Wireles Low-cost 15-watt amplifier

October 1969 Three Shillings

IT'SRelays in all shapes and sizes to cover the whole industrial electrical/ electronic field-that's the measure of the Keyswitch product range MTM C CHI which includes the whole set of Omron miniatures. All Keyswitch Relays are winners beWINNING cause they each combine competitive price and high quality. When you go for Keyswitch quality and economy RELAYS ON you'll get speedy service too-Keyswitch will produce a prototype relay in 24 hours, deliver a large
 within a month. So whatever type of relays you need, when (a)P contact Keyswitch Relays Limited, Cricklewood Lane, London NW2; telephone 01-452 3344; telex 262754

KEYSWITCH RELAYS - WHERE THE ACTION IS

Image Orthiconsa new brochure from EEV

This new brochure gives a summary of the EEV range of Image Orthicons, applications and brief data. Full information, including characteristic curves and operational conditions together with outline diagrams, is available on request. But for an introduction to the range, send for a free copy of our new brochure.

English Electric Valve Co Ltd
Chelmsford Essex England Telephone : 61777 Telex: 99103 Grams: Enelectico Chelmsford

Please send me a copy of your Image Orthicon brochure.

NAME
COMPANY

ADDRESS

Point to Point Broadcasting Radio Relay Ground to Air Navigational Aids Business Radio

Design

Site layouts
Aerial System Design

Aerials

LF 'T' and 'L'Aerials, Mast Radiators, HF Dipoles, Quadrants, Rhombics, Log Periodics, Vertical Incidence Arrays, Conicals, Biconicals VHF \& UHF Yagis, Helices, Ground Planes, Colinears, Whips, Marine Aerials, Television Arrays to 100 kW e.r.p MICROWAVE Passive Reflectors, Dishes $3^{\prime \prime}$ to 60 ft . dia.

Supporting Structures

Self-supporting Towers, Tubular and Lattice Masts, Telescopic Masts

Accessories

Coaxial and open wire Feeders, Filters, Aerial Switches,
Lead-in panels, Earth Systems. Air-cooled Transmitter Loads. Termination Networks

Installation

World Wide Service

C\&S Antennas

 provide a complete aerial service LF to Microwave
New pulse tetrode for low power radars added to EEV's range

The new C1179-a high vacuum beam tetrode designed primarily for the output stage of power amplifier pulse modulators in $5 \mathrm{~kW}-10 \mathrm{~kW}$ radars.

C1179

C1148

C1149/1

C1150/1

C1166

| | | Pulse |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad| Anode |
| :--- |
| Type |

Send for full data on the EEV range of pulse amplifier tetrodes

English Electric Valve Co Ltd

Chelmsford Essex England Telephone: 61777 Telex: 99103 Grams: Enelectico Chelmsford

Please send me full details on your range of pulse tetrodes.
I am particularly interested in using a pulse tetrode with the following parameters:

Pulse output power	Anode dissipation	Anode voltage	Pulse anode current
NAME		POSITION	
COMPANY			
ADDRESS			

controlled soldering starts with an Enthoven preform
 the complete range of Enthoven Solder products. preforms among them. Ask now for your copy of 'Soldering with Enthoven'.

The right amount of solder, in the right place, every time. The right alloy to suit the surfaces to be joined. The right flux for effective wetting. The right heat-source. Enthoven know about this kind of thing, will give advice, supply preforms-cored or solid. Controlled soldering means economical soldering. Soldering with Enthoven preforms saves solder, time and wastage. Cuts costs. Produces a stronger, cleaner job. Enthoven supply washers, rings, shims and strips in a wide variety of alloys, cored and solid, and design to meet special requirements.

WAYNE KERR Universal RF Bridge

DIRECT READOUT of immittance at frequencies from 100 kHz to 10 MHz , with real and quadrature terms shown simultaneously, in equivalent series or parallel form as appropriate.

APERIODIC measurements of C, R and L, with facility for measuring C as equivalent negative L, and L as- C, if preferred. Also reads negative R and G.
STABLE CALIBRATION assured by use of unique magnetic potentiometers, minimising trimming operations and giving an electrical discrimination of $0.1 \% \mathrm{f}$. s. d.
SOURCE/DETECTOR SR268 is ideal companion instrument, with single-knob tuning from 100 kHz to $100 \mathrm{MHz}(46.5 \mathrm{kHz}$ to 46.5 MHz on SR268L). Push-button attenuators for output level and input sensitivity.

```
RANGES
1 femtofarad - }1\mathrm{ millifarad
100 milliohms - }100\mathrm{ megohms
10 picohenrys - }10\mathrm{ henrys
10 nanomhos - }10\mathrm{ kilomhos
FREOUENCY RANGE
100kHz - 10MHz
ACCURACY
Generally 1\%
```


Silently, Garrard turn the tables to help you win new customers

Silence. That's the theme of this year's publicity for Garrard.

But there's nothing silent about our backing for you. This year, a bigger-than-ever campaign is telling the customer loud and clear . . . about Garrard quality, and about the range which is more impressive than ever.

From the Garrard No. 1 clockwork motor to Britain's first 3 -speed auto changer . . . from the world-renowned 301 transcription unit to the first automatic transcription turntable in the

UK .. . Garrard has pioneered for half a cert try. This rear's new range ma mains the traditions of one of the wold's greatast names.

The promotional campaign zonsists of tull colour advertisements in the 'Readers' Digest', 'Homes \& Cardens 'Ideal Home' as well as the colour supflements of the 'Telegrapt' 'Sunday Times' and 'Observer'

Fall pages are also being teken in Hi-F delity specialist magazines.

All this s going to create a lot of ir te est in Garrard equipment-interest that you can turn into sales. Make sure you have edequate stocks to meet the demand. And have you seen the latest Garrard seles literature and stowcards? If not, write to The Publicit Department, Carrard Erg neering Limited, Newcasile Street. SwinJon, Wiltshire, England. Telephone: Swindon 5381.

Garrard-sharing success with you

are fitted with two retractable front legs to allow the cases to be tilted, and can be supplied with or without front handles. Finished in charcoal grey organasol and supplied complete with front panel fixing screws. Available immediately from stock.

VERO ELECTRONICS LTD.

INDUSTRIAL ESTATE CHANDLERS FORD HANTS. SO5 3ZR
Tel: Chandlers Ford 2921/4
Telex: 47551
BRANCHES AND AGENTS
THROUGHOUT THE WORLD

This is an extract from the introduction to our new 16-page manual of inverter transformers and modules - a copy of which is yours for the asking The contents include descriptions and methods of using saturable core butput and driver transformers, linear core output transformers including transformers for the capacitively timed inverter circuit, commutation inductors and describes a number of representative converter transformers and inverter drive modules which have been added to our stock range of transformers and inductors.

Gardners Transformers Limited

Thereśs much more to a PHILIPS microphone

than meets the ear

It's the sound quality that really counts although impeccable appearance is certainly an asset. In fact, every aspect of microphone manufacture is covered by the makers of ten million of themPhilips. What's more, Philips make an unrivalled range of compatible equipment-amplifiers, loudspeakers, tape-recorders, record players and much more-for complete sound systems. All backed up by the finest service organisation in the country. Please ask for full information.

PYE TVT LIMITED
PHILIPS SOUND DIVISION
Addlestone Road, Weybridge, Surrey Telephone: Weybridge 45511

Telex 262319

Expand your Universe of Electronic Instrumentation with Hewlett-Packard

... for better solutions
to your measuring problems

1 Microwave power meter 2135 MHz counter with 12 plug-ins
 3 Hybrid hot carrier diodes
 4 Two oscillators from among 17
 5 High-performance scope system

1 Zero-setting is no problem with this microwave power meter

2 How about measuring the time it takes light to travel 10 feet?

Measuring the 10 ns light takes to travel 10 ft . is strictly in the line of duty for the hp 5248 L counter with the new 5267A time interval plug-in (resolution: 10 ns). How's this for measurements involving explosives. shock waves, laser pulses and other high-speed applications?
Then there is the hp 5256A plug-in for frequency measurement up to 18 GHz . And this is what really sets the 5248 L apart. plug-ins. Twelve of them. The industry's widest choice.
Even without plug-ins, the 5248L displays a healthy capability. It measures frequencies up to 135 MHz , frequency ratios, waveform periods, and multiples of periods and ratios. it also scales frequencies and totalizes.

3
 It's price-cutting time for hybrid hot carrier diodes

A new ho manufacturing process did it: down went the prices of hybrid hot carrier diodes.
The 2800 series are epitaxial, planar passivated devices. Their unique design combines a conventional PN junction and a Schottky barrier. The benefits are fourfold.

1. The high breakdown and high temperature $\left(200^{\circ} \mathrm{C}\right)$ operating and
storage characteristics of silicon.
2. The low turn-on voltage of germanium.
3. The 100 picosecond speed of a

Schottky barrier majority carrier device.
4. The inherent resistance to shocks and vibrations of a planar diode.
The latest additions to the series are two switching diodes featuring forward currents of 35 ma and 20 ma at 1 V (capacitance: 1.2 pfmax), there are also 1 GHz and 2 GHz mixers with 60 erg burnout and 6 dB noise figures; and a 2 GHz detector with -56 dBm tangential sensitivity. All are available as single units. pairs and quads. Ask for the data sheets on the 2800 series diodes.

WW-202 for further details.

4
 Do you work with ac circuits? You'll then want to explore our soft spot for oscillators.

With such features as 12.4 GHz sampling. $50 \mu \mathrm{~V} / \mathrm{cm}$ sensitivity with no drift, and variable persistence and storage. the excellence of the hp 140/141A scope system is obvious.
The 20 available plug-ins are in themselves 20 reasons why this 20 MHz system is right at the top. Plug-ins cover the entire range of scope capabilities, from spectrum analysis to microwave swept frequency measurements and time domain reflectometry (TDR).
Now add three wide-band, remote samplers which will let you see CW signals to 12.4 GHz and pulses with 28 psec rise times. Next come the six mainframes. They include the 143A with extra-large $\left(8^{\prime \prime} \times 10^{\prime \prime}\right)$ CRT for group viewing. and the 141A for variable persistence and storage.
Which makes it 29 reasons. Why not select the ones that have a direct bearing on your work. The 140/141A brochure will help you do just that.

Hewlett-Packard Lid.
224 Barh Road, Slough, Bucks, Great Britain
Tel. 33341
European headquarters
Hewlett-Packard S.A., rue du Bois-du-Lan 7
1217 Meyrin-Geneva, tel. (022) 415400

WW-204 for further details.
oscillators ever since... to the point where hp oscillators are today. world known for their excellence.
Now there are 17 different oscillators. including two new ones we'd like you meet. Both feature 0.5% (0.05 dB) flatness. FET's in the bridge for improved stability, $<0.1 \%(-60 \mathrm{~dB})$ distortion, and balanced output.
Model 204 C has a $5 \mathrm{~Hz}-1.2 \mathrm{MHz}$
frequency range and an output of 5 Vrms .
You can operate it with line power, mercury battery or rechargeable battery pack. Price: $£ 116$.
Model 209A generates simultaneous sine and square wave outputs from 4 Hz to
2 MHz . Output amplitudes independently
adjustable to 10 Vrms (sine wave) and 20 V peak-to-peak (square wave).
Price: E144.
Get in touch with us for the full story about our complete selection of oscillators.

WW-203 for further details.

> 529 reasons for the excellence of the hp 140 scope system

You'd be surprised at the scope of our test facilities. Our test department has its own vibration sweep testing techniques. Quality Assurance is of such importance at Brookdeal that as much time goes into testing and proving as into actual manufacturing.

BROOKDEAL ELECTRONICS LIMITED,
Myron Place, London, S.E. 13.
Telephone: 01-852 7433.

PRODUCT FEATURE: Type 450 Low-Noise Amplifier gives 100 dB gain with 300 kHz bandwidth and better than 0.5 dB noise figure. $£ 185$ (U.K.).

Brookdeal

the preferred equipment for signal recovery

WW-015 FOR FURTHER DETAILS

Valluable new handoook FRE ENGINEERS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations, and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS
 YOUR PET SUBJECT?

ELECTRONIC ENG.

Advanced Electronic Eng. Gen. Electronic Eng. - Applied Electronics - Practical Electronics - Radar Tech. Frequency Modulation Transistors.

ELECTRICAL ENG.
Advanced Electrical Eng.
Gen. Electrical Eng. - Installations - Draughtsmanship -Illuminating Eng. - Refrigeration - Elem. Electrical Science - Electrical Science Electrical Supply - Mining Electrical Eng.

CIVIL ENG.

Advanced Civil Eng. - Gen. Givil Eng-Municipal Eng.Structural Eng. - Sanitary Eng. - Road Eng. - Hydraulics - Mining - Water Supply - Petrol Tech.

RADIO ENG.

Advanced Radio - Gen. Radio Radio \& TV Servicing TV Eng. - Telecommunications - Sound Recording Automation - Practical Radio -Radio Amateurs' Exam.
MECHANICAL ENG.
Advanced Mechanical Eng. Gen. Mechanical Eng. Maintenance Eng. - Diesel Eng. -Press Tool Design Sheet Metal Work - Welding Inspection-Draughtsmanship--Metallurgy - Production Eng.
AUTOMOBILE ENG.
Advanced Automobile Eng. Gen. Automobile Eng. - Automobile Maintenance - Repair -Automobile Diesel Maintenance - Automobile Electrical Equipment - Garage Management.

WE HAYE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS §TUDY, MATHEMATICS, ETC.

Which qualification would increase your earning power? A.M.I.M.L., A.S. (Eng.), A.M.S.E., R.T.E.B., A.M.I.P.E., M.R.S.H., A.M.I.E.D., A.M.I.MUN.E., C.ENG., CITY \& GUILDS, GEN. CERT. OF EDUCATION, ETC.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 446A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES." Send for your copy now-FREE and without obligation.

acuran

TO B.I.E.T., 446A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE.

Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

NAME

ADDRESS
\qquad
\qquad
WRITE IF YOU PREFER NOT TO CUT THIS PAGE

prepare
 for tomprrow's world

Today there is a huge demand for technologists such as electronics, nuclear and computer systems engineers, radio and television engineers, etc. In the future, there will be even more such important positions requiring just the up-to-date, advanced technical education which C.R.E.I., the Home Study Division of McGraw-Hill Book Co. can provide.
C.R.E.I., Study Programmes are directly related to the probiems of industry including the latest technological developments and advanced ideas. Students claim that the individual tuition given by the C.R.E.I. panel of experts in each specialised field is comparable in technological content with that of technical colleges.

Why C.R.E.I. Courses are best

No standard text books are used - these are often considerably out-of-date when printed. C.R.E.I. Lesson Material contains information not published elsewhere and is kept up-to-date continuously. (Over $£ 50,000$ is spent annually in revising text material.).

Step-by-step progress is assured by the concise, simply written and easily understood lessons.
Each programme of study is based on the practical applications to, and specific needs of, Industry.

Take the first step to a better job now-enrol with C.R.E.I., the specialists in Technical Home Study Courses.
C.R.E.I. PROGRAMMES ARE AVAILABLE IN:

Electronic Engineering Technology * Industrial Electronics for Automation * Computer Systems Technology * Nuclear Engineering * Mathematics for Electronics Engineers * Television Engineering * Radar and Servo Engineering
City and Guilds of London Institute: Subject No. 49 and Advanced Studies No. 300.

POST THIS COUPON TODAY FOR A BETTER FUTURE
To C.R.E.I. (London), Walpole House, 173-176 Sloane Street, London, S.W.1.
Please send me (for my information and entirely without obligation) full details of the Educational
Programmes offered by your Institute.
My interest is City and Guilds \square
please tick
General \square

NAME
 ADDRESS

are all the same to us

> OUR SMALLEST ORDER
> last year was for a single radio valve, value $7 / 6$ d.. urgently needed for shipboard replacement and rushed by us through the Rotherhithe tunnel to the London Docks so that they could sail with the tide...

OUR LARGEST ORDER

last year was for 28,546 valves worth nearly $£ 10.000$. all specially selected within special parameters for an electronics manufacturer whose name is a by-word in Industry. . . .

Between these extremes we supplied a massive number of valves of one sort or another-used in everything from domestic television sets to porpoise-tracking equipment; from experimental laboratory hook-ups in Technical Colleges to nuclear magnetic resonance spectrometers;

The largest single valve independent

Pye Telecommunications is the world's largest exporter of radiotelephone equipment. Pye Radiotelephones are used all over the world to ensure instant contact. Pye research development and quality control really do keep in touch with tomorrow.

PYE SPANS THE WORLD

rely on

Pthe vital contact

Pre Single-Sideband Radiotelephone
125W (p.e.p.) R.F. output Fully transistorlsed récelver C.W. Facllities provided Sideband selection
by crystal Hlter Cartier insertion for by crystal hlter. Cartier insertion 10 友
a.m. compatibility. Fized or moblle application Advanced transmitter design.

Pye 'Westminster'
Remote Mounted Radiotelephone Completely solid state 5 -8W R.F.
Outout $1-10$ channels with solld state Output. 1-10 channels with solld state
switchtng- Illuminated channel indl switching. Illuminated channel ind
cator Suitable for all climates Cator Suitable for ail clime
Meets all retevant specifications.

PYE

equipment gives you instant-contact with mobility

PYE TELECOMMUNICATIONS LTD. Cambridge England Telephone: Cambridge (0223) 61222 Telegrams: Pyetelecom Cambridge Telex: 81166

Radio Leeds: Where a tape recorder must be good and reliable you'll find a Ferrograph.

In a radio station, the tape recorder is in constant use. Technical performance is all-important; absolute dependability and splitsecond control are essential. So Radio Leeds uses the Ferrograph Series 7 tape recorder.

Ferrograph Series 7 recorders are British-made, a vailable in Mono and Stereo, with and without end amplifiers, in two versions: in elegant hardwood case, or in grey vinyl case. All solid state, three speed, two inputs per channel with independent mixing, all incorporate a range of facilities
unparalleled in any other recorder. Retail prices are from $£ 150$ incl. P.T.

Follow the professionals; choose the recorder you know will serve you best at home or in your work: Ferrograph-it makes sound sense. See your nearest stockist or send the coupon for details and address of nearest Ferrograph specialist or ring 01-589 4485.

Ferrograph
 A member of the Wilmot Breeden Group

哃

 mulimeters

These instruments have dc ranges covering the measurement of voltage from $0.3 \mu \mathrm{~V}$ to 1 kV , current from 1 pA to 1 mA or 1 A , and resistance from 0.3Ω to $1 \mathrm{kM} \Omega$. Left zero and centre zero scales are provided and a recorder output exists on all ranges.

Features are high input impedance on voltage ranges, low test voltage on linear resistance ranges, and large overload rating. The instruments are solid state powered by a self-contained battery. Low power consumption results in negligible warm-up drift.

Iype
 Ihs Serifes

LEVELL

PORTABLE INSTRUMENTS

Voltage Ranges

$3 \mu \mathrm{~V}$. $10 \mu \mathrm{~V} .30 \mu \mathrm{~V}$
1 kV . Accuracy $\pm 1 \% \pm 1 \%$ f.s.d. $\pm 0.1 \mu \mathrm{~V}$. Noise $<0.5 \mu \mathrm{~V}$ p-p on the $3 \mu \mathrm{~V}$ range for source resist, up to $30 \mathrm{k} \Omega$. Drift $<0.7 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and $<0.7 \mu \mathrm{~V} /$ day after warm-up of 2 mins. Input resist. $>1 \mathrm{M} \Omega / \mu \mathrm{V}$ up to $10 \mathrm{mV} .>10 \mathrm{kM} \Omega$ from 30 mV to $1 \mathrm{~V} .100 \mathrm{M} \Omega$ above 1 V . Rise time on $3 \mu \mathrm{~N}, 10 \mu \mathrm{~N}, 30 \mu \mathrm{~N}, 100 \mu \mathrm{~N}$ to 1 kV is $10 \mathrm{~s} .3 \mathrm{~s}, 1 \mathrm{~s}$. <1 s.

Current Ranges

3pA. 10pA, 30pA
1 mA (1A for Type TM9BP). Accuracy $\pm 2 \%$ $\pm 1 \%$ f.s.d. $\pm 0.3 p A$. Noise $<0.7 p A p-p$ on the $3 p A$ range. Drift $<1 \mathrm{pA} /{ }^{\circ} \mathrm{C}$ and $<1 \mathrm{pA} /$ day after warm-up of 2 mins. Input resistance $1 \mathrm{M} \Omega$ up to $1 \mathrm{nA}, 100 \mathrm{k} \Omega$ from 3 nA to $1 \mu \mathrm{~A}, 100 \Omega$ from $3 \mu \mathrm{~A}$ to 1 mA . 0.12Ω from 3 mA to 1 A on type TM9BP. Rise time on 3pA. 10pA. 30 pA . 100 pA to 1 mA is $15 \mathrm{~s}, 5 \mathrm{~s}, 1.5 \mathrm{~s},<1 \mathrm{~s}$.

Resistance Ranges

$3 \Omega, 10 \Omega .30 \Omega \ldots 1 \mathrm{kM} \Omega$. Accuracy $\pm 1 \% \pm 1 \%$ f.s.d. up to $100 \mathrm{M} \Omega$ rising to $\pm 10 \%$ at $1 \mathrm{kM} \Omega$. Test voltage is 3 mV at f.s.d. on Ω ranges. Test currents are $1 \mu \mathrm{~A}$ and 1 nA on $\mathrm{k} \Omega$ and $\mathrm{M} \Omega$ ranges.

Recorder output

0 to +1 V at f.s.d. into not less than $1 \mathrm{k} \Omega$ on left zero ranges. -0.5 V to
+0.5 V into not less than $5 \mathrm{k} \Omega$ on centre zero ranges.

Max. Overload

2 kV peak on V ranges. 350 V peak on mV . $\mu \mathrm{V}$. and pA ranges. 50 mA peak on $\mu \mathrm{A}$ ranges, 2 mA peak on nA ranges.

Power Supply

One type PP9 battery, life 1000 hours; or AC mains when a Levell Power Unit is fitted.

Sizes \& Weights

TM9A: $5^{\prime \prime} \times 7 \frac{1}{4}{ }^{\prime \prime} \times 4 \frac{1}{2}{ }^{\prime \prime} 4 \frac{1}{2} \mathrm{lbs}$. Meter scale length $3 \frac{1}{4}$ ".
TM9B: $7^{\prime \prime} \times 10 \frac{1}{4}^{\prime \prime} \times 5 \frac{1^{\prime \prime}}{2} 8 \mathrm{lbs}$. Meter scale length $5^{\prime \prime}$, fitted with mirror.
TM9BP: As TM9B + current ranges up to 1A.

Prices

TYPE TM9A $\mathbf{f 7 5}$ TYPE TM9B $\mathbf{5} \mathbf{8 9}$ TYPE TM9BP $\mathbf{f 9 3}$
Optional Extras Leather Case TM9A £4.10. Leather Case TM9B and TM9BP £5. Mains power supply unit $£ 7.10$.

LEVELL ELECTRONICS LTD.

PARK ROAD, HIGH BARNET, HERTS., ENGLAND Telephone: 01-449 5028

Cut the operational and maintenance costs of your HF radio station right now -with STANFAST

Here's how

STANFAST Systems-the STC concept of automated h.f. radio stations-permit transmitting and receiving installation to be controlled completely by one man from a central location.
STANFAST Systems provide high speed frequency changing, automatic performance monitoring and rapid fault location affording optimum traffic handling capability and maximum revenue.

STANFAST Systems use the latest techniques in radio design, demand smaller sites and require less maintenance than hitherto. Initial capital cost is lower and return on investment is greater.

Standard Telephones and Cables Limited, Radio Division, Oakleigh Road, New Southgate, London, N.11. Telephone: 01-368 1200. Telex: 261912.

Associate

The SERIES 30 is a range of modular, mains operated d.c. power units with output voltages from $0-500 \mathrm{~V}$ at maximum current ratings. These all silicon units are a result of careful design, are small in size, robust in construction and give a high performance. Three standard lengths are available covering the complete output range.
For further details write for fully descriptive leaflet and free slide rule selector.

PERFORMANCE

Stabilisation ratio Temperature coefficient Output resistance Output impedance

Ripple and noise
$>10,000: 1$. Typical 20,000:1. $\$ 0.005 \%$ per ${ }^{\circ} \mathrm{C}$.
$\$ 0.5 \mathrm{~m} \Omega+0.05 \mathrm{~m} \Omega$ per volt of output.
$<0.1 \Omega$ to 200 KHz .
$<0.5 \Omega$ to 500 KHz .
$\$ 250 \mu \mathrm{~V}$ or $0.0005 \% \mathrm{p}-\mathrm{p}$. whichever is greater.
A.P.T.ELECTRONICINDUSTRIES LTD

THE

Self-contained-does NOT require the use of air-lines or pumpsSimple, light and inexpensive

- PERMABIT nozzle will not wear or become eroded by the solder
- Standard nozzle ${ }_{6}^{5 \frac{5}{5}}$ in. bore. Alternative, $\frac{3}{64}$ in. bore
- Mains or low voltages

Please ask for colour catalogue A/S
 smaller manufacturers, all three Armed Services, most government departments including 10 Ministries, 23 public corporations, 43 educational authorities and Universities and countless radio and television retailers in 1,162 cities, towns
 and villages in 38 counties.

Pinnacle

PINNACLE ELECTRONICS LIMITED achilles Street• Mew cross • London s.E. 14

Telephone: All departments-01-692 7285 Direct orders - 01-692 7714

MICROPHONES

Beomic 1000 Omni-directional moving coil microphone. Response $50-17,000 \mathrm{~Hz} \pm 2.5 \mathrm{~dB}$. Sensitivity $0.1 \mathrm{mV} / \mathrm{ubar}$. Hum sensitivity - 139 dB . Output : 200 ohms at 1 KHz . via 9 ft lead, 5 pin DIN plug. Supplied with frequency response chart, lavalier cord, anti microphonic base, and packed in a futuristic container. Price *£9.9.0d.
B.M.5. Studio quality Stereo ribbon microphone. Figure of 8 response: Sections may be swivilled up to 90° relative to each other for the desired stereo effect. Fitted with music/ speech switch. Response $30-13,000$ $\mathrm{Hz} \pm 2.5 \mathrm{~dB}$. Sensitivity 85 dB below 1 volt/ubar. Hum sensitivity -146 dB . Output 200 ohms at 1 KHz . via 9 ft lead, 5 pin DIN plug. Supplied in rosewood presentation box with table stand. Price ${ }^{*} £ 30.9 .0 \mathrm{~d}$.
B.M.6. Mono ribbon microphone (lower half of the B.M.5). Specification as B.M.5. Supplied in presentation case with table stand, price ${ }^{*} £ 21.2 .0 \mathrm{~d}$. It may be converted to a B.M. 5 by an addition of the B.M.7. (available separately price *£9.19.6d.)
Microphone Accessories Stereo/Mono extension leads: prices ${ }^{*} 15 \mathrm{ft} £ 1.17 .6 \mathrm{~d} .30 \mathrm{ft} £ 2.9 .6 \mathrm{~d} .45 \mathrm{ft} £ 2.19 .6 \mathrm{~d} .60 \mathrm{ft}$ £ $315 \mathrm{~s} .75 \mathrm{ft} £ 45 \mathrm{~s} /$ Floor Stand $£ 7.15 \mathrm{~s}$. Boom Arm £4.19.6d. Line matching transformer to 50 K ohm impedance; $£ 2.9 .6 \mathrm{~d}$.

PICK-UP CARTRIDGES

A range of quality magnetic cartridges using the B \& 0 patented micro-cross system giving low harmonic distortion and a smooth frequency response. They follow the International tracking angle of 15° and, with standard $\frac{1^{\prime \prime}}{2}$ mounting centres, will fit virtually all quality pick-up arms.

S.P.6. Response 20 - 20,000 $\mathrm{Hz} \pm 2.5 \mathrm{~dB}$. Compliance 15 x $10-{ }^{6} \mathrm{~cm} /$ dyne. Pressure $1.5-2.0$ g. Stylus: 15μ diamond. Output: 7 mV .47 K ohms. Price *f7.19.6d.
Replacement styli available : 15μ, 75μ, and $5 \times 17 \mu$ elliptical.
S.P.8. As S.P.6, but supplied with $5 \times 17 \mu$ elliptical styius in Rosewood box, price *£12.19.6d.
S.P.10. Response $15-25,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$. Compliance 25 x $10-{ }^{6} \mathrm{~cm} / \mathrm{dyne}$. Pressure $1.0-1.5 \mathrm{~g}$. Stylus: 15μ naked diamond. Output: 5 mV . 47 K ohms. Price *£9.19.6d. Replacement styli available : 15μ and $5 \times 17 \mu$ elliptical.
S.P.12. As S.P.10, but supplied with $5 \times 17_{\mu}$ elliptical stylus. Price *£14.19.6d.

[^0]
The Big Little Integrals That Can Make Or Break Your Product.

SY173L Single speed (2000 rpm) For record players.
DMF54R-02 Single speed (2400 rpm) For tape racorders.
RK201R Single speed (2400 rpm) For car players.
BF110R Single speed (2000 rpm). With electrical governor motor. For tape recorders.
BF200R Single speed (2200 rpm) For car recorders \& players.
ZF200R Variable speed (such as 1100,2200 and 2800 rpm) With brushless \& transistor motors. For de luxe record players \& electronic calculators.
VM250B Single speed (3600 rpm) For auto tuners.
Specification for Sankyo micro motora

MPE	Dimmeors		Rated Voltage (V)	Rance of voltage (V)	$\begin{aligned} & \text { Roled } \\ & \text { lorat } \\ & (\mathrm{F} \cdot \mathrm{~cm}) \end{aligned}$	Rated Sped (pm)	load Curenl (ma)	$\begin{aligned} & \text { Surtng } \\ & \text { Topue } \\ & \left(\begin{array}{ll} \mathrm{g} \cdot \mathrm{~cm}) \end{array}\right. \end{aligned}$	Live (H)	Divection of Revolution
	$(\mathrm{m} / \mathrm{m})$	$\begin{gathered} \text { (mingh } \\ (\mathrm{m} / \mathrm{m}) \end{gathered}$								
8Y173L	10	324	6	4.5-6	3	2000	80	35	600	ut
DMFEAP-02	38	348	6	4.5-6	9	2400	140	30	600	Riph
陦2016	47.9	48	132	$10 \sim 16$	30	2400	210	100	1000	Right
AF110*	38	30	45	$3.5 \sim 5.7$	8	2000	160	30	1500	Rught
EF2000	38	34.1	132	(5.5-) $9 \sim 16$	15	2200	180	30	1500	R1ght
2F200	46	50	9	6-9	20	2200	300	45	3000	Iet. Rent
UPsson	20	4.5	4.5	$4 \sim 6$	14	$\begin{aligned} & 3700 \\ & 5000 \end{aligned}$	160	60	30	Right
vansor	25	36.5	1	65-7.5	04	3600	45	25	500	Lut appr

B

Sankyo (Europe) Export und Import G.m.b.H.: 4 Düsseldorf, Bahnstraße 45-47. W. Germany. Tel: $325652 / 3$ Telex: 8587097 Cables: SANKYORGEL DÜSSELDORF
Sankyo Saiki Mfg. Co., Led, : $17-2$. Shinbashi 1 -chome, Minatoku, Tokyo 105. Japan Tel: Tokyo 591-8371
Cables: SANYORGEL TOKYO
Amorican Sankyo Corp.: Rm. 801-3. 95 Madison Ave.. New York. N.Y. 10016.U.S.A. Tel: LE-2-8020

WANTED

HEATHKIT REQUIRE DISCERNING CUSTOMERS FOR THEIR NEW SUPERB STEREO COMPACTS, MODELS AD-27 AND AD-17.

REWARD
 A LIFETIME OF LISTENING PLEASURE

WILL ANYONE SEEKING INFORMATION ON THESE MODELS PLEASE CONTACT STAND NO. 63, INTERNATIONAL AUDIO \& PHOTO-CINE FAIR AT OLYMPIA, OR SEND DIRECT TO DAYSTROM LTD.,
BRISTOL ROAD, GLOUCESTER, ENGLAND. TEL. GLOS 29451

THERE ARE MANY OTHER CHARACTERS IN THE HEATHKIT RANGE TO BE ON THE LOOKOUT FOR: SUCH AS, STEREO TUNER/AMPLIFIERS, STEREO FM TUNERS, AMPLIFIERS, SPEAKER SYSTEMS, DOMESTIC ENTERTAINMENT PRODUCTS. TEST INSTRUMENTS ETC.

IIEATHEXIT

WW-031 FOR FURTHER DETAILS

are widely used as standards in many industries because:-

1) They are accurate (to $\pm 0.3 \%$ or $\pm 0.1 \%$ as specified)
2) They are not voltage or temperature sensitive, within wide limits
3) They are unaffected by waveform errors, load, power factor or phase shift
4) They will operate on A.C., pulsating or interrupted D.C., and superimposed circuits
5) They need only low input power
6) They are compact and self-contained
7) They are rugged and dependable

FRAHM Vibrating Reed Frequency Meters are available in miniature switchboard and portable forms, in ranges from 10 to 1700 cps . Descriptive literature on these mesers, and on FRAHM Resonant Reed Tachometers, freely available from the sole U.K. distributors:-

ANDERS METER SERVICE

anders electronics ltd. $48 / 56$ bayham place, bayham street LONDON NWI TEL: 01-3879092.

