand TLL
$\begin{array}{ll}\text { SP616A } & \text { Dual } 4 \text { Nand Gate DIL } \\ \text { SP631A } & \text { Quad } 21 / P \text { Gate Expander DTL }\end{array}$
$\begin{array}{lll}\text { SP631A } & \text { Quad } 21 / P \text { Gate Expander D } \\ \text { SP670A } & \text { Triple } 3 \text { Nand Gate DTL }\end{array}$
SP670A Tripie 3 Nand Gate DTL
SP808A Single 8 IIP Nand Gate TL
SP816A Dual 4 I/P Nand Gate Tit
SP825A \quad D.C. Clocked J-K Flip-Flop TL
SP840A Dual 4 I/P Exclusive OR Gate TL
SP855A Dual 4 Power Gate TTL
SP870A Triple 3 I/P Nand TTL
SP880A Quad $2 \mathrm{I} / \mathrm{P}$ Nand TLL
NEEOOK Video Amplifier
NE501K Video Amplifler 40 MHz
NE806, Dual $41 / P$ Expander TL
$\begin{array}{ll}\text { NE808J } & \text { Single } 8 \mathrm{I} / \mathrm{P} \text { Nand Gate TTL } \\ \text { NE816J } & \text { Dual I/P Nand Gate TL }\end{array}$
$\begin{array}{ll}\text { NE816J } & \text { Dual IIP Nand Gate TL } \\ \text { NE825J } & \text { D.C. Clocked J-K Flip-Flop TLL }\end{array}$
$\begin{array}{ll}\text { NE825J } & \text { D.C. Clocked J-K Flip-Flop TTL } \\ \text { NE840J } & \text { Dual } 4 \text { I/P Exclusive OR Gate TTL }\end{array}$
NE840J Dual 4 I/P Exclusive OR Gate TTL
NE855J Dual 4 Power Driver TT
NE8BON Quad $2 \mathrm{I} / \mathrm{P}$ Nand TTL
ST620A J-K Flip-Flop DTL
ST659A Dual 48 8uffer/Driver DTL
Suffix: $A=$ DIP 14 lead $\quad K$
K
PNP GERMANIUM
fully marked
AND TESTED.
STATE R.F. OR A.F
WHEN ORDERING. $7 /-$
$17 / 1 /$
$1 / 2$
TIL

Suff $=$ Flat Pack

TYPE E
 TYPE E

PNP GERMANIUM
FULLY MARKED AND TESTED. WHEN ORDERING.

NEW UNMARKED UNTESTED PAKS integrated circuits. data $\begin{array}{lll}878 & 12 & \left.\begin{array}{l}\& \\ \&\end{array}\right) \text { CIRCUITS OF TVPES, } \\ \text { SUPPLED WTH ORDERS }\end{array} \quad 10 /-$

\qquad	B80 8 DUAL TRANS. MATCHED O/P
PARS NPL-SIL INTO- 5 CAN.	OC45. OC810 8 OC81 TRANS. 10% 200 TRANSISTORS. MAKERS REJECTS. NPN-PNP. SIL \&

$\begin{gathered} \text { NEW } \\ \text { B79 } 4 \end{gathered}$	TED \& GUARANTEED 1N4007 Sil. Rec. Diodes. 1.000 P.I. 1 amp. Plastic.	$10 /-$
88110	REED SWITCHES MIXED TYPES LARGE \& SMALL	-
389	5 SP5 LIGHT SENSITIVE CELLS LIGHT RES. 400Ω DARK $1 \mathrm{M} \Omega$	10/-
892	NPN SIL. TRANS. AO6 $=$ BSXZU, $2 \mathrm{~N} 2369,500 \mathrm{MHz}, 360 \mathrm{~mW}$	10/-
в93 5	GET113 TRANS. EQUIV. TO ACY17-21 PNP GERM.	10/-
B96	2N3136 PNP SIL. TRANS. TO- 18 HPE100.300 IC. 600 mA . 200 MHz	10/-
B98 10	XB112 \& XB102 EQUIV. TO AC126 AC156. OC81/2. OC71/2, NKT271. ETC.	10/-
B99 200	CAPACITORS, ELECTROLYTICS, PAPER, SILVER MICA. ETC. POSTAGE ON THIS PAK 2/6.	10/-
250	MIXED RESISTORS POST \& PACKING $2 /$	10/-
H7 40	WIREWOUND RESISTORS MIXED TVPES \& VALUES. POSTAGE $1 / 6$	0/-
н8 4	BY127 Silicon Recs. 1000 P.I.V. 1 amp Plastic. Replaces the By 100	
	OCP71 LIGHT SENSITIVE PHOTOTRANSISTORS	

Return of the unbeatable P. 1 Pak. Now greater value than ever

Full of Short Lead Semiconductors \& Electronic Components, approx. 170. We guarantee at least 30 really high quality factory marked Transistors PNP \& NPN, and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.

Please ask for Pak P.1. Only 10/-
2/- P \& P on this Pak.
Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any 0-1mA meter into a perfectly linear and accurate rev. counter for any car.

20/-each

FREE CATALOGUE AND LISTS

 for: -
ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add $1 /$ - post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

P.O. RELAYS

VARIOUS CONTACTS AND COIL RESISTANCES.
NO INDIVIDUAL SELECTION.
POST \& PACKING 5/-

8 for 20/-

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

ADMIRALTY B. 40 RECEIVERS
 quality 10 valve receiver manufac-
tured by Murphy
Coverage in 5 bands Coverage in 5 bands
650 Kcla 30
Mc / s 1.F. $500 / \mathrm{Kc} / \mathrm{s}$. 1 ln corporates 2 R.F.
and 3 I.F. atagea
and

 ${ }_{\text {But }}^{\text {I.F. }}$ output, etc Bullt-In
output
speaker, output for phones
Operatlon
$150 / 280$

 \&22iliolo carr. $30 / 1$. With clicust digigrams. A80 Ke/s. £17/10/-. Carr. $30 /$
R209 Mk. II COMMUNICATION RECEIVER
 11 valve high
grade coro gradecomo
munleation
recoiver receiver suit
able for trop

 CW/FM opera
tion. Incoror
ties precialo ates precision
vernier
drive B.F.O. Aerlal trimmer, internal speaker and
12v. D.C. internal power supply. Suppled to
gut excelleat condtion, fully fill
usted and chected.

TYPE I3A DOUBLE BEAM
OSCILLOSCOPES BARGAIN an axcellent general purpo D/B озеіlовсоре. T.B. 2 cp $750 \mathrm{Ke} / \mathrm{s}$. Bandwidth $5.5 \mathrm{Mc} / \mathrm{s}$ Senaitivity $33 \mathrm{Mv} / \mathrm{cm}$. Oper ating voltage 0/110/200/250 A.C. Supplled in excellent working condition, £22/10/ Or complete with all acces sories, probe, leads, 1ld, eto. £25. Carriage 30/-

MARCONI CT44 TF956 AF ABSORPTION WATTMETER 220. Carr. 20/-

CLASS D. WAVEMETERS

$0-60$
2%
2

ing 1.78 M Mof. Operation on
on

 Or brand new wht accessoriez
\&7.19.6 Carr. $7 / 6$.
CLASS D WAVEMETERS No. 2 Crybtal controlled. $1.2 \cdot 19 \mathrm{Mels}$. Malins or 12 v . D.C. operation. Complete $w i t h$ callibration charth.
Excellent conditlon $£ 12 / 10 / 0$. Carr. $30 /$..

LELAND MODEL 27 BEAT
FREQUENCY OSCILLATORS
 Carriage 10/-
VOLTAGE STABILISER TRANS FORMERS. 180-260v. input. Output 230v.
Avaliable 100w or 225w. $\varepsilon 18.10 .0$. Carr. 6 . TO- 2 PORTABLE
 MARCONI
TF885 VIDEO OSCILLATORS $0-5$ me/s sine sqпare Wave e45. Carr. 201 -

MARCONI TFI95M BEAT
FREQUENCY OSCILLATORS

Large quantity avallable for EXPORT! Excellent condition. Enquiries Invited

UNR-30 4 BAND

COMMUNICATION RECEIVER Covering $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Incorporates BFO. Built-in speaker and phone jack. Metal cabinet Operation $220 / 240$ v. A.C. Supplied brand new guaranteed with instructions. 13 gns . Carr. 7/6. EDDYSTONE V.H.F. RECEIVERS
770R. 19-165 Mc/a, 8150 .
Both types in excelent a

LAFAYETTE SOLID STATE HA600 RECEIVER
5 BAND AM/CW/SSB AMATEUR AND SHORT WAVE,

 S.A.E. FOR FULL DETALLS.

RUSSIAN CI-16 DOUBLE

 BEAM OSCILLOSCOPE5 mela Pass Band. Separate Y1 and Y2 amplifers. Rectangular 5 in. $\times 4 \mathrm{in}$. C.R.T.

TRIO COMMUNICATION RECEIVER MODEL 9R-59DE

band recelver covering $500 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{k}$, conttruoue and electrical bandgpread on $0-15,20,40$ and 80 metrees
8 valve pluas 7 diode circuit. $4 / 8$ ohme output and phone

 Carriane raid Trio Commanication Type Heasphones Normally 25.19 .6 . Our price
above recelver.

TRIO TS 510 Amateur Transceiver with speaker and mains P.S.U. TRIO JR 500SE 10-80 Metre Amateur Receiver 6180
665

RCA COMMUNICATIONS RECEIVERS AR88D
Latest release by ministry BRAND NEW In ortsinal casee.
 Incorporating crystal Altiter, notioe limiter, vartable BFO,
wariable selectivity, eto. Price 265 . Carr. 2 .

LAFAYETTE PF-60 SOLID STATE VHF

 FM RECEIVERA completely new tranalistorised recelver covering $152-174$
Me/s. Frully tuneable or orratal oontrolled (not supolled) Mc / s. Fully tuneable or oryatal controlled (not supplled)
for fired frequency
operation GBATED CIRCUTSS. Built-1n speaker and Hlluminnted

TELETON MODEL CR-IOT AM/FM STEREO TUNER AMPLIFIER

A new model from Teleton. 81 solld state devices
$4+4$

 Stereo Indicator. Controls: Tuntug. tunction
selector, Tone and $\mathbf{R} \& \mathbf{L}$ volume controls. APC

21/32in.

\qquad

$27 / 6$
 2716 2716 $27 / 6$ $27 / 6$ $27 / 6$ $27 / 6$ $27 / 6$ $27 / 6$ $27 / 6$ $27 / 6$ 271

full range of other sizes if stock-send sae for leaflet

POWER RHEOSTATS

High quallty ceramle construction. Windinge embedded th vitreous enamel. Singie hole fixtng, tin dis. Shafts. Bulk quantities available.

BELCO DA-20 SOLID STATE

New high-quallty. port-
able
inatrument
sine
 ${ }_{20}^{10 \mathrm{~Hz} \text { to } 20 \mathrm{KHz} \mathrm{KZ} \text {. Out- }}$

Ртice $£ 2 \% 10.0$
Салг $6 /$.
MARCONI TF.I42E DISTORTION EArcellent condition. Fully tested $£ 20$

PLESSEY SL 403A
3 -watt integrated amplifer circult

TE-65 VALVE VOLTMETER

$\underset{\substack{\text { High } \\ \text { with } \\ 28 \\ \text { quality } \\ \text { ranges }}}{\text { instrument }}$ with 28 ranges.
D.C.
A.C.
voltes
volts
$1.5-1,5000$
D.
 megohms.
$220 / 240 \mathrm{v}$. A.C. operation Complete. wict operation.
Conde and

 ablef.
$42 / 6$.
COSSOR 1049 DOUBLE BEAM D.c. coupled. Band width 1 Ko/s. Perfect order. £ £25. Carr. $30 /$ SIGNAL GENERATORS

 quaity preialon
instrument made for the Min lotry
by Armee. Frequency coverage
$20-80 \mathrm{Mc} / \mathrm{s} . \mathrm{AM/}$ OW/FM. Incor-
porates precision dial. level meter, precision athenuatorll $V \hat{V} \cdot 100 \mathrm{Mv}$.
 A.C. Size $12 \times 8 \% \mathrm{P}$ Pln. Supplid \ln brand now condition complete with all connectora, fully
Lested f 45 . Carr. $20 /$-t TRANSISTOR FM TUNER

TRANSISTORISED LCR. A.C MEASURING BRIDGE.

1110MFD. 6 Ranges \pm
6
Ranger
\pm
\pm Operated from 9 volts, $100 \mu \mathrm{~A}$. Meter indleation.
Atractive 2 tone metai case. size $71^{\prime \prime} \times 5^{\circ} \times 2^{\circ}$.
£20. P. \& P. 51 -. $0 / 115 / 230 \mathrm{v}$, Ftep up or step down. Fully shrouded ${ }_{300}^{150}$ W. $62 / 6$, P. \& P. $3 / 6$

$\begin{array}{c}300 \\ 500 \mathrm{~W} . \\ 1,000 \mathrm{~W} \\ 1\end{array}$

G. W. SMITH \& Co. (Radio) Ltd. ALSO SEE OPPOSITE PAGE

P. \& P. 7/6. 8.A.E. for details.
PEAK SOUND PRODUCTS
ull range of Amplifers, kits, Bpeakers in stock.

TE22 SINE SQUARE WAVE

AUDIO GENERATORS
8lme: 20 cpH to $200 \mathrm{kc} / \mathrm{s}$. on 4 bande. 8 quare
$\square \quad \begin{aligned} & 20 \text { cpa to } 30 \mathrm{kc} / \\ & \text { Output impedance }\end{aligned}$
 8,000 ohms, $200 /$ 200 F. A. A. opers: ton. suppled brand
new sud
teed $\begin{aligned} & \text { guarans } \\ & \text { tith } \\ & \text { Inatruc- }\end{aligned}$ tion manual and
leads. $\mathbf{2 1 6 . 1 0 . 0 .}$
Camr.

LAFAYETTE TE-46 RESISTANCE

p $1-2.000 \mathrm{mld}$
 Impedance ching ratio insulation.
Brand Now, $217 . \mathbf{C l}^{\text {A. }}$ Brand Now, 217.10
Carr. $7 / 6$.

TY75 AUDIO SIGNAL GENERATOR
$\begin{array}{cccc}\text { Bine Wave } 20 \mathrm{CPS} & -200 \mathrm{Kc} / \mathrm{s} . \\ \text { Aquare } & \text { Wave } 20 & \mathrm{CPF}-30\end{array}$ quare Wave 20 CP8- 30 Ko/s. High and low impedance 6 volts. $220 / 240$ volts A.C. Brand new with instructlong
f16. Carr. $7 / 6$. Aize $210 \times$ $£ 16$. Carr. $^{7 / 6}$.
$150 \times 120 \mathrm{~mm}$.

TE-20D RF SIGNAL GENERATOR

Accurate wide range slg-
nal generahor covering
nal generaw covering $120 \mathrm{Kc} / \mathrm{a}-500 \mathrm{Mc} / \mathrm{on}$
6 bands. Directly cali-
brated. artenuator, aradiole output. Xtan socket for calibra-
tlon. $220 / 240 \mathrm{~V}$. A.C. Brand new with instruco tlons. $£ 15$. Casr. $7 / 6$.
size $140 \pm 215 \times 170 \mathrm{~mm}$.

ADVANCE TEST EQUIPMENT IIB AUDIO SIGNAL GENERATOR 18. A UDIO SIGNAL GENERATOR 15 c/a to $\$ 0 \mathrm{Kc} / \mathrm{s}$. 8 in
or B ohme. s 30.0 .0 .
UM79. UHF MILLIVOLT METER $100 \mathrm{Kc} / \mathrm{s}$ to $3,000 \mathrm{Mc} / \mathrm{A}$. A.O. 10 mV to 3v. D.C.
10 mV . to 3 v . Current 0.01 iA to 0.3 mA . Resistance 1 ohm to 10 megohm. 2125.0.0. TTIS. TRANSISTOR TESTER Pall range of facilities for lesting PNP or NPN Carriage $10 /$ - per Item.
SOLARTRON CD 7IIS2 DOUBLE BEAM OSCILLOSCOPES
d.c. to $9 \mathrm{Mc/g}$. Perfect order. £65. Carr. b0/High quallty 97 range instrurnent which measures A.C. and D.C. Vottage. Current, Resistance and
Pown Ontput Ranges D.C. volts 250 mV -10,000\%. Powar Ontput Range D.C. volts $250 \mathrm{mV}-10,000 \mathrm{~V}$.
$(10$ meg $0-110$ meg input). D.C. current $10 \mu \mathrm{H}-25$
 A.C. current $10 \mu A-20$ amps. Power outpat 80 micro-watts-5 Watts. Operation $0 / 110 / 200 / 250 \mathrm{~V}$.
A.C. Sapplled in perfect condition complete with
circult lead and R.F. SOLID STATE VARIABLE A.C.

VOLTAGE REGULATORS Compact and panel mounting. drlls, electrical sppliances ete. Input 230/250 v. A.C. Output continuously variable from
$20 \mathrm{\nabla} .-230 \mathrm{\nabla}$. Model MR 2305
 88.7.6.
$10 \mathrm{smp} 90 \times 68 \times 60 \mathrm{~mm}$.
91119.8.

GARRARD

 TEAK BASES AMD PERRPPEX COVERS 1000, 84.10.0.
2. Por AP75, SLiv, sL95, e5.19.6.
3. For 8P25 etc. to operitito with lid ln place

SPECIALOFFERS Garrard SP25 fitted Goldrina G800 lint price $£ 32.8$
OUR PRICE fig. 15. 0. Carr. 10/GOLDRING Glastic GL69 fitted Goldring G800 cartridge complote with de luxe base and cover. Total list price ESORR PRICE E39. Carr. 20/-

RTC 249 4TRACK TAPE DECK

Variable Voltage TRANSFORMERS

Brand new, guaranteed and carriage paid.
High quality construction. Input 230 v . $50-60 \mathrm{cycles}$.
High quality construction. Input 230 v. $50-60$ cycles.
Output full variable from $0-260$ volts. Bulk quantities available.

MULTIMETERS for EVERY purpose!

MODEL TE-200 20,000 O.P.V. Mirror acale, overload protec-
tlom. $0 / 5 / 26 / 125 / 1,000$ V.D.C. 0/10/50/250/1,000 V.A.C. 0/50
HA/250 MA. 0/60K/6 meg. $\begin{array}{lll}\mu A / 250 \text { MA. } 0 / 60 \mathrm{~K} / 6 & \text { meg. } \\ 20 & \text { to }+62 \mathrm{db} . & 75 / \mathrm{F}\end{array}$

MODEL TE-300 20,000 O.P.V.
Mirror mane, $\begin{array}{ll}\text { Mirror } \\ \text { scale, overiond pro- } \\ \text { tection } & 0 / 6 / 3 / 15 / 60 / 300 / 1,200\end{array}$ tection
V.D.C. $0 / 6 / 30 / 120 / 600 / 1,200$
v. V.A.C. $0 / 30 \mu \mathrm{~m} / 6 \mathrm{~mA} / 60 \mathrm{~mA} /$
$300 \mathrm{~mA} / 600 \mathrm{~mA} .0 / 8 \mathrm{~K} / 80 \mathrm{~K} /$ $300 \mathrm{~mA} / 600 \mathrm{~mA} .0 / 8 \mathrm{~K} / 80 \mathrm{~K} /$
$800 \mathrm{~K} / 8 \mathrm{meg} .-20$ to +63 db. $80 \mathrm{~K} / 8 \mathrm{meg}$. $-\mathbf{2 0}$.
\&5.19.6. \mathbf{P}.

TE-51 WEW $20,0008 / 1$
VOLT MULTIMETER, with overload protectlon, sud mirror ${ }^{\text {scale, }} 0 / 8 / 60 / 120$.
1.200 v. A.C. $0 / 3 / 30 / 60 / 300 j$ $600 / 3,000 \mathrm{v} . \mathrm{D} . \mathrm{C} .0 / 60 \mu \mathrm{~A} / 12$
1300 m A.D.C. $0 / 60 \mathrm{~K} / 6 \mathrm{meg}$. $1300 \mathrm{~m} \mathrm{A.D.C} .0 / 60 \mathrm{~K} / 6 \mathrm{mes}$
$\mathrm{ohm} .98 / 6$. P. \& P. $2 / 6$.

SAVE UP TO 331\% ON
HI-FI EQUIPMENT
Sond for full discount price list

MODEL TE-70. $30,0000$. P.V. $0 / 3 / 15 / 60 / 300 / 600 / 1,200$
D.C. $0 / 6 / 30 / 120 / 600 / 1,200$ A.C. $0 / 30 \mu \mathrm{~A} / 3 / 30 / 300 \mathrm{~mA}$ 0/16K/160K/1.6M16 Mes 0 . 25/10\%- P. \& P. 3/-.

MODEL TE-12, 20,000 O.P. 7 . 3/0.6/6/30/120/600/1,200j 6001,200 F. A.C. $0 / 60 \mu \mathrm{~A} / 6 /$
$60 / 600 \mathrm{~mA} .0 / 6 \mathrm{~K} / 600 \mathrm{~K} / 8 \mathrm{Mes}$ $60 / 600 \mathrm{~mA} .0 / 6 \mathrm{~K} / 600 \mathrm{~K} / 8 \mathrm{Meg} . \mid$
$60 \mathrm{Meg} . \mathrm{O} .60 \mathrm{PF} . .2 \mathrm{MFD}$ 25/19/6. P. \& P. $3 / 6$.

MODEL PT-34. 1,00 O.P.V.0/10/50/250/ d.e. $0 / 1 / 100 / 500 \mathrm{~mA}$
d.c. $01100 \mathrm{~K} \mathbb{1} 9 / 6$

LAFAYETTE 57 Range Sapar volts $125 \mathrm{mv}-1000 \mathrm{v}$. A.C.
volts $1.6 \mathrm{~F}-1000 \mathrm{p}$ D.C. Cur ront $25 \mu \mathrm{~A}-10 \mathrm{Amp}$. Ohma +81 db . Ovarioad protection
$\mathbf{\$ 1 2 / 1 0 / = , ~ P . ~ \& ~} \quad 3 / 6$.

AVO CTA7IA MULTIMETER Battery operated, fully transistorised. Senaitivity $100 \mathrm{MB} / \mathrm{V}$. Measuren A.C.fD. C , voltages 12 mV . to
$1,200 \mathrm{~V}$. A.C./D.C. current 22 aA to 1.2 Amp . Resistance 12 ohm to 120 ma . m . 1.2 Amp , V. H.F.,
U.H.F. voltage U.H.F. voltage with multphler 4V. to 400 V . ap to $50 \mathrm{Mc} / \mathrm{s}, 40 \mathrm{mV}$. to 4 V . up to $1,000 \mathrm{Mc} / \mathrm{A}$.
Offered in perfect conditlon. 255 each. Carr. $10 /$.

SINCLAIR EQUIPMENT
Project 60. Package Offers $2 \times$ Z30 a Mlifer, stereo 60 pre-nmp, PZZ5 роwer supply, £21.0.0. Carr. 7/6. 2×250 ampllfier, stereo 60 pre-amp, PZ8 power supply.
$£ 21.10 .0$. Car. 76 . Transiormer $4 \mathrm{PZ}, 59 / 8$, Alter unit and e16.0. above a pair of 016 orative All other Ainclair priducts in stock: 2,000 amplle Aer, \&23.0.0. Carr. 7'6. Neoteric smplifer
ECHO HS-606 STEREO
CHO HS-606 STER
HEADPHONES
Wonderfully comp weight. Lightweight adjustable
vinyl headband, 6 tt cable and atereo Jack plug, 25-17,000 срк., 8 D mp . $67 / 6$
B.C. 221 FREQUENCY METERS Latest release $125 \mathrm{KHz}-20 \mathrm{MHz}$. Excellent conith callbrator charts 097100 and complete
$270^{\circ} 500$ MICROAMP METER Incorporated in Radio Altitude Indicator 1D-
14APN. Ideal for rev.counter etc.15/6. P. \& P. 3/HOSIDEN DH-02S STEREO HEADPHONES
 Wonderful value formsnce combined. Adjustable head-
band. 8 ohm tm pedance. $20-12,000$ cps. Complete with plug. ONLY

TRANSISTORISED TWO-WAY TELEPHONE INTERCOM Operative over amazingly long didances. Separate call and
press to talk buttons. 2 wire press to talk buttons. 2 -wire cations. Besutifully fintahed In ebony. Supplied complete with batteries and wall bracke
f8/19/6 pair. P. P. $3 / 6$.

TEIII DECADE RESISTANCE ATTENUATOR

 Variable range 0-111 $10)+(1 \mathrm{db} \times 10)$

ccuracy: 0.05 db : Do to $200 \mathrm{KHZ}(-8 \mathrm{db})$.
 Maximum input less than 4 watt: (D0 volta)
Built in 600 © load resistance with foternal/
 RECORDING HEADS
 Marriott I track head. Pose extr. Record/Playback, high imp.
Erase, low imp.

AMERICAN RECORDING TAPES

 Plrst grade 3 ln. 225 ft . L.P. Acetate $3 / 6$ quality Sla, 600tt. Std. plastic.. $8 / 6$
 $\begin{array}{llll}\text { guaranteed. } & 5 i \mathrm{in} \text {. } 1,800 \mathrm{ft} \text {. D.P. Mylar } & 28 / 6 \\ \text { Dlacounta for } & 5 / \mathrm{in} .2,400 \mathrm{ft} \text {. T.P. Mylar } & 39 / 6\end{array}$

TAPE CASSETTES

Top quallty in plastic library bozes C $90-60 \mathrm{mmin}$. $8 / 6 ; 3$ for $24 / 6$. $12 / 6 ; 3$ for $36 /-. ~$ $0120-120 \mathrm{~min} .15 ;-3$ fo二 $43 / 0$.
Cansette Head Cleaper $11 / 3 \quad$ All Post Extra

ELECTRONIC BROKERS LTD

HIGH GRADE COMPONENTS

DOUBLE AUDIO FADERS

1000 plus 1000 ohms. Each resistive dimmer ie adjustable and independent of dimmer is adjustathe and independent of

 each other. Ex-equipment $\begin{aligned} & \text { but in an } \\ & \text { almost new } \\ & \text { P. \& P. } 7 / 6 \text {. }\end{aligned}$ condition. Price $£ 3 / 19 / 6$.AVO TRANSISTOR
ANALYSER CT 446
A portable direct-reading instrument
capable of giving accerate
transietof measurements in the ground ed emitter
confururaton. Rattery power unit 1.6 V configurntion. Rattery power unit 1.5V

 batteries: 15 lbs. Price .842 .10 .0

MINIRACK MULTICHANNEL
OSCILLOGRAPH. MUR 12
The multichannel necillograph is a 12 ort. oscilloscope with recording facilitites.
The instrument consists of two unite. The instrument consigts of two uniti.
The troiley mounted recording unif comprising 12 errts. with their respectivt contris and a 120 mm . contiruoges feed
cammera. The electronic console containt camera. The electronlo console containt
the appropriate amplifers, time marker, the appropriate amplifers, time marker,
time base, and associated power suppliee, Price and full details on application.
OSCILLOSCOPE CAMERAS
Cossor. Model 1431 and Model 1428. Complete with motor auto tranformer and capacitor unit. Price fil9.10.0 plus carriage. Langham Thompmon 200 Type B. Price E555.0 plus carriage.
 VOLSTATS

GENERATORS

AVO SIGNAL

GENERATOR CT 378 2-225 M Hz in 7 ranges on Funds-
mentals up to 450 MHz on Harmonics. mentals up to 450 M Hz on Harmonics.
Scale cailbration accuracy $\pm 1 \%$.
 1 miero volt variable into 75 ohm. 1 micro volt to $12.5 \mathrm{~m} V$ into Bo ohma
using fixed attentuator pad. Modula. tion facilttes. A/F o/p facility. O/p

OSCILLATORS \& SIGNAL GENERATORS

 I CRYSTAL CONTROLLED OSCLLLATOR STC. 16-LXU-52A Complete with power uupply unit14-LX U-52B....... Price \&85I 104 NEW AUTOMATIC CYCLING OSCLLATOB. ACOS 1. PYE. Range 5 Hz -5 K Hz. Sweep mode $1 \mathrm{Cir} / \mathrm{minn}$. O/p. O-10V. Mains Supply. LOW FREQUENGY DECADE OSCLLLATOR D-638.A Murreisad, Range 0.1 Hz 2.12 K Hz . O/p 0.50V. Malns supply

 I 13 K R.C. OSCHLATOR \& AUTOMATIC FREQUENCY MONTTORSMITHS. Oscillator range $10 \mathrm{~Hz}-100 \mathrm{~K} \mathrm{~Hz}$.
I 130 AUD 10 FREQUENCY
OSCILLATOZ-PYE, Range $20 ~$
Hz.
 I 18 gignal aEnerator cta18. Range $85 \cdot 30 \mathrm{M}$ Price fils Hz . Facilities include cryetal calibrator, modulation...... Price £85
I 15. AUDIO FREQUENCY GENERATOR. Type J2. ADVANCE. Range $15 \mathrm{~Hz}-50 \mathrm{~K} \mathrm{~Hz}$. $0 / \mathrm{p}$. $0-40 \mathrm{~V} . . .1$
 I 79 WOBULATOR GM $2877 / 02$ PHILIIPS...... Price 285 I 79 WOBULATOR GENERATOR CT 410 WAYNE KERR. Frequency. Range. $15 \mathrm{~Hz}-160 \mathrm{M} \mathrm{Hz}$. Timer 0.8 min . Diode Current o.db at FMAA to + 11 ddb at 100 mAA .

 I 105 SIGNAL GENERATOR Mod. 88A TAYLOR. Range $100 \mathrm{~K} \mathrm{Hz-}$
240 MHz . O/p $0-10 \mathrm{~V}$ R.F. O/p and attentuatlon 0 to 80 db in
4 stepe....

MOTORS

HIGH TORQUE INDUCTION MOTOR 3-30 oz/inch. Avallable in the following speeds only 240 V . 50 Hz
i r.p.m., 1 r.p.m., 2 r.p.m. 120 V 50 Hz . 20 r.p.m 30 -each. P. \& P. $3 /-\mathrm{c}$

HIGH PRECISION MAINS MOTOR 3 Phase-I Phase

 $230 \mathrm{~V} 50 \mathrm{~Hz} 1 / 8 \mathrm{~h} . \mathrm{p}$. continuonsly rated.3000 r.p.m, Made by Croydon Engineering. Model KA 60 JFB. Buitable for capitan motor, Size 9 in. long, if in. diameter with. 6 in. diameter flange and
4 fixing holes. $\$ 4 / 10 / 0$ each. P. \& P. $25 /$.

LOW TORQUE HYSTERESIS MOTOR MA 23

 Ideal for ingtrument chart drives. Extremely quiet, useful in areas where ambient noise levels are low. High starting torque enablerelative high jnertis loads to be driven up to 6 -oz/in. Available in

HYSTERESIS REVERSIBLE MOTOR
uncorporating two colls. Each coil when energised will produce opposite rotation of output shatt. 240 V 50 Hz . \& r.p-m. . it r.p.m.,
$1 / 6$ r.p.m., $120 \mathrm{~V} 60 \mathrm{~Hz}, 1 / 10$ r.p.m., $30 /-$ each. P. \& P. $3 /$.

SYNCHRONOUS MOTORS

Model s in r.p.h. and $1 / 60$ r.p.h. Self starting complete with gearing
shaft \ddagger in. dia. $\$ \mathrm{in}$. long, $200 / 250 \mathrm{~V} 50 \mathrm{~Hz}$. New condition Exghaft in in. dia. in. long, 20
Equipment. $40 /-$ P. : P. $3 /$-.

DATA TRANSMISSION-SYNCHROS

	Ope	Mner	orage		rice
Torque Receiver	11TR4a	8perry	\%		
Torque Recelver	ACL		26,12.3	400	
Torgue Receiver	11TR4a	Pullin	90/115v	400	
Control'Transformer	11CT4A	Mulrhead	90 v	440	
Control Transformer	08CT4	Muirhead	26 v	400	
Control Transformer	11CT4a	Sperry	90 v	400	
Control Tranalormer	11CX48	Pullin	26 v	400	
Control'transformer	11CX 4	Ketay	115/90v	400	
Torque Transmitter	AC8/AE	gmith	115/90v	400	
Torque Transmitter	11MD3	Muirhead	26 v	400	
Torque Transmitter	15M1B1	Muirhead	115		

A.C. MOTOR GENERATOR

Type 01005 Motor 8 geec. 6000 r.p.m. Torque $25 \mathrm{gm} / \mathrm{em}$. Control Ref. Winding $26 \mathrm{v} ., 400 \mathrm{~Hz}$. O/PO $4 \mathrm{v} / 1000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Length 2 in ., dia. 1 in . Price £ $\% / 10 / 0$ p. \& p. $0 /-$
D.C. TACHOGENERATOR haft dia 3116 in., $3 / 8 \mathrm{in}$. long. Price £16/10/0.

SYNCMRONOUS MOTOR WITH GEARBOX Motor 11 M 83 gearbox type 11 H 21 . This unit is an 8000 r.p. \mathbf{m}. 115 v .,
 9.92/1. Not
diameter.

RAGONOT MOTOR

RPM. P-phase 50Es 1/20 HP, 1500 DPM. Precision Ex-COMPUTER TAPE
DRIVES. Rotor moves If in axially on "Switch on" to take up drive and on "Switch off" is spring returned
todlsengagedrive. $45 /$-ench. P. \& P.10/*

FRACMO

EVERSHED \& VIGNOLES
SPLIT FIELD SERVO MOTOR

MEASURING INSTRUMENTS
 AND RECORDERS

PORTABLE AC/DC

PEN RECORDER
A most versatlle pen recorder. Produces a trace on a cuirvi-linear 3i fin. strip chart. Two speeds 1 in. and 6 in . /hr limits the current when it exceeds the high and/or low preset values. Range - 1MA D.C. Meter Resistance 400 800 at $50 \mathrm{Mz} ;-10$ Aeter Resistanc 1800 at $50 \mathrm{~Hz} ;-10$ to +5 dB into 1 in. and 6 in./hr, Chart whdth: 31 in curvi-linear. Power supply: 230 y
50 Hz drting Synchronous Motor 50 Hz driving synchronous Motor.
Price: \quad \& 52.10 .0 . \quad.

49-53 PANCRAS ROAD, LONDON, N.W.I. Tel: 01-837 7781/2. Cables: SELELECTRO

POTENTIOMETRIC 6 POINT
STRIP CHART RECORDER BRAND NEW

SERVORITER Model FWS

METERS

A.C.-D.C. CONVERTERS TYPE 2140/AI-BI and 2140/A3-B3
A fexible modulor system for use with a DVM for accurate mean
(RMS) or
true (RMs) Voltage measurements Modute

 £150.
DIGITAL VOLTMETERS
Type LM902-2.4digit $\frac{\Sigma 75}{}$. LM902-2R. 4 digit E75. LM1010. 4 dig fi E75. All the above units have been callbrated.
DM2006. $\Delta \mathrm{A}$ a all solld state $D . V . \mathrm{M}$. having a wide application.

 10 micro volts to 1.1 LV V . $1 / P \mathrm{Z}$ greater than 25000 Megohms DM2001. Bcale 19995 DC. Accuracy 0.025% FBD. DC RANGE 50 microvolt to $2 \mathrm{KV} 1 / \mathrm{P}$ impedance greater than $10,000 \mathrm{M}$ ohm Parallel BCD Output or Decimal (not isolated). Price £235.

MICOVAC ELECTRONIC TEST METER

By E.I. Ltt. MOdel 22 B this is a precision portabe ingerument
with a wide range of facilities. D.C. volts. $0.2 .4,4,8,24,48,240,480$

 Probe fncreases range from 10 K Hz-200 M Hz . Resitatance Ranges
$0-1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{M}$ ohm and 10 M ohms. Fitted with malns $0-1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{M}$ ohm and 10 M ohms. Fitted with mains
P. K . U , adaptor. Metal case. Price $£ 40$. Carringe extra.

I 90 VALVE VOLTMETER Type 6 Marconi. Range 0.150 V
Mains operated................................icice 55.10

I 43
0.00001 VERNTER . STandard Cell voltage election.

