WirelessWorld April 1970 3s 6d

tabilized power supply unit

 Pigital remote control

Anew STAR isborn

STC announces a new AM VHF version of the STAR Mobile Radio Telephone series.

The new Star AM7 is designed expressly for British VHF bands. It is completely solid state and meets the latest Ministry of Posts and Telecommunications
12.5 kHz specifications. It incorporates the outstanding features that are making the Star UHF range so successful, combining excellent performance with elegant appearance and outstanding speech qualities. Star
mobile equipment has no relays or moving parts.
For more information about the
Star AM7 or Star UHF series, post the coupon today

STC Mobile Radio Telephones Ltd.,
New Southgate, London N. 11
Tel: 01-368 1200. Telex : 261912.

Wireless World

Electronics, Television, Radio, Audio

Sixtieth year of publication

Stanilized power supply unit

This month's cover illustration shows an unusual view of a watchmaker's wheel adopted by Pye to aid the handling of components in the production of small receivers (see p.158).

IN OUR NEXT ISSUE

Simple high-quality pre-amplifier, having a high input impedance, suitable for radio and ceramic gramophone pickups.
Low-cost horn loudspeaker system

Contents

ibpa

Press Alybociates
I.P.C. Electrical-Electronic Press Lid Managing Director: Kenneth Tett Editorial Director: George H. Mansell Advertisement Director: George Fowkes Dorset House, Stamford Street, London, SE 1 C I.P.C. Business Press Ltd, 1970 Brief extracts or comments are allowed provided acknowledgement to the journal is given.

198 Literature Received
200 April Meetings
A117 SITUATIONS VACANT
A142 INDEX TO ADVERTISERS
Technology versus Education
H.F. Predictions

Radio Fire Alarm

Announcements
News of the Month
Letter from America
Sonex '70
Letters to the Editor

Transients by Thomas Roddam
Conferences \& Exhibitions
Circuit Ideas

World of Amateur Radio
Personalities
New Products

Stabilized Power Supply by A. 7. Ewins

Low-angle Radiation by L. A. Moxon

Class-B Audio Amplifier Circuits by K. C. Johnson
Speakers in Corners by H. D. Harwood
An Electronic Dice by Brian Crank

Digital Remote Control Systems by H. N. Griffiths

Active Filters-9 by F. E. 7. Girling © E. F. Good
Dynamic Range versus Ambient Noise by G. I. O'Veering

PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: $01-9283333$ (70 lines). Telegrams/Telex: Wiworld Iliffepres 25137 London. Cables: "Ethaworld, London, S.E.1." Antual Subscriptions: Home; β Os Od. Overseas: 1 year $\Omega 3$ 0s Od. (Canada and U.S.A.; \$7.2). 3 years $\{713 \mathrm{~s}$ Od. (Canada and U.S.A.; \$18.50). Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notuty a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 202, Lynton House, Walsall Road, 22b. Telephone: 021-356 4838. BRISTOL: 11, Elmdale Road, Clifton, 8. Telephone: OBR2 21204/5. GLASGOW: 2-3 Clairmont Gardens, C.3. Telephore: 041-332 3792. MANCHESTER: Statham House, Talbot Road, Stretford, M32 OEP. Telephome: 061-872 4211. NEW YORK OFFICE U.S.A.: 205 East 42rd Sureet, New York 10017. Telephone: (212) 689-3250.

Why we are excited about the C333 range

In these fast-moving days you might wonder why we're excited about a new capacitor range. Well, sales figures tell us that a lot of circuit designers are also enthusiastic about this-the latest Mullard range of miniature plate ceramic capacitors. Setmakers have already ordered them by the million. And, as for us, we were excited about this new range long before we even sold the first one. In case you are not already using these plate ceramic miniature capacitors, let us tell you (enthusiastically) something about them.

They're small. Well, of course. This is the mini age. Naturally, we designed them to fit a 2.45 mm . grid printed circuit board. But we also made them rectangular and thin (2.1 mm. max.). In fact they are no bigger than the winder on your wristwatch, so that they can pack very closely.

Wide range. This is something to be enthusiastic about. For the first time, circuit designers have available a wide
range of low-cost, high stability, close tolerance miniatures to choose from -at low prices. The full range (at present) has 28 values in five sizes from 1.8 pF to 330 pF (the E6 range). With temperature coefficients between NP0 and N750 the stability of tuned circuits can be maintained over a wide temperature rangethis is the C333 series.

High quality: low cost. These two conflicting objectives provided their own solution. In the first place we chose the most suitable materials for the performance and stability we required. Then we developed special, highly-automated processes to produce these tiny components within the rigid specifications we had laid down. These very efficient processes gave us the desired results; closely-controlled quality and low production costs.

Stability. This is essential for the applications for which these capacitors are intended. We developed materials which would not oxidise or peel in arduous conditions. And a special lacquer coating to protect them in conditions of high humidity. In brief, we designed in high stability and long life.

Tight tolerance. Again, the use of very stable materials and highly automated manufacturing and quality control equipment ensures
that every capacitor is held within very close limits-essential for the components used in oscillator and filter stages. The tolerance on every capacitor is within 0.25 pF or $\pm 2 \%$ -whichever is the greater.

Worth it? Our rising production figures indicate that a good many people think so.
Set designers appreciate that, at Mullard we continue to apply enthusiasm and care to the manufacture of all our devicesdiscrete components, valves and tubes, and semiconductors. And we continue to produce exciting results.

Materials research, applications research, automated quality production and control-all backed by experience in component manufacture stretching over the history of the electronics industry. All contributed to the quality and performance of this our latest range of capacitors.

Mullard
 components for consumer electronics

[^0]
Technology versus Education

Editor-in-chief:

w. T. COCKING, F.I.E.E.

Editor:

H. W'. BARNARD

Technical Editor:

T. E. IVALL

Assistant Editors:
B. S. CRANK
J. H. WEADEN

Editorial Assistant:
J. GREENBANK, B.A.

Drawing Office:
H. J. COOKE

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
G. J. STICHBURY
R. PARSONS (Classified Adverrisement Manager) Telephone: 01-928 3333 Ext. 538

Technology is a means towards a better material standard of living. Education is a means towards a better quality of life. The two activities have quite different purposes. Yet they do overlap slightly at the edges, particularly in the field of vocational training. Technology needs and draws upon the resources of educated people: education depends to some extent on technology to provide subjects and stimuli for stretching the human mind.

Perhaps because of this overlap we seem to be getting into a muddle, with passions raised on all sides, about the function of some of our newer universities. The rumpus at Warwick University a few weeks ago, when students uncovered documents revealing an intimate liaison between university authorities and big business, is a case in point. The basis of the trouble seems to be that some students feel the universities are being exploited as outside R \& D establishments by "the industrial-military complex". They say that the university authorities have abandoned their independence in return for "industrial-military" gold (or even silver). The rejection of technology (more so than science) by boys at school may stem from some knowledge of this situation, coupled with an association of technology with destruction, and a consequent reluctance to be treated by "them" as "technology fodder".

In electronics, of course, we know that there has long been a close collaboration between industrial firms and certain university departments. At Warwick itself, for example, the School of Engineering Science does research in microwave integrated circuits partly supported by G.E.C.-A.E.I. and Racal (and employees of these firms work in the School). The Wayne Kerr Company has endowed a chair of measurement science at Surrey University. For some years the computer department of Ferranti was almost indistinguishable (in staff and activities) from a section of Manchester University's department of electrical engineering. Mullard Southampton run an M.Sc. "bridging" course in partnership with Southampton University. Brookdeal Electronics sponsor work in the physics department of Reading University and the company's research director is a senior lecturer at the university. . . . And so on. This is all quite openly done-in fact great pride is taken in it-and whether or not it is considered sinister depends on which side of the artificial Arts-Sciences barrier one has been forced to stand. (A barrier, incidentally, which the Open University has knocked down.)

There is perhaps one small thing we can do about the emotional muddle. We may not be able to get rid of hypocrisy, snobbery and prejudices about education but we can decide to be honest about the verbal descriptions applied to things. If some of the newer establishments are not real universities (note, we are not making assertions about this) then nobody is going to be hoodwinked by the mere fact that they have been called universities. If they are really institutes of higher technology with a few Arts courses tacked on to keep the critics quiet, let them be honest in the way they describe themselves. (The Massachusetts Institute of Technology and, more recently, the Cranfield Institute of Technology are, presumably, proud of their titles.)

Ultimately, education, including all universities, must get its money from industry. But, for the good of the spiritual side of us, it is questionable whether this money should be transferred so directly that the philistines-and there are plenty-can insist "he who pays the piper can call the tune". Lord Radcliffe, the chancellor of Warwick University, has said as much himself.

Stabilized Power Supply

A versatile unit which will provide a variable stabilized output voltage with adjustable current limiting or a variable constant current with adjustable voltage limiting

by A. J. Ewins

The stabilized power supply to be described provides not only a fully variable, stable voltage output from 0 to 30 V at a continuous current rating of 1 A , but also a fully variable range of constant currents from 1 mA to 1 A at a maximum voltage of 45 V . In the voltage stabilized mode the constant current network provides current limiting over the same range of currents. In the constant current mode the stabilized voltage network provides voltage limiting from 0 to 30 V .
The power supply departs from convention in that the entire electronic circuitry, except the series regulator transistor, is powered by a separate voltage supply. As a result of this, no transistor, except the series regulator, need have a maximum $V_{c e}$ rating greater than 20 V or a maximum power dissipation greater than 180 mW . This enables the constructor to select the transistors needed for the electronic stabilizing circuitry from the ever growing range of cheap, plastic encapsulated, silicon planar devices.

Although the maximum stabilized voltage provided by the power supply is only 30 V , it can easily be modified to provide an output voltage greater than this; the maximum value being dependant mainly on the $V_{c e}$ rating of the series regulator transistor used. (The 2N3055 has a $V_{\text {ce }}$ of 100 V max.) However, it is likely that the maximum current drawn from the supply would have to be reduced since a power dissipation of 100 watts (within the capabilities of the 2 N 3055) would call for an excessively large heat sink.

Circuit Description

Before proceeding to a description of the circuit it will prove useful to show how the power supply departs from convention. Fig. I shows a fairly conventional stabilized power supply circuit. The output voltage, V_{o} is given by; $V_{o}=\left(R_{v} / R_{k}\right) \cdot V_{r}$ and is directly proportional to R_{v} if V_{r} and R_{k} are kept constant. Keeping R_{k} constant has the advantage that the sensing current, I_{v}, drawn by the potential divider, R_{v} and R_{k}, remains constant for all output voltages, thus the current through the zener reference diode remains constant also, helping greatly towards the stability of the reference voltage. Looking now at Fig. 2 it will be seen that the circuit is similar to that of Fig. I in principle, however, the difference amplifier and the first two transistors of the series regulator triplet, Tr_{2} and Tr_{3}, are now powered by a separate voltage supply. The reference voltage is now a positive one since, due to the rearrangement of the circuit, a negative output voltage (with respect to the zero voltage line) is being regulated.

With this rearrangement of the circuit $T r_{2}$ and $T r_{3}$ do not have to withstand the full unregulated power supply voltage when supplying an output voltage of zero volts, with a consequent reduction in the maximum power dissipation required of Tr_{2}. If the series regulator, $T r_{1}$, has a current gain of 30 at a collector current of 1 A , then $T r_{2}$ must be capable of supplying 33 mA for a maximum output current of I A. In Fig. 1, Tr_{2} would have had to have supplied this current at a maximum $V_{c e}$ of about 35 V with a consequent maximum dissipation, when the output from the power supply is 0 V at 1 A , of 35×33 $=1.15 \mathrm{~W}$. In Fig. 2 the dissipation of Tr_{2} under similar conditions is:

$$
33\left(V_{s}-V_{e b 1}-33 \cdot R_{s}\right) .
$$

With $\boldsymbol{V}_{s}=13 \mathrm{~V}$ (under load conditions), $R_{s}=270 \Omega$ and $V_{e b 1}$ of
the order of 0.6 V the dissipation in $\boldsymbol{T r}_{2}$ is about 133 mW . However, in Fig. 2, the dissipation of $T r_{2}$ is a maximum when its collector current equals $\left(V_{s}-V_{e b}\right) / 2 R_{s}$ which, in the above example, equals 23 mA . Thus maximum dissipation in Tr_{2} is 142 mW .
The addition of a number of components in Fig. 3 limits the output current in the event of a short circuit or similar overload. When the output current is less than the value of the limiting current, the current flowing into the base of Tr_{3} is controlled by the "voltage" difference amplifier, thus maintaining a stable output voltage. When the current flowing through R_{c} (which is equal to the output current, I_{L}, plus $I_{b 1}$ and I_{v}) is such that the voltage developed across R_{c} is equal to $V_{r 1}\left[R_{2} /\left(R_{1}+R_{2}\right)\right]$ the "current" difference amplifier takes

Fig. I. A conventional slabilized power supply.

Fig. 2. Using a separate supply line for the stabilizer circuitry.

Fig. 3. Adding current limiting.

Fig. 4. Using the circuit to supply constant currents.

Fig. 5. Combining the circuits of Figs. 3 and 4 to provide a choice between a stabilized voltage output with current limiting or a constant current output with voltage limiting.
over control of the current flowing into the base of Tr_{3} with the result that the output voltage is adjusted to maintain a constant current through R_{c}.

The output current is thus limited to a value given by:

$$
\left[R_{2} /\left(R_{1}+R_{2}\right)\right] V_{r_{1}} / R_{c}-I_{b_{1}}-I_{v}
$$

now $\left[R_{2} /\left(R_{1}+R_{2}\right)\right] V_{r 1} / R_{c}$ is equal to the emitter current of $\operatorname{Tr}_{1}\left(I_{e 1}\right)$ and

$$
I_{e 1}=\left(\beta_{1}+1\right) I_{b 1}
$$

where β_{1} is the current gain of Tr_{1}. Therefore:

$$
\begin{aligned}
I_{b 1} & =I_{e 1} /\left(\beta_{1}+1\right) \quad \text { and } \\
I_{L} & =\left[\beta_{1} /\left(\beta_{1}+1\right)\right]\left[R_{2} /\left(R_{1}+R_{2}\right)\right] V_{r 1} / R_{c}-I_{v}
\end{aligned}
$$

Thus, provided that β_{1} is very much greater than 1 and does not vary greatly with the voltage drop across Tr_{1}, and I_{v} is very much less than I_{L}, then I_{L} is approximately limited to a value:

$$
V_{r 1} / R_{c}\left[R_{2} /\left(R_{1}+R_{2}\right)\right]
$$

In order that a range of constant currents may be provided the
circuit of Fig. 3 must be rearranged in such a way that the voltage developed across R_{c} is directly proportional to I_{L}. Fig. 4 shows such a rearrangement. Whereas, in Fig. 3, R_{c} was effectively in the emitter line of Tr_{1}, it is now effectively in the collector line of Tr_{1}. The currents $I_{b 1}$ and I_{v} do not now flow through R_{c} and the constant output current, I_{a}, is given exactly by the expression:

$$
I_{o}=\left(V_{r 2} / R_{c}\right)\left[R_{3} /\left(R_{3}+R_{4}\right)\right] .
$$

In this circuit, should the constant current fall below the value:

$$
\left(V_{r 2} / R_{c}\right)\left[R_{3} /\left(R_{3}+R_{4}\right)\right]
$$

the "current" difference amplifier will lose control of Tr_{3} base current to the "voltage" difference amplifier. In this event, the output voltage will be adjusted to a value equal to:

$$
R_{v} \cdot\left(V_{r 1} / R_{k}\right)-I_{L} R_{c}
$$

and when the output is open circuited (I_{L} becoming zero) will be limited to a value $R_{v} \cdot\left(V_{r 1} / R_{k}\right)$.

Fig. 5 is a combination of Figs 3 and 4 and includes the addition of switch S_{1} called the "mode" switch. With the mode switch in

position I the output voltage is stabilized and the output current limited.

$$
\begin{aligned}
& V_{o}
\end{aligned}=R_{v} \cdot\left(V_{r 1} / R_{k}\right)
$$

With the mode switch in position 2 the output current is kept constant and the output voltage limited.
where

$$
\begin{aligned}
I_{o} & =\left(V_{r 2} / R_{c}\right)\left[R_{4} /\left(R_{3}+R_{4}\right)\right] \\
V_{L} & =R_{v}\left(V_{r 1} / R_{1}\right)-I_{o}^{\prime} \cdot R_{c}
\end{aligned}
$$

Fig. 6 shows the electronic stabilizing circuitry of the power supply, as illustrated in simplified form in Fig. 5. The principle of operation is precisely as previously described, but with a considerable amount of circuit sophistication to improve the performance. The transistor pair, $T r_{5}$ and $T r_{6}$, is the voltage difference amplifier and the transistor pair Tr_{8} and Tr_{9} is the current difference amplifier. The common collector load of $T r_{6}$ and $T r_{9}$ is made to appear very high by employing a constant current source, provided by $\boldsymbol{T r}_{7}$, instead of the usual resistor. Similarly, the emitter load of the current difference amplifier is replaced by a constant current source, provided by Tr_{10}. When switching from the voltage stabilizing mode to the constant current mode the emitter voltages of Tr_{8} and $T r_{9}$ vary from +0.4 V to -1.6 V , a change of 2 V . As it is desirable to keep the emitter current at the same value in either mode (for balanced operation of $T r_{8}$ and Tr_{9}), this could have been achieved by switching in alternate values of emitter resistor. However, providing a constant current source was considered the better (if not cheaper) solution.

The two major reference voltages, $V_{r 1}$ and $V_{r 2}$, are provided by the zener diodes, $Z D_{2}$ and $Z D_{3}$. The currents through these two zener diodes are kept constant because the collector currents of $T r_{1}$ and $T r_{4}$ are constant by design as are the currents flowing away from the diodes. The additional zener diodes used in the reference voltage circuits, $Z D_{1}$ and $Z D_{4}$, provide stable voltages to the bases of the transistors Tr_{7} and Tr_{10}, which, together with their respective emitter resistors, R_{11} and R_{17}, determine the values of the constant currents provided to the collectors of Tr_{6} and T_{9} and the emitters of T_{8} and $T r_{9}$, as previously described.

The preset resistors, $R p_{1}, R p_{2}$ and $R p_{3}$, allow for accurate setting

Fig. 7. Overload indicator circuit.
of the voltage, current limiting and constant current ranges.
The silicon diodes, D_{1} and D_{2}, prevent the voltage on the base of T_{5} from swinging beyond $\pm 0.6 \mathrm{~V}$ safeguarding the transistor from possible surges in the output voltage. C_{6} reduces the value of R_{v} to alternating signals increasing the loop gain of the amplifier and thus reducing the ripple content of the power supply. The capacitors, C_{3} and C_{4}, reduce the loop gain of the amplifier at high frequencies, preventing instability. As a result the output impedance of the power supply rises from about 0.01Ω at 1 kHz to 0.03Ω at 20 kHz .

It was found necessary to include the resistors R_{5} and R_{7} because it was discovered that the two reference voltage circuits were not self-starting. Should trouble of this nature still be encountered, a more positive solution is to connect a resistor between the zero voltage line and the negative end of $Z D_{1}$ (or the zero voltage line and the positive end of $Z D_{4}$) dispensing with R_{5} (or R_{7}). The value of the resistor should be such that the current flowing through it is of the order of 1 mA . This will, naturally, degrade the performance of the reference voltage circuit, but not very seriously.

An additional feature of the power supply is the provision of a current or voltage overload indicator. The circuit of the indicator is shown in Fig. 7. In the voltage stabilized mode, with no current limiting, the collector voltage of Tr_{8} is a little above zero volts with the result that lamp L_{1} will be normally lit. When current limiting takes place the collector voltage of Tr_{8} rises to about 3 V , which is sufficient to turn lamp L_{1} off and lamp L_{2} on, indicating a current overload. In the constant current mode the operation of the indi-

Fig. 8. The d.c. supply circuits.

(a)

Fig. 9. (a) Construction of R_{V}; (b) Contruction of R_{C}.
cator circuit is reversed. L_{2} is normally on, indicating a constant current output, and goes off, L_{1} coming on, when the output current falls below the "constant" value, indicating voltage limiting. Thus, together with the position of the mode switch, the lamps L_{1} and L_{2} provide an indication of the operating conditions of the power supply. The voltage supply for the circuit of Fig. 7 is taken directly from the two 13.5 volt a.c. tappings on the mains transformer.

Fig. 8 shows the circuit diagram of the two voltage supplies. A word of explanation is necessary about the OFF/ON-Voltage Select switch, S_{2}. The two wafer banks, $S_{2}(\mathrm{a})$ and $S_{2}(\mathrm{~b})$ (see Fig. 9(a) are self-explanatory, save the S_{2} (a) should be a break-before-make wafer and $S_{2}(\mathrm{~b})$ a make-before-break wafer. $S_{2}(\mathrm{c})$ and $S_{2}(\mathrm{~d})$ are two halves of a mains ON/OFF switch operated by the 6 -way rotary switch. The two halves are open in position 1 and closed in positions 2 to 6. The OFF/ON-Voltage Select switch provides the following functions:
(1) All supplies off. (2) Stabilizer circuitry on-unregulated voltage supply off. (3) All supplies on-unregulated voltage output 17 V max. -0 to 11.25 V stabilized output available. (4) Ditto Position 3 except that unregulated voltage output 31 V max.-stabilized voltage output 10 to 21.05 V. (5) Ditto Position 3 except that unregulated voltage output 45 V max. stabilized voltage output 20 to 31.25 V . (6) Unregulated output voltage of 45 V available at output terminals.

The inclusion of position 2 can be better understood by considering what happens when the power supply is switched off. If the

Front panel of the completed prototype.

Specification

Voltage ranges :
Current ranges
Voltage limiting :
Current limiting
Setting accuracy: Stability:

Outpul Impedance
Voltage ripple:

0 to 30 V in switched steps of 1 V , plus 0 to 1.25 V fully variable.
1 mA to 1 A in switched steps of 1 mA , plus 1 to 2 mA fully variable.
Operative on stabilized current output; limits voltage across the external load from 0 to 30 V . Operative on stabilized voltage output; limits output current from 1 mA to 1 A .
1% on all switched voltage and current ranges. 10% mains variation-less than 0.1% on all voltage and current ranges.
Voltage output-no load to full load-less than 0.1%.
Current output-0 to 30 V across load-less than 0.1%.
Temperature variation-dependent upon temperature coefficient of zener diodes.
(Voltage stabilized mode-no current limiting) 0.01Ω at 1 kHz to 0.03Ω at 20 kHz . (Voltage stabilized mode) 2 mV peak-to-peak on full load.
power supply is operating with the OFF/ON-Voltage Select switch in position 3, the output voltage will be determined by the position of the four toggle switches and the variable control. On switching to position 2, the unregulated voltage supply is switched off anddepending on the stabilized output voltage set, the size of the external load and the reservoir capacitor, C_{10}-the voltage provided by the unregulated supply will stay above the value of the stabilized output voltage for a short time. However, the stabilizing circuitry is still on so that the stable output voltage, V_{o}, will be maintained until the voltage across C_{10} falls below a value a few volts greater than V_{o}. If the stabilizing circuitry was switched off at the same time as the unregulated supply, it would be quite possible for the voltage at the output terminals to rise, for a short time, above the value V_{o}. As an extra precaution, $S_{2}(\mathrm{~d})$ is included in the negative line of the unregulated supply making it impossible for an output voltage to appear at the terminals when the OFF/ON-Voltage Select switch is finally turned to position 1 . Including position 2 also ensures that the stabilizing circuitry is operating before the unregulated supply is switched on, again preventing a possible surge in the output voltage should the stabilizing circuitry fail to control the output level immediately.

Fig. 9 (a) shows the construction of R_{v} as used in the prototype power supply. The sensing current, I_{v}, flowing in the voltage feedback line was designed to be 5 mA . Thus the resistance of R_{v} is $200 \Omega / \mathrm{V}$.

Fig. 9 (b) shows the construction of R_{c}. For current limiting and the constant current supply, the voltage across R_{c} is stabilized at 1 V
(it is, in fact, a little higher than this when current limiting because the current flowing through the external load is fractionally lower than that through R_{c}). The limiting and constant current values are thus determined by dividing 1 V by R_{c}. Thus I_{L} and I_{o} equal $1 / R_{\mathrm{c}}$. Switching the ten individual values of R_{c} in and out provides a range of currents from 1 mA to 1 A . An additional fully variable range from 1 mA to 2 mA is provided by a wire-wound variable resistor connected in series with a fixed one of the same value.
The methods of constructing R_{v} and R_{c} have already been discussed but a word about the components may prove useful. 1%, highstability, carbon resistors of 1 watt rating were used for all the standard values of resistance. The "odd" valued resistors were 1%, wire-wound, 1 watt types, available, to order, from the Planet Instrument Co., 25 (E) Dominion Avenue, Leeds, 7.

The mains transformer used was a Douglas, type MT.3AT with rewound secondaries. The original secondary, $0-30 \mathrm{~V}$, multi-tapped and rated at 2 A was removed, carefully noting the number of turns per volt. One secondary, providing 0-12-22-32 V at I A, was wound using 19 s.w.g. enamelled copper wire; the other secondary was wound using 33 s.w.g. enamelled copper wire to provide $13 \cdot 5-0-$ 13.5 V at 50 mA .

The two transistor pairs, Tr_{5} and $T r_{6}$, and $T r_{8}$ and $T r_{9}$, of the "voltage" and "current" difference amplifiers were mounted in individual heat-sinks, constructed from $\frac{1^{\prime \prime}}{} \times \frac{1}{4}$ " brass bar, to improve the long-term stability of the power supply.

The series regulator transistor, Tr_{13}, was mounted on a large, finned heat-sink attached, on the inside, to the back of the power supply cabinet.

Components List

Resistors

The prefix R and the suffix Ω has been omitted from components in the list below for clarity.

$1-160$	$2-1.1 k$	$3-1 \cdot 1 k$	$4-240$
$5-560$	$6-1 \cdot 1 k$	$7-560 k$	$8-680$
$9-1 \cdot 1 k$	$10-1 \cdot 1 k$	$11-1.5 k$	$12-680$
$13-1.1 k$	$14-1 k$	$15-180$	$16-270$
$17-1 \cdot 1 k$	$18-1.1 k$	$19-180$	$20-1 k$
$21-820$	$22-6.8 k$	$23-6.8 k$	$24-6.8 k$
$25-1.8 k$	$26-6.2 k$	$27-200$	$28-27 k$

$29-2.2 \mathrm{k}, 1 \mathrm{~W}, 10 \%$
all $0.25 \mathrm{~W}, 5 \%$, carbon except where shown
pl -200 p2-50 p3-50
wirewound preset potentiometers

Capacitors

The prefix C has been omitted in the list below
$1-25 \mu \mathrm{~F}, 12 \mathrm{~V}$ working electrolytic
$2-25 \mu \mathrm{~F}, 12 \mathrm{~V}$ working electrolytic
$3-0.001 \mu \mathrm{~F}$ disc ceramic
$4-0.001 \mu \mathrm{~F}$ disc ceramic
$5-8 \mu \mathrm{~F}, 25 \mathrm{~V}$ working electrolytic
$6-8 \mu \mathrm{~F}, 25 \mathrm{~V}$ working electrolytic
$7-50 \mu \mathrm{~F}, 50 \mathrm{~V}$ working electrolytic
$8-25 \mu \mathrm{~F}, 12 \mathrm{~V}$ working electrolytic
$9-0.1 \mu \mathrm{~F}, 250 \mathrm{~V}$ working polyester $10-2,000 \mu \mathrm{~F}, 50 \mathrm{~V}$ working electrolytic
$11-500 \mu \mathrm{~F}, 25 \mathrm{~V}$ working electrolytic
$12-500 \mu \mathrm{~F}, 25 \mathrm{~V}$ working electrolytic
$13-100 \mu \mathrm{~F}, 25 \mathrm{~V}$ working electrolytic

Semiconductors

The prefix Tr has been omitted in the list below

$1-2 \mathrm{~N} 4289$	$10-\mathrm{BC} 168$
$2-\mathrm{BC} 168$	$11-\mathrm{BC} 168$
$3-2 \mathrm{~N} 4289$	$12-\mathrm{BC} 168$
$4-\mathrm{BC} 168$	$13-2 \mathrm{~N} 3055 \dagger$
$5,6-\mathrm{BC} 109^{*}$	$14-\mathrm{BC} 168$
$7-2 \mathrm{~N} 4289$	$15-\mathrm{BC} 168$
$8,9-\mathrm{BC} 109^{*}$	$16-\mathrm{BC} 168$

* matched pairs
\dagger must have a minimum gain of 30 at 1 A

The prefix $Z D$ has been omitted in the list below

$$
\begin{array}{ll}
1-4.3 \mathrm{~V}, \text { ZB4.3 } & 3-6 \cdot 2 \mathrm{~V}, \text { ZB6.2 } \\
2-6 \cdot 2 \mathrm{~V}, \text { ZB6.2 } & 4-4.7 \mathrm{~V}, \text { ZB4.7 }
\end{array}
$$

all 250 mW . S.T.C. type numbers shown
The prefix D has been omitted in the list belaw
1,2-any silicon diode
3 to 6 any diode rated at $1 \mathrm{~A}, 100$ p.i.v.
7 to 12 -any diode rated at $100 \mathrm{~mA}, 40$ p.i.v.

Mains Transformer : secondaries

$$
\begin{aligned}
& 0-12-22-32 \mathrm{~V} \text { at } 1 \mathrm{~A} \\
& 13 \cdot 5-0-13 \cdot 5 \mathrm{~V} \text { at } 50 \mathrm{~mA} \\
& \text { (see text) }
\end{aligned}
$$

6-pole, 6-way rotary switch plus mains ON/OFF switch (see text) 3-pole, 3-way rotary switch
Cabinet type-Y. G. W. Smith and Co. Ltd.
Resistors and toggle switches for constructing R_{V} and R_{C} (see text) Two $6 \mathrm{~V}, 40 \mathrm{~mA}$ bulbs
Plugs, sockets, Veroboard, heatsink ($4^{\prime \prime} \times 4 \frac{5^{\prime \prime}}{16^{\prime}}$), etc.

H.F. Predictions-April


```
MMedian standard MUF
-m---- Optimum trafflc frequency
-.c.-Lowest usable HF
```

The predictions are based on an ionospheric index of 96 , the corresponding sunspot number being 83 . These are slightly lower than the observed values for 1968 and 1969.

The trans-equatorial paths have their highest MUFs during equinox months and conditions should be good above 20 MHz . Evening fading is relatively independent of season and cycle on the South African route but is worse during this period on others. The Far East will have weak unstable signals from midnight to 09.00 G.M.T. and North America will be liable to several days of weak signals from 06.00 to 16.00 G.M.T. The MUFs shown apply to both directions of the route while LUFs are for reception in the U.K. only.

Describing how long-distance propagation can be improved by exploiting the natural terrain

By L. A. Moxon,* B.Sc., M.I.E.E.

Since first hearing transatlantic morse signals in the early years of short-wave radio, the author has been fascinated by communication over long distances using low-power. This interest has been maintained by the frequent emergence of new and intriguing problems. In particular, by the discovery, when resuming amateur activities after the war from a new location, that communication was easy with Australia but almost impossible with anywhere else. Further, when Australian signals were at their best South Americans were usually weak or absent, clearly inconsistent with the usual theory of long-distance propagation by means of multiple earth-ionosphere reflections.

These mysteries were resolved by a process which stressed not only the importance of low-angle radiation, but also the need for more information on what constitutes a "low angle". A study of two mediumlength east-west paths ${ }^{1}$ has concluded that for these paths angles as low as 1 deg. are desirable, but for the most part quantitative data is in short supply.

Recent speculation ${ }^{2}$ has suggested dramatic possibilities from the use of very low angles of radiation, perhaps even less than 1 deg., and it was with somewhat similar ideas in mind that a low-power (IW output), transistor s.s.b. transceiver was designed and built, light enough to be carried complete with aerial system up steep mountainsides.

Fig. I When a horizontal aerial is erected at a height hover level ground, its image B is an antiphase. The direct and reflected waves are in phase at a distant point when $B C=1 / 2$, i.e. when $2 h \sin$ $\theta=r / 2$ where A is the angle of radiation.

It was hoped in this way to achieve efficient radiation at the desirable low angles whatever these might be, by exploiting natural ground features. An earlier exercise, complementary to this, was aimed at maximising the low angle radiation obtainable from a flat site with limited aerial heights, accepting the inevitable low efficiency and consequent need for relatively high power, to produce a given signal level.

On the basis of these experiments, and such information as can be found in the literature, solutions have been sought to the following problems:
(a) How to select the best site for an h.f. aerial, for communicating with low power over distances of 3,000 miles or more.
(b) How to make the best use of a given site.

The discussion which follows does not necessarily apply to commercial h.f. circuits for which 24 -hour availability is likely to be more important than good results over shorter periods.

Avoidance of cancellation

The difficulty of achieving low angles of radiation arises from cancellation of the direct signals by the ground-reflected wave as shown by Fig. 1. This can, in principle, be prevented by one or more of the following procedures:
(a) Using a high mast so that the path difference for the two rays is $1 / 2$, which then add in phase giving 6 dB gain relative to free-space propagation. For 14 MHz and a radiation angle of 1 deg . this requires a mast height of $1,000 \mathrm{ft}$, which is unlikely to be popular with the neighbours.
(b) Using a steep ground slope, as in Fig. 2. If the slope is 45 deg . a height of only 25 ft is required at 14 MHz to bring the direct and reflected waves into phase. This height is not critical and only 3 dB is lost by dropping the height to 12 ft 6 in . or raising it to 3 ft 6 in . Moreover, there is the advantage of a single broad lobe in the vertical plane, whereas a large height as in Fig. 1 produces an interference-pattern with lobes and nulls alternating at 1 deg. intervals. The best angle of radiation is not necessarily always the lowest, and the optimum may well coincide with a null. So far all this is well known, but most references overlook the fact that the slope has to end somewhere. As first pointed out by Norton and

Omberg ${ }^{3}$ this has important consequences, of which more later.
(c) With vertical polarization and per-fectly-conducting ground, the phase of the reflection coefficient is reversed and efficient low-angle propagation is achieved independently of aerial height. This can be approximated by laying down a conductive earth-mat of sufficient extent. A beam aerial designed on this principle ${ }^{4}$ has been found to operate under radio conditions which render conventional equipment useless. The installation uses an earth mat $1,800 \mathrm{ft}$ long and 832 ft wide, containing 25 miles of copper wire. Such a system is obviously beyond amateur resources, but sea-water is sometimes available and is a good-enough conductor to act as a useful (though not ideal) substitute.
(d) With vertical polarization and imperfect ground there is a "pseudoBrewster angle", below which the phase of the reflection coefficient is reversed, so that for low angles and moderate or large aerial heights there is little to choose between vertical and horizontal polarization. In the vertical case, however, the reflection coefficient is less than unity so that cancellation is imperfect and some low angle radiation takes place, however, low the aerial. This principle has been exploited to produce a very effective, cheap and easily-erected beam for 7 MHz , as described later.

Fig. 2 With the aerial at a height habove ground sloping at an angle \propto, the direct and reflected waves are in phase when $2 h$ $\sin (u+\theta)=r 1 / 2$. For small values of θ this becomes $2 h \sin \propto \approx 1 / 2$. This diagram is identical with Fig. I except for rotation through the angle a , and the increased ground angle.

Fresnel zones

Figs. 1 and 2 are oversimplified to the extent that reflection takes place not from a point but from a Fresnel zone which is defined by the fact that reflections from all parts of it tend to add in-phase.

Formulae for the sizes and required degrees of flatness of these zones are to be found in the literature 3 , 8. The size of the zone for the previous example based on Fig. 1 is very large, the near edge being at $2 \frac{1}{2}$ miles range, and the far edge (ignoring earth curvature) at 85 miles. As the height is reduced and the angle of maximum radiation relative to the ground increases, the corresponding Fresnel zone contracts with the far edge moving in roughly as the inverse square of the angle.

For the example based on Fig. 2 the "near edge" is 25 ft behind the aerial and the far edge only 175 ft down the slope. The shape is elliptical, its effective width being roughly 5 times the aerial height, and the ground need not be particularly flat. Obstacles with dimensions up to about a quarter of the aerial height are acceptable. Very long distances to the far edge (as in the first example) are reduced somewhat when due allowance is made for earth curvature ${ }^{3}$.

Double reflections

Discussion so far has been concerned with situations which may seem ridiculous, since amateur resources have been implied and angles of 1 deg . assumed. Even if the angle is increased to 5 deg and a loss of 3 dB accepted, the Fig. 1 situation would require a 100 ft mast, and bottomless slopes exist only in mythology or mathematical fiction.

In practice, however, the steep slope is quite likely to sweep down like the Mountains of Mourne, or even Mull where the author conducted some experiments, to the sea, as illustrated by Fig. 3. A flat plain, however, is also a possibility and will serve equally well for the next part of this discussion.

It will be seen that there are now four waves to be considered, including two single and one double reflection, and if all these can be made to add up in phase there is a possibility of obtaining not 6 but 12 dB gain compared with free-space propagation. This may appear complicated, but resolves auite simply into a practicable combination of the two situations which have just been criticised as absurd; 6 dB gain being obtained from each of them.

For numerical consistency with the previous examples there is required only a sloping patch of mountainside extending for at least 25 ft above and 175 ft below the aerial. It should be centred on $1,000 \mathrm{ft}$ altitude with an unobstructed view of the sea, of which the nearest visible point should be not more than $2 \frac{1}{2}$ miles away.

Since the mountain is, in effect, being used as a "tall mast", however, this entails the penalty of a multiple-lobe radiation pattern in the vertical plane (as in the case of Fig. 1 with a tall mast). So that if the appropriate angle of radiation happens

Fig. 3 Ground sloping down into the sea. The direct wave Aa, foreground reflection Abc, distant reflection Agh, and double reflection Adef add in phase if θ is small, $h g \approx 1 /(4 \sin \theta), h_{3} \approx 1 /(4 \sin \theta)$, these being the heights of A above ground and sea respectively.

Fig. 4 Typical ground profile for mountainous country. Distant low-angle reflections are non-existent for transmitter at B, and probably unimportant (due to break up of Fresnel zones) for transmitter at A. In both cases low-angle reflections (not shown) are obtained from the foreground. (Isle of Mull, grid ref. NM 568332 bearing 104 deg.)

Fig. 5 Comparison of short horizontal and vertical radiators at h.f. assuming fat open country. "Zero loss" occurs with in-phase addition of the direct wave and a reflected wave of equal amplitude. Aerial heights are indicated in wavelengths for horizontal polarization (dotted curves). Vertical polarization curves are calculated for low height and a frequency of 7 MHz ; performance deteriorates slightly as frequency increases.

Fig. 6 Chordal hop. At the first and last reflection points, the ionosphere behaves as if tilted slightly towards the terminals.
For tangential radiation (i.e. zero deg.), and till, however small, prevents a return to earth until a tilt of opposite sign occurs. (Ionosphere not to scale.)
to be not 1 deg. but 2 deg. signals will be almost completely cancelled and even if the operator were aware of this he would scarcely relish the idea of moving the aerial down 500 ft to put the matter right. He might even prefer to sacrifice the 6 dB gain obtainable from the sea reflection. But at this point it becomes appropriate to consider the situation sketched in Fig. 4.

Locations such as this are usually easier to find than those corresponding to Fig. 3 and it will be noticed that the distant reflecting areas are either blocked off by the foreground or badly broken up, thus failing to meet the required specification for the Fresnel zones. If the distant reflections are sufficiently reduced, Fig. 2 becomes after all a valid representation for the practical case and low-angle radiation should then be obtained with a gain of 6 dB relative to free-space propagation.

Neglecting diffraction, this would be true for angles of elevation down to zero, assuming an aerial height of, say, 0.71 above any 45 deg slope 200 ft in extent. For a 15 deg slope an aerial height of 21 and an extent of $1,800 \mathrm{ft}$ would be needed for the same result, but these dimensions are not critical and could probably be halved without serious loss of performance.

Polarization

With sloping ground horizontal polarization is preferable, because in the vertical case efficient use of the reflected wave is usually prevented by the Brewster-angle effect, tilting of the image, or both. In the case of flat ground, the best choice of polarization depends on the available aerial height, soil characteristics, and frequency.

Fig. 5 has been calculated from handbook data for vertical aerials above various types of ground ${ }^{9}$ and on the basis of Fig. 1 for horizontal aerials at various heights. This provides a rough comparison between different aerials for given angles of radiation and soil conditions assuming, in the vertical case, heights low enough for the effect illustrated by Fig. 1 to be negligible.

In using these curves two points should be noted. Where horizontal polarization appears to be better, equally good results could usually be obtained with vertical aerials by raising them to the same height. The vertical aerial is then likely to be the more difficult of the two to support and
feed. On the other hand height is usually the main problem in aerial construction. Horizontal supporting wires for vertical elements can be used to provide end-loading which allows considerable reduction of vertical length and, therefore, height.

Although the useful energy radiated per element is rather small, it is often easier at the lower frequencies to construct, say, a 5 - or 10 -element vertical array in this manner than to put up a horizontal dipole at a height which would give comparable performance.

Fig. 5 shows the possibility of radiation at 0.5 deg. elevation with a loss of only 6 dB by using vertical aerials surrounded by sea water, which may appeal to amateur enthusiasts with portable transceivers and a preference for paddling rather than mountain climbing.

Experimental results

The good results at 14 MHz in the direction of the long path to Australia mentioned earlier, were attributable to a steep ground slope (22 deg.) in that direction. Aerial height was only 23 ft which was adequate for the down-slope direction, but resulted in poor propagation in the opposite direction even for short ranges.

The use of a full-wave dipole, later backed by reflectors, produced a narrow azimuthal pattern, thus discriminating against directions other than towards Australia. Comparative tests were carried out over several years with the cooperation of numerous Australian stations plus a local amateur (G3DVM), whose location was more conventional, his aerial being located at a height of $1 / 2$ over flat ground.

Comparative reports, allowing for power differences and assuming 6 dB per S -point, usually indicated an advantage of about 8 dB in favour of the author's location and aerial system. Referring to Fig. 5, the loss for 6 deg. elevation at G3DVM would be 10 dB , and a loss of 2 dB would be applicable to G6XN for the same angle, which would, therefore, be the "most probable". It was noticed, however, that quite often the path remained open longer at G6XN with signal-strength differences reaching 20 dB or more. This would be consistent with radiation angles in the region of 1 2 deg . On other occasions the advantage in favour of G6XN almost disappeared,
suggesting angles in excess of 10 deg .
It is interesting to note that good conditions on the long path to Australia occur when the path is mainly in darkness, and complementary ionospheric tilts might be expected at each end of the circuit due to the darkness-daylight transition. This leads to the chordal hop mode of propagation first described by Albrecht ${ }^{6,7}$ depicted in Fig. 6, in which waves travel by successive F-layer reflections without intermediate ground reflection.

Note that the lower the angle at which the ray strikes the ionosphere, the less likely it is to be reflected back to earth. Similar modes of propagation occur frequently on other long-distance paths especially northsouth paths ${ }^{8}$. Because of reduced D-layer absorbtion and ground-reflection losses, these modes tend to produce very high signal levels over very long paths.

Tests with the portable s.s.b. transceiver have been carried out from steep ground slopes, using an inverted-V dipole having its centre propped up to a height of $20-25 \mathrm{ft}$ and about 1 W of peak r.f. power. Attempts to communicate with Australia over the long path were made from six different locations having features typified by Figs. 3 or 4, with success in every case. The inverted-V dipole when erected over ground sloping at angles of $30-40 \mathrm{deg}$. appeared roughly equivalent to a Quad aerial at the home location erected at a height of 50 ft , although direct comparison was not possible.

This result is consistent with the previous estimate of a 6 -deg. angle of radiation since, from Fig. 5, a loss of $7 \frac{1}{2} \mathrm{~dB}$ would be expected for the Quad despite its greater height, but this would be offset by an estimated 6 dB or so of aerial gain. Insufficient results have so far been obtained to establish the practical advantage, if any, of using distant as well as foreground reflections on the lines of Fig. 3.

These tests were conducted in the 14 MHz amateur band, but other contacts were made with Australia on 21 MHz (short path), and with North America on 28,21 and 14 MHz . In these cases also, the combination of portable dipole plus steep ground slope appeared roughly comparable with the home "Quad". This was judged by the degree of difficulty in establishing contacts.

Fig. 7 shows one of the two "bays" of a

Fig. 7 Low-angle aerial for 7 MHz . Height not critical. Reflector and director tunable, by adjusting length of verticals or of the lower horizontal wires. Dimensions approximate.

6 -element 7 MHz beam using short endloaded vertical elements with the lower ends about 2 ft from the ground. Results over the long path to Australia included good DX contest scores and, on one occasion resulting from failure of the main transmitter, two contacts with only 5 watts of peak r.f. power (s.s.b.). Fig. 5 suggests that for an angle of 6 deg., a vertical array having 6 dB gain and located over average ground should be roughly equal in lowangle performance to a dipole at a height of $1 \frac{1}{2} 1$ or a Quad at $\frac{3}{4} 1$.
Relative to typical aerials at a height of $50 f t$ the vertical array would, therefore, be expected to do much better at 7 MHz and be roughly equal at 14 MHz ; the latter estimate has proved to be over-optimistic since results, though good on 7 MHz , averaged about 6dB down relative to the Quad at 14 MHz .

Conclusion

From most locations it is difficult with simple aerials to achieve efficient radiation at angles below 5 or 10 deg . Attempts to reduce the angle lead to rapid escalation of cost and practical difficulties, and the difficulty of making cost-effective decisions is aggravated by lack of such information as how low an angle is desirable, and for what percentage of the time. On the other hand, given freedom in choice of location, a low angle of radiation is readily achievable by exploitation of natural ground features and is within the means of amateurs equipped with portable apparatus, and a set of Ordnance survey maps.

Much could also be learned from comparative tests from a number of fixed locations having different ground characteristics and various types of aerial.

REFERENCES

1. N. F. Utlaut, "Effect of Antenna Radiation Angles upon H.F. Radio Signals Propagated over Long Distances." Journal of Research of the National Bureau of Standards, Vol. 65D No. 2, p. 167 March/April, 1961.
2. "Technical Topics," Radio Communication, p. 394, June, 1969.
3. K. A. Norton and A. C. Omberg, "The Maximum Range of a Radio Set," Proc. I.R.E., Vol. 35, p. 17, 1947.
4. J. F. Ward, "A Low Delta, Surface Wave, Interferometer Array for High-Frequency Radio Communication," Nature. Vol. 205, p. 1062, March 13, 1965.
5. D. K. Bailey, R. Bateman and R. C. Kirby, "Radio Transmission at V.H.F. by Scatterers in the Lower Ionosphere," Proc. I.R.E., Vol. 48, p. 1226, Oct. 1955.
6. H. J. Albrecht, "Further Studies on the Chordal-Hop Theory of Ionospheric LongRange Propagation," Archiv fur Meteorologie, Geophysik und Bioklimatologie, Serie A, Vienna 1959 (Springer Verlag), p. 84.
7. H. J. Albrecht, "Investigations on GreatCircle Propagation between Eastern Australia and Western Europe," Geophys. pura e applicata, Vol. 38, pp. 169-180, 1957.
8. S. Stein, "The Role of Layer Tilts in Ionospheric Radio Propagation," J. Geophys, Vol. 68, p. 217, 1958.
9. F. E. Terman, Radio Engineers' Handbook, pp. 700-709, McGraw Hill Book Company Inc., 1943.

Radio Fire alarm

Personal call-out system for firemen

Production techniques are not in general the concern of Wireless World but this month one is featured on our front cover. It shows, albeit in an artistic setting, a watchmaker's wheel which has been adopted by Pye Telecommunications Ltd to facilitate the production of the "microboards" used in the pocket receivers for a fireman's call-out system. The system, which is being adopted by the fire brigades in several areas, operates in the $142-174 \mathrm{MHz}$ band. The transmitter carrier of the 25 -W base station is frequency modulated by two signalling tones-one as a test call and the other for a fire call.

The pocket receiver, which measures $12.7 \times 6.3 \times 2.5 \mathrm{~cm}$ and clips in a breast pocket, has a built-in aerial and is powered by a rechargeable 9-V nickelcadmium battery giving 30 hours operation. The receiver incorporates a battery economizer circuit which switches it on
(Right) Chassis of the fireman's pocket receiver which has an operating range of between 5 and 8 km from the base station according to terrain.
for 0.5 sec and then off for 2.5 sec until the carrier is received and locks it on.

Studs fitted to the receiver enable it to be inserted in a bedside battery charger. It remains fully operative while in the charger.

(Below) The watchmaker's wheel in use at Pye's Cambridge works.

Some improvements in the design of

Class-B Audio Amplifier Circuits

by K. C. Johnson

A bewildering number of articles have appeared both in this journal and elsewhere describing class-B audio amplifiers using transistors. The reader might well think that all the possibilities had been thoroughly explored already. When, however, I started to build a new system recently I was surprised to discover just how many small improvements can be made even to a welltried design. It is true that none of them is either overwhelmingly important or even really original, but taken together they make an appreciably better circuit and so seem to justify yet another article on this subject.

The amplifier from which I started was the Fairchild AF11, which was offered as a kit of semiconductor devices and a tested circuit, though it is no longer in production. The arrangement had been clearly derived from the pioneer circuit of Tobey and Dinsdale, but was brought up to date and much improved by the use of diffused silicon transistors throughout. The first stage was changed so as to use a complementary type of device, since these are now scarcely more expensive in the small sizes and allow some advantage to be gained in the feedback arrangements, but the final power stage still employed two identical devices.

My final circuit is shown opposite, and the various ways in which it differs from the more conventional arrangement will be described in turn.

Earthing arrangements

Several writers have pointed out that it is an advantage to return the "dead" sides of the input, the feedback network, and the output all to the same power rail so as to avoid instability troubles. The first unusual feature of this circuit is that it is the upper rail which is chosen for this service rather than the lower one. One obvious advantage of this is that it allows the bootstrap line to be taken directly from the loudspeaker and so saves the need for a second electrolytic capacitor network. But there is a further advantage in that variations in the power supply voltage are much less important since there are no longer any large coupling capacitors bridging the supply rails. If the two rails are taken abruptly to the full working voltage, at switch-on for example, only the $40 \mu \mathrm{~F}$ high-frequency bypass capacitor C_{4} carries any large current and
it is essentially just an extension of the power supply. The long time-constant at the base of $T r_{1}$ controls the charging rate of all the other capacitors and the maximum current in the loudspeaker is no more than 30 mA .
In the same way this use of a common return rail and the absence of any signal capacitors bridging the power rails allows a considerable amount of ripple to be tolerated on the power-supply voltage so that power-pack requirements are eased. There are just four places in the circuit where signals change their reference from one power rail to the other, and in every case the collector junction of a transistor is used so that only the current flow is of importance and the voltage is relatively immaterial.

To keep the loudspeaker current surge within similar limits at switch-off it is only necessary to ensure that at least $1000 \mu \mathrm{~F}$ of charged capacitor are left connected across the power rails. This enables the currents in $T r_{1}$ and $T r_{2}$ to be kept flowing so that the circuit is able to shut itself down at the rate determined again by the long time-constant at the base of Tr_{1}. This requirement will normally present no problem, but even if it is not met the surge generated will certainly be no worse than in most other circuits of this type. R_{16} serves to keep the circuit biased properly if the loudspeaker is disconnected whilst the power remains switched on.

The pre-amplifier for this circuit must also be arranged so that the positive rail is the earth and so that the output voltage measured this way changes smoothly when the power is switched.

Middle rail voltage

In any circuit of this type the average voltage at the middle point between the output transistors must be set about half-way between the power rails so that equal output swings can be developed. The first-stage transistor is used at its full gain in this circuit for this purpose. The potentiometer formed by R_{1} and R_{2} sets a voltage on C_{2} which is applied through R_{3} to the base of $T r_{1}$, while the actual average level is set on C_{3} by R_{6} and fed to the emitter. If these voltages do not correspond, the full power of the amplifier is available to correct the situation, with C_{3} ensuring that the action is stable.

Thus if slow variations of the supply voltage occur, or if the amplifier is used on different supplies, the middle voltage is always automatically adjusted so as to be close to the actual half-way value rather than remaining at some pre-set level. As a refinement the precise value of R_{2} can be set so that limiting of the output on overloading occurs symmetrically at the normal supply voltage, but if components of ordinary tolerance are used the loss of output swing if this is not done will be quite small.

Transistor currents

In contrast to the above it is desirable that the levels of average current at which the various transistor stages work should remain comparatively constant when the power supply is altered. There is no reason to drive a stage with less current just because less voltage is applied, although it is true that a lower impedance loudspeaker system must be used if advantage is to be taken of the current available.

In the conventional form of circuit these standing currents are in fact stabilized in every stage except the second. The third improvement in this circuit is that the diodes D_{3} and D_{4} are added so as to control this stage also.

With the circuit shown the supply voltage can be reduced from 60 V to as little as 18 V and the full output current of 2 A remains available at almost the full swing the voltage allows, without any adjustment. To match this the loudspeaker impedance required must be reduced from 15Ω at the high voltage to about 4Ω at the lowest. If the loudspeaker is not matched then some output is lost, since either the voltage or the current reaches its limit whilst the other one is less than maximum, but there is no other serious penalty if the mis-match is not worse than a factor of two or so.

Cross-over current stabilization

Thermal runaway of the final transistors is not the problem with silicon devices that it was with germanium. Nevertheless the circuit has the resistor-diode networks $R_{12} D_{1}$ and $R_{13} D_{2}$ included between Tr_{7} and $T r_{8}$ to stabilize the cross-over current level more tightly. These resistors act to give a proportionate voltage for currents near the design value of 20 mA , whilst the
diodes take over for currents greater than about 50 mA so that the peak output capability is scarcely reduced at all.

Now it might be thought that non-linear networks of this kind would cause serious distortion-and arguments to this effect have indeed appeared in print-but consider what is actually happening. The signal being amplified leaves $T r_{2}$ as a collector current. Tr_{4} is arranged to supply a constant current and thus the signal is still in the form of a current when it arrives at $T r_{5}$ and $T r_{6}$. It is amplified there and again at $T r_{7}$ and $T r_{8}$, but at no point in these stages is there any sort of a load resistance. Thus the voltages are irrelevant, except in so far as small amounts of current can be lost since no system is ever perfect.

There is, however, an improvement of the thermal stability of the cross-over current by a factor of about five over the customary arrangement of linear resistors of about 0.5Ω at these positions, and less output swing is lost. Thus these networks are well worth having even though silicon devices have so much less leakage and much better stability anyway. The diodes used for D_{1} and D_{2} should be of germanium, so that they take over at about 250 mV , and they must be capable of carrying the full output safely. Their reverse characteristics and switching speeds are clearly of little importance and Mullard type OA 10 is suitable. The resistors can be of the ordinary small composition type, as they never have to carry more than perhaps 50 mW of power at the most, and there is then no worry about their being inductive.

Constant current transistor

The transistor Tr_{4} has been added to serve as a constant current source, as has already been mentioned. It supplies the collector of $T r_{2}$ with about 2 mA and draws this current from the loudspeaker side of C_{8} so as to
obtain the customary bootstrap action. The resistor R_{7} and capacitor C_{6} help to keep the current constant, whilst D_{3}, D_{4} and $R_{1 \text { s }}$ stabilize the value against variations of the supply voltage. The transistor for this position must be capable of withstanding half the maximum supply voltage but need have no other special features. The Fairchild type BC116, as used already in the first stage, meets the requirements.

In conventional circuits a simple feed resistor carries the current to Tr_{2} and the value used is usually no greater than $5 \mathrm{k} \Omega$. But the input impedance to $T r_{5}$ and $T r_{6}$ can easily rise to this same sort of value at the cross-over region, since the input impedances of the final transistors rise sharply at low currents and the value is directly multiplied by the current-gains of the driver stage devices. Away from cross-over these input impedances are very much lower, so that the effect is a fall in the value of the open-loop gain at crossover. Put in figures we can say that the open-loop gain is multiplied by a factor of about 0.5 in this region.

Now the purpose of $T r_{4}$ is to force as much as possible of the signal current from Tr_{2} into the driver stage devices and so reduce this form of distortion. Since the effective resistance value obtained is in the region of $100 \mathrm{k} \Omega$ the improvement is substantial despite the increase of the input impedance that results from the inclusion of R_{12} and R_{13}. The cost of the extra transistor required is comparatively small and in return we have obtained less distortion and better current stabilization in two stages of the amplifier.

Voltage reference transistor

The transistor $T r_{3}$ together with R_{8}, R_{9} and C_{5}, determines the voltage used as a reference in the fixing of the value of the crossover current. A transistor replaces the usual
chain of diodes as it can provide a more satisfactory form of adjustment and may perhaps now even actually be cheaper. Almost any type of transistor will do provided that there is a gain of at least ten at a current of 1.5 mA . Clearly a silicon device can be expected to be more stable and to provide a better tracking when the stages being stabilized all use this same material.

Resistor R_{g} has to be reduced in value if the cross-over current is too large whilst R_{9} must be reduced if it is too small. Make any adjustment carefully as this setting is fairly critical. Capacitor C_{5} serves merely to provide an easy path for the signal current to reach Tr_{6}.

With silicon transistors of this kind the cross-over current is not at all critical. The value can rise to 50 mA or more before the heating effect becomes significant whilst it can fall as low as 5 mA before there is any appreciable increase in the distortion. The temperature differences would have to be in the region of $100^{\circ} \mathrm{C}$ before either of these limits could be approached, and temperatures of this order are certainly not developed in ordinary domestic usage even when no special heat-sink arrangements are made as is the case with my amplifiers.

Matching the transistor gains

The gain from the collector of Tr_{2} to the output in a circuit of this type is determined primarily by the products of the currentgains of the driver and final transistor on the two sides. Thus in this circuit it is the product for Tr_{5} and $T r_{7}$ for negative swings and Tr_{6} and $\operatorname{Tr}_{\mathrm{s}}$ for positive ones. It is these products, rather than the gains of the corresponding devices, that ought to be matched to reduce distortion. There is no great difficulty in doing this and indeed it offers the big advantage that relatively poor specimens of one device can be sold paired with star performers of the other

Except for Tr_{3} and Tr_{4} the transistors are from the Fairchild AF11 kit, as are D_{3} and D_{4}. All the electrolytic capacitors musi carry half the supply voltage except for C_{4}, which carries the full voltage, and C_{5} and C_{6} which carry a couple of volts at the most.
so as to give a standard product despite production spreads. So far as I know, though, no manufacturer has ever offered devices on this basis. When building an amplifier of this kind it is well worth taking the trouble to test the devices available and to select pairs for a constant value of this gain product.

An amplifier of this type has then, in principle, got a constant gain right through the cross-over region. The current from Tr_{2} is indeed split into two pieces in some ratio determined by the relative impedances at the inputs of $T r_{5}$ and $T r_{6}$, and these are amplified separately. But they are simply added together again for the output, so that if the amplification factors are equal the exact manner of the splitting is of no importance. This situation is quite different from that in a valve class-B circuit where the signal is applied as a voltage to the two devices equally at all times, and their characteristics must be so shaped that the sum of their responses remains constant as the action transfers from one to the other In this latter case a critical level of biasing, determined by the design of the valves, must be maintained so that the responses dove-tail together, but there is no corresponding requirement in the transistor circuit.

The only objection to an indefinite increase of the cross-over current here comes from excessive heating of the power stage and the need for a larger power-pack. There is no clear distinction with this type of circuit between class B with a large crossover current and class A. The distortion decreases as the standing current is increased, and a compromise must be made between the distortion acceptable and the power level.

Choice of cross-over current

The value chosen for the cross-over current in my amplifiers is 20 mA . This gives a standing power dissipation in the final transistors of 0.6 W each at the full voltage. At this power level no heat-sinks are required in normal service, so that the devices can be mounted directly on the same small paxolin board as the other components. This in turn means that none of the wires concerned in the feedback loop need be more than 3in long and the stability problems are correspondingly reduced. There is no objection, however, to running at a higher level of standing current simply by reducing R_{9}, if a different compromise is required and heat-sinks and stabilization capacitors are provided.

But how serious is the distortion even at this level of 20 mA ? With modern diffused power devices, such as the Fairchild BD 116, well over half the peak gain is still available at this sort of current. If we assume that the amount left is actually 75%, then this gain loss will cause a fall in the open-loop gain, due to the simple product of the betas, by a factor 0.75 at the cross-over point.

Further to this there is a loss of signal in the resistors R_{10} and R_{11} due to the rise of the input impedances of Tr_{7} and Tr_{8} at low currents. With typical silicon devices this is no worse than a factor of 0.95 , and it is far less serious now than it was with
germanium where the leak resistors had to be made much lower in value. It is tempting to omit these resistors altogether with silicon but, in fact, this is foolish as they are required to help the power devices turn off after fast transients.

Lastly there is the fact that Tr_{2} is not really a perfect current source, but has a a finite output impedance. Even if the standing current in this stage is cut to the bare amount required for driving the full output together with a minimum safety margin (2 mA in this circuit) the collector impedance will still be no higher than about $50 \mathrm{k} \Omega$, as the base is current fed. The input impedance to Tr_{5} and Tr_{6} is, however, $45 \mathrm{k} \Omega$ or more, since the 15Ω of the loudspeaker is multiplied by at least 3000 due to the current-gains of the stages. Moreover, there is a further $10 \mathrm{k} \Omega$ added to this, due again to the rise of transiştor input impedances, at the cross-over point. Thus the loss of gain here is a factor 0.55 worsening to 0.45 at cross-over. The corresponding effect at Tr_{4} is rather less than this as it is voltage fed and returned to the bootstrap line. Its inclusion does not make any serious difference to the general picture.

The combined effect of all these causes is then a loss of perhaps a factor 0.6 in the open-loop gain in the region of the cross-over. If the cross-over current value were made greater than 20 mA this loss would certainly be reduced, but what other changes occur in this open-loop gain that would remain unaltered despite such an increase of this current?

The most serious effect here comes again from the collector impedance of Tr_{2} and is due to the fact that this impedance is inversely proportional to the current in the device. Thus at the peak negative swing this impedance will fall as low as $30 \mathrm{k} \Omega$, while at the positive peak it will rise to perhaps $100 \mathrm{k} \Omega$. This causes a factor of loss of open-loop gain varying from 0.4 to 0.7 . This effect is thus comparable with the factor 0.6 due to the effects at crossover. The conclusion from this is that although a further increase of the crossover current would indeed reduce the distortion the rate of reduction is becoming rapidly less so that, on balance, this value represents a reasonable compromise. If a more constant openloop gain is required then something must be done to increase the effective output impedance of Tr_{2}.

Stability of the feedback loop

The full product of the current-gains of the second, third and fourth stages of this circuit is in the region of 350,000 , but, as we have seen, this is reduced by various factors so as to be perhaps 140,000 at the least and 250,000 at the most with variations over the signal swing. Now roughly $1 / 600$ of the output current is fed back through R_{6}, R_{5} and $T r_{1}$, so that the effective gain round the feedback loop in the passband varies over the range from 230 to 420 . This very large amount of feedback serves to make the overall incremental gain fall short of the value determined by the potentio meter formed by R_{6} and R_{5} by no more than 0.43% at the worst and 0.24% at the best.

This variation is less than $\pm 0.1 \%$ from the mean and indicates that the performance of this type of amplifier is very good indeed. It is quite probable, in fact, that the linearity of the resistors used for R_{6} and R_{5} is not even as good as this and that they are, therefore, a major source of distortion. In any case there is little doubt that there are other components in any real audio system which are far worse than this circuit, so that there is little point in worrying about it overmuch.

However, this feedback will be quite useless unless the loop can be kept stable. The last feature in which my circuit is unconventional is in the fact that adequate stability is obtained without any extra capacitance having to be added between the collector and base of Tr_{2}. The network R_{14}, C_{7} provides the usual dummy load to restrain the output voltage at the very high frequencies where the loudspeaker system is likely to be inductive and where oscillation is likely to occur, but the amplifiers as built have a response time to a sharp step input of about $l_{\mu} s$ rise-time with an overshoot of no more than perhaps 10%. Notice that the sort of wiring commonly used to feed loudspeakers has a characteristic impedance substantially higher than the load resistance, so that a long lead will make the inductive effect greater rather than less.

As already mentioned, the layout used is very compact with no signal lead more than 3in long, but the rather unexpected stability seems to come from the very high impedance at the collector of $T r_{2}$ due to the constant-current effect of $T r_{4}$. This apparently makes the ordinary stray capacitances at this point have a time-constant which dominates the feedback action. At the same time the diffused power transistors used for $T r_{7}$ and T_{8} are so fast (they have $f_{T}=40 \mathrm{MHz}$), that they no longer make a serious second time-constant. With germanium the final devices used were more than a hundred times slower than this and their response was an important factor in the stability considerations.

It follows from this step-input behaviour that the high-frequency cut-off of this circuit is at over 100 kHz . If this is thought to be excessive it can be reduced as required by adding collector-base capacitance at Tr_{2}, and this will still further ensure stability. The low-frequency cutting action of the circuit comes directly from the increase of the feedback factor due to the time-constant of R_{5} and C_{3}. The value of this is 10 ms , so that the cut will come at about 16 Hz . If this value is to be changed then C_{1}, C_{2}, C_{3} and C_{8} must all be multiplied by the required factor.

The result of all these modifications is an amplifier arrangement that works appreciably better than corresponding circuits of the same general type with only a marginal increase in the complexity. It is even possible that the total cost is no greater when the savings that can be made in the power pack are taken into account. Certainly there is no doubt that the component tolerances have been made substantially easier, and that these various features deserve consideration in the design of any future amplifier of this type.

Speakers in Corners

A disagreement with the widely held view that placing a loudspeaker in a corner of a room gives better sound quality

by H. D, Harwood,* B.Sc.

In his article "Loudspeaker Performance" in the February issue of Wireless World, P. W. Klipsch, states that "All speakers (I have found no exceptions) work better in a corner". This view, which seems to be very commonly held, does not agree with experience in the B.B.C. ${ }^{1}$. Historically it has been found that as the general sound quality of loudspeakers has improved, so the deleterious effects of mounting the loudspeaker in a corner have become more and more noticeable. The deterioration in quality has been found to be mainly in the middle and upper bass regions. It sounded as though the loudspeaker had a very irregular response/frequency characteristic and that the sound was apparently more reverberant and coloured. The effects in the lower frequency range were particularly noticeable on polyphonic organ music, the separate parts of which are changed in level according to their positions in the scaie.

In the B.B.C. television sound control rooms have been chiefly affected, as the most convenient position for the monitoring loudspeaker has been above a group of picture monitors which are placed across a corner. This listening position is largely a forced choice because the listener's strong directional sense in the horizontal plane discourages the use of positions to one side of the monitors, while the space below is normally screened by the control desk and other obstacles. The monitoring loudspeaker is therefore normally placed near the ceiling in a corner, exactly the acoustic position favoured by Mr. Klipsch.

The hanging version of the LSU/10 studio monitoring loudspeaker (introduced in 1958) sounded satisfactory in such a position after a bass lift had been added. With the completion of Television Centre and the introduction in 1959 of the LS $5 / 2 \mathrm{~A}$, it was found that these loudspeakers, which performed very well in most circumstances, gave inferior quality when hung in a corner, although it was often possible partially to overcome this by changes in the acoustics of the room. When the LS5 $/ 6^{2}$ was introduced recently, the effect of mounting it in a corner was quite marked.

[^1]Three hypotheses have been suggested to explain the effects:

1. The release of load on the base of the cabinet when the loudspeaker is removed from its. plinth allows the cabinet to vibrate more freely, thus colouring the sound at a series of resonance frequencies. 2. The quality change is entirely due to interference effects between the direct sound from the loudspeaker units and that reflected from the walls and ceiling in the neighbourhood of the loudspeaker.
2. The effects are psychological in origin and associated with the unnatural or unaccustomed direction of the sound reaching the listener. This is very difficult to check and therefore the first two suggestions were examined first.

To check the first suggestion, listening tests were carried out, using both speech
and music, when the loudspeaker was on its plinth near the middle of a wall and when it was raised just free of the plinth by means of a rope and pulley. No difference in sound quality could be detected at all and it was concluded that vibration of the base of the çabinet was not a cause.

If interference from reflections was the cause of the changes in quality, then past experience ${ }^{3}$ would indicate that their amplitudes would be comparable with that of the direct sound, and the output of a microphone placed in the listening position would have a series of easily identified fluctuations.

Fig. 1 shows the arrangement used for experiments to test the hypothesis that the deterioration in quality was caused by reflections from the surfaces of the walls

Fig. 1. Experimental set up used for investigating effects of corner placing.

Fig. 2. Response/frequency characteristic with loudspeaker symmetrically placed in upper corner of room. The signal source was a warble tone.

and ceiling. For clarity it is shown in two dimensions only, but the extension to three dimensions is fairly obvious. For walls at right angles three images are formed, I_{1}, I_{2}, and I_{3}. If the walls are not at right angles then I_{3} is split into two images, but for most rooms these two will coalesce at the wavelengths we are concerned with. Corresponding images will be formed in the ceiling.

In the tests the loudspeaker could be fed with pink noise, pure tone modulated over a range of $\pm 63 \mathrm{~Hz}$ at a rate of 10 times a second or with programme from recordings. A microphone with a cardioid directional pattern was used to reduce the effect of room reflections elsewhere and the output could be recorded on a graphic level recorder or on a magnetic tape recorder.

Fig. 2 shows the steady state characteristics with the loudspeaker in a symmetrical position in the corner of a room acoustically treated on surfaces other than that of the corner. The microphone was 1.3 m above floor level on the loudspeaker axis. Fig. 3 shows the curve obtained in a listening room in an asymmetrical position with respect to the walls of the room. These curves of course represent the combined effect of room and loudspeaker and should in no way be confused with those of the loudspeaker alone.

Compared with Fig. 3, the curve in Fig. 2 shows a series of broad maxima and minima at low and middle frequencies, the maxima occurring at $50,280,630$ and 950 Hz , the peak to trough variations reaching 11 dB ; at high frequencies, too, there is a series of interferences. Listening tests on the loudspeaker using both pink noise and speech, in the condition corresponding to Fig. 2, showed a definite colouration just below 300 Hz , which agrees with the main peak in this region. There is a clear suggestion therefore that the colourations at low frequencies are associated with these peaks.

Fig. 4, curve A, shows the expected resultant of the sound pressure from the loudspeaker and its images calculated by ordinary vector summation from the following data:

1. Measured positions of loudspeaker and microphone.
2. Assumption of a value of 90% for the reflection coefficient at the walls with no significant phase change in reflection.
3. The assumption that the two images lying directly behind the loudspeaker could be neglected. One of these is formed by two successive reflections and the other by three, and both are formed by radiation inside a small solid angle at the back of the loudspeaker where the radiation is in any case low; otherwise the loudspeaker was assumed to be omnidirectional.

Curve B in Fig. 4 is a smoothed reproduction of a portion of Fig. 2 deliberately displaced from curve A. The similarity between the two curves is sufficiently close to confirm that interference by reflections from the surfaces surrounding the corner is an adequate explanation of the low frequency

Fig. 3. Characteristic with loudspeaker in an asymmetrical position in a quality listening room (warble tone).

Fig. 4. Calculated response/frequency characteristics from loudspeaker in corner of room: curve A, calculated from direct and strongest three images; curve B, smoothed from measured characteristic in Fig. 2.

Fig. 5. Speaker moved to unsymmetrical position in room (warble tone).

effects.
As the frequency is increased the fluctuations of Fig. 2 vary in depth owing to the varying directivity of the loudspeaker and the interaction of images at several different distances. From 3 kHz , however, the pattern becomes more regular, probably because the tweeter is in operation here and is more omnidirectional, giving stronger reflections from the nearby surfaces. The fluctuations still seem to be harmonically related to 270 Hz .

Fig. 5 is the steady state characteristic, for comparison with Fig. 2, obtained after moving the loudspeaker from its symmetrical position by 45 cm parallel to one wall. In this position the path lengths from two of the primary images are different and the fluctuations are therefore reduced at low frequencies.

A further response characteristic was taken at a symmetrical corner floor position, a carpet being on the floor. The low frequency fluctuations were similar to those in Fig. 2 but the high frequency ones were smaller, presumably due to the absorption of the carpet.

Fig. 6 shows the disastrous effect of placing the loudspeaker right in the corner so that it touches each of the walls.

The evidence given above shows that interference between reflections and the direct sound is sufficient to explain the measurable effects of the loudspeaker environment. It is also consistent with the subjective observations which were the starting point of the investigation. It may be a matter of some surprise that such large fluctuations as exist even in the best curves, i.e. Fig. 3, do not make the
loudspeakers completely unacceptable in any other situation than that of a free field room, but it is a common observation that one does not normally notice the even larger fluctuations due to room modes which must equally affect live speech in a room. The faculties of binaural hearing and central nervous analysis give considerable weight to the direct sound.

Assuming that the effects are entirely due to interference, there are thus three alternative methods for improving reproduction from a corner placed loudspeaker.

1. To absorb sound falling on the neighbouring surfaces. This will require a highly efficient absorber working over the entire audio bandwidth to be applied to a suitable area around the loudspeaker position. A suitable type is a partitioned air space 15 cm deep closed by 5 cm of dense rockwool and a fabric or highly perforated cover.
2. To use unsymmetrical loudspeaker positions, preferably chosen to eliminate the major fluctuations.
3. To avoid the corner as far as possible, will give the best results.

An opportunity to test out these conclusions arose in the sound-control cubicle of Studio 1 in Television Centre. A loudspeaker, type LS5/2, which it was agreed gave a high quality of reproduction when near the floor, gave an objectionable quality described as "tunnelly" when hung above the television monitors in a corner of the room. The position of the loudspeaker is such that very little can be done in the way of adding absorbent at the sides of the loudspeaker without covering large areas of viewing window in the

Fig. 6. Effect on characteristic of placing loudspeaker in corner touching walls and floor (warble tone).

Fig. 7. High quality monitoring speaker placed in upper corner of
television sound-control room (warble tone). The microphone had a cardioid characteristic.
possible, if high quality sound is the criterion and not just a loud noise. If such a position is unavoidable, try first to make the distances to neighbouring surfaces appreciably different and if the floor is one surface use a thick carpet. If this measure is insufficient, acoustic absorbent material should be placed on the surfaces involved.

Acknowledgement. This article is published by permission of the Director of Engineering, B.B.C.

REFERENCES

1. B.B.C. Engineering Division Monograph No. 78, September 1969. Part II, by H. D. Harwood and C. L. S. Gilford.
2. "New B.B.C. Monitoring Loudspeaker", by H. D. Harwood. Wireless World, March, April, May 1968.
3. "Recent work on the effect of reflectors in concert halls and music studios", by T. Somerville, C. L. S. Gilford, N. F. Spring and R. D. M. Negus. J. Sound Vib., 1966, 3 (2), pp. 127-134.

Corrections

 \& AmendmentsWe regret the need to draw readers' attention to the following amendments and corrections to recently published articles.
L. Ibbotson writes: My attention has been drawn to an error in question 15 of "Test Your Knowledge" No. 20 on Colour (January issue). The supposedly correct answer, (b). is wrong in the following particular. The three spectral wavelengths quoted were selected because the triangle on the chromaticity diagram with these as apices includes the largest pos-
sible range of real colours. It is clear from the chromaticity diagram that colour-mixing curves in terms of constant luminance would have maximum values around the three primary wavelengths quoted. However, to get the required filter (radiant flux) transmission characteristics, these curves require to be multiplied by the relative luminous efficiency curve: as a result the required radiant flux transmission peak for the red occurs at a wavelength of about $600 \mathrm{~m} \mu$ The other two transmission curves still peak at round about the primary wavelengths.
"Ceramic Pickups and Transistor Pre-amplifiers" (Feb. p. 56): Referring to Fig. 8(b) mechancial compensation can be allowed for by adjusting R_{4}, not R_{1} as stated in the text. In the appendices ($\mathrm{p}: 80$) the diagram at the foot of the centre column should follow ". . . by thinking of the ceramic pickup capacitance as being a part of $Z_{1}: "$, and the diagram in the right hand column should follow the text at the foot of the centre column.
"Digitally-controlled Tape-recorder Preamplifier" (March p.127): In Fig. 2 Tr is $n-p-n$ and should be drawn as is Tr_{11}. In Fig. 4(b) D_{7} should be inverted and C_{15}, D_{4}, D_{5} and D_{6} should share a common connection. In the caption to Fig. 4(a) and in Fig. 5 it is suggested that diode 1N914 is a germanium type when it is actually a silicon planar device. Four such silicon diodes should be employed ($D_{g}-D_{11}$) to give $V_{e e}$.

The following amendments should be made to the article " 80 -metre S. S. B. Receiver" by W. B. de Ruyter which appeared in the March issue: R_{12} should be connected to the a.g.c. line and not chassis as shown and the values of R_{28} and R_{21} should be interchanged.

Two corrections should be made to the article "Pulse Generator using Integrated Circuits" by C. Djokic (March p.130). The variable resistors in the output amplifiers (Fig.4) should be connected across the power supply as potential dividers with the wipers connected to the upper end of the 470Ω resistors, and gate C pin connections should be altered to 5 and 6 as per Fig. 6.
"Simple Linear A.C. Voltmeter": A printer's error in G. W. Short's letter (March, p.113) made nonsense of his correction. The oblique stroke was again omitted from the expression $R_{2}=\left(V_{C C}-V_{C E}\right) / I_{C}$.
"Pickup Characteristics" (December, p. 553): The stylus supplied with the Bang \& Olufsen SP10 cartridge is spherical (0.6 thou) and not eliptical.

An Electronic Dice

Design for a digital novelty, the final details of which are left to the reader

by Brian Crank*

A chance remark made at a game of snakes and ladders led to an interesting excursion into logic design. The dice had fallen off the table and as people searched the floor for it someone said "At least in this house you would think that there would be an electronic something to save all this trouble". Later the possibilities of making an electronic dice were investigated.
The circuit must have six stable conditions or states, each state corresponding to one of the sides of a dice as shown in Fig. 1 (a), and it must be capable of selecting anyone of these states at random. In practice the random element is provided by a high-speed multivibrator.

The groups of spots on the sides of the dice can be made up by using one, or by superimposing more than one, of the four patterns given in Fig. 1 (b). There are several ways in which these patterns can be displayed. One possibility is to use seven lamps, one lamp for each spot; in this case all the lamps to form a particular pattern in Fig. 1 (b) would be connected in parallel. Another solution would be to partially drill the spots in four sheets of Perspex, one sheet for each pattern, and to illuminate them using the edge lighting method employed in some numerical indicators. Finally, fibre optics could be tried. This would entail guiding the light from the lamps along fibre "light pipes" on to some form of translucent screen. (Fibre optic light guides which might be suitable can be obtained from Proops.)
The precise method of display is left to the ingenuity of the reader. However, it has been established that the logic circuit needed to drive the display must have four outputs, that is one output to illuminate each pattern.

* Assistant editor Wireless World

Fig. 1. (a) The arrangement of spots on a conventional dice; (b) the six scores of (a) can be formed with these four patterns

Several logic circuits were tried in the search for one using the minimum number of parts. The circuit finally chosen, although very simple, was arrived at after a good deal of effort had been expended.

The first stage in analysing the problem is to decide which of the four patterns are required to form the six sides of the dice and to present this information in a logical manner:

Dice score		Patterns required
1	=	a
2	=	b
3	$=$	ab
4	$=$	bc
5	=	abc
6	$=$	bcd

This states the facts but not in a way that is very meaningful. However, from these facts a table can be constructed. In this table a 1 is written when a particular pattern
is required and a 0 is written when it is not.

Dice	Patterns			
score	a	b	c	d
1	1	0	0	0
2	0	1	0	0
3	1	1	0	0
4	0	1	1	0
5	1	1	1	0
6	0	1	1	1

Do the first three columns of this table look familiar? If not some re-arrangement may help:

Dice	Patterns			
score	a	b	c	d
1	1	0	0	0
3	1	1	0	0
5	1	1	1	0
4	0	1	1	0
2	0	1	0	0
6	0	1	1	1

The first three columns closely resemble

Fig. 2. The suggested circuit for a digital dice, the method of display is left to the reader, almost any general-purpose silicon transisiors may be used.
the Johnson code. For readers who are not familiar with it the Johnson code is as follows:

$$
\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}
$$

This code is formed by a counter called a Johnson counter, sometimes known as a switch-tail ring counter. If the pattern requirements can be made to follow the Johnson code the lamps illuminating the patterns could be controlled directly by the counter and no gating at all would be required. Although we cannot reach this ideal solution we can come very close to it.

We will consider only the columns for patterns a, b and c at this stage; column d will be dealt with later.

The first line to depart from the Johnson code is the line for score two. This is 010 instead of the Johnson 001. This means that the Johnson code would have us illuminate pattern c instead of the required pattern b. Examining Fig. 1 (b) we find that patterns b and c both show a score of two so it does not matter which is used; 001 instead of 010 can be used, therefore, with no circuit changes.

The other line that needs modification is for score six. This should be 000 in Johnson code instead of 011. If the Johnson code is used no patterns would be shown at all for six, but we require patterns b, c and d to be illuminated. A gate must be employed to detect 000 and light the required patterns. A new table can now be drawn up:

Dice	Patterns	
score	a	
b	c	
6	0	
0	0	
1	1	

The gating requirements for the patterns can now be derived. It is assumed that a Johnson counter is employed in which the bistables are labelled A, B and C.

$$
\begin{aligned}
& \mathrm{a}=\mathbf{A} \\
& \mathrm{b}=\mathrm{B}+\overline{\mathrm{A}} \overline{\mathrm{C}} \\
& \mathrm{c}=\mathbf{C}+\overline{\mathrm{A}} \overline{\mathrm{C}} \\
& \mathrm{~d}=\overline{\mathrm{A}} \overline{\mathrm{C}}
\end{aligned}
$$

The term $\bar{A} \bar{C}$ detects line 000 for score six and illuminates the lamps b, c and d .

A circuit based on the foregoing is given in Fig. 2. The Johnson counter is a standard shift register with the output crossed and fed back to the input. The term $\bar{A} \bar{C}$ is formed by a NOR gate fed with A and C. The $+\bar{A} \bar{C}$ function for lamps b and c is carried out using two resistors from the output of the NOR gate. Connection details for Fairchild μ L 923 bistables are given although any similar device may be employed.

To "throw the dice" the push-button is pressed and released; during the time that the button is "made" the counter counts pulses from the multivibrator; the score is then displayed.

The Johnson counter has one serious
drawback. Three bistables have eight possible states, only six of these being used in the Johnson counter. If on switch-on the counter goes into one of the two unused states it will switch between these states on each input pulse and will never get into the proper counting sequence. This is eliminated by the resistor and electrolytic capacitor shown in the inset of Fig. 2. These cause the preset inputs of the bistables to go positive far a short period after switch-on ensuring that the counter starts at 000 . The value of this capacitor can be found by experiment and is not critical.

An experimental lash-up of this circuit was found to perform well. If required more push buttons can be connected in parallel with the one shown in the circuit so that each player may have one.

The logic side of the circuit has been reduced to three bistables, onegate and two resistors. This is thought by the author to be the minimal form of the circuit, but perhaps this is a "dicey" statement as Wireless World readers are almost certain to find a better solution?

Announcements

Revised dates have been announced for this year's London Audio Festival and Fair which will again be held at Olympia. The new dates are October 19th to 24 th-the first day being reserved for the trade.

A summer school in applied optics for non-specialists is to be held from June 8th to 19th at Imperial College, London S.W.7. The course fee is $£ 35$ and further information and application forms may be obtained from the Registrar.
"Hybrid Computer Techniques" is the title of a course of six evening lectures to be held at Norwood Technical College, Knight's Hill, London S.E.27, commencing April 14th. Fee 15 s .

Marconi Marine has received orders from three Japanese shipyards for the supply of communications equipment, navigational aids and dual radar installations for each of four new ore/oil carriers. The company is also supplying the communications and navigational equipment for Esso Northumbria, the largest ship ever to be built in the United Kingdom.
S.T.C. have been awarded a $£ 350,000$ contract by the Ministry of Technology for the development and construction of two functional models of a fully electronic access exchange for the Mallard project.

The Solartron Electronic Group Ltd, of Farnborough, Hants. has received an order from the Australian Government worth $£ 2 \mathrm{~m}$ to
design, manufacture and install a combined action information and tactical trainer for the Royal Australian Navy.

An agreement has been signed between Siemens of West Germany and Ferranti Ltd, Edinburgh, according to which these two companies will collaborate on the design, development and production of laser systems for the Multi-role Combat Aireraft (M.R.C.A.) project.

The Channel Electronic Division of LRW Electronics Ltd, Cheltenham, has been awarded a $£ 60,000$ contract for the supply of 'Safetylink' marine radio telephones by Channel Marine Commercial Lid.
Link Electronics Lid, has received a contract from the Post Office, valued at just under £20.000, for the supply of 40 portable waveform generators to be used in conjunction with differential gain and phase testing equipment.

The Aeronautical Division of Marconi has received an order worth nearly $£ 100,000$ from Air New Zealand for additional Marconi Doppler equipment to be fitted to their DC8 fleet.

GEC-AEI (Electronics), Leicester, have been awarded a share of a $£ 10 \mathrm{~m}$ contract for work on the Singapore Government's 'Bloodhound' missile defence system.

GEC-AEI Telecommunications Ltd has received orders worth $£ 750,000$ from the Post Office for microwave radio equipment to expand three routes in the P.O. network of high-capacity-radio trunk transmission routes.

Microwave Associates Ltd, of Cradock Road, Luton, Beds, have received an order, valued in the region of $£ 40,000$, from Sveriges Radio of Stockholm, for mobile all solid-state television relay systems for outside broadcast use.
H. Tinsley \& Company Lid, Werndee Hall, South Norwood, London S.E.25, will in future manufacture and market the range of air-spaced variable capacitors and trimmers previously made under the "Cyldon" name by Sydney S. Bird \& Sons Ltd.

Highgate Acoustics, 184 Great Portland Street, London W.1, have been appointed distributors in the United Kingdom and Eire for the Pickering range of cartridges previously handled by Auriema.

A new division of Amphenol has been set up to manufacture components under licence from Entrelec, of Villeurbonne, France.

Electroustic Ltd, of 73b North Street, Guildford, Surrey, have been appointed the sole U.K. agent for the 'Silec' range of semiconductors.
Tranchant Electronics (U.K.) Ltd, 17 Charing Cross Road, London W.C.2, have been appointed exclusive agents in Great Britain for the Intersil semiconductor range.

Intertechnique Ltd, Victoria Road, Portslade, Sussex BN4 1XQ, have been appointed sole representatives for the U.K. and other territories for the complete range of equipment manufactured by IGAB of Sweden.

Cole Electronics Ltd, Lansdowne Road, Croydon CR9 2 HB , have been appointed sole U.K. agents for the range of contactless solid-state switches manufactured by Rafi Electronic, of Ravensburg, W. Germany.

News of the Month

Parliamentary affairs committee

The Council of Engineering Institutions has formed a committee which will keep chartered engineers in Parliament informed of developments and opinion within the engineering profession. The committee is made up of representatives from the fourteen member institutions of the Council and members from both Houses of Parliament.

The parliamentary members are: Mr. E. Lubbock, Sir Ian Orr-Ewing, and Mr. A. Palmer. The chairman of the committee will be the present chairman of C.E.I., Sir Eric Mensforth, and the electrical, electronics and radio representative will be Sir Harold Bishop.

P.C.M. for B.B.C. stereo distribution?

It is now well known that the B.B.C. is experimenting with p.c.m. for distribution of high-quality sound -the advantages being, of course, the inherently stable characteristics of the system and immunity from noise and distortion in the sound transmission links. In fact, the Corporation has just finished a series of trials of the "sound-in-syncs" system using p.c.m. for television sound (Wireless World January 1969, page 38) between London and Kirk O'Shotts and this is expected to come into service within a year.

Writing in the first issue of B.B.C. Engineering (a journal replacing the Engineering Monographs), D.E.L. Shorter of the B.B.C. Research Department outlines what might be done in applying p.c.m. to monophonic and stereo sound signal distribution. If the stereo signal were applied to the p.c.m. system in the coded multiplex form in which it is required at the transmitter input, he says, it would be unnecessary to have a stereo coder at each transmitter. In the pilot-tone system used by the B.B.C., however, the spectrum of the multiplex stereophonic signals extends to 53 kHz and it would be a formidable task to design a system to accept the composite signal while meeting the requirements for signal-to-noise ratio. Even if this were done such an
arrangement would not allow the information capacity of the channel to be fully utilised, if necessary, for other purposes. A more flexible arrangement could be achieved by transmitting the leftand right-hand signals over separate p.c.m. channels, each of which could then be used independently when required. This would also make more economical use of the capacity of the transmission circuit.

By using separate p.c.m. channels for the left- and right-hand signals, it would be possible to provide stereo coding in a rugged and simple way at the transmitter if the sampling frequency of the p.c.m. system were 38 kHz . The left-right switching, which is part of the stereo coding operation, could be done on the audio frequency signals appearing in sample-held form at the output of the digital-analogue converters. The signal resulting from this switching would then need only the addition of the $19-\mathrm{kHz}$ pilot tone and filtration in a simple low-pass filter to remove components above 53 kHz in order to form the standard stereo signal.