WW-032 FOR FURTHER DETAILS

보료 $\mathrm{N} . \mathrm{C} \cdot \mathrm{BRONNLTD}$.
 pacesetters in storage equipment


```
Send your FREE BRO- Name
CHURE }\square\mathrm{ or Send }
(how many) bays of
steel shelving (e) C3.15s.
in green }\square\square\mathrm{ grey (tick
|wich)
Address
Dept.NW Eagle Steelworks, Heywood. Lancs.
Tel: 69018. London: 25-27 Newton St., W.C.2.
Tel: 01-4057931
```



```
Send your FREE BRO- Name.
CHURE \(\square\) or Send \(\square\)
(how many) bays of
steel shelving © \(\mathbf{C 3 . 1 5 s}\) ingeen grey (tic Tel: 01-4057931
```


Marconi puts Q-Measurement onthe

The new Marconi TF 1245A gives gilt-edged confidence in Q-measurement! By gold-plating the complete test-circuit and tuning capacitor, Marconi have cut inherent loss, increased long-term stability - factors which have always reduced the certainty of Q -measurement, especially at high frequencies.
TF 1245A covers the frequency-range, 1 kHz 300 MHz , providing direct measurement of Q-factors from 5 to 1,000 . Capacitance range is 7.5 to 500 pF . Delta- Q and Q multiplier facilities. Two specially designed oscillator units, TF 1246 and TF 1247 , cover the ranges, $40 \mathrm{kHz}-50 \mathrm{MHz}$ and $20 \mathrm{MHz}-300 \mathrm{MHz}$, respectively. You may select either or both, according to your individual needs.

The majority of Recording and T.V. studios use TANNOY monitors

Tannoy Monitor Gold Dual Concentric Loudspeakers, accepted as the "Quality Standard" most specified for professional use by Recording, Broadcasting and TV companies as well as the World's largest manufacturers of professional Audio Equipment.

The New Monitor Gold now incorporates a Treble Roll Off Control and Treble Energy Control enabling precise adjustments to be made for room acoustics and programme material.
Frequency Response 30-20,000 cps Power Handling 15" 50 watts

Capacity

Impedance

12" 30 watts III LZ 15 watts
8Ω Nominal
5Ω Minimum

The same units provide professional standards in the home

"Lancaster" corner-mounting fitted with 12" Dual Concentric. Height $2^{\prime} 9^{\prime \prime}$. Width $2^{\prime} 1^{\prime \prime}$ Front to rear corner $1^{\prime} 4 \frac{3}{4}$

The range of Lancaster Enclosures - enthusiastically received by the technical press - are proving equally popular not only in the United Kingdom but throughout the World. High grade cabinet work and restrained modern styling enable them to blend well with the majority of furnishing schemes.
"III LZ" Mk. II. Aperiodic enclosure with III LZ unit. Height $1^{\prime \prime} 3^{\prime \prime}$ Width 1' 11 " Depth $9 \frac{3}{4}$

"Lancaster" free-standing fitted with $12^{\prime \prime}$ or $15^{\prime \prime}$ Dual Concentric. Height 2' $9 \frac{1}{2}$
Width $1^{\prime} 9 \frac{1}{2}$
Depth $1^{\prime} 0 \frac{1}{2}$

All cabinets fitted with Monitor Gold Loudspeakers

M TANNOY ${ }^{*}$

TANNOY PRODUCTS LIMITED
Norwood Road, West Norwood, London, S.E. 27
Tel: 01-6701131

For all the other desirable features write or telephone:-

> AMPLIVOX COMMUNICATIONS LIMITED

BERESFORD AVENUE LVEMBLEY.MICDLESEX
TELEPHONE 01-902 8991
GRAMS AND CABLES: AMPLIVOX. WEMBLEY

Celestion PA

Loudspeakers for

 all Public Address Systems

Re-entrant Horns

These Horns are capable of delivering a highly concentrated beam of sound over long distances. They are recommended for recreation centres, noisy factories and workshops and all indoor and outdooi locations where a high noise level has to be overcome.

Driver Units

Pressure type units are available with or without tapped 100 V line trans-
 formers. The following 'built-in' features are on all models - High Sensitivity, Weatherproof. Phase Equalising Throat and Self-centring Diaphragm Assembly.

Re-entrant
Loudspeakers

Rola Celestion re-entrant loudspeakers are designed for use wherever conditions demand compactness, toughness, high efficiency and unfailing service. They are rainproof and built to withstand prolonged exposure to vibration and adverse conditions.

Loudspeaker

in Glass Fibre

The Celestion Glass Fibre Loudspeaker is a compact robust and watertight unit, precision built for use on open boat decks, docks chemical plants, plating shops, etc, where protection from the weather or corrosive atmosphere is vital.

These electronic Stereo Mixers range from $2+2$ to $5+5$ input channels, with left and right outputs at 500 millivolts into 20 K ohms up to infinity.
Separate control knobs are provided for L \& R signals on each stereo channel so that a Mono/ Stereo changeover switch provided can give from four to ten channels for monaural operation, in which state the L \& R outputs provide identical signals.
A single knob ganged Master Volume control is fitted, plus a pilot indicator.
The units are mains powered and have the same overall dimensions as monaural mixers.

STEREO MIXERS

Also available Monaural Electronic Mixers:-
4 Way Monaural Mixers
6 Way Monaural Mixers
8 Way Monaural Mixers
10 Way Monaural Mixers
3 Way Monaural Mixers with P.P.M.
4 Way Monaural Mixers with P.P.M.
6 Way Monaural Mixers with P.P.M.
8 Way Monaural Mixers with P.P.M.

50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4 WAY MIXER USING F.E.T.'s. This is a high fidelity amplifier (0.3% intermodulation distortion) using the circuit of our 100% reliable 100 W att Amplifier (no failures to date) with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for $3-30 / 60 \Omega$ balanced line microphones, and a high impedance line or gram. input followed by bass and treble controls. Since the unit is completely free from the input rectification distortion of ordinary transistors, this unit gives that clean high quality that has tended to be lost with most solid state amplifiers.
100 uV on $30 / 60 \mathrm{ohm}$ mic. input. 100 mV to 100 volts on gram/auxiliary input $100 \mathrm{~K} \Omega$.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Bass and treble controls fitted. Models available with 1 gram and 2 low mic. inputs. 1 gram and 3 low mic. inputs or 4 low mic. inputs.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms and 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 v on 100 K ohms.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 m W 600 ohms. Output $100-120 \mathrm{v}$ or $200-240 \mathrm{v}$. Additional matching transformers for other impedances are available.

30/50 WATT AMPLIFIER. With 4 mixed inputs, and bass and treble tone controls. Can deliver 50 watts of speech and music or over 30 watts on continuous sine wave. Main amplifier has a response of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db} .0 .15 \%$ distortion. Outputs $4,7.5,15$ ohms and 100 volt line. Models are available with two, three or four mixed inputs for low impedance balanced line microphones, pick-up or guitar.

Themost advanced microwave devices arehere.

Schottky Barrier Diodes

*Ga As Mixers *Ga As Detectors *LID, Reversible Ceramic

Oscillators

*Ga As Gunn Diodes *Si Avalanche (Impatt) Diodes
*Welded Ceramic S3
Backward Diodes
*Ge Planar Detectors *LID. Coaxial
Microwave Transistors
*Si 1 watt Power amplifiers *Si Low Noise, 5 dB receiver Tuning Varactor Diodes
*Si VHF \& HF plastic, High 0 * Si Hermetic, Wide Capacitance Range

Varactor Multiplier Diodes

*160 GLUZ, Si welded Ceramic
P-I-N Diodes *Switches
*Limiters *Modulators *Stick, Coaxial, Epoxy and Pill
Point Contact Diodes
*Mixers *Detectors *Coaxial, Single Ended Ceramic Microwave Integrated Circuits
*Microstrip SUB-SYSTEMS incorporating microwave semiconductors

SEmICOMDUCTORS Write for your copy of abridged catalogue to:
AEI Semiconductors Ltd. Carholme Road, Lincoln Telephone:

Trend

Trend Electronics Limited

[^1]SOLE U.K. DISTRIBUTORS OF

- LOW COST • QUICK DELIVERY - OVER 200 RANGES IN STOCK - OTHER RANGES TO ORDER

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES, ETC.

CLEAR PLASTIC METERS

87	
$50-0.50 \mu \mathrm{~A} \quad . . .55 /-$	30V. D.C....... 42
100 1 А 55/-	150V. D.C.
$100-0-100 \mu \mathrm{~A}$. $52 /-$	300 V . D.C.
$500 \mu \mathrm{~A}$. $47 / 8$	15V.
ma 42 /-	${ }_{150 \mathrm{~V}}{ }^{\text {A }}$.
42	300 V A.C.
$10 \mathrm{~mA} \mathrm{.......}. \mathrm{42/-}$	500V. A.C.
50 mA 42/-	${ }^{\text {s mete }}$
$100 \mathrm{~mA}48$	VU meter
500 mA $42 /$.	$50 \mathrm{ma} \mathrm{A.C}$
1 amp. 42/-	100ruA A.C.*
$5 \mathrm{mmp}, \ldots \ldots \ldots .{ }^{\text {a }}$ 42	$200 \mathrm{~mA} \mathrm{A.C}$.
$10 \mathrm{mmp}48$	$600 \mathrm{~mA} \mathrm{A.C}$.
16 mmp.	1 mmp A.C.*
20 amp. 42/	5 amp. A.C.*
$30 \mathrm{amp}48$	10 mmp . A.
$50 \mathrm{amp} . \quad{ }^{\text {47/8 }}$	20 mmp A.C.*
10v. D.C...... 42	30 arpp A.C.

*MOVING IRON -
all others moving coil

BAKELITE PANEL METERS
Type MR.65. 3jin. square fronts.

EDGWISE METERS
Type PE.70. 3 17/32in. $\times 115 / 32 \mathrm{in} . \times 21 \mathrm{in}$

eep.

PLEASE ADD POSTAGE

MODEL PL-436

This range of Multimeters, manufactured by Tachikawa or money combined with quality and accuracy of measuremenc.

- immediate delivery DISCOUNTS FOR QUANTITIES
trade enauiries invited
MODEL MD-120
Peatures Mirror scale, Low Loss switeh and Senaltivity 20ik $\mathrm{a} /$ Vort D.C. 10 k a/Volt A.C. D.c. Volt : $30,60,300,660,3,000 \mathrm{~V}$
D.C. Current: $60 \mathrm{uA}{ }_{12}, 300 \mathrm{~mA}$

Resistrance: $\mathbf{6 0 K}$, 6 MEO.
Deelbele: $-200{ }^{\circ}+63 \mathrm{db}$.

£4.12.6 p/p 2/6

MODEL PL-436
Features mirror Bcale and wood arala Finish gematurity: 20 K a/Volt D.C. 8 K D/Volt A.C. D.C. Volta: 0.6 , $3,12,10,120,600 \mathrm{~V}$ Resistance: $10 \mathrm{~K}, 100 \mathrm{E}, 1$ IMEG, 10MEG Ω.
Decibels: -20 to +46 db . Ruygen High Impact Plastic Clase with Handle
sire 5 ilin.
£6.19.6 p/p $2 / 6$
MODEL 500
Featuree Mirpor Beale and Buzzer 8hort Clircuit Check
Benativity: $\$ 0 \mathrm{k}$ Q/Volt D.Cu 15 k /Volt
 A.C. Volts: 2.5, $10,25,100,250,500,1,000 \mathrm{~V}$ D.C. Current: $50 \mu \mathrm{~A}, 5,50,600 \mathrm{raA}, 12 \mathrm{amp}$.
Resistance: $00 \mathrm{~K}, 6 \mathrm{MEO} .60 \mathrm{MEG}$. Resistance: $60 \mathrm{~K}, 6 \mathrm{MEG} .60 \mathrm{MEO} \mathrm{O}$.
 £8.17.6 p/p 2/6

* ALL MODELS FITTED OVERLOAD PROTECTION \& SUPPLIED WITH BATTERIES, PRODS \& INSTRUCTIONS

MODEL 5025

LAB' MODEL

MODEL 5025
Features 57 Rangen, Ciant 5 f loc, Meter, Polarty Reverse Bimch. D.C. Yolt: 50 k O/Vort D.C. $5 \mathrm{k} \Omega /$ Vott A.C 125, 250, $800,1,000 \mathrm{~V}, 1.25,2.5,5,10,25,5$ 1,000V Ms: 1.5, 3, 5, 10, 25, 50, 125, 250, 500 D.O. Current: $25,50 \mu \mathrm{~A}, 2.5, \mathrm{~B}, 25,80,250$ S00mA, 5, 10 Rmp.
 £12.10.0 p7p 3/6

MODEL 100,000 O.P.V. LAB TESTER
Peatures Uniqge Range Selector, 6 kin . Scale, Buzzer shor Circilt Check. 100.000 OPV D.C. sk/Volt A.C. D.C. Vothe: .5, 2.5, 10, 50, 250, 1.000 V . A.C. Coths: $3,10,50,230,500,1,000 \mathrm{~V}$. Resiistance: $1 \mathrm{~K} .10 \mathrm{~K} .100 \mathrm{~K}, 10 \mathrm{MEG}$. 100eribels: -10 to +49 db . Plantic Case with Carrying Handle size 77 in
$\times 6$ ifin. $\times 3$ tin. £18.18.0 p/p 5/-

TEGHNIGAL TRAINING in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEW
 SELF-BUILD RADIO COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meterall under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio. T.V. and Electronics.

INTERNATIONAL CORRESPONDENCE SCHOOLS

Dept. 222, Intertext House, Stewarts Road, London. S.W. 8
Please send me the ICS prospectus-free and without obligation.
(state Subject or Exam.)
name

ADDRESS

Irio

An easily adjusted hand tool for the accurate bending of resistor, capacitor, diode leads, etc.. for printed circuits. Will bend leads to within $\frac{1}{16}$ " of ends of components and
 up to $3 \frac{1}{4}{ }^{\prime \prime}$ centres.
Infinitely adjustable between $\mathrm{O}^{\prime \prime}$ and $1 \frac{3}{4}$ " to suit component body length. All type lead diameters accommodated. Overall Dimensions $\frac{7}{8}^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime} \times 4 \frac{1 \frac{1}{2}^{\prime \prime}}{}$
Price: 57/6d.
TRIO INSTRUMENTS LTD., BURNHAM ROAD.
DARTFORD, KENT. Telephone: Farninghiam 2082.

WW-044 FOR FURTHER DETAILS

THANSFORMERS

DESIGNED TO CUSTOMER'S OWN SPECIFICATIONS FOR ALL ÁPPLICATIONS UP TO 100 KVA. "C" CORE, PULSE, 3 PHASE, TOROIDS, HIGH TEMPERATURE, ETC.

Samples from our standard production ranges:-
*Mains es.d.
$350-0.350 \mathrm{~V} .60 \mathrm{~mA} ., 6.3 \mathrm{~V} .2 \mathrm{~A} . \quad . \quad . . \quad 220$
$500 \mathrm{~V}, 300 \mathrm{~mA} .6 .3 \mathrm{~V} .4 \mathrm{~A} ., 6.3 \mathrm{~V}$. IA
$500-0.500 \mathrm{~V} .0 .25 \mathrm{~A} ., 6.3 \mathrm{~V} .4$ Act., 6.3V. 3 Act., 5 V . 3A. ${ }^{19}$
$525-0.525 \mathrm{~V}, 0.5 \mathrm{~A}, 63 \mathrm{~V}, 6$ Act, $6.3 \mathrm{~V}, 6$ Act 5 V 6A
*Low Voltage
30-0-30V.4A. 3126
$30-0.30 \mathrm{~V}$ IA 28 V IA $30 \mathrm{~V} 250 \mathrm{~mA} \quad 150$
28 V . IA., 28 V . 1 A., 28 V . 1 A., 28 V . IA., $30 \mathrm{~V}, 250 \mathrm{~mA}$.
*Primaries $10-0-200-220-240 \mathrm{~V}$.
20W Transistor Amplifier (W.W. Nov. 1966)
Driver 1 \&
Mains
L.P. Fllter, Chassis Mounting
$\begin{array}{ll}\cdots & 19 \\ \cdots & 12 \\ & 15\end{array}$
L.P. Filter, Printed Circuit Mounting ..

70V \& 100V Line Matching

Fitted with serminal panel, taps at $0.5,2,4$ and $8 W$. Into 15 ohms
$9 /-$ each in 100 Lots
Flying leads, taps at $\frac{1}{4}, \frac{1}{2}, 1,2$ and 4 W . into 3 ohms.. $7 / 3$ each in 100 Lots

Prices inclusive of postage and packing, each. for small quantities, cash with order, please.

HOWELLS RADIO LIMITED
CARLTON ST.. MANCHESTER, M14 4GT 061-226 3411

Some notes on Bridge Measurement by WAYNE KERR

Number 3

Bridge Standards

This series of notes is intended to cover the principal aspects of design and application of the Transformer Ratio Arm Bridge. An important feature of this type of bridge is its ability to cover a wide range of impedances with a small number of resistive and reactive standards by using multiple tapping points on transformer windings. Furthermore it is possible, by an appropriate arrangement of these tappings, to achieve pure standards using conventional resistive and reactive components. Figure 1 illustrates transformer tappings which allow the ratio between the standard and the unknown to be varied by a factor of 10^{6} to 1 . This is achieved by varying the $1,10,100$ and 1000 tapping points for the unknown impedance on both transformers.

Fig. 1
The standard impedance can also be connected to any 10 turn tap between Neutral and 100 turns on the left hand transformer. This provides a decade ratio facility in addition to the range multiplication already described.

In a practical bridge network, the standard impedance may consist of a series of resistors and capacitors, each component being selected to be one tenth the value of its predecessor in the series. The unique advantage of using
decade taps in this way is that each standard reactance and resistance can be independently switched to any tap on the transformer from Neutral to 100 turns as described and therefore the effective value of each standard can be independently multiplied to give a complete decade range of values.

If solid dielectric capacitors are used as fixed value standards, small resistive losses associated with the power factor of the dielectric will cause errors in measurement to occur. However, the simple arrangement shown in Figure 2 can be made to balance these losses and effectively purify the standards.

Fig. 2
RA is the resistive term associated with the power factor of the standard capacitor. A fixed resistor Rb is connected to balance the current produced in the right hand transformer by RA and an exact balance can be made by means of the potentiometer connected across the left hand transformer winding forming a potential divider.

If the standard capacitor is connected to the 100 turn tap of this transformer, Rb can be substantially less than one hundredth of RA and therefore becomes a practical value in the order of megohms.

The measurement of network characteristics can be performed using a transformer ratio arm bridge. Figure 3 illustrates the use of the bridge for measuring the transfer admittance of a
network terminated with a resistor $\mathbf{R t}$. This resistor acts as the terminating resistor as, at balance, equal currents flowing in the right hand transformer effectively return Rt to Neutral. The various components of the standard arm of the bridge can be varied and made effectively negative by switching to windings of reverse sense on the right hand transformer as illustrated by the dotted line in Figure 3, and from this it follows that measurements can be performed in all four quadrants of the complex plane using one set of resistive and one set of capacitive standards.

Fig. 3
If the features of the transformer ratio arm bridge so far described are compared to those of other types of A.C. bridge it is apparent that the main advantages are high accuracy combined with versatility.

The principles which have been discussed may be applied to simple, low cost bridges and to more advanced designs up to the standard required for the precise comparison of standards to an accuracy of a part in a million.

The next issue of these notes will develop the use of the bridge neutral facility in order to achieve the design for a precise and stable standard of capacitance.

Get across loud and clear with AKG microphones!

WW- 048 FOR FURTHER DETAILS

M. R. SUPPLIES (London) LTD.,
 (Established 1935)

Unlveranly recognlsed as suppllery of UP-TO.DATE MATERIAL, which does the job properly Instant delivery. 8atisfaction assured. Prices nett
FAN FLOW EXTRACTOR FANS. Undoubtedly today ${ }^{\circ}$ greateat bargaln for domentic or induatrial use. For $200 / 250$ Yoita A.C. 7,500 cu. ft. per hour, Easily inatalied, flited weatherproor louvres which open when motor $/ 8$).
onty $£ 8 / 2 / 6$ (despatch $7 / 6$.
DESK OR TABLE FAN. An toeal fan for the hot weather, lightweight polythene, weighs only
 24/8/8 (des. 5/-)
SYNCHRONOUS TIME SWITCEES. (Another one of our popular specialtien) 200/240 v. Boc., for gecurate prenet switching operatione. Bangano s.25t, providing up to 3 on-off operations per 24 hourk at any chonen times, with day -omititing device
pactly housed 4 in. dia., $3 /$ in. deep, $£ 8 / 4 / 6$ (des, $1 / 6$). ELECTRIC FANS (Papat), for extracting or blow Ing. The moat exceptlonal offer we have yot
made. $200 / 250$. A.C. Induction motor-silent running. 2.800 r. .m. duty 100 C .F. M. Only made. 200/250 v. A.C. Induction or domestic or industrial use. Eany mounting, £3/5/-(des. 3/6). SMALL GEARED MOTORS. In addition to our well-known range (List aM. 169), we offer amall open type S.P. Unite $200 / 250$ v. A.C., 1, 6, 12. 24, 60 r.p.m., Approx. Sin. long, with tin, bhath projection esch Only $69 / 8$ (des. 3/-).
MINLATURE COOLING PANE. $200 / 250 \mathrm{~F}$. A.C. With open type induction motor (no interference). Overall in. $x 3$ itn. x PAMs. Fitted 6 -binded metal limpeller. Ideal for projection lamp cooling, iight duty extractors, etc., ethl only 28/6 (dea. 4/6).
ARR BLOWERS. Hifhly eflicient unlt atled Induction totally enclosed motor $230 / 260 \mathrm{~F} .50 \mathrm{C}$.

SYMCHRONOUS ELECTRIC CLOCE MOVEMENTS (an mentioned and recommended in many nutional journala). $200 / 250 \mathrm{v}, 50 \mathrm{c}$. Selfostarting. Fitted apindlea for hours, minuten and ceniral aweep second hands. Central one-hole fixlng. Dia. 2 han. Depth behind dial oniy 1 lh . With bock durt cover. $38 / 6$
SYNCHRONOUS TIMER MOTORS (Bangamo). 200/250 Y. $50 \mathrm{c} / \mathrm{s}$. Self-tarthng 21 n . dia. X 1 ing.

SMITHS TIMER MOTORS Synchromous, self-gtarting $200 / 250$ volts, 1 ph., 50 c. Clockwhe. 8mitus Timer mip. only. Only $25 /$ (den. 2/-).
miniature D.C. MOTORS. $6 / 12$ volte D.C. Ideal model makers. $4,000 / 9,000$ r.p.m. no loal. $1 \% \mathrm{in} . \times 1 / \mathrm{in}$. dimeter. Plange tiring. Only $9 / 6$ (des. 1/6).
OPFICLAL STOCKIST: "PARVALUX" Electric Motors (Lint G.M.169)
EXTRACTOR FANS. Ring mounted all metal construction. T/E induction motor, sllent opers-

immediate delivery oi Staert Centrifaral Pampi, lacluding nlainless ateel (moat models).
M. R. SUPPLIES (LONDON) LTD., 68 New Oxford Street, London, W.C. 1
(Telephone: 01-636 2958)

Still the best quality-for-size loudspeaker in the world Goodmans Maxim

The Maxim was the first true High Fidelity system of real mini size in the world - and it's still the best. It is a fact that the Maxim is often chosen for its sound quality, irrespective of its small size. Only $10 \frac{1}{2}^{\prime \prime} \times 5 \frac{1^{\prime \prime}}{} \times 7 \frac{1}{4}^{\prime \prime}$ deep the smooth response and delicate prec'sion and control of the Maxim have resulted in overwhelming acclaim
from critics, professional users - like the BBC, and perhaps most important of all - satisfied domestic users from all over the world. Of course, Goodmans have been in the Hi Fi business for some time - it makes a difference!
So if you've never heard a Maxim your Hi Fi dealer will be pleased to
demonstrate a pair to you. May we suggest you take your wife with you she'll be delighted to know she won't have to throw the big bookcase away to make room for them.

Goodmans Loudspeakers Lid

Axiom Works, Wembley, Middlesex
Telephone: 01-902 1200

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:

HARRIS ELECTRONICS
 (London)

138 GRAYS INN ROAD, W.C. 1
Phone: 01/837/7937

Major 3000, minor 600, comb type relays. Dependable will give you a planned delivery to match your Manufacturing schedules. Telt us what you want, and we'll see that you will get it ! Contact us now and get the sort of answer you want to hear.

DEPENDABLE RELAY (CONTROLS) LTD 157 Regents Park Road, London, N.W.1. 01-722 8161

the only thing that's standard about a Claude Lyons CVR is the amazing value

Claude Lyons CVR Constant Voltage Regulators offer the design engineer the widest choice of variations for building into original equipment. They are compact and embody an all-silicon solid state control circuit for high efficiency and reliability. Control accuracy is 0.3%, unaffected by load or frequency variations. Distortion is negligible.
CVRs are available with power ratings of 360,600 or 1200VA; multiple input and output voltages;
isolated outputs ; d.c. outputs; local or remote a.c. or d.c. sensing. Prices are surprisingly low for quantity-and as such offer designers an ideal solution to stabilised supply problems.

For full details write to Publicity Department, Hoddesdon.

Claude Lyons Limited

Hoddesdon, Herts. Hoddesdon 67161 Telex 22724 76 Old Hall Street, Liverpool L3 9Px. 051-227 1761 Telex 62181

So what do you do?

You reach for the 'phone and dial ONO 239 8072, if it is anything made by the United-Carr Group. You will be surprised how soon you'll get what you want.

Your immediate needs are our business
We exist to supply the small user quickly with standard parts made by these Companies and carry large stocks of their fasteners and clips and a wide range of Radio, Electronic and Electrical components. We're geared to speedy handling and dispatch.

But you will need our latest catalogue
For quick and accurate ordering you should keep our comprehensive catalogue by you. This useful reference book gives full details of the wide range of parts we stock-nearly everything of the kind that you are likely to require. Even though not ordering anything immediately, you should write now for this useful publication and so be ready to handle rush jobs whenever they arise.

United-Carr Supplies Ltd.,
Frederick Road, Stapleford, Nottingham. Sandiacre 8072 STD ONO 2398072

Ballistics
Computers by Westinghouse. Nine servo amplifiers with associated motors.
Brand new in sealed containers. £95, delivered.

punches, readers, verifiers and teleprimters at realistic prices to educationists. mobile SHOWROOM CALLS ON REOUEST.

Automatic
Numbering Machine by
Western Union.
Four
Uniselectors and 30 neons. Ideal amateur computer. Application leaflet. £12.10s. post free.

COMPUTER TRAINING PRODUCTS

2 Lordship Lane, LETCHwORTH, HERTS. Tel: 4536 0462/6 WW- 056 FOR FURTHER DETALL

WW-057 FOR FURTHER DETAILS

ENCAPSULATION -

low tool cost method for cylindrical coils and potting. Enquiries also for-

REED RELAYS

 SOLENOIDS COIL WINDING TRANSFORMERS to 8 K.V.A.Here they are. The tuner amplifiers everyone has been waiting for, completing the Armstrong Series 500
You already know about the 521 Amplifier hailed by press, trade and public for both its technical and musical performance. You also know about the 523 and 524 AM-FM and FM Tuners, already established as leaders in their field and chosen by many famous names for use in relay, public address, language laboratory and continuous music systems where performance, stability and reliability are absolutely crucial
Put them together and what have you $g \approx$? the 526 Tuner amplifier, shown below, which combines the circuitry and features of the 521 Amplifier and the 523 AM-FM Tuner, and what a formidable combination this is. Fifty watts of audio power, all the facilities expected in a top class amplifier, stereo and mono FM, coverage of the medium and long wavebands, and all backed up by the best after sales service available. If there is a better buy we don't know of it; as a technical reviewer in the October 1968 Hi Fi News wrote of its predecessor, the 426: "Better tuner amplifiers there may well be. but there are none to my knowledge in this price range"
The 525 Tuner amplifier is identical to the 526 except that it does not include the medium and long wavebands. In other words. it is a combination of the 521 Amplifier and the 524 Tuner.
Both models come complete with teak veneered case for which there is no extra charge
Yes, indeed. Here they are. Two great new models from Armstrong, the acknowledged leader in the manufacture of tuner amplifiers in Great Britain

Brief Specification

Power output
Power bandwidth
Frequency response
Harmonic distortion

Loudspeaker matching Inputs Controls

Other features

Wave bands

25 watts per channel
$20-25,000 \mathrm{~Hz}$
$20-20.000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
Less than 0.5% for all power levels up to 25 watts and at all frequencies throughout the audio range. Typically 0.1% at 1 kHz at 15 watts output into 8 ohms
Any impedance between 4 and 16 ohms
Magnetic and ceramic pickups, tape playback On/off, volume, bass, treble, balance, rumble filter, treble filter, loudness. FM quieting
Headphone output, tape monitor, optional plug-in decoder, automatic mono-stereo FM switching, stereo indicator, tuning meter, fully stabilised power supply

The full specification is given in the Armstrong catalogue Armstrong Series 500 recommended retail prices:

			¢	s.	d.
521 Stereo Amplifier	\ldots	\ldots	52	0	0
523 AM-FM Tuner	52	9	0
524 FM Tuner	\ldots	\ldots	40	4	6
525 FM Tuner amplifier...	\ldots	\ldots	87	16	9
526 AM-FM Tuner amplifier	\ldots	\ldots	98	15	6
M8 Stereo Radio Decoder			9	10	0

Two \mathbb{N} EM Tuner amplifiers from Armstrong

See and hear Armstrong at the 1969 International Audio Fair, Olympia, 16th-22nd Oct., Demonstration Studio 41

For full colour catalogue of all models, plus stockists list, post coupon or write mentioning 10WW69.

Name

Armstrong Audio Limited, Warlters Road, London N7
telephone 01-607 3213

Address

10 WW 69

The Goldring caress... we call it transduction seduction

Smooth, breathing, open and graceful that's the sound of Goldring True Transduction. The ability of a cartridge to track properly at low forces is only the first stage of design, and from that point Goldring engineers continued development through to achieve their True Transduction. A micro-element of tubular permeable material lies in a 'Free-Field' generated from a fixed source away from the removable
stylus assembly. It is as light as the
cantilever itself - no massy magnets or coils to move! This design approach provides a texture of sound transparency previously associated with direct-coupled pickups. Excessive de-coupling techniques are rendered unnecessary and tight coupling is employed to ensure that every motion of the sensing element is identical to that of the stylus - at all frequencies.

Full technical details of these new era cartridges from
Desk HF, Goldring Manufacturing Co. (Great Britain) Ltd.,
486-488 High Road, Leytonstone, London, E. 11 ,
or from your nearest dealer.

REPAIR SERVICE 7-14 DAYS

We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS. 89 .
Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments

LEDON INSTRUMENTS LTD

76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.: 01-692 2689
E.I.D. \& G.P.O. APPROVED

CONTRACTOR TO H.M. GOYT.

WELWYN TOOLS

For Inner Core Ejection and Heated Wirestripping Miniature Soldering and Electronic Instrument Work
USE W.T.C. Wire Ejectors, LUCO Elecerically Heated Wire Strippers (see illuseration), Finest Soldering Neadles, Box Joine Miniature Cuters and Pliers including Tip Cuteing Pliers, Printed Circult Crlmping Pliers, Printed Circult Crlmping and Cutting Pliers, Torque Wrenches and Piercing Punches. If you require quality tools
ask for Cacalogue $W W / 69$. ask for Catalogue WW/69.

the choice in over 50 different countries!

Teonex electronic valves and semi-conductors are supplied all the world over where quality and reliability count.
Teonex offer a comprehensive range of receiving, professional and special quality valves. Whether you require a device to Mil specifications for government work or a commercial device for replacement in a television set. Teonex products are equally suitable.

For technical specifications and price lists, please write to Teonex Limited 2a Westbourne Grove Mews
London W. 11 - England
Cables: Tosuply London W.11.

A Technical Knockout

Titles are hard to win at Morganite. But we have a Champion in the Type 81E Cermet Trimming Potentiometer.
After several rounds with our Quality Control personnel. the Champion emerged unscathed. Unfortunately.
the other contender could not of electrical tests stay the distance. He survived an examination of tiny component parts at 500 times life size (that's like spotting blemishes on a 60 ft . matchstick) but he suffered a technical K.O. during the final rounds

The Champion took them in his stride and now challenges all comers.
If you have an application for a 0.5 w single turn trimming potentiometer, (Bantam Weight) back a proven title holder - it pays !