 I 508 FLUX METER Type 15A/AP. T.L.G. ELECTRIC. Range I 504'VERNIER POTENTIOMETER. Type 4363. A. TINSLEY. Accuracy x. $00001 .$. Price $£ 75$ I 513 WATTMETER. S 67. SANGAMO WESTON. Range $0.15 W$: I 117 WIDEBAND MILLIVOLTMETER. TF. 1371 MARCONI. Range $3 \mathrm{mV}-300 \mathrm{mV}$: - 10 to +3 dB , complete with probe. Flat response $30 \mathrm{~Hz}-30 \mathrm{M} \mathrm{Hz}$. Reading in mVa, dB......... Price £20 I 181 PORTABLE POTENTIOMETER. Type L192828 CAMBRIDGE. I 128 POTENTIOMETZR \& GALVO. Type P.3.-CROYDON PRE-
CLISION. Accuracy .0001 Vice \&35 I23 SLTDE WIRE POTENTIOMETER. CAMBRIDGE. Voltag I 123 SLIDE WIRE POTENTIOMETER. CAMBRIDGE. Voltage range
$\mathbf{0 - 1 . 7 V}$ in 18 steps...ice $£ 35$ I 132 DECADE INDUCTOMETER. Type 230A. DAWE. Range
1 micro E to 100 mH . $\ln 40$ steps................. Price £25 1114 MILLIVOLTMETER. Type 264. AIRMEC. Range 0 -300 mV. I 111 VALVE VOLTMETER. Type 712. AIBMEC. Range A.C. 118 ABSOPRTIO 4 Powe
 I 112 STANDARD FREQUENCY CHANGER. Typ 203. ARIMEC Range Volts $00-2.0 \mathrm{~V}$. Filters $100 \mathrm{~K} \mathrm{~Hz}: 500 \mathrm{~K} \mathrm{~Hz}: 1.1 \mathrm{M} \mathrm{Hz}$. Freq I 94 DYfometer. Type 3206. THSLETPrice £45 I 95 A.C./D.C. VOLTMETER Mod. 32. TURNER. Range Voltage Price $£ 15$ I 98 PHASE METER. Type K150. SOUTHERN INST. 0-100 0° with invert snd direct switching............................. Price $£ 35$
 I 66 MTCROAMMETER. CA 138 . Range $0-60$ microA. Price £10 I 81 FREQUENCY METER 1176-A. GENERAL CAMBRIDGE
RADIO. Range 200 Hz -60 KHz. Input $25-150 \mathrm{~V}$............ Price $£ 30$ I 80 A.C.ID.C. VOLTMETER, s72.16. SANGAMO WESTON. Range
Voltage $0-300$ V..ice $£ 20.10$ I 69 FREQUENCY METER. ENGLISH ELECTRIC. Range 380.
410 Hz Input Voltage. 115 and 208V......................ice \&5 172 TUNING FORE FREQ. METER. 4 volts. 2Ts. 3877. SMITHS. Price 225 151 MILLIAMMETER. CAMBRIDGE. Range $0-200 \mathrm{~mA}$. Freq. error I 519 Precision phasemeter. Model gol-maxson. Facilitien include, phase lag, phase lead; fne, medium and coarse reference;
balance and multiplier; metera. Price \&85 I 8 DYNAMOMETER. M.I.P. Voltage range $0- \pm 4 \mathrm{~V}: 0-200 \mathrm{~V}$. 51 mirror scale. F8D 220 V it 400 Hz in wonden case with carrying
handle. ..ice $£ 35$ 112 \& \& Q METER. Type 299 XTE. SMITH. Reterence and quadrature reading, also readings in radians: 0 -360 0° head/lag phase

FENLOW LOW FREQUENCY ANALYSER 0.3 Hz to 1 K Hz . Power density $0-10$. Band width switching range

EVERSHED \& VIGNOLES
2 Channel MkI Pen recorder. F.8.D. $\pm 10 \mathrm{mV}$. Theee lnstruments were originally designed for testing synchros, but can be modified
to producec a ontinuous 3 channel moving coll recorder. Price $£ 22.10$ producec a ontinuous 3 channel moving coll recorder. Price £22.10

INKWELL OPERATION
20 and 40 channel Multipen (Projecting Pattern) Recorder. Driven from a 24V magnet pens. Voltage range $6-125 \mathrm{~V}$.
Price 865. magnet pen
Price $£ 65$.

VIBRATION EQUIPMENT Goodmans Vibration Control Amplifter E501.
Goodmans Vibration Phase Shifter. \mathbf{E} E66... Price $£ 65$
Price 889 Price 888
Price 559.10 Goodmans Power Oscllator 5V.A. Savage Acceleration Control Unit. sGci. 12Hziok Hz. Input
 Pye ling. Power Amplifier. $50 \mathrm{~V} . \mathrm{A}$.
ENVIRONMENTAL TEST GEAR
Thermostaticalty controlled ovens by GALLENKAMP, Mains supply 250V 50 Hz.. . Price 245 IMHOF CABINETS
Various sizes available, ranging in price from £18.10.
AUTOMATIC CRYSTAL THICKNESS SORTING MACHINE
.Price $£ 490$
Price £250

PLATINUM RESISTANCE THERMOMETER PROBES
SOLARTRON Type NT $1198 / \mathrm{c}$ and NT 1687 . Accuracy $\pm 1^{\circ} \mathrm{C}$. Prober in stainlesssteel case. $i^{i n}$. diameter. Temp. range $\mathrm{NT} 1198 / \mathrm{C}-50^{\circ} \mathrm{C}$ to $+250^{\circ}$ C. Price $£ 12.10$ each. p. \& p. $3 / 6$.

BOURNS KNOB POT

New 10-turn preciaion potentiometers
consisting of potentiometer, knob and readout dial in one extremely compact assembly. A very attractive undt finished in black plastic with white dial.
Available in $100 \mathrm{~K}, 20 \mathrm{~K}, 5 \mathrm{~K}, 1 \mathrm{~K}$. 1 W . Available in 100K, $20 \mathrm{~K}, 5 \mathrm{~K}, 1 \mathrm{~K} .11 \mathrm{~W}$.
Resistadce tolerance 5% Accuracy correlation of dial reading to $0 / \mathrm{P} 0.5 \%$. Weight 0.6 oz., overall length $111 / 16$ in.,

NUMICATORS

Cold cathode gas-filled, tn-line 0-9 digital display tuber. Long life

MERCURY WÉTTED

RELAYS
Type HG4B1007 relay is capable
of an operating time as ahort as 5 milliof an opersting time as short as 5 milli-
seronds. A BILLION OPERATIONS। Small chassis space required. Convenient mounting. Environment-free.
Tamper-proof. High sensittvity.

Type	Coil Resistamce	Coutrn Rating	Cuntaet
HG2B 1004	5000 ohm	5 am	2 PDT
HG2b 1006	1300 ohm	5 amp.	$2 \mathrm{PD}{ }^{\text {T }}$
HG2b 1010	1300 ohm	5 mmp .	2 PD
HG4B 1005	1300 ohm	5 amp.	PD
HG4B 1 107	1300 ohm	5	
	-equip. £1/2	P	

PHOTOMULTIPLIER VMPII/44 (CV 2317) by 20th Century Electronics
aing volts for $10 \mathrm{~A} / \mathrm{L} 1100$ volte E.M.I. 6097 and $20 t h$ Century CV 2317 £9/10/0. P. \& P. $\wp /-$

ANIMAL SONARAY
Type 1803B by Dawes
An lnstrument for maesauring the thickness of fat on an animal by the use of
ultrasoulcsusing the pulse echo principul. The animal sonary was specifically denigned for the measure of back fat thickness for use under field conditions.
Fully portable weighing only 26 lb. Fully portable weighing only 26 .
With handbook, price: $£ 149 / 10 / 0$.

CRYSTAL OVENS

Redifon Fitted Bi-Metal strip $75^{\circ} \mathrm{C}$
 P. \& P. $2 / 6$.
TYpe 4260 EDN"A" $12 \mathrm{~V} / 24 \mathrm{~V}$ AC/DC. Type 4260 EDN"A" $12 \mathrm{~V} / 24 \mathrm{~V}$ AC/DC.
Price $\{4 / 10 / 0$. Marconi Type F 3006-01
£12/10/0. P. \& P. 2/6.

VARIABLE VOLTAGE TRANSFORMERS Various types available, tncluding single- and three-phase manual or mowe driv
and dellivery.

SYNCHRONOUS

CHOPPERS

Base R-9. Coll $6.3 \nabla, 50-60 \mathrm{~Hz}$. Propor-
thon of time contacts are olosed 45%. Also available 100 Hz and 400 Hz . Price

NEW COMPLETE TELE PHONE DIAL ASSEMBLIES Clear Perspex disls-mo markings.
$20 /-$ each. P. \& P. $5 /$. LINEAR THYRISTER CON600w. module. Ideally suitable for phw. module. Ideally suitable for mount into standard soc
Our price $58 / 8$. P. \& P. $3 /-$ -

AUTOMATIC CRYSTAL
THICKNESS SORTING
MACHINE Fulty automatic dice gauging and sorting system, eliminatea all manual operations. This lnstrument is of
extreme interest to manufacturers of semiextreme interest to manufacturers of semi-
conductors. It is offered in good condition at a quarter of its original list price. It is suitable for the sorting of germanium and
silicon dices. The unit can sort up to 2,400 sillicon dices. The unit can sort up to 2.400
pieces an hour. Our price $\mathbf{£ 4 5 0}$. Further information available on request. Complete with manual and spares.

All orders accepted subject to our trading conditions a copy of which may be inspected at our premises during trading tion through the post.

 Noto: By using the intormediate taps many
voltages can be obtained.
Example: No. No. N-1.17-17-25-33-10-50v. temple No:

240v.-l1 10 v . or AUTO TRANSFORMERS Completely Shrouded fited with
Two-pin American Socketz or terminal blocks. please Type which \qquad $\begin{array}{ccc}\text { Price } & \\ 61 & 19 & 6 \\ 62 & 12 & 6 \\ 63 & 12 & 6 \\ 65 & 2 & 6 \\ 67 & 2 & 6 \\ 69 & 15 & 8 \\ 614 & 15 & 0 \\ 17 & 17 & 6\end{array}$
-Completely enclosed in beautifully finished metal case fitted with two 2-pin American sockets, neon indicator, on/off switch,
HEAVY DUTY L.T. TRANSFORMERS
 Pri. $220-240 \mathrm{v}$. Sec. rapped 14-152-28-31v. 20a. Open type
tabie table top connections. 112.10 .0 carr. $15 / \mathrm{F}$.

 minal connections. Size $9 \times 71 \times 7$ ins. Weight 65 lbs

Sameson's
 (ELECTRONICs) LTD.

9 \& 10 CHAPEL ST., LONDON, N.W.I $01-723-7851$

01-262-512

A.C. 220-240v. SHADED POLE MOTORS

 1,500 r.p.m. Double spindle. Length 0.9 in. and 0.6 in .
LONDEX PLUGIIN RELAYS

Sealed type, 28v. D.C. Three heavy duty silver contacts Size $2 \times 2 \times 1$ in. Complete with base. 8/6. P. \& P. 2/-

W.D. TELEPHONE CABLE

Single D.3. One-third of a mile drums. Ideal for outside tele phone systems. Fraction of maker's price. 57/6. Carriage $10 /$

SMITH'S SYNCHRONOUS MOTORS A.C. 200-240v. I R.P.M. 3in. dia. Length of spindle in 22/6. P. \& P. $2 / 6$.
G.P.O. L.T. SUPPLY UNIT

Type 19. A.C. input, tapped 200-250v., $100-120 \mathrm{~V}$. D.C. output, 12 or 24 volts, very conservatively rated at 3 amps. Can be connected to give 12 volts ${ }^{6}$ amps. Buile into strong metal
case size $19 \times 7 \times 64$ ins. With fitted fuses. On/off switch.

ZENITH DOUBLE-WOUND VARIABLE

Input 240 v ., output $0-80 \mathrm{v}$., 15 amps or $0-40 \mathrm{v}$. 30 zmps . Opentype slider control. siz
E17.10.0. Carriage 25 -.

OIL-FILLED BLOCK CAPACITORS

T.C.C. 8 mfd. 2500 v , $\mathbf{w k g}$ at $70^{\circ} \mathrm{C}$. $37 / 6$, P. \& P. B/6. 0.5 mfd 10.000 v , wkg. at $70^{\circ} \mathrm{C}$. $37 / 6$, P. \& P. 8/6. Dubilier 4 mfd. 2500 v .
 $25 /-$, P. \& P. 716. 0.25 mid . 7500 v . wkg. 1760 M . \& P. $4 /$ 2/. 4 mid, 600 v . wkg. Tubular s-hole fixing. $6 / 6$ P. \& P, $21-$ 21.. 4 mid. 600 V . Wkg. Tubular S-hole fixing. 616 , P. \& P. 2%. $60^{\circ} \mathrm{C}$. $12 / 6$, P. \& P. $2 / 6.0 .1 \mathrm{mfd}$. Bo00v, wkg. at $60^{\circ} \mathrm{C}$. $10 / 6$,
 $0.05 \mathrm{mid} .10,000 \mathrm{v}$, wkg. at $60^{\circ} \mathrm{C}$. 8/8, P. \& P. 2/-.

AMERICAN WILLARD MINIATURE LEAD ACID ACCUMULATORS. 6 v . $1.2 \mathrm{a} . \mathrm{h}$. Size $\frac{7}{8} \times 1 \% \times 4$

Abstract

SPECIAL OFFER OF PARMEKO EPTUNE SERIES TRANSFORMER NEPTUNE SERIES TRANSFORMERS

GARDNERS HT TRANSFORMERS

 ec. tapped $350-360-370-380-390-400 \mathrm{v}, 350 \mathrm{~m} / \mathrm{a}$. 15 v .2 a

 Sec. 63v. 1.6a. 24v, 0.8a. ${ }^{6.3 \mathrm{r}}$, la. Open type. Table top

 600 watts auto tapped 200-210-220-230-240-250v. Open

H.T. TRANSFORMERS

Parmeko Neptune. Pri. $115-230 \mathrm{v}$. Sec. $2000 \mathrm{v} .5 \mathrm{~m} / \mathrm{z}$

PARMEKO C CORE TRANSFORMERS
$\begin{aligned} & \text { Pri. tapped } 110-200-240 \mathrm{v} \text {. Sec. } 1250 \mathrm{v} \text {. } 197 \mathrm{~m} / \mathrm{a} \text {. } \mathrm{Sec} \text {. } 2 \\ & 161 \mathrm{v} .110 \mathrm{~m} / \mathrm{a} \text {. } \mathrm{Sec} .3152 \mathrm{v}, 76 \mathrm{~m} / \mathrm{a} \text {. Sec. } 4124 \mathrm{v}, 25 \mathrm{~m} / \mathrm{a}\end{aligned}$
$\begin{aligned} & \text { Table top connections. Size } 5 \times 4 \times 4 \text { ins. Brand new } \\ & \text { boxed. } 35 /=\text { P. \& P. } 7 / 6 \text {. Special prices for qtys. }\end{aligned}$

ADVANCE C/V TRANSFORMERS Type CV $15 / 95$. Input $95-130 \mathrm{van}$ 190-260v. Output 4%
or - 1%. 3 watts. Open frame type. 25/-, P. \& P. 5%. Type MTI40. Input $190-260 \mathrm{v}$. Output 230v. 150 w . \&5.15.0. Type 500. Input $190-260 \mathrm{v}$. Output 240v. 500 watts. $\mathbb{C} 12.10 .0$
Carr. 15/\%.

Khiver for Components

SILICON TRANSISTORS FOR HIGH QUALITY EQUIPMENT

BC107	3/3	BD123	24/3	TIP32A	23/-	2N3055	15/9
BC108	3/-	BDYzo	24/3	TIS44	1/9	2N3702	3/3
BC109	3/3	BF184	7/6	TIS49	2/6	2N3703	3/3
BC158	7/6	BF194	7/-	TIS50	$3 / 9$	2N3704	3/9
BCli82L	3/-	BFX29	9/6	2N696	4/6	2N3705	3/4
BC183L	2/5	BFX84	6/8	2N697	5/-	2N3707	3/9
BC184L	3/-	BFX85	8/8	2N706	3/.	2N3708	2/5
BC212L	3/9	BFY50	4/6	2N1132	10/9	2N3819	7/9
BC213L	3/9	BFY51	4/2	2N2906	13/.	2N3820	15/9
BC214L	$4 /$	BFY52	5/.	2N2924	4/4	2N3826	5/11
BCY70	4/9	BSY95A	3/9	2N2925	5/3	2N4058	4/6
8 cr 71	8/6	MJ481	27/-	2N2926	2/6	2N4059	3/6
8cr72	4/0	MJ491	29/6	2N3053	6/8	2N5457	9/9
BD121	17/3	TIP31A	17/				

1 WATT AMPLIFIER MODULE TYPE PCM1

This amplifier unit is a printed circuit module incorporating the popular and well-tried PA234 i.c. amplifier. The unit is a complete AUDIO AMPLIFIER and requires no external components. you simply connect an 18 -volt power supply and a 15 or 16 -ohm speaker or The overall dimensions, including capacitors are 2 l" $^{\times} \times 3^{\prime \prime} \times$ s." $^{\text {Th }}$ at 1 kHz is typically 300 mV into 100 k 'ohms.
This unit is available at only $36 /$ net complete with descriptive leaflet or $70 /$ net per pair Send for free leaflet.

ELECTRONIC COMPONENTS IN THE WEST MIDLANDS

A wide range of components are available from stock for CALLERS. including the following: RESISTORS (includes 5% t watt. High stabs at only 2 d each in $100+$ quantities of MIXED CAPACITO
CAPACITORS fincludes Polyesters, polystyrene, metallised film. miniature electrolytics.

WE ARE AN INTERNATIONAL RECTIFIER SEMICONDUCTOR CENTRE
Mall order, $1 / 6 \mathrm{p} . \mathrm{E}$ p. per order Intand. Overseas at cost, min. 10/-. Open 9.00 a .m. tu 12.50 p.m.. 2.00 p.m. to 5.00 p.m. weekdays, 9.00 a.m. 1012.50 p.m. Satutdays, silver micas). SEMICONDUCTORS lincludes integrated circuits. transistors, diodes. rectifiers). PLUS ALL the usual components such as plugs and sockets, pots. Veroboard, etc:

TECHNICAL TRAINING in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEW self-build radio courses

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meterall under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept. 222, Intertext House, Stewarts Road, London, S.W. 8 Please send me the ICS prospectus-free and without obligation. (state Subject or Exam.)

R.S.T. VALVE MAIL ORDER CO.
BLACKWOOD HALL, 16A WELLFIELD ROAD STREATHAM, S.W. 16

col
jo
OV
CV
CV1
CV1

CV OV CV

EBE

Z 5

OD
OD
CV
CV

,

BEB

 $\begin{array}{ll}\text { PL82 } & 8 / 6 \\ \text { PL84 } & 76\end{array}$
 $71-$
291
291
$18 / 6$
$151-$

XH8/100

$5 /-$
$6 /-$
$6 /-$

SERVICE TRADING CO

INPUT 230 v. A.C. 50/60 OUTPUT VARIABLE 0/260 v. A.C. BRAND NEW. Keenest prices in the country. All types (and spares) from to 50 amp. available from stock. $0-2$
$0-2$
$0-2$ $0-260 \mathrm{v}$. at 2.5 amps. 260 v. at 5 amps.
$0-260$ v. at 8 amps. 6510
6615 $0-260 \mathrm{v}$. at 10 amps. ... $\subset 1410$ $0-260 \mathrm{v}$. at 12 amps . $0-260 \mathrm{v}$ at 20 amps . a-260v 37.5 mps 0260 v . at 37.5 amps 20 Different types available for

I AMP

 immediate delivery.OPEN TYPE (Panel mounting). $\frac{1}{2}$ amp. C3.18.6

RING TRANSFORMER

Functional Versatile Educational This multi-purpose Auto Transformer, with
large centre aperture, can be used as a bouble Wound current Transformer, Auto Tr ansformer.
 H.T. or L.T. Transformer, by simply hand windE.g. Using the RT. 100 V.A. Model the output could be wound to give 8 VV . (@) $12 \neq \mathrm{Amp}$. 4 V . (3) 25 Amp . or 2 V . (9) 50 Amp ., etc.
Price: RT, 100 VA 3.18 turns per volt. C2 $50+3 / 6 \mathrm{p}$. and p . $\left.\begin{array}{lllll}\text { RT. } 300 \mathrm{VA} & 2.27 & \text { turns per volt. } & C 2 & 5 \\ 0\end{array}\right)+3 / 6 \mathrm{p}$. and p .
L.T. TRANSFORMERS

All primaries $220-240$ volts

Type No. Sec. Taps

$30,32,34,36$ v. at 5 amps.
$30,40,50 \mathrm{v}$. at 5 amps .
$6,12 \mathrm{v}$. at 20 amps.
$17,18,20 \mathrm{v}$. at 20 amps . 24 v as 10 amps. 9 4.6.24.32 v. at 12 amps
ps.

oslake and Carriage shown below are inland only. For uЈsklua. Whe dia not yusablun. Ne do not
lasue a catatogue or list.

INSULATED TERMINALS Available in black, red, white, ellow, blue and green. New POWER RHEOSTATS
(NEW) Ceramic construction, windEnamel, heavy due or continuous duty. AVAILABLE FROM STOCK IN THE FOLLOWING II VALUES 100 WATT 1 ohm loa., 5 ohm 4.7a., 10 ohm 3a., 25 ohm 2a., 50 ohm l.4a., 100 ohm la., 250 ohm $7 \mathrm{a} ., 500$ ohm $\cdot 45 \mathrm{a}$., 1 lk ohm 280 mA ., 1.5 k ohm 230 mA . $2 \cdot 5 \mathrm{k}$ ohm 2 ia ., 5 k ohm 140 mA ., Diameter 3 tin . Shaft length 1 in . dia. $\frac{10 \mathrm{Kin} \text { in. 27/6. P. \& P. I/6. }}{50} \mathrm{~W}$. 50 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{~K} / 1 \cdot 5 \mathrm{~K} / 2 \cdot 5 \mathrm{~K}$ 5 ohm . All at 21/-, P. \& P. $1 / 6$.
25 WATT $10 / 25 / 50 / 100 / 250 / 500 / 1$
Sill Iack Sllver Skirted
Black Silver Skirted knob calibrated in Nos. 1-9.11
in. dia. brass bush. Ideal for above Rheostats, $3 / 6$ each.
RECHARGEABLE NICKEL
CAD. BUTTON CELLS.
2×1.2. $250 \mathrm{MA} / \mathrm{HR}$ Nickel Cad. Cells,
connected to give 2.4 Vat 25 milliamp/10 hour
nuse complete with $200 / 250$
units for KI post paid.
MOTOROLA MACII/6 PLASTIC TRIAC 400 PIV 8 AMP
Now avallable EX STOCK supplied complete with full data and applications sheet. Price $21 /$ - plus $1 / 6$ P. \& P.
T.M.C. ILLUMINATED

LATCHING PUSH BUTTON
KEY SWITCH No. S525594 LOCK $4 \mathrm{c} / \mathrm{o}$

Complefe with mounting
bracket, PushKnob and Lenses

-stafe colour preference). PRICE 14/6 each excluding bulb, Post Paid. Discount for quantifles of 200 or over.

incorporates mains transformer rectifier and specia relay with 2×5 amp. m
LIGHT SOURCE AND PHOTO CEL
 Precision MOUNTING with adiustabineered light source $+1,=5=\pi$ with adjustable lens assembly and $12=$ MBC bulb. Separate photo cell mounting assembly for ORP. 12 or similar cell with optic window. Both units are single hole fixing. Price per pair $£ 2 / 15 / 0$ plus $3 / 6$ P. \& P.
'AVO' MODEL 48A
Ex-Admiralty in good condition with instrus tions, leads, plus D.C. Shunts for 120 Amp. and
480 Amp . A.C. Transformer for 60 Amp. and 240 Amp. Multiplier for 3600 volt. Complete outfit in fitted case $\mathbf{8 1 5 / 0 / 0 , ~ P . ~ \& ~ P . ~ I O / ~}$
SOLID STATEINTERVAL TIMER 24-30v. D.C. operation. Stabilised uni-junction Timer and S.C.R. (30v. Amp.), encapsulated in metal
core. Timing interval adjustable from a fraction of a second to several minutes by means of externa resistor or pot. By adding a 24 v . Relay many other complex timing Functions are possible. Price: $16 / 6$ incl. circuit, p. \& p. 2/6. Suitable relay 9/6. P. \& P. $1 / 6$.
A.C. CONTACTOR

2 make and 2 break (or $2 \mathrm{c} / \mathrm{o}$) 15 amp . contacts. $\quad 2.30 / 240 \mathrm{~V}$. A.C. operation Brand new. $22 / 6$ plus $1 /-$ P. \& P. INS ULATION TESTERS (NEW) Test to I.E.E. Spec. Rugged metal construction, suitable for bench or field work, W. 8 in H.6in weight 61 b 500 VOLTS, 500 megohms $£ 28$ carriage paid. 1.000 vOLTS, 1000 megohms,

MINIATURE UNISELECTOR 3 banks of 11 positions, plus homing bank. 40 ohm coil.
$24-36 \mathrm{v}$. D.C. removed from equip. Carefully removed from equipment and

UNISELECTOR SWITCHES NEW 4 BANK 25 WAY FULL WIPER 25 ohm coil, 24 V . D.C. op
65.17 .6 , plus $2 / 6 \mathrm{P} . \&$ P
6 BANK 25 WAY FULL
WIPER 25 ohm coil, 24 v. D. aperation. C6.10.0, plus $2 / 6$ P. \& P.
8-BANK 25-WAY FULL WIPER
24 v. D.C. operation; C7.12.6, plus 4/- P. \&

RELAYS

NEW SIEMENS PLESSEY, etc MINIATURE RELAYS AT A HIGHLY COMPETITIVE PRICE.

COIL		
	D.C. VOLT CONTACTS	PRICE
52	6-9 6M	12/6
170	9-12 c/oH.D.	$14 / 6$
170	$9-123 \mathrm{c} / \mathrm{o}+1 \mathrm{H.D} . \mathrm{c} / \mathrm{o}$	(0 12/6
230	6-12 $2 \mathrm{c} / \mathrm{o}$	12/6
280	6-12 $2 \mathrm{c} / 0 \mathrm{incl}$. base	14/6
700	16-24 4M 28 incl. base	12/6
1250	36-45 6M	12/6
2500	36-45 6M	12/6
5800	80-85 $4 \mathrm{c} / \mathrm{o}$	$12 / 6$
9000	40-70 $2 \mathrm{c} / \mathrm{l}$ incl. base	10/=
	H.D. = Heavy Duty	POST PAID

MINIATURE RELAYS

9- 12 vole D.C. operation. 2 c/o 500 M.A. contacts
Size only lin. $x+\frac{1}{2}$ in. Price $11 / 6$ Post paid.
3.200 h m coil. Size only $i x \frac{1}{10} x+\frac{4}{2}$ in. $8 / 6$ post
3.200 ohm coil. Size only $1 \times \frac{4}{18} \times+\frac{1}{2} \mathrm{in} .8 / 6$ post paid.

SPECIAL OFFER

400 ohm coil. NEW.
TYPE A.G.C. IM IB I2V. A.C. 3 amp contacts.
 amp contacts. 18/6, inel. base. Pose Paid.

230 v. A.C. SOLENOID. Heavy duty type. Approx 316. pull. $17 / 6$ plus $2 / 6$ P. \& P. 12 Vo D. 50 v . D.C. SOLENOID. Approx. 11 b . pull. $10 / 6$, P. \& P. $1 / 6$ 2lb. pull. $12 / 6$ P. \& P. 1/6. Approx.

NEW MODEL

HIGH FREQUENCY TRANSISTORISED MORSE OSCILLATOR Adjustable cone control. Fitted with moving coil speaker, morse key. $45 /$ plus $3 / 6 \mathrm{~d}$. p. \& p.
 MORSE KEY
7 adjustments, precision
10 w.p.m peed adjustable Weight $2 \frac{1}{2} 1$

PARVALUX TYPE SDI9 230/250 VOLT ac reversible

GEARED MOTORS

30 r.p.m. 40 Ib. ins. Position
rive spindle adjustable to 3^{3}
different angles. Mounted on
base. Ex-equipment. Tested and in first-class running order. A really powerful motor offered at a fraction of maker's price. 6 gns . P. \& P. $10 /$ SANGAMO WESTON SYNCHRONOUS GEARED MOTOR Ne
Revper hour. 12 \&
each, p. \& p. $2 / 6$.

1 r.p.m. nonsyncronous $17 / 6+2 / 6$ P. \& P

$2 \overline{230 / 240 V} \overline{10} \overline{R P M}$ MOTOR

(Non Reversible)

 Extremely powerful. Continuously rated. Offered at theBURGESS MICRO SWITCH
Lever operated contacts.
Price 4/- plus 9d. P. \& P. 10 in
maker's carton. $35 /$ post paid.

SERVICE TRADING CO.

ETHER-ELECTROMETHODS LOW INERTIA INTE.
GRATING MOTORS 100 PF sensitivity tpr/20 p.s.1. 4S/- post paid FULL TRACK (${ }^{30}$ " TAPE) ERASE, RECORD REPLAY HEADS set of 375% (post paid). SINE-COSINE POTENTIOMETERS Types SCPI, SCP4, SCP5, CLR96, CLR66 in stock.
. Wide range available at attractive
TRANSFORMERS $220 / 110 \mathrm{y}$ Hz SOVA Double wound Redeliffe. In steel case $55 /-$ (post paid).
CLASS D WAVEMETERS No. $21.2-19 \mathrm{Mc}$ with charts. Brand new $£ 15$ (carriage $30 /$-) BC221T WAVEMETER with charts. $\mathbf{2 5 5}$ (carriage 25/-).

 CAMBRIDGE DYNAMOMETER VOLTMETERS in as each (plus carriage). GLOSTER DIGITAL VOLTMETEAS to 999 V D.C. \& A.C. send for pamphlet. coz. 10.0 (carriage paid).
MARCONI
OIDEO
OSCILLATORS TFB85A
50 Hz 50 MHz sine-square wave outputs $1 \mathrm{mV}-31.6 \mathrm{~V}$ in 11 ranges metered output $£ 35$ (carriage $30 /-$) fully serviced.
MARCONI SIGNAL GENERATOR TFBOIA $10-300$ MHz in 4 bands. $£ 45$ (cariage $30 /-$).
MARCONI SIGNAL GENERATOR TFI44G $£ 30$. Brand new with spares (carriage 30/-). MARCONI A.F. WATTMETER TFO56 I μ watt to watts into switched loads. 620 (carriage paid).
HIGH SPEED OSCILLOSCOPE TYPE CT90 P.O.A AIRMEC SIGNAL GENERATOR TYPE 701 \&35. (Carr. $30 /$-). SOLARTRON CD568 E27.10.0 (Carr. 30/)
LOW PRICED OSCILLOSCOPES for secondary school use or for production testing.
Cossor 1035 MK I DB $£ 25$

1049	DB	DE 5
1049	DB	65

339 A
$\mathbf{D B}$
$\mathbf{~} 15$ (All carr. 30/-) Ahops before sale and customers are Invited to attend byappiontment final testand inspection. All oscilloscoPexare checked onour Tektronixoscilloscops calibrator.
SANGAMO-WESTON PORTABLE sub-standard FRE. QUENCY METERS $\$ 1051200-2,000 \mathrm{~Hz} 95-135 \mathrm{~V}$. $\mathbf{\$ 1 2 , 1 0 . 0 .}$ Post $7 / 6$.
GOOD
GOODMANS MIDAX 650 mid range horn units 15 ohms special price 89.10 .0 (postage 10/-).

R LAMPS 2 contact S.B.C. $85 V$
$24 V$
D. C. $30 /$ - dozen. ${ }^{\text {E4. }} 126$. box
SOLID
50 (carriage paid).
STATE STABILISED POWER SUY 0.5 AMP SOLID STATE STABILISED POWER COMPUTER TAPE CARRYING CASES $13!^{*}$ square 2!" deep. 30/- (carriage paid)
R.F. VARIABLE INDUCTANCE UNITS comprising shaft. $90 /$ (post paid).
R.F. SWITCH with heavy silver contacts 2 way with centre of io pole make in each direction $15 /$ - (postage paid).

BRAND NEW and in original cases-A.C. mains input. 110 V or 250 V . Freq. in 6 bands $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$. Output impedance 2.5-600 ohms. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control, R.F. \& A.F. variable controls. Price $£ 87 / 10 /=$ each, carr. £2.
Same model as above in secondhand cond. (guaranteed working order), from £45 to $£ 60$, carr. £2.
*SET OF VALVES: new, £3/10/- a set, post 7/6; SPEAKERS: new, £3 each, post 10/-. *HEADPHONES: new, £1/5/- a pair, 600 ohms impedance. Post 5/-
AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L55. Price 10/- each, post 2/6. RF Coils 13 \& 14; $17 \& 18 ; 23 \& 24$; and 27 and 28 . Price $12 / 6$ each. $2 / 6$ post. By-pass Capacitor K. $98034-1,3 \times 0.05 \mathrm{mfd}$. and M.980344, 3×0.01 mfd., 3 for $10 /-$, post $2 / 6$. Trimmers $95534-502,2-20$ p.f. Box of $3,10 / \mathrm{m}$, post $2 / 6$. Block Condenser, $3 \times 4 \mathrm{mfd}$., 600 v ., £2 each, $4 /$ - post. Output transformers $901666-501$ 27/6 each, 4/- post.
Available with Receiver only.
If wishing to coll ot Stores, please telephone
for appointment.

MARCONI SIGNAL GENERATOR TYPE TF-144G: Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms $100 \mathrm{mV}-1$ volt -52.5 ohms. Internal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250$ V, $40-100 \mathrm{c} / \mathrm{s}$. Consumption approx. 40 watts. Measurements $19 \frac{1}{4} \times$ $121 \times 10 \mathrm{in}$. Secondhand condition. $£ 25$ each, carr. $30 /$ -

LAVOIE PORTABLE ABSORPTION FREQUENCY METER TYPE TS-127/U: Freq. $375-725 \mathrm{Mc} / \mathrm{s}$. Circuit: Piston-capacitor type tuning Resonator working direct into a 957 detector valve, R.C. coupled to a 2 stage amplifier (1S5 \& 3S4): Microammeter Resonance Indicator: Time switch to select operating time up to 15 mins. Average ' Q '-3000: Power Requirements: 1.5 V dry batteries and 45V. Price $£ 20$ each, $10 /$ - post.

CT. 49 ABSORPTION AUDIO FREQUENCY METER: Freq. range $450 \mathrm{c} / \mathrm{s}-22 \mathrm{Kc} / \mathrm{s}$., directly calibrated. Power supply $1.5 \mathrm{~V}-22 \mathrm{~V}$ d.c. £12.10.0 each, 15 - carr.

HRO RECEIVER. Model 5T. This is a famous American High Frequency superhet, suitable for CW, and MCW, reception crystal filter, with phasing Set of 5 Coils \& Power Unit) for $£ 27 / 10 /=$, carr. $30 /$ -
COMMAND RECEIVERS; Model $6-9 \mathrm{Mc} / \mathrm{s}$., as new, price $£ 5 / 10 /$ each, post $5 /$.
COMMAND TRANSMITTERS, BC-458: 5.3-7 Mc/s., approx. 25W
 post. R. C. Evenson and O. R. Beach.)