This artifice would avoid the need for a conventional analogue stereo coder at each transmitter and would be more economical in circuit capacity than digital distribution of the fully coded stereo signal. However, the use of a 38 kHz sampling frequency would still need some 12% greater capacity in the distribution system than the otherwise satisfactory sampling rate of 33.5 kHz . The higher sampling rate and novel stereo coder are thus of doubtful value.

In the same article, Mr. Shorter discusses the general problem of maintaining the high quality of sound (stereo or mono) in the coding and decoding processes involved in digital distribution. The main problems, it seems, are quantizing noise and distortion from the low level signals. Investigations have shown, however, that the required performance on both counts can be obtained from a 13 -bit p.c.m. code using a process of interpolation between quantizing levels. Thus a p.c.m. system is in principle capable of satisfying all the requirements of a high-quality sound signal distribution network which would be able to cope with monophonic and stereophonic signals.

What, not who, is calling

For many people the telephone is the only means of directly communicating with someone else. At the present time a subscriber to the telephone system has at his disposal a vast switching network and he can set selectors clicking in this country, in Europe or in America merely by dialling; a direct pair of wires can be established between one telephone and any other-it does not matter if this

[^2]
connection be over land-lines, submarine cable, satellite or microwave link.

Computers now chatter to one another over the telephone and many firms send picture facsimiles to and from equipment associated with a telephone. However, for the majority of users the telephone is only a means of voice communication; a fact which means that the telephone system is largely being wasted at the present time.

Perhaps the most important additional use of a telephone would be as a computer terminal. This opens up a vast number of possibilities, too many to go into here, that could place at the disposal of subscribers huge amounts of information. Such a system could hit the printing industry hard, and who knows, in years to come you may receive your Wireless World on a c.r.t. display associated with a telephone-with optional line printer of course!

You may wish to switch on your central heating or cooker when you are away from home, this could easily be done by dialling a code on your telephone after connection has been established; and so on and so forth.

The present method of dialling, the Strowger system, does not lend itself to being used in any of the above ways. Before additional services could be provided it would be necessary to go over to the push button method of dialling using tones instead of pulses. The main advantage of the touch-tone system is not a question of novelty or aesthetics it lies in the fact that the push-buttons can be used to send codes after the appropriate number has been dialled.

Unfortunately push-button telephones require special exchange equipment. The Post Office say that this equipment will be installed over the next few years, in fact the Post Office already use push-button
telephones in some of their buildings.
The telephone can be used as a means of sending huge amounts of information to a household, it can also be used as a means of extracting data from that household. In fact Bell Labs in America are running a pilot scheme at Holmdel, New Jersey, which reads domestic gas and electricity meters by computer over telephone lines. The computer "dials" the consumer's telephone number and is connected via special exchange equipment, which prevents the telephone bell from ringing, to fransducers attached to the meters. The computer, on receiving the readings, carries out all the necessary accounting and recording. The process does not interfere with the normal operation of the telephone in any way.

Although all the above is technically feasible, and the main problem is one of economics, one is bound to ask if the meter reading system is socially acceptable. Apart from possible "big brother" implications many consumers rely on a chat with the "meter man" to gain some idea of what their bill is likely to be. In many areas, with modern high-speed computer processing, there is a gap of about a month between the meter being read and the bill arriving. This gives consumers time to prepare; with the proposed system there would be no early warning.

Tracking vehicle movements

An experimental computer control system designed to simplify and improve the operation of large vehicle fleets has just been demonstrated by Marconi to senior representatives of the London Transport Executive. Centred on a Myriad

> Sykes-Robertson (Electronics) Ltd came into being in February 1968, mainly as a result of proposals made to Mr. J. Sykes, an electronics engineering consultant, who went to Sanday (Orkney) to escape the hurly-burly of the South of England. The idea was to find interesting work, mainly for youths and girls who otherwise would have to leave their homes and families to seek employment in the South. The scheme has been a success and the firm, working in a former school and school-house, is currently manufacturing and exporting electronic equipment mainly in the civil and military fields. A recent despatch from Sanday is a high-quality language laboratory for Hong Kong which is shown in the photograph.

computer, the system is capable of continuously locating and identifying every vehicle throughout a network, presenting this information on a display screen, and immediately detecting any variations from schedule. This is done automatically without any involvement on the part of the vehicle driver. Additionally, it provides voice communication between the control centre and driver so that fresh instructions may be passed as and when necessary.

Each vehicle is fitted with a distance digitizer which counts the revolutions of its wheels, and therefore measures, digitally, the elapsed distance along a particular fixed route. Vehicles are also fitted with a radio telephone, adapted for two-channel operation, and a telemetry unit.
Digital information from each digitizer is passed into a register and is continuously updated at a prescribed rate-typically this might be every 25 feet of elapsed distance. The control room computer can interrogate any register, via the telemetry channel of the radio telephone, and the total elapsed distance count currently held in it will be passed over the link. This data is processed by the computer and displayed on the screen of a cathode-ray tube controlled by it. The display can take one of two basic forms. The route can be represented by a pair of straight lines, one for each direction, with prominent features such as fare stages identified. A vehicle is then continuously represented by a symbol at its current position on the route.

Alternatively, a second method of display allows all the vehicles in a particular area, a city centre for example, to be shown on a map electronically drawn on the screen.

The control room computer can be programmed to provide a number of other facilities. It can compare actual running times with those scheduled, and warn the operator if significant discrepancies are occurring. It can also generate a typewritten log of a day's operation, highlighting any 'out of schedule' running, and can provide this sort of 'history' for longer periods as well. Additional information such as crew meal break schedules may also be held on disc.

Finally, the radio telephone can easily be switched from the telemetry to a speech channel, to allow fresh instructions to be passed to drivers, or to allow emergency calls from them to base.

University to industry, bridging the gap

A new four-phase sandwich course, lasting one year, is to be introduced by Birmingham University in October 1970. The first in a new series, this course has been developed on the principle that industrially related M.Sc. courses should be designed to bridge the gap between university and industry. It has been designed by several of the leading electronics companies in close collabora-
tion with the University and is sponsored by the Conference of the Electronics Industry, with the support of the Ministry of Technology, the Engineering Industry Training Board, the Science Research Council and the Electronic Engineering Association.
The electronics industry has been concerned for some time over the difficulty of training high-grade systems engineers in the fields of radio communications and radar technology. Normally, each student will be sponsored by a firm in the electronics industry, which, with the assistance of the Science Research Council ând the Engineering Industry Training Board will provide his salary and pay all his fees.

Features of the course are that a high proportion of the lectures will be given by people from industry and that the lecture periods have been designed in the form of "modules", each of about three to four weeks' duration which will be available to industry to use as short up-dating courses.

This presents a unique opportunity to graduates to enjoy an intensive course of study and training in industrial research and development while receiving the salary of a full-time staff member of the company by which they are sponsored. The two industry centres for the first year of the course are to be at the Marconi Company in Chelmsford and the Plessey Company at Ilford.

The normal entry qualifications are a first or second class honours degree in electronics, electrical engineering, physics or mathematics or an equivalent qualification "with experience". For further information contact the PostGraduate Admission Tutor, Department of Electronic and Electrical Engineering, University of Birmingham, P.O. Box 363, Birmingham, 15.

ПЕш
 ᄃロmPUTE厂 TuPEFBLE

A new computer typeface, shown above, has been chosen as the in-house style of Marconi-Elliott Computer Systems Lid. The typeface, which is based on a square and has no curves or diagonals, makes the design of automatic readers a simpler task; it can also be easily read, even by the untrained eye, and it is not difficult to print by hand.

Keeping passengers informed

Nelson Tansley, in co-operation with Southern Rail's signal and telecommunications engineers, have developed a public address system which has been installed along the fifty miles of line between Woking and Southampton airport. In this system there are three control points; taking the one at the signal box at Basingstoke as an example, the signalman can address any of the five Basingstoke
platforms and/or the "up" or "down" platforms at any of the four other stations under his control (Hook, Winchfield, Fleet and Farnborough).
The system employs two pairs of audio cable that already existed along the line. A signalman presses a button corresponding to the particular platform, at the required station, he wishes to address. All four wires are used to send a parallel digital address code which selects the p.a. equipment at the required platform. If the p.a. equipment is not already in use a cable pair is released from the addressing task and is used to inform the control point that this is so. The signalman can then make his announcement. The communication system employs a 20 kHz f.m. carrier which is amplified at each remote point and then passed on to the next point.

The circuit is arranged to automatically provide a warning should any part of the transmission path be interrupted.

Post-doctoral research fellowships

The Science Research Council has announced a new scheme of post-doctoral fellowships for outstanding young British research workers to enable them to devote the whole of their time to original and independent research. Under this scheme, starting in October, there will be about 25 awards of much higher value than the 40 awards made last year.
Selection will be based on ability and independent achievement. Graduates in the U.K. may, with the approval of their head of department, apply to S.R.C. for research grants. The new fellowships, which will normally be held for a period of two years and which will be worth between $£ 1,450$ and $£ 1,800$, will be tenable at institutions in the U.K. or abroad acceptable to the Council-these include universities, colleges and government or industrial laboratories-which can provide the facilities necessary for the proposed research.

Component distributors association formed

With the primary objective of "defining clearly the role that the distributor plays in the chain of events from the creation and production of a product to bringing it to the market place", nineteen companies have formed the Association of Franchised Distributors of Electronic Components (AFDEC). Prime mover was Waldo Thorn, of Celdis Ltd, who called a meeting in February attended by 48 representatives of electronic component distributors. Following the election of a preliminary council with Mr. Thorn as chairman, objectives of AFDEC were discussed including its relationship with the Ministry of Technology and other associations such as the Radio and Electronic Manufacturers' Federation.

Domestic receiver deliveries

The British Radio Equipment Manufacturers' Association has released details of the total disposals of receivers to the trade during 1969. In the list below the 1969 figure is followed by the 1968 figure in brackets and the percentage change. Totals given should be multiplied by 1,000.

Radio receivers $737(1,025)-28 \%$; car radios 340 (388) - 12\%; radiograms 201 (226) -11%; monochrome television receivers $1,673(1,753)-5 \%$; colour television receivers 154 (121) $+27 \%$.

The highlight during 1969 was, without a doubt, the colour television disposals which showed a large increase, particularly in the last four months of the year.
The Electronic Industries Association of America has also produced results for 1969; these are presented as above, however a multiplication factor of one million should be applied.

Radio receivers 9.7 (11.8) - 17.7\%; car radios 10.1 (10.7) - 5.4%; monochrome television receivers 5 (5.55) - 10.4\%; colour television receivers 5.5 (5.8) -7.7%.
It is interesting to note that of the 39.4M radio receivers sold in America in 1969 only 4.7M were home produced.

Wildlife tape recording competition

The European Broadcasting Union felt that the European Conservation Year 1970 was an ideal time to recognize the importance of wildlife sound recording, so, at the suggestion of the B.B.C., it decided to sponsor a wildife tape recording contest. The competition is open to all living in Europe and Iceland.

There will be four categories and the winner in each will receive a "silver nightingale trophy" and the runner up a "bronze nightingale trophy". An outright winner will be chosen from the category winners who will be presented with a "golden nightingale award". Enquiries for entry forms and rules should be addressed to the Wildlife Sound Librarian, B.B.C. Natural History Unit, Broadcasting House, Whiteladies Rd, Bristol BS8 2LR.

Travelling award

The Royal Television Society invites applications for the 1970 John Logie Baird Travelling Award which has been increased this year to $£ 500$.

What they say

"It wasn't until I joined the B.B.C. that I learned that the Heaviside layer was not the top brass at Broadcasting House!"-Lord Hill, chairman, B.B.C., speaking at the I.E.E. annual dinner.

Letter from America

Sales of recorded stereo tapes accounted for approximately 26% of all recorded music sold in America during 1969 and shouid increase to 35% in 1970, according to Donald Hall, vice-president of Ampex. He went on to forecast that tape sales would equal sales of discs by 1972 or 1973.

At the moment, 8 -track cartridges are still more than holding their own with 74% of the sales, followed by 15% for cassettes. There is no doubt that cassettes will gain in popularity and eventually overtake the 8 -track cartridges which are mainly used in car-players. North American Philips confirm the rapid increase in popularity of cassettes and a spokesman said "Cassette equipment represents the fastest growing segment of the home entertainment industry-and it will gain a further impetus when cassette players are fitted to the new 1971 cars". Incidentally, nearly 10 million car radios are sold in the U.S.A. every year-more than the sales of domestic radios!

Before leaving the subject of sales-a few words about television. Last year colour sets sold just over 5 millionabout 10% more than black-and-white. RCA have just announced plans to build a $20,000-\mathrm{ft}$ plant in Mexico for the manufacture of colour tubes, and a larger one in Puerto Rico which will concentrate on shadow masks. One of the new RCA portables features a remote control unit which "gives instant shut off without need to turn down the volume control first". This is accomplished with a "computertested integrated circuit amplifier". The automatic fine tuning is also "computer designed"!

Meanwhile, that flat television screen is still just around the corner and the latest contender in the race is International Devices Ltd., of Fort Erie in Canada, who say they will have a flat-screen receiver in production by the end of the year. An electro-luminescent coated screen is used with vertical and horizontal potentials applied by an XY grid. It is claimed that picture brightness has been achieved up to 25% better than on standard colour TV sets now on the market. According to the company president they are only working with colour because "black and white is more difficult" and he is reported as saying that
screen sizes up to 36 by 50 inches would present no problems.

Much work is going on behind the scenes with video cassette recorders and Capitol announced recently that they had one on the drawing board awaiting the establishment of industry standards. They stated that "a cassette television programme of a half hour or full hour would probably sell for about $\$ 30^{\prime \prime}$ ($£ 12$ 10 s .) and they also forecast a TV programme rental library system. The Capitol unit is simply wired to the aerial input of the home television set, and then all the user has to do is to insert a cassette and he can watch his favourite programme as many times as he likes.

Big news in the $\mathrm{Hi}-\mathrm{Fi}$ world is the introduction of 4 -channel stereo sound, or Quadrasonics. With present techniques this involves the use of two broadcasting stations but stations in Boston, New York and in other parts of the country have been pairing up to broadcast live concerts and tapes (made by Vanguard) and so have created considerable interest. True, there was some (predictable) criticism from a few sceptics who believe the whole idea is a gimmick thought up by speaker manufacturers or tape companies, but the majority of people who have heard 4 -channel sound have been most impressed. How are the microphones placed? Well, for the initial Boston experiments (with the Boston Symphony Orchestra) two microphones were in the the usual stereo positions and two more were placed at the rear. One station carried the signals from the left front and left rear and the other from the right front and right rear. This unusual arrangement was in the interests of compatibility but recently the organizers had second thoughts and now one station transmits the signals from the front pair and the other station from the rear two. Not compatible at all; but I wonder how many complaints were received?

It is claimed that 4 -channel stereo is much more immediate, more exciting than 2-channel (you could not use it as background music) and some enthusiasts are even saying "the difference between 4-channel and conventional stereo sound is greater than between 2 -channel stereo and monophonic reproduction". It is
certainly true that room acoustics become less important and there is a greater feeling of being at the actual performance. Some of the demonstrations feature large orchestral works where the rear channels supply most of the reverberation and this does help to give that 'you are there' feeling. However, I believe opera and drama will gain the most from the extra dimension. On the other hand, many contemporary composers are very enthusiastic about the possibilities and Henry Brant finds it ideal for his "space music". In a recent recording session at the large Eastman theatre, no less than five different groups of performers were used, on stage, in the balconies and in the aisles.

If Quadrasonics becomes popular, what are the record companies going to do about it? You may be sure they are not ignoring it and several companies are busily working on 4 -channel discs using multiplex systems and it is rumoured that some will be demonstrated at a meeting of the Audio Engineering Society in New York very soon. It is obvious that it is not really feasible to use two separate broadcasting stations (except for experimental purposes) and so various schemes have been proposed that will allow 4 -channel transmissions from one station. One of the most practical involves a multiplex arrangement and it is described by L. Feldman in Audio for January 1970. The only disadvantage is a slight loss in bandwidth of the rear channels but this may have to be accepted. Tapes, of course, present no problems and several recorders are now available with stacked heads. Scott brought out a Quadrasonic receiver in December but the majority of manufacturers are waiting to see what happens before they commit themselves. Among them curiously enough is Acoustic Research (AR) who have played a large part in organizing the Boston experiments.
G. W. Tillet

Our contributor George Tillett has been appointed editor of "Audio". Since going to the U.S.A. five years ago he has successively been director of engineering in the Pennsylvania plant of Fisher Radio Corp. and executive vice-president of Audio Dynamics Corp. Prior to leaving this country he had been with Daystrom, as chief engineer, and latterly with Wharfedale as technical director.

SONEX 70

Exhibitors at the forthcoming London Hi-Fi Show

With the transfer of the annual London Audio Festival \& Fair from a hotel setting to Olympia and from the spring to the autumn there has apparently been agitation by some manufacturers for a spring show similar to those run first at the Waldorf Hotel (under the auspices of the defunct British Sound Recording Association) and latterly at the Hotel Russell. As a result the Federation of British Audio formed a company-British Audio Promotions Led -to organize a specialist hi-fi exhibition. The first of what is planned as an annual event, is to be held for four days (April 23rd26th) at the Skyway Hotel, near London Airport, Heathrow. Each of the 50 manufacturers taking space at 'Sonex 70 ', as the exhibition is called, will have an individual hotel room for demonstrations. One advantage of the Skyway Hotel is that, because of
its proximity to the airport, all the rooms are sound proof. The list of manufacturers exhibiting is given below.

It is encouraging to note that although the show is sponsored by the Federation of British Audio, there are a number of overseas names among the exhibitors.

The show will be open from 11.00 to 21.00 on each of the first three days. On the last day (Sunday) it will open at 11.00 but close at 18.00 . Admission on the first day is restricted to the trade. Tickets for the other days are obtainable free from exhibitors, audio dealers or the exhibition organizers British Audio Promotions Ltd., 49 Russell Square, London W.C.1.

In our June issue we plan to include a more detailed account of some of the new products. a few of which are illustrated here.

Goldring's G.850 stereo magnetic cartridge costs 5610 s and is designed to operate at a playing weight of between 2 and $3 \frac{1}{2} \mathrm{gin}$. The stylus has a 0.0007 in diamond tip.
The XV-15 series of Pickering magnetic cartridges range in price from 1515 15s (XV-15/100) to $£ 39$ (XV-15/750E). Some units have spherical and others eliptical styli. A groove-cleaning brush is fitted to each cartridge.

Manufacturers at the Show	
Acoustic Research	Metrosound
Akai	Modular Audio Components
Arena	Mullard
Armstrong	
	Ortofon
	Peak Sound
BIB Multicore Solders	Pickering
Brenell	Pioneer
Cambridge Audio	Quad
	Radon
	Rank Wharfedale
Daystrom	Revox
Decca	Richard Allan
Dynatron	Rogers
	Rola-Celestion
Goldring Goodmans	
Grampian	Sansui
	Shure
	Sinclair Radionics
I.M.F.	Sugden. A. R.
	Sugden. J. E.
Jordan Watts	
	Tape Recorder Spares
KEF	Teleton
	Toshiba
Leak	
Lowther	Vortexion
Lugton	
Lux	Williman Export

A reverberation amplifier, the SR202, fiom Pioneer enables controlled reverberation effects to be added to recordings that are judged to be too dry or dead. The system employs two timedelay circuits and the output is claimed to be free fiom peaks. The price is $£ 459$ s IId.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Measuring crossover distortion

Even by allowing Mr. J. F. Golding his margin of decibels by calculating-out the noise up to a level 3 dB above that of the t.h.d. ("Letters" March 1970 issue), his $57 \mathrm{~dB} \mathrm{~s} / \mathrm{n}$ ratio amplifier turned down from maximum power to 10 mW by means of the volume control would-based on 10W maximum power-permit easy measurement of little less than 0.5% t.h.d. Not easily down to 0.1% as stated by Mr. Golding in his letter. The reason for this, of course, is that the noise of the power amplifier although relatively small is significant. The full-power s / n ratio would not be retained at the low power, for this implies that the ratio of noise relative to full power is enhanced in exactly the same ratio as the power is diminished. In reality, while the output power is reduced from maximum by, say, 30 dB by turning down the volume control, the noise yield at the output rarely falls by more than 10 to 15 dB over the same volume control range. Obviously, the noise of the pre-amplifier section passed by the volume control adds to the noise of the power amplifier by a square law.

I initially test at maximum setting of the volume control because some pre-amplifiers tend to veer towards non-linearity more easily than may be appreciated. Moreover, the control might affect the frequency response either unintentionally or purposely (e.g., fixed 'loudness' action lifting treble and/or bass as the control is turned down), and the maximum setting ensures that an established test datum level can be quickly repeated, not always as simple as it may seem, by using the amplifier's volume control. Nevertheless, subsequent to exploratory tests there may be merit in rechecking at low volume-control settings and when so warranted I do this. It is also noteworthy that the noise decrease at the output, on turning the volume control right down to minimum from maximum, can be quite smail, depending on the nature of the volume control circuit and the noise performance of the circuits either side.

Mr. Golding fails to specify the wave analyser which provides the $3,000: 1$ input noise bandwidth to filter bandwidth, but I am sure he will agree that the readout of such low-level distortion components as implied by his dB values relative to a low impedance output load is not exactly an
'easy' matter. I have found that an s / n ratio improvement of about 30 dB based on a $10-\mathrm{W} 8$-ohm $80 \mathrm{~dB} \mathrm{~s} / \mathrm{n}$ ratio amplifier running at 0.1 mW allows a threshold readout little better than 0.1% selected harmonic. For ultimate measurements deep into noise one has to adopt phase detection and correlation techniques, the latter allowing useful signal indication up to 60 dB deep in noise.
T.H.D. is a popular way of amplifier distortion appraisal in spite of all the other more sophisticated methods. It is less costly and less time consuming than analysis of individual waves. It is ideal for speedy distortion comparisons, and with a 'scope attached to the readout the knowledgeable operator can quickly glean useful information about the nature of the distortion and observe crossover artifacts if they exist. Treble-end performance can also be highlighted and the presence of oddnumbered high-order harmonics is revealed to the owners of both sensitive and cloth ears.
Gordon J. King,
Brixham,
Devon.

V.H.F. services

I was touched to notice in his March contribution that "Vector" has been studying the wisdom of the ages. Now that my friendly neighbourhood tower crane has moved away I think I was probably right in 1947 to urge a more detailed study of pulse modulation. But after all, was it in 1933 that the quite successful tests of single sideband and carrier were made from Dàventry? And where did they lead us?

Two other articles of the period still have some interest. The f.m.-a.m. controversy was bedevilled by the statement in the House of Commons by the P.M.G. of the day that no discussion could fruitfully take place until he had considered an entirely new system of modulation. He did not tell the Post Office engineers what it was. He did not tell the BBC engineers what it was. But it was entirely new and there was a change of Government and when his party came back they didn't make him P.M.G. So we shall never know.

Another topical article followed, I think, my discovery that at Copenhagen
the British contingent regarded engineers and foreign office staff as Falstaff saw bread and wine.

Without going into details we can split music into three classes: pop, palm court and proper. Land-lines need not be rationed, so that by using synchronized carrier only a small number of m.f. channels need be locked up to provide three European music programmes. The remaining channels are available for speech programmes, which are essentially national orlocal. Any country getting two or three national channels then would offer a choice of five or six programmes, even though its share of the production costs of the three common programmes would be small. The only trouble is that this solution provides the most listening, not the most jobs.
A final memory is of a letter, circa 1946, urging that television services should not be resumed. As an engineering problem the transmission of moving pictures was worth doing, because it was there. But there would never be the talent to produce 30 or 40 hours of programmes a week. How right I was.
THOMAS RODDAM

Theoretical and measured
 response

While musing on the operation of the tone circuitry in the pre-amplifier designed by Dr. Bailey, I did a few mental calculations, and was interested to note an apparently large discrepancy between the measured and theoretical treble response curve.

Fig. 1. Circuit of tone control.
Consider Fig. 1. At high frequencies all capacitors can be assumed low impedance, and in the limiting case, zero impedance. So for maximum treble setting the highfrequency gain asymptote can be calculated if it is assumed that the two arms of the network are acting operationally. The limiting high-frequency equivalent circuit of Fig. 1 is shown in Fig. 2.
So the high-frequency gain asymptote is given as below:

$$
\begin{aligned}
G & =\frac{1.2+\frac{21 \times 10}{21+10}}{2.2+\frac{1 \times 10}{1+10}} \\
& =\frac{8}{3.1}
\end{aligned}
$$

So $20 \log G=8.2 \mathrm{~dB}$.
This value of G is about 10 dB less than the apparent high-frequency asymptote given by Dr. Bailey. I would like, with
respect, to suggest that perhaps the frequency response curves given were measured before the output attenuator R_{1}, R_{2} and the input resistor R_{3}, were added. These are respectively included to increase the overall gain of the circuit to about 2 , and as load impedance to match the treble filter which feeds directly into this stage.

Fig. 2. High-frequency equivalent circuit.

Fig. 3. Unity-gain version of Fig. 2 omitting R_{1}, R_{2} and R_{3}.

The equivalent circuit at high frequencies for maximum treble lift can now be drawn as in Fig. 3 with R_{1}, R_{2} and R_{3} removed.

Now

$$
\begin{aligned}
G & =\frac{21 \times 10}{21+10} / \frac{1 \times 10}{1+10} \\
& =\frac{6.8}{0.91}
\end{aligned}
$$

So $20 \log G=17.5 \mathrm{~dB}$
This value agrees with Dr. Bailey's and is a reasonable figure.

It should be noted, therefore, that, so as not to restrict the range of the controls R_{3} should be as small as possible.

It is also apparent that R_{3} should equal the parallel combination of R_{1} and R_{2} otherwise the input and feedback portions of the network will not balance correctly with the controls centred.
P. M. Quilter,

University of Sussex,
Brighton.

The author replies:

I was very interested in the letter from Mr . Quilter and his comments on the performance of the tone-control circuit. He is perfectly correct in his deductions and I must confess that the original curves were obtained with the treble filter circuit omitted. For this reason it is better to use the modified circuit where the filter components are bypassed with the filter out.

Personally, I have found that with speaker systems of low resonance (and similar performance pickups), treble filters are unnecessary unless a particularly dreadful recording is being played. 'Edginess' in reproduction is nearly always due to defects in speaker and/or
pickup transient response-assuming that there is no crossover distortion trouble in the amplifier in use.

Similarly my treble controls are nearly always 'flat' and I use only a small amount of bass boost to make up for dynamic levels in playback. For my part I cannot see the need for $\pm 20 \mathrm{~dB}$ variation in controls, but 1 must agree that it looks better on a specification than say $\pm 12 \mathrm{~dB}$.

Perhaps this is the reason why only one or two people have queried the performance (and then only h.f. boost). However it becomes obvious from Mr. Quilter's deductions that the two end-stop resistors of $1 \mathrm{k} \Omega$ on the treble control are redundant. Also the $2.2 \mathrm{k} \Omega$ resistor R_{3} should be $1.2 \mathrm{k} \Omega$ for accurately balanced controls.

All this goes to show how simple modifications for one purpose can seriously modify the performance of a circuit in other directions. Many thanks Mr. Quilter, for a very useful lesson in the value of fully analysing the effects of modifications.

Arthur R. Bailey

Capacitor-discharge ignition

During the last five years I have been interested in electronic ignition systems and after seeing Mr. Marston's article in the January issue of Wireless World I am prompted to write offering several comments on my own experiences.

In winter sub-zero conditions, the battery may drop to as low as 7V with a big engine and can rise to 15.5 V under alternator charging. These limits are very severe on any ignition circuit, and accordingly in this continent [America] nearly standard ignition systems consist of a 1.5Ω ignition coil and a 1.5Ω series ballast resistor. While starting the ballast resistor is shorted out and the system gives fantastically good cold-weather starting. I doubted whether Mr. Marston's self-regulating converter would regulate well over a 2 to 1 voltage range, so I set about constructing his converter with à 17 V 2 A transformer that I happened to have brought back to Canada from a recent two-year stay in Cambridge. It has 210 -, 220- and 240 -volt primary taps. After rewinding two times 65 turns (the original had 136 turns) the converter put out about 500 V in an ignition circuit with identical high-voltage components to Mr . Marston's circuit! There were rather large
spikes at the transistor collectors and even at a very low sparking rate (induced manually) the voltage went down to 400 V quickly. It seems the spikes do not have much energy to charge the $1 \mu \mathrm{~F}$ discharge capacitor. At 10 V d.c. input, the output was still 400 V unloaded but this dropped to 300 V at a low sparking rate. At 7 V d.c. input the spark was inadequate. Mr. Marston's circuit may have regulated better (no two transformers are alike) but I feel such circuit action is not desirable where reliability is necessary. My friends and I have solved low starting voltage problems in several ways. One friend designed his system for 500 V with 15 V d.c. input, and this suffices until the battery falls below about 8 V . Another friend uses a relay to switch in extra secondary turns on the converter transformer only during starting. My own solution is to add across the s.c.r. a large electrolytic capacitor in series with a $10-\Omega 2-\mathrm{W}$ resistor. The converter is a high-frequency unit ($\sim 1 \mathrm{kHz}$) with no spikes, which supplies 400 V with 15 V input. When the ignition key is first turned on, the capacitor $(\sim 40 \mu \mathrm{~F})$ charges in a fraction of a second to $\sim 400 \mathrm{~V}$, and the first 30 sparks are good and hot, no matter what the battery voltage.

Another serious problem is caused by the ballast resistor. After an ignition pulse, the converter again charges the discharge capacitor, causing typically several volts drop in the resistor. When charging ceases, the increasing voltage applied to the s.c.r. fíring circuit could initiate a trigger. This has happened to some of my designs in the past and to combat any spurious triggering a 6-V 1-W zener diode was placed across the contact breaker. Any noise on the battery line produced by ${ }^{\circ}$ n erratic regulator will also be squelched by this zener. In Mr. Marston's circuit, transistor Tr_{3} has an emitter-base breakdown voltage of about 7 V , and the zener will also prevent very large base reverse currents which must flow when the contact breaker closes in the circuit as drawn. I do admire the trigger circuit for its positive ability to remove harmful effects of point bounce, and have already adopted it in my own unit.

The last point which I should mention as a purist is that a spark plug fires with lower voltage when the central electrode is negative, due to thermionic electron emission

Mr. Vanderkooy's circuit. The converter is an h.f. near-perfect square-wave unit using a nickel-tape-wound toroid.
from the hot electrode. All ignition systems, positive or negative earth, operate this way, and this feature should be preserved in an electronic system. A little analysis will show that in a standard ignition coil designed for a positive earth system (many British cars) the SW terminal should be grounded. (Fig. 6 in Mr. Marston's article.)

In conclusion perhaps readers would like to see my final circuit.
John Vanderkooy,
University of Waterloo,
Ontario.

The author replies:

From his letter, it seems that Mr. Vanderkooy has failed to grasp the operating principles of the converter circuitry, and does not appreciate the electrical requirements of an ignition system under cold start conditions.

I can assure Mr. Vanderkooy that the design of the converter section is such that it is virtually impossible for its output to exceed $414 \mathrm{~V} \pm 5 \%$. If higher voltages are obtained, it can only be because T_{1} has been given a turns ratio greater than 15:1, or because $Z D_{1}$ and $Z D_{2}$ are not 27 V $\pm 5 \%$ types. If output voltages rise appreciably above the designed value, the s.c.r. (a 400 V type) may be destroyed.

The ignition system has been specifically designed to give good cold-start characteristics; overshoot regulation is utilized to this end. While it is true that the overshoot (what Mr. Vanderkooy calls 'rather large spikes') contains very little energy, this energy is sufficient to meet cold start needs. Typically, a starter motor will turn an engine over at a "brisk' rate of about 300 r.p.m. under $10-\mathrm{V}$ cold start conditions, and at a 'sluggish' rate of only 150 r.p.m. at 8 V . The table below shows the measured performance of the cireuit under these conditions, and also at 7 V cold start; I consider the performance to be adequate under all conditions, and I feel sure that Mr . Vanderkooy will agree with me if he carries out a little practical research into the subject.

No. of cylinders	C_{1} charge voltage		
	$\begin{array}{r} \text { 7V } \\ 150 \text { r.p.m. } \end{array}$	$\begin{array}{r} \text { 8V } \\ 150 \text { г.p.m. } \end{array}$	$\begin{gathered} 10 \mathrm{v} . \\ 300 \mathrm{r} . \mathrm{p} . \mathrm{m} . \end{gathered}$
4	260	290	325
6	250	280	322
8	240	270	310
12	237	265	300

Finally, I suggest that if Mr. Vanderkooy's battery potential does in fact fall as low as 7 V under cold start conditions, there is something seriously wrong with either his battery, his starter motor, or his choice of lubricating oil; battery potential should in fact never fall below 8 volts, even under the most severe cold start conditions.

R. M. MARSTON

Having done some work on this system of ignition may I bring out a few points which may be of interest to readers? The converter transformer can conveniently be one of the centre tapped 1.t. types which are on the market. Working backwards a 9-0-9 volt secondary is about right for square-wave working at 12 V d.c. and gives a frequency
of a few hundred Hz . The capacitor C_{1} does need to be a low-loss type, a paper capacitor was found to become very warm at spark rates of 300 per second corresponding to 6000 revolutions per minute with a six-cylinder engine and 9000 with four cylinders. It is worthwhile to include a recovery diode across the s.c.r.: nearly 20% of the energy can be recovered from the leakage reactance on the backswing. Best results are usually obtained with a 6 V 'sports' type coil which has a low primary inductance and resistance, the rated voltage of the coil does not matter much with this type of circuit. Putting a

'crowbar' across the inverter output at each spark seems rather brutal and I have always used choke charging with an inductance of 3 to 5 henries between the inverter and C_{1}. The circuit can be simplified by using a small differentiating transformer to produce the s.c.r. firing pulse.

Diode D and the $22 \mathrm{k} \Omega$ resistor give a delayed recovery to avoid misfiring as a result of contact bounce. The normal ignition capacitor is removed when using this circuit.

I have had an ignition system of this type in use now for some 6 years and 70,000 miles with complete success.
H. Harper,

Fleet,
Hants.

The author replies.

When designing the original circuit I tried to find a standard l.t. transformer that could be used in the system; I considered the possibility of using a $9-0-9$ volt one, but found that they were generally available in 2 - and 4 -amp ratings only. Unfortunately the 4 -amp type (which is essential for operation up to c.b. frequencies of 660 Hz) was found to be physically too large to fit inside the standard chassis in which I built the unit. The 2 -amp type was found to give a reasonable performance when used on a four-cylinder engine at speeds up to 6000 r.p.m., but to be inadequate when used on engines with six or more cylinders (the reasons for this should be self evident).

Regarding the use of a diode to give energy recovery on the backswing; $D_{3^{-}}$ D_{6} already perform this function in the original circuit!

Regarding the use of a 6 V 'sports' coil and the removal of the normal c.b.capacitor; the original system was designed to use the existing coil and c.b. components, thus keeping building cost to a minimum and enabling the ignition to be changed from C-D to normal, and vice versa, with great ease. Mr. Harper's mods nullify these features!
R. M. Marston

I have been developing a capacitordischarge ignition system for some time and I think you may be interested to know how I have attempted to overcome some of the problems mentioned by correspondents.

I have positively prevented s.c.r. latching by doing two things. I have arranged a feedback system to provide the gate drive. This consists of a monostable with a feedback connection from the s.c.r. anode which causes the drive pulse to be switched off as the s.c.r. switches on. This prevents gate drive from latching the s.c.r. I have also used a driver h.t. converter. In this the pulses from the driver circuit are fed through a gating circuit before being fed to the output transistors, driving the transformer. So by using the gating circuit to switch the converter on and off, very fast and reliable turn on, and turn off may be obtained. This facility may also be used to regulate the voltage to which the capacitor is charged by using a comparator to measure this voltage and switch the converter off when the capacitor is suitably charged.

Finally I would like to make a few comments about the e.h.t. coil and the contact breaker points. Standard coils are not the best for use with capacitordischarge systems. A far better coil would be a low-inductance primary, closed-iron type. These offer higher efficiency, higher operating speeds and less need for energy retrieval to recharge the capacitor (that is using the coil's back e.m.f. to charge the capacitor).

Also I believe it would be worthwhile for the more ambitious constructor to try to replace the points with a photo-electric magnetic or reed switch pick-up as points can be quite troublesome when lightly loaded.
D. J. White,

Harborne,
Birmingham.

Modular pre-amplifier design

Some users of this design (W.W. July 1969) have found a somewhat higher level of background 'hiss' than had been expected at very low settings of the volume control. Where this has occurred it is usually due to the f.e.t. used as Tr_{5} in the tone control circuit.

A much improved performance in this respect can be obtained by the use of an Amelco 2 N 4302 or 4303 . In the former case it may be necessary to modify the biasing of the f.e.t. to ensure that the drain current is at a suitable level. (The voltage measured at the emitter of $T r_{6}$, which is a convenient point, should be somewhere in the range 6-11 volts.)

The adjustment of the f.e.t. bias can be done either by alteration to the $33-\mathrm{k} \Omega$ source resistor, or by connecting a resistor of about $3.3 \mathrm{M} \Omega$ between the emitter of $T r_{4}$ and the gate of the f.e.t.
J. L. Linsley Hood,

Taunton,
Som.

Digital Remote Control System

Up to fifteen circuits may be controlled from a remote point with this system

by H. N. Griffiths*

Up to fifteen circuits can be remotely controlled using this system, the block diagram of which is given in Fig. 1. As can be seen the system consists of two units, a coder and a decoder, connected by some form of data link; this could be a pair of wires or a radio transmitter and receiver.

The coder is a pulse generator which can generate a train of between one and fifteen pulses under the control of the switches S_{1} to S_{15}.

Initially the stop and set zero lines in the coder are UP (positive) so that the multivibrator is stopped and the counter is set to zero. Operation of any control switch (S_{1} to S_{15}) earths the stop and set zero lines and the counter starts to count pulses from the multivibrator which will have started. When the counter reaches a preselected state, as determined by the logic network and the operated switch, the inhibit line goes UP and the multivibrator stops.

The decoder counter also counts the pulses from the multivibrator which are sent over the data link. When the multivibrator is inhibited the two counters will hold the same number. The logic network in the decoder now actuates the required control.

It is arranged that when the input to the decoder is UP (no signal) the decoder set zero line is also UP, resetting the counter. On receipt of the first negative edge the set zero line of the decoder goes down and is held down by capa-
citor C_{S} so that the counter can accept the incoming pulses.

On release of the control switch in the coder the stop and set zero lines in the coder go UP returning the coder to its initial state and the input to the decoder also goes UP (and stays there) so that the decoder counter also resets. The operated control is now released.

When fewer than fifteen controls are required, the decoder logic network can be simplified. Indeed, if relays are used to operate the controls it is possible to eliminate the logic network by using the relay contacts to perform the decoding logic functions. In such a system (Fig. 2) the relay coils are controlled directly by each stage of the binary counter via the transistor switches (see inset Fig. 3). Fewer relays are required to perform a given number of on-off control functions than is the case when a separate relay is used for each control. The overall reliability of the system is degraded, however, because each control is operated through a group of contacts in series and failure of any one of these will cause at least one control (and possibly half the total number of controls, depending on the position of the fault) to fail. However, the saving in circuitry and the increased simplicity of the system will, in many cases, offset the risk of simultaneous failure of more than one control.

Communication Channel

The simplest form of data link is two wires between coder and decoder. In

Fig. 2. (Above) Showing how the decoding can be performed with relays.

Fig. 3. The circuit of the coder (Above) and decoder (Below). If wished the decoder may be used with the relay decoding system of Fig. 2 or with the same AND gate networks as the coder. The inset above gives the circuit for the AND gates. A relay drive circuit for use with relay decoding and an alternative decoder input circuit for use with a relay input are given in the lower inset.

cases where complete freedom of movement of the remote unit is required a radio communication channel can be used to carry the control information. In fact, the original system was conceived as a means for the remote control of a model via a 27 MHz radio link. Since amplitude modulation is used in the prototype, the system is susceptible to impulse interference which may be generated, for example, by the electric motors being controlled. It is therefore essential, in such a case, to incorporate a device which rejects impulsive spikes of short duration and allows the decoder to respond only to the relatively slow rate of the signal pulses.

Erratic operation may also occur if the supply voltages to the integrated circuits are allowed to drop too far below the nominal value of 3.6 V . Since the decoder input is controlled by a relay in the radio control receiver, special precautions are taken to eliminate faulty triggering due to contact bounce. A 'set-reset' bistable is therefore interposed between the relay contacts and the counter input (see inset Fig. 3).

Transient operation of intermediate controls may occur when the counter in the decoder is stepping to its final state. One method of eliminating this is to connect a suitable capacitor in parallel with each relay.

The pulse rate in the prototype is chosen to be 20 Hz . This is high enough to permit rapid selection of controls but sufficiently low to ensure reliable operation of the relay in the radio control receiver. This relay also provides a measure of impulse interference rejection since it responds to the signal pulses but rejects impulsive 'spikes' of short duration.

Circuitry

The circuit is given in Fig. 3. Simple diode AND gates are employed in the logic network. If used with a radio control receiver which employs a relay the alternative decoder input circuit should be used. The decoder may be built with the relay decoding circuit of Fig. 2 or with the same logic circuit as the coder, in this case the outputs of the AND gates are used to actuate the required controls.

Adjustment is confined to setting the pre-set potentiometer in the coder for satisfactory operation. It will be found that a mark-space ratio of $1: 2$ is about right.

In order to simplify the electronic

Fig. 4. (a) Coder and (b) decoder waveforms.
design and improve reliability integrated circuits have been employed in both the coder and decoder. The coder uses three dual-in-line packages: a dual buffer (multivibrator) and two dual J-K flipflops (counter). The decoder also uses three dual-in-line packages: a quad two input gate and two dual J-K flip-flops (counter). The dual buffer (MC799P), quad two-input gate (MC724P) and dual

J-K flip-flops (MC790P) are all from the Motorola range of r.t.l. circuits.

The prototype uses printed circuit construction but it is suggested that the first attempt at construction be made by mounting the packages on unclad 0.1 -inch matrix Veroboard and interconnecting by direct wiring. Any mistakes are more easily rectified when the direct wiring technique is employed.

Transients

What happens to an LCR circuit when it's shocked

by Thomas Roddam

Two articles (W.W. February and March) have been devoted to considering the "natural" behaviour of simple circuits containing at most one inductance, one capacitance and one resistance. Even so, only one form of the $L C R$ circuit has been considered, the form in which the same current appears at the terminals of each element. The same kind of result will be obtained for the other form, in which the same voltage appears at the terminals of each element. I do not propose to prove this: the actual solution can be obtained in an easier way and there is a limit to the amount of detailed examination which the editor, the reader and the author will stand.

Natural behaviour is the term used for the current which flows in a circuit when, having managed to get some energy in one of the energy stores, either as current in an inductance or charge in a capacitance, or both, the circuit is left isolated while the energy is being dissipated in the resistance element. We have seen that, as a general conclusion, we obtain a characteristic time for each storage type element in the circuit. If we have an $L R$ or a $C R$ circuit we get the current following the simple decay function

$$
\exp (-t / \tau)
$$

in which $\tau=C R$ or L / R, which we call the time constant. For the $L C R$ circuit the general form depends on

$$
\exp (-t \cdot R / 2 L) \exp j t\left(\frac{1}{L C}-\left(\frac{R}{2 L}\right)^{2}\right)^{t}
$$

in which we must take both positive and negative signs for the square root term. The interesting case at the moment is when $L / C>R^{2} / 4$, which leads to the form

$$
\exp (-t R / 2 L) \cos (\omega t)
$$

It is usual to take, not $\tau=2 L / R$, but $\alpha=R / 2 L$, the damping constant. Then we have

$$
\exp (-\alpha t) \cos (\omega t)
$$

Fig. 1 shows the shape of this behaviour. As we increase R, keeping L and C constant, the decay envelope has a shorter time constant, a tighter time scale. In addition, ω, the square root term, becomes smaller, thus increasing the time scale of the oscillatory wave. If the decay envelope is falling faster than the oscillatory wave it will dominate the situation. This is rather dull, in waveform terms, and will not be discussed until
we get to the complex plane. I had, indeed, intended to devote this article to the idea of complex frequency, but when I came to sort out the basic facts I found that transients must come first.
. The great problem with the study of the transient behaviour of circuits is that it is complicated and tedious, rather than difficult. There are basically two kinds of transient behaviour. In one, the circuit is given an instantaneous shock, by closing a switch or some other equivalent means, but essentially just hit with a package of energy. We have already the sort of solution we shall expect, although whether it is to be $\cos \omega t$ or $\sin \omega t$ or $\cos (\omega t+\theta)$ depends on how the shock is delivered. The other kind of behaviour arises when we apply an energy source which can produce a continued action. The natural kind of source, which will go on indefinitely, is given by the function the circuit itself has defined, but with an infinite value for the decay time, $1 / \alpha$. This means simply the common cosine wave, $\cos \omega t$. We set up the circuit of Fig. 2. After a good few times, the time $1 / \alpha$ (for the $L C R$ circuit), any energy involved in the starting process will have been dissipated and the system will have settled to the steady state.

The voltage across the capacitor will be

Fig. 1. The shape of $\exp (-\alpha t) \cos (\omega t)$ enclosed in the decay curve exp $(-\alpha 1)$.

Fig. 2. The driven circuit.
given by the equation
$V_{C}=\frac{1}{C} \int I d t=V_{0} \exp (j \omega t)-L \frac{d I}{d t}-R I$
The point of writing $V_{0} \exp (j \omega t)$, with the implied operation of taking real parts later, is to make the mathematics have a simpler pattern. The equation is rearranged to the standard form

$$
L \frac{d I}{d t}+R I+\frac{1}{C} \int I d t=V_{0} \exp (j \omega t)
$$

We are going on for ever, so the current will have the same shape as the voltage, or so we guess.

$$
I=I_{0} \exp (j \omega t)
$$

If so:
$\left(j \omega L+R+\frac{1}{j \omega C}\right) I_{0} \exp (j \omega t)=V_{0} \exp (j \omega t)$
or $\quad I_{0}=V_{0}\left(R+j \omega L+\frac{1}{j \omega C}\right)$

$$
\frac{V_{0}}{I_{0}}=R+j\left(\omega L-\frac{1}{\omega C}\right)=R+j X
$$

This general form of Ohm's Law is one we use every day. X is the reactance and, if $\omega L>1 / \omega C, X$ is of an inductive kind: if $\omega L<1 / \omega C, X$ is of a capacitive kind.

Because $I=I_{0} \exp (j \omega t)$, we can write

$$
\begin{aligned}
& I=V_{0} \cdot\left(\frac{\cos \omega t+j \sin \omega t}{R+j X}\right) \\
&=\frac{V_{0}}{R^{2}+X^{2}} \cdot(R-j X)(\cos \omega t+j \sin \omega t) \\
&=\frac{V_{0}}{R^{2}+X^{2}} \cdot(R \cos \omega t+X \sin \omega t)+ \\
& \text { terms in } j
\end{aligned}
$$

We take the real part of this, giving

$$
I=\frac{V_{0}}{R^{2}+X^{2}}(R \cos \omega t+X \sin \omega t)
$$

If $X / R=\tan \theta$

$$
\begin{aligned}
& R /\left(R^{2}+X^{2}\right)^{\frac{1}{2}}=\cos \theta \\
& X /\left(R^{2}+X^{2}\right)^{ \pm}=\sin \theta
\end{aligned}
$$

and then $\quad I=\left|\frac{V_{0}}{Z}\right| \cos (\omega t-\theta)$
in which $Z^{2}=\left(R^{2}+X^{2}\right)$
The voltage on the capacitance, V_{c}, is
$V_{C}=\frac{1}{C} \int I d t=\left|\frac{V_{0}}{Z}\right| \cdot \frac{1}{\omega C} \cdot \sin (\omega t-\theta)$

The voltage across the inductance is

$$
V_{L}=L \frac{d I}{d t}=-\left|\frac{V_{0}}{Z}\right| \cdot \omega L \cdot \sin (\omega t-\theta)
$$

Notice how, if $\omega L=1 / \omega C, V_{c}+V_{L}$ becomes zero. In a study of transient conditions we shall see that I_{L} and V_{c} are the terms we want.
The usual method of studying what happens when the oscillator signal is switched on is a straightforward affair of formal mathematics, followed by the consideration of a number of particular cases. The variety arises from the fact that we have the natural frequency of the circuit itself, $\omega_{0}=1 /(L C)^{\ddagger}$ (leaving out the damping correction), the damping correction, the frequency of the supply. The drive may be at, $\omega=\omega_{0}$, near, or well above or below the natural frequency. The actual switching instant may be when the generator voltage is a maximum, or zero, or somewhere in between. There may even be some current flowing in the inductor, some charge in the capacitor. So, find the general solution and put in the boundary conditions.
When I came to do this I found it was totally incomprehensible. At the end of the process one emerges with an answer, for the specific conditions, but on the way one had no contact with any sort of physical reality. In more advanced circuit work this is normal, and the more advanced the theory the more likely you are to have a large amount of "reality" wrapped up in a single symbol. With tears pouring down my cheeks I scrapped the elegant analysis and began to look for a more direct way of determining the transient behaviour of the circuit. The approach I chose is not in any of the books I looked at, although that is probably my bad luck.
The key to all transient behaviour is the way the free circuit settles down to the rest stage. When we looked at its behaviour before we found that the current was of the form

$$
I=\exp (-\alpha t) \cos (\omega t)
$$

This form does not contain any constants of integration. The voltage on the capacitance is best worked out from scratch. If we start with the capacitor charged, to correspond with the way we started with current flowing in the inductor, we get again

$$
V=\exp (-\alpha t) \cos \omega t
$$

By working through the analysis for the two cases in which we consider either fixed current starting and capacitor voltage or fixed voltage starting and inductor current we get expressions of the form

$$
\exp (-\alpha t) \sin \omega t
$$

Fig. 3. The shape of $\exp (-\alpha t) \sin \omega t$.

In general, whatever the starting condition may be, we would expect the function to be of the form
$A \exp (-\alpha t) \cos (\omega t+\theta)[$ or $\sin (\omega t+\theta)$, whichever we choose, provided we adjust θ]. We have two constants of integration, which can be chosen to fit the initial current and voltage. Apart from the actual size of these functions, we can always write $\cos (\omega t+\theta)=\cos \omega t \cdot \cos \theta-\sin \omega t \sin \theta$,
So that any value of θ can be realized if we take the right mix of the two curves, Fig. I and Fig. 3.
Let us adopt some low trickery. We set our circuit off with a current I_{1} and a voltage $V_{1} . I_{1}$ is flowing into the capacitor, so that it will tend to increase V_{1}. Obviously V_{1} is opposing the flow of I_{1} and will tend to reduce it. We assume, since this is a fairly normal assumption among the more theoretical treatments, that α is small compared with ω. There is not much difference between successive cycles.
We began with a total energy of

$$
\frac{1}{2} L I_{1}^{2}+\frac{1}{2} C V_{1}^{2}
$$

After a short time, all the energy will be in the capacitance and the current will have fallen to zero. The capacitance voltage will then be $V_{\text {max }}$, given by

$$
\frac{1}{2} C V_{\text {max }}^{2}=\frac{1}{2} C V_{1}^{2}+\frac{1}{2} L I_{1}^{2}
$$

Thus we can find $V_{\text {max }}$.
All this is on paper, so negative time is quite an acceptable thing. At a small value of t, with t negative, the curves show all the energy in the inductance, and $V=0$. At this time

$$
\frac{1}{2} L I_{\text {max }}^{2}=\frac{1}{2} C V_{1}^{2}+\frac{1}{2} L I_{1}^{2}
$$

As we have decided that we will take the case of $\alpha<\omega \omega$, then two quantities, $V_{\text {max }}$ and $I_{\text {max }}$, are very close to the correct values for the envelopes $(V, I)_{\text {max }} \exp (-\alpha$,$) .$

At this point 1 begin drawing Fig. 4. I mark in $V_{\max }$ and $-V_{\max }, I_{\text {max }}$ and $-I_{\text {max }}$, and then V_{1} and I_{1}. I also draw the exponential envelopes.

Now if $V_{1} / V_{\max }=\sin \omega t_{0}$, the voltage wave must have crossed the zero axis at $-t_{0}$. We can measure along from here in angle units of $\pi / 2$, or time units of $\pi / 2 \omega(=1 / 4)$. Now we sketch in the waveform. The error in this is always less than

$$
\exp (-\alpha \pi / 2 \omega)
$$

Because α is small compared with ω it is tempting to take $\omega=\omega_{0}$, that is to use the frequency fixed by $L C$. Guillemin seems to do this, but it would appear to me that it leaves a nasty ambiguity in one of the cases we are now going to study.

The really tricky problem is that of switching on a sine-wave generator in the circuit. We are allowed to simplify it by assuming that the circuit had not recently been disturbed, so that it contains no stored energy. As it happens, the method we are now going to use makes it relatively easy to take account of any stored energy. The applied waveform is shown in Fig. 5, where the switch has been closed at a quite arbitrary point in the cycle. "Typical cases" in the textbooks usually amount to the choice of either switching at cross-over or switching

Fig. 4.

Fig. 5. Harmonic excitation applied at arbitrary phase.
at the peak. A typical case means one which is fairly easy to calculate, and I am not sure if these are, in fact, the easiest. Wait and see.

1 am determined to do no more thinking than I need. I know that if I look for the steady state, the current in an $R L C$ circuit from a voltage $V_{0} \sin \omega t$ will be given by

$$
V_{0} \sin \omega t=I(R+j \omega L+\mathrm{I} / j \omega C)
$$

To make the expressions look simpler we write
$R+j \omega L+1 / j \omega C=R+j(\omega L-1 / \omega C)$

$$
=R+j \omega_{0} L\left(\frac{\omega}{\omega_{0}}-\frac{1}{\omega \omega_{0} L \boldsymbol{C}}\right)
$$

Now choose $\omega_{0}^{2}=1 / L C$, giving

$$
R+j \omega_{0} L\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)
$$

If we now write $\omega_{0}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)=\Omega$, we have

$$
I=V_{0} \sin \omega t /(R+j \Omega L)
$$

or $\quad I=\frac{V_{0}}{\left(R^{2}+\Omega^{2} L^{2}\right)^{t}} \cdot \sin (\omega t-\theta)$
where $\tan \theta=\Omega L / R$. Although this looks like an $L R$ circuit only, we can now have Ω negative for positive values of ω, whenever $\omega<\omega_{0}$ in fact. So that this way of writing the result involves a range

$$
\begin{array}{rl|c|c|l|l|l|}
\text { for } \omega & = & 0 & & \omega_{0} & & \infty \\
\Omega & =-\infty & -\mathbf{v e} & 0 & +\mathrm{ve} & \infty
\end{array}
$$

The voltage across the capacitor is given by

$$
\begin{aligned}
V_{C} & =\frac{1}{C} \int I d t \\
& =\frac{V_{0}}{\left(R^{2}+\Omega^{2} L^{2}\right)^{\frac{1}{2}}} \cdot \frac{1}{C} \int \sin (\omega t-\theta) d t \\
& =-\frac{V_{0}}{\left(R^{2}+\Omega^{2} L^{2}\right)^{\frac{1}{2}}} \cdot \frac{1}{\omega C} \cos (\omega t-\theta)
\end{aligned}
$$

Now we know the two important terms in the steady state solution. Let us adopt a
simple trick. We use two voltage generators,

$$
\begin{aligned}
& V_{0} \sin \omega t \quad \text { and } \\
& V_{0} \sin (\omega t+\pi)
\end{aligned}
$$

For one we get some current I_{1}, given by the equation above, and a capacitor voltage of $V_{C 1}$. The other produces a current $I_{2}=-I_{1}$, and a voltage $V_{C 2}=-V_{C 1}$. They might just as well not be there. Let us now, however, switch off the second generator. This is indicated in Fig. 6. The current produced by

Fig. 6. Instead of switching on, as shown in Fig. 5, one signal is switched off.
the first generator continues to flow quite unperturbed. The stored energy associated with the second generator is the transient energy, and this sets up the decaying oscillation which we discussed earlier in the article. The formal justification for this method is that the equations are all linear.

If I were writing a rather grand textbook I should at this point begin to calculate a vast variety of examples. One simple way of doing this used to be to invite a selected group of students to lunch, flatter them by asking for unspecified help and then dole out the drudgery. Advances in modern technology make it possible to get one student to do it all on the department computer, and buy his own lunch into the bargain. But let us be realistic. In transient problems with a switched sine wave we normally have one of two situations. Either we don't know the switching phase, as in the ordinary switchon situation, or the phase may vary systematically over a wide range, as in a phasecontrolled rectifier circuit. We need a picture of the kind of behaviour we can expect. I am well aware that there are occasions when a detailed study of a special situation is required. Such problems can be solved by working out I_{1} and $V_{C 1}$, using the equations just given, and then using these in determining the ring shown in Fig. 4. This is just added to the steady state solution. What sort of an answer do we expect.

First of all, notice that we are concerned with two frequencies, for which I shall use the letter f. We have the generator frequency, f_{g}, and the frequency of the transient ring, f_{r}. With f_{r} goes the damping coefficient, which is $\alpha=R / 2 L$ and which modifies the undamped frequency slightly. For a lightly damped circuit we want $\alpha \ll 2 \pi f_{r}$. This does not necessarily mean that $\alpha \ll 2 \pi f_{0}$. A circuit with a very low Q, or very high damping, at the working frequency may ring vigorously at its natural frequency. Notice that this is likely when $f_{r} \geqslant f_{s}$.

Now we may proceed to pick out a few
special situations. Suppose that f_{r} is very much less than f_{g}. When the circuit is being driven by the two opposing generators, the quantity Ω will be

$$
2 \pi f_{r}\left(\frac{f_{g}}{f_{r}}-\frac{f_{r}}{f_{g}}\right)=2 \pi\left(f_{g}-\frac{f_{r}^{2}}{f_{g}}\right)
$$

This is very close to $2 \pi f_{0}$, the value we should get if we made $f_{r}=0$. The current is virtually that we should get in an $R L$ circuit. It is quite easy to sketch out Fig. 7, which shows the current in the circuit. The switched-off generator leaves current flowing, and this decays exponentially. If we have a low value of α, i.e. $\alpha \ll 2 \pi f_{r}$, this exponential would be replaced by a long, slow, oscillation. The two generator sine waves shown represent the currents, not the voltages: we can job back to the voltage from the $\tan \theta=\omega L / R$ equation. Obviously the most important case is when the current is a maximum. It should be noted that one very important feature of this circuit is that the current must follow a continuous curve. The inductance will always prevent a sharp step in current. Similarly the capacitance will always prevent a sharp step in voltage.

The second example is for the case when f_{r} and f_{q} are fairly close together. This is a rather tedious one to draw, because a good drawing needs about $5 f_{r} /\left(f_{g}-f_{r}\right)$ cycles to show the pattern. We set about it as before, though now for $t>0$ we have an exponentially decaying sine wave which does not necessarily have its peak at $t=0$. To draw it properly we must work out the peak from the total stored energy equation and for this we need to draw the capacitance voltage curve too. Physically what happens is this. When the transient situation occurs, the stored energy appears as a damped sine wave of frequency f_{r}. The generator produces an undamped sine wave of frequency f_{0}. The two current waves beat together at $\left|f_{g}-f_{r}\right|$ to produce the modulation effect shown more clearly in the sketch of Fig. 8(b). As the ring dies away the current settles to the steady state value. The detail at the beginning depends on the phase of the switch operation. It makes little difference to the kind of response whether $f_{g}>f_{r}$ or $f_{g}<f_{r}$. What is important is that the current may reach double its normal peak value. It is logical to guess that it is also possible for the capacitor voltage to reach double its normal peak value. Practical circuits in which this kind of transient condition can arise need tougher components than you thought.

At the desk one considers $f_{r}=f_{g}$. The analysis then finds that there are some small terms to throw away, and in the whole pro-

Fig. 7. Response of $f_{r}<f_{s}$. The decay curve at $t>0$ is the transient component, to which the steady state solution is added to give the overall behaviour.

(a)

(b)

Fig. 8. Situation for $f_{r}<f_{s}$ but $f_{s}-f_{r}$ small.
cess I rather lose track of whether f_{s} is the damped or undamped frequency. Anyway, I do not believe in this sort of equality. If we go back to the nearly equal frequency problem, and then say that the beats are so slow that they have died away before the first maximum is reached, we get a normal "softkeying" growth in a straightforward sine wave. Rather roughly, this means that we consider the case where

$$
\begin{aligned}
& \alpha>\left(f_{g}-f_{r}\right), \text { even though } \\
& \alpha<f_{g}
\end{aligned}
$$

Since α will always exist, we never need to consider $f_{\theta}=f_{r}$: we just take them near enough together. In this way we avoid any awkward questions about roots of an equation coinciding.

Finally we come to the very interesting case when $f_{g}<f_{r}$: the ring frequency is high compared with the frequency of the drive. This is the kind of situation which is encountered when a mains transformer is switched on or off and the leakage inductance and stray capacitance form the ringing circuit. A feature of this situation is that if it is treated by purely analytical methods the result which emerges is totally unexpected in form. The conscientious student goes back over the analysis to find out just what went wrong. The method we adopt here gives us a direct feeling of the nature of the solution, with no surprises, or perhaps more appropriately, no unexpected shocks.

At the low drive frequency we can more or less ignore the circuit inductance. If the damping coefficient is low enough, we can even ignore the resistance. For this extreme case, the full generator voltage appears across the capacitance. If the resistance is not as low as all that, the voltage is split between capacitance and resistance and it is very easy to calculate the peak value of capacitance voltage. It is

$$
V_{C}=V_{0} /\left[1+(\omega C R)^{2}\right]^{\frac{1}{2}}
$$

Let us consider the extreme case. Let us also assume that the switching instant is when V_{C} is a maximum. The energy stored in the capacitance is $\frac{1}{2}\left(C V_{C}^{2}\right)$. For the transient waveform we have an exchange of energy between capacitance and inductance, and, as we have assumed that α is very small, the
first current maximum, I_{L}, must satisfy the equation:

$$
\frac{1}{2} I_{L}^{2} L=\frac{1}{2} C V_{C}^{2}
$$

Thus $\quad I_{L}=V_{C}(C / L)^{\frac{1}{2}}$
But if $\omega_{r}=2 \pi f_{r}$, we know that $\omega_{r}^{2} L C=1$
Then $\quad C / L=\omega_{r}^{2} C^{2} \quad$ and so

$$
I_{L}=V_{\boldsymbol{C}} \cdot \omega_{r} C
$$

The steady state current through the inductance is limited by the capacitance, and is $I_{L, s}=V_{0} \cdot \omega_{g} C$. Taking $V_{c}=V_{0}$

$$
I_{L, t}=\frac{f_{p}}{f_{g}} \cdot I_{L, s}
$$

It will be seen that the transient current is very large indeed compared with the normal current (Fig. 9). We could have chosen a dif-

Fig. 9. For $f_{r}>f_{g}$ the current ring is very much larger than the steady state current.
ferent switching phase. Had we done so we should have found a smaller value of transient current, which we can work out for any phase by the energy equations. Worst case solutions are, however, the ones which normally interest us.

Very much the same pattern of results is obtained when we study the way a parallel tuned circuit behaves with the switching of a current source. The commonest form here, numerically, is the line transformer of a television set. Here, as indeed in all the variations, we would study the voltage across the capacitance and we know, in the similar but more general form of a transistor with an inductive load, it is energy associated with volts which we must watch. Energy associated with volts, because second breakdown is not a linear phenomenon.

More complex circuits can be handled on a piece by piece basis, but the labour involved is often prohibitive. Transients are not normally central to the main problem, and the main problem takes most of our effort. A knowledge of the sort of transient behaviour to expect, together with a quick calculation of the stored energy which has easy access to the danger points, will normally be sufficient. Then, if the situation is potentially dangerous, wheel out the oscilloscope.

Nowhere in this article is there any mention of musical transients in amplifiers. This is, of course, a topic of great importance. There are two aspects which make it unsuitable for treatment here and now. Musical transients are not produced by a click-on mechanism, but have finite rise and fall times; they pass through circuits, feedback amplifiers, with a much sharper phase shift characteristic than our single tuned circuit. Anyway, this article is quite long enough.

Conferences and Exhibitions

Further details are obtainable from the addresses in parentheses

LONDON

Apr. 8-15
Earls Court
Electrex'70
(Electrical Engineers A.S.E.E. Exhibition, Museum St., London W.C.I)

Apr. 13-16 University College
Atomic and Molecular Physics
(I.P.P.S., 47 Beigrave Sq., London S.W.I)

Apr. 23-26
Skyway Hotel
Sonex '70 HiFi Exhibition
(Federation of British Audio, 49 Russell
Sq., London W.C.1)
Apr. 28 \& $29 \quad$ Royal Garden Hotel
Microelectronics Conference
(Business Conferences \& Exhibitions,
Mercury House, Waterloo Rd., London
S.E.1)

BIRMINGHAM

Apr. 14-17
The University
Automatic Test Systems
(I.E.R.E., 8-9 Bedford Sq., London W.C.I)

HARWELL

Apr. 2-3
A.E.R.E.

High Voltage Electron Microscopy
(I.P.P.S., 47 Belgrave Sq., London
S.W.1)

OXFORD

Apr. 6-11 The University
Biological Engineering Conference
(J. Gasking, Dept. of Pharmacology,

St. Bartholomew's Hospital Medical
School, Charterhouse Sq., London
E.C.1.)

READING

Apr. 6-8
The University
Thin Films Conference
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

Apr. 15-17 The University
Defects in Semiconductors
(1.P.P.S., 47 Belgrave Sq., London
S.W.1)

UXBRIDGE

Apr. 14-16 Brunel University
Computer Graphics International
Symposium
(R. Elliat Green, Brunel University, Uxbridge, Middx.)

OVERSEAS

Mar. 31-Apr. 2
New York
Submillimetre Waves
(Polytechnic Inst. of Brooklyn, 333
Jay St., Brooklyn, New York 11201)

Mar. 31-Apr. $3 \quad$ Paris
Electrical-Electronic Engineering Seminar (E.E.E. Seminar, 80 rue Jouffroy 75-Paris 17e)
Apr. 3-8
Paris
Electronic Components Show
(Fed. Nat. des Ind. Electroniques,
16 rue de Presles, Paris $15 e$
Apr. 5-9 Berlin
Cybernetics Congress
(Deutsche Gesellschaft für Kybernetik,
21 Stresemann Allee, 6 Frankfurt/Main 70)
Apr. 6-10 Paris
Advanced Microelectronics Conference
(Fed. Nat. des Ind. Electroniques,
16 rue de Presles, Paris 15e)
Apr. 7-9
Las Vegas
Reliability Physics Symposium
(K. H. Zaininger, RCA Labs, Princeton, N.J. 08540)

Apr. 10-20
Tokyo
Japan Electronics Show
(Japan Elec. Show Assoc., Tokyo
Chamber of Commerce Bldg., 2-2
Marunouchi 3-chome, Chiyoda-ku,
Tokyo)
Apr. 14-17
W ashington
Geoscience Elect ronics Symposium
(I.E.E.E., 345 East 47th St., New York,
N.Y. 10017)

Apr. 14-19 Frankfurt
Hi-Fi Show
(U.S. Trade Centre, Frankfurt/Main)

Apr. 21-24 Washington
Imernational Magnetics Conference (INTERMAG)
(D. S. Shull, Bell Telephone Labs, 3300 Lexington Ave, Winston-Salem, N.C. 27102)

Apr. 21-24
Budapest
Microwave Communication Colloquium
(Microcoll-Technica Háza Budapest,
V. Szabadsag tér 17, Hungary)

Apr. 22-24 Dallas
Southwestern I.E.E.E. Conference
(A. P. Sage, Inst. of Tech., S.M.U.,

Dallas, Texas 75222)
Apr. 27-29 Atlantic City
Frequency Control Symposium
(Electronic Components Lab., U.S. Army
Electronics Command, Fort Monmouth, New Jersey 07703)
Apr. 27-30
Los Angeles
National Telemetering Conference
(A. V. Balakrishnan, UCLA, Rm. 3531, 405 Hilgard Ave, Los Angeles, Calif. 90024)

Circuit Ideas

H. F. Predictions-April

High-gain f.e.t. tuned amplifier

The reverse transfer capacitance of a fieldeffect transistor can be employed as a very stable Q multiplier with inherent automatic bandwidth control. Essentials are (Fig. 1) resistive drain and source loads and selection of C, which is smaller in value than a bypass capacitor. C determines the no-signal Q : decreasing the value moves the stage towards oscillation; increasing it has the reverse effect. This circuit, with no additional components, will replace two double-tuned $470-\mathrm{kHz}$ i.f. stages. With a constant current supply it is reproduceable using wide-tolerance f.e.ts. The response of Fig. 2, after optimum adjustment of C, is a shallow curve, peaking reasonably close to oscillation over the middle third of each

Fig. 1. F.E.T. as Q multiplier.
band. The detector stage assists in bandwidth control (varying the impedance of D_{1}), and even on weak signals accurate tuning is indicated by wideband quality. For operation at frequencies higher than 2 MHz the drain load must be progressively reduced.
K. W.MAWSON,

Bradford,
Yorks.

Logic circuit gates astable multibrator

When Tr_{4}-the output transistor of a d.t.l. logic stage-is switched off, the current in R_{1} is very slight and Tr_{3} is effectively off: R_{2} is chosen so that when Tr_{4} saturates, Tr_{3} saturates thus permitting the multi to function. D_{1} and D_{2} are included to prevent base-emitter breadkown in Tr_{1} and Tr_{2} for a large voltage at the collector of $\operatorname{Tr}_{3} . C_{1}$ is a small capacitor (100 pF) included to make the collector circuits of $T r_{1}$ and Tr_{2} dissimilar: this ensures that the multi will not block. Conventional design theory governs the choice of $C R_{L}, R_{B^{*}}$ The circuit functions just as well if R_{2} is omitted and the base of Tr_{3} is driven from a high impedance source, e.g. the collector of a current-mode switch. For a 5 V rail suitable values of R_{1} and R_{2} are $R_{1}=1 \mathrm{k} \Omega$ and $R_{2}=2.2 \mathrm{k} \Omega$, for current in R_{L} up to 16 mA . Typical low-cost devices which are

Fig. 2. M.W./L.W. tuner employing Q multiplier.

suitable are: diode IN4148 (G.E.) ; transistors (Ferranti plastic 'E' line) ZTX 500. B. L. Hart,

West Ham College of Technology,
London E. 15.

F.E.T. push-pull oscillator

Wide frequency range $L C$ oscillators are usually Colpitts or Hartley configurations. Higher output can be obtained using a pushpull arrangement. Many thermionic valve circuits have been evolved and n-channel field-effect devices can be substituted without significant modifications. The use of p-channel enhancement devices can however simplify the bias arrangement using no

Fig. 1. Oscillator operating up to 300 MHz .

Fig. 2. Arrangement for operation between 50 kHz and 350 MHz .
components other than the active devices and the tuning components is shown in Fig. 1. The tap on the coil can be omitted if a pair of chokes or resistors are used to feed f.e.t. drain connections.

The unusual re-arrangement shown in Fig. 2 allows the tuning components to be at ground potential. The circuit is no longer balanced and a resistor $\left(R_{1}\right)$ or choke is required.
J. A. Roberts,

University College of Swansea.

Active Filters

9. Synthesis by factors

by F. E. J. Girling* and E. F. Good*

It is shown how a filter may be synthesized as a product of factors, and a number of numerical examples are given.

So far in this series we have dealt mainly with principles. In this article, although some important methods of realization still remain to be described, it is shown how some of the circuits already described can be put to use. The method is that of synthesizing the complete filter as a cascade of 1 st- and 2nd-order sections, each with output impedance low enough for its response to be unaffected by the connection to it of the following section. Thus the response of the whole filter is the product of the responses of the individual sections. It is a practical method of design for specifications of moderate stringency, and also throws light on the nature of filters of higher order and their transfer functions.
It is not possible in this series to say very much about the design of filters as such, but an attempt is made in this Part to help the non-specialist reader-partly by calculation, and partly by the use of reference works - to make a start on the design of filters to a variety of specifications.

5th-order low-pass filter with
 Darlington response

In a conventional wave filter the important characteristic is the steady-state amplitude (or gain-versus-frequency) response. This can be specified, Fig. 1, by three parameters: A_{p} the maximum deviation from level response in the pass band; A_{s} the minimum attenuation in the stop band; ($\Omega_{\mathrm{s}}-1$) the relative width of the transition band, Ω_{s} being the start of the stop band in the normalized characteristic ($\omega_{p}=1$). And if any two are specified, the work of Darlington shows how to proportion the elements of a given structure to give the best value of the third. The nature of the relationship between the three is that, if for constant A_{s} a smaller value of Ω_{s} is required, then either a greater ripple in the pass band $\left(A_{p}\right)$ must be accepted or a structure of greater complexity must be adopted. The steady-state amplitude response of a filter of Darlington design (sometimes called an elliptic-function filter) is of equal-ripple type in pass band and stop band, as indicated in Fig. 1.

[^3]Thus we may quote from Reference 1 as a representative optimum set of values for the structure shown in Fig. 2: $A_{p}=0.1 \mathrm{~dB}$, $A_{\mathrm{s}}=40 \mathrm{~dB}, \Omega_{s}=1 \cdot 44$; and the "ladder coefficients", i.e. the element values for the normalized filter, are given in Table $1, \omega_{p}$ being used as the reference frequency, not ω_{B} as in the paper referred to

TABLE 1
Normalized component values for 5th-order Darlington filter. Fig. 2.

$\begin{gathered} A_{0}=0.1 \mathrm{~dB}, A_{b}=40 \mathrm{~dB}, \Omega_{6}=1.44 \\ \omega_{0}=1 \mathrm{radian} / \text { second, } R_{s}=R_{t}=1 \mathrm{ohm} \end{gathered}$			
c_{1}	1.016	C_{2}	0.175
L_{2}	1.197	C_{4}	0.521
C_{3}	1.596	r_{2}	0.4576
L_{4}	0.882	r_{4}	0.6780
C_{5}	0.773		

Although of symmetrical topology the filter is not symmetrical, since $C_{1} \neq C_{5}$, $L_{2} \neq L_{4}$, etc. This is always the case in an efficient filter of order higher than three; one reason is that the rejector circuits ($L_{2} C_{2}$ and $L_{4} C_{4}$) are tuned to different frequencies.

The five elements in the left-hand column of the table, by themselves, form a 5 th-order simple ladder filter and give the transfer function a 5 th-order denominator. The addition of the capacitances C_{2} and C_{4} does

Normalized irequency \longrightarrow
Fig. 1. Diagrammatic representation of 5th-order Darlington response.

Fig. 2. Standard passive realization of 5th-order Darlington low-pass filter.
not change this order (although it does change the coefficients of the terms), but the numerator becomes 4 th-order. Because R_{L} $=R_{s}$ and the reactances are assumed to be without loss, the voltage ratio at zero frequency is one half. Consequently the transfer function may be written

$$
\begin{gather*}
G(p)=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{2} \cdot \frac{N(p)}{D(p)} \\
=\frac{1+a p+b p^{2}+c p^{3}+d p^{4}}{2\left(1+A p+B p^{2}+C p^{3}+D p^{4}+E p^{5}\right)} \tag{1}
\end{gather*}
$$

The industrious may find the coefficients by analyzing the network:

$$
\begin{aligned}
& I_{0}=V_{\text {out }} / R_{L} \\
& I_{1}=V_{\text {out }} p C_{1} \\
& I_{2}=I_{0}+I_{1} \\
& V_{2}=I_{2} Z_{2}=\frac{\left(I_{0}+I_{1}\right) p L_{2}}{1+p^{2} L_{2} C_{2}} \\
& V_{3}=V_{2}+V_{0} \\
& I_{3}=V_{3} p C_{3}
\end{aligned}
$$

and so on. It is only fair to give warning, however, that over forty products have to be formed in working out the denominator. The numerator, however, is easily obtained. It is

$$
1+p^{2}\left(L_{2} C_{2}+L_{4} C_{4}\right)+p^{4} L_{2} C_{2} L_{4} C_{4}
$$

and so depends only on the components of the two infinite-rejection circuits. For the chosen example the numerical values of the denominator coefficients are: $A=2.73$, $B=4 \cdot 19, C=4.68, D=2.85, E=1.38$.

For our present purpose the transfer function is required factorised. This may be regarded as the mathematical excercise of finding the roots of the equations $N(p)=0$ and $D(p)=0$. These roots are the z_{1}, z_{2}, etc., and p_{1}, p_{2}, etc. of the identities

$$
\begin{align*}
N(p) \equiv & d\left(p-z_{1}\right)\left(p-z_{2}\right)\left(p-z_{3}\right) \tag{2}\\
& \left(p-z_{4}\right) \\
D(p) \equiv & E\left(p-p_{1}\right)\left(p-p_{2}\right)\left(p-p_{3}\right) \tag{3}\\
& \left(p-p_{4}\right)\left(p-p_{5}\right)
\end{align*}
$$

and are referred to as the zeroes and poles of $G(p)$, since if $p=$ any of z_{1}, etc. $G(p)=0$, while if $p=$ any of p_{1}, etc. $G(p)=\infty$. The numerator of the chosen example can be treated generally as it factorizes into

$$
\begin{equation*}
N(p)=\left(1+p^{2} L_{2} C_{2}\right)\left(1+p^{2} L_{4} C_{4}\right) \tag{4}
\end{equation*}
$$

but p_{1}, p_{2}, etc. can be expressed only as particular numerical values:

$$
\begin{aligned}
p_{1}, p_{2} & =-0.1080 \pm j 1.065 \\
p_{3}, p_{4} & =-0.413 \pm j 0.784 \\
p_{5} & =-0.667 .
\end{aligned}
$$

By multiplying together the denominator factors containing the complex conjugates p_{1} and p_{2} a 2 nd-order factor with real coefficients is formed,

$$
\left(p^{2}+\alpha_{1} \omega_{1} p+\omega_{1}^{2}\right)
$$

and by writing $p_{1}, p_{2}=-a \pm j b$, it is seen that

$$
\begin{align*}
\omega_{1}^{2} & =a^{2}+b^{2}, \tag{5}\\
\alpha_{1} \omega_{1} & =2 a \tag{6}\\
\alpha_{1} & =2 a /\left(a^{2}+b^{2}\right)^{4} \tag{7}
\end{align*}
$$

i.e.

If the factor is now divided by ω_{1}^{2}, which gives

$$
\frac{p^{2}}{\omega_{1}^{2}}+\frac{\alpha_{1} p}{\omega_{1}}+1
$$

it is easily compared with the preferred form

$$
\begin{align*}
& 1+p T / q+p^{2} T^{2}, \\
& \text { whence } T=1 / \omega_{1}=\left(a^{2}+b^{2}\right)^{-t} \tag{8}\\
& \text { and } \quad q=1 / \alpha_{1}=\left(a^{2}+b^{2}\right)^{\frac{1}{2}} / 2 a \\
& =\left(1+\frac{b^{2}}{a^{2}}\right)^{\frac{1}{2}} / 2 \tag{9}
\end{align*}
$$

Or, by reference to Fig. 3,

$$
\begin{equation*}
T=\frac{1}{O P}, \quad q=\frac{O P}{2 O A} \tag{10}
\end{equation*}
$$

For the example then

$$
\begin{array}{ll}
T_{1}=0.9357, & q_{1}=4.94 \\
T_{3}=1.129, & q_{3}=1.073
\end{array}
$$

and for the real 1 st-order factor

$$
T_{5}=-1 / p_{5}=1.499
$$

Thus the transfer function has been obtained in the form $N(p) / D(p)$

$$
\begin{align*}
& =\frac{\left(1+p^{2} T_{2}^{2}\right)}{\left(1+p T_{1} / q_{1}+p^{2} T_{1}^{2}\right)} \times \\
& \quad \frac{\left(1+p^{2} T_{4}^{2}\right)}{\left(1+p T_{3} / q_{3}+p^{2} T_{3}^{2}\right)\left(1+p T_{5}\right)} \tag{12}
\end{align*}
$$

with parameters as given above, and T_{2} $=\sqrt{L_{2} C_{2}}=0.4576, T_{4}=\sqrt{L_{4} C_{4}}=0.6780$.
The 2 nd-order numerator and denominator factors may now be paired arbitrarily to give sections with unsymmetrical notch response, Part 2, Fig. 19. As the highest Q factor is not very high, both sections may conveniently be realized by the Sallen-andKey type of circuit with added parallel path, Part 6, Fig. 11 (b).

Consider the transfer function

$$
\begin{equation*}
G(p)=\frac{1+p^{2} T_{4}^{2}}{1+(1 / q) p T_{1}+p^{2} T_{1}^{2}} \tag{13}
\end{equation*}
$$

and let it be identically equal to the standard form

$$
\begin{equation*}
\frac{1+a p^{2} T_{1}^{2}}{1+(1 / q) p T_{1}+p^{2} T_{1}^{2}} \tag{14}
\end{equation*}
$$

Then $a_{1}=T_{4}^{2} / T_{1}^{2}=0.523$. Similarly for the other 2nd-order section, $a_{3}=T_{2}^{2} / T_{3}^{2}$ $=0.164$. Hence the schematic for the whole filter may be as in Fig. 4. This gives the relative component values for the case of ideal amplifiers, $K=1, A=\infty$.

Equation (8) of Part 6, which becomes when $b=\frac{1}{2}$

$$
\begin{equation*}
\frac{1}{q}=\frac{1}{q_{i}}+\frac{2 q_{i}}{A+1} \tag{15}
\end{equation*}
$$

shows that for $q_{i}=5$ and $A=1000$ the

Fig. 3. P is the position of a pole, $p=-a+j b$.

Fig. 4. Schematic for realization by factors of jth-order Durlington response with 0.1 dB ripple in the pass band, 40 dB minimum attenuation in the stop band, and cut off at 1 radian/second.
ideal component values would give an actual q approximately 5% low, and that if compensation is made by increasing the ratio C_{x} / C_{y}, the appropriate value of q_{i} is $5 \cdot 28$. If this method is used it should be remembered that for a good zero the equality

$$
\begin{equation*}
C_{6} R_{6}=C_{x} R_{1} / 4 \tag{16}
\end{equation*}
$$

must be maintained. Hence C_{6} may have to be changed. A more convenient method of compensation would perhaps be to increase K slightly by using less than 100% feedback as shown in Fig. 5 of Part 6. The calculation really shows, however, that for accurate de$\operatorname{sign} A$ should be high, say 10,000 minimum, for q of this value. Alternatively a twointegrator loop may be used (Part 7), or a parallel-T system (to be described in a following Part). For the other 2nd-order section, $q=1.073$, a moderate value of A is sufficient, although for practical convenience the same type of amplifier is likely to be used.

Moving the cut-off frequency to the required value is a simple matter of scaling. So, to set the -3 dB frequency at 1000 radians/second ($=159 \mathrm{~Hz}$) ω_{p} must be 923 radians/second and all time constants of the normalized filter must be divided by this figure. This gives (including small adjustments based on an accurate computation of the overall response) the values shown in Table 2 below.

TABLE 2
Component values for 5 th-order Darlington filter, Fig. 4. scaled for -3 dB at 159 Hz .

Stage 1	Stage 2	Stage 3
$T_{\text {s }}=1.823 \mathrm{~ms}$	$q_{3}=1.073$	$a_{1}=5$
$R_{\text {g }}=16.2 \mathrm{k} \Omega$	$r_{3}=1.222 \mathrm{~ms}$	$T_{1}=1.018 \mathrm{~ms}$
$C_{\text {s }}=0.1 \mu \mathrm{~F}$	$T_{7}=1.313 \mathrm{~ms}$	$T_{\text {e }}=5.09 \mathrm{~ms}$
	$R_{3} / 2=26.3 \mathrm{k} \Omega$	$R_{1} / 2=20.4 \mathrm{k} \Omega$
	$4 G_{3} C_{3}=0.1 \mu \mathrm{~F}$	$4 a_{1} C_{1}=0.5 \mu \mathrm{~F}$
	$C_{3} / Q_{3}=21,700 \mathrm{pF}$	$C_{1} / q_{1}=5000 \mathrm{pF}$
	$C_{7}=0.01 \mathrm{pF}$	$C_{8}=0.05 \mu \mathrm{~F}$
	$\left(\mathrm{s}_{3}-1\right) R_{7}=110 \mathrm{k} \Omega$	$\left(a_{1}-1\right) R_{8}=48 \cdot 6 \mathrm{k} \Omega$
	$8_{3} R_{7}=21.5 \mathrm{k} \Omega$	$s_{1} R_{0}=53.3 \mathrm{k} \Omega$

TABLE 3
Parameters for 5 th-order Darlington response, normalized to cut-off frequency $\omega_{o}=1 \mathrm{rad} / \mathrm{s}$
$G(p)=\frac{\left(1+p^{2} T_{2}\right)\left(1+p^{2} T_{4}\right)}{\left(1+p T_{1} / q_{1}+p^{2} T_{1}\right)\left(1+p T_{3} / q_{3}+p^{2} T_{3}^{2}\right)\left(1+p T_{8}\right)}$

A. (dB)	1/Rs	A_{p} (dB)	Q_{1}	T_{1}	q_{3}	T_{3}	T_{8}	T_{2}	r_{4}
20	0.9	0.077	9.73	0.955	1.469	0.975	1.029	0.662	0.881
	0.95	0.38	17.38	0.988	2.017	1.065	1.380	0.746	0.937
30	0.7	0.009	4.262	0.850	0.962	0.871	0.900	0.456	0.676
	0.75	0.025	4.96	0.895	1.042	0.951	1.044	0.499	0.726
	0.8	0.071	5.724	0.935	1.167	1.033	1.238	0.546	0.776
	0.85	0.21	8.071	0.969	1.387	1.115	1.522	0.598	0.828
	0.9	0.72	12.60	0.994	1:857	1.187	2.02	0.663	0.881
	0.95	2.8							
40	0.6	0.012	3.554	0.842	0.885	0.927	1.043	0.378	0.526
	0.65	0.033	4.096	0.889	0.959	1.018	1.225	0.416	0.625
	0.70	0.09	4.902	0.932	1.070	1.108	1.460	0.456	0.675
	0.75	0.24	6.19	0.966	1.247	1.196	1.791	0.499	0.726
	0.80	0.66	8.489	0.992	1.560	1.270	2.295	0.546	0.777
	0.85	1.8	13.31	1.010	2.193	1.318	3.175	0.598	0.827
50	0.55	0.04	3.655	0.889	0.9188	1.073	1.364	0.342	0.527
	0.6	0.12	4.382	0.934	1.033	1.178	1.661	0.378	0.576
	0.65	0.32	5.405	0.971	1.213	1.274	2.078	0.416	0.626
	0.7	0.82	7.410	0.997	1.518	1.354	2.701	0.456	0.675
	0.75	2.0	10.886	1.015	2.076	1.407	3.710	0.499	0.726
	0.8	4.24							
60	0.45	0.039	3.331	0.881			1.424	0.274	0.430
	0.5	0.13	4.052	0.934	1.006	1.221	1.790	0.308	0.479
	0.55	0.38	5.162	0.975	1.203	1.334	2.311	0.342	0.527
	0.6	1.0	7.033	1.004	1.335	1.424	3-107	0.378	0.576
	0.65 0.7	2.4 4.9	10.367	1.022	2.145	1.479	4.397	0.416	0.626
				P					

In the pass band distortion from the theoretical curve is most likely to be caused by misalignment of the high- q section with respect to the other two. The greatest slope of the response of this section in the pass band is $\frac{1}{4} \mathrm{~dB}$ for a 1% change of frequency. For not more than $\frac{1}{10}$ th dB error in the passband, therefore, an accuracy in the component values of $\pm 0.4 \%$ is indicated.

Points in favour of realization by factors are that requirements for amplifier gain and the effect of errors in component values are easily calculated, and hence amplifier gains and component tolerances are easily specified. A further convenience is that errors can be localized by measuring the responses of the individual section. These responses for the given example are shown in Fig. 5. The overall response was given in Part 1, Fig. 1.
An experimental filter of this design was shown by the Royal Radar Establishment on the Ministry of Aviation stand at the I.E.A. Exhibition, London, in 1964; and at the Physics Exhibition, London, in 1969 G.E.C., Ltd., (Hirst Research Centre, Wembley) showed some interesting developments of the same type of circuit.

The derivation of the factors of the transfer function from the element values of the passive filter serves to show the relationship between the several ways of specifying the filter and its responses. For accuracy, however, the $q s$ and $T s$ of the factors are better computed directly from the Darlington theory as given in Ref. 1, Ref. 2, and elsewhere; and some sets of values so obtained are given in Table 3. The k of Ref. 1 $=1 / \Omega_{s}$. Tables of poles and zeroes for Darlington and some other types of filter are given in Ref. 3 and may be converted into real factors as shown above, Fig. 3 and equations (10) and (11)

3rd-order Darlington response

3rd-order Darlington is specified as in Fig. 1, though there is only one trough in

Fig. 5. Measured responses of the individual stages of a filter as Fig. 4, scaled to give $-3 d B$ at 159 Hz .