CALAN TRACE SHIFTER C5OID

\star A TRACE (9,600 MILLIMETRES LONG ON A 5 INCH TUBE!)

* A THREE DIMENSIONAL DISPLAY!
* VERTICAL COMPARISON OF SUCCESSIVE SCANS!

Add these facilities to your oscilloscope. They will help you to examine the functional waveforms of heart or combustion engine or for that matter any other long waveform phenomena.
Price $£ 78$ Export and Agency Enquiries Invited.

Calan Electronics Limited,

6 Croft Street, Dalkeith, Scotland
Tel. 031-663-2344
WW-096 FOR FURTHER DETAILS

NEw 48" FOLDING MACHINES SHEET METAL bench Model by parker

If you've got a 'one track mind' you're already a user of 'UNITRACK' GUIDES

Investigations into the problems of accommodating circuit boards in conditions of extreme ribration has resuited in the exclusive
features of the UNITRACK Card Guide. Moulded fingers act as pressure pads to hold bo.rds from 0.050 to $0.125^{\prime \prime}$ thickness, five lengths and two styles available. Send or literature and complete details to VERO ELECTRONICS ITD Industrial Estate, Chandler's Ford, SO5 3ZR Tel Chandler's Ford $2921 \quad$ Telex: 47551 Branches and Agents throughout the World

WW- 997 FOR FURTHER DETAILS

EDDYSTONE COMMUNICATION RECEIVERS
FROM £59-10-0 covering $10 \mathrm{KHZ}-870 \mathrm{MHZ}$ ILLUSTRATED LEFT-830/7 HIGH GRADE G.P. HF/MF RECEIVER COVERING $300 \mathrm{KHZ}-30 \mathrm{MHZ}$ IN 9 RANGES. DOUBLE CONVERSION FROM 1.5 MHZ. PANORAMIC UNIT FOR VISUAL DISPLAY.
SEND 6d. STAMP FOR GENERAL
RECEIVER LEAFLET OR SPECIFY
FREQUENCYCOVERAGE REQUIRED
SOUTH COAST EDDYSTONE CENTRE
COSH \& HAMMOND
29 BEACH RD., LITTLEHAMPTON, SUSSEX. TEL: 4477
EXPORT WELCOMED-RANGE IN STOCK-COMPONENTS WW-073 FOR FURTHER DETALS

Quad ability for technical design and styling has won a Council of Industrial Design award for 1969

for the closest approach to the original sound ACOUSTICAL MANUFACTURING CO. LTD. HUNTINGDON (0480) 2561/2

ColD
$\frac{\text { design award }}{1969}$
STAND 33 - NATIONAL HALL - OCT 16-22 - INTERNATIONAL AUDIO \& PHOTO-CINE FAIRS

So we designed the Philips Intercom M 100 system, the first all-electronic decentralized duplex intercom on the market. The M 100 system eliminates the usual complicated central exchange with its dustproof and climatized room. Instead there's a small supply unit ($76 \times 50 \times 20 \mathrm{~cm}$) that plugs in anywhere along the cable.
This led to other spectacular improvements. The Intercom M 100 can be changed or expanded without having to rearrange the existing connections.

A single 8 pair cable runs through the premises: simply install additional parallel connected sockets and plug in the new stations, each with its preset allotted number. And when moving to another office, simply transfer your own station. If you want to move the supply unit you can plug it in anywhere along the cable!
All-electronic design means that the Intercom M 100 is absolutely maintenance-free. With duplex ease of operation. And sound quality second to none - aided by the tasteful and functional rosewood cabinet.
Write for your copy of the brochure giving a full technical description of the new and unique Philips Intercom M 100

Electro-acoustics Division of Philips Industries. N.V. Philips' Gloeilampenfabrieken, Eindhoven, The Netherlands.

PHILIPS

WEYRAD

COILS AND I.F. TRANSFORMERS IN

LARGE-SCALE PRODUCTION

FOR RECEIVER MANUFACTURERS

\(\left.$$
\begin{array}{ll}\text { P. } 9 \text { SERIES } & \begin{array}{l}10 \mathrm{~mm} . \times 10 \mathrm{~mm} . \times 14 \mathrm{~mm} . \quad \text { Ferrite cores } 6 \mathrm{~mm} .\end{array}
$$ \quad 472 \mathrm{kc} / \mathrm{s} operation.

Single-tuned I.F.s and Oscillator Coils.\end{array}\right]\)	$12 \mathrm{~mm} . \times 12 \mathrm{~mm} . \times 20 \mathrm{~mm} . \quad$ Ferrite cores 4 mm.	$472 \mathrm{kc} / \mathrm{s}$ operation.

These ranges are available to manufacturers in versions suitable for most of the popular types of Transistors. The Oscillator coils can be modified to enable specific tuning capacitors to be used provided that bulk quantities are required.

OUR WINDING CAPACITY NOW EXCEEDS 50,000 ITEMS PER WEEK
On the most up-to-date and efficient machines backed by a skilled assembly labour force for all types of coils and assemblies.

WEYRAD (ELECTRONICS) LIMITED, SCHOOL ST., WEYMOUTH, DORSET

TUBES AND SEMICONDUCTORS

WE CAN CATER FOR ALL YOUR REQUIREMENTS, WHETHER IT IS ONE OFF FOR EQUIPMENT OUT OF COMMISSION, SMALL DEVELOPMENT RUNS ON PRODUCTION BATCHES.

Telephone, Telex or write to make use of our extensive stocks of over 3,000,000 valves and tubes spread over 4,000 types.

OFF-THE-SHELF SERVICE FOR URGENT REQUIREMENTS
EXPORT ENQUIRIES INVITED. EXPORT PRICE LIST AVAILABLE ON REQUEST

Our TGL Department is approved by Air Registration Board and we can supply Certificate of Compliance or ARB Certificate if required

> Z \& I AERO SERVICES LTD. Z \& I EXPORT AND WHOLESALE LTD.

44A WESTBOURNE GROVE, LONDON, W. 2

SIMPLY SUPERB!

the new brenell... MODEL ST STEREO

Probably the most important new recorder of the year!

The new ST400/200 recorders are different from all previous Brenells. All transistorized electronics; shelf-mounting cabinet; simplified controls.
Sound quality is even better than ever-as good as you can hear. Three-motor deck performance and reliability; quality components throughout. All usual facilities are available.
ST400/200 recorders are designed to give you exactly what you expect from a Brenell today.
Only the price is less than you may expect ... $£ 145$ recommended. You pay no import duties ... no high selling costs ... only for a top-quality recorder, well made. It's a fine formula !

- Mono or stereo operation
- 3 tape speeds
- Choice of 2 or 4-track - 2 recording level meters models
- Full input/output and
- 3 outer-rotor motors control facilities
A range of Brenell mono and stereo recorders is available, together with Brenell deck and tape-link.
See them at the International Audio Fair, Stand 98 Section C

hrenell

BRENELL ENGINEERING COMPANY LTD. 231/5 Liverpool Road, London, N.1. Telephone:01-6078271
GD 730
WW- 078 FOR FURTHER DETALLS

MINIMUM SPACE DECADE BOXES

Small enough to put in your pocket (but too useful to keep there) the new Hatfield Capacitor Decade Box Type 688A has been developed for use by design engineers for circuit tolerancing and similar applications. The unit is exceptionally compact, measuring only $5 \frac{1}{2} \mathrm{in}$. $\times 1 \frac{1}{\mathrm{~s}} \mathrm{in}$. $\times 2 \frac{1}{2} \mathrm{in}$. and provides a rapid means of capacitor selection over the range 100 pF to $1 \mu \mathrm{~F}$. Accuracy is better than 5% at any setting.

- Also availablo in identical size cases to the above, are the Hatfiald Miniature Resistance Decade Boxes, Type 591/A (10, 100, 1k and 10k ohm steps) and Type 591/B (1, 10, 100 and 1 k ohm steps) and a range of Switched Attenuators Type 687 in alternative impedances.
WRITE NOW FOR ILLUSTRATED LITERATURE AND FOR YOUR COPY OF THE NEW HATFIELD SHORT FORM CATALOGUE

HATFIELD INSTRUMENTS LTD..
Dept. WW. Burrington Way, Plymouth, Devon. Telephone: Plymouth (0752) 72773/4 Grams: Sigjen Plymouth.

Telex: 45592
'Music when soft voices die, Vibrates in the memory -

The best pick-up arm in the world Write to SME Limited

FOR

CUSTOM HYBRIDS

If you have read as far as this, you either know what "custom hybrids" are, or want to know what they might be.

For the uninitiated, a "hybrid" is a modern form of microcircuit (integrated circuit) which produces the performance of a bulky, conventional-component, printed-circuit-board assembly inside a small sealed package by hybrid assembly techniques, combining printing of components with attaching separate discrete devices.

Electronic equipment manufacturers are changing over from printed-circuit-boards to hybrid microcircuits. Larger ones are trying to produce their own hybrids. Smaller ones tend to look to a specialist custom-hybrid manufacturer, like NKT, for units custom-built to their exact specifications.

A survey of customers to whom NKT have supplied custom-hybrids over the last two years indicates that the commonest reasons for them "going hybrid" have been:

1. They had to have smaller circuits.
2. They had only short runs, expensive in engineering.
3. They had high assembly labour costs relative to materials.
4. They had to use high-cost special-selection components to achieve close overall circuit performance.
5. They had long runs of identical packages.
6. They had to find improved environmental stability.
7. They had a need for greater reliability.
8. They had a problem in getting skilled assembly labour.
9. They had to reduce production costs.
10. They had a cost problem in multiple-component stock holding.
YOU may have equipment design problems such as these to which custom hybrids can provide an answer.

Why not write in on your company letter heading to our Marketing Manager for NKT's CUSTOM HYBRID BROADSHEET No. 5, and a free copy of our "CUSTOM HYBRID GUIDANCE MANUAL".

NKT—Newmarket Transistors Ltd., Exning Road,
 Newmarket, Suffolk.

Tel. Newmarket (0638) 3381. Telex 81358
STAND C63, INSTITUTE OF ELECTRONICS SHOW. BELLE VUE, MANCHESTER. 29 SEPT.-3 OCT.

5ven.s.
 Radio Microphones Under £100!

This is the Type Mk III system used in Universities, Churches, Schools and in Television and Film Studios. A reliable system at a reasonable price.

We also manufacture P.A. Amplifiers, Loudspeakers, Tuners, etc. for full details please contact ...
J.V.H. ROBINS, Marketing Director,
S.N.S. Communications Ltd.,

851 Ringwood Road,
Bournemouth.
Phone: Northbourne 4845.
A member of The Firth Cleveland Group.

WW-083 FOR FURTHER DETAILS

Rendar control knobs are designed for fast, precise indication. Made in a variety of styles with wings, skirts, concentric and many other features, they are supplied in a range of materials, colours and finishes (including plated) to suit all needs.

Further information available from:

INSTRUMENTS LTD BURGESS HILL, SUSSEX, ENGLAND TELEPHONES: BURGESS HILL 2642-4
CABLES: RENDAR, BURGESS HILL

... MONOBLOC CERAMICONS BY ERIE ELECTRONICS

> Monolithic Ceramic Capacitors that offer up to
> 100 times the capacitance-to-volume ratio of conventional components.
> Specified by performance-minded
> engineers wherever space is at a premium ...
> in Aerospace... Computers
> Communications ... Instrumentation.

* Volumetric efficiencies up to $380 \mu \mathrm{~F} / \mathrm{cu}$. in.
* Capacitance range, from 10 pF to over $1 \mu \mathrm{~F}$
* Tubular or rectangular types (axial or radial leads)
* Phenolic coated, glass encased and moulded types
* Unencapsulated chips for hybrid I.C.'s
* Special printed circuit types
* Up to 200 Vdc. working
* Operating temperature $-55^{\circ} \mathrm{C}$ up to $150^{\circ} \mathrm{C}$
* Erie manufacture Monoblocs in Great Britain

The technique : thin ceramic films and platinum electrodes fused into a solid layered structure.

The result : an inherently stable dielectric, resistant to the most severe environmental conditions.

Send today for the 12 page. detailed brochure.

ERIE ELECTRONICS LIMITED

Great Yarmouth, Norfolk
Telephone: 04954911 . Telex: 97421.

Are people being stubborn by insisting on the Minitest?

No.Just choosy!

Diminutive, sensitive, neat, tough. These are the adjectives that describe the S.E.I. Minitest. You will never de provoked
 into using any other for years, hence this pocket size, multi-range test set will be serving you accurately. The Minitest measures a.c. and d.c. voltages, d.c. current, and resistance over 20 ranges to a sensitivity of 20,000 and 2,000 ohms per volt d.c. and a.c. respectively. Readings are instantaneous and the minutest is clearly discernible. A steel case shields the movement from external magnetic fields and shocks. This has a robust, wipe-clean, melamine cover. All controls are handily disposed.
High voltage probes are available to extend the range of the Minitest to 25 or 30 kV d.c. for testing electronic equipment with high source impedence. They can be used with any other meter of similar sensitivity. Wisdom suggests Minitest and S.E.l. probes together, right from the start. Act now: Send for the catalogue.
We manufacture a wide range of portable instruments ... write today for full information.

WW- 086 FOR FURTHER DETAIIS

YOU CAN'T A WRAPPE JOINT RELIABILITY
 Failure rates in service better than 0.0000007% per thousand hours. In twelve years Ferranti have made millions of joints

 without a single failure.For full details of Ferranti Wrapping Tools and accessories contact:FERRANTI LTD., CONNECTOR SALES,
Dunsinane Avenue, Dundee DD2 3PN. Telephone: 038289311

Radford I ${ }^{\circ}$ for the sounds you've never heard before... except in the concert hall!

Radford audio is expensive... thank goodness

Invitation

Arthur Radford would like not previously thought possible even by Rad FMT 4 TUNE standard of reproductiovolutionary unRS completely ACOUSTIC LINE LOUDSPEAR testing, each unit has
In conception, constriondary.
frst-the price display will include the demand all over the word in heavy London, W8
tuners and speake-
This is the venue Kensington Palace Hotel, De Vere This is thess Room, Kens - Friday 17th October-Saturday 18th October These are the datestober-Friday 17 th \mathbf{O}. 16 th - address below after October 1st, or each Thursday 10 am to 8 pm Daily avalable by post from the ader of the Hotel. 10 am to 8 pmise Admion Tick
Free day from the Inquiry

Radford Home Marketing Division
 P.O. Box London WlA 2BN

$\mathcal{E}_{\text {nest }}$ Turner's

 about theindicating meters for the new project (If anyone can do it, they certainly can)
? Price and delivery High $W_{\text {y combe }}$ 30931-4

[^2]
NEW ELECTRICAL TITLES FROM THE BUTTERWORTH GROUP

*Electrical Rotating Machine Testing by R. Bourne, BSc(Eng), Eng, MIEE

This volume provides a full account of known methods of testing electrical rotating machinery to determine their efficiency and losses, and sufficient detail is provided to enable the tests to be performed in the laboratory. An unusual feature of the book is the detailed explanation of the causes of losses. including stray load losses. SI units are used throughout.
1969 159 pp. 123 illustrations case 45s. limp 25s

Servicing with the Oscilloscope

by Gordon J. King, AssocIERE, MRTS
The book deals with use of the oscilloscope as an aid in servicing and fault finding in radio. television and audio equipment including the latest stereo radio and colour television circuits. A unique series of photographs taken by the author, including many off-thescreen photographs will be of particular interest.
1969176 pp. 197 illustrations 28 s.

- lifife title

BUTTERWORT -LIFE - NEWNES

 88 Kingsway London WC2WW-090 FOR FURTHER DETAILS

TELEPRINTERS•PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUIPMENT

Codes: Int. No. 2 Mercury/Peganas, Eliot 803, Binery and special purpose Codes.

2-5-6-7-8- TRACK AND MULTIWIRE EQUIPMENT

TELEGRAPH AUTOMATION AND COMPUTER PERIPHERAL ACCESSORIES OATEL MODEM TERMINALS, TELEPRINTER SWITCHBOARDS

Picture Telegraph, Desk-Fax. Morse Equipment; Pen Recorders; Switchboards; Converters and Stabilised Rectifiers; Tape Holders, Pullers and Fast winders; Governed, Sychronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence and Phonic Motors; Reprinter Testers; Send/Receive Low and Covers; Distortion and Relay Testers; Send/Receive Low and High Pass filters; Teleprinter, Morse, Teledeltos Paper, Tape
and Ribbons; Polarised and speciaand Ribbons; Polarised and speciaVised relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment; Line Transformers and Noise Suppressors; Racks and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Wires, Cables and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.

W. BATE \& COMPANY

Gaiety Works, Akeman Street, Trig, Herbs.
Tel.: Thing 3476 (3 lines) Cables: Rahno TRIng STD: 044282 TELEX 82362

This now makes Racal-BCC a dominant force in H.F. and V.H.F Military Communications Equipment.

When two internationally-acknowledged experts in military communications combine-you've a force to be reckoned with. Both have established world reputations in manpacks, and their combined expertise has produced coverage of the H.F. and V.H.F. bands. From 1 -watt 6 -channel, 8 Jb personal sets to 20 -watt fully synthesized equipments, and all equally suitable for manpack, shipborne, vehicle or other applications anywhere in the world. Whether YOUR force slogs it out with the infantry, or rides in armoured vehicles, Racal-BCC equipment will keep you in constant touch - it's the widest choice dvailable from the strongest force in forward communications. Don't forget-manpacks are only a part cf their business, they also supply a complete range of radio telecommunication
equipment for military, shipborne, P.T.T. and commercial use - worldwide. But if you're thinking manpacks - you SHOULD be thinking RACAL-BCC!

RACAL-BCC LIMITED WESTERN RGAD. BRACKNELL. BERKS ENGLAND. Tel: 3244 Telex 84160

[^3]

Model JR-500SE

CRYSTAL CONTROL TYPE DOUBLE CONVERSION COMMUNICATION RECEIVER

* This receiver covers all the amateur bands between 3.5 and 29.7 MHz . * Dial with antibacklash double gear construction. Precise tuning all signals, including SSB. * Superior stability with crystal controlled first local oscillator and VFO type second oscillator.
* Frequency drift is practically nil due to the use of a solid state VFO circuitry. * Superior selectivity by use of mechanical filter in IF cicuitry. * Receiver with built-in product detector assures good reception of SSB and CW. * BFO circuit utilizes crystal controlled oscillator for superior performance.

SPECIFICATIONS

* Frequency Range: $\quad 3.5 \mathrm{MHz}-29.7 \mathrm{MHz}$ (7 Bands)
* Selectivity: $\quad \pm 1.5 \mathrm{KHz}$ at $-6 \mathrm{~dB}, \pm 6 \mathrm{KHz}$ at -60 dB
* Sensitivity: $\quad 1.5 \mathrm{mV}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ Ratio (at 14 MHz)
* Dimensions: $\quad 13^{\prime \prime}(\mathrm{W}) \times 7^{\prime \prime}(\mathrm{H}) \times 10^{\prime \prime}(\mathrm{D})$

HS-4 HEAD PHONES

(Designed Exclusively for
Communications Work) An ideal response for speech clarity of 300 to $3,000 \mathrm{~Hz}(-6$ dB) using a special communications element.

the sound approach to quality
TRIO
TRIO ELECTRONICS,INC.

TO: B.H. Morris \& Co., (Radio) Ltd.
Send me information on TRIO COMMUNICATION RECEIVERS \& name of nearest TRIO retailer

NAME: \qquad AGE

ADORESS

TRIO KENWOOD ELECTRONICS S. A. 160 Ave., Brugmann, Bruxelles 6, Belgium
Sole Agent for the U.K. B. H. MORRIS \& CO., (RADIO) LTD. 84/88. Nelson Street. Tower Hamlets, London E. 1, Phone: 01-790 4824

50 Hz to 1 MHz NEW TYPE 1L5

925 MHz to 10.5 GHz TYPE 1 L30

Tektronix plug-in spectrum analyzers

 cover the spectrum from $50 \mathrm{~Hz}^{*}$ to 10.5 GHz*Centre frequency-displays from 10 Hz .
Here is broad spectrum analysis capability for Tektronix oscilloscopes that accept letter and $\mathbf{1}$-series plug-in units.

These units permit accurate and reliable measurements of the frequency distribution of your signal directly from the CRT displaywith signal energy along the vertical axis and frequency along the horizontal axis. The controls optimize performance for a wide variety of signals, and all four units have recorder outputs.
The new Types 1 L5 and 3L5 offer calibrated vertical and horizontal deflection for both frequency-based and time-based applications. For spectral displays, deflection factors of $10 \mu \mathrm{~V} / \mathrm{cm}$ to $2 \mathrm{~V} / \mathrm{cm}$ (RMS) are available. Fortime-based displays, deflection factors are $1 \mathrm{mV} / \mathrm{cm}$ to $100 \mathrm{~V} / \mathrm{cm}$ in a 1-2-5 sequence with a bandwidth of 10 Hz to 1 $\mathrm{MHz} \pm 3 \mathrm{~dB}$.
The Types 1 L 20 and 1 L 30 feature internal phase lock for stable displays with very narrow dispersion at high frequencies. Al four offer calibrated dispersion with coupled resolution, permitting frequency measurements directly from the display.

1 MHz to 36 MHz TYPE 1 L10

10 MHz to 4.2 GHz
TYPE 1 L20

Plug-in Unit	(for use in Tektronix oscilloscopes accepting letter and 1 -series plug-in units)				(for use in Type 561 A, 564 and 565)	
Frequency Range	50 Hz to 1 MHz	1 MHz to 36 MHz	10 MHz to 4.2 GHz	925 MHz to 10.5 GHz	50 Hz to 1 MHz	1 MHz to 36 MHz
CW Sensitivity	$10 \mu \mathrm{~V}$ (RMS)/cm	-100 dBm	$\begin{gathered} -110 \mathrm{dBm} \text { to } \\ -90 \mathrm{dBm} \end{gathered}$	$\begin{gathered} -105 \mathrm{dBm} \text { to } \\ -75 \mathrm{dBm} \end{gathered}$	$10 \mu \mathrm{~V}$ (RMS)/cm	-100 dBm
Calibrated Dispersion	$\begin{aligned} & 10 \mathrm{~Hz} / \mathrm{cm} \text { to } \\ & 100 \mathrm{kHz} / \mathrm{cm} \end{aligned}$	$\begin{gathered} 2 \mathrm{kHz} / \mathrm{cm} \text { to } \\ 10 \mathrm{~Hz} / \mathrm{cm} \end{gathered}$	$10 \mathrm{MHz} / \mathrm{cm}$ to $1 \mathrm{kHz} / \mathrm{cm}$		$10 \mathrm{~Hz} / \mathrm{cm}$ to $100 \mathrm{kHz} / \mathrm{cm}$	$\begin{aligned} & 2 \mathrm{kHz} / \mathrm{div} \text { to } \\ & 10 \mathrm{~Hz} / \mathrm{div} \end{aligned}$
Resolution	500 Hz to 10 Hz	1 kHz to 10 Hz	100 kHz to 1 kHz		500 Hz to 10 Hz	1 kHz to 10 Hz
Incidental FM	$\begin{aligned} & \leq 3 \mathrm{~Hz} \text { to } 9900 \mathrm{~Hz}, \\ & \leq 10 \mathrm{~Hz} \text { to } 1 \mathrm{MHz} \end{aligned}$	IF: 5 Hz LO: $25 \mathrm{~Hz}+$ $1 \mathrm{~Hz} / \mathrm{MHz}$ dial frequency	With internal phase lock, less than 300 Hz		$\begin{aligned} & \leq 3 \mathrm{~Hz} \text { to } 9900 \mathrm{~Hz}, \\ & \leq 10 \mathrm{~Hz} \text { to } 1 \mathrm{MHz} \end{aligned}$	IF: 5 Hz LO: $25 \mathrm{~Hz}+$ $1 \mathrm{~Hz} / \mathrm{MHz}$ dial frequency
Display	Log, linear (RMS V / cm) and video	Log, linear, linear X 10 and video	Log, linear, square law and video		Log, linear (RMS V / cm) and video	Log, linear and video
Price	$\mathrm{£487}+\underset{\substack{\mathrm{f} \\ \text { (duty) }}}{ }$	$\mathbf{E 5 5 7 + \underset { (d u t y) } { £ 9 0 . 1 5 }}$	$\mathbf{£ 9 2 5}+£ 150.10$ (duty)		$\mathrm{f} 535+\underset{\substack{\text { (duty) }}}{\mathrm{f} 87.0}$	

For detalled information on any of our products, please fill in reader reply card or write, telephone or telex.

Tektronix U.K. Ltd.

Beaverton House P.O. BOX 9 -Harpenden • Herts Telephone: Harpenden 61251• Telex: 25559
SEE US AT THE
ELECTRONICS INSTRUMENTS EXHIBITION HOTEL LEOFRIC, COVENTRY SEPTEMBER 16th 17th and 18th
HOTEL PICCADILLY, MANCHESTER SEPTEMBER 23rd 24th and 25th

HI-FIPARASTAT
 Gramophone
Record Maintenance and Stylus Cleaning Kit Designed for use on NEW records or records in new condition which are to be played with pick-ups requiring very low tracking pressures. The 30,000 finely pointed tips of the $\mathrm{Hi}-\mathrm{Fi}$ Parastat Brush positively explore every detail in the explore every detail in the
record groove to provide record groove to provide
the high degree of record cleanliness necessary when

Nicrophones for every purpose

The GR/1 and GR/2 Ribbon

Ideal for studio and similar uses, when a high standard of fidelity is essential. Easily replaceable ribbon assembly.

Other models and a full range of stands, reflectors, windshields and accessories available

All microphones are manufactured in a special section of our works, under strictly controlled conditions with stringent test and inspection at every stage.
Each and every microphone is individually tested both aurally and on Bruel \& Kjoer visual and graphic recording test equipment for conformity to a prescribed performance.

LC94

A $29 \frac{1}{2}^{\prime \prime} \times 23 \frac{3^{\prime \prime}}{4} \times 6 \frac{1^{\prime \prime}}{8}$ acoustic Labyrinth enclosure fitted with acoustic resistance in the pipe, using the same highly efficient $9^{\prime \prime}$ speaker unit used in the LC 93. Frequency response 45 Hz to 20 KHz .

LC95
The LC95 loudspeaker system is an acoustically loaded Bass Reflex cabinet, measuring $31 \frac{1^{\prime \prime}}{} \times 20 \frac{33^{\prime \prime}}{} \times 13 \frac{1^{\prime \prime}}{2}$, fitted with two loudspeakers and a crossover network. The bass loudspeaker being used is a newly developed $12^{\prime \prime}$ unit having a Melamine treated paper cone with a cambric surround. The middle and high frequency unit is a new $8^{\prime \prime}$ loudspeaker having a Melamine treated paper ribbed cone and surround. out the world.
Attractively designed and soundly constructed, they are available in either Teak or Rosewood finish.

A $19^{\prime \prime} \times 12 \frac{1}{2}^{\prime \prime} \times 8 \frac{1^{\prime \prime}}{}$ completely enclosed acoustically loaded cabinet housing a $9^{\prime \prime}$ graded melamine paper cone with siliconized cambric suspension giving a frequency response of 60 Hz to 20 KHz . -

SEE US AT THE AUDIO FAIR STUDIO NO. 25

These superb new speaker systems make available even higher standards of performance in sound reproduction and uphold the high reputation gained by Whiteley Stentorian speakers through-

LC93

Whiteley elegtrical radio co. LTD.

MANSFIELD - NOTTS • ENGLAND • Tel: Mansfield 24762

London Office: 109 Kingsway, W.C.2. Tel: HOLborn 3074

Who but Telequipment could make a first class storage

 oscilloscopefrom only $£ 483$

Acclaimed as the first low cost storage oscilloscope, Telequipment's new D53S Dual-beam Storage Oscilloscope fulfils the demand for a realistically priced, versatile oscilloscope. The D53S combínes the best characteristics of the long persistence screen and storage tube thus permitting a wider range of applications. The new D53S offers a choice of three display modes; as a normal oscilloscope ; as a long persistence instrument with a continuously variable persistence control from nominally P3l to a persistence of more than 1 minute; and as a storage oscilloscope capable of storing traces for
See us at the Electronics Instruments Exhibition
Hotel Leofric, Coventry Sept. 16th, 17th, 18th.
Hotel Piccadilly, Manchester Sept. 23rd, 24th. 25th
periods of up to 10 minutes. The instrument also provides variable sweep delay and a choice of plug-in Y amplifiers is available.

Other outstanding features include

* Large display area-6 cm x 10 cm .
* 22 calibrated sweep speeds5 seconds/cm. to 0.5 micro-seconds per cm.
* $0.05 \mathrm{~cm} / \mu \mathrm{S}$ writing speed.

Send for full details now and see just how great is the value offered in the Telequipment D53S. Prices in U.K. $£ 483-£ 513$ depending on choice of amplifiers.

TelequipmenT

Telequipment Ltd., 313 Chase Road, Southgate, London N.14. Telephone: 01-882 1166. Telex: 262004.
For overseas enquiries write to: Tektronix Limited, P.O. Box 48, Guernsey, C.I.
A member of the Tektronix Group.

Wireless World

Electronics, Television, Radio, Audio

Fifty-ninth year of publication

WirelessWorld
Review of sound \& TV cquipment
Lew-cest 15-watt amplifies.

This month's cover shows the monochrome television receiver production line at the British Radio Corporation's factory at Gosport, Hants. In this issue we review the latest techniques in television and sound receivers.

OUR NEXT ISSUE

A Design in Retrospect-the designer looks back at the comments, compliments and criticisms of the Dinsdale amplifier.
Living with $\mathrm{Hi}-\mathrm{Fi}$-a wife's definition of "tolerance" by Heather Dinsdale. Review of the German Radio Show in Stuttgart.

October 1969
Volume 75 Number 1408

Contents

474 Quartz Chrystal Oscillator Circuit without Inductors by D. F. G. Dwyer, 7. Roberts and G. Haynes

Audio Fair Exhibitors
Circuit Ideas
Simple Wideband Amplifier by H. N. Griffiths
Wescon 1969 by Aubrey Harris
Operational Amplifiers- 9 by G.B. Clayton
High-performance Low-cost "Active Zener" Regulators by 7. Preis
Announcements
Test Your Knowledge questions and answers devised by L. Ibbotson

490 New Products

Al36 INDEX TO ADVERTISERS
I.P.C. Electrical-Electronic Press Led Managing Director: Kenneth Tett -Editorial Director: George H. Mansell Advertisement Director: George Fowke -Dorset House, Stamford Street, London, SE1 C I.P.C. Business Press Ltd, 1969 Brief extracts or comments are allowed provided acknowledgement to the journal is given.

PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone; 01-928 3333 (70 lines). Telegrams/Telex: Wiworld Iliffepres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home; ©2 15s Od. Overseas; 1 year $\mathscr{L 2} 15 \mathrm{~s}$ Od. Canada and U.S.A.; $\$ 6.75 ; 3$ years $\not \subset 0$ Od. Canada and U.S.A.; $\$ 17.50$ Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notify a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 201, Lynton House, Walsall Road, 22b. Telephone: 021-356 4838. BRISTOL: 20 Victoria Square, Clifton, 8. Telephone: 0272.33873. GLASGOW: 2-3 Clairmont Gardens, C.3. Telephone: 041-332 3792. MANCHESTER: 260, Deansgate, 3. Telephore: 061-834 4412. NEW YORK OFFICE U.S.A.: 300 East 42nd Street, New York 10017. Telephone: 867-3900.

Bluish-purple (UV) Very short $0.12 \mu \mathrm{~s}$ AA

Blue
Medium short 40 us

Fifteen different phosphors, from a very short persistence blue-purple ($0.12 \mu \mathrm{~s}$) to a very long persistence orange (25s), together with optional extras such as internal and external graticules, are offered by Brimar to users of cathode ray tubes.

Brimar offers the widest range of phosphors in the industry, leads in the use of new materials, and has pioneered special phosphors for medical applications, in which field they enjoy complete superiority.

And in addition to this, Brimar have an unparalleled capability in chemistry, electron optics, and vacuum physics, enabling them to offer the widest design diversity backed by a personalised customer service. This service, provided by engineers with extensive experience of the
electronics industry, covers advice on tube characteristics, operating conditions, and associated components.

Tailored packaging and reliable deliveries to meet production schedules are also part of the Brimar services.

Want to know more about BRIMAR Industrial Cathode Ray Tubes ?-Ask to see our latest catalogue.

Thorn Radio Valves \& Tubes Limited

7 Soho Square, London, WIV 6DN. Telephone: 01-4375233

A Shrinking Universe

Editor-in-chief:

w. T. COCKING, F.I.E.E.