ARRCRAFT RECEIVER ARR. 2: Valve line-up $7 \times 9001 ; 3 \times 6$ AK5; and $1 \times 12 \mathrm{~A} 6$. Switch tuned $234-258 \mathrm{Mc} / \mathrm{s}$. Rec. only $£ 3$ each, $7 / 6$ post; or Rec. with 24 v . power unit and mounting tray $£ 3 / 10 /-$ each, $10 /$ - post.
RECEIVERS: Type BC-348, operates from 24 v D.C., freq. range 200-500 Kc / s, 1.5-18 Mc/s. (New) 235.0 .0 each; (second hand) $\mathbf{x 2 0 . 0 . 0}$ each, good Kc / s, $1.5-18 \mathrm{Mc} / \mathrm{s}$. (New)
condition, carr. $15 /-$ both types.
MARCONI RECEIVER 1475 type $88: 1.5-20 \mathrm{Mc} / \mathrm{s}$, second-hand condition £10.0.0 each. New condition $£ 25.0 .0$ each, carr. $15 /$-.
RACAI. EQUIPMENT: Frequency Meter type SA20: 835 each, carr. $£ 1$. Frequency Counter type SA21: 665 each, carr. 30/-. Converter Frequency Electronic VHF Type S.A. 80 (for use with the SA. 20): $25 \mathrm{Mc} / \mathrm{s}-160 \mathrm{Mc} / \mathrm{s}, ~ £ 40$ each, carr. £1.

ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 YA.C.@ 1.8 amps , $400 \mathrm{c} / \mathrm{s} 3$ phase, $£ 6 / 10 /-$ each, $8 /-$ post. 24 v D.C. input, 175 v D.C. @ 40 mA output, 25)- each, post $2 /$-.
CONDENSERS: $150 \mathrm{mfd}, 300 \mathrm{~V}$ A.C., $87 / 10 /-$ each, carr. $15 /-.40 \mathrm{mfd}, 440 \mathrm{~V}$ A.C. wkg., £5 each, $10 /-$ post. 30 mfd, 600 v wkg. D.C., $£ 3 / 10 /-$ each, post $10 /-$ $15 \mathrm{mfd}, 330 \vee$ A.C. wkg., $15 /-$ each, post $5 /-.10 \mathrm{mfd}, 1000 \mathrm{v}, 12 / 6$ each, post $2 / 6$.
$10 \mathrm{mfd}, 600 \mathrm{v}, 8 / 6$ each, post $5 /-.8 \mathrm{mfd}, 1200 \mathrm{v}, 12 / 6$ each, post $3 /-.8 \mathrm{mfd}, 600 \mathrm{v}$, $10 \mathrm{mfd}, 600 \mathrm{v}, 8 / 6$ each, post $5 /-.8 \mathrm{mfd}, 1200 \mathrm{v}, 12 / 6$ each, post $3 /-\mathrm{-} .8 \mathrm{mfd}, 600 \mathrm{v}$,
$8 / 6$ each, post $2 / 6.4 \mathrm{mfd}, 3000 \mathrm{v}$ wkg., E 3 each, post $7 / 6.2 \mathrm{mfd}, 3000 \mathrm{v}$ wkg., f 2 $8 / 6$ each, post $2 / 6.4 \mathrm{mfd}, 3000 \mathrm{v}$ wkg., 3, each, post $7 / 6.2 \mathrm{mfd}, 3000 \mathrm{v}$ wg., E 2 each, post $7 / 6.0 .25 \mathrm{mfd}, 2 \mathrm{Kv}, 4 /$ each, $1 / 6$ post. 0.01 mfd . MICA 2.5 Kv . Price
$£ 1$ for 5 . Post $2 / 6$. Capacitor: $0.125 \mathrm{mfd}, 27,000 \mathrm{w}$ wg. $£ 3.15 .0$ each, $10 /-$ post.
OSCILLOSCOPE Type 13A, $100 / 250$ V. A.C. Time base $2 \mathrm{c} / \mathrm{s} .-750 \mathrm{Kc} / \mathrm{s}$. Bandwidth up to $5 \mathrm{Mc} / \mathrm{s}$. Calibration markers $100 \mathrm{Kc} / \mathrm{s}$, and $1 \mathrm{Mc} / \mathrm{s}$. Double Bandwidth up to 5 Mc/s.
COSSOR 1035 OSCILLOSCOPE, $£ 30$ each, $30 /$ - carr.
COSSOR 1049 Mk . 111 , $\{45$ each, $30 /$ - carr.
RELAYS: GPO Type 600, 10 relays @ 300 ohms with 2 M and 10 relays @ 50 ohms with 1 M ., 82 each, $6 /$ - post.
12 Small American Relays, mixed types £2, post $4 /$-.
Many types of American Relays available, i.e., Sigma; Allied Controls; Leach;
etc. Prices and further details on request 6 d .

Abstract

GEARED MOTORS: 24 y. D.C., current 150 mA , output 1 r.p.m., 30/- each, 4/- post. Assembly unit with Letcherbar Tuning Mechanism and potentio meter, 3 r.p.m., 82 each, $5 /-$ pqst. SYNCHROS: and other special purpose motors available. British and American ex stock. List available 6 d .

TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price 25/-, post 5/-
SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, £2/10/- each post 6/-.
CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps., £2/10/- each, carr. 12/6. OHMITE VARIABLE RESISTOR: 5 ohms, $5 \frac{1}{2} \mathrm{amps}$; or 2.6 ohms at 4 amps. Price (either type) $£ 2$ each, $4 / 6$ post each.
TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves 3×3. 24 's; complete with filament transformer 230 v . A.C. Mounted in 19in. panel, $84 / 10 /-$ each, $15 /-$ carr. POWER SUPPLY UNIT PN-12A: 230V a.c. input 50-60 c/s. 513V and 1025V @ 420 mA output. With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors, 10 Mfd 1500 V and 10 Mfd 600 V . Filament Transformer 230 V a.c. input. 4 Rectifying Valves type $5 \mathrm{Z3}$.
$2^{\circ} \times 5 \mathrm{~V}$ windings @ 3 Amps cach, and 5 V @ 6 Amp and 4 V @ 0.25 Amp . Mounted
 ©6.10.0. each, Carr. $£ 1$.

AUTO TRANSFORMER: 230-115V, 50-60c/s, 1000 watts. mounted in a strong,
 Carr. 10\%.
POWER UNIT: 110 v. or 230 v . input switched; 28 v . @ 45 amps . D.C. output. WVt. approx. 100 lbs ., £17/10/- each, $30 /$ - carr. SMOOTHING UNITS suitable for above £7/10!- each, 15/- carr.
CORPORAL ROCKET ELECTRONIC GUIDANCE EQUIPMENT: Reacon Radio DRN.7. Rec/Trans. Assembly MX.2048DPW-8. Electronic Control Amplifier AM1510/DJW3. Transmitter C-1493/MRQ.1. Power Units and miscellaneous spares available.
MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves, microphone and modulator transformers etc. £7/10/- each, 15/- carr.
NIFE BATTERIES: 4 v .160 mps , new, in cases, $£ 20$ each, $£ 110 /-$ carr.
FUEL INDICATOR Type 113R: 24 v . complete with 2 magnetic counters 0-9999, with locking and reset controls mounted in a 3 in. diameter case. Price 30/- each, postage 5 /.

FREQUENCY METERS: BC-221, meter only £30 each, BC-221 complete with | stabilised power supply $£ 35$ each, carr. $15 /-$. LM13, $125-20,000 \mathrm{Kc} / \mathrm{s} .$, £25 each, |
| :--- |
| carr. $15 /-$ TS $175 / \mathrm{U}, ~$ |
| 755 each, carr. $£ 1$ |

CANADIAN HEADSET ASSEMBLY: Moving coil headphones 100Ω, with chamois leather earmuffs. Small hand microphone complete with switch and moving coil insert. New condition. Price $35 /-$ each, post $5 /-$
AUDIO OSCILLATOR 382/F: Input 115 v. A.C., $50 \mathrm{c} / \mathrm{s}, 20-200,000 \mathrm{c} / \mathrm{s}$ per sec. in 4 ranges. Cont. wave. Output 0-10 v. in 7 ranges. Power output 100 mW . Output impedance $1,000 \Omega$. $£ 27 / 10 /-$ each, $£ 1$ carr.
RACK CABINETS (totally enclosed) for std. 19in. panels. Size: 6 ft . high \times 21 in . wide $\times 16 \mathrm{in}$. deep. With rear door. $£ 12$ each, $\mathrm{E} 2 / 10 /$ carr. OR 4 ft . high \times 21 in . Wide $\times 16 i n$. deep. With rear door. $£ 12$ each, $£ 2 / 10 /-$ carr
23 in . wide $\times 19 \mathrm{in}$. deep. With rear door. $£ 8 / 10 /$ each, $£ 2$ carr.
CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG1 (CV1526) colour green, medium persistence complete with nu-metal screen, $\mathrm{E} 3 / 10 /-$ each, post $7 / 6$. APNI ALTIMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s}$., complete with all valves 28 v. D.C. 3 relays, 11 valves, price $£ 3$ each, carr. $10 /$ -

TEST EQUIPMENT

APN- 1 INDICATOR METER, 270° Movement. Ideal for making rev. counter. 25/- each, 5/-post.
VARIABLE POWER UNIT: Complete with Zenith variac $0-230 \mathrm{~V} ., 9 \mathrm{amps}$; $2 \frac{1}{2} \mathrm{in}$. scale meter reading $0-250 \mathrm{~V}$. Unit is mounted in 19 in . rack. $£ 15$ each, $30 /-$ carr.
AIRCRAFT SOLENOID UNIT D.P.S.T.: $24 \mathrm{~V}, 200$ Amps, $£ 2$ each, $5 /$ - post. RADAR SCANNER ASSEMBLY TYPE 122A: Completc with parabolic reflector, (24 in . diameter), meters, suppressors, etc. £35 each, £2 carr.
DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each 0.9 ohms. Tolerance $\pm 1 \%$ e3 each, $5 /$ - post. 90 ohms per step. 10 positions, total value 900 ohms. 3 Gang. Tolerance $\pm 1 \% ~ £ 3 / 10 /-$ each, $5 /-$ post.
TELESCOPIC ANTENNA: In 4 sections, adiustable to any height up to 20 ft , Closed measures 6 ft . Diameter 2 in . tapering to 1 in . E_{5} each $+10 /-$ carr. O $£ 9$ for two $+£ 1$ carr. (brand new condition)

COAXIAL TEST EQUIPMENT: COAXWITCH-Mnftrs. Bird Electronic Corp. Model 72 RS ; two-circuit reversing switch, 75 ohms, type "N" female
connectors fitted to receive UG-21/U series plugs. New in ctns., $£ 6 / 10 /$-each, connectors fitted to receive UG-21/U series plugs. New in ctns., £6/10/- each,
post $7 / 6$. CO-AXIAL SWITCH-Mnftrs. Transco Products Inc., Type ${ }_{\text {M1460-22, }} 2$ pole, 2 throw. (New) $\mathrm{e} 6 / 10 / \mathrm{e}$ each, $4 / 6$ post. 1 pole, 4 throw, Type M1460-4. (New) £6/io/- each, 4/6 post.
PRD Electronic Inc. Equipment: FREQUENCY METER: Type 587-A, P. $250-1.0 \mathrm{KMC} / \mathrm{SEC}$. (Nww 75 each, post 1z//. FIXED ATTENUATOR:
Type $130 \mathrm{c}, 2.0-10.0 \mathrm{KMC/SEC}$. (New) Type 130c, 2.0-10.0 KMC/SEC. (New) E_{5} each, post $4 /-$. FIXED ATTENUATOR: Type $1157 \mathrm{~S}-1$, (new) 66 each, post $5 /$-.

FOR EXPORT ONLY BRITISH \& AMERICAN COMMUNICATION EQUIPMENT

VRC.19X Trans-ceiver, $150-170 \mathrm{Mc} / \mathrm{s}, 2$ Channel, 20 Watts, Outjut $12 / 24 \mathrm{~V}$ d.c. operation. General Electric Transmitter, $410-419 \mathrm{Mc} / \mathrm{s}$, thin line tropo scatter system, with antennae. W.S. Type 88 , Crystal controlled, $40-48 \mathrm{Mc} / \mathrm{s}$. W.S. Type
$\mathrm{HF}-156, \mathrm{Mk}$. II, Crystal controlled, $2.5-7.5 \mathrm{Mc} / \mathrm{s}$. W.S. Type 62 , tunable, $1.5-12$ Mc / s. C.44, Mk. II, Radio Telephone, Single Channel, $70-85 \mathrm{Mc} / \mathrm{s}, 50$ watts, output, 230 V . a.c. input. G.E.C. Progress Line Tx Type DO36, $144-174 \mathrm{Mc} / \mathrm{s}$, 50 watt, narrow band width. A.C. input 115 V . BC $-640 \mathrm{Tx}, 100-156 \mathrm{Mc} / \mathrm{s}$, 50 watt output, 110 V or 230 V input. STC Tx/Rx Type 9X, TR1985; RT1986; TR1987 and TR1998, 100-156 Mc/s. TRC-1 Tx/Rx, Types T. 14 and R.19, FM 60-90 Mc/s. With associated equipment available. Redifon GR410 Tx/Rx, SSB, $1.5-20 \mathrm{Mc} / \mathrm{s}$. Sun-Air Tx/Rx Type T-10-R. Collins Tx/Rx/Type 18S4A. Collins Tx/Rx Type ARC-27, 200-400 Mc/s, 28 V d.c. With associated equipment available. ARC-5; ARC-3; and ARC-2 Tx/Rx. BC-375; 433G; 348; 718; 458; $455 \mathrm{Tx} / \mathrm{Rx}$. Directional Finding Equipment CRD. 6 and FRD. 2 complete Sets matic Telephone Exchange. Complete system with full set of Manuals. Mobile matic Telephone Exchange. Complete system with ful set of Manuals. Mobile Consisting of $3 \times A R C-27 \mathrm{Tx} / \mathrm{Rx}$ with all associated equipment (as new).

ALL GOODS OFFERED WHILST STOCKS LAST IN "AS IS" CONDITION UNLESS OTHERWISE STATED

CALLERS BY TELEPHONE APPOINTMENT ONLY

VITAVOX

FOR HIGH QUALITY MICROPHONES LOUDSPEAKERS and ancillary equipment

Further information from:

VITAVOX LTD., Westmoreland Rd., London, N.W. 9 (Tel: 01-204 4234)

TRANSFORMERS
coils
CHOKES
TRADE ENQUIRIES WELCOMED
SPECIALISTS IN
FINE WIRE WINDINGS
MINIATURE TRANSFORMERS
RELAY AND INSTRUMENT COILS
VACUUM IMPREGNATION TO APPROVED STANDARDS

ELECTRO-WINDS LTD.

CONTRACTORS TO G.P.O., L.E.B., B.B.C.

WEYRAD

COILS AND I.F. TRANSFORMERS IN

LARGE-SCALE PRODUCTION

 FOR RECEIVER MANUFACTURERSP. 11 SERIES $10 \mathrm{~mm} . \times 10 \mathrm{~mm} . \times 14 \mathrm{~mm}$. Ferrite cores $3 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
P. 55 SERIES $12 \mathrm{~mm} \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores $4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}$ operation. Single-tuned I.F.s and Oscillator Coils.
T. 41 SERIES $25 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}$. Ferrite cores 4 mm . $472 \mathrm{kc} / \mathrm{s}$ operation. Double-tuned 1st and 2nd I.F.s and Single-tuned 3rd I.F. complete with diode and by-pass capacitor.

These ranges are available to manufacturers in versions suitable for most of the popular types of Transistors. The Oscillator coils can be modified to enable specific tuning capacitors to be used provided that bulk quantities are required.

OUR WINDING CAPACITY NOW EXCEEDS 50,000 ITEMS PER WEEK

On the most up-to-date and efficient machines backed by a skilled assembly labour force for all types of coils and assemblies.

WEYRAD (ELECTRONICS) LIMITED, SCHOOL ST., WEYMOUTH, DORSET

Solve your communication problems with this new 4-8tation Transistor Intercom system (1 mastor and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to 8 ubs and 8 ubs to Master. Operates on one 9 v . battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hos. pital, Shop, etc., for instant inter-departmental contacts. Complete with 3 connecting wires, each 66 ft . and other accessories. Nothing else to buy. P. \& P. $7 / 6$ in U.K.

Same as 4-Station Intercom for two-way instant conversation from MASTER to SUB and SUB to MASTER. Ideal as Baby Alarm and Door Phone. Complete with 66 ft . connecting wire. Battery 2/6. P. \& P. 4/6.

MAINS INTERCOM

No wires - bo batteries. Just plug in and it is ready to use. Lock button. Light indicator. Also useful as baby

Why not increase efficiency of Office, Shop and Warehouse with this incredible De.Luxe Portable Transistor TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. A useful office ald. A must for every telephone user. Useful for hard of hearing persons. On/off switch. hard of hearing persons, On/off Control. Operates on one $9 \mathrm{~V}_{0}$ battery which lasts for months. Ready to operate. P. \& P. 3/6 in U.K. Add 2/6 for Battery.
Full price refunded if returned in 7 days.

TELEPHONES. Two-tone grey. Brand new boxed. G.M. TUBES. Brand new. G24/G38/G60 at $27 / 6$ ea G53/1, braes cased f6 ea

MULLARD MX 115 GM TUBE with holder.
Plat apd 300 volta $30 / \mathrm{es}$ P \& $3 / 6$,
PHOTOMULTIPLIERS. EMI 0097 X at E6/10/- ea. TRANSISTOR OSCILLATOR. Variable frequency $40 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{kc} / \mathrm{s}$. 5 volt square wave o/p, for 6 to 12 y new. Bozed. II/6 ea.
RACAL Diversity unlt. 110 each. Carriage £1.
CRAMER TIMER 28V DC Sweep $1 / 100$ th sec \& sweep
60 secs. ${ }^{\text {S }}$ dial. Remote control stop/start reset $\& 6.10 .0$. Omron/Schrack octal beLased plug-in relays. 2 pole c/o $5 A .6 \mathrm{y}$ only. Brand new. Boxed, $7 / 6$ each. G.E.C. 4 pole a/o $6 / 12 v$ operation 180 ohms. Platinum contacts. Brand new. Boxed. 10/- each

Miniature STC Plue In relave Plastic dust cover, 4 pole c/o 7.5-18 v. operation. 185 Ohms 8/- each 6/- each per 100
S.T.C. sealed 2 pole c/o. 2.500 ohms. (okay 24v) $2 / 6$ ea.

CA PPENTERS polarised single pole c/0 20 and 65 ohm coll as new. complete with base $7 / 6$ ea. Single pole c/o $680,1,110$ and 1,570 ohm coll. As new $8 / 6 \mathrm{ea}$.
Single pole o/o 14 ohm coil $6 / 6$ ea. : Single pole c/o 45 ohm Single pole o/o 14 ohm coil $6 / 6$ ea. ; Single pole c/o 45 ohm
coil $6 / 6$ ea. Brand New. Single Pole c/o (type 5A2), 2×1200 ohms, E.M.I. PhotoChopper type ACPC1. Size $13 \times 1 \times 7^{*}$ (I each. P. \& P. ${ }^{2 / 6}$.
COLVERN Brand new. 5: 10; 50; 100: 250: 500 , 2.5; 5 10: $25: 50 \mathrm{k}$ all at $2 / 6$ ea. Special Brand ew MORGANITE 250 K 1 in . Bealed. Normal price NOTRUMENT
NSTRUMENT $3^{\prime \prime}$ Colvern. 5: 25: 100 ohms. $7 /-\mathrm{ea}$ TRIM POTS. Palgnton-solder lugs 5, 10 \& 25 K at /- each: Pins 10: 20: 50: 100: 200: 250; 500 ohms ALMA precision resistors 100 K ; 400 K ; 497 K ; 998 K . 1 meg- $0.1 \% 5 / 6$ each; $3.25 \mathrm{~K}-0.1 \%$ 4/- each; 1 meg$0.05 \% 7 /-$ esch.
DALE heat sink resistors, non-inductive 50 watt. Brand new. 15 ohms- $6 / 6$ ear.: 8.2 K ind eactive Excellent dummy
load.

Wheatatone Bridge by TINSLEY type $1138 \mathrm{C60}$.

CAPACITORS

ERiE feed through ceramicons 1000 pf-9d, ea, Concentric TRIMMER $3 / 30$ D . Brad new I/6
ELECTROLYTICS. Brand new. $250 \mathrm{mfd} 70 \mathrm{~V} 4 / 6$ eas. $000 \mathrm{mfd} 16 \mathrm{~V} 7 / \mathrm{ea}$
EHT 2 mfd 5 KV . Brand new 62 each.
VISCONOL EHT. Brand new $0.000525 \mathrm{kV}, 16 / \mathrm{er}$.
E.H.T. $0.02 \mathrm{mfd} 8 \mathrm{KV} \cdot 8 /-$ ea.; $0.5 \mathrm{mfd} 5 \mathrm{KV}-11 /-$ ea. .5mfd 2.5KV 7/- ea.
DECADE DIAL UP SWITCH. FInger-tip. Engraved 0/9. Gold plated contacts. Size 21 ${ }^{\circ}$ high, plates etc. $2 \frac{1}{}^{\circ}$ high 27° deep, 24^{*} wide. 65 .
DIODES 1N014. Brand new I/3 ea.; I2/- doz.; \&4-100 25-1,000
PHOTOCELL equivalent OCP $712 / 6$ ea.
Hotresist type Clare 708. (TO5 Case) $10 /-$ each.
(
ers. Red. Brand
Cintel transistorised Decade boards. Circuit supplies 50/- each; 42 each 3 or more.
ThA NSISTORS BC $114-N P N$ Low noise hlgh gain sudio, etc.; BC $116-$ PNP General purpose $200 \mathrm{mc} / \mathrm{s}$ Ex brand new equipment. Guaranteed perfect. Good th. 2/- ea
BRAND NEW BCII4 TRANSISTORS. 5/each; $4 / 3$ each per $100 ; 3 / 6$ each per 1.000

MINIATURE SPEAKERS 15 ohm 2° dlameter Brand new. 7/= each. P. \& P. $2 / 6$ each.

NUCLEONIC INSTRUMENTS
SCALER type 1009 by Dynatron. Suitable Beta gamma counts. Built in test signal. Calibrated adjust4 digit counter. Supplied in as new condlition at $\angle 5$ ea Carr. 30/-
As above but with resettable counter 48 ea
Carr. 30/
Few only RATEMETER type 1161B Complete with built in EHT supply. Separate metering EHT and count. EHy available for external equipment 0 to
Portable Geiger Counter in haversack, complete
©5 ea. P. \& P. 10/
100 CHA NNEL PULSE HEIGHT analyser type
1363 B . As new $£ 75$. As above but type 1863 C . 120 ECKO PULSE HEIGHT ANALYSER type N101 C25, Carr, 30/-
CINTEL Transistorised Nucleonic Scaler with djustahle discriminator. 6 meter display 0.9 givin ount of 10 to the PULSE Generator tyne 1147A. E6. Curr. 30/-

SPECIAL. SGS Fairchild Silicon Epitaxial Tran sistor. NPN. Complementary to BC116. Guaranteed Spec. Sheet supplled. 1\% each, minimum order E1. P. \& P. $2 / \mathrm{a}$

TEST GEAR

E.M.I. OSEILLOSCOPES
 ESM.íRTRON 711 SI .2 D.B. $\mathrm{DC}-0 \mathrm{mc} / \mathrm{s}$. In fine

 HARTLEY 13A DB. \&18/10/
 TF 958 (CT44) Audio Frea. Wattineter ©I5. Carr. 10/, TF 886 Marnilication Meter $£ 45$ Carr. it.
 TF 144G Signal Generator, Serviceable. Clean E 5
 TF 885 Video Onscillator Sine/Square 635 Carr. $30 /$
 TF $195 M$ Sine wave oscillator $0 / 40 \mathrm{kc} / \mathrm{s} \mathrm{E} / 2 \mathrm{Carr}$ \&
 TF $428 \mathrm{~B} / 1$ Valve voltmeter C 4 Clarr . $10 /$
 TTF 428B/2 Valve voltmeter c8 Carr. $10 /$
 TF 791 B FM Deviatlon Meter C25. Carr. $30 /$ -
 SOLARTRON

 Stabulised P.U. SRS 151A 220 Carr. 30/
 stabilised P.U. SRS 152 \& 15 Carr. 30
 Stabill ised P. U. AS $518 \&$ AS 517 63, and 66 Carr. 10/- Calibratlon Calibration. Unit type AT203. ©25. Carr. 30/, Process Response Anslyser. Fine Condition 6250 Oscillator type os 101 . $£ 30$. Carr. $30 /-$ - D.C. Amplifer type AA
 AVo
 AVO TRANSISTOR ANALYSER- 575 ouly.

 Testuneter No. 1 \&14 Carr. $15 /{ }^{\text {P/ }}$.TWO only TELE OUIPMENT DB Oscllo-
scopes type D33R. 670 each. Carr, £1. CINTEL
Wide Range Capacitor Bridge $£ 25$ Carr. 15%
Sine and Pulse Clenerator type 1873 E25 Carr. 15/AIRMEC
Valve Millivoltmeter type 264, $3 \mathrm{MV}-1 \mathrm{~V}$ £20 Carr. £1 Counter type 865. 6 decades. Bright Vertical display gate facilitiles. Very good condition $£ 25$. Carr. $30 /$ Signal Generator type 701. 635. Carr. 30/-
OSCILLOSCOPE CAMERA. Shackman 25ft. Exp 270 rames. Times from $1 / 250$ to 1 secs. auto. Dalmere Fl. 8 Focal 1 tin . With standard 41 n . to sin . fitting. $\mathrm{C}, 30$.
BRADLEY ATTENUATORS 0/500 mex cycles.

BECKMAN MODEL A. Ten turn pot complete

 with dial. 100k 3\% E.M.T. Base B9A in Polystyrene holder with cover rand new, $2 / 6$ eaENITH E.H.T. Teater, with Probes. Metered 0-8.5 kv
OYM \& RATIOMETER BIE 2116 by Blackburn C60 each.
OENCO 5 band low noise travelling Wave ampllfer
25. Carr. 30/-

IGNAL Generator CT 53. Complete with leads. Good condition. $£ 10$ Carr. 15/. With copy of charts.
FREQUENCY Meter LM 14. Modulated version of BC 221 with charts and covers. Brand new $£ 30$. Carr. $30 /=$ SPECIAL. FURZEHILL V200A Valve millivolt neter. 10 mv
FURZEHILL Valve Voltmeter type 378B/2, Range LOw Ohm SAFETY METER 12 ma 5 ohms. ©7.10.0 MIC-O.VAC type 22 (CT54) Volts: Current: Ohms. C to' $200 \mathrm{mc} / \mathrm{s}$ with prote
HEWLETT PACKARD 5° oscilloscope tube with uilt-In graticule $10 \times 10 \mathrm{~cm}$. Length 1615 . Brand new boxed. 412 each. Carr. so/.

SCM Wave Gulde, some tlex; Sanders Attenuators: Decca Wavegulde Switches; Delay lines, etc. Phone
 Decca Waveguide Switches; Delay lines, eto. Phone

ISTRIBUTED AMPLIFIER type $2 \mathrm{C} / 350 \mathrm{c} / \mathrm{s} 100 \mathrm{mc}$
ain 300 . 630 each
Type $2 \mathrm{C} 50 \mathrm{c} / \mathrm{s}$ to $100 \mathrm{mc} / \mathrm{s} \subset 16$ each.
DAWE Wide Range oscillator type 400 A .20 cs to $20 \mathrm{kc} / \mathrm{s}$
Sine wave, 500,600 and 2000 ohm . Fine condition. $£ 20$. Carr. 30/-

PAIGNTON ATTENUATORS 0.1 db . 0100 db . in 3 decades, 600 ohm. 10° rack mounting. $C 20$ ea. Carr. 15/ISTON ATTENUATOR in carrying case. 30-140 me/s calibrated 0/70 db. $£ 10$ ea. Cart. £ 1
Preciston THERMISTOR by YSI. 100 k at $25^{\circ} \mathrm{C}$. Range: $40^{\circ} \mathrm{C}$. to $150^{\circ} \mathrm{C}$. Supplled with charts giving ohms LAUDE LYONS Main Stabilizer. Type 7000C nput $212-252$ volts $47 / 65 \mathrm{c} / \mathrm{s}$. Output 298 ₹olts 0.5% 3 amps. $£ 40$. Carriage at cost
SERVOMEX Maing Stabilizer. Type AC7 Mk. 11. $200 / 250$ volta 0.1%. $45 / 65 \mathrm{c} / \mathrm{s}-60 \mathrm{amps}$. New Condition.
E75. Carriage at cost.
ROBAND P.U. Type MS9A. Stabilized 300 volts amp. 222 inc. carriage.
HOLGATE 6 channel Event recorder. 1 in , or 10 in . inches per second. Size $41 \times 5 \times 8 \mathrm{in}$. Ercellent condition. 620.

HEWLETT PACKARD Recorder and Decoder type
20610. As new. Write or phone for further details.
KELVIN \& HUGHES 4 channel recorder with molifiers al 10
SMITHS twin channel recorder. Tranalstorised. 665. 620. VENEER Transistorised Digital Printer. Fine condilon. E 60 .
19in. Rack Mounting CABINETS 8 ft . high 2 ft . deep. side and rear doors. Fully tapped. complete with base
and wheels. CI2/l0/0 Carrlage at cost. Double Bay complete with doors. Fine condition. 425. Carriage at cost
MULLARD Tranalatorised Analogue to Digtal Convertor Model L 281. As new. 220 Cart. 15/
SUNVIC DC Amplifter type DCA1. Thermo-couple, etc. 22.10.0. Carr. 20/•
CINTEL Universal Counter $£ 30$. Carr. $30 /$.
PROCESS TIMERS 8 individual timer circults.
each with $0-100$ sec calibrated dials. Ideal displays ISOLATING TRANSFORMERS 240 V in 240 V GIECAST ALLOY
DIECAST ALLOY boxes. Size $4 \times 21 \times 1 / \mathrm{in}$. Drilled ends for Belling Cosx socket. 3 compartments link holes
CONVERTOR 50 e/s single ph. to $400 \mathrm{c} / \mathrm{s} 3 \mathrm{ph} .250 \mathrm{w}$.
in 8 ft . enclosed 19° rack cabinet. $\$ 35 \mathrm{ea}$. Carr. at cost. AMPEX FR 400 with Benson-Lagner 'XY' Plotter.
Large vacuum table. Auto paper feed. $£ 500$. Large vacuum table. Auto paper feed. $£ 500$

4 DIGIT RESETTABLE COUNTERS. 1000 ohm . coil. Size $1 \frac{1}{2} \times 4 \frac{1}{2} \mathrm{in}$. As new, by Sodeco of Geneva. $2 / 10 / 0$ each.
As above but 350 ohm. $£ 3 / 10 / 0$ ea.
METERS Model 9705. 25-0-25 microamp. Scaled. $-100-0+100.51^{\circ} \times 4^{\circ} .14$ ea.
STEP DRANS ISOLATING trans. Standard 240 v $A C$ to 120 v tapped $60-0.60700 \mathrm{w}$. Brand new. $\& 6$ ea. As sbove but 500 w . $£ 4$ ea.
75 WATT Constant voltage transformer. 195 to 255
volts- 240 v out. 30/- each. P. \&. P. 5/=.
AMERICAN Auto step-down transformer 2 kW. Built-in Lead and socket. Brand new. Boxed. 820. Transformer 0-215-250 $120 \mathrm{MA} ; 6.3 \mathrm{~V} 4 \mathrm{ACT} \times 2 ; 2 \times 6.3 \mathrm{~V}$ Matching contact cooled bridge rectifer 7/6 each.
Matching contact cooled bridge rectifler $7 / 6$ each.
Gardners $6.8 \mathrm{v} 2 \mathrm{~A} ; 6.3 \mathrm{v} 1.5 \mathrm{~A} ; 6.3 \mathrm{v} 0.1 \mathrm{~A}$. Size $3 \times 1 \frac{1}{2} \times 4 t \mathrm{in}$. As new. $9 / 6$ es. P. \& P. 3/- es.
Parmeko/Gardners. Potted, $475 \cdot 60-0-60-475$ at 160 mA ;
separate winding $215-0215$ at $45 \mathrm{~mA}: 6-3 \mathrm{v}$ 5A: 6.3 v separate winding new. 63 ea.
Gardners/Gresham. Potted 450-400-0-400-450 180 ma Gardners/Gresham- Potted $450-400-0-400-4501801$ mas $0-4-6.3$ incl. mostage.
EA eal
 63 ea.
ADVANCE Constant Voltage. Trans. 1 kW . $\mathbf{E 2 0}$.
ADVANCE Constant Voltage Trsns. 6 volts 50 watt As new f3 P. \& P. 10/-
Gardners 5v 30amp. Brand new ci/lo each incl. postage. CHOKES, 5 EF ; 10 H ; 15 H ; up to $120 \mathrm{~mA}, 8 / 6 \mathrm{ea}$. Up to $250 \mathrm{~mA} 12 / 6$ ea. LT, HT, EHT transformers. Your requirementa, please
Panel swltches DPDT ex ea, $2 / 6$ ea.: DPST Brand new $3 / 6$ ea. DPDT twice, brand new 6/-: heavy duty DPST brand new 6/- ea.
SPECIAL. 813 valver. Brand new, boxed $€ 2 / 10 / 0$.
MOTOR DRIVEN SWITCHES. 4 to 24 volt, 6 pole,
24 way. Brand new. \&6́ ea. P. \& P. $5 /$. PRECISION continually rotarable stud switches. Single pole. 80 way, can be stacked if required. 63 ea. PRECISION rotary stud switchea 2 pole 12W size 2° sq., 年" shaft. c2/10/0 ea.
Min. SEALED 4 pole 8 way and 9 pole 4 way rotary
switches. t° shaft tia. x fo $10 /=$ ea.
switches. t^{\prime} shaft dia. $\times 1 /-$ ea,
Must go-American Pressure Gauges. Scaled $0-200 /$
$0-2800$. KSC/PSI; 270° dial $5^{\prime \prime}$. $10 /-$ each. P. \& P. $5 /-$ Solartron Storage, Osculloscope type QD p10. MUST GO.
Now only $£ 100$ each.

FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd unlts, etc., at 'Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day.

WW-079 FOR FURTHER DETAILS

MODEL JP, 50 PLEASE WRITE FOR ILLUSTRATED LEAFLETS OF THESE SANWA METERS

$\begin{array}{ll}\text { STC } \\ \text { MIC } 9301 \text { B Digital dual } 4 \text { imput gates } \\ \text { MIC 709.1C Linear operational ampl. } & 190 /\end{array}$ MIC 709.1C Linear operational ampl. 190/-
MIC 9005 H Highsped flo-flop..... $54 / \mathrm{M}$
Plessey. SL $402 \mathrm{~A} 2.5 \mathrm{~W} 42 / 6 \mathrm{SL} 403 \mathrm{~A} 3.552 / 6$ Plessey. SL402A $2.5 \mathrm{~W} 42 / 6$ SL403A $3.552 / 6$
VALVE VOLTMETER TYPE TF 958. Measures AC 100 mV ;
$20 \mathrm{c} / \mathrm{s}$ to $100 \mathrm{mc} / \mathrm{s}$,

 multiplier extends ac range to 1.5 kV . | centre-zero scale for |
| :--- |
| 100 MHz up to |
| 32.10 .0 |

TF 899 VALVE VOLTMETER, 10 mV
to 2 V , € 17.10 .0 . Carriage $30 /$ -
885A/I, $\subset 55$ and $\angle 85$ resp. Carr. $30 /$. FM DEVIATION METER TYPE deviation $1-75 \mathrm{kHz}$. $\quad \mathbf{\$ 6 2 , 1 0 . 0}$

AVO SIGNAL GENERATOR CT $378,2-225 \mathrm{MHz}$. $£ 38.10 .0$. Carriage $18 / \%$.

AVO'S METERS
Model 48A complete with multiplier shunts, etc., in special fitted wooden case, 14.10.0.
Model 47A 12
Carriage for each of above $7 / 6$.

ordered from us is completely over-
PLEASE NOTE Unses.s.eses. ALL EQUIPMENT
hauled mechanically and electrically

TF I4GG SIGNAL GENERATOR. To
clear. In very good "as seen" condition. clear. In very good "as seen" condition.
Complete with mains and battery cables,
etc. © 15 .