Fig. 6. Schematic for passive realization of 3rd-order Darlington response.
the pass band, and one zero in the stop band. Such a specification is met by a structure as shown in Fig. 6. There is no longer any necessity to use an unsymmetrical structure, and in practice a symmetrical structure is used. This can be bisected into two equal halves, and hence a general expression for the transfer function found in factorized•form,
$G(p)=\frac{1+p^{2} T_{2}^{2}}{2\left(1+\left(1 / q_{1}\right) p T_{1}+p^{2} T_{1}^{2}\right)\left(1+p T_{3}\right)}(17)$ The response may then be analyzed by simple algebraic methods. However, some ready-computed results are given here :

TABLE 4
Parameters for 3rd-order Darlington response, normalized to cut-off frequency $\omega_{p}=1 \mathrm{rad} / \mathrm{s}$.

$$
G(p)=\frac{1+p^{2} T_{2}^{2}}{\left(1+p T_{1} / q_{1}+p^{2} T_{1}\right)\left(1+p T_{3}\right)}
$$

$\begin{gathered} A_{d} \\ (d b) \end{gathered}$	$1 / \Omega$	$A_{\text {o }}$	q_{1}	T_{1}	T_{3}	T_{2}
20	0.5	0.05	1.635	0.704	0.699	0.441
	0.6	0.15	1.929	0.826	0.928	0.533
	0.7	0.5	$2 \cdot 480$	0.931	1.252	0.630
	0.8	1.5	3.731	1.007	1.778	0.731
30	0.4	0.1	1.515	0.766	0.919	0.351
	0.5	0.4	1.909	0.909	1.328	0.441
	0.6	$1 \cdot 3$	$2 \cdot 685$	1.010	1.959	0.533
	0.65	$2 \cdot 2$	3.354	1.030	2.418	0.581
40	0.3	0.15	1.486	0.807	1.074	0.261
	0.4	0.8	2.080	0.978	1.778	0.350
	0.45	1.6	$2 \cdot 604$	1.036	2.305	0.395
	0.5	$2 \cdot 9$	3.373	1.074	3.012	0.441

Butterworth response

The occasional designer may like to have at command without resort to reference books a few design formulae suitable for meeting specifications of only moderate stringency such as might occur in the experimental laboratory in acoustical and vibrational work. In such applications the steep cut off given by a zero in the stop band may not be required, and the easily defined Butterworth (or maximally flat) response is often used:

$$
\begin{equation*}
|G(\omega)|=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{\left(1+x^{2 n}\right)^{\frac{1}{2}}} \tag{18}
\end{equation*}
$$

where $x=\omega / \omega_{c}, \omega_{c}$ is the -3 dB (or corner) frequency, n is the order of the response. The nature of this family of responses is shown in Fig. 7. Each for its own value of n is the best monotonic approximation to the two asymptotes, i.e. the closest-fitting curve with a slope continuously increasing in one direction, and all pass through -3 dB at $\omega=\omega_{c}$, i.e. at $x=1$.

The first three we already know in factorized transfer-function form, Table 5.

TABLE 5
Amplitude and transfer functions for low-pass Butterworth filters, $n=1$ to $n=3$.

$\|G(\omega)\|$	$G(p)$
$\frac{1}{\left(1+x^{2}\right)^{1 / 2}}$	$\frac{1}{1+p T}$
$\frac{1}{\left(1+x^{6}\right)^{1 / 2}}$	$\frac{1}{1+\sqrt{2 p T+p^{2} T^{2}}}$
$\frac{1}{\left(1+x^{6}\right)^{1 / 2}}$	$\frac{1}{(1+\rho T)\left(1+\rho T+p^{2} T_{2}\right)}$

Fig. 7. Butterworth response, low-pass.
$n=1$

$q=1 / 2 \operatorname{cosec} 45^{\circ}$

$$
\begin{array}{ll}
q=1 / 2 \operatorname{cosec} 30^{\circ} & q_{1}=1 / 2 \operatorname{cosec} 22.5^{\circ} \\
q_{2}=1 / 2 \operatorname{cosec} 67.5^{\circ}
\end{array}
$$

Fig. 8. Location of Butterworth poles.
To find the remainder the amplitude function $|G(\omega)|$ must be factorized. This involves finding the roots of the equation

$$
\begin{equation*}
x^{2 n}+1=0 \tag{19}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
x^{2 n}=-1 \tag{20}
\end{equation*}
$$

and is, therefore, an exercise in complex algebra using the concept of the $n n$th roots of -1 . (See, for example, Loney: Plane Trigonometry, Pt. 2, p. 141.) The complex conjugate factors so obtained are multiplied together, giving real 2nd-order factors in ω^{2}, with one real Ist-order factor when n is odd, and compared with the 2 nd-order amplitude factor, equation (21) of Part 2, corresponding to the standard transferfunction factor

$$
\frac{1}{1+(1 / q) p T+p^{2} T^{2}}
$$

The result is that the r th factor has

$$
\begin{equation*}
\frac{1}{q}=2 \sin \frac{(2 r-1) \pi}{2 n} \tag{21}
\end{equation*}
$$

and numerical results up to $n=10$ are
given in Table 6. For all odd values of n there is also a Ist-order (simple-lag) factor; hence for odd orders the products of the $q s$ is 1 , and for even orders $1 / \sqrt{ } 2$.

TABLE 6

n	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}
2	0.707				
3	1000				
4	1306	0.541			
5	1.618	0.618			
6	1.932	0.707	0.518		
7	2.247	0.802	0.556		
8	2.563	0.900	0.601	0.510	
9	2.880	1.000	0.653	0.532	
10	3.196	1.101	0.707	0.561	0.506

The results of the analysis can also be given in memorable form as the positions of the poles of $G(p)$ in the complex plane. As all T s are equal the poles lie on a circle, and they are evenly spaced as shown in Fig. 8. It is clear that the highest Q factor increases with increasing n, and the curves, Fig. 9, give an idea of how the opposing curvatures of the high $-Q$ and low- Q factors go towards giving an approximation to a level response in the pass band and to a constant rate of fall above cutoff.

Fig. 9. Response of individual factors of Butterworth responses, $n=4$ to $n=7$.

It can also be seen that for n even and $\geqslant 4$ the lowest Q factor is little greater than $\frac{1}{2}$. If it is divided by a factor x so that it is made equal to $\frac{1}{2}$, the gain at ω_{c} can be returned to -3 dB by multiplying the highest Q factor by x. The overall response is hardly altered by the change, Fig. 10 ; and the Q factors for these approximate Butterworth filters̀ are given in Table 7. The importance

TABLE 7

n	q_{1}	q_{2}	q_{3}
4	1.414	0.5	
8	2.0	0.707	0.5

of the modification is that the low- Q factor is now two buffered lags, and it may be
possible to save an amplifier by incorporating them in some existing part of a system.

Fig. 10. Approximate Butterworth responses compared with exact responses.

3rd-order Chebyshev response

If some ripple is allowed in the pass band the corner can be sharper and the fall just beyond steeper. Consider the simple 3rdorder filter shown in Fig. 11. If it is equally terminated, $R_{L}=R_{S}=R$ (say), the network can be bisected into two halves, and the voltage transfer ratio easily found as

$$
\begin{align*}
& \frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{2(1+p C R)\left(1+p L / R+p^{2} L C\right)} \tag{22}\\
& \begin{array}{c}
=\frac{1}{2(1+q p T)\left(1+(1 / q) p T+p^{2} T^{2}\right)} \\
\text { where } \quad T=1 / \omega_{c}=\sqrt{(L C)}, \\
\qquad
\end{array} \begin{array}{l}
\quad=\frac{R}{\omega_{c} L}=\omega_{c} C R \\
=R \sqrt{\frac{C}{L}}
\end{array} \tag{23}
\end{align*}
$$

This confirms that high R gives light damping (high q), and also shows that as q increases the corner frequency of the Ist-order factor, $1 / q T$, moves down the frequency scale, giving increased attenuation at high frequency. This "corrects" the increased gain in the vicinity of ω_{c} contributed by the 2nd-order factor, and so is consistent with the fact that when $R_{L}=R_{S}$ no peak in the response can rise higher than the zerofrequency level (-6 dB), since this is the optimum match between equal resistances.
lgnoring the factor $\frac{1}{2}$, the normalized ($T=1$) amplitude response is given by $|G(j \omega)|$

$$
\begin{align*}
& =\left[\left(1+q^{2} \omega^{2}\right)\left\{\left(1-\omega^{2}\right)^{2}+\omega^{2} / q^{2}\right\}\right]^{-4} \tag{27}\\
& =\left[1+\omega^{2}\left\{(q-1 / q)-q \omega^{2}\right\}^{2}\right]^{-4} \tag{28}
\end{align*}
$$

Consider

$y=\omega\left\{(q-1 / q)-q \omega^{2}\right\}$.
If $q<1,(q-1 / q)$ is negative and the slope $\mathrm{d} y / \mathrm{d} \omega$ is continuously negative; but if $q>1,(q-1 / q)$ is positive and y is zero at a finite positive value of ω as well as at the origin, Fig. 12. Consequently when $q>1$, the normalized amplitude response, which is given by $\left(1+y^{2}\right)^{-\frac{1}{2}}$, has a trough and then returns to unity before descending towards zero. (See Fig. 13.) As Q increases the sharpness of the corner and the rate of attenuation just beyond the corner increase: so does the amplitude of ripple in the passband. This is a simple example of the general

Fig. 11. Structure of simple (all-pole) passive 3rd-order low-pass filter.

Fig. 12. Illustrating the mathematics of the production of a ripple.

Fig. 13. Chebyshev responses, 3rd-order, and the responses of their factors.

(a)
(b)

Fig. 14. (a) 3rd-order low-pass filter,
$-3 d B$ at 4.75 kHz . (b) Suggested amplifier. $\operatorname{Tr}_{1}: 2 N 3707,2 N 3904$, BC109C etc. Tr $_{2}: 2 N 4058,2 N 3906$ etc.
nature of Chebyshev or equal-ripple response. The peak occurs where

$$
\begin{equation*}
\omega^{2}=1-\frac{1}{q^{2}} \tag{30}
\end{equation*}
$$

So as $q \rightarrow \infty$ the peak approaches ω_{c}, while for $q=1$ it is at $\omega=0$ (i.e. the ripple disappears). As shown in Part 1 this is maximally-flat-amplitude (Butterworth) response, and here the corner frequency of the 1 st-order factor is equal to that of the 2ndorder factor. For $q<1$ the corner frequency of the Ist-order factor is at a higher frequency than that of the 2 nd-order factor, and this adds to the greater roundness of the corner compared with the Butterworth.

The trough occurs at

$$
\begin{equation*}
\omega^{2}=\frac{1}{3}\left(1-\frac{1}{q^{2}}\right) \tag{31}
\end{equation*}
$$

and the depth of the trough may be derived from the relationship

$$
\begin{equation*}
y_{t}^{2}=\frac{4 q^{2}}{27}\left(1-\frac{1}{q^{2}}\right)^{3} \tag{32}
\end{equation*}
$$

For 1 dB depth, maximum, q must be $\ngtr 2$ approx., Fig. 13 .

As a compromise between low ripple and a sharper corner q may be chosen in the region $1.4(0.15 \mathrm{~dB}$ ripple) to $1.5(0.25 \mathrm{~dB}$ ripple); and Fig. 14(a) shows a schematic for an audio-frequency low-pass filter with $q=1.43$ approx. The ω_{c} of the 2 nd-order factor is $10^{6} / 36$ radians $/$ second $(=4.4$ kHz), and the -3 dB point for the whole filter is at 4.75 kHz approximately.

The amplifiers may be of a variety of types, and will probably be chosen for convenience and ready availability. The circuit shown in Fig. 14(b) is suitable, and although of only moderate internal gain (c. 500), gives enough loop gain to reduce distortion at (say) I V r.m.s. output to a very low level. An input buffer amplifier should be used if the output impedance of the previous stage is not negligible or cannot be incorporated into the first resistance of the filter. Provided $T r_{1}$ maintains a high current gain at low I_{c} all impedances, and the two resistances in the amplifier, may be increased several times, giving economy in h.t. current and in the size of capacitors.

For higher-order Chebyshev filters the parameters must form a proper set, or the ripples will not be equal. Table 8 gives the Q factors and the relative magnitudes of the $T \mathrm{~s}$ for five 5 th-order curves with depth of ripple from 0.02 dB to 0.8 dB . All these may be considered a better approximation to constant gain in the pass band, and the table shows that all but the first give more attentuation than 5 th-order Butterworth, both at twice the cut-off frequency and at higher frequencies (Fig. 15).

Filters for pulse transmission

The high Q factor of at least one factor of a
(a)

(b)

Fig. 15. Iltustrating 5th-order Chebyshev response: (a) pass-band ripple, (b) increased attenuation compared with Butterworth 5th-order response, B.

Parameters for 5th-order Chebyshekresponse
$\overline{\left(1+\rho T_{0}\right)\left(1+\rho T_{1} / q_{1}+p^{2} T_{1}^{2}\right)\left(1+p T_{2} / G_{2}+\rho^{2} T_{2}\right)}$

$\frac{T_{0}}{T}$	$\frac{T_{1}}{T}$	q_{1}	$\frac{T_{2}}{T}$	q_{2}	A_{0}	A_{a} $\omega T=2$	$\omega T=\infty$
1.337	1.051	0.786	0.827	2.618	0.02	-3	0
1.642	1.181	0.859	0.885	3.000	0.06	2	5
2.164	1.337	1.000	0.946	3.702	0.2	7	10
2.377	1.383	1.062	0.962	4.000	0.3	9	12
3.236	1.506	1.328	1.000	5.236	0.8	14	17

Fig. 16. Step responses of three filters: (a) a 5th-order Darlington, (b) a Sth-order Butterworth, (c) an approximate linear-phase filter.
filter with a sharp corner and rapid fall at the end of the pass band gives an oscillatory transient response. Thus for the Darlington filter described in the previous section the response to a step function, Fig. 16(a), shows an overshoot of about 15% and several subsequent oscillations of appreciable amplitude. To avoid such ringing it is not necessary for all factors to have $q \leqslant \frac{1}{2}$ ($q=\frac{1}{2}$ is critical damping), but it is necessary that all factors with corner frequencies falling within the passband should have low values of q. Thus the simple 5th-order filter with transfer function

$$
\begin{equation*}
G(p)=\frac{1}{(1+p T)^{3}\left(1+p T+p^{2} T^{2}\right)} \tag{33}
\end{equation*}
$$

has a step response, Fig. 16(c), quite suitable for pulse work; though the frequency response, Fig. 17(a), falls away considerably in the pass band and has a very rounded corner.

It is generally agreed that for good pulse response the phase lag should increase linearly with frequency through as much of the pass band as possible. If a high Q factor is present the slope of the phase curve is less near zero frequency but increases as the resonant frequency of the factor is approached. If the corner of the amplitude response curve is unnecessarily rounded, meaning that only very low Q factors are present, the slope of the phase curve is greater near zero frequency, but slowly decreases. The transient response then is not ringy, but the rise time is unnecessarily long. Note: a linear frequency scale is assumed.
The slope of the phase curve is associated with the idea of a group delay used in the wave theory of optics,

$$
\begin{equation*}
\tau_{\theta}=\frac{d \phi}{d \omega} \tag{34}
\end{equation*}
$$

Fig. 17. Amplitude responses of Butterworth and approximately linearphase filters.

Fig. 18. Normalized group delay of Butterworth and approximately linearphase filters.

Fig. 19. Realization of the 8th-order Storey-and-Cullyer linear-phase characteristic. Resistors, Ω. Capacitors, $p F$.

This function for the filter just mentioned, equation (33), is shown in Fig. 18, curve a and for the 5th-order Butterworth filter in curve b. It can be seen that while the first is almost level up to 0.9 of the cut-off frequency, the second rises to a pronounced peak. Curves c and d give similar information for two 3rd-order filters: d Butterworth, c a similar filter with the q of the quadratic factor reduced to $1 / \sqrt{ } 2$. The frequency responses are shown in Fig. 17(b).
An example of a linear-phase filter designed empirically is given in Ref. 4. It is an 8th-order filter with two frequencies of infinite attenuation, and the transfer function may therefore be resolved into two numerator factors,

$$
\left(1+p^{2} T_{a}^{2}\right),\left(1+p^{2} T_{b}^{2}\right),
$$

and four denominator factors,

$$
\left(1+\left(1 / q_{1}\right) p T_{1}+p^{2} T_{1}^{2}\right) \text {, etc. }
$$

The poles are given as

$$
\begin{aligned}
& -4.549 \pm j 1 \cdot 362,-3 \cdot 305 \pm j 4 \cdot 174 \\
& -5.687 \pm j 1.703,-4.131 \pm j 5 \cdot 218
\end{aligned}
$$

and the frequencies of inf. attenuation as
5.027 and 8.796 ,
(all $\times 10^{5}$ radians $/$ second). These give

$$
\omega_{1}=\left(4.549^{2}+1.362^{2}\right)^{4}=4.75\left(\times 10^{5}\right),
$$ hence

$$
\begin{aligned}
& T_{1}=1 / 0 \cdot 475=2 \cdot 105 \text { microseconds }, \\
& q_{1}=\frac{1}{2}\left(1+1.362^{2} / 4.549^{2}\right)^{t}=0.5215, \\
& T_{a}=1 / 0 \cdot 5027=1.991 \text { microseconds, }
\end{aligned}
$$

and similarly for the other constants, giving Table 9.

If (a) is grouped with (1), and (b) with (3), two factors are obtained
$\frac{1+a_{1} p^{2} T_{1}^{2}}{1+\left(1 / q_{1}\right) p T_{1}+p^{2} T_{1}^{2}}, \frac{1+a_{3} p^{2} T_{3}^{2}}{1+\left(1 / q_{3}\right) p T_{3}+p^{2} T_{3}^{2}}$ with

$$
a_{1}=T_{a}^{2} / T_{1}^{2}=1 \cdot 991^{2} / 2 \cdot 105^{2}=0.895
$$

and
$a_{3}=T_{b}^{2} / T_{3}^{2}=1 \cdot 137^{2} / 1 \cdot 685^{2}=0.455 ;$
and (2) and (4) are left as simple 2 nd-order low-pass factors. These add up to give the overall response, which has a well rounded

TABLE 9
Parameters of linear-phase filter, Fig. 19.

Subscript	(1)	(2)	(3)	(4)	(a)	(b)
T	2.105	1.88	1.685	1.50	1.991	1.137
9	0.522	0.805	0.522	0.805	-	-

corner much as curve a of Fig. 17(a), but, because of the zeroes a much steeper fall after the corner. The stop band, where the minimum attenuation is 30 dB , starts at 75 kHz . The end of the passband may be taken to be the -10 dB point, which is at $50 \mathrm{kHz}\left(314 \times 10^{3} \mathrm{rad} / \mathrm{s}, T=3.18 \mu \mathrm{~s}\right)$; and rectangular pulses down to a width of $20 \mu \mathrm{~s}$ are transmitted with full amplitude, though reduced to a shape similar to a single cycle of a cosine wave.

By following the procedure used before, the filter may be realized as a cascade of four Sallen-and-Key sections, two of simple low-pass type and two with a parallel path giving a zero, Fig. 19. As all Q factors are low, the amplifiers do not need very high internal gain. Provided the filter is not required to pass zero-frequency signals with a tight specification on zero drift, pairs of transistors connected in the enhanced-emitter-follower arrangement would be satisfactory. In general a tolerance of $\pm 2 \%$ on component values will be quite adequate, as none of the factors show rapid changes of attenuation in or near the pass band. For good zeroes, however, a somewhat closer match between the time constant of the side-chain network and the short-circuited-output time constant of the network in the main path is advisable.

REFERENCES

1. "Design Data for Symmetrical Darlington Filters", by J. K. Skwirzynski and J. Zdunek, Proc. I.E.E. Part C, Sept. 1957, Vol. 104C, No. 6, pp. 366-380.
2. "Design Theory and Data for Electrical Filters", by J. K. Skwirzynski, Van Nostrand, London (1965)
3. "Filter Design Tables and Graphs", by E. Christian and E. Eisenmann, John Wiley \& Sons, New York (1966).
4. "Active Low-pass Linear-phase Filters for Pulse Transmission", by D. J. Storey and W. J. Cullyer, Proc. I.E.E., April 1965, Vol. 112, No. 4, pp. 661-668.

Application Notes

Circuitry selected from device manufacturers' literature

Process Timer

The circuit will hold the relay on for a period of between one and ten seconds (determined by R_{p}) when actuated by a negative input pulse. This pulse could

be provided by the switch and resistor shown. Extracted from the Ferranti "E-line Transistor Applications" handbook.

Four-Quadrant Division

The circuit produces X / Y using type MX101 multipliers from Fenlow elec-

tronics. The inputs X and Y can be of any sign. Use is made of the fact that $X \div Y=(X Y) / Y^{2}$.

Dynamic Range versus Ambient Noise

A practical solution involving metal-cone loudspeakers and high-power amplifiers

by George Izzard O'Veering

The essential requirements for a high quality sound reproduction system are adequate power and adequate bandwidth. Since loudspeakers are inefficient, and the attainment of wide bandwidth systems is generally incompatible with high efficiency, the achievement of the desired acoustic spectrum from the subsonic tothe ultrasonic makes heavy demands on amplifier output.

Moreover, it will be apparent on reflection that many of the musical and other instruments, the acoustic output of which it is desired to reproduce, are themselves both powerful and developed to a high degree of acoustic efficiency. It is clearly laughable to suppose that the majestic splendour of a full orchestral fortissimo or the lung power of a Wagnerian tenor in full cry can be represented adequately on an acoustic budget of a few hundred milliwatts. Inconvenient though it may be, there can be no doubt that to recreate the true dynamic range of much recorded sound over the required sonic spectrum makes demands on the output power of the audio amplifier/reproducer system which are well beyond the capabilities of most, if not all, of the equipment at present on the market.

Calculation of required power

The quietest sound which can be heard in a given environment depends entirely upon the background noise level of that environment. Unfortunately, most people live in close proximity to traffic, neighbours with television sets, dogs, and noisy children, and these things, together with the normal background sounds of the home, combine to give an ambient noise level of about 50 dB . The minimum sound level which can be distinguished clearly above this background level is therefore 53 dB . The dynamic range of orchestral music can be as much as 70 dB , therefore in order to be able to hear the pianissimo as well as the fortissimo passages, a peak level of 123 dB is required.

The acoustic power in watts required to produce a sound intensity level of 53 dB is about $6 \mu \mathrm{~N}$ for an average-size living room. Since a 10 dB increase in power output requires a tenfold increase in power, the $123-\mathrm{dB}$ peak-power level will therefore require a maximum acoustic output of some

50 W . If the loudspeaker efficiency is 5% (and this is significantly better than is obtained from most commercially available loudspeaker systems) a peak-power output of 1000 W per stereo channel is obviously required if the total dynamic range of a symphony orchestra is to be heard in comfort.

It was clear from discussions both with manufacturers and distributors that no serious attempt had been made to meet the requirement for drive units capable of handling as little as 250 W . Initial trials made with some of the more likely units, were generally unsatisfactory. In particular there was a tendency for the cone and speech coil to become detached, and for fraying of the surround. In addition, the failure was often made more serious by partial combustion of the inflammable materials within or in proximity to the speech-coil assembly.

When more substantial reproducer units had been evolved, this only brought to light the flimsy nature of the housings which had been supplied, and considerable annoyance was caused by a minor injury sustained when one of the cabinets burst during an orchestral transient and the room was filled with flying splinters. At this stage it was accepted that the cabinets used would require to be of comparable strength to the reproducers, and the assistance of the specialist who constructed the metal cone loudspeaker assemblies was sought to manufacture four sheet-steel column-loaded units, of a suitable type to take the $23 \mathrm{in} \times 14 \mathrm{in}$ elliptical wide-band speakers. These are

Fig. 1. Symmetrical output stage using only $n-p-n$ transistors.
situated at the four corners of the listening room and the opposite units are connected in parallel but in antiphase. This has the effect of increasing the apparent dimensions of the listening room, in addition to reducing the $I^{2} R$ losses in the speaker wires.

Each unit is rated at 500 W , with a nominal 20Ω impedance. The required output from the amplifier is therefore 10 A at 100 V r.m.s. (282 volts pk-pk) per channel.

Power amplifier design

The use of a solid-state, transformerless. amplifier to provide an output of 1 kW into a $10-\Omega$ load imposes certain limitations on the designer. In particular, the normal complementary or quasi-complementary output stage configurations are no longer practicable since the only useful and relatively cheap high-voltage transistors which are available are all of the $n-p-n$ construction.
The basic output stage configuration employed, to provide a fully symmetrical push-pull class B output stage using only $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistors, is shown in Fig. 1. As shown, this would be satisfactory for power outputs up toabout 50 W .

In this circuit arrangement, $\mathrm{Tr}_{2} / \mathrm{Tr}_{3}$ and $T r_{4} / T r_{5}$ are Darlington pairs with $T r_{2}$ and Tr_{4} being normal small-power driver transistors. Tr_{1}, in combination with R_{1} and R_{2}, provides the necessary signal level and amplitude transformation for the lower half of the output stage, and $Z D_{1}$ effectively stabilizes the voltage level at the power output point. This is chosen so that the largest symmetrical voltage swing is obtainable. The symmetry of this stage is maintained up to a frequency determined by the resistance of R_{1} and R_{2} and the input shunt capacitance of $T r_{1}$. This will normally be well above the audible spectrum.

The final circuit employed is shown in Fig. 2. Although for simplicity only four parallel-connected output transistors are shown in each half of the output stage, this is only adequate for intermittent use at IkW output. In practice six parallel connected transistors are required in each half of the output stage.

The paraphase input is obtained from two medium-power high-voltagetransistors, $T r_{3}$ and $T r_{4}$, the h.t. supply for which is obtained from a separately smoothed $400-\mathrm{V}$ line, because bootstrapping is not practicable with this type of driver stage.

The input is derived from a long-tailed pair of p-n-p transistors, of a type chosen for high voltage linearity, and freedom from avalanche or collector leakage (Early effect) distortion. Although 150 V is applied to the end of the 'tail', the maximum collectoremitter voltage is limited to about 52 V , because the base of Tr_{2} is returned to the 50 V tap on the zener diode chain. A variable resistor is included in the 'tail' to set the current through Tr_{1} and Tr_{2}. This controls the current through Tr_{3} and $T r_{4}$, and, since the output d.c. level is determined by $Z D_{1}$, thereby controls the

Fig. 2. Expanded version of Fig. I employing a Darlington triple as the output device. $\operatorname{Tr}_{1}, \operatorname{Tr}_{2}-R . C . A .38496 ; \operatorname{Tr}_{3}$ to $\operatorname{Tr}_{7}-M J E 340$; Tr_{8} to $\operatorname{Tr}_{17}-M J 413$. Lettered resistor values: $a=22 \Omega, 2 W ; b=10 \Omega, 2 W ; c=0.5 \Omega$, $5 W ;$ and $d=0.1 \Omega, 5 W$.
quiescent current of the output stage. This should be set to about 200 mA . Because of the absence of coupling or bootstrapping capacitors the gain of the circuit from the base of Tr_{1} to the output of the power transistors is constant from the h.f. roll-off point down to d.c. The l.f. roll-off point is therefore determined solely by the $2-\mu \mathrm{F}$ input capacitor and the output time constant.

The input impedance is $2 \mathrm{k} \Omega$ in series with $2 \mu \mathrm{~F}$. The h.f. roll-off point and the phase stability margin is determined by C_{1}, (the input-lag capacitor) C_{2} and R_{3}, and C_{3} and R_{5}. The loop gain is determined by resistors R_{1} and R_{2} and is approximately 100. The full output is given by an input of IV r.m.s., which can be obtained from any suitable high-quality pre-amplifier capable of operating into a $2-\mathrm{k} \Omega$ load.

Constructional details

The construction of the power amplifier unit follows conventional lines, and no unusual precautions are required apart from the need for generous heat sinks. Very satisfactory results were given in the prototype by the use of a pair of old castiron radiators, such as can be found secondhand for a few pounds in a builder's yard, to which the transistors can be individually attached by small bridges made from a suitably substantial gauge of copper sheet. The bottom and sides of an old copper preserving pan would be ideal. Care should, of course, be taken in drilling the attachment holes to make sure that the radiator shell is still capable of retaining water without leakage.

If such radiators cannot be found, a
copper hot-water storage cylinder would serve admirably, but it would probably be more difficult to introduce such an item inconspicuously into the listening room. The siting of the output transistors should combine shortness of signal leads with the required thermal separation of the power transistors one from another. It should also be borne in mind that the circulating currents at full power are of the order of 30 A . The leads to the loudspeaker terminal bossesfor which old car battery connectors are suggested-to the collector and emitter rails of the output transistors, and to the h.t. and earthy ends of the h.t. decoupling capacitor block must be substantial. A $\frac{3}{8}$ in $\times \frac{1}{4}$ in bore copper pipe is preferable, but as an alternative, lengths of 12 s.w.g. copper wire may be plaited together.

After assembly, it is recommended that the amplifier units be bench-tested on a dummy load before attachment to the speaker units, since quite trifling faults can lead to a surprising amount of energy being released. For example, in preliminary listening trials with the prototype, an intermittent o / c in the earth braiding on an input to the pre-amp, led to the necessity for the listening room ceiling to be substan tially restored and replastered.

Listening arrangements

Although the results obtained with good quality gramophone recordings have been most astonishing, and have brought home to the author in the most vivid way the qualities of stamina and emotional detachment required of an instrumental player situated, as the fortunate listener, in the midst of a large orchestra, it is clear that
there are a large number of residual problems in the life-like reproduction of disc recordings, of which the major one is the avoidance of acoustic feedback. As with many other of these problems, it is suspected that the manufacturers of the equipment have not really got down to serious thought on this matter, and the solution which the author feels most people must adopt, that of housing the record player unit is some detached building, such as a small garden shed, is inconvenient and prevents the listener from hearing the beginning of the recorded piece. Moreover, if in one's hurry to return to the audition room, the pickup cartridge is let fall too rapidly upon the record, extensive damage can be caused to windows and other glazing.

Summing up

The performance of the equipment as installed is entirely satisfactory, and a wide variety of sound sources have been explored during the assessment of the scope of this system, and many sounds have been recaptured with a degree of realism not previously encountered. However, the development of this apparatus has not been without difficulty, scepticism and expense, and it has been suspected at times that unnecessary difficulties have been placed in the author's way. For these reasons, it is thought unlikely to appeal to those for whom high-fidelity reproduction is merely a passing interest. On the other hand, it has proved possible to purchase several of the adjoining properties at a very advantageous price, and this has undoubtedly offset a large part of the constructional costs.

World of Amateur Radio

Amateurs urged to tackle TV interference

As a result of renewed efforts by many British amateurs to overcome the problem of causing interference to local television receivers, the number of stations to be heard operating during television programme hours has risen appreciably during the past year. However, there are signs that the Ministry of Posts \& Telecommunications is concerned at the number of requests being made to the Post Office by both amateurs and viewers for assistance in overcoming television interference (TVI). While the Ministry is responsible for all technical matters relating to the orderly use of the r.f. spectrum, interference investigation field work is now carried out by Post Office engineers under contract to the Ministry. Interference investigation costs the Ministry about $£ 2$ per hour.

Amateurs are being urged to acquaint themselves with the basic causes of TVI and to tackle interference problems without calling in the Post Office teams. Amateurs are also being encouraged to persuade manufacturers of commercially built amateur transmitters to pay more attention to design features likely to reduce the problem, including the choice of oscillator frequencies. It is being suggested that only when cases of TVI prove intractable or where the viewers concerned adopt an unco-operative attitude should the Post Office investigation officers be called in.

Australis Oscar 5 satellite

The Australian-built Oscar 5 satellite carrying 28 - and $144-\mathrm{MHz}$ beacon transmitters (see the March issue), launched on January 23 rd, continued to function as planned until February 14th when, during the 273 rd orbit, a commanding "on" of the h.f. beacon brought the battery voltage below that needed to operate the v.h.f. beacon. At the time of writing, the h.f. beacon continues in operation but is expected to have ceased by the time these notes appear.

Bill Browning, G2AOX, the European co-ordinator, has already received over 100 reports on the Oscar 5 telemetry signals, including many from Germany,

Sweden and the U.K. The reports cover reception of the $144-\mathrm{MHz}$ beacon since telemetry signals were not satisfactory on 28 MHz , due to a modulator malfunction, although the carrier and " HI " identification signals were radiated. The simple stabilizing system also proved rather less satisfactory than had been expected resulting in deep fading of signals when the satellite was overhead. Many novel techniques were used by amateurs to read out the telemetry, including matching of incoming tones with a local generator by means of stereo headphones (giving accurate results at low signal/noise ratios). Almost all the reports showed close agreement in results.

Another highly satisfactory feature was the effective amateur communications links which brought masses of orbital predictions and other information to the London co-ordinator. These included radio-teleprinter links with Australia and the United States operated by Reg Wigg. G6JF in Devon and fed to London on 3.5 MHz a.m. Direct London to U.S. links on s.s.b. were also used.

Many amateurs are hoping that the next Oscar will include (as in 1965) an active transposer, possibly 144 MHz down and 432 MHz up, to allow long-distance contacts to be made via the satellite. It is not known yet when the next amateur satellite is likely to be launched.

New group for the north east

A new North East England amateur radio group has been formed from within local clubs and societies to organize major amateur radio events, mainly evening "technical conventions". It is hoped that some five or six large meetings can be arranged each year to attract speakers from all over the country. Members of the group cover the whole of County Durham, Tyneside and Teesside as well as parts of Northumberland and the North Riding of Yorkshire. Members will be free from the commitments normally associated with regional and local radio clubs.

The first event takes place in Durham City on Friday, March 20 th when F. J. U. Ritson, G5RI, of the University of Newcastle-upon-Tyne, is to give a lecture demonstration on aerials.

The secretary, J. Melvin, G3LIV, 5 Lancashire Drive, Belmont, Durham, will provide further details and a sample Newsletter to those interested. Peter Martin, G3PDM, is the interim chairman of what promises to be something new in the dissemination of technical information among amateurs.

Amateur microwave record?

An excellent contact was established during February between A. Wakeman, G3EEZ, operating portable on Clee Hill in the Midlands, and L. W. G. Sharrock, G3BNL, on Cleeve Common in the Cotswolds, on the $10-\mathrm{GHz}(3-\mathrm{cm})$ band.

This is believed to be a new British record for amateur two-way operation on this band. A pulsed klystron transmitter was used at G3EEZ/P while frequency modulation was used at G3BNL/P.

A large number of v.h.f. and u.h.f. enthusiasts are expected to attend the 16 th annual R.S.G.B. v.h.f. /u.h.f. convention at the Winning Post hotel at Whitton on Saturday, April 25th. Technical lectures and an exhibition of equipment during the afternoon will be followed by a dinner. Tickets can be obtained from Frank Green, G3GMY, 48 Borough Way, Potters Bar, Hertfordshire.

In Brief: A change of address for the general secretary of the British Amateur Television Club: Ian Lever, G8CPJ, 65 Dynes Road, Kemsing, Sevenoaks, Kent, replaces the former Swanley address. . . . The first totally blind Irish amateur, Cathal O'Reilly, has recently been licensed as EI9CA. . . Amateur licences in force at the end of October 1969 included 13,413 class A, 1,897 class B and 179 amateur television-class B licences are increasing much faster than class A. . . . The 28.185 MHz beacon station, GB3SX at Crowborough operates on a 24 -hour basis with an output power of 20 watts to a three-element Yagi aerial usually, but not always, pointing East, or alternatively with an omni-directional aerial. . . . A German beacon station, DLOIGI operates on 28.20 MHz with a power of 200 watts to a vertical dipole. . . . The next U.K. Radio Amateurs Examination is being held on Monday, May 11th at 18.30 at many local venues. . . . A low-power $3.5-\mathrm{MHz}$ contest is being held on April 5th. . . . W. E. Gardner, G3FYR, recently reported longish delay echoes during a contact with W2ELW on 28 MHz and received a letter from Professor O. G. Villard, Jr., W6QYT, acknowledging the usefulness of all such reports even though the present investigation (see December, 1969) is basically concerned with echoes of over one or two seconds and particularly those of five to ten seconds. These appear to be heard usually on only one station, and for time intervals of only a few minutes.

A printing error appeared in last month's note " 50 years of callsigns"-line eight should refer to G4-three-letter callsigns.

Pat Hawker, G3VA

Personalities

Several senior appointments in the Engineering Training Department have been announced by the B.B.C. H. V. Sims, M.I.E.E., F.I.E.R.E., previously head of training section (engineering) has been appointed to the new post of head of technical projects and services. He will be concerned with investigating new methods of presenting maintenance information and with the maintenance and installation of all the broadcasting training equipment at the Training Centre. J. H. Brooks, B.Sc.(Eng.), M.I.E.E., previously a senior lecturer, has become head of training section (engineering). He is responsible for the training of engineering and technical assistants in the Operating and Maintenance Departments of the Corporation. D. G. Enoch, M.I.E.R.E., previously a senior lecturer, has been appointed head of training section (technical operations) in succession to G. W. MacKenzie who was recently appointed head of engineering. Northern Ireland. Mr. Enoch is responsible for the technical training of the B.B.C's technical operators. A. W. Harris, B.Sc., A.C.G.I., M.I.E.E., is appointed assistant, overseas trainees, and is concerned with training courses and attachments for non-B.B.C. staff.

Among the 1970 recipients of awards by the Institute of Physics \& Physical Society are: Professor A. B. Pippard, of Cambridge University, who receives the Guthrie Medal "for his contributions to low-temperature and solid-state physics"; Dr. E. Eastwood, director of research of the English Electric Company, who receives the Glazebrook Medal "for his work on radar and the application of physics in the electrical and electronics industry"; and Dr. A. Hewish, of Cambridge University, who receives the Charles Vernon Boys Prize "for his work in radio astronomy and particularly his discovery of the pulsar".
A. H. Ellson, M.B.E., B.Sc.(Eng.), M.I.E.E., has been appointed manager of the optical character reading group of the M.E.L.

Equipment Company and Th. P. Reede will lead the company's technical marketing group, responsible for market research, business and product planning. Mr. Ellson was, until his new appointment, technical manager of the Microwave Division of M.E.L. and Mr. Reede joins M.E.L. from Philips Electrologica at Rijswijk in the Netherlands.

Norman Doyle, formerly marketing manager of Cossor Electronics' Communications Division, has been promoted divisional manager with overall responsibility for all aspects of the sales and marketing of Cossor"s "Commando" range of radiotelephones and other u.h.f. and v.h.f. communications equipment. He is succeeded as marketing manager by John Bonner who recently joined the company. Mr. Bonner was previously sales promotion manager of Ultra Electronics for seven years.

Rank Precision Industries has announced the appointment of James Warden as chief engineer of the telecommunications product group of its Broadcast Division. Mr. Warden was formerly technical manager of the industrial products group of Cossor Electronics Lid. He will be responsible for controlling the group's research and development programmes and will be based at Welwyn Garden City until June, when he will move to the new Rank Precision Industries factory at Ware.

Robert R. Heikes, B.Sc., Ph.D., director of engineering at Motorola's Semiconductor Products Division headquarters in Phoenix, Arizona, has been appointed as the company's managing director in Europe. Dr. Heikes will now be responsible for all Motorola activities in Europe. He will be based at the company's European Service Centre in Geneva and his responsibilities will cover the European sales offices and distributors and the manufacturing facilities in Toulouse, France, and

East Kilbride, Scotland. Dr. Heikes received his degree in 1948 from the Massachusetts Institute of Technology and his doctorate in 1951 from the University of Chicago. Before joining Motorola he was associated with Westing. house for 18 years.

Derek Ashby has joined Venner Electronics as their sales manager Prior to joining Venner, Mr Ashby, who is 34 , was with Marconi Instruments for five years. He joined M.I. as a technical representative and was appointed manager of factored products in 1967. After National Service with the R.A.F. he joined Furzehill Laboratories as a development engineer.

Ferranti Ltd announces the appointment of John Begbie as general service manager with responsibility for all service policy in the Scottish Group and for co-ordinating activities with other departments in the Company. In addition, Mr. Begbie, who is 47, is appointed acting manager of the Ferranti factory at Dalkeith. Midlothian. Mr. Begbie studied at Edinburgh University, and after war-time radar experience joined Ferranti in Edinburgh in 1950 as a trials engineer. Following a spell in Australia as chief project engineer with a Vickers guided weapon team, he returned to Ferranti in 1957 to start the service department in Edinburgh. He is succeeded as service manager by Eric Henney who is 40. Mr. Henney was educated at the Royal College of Science and Technology, Glåsgow. and after experience with I.B.M. and Barr \& Stroud joined Ferranti in 1954.

Marconi-Elliott Computer Systems Ltd, Borehamwood, Herts, announces the appointment of Iorwerth Evans, B.Sc., as marketing director. He joins the company from Marconi Radar Systems Lid in which he was general manager (Borehamwood) and a director. Born in 1932 Mr . Evans took a degree in mathematics at Imperial College, London. He joined the Guided Weapons Division of English Electric in 1953 where he stayed until 1959. After two years with Decca Radar Systems he joined Elliott Automation as chief systems analyst (defence systems), ultimately becoming general manager of Elliott Space and Weapons Automation Lid. The 1968 merger between G.E.C. and English Electric resulted in the formation of Marconi-Elliott Computer Systems Lid.
D. G. Smee, who joined Marconi in 1933, has been appointed an assistant managing director of both G.E.C.-Marconi Electronics and of the Marconi Company. He has held various senior manage-
ment positions for the past 20 years (including manager of the Broadcasting Division) and has been Marconi's deputy managing director since 1968.

MCP Electronics Ltd (a subsidiary of Mining and Chemical Products Ltd) which acts both as a manufacturer and as a distributor for such companies as TRW Semiconductors Inc., will now operate with two principal divisions: intermetallics division, offering mainly semiconductor metals, under the management of B. J. Wray, a director of the company, and semiconductor division, with David Cunningham (newly appointed to the board) as general manager. Before joining MCP Electronics as sales manager, Mr. Cunningham was sales manager at SGS-Fairchild. Marketing in the semiconductor division has been divided into four groups, each with a product manager. Terry Roeves has been appointed product manager of the r.f. power devices group; J. C. A. Chaimowicz, of the optoelectronics group; and W. E. B. Baldwin, of the thick film integrated circuit group. A product manager for the industrial devices group has yet to be appointed.

OBITUARY

Lord Jackson of Burnley, F.R.S., D.Sc., F.I.E.E., professor of electrical engineering at Imperial College, London, from 1946-53 and 1961-67 died on February 17th aged 65. Willis Jackson graduated from the University of Manchester in 1925 and started on his academic career as a lecturer in electrical engineering at Bradford Technical College. In 1938 he became professor of electrotechnics at his old university, a post he held until his appointment to the chair at Imperial College. For the eight years between his incumbencies he was director of research and education with Associated Electrical Industries in Manchester. He was knighted in 1958 and created a life peer in 1967 for his services to education, science \& technology. Lord Jackson served on many Government and scientific committees including the Television Advisory Committee of which he was appointed chairman in 1963.

Kenneth E. Harris, B.Sc., F.I.E.E., F.I.E.R.E., who died on January 27th aged 52, was in Sir Robert Watson-Watt's radar research team throughout the war and then for 14 years (1949-63) with Cossor latterly as technical director. His particular interest was secondary radar. In 1963 he joined Redifon as manager of the communications division and was appointed to the board in 1964. A year ago Mr. Harris left Redifon and has been associated with several other companies.

New Products

Two-hour Tape Cassette

The range of Scotch magnetic tape cassettes has been expanded to include a two-hour version. The new Philips-compatible cassette-the Scotch $\mathrm{C}-120$-has an improved shim material which is reliable and eliminates tape binding and jamming. The shim material effectively reduces frictional drag and increases recorder battery life. The cassette uses Scotch Dynarange low-noise tape, giving good high-frequency response at slow ($1 \frac{1}{8}$ i.p.s.) recording speed. The cassette is supplied in a durable hinged plastic case. Price 33s 6d. 3M Company, 3M House, Wigmore Street, London W. 1.
WW 306 for further details

Coherent Filter

An active filter claimed to be capable of recovering signals which are more than 100 dB below noise level has been introduced by Brookdeal Electronics (who tend to specialize in signal recovery instruments). Called the Type 467, it is a narrow-band coherent filter using a multi-path filter technique*, and is designed particularly for use in the signal channel of "lock-in amplifiers" (perhaps better

known to some readers as synchronous detectors). Its centre frequency is established by an external reference waveform, giving it the ability to follow a varying wanted signal, and normally it will use the same reference waveform as the synchronous detector. The bandwidth of the filter is 3 Hz and the frequency range of operation is 10 Hz to 100 kHz . The output of the device is a square wave at the reference frequency with an amplitude 40 dB greater than the in-phase component of that frequency at the input (max.

[^4]output 3V pk-pk. from 6002). Input impedance of the filter to the signal is $100 \mathrm{k} \Omega, 50 \mathrm{pF}$, while the input impedance to the reference waveform is $10 \mathrm{k} \Omega, 80 \mathrm{pF}$. The design is such that the instrument requires no setting up or adjustment by the user. Brookdeal Electronics Ltd., 1 Market Street, Bracknell, Berks. WW 301 for further details

Milliwatt Test Set

Hatfield Instruments, Type 747 universal milliwatt test set is a precision thermocouple meter for checking the standard 0 dBm send level in 75Ω unbalanced, 140Ω balanced, and 600Ω balanced circuits. The 75Ω input covers frequencies up to 20 MHz , whilst the 140 and 6000 balanced inputs cover frequencies up to

1 MHz . The instrument is protected against overloads of up to +25 dBm on all inputs and the measurement range of -1 to +1 dBm is displayed over the full 4 -in scale of the meter. The accuracy of the standard version is $\pm 0.05 \mathrm{~dB}$ on all inputs. However, it is now available as option 1 with special calibration charts guaranteeing an accuracy of 0.02 dB on all three inputs. Hatfield Instruments Ltd, Burrington Way, Plymouth PL5 3LZ, Devon.
WW 307 for further details

Memory Voltmeter with Chart Recorder

A dual-readout memory voltmeter with a built-in strip chart recorder, for use where a permanent record of transient or spike occurrences is desired, is available from Sintrom Electronics. This portable instrument, the 5201 CR , has applications in
monitoring power stations, power supplies, computer equipment and other similar installations. It employs amplitude memory to measure and hold 50 nanosecond or longer one-shot voltage peaks of single, transient, random or repetitive pulses permanently or until reset. A dual-shielded cabinet precludes common mode errors. The cabinet is isolated to 1000 V . An optional gate circuit permits use as a sample-and-hold voltmeter. The recorder is a dry process, pressure-sensitive 63 ft chart with a front access window. It will deliver 25 hours of continuous recording from a $30 \mathrm{in} / \mathrm{hr}$ standard chart speed. A five position high response selector control is provided permitting the instrument bandwidth to be reduced in specific applications where the waveform to be measured is of

low frequency and where unwanted highfrequency noise is present. Voltage ranges are $0-3,30,100,1000 \mathrm{~V}$ to 30 kV with optional probes. Input impedance is $10 \mathrm{M} \Omega$ to $30 \mathrm{k} \Omega$ depending on the range and accuracy $\pm 3 \%$ of full scale. Sintrom Electronics Ltd, 2 Castle Hill Terrace, Maidenhead, Berks.
WW 316 for further details

Miniature Wire-wound Potentiometer

A miniature wire-wound trimmer potentiometer, the ADTO5, available from Guest International Ltd, is housed in a TO-5 type nickel-alloy case and may be mounted on a printed circuit board in exactly the same manner as a transistor. The terminal centres are spaced so as to enable flush fitting to a standard $2.54 \mathrm{~mm}(0.1 \mathrm{in})$ holepitch printed-circuit board. Rotation extends over 320° and mechanical overload protection is provided in the form of a slipping-clutch mechanism. Moulded-in terminations and a silicon rubber sealing ring help the device to withstand extremes of environmental conditions. The terminations are 0.28 to 0.36 mm square copper/nickel alloy. The resistance range available covers from 15Ω to $15 \mathrm{k} \Omega$ in preferred values. The power rating is 0.5 W at $40^{\circ} \mathrm{C}$ and the temperature range is -55° to $+150^{\circ} \mathrm{C}$. The temperature

coefficient is not greater than 50 parts $/ 10^{6}$ per ${ }^{\circ} \mathrm{C}$ for the 15Ω to 47Ω values, 20 parts $/ 10^{6}$ per ${ }^{\circ} \mathrm{C}$ for the 100Ω to 200Ω values, and 120 parts $/ 10^{6}$ per ${ }^{\circ} \mathrm{C}$ for the 470Ω to $15 \mathrm{k} \Omega$ values. Guest International Ltd, Nicholas House, Brigstock Road, Thornton Heath, Surrey.
WW 302 for further details

Laboratory Power Supplies

Guest Electronics have modified their recently announced type 606 laboratory bench power supplies. These all-transistor units feature continuously variable ranges of $0-7.5,15,30$ and 60 V . Voltage output is controlled by a precision 10 -turn helical potentiometer fitted with a vernier scale allowing the voltage to be set to a predetermined value with guaranteed repeat-

ability. A built-in meter enables the output voltage or current to be monitored. Ripple noise is less than 0.5 mV pk-pk and overload protection limits the output current to 110% of maximum. Reset is automatic. The model 606 is available in current ranges from $0-500 \mathrm{~mA}$ up to $0-2.5 \mathrm{~A}$. Dimensions are $156 \times 152 \times 102 \mathrm{~mm}$ and prices from $£ 3415 \mathrm{~s}$ to $£ 42 \mathrm{l} 15 \mathrm{~s}$. Guest International Ltd, Nicholas House, Brigstock Road, Thornton Heath, Surrey.
WW318 for further details.

Linear Power Controllers

A range of solid-state linear power controllers has been introduced by Eurotherm to provide efficient control of a.c. loads from 10 to 300A. Units supplying d.c. and three-phase loads are also available. Power is controlled by an inverse pair of thyristors in series with the load. R.F. suppression and protection against supply-voltage transients can be incorporated. An additional feature is a 'soft start' characteristic-the firing angle is gradually increased over the first few

cycles after switching on, thus preventing the sudden application of full power which may be harmful to certain loads. In addition, facilities exist for an override control via external contacts. The control module is calibrated $0-100 \%$ power, with a linear scale owing to the "square law" feedback employed, and is fully compensated against supply voltage variations from $+10 \%$ to -15% at 240 V a.c. Units can also be supplied for operation from 415 V a.c. Eurotherm Ltd, Broadwater Trading Estate, Worthing, Sussex.
WW 305 for further details

D.V.M. Multi-range Adaptor

Electrotech Instruments (of Coutant Electronics) have developed an adaptor unit that will convert any 1 V full-scale digital voltmeter (input resistance $>10 \mathrm{M} \Omega$) to a multi-range digital meter for the measurement of a.c. and d.c. voltages, currents, and resistance. Known as the MMA 100 the adaptor is available either as a free-standing unit or built in to Electrotech's modular system cabinet which includes their new CDM 100 digital panel meter. The MMA 100 is built with push-button range selection and, when used in conjuction with a 1 V full-scale digital meter, provides five voltage ranges and five current ranges for a.c. and d.c., and five resistance ranges. These are $0.1,1,10,100$ and 660 V a.c.; 0.16 , $1.6,16,160$ and 1000 V d.c.; $100 \mu \mathrm{~A}, 1 \mathrm{~mA}$, $10 \mathrm{~mA}, 100 \mathrm{~mA}$ and 1 A a.c.; $160 \mu \mathrm{~A}, 1.6 \mathrm{~mA}$, $16 \mathrm{~mA}, 160 \mathrm{~mA}$ and 1 A d.c.; and 160Ω,

$1.6 \mathrm{k} \Omega, 16 \mathrm{k} \Omega, 160 \mathrm{k} \Omega$, and $1 \mathrm{M} \Omega$. According to the measurement function and range selected, the full-scale accuracy is between 0.1% and 0.5% and the sampling rate is between 2 and 3 per sec. Overvoltage protection is provided on a.c. and d.c. ranges1000 V on the three highest d.c. ranges and 250 V on the two lowest; and 700 V for the three highest a.c. ranges and 180 V for the two lowest. On a.c. it will operate at frequencies from 40 Hz to 10 kHz . In the freestanding form the multimeter adaptor unit measures $147 \times 60 \times 180 \mathrm{~mm}$. The price is £70. Electrotech Instruments, Coutant Electronics Ltd, Instrument Division, 5 Loverock Road, Reading, Berks.
WW323 for further details.

S-band Low-noise Transistor Amplifier

Watkins-Johnson Co. has placed on the market a low-noise microwave transistor amplifier for operation in the S-band (2 to 4 GHz). Designated the WJ-5004-4, this amplifier, with integral power supply has

a guaranteed noise figure of 8.5 dB maximum and power output of +7 dBm (for 1 dB gain compression). Overall design is consistent with the respective environmental requirements of MIL-E-16400F. Watkins-Johnson International, Shirley Avenue, Windsor, Berks.
WW 308 for further details

Oscilloscope for TV Servicing

Fully automatic television line and field triggering is featured in a new Philips oscilloscope, model PM3200X, specially designed for TV service and maintenance work. This ensures a completely stable display of all line- and field-signal waveforms. Other features are a 10 MHz bandwidth, 2 mV input sensitivity and the elimination of d.c. balance-correction by automatic drift compensation circuits in the vertical deflection pre-amplifier. The timebase circuit is triggered automatically but in the absence of a trigger it starts "free running". Sweep speeds cover the range $0.1 \mu \mathrm{~s} /$ div to $0.5 \mathrm{~s} / \mathrm{div}$. A separate triggering facility is provided for line/ field triggering giving a stable display of both line and field information. The unit measures $175 \times 210 \times 330 \mathrm{~mm}$ and weighs 5.3 kg . Pye Unicam Ltd, York Street, Cambridge.
WW321 for further details.

Frequency monitor

Designed to provide an alarm or control signal when the input frequency deviates from a pre-determined figure, a new range of frequency monitors has been added to the Orbit 70 series of industrial control instruments. The principle of operation is based on the digital measurement of the period of the incoming signal giving a rapid single cycle response when the input frequency goes out of limits. Three versions, zero speed, underspeed and overspeed are available and combinations of under-

speed and overspeed modules can be housed in a single instrument to provide bandpass or high- and low-limit facilities. Thirteen overlapping ranges cover the frequency spectrum 1 Hz to 30 kHz . Alarm operation is within 0.1% of the set point and reset is automatically carried out without hunting. Output can be in the form of a relay changeover or of a logic level change. Construction is of i.cs mounted on plug-in p.c. modules. Orbit Controls Ltd, Alstone Lane Industrial Estate, Cheltenham, Glos.
WW 310 for further details

Figld Intensity Receiver

A field intensity measuring receiver, designation number VSME1510, from Microwave International, covers the frequency band $30-300 \mathrm{MHz}$ in six ranges. The voltage measuring range covers $0-120 \mathrm{~dB}$ ($1 \mu \mathrm{~N}$ to 1 V). The unit employs transistors throughout and has an accuracy on its frequency calibration of 0.5% without a warmup period. The frequency response is $\pm 2.5 \mathrm{~dB}$ on all ranges. The scale arrangement consists of a 340 mm long cylindrical linear scale with continuously progressive frequency calibration. Total scale length is approximately 2 metres. The measuring accuracy when used on an accurate calibration source is better than $\pm 1 \mathrm{~dB}$. By narrowing the bandwidth it is possible to measure sinusoidal voltages down to $0.1 \mu N$. The standard input impedance is 60Ω, and a $50-\Omega$ unit is available on request. The bandwidth is $120-130 \mathrm{kHz}$ with 6 dB drop. Microwave International (U.K.) Ltd, 33-37 Cowleaze Road, Kingston Upon Thames, Surrey.
WW 303 for further details

H.F. Receiver

Astro Communications have announced a new h.f. communications receiver, model S.R.502. This is a compact all-transistor modular unit suitable for table top or standard 19 -in rack mounting. Only $3 \frac{1}{2}$ in high, the main frame contains fully protected power supplies, audio, demodulator and i.f. circuits. Two cavities are provided which will accept a variety of plug-in modules. The right-hand cavity will accept either an h.f. tuning unit $(0.5-30 \mathrm{MHz}$ in one band) or a v.l.f. tuning unit ($10-500 \mathrm{kHz}$ in one band). The left hand
cavity can accept a battery pack which contains its own automatic charging circuit, a panoramic display, a digital frequency read-out unit with digital a.f.c. facilities or a digital frequency synthesizer with $100-\mathrm{Hz}$ resolution. The receiver has been designed for a.m., s.s.b, c.w. and f.m. operation. The use of separate upper and lower sideband filters enables independent sideband operation with a simple adaptor. A high m.t.b.f. of 10,000 hours is claimed. Astro Communications Laboratory (U.K.), Coventry.
WW317 for further details.

Colour TV Pattern Generator

The Philips PM 5508 pattern generator, available from Pye Unicam, takes full advantage of the "self checking" properties of the PAL system which enables a receiver to be adjusted using the picture tube as the only indicator. This virtually eliminates the need for an oscilloscope, but, if one is used it can be synchronized by line and field sync pulses from the generator. The generator delivers ten signals which are selected by the push-buttons arranged across the front panel: (1) Black and white checkerboard of 6 squares by 8 squares for checking tuning, scanning, amplitude and linearity, (2) Blank raster with constant white content for purity check, (3) Blank raster with constant red content for purity check, (4) Eight-step staircase for grey scale tracking, (5) 11 dots by 15 dots for adjustment of static and dynamic convergence, on 625 lines only, (6) Cross hatch, 11 lines by 15 lines, for adjustment of static and dynamic convergence, on 625 lines only, (7) Four colour bars for delay line phase and amplitude adjustment, using tube as indicator, (8) Four colour bars for demodulator phase adjustment, using tube as indicator, (9) Four colour bars for matrix check, using an oscilloscope, (10) Eight colour bars similar to B.B.C. signal for general check. The lower half of the picture is white to serve as reference to enable the adjustment of the amplitude ratio of the colour-difference signals to the picture tube. Alternatively a simple modification enables colour bars to be produced over the whole screen if this is preferred. The

ranges covered are bands I, III, IV and V, which are selected by push-buttons and continuous tuning is provided. Outputs are $15-20 \mathrm{mV}$ at r.f. (continuously variable) and IV at video, both into 75Ω. Burst amplitude is variable for checking colour killer and a.g.c. The sound carrier can be modulated internally, unmodulated or switched off. The generator measures approximately $270 \times 290 \times 190 \mathrm{~mm}$ and weighs approx. 5.6 kg . Pye Unicam Ltd, York Street, Cambridge. WW331 for further details

Transistors for switching 150W Pulses

Three new silicon planar transistors announced by Mullard have high switching rates and very low saturation voltages of not greater than 0.9 V . Consequently, although the transistors, types BDY60, BDY61 and BDY62, have a continuous power rating of only 15 W they can switch 150W pulses that have a duration not exceeding 50μ s and a duty factor of 0.1 . Earlier devices that switched 150W pulses had to have a higher continuous rating because they could not switch so rapidly. Although particularly suitable for use in high-frequency, silent, inverters and converters where efficiency is required, these types can also be used with advantage as pulse modulators in communications and radar systems. Typical transition frequency, $f_{T},\left(I_{C}=0.5 \mathrm{~A}, V_{C E}=5 \mathrm{~V}\right.$ is 100 MHz , and minimum $h_{F E}\left(I_{C}=0.5 \mathrm{~A}, V_{C E}=10 \mathrm{~V}\right)$ is 45. Mullard Ltd, Torrington Place, London W.C.1.

WW 313 for further details

Sine /Cosine Module

Burr-Brown have announced a sine /cosine function generator, model $4118 / 25$, that may be used to produce various trigonometric gain responses. The module provides non-linear gainshaping such that the output is -10 sin θ, where $\pm 10 \mathrm{~V}$ of input voltage represents a $\pm 90^{\circ}$ of angle θ. In addition, the unit may be connected to form cosine functions. By adding one or more external operational amplifiers, operation may be extended to include four-quadrant sine and cosine functions. Arc cosine and arc sine response functions may also be obtained. Accuracy is $\pm 1 \%$ of full-scale for $\pm 10 \mathrm{~V}$ input and
improves for small signals. Frequency response for accuracy of $\pm 1 \%$ is d.c. to 1 kHz -this accuracy includes both amplitude and phase shift errors. Temperature range is -25° to $+85^{\circ} \mathrm{C}$. The module is self contained and requires no external components. Operation is from $\pm 15 \mathrm{~V}$ supply. Fluke International Corporation, Garnett Close, Watford WD2 4TT.
WW330 for further details

New Audio Transformers

A new range of line-matching and microphone transformers for audio equipment is announced by Gardners Transformers. These complement the existing range introduced in 1961 and they come in two basic sizes using international octal, British 7-pin or flying screen lead connections. They are suitable for general purpose applications at high and low signal levels. Some of the new transformers, although similar in size and performance

to the existing types, now have a $20,000 \mathrm{~V}$ capability to meet the Post Office requirement. They are protected mechanically by a new filling of closed-cell epoxide resin foam compound (the smaller types are vacuum-impregnated with a microcrystalline wax). Advanced technical data sheets AT15, AT16 and AT17 are available from the makers. Gardners Transformers Ltd, Christchurch, Hants., BH23 3PN.
WW 304 for further details

Precision R.F. Power Leveller

Weinschel Engineering introduces its model 1805 precision r.f. power leveller. This instrument is specifically designed to ensure precision and simplicity in systems used for transferring calibration factors of primary standards to bolometermounts orsecondary power standards (terminating or feedthrough type) and power meters. Model 1805 in conjunction with a d.c.-to-r.f. continuously variable attenuator, such as a p.i.n. modulator, establishes and maintains constant, precisely known reference values of r.f. power incident upon a terminating mount or emerging from a feedthrough mount into a Z_{0} load. Minimum power level control range of 20 dB is employed and only d.c.-substituted and bias power is used to maintain precise power levels, thus eliminating the a.c./d.c. error which is commonly found in some r.f. power bridge circuits. Selectable d.c.-

substituted power levels are $0.5,1.0,5.0$ and 10 mW ; an external input capability is provided for establishing power levels between the fixed values. A selected level is maintained to within $\pm 0.1 \%+1 \mu \mathrm{~W}$ and is held constant for long periods of time over an ambient temperature range of $20^{\circ} \mathrm{C}$ and r.f. source level variations of $\pm 3 \mathrm{~dB}$. Once the desired power is selected with the range selector, the setting of a single toggle switch results in automatic control to maintain the selected value. If a deviation occurs, it is indicated on a meter having a $0.2 \mu \mathrm{~W}$ resolution. Price $\$ 2,950$. Weinschel Engineering Co, Inc., Gaithersburg, Maryland 20760, U.S.A.
WW324 for further details.

General Coverage Receiver Kit

The GR-78 general coverage receiver recently announced by Heath Company provides a.m., c.w. and s.s.b. coverage from 190 kHz to 30 MHz in six switchselected bands. Solid-state circuit employs field-effect transistors in the r.f. section and four ceramic i.f. filters for improved sensitivity and selectivity and eliminating the need for alignment. Built-in bandspread tuning can be calibrated for either the shortwave broadcast or amateur bands, and a switchable $500-\mathrm{kHz}$ crystal calibrator insures accurate dial calibration. This receiver comes complete with a rechargeable nickel-cadmium battery pack with a built-in charging circuit. Wiring options permit operation from either 120 or 240 V a.c. and 12 V d.c. Other features include switched a.g.c., an automatic noise limiter, receiver muting for use with a transmitter and a front panel relative signal strength meter. Price £68 18s. Daystrom Ltd, Heathkit Division, Gloucester.
WW 311 for further details

Time-interval Module

Time-interval measurements between pulses derived from two different lines can now be made with the addition of a time-interval unit, the PM6631, to the Philips PM6630 counter available from Pye Unicam. The unit can measure time

intervals between pulses with the same or opposite polarity, and also with amplitude differences as great as $20: 1$. With the addition of the PM6631, the counter can measure time intervals in the range 50 ns to 10^{6} seconds on pulses with widths down to 5 ns . The triggering level for both pulses is individually adjustable in the range $\pm 1.5 \mathrm{~V}$ (no attenuation) to $\pm 30 \mathrm{~V}(20: 1$ attenuation), and trigger sensitivity is 150 mV (pk-pk) for all pulses with widths greater than 5 ns . Also provided is a separate d.c. output which indicates the trigger level used on the stop pulse and an oscilloscope output which can be used to display the exact position of the stop pulse in relation to the start one. Apart from this new measuring facility, the PM6630 combines a 160 MHz frequency range with a 50 mV r.m.s. input-signal sensitivity and an input impedance of either $1 \mathrm{M} \Omega / 15 \mathrm{pF}$ or 50Ω. A 100 MHz internal clock makes the instrument useful for signal-generator and communications equipment calibration, oscillator drift measurements and computer-clock frequency checks. Pulse width and delay measurement can also be obtained. Pye Unicam Ltd, York Street, Cambridge.

WW326 for further details

Rotary Stud Switch

The Elma sub-miniature rotary stud switch now features an improved case in glass-filled polycarbonate. This material is unaffected by most common solvents and is easily marked to aid wiring. Switches are available with tags for direct wiring to p.c. boards and may be supplied with screwdriver slots instead of shafts. Different torque settings are available. The

standard torque setting is $200 \mathrm{gm} / \mathrm{cm}$; 400 and $600 \mathrm{gm} / \mathrm{cm}$ can be supplied to order. A ceramic wafer and gold-plated stud contacts are used. Contact resistance is better than $5 \mathrm{~m} \Omega$ and wafer insulation better than $10^{12} \Omega$. Switching capacity is up to 1A. Radiation Components Ltd, 76 Crown Road, Twickenham, Middlesex. WW 309 for further details

Rotary Switch Kit

Switch kit series 44 K 30 by Highland Electronics enables designers to assemble their own prototype rotary switches. Over 400 switch combinations can be constructed with up to 12 poles and 12 switch positions. Assembled switches have an adjustable stop which can be changed without break-
ing-down the switch. Components are re-usable and can be returned to the kit when the prototype is dismantled. Typical contact resistance is $10 \mathrm{~m} \Omega$ and contact rating is 0.5 A at 230 V a.c. resistive; 1 A at 28V D.C. resistive. Highland Electronics Ltd, 33-41 Dallington Street, London E.C.I. WW 322 for further details.

Voltage-coupled Waveform Generator

A waveform generator with voltagecontrolled frequency over a 1000:1 ratio, and a bandwidth from 0.1 Hz to 3 MHz , is being marketed by Environmental Equipments. The instrument, model 123, produces sine, square and trianguiar waveforms, as well as a sync pulse. Frequency is controlled to $\pm 2 \%$ accuracy by a Kelvin-Varley divider in the form of a multiplier with both digital and vernier adjustments. External voltage control can

either be d.c. programming or a.c. frequency modulation. The output for all waveforms is at least 20 V pk-pk into an open circuit, or 10 V pk-pk into a $50-\Omega$ load. Attenuation of 60 dB in steps of 20 dB is provided, as well as variable $\pm 5 \mathrm{~V}$ d.c. offset and floating output. A search mode is provided so the operator can use the vernier in the multiplier to sweep over a 1000:1 (three-decade) range within the frequency range selected. Both top and bottom panels of the instrument case are easily removable for calibration and maintenance. Environmental Equipments Ltd, Denton Rd., Wokingham, Berks.
WW328 for further details

$\mathbf{5 0 - M H z}$ Counter/Timer

Latest addition to the Marconi Instruments counter/timer range, TF2411, features a choice of plug-in frequency standards permitting the user to order an instrument with a performance and accuracy best suited to his applications. The TF2411 performs a wide range of functions including period and multi-period measurements, time interval, ratio and frequency measurements up to 50 MHz . Using mainly integrated circuits and based on a system of plug-in printed circuit boards, the counter/timer has an f.e.t. input giving 10 mV sensitivity and $1 \mathrm{M} \Omega$ input impedance. Seven-digit readout is provided with a binary memory, and there is an optional b.c.d. printer-output. The cabinet measures $89 \times 280 \times 254 \mathrm{~mm}$. The three plug-in

frequency standards at present available for TF2411 are: TM9933-a high-performance crystal and oven with an age rate of 1×10^{-7} per month and a warm-up time of 10 minutes to reach 1×10^{-7} operation; TM9888H-simple crystal oscillator which includes a $10-\mathrm{MHz}$ ex ternal standard panel; and TM9890 which accepts external standard frequency signals between 1 and 10 MHz . The choice of standard is made at the time of ordering. Marconi Instruments Ltd, Longacres St. Albans, Herts.
WW 312 for further details

Equipment Cases

A range of modular instrument cases from Case Systems has been designed to give a flexible and compact method of housing electronic equipment. The cases are constructed from aluminium extrusions and plastic mouldings. Each case is mechanically stable when placed on any of its six sides, and the handles protect panel components, such as meters and switches, when the case is placed face

downwards or accidentally dropped. The protrusions at the rear which allow the case to stand face upwards, also protect rear connectors and components. The standard case, CSI which is bench mounting can be converted to 19 -in rack mounting simply by fitting brackets to each side. The CSI will accept one module MI or two modules M2. The CS2 or "half rack" case accepts one module M2 only. Case Systems, 20 Hunt Lane, Chadderton, Lancs.
WW329 for further details

High-Q Varactor Diodes for X-Band

Four gallium arsenide, Schottky barrier diodes announced by Mullard are intended for use as tuning elements in microwave circuits. Because the four devices, which form the 821 CXY family, have resistances of not more than 3, , high Q-factors can be achieved. The diodes have zero-bias junction capacitances of 0.8 to 2.5 pF , depending on the type. Breakdown voltage
is not less than 12 V , and the minimum ratio of junction capacitance at zero bias to capacitance at 12 V reverse bias is 3 . Mullard Ltd, Mullard House, Torrington Place, London W.C. 1.
WW327 for further details

Colour-coded Audio Output Transistors

The full range of G.E. (U.S.A.) Power-Tab a.f. output transistors is now available from Jermyn Industries. Four main types, colour-coded for easy identification, make up two sets of complementary stereo

pairs: D40 brown, 1 A 6W, n-p-n; D41 black, $1 \mathrm{~A} 6 \mathrm{~W}, \mathrm{p}-\mathrm{n}-\mathrm{p}$; D42 red, 3A 12W, n-p-n; D43 green, 3A 12W, p-n-p. Each type is available with 30,45 or 60 V continuous rating, with a wide range of gains up to 30 . The flat pins are easily formed to TOS or TO66 configurations. 100 up prices range from 7 s 8 d to 21 s . Jermyn Industries, Vestry Estate, Sevenoaks, Kent.
WW325 for further details

Low-drift Op. Amps.

Advance Electronics announce three lowdrift versions of their ZEL I series operational amplifiers. They are designated ZEL 1/02, /03 and /04 and have drift characteristics of $2.5,5$ and $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ respectively. Other main features of the ZEL 1 range are: d.c. gain $5 \times 10^{5} \mathrm{~min}$; offset current 5 nA max; slew rate $6 \mathrm{~V} / \mu \mathrm{s} \mathrm{min}$; c.m.r.r. 20,000 and input noise $2 \mu \mathrm{~V}$ r.m.s. Prices $£ 1810 \mathrm{~s}(/ 02), £ 11(/ 03)$ and $£ 810 \mathrm{~s}(/ 04)$. Advance Industrial Electronics, Raynham Road, Bishops Stortford, Herts. WW 314 for further details

Subminiature Relays

Two miniature relays measuring only 20.3 mm long by 14.2 mm wide by 6.35 mm high have been introduced by Bourns. These are models 3120 s.p.d.t. and 3121 d.p.d.t. Both have a 1 A rating at 26 V d.c. and an operating temperature range of -65 to $+125^{\circ} \mathrm{C}$. Coil resistance and sensitivity ranges for the 3120 and 3121 respectively are $50-2,000 \Omega, 100 \mathrm{~mW}$ nominal, and $65-2,000 \Omega, 160 \mathrm{~mW}$ nominal. Contact material is gold-plated semiprecious metal and a life of 100,000 cycles is claimed. Bourns (Trimpot) Ltd, Hodford House, 17/27 High Street, Hounslow, Middx.
WW319 for further details.

Literature Received

For further information on any item include the $W W$ number on the reader reply card

Kempston Electrical Co. Led, Shirley Rd., Rushden, Northants

WW438
A catalogue listing the products distributed by the D-T-V Group, 126 Hamition Rd, London S.E.27, is available

WW439
A range of contactiess switches is described in a catalogue from Cole Electronics Lid, Lansdowne Rd, Croydon CR9 2HB

WW440
Miniature switches, microphones, headsets, leads, plugs and sockets are the subject of a catalogue from Danavox (Great Britain) Led, "Broadlands", Bagshot Rd. Sunninghill, Berks.

WW 465
Two engineering bulletins received from Sprague (U.K.) Ltd., Sprague House, 159 High St., Yiewsley, West Drayton, Middlesex, describe capacitors.

2705A Metalized polycarbonate-film capacitors
WW466
3456A Aluminium capacitors, non-aqueous
electrolyte WW467
An eight-page potentiometer selection guide is available from Reliance Controls Ltd, Drakes Way, Swindon, Witts.WW 468

Details of a seven-day prototype illuminated pushbutton switch service are given in literature from Forder Graham Lid., Pinnacle Mill, Keslo, Roxburghshire. The service is based on a 4 -pole change-over switch which can be supplied in banks with a variety of mechanical actions and contact configurations
.WW 469

HARDWARE, ETC.

A data sheet from Firth Cleveland Fastenings Lid, Treforest, Pontypridd, Glamorgan, pictorially shows the uses of a range of Spire fasteners WW441

A copy of a paper "New Cleaning and Drying Techniques for Critical Electronic Assemblies", is available from: I.C.I. Led, Thames House North, Millbank, London S.W. 1

A modular connecting system called Hypertac is described in a leaflet $\mathrm{S} / 294 \mathrm{C}$ from Smiths Industries, Industrial Instrument Division, Kelvin House, Wembley Park, Middx WW443

Applications data and technical information on Loctite products for thread locking, retaining and sealing is given in a brochure from: Douglas Kane Group Lid, Swallowfields, Welwy G Garden City, Herts.. WW 444

EQUIPMENT

Over 200 power supply modules and about 50 measuring instruments are the subject of a leafiet from Lambda Electronics, 21 Aston Rd, Waterlooville, Portsmouth, Hants

WW445
Performance details of the type TSA 6636/3 counter timer are in a data sheet. Venner Electronics Ldd, Kingston By-Pass, New Malden, Surrey. . . . WW446

Helium-neon lasers are described in a leaflet from Ferranti Lud, Dunsinane Avenue, Dundee DD2 3PN, Scotland
. WW447
A leaflet describing the digital voltmeter type LM 1867 may be obtained from the Solartron Electronic Group Lid, Farnborough, Hants WW448

Lyons Instruments Led, Hoddesdon, Herts, have produced a leaflet which describes six pulse generatorsWW449

A Gunn-oscillator, type PM7015X is described in a leaflet from Sivers Lab, U.K. Office, Old Haverhill Rd, Little Wratting, Suffolk

WW450
The following literature is available from Dana Electronics Led, Bilton Way, Dallow Rd, Luton, Beds:

Series 5740 digital voltmeters
WW451
Series 5700 digital voltmetersWW452
We have received the following literature from

Marconi Instruments Ltd, Longacres, St. Albans, Hers

Automatic testing-the way ahead WW453 TF $2210,100 \mathrm{MHz}$ oscilloscope WW454

Lyons Instruments (Hoddesdon, Herts), newsletter for January 1970 discusses a programmed pulse system for dynamic testing

WW455
Thyristor controllers for use between 100 and 300A are the subject of a data sheet published by AEI Semiconductors Lid, Carholme Rd, Lincoln. WW456
"Servoscribe" flat-bed chart recorders are described in a leaflet from the Industrial Instrument Division Smiths Industries Ltd, Wembley, Middx WW457

The diverse products of Hewlett Packard Ltd, 224 Bath Rd, Slough, Bucks, for measurement, analysis and computation are described in a handsome 647-page hard-bound volume

WW458
The following two brochures are obtainable from Racal Group Services Lid., 26 Broad St., Wokingham, Berks.
Solid state h.f. communications receivers . . WW 470 Radio telecommunications equipment and systems WW 471
V. N. Barrett \& Co. Ltd., I Mayo Rd., Croydon, CRO 2QP. Surrey, have produced a new catalogue of used scientific and industrial equipment. WW 472

GENERAL INFORMATION
"Product Guide-1970", published by the Electronic Engineering Association, Berkeley Square House, Berkeley Square, London W.1, lists manufacturers of electronic capital equipment

WW459
The Mullard Educational Service, Mullard House, Torrington Place, London W.C.I, have produced a leafet listing all the publications available from them WW460
"Measuretest" instrument application notes (numbers 001 and 002), for colour television are available from Marconj Instruments Lid, Longacres, St. Albans, Herts

WW461
Tektronix U.K. Ltd, Beaverton House, P.O. Box 69 Harpenden, Herts, have three more books in their "Concept" series available; the price is 10 s each including packing and postage. They are:

Horizontal Amplifier Circuits
Oscilloscope Probe Circuits
Probe Measurements
R.C.A. Great Britain Ltd, Lincoln Way, Windmill Rd, Sunbury-on-Thames, Middx, have available application note ICAN-4158 "Application of the CA 3059 zero-voltage switch in thyristor circuits"..... WW 462

The Scientific Instrument Manufacturers' Association of Great Britain, SIMA House, 20 Peel St, London W.8, have produced a booklet called "Metrication Guide" which is available from them price 50 s .

[^5]We have received two publications from the British Calibration Service, Millbank Tower, London S.W.I, which are listed below. The first of these explains what the British Calibration Service is and how a laboratory may apply for approval. The second publication lists all the laboratories that have obtained approval so far together with the type of measurements they can carry out and the degree of accuracy guaranteed.

About the British Calibration Service
WW475
Directory of Approved Laboratories
WW476

OF CRIIICS

COMPREHENSIVE RANGE OF MOULDED SWITCHES

DOUBLE POLE RANGE

Illustrated left is the SM. 270/2/PD, one of a new range of 14 Double Pole Moulded Insulation Switches. universally D.P. Change-Over. which can switch On-Off or Off-On as desired, by not connecting two tags. The body moulding is Grey. internal contacts and solder tags are silver plated and metal front of panel parts are chromed. Operation can be Toggle. Biased Toggle. Biased Push. Push-Push (successional) Action. Push-Pull Action, Semi-Rotary Shaft or Key and the connection tags accept solder or 110 series push on tabs. Various modifications can be supplied, to agreed quantity orders. Send for the Moulded Switch Wall chart listed for the full list of modifications available.

NEW 4 CONTACT \& 8 CONTACT MOOELS

Illustrated right is one of a range of two NEW further types of Double Pole Moulded Insulation Switch with a higher rating than the Double Pole range above.
Two versions aıe available, both Toggle operated SM.277/2/PD is a D.P. Make-Break (4 contact) Switch (illustrated), rated at 4A at 250 V A.C. and SM. $301 / 2 /$ PD is a D.P. Change-Over 8 contact model. rated 3 A at 250 V A.C. for double pole alternative circuit switching. In both cases the body is a polished Grey moulding, the internal contacts and solder tags are silver plated and the front of pane parts are chromed. Only one modification is available for this range as tabulated

DOUBLE POLE ROTARY MODEL

Illustrated left is a semi-rotary shaft version of one of the above mentioned Double Pole Moulded Switches. The model is rated at 2 A 250 V A.C. N. 1 . with $\frac{1}{}_{\prime \prime} \emptyset$ shaft and head guide Make and Break action fine silver cleaning contacts and solder tag connections.

single pole range

Illustrated right is one of the complete range of Single Pole Moulded Insulation Switches manufactured by the latest automatic methods, with constant testing ensuring that the highest standard of finish is always maintained. All front of panel parts are plated in briliant chrome, except where moulded operators are used, which are black. Internal contacts and solder tags are heavily silver plated for the best possible connection whilst all other metal parts are suitably protected against corrosion, the polished Black moulded body gives excellent insulation

A wide range of different models are available. Operation can be Toggle (illustrated left), Biased Toggle. Biased Push. Push-Push (successional) Action, Push-Pull. Slider. Key, and Semi-rotary Shaft (illustrated above right). Connection in all cases is to Solder Tags, with Screw Terminals available to order as an alternative on some models. A wide range of modifications can be supplied to agreed quantity orders. see the moulded switch wall chart.
Proof Test $=2 \mathrm{~K} . \mathrm{V}$. at $50 \mathrm{c} / \mathrm{S}$. I.R. <
$100 \mathrm{M} \Omega \mathrm{dr}$ or recovered at 500 V .
SEND FOR COMPREHENSIVE MOULDED SWITCH/LAMINATED SWITCH EQUIVALENT LIST REF 1536/C
> A. F. BULGIN \& CO. LTD.

> Bye Pass Rd., Barking, Essex.
> Tel: O1-594 5588 (12 lines)

April Meetings

Tickets are required for some meetings: readers are advised, therefore, to communicate with the society concerned

LONDON

1st. I.E.E.-Discussion on "Electrical measurement on acoustic surface wave devices" at 17.30 Savoy PI, W.C. 2.

1st. I.E.R.E.-Discussion on "Direct digital measurement of physical quantities" at 18.00 at 9 Bedford Sq., W.C.I.

3rd. I.E.E.-"Implementation of digital filters" by Prof. R. Boite at 17.30 at Savoy PI., W.C. 2 .

3rd. I.E.E.-Discussion on "Aeronautical communication by satellite" at 17.30 at Savoy Pl., W.C. 2 .

6th. I.E.E.-Discussion on "Multi element phased arrays" at 17.30 at Savoy PI., W.C.2.
7th. 1.E.E./R.Ae.S.-"Satellite communication" by J. K. S. Jowett at 18.00 at Savoy Pl., W.C. 2 .
8th. I.E.R.E.-Colloquium on "High resolution systems" at 14.30 at 9 Bedford Sq.rW.C.I.

9th. R.T.S.-"Creating colour television titles" by M. H. Cox and R. Knight at 19.00 at I.T.A., 70 Brompton Road, S.W.3.

15th. I.E.E-Discussion on "Photolithographic techniques in microelectronics" at 17.30 at Savoy PI., w.C. 2 .

15th. B.K.S.T.S.- "The Minicam: the Pye/CBS miniature colour television camera" by Len Cosgrove at 19.30 at I.T.A., 70 Brompton Road, S.W. 3.
20th. I.E.E./I.E.R.E.-Colloquium on "Skynet" at 10.00 at the I.E.E., Savoy PI., W.C.2.

22nd. I.E.E.-"Telecommunications support for the Apollo programme" by Lorne M. Robinson (N.A.S.A.) at 17.30 at Savoy Pl., W.C. 2 .

22nd. I.E.R.E-"Real-time computer model (business games)" by D. Simpson at 18.00 at 9 Bedford Sq., W.C.I.

23rd. I.E.E.-"Quasars and radiogalaxies" by Professor F. Hoyle at 17.30 at Savoy Pl., W.C.2.
23 rd. Inst. Electronics-"Modern aspects of electronic instrument design" by G. F. Penner at 18.30 at West Ham Coliege of Technology, Stratford, E. 15.

23rd. R.T.S.-Fleming Memorial Lecture "The impact of automation on television transmission" by F. H. Steele, G. A. McKenzie and R. H. Vivian at 19.00 at the Royal Institution, Albermarie St., W.I.

28th. F.E.R.E.-Symposium on "Capacitors" at 10.00 at 9 Bedford Sq., W.C.I
29th. 1.E.E.-"Ionospheric research by means of oblique incidence sounders" by P. Bradley at 17.30 at Savoy PI., W.C. 2.
29th. I.E.RE-"Scanning circuits for 110° colour tubes" by K. E. Martin at 18.00 at 9 Bedford Sq., W.C.I.

30th. I.E.E./I.E.R.E.- Microprogramming and processor design" by Prof. M. V. Wilkes at 17.30 at Savoy Pl., W.C.2.

30th. R.T.S.-"An image analyser for medicine using colour television techniques" by M. B. Coyne, F. Paice \& Prof. E. D. Williams at 19.00 at the Wolfson Institute, Royal Postgraduate Medical School, Hammersmith Hospital, Ducane Road, W. 12.

BARROW-IN-FURNESS

15th. I.E.E.-"Application of lasers" by Prof. E.D.R. Shearman at 19.30 at the Hotel Imperial, Cornwallis St.

BELFAST

loth. I.E.R.E.-"Aerials" by H. V. Sims at 18.30 at the Ashby Inst., the Queen's University, Stranmillis Road.

14th. I.E.E.T.E.-"Concorde-flight/auto controls and navigation" by H. Hill at 19.30 at the Ashby Institute, the University, Stranmillis Road.

17th. I.E.E.-Faraday Lecture-"People, communications \& engineering" by J. H. H. Merriman at 20.00 at Sir Wm. Whitla Hall, Queen's University.

21st. I.E.E. Grads.--"Metal oxide silicon transistors" at 18.30 at the Main Lecture Theatre, Ashby Institute, Stranmillis Road.

BIRMINGHAM

8ih. I.E.E. Grads.-"Thyristor drives" by M. F. Arnold at 19.00 at the Sumpner Bldg, the University of Aston, Gosta Green.

9th. I.E.R.E.-"Gramophone records-past and present" by G. M. Nathan at 19.30 at the University's Dept. of Electronic \& Electrical Eng'g.
15th. R.T.S.-"University of Birmingham television service" by Dr. Peter Whitaker at 19.00 at the University.

BLETCHLEY

21st. I.E.E.-"Lasers and their applications" at 19.15 at Harwood House College.

BRIGHTON

14th. I.E.E.-"On the future of world communication" by Prof. E. C. Cherry at 18.30 at the College of Téchnology, Lewes Rd, Moulsecoumb.

CARDIFF

6th. I.E.E.-"Digital filters" by Dr. R.C.V. Macario at 18.00 at U.W.I.S.T.

23rd. R.T.S.-"The E.V.R. system" by Sir Francis McLean at 19.00 at the B.B.C. Llandaff.

CARLISLE

8th. I.E.E.T.E.- "Application of thyristors to industrial control systems" by S. Denyer at 19.30 at the Technical College, Victoria Place.

CHATHAM

23rd. I.E.R.E.-"Automatic yrains on the Victoria Line" by R. 1. M. Arthurton at 19.00 at the Medway College of Technology.

CHELMSFORD

15th. I.E.E.-"Radio-astronomy, thirty-five years progress" by F. W. Hyde at 18.30 at the King Edward Grammar School.

28th. I.E.R.E./I.E.E.-" 24 -channel p.c.m." by A. Stevens at 18.30 at the Civic Centre, Duke Street.

DUBLIN

15th. I.E.E.-Faraday Lecture - " People, communications \& engineering" by J. H. H. Merriman at 20.00 at R.D.S. Hall.

DURHAM

22nd. I.E.E.T.E.-"Application of thyristors to industrial control systems" by S. Denyer at 19.30 at the University's Science Laboratories, South Road.

EVESHAM

20th. I.E.E./I.E.R.E.-"Large scale integration in microelectronics" by D. D. Jones at 19.30 at the B.B.C. Engineering Training Centre. Woodnorton.

LEEDS

16th. I.E.R.E.-"Thyristors into the home and industry" by R. Willis at 19.30 at the University's Dept. of Electronic and Electrical Eng'g.

28th. I.E.E.-"Electronic measurement as a guide to archeological research" by E. T. Hall at 18.30 at the University.

LIVERPOOL

Ist. I.E.E. Grads.-"Laser holography" by Dr. J. M. Burch at 18.30 at the University.

6th. I.E.E-"The pulsars" by Prof. F. Graham Smith at 18.30 at the University.

22nd. I.ER.E.-"Schools project technology" at 19.30 at the University's Dept. of Electrical Eng'g.

MANCHESTER

8th. I.E.E. Grads.-"Communications bit by bit" by H. B. Law at 18.45 at U.M.I.S.T.
14th. I.E.E.-"History and development of time \& frequency measurement" by C. R. Cordwell at 18.15 at U.M.I.S.T.
22nd. I.E.E-"Radar data processing techniques with application to air traffic control" by Dr. P. J.C. Child at 18.15 at Renold Bldg, U.M.I.S.T.

NEWCASTLE-UPON-TYNE

8th. T.E.R.E.-"The symbolic integrated maintenance systems" by J. Hambleton at 18.00 at the Polytechnic (Rutherford College), Ellison PI.

NORWICH

14th I.E.E.-"Electronic performance testing of motor vehicles" by E. Gamble at 19.30 at the Assembly Hall.

NOTTINGHAM

16th. R.T.S.-"Duplication of BBC-I on u.h.f. \& introduction of 3 -channel colour" at 19.30 at the B.B.C. Studios, Wilson House. Derby Road.