Editor:

H. W. BARNARD

Technical Editor:

T. E. IVALL

Assistant Editors:
B. S. CRANK
J. H. WEADEN

Editorial Assistant

J. GREENBANK, B.A.

Drawing Office:

H. J. COOKE

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
J. R. EYTON-JONES
R. PARSONS (Classified Advertisement Manager)

Telephone: 01-928 3333 Ext. 538

A few years ago, in our annual reviews of domestic equipment, we used to announce, with somewhat monotonous regularity, that everything was getting smaller. After a while it became obvious that size reduction was now a constant factor in the design of radio, television and audio equipment and there seemed little point in commenting on it. Nonetheless the trend continues. This year one of the most striking illustrations is that a colour television set, with all the extra circuitry we know it must contain, is now almost indistinguishable from a monochrome set. A sage remark of the older generation used to be "Ah, but you can't miniaturize the watt". The younger generation, with all that lack of principle that is supposed to be characteristic of it, has simply sidestepped this axiom by avoiding the use of components and systems that dissipate watts.

One naturally asks oneself, where is the curve of size reduction going to end? Is it asymptotic-in which case we shall not live long enough to know the answeror does it have a predictable final value? It seems pretty certain that still advancing semiconductor technology will allow electronic circuitry to continue shrinking. It is only a matter of time before the whole circuit of a receiver or audio amplifier will be available in a single i.c. package. The limiting factor in domestic equipment is, of course, the necessary or required size of the acoustic or optical transducer. What do the ear or the eye need for satisfaction? The distinction between "necessary" and "required" is important, because it is obvious that technology does not set a necessary limit on the size of picture displays or sound transducers. If loudspeakers have to be large to reproduce bass frequencies then you can go to headphones. Television pictures will sooner or later be displayed on solid-state panels. But what is required by human beings is a different matter.

Here one important influence is the size of our homes. In succeeding generations, for the majority of the population, the rooms of houses are likely to get smaller. The question then is: what proportion of their living space will people be prepared to devote to audio-visual equipment? With growing prosperity and materialism people are stuffing their homes with more and more manufactured goods, and inevitably they are beginning to get worried about lebrensraum. Perhaps they will grow less materialistic and the problem will solve itself; perhaps the species will adapt to its self-made environment and get physically smaller.

Another unanswerable question is whether people will continue to regard and want audio-visual entertainment as a social activity. If television and sound programmes are to continue to be shared by people in groups using common transducers then the sizes of screens and loudspeakers must remain much as they are now. If we no longer want the social element of viewing and listening then personal transducers will be sufficient-we are seeing this trend already in the growing enthusiasm for stereo headphones by audio aesthetes. Technology can then forge ahead once more to devise transducers that can be even more intimately connected to the human body, ending up possibly with direct electrical stimulation of the brain.

What actually happens will depend on us in electronics, for people do not really make these decisions for themselves. Always it is the availability of a particular product of technology which sets a fresh course for human behaviour.

Domestic TV and Sound Equipment

Some of the highlights of the London Shows

The recently held London radio and television trade shows afford us an opportunity to review some of the trends in receiver design. Having discussed these we then deal briefly with a few of the items which will be seen at the London Audio Fair (see p. 476 for list of exhibitors).

Television

From 15th November the B.B.C. and I.T.A. will start to transmit all their television programmes (BBC-1, BBC-2 and those of the various commercial companies) on u.h.f., using the 625 -line standard. Total coverage of the country by these transmissions will take two or three years. A large proportion of the programmes will be in colour, and the transmissions will be the compatible PAL signal. This, of course, is identical to the ordinary monochrome 625 -line (present BBC-2) signal when no colour is being transmitted, is received and displayed as a monochrome picture on black-and-white sets, and as a colour or monochrome picture on colour sets. At the same time BBC-1 and commercial television programmes will continue to be transmitted on v.h.f. for the benefit of people with 405 -line, v.h.f.-only monochrome sets and 405/625-line v.h.f./u.h.f. colour or monochrome sets-and particularly for those living in areas where it will not be possible to receive the new u.h.f. 625 -line transmissions for some time.

This situation provides an immediate opportunity for the receiver manufacturers to produce and sell two new types of set -colour and monochrome, both for u.h.f.-only, single-standard (625-line) operation. Most of the set makers holding private trade shows in London at the end of August were in fact demonstrating receivers of this kind, in addition to new dual-standard v.h.f./u.h.f. types for areas where they will still be needed. It is an "opportunity" for the manufacturers because a single-standard set can be made simpler, smaller, more reliable and cheaper than a dual-standard one. This is because of the elimination of components required for v.h.f. 405 -line operation, the elimination of change-over switching (often a source of trouble) and the avoidance of circuit design compromises, for example in the i.f. and video responses, that are normally necessary for dual standard operation. Prices are in fact not much lower-about 10% less than those of dual-standard sets-but it is now possible to buy a colour television set (e.g. a 19 -inch table model) at a price nearer to $\{200$ than to the $\{300$ that was the rule last year. This reduction, plus the increase of colour broadcasting time, should provide a stimulus--much needed by the manufacturers-to the sale of colour receivers.

With the introduction of these new sets, and new types of cathode-ray tubes now becoming available, there is an almost embarrassing range of screen sizes (and shapes) for the public to choose from-19in, $20 \mathrm{in}, 22 \mathrm{in}, 23 \mathrm{in}, 24 \mathrm{in}$ and 25 in . This arises from the fact that we are in a transitional period when established colour and monochrome tube sizes, usually with $5: 4$ aspect ratios, are gradually being replaced or complemented by new sizes with

4:3 aspect ratios. In monochrome the 19 in and 23 in established sizes are being replaced by 20 in and 24 in tubes, respectively, with so-called "squared-up" (more rectangular and flatter) screens. All these have 110° deflection angles, incidentally. In colour shadow-mask tubes, the established 19in type is likely to continue for some time and there is the familiar $2 \operatorname{Sin}$ tube, both with the $5: 4$ aspect ratio; but there is now also a 22 in "squaredup" type with a $4: 3$ aspect ratio. These colour tubes have 90° deflection angles. Because the screen of the "squared-up" tube fits the raster of the transmitted picture more exactly it does not need a mask for framing purposes, and this enables the set makers to mount the tube with its face well out from the front surface of the cabinet ("push-through" presentation) and thereby make the cabinet less deep and more acceptable to a public, forced to live in smaller and smaller "boxes".

Technically the single-standard receivers now available fall into two classes: those that are virtually the manufacturers' earlier dual-standard sets with the v.hf. and 405 -line circuitry removed; and those that are completely new single-standard designs. In the first group, for example, are the receivers of Philips, Pye Group, KB and G.E.C. Some of these designs, without being radically new, do incorporate a number of changes. In the G.E.C. 19 -inch table colour receivers (G.E.C. C2040 and Sobell C1040), for example, the mechanical layout of the hybrid circuitry has been improved to give better accessibility for servicing, there is a cut-out for overload protection in the event of line drive failure, the booster diode is now a solid-state device and therefore cooler, and the colour "beacon" indicator has been omitted. The G.E.C. monochrome single-standard sets (models 2047 and 2048) exemplify an i.f. design technique which is now

Replaceable modules constituting the circuitry of the British Radio Corporation's new single-standard colour television receiver (chassis type 3000).
becoming common practice. To simplify alignment the first two i.f. stages are made broad-band amplifiers and the required i.f. response characteristic is provided by a separate filter unit in a screened can attached to the u.h.f. transistor tuner. Changing the tuner is apparently no problem. Also in these receivers, an integrated circuit is used for intercarrier sound i.f. amplification and f.m. detection; and the 18 V d.c. supply for the transistor stages is obtained by diode rectification and a smoothing network from the 15 kHz line scanning waveform (taken from a tap on the line out put transformer).

Completely new designs of single-standard receivers were introduced by the British Radio Corporation and by Rank Bush Murphy. The B.R.C. colour television chassis, type 3000, used in Ferguson, HMY, Ultra and Marconiphone receivers, has transistor circuitry throughout. This is mounted on nine modules (including the u.h.f. tuner) as shown in the photograph. If a fault develops in a module the dealer can un-plug it and send it back to the manufacturers who will replace it: alternatively the dealer can keep a stock of spare modules. The vision i.f. section is a four-stage broad-band amplifier with response shaping in the input circuit; a.g.c. is applied to the first two stages (not to the tuner) and has a range of 40 dB . In the video section the back porches of the colour output signals are stabilized at a fixed d.c. level and the effect of the brightness control is to set the black level only: R, G, B drive is applied to the cathodes of the cathoderay tube. The line output stage has two power transistors connected in series with their bases driven in parallel (from transformer secondaries). This stage drives two output transformers, one producing the line scan waveform and the other an 8 kV input pulse for the e.h.t. voltage tripler.

The most unusual part of the circuitry of this set, however, is the main power supply, which uses a chopper stabilizing system to provide the high-current 30 V stabilized supply required by the line, frame and sound (Class B) output stages. The idea is first to obtain good supply regulation--the source impedance is said to be less than one ohm-and as a result it has been possible to dispense with e.h.t. regulation; secondly to reduce power dissipation and heat; and thirdly to reduce the physical size of the power unit. In the chopper system a 240 V d.c. supply, obtained by half-wave rectification from a tapping on the set's main auto-transformer, is fed to a chopper transistor which is switched on and off repetitively at line scanning frequency. The on-period is normally about $20 \mu \mathrm{~s}$, but the mark-space ratio is continuously varied according to the load requirements by a feedback circuit which monitors the power supply output voltage. This feedback system stabilizes the output voltage and smooths out the 50 Hz mains ripple. During the on-period the chopper transistor passes current through a reservoir inductor; when the transistor is turned off the feed end of the inductor is clamped to chassis potential by a diode and the magnetically stored energy flows into the load.

Another unusual feature of the set is that the shadow-mask c.r.t. is mounted with the blue gun downwards (normally it is put uppermost). The purpose of this subterfuge is to minimize the effect of pin-cushion distortion on the eye, which it does when the picture is viewed from above the screen's horizontal centre-line. No electrical correction for pin-cushion distortion is included.
B.R.C's monochrome single-standard receiver is also a completely new design. This has hybrid circuitry, and the mechanical design is not modular. There is hardly any metalwork and almost all the electronic components are on a single printed-circuit board (measuring $13 \mathrm{in} \times 10 \mathrm{in}$) mounted parallel with the c.r.t. screen. The most unusual circuit design feature is that the i.f. section uses printed-circuit non-adjustable coils (see photo). This is part of a general i.f. design approach, aimed at simplifying manufacture and testing, in which circuit L / C ratios and amplifier gain (four i.f. stages) are made high, but heavy resistive damping is applied to restore the bandwidth and to swamp out the effects of manufacturing variations.

Monochrome single-standerd receiver by B.R.C. with almost all electronic circuitry on a single printed-circuit board (chassis type 1500).

Printed-circuit coils used in the if section of the type 1500 B.R.C. single-standerd menochrome receiver.

Chassis of the Rank Bush Murphy single-standard colour receivers.

The single-standard colour receiver introduced by Rank Bush Murphy has wholly transistor circuitry and, like that of B.R.C., uses plug-in printed circuit panels to facilitate servicing. (In both receivers conventional plugs and sockets are used, not p.c. edge
connectors.) The circuit continues to incorporate the i.c. providing colour decoding functions that was introduced in the Bush and Murphy dual-standard sets last year*, but now has an additional i.c., in the intercarrier sound amplifier. A more significant design change is a departure from normal vision i.f. amplifier practice in that the set has been provided with a separate i.f. amplifier for the chrominance signal. This has been done in order to avoid an effect described as "cramping of the yellows". Because the yellows occurring in nature often have high values of both brightness and saturation, the transmitted signal for these yellows is a highly modulated luminance carrier with a largeamplitude chrominance signal superimposed on it. Under certain propagation conditions, such as aircraft flurter, the chrominance

[^4]

The Murphy V2015S, a 20-in single-standard monochrome table model.
signal is selectively enhanced and at these moments the carrier signal can be reduced to zero amplitude. Consequently there is distortion due to clipping (the so-called "cramping"). By the use of a separate chrominance i.f. amplifier R.B.M. have been able to shape the i.f. response characteristic in such a way that the vision carrier level can be raised, relative to the chrominance subcarrier level, so that it is prevented from being reduced to zero. A further benefit of this arrangement is that automatic chrominance control can be applied at i.f. rather than at chrominance frequencies; as a result the possibility of cross-talk between the subcarrier reference and the chrominance amplifier is reduced.

Yet another circuit development in these receivers is that the phase-locked oscillator for recovering the subcarrier reference has been dispensed with, partly because of a tendency to cause leakage of oscillation back into the chrominance section (producing a colour cast on the picture) and partly because of settingup difficulties. Instead R.B.M. have used what they call a subcarrier regeneration circuit. It is basically a very narrow-band crystal filter which is caused to "ring" by the colour synchronizing burst of 10 cycles of subcarrier frequency. Because of the high Q of this filter it continues to "ring" with constant phase throughout the line period and so produces the required reference signal. Clearly the system is simpler than the phase locked oscillator as it is an open-loop rather than a closed-loop control system.

Apart from the home-produced ranges of receivers, there were also on show an imported 10 -inch monochrome single-standard portable set that could be operated from re-chargeable batteries or the mains (Sanyo), and a 13 -inch colour portable using a new type of picture tube with a single electron gun called a Trinitron (Sony), but the last-mentioned receiver is not available on the British market because of the PAL patent situation. The muchpublicized $£ 150$ Teleton 12 -inch portable colour receiver, to be made in Belgium by a company associated with Mitsubishi (Japan), is at the time of writing no more than a statement of intent. Teleton Electro (UK) Co. Ltd. were unable to show our reporter an actual set or to give satisfactory answers to his technical questions about its design.

Radio receivers

The proposed extension of the use of Band II (for more local radio stations and other B.B.C. programmes) has undoubtedly stirred manufacturers to produce a wider variety of radio receivers covering this band. A significant move is the introduction of one or two sizeable receivers for v.h.f. only which attempt to do justice to the service provided. One such receiver is the Hacker Herald (RP37) which although portable has an $8 \times 5 \mathrm{in}$.

Bang and Olufsen Beovision 1400Kf monochrome dualstandard receiver with 24 in screen. It provides connections for external loudspeaker and tape recorder.

Hitachi portable, which covers the marine band (67-188 metres) and l.w., m.w. and s.w. bands, embodies a rotatable aerial.
loudspeaker. The principal features of the RP37, which covers the band $87.5-101 \mathrm{MHz}$, are automatic frequency correction ensuring accurate tuning; switchable muting device to cut out noise between stations when tuning; independent bass and treble controls and a tape recording socket.

Bush have introduced an a.m./f.m. receiver with what they have called "sealed sound". The mains table receiver (model VHF 102), which covers l.w. and m.w. as well as Band II, is acoustically sealed in its cabinet-even the push-button controls are in rubber grommets. The output (10W music power from a $6 \times 4 \mathrm{in}$. speaker) was certainly pleasing. (Price 39 gn)

A mains/battery portable (RL693) of unusual external design is announced by Philips. Its cabinet slides apart to reveal the controls and vertical scales for the l.w., m.w., s.w. and v.h.f. bands. It has switchable a.f.c. on the v.h.f. band and its two loudspeakers (one 7 in . and a 2 in . "tweeter") are housed in the extending case (one in each half) which when closed measures approx. 17 in . wide (21 in . extended) and $9 \frac{1}{2} \mathrm{in}$. deep. (Price $£ 7816 \mathrm{~s}$.) Philips have also introduced a combined radio receiver and cassette recorder (RR290). The radio covers the l.w. and m.w. bands and the recorder can be used with the microphone provided, a pickup or another recorder. (31 10s.)

A four-stage audio amplifier, which includes a complementary push-pull output circuit separately stabilized against voltage and temperature changes and delivering $1 \frac{1}{2} W$ audio output on battery and 2.8 W output when using the built-in mains unit, is employed in the GEC (model 2541) and Sobell (model 1541) a.m./f.m. portable receiver introduced at the group's London show. It covers the l.w.., m.w. and v.h.f. bands plus short-waves ($1.6-27.3 \mathrm{MHz}$) in three overlapping bands. Switched a.f.c. is included for v.h.f.

Audio equipment

New audio components and systems displayed at the recent trade shows in London embodied no striking technical innovations. The manufacturer has to choose a style of presentation. The radiogram and the completely separate units are the extremes in this respect, but a few "audio units" combining radio tuner, record-playing deck, and amplifier have appeared. These are for use with separate speakers and are, acoustically, an improvement on the stereogram with its speakers fixed close together. Such audio units, with suitable speakers, showed various degrees of sophistication and very different prices (K.B., G.E.C., Hacker). Variously priced radiograms are still in production but several

Hacker Herald, v.h.f. portable which has a sensitivity better the $1 \mu \mathrm{~V}$ for $10 \mathrm{~dB} s / n$ ratio.

Bush VHF 102 "Sealed Sound" mains receiver

Philips RL 693 mains/battery receiver with a.f.c. on v.h.f. and a fine tuner on the short-wave band.
manufacturers who have until recently made only television and radio sets and radiograms, have entered the audio component market with expensive items that must be judged more by their performance than by their appearance. Amplifiers of the 3 W -perchannel variety are disappearing as the wider and smoother frequency response desired is being obtained only with low efficiency speakers. The unwritten rule of "hemi-fidelity" seems to be that where the audio system is not itself seen as a piece of furniture and bought as such, it must be reduced to minimum size regardless of consequences. Everyone to his taste of course,
but it does seem rather strange that having paid to hear the singer we should enjoy him gagged.

ITT KB have combined a stereo v.h.f. tuner, a stereo amplifier and a record player in a single unit to sell for $£ 67$. There are two types of matching loudspeakers available. The novel speaker design offered is a cylindrical unit with a deflector cone spreading the sound out over 360°. Conventional rectangular enclosures are also offered at the same price of $\{31$ for each speaker enclosure.

The Bush Sound System offers "high fidelity sound at radiogram prices". The range comprises a record player, tuner, amplifier, tuner/amplifier and three alternative sets of speakers. Units can be bought separately or systems built up from 94 gn to just over 179 gn . The stereo amplifier A746 uses silicon transistors up to the drive stages and germanium output transistors. The driver transistor is capacitively coupled to the primary of a transformer the secondary windings of which drive the bases of the output transistors in push-pull. Frequency response is $40 \mathrm{~Hz}-20 \mathrm{kHz}$ $(-3 \mathrm{~dB})$ and output power 11 W per channel with both channels driven at 1 kHz .

From Bang \& Olufsen the Beomaster 3000 tuner amplifier has a stereo f.m. tuner incorporating f.e.ts, ceramic filters and i.cs. The aerial signal is fed via a tuned circuit to the r.f. stage consisting of two junction field effect transistors in a cascode arrangement. Tuning is by four capacitance diodes controlled by a $100 \mathrm{k} \cong$ potentiometer. There is also a bank of six miniature tuning potentiometers, each covering the $87.5-104 \mathrm{MHz}$ band and brought into action by push-buttons. Six stations can thus be "pre-tuned". The receiver's usable sensitivity is quoted as $2 / N$.

The amplifier can deliver 30 W (r.m.s. signal) per channel. The output stage is a quasi-complementary arrangement. Their new stereo tape recorder the Beocord 2400 employs hyperbolically ground tape heads giving better contact between head and tape and reducing noise.

Bush stereo amplifier model A746

Driver and output stage of Bush A746 amplifier.

Two amplifiers from Grundig, the SV85 and the SV140, employ sliding potentiometers for the volume and "tone" controls. The SV140 is capable of delivering 50W per channel (sine wave drive) into $4 / 5(\Omega$ loads. It has five tone controls giving lift and cut about five frequency points the first being 40 Hz and the last 16 kHz . This same model has meters to monitor the channel at the outputs and electronic protection of each output stage. Grundig's tuner RT100 has five wavebands-long, medium and two short wave and v.h.f.-and five auxiliary v.h.f. scales for press-button selection. This feature has been mentioned with respect to the Beomaster 3000, and the Grundig "Tunoscope", showing the correct direction to turn the tuning knob by means of two lamps, also has its counterpart in the B \& O unit.

A new unit from G.E.C., model 2803, combines the stereo tuner model G989/1 with a stereo amplifier and Garrard record playing deck. The tuner employs an R.C.A. 40468 silicon m.o.s.f.e.t. in the tuned v.h.f. stage, and sensitivity is given as $2 \ell N$ for 20 dB signal-to-noise ratio. The amplifier can deliver 10 W (sine wave drive) from each channel simultaneously, at 1% t.h.d. A Garrard single play turntable unit (SP25 Mk II) is employed using an Acos GP104 ceramic cartridge with a diamond stylus in

The Beomaster 3000 tuner/amplifier.

Telefunken M202 tape recorder with automatic level control.

Brenell stereo tape-recorder model ST200.
the 1.p. section. Two types of matching loudspeaker are available: a floor-standing system (9001), and a shelf mounting system (9002).

Rank Audio Visual demonstrated a range of Japanese produced equipment. The new brand is Rotel made by Roland Electronic Co. Ltd., of Tokyo. Eight items are available: a stereo amplifier, a stereo tuner, and six tuner amplifiers. The f.m. tuning sections all employ f.e.ts.

Telefunken showed their automatic tape recorder Magnetophon 202. The tape speed is $3 \frac{3}{4}$ i.p.s. During record the machine is switched either to 'speech' or 'music' and an automatic level control operates. A plastic cover fits over the spools leaving the controls free. The recorder works in the upright position.

Hacker showed a gramophone audio/radio unit consisting of a record player, stereo audio amplifier and a radio tuner all combined in a single cabinet for shelf operation. This is available in two versions, one with an a.m./f.m. tuner marked GAR. 1000 and the other with an f.m. only tuner, marked GAR.1001. The audio amplifiers operating in class A can give 10W into a 15Ω speaker. With 8Ω speakers operation becomes class AB and the output increases to 15 W maximum. The output transistors are protected against overload. The f.m. section of the tuner has a sensitivity better than $1 \mu N$ for 10 dB signal to noise ratio with full limiting at 5 lN . The record player is Garrard model AP75 fitted with a Goldring 800 H magnetic pickup complete with diamond stylus. The LS. 1000 loudspeaker has three Goodmans units and is claimed to be the finest possible loudspeaker for its size and price $(£ 24)$. The GAR. 1001 with stereo decoder fitted costs $£ 147$.

Audio Fair Preview

Brenell will be displaying the first of a new range of tape recorders. The ST200 (two-track stereo) and ST400 (four-track stereo) use three motor decks and have three speeds- $7 \frac{1}{2}, 3 \frac{3}{4}$ and $1 \frac{7}{8}$ i.p.s. Built-in amplifiers can deliver 6 W per channel. Wow and flutter is $0.08 \%, 0.1 \%$ and 0.12% for the three speeds and the signal-tonoise ratio is 56 dB . The bias frequency is 100 kHz . There are inputs for microphone and radio source and outputs for 15Ω loudspeakers, monitoring headphones, and external amplifiers. Interesting features include a lever operated lockable pause mechanism, and tone controls which operate on the signal being recorded.

Koss model ESP-9, self- or mains-energized binaural headphones with a response range of 10 octaves, will be shown in the U.K. for the first time. Almost linear response is claimed down to below 20 Hz . The push-pull electrostatic arrangement is claimed to cancel 2nd harmonic distortion. Operation is from a low-impedance source.

Model SL 95B, an automatic record turntable from Garrard, is the successor to model SL 95. Features include automatic play of single records, cue and pause facilities, and calibrated fine stylus force adjustment. The low-resonance wood and aluminium pickup arm incorporates a counter-balance weight and is fitted with gimbal-type pivots. A slide-in cartidge carrier is a further feature. On this model, as on several other new models to be shown, tab controls are employed.

Armstrong will be demonstrating for the first time two new stereo tuner-amplifiers, the $525 \mathrm{f} . \mathrm{m}$. and the $526 \mathrm{a} . \mathrm{m} . / \mathrm{f} . \mathrm{m}$., which supersede the 425 and 426. The 525 f.m. combines the 521 amplifier and 524 f.m. tuner and costs $£ 8716 \mathrm{~s} 9 \mathrm{~d}$. The 526 combines the 521 amplifier and the $523 \mathrm{a} . \mathrm{m} . / \mathrm{f} . \mathrm{m}$. tuner and costs $£^{9} 98 \mathrm{l}$ s 6d. An f.m. stereo decoder, type M8, is available for both these tuner amplifiers.

Two loudspeaker systems, the 215 and 315 , will be shown for the first time by E.M.I. The 315 system comprises a 15 in . round bass unit with a resonance of 20 Hz and capable of handling 35 W ; two Sin round mid-range speakers; two high-frequency units with

Armstrong 526 tuner amplifier.

Model 70 loudspeaker from Bowers and Wilkins.
low magnetic leakage, a switch plate and a crossover network. The 215 system comprises a 14 in by 9 in bass unit capable of handling 30 W ; two of the 5 in mid-range speakers and one of the high frequency units used in the 315 system, a switch plate and a crossover network.

From Sinclair comes the Z30, an amplifier module using silicon epitaxial transistors throughout. This amplifier, it is claimed, is "uniquely flexible and has a lower distortion than any other amplifier on the market". The power output is 15 W continuous sine wave into 8Ω using a 35 V supply. Frequency response is given as 20 Hz to $300 \mathrm{kHz} \pm$ IdB. Distortion is 0.02% (total harmonic) at full output into 8Ω and at all lower powers. Damping factor is given as 500 . Two such Z30 modules may be driven by a pre-amplifier, the Stereo 60 . Two new power supplies, one stabilized and the other unstabilized, will be part of the new range. The Q14 loudspeaker has changed its appearance and will be presented as the (16.

Bowers and Wilkins have developed a new loudspeaker, model 70, incorporating model 701 electrostatic unit covering all frequencies above 400 Hz (distortion is given as 0.5% for 30 W input, and dispersion aver 60° arc shows variation of not more than $\pm 1.5 \mathrm{~dB}$) and a low distortion bass unit and enclosure. The complete speaker will be available in both horizontal and vertical styling.

Low-cost 15-W Amplifier

A directly coupled design with a symmetrical output stage and a differential amplifier input

by Ian Hardcastle* and Basil Lane

The transistors used in this amplifier are from the Silect range produced by Texas Instruments-devices with a plastic encapsulation. The complete circuit employs only five capacitors and can be built for about $\{5$.

Circuit operation

Fig. 1 shows a diagram of the amplifier circuit. Transistors Tr_{1} and $T r_{2}$, arranged as a long-tailed pair, form the input stage. The use of this type of circuit brings a number of advantages over the more conventional arrangements. Assuming a temperature change in $T r_{1}$ is matched by a similar temperature change in $T r_{2}$, and that they are both the same type of transistor, then the $V_{B E}$ of each will be changed by a similar amount. Since an error signal can only be produced when there is a difference in the two potentials, this configuration is characteristically more stable than a single transistor.

The virtue of a differential signal at the two bases producing a suitable output also results in the possibility of feeding the source signal to T_{r} base, and a feedback signal to $T r_{2}$ base, thus separating these two signal paths, and avoiding the dependence of a.c. closed loop gain on source impedance at the amplifier input.

* Texas Instruments Lid.

In a similar fashion, the d.c. stability of the quiescent voltage at the output stage is ensured by applying a large d.c. feedback to $T r_{2}$.

The potentiometer $R V_{1}$ has been included to allow for tolerances in the bias resistor chain.

The quiescent d.c. voltage at the collector of $T r_{1}$ is about 37.5V. Since the pre-driver stage $\left(\operatorname{Tr}_{3}\right)$ requires a base potential of around 45 V , a zener diode has been selected as the simplest method of giving a suitable d.c. voltage shift whilst minimizing the signal attenuation. There is, however, the slightly alarming side effect of producing a thump in the loudspeaker when the power supply is turned on. Bootstrap feedback is applied to the collector of Tr_{3}. The output swings in phase with the collector of Tr_{3} but displaced from it by about $\frac{1}{2} V_{C C}$. This constant voltage applied across R_{13} forms a constant current sink and ensures that the minimum collector current of Tr_{3} is only one third of its maximum, thus helping to stabilize stage gain.

Of considerable importance is the temperature stability of output quiescent current provided by transistor Tr_{4}. Here, $R V_{2}$ is used to self bias the transistor, and set the ratio of $V_{C E}$ to $V_{B E}$ to approximately two. As mentioned earlier, the $V_{B E}$

Fig. 1 Amplifier circuit for driving resistive and inductive loads of 15Ω or 8Ω

Fig. 2 Modified output stage required to drive an electrostatic loudspeaker (capacitive load)

Fig. 3 Printed circuit board layout (actual size) for all components except the output transistors and their emitter resistors, and the speaker series capacitor

Fig. 4 Curves of total harmonic distortion against frequency for different powers and loads
of a transistor is temperature dependent, and any change of $V_{B E}$ in Tr_{5} or Tr_{6} would result in a rise of the output stage current. If Tr_{4} is placed in thermal contact with Tr_{5} or $\boldsymbol{T r}_{6}$, a similar temperature change would result in the $V_{B E}$ of $T r_{4}$ changing and producing approximately double the change in $V_{C E}$. By this action, the potentials at the bases of the drivers would be moved in a direction to compensate for the variations in both transistors.

The a.c. closed loop gain and the d.c. quiescent voltage on the collectors of the output stage are set by two feedback loops. In the case of the former the loop gain, set at 48 , is determined by the divider action of R_{10} and R_{11} - one end of R_{11} being at a.c. earth via C_{4}. The d.c. feedback used to define the quiescent d.c. output voltage is set by the combination of the load, R_{10}, R_{11}, and R_{12}, these resistors reducing the output d.c. voltage by a half at the base of $T r_{2}$. The base potential of $T r_{1}$ is set to a similar value by the bias chain $R V_{1}, R_{1}, R_{2}$ and R_{3}. Assume a possible rise in the d.c. output voltage. This is transmitted via the feedback loop to the base of Tr_{2} causing a similar rise of potential. The resulting increase of current in the tail resistor R_{6}, will cause a corresponding increase in the p.d. developed across it. This will cause a reduction in the difference of potential between the emitter and base of $T r_{1}$ and cause a rise in collector voltage. The current drive to Tr_{3} is reduced and this in turn reduces its collector voltage affecting the potentials at the bases of Tr_{5} and Tr_{6}.

In this fashion compensation occurs for any shift in the d.c. level at the output.

The authors consider that a simple fuse is not an adequate form of output stage protection since the rise of collector current to destruction point can occur much before the fuse blows.

A suitable protection circuit for the amplifier is shown dotted. The collector current flowing in the output stage defines the base potentials of Tr_{9} and Tr_{10}. If these voltages should rise, these transistors turn on and cut off the bases of T_{5} and $T r_{6}$, thus preventing a further rise in the output current. Fig. 2 shows a circuit modification for use with electrostatic speakers.

Construction and setting up

Although other layouts may work perfectly well, possible faults have been reduced to a minimum in the layout of Fig.3. The power supply is fed first to the output stage and then to the amplifier panel.

The size of the heat sink will depend upon the power output which the amplifier will be expected to develop under working conditions. In a domestic situation this will be low and only a small dissipation (approx. 1 watt) would be expected in the output stage. In this case about 4 in . sq. of aluminium would suffice. A finned aluminium heat sink is more suitable for long periods at high power.

Before turning the power supply on for the first time, terminate a suitable load at the output, and set $R V_{2}$ to minimum resistance between the collector and base of Tr_{4}. Connect a low resistance meter (100 mA scale) in series with the emitter of Tr_{7} and a suitable 100 mA fuse. Switch on the power supply and after the initial surge adjust the quiescent current to 20 mA by means of $R V_{2}$. Turn off the supply and permanently reconnect the emitter of Tr_{7} to the power supply. With the power switched on and an oscilloscope connected at the load, inject a 1 kHz signal at the input at a level sufficient to cause clipping. Potentiometer $R V_{1}$ should now be adjusted to produce a symmetrical waveform. The amplifier is now set up and ready for use.

Specifications

With a 15Ω load the maximum power output at clipping is 17.3 W . For 15 W into 15Ω frequency response is $20 \mathrm{~Hz}-100 \mathrm{kHz}$ requiring an input of 312 mV (into $20 \mathrm{k} \Omega$). Signal-to-noise ratio is 73 dB , referred to 312 mV at 1 kHz . Intermodulation distortion is between 0.021% and 0.073%. Total harmonic distortion for both 15Ω and 8Ω loads is shown in Fig. 4.

News of the Month

Broadcasting in the seventies

The recent publication "Broadcasting in the seventies" which outlined the B.B.C's proposals for the future of broadcasting during the next decade caused a good deal of criticism and discussion at all levels.

Following publication, at a meeting held on August 4th, the Prime Minister, the Postmaster General and the Chairman and Director General of the B.B.C. made the following decisions in relation to the future of broadcasting.

The B.B.C. will introduce a general local radio service. Eight stations are already in operation and a further 12 should be transmitting by September 1970. Twenty more should follow during the subsequent four years.

The combined television/radio licence fee will be increased to $£ 610$ s from April 1st 1971 and the sound only licence will be abolished.

In the light of public criticism and parliamentary debate it was decided not to proceed with the B.B.C's proposal of restricting radio- 3 to w .h.f.

Finally, because of the new licensing arrangement, the B.B.C. intend to revise their plans concerning the future of the various orchestras.