MARCONI TEST EQUIPMENT

TFlatc $\operatorname{TrVM} A A_{i}$.
 TEANH: Freqignal

Limited qty. SIGNAL GENERATOR TF 801/A. able. Full spec $10-300 \mathrm{Mc} / \mathrm{s}$. in 4 bands. Internal at 400 and price on c/s. I ke/s. External $50 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{ke} / \mathrm{s}$. Output $0-100 \mathrm{db}$ below 200 mV from 75 ohms source. C85. DITTO but
$801 / A / 1$ with additional high level 801/A/l with additional high level
output. \&89. Both P. \& P. 20/-, inoutput. 889 . Both P. \& P. 20/-, in-
cluding necessary connectors, and instruction manual.

BRADLEYPORTABLEELECTRONIC

 MULTIMETER TYPE CT47IB. Thisinstrument operates from three IIV cells, is fully. transistorised and measures A.C.
and D.C. current A.C. and D.C. Voltage
and D.C. resistance. Built-in bateery check and calibration check. Full spec. and price

As above bur MODEL CT 471 A manufactured by AVO, full spec and price on reques.
4,5 ind 8 bank 25 way uniselectors,
$24 V$ guaranteed perfect, $24 V$ guaranteed perfect,
64.10.0; 66.17 .6 respectively.
AR88 SPARES. We hold the largest stock WEE MEGGERS. 250 V E12.0.0.
GENERAL RADIO AMPLITUDE 1931A. \&45 plus carriage.
$230 \mathrm{v}, 3$ pole, 10 amp plug in change over relays. 11 pin base, perspex cover

PHASE MONITOR ME-63/U. Manu factured recently by Control Electronics Inc. Measures directly and displays on a pwa meler the phase angle between whin the range from $20-20,000$ c.p.s to an accuracy of $\pm 1.0^{\circ}$. Input signals can be sinusoidal or non-sinusollal condition. 675. Carriage 30/.
HARNESS "A" \& "B" control units junction boxes, headphones, micro
phones, etc.
 369 (No. 5). Measures L \& C at 80 Hz , C: $1 \mathrm{mF} .100 \mu \mathrm{~F}$. R: $0.10 \mathrm{hms}-100 \mathrm{mohm}$ AC Bridge volts monitored and var able. Automatic detector sensitivity control. ©105. Carriage 30/-.
IGNITION TESTER TYPE TF 1348 For all vehicale electrleal fault-finding and
tuning $£ 60$.

29/41FT. AERIALS each consisting of ten 3 ft ., 7 in. ".. tubular screw-in sections. Ilf. (u-section) whip aerial with adaptor to fit the 7 in . rod, insulated base, stay plate and stay assemblies. pegs, reamer, hammer, etc. Absolutely brand new and complete ready to
in canvas bag, $4 / 0 / 0$. P, \& P. $10 /-$
FIELD TELEPHONE TYPE "F". Housed in portable wooden cases. Excellent for communication in and out batteries fully tested 66.10 .0 , or with 220 yds field cable in drum $\mathbf{8 7 . 1 0 . 0}$.

FOR EXPORT ONLY

53 TRANSMITTERS. All spares installations and spare parts. R.C.A TRANSMITTERS ET 4336. Complete
inscallations and all spares. BC 610 E installations and an s.
COLLINS TYPE 231D 5KW tune and manual tuning. Complete with very comprehensive spares. Full
specification and price on application
Complete installations and all spares. No. 19 WIRELESS SETS.
H.P. SETS and all spares R. 210 RECEIVERS with all necessary RECEIVERS
PYE PTC 2002N A.M. Ranger Mobile Radio Telephone, brand new and complete, 645 .
P. C. RADIO LTD. 170 GOLDHAWK RD., W. 12
$01-7434946$

BI-PAK=LOW COSt I.C's VALUE ALL THE WAY

BI-PAK Semalconductors now offer Jou the largest and moenpopular range of I.C's svailable at these EXCLUSIVE LOW popular range of I.C's available at these Exclusive lowPRICES. TTL Digital 74 N series fully coded, brand new Dual in-line plastic 14 and 16 pla packages.					
BI-PAK	Sim.	Description	Price	nd qt	
Order No.	Type		-24	$25-$	10
BP00	7400 N	Quad 2-Input NaND GATE	8/6	5/6	4/6
BP01	7401N	Quad 2-Input NAND Gate-OPEN COLLECTOR	6/6	5/6	4/6
BP04	7404N	HEX INVERTER	6/6	5/6	4/6
BP10	7410N	Triple 3-Mnput NAND GATE	6/6	5/6	4/6
BP20	7420 N	Dual 4-Input Nand Gate	6/6	$5 / 6$	$4 / 6$
BP30	7430 N	Single 8-Input NAND GATE	6/6	5/6	$4 / 6$
BP40	7440 N	Dual 4 -Input BUFFER GATE	6/6	5/6	4/6
BP41	7441 AN	BOD to decimal decoder and NIT Driver	22/6	20/-	$17 / 6$
BP42	7442N	BCD to decimal decode (TTL O/P)	22/6	20/-	17/6
BP50	7450 N	Dual 12 -Input AND/OR/NOT GATE expandable	6/6	5/6	4/6
BP53	7453 N	Single 8 -Input AND/OR/NOT GATE-expandable	6/6	$5 / 6$	4/6
BP60	7460 N	Dual 4-Input-expandable . .	$6 / 6$	5/6	4/6
BP70	7470 N	Single JK Flip-Mop-edge triggered	9/-	$81=$	71
BP72	7472N	Single Master Slave JK Flip-Flop . .	9/-	8/-	$71-$
BP73	7473 N	Dual Master Slave JK Fup-Flop	10/-	9/-	$8 / 6$
BP74	7474N	Dual D Flip-Flop	10/-	9/-	$8 / 6$
BP76	7475 N	. Quad Blstable Latch ..	11/-	10/-	$9 / 6$
BP76	7476N	Dual Master Slave Flip-Flop with preset and clear	11/-	10/-	9/6
BP83	7483N	Four Bit Binary Adder	26/-	22/6	201-
BP90	7490N	BCD Decade Counter	22/6	201-	$17 / 6$
BP92	7492N	Divide by 124 Bit binary counter. .	22/6	201-	$17 / 6$
BP93	7493N	Divide by 164 Bit binary counter. .	22/6	201-	$17 / 6$
BP94	7494 N	Dual Entry 4 Bit Bhift Register	22/6	201-	$17 / 6$
BP95	7495 N	4 Bit Up-Down shift Register	22/6	201-	$17 / 6$
BP96	7496 N	5 Bit shilt register	24/-	21/-	18/6

Data is available for the above Series of Inte
Price $2 / 6$

TTL INTEGRATED CIRCUITS

Manufacturers' "Fall outs"-out of spee. devices including functional units and part functional but classed as out of spec. from the manufacturess wery rigld
specifications. Ideal for learning about I.C's and experimental work, on testing

 UIC40
UICAI

$$
5
$$

5
7

$$
\begin{array}{r}
7 \\
2 \\
2 \\
3 \\
1 \\
1
\end{array}
$$

QUALITY-TESTED PAKS 6 Matohed Trans. OC4445/81/81D 16 Red Spot AF Trans. PNP. 5811100 R Rects. 3A 100-400 PIV
210 A gilicon Rects. 100 PIV. 20 OCl 140 Trans. NPN Swtching 112 A 8CR 100 PTV.
3811. Trans. 28303 PN.
$3200 \mathrm{Mc} / \mathrm{s}$ sil. Trans. NP 3 Zener Diodes IW 33V 5% Nol.
4 High Current Trans. OC 42 Eq. i High Current Trans. OC42 Eqvi....
2 Power Transistor: 1 OC26 10035
5 80liter 4 OC7s Transistors 170. 10 OA202 sil. Diodes Sub-min.
2 Low Noise Trans. NPN 2N 292930
1 sil. Trans. NPN VCB 100 ZT86. 80 OAB1 Dioder
40 OC 2 T Trausistor 4 OC77 Transistor 4 Bil. Rects. 400 PIV 500 mA
5 GET884 Trans. Eqvt. OC4 5 GET883 Trans. Eqvt. OC45
 8 OA95 Germ. Diodes Sub-min. IN69.
3 NPN Germ. Trans. NK T773 Eqvt. 3 NPN Germ. Trans. NK
2 OC22 Power Trang. Germ.
2 OC25 Power Trana. Germ. 4 AC128 Trans. PNP High Gain..... ${ }^{3}$ 2N1307 PNP Switching Trans...... 3 AFl16 Type Trans. 12 Assorted Germ. Dio.......... 4 ACl26 Germ. PNP Trans.....
4 Sllicon Recte. 100 PIV 750 mA

3 AF117 Trans.
7 OC11 Type Tran
 3 BSY 95 A Sil. Tran
3 OC200 Sil. Trans.
2

DTL DIGITAL I.C's

MDTL dual in-line package.
Type MC844P expandable dual 4 -input NAND Power Gate

BRAND NEW, FULL TO MANUFACTURERS SPECIFICATION

$$
\text { Amplifler, dual-1n-line } 14 \text { pin pack- }
$$ $1-24$

$10 / 6$ Price eac
$25-90$
 This is a high performance operat
inputs and low impedance output.

FAIRCHILD (U.S.A.) I.C's RTL

ETL Micrologic Clscails

 MA 703E Linear RF-IF AMPLIFIKR

KING OF THE PAKS Unequalled Value and Quality SUPER PAKS NEW Bi.fâ unterie

Pak No. 0120 Glass Sub-min. General Purpose Germanium Diodes. . 10/-		
U2	60 Mixed Germanium Transistors AF/RF.............	
U3	75 Germanium Gold Bonded Diodes sim.	-
04	40 Germanium Transistors like OC81, AC12	
05	60200 mA Sub-min. Sil. Diodes. .	\%
U6	30 silicon Planar Transistors NPN sim. BSY05A, 2N70	-
U7	18 silicon Rectifiers Top-Hat 750 mA up to $1,000 \mathrm{~V}$,
08	50 sul Planar Diodes 250ma OA/	1
U9	20 Mixed Volts 1 watt Zener Diodes.	
U11	25 PNP Eilicon Planar Transistors TO-5 sim. 2N113	10\%
U12	12 silicon Rectifers EPOXY BY126/127	F
U13	30 PNP-NPN Sil Transistors OC200. 28104	10/
14	150 Mixed Silicon and Germanfum	-
15	25 NPN Silicon Planar Transistors TO-5 sim.	10
U16	10 3-Amp silicon Rectifiers stud Type up to 1000 PIV	10/-
017	30 Germanium PNP AF Transistors TO-5 like ACY 17-22.	
U18	86 -Amp Silicon Rectiflers BYZ13 Type up to 600 PI	10/-
U19	25 gilicon NPN Transistors like BCl08	
U20	121.3 -amp Silicon Prectifers Top-Hat up to $1,000 \mathrm{~F}$	10/-
U121	30 A.F. Germanium alloy Transistors 2 G300 Series \& OC71	10/-
3	30 Madt's like MAT Series PNP Transisto	
U24	20 Germanium 1-amp Rectifers GJM up to	10
U25	$2530 \mathrm{MMc/8}$ NPN Silicon Transistora 2 N 708 , BAY27	
026	30 Fast Switching Silicon Diodes Inse IN914 Micro-min. .	
	Experimenters' Assortment of Integrated Clircuits, untested Gates, Flip-Flops, Registers, etc., 8 Assorted Pieces....	20/-
U29	101 amp 8CR's To-or can up to 600 PTV CRST/ $/ 25-60$	20/-
U30	15 Plastlc silicon Plavar trans. NPN 2N $2924-2$ N2926	10/9
U31	20 sil. Planar NPN trans. low noise Amp 2N37	10/-
U32	25 Zener diodes 400 mW D07 case mixed Volts,	10
U33	15 Plastic case 1 amp filicon rectifers 1N 4000 series....	$10 /$
U34	30 8il. PNP alloy trans. TO-5 BCY26, 28302/4.........	10/
U35	25 Sil. Planar trans. PNP TO-18 2 N2906.	10/-
U36	25 Sill Planar NPN trans. TO-5 BFY $50 / 51 / 5$	10/-
U37	30 Sll alloy traus. so-2 PNP, OC200 $2 \$ 322$.	$10 /$
U38	20 Fast Switching sil. trans. NPN, $400 \mathrm{Mo} / \mathrm{s} 2 \mathrm{~N} 3011 . .$. .	10/
U39	30 RF Germ. PNP trans. $2 \times 1303 / 5$ T0-5........	10/-
U40	10 Dual trans. 6 lead TO-5 2N2060.	10/-
J41	25 RF Germ. trans. T0-1 OC45 NK	
	67	

Code Nos. mentioned above are given as a guide to the type of device in
the Pak. The devices themselves are normally unmarked. FREE $\begin{gathered}\text { One } 10 /- \text { Pack of your } \\ \text { own } \\ \text { owders valued } \\ \text { orree } \\ \sum 4 \text { or over. }\end{gathered} \quad$ FREE

ADI $62 p^{p} p$
MATCHED COMPLE-
MENTARY PAIRE-
OF GERM. POWER
OF GERM. POWEE
TRANEISTORS
For mains driven out-

\section*{}

 $-200 \mathrm{~V}$

TR 80 320

\section*{| up | |
| :--- | :--- |
| 8 | E |

 P}

 P}

tors. Exclusive to BI-PAK......15/- each
PRINTED

14.	3A	,
(TO-5	(TO-66	(TO-48
case)	case)	саве)
PIV each	each	each
80 4/6	5/-	9/6
100 5/-	$8 / 6$	10/6
200 71-	716	11/6
400816	$9 / 6$	13/6
600 10/6	11/6	15/6
$30012 / 6$	14/-	18/-

EX-COMPUTER
Packed with
Packed with semiconductors and com-
ponents. 10
30 bearis give a guarantced

$$
\begin{aligned}
& 30 \text { trans. and } \\
& \text { Our price } 10 \text { boards } 10 / \mathrm{l} \text {, plus } 2 /-\mathbf{P} \text {. \& } \mathbf{P} \text {. } \\
& \hline \text { DUAL-DN-LINE LOW PROFILE SOCKETS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { DUAL-DN-IINE LOW PROFILE SOCKETS } \\
& \text { 14 AND } 16 \text { Lead Sockets for use with } \\
& \text { Dual-in-Line Integrated Circuits. }
\end{aligned}
$$

$$
\begin{array}{lccc}
\text { Order No. } & 1-24 & 25-99 & 100 \text { up } \\
\text { T8014 14 pin type } & 7 / 6 & 6 / & 5 / 3 \\
\text { T8016 16 pin type } & 10 /- & 8 / 6 & 7 / 9 \\
\hline
\end{array}
$$

CADMIUM CELLS FET'S
\qquad

DNPN DIFFU\&ED GILICON PHOTO. DUO-DIODE TYPE IS701 (2N2175) for Tape Readout, high switching and measurement ind1cators, $50 \mathrm{~V}, 250 \mathrm{~mW}$. Our Price 10/- each; 50 or over $8 / 6$ each. FULI, DETAILA.
EX-EQUIPMENT mULLARD AF 117 TRANSISTORS Large can 4 lead Type Leads cut short but stil usable. Real value at 15 for $10 /-$
Silicon MICROWAV DIODES-SYLVANIA (U.S.A.)
IN21B and IN21B MATCHED PAIR B BAND MIXER. Max overall nolse factio 13.7 dB at $3000 \mathrm{~m} / \mathrm{cs}$ BRAND NEW AND boxed. Clearance PRICE.... 8/- PAL

Please aend all orders direct to our warehouse and despatch department.
Postage and packing add $1 / \mathrm{F}$. Overseas add extra for Airmail. Minimum order 10/-. Cash
with onder please.

BI-PAK SEMICONDUCTORS P.O. BOX 6, WARE, HERTS.

For mains driven out-
put stages of Amplifiers

and Radio recelvers. | OUR LOWEST PRIOE |
| :--- |
| OF $12 / 6$ PER PAIR | HIGH POWER BILICIGS PLANAR TRAN-

CONYORA. TO-3.
SISERRANTI ZT1487

BSX21 \& C407, 2N1893

KING OF THE PAKS BI-PAK GUARANTEE SATISFACTION OR MONEY BACK
 KING OF ThE PAKS BI-PAK GUarantee satisfaction or money back

COMPUTER SALES AND SERVICES
 49-53 PANCRAS RD., LONDON, N.W.1. Tel: 01-2785571 (low cost computers and peripherals)

ELLIOTT 803 COMPUTER

Configuration Central Processor with 4096 Core Store.
T:pe 3 Paper Tape Station One Tape Reader 500 characters per sec. (Elliott TS/93)
One Tape Punch 100 characters per sec. (Teletype BRPE E11)
Keyboard console and assoclated Table. Creed Teleprinter, Automatic Floating Point Unit.

ICT HOLLERITH
Type 029.80 column Punch A well-proven electro-mechanical card punch, with duplleating, spacing, and skipping facilities. Two types of keyboard are available for this model Alpha/Numeric and, Alphabetic.
The alphabetic largely resembles a typewriter keyboard, enables alpha punching by the operation of one key.
Supplles 110v. D C. mains for card feed motor. FEATURES: Motor cut-out switch for clearing card jams. Stop Lever for stopping card at the 80th column.

FRIDEN FLEXOWRTERS

Flexowriter programmatic automatic writing machine for automatic letter writing, Data preparation work, invoice format paper work, edge punching cards, cutting continuous cards, preparing unit cards, preparing stub cards, reading edge punched cards, reading/copying punched tape.

Choice of:

Single case, four bank, three bank, double case, keyboards for various uses.
Punch tape output, punch and verify, 115 v . or with transformer for 230 v , operation. A variety of codes to order.

CREED MODEL 90
Verlfier set, consisting of keyboard comparitor, tape reader 92 , tape punch 25,5 -hole or 8 -hole system.

MAGNETIC

TAPE

COMPUTER QUALITY $\frac{1}{2}$ MAGNETIC TAPE CERTIFIED 550 B.P.1. 800 B.P.1. ON 2,400-ft. REELS. GUARANTEED REPLACEMENT IF FAULTED. £6.10.0 A medium speed mpat dericee
for use in dota propesing snd
automation syatems. Reade $\overline{\text { Bn }}$ 6, autamation syatem. Bend 8 B, 6 ,
7, 7. or 8-hole perforated tape, at
specde ap to 250 oharacters per second.
Tape wldths up to 1^{*} can be

 250v, 50cpps. plinch roller eoleonold
24 s . D.C., at 1 smp current. 24v. D.C., at 1 amp current.
Lamp supply $9.5 v$. D.C. 3 mmps. Lamp supply 9.6 v, D.C. 3 nmp
(Lamp rated $12 \mathrm{v}, 36$ watte.)

IBM 151 NUMERICAL VERIFIER
Has been derignued for use on a
table, It can be oseed in centunc-
 Aphabetio and ypecial character
injomation can be verined using a multiple punch procedure.

HAND PUNCHES - 80 COLUMN

The Punch

Is a table-mounted model punch.
For the Berial Punching of alphainumerio Data, Alpha or Multi
Hole Punching is made by depressing two or more keys almultheously.
Function Keys
Belease key for completing the
left-hand movement of the card left-band movement of the card rack when punching ends before
columan 40 . eolumn 40.
Bpace ker
muused columna
kip Key for
unused areas of Card as deman unubed areas of card 88 demar an interchangeable Bkip Bar.

PART USED COMPUTERS AVAILABLE SHORTLY

ICL 1500; PDP 8F: IBM 1440; IBM 1401; SDS 930; ELLIOTT 803; EMIDÉK 1100; HÓNEYWELL 200; NCR 400.

PEAK SOUND
 BAXANDALL LOUDSPEAKER

Saves you money as no other hi-fi speaker can
"Immediata impression was of a thoroughbred speaker."
Hi-FI Newl
"Truly éxcellient resulta." The Gremophone

This is the loudspeaker designed and described by Pater J. Baxandall lof tone cantrol fame) in "Wireless World" which provad beyand question that oxcellant reproduction 'could be obtainad for very modast outlay. Grest saving is achiaved by using the approved Peak Sound dasigns for bullding the Baxandall Speaker, and the simple, ingenious mathod of assembly assures professional standasds in every way. ${ }^{\text {. Special }}$ cabinet in afromosia teak finlsh is $16 \times 12 \times 10$ ins; impedance- 15 ohms: handlas 10 wattI R.M.S. with ease; frequency response $80-16,000 \mathrm{~Hz}$ $1 \pm 3 \mathrm{~dB}, 100-10.000 \mathrm{~Hz})$. This spesker was one of the talking points of Sonex 70 . Send us the coupon and we will end you full details by return. -Also avallable reody buit.

THER PEAK SOUND PRODUCTS include the Englefield Amplifier and Englefield Stereo FM Tuner, high fidelity modules, etc, all of which can save you money when you know about them.

PEAK SOUND (HARRDW) LTD.., ST. JUDE'S RD., ENGLEFIELD GRN.. EGHAM, SURREY. Phone 5316
To Peak Sound, Englefield Green, Egham, Surrey. Details of Peak Sound products, please. to NAME

For

 electronic components fast...P.O. Box 427, 13-17 Epworth St. London E.C.2. Tel: 01-253 7501 Telex: 262341

Brand New Fully Guaranteed Quantity TRANSISTORS \& DEVICES

Tinws molle Rollime gion RaU-ment centres

At full power 0.3% distortion.
At full power- $\mathrm{ldB} / 1 \mathrm{c} / \mathrm{s}$ to $40 \mathrm{kc} / \mathrm{s}$.
LOOK AT THE SPECIFICATIONS!
25 WATT \& 50 WATT RMS SILICON AMPLIFIERS

NEW

Self-powered Stereo Preamplifiers every facility. Slim modern designs, silicon transistors, FET's and IC's.
*FETI54 Stereo
*IC stereo $\quad £ 24.10 .0$ PA 2510 transistor all sillcon differential input 400 mV sensitivity 25 watts Rms into 8 ohms. Supplied with edge connector harness ize $5^{\circ} \times 3^{\circ} \times 2^{\prime \prime}$
PA 5012 transistor version 50 watts Rms into 3 to 4 ohms. Size MU 442. Power supply for one or two PA 25 or one PA 50 PA 25 E7.10.0.

PA 50 E9.10.0.
MU 442 f6 No soldering-just edge connectors

SINCLAIR $Z 30$ 75/-, project 60 amp \&8.10.0, Pz5 79/6, EQUIPMENT Pz6 £6.19.6, 250 45.9.6, Pz8 $\mathbb{4}$.19.6. स Two Z30 Pz5 up 60 pre-amp (usually $\mathbf{1 2 3 . 1 0 . 0 \text {) } \& 1 9}$ (or with P_{26} in place of $\mathrm{Pz}_{2} \mathrm{E21}$)

TEST EQUIPMENT

For Educational, Professional and Home Constructors special prices for quantities

AFI05 $50 \mathrm{k} / \mathrm{vole}$ multimeter (illus.). Price E8.10.0 p.p. 3/6. Leather case 28/6.
$200 \mathrm{H} 20 \mathrm{k} / \mathrm{volt}$.
Price E3.17.6 p.p. $3 / \mathrm{s}$

THL $33 \mathrm{~A} 2 \mathrm{k} / \mathrm{volt}$. Price 54.2 .6 P.p. $3 /$ -
Leather Leather case 22/6.

TE65 Valve voltmerer (Illus.). $\mathbf{\varepsilon 1 7 . 1 0 . 0 ~ p . p . ~ 7 / 6 . ~}$

VM5I Transistorised AF/RF multimeter.

TE20D RF generator
(illus.). Price 15 p.p. $7 / 6$ TE22D Matching audio generator.
Price

TEIS Grid dip meter Price $£ 12.10 .0$ p.P. $3 / 6$ TO3 Scop (illus.). 3" tube Price 837.10 .0 p.p. $10 /$

PANEL METERS COMPLETE RANGE
IN STOCK-
SPECIAL PRICES
FOR QUANTITIES
*FULL RANGE IN THE LATEST CATALOGUE SEE FOR YOURSELF

NEW $\frac{1}{4}$-TRACK TAPE DECK

British made, takes 7^{*} spools, operates horizontally or vertically, piano key operation. Fitced three-speed Marrio $13 \times 10 \times 5 \frac{1}{2}$ in.

E.A.C. DIGIVISOR mk. II At a fraction of normal price. One inch character size. Ligh beam lens operazed Character yame 6.3 voltes. point. Overall size decimal $14 \times 21 \%$ Brand : new.
price $79 / 6$.

STC TIME DELAY MODULE Ideal for experimenters,
educational projects as for practical
ades.
adiustabs. Delay
3-15 ses. adiustabe $3-15$ secc. Oper
ates 912 vots. Hesivy Duty
Relay Contacts. Comale Relay Contactcs. Complete
with suggested applications with suggested applications
sheet. Price $35 /=$ or 3 for

PORTABLE E9.10.0. GEIGER COUNTERS Carriage 15/
 FOR MEASUREMENT Supalied activit with instructions haversack, cables and
probe. List price
670 orr. prica, new
Our
urted. tested. complete
with 4 coll $\mathrm{H} . \mathrm{T}^{2}$ Eliminator. Dosimeters 0-50r 12/6. 0-150r 10.
 S (6)
ONLY
fi7.10.0 1 Tannor Lom comprising Control Unit, headphones, etc., 12 V D.C. operation. Low battery drain. 8 watts power output. meetings, sports days fiactories, outdoor meetings, sports days, fractories, garden
fetes, etc, speakers can be spaced effectively over, hundreds of yards. Also has talk back facility. Guaranteed Brand New in sealed QUANTITIES AVAILABLE FOR EXPORT

HENRY'S STOCK EVERY TYPE OF COMPONENT YOU NEED A CATALOGUE IS A MUST

HENRY'S LATEST CATALOGUE NEND:

350 pages fully detailed and illustrated. Al audio and electronics complete with $10 /$ value discount voucher for use with purchases Price 7/6 p.p. $2 /-$ A must for the home constructor and
FREE

COMPLETE STEREO SYSTEM (usually £50) Price $£ 39.10 .0$

Britlsh made 5 - 5 amplifier input for ceramic cartridge tuner/aux ete. Fulc controls, output for 8 to 15 ohm speakers fitted headphone 50 or 3000 with 9 TAH/C diam. Pair EMI 10 watt speakers with twin tweeters and cross over. Polished speaker, cabinets and plinth

BUILD THIS VHF FM TUNER

 SMULLARD TRANSISTORS 300 ke/s BAND.

YOU CAN SAVE 25\%

BRAND NEW
FULLY GUARANTEED
 SL72 B £25. SL75 B 631 . SL95 B 639 . A70 mkII El 1.19 .6.
 SPECIAL OFFER. Above supplied with cartridge GARRARD TURNTABLES 9 TAH/C diam, add $\mathbf{\varepsilon 2}$, magnetic 940 add $£ 3.10 .0$, with $G 80$ add 88.10 .0 . De-luxe plinths and covers for above (except FREE COMPLETE LIST
A70) Price 88.10 .0 p.p. 6/. Goldring GL69 deck only. $£ 22$ p.p. 2/6. With G800 $£ 30$ p.p. 7/6. With G800 plinth and cover $£ 39.10 .0$ p.p. $10 /$-.
Garrard Model 50 ©8.10.0. 30001 m £9.15.0 (fitted 9TAHC diam. carts.) p.p. 7/6. Plinths) covers 99/6 p.p. 8/-

ELECTRONIC ORGANS

*MODERN ALL BRITISH TRANSISTORISED DESIGNS AVAILABLE AS KITS OR READY UILT
*VENEERED CABINETS FOR ALL. MODELS
t 49 NOTE. 61 NOTE SINGLE MANUAL DESIGNS ALSO TWO MANUAL 49 NOTE
HKITS AVAILABLE IN SECTIONS AS REQUIRED *HP and CREDIT SALE FACILITIES
When in London call in and try for yourself. FREE 16 PAGE ORGAN BROCHURE COVER ING ORGANS IN KIT FORM AND READY BUILTPETER ELVINS.

H1-FI equipment to suit EVERYPOCKET

*Complete systems and individual units at special low prices-choose from 100 selected stereo systems. Call in for a demonstration when in London.
*Free 10-page stock/systems List No. $16 / 17$, LOW CASH AND CREDIT/HP PRICES
(Credit terms for purchases from $\mathbf{6 3 0}$-caller only.)

8ectro-Yect tured for high acceleration requirements by Sperry Gyroscope Co. Size: Length $z^{\prime \prime}$, dia. $9 / 16^{* \prime}$ (ineluding mount). Please state vertical or horizontal mount and voltage. $\mathbf{E 2 . 5 . 0}$ each. Carr. Paid.

SPECIAL OFFER. En closed Relay, complete with base. Brand New. Type MQ308 $600 \Omega 24 \mathrm{v} .4 \mathrm{c} / \mathrm{o}$. Siz $1 \frac{1}{2 "}^{\prime \prime} \times 1 \frac{1}{3}^{\prime \prime} \times \frac{3^{\prime \prime}}{12}, 45$ per dozen 12/- each.
Type MQ508 $10,000 \Omega 100 \mathrm{v}$. $4 \mathrm{c} / \mathrm{o} .65$ per dozen. 12/-each Type MQl08 $40 \Omega 6 v .4 \mathrm{c} / \mathrm{o}$ C6 per dozen, $13 / 6$ each Type MQ208 $150 \Omega 12 \mathrm{v} .4 \mathrm{c} / \mathrm{o}$ C6 per dozen. $13 / 6$ each Carr. Paid.

NEW "F.I.R.E." PLUG-IN RELAY.-115v. Coil $50 / 60$ c.p.s 3 heavy ducy silver change-over con (17/6. Carr. Paid.

SCHRACK ROTARY STEPPING RELAY RT304

 48 v . coil (280 ohm). The relay ha 48 basic segments shorted in step plates (banks of 12). There are 2 secondary H/Duty contact set which changes over and back with each step; (2) two H/Duty changeovers which change over on each 12 th step and return on the following pulse.Size: Base $34^{n} \times 1 \frac{1}{*}^{*} \times 41^{n} \mathrm{hig}$
 Size: Base $34^{\prime \prime} \times 18^{*} \times 4 l^{\prime \prime}$ high. New in maker's
packing, also, as above, but 110 v . $(1,290$ ohm coil), \&4.15.0. each. Carriage paid.

NEW DIAMOND "H" 240 v. A.C RELAY.-3 heavy duty silver change over contacts. 17/6. Carr. Paid.

DIAMOND SEALED RELAY TYPe. BR 115 C.IIT.-
IC 26 v . IS0 4 P.D.T. Completely encapsulated in heavy gauge
brass case, glass sealed brass case, glass sealed terminals, very robust
17/6 each. Carr. Paid

MINIATURE B.P.L. $500-0$

13/16* Diam. scale. Through-Panel mouncing. Hermatically sealed. 45/-

Carr. Paid.

SYLVANIA MAGNETIC SWITCH-a magnetically activated switch operating in a vacuum. Switch speed- Ams. temperature -54 to + 3 amps. at 120 v . 1.5 amp . at $240 \mathrm{v} .10 /-$ each. $80 /$ - per dozen. Special quotations for 100 or over. Reference Magnets available $1 / 6$ each. Carr. Paid.

SYLVANIA CIRCUIT BREAKERS gas filled

 providing a fast thermal response between 80° and $180^{\circ} \mathrm{C}$. Will withstand pressures up to $2,000 \mathrm{lb}$. $54 . / \mathrm{in}$. rated 10 amp . at 240 v . continuous. Fault currents of 28 amps . at 120 v . or 13 amp. at 240 v . silver contacts. Supplied in any of the following opening temperatures (degs. cent.) $80,85,95,100,105,110,120,125$, $130,135,140,145,150,155,160,170,175$. 10/- each or $80 /$ per dozen. Carr. Paid.PERSONAL CALLERS WELCOME.

THORN DIGITAL INDICATOR. A modular unit easily
read through a wide angle of view read through a wide angle of view
even under bright lighting. 12 characters, 0 to even decimal point and minus sign. Characters $13 / 16^{\circ}$ high on acrylic, edge-lit by I watt midget lamp. Front panel
 black finish. Supplied, with 12 lamps. Choice of the following ratings 6v. IA. or 12-14v. .08A. 44.0 .0 each, spare lamps dozen. Carr. Paid
NEW HYSTERESIS MOTORS BY WALTER JONES. Type $14050 / / 2,240 \mathrm{v} .50 \mathrm{c} / \mathrm{s} 1500$ RPM cont rating, output 2.0 oz./in.
Size: Length (less spindle) Spindie $1 \times 3 / 16^{2}$. Weight 3 lb . Maker's price in region £6.10.0. each. Carr. Paid.

BRAND NEW "KLAXON" GEARED MOTORS $230 / 250$ v. 250 r.p.m. Cont. 451 b ./in. Few only. $£ 25.0 .0$. Carriage El.10.0.

"Parvalux" Reversible

 100 RPM Geared Motor Type S.D.14, 230/250v. A.C.22 Ib. $/ \mathrm{ln}$. Standard foot mounted, variable angle finai drive. Removable 9 cooth chain spiggot on $3 / 16^{\circ}$
spindle. Ist class condition. spindie. Ist class condition.
ET.10.0 each. P. \& P. IO/.
 Also limited number only as above. Without spiggot. Also limited number only as above.
Brand Now. $£ 12.10 .0$ each. P. \& P. $10 /-$

NEW "CARTER ELECTRIC" 12 r.p.m. MOTOR,-Non-reversible, $t^{\prime \prime}$ spip.m. ${ }^{2}$. 240 v . A.C. Open frame with cast aluminium cased gearbox. Stoutly constructed. Approx. 25 lbs ./in. Overall size (approx.) $3^{\prime \prime} \times 3^{\prime \prime} \times 4^{n}$ plus
spindle. $45 /=$. P. \& P. $5 / \%$.

PRECISION RESISTORS

Electro-Thermal Precistior $2.4 \mathrm{~K} \pm 0.1 \% \mathrm{l} \%$ each Shall Cross $3400 \Omega 0.5 \% 6 /$ each Alma $141.46 \mathrm{~K} \pm 0.1 \%$ 10/- each Alma $50 \mathrm{~K} \pm 0.05 \% 15 /$ each. RIL. Type 2. $6.666 \mathrm{~K} \pm 0.01 \% 20-/$ each
RIL Type $9.560 \Omega \pm \pm 1 \% 2 / 6$ each.
NEW "CROYDON" 240v. A.C. reversible motors. $1 / 50$ th HP, 1,500 RPM. Size $3 \mathrm{~s}^{\prime \prime}$ high $\times 5^{\prime \prime}$ long plus spindle $18^{\prime \prime} \times 1^{\prime \prime}$ dia. A beautiful motor at less than halfmaker's orig-
inal price. $\mathbb{E 6 . 1 0 . 0}$ each. Carr. Paid.

TRIMPŌTS. "Painton" Types: 200S-1-502 5K Ω; $200 \mathrm{~S}-1-103$ 10K $\Omega ; 200 \mathrm{~S}-1-501 \quad 500 \mathrm{~K} \Omega ; 2200 \mathrm{~S}-1-503$ $50 \mathrm{~K} \Omega ; 224 \mathrm{P}-1-2022 \mathrm{~K} \Omega ; 224 \mathrm{~S}-1-102 \mathrm{IK} \Omega ; 200 \mathrm{~S}-1-203$
$20 \mathrm{~K} \Omega ; 275-1-252$ 2.5K Ω. "Ril" Type: 321 10K. "Morganite" Type: 80 IK Ω. "Mec" Type: 025 (tubular) $200 \Omega ; \mathrm{T} 20 \mathrm{P} 50 \Omega$. All types $12 /-$ each. Carr. Paid.
GARDNERS CHOKES. Type C237: 20 H I80MA 30/- P. \& P. 5/-. Type C570: 0.05H 3.5A 35/-P. \& P. 5/-Trpe C549: O.IH 2.5A 20/. P. \& P. 51-. Type C27I: 5H
$500 \mathrm{MA} 37 / 6$ P. \& P. $7 / 6$. Type C576: $0.05 \mathrm{H} 7.5 \mathrm{~A} 50 / \mathrm{l}$ P. \& P. 10/-. Type C527: 0.5H 4A 50/- P. \& P. 10/Type SK7486: 35 MH 3A D.C. 30/- P. \& P. S/
F97/9: $25 H$ 60MA $8 / 6$ P. \& P. 3/6. Cirr. Paid.