PLYMOUTH

14th. I.E.E.T.E-"Oceanographic instrumentation" by Lt. Cdr. T. J. Woodfin and Eng. Sub. L. M. Rushton at 19.30 at the Lecture Theatre, the College of Technology.

PORTSMOUTH

21st. I.E.E.-"Aids to all-weather landing of aircraf" by M. Catton at 18.30 at the Polytechnic, Anglesea Rd

READING

16th. I.E.R.E.-"The design of solid-state audio amplifiers ${ }^{n}$ by P. J. Baxandall at 19.30 at the J. J. Thomson Lab., the University, Whiteknights Pk.

RUGELEY

2nd. I.E.R.E.-"Engineer to manager-effecting the transition" by M. W. Lauerman at 19.00 at the Shrewsbury Arms Hotel, Market St.

SALFORD

13th. I.E.E.-"Electronics, man \& aerospace" by R. E. Young at 19.30 at the University.

14th. I.E.E-"Electronics, man \& aerospace" by R. E. Young at 14.30 (students) and 19.30 at the University.

SALISBURY

13th. I.E.E.--"Colour television" by L. G. Dive at 19.00 at the Salisbury \& Wits College of Further Education, the Friary.

STOKE-ON-TRENT

9th. I.E.E. Grads-"Voltage and its measurement from 'A' to about 'Q' by F. W. Senior at 19:15 at the North Staffs College of Technology.

SWANSEA

9th. I.E.E.-"M.O.S. integrated logic" by J. A Roberts at 18.15 at University College, Singleton Pk.

2Watt and 3Watt Professional IC Audio Amplifiers now available

These Plessey general purpose integrated circuit audio amplifiers are being used by a number of major equipment manufacturers throughout the country.

Through large scale production Plessey can now make these devices available to home constructors at reasonable prices.

Each circuit incorporates a preamplifier and a class A-B power amplifier stage and needs only a minimum of external components.

Take a look at these specifications opposite! These really outstanding Plessey IC audio amplifiers are immediately available off-the-shelf from our distributors listed below. Data application brochures (Price 1 s .9 d. each) which include PC board layouts for mono and stereo amplifiers are obtainable from:

Farnell Electronic Components Ltd
Canal Rd, Leeds LS 12 2TU
Tel : Leeds 636311 Telex : 55147

Characteristic
Output power r.m.s.
Input impedance
Preamplifier
Main amplifier
Distortion
Preamplifier
Main amplifier
Frequency response
Lower-3dB point
Upper-3dB point
Operating voltage
Min. operating load

SL402A	SL403A
2W	3W
20 M !	20 M s!
100 M ! 2	100 M s
0.1\%	0.1\%
0.3\%	0.3\%
$\begin{gathered} 20 \mathrm{~Hz} \\ 30 \mathrm{kHz} \end{gathered}$	$\begin{gathered} 20 \mathrm{~Hz} \\ 30 \mathrm{kHz} \end{gathered}$
$+14 \mathrm{~V}$	$+18 \mathrm{~V}$
7.5Ω	7.5 @

SDS (Portsmouth) Ltd
Hillsea Industrial Estate, Hillsea, Portsmouth, Hants.
Tel : Portsmouth (0705) 62332 or 62180 Telex : 86114

PLESSEYmicroelectronics
Cheney Manor Swindon Wiltshire England Telephone: Swindon (0793) 6251. Telex:44375

\square CDU $110 \quad 20 \mathrm{MHz}$ Dual Channel $5 \mathrm{mV} / \mathrm{cm}$ Sweep Speeds to $40 \mathrm{nS} / \mathrm{cm}$ Sweep Delay $\mathbf{£ 3 6 0}$
\square CDU $12050 \mathrm{MHz} 5 \mathrm{mV} / \mathrm{cm} 25 \mathrm{MHz} 1 \mathrm{mV} / \mathrm{cm}$ Dual Channel Sweep Delay $\mathbf{£ 6 4 0}$
\square CDU $13015 \mathrm{MHz} 5 \mathrm{mV} /$ div. Mains/Internal Batteries 16.5 lb . including battery $\mathbf{£ 2 3 0}$
CDU 15035 MHz Dual Channel $5 \mathrm{mV} / \mathrm{cm}$ Sweep Speeds to $20 \mathrm{nS} / \mathrm{cm}$ Sweep Delay $\mathbf{£ 4 8 0}$
COSSOD- firstins spops

Experience:

Since the beginning of industrial r.f. heating, EEV have been the pace-setters. With this experience, backed by our equal know-how in the transmitter valve field, is it any wonder that we are so well known for power triodes?

EEV make power triodes for industrial heating applications from 1 kW up to 250 kW . They are all conservatively rated and realistically designed to give good length of life. Whatever your application -for drying paper, baking biscuits, welding plastic,
treating metal-r.f. heating the EEV way is economical and dependable.

Our sales engineers are at your service to discuss designs and to recommend the best tube or combination of tubes for your particular application.

For full details just post the coupon or telephone Mr.M.J. Pitt.

English Electric Valve Co Ltd. Chelmsford Essex. England. Telephone: 024561777 . Telex 99103. Grams: Enelectico Chelmsford

the vital factor of EEV's industrial r.f. heating power triode range

The great EEV radardisplay

These radar components represent just part of our total radar capability, and they indicate the size of our investment in radar. We know radar from thyratrons to magnetrons, from duplexers to klystrons. And we have the resources to back this immense fund of knowledge. EEV's advanced tube technology is at your service. If a device to suit your equipment is not already in our catalogue, we would consider making one specially for you.

So that we can send you the latest, up-to-date information, please return the coupon opposite.

English Electric Valve Co. Ltd., Chelmsford, Essex, England. Telephone: 0245 61777. Telex: 99103. Grams: Enelectico, Chelmsford.

1. Magnetrons

2. High power klystrons

3. High-power travelling-wave tubes

4. Hydrogen thyratrons

5. Pulse tetrodes

6. Low-power travelling-wave tubes

7. Low power klystrons and backward wave oscillators

8. Duplexer devices

9. Voltage stabilisers

10. Storage tubes

Post Haste

Drop us a line and you'll see. Morganite Filmet resistors reach you faster. Because development batches of standard Filmet ${ }^{\text {a }}$ are ready on the shelf right now. Waiting on your 'phone call. They come in three basic sizes, and they're not bound by the usual limitations of metal film resistors at all. Witness temperature coefficients like 15 p.p.m. $/{ }^{\circ} \mathrm{C}$

Selection tolerances as tight as $\pm 0.1 \%$.
What's more, we build the same kind of stability into special orders. too We don't see why nonstandard customers should get sub-standard service just because their supplier doesn't like putting his production line out of gear. In our books, made-tomeasure resistors should be
made to your measure, not ours. With the performance you specify.
And we don't make you pay through the nose when they arrive, either You'll see what we mean when you ask for our price list covering the standard Filmet range. Call us any time, and we'll send you a copy by return of post.
First class, of course.

MORGANITE RESISTORS LIMITED

Bede Industrial Estate, Jarrow, County Durham.
Telephone : Jarrow 897771 Telex: 53353

QUAD 50 is a single channel 50 Watt amplifier designed for Broadcast, Recording and other applications in the Audio industry, completely proof against misuse and giving the highest quality of reproduction.