Radio and television sales fall

Despite a slight increase in monochrome television receivers delivered to the home trade during the first six months of this year the overall radio and television position continues to show a falling trend indicated towards the end of last year, according to the Economic and Statistical Division of the British Radio Equipment Manufacturers' Association.

June figures for monochrome receivers show a fall of 23,000 compared with the previous month and 13,000 less than for the same month of last year. For the period from January to June, however, the overall total of 816,000 is 11,000 higher than for the first six months of 1968 .

Colour television estimates of deliveries for the six months of this year at 42,000 show a drop of 21,000 compared with the same period of last year.

Radio receivers are considerably lower for January to June this year at 356,000 com-
pared with 531,000 for 1968. Car radios were also lower than for the same period last year at 182,000 compared with 220,000 for the first six months of last year, and radiograms at 77,000 show a drop of 28,000 overall for the same period.

'VVoice with a smile"' system

An automatic telephone call intercept system, which informs callers when they have dialled an incorrect number or a number which has not been assigned, and advises them on the correct action to take, is to be installed in 25 major American cities.

The system, which has been called the "voice with a smile" system, was designed by

> Sophia, shown below, is a prototype learning machine developed by the University of Kent at Canterbury and is the forerunner of a much more powerful machine being developed and built at the University under a Science Research Council grant. Sophia learns to recognize simple patterns sensed by 36 photocells or a light pen. The stored logic adaptive elements used by Sophia are on 2 mm square silicon chips reducing the cost of the system by a factor of some thousands when compared to conventional methods.

Bell Telephone Laboratories and is being built by the Western Electric Company. A 96 -track magnetic drum store contains a number of recorded phrases, words and digits that can be assembled, under computer control, to form a sentence to fit a very large number of situations. In addition a large number of the messages have been recorded twice, once with a neutral voice inflection and once with a falling voice inflection, so that the last word in any composite message always has a falling voice inflection to make the message sound more natural.
A central exchange will have a disc memory which stores each unassigned number in the area together with its status - changed, disconnected etc.-and the number of calls made to that number for record purposes.

All this information, which is contained in a 46 -bit word, is used in a central processor to address the words and phrases in the drum store to form a sentence suitable for the occasion. Information in the disc stores can be quickly updated using a typewriter so that, in addition to routine changes, a caller could automatically be given his doctor's telephone number should he have dialled the surgery when the doctor is, in fact, at home or at the hospital. The system can also be used for giving weather forecasts, the time, sports event scores etc.

Service to exporters

The B.B.C. External Services broadcast in 40 languages and the output totals 100 hours in the course of every day. In addition, the B.B.C. sends many recorded programmes to overseas radio stations for local rebroadcasting. These broadcasts are a means of reaching big audiences throughout the world.

A large part of the output is of interest to exporters since it deals with developments in British Industry. The primary aim of the broadcasts is to report Britain's achievements as an industrial and trading country and thus help to create a favourable climate for exports. It is not a service of advertising; but new products are featured regularly and the names of manufacturers are given. Many enquiries result from the broadcasts and are passed on to the firms concerned.

Research has shown that programmes on industrial subjects are well received by their audiences, provided only that they are well presented and interesting in their own right. Recent market surveys in four West European countries showed that B.B.C. listeners have a stronger tendency than the general population to buy British goods.

The B.B.C. maintains close contact with the Board of Trade and the British National Export Council, and makes every effort to encourage individual firms to provide the External Services with information about their new products and developments.

To speed the flow of information and get it to the right programmes the B.B.C. has an Export Liaison Officer, to whom all information should be sent (B.B.C., Bush House, London W.C.2. Tel. 01-240 3456, Extn. $2295 / 2039$). Exporters with an interest in a particular part of the world should telephone the Export Liaison Officer who will be
glad to put them in touch with the appropriate regional expert in the External Services.

Intelsat failure review

The National Aeronautics and Space Administration has appointed a failure committee to determine why the Intelsat-3 (F-5) communications satellite did not achieve its programmed orbit after launch from Cape Kennedy, Fla. on board a Delta rocket on July 25 th.

Intelsat-3 was launched by NASA on behalf of the International Telecommunications Satellite Consortium (INTELSAT). Everything appeared to be normal in the flight throughout the second stage engine burn. No signals were returned from the third stage as it was not designed to transmit telemetry.

Several hours after the third stage ignition, when the spacecraft was to have been placed into the correct transfer orbit, tracking stations in Australia, Italy and the U.S. failed to acquire the spacecraft at the proper time. Radar data later showed the satellite and third stage to be in a low orbit ranging about 175 to 3,400 miles instead of the intended orbit of 175 to 23,000 miles.

Because of the low orbit, it would not have been possible to inject the spacecraft into the intended synchronous orbit.

Military TV system

A range of compact television equipment has been introduced by the Electro-Optical Systems Division of the Marconi Company. The new range, comprising a number of units which can be built up as required, caters for a wide variety of military applications, and camera tubes are available to cover light levels from the brightest sunlight to nighttime conditions (quarter moon).

The camera equipment (type V323) consists of two basic units, the camera and the camera control unit. The camera may be fitted with either a vidicon (normal) or the SEC Vidicon (dark conditions) tube. To ensure accurate alignment of the camera tube with the centre line of the optical system, the camera tube scanning and focus ing yoke is attached directly to the chosen optical system.

The camera control unit consists of two main sub-units, the power supply unit, which provides the d.c. operating potentials for the camera tube, and the control electronic equipment which consists of six plug-in boards.

The display unit is equipped with a rugged cathode-ray tube having electromagnetic deflection and electro-static focusing, producing high resolution at high brightness levels.

The display consists of two main subassemblies, the tube module and the power supply unit. These sub-units may be either combined to form a single unit or separated, by up to 12 feet, and interconnected by multi-way cable.

The V323 camera system is designed for operation in situations which are too exposed

for the safety of the operator. The remote control unit enables the operator to control the system from a protected position.

Aircraft flight information display study

A computer-driven display system that will help determine the best methods of presenting a large variety of easily readable information to aircrews on civil supersonic transports has been delivered to the Boeing company by Sanders Associates, Inc., of America.

The Sanders Advanced Data Display System (ADDS $/ 900$) will be used in exploring new techniques for providing flight information not furnished by conventional aircraft instruments. The system will be installed at Boeing's supersonic transport simulator which consists of a compuler and a development aircraft cabin.

The ADDS /900 system accepts process data from the main simulator computers and presents it on an 8 -inch cockpit display and also on a 13 -inch monitor at the simulator computer.

The displays will provide graphics, alphanumerics and special symbols simultaneously to present current aircraft situation, past events, short- and long-term predictions, instrument symbology and can serve as back-up display for the flight director system to increase this system's reliability.

The studies will help determine what information to display and what is the best format to be used. For instance, when the on-board computer determines the best takeoff and cruise flight-path for a given fuel and passenger load, this data will be
displayed on the screen in graphic form. An aircraft symbol on the graph would indicate the immediate location of the airplane, a vector line would indicate its course and solid curved lines would present the desired safe flight profile.

Among the simulations studies to be investigated with the ADDS / 900 are noise abatement during initial climb, vertical navigation and fuel management, electronic altitude director indication, mach-altitude climb profiles, air traffic control during descent and airport approach, instrument landing aid, and centre of gravity limits.

Wildlife tape recording contest

A Tandberg Model II battery-driven field recorder, value $£ 175$, is the major award in the Wildlife Sound Recording Competition organized for the second year by the 3 M Company in association with the Wildlife Sound Recording Society.

The recorder will be awarded, together with a Grampian 24 -in parabolic reflector, to the "Scotch Magnetic Tape Wildlife Sound Recordist of the Year", selected from the winner of three classes-for (1) individual species of birds, (2) mammals and insects, and (3) outdoor wildlife "atmosphere" recordings. Each of the class winners will receive a trophy given by 3 M and a supply of Scotch Dynarange magnetic tape.

This year a special class for junior recordists up to 17 years of age has been formed, for which any wildlife recording is eligible. The prize for the Junior Recordist of the Year is a Bush TP60 portable cassette
recorder, complete with microphone and carrying case.

Entry into the competition is free, and there is no limit on the number of recordings which may be submitted.

All recordings must be of wild and free creatures, recorded without provocation or disturbance, and made in the British Isles (including N. Ireland and Eire). Closing date for entries is November 30th, 1969. Copies of the rules and entry forms may be obtained from W. R. Bowles, 3M Company, 3M House, Wigmore Street, London W1A IET.

Capital equipment output up

Figures released by the Ministry of Technology show increases in output of nearly all types of electronic capital equipment for the first quarter of this year. At $£ 125.5 \mathrm{M}$ the total figure is 14% higher than the same period last year. The most significant relative increase was in broadcasting equipment which jumped by 105% to $£ 3.7 \mathrm{M}$ but in terms of cash the biggest contribution was made by computers with a $£ 6.1 \mathrm{M}$ increase to $£ 29.5 \mathrm{M}$, a rise of 29.5%. Another large contribution was made by radio communication equipment sales which rose by 45% to $£ 13.9 \mathrm{M}$.

Home consumption was 9% higher and exports were 25% higher than the same period last year. Of the total, exports accounted for 36% as against 33%. In terms of cash the value of exports was $£ 42 \mathrm{M}$.

British audio equipment in Japan

Five well known British makers of high-fidelity equipment are combining to show their latest models to the Japanese during British Week, which opens in Tokyo on September 26th. Top quality British equipment already has a foothold in the Japanese market, despite intense local competition. The five firms-Accoustical Manufacturing, Garrards, Goodmans, SME and Tannoy-are all represented in Japan by the Shriro Trading Company who have organized the joint exhibit through their London associates, Shriro (U.K.) Lid.

Data transmission-opinion required

The views of interested parties on future developments in data transmission to and between computers are sought by the Advisory Group on Data Transmission of the Post Office Economic Development Council.

The advisory group has been set up to review these developments and to help the Post Office assess the implications, for their investment programmes, of the rapidly growing demand for services to transmit data to and between computers.

Users of data transmission facilities (large firms, scientific users, computer bureaux etc) and the telecommunications and com-
puter industries are not directly represented on the Group, but approaches are being made to leading organizations of this kind asking for their views on the subject being investigated by the Group. In addition the Group would welcome views from anyone with a particular interest in, and knowledge of, the subject. They should write to the Secretary of the Group. Mr. I. J. Blakey, at the National Economic Development Office, 21 /41 Millbank, London, S.W.1.

Telephone for the deaf

A new telephone which will allow the deaf to "see" messages in coded flashes of light and the blind to "feel" them in the vibrations of a finger pad is being developed by Bell Telephone Laboratories in America. Called the Code-Com set, it will make calling possible for handicapped persons.

The Code-Com set is for people who are totally deaf, deaf and blind or deaf and mute.

The Code-Com set converts the transmitted signals into flashes of light and vibrations of the disc or sensor pad. Thus, a deaf or deaf and blind person can "read" simple messages by using a question and answer system, or more complex messages, by using a pre-arranged code such as Morse code. Using the sending key, a person without normal speech can send light or vibration signals to another Code-Com set or coded sound signals to a regular telephone.

The set may be used with a separate signal control unit, which is connected to the ringing circuitry of a conventional telephone. A telephone "ring" is indicated when the control unit switches a light, electric fan, or some other light-duty appliance, on or off.

Field trials of experimental models of the Code-Com set have been held in Indianapolis, New York City, and Columbus, with the assistance of handicapped persons and local telephone companies. After some practice with Morse code, users were able to attain speeds of ten words per minute.

M-O Valve celebrates golden jubilee

The M-O Valve Company was formed in October 1919 from G.E.C.-Osram which set up operations manufacturing valves for military communications as early as February 1917. Much research was done into transmitting valves and resulted, in the 20s, in valves such as the CAT14 which was used in the Daventry transmitters (later Droitwich) and the CAT15 which was employed in the B.B.C's first television transmitter at Alexandra Palace.

The CAT15 was the prototype of the VT58, a valve which was extensively used throughout the Second World War. In 1940 a magnetron was produced which became the first efficient 10 cm copper block magnetron for airborne use which was used in the famous H 2 S equipment and the Mk. VIII enemy interception gear.

Many other firsts are attributable to the company which claims to be the largest producer of instrumentation and radar cathode-ray tubes in Europe.

Colour trade test material

Trade test programmes are now radiated six days a week on B.B.C-2, as set out below, subject to programme commitments and engineering work. During test and colour bar transmissions the following sequence of sounds will be transmitted as far as is possible: 440 Hz tone-four minutes; silenceone minute; recorded music- 15 minutes. At the starting time for a sound sequence if less than five minutes are available music will be transmitted only.

Monday to Friday

09.00-09.30	Colour Bars
09.30-09.55	Test Card F
09.55-10.00	Service Information Caption
10.00-10.05	Service Information
10.05-10.30	Test Card F
10.30-10.43	Colour Receiver Installation Film
10.43-10.55	Colour Film
10.55-11.00	Test Card F
11.00-11.25	'Play School' or Colour Film
11.25-11.30	Service Information Caption
11.30-11.35	Service Information
11.35-11.55	Colour Film
11.55-12.00	Colour Bars
12.00-12.05	Test Card F
12.05-12.18	Colour Receiver Installation Film
12.18-12.23	Colour Bars
12.23-12.30	Test Card F
14.00-14.10	Test Card F
14.10-14.15	Colour Bars
14.15-14.25	Test Card
14.25-14.30	Service Information Caption
14.30-14.35	Service Information
14.35-15.00	Colour Film
15.00-15.10	Test Card F
15.10-15.23	Colour Receiver Installation Film
15.23-15.30	Test Card
15.30-15.55	Colour Film
15.55-16.10	Test Card F
16.10-16.15	Colour Bars
16.15-16.30	Test Card F
16.30-16.55	Colour Film
16.55-17.10	Test Card F
17.10-17.15	Colour Bars
17.15-17.30	Test Card F
17.30-17.55	Colour Film
17.55-18.00	Colour Bars
18.00-18-15	Test Card F
18.15-18-40	Colour Film
18.40-18.55	Test Card F

Saturday

Test transmissions cease at 18.15 but follow the above sequence except between 14.00 and 14.25 when transmissions are as follows:
14.00-14.05 Test Card F
14.05-14.20 Colour Film
14.20-14.25 Test Card FF

On enquiry we learn that both B.B.C. 1 and I.T.A. hope to have started colour test transmissions by the end of September.

Daventry transmitter maintenance

The 725 ft aerial mast for the main Radio- 3 medium-wave transmitter at Daventry, which operates on 464 metres (647 kHz) will be out of service for approximately two months from August 5th, for maintenance work to be carried out. A reserve aerial will be used during this period. The main effect will be a reduction in the strength of signals received from Daventry which will be most noticeable towards the limit of the area served by this station, which extends to approximately 100 miles.

Radio- 3 can be received on v.h.f. throughout the whole of the area served from Daventry and on the service from the me-dium-wave relay stations at Bournemouth, Brighton, Fareham, Leeds, Liverpool and Preston.

Likeus to place a small deposit on your nextorder?

No trouble at all. We already plate millions of Carr Fastener components every week. Gold, silver, copper, chrome, zinc, tin, nickel, cadmium: we plate with them all, electrolytically and with great precision. You'll have to go a long way to find anyone plating parts with greater expertise! For electronic edge connector contacts, for instance, we have developed techniques of selective plating with gold on the metal strip before forming. This deposit is graded from a minimum

give long-life protection, up to 5 microns thick at points subject to wear.
Because we do all the metal preparation and plating in our own factories we control the quality and the time it takes. Neither we, nor ultimately you, are at the mercy of external suppliers, for vague, ever-extending delivery dates.
Plating is only one of the processes we use in producing over twenty five million fasteners, connectors and related components per week. We also solder, rivet and bond parts together. Or encapsulate them in compression or injection mouldings.
All along the line our components and parts are subject to batch testing for characteristics such as: dimensions, plating thickness, insertion force, electrical potential etc, etc. Precision components such as edge connectors for the GPO even require 100% testing, which could
be very time-consuming - except for the fact that our development boys have devised a little machine that does the necessary test completely automatically. In fact, we'd have a bit of trouble turning out over 25,000,000 parts a week if our development people hadn't invented quite a few machines (many
of them patented) to streamline production.
To recap: we form the parts, plate them, then go on and complete any processing necessary to make the part into a finished component ready to drop into your assembly-line.

Carr Fastener Company Limited, Stapleford, Nottingham
Telephone: Sandiacre 2661

Marconi complete naval communications

A complete range of communications equipment using s.s.b, i.s.b and all other modes of h.f and m.f transmissions, designed specifically for naval communications systems.

- Simple, precise and highly accurate continuous decade selection of frequencies in 100 Hz steps.
- Rigid stability controlled by a single high accuracy frequency standard.
- Extreme simplicity of operation combined
with versatility of service and high quality performance.
- Synthesizers and wideband amplifiers employed in these systems, which make maximum use of semiconductors.
- NATO codified.
- Complete system planning and installation.
This new range of Marconi equipment has already been used in the modernization of the communications of 10 Navies.

Marconi naval radio and radar systems

Member of G.E.C.-Marconi Electronics

Active Filters

3. Properties of passive and non-feedback CR networks

by F. E. J. Girling* and E. F. Good*

$C R$ networks can give transfer functions of the same form as those given by the $L C R$ networks discussed in Part 2, but are subject to a most important limitation-namely that the Q factor cannot exceed one-half.

The addition of purely buffer amplifiers does not overcome this limitation, but can give greater freedom in choice of component values and facilitate variable control of frequency and Q factor.

Simple 2nd-order networks

I. Low-Pass

Two simple lags in cascade clearly give a 2nd-order low-pass response. In Fig. I the two lags are isolated from each other by an ideal buffer (an ideal voltage amplifier of gain 1), and consequently

$$
\begin{align*}
\frac{V_{\text {out }}^{-}}{V_{\text {in }}} & =\frac{1}{1+p T_{2}} \cdot \frac{1}{1+p T_{1}} \tag{1}\\
& =\frac{1}{1+p\left(T_{1}+T_{2}\right)+p^{2} T_{1} T_{2}} \tag{2}
\end{align*}
$$

Comparison with the standard form

$$
\frac{V_{\text {out }}}{V_{i n}}=\frac{1}{1+\frac{1}{q} p T+p^{2} T^{2}}
$$

gives

$$
\begin{equation*}
T=\left(T_{1} T_{2}\right)^{4} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{q}=\left(\frac{T_{1}}{T_{2}}\right)^{1}+\left(\frac{T_{2}}{T_{1}}\right)^{1} \tag{4}
\end{equation*}
$$

Now any expression of the form $(x+1 / x)$ has its minimum value when $x=1 / x$, i.e. when $x=\mathbf{1}$, and consequently has a minimum value of 2 . Hence the minimum value of I / q is 2 , i.e.

$$
\begin{equation*}
q_{\max }=\frac{1}{2} \tag{5}
\end{equation*}
$$

and is obtained when $T_{1}=T_{2}$.
When the network does not contain a buffer amplifier as above, we have the familiar problem of interaction, and we cannot straightaway write down the voltage transfer ratio as a product of two simple lags. The voltage transfer ratio can, how-

[^5]ever, readily be found by standard methods of circuit analysis, and for the network shown in Fig. 2 is
$\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{1+p\left[C_{1} R+C_{2}(1-b) R\right]} \cdots$
\[

$$
\begin{equation*}
\overline{+p^{2} C_{1} b R C_{2}(1-b) R} \tag{11}
\end{equation*}
$$

\]

It will be noticed the two resistors have been

Fig. 1. 2nd-order CR network (low-pass connection) consisting of two simple lags separated by a buffer amplifier.

Fig. 2. Low-pass network of the two-lag type without buffer amplifier. The resistances are marked with values according with the idea of a single resistance R divided into two parts.

Fig. 3. Two-lag CR networks in which: (a) the two resistances are equal; (b) are in the ratio $I: 2$.

Fig. 4. Showing source ($V_{\text {in }}$) and output terminals connected to give band-pass response.
given values such that while they can have any ratio their sum is always R. Consequently if we re-express equn. (6) in terms of two time constants defined as: (1) the total resistance, i.e. the value of the two resistances in series, multiplied by C_{1}; (2) the value of the two resistances in parallel multiplied by C_{2}, i.e.

$$
\begin{equation*}
T_{1}=C_{1} R \text { and } T_{2}=b(1-b) C_{2} R, \tag{7}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{i n}}=\frac{1}{1+p\left(T_{1}+T_{2} / b\right)+p^{2} T_{1} T_{2}} \tag{9}
\end{equation*}
$$

Whence, as before, by comparing with the standard form,

$$
\begin{equation*}
T=\dot{\sqrt{ }}\left(T_{1} T_{2}\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{q}=\left(\frac{T_{1}}{T_{2}}\right)^{1}+\frac{1}{b}\left(\frac{T_{2}}{T_{1}}\right)^{\prime} \tag{6}
\end{equation*}
$$

The latter may be written

$$
\begin{equation*}
\frac{1}{q}=\left(\frac{1}{b}\right)^{1}\left\{\left(\frac{b T_{1}}{T_{2}}\right)^{k}+\left(\frac{T_{2}}{b T_{1}}\right)^{\frac{1}{4}}\right\}, \tag{12}
\end{equation*}
$$

i.e. in the form $\mathrm{I} / q=y(x+1 / x)$, which has minimum value $2 y$ given when $x=1$. This shows that a maximum value of q is obtained when

$$
\begin{equation*}
T_{1} / T_{2}=1 / b \tag{13}
\end{equation*}
$$

i.e. when

$$
\begin{equation*}
C_{1} / C_{2}=1-b \tag{14}
\end{equation*}
$$

and is

$$
\begin{equation*}
q_{\max }=\sqrt{ } b / 2 \tag{15}
\end{equation*}
$$

Hence since $b \ngtr 1$, the absolute maximum value of q is $\frac{1}{2}$, obtained when $(1-b) \rightarrow 0$ and $C_{2} / C_{1} \rightarrow \infty$. Obviously in a practical situation, because it will be necessary to avoid having $(\mathrm{r}-b) R$ and C_{1} unacceptably small, or C_{2} unacceptably large, b will be limited to a value < I .

Two cases which often turn up in practice are shown in Fig. 3. In (a), $b=(\mathrm{I}-b)=\frac{1}{2}$. Hence condition for maximum q is $T_{1} / T_{2}=2$, i.e.
$C_{2}=2 C_{1}$,
and
$q_{\text {max }}=1 / 2 \sqrt{ } 2=1 / 2 \cdot 828$ approx.
If $T_{1} / T_{2}=4, \quad 1 / q=2+2 / 2=3$; i.e. when

$$
\left.\begin{array}{rl}
C_{2} & =C_{1}, \tag{17}\\
q & =\frac{1}{3}
\end{array}\right\}
$$

which is only slightly less than $q_{\text {max }}$, above.

In Fig. 3 (b) $b=\frac{2}{3}$ and $(1-b)=\frac{1}{3}$.
Hence for maximum q

$$
\left.\begin{array}{rl}
C_{2} & =3 C_{1} \\
\text { and } \tag{18}\\
\quad q_{\text {max }} & =1 / \sqrt{ } 6=1 / 2.45 \text { approx. }
\end{array}\right\}
$$

2. Band-pass

With all voltage sources short-circuited, there is only one arrangement of two Cs and two $R \mathrm{~s}$-a parallel connection of a C and an R with a series $C R$ branch connected across it-if the network is not to degenerate into what is essentially one C and one R. To obtain other types of response, therefore, the voltage source must be placed in a different branch, and/or a different pair of output terminals chosen. Thus Fig. 4 shows the two-lag network of Fig. 2 reordered into a lead-lag network to give a bandpass response
$\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{\frac{p T_{2}}{b}}{1+p\left(T_{1}+\frac{T_{2}}{b}\right)+p^{2} T_{1} T_{2}}$
A reordering which results in a lag-lead network is shown in Fig. 5. This also gives bandpass response
$\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{p b T_{1}}{1+p\left(T_{1}+\frac{1}{b} T_{2}\right)+p^{2} T_{1} T_{2}}$
A third reordering, Fig. 6, gives the so-called Wien-bridge network (i.e. the frequencydependent half of a Wien bridge) and the voltage transfer ratio
$\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{p(1-b) T_{1}}{.1+p\left(T_{1}+\frac{1}{b} T_{2}\right)+p^{2} T_{1} T_{2}}$
Many will be more familiar with the last three results in the form
$\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{k p\left(C_{1} R_{1}+C_{1} R_{2}+C_{2} R_{2}\right)}{1+p\left(C_{1} R_{1}+C_{1} R_{2}+C_{2} R_{2}\right)} \cdots$

$$
\begin{equation*}
\overline{+p^{2} C_{1} R_{1} C_{2} R_{2}} \tag{22}
\end{equation*}
$$

where $R_{1}=b R, R_{2}=(\mathrm{I}-b) R$, and C_{1} and C_{2} are as above; or

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{\frac{k}{q}(p T)}{1+\frac{1}{q}(p T)+p^{2} T^{2}} \tag{23}
\end{equation*}
$$

The frequency of maximum transmission is always given by

$$
\begin{equation*}
\omega_{0}=1 / T=1 / \sqrt{ }\left(C_{1} R_{1} C_{2} R_{2}\right) \tag{24}
\end{equation*}
$$

and k is equal to $V_{\text {out }} / V_{i n}$ at ω_{0}. Expressions for k for the different connections are given in Table 1. As is well known, when $C_{1}=C_{2}$, and $R_{1}=R_{2}$ (i.e. $b=\frac{1}{2}$) all three arrangements give the same voltage transfer ratio,

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{p T}{1+3 p T+p^{2} T^{2}} \tag{25}
\end{equation*}
$$

for which $k=\frac{1}{3}$, and $q=\frac{1}{3}$.

3. High-pass

As for the low-pass case, Fig. 2, there is only one arrangement of the two- C two- R network that gives 2 nd-order high-pass

Fig. 5. Alternative connection for band-pass response.

Fig. 6. Another band-pass connectionthe Wien-bridge network (i.e. a Wien bridge less the ratio arms).

Fig. 7. Here the basic 2nd-order CR network is connected to give high-pass response.

Fig. 8. The same connection as in Fig. 7 with the elements remarked to conform with the idea of a single capacitive reactance C divided into two parts.

Fig. 9. Three connections of the basic znd-order $C R$ network which give attenuation at middle frequencies, $T_{1}=C_{1} R$, $T_{2}=C_{2} R$.

Fig. Io. Inverted Wien-bridge network showing relative component values for minimum bandwidth when maximum attenuation is $6 d B$.

Fig. II. Network of Figs. 9 (a) and (b) redrawn to show the two paths between input and output.

Fig. 12. Two-path network which gives a null (zero transmission) when $T_{2}{ }^{\prime}=T_{2}$.

Fig. 13. Showing the 90° phase difference between the voltages at A and B when $T_{2}{ }^{\prime}=T_{2}=C R$.
(a)

Table I

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{k \frac{p T}{Q}}{1+\frac{p T}{Q}+p^{2} T^{2}}
$$

response. This is shown in Fig. 7, and the voltage transfer ratio is

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{p^{2} T_{1} T_{2}}{1+p\left(T_{1}+T_{2} / b\right)+p^{2} T_{1} T_{2}} \tag{26}
\end{equation*}
$$

or

$$
\begin{array}{r}
\left.=\frac{p^{2} C_{1} R_{1} C_{2} R_{2}}{1+p\left(C_{1} R_{1}+\right.} C_{2} R_{1}+C_{2} R_{2}\right) \\
\cdots \overline{+p^{2} C_{1} R_{1} C_{2} R_{2}} \tag{27}
\end{array}
$$

The denominator is the same as for other arrangements of the network, as it must be, since it is characteristic of the network itself. Consequently with the same component values the Q factor is the same, and the maximum value is $\frac{1}{2}$.

In this arrangement of the network the arbitrarily defined T_{1} and T_{2} are no longer particularly useful. Let us relabel the elements as in Fig. 8. This is consistent with the idea that the end-to-end capacitive reactance is $1 / p C$, and that this is divided into two parts $\left(\mathrm{I}-b^{\prime}\right) / p C$ and $b^{\prime} / p C$. By analogy with the previous analysis we now define

$$
\begin{equation*}
T_{1}^{\prime}=C R_{1} \text { and } T_{2}^{\prime}=\frac{C R_{2}}{b^{\prime}\left(1-b^{\prime}\right)} \tag{28}
\end{equation*}
$$

and obtain for the voltage transfer ratio

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{p^{2} T_{1}^{\prime} T_{2}^{\prime}}{1+p\left(T_{1}^{\prime} / b^{\prime}+T_{2}^{\prime}\right)+p^{2} T_{1}^{\prime} T_{2}^{\prime \prime}} \tag{30}
\end{equation*}
$$

which will be found useful in the analysis of $C R$ notch networks.
From equn. (30) we have

$$
\begin{equation*}
\frac{1}{q}=\left(\frac{T_{2}^{\prime}}{T_{1}^{\prime}}\right)^{1}+\frac{1}{h}\left(\frac{T_{1}^{\prime}}{T_{2}^{\prime}}\right)^{\prime} \tag{31}
\end{equation*}
$$

This is minimum when $T_{1}^{\prime} / T_{2}{ }^{\prime}=b$, i.e. when

$$
\begin{equation*}
R_{1} / R_{2}=1 /\left(1-b^{\prime}\right) \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{\max }=\sqrt{ } b^{\prime} / 2 \tag{33}
\end{equation*}
$$

Although expressed in terms of a different parameter, these results must be the same as those obtained before, equns. (14) and (15). So, the absolute maximum of q is $\frac{1}{2}$, obtained when $b^{\prime} \rightarrow 1$, i.e. when the second mesh (C_{1}, R_{1}) does not load the first mesh (C_{2}, R_{2}) and $C_{1} R_{1}=C_{2} R_{2}$.

4. Imperfect notch (or dip in the middle)

If we take any of the three $C R$ band-pass networks and take for the outpur the voltage that was the difference between the input and the output, we obtain the three rearrangements shown in Fig. 9 and an amplitude response with a minimum at the frequency where formerly there was a maximum. For Fig. 9(a) we obtain by using equn. (19)

$$
\begin{align*}
V_{\text {out }}= & V_{i n}\left(1-\frac{p T_{2} / b}{1+p\left(T_{1}+T_{2} / b\right)} \cdots\right. \\
& \left.\cdots \overline{+p^{2} T_{1} T_{2}}\right) \\
= & V_{i n} \cdot \frac{1+p T_{1}+p^{2} T_{1} T_{2}}{1+p\left(T_{1}+T_{2} / b\right)+p^{2} T_{1} T_{2}} \tag{34}
\end{align*}
$$

from which it can be seen that at the centre frequency, $(1)=1 / \mathrm{M}\left(T_{1} T_{2}\right)$, the voltage transfer ratio is equal to $T_{1} /\left(T_{1}+T_{2} / b\right)$. Thus the depth of the notch or depression depends on the two independent parameters T_{1} / T_{2} and b, and there is not a single family of curves but an infinite number of families.

A limiting case is $b=1$, i.e. when the impedance of the top two elements is infinitely greater than that of the bottom two. Then, if we normalise by putting $T_{1}=x$ and $T_{2}=1 / x$ (so that $T_{1} T_{2}=1$), the voltage transfer ratio becomes

$$
\begin{equation*}
\frac{1+p x+p^{2}}{1+p\left(x+\frac{1}{x}\right)+p^{2}} \tag{35}
\end{equation*}
$$

For $x=1$, the depth of the notch is 6 dB , $q=\frac{1}{2}$, the maximum possible value, and it is found that the width between -3 dB points is 1.414 . For $x<1$ the depth of the notch increases as x decreases, but q also
decreases and the notch broadens. Thus if the notch is deep it is also very broad.

In the arrangement just considered a $C R$ lead is connected on top of an $R C$ lag. In Fig. 9(b) the order of connection is reversed; and, as may be guessed, analysis shows the same relationship between width and depth of notch, though now the role of T_{1} and T_{2} is reversed, a deep notch being obtained for large T_{1} / T_{2}.

In Fig. 9 (c) we meet a different situation. Here for $b \rightarrow 1$, for which $q \rightarrow \frac{1}{2}$, there is no attenuation at any frequency. To produce a useful dip or notch b must be considerably less than I . Consequently q must be considerably less than $\frac{1}{2}$, since $q_{\max }=\sqrt{ } b / 2$. It appears, therefore, that this connection is less efficient than the other two (see Fig. 10).
The redrawings of Fig. II reveal more clearly the (a) and (b) connections of Fig. 9 as two path networks which can feed into a virtual short circuit two currents I_{1} and I_{2} which in the limit $[1) \rightarrow 0$ for (a); $\omega \rightarrow \infty$ for (b)] have a phase difference of 180°. For zero output at a finite frequency I_{1} and I_{2} must show 180° phase difference (and equal magnitude) at that frequency. To obtain this whilst keeping the network $C R$ and passive, a third C and a third R must be added.