"KNOWLE" (U.S.A.) MINIATURE MICRO. PHONE CAPSULES. Impedance 2000 Ω. Output about 100 dB at I KC (Type A). As above, but output 60 dB (Types B \& C), as used in miniature hearing-aids, bugging devices, etc. All rested. 20!- each: Carr. Paid. AIso KNOWLE M/C SUB-MINIATURE EAR TRANSDUCERS. Type 1530 . Size $7 / 16^{\prime \prime} \times 7 / 32^{\prime \prime} \times \frac{1}{2}$ thick. 15/- each. Carr. Paid

ATLAS SUB-MINIATURE LAMPS type LII22 and LII23-a high efficient and low power demand. Ratings 5 v .
$60 \mathrm{ma} .35 \pm 25 \%$ lumens. Life expet$60 \mathrm{ma} .35 \pm 25 \%$ lumens. Lifo expect-
ancy 60,000 hours or at 6 v. 70 ma.
$75 \pm 25 \%$ inmens It Uncapped 6.3×3.1 hours. Dimen$9.1 \times 3.1 \mathrm{~mm}$. Ideal for instrument ligh 12.7 mm . capped in excess of $12 /$-each, our price $30 /$ per dozen or boxes of
50 at 65 per box. Carr. Paid.
CENTRIFUGAL BLOWER BY AIR CONTROL LTD. 240v. AC. $9^{\prime \prime}$ dia. 2,850 RPM. 1/10th HP. Ideal for organ blowing, powerful, low noise level. Ist class
condition. Photo on request. $£ 12.10 .0$. Carriage $£ 1$. WE WELCOME OFFICIAL ORDERS
FROM ESTABLISHED COMPANIES EDUCATIONAL DEPTS., ETC.

New "Magnetic Devices"
solenoid 240v. A.C. Type 42117, I to 3 lb . pull, frame size $1 \frac{1^{\prime \prime}}{} \times$ $1 \frac{1}{6} \times 1$ ". 20/- each. Carr. Paid.

K.L.G. Sealed Terminals. Type TLSI AA, overall
length $11 / 16^{\circ}$, box of $100,25 \mathrm{~s}$. length $11 / 16^{\circ}$, box of $100,25 \mathrm{~s}$.
Type TLSI BB, overall length
lox box of 100.35 s . Carr. Paid. Welwyn high value Resistors Type GA 36501. Values between 9.4 and 10.9 kilo-meg $\pm 1 \%$, glass encapsulated $15 /$-. Carr. Paid. WELWYN" RESISTORS.-Type HI2. One value only. I kilo-meg $\pm 20 \%$. 5/-each. (Min. order 2.) Carr. Paid. Torn ${ }^{3}$ change-over Key-Switch. Locking or spring-return, as required determined by reversing Actractive plastic prestle. Available red, green, prey, cream. Limited number only. $12 / 6$ each. Carriage paid.

SERVO POTENTIOMETER By "Precision Line" U.S.A. Size
15. Continuous track with 2 platignum contact wipers set a 180° resistance 300 ohm $\pm 5 \%$ LIN \pm
column.
. ball bearing spindle
These column. These Potentiometers were purchased by tor at a cost of approx. 25 ead.
price $75 /-$ each. Carr. Paid.

Send an S.A.E. for New Comprehensive I.C. and Semiconductor price llsts. INTEGRATED CIRCUITS NEW LOW PRICES • FULLY GUARANTEED sca

rea		motorol		1-9	$10+$	$25+$	mullar.	R
casa00	39/6	MC724P		17/8	15/	1316	TAA241	82/6
3005	25/8	MC788P		${ }^{1917}$	17/18	18/-	242	85/-
11		MC789P		${ }_{\text {cher }}^{17 / 8}$	134/-	${ }_{29}^{13 / 6}$	243	30/-
12	19/6	MC792P		$17 / 18$	15/-	13/6	268	15/6
13	24/0	MC799P		$17 / 18$	15/m	13/6	293	19/6
18	87/-	MC1303P		57/6			300	$35 /$
	19/8	$\mathrm{MCl}^{\text {M }}$ (1304P		79/8				+
19	19\%-	$\mathrm{MCF}^{\text {4900 }}$		89/8			32	
20	27\%	MC788F		10/6	-		320	
20 A	37/-	MC838P		130\%	-	115\%-	350	55-
21	34/-	${ }^{3}$					438	296
22	27/6	M 614301		60\%		38.6	521	28/6
23	28/-	parcomid					22	721-
26	21/-	FAKOm					530	98/-
28 A	18/6	L900	9/8	91	8/-	-	811	89/-
28B	24:-	L914					TAB101	19/8
29	19/6	${ }^{\text {L923 }}$	12/6	11/9	11/-	-	TAD100	39/6
29A	38/6	L702C	${ }^{361 / 8}$				tadin	38/6
30	31/-	${ }_{L 7200}$	21/.	${ }_{1918}$	18/-	${ }_{17 \%}^{17 \%}$	mullard	
35	27/-	27110	$21 /-$	1916	18/-	17\%		
${ }^{36}$	18/8	L716C	56/-	30/-				
38	296							
41	25/-	texas tti		muli	RD TTL		Plebsex	
42	25/-	8N7400N		FJH1		17/6	BL402A	42/6
43	29/-	8N7401N	18/-	FJH1		${ }^{1718}$	SL403A	42/6
44	27/-	8 NT 402 N	18/-	FJH1		27/6	8L7010	29/6
45	$27 /-$	8NT7404N	18.8	FJHit		${ }_{18 / 3}$	SL7020	29/6
46	18/6	8N7405N	18/3	FJH2				
47	29/-	8N7410N	18/-	FJJ10		27/6		
48	455-	$8 \mathrm{SN713N}$	22/-	FJJ12		278		
48	351-	8N7420N	18/-	PJJ14		${ }^{82 / 6}$		
50	$39 / 6$	${ }_{\text {8N7 }}$	${ }_{18 / 6}^{18 / 6}$	${ }_{\text {FJJ }}$		${ }_{62 / 8}^{37 / 8}$	electri	
51	28/-	8NGAON		FJJY20		168/		
52	${ }^{38 / 8}$						PA230	22/6
${ }_{54}$	12/-	Data Bheet	all 1	per typ	except	L900/	PA234	21/6
85	24/-	${ }_{8}^{914 / 9 \text { Pin }}$ To-5	Pless	ders,			PA237	38/-
59	27/-	14 Pin Dua	-matim	I.C. Ho	ers, 12/-		PA246	57/8
64	35/-	16 Pin Dua	-ln- Lln	I.C. Ho	ers, 12/6		PA424	51/-

Post and Packing $1 / 60$. per order, Data sheet Iree If ordered with ICs. Send $2 / 6 \mathrm{~d}$. tor catalogue

28 CRICKLEWOOD BROADWAY, LONDON, N.W. 2
CALLERS WELCOME 9.5.30 SATURDAY 9.8 SEE OUR MAIN ADVERTISEMENT ON PAGE 78 FOR SEMICONDUCTORS

ENAMELLED

COPPER WIRE
S.W.G.
$\frac{1}{2} \mathrm{lb}$. Reel
1 lb . Reel
18-22
11s. 3d.
16 s . 6 d .
23-30
11 s . 9d.
17 s , 6 d .
31-35
12s. 3d. 18s. 6d.
36-40 15 s . 24s.
41-44
17s. 9d. 29s. 6d.

Orders despatched by return of post. Please add $1 /$ - per item P. and P.

Supplied by:

BANNER TRANSFORMERS

 (Dept. WW), 84 Old Lansdowne Rd. West Didsbury, Manchester M20 8WX
THE BIG CLEAR OUT IS ON!

Audio Visual equipment can now be part exchanged for 1970 Models at Dixons

Up to date training equipment gets your message home faster and more effectively. Modern ease of operation lets you concentrate on the real job of education - operating clumsy equipment can now be a thing of the past. It's time you traded in obsolescent projectors etc for the latest models - Dixons offer more than a fair price. More important you can move into the Seventies properly equipped - Dixons supply all makes.

Write or phone today for quotations and specifications. Full leas ing facilities, Nationwide service

Dixons AudioVisual

A Division of Dixons Technical Ltd
27. OXFORD STREET LONDON W.1. Tel: 014378811 ww-084 FOR FURTHER DETAILS

© electronics, P.O. BOX 26, aylesbuay, bucks.
 SEND S.A.E. FOR LISTS
 GUARANTEE
 Satisfactlon or money refunded.

TRANSISTORISED UHF TUNER UNITS NEW AND GUARANTEED FOR 3 MONTHS

Complete with Aerial Socket and wires for Radio and Allied TV sets but can be used for most makes.
Continuous Tuning, 90/-; Push Button, 100/-.

STYLI

TC8, GC2, GP59, CG8, DC284, Stereo 105, 106, 208, 2/-each (individually boxed); ST3/5, ST8/9, 9TA, 9TA/HC, CP91, 8/-. Diamond. Post and packing 5d. per item for orders under 24.

TAPES (Polyester PVC)
4 in. L.P., 8/6; 3 in. L.P., 5/6.
Standard play: 600 ft . 5 in., $8 / 6 ; 900 \mathrm{ft}$. $5 \frac{3}{\text { sinf., }} 10 / 6 ; 1,200 \mathrm{ft} .7 \mathrm{in}$., 12/6.
Long Play: 900 ft .5 in ., $11 /-$; $1,200 \mathrm{ft} .5 \frac{3}{\mathbf{3}} \mathrm{in}$., $13 /-; 1,800 \mathrm{ft} .7 \mathrm{in} .$, 18/-.
Double Play: $1,200 \mathrm{ft} .5 \mathrm{in} ., 16 /-; 1,800 \mathrm{ft}$. $5 \frac{3}{4} \mathrm{in} ., 19 /-; 2,400 \mathrm{ft}$. 7 in., 28/-.
Philips type Cassettes (in plastic library pack): C60, 10/6; C90, 12/6; CI20, 19/6.
Post and packing $1 / 6$ on all orders.

ACOS CARTRIDGES

GP91-1-Medium output Mono Crystal, 21/-inc. P. Tax. GP91-3sc-High output Mono Crystal (TC8H, TC8M, BSR, X3H, X3M), 21/- inc. P. Tax.
GP93-I-Stereophonic Crystal, 24/9 inc. P. Tax. GP94-I-Stereophonic Ceramic, 31/- inc. P. Tax. GP95-1-Stereophonic Crystal, $24 / 9$ inc. P. Tax. GP96/I-Sterophonic Ceramic, 31/6 inc. P. Tax. 9TA HC Cartridge 37/6.

ADD 5d. PER ITEM FOR POST AND
PACKING FOR ORDERS UNDER 24 PIECES

TERMS, CASH WITH ORDER ONLY
POST \& PACKING PAYABLE ON ORDERS UP TO £ 3 , AFTER THAT, postage faEE

AC FAN
Bmall but very powerful malns motor with 5 in. blades. Ideal for cooling equlpment or as extractor. sillent but very efflolent. 17/6, post $4 / 6$. Mount from back or front with 4 BA screws.

Double Leaf Contact

Very slight preasure closes both

 contacts. $1 / 3$ each. $12 /-$ doz Plastic push-rod suitable for operating, 1- each, 9 - doz.

230v. soHz. Capacitor a.tar. MOTOR Reverable. Normal construc. tion. Size: 3 tin. dis. x 2in. deep. Approx. $1 / 40$ th h.p.
$32 / 6$ with Condenser, plus $4 / 6$ post and ingurance.

INSTRUMENT KNOBS

 tini spindie, gd, each, $8 /$ - dozen. Ditto
with metal disc, 1 - each, $11 /$ dozen

> MIDGET OUTPUT TRANSFORMER

(1)
 inin, primary impedance $\$ 50 \mathrm{a}$. CConnec-
tion by fying leads, $4 / 6$ each. $48 /$ doz MIDGET OUTPUT
 inn. Pitmary impedance 1320 . Prnted THE 5×5 WATT STEREO AMPLIFIER Made by one of our most famous makers for a de-luxe player. This amplifer has a quality of reproduction muoh generously sized unsins power pack. Controls include bass, treble, balance and volume. suituble for 8-16 ohms impedance apeakers with crosanvers for tweeter mid-range and bass thus giving option of 1 , 2 or 3 speakers per channel.
Offered at about one-third of its original price, only Otrered at about one-third of its original price, on CHART RECORDER MOTOR
 of lyes 1 rev, per 24 hours. $19 / 6$.
IGNITION (E.H.T.) TRANSFORMER

12-VOLT EXTRACTOR FAN BY DELGO

 Length approx. 8in. Exceptional bar-
gatn. $27 / 6$ plus $/ 6$ post and insurance. 4-PUSH SWITCH
Ideal to control fan heater, etc. 3 on switches and 1 ofe 48/-dazen

MAINS TRANSISTOR POWER PACK

 Forking). Takee the place of any of the following batteries:
PP1, PP3, PP4, PP6, P77, PP9, and others. Kit comprisee : masins tran flormer rectifier, smoothling and load resistor, condensers and iotructions. Real anip at only 18/6.
plus $3 / 6$ postage.

3 DIGIT COUNTER
For Tape Recorder or other application,
re-settable by depressing bution. Prtce $\mathbf{S / 6}$.
ISOLATION SWITCH 20 Amp D.P. 250 Volte. Ideal to control
Water Heater or any other a Water Heater or any other appliance.
Weoon indicator shoys when current i. Neon indicator shows whee
on. $4 / 6 ; 48 /-$ per dozen.

Almost LIGHT zero resietant
Almost zero resigant in sunlight
increases to 10 K . Ohms in dry or dull

5A 3-PIN SWITCHED SOCKETS An excellent opportunity to make that bench dis board you have
needed or to stock up for future jobs. This month we ofrer 6 Britith made (Hicratt) bakelite furb mounting shuttered switch
sockets for only $10 /-\mathrm{plus} 3 / 6$ post and sockets
insurance. (20 boxes post free.)

MOTOR WITH GEARBOX Yery powertul 7 r.p.m., operates
standard A.C. nains. $29 / 8$, plus $3 / 6$ P. $\&$ P.

230 VOLT

TRANSDUCER
Made by Acos, reterence No. 1.D. 1001 . For
 prinee es. Our price 49/B. Brand new and
unued. SCREWS
100 assorted 4BA and 6BA, vatriour lengths, 4/8. 100
asorted self-tappers, $5 / 8$. Bcrew users plesse Bend for

PRINCESS AUTO CHANGER FINAL OFFER AT 49/6

The most amazing bargaln everl \mathbf{A} brand new Auto The most amazling bargain ever A Drand new sute
change record player for less than the price of a single
 to offer the Balfor Princess spored Autochanger-s
really fine machine at about one-taird of lte regular price. Balfour has two unlque featares (1) A patented
 brush syatem which sutomatically eleans atylus after each record playing and (2) at slut oft the plck up lecks itsell into its recess-other features
 this month ior only $49 / 8$ plus 8 gh post and packing. One polnt, theeere changere have been to France and back and the ribmitions of the Journey, eto., may have loosened screws or
otherwise put them out of adjustment. However, with each we supply a 18 paso errvice otarwise nat tault finding chart which to so detalled that if neeessary you could completelely re build the changer. so this is truly a bargatin that you will not want to miks so order today ofter close Aurust 30 th

I HOUR MINUTE TIMER

Made by ramous Smiths company, these have a large clear dinl, size 44 in. $\times 3$ inin., which can be set in minutes up to 1 hour. Attar preset period the bell rings. Ideal for processing. a memory joger or, by adding slmple lever, would operate miero-switch. 22/6.

VARIAC CONTROLLERS

With these you can vary the voltage applied to your ctrcuit from Wlth these you can rath the voltage applide to your ctrcuit from
 exequipment buil little used and in every way ai good as new. Any not so. will be exchanged of cash refunded. 2 amp 24.19 .8 .
4 amp 28.19 .6 .8 amp

DISTRIBUTION PANELS

Just what you need for work bench or lab. $\{\times 13 \mathrm{amp}$

sockets in metal box to take standard 13 amp funed plugs and on/onit switch with neon warning light. Supplied complete with 7 feet of heavy
cable. Wired up ready to work. $39 / 6$ less plugi $45 /-$ with Alted 13 amp plug; $47 / 6$ with fitted 15 amp plug, plus $4 / 6$ P. \&I I STANARD WAFER SWITCHES

24 HOUR TIME SWITCH

Mains operated. Adjustable Contacts give on/off per 24 hours. Contacts rated 18 ampa, repeating mechanistra so ideai for zhop window
controt, or to switah hall lighte (anti-burglar precaution) while you control or to switch hall lighte (anti-burglar precaution) while youn
are on holiday. Made by the femous 8 smiths
Company. This month
 INTEGRATED CIRCUITS
A parcel of litegrated circulis made by the farouos Plesseg CCorp pany. A once in a ilifetime

 of each. Complete parcel only \&1 post paid or Liat and all tectincal data.

RE-CHARGEABLE TORCH

Neat filat torch, fits unobtrustvely in your pocket, containg
2 Nicad oells and bult-m charger. Plugs
Into And cha oelle sad bulth-il charger. Plugs into mhaver adaptor made, sold
$19 / 8$ each.

VARYLITE

Will dim incendescent lighting up to 600 watt from full brilliance to out.
Fitted on M.K. fuabl plate, same size and fixlag as standard wall switch may be fitted in pliace of this, or mount
plastlc box with oontrol knob $£ 3.18 .6$.

I WATT AMPLIFIER \& PRE-AMP
transiators-highly efficient mado for use with tape-
head $G 4$ but equally suitable for microphone or plek up. Limited quan equally suitable for microphone or plek up.
 TANGENTIAL HEATER UNIT Thls heater unit is the very latest type, most effliclent, and quiet running. Ts as fitted in Hoover
Bnd blower heaters costing E 15 and more. We have and blower heaters costing $£ 18$ and more. We have
a few only. Comprises motor, impeller, 2 kW . a few only. Comprises motor, impeller, 2 kW .
element and 1 kW . element allowing switching 1 , element and ikw. element allowing switching 1 ,
2 and 3 kW . and with thermal safety cut-out. Can
be fitted into any metal line case or cabinet. Ooly be fitted into any metal line case or cabinet. Only
need control switch. $59 / 6$. 2 kW . Model as above need control switch. $59 / 6$. 2 kW . Model as above
except 2 filowatts $39 / 6$. Postage and lnsurance except 2 kilowatts 3 .
6/8. Don't migas this.

TOGGLE SWITCH
3 amp 250v. with fixing ring. $1 / 6$ each
$15 /-$ doz.

MICRO SWITCH

5 smp. changeover contacts. $1 / 9$ each
$18 /-$ doz, 15 ampmodel $/$ /ea. or $21 /-d o z$ MINIATURE EAR PIECE
As used with imported pocket radios. $1 / 6$ each $15 /-\mathrm{doz}$.

13 AMP FUSED SWITCH Made by G.E.C. For connecting water
heater etc., into 13 amp ring maln. Flush heater stc., into 13 amp ring maln. Flush
type $3 / 6$ each $30 /-$ doz. Metal boxes for surface mounting $1 / 6$ each $15 /=$ doz. I3 AMP SPUR UNIT By G.E.C. for connecting clock, etc., to ring maln. Pull
out fues. Flush mounting. Cream. $2 / 6$ each; $24 /=$ doz SUPPRESSOR CONDENSER TCC
.1 mifd. 250 v . A.C. working metal cased
with fixing lug. $1 / 8$ each $18 /=$ doz,

Glass encapsulated reed s witch in 24 -volt solenold, neatly
enclosed in peat metal case, size $2 \mathrm{tn}, x$ tin each. Operates from 24 volts D.C or from A.C. malins using and condenser ($3 / 6$ extra

SHEET PAXOLIN
Ideal for transis
G.E.C. MULTIPLE SWITCHES

Metal boxes (with cable knockouts) sprayed
allver with cover and switch mounting grid
14 For 8,10 and 12 switches $8 /-, 6$ switches $5 / \%$
G.E.C. Clipper switches

For the above boxes, 5 amp, A.C. rating, one-
ए ate $2 / 6$, secret $2 / 6,15 \mathrm{amp}$ one-way $2 / 6$

THERMOSTAT
 connected by $33 \mathrm{in} .\mathrm{of} \mathrm{aexibic} \mathrm{tablog}$. a plunger moves through approx. th. This could be used to open valve on ventilator etc. $29 / 6$ plus $4 / 6 \mathrm{p}$. \& ins.

HI FI BARGAIN
FULL F1 12-Mroz LoUDSPEAKERR, loudspeakers that Fo have ever oflered, produced by one of the conutrys most
tamous makers. It has a die-cast metal tamous makers. Tt has a die-cast metal
frame and is strongis recommended fiame and is strongly recommended
for HI -Fi load and $\mathbf{R h y t h m}$ Gultar and prblle address. 44,000 Maxwells-Power Handling 15
watta B.M.S.-Cone moulded fibre-Freq. response $30-10,000$ a.p.s.- \quad pecify 3 or 15 ohmis-Main resonance 60 c.p.s.-Chasais Dlam
12 in . 12 t over mounting lugs-Bafe 12in. -12 it over mounting lugs- Bapfe hole 11 in . Dlam.dlam. - Overall helght हुin. A $£ 6$ speaker offered for only

SPEEDS
[10

Where postage is not stated then orders
over $E 5$ are post free. 8 elow $E 5$ add 219.

ELECTRONICS (CROYDON) LTD
Dept. WW, 266 London Road, Croydon CRO-2TH

181
 ELECTRONDE EOMRENENTE LTD = BETTER QUALITY, SERVICE, PRICES \& LARGEST STOCKS

[^11]

SILICON	RECTIFIERS							
PIV	50	100	200	400	600	800	1000	1200
IA	$2 / 9$	$3 /$	$3 / 3$	$3 / 6$	$3 / 9$	$4 /-$	$4 / 8$	-

PIV	50	100	200	400	600	800	1000	1200	0
1 1A	219 $3 / 10$	31.	3/3	$3 / 6$	3/9	4/-	4/6		
3A	3/-		5\%	$4 / 6$	\%	61-			
10A	-	$10 / 6$	11/6	13/-	$15 / 6$	$17 / 6$	19/6	25/-	32
17A		$11 / 6$	12/6	$15 / 6$	18%	$19 / 6$	24/.	$31 / 6$	37/6
35A		$27 / 6$	32/=	39/6	$47 / 6$	54/-	62/=	70\%	$901=$

DIODES RECTIFIERS							
IN461	2/6	AAll9	2/-	BAY 38	2/6		$2 / 6$
	16	AA129	2/-	BYI00	$4 / 6$		
N916 ${ }^{\text {N4007 }}$	$1 / 6$	AAZI3	2/-	BY103	$4 / 6$	OA9	$2 /$
15010	31.	AAZ15	2/6	BY'122	716	OA47	$1 / 6$
15021	4/-	AAZ17	2/6	BY124	31.	OA70	$1 / 6$
15025	5\%-	BAIOO	31.	BYI26	4/.	OA73	1/-
1544	2/-	BA102	$4 / 6$	BY127	4/6	OA79	$1 / 9$
15113	$3 /$ -	BAIIO	6/6	BYX 10	4/6	OABI	$1 / 6$
15120	3\%	BAl 15	1/6	BYZ10	71	OA85	$1 / 6$
15121	3/6	BA144	2/6	BYZII	6/6	OA90	1/6
15130	2/6	BAX13	2/6	BYZ12	$6 /$	OA91	$1 / 6$
15131	$2 / 6$	BAX16	2/6	BYZ13	$5 /$	OA95	1/6
15132	3/-	BAY18	$3 / 6$	FST3/4	$4 / 6$	OA200	21
15940	1/6	BAY31	1/6	FST3/8	61	OA202	2/-
MAINS TRANSFORMERS							
amp Charger. Sec. 0 0-3.5-9-17v $\quad . \quad . . \quad . . \quad . \quad 19 / 6$							
Past and packing 4/6. 5 amp (Douglas) MTi07 Sec. tappings from 6v to 50v .. $110 /-$							
Post and packing $7 / 6$. Various other Douglas Transformers ranging from ta to 5A in stock (details in catalogue).							
TRIACS							
SC41A 6 amp 100v 19/6							
'SC41B 6 amp 200v 22/.							
$5 C 410 \mathrm{Camp} 400 \mathrm{v}$.. 27/6							
40512 (RCA) TO-5 mod, 6 amp 400v* $\quad \therefore \quad .$.							
40430 (RCA) TO-66 6 amp 400 v . ${ }^{\text {a }}$. $27 / 6$							
40486 (RCA		-5 mod.	amp				241-
Economy Range Triacs (Delivery end of May)							
TC4/10 (Pressfit) 4 amp 100 PIV 15/0							
TC4/20 (Pressfit) 4 amp 200PIV 17/-							
TC4/40 (Pr							$19 / 6$
TC3/40 (TO-5) 3 amp 400 PIV $\quad . . \quad \therefore \quad . . \quad .$.							
ST2 DIAC		.. .					6
INTEGRATED CIRCUITSSEE OUR SEPARATE AOVERTISEMENT ON PAGE 75SHOWING NEWIC,							

R53 (STC)	VA1010	2/6	VA	3/-	Al07	
25/6	VAl015	319	VA1040	2/6	VA1091	$4 / 6$
51	VA1033	2/6	VA1053	216		
mens) IK	VA1034	216	VA1066	$3 / 9$	VAl096	
2/6	VA1037	2/6	VA1074	2/6	VA1097	
A 1005 3/-	VA1038	2/6	VAl07S	4/6	Al	

Send 2/6 for our latest comprehensive catalogue containing transistor selection charts and all prices, and free vouchers value 6/-.

Telex 21-492
Tel: Ol-452 016I/2/3

This superb stereo system is a real price breakthrough. It comprises the VISCOUNT F.E.T. Mk I amplifier on which full details are given below, the famous Garrard SP 25 Mk II (including teak veneer base and transparent cover) with diamond cartridge or 2025 TC and the very successful DUO type 2 speakers.

Measuring $17 \frac{1}{2}$ " $\times 10 \frac{3}{4}{ }^{\prime \prime} \times 66 \frac{3}{4}^{\prime \prime}$. the Duo type 2 speakers are beautifully finished in teak veneer with matching vynair grills. They incorporate a $10 \frac{1}{2}$ " $\times 6 \frac{1}{4}$ " drive unit and high frequency speaker, both of which are of 3 ohms impedance. The Duo speaker system is also available separately at $£ 6.6$.0. each plus $75 /-\mathrm{P}$ \& P. Complete stereo system £41 plus E2.10 P \& P.

High fidelity transistor stereo amplifier employing field effect transistors. With this feature \& accompanying guaranteed specifications below, the Viscount F.E.T. vastly surpasses amplifiers costing far more.

Size: $12 \frac{1^{\prime \prime}}{2 \prime} \times 6^{\prime \prime} \times 2 \frac{3^{\prime \prime}}{\prime \prime}$ in teak-finished case.

Specification: Output per channel 10 watts r.m.s. Frequency bandwidth 20 Hz to $20 \mathrm{kHz} \pm 1 \mathrm{~dB}$ (e) 1 watt.

Total distortion:@ 1 kHz @ 9 watts 0.5%
Inout sensitivities: CER, P.U. 100 mV into 3 meg ohms. Tuner 100 mV into 100 K ohms.
Tape 100 mV into 100 K ohms.

Overload Factor: Better than 26 dB .
Signal to noise ratio: 70 dB on all inputs (whth vol. max). Controls: 6 position selector switch (3 pos. stereo \& 3 pos. mono). Separate Vol. controls for left \& right channels. Bass $\pm 14 \mathrm{~dB}$ @ 60 Hz . Treble (with D.P.S. on/off) $\pm 12 \mathrm{~dB}$ @ 10 kHz . Tape Recording output sockets on each channel.

BUILT \& TESTED.
Mk II (MAG. P.U.) £15.15.0 olus $10 /-\mathrm{p}$ \& Specification same as Mk. I, but with the following inputs.
Mag. P.U. CER. P.U. Tuner. Spec. on Mag. P.U. 3mV @ 1 kHz input impedance 47 K . Fully equalised to within $\pm 1 \mathrm{~dB}$ RIAA. Signal to noise ratio- 65 dB (vol. max).

The Dorset (600 mW) 7-transistor fully sunabie M.W.-L.W. superhet
portablemwith baby alarm facility. Set of parts. The portable-wlth baby alarm faciity. Set of parts. The latest modulised and preallgnment techniques makes this simple to build. Sizes: $12 \times 8 \times 3$ in. MAINS POWER PACK KIT: $9 / 6$ extra. Price $£ 5.5 .0$ plus $7 / 6$ P. \& P Clircuit $2 / 6$ FREE WITH PARTS

LIQUIDATED STOCK DADStII:

TOURISTE MK3 CAR RADIO

Beautifully designed to blend with the interiors of all cars. Permeability tuning and long wave loading coils ensures excellent tracking, sensitivity and selectivity on both wave bands. R.F. sensitivity at 1 MHz is better than 8 micro volts. Power output into 3 ohm speaker is 3

watts. Pre-aligned I.F. module and tuner together with comprehensive instructions guarantees success first time. 12 volts negative or positive earth. Size 7 " $\times 2$ " $\times 4 \frac{1}{2}$ " deep.

ORIGINALLY SOLD COMPLETE FOR £15.4.6.

SET OF PARTS
Clrcuit diagram $2 / 6$. Free with parts. Plus $7 / 6$ P. \& P.

50 WATT AMPLIFIER

£28 10s.
plus $20 /$ D. \& p.
An axtremetiy raliable general purpose valve amplififer. Its rugged construction vet space age stying and design makes it by far the begr value for money.
TECHNICAL SPECIFICATIONS
3 electronically mixad channels with 2 inputs per channel, enables the use of 6 separate instuiments at the same time. The volurme controls for each channel are located dirsety above the corresponding inpur sackets. SENSITIVITIES AND INPUT IMPEDANCES Channels $1 \& 24 m V$ at 470 K . These 2 channots 14 inpuris) are suitable for microphone or guitars. Channeis
 instruments faram. tunal, orgam, atc.). Input sensitivivy relative to 10 w output TONE CONTROLS ARE
COMMON TO ALL INPUTS. Bass Boost +12010 at 60 Hz Bass Cut-13dB at 60 Hz Treble Soost at 60 Hz Bass Cut-13aB at 60 Hz Treble soos
+11 dE at 15 KHz Treble Cut -12 dB at 15 KHz With bass and treble conitrols central - 3dB points are 30 Hz and 20 KHz . POWER OUTPUT: For speech and music 50 wetts rms 100 watts peak for sustained music 45 watts rms, 90 watts peak For sinc wave 38.5 watts rms . Neariy 80 watts peak. Total distortion at rated output 3.2% at 1 KMz Total distortion at 20 watts 0.15% at 1 KHz NEGATVE FEEDBACK 20dB at 1 KHz SIGNaL TO NOISE RATIO 6OdB. MAINS VOLTAGES adjustable from 200-250V. A.C. $50-80 \mathrm{~Hz}$ A protective fuse is located
impedance 3.8 and 15 atms.

INTEGRATED CIRCUIT AMPLIFIERS

\author{

Aanob hF amphaer, loome/s bandwhth Ca3012 Wide Band Amplifier for IF applications CA3036 50 m W Audio Amplitier CA3050 ampufier
 PA222 1.2 watt Aud lo Ampllier
 PA234 1 watt Audio Amplifier

 TAA263 3-8tage direct coupled Amplifier
 TAA293 3-stage dlrect coupled Amplifier
 TAD100 All active componenta required to construct a
 AM recelver
 BL403A 3 watts Audio Amplifier
 | ZENER DIODES | |
| :---: | :---: |
| BZY88, series, from 3.3 V to $9.1 \mathrm{~V} \pm 8 \% 400 \mathrm{~mW}$.. . $3 / 6$ each | |
| BZY04 serlee, trom 10.0 V to $12.0 \mathrm{~V} \pm 5 \% 400 \mathrm{~mW}$.. $4 / 1$ each | |
| D814 serien, from 7.5 V to $13.0 \mathrm{~V} \pm 10 \% 340 \mathrm{mWW}$.. $3 /$ - each | |
| D815 series, from 4.7V to $18.0 \mathrm{~V} \pm 10 \% 8$ Watts .. $7 / 6$ each | |
| D816 serics, from 22 V to $47 \mathrm{~V} \pm 10 \%$ o Watts $\quad . .716$ esch | |
| D817 serles, from 58 V to $100 \mathrm{~V} \pm 10 \%$ \% Watts ${ }^{\text {c }}$. $7 / 6$ | |
| | |
| | D818-D817-atud mounted, supplied complete with hardware |
| Please sta supplied. | to voltage required-aeareat atandard voltage will be |

TRANSISTORS

		AC125 6		
	$2 \mathrm{~N} 2923{ }^{16 /-}$	AO		B8
		AC12	BCl	
896416		AC1.32 7/8		
60			BCl	
		ACl	13	001
		AC157 4/	析	
		$\triangle{ }^{4} 16$	147	OC23 18
				OC24 1
		AC188 ${ }^{\text {A/P17 }}$	BC14	
				0 O 28
		${ }_{\text {AOY19 }} 4 / 8$	(1)	0 O 28
		${ }^{\text {Acl }}$	㤑	
2 N 987	2, 30	AOY	BCY	
	2N3085 $18 /$	A	-	
N1132	2N813.	AD140 18	BCY 38	Oc
	2N3138	AD149 12/6	BCY 39	OC44
	2N3134	AD161		C45
2N1304 $4 / 6$				$0 \mathrm{C71}$
30	2N 8303			
	2N3304	AFIL	BD123	
1307	2N 3395 $3 / 6$			
08	2 N 402	AF117 $4 /$	BF767	
309	2N3403	AP128 10	BF178	78D
	04816			C81
47		12	BF18	
		178		
2		AF186 11/-	BF196	
2217	${ }_{2} \mathrm{~N}^{2} 7024$			$\begin{aligned} & 139 \\ & 140 \end{aligned}$
	2N3703			
	3/10	AFZ11	\%	171
	2N	Asy		
	2N 3707 2N3708	Y2		
	2N3710	As Y29	Y 51	
	2N3819 12		Y 52	
	2N3806 8	A8Y73		OC205

two new oscilloscopes from russia

	CI-5 SINGLE BEAM OSCILLOSCOPE $10 \mathrm{mc} / \mathrm{s}$ passband, triggered sweep from 1μ sec. to 3 millisec. Free running time base from $20 \mathrm{c} / \mathrm{s}$ to $200 \mathrm{kc} / \mathrm{s}$. Built-in time marker and amplitude calibrator, 3 - in. cathode ray tube with telescople viewing hood. £39.0.0

CI-16 DOUBLE BEAM me/s passband Separat Y 1 and $Y 2$ ampliflers rectangular 5 in . $\times 4 \mathrm{in}$. cathode ray tube. Call rated triggered sweep rom 0.2μ sec. to 100 min me $50 \mathrm{c} / \mathrm{s}$ to $1 \mathrm{mc} / \mathrm{s}$. Built-in time bage callbra. ion and amplitude calt fion and amplitude callFull details on reques Full servicing facilities and pares avnilable.

WHEN ORDERING BY POST PLEASE ADD 2/6 IN $\&$ FOR HANDLING AND POSTAGE,

NO C.O.D. ORDERS ACCEPTED
ALL MAIL ORDERS MUST BE SENT TO HEAD ALL MAIL ORDERS MUST BE SENT TO

Head Office:
44a WESTBOURNE GROVE, LONDON, W. 2

Tel.: PARK 5641/2/3

Cables: ZAERO LONDON
Retall branch (personal callers only)
85 TOTTENHAM COURT RD.
LONDON W.2. Tel: LANgham 8403

WE WANT TO BUY:
SPECIAL PURPOSE VALVES. PLEASE OFFER US YOUR SURPLUS STOCK. MUST BE UNUSED.