INPUTS - 0.5 Vrms unbalanced with provision for an optional plug-in transformer for bridging 600 ohms lines. OUTPUTS - isolated providing 50 watts into almost any impedance from 4 to 200 ohms.
DIMENSIONS - $12 \frac{3}{4}{ }^{\prime \prime} \times 6 \frac{1}{4}{ }^{\prime \prime} \times 4 \frac{1}{2}{ }^{\prime \prime}$
Complete the coupon and post today.

```
Please send me full details of the QUAD 50 Amplifier
NAME
POSITION
COMPANY
ADDRESS
(BLOCK CAPITALS)
ACOUSTICAL MANUFACTURING CO. LTD.,

\section*{World Travellers pose for their passports}

The Teonex family is big \(-2,000\) odd members, exclusive of semi-conductor relatives! Like every family, they come in many shapes and sizes. Slim or fat, tall or squat, bigger or smaller, and in many ages: very young to very old. But there are two common characteristics. They are very reliable and they all have to travel.
Nearly 60 countries now welcome Teonex, on Government and private contract. The family album is as comprehensive as you can get and most members are available from stock.
For technical specifications and price lists please write to Teonex Limited 2a Westbourne Grove Mews • London W. 11 • England Cables: Tosuply London W. 11



\section*{We know athing or two about Tantalum Capacitors - and here are the curves to prove it!}

Erie T11 tantalums use every cubic millimetre, every gramme of weight, to give you more capacitance. Porous sintered slugs and high-conductivity electrolyte combine to give you high CV's per unit volume; in 5 case sizes ; in values from 1 to 500 kF ; and in ratings from 6 to 70 Volts d.c.

Designed to operate at temperatures between -55 and \(+100^{\circ} \mathrm{C}\). Teeelevens eliminate corrosion risks by using completely neutral electrolyte ... and they are sealed in double cases. Leakage current characteristics are lower than accepted specifications. But see the curves yourself. They're

fascinating. Supply your name and address; we'll rush the leaflet to you.

ERIE ELECTRONICS LTD. Gt. Yarmouth Norfolk. Telephone : 04934911 Telex: 97421

\section*{ERIE TANTALUM ELECTROLYTIC CAPACITORS}

\section*{Vortexion}

This is a high fidelity amplifier ( \(0.3 \%\) intermodulation distortion) using the circuit of our \(100 \%\) reliable- 100 Watt Amplifier (no failures to date) with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for \(3-30 / 60 \Omega\) balanced line microphones, and a high impedance line or gram. input followed by bass and treble controls. 100 volt balanced line output.

\section*{THE VORTEXION 50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4-WAY MIXER USING F.E.T.s.}


100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Imput 0.4 V on 100 K ohms.


\section*{THE 100 WATT MIXER AMPLI-}

FIER with specification as above is here combined with a 4 channel F.E.T. mixer, 3 mic. 1 gram with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over \(25 \%\) and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms -15 ohms and 100 volt line. Bass and treble controls fitted.
Models available with 1 gram and 2 low mic. inputs. 1 gram and 3 low mic. inputs or 4 low mic. inputs.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of \(30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{~dB}\). Less than \(0.2 \%\) distortion at \(1 \mathrm{Kc} / \mathrm{s}\). Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output \(100-120 \mathrm{~V}\) or \(200-240 \mathrm{~V}\). Additional matching transformers for other impedances are available.

ELECTRONIC MIXERS. Various types of mixers available. 3-channel with accuracy within 1 dB Peak Programme Meter. 4-6-8-10 and 12 -way mixers. Twin 2, 3, 4 and 5 channel stereo. Built-in screened supplies. Balanced line mic. input. Outputs: 0.5 V at 20 K or alternative 1 mW at 600 ohms, balanced, unbalanced or floating.

\section*{see Us at SONEX'TO Skyway Hotel}

Bath Rd, Hayes, Middx.
April 24th - 26th 1970
Fri \& Sat: 11am -9pm
Sun: 11am -6 pm


The answer-everything.
It took years of intensive research and development to perfect every little part that goes to make the Hawker Harrier.
And these specially developed components include Gardners Transformers.
Many people seem to think that Gardners only provide 'off-the-shelf' equipment.
It isn't true- \(80 \%\) of our production is for special components.
We design and develop highly specialised transformers for Defence projects, Radar, Sonar, electronics, control systems and similar sophisticated equipments.
Of course, we don't expect everyone to be making things like aircraft that don't need runways.
They wouldn't be special anymore.

Incidentally, Gardners manufacture the largest standard range of transformers in Europe. So even our un-specials are special!
Comprehensive publications available on request include
Microphone and Line Matching Transformers GT22. Microminiature Transformers GT12
Audio Transformers GT4.
Inverters GT21.
Saturable Reactors GT1.
Low Voltage, Isolating and Audio Transformers GT17.
Transformers for Tube Type Circuits GT24.


GARDNERS TRANSFORMERS LIMITED, Christchurch, Hampshire BH23 3PN.
Tel: Christchurch 2284. (STD 02015 2284) Telex 41276 GARDNERS XCH.


68 Registered trade mark of Claude Lyons Lumitad

With every Claude Lyons Regulac comes the benefit of 35 years' experience in variable transformers. Regulacs come in hundreds of models from small single units for laboratory or instrument use to large ganged assemblies for high-power 3 -phase operation at outputs from 210VA to 28.8 kVA and above.

The range includes portable, dual-output and oilimmersed models plus many high-frequency and special types-and is constantly being extended.

Regulacs provide smooth, continuous adjustment of voltage output from zero to line voltage and above, either hand-operated or motor-driven. No device is more useful, versatile and reliable for the control of \(A C\) voltage.


Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

\section*{On 'SATISFACTION OR REFUND OF FEE' terms}

This remarkable book gives details of examinations, and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

> WHICH OF THESE IS YOUR PET SUBJECT?

\section*{ELECTRONIC ENG.}

Advanced Electronic Eng. Gen. Electronic Eng. - Applied Gen. Electronic Eng. - Applied
Electronics - Practical ElecElectronics - Practical ElecFroncs - Radar Tech. Frequency

\section*{ELECTRICAL ENG.}

Advanced Electrical Eng. Gen. Electrical Eng, -Installations - Draughtsmanship - Illuminating Eng. - Refrig eration - Elem. Electrical Science - Electrical Science Electrical Supply - Mining Electrical Eng.

CIVIL ENG.
Advanced Civil Eng. - Gen. Civil Eng,-Municipal Eng.Civil Eng,-Mumcipal Eng.Structural Eng. - Sanitary Eng. - Road Eng. - Hydraulics - Mining - Water Supply - Petrol Tech.

\section*{RADIO ENG.}

Advanced Radio - Gen. Radio Radio \& TV Servicing TV Eng. - Telecommunications - Sound Recording Automation - Practical Radio -Radio Amateurs' Exam.
MECHANICAL ENG.
Advanced Mechanical Eng. Gen. Mechanical Eng. Maintenance Eng. - Diesel Eng. - Press Tool Design Sheet Metal Work - Welding - Eng. Pattern Making -Inspection-Draughtsmanship--Metallurgy - Production Eng.

AUTOMOBILE ENG.
Advanced Automobile Eng. \(\rightarrow\) Gen. Automobile Eng. - Automobile Maintenance - Repair - Automobile Diesel Maintenance - Automobile Electrical Equipment - Garage Management.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
 M.R.S.H., A.M.I.E.D., A.M.I.Mun.E.
GEN. CERT. OF EDUCATION, ETC.
british institute of engineering technology 446A aldermaston court, aldermaston, berkshire


You are bound to benefit from reading "ENGINEERING OPPORTUNITIES." Send for your copy now-FREE and without obligation.


\section*{POST GOUPON NOW!}

\section*{TO B.I.E.T., 446A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE.}

Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

\section*{NAME}

ADDRESS
\(\qquad\)

\section*{Uncamouflaged stereo.}

All too many stereo makers tend to gloss over their inadequacies with high-sounding rhetoric, hiding poor performance behind purple prose.

Sansui, Japan's foremost audioonly specialist, offers you stereo without camouflage. Complete, and all out in the open. We let features and figures do the talking for us, not empty phrases.

One of our most powerful and most popular systems, for example, offers:

The 180 watt 5000 A receiver, with a 15 to \(30,000 \mathrm{~Hz}\) power bandwidth figure and distortion
of \(0.8 \%\) or less. IC and FET circuitry, trouble-free output terminals, two AC outlets, MPX separation adjustor, and a ground terminal that permits a better than 65 dB S/N ratio.

The 70 watt SP-2000 speaker system. You can hardly call those hand-carved "Kumiko" fretwork grilles "camouflage," when behind them are six perfectly positioned speakers, with a \(12 \mathrm{~dB} /\) oct. crossover network and 3-position level controls. Superb stereo reproduction throughout a wide 30
to \(20,000 \mathrm{~Hz}\) frequency response range.

Add the professional 2-speed manual turntable SR-3030BC, and 2-way 4 -speaker SS-20 headphone set and you're ready for an eyeopening surprise in undisguised stereo.

If you've had enough of camouflage compromises and excess verbiage, we think you'll find us refreshingly frank. Because at Sansui, the only word that really counts is quality.

\section*{Sansui.}


\footnotetext{
England: BRUSH CLEVITE COMPANY LIMITED Thornhill, Southampton S09 1QX Tel: Southamplon \(45166 /\) Ireland: RADIO CENTRE 122A, St. Stephen's Green, Dublin 2 /West Germany: COMPO HI-FI G.M.B.H. 6 Frankfurt am Main, Reuterweg 65 /Switzerland \& Liechtenstein: EGLI, FISCHER \& CO. LTD. ZURICH 8022 urich, Gothardstr. 6, Claridenhof / France: HENRI COTTE \& CIE 77, Rue I-R. Thorelle, 77,92•Bourg-la-Relne/Luxembourg: MICHAEL SHEN, EUROTEX 12, Route de Thionville / Austria: THE VIENNA HIGH FIDELITY \& STEREO CO. 1070 Wien, Burggasse 114 / Belgium: MATELECTRIC S.P.R.L. Bouleverd Léopold II, 1080 Brussels/ Netherlands: TEMPOFOON BRITISH IMPORT COMPANY N.V. Tilburg, Kapitein Hatterasstraat 8, Postbus \(540 /\) South Africa: GLENS (PTY) LTD. P.O. Box 6406 Johannesburg / Southern Yemen: BHICAJEE COWASJEE LTD. Steamer Point, Aden / SANSUI ELECTRIC CO., LTD. FRANKFURT OFFICE 6 Frankfurt am Main, Reuterweg 93, West Germany / SANSUI ELECTRIC CO., LTD. 14-1, 2-chome, Izumi, Suginami-ku, Tokyo, Japan
}

\section*{BROOKDEAL AMPLIFIERS: a limited guide to their unlimi \({ }^{+}\)d uses.}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Signal source & 450 & 451 & 431 & 432 & - & \(\square\) \\
\hline ac bridge ( \(\mathrm{Hi}-\mathrm{Z}\) ) & 2 & 27 & & \(\checkmark\) & & \\
\hline ac bridge (Lo-Z) & 1 & & 1 & & \(0 \Leftrightarrow 6\) & \(\underline{-10)}\) \\
\hline accelerometer (piezoelectric) & - & \(\square\) & & \(\bigcirc\) & & \\
\hline accelerometer (moving coil) & & & \(\bigcirc\) & & Low-noise Ampli & er Type 450 \\
\hline biological sensors & & & & 1 & Frequency Range
Gain & \[
\begin{aligned}
& 1 \mathrm{~Hz}-300 \mathrm{kHz} \\
& 100 \mathrm{~dB}-18 \mathrm{~dB}
\end{aligned}
\] \\
\hline CdS photocell & & 3 & & & Noise Figure
\[
(1 \mathrm{k} \Omega-10 \mathrm{M} \Omega)
\] & \(<2 \mathrm{~dB}\) above 0.5 kHz \\
\hline condenser microphone & & & & \(\bigcirc\) & Non Linearity Input Impedance & \[
\begin{aligned}
& <0.05 \% \\
& 50 \mathrm{M} \Omega, 20 \mathrm{pF}
\end{aligned}
\] \\
\hline Cu dopəd Ge photodetector & & & \(\square\) & & & \\
\hline electron multiplier & & 1 & & & & \\
\hline Faraday cup & & 1 & & & ntem & \\
\hline Golay cell & & 1 & & & & 1 \\
\hline Hall-effect sample & & \(\square\) & & & & \\
\hline hydrophone & & & & & & \\
\hline hot carrier diode & 2 & & \(\bigcirc\) & & Systems Amplifier & Type 451 \\
\hline In Sb photocell (room temp) & & & 1 & & & \\
\hline In Sb p ootocell (cooled). & & 1 & & & Gain & \[
80 \mathrm{~dB}-28 \mathrm{~dB}
\] \\
\hline inductive ratio divider & & & & 1 & \begin{tabular}{l}
Non Linearity ( \(<100 \mathrm{kHz}\) ) \\
Input Impedance
\end{tabular} & \[
\begin{aligned}
& <0.05 \% \\
& 10 \mathrm{M} \Omega, 25 \mathrm{pF}
\end{aligned}
\] \\
\hline ion detector & & 1 & & & Output Impedance & \(600 \Omega\) \\
\hline magnetometer coils & & & \(\checkmark\) & & & \\
\hline microwave point-contact diode & & & & & - & - \\
\hline moving coil microphone & \[
0
\] & & \(\checkmark\) & & & \\
\hline PbS photocell & & 1 & & & & \\
\hline photodiode & & \(\bigcirc\) & & & ra & \(\underline{\square}\) \\
\hline photomultiplier & & \(\square\) & & & Nanovolt Preampli & ier Type 431 \\
\hline photovoltaic cell & 1 & 1 & & & Frequency Range & \(1 \mathrm{~Hz}-100 \mathrm{kHz}\) \\
\hline phototransistor & & \(\bigcirc\) & & & Gain & 60 dB \\
\hline plasma probes & & , & & & voltage & \(400 \mathrm{pV} / \mathrm{dHz}\) \\
\hline Pt wire detector & & & \(\square\) & & Non Linearity Power & \[
\begin{aligned}
& <0.1 \% \\
& \text { Four PP } 7 \text { batteries }
\end{aligned}
\] \\
\hline resistance thermometer & 0 & & \(\cdots\) & & & \\
\hline scintillation detector & & 1 & & & & \\
\hline thermistor & \(\square\) & & \(\square\) & & 9 & \\
\hline thermocouple & & & 1 & & & \\
\hline thermopile & & & \(\square\) & &  & \\
\hline vibrating capacitor &  & \(\square\) & & & High IZI Amplifier & ype 432 \\
\hline \multicolumn{5}{|l|}{This list includes present and envisaged applications of these amplifiers. For more information and specific applications assistarice contact Geoffrev Gamble at 0344 23931/5.} & \begin{tabular}{ll} 
Frequency Range & 1 \\
Gain & 20 \\
Input Impedance & 1 \\
Common Mode & \\
Rejection & \\
Noise Figure \((411 \mathrm{kHz})\) & 0
\end{tabular} & \[
\begin{aligned}
& \mathrm{Hz}-1 \mathrm{MHz} \\
& 0,40,60 \mathrm{~dB} \\
& 00 \mathrm{M} \Omega, \sim 0.1 \mathrm{pF} \\
& 100 \mathrm{~dB} \text { below } 1 \mathrm{kHz} \\
& 5 \mathrm{~dB} \text { at } 1 \mathrm{M} \Omega
\end{aligned}
\] \\
\hline
\end{tabular}

If the signal source you are working with isn't listed above, this doesn't mean to say that we can't supply the amplifier you need. It's just that space is limited here. However, in the range 1 Hz to 1 MHz , we can noise-match most signal sources. Send for full information.

\section*{Brookdeal}

Brookdeal Electronics Limited,
Market Street, Bracknell, Berks. Tel : 034423931


Whatever cable tie you're using at the moment, Hellermann can almost certainly put a better one on your production line to cut your wiring costs. And with good reason.
-Hellermann have the world's largest range of ties, clips, saddles, and binding systems. Each is purpose designed - one is certain to be exactly right for your -purpose . . . whether for the semiskilled operator, or the fully-trained engineer.
And you'll find Hellermann ideas not only practical - but most often ingenious too.


For example, there's Insulok MS - one piece cable ties for quick, simple, hand
or tool fixing without pins or metal locking devices.


More Hellermann ingenuity ... an exclusive extrusion system that prevents strapping pulling out even under extreme vibration. The principle is utilised in two Hellermann tying systems.


The first is called Tyton - an 'off-thereel' system that binds \(50 \%\) faster than
any other comparable system. The second is Kabelrap - a heavy duty version using 'one-piece' ties.


These are just three of more than a dozen Hellermann systems.
So you can see, Hellermann are deeply involved in all aspects of cable tying. Job for job - pound for pound - Hellermann will give you increased output, simplified production, minimised tie wastage, quick and easy wiring amendment and, as an added bonus, better looking cable bundles.
The only problem: which Hellermann tie suits you best.

\title{
ask Hellermann
}


Please send me a Hellermann Demonstration Set and a copy of your Ties Selection Guide.

NAME

COMPANY \(\qquad\)

ADDRESS

\title{
Radio Microphones
mean an end to trailing cables! * See us at the Clubs'
} \& licensed Trade Exhibition
Prince's Exhibition
Hall, Birmingham
11-15 May
STAND
No. 42
STAND
No. 30
at Musical Ride New Century Hall Manchester
28-30 May



\section*{Radio Leeds: Where a tape recorder must be good and reliable you'll find a Ferrograph.}

In a radio station, the tape recorder is in constant use. Technical performance is all-important; absolute dependability and splitsecond control are essential. So Radio Leecs uses the Ferrograph Series 7 tape recorder.

Ferrograph Series 7 recorders are British-made, available in Mono and Stereo, with and without end amplifiers, in two versions: in elegant hardwood case, or in grey vinyl case. All solid state, three speed, two inputs per channel with independent mixing, all incorporate a range of facilities
unparalleled in any other recorder. Retail prices are from \(£ 175\) incl. P.T.

Follow the professionals; choose the recorder you know will serve you best at home or in your work: Ferrograph-it makes sound sense. See your nearest stockist or send the coupon for details and address of nearest Ferrograph specialist or ring 01-589 4485.

\section*{Ferrograph \\ A member of the Wilmot Breeden Group}



\section*{SINGLE SOURCE SENSE}

\section*{OR \\ How to get What you Want without Having to Try Very Hard}

If your parts requirements are small, and your call-off irregular, you have a problem. If, as often happens, you want parts quickly, you have another problem.
We are in business to help you solve both, quickly.
As stockholders of an enormous range of Radio. Electronic and Electrical Components, Metal Pressings, Clips, Fasteners and Assemblies by Cinch Dot and FT, we are the "single source" for pretty well everything of this kind you want in whatever quantity you want and at short notice.
Two illustrated catalogues. Thousands of stock items are detailed in our two fully illustrated catalogues-Fasteners and Electronics-either of which will be sent, post-free, to firms and organisations.
Send for yours now,
stating which catalogue you require.

\section*{Make United-Carr Supplies} your

\section*{SINGLE SOURCE}
for Cinch Dot and FT Radio, Electronic and Electrical Components, Metal Pressings, Clips, Fasteners and Assemblies.
United-Carr Supplies Ltd.,
Frederick Road, Stapleford, Notts.
Sandiacre 2828 STD 0602392828

\section*{Cim © FT stockists}

UNITED-CARR
SUPPLIES

\section*{Some notes on Bridge Measurement by WAYNE KERR}

\section*{Number 9}

\section*{Four-Terminal Applications}

In this issue we are illustrating the principal applications of four-terminal technique made available by the Transformer Ratio Arm Bridge.

The diagrams show six different measurement arrangements using four connection points to the bridge. The two upper terminals marked ' N ' in the first diagram are the neutral connections, the two lower terminals representing connections to the bridge voltage and current transformers.

These diagrams are necessarily in summary form and, if further explanation is required, reference should be made to the first two issues of these notes.



Small capacitors (and all other types of component) can be measured at the end of long test leads. The effect of the neutral connections is to prevent the cable capacitances appearing in shunt with the component under test.


4-terminal connections minimise lead and contact resistance errors. Bridge measures A , ignoring \(\mathrm{B} \& \mathrm{C}\).

\title{
The cartridge recorder that gives you all the professional
} features

Advanced - with outstanding professional technics in design and

Solenoid operation - with motor size, number of amplifiers and facilities unequalled

\section*{componentry}

No compromise - with all devices to the highest telecommunication standards
construction
Modular - with the latest technics and materials for heavy duty operation facilities
Complete - with every feature demanded by the industry, and more

\section*{finish}

Attractive, robust, up-to-the-minute - with extremely functional front panel application
For professional broadcasters who appreciate the refinements and reliability of modern design and engineering

Ask for complete CT80 specifications and operating
features!

Sales and Service - Rola Recording Products Department Garrard Engineering Limited Newcastle Street Swindon Wiltshire Telephone Swindon 5381 Telex 44271 or the manufacturer
Plessey Electronics Pty Limited Equipment Unit 91 Murphy Street fichmond Australia 3121 Telex 30383 Cables ROLA Melbourne


\title{
Make the most of soundsilently with the new Garrard SL95B
}
A. Garrard gives you the perfect seting for music silence.
With Cerrard all you hear i\$ the rusic. The new Garrard SL95E is a superbly engi leered transer stion turntable with the added facilizy cf automatic playing
The SL95B features the zonstant-speed Garrard Synch \(D-L A B\) motor anc incorporates.
- S. 3 and pause facility
- -cw resonance wood and aluminium pick-up arm
- Gimbal-iype pick-us arm pivots
- S. Je-in cartridge carrier
- Gelibrated pick-up arm bias compensation
- Calibrated fine styly-force adjustment
- Automatic play of E ngle records
- Strling of elěgárice and distinction

Hard-wood base and he.d clear plastic cóver availatle as optional estras.

A. 75 this is what-indepen tent opinion said absur tre SL.95, the immediaie predecessor of the SLE58
lave lested it for wcw Nutter and rumble anc Iclund them too low to be reeasured witt any confidence. In every way have tried to impe te is working. I have failed!
"Agreatly admire the cueing tevice and I wc uld no: dream of setting my Jwn manual clumsiness ajainst the delicacy witt which the automat s mechanism puts down ite st/lus in the groo.e.
This is near perfection. "Fe-zy Wilson Pldio Record Review, A must '68.


\section*{No sulphur-sickness here}

Factory chimneys turn out sulphur, and sulphur makes industrial receiving valves sick and unreliable. At Mullard we don't tolerate sick valves, so we set about eliminating the sulphur menace. Investigations - including putting a model of the factory in a wind tunnel - led finally to a new specification for fuel oil. Now before we use any fuel oil it's checked for sulphur content. We go to any lengths to ensure our special valves are healthy and reliable.
The time we spend on environmental control cuts your equipment down-time... another reason it pays to ask your supplier for Mullard.

\section*{Mullard}

Mullard Limited Industrial Electronics Division Mullard House Torrington Place London WCI OI-580 6633
New Buyers Guide
There's a new wallchart on Mullard special quality receiving valves. It gives comprehensive equivalents information, and it's free from any Mullard Industrial Distributor-or use the reader enquiry service.


\section*{Mullard} irndustriall distreitbutor service

\section*{Birmingham: Central 5060}


Gothic Electrical Supplies Ltd., Gothic House, Henrietta Street, Birmingham 19. Birmingham: Aston Cross 4301
Hawnt \& Company Ltd., \(112 / 114\) Pritchett Street, Birmingham 6.

\section*{Bristol 294313}

Wireless Electric Ltd., 'Wirelect House', 122/123 St. Thomas Street, Bristol I.

Crawley 28700
SASCO, Gatwick Road, Crawley, Sussex.
Glasgow: Govan 3347/3991
Harper Robertson Electronics Ltd.,
82 Loanbank Quadrant, Glasgow SWI.

\section*{Leeds 636311}

Farnell Electronic Components Ltd., Canal Road, Leeds LSi2 2 TU.

\section*{London: Elgar 7722}

Cables \& Components Ltd., Park Avenue, London N.W.Io.

London: New Cross 9731
Edmundsons Electronics Ltd., 60-74 Market
Parade, Rye Lane, London S.E.i5.

\section*{Leicester: Leicester 768561}

Townsend-Coates Ltd., Coleman Road,
Leicester
Rochdale 47411
Swift-Hardmans, P.O. Box 23, Hardale House, Baillie Street, Rochdale.

\section*{Sheffield 27161}

Needham Engineering Co. Ltd., P.O. Box 23, Townhead Street, Sheffield I.


\section*{MICROPHONES \& ACCESSORIES}


DP4


GR1


\section*{EXTREME VERSATILITY}

Range of 8 interchangeable bits, from \(\frac{-3}{6} \mathrm{in}\). (.047in.) to \(\frac{3}{16} \mathrm{in}\), including long-life PERMATIPS.
- ULTRA-SMALL SIZE

Length \(7 \frac{1}{8} \mathrm{in}\). Weight \(\frac{1}{2} \mathrm{oz}\).
Max. handle dia. \(\frac{7}{16} \mathrm{in}\).
- EXTRA-HIGH PERFORMANCE

Heating time 90 secs. Max. bit temp. \(390^{\circ} \mathrm{C}\). Loading 15 watts-equal normal 30/40watt iron.
- ALL VOLTAGES

The ADAMIN range includes five other models (5, 8, 12, 18 and 24 watts), Thermal Strippers (PVC and PTFE) and a De-Soldering Tool.
Please ask for colour catalogue \(A / 5\).

\section*{LIGHT SOLDERING DEVELOPMENTS LTD}

28 Sydenham Road, Croydon, CR9 2LL
Tel: 01-688 8589 \& 4559
WW-035 FOR FURTHER DETAILS

\title{
Heathkit tor rastumenation
}


The Heathkit range of Electronic test instruments including the latest advances in Solid-State instrumentation has been especially prepared for the High Fidelity and Television Service Engineer as well as the Industrial and Laboratory Instrument User.

Whatever your requirements, be they Potentiometric Chart Recorders. Power Supplies or General Test Instruments, substantial savings against similar specifications of other Manufacturers can be made by using Heathkit Instrumentation.

\section*{LATEST SOLID-STATE POST-MARKER/SWEEP GENERATOR, 1G-57U is typical of the Heathkit ultra-functional instrumentation styling}

1G-57U SPECIFICATION-Marker frequencies: 100 kHz Marker frequencies, crystal controlled: 3.83, 4.43, 5.03 and \(6.0 \mathrm{MHz}, \pm .01 \%, 10.7,31.5,33.5,34.65,35.5,38.15\), \(39.5,39.65,41.5,58.25\) and \(196.25 \mathrm{MHz} \pm .005 \%\). Modulation frequency: 400 Hz . Input impedance: External Marker, External sweep and Attenuator- 75 ohms. Demod in-220 K ohms. Output impedance: Marker Output. Sweep Output and Attenuator- 75 ohms. Scope Vert. -22 K ohms. Bias Voltage: Positive or negative 15 volts D.C. at 10 milliamperes. Type of marker: Birdie. Controls: Bias control with pull-on/push-off switch: Marker/Trace-dual concentric: Sweep Width/Sweep Centre-dual concentric; Marker outconcentric with Sweep Range switch; and Phase. Switches: Rocker type-Reverse: Modulation On/Off. TransistorKit K/1G-57U, £75. Carr. 8/-.
diode complement: (19) 2N3692 transistors: (7) 2N3393 transistors: (1) 2 N3416 transistor: (3) silicon diode rectifiers; (2) crystal diodes: (1) 13.6 volt zener diode: (1) 20 volt zener diode. Sweep frequency ranges and output voltage: LO Band -3.0 to 6.0 . \(\mathrm{MHz} \pm 1 \mathrm{~dB}\) at 0.5 volts rms (min.) fundamentals, and 10.7 MHz on harmonics. If Band- 31 to 42 \(\mathrm{MHz} \pm 1 \mathrm{~dB}\), at 0.5 volts/rms (min.) fundamentals, and 10.7 MHz on harmonics. RF Band- 55 to \(61 \mathrm{MHz} \pm 1 \mathrm{~dB}\) at 0.5 volts/rms (min.) fundamentals and 192 to 198 MHz on harmonics. Attenuator: Total of 70 dB or attenuation in seven steps- \(1 \mathrm{~dB}, 3 \mathrm{~dB}, 6 \mathrm{~dB}, 10 \mathrm{~dB}, 10 \mathrm{~dB}, 20 \mathrm{~dB}\) and 20 dB . Power requirements: \(105-125\) or \(210-250\) volts, 50 Hz A.C. at 20 watts.

Ready-to-Use A/1G-57U, £90. Carr. 8/-;


RESTYLED TEST, SERVICE AND WORKSHOP INSTRUMENTS
The Heathkit range of instrumentation can adequately provide engineers with quality instruments at lowest cost, whatever your requirements, be they VVMs, Generators, Qscilloscopes, Transistor Testers or Power Supplies.

\section*{FOR THE HOME WORKSHOP}

The householder and hobbyist can, by purchasing easy-to-build Heathkits, obtain low cost models for testing household appliances, automobile circuitry, electrical/electronic models.


SEND FOR THE 1970
FREE HEATHKIT CATALOGUE and see for yourself the wide range of instruments. \(\mathrm{Hi}-\mathrm{Fi}\), Amateur and Leisure products



\section*{STRUMECH}官 5V5T?N

Strumech Engineering Limited Portland.House, Coppice Side Brownhills. Walsall. Staffs, England Telephone: Brownhills 3651

\section*{This} new range of AIR SPACED VARIABLE CAPACITORS and TRIMMERS ...


These Capacitors and
Trimmers, previously made
under the "Cyldon" trademark
are now being manufactured
and marketed by us in London.


Write today for complete details
H. TINSLEY \& CO LTD • WERNDEE HALL

SOUTH NORWOOD (LONDON SE25 • 01-654 6046

\section*{OMRON PROCESS TIMERS}

SYS TIMER

* SYNCHRONOUS mDTDR \& CLUTCH
- 10 million operations
- Instantanbous \& Timed out 3 AMP contacts
- Repent Accuraty \(\pm \frac{1}{2} \%\)
- Dial ranges 0.10 secs up to 0.28 hrs. May also be used as impulse start
f 11 deracesent
on quantity
STP TIMER
SYNCHRONOUS MOTOR \& CLUTCH Matchbor size frontal area Automatic re set
* PLUG IN OCTAL BASE
* INSTANTANEOUS

INSTANTANEOUS
AND TIMED OUT
2 AMP CONTACTS
* RANGES: 0-10 SECS TOD 0-36 MMS
£5
dependent
on quantity


TEMPERATURE CONTROLLER TYPE THP
* thermistor operated
* octal base plug in
- COMPACT

Temperature ranges up to \(280^{\circ}\) t
Output contacts 4 amp
Repeat Accuracy 3\% full scale
Complete with Thermistor
Approximately
£21

\section*{OMRON PRECISION CONTROLS}
omron approvals: CSA. us mil Spec. Sev.ul. Immediate delivery of limit \& micro switches, floatless liouid level controls, PROXIMITY SWITCHES

\section*{WORLD FAMOUS Luterinicsive VARIABLE VOLTAGE CONTROLS}


\section*{VARIABLE TRANSFORMERS}
- Output 0-260V
- Input 230 V 50/60CPS
* Shrouded for Bench or Panel mounting

Inset shows latest pattern Brush gear ensuring smooth continuous adjustment.
\[
\begin{aligned}
& \text { \&5.10.01 amp } \begin{array}{r}
2.5 \operatorname{amp} £ 6.15 .0 \\
5 \operatorname{amp} £ 9.15 .0
\end{array} \\
& 8 \text { amp f14.10.0 } \\
& 10 \mathrm{amp} \mathrm{f} 9.10 .0 \\
& 12 \mathrm{amp} \text { £21.0.0 } \\
& 20 \mathrm{amp} \text { £ 37.0.0 }
\end{aligned}
\]



Mointain spot-on test gear readings with Automatic Mains stabiluer.
Specification:
- Output 240V
* Accuracy \(\pm 1 \%\)
* Input 190-260V
* Capacity 250 wats
£12.10.0
£12.10.0

20 AMP LT SUPPLY UNIT



40/-C \& P
(G.8.)

SOLID STATE VARIABLE VOLTAGE CONTROL


\({ }^{\text {Thw }}\) NO inSolder

One good reason for soldering with Enthoven - whatever your needs - is the Enthoven range. It gives you a wide choice of high quality products developed for use with modern techniques. It includes Flux Cored Solder Wires, Solder Pre-forms, Solid Solders, selective Fluxes, solder specialities, materials for printed Circuitry and for soldering Aluminium. For complete technical details of Europe's widest range, ask Enthoven Solders Limited, Dominion Buildings, South Place, ------ London EC2. Telephone 01-628 8030; telex 21457; cables: r---ENTHOVEN LONDONEC2
'SUPERSPEED 'SUPERSPEED XX' - Doubly activated 'SUPERSPEED
RED FLASH' - Coloured flux residue 'ENTHOVEN PURE RESIN'
- Non-activated 'L.S.', 'A' \& 'B' - Lamp manufacture 'ENCORE' - Non-electrical work 'CAPACICOR' - Capacitor manufacture 'ALUMINIUM'
- Non-corrosive

Available in a wide selection of alloys, core sizes and conforming to British \& U.S. Government specifications.


You can see the picture of world progress at the International IEA at Olympia, London.
Not only today's picture.
The men who are reshaping progress show glimpses of future techniques which will set the course of the new global industrial revolution.
There are 950 of the world's most progressive electronic and automation companies at the IEA. More than a fifth of them are from abroad.
They bring progress into focus.
IEA is again expanded in area-one of the world's greatest technological events. America, Canada, Japan, Germany, Poland, France, Belgium, Czechoslovakia are among the countries helping to make it a truly international occasion.

\section*{IEA SHOWS THE WAY THE WORLD IS GOING}

Visitors to the IEA who com- Admission: by ticket available only plete the reverse side of the from exhibitors or by payment of \(5 /\). trade ticket, or who register at at entrances. (Season: 10/-),
the show, will receive on entry Times: 10.00-18.00 hrs. daily. a free copy of the IEA New and Special Products Guide.

An 1E1. Exhibition
INDUSTRIAL EXHIBITIONS LIMITED
9 Argyll Street, London, W1V 2HA
> W. GREENWOOD ELECTRONIC LTD.

> 21, GERMAIN STREET, CHESHAM, BUCKS TELEPHONE: CHESHAM 4808/9.


\section*{LEVEL METERS...}

For a wide range of applications in professional radio, recording, instrumentation, and domestic equipment. For further information contact, IMPECTRON LTD., 23-31, King Street, London, W.3, Telephone : 01-992 5388

IMPECTRON


\section*{Develop the art of good listening}


TRIO's TS-510 is the definitive instrument especially engineered for complete "SSB ERA" function. It's a high power, high stability product of imaginative design that fully lives up to the renowned "TRIO" name. Extremely stable VFO, a new development that is built around 2 FET's and 13 transistors, guarantees stable QSO's during entire use, an accurate double-gear tuning mechanism and a linear tuning capacitor produce a 1 kHz direct reading on all bands. There's easy tuning in of SSB signals because the TS-510's frequency coverage has been compressed to 25 kHz for one complete rotation of the dial. Sharp cutoff for both reception and transmission is achieved by a sharp factor frequency filter built just
for this 510 series model.
Combined with the TS-510's superb features are the distinctive, top quality PS-510 (Power supply and speaker) and VFO-5D (Variable frequency oscillator). With an AC power supply that operates a built-in 16 cm speaker, the PS-510 has been created as an exclusive companion instrument for the TS-510. It can be installed at any location with the PS -510 because the power supply is regulated on or off at the TS-510.
The VFO-5D can match the TS-510 in performance and design. Its reading accuracy is unusually high since a double-gear dial covering 25 kHz per revolution is also used, as in the TS-510.

TO: B.H. Morris \& Co., (Radio) Ltd.
Send me information on TRIO COMMUNICATION RECEIVERS \& name of nearest TRIO retailer.

NAME
AGE
ADDRESS

TRIO-KENWOOD ELECTRONICS S.A. 160 Ave., Brugmann, Bruxelles 6. Belgium

\section*{Beifore we sell you a Shure microphone we try to ruin it}

\section*{juss tomake sure that you neverwill}


Microphones have to be rugged. Think of the punishment they take. That's why Shure Safety Communications Microphones get a tremendous going -over before we dream of selling them.

We drop them. We vibrate them. We fry them. We freeze them. We steam them in Turkish baths. We drag them behind fast moving cars. We subject them to all kinds of torture. Sand. Rain. Infra-red. Ultra-violet. Acids. Alcohol. Salt spray. Wind. Electrostatic felds. High altitude . and still they work

This savage testing, backed by stringent quality control, ensures that every Shure communications microphone will give you reliable performance. And will go on doing so even under conditions where other microphones would pack up. Always use Shure, the microphones that never fail to get the message through.

\section*{Communications}

Controlled magnetic hand microphone providing a clear, crisp. highly intelligible voice response. Rugged and dependable. ideal for outdoor-indoor P.A., and communications.
Frequency response 200 to \(4,000 \mathrm{cps}\) High impedance. High output. Model 414.

\section*{Amateur Radio}

Provides optimum radio communications performànce from single sideband transmitters as well as AM and FM units. Response cuts of sharply below 300 cps and above \(3,000 \mathrm{cps}\), ensuring maximum speech intelligibility and audio punch to cut through noise and interference.


For full details of Shure microphones.
SEND IN THIS COUPON TODAY
To: Shure Electronics Lid., 84 Blackfriars Road, London SE1. Tel: 01-928 3424
I'd like to know more about Share Microphones for Communications \(\square \quad\) Protessional Rocording \(\square\) Amateur Radio \(\square\) Professional Entertainers \(\square\)

Please sead me the tacts :
NAME
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Youre on the right trackwith Goldring 800 magnetic cartridges}

Goldring 800 magnetic cartridges track unerringly.

SONEX 70 SkYway hotel
24th-26th APRIL Because that's the way we make them. They're designed to translate even the most delicate information stored in the groove back into an identical electrical signal. We call it the sound of true transduction.

Hear it for yourself. You'll know you're on the right track.

Goldring 800/H...the \(800 / \mathrm{H}\) is designed for inexpensive changers to track between \(2 \frac{1}{2}-3 \frac{1}{2}\) grams and has a high output of at least 8 mV . £10.13.6 tax paid. Goldring 800 ... the 800 is designed for standard arms and changers where the requirements of high fidelity and robustness usually conflict. £13.0.0 tax paid.

Goldring 800 E. . . is designed for transcription arms and a micro-elliptical diamond is fitted to a finer cantilever, end damped against natural tube resonance £18.17.1 tax paid. Goldring 800 Super E . . . the 800 Super E is for those to whom perfection is barely good enough. Extraordinarily low mechanical impedanceforsuperb tracking capabilities. Each cartridge is supplied with its individual curve and calibration certificate. £26.0.0 tax paid.


Send for details and complete range of Goldring Hi-Fi equipment
Goldring Manufacturing Co. (Great Britain) Lid.
486-488 High Road, Leytonstone, London, E.11. Tel: C1-539 8343.
WW- 053 FOR FURTHER DETAILS



\section*{Ferrograph F307
stereo amplifierthe heart of great \(\mathrm{Hi}-\mathrm{Fi}\)}

F307 is an integrated Stereo Amplifier, built in a tradition of excellence and extremely versatile in its capabilities

It presents a clean uncluttered appearance, conforming very closely with the Series Seven Recorder in this regard. Only its main controls appear on the panel-all subsidiary controls being housed beneath a hinged extruded aluminium flap.

F307 delivers power output of 20 watts RMS per channel into a load of 8 ohms and has a total harmonic distortion of less than \(0.25 \%\) at 1 kHz at all levels up to its rated output.

Your Ferrograph dealer will be pleased to demonstrate F307 to you. When planning your Hi -Fi system, this is an Amplifier to which the most serious consideration must be given and its Manual makes informative and compelling reading.

 RANGES TO ORDER
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{2}{|l|}{CLEAR PLASTIC METERS} & \multicolumn{2}{|l|}{BAKELITE PANEL METERS} \\
\hline & TYPE SW. 100 & TYPE S-80 & \\
\hline & \(100 \times 80 \mathrm{~mm}\). & 80 mm . & \\
\hline & & square fronts & \\
\hline  & 50V. D.C.... 58/6 &  & sov. d.c. ..... 49/E \\
\hline \({ }^{100 \mu} \mathrm{~A} \ldots . . .{ }^{87 / 8}\) & 1 mmp . D.C... \(58 / 6\) & \({ }^{100 \mu 44}\) ….... 58/6 & 1 amp . D.C. .... 49/6 \\
\hline  & 5 map. D.C. . 59/6 &  & 5 amp. D.c. ... 48/E \\
\hline 20V. D.C.... 59/6 & 309 V . A.C. . \(59 / 6\) & 20V. D.C. ..... 49/6 & 300V. A.C. .... 52/6 \\
\hline
\end{tabular}
"SEW" CLEAR PLASTIC METERS


\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Type Mr.8sp. 3lin. \(\times\) 3fing tront.} \\
\hline \({ }^{80 \mu} \mathbf{4} \ldots \ldots \ldots \ldots . .67 / 8\) & \({ }^{20 \mathrm{~V}, \text { D.C. }}\). \({ }^{\text {a }}\) 42/ \\
\hline & D.C. \\
\hline \({ }_{1000-0.1004}^{1004}\) & \({ }_{3}^{1500 .}\) D.C. . . . \(42 / 4\). \\
\hline  & 15V. A.C....... 42/- \\
\hline \(500 \cdot 0.500 \mu \mathrm{~A} \cdot \ldots .48 /-\) & \\
\hline 1 ma …….. 42 2\% &  \\
\hline &  \\
\hline \({ }_{50 \mathrm{ma}}^{10 \mathrm{ma}}\) …….. 42/: &  \\
\hline 100 mA & vU meter...... \(\mathrm{B}^{7} / \mathrm{B}\) \\
\hline & \({ }^{6} 0 \mathrm{~mA}\) \\
\hline mp. . . . . . . 42/- & \(100 \mathrm{~mA} A\) \\
\hline & \\
\hline 1 & \\
\hline 15 amp . & 1 am \\
\hline 00 amp . & \\
\hline 30 amp. & 110 map. A.c. \(\cdot{ }^{20}\) 42/- \\
\hline 80 amp.
10V. D.C.. & \({ }_{30}^{20} \mathrm{mmp}\) mp. A.C.C. . 4 42/- \\
\hline
\end{tabular}

> *MOVING IRON ALL OTHERS MOVING COIL Please add postage

Type MR.38P. 1 21/3\%n. nquare tronts.

"SEW' BAKELITE PANEL METERS


EDGWISE METERS Type PE. 70.3 17/32in. \(\times 215 / 321 \mathrm{~m} . \times 24 \mathrm{~b}\). Type PE
deep.
\(50 \mu \mathrm{~A}\)


SEND FOR ILLUSTRATED BROCHURE ON SEW PANEi METERS—DISCOUNTS FOR QUANTITIES

\section*{U.K. DISTRIBUTORS OF TMK multimeters}

This range of Multimeters, manufactured by Tachikawa Radio Instrument Co. of Japan, offers excellent value for money combined with quality and accuracy of measurement. - IMMEDIATE DELIVERY DISCOUNTS FOR QUANTITIES - TRADE ENQUIRIES INVITED

MD. 120

* All models fitted overload protection and supplied with batteries, prods and instructions.
 A.




C8. 10.0



MODEL 500 Peaturea Mirror Scale and Buazer Short Circuit Checko Sensitwity:




 \(2 \% \mathrm{in}\). \(\times\) stin.


 6illn. \(\times\) 3iln.

SOLE U.K. AGENTS FOR JAPAN'S PREMIER MANUFACTURER


\section*{"YAMABISHI" VARIABLE VOLTAGE TRANSFORMERS}
- Excellent quality - Low price - Immediate delivery

\section*{ALL MODELS}

INPUT 230 VOLTS, 50/60 CYCLES. OUTPUT VARIABLE 0-260 VOLTS
MODEL S-260
General Purpose
Bench Mounting

1 Amp
2.5 Amp

5 Amp
8 Amp
10 Amp
12 Amp
\(20 \mathrm{Amp} \quad\) 〔37.0.0 Special discounts for qually



\section*{"Studio 80" amplifier}


The "Studio 80" Power Amplifier has been produced to high performance standards for Studio and Laboratory applications.

Its proven characteristics puts it in a class beyond anything.yet available in power, performance, and price, and is the ultimate in economic functional engineering design - Write for full details of guaranteed performance specification.

POWER DUTPUT:
POWER BANOWIOTH:
FREQUENCY RESPONSE
TOTAL OISTORTION:
SIGNAL TO NDISE RATID: Better than-95 dB below maximum output.
POWER SUPPLY:

Max 80 W into 8 ohm.
5 Hz to 35 KHz at 80 W .
+0 dB 20 Hz to 20 KHz .
\(-.5 \mathrm{~dB}\)
Less than 0.05 at 1 KHz .
\(100 / 120-200 / 250 \mathrm{~A} / \mathrm{C} 50-60 \mathrm{~Hz}\).



\section*{Now you can get a fully equipped CCTV studio from GVS for as little as \(£ 3,000\)}


No matter what your CCTV requirements are, General Video Systems have the answer - with their wonderful range of SHIBADEN equipment. The result of extensive Research and Development, SHIBADEN equipment has been designed to a modular concept which means that you can fit and furnish your own CCTV studio for as little as \(£ 3,000\).

The widespread need for this type of package deal within industry, commerce and education fields are numerous. And each individual requirement can be met from the simplest operation to a full broadcast studio.
If you are about to invest in CCTV equipment or would like to discuss your requirements, let GVS "put you in the picture"

Contact Norman Simpson today at :
GENERAL VIDEO SYSTEMS LTD.
Main Distributors of SHIBADEN Equipment 61-63 Watford Way, Hendon, London NW4. Telephone: 01.202 8056


WW-059 FOR FURTHER DETAUS

Nombrex accuracy!

in the palm of your hand
TRANSISTORISED-COMPACT-MODERN STYLING

Standard Model 29-S
- \(150 \mathrm{KHz}-220 \mathrm{MHz}\) on fundamentals Eight clear scalas. Total Jength 40" - Smooth vernier tuning-ratio \(7 \%\) : 1
- Magnifier cursor-precision tuning
- Overall accuracy, better than \(1.5 \%\)
- Modulation. variabie depth and trequency

Price £20-0-0

X \({ }^{21}\) Check Model 29-X
- All the features of the Model 29-S AND
- integral Crysta Oscilator providina caribration check points throughout all ranges for adjustment of scale accuracy to \(\pm 0.02 \%\)

Illustrated: R. F. SIGNAL GENERATOR MODEL 29. Spin Wheel Tuning E1-0-0 extra

NOMBREX (1969) LTD. EXMOUTH DEVON Tel. 03.9523515

\title{
'With a Weircliffe Bulk Eraser you can clean a tape whistle-clean without even taking it from the can'
}


\section*{Rank Film Equipment, Rank Audio Visual,} P.O. Box 70, Great West Road, Brentord, Middx. Phone 01-568 9222. Cables: Rankaudio London Telex : 24408

\section*{'Now he tells me'}

Let's come clean. Weircliffe Bulk Erasers are, quite simply, the best you can buy.

Magnetic tape/film - up to a maximum of \(16^{\prime \prime}\) diameter \(\times 35 \mathrm{~mm}\) width or \(14 \frac{l^{\prime \prime}}{} \times 2^{\prime \prime}\) - can be instantaneously erased. Which means you can handle up to 250 tapes in an hour. And you can, we promise you, even clean a tape while it's still in its can.

What's more, nobody has yet produced a tape or recorded a signal - whether it's data, audio, pulsed or video - that can't be clearly erased to between 80 dB and 90 dB below saturation recording level. Weircliffe Bulk Erasers have a greater erase factor than any other known make.

Weircliffe Bulk Erasers have been tested andjtested by tape manufacturers and technical institutes throughout the world. They're used by broadcasting authorities from Australia to Finland. They're approved and supplied by the major manufacturers of data recording equipment.

They're that good.
For more information, fill in coupon or 'phone Ken Chapman 01-568 922 Ext. 366.


Rank film equipment




Point to Point Broadcasting Radio Relay Ground to Air Navigational Aids Business Radio

\section*{Design}

Site layouts
Aerial System Design

\section*{Aerials}

LF 'T' and 'L' Aerials, Mast Radiators, HF Dipoles, Quadrants, Rhombics, Log Periodics, Vertical Incidence Arrays, Conicals, Biconicals VHF \(\&\) UHF Yagis, Helices, Ground Planes, Colinears, Whips, Marine Aerials, Television Arrays to 100 kW e.r.p MICROWAVE Passive Reflectors, Dishes 3" to 60 ft . dia.

\section*{Supporting Structures}

Self-supporting Towers, Tubular and Lattice Masts, Telescopic Masts

\section*{Accessories}

Coaxial and open wire Feeders, Filters, Aerial Switches,
Lead-in panels, Earth Systems. Air-cooled Transmitter Loads.
Termination Networks

\section*{Installation}

World Wide Service

\section*{C\&S Antennas provide a complete aerial service LF to Microwave}

\(\square\) Wentworth House, Eastern Avenue, llford. Essex, England. Telephone: 01-554-0102 Telex: 25850 Cables: Antennas Ilford (England)

\title{
 \\ A HOME RADIO CATALOGUE
}

\section*{Ordering components is easier and quicker with our new}


Our aim in life at Home Radio Components Ltd. is to make your life happier and less complicated! To this end we have recently introduced a Credit Account Service, one advantage of which is that you can order components by telephone
any time, any day. If you phone out of shop hours a recording machine will take your Service, one advantage of which is that you can order components by telephone
any time, any day. If you phone out of shop hours a recording machine will take your message for us to deal with as soon as we open shop next day.
There are other advantages to the new Service - if you want to order by post we provide Order Forms and Prepaid Envelopes. You settle your account just once per month. We stipulate no minimum order value. Of course for ordering your components you first need our Catalogue, and after you have been in the Service 12 months we regularly send you an up-to-date catalogue-FREE!
For full details of our Credit Account Service just drop us a line or phone 01-648 8422.

Just a phone call away


Whether or not you want to use the Credit Account Service described above, you certainly need the Home Radio Components Catalogue if you construct or repair radio and electronic gadgets. The catalogue has 350 pages, lists 8,000 components and has over 1.500 illustrations. It contains six vouchers, each worth 1/- when used as indicated. Post the coupon with 12/( \(8 / 6\) plus \(3 / 6\) postage and packing) and we will send a catalogue by return of post. By the way. we supply free a 30-page Price Supplement and a Bookmark giving electronic abbreviations.


\title{
seeyouat SONEK 70
}

\section*{Come and hear Hi -Fi of the Seventies.} See what the new decade promises the Hi-Fi enthusiast and music lover
SONEX is an important new series of annual Hi-Fi exhibitions. The best in \(\mathrm{Hi}-\mathrm{Fi}\), the newest equipment, future trends in sound, sound demonstration, ideas for \(\mathrm{Hi}-\mathrm{Fi}\) in the home - a wealth of exhibits awaits the enthusiast.
Rooms with a view to listening. Special care has been taken in planning demonstration rooms. They help you evaluate equipment accurately. The hotel rooms are built puch like your own at home and are a first class testing site for the equipment you will hear. Spatially and acoustically the setting is just right for the enthusiast and the music lover.
SONEX will be the highlight of your Hi-Fi year. Be sure to get your free ticket for the first of these great sound events from your Hi-Fi dealer

\section*{April 24th-26th, 1970}

Organised by British Audio Promotions Ltd. for the Federation of British Audio Fri \& Sat: 11 am-9 pm. Sun: \(11 \mathrm{am}-6 \mathrm{pm}\). SKYWAY HOTEL Bath Rd., Hayes, Middx. (free car park)

Hear the Hi-Fi of the 70's

\section*{'TRI-BOARD' \\ }

The ideal "Breadboard" material for rapid construction of electronic circuits at the design and prototype stages of development programmes.
TRI-BOARD is supplied in Fibreglass which is suitable for cold punching or cutting. Board size is \(7 \frac{1}{2}^{\prime \prime} \times 5 \frac{3^{\prime \prime}}{}{ }^{\prime \prime} \times \frac{1^{\prime \prime}}{16}\) thick with 1 oz. copper A roller tinned finish is standard.
PRICE 15/- net per board.
Quantity discounts apply:
TRIO INSTRUMENTS LTD.,
BURNHAM ROAD.
DARTFORD, KENT.
Telephone: Farningham 2082

WW- 065 FOR FURTHER DETANLS

\section*{M. R. SUPPLIES (London) LTD., \\ (Established 1935)}

Universally recognised an suppliern of UP-TO-DATE MATERIAL, which does the job properly. Instant dellivery. Satiafaction assured. Prices nett.
ROOM TEERMOSTATS. Danfosk wall mounted Thermostats, 40 dis. F.-80 deg. F., 380 v. A.C. 4 amps. ; 240 v. A.C.. 6 amps. Our nett price £1/12/6 (des. \(2 / \cdot\) ).
MINIATURE RUNNDNG TDME METERS (Bangamo). We have great demands for this remarkable arit and now can supply immediately 1 rom stock. \(200 / 250 \mathrm{v}\). 60 e. eypchrobous. Counting up th 9,999 hours, with 1/ioth indicator. Only leins. square, wining and domestic applications to ladicate the running of any electrical apparatus, easy to install, \(83 /\) - (des. 1/6).
SYYCRRONOUS TIME SWITCHES. (Another one of our popular apecialiten) \(200 / 240 \mathrm{v}, 50 \mathrm{C}_{\mathrm{c},}\) for accurate pre-ret switching operations. Sangamo \(8.25 t\), provilag up to 3 onooll operntiong pe

ELECTRIC FAKS (Papsi), for extractirg or blowing. The most oxceptlonal offer we have yel
 SMALL GEARED MOTORS. In addition to our welf-known range (Lhe GM.168), we ofer smal open type 8.P. Unita \(200 / 250 \mathrm{~F}\). A.C. 1, 6, 12, 24, 60 r.p.m., appros. Sin. long. with 1 nn . shaft projection ench side and enclosed geartion. Buitable for diaplay work and inany linduatrial unes. Oaly 75/- (des. \(5 /\)-)
MINIATURE COOLINGTPANS. 200/250 r. A.C. With open type lnduetion inotor (Do interference),

AIR BLOWERS. Highly emplent unlta fitted induction totally enclosed motor 230/260 F . \(80 \mathrm{C}_{0}\)


SYMCERONOUS ELECTRIC CLOCK MOVEMENTS (as mentioned and recommended In many
 back dust cover, \(39 / 6\) (des, \(2 /-\) ). Set of three brans hande in good plain at yle. Por \(8 / 7 \mathrm{ln}\). dia. \(2 / 6\) For \(8 / 10 \mathrm{dia}, 3 / 6 \mathrm{act}\).
SYNCRRONOUS TIMER MOTORS (Sangamo). 200/250 พ. \(50 \mathrm{c} /\) a. Self-atartlag 2 in . dla. \(\times 1 \mathrm{ln}\). deep. Choice of following speeds: 1 r.p.m.. 12 r.p.h., 1 r.p.h.i. 1 rev. 12 houra. 1 rev. per day Any one 42
 4 r.p.m. only. Only \(25 /\) - (des. \(2 / \cdot\) ).
MINLATURE D.C. MOTORS. \(6 / 12\) volta D.C. Ideal model makers. \(4.000 / 9,000\) r.p.rne no load if In. \(\times 1 \%\) in. diameter. Plange fixing. Only \(5 /-\) (dea. 1/6).
EXTRACTOR PANS. Ring mounted all metal construction. T/E laduction motof, ailent opers max. dia., 500 CFM. £6/18/O (den. 6/-).
Immediate delivery of Stuart Centrifugal Pumpa. Including stataless steel (mort models)
official stockist; "parvalox" Electrio Mofofi (hiot g.m. 18日)
M. R. SUPPLIES (LONDON) LTD., 68 New Oxford Street, London, W.C. 1
(Telephone: 01-636 2958)

\section*{Mnemopolymerics}
*Mnemopolymericsthe science of heat-shrinkable polymers with a built-in memory perfected after many years of research and development by Hellermann-Electric.

The Helashrink \({ }^{\text {® }}\) range of Moldanized \({ }^{*}\) Shapes gives you the fast, low-cost answer to encapsulation of electrical connectors; water sealing of cable glands; cable jointing; sealing crutches on power cables; covering spurs in wire harnesses and cable.

More than 70 standard shapes are available and specials can be supplied to meet your particular needs.

Shrinking is fast - by heat gun,
tightly to the form requir


Moldanized Shapes come in shrink ratios up to 5 : 1, giving you room to work:.



\section*{DUAL-CHANNEL POWER AMPLIFIER}

\(\star\) DC-Coupled throughout!
\(\star\) Short Circuit proof!
\(\star 500\) Watts RMS Mono.

Frequency Response \(\pm 0.1 \mathrm{db}\) Zero- 20 KHz at 1 watt into 8 ohms, \(\pm 0.6 \mathrm{db}\) Zero- 100 KHz
Phase Response Less than \(5^{\circ}, 0-10 \mathrm{KHz}\)
Power Response \(\quad \pm 1 \mathrm{db}\) Zero- 20 KHz at 150 watts RMS into 8 ohms.
Power at Clip Poimt Typically 190 watts RMS into 8 ohms, 340 watts RMS into 4 ohms per channel.
Total Output (IHF) Typically 420 watts RMS into 8 ohms, 800 watts RMS into 4 ohms
1.M. Distortion ( \(60-7 \mathrm{KHz} 4: 1\) )

Damping Factor
Hum and Noise ( \(20-20 \mathrm{KHz}\) )
Slewing Rate
Dimensions
Weight
Finish

Less than \(0.1 \%\) from 0.01 watt to 150 watts RMS into 8 ohms, typically below 0.05\%. (max 0.05\%.

Greater than 200 (Zero to 1 KHz into 8 ohms at 150 watts RMS)
100 db below 150 watts RMS output (unweighted, typical 110 db ).
8 volts per micro-second. S-R is the maximum value of the first derivative of the output signal.
19 in . standard rack mount (W.E. hole spacing), 7in. height, \(9 \frac{2}{2}\) in. deep(from mounting surface).
40 pounds net weight.
Bright-anodized brushed-aluminium front-panel with black-anodized front extrusion, acces door, and chassis.
\(\star 70\) Volt Balanced line out!
\(\star\) Only \(£ 320\) inc. duty!

\section*{TELEPRINTERS•PERFORATORS REPERFORATORS • TAPEREADERS} DATA PROCESSING EQUIPMENT


Codes: Int. No. 2 Mercury/Pegasus, Elliot 803, Binary and special purpose Codes.

\section*{2-5-6-7-8. TRACK AND MULTIWIRE EQUIPMENT}


TELEGRAPH AUTOMATION AND COMPUTER PERIPHERAL ACCESSORIES DATEL MODEM TERMINALS, TELEPRINTER SWITCHBOARDS

Picture Telegraph, Desk-Fax. Morse Equipment; Pen Recorders; Switchboards; Converters and Stabilised Rectifiers; Tape Holders, Pullers and Fast winders; Governed, Sychronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass filters; Teleprinter, Morse, Teledeltos Paper, Tape and Ribbons; Polarised and specialised relays and Bases; Ter. Tele V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment; Line Transformers and Noise Suppressors; Racks and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Wires, Cables and Switch board Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.

\section*{W. BATEY \& COMPANY}

Gaiety Works, Akeman Street, Tring, Herts.
Tel.: Tring 3476 (3 lines) Cables: RaHno TRING STD: 044282 TELEX 82362

the gun cool. Note the slim
barrel-it reaches right down into
confined spaces. There are spike-like extension barrels for real 'in-deep' work. A prefocused lamp pinpoints work detail. Fail-safe soldering even for delicate work I The price of this tough, modern instrument ? Just \(£ 4126\) complete with two tips, a \(6^{\prime \prime}\) extension barrel, a double-ended probe and solder. FREE 24-PAGE CATALOGUE! For details of the Burgess instant heat solder gun, plus other equipment in the Burgess All-Electric Workshop, write for a free copy of our informationpacked catalogue.

Burgess Products Company Limited, Electric Tools Division, Sapcote, Leicester LE9 6JW

WW-070 FOR FURTHER DETAILS


Measure : V 's from 1 Hz to \(\mathbf{3} \mathrm{MHz}\)


VOLTMETER RANGES
\(15 \mu \mathrm{~V}, 50 \mu \mathrm{~V} .150 \mu \mathrm{~V} . .500 \mathrm{~V}\) f.s.d Acc. \(=1 \%=1 \%\) f.s.d. \(=1 \mu \mathrm{~V}\) at 1 kHz db RANGES
\(-100 \mathrm{~dB},-90 \mathrm{~dB},-80 \mathrm{~dB} \ldots+50 \mathrm{~dB}\) Scale \(-20 \mathrm{~dB} /+6 \mathrm{~dB}\) rel. to \(1 \mathrm{~mW} / 600 \Omega\). FREQUENCY RESPONSE
Above \(500 \mu \mathrm{~V}: \pm 3 \mathrm{~dB}\) from 1 Hz to 3 MHz . \(\pm 0.3 \mathrm{~dB}\) from 4 Hz to 1 MHz Type TM3B can be set to a restricted B.W. o 10 Hz to 10 kHz or 100 kHz
INPUT IMPEDANCE
Above \(50 \mathrm{mV}:>4.3 \mathrm{M} \Omega<20\) pf. On \(50 \mu \mathrm{~V}\) to \(50 \mathrm{mV}:>5 \mathrm{M} \Omega<50 \mathrm{pf}\)
AMPLIFIER OUTPUT
150 mV at f.s.d. on alf ranges into
\(200 \mathrm{k} \Omega\) and 50 pF without loss.
SIZES \& WEIGHTS
TM3A: \(5^{\prime \prime} \times 7^{\prime \prime} \times 5^{\prime \prime} .51 \mathrm{~b} .3 f^{\prime \prime}\) scale
TM3B: \(7^{*} \times 10^{\prime \prime} \times 6^{\prime \prime} .8 \mathrm{lb} .5^{\prime \prime}\) mirror scale.


\section*{LEVELL}

PORTABLE IWSTRUMENTS

Long battery life and large overload ratings are leading features of these solid state instruments. Mains power supply units and leather carrying cases are optional extras.

Measure \(\mu \mathbf{V}\) 's from 1 Hz to 450 MHz .

H.F VOLTAGERANGES
\(1 \mathrm{mV}, 3 \mathrm{mV}, 10 \mathrm{mV} . .3 \mathrm{~V}\) f.s.d
Square law scales. Acc. \(\pm 4 \%\) of reading \(\pm 1 \%\) of f.s.d. at 30 MHz H.F. dB RANGES
\(-50 \mathrm{~dB},-40 \mathrm{~dB},-30 \mathrm{~dB} \ldots \div 20 \mathrm{~dB}\)
Scale \(-10 \mathrm{~dB} /+3 \mathrm{~dB}\) rel. to \(1 \mathrm{~mW} / 50 \Omega\).
H.F. RESPONSE
\(=0.7 \mathrm{~dB}\) from 1 MHz to 50 MHz
I 3 dB from 300 kHz to 400 MHz
\(\pm 6 \mathrm{~dB}\) from 400 MHz to 450 MHz
L.F. RANGES

As TM3 except for the omission
of \(15 \mu \mathrm{~V}\) and \(150 \mu \mathrm{~V}\) ranges
AMPLIFIER OUTPUT
As TM3 on L.F.
Square wave at 20 Hz on H.F. with amplitude proportional to square of input.
SIZES \& WEIGHTS
TM6A: \(5^{\prime \prime} \times 7^{\prime \prime} \times 5^{\prime \prime} .6 \mathrm{lb} .3 \frac{1}{\prime \prime}^{\prime \prime}\) scale.
TM6B: \(7^{\circ} \times 10^{\circ} \times 6^{\circ} .91 \mathrm{~b} .5^{\prime \prime}\) mirror scale
\(\begin{array}{ll}\text { type } 585 \\ \text { TM6A } & \text { type } \\ \text { TM68 } & \text { TMS }\end{array}\)

Measure D.C. \(2 V\) 's, pA's \& (l's


VOLTAGE RANGES
\(3 \mu \mathrm{~V}\). 1C \(\mu \mathrm{V}, 30 \mu \mathrm{~V}\)
f.s.d. \(\pm 0.1 \mu \mathrm{~V} . L Z \& \mathrm{CZ}\) scales

Noise \(<0.5 \mu \mathrm{~V}\) p-p on \(3 \mu \mathrm{~V}\) range
Drift \(<0.7 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \&<0.7 \mu \mathrm{~V} /\) day
Input res. \(>1 \mathrm{M} \Omega / \mu \mathrm{V}\) up to \(10 \mathrm{mV},>10 \mathrm{KM} \Omega\) on 30 mV to \(1 \mathrm{~V}, 100 \mathrm{M} \Omega\) above 1 V .
CURRENT RANGES
3pA, 10pA, 30pA ... 1 mA (1A for TM9BP) \(A C c+2 \% \pm 1 \%\) f.s.d. \(\pm 0.3 p A . L Z\) \& CZ scales. Noise <0.7pAp-p on 3pA. Drift <1pA \({ }^{\circ} \mathrm{C} \&<1 \mathrm{pA} / \mathrm{day}\). Input res. \(1 \mathrm{M} \Omega\) up to 1 nA \(100 \mathrm{k} \Omega\) on 3 nA to \(1 \mu \mathrm{~A}, 100 \Omega\) on \(3 \mu \mathrm{~A}\) to 1 mA \(0.12 \Omega\) on 3 mA to 1 A .
RESISTANCE RANGES
\(3 \Omega, 10 \Omega, 30 \Omega \ldots 1 \mathrm{kM} \Omega\) linear. Acc. \(\pm 1 \%\) \(\pm 1 \%\) f.s.d. up to \(100 \mathrm{M} \Omega\). Test voltage \(3 \overline{\mathrm{~m} V}\) at f.s.d. on \(\Omega\) ranges. Test currents \(1 \mu \mathrm{~A}\) \& 1 nA on \(k \Omega \& M \Omega\).
RECORDER OUTPUT
1 V at f.s.d. into \(>1 \mathrm{k} \Omega\) on \(L Z\) ranges.
SIZES \& WEIGHTS
TM9A as TM3A. TM98 \& BP as TM3B
\begin{tabular}{lll} 
type & type & type \\
TM9A & TM9B & TM9BP \\
675 & 689 & -293
\end{tabular}


\section*{breakthrough in size,cost, precision and versatility}


This FX-201 'Z TRIP' is unique-it is the only frequency sensitive switch in microcircuit form. It incorporates over 200 transistors on a single monolithic silicon chip, and is housed in a TO-5 style can. This 'Z TRIP' consists of two independent 'band accept' frequency selective switches, incorporating an input amplifier, analogue/digital frequency discriminating circuits and buffered bistable output switches. It operates from a single d.c. supply and is rated for industrial environments.
The FX-201 accepts sinewave and pulse input signals: when the input signal frequency falls within either of the two predetermined acceptence bands the corresponding output is switched. Completely immune to random signal noise and harmonics.
- Adjustable band frequencies 10 Hz to 30 kHz
- Adjustable band separation 1\% to 50\%
- Adjustable bandwidths \(1 \%\) to \(50 \%\)
- Band edge 'slope' typically 0.1\%
- Response time approx. \(1.8 \mathrm{mSec} @ 5 \mathrm{kHz}\)
- Signal amplitude range 20 mV to 20 V

LOW COST IMMEDIATE DELIVERY


Comprehensive data from
CONSUMER MICROCIRCUITS LTD 142/146 OLD STREET, LONDON, E.C. 1 Telephone: 01-253 5838/9


Ballistics Computers by Westinghouse. Nine servo amplifiers with associated motors and Power Packs. Brand new in sealed containers. Price on application.


Automatic Numbering Machine by Western Union. Four Uniselectors and 30 neons. Ideal basis for amateur computer. Application leaflet. £12.10s. post free.

PUNCHES, READERS, VERIFIERS AND TELEPRINTERS. NEW COMPUTER ENGINEERING SURPLUS MATERIALS, AT REALISTIC PRICES, MOBILE SHOWROOM. CALLS ON REQUEST TO SUITABLE LOCATIONS
Elloft 803 B computers 4 k store, 803C 8 K store, film handlers, two tape readers, two tape punches. ICL 1901 Central Processers 8 K store Lineprinter, 600 LPM. Elliott 903 8 K store tape readers \& punch. Prices on application

\section*{COMPUTER TRAINING PRODUCTS}

2 Lordship Lane, LETCHWORTH, HERTS. Tel: 4536 0462/6

\section*{WW-073 FOR FURTHER DETAILS}


First) measure it - on the Rank Studio Flutter Meter. The Type 1740 measures accurately the degree of Wow and Flutter on sound recorders and reproducers.
For more information write tos


\section*{RADIO MASTS AND AERIAL ARRAYS} COAXIAL CABLE TERMINATING UNITS

Designed for Centre Fed Tx and Rx Dipole Arrays.

MANUFACTURERS OF:
Aerial Systems for M.F. \& H.F.
range including:
Centre Fed Half Wave Dipoles.
Delta Matched Dipoles.
Folded Dipoles.
Broad Band Cage Monopoles.
Rhombic Systems.
Quadrant Dipoles.
Inverted "V" Arrays.
Terminated Folded Dipoles.
M.F.'"T' \& "'L" Aerials.

\section*{Radio Masts.}

Vertical Radiators.
Transmission Line Equipment. Lead-in-Insulator Panels.

SUPPLIERS TO:
Government Ministries, Crown Agents, principal manufacturers of Telecommanications equipment and overseas governments and administrations.


Also available: Portable half wave antennaes designed for use with the modern HF transceiver. These antennaes use the CCJ/2 centre connector with Terylene/ Copper elements calibrated in \(\frac{1}{2} \mathrm{Mc} / \mathrm{s}\). spacing to frequency nominated. Supplied with coaxial cable and fitted required type of plug.

SOUTH MIDLANDS CONSTRUCTION LIMITED
S. M. House, Osborne Road, Totton, Hants.

Telephone: Totton 2785/4930

\section*{'Astronic' series 1700 A COMPLETE RANGE OF MODULES}


> ASSOCIATED ELECTRONIC ENGINEERS LTD. DALSTON GARDENS, STANMORE, MIDDLESEX. HA7-1BL TELEPHONE 01-204 2125


\section*{ERNEST TURNER}

ELECTRICAL INSTRUMENTS LTD.
TOTTERIDGE AVENUE
HIGH WYCOMBE BUCKS. ENGLAND. Telephone 30931/4


WW-077 FOR FURTHER DETAILS
DIFFERENTIAL D.C. AMPLIFIERS
For use with d.c. energised Transducers


150 same
modular or cased versions
versatile, high performance instrumentation amplifiers for use with low or high level signals. Two outputs available to drive all U-V galvanometers, indicators, recorders and control devices.

FE-154-BD modular \(£ 69\) FE-154-BD/C cased mains powered \(£ 99\)

Complementary units:-
Bridge Supplies and Conditioning Units. Sample and Hold and Bridge Amplifiers.

FYLDE
Electronic Laboratories Limited. Oakham Court, Preston. PR1 3XP Telephone : Preston (0772) 57560

\title{
Introducing the tape decks that will probably start you thinking all over again about tape decks.
}


Have you watched a TEAC demonstration yet? Have you seen (and heard) what can happen when a company of unusual capability in the magnetic tape industry decides to create some exciting new standards for the knowledgeable music lover?

The TEAC decks shown here are now available exclusively in select hi-fidelity shops throughout Europe. We think they're pretty incomparable.

Example: Model A-6010 has exclusive features like Phase Sensing automatic reverse which gives you up to four hours of uninterrupted music on a single tape. It has symmetrical soft-touch control operation for fast-winding in both tape directions, playback and stop. And it has outer-rotor motors for reel drive, four TEAC Techno-built tape heads, four solid-state amplifiers with silicon transistors, and much, much more.

The other models cost much less, but still give you TEAC's flawless performance.

In this age of tape recording ingenuity, it still might surprise you to see what TEAC is doing.

\title{
TEAC
}

TEAC EUROPE N.V.
Amsterdam W2, Kabelweg 45-47,
Postbus 8180, Netherlands

A- 1200
Medium priced lape deck with 3 heads, push-button operation. professional performance specifications. 2-track available as special order.


\section*{A-1500W}

Stereo tape deck with automatic reverse, 3 motors. 4 heads and push-button operation.


\section*{A-4010S}

4-head, 4-track stereo recorder with symmetrical control operation. 4 solid-state amplifiers, automatic


TEAC DISTRIBUTORS: U.K. B. H. Morris \& Co., (Radio) Ltd., 84/88, Nelson St., London, E. 1 Ireland International Trading Group Lit., 5 Cope St., Dame St., Dubiin 2 West Germany TEAC European Service Center, Dotzheim Wiesbadenerstrasse 68, 6200 Wiesbaden HANIMEX (DEUTSCH. LAND) GMBH, 3000 Hannover, Haltenhoffstr. 50 Belgium INELCO S.A., 20-24, Rue del'Hospital, Brussell France Fabrlcatlons Electroacoustiques Frei 7. Rue Sainte-Isaure, Paris 18 Netherlands INELCO N.V.. Arent Janszoon Ernststraat 801, Amsterdam Z. II Italy Audel s.a.s. 20124 Milano V . le Tunisia 45 Cyprus Electroacoustic Supply Co., Ltd., P.O. Box 625, Limassol Denmark Quali-Fi, Christiansholms Parkvej 26, Klampenborg Greece Elina Lid., 59 \& 59A Tritis Septemvriou Street, Athens 103 Portugal Jorge Goncalves, Avenida 5 de Outubro, 53, 1., Lisboar 1 Sweden Audlo-
Nike AB. Sunnanvag 14E, Lund 7 Japan TEAC Corporation 2-8-8, Tsunohazu, Shinjuku-ku, Tokyo
 Gramophone Record Maintenance and Stylus Cleaning Kit Designed for use on NEW records or records in new condition which are to be played with pick-ups requiring very low tracking pressures. The 30,000 finely pointed tips of the \(\mathrm{Hi}-\mathrm{Fi}\) pointed
Parastat Brush positively explore every detaif In the record groove to provide the high degree of record cleanliness necessary when
 using uitra lightweight pick-ups tracking at 2 grammes less. The cover pad in the lid of the case bush which when
purpose of cleaning and activating the brush purpose of cleaning and activating the brush which when
enclosed within the case is kept at the correct level of enclosed within the case is kept at the correct level of
humidity required to control all static at the working surface. Perfectly clean records must be played with a perfectly clean stylus and an integral part of the kit is the new Watts Stylus Cleaner which provides a safe and efficient method of cleaning the stylus.
Supplied complete with instructions, 1 oz . New Formula dispenser, Dlstilled Water dispenser, spare pad cover and ribbons. Price 42/6 plus \(1 / 3\) P.T
Replacements: 1 oz. Now Formula dispenser \(4 / 6\) Distilled Replacements: 1 oz. New Cormer and Ribbons1/9.
Water Dispenser 4/- Pad Cover and

\section*{'PARASTAT'Reod}

\section*{Manual Model \\ with Humid Mop}

A dual purpose record maintenance device. Keeps new records in perfect condtion. Restores fidelity to older discs. The Humid Mop cleans and conditions the bristles and velvet pads. Ensures correct degree of humidity at the time of use. Complete with 1 oz. New formula dispenser and instructions. Price: 52/6
Replacements: Pad Covers 2/- each. Brush 12/6. Sponge Cover Pad 1/-. 1 oz. New Formula dispenser 4/6. Humid Mop Sponge and 4 wicks \(3 /-\). Manual Parastat available separately 47/6. Humid Mop available separately 5 /-
-PARASTATIK

\section*{DISC PREENER}
(Patent No. 982599) designed for use with records which have not had previous antistatic treatment. Complete with instructions. Price 6/9. Replacements: Packet of 4 wicks 2/-.

\section*{All obtainable from your} local specialist or direct:

\section*{The original}

OUST BU G'Read:
(Potent No. 817598) \(\longrightarrow \square ?\)
Automatic Record Cleaner. Easily fitted to any transcription type turntable. Provides a simple and effective method of removing static and dust while the record is being played. Surface noise and record and stylus wear is reduced. resulting in cleaner reproduction. Complete with \(\frac{1}{1}\) oz. New Formula Dispenser and instructions. Price \(18 / 9\) plus \(4 / 5\) P.T. Replacements: Nylon Bristle and Plush Pad 1/9. \& oz. New Formula Dispenser 2/6. A GUIDE TO THE BETTER CARE OF L.P. AND STEREO RECORDS A guide to the care betlp and Stereo Records Completely revised. 48 pages, fully illustrated. providing all necessary information on Record Care 2/6 Post Free.

To CECIL E. WATTS LTO. DARBY HSE, SUNBURY DN THAMES, MIDOX. I Please send (Post Free U.K. and Commonwealth)
Disc Preeners @ 6/9 ...........Fi Parastats @ \(42 / 6\) plus \(1 / 3\) P.T. I Dust Bugs @ 18/9 plus 4/5 P.T. Manual Parastats @ 47/6| 48 page Booklets @ \(2 / 6 \ldots . . . . . . . . . .\). Stylus Cleaners @ \(5 /-\) plus \(1 / 3\) P.T. I Manual Parastat/Humid Mop @ 52/6

Spares as per attached list
l enclose cheque/P.O. value \(f\)
(Donot send postage stamps) |
Name
Address
 rest of the N. C. Brown rangei
Eaz N.C. BROWN LTD.
EtI pacesetters in storage equipment
Send your FREE BROCH- INAME
Send your FREE BROCH- INAME
URE }\square\mathrm{ or Send }\square\mathrm{ (how ADORESS
URE }\square\mathrm{ or Send }\square\mathrm{ (how ADORESS
many) Budget Storage
many) Budget Storage
Units £19:Os. in green Dept.ww Eagle Steelworks, Hoywood, Lance. Tel: 69018
Units £19:Os. in green Dept.ww Eagle Steelworks, Hoywood, Lance. Tel: 69018
forgrev. |London: 25.27 Newion St.,W.C.2. Tel: 01.4057931
forgrev. |London: 25.27 Newion St.,W.C.2. Tel: 01.4057931

WW- 080 FOR FURTHER DETAILS

\section*{J E S AUDIO INSTRUMENTATION}


Illustrated the Si 451 Millivoltmeter - pk-pk or RMS calibration with variable control for relative measurements. 40 calibrated ranges \(£ \mathbf{3 0 . 0 . 0}\)

Si 452 ............£25.0.0.
Distortion Measuring Unit. \(15 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s}-.01 \%\)

Si 453
£35.0.0.
Low distortion Oscillator.
Sine - Square - RIAA
J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (OWR62) 2501 BRADFORD ROAD, CLECKHEATON, YORKSHIRE

WW- 081 FOR FURTHER DETAILS


BRITEC LIMITED, 17 Charing Cross Road, London, W.C. 2 Tel: 01-930-3070

AN INTEGRATED CIRCUIT

\section*{VOLTAGE REGULATOR}



VOLTAGE REGULATOR
Series, shunt, switching or floating regulator for Positive or Negative Supplies

ABSOLUTE MAXIMUM RATINGS
Voltage from \(V_{+}\)co \(V_{-}\)
Input-Output Voleage
Meximum Outpue current
Curront from \(\mathrm{V}_{\mathrm{Z}}\) Internal Power Dinupution
Internal Power Oinipation
Operating Temperature Range
CHARACTERISTICS. Tamb \(25^{\circ} \mathrm{C}\).
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Line Regulation \(\forall=12\) to is \(V\). \\
\(V_{I N}=12\) to 40 V.
\end{tabular} & \[
\begin{aligned}
& \text { typ } \\
& 0.01
\end{aligned}
\] & \[
\begin{aligned}
& \text { max. } \\
& 0.1 \\
& 0.5
\end{aligned}
\] & \% Vout. \\
\hline Load Megulation \(K=1\) to 50 mA . & & 0.6 & \% Vour. \\
\hline  & 0 \% & & \\
\hline Short Cirevit Currant Limit & 65 & & mA . \\
\hline Roforence Volcage 6.8 & 7.15 & 7.5 & \\
\hline Outpur Notae Voluge \(\mathrm{C}_{\text {nef }}=5 \mu \mathrm{~F}\) & 2.5 & & \(\checkmark\) \\
\hline Loed Torm Subilley & 0.1 & & 110 \\
\hline Standby Current Drain & 2.3 & 4.0 & mA \\
\hline Input Voteage Range 9.5 & - & 40 & \(\checkmark\). \\
\hline Output Voltage Range 2.0 & - & 37 & v. \\
\hline Inpus-Ovipur Voleage Differential & - & 38 & \(v\). \\
\hline Average Temp. Conf. of & & & \\
\hline Outpur Voleage \(0^{\circ}-70^{\circ} \mathrm{C}\). & 003 & . 015 & \%/ \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular} PRICE I-24 3 3s. 9 d.


Lame reculanom as a TUNCTION OH IWNT OUTHI


IS JUST ONE OF THE 1500 SEMICONDUCTORS
DETAILED IN QUARNDON SEMICON'70

WHICH INCLUDES PRODUCTS STOCKED AND AVAILABLE BY RETURN OF POST FROM

\section*{QUARNDON ELECTRONICS}

TELEPHONE (0332)

32651
(SEMICONDUCTORS) LIMITED SLACK LANE DERBY

prices yet. In 21-gauge steel. Finished hammer
blue, with 18 -gauge front panel supplied with easy-to-strip protective covering for easy marking out. For ease of ordering Contil cases are described by their dimensions, i.e. 755 is \(7 \times 5 \times 5\). Individually packed, including feet and screws.

CASE PRICES (All supplied with protective coated steel panels)

Contil cases are also available with aluminium panels and Contilcote, which is applied afterdrilling and cutting.

Nos, denote size in inches
755
867/975
1277 white or black panel
1277 unpainted
16127
191010
1910100
\begin{tabular}{crrrrrr}
1 & 5 & 10 & 25 & 50 & 100 & PB \\
\(48 /-\) & \(46 /-\) & \(45 /-\) & \(44 /-\) & \(43 /-\) & \(41 /-\) & \(6 /-\) \\
\(50 /-\) & \(49 /-\) & \(48 /-\) & \(46 /-\) & \(45 /-\) & \(43 /-\) & \(6 /-\) \\
\(55 /-\) & \(52 /-\) & \(51 /-\) & \(50 /-\) & \(49 /-\) & \(48 /-\) & \(8 /-\) \\
\(45 /-\) & \(44 /-\) & \(43 /-\) & \(40 /-\) & \(39 /-\) & \(37 /-\) & \(8 /-\) \\
\(106 /-\) & \(104 /-\) & \(102 /-\) & \(101 /-\) & \(99 /-\) & \(97 /-\) & \(9 / 6\) \\
\(143 /-\) & \(140 /-\) & \(137 /-\) & \(135 /-\) & \(134 /-\) & \(133 /-\) & \(10 / 6\) \\
\(199 /-\) & \(197 /-\) & \(196 /-\) & \(194 /-\) & \(192 /-\) & \(190 /-\) & \(18 /-\)
\end{tabular}

\section*{Your third hand}

The ONTOS UNIVERSAL. VICE is a new type of multi-purpose, multi-position light engineering vice and stand, fully adjustable for any angle and location in any desired plane. Applications are virtually limitless within its size capacity; ane. holding P.C. boards for assembly or testing, building up modules, as a ie. holding P.C. boards stand, as a light general purpose vice, in the chemical laboratory, or in fact for all those occasions when you could use a thrd-in-one The ONTOS TWIN TWO-IN-ONE UNIVERSAL WICE is arable of rotation version of the Ontos vice, with two sets of laws, each capable of rotation through 360 deg. of every plane independently option work. Ideal for copying enables any such setting to be maintained for repetition work. Meat
P.C. boards, assembly, soldering, bonding, welding. laboratory testing, etc.

ONTOS: 6B/- plus P\&P 4/6.
ONTOS TWIN: £5 180 plus P\&P 6/


\section*{'Brightlife'}

\section*{neon}
25.000 hour average life PC type \(\mathrm{i}^{\prime \prime}\) dameter. \(6^{\prime \prime}\) leads with resistor inside. Nine different caps available. \(160-260 \mathrm{~V}\). 10 at \(3 /-\) each. 100 at \(2 / 8\) each. 1.000 at \(2 / 4\) each. 10.000 at \(2 / 3\) each. Also available with \(30^{\prime \prime}\) leads: 110 volt resistor values. PP type \(\frac{1}{2}{ }^{\prime \prime}\) diameter also supplied with \(30^{\prime \prime}\) leads and 110 volt variants. 10 at \(3 /\) - each. 100 at \(2 / 8\) each. 1.000 at \(2 / 4\) each, 10.000 at \(2 / 3\) each. Neon/resistor assemblies. 100 at 10 d e each. 10.000 at gd. each. Neons only, 100 at 9 d . each. 10,000 at \(6 \frac{1}{2}\) d. each. Neon driven by neon oscillator for 6 to 24 volt input down to 50 mW input. Neon driven by transistors with or without alphanumeric caps. with or without alphanumeric caps.

sub-MANIATYRE NEON
The smallest yer, sype "Q". Overall diameter Th", body .7", resistor mounted externally medium intensity. Minimum quantity 10 at \(4 /-\) each. 100 at \(3 / 6\) each. 500 at \(3 / 4\) each.

,

recommended circuit. The hermetically sealed switch is protected in a brass tube and moulded Into a polypropylene block giving accurate in relation to the mounting screws. \(30^{\circ \prime}\) nominal leads fitted. Used for Rev. Counters, flowmeters, burglar alarms, under and over speed monitors, etc. I at \(15 /-\). 10 at \(13 /-\) each. 100 at 10/- each.

\section*{ACCESSORIES}

Flexible insulated test prods, colour red or fine steel clips at the tip. opened by button on top. High speed resetting counter including bezel and socket with speed of over 40 operations per second \(165 /\)-. Plug in octwo changeovers
ideal for development
cheaper for production
ideal for development
cheaper for production
PVC COATED MATERIALS. No outside paint to be scratched. PVC easy to clean. surface is scut l resistant
PVC/ALUMINIUM FOA FRONT \& BACK PANELS gives
 easy cult ing with rigidity PVC/STEEL FO H SIOES.
BOTTOM gives rigidity. Low cost. ease of assembly 3 HEIGHTS OF CASE. 4 WIDTHS. 2 DEPTHS. Make 24 cases with screws on top and 24 cases with screws on side. that's 48 different cases. LOW COST. Prices include chassis. MODERN DESIGN. Metal work on rit PVC
back and chassis is made easier by aluminium with PVC cladding. PVC/steel on sides and bottom for strength. GOOD DELIVERY. OH the shelf range
coatedcases.
NOTE THE LOW COST
\begin{tabular}{|l|r|r|r|l|l|}
\hline \multicolumn{5}{|c|}{ X } & \multicolumn{1}{c|}{ Y } \\
\hline
\end{tabular}








\section*{NATO,NASA,Royal Navy,BBC use Uher. Now you can.}


The same exacting standards of technical excellence demanded by these world pacesetters are applied to producing the Uher 714 which, for the first time, brings the superb quality of Uher below \(£ 60\).

See and hear the Uher 714.
It incorporates many features
associated with much more expensive instruments.
- All round tape speed of \(3 \frac{3}{4} \mathrm{ips}\)
- Perfect four-track recording
- 7 "reels
- Plays back stereo tapes
- Monitoring during recording
- Solid pressure-cast frame
- Silicon transistors
- Recording Level Instrument with dB scale
- Simple operation
- Light • Robust • Portable

The Uher 714 outclasses
everything in its class.


VARIOCORD 23
UNIVERSAL 5000
UHER 4000 REPORT L
royal de luxe

\title{
DIIER
}

DISTRIBUTED IN THE U.K. BY

\section*{ARE COSTS OUTUEICHIIE YOUR PROFITS?}

\section*{Come and see what mechanisation can do.}

High productivity and full order books are fine. But it margins are down, you've got to look for new ways of improving efficiency. You'll find them-in plenty-at London's International Mechanical Handling Exhibition. It will be the biggest collection of time-saving ideas you've ever seen-the world's largest display of mechanized handling aids. New systems and equipment to cut costs and ensuremaximum utilization of plant. The very latest in receiving techniques; storage inventory contral ; in-processing ; packaging ; transport ; distribution ; plus all that is new in ancillary services and equipment. Whether your business is large or small you can save money with modern handling methods.

Don't miss this important event. Make a note of the date . . . and mail the enquiry now.


\title{
radio microphone systems
}
 system R.M.S. 5


The AUDIO radio-microphone system R.M.S. 5 meets the most stringent requirements for compactness, reliability and quality. It is extensively used in film, broadcast and television productions including those of the B.B.C and I.T.V companies. It is also the preferred choice in many fields of professional entertainment and has industrial and educational applications as well. As an alternative to the tiny transmitter, usually secreted about the person of the user, a complete hand-held microphone is now available with the transmitter contained within the tubular handle. Performance characteristics are the same for either version.

\section*{ABRIDGED SPECIFICATIONS}

Frequency range from 50 MHz to 175 MHz , crystal controlled, with \(\pm 75 \mathrm{KHz}\) deviation. Power output from 1 mW to 20 mW . Stability \(\pm 10 \mathrm{KHz}\) at 175 MHz from \(0^{\circ} \mathrm{C}\) to \(40^{\circ} \mathrm{C}\), and correspondingly better at lower Hz . Hand-held model R.M.S. 5 H with microphone incorporates on/off switch and battery compartment.
NARROW BAND VERSION - The Post Office allows use of two wide band channels, or where speech quality is not important, five narrow band channels. A narrow band version of R.M.S. 5 can be supplied accordingly.
RECEIVER. This is a crystal controlled superheterodyne with characteristics to suit the transmitter. A carrier/battery voltage indicator is incorporated.


\section*{system R.M.S. 7}

In addition to the programme detailed above, AUDIO LIMITED have under development a 470 MHz radio-microphone for TV use overseas, a half-watt radio-microphone for outside broadcasts, a 4 watt transmitter for radio-microphone links, and studio talk-back systems. Enquiries invited.

\section*{It's only a year since we launched the record selling S54}


\section*{Now we introduce the S54A...}
... a single beam oscilloscope with a sensitivity of \(10 \mathrm{mV} / \mathrm{cm}\) at 10 MHz bandwidth

The S54A is an all solid state oscilloscope developed from the S54. Smartly styled yet ruggedly built, the S54A has a wide application in field work, in the laboratory and in production line testing. Look at the features
* 10 MHz Bandwidth at \(10 \mathrm{mV} / \mathrm{cm}\)
* All Solid State Design
* Small Size - Light Weight
* FET Inputs

At \(£ 120\) you will find no other oscilloscope of its type which offers such features at such low cost. Write or phone for full specification NOW! ! ! !
* Versatile Triggering including T.V. Line and Frame Sync.
* \(6 \times 10 \mathrm{~cm}\). Viewing Area
* Built-in Voltage Calibrator.

\section*{TELEQUIPMENT<<>>}

\title{
Wireless World
}

\author{
Electronics, Television, Radio, Audio
}

Sixtieth year of publication


\section*{Stanilized power supply unit}


This month's cover illustration shows an unusual view of a watchmaker's wheel adopted by Pye to aid the handling of components in the production of small receivers (see p.158).

\section*{IN OUR NEXT ISSUE}

Simple high-quality pre-amplifier, having a high input impedance, suitable for radio and ceramic gramophone pickups.
Low-cost horn loudspeaker system

\section*{Contents}

\section*{ibpa}

Press Alybociates
I.P.C. Electrical-Electronic Press Lid Managing Director: Kenneth Tett Editorial Director: George H. Mansell Advertisement Director: George Fowkes Dorset House, Stamford Street, London, SE 1 C I.P.C. Business Press Ltd, 1970 Brief extracts or comments are allowed provided acknowledgement to the journal is given.

198 Literature Received
200 April Meetings
A117 SITUATIONS VACANT
A142 INDEX TO ADVERTISERS
Technology versus Education
H.F. Predictions

Radio Fire Alarm

Announcements
News of the Month
Letter from America
Sonex '70
Letters to the Editor

Transients by Thomas Roddam
Conferences \& Exhibitions
Circuit Ideas

World of Amateur Radio
Personalities
New Products

Stabilized Power Supply by A. 7. Ewins

Low-angle Radiation by L. A. Moxon

Class-B Audio Amplifier Circuits by K. C. Johnson
Speakers in Corners by H. D. Harwood
An Electronic Dice by Brian Crank

Digital Remote Control Systems by H. N. Griffiths

Active Filters-9 by F. E. 7. Girling © E. F. Good
Dynamic Range versus Ambient Noise by G. I. O'Veering

PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: \(01-9283333\) (70 lines). Telegrams/Telex: Wiworld Iliffepres 25137 London. Cables: "Ethaworld, London, S.E.1." Antual Subscriptions: Home; \(\beta\) Os Od. Overseas: 1 year \(\Omega 3\) 0s Od. (Canada and U.S.A.; \$7.2). 3 years \(\{713 \mathrm{~s}\) Od. (Canada and U.S.A.; \$18.50). Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notuty a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 202, Lynton House, Walsall Road, 22b. Telephone: 021-356 4838. BRISTOL: 11, Elmdale Road, Clifton, 8. Telephone: OBR2 21204/5. GLASGOW: 2-3 Clairmont Gardens, C.3. Telephore: 041-332 3792. MANCHESTER: Statham House, Talbot Road, Stretford, M32 OEP. Telephome: 061-872 4211. NEW YORK OFFICE U.S.A.: 205 East 42rd Sureet, New York 10017. Telephone: (212) 689-3250.


\section*{Why we are excited about the C333 range}