The balanced parallel-T network

I. Symmetrical notch

The right-hand side of equn. (38) in Part 2 (September issue) may be looked at as an identity: notch response is the addition of low-pass and high-pass response. From this notion is derived Fig. 12. The two unity-gain buffer amplifiers isolate the three time constants, and so

$$
\begin{align*}
& \frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{\left(1+p T_{2}\right)\left(1+p T_{1}\right)} \\
& \quad+\frac{p^{2} T_{2}^{\prime} T_{1}}{\left(1+p T_{2}^{\prime}\right)\left(1+p T_{1}\right)} \tag{36}
\end{align*}
$$

For this to be identically equal to a function of the form required it is necessary for

$$
\begin{equation*}
T_{2}^{\prime}=T_{2} \tag{37}
\end{equation*}
$$

so that
$\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1+p^{2} T_{1} T_{2}}{1+p\left(T_{1}+T_{2}\right)+p^{2} T_{1} T_{2}}$
This is, therefore, a straightforward method of obtaining a notch going down to zero. The Q-factor cannot, of course, be greater than $!$.
The physical reality behind the condition for a zero, equn. (37), is that when $T_{2}{ }^{\prime}=T_{2}$ the phase difference between the voltages at points A and B is at all frequencies 90° (Fig. 13). The two output currents into a virtual short circuit then have 180° phase difference, since the current through R_{1} will be in phase with the voltage at A, while the current through C_{1} will be 90° leading on the voltage at B. Hence, when I_{1} and I_{2} are equal in magnitude, $I_{1}+I_{2}=0$, and so the output voltage is zero even after the short circuit is removed. It is interesting to
notice that equn. (37) is independent of T_{1}. Consequently the notch can be moved along the frequency scale by varying T_{1} only, the frequency of the null or zero being given by $\omega_{0}=1 / \sqrt{ }\left(T_{1} T_{2}\right)$.

A zero can still be obtained when the upper buffer amplifier is removed (Fig. 14), the necessary equal-time-constant condition with short-circuited output being

$$
\begin{equation*}
T_{2}^{\prime}=T_{2}=b(1-b) C_{2} R \tag{39}
\end{equation*}
$$

We know also, from equn. (9), that the upper path makes a contribution to the output voltage

Fig. 14. For a null $T_{2}{ }^{\prime}=T_{2}=b(1-b)$ $C_{2} R$.

Fig. 15. For a null $T_{2}{ }^{\prime}=b^{\prime}\left(1-b^{\prime}\right)$
$R_{2}=T_{2}$. Then, if $T_{1}=C R_{1} \omega_{\infty}=$ $1 / \sqrt{ }\left(T_{1} T_{2}\right)$.

Fig. 16. For a null $T_{2}^{\prime}=\frac{C T_{2}}{b^{\prime}\left(I-b^{\prime}\right)}$
$=T_{2}=b(b-I) C_{2} R$. Then
$\omega_{\infty}=\omega_{0}=I / \sqrt{ }\left(T_{1} T_{2}\right)$, where $T_{1}=C R$.
Fig. 17. The general case and three particular cases of the balanced parallel-tee network with o-c output when $b^{\prime}=b=\frac{1}{2}$ (see texf).
$\frac{1}{1+p\left(T_{1}+T_{2} / b\right)+p^{2} T_{1} T_{2}} \cdot V_{i n}$.
Therefore, since the complete voltage transfer ratio is of the form

$$
\frac{1+p^{2} T^{2}}{1+\frac{1}{q} p T+p^{2} T^{2}}
$$

it must be

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1+p^{2} T_{1} T_{2}}{1+p\left(T_{1}+T_{2} / b\right)+p^{2} T_{1} T_{2}} . \tag{40}
\end{equation*}
$$

As before, the condition for a zero, equn. (39), is independent of T_{1}, and consequently single-element control of the frequency of the zero is possible by varying C_{1} (R_{1} is not now available as an independent element).

Similarly, by using equn. (30), the voltage transfer ratio for Fig. 15 can be found to be

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1+p^{2} T_{1} T_{2}}{1+p\left(T_{1} / b^{n}+T_{2}\right)+p^{2} T_{1} T_{2}}, \tag{41}
\end{equation*}
$$

where $T_{1}=C R_{1}$, provided the condition for the existence of a null is met,

$$
\begin{equation*}
T_{2}^{\prime}=\frac{C R_{2}}{b^{\prime}\left(1-b^{\prime}\right)}=T_{2} \tag{42}
\end{equation*}
$$

Single-element control of the frequency of the null is possible by varying R_{1}.

Removing both buffer amplifiers leads to the familiar parallel-tee network, Fig. 16. The necessary condition that must be satisfied if there is to be a null is, as before, $T_{2}{ }^{\prime}=T_{2}$, where T_{2} is defined by equa. (8) and $T_{2}{ }^{\prime}$ by equa. (29), i.e.
$T_{2}{ }^{\prime}=C R_{2} / b^{\prime}\left(1-b^{\prime}\right)$

$$
\begin{equation*}
=T_{2}=b(1-b) C_{2} R \tag{43}
\end{equation*}
$$

Then
$\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1+p^{2} T_{1} T_{2}}{1+p\left(T_{1} / b^{\prime}+T_{2} / b\right)+p^{2} T_{1} T_{2}}$,
as can be found by straightforward analysis.
Here $T_{1}=C R$.

The frequency of the null is found by equating the numerator of the frequencyresponse function to zero, I $-\omega^{2} T_{1} T_{2}=0$, which gives $\omega_{\infty}=1 / \sqrt{ }\left(T_{1} T_{2}\right)$; and it can be seen from the denominator that this is also the undamped natural frequency of the network, ω_{0}. Hence
$\omega_{\infty}=\omega_{0}=1 / T=1 / \sqrt{ }\left(T_{1} T_{2}\right)$,
and

$$
\begin{align*}
\frac{1}{q} & =\frac{T_{1} / b^{\prime}+T_{2} / b}{\sqrt{ } T_{1} T_{2}} \\
& =\frac{1}{b^{\prime}}\left(\frac{T_{1}}{T_{2}}\right)^{\prime}+\frac{1}{b}\left(\frac{T_{2}}{T_{1}}\right)^{\prime} \\
& =\frac{1}{\left(b^{\prime} b\right)^{\prime}}\left\{\left(\frac{b T_{1}}{b^{\prime} T_{2}}\right)^{\prime}+\left(\frac{b^{\prime} T_{2}}{b T_{1}}\right)^{\prime}\right\} . \tag{46}
\end{align*}
$$

So

$$
\begin{equation*}
q_{\max }=\frac{1}{2}\left(b^{\prime} b\right)^{\prime} \tag{47}
\end{equation*}
$$

obtained when

$$
\begin{equation*}
\frac{b T_{1}}{b^{\prime} T_{2}}=1 \tag{48}
\end{equation*}
$$

By substitution from equns. (43) it is found that

$$
\begin{aligned}
\frac{b C R}{b^{\prime}} & =T_{2}=b(1-b) C_{2} R \\
& =T_{2}^{\prime}=\frac{C R_{2}}{b^{\prime}\left(1-b^{\prime}\right)}
\end{aligned}
$$

Hence if C, R, b, b^{\prime}, are given, the simultaneous conditions for a null and maximum q are
and

$$
\left.\begin{array}{l}
C_{2}=\frac{C}{b^{\prime}(1-b)} \tag{49}\\
R_{2}=b\left(1-b^{\prime}\right) R
\end{array}\right\}
$$

From equas. (45) and (48)

$$
\begin{equation*}
\omega_{\infty}=\omega_{0}=\left(\frac{b^{\prime}}{b}\right)^{\prime} \cdot \frac{1}{C R} \tag{51}
\end{equation*}
$$

In practice it is often convenient to make $b=b^{\prime}=\frac{1}{2}$. The condition for a zero, equn. (43), then becomes

$$
\begin{equation*}
4 C R_{2}=\frac{C_{2} R}{4} \tag{52}
\end{equation*}
$$

which is met if $R_{2}=x R / 4$ and $C_{2}=4 x C$ (Fig. 17). Then $T_{1}=C R$ and $T_{2}=x C R$. Consequently

$$
\begin{equation*}
\omega_{0}=1 /\left(T_{1} T_{2}\right)^{\prime}=1 / x^{\prime} C R \tag{53}
\end{equation*}
$$

and

$$
\begin{equation*}
q=\frac{1}{2\left(x^{3}+\frac{1}{x^{i}}\right)} \tag{54}
\end{equation*}
$$

Hence for the popular set of relative values shown in Fig. $17(\mathrm{~b})$, for which $x=1$, $\omega_{0}=1 / C R, q=\frac{1}{4}$. Also shown are the results for (c) $x=2$, three equal resistors; and (d) $x=\frac{1}{2}$, three equal capacitors.
For all these cases the notch is wide: e.g. for (b), if $\omega_{0}=1$, the -3 dB frequencies are 0.2361 and 4.2361 , i.e. there is considerable attenuation over more than four octaves. For this case, if $\omega_{0}=1 / C R=1 / T$,
the voltage transfer ratio may be written in a form easy to remember and often used,

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{i n}}=\frac{1+p^{2} T^{2}}{1+4 p T+p^{2} T^{2}} \tag{55}
\end{equation*}
$$

2. Unsymmetrical notch

Not only the network of Fig. 12 but all the parallel-tee networks so far considered directly reproduce the identity: notch response is the addition of low-pass and high-pass response-the upper path (as drawn here) contributing the fraction I/(denominator), and the lower path $p^{2} T^{2} /$ (denominator). It follows, therefore, that if attenuation is introduced in one or other path without otherwise altering transmission from input to output an unsymmetrical notch response is obtained corresponding to eqtin. (40) and Fig. 19(b), or to equn. (42) and Fig. 20(b) all in Part 2; and that in the extreme cases where no signal passes through one or other path the response becomes simple low-pass or high-pass.

Thus in Fig. 18 with $a^{\prime}=0$ and $a=1$ the response is low-pass, equn. (44) without the second term of the numerator; while with $a=0$ and $a^{\prime}=1$ the response is high-pass, equn. (44) without the first term of the numerator. With $a=1, a^{\prime}$ variable (and <1) low-pass asymmetrical notch response is obtained
$\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1+a^{\prime} p^{2} T_{\mathbf{1}} T_{2}}{1+p\left(T_{1} / b^{\prime}+T_{2} / b\right)+p^{2} T_{1} T_{2}}$

As before (see equn. (41) in Part 2) if $\mathrm{a}^{\prime}<\mathrm{I}$, $\omega_{\infty}>\omega_{0}$, since

$$
\omega_{\infty}=\mathbf{I} / \sqrt{ }\left(a^{\prime} T_{1} T_{2}\right)=\omega_{0} / \sqrt{ } a^{\prime}
$$

Fig. 19(b) Part 2. Similarly, with $a^{\circ}=\mathbf{I}$, a variable (and <1), high-pass asymmetrical notch response is obtained, the numerator being $a+p^{2} T_{1} T_{2}$ (c.p. equn. (42) in Part 2). Of course, the denominator is that of a passive $C R$ network, and $q \neq \frac{1}{2}$ (equns. (46) and (47)). Consequently the notches are all broad, and there can be no peaking as shown in Part 2 in the figures mentioned above.

The same technique can, of course be applied to the networks of Figs. 12, 14 and 15. In these, however, it may not be necessary to add a buffer: the required effect can be obtained by varying the gain of the existing buffer amplifier. When the buffer amplifier is at the input it will usually be of the nature of an enhanced emitter follower (gain $=1$ very, very nearly) fed from a potentiometer. Where, however, the attenuation is required in the low-pass path, a potential divider may be used by itself, Fig. 19, provided its output resistance is absorbed into the following resistance.

In principle a capacitive potential divider could similarly be used at the input of the high-pass path. But in practice the capacitance thrown across the input terminals of the network would probably be an unacceptable load on the signal source, leading to instability or reduced signal handling capacity in higher frequency bands.

Fig. 18. Network for unsymmetrical notches: low-pass if $a>a^{\prime}$; high-pass if $a^{\prime}>a$.

Fig. 19. High-pass unsymmetrical notch network-reduced input to l.p. path obtained by potential divider.

Fig. 20. Balanced parallel-tee network with output taken for "tuned-circuit" or band-pass response with $\left|V_{o u t} / V_{i n}\right|$ (max) $=I$.

Fig. 2I. Three-terminal network: If $V_{2} / V_{1}=F_{1}$,
$F_{2}=\frac{V_{3}}{V_{1}}=\frac{V_{1}-V_{2}}{V_{1}}=1-F_{1}$.

Fig. 22. Parallel-T.networks connected to give "tuned-circuit" or band-pass response with peak gain $<r$.

3. Some other connections for a balanced

 parallel-T networkOf considerable interest is the response when the input is applied to the feet of the uprights of the tees as in Fig. 20.

If a three-terminal network, Fig. 21, gives between terminals 1,0 (input) and 2,0 (output) the voltage transfer ratio V_{2} / V_{1}, then between terminals 1,0 (input) and $\mathbf{1 , 2}$ (output) the voltage transfer ratio

$$
\begin{equation*}
\frac{V_{3}}{V_{1}}=\frac{V_{1}-V_{2}}{V_{1}}=1-\frac{V_{2}}{V_{1}} \tag{57}
\end{equation*}
$$

and if $V_{2} / V_{1}=0$ at some particular frequency, at that frequency $V_{3} / V_{1}=\mathbf{I}$.

This is the situation in Fig. 20:

$$
V_{\text {out }} / V_{i n}=\mathrm{I}-F(p),
$$

where $F(p)$ is the voltage transfer ratio for Fig. 16. Hence
$\frac{V_{\text {out }}}{V_{\text {in }}}=1-\frac{1+p^{2} T_{1} T_{2}}{1+p\left(T_{1} / b^{\prime}+T_{2} / b\right)+p^{2} T_{1} T_{2}}$

$$
\begin{equation*}
=\frac{p\left(T_{1} / b^{\prime}+T_{2} / b\right)}{1+p\left(T_{1} / b^{\prime}+T_{2} / b\right)+p^{2} T_{1} T_{2}} \tag{58}
\end{equation*}
$$

Normally $V_{\text {in }}$ and $V_{\text {out }}$ will be reckoned with respect to the common rail; but as this is a reversal of sense for both, compared with V_{1} and V_{3} in Fig. 21, equn. (59) is unaffected. It is of the form of equi. (26) in Part 2, tuned-circuit or ist-order band-pass response, with a gain at "resonance", $\omega=1 / \sqrt{ }\left(T_{1} T_{2}\right)$, equal to unity for all values of q. This is a difference from the lag-lead and similar networks, Figs. 4 to 6 , which always give voltage gain <1. On the other hand there is still the restriction $q \ngtr \frac{1}{2}$. It should also be remembered that equn. (59) is valid only if the parallel- T network is balanced, $T_{2}{ }^{\prime}=T_{2}$. If the network is not so balanced, the maximum voltage gain may be either greater or less than one.

Connections to the parallel- T network which give voltage transfer ratios more nearly like those of lead-lag networks are shown in Fig. 22. The input voltage is fed to only one tee, and the voltage transfer ratios are:
for Fig. 22(a)
$\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{p T_{2} / b}{1+p\left(T_{1} / b^{\prime}+T_{2} / b\right)+p^{2} T_{1} T_{2},}$
and for Fig. 22(b)

$$
\frac{V_{\text {out }}}{V_{\text {tn }}}=\frac{p T_{1} / b^{\prime}}{1+p\left(T_{1} / b^{\prime}+T_{2} / b\right)+p^{2} T_{1} T_{2}} .
$$

The sum of the two is, of course, equal to the expression given in equn. (59); and when $b^{\prime}=b=\frac{1}{2}$, and $T_{1}=T_{2}=T$, both equans. reduce to $\frac{V_{\text {out }}}{V_{i n}}=\frac{2 p T}{1+4 p T+p^{2} T^{2}}$.

Correction. In Part 2, September issue, Fig. 5 (page 404) was inadvertently printed upside down. The whole diagram should be rotated 180° so that the common lines of the two networks appear at the bottom.

Wireless World Logic Display Aid

6: Complete logic diagrams of basic instrument. Some modifications and additions that increase the usefulness of the aid

Designed by B. S. Crank*

Last month we completed the description of the basic instrument. Fig. 76 shows the interconnection diagram for all the sub-units; the reader should consult the figure number shown in the shaded areas for details of each particular sub-unit.

The time has come for the reader to decide exactly what he wants his instrument to do and this will of course depend on the use he has in mind for it. The various additions and modifications that can be made to greatly increase the use of the instrument are described this month.

Several of the modifications are compatible, that is they may be incorporated at the same time, resulting in a fairly large number of different versions of the instrument that may be built. It is impracticable to describe each version in complete detail as this would take up a great deal of space.

Each modification is given a number and a list is incorporated in this article showing which modifications are compatible and the facilities each particular combination gives. Because each reader's instrument may be different it is impracticable to give any more than guiding constructional details. However, readers who have built the instrument so far, will have no difficulty in planning a suitable layout.

The method to be adopted is to select the circuits one wishes to incorporate and redraw them to show the various interconnections and to show integrated circuit pin numbers using the information given earlier as to the available types. This is exactly what was done for all the circuits that have appeared in this series of articles so far.

1: Adding a $\overline{\mathrm{Z}}$ input

It is possible to have an instrument that will operate in the positive or negative logic convention if a $\overline{\mathrm{Z}}$ input is provided. All that is required is to assume that the complement of the output variables is in fact the variable itself. For example, on the input side of the external logic circuit the instruments output variable A is called \bar{A}, and \bar{A} becomes A. The output of the external logic circuit is fed to the $\overline{\mathrm{Z}}$ input of the instrument, which is the Z input preceded by a simple inverter stage. The external logic circuit will then be operating in the negative logic convention. If desired one could have a positive logic input and a negative logic output, or vice versa.

The extra circuitry required for the \bar{Z} input is shown in Fig. 77. The extra transistor merely inverts the output of the external logic to form $\overline{\mathrm{Z}}$.

2: Switching between more than one external logic circuit

This is really so simple that it hardly warrants mention, however, it is included for the record. A second card socket is provided on the front panel and the output variables are wired to the pins in the same manner as the first

[^6]card. Pin 10 of each card socket is connected to the selector switch (Fig. 78). If this modification is incorporated with modification 1 it is necessary to provide an inverter stage for each input.

3: Comparison facility

Sometimes it is helpful to be able to compare two circuits and show the difference between them; this applies equally to teaching and to industrial testing. The difference will be shown as a Venn diagram, Karnaugh map or Truth table. The modification enables two external circuits to be connected to the instrument and the display can be selected from either of these or from the dif ference between the two circuits

The extra circuitry required is shown in Fig. 79. Two sets of true and complement Z input terminals are provided on the front panel which are in turn connected to pins 10 and 11 on the appropriate card socket (for external logic circuits) on the front panel. S_{1} and S_{2} are minialure radio push button switches (two button, double-pole change-over, available from G.W.Smiths).

Two double transistor inverters enable Z and $\overline{\mathrm{Z}}$ inputs to be provided for each of the two external logic circuits. When S_{1} is pressed S_{1} (a) feeds \bar{Z}_{1} to a NAND gate which

Fig. 76. The complete logic diagram for the basic instrument. Each shaded area corresponds to one of the drawings given earlier in the series. The various figure numbers appeared in the following issues: Figs.1-14 May; Figs.15-32 June; Figs.33-46 July; Figs. 47-64 Augusl; Figs:65-75 September

Left Fig. 78. Switching between more than one external logic circuit.
will then have the output Z_{1}. In other words the display will show the function external circuit one performs. $S_{1}(b)$ has no effect because it is in series with $S_{2}(b)$ which is open.

If S_{2} only is pressed the same NAND gate will have the output Z_{2}, via $S_{2}(a)$, so that external circuit number two will be selected for display.

If both switches are pressed at the same time the two NAND gates are connected via $S_{1}\left(\right.$ b) and $S_{2}($ b) to perform the wired OR function. As the input to one gate is Z_{1} and

Fig.79. Circuit that enables the instrument to display the oulpul from one or other of two external logic circuits or to display the difference between the two circuits.

Fig. 80. Block diagram showing the additions required lo produce four display areas

Fig. 81. Details of the circuitry needed to provide four display areas
Z_{2} and the input to the other gate is $\overline{\mathrm{Z}}_{1}$ and $\overline{\mathrm{Z}}_{2}$ the output will be:

$$
\text { output }(\mathrm{Z})=\overline{\mathrm{Z}}_{1} \mathrm{Z}_{2}+\mathrm{Z}_{1} \overline{\mathrm{Z}}_{2}
$$

This is the familiar exclusive OR function the Truth table for which is

Z_{1}	Z_{2}	Z
0	0	0
0	1	1
1	1	0
1	0	1

showing that only when there is a difference between Z_{1} and Z_{2} is there an output at Z . The only point to bear in mind when ordering the parts for this circuit is that the push button unit should be capable of having both buttons pressed at the same time. The circuit of course will work with only one external circuit when required.

4: Providing four display areas

The photographs of the oscilloscope screen showing the Display Aid in operation, published in the first article in this series (May), contain four 16×16 matrices in each photograph. To obtain this type of display it is necessary to modify both dians and to add some extra circuitry. It is stressed that this is not a complete modification in itself as all that it achieves is to present the same display four times on the screen. However, it is a steppingstone to the modifications that follow.

In Fig. 80 the extra circuit blocks required are shown shaded. An extra bistable has been added to the X and the Y counter which doubles the capacity of both counters. The extra bistables, called Q and W, have their own constant current sources which are connected in parallel with the constant current sources in the dians.

A little thought will show that, because the capacity of the counters has been doubled, the matrix raster will have twice as many rows and twice as many columns as it did before. In other words the matrix will now consist of 32 rows and 32 columns giving 1024 dots in all.

Assume that at this point in time both counters hold zero. The next 15 pulses from the clock generator will set all the bistables in the original Y counter ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$) and a vertical column of 16 dots will be traced on the screen (only 15 pulses because the zero starting position is one of the 16 possible siates of the counter). The next pulse will set A, B, C and D to zero and set Q to 1 and, as the Q constant current source is connected to the Y dian, the spot will move another step down the screen face. More pulses from the clock generator will be counted up in A, B, C and D until these are full so that another vertical column of dots, below the first is traced out. The next pulse will reset all the bistables in the Y counter and advance the X counter by one, and so on.

It was shown above how each of the original bistables A, B, C, D, E, F, G and H now repeat themselves twice in tracing out one 32×32 matrix. And if we considered that the 32×32 matrix consists of four of our standard 16×16 matrices, it follows that any pattern that was displayed on one 16×16 matrix would be repeated on the other three.

The following modifications have to be carried out to the main logic unit to enable the extra bistables to be added:
(1) disconnect link from P10/IC6/B3 to P2/IC3/B3
(2) connect P10/IC6/B3 to P15/B3
(3) connect P2/IC3/B3 to P16/B3

The constant current generators have to be modified to take only about half the current they do at present.

Proceed as follows:-
(1)
(5) Connect $1 \mathrm{k} \Omega$ resistors in series with $R V_{2,3,4,9,10}$ and 11
(6) Connect 470Ω resistors in series with $R V_{6}$ and 13

The extra circuitry required is shown in Fig. 81. This is built on a piece of board which can be seen in Fig. 73 bolted to the main logic assembly. All it consists of is two bistables, two buffer amplifiers and two constant current sources.

Now it is necessary to re-adjust the dians as per the instruction given below. As before component reference numbers in brackets refer to the X dian.
(1) Remove boards 1, 2, 3 and 4 to disable the X and Y counters.
(2) Connect voltmeter to $\mathrm{Y}(\mathrm{X})$ dian output.
(3) Adjust $R V_{1(8)}$ to give 25 V .
(4) Switch to Venn operation, or short circuit $R_{7(18)}$ to 0 V .
(5) Short circuit junction of $R V_{2(9)}$ and $D Z_{3(13)}$ to 0 V .
(6) Adjust $R V_{2(9)}$ to give 24.5 V . Remove short circuit of (5).
(7) Short circuit junction of $R V_{3(10)}$ and $D Z_{5(15)}$ to 0 V .
(8) Adjust $R V_{3(10)}$ to give 24 V . Remove short circuit of (7).
(9) Short circuit junction of $R V_{4(11)}$ to 0 V .
(10) Adjust $R V_{4(11)}$ to give 23 V .
(11) Select Karnaugh or remove short circuit of (4).
(12) Adjust $R V_{5(12)}$ to give 22.5 V . Remove short circuit of (9).
(13) Proceed as per (4).
(14) Short circuit junction of $R V_{6(13)}$ and $D Z_{9(19)}$ to 0 V .
(15) Adjust $R V_{6(13)}$ to give 21V.
(16) Proceed às for (11).
(17) Adjust $R V_{7(14)}$ to give 20 V . Remove short circuit of (14).
(18) Short circuit point A (B) of Fig. 81 to 0 V .
(19) Adjust $R V_{16(17)}$ to give 19 V .
(20) Remove all short circuits and replace boards removed at (1).

With the instrument switched on examine the display. If any of the $0 s$ in the Karnaugh or Truth modes are
slightly compressed it will be necessary to reduce the setting of the potentiometers in the appropriate dian. The actual current each constant current source supplies is not important as long as the ratios between the various sources are maintained. It is as well to make the final adjustments by observing the screen to produce four nicely symmetrical, and evenly spaced, 16×16 matrices.

5: Three-function no-switch version

This instrument will produce the Venn diagram, Karnaugh map and the Truth table simultaneously for any external circuit. The only control required is for switching the instrument on and off. The four display areas medification (4) must have been incorporated.

The two bistables Q and W provided four complete display areas and it is reasonable to assume that the four possible states of Q and W can be used to address each of the areas individually. That is, each of the states $\bar{Q} \bar{W}$, $Q \bar{W}, \bar{Q} W$ and $Q W$ only occur for a particular display area. Fig. 82 shows this.

In this modification display area addresses in terms of Q and W are gated out and used as the V, K and T control signals and as a substitute for the Truth table C and $\overline{\mathrm{C}}$ switch required in the basic instrument.

This means that the instrument is automatically switched to the correct mode for a particular display area. In this modification area one displays a Truth table with $\mathrm{C}=0$, area two is the second part of the Truth table with $\mathrm{C}=1$, area three is a Venn diagram and area four is a Karnaugh map. In fact it is the same format as in photograph B published in the first of this series of articles. Other arrangements are possible if the circuitry is modified accordingly.

To achieve this display it is necessary to use the Q and W signals to provide the mode control signals (V, K and T) for the main logic unit. As areas one and two have to contain a Truth table, and area three a Venn diagram and area four a Karnaugh map the Boolean expressions will be as follows:

$$
\begin{array}{lrl}
\mathrm{T}=\overline{\mathrm{Q}} \overline{\mathrm{~W}}+\mathrm{Q} \overline{\mathrm{~W}} \quad=\overline{\mathrm{W}} & \text { (areas 1 and 2) } \\
\mathrm{V}=\overline{\mathrm{Q} W} & \text { (area 3) } & \\
\mathrm{K}=\mathrm{Q} \mathrm{~W} & \text { (area 4) } &
\end{array}
$$

It is also necessary to provide gating to replace the switch which selects either all 0s or all 1 s and C_{T} or $\overline{\mathrm{C}}_{\mathrm{T}}$ in the Truth table mode. This gating must provide the $\mathrm{C}_{\mathrm{T}}=1, \mathrm{C}_{\mathrm{T}}=0$ and T_{C} inputs to the main logic unit. The Boolean expressions are as follows:

$\bar{Q} \bar{W}$	$\bar{Q} W$
Display area 1	Display area 3
$Q \bar{W}$	$Q W$
Display area 2	Display area 4

Fig. 82. The position and address of the four display areas

Fig. 83. Logic circuit needed to provide simultaneous display of a Venn diagram, Karnaugh map and Trulh lable

Fig. 84. Circuit which can be added to Fig. 83 to provide a six-variable Karnaugh map facility

$$
\begin{aligned}
& \left(T_{C}=0\right)=\overline{\bar{Q} \bar{W} G H} \\
& \left(T_{C}=1\right)=\bar{Q} \bar{W} G H \\
& C_{T}(\text { modified })=C_{T} Q \bar{W}
\end{aligned}
$$

Note that the main logic unit requires the inverse of the $\mathrm{T}_{\mathrm{c}}=0$ and $\mathrm{T}_{\mathrm{c}}=1$ signals. The circuit that will perform these functions is shown in Fig. 83. In this circuit an output is provided to change the law the dians operate in for character spacing purposes.

6: Six-variable Karnaugh map version

This modification switches all four display areas to the Karnaugh mode of operation. The entire display can then be considered to be a single six-variable Karnaugh map. Extra terminals are provided on the front panel for the additional variables E and F. The particular circuit given here is for incorporation when modification 6 has been carried out.

A switch is incorporated in the output lines of Fig. 83 at the points A, B, C and D as shown in Fig. 84. In the position shown the V and T control signals are earthed so that the instrument will operate in the Karnaugh mode for all four display areas. The control signal to the two dians is open-circuited to obtain character separation. Four gates, acting as buffers provide the E and F output variables.

We end this month by presenting a table showing the various compatible modifications and the different facilities that they offer. It will be noticed that some of these modifications have not yet been mentioned; they will be the subject of next month's article.

Type Modifications Facilities Available

A

B

C

D

E

F

G

H

I

J
$\mathrm{U} \quad 4,7,8$
$2,4,5,6$
$3,4,5,6$
$1,2,4,5,6$
4, 7

2,4,7
3, 4, 7
$1,2,4,7$

Basic instrument. Gives Venn diagram, Truth table or Karnaugh map for any external logic circuit.

Enables instrument to operate in the positive or negative logic convention.

Enables more than one external logic circuit to be connected for selection at will.

Combines all the facilities offered by A, B and C

Enables two external circuits to be connected and enables the output of either circuit, or the difference between them, to be displayed.

Has four display areas and shows, simultaneously, the Venn diagram and Karnaugh map for any external logic circuit.

Combines the facilities offered by B and F.

Combines the facilities offered by C and F .

Combines the facilities offered by E and F.

Combines the facilities offered by B, C and F

As F with the capability of displaying a 6 -variable Karnaugh map.

Combines the facilities offered by B and K.

Combines the facilities offered by C and K .
Combines the facilities offered by E and K.
Combines the facilities offered by B, C and K.
Enables any of the four display areas to be individually switched to Truth table, Karnaugh map or Venn diagram operation.
Combines the facilities offered by B and P .
Combines the facilities offered by \mathbf{C} and P .
Combines the facilities offered by E and P.

Combines the facilities offered by B, C and P.

As per the prototype instrument. Has four display areas each capable of showing a Venn diagram, Karnaugh map or Truth table. Up to two external circuits can be individually switched to show the output from either of the two circuits or the difference between them. Will operate in the positive or negative logic convention.

WORLD FAMOUS VARIABLE VOLTAGE CONTROLS

 VARIABLE TRANSFORMERS

 VARIABLE TRANSFORMERS

 - Output $0-260 \mathrm{~V}$

 - Output $0-260 \mathrm{~V}$
 * Input 230V 50/60CPS
 * Shrouded for Bench or Panel mounting

PROCESS TIMERS-MICRO SWICHES

* synchronous motar \& clutch
* 10 MILLION DPERATIONS
\star Instantaneous 8 Timed out 3 AMP contacts
* Repeat Accuracy $+\frac{1}{2} \%$

Repeat Accuracy $\pm \frac{1}{2}$
Dial ranges 0.10 secs up to
0.28 hrs. May also be used as impuise stant
 f11
dependent on quantity

SYS

SYNChRONOUS MOTOR \& CLUTCH
Matchbox size frontal area
Automatic re-set

- plug-in octal base
* instantanedus ano timeo out TIMER

2 AMP CONTACTS

* RANGES: 10 SECS. Io

STP TIMER

1 MILLION OPS.
5 Amp c/o Sub-miniature Micro-switch
216

S5G
MICRO SWITCH
\star Light force wire operated Micro switch

* Designed for even more economical coin operation mechanism

PROXIMITY SWITCHES, LIMIT SWITCHES AND LIQUID LEVEL CONTROLS MANUFACTURERS AND IMPORTERS FOR MINISTRY OF DEFENCE, G.P.O.

OMRON PRECISION CONTROLS

DIVISION OF IMO PRECISION CONTROLS LTD.
(Dept. WW9) 313 EDGWARE ROAD, LONDON, W2. TEL: 01-723 2231

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Linsley Hood class A amplifier

Recent measurements on this amplifier have indicated that the gain and power bandwidths of this design, using the component layout shown on page 152 of your April 1969 issue, are wider than indicated by the Figs. 4 and 5 of the article. The apparent fall-off in gain beyond about 100 kHz was, in fact, due to shortcomings in the measurement apparatus, and measurements made with better equipment suggest that the -3 dB points for voltage gain are above $\mathrm{I} \cdot 5 \mathrm{MHz}$ although power output falls beyond 200 kHz .