APPOINTMENTS 'VACANT

DISPLAYED SITUATIONS VACANT AND WANTED: $£ 7$ per single col. inch.
LINE advertisements (run-on): 8/- per line (approx. 7 words), minimum two lines
Where an advertisement includes a box number (count as 2 words) there is an additional charge of $5 / \mathrm{e}$ SERIES DISCOUNT: 15% is allowed on orders for twelve monthly insertions provided a coatract
is placed in advance.
BOX NUMBERS: Replies should be addressed to the Bux number in the advertisement, c\%o BOX NUMBERS: Replies should be addressed to the Bux
Wireless World, Dorset House, Stamford Street, London, S.E.1.
Wireless World, Dorset House, Stamf
No responsibility accepted for errors.
considered.
Salary: £905-£1,273, plus £30/80 supplement for recognised qualifications.
Applications, including the names and addresses of two referees, to be sent to the undermentioned by 31 st July, 1970.
Both posts become tenable on ist August, 1970.
A.P.W. Makepeace, Director, Audio-Visual Aids Unit,
University of Bristol, 29 Park Row, BRISTOL BS1 5LT.

BROADCAST RELAY ENGINEERS

are required for the ISLAND OF MASIRAH
(Off the coast of Muscat and Oman)
Applications for contract employment for a one year unaccompanied tour of duty are invited from engineers with experience of the operation and maintenance of high power radio transmitters and who are of third year City and Guilds Telecommunications Technicians Certificate or equivalent standard.
Salary £4,000 per annum plus a tax free allowance of $£ 350$ per annum for single, or $£ 865$ for married unaccompanied officers.
Free furnished accommodation and passages are provided.
Further details and application forms can be obtained from
The Personnel Officer,
Diplomatic Wireless Service
Foreign \& Commonwealth Office,
Hanslope Park,
Wolverton, BUCKS.
535

UNIVERSITY OF BRISTOL Audio-Visual Aids Unit

The Unit provides a central service in Film and Television and other new media production for Television and other new media production for
the feaching service of the University. Facilities include 4 plumbiconcameras,television studio, Ampex $1^{\text {" }}$ V.T.R.s, 16 mm telerecording, 16 mm and 35 mm film shooting, editing, dubbing and telecine.
The two new posts in an expanding environment will provide experience over the whole spectrum of Broadcast Engineering.

SENIOR TECHNICIAN

Preferably with experience with a broadcasting authority. To undertake operation, maintenanceand developmentoftelevision equipment.
Salary: $£ 1,248-£ 1,556$, plus $£ 30 / 80$ for approved higher qualifications.

TECHNICIAN

Operation of videotape and sound recording equipment, issuing and checking equipment and film and tape. Day release for further relevant education will be
OpMN M AN

TECHNICIANS AND ENGINEERS FOR ST. ALBANS AND LUTON QUALIFIED OR NOT!

VACANCIES exist for work on testing and calibrating valve and solid-state electronic measuring equipments embracing all frequencies up to u.h.f. in Production, Service and Calibration departments.
APPLICATIONS are invited from people of all.ages with experience or formal training in electronics and from ex-Armed Services technicians.
HIGHLY COMPETITIVE SALARIES, negotiable and backed by valuable fringe benefits.
RE-LOCATION EXPENSES available in many instances.
CONDITIONS excellent; free life assurance, pension schemes, canteen, social club.
$37 \frac{1}{2}$-hour, 5 -day, office-hours week.
WRITE or phone Personnel Department stating age, details of previous employment, training, qualifications, approximate salary required, quoting WW6

FIIGHI SIMULATOR SERVICE ENGIIIEERS

Redifon Flight Simulator Division are designers and manufacturers of highly sophisticated simulators of current civil and military aircraft and linked products for use in the U.K., and world wide export markets.
We need skilled Service Engineers to keep this complex and hard worked equipment in continuous first class condition.
You should have a minimum of O.N.C. or City and Guilds Certificate, theoretical and practical experience of digital computing. hardware, software and computer peripherals. Knowledge of analogue computing and hydraulics would be advantageous. We will train those who have good experience in transistorised and integrated circuits.
The job is varied and interesting and in an expanding business. Promotion prospects are good. But you must expect to travel anywhere in U.K. and overseas at short notice, perhaps for extended periods.
Excellent welfare benefits include contributory pension and free life assurance. Our Sussex factory is only 25 miles from Brighton.

Send brief details or ring now:
H. C. Hall, Personnel Manager, REDIFON LIMITED
Flight Simulator Division Gatwick Road, Crawley, Sussex Tel: Crawley 28811

> If you're a telecommunications man and match up to the qualifications below cut yourself into a slice of Britain's future

Become a

in the fast-growing world of Air Traffic Control

```
Please send me an application form and details of how I can Join
the fascinating world of Alr Traffic Control Telecommunications.
Name
Address.
Not applicable to residents outside the United Kingdom WWT/Ei
```

To: A J Edwards, C Eng, MIEE,
The Adelphi, Room 705, John Adam Street, London WC2
marking your envelope 'Recruitment'

Sending this coupon could be your first step to a job that's growing in importance every year.

The National Air Traffic Control Service needs Radio Technicians to install and maintain the vital electronic aids that help control Britain's ever-increasing air traffic.

This is the kind of work that requires not only highly specialised technical skills but also a well developed sense of responsibility, and candidates must be prepared to undergo a rigorous selection process. Those who succeed are assured a steadily developing career of unusual interest and challenge. Starting salary varies from $£ 1044$ (at 19) to $£ 1373$ (at 25 or over) : scale maximum $£ 1590$ (higher rates at Heathrow). There is a good annual leave allowance and a non-contributory pension for established staff.

You must be 19 or over, with at least one year's practical experience in telecommunications. ('ONC' or 'C and G' qualifications preferred).

HICHIR TECHNICAL OFICIRS SWAZILAND

* Salary £1,450-£2,277 according to experience
* Low taxation
* 25\% gratuity
* Contract $24-36$ months
* Subsidised accommodation
* Education allowances

Required by the Department of Posts and Telecommunications to assist in the development and maintenance of the national trunk circuit network.
Candidates, 25-45, should preferably possess City and Guilds Certificates in Radio and Line Transmission and must have had at least five years experience in the installation of multi-channel carrier and voice frequency telegraph systems. A knowledge of VHF radio systems would be an added advantage.

Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.1, for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference number M2K/700375/WF

RANK WHARFEDALE LIMITED require

tester/ troubleshooters

The Company, who are leading producers of quality $\mathrm{Hi}-\mathrm{Fi}$ equipment, require suitably qualified staff for production line testing of transistorised electronic equipment.
Applicants should preferably possess either a formal qualification in radio servicing or testing, or have obtained equivalent experience in similar work.
Location-Bradford, Yorkshire.
The positions carry staff status, and good salaries will be paid to the successful candidates.
There is a contributory pension scheme and free life assurance benefit. Assistance with removal expenses will be paid if applicable.
Applications to:
The Personnel Manager, Rank Wharfedale Limited, Bradford Road,
Idle, Bradford BD10 850 Yorkshire.
Tel: Bradford 612552.

AUDIO
visual division

Laboratory Equipment ENGINEER

Rediffusion require a first class engineer. His job will be to administer and maintain a laboratory concerned with television distribution systems. This includes both laboratory and field test equipment. Qualifications required are either H.N.C. or equivalent C\&G exams. He must be famlliar with H.F. measuring techniques, oscilloscopes and sweep oscillators. Salary up to $£ 1,700$ per annum; depending on age and experience. Three weeks' annual holiday after the completion of twelve months' service. Five day week, 9-5.30. Applications in writing should be addressed to: D. E. Street, Head of Operational Services Dept., Rediffusion Engineering Ltd., 187 Coombe Lane West, Kingston-onThames, Surrey.

Worthwhile Vacancies

There are vacancies for Electro-Mechanical and Electronic Equipment Servicing Technicians in West London.
The duties are for corrective and preventive maintenance of remote control equipment in substations and generating stations. Thé work includes on-site testing of equipment involving Post Office type relays, uniselectors and solid state switching logic. Also workshop testing, adjustments and repair of relays and electronic equipment associated with remote control equipment.
Salary $£ 1,52310$ s. Od. Valuable free travel facilities, sick pay and superannuation.

Suitably qualified applicants should apply to'

The Superintendent of Recruitment.
London Transport, 280 Old Marylebone Road.
London N.W. 1.
stating qualifications and experience.

RADIOLOGICAL PROTECTION SERVICE

(Department of Health and Social Security and Medical Research Councll) Clifton Avenue, Beimont, Sutton, Surrey

Junior Technical Officers/ Technical Officers

required for work in the design and development of instruments and systems concerned with radiation measurements. Experience on systems, digital and pulse techniques desirable.

> Qualifications: HNC or equivalent.
> Salary range: J.T.O. £669-1418 plus London Weighting T.O. $£ 1499-2192$ plus London Weighting
(If this post is filled by a J.T.O. there are excellent prospects for eventual promotion to the T.O. grade.)

Applications with the names and addresses of two referees to the Administrative Officer at the above address, quoting reference 70/2/16. Closing date: August 7th.

RADIO OPERATORS

There will be a number of vacancies in the Composite Signals Organisation for experienced Radio Operators in 1971 and in subsequent years.

Specialist training courses lasting approximately nine months, according to the trainee's progress, are held at intervals. Applications are now invited for the course starting in January, 1974

During training a salary will be paid on the following scale:

Age 21	£848 per annum
". 22	£906
" 23	$£ 943$
" 24	$£ 981$
" 25	".
" and over	$£ 1,023$

Free accommodation will be provided at the Training School.

After successful completion of the course, operators will be paid on the Grade 1 scale:

Age 21	£1,023 per annum	
22	£1,087	\cdots
. 23	£1.150	"
24	£1,214	"
. 25 (highest		
age point)	£1,288	

then by six annual increases to a maximum of £1,749 per annum.

Excellent conditions and good prospects of promotion. Opportunities for service abroad.

Applicants must normally be under 35 years of age at start of training course and must have at least two years' operating experience. Preference given to those who also have GCE or PMG qualificatlons.

Interviews will be arranged throughout 1970.
Application forms and further particulars from: Recruitment Officer, Government Communications Headquarters, Oakley, Priors Road, CHELTENHAM, GIos., GL62 5AJ Telephone No. Cheltenham 21491, Ext. 2270

UNVERSITY COLLEEE CARDIFF

Departments of Physics and Music TECHNICIAN

Applications are invited for a post of technician to assist with the inter-disciplinary Music/ Physics project. The technician will be based in the Physics Department and most of his time will be spent in building and mainfaining an electronic music sludio. A basic practical knowledge of electronics is required and an interest in one or more of the following would be an advantage:

Contemporary music,
Computer sound synthesis and control,
Sound recording and reproduction.
Salary will be within the scale $£ 905-£ 1273$ and the starting point will depend on qualifications, experience and age and additional allowances are payable for approved qualifications. Applicants who should be over 21 should write to the Registrar, University College, P.O. Box78, Cardiff, not later than the 31st August, and quoting Reference No. REG. 8251, giving (1) age (2) full details of any qualifications (3) fúll details of previous experience (4) the names and addresses of two persons (one of whom should have first-hand knowledge of work or training) to whom reference may be made.

RADIO ENCINEBRS
 civil aviation-zambia

* Salary £2310 to £2590 according to experience.

 * Low Taxation. * Contract of 36 months. * 25\% Tax-free Gratuity. * Educational Allowances. * Subsidised HousingDuties will involve the maintenance, overhaul and installation of ground terminal radio communication equipment and navigational aid at Airports and Flight Information Centres.
The equipment includes radar systems, H.F. and V.H.F. transmitters and receivers, I.L.S. and D.F. systems and tape recorders. Candidates, who should be under 55 years of age, should have practical experience and a knowledge of theoretical principles within this field. In addition they should have attained one of the following:-
i) completion of a 5 year apprenticeship,
ii) a service trade certificate,
iii) an I.C.A.O. certificate,
or iv) equivalent

Apply to CROWN AGENTS, 'M' Division, 4, Millbank, London, S.W.1., for application

form and further particulars stating name, age, brief details of qualifications and experience and quoting reference No. M2Z/690315/wF

Work as a RADIO TECHNICIAN attached to Scotland Yard

You'd"be based at one of the Metropolitan Police Wireless Stations. Your job would be to maintain the portable VHF 2-way radios, tape recorders, radio transmitters and other electronic equipment, which the Metropolitan Pollce must use to do their work efficiently.

We require a technical qualification such as the City \& Guilds Intermediate (telecommunications) or equivalent.

Salary scale: £1,161 (age 21), rising by increases to $£ 1,590$ plus a London Weighting Allowance. Promotion to Telecommunication Technical Officer will bring you more.

For full details of this worthwhile and unusual job, write to: Metropolitan Police, Room 733 (RT), New Scotland Yard, Broadway, London, S.W.1.

Network ENGINEER

Barbados Rediffusion Services LImited, require the services of a Network Englneer to be responsible to thelr Chlef Englneer for the construction and maintenance of a relay sound programme distribution system and the supervision of maintenance staff.
Applications for the position are invited from Barbadian Nationals who are In possession of the City and Gullds Techniclans Certiffeate (Intermediate), or Its equivalent, and who have at least flve years experience of line trans. mission.
The salary will be commensurate wlth qualifications and experlence.
Appllcations in writing stating age, experience and present salary should be addressed to:- D. E. Street Esq., Head of Operatlonal Services Department, Rediffusion EngIneering Limited, 187, Coombe Lane West, Kingston-upon-Thames, Surrey.

SIGNALS ENGINEERING LABORATORY
Ministry of Defence (Air)
RAF Northolt

ELECTRONIC ENGINEERS

(Graded Experimental Officer/Assistant Experimental Officer) to undertake circuit design, laboratory measurements and field investigations concerning either:
(a) Radar and Navigation Aids, Air Traffic Control and Blind Landing Systems; or
(b) Telecommunications, Navigation Aids, Telemetry and Data Processing Systems.
Some short term duty at RAF Stations, both in this country and overseas, will be involved. An ability to establish and maintain good relations with Service personnel at all levels is necessary.
Qualifications: Degree, HNC or equivalent in an appropriate subject. in addition it is essential that candidates for post (a) have experience of microwave measurements and pulse techniques, and for post (b) a knowledge of digital techniques and experience of $\mathrm{HF}, \mathrm{VHF}, \mathrm{UHF}$ and line communications. Familiarity with integrated circuit techniques is desirable.
Candidates must be natural born British subjects.
Age: normally $26-30$ AEO under 28.
Salary: (Outer London EO £ $1800-£ 2252$; AEO E1095 (at 22)-£ 1386 (at 26 or over)£1653.
Prospects of permanent pensionable appointments. Prospects of promotion to Senior Experimental Officer (salary rising to $£ 3174$).
APPLICATION FORMS from Head of Signals Engineering Laboratory, RAF Northolt, Ruislip, Middlesex.

Closing date IIth August 1970.

SENIOR TEST ENGINEERS

The leading U.K. Manufacturers of high grade T.V. monitors and ancillary T.V. studio equipment require a Senior Test Engineer for their rapidly expanding test department.

Situated in the Berkshire town of MAIDENHEAD the company offers pleasant working conditions, good salaries, and a friendly environment.

Duties will cover the testing and troubleshooting of our complete range of equipment.
Previous experience on television equipment is not essential but candidates must have a thorough knowledge of electronics and testing procedures.

Reply to:

PROWEST ELECTRONICS LTD.,

Boyn Valley Road, Maidenhead, Berks.
Telephone: Maidenhead 29612

BOARD OF TRADE
 VACANCY FOR AN UNESTABLISHED INFORMATION OFFICER (TECHNICAL) in the commonwealth air transport council secretariat

The Commonwealth Air Transport Council normally meets every three years. Apart from the duties associated with the conduct of these major conferences the Secretariat provides a comprehensive information service for Commonwealth Governments and serves as a medlum for exchange of informatlon of general interest on any aspect of air transport or civil aviation. In particular the main functions of the Information Officer, between Council meetings, consist of writing the CATC Newsletter (an illustrated magazine on Civil Aviation topics, of approximately 35 pages) published quarterly. The work also involves obtaining suitable materlal and illustrations from Commonwealth Civil Avlation Departments, airlines, industry, exhibitions etc.; preparation of MSS and illustrations for printers and block makers and other detailed production work.

He will also assist in the preparation of CATC Electronic News which is published quarterly, particularly in the writing of the sections on new equipment, responsibility for the art work and a contribution of some ten per cent of the technical articles.

In addition the Information Officer will be responsible for the preparation of the Abstracts of Technical Publications which are published quarterly and involves obtaining reports, papers and journals for preparation and classification of abstract material by sub-editing of author's abstracts and occasionally writing original abstracts. He will also assist in publishing quarterly a Bibilography of Radio Technical Reports involving extraction of details from existing sources and obtaining additional ones.
Opportunity will be offered to the successful candidate to become an established officer at a later date.
Inner London salary scale according to age and experience is $£ 2,107$ rising by five annual increments to £2,517 per annum.

Appllcations forms can be obtained from the Board of Trade (Mr. J. P. Collins), Establishment Division, Room 137, 1 Victoria Street, London SW1 (tel: 01-222 7877, extension 3388) and returned to that address after completion quoting reference E $27206 / \mathrm{G}$. Only persons selected for interview will be advised of the resule.

UNIVERSITY of SURREY

DEPARTMENT OF ELECTRONIC AND electrical engineering

Senior Technician
for
Electronic Servicing

A Senior Technician is required in the Department of Electronic and Electrical Engineering to service a range of electronic equipment and to build specialised electronic research apparatus. Applicants should have had sufficient experience in the electronics fleld to enable them to work with the minimum of supervision.
The successful applicant will be entitled to 3 weeks annual holiday (rising to 4 weeks after 5 years service) plus generous leave at Christmas and Easter. Every encouragement is given to further study and day release courses are available. The post is superannuated.
Salary scale $£ 1,278-£ 1,586$ per annum plus $£ 50$ Qualification Allowance.
Applications should be sent to:
The Staff Officer, University of Surrey, Guildford, Surrey.

STIRLING \& CLACKMANNAN POLICE FORCE

Application is invited for the post of wireless technician in the wireless workshops at Police Headquarters, Randolphfield, Stirling, to work on mainfenance, installation of VHF/UHF fixed and mobile radio relephones, and other electronic equipment. Applicants should have completed a recognised apprenticeship and have some recent experience in radio telephone maintenance. Formal qualifications an advantage.

Salary scale will be N.J.I.C. Technieal Grade IV - $£ 1,130$ per annum, rising by annual increments $£ 1,300$ ($12 \frac{1}{2} \%$ increase pending). N.J.I.C. conditions of service will apply.
Applications detailing experience and qualifications, logether with copies of recent references, should be lodged with the Chief Constable, Police Headquarters, Randolphfield, Stirling, not later than 3rd August, 1970.

671

VHF/UHF DESIGN AND DEVELOPMENT ENGINEERS

Vacancies exisi for Senior and Junior Development Engineers.
Applicants should have suitable qualifications, and experience in the field of solid state VHF TX and RX for use in Marine and/or Land Based Equipments
Successful applicants will be offeredanexcellent salary, holiday and pension. Pleasant location on the South Coast.
Apply in writing to
Chief Engineer
DERRITRON ELECTRONICS LIMITED
Sedlescombe Road North
Hastings, Sussex

CONTINUOUS
 Expansion
 Standard Telephones \& Cables, Micro-

 are growing fast. In order to keep pace with this consistent growth rate we require
Installation Engineers Technicians \& Testers

Ref. 25720
To test and commission Multiplex, Co-axial Line and Microwave Radio Systems.

Ideal candidates will be less than 45 years of age with practical experience on some of the above equipment. These challenging posts call for drive, initiative and common sense. It is necessary for applicants to be prepared to work anywhere in the U.K.

Test Technicians

Ref. 27221

The diversity of products manufactured at the Basildon Plant demands experienced testing staff for work on complex transmission systems
Candidates should hold an ONC in electrical engineering and be able to offer considerable practical experience in the field of testing and fault clearing all types of land-unit, pcm and microwave equipment.

Applications should be addressed to The Personnel Officer, STC Chester Hall Lane, Basildon, Essex.

conmputer cingincering

NCR requires additional ELECTRONIC, ELECTRO MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.
Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.
Starting salary will be in the range of $£ 900 / £ 1,350$ per annum, plus bonus. Shift allowances are payable, after training, where applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.
Excellent holiday, pension and sick pay
arrangements. Please write for Application Form to
Assistant Personnel Officer
NCR, 1,000 North Circular Road,
London, NW2
quoting publication and month of issue.

Senior Equipment ENGINEER

Rediffusion (Nigerla) Limited require the services of a Senior Equipment Engineer to be responsible to the Chief Engineer for the maintenance of equipment including high power amplifiers and F.M. and A.M. transmitters. A knowledge of Television receivers would be an asset.

Applicants who must hold a Final City and Guilds Technicians Certificate must be prepared to work a minimum contract of 18 months.
A car will be provided. A starting salary of not less than £N1,000 will be paid depending on age and experience.
All transportation costs of applicant's immediate family to Nigeria will be paid by the company.
Applications in writing stating age, experience and present salary should be addressed to: D. E. Street, Esq., Head of Operatlonal Services Department, Rediffusion Engineering Limited, 187, Coombe Lane West, Kingston-upon-Thames, Surrey.

REDIFFUSION

COLOUR TELEVISION FAULTFINDERS \& TESTERS

We have a number of vacancies in our Production Test Departments for experienced faultfinders and testers.
Knowledge of transistor circuitry and experience with Colour Receivers together with R.T.E.B. Final Certificate of equivalent qualifications required.
These will be staff appointments with all the expected benefits.
Applications to:
Works Manager,
Rediffusion Vision Service Ltd., Fullers Way South,
Chessington, Surrey (near Ace of Spades).
Phone: 01-397 541I

Ministry of Defence (Air Force Department) require CIVILIAN INSTRUCTORS (male) in the following trades and at the Units stated :-

RADAR	RAF Newton, Nottingham
	RAF Sealand, Flintshire

COMMIUNICATIONS RAF Watton, Thetford, Norfolk BOTH TRADES RAF Cosford, Wolverhampton RAF Locking, Somerset
Candidates must be BRITISH SUBJECTS. Training in the appropriate subject, practical experience and ability to teach essential. Salary $£ 1,061$ rising to $£ 1,634$. Five-day week and 3 weeks and 3 days annual leave. Appointments unestablished but prospects of becoming pensionable. Write (preferably on postcard) for application forms to Minlstry of Defence CE3g(AIr), London, W.C.1, quoting (Civ Inst RC/B) and stating which trade. Completed application forms must be returned by 15 August, 1970.

EKCO AVIONICS (A Division of Pye Telecommunlcations Ltd.) urgently require a number of Test Engineers for their expanding production lines.
They will be employed on the test and diagnosis of VHF equipment and a City and Guilds Radio and TV Servicing or intermediate Telecommunications Certificate qualification would be preferred. Salary commensurate with experience and qualifications. Excellent working conditions in very pleasant surroundings. Good fringe benefits and opportunities for promotion.

Write, Phone or Call: The Personnel Manager

EKCO AVIONICS
Prlory Crescent, Southend-on-Sea. S52 6PW.
Tel: Southend-on-Sea 49491

West Sussex County Council
 INDUSTRIAL TRAINING CENTRE, CRAWLEY

Applications are invifed for a TRAINING INSTRUCTOR qualifled to instruct Electrical Craft and Techniclan EngIneer apprentices during first fwo years of apprenticeship. Good qualificaflons and experiente in electronles are essentlal.
Salary scale $£ 1,362 ;$ £ $902-£ 2,052$.
Further particulars and application form from Heid of Centre, Industrial Training Centro, College Road, Crawley. Completed form to that address within 14 days of the appearance of this advertisement.

657

TELECOMMUNICATIONS ENGINEERS WEST AFRICA

Qualified Telecommunicatlons Engineers are required for servicing and maintenance of radiotelephone equipment and associated items in tropical West Africa.

Qualifications: HNC or higher.

Contract: One year plus leave extensible.
Salary: According to age, experience and qualificatlons, Commensing at not less than equivalent $£ 2000$ sterling. Free accommodation and passages. Preference for bachelors with tropical experience but not essential.
Interested? Apply for application form to 1
2b-Sussex Road C.O.D.E.O.
635

University of Birmingham

Appiications are invired for the pose in blomedical electronies in che Department of Anatomy. The work involves the desien of specialized instrumentation under the direction of experienced engineers, and will provide opportunleles for gilning experience of variety of modern electronic technigues. Candidates shouid be of epproximately H.N.C. Standard with oxperlence of transistor circult design. Salary up to £1,586.

Apply: Assistant Secratary (Personne1), Personnel Office, Universlty of Birmingham, P.O. Box 363 : Birminghem, 15 .

619

SENIOR TECHNICIAN (GRADE III)

with electrical and preferably some mechanical experlence to maintaln Cobalt and Caeslum and Therapeutle X-ray equlpment at the Royal Marsdan Hospltal, Fulham Road, London, S.W.3. The successful candldate will also have the The suceessiul candidete will also ha
opportunliy to develop new equipment.
Minimum quallifestions, O.N.C. In Electrical Engineering. Salary scale $£ 1270-£ 1590$ per snnum.
Appllcations with detalls of experlence and names of two referees to the Deputy Administrator, The Royal Marsden Hospltal, Downs Road, Sutton, Surrey. Furthor detalls may be obtained from Mr. E. Hawkins, Chlef Techniclan, telephone $01=6426011$, Ext. 278, 567

UNIVERSITY OF STIRLING Departmont of Psychology
 TECHNICIAN/SENIOR TECHNICIAN

Applleants should have completed a recognised apprenticeship, or other appropriate training, and have interests in A.F. technlques and instrumentation, including use of digital and linear integrated circuits. Formal qualifications an advantage, day release facilities if required. Salary: Technician 1935-E1,303; Senior Technician $\{1,278-\{1,586$. Applications, with names of two referees, should be received by the Deputy Secretary (WW), University of Stirling, Stirling, by 10 August, 1970.

Electronics Maintenance Engineers

There are excellent opportunities in the Installation and Maintenance Division of U.K. Electronics and Industrial Operations of E.M.I. Ltd., at Hayes, Middlesex, for engineers to carry out maintenance work on a wide variety of electronic equipments including laboratory test gear and trans-ceivers.

Candidates should be between 21 and 45 years of age and have some experience in this type of work. Consideration will be given to experienced Radio and Television servicing technicians and to ex service personnel.

Commencing salaries of up to $£ 1.500$ per annum will be paid and staff conditions include contributory pension scheme and free life assurance.

Please apply in writing giving brief personal and career details to.
G. W. Fox, Personnel Department, U.K. Electronics \& Industrial Operations, E.M.I. Ltd., Blyth Road, Hayes, Middlesex. Tel: 01-573 3888, Ext. 411.

 T \longrightarrow

The University of Manchester Institute of Sclence and Technology SPECIAL RESEARCH ASSISTANT Department of Mechanical Engineering The above vacant postis in the Thermodynamics and Fluld Mechanics Division of the Department
and should appeal to the Mechanlcal Engineer or Physicist. The research programme is financed by an S.R.C. award for a minimum perlod of at least two years.
The successful applicant, who should hold an Honours degree and preferably have some previous experience in a related subject, will work on problems associated with research into heat transfer and heat release in internal combustion engines. Beside actual participation, the successful candidate should also have the necessary inltiative and ablity to co-ordinate and control the research programme.
Salary, In the range £1,500. £ 1,800 per annum will be determined according to quallifications and experience. ence Number MEllcation forms, quoting ReferRegistrar, U.M.I.S.T., Sackville St, Made to the M60 1QD. Closing date for return, 31 st August 1970.

ELECTRONIC TEST ENGINEERS

Required for work on Digital Measuring Equipment using Silicon Transistors and Microcircuits. Fully qualified applicants preferred, although proven experience in electronics would be considered. Prospects for advancement are good. Weekly staff status and salary commensurate with qualifications and experience. We would welcome applications from ex-service personnel or personnel about to leave the services. Please apply to: The Personnel Manager
VENNER LIMITED - KINGSTON BY-PASS NEW MALDEN • SURREY • TEL: 01-942 2442

DIPLOMATIC WIRELESS SERVICE requires TELECOMMUNICATIONS TECHNICIANS

Vacancies exist in LONDON and the HOME COUNTIES for men with experience in the following fields:-
(a) Radio Communications transmitters and receivers.
(b) High power radio broadcast relay transmitters and associated equipment.
(c) A variety of telephone and teleprinter systems and associated electro-mechanical and electronic equipment.
Qualifications Required: City and Guilds Intermediate Telecommunications Technician Certificate or an equivalent or higher technical qualification.
Salary: $£ 1,498$ (at age $\mathbf{2 5}$) to $£ 1,715$ per annum in London. $£ 1,373$ to $£ 1,590$ per annum in Home Counties. Plus additional allowances for shift duties.
Prospects: of promotion and permanent pensionable employment.
The appointments carry a liability for overseas service.
Candidates and both parents must have been British subjects at all times since birth. Applications, giving details of qualifications and experience to:-

The Personnel Officer, Diplomatic Wireless Service,
Hanslope Park, Wolverton, BuCiKs.

AIR FORGE DEPARTMENT RADIO TEGHNIGLANS

Starting pay according to age, up to $£ 1,373$ p.a (at age 25) rising to $£ 1,590$ p.a. with prospects of promotion.

Vacancies at RAF Sealand, Near Chester and RAF Heniow, Bedfordshire

Interesting and vital work on RAF radar and radio equipment.
Minimum qualification, 3 years' training and practical experience in electronics.
5-day week-good holidays-help with further studies-opportunities for pensionable employment.
Write for further details to:-
Ministry of Defence, CE3h(Alr),
Sentinel House,
Southampton Row,
London, W.C. 1.
Applicants must be UK residents.

Electro-Medical Work

Young man required for interesting work in the medical field in connection with electrical recording of eye movements. Knowledge of-electronics an advantage. Starting salary $£ 990$ per annum with annual increments to $£ 1,250$.

Please apply in writing to:
Geoffrey A. Robinson, Secretary to the Board of Governors, The National Hospital, Queen Square, W.C.I.

TECHNICAL OFFICER

required for the Electronics Department
Duties include design and construction of nucleonic equipment.
Qualifications, Degree, HND or HNC. Experience in the field of medical elect ronics desirable. Salary according to age and experience in the range of $£ 879$.
£2192 plus London Weighting. Please send applications to
The Director, Medical Research
Council Neuropsychiatry Unit
Woodmansterne Road, Carshalton,
Surrey, Please quote reference $262 / 4$.

SITUATIONS VACANT

A FULL-TIME technical experienced salesman reA quired for retail sales; write giving details of age, previous experience. salary required tons.
Eenry's Radio. Ltd., 303 Edgware Rd.. London. W. 2 .
$[67$

A RE YOU INTERESTED IN HI FI? If So, and you Ahave come experience of selling in the Retall Radio Trade, an excellent opportunity awaits you at Telesonic
Ltd., 92 Tottenham Court Road, London, W.1. Tel. 01-387 7467/8.
A SENIOR Transformer/Rectifier design Engineer is A required for varied and interesting projects associated with equlpment up to $150 / \mathrm{kVA} / \mathrm{KW}$. We are an
expanding Company of Manufacturing Electrical Expanding located in South Firts. Box W.W. 97 Wireless World.

A SSISTANT LECTURER IN MARINE RADIO required A by COLLEGE OF I.M.R. COMMNS., Brooks' Bar, MANCHESTER M16 7WT for Sept. 1970 or soonest knowledge of technical syllabus for same essentlal. B.O.T. Radar Cert. and Teaching experlence an advantage. Placing on Burnham Scale £1,030-£1,720 Principal, giving in confidence full detalls of experience. education, present salary, etc. $[678$

A YOUNG quallfed electronic engineer required by control equipment to head upany producing temperature in the London Area. Box No. 654
CIRCUIT details, service sheet, or manual wanted for C the Elsec or Decco pulse induction metal detector. Types 684 B and 693A. Box W.W. 677, Wireless World.
DEPARTMENT of Nuclear Physics, University of D Oxford, has a vacancy at Technician or Sentor Techniclan level for a steward to take charge of the
day-to-day running of an undergraduate teaching day-to-day running of an undergraduate teaching
laboratory. Background experlence in electronics is needed, and a qualification in Physics or Elctronics or Electrical Engineering would be an advantage. The successful candidate will be expected to learn to run a 1 MeV Van de Graaff generator. Salary within the range £797-£1,592 p.a. Day, release may be available, Approximately six weeiss' paid leave per year. Write Laboratory, Keble Road, Oxford, mentioning reference A131.

DEPARTMENT OF NUCLEAR PEYSICE, University with of Oxford, has a vacancy for a technician to work with a group engaged on development and maintenance of a dual computer system. Duties of the post are:
(a) to assist with the development of circuits and sys(a) to assist with the development of circuits and systenance of an efficient service to the computer user. Experience of electronic or telephone exchange equipment would be an advantage. It is expected that the candidate would be working towards the HNC and day release is avallable. The appointment would be at either technician (£ ${ }^{(£ 1,185-£ 1,592)}$ level depending on age, qualifications and experience. Write to T. L. Green, Nuclear Physics Laboratory, Keble Road, Oxford, mentioning reference
A132. 661

CLECTRONICS ENGINEER, R N.C. or equivalent, Eentirely self-reliant, to start from cold on the engineering (from existing bread-board diagrams) and fow off assembly of miniaturised equipment: followed by a continuous increase in series of varied practical
answers to iresh problems as they arise. Experlence answers to fresh problems as they arise. Experlence
needed of development and assembly in radio or allied felds. Able to contribute to further developments in conjunction with user branch. Access available to latest components information. Attractive prospects with building up of really interesting specialist industry. £ $1,735-£ 2,394$ according to age and ablity with annual reviews and up to five weeks leave. Please write fully: Mews, London, S.W. 12 . [690

ELECTRONICS TECHNICIAN and JUNIOR TECHto assist in development, construction and maintenance of electronlc equipment for use in teaching and research laboratorles. Little routine work; good opportunities to exercise initiative; excellent holidays. Salary scales: Technician: £ $1,060-£ 1,482$ +supplementary allowance £581-£869 (with paid day release for further study). Apply, stating age, qualifications, experlence and present salary, to Administrative Asslstant (P1), Birkbeck College, Malet Street, Lomdon. WCLE 7HX.

CAREERS in SCIENCE and ENGINEERING

Exciting and rewarding opportunities in these fields are almost unlimited Write now for details of the following courses offered by:-

:OURN=MOUTH COLLEFE OF TEFNNOLOGY

UNIVERSITY OF LONDON EXTERNAL DEGREES

B.Sc. General (Hons.) Mathematics, Physics, Chemistry, Botany, Zoology, Statistics.
B.Sc. (Eng.) (Hons.)—Electrical (including Electronics).
These courses are suitable for both men and women.
Study by the Sea in Britain's foremost international and cultural resort.
For prospectus apply to:
The Principal, Room 67,
College of Technology, Lansdowne,
Bournemouth, BR1 3JJ. Tel. B. 20844.

Buckinghamshire Education Committee

SLOUGH COLLEGE OF TECHNOLOGY
Principal; W. Bosley, M.Sc., Ph.D., F.Inst.P.

DEPARTMENT OF ENGINEERING

LECTURER GRADE I IN ELECTRONIC ENGINEERING (EN/2/70)

To seach electronic subjects in Electrical Technicians and Radio, TV \& Electronic Servicing Courses. Applicants should possess the H.N.C. or a suitable have recent TV development or servicing experihave renching experience desirable but not desirable but not essential.
Salary on Burnham Technical Scale, viz. Lecturer | \&1,230-\&2,075 plus additions for qualifications and training.
Removal expenses up to $£ 100$ may be paid in approved cases.
Further particulars and application forms (please quote reference number) can be obtained from the Vice-Principal, Slough College of Technology, William Street, Slough. Bucks, to whom completed forms should be returned within 14 days of the appearance of the advertisement.

Senior Electronios Engineer
 (B)

Speytec, the expanding division of Burroughs Machines, require a Senior Electronics Engineer.

The Engineer we are looking for will be self propelled with at least three years' experience with a development team and holding a Degree. HND, or HNC with endorsementsprobably in the age range $25-35$. But the man is more important than the qualifications and the right mixture of practical and theoretical experience will influence us further. The work will cover a variety of fields involving linear integrated circuits and logic. We would be particularly interested in someone with experience in digital magnetics. In the future, the Engineer can expect to be involved in development work utilising large-scale integration in the computer field.