In these fast-moving days you might wonder why we're excited about a new capacitor range. Well, sales figures tell us that a lot of circuit designers are also enthusiastic about this-the latest Mullard range of miniature plate ceramic capacitors. Setmakers have already ordered them by the million. And, as for us, we were excited about this new range long before we even sold the first one. In case you are not already using these plate ceramic miniature capacitors, let us tell you (enthusiastically) something about them.

They're small. Well, of course. This is the mini age. Naturally, we designed them to fit a 2.45 mm . grid printed circuit board. But we also made them rectangular and thin ( 2.1 mm. max.). In fact they are no bigger than the winder on your wristwatch, so that they can pack very closely.

Wide range. This is something to be enthusiastic about. For the first time, circuit designers have available a wide
range of low-cost, high stability, close tolerance miniatures to choose from -at low prices. The full range (at present) has 28 values in five sizes from 1.8 pF to 330 pF (the E6 range). With temperature coefficients between NP0 and N750 the stability of tuned circuits can be maintained over a wide temperature rangethis is the C333 series.

High quality: low cost. These two conflicting objectives provided their own solution. In the first place we chose the most suitable materials for the performance and stability we required. Then we developed special, highly-automated processes to produce these tiny components within the rigid specifications we had laid down. These very efficient processes gave us the desired results; closely-controlled quality and low production costs.

Stability. This is essential for the applications for which these capacitors are intended. We developed materials which would not oxidise or peel in arduous conditions. And a special lacquer coating to protect them in conditions of high humidity. In brief, we designed in high stability and long life.

Tight tolerance. Again, the use of very stable materials and highly automated manufacturing and quality control equipment ensures
that every capacitor is held within very close limits-essential for the components used in oscillator and filter stages. The tolerance on every capacitor is within 0.25 pF or \(\pm 2 \%\) -whichever is the greater.

Worth it? Our rising production figures indicate that a good many people think so.
Set designers appreciate that, at Mullard we continue to apply enthusiasm and care to the manufacture of all our devicesdiscrete components, valves and tubes, and semiconductors. And we continue to produce exciting results.

Materials research, applications research, automated quality production and control-all backed by experience in component manufacture stretching over the history of the electronics industry. All contributed to the quality and performance of this our latest range of capacitors.

\section*{Mullard \\ components for consumer electronics}

\footnotetext{
Mullard Limited,
Consumer Electronics Division,
Mullard House, Torrington Place, London, WCl
}

\section*{The profersional one}

Here it is, Solartron's outstanding 1240.

The multimeter that's not just a toy but a real step forward in instrument technology.

Now everyone can go digital!
You get Amps, Volts, Ohms a.c. and d.c. - down to 100 micro.
volts and dual slope integration for noise rejection.

Technology apart, the 1240 has automatic polarity indication and a straightforward control layout including a single range selector and fingertip function switches. It's the easy-to-handle go-anywhere
portable multimeter.
Go digital with the new 1240. From Solartron, European leaders in digital instrumentation.

Post the magazine's reply-paid card and we'll send you our data sheet of full details.


The Solartron Electronic Group Ltd Farnborough Hampshire England Telephone 44433

\title{
Were the firstones toblow hot and cold about our resistors. So that you never will
}


\section*{-all the signals needed for HF traffic}

A new flexibility for your HF transmitters is yours immediately you install one of Redifon's three new HF drive units. Each generates up to 17 different modes of transmission covering telegraphy and telephony -CW, DSB, SSB and ISB -at the frequency of radiation. Each is a completely self-contained unit with its own
power supply and a 19 -inch rack-mounting front panel to fit neatly into linear amplifier housings.
Units are available with spot tuning or full frequency synthesis, 1.5 to 30 MHz .
Automatic volume compression for extra talk power and voice-operated Transmit switching, both selectable.


GK 202: 10 spot channels, set by a single switch


GK 203: Frequency synthesis in 100 Hz increments to provide maximum frequency flexibility


GK 207: 10 spot channels; manually tunable output circuits allow allocated channel frequencies to be changed rapidly by plugging in new crystals, without having to realign any pre-set circuits

Find out more about how flexible and economical your
HF drive arrangements can be, by writing to:
The Sales Manager,
Redifon Limited, Communications Division, Broomhill Road, Wandsworth, London, S.W.18.

A Member Company of the Rediffusion Organisation
WW-098 FOR FURTHER DETALS

\title{
The world's best portable professional audio tape recorder
}


MODEL IVB Manual. single speed



MODEL IVD Automatic/Manual, three speeds

MODEL IVL Neopilot, three speeds, Automatic/Manual

\footnotetext{
* Lids of transparant, shock resistant plastic. have been removed for clarity of iltustration
}


These models plus eight variants give the professional user a choice of twelve basic Nagra IV tape recorders. Modular plug-in electronic circuit boards, available for each machine, allow unique flexibility in the choice of recording functions.

Study the Nagra IV brochure and see how you can select precisely the facilities you need, built in to one compact machine of outstanding performance and reliability.

Write or telephone for technical information.
HAYDEN LABORATORIES LIMITED.
East House, Chiltern Avenue, Amersham, Bucks., England
Tel: 02403551 T Telex: 83251 Cables: Haylab Amersham.
HAYDEN

In the contInually-evolving technology of the electronics
industry, Carr design and research keep pace with, and often ahead of, the everchanging demands for increasingly sophisticated components. But whilst designs may change from week to week, Carr quality and reliability remain constant, ensuring that complex highprecision specifications are met with absolute and consistent accuracy


The connectors illustrated here are typical examples from our ranges. We have, of course many other components of special interest to the computer and communications industries, with rapid, reliable deliveries in bulk quantities assured. Ask for data, or for a visit from one of our Technical Sales Staff. The application of his wide experience to your problems can help you towards easier, more advanced assembly techniques, with the collateral benefits of worthwhile savings on time and costs


RADIO AND ELECTRONIC CONNECTORS


There is nothing random about quality control with BRIMAR data display tubes. Every single tube is subjected to an exacting test at every stage of production, from the raw materials used, through the various complex stages of manufacture, to the finished product.
A typical example of BRIMAR'S advanced inspection methods is the use of Spatial Frequency measuring equipment, built to their own uncompromising standards, and used for the measurement of final spot size and focus uniformity in such tubes.
And in addition to this, an unparalleled capability in chemistry, electron optics and vacuum physics enables Brimar to offer the widest design diversity backed by a personalised customer service. This
service, provided by engineers with extensive experience of the electronics industry, covers advice on tube sharacteristics, operating conditions and associated components.
Tailored pachaging, and reliable delivery to meet production schedules are also part of the BRIMAR Service.
Want to know more about BRIMAR Industrial Cathode Ray Tubes ? - ask to see our latest catalogue.

Thorn Radio Valves and Tubes Limited


7 Soho Square, London, WIV 6DN Telephone: 01-4375233


\section*{Know the latest from C.I.}

No. 2


\section*{Count up, count down counter SERIES 943}

Now in quantity production, this new C.I. counter has been produced with the needs of the Gaming and Amusement Machine manufacturers in mind. Nevertheless, it will have many other outlets where a robust unit of uncomplicated design is needed.
The three drum wheel bank can be indexed by solenoid actuators in either direction. The wheel bank registers from 000 to 999 where a stop prevents an additional pulse zeroing the wheels. Similarly the counter cannot subtract from 000 to 999 . When readout is 001 , a subtract pulse will find 000 and a change-over micro-switch will operate. Approximately \(6 \frac{1}{2}\) " high, \(4 \frac{1}{2}{ }^{\prime \prime}\) wide, \(3 \frac{1}{2}{ }^{\prime \prime}\) deep. 230 volts. AC 50 cycle supply. Other operating voltages available.

\section*{ELAPSED TIME METER SERIES 36}

Records time in hours and tenths of hours an electric circuit or machine has been in use: provides data on servicing and plant maintenance.


\section*{COUNTING INSTRUMENTS LIMITED}

Elstree Way, Boreham Wood, Herts. Tel : 01-953 4151
A MEMBER OF THE G.H.P. GROUP LIMITED

Please send details of Series 943 Counter Series 36 Elapsed Time Meter

Name \(\qquad\) Position \(\qquad\)

Company \(\qquad\)
Address ww


\title{
There is an M in Ferguson
}

\section*{It stands for Motorola and you'll}
see it in the Ferguson single standard 3000 colour TV
chassis. It's the mark of Motorola quality and reliability that got radio on the road and helped to put men on the moon.

A few facts:
Motorola is one of the largest semiconductor manufacturers in the world. Principal manufacturing facility and development labs in Phoenix, Arizona:
European HQ in Geneva: European factories in France and Scotland.

Motorola understands quality and reliability - it was their equipment that provided the essential communication links (radio and TV) between the moon's surface and earth.

That's why there is an \(M\) in Ferguson. - it stands for reliability
Motorola Semiconductors Limited York House, Empire Way, Wembley, Middx Tel:01-9030944. Telex: 21740 Motsem Wembley.
(M) MOTOROLA Semiconductors


WW- 105 FOR FURTHER DETAILS

\title{
Eurcpes bigetryellens arestillgeingstrons
}


You're in excellent company with these general purpose instruments, they've just passed their 20,000th sale.
Understandable when you consider their price performance.

\section*{The 1420 D.V.M.}
\(2.5 \mu \mathrm{~V}-1000 \mathrm{~V}\)
120 dB noise rejection
0.05\% accuracy

33 conversions per sec
\(5000 \mathrm{M} \Omega\) input resistance

\section*{The 1400 Scope}

Large, bright display 9 modules to choose from for your 'tailor-made' spec. Choice of 3 amplifiers, including differential. 3 time bases, including sweep delay. An X-Y plotter and custom blanks.

Post the magazine's reply-paid card and we'll send you our data sheet of full details.



\section*{Go digital-with SE}

See voltage, frequency, period, time, count, ratio - clearly, accurately.

With many variables, the instrument of the future is digital, As you would expect, S.E. Laboratories is in the forefront of this development, already offers you a huge range of accurate, versatile instruments at a rational price.
S.E. Digital Voltmeters are so cleverly designed that you can virtually have your D.V.M.s made to measure, from basic laboratory instruments to sophisticated data logging versions. The choice includes 3 models and 8 variations, with a maximum range up to IkV , maximum resolution \(10 \mu \mathrm{~V}\), accuracy \(0.01 \%\), and many different options including floating input, stored display, printer output, etc.
S.E. Timer Counters give you digital display at its most attract ive and dependable: Five large, vividly illuminated figures. Simple and handy controls. Five modes - frequency, period, time, count and ratio - you see all these, accurate to one part in a million \(\pm 1\) count! With the Counters, too, S.E. offers you many features, including indefinitely held display, manual reset, remote start/stop, and others.
All S.E. digital instruments give you top value for your money. See for yourself: Write for details or for immediate demon. stration.
\begin{tabular}{|l|l|}
\hline\(\square\) & \(\square\) \\
\(\square\) & \(\square\) \\
\hline
\end{tabular}
SE Laboratories (Engineering) Limited. North Feltham Trading Estate, Feltham. Middlesex. Telephone:01-890-1166\&5246(sales);01-890-5876(works). Telegrams: Selab, Feltham Telex:23995. Northern Sales Office. Bessell Lane, Stapleford, Nottingham. Telephone: Sandiacre 3255.

\title{
McMurdo's new 0.10" Pitch Connector = "RL" Series
}


5 to 85 way single sided with solder and printed wiring tails. 10 to 170 way double sided with solder and printed wiring tails. Wire Wrap and Crimp tails will shortly be available.

Working Voltage
Proof Voltage
Insulation resistance (dry)
Contact resistance to test gauge Insertion and withdrawal forces Contact finish

Another new product from:
McNiurdo Instrument Co. Ltd, Rodney Road, Fortsmouth, Hampshire. Telephone: Portsmouth 35361. Telex: 86112.

\section*{Micmancia \\ greal facility for service}

Member of the Lovis Newmark Croup. with access to the combined favilities of all other member companies.

\section*{SINCLAIR IC-10}

MONOLITHIC INTEGRATED CIRCUIT AMPLIFIER AND PRE-AMP


A 13 transistor circuit measuring only one twentieth of an inch square by one hundredth of an inch thick!

\section*{the world's most advanced high fidelity amplifier}

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick, has 5 watts R.M.S. output ( 10 w . peak). It contains 13 transistors (including two power types), 2 diodes. 1 zener diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.

The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used símply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout), etc. Once proven, the circuits can be produced with complete uniformity which enables us to give a full guarantee on every IC-10. knowing that every unit will work as perfectly as the original and do so for a lifetime.

\section*{SPECIFICATIONS}

Output: Frequency response: Total harmonic distortion Load impedance:
Power gain: Supply voltage Size:
Sensitivity:
Input impedance

Watts R.M.S. continuous 5 Hz to \(100 \mathrm{KHz} \pm 1 \mathrm{~dB}\) Less than \(1 \%\) at full output.

3 to 15 ohms.
\(110 \mathrm{~dB}(100,000,000,000\) times) total.
8 to 18 volts.
5 mv .

\section*{CIRCUIT DESCRIPTION}

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class \(A B\) output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from crossover disfortion at all supply voltages, making battery operation eminently satisfactory.

\section*{APPLICATIONS}

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include stabilised power supplies, oscillators. etc. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.

SINCLAIR
IC-10
with IC- 10 manual
Post free.


\section*{Project 60 an exciting alternative}

The buyer of an amplifier today has a remarkably wide variety to choose from. It is unlikely that a purchaser would have real difficulty in finding a unit that met all his requirements, although the price might not be as low as could be wished. The only snags are that one's needs can change and that the technically correct amplifier may be physically inconvenient. If you are confident that there is an amplifier available, of the right size and price, which will meet all your needs for the forseeable future, then that is your best buy. If not, however. we can offer you another possibility which we believe to be an exciting alternative approach. That alternative is Project 60.
Project 60 is a range of modules which connect together simply to form a complete stereo amplifier with really excellent performance. So good, in fact, that only 2 or 3 amplifiers in the world can compare with it in overall performance.
The modules are: 1. The Z-30 high gain power amplifier, which is an immensely flexible unit in its own right. 2. The Stereo 60 preamplifier and control unit. 3. The PZ. 5 and PZ. 6 power supplies. A complete system comprises two Z-30's, one Stereo-60 and a PZ-5 or PZ -6. The power supplies differ in that the \(\mathrm{PZ}-6\) is stabilised whilst the PZ-5 is not. This means that the former should be used where the highest possible
continuous sine wave rating is required. In a normal domestic application there will not be a significant difference between using either power unit unless loudspeakers of very low efficiency are being used.
All you need to assemble your system is a screwdriver and a soldering iron. No technical skill or knowledge whatsoever is required and, in the unlikely event. of you hitting a problem, our customer service and advice department will put the matter right promptly and willingly.
Perhaps the greatest beauty of the system is that it is not only flexible now but will remain so in the future. We shall shortly be introducing additional modules which will include a comprehensive fllter unit, a stereo F.M. tuner and an even more powerful amplifier for very large systems. These and all other modules we introduce will be compatible with those shown here and may be added to your system at any time.

Project 60 modules have been carefully designed to fit into virtually every known type of plinth or cabinet. Only holes have to be drilled into the wood of the plinth or cabinet to mount the Stereo 60 and any slight slips here will be covered completely by the aluminium front panel of the control unit. The Project 60 manual gives all the instructions you can possibly want clearly and concisely.

\section*{7-30 TWENTY WATT R.M.S. (40 WATT PEAK) POWER AMPLIFIER}

The 2-30 is a complete power amplifier of very advanced design employing 9 silicon epitaxial planar transistors. Total harmonic distortion is incredibly low being only \(0.02 \%\) at full output and all lower outputs. As far as we know, no other high fidelity amplifier made can match this specification, no matter what the price. Thus you can be utterly certain that your Project 60 system will do full justice to your other equipment however good it may be. The \(\mathbf{Z - 3 0}\) is unique in that it will operate perfectly, without adjustment, from any power supply from 8 to 35 volts. It also has sufficient gain to operate directly from a crystal pickup. So in addition to its use in a high fidelity system you can use a Z-30 to advantage in your car or a battery operated gramophone for your children, for example. These, and many other applications of the Z-30, are covered in the Project 60 manual.

\section*{SPECIFICATIONS}

Power output- 15 watts R.M.S. ( 30 watts peak) into 8 ohms using a 35 volt supply: 20 watts R.M.S. ( 40 watts peak) into 3 ohms using a 30 volt sumply.
Output-Class AB.
Frequency response: 30 to \(300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}\),
Signal to noise ratio: better than 70 dB unweighted
Distortion:
\(0.02 \%\) total harmonic distortion at full output into 8 ohms and at all lower output levels.
Size: \(\quad 3 \frac{1}{2} \times 2 \lambda \times \frac{1}{2}\) inches.
Input sensitivity: \(\quad 250 \mathrm{mV}\) into 100 Kohms .
Damping Factor:
\(\quad>500\).
\(>3\) to 15 ohms.
Loudspeaker impedances 3 to 15 oh
Power requirements: 8 to \(35 \mathrm{~V} . \mathrm{d} . \mathrm{c}\).

\section*{APPLICATIONS}

High fidelity amplifier: car radio amplifier: record player fed diract from pick-up intercom: electronic music and instruments: P.A., laboratory work, etc. Full details of these and many other applications are given in the manual supplied with your Z.30.


\subsection*{2.30}

Ready built, tested and guaranteed, with 2.30 manual.

\section*{STEREO SIXTY preamplifier and control unit}

The Stereo 60 is a stereo preamplifier and control unit designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout and great attention has been paid to achieving a really high signal-to-noise ratio and excellent tracking between the two channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs. The tone controls are also very carefully designed and tested.

\section*{SPECIFICATIONS}
- Inpur sensitivitles -Radio-up to 3 mV Magnetic Pickup- 3 mV Correct within \(\pm\) IdB on R.I.A.A. curve. Ceramic Pickup -up to 3 mV : Auxiliary-up to 3 mV . - Outpur- 250 mV .
- Signal-to-noise ratio-better than 70 dB .
- Channel matching-within 1 dB
- Tone Controls-TREBLE + 15 to - 15 dB . at 10 KHz : BASS +15 to -15 dB at 100 Hz .

Power consumption 5mA
- Power requirement-PZ 5 or PZ. 6
- Finish-brushed aluminium front panel with black knobs.
- Mounting-on cabinet front by spindie bushes and adjustable brackets.


STEREO SIXTY
\begin{tabular}{c} 
Ready buinh resed \\
and suanemeed \\
\(£ 9.19 \mathrm{~s} .6 \mathrm{~d}\). \\
\hline
\end{tabular}

\section*{SINCLAIR POWER SUPPLY UNITS}


30 volts unstabilised-sufficient to drive two \(\mathrm{Z-30}\) 's and a Stereo 60 for the majority of domestic applications.

Price: £4. 19s. 6d.
PZ-6 35 volts stabilised-ideal for driving two Z-30's and a Stereo 60 when very low efficiency speakers are employed.

Price: f7.19s. 6d.

\section*{GUARANTEE}

If at any time within 3 months of purchasing Project 60 modules from us, you are dissatisfied with them, we will refund your money at once. Each module is guaranteed to refund your money at once. Each module is guaranteed to work perfectly and should any defect arise in normal use we
will service it at once and without any cost to you whatsowill service it at once ind without any cost to you whatsoever provided that it is returned to us within 2 years of the
purchase date. There will be a small charge for service purchase

\section*{Low cost regulated DC power supplies}

Compact modular design providing optimum performance at low cost. Fully stabilised supplies from \(0-60 \mathrm{~V}\) up to 3 A per module. Modules can be arranged for series or parallel operation.
 WW-113 FOK FURTHER DETAILS

\section*{푶TNTMN}

\section*{2 CHANNEL AUDIO RECORDER}
* 10 watts continuous per channel
* Fully transistorised on 10 printed circuit boards
* 3 head system and 3 speeds 19-9.5-4.75 cms
* Mechanism operated by 4 DC solenoids
* Provision for full remore control

Robust construction and attention to detail make this an outstanding British tape recorder for industrial or domestic use. 38 cms version to special order.
Portable 4 speaker version
Oiled Teak surround version


Send for informative brochure fully explaining:
1. Why a single motor. 2. Electrical performance. 3. Wow and flutter.

MAGNETIC TAPES LTD.
CHILTON WORKS, GARDEN ROAD, RICHMOND, SURREY Tel: 01-8767957

\section*{WELWYN TOOLS}


167-KIT-CN


For Inner Core Ejection and Heated Wirestripping Miniature Soldering and Electronic Instrument Work

USE W.T.C. Wire Ejectors. LUCO Electrically Heated Wire Strippers (see illustration), Finest Soldering Needles, Box Joint Miniature Cutters and Pliers including Tip Cutelng Pliers, Printed Circuit Crimping and Cutting Pliers, Torque Wrenchesand Piercing Punches. Wrenches and Piercing Punches If you require quality tool ask for Catalogue WWITO

STONEHILLS HOUSE WELWYN GARDEN CITY WELWYN GARDEN 25403

WW-114 FOR FURTHER DETAILS


Microfarads come cheaper from WEL
MED CDNPDNENTS LTD. 5 Loverock Road. READING. Tel. 5B0616/9 MINISTRY OF TECHNOLOGY APPROVED DISTRIBUTOR WW-116 FOR FURTHER DETAILS

CONVERTOR/BATTERY CHARGER. Input 240 V 50 C/B. output 12 V 5 amp DC. Input 12 F DC. output 240 V AC. 170 watt max. Witb fuse and indleator lamps. size
\(9+10 \times 4 \mathrm{in}\). Weight 191 b . An extremely compact unit that will give many years' reliable service. Supplied with pluk and lead. Only © \(4 / 10 /-\). P. \& P. \(15 /\) extra. As above-fully zerviceable-perfect interlor but solled exterior cases. E3. P. \& P. 15/-.
G.M. TUBES. Brand new. G24/G38/G60 at 27/6 ea. G.M. TUBES. Brand new.
GESi, brass caged, Ef ea.
PHOTOMULTIPLIERS. EMI 8097 X at \(\mathbf{6 8} / \mathbf{1 0} /-\) ea. TRANSISTOR OSCILLATOR. Variable frequency
 new. Bozed. II/6 ea.
COUNTENAY TIMER sub-chassls with 2-12AU7, transistor, relay etc. Requiring 12V. A.C. or D.C. to operate \(22 / 6\).
As above but 1, 5. 10 or 15 minutes. State whlch. 25/- ea. RECEIVER UNIT TYPE 114 . Frea, coverage 124\(156 \mathrm{mc} / \mathrm{s}\) I.F. out \(9.72 \mathrm{mc} / \mathrm{s}\). Size \(7 \times 1 i \times 5 \mathrm{in}\). In orlginal service carton, completo
Omron/Schrack octal beLAYS plug-in relays. 2 pole c/o SA, 6 v only. Brach new, Boxed. \(12 / 6\) ea.
G.E.C. 4 pole c/o \(6 / 12 \mathrm{v}\) operation 180 olms. Platinum G.E.C. 4 pole c/o \(8 / 12 \mathrm{v}\) operation 180 olims. Platinum
contacts. Brand new. Boxed \(12 / 6\) ea. Min. Vark
new \(4 / 6\) es.
Mhn. S.T.C. 4 -pole c/o \(7.5-18 \mathrm{~V} .185\) ohms. Brand new boxed. \(8 /-\) ea, \(; 6 /-\mathrm{ea}\). per 100 .
S.T.C. sealed 2 pole c/o \(48 \mathrm{~V} .2,500\) ohm \(48 \mathrm{v} .3 / 6\) ea. 12 v
\(7 /=\) ea.
CARPENTERS polarised Single pole c/o 20 and 65 ohm coil as new, complete with base \(7 / 6\) ea. Single pole c/o \(680,1,110\) and 1,570 ohm coll. As new \(6 / 6\) es.
Brand New. Single Pole c/o (type \(5 A 2\) ), \(2 \times 1200\) ohms. Brand New, Single Pole c/o (type 5A2).
B/6 ea. POTENTIOMETERS
COLVERN BROTENTIOMETERS \(100 ; 250: 500\) ohms: \(1 ; 2.5 ; 5 ; 10 ; 25 ; 50 \mathrm{k}\) all at \(2 / 6\) es. Special Brand
new MORGANITE 250 K in. sealed. Normal price \(9 /-\), our price \(3 / 6\) es.
INSTRUMENT \(3^{\circ}\) Colvern. 5; 25: 100 ohms: 2.5. All at 7/-es.
TRIM POTS: Paignton-solder lugs 5. 10 \& 25 K at 5/- each: Pins 10; 20; 50; 100; 200; 250; 500 ohms: 2.5 ; 25 and 50 K at 10/- each

DARSTAN-preset-sealed \(\mathfrak{y}^{\circ}\) dia, I high. 1; 2 and \(5 \mathrm{~K} \mathrm{I/6}\) HIGH RESOLUTION 25 K 80 turns. Complete with noh \(6 / 6\)
GENERAL CONTROLS. 100K Ten turn. Brand new. Boxed 25/- ea.
ALMA Drection reststors 100 K ; 400 K : and \(998 \mathrm{~K}-0.1 \%\) 5/6 ea: \(3.25 \mathrm{~K}-0.1 \%\) 4/- ea.
DALE heat sink resistors. non-Inductlve 50 watt. Brand new.

\section*{CAPACITORS}

ERIE feed through ceramicons 1000 pf-9d. ea. \(2 / 6 \mathrm{ea}\) Sub-min. TRIMMER i square. 8, 5pf. Brand new \(2 / 6 \mathrm{ea}\). DUBILIER Electrolytic. \(32+32+10 \mathrm{mfd}\). 350 V . D.C Brand new. \(4 / 6\) ea.; \(3 / 9\) ea. per doz.
EHT 1000 pf 20 KV working. Ideal transmitter bloching capacitors \(6 / 6\) ea.
VISCONOL EHT. Brand new \(0.000525 \mathrm{kV}, 16 / \mathrm{es}\). E.H.T. 0.02 mfd 8 KV - \(6 / \mathrm{e}\) en. 0.1 mfd 2.5 KV -nitrogel-\(4 / 6\) es.; \(0.5 \mathrm{mfd} 5 \mathrm{KV}-11 /-\) ea.: \(0.05 \mathrm{mfd} 10 \mathrm{KV}-7 / 6\) es.: 0.6 mfd 2.5 KV 71 -ea.

GEARED MOTORS \(240 \mathrm{v} 50 \mathrm{c} / \mathrm{s}\) synchronous, Geared down to 60 rpm . Brand new \(30 /-\mathrm{eas}\). P. \& P. \(7 / 6\). DIODES 1N014. Brand new \(1 / 3\) ea.: \(12 /=\) doz.: \(44-100\) : 625-1.000.
PHOTOCELL equivalent OCP \(712 / 6\) ea
BURGESS Micro Switches V3 5930. Brand new \(2 / 6\) es. BULGIN panel mountlig Lamp holders. Red. Brand MINIATURE SPEAKERS 15 ohm 2 m . diameter. Brand new. 7/ea. P. \& P. 2/6 ea.
CANNON XLR iIC Piug. Brand new \(10 /=\) ea.
TRANSISTORS BC 114-NPN Low nolse hlgh galn TRANSISTORS BC 114-NPN LOW nolse high gain EI brand new equipment. Guaranteed perfect. Good EI brund new ea
lead length. \(2 /=\) ea

SCALER UCLEONIC INSTRUMENTS
SCALER type 1009 by Dynatron, Suitable Beta/ camma counts. Built in test signal. Calibrated adjust4 able discriminator. Read out 2 decaide neons an Carr. 80/-
Carr. senly RATEMETER type 1181 B Complete with built \(\ln\) EHT supply. Separate metering EHT and 8 kV . As new \(£ 35\). Carr. \(30 /\).
E.H.T. Power unit 0 to 5 K . Stablized by General Radiolotical. As new £20. Carr. sol100 CHANNEL PULSE HEIGHT analyser type 1863B. As new 675 . Ag above but tyve 1863C. 6120.
ECKO PULSE HEIGHT ANALYSER typ N101 E25. Carr. 30/. Carr. 30/- Transistorised Nucleonlc scaler with adjustable discrimilnator. A meter display 0.9 glving count of 10 to the 5 . New Oondition. Now ONLY \(£ 20\) Carr. \({ }^{15 / \%}\) Generator type 1147A. 110. Carr. 30/..

\section*{TEST GEAR}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{OSCILLOSCOPES} \\
\hline E.M.I. & \\
\hline \multicolumn{2}{|l|}{SOLARTRON} \\
\hline \multicolumn{2}{|l|}{SOLARTRON} \\
\hline \multicolumn{2}{|l|}{SOLARTRON} \\
\hline \multicolumn{2}{|l|}{SOLARTRON} \\
\hline \multicolumn{2}{|l|}{COSSOR} \\
\hline COSSOR & 1040: 1040 Mk. 3. DB. \(£ 22 / 10\) and \\
\hline \multicolumn{2}{|l|}{HARTLEY 13A DB. E18/10/-} \\
\hline All carefuly chech & All carefuly checked and tested. Carrlage 30/- extra. \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{886 Magnification Meter ¢ 45 Carr. £1 Carr.}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline 389 N. 5 Impe & dance Bridge 655 Carr. 30/. \\
\hline \multicolumn{2}{|l|}{TF 144G Signal Generator, Serviceable. Clean 415} \\
\hline \multicolumn{2}{|l|}{In exceptional condition 225. Carr. 30/ 55 Corr \(30 \%\)} \\
\hline \multicolumn{2}{|l|}{TF 885 Video Oscilator Sine/Square £ 35 Carr. 30/-} \\
\hline TF 899 Millivolt & meter 68 Carr. \\
\hline \multicolumn{2}{|l|}{TF 195M sine wave oecillator 0/40kc/g El 2 Carr . 21} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TF 1343/2 ' X ' Band gen. 635 Carr. 30/-}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{TF 428B/2 Valve voltmeter 68 Carr. 10/-} \\
\hline \multicolumn{2}{|l|}{Tyne 801 Slig. Gen. 645. Carr. 30/-} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TF \(934 / 2\) FM Deviation Meter 630. Carr. 30/-}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Pulse generator POS \(100 \mathrm{C} 50 \mathrm{c} / \mathrm{s}-1 \mathrm{mc} / \mathrm{s}\) ¢ 18 Carr . ¢1} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Laboratory ampliter AWS51A. 15c/s-3501rc/s ¢ 35}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Stabilised P.U. SRS 151A 620 Carr. 30\%} \\
\hline \multicolumn{2}{|l|}{Stabilised P.U. SRS 152 \& 15 Carr. 30/.} \\
\hline \multicolumn{2}{|l|}{lised P.U. AS 510 \& AS 517 CJ , and 66 Cart} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{AVo VALVE CHARACTERISTIC Meter. Excel-}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{lent condition. \(£ 30\) Carr. 30/,} \\
\hline \multicolumn{2}{|l|}{Testmeter No. 1 \& 14 Carr. 15\%} \\
\hline \multicolumn{2}{|l|}{Electronic Testmeter CT 38. Complete 118 Carr. £1} \\
\hline \multicolumn{2}{|l|}{SPECIAL by G. \& E. BRADLEY. Multmeter} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{type CT471B. Battery operated, fully transtatorised,}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{a.c./d.c. current ( 12 microA-1.2A scales. \(+/-3 \%\)}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{scsles. \(+1-3 \% \mathrm{~m}\). .d. . . h.f. \(/ \mathrm{vhf} / \mathrm{uhf}\), voltage with multipler (4V-400V scales up to \(50 \mathrm{MHz} ; 40 \mathrm{nlV}-4 \mathrm{~V}\)}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{up to 1000 MHz ). Brand new. Few only. \(\mathbf{1} 60\) Cart.}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Wide Range Capacitor Bridge \(£ 25\) Carr. 15/-}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Sine and Pulse Generator type 1873 £25 Carr. 15/-} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Valve MuHvoltmeter type 264, 3MV-1V \(\mathbf{6 2 0}\) Carr. ¢1}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Counter type 885. 6 decades. Bright Vertical display}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Klystron Power Supply 698B \(£ 25\) Cart, \(£ 1\) Simal Generator type 701. \(\mathbf{f 3 5}\). Carr. 30/-}} \\
\hline & \\
\hline
\end{tabular}

OSCILLOSC OPE CAMERA Cossor type 1428. Brand new with standard 4 in. fitting and spare carseta. \(\frac{155}{}\) Also Shacknian 25 ft . Exp 270 frames. Inmes from 9 Focaj lin. with standsrd 4 in. to Bin. fitting. \(£ 30\).
SOLARTRON CALIBRATION UNIT tyTV AT203. £25 Cart. 30/:
SOLARTRON. Proces Response Analyser. Fine ondition. \(£ 350\).
E.M.T. Base B9A in Polybtyrene holder with cover. Brand new. 2/6 ea
ZENITH E.H.T. Tester, with Probes. Metered 0.3 .5 kv . E25 Cart. 30/-
DENCO Travelling Wave Ampliter ©40. Carr, S0/. HEINZ GUNTHER AM/FM Generator \(-200 \mathrm{mc} / \mathrm{s}\). 30 Carr. 11
sIGNAL Generator CT 53. Complete with leads. Good condition. Cl 10 Carr . \(15 / \mathrm{-}\). With copy of charts.
FREQUENCY Meter LM 14. Modulated version of BC 221 with charts and covers. Brand new \(£ 30\). Carr. \(30 /\)-. SPECIAL. FURZEHILL V200 Valve millivolt meter. 10 mv to 1 kv . 625 Cart. 21
MIC.O-VAC type 22 (CT54) Volts: Current: Ohms. D Cto \(200 \mathrm{mc} / \mathrm{s}\) with probe, leads etc. As new \(\mathbb{E} / 10 / 0\) P. \& P. 10/-

VIBRATING REED ELECTROMETER THPE N 572 by ECKO. Range 10 to the -14 . Mar sensiti
SHORTS ANALOGUE COMPUTER. Complete. Fine condition. \(f 180\) ea.
As above. complete, not serviced. \(\mathbf{6 7 5}\) ea.
Also large quantity spares avallable. Carriage at cost. DISTRIB UTED AMPLIFIER type \(2 \mathrm{C} / \mathrm{s} 50 \mathrm{c} / \mathrm{s} 100 \mathrm{mc} / \mathrm{s}\) Gain 300 . \(£ 30\) each.
\(00 \mathrm{mc} / \mathrm{s} \mathrm{f} 16 \mathrm{each}\).
DAWE Wlde Range oecillator type 400 A .20 cs to \(20 \mathrm{ke} / \mathrm{s}\) Slne wave. 500,600 and 2000 ohm. Fine condition. \(£ 25\)
Carr. \(90 \%\).

MUIRHEAD type D729 AM. Phase meter. As new ondition. In transit cases ti60
PAIGNTON ATTENUATORS 0.1 db to 100 db . in cecades, 600 ohm. 19 rack mounting. E20 ea. Carr. 15/PISTON ATTENUATOR in carryling
Precision THERMOSTOR by YSI, 100 k , at \(25^{\circ} \mathrm{C}\). Range: \(40^{\circ} \mathrm{C}\). to \(150^{\circ} \mathrm{C}\). Supplied with charts giving ohms for each degree over entire range. Brand new. \(£ 2\) ea. ADVANCE Signal Generator type D1. 2 me/a to 190 me/s. Sine and square mod. With or
lent condition \(£ 12 / 10 / 0\) P, \& P. \&1
SERVOMEX. Stabllized D.C. Power unit. Type 38. Bench mounting. \(0-15\) volts. \(0-2.5\) amps. Separate poltage and current meters \(\mathbf{6 2 5}\)
TRANSISTOR Stabllised Power Unlt. \(48 \mathrm{v}, 4 \mathrm{amp}\). Manufactured by E.M.I. Open chassla. Brand new HOLGATE 6 channel Event recorder. 1 in , or 10 in . HOLGATE 6 channel Event recorder, in, or 10in. ned
HEWLETT PACKARD Recorder and Decoder type 20610. As new. Write or phone for further detalls. 19 in . Rack Mounting CABINETS 6 ft . high 2 ft , deep. side and rear doors. Fuly tapped, complete with base and wheels. f12/10/0 Cartiase at coat.
MULLARD Iransigtorised Analogue to Digital Con vertor Model L. 281. As new. 220 Carr. 1b/
SUNVIC DC chopper Amplliter type DCA 1. Superb condition. 222/10/0 ea. Cart. 20/-
PROCESS TIMERS 8 individual timer circuita
each with \(0-100\) sec callbrated dials. Ideal displays, ISOLATING TRANSFORMERS 240 V in 240 V KVA out. As new. \(E 25\) ea. Carr. \(£ 2 / 10 /\).
DESK Telephones. Current type. Standard dial. 3 wine red. green. white. Ideal extensions etc. As new 43 each. Same but older type \(17 / 6\) each. P. \& P. \(5 / \%\)
DIECAST ALLOY boxes. Size \(4 \times 2 k \times 11\) in. Drilled ends for Belling cosx socket. I compartments link holes between. 6/6 each. P. \& P. 2/-.
CONVERTOR 50 c/a single ph. to \(400 \mathrm{c} / \mathrm{a} 3 \mathrm{ph} .250 \mathrm{w}\). METERS EHT ELECTROSTATIC Ernest Turner. etc. 0 -1.5kV.
\(£ 2\) ea.: \(0-8.5 \mathrm{KV} £ 2 / 15 / 0\) ea.: \(0-5 \mathrm{KV}\) £3/10/0 ea.: 0 -7.5 K2 ea.; 0 -8.5
TAYLOR 100.0-100 Micro amp gealed size \(4 \times 2^{2}\) with internal lamp scaled b-0-6 \(1 / 10 / 0\) ea. GRIFFIN \& GEORGE \(8^{\circ}\) round in sloped open ended case with termingls 2 types \(0 / 20 ; 0 / 100\). All \(50 \mathrm{c} / \mathrm{s}\). 1
4 DIGIT RESETTABLE COUNTERS. 1000 ohm . coil. Size \(1 \mathrm{t} \times \mathrm{i} \times 4 \mathrm{kin}\). As new. by sodeco of Geners. \(\mathbf{£ 2 / 1 0 / 0 ~ e a c h . ~}\)
As above but 950 ohm . \(£ 3 / 10 / 0\) ea.

TRANSFORMERS. All standard Inputs.
STEP DOWN ISOLATING trans, Standsrd 240 v AC to 120 v tapped \(60-0.80700\). Brand new. 16 ea. As above hut 500 w . 44 ea.
75 WATT Constant voltare transformer. 195 to 255
volts- 240 v out. \(30 /=\) each. P. \&. P. \(5 / \mathrm{s}\). MODULATION trans. PP-0 BW6. 30/ each. P. \& P. \(5 /=\)

Transformer \(0.215-250120 \mathrm{MA} ; 6.3 \mathrm{~V} 4 \mathrm{ACT} \times 2 ; 2 \times 6.3 \mathrm{v}\) 0.5 A and separate \(90 \mathrm{v} 100 \mathrm{MA} 25 / \mathrm{e}\) each P . \& P. \(4 /\)
 \(350-0-35075 \mathrm{~mA}, 582\) smps \(\times 2\). 21/- ea.


Parmeko/Gardners. Potted. 475-80-0-60-45 at 160 mA : separate whinding 215.0215
Gardners 400-350-0-350-400 at 250MA; 0/4/6.3v \(4 \operatorname{amp} \times\) 2: 0/4/8.3 \(2 \mathrm{amD:} \mathrm{0/4/5} \mathrm{3.5A} .\mathrm{In} \mathrm{orlgiual} \mathrm{bozes}. \mathbf{f 4 / 1 0}\) Gardiners \(2 E V\) 10MA and 4 volts \(\times 2\). \(\in 4 / 10 / \%\) ea lncl. postage.
Parmeko 65v 1 amp. Separate \(0.18-24 \mathrm{v}\) at 0.5 amp . \(30 / \mathrm{ee}\). Gard/Parm/Part. \(450-400-0-400-450\). 180 MA. \(2 \times 6.8 v\). 63 ea .
ADVANCE Constant Voltage Trans. 6 volts 50 whtt. As new 63 P. \& P. 10/-
Gardners \(5 v\)
Soamp. Brand new \(£ 1 / 10\) each incl, postage. CHOKES. \(5 \mathrm{H}: 10 \mathrm{H}: 15 \mathrm{H}\) : up to 120 mA . \(8 / 6 \mathrm{ea}\). Up to \(250 \mathrm{~mA} 12 / 6\) es.
Large quantlty L'L, HT, EHT transformers. Your requrrements, please.
Panel switches DPDT ex eq. \(2 / 6\) ea.: DPST Brand new
\(3 / 6\) ea.: DPDT twlce, brand new \(6 /=:\) heary duty DPST 3/6 ea.: DPDT tw
brand new 6/- ea.
SPECIAL. 813 valves. Brand new. bozed \(62 / 10 / 0\). PRECISION continually rotarable stud switches.
Single pole. 80 wayt can be stacked if required. \(f 3\) ea. PRECISION rotary stud switches 2 pole 12 W size \(2^{\circ}\) PRECISION Totary stud
\(\mathrm{Bq} . \mathrm{t}=\mathrm{shaft}\). E2/lo/0 ea.
MLn. SEALED 4 pole 3 way and 3 pole 4 way rotary
 Solartron Storage. O
Now only \(f 100\) each.

CASH WITH ORDER
OFFICIAL ORDERS WELCOMED
FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd units, etc., at 'Chiltmead' prices. Callers welcome 9 a.m. to \(10 \mathrm{p} . \mathrm{m}\). any day.


\section*{TRANSISTORS}
FROM STOCK THE LARGEST RANGE AVAILABLE. COVERING ALL TYPES OF TRANSISTOR, INTEGRATED CIRCUITS, DIODES, RECTI-
FIERS, ZENERS. LIGHT DEVICES. FREE LIST NO. 36 OF OVER I,000 TYPES ON REQUEST.
TRADE AND INDUSTRIAL ENQUIRIES INVITED
ALSO IN STOCK. TRANSDUCERS \(£ 5.18 .0\) PAIR WITH CIRCUITS. LARGE RANGE OF NUMICATOR TUBES AND INDICATORS, RELAYS AND COUNTERS, SOLENOIDS AND ACTUATORS-SEE

(a)
GARRARD TURNTABLES \#GOLDRINGABSR*THORENS 2025GRS25 2025TC 9TAHC \(\begin{aligned} & \mathbf{E 5 . 1 9 . 6} \\ & \mathbf{E 7 . 1 9 . 6}\end{aligned}\) \(\left.\begin{array}{ll}3000 \mathrm{M} \\ 3500\end{array}\right\}\) DIAM CERAMIC \(\mathbf{5 8 . 1 9 . 6}\) \(3500 \int\) CERAMIC E12.19.6

PLINTHS/COVERS DE LUXE TYPE FOR GARRARD DECKS \&8. 10.0 (STATE MODEL) P.P.
\(\times\) STOCK LIST REF I6/17 FREE. 10 PAGES ALL HI-FI SPECIAL PRICES

HENRY'S RADIO COMPONENT/ECUIPMENT illustrateo catalogue


Concinually revised and of all types of components and equipment for every
use. Complete with \(52 /\). Discount Vouchers for purchases.
Price 716 Catalogue \({ }^{\text {A }} \mathrm{A}\)
Why not send todayl gth edition 6sh impres.


\section*{}
（Burndept B．E．352） 60 watt model．Supplited Brand New complete with staliniess steel tank \(9 \frac{7}{4} \times 6 \frac{1}{2} \times 4 \frac{1}{2} \mathrm{in}\) ． E60．Cart．20／
2．FAST NEUTRON MONITORS（Burndept 1407C） maV £ E 100 ．
3．Radiation Monitors（Burndept BN 110 MK．V） \(0-5 / 50 / 500 / 5 \mathrm{k}\) ．c．p．s．Brand now．£100．Alpha and Beta Gamma probes avallable at exira cost．
4．PORTABLE RADIATION MONITORS（Burn－ dept BN 132） \(0-5 / 50 / 500 / 5 \mathrm{k}\) c．p．s．Wlth buili－in camma probe．

S．A．E．for ilterature． \(\mathbf{1 0 \%}\) discount for

> Educatlonal Authorities

\section*{SPEAKERS}
＂E．M．I．＂ \(19 \times 14 \mathrm{in} .50\) watts． 8 ohm（ \(14 \mathrm{~A} / 600 \mathrm{~A}\) ．）Four tweeters mounted across main axis．Separate＂X－over＂ unit balances both bass and h ．f．sections． \(20 \mathrm{~Hz} .1020,000\) E25．P．P．50／－
E．M．I．： \(13 \times 8\) in． 10 watts． \(3 / 8 / 15\) ohm．models．With two tweeters，plus＂X－over＂． \(65 /-\) ee．P．P． \(5 /\)－
tw． I ．＂ \(13 \times\) in． 10 watt \(3 / 8 / 15\) ohm．models less tweeters．45／－P．P 5／－
－E．M．I．＂ \(6 \frac{1}{3}\) in．Rd． 10 watt woofers．B ohm．30／－es．
 CAR RADIO SPEAKERS． \(3 \mathrm{ohm} .7 \times 4 \mathrm{ln} .14 / \mathrm{l} .8 \times 5 \mathrm{in}\) CAR RADIO SP
16／OP．P． \(2 / 6\) ．
SPEAKER SYSTEM \((20 \times 10 \times 10 \mathrm{ln}) ~ M a d o ~ t o ~ S p e c\). fiom in．board．Finlshed in black leathercloth． \(13 \times 8 \mathrm{ln}\) ． 50 spaker with iwin iweeters complete
SPEAKER CABINET KIT．Above mentioned cabinet only in kit form which you may assemble and cover to your own

\section*{EXTRACTOR FANS／BLOWERS}

AIRMAX＂7it In．FAN．In aluminium dlecast housing （ 9 In ．）． 240 v ．Brand new．£4 10s．P．P． \(10 /\)
PLANNAIR＂ \(\mathrm{B} \frac{1}{2} \mathrm{In}\) ．FAN．（Type 5 PL 121－122．）Dlecast SOLARTRON＂TANGENTIAL BLOWERS
\(16 \times 5 \frac{3}{2} \times 3 \frac{1}{2}\) In．Alr outlet \(12 \times 1 \frac{1}{2} \operatorname{In} .240 \mathrm{v}\) ．Brand new．
\(16 \times 5 \frac{2}{2} \times 3 \frac{1}{2} 1 \mathrm{In}\) ．Al
\(50 \%\) e日．P．P． \(7 / 6\) ．

\section*{HIGH SPEED MAGNETIC COUNTERS（ \(4 \times 1 \times 1\) In．） 4 digit．
\(6 / 12 \mathrm{v} .24 / 48 \mathrm{v}\) ．（state which）， \(6 / 6\) ea．P．P．1／－}

LEVEL METERS（4 \(\frac{1}{3}\) PHOTO M．157－each PHOTOMULTJPLIERS 6262 and 6262b．E15 ea． RELAYS H．D． 2 pole 3 way 10 amp ．contacts． \(12 \mathrm{v} . \mathrm{w} .7 / 6 \mathrm{ea}\) LIGHTWEIGHT RELAYS（with du
\(4 \mathrm{c} / 0\) contacts． 24 v ． \(500 \mathrm{ohm} 7 / 6\) oa． SIGNAL GENERATOR（TYDO 801A）． \(10-300 \mathrm{Mc} / \mathrm{s}\) ．in 4 bands Ext． \(50 \mathrm{c} / \mathrm{s} .-10 \mathrm{kc} / \mathrm{s}\) ．Output \(200 \mathrm{~m} / \mathrm{v}\) ． 50

PRECISION CAPACITANCE JIGS．Beautlfully mad with Moore \＆Wilght Micrometer Gauge．Type 1． 18.5 pf 1，220 pl £10 ed．Type 29.5 pf－11．5 pf．£6 ea． POT CORES TYPE LA 3．10／－ea．
71 WAY PLUG \＆SOCKET（Palnton Serles 159），Gold plated contacts with hood \＆retalning cilps． \(30 /-\) pali． 50 WAY PLUG \＆SOCKET（U．C．L．miniature）．Gold plated contacts 20／－palr． 34 way version \(15 /\)－palr． LOGIC BOARDS with 31 ACY40s－ 38 dlodes etc 20／－ea CO－AX RELAYS（magnetic devices） 1 change－over 12 v．w 20／－ea
ELECTRONIC ORGAN BUILDERS．We now have in stock P．C．boards bulit to computer standerds．Each board is a
complete 4 octave divider（ \(4 \frac{1}{2} \times 3 \mathrm{In}\) ）．All connection data suppiled．30／－each．Set of 13 （gives 5 octaves to kevboard） E16．
DIODE LOGIC BOARDS contalns 10 diode gating circults which convert any one
binary code， \(10 \%\) each．

\section*{TRANSFORMERS}

L．T．TRANSFORMERS（shrouded）．Prlm．200／250v Sec．20／40／60v． 2 amp．52／6．P．P．7／6．
L．T．TRANSFORMERS．Pilm．200／250v．Sec．20／40v． 1.5 amp．30／－．P．P． \(5 /\)
＇ADVANCE＂CONSTANT VOLTAGE．Psim．190／250v， \(\pm 15 \%\) ．Sec． 115 v ． 2.250 watts．£15 ea．P．P． \(50 /-\mathrm{i}\)
L．T．TRANSFORMER 60 v .8 amp．£5．P．P． \(15 /-\)
L．T．TRANSFORMER 20v． \(1.5 \mathrm{amp} .15 /-\) ．P．P． \(2 / 6\)
L．T．TRANSFORMER Pilm．200／250v．Sec． \(0 / 25 / 35 \mathrm{v}\) ． L．T．TRANSFORMER Pilm．200／250v．Sec． \(0 / 25 / 35 \mathrm{v}\)
30 gmp．£7．10．P．P． \(20 /\) ． STEP－DOWN TRANSFORMER L．T．TRANSFORMERS Prim． 240 v ．Sec． \(8 / 12 / 20 / 25 \mathrm{v}\) ． L． 5 amp models \(20 /=: 5 \mathrm{amp}\) model 25／－．P．P． \(5 / 6\) ． L．T．TRANSFORMERS Prim．240v．Sec 14v． 1 amp 10／．

COPPER LAMINATE PRINTED CIRCUIT BOARD （ \(8 \frac{1}{3} \times 5 \frac{1}{2} \times\) 古 in．）， \(2 / 6\) sheet． 5 for 10／－＊

ELECTRIC SLOTMETERS（ \(1 /-\) ） 25 amp．L．R．240v．A．C． QE／－©A．P．P．5／－． 240v．A．C．，20／：ea P．P．5／＝．
LONG LIFE ELECTROLYTICS（screw terminal） 25,000 u．f． 40 v ．（ \(\left.41 \times 2 \frac{1}{2} \mathrm{In}.\right)\) ．20／－ea．P．P． \(2 / 6\) ．
 3,150 u．f． 40 V ．（ \(4 \frac{1}{2} \times 1 \frac{1}{2}\) in．）．15／－e日．P．P． \(2 / 6\) ．
EXECUTIVE＂SIXTY Bultt．）Brish desloned and ouk．Tue w－werfors． Buit－in filters to protect speakers．Three Independently Magnetlc Cartridge，or aux equioment E55．P．P．50／－ S．a．e．ilterature．

TELEPHONE DIALS（New）20／－ea． RELAYS（G．P．O． \(3000^{\prime}\) ）．All types．Brand
new from 7／6 each． 10 up quotatlons only． EXTENSION TELEPHONE（Type 706） Black or 2 torie Grey．65／－．P．P．5／－．
UNISELECTORS（Brand new）25－way 75 ohm． 8
\(\frac{1}{2}\) wipe 75

REED RELAYS 4 make 9／12v．（1，000 ohm．）12／6 e日． 2 make 7／6 ea． 1 make 5／－өa．Reed Switches（1 \(\frac{1}{4} \mathrm{in}\) ．） \(2 /\). ea．f1 per doz．
SUB－MINIATURE REED RELAYS（ \(1 \mathrm{in} . \times \frac{1}{2} \ln\) ．）．Welght \％02．Type 1.960 ohm， \(3 / 9 \mathrm{v} .1\) mak
1800 ohm， \(3 / 12 \mathrm{v}\) ． 1 make． \(15 /-\mathrm{\theta a}\) ．

SILICON BRIDGES． 100 P．I．V． 1 amp．（ \(+x+x \geqslant \mathrm{In}\). ）． －

COMPUTER BOARDS containlng 4 thyristors（C．106B1） Pi．v． 6 日mp．1－2N3705，and numerous other ultra－
R.S.C. SENSATIONAL HIGH FIDELITY STEREO 'PACKAGE' OFFERS



 EFIGH FIDELITY LOUDSPEAKER UNITS Cabloett of latent atyling 8atin Teak or Alrormonia venent.
Aconetically lined or tilled with acourtic damping material. Ported where appropriate. Credis terms available.
 OORCHESTER Bize

\(\star\) Super 30 Amplifier ( 30 Watt) in veneered housing. G Garrard SP25 Mk. II Turntable on Plinth.
* Goldring CS90 Ceramic diamend tipped Cart ridge.
* Pair of Stanway II Loudspeaker Units.

and

Sicit bat preis

\section*{76 Gns.}

TA12 13 W Amplifier in veneered housing t Pair of Dorchester Loudspeaker Units. \(\star\) Garrard SP25 Mk 114 -speed Plaver on Plinth.
\(\star\) Goldring CS90 Ceramic P.U. Cartridge
with diamond Stylus. special total price. \(\mathbf{5 3} \mathrm{Gns}\).
 Terms Dep. E10.0.3 and 9 monthly payments
£5.15.5 (Total 59 Gns.) Carr. 25 .-




RSC TA12 MK II 13 WATT STEREO AMPLIFIER



THE'YORK' HIGH FIDELITY 3 'SPEAKER
\begin{tabular}{|c|c|}
\hline -Moderate nize approx. \(25 \times 14 \times 10 \mathrm{in}\). Range \(30-20,000\) Complete Eit. c.p.s. Impedance 15 Ohms. Performance comparabie 20 Gns. 15 watt Basa unlt with caat chasis, Roll rubber cone surrouml for ultra low resonance, and ceramic maguet. (2) s.way quurter sectlou (t) High efficiency tweeter. (5) Appropriate quantity acouatic dampink material. (6) Teak veneered cabinet. (7) Clicuit and full Itrutruct lona. & \\
\hline
\end{tabular}
R.S.C. BATTERY/MAINS CONVERSION UNITS





\begin{tabular}{|c|}
\hline  \\
\hline
\end{tabular}
R.S.C.SUPER 15 | HIGH FIDELITY

 CURRENTLY AVAILABLE
OUTPUT QUALITY CAN BE OBTAINED BY USE WITH FIRST-RATE ANCLLARY EQUIPMENT.
COMPLETE KET OF PARTS, point to point wiring diagrams \(22 \mathrm{Gns}\). Carr. UNIF FACTORY BUILT 29 Gns. or
Deposit \(8 / 5 / 5\) - Add 9 mthly. paymente \(58 / 9\) Deposit \(£ 7 / 5 /\) And 9 methly. payments \(58 / 9\)
(Totall \(£ 33 / 13 / 8)\) or In Teak or Afrormotian

 1 mrime dis. \(12 \frac{1}{2} \mathrm{Gns}\). \(\left\lvert\, \begin{aligned} & \text { Carr. } \\ & \text { Or } \\ & \mathrm{Gn} .\end{aligned}\right.\) Or
On.
Qepo
mon \(\left\lvert\, \begin{aligned} & \text { Depotil } \\ & \text { month) } \\ & \text { (Total }\end{aligned}\right.\) \(\left\lvert\, \begin{gathered}\text { (Tontal } \\ \text { T Teak } \\ \text { veneer }\end{gathered}\right.\)
\(12 \frac{1}{2} \mathrm{Gns}\).
 RASS CONTROL: +17 dB to -18 dB Rt \(\mathrm{BO} \mathrm{c} / \mathrm{m}\).
HOM LSVEL: -80 dB.


\section*{BRADFORD}

North Parade (Hali-day Wed.). Tel. 25349
BIRMINGHAM
DERBY
DARLINGTON 18 Priestrate (Hall-day Wed.). Tel. 68043
EDINBURGH \({ }^{133}\) Leith St. (Hall-day Wed.).
GLASGOW 326 Argyle St.(Hall-day Tues.). Tel.CliTy 4158
HULL 91 Paragon Sereet (Hall-day Thurs.). Tel. 20505 Henconner Lane, Leeds 13. Terms c.w.o. or CO Postage \(4 / 6\) extra under 62 supplied.S.A.E. with enquir Branches open all day Sats. MAIL OROERS MUST NOT BE SENT TO SHOPS.
\begin{tabular}{|c|c|}
\hline Tel. 56420 LEICESTER & - cover Hupluded 2 \\
\hline  &  \\
\hline Dale St. ( \(\mathrm{H}_{2}\) If-day Wed.). LIVERPOOL & cersme \\
\hline N & \\
\hline ham Street (Halis day Wed.) MANCHESTER &  \\
\hline MIDDLESBROUGH & FANE 'POP' 30 \\
\hline & \\
\hline Storel (Hall.day Weded.). & \\
\hline e Streer (Castle Market & ¢5.19.9 \\
\hline
\end{tabular}

\section*{BETTP wem SERVICE FROM T.R.S.}

\section*{Amplifier Kits}

Styled and kized by T.R.S., ualng quality components, including vaives or
 axtra.) 15 ohms. KIT \(\& 10.10 .0\); B UILT E 13.0 .0 ( Corr , either, 716 ). MULLARD 2-VALVE PRE-AMP with switching for 5 inputs: controls, etc. Sensitivity at Input- 4 mV max. to 330 mV into \(80 \mathrm{~K}=1\) Megohm; Response 20 \(\mathbf{2 5 , 0 0 0} \mathrm{Hz}+1 \mathrm{~dB}\). KIT \(\mathbf{6 6 . 1 9 . 6 \text { ; B UILT } 6 9 . 1 0 . 0 \text { (Corr. either, 5/6). }}\)
MULLARD \(10-10\) STEREO AMPLIFIER. Input sensitivity- 210 mV per ch.: Response
\(12 \mathrm{~Hz}-35 \mathrm{KHz}+3 \mathrm{~dB}: 10\) watts R.M.S. output per channel into 3 or 15 ohms. KIT
 \(A_{s}\) above, less controls and panel. Kir E17.0.0; Built \(\in 21.0 .0\) ( \(2+2\) pre-amp. essential). \(2+2\) STEREO PRE-AMP similar to Mullard 2 -valve pre-amp, but doubled with gang
controls and balance. BUILT fI 3.19 .6 (Corr. \(7 / 6\) ). T.R.S. 4+4 STEREO AMP
how cost transistor amplifier based on Mullard modules. \(4+4\) wates output. For 8 assembly. Amp and pre-amp with front panel and knobs. Kit 67. 19.6 (Carr. 3/6): Teak sided cabinet 61.17.6 (Carr. \(2 / 6\) ): 24V. Power pack E2.5.0
(Corr. 2/6): Complete kit inc. OIN plugs and sockets E/2.10.0 (Corr. 7/6).
THE NEW T.R.S.
P.W. 12-12
T.R.S. have produced their outstandingly good combined stereo amp and preamp. Is stereo amp and pre-amp. It
conforms closely to Practical Wireless's excellent circuit but is styled for a
flatter, more convencional cabinet which will be shortly available. Kit includes two tone front panel and control knabs.
Inpurs-Mag. P.U. (R.I.A.A.)
2.5 mV into 68 K. 2.5 mV into 68 Kohms; 20 Hz to \(30 \mathrm{KHz}+1 \mathrm{~dB}\). Out. put- 12 watts per ch. R.M.S. into 150 hms . into 15 ohms. less ca
Power/Amp/Pre-amp Kits quailable sedarately.

\section*{VINAIR-batese \\ I.C.I. Cabinet and Speaker covering. Mottled Lishr-Grey,
OH.White, Fawn. Black, otc.. \(2 / 6\) per 39. f. Multiples of 6 in . cut. \(27 / 6\) per yd . Maximum width 48 in \\ Sond IV- for Samples-Refundable Acoustic Wadding (as used by leading Hi-Fi Speaker mirs.., 18 ins. wide. Any 'longth cut \({ }^{2 / 6}\) per fe.; TVper yard Now \({ }^{2}\) oz reel prices
 Other gages quored for. \\ 16g-22g SIVE T.R. TAPE BARGAIN. Proressional quality full irequency Mylar
Tape by famous m/fr. Attractively presented in coloured slmulated leather wallets with space for spare reel.
\(5 \mathrm{in} .900 \mathrm{ft} .12 / 6 \quad 5 \% \mathrm{in} 1200 \mathrm{ft} .17 /\).6
 Post and packing \(1 / 6\) per reel, plus 60 . VEROBOARD-All each reals. srocked.
 Accessories-Term 12/6; \(17 \times 38, \quad 15 / \%\) \(9 / 6\) gace Curter, 7/3. Pin inserting tool 5 ft . by \(1 / 16\) in. spool .. ... \(2 / \mathrm{F}\)}


Completexntot ports \(£ 24.10\)

PLUGS ANO SOCKETS Phono plugs, 1/0; sockers, \(1 /\), ewin. 1/6
OIN \(5-\) pin plugs, \(3 / 0 ; 5-\) pin sockers, \(1 / 6\); 3-pin plugs, 3/3: 3-pin sockers, 1/6. VOLUME CONTROLS If in. dia, Lons Spindles. Famous make. All values 5000 ohms-2 Megohms Log or Linear tracks.
dirto Centre Tapsped 3/Me OP Sw, 5/ditro Centre Tapped \& Megohm Log I Megohm Ganged stereo controls If In. dia. Long Spindles.
values 5000 ohms 802 Megohms.
ditto 100 K so 2 Messhms. Each 8/6 STEREO BALANCE SONTR WACh \(10 / 6\) STEREO BALANCE CONTROLS
Log/Anti-Log SK, IOK, Mer I Meg.
2 Meq. RESISTORS
Full Range 10 ohms- 10 Megohms.
(Midget type, modern rakines.)
Midget type, modern rakines.
\(10 \%\) Iw, \(\$ \mathrm{w}, 4 \mathrm{~d} . ; \mathrm{fw}\). 6 d .

5\% Hi stab (Cracked Carbon) all pref.

 Ohms, 2/3)
SKELET O PRE-SETS for P/circuit
use. 100 ohms-2-5 Mes., \(2 /-\).

\section*{GRAMO UNITS, PLINTHS, ETC.}

GARRARD SP. 25 Mk. II
101 in. die-cast s/table, cueing device and counterbalance. Less ca


GARRARD LM. 2025
With latest stereo cartridge and lift control \(£ 10.19 .6\) (Corr. 7/6)

PLINTHS
Garrard WB.I 63.15 .0 (Carr. 5/-)
SINCLAIR PROODUCTS AS
 Kit, (12.10.0 (Corr. 7/6.) T.R.S. FM
Transistar Tunar, parts
fis.15.0 Transistor
(Carr. 7/6.)

Garrard Clearview Cover SCP.I
E3.10.0 (Carr. 4/6) Garrard Scandinavian type plith and cover 65.5 .0 (Carr. 5/-) CARTRIDGES
When bought together with playing
units. Decca Deram, \(\$ 5.5 .0\); BSR units. Decca Deram, \(15.5 .0 ; ~ B S R\)
\(T C 8 / H \quad\) (Stereo compatible), \(25 /-;\) TC8/H (Stereo compatible), 25/-;
BSR Stereo TC.85, 28/6; Sonotone BSR Stereo TC.85, 28/6; Sonotone 9TA/HC, with
GP.93-1, \(30 /\).
T.R.S. FOR TRANSFORMERS. Mains and output supplied to spec. for
single or short production runs. Also comprehensive servise in replacement


RADIO COMPONENT SPECIALISTS 70 BRIGSTOCK RD., THORNTON HEATH, SURREY
Open Sazurday all day
Wednesdoy I p.m.
Next to Thornton
Heath Station (S.R.)
Phone:
01-684 2i88

\section*{A NEW ADDITION TO THE RANGE}


\section*{Miniature P.T.F.E. Tubular Capacitors}

Oxley Developments Company Limited have introduced a new and improved range of miniature P.T.F.E. Tubular Trimmer Capacitors with capacitance swings from 5 to 30 pF ; TU/30/PC1, for horizontal mounting on printed circuit boards, as illustrated.

This range of components uses P.T.F.E. as the dielectric medium, resulting in a power factor of less than \(5.10^{4}\) at 10 kHz , and the patented concentric design ensures uniformly smooth adjustment with linear, reveral-free tuning and temperature coefficient of \(50 \mathrm{ppm} /{ }^{\mathrm{C}} \mathrm{C}\).

Please contact our Sales Department for the technical data sheet.

OXLEY DEVELOPMENTS COMPANY LIMITED Priory Park, ULVERSTON, North Lancs.
Telephone ULVERSTON 2621. Telex 6541
\(O X L E Y^{\circ} \Phi\)

WW-117 FOR FURTHER DETAILS


WW-118 FOR FURTHER DETAILS


\section*{ELECTRONIC BROKERS}

MEASURING INSTRUMENTS
AND RECORDERS
AND RECORDERS

\section*{NEW}

6 Pen Event Recorder, 6 in. Chart width. Available in wide range of chart speeds. Rack mounted \(£ 79 / 10 / 0\). Case to suit extra.

VOLTMETER-Solartron VM 1484 Vory sultable for the meanurement of distorted or
complex sifmals, nolise or pulse yoltuges, employit




 PORTABLE AC/DC
PEN RECORDER

 lineer si in ertip chart.
Two apeeds 1 in. and 8 in /ar.

 Range: 0-1MA D.C. Meter
Realiatance 400 ohms; 0 - 1 MA
 Power supply; 230 V 50 Hz,
driving 8ynchronous Motor Price: 258.10 .0 . Postage and packing \(£ 15 \mathrm{~s}\). od.


Speciticastion. Type: Mortng Coll, D.C. Range: 177 mmp . Chant Speeds: \(20,60,180\). 600,1800 sind \(540 \mathrm{mmm} / \mathrm{Gr}\). Dimentions: \(180 \mathrm{~m} \times 183 \mathrm{w} \times 24 \mathrm{~mm}\)


\section*{PEN RECORDER}


Porkbble 1,2 and 4 ehanael pen recorders by Relitin
Hughes. Oeneral purpose reoorders providing elear instantaneouv and permanceat recordit of phecomenens With comparatively high rates of change. The the instrument timmune to the effectu of ribration and acceleration
Blis posyble chart preeds, chart width 85 mm . ength 100 cls . Blangle pen with amplifier eq9a; 2 pen




POTENTIOMETRIC 6 POINT STRIP CHART RECORDER For weo with thermacoonplera For uat with thermocouplera, pyrometers and
 Ohart width; pen apeod 8 seca. Accuracy



POWER SUPPLIES

\section*{UNUSED MINIATURE STORA MAGNETI STORAGE DRUM} Type N.S. 138918 write and 18 roend hond 258 traoks magnetio stornge drum. Each
track at 600 r.p.... Hold 1024 bitt ( 32 mordic Track at 800 r.p. m. Holdi 1024 bits ( 32 mordu
of 32 bitb). Total atorage 250,000 bits.




ADVANCE TRANSISTORISED DC POWER UNITS


DIGITAL VOLTMETERS
DM.2022 digital voltmeter and ratiometer,

 to obtaic such hat tuatrument at ouch a low price of C350. Carriage free.
DM2006. An all solid state D.V.M. having a wide appleation An Reale ge9s. D.C. nccuracy 0.0177 wide =ith A D.C. range of \(10 \mu \mathrm{~V}\) to 1 KV . Input impedance

 Accurate to 0.001\%, and complete mith plug in units
 £460. Carriage free.
All the above units have been callibrated. Dightal Vortmeters 2003 AC./D.C. D.C. range 1 mv V Type 2028. Acale 19,999. Accuracy . \(008 \%\). Kange 10
 28,000 megohms. CMR
Our price R298. Carr. extra.

2 in dio mounting AO. poltmeter 0.200 v. Ac.
 St In. dia. Electrostatio Kiio Voltmeter in wooden case. ife.15.O. Carriage
Precivion A.C.
\&
D.C. Watmeter. Model 8.67
 INDICATING MEASURING
AMPLIFIER PR 7410

BRAND NEW S.E, LABORATORIES TRANSDUCER complete

\section*{}

BE150, 8E50 of BE165A.


Also arallabic differential typer 10 p.al
Aleo arallishie differential types, \({ }^{+} 10\) p.s.i.

COMPUTER AND PERIPHERAL EQUIPMENT


7 TRACK DIGITAL MAGNETIC TAPE STORAGE DECK
These machines originally ex-computer, are multhtrack
reconding unita, ldeal for data etomge. Record and Replay heals encased to one common unit. Low reaistuace heanis.


 Price £7R.10.0. Carriage extra.

I: 7 TRACK
Ex-computer record/replay herd complote with gidea.
Littic usued Price \(£ 12.10 .0\)
Carrine 15. Carriage 15 t -.

9TRACE 1 is. Recond/replay heade with aprocketanve, drive by aynchronous motor. Mounted with integrated head aseembly ellmingting allignment probbems. This can be fitted to and
sultable type of tranaportsstem, Price e8.10.0. Carriage 16/-

MODEL 72 MAGNETIC TAPE DATA STORAGE UNIT
This unlt consiate of \(\mathfrak{i} \mathrm{in}\). 8 rhannel read-write beads. Can be used to rocord any 6 bit code. Date can be read In either a forward of backward direetion plua giving search facllities. The unit conslate circults for recelv. Ing and storing instruction signals. Recording denaity 250 characters per inch. Tape speed 100 in. per second, price \(\mathbf{\varepsilon 1 9 0}\). Excellent condition

CANCELLED EXPORT ORDER
90 Column card sorter and punch type \(425 / 0\). Price on
pppilcation. application.



TAPE PUNCH MODEL 257 HOLE

 completely seli
gigmal supplues.

7 HOLE NON PARITY TAPE PUNCH New condition.

TELETYPE \& HOLE PAPER PUNCH

\section*{BRPEII}

Aso watinhte of hole punch BRPE2 a aboro. Thls model ha
interchangeable heads. Complete with apooler. Price \(£ 35\).
HIGH SPEED \(5 / 7\) HOLE OPTICAL READER 20 characters per secood.

\section*{CARD READERS}
\(\left.\begin{array}{l}88 \text { column } 1500180 \text { model, puinch } \\ 80 \text { column } 1400180 \text { model verifer. }\end{array}\right\} 2325 \begin{gathered}\text { Excellent } \\ \text { condititon }\end{gathered}\)
HOLLERITH 80 COLUMN CARD PUNCH TYPE HO29\& VERIFIER AVAILABLE

MULTI-RANGE TRANSISTORISED VOLT METER 1063
Employing sillicon planar F.E.T., than instrument glres long-
 fnge. Wide freguency band \(0-300\) MHz. using HPY 1063,
Voltage range 0.30 KV : Centre zero on DC ranges for difieren




For sendlag data by perwonal carrior GPP post, passenger train, etc. Ideal.
8ultuble .or deapaching tupe \(20 /\)
TRANSFER CASE


FLEXIWRITERS FPCB Boun Punch and Read Type Arallable. Any code can be made to sutt cus-
Coreers
requiremente.
Price


\section*{LOW COST ELECTRONIC AND SCIENTIFIC EQUIPMENT AND COMPONENTS}

SOLARTRON MILLIVOLTMETER Type 2522


5 DIGIT COUNTER
A very aturdy counter. Coll resistance 100 ohms. counta per sec. Bultable for continuoun courting whith Hine wave drive. Colnoidence, recording and fre-
quency meter \(35 /-\quad\) D. \(\& \mathrm{p} . \mathrm{j} / \%\).

VEEDER ROOT 6 DIGIT COUNTER


Suitable for counting all
kinds of production runs, bubiness machlneoperation. xata= momex price \(25 /-\) plan \(5 /\). p. \& p

miniature MINIATURE 6 DIGIT Root. Rotary ratchet type, adde 1 count
for emch \(36^{\circ}\) moverment of
shaft \(9 / 6+2 / 6 \mathrm{p}\). 8 p .

\section*{DIGIT ELECTRICAL IMPULSE} COUNTER Whth electrical and Counter dativen by 10v D.C. 4.400 olm oll. Reset 110v D.C
00 ohnm coll. Houmed The unlts can be

other to give vertical or horizontal displays. Price

\section*{HAND TACHOMETERS}

\section*{By SMITHS within 2 p.c} accuracy, 4 ranges, 500, \(1,000,5,000\) and 50,000
Price

\section*{£19.10.0}
carr. extra

\section*{BERKELEY DECIMAL COUNTING}

UNIT 0-9
4 valves double triode type B98s special quality
Unit plugs into standard octal hame. Modular con. struction with 10 miniature neon Immpt on dioplay


\section*{UNISELECTOR}
 and \(45 /-\) reapectively



HYSTERESIS CLUTCH MOTOR with integral clutch allowing the motor to drop
out of engagement with the gear train, therebs aclitacligg easy resetting when uased in timers or



HIGH PRECISION MAINS MOTOR \(230 \mathrm{~V} 50 \mathrm{~Hz} 1 / 8 \mathrm{~h} . \mathrm{p}\). continuously rated. 3000 r.p.m. Buitable for capstan motor. Bizo 8 in. long, if in
diameter with 6 it . diameter flange and 4 ixing boles. dameter with 6 th. diameter flange and 4 flxing
\(£ 4.10 .0\) each. \(£ 1.5 .0\) pontage and packing.

SYNCHRONOUS MOTORS
Model of 71 r.p.h. and \(1 / 60\) r.p.h. Sels etarting coms plete with gearing whaft i"" dia. \(\mathbf{h}^{\prime \prime}\) long. 200/250 V
50 Hz . New Condition Ex. Equpnent. \(30 /-\mathrm{p}\). \&p. \(3 /\).

\section*{OSCILLOSCOPES}

ight and heat control. Escl
realative dimmer in adjustable and independent of ench other. Ex. equipment but in an almort ne
condition. Price e3.19.6. Postage of packing \(7 / \theta\)

GENERATORS
\begin{tabular}{|c|c|}
\hline & GENERATORS \\
\hline \begin{tabular}{l}
PRECISION \\
POTENTIOMETERS
\end{tabular} & \begin{tabular}{l}
SIGNAL GENERATOR \\
T.F. B01A Slue Wave. Square Wave
\end{tabular} \\
\hline BRAND NEW & Mark/8pace Ratio B0/80 on equare wave. Price \(\mathrm{enO}^{2}\). Packing and carriage Ez . \\
\hline Res. OMm Linearity Manufacturer Model Pries & \begin{tabular}{l}
SIGNAL GENERATOR \\
T.F. \(517 \mathrm{~F} / 1\) stine Whre, square wave
\end{tabular} \\
\hline 5......... 0.2 ...... Colvern .. ... 2500 . . . \(80 /\) & Geacrator. Prequency Range: 130-300 \\
\hline \(100 / 100 / 100\).......... Beckeman ..... A ....... \(180 /\) & Volthge 0.2 Volts. Output tmpedance \\
\hline 100 ....... 0.8 ....... Beckman ..... A. \(8 . . . .{ }^{80}\) & 75 uhma. ¢85. \\
\hline  & MARCONI T.F. I44G \\
\hline  & Frequency Range \(85 \mathrm{~L} .0 / \mathrm{s} .251\) \\
\hline 800 . . . . . . . . . . . . . . Foxen . . . . . . . PX4..... 40 - & Oatput roltage 1 micro-volt to 1 volt. \\
\hline \(500 \ldots . .\). . . . . . . . . . Colvern . . . . . 2810 . . . . \(50 /\) - &  \\
\hline \({ }_{2 K}^{2 K}\). . . . . . 0.8 . . . . . . Beckman . . . . .8A1101 . \(60 /\) - & 52.5 ohms. \(955+82\) carriage. \\
\hline  & PULSE GENERATORS \\
\hline 10K ........ 0.8 ........ Beckmad ..... Ar....... 80 & Model 101 Repertion rate \(10 \mathrm{Es}-10 \mathrm{MEs}\). \\
\hline 10K ....... 0.1 . . . . . . Beckman X . . A . . . . . . . 0 \%/- & Delay 30 n 10 mm . secs. Output 10V. into \\
\hline 15K . . . . . . . . . . . . . . Foxes . . . . . . .GPmis .. 50 & 80 ohms. \(£ 96\). \\
\hline 18K ................ Beckman ..... A ....... 80 & SOUARE WA \\
\hline 20 K . . . . . 0.5 . . . . . . Beckıran . . . . A . . . . . . 60 & GENERATOR \\
\hline 30 K . . . . . . . . . . . . . . Colvern . . . . . \(2402 . .\). . 30 & Frequenoles: \(1 \mathrm{M} .100 \mathrm{ke} / \mathrm{s} 10 \mathrm{kc} / \mathrm{s} 50 \mathrm{o} / \mathrm{s}\) \\
\hline 30K ............... Beckman .... SA95C... 80 & Lond impedance 75 ohma. \\
\hline  & Output Voltage 10V, 75 obrur. \\
\hline 90K .......0.8 ...... Beckman .....8A 1692 . 60 & \(0-18\) volte into 2000 ohms. \\
\hline  & Rise time from 30-50 Milll micro seconds \\
\hline 80K ............... Relimace ..... 07.10 .... 45 & at 1 meg. Cycle. £85. \\
\hline 80K . . . . . . . . . . . . . . . . . . . . . . . . . . 07.5 . . . . 45 & MARCONI VALVE \\
\hline  & VOLTMETER TF 428B/I \\
\hline  & Frequency response on probe \(10 \mathrm{Kc} / \mathrm{s} / \mathrm{h}\) - \\
\hline 50 K ........ 0.1 ....... Becknan ...... A ........ \({ }^{\text {70/. }}\) & 100Mols. Five separate Voltage Rangea. \\
\hline  & Orerload Protection 1000200 A.C.1.P. \\
\hline  & \(10 \times 164 \times 9 i n .-151 \mathrm{~h} . £ 5 / 18 / 8\). \\
\hline 100 K . . . . . 0.5 . . . . . . Beckman . . . . A ....... 60 & \\
\hline 100 K . . . . . . . . . . . . . . . Colv & \\
\hline  & VOLSTAT \\
\hline  & Adranoe \\
\hline & Output 85r. R.M.8. Load 4 smps \\
\hline THREE TURN 780 ROTATION & £8/10/0 \\
\hline 100/100 . . . . 0.6 . . . . . . Beckman . . . . . A . . . . . . 80 . & CVOSF. laput 1900280\%. 30 Hz. \\
\hline  & Output 6w. 23 watte £8/10/0 \\
\hline 10K . . . . . . 0.6 . . . . . . Beckman . . . . C.8. & CV60J. Input 190-260\%. 80 HI. \\
\hline \(20 \mathrm{~K} / 20 \mathrm{~K} . . .0 .1\)....... Beckman ..... C.8...... \(80 /\) - & Output 230v. 50 wattan E12/10/0 \\
\hline \(10 \mathrm{~K} / 10 \mathrm{~K}\).... 0.1 ....... Beckmaд .... 0.0 ....... 80 & Cartiage extra 15\%. \\
\hline 50K ........0.6 .......Beckman .....C.8...... 35/0 & \\
\hline
\end{tabular}

FIFTEEN TURN \(5400^{\circ}\) ROTATION RIGHTANGLED GEARBOXES

TWENTY TURN \(7200^{\circ}\) ROTATION 250 ohms. General Controle.. PXM130
1 Meg.....General Controls. . PXM130 50K Reliance...
156 TURN 56, \(160^{\circ}\) ROTATION FIVE TURN \(1800^{\circ}\) ROTATION S00 ohms . ... Colvern ............ CLR 2805 SINE COSINE
Kelvin \& Hughen ECP5.
Colvera \(8601 . . . . . . . . .30 \mathrm{~K}\)
\(\mathrm{CLRP}^{\mathrm{CP}} 9602\)-cam Corrected 25 K

PRECISION BECKMAN 10 TURN
14,400 ROTATION




BRAND NEW LABORATORY TEST EQUIPMENT AT LESS THAN HALF PRICE PORTABLE WHEATSTONE


Speclficatlon. Rsuge: 0.01-111 Meg. in 0.01 legohm divialons. Accuracy: \(0.05 \%\). Maximurn finished atove enamel.
List price \(\mathbf{1 8 0}\). Out price 222/10/-.
\[
\longrightarrow
\]

MUTUAL INDUCTANCE BOX TYPE R. 7005 Apecification Hange: \(0 \cdot \mathbf{1 1 . 1 0 0 ~} \mathrm{mH} \ln 0.002 \mathrm{mH}\) divislons. Accuracy: \(\pm\left(0.3 \times{ }^{0} \mathbf{M}^{0.012}\right) \%\) where M - value of mutual inductance in mH set on the box. Frequency range: \(0.2 .5 \mathrm{~K} / \mathrm{Ec}\) for au
decade: oxcept \(\mathrm{X} 1=0.15 \mathrm{~K} / \mathrm{ce}\). Maximum decades oxcept X1=0.15 K/cs. Maximum
current: \(0.6 A\) for decades 1 A for varlometer (both primary and secondary windings). Caso: Polished teak. Lhat price \(\mathbf{2 6 5}\). Our price \(£ 26.10\).

 Bcales: BWithed. Buderire: 0.8 to 50.000 ohmis
meter Interaal source: 4V. Dry battery. Dimensions: \(200 \times 110 \times\) 85mm. Weight 0.8 k
Lit price 2.5 . Our price e9/igi6.


MUTUAL INDUCT-
ANCE COIL TYPE ANCE COIL TYPE
R.7006
specificatlon Apecificstlon. Value: 0.001
H. Accuracy: \(\pm 0.3 \%\).
 \(\mathrm{Ko} / \mathrm{s} .10 \mathrm{Kop}\). Maximuna
current: HA . 8A. Resistance
 price 8 gani Our price \(50 / \alpha\)

\section*{TEOHNICAL TRAINING in radio television and electronics}

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:
- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

\section*{NEW}

SELF-BUILD RADIO COURSES
Learn as you build. You can learn both the theory and practice of valve and transistor circuits. and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meterall under expert tuition. Transistor Portable available as separate course.

\section*{POST THIS COUPON TODAY}
for full details of ICS courses in Radio, T.V. and Electronics.

\section*{EuO}

Dept. 222, Intertext House, Stewarts Road, London, S.W. 8
Please send me the ICS prospectus-free and without obligation.
(state Subject or Exam.)

NAME
ADDRESS

INTERMATIOHA CORFESPONDENCE SCHOOLS

\section*{R.S.T. VALVE MAIL ORDER CO. BLACKWOOD HALL, 16A WELLFIELD ROAD STREATHAM, S.W. 16}


\footnotetext{
Vaives reated and released to A.B.B. specification it required.
}

Express postage 9d. per valve.
Ordinary postage 6d. per valve. Over \(\mathbf{E S}\) postage free. Tel. 01-769 0199/1649

\section*{SEND S.A.E. FOR LIST of 6,000 TYPES VALVES, TUBES AND TRANSISTORS}


ADMIRALTY B. 40 RECEIVERS E
 quality 10 ralve recetver manufnc-
tured by Murphy.




 B.P.0. conilriteor Bullt-In
output for peaker.

 yallable B41 L.F. veralon of above. \(15 \mathrm{Kc} / \mathrm{s}-\) - 700

R209 Mk. It COMMUNICATION RECEIVER




 thon. Incorppor-
stes
ate B.F.O. Aerial trmmer, Internal speaker and
1:2v, D.c. intemal power supply.
Bupplied in ercellent condition. fully \(\mathbf{~} \mid 5.0 .0\) carr.
20/.
teeted and checked.

TYPE 13A DOUBLE BEAM
OSCILLOSCOPES BARGAIN
OSCILLOSCOPES BARGAIN


CLASS D. WAVEMETERS
A crytal controilled hotero.
\(\rightarrow \mathbf{8}\)

87.18.6 Carr. \(7 / 6\).

CLASS D WA WEMETERS No. \({ }^{2}\)



LELAND MODEL 27 BEAT
FREQUENCY OSCILLATORS


VOLTAGE STABILISER TRANS
 TO. 2 PORTABLE
 TO. 3 PORTABLE OSCILLOSCOPE. \(3^{\circ}\) TUBE
 \begin{tabular}{c}
Y \\
\(\mathrm{p}-\mathrm{p} / \mathrm{CMp}\). Randwiddth 1.5 cp \\
cp \\
\hline
\end{tabular}



 chronization. Internal/ex
 ع37.10.0 Carr 10/-. CRYSTAL
CALIBRATORS
 8mall portable crgstar

 \(\mathrm{Kc} / \mathrm{e}-10 \mathrm{Me} / \mathrm{s}\) (up to
30 Mels on hamoulce). Callbrited dial. Power
requirementa 300
V.D.C.
 MARCONI TF885 VIDEO OSCILLATORS MARCONI TFI95M BEAT MARCONI TFI95M BEAT
FREGUENCY OSCILLATORS

\section*{Large quantity avallable for EXPORTI Excellent condition. Enquiries invited. COMMNR-30 4 BAND Covering \(550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}\). Incorporates BFO Built-in speaker and phone jack. Metal cabinet guaranteed with Instructions. 13gns. Carr. 7/6 EDDYSTONE V.H.F. RECEIVERS 770R. 10165 Mc/a. E150.
Both typea in excellent condition. \\ }


LAFAYETTE SOLID STATE HA600 5 BAID AM/CW/SSB AMATEUR AND SHORT WAVE


 WE. 18 Ibe. EXEEPTIONAL VALUE E45. CARR. \(10 / \%\)
S.A.E. YOR POLL DETALL.
COMRIA SOLID STATE
COMMUNICATION RECEIVER 4 hande covering \(850 \mathrm{Kc} / 8-30\) me/a continuous.
Bpecial features are use of FET trank litors

 bandspread conirol. senaitivity control. Outpu
for low impedance heaiphonea. Operation



TRIO COMMUNICATION RECEIVER MODEL 9R-59DE







TRIO TS 510 Amateur Transceiver with speaker and mains P.S.U. TRIO JR 500SE 10-80 Metre Amateur Receiver

LAFAYETTE HA. 800 SOLID STATE MATEUR COMMUNICATION RECEIVER
SIX BANDS \(3.5-4,7-7.3,1414.35,21-45\), \(28-29.7,50-54 \mathrm{Mc} / \mathrm{s}\).
 gr meter. Buge \#lide rule dimi. Operation 230 V AC or 12 v DC. 8 Bise \(11^{\circ} \times 91^{\circ} \times 81^{\circ}\). Compileto with lnatruction manual. 257.10.0. Cerr, Pald. ( \(100 \mathrm{~K} 0 / \mathrm{h}\) Crystal \(39 / 6\) estra.)


TRIO JR-310 NEW AMATEUR BAND 10-80 METER RECEIVER IN STOCK E77.10.0


RCA COMMUNICATIONS RECEIVERS AR88D





TELETON MODEL CR.IOT AM/FM STEREO TUNER AMPLIFIER

\(A\) new model from Toleton. 31 solld state devices.
 FM 888100 M MA. Automatic PM sterco reception elector, Tone and \& \(\begin{aligned} & \text { In } L \text { volume controls. APC }\end{aligned}\)



Type MR.38P. \(121 / 32 \mathrm{in}\). square fronts.



\begin{tabular}{|c|c|}
\hline 401- & 50 mA \\
\hline 37/6 & 100 mA \\
\hline & 150 mA \\
\hline 35/• & 200 mA \\
\hline \(35 /\) & 300 mA \\
\hline \(301-\) & 500 mA \\
\hline 27/6 & 750 mA \\
\hline \(27 / 6\) & 1 mmp \\
\hline 87/8 & 2 amp \\
\hline \(27 / 6\) & 5 arm \\
\hline 87/6 & \(3 \mathrm{~S}^{\text {d }}\) D.C \\
\hline & 10V. D. \\
\hline
\end{tabular}

full range op other sizes in stoce-send sae yor leaflet

\section*{POWER RHEOSTATS}

High quality ceramale conatruction. Windings embedded in vitreous enamel. Heary duty beuah wiper. Continuoun rating. Wide ragre ara
Biagie hole fixing, zin. dis. ahats. Bult quantitios apaliable




Spare movements for Model 8 or 9 . (Fitted with
Model 9 scale) or hais for any multimeter. Brand New and Boxed 68/6 P. \&P. \(3 / 6\) MARCONI TF.142E DISTORTION
FACTOR METERS
Excellent condition. Fully tested \(\mathbf{\& 2 0}\). Carr. \(16 /\) Excellent condition. Fully tested \(\mathbf{2} 20\). Carr. 16/-

PLESSEY SL LOJA
3-watt. Integrated amplifier clrcatt.
48/6 post pald.

TE-I6A TRANSISTORISED
SIGNAL GENERATOR
SIGNAL GENERATOR
 TRAMSISTORISED L.C.R A.C MEASURING BRIOGE.


声 Ra\%. TURNS RATIO \(1: 1 / 1 / 000-1: 11100\). \(\frac{7}{6}\) Ranges \(\pm 1 \%\). Bridge voltage at 1,000 CPB
 \(\frac{\text { ع20. P. \& P. } 5 \% \text { \% }}{\text { AUTO TRANSFORMERS }}\) \(0 / 115 / 230 \%\). Sicp up or or itep down. Fully throuded
\(150 \mathrm{~W} .42 / 6 . \mathrm{F}\), \& \(\mathrm{P} .3 / 6\)


\section*{G. W. SMITH \\ \& Co. (Radio) Ltd. \\ also see opposite page}


 Output impedance 5,000 ohms, \(200 /\)
250 v. A.C. opera-
tlon. Supplled brand new and guaranteed with lastruction mantal an
leadn. £18.10.0.
Carr. \(7 / 6\). LAFAYETTE TE-46 RESISTANCE
 TE.20D RF SIGNAL GENERATOR
\(6-0\)
0
0 Accurate wide range sig-
mal generasor covering
\(120 \mathrm{Kc} / \mathrm{b}-600 \mathrm{Mc} / \mathrm{m}\) on \(120 \mathrm{Kc} / \mathrm{c}-000 \mathrm{Mc} / \mathrm{on}\)
6 bands. Directiy call
brated. brated. Varlable RF
attenuator, audio out put Atenuator, sock for callbra. tlon. 220/2407. A.C.
Brand new with inatrop


ADVANCE TEST EQUIPMENT JB. AUDIO SIGNAL GENERATOR 15 c/e to \(50 \mathrm{Kc} / \mathrm{s}\). Bine ware. Output 800 ohm VM79. UHF MILLIVOLT METER 10 mV . to 3 VV . Current 0.01 uA to 0.3 mA . Renlet noe 1 ohm to 10 megohm. \(£ 125.0 .0\).
TTIS. TRANSISTOR TESTER TTIS. TRANSISTOR TESTER Full ranke nf faciutief for testling PNP.
transiantre in or out of clrcult. \(£ 37.10 .0\). MODEL ZQM TRANSISTOR CHECKER dity for cheeklag on A, B and Ico.
Equally aindable for cheekting diopes, etc.

 MODEL TE-80. 20,000 O.P.V.
隹


\section*{MODEL}

TE-10A. 20k a/Volt \(5 / 28 / 50\) \(\begin{array}{llll}280 / 500 / 2,500 \\ 100 / 500 / 1,000 & \text { v. A.C. } & \text { D. } 10 / 50\end{array}\) mpeg. ohm. 20 to +22 dB .
\(10-0\), 100 mfd. 0.1010 .1 mid.


\section*{Variable Votrage TRANSFOMWIERS}

Brand new, guaranteed and carriage paid.
High quality construction. Input \(230 \mathrm{v} .50-60\) cycles.
Output fuil variable from \(0-260\) wolts. Bulk quantities available. \(1 \mathrm{amp} .-85 / 10 /-2.5 \mathrm{amp} .-26 ; 15 /-; 5 \mathrm{amp} .-89 / 15 /-\); 8 amp.- \(814 / 10 /-; 10 \mathrm{amp} .-818 / 10 /=; 12\) amp. -821 ; 20 amp. -287
\(2000+1\) Mice 0.6 ma. Reaintance for diode tions. battery and leade. es.19/6. P. \& P. 2/6 CAR LIGHT FLASHERS
Heary duty ilght flamher employs an condenser
discharge princlpio operutlag on electro mechantchal relay. (As Inset.)
Housed la inong plantic chase. Flashing
between \(60-120\) minute, \(122^{60-120}\) por operntion. Maxinum
bond 6 ampa. Bize 2 t in lond 6 ampa. Blze 2 ith
dla. by 4 in
brand noppiled
bot a fraction brand now at a fraction
of orghinal cost. \(6 / 6\) each,
P. \&P. \(2 / 6\). (3 for 17/B.

\section*{GARRARD}


AFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER






\section*{MULTIMETERS for GUESY purpose!}

MODEL TE-70, 30,000 0.P D. \(3 / 15 / 60 / 300 / 600 / 1,200\) A.C. \(0 / 30 \mu \mathrm{~A} / 3 / 30 / 300 \mathrm{~mA}\)
\(-16 \mathrm{~K} / 160 \mathrm{~g} / 1.6 \mathrm{M} / 16 \mathrm{Meg} 0\)

MODEL TE-12. 20.000 O.P.T. \(0 / 0.0 / 6 / 30 / 120 / 80011.200 /\)
\(3,00 / 6000 \mathrm{v} . \mathrm{DC} 0 / 630 / 120 /\)
\(600 / 1,200\) v. A.C. \(0 / 50 \mu \mathrm{~A} / 61\) \(80 / 60 \mathrm{~mA} .0 / 8 \mathrm{k} / 60 \mathrm{~F} / 6 \mathrm{Meg} . \mathrm{D}\)
\(60 \mathrm{Meg.0} .50 \mathrm{FP}\).


\section*{LayAyETTE 57 Rane Super
 volte \(1.5 \mathrm{~F}-1000 \mathrm{~T}\). D.a Cur
rent \(25 \mu \mathrm{~A}-10 \mathrm{Amp}\) Ohms
0 and +81 db Overios pratectio +81 db
e12/10/}


MODEL PT-34. 1,000 O.P. V.0/10 \(50 / 250 /\)
\(500 / 1,000 \mathrm{~V}\). 20 and d.c. \(01 / 1100 / 500 \mathrm{~mA}\)

 M TUNER \({ }^{6}\) TRIGHANSISTOR TUNE QUALITY
TUNER
ONLX
 2lin. 3 I.F. olagea
Doubla
cuned dis. criminator, ample
out put to feed most out put to feed mosi on 9 voit battery. Coverage \(88-108\) Mc/a. Rend £6/7/6- P. \& P. 2/6. SINCLAIR EQUIPMENT
 SPECLAL PACKKAGE OFFERI
 Mieromatic Radio Klt. Micromastic Rado buite
glaclair IC/10 th atock. 2010 Ampliner 223/10/0. Carr. J/6.
Neoteric Amplufer \(242 / 10 / \mathrm{C}\). Carr. \(7 / 6\).

\section*{ECHO HS-606 STEREO}
 Wooderfully com fortable. Light-
welght adjustable welght sdjustable cable and tack plug, 25-17.000 eps., 8 D lmp. 87/6.

\section*{HOSIDEN DH04S}

2-WAY STEREO HEADPHONES


HOSIDEN DH-02S STEREO HEADPHONES
 Wonderful ralu
nud excellent per
fornance comblaned. fornuance comblard.
Adjustable bend band. \({ }^{8}\) ohm tm
pedance. \(20.12,000\) lead and pitereo jack plag. ONLY \(47 / 6\)
P. © \(\mathrm{P} .2 / 6\). Operative
diutances.

TRANSISTORISED TELEPH INTERCOM dintances. over manazingly long preas to talk butione call and catlons. Besutlfully thished In ebony. Supplled cotaplete e8/19/8 valr. P. W. \(3 / 6\) bracts.
TEIII DECADE RESISTANCE ATTENUATOR Farinblerange 0-11.
db. Connection.


40 db. Frequency: \(D C\) Maximum lnput less than \({ }^{+}\)indication \(\mathrm{db} \times 0.01\)
 externad switche Brand tow \(£ 27 / 10 /-\). P
RECORDING HEADS

\section*{Conmooord track beads: Post extra.
Record/replay Migh imp............... \(65 /\)
Erase. Low imp} Marnots t track heads. Post extri.


AMERICAN RECORDING TAPES

 Brapen new 5 fin. 1,200 ti. L. P. acetare \(12 / 6\)





All Mail Orders to-
147, Church Street, London, W. 2 Tal: 01-2626562 (Trade supplied)

3, LISLE STREET, LONDON, W.C. 2 Tel: 01-4378204 34, LISLE STREET, LONDON, W.C. 2 Tel: 01-437 9155 311, EDGWARE ROAD, LONDON, W. 2 Tel: 01-262 0387 OPEN 9-6 MONDAY TO SATURDAY (EDGWARE ROAD \(1 / 2\) DAY THURSDAY)

\section*{SUPER-BARGAIN STOCKTAKING SALE!!}

Use form below for your order. CONDENSERS MUST BE ORDERED BY STOCK NUMBER ONLY. If any sale item is 'sold-out' when order received we shall substitute items of equal value.

ELECTROLYTIC CAPACITORS


RESISTORS. EXCELLENT QUALITY. MAINLY 5\%. 7/6d. per 100 of any one value.
2/-per dozen of any one value. Smaller quantities 3d. each


SIIVER MICA/CERAMIC/POLYSTYRENE CONDENSERS. \(10 /-\) per 100 of any one value. \(3 /\)-per dozen of any one value. Smaller quantities \(6 d\). each. As available. In following values. Tlck those required.
\begin{tabular}{rllllllllll} 
\\
2 & & & & & \\
\hline
\end{tabular}

\section*{COMPARE THESE PRICES!!}

MULLARD POLYESTER CONDENSERS

\(25 \%\) discount lots of 100 per type.
TRANSISTOR BARGAIN! THEY CAN'T GET ANY CHEAPER! ! ! ! !
TRANSISTOR BARGAIN! THEY CAN'T GET ANY CHEAPERI \(1 / 100\) P.N.P. Audio. Rntested, unmarked. MAINLYE.K. ... \(10 /-\) per 100 POWER OUTPUT (Similar OC35) ALL TESTED \(\quad . .4 /-\) each \(£ 2\) dozen SILICON PLANAR TRANSISTORS. ALL TESTED. NO LEAKS OR SHORTS. Gain of 20/50 6d. each, 50/100 9d. each, 100/200 1/- each.
LIGHT SENSITTVE TRANSISTORS, 2/- each.
LIGHT SENSITIVE DIODES
Can be used to control any transistorised device, \(1 /\) - each.
. 2.
KRRISIORS. 400 volt BTY 79 7/6d. each. SCR 51 ( 10 amp ) £1 each. RECTIFIERS. Latest type. All marked. 800 volt peak, 1 amp mean current
\(2 / 6\) each, 24/- dozen, \(£ 7 / 10 /-100\). BYZ 13 or 19 ( 6 amp ) \(2 / 6 \mathrm{cach}, 24 /-\) dozen, \& \(7 / 10 / \mathrm{l} 100\).
BY \(1272 / 6 \mathrm{~d}\). each. 24/- dozen. \&7/10/- per 100, \(£ 50\) per 1,000.
RECORDING TAPE GIVE-AWAY! ALL BRITISH MADE, BEST
\(5^{2}\) Standard
5 Stancard

\section*{\(7 / 6 \mathrm{~d}\).}
" \(12 /\) 12 \(\quad 7^{3}\) Long-play \(\quad . \quad\).. 16/3
MAINS DROPPER TYPE RESISTORS. Hundreds of types from 7 ohm upwards. 1 watt to 50 watts. A large percentage of these are Multi-tapped offered "assorted". \(10 /\) per dozen.
GIANT SELENIUM SOLAR CELIS. Last few to clear at half price! Circular, 67 mm . diameter \(5 /-\) each. \(50 \mathrm{~mm} . \times 37 \mathrm{~mm} .3\) for \(10 / \%\).

SKELETON PRESETS. Mixed. 6/- dozen.
VOLUME CONTROLS. \(\frac{1}{2}\) meg. 1 meg. with D.P. switch 5 k . (No switch) all \(2 /-\)
RECORD PLAYER AMPLIFIERS. All transistor. Complete with screened input lead, volume control and speaker leads. This excellent unit also has built-in rectifier and smoothing components enabling same to be used direct on 6 to
9 volt A.C. supply. Small number only! Cannor berepeated at this pricel \(30 /=\) ea.

TRANSISTOR RADIOS. Fantastic bargain! Tremendous value! Superb quality sound from large speaker! Excellent sensitivity! Complete with earpiece, battery and plastic carrying case, all packed in a colourful presentation box. You would expect to pay \(£ 5\)-but our price due to huge purchase is only \(37 / 6 \mathrm{~d}\). CO-AXIAL CABLE. Semi-air spaced. 8 d . yard. 60 yd. rolls \(30 /-\) Postage \(4 / 6 \mathrm{~d}\). CRYSTAL TAPE-RECORDER MIKES, 12/- each. CRYSTAL EARPIECES WITH PLUG, 5/- each. Magnetic earpieces. No plug. 1/6d. each.
THIN CONNECTING WIRE, \(10 \mathrm{yds} 1 /=, 100 \mathrm{yds} 7 / 6 \mathrm{~d} ., 1,000 \mathrm{yds} .50 / \mathrm{-}\) RECORD PLAYER CARTRIDGES
ACOS GP67/2 15/- (Mono) GP94/1 30/- (Stereo, ceramic)
ACOS GP91/3 20/- (Compatible) ACOS GP93/1 with diamond needle 32/6d. ACOS GP93/1 25/- (Stereo) ACOS GP94/1 with diamond needle 37/6d.
TRANSISTORISED FLUORESCENT LIGHTS, 12 VOLT
8 watt \(12^{\prime \prime}\) tube, Reflector type \(58 / 6 \quad 15\) watt \(18^{* \prime}\) tube, Batten type 79/6 Complete with tube. Postage 3/-

TRANSISTORISED SIGNAL INJECTOR KIT 10/-
TRANSISTORISED SIGNAL TRACER KIT ..... .. 10/m
TRANSISTORISED REV. COUNTER KIT (CAR)

14/8
\begin{tabular}{|c|c|c|c|c|c|}
\hline ERO & & & & & \\
\hline \(21^{\prime \prime} \times 1\) " \(\times 15\) & .. & 1/3 & \(17^{\prime \prime} \times 33^{\prime \prime} \times .15\) & & 14/8 \\
\hline \(38^{\prime \prime} \times 21^{\prime \prime} \times .15\) & & 33 & \(37^{\prime \prime} \times 21^{\circ} \times 1\) & & 4/2 \\
\hline \(33^{\prime \prime} \times 30^{\prime \prime} \times .15\) & & 3/11 & \(37^{\prime \prime} \times 33^{\prime \prime} \times 1\) & . & 4/9 \\
\hline \(5 \times 2=\times .15\) & - & 311 & \(5 \times 22^{\circ} \times 1\) & . & \(4 / 7\) \\
\hline \(5^{\circ} \times 3 \%^{\prime \prime} \times .15\) & . & 3/6 & \(5^{\prime \prime} \times 33^{\circ} \times .1\) & & 5/6 \\
\hline \(17^{\prime \prime} \times 2 \%^{\prime \prime} \times .15\) & & 11/- & & & \\
\hline
\end{tabular}

Spot Face Cutter 7/6d. Pin Insert Tool 9/6d. Terminal Pins 3/6d. for 36. Spot Face Cutter and \(52 \frac{1}{" \prime}^{\prime \prime} \times 1^{\prime \prime}\) boards \(9 / 9 \mathrm{~d}\).

These prices cannot be repeated. Order now. Don't forget to add your name and address! Please include suitable amount to cover post and packing. Minimum 2'-.
G. F. MILWARD, DRAYTON BASSETT, near TAMWORTH, STAFFS. Phone: TAMWORTH 2321


We supply B.A. Screws, etc. in brass, steel, stainless, phosphor bronze and nylon to laboratories throughout the Commonwealth.
We can also offer early delivery for many sizes of screws, etc. with Metric Threads

Please send for Llst W2/69 (WW)
WALKER-SPENCER COMPONENTS LTD
5, High Street, Kings Heath, Birmingham, 14. Telephone: 021-4443155 (Sales) and 5278

WW-124 FOR FURTHER DETAILS


\section*{SANWA \(\frac{14 W I I T}{}\)}

EXPERIENCE OF 30 YEARS ENSURES ACCURACY RELIABILITY, VERSATILITY. UNSURPASSED TESTER PERFORMANCE COMES WITH EVERY SANWA.
Model P.IB Months Guarantoe. Excellent Ropair Service
Model.JP 50
Model 1 -500
Model L-500N
Model 360-YiA
Modela-3Dztro
 \(\begin{array}{llll}\text { ModelF-80TRD } & \mathrm{f} 12 & 0 & 0\end{array}\)

 \(\begin{array}{lllll}\text { Model 430-ES } & \ldots . & \text { Ifs } & 0 & 0 \\ \text { ModalEM. } 700 & & 51 & 0 & 0\end{array}\) 55100
mdoel 360 -ith please white for illustrated leaflets of these sanwa meters SOLE IMPORTERS IN U.K; QUALITY ELECTBONICS LD.
47-49 MIGH STREET, KINGSTON-UPON-THAMES. SURREY. Tel:01-546 4585 WW-125 FOR FURTHER DETALLS


Solve your communication problems with this new 4-8tation Transistor Intercom system ( 1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to Subs and 8ubs to Master. Operates on one 9 v . battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hos. pital, Shop, etc., for instant inter-departmental contacts. Complete with 3 connecting wires, each 66 ft . and other accessories. Nothing else to buy. P. \& P. 7/6 in U.K.


Same as 4 -Station Intercom for two-way instant conversation from MASTER to SUB and SUB to MASTER. Ideal as Baby Alarm and Door Phone. Complete with 66 ft . connecting wire, Battery 2/6. P. \& P. 4/6.

\section*{MAINS INTERCOM}

No wires-no batteries. Just plug in and it is ready to use. Room to room or house to house. Both units must be on the same side of power line distribution. Lock button. Usetul as baby alarm. Price per pair £11.19.6. P. \& P, 8/6.


Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Pcrtable Transistor TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/oft switch. Volume Control. Operates on one 9 v . battery which lasts for months. Ready to operate. P. \& P. 3/6 in U.K. Add 2/6 for Battery.
Full price refunded if returned in 7 days.
WEST LONDON DIRECT SUPPLIES (W.W.), 169 Kensington High Street, London, W. 8

\section*{ \\ PRONOUNCED R-TEZ SEMIGONDUCTORS}

Write now for catalogue
ATES ELECTRONICS LTD., MERCURY HOUSE, PARK ROYAL, LONDON W5
TEL: 01-998 6171 TELEX:ATES LONDON 262401
WW-119 FOR FURTHER DETAILS

\section*{MINIFLUX}

MANUAL VOL. 1.
A complete set of Laboratory Application Reports on the replay of audio magnetic recordings.
Packed with hitherto unpublished information. Full constructional details are included for several high quality pre-amplifiers of advanced design as well as multi-channel integrated circuit modules. Each design step is thoroughly discussed and supported by detailed test measurements and calculations.
Size A4. 131 Pages. Price 31s. 6d, inc. UK postage. Direct from the Publishers:
MINIFLUX ELECTRONICS LIMITED.
8 Hale Lane. London. N.W.7. ENGLAND.

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
KING OF THE PAKS Unequalled Value and Quality \\
SUPER PAKS new bilpak untested SEMICONDUCTORS
\end{tabular} &  & \[
v][0]
\] &  & \multirow[t]{41}{*}{} \\
\hline ction Guaranted in Ev & NEW LOW PRICE & & L.C AMPLIFIER & \\
\hline Pat No. & 1 Amp
(TO-5) & & & \\
\hline  & & & & \\
\hline Es 75 Germandum Gold Bonded Diod & & & & \\
\hline U4 40 Germanlum Tranalabrs lite OC81, AC128 & & & & \\
\hline U8 \(80200 \mathrm{~mA} \mathrm{Bub-mila}. \mathrm{Bui}. \mathrm{Dlodes}\). & 400 & & & \\
\hline  & & & & \\
\hline  & & T & & \\
\hline  & UT46 Equt. 2N2646. & T & & \\
\hline  &  & - 21 & & \\
\hline 12 Sillcon Rectifiers EPOXY BY 126 /1 & & & \({ }_{\text {complete }}\) & \\
\hline U13 30 PNP-NPN 8ll. Tranaitorb 0 C200 \& 2810 & & & D BP. 1010 & \\
\hline U14 is 150 Mixed sulcon and Germanium Diodes. & &  & EBT PRICE & \\
\hline U15 So NPN Sllion Phanf Tranditors T0-5 cim. 2 N09? & Dat & & & \\
\hline Amp Billcon Rectifere Btud Type up to 1000 PIV... 10 & & & & \\
\hline U17 30 Germanum PNP AP Tranaletors T0-8 like ACY 17.22. 10/ & & \(8 / 811 / 8151 /\) & & \\
\hline C18 88-Amp sulicon Rectifiers BYZ13 Type ap to 600 PIV & VOLTAOE RANOE 2-16 & & & \\
\hline T19 30 silicon NPN Tranalotora like BC108 &  & & & \\
\hline  & 10 W (80.10 8tad). 5 \% & 86) (TO & acts & \\
\hline  & All fulls tested \({ }^{\text {B\% }}\) \% tol.and & & thr & \\
\hline  & & +00 201- 251. & & \\
\hline U25 23 3 3 MMO/O NPN B4icon Transiators 2 N708, B8Y27. & & Bl & & \\
\hline  & OERM. TRANEISTORS & & zero supply voitage, and & \\
\hline U28 Experimenters' Ansor ment of Integrated Circuits. untest & Coded and & 2NSOBS 115 W SIL POWER & therefore eliminate radlo
trequency
Lnterterence when & \\
\hline  & & & & \\
\hline USO - 15 Plastic ellicon Platar trana. NPN 2N2924-2N &  & Please noter & & \\
\hline US1 20 Sil Planar NPN trana. low noito Amp 2N37 & & & & \\
\hline U82 26 Zener dioden 400 mWV D07 case mired Volls, 3-18.... \(101 /-\) & T8 \({ }^{\text {T }}\) & Clarren \({ }_{\text {and }}\) & \(\mathrm{limg}_{\text {lithic }}^{\text {lint }}\) (th) & \\
\hline U88 18 Plastic case 1 amp sllicon rectinere 1N4000 serlet.... \(10 /=\) & & Return Postal 1 & laysor be & \\
\hline US4 30 8LL PNP alloy trans. T0-5 BCY26, 28302/4 ......... \(10 / 0\) & & Losecond to none & in anode get & \\
\hline  & (19 & mlined our Dear & in "Zener" diode bo. & \\
\hline  & all 10/- oact Pax & Order Department and we & dsta and application & \\
\hline  & & & & \\
\hline  & TRANS. CODE, D1899 & ur reraltadies, dire & & \\
\hline 4010 Dual eran 8 lead T0-5 2N2060................... 1010 &  & & & \\
\hline 046180 RF Germa trans. T0-1 OC45 NRT72............. \(10 \%\) & 120 VCB MIXIE DRIVER & add & & \\
\hline Germ. PNP trane. TO-l NKT867 AF117...... 10 & & &  & \\
\hline & & WAre. MERT8, Pontage & & \\
\hline & & & amplliter, 2J- escb. & \\
\hline Code Nos, mentioned above are given as a guide to the type of device in the Puk. The derices themselvea are normally unmarked. & \multicolumn{3}{|l|}{} & \\
\hline
\end{tabular}

\section*{Wilkinsons FOR RELAYS =a P.O. TYPE 3000 AND 600 bult to your requirements - quick delivery COMPETITIVE PRICES - VARIOUS CONTACTS DUST COVERS-QUOTATIONS BY RETURN LARGE STOCKS HELD OF G.E.C. MINIATURE SEALED RELAYS}
\(\qquad\) MINIATURE SILVER XINC ACCUMULATOR
 SUB-MINIATURE LAMPS. Flying leads 0.75 V. \(50 /\). 100
LEDEX ROTARY SOLENOIOS ANO CIRCUIT
 12 way 11
0 H 150 /.
SOLENOIDS trpe \(3 E\) in stock at \(17 / 6\) each.
CERAMIC ANO PAXOLIN WAFER
CEAAMIC AND PAXOL W WAFER SWITCHES
 P.O. STANDARO E QUIPMENT RACKS Gfe. U channe
sides drilled for 19 in. panels heavy angio base. \(150 /\), cge 20\%-
 AIR BLOWERS: \(200 / 250 v\). A.C. cylindrical 7in.
 GEARED MOTORS GEARED MOTORS.



PRESSURE GAUGES. \(21 \mathrm{in}, 60,250,400\) or 600 p.s.i. \(23 / \mathbf{e x c h .}\) tin. flange 30,60 ,
BATTERY CMARGERS az special price made by Westinghes D.C. with ammerer, fuses: resulated by
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{through 9 with right and left hand decimal pointa, words and othor characters also available quick disconnect at the 19, ox., send for full details.} \\
\hline \\
\hline
\end{tabular}
high speed COUNTERS
35/-ea.

SUB-MINIATURE
mounted in fives for 22/6 posis free.
JACK PLUGS. 2 Point with
PO 201 on heado ho
PLUG-IN RELAYS. Londex 4 chat
28v. D.C. with base and cover, \(35 /-\) each
UNISELECTORS.
full wipers, 67.10 ach
L. WILKINSON (CROYDON) LTD LONGLEY HOUSE LONGEEY RD. CROYDON SURREY

MINIATURE BUZZERS. 12 yolts with zone
adiuster, \(7 / 6\) each as illustrated. Special rates for GOR MANUFACTURERS, LOW PRICE SEMICONDUCTORS: TEXAS INSTS 2 N1303, 3,000 available 3/1. eal MULLARD ASZ \(20,3.000\) avzilable \(6 / 6\) ea. M ULLARD GE MAGNETIC COUNTERS Yer Cor MAGNETIC COUNTERS, Veeder Root with rero reseet.
800 countsper minute, counsing 2999999 . 110 or 120 volus


 Microamps \(0 / 5002\) 2tin. MC....37/8
Milliamps \(0 / 50\) 2lin
MC Milliampt 0/50 2tin. MC. Milliamps \(0 / 500\)
Ampa \(50-0.50\)
2 in . MC. MC. Ampn \(0 / 5 \mathrm{in} . \mathrm{MC}\)... olte \(5 / 0 / \mathrm{s} 2 \mathrm{j} \mathrm{in}\). MC Volte 0/20 2in. MC.
Volte \(0-402 \mathrm{in}\). MC. .......... \(42 / 6\)
Volts \(0 / 10\) A.C. 3itn. MCR.... \(20 /\) VISCONOL-CATMODRAY" CONDENSERS. OO2 2.5 KV. i7/61 Mid. 21 VV . 176 . 30 moving coil DC precision sub standard zrate sin. mirror scale, in potished wood case cale in \(p\). wood case (4.19.6. poss 7/6; 250v moving iron




rao 637.10. cg \(12 / 6\). ELLIOTT CENTURY TEST SETS. Firat-grade
ELS \(750(F 5 \mathrm{D} 20 \mathrm{~mA})\) and Absolute D.C. amps 1.5 , 15 . 150
and \(600(75 \mathrm{mV}\) ) on Sin. Mirror scale. Wood case, with and \(600(75 \mathrm{mV})\) on 5 in . Mirror scale. Wood
shunts in fitted comparement. \(\mathbf{6 2 5}\), cge \(15 / \mathrm{F}\).
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{FLUORESCENT CONTROL KITS} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{Each kit comprisen seven tems-Choke, 2 tube ends, nharter, starter holder and 2 tube clips, with wirias the new "Orolux" tubes for nah tanks and indoor plants.}} \\
\hline & \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{Chokee are super-kilent, mostly reein filled. Kit AChoke \(19 / 8\) Kit B-30-40 w. 18/8. Kit C- -80 w} \\
\hline \multicolumn{2}{|l|}{\(15-20 \times .19 / 8\). Kit B-30-40w. 19/8. Kit C-80w. 23/6. Klt E-63w, 18/6. Kit MPi le for 6 in., 9 In, and} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{ordered. Kits C, D and E \(4 / 6\) on flret kit then \(3 / 6\) for}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{each kit ordered. Kit MP1 \(3 / 6\) on firat tit then \(3 / 6\) or} \\
\hline
\end{tabular}

\section*{REED SWITCHES}

Glass encosed, wifiches nperated by externas! magnet-gold Teided contactu. We can now ormer 3 typers:
 \(84 i=\) dozen. \({ }_{8}\) ind , long \(\times 3 / 16 \mathrm{k}\) n. diameter. Thio will break
 \(18 /-\) per dozen. 1 , 1 , long. Juat over \(1 / 1\) iin. thick, approxl-
 It can be fit ted into a smanler pace or a larger quantity may.
be packed tinto a aquare solenoid. Ratlog 1 amp 200 voltu. 8
 1/8 each. 18/- doze. TELESCOPIC

Por portable, car radio or transmitter. Chrome-platedaix sections extends from 7\% to 471 n .
Hole in bottom for 6 BA screw. \(7 / 6\). TOGGLE SWITCH \(3 \operatorname{sinp} 250 v\)
each \(15 /-\) doz.


\section*{MINIATURE EAR PIECE}

As used with lmported pocket radios. 1/6 each 15/- doz.

\section*{ISOLATION SWITCH} 20 Amp D.P. 250 Volta. Ideal to control
Water Henter or any other applinace. Neot indicator show
48/- per doze


15/20 AMP CONNECTORS Polythene inmalated \(12-\) way otrip.
2/6 each \(84 /-\) doz

13 AMP FUSED SWITCH

ade by \(a\) henter otc., into 13 amp ring main, Fluah surface mounting \(1 / 6\) each \(15 /-\) doz.
MICRO SWITCH
8 amp. changeover contacts. 1/9 each
\(18 /\)-doz. 15 amp model \(2 /\)-es. or 21 -doz.

\section*{SUPPRESSOR}

SOPPRESSOR
1 rufd. 250 v . A.C. working metal came

\section*{REED RELAY 其}

Clase encapanated reed switch in 24 -volt molenoid, neatly
enclosed in neat metal case. gize \(2 t \operatorname{lin} . \times\) in. \(x\) in. \(3 / 8\) each. Operntes from 24 volts D.O or from A.
rectifer, restotor and condenser \((3 / 6\) extra).

\section*{SHEET PAXOLIN}

15/-per dozen.
\begin{tabular}{|c|c|}
\hline G.E.C. MULTIPLE SWITCHES &  \\
\hline Metal boxea (with cable knockouts) aprayed allver with cover and switch mounting grid. For 12 switchea \(6 /-, 6\) switches \(5 /-.4\) awitches 4/-, 2 switches \(3 / 6\). & \\
\hline
\end{tabular}
Q.E.C. Clipper 5 witahen



\section*{HI FI BARGAIN}

FULL F1 12-INCH LOUDSPEAKER. loudspeakers that wic have ever oftered. produced by one of the countrys most, trame make in. strongly hat recommended for Bi-Filload and Rhythm Gultar and Prux Denelty il,000 gausb-Total Flux 44,000 Maxwello-Power Handiting 15 Fitt R.M. R-Cone moulded fibreFreq. response \(30-10.000\) e.p.s- \(\quad\) specify 12in.- \(12 \frac{1}{2}\) over mountlog luge-Bathe hole 11 in Diam Mounting boles 4 , holes- bin. diam, on pltch eircle, 11 f th .


RING MAIN JUNCTION BOXES
Made by Rock, This won Designa Award for making quick
and neat junctionn in 9.024 twin and earthed cable as naed and neat junctiona in 9,024 twin and earthed cable an naed
for ring main circuita. Our price \(1 / 6\) each, \(15 /-\) per dozen.

\section*{ERGOTROL UNITS}

These unite made by the Muilard Group are for operating and controlling d.c. Motors and equip ment from A.C. mainn.
Thyriatorn ure used and these nupply a variable
d.e. resulting in motor speed control and operating etficlency far superior to most other methode. The units are contained in wall mounting cabliets with front control panel on which are
fuses-- push buttons for on/of and the variable fusos-puab buttons for on/off and the variable
thyrintor Aring control.

\section*{makers cases: \\  \(\begin{array}{lll}\text { Model } 2413 \text { for up } & \omega \sim & 45 \mathrm{amps} \\ \text { Model } 2415 \text { for up } & \omega 80 \mathrm{mmps} & 247.10 .0 \\ 895.0 .0\end{array}\)}

\section*{MINIATURE EXTRACTOR FAN}

Beautifully made by Pamons German Company. PAPST Bystem,
\(230 / 240\) A.C. Maina operated, stze \(34 \ln . \times 3\) in. \(\times 21 \mathrm{n}\). Made foi invtrumeat conling mut deal to incorporate In a cooker hood. oto. 6.5/-
 Note: 241.51s a floor mountlig unll

\section*{DISTRIBUTION PANELS}






WATT AMPLIFIER \& PREAMP transiatorn-bigbly eflicient made for use with tapeo Limited quantity 29/6. Full elrcuit diag. almo shows Lape controla 5/-.


\section*{VARIAC CONTROLLERS}

Whth these you can vary the voltage applied to your circuit from zero to fill unink without generaling undue heat. One obvious ex.equipment but liftle used and in every way an grod as new Any not so, will be exchanged or casb refunded. 2 amp 24 .19.8 5 amp £7.19.6. a amp £12.19.6. 10 amp £15.19.6.


\section*{HOUR COUNTERS}


THE PECTRON HEATINGIVENTILATING CONTROL Thin neat unlt contains all the controls needed tor a gas-Ared central beat log syntetn as follows:(b) A thermal delay switeh to prevent cold air being blown while fire warme up.
(c) Auto
 (d) A 24 -volt tranaformer to provide mary to operate solenotd of gan valte.
(0) A changeover switch to by pas the clook
\(\qquad\)
 The unit has a clroult diagram and Ave leadi labelled "Malms," "Fan," "Thermontat 1


NFRA RED MONOSCOPE

This equipment is complete and portablo. Baaicalty it consist, of an infra red innge converter tuble with optical lenses for focualigy the image and a Zambini pule to provide case size \(9 \times 6 \times 4 \mathrm{ln}\). apDrox.
Made originally for the army for migbt obserrationa, aniping
etc.. this equipment han many sclentifo and practical etc.e. this equalpment han many sclentifo and practica
applications; a llmithed quantity only ls availeble to ortginal sealed carton. Price 28.18 .8 .
Notr. Although munused \(\ln\) tact still in original nealed cartons. The equipment Ls approx. 25 years old and Drying out mish hambini ple msy not now be operative. it with a hattery operated power unit; there is plenty 0 of room


Where postage is not stated than orders
 post free. S.A.E. with enquiries please.

\section*{MINIATURE WAFER SWITCHES}

2 pole. 2 way- 4 pole, 2 way- 3 pole. 3 way 4 pole, 3 way- 2 pole, 4 way - 3 pole, 4 wayeach. 3 EV -dosen, your asoortment.
\begin{tabular}{|c|}
\hline WATERPROOF HEATING \\
ELEMENT \\
26 yarde length 7OW, Gel--regulating \\
temperature control. 10/- poot free.
\end{tabular}


\section*{MAINS MOTOR}

Precislon maite-as naed Ln record decks and tape recondert-ideal nlac
for ortractor fans. blower, beater, eto for ortractor inna. blower, beater, eta
New and perfect. Snip at \(9 / 6\). Pouths 3/- For Arat one then \(1 / /\) for each one
ordered. 12 and over post free. ELECTRIC CLOCK WITH 25 AMP SWITCH
Made by Sruith's, these units are AB control the oven. The chock is maning driven and frequency controlled mo it is extremely eccurate. The two sman dials ensable switch on and oflt times to
be accarately set. Ideal for switching on tape recooder. Oitered at only a
traction of the regular price-new and
 traction of the reaular price new and unused only \(39 / 8\),
iesuthan the value of the ctock alone-post and insurance \(2 / 9\)


\section*{THERMAL CUTOUT}

A tulniat"re devlce \(\frac{f i n}{}\). din. on one screw fixing mountcan be used for motor overload protactlon--ife alanu-
soldering fron switch oil, stc., stc. -15 amp contact open soldering tron owitch oft, etc., atc. -15 amp contacte open
with flame radiant or conducted heat. \(1 / 6\) each, \(15 /-\)
doz. 25100 .

\section*{COPPER CLAD ELEMENT}
 \(4 / 6\) post. \(£ 6\) doz. pont paid.

\subsection*{0.0005 mFd TUNING
CONDENSER \\ CONDENSER}

Proved design, ideal for atrain
circulta \(2 / 6\) each. \(24 /-\) dou

\section*{SUB-MINIATURE MOVING} COIL MICROPHONE
Acts almo no earphone dize only tin. \(x\) fin. \(x\) th. Regular price probably 23 or more. Our price 19,6 . Notte thene sero be exchanged

\section*{MAINS TRANSISTOR POWER PACK}

Denigned to oporate transistor sets and ampliners, Adfuats
 PP1, PP3, PP4, PPB, PP7, PP9, and ouhera. Kit comprises:


\section*{PP3 BATTERY ELIMINATOR}

Run your amall transiator radio from
the mains-full wave circuit. Made up the mains-full wave circuit. Mad

\section*{8dJuitable}

85 Watt Tubular Element. Very well inade ualt. The element In wound on a pporcelain former then encased in a brasa manins voltage. Price \(5 /=\) ench or \(54 /\) - per doz.
 8 mfl . \(9 / 6 \mathrm{ea}\)
3 amp battery oharger tit comprises copper backed cireatt
 \(4 / 6\).
500 balanced armature
 \(\mathbf{~} 3.10 .0\) doz.
Acon crystal microphone. Adjuotable atand converts this而
HEAVY DUTY POWER PACK
40 V 6 ampa DC output-comprisee Lat class maluat tranaformer
with normal primary. screen \(20-0-20\) f-amp output. Fully
with normal primary. sereen \(20-0.20\) ( 6 -amp output. Fulf
wnoothed. Completely wired reads to work \(£ 3.19 .6+8 / 6\)

\section*{SOLATING/STEP DOWN}

TRANSFORMER
Primary 0, 240 v. Sec. \(0,115,240 \mathrm{v} .10 \mathrm{a}\). Ideal for workshop supply, only \(6 \mathrm{in} . \times 7 \mathrm{in} . \times 7 \mathrm{in} . £ 8\) carr. 20/-

STEP DOWN TRANSFORMER
Primary 0, 240v., Secondary 0, 115v. 300 watts (conservatively rated). \(4 \frac{1}{2} \mathrm{in} . \times 4 \mathrm{in} . \times 4 \mathrm{in} .45 /-\) p. \(\&\) p. \(8 /-\)

12v. 4a. POWER SUPPLY Brand new, weighs 11 ib Constant voltage transformer input \(0-112.5-123.5-195\) \(220-235 \mathrm{v}\)., produces 12 v .4 a capacitor smoothed output \(\mathbf{£ 9 . 1 0 . 0}\) plus \(10 /\) - carr

\section*{EX-COMPUTER \\ DOWER SUPPLIES}

Reconditioned, fully tested and guaranteed. These very compact units are fully smoothed with a ripple better than 10 mv . and regulation better than \(1 \%\). Over voltage protection on all except \(24 v\). units. 120 v . - 130v. a.c. 50c/s input. Mains transformer to suit £3 extra if required.

We offer the following types
\begin{tabular}{|c|c|}
\hline 6 v . 8a. \(£ 10\) & 20v. 15a \\
\hline 6v. 15a. £14 & 30 v . 7a \\
\hline 12v. 20a. 516 & 24v. 40 \\
\hline Carriage & - per unit \\
\hline
\end{tabular}

DIODES EX EQUIP, SILICON
\begin{tabular}{ll}
150 PIV 10 amp. & 4 for \(10 /-\) \\
150 PIV 20 amp. & 4 for \(20 /-\)
\end{tabular}

4 for 20/-
400 PIV 35 amp.
4 for 45/-
p. \& p. 1/-

LARGE CAPACITY ELECTROLYTICS \(4 \frac{1}{2} \mathrm{in}\)., 2in. diam. Screw terminals. Top quality German manufacture. Will withstand short circult discharge.
\(4,000 \mu \mathrm{~F} 72 \mathrm{v}\). d.c. \(\mathbf{w k g}\)
\(16,000 \mu \mathrm{~F}\) 12v. d.c. \(w k g\)
7/6 each, p. \& p. 1/-
£3.10.0 doz., p. \& p. \(10 /\)

PYE CAR RADIO
Push Button Tuning Heart
This PRESTOLOCK 5 station Push-Button Station Push-Button
Tuner Heart with Manual Over-ride is an ideal basis for a quality \(A M\) car radio. Size \(6 \frac{1}{2} \mathrm{in}\). \(\times 4 \mathrm{in}\). \(\times 2\) in. 25/-plus 3/-p. \& p

\section*{RELAY OFFER}

Single pole changeover. 2 in . \(\times 0.6 \mathrm{in}\). \(\times 0.75 \mathrm{in}\). 50 v . 2.5 Ka coil, operates on 24 v . 8 for \(10 /-\) 5,000 available, p. \& p. 1/6.

MEMORY CORE STORE PLANES
160 BITS E1. P. \& P. 2/-
4,000 BITS £4. P. \& P. 4/-
1.000 BITS £8. P. \& P. 8/-

\section*{EXTENSION TELEPHONES}

Why get out of the bath when the phone rings. Install one in the bathroom.
19/6 each, p. \& p 5/-
\(35 /-\) for 2 , p. \& p. 8/
These are extension phones and do not have bells.

> 1.750 COMPONENTS
> FOR 65/-? ?
> YES, QUITE TRUE,
> READ ON

\section*{BUMPER BARGAIN PARCEL}

We guarantee that this parcel contains at least 1,750 components. Short-leaded on panels, including a minimum of 350 transistors (mainly NPN and PNP germanium, audio and switching types-data supplied). The rest of the parcel ypes-da supplied. Resistors 5\% or better is made up with: Resistors 5\% or bette (including some 1\%) mainly metal oxide, carbon fitm, and composition types. Mainly \(\frac{1}{8}\) and \(\frac{1}{d}\) watt .... diodes, miniature silicon types OA90, OA91, OA95, IS130, etc. ... capacitors. including tantalum, electrolytics, ceramics and polyesters ... inductors, a selection of valves also the odd transformer, trimpot, etc., etc
These are all miniature, up to date, professional, top quality components. Don't miss this, one of our best offers yeill Price 65/-. post and packing 6/6 U.K., New Zealand 20/-. Limited stocks only.

9 OA5, 30A10, 3 Pot Cores, 26 Resistors, 14 Capaci tors, 3 GET 872, 3 GET 8728, 1 GET 875. All long leaded on panels \(13 \mathrm{in} . \times 4 \mathrm{in} .2\) for \(10 /-\), p. \& \(p\) \(3 / 6 \mathrm{~d} .4\) for \(20 /-\), post free.

EX COMPUTER PRINTED CIRCUIT PANELS 2 in . \(\times 4\) in., packed with semi-conductiors and top quality resistors, capacitors, diodes, etc. Our price 10 boards \(10 /-\). p. \(\&\) p. \(2 /-\). With a guaranteed minimum of 35 transistors.
25 boards for E1, p. \& p. 3/6. With a guaranteed minimum of 85 transistors. Transistor data included.

\section*{COMPONENT PACKS}

200 capacitors, electrolytics, paper, silver mica, etc \(10 /-\). Postage on this pak \(2 / 6\)
250 mixed resistors 10/-, post \& packing 2/-
40 wirewound resistors, mixed types and values 10/-, postage 1/6.


QUANTITIES AVAILABLE EXTRACTOR/BLOWER FANS (Papst)
100 c.f.m. \(4 \frac{1}{2} \times 4 \frac{1}{2} \times 2\) in. 2,800 r.p.m., 240 v . A.C. Precision made in West Germany by Papst. These Fans are the best available. Genuine bargain at 50/- each.

\section*{KEYTRONICS}

52 Earls Court Road, London, W. 8 Tel. 01.4788499 MAIL ORDER ONLY. Retall and Trade supplled. Export enquirles particularly welcome. S.A.E. FOR LIST

\section*{LATEST RELEASE OF} RCA COMMUNICATION RECEIVERS AR88


BRAND NEW and in original cases-A.C. mains input. 110 V or 250 V . Freq. in 6 bands \(535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}\). Output impedance \(2.5-600\) ohms. Complete with crystal filter, noise limiter, B.F.O. H.F. tone control, R.F. \& A.F. variable controls. Price \(\mathbf{8 8 7 / 1 0 / -}\) each, carr. £2.
Same model as above in secondhand cond. (guaranteed working order), from \(£ 45\) to \(£ 60\), carr. \(£ 2\).
*SET OF VALVES: new, \(£ 3 / 10 /-\) a set, post \(7 / 6\); SPEAKERS: new, \(£ 3\) each, post \(10 /-\). \(H E A D P H O N E S: ~ n e w, ~ £ 1 / 5 /-~ a ~ p a i r, ~\) 600 ohms impedance. Post 5/-
AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L55. Price 10/- each, post \(2 / 6\). RF Coils 13 \& 14; \(17 \& 18 ; 23 \& 24\); and 27 and 28. Price 12/6 each. \(2 / 6\) post. By-pass Capacitor K. \(98034-1,3 \times 0.05 \mathrm{mfd}\). and M. 980344 , \(3 \times 0.01\) mfd., 3 for \(10 /-\), post \(2 / 6\). Trimmers \(95534-502,2-20\) p.f. Box of \(3,10 /-\), post \(2 / 6\). Block Condenser, \(3 \times 4 \mathrm{mfd}\)., 600 v ., £2 each, 4/-post. Output transformers \(901666-501 \quad 27 / 6\) each, 4/- post.
- Available with Receiver only.
S.A.E. for all enquiries. If wishing to call at

Storas, please telephone for appointment.

3-B TRULOCK ROAD, TOTTENHAM, N. 17
Phone: 01-808-9213

\begin{abstract}
HRO RECEIVER. Model 5T. This is a famous American High Frequency superhet, suitable for CW, and MCW, reception crystal filter, with phasing control. AVC and signal strength meter. Complete HRO 5T SET (Receiver, Set of 5 Coils \& Power Unit) for \(£ 27 / 10 /-\), carr. \(30 /\)-.
COMMAND RECEIVERS; Model \(6-9 \mathrm{Mc} / \mathrm{s}\)., as new, price \(£ 5 / 10 /-\) each, posist-
COMMAND TRANSMITTERS, BC-458: \(5.3-7 \mathrm{Mc} / \mathrm{s}\)., approx. 25 W output, directly calibrated. Valves \(2 \times 1625\) PA; \(1 \times 1626\) osc.; \(1 \times 1629\) Tuning Indicator; Crystal \(6,200 \mathrm{Kc} / \mathrm{s}\). New condition- \(\mathbf{~ 3 / 1 0 / - ~ e a c h , ~} 10 /-\) post.
(Conversion as per "Surplus Radio Conversion Manual, Vol. No. 2," by
R. C. Evenson and \(\mathbf{O}\). R. Beach.) R. C. Evenson and O. R. Beach.)

AIRCRAFT RECEIVER ARR. 2: Valve line-up \(7 \times 9001 ; 3 \times 6\) AK5; and \(1 \times 12 \mathrm{~A}\). . Switch tuned \(234-258 \mathrm{Mc} / \mathrm{s}\). Rec. only \(\mathrm{E3}\) each, \(7 / 6\) post; or Rec. with 24 v . power unit and mounting tray \(£ 3 / 10 /-\mathrm{each}, 10 /-\) post.
RECEIVERS: Type BC-348, operates from 24 V D.C., freq. range 200-500 \(\mathrm{Kc} / \mathrm{s}, 1.5-18 \mathrm{Mc/s}\). (New) \&35.0.0 each; (second hand) \(£ 20.0 .0\) each, good condition, carr. 15/- both types.
MARCONI RECEIVER 1475 type 88: \(1.5-20 \mathrm{Mc} /\) s, second-hand condition \(\mathbf{£ 1 0 . 0 . 0}\) each. New condition \(£ 25.0 .0\) each, carr. \(15 / \%\).
RACAL EQUIPMENT: Frequency Meter type SA20: £35 each, carr. £1.
Frequency Counter type SA21: £65 each, carr. 30 . Converter Frequency Frequency Counter type SA21: \(\mathbf{6 5}\) each, carr. 30/-. Converter Frequency Electronic VHF Type S.A. 80 (for use with the SA. 20 ): \(25 \mathrm{Mc} / \mathrm{s}-160 \mathrm{Mc} / \mathrm{s}, \mathbf{\&} 40\)
each, carr. \(£ 1\). each, carr. E1.
\end{abstract}

ROTARY CONVERTERS: Type 8a, 24 v.D.C., 115 v A.C. @ 1.8 amps , \(400 \mathrm{c} / \mathrm{s} 3\) phase, \(\mathrm{E} / 10 / \mathrm{e}\) each, \(8 /-\) post. 24 v D.C. input, 175 v D.C. @ 40 mA
output, 25 h cach, post \(2 /-\). output, 25/- each, post \(2 /\) -

CONDENSERS: \(150 \mathrm{mfd}, 300\) v A.C., \(£ 7 / 10 /\) each, carr. \(15 /-.40 \mathrm{mfd}, 440 \mathrm{v}\)
 \(15 \mathrm{mfd}, 330 \mathrm{v}\) A.C. wkg., \(15 /-\mathrm{each}\), post \(5 /-.10 \mathrm{mfd}, 1000 \mathrm{v}, 12 / 6\) each, post \(2 / 6\).
\(10 \mathrm{mfd}, 600 \mathrm{v}, 8 / 6\) each, post \(5 /-.8 \mathrm{mfd}, 1200 \mathrm{v}, 12 / 6\) each, post \(3 /-.8 \mathrm{mfd}, 600 \mathrm{v}\), \(8 / 6\) each, post \(2 / 6.4 \mathrm{mfd}, 3000 \mathrm{v}\) wkg., 13 each, post \(7 / 6.2 \mathrm{mfd}, 3000 \mathrm{v}\) wkg., Ez


OSCILLOSCOPE Type 13A, 100/250 v. A.C. Time base \(2 \mathrm{c} / \mathrm{s} .-750 \mathrm{Kc} / \mathrm{s}\). Bandwidth up to \(5 \mathrm{Mc/s}\). Calibration markers \(100 \mathrm{Kc} / \mathrm{s}\), and \(1 \mathrm{Mc} / \mathrm{s}\). Double Beam tube. Reliable general purpose scope, £22/10/- each, 30/- cars.
COSSOR 1035 OSCILLOSCOPE, \(£ 30\) each, \(30 /\) - carr.
\begin{tabular}{l} 
COSSOR 1035 OSCILLOSCOPE, \(\mathbf{~} 10 \mathrm{each}\), \(30 /\) - carr. \\
COSSOR \(1049 ~ M k . ~ 111, ~\) \\
\hline
\end{tabular}
RELAYS: GPO Type 600,10 relays @ 300 ohms with 2 M and 10 relays @
50 ohms with 1 M. , \(£ 2\) each, \(6 /\) - post.
12 Small American Relays, mixed types \(£ 2\), post \(4 /-\).
Many types of American Relays ayailable, i.e., Sigma; Allied Controls; Leach;
etc. Prices and further details on request 6 d .

GEARED MOTORS: 24 v. D.C., current 150 mA , output 1 r.p.m., \(30 /\) - each, 4/- post. Assembly unit with Letcherbar Tuning Mechanism and potentioSYC
SYNCHROS: and other special purpose motors available. British and American ex stock. List available \(6 d\).

TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec.
SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, £2/10/- each post 6/-.
CONTROL PANEL: 230 v. A.C., 24 v. D.C. @ 2 amps ., £2/10/- each, carr. \(12 / 6\).
OHMITE VARIABLE RESISTOR: \(5 \mathrm{ohms}, 5 t \mathrm{amps}\); or 2.6 ohms at 4 amps.
Price (either type) \& 2 each, \(4 / 6\) post each. Price (either type) \(£ 2\) each, \(4 / 6\) post each.
TX DRIVER UNIT: Freq. \(100-156 \mathrm{Mc} / \mathrm{s}\). Valves \(3 \times 3\). 3 C 24 's; complete with filament transformer 230 v . A.C. Mounted in 19in. panel, \(\mathbb{\varepsilon} 4 / 10 /-\) each, \(15 / /\) carr.
POWER SUPPLY UNIT PN-12A: 230V a.c.input \(50-60 \mathrm{c} / \mathrm{s} .513 \mathrm{~V}\) and 1025 V @ 420 mA output. With 2 smoothing chokes \(9 \mathrm{H}, 2\) Capacitors, 10 Mfd 1500 V and 10 Mfd 600 V . Filament Transformer 230 V a.c. input. 4 Rectifying Valves type \(5 \mathrm{Z3}\).
\(2 \times 5 \mathrm{~V}\) windings @ 3 Amps each, and 5 V @ 6 Amp and \(4 \mathrm{~V} @ 0.25 \mathrm{Amp}\). Mounted \(2 \times 5 \mathrm{~V}\) windings 3 Amps each, and 5 V @ 6 Amp and 4 V @ 0.25 Amp . Mounted
on steel base \(19^{\circ} \mathrm{W} \times 11^{*} \mathrm{H} \times 14^{\circ} \mathrm{D}\). (All connections at the rear). Excellent condition


 Carr. 10/=.

POWER UNIT: 110 v . of 230 v . input switched; 28 v . (3) 45 amps . D.C. ourpur. Wrt approx. 100 lbs. , \(117 / 10 /\) - each, \(30 /-\) carr. SMOOTHING UNITS suiable for above £ \(7 / 10 /\) - each, \(15 /\) - carr.
DE-ICER CONTROLLER MK. III: Contains 10 relays D.P. changeover heavy duty contacts, 1 relay \(4 \mathrm{P}, \mathrm{C} / \mathrm{O}\). ( 235 ohms coil). Stud switch 30 -way relay operated, one five-way ditto, D.C. timing motor with Chronometric governor \(20-30\) v.,
\(12 \mathrm{r} . \mathrm{p} . \mathrm{m}\).; geared to two 30 -way stud switches and two Ledex solenoids, 1 delay 12 r.p.m.; geared to two 30 -way stud switches and two Ledex solenoids, 1 delay
relay etc., sealed in steel case ( \(4 \times 5 \times 7\) ins.) \(\& 3\) each, post \(7 / 6\).

MODULATOR UNIT: 50 watt, part of BC- 640 , cornplete with \(2 \times 811\) valves,
microphone and modulator transformers etc. \(£ 7 / 10 /-\) each, \(15 /-\) carr.

NIFE BATTERIES: 4 v. 160 amps , new, in cases, \(£ 20\) each, E 1 l 10/- carr.
FUEL INDICATOR Type 113R: 24 v . complete with 2 magnetic counters 0-9999, with locking and reset controls mounted in a 3in. diameter case. Price 30/- each, postage 5\%-
FREQUENCY METERS: BC-221, meter onily \(\mathbf{E 3 0}\) each, \(\mathrm{BC}-221\) complete with stabilised power supply £ 35 each, carr. \(15 /\). LM13, \(125,20,000 \mathrm{Kc} / \mathrm{s}\),, \(£ 25\) each, carr. \(15 /-\). TS. \(175 / \mathrm{U}\), \(£ 75\) each, carr. \(£ 1\). FR-67/U: This instrument is direct
reading and the results are presented directly in digital reading and the results are presented directly in digital form. Counting rate:
\(20-100,000\) events per sec. Time Base Crystal Freq.: \(100 \mathrm{Kc} / \mathrm{s}\). per sec. Power 20-100,000 events per sec. Time Base Crystal
supply: \(115 \mathrm{v} .50 / 60 \mathrm{c} / \mathrm{s}\). £100 each, carr. £1.
AUDIO OSCILLATOR \(382 /\) F: Input 115 v. A.C., \(50 \mathrm{c} / \mathrm{s}, 20-200,000 \mathrm{c} / \mathrm{s}\) per sec. in 4 ranges. Cont. Wave. Output \(0-10 \mathrm{v}\). in 7 ranges. Power output 100 mW . Output impedance \(3,000 \Omega\). \(£ 27 / 10 /\) - each, \(\varepsilon 1\) carr.
RACK CABINETS (totally enclosed) for std. 19 in . panels. Size: 6 ft . high \(x\) 21 in . wide \(\times 16 \mathrm{in}\). deep. With rear door. \(£ 12\) each, \(£ 2 / 10 /\)-carr. OR 4 ft . high \(\times\) 23 in . wide \(\times 19 \mathrm{in}\). deep. With rear door. \(88 / 10 /-\) each, \(£ 2\) carr.
CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EGI (CV1526) colour green, medium persistence complete with nu-metal screen, \(\mathbf{\varepsilon} 3 / 10 /-\) each, post \(7 / 6\). APNI ALTIMETER TRANS./REC, suitable for conversion \(420 \mathrm{Mc} / \mathrm{s}\), complete with all valves 28 v. D.C. 3 relays, 11 valves, price \(£ 3\) each, carr. 10/-


CANADIAN C52 TRANS/REC.: Freq. \(1.75-16 \mathrm{Mc} / \mathrm{s}\) on 3 bands. R.T., M.C.W. and C.W. Crystal calibrator etc., power input 12 . \(\mathbf{~ D} / \%\). C., new cond.,

DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang ea 0.9 ohms. Tolerance \(\pm 1 \% £ 3\) each, \(5 /-\) post. 90 ohms per step. 10 positions,
total value 900 ohms. 3 Gang. Tolerance \(\pm 1 \% ~ £ 3 / 10 /\) each, \(5 \%\) post. total value 900 ohms. 3 Gang. Tolerance \(\pm 1 \% ~ £ 3 / 10 /-\mathrm{each}, 5 /-\) post.
TELESCOPIC ANTENNA: In 4 sections, adjustable to any height up to 20 ft . Closed measures 6 ft . Diameter 2 in . tapering to 1 in . 85 each \(+10 /-\mathrm{carr}\). Or \(\mathbf{x 9}\) for two + el carr. (brand new condition).

COAXIAL TEST EQUIPMENT: COAXWITCH-Mnftrs. Bird Electronic
 post 7/6. CO-AXIAL SWITCH-Mnftrs. Transco Products Inc., Type M1460-22, 2 pole, 2 throw. (New) £6/10/- each, \(4 / 6\) post. 1 pole, 4 throw, Type M1460-4. (New) £6/10/- each, \(4 / 6\) post.
PRD Electronic Inc. Equipment: FREQUENCY METER: Type 587-A,
\(0.250-1.0 \mathrm{KMC} / \mathrm{SEC}\). (New) \(\mathbf{~} 75\) each, \(0.250-1.0 \mathrm{KMC} / \mathrm{SEC}\). (New) \(£ 75\) each, post \(12 / 6\). FIXED ATTENUATOR:
Type \(130 \mathrm{c}, 2.0-10.0 \mathrm{KMC} / \mathrm{SEC}\). (New) 55 each, post \(4 / \mathrm{m}\). FIXED ATTENU: Type 130c, 2.0-10.0 KMC/SEC. (New) \&5 each, post 4/-. FIXED ATTENU-
ATOR: Type \(1157 \mathrm{~S}-1\), (new) \& 6 each, post \(5 / \mathrm{s}\). ATOR: Type \(1157 \mathrm{~S}-1\), (new) \(£ 6\) each, post \(5 /-\)

\section*{FOR EXPORT ONLY BRITISH \& AMERICAN COMMUNICATION EQUIPMENT}

Type B. \(44 \mathrm{Tx} / \mathrm{Rx}\), Crystal controlled, \(60-95 \mathrm{Mc} / \mathrm{s}, 12 \mathrm{~V}\). d.c. operation. W.S. Type
88 , Crystal controlled, \(40-48 \mathrm{Mc} / \mathrm{s}\). W.S. Type HF-156, Mk. II, Crystal controlled, 88, Crystal controlled, \(40-48 \mathrm{Mc} / \mathrm{s}\). W.S. Type HF-156, Mk. II, Crystal controlled,
\(2.5-7.5 \mathrm{Mc} / \mathrm{s}\). W.S. Type 62 , tunable, \(1.5-12 \mathrm{Mc} / \mathrm{s}\). C.44, Mk. II, Radio Telephone, 2.5-7.5 Mc/s. W.S. Type
Single Channel, \(70-85 \mathrm{Mc} / \mathrm{s}\), 50 watts, output, 230 V . a.c. input. G.E.C. Progress Line Tx Type DO36, \(144-174 \mathrm{Mc} / \mathrm{s}, 50\) watt, narrow band width. A.C. input 115 V . BC-640 Tx, \(100-156 \mathrm{Mc} / \mathrm{s}, 50\) watt output, 110 V or 230 V input. STC Tx/Rx Type
9X, TR1985; RT1986; TR1987 and TR1998, \(100-156 \mathrm{Mc} / \mathrm{s}\). TRC-1 Tx/Rx, Types T. 14 and R.19, FM \(60-90 \mathrm{Mc} / \mathrm{s}\). With associated equipment available. Redifon GR410 Tx/Rx, SSB, 1.5-20 Mc/s. Sun-Air Tx/Rx Type T-10-R. Collins Tx/Rx/Type 18S4A. Collins Tx/Rx Type ARC-27, 200-400 Mc/s, 28 V d.e BC- \(375 ; 433 \mathrm{G} ; 348 ; 718 ; 458 ; 455 \mathrm{~T} \times / \mathrm{Rx}\). Directional Finding Equipment CRD. 6 and FRD. 2 complete Sets available and spares. Telephone Installation type XY, (U.S.A.), 600 Line Automatic Telephone Exchange. Complete system with full set of Manuals. Mobile Communications Installation mounted in a trailer with \(4 x\) pneumatic tyres. Consisting of \(3 \times \operatorname{ARC}-27 \mathrm{Tx} / \mathrm{Rx}\) with all associated equipment (as
new). new).

ALL GOODS OFFERED WHILST STOCKS LAST IN "AS IS" CONDITION UNLESS OTHERWISE STATED

\section*{proved performance high fidelity with specification guarantee}


\section*{THE ENGLEFIELD SYSTEM}

The Peak Sound Englefield system assembles from laboratory designed modules to provide a cosi-performance ratio which has never been bettered in high fidelity. Here is top-flight circuitry housed in a cabinet of elegantly original design which is both beautiful and completely practical back and front. By assembling these Peak Sound units. you can own one of the best high fidelity instruments you have ever heard or seen and all for a cost of about \(f 38\) (about \(£ 33\) if assembled from kit of parts). The assembly is supplied complete down to the necessary connecting wires supplied colour coded, cut to length and stripped at the ends for soldering. You can use the Englefield Cabinet design to house either the \(12+12\) system as published in Practical-Wireless, or the \(25+25\) watt system as approved for the Hi-Fi News Twin Twenty by Reg Williamson. The modules are all obtainable separately and are recommended for highest quality work. Go to your stockist and ask to see and hear Peak Sound equipment now. Leaflets on request.
Matching F.M. Tuners will be available very shortly.

\section*{THESPECIFICATION}

Using two Peak Sound PA. 12.15 's. driven simultaneously at 1 KHz from 240 V . mains supply.
Supply.
Frequency bandwidth: 10 Hz to 45 KHz for 1 dB at 1 watt.
Frequency band width: 10 Hz 1045 KHz for 108 at 1 watt.
Total Harmonic Distortion at 1 KHz at 10 watt into \(15 \Omega-0.1 \%\)
Total Harmonic Distortion at 1 KHz at 10 watt into \(15 \Omega-0.1 \%\).
Input sensitivities: Mag. PU. 3.5 mV imp. R.I.A.A. equalized into \(68 \mathrm{~K} \Omega\) : Tape. 100 mV Input sensitivities: Mag. PU.3.5 mV imp. R.I.A.A. equal
linear into 100 KQ : Radio. 100 mV linear into \(100 \mathrm{~K} \Omega\).
linear into 100 KD : Radio, 100 mV linear int
Overload factor: 29 dB on all input channels.
Signal/nolse ratio: -65 dB on all inputs. Vol. control max.
Controls: Volume. Treble. Bass, Low-pass Filter. Mono/Stereo: On/off; Balance.
Power bandwidth for -1 dB at 20 watts R.M.S. into \(15 \Omega\) at less than \(0.25 \%\) distortion is 20 Hz to 20 KHz .

\section*{PEAK SOUND BAXENDALL SPEAKER}

Peak Sound can supply the parts necessary to build the famous Baxendall Speaker described originally in "Wireless World". All to designer-approved spec. Details on request. Also available built in teak finished cabinet \(18^{\prime \prime} \times 12^{\prime \prime} \times 10^{\prime \prime}-18 \frac{1}{2}\) gns.
PEAK SOUND SPECIFICATION GUARANTEE
Peak Sound guarantee that their equipment meets all specifications as published by them and that these are written in the same terms as are used in equipment reviews appearing in this and other leading high fidelity iournals. Audio output powers are quoted at continuous sine wave power in terms of Root Mean Square values (R.M.S.J into stated loads at stated frequencies.

\section*{peak sound}

AT SONEX 70
ROOMS 231
AND 236
PEAK SOUND (HARROW) LTD., 32 St. Jude's Road, Englefield Green, Egham, Surrey Telephone: EGHAM 5316

\footnotetext{
To Peak Sound, 32 St. Jude"s Rd., Englefield Green, Egham, Surrey.
Details of Englefield systems etc.. please and

\section*{Name}

Address
}

Money-making repair data for over

TELEVISIONS,
STEREOGRAMS,
RADIOS,
TAPE RECORDERS,
CAR RADIOS,
RECORD PLAYERS
PLUS
286 pages of data on
COLOUR
TELEVISION


The most comprehensive library of Servicing data available.

In 5 handy sized volumes you have all the vital data required for servicing the popular models produced over the last 5 years. Information on earlier models that still come in for repair is now unavailable through any other channel. Here in 2860 pages you have all the circuits, data and repair information for servicing over 1250 of the popular 1965-70 Televisions (including Colour TV). Radios, Stereograms, Car Radios. Record Players, and Tape Recorders. Radio \& TV Servicing is the only work of its kind and is much sought after in the trade-a guaranteed money-spinner for years to come.

2860 PAGES, 3321 CIRCUITS, PRINTED PANEL DIAGRAMS, COMPONENT LAYOUT DIAGRAMS \& WAVEFORM GRAPHS

See Radio \& TV Servicing and assess its value for yourself, on 10 days Free Trial-all you have to do is complete the coupon below and post today.

\section*{fif: IO-day Tifial}

Buckingham Press Ltd., P.O. Box 14, Gatehouse Rd., Aylesbury, Bucks. Please send RADIO \& TV SERVICING5 VOLS, without obligation to buy. I will return the books in 11 days or post-
Tick \((\sqrt{ }) \square\) Full cash price of \(£ 20\), or
here \(\square 25 /\) - dep. \& 20 monthly payments of 20/paying \(£ 21.5 \mathrm{~s}\).
If you are under 18 your father must fill up coupon
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Full Name (Block letters) Address} & & Plosentich(IMo \\
\hline & & My/our property \\
\hline ... County & & Rented unfurn. \\
\hline \multirow[t]{2}{*}{Occupation} & & Rented lurn. \\
\hline & \(\left\{\begin{array}{l}\text { Mr. } \\ \text { mis }\end{array}\right.\) & Parent's hame \\
\hline Signature & \[
\left\{\begin{array}{c}
\text { Mrs. } \\
\text { Miss }
\end{array}\right.
\] & Tman elres \\
\hline
\end{tabular}

\title{
ELECTROALUE
}

\section*{EVERYTHING BRAND NEW AND TO SPECIFICATION • LARGE STOCKS}

\section*{BARGAINS IN NEW TRANSISTORS}

ALL POWER TYPES SUPPLIED WITH FREE INSULATING SETS
\begin{tabular}{|c|c|c|c|c|c|}
\hline 2N696 & 5/6 & 2N3707 & 4/- & AF127 & 7/- \\
\hline 2N697 & 5/6 & 2N3708 & 3/- & BA102 & 91- \\
\hline 2N706 & 2/9 & 2N3709 & 3/- & BC107 & 2/9 \\
\hline 2 N 1132 & 9/9 & 2 N 3710 & \(3 / 6\) & BCl08 & 2/6 \\
\hline 2 N 1302 & 4/- & 2N3711 & 3/11 & BC109 & 2/9 \\
\hline 2 N 1303 & 4/- & 2N3904 & 7/6 & BC147 & 3/6 \\
\hline 2 N 1304 & 4/6 & 2N3906 & 7/6 & BCI48 & 3/3 \\
\hline 2N1305 & 4/6 & 2N3731 & 24/- & BCI 49 & 3/6 \\
\hline 2 N1306 & 6/9 & 2N4058 & 5/3 & BCI53 & 101- \\
\hline 2NI307 & 6/9 & 2N3325 & 10/9 & BCI54 & 11/- \\
\hline 2N1308 & 8/9 & 2N3794 & 3/3 & BC157 & 3/9 \\
\hline 2N1309 & 8/9 & 2N4284 & 3/3 & BC158 & 3/6 \\
\hline 2N1613 & 6/- & 2N4286 & 3/3 & BCIS9 & 3/9 \\
\hline 2 N 1711 & 7/- & 2N4289 & 3/3 & BC167 & 2/6 \\
\hline 2N2218 & 9/3 & 2N4291 & 3/3 & BC168 & 2/3 \\
\hline 2N2147 & 18/9 & 2 N 4292 & 3/3 & BC169 & 2/6 \\
\hline 2N2369A & 5/3 & 2N4410 & 4/9 & BC177 & 6/3 \\
\hline 2 N 2646 & 10/9 & 2N5192 & 25/- & BC178 & 5/8 \\
\hline 2 N 2924 & 4/- & 2N5195 & 28/3 & BC179 & 6/- \\
\hline 2N2925 & 4/6 & 40361 & 12/6 & BDI21 & 18/- \\
\hline 2N2926R & 2/3 & 40362 & 16/- & BDI23 & 24/3 \\
\hline 2N29260 & 2/3 & AC126 & 6/6 & BFI78 & \(10 / 6\) \\
\hline 2 N 2926 Y & 2/3 & AC127 & 6/- & BFX29 & \(10 / 9\) \\
\hline 2N2926G & 2/3 & AC128 & 6/- & BFX85 & 8/3 \\
\hline 2 N 3053 & 5/6 & AC176 & 11/- & BFX88 & 6/9 \\
\hline 2N3054 & 14/3 & ACY22 & 3/9 & BFY50 & 4/6 \\
\hline 2N3055 & 16/- & ACY40 & 4/- & BFY51 & 4/3 \\
\hline 2N3391A & 6/3 & ADI40 & 19/- & - BSX20 & 3/9 \\
\hline 2N3702 & 3/6 & ADI49 & 17/6 & MJ480 & 21/- \\
\hline 2N3703 & \(3 / 3\) & AD161 & & MJ481 & 27/- \\
\hline 2N3704 & 3/9 & AD162 & pr. & MJ491 & 30/- \\
\hline 2N3705 & 3/5 & AFII8 & 16/6 & NKT403 & 15/6 \\
\hline 2N3706 & \(3 / 3\) & AFI24 & 7/6 & NKT405 & 15/- \\
\hline
\end{tabular}

\section*{RESISTORS}


Brilliant new styling and available in two forms: STEREO 15 WATTS PER CHANNEL Supplied in kit form with complete amplifier and pre-amplifier modules and power supply components. Output per channel into \(15 \Omega\) — 13 watts R.M.S. Price 438.9 .0 Nett

\section*{STEREO 25 WATTS PER CHANNEL}

Supplied in kit form with complete amplifier pre-amplifier and regulated power supply modules. Output per channel into \(15 \Omega\) -28 watts R.M.S. Price 658.15 .0 Nett Specifications on these amplifiers in accordance with the Specifications in Guorantee published in Peak Sound advertisements.

\section*{Inputs:}
\(\begin{array}{lll}\text { Magnetic, RIAA } & 3.5 \mathrm{mV} & \text { Tape } \\ 35 \mathrm{mV} & \text { Radlo } & 100 \mathrm{mV} \\ \text { Ceramic } & 100 \mathrm{mV}\end{array}\) Ceramic 35 mV Radlo 100 mV Signal to noise ratios: Better than 60 dB all inputs. ENGLEFIELD CABINET to house either above assemblies (as illustrated) ©6,0,0. Nett Other Peak Sound Products as advertised.
ZENER DIODES: Full range of \(5 \% 400 \mathrm{mV}\) available in E24 COLVERN 3 WATT WIRE-WOUND POTENTIO. METERS: \(10 \Omega, 15 \Omega, 25 \Omega, 50 \Omega, 100 \Omega, 150 \Omega, 250 \Omega, 500 \Omega\), \(1 \mathrm{~K} \Omega, 1.5 \mathrm{~K} \Omega, 2.5 \mathrm{~K} \Omega, 5 \mathrm{~K} \Omega, 10 \mathrm{~K} \Omega, 15 \mathrm{~K} \Omega, 25 \mathrm{~K} \Omega, 50 \mathrm{~K} \Omega\).


\section*{CARBON TRACK POTENTIOMETERS}

Double wiper ensures minimum nolse level. Long plastic spindles. Single gang linear .. 220, \(470 \Omega\), \(1 K\), etc. co \(2 M 2 \Omega\) 2/6 Single gang log. \(\quad 4 K 7,10 K, 22 K\), etc. to \(2 M 2 \Omega \quad 2 / 6\) Dual gang linear .. 4K7, 10K, 22K, etc. to \(2 M 2 \Omega\) Dual gang log. .. 4K7, 10K, 22K, etc. to \(2 M 2 \Omega\) Log/Anti-log. \(\quad\) IOK \(47 \mathrm{~K}, \mathrm{IM} \Omega\) only
Dual anti-log 10K only
Any type with \(\frac{1}{2}\) amp double pole mains switch . extra Please Note-only decades of 10,22 and 47 are available with range quoted.

FETS nechannel
Low cost general purpose 2 N 5163.25 volt .. only \(5 /-\) each Audio/r.f. Texas 2 N3819 /6 each Mocorola 2N5457 (MPF103)
Motorola 2N5459 (MPF105)

9/9 each
30 WATT BAILEY AMPLIFIER COMPONENTS:
Transistors for one channel \(\square / 5 / 6\) list, with
Transistors for two channels \(\mathrm{f} 14 / 111 /\) - list,
only C6/11/-
only C12/7/5
Capacitors and resistors for one channel, Nov. '68 circuit lise 22 . Printed circuit board free with each transistor set.
Complete unregulated power supply kit \(\mathbf{\epsilon 4 / 1 7 / 6 \text { mono or }}\) Complete regulated power supply kit Nov. '68 circuit 49/5/
subject to discount.
MAIN LINE AMPLIFIER KITS AS ADVERTISED. PRICES NET AUTHORISED DEALER
SINCLAIR IC. 10 INTEGRATED CIRCUIT AMPLIFIER AND PRE-AMPLIFIER
This remarkable monolithic integrated sircuit amplifier and pre-amplifier is now avallable for despatch from stock. It is the equivalent of 13 transistor/18 resistor circuit plus 3 diodes and the first of its kind ever. It is d.c. coupled and applicable to an unusually wide range of uses all of which are detailed in the manual provided with it.

59/6 NETT

DEPT. WW.704, 28 ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY,
Hours: 9-5.30 daily; 1.0 p.m. Saturdays.
Telephone: Egham 5533 (STD 0784-3)

\section*{Bl－PREPAK}


\section*{TRY OUR X PACKS FOR UNEQUALLED VALUE}

XA PAK
Germanium PNP type transistors，equivalents to a large part of the OC range，i．e．44，45，71，72，
81，etc．
PRICE \(\angle 5\) PER 1000
POST \＆PACKING 4／6 U．K．

\section*{Xe PAK}

Silicon TO－18 CAN type transistors NPN／PNP mixed lots；with equivalents to OC200－1，2N706a． BSY27／29，BSY95A

\section*{PRICE E4－5 PER 500}

PRICE 88 PER 1000
POST \＆PACKING 2／6 U．K．
XC PAK
Silicon diodes miniature glass types，finished black with polarity marked，equivalents to OA200． OA202，BAY31－39 and DK10，etc．

PRICE E4－10 PER 1000
POST \＆PACKING \(2 / 6\) U．K．
ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF 75\％OR MORE GOOD SEMI－ CONDUCTORS．FREE PACKS SUSPENÓED WITH THESE ORDERS．ORDERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK．

NEW TESTED \＆GUARANTEED PAKS

B77 2 AD161—AD162 NPN／PNP TRANS．
COMP．OUTPUT PAIR
\begin{tabular}{cclll} 
BB1 & 10 & \begin{tabular}{l} 
REED SWITCHES MIXED \\
TYPES LARGE \＆SMALL
\end{tabular} & \(10 /-\) \\
\hline B89 2 & \begin{tabular}{l} 
5 SP5 LIGHT SENSITIVE CELLS \\
LIGHT RES． \(400 \Omega\) DARK \(1 \mathrm{M} \Omega\)
\end{tabular} & \(10 /-\)
\end{tabular}
B91 8 NKT163／164 PNP GERM．TO \({ }^{-5}\)（ \begin{tabular}{l} 
NQUIVALENT TO OC44．OC45 \\
EQU
\end{tabular}
\begin{tabular}{llll} 
B92 & 4 & \begin{tabular}{l} 
NPN SIL TRANS．\(A 06=B S \times 20\). \\
\(2 N 2369 . ~\) \\
200 MHz .360 mW
\end{tabular} & \(10 /-\)
\end{tabular}
B93 5 GET113 TRANS．EQUIV．TO
ACY17．21 PNP GERM．
\begin{tabular}{lllll}
8965 & HPE 100.300 & IC． 600 mA .200 MHz & \(10 /=\) \\
\hline
\end{tabular} XB 112 \＆XB 102 EQUIV．TO AC126 AC156，OC81／2，OC71／2，NKT271．10／－
ETC．
-39810 ETC．
\(899200 \begin{aligned} & \text { PAPER．SILVER MICA．ETC．} \\ & \text { POSTAGE ON THIS PAK 2／6．}\end{aligned}\)
\begin{tabular}{lll}
\hline H4 \(250 \begin{array}{l}\text { MIXED RESISTORS } \\
\text { POST \＆PACKING } 2 \%\end{array}\) & \(\mathbf{1 0 / -}\) \\
\hline
\end{tabular}
40 TYPES \＆VALUES．POSTAGE \(1 / 6\)
Return of the unbeatable P． 1 Pak． Now greater value than ever

Full of Short Lead Semiconductors \＆Electronic Components，approx．170．We guarantee at least 30 really high quality factory marked Transistors PNP \＆NPN，and a host of Diodes \＆Rectifiers mounted on Printed Circuit Panels．Identification Chart supplied to give some information on the Transistors

Please ask for Pak P．1．Only 10／－
2／．P \＆\(P\) on this Pak
Make a Rev．Counter for your Car．The ＇TACHO BLOCK＇．This encapsulated block will turn any \(0-1 \mathrm{~mA}\) meter into a perfectly linear and accurate rev．
counter for any car．

FREE CATALOGUE AND LISTS for：－

\section*{ZENER DIODES TRANSISTORS，RECTIFIERS FULL PRE－PAK LISTS \＆SUBSTITUTION CHART}

MINIMUM ORDER 10\％CASH WITH ORDER PLEASE．Add \(1 /\) post and packing per order．OVERSEAS ADD EXTRA FOR AIRMAIL．

\section*{P．O．RELAYS}

VARIOUS CONTACTS AND
8 for COIL RESISTANCES．
NO INDIVIDUAL SELECTION．
POST \＆PACKING \(5 /\)

FREE！A written guarantee with all our tested semiconductors二乃月－

\section*{Electro-Jed sales}


\section*{EIECTIOTIECH SALES}
9.30-6 (1 p.m. Sats.)

THORN DIGITAL INDICATOR designed as a modular unit for easy mounsing where lse class numerical readout is required Easily read through a wide angle of view and under bright ambient
ligheing. 12 characters 0 to 9 decimal point and minus sign Characters \(13 / 16^{\circ}\) high eneraved on acrylic slides and individually edge-lit by I wate midget-panel lamps. Overall size of fronc panel \(43^{3}\) high \(\times 11^{*}\) overall depeh \(I^{\prime \prime}\) finished in mate black supplied with 12 lamps, choice of following ratings- 6 v . 1 A . or 12.14 v .08A. E4.0.0 each, spare lamp



THORN ILLUMINATED PRESS SWITCH for 250 v . operation. M.E.S. Pressure on cap completes a second eircuit. Very robust. Length 44.5 mm . dia. 30.5 mm . in amber, green or red. 10/6 each.

"Tanaitor" (U.S.A.) Tantalum Wet Sinfered Anod

 D.C. nize: "long \(x y^{\circ}\) dia. 150 UF. \(30 \mathrm{v}, \mathrm{D}\) dC. I" long \(x I^{\prime \prime}\) dia. end. All types \(5 / \mathrm{e}\) each. Also few only. Tansistor "'MICRO dia. (disc) 5/- each,
American "Powerstat" Variable Voltage Trans former by Superior Electric Co. Input 120v. \(50 / 60\) c.p.s. Output \(0-120 \mathrm{v}\). at \(2 \cdot 25\) amps. \({ }^{2}\). spindle with alternative pre-set locking device. Size (approx.) 3 dia. \(\times \mathbf{2}^{\prime \prime}\) long. First class condition. R.15.0. P. \& P. 5/-
Berco Rotary "Regavolt," variable voltage trans formers input 240 v . \(50 / 60 \mathrm{cps}\)., output \(0-240 \mathrm{v}\). C.T. a 6 amps. Not new, but in ist class condition. Few only,
©8.10.0. P. \& C. \(10 /\).

Gardner Transformer Type I.T.N. 876 (new) Enclosed in ventilated metal case. Prim 200/250, sec \(2 \times 12 v\). windings rated 4 amps each ( 96 v.a. in series) paraltel). \&3.2.6.

WE WELCOME OFFICIAL ORDERS FROM ESTABLISHED COMPANIES

SYLVANIA MAGNETIC SWITCH-a mag netically activated switch operating in a vacuum. \(200^{\circ} \mathrm{C}\). Silver contacts normally closed rated 3 amps. at 120 v , 1.5 mp . at \(240 \mathrm{v}, 10 \%\) each \&4.10.0 per dozen. Special quotations for 100 or over. Reference Magnets available \(1 / 6\) each.

\section*{4 SYLVANIA CIRCUIT BREAKERS gas filled}
providing a fast thermal response between \(80^{\circ}\) and \(180^{\circ} \mathrm{C}\). Wilt withstand pressures up to \(2,000 \mathrm{lb}\). sq./in. rated 10 amp. at 240 v . continu ous. Fault currents of 282 mps . at 120 v . or any of the following apening. Supplied in (degs, cent.) \(80,85,95,100,105,110,120,125\) (degs. cent.) \(80,85,95,100,105,110,120,125\),
\(130,135,140,145,150,155,160,170,175\) \(130,135,140,145,150,155,160\),
\(180.10 \%\) each or \(£ 4.10 .0\) per dozen.
MINIATURE 'HLATCH. MASTER" RELAY 6, 12 , or 24 v .
D.C. operation. One make one break, contacts rated 5 amps, at 30y. Once current is applied. relay remains latched until inpuv polarity is reversed. Manufactured for high acceleration requirements by Sperry Gyroscop
 Co. Size: Length \(1{ }^{\prime \prime}\). dia. 9/16 vertical or horizonea mount and yoltage. 2.5 .0 each New 75-0-75 Micro-ammeter by Sifam 750 ohm movement, clear reading, \(5 \mu\) a divisions 1"; plastic front, projection 1" (tapering forward). Size: \(43^{\prime \prime} \times 32^{\prime \prime}, 57 / 6\) each.


Ernest Turner \(5^{\prime \prime} \times 4^{\prime \prime} 0-1\) Ma. calibrated \(0-10\) in 50 divisions mirrored scale, handsome chrome escutcheon for flush mounsing. A quality instrumens. C6.10.0.
MINIATURE
B.P.L. \(500-0 / 500\) Micro-Ammeter. 13/16" Diam. scale. Through-Panel mounting, \(45 /\) "AUTOMATIC ELECTRIC" ENCLOSED RELAYS
\(6 \mathrm{v} .50 \Omega 2 \mathrm{c} / \mathrm{o}, 12 / 6\)
\(24 \mathrm{v} .470 \Omega 4 \mathrm{c} / \mathrm{o}, 13 / 6\)
\(48 \mathrm{v} .2,780 \Omega 4 \mathrm{c} / \mathrm{o}, 13 / \mathrm{b}\)
48 v . \(1,260 \Omega 6 \mathrm{c} / \mathrm{o}, 15 /=\)


New "Magnetic Devices solenoid 240v. A.C. Type 42117 I to 3 lb . pull. frame size \(1 \frac{1}{2}^{2} x\) \(1 f^{\prime \prime} \times l^{\prime \prime} .20 /-\) each.


Motor Driven Variable Voltage Transformer: by Onmite
(U.SA.). Input \(120 / 240 \mathrm{v}\). \(50 / 60\). c.p.s. Output \(0-240 \mathrm{v}\). at \(480 \mathrm{v}\). A reversible 115 v . a.c. geared motor drives the contact sweep arm in the direction required. There is a micro switch mounted at each end of the
track which is cam-operated and track which is cam-operated and intended to be connected as a safety-stop. First class condition. \&8.15.0. P. \& P, \(10 /\)
We have a considerable range of glassware, many pumps, of filter paper, balances. centrifuges, ovens pumps. etc., etc., for personal callers

WHERE NO CARRIAGE CHARGE IS
INDICATED PRICE IS INCLUSIVE.

\section*{TRANSFORMERS}

COILS CHOKES

LARGE OR SMALL QUANTITIES
TRADE ENQUIRIES WELCOMED
SPECIALISTS IN
FINE WIRE WINDINGS
MINIATURE TRANSFORMERS
RELAY AND INSTRUMENT COILS, ETC VACUUM IMPREGNATION TO APPROVED STANDARDS

\section*{ELECTRO-WINDS LTD.}

CONTRACTORS TO G.P.O A.W.RE, L.E.B, B.B.C ETC.
123 PARCHMORE ROAD, THORNTON HEATH, SURREY \(01-653226\)

\section*{Tor \\ electronic components fast...}

Itadiosparees
13-17 Epworth St., London E.C. 2 Tel: 01-253 9561. Telex: 262341.


NEWMARK SYNCHRONOUS \(220-240 \mathrm{v}, 50\) cycles, \(^{3}\) wates \({ }^{8}\) r.p.m.
Overall size \(2 \times 2 \times 2\) ins. \(10 / 6\). P. \& P. \(1 / 6\).
Overall size \(2 \times 2 \times 2\) ins. 10/6. \(1 \times\).
LONDEX 220-240v. A.C. RELAYS Open irame eype 12 hea
tacts. \(27 / 6\). P. \& P. \(5 /\).


VENNER SYNCHRONOUS BIO-DIRECTIONAL
220-240v. 50 cycles \(40 \begin{array}{r}\text { r.p.m. automatically reverses wherever } \\ \text { spindle stop }\end{array}\) spindte stop is pataced overall size \(21 \times 2 \times\) lins. Spindle
length in. dia. \(1 / 16 t h\). An ideal motor for display, giving length din, dia. \(1 / 16 \mathrm{th}\). An ideal motor for
forward and reverse motion. 12/6. P. \&i P. \(2 / 6\).
\[
\begin{aligned}
& \text { CROUZET SHADED POLE MOTORS } \\
& \text { I /230v, IO watts, } 1 \text { r.p.m. Overall size } 2 \text { ifin. di }
\end{aligned}
\]

CROUZET SHADED POLE MOTORS
A.C. \(115 / 230 \mathrm{v}\), 10 watts, 1 r.p.m. Overall size 2 lin . dia. depth A.C. I \(5 / 230 v\).
2ins. Spindle tin. dia. tin.
INGPAM. Overall size 2 in. dia. dept 220-2GRAM SYNS 3 watts, 6 rev. per hour. Overall size \(21 \times 2 \times\) Itins. Cog spindle length tin. 8/6. P. \& P. \(2 /-\). Buitr ISOLATION TRANSFORMERS
Built into metal case, size \(8 \times 7 \times 7\) ins., with on/off swirch, neon
indicator. 13A 3 -pin socket outlet. Pri. \(220-240 \mathrm{v}\). Sec. 220-240v indicator. 13A \({ }^{3-p i n}\) socket outlet. Pri. 220-240. Sec. 220-240
1000 wacts. E 16.10 .0 . Carr. \(15 / \mathrm{F} .750 \mathrm{watts}\) E14.10.0. Carr. 12/6. Open frame type. Terminal block connections. Pri. 240 v . Se tapped \(110-240 \mathrm{v}\). 2 kkva . cont. rating. Size \(9 \times 8 \times\) Bins. Welgh 65 lbs. C29.10.0. ex warehouse.

VARIABLE D.C. SUPPLY UNITS TYPE S.E. 4
 strong metal case. Size \(17 \times 7 \times 68 \mathrm{in}\). 832.10.0. Carr. 15/-

ammeter,
neon indicator. Housed in strong metal case. \(\mathbf{\text { E }} 17.10 .0\). Carr. \(15 / \mathrm{F}\). neon indicator. Housed in strong metal case. EUIT BREAKS 3 ph 440 v . \({ }^{3}\) pole 7.5 amps panel mounting. \(25 /-\). P. \& \({ }^{2}\). \(15 \mathrm{amps} .25 / \mathrm{F}, \mathrm{P} . \& \mathrm{P}, 5 / \mathrm{-}\). Single pole with solid neutral 20 amps \(15 / \mathrm{I}\) P. \& P. \(3 / 6\).

\section*{WEYRAD}

\section*{COILS AND I.F. TRANSFORMERS IN \\ LARGE-SCALE PRODUCTION FOR RECEIVER MANUFACTURERS}
P. 11 SERIES \(10 \mathrm{~mm} . \times 10 \mathrm{~mm} . \times 14 \mathrm{~mm}\). Ferrite cores \(3 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}\) operation. Single-tuned I.F.s and Oscillator Coils.
P. 55 SERIES \(12 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}\). Ferrite cores \(4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}\) operation. Single-tuned I.F.s and Oscillator Coils.
T. 41 SERIES \(25 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm}\). Ferrite cores \(4 \mathrm{~mm} .472 \mathrm{kc} / \mathrm{s}\) operation. Double-tuned 1st and 2nd I.F.s and Single-tuned 3rd I.F. complete with diode and by-pass capacitor.
These ranges are available to manufacturers in versions suitable for most of the popular types of Transistors. The Oscillator coils can be modified to enable specific tuning capacitors to be used provided that bulk quantities are required.

\section*{OUR WINDING CAPACITY NOW EXCEEDS 50,000 ITEMS PER WEEK}

On the most up-to-date and efficient machines backed by a skilled assembly labour force for all types of coils and assemblies.

WEYRAD (ELECTRONICS) LIMITED, SCHOOL ST., WEYMOUTH, DORSET


\section*{Complete stereo system- \(£ 29\) 10s. \\ S.}

The mew Duo general-purpose 2 -way speaker system is beautifully finished in polished teak veneer, with matching vynair grille. It is ideal for wall or shelf mounting elther upright or horizontally.
Type 1 SPECIFICATION
Impec dince 3. 8. or 10 ohms (please state impedance requireaf). It incorporates
high mux \(6^{\prime \prime} \times 4^{\prime \prime}\) speaker and \(21^{\prime \prime}\) iweeter. Teak finish \(12 \times 6 \frac{3}{4} \times 51^{\circ}\).
 bass unit and \(2 \frac{1}{3}\) I weeter. 3 ohms impedance. 6 guineas plus
15 P. c p.
Garrand Changers foom \(\subset 7.19 .6 \mathrm{~d}\). p. \& p. \(7 / 6 \mathrm{~d}\).
Cover and Teak fin sh Plinth \(\mathbf{5 4} 45.0 \mathrm{~d}\). \(7 / 6 \mathrm{~d}\). p. 8 o .
- ace Integrated Transistor Stereo Amplifier
£9 10s.
plus 7/6d.p. 6 p
The Duetro is a good quality amplifier. attractively styled and finished. It gives superb reproduction previously associated with ample fiers costing far more.
SPEC FICATION
R.M.S. power outp st: 3 watts per channel intc 10 ohms speakers

INPUT SENSITIVITY: Suitable for mediun or high output crystad cartridges and tuners. Cross. talk better than 3 D.dB at \(1 \mathrm{Kc} / \mathrm{s}\).
CONTROLS: 4 -position selector swith ( 2 pos. mono and 2 pos sterec
dual ganged volume control
TONE CONTROL Treble lift and cut. Separate on off switch. A prese
balance control.
 ¢9 olus \(7 / 6 \mathrm{p}\). \& p. Built and tested.

\section*{SPECIFICATION}

Sensitivies for 10 watt output at 1 KMz into 3 ohms. Tape Head: 3 mV (at 37 i.p.s.). Mág. P.U.: 2 mV . Cer. P.U.: 80 mV . Tunnr: 100 mV . Aux. 100 mV . Tape/Rec. Output: Equalisation for each +13 dB at 60 Hz . Treble \(\pm 14 \mathrm{~dB}\). A. A) from 20 Hz to 20 KHz . Tone Control Range: Bass \(\pm i g n a l\)
Noise:
 60aB. AC Mains \(200 \cdot 250 \mathrm{v}\). Slze \(12 \frac{1}{*}^{\circ}\) long. \(4 \frac{1}{*}^{\circ}\) deep. 2 \(\mathbf{y}^{\circ}\) high.



OUTPUT: 10 watts per channel into 3 to 4 ohms speakers ( 20 watts) monorel.
INPUT: 6 -position retar INPUT: 6 -position rotary selector switch is pos. mono and 3 pos. stereol. PU. Tuner. Tape and Tape Rec. out Sersitivities: All Inputs 100 mV into 1.8 M ohm
FREQUENCY RESPONSE: \(40 \mathrm{~Hz}-20 \mathrm{~Hz}+20 \mathrm{~m}\)
TONE CONTROLS SSE: \(40 \mathrm{~Hz}-20 \mathrm{KHz} \pm 2 \mathrm{DB}\)
BASS: 15 dB lift and 25 dB cut (at 50 Hz ). VOLUME CONTROLS: Separate for each
Viscount Mark II for use with magnetic plck ups specification is ere Fully magnetic bick ups Suitable for cartridges with minimum output of \(4 \mathrm{mV} / \mathrm{cm} / \mathrm{sec}\) at 1 kc . Inpu Impedance 47 K C15 15a plus 7/6 p. \& p.


OUTPUF: 10 watts into a 3 ohms speaker INPUTS: (1) for milke (10 m.v.). Input (2) for gram. rado 1250 m.v.) inslivdual bass and ireble control.
TRANSISTORS: 4 silicane and the

THE DORSET (600 mW Output) [5.5.0
plus \(7 / 6\) p. \(\& p\)
Circuit 2/6. FREE WITH PARTS MAINS POWER PACK KIT :

7-transistor fully tunable M.W.-L.W. superhet portablewith baby alarm facility. Set of parts. The latest modulized and pre-alignment techniques makes this simple to build

\section*{NEW COMPLETE HI-FI STEREO SYSTEM £41}
comprising SP2E Garrard ME II with diamond stereo
carridge or 202 STC . Viscount amplifier Mk I. Two type 2 speakers, plinth and cover
\(\mathbf{f 4 1}\) plus \(\mathrm{E}_{2} .10\) s. p. \& p.

THE RELIANT MK.II Solid State
General Purpose Amplifier
In teak-finished case
f6 16 s.
\(+7 / 6\) p. \&

MAINS INPUT: \(\mathbf{2 2 0 / 2 5 0}\) volis.

Mk. 1 f5 183. \(+7 / 6\) d. p. \& p. less Teak-finished case


ELEGANT SEVEN
MK. III
( 350 mW Output)
f5.5.0
plus \(7 / 6 \mathrm{p}\). \& p .
Circuit 2/6. FRE WITH PARTS MAINS POWER PACK KIT: 9/6 extra.

7-tranuistor fully tunable M.W.-L.W. superhet portable. Set of parts. Complete with all components. including ready etched and drilled princed circult board back printed for

\section*{SPECIAL OFFER}

Complete stereo systems. comprising BALFOUR 4 speed \(3 u t 0\) player with stereo head 2 OUO speaker systems size \(12 \times 6 \frac{1}{x}\)
5i. Plinth lless coverl and the DUETTO stereo amplien All above items
f25 plus \(\mathcal{E} 2\) p. \& p .

X101 10w. SOLID-STATE HI-FI AMP
 With Integral Pre-amp. Speafications: Power Output linto 3 ohms speskel) 10 wats Sonsitivity fion ared outpult: ImV finto 3 K
 Response: Minus 3 dB points 20 Hz and 40 KHz


COMTROL ASSEMBIT: lincluding ietistors and capacitoril. 1. Volume: Price s. 2. Trable: Price 5/. 3. Comprehensive bass and treble. Pice 10/. The above 3 P101 M (monal 35/. \& \(p\) U6-P101 (the XIO1. POWER SUPPLES FOR X101:

50 WATT AMPLIFIER


PRESENTING
THE AUDIO Cxecutive SIXTY A high output all-silicon AMPLIFIER of advanced design We have incorporated into an amplifier all the desirable
features that we would always have liked to offer during our
 and the Tesult is AUDIO EXECUTIVE SIXTYI
Thls creation, while being reasonably priced, provides the rollowing desirable reatures: -
1. Anninuous rating into A ohms.
1. Arrue
bo Wat R. M.s. True High Fidelity Pefformance.
. Thult-in fileers to protect speakers, which can be high or - Tow Impeedance microphone, rrystal ceramic or magnatic
cartridge from disc, or from tape, tuner or other cartridge from disc,
auxiliary equipment.
The aumpilier er buile inio a luxurious, supple black semiout a massive heat sink carrying the outpurt transistors, input jacks. output sockets, mins volatage adiuster, min, mins and
output fues carries the driver transistors mounted on their output fuse s, carries thit, the input and output controls and the on/oH switch. The power supply components are mounted direct on the sturdy chromatised cadmium plated chassis. The Audio Executive Sixty
\[
\begin{array}{r}\text { Discotheoues } \\ \text { General Sound Reinforcement }\end{array}
\] Hyhrems.
High Sower Hifisems.
Vocal and Guitar AmplificaPrice \(£ 58.15 .0\) Guaranteed for six months.
ndividually packed in car: tona. Trade supplied Power Outpur: 60 wPECIFICATION
Power Outpur:
(resistive). 40 watrs continuous sine wave into
40 (resistive), SA fuse incorporated in output circuit.
 Distortion: Total Harmonic Distortion at IKHz at 60 wates
into 8 ohms less than \(1 \%\) at 40 wates into is ohms less than \(0.3 \%\).
Frequency Response: \(\pm 1 \mathrm{db} 40 \mathrm{~Hz}\) to 15 KHz .
Humand Noise: -70 db.

 \(2 \mathrm{t} 200 \mathrm{mV} Z=120 \mathrm{~K} 0 \mathrm{hm}\). flat.
input \(3200 \mathrm{mV} Z=100 \mathrm{~K}\) ohm. flat.

 inputs on altering the third from zero to maximum is typically Overload Capacity: Input 126 db . Input 226 db . Input 3
 Tone Control: Qass \({ }^{+}\)+ +16 db to


\section*{NO EXCUSES! NO DELAYS! FROM STOCK!} vaniable voltage transfonmers


INPUT 230 V. A.C. \(50 / 60\) OUTPUT VARIABLE \(0 / 260\) v. A.C. BRAND NEW. Keenest prices in
the country. All Types (and spares) from to to 50 amp . avaliable from stock. \(0-260 \mathrm{v}\). at 1 amp. .
\(0-260 \mathrm{v}\). at 2.5 mps . \(0-260 \mathrm{v}\). at \(2 \cdot 5 \mathrm{amps}\).
\(0-260 \mathrm{v}\). at 5 amps. \(0-260 \mathrm{v}\). at 5 amps .
\(0-260 \mathrm{v}\). at 8 amps . 0-260 v. at 10 amps . \(0-260 \mathrm{v}\). at 12 amps.
\(0-260 \mathrm{v}\). at 15 amps. \(0-260 \mathrm{v}\) at 20 amps. \(0-260\) v. at 37.5 amps . \(0-260 \mathrm{v}\). at \(50 \mathrm{amps} . . . E 92 \quad 0 \quad 0\) 20 DIFFERENT TYPES AVAILABLE
FOR IMMEDIATE DELIVERY.



INSULATION TESTERS (NEW)


500 VOLTS, 500 megohms Price \(£ 28\) carriage paid.
1,000 VOLTS, 1,000 megohms §34 carriage paid.
|5Amp.AC/DC VARIABLE VOLTAGE OUTPUT UNIT Inpur 230
Output \(0-260\) v. A.C. Output \(0-260\) v. A.C.
Output \(0-240\) v. D.C. Fitted large scale amFitted large scale am-
meter and volemeter. Neon indicator, fully
fused. Strong attracfused. Strong attrac-
cive metal case \(15 \mathrm{in} . \times\)
8, \(\times 6\) Win Wight 24 8 tin. \(\times 6\) in. Weight 24 lb. Infinitely variable, smooth stepless voltage
variation over range variation over range.
Price 638 plus \(30 /-\mathrm{p}\). Price C 38 plus \(30 /\) - p. \& c.
Similar in appearance Similar in appearance
to illustration below.

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
VAN DE GRAAF ELECTROSTATIC \\
GENERATOR \\
fitsed with
moror drive for 230 v . A.C. giving a
50,000
polts. of approx. 50,000 volts.
Supplied absolutely complete including accessories for carrying out a number of interesting experiments, and full instructions. This instrument is completely safe, and ideally suited for School demonstrations. Price \(\mathrm{EP}_{\mathrm{p}}^{\mathrm{7} / 7 / \mathrm{F}}\), plus \(4 / 2\)
\end{tabular} & \begin{tabular}{l}
CONSTANT VOLTAGE \\
TRANSFORMER
\end{tabular} \\
\hline
\end{tabular}


\section*{SERVICE TRADING CO \\ LARGE DIGIT 12-18v. D.C.} MAGNETIC COUNTER 4 in . drum, calibrated 0.9. Figures \(1 \$ \mathrm{in}\) contacts operated by drum cam. The units which can be used in multiples are ing or for the many purposes where
 large casily read numerals are required. Price 18/6, P, \& P. 2/6. VEEDER ROOT COUNTER 230 y A.C. 50 cycle 5 figure counter
(non resezable). \(18 / 6\), \(P\). \& \(P\). \(1 / 6\).

\section*{RING TRANSFORMER}

Functional Versatife Educotional This multi-purpose Auto Transformer, with
large centre aperture, can be used as a Double
wound current Transformer, Auto Transformer H.T. or L.T. Transformer, by simply hand wind ing the required number of turns through the centre opening.
E.g. Using she RT, 100 V. A. Model the output could be wound to Bive 8 V . \(121 \mathrm{Amp}\).4 V . 25 Amp . or 2 V . (G9) \(50 \mathrm{Ampl}\), demonstration transformen (STENZYL TYPE) Two removable eoils are
tapped ac \(0,110,220\) volts, and 6. 12, 36 volts respectively. A composite appar atus designed for class demon stration. Electro magnetic induction, jumping ring,
 induction lamp, relationship between field intensity and ampere eurns. Induction modified model. \(\leqslant 14 / 10 / \mathrm{F}\). \& P. \(10 / \mathrm{H}\)
L.T. TRANSFOTME \(\overline{R S}\)

All primaries \(220-240\) voles
Alype No.
1
12 vec. Taps
2
\(30,32,34,36\)
3
\(30,40,50 \mathrm{v}\). at 5 amps.
\(10,17,18 \mathrm{v}\) ac 10 amps .
6, 12 v . as 20 amps.
6 17. \(18,20 \mathrm{v}\) at 20 amps
\(\begin{array}{lll}7 & 6.12,20 \mathrm{v} . \text { at } 20 \mathrm{amps} . \\ 8 & 24 & \mathrm{v} . \\ \text { at } 10\end{array}\)
AUTO \(\frac{4.6}{\text { TR }} \cdot \frac{24 \mathrm{~V}, ~ \text { at } 12 \text { amps. }}{}\) \begin{tabular}{llll} 
Price & & Carr \\
61 & 17 & 6 & \(5 / 6\) \\
64 & 13 & 6 & \(6 /\) \\
66 & 17 & 6 & \(6 / 6\) \\
64 & 19 & 0 & \(4 / 6\) \\
66 & 8 & 6 & \(6 / 6\) \\
67 & 5 & 6 & \(6 / 6\) \\
66 & 17 & 6 & \(7 / 6\) \\
65 & 4 & 6 & \(5 / 6\) \\
67 & 3 & 0 & \(6 / 6\) \\
\hline
\end{tabular} 110-200-220-240 erpe \(£ 3 / 10 /\) each, P. \& P. \(4 / 6\). 500 wars sype \(£ 4 / 12 / 6\) wat P. \& P. 6/6. 1,000 wate sype E5/15/- each, P. \& P. \(7 / 6\) R.C.A. plastic Triac 400 PIV 8 amp . Price \(25 / 6\)
R.C.A. Diac for above, price \(6 / \mathrm{F}\). Price includes doto sheet and circult.
R.C.A. 40432 Triac and Diac in TO5 can 6 amp. 35/-.
G.E. P.U.T., DI3, TI, 12/-. Texas F.E.T. 2N3819, \(7 / 6\). \(\qquad\)


INSULATED TERMINAL8
Avallable in black, red, white yellow, blue and green. New
\(2 /-\) each.

\section*{A.C. CONTACTOR \\ 2 make and 2 break (or \(2 \mathrm{c} / 0\) ) 15 amp . contacts. \(230 / 240\) v. A.C. operation.
Brand new. \(22 / 6\) olus \(1 /-\) P. \& P. LIGHT SENSITIVE SWITCHES Kit of pares including ORP. 12 Cadmium
Sulphide Photocell. Relay Transistor and Circuit. Now supplied with new Slemens High Speed Relay for 6 or 12 volt oper. ations. Price \(25 /-\), plus \(2 / 6\) P. \& P.
ORP. 12 and Circuit \(12 / 6\) post paid. \\ 220/240 A.C. MAINS MODEL \\  Incorporates mains transformer rectifier and special relay with \(2 \times 5\) a mp. mains e/o contacts. Price ine.
circuit \(47 / 6\), plus \(2 / 6 \mathrm{P} . \& \mathrm{P}\). LIGHT SOURCE AND PHOTO CELL . MOUNTING \\ Precision engineered light source 일 ventilated lamp housing to take 0 O \\ MBC bulb. Separate photo cell mounting assembly for ORP. 12 or similar cell with optic window. Both unizs
are single hole fixing. Price per pair \(\mathbf{E 2 / 1 5 / 0}\) plus \(3 / 6\) are singie hole fixing. Price per pair \(\mathbf{6 2 / 1 5 / 0}\) plus \(3 / 6\)
P. P . CONDENSERS \\ New at a fraction of maker's price.
\(2,500 \mathrm{mfd}, 100 \mathrm{v} . . .12 / 6 \quad 4,000\)}
\(\begin{array}{lllll}2,500 & \mathrm{mfd} .100 \mathrm{v...} & 12 / 6 & 4,000 \mathrm{mfd} . & 25 \\ 10,000 \mathrm{mfd} . & 35 \mathrm{v} . . & 15 / \mathrm{l} & 4,000 \mathrm{mid} . & 50\end{array}\)
\(10 \%\)
\(15 /\)


MOTORISED SWITCHING UNIT (EX-W.D.)


\section*{STROELSTROBELSTROEL}


\section*{DRY REED SWITCHES}
\(2 \times 1\) amp Dry Reeds (make contacts) mounted in 870
ohm \(9-18 \mathrm{v}\) coil. Size \(3 \mathrm{in} . \times 3 \mathrm{in}\). \(\times \frac{1}{2} \mathrm{in}\). New. Price ohm 9-18v coil. Size 3 in.
\(8 / 6\) per pair. Post Paid.
6 of the above mentioned units ( 12 Reeds, 6 coils) fitted in metal box. Size 4 in . \(\times 3 \mathrm{tin}\). \(\times 1 \mathrm{lin}\). Mig. by Elliott Bros.

\section*{2-2? \\ MINIATURE UNISELECTOR 3 banks of 11 positions, plus homing bank. 40 ohm coil \(24-36\) v. D. C.operation. Carefully}

\section*{UNISELECTOR SWITCHES NEW} 4 BANK 25 WAY FULL WIPER 25 ohm coil, 24 y. D.C. operation. 6 BANK 25 WAY FULL WIPER 25 ohm coil, 24 V. D.C. operation.
66.10 .0 . plus 216 P. 8-BANK 25-WAY FULL WIPER
24 V.D.C. operation, \(\subset 7 / 12 / 6\). plus 4/AP. \& P. -

\section*{RELAYS}

NEW SIEMENS PLESSEY, etc. MINIATURE RELAYS AT A HIGHLY COMPET
\begin{tabular}{|c|c|c|}
\hline COIL & WORKING & \\
\hline \(\square\) & D.C. VOLT & CONTACTS \\
\hline 170 & 9.-12 & \(4 \mathrm{c} / \mathrm{o}\) H.D. \\
\hline 170 & \(9-12\) & \(3 \mathrm{c} / \mathrm{o}+1 \mathrm{H.D} . \mathrm{c} / \mathrm{o}\) \\
\hline 230 & 6-12 & 2 co \\
\hline 280 & \(6-12\) & 2 clo incl. base \\
\hline 700 & \(12-24\) & \(2 \mathrm{c} / \mathrm{o}\) incl. base \\
\hline 700 & \(16-24\) & 4 c/o incl. base \\
\hline 700 & 16-24 & 4M 28 incl, base \\
\hline 2500 & 30-50 & \(2 \mathrm{c} / \mathrm{o}\) H.D. incl. ba \\
\hline 9000 & 40-70 & \(2 \mathrm{c} / \mathrm{o}\) incl. base \\
\hline & H.D. \(=\) Hea & vy Duey \\
\hline
\end{tabular}

MINIATURE RELAYS
9- 12 vole D.C. operation. 2 c/o 500 M. A. contact Size only lin. \(\times\{\times\) in. Price \(11 / 6\) Post paid.
\[
\begin{aligned}
& 30-36 \text { v. D.C. operation. } 2 \text { c/o } 500 \text { M.A. contacts. } \\
& 3.200 \text { ohm coil. Size only } i x \frac{1}{2} x+\frac{1}{2} .8 / 6 \text { pose paid. }
\end{aligned}
\] 230 VOLT AC RELAY LONDEX four c/o 3 amp


\section*{SANWA Testres}

NEW MODEL U-SOD MULTI SCALED WITH OVERLOAD PRO TECTION. Ranges: D.C. volts: 100 mV .
\begin{tabular}{llllll}
0.5 & v. & 5 & v., 250 & 250 \\
2.5 & v., & 10 & v.,, 000 v. A.C. voles. \\
\hline
\end{tabular}
Complete with batteries \(\mathbf{~} 7.5 .0\)
and test prods.
Poss paid
PANEL METERS AT BARGAIN PRICES A.C. AMMETERS \(0.1,0 .-5,0-100\) 0. 0.15 , 0.20 amp. F.R. 2lin. dia. ALL AT 21. AI ACH
A.C. VOLTMETERS \(0-25\) v. 0.50 v. o-150 v. M.I \(2 / \mathrm{in}\).
Flush round ALL AT \(21 /-\) EACH. P \& P Flush round ALe. Mecr. M-Coill 2 in........................29/-
 FOOT SWITCH
Suitable for Motors, Drills, Sewing Machines, erc. 5 amp.
250 voles. Price \(17 / 6\) plus 20

\[
230 \text { P. \& P. }
\]
\[
\begin{aligned}
& 230 \text {. A.C. SOLENOID. Heary duty type. Approx. } \\
& \text { 31b. pull. } 17 / 6 \text { plus } 2 / 6 \text { P. \& } 12 \text { v. D.C. SOLENOID. }
\end{aligned}
\] Approx. IIb. pull. \(10 / 6\), P. \& P. \(1 / 6\).
50 v . D.C. SOLENOID. Approx. 50 v. D.C. SOLENOID. Approx
llb. pull. io/6, P. \& P. I/6. 50 v. D.C. SOLENOID.
 hign frequency TRANSISTORISED MORSE OSCILLATOR Adjustable tone control. Fitted with moving coil speaker,
also earpiece for personal monitoring. Complete with morse key. \(45 /\) plus \(3 / 6 \mathrm{~d}\), p. \& p. \(\rightarrow-\infty\) SEMI-AUTOMATIC "BUG" SUPER SPEED
MORSE KEY
7 adjustments, precision tooled,
speed adjustable 10 w.p.m. to as
high as desired. Welght 2 jlb . c4/12/6 post paid.
NICKEL CADMIUM BATTERY I. 2 v. 35 AH. Size 8i high \(\times 3 \times 14\). \(30 /-\) each, plus \(4 /-\)
 width \(2 / \operatorname{lin} . \times 1 \frac{1}{1} \mathrm{in}\). Welght: approx. 13 ozs. Ex-R.A.F.
Tested \(12 / 6\). P. \& P. \(2 / 6\). Tested 12/6. P. \& P. 2/6.


\title{
HI-FI, AUDIO AND TAPE RECORDER DEALERS AROUND THE BRITISH ISLES
}

\section*{CHESHIRE Stockport}

\section*{AUDIO CENTRE}

We stock the full range of Hil-fi Tape Recorders and special Transistor Radios
Fairbotham and Co. Ltd.
58/62 Lr. Hillgate, Stockport Tel: 480.4872
FULL SERVICE FACILITIES

\section*{ESSEX}

\section*{llford}

\section*{UNIQUE RADIO LTD.}

HI-FI \& PUBLIC ADDRESS
6 THE FACADE, HIGH ROAD GOODMAYES, ESSEX
SEVEN KINGS 5908277

\section*{Loughton}

SOUND SUPPLIES (Loughton) CO. LTD.
TEL: 01-508-2715
HI-FI Showroam
BROOKLANDS PARADE, 309 HIGH ROAD. LOUGHTON
Spares and Repairs
12 SMART'S LANE, LOUGHTON, ESSEX.

\section*{Romford}

We Give the Finest Hi-Fi Service in the Area
Romford Sound \& Vision Service Ltd. 7Ba BRENTWOOD ROAD ROMFORD
TEL. ROMFORD 41644 OR COME AND SEE

GLAMORGANSHIRE Cardiff
J. GOUGH \& CO. LTD.

DESIGNERS OF THE FAMOUS GOUGH LOUDSPEAKERS
the langest stockist of hi-F EQUIPMENT AND FOR DEMONEQUIPMENT AND FOR DEMON 148-154 NORTH ROAD, CARDIFF Telephone: 28473

Southport
Hi-Fi in West Lancashire WAYFARERS RADIO LTD

18-20/29 BURTON ARCADE, LORD ST., SOUTHPORT . Tel. 4070

OXFORDSHIRE Oxford
HIGH FIDELITY IN OXFORD HORNS

SIX SOUTH PARADE OXFORD
nformation. Demonstration . Installation

\section*{SURREY Guildford}

\section*{MERROW SOUND LTD.} Specialists in Hi-Fi \& Tape Recording Fully equipped for comparative demonstratlons Leading Agents Epen I. Early closis Wed 29 Epsom Road, Merrow. Gulldord.

GUILDFORD

SUSSEX
Brighton
LANES (RADO) LTD.
LARGEST STOCKIST OF ALL HI-FI EQUIPMENT IN THIS AREA
94 CHUTCEI ROFD, EOVE
TEL. Brighton 738517

\section*{WARWICKSHIRE Birmingham}

\section*{GRIFFIN RADIO LTD.} \(021-6921359 \quad 021-6430867\)
94 Bristol Street . Birmingham 5 * Complete advisory facilities for all makes of equipment.
* Full range of Classical and Light Music LPs.

South West
TAPE RECORDER HI-FI CENTRE ———— (SHEEN) LTD - - - SPECIALISTS IN TAPE RECORDERS, ACCESSORIES, HI-FI EQUIPMENT
YOUR CENTRE FOR FRIENDLY HELP, SALES AND YOUR SERVICE \(3 \& 4\) STATION PARADE, Tel. 8760985 SHEEN LANE, SHEEN, Opposite Mortlake Stotion, S.R. LONDON, S.W. 14 Closed Wednesdays

\section*{West}

In \(x=1: r^{3} \leq\) IEzecilo Stockist for all the leading makes of Hi-Fi Audio Equipment 33 TOTTENHAM CT. RD., W. 1 207 EDGWAREROAD, W. 2 152/3 FLEET STREET, E.C. 4 109 FLEET STREET, E.
Hi-Fi Centres

Hi-FiCentres
TOTTENHAM RT. RD., w.
118 EDGWAREROAD, W. 2
01.6362605 \(01-7233271\) \(01-7233271\) \(01-3532833\)
\(01-3535812\)
01.5802573 01.7239789

West Central


\section*{Coventry}

\section*{ELECTRONIC SERVICES}

HI-FI SPECIALISTS
33 CITY ARCADE COVENTRY
TEL: 24632

WORCESTERSHIRE Worcester
HIGH-FIDELITY SPECIALISTS JOHNSONS SOUND SERVICE 43 Friar Street, Worcester Worcester 25740

\section*{SCOTLAND Glasgow}

> G. H. STEEL LTD.

Scotland's leading Tape Recorder, Video and \(\mathrm{H}_{\mathrm{i}} \mathrm{FFi}_{\mathrm{i}}\) Specialiste. Arents for: B \& O, Armstrong, Leak, Fisher. Arena, Dynatron, Rogers, Quad, Truvox, Phillps, Sony, Akai, Sanyo, Revox. Tandberg, Brenell, Ferrograph, Uher,
Grunds, Goldring, Garard, Thorens, Connoisseur,
Goodmans, Wharfedale KEf, Celeston Goodmans, Wharfedale, KEF, Celestion, Decca, Scort. Equipment Cabiners, Earphones, Tapes, Accessories,
Repairs and Servicing. Credir Terms, Part Exchanges 141 St. Georges Road, Glasgow C.3. Tel. Douglas 7124

\section*{VALVES}

P. C. RADIO LTD. 170 GOLDHAWK RD., W. 12 01.7434946
\(\begin{array}{ll}6 \mathrm{~K} 8 \mathrm{aT} \\ 6 \mathrm{~K} 25 \mathrm{G} & 14 /\end{array}\)

\begin{tabular}{|c|}
\hline \begin{tabular}{l}
MARCONI TEST \\
SIGNAL GENERATOR TF BOI/A. \(10-300 \mathrm{Mc} / \mathrm{s}\). in 4 bands. Internal 22400
\(\mathrm{c} / \mathrm{s}\). \(1 \mathrm{kc} / \mathrm{s}\). External \(50 \mathrm{c} / \mathrm{s}\) to \(10 \mathrm{kc} / \mathrm{s}\). 75 ohms source. 885 . DITTO but ourput. \&89. Boch P. \& P. 20/-, in and inserucrion manual.
\end{tabular} \\
\hline HEWLETT-PACKARD \\
\hline
\end{tabular}

MODEL 524 B ELECTRONIC MODEL S24B ELECTRONIC PLUG IN UNIT. Basic counter 10 MHz and time from 0 to 10 kHz . Automatic positioning of decimal point, eight place registration. Full self
check facility from builc in frequency check facility from built in frequency
standards. Plug In unis extends requency range of basic counter to 100 to 220 MHz . Full specification and price
on request.

AVO VALVE CHARACTERISTIC


SPECIAL OFFER O9S TUBE 35/-
PHASE MONITOR ME-63/U. ManuInc. Measures directly and displays on a panel meter the phase angle between two applied audio frequency signals within the range from \(20-20,000\) c.p.s. to an accuracy of \(\pm 1.0^{\circ}\). Input signals between 2 and 30 r , peak. In excellens condition. \(\mathbf{7 5}\). Carriage \(30 /\) -


DISTORTION FACTOR METER \(100-8,000 \mathrm{~Hz}\) in four ranges Discorge. ange: 0.05 to \(50 \%\). Input impedanc yariable. Sensitivity 1 mW . \(\neq 42.10 .0\) Carriage 20/\%.
TF 899 VALVE VOLTMETER, 10 mV to. M. DEVIATION METER TF 934, 657.10.0. Carriage 30/

VIDEO OSCILLATOR TF 885A a \(85 A 1\), 455 and 685 resp. Carr. \(30 \%\) FM DEVIATION METER TYPE TF 791B. Frequency range: \(\mathbf{4 - 2 5 0 \mathrm { MHz }}\) deviation \(1-75 \mathrm{kHz}\). Specification and

FOR EXPORT ONLY
53 TRANSMITTERS. All spares available. COLLINS TCS. Complete instatlations and spare parts. 62
WIRELESS SETS. Complete inWIRELESS SETS. Complete stallations and spare parts. P.S.U. or C42 8 C4S \(2 v\) and 24 V R.C.A lete installations and all Com BC 6IOE \& I TRANSMITTERS Complete installations and all spares. No. 19 WIRELESS SETS.
H.P. SETS and all spares R. 210 RECEIVERS with all necessary accessories.
PYE PTC
2002N A.M. Ranger Mobile Radio Telephone, brand

5 and 8 bank 25 way 24V, guaranteed perfect, 63.15 .6 C4.10.0; 66.17 .6 respectively.
OAWE STORAGE OSCILLO SCOPE complete wrih trace shifer complete as new, specification and pice on request.
SPARES FOR AR.88D. RECEIVERS. Ask for your needs from our huge election.
HARNESS "A" \& "B" control units unction boxes, headphones, micro phones, etc.

AIRMEC INSULATION TESTER O-5KV built-in ionisation amplifier, £28. BOONTON SIGNAL GENERATOR TS 497/B/URR, 2-400MHz. 695 . TS \(418 \mathrm{~B} / \mathrm{U}\) SIGNAL GENERATOR, \(400-1000 \mathrm{MHz}\). 6105 . Carr. \(30 / \%\) AVO SIGNAL GENERATOR CT \(378,2-225 \mathrm{MHz}\). \(\mathbf{~ 3 8 . 1 0 . 0 . ~ C a r r . ~ 1 8 / . ~}\)

TELEPHONE ENQUIRIES relestin to TEST EQUPMENT should
To view TEST EQUIPMENT please phone for appointment
INTEGRATED CIRCUITS MANY OTHERS IN STOCK
RCA CA 3005 wide band RF Ampl 300 mW dis
27/- PLEASE NOT
CA 3020 Audio power a mpl
STC MIC 93018 Digital dual 4 imput gates
MIC 709-1C Linear operational ampl
MIC 90050 Highspeed flip-flop. Unless offered as "as
seen" all equipment ordered from us is completely overhauled mechanic ally and electrically, thus ensuring that our equipment is in "connec
and use" condition. Plessey A.F. Amps with PRE.AMP 2.5W.

\section*{TRANSISTORS, ZENER DIODES}


PULSE GENERATOR TYPE TF 675 F . Repetition frequency: 50 Hz to
50 kHz . Pulse duration: 0.15 to 100 a 50 kHz . Pulse duration: 0.15 to 100 n
sec; buils in 0.1 and \(0.5 \mu\) sec delay sec; buils in 0.1 and \(0.5 \mu\) sec
lines. 640.10 .0 . Casriage \(20 /\).
CIRCUIT MAGNIFICATION METER TYPE TF 329F. Frequency range: 50 kHz to 50 MHz . Magnification 10 to 500 Q. Tuning Capacitor: 40 to 450pF with \(\pm 3 \mathrm{pF}\) vernier. Fully over-
hauled and calibrated, 670 . Carriage \(30 /\).

LIMITED QUANTITY ONLY
SIGNAL GENERATOR TYPE TF 937 (CT 218). Frequency range: 35 \(\mathrm{kHz}_{\mathrm{k}}-30 \mathrm{mHz}\). 50 ft . Frequency scale. 200 kHz to 2 mHz . Buile-in Crystal put: D.19V-IV. Price on application.

\section*{AVO'S METERS}

Model 85X with leads, f 18.
Model \(7 X\) with leads E 15.10 .0
Model 7 with leads, E14.10.0.
Model 47A complete with multiplie shunes,
casc, \(£ 12\). Model 48A equipped as 47A, 2
Carriage for each of above \(7 / 6\). WEE MEGGER 500v., E14.10.0. TF 144G SIGNAL GENERATOR offered unchecked but in very good condition, rack model, mounted complete

\section*{SOLARTRON EQUIPMENT}

LAB. AMP AWS 151A, Frequency: 15 Hz to 350 kHz . Metered output, age 20/.
Regulated and stabilised P.S.U. SRS \(151 \mathrm{~A}, 20\) to 500 V positive at 300 mA in two ranges. Variable and fixed 170 V negative output, 635. Carriage 20/
CD 7115.2 . Double beam, DC to 7 MHz 'scope, \(\mathbf{6 8 5}\). Carriage 30/-
Model, DC to 14 MHz price application. QD910. St
ge Oscilloscope, as new

29/41FT. AERIALS each consisting of ten 3ft., fin. dia. cubular screw-in with adaptor to fit the 7 in . rod, insuwated base, stay plate and stay assemblies, pegs, reamer, hammer, etc. Absolutely brand new and complete ready to erect
in canvas bag, \(£ 3 / 9 / 6\). P. \& P. \(10 / 6\).
FIELD TELEPHONE TYPE "F". Housed in portable wooden cases. Excellent for communication in and outdoors for up to 10 miles. Pair including batteries, fully tested. E6.10.0, or with 220 yds field cable in drum E7.10.0.
END OF RANGE ITEMS in "as seen"
 PANEL METERS
\(500-0-500 \mu A\) round M.C. \(21^{\prime \prime}\) "....
\(500 \mu A\) round M.C. \(\mathrm{I}_{\mathrm{mA}}\) )
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{mA round M.C. \(24^{*} \ldots \ldots\). . \(25 /-\)} \\
\hline \\
\hline
\end{tabular}
10 mA round M.C. \(2 \mathrm{~m}^{\text {B }}\)............. \(22 / 6\)

10 mA round M.C. \(21^{\circ}\)
20 mA round M.C. \(2^{\prime \prime}\)
25 mA round M.C. \(2^{2}{ }^{2}\) ".
\(25-0-25 \mathrm{~mA}\) round M.C. \(21^{\prime \prime}\)
30 mA round M.C. \(2{ }^{\prime \prime}\) ". 21 50 mA round pi M.C. 21 100 mA square M.C. \({ }^{2}\)
200 mA square M.C \(10-0-10 \mathrm{~mA}\) round M.C. \(2 \frac{1}{2}\) \(00-0.100 \mathrm{~mA}\) round M.C. 2 3 amp round R.F. \(2{ }^{12}\). 6 amp round M.C. \(21^{\prime \prime}\) " 25 amp round M.C. pi \(3 j^{-1}\) 25 amp round M.C. \({ }^{2 \prime} 1^{\circ}\). \(8_{15} \mathrm{IV}^{2}\) square M.C. \(3^{\prime \prime}\)
20 V square M.C. \(2^{2}\) clock scal 50 V round M.C. 21" black face 300 V round M.I. 2 j
1500 V round elecerostatic, plug-
 \(59-63\) round electrostatic \(3 t\) and very many others, full list of neters upon request.

\section*{A amero servigs Lid \\ }

\section*{INTEGRATED CIRCUIT AMPLIFIERS}

Ca3005 RF Ampliter willa \(J 00 \mathrm{mc} / \mathrm{e}\) bandwidth. Max. disnipation 26 mW . Por use as R F auplifier, balanced nulver, product detector CA3012 Wide Band Amplifer (up to 2ume/8), sultuble as tp Amplater for VHF/FM recelveris.
CA3020 General Purpose Audio Amplitier of 550 mW output. 30/Ca 3036 Bufer Amplifer conalating of two "super-alpha" pair of Cranslotors aultable for stereo plek-up ayntems.
The above four I.Cs are in TOS encapsulation.
PA\&z2 Audio Amplifler providing a max. output of 1.2 watte. 65 -
PA234 Audio Amplifer providing a max, output of 1 ,watt \(27 / 6\) PA237 2 watto Audio Amplifer.
The above three L.C's are in epoxy moulded double sour-in-line C1700
MC1709CG General Purpose operational amplifer in To-94
TAA263 3 -stage direct coupled ampliter for une from DC to colkc/a; 70 mW disalpation. Output 10 mW into 1500 losd. \(15 /=\) TAA283 3-stage amplifler with connection brought out to the Output 10 mW linto 1500 load.
\(20 /-\) TAA320 MOST input stage followed by abl-polar translator
13/- 200 mW disipation. Gage. 200 mW dissipation.
TAD100 All active components required for an A.M. Recelver comprising mixer, onciliator, i.f. amplifer, a.g.e. and pre- anplifier stugen. To build complete receiver only colls, capacilors and resiotors are required and output stage for whlch one of the above
deertbed I.C.s cin be used. Dual aeven-ln-line peckage. \(45 /-\) Data sheet avaliahle for all the above

\section*{TRANSISTORS}

PLESSEY SL403A INTEGRATED CIRCOIT AUDIO AMPLIFIER
Dumb-in-line 10 -leaif fit packnge with heat sink strip. Maximum andio output 3 watts into 7.50 wouspliter. Distortion \(0.3 \%\) or 1 preatipliter ingowed \(0.5 \%\) nt full output. Frequency reapouse \(20 \mathrm{c} / \mathrm{s}\) to \(20 \mathrm{mc} / \mathrm{s}\). Operating voltage 18 v . Built-ino
```