Since the output is in phase with the input, it is necessary to take care that the output leads and output capacitor are not close to the input. (A 2-inch separation will be adequate for normal lead lengths.) However, an additional point must also be noted. If a capacitive load is connected with short leads between the output and the earth line near the input connection, the potential developed along the earth line, due to its inductance, can inject an in-phase signal, and thereby cause instability, in the MHz region. To avoid this possibility, it is recommended that the earthy lead to the loudspeaker terminal be returned to the earth line at the same point as the emitter of $T r_{1}$. The inclusion of a small r.f. choke (25

Mr. Linsley Hood's amended circuit of his class A amplifier originally described in the April 1969 issue.
square wave input to the amplifier. It was found, in practice, with several different loudspeaker systems, that the output waveform was virtually identical to that obtained with an equivalent resistive load-photographs of which were reproduced in the April issue. It was, in fact, the discovery that a good square wave was reproduced up to the 1 MHz limit of the generator in use which prompted a reassessment of the r.f. response of the amplifier. The absence of any overshoot or significant ringing also provides confirmation of the stability of the amplifier under practical conditions.

A correspondent has reported that this design has been up-rated successfully to 15 watts into a 15 -ohm load, to give a direct power equivalent to the Williamson amplifier, using 2 N 3055 output transistors with a 43 -volt supply ($1 \cdot 1 \mathrm{amp}$ per channel), and rather larger heat sinks. There would seem no good reason why this could not also be done using MJ48is.
J. L. Linsley Hood,

Taunton,
Som.

Who's to blame?

Having read W. R. Seymour's letter (July issue), I wonder whether his findings should not be more carefully considered before apportioning any blame to the industry concerned, lest we lose sight of the most important priorities in obtaining faithful sound reproduction.

The nominal impedance of the loudspeaker in question (i.e. at 400 Hz) is 8 ohms , rising to 32 ohms at 2 kHz ; this is most certainly not typical of the transducer itself, even if this is a modest commercial unit. It is not clear from Mr. Seymour's letter that the curve shown represents the terminal impedance of the loudspeaker itself, but it would seem that a very poorly matched cross over circuit of some kind is employed, making the system quite unsuitable as a monitoring loudspeaker, regardless of efficiency or power handling capacity.

In the majority of cases, such nonuniformities are overcome by careful attention to the design of the cross over circuitry, and the acoustical system of the enclosure in the region of the velocity resonance frequency of the loudspeaker. Mr. Seymour has chosen an unfortunate example, but it would not be a difficult matter to correct the faults he complains of, which are not typical.

I see that I. G. Abelson in his letter in the August issue suggests that a smooth acoustic output from a direct radiator loudspeaker is the result of a balance occurring between the increasing electrical impedance and the increasing electro-acoustic efficiency. This is surely incorrect. The increasing reactance of the voice-coil is balanced by the decreasing motional electrical impedance, so that the total impedance is more uniform, and much more so than in this case. The acoustic output will therefore be the same at the higher frequencies under any drive conditions (constant voltage, current or power).
To suggest that a loudspeaker such as the one considered be supplied from a power
amplifier with a much higher rated output than the system can accommodate is not merely paradoxical, it is absurd. If fidelity of reproduction is to be the highest priority, one would always do better to invest more in the loudspeaker, to solve the problem rather than mask it.

May I make one more point. There is constant reference in all branches of electronics to the term "r.m.s. power". R.M.S. values of voltage and current are defined as producing the same heating effect as a direct voltage or current of corresponding value. Hence a sinusoidal voltage, $V \cos \theta$ applied to a conductor produces a current, $I \cos \theta$; the instantaneous power is therefore:

$$
\begin{aligned}
V \cos \theta \cdot I \cos \theta & =V I \cos ^{2} \theta \\
& =\frac{V I}{2}(\mathrm{I}+\cos 2 \theta)
\end{aligned}
$$

This has an average value of $V I / 2$, i.e. V r.m.s. $\times I$ r.m.s. Hence when we speak of "r.m.s. power" we in fact mean average power. The function $V I \cos ^{2} \theta$ has also an r.m.s. value, but this is not the same as its average value. In fact it is $\sqrt{\mathbf{3 / 2}} . V$ r.m.s. $\times I$ r.m.s. Perhaps this fact is already recognized, and is turned into useful account by amplifier manufacturers when quoting the rated output of their products! R. C. Driscoll

Northern Polytechnic,
London N. 7.

Simplified op. amp. calculation

There are some instances where the finite voltage gain, Avol, of an integrated operational amplifier is not sufficiently high to be ignored in a calculation of closed loop gain, $A_{C L}$, and the "exact" expression for $A_{C L}$ is required.

A quick method, used by the writer many years ago for valve circuits, saves the bother of remembering the formula. It is instructive and involves the minimum of algebra.

Consider the inverting amplifier of Fig. I, in which $Y_{F}=\left(\mathbf{I} / Z_{F}\right)$. A postulated change of +IV in outpur (Δv_{0}) produces the voltage and current changes shown on the diagram.

$$
\begin{aligned}
& \text { Clearly, } \Delta v_{I}=-\left(1 / A_{V O L}\right)-Z_{I} \Delta i \\
& =-\left(1 / A_{V O L}\right)-\left(Z_{1} / Z_{F}\right)\left\{1+\left(1 / A_{V O L}\right)\right\} \\
& \text { Hence, } A_{C L}=\Delta v_{o} / \Delta v_{I}= \\
& -1 /\left[\left(1 / A_{V O L}\right)+\left(Z_{I} / Z_{F}\right)\left\{1+\left(1 / A_{V O L}\right)\right\}\right]
\end{aligned}
$$

Multiplying numerator and denominator by $\left(Z_{F} / Z_{I}\right)$ gives the familiar standard expression. In a practical problem the numerical calculation of $A_{C L}$ involves arithmetic steps without the need for algebra as such.
The same basic approach is, of course, applicable to the non-inverting configuration.
B. L. Hart, London, E.I5.

F.M. tuner radiation

Mr. Newnham's f.m. tuner (June issue) looks most interesting and all credit is certainly due to an approach aimed at simplifying the alignment and constructional problems normally associated with a large number of "tweakables", in this elegant way. The only puzzle, as no reference is made to it in the text, is the way in which local oscillator radiation is avoided. The circuit reveals little in the way of reassurance.

It seems reasonable to expect about 100 mV of local oscillator at the mixing point (pin I of i.c.1) for satisfactory conversion; let us settle for 80 mV to be on the low side. Because of the low i.f. and the absence of an r.f. amplifier all the available oscillator power at this point is imagematched to the aerial, any losses being due to aerial coupling inefficiencies. The voltage on the aerial feeder would therefore be about 60 mV . This level is more than 35 dB above the level permitted in B.S. 905 .
British Standard and Post Office requirements apart, it is interesting to consider the implications of this in practice. In a typical suburban housing estate, facing houses on opposite sides of the road are spaced by, say, 25 yards. If each of two such houses has a dipole aerial in its loft we can, according to Bullington* expect some 40 dB of attenuation between the aerials in band II. If both houses were to have receivers, one of this type and one of conventional design, the latter would receive $600 \mu \mathrm{~V}$ from the oscillator of the former which could easily exceed the wanted station in a mediocre reception area by 20 dB . This signal is only 160 kHz away: only 1.6 times the 3 dB half-bandwidth of the receiver (assuming a 200 kHz bandwidth) and could easily "capture" the limiter of the conventional receiver. Even if the receiver were not actually "captured" the presence of such a strong signal so close in frequency would lead to complex intermodulation products in the i.f. stages and one can imagine the effect it would have on an a.f.c. system with a good pull-in range. The mind boggles at the thought of a street full of such devices, especially when it is remembered that the problem is likely to be 15 dB worse between adjoining "semis". In this area one would need to be more than 200yd from the nearest radiating aerial before the wanted signal exceeded the interfering signal.

All this is, however, based on the ungenerous assumption that the radiation is substantial, a point which is not fully

- "Radio Propagation Fundamentals", Bullington. B.S.T.7. Vol. XXXVI No. 3; May 1957, p. 593.
established even though the circuit does appear to be radiation prone. Nevertheless there must be many would-be constructors who, like myself, need to be reassured on a point having such serious social and potential legal implications before undertaking the construction of such a unit, the first intimation of trouble in which will probably be from the G.P.O. man at the door. Satisfactory operation of two units in close proximity is not enough!
A. J. Henk,

Bingley,
Yorks.
The author replies:
Mr. Henk is correct in his calculations of the residual local oscillator signal at the aerial terminal of the tuner. How muich of this will be picked up by an adjacent receiver depends very much on the nature of the aerials used, their orientation and the nature of the path between them. However I am grateful to Mr. Henk for pointing out that particularly in areas of low field strength conditions of interference could occur.

It should have been pointed out in the original article that when used for its original purpose, i.e. sound distribution systems, an r.f. distributing amplifier would invariably be employed in order to supply say four tuners, one for each available programme. This amplifier had the additional function of isolating the tuners from the aerial by at least 40 dB . It is well worthwhile considering the use of an r.f. amplifier stage with this tuner if oscillator radiation does cause trouble and this applies particularly in areas of poor field strength since the additional gain provided would help to keep a good s / n ratio.
The circuit and layout of a suitable r.f. amplifier stage using a 316 - 04 cascode amplifier are being prepared.*

For those interested in the historical aspects of this type of receiver the following issues of Wireless World contàin articles by M. G. Scroggie, April 1956, June 1956 and April 1958.
J. G. Newnham.
*We hope to publish these next month.-ED.

Measuring

Crossover distortion

It was an interesting point made by D. R. Ray in his letter in the August issue. Actually just how much distortion one can measure satisfactorily depends essentially on the amplifier's noise performance. Conventionally, a sinewave signal carrying distortion of not much more than about one-fifth of the total harmonic distortion likely to be introduced by the amplifier is applied to an unequalizedinput. The r.m.s. value of the total harmonic distortion is then compared in ratio with the r.m.s. output of real signal power to yield a decibel or percentage figure.

Overall noise relative to full power output is currently not much better than about 78 dB (this with the best of amplifiers using f.e.t. first stages). This figure takes into account the noise contribution of the pre-amplifier stages and is the value obtained with the volume control at maximum. Taking a $20-\mathrm{W}$ amplifier of such noise performance, the noise voltage
across, say 8 ohms works out to about 1.8 mV . (e.g., 78 dB below about 12.8 V). Signal voltage at 10 mV across the same value load is thus about 290 mV , meaning that the maximum distortion measurable by the usual techniques to the noise threshold lies in the ratio of approximately $2900: 18$, which works out to about 44 dB or 0.65%.

As so few amplifiers (overall) possess such a good noise figure it is thus seen to be impossible to measure low-level distortion at power around the 10 mW mark, as the distortion falls into noise.

Even so, I have discovered that the distortion is not uncommonly above 0.65% at spowers in the 10 mW region from about 1 kHz upwards, the distortion rising significantly with increasing frequency. Indeed, I have measured as much as 2.5% t.h.d. at 20 kHz at 10 mW ! There is a red herring in this sort of measurement, depending on the readout levice, for one is comparing the r.m.s. value of -a true sinewave (or pretty near true) with the reading given by an r.m.s.-calibrated instrument on a distortion wave which is singularly removed from true sinewave form! Very rarely is the form-factor of the distortion wave taken nto account in such readout comparisons. - Moreover, the nature of the distortion wave zhanges significantly with increasing frequency of the input sinewave signal. I have seen the distortion wave displayed almost as a true saw-tooth wave at 20 kHz , and such a wave gives more deflection on the type of readout Jevice usually employed than the more 'peaky' waves attributable to t.h.d. from lower frequency sinewave inputs. Hence the 2.5% ..h.d. just mentioned at 20 kHz and 10 mW .

This, of course, brings us neatly to the fact -that in the present stage of the art there is virtually no correlation between the subjective affect of crossover distortion and the effect as neasured.
3ORDON J. King,
Brixham,
Devon.

Jrossover distortion in Bailey amplifiers

After studying a number of designs for audio sower amplifiers, I recently decided to conitruct, for domestic use, a stereo pair of -mplifiers using Dr. Bailey's single-rail 30watt circuit, as described in November 1968.

However, when I began construction, I 10ticed an inherent snag in the design. The eedback resistors R_{7} and R_{8} allow a d.c. -low of approximately 20 mA from the ampliier output to earth. As the quiescent current n the output stage, due to the bias from $-\mathrm{Fr}_{4}$, is only $25-30 \mathrm{~mA}$, the additional 20 mA -irain reduces the current through Tr_{10} to only $;-10 \mathrm{~mA}$. Running so close to cut-off in one salf of the output stage is, I feel, bound to ncrease crossover distortion, and it seems trange that Dr. Bailey should use this circuit after going to such lengths to explain the need or output stage symmetry in his original -irticle (Wireless World, May 1968).
In my own amplifiers, I have overcome he problem by using the popular 'floating :mitter' configuration for the input transistor ;hown below.
With this circuit, which is identical to Dr. -3ailey's original design for a.c. signals, the d.c.

flow through the feedback resistor R_{s}, and thus the output stage unbalance, is only $1.5-2 \mathrm{~mA}$. Even this can be reduced by the addition of R_{D}, (shown dotted). In my own amplifiers, this has reduced the d.c. in R_{g} to $50 \mu \mathrm{~A}$. The values of C_{A} and C_{B} may seem excessively large, but this has been done deliberately to maintain the amplitude and phase of the a.c. feedback at the extreme low-frequency end of the audio spectrum.

There are two other minor advantages in the modification shown. First, the modified feedback circuit produces unity gain at d.c., therefore the bias stabilizer, Tr_{2} can be omitted. Secondly, the time constant formed by R_{B}, R_{C}, and C_{A} produces a slow switch-on of the whole amplifier, thus removing the need for 'anti-thump' precautions in the power unit.

I do not claim that these modifications produce any audible or measurable improvements in performance, but having seen the snag, I feel that they are worth carrying out for 'peace of mind', if nothing else.
K. Clayson,

Redhill,
Surrey.

The author replies:
I entirely agree with Mr. Clayson that there is a small difference in the transistor emitter currents due to the d.c. in the feedback resistor. If the standing d.c. current in the $n-p-n$ transistor is say 80 mA , the distortion due to the d.c. bleed is negligible. I regret that I omitted to state in the original article that the quiescent current in the output stage should be between 60 and 120 mA . Values lower than 40 mA give crossover distortion and values over 120 mA give no lower distortion. In fact, pure Class A operation gives slightly worse distortion figures.

Nevertheless I agree with Mr. Clayson's comments and his revised circuit. This is the problem with modified circuits, deciding where to stop. The original circuit was for two power supplies, but a demand arose for simple modifications to enable it to run on one supply. Once one supply is settled on, then the input circuit biasing is definitely not ideal, and I can recommend Mr. Clayson's circuit to the purists and also those who suffer switching surges.
Arthur R. Bailey

National studio for electronic music

Mainly as a result of the survey of Electronic Music Studios undertaken last year, the

British Society for Electronic Music was inaugurated in February with a committee consisting of Peter Maxwell Davies (Chairman), Peter Zinovieff, James Murdoch, Don Banks, Tristram Cary and Hugh Davies. Its main aim is the founding of a National Studio for Electronic Music but such a centre would also be expected to cover a wider field than this. Facilities would include:
(1) A first class electronic music studio, comprising central processing rooms with sound generation equipment, a tape room with comprehensive recording facilities, and a number of composers' rooms, each a selfcontained working unit but linked to the central system.
(2) An acoustic research laboratory.
(3) A lecture hall which would also be used for small concerts.
(4) A large recital hall specially designed for multi-track speaker reproduction with easily adaptable seating and staging. The recital and lecture halls would be linked to the studio.
(5) A library/archive containing a large collection of tapes and discs.

Further details can be obtained from the Society whose administrator at the moment is John Woolf, c/o Society for the Promotion of New Music, 29 Exhibition Road, London, S.W.7.

KEITH Winter,
Arts Council of Gt. Britain,
London, W.1.

Ageing crystals

On p. 363 of the August issue D. R. Bowman, in the course of his description of his communications receiver advises us to buy new quartz crystals and not to attempt to use 25year old war surplus articles.

About three weeks ago I tried out all the miscellaneous quartz crystals with frequencies between 1,000 and $10,000 \mathrm{kHz}$ in my possession, plus various oddments found around in the labs. A simple Pierce oscillator (diagram) was coupled to a Marconi TF417/2 digital frequency meter. Rather to my surprise, no

less than 18 crystals duly showed life: there was one non-oscillator, an old regrind of an ex-service FT243 (8012 kHz), presumably not etched. Most of these crystals were over 20 years old. The oscillation frequencies did not differ greatly from the marked values: they depend, of course, on the oscillator actually used.

Before doing this little exercise I would, I think, have been of the same opinion as Mr. Bowman.
P. Short,

University of Newcastle-upon-Tyne.

Quartz Crystal Oscillator Circuit without Inductors

by D. F. G. Dwyer*, J. Roberts* and G. Haynes*

Overtone crystals are used in precision frequency standards and also at high frequencies where fundamental mode plates become too thin and fragile.

Precision frequency standards usually employ 2.5 MHz or 5 MHz AT-cut fifth-overtone contoured units because of their very high Q and exceptionally low aging rate.

The crystals exhibit activity on the unwanted overtones and, in order to operate these units on the desired overtone, the maintaining circuit must have frequency selective properties but, because the maintaining circuit must also possess a high degree of phase stability, these requirements can be in conflict.

The main sources of phase change and resulting frequency variation in oscillator circuits are the components giving rise to phase shift; the transistor junction capacitances, external inductors and capacitors. These variations could be minimized by using stable low temperature-coefficient components, but while capacitors are available to meet this requirement, small highly-stable inductors are difficult to realize. Therefore, if the inductor could be eliminated and some other form of frequency selectivity introduced, the design problem would be much simplified.

A widely used oscillator circuit for overtone crystals is shown in Fig. I(a). The crystal operates at or near series resonance and appears resistive, the combination of L_{1} together with C_{1}, C_{2} and C_{3} providing the necessary frequency selectivity for the required overtone operation.

If L_{1} is removed, the circuit becomes a parallel-resonant oscillator. This is because the elimination of L_{1} reduces the phase shift and in order to maintain a loop phase shift of zero or 360°, which is the condition for oscillation, the crystal must become inductive. Under these conditions there is an apparent loss of frequency selectivity.

Fig. I(b) shows a transistor version of Pierce oscillator. The transistor provides 180° of phase shift and the additional 180° required for the maintenance of oscillation is provided by the feedback networks Z_{1}, Z_{2} and Z_{3}.

If in making a small-signal analysis of the circuit, the resistive components in Z_{1} and Z_{2} are ignored, the circuit appears active over a wide frequency range. However, on analysis of the maintenance condition (see Appendix), a degree of selectivity becomes apparent. The analysis takes into account g_{m} and the resistive and reactive components in which, to simplify calculation, $R_{1}=R_{3}=R$ and $C_{1}=C_{3}=C$ as indicated in Fig. $\mathrm{I}(\mathrm{c})$. Various values of R and C yield values of negative resistance for the maintaining circuit that vary with frequency as shown in Figs. 3(a) and (b). The maximum value of $\left(R_{N}\right)$ can be predicted and is dependent on the g_{m} of the oscillator transistor and R as illustrated in Fig. 2.

The greater the extent to which the negative resistance $\left(R_{N}\right)$ exceeds the equivalent series resistance [R_{X} in Fig. $\left.I(c)\right]$ of the crystal, the faster will be the build up of oscillation from "turn on". The circuit will not oscillate if R_{N} is less than R_{k}.

When operated in a stable maintaining circuit, such as the one

[^7]described, with low crystal dissipation and at constant temperature, 2.5 MHz 5 th-overtone crystal units regularly achieve, after some months of continuous operation, aging rates of 1×10^{-11} day and a short-term frequency stability of 9×10^{-12} r.m.s. for 1 second averaging.

Fig. I. Common crystal oscillator circuit (a) and with L_{1} removed (b). The equivalent circuit of (b) is given at (c).

?rocedure for oscillator design

Jonsider the maximum series resistance of the crystal; for reliable tarting, R_{N} should be between two and three times the crystal eries resistance R_{x}. For a Marconi 2.5 MHz AT, fifth-overtone he manufacturers quote:

Inductance	18.5 H
Q	4×10^{6}

Therefore $R_{x}=\omega L / Q=72.5$ ohms
From considerations of frequency adjustment, to compensate for nanufacturing frequency tolerance, a variable input capacitance of rominal value 30 pF is required.
R_{x} is the equivalent series resistance at series resonance and is nodified by operation between series and parallel resonance.

Modified R_{x} is given by: $R_{x}\left(1+C_{0} / C_{L}\right)^{2}$
where C_{J} is the circuit input capacitance and C_{0} the crystal shunt zapacitance, which is typically 4.2 pF .
(From manufacturers' data)
The modified $R_{x}=72.5(\mathrm{I}+4.2 / 30)^{2}=94$ ohms

Fig. 4. $2 \cdot 5-\mathrm{MHz}$ oscillator incorporating calculated values.

A negative resistance of 2.5 times "modified R_{x} " will ensure build up of oscillation within seconds for a crystal of this type and as will be shown, a small reduction in this value by reducing g_{m} provides a suitable means of level control.

Substituting a g_{m} of $20 \mathrm{~mA} / \mathrm{V}$ and R_{N} of 250 ohms into equation (5) (Appendix) gives a value for R of 416 ohms.

From Fig. 3 (b) it can be seen that the change in R_{N} for change in frequency, is more rapid on the low-frequency side of $R_{N \max }$, therefore, to improve discrimination against the 7 th overtone, $R_{\text {Ninax }}$ should be arranged to occur slightly below the desired crystal frequency. In this case, let $R_{N \max }$ occur at 2.25 MHz ; substituting for ω, g_{m} and R in equation (4) gives a value for C of 356 pF .

Fig. 2 shows R_{N} as a function of frequency for $g_{m}=15 \mathrm{~mA} / \mathrm{V}$ and $20 \mathrm{~mA} / \mathrm{V}$ for these values.

To realize the equivalent-circuit values the combination of $h_{i e}$ and the base-bias resistors should equal R. Similarly the resistive component in the collector should equal R, but $1 / h_{0 e}$ is large, therefore, the collector load resistor may simply be made equal to R. Since silicon planar transistors of high f_{T} would normally be used, the transistor capacitances will be insignificant compared with the 356 pF of C.

Using Shockley's diode relation ${ }^{4}$ a close approximation to both g_{m} and the transistor input resistance may be obtained:

$$
h_{i e}=26 h_{\text {fe }} / I_{e} \text { and } g_{m}=39 I_{e}
$$

For a g_{m} of $20 \mathrm{~mA} / \mathrm{V} I_{e}=0.512 \mathrm{~mA}$ and taking 50 as a typical $h_{f e} h_{i e}=2539$ ohms.

Fig. 4 shows a circuit incorporating these results.
Output coupling to the oscillator is, because of the higher signal level, taken from the collector. To realize the best possible aging rate for a 2.5 MHz , 5 th-overtone crystal, the power dissipated within the crystal should be stabilized to approximately $0.5 \mu \mathrm{~W}$, this will result in a signal level of about $10 \mathrm{mV} \mathrm{r.m.s} .\mathrm{at} \mathrm{the} \mathrm{collector}$. Obviously most applications will require a higher output level than this and additionally a higher signal level will be required to derive a d.c. feedback voltage for output level control. Fig. 5 shows a circuit incorporating these requirements. Level control is obtained by varying the oscillator supply voltage, resulting in a lower collector current and reduced g_{m}, as shown in Fig. 2.

Because the circuit does not initially have a high R_{N} the level control range can be small and the severe limiting that would be required to control the level is not present.

It often occurs that an oscillator circuit is required to be suitable for a wide range of fundamental mode crystals. An inspection of Fig. 2 shows that at frequencies higher than the occurrence of $R_{N \max }, R_{N}$ reduces towards zero at a varying rate dependent on circuit values and the frequency displacement away from $R_{\text {Naxa }}$. Circuit values can be arranged so that R_{N} remains fairly constant at
a specific value over a wide frequency range and R_{N} can be designed to be only slightly higher than the crystal resistance. The oscillator waveform will be sinusoidal and this low distortion will result in improved stability.

The analysis has enabled maintenance circuits to be designed for 3 rd-overtone crystals in the range 20 to 60 MHz . By the use of a high g_{m}, sufficient selectivity can be obtained to ensure oscillation on only the third overtone. The small size of the crystal at these frequencies and the simplicity of the circuit enable the complete oscillator to be built on the header of a JEDEC TO-5 can.

The authors wish to thank Mr. C. Herbert for providing the data on the crystal used, Mr. E. Cook for his assistance in the presentation of the information and the Director of Engineering, The Marconi Company Limited, for permission to publish this paper.

Appendix

The conditions of unity loop gain for the circuit shown in Fig. I(c) is:

$$
\begin{equation*}
Z_{2}=-\left(g_{m} Z_{1} Z_{3}+Z_{1}+Z_{3}\right) \tag{1}
\end{equation*}
$$

Since

$$
\begin{gather*}
Z_{1}=\frac{R_{1}}{1+\mathrm{j} \omega C R} \text { and } Z_{3}=\frac{R_{3}}{1+\mathrm{j} \omega C_{3} R_{3}} \\
Z_{2}=-\left[\frac{g_{m} R_{1} R_{3}\left(1-\mathrm{j} \omega C_{1} R_{1}\right)\left(1-\mathrm{j} \omega C_{3} R_{3}\right)}{\left(1+\omega^{2} R^{2} C_{1}^{2}\right)\left(1+\omega^{2} R_{3}^{2} C_{3}^{2}\right)}+\right. \\
\left.\quad+\frac{R_{1}\left(1-\mathrm{j} \omega C_{1} R_{1}\right)}{1+\omega^{2} C_{1}^{2} R_{1}^{2}}+\frac{R_{3}\left(1-\mathrm{j} \omega C_{3} R_{3}\right)}{1+\omega^{2} C_{3}^{2} R_{3}^{2}}\right] \tag{2}
\end{gather*}
$$

The real part of the impedance Z_{2} is the equivalent series resistance of the crystal given by equation (1). The resistance R_{s} must be smaller than the negative resistance R_{N} provided by the right-hand side of equation (2) above. For the condition where $R_{1}=R_{3}=R$ and $C_{1}=C_{3}=C$ the real part of (2) may be written:

$$
\begin{equation*}
R_{N}=\frac{g_{i n} R^{2}\left(\omega^{2} C^{2} R^{2}-1\right)-2 R\left(1+\omega^{2} C^{2} R^{2}\right)}{\left(1+\omega^{2} C^{2} R^{2}\right)^{2}} \tag{3}
\end{equation*}
$$

The variation of R_{N} with frequency and terminating capacitance is shown in Figs. 3 and 2.

The frequency at which R_{N} is a maximum for given values of C, R and g_{m} can be found by differentiating equation (3) with respect to ω and equating to zero. This maximum negative resistance $R_{\text {Nmax }}$ occurs when

$$
\begin{equation*}
\omega^{2} C^{2} R^{2}=\frac{\left(3 g_{m} R+2\right)}{\left(g_{m} R-2\right)} \tag{4}
\end{equation*}
$$

Substituting this back into equation (3) and simplifying gives

$$
\begin{equation*}
R_{N \max }=\frac{\left(g_{m} R-2\right)^{2}}{8 g_{m}} \tag{5}
\end{equation*}
$$

REFERENCES

I. P. J. Baxandall: "Transistor Crystal Oscillators", f. Brit. Instn Radio Engineers, pp. 229-246, April 1965.
2. T. C. Anderson and F. G. Merrill: "Crystal Controlled Primary Frequency Standards. Latest Advances for Long-term Stability", I.R.E. Transactions on Instrumentation, pp. 136-140, September 1960.
3. "Quartz Oscillator Crystal Units": British Standard 2271, Part 3, 1965.
4. Laurence G. Cowles: "Analysis and Design of Transistor Circuits" (D. Van Nostrand Co. Inc., Princeton, New Jersey, 1966) Chapter 3.
5. J. Groszkowski: Proc. Inst. Radio Engineers, 1933, 21, p. 958.

Audio Fair

This year's exhibitors

For the first time the London Audio Fair is being held in an exhibition hall instead of an hotel. It opens at Olympia op October 16th for six days. The majority of the 85 exhibitors will be demonstrating their equipment in the sound absorbent "studios" which are being specially erected.

Admission to the Fair, which will be open from 10.00 to 21.00 daily (except Sunday) will cost 4 s .

Below we list the exhibitors at the time of going to press.
Elsewhere in this issue we have included a preview of some of the products to be seen and heard, and in our December issue we plan to include a more considered review of the Fair.
A.D.C.

AEG (GB)
Acoustical Manufacturing Co.
Agfa-Gevaert
Aiwa Co.
Akai Electric Co.
Arena Hede-Neilson Fabriker
Armstrong Audio
Audio Technica Corp.
B \& W Electronics
BASF (UK)
BSR
Bang \& Olufsen (UK)
Billboard Publications
Bosch
Brenell Engineering Co.
British Radio Corp.
Colton \& Co.
Dansette Products
Daystrom
Decca Record Co.
Diamond Stylus Co.
Dual Electronics
EMI Electronics
Elstone Electronics
Fed. Brit. Tape Recording Clubs
Ferranti
Ferrograph Co.
Field. N. \& S. B. \& Co.
Garrard Engineering
General Gramophone
Publications
Goldring Manufacturing Co.
Goodmans Loudspeakers
Grundig (GB)
Hacker Radio
Hammond. C. E.. \& Co.
Hanimex (UK)
Hansom Books
Haymarket Press
Helme, P. F. \& A. R.
Hi-Fi Dealers' Association Highgate Optical \& Industrial Howland-West

IPC Electrical-Electronic Press IPC Magazines

Jordan-Watts
KEF Electronics
Leak. H. J., \& Co.
Link House Publications Lowther Manufacturing Co. Lustraphone
Lux
Luxitone
Marubeni-Lida Co.
Metrosound Sales
Minnesota Mining \& Mftg. Co.
Monks. Keith. (Audio)
Mordaunt-Short
Mullard
Multicore Solders
Ortofon
Philips Electrical
Philips Records
Rank Bush Murphy
Rank Wharfedale
Richard Allan Radio
Rola Celestion
Rotel

Sansui

Shure Electronics
Sinclair Radionics
S.M.E.

Sony
Sugden. A. R.. \& Co.
Swisstone
Tape Music Distributors
Tape Recorder Spares
Tape Recording Magazine
Teac Corporation
Teleton Electro (UK)
Thorens AS
Transcriptors
Trio Corporation
Whiteley Electrical
Wireless World
Yamaha

Circuit Ideas

Balanced f.e.t. R-C escillator

The field-effect transistor $R-C$ oscillator shown is characterized by a symmetrical, balanced circuit and is especially suitable for the generation of sinewaves of low frequency, high stability and extremely low distortion. The balanced push-pull configuration reduces all even harmonics of the oscillation frequency, whereas the double frequency selective networks attenuate the odd harmonics to a negligible value. The oscillator is essentially a spot frequency oscillator, as four elements will have to be changed to use the arrangement for variable frequency operation.

The circuit is basically a balanced (pushpull) version of the well known wien bridge oscillator, in which the $R-C$ coupling between the first and second f.e.t. is replaced by a second frequency selective network. The frequency selective networks are identical, and the overall gain of the balanced oscillator is adjusted by varying R_{F}, and hence the effective dynamic load resistance of the f.e.ts. Complete symmetry of all resistors and capacitors (and identical f.e.ts) is assumed.

It can be shown that the attenuation of the frequency selective networks will have a minimum value of $\frac{1}{3}$ at only one frequency,

$$
f=\frac{\mathrm{I}}{2 \pi R C}
$$

which is the oscillation frequency for the oscillator. The gain of each amplifier must, therefore, be slightly more than three for

Push-pull low-frequency sinewave oscillator.
sustained oscillations to occur. The correct value of R_{F} and R_{L} can now be obtained from the formula

$$
\mid \text { voltage gain } \mid=g_{m} R_{\dot{L}} \geq 3
$$

where $R^{\prime}{ }_{L}=R_{L}\left(\frac{1}{2} R_{F}\right) /\left(R_{L}+\frac{1}{2} R_{F}\right)$ is the effective dynamic load resistance of the f.e.t. (i.e., R_{L} and $\frac{1}{2} R_{F}$ connected in parallel). (It is assumed that the dynamic drain resistance r_{d} of the f.e.ts is much larger than R_{L}^{\prime} and can be ignored).
Solving for R_{F} we obtain:

$$
R_{F} \geq \frac{6 R_{L}}{g_{m} R_{L}-6}
$$

To ensure that R_{F} is neither negative nor excessively large, R_{L} must be chosen so that

$$
R_{L}>\frac{6}{g_{m}}
$$

An oscillator using type MPFio4 f.e.ts $\left(g_{m}=2 \cdot 2 \mathrm{~mA} / \mathrm{V}\right.$ at $\left.V_{D S}={ }_{5} \mathrm{~V}, I_{D}=1 \mathrm{~mA}\right)$ and with $R_{L}=4.7 \mathrm{k} \Omega, R_{F}=10 \mathrm{k} \Omega$ (potentiometer), $R_{E}=820 \Omega$ and $R=200 \mathrm{k} \Omega$ and $C=0.5 \mu \mathrm{~F}$, and a regulated supply of 12 V , was tested and found to have excellent stability and low distortion at a frequency of 10 radians $/ \mathrm{sec}$. ($f=5 / \pi \mathrm{Hz}$).
The adjustment of R_{F} at these low frequencies is somewhat tedious as the effect of any small maladjustment takes a substantial time to reach its final steady state. With a stabilized d.c. supply, no automatic amplitude control is necessary.
H. C. Viljoen

University of Stellenbosch,
South Africa

Metering a low-current supply

The circuit uses a microammeter to measure either voltage or current without interruption of the supply. In the "voltage" position, diode D_{1} conducts current to the load, and the meter reads supply voltage. In the "current" position, D_{1} is nonconducting because the voltage across the microammeter is less than diode forwardvoltage; hence the meter now registers load current. This circuit is very similar to the conventional switched meter circuit, where D_{1} is replaced by a meter shunt resistor. This is impracticable, however, where the load current is of the same otder as the greatest, readily-available meter sensitivity.