We can offer good prospects to those who join us now. What can you offer us ?

Linda Scales, Speytec Ltd., Dept. WW/AUG. 512 Purley Way, Croydon, Surrey.

Telephone: 01-6866431

Burroughs

 Speytec DivisionPlessey Telecommunications Ltd., located at Beeston, near Nottingham, have established the largest production capacity in Europe for the automated production of Reed Contacts for Telecommunications. A vacancy exists for a suitably qualified and/or experienced man to join a team working on Reed Contact Development.
We would expect a suitable applicant to be qualified to M.Sc. level or at least to B.Sc. level, plus a few years' relevant experience. He would be concerned with all aspects of development from initial concepts to advising on production techniques.
The successful candidate will be offered assistance in relocating his home.
Applications in writing stating age, qualifications and experience should be sent to D. R. Hilton, Senior Emplayment Officer, The Plessey Company Limited, Beeston, Nottingham.

ELECTRONIC ENGINEERS

Service Engineers required for Offices, throughout the United Kingdom, of well-known Company manufacturing Electronic Desk Calculating Machines. Applicants should possess a sound knowledge of basic Electronics with experience in Electronics, Radar, Radio and T.V. or similar field. Position is permanent and pensionable. Comprehensive training on full pay will be given to successful applicants. Please send full details of experience to the Service Manager, Sumlock Comptometer Ltd., 102/108 Clerkenwell Road, London, E.C.1.

BRISTOL POLYTECHNIC

SENIOR TECHNICIAN

required in the Department of Navigation, Marine Radio \& Radar, duties to commence I September, 1970.

Applicants should be over 21 and hold Intermediate City and Guilds in Electronics or Radio Communications, or other appropriate qualifications. Duties include servicing and maintenance of electronic and electrical equipment as used in Merchant Ships and
Civil Aircraft.
38 -hour, 5 -day week with generous holiday and
38-hour, S-day week with generous holiday and sick pay schemes. Permanent post with superannua-
tion under Local Government conditions of service. Salary Scale: Senior Technlcian- $\mathbf{5 9 6 5}$ - 11,130 (under review). Starting salary dependent upon age, qualifications and experience. An additional $£ 50$ or $¢ 30$ will be paid to an applicant with appropriate National Certificate or C. \& G. qualifications.

Further particulars and application forms (to be returned within fourteen days of this advertisement) from Chief Administrative Officer, Bristol Polytechnic, Ashley Down, Bristol BS7 98. Please quote post r

Buckinghamshire County Council SLOUGH COLLEGE OF TECHNOLOGY CLOSED CIRCUIT TELEVISION

Applicants are sought for the operation and maintenance of equipment in the College television studio. Experience in television systems servicing is essential and an ability in graphical art would be an advantage. Basic 5 -day week with adjustment for some evening and or weekend work. Salary
scale $£ 965-£ / 130$ (subject to revision).

Application forms and further details from the Vice Principal, Slough College of Technology. William Street, Slough, Bucks.

UNIVERSITY OF STIRLING
 Department of Psychology TECHNICIAN/SENLDR TECHNICIAN

Applicants should have completed a recognised apprenticeship, or other appropriate training, and have interests in A.F. techniques and instrumentation, including use of digital and linear integrated facilities if required.
Salary: Technician 1935- $\mathbf{6 1 , 3 0 3 ;}$
Senior Technician $\mathbb{1 1 , 2 7 8 - £ 1 , 5 8 6 .}$
Applications, with names of two referees should be received by the Deputy Secretary (W.W.), University of Stirling, Stirling, by 10 August, 1970.

Poole General Hospital Poole, Dorset

Applications are invited from qualified candidates for the following post in the Electronics Department at Poole General Hospital:

ELECTRONICS TECHNICIAN III

Qualifications: O.N.C., H.N.C., City \& Guilds or equivalent Salary: $\& 1,180 \times 8$ inerements to $£ 1,500$ p.a. The Department will be primarily concerned with the Installation, testing and maintenance of an extensive range of diagnostic/therapeutic and allied electronic equipment, and ultimately with research and development of bio-medical equipment in consultation with medical staff.
The position offers adequate scope for initiative and career progression, including the possibility of assistance with further training.
Applications, giving full details, including qualifications, experience, and the names and addresses of two referees to the Hospital Secretary, POOLE GENERAL HOSPITAL, Poole.

623

IMMEDIATE REQUIREMENT

for junior celevision englneer or television technician with test room or development experience in 625 line equipment. Telecine experience desirable, HNC or equivalent desired. Challenging new field with opportunities for foreign travel. Prestige offices in Central London.' Pension Fund. Salary dependent on quailfications- $£ 1,950$ minimum. Please apply in writing to: The Technical Director, The EVR Partnership, Vogue House, I Hanover Square, London, WIR, OJH.

University of Cambridge SCOTT POLAR RESEARCH INSTITUTE

There is a vacancy for a lechnical assistant to work on electronic instrumentation and to assist with field work in the Antarctic on lours of about four months duration. Salary on University Assistant scale, recently increased 21%. ONC would be suitable qualification. Apply in writing to, Director, Scolt Polar Research Institute, Cambridge, stating date of birth, qualifications and experience.

642

RADIO \& TELEVISION SERVICING RADAR THEORY \& MAINTENANCE

INSTALLATION ENGINEER required for the servicing, testing and installation of audio, projection and lighting control equipment. An excellent opportunity for appucant with Intarive and \& sound knowedge of basic electronics. Starting salary $£ 1,250$. The post
offers opportunties for travel in England and overseas. Apply to: The Personnnel Director, Electrosonic Limited,
47 Old Woolwich Road, Greenwich, S.E. 10 .
[683

PROTOTYPE electronics wiremen required for a small but rapidly expanding company manufacturing "one off" systems to customers ${ }^{\prime \prime}$ specincations. The work covers the fild of Analogue, Digital and Industrial electronics. Flye years' experience on prototype wiring, including making the ancillary hardware, to sketches, is required. Ablity to teach tralnees would be useful
Salary up to $£ 1,500$ depending on experience. Applicatlons in writing to: Parametric Ltd., Highneld Works Canal Street, Runcorn, Cheshire.
$\mathbf{R E D I F O N}^{\text {LTD. require fully experienced TELE- }}$ $\mathbf{R}^{\text {COMMUNICATIONS TEST }}$ TEST ENGINEERS and ELECTRONICS INSPECTORS. Good commencing salaries. We would particularly welcome enquities from ex-Service personnel or personnel about to leave
the Services. Please write giving tull details tothe Services. Please write giving full details to-
The Personnel Manager, Rediron Ltd., Broomhill Road Wandsworth, S.W.18.
$S^{E N I O R}$ TECHNICIAN (Instrument/Electronics) reelectrical workshoo. Duties include servicing and electrical workshop. Dutles include servicing and
construction of modern electronic equipment. Know ledge of workshop and circult wiring essential and candidate must have initiative and be able to work without supervision. HNC or equivalent qualification necessary. Salary in the range $£ 1,403-£ 1,761$ per annum according to age, qualifcations and experience.
Apply in writing to the Departmental Superintendent Department of Chemistry, Imperial College, South Kensington, London, S.W.7. Imperial College, $[64$

SENIOR technician/Technlician required to work in a Well-equipped modern workshop, designing, constructing and maintaining a wide variety of laboratory
apparatus. Although primarlly the work will concern apparatus. Although primarily the work will concern general workshop practice would be an advantage. Salary according to age, qualifications and experience in the Whitley Councll scales for Medical Laboratory Technfcians (Senior technlcian $\mathbf{~ 1 , 4 4 8 - £ 1 , 8 4 1 , ~ T e c h n i c i a n ~}$

TRANSFORMER DESIGNER urgently required for 1 expanding company. This is a progressive post for a keen and enthuslastic man. Replies in confidence to Managing Director, Belclere \& Co. Ltd., $385 / 387$ Cowley Road, Oxford.

UNIVERSITY OF SHEFFIELD - TECHNICIAN or JUNIOR TECHNICIAN required in Department o Physics for Electronic Section dealing with designing, matntenance and production of electrontc equipment ${ }^{\text {mo }}$ | teaching and research purposes. Training given in |
| :--- |
| workshop practice. Salary: Junior Technletard 2456 | p.a. (age 16)-£704 p.a. (age 20). Techniclan $\mathbf{2}^{2935-}$ £ 1,303 p.a. with basic qualification. Supplement for approved higher qualification. Write to the Bursar (Ref. B.595), The University, Sheffeld S10 2TN. [639

SITUATIONS WANTED

YOUNG TV Engineer, studying for C.E.1. In spare time, requires interesting work compatible with educational standard. Manchester area. Box W.W. 64 Wreless World.

PRINCIPAL ENGINEER

seeks appointment
to lead a team in signal processing in space and time domains using analogue and digital methods. The aim is to further the knowledge of radar resolution in a dense signal environment, and continuously to follow theoretical results with system engineering to prove principles where necessary.
Considerable experience in this and communications field and currently leading a team as outlined above. Now seeks salary compatible with results achieved. Southern England or overseas. BOX W.W. 670 WIRELESS WORLD

RADIO COMMUUICATIONS TEST ENGINEERS
 We still need you at Redifon

The Company is engaged in the design and manufacture of a wide range of radio communications and allied equipment, from military pack-sets to broadcast transmitters, including communications receivers, M.F. Beacons, Teleprinter Terminals, complefe Radio Office installations for the Merchant Navies of the world and mobile H.F. and S.S.B. Stations. If you have sound technical knowledge coupled with good practical experience in the alignment and test of H.F. and V.H.F. Communications equipment, we would invite you to visit us to talk about a position with Redifon which would offer excellent opportunities for you to broaden your experience in semi-conductors, S.S.B. and Frequency Synthesis. If you are the man we re looking for, you should be worth at least $£ 24$ a week to us and opportunities above this are readily available for the right men with prospects of monthly staff appointments at salaries commencing at
£1,500 per annum.
Please phone or write to: The Personnel Officer, REDIFON LIMITED.

A Monter Company of the Rediflusion Organimalion

Computloket

wants

 MAINTENANCE TECHNICIANSComputicket is now implementing its antertainment sat-booking system. This service, which operates in real-time, will ultimately involve hundreds of on-line CRT Terminals, sited in a wide variaty of public places.
Computicket is now recrulting Maintenance Technicians based in the London Ares to perform a vital role in.this exciting new service.
Applicants should have had experience in the maintenance of Electro-mechanical and Electronic equipment situated in the fiald and should be happy to find themselves part of a technically advancing but nevertheless consumer orientated team.
Salaries up to $£ \mathbb{7 0 0}$ are being paid. There are also posts vacant at senior level for ElectroEngineers with a broad design experience and leadership potential.

Write for an application form to:-
Colin Roberts, Chief Engineer, Computicket Limited
247 Tottenham Court Road, London W1P 9AD

O Northern Polytechnic

HOLLOWAY, LONDON.N. 7

Department of Electronic and Communications Engineering

3-year Full-time courses.
(a) College Diploma in Electronic and Communications Engineering with exemption from CEI pt. 1. Students attending this course may sit for the CEI parts I and II exams to obtain the necessary educational requirements for the award of the title "Chartered Engineer" after a period of industrial experience. Entry requirements 2 " A " levels in Mathematics and Physics.
(b) Higher National Diploma in Electrical and Electronic Engineering
Successful students gain exemption from CEI pt. I and may sit for the CEI pt. II examinations after a further year's study. Entry requirements: 1 " A " level in Mathematics or Physics, ONC, OND or equivalent.

(c) Electrical and Electronic Technician's Certificate

The syllabus covers the requirements for the City and Guilds of London Institute Full Technological Certificate in
Telecommunications Engineering and Final Certificate for Radio and Electronic Technicians.
Part-time courses at graduate level in the following subjects:
Computer Engineering Colour Television Engineering
Television Studio Engineering
Electro-acoustical engineering
Microwave and Radar engineering
Modern Network Theory
Transistor Circuit Design
Control and Systems Engineering
Integrated Circuits and Micro-electronics Medical Electronics for Medical Technicians

The Department has many well equipped Laboratories and a large anechoic chamber fully equipped with specialized measuring equipment.

Prospectus and further details available on request from the Department.

ARTICLES,FOR SALE

WITWORTH TRANSFORMERS LTD.

Dept. WW., 26 All Sainte Road, North Kensington, W.II Telephone: 0t-2299071. 9 a.m. sitl 5 p.m.
TELEVISION LINE OUTPUT TRANSFORMERS
PRACTICALLY ANY MAKE OR MODEL SUPPLIED OR REWOUND
EKCO, FERRANTI, DYNATRON Replacement cases 16/- each, please state model S.A.E. for return of post quotation.
TERMS: Cash with order or C.O.D 4s. for postage.
C.O.D. orders will be charged 6 s .

Transformers fully guaranteed.
 volts 239 Watts $4 /-$ p.p. $1 / 6$. G . P. P. . Type 3000 Relays from 2 onms to 50,00 ohms with any bulld up to suit your
reaulrements. We hold huge stocks of relays. Miniature Trequirements. We hold huge stocks of relays. Minlature
Motors $1-3$ volts, r.p.m. at 2 volts $6,500-8,500$ 6/- each

 ends
phone for details of other bargains. Elek on Enterprises, 12 A Totreninam Street, London, W1P 9PQ. Telephone 01-580-7391.

 Postage $1 / \mathcal{\text { por }}$ per order
Chesterfleld Road, Shefteld, S8. C.R. Supply Co.,
[673
$B^{\text {OIID }}$ IT \ln a DEwBox qualty plastics cabinet.
 Write now-Rlght now.
$\mathbf{F}_{\text {OR SALE. }} \mathrm{KO}$-Lectric coll winder with mardrive sioning device winding spacing Table mounted avo tensioning device winding spacing .001 to .020. Cost over
$\boldsymbol{f} 400$. $£ 70$ o.n.0. Phone Welwyn Garden 24972.
[689

AMAZING VALUE
 NEW BRANDED FULL SPECIFICATION SEMICONDUCTOR DEVICES

BEST FOR PERFORMANCE AND RELIABILITY
G.E. D4OC1 4W. Darlington Ampllfie

Very High Galn 10,000 minimum - - $13 / 6$
Signetlcs N5709A Type 709 Op. Amp. $13 / 6$
1 N 4001 , $50 \mathrm{~V} 1 / 9 \quad 1 / 44004,400 \mathrm{~V} 2 / 5$

$1 \mathrm{~N} 4007,1000 \mathrm{~V} 4 /{ }^{\circ}$
P. \& P. 1/- per order. Overseas $7 / 6$

JEF ELECTRONICS (W.W.8)
YORK HOUSE, 12 YORK DRIVE, GRAPPENHALL
WARRINGTON, LANCS. Money back H not satisfied

MAGNETIC AMPLIFIER, demonstration unlt, show characteristics of serles and paralle! connected ampliffer Characteristics oi series and paralle. connected ampilier.
P.C.B. construction in wood frame with instructions,
\&. Box W.W. 662 , Wireless World

MINIATURE Transistorised Modules. Only six exMonostables can also be readily constructed using minimum of extra components. Price: only 26/- each (pos free in U.K. only). Terms: strictly c.w.o. Gorlan Modules, 261 Wardour Street, Atherton, Lancashire. [675
MUSICAL MIRACLES, Send S.A.E. for detalls of bass pedal unit for organs, pianos or solo, musica novelties, waa-was kits ($49 /-$). Also bargain components list reed switches etc. D.E.W. Ltd., 254 Ring-
wood Road, Ferndown, Dorset.
NEW CATALOGUE No. 18, containing credit voucher surplus electric and mechanical components, price 4/6,

$\mathbf{2}_{\text {Nelson }}^{50,000}$ Lit storarage capacites. This magnetic drum made by 2 Nelson Laboratorles. This unit has never been put 7217 for detalls.
UBF, Colour and TV SERVIICE SPARES, Leading time base units incl. EHTT transformer, $\mathbf{8 5 \text { , carriage }}$ 10/-. Integrated UHF/VHF 6 position push bution tuner, 4 transistors, knobs, circult data. Easily adiusted
for use as 6 position UHP tuner, $\& 4 / 10 /-$ P/P $4 / 6$.
 lacl. tuner, drive assy, 625 IF amplifer, 7 valves,
 $405 / 625$ switchable IF ampinfer and output chassis,

drive assy, aerlal panel. $55 / 10 /$., P/P ${ }^{4 / 6 .}$. New or manufacturer tested VHF tuners, AT7639 Peto Scott, Decca, Ekco. Ferrantl, Cossor, $38 / 6$, Cyldon C
minaiature with UHF
injection
$25 /-$.
Ekco
$283 / 330$,
 Ferrant
BMV, Marconi type
37/6. Plessey 4 position push bution tuners with UHF injection incl. valves, $88 / 6$. Many others avallable. P/P all tuners $4 / 6$. Large selection

 available for most popular makes. PYE/LABGEAR transistorised booster units B1/B3 or UHF, battery operated $5 /-$ UHF Masthead $£ 5 / 5 /-$ post free. COD
despatch available. MANOR SUPPLIES, 172 WEST despatch available. MANOR SUPPLIES, 172 WEST
END LANE, LONDON, N.W. 6 (NO. 28 Bus or W. Eamp. END LANE, LONDON, N.W. 6 (No. 28 Bus or W. Eamp.
stead Tube Station), MAIL ORDER: 64 GOLDERS MANOR DRIVE, LONDON, N.
Stafl
holidays August 17 to 31 .
$60 \mathrm{kc} / \mathrm{s}$ Rugby \& $75 \mathrm{kc} / \mathrm{s}$ HBG Neuchatel Radio Reunits, $£ 35$, Toolex, 6 Warwick Close, Hertford (48*6)

CAPACITOR DISCHARGE IGNITION

(W.W. JAN.)

Invertor transformer 30VA 15:1 ratio. CWO 32/- + 5/- p.\&p. Also available with $30: 1$ ratio for 6 V systems, cost as above. MAGTOR LTD., 68 Dale Sireet, MANCHESTER

BUSINESS OPPORTUNITIES

RADIO WORKSHOP to let at Elstree Aerodrome, fully (Day), 01-953-3421 (Night).

TEST EQUIPMENT SURPLUS

SIGNAL, generators, oscliloscopes, output meters, wave etc., etc., In stock.-R. T. \& I. Electronlcs, Ltd., Ash-
v1lle Old Hall, Ashville Rd., Lopdon, E.11. Ley. 4986 .

RECEIVERS AND AMPLIFIERS
 SURPLUS AND SECONDHAND

HRO Rx5s, etc., AR88, CR100, BRT400, G209, S640, Ashville Old Hall. Ashville Rd., London. E.11. Ley 4986.

NEW GRAM AND SOUND
 \section*{EOUIPMENT}

CONSULT first our 76-page illustrated equipment catalogue on Hi-Fi (6/6). Advisory service, generous Assoclation, 18 Blenherm Road. London, W. W. 4 Association,
CLASGOW.-Recorders bought, sold, exchanged cameras,
versa.-Victor Morris, 343 Argyle St., Glasgow, C.

SHURE GOLDRING cartridges post free, G800 £7.17.6.
$\mathbf{S M D}_{\text {M }}$ £ 5.5 .0 M44/5/7 $£ 7.10 .0$. M44E $£ 8.19 .6$. M55E £93D © 5.5 .0 M M4/5/7 £7.10.0. M44E £8.19.6. M55E £9.19.6. M75E/2 £16. Utimate Electronics, 38 Achlles
[90ad, London, N.W.6. Mail Order Only.

TAPE RECORDING ETC

COMPACT VIDEO SYSTEMS LTD. offer a $\frac{1}{2 \prime \prime}$ video requirements. Telephone 01-734 4714 for information

F quality, durablity matter, consult Britain's oldest transier service. Quality records from your sultable tapes. (Excellent tax-iree fund raisers for schools Grand. Sound News, 18 Blenhelm Road, London. W. 4 .
01-995 1661 . YOUR TAPES TO DISC- 66,000 Lathe. From 25/Eigh Bank, Hawk St., Carnforth, Lancs.
[70

FOR HIRE

FOR HIRE CCTV equipment, including cameras -Detalls from Zoom Television, Chesham 6777 perlod
VALVES
VALVE cartons by return at keen prices; send $1 /$.
for all samples and Hst,-J. \& A. Boxmakers, 75a
Godwin St., Bradford, 1.

ARTICLES WANTED

R EQULRED, Kllodyne Four, or other prewar Eddy penham, Wiltshire.

Can anyone offer a circuit for a $1 \frac{1}{2}$ volt to 3 volt subminiature F.M. Iqw range transmitter

BOX No. W.W. 679
$\mathbf{S}^{\text {INGLE }}$ PHASE to Three Phase Changers, D.C. to Universal Electric, $43 / 47$ Rivington Street., Shoreditch, London, E.C.2. [013
$\mathbf{V}^{\text {dives and Transistors required in new con- }}$

$\mathbf{W}_{\text {and }}^{\text {ANTED, }}$ test equipes of communications receivers Electrontes, Ltd., Ashville old تall, Ashvilie Rd., Lon. don, E.11. Ley. 4986.
$\mathbf{W}^{\text {ANTED, televisions, tape }}$ recorders, radiograms,

VALVES WANTED

We buy new vaives, transistors and clean new comquotation by return. - Walton's Wuantities. all detalles, quotation by return.-Walton's
Worcester St., Wolverhsmpton.

SERVICE \& REPAIRS

$\mathbf{S}_{\text {Field }}$ servicice any and repair contracts undertaken. $\mathrm{S}_{\text {Field service }}$ any distance. Best posstble rates for

CAPACITY AVAILABLE

A IRTRONICS LTD., for Coll Winding-large or small A production runs. Also PC Boards Assemblies. Suppliers to P.O.. M.O.D., etc. Export enquirles welcomed.
3a Walerand Road, London, S.E.13. Tel. $01-852$ 1706 61
ELECTRONICS WRITING/EDITING for industry. $\mathrm{E}_{\text {Reports, application notes, manuals, hand-outs, }}^{\text {and }}$ written to specifled length. Send full detalls for com-
pettitive
ELECTROSCRIPT petitive quote. Fast turnround, ELECTROSCRIPT
SERVICES, 18 Grange Road, Bournemouth, BM6 3NY.
$\mathbf{M}_{\text {etc., to your }}$ awn specification chats, chassis, racks, for smail to mour own specification, capacity avallable and captan work up to lin barRor small mulling and capstan work up to 1 in bar.-
PHILPOTT'
Loughborough. METALWORES, Ltd., Chapman Sit.

SWEDISH-ENGLISH Translations by M.Sc. specialising in Electronics, Telecommunications, Nuclear Physics, etc. Box W.W. 637 WIreless World

TECHNICAL TRAINING

$\mathrm{B}^{\text {ECOME 'Technically }}$ Qualifed" in your spare time, B guaranteed diploma and exam. home-study course

 Guide--Iree. Chambers College (Dept. 837K), College

CITY \& GUILDS (Electrical, etc.), on "Satisfaction or Refund of Fee" terms. Thousands of passes.
For detalls of modera courses in all branches of elecFor detalls of modesn courses in all branches of elec-
trical engineering, electronics, radio, T.V., automation, trical engineering, electronics, radio, T. (Dept. 152K), Aldermaston Court, Aldermaston, Berks.

TECHNICAL TRAINING IN Radio, TV and Electrontca home-study
House, London, 8.w. 8 .
$T V$ and radio A.M.I.E.R.E., Clty \& Gullds, R.T.E.B.; 1 certs., etc., on satisfaction or refund of fee terms thousands of passes; for full detalls of exams and home training courses (Including practical equipment) in all
branches of radto. TV, electronics, etc. write for 132page handbook-free: please state sublect.-British page handion- Eree, ping Technology (Dept. 150K),
Institute of
Ildermeston Court. Aldermaston, Berks.

TUITION

ENGINEERS.-A Technical Certificate or qualincatlon will bring you security and much better pay Elem. and adv. private postal courses Ror C.Eng.,
A.M.I.E.R.E., A.M.E.E. (Mech, \& Elec.), City \& A.M.I.E.R.E. ${ }^{\text {A.I.M.I.S.E. A.I.Mech, \& }}$ \& Elec.). City Diploma coursea in ail branches of Engineering-
 Draughts, Bulding, etc.- For full details write for
FREE 132-page guide: British Institute of EngineerFREE
Ing Technology Ing Technology (Dept. 151K), Aldermaston Court,
Aldermaston, Berks.

K College of Technology Princtpal: E. Jones, M.Sc,

FULL-TIME courses for P.M.G. certifacates and the Radar Maintenance certificate.-Information from | College of Technology, Queen's Gardens, Eingston-upon- |
| :--- |
| [18 |
| 1 Ill |

BOOKS, INSTRUCTIONS, ETC
Mandals, efrcuits of all Brittsh ex-w.D. 1939-40 R.E.M.E. Instructions; s.a.e. for list, over 70 ortpes. R.E.M.E. Balley, 167a Moliat Road, Thornton Heath,
Wurrey, CR4-8PZ.

Sea-going Radio Officers can now make sure of a shore job and good pay.

CLASSIFIED ADVERTISEMENTS Use this Form for your Sales and Wanls

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.I
PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

- Rate: 8/- PER LINE. Average seven words per line.

Name and address to be included in charge if used in advertisement.

Box No. Allow two words plus 1/-

- Charges etc., payable to "Wireless World" and crossed "\& Co."
- Press Day 6th August for September 1970 issue.

Kompass Publishers Limited have produced British Exports ${ }^{\prime} 70$, which is now arriving on the desks
of 12,500 overseas buyers, mainly by request. Beautifully bound, this book is printed in French, Spanish

German and English and contains details of more than 10,000 UK exporters-their products/services, and lists over 70,000 overseas agents. It is presented in a simple, easy to read style, so that overseas buyers can find British exporters, their products and the nearest source of supply.

British Exports ' 70 is the second edition of this work, and the third edition, British Exports ' 71 is now being compiled. Distribution
by demand will be increased to 15,000 . If you export anything: complete plant, a product or service, even just 'know-how' and are in doubt whether you are listed in this work, please contact:

G. E. Mason

British Exports '71
Kompass Publishers Ltd., RAC House, Lansdowne Road, Croydon CR9 2HE. Tel: 01-686 2262

TRAIN TODAY FOR TOMORROW

Start training TODAY for one of the many first-class posts open to technically qualified men in the Radio and Electronics industry. ICS provide specialized training courses in all branches of Radio, Television and Elec-tronics-one of these courses will help YOU to get a higher paid job. Why not fill in the coupon below and find out how?
Courses include:

- RADIO/TV ENG. \& SERVICING
- AUDIO FREQUENCY
- COLOUR TV SERVICING
- ELECTRONICS-
- ELECTRONIC MAINTENANCE
- INSTRUMENTATION AND CONTROL SYSTEMS
- NUMERICAL CONTROL ELECTRONICS
COMPUTERS
- PRACTICAL RADIO (with kits)

Guaranteed Coaching for:

- C. \& G. Telecom. Techns' Certs
C. \& G. Electronic Servicing
- R.T.E.B. Radio/TV Servicing Cert.

Radio Amateur's Examination
P.M.G. Certs. in Radiotelegraphy

- General Certificate of Education

LINSLEY HOOD PRE-AMPLIFIER

Components as specified in May issuW

 PCB (Designer approved) $8^{\prime \prime} \times 4 \frac{1}{2}$ 25 Hi-stab resistors and 2 pre-sets23 polyester and electrolycic cap's
3 pots (Mono) and I Amelco 2N4302
3 pots (Mono)
2 Radlospares sw's (Morio)
2 Radiospares sw's (Stereo)
Complete kit (Mono)
Complete kit (Stereo)
Matched 10 Tr's (Bailey 30W) with Peb
Matched 10 Tr's (Texas 15 W) \& IS2082A Matched 4 Tr's (Hood IOW) with MJ480s Matched 4 Tr's (Hood IOW) with MJ481s
Postage 1/- on orders below £l.0.0.
Send S.A.E. for detailed lists including Linsley Hood 15-20W Class $A B$ Amplifier.
GUARANTEED DESPATCH BY FIRST CLASS RETURN
A.IFAGTORS. 72 BLAKEROAD.STAPLEFORD.NOTTS.

SA VE ON COMPACT CASSETTES!

AUDEMAC COMPACT CASSETTES are Guaranteed Top Quality. Sonic welded nonjamming construction in Philips type plastic library cases with unique giant $\mathbf{o n}^{\circ} \times 4$ label giving DOUBLE
the normal writing area.

$$
\begin{array}{llll}
& \text { One } & \text { Three } & \text { SIX } \\
\text { C60 } & 7 / 6 & 21 /- & 40 /- \\
\text { C90 } & 1016 & 301- & 57 / 6 \\
\text { C120 } & 13 / 6 & 37 / 1 & 7216 \\
\text { (2/6 } P \text { \& } P \text { on all orders under } £ 3 \text {) }
\end{array}
$$

CASSETTE Headcleaner in plastic Library box $10 / 6$ Post Free, Absolut ely FREE with allorders $\varepsilon 5$ and over.
For a 5 quare Deal and ALL Round Service.
MUSIC TAPES MAIL ORDER
36 High Street . Salisbury . Wilts.

ENTHUSIASTS
for tape recording subscribe to the only Magazine devoted exclusively to the ubject 25/- (U.S A.) \$3.75 yrly. incl. postage.

- FREE SPECIMEN COPY ON REQUEST 7 ALVERSTONE AVENUE. EAST BARNET, HERTS

SURPLUS HANDBOOKS

19 net

Crout and Notes
H.11.O. Technical Instructions

38 set 'Technical Instructions
46 set Working Instructions
88 set Technical Instructions
BC. 221 Circult and Notes
Waverneter Class D Tech.
18 set Clrcult and Notes
BC. 1000 (31 zet) Crrcult and Notes
CR. 100/B. 28 Circuit and Notes
All.88D Instruction Man
62 set Clrouit and Notes
Circuit Diagram $5 / 6$ each poat ois $\quad \therefore 18 / 6 /-$ p/p 1 p Qd. R.F. 24. 25 and 26, A.1134, T.1154, OR. 300, BC.312, BC. 342 BC.348J, BC. 348 (E.M.P.), BO.624, 22 set.
52 set Sender and Recelver ctrcults $8 /-$ post free.
Colour Code Indlcator 2/6, p/p 6d. S.A.E. with all enquiries please.
Postage rates apply to U.K. only. Mail order only to:
INSTRUCTIONAL HANDBOOK SUPPLIES
Dept. W.W. Talbot House, 28 Talbot Gardens, LEEDS 8

WE BUY

any type of radio, television, and electronic equipment, components, meters, plugs and sockets, valves and transistors, cables, electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields \& Mayco Disposals, 21 Lodge Lane, London, N: 12

RING 4452713
4450749
9587624

WANTED-

Redundant or Surplus stocks of Transformer materials (Laminations, C. cores, Copper wire, etc.), Electronic Components (Transistors, Diodes, etc.), P.V.C. Wires and Cables, Bakelite sheet, etc., etc. Good prices paid
J. BLACK

44 Green Lane, Hendon, N.W. 4
Tel. 01 -203 1855 and 3033

WE PURCHASE

COMPUTEAS, TAPE READEAS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGSAND SOCKETS, MOTORS, TRANSISTORS, RESISTORS, CAPACITORS, POTENTIOMETERS, RELAYS TRANSFORMERS ETC. ELECTRONIC BROKERS LTD.
49 Pancras Road, London, N.W.1. 01-837 7781

WE PURCHASE ALL FORMS -F ELECTRONIC EQUIPMENT AND COMPONENTS, ETC.

CHILTMEAD LTD.

7. פ, 11 Arthur Road, Reading,

Herks.
Tel: 582605

MILLIAMMETERS
 100Ω Movements-ill with sáme sensitivity $F S D=1 \mathrm{~mA}\left(4^{\prime \prime}\right.$ scale) sensitivity FSD other scala
 configurations available
 configurations available O-5. O-10, O-14.
 0-250. 0-700. 0 - 1400
 $37 / 6$ ea, $2 / 6$ post. 3 or more carriage free
 -CHANDOS. HIGM STREET, NEW MILLS. NR. STOCKPORT. CHESHIRE. TELEPHONE NEW MLLLS (Derbyshire) 2345

QUARTZ CRYSTAL UNITS

Manufactured to your requirements
Fast Delivery
Freq. range $1 * 4-20 \mathrm{MHz}$
Phone Hythe 8961 for Leaflet AT-1
McKNIGHT CRYSTAL COMPANY
SHIPYARD ESTATE, HYTHE, SOUTHAMPTON

LOWEST PRICE despit recert Increases

LATEST NEW \& IMPRÓVED "JULIETTE" NAS018A COMMUNICATIONS RECEIVER

(with AFC)

5 BAND MAINS/BATTERY
SOLID STATE PORTABLE OUR
RECEIVER
36 gIIS
OPTIONAL EXTRA (cash only) $+9 /$.p/p BFO $+35 /-$

- AAM BAND: $540-1600 \mathrm{KC}$'s Full Medium wave cover - MARINE BAND : 1.6-4.6 MC's Shipping. Hams, S.w. etc.

FM/VHF: 88-108 MC's Radios 2, 3, 4; TV Sound Publlc Services, etc.

- alrcraft limproved sensitivity): 108-134 MC's Airlines and Ground Control
- PB thigh VHF Band): 148-174 MC's. TV Sound,
Fire. Ambulance. etc. Taxis. Shipping Fuel Boards, Oil Rigs, Gas and Electric Boards, Local Hams. Industrial and Commercial Mobil Aircraft, etc. (DEPENDING ON LOCALITY)
FEATURES-4" Dynamic PM Speaker. Directional telescopic VHF aerial. Internal Ferrite rod aerial. Illuminated Dial, size $9 \frac{1}{2}^{\prime \prime} \times 5 \frac{3}{4} \times 4^{\prime \prime}$. Weight $5 \frac{1}{2}$ lbs. Impressive and sturdy design in Chrome and Black Leather. Ultra sensitive transistor circuit. Earpiece and Socket. Leather earrying and shoulder straps. Batteries incl. (Standard Ever-Ready Type)

RETAIL TRADERS SUPPLIEO
Enquiries to wholesale dept.
STOCKTON PARTNERS (DEPT. WW) BRIGHOWGATE, GRIMSBY, LINCS. Tel: $047258815 / 64196$
Imports, Wholesale Electronic Equipment Distributors.
 Components
RCA Semiconductors from stock
Cat. $\&$ Price List by return Hams -free OSL cards \& 'Ham Tips' with every order.