SILICON MATCHED DIODE PAIRS 1N4951 Two diodes in common Tog2 epoxy caste. Beparate dynamically balanced. Max. reverae voltage 20V. May. dhap sipation 200 m W. sultable for TV horizontal phame discriminatora and simallar spp

```

\section*{ZY88 series, from EENER DIODES}

ZY88 series, from 3.3 V to \(9.1 \mathrm{~V} \pm ~ \$ \%, 400 \mathrm{~mW}\) 814 eertes, from 7.5 V to \(13.0 \mathrm{~V} \pm 10 \% 340 \mathrm{mWW}\) D815 series, from 4.7 V to \(18.0 \mathrm{~V} \pm 10 \%\) \& Watt
D816 sertes, from 22 V to \(47 \mathrm{~V} \pm 10 \% \mathrm{~S}\) Whtto D817 series, from 58 V t \(1100 \mathrm{~V} \pm 10 \% 5\) Watts D814-TTop Hat' type hardware
lease s supplied

WHEN ORDERING BY POST PLEASE ADD \(2 / 6\) IN FOR HANDLING AND POSTAGE. NO C.O.D. ORDERS ACCEPTED ALL MAIL ORDERS MUST BE SENT TO HEAD OFFICE AND NOT TO RETAIL SHOP.


\section*{Head Office}

44a WESTBOURNE GROVE, LONDON, W. 2
Tel.: PARK 5641/2/3
Cables: ZAERO LONDON
Retail branch (personal callers only)
85 TOTTENHAM COURT RD.,
LONDONW.2. Tel:LANgham 8403

WE WANT TO BUY:
SPECIAL PURPOSE VALVES. PLEASE OFFER US SPECIAL PURPOSE VALYES. PLEASE OFERUS

\section*{APPOINTMENTS VACANT}

DISPLAYED SITUATIONS VACANT AND WANTEDı \(£ 7\) per single col. inch.
LINE advertisements (run-on): 8/= per line (approz. 7 words), minimum two lines.
Where an advertisement includes a box number (count as 2 words) there is an additional charge of \(1 /\). SERIES DISCOUNT: \(15 \%\) is allowed on orders for twelve monthly insertions provided a contract is placed in advance.
BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, c/o Woreless Worid, Dorset House, Stamt


\section*{SALES ENCHITEBS}


Modern marketing methods are employed and the company offers excellent working conditions. including:
- Company Car
- Pye Group pension and life assurance scheme
* Superior dining facilities

Active Sports and Social Club

Applicants will receive immediate response and a quick decision.
Apply in writing. giving brief details of career to date. to:
Personnel Manager
Ether Engineering Ltd.
Park Avenue, Bushoy, Herts

A Special Project R \& D team is being set up by Control Systems Ltd. at Uxbridge to provide group facilities for subsidiary companies manufacturing and marketing internationally-known electronic equipment of advanced concept. New staff are required as follows:-

\section*{ELECTRONIC ENGINEERS}
at graduate and qualified level with an interest in the application or design of M.O.S. integrated circuits in Mini Computer equipment with an emphasis on office mechanisation.

\section*{GRADUATES in computer science or}
mathematics seeking a first appointment in industry who will carry out original work on the development and programming side of the new equipment.

Members of the Research and Development team enjoy first-class conditions of employment including the opportunity of four weeks holiday and a very good Life Assurance and Pension Scheme. The modern \(R \& D\) building is in pleasant surroundings overlooking the Buckinghamshire countryside. Apply, with relevant particulars of experience to:

Group Personnel Manager, Control Systems Ltd.

\section*{The Island,}

Uxbridge, Middx.

\section*{There is scope,variety and responsibility as a RADIO TECHNIIIAN in Air Traffic Control}

Join the National Air Traffic Control Service of the Board of Trade as a Radio Technician and you have the prospect of a steadily developing career in a demanding and ever-expanding field.

Entrance qualifications: you should be 19 or over, with at least one year's practical experience in telecommunications. Preference will be given to those having ONC or qualifications in
Telecommunications.
Once appointed and given familiarisation training, you will be doing varied and vital work on some of the world's most advanced equipment including computers, radar and data extraction. automatic landing systems, communications and closed-circuit television. Work is based on Civil Airports, Air Traffic Control Centres, Radar Stations and specialist establishments. Vacancies exist in various parts of the United Kingdom.

Salary: \(£ 985\) (at 19 ) to \(£ 1.295\) (at 25 or over): scale maximum \(£ 1,500\) (higher rates at Heathrow). Some posts attract shift-duty payments. Promotion prospects are excellent and ample opportunity and assistance is given to study for higher qualifications. The annual leave allowance is good and there is a non-contributory pension scheme for estabrished staff.

\footnotetext{
Send this coupon for full details and application form:-
To: A.J. Edwards, C.Eng., M.I.E.E., M.I.E.R.E.Ondon WC2
Room 705. The Adelph. John Adam Street. London
marking your envelope 'Recruitment'.
Name
Address
Not applicable to residents outside the United Kingdom.
National Air Traffic Control Service
}

\section*{conlumfer: chafincering}

NCR requires additional ELECTRONIC, ELECTRO MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.
Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.
Starting salary will be in the range of \(£ 900 / £ 1,250\) per annum, plus bonus. Shift allowances are payable. after training, where applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.
Excellent holiday, pension and sick pay arrangements. Please write for Application Form to Assistant Personnel Officer
NCR, 1,000 North Circular Road.
London, NW2
quoting publication and month of issue.
Plan your future with


\section*{SERVICE ENGINEERS}

Our Instruments Company is currently expanding its activities and range of products.
Senior and Intermediate vacancies exist at the Service Department situated in Reading Berks.

The Department is furnished with modern test and fault finding equipment and the work is varied and interesting. Equipments are modern analogue and digital devices incorporating the latest techniques in instrumentation.

Previous servicing experience is desirable but our main requirement calls for an enthusiastic sound approach to the servicing of our wide range of products.

\section*{Applications in writing please to}

Mr. L. A. Jemmett.


THE ELECTRONICS GROUP

\title{
EAST AFRICAN COMMUNITY Meteorological Department
} requires

\section*{Sectional Engineer Grade II (Telecomms.)}
to serve on contract for one tour of 21-27 months in the first instance. Salary in scale EA. Shg. 24300-27780 (approx. £S. 1417-1620 p.a.) plus an Inducement Allowance normally tax free, of \(£ \mathrm{~S} .822-886\) p.a. paid direct into officer's bank in U.K. Gratuity \(25 \%\) of total emoluments. Generous paid leave. Education Allowances. Furnished accommodation at reasonable rental. Free passages. Contributory pension scheme available in certain circumstances.
Candidates, up to age 45, must possess O.N.C. or City and Guilds Final Certificate (Telecomms.) plus 7 years relevant experience in telecomms. engineering. Equivalent experience in one of the armed services is acceptable. Candidates must have a good theoretical and practical knowledge of FSK, ISB and SSB receivers and transmitters and of Mufax and facsimile
transmitters and recorders. A good working knowledge of radar systems is essential
The officer will be responsible to the Chief Sectional Engineer for the installation, operation and maintenance of the Department's radio telecommunications, radio sounding and radar equipment. He will be liable for service anywhere in East Africa but will probably be stationed at Entebbe, Dar es Salaam or Nairobi.

Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.1., for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference number M2K/690413/WF


OPERATEA
TELEVISION UNIT FOR HORSERACING
and require a

\section*{TELEVISION ENGINEER}
for operation and maintenance of the MCR

\section*{QUALIFICATIONS}
\(\star\) HNC, Cíty \& Guilds or equivalent.
\(\star\) Experience in operation and maintenance of high grade television equipment.
\(\star\) Willing to travel.

\section*{OPPORTUNITIES}
*The Company is planning further expansion in the fields of television and electronics.
\(\star\) Good salary and prospects.
\(\star\) Expenses paid on location.
Applications stating age and experience should be sent to: RACECOURSE TECHNICAL SERVICES LTD., 88 Bushey Road, Raynes Park, London, S.W. 20.

\section*{Opportunities with Redifon in Radio Communications}

Experienced Test Engineers are invited to write to Redifon with regard to vacancies in our Test Department at Wandsworth.
The Company is engaged in the design and manufacture of a wide range of radio communications and allied equipment from military pack-set to broadcast transmitter, including communications receivers, M.F. beacons, teleprinter terminals, complete radio office installations for the Merchant Marine and mobile H.F. S.S.B. Stations. Our Test Engineers have sound technical knowledge coupled with good practical experience in the alignment and test of H.F. and V.H.F. Communications equipment. The work is varied and interesting and offers excellent opportunity to broaden experience in semiconductors, S.S.B. and Frequency synthesis.

Limited vacancies also exist for engineers experienced in Test gear maintenance.
Please write in the first instance to: The Personnel Officer REDIFON LTD.,
Broomhill Road, Wandsworth, SW18.


A Member Company of the Rediffusion Organisation.
Suppllers of Radio Communications equipment to Home, Commonwealth, and foreign gowernments. Contractors to B.B.C., G.P.O., Crown Agents. Cable and Wireless, leading shipping companies of the world, etc.

\section*{INTERTEL COLOUR TELEVISION}
have vacancies for

\section*{VTR ENGINEERS}
at their studio at 66 DEAN STREET LONDON, W. 1

Applicants should have a good working, knowledge of colour video tape recording. Applications giving full details of previous experience should be forwarded to

Chief Engineer
INTERTEL COLOUR TELEVISION wycombe road WEMBLEY, MIDDLESEX

Work as a RADIO TECHNICIAN attached to Scotland Yard

You'd be based at one of the Metropolitan Police Wireless Stations. Your job would be to maintain the portable VHF 2 -way radios, tape recorders, radio transmitters and other electronic equipment, which the Metropolitan Police must use to do their work efficiently.

We require a technical qualification such as the City \& Guilds Intermediate (telecommunications) or equivalent.

Salary scale: \(£ 1,095\) (age 21), rising by increases to \(£ 1,500\) plus a London Weighting Allowance. Promotion to Telecommunication Technical Officer will bring you more.

For full details of this worthwhile and unusual job, write to: Metropolitan Police, Room 733 (RT), New Scotland Yard, Broadway, London, S.W;1.

\title{
V.H.F. TEEEVISON RELAY \& COMMUNAL AERAL SSSTEMS
}

We are planning a considerable expansion of our activities and have the following vacancies:

\section*{I. A SENIOR ENGINEER}
to have control of all aspects of systems design, planning, estimating, installation and commissioning.

\section*{II. ENGINEERS}
capable of undertaking either:
(a) System planning and estimating.
(b) control of installation work.
or (c) test and commissioning duties.
Candidates for these appointments must have a good background of practical experience in this field of work, and an up-to-date knowledge of techniques and equipment.
Applications, which will be treated in strict confidence, should be sent to:

\section*{BRITISH/RELAY}

The General Manager,
Special Services Division, British Relay House,
41, Streatham High Road, S.W. 16

\section*{ELECTRONIC ENGINEER}

PRECISION TAPES LIMITED offer an excellent career to a man preferably between the ages of 25-40 years.
He would take full responsibility for the Electrical Servicing and maintenance of high speed tape duplicating systems and associated audio equipment operating under production conditions. Applicants must have experience in the Audio field and should have a thorough knowledge of Solid State Circuitry and hold H.N.C Telecommunications or equivalent, but we would consider O.N.C. combined with a thorough practical experience of electronics. Salary to be negotiated. Location Chadwell Heath, Ddgenham.

Apply Mr. R. W. Holme,
PRECISION TAPES LTD.,
A.T.V. House,

17 Great Cumberland Place,
London, W. 1
391

\section*{LEEVERS-RICH}

\section*{EQUIPMENT LIMITED}

\section*{SENIor electronics engineers}
for the DEVELOPMENT and TEST
Departments. Staff position with top salaries
Apply in writing stating age and experiance

\title{
Government of ZAMBIA
}

\title{
Police Department
}
requires

\title{
RADIO SPECIALIST
}
on contract for one tour of 36 months in the first instance. Salary according to experience in the Scale Kwacha 2460 to 3000 (Approx. £.Stg. 1435-Stg.1750) plus an Inducement Allowance of £.Stg. 684 a year which is payable direct to the Officer's bank in the U.K. Gratuity of \(25 \%\) of total salary drawn. Both gratuity and Inducement Allowance are normally TAX FREE. Liberal leave on full salary or terminal payment in lieu. Free passage. Accommodation at moderate rental. Education Allowances. Outfit and plain clothes allowances. Contributory pension scheme available in certain circumstances.
Candidates, who will serve in the rank of Inspector of Police, must have completed a five year apprenticeship or hold a Service Trade Certificate or equivalent qualification and have had at
least six years post-qualification experience in the Installation and maintenance of modern low and medium power H.F. equipment, S.S.B. and I.S.B. equipment, and of V.H.F. equipment including multiplex links. Knowledge of maintenance of teleprinters, diesel and petrol generators preferred.
The Officer will be required to maintain and install police radio equipment throughout Zambia, travelling by road and air, and to train Zambian Officers for City and Guilds examinations.

Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.r, for application form and further particulars stating name, age, brief details of qualif ications and experience and quoting reference number M2Z/61274/WF.

\section*{Borough of Lowestoft Committee for Education}

LOWESTOFT COLLEGE OF FURTHER EDUCATION
Engineering and Science Department Princlpal: A. E. Boddy, B.Sc.IEcon.), F.R.R.i.S.

\section*{LECTURER}

LECTURER GRADE I required for teaching radio, electronics and other subjects associated with the General Certificate for the Radio Officer (Merchant Navy) Course.

Salary in accordance with the Burnham Scale, at present \(£ 1,110\) to \(£ 1,850\), plus allowances for approved qualifications. Starting point within the scale determined by past teaching and/or appropriate industrial experience.
The post is vacant as from the 1 st of May, 1970. Applicants preferably with teaching experience, suitable qualifications and industrial experience should apply to the Secretary, The Lowestoft College of Further Education, St. Peter's Street, Lowestoft, Suffolk, for further particulars and application form.


\section*{Electronics Maintenance Engineers}

There are excellent opportunities in the Installation and Maintenance Division of U.K Electronics and Industrial Operations of E.M.I Ltd., at Hayes, Middlesex, for engineers to carry out maintenance work on a wide variety of electronic equipments including laboratory test gear and trans-ceivers.

Candidates should be between 21 and 45 years of age and have some experience in this type of work. Consideration will be given to experienced Radio and Television servicing technicians and to ex service personnel.

Commencing salaries of up to \(£ 1.500\) per annum will be paid and staff conditions include contributory pension scheme and free life assurance.

Please apply in writing giving brief personal and career details to:
G. W. Fox, Personnel Department, U.K. Electronics \& Industrial Operations, E.M.I. Ltd., Blyth Road, Hayes, Middlesex. Tel: 01.573 3888, Ext. 411.


\section*{Marconi can offer you}

Attractive salary. Annual salary reviews Good working conditions. 37-hour working week Non-tied housing in a new town in certain circumstances

At Basildon we have a number of vacancies for technical staff to work on the design and manufacture of specialised electronic test equipment and also on the repair and maintenance of general electronic test apparatus. Applicants should have a good basic knowledge of electronics and have some previous industrial or retail trade experience.

\section*{Marconi}

Please telephone or write for an application form to: Mr. R. McLachlan, Personnel Officer, The Personnel Dept, The Marconi Company Limited, Christopher Martin Road, Basildon, Essex. Phone : Basildon 22822.

\section*{SENIOR TELEVISION TECHNICIAN}
is required to be responsible for facilities in a small wired TV Systems Laboratory. He should be conversant with Colour Television Receivers and will be responsible for the maintenance of specialised test equipment. Other duties will include maintenance of records and equipment movement control.
Qualifications in R.T.E.B. and Colour Endorsement or H.N.C. desirable.
Good prospects of promotion lor a keen young man with initialive. Salary negotiable up to £1,500 p.a. depending on qualifications. Training can be given. Subsidised canteen.
Write, giving details of past experience to:
Head of Operationai Services Dept.
Rediffusion Engineering Ltd.
187 Coombe Lane West
Kingston-upon-Thames, Surrey
Tel : 01.9426641

\section*{COUNTY MEDICAL PHYSICS DEPARTMENT}

ST. GEORGE'S HOSPITAL, LINCOLN
ELECTRONICS TECHNICIAN
(Medlcal Physics Technician Grade III) Salary scale: \(£ 1,180-£ 1,500\) p.a.
required to assist in the development and construction of electronics instruments used in Medical Physics. Applicants should possess O.N.C. or equivalent electro-technical qualifications and should be able to construct and test equipment from circuit diagrams. Applications, including age, detalls of quallfications and experience with the names of iwo referees to be sent to \(\begin{array}{r}\text { The Hospltal Secretary, St. George's Hosplisi, } \\ 356 \\ \hline\end{array}\) LIncoln.

\title{
Government of UGANDA REQUIRES \\ BROADCASTING ENGINEERS
}

To serve on contract for one tour of \(21-27\) months in the first instance. Salary according to experience in scale Uganda Shg. 21,120-27,780 ( \(£\) Stg. 1,232-1,620) a year, plus an Inducement Allowance, normally tax free, of EStg. 778-886 a year, paid direct into a Uganda bank account nominated by the officer. Gratuity \(25 \%\) of total emoluments drawn. Liberal paid leave. Accommodation provided at reasonable rental. Outfit and education allowances. Free passages. Contributory pension scheme available in certain circumstances.
Candidates must possess the City and Guilds Final Certificate in Telecommunications (with Radio) or an equivalent qualification and have wide practical experi-
ence of technical broadcasting equipment including high power M.F. transmitting and studio control equipment. The officer will be required to undertake senior operational duties including the maintenance of broadcasting equipment in transmitting stations and studios; outside broadcasts and recordings in remote districts; and to give assistance with the training of junior engineering staff.
Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.1., for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference M2K/690995/WF.

\section*{METROSOUND GROUP OF COMPANIES ELECTRO-MECHANICAL ENGINEER}

A vacancy exists for a skilled Electro-mechanical Engineer who will be required to service and maintain a production unit of high speed tape duplicating equipments.

The applicants must be thoroughly conversant with the latest transistorised circultry as applied to with the latest transistorised circultry as applied to professional tape recorders and ideally should have had some experience with studio equipments.

The successful applicant who will be laboratory based will be paid a minimum salary of £1,600 p.a. based will be paid a minimum salary of \(£ 1,600\) p.a. which could be considerably increased in the case of an exceptionally experienced or qualified applicant.

Please write or telephone in the first instance to Mr. R. Bishop,
Audio Works, Cartersfield Road, Waltham Abbey, Essex.
Waltham Cross 31933.

\section*{OMRON PRECISION CONTROLS \\ SUPPLIERS OF PROCESS TIMERS MICRO \& LIMIT SWITCHES \\ are still expanding \\ and require experienced \\ FIELD SALES ENGINEERS also \\ SALES OFFICE MANAGER \\ to co-ordinate operations Apply: P. A. LEIGH. \\ Tel. 01-723 2231}

\section*{RADIOLOGICAL PROTECTION SERVICE}
(Department of Health and Social Security and Medical Research Councill Clifton Avenue, Belmont, Sutton, Surrey
requires

\section*{Junior Technician and Technician}

POST 1. JUNIOR TECHNICIAN required for duties in the Department of Electronics to assist in the construction of nucleonic instruments. Preference will be given to those candidates with aptitude and interest in electronic and mechanical practice. Salary according to experience at a point on the scale \(£ 467(-922)\) plus London Weighting. M.R.C. conditions of employment.
Applications with the names and addresses of two referees to the Administrative Officer at the above address, quoting reference 70/3/4/17.

POST 2. TECHNICIAN required for duties in the Department of Electronics to maintain nucleonic instruments and systems. Previous experience of testing and 'fault-finding' on Electronic equipment is essential. Two 'A' level G.C.E's desirable but not essential. Salary according to qualifications and experience at a point on the scale \(£ 982(-1255)\) plus London Weighting. M.R.C. conditions of employment.
Applications with the names and addresses of two referees to the Administrative Officer at the above address, quoting reference 70/3/4/9.

\title{
COMPUIIR ENCINEERS
}
\(\left(\begin{array}{ll}2 & 8 \\ 3 & 0\end{array}\right)\)

\section*{the big Burroughs challenge!}

Burroughs large on-line systems dominate the U.K. market A wide variety of concepts, a rapidly expanding market and a policy of promotion from within - all mean exciting opportunities for trained computer engineers to develop their skills in the large, on-line systems field or into the supervisory grades and beyond. Join the Burroughs boom - and grow with us.

We want experienced computer engineers to work on our B5500 and B6500 installations in the Greater London area With Burroughs, you can find the freedom to enlarge your talents, open fresh horizons, learn new skills -


Burroughs
on the largest third generation systems in the world - these are the exciting prospects at Burroughs. In return we are offering you three weeks' paid holiday, free life assurance and a contributory pension scheme.

If you have an electronics qualification and experience with computer systems, then take a big step now Into one of today's development industries - fill in the coupon and send off for one of our application forms. The address is:

The address is: Geoff Lewis, Burroughs Machines Ltd. (Z), Heathrow House, Bath Road, Cranford,
Hounslow, Middlesex.

NAME
ADDRESS

Vacancies exist in our AYLESBURY and CRAWLEY factories for:

\section*{SERVICE ENGINEERS}

\section*{Flight Simulators}

Requirements. A complete theoretical knowledge coupled with at least 2 years practical experience in one or more of the following:Digital computing techniques, hardware, software \& computer peripherals. We are prepared to train suitable applicants who have considerable experience in transistorised and integrated circuits. A knowledge of analogue computing techniques and principles of hydraulics systems would be advantageous. ONC or City \& Guilds Electronics.

Travel.
Must be prepared to travel anywhere in the U.K. and Overseas.

Salary.

Applications to: Personnel Manager, Personnel Manager, Redifon Air

Trainers Limited, Bicester Road, Aylesbury, Bucks.

Redifon Limited, Flight Simulation Division, Gatwick Road, Crawley, Sussex.


\section*{requires an}

\section*{ASSISTANT TECHNICIAN}
to undertake maintenance and development work in the Communicatlons Dlvision of thelr LONDON OFF|CE. The maintenance element involves a sound knowledge of Teleprinters and associated. telegraph equipment, and the development work requlres a good working knowledge of Electronics and/or Audio systems.

Candidates, aged 25 to 30 years, should possess a minimum qualification of ONC and have at least 2 years' relevant practical experience. Preference will be given to applicants continuing their studies to HNC.
We offer three weeks' holiday, subsidised lunches, non-contributory pension and other benefits.
Please write giving brief details to Mrs. M. 'G. Park, External Recruitment, The British Petroleum Company Limited. Britannic House, Moor Lane, London, E.C.2, quoting reference R. \(11193 / \mathbf{Z H}\).

\section*{RNTRRCTIC EXPEDITION} require

\section*{Wireless Operator/Mechanics}

With current morse apeed of 20 w.p.m. PMG Certificate, teleprinter experience eseential. Salary from \(£ 1,003\) according to qualifications and experionce with all living and monsing free.

For further details apply to:
BRITISH ANTARCTIC SURVEY
30 Gillingham Street, London, S.W. 1

\section*{APPOINTMENTS}

\section*{CONTINUOUS EMPANSIO wave and Line Division based at Basildon are growing fast. In order to keep pace with this consistent growth rate we require \\ Test Technicians \\ Ref. 27221 \\ The diversity of products manufactured at}

Installation Engineers Technicians \& Testers

Ref. 25720
To test and commission Multiplex, Co-axial Line and Microwave Radio Systems.
Ideal candidates will be less than 45 years of age with practical experierice on some of the above equipment. These challenging posts call for drive, initiative and common sense. It is necessary for applicants to be prepared to work anywhere in the U.K.

Apolications should be addressed to The Personnel Officer. STC Chester Hall Lane. Basildon, Essex.
 the Basildon Plant demands experienced testing staff for work on complex trans. mission systems.
Candidates should hold an ONC in electrical engineering and be able 10 offer considerable practical experience in the field of testing and fault Clearing all types of land-unit, pcm and microwave equipment.

\section*{UNIVERSITY OF LIVERPOOL} Institute of Child Health Alder Hey Children's Hospital Applications are invited tor the post of ELECTRONICS TECHNICIAN
to assist with research. Applicants should be suitably qualified and have experience in general instrumentation and pulse techniques. The successful applicant will be expected to be able to assist in the design and development of medical electronic instruments. Initial salary, according to age, qualifications and experience. Application forms may be obtained from the Registrar, The University, P.O. Box. 147, Liverpool L69 3BX The University, P.O. Box. 147, Liverpool L69 3BX.
Quote ref. RV/5643/W.W.

\section*{JUNIOR \\ ELECTRONICS TECHNICIAN}
required for construction and repair of electronic instruments and maintenance of a Linear Accelerator. G.C.E. "O" level in Physics and Maths required; "A" levels or O.N.C. an advantage. Day release for further study is posslble. Salary according to age and experience.

Apply with full details to The Director, Medical Research Council Cyctotron Unit, Hammersmith Hospital, London, W. 12 .

\section*{CRAFTSMEN and SEMI-SKILLED MEN}
are required for interesting work in the Signal Engineering Department of London Transport at FULHAM


The workshop in which these vacancies exist undertakes a considerable variety of work which includes the manufacture of prototype mechanical and electronic equipment for Signalling, Automatic Trains and Automatic Fare Collection projects together with the overhaul of electro.pneumatic equipment, ticket machines, clocks, telephones and allied apparatus and fault finding on electronic components.

\section*{- GOOD RATES OF PAY AND PROSPECTS OF PROMOTION \\ - ADDFTIONAL PAYMENT FOR OVERTIME \\ - EXCELLENT WORKING CONDITIONS \\ - FREE TRAVEL ON AND OFF DUTY \\ - PENSION AND SICK SCHEMES}

This is an opportunity for a secure, absorbing and worthwhile occupation. Please apply to a London Transport Recruitment Centre:-

Griffith House,
280 Old Marylebone Road, London, N.W. 1

Chiswick Works, 566 High Road, Chiswlek,
London, W. 4359

\section*{56}

\section*{RADIO \& TELEVISION SERVICING RADAR THEORY \& MAINTENANCE}

This private College provides efficient theoretical and practical training in the This private College provides efficient theoretical and practical training in the above subjects. One-year day courses are available for beginners and shortened
courses for men who have had previous training. Write for details to: The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.5. Tel.: 01-373 8721.

\section*{Electronic Test Engineers}

Pye Telecommunications of Cambridge has immediate vacancies for Production Test Engineers, The work entails checking to an exacting specification VHF/UHF and SSB radio telephone equipment before customer delivery; applicants must therefore have experience of fault finding and testing electronic equipment, preferably communications equipment. Formal qualifications, while desirable, are not as important as practical proficiency. Armed Service experience of such work would be perfectly acceptable.
Pye Telecom is the world's largest exporter of radio telephone equipment and is engaged in a major expansion programme designed to double present turnover during the next 5 years. There are therefore excellent opportunities for promotion within the Company. Pye also encourages its staff to take higher technical and professional qualifications. These are genuine career opportunities in an expansionist company so write, or telephone, for an application form without delay. Interviews can be arranged anywhere in the country at locations to suit the majority of applicants.
Mrs A. E. Darkin, Pye Telecommunications Ltd., Cambridge Works, Haig Road, Cambridge.
Telephone: Cambridge 51351.
Pye Telecommunications Ltd (1)

\section*{MOBILE COMMUNCATION ENGINEERS} SOUTHERN GERMANY

Design engineers are required for interesting projects in an attractive area of Southern Germany. Engineers are required for a contract of two years' duration and should be qualified to a minimum standard of H.N.C. and some years' experience in either of the following fields:
(a) Moblle V.H.F. or U.H.F. solid state transmitter output stage design. Preferably at outputs of 20 W or more.
(b) Vehicle aerials and matching network design for wideband V.H.F.
The remuneration will be in the range of \(\{3,000-£ 4,000\) p.a., depending upon qualifications and experience. Write in confidence to:
INTERNATIONAL SCIENTIFIC CONSULTANTS LTD. P.O. BOX 75. NORMANDY HOUSE, ST. HELIER, JERSEY. C.I.

Quote Ref: EG. 14


\section*{GUY'S HOSPITAL MEDICAL SCHOOL \\ Department of Physics}

\section*{ELECTRONICS ENGINEER}
or TECHNICIAN required to join Blood Flow Research Group for three-year project. Applicants should possess specialist experience/interest In construction/development of analogue solid state circuitry, and Grad.I.E.E.E., H.N.D., H.N.C., O.N.C. or equivalent qualifications. Salary according to qualifications and experience, with superannuation.
For further details of work telephone Dr. Goslinz or Mr. King, \(01-407 \mathbf{7 6 0 0}\) Ext. 546. Applications giving full particulars and quoting ref. PH.2, to The Secretary, Guy's Hospital Medical School London Bridge, S.E.I.

372

We are reorganising our service department and require three

\section*{TOP GRADE \\ SERVICE ENGINEERS/ TECHNICIANS}
to work exclusively on Quad amplifiers and tuners returned for factory overhaul or repair.
Apply, in confidence, giving full details of training and experience lo

Mr. J. H. Walker
ACOUSTICAL MANUFACTURING CO. LTD
SI. Peter's Road, Huntingdon
375

\section*{LaNCASHIRE CONSTABULARY HUTTON wanted \\ RADIO TECHNICIANS}

Must have experience in Radio/Television servicing and have obtained CGLI/TREB in Television Final Servicing Certificate or equivalent.
Pay \(£ 985\) to \(£ 1,500\).
Starting point according to age and experience.
Apply to: The Chief Constable,
P.0. Box 77, Lancashire Constabulary,

Hutton, Preston, PR4 5SB

\section*{An immediate vacancy occurs at THE WIRELESS COLLEGE,}

COLWYN BAY, NORTH WALES Por a SENIOR INSTRUCTOR to take overall charge of
the preparation of students for P.M.G.M.P.T. examinathe preparation of students for P.M.G.G.M.P.T. examina-
tions. and to be directly responsibis for telesrah tions, and to be directly responsible for telegraphy
instruction. Appilliants muse hold a P.M.G. First Class Certificate. Recent marine operating and/or teaching experience is desirable but not essential. Write in she
first instance to the Principal.
355

\section*{ENGINEERS}

Have you considered a career in Technical Author shipl If you have sound experience in electronics and ability to write clear concise English we can offer positions as Technical Authors. The salary range is 61500-£2000 plus with excellent prospects and rewards. Box No. W.W. 364 Wireless World

\section*{RADIO OPERATORS}

There will be a number of vacancies in the Composite Signals Organisation for experienced Radio Operators in 1970 and in subsequent years.

Specialist training courses lasting approximately nine months, according to the trainee's progress, are hald at intervala. Applications are now invited for the course starting in September, 1970.

Ouring training a salary will be paid on the following scale:
\begin{tabular}{|c|c|}
\hline Age 21 & ¢800 per annum \\
\hline ., 22 & ¢855 ." \\
\hline " 23 & ¢890 " \\
\hline 24 & ¢925 \\
\hline 25 and over & ¢965 \\
\hline
\end{tabular}

Free accommodation will be provided at the Training School.

After successful completion of the course, operators will be paid on the Grade 1 scale:
\begin{tabular}{|c|c|c|}
\hline Age 21 & \multicolumn{2}{|l|}{¢965 per annum} \\
\hline , 22 & £1025 & ., \\
\hline 23 & £1085 & " \\
\hline , 24 & £1145 & , \\
\hline 25 (highest & & \\
\hline age polnt) & \(£ 1215\) & " \\
\hline
\end{tabular}
then by six annual increases to a maximum of \(\mathbf{£ 1 6 5 0}\) per annum.
Excellent conditions and good prospects of promotion. Opportunities for service abroad.

Applicants must normally be under 35 years of age at start of tralning course and must have at least two years' operating experience. Preference given to those who also have GCE or PMG qualifications.

Interviews will be arranged throughout 1970.
Application forms and further particulars from:
Recruitment Officer, (R.O.3) Government Communications Headquarters, Oakley, Priora Road, CHELTENHAM, Gios., GL52 5AJ
Telephone No. Cheltenham 21491, Ext. 2270

\section*{THE UNIVERSITY OF MANCHESTER}

\section*{TELEVISION SERVICE}

Applications are invited for the post of ASSISTANT STUDIO ENGINEER, to assist with the maintenance and operation of television equipment used in the University studios and Mobile Unit.
Applicants should possess a Higher National Certificate or equivalent and have a good knowledge of basic electronics with particular emphasis on transistor circuitry. They should have experience in maintenance of electronic equipment, radar, television or similar field.
Initial salary range \(£ 1050-£ 1300\) per annum.
Applications, giving full details of age, qualifications and previous experience and giving the names of two persons to whom reference may be made, should be sent as soon as possible to The Director of Television Services, The University, Manchester M13 9PL.

\section*{ML_MLMLA-MML_MA SKILLED IN ELECTRONIC ENGINEERING? \\ Help keep aircrafit on the straight and narrow \\ Air traffic has become so congested that complex electronic techniques are used as an aid in controlling aircraft both on airways and on airport approaches. As a Telecommunications Technical Officer III in the National Air Traffic Control Service of the Board of Trade, your job would be to install and maintain various air navigational and landing aids at civil airports, and communications and computer systems at radar stations and signal centres. \\ Because you handle such advanced equipment, you will receive thorough training. Study for higher qualifications is encouraged, and this could range from short courses with financial assistance to full-time study at a university or technical college. \\ Pay: (London rates - a little less elsewhere) \(£ 1,350\) starting salary at \(23, £ 1,625\) at age 28 or over on entry, rising to \(£ 1,810\). Within 3 years you could be upgraded, and on a scale rising to \(£ 2,050\). A few years after that, you could be in the salary bracket going up to \(£ 2,375\), and there are several higher grades still. \\ Qualifications: O.N.C. in Engineering, including a Pass in Electrical Engineering; or equivalent standard of technical education. \\ Send for full details and an application form (which must be returned completed by April 3rd, 1970) to Civil Service Commission, 23 Savile Row, London, W1X 2AA. Please quote \(\mathrm{S} / 207 / 13\) \\ CiMm_LML_MLAMAS}

\section*{NORFOLK EDUCATION COMMITTEE}

\section*{The County Technical College, King's Lynn}

\section*{LECTURER GRADE I}
in RADIO and TELEVISION SERVICING
to teach electronics, radio and TV Servicing (including Colour) to C \& G Final.
Applicants should have considerable relevant practical experience and hold a C \& G Final Certificate.
Salary £1100-£1900 p.a. point of entry depending upon qualifications and experience
Details and forms from the Registrar at the College.
County Hall, F. LINCOLN RALPHS, Martineau Lane, Chief Education Officer
Norwich,
NOR 49A

\section*{TV MECHANICS FOR NEW ZEALAND}

RADIO and TV MECHANICS-are you dissatisfied with your present working conditions, high taxation and lack of progress? Why not shift to the sunny South Pacific and join the friendly team at TISCO, New Zealand's largest Service Company i Being purely in Television Service, our mechanics are important people, not just numbers on a time sheet.
All 30 of our Branch Managers are mechanics. You can be with us in 3 months if you write now. Requirements: 5 years' experience and \(£ 20\) towards the family's fare, remainder of which will be paid.

Mr. B. I. Wells, Tech. Supervisor,
Tisco Led.,
Private Bag, Royal Oak, Auckland,
NEW ZEALAND.

\section*{CAREERS IN RECORDING}

PHILIPS PHONOGRAPHIC INDUSTRIES in Baarn, Holland, offer excellent career possibilities to young men between 22 and 30 years of age to join the Classical Recording Department as technicians.
Duties will include the installation and maintenance of equipment on major recording sessions in various parts of Europe.
Candidates must be prepared to reside in Holland and should have a thorough knowledge of at least one European language, ideally German or French.
Essential requirements are a good knowledge of music and the ability to follow a musical score; practical knowledge of basic electronics with experience in transistor circuitry and techniques; a general knowledge of recording and test equipment. ONC in telecommunications and audio experience would be an advantage.
Please apply in writing, giving details of age, education and experience, to :
The Personnel Officer,
Philips Records Limited,
Stanhope House,
Stanhope Place,
London, W.2.
Initial interviews will be held in London.

\title{
ELECTRONICS TECHNICIANS
}

As part of our rapid expansion in production requirements, we need a number of experienced men to trace and rectify faults in the complex equipment we use in the assembly and testing of semi-conductors. A sound knowledge of basic electronics is essential, and experience of working with advance equipment is highly desirable.
Good pay and conditions. Overtime work readily available.
Please write brief details or telephone for application form to
Personnel Manager

\section*{£2,200-£2,600 ELECTRONIC ENGINEERS}
are required for interesting contracts in the SOUTHERN HOME COUNTIES. Min. qualification H.N.C. and design experience in one of the following fields-wide band solid, state feedback amplifiers, filters and networks or communication repeater amplifiers. Write to:

\section*{STRAND TECHNIGAL CONTRACTORS LTD.}

Norman House, 105-I09 Strand, London, W.C.2; or Tel.: 01-836 6443 Quote Ref. B. 37

Experienced Mftr./Working Jewellers have spare capacity to diversify with Electronics manufacturer. Five/ soft soldering-Rhodium Plating of small component parts.
Strictest confldence. Box No. WW392
392

\section*{NOTTINGHAMSHIRE beeston college of further education}

Radio, TV and Electronics Technicians, Part I Course No. C \& G 434
A one-year, full-time and/or block release course will commence in September, 1970. The course will be open to students already engaged in the industry and to students leaving school this year who possess a good standard in mathematics and science. Minimum age of entry is 16 years.

Radio, TV and Electronics Mechanics, Part I \& II Course No. C \& G 433
A two-year block release course will be offered in September, 1970. Part I of 13 weeks and Pari II of 22 weeks. Minimum age of entry is 15 years.

Radio and Television Servicing, Part I
Course No. C \& G 48
This one-year, full-time course will be offered next session for the last time after which it will be replaced by the Technicians and Mechanics courses. Students already in industry and those leaving school this year who possess a good standard in mathematics and science will be accepted on this course.

For further particulars and entry forms far the above courses write to: The Principal, Beeston College of Further Education, High Road, Beeston, Nottingham, NG9 4AH.

\footnotetext{
SITUATIONS VACANT
FULL-TIME technical experienced salesman A quired for retall sales; write giving detalls of age, Henry's Radio. Ltd.. 303 Edgu'are Rd., London. W. 2.

ARE YOU INTERESTED IN HI FI? If so, and you A have some expertence of seling in the Retall Radio Trade, an excellent opportunity awalts you at Telesonic Ltd., 243 Euston Road. London, N.W.1. Tel. 01-387 7467. [21 DEPARTMENT of Nuclear Physics, University of Oxford, has a vacancy in the experimental electronics group for a technician to work on the development, butlding and maintenance of modern nuclear electronce equipment. Salary within the range of expertence. Five-day week working and sood pald leave. Write to T. L. Green, Nuclear Physics Laboratory, Keble Road, Oxford, mentioning reference A123. [408 CLECTRONICS OFFICER required to Jun C.C.T.V. and Audio Section of the Department of AudioVisual Communication, British Medical Association. He will be required to sive information and advise on include establishing contact with manufacturers, ordering equipment and materials, maintaining, modifying and operating equipment for demonstration and experimental purposes. Applicants should be able to present evidence of formal training and practical experience will be essential. The starting salary will experlence. Write briefly, in the first instance, stating age, education, quallfications and experience to the Director. Department of Audio Visual Communtcstion. The British Medical Assoclation. B.M.A. House, Tavistock Square, London. W.C. 1
R AdIO TEST ENGINEERS. Production testing and I fault finding on transistorised Audio Ampligers \& FM Recelvers. 5-day Week. Apply, Chief Engineer, Road (off Bromley Road), Catford. 8.E.6. Tel: 01-698 7424/4340. [22
REDIFON LTD. require fully expertenced TELER COMMUNICATIONS TEST ENGINEERS and ELECTRONICS INSPECTORS. Good commencing salarles. We would particularly welcome enquirles from ex-Service personnel or personnel about to leave the Services. Please write giving full detalls toWandsworth, S.W.18.
[26
SERVICE ENGINEER for repaiving Audlo Equipment ( required by Dixons Photographic Ltd., to be employed at North Acton. If interested, please contact P. Rowley for more detalls, elther by telephone (01-965 0411) or by letter to Camera House. 95 Victoria Road, London. N.W.10.
WE HAVE VACANCIES for Four Expertenced Test Applicants are preferred who have Experience of Fauli Finding, and Testing of Mobile VHF and UHF Moblle Equipment. Excellent Opportunlties for promotion due to Expansion Programme. Please apply to Personnel Manager, Pye Telecommunications Ltd., Cambridge Exiks. Halg Road. Cambridge. Tel. Cambridge 51351, Extn. 327.
}

\section*{TECHNICIAN}

Applications are invited for the post of technician to maintain computer systems, to construct computer hardware, and to assist in the general running of a small electronics laboratory.
Suitable qualifications are experience in electronic equipment construction and maintenance of electro-mechanical devices and an interest in the subject generally.

Salary range \(£ 868-£ 1,486\). Pension plan.
Apply in first instance by letter stating briefly personal details and relevant experience to:

Mr, P. FENWICK, C.C.A.
R.S.M. Building, Imperial College, Prince Consort Road, London, SW. 7 383

\section*{CRANFIELD INSTITUTE OF TECHNOLOGY}

DEPARTMENT OF ELECTRICAL AND CONTROL ENGINEERING

Applications are invited for áppointment as

\section*{TECHNICAL OFFICER}
in the High Frequency and Radar laboratories which are concerned with postgraduate teaching and research.
The duties, which are interesting and varied include the supervision of the day-to-day activities in the laboratories and responsibility for the development of specialised experimental equipment. Candidates should have appropriate experience and possess an H.N.C. or Graduateship of a professional institution as a minimum qualification. Salary within scale rising tays, staff superannuation and sick pay schemes, days, staf superannuation and sick pay schemes, generous holidays. Subsidised cransport rea.
Application form from Staff Records Officer; Cranfield Institute of Technology, Cranfield, Bedford.

\section*{RADIO TECHNICIAN}
with initiative, responsibility, and ability to work unsupervised, is required by company operating construction barges and rigs in the North Sea.
The applicant should be capable of carrying out all repairs to VHF, SSB, Marine I.F. R-T, Radar, Sonar, and C.C.T.V.
Offshore and away from base duties may be frequent.
Salary will be negotiable.
Applicants should write giving brief details of experience and stating qualifications to:

\section*{Mr. Paul Nagelsmit}

Brown \& Root (U.K.) Limited
Casing Yard, Suffolk Road,
Great Yarmouth, Norfolk
Tel: Great Yarmouth \(\mathbf{3} 371\)

\footnotetext{
SITUATIONS WANTED
ELECTRONIC ENGINEER, 22 years experience D.C EL.F., Audio, etc. Products and test gear. Presently £2,000 p.a., London. seeks responsible position West of line Salisbury/Worcester. Alternatively seeks others to start small Design/Manufacture Business' same area.
Box No. W.W. 396 Wireless World.
}

\title{
Radio Operators Your chance of a shore job with good pay from the start!
}

\author{
If you hold a 1 st Class Certificate of Competence in Radiotelegraphy issued by the Postmaster General or the Minister of Posts and Telecommunications, or an equivalent certificate issued by a Commonwealth administration or the Irish Republic, the Post Office can offer you employment at a United Kingdom Coast Station, with a starting salary of \(£ 965-£ 1,215\) (depending on age). Annual rises will take you to \(£ 1,650\) and there are good prospects of promotion to more responsible and better paid posts. \\ If you are 21 or over, please write for more details to: \\ The Inspector of Wireless Telegraphy, External Telecommunications Services, Wireless Telegraph Section (WW), Union House, St. Martins-le-Grand, LONDON E.C.1.
}

\section*{REDIFFUSION}

\section*{COLOUR TELEVISION FAULTFINDERS \& TESTERS}

We have a number of vacancies in our Production Test Departments for experienced faultfinders and testers.
Knowledge of transistor circuitry and experience with Colour Receívers together with R.T.E.B. Final Certificate or equivalent qualifications required.
These will be staff appointments with all the expected benefits.
Applications to:
Works Manager,
Rediffusion Vision Service Ltd., Fullers Way South, Chessington, Surrey (near Ace of Spades).

Phone: 01-397 5411


Our test department is expanding. It is responsible for the testing of magnetic storage devices, high-speed printers, punched-card and paper-tape equipment.

For péople with experience in electronics, opportunities exist immediately. Further vacancies will arise over the next few months. Training will be given to those who do not have previous computer experience.

Applicants must have worked on the testing, maintenance or repair of electronic equipment, and preference will be given to those qualified to ONC (Elect.) or C\&G Final.

Locations: Kidsgrove and Winsford. Both are situated in rural surroundings bordering on the Cheshire Plain. Housing is available at attractive prices, and assistance with mortgage can be arranged.

Write giving details of age, qualifications, and experience, to:
Brian Buckley, Personnel Services Manager,
International Computers Ltd., Kidsgrove,
Stoke-on-Trent, quoting reference WW 239 M .

\section*{International Computers}

\section*{LEEDS POLYTECHNIC}

Calverley St., Leeds LSi 3HE
Full-time three-week courses:

\section*{The Principles of COLOUR TELEVISION}

4th-22nd May and 8th-26th June
For details, write to:
Department of Electrical Engineering
370

\section*{PEERKIN-ELMER LIMTEE OF BEACONSFILD}
is actively engaged in the develop. ment and manufacture of automatic analytical equipments using infra-red, ultra-violet, nuclear magnetic resonance and other techniques.
The Company is in the process of considerable expansion and requires:

\section*{ELECTRONIC TEST ENGINEERS}

The job descriptions for these appointments call for a sound knowledge of modern electronic circuits and the ability to diagnose faults logically and systematically using standard test methods. O.N.C. (Elec) ; City and Guilds Technicians Certificate or equivalent is desirable, but applications will be considered from those who have good practical test experience.
Apply to:
P. L. Nielsen

Personnel Officer
PERKIN-ELMER LIMITED
Post Office Lane
Beaconsfield, Bucks.

\section*{B ELECTRONICS CIRCUIT DESIGN ENGINEER}
for varied and interesting work on the application of I.C.'s and discrete component circuits to the control and regulation of electric power.
Minimum qualifications: O.N.C. (Electronics). Experience in closed loop system design would be valuable.
Housing and removal assistance available in some circumstances.
Write with full details to:
The Technical Director,
BRENTFORD ELECTRIC LIMITED,
Manor Royal, Crawley,
Sussex

\footnotetext{
A CY22, BC108, BFY52, OC45, OC71. OC202. ZTX300, A \({ }_{2 N 22,}{ }^{\mathrm{N} 2926,2 \mathrm{BC} 3708 \text {. All at } 1 / 9 \text { each or } 16 \text { for } £ 1 \text {. }}\) 17 Buckrldge. Portpool Lane, London. E.C.1. M. [382
}
 \(\mathrm{B}_{8,10,20,30,40,50,100 \mathrm{mfds}, ~ B s}^{R A d}, 200 \mathrm{mifds}, 10 \mathrm{~d}\). 1 wait \(5 \%\) carbon film resistors E. 12 series 10 ohms to
 Supply Co., 127 Chesterneld Road, Sheffield, S.8. [ 381 \(B^{\text {OILD IT }}\) in a DEWBOX quallty plastics cabinet. \(B_{2} \mathrm{in} . \times 21\) in. \(\times\) any length. D.E.W. Led. (W), Ringwood Rd. FERNDOWN, Dorset. S.A.E. for leatiet How to Use Ex-Govt. Lenses and prisms. Booklets.
 ENGLISH, \({ }^{469}\) RAYLEIGH RD., HUTTON, BRENT-
WOOD, ESSEX.
Musical miracles. Send S.a.e. for detalls of \(M_{\text {Cymbals }}\) and Drum Modules, versatile independent bass pedal unit ior organs, planos or solo, musical novelties, was-wai kits (49/-). Also bargain compo\begin{tabular}{l} 
nents 11 sit \\
wood Read switches etc. Ferndown, Dorset. D.E.W. Lid, 254 Ring- \\
\hline 95
\end{tabular}
New catalogue no. 18, containing credit vouchers Nu value \(10 /-\) now avalable. Manupacturers new and surplus electric and mechanical components. price

\(\mathbf{S H}^{\text {Hip'S R/T and Alarm for sale. Siemen F.20. Best }}\) \(\mathbf{S}_{\text {offer secures. Box W.W. } 363 \text {, Wireless world. }}\)
SOLARTRON QD 910 storage Oscilliscope perfect \(£ 250\). new. Otters, Burgess, East Lake, London Road, Bognor Regis.
UFFr, COLOUR and TV SERVICE SPARES, Leading time base units incl. EHT transtormer, \&5, carriage 10/ \(/\). Integrated UHF/VHF 6 position push button tuner, 4 transistors, knobs. circuit data. Easilly adjusted for use as 6 position UHF tuner. \(£ 4 / 10 / \%\) P/P \(4 / 6\). UHF \({ }^{3}\) transistor tuner incl. circult. \(£ 2 / 10 /-\mathrm{P} / \mathrm{P}\) 4/6. UHF/VHF transistorised IF panel. \(£ 3 / 10 /-\) P/P \(4 / 6\).
MURPHY \(600 / 700\) series complete UHF conversion kits incl. tuner, drive assy. 625 if amplifier. 7 valves. inccessories. housed in spectal cabinet plinth assembly, \(₹ 8 / 10 /-\) or less tuner \(£ 2 / 18 / 6\), P/P 10/. SOBELL/GEC 405/625 switchable IF amplifier and output chassis.
 inst avallable on request. New or manufacturer tested VHF tuners, AT7650 Philips 19TG170. Sobell 1010, KB Featherilght 35/-. AT7639 Peto Scott, Decca, Ekco, Ferranti, Cossor 50/-. Cyldon C 20/-, AB miniature with UHF Injection incl. valves \(78 / 6\), Ekco \(283 / 330\), Ferranti \(1001 / 625 /-\) New fireball tuners, Ferguson.
HMV, Marconl type \(37 / 6\). Plessey 4 position push button tuners with \(\mathbf{U H F}\) injection, incl. valves, \(58 / 6\). Many others available. P/P all tuners \(4 / 6\). Large selection channel colls. Surplus Pye, Ultra, Murphy. \(110^{\circ}\) scan colls \(30 /-\), Sobell \(110^{\circ}\) Frame O/P transformers \(17 / 6\), P/P \(4 / 6\). Perdio "Portoramse" LOPT assy incl. DY86. suitable for transistorised TV. \(40 /-\) P/P \(4 / 6\). LOPTs,
Scan Colls. FOPTs avallable for most popular makes, SYE/LABGEAR transistorised booster units B1/B3 or UHF, battery operated \(75 /-\), UHF mains operated \(97 / 6\), post free. COD despatch avallable. MANOR SUPPLIES, 64 GOLDERS MANOR DRIVE, LONDON. N.W.11. CALLERS 589B HIGH ROAD, N. FINCHLEY. N.12

\section*{TEST EQUIPMENT \(\rightarrow\) SURPLUS}

AND SECONDHAND
Signal generators, oschlloscopes, output meters, wave \(S\) voitmeters, irequency meters, multi-range meters. etc., etc., in stock-R. T. \& I, Electrontes, Lid., Ash-

\section*{RECEIVERS AND AMPLIFIERSSURPLUS AND SECONDHAND}
\(H^{\text {RO }}\) Rx5s. etc., AR88, CRI00, BRT400. G209, S640, Hetc., etc., in stock.-R. T. \& I. Electrontcs, Lit., \({ }_{4}\) Ashville Old Hall, Ashullle Rd., London, E.11. Ley.

\section*{NEW GRAM AND SOUND EQUIPMENT}

CONSULT Arst our 76 -page illustrated equlpment catalogue on Hi-Fl (6/6). Advisory service, generous Assoclation 18 Blenhelm Road, London, W.4 01 -995 1661.

\section*{\(\mathrm{G}_{\text {cameras. }}^{\text {LASGOW. Recorders bousht, sold, exchanged; }}\)} versa.-Vict etc., exchanged for recorders or vice-

\section*{TAPEWRECORDING ETC}

IF quality, durability matter, consult Britaln's oldest transfer service. Quality records from your sultable tapes. (Excellent tax-iree fund rakers for scheols,
churches.
Modern studio facilitles with Stelnway Grand. - Sound News, 18 Blenheim Road, London. W. 4. \(01-995\) 1661.
[28
 \begin{tabular}{l} 
YStudio/Location Unit. S.A.E. Leaflet. Deroy Studios. \\
High Bank, Hawk St., Carniorth, Lancs. \\
\hline 70
\end{tabular}

\section*{VALVES}

Valve cartons by return at keen prices; send 1/Godwin St samples and list.-J. \& A. Boxmakers, \({ }_{[10}\)

ARTICLES WANTED
Voluntary Rescue Services seek 2 VhF handportables, 1 mobile, 1 base station (minimum); Rannoch School, via Rannoch Station, Perthshire.

\section*{DESIGN AND DEVELOPMENT ENGINEER}

A progressive and interesting position is available at our factory in London, W.11, for an experienced circuit development engineer, with first class knowledge of Transistor Radio, both A.M. and F.M., duplex, transistor tape recorders.

Top salary according to experience and ability.

Please apply to: Mr. J. Dickman, Managing Director, Fidelity Radio Ltd. Olaf Street, London, W. 11 Telephone: 7270131

\section*{SENIOR ENGINEER}

\author{
(Colour Television)
}

The Road Transport Industry Training Board operates at its Wembley Park headquarters one of the most modern closed circuit colour television studios in the country from which teaching and training programmes are produced on both film and video-tape.
An opportunity exists for an experienced engineer to join our small, enthusiastic team. He will be responsible to the Chief Engineer primarily for the operation and maintenance of the video-tape recording and telecine systems.
Applicants must be experienced in the latest systems of broadcast quality colour television. Knowledge of PAL Encoding systems and TR 50 videotape equipment would be a distinct advantage. It is unlikely anyone under 24 years old will have sufficiently varied experience.
A salary will be negotiated in the region of \(£ 2250\) depending on experience. Conditions of service include three weeks holiday, life assurance and a contributory pension scheme.
Please send relevant personal history, stating how the above requirements are met and quoting reference ZH .150 , to:

J. R. Barber,

Personnel Manager,
RTITB, Capitol House,
Empire Way, Wembley,
Middlesex.

\section*{ELECTRONICS EXPORT SALES ENGINEER \\ Based on PARIS}

RAPIDLY EXPANDING FRENCH electronics firm specialising in TV and F.M. translators and transmitters seeks mature export sales engineer

CANDIDATES MUST
- speak and write absolutely perfect English
- like travelling. The work entails about 4 months a year away from Paris (throughout the world)
- be at least 28 years old
- have at least 3 years technical/commercial experience in our fleld
- be technically and intellectually sound
- be commercially dynamic

Candidates are preferred who speak a little French and Spanlsh
THIS IS A RESPONSIBLE POSITION
Exactly the right man will be offered a salary of at least 30000 Frs . ( \(£ 2500\) ) per year Curriculum vitae in English, in writing, with photograph (which will be returned)
L.G.T., 4, rue de Garches 92 St-CLOUD • France - as soon as possible

376

\section*{ELECTRONIC ENGINEERS}

Service Engineers required for Offices, throughout the United Kingdom, of well-known Company manufacturing Electronic Desk Calculating Machines. Applicants should possess a sound knowledge of basic Electronics with experience in Electronics, Radar, Radio and T.V. or similar field. Position is permanent and pensionable. Comprehensive training on full pay will be given to successful applicants. Please send full details of experience to the Service Manager, Sumlock Comptometer Ltd., 102/108 Clerkenwell Road, London, E.C.1.

\author{
Department of Electrical Engineering
}

\author{
H.N.D. Course in \\ Electrical and Electronic Engineering
}

The Department of Electrical Engineering of the Norwich City College offers students who have studied Physics and Mathematics at Advanced leval in the GCE and passed in one subject lor have obtained a good ONC or OND in Engineering) a modern sandwich course for the Higher National Diploma in Electrical and Electronic Engineering. Subjects studied include Computation. Statistics. Economics and Law, Electronics. Control. Telecommunicatlons, Power and Machines. Well balanced and interesting industrial training with pay will be arranged as required. The course is approved for major grant awards by Local Authorities.
Accommodation will be arranged by the College if desired.
Enquiries about the course starting in September 1970 should be made to:
E. Jones, B.Sc., Ph.D., C.Eng., M.I.E.E.,

Head of Department of Electrical Engineering,
Norwich City College,
Ipswich Road, Norwich, Norfolk, NOR 67 D.

W anded, all types of communtcations recelvers and test equipment.-Details to R. T. © I.
Electronics, Ltd. Ashvilio Old Hall, Ashville Rd., LonElectronics, Ltd., Ashvill Old Hall, Ashville Rd., Lon-
don, E.11. Ley. 4986 .
WANTED, televistons, tape recorders, radlograms, Wew valves, transistors, etc.-Stan willetis, 37 HIch St., West Bromwich. Staffs. Tel. Wes. 0186. [72 W EClO. Heathkit HW17. Besm. Eddystone EA12 Cash. ALLSETS \& Co. Lid.. 15 Burscough Street Ormskirk. Tel.: 73005.
[273

\section*{VALVESNWANTED}

We buy new valves, transistors and clean new comquotation by return.-Walton's Wuantities, all details, quotation
Worcester
St., Weturn.-Waiton's Wherhampton.

\section*{CAPACITY AVAILABLE}

A IRTRONICS, Ltd., for coll winding, assembly and A wiring of electronic equipment; transistorised sub unlt sheet metal work.-3a Walerand Rd. London,
S.E.13-Tel. \(01-852\) 1706.
CLECTRONIC and Electrical Manutacture and EAssembly. Prototypes and short production runs. East Mldiands Instrument co. Ltd., Summergangs Lane, Gainsborough, Lincs Tel 3260.
METALWORK, all types cabinets, chassis, racks Cor etc., to your own specification, capacity givallable for small milling and capstan work up to lin bar.-
PHILPOTT'S METALWORKS, Ltd.. Chapman St. PHILPOIT'S METALWORKS, Ltd.. Chapman St.
Lif
[if borough.

\section*{TECHNICAL TRAINING}

BECOME "Technically Qualifled" in your spare time, in radio. TV, servicing and maintenance. R.T.E.B. City \& Cullids, etc., highly informative 120 -page Gulde-free.-Chambers College (Dept. 837K), College

CITY \& GUILDS (Electrical, etc.), on 'Satisfaction - or Refund of Fee" terms. Thousands of passes. For detalls of modern courses in all branches of electrical engineering. electronics, radio, T.V., automation, (Dept. 152K), Aldermaston Court. Aldermaston, Berks,
\(\mathbf{R}^{\text {ADIO oncers see the world. Sea-going and shore }}\) Grants avallable. Day and boarding students. Stamp 1970. Grants available. Way and boarding students. Stamp
for prospectus. Wireless College, Colwyn Bay.
Technical Training in Radio, TV and Electronics 1 through world-famous ICS. For detalls of proven home-study courses write: ICS, Dept. 443, Intertext
House. London, S.W.B.

TV and radio A.M.I.E.R.E., City \& Gulds, R.T.E.B. 1 certs., etc., on satisfaction or refund of fee terms; thousands of passes; for full detalls of exams and home training courses (Including practical equipment) in al.
branches of radio. TV, electroalcs, otc. write for 132 . branches of radio,
page handbook-iree; please state subject. - British Institute of Engineering Technology (Dept. 150K), Aldermaston Court. Aldermaston, Berks. Dept. 150

\section*{TUITION}

Fingineers. -A Techalcal Certificate or qualincaElem. and bring you security and much better pay. Elem. and edv. private postal courses for C.Eng., Gullds, A.M.I.M.I., A.I.O.B., and G.C.E. Exams. Diploma courses in all branches of EngineeringMech. Elec., Auto, Electronics, Radio, Computers, Draughts, Bullding, etc--For full details write for FREE 132-page gulde: British Institute of EngineerAldermaston. Berks.
KINGSTON-UPON-EULL Education Committee. 1. College of Technolosy. Principal: E. Jones, M.Sc. F.R.I.C. Radar Malatenance certificate.-Information from College of Technology, Queen's Gardens, Kingston-upon-
Hull.
Merchant navy: Residentlal Radio Omeer Training.-R.M.S. Wray Castle. Ambleside, West-
[311
morland.

\section*{BOOKS. INSTRUCTIONS, ETC.}

TOR SALE-Wireless Journals,
60 Salhouse Road, Rackheath, Norwich. MANUALS, circuits of all Brittsh ex-wP 1939-4B M \({ }_{\text {wireless }}\) equipment and instruments from original R.E.M.E. instructions; s.a.e. for Hst, over 70 types.R.E.M. Balley, 167a Monat Road, Thornton Eeath,
Surrey, CR4-8PZ.

\section*{BUSINESS OPPORTUNITIES}

CROUP OF YOUNG qualifled electronic engineers Gith development laboratory in London wish to undertake development projects of low to medlum complexity, Box W.W. 348 , Wireless World.

\section*{FOR MIRE}

GOR HIRE CCTV equipment, including cameras. - monitors, video tape recorders and tape any period. -Details from Zoom Television, Amersham 5001. [75

\section*{development engineer}

For the programming, development and modification of automatic and airborne test equipment. Applicants should have knowledge and experience of electrical and electronic measurement, servomechanism tests, Manometric measurements and Gyroscopic equipment tests. In addition, familiarity with computer fundamentals and programming is required, and at least HNC or equivalent in a relevant subject.

Apply, giving brief details of education and experience to.
Personnel Officer Engineering
(General) (*)
BEA Engineering Base,
Heathrow Airport-London,
Hounslow, Middlesex

A NEW HI FI \(\begin{aligned} & \text { putse } \\ & \text { rate } \\ & \text { F.M. TUNER M:70 }\end{aligned}\)
- 14 SI TRANSISTORS, 4 SI
- TUNING METER
- DISTORTION-LESS THAN

SUITABLE FOR STEREO
SUITABLE FOR STERE
SHGNAL/NOISE SOdb
NOMINAL TUNING
NOMINA
MENT!LS! NO ALIGN
- AUDIO O/P-300mV
- FREQUENCY RESPONSE \(25 \mathrm{c} / \mathrm{s}-15 \mathrm{kc} / \mathrm{s}\)
- JSTAGES OF LIMITING
- POWER REQUIREMENTS
\(11^{*}\) by \(5^{\prime \prime}\) printed clicult board for above tuner with fitted tuning gang, together hoppinx list and amsembly detalis for all components required
\(75 /=\) (approx. cost of remaining componenta-6)
- A HIGH FIDELITY TUNER FOR ABOUT CIO

Printed clircuit accommodates all components, you Just Insert each one-if you can read and use a soldering fron- 45 mins.
The shopping list consists of two prepared orders whlch are sufficient for you to obtain all the components reguired cellent tuner is a must: a tuner that will lends. p. \& p. 5/-
Mail Orders to: DEPT. WW, MULTEL
30 BAKER STREET LONDON
W. 1

WW-126 FOR FURTHER DETAILS

\section*{Electronics and Instrumentation}

Robert L. Ramey
The purpose of this book is to provide a sound groundwork for understanding the basis of existing instruments and their applications. It will prove a useful introduction to instrumentation for students of electronics and a single course in electronics and instrumentation for students in other branches of science and engineering
55s net by post 57s 321 pp. 207 illustrations

\section*{obtainable from your bookseller or:}

THE BUTTERWORTH GROUP
Butterworths-lliffes-Newnes
88 KINGSWAY LONDON W.C. \(2 \quad 01\)-405 6900

\section*{- RADFORD}

\section*{NEW POWER AMPLFFIERS}

\section*{MONO POWER AMPLIFIER PA5O STEREO POWER AMPLIFIER SPA50}

The PA 50 is a transistor power amplifier having a power output in excess of 50 watts. The SPA 50 is a dual channel power amplifier having identical characteristics. The amplifier was designed basically for sound reproduction for professional use, but its exceptional characteristics in respect of distortion, transient response and power bandwidth make it also suitable for commercial and industrial uses.
The presentation is a low format of a depth suitable for shelf mounting. The amplifier is supplied in a metal housing suitable for fitting into a cabinet if required. The front facia is of extruded aluminium section with end pieces to form a complete frame. It is fitted with an anodised aluminium panel, screen printed.
The amplifier uses a true complementary symmetry output circuit with matched NPN and PNP transistors to obtain a virtually zero 'crossover' distortion. Improved circuitry has been developed to provide high gain in the output stages and drive circuits with wide bandwidth permitting a large amount of feedback to ensure an extremely low overall distortion. The success of the circuitry and the devices used is exhibited by the power bandwidth characteristic of 0.5 MHz at the -3 dB point.
The amplifier is unconditionally and absolutely stable with any form of output load of any impedance characteristic, from short-circuit to open-circuit. The amplifier itself is fully protected by current and voltage limiting and in addition is protected against the failure of a device in the power amplifier itself by a high speed current protection circuit in the power supply.

A new low distortion level of \(0.01 \%\) has been reached for the amplifier at the -3 dB reference to the rated output. with the distortion proportionally decreasing with output power. Approximately 60 watts (continuous tone rating) is available at clipping level at \(0.025 \%\) distortion both channels driven simultaneously.

Considerable attention has been given to reliability and ease of service. All components are to Mil specifications where possible. The amplifier is constructed in modules and all active circuits are on plug in type circuit boards. The contacts in the sockets and circuit boards are hard electro gold plated and the circuit boards themselves are immersion gold plated. Circuit board sockets are fitted to a printed circuit mother board thus eliminating wiring with its variations in performance and stability.
SPECIFICATION

Mains Input 110 volts. 120 V .130 V .220 V .230 V .
Output Matching
Impedance Output Power

Distortion
Input Facilities

Input Sensitivity
Functions 240 V. 50-60 Hz.

4-16 ohms (100 V line extra).
50 Volt-amperes nominal. (Watts into an 8 ohm resistive load). \(0.025 \%\) at clipping onset. \(0.01 \%\) at -3 dB ref: clip level. High impedance 22 K ohms. Low impedance. optional 200/600 ohms balanced/unbalanced. High impedance. 1 Volt r.m.s. Low impedance. 0.5 Volt r.m.s. Switched on front panel Mains on/off.
Louspeaker 1.
Loudspeaker 2.
Hi/Low Impedance input.
Price: PA 50-£55 SPA 50-£85
A complementary matching stereo pre-amplifier control unit SC 24 is also available price \(\mathbf{£ 7 5}\). Further details available upon request.

Radford Audio Limited Bristol BS3 2HZ, England

\section*{NEW FROM ILIFFE}

\section*{Colour Receiver Techniques}

\author{
T. D. TOWERS, M.B.E., M.A.(Camb.), M.A.(Glasgow), B.Sc., C.Eng., M.I.E.E., A.M.I.E.R.E., F.C.P.S.
}

This book is based on 12 articles printed in 1967 in the "Wireless World" and is one of the first publications to give an account of current U.K. practice in the design of colour television receivers.

The style of this book is simple and clear, with a minimal use of mathematics, presenting a logical, easily assimilated guide to the complexities of colour television receivers, starting with a clear exposition of the characteristics of the U.K. PAL "swinging burst" signal.

The general plan of a colour receiver is discussed thoroughly before dealing with the designers of individual sections (including the aerial-treated as part of the receiver). After a chapter reviewing the sections in relation to a complete receiver, the book concludes with two essentially practical chapters on colour test equipment and servicing procedures.

\section*{CONTENTS}

The Colour Television signal
Elements of the Colour Television Receiver
The Colour Tube
Colour Decoding "Matrix" Circuits

Sorting out the Colour Signals

Aerials for Colour Television
Colour TV Test Equipment
88 pp. 79 illustrations. 35s. net, 36s. by post
obtainable from your bookseller:

\section*{THE BUTTERWORTH GROUP}

Butterworths—lliffes-Newnes
88 KINGSWAY LONDON WC2 01-405 6900


\section*{1 - \(\begin{aligned} & \text { Electronic } \\ & \text { Components }\end{aligned}\)}

RCA Semiconductors from stock
Cat. 8 Price List by return Hams -free OSL cards 8
'Ham Tips' with every order.

Hi-Fi 45w Amplifier Set
(Data Sheet 204 by Request)
\begin{tabular}{llll}
\(2 N 2147(2)\) & \(16 / 3\) each & \(2 N 3241\) & \(6 / 9\) \\
40329 & \(4 / 9\) & \(40248(2)\) & \(3 /-\)
\end{tabular}

Miscellaneous Small Sig. AF.
Transistors
\begin{tabular}{llll} 
2N406 & \(5 / 3\) & \(2 N 408\) & \(5 / 6\) \\
2N2613 & \(5 / 6\) & 2N2614 & \(5 /-\) \\
2N2953 & \(5 /\). & 2N217 & \(6 / 3\)
\end{tabular}

Miscellaneous Power AF
Transistors
\begin{tabular}{lrlr} 
2N2869/ & & & 2N2870/ \\
2N301 & \(15 / 9\) & 2N301A & \(32 / 3\) \\
40022 & \(8 / 3\) & 40254 & \(8 /-\) \\
2N2147 & \(16 / 3\) & 2N2148 & \(11 / 3\) \\
40612 & \(6 / 6\) & 40421 & \(1 / / 9\)
\end{tabular}

Many other types in stock. Make sure of your copy of "Ham Tips" \& QSL card by ordering NOW!


\section*{GOMDON CENTRAS Lado stocies}

ELECTRICITY SLOT METER (1/- in alot) for A.C. maine. Flxed thrift to your requirements. Sultable for boteln, etc. \(200 / 220\) \%.
\(10 \mathrm{~A} .80 /-15 \mathrm{~A} .90 /-20 \mathrm{~A}\). \(100 /-\) P. P. \(7 / 6\). Otber amperagen aralisble. Reconditioned an aew, 2 yeari' guarantee. WIRELESS SET No. 38 A.F.V. Freq. range \(7.3 \%\) y.0 Mc/s. Work-
 tank eerial with liase. 88 per pair or 24 alngle. P.P. 25/-. MODERN DESK PHONES, red, ETeen, blue or topaz, 2 Lone E4Te3 or Mack, with internal bell and handset with 0-1 dis. 24/10/-, P.P. 7/6.
10-WAY PRESS-BDTTON INTER-COM TELEPHONES in BakeWite cave wlth junction bos h
20-WAY PRESS-BUTTON IKTER-COM TELEPHONES in Bakelite caee with junction box. Thoroughly overhauled. Guaraio. leed. 2715 , per ualt.
TELEPHONE COILED HAMD SET LEADS, 9 core, 5/6. P.P. 1/-. QUARTERLE ELECTHIC CHECE METERS. Reconditoned

8-BAKK OMISELECTOR SWITCEES. 25 contacts, alternate -tpleg e2 \(215 /-88\) bank hald wipe \(22 / 15 /-: 6\) bank halt wipe. 25 conimet 47/6. P.P. 3/6.
PIMAL EMD SELECTORs. Relayn, various callets, who 19 23 LISLE ST. (GER 2969) LONDDN W.C. 2 Closed Thursday 1 p.m. Open all day Saturday

\section*{BAILEY 30 WATT AMPLIFIER} \(10 \mathrm{Tr}^{\prime}\) s as spec'd and Fibreglass Pcb 68.7.6 8Cl25/126/40361 \(11 / 6\) \({ }_{4}{ }^{\text {C12.1 }}\) Al-R27 ( \(5 \%\) low noise) \& P. \(10 / 6 \mathrm{Cl}\).C6 (Mullard) \(7 / 6\) Mullard C431 \(2500 \mathrm{mFd} / 64 \mathrm{vw}\) with clip (Muliard) 15 \(10 \%\)

\section*{LINSLEY HOOD CLASS A AMP}

Set 10 C.F. R's 5
MJ480 (Matched for \(<0.1 \%\) T.Het 5 Capacitors 22/6 \(\begin{array}{lll}\text { MJ480 (Matched for <0.1\% T.H.D.) } & \text { per pair } 42 / 6 \\ \text { MJ481 (Matched for }<0.1 \% & \text { T.H.D.) } & \text { per pair } 52 / 6\end{array}\) 2N3906/2N40S8/2N69712Ni613 6/6 BC109 3/6 Pair of H/Sinks as spec'd for Mono \(S \times 4\) in. Lektrokit Pinboard \(4 \times 4 \frac{1}{2}\) in, pins \& Layout M1480 \(16 / 6\) Hunts KAll 2 BT \(2500 \mathrm{mFd} / 50 \mathrm{rw}\) 12/6 \(1250 \mathrm{mFd} / 40 \mathrm{vw} 9 / .250 \mathrm{mFd} / 50 \mathrm{vw} 3 / \mathrm{m} 50 \mathrm{mFd} / 50 \mathrm{vw} 5 / 9\) A.JFAGTORS. 72 BLAKE ROAD. STAPLEFORD. MOTTS.

\section*{TRANSFORMER LAMINATIONS enor mous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies. \\ MULTICORE CABLE IN STOCK CONNECTING WIRES}

Large selection of stranded single p.v.c covered Wire 7/0048, 7/0076, 14/0076 etc P.T.F.E. covered Wire, and Silicon rubber covered wire, etc

\section*{J. Black}

OFFICE: 44 GREEN LANE, HENOON, N.W. 4 Tel: 01-203 1855, 01-203 3033 STORES: 30 BARRETTS GROVE, N. 16 Tel: 01-254 1991


\section*{LAWSON BRANID NEW TELEVISION TUBES}

\section*{12* Types 44.10 .0} \(14{ }^{*}\) Types 44.19 .0 17* Types 65.19.0 19* Types E 6.19 .0 \(21^{*}\) Types \(\mathbf{6 7 . 1 5 . 0}\)
\(23^{\prime \prime}\) Types 69.10 .0 \(19{ }^{\circ}\) Panorama 88.10 .0 \(23^{*}\) Panorama El|. 10.0 19" Twin Panel E9.17.6 23" Twin Panel E12.10.0

Carriage and insurance 12"-19"-1216 \(21^{\prime}-23^{*}-1510\)

The continually increasing demand for tubes of the very highest performance and reliability is new being met by the new Lawson "Century 99 " renge of C.R.T.s "Century 99N are absolutely brand nero tubes throughout manufactured by Britain's largest C.R.T mamufacturers. They are guaranteed te give absolutely superb performance with needle sharp definition. Screens of the very latest type giving maximest Contrast and Light ourput; together poith high relicbility and very long life.
"Century 99 " are a complete range of tubes in all sizes for all British sets manufacturse 1947-1969.
Complete fitting instructions ara supplied with every tube.

2 YEARS FULL REPLACEMENT CUARANTEE WW-130 FOR FURTHER DETAILS


\section*{LAWSON TUBES}

18 Churchoown road MALVERN, WORCs. Tel. MAL 2100


\section*{}

Private enquiries, send two 5d stamps for brochure
THE QUARTZ CRYSTAL CO. LTD
Q.C.C. Works, Wellington Crescen

New Malden, Surrey 101-942 0334 \& 2988
WW-132 FOR FURTHER DETAILS

\section*{BIILD YOURSELFA TRANSISTOR RADIO}
hoamer elght mi I with tome comthol seven wavebanosMW1, MW2, LW, SW1, SW2. SW3 ANO TRAWIER BANG. hronistors and diodes Ferrte rod astial and telestopic Airspaced ganged turing condenset Airspaced ganged turing condense
Earpiece socket and rarpiece Selectivit switch Size \(9 \times 7 \times 4\) in Total Bullding Coste 56.19 .6 . P \& P 7/8. Plans and Parts ist 5/. Hfree with parisl.
pocket five med. and long waves 8 TRAWLEF BAND WITH SPEAKEF AND EARPIECE. 5 transistors and 2 diodas moving coil spather, elc. \(\left.5 \frac{1}{2} \times 1\right\}\) a 3 tin Total Building Coss 4 /18. P. \& P. 3/B Plans and Parts list I/C lifee with parts ROAMEA SEVEN Mh 4. 7 WAVE-BANDS MW1, MW2, LW, SW1, SW2, SW3, AND TRAWLER BANO. 7 transis Iors sand 2 diodes Fermite 100 aerial and tekscobit senia Socket for cor aerial. \(7 \times\) lin speakel Arspared ganged Tyming condanser etc.
Sue \(9 \times 7 \times 4\) in Total Building Cost t5/19/6. P. \& P 7/6. Personal earpiece mith switched socket los oryate listenin 5/. tille. Plans ond Parts lisf 3/. Thee with parns).
transona five medium. long ano TRAWLEA BAND WITH SPEAKER AND EARPIECE 5 unsistors 2 diodes. tarrite rod asial. moving coil speakec
 with parts)
transeight 6 wavebands. mw LW, 3 SHORT WAVES AND TRAWLE BAND. 8 mproved tybe thatistiors and 3 diodes Ferrite rod and telescopic aetials 3in spealer. Push pull potrie Suas \(9 \times 5\) \({ }_{6} 2 \mathrm{jin}\) Total Buibling costs 89/8. P \& \& 5/6. Pians and Parts lisis 5.- Hfee with kut Peisonal asplice with
for private histoning \(5 /\) axtia

RADIO EXCHANGE CO. LTD.
Dept WW. 61 High Street, Bedford. Phone 023452367

\section*{SPELIAL MONEF SAVIIC DISCOUNTS}
on the Best Hi-Fidelity Equipment on the Market Today
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ARENA F210 \(2 \times 10\) watte Stereo Ampllfer teak & & & & & \[
45
\] & \\
\hline case & £34 130 & & QUAD Electrostatic \(\quad \therefore\) & & & \\
\hline RMSTRONG 521 teak care & ¢52 0 0 & & WHAKFEDALE Denton per pair & 3120 & & \\
\hline  & & & WHARFEDALE Super Linton per pair & & & \\
\hline DULCI 207 ammplifier & \({ }_{\text {c2 }} 2\) & 617 & wHA & & & \\
\hline ULCL 207 M as abov & & & & £39 100 & 83219 & 6 \\
\hline accenta marnetic cartridge & £30 0. & E21 150 & \[
\begin{aligned}
& \text { WHARFEDAI } \\
& \text { Speaker Kit }
\end{aligned}
\] & & & 0 \\
\hline OODMANS Maxamp & & 642150 & PLAYING DECKS & & & \\
\hline EAK stereo 30 nlus & & & GARRARD 401 & ¢31 14 & & \\
\hline hasels model & ¢53 & 643100 & GARRARD AP75 & ¢23 16 & 617 & \\
\hline AK 8tereo 3 & ¢59 & 48 & GARRARD SRP22 & ع15 11111 & 5 & \\
\hline EAK Stereo & 25810 & cto & GARRARD SLP5B & \(\mathrm{E} 45^{8} 1\) & 637 & 0 \\
\hline mode & c63 & 0 & GARRARD SL75 \({ }_{\text {GARRARD }}\) & C35
819
819 & 630 & 0 \\
\hline Leased & & & Garrard slj & ¢13 17 & & \\
\hline NIKKO TRM 40B & ¢4810 & & GARRARD 60 Mark II & ¢17 5 & ¢ & \\
\hline NIKKO TRM 120 & ¢95 0 & 68410 & \begin{tabular}{l}
GARRARD 3800 \\
GARRARD 2025 T/C
\end{tabular} & \(\begin{array}{llll}\text { ع12 } \\ \mathrm{cl12} & 4 & 10 \\ 3 & 11\end{array}\) & \&10 & \\
\hline OURNE teal & ¢64 & 5410 & GARRARD 1025 & \(\begin{array}{llll}810 & 8 & 2\end{array}\) & 6910 & \\
\hline OGERS Ra & & & GOLDRING GLA日 & \({ }^{\text {c25 }} 1\) & & \\
\hline BROOK chawis & ¢44 0 0 & 35 & GOLDRINA GLA9P & c33
c35
1
15 & C28 & \\
\hline Brook in teak & 10 & 10 & GOLDRING GL75P & ¢46 18 & 637 & \\
\hline ANsUI AU 222 & & & THORENS TD150 Mb it & \({ }^{\text {c29 }} 8\) & \(\mathrm{ck}_{6} 18\) & \\
\hline RUVOOX ADS \(535 .\). & £80 & 66910 & THORENS TD150A Mk II & \begin{tabular}{c} 
¢41 \\
¢45 \\
\hline 10
\end{tabular} & \({ }_{6} 6\) & \\
\hline caped & 12 & ¢45 & THORENS TDI25 & ع63 & 654 & \\
\hline METROSOUND ST20 teak cased \(10 \times 10\) watts out & & & Plinths. tons and acce \(10 \%\) discount on retall & of abo & & at \\
\hline & ¢32 & 627100 & Stereo Cartridges & & & \\
\hline and & & & AUdIO TECHNICA AT86 & ¢6 0 & & 0 \\
\hline TEL & ¢28 7 & 622100 & SHURE M3 &  & & \({ }_{0}^{6}\) \\
\hline T TUNER & & & SHURE 32 & \&1 & & \\
\hline RENA F211 with D & E39 18 0 & & SHURE 55E & ¢18 & & \\
\hline ULCI FMT7 Mono tuner & ¢22 & 61 & SHURE M75E &  & \({ }_{612}\) & \({ }_{0}\) \\
\hline DULCI FMT78 ster & & & SHURE V13 M & 840153 & & \\
\hline tuner & 129 & & GOLDRRING Csa & c & & 6 \\
\hline teak & ¢82 10 5 & c70 100 & GOLDRIN & \({ }_{\text {¢13 }} 1817\) & & 0 \\
\hline EAK Stereofetic & & & & & & \\
\hline model & ¢58 11 & c46 & STEREO & ND & ERS & \\
\hline EAK & & & AKAI Model 4000 D & & & \\
\hline OAD & \&5 & & AK 41 & & & \\
\hline UV & & & dec & £130 0 & 410410 & 0 \\
\hline MS & & & Arwal & & & \\
\hline  & ¢52 9 0 & 644176 & eck & 848 & 13910 & 0 \\
\hline astrose. & ¢40 4 & 634176 & ANY & £87 10 & 67410 & \\
\hline TU & & & SANYO MR929 4 track & & & \\
\hline ARENA TI500 & ¢64 & & & \(¢ 10018\) & 10 & 0 \\
\hline & & & SANY & & & \\
\hline RMSTRONG 525 & 88716 & & REV & & & \\
\hline RMSTRONG 526 & & & & 87 & 169 & \\
\hline ODMANS 3000 & £78 14 & & AKAI 1710 w & 100 & & \\
\hline & & & monaura & P & DERS & \\
\hline deconer & \(£ 110 \quad 0\) & & GRUNDIG TK120 & & & \\
\hline NIKKO FAM &  & C59 10 & nental tw & & & \\
\hline SANSUI 350 &  & ¢114 10 & GRUNDIG TK144 4 -track & 0 & & \\
\hline SANSUI 2000 & ¢162 3 & L147 100 & & ¢47 13 & 54110 & \\
\hline \(\underset{\mathrm{rms}}{\text { SANYO DC80 }} 2 \times 30\) watts & & & GRUNDIG TK14日 Auto- & & & \\
\hline & & & & 10 & 10 & 0 \\
\hline LETON F2000 & \(£ 5119\) & & & ¢48 11 0 & 4110 & \\
\hline tts rms .. .. & & & PHILIPS 4308 2-bpeed track tape recorder & & & \\
\hline LLETON CR10T Tuner & & & OMPLETE HI-FI & & & \\
\hline mplifer AM/FM & & & ON 404 SY & & & \\
\hline TELETON MXP90 Tuner & 3010 & & Garrard SP25. separate & & & \\
\hline mpliffer AM/FM with coder, two speakers. & & & watt ampliner,
helf type speakers & & & \\
\hline \(8^{\circ}\) hase and \(2^{\circ}\) tweeter speakers in matching & & & teak or blond oak & \(£ 57\) & 64910 & 0 \\
\hline cabinets. & ¢64 12 & 649100 & ription turntable & & & \\
\hline SPEAK & & & grated tun & & & \\
\hline \[
\begin{aligned}
& \text { Price: qu } \\
& \text { Bpecified) }
\end{aligned}
\] & & & ith stereo decoder & & & \\
\hline & & 17 & pa & & & \\
\hline ARENA HT10 teak or & & &  & ¢82 & 6750 & 0 \\
\hline CELESTION Dition 10 & \({ }_{¢ 2119}^{19}\) & 177 17 & scription turntable. & & & \\
\hline CELESTION Ditton \(15 .\). & E31 3 & 626 & masnetic cartriage, in- & & & \\
\hline GOODMANS Maxim \({ }^{\text {a }}\) & c20 15 & 1615 & \(2 \times 12\) watts rms , de- & & & \\
\hline GOODMANS Marim & 824
830
830 & 61915 & coder, fitted hinsed per- & & & \\
\hline GOODMANS Marnum K.. & ¢ 40 & & & & 119 & 0 \\
\hline LEAK Mandwich. & ¢4310 & 63710 & speakers per pair & £37 10 & 632 & \\
\hline LEAK Mimt Sandwich & £29 15 & 225 & & & & \\
\hline LOWTHER Accousta PM6 & ع45 10 & & TRANSCRIPTION ARM & & & \\
\hline KEF Creata . \({ }^{\text {L }}\). & \({ }_{822} 3\) & 418 & & \({ }_{8} 83\) & 22 & \\
\hline KEF Celest & ¢29 & 625 & - & 11210 & 610 & \\
\hline F Concord & ¢43 10 & 63710 & G0LDRLNG L69 amm & ¢9 5 & & \\
\hline
\end{tabular}

All goods are in manufacturer's sealed cartons and are insured against loss or damage in transit. Guaranteed "by return" service. Add \(7 / 6\) to all orders for p. \& p. Send cash/cheque with order. Personal Callers Welcome-Business Hours.

\section*{POWER ENGINEERING USING THYRISTORS}

\section*{VOLUME 1}

\section*{Techniques of} Thyristor Power Control

\author{
30/- Mullard Poseage I/PRINCIPLES OF PULSE CODE MODULATION by K. W. Cattermole. 95/-: Postage \(2 /\). SIGNALPROCESSING, MODULATION AND NOISE by J. A. Betts. 42/-. Postage \(1 / 6\). \\ CLOSED CIRCUIT TV FOR ENGINEERS \& TECHNICIANS by Leonard C. Showalter. 50/-. Postage I/6. THE HI-FI AND TAPE RECORDER HANDBOOK by Gordon J. King. 40/-. Postage 2/6. \\ UNDERSTANDING AND USING UNIJUNCTION TRANSISTORS by S. Hoberman. 24/-. Postage I/20 SOLID STATE PROJECTS FOR THE HOME by R. M. Marston. 18/-. Postage 1/- \\ MINIFLUX MANUAL by Miniflux Electronics Led. 30/-. Postage \(1 / 6\). \\ THE SEMICONDUCTOR DATA BOOK by Motorola. \(60 /\)-. Postage \(4 / 6\). TRANSISTOR SWITCHING AND SEQUENTIAL CIRCUITS by John J. Sparkes. 25/-. Postage 1/-.
}

\section*{THE MODERN BOOK CO.}

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-21 PRAED STREET.
LONDON, W. 2
Phone PADdington 4185 Closed Sat. 1 D.m.
WW-132 FOR FURTHER DETAILS

\section*{Radar Scanner \& Ind Units}

Comprise Elliptical scanner with cwin horn feed and cuning unic 8.2 to \(12.4 \mathrm{~K} \mathrm{Mc} / \mathrm{s}\). Rotation mount with bearing indicacor, slip ring unic, azlmuch conerol and levelling adjustments. Mounting frame with feet Indicator unit with cables. These are for use on 12 v. D.C. the Ind uses transistors and sub. min size of unit on stand \(5^{\prime}\) high \(3^{\prime} 6^{\prime \prime} \times 2^{\prime} 6^{\prime \prime}\). The exact purpose of these units is not known, appear to be a 2 channel \(R x\) with visual and aural indication These would lend themselves to conversion to smal radar set, supplied in good condition, made in France.

Price 45 plus 63 carr

\section*{Radio Telephone Units}

Boot mounting eype for remote concrol 80 to 100 \(\mathrm{Mc} / \mathrm{s}\) single channel, double conversion \(\mathrm{Rax}_{\mathrm{x}}\) with erystal filter, use 16 valves and 14 transistors as made by Hudson Supplied in good internal condition slightly soiled outer cases, less xtals.

Price f 15 plus 10 -carr.

\section*{S.A.E. for lists}

\section*{A. H. SUPPLIES}

57 Main Road, Sheffield, S9 5HL

\section*{"SPECIAL OFFER"}

Ex LCC Ultra radios requiring attention to clear from ¢4-0-0, each, callers only. 10 watts output, provision for microphone. Sult small factory, hall, public address Standard play Professional Scotch Boy \({ }^{\circ}{ }^{\circ}\) Polyester only. Approx., \(2,500 \mathrm{ft}\). 19/6. LIst Price \(£ 4-0-0\) HARRINGAY PHOTOGRAPHIC LTD. 435 Green Lanes, London, N. 4 • 01-340 5241

\section*{TRAIN TODAY FOR TOMORROW}

Start training TODAY for one of the many first-class posts open to technically qualified men in the Radio and Electronics industry. ICS provide specialized training courses in all branches of Radio, Television and Elec-tronics-one of these courses will help YOU to get a higher paid job. Why not fill in the coupon below and find out how?

Courses include:
- RADIO/TVENG. \& SERVICING
- AUDIO FREQUENCY
- Closed circuit TV
- ELECTRONICS-
- ELECTRONIC MAINTENANCE
- INSTRUMENTATION AND CONTROL SYSTEMS
- NUMERICAL CONTROL ELECTRONICS
- COMPUTERS
- PRACTICAL RADIO (with kits)

Guaranteed Coaching for:
- C. 8 G. Telecom. Techns' Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/TV Servicing Cert.
- Radio Amateur's Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education

\section*{EITO
EST 1891}

Start todey the ICS way
INTERNATIONAL INTERNATIONAL
CORRESPONDENCE SCHOOLS
Dept. 230, Intertert House, Stewarts Rd... London, S.W.8. Please send FREE book on

Name
Address
4.70

MARCONI RADAR TEST SET 8500-9680 Mc/s Type TF890A/4 Incorporating: KLYSTRON SIGNAL GENERATOR, THERMISTOR POWER MONITOR, SPECTRUM analyser and directive feed assembly. Brand new, maker's guarantee.
Offers: Tel. 021-454 8305

\section*{VACUUM}

OVENS, PUMPS, PLANT, GAUGES, FURNACES, ETC., GENERAL SCIENTIFIC EQUIPMENT EX-STOCK, RECORDERS, PYROMETERS, OVENS,
r. F. HEATERS. frEE CATALOGUE.
V. N. BARRETT \& CO. LTD. I MAYO ROAD, CROYDON, CRO 2QP. 01-684 9917-8-9

CAPACITOR DISCHARGE IGNITION SYSTEM


Using the article as published in the January 1970 issue of Wireless World. a universal printed-circuit board has been designed suitable for both positive and negative earth ignition systems. This also enables simple conversion to opposite polarity if the vehicle is subsequently changed.
The printed-circuit board incorporates Cinch printed-circuit mounted screw terminal blocks for the input and output connéctions, tagether with a printed-circuit mounted fuse carrier with fuse.
A complete complement of components and semiconductors are supplied rogether with a ready drilled and fluxed printedcircuit board. drilled heatsink, hardware and suitable transformer.
Although wiring details are supplied for both positive and negative earth versions. customers must state which version they require so that the correct semiconductors can be supplied.

Price 29-5-0 plus 10/- carriage.
Trade Enquiries Invited. Mail Order Only.
DABAR ELECTRONIC PRODUCTS
98a, Lichfield Street,
Walsall, Staffs.

WW 133 FOR FURTHER DETAILS


\section*{GEARED MOTORS}

Microswitches, Timers, Meters, Potentiometers, Capacitors, all new 6d. stamp for catalogue.
F. HOLPORD \& CO.

6 IMPERIAL SQUARE, CHELTENHAM

\section*{AMERICAN \\ TEST AND COMMUNICATIONS EQUIPMENT * GENERAL CATALOGUE AN/104 1/6 * manuals offered for most U.S. equipments \\ SUTTON ELECTRONICS Salthouse, Nr. Holt, Norfolk. Cley 289}


MADE BY
SIEMENS MENS
10 amp. contacts. Once on/off every 24 hours. 45 ming. vilntenum time hapse. In tron ciad case with tid. Bize \(5^{\circ} x 41^{\prime} x 41^{\circ}\). Weight \& th. Can also be supplied with solar dlae if reculped.
ON dusk, OFF at any manualy pre-set time. \(37 / 6\) Poot Extra tripe \(6 /\) per pair.
HORSTMANN Clockwork TIME SWITCHES 15-day Jemelled Movement. Once onjorp every 24 hourn
 kuaranteed. 5 mp m.
Metal case it required \(10 \%\) extra
VENNER TIME SWITCHES \begin{tabular}{l}
\(290 / 250 \mathrm{v}\). Beconditioned. Qeared motor. I R.F.M. Remorable \\
cam. ON 15 secs. OFF 15 necs. \\
10 atop. contact. It metal case. \\
\hline
\end{tabular}
Box 365 KINGSWOOD SUPPLIES (W.W.23)
4 Sale Place, London, W.2. Tel.: 01-723 8189

COMPONENT PARTS EX STOCK FOR FOLLOWING HI FI DESIGNS
BAILEY, LINSLEY-HOOD, TEXAS INSTRUMENTS
For list of parts and other information send S.A.E. to: TELERADIO FLECTRONICS
325 FORE STREET, N. \(9 \quad 8073719\)


\section*{EXCLUSIVE OFFERS LATEST TYPE HIGHEST QUALITY CABINETS}

FOR STANDARD 19 " RACK PANELS totally enclosed

\({ }^{74^{*}}{ }^{\text {A }}\) deep \(4^{4} \times 24^{\text {high }}\) Wide.
TXPE
\(\times 30^{\circ}\)
Beep
\(\times 24^{\circ}\) DOUBLE BIDED. take rack pabels take rack pabels
both aidea, that lis
back and front and back and front and
are drilled and
tapped all the way tapped all the way
down every this parpose. They are afted with
"Instantit" paten
 rack mounte which are vertically and
horizontally Adjusthorizontally adjuat-
able-these the paneif to be recessed when they
re sticd with proh are fitted with pro-
jecting componento
aud it is destred to add it is desired to doors. *Other features include-all coracra snd edges rounded. nterior attings troplealised. Removable buthe Removable built in hiower ducta. Ventlated and hasect proofed tops. Detuchable side panele. Full length instantly detachable doors itted expanding bolt, it aovernment \({ }^{2} 107\) before devaluation. Finished in grey primer and la new condition.
PRICE
\(\mathbf{2} 26.10 .0\) each (Carriaze extra)

PRICE 826.10 .0 oach (Carriaze extra)
Pull length door 25 each extry
 and they nre pot required to be enclospd. TYPE C: \(80^{*}\) hitgh \(\times 27^{\circ}\) deep \(\& 22^{4}\) wide. American HLandard First Grade totally encloeed rentilated \(19^{*}\) rack Open front hited rack mounte drilled and tapperl all the Way down every \(f^{\text {c }}\). Full length rear door with iatch. Fininhed in grey there cabinets have been used but are in recomomended they are reesprayed before use.
 lightiy smaller and Anished in black otherwise they are Made by RR.A. of U.A.A. PRICE 212.10 .0 each (Carriage extra) U.s.A. These unita have front and rear doors and rack mounta internally recesaed within the cabluet. The rack mounte are stapdard \(19^{\circ}\) Wide. The actual front panel able glazed panel.
PRICE
£.10.0 esch (Carriage extra) TRANSPORT: We bave made apecial economalcal transport andatnaged und to arold expenalve erating.


TAPE RECORDING YEAR BOOK
COMPLETELY NEW NINTH EDITION with comprehensive catalogue section and articles by experts

PRICE 10/6d. from
7 alverstone avenue,
EAST BARNET, HERTS.

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{SURPLUS HANDBOOKS} \\
\hline 19 set Circuit and Notes & & 7/-p/p 9 \\
\hline 1155 sel Circult and Notes & & 7/- p/p 9d. \\
\hline H.R.O. Technical Iustructions & & 6/- p/p ed. \\
\hline 38 net 'Technical Instructions & & 8/- p/p dd. \\
\hline 46 eet Working Inntructions & & 8/- p/p 9d. \\
\hline 88 net Technical Instructiona & & 7/6 p/p 9d. \\
\hline 18C.221 Clircult and Notes & & 6/- P/D 9d. \\
\hline Wavemeter Class D Tech. Inst. & & 6/- P/p Pd. \\
\hline \multirow[t]{2}{*}{WC. 1000 (31 set) Circult and Notes} & & 6/- p/p 9d. \\
\hline & & 8/- p/p od. \\
\hline Cit. 100/13.28 Circult and Notes. & & 10/6 p/p md. \\
\hline \multirow[t]{2}{*}{R. 107 Circult and Notes AR.88D Inatruction Manial} & & //6 p/p od. \\
\hline & & \(16 \mathrm{p} / \mathrm{p} 10 \mathrm{~d}\). \\
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|l|}{Circuit Diakram \(5 / 6\) each poat iree. R.1116/A, R.1224/A. R:1355,} \\
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|l|}{52 net Bender and Recelver circuits \(8 /-\) poat tre} \\
\hline \multicolumn{3}{|l|}{Colour Code Indicator 2/6. p/p 6i.} \\
\hline \multicolumn{3}{|l|}{8.s.E. with all enquiries please.} \\
\hline Postage rates apply & to U.K & \\
\hline \multicolumn{3}{|l|}{Sall order only to:} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{INSTRUCTIONAL HANDBOOK SUPPLIES Dept. W.W. Talbot House, 28 Talbot Gardens, LEEDS 8}} \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow[b]{62}{*}{\begin{tabular}{l}
WE MAKE TRANBFORMERS AMONGET OTHER TRINGB AUTO TRANSFORMERS. \(0.110-200-220-240\) Fa,c. up or down, fully ahrouded ntted termalnal blocks. 30 w 28/6; \(50 \mathrm{w} 34 / \overline{\mathrm{w}}\) \(75=41 / 6: 100 w 49 /-150\) w \(80 /-200 w 75 /-; 300\) w \(87 / 6\) : \(240 /-1500\) w \(345 /=; 2000 \mathrm{w} 480 /=; 3000 \mathrm{w} 600 /\) and up to \(80 n 0\) watt to order. \\
MAINS TRANSFORMERS. Prim 200/240 v a.c. TX1. \(425 \cdot 0-425\) v \\
 \\
 \\
 6.3 v 2 a CT, 6.3 v \(2 \mathrm{a}, 6.3\) v \(1 \mathrm{a}, 78 / 6 ; \operatorname{TX} 8260-0-250\) จ 65 Ma 。 6.3 ₹ \(1.5 \mathrm{~s} .42 /=\); MT1 200 v \(30 \mathrm{Ma}, 6.3 \times 1 \mathrm{~s}\). 2A/=: MT2 230 v 45 Ma, 6.3 \% \(1 . b\) a, \(29 / 6\) \\
MULTIVOLT TRANEFORMERS. Prim 200/240 v a.c. OMT \(4 / 1\) One tapped sec. \(6 \cdot 20-30-40 \cdot 60 \mathrm{~V}\) giving \(5-10-15-20-25-30-35 \cdot 40-\) \(55-60,10-0-10,20-0.20,30-0-30\) v a.c. \(1 \mathrm{amp}, 45 /-;\) ditto tran \(2 \operatorname{mpp}\) OMTA/2. 67/6: OMTS/1 One tapped sec, \(40-60-60-80-90-10\),
\(100-110\) v, Riving \(10-20-30-40-50-60-70-80-90-100-110\). 10-0-10, \(20-0-20,30-0-30,40-0-40,80-0-50 \vee\) a_c. 1 rmp. 67/6; OMT \(40 / 3\) one sec 40 V CT 3 mmp . \(67 / 8\) \\
DUOVOLT TRANSFORMERS. Prim 200/2401v a.c. "D12V" Sec 1, 12 v 4 a , Seo 2, 12 v 4 it, 71/6: "D25V" sec \(1,10-20-25 \mathrm{v}\) \(2 \mathrm{a}, \mathrm{Bec} 2,10-20-25\) 2 \(2,71 / 6\). \\
LT AUTO TRANSFORMERS. Prim 200/240 v m.c. output 24 v a.c. 150 watt \(90 /-\); 250 watt \(135 /\)-; for quartz lodine lamps. HEATER TRANSFORMERS. Prim 200/240 v E.o. 6.3 \% 1.6 \\
 \(58 / 6 ; 5\) а \(75 /-8\) a \(112 / 6 ; 12=165\)-. MIDGET RECTIFIER TRANSFORMERS. For FW rectification, \\
 Size \(2 \times 2 \frac{1}{} \times 1\) Ins., MT12V \(12-0.12\) v \(1 \mathrm{a}, \mathrm{MT} 20 \mathrm{~V} 20-0-20 \mathrm{v}\) \(0.75 \mathrm{a}, 22 / 6\) each. \\
OUTPUT TRANSFORMERS. Mullard 5/10 UL 67/6; 7 watt Etereo UL \(60 /-; 3\) watt PP3 30/-; PP \(11 \mathrm{~K} / 3-8-15 \mathrm{ohm} 21 /-\) Multi ratio \(7 / 10\) watt \(33-; 30\) watt (KT66 etc.) \(3-18\) ohm 78/6; 50 watt (KT88 etc.) \(135 /-; 100\) watt \(225 /-:\) ato mstching tran. 10 watt 3-18-15 ohm up or dowa 15/=. \\
W.W. IGNITION CIRCUIT tran to spec \(50 /-\) plos \(1 / 6\) p.p. W.W. COLOUR TELE. Choke L1, \(60 /-\); Tran Ti 57/6; Fleld \(0 / \mathrm{P} 80 /\) - Carriage enfa on all tranuformers \(4 / 6 \mathrm{minimmen}\). . BULK TAPE ERASERS. \(200 / 250\) va.0. immediate erature of any nize apool of tagnetle tape, new bozed \(42 / 6\) p.p. 3/- \\
FLUORESCENT LOW VOLTAGE LIGMTING \\
12 v d.c. fitting and transistor invertera. \\
Fitted perspex difiusera, 12 lns. 8 watt, 70/-; 21 ins. \\
13 watt. 95/-; leas difluser, 18 ins. 15 watt, 70/=. \\
Transistor inverters for 40 watt or t win 20 watt tubes at \(150 /-\) for single 20 watt tube \(100 /-\) plu CONDENSERS. Electrolytice, \(1000 \mathrm{mfd} 25 \mathrm{v}, 4 / 6 ; 2500 \mathrm{~m} / \mathrm{d}\) \(50 \mathrm{v}, 10 / 6 ; 6000 \mathrm{mfd} 15 \mathrm{~F}, 5 /-; 1500 \mathrm{mid} 150\) \%. 12/6: \(80 \mathrm{~m} / \mathrm{d}\) 450 F. \(5 /-100 \times 200 \mathrm{mfd} 350\) v, \(7 / 6 ; 60 \times 100 \mathrm{mifd} 460 \mathrm{v}, 7 / 6\) LOUDSPEAKERS. New boxerl. ramour maken, 25 watt \(107 /-\) : \(13 \times 8 \mathrm{ins} 40 /=; 18 \times 8\) sian. fited 2 tweeters and cm mover \(70 / \mathrm{l}=\) LOUDSPEAEER. Fx-equip, perfeet Elac ete., 6 ina- 3 ohms, 10/- plus \(3 /-\mathrm{min}\). cartiage. \\
Carriage extra on all orders. \\
S.A.E. ALL ENOUIRIES PLEASE. MAIL ORDER ONLY 46 KENILWORTH ROAD. EDGWARE, MIDDX. HAB \(8 Y G\). \\
Tel: 01-9589314
\end{tabular}} \\
\hline \\
\hline
\end{tabular}

MACLEANS 6"FAN
230 v AC . 3 Amp. 2.800 rpm . 55/-pp 6/-
IMLOCK COLLAPSIBLE ALUMINIUM CHASSIS FRAMES
Size \(10 \frac{1}{2}^{\prime \prime} \times 83^{\prime \prime} \times 6 \frac{1}{2}\)
20/.pp 3/-
AIR CONTROL INST, BLOWER MOTORS Single phase 200-250v AC 2,800 rpm.
Outlet size \(2 \frac{1}{2}{ }^{2} \times 1 \frac{1}{2}\)
20-WAY 2-POLE P.O. TYPE JACK STRIPS
101" \(\times 3 \frac{1}{2}\) ". \(19{ }^{*} 6 \mathrm{pp} \mathrm{3/6}\). Ex-equip.
CLAUDE LYONS VOLTAGE STABILIZER
Type TS-2-5440 Input 198-258v 47-65
Output \(240 \pm 0.25 \%\) v 12 Amp . 2.88 KVA
Ex-equipment. Brand new condition.
\(\mathbf{£} 35 \mathrm{0s}\). Od. plus \(\mathbf{£ 2}\) carriage.
ANALEX POWER SUPPLIES
Size \(7^{\prime \prime} \times 19^{\prime \prime} \times 13^{\prime \prime} .230 \mathrm{v}\) AC Input.
Output \(6 \mathrm{v} 5 \mathrm{Amp} \times 2 ; 18 \mathrm{v} 7.5 \mathrm{Amp}\). DC Fully Transistorised
Marginal adjustment on outpu
£35 0s. Od plus \(£ 3\) carriage.
ANALEX POWER SUPPLY
Size \(13^{\circ} \times 19^{\prime \prime} \times 5 \frac{t^{\prime \prime}}{}{ }^{\prime \prime} .230\) vAC Input.
36 v 14 A Output. Stabilized.
Ex. Equip. Fully Tested. New condition.
\(\mathbf{£ 2 7} 0\) s. Od. plus \(£ 210\) s. carriage.
AUTOTRANSFORMER: MAJESTIC
WINDINGS-3 ONLY
Input 240v 50 cycle. Output 115 v 4.2 KVA
In metal case size \(10^{\prime \prime} \times 8 \frac{1}{2} \times 11\)
\(\mathbf{£ 1 7 1 0 s . 0 d . ~ p l u s ~} \mathbf{£ 2}\) carriage.

\section*{TRANSFORMERS}

Input 230v
Output: \(6.3 \mathrm{v} 8 \mathrm{Amp} \times 2 ; 6.3 \mathrm{v} 4 \mathrm{Amp} \times 3\)
Size \(43^{\prime \prime} \times 43^{\prime \prime} \times 6^{\text {² }}\) approx.
New condition tested.
Input 230v. Output: 6.6v 122Amp Size \(6 \frac{3^{\prime \prime}}{2} \times 7 \frac{1}{2}{ }^{\prime \prime} \times 9^{\prime \prime}\) including terminals
Brand new. £15 0s. Od plus E2 carriage.
DAVIS DIMMER TRANSFORMERS
Manufactured by Ariel Davis Mfg., U.S.A.
Input: 230v AC 60 cycle
Maximum overall rating amps-26.
Variable outputs Type 1
\(6.5 v \times 3 ; 13 v \times 1 ; 26 v \times 2\).
\(19.5 v \times 3\); \(13 v \times 1\). Only 2 of each type
All outputs and inputs have resetable
clrcuit breakers. Ex-equipment but fully tested \(\mathbf{~} \mathbf{£ 1 7} 10 \mathrm{~s} .0 \mathrm{~d}\). each \(\mathbf{£ 2 1 0 \mathrm { s } . 0 \mathrm { d } \text { . carriage }}\) mainland only.
Size \(21^{\prime \prime} \times 10 \frac{1}{2}\) " \(\times 8^{\prime \prime}\)
GARRARD 2 TRACK TAPE DECKS
MAG TYPE
Solenoid operated 230v50v Solenoid
Ideal for contin. tape playors etc.
£710s.0d. each. Brand new in manufacturers cartons. pp 22/6d.
STC SEALED RELAYS
Double pole change over
\(48 v 2500\) a ex-equipment
2/6d. each pp. 1/6d.
OMAON MIDGET POWER RELAY
Type MK1 230v AC New 10/6d. each pp. 1/6d.
TELESCOPIC AERIALS CHROMED
7 " closed \(28^{\prime \prime}\) extended. 6 section
Ball jointed base 4/6d. each pp. 1/6d. New
4 MULLARD DM160 INDICATORS
Size approx. \(1 \frac{3}{3} \times 1 \frac{1}{2}{ }^{\prime \prime} \times \frac{1}{\frac{1}{2} "}\) in plastic holder;
green plastic cover ex-equipment
7/6d. complete pp. 1/6d.
VIBRASHOCK EQUIPMENT MOUNTS
Made by delaney gallay
Type 7002-R2 45-75ibs.
Size \(27^{\prime \prime} \times 21^{\prime \prime} \times 2^{\prime \prime} .5 /=\) each pp. \(1 / /\).
POWER SUPPLIES MANUFACTURED BY
POWER ELECTRONICS LTD
20v 4.5 amp :
\(10 \mathrm{v} 3 \mathrm{~A}: 10 \mathrm{v} 300 \mathrm{ma}\)
\(£ 15\) 0. 0. pp. \(30 /=\)
AC INPUT 200-250v AC In;
\(20 \mathrm{v} 4.5 \mathrm{Amp} ; 10 \mathrm{v} 3 \mathrm{Amp} ; 10 \mathrm{v} 300 \mathrm{MAmp}\).
\(\mathbf{£ 1 5 0 . 0 . p p . 3 0 \%}\)

\section*{FIELDELECTRIC LTD.}

3 SHENLEY ROAD, BOREHAMWOOD, HERTS.
Teiephone Elstree 6009 adjacent elstree mainline station Callers welcomed

\section*{High grade of stability of electric parameters Resistance and durability Long operational life}

\section*{Polish}
electronic tubes for radio receiver sets electronic tubes for TV receiver sets and
electronic components are offered by


Foreign Trade Enterprise Warszawa, Al. Jerozolimskie 44, Poland P.O. Box Warszawa 1 No. 370.

Telex No. 81437

Thanks to a bulk purchase we can offer
BRAND NEW P.V.C. POLYESTER AND MYLAR RECORDING TAPES
Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polythene and have fitted leaders, etc. Their quality is as good as any other on the market, in no way are the tapes faulty and are not to be confused with imported, used or sub-standard tapes. 24-hour Should soods not
price and post meth full approval purchase price and postage will be relunded.
S.P. \(\left\{\begin{array}{lllll}3 \mathrm{in} . & 160 \mathrm{ft} & 2 / & 5 \mathrm{in} . & 600 \mathrm{ft} \\ 5 \text { Sin. } & 900 \mathrm{tt} & 8 / & 7 /\end{array}\right.\) S. \(\left\{\begin{array}{lllll}57 \mathrm{in} . & 900 \mathrm{ft} & 8 / 6 & 7 \mathrm{in}, & 1,200 \mathrm{ft} . \\ 3 \mathrm{in} . & 225 \mathrm{ft} & 2 / 6 & 5 \mathrm{in} & 500 \mathrm{t}\end{array}\right.\)

 fin. 1,800ft. \(16 /-\quad 7 \mathrm{in}\). 2,400ft.
COMPACT TAPE CASETTES AT HALF PRICE
60,90 , and 120 minutes playing time, in original Plastic library boxes. \(12 / 6\) each. MC 120 18/3 each.

\section*{STARMAN TAPES}

28 LINKSCROFT AVENUE, ASHFORD. MIDDX.

Ashford 53020
WW-136 FOR FURTHER DETAILS

\section*{WANTED}

Redundant or Surplus stocks of Transformer materials (Laminations, C. cores, Copper wire, etc.), Electronic Components (Transistors, Diodes, etc.), P.V.C. Wires and Cables, Bakelite sheet, eic., etc. Good prices paid
J. BLACK
+4 Green Lane, Hendon, N.W. 4 Tel. 01-203 1855 and 3033

To persons interested we forward detailed information, catalogues and tenders.

DIOTRANSALES
POO. BOX 5
WARE HERTS WARE, HERTS
TEL. WARE 3442

\section*{ \(\begin{array}{ccc}100 \text { PIV } & 1-24 & 9 / 6 \\ 400 \text { PIV } & 14 / 6 & 7 / 6 \\ & 12 /\end{array}\)} All tested porfect \(12 /-\) TEL. WARE 3442 All rested
Buaranteed. porfect \(7 / 6\)
funetional \begin{tabular}{c|cc}
100 ùp & \(\begin{array}{l}\text { We will also buy } \\
\text { yoursurplus stock }\end{array}\) \\
6/\% \\
Yevices & \(\begin{array}{ll}\text { Send } \\
\text { lists. }\end{array}\) & \\
\hline
\end{tabular} SEMICONDUCTORS FOR W.W.W SYSTEM \(2 N 3525\)
\(2 N 3055\) \(2 N 3055\)
\(2 N 3702\)
\(2 N 3704\) \(2 N 37704\).
2N4001.
iN IN 4001
IN 4005
Now and Now and fully guaranseed. PLASTIC PNP SILICON
TRANSISTORS. Manufaccurer's seconds from
\(2 N 3702-3\) family. Ideal cheap \(2 \mathrm{~N} 3702-3\) family. Ideal cheap
srans. for manufacturing etc trans, for man maceuring ete
E8 500, \(£ 13.10\) 1.000 pieces. PLASTICNPN SILICON turers.
2N \(3707-37!\)
seconds family. from
Ideal cheap trans. for manufaeturling
ete. \(£ 7.10 \quad 500, \$ 12.101 .000\) pieces. TO-18 METAL CAN SILI-
CON PLANARTRANS Yery hiph quality \(99 \%\) good.
Type \(2 N 706\), BS 27. \& per Type 2 N 706 , \(85 \mathrm{Y27}\). © 8 per
500 pieces, 413 per 1,000 pleces.
TOP HAT SILICON hectifiens. All good. No short or open circuit devices.
Voltage range \(25-400 \mathrm{PIV}\),
 per 500. TEXAS 2G371 A/B
EqVE OC7I Germ.
Gen. Purpose Trans. UULITY GUATED DEVICES ANTEED-SURPLUS TO REQUIREMENTS OA202 Silicon Diode. Fully Coded. I 50 PIV 250 mA Qty. Price 630 per 1,000 pleces. BY 1005 LLL . RECT'S 800 PIV 550 mA \(1-492 / 6\) each; \(50-99\) 2/3 each; 100-999 \(2 /\) - each; 1,000 up \(1 / 10\) each. Fully Coded. Ist Qlty.


\section*{WE BUY}
any type of radio, television, and electronic equipment, components, meters, plugs and sockets, valves and transistors, cables, electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields \& Mayco Disposals, 21 Lodge Lane, London, N. 12

RING 4452713
4450749
9587624

\section*{WE PURCHASE}

COMPUTERS, TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGS AND SOCKETS, MOTORS, TRANSISTORS, RESISTORS, CAPACITORS; POTENTIO. METERS, RELAYS TRANSFORMERS, ETC. ELECTRONIC BROKERS LTD. 49 Pancras Road, London, N.W.1. 01-837 7781


ENTHUSIASTS
for tape recording subscribe to the only Magazine devored exclusively to the subject. 25/- (U.S.A.) \$3.75 yrly.incl. postage.
FREE SPECIMEN COPY ON REQUEST 7 ALVERSTONE AVENUE, EAST BARNET, HERTS.

\section*{WANTED RELAYS}

\section*{1. GEC Sealed Trpe MIS74, 12v, 180 ,ohms; 2. Erićsson} or Plessey Tubular typess: a. \(48 \mathrm{v}, 1650\) ohms, Ref. \(12 \cdot 0306_{3}\) b. \(48 \mathrm{v}, 1650\) ohms, Ref. 12.0307 ; c. 24 v , 440 ohms , Ref. 11.9145. 3. Plessey or Ericsson Plug-in Iype 24v, 670 ohms with transparent cover, exactly same size as GEC sealed lype. 4. 5IC Type \(4189 \mathrm{GD} 28 \mathrm{v}, 700\) ohms.

PHONE ANY TIME: 021-4548305

\section*{Keûnestor}

A REVOLUTIONARY NEW PRODUCT cuts out plugs


30-14.500 c.p. 12 in dole cone woofer and tweeter cone together with a BAKER ceramic magnet assembly having a flux density of 14,000 gauss and a total flux of 145,000 Maxwells. Bass resonance avallable 3 or 8 or 15 ohms. Price \(£ 8\), Module kit, \(30-17,000\) c.p.s. Size \(19 \times 12 \frac{1}{2}\) in. with tweeter, crossover baffle and instructions. Ideal for Hi fior P.A. Post free \(£ 10.19 .6\)
LOUDSPEAKER CABINET WADDING 18 in . wide, \(2 / 6\) per ft. run. Post 2/6 per order.
ELECTRIC MOTORS (120v. or 240 v. A.C.) Clockwise I,200 R.P.M. off load Heavy duty 4 pole 50 mA . Spindle \(\ddagger \times 3 / 20 \mathrm{in}\). diameter. Sire \(2 \frac{1}{2} \times 2 \frac{1}{4} \times 1 \frac{1}{3} \mathrm{in}\). \(\begin{array}{llr}\text { BARGAIN } & 17 / 6 & \text { Post } \\ \text { PRICE } & 2 / 6\end{array}\)
TRANSISTOR AMPLIFIER WITH LOUOSPEAKER A self-contained portable mini p.a. Ertem. Many,
uses_Parties, Baby Alarm,
Intercom, Tislephone or Inses-Partiest, Baby Alarm,
Intercom,
Record player Amplifier. Attractive rexine covered cabinet size \(12 \times 9 \times 4\) in.,
wish powerful \(7 \times 4\) in.
speaker speaker and lour tranistor. One watt power amplifier. Uses PP9 bactory. Brand full maker's guaran


THE INSTANT BULK TAPE
ERASER AND RECORDING HEAD DEMAGNETISER
\(\begin{array}{lll}\text { 200/250 A.C. } & \mathbf{4 2 / 6} & \begin{array}{l}\text { Post } \\ \text { Leaflet S.A.E. }\end{array} \\ 2 / 6\end{array}\)
EXTENSION SPEAKER
Smart plastic cabinet speaker with \(20 f\). lead for transis:or radio, intercom, mains

 RETURN OF POST DESPATCH - CALLEAS WELCOM RADIO COMPONENT SPECIALISTS 337 WHITEMOASE ROAD. CROYDON. Tel: 01-684-1665

\section*{BAILEY PRE-AMPLIFIER}

High quality pre-amplifler circuit described by Dr. A. R. Bailey in the December, 1966, "Wireless World". This is a low distortion circuit of great versatility with a maximum output of 2 voles making it suitable for driving Bailey 20W and 30W Ampliffers, Linsley Hood Class A Amplifier and many others. Al incorporated. A new Printed Circuit Board containing latest modifications 7 in . by 3 ? in. features edge connector mounting, roller tinned finish and silk sereened component locations. This board is available in S.R.B.P. material or fibreglass and the complete Kit for the unit contalns gain graded BC. 109 transistors, polyester capacitors and metal oxide resistors where specified

BAILEY 30W AMPLIFIER
All parts are now available for the 60-volt single supply rail version of this unit. We have also designed a new Printed Circuit intended for edge connector mounting. This has the component locations marked maller at \(4 \dot{j} \mathrm{in}\), by 2 tin . Price in SRBP material \(1 / / / \delta \mathrm{d}\) in Fibreglass \(14 / 6 \mathrm{~d}\).

BAILEY 20W AMPLIFIER
All parts in stock for this Amplifier including specially designed Printed Circuit Boards for pre-amp and power amp. Mains Transformer for mono or stereo with bifilar wound secondary and special 218 V primary for use with CZ6 Thermistor, 35/6d., post 5/-
Trifliar wound Driver Transformer, 22/6d., past \(1 \%\). Power Amp. PC Board, 12/6d., post 9d.
Reprint of "Wireless World " articles, 5/6d. post free
DINSDALE IOW AMPLIFIER
All parts still available for this design.
Reprint of articles \(5 / 6 \mathrm{~d}\)., post free.
LINSLEY HOOD CLASS A AMPLIFIER
Parts now available for this unit including special matt black anodised Metalwork and all power supply components.

\section*{PLEASE SEND S.A.E. FOR ALL LISTS}

\section*{HART ELECTRONICS,}

32I Great Western St., Manchester 14 The firm for quality.
Personal callers welcome, but please note we are closed all day Saturday.

\section*{G \& M POWER SUPPLIES FOR YOUR POWER NEEDS}


THIS MODEL IS
CONVECTION COOLED 2 TO 15 VOLTS ADJUSTABLE 3 AMPERES LIMIT LOAD REGULATION BETTER THAN 0.01\% PRICE: \(\mathbf{E 2 2}\)

OTHER MODELS IN THIS RANGE:
VOLTS CURRENT CHASSIS MODEL ENCASED MODEL

0-15
0-30
2-15
2-30
8-15

3A
\(1.5 A\)
3A
\(1.5 A\)
3A

CHASSIS MODEL ENCASED MODEL
£25
£33
f 25
£ 22
£ 22
£ 20

\title{
We can't wait to expand your laboratory
}

\section*{in 24 hours you can hire some of the World's top instruments at competitive prices}

\author{
Southern Office: Station Approach, Bourne End, Bucks. \\ Northern Office: Shearer House, Dunham Road, Altrincham, Cheshire
}

\section*{INDEX TO ADVERTISERS \\ Appointments Vacant Advertisements appear on pages 117-132}


\footnotetext{


 at a price in excess of the recommended maximam prite showt on the cover; and that it nhall not be lent, re-sold, hired out or otherwise diaponed of in a mutilated condition or in any unauthorised cover by way of Trade
}


For increased efficiency find out more about our extensive range of ADCOLA Soldering Equipment-and we provide:
\(\star\) THREE DAY REPAIR SERVICE \(\star\) INTERCHANGEABLE BITS—STOCK ITEMS * SPECIAL TEMPERATURES AVAILABLE•AT NO EXTRA COST.

ADCOLA TOOLS have been designed in cooperation with industry and developed to serve a wide range of applications. There is an ADCOLA Tool to meet your specific requirement. Find out more about our extensive range of efficient, robust soldering equipment.

No. 107. GENERAL ASSEMBLY TYPE

Fill in the coupon to get your copy of our latest brochure:

\section*{ADCOLA PRODUCTS LTD}

Adcola House - Gauden Road • London • SW4 TeI. 01-622 0291/3 Grams: Soljoint, London SW4


Please rush me a copy of your latest brochure:
name
company
ADDRESS

\title{
II \\  \\ MELTING POINT SOLDERS FOR SOLDERING \(\square\) Gold plated surfaces Flexible printed circuits Silver plated surfaces \\ \(\square\) High working temperature components \\ 
}

\section*{}

\section*{HIGH MELTING POINT}

For service at high temperature, or service at very low temperatures. Outstanding creep strength. Melting range \(296^{\circ} \mathrm{C}-301^{\circ} \mathrm{C}\left(565{ }^{\circ} \mathrm{F}-574^{\circ} \mathrm{F}\right)\).

\section*{Applications}

A useful application of H.M.P. is the soldering of joints close to each other in such a way that the connections made first are not re-melted while later joints are made, with for example, a standard \(60 / 40\) alloy, melting point \(188^{\circ} \mathrm{C}\). Essential for use where high operating temperatures are experienced, for instance, electrical motors, car radiators, high temperature lamps. H.M.P. is also ideal for equipment, which is being operated in low temperatures, as it reduces the chance of the joint becoming brittle.

\section*{Specification}

Multicore H.M.P. alloy complies with BS. 219 Grade 5S. Supplied in a form of Ersin Multicore 5 core solder wire on 11b. or 71b. reels, incorporating Ersin 362 rosin based flux. This non-corrosive flux-cored solder wire complies with BS. 441 and is available from 10 to \(26 \mathrm{~s} . \mathrm{w} . \mathrm{g}\)., and in Multicore Solder Preforms. Ask for Technical Bulletin No. 1369.

\section*{L.M.P.}

\section*{LOW MELTING POINT}

A low melting point solder for soldering silver plated and gold plated surfaces. Melting point \(179^{\circ} \mathrm{C}\left(354^{\circ} \mathrm{F}\right)\).

\section*{Applications}
L.M.P. reduces the absorption of silver or gold into the solder alloy whilst soldering, and therefore. preserving the silver or gold plated surfaces. Also reduces the chance of a brittle joint being made.

\section*{NOTE}
a) The solution of gold into tin rises rapidly with temperature and so the use of L.M.P. Low Melting Point Solder is preferable. b) The solution rate of gold into tin is also reduced because L.M.P. is a ternary alloy comprising tin, lead and silver.

\section*{Specifications}
L.M.P. is normally supplied in the form of Ersin Multicore 5 core solder wire, incorporating Ersin 362 rosin based flux. which complies with Min. Tech. specification D.T.D. 599A. It is available from 10 to 34 s.w.g. in 1lb. or 71b. reels and Multicore Solder Preforms. Ask for Technical Bulletin 1469 .

\section*{TL.C.}

\section*{EXTRA LOW MELTING POINT}

Extra low melting point solder. Melting point \(145^{\circ} \mathrm{C}\left(293^{\circ} \mathrm{F}\right)\).

\section*{Applications}
T.L.C. alloy can be used whenever a soldered joint should be made with the minimum heat input. This would include heat sensitive transistors, flexible printed circuits and gold plated surfaces. The melting point of T.L.C. alloy is \(38^{\circ} \mathrm{C}\) lower than any tin/lead alloy. Because of its low temperature application it is considered completely non-toxic in use unlike the high temperature cadmium-bearing brazing alloys.

\section*{Specification}
T.L.C. alloy is normally supplied in the form of Ersin Multicore 5 core solder wire, incorporating Ersin 362 rosin based flux, which complies with Min. Tech. Specification D.T.D.599A. T.L.C. alloy can also be supplied in the form of Multicore precision made solid solder wire, Extrusol extruded solid solder bars for solderbaths and Multicore Solder Preforms. Available from 10 to 34 s.w.g. on 1lb. or 71b. reels. Ask for Technical Bulletin No. 1569.

```


[^0]: Mullard Limited,
 Consumer Electronics Division,
 Mullard House, Torrington Place, London, WCl

[^1]: *B.B.C. Research Department

[^2]: A fully equipped laboratory for the design and manufacture of bipolar micro-circuits has just been completed at Enfield College of Technology. The centre occupies only 750 square feet of floor space and cost about $£ 40,000$. The main idea seems to be to involve as many students as possible, in as many process steps as possible, and in projects of industrial value. Courses will be provided at all levels, from technician to posi-graduate. Special courses can also be devised to meet particular needs, such as those of company managers and salesmen. Details of the three two-week practical courses to be held this year can be obtained from J. B. Butcher, Director, Microelectronics Centre, Enfield College of Technology, Queensway, Enfield, Middx.

[^3]: - Royal Radar Establishment.

[^4]: *See, for example, W.W. March 1966, p. 130.

[^5]: Two new publications are available from the Mullard Educational Service, Mullard House, Torrington Place, London W.C.I
 "A simple f.e.t. voltmeter" \qquad WW 473
 "Introducing thyristors"
 \qquad WW 47