This month's suggestion:

A 2-metre Transistor/Nuvistor
Transceiver comprising-
Transistors
2N 1632 (2) 6/- each
2N 372 12/6 each
2N 217 (2)
1N 1613
2N 2869/2N 301 (3)
2N 384
6/3 each

2N 585 (2)
1N 445 B
40250
Nuvistors
. 6CW4 (2) 6/3 each 11/9 each 15/9 each 17/3 each 22/- each
9/9 each $9 / 9$ each
$11 /-$ each 10/9 each

7587 (3)
11/9 each
7586
$32 / 3$ each
(Send for Ham Tips Vol.25. No.2. Parts I \& II for circuit details, price $2 /-$ cash.)
A wide range of semiconductors always in stock. Make sure of your copy of "Ham Tips" and QSL card, both free with order, by placing your order with us NOW.
Send for catalogue to:
RIEL EOUIPMENT, AND
Croft House, Bancroft, Hitchin, Herts Telephone: Hitchin 50551/2/3 and 52202

WW-086 FOR FURTHER DETAILS

Thanks to a bulk purchase we can offer BRAND NEW P.V.C. POLYESTER AND MYLAR RECORDING TAPES
Manufaccured by the worldofamous reputable Bricish cape firm, our tapes are boxed in polychene and have fitted leaders, etc. Their quality is as
good as any other on the market, in no way are good as any other on the market, in no way are
the tapes faulty and are not to be confused with imported, used or sub-scandard tapes. 24-hour despatch service.
Should goods not meet with full approval, purchase price and postage will be refunded.
S.P. $\left\{\begin{array}{llllll}3 i n . & 160 \mathrm{ft} . & 2 /- & 5 \mathrm{in} . & 600 \mathrm{ft} . & 6 /- \\ 5 \mathrm{itin} . & 900 \mathrm{ft}, & 8 /- & 7 \mathrm{in} . & 1,200 \mathrm{ft} . & 9 /-\end{array}\right.$ L.P. $\left\{\begin{array}{llllll}5 \sin . & 900 \mathrm{ft} & 8 /- & 7 \mathrm{in} . & 1,200 \mathrm{ft} . & 9 /- \\ 3 \mathrm{in} . & 225 \mathrm{ft} & 2 / 6 & 5 i n . & 500 \mathrm{ft} & 8 / 6 \\ 5 z \mathrm{in} . & 1,200 \mathrm{ft} & 10 / \mathrm{sin} & 7 \mathrm{in} . & 1,800 \mathrm{ft} & 13 / \mathrm{l}\end{array}\right.$ D.P. $\left\{\begin{array}{llll}3 \mathrm{in} . & 350 \mathrm{ft} & 4 / 6 & 5 \mathrm{in} \text {. } 1,200 \mathrm{ft} . \\ 53 \mathrm{in} & 12 /-\end{array}\right.$ D.P. $\left\{\begin{array}{lll}3 i \mathrm{in} .1,800 \mathrm{ft} & 16 / \% & 7 \mathrm{in} . \\ \text { P } & 2,400 \mathrm{ft} & 20 /-\end{array}\right.$ Postage on all orders $1 / 6$
COMPACT TAPE CASETTES AT
60,90 , and 120 minutes playing time, in original plastic library boxes.
MC $60 \% /-$ each. MC 90
12/6 each. MC
$12018 / 3$ each.

STARMAN TAPES

28 LINKSCROFT AVENUE, ASHFORD, MIDDX.

Ashford 53020
WW-087 FOR FURTHER DETAHLS

LAWSON
 BRAND NEW
 TELEVISION TUBES

$12^{\prime \prime}$ \&4.10.0
$14^{\prime \prime}$ E4.19.0
17* E5.19.0
19" 66.19 .0
21" 68. 5.0
$23^{\prime \prime} \quad 69.15 .0$
19" Panorama £8.10.0
23" Panorama £11.10.0
19" Twin Panel' $£ 9.17 .6$
23° Twin Panel $\{13,10.0$
Carriage and insurance
$12^{*}-19^{*}-1216$
$21^{\prime \prime}-23^{\prime \prime}-1510$

The continually increasing demand for tubes of the very highest performance and reliability is now being met by the new Lawson "Century 99 " range of C.R.T.s. "Century. 99 " are absolutely brand newo rubes throughout manufactured by Britain's largest C.R.T. manufacturers. They are guaranteed to give absolutely superb performance with needle shard definition. Screens of the very latest type giving maximum Contrast and Light output; zogether with high reliability and very long life.
"Century 49 " are a complete range of tubes in all sizes for all British sets manufactured 1947-1970.
Complete fitting instructions are supplied with every tube.

2 YEARS FULL REPLACEMENT GUARANTEE
WW-085 FOR FURTHER DETALLS

LAWSON TUBES
18 CHURCHDOWN ROAD MALVERN, WORCS. Tel. MAL 2100

WANTED

surplus transistors, semiconductors, capacitors, cable, electrical goods, radio television and electrical equipment, wire, aluminium or any redundancles for spot cash.
Buyer will call to inspect anywhere.
Concord Instrument Co.
28 Cricklewood Broadway London, N.W. 2
Telephone: 01-452 0161/2/3
Telex: 21492
Cables:
CONIST LONDON

GLASS FIBRE OPTIC
FLEXIBLE LIGHT PIPE, now available in any length.
$150+$ glass fibres with three times lower loss than plastic fibre. P.V.C. sheath 0.080 in dia Used like wire but to conver light eo remote or inaccessible positions for inspection, panel indicators. photo-electric and other applications, Prices per ft,
(post free): $1-9,5 /=; 10-49,4 /-50-249,3 /=$. Enquiries S.A.E.

SYSTEM 696 © CO.
15 BELL ROAD - EAST MOLESEY - SURREY

PRINTED CIRCUITS

 PROTOTYPE AND BATCH PRODUCTIONSInstrument panels and dials
In Metal and Perspex
t SCREEN PROCESS PRINTERS *
Brooklands Plating Co. Ltd. Spice's Yard, South End, Croydon CRO IBF O1-688-2128

SLILCON TRANSISTORS 1,000,000 FOR SALE

Clearance of pnp Silicon Alloy Transistors from the $2 S 300$ (TO-5) and $2 S 320$ (SO-2) range and similar to the OC200205 and BCY30-34 series. Available only from us at a fraction of the manufacturing cost. All these devices would normally be subject to re-selection for industrial use but owing to company policy change have been made available to us surplus to requirements. Offering these transistors in varied quantities make them ideal for Amateur Electronics, Radio Hams and for experimental use in Schools, Colleges and Industry.
Supplied uncoded (no warranty by the manufacturers). But our assurance given that a minimum of 80% will be found to be good usable Silicon Alloy Transistors. Please state preference of type, i.e., TO-5 2S300 or SO-2 25320.
Approximate count by weight:
100 off-15s. (plus p. \& p. 2s.)
300 off-f1 15s. (plus p. \& p. 3s.)
500 off-- 22 10s. (plus p. \& p. 3s. 6d.)
1,000 off- $\mathrm{E4}$ (plus p. \& p. 5s.)
10,000 off- $\$ 35$ (plus p. \& p. Ils.)
Large quantities quoted for on request.
EXPORT ENQUIRIES WELCOME
All correspondence, cheques, postal orders, etc., to:

DIOTRAN SALES
P:O. BOX 5
63a High Street, Ware, Herts. Tel: WARE 3442

The safe quick way to connect electrical equipment to the
mains

Look how easily it operates-to connect anything electrical to the mains simply open the fuse housing (which breaks the circuit) depress the keys, insert the wires and close the housing - the circuit is now completed and a neon light on the front of the Keynector glows to indicate proper connection. No plugs, no sockets, no risk of bare wires-complete sàfety. Multi parallel connections can be made up to 13 amps . Keys are colour coded and lettered LEN for easy identification. For safety's sake get a KeynectorPrice 46/6d. plus 5/-p \& p.

Illustrated leaflet available
on request.

EB INSTRUMENTS

Division of Electronic Brokers
19-53 PANCRAS ROAD
LONDON N.W. 1
Tel: 01-837 7781

BAILEY PRE-AMPLIFIER

High quality pre-amplifier eircuit described by Dr. A. R. Bailey in the December, 1966, "Wireless versatility with a maximum output of 2 volts making it suitable for driving Bailey 20W and 30W Amplifiers, Linsley Hood Class A Ampliffer and many others. All normal pre-amplifier facilities and controls are incorporated. A new Printed Circuit Board containing latest modiffcations 7 in . by $3 \frac{3}{3} \mathrm{in}$. features edge connector mounting, roller tinned finish and silk screened component locations. This board is available in S.R.B.P. material or hbreglass and the complete Kit for the capacitors and metal oxide resistors where ppecifled

BAILEY 30W AMPLIFIER

All parts are now available for the 60 -volt single supply rait version of this unit. We have also designed a new Printed Circuit intended for edge connector mount ing. This has the component locations marked smaller ar 44 in by 23 in. Price in SRBP material $11 / 6 \mathrm{~d}$ in Fibreglass $14 / 6 \mathrm{~d}$.

BAILEY 2OW AMPLIFIER

All parts in stock for this Amplifier including specially designed Printed Clircuit Boards for preamp and power amp. Mains
with bliflar wound secondary and special 218 V primary for use with CZ6 Thermistor, 35/6d., post 5\%.
Trifilar wound Driver Transformer, 22/8d., post $1 /$. Power Amp. PC Board, $12 / 6 \mathrm{~d} .$, post 9 d .
Reprint of "Wireless World "articles, 5/6d. post free.

DINSDALE IOW AMPLIFIER

All parts still available for this design.
Reprint of articles $5 / 6 \mathrm{~d}$, , pose free
LINSLEY HOOD CLASS A AMPLIFIER
Parts now available for this unit ineluding special matt black anodised Metalwork and all power supply components.

PLEASE SEND S.A.E. FOR ALL LISTS

HART ELECTRONICS,

32I Great Western St., Manchester 14 The firm for quality.
Personal callers welcome, but please note we are closed all day Saturday.

NEW! HANDY! TIDY! multi-drawer

I-N-T-E-R-L-O-C-K-I-N-G
storage
units

A PLACE FOR
EVERYTHING
EVERYTHING IN ITS
PLACE!

 parts and components: resistors. capacitors. diodes. transistors, etc. Rigid plastic units. interlock together in verical and horizontal combinations. Transoarent plastic drawers have label slots/h handles on front. Build up an

BUY AT TRADE PRICES!

SINGLE UNITS
Usually $2 / 6$ each.
Usually $2 / 6$ each. \quad OUR PRICES: $24 /$ - DOZEN DOUBLE UNITS
 ins $\times 2$ 2ins)
OUR PRIC

PLUS QUANTITY DISCOUNTS!

Orders $£ 5$ and over DEDUCT $1 /$ - in the \mathbb{E}
Orders $£ 10$ and over DEDUCT $1 / 6$ in the
Orders $£ 20$ and over DEDUCT 2 - in the $£$
PACKING/POSTAGE/CARRIAGE: Add $6 /$ to all orders under $£ 3$. Orders $£ 3$ and over. packing/postage/carriage QUOTATIONS FOR LARGER QUANTITIES
(0ept. ww7), 31, Albert rdad. HENDON, LDNDDN, N.W.4.

EXCLUSIVE OFFERS

AMPEX

Precision Instrumentation and Data TAPE DECKS

 changing rollers and heads),
101" reel capacity, Pum buth 101° reel capacity. Push button control. Precision servo contro
to 0.75 is see, track timing ${ }_{5}^{6} \mu$ sec. Dritt free within 1 per cent. Accuracy 10^{6} pe
week. Power mput $105 / 125 \mathrm{v} 48$ to week. Power tnput $105 / 125 v$
400 cycles. Rack mounting TYPE FR 1100 , as above bu per second, snd 4^{\prime} track, easily
changed to ${ }^{\prime \prime}$ or $1^{\text {and }}$ and of lighter and more modern conPRICE 8280 for deek and servo control for either type Electroniles (direct record and direct reproduce amplifiers) and Cabtneta avallable

HIGHEST QUALITY RACK MOUNTING CABINETS Totally Enclosed

DOUBLE BIDED. Thees cabinets will take mack panels both eides, that lis back and front and are drilled and tapped all the way down every t" for thle purpose. They
are fitted with "Instantit"' patent fully adjustable rack are ftted with instantit patent forily ajally adjustable -these allow the panels to be recessed when they are fitted with projecting components and it is desired to enclose them by doprs.
tother features include-all corners and edges rounded Interior fittinge tropicalised. Remorable bullt in cable insect proofed tops. Detachable side panels. Full length instantly detachable doors fitted expanding bolts it Government elo7 before devaluation. Finished in grey primer and in new condition.

PRICE \&28.10.0 each (Carriage extra)
Doors are not needed if pauels are mounted hack and front and they are not required to be enclosed
TYPE C: 90° high $\times 27^{\prime \prime}$ deep $\times 22^{\circ}$ wide. American Standard First Grade totally enclosed ventliated 19° rack panen mounting cabinetr, madrilled and tapped all the way down every $f^{\prime \prime}$. F'ull length rear doot with lateh Finished in grey these cabincts have been used but are in good condition bat if decoration is of impor
recornmended they are re-sprayed before uee.
TYPE D: 76° high $\times 18^{\circ}$ doep $\times 22^{\circ}$ wide. These are alightiy smaller and finished In black otherwise toey ar gimilar in conatruction and condition to Type 0

PRICE $£ 12.10 .0$ each (Carriare extra)
Full detalls of all above avallable on request.
TRANSPORT: We have madeapeclal economical transport arrangements for these cabineta to envure they arrive
undamaged and co avolid expensive crating. Fuil details on request.

P.O. BOX 5 WARE, HERTS TEL. WARE 3442 SEMICONDUCTORS
FEORIWN CAP.DIS

IGNITION SYSTEM 2N3525. | 2 N 3525 |
| :--- |
| 2 N 3055 |
| 2 N 3702 | 2 N 3702

2N 27704 2N3704
iN 4001
N4005
New and TOP HAT SILICON
RECTIFIERS, All good, No
short or opencincuit devices. short or opencircuir devices. Voltage range $24-400$ PIV 750 mA .23 per $100, £ 12.10$
per 500 . PLASTIC PNP SILICON ThANSISTORS. Manufac-
turer's
seconds
from turer's seconds from
2N3702-3 family. Ideal cheap trans. for manufacturing ete, PLASTIC NPNISILI PLASTIC NPN SILI.
CON TRANSISTORS. Manufacturers' seconds from 2N3707-3711 family. Ideal 2N3707-3711 family. Ideal
cheap trans. for manuactur. ing etc. \&7.10
1,000 pieces.
$\begin{array}{lll}100 \mathrm{PVV} & 9 / 6 & 7 / 6 \\ 400 \mathrm{PPV} & 6 / 4 \\ \text { All tested perfect functional }\end{array}$ devices suaranteed. \qquad

TRANSISTOR EQVT. BOOK
2.500 cross references of transistors-British, European, American and Japanese. A must Vor every transistor user
Exclusively distributed by DIOTRAN SALES. $15 /-$ EACH

Vast mixed lot of subministure glest diodes. Com prising of Silicon, Germ, Point Coneter and Gold
Bonded types plus some Zeners. 500,000 available at Bonded types plus some Zeners. 500,000 available at
Lowest of Low Price. 1,000 pieces $£ 3,0.0 .5,000$ pieces $£ 13,10.0$. 10,000 pieces $\mathbb{C 2 3}$.

BRAND NEW FULLY TESTED EPOXY CASE UNIJUNCTION TRANSISTORS. TYRe TIS43 and BEN 3000 and replacement for 2N2646. Full data available each $=\mathrm{E20} ; 500$ off $3 / 6 \mathrm{each}=£ 87.10 ; 1,000$ off $3 / \mathrm{e} \mathrm{each}$ $=4150$. Sample devices $7 /$ each on request.
HIGH QUALITY SILICON PLANAR DIODES SUB-MINIA TURE DO. 7 Glass Type, suitable replacement for OA200, OA202, BAY 38 , ISI30, I S940. 200,000 to clear
at 44 pen 1,000 pieces. GUARANTEED 80% GOOD.

FULLY TESTED DEVICES AND QUALITY OA202 Silicon Diode. Fully Coded.
50 PIV 250 mA Oty. Price $£ 30$ per 1,000 pieces
OA 200 Sillicon Diode. Fully Coded
50 PIV 250 mA . Qty. Price f25 per 1.000 .
BY 100 SIL. RECT'S 800 PIV 550 mA .
B $490 / 5$ each; $50-992 / 3$ each; 100 .-999 2/- each; 1.000 up
$1 / 10$ each. Fully Coded. First Quality.
Post and Packing costs are continually rising. Please add
I/- towards same. CASH WITH ORDER, PLEASE. GIRO No. 30-102

OVERSEAS QUOTATIONS BY RETURN. SHIP-

Private enquiries. send two 5d stamps for brochure THE QUARTZ CRYSTAL CO. LTD
Q.C.C. Works, Wellington Crescent. New Malden, Surrey
(01-942 0334 \& 2988)

[^12]

TACHOMETERS TACHOGENERATORS

\star Very accurate-linearity • 1\% \star Bidirectional output to $\frac{1}{4}$ of 1% tolerance

* Brush life 100,000 hrs. or 10 years continuous operation \star Low driving torque * Temperature compensated * Ideal as speed transducers

NECO ELECTRONICS (EUROPE) LIMITED WALTON ROAD, EASTERN ROAD COSHAM PO6 1SZ, HANTS. Tel: COSHAM 71711/5. Telex. 86149

\star ALL PURPOSE TRANSISTTR PRE-AMPLIFIER \star
 or eranifiscor equipment. Full inseructione. $17 / 6$ each
Brand new. Guaranteed. Detalls S.A.E. BAKER 12 in . MAJOR £9
 $30-14,500$ c.p.s., 12 in , double cone, woofer and tweeter cone together assembly having a flux density of 14,000 gauss and a total flux of 145,000 Maxwells. Bass resonance 45 c.p.s. Rated 20 watts. Voice colls avallable 3 or 8 or 15 ohms. Price $\mathbf{C 8}$. Module kit, 30-17,000 c.p.s. Size $19 \times 12 \frac{1}{2}$ in, with tweeter idossover fl or P.A. Post Free 1 LOUDSPEAKER CABINET WADDING 18 in. wide, $3 /-$ per ft. run. Post $2 / 6$ per order. ELECTRIC MOTORS (120 v . or $240 \mathrm{v} . \mathrm{A}_{\mathrm{C}} \mathrm{C}_{\mathrm{s}}$) Clockwise I, 200 R.P.M. off load Clockwise 1,200 R.P.M. of 50 mA . Heavy duty 4 pole 50 mA .
Spindie $? ~$
$\times 3 / 20$ in. diameter. Size $2 t \times 2 t \times 1 \frac{1}{s} \times \mathrm{in}$. $\begin{array}{lll}\text { BARGAIN } & 17 / 6 & \text { Post } \\ \text { PRICE } & 2 / 6\end{array}$ TRANSISTOR AMPLIFIER WITH LOUDSPEAKER A self-contained portable Mini pili. system. Many Ineercom tielephone of Aecord Player Amplifier. Aternet sizo $12 \times 9 \times 4$ in. wleh powerful 7×4 in one whte power implifior. Usea PP9 battery Brand full in Makerer'e carton with
 All for $75 /=$ Pont $4 / 6$
only full maker's suarantes. THE INSTANT BULK TAPE ERASER AND RECORDING HEAD DEMAGNETISER $\begin{array}{ll}\text { 200/250 A.C. } & 42 / 6 \\ \text { Postot S.A.E. } \\ 2 / 6\end{array}$
RETURN OF POST DESPATCH - CALLERS WELGOME HI-FI STOCKISTS - SALES - SERVICE-SPARES
RADIO COMPONENT SPECIALISTS 337 WHITEHORSE ROAD. CROYOON. TEI: 01-684 1665

from Poland

electronic components

 receiving valves for radio and TV receivers picture tubes guns for TV getters
HIGHLY STABLE PARAMETERS LONG OPERATIONAL LIFE

are offered by
Foreign Trade Enterprise
 Warszawa, A1.Jerozolimskie 44, Poland P.O. Box Warszawa 1 No 370

Telex No 81437

OSMABET LTD.
 WE MAKE TRANSFORMERS AMONGBT OTHER TELNGS AUTO TRANSFORMERS. $0-110-200-220-240 \mathrm{~V}$ a.c. up or down $75 \mathrm{w} 41 / 6 ; 100 \mathrm{w} 48 /-; 150 \mathrm{w} 60 /=; 200 \mathrm{w} 75 /-; 300 \mathrm{w} 97 / 8 ;$ $400 \mathrm{w} \mathrm{120/=;} 500 \mathrm{w} 142 / 8 ; 600 \mathrm{w} 185 / \mathrm{F} ; 750 \mathrm{w} 195 / \mathrm{F} ; 1000 \mathrm{w}$ MAINS TRANSFORMERS. Prim 200/240 va.c. TX1. 425-0-425 v 250 Ma 6.3 マ $4 \mathrm{a}, \mathrm{CT}, 6.3$ ษ 4 a, $\mathbf{O T}, 0-5-6.3$ v $3,135 /-$; TX2 6.3 จ $1.6 \mathrm{a}, 42 /-$; MTi 200 ч 30 Ma, 6.3 ₹ 1 a , 24/-; MT2 230 y $45 \mathrm{Ma}, 6.3$ y 1.5 日, $29 / 6$.
 Onetrolt Tran8Formers. Prim 200/240 a a.c. OMT4/ $100-110$ v, giving $10-20 \cdot 30-40-50-60-70-80 \cdot 90-100-110,10-0 \cdot 10$ one sec $40 \nabla \mathrm{CT} 3$ amp, $87 / 6$. one sec 40 CT 3 amp, DUOVOLT TRANSFORMERS. Frim 200/240 ${ }^{2}$ a.c. "D12V" Sec 1, $12 \vee 4 \mathrm{a}, 8 \mathrm{sec} 2,12 \vee 4 \mathrm{~A}, 71 / 8$; "D25V" Sec $1,10-20-25 \mathrm{v}$ $2 \mathrm{~A}, \mathrm{Bec} 2,10-20-25 \vee 2$, $71 / 6$. LT AUTO TRANSFORMERS. Prim 200/240 v B.e. output 24 \% a.c. 130 wath $90 / 250$ watt $135 /-$; for quartz lodine lampa. HEATER TRANSFORMERS, PTim $200 / 240 \mathrm{v}$ a.c. 6.3 v 1.6 an size $14 \times 2 \times 1 /$ ins, Prim $200 / 240$ ra.c. output PPT1 9-0-8 ${ }^{\circ}$ 0.78 a, $22 / 6$ each, OUTPUT TRANSFORMERS. Mulard $3 / 10$ UL $87 / 6 ; 7$ watt oteroo UL 60/- ; 9 watt PP3 30/- PR $11 \mathrm{~K} / 308010$ okm $21 /=$ tran, 10 watt $3-18-15$ ohm up or down $15 / \mathrm{m}$. W.W. IGNITION CIRCUIT tran to spec $50 /-$ plus $4 / 6$ p.p. W.W. COLOUR TELE. Choke L1, $60 /-$ Tran $\mathrm{TI} 57 / 6$ Field O/P BO/- CaUR TELE. Choke Ll, 60/-; Tran TI $87 / 6$, Feld BULX TAPE ERASERE, 200/250 v^{\prime} m.o. Immediate erabure of
 FLUORESCENT LOW VOLTAGE LIGMTING 12∇ d.c. fittinga and translator inverters. Fitted perspex difusers, 12 In. 8 watt, 70/=; 21 Ins Transiator Inverters for $\$ 0$ watt or twin 20 watt tubes at $150 /=$, for single 20 watt tube $100 /$ plus tubes at $150 /$ - for single 20 wat postage. Now and guaranteed.
 CONDENSERRS. Elect rolytice, $1000 \mathrm{midd} 25 v, 4 / 6 ; 2500 \mathrm{mld}$ LOUDSTMAKERS, New boxed, famoun maken, 25 watt $107 / 6$ 30 watt $130-; 50$ watt $180 /-160$ watt $215 /=; 100$ watt $350 /-$ 13×8 ins. $40 /-13 \times$ Blin. atted $2 t$ weeters and crossover $70 /=$. LOUDSPEAKER. Fx-equip, perfect Elsc etc. 10/- plus $8 /$ - mio. carriage, Carriage extra on all orders.
 S.A.E. ALL ENQUIRIES PLEASE. MAIL ORDER DNLY 46 KENILWORTH ROAD, EDGWARE, MIDDX. HAB 8 YG.
 Tel:01-9589314
 WW-091 FOR FURTHER DETALLS
 SOURCEBOOK OF ELECTRONIC CIRCUITS

A virtual desk-top retrieval centre for engineers, designers and technicians, contains over 3,000 electronic circults by John Markus
49.10 .0

Post free
THE RADIO AMATEUR'S HANDBOOK by A.R.R.L., 1970, 48/-. Postage 4/6.
BASIC THEORY AND APPLICATION OF TRANSISTORS. IT/-. Postage 1/6.
TRANSISTOR AUDIO AND RADIO CIRCUITS by Muliard. $30 /$. Postage 1/-
THE HI-FI AND TAPE RECORDER HANDBOOK by Gordon J. King. 40/-. Postage $2 /$ -
TRANSISTOR SWITCHING AND SEQUENTIAL CIRCUITS by John J. Sparkes. 25/-. Postage 1/-.

COLOUR TELEVISION, PAL SYSTEM by G. N. Patchett. 50/-. Postage I/. RADARAND ELECTRONIC NAVIGATION by G. J. Sonnenberg. 96/.. Postage $3 /-$
PRINCIPLES OF PULSE CODE MODULATION by K. W. Cattermole. $95 /$-. Postage 3/-

THE MODERN BOOK CO.

8RITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-21 PRAED STREET,
LONDON, W. 2
Phone PADdington 4185
Closed Sat. I p.m.

We can't wait to expand your laboratory

in 24 hours you can hire some of the World's top instruments at competitive prices

Southern Office: Station Approach, Bourne End; Bucks.
Northern Office: Shearer House, Dunham Road, Altrincham, Cheshire.

INIDEX TO ADVERTISERS Appointments Vacant Advertisements appear on pages 81-94

	Pags		Pagb		Pags
A1 Factors.	97	H.H. Electronic.	16	Radio Components Specialists Ltd.	101
Acoustical Mfg. Co., Ltd..	24	Harmsworth Townley \& Co.	23	Radio Exchange Co. Ltd.	100
Adcola Products, Ltd.	Cover iii	Harris Electronics (London) Lid,	22	Radiospares Ltd. .	72
Amplivox Ltd.	. 9	Harris, P..	99	Rank Audio Visual Ltd.	18
Anders Electronics, Ltd.	.28,34	Hart Electronics	99	R.E.L. Equipment \& Components	98
A.K.G. Equipment Ltd..	100	Hatfield Instruments Ltd	28	R.S.C. Hi-Fi Centres Lid.	61
A.N.T.E.X. Ltd.	43	Heath (Gloucester) Ltd.	7	R.S.T. Valves Ltd.	62
Associated Electronic Engineers Ltd.		Henrys Radio Ltd.	.72,73	Rola Celestion Ltd.	35
Ates Electronics Ltd.............	28	Henson, R., Ltd	97	Rolex Products Ltd.	97
Audix, B. B., Ltd.	10	I.C.S. Ltd. .	.62,97	Salford Electrical Instruments Ltd.	30
Banner Transformers.	75	I.M.O. (Electronics) Ltd.	35	Samsons (Electronics) Ltd....	60
Barnet Factors Ltd.	51	Instructional Handbook Supplies	97	Service Trading Co.	63
Barrett, V. N..	98	Ivoryet Lid.	99	Servo \& Electronic Sales Lid.	64
Batey, W., \& Co.	16	Jackson Bros. (London) Ltd.	32	Shure Electronics Ltd.	27
Bauch, F. W. O., Ltd.	33			Sinclair Radionics Ltd.	7, 48, 49
Bentley Acoustical Corporation Ltd.,	52	Keytronics.	68	S.M.E. Ltd.	46
B.I.E.T.	13.	Kinver Electronics Lid.	60	Smith, G. W. (Radio), Ltd.	.56, 57
Bi-Pak Semiconductors	70	Kompass Publishers Ltd.	96	Special Products Ltd.	26
Bi-Pre-Pak, Lid..	55	Labhire Ltd..	102	Starman Tapes.	98
Black, J.........97, 100	Lasky's Radio Ltd.	60	Stephens Electroni	68, 75
Bowthorpe-Hellerman Lid.	6, 17	Lawson Tubes . . .	98	Stockton Partners.	
Brooklands Plating Co. Ltd....	98	Ledon Instruments Ltd.	14	Strumech Eng. Ltd Sugden, J. E., Lid.	38
Butterworth \& Co. (Pub.) Ltd.	72	Lexor Dis-boards Ltd...	22	Sugden, J. E., Lid. . . . Sutton Electronics Ltd.	22 100
Carston Electronics Ltd.	10	Light Soldering Developments Ltd..	32	System 696 \& Co......	108
Cesar Products Ltd. (Yukan)	97	Lind-Air Optronics (Industrial) Ltd.	12		
Chandos International.	97	Linear Products Ltd.	20	Tape Recording Magazine .	97
Chilmead Ltd..	.67,97	L.S.T. Components Ltd.	77	Tektronix U.K. Ltd.	Cover ii
Colomor (Electronics Ltd.).	69.	Magnetic Tapes Ltd..	25	Telequiment Ltd. .	40
Computer Sales and Service Ltd.	71	Marshall, A., \& Sons (London) Ltd.	.75, 78	Teleradio, The, (Edmonton) Ltd	98
Concord Instrument Co.	98	McKnight Crystal Co.	97	Teonex Ltd.	14
		Mills, W.......	. .64, 65	Thorn Radio Valves \& Tubes Lt	
Dabar Electronic Prods.		Modern Book Co.	101		
Dana Electronics . . .	38	Morganite Resistors Ltd. .	29	Trio Corporation Lid..	19
De Banks Electronics.	54	Mullard Ltd..	11,36, 37	Trio Instruments Ltd.	
Diotran Ltd......	98, 100	Multicore Solders Lid.	Cover iv	Turner, E., Electrical Insts. Lid.	
Dixons Technical Lid.	75			Turner, E., Electrical Insts. Lid.	18
Douglas Electronic Industries Lid.	97	Neco Electronics (Europe) Ltd.	101	United-Carr Supplies Ltd..	21
E.B. Instruments	99	Nombrex Ltd.	12	Universal.	101
Electrical Who's Who 1970/1971.	28	Omron Precision Controls.	35	Valradio Ltd.	
Electro-Tech. Sales.	74	Osmabet Ltd.	101	Vitavoz Ltd.	66
Electronic Brokers..	58, 59, 97	Oxley Developments Ltd..	26	Vortexion Lid.	2
Electronics (Croydon) Ltd..	- 76				
Electrosil Ltd...	44	Parker, A. B......	68	Walker-Spencer Components Ltd. .	26
Electrovalue.	53	Pattrick \& Kinnie.	54	Watts, Cecil E., Lid..	97
Electro-Winds Ltd.	66	Peak Sound (Harrow) Ltd.	72	Wayne Kerr, The, Co. Lid.	15
English Electric Valve Co. Ltd..	.3,4,5	P.C. Radio Ltd.	69	Webber, R. A., Ltd.	26
Erie Electronics Ltd..	- 1	Proops Bros. Ltd.	50	Wel Components Ltd..	26
Esmanco Ltd..	28	Quality Electronics Lid.	68	Welwyn Tool Co. Ltd.	20
Farnell Instruments Ltd.	- 6	Quarndon Electronics Ltd.	39	West Hyde Developments Ltd.	45
Firnor-Misilon Ltd.	25	Quartz Crystal Co. Ltd..	100	West London Diréct Supplies.	66
				Weyrad (Electronics) Ltd. .	6
Gardners Transformers Ltd. .	. 31	Radford Audio Ltd..	14	Wilkinsor̀, L., (Croydon) Ltd.	52
Grampian Reproducers Ltd. .	. 8	Radford Laboratory Insts. Ltd..	20		
Greenwood, W. (London) Ltd. .	25	Radio \& TV Components Ltd.	79	Z. \& I. Aero Services Ltd.	.30,80

[^13]

H.M.P.

HIGH MELTING POINT

For service at high temperature, or service at very low temperatures. Outstanding creep strength. Melting range $296^{\circ} \mathrm{C}-301^{\circ} \mathrm{C}\left(565^{\circ} \mathrm{F}-574^{\circ} \mathrm{F}\right)$.

Applications

A useful application of H.M.P. is the soldering of joints close to each other in such a way that the connections made first are not re-melted while later joints are made, with for example, a standard $60 / 40$ alloy, melting point $188^{\circ} \mathrm{C}$. Essential for use where high operating temperatures are experienced, for instance, electrical motors, car radiators, high temperature lamps. H.M.P. is also ideal for equipment, which is being operated in low temperatures, as it reduces the chance of the joint becoming brittle.

Specification

Multicore H.M.P. alloy complies with BS. 219 Grade 5S. Supplied in a form of Ersin Multicore 5 core solder wire on 11b. or 71b. reels, incorporating Ersin 362 rosin based flux. This non-corrosive flux-cored solder wire complies with BS. 441 and is available from 10 to $26 \mathrm{~s} . \mathrm{w} . \mathrm{g}$., and in Multicore Solder Preforms. Ask for Technical Bulletin No. 1369.

LOW MELTING POINT

A low melting point solder for soldering silver plated and gold plated surfaces. Melting point $179^{\circ} \mathrm{C}\left(354^{\circ} \mathrm{F}\right)$.

Applications

L.M.P. reduces the absorption of silver or gold into the solder alloy whilst soldering, and therefore, preserving the silver or gold plated surfaces. Also reduces the chance of a brittle joint being made.

NOTE

a) The solution of gold into tin rises rapidly with temperature and so the use of L.M.P. Low Melting Point Solder is preferable.
b) The solution rate of gold into tin is also reduced because L.M.P. is a ternary alloy comprising tin, lead and silver.

Specifications

L.M.P. is normally supplied in the form of Ersin Multicore 5 core solder wire, incorporating Ersin 362 rosin based flux, which complies with Min. Tech: specification D.T.D. 599A. It is available from 10 to 34 s.w.g. in 1lb. or 71 lb . reels and Multicore Solder Preforms. Ask for Technical Bulletin 1469.

T.L.C.

EXTRA LOW MELTING POINT

Extra low melting point solder. Melting point $145^{\circ} \mathrm{C}\left(293^{\circ} \mathrm{F}\right)$.

Applications

T.L.C. alloy can be used whenever a soldered joint should be made with the minimum heat input. This would include heat sensitive transistors, flexible printed circuits and gold plated surfaces. The melting point of T.L.C. alloy is $38^{\circ} \mathrm{C}$ lower than any tin/lead alloy. Because of its low temperature application it is considered completely non-toxic in use unlike the high temperature cadmium-bearing brazing alloys.

Specification

T.L.C. alloy is normally supplied in the form of Ersin Multicore 5 core solder wire, incorporating Ersin 362 rosin based flux, which complies with Min. Tech.
Specification D.T.D.599A. T.L.C. alloy can also be supplied in the form of Multicore precision made solid solder wire, Extrusol extruded solid solder bars for solderbaths and Multicore Solder Preforms. Available from 10 to 34 s.w.g. on 1lb. or 71 b . reels. Ask for Technical Bulletin No. 1569.

Please write for technical information on your company's notepaper
MULTICORE SOLDERS LTD
HEMEL HEMPSTEAD, HERTS
PHONE: HEMEL HEMPSTEAD 3636 TELEX: 82363

[^0]: *President, CBS Laboratories, U.S.A.

[^1]: -Editor-in-chief, Wireless World

[^2]: * Head of Department of Electronic and Communications Engineering, Northern Polytechnic.

[^3]: *Plessey Microelectronics

[^4]: A new Ampex video tape duplicating centre at Boeblingen, West Germany. A master tape is played on a VR-1200 and duplicated on eight VR-7003 videotape recorders. Present capacity of the centre is $1000 \mathrm{hrs} /$ month .

[^5]: - \mathbf{R}_{t} in Fig. 1, that is, not Fig. 2.

[^6]: *University College, London

[^7]: * The idea of the electron was conceived by the Scots physicist Sir Josept Thomson. He announced it at the Royal Institution, London, in April 1897.

[^8]: Named after the French physicist and engineer
 Charles Augustin de Coulomb (1736-1806).

[^9]: \ddagger Named after André Marie Ampère (1775-1836), French physicist and mathematician.

[^10]: Mullard Limited
 Consumer Electronics Division Mullard House Torrington Place

[^11]:
 or satisfactory references.
 Despatch: Goods
 Eucted
 ex stock are normally despatched wiehin one working day by first class post. 7 COPTFOLD ROAD, BRENTWOOD, ESSEX
 Export orders and enauirios particularly welcomed Cablen: LESTROCO BRENTWOOD.
 Poot and Packing: Allow 1/- per order Inland; 4/-Europe; i2/-Commonwelath.

[^12]: ## AMERICAN

 TEST AND COMMUNICATIONS EQUIPMENT * GENERAL CATALOGUE AN/104 1/6 * Manuals offered for most U.S. equipments

 SUTTON ELECTRONICS Salthouse, Nr. Holt, Norfolk. Cley 289

[^13]:

 at a price in excess of the recommended marimum price shown on the cover; and that it shall not be lent, re-sold, hired out or otherwise dipposed of in a mutilated condition or in any unauthorised cover by way of Trade or afmed to or as part of any poblleation or advertising, literary or pletorial matter whatsoever.