In situ current and voltage metering circuit.
D_{2}, matched with D_{1}, should be added in low-voltage applications where the forward voltage drop across D_{1} is not negligible. Note that D_{1} also provides overload current protection for the meter. With a positive supply of 250 V and a load current of $500 \mu \mathrm{~A}$ max. the voltmeter shunt was about IM Ω.
C. J. Doran

University of Notringham

Johnson counter decoder

The Johnson counter, sometimes known as the switch-tail ring counter, consists of a standard shift register with feedback. Connections are the same as a recirculating register except that the feedback leads from input to output are crossed. If five bistables are used the counter will count to ten and the outputs may be decoded using two input AND gates as follows: $0=\overline{\mathrm{A}} \overline{\mathrm{E}}$, $\mathrm{I}=\mathrm{A} \overline{\mathrm{B}}, 2=\mathbf{B} \overline{\mathrm{C}} \ldots 9=\overline{\mathrm{D}} \mathrm{E}$. The two input gates can be replaced by single high-voltage transistors that will drive a

Counter decoder.
Nixie readout tube directly. The bases and emitters of these transistors are driven by pairs of complementary adjacent outputs as follows: $0=\mathrm{EA}, \mathrm{I}=\mathrm{AB}, 2=\mathrm{BC}, 3=$ $\mathrm{CD}, 4=\mathrm{DE}, 5=\overline{\mathrm{E} A}, 6=\overline{\mathrm{AB}}, 7=\overline{\mathrm{BC}}$, $8=\overline{\mathrm{C}} \mathrm{D}$ and $9=\overline{\mathrm{D}} \overline{\mathrm{E}}$.
R. Little

Poole,
Dorset

Simple Wideband Amplifier

by H. N. Griffiths,* B.Sc.

The amplifier is a general purpose design which has a power gain of 20 dB and a flat response from 30 Hz to 3.5 MHz with the 3 dB point at about 5 MHz . It requires a high impedance source (typically $20 \mathrm{k} \Omega$) and drives a low impedance load (typically 50Ω). Cheaply available general purpose high $f_{T} \mathrm{n}-\mathrm{p}-\mathrm{n}$ transistors are used in conjunction with the minimum of other components. Perhaps the most important criterion is the high stability of the amplifier. (The writer, although claiming to be a "dab hand" at getting almost any amplifier to burst into glorious oscillation in almost any circumstances, has failed, so far, to obtain any signs of instability from the prototype whatsoever.) The gain stability is also high due to negative feedback.

Circuit description

The amplifier consists of two directly coupled stages. The input stage is a shunt-series feedback pair whose a.c. current gain, A_{i}, is approximately given by the ratio R_{f} / R_{e}, providing the input is from a high impedance source $\left(R_{\varepsilon}\right)$. The output stage is an emitter follower which drives the low impedance load R_{L}. The overall power gain, A_{p}, at midband is given approximately by:-

$$
\begin{aligned}
A_{p} & =\left(A_{i}\right)^{2} \frac{R_{c}}{R_{s} R_{L}} \\
& =\left(\frac{R_{f}}{R_{e}}\right)^{2} \frac{R_{c}}{R_{s} R_{L}}
\end{aligned}
$$

which, for $R_{c}=1 \mathrm{k} \Omega, R_{s}=20 \mathrm{k} \Omega, \mathrm{R}_{L}=50 \Omega, R_{f} / R_{e}=10$ gives the power gain $A_{p}=100$; so A_{p} in $\mathrm{dB}=20$. For the component values used, the low frequency cut-off is determined by the time constant $C . R_{L}$ of the output circuit and this occurs at a frequency of approximately 30 Hz . High f_{T} transistors (2 N 706 , 2N 2926) are used to ensure that the h.f. cut off occurs higher than 3.5 MHz .

Construction

The prototype amplifier was built on a piece of $0 \cdot 1$-in matrix "Veroboard" of size 3 in \times I $\frac{1}{2}$ in. No special precautions were taken to prevent instability. The layout of components shown may have to be modified slightly to accommodate the components available. Good quality components should be used throughout, but any high gain $(\beta>100)$ high $f_{T}(>50 \mathrm{MHz}) \mathrm{n}-\mathrm{p}-\mathrm{n}$ transistors should be suitable. The total cost of the amplifier to the home constructor is estimated to be in the region of 25 s .

Testing

The frequency response of the completed amplifier can be obtained using a $0-5 \mathrm{MHz}$ signal generator and an oscilloscope. A 2 -volt peak-to-peak output from the signal generator is coupled to the
amplifier via a $20 \mathrm{k} \Omega$ resistor and the preset gain control of the amplifier is adjusted to obtain a I-volt peak-to-peak signal across ${ }^{5}$ 50Ω load resistor. The frequency response should be flat from approximately 30 Hz to 3.5 MHz .

Circuit diagram of direct-coupled wideband amplifier

Suggested layout of components on Veroboard

NATO, RN, NASA, BBC, use Uher tape-recording equipment...

4000 REPORT SERIES

Three different models of the Uher 'Report' are now available.
4000 Report $\mathbf{- L}$ Specification. 2 Tracks conforming to international standards. Tape reels diam. $-5^{\text {". }}$. Tape speeds (ips) $\frac{17}{4}, 1 \frac{7}{8}, 3 \frac{3}{4}, 7 \frac{1}{2}$. Frequency range (cps) 40-4,500/40-10,000 and 40-16,000/40-20,000. Dynamic volume range (db) 40 at $\frac{15}{6} \mathrm{ips}, 46$ at $1 \frac{7}{8} \mathrm{ips}, 50$ at $3 \frac{3}{8} \mathrm{ips}, 52$ at $7 \frac{1}{2}$ ips. Wow and flutter (max $\pm \%$) 0.2 at $7 \frac{1}{2}$ ips. Recording mono. Half-track. Playback mono half-track. Power output one watt.
Monitoring via headphones or speaker. VU meter + three digit tape counter. Tape stop-start remote control, collectorless motor controlled by ε transistors. Power supply from $6 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V}$ car battery, from rechargeable acsumulator or 5 type L.P. U2 batteries or mains unit. 17 transistors. Inputs : Micr Jphone :1 mv at 200 ohms. Radio :- 2 mv at 47 K ohms. Pick up :-30mv at 1 megohm. Weight 6 lbs (approx). 125 gns. $+10 \%$ tax surcharge
4200 Report Stereo Affording all the advantages of the successful 4000 Report-L in size, style and specifications-plus stereo. 152 gns. $+10 \%$ tax surcharge.
4400 Report Stereo Again with all the advantages of the 4000 Report-L -plus stereo and maximum economy of tape on fou' tracks withcut deterioration of reproduction quality. $152 \mathrm{gns} .+10 \%$ tax surct arge.

ROYAL DE LUXE STEREO

Horizontal or vertical operation. Optimal hi-fi quality. Four track operation (convertible to two track). 2×10 watts power outpur. Straight through amplifier operation. Built-ir dia pilot for automatic slide projection Switchable A-B monitoring. Mixing and echo facilities. Multi-play Syncro-play and physiological volume control. Four speeds-to mention some of its facilities. 238 gns. $+10 \%$ tax surcharge.

...so does John Harding.

Engineer by trade, music-lover and stereo enthusiast by inclination.

He knows that Uher is chosen to record signalsfrom space. To help train the Royal Navy in weapons systems. To capture the sounds of history being made.

He knows that Uher equipment is best for his own purposes as well.

Tough yet sensitive, compact yet versatile, it gives him the finest sound reproduction he could wish for.

The first happy gurgling of his first-born child, the racket of a machine under test, the full grandeur of a symphony orchestra-John Harding has them all taped.

Taped by Uher because he
doesn't reckon he can do any better than that.

Professionals pick Uher equipment as the tools of their trade.

But they're equally available, equally accurate, equally satisfactory, for the discerning amateur. There's a Uher tape-recorder to meet your requirements.

NEW HONEYWELL DIGITEST 500

a state of the art multimeter that everyone can afford.

UNMHAAIIENBED VAIUE! HOVEYWEL OUAIITY!

* 17 ranges for five functions
* Pushbutton selection of range and function
* AC and DC voltmeter
* AC and DC ammeter
*. Ohmmeter
* Works on AC or DC supply
* All counting circuits and some logic

WESCON, 1969

Some highlights of the San Francisco convention

by Aubrey Harris, m.I.E.E.

There are two very large electronic shows every year in the U.S.A., the I.E.E.E. International Exposition held every March in New York and the Western Electronic Show and Convention (WESCON) located in California in August of each year. In recent years, the New York show has been losing popularity, with large drop-outs among both exhibitors and patrons. It must be considered somewhat of a tribute to the organizers of WESCON in that they have been asked to take over the management operation of the I.E.E.E. Show commencing 1970.

The WESCON show held this year, August 19th-22nd in San Francisco, drew an estimated 45,000 visitors to the exhibits of over 600 companies (including 22 from the U.K., and five from Germany), displayed at 1192 stands. However, the biggest main event, as always, was the technical programme concentrating on current electronics technology.

As in the case with every large technical conference nowadays there is the problem of attempting to compress the presentation of a very large number of papers into the space of three or four days. f bout the only solution seems to be the running of parallel meetings; in this case, it worked quite well and although often there were three simultaneous sessions, an effort had been made to see that there was as little overlap as possible between areas of interest in competing sessions. All the 107 papers presented were specially invited and were arranged into related sessions so that the papers complemented one another.

Systems applications of communications satellites

When considering satellite communications systems, conceived originally by Arthur C. Clarke (W.W. October 1945, p. 305), one very often associates them nowadays with television or telephone transmission over long terrestrial paths.

That there are many further applications for satellite transmission was brought out most forcibly in a series of interesting papers. The range of suggested uses includes transmission over long distances of photographic data, collection of information from earth orbiting scientific research vehicles, pick-up of various data from fixed ground observation stations and also domestic (national) long-distance telecommunications services.

A system for the transmission of aerial reconnaissance photographs (which could have future uses in "wire-photo" and facsimile fields) was described by Walter J. Gill (PhilcoFord). This equipment, known picturesquely as "Quick Look", at one ground station comprises a vidicon scanner system, an analogue to digital converter and data modulator. The signal is transmitted by satellite using multiple fre-quency-shift keying techniques at rates of $0.5,1$ or 2 mega bits per second. At the receiving end the signals are demodulated, converted from digital back to analogue, displayed on a c.r.t. monitor and recorded on film.

Opaque or transparency type originals are slow-scanned by the vidicon camera, which has a variable focal length lens; the
bandwidth of the resulting analogue signal is approximately 68 kHz . Picture resolution is 1200 lines in both directions, frame scan one per 16 seconds, Kell factor is 0.7 and the scan efficiency 0.95 . The A-to-D conversion is accomplished by a two-bit delta modulation technique requiring as few as 5.6 bits per cycle for performance comparable to five-bit p.c.m. requiring 14 bits per cycle.

This technique codes the quantized change in analogue signal as opposed to the actual quantized level in conventional p.c.m. Two-bit delta modulation codes large and small positive changes and large and small negative changes of the waveform into two-bit words. Fig. 1 shows a photograph of the image received at Washington, D. C., of a transmission from Hawaii at a data rate of $0.5 \mathrm{M} . \mathrm{b} . / \mathrm{s}$. with other parameters indicated above. The $2: 1$ magnification (zoom ratio) used on the input scanner provides a modulation transfer function (m.t.f.) of 8.8 line pairs per mm .

It is envisaged that by 1975 there will be the need for, and technological availability of satellite collection of a large amount of data from many in situ sensors on and around the earth. These sensors might be of various types, for example, temperature and wind sensing buoys and balloons; volcanic and seismic detectors; agriculture sensors including soil, moisture and temperature and air temperature measurement; smoke detectors; river, stream, estuary and ocean level and flow gauges. These are collectively known as data collection platforms (d.c.ps) and many are already in use connected by physical conductors to observing stations.

In many cases it is the high cost of physically connecting a d.c.p. to a monitoring point that inhibits the installation of such a sensing device. Land line costs to a d.c.p. in a remote, inaccessible area might be in the region of $£ 2,000$ to $£ 4,000$ per mile. S. D. Dorfman (Hughes Aircraft) in his paper discussing some considerations associated with this type of data collection gave an approximate estimate of 20,000 d.c.ps, being in use throughout the world in five to six years' time.

Most weather and climatic-type measurements would be collected at regular intervals, for example, every six hours. However, there are other requirements where data must be collected on an emergency basis (seismic activity) or on an irregular schedule (research expedition transmissions to fixed-base monitoring points and computers).

Repetitive six-hour data collection could be accommodated fairly well by low altitude orbiting satellites, but for emergency or "on-demand" data pick-up a geostationary orbit would be

Fig. 1. A photograph of an actual received image, using the "Quick-Look" satellite transmission system. The total transmission path was between Hawaii and Washington, D.C.
needed to insure a transmission path always being available. The geostationary orbit is of course also satisfactory for the regularly scheduled data collection. An equatorial geostationary satellite would be in view of d.c.ps using high gain, directional aerials at latitutudes of up to 70° with elevation angles as low as 5 degrees.

It was suggested that an r.f. bandwidth of 50 kHz could be used divided into twenty $2,500 \mathrm{~Hz}$ channels. The radiated power from a d.c.p. to the satellite would be 5 watts nominal at 149 MHz and the interrogating signal from the satellite to the d.c.p. would be 1 watt at 137 MHz , which with an aerial gain of 15 dB gives an e.r.p. of 31 watts. The carrier-to-noise (s / n) ratio of these signals at a bandwidth of $2,500 \mathrm{~Hz}$ is estimated to be approximately $15-16 \mathrm{~dB}$; or at $250 \mathrm{~Hz}, 26 \mathrm{~dB}$.

Integrated circuits in communications

The trend noted last year in the development of linear integrated circuits in communications equipment was seen to be continuing, albeit somewhat conservatively. Consumer electronics designers are taking the logical approach of selecting monolithic replacements for existing component circuitry. S. B. Marshall (Sprague Electric) stated that generally the move to i.cs has provided performance improvements rather than lower costs. Better performance has been realized in i.f. amplifiers for a.m. and f.m., f.m. discriminators, colour demodulators and video processing circuits. It was pointed out, however, that progress in the movement towards greater use of i.cs is slower than might have been expected. This was suggested as being due to the dominant role of the electronic valve in television sets for the past 20 years or so; it is easier to replace valves by transistors than by an integrated circuit.

One portion of the TV set which has been almost completely replaced by an i.c. is the sound channel. Mr. Marshall described a device which included three direct coupled, differential, non-saturating limiting amplifiers providing 60 dB of gain, an audio pre-amplifier and an analogue multiplier used as a

Fig. 2. An integrated circuit phase-locked loop can be employed in f.m. receivers to eliminate $L-C$ networks and conventional detector circuitry.

Fig.' 3. Tektronix's new generation of plug-in oscilloscopes (the 7000 -series) consisting of two mainframes and thirteen plug-in units, including siz amplifiers, four timebase units, and three sampling units.
quadrature discriminator. There is a significant trend amongst many manufacturers towards using this latter technique for intercarrier television sound and also for f.m. receivers.

It has certainly been no secret that in the whole field of integrated circuitry engineering the digital i.c. has enjoyed a far wider range of application and success than the linear device. In part the reason for this is because the monolithic planar process can produce ideally transistors, diodes and low value resistors -the very components used in traditional logic design. However, linear circuitry needs inductors, transformers and large value resistors and capacitors. Further, linear electronics is normally a collection of separate and non-repetitive functions unlike the digital systems where there are large numbers of similarly functioning circuits.

The task of overcoming these problems has been approached, according to H. R. Camenzind (Signetics Corp.), by involving the circuit designer in contiguous disciplines to his own systems design and processing technology.

An example of re-thinking in the systems area was illustrated by the use of a phase-locked loop to eliminate $L-C$ networks (Fig. 2). The voltage controlled oscillator (v.c.o.) produces a frequency f_{2} proportional to an applied d.c. voltage. This is mixed with f_{1} (the input signal) in an analogue multiplier (phase comparator). The sum and difference frequencies are fed to the low-pass filter and an amplifier, the output of which is the control voltage for the v.c.o. If f_{1} alone is present, the difference in f_{1} and f_{2} is large and the entire output is filtered out, there is no control voltage, and the v.c.o. runs at a preset frequency. If $f_{1}=f_{2}$ then the filtered output is a d.c. voltage, its polarity dependent on the phase difference between f_{1} and f_{2}. This d.c. voltage controls the v.c.o. in such a way that if f_{2} tends to move away from f_{1} the error voltage drives the v.c.o. back to the point where f_{2} matches f_{1}. Where f_{2} approaches f_{1} then the error voltage pulls the v.c.o. frequency towards that of the input, f_{1}, rather like the a.f.c. in an f.m. receiver.

Thus, once locked to the input frequency, the v.c.o. follows variations of the input signal; in the case of an f.m. input, the v.c.o. follows the input modulation and as the v.c.o. variations are created by the error voltage this latter represents the demodulated output.

This unique application of a well-used circuit has many advantages: no ratio detector, discriminator, or other detector is required; as the v.c.o. determines received frequency only a single external tuning element is needed; the circuit has high selectivity as, where other frequencies are present at the input, their frequency differences and sums are outside the passband of the low-pass filter.

In the field of processing technology a technique has been evolved providing great flexibility in producing devices needing extreme requirements: high frequency, high voltage, high current, low noise, low power. The process uses anisotropic etching to produce isolation grooves. The advantages are that grooves of precise width and depth can be made economically, components may be placed closer together than with junction isolation, and performance is greatly improved.

This dielectric isolation has application in such circuits as audio amplifiers, c.r.t. drivers, electroluminescent display drivers and video amplifiers. These devices combine high voltage and low voltage needs. By using a field plate over base-collector junctions devices with breakdown in excess of 300 V can be made with high yield. For low voltage operation, resistivity can be lowered in some devices by an added diffusion and for fast recovery from saturation gold can be selectively introduced.

Developments in display techniques

The need for displaying large amounts of information on a screen format seems to be increasing rapidly, particularly with the present trend for visual-type displays at computer terminals and also in such situations as aircraft cockpits. In this latter
application, the attempt is to do away with the present great mass of indicating instruments and display their readings in numerical or pictorial form on one or two screens.
W. H. Tew (General Electric) described such a device which uses a shadow-mask colour cathode-ray tube. At any one time the screen can display 90 discrete measurands indicating GO, NO-GO or CAUTION for each, 30 analogue measurands, alphanumeric information or a combination of all three. The colour property of the tube is used by the operator as a quick means of determining safe (green), danger (red), or marginal (yellow) conditions. For example, if all the information on the display were green, no immediate action by an operator would be called for; however, the occurrence of a marginal or danger situation would be indicated by the data for that measurand being updated and also its displayed colour changing to yellow or red, drawing attention to the new condition.

It is possible on this device to display trends or past-history plots of data giving a graphical display of the functions; a number of related bar-charts can be displayed adjacent to each other and their relevancy to each other used as criteria for action; digitally produced characters can be used to form legends and the status of the related function indicated by an associated colour spot having the property of appearing in a wide range of colours.

A method developed by Hartman Systems to improve the contrast of a c.r.t. under high ambient illumination levels provides an elegant, if somewhat expensive, solution. The c.r.t. face contains four layers. The electron beam first impinges on a layer of P-16 type phosphor emitting short wavelength energy. This is transmitted through a shortwave optical bandpass filter into a layer of transparent fluorescent glass. Here it is converted to longer wavelength emission. This energy in turn passes through a long-wave bandpass optical filter to the observer. This final filter absorbs those wavelengths which could stimulate the fluorescent layer. Since the two filters have no common bandpass region, no energy can reach the phosphor to be reflected from it.

The tube face appears jet black except where imagery is displayed. It was claimed that with the c.r.t. image at a level of $100 \mathrm{~cd} / \mathrm{m}^{2}$ a useful display is obtained even in the presence of direct sunlight at $34,000 \mathrm{~cd} / \mathrm{m}^{2}$.

Some of the exhibits

Tektronix showed two new oscilloscopes in the 7000 -series. The 7504 (d.c. to 90 MHz) and the 7704 (d.c. to 150 MHz) are a new generation of plug-in frames. The main frames are different from the existing types in that they accept up to four plug-in units (Fig. 3). Two each of vertical and horizontal deflection units can be accommodated, and the dual trace switching between channels is accomplished within the frame rather than on the plug-in units.

The screen on the 7000-series frames can show, apart from its regular sweep traces, an automatic scale factor readout. This shows on the screen an alphanumeric display of the time per division, and volts per division settings (Fig. 4). The alphanumeric characters are produced by a built-in character generator and displayed on the screen with the regular traces using a simple time-sharing technique.

Teledyne Corporation showed how far miniaturization can go by combining a s.p.d.t. relay, a relay-driyer transistor and an operational amplifier integrated circuit all within a TO-5 transistor can. The op. amp. has a $3 \mathrm{M} \Omega$ input impedance, maximum bias of 60 nA and an offset of 20 nA . The device can be used for timers and delay generators by utilizing a small external capacitor; for example, a 30 -second delay could be obtained with a $1 \mu \mathrm{~F}$ capacitor.

A new type of phosphor screen for use in multicolour, single gun cathode-ray tubes for display applications has been developed by the ITT Electron Tube Division. This phosphor screen changes colour as the current density is changed, thus

Fig. 4. A polaroid photograph of the screen of the Tektronix 77004 oscilloscope showing the automatic scale factor readout produced by a built-in character generator.

Fig. 5. Current density versus intensity plot of a single gun, dual-phosphor c.r.t. for producing multicoloured displays.
avoiding the need for colour masks, multiple electron guns, or beam velocity modulation (previous methods of generating colour displays in cathode-ray tubes).

The colour shift is obtained by combining a phosphor having superlinear intensity versus current density behaviour with a phosphor having linear or sublinear behaviour and a different emission colour. This effect is illustrated in Fig. 5 where curve A represents a superlinear phosphor. At low current density the emission colour will be that of phosphor B, but as the current density is increased, phosphor A will contribute more and the colour will shift toward that of A. The brightness will increase along with the colour shift, and since B continues to contribute, the colour at the higher current density will not be that of A but will be intermediate between A and B. For example: if phosphor A is red and phosphor B is green, the colour will shift from green to yellow to orange. Similarly, other colour combinations will give other colour shifts.
Current sensitive phosphor screens have been prepared from many different phosphor combinations. The colour shifts obtained include reddish-orange to yellowish-white, reddishorange to greenish-yellow, and green to orange.

The major advantage of a current-sensitive cathode-ray tube is its relative simplicity in comparison with conventional colour cathode-ray tubes. A display tube of the current-sensitive type can be substituted for a monochrome type to add colour capability. This substitution can be made in existing display systems with little or no modification of the electronic circuitry in order to operate the tube. The main system requirement is that provision must be made for changing current density whenever a colour shift is desired, at a sacrifice in brigheness modulation.

High-performance Low-cost "Active Zener" Regulators

by Joachim Preis

Conventional zener diodes, being rather expensive devices, may be replaced by lowcost silicon transistors by making use of the excellent voltage/current characteristic of the base-emitter junction when reversebiased. The differential zener resistance $R_{Z T}$ of the base-emitter junction of a lowpower transistor is at least as low as, or even lower than, the $R_{Z D}$ of a zener diode with the same power rating. Also, V_{Z} remains essentially constant over a wide current range down to very low current levels which is not necessarily true with V_{Z} of an ordinary zener ${ }^{1}$. The price ratio, zener diode (200 mW) to $\mathrm{n}-\mathrm{p}-\mathrm{n}$ silicon transistor (TO-I8, or similar case, plasticencapsulated), is of the order of $1: 5$ to $1: 7$. With the transistor type BC_{207} (TO-I8, plastic) $-V_{b e}$ has been found to be within $8 \cdot 5-9 \cdot 5 \mathrm{~V}(9 \mathrm{~V} \pm 5 \%)$ for a current of I mA . Circuit symbols are shown in Fig. 1.

Now, unfortunately, $-V_{b e}$ exhibits a small positive temperature coefficient, but

(a)
this may be compensated for by connecting a silicon diode (or a forward biased baseemitter junction) in series with the "zener transistor".
A more elegant method is to add an extra transistor connected to operate as an active

Fig. i. (a) Ordinary zener diode, and (b) a "zener transistor".

Fig. 2. Circuit configuration of an active zener (a) and its equivalent circuit (b).

Fig. 3. Active zener with multiplied V_{Z} and the equivalent circuit (b).
device with heavy negative feedback, at the same time making use of its negative-temperature-coefficient base-emitter forward voltage to compensate for the positive t.c. of the "zener transistor" ${ }^{2}$. I shall refer to this configuration as the "active zener". Fig. 2, shows the circuit configuration (a) and its equivalent circuit (b).

As can be seen from the equivalent circuit $T r_{2}$ acts as a differential amplifier where $T r_{1}$ is connected between the output and the inverted input terminal, thus forming a negative-feedback path. With an ideal differential amplifier the external voltage gain is unity and the current through $T r_{1}$ is zero. With the real amplifier the external voltage gain is close to unity and Tr_{1} current equals I_{z} / β_{2}. So Tr_{2} acts as a voltage-follower or as a current-multiplier with unity voltage gain. A further advantage of the "active zener" over the conventional zener diode lies in the fact that the small current-induced rise of - $V_{b e_{1}}$ (with increasing I_{z}) is largely cancelled out by the decrease of $V_{b e 2}$ due to $T r_{2}$ heating up. So V_{Z} remains essentially constant even at high levels of $I z$. Allowing 180 mW to be dissipated in Tr_{2} results in a maximum permissible I_{Z} of 20 mA at $V_{Z}=9 \mathrm{~V}$.
If the "active zener" is to replace a 1 watt ordinary zener, Tr_{2} must be substituted by a transistor in a TO-5 case, the case-air thermal resistance being reduced by a "delta-cooler" heat sink.
Now, a serious drawback inherent to both types of zeners, so far, is the spread of $V z$. This can be easily overcome with the "active zener" by making V_{Z} variable which is achieved by two resistors, R_{1} and R_{2} connected as shown in Fig. 3(a). The equivalent circuit in Fig. 3 (b) shows that the original value of V_{Z} is multiplied by a factor of $1+R_{1} / R_{2}$. Since $-V_{b e 1}$ is just below ro V , a precision $10-\mathrm{V}$ active zener may be set up. When determining the values of R_{1} and R_{2} it should be kept in mind that the equation $V_{z}=\left(V_{b e_{1}}+V_{b e_{2}}\right) \cdot\left(1+R_{1} / R_{2}\right)$ is true only at $I_{b_{2}}=0$, otherwise there will be extra current through R_{1} tending to increase V_{Z}. So R_{1} should be kept as low as possible. For a tolerated increase in V_{Z} of, say, 0.5% at $I_{Z}=20 \mathrm{~mA}$ and $\beta=200, R_{1}$ must be made about 500 ohms resulting in a by-pass current of about 2 mA which is just 10% of the maximum I_{z}, R_{2} may be found by dividing $V_{b e_{1}}+V_{b e_{2}}$ by $\left[V_{z}-\left(V_{b e_{1}}+\right.\right.$ $\left.\left.V_{\text {be }}\right)\right] / R_{1}$.

Fig. $4(a$ and $b)$. Possible alternatives for current boosting without an undue increase in stand-by current.

Fig. 5. Circuit of a 20-V precision zener using two reverse-biased base-emitter juncrions.

Fig. 6. (a) Zener diode shunt regulator, (b) "zener transistor" shunt regularor, (c) "acrive zener" shunt regulator, (d) "active variable zener" shunt regulator, (e and f) alternative "active zener" shunt regulators with boosted output current, (g and h) "active variable zener" shuint regulators with boosted output current.

This results in values for R_{2} of $4.58 \mathrm{k} \Omega\left(V_{b e_{1}}+V_{b c_{2}}=9 \mathrm{~V}\right), 2.88 \mathrm{k} \Omega$ $\left(V_{b e_{1}}+V_{b c_{2}}=8.5 \mathrm{~V}\right)$ and $9.5 \mathrm{k} \Omega$ $\left(V_{b e_{1}}+V_{b e_{2}}=9.5 \mathrm{~V}\right)$. For practical reasons R_{2} is made partly variable by connecting a ro-k Ω trimpot in series with $2.7 \mathrm{k} \Omega$ choosing a fixed value of 510Ω for R_{1}. For less stringent requirements of changes in V_{2} due to I_{2}, say $1 \%, R_{1}$ may be made I $\mathrm{k} \Omega$, thus halving the by-pass current of the "variable active zener". The larger the current gain of $T r_{2}$ the smaller $d V_{Z}$ for a given value of R_{1}. If further current-boosting or greater values of V_{2} without sacrificing too much of the useful currentrange by stand-by current is required, an extra transistor may be added. Two possible ways are shown in Fig. 4. Vbe3 does not, of course, deteriorate the virtually zero tem-perature-coefficient of $V Z$.

For a $20-\mathrm{V}$ precision zener, two reversebiased base-emitter junctions may be connected in series, where the increased positive t.c. is compensated for by an extra silicon diode as shown in Fig. 5. However, the author considers the circuit of Fig. 4(b)

(b)

Fig. 7. (a) A simple "zener transistor" (Tr_{1}) series regulator, and (b) with boosted output current.
more attractive for a $20-\mathrm{V}$ precision zener.
Various examples of shunt and series regulators using "zener transistors", "active zeners" and "variable active zeners" are given in Figs. 6 and 7.

Fig. 6 (f) allows an economic power shunt regulator to be built, with an I_{Z} of about 2 A, if a 2 N 3055 (or equivalent plastic version) is used for Tr_{3} and a 2 N 2905 (with "delta-cooler") for Tr_{2}.

Comparative zener and "active zener" characteristics

ΔV_{z} as a step-function of ΔI_{z}

Performance characteristics of a 200 mW "active zener" (top) and its ordinary zener counterpart (bottom).

Performance characteristics of $a_{I} W^{\text {"active zener" (top) and its ordinary }}$
zener counterpart (bottom). In both cases ΔV_{z} has been allowed sufficient time to settle down to a steady state.

In the case of the series regulators (Fig. 7), the simple "zener transistor" will do, because the zener current requirements are low and the compensation of the positive t.c. of $-V_{b e_{1}}$ is performed by the negative t.c. of $V_{b e_{2}}$.

In all circuits shown the lowest possible output voltage is given by $-V_{b e_{1}}$ or $V_{b e_{1}}+V_{b e_{2}}$. In Fig. $7 R_{3}$ serves to fix the current through the "zener transistor" Tr_{1}.

References

I. "Ring-Of-Two Reference", by P. Williams, Wireless World, July 1967.
2. "Constant-Voltage D.C. Supplies", by T. D. Towers, Wireless World, Sept. 1968.

Announcements

The following special lectures have been arranged by the Hendon College of Technology, The Burroughs, Hendon, London N.W.4, for the coming session starting in October: Thyristor applications; Logic algebra and its application to systems design; and Electronics for non-electrical engineers.
Among the courses being offered during the Autumn term at the Riversdale Technical ColIege, Liverpool, are full-time, part-time and evening classes covering the new syllabuses for radio, television and electronic technicians and mechanics; full-time marine radar; and evening courses in colour television, industrial electronics and another for radio amateurs
International Computers Lid, are to hold a series of evening courses in computer programming beginning October 14th in London. Details are available from ICL Training Centre (evening classes), Newlands House, 37 Berners Street, London W'1P 4AY.
A newly formed electronics company, Revenue Systems Ltd, of Luton, Bedfordshire, has announced that it is to receive a substantial development investment from the National Research Development Corporation and Technical Development Capital Ltd. Under the terms of the agreement N.R.D.C. and T.D.C. will jointly finance a two-year research and development programme in exchange for a significant shareholding in the company.
Dynasciences Corporation, of Chatsworth, California, U.S.A., a subsidiary of the Whittaker Corporation, have affcinted Datametrics Ltd, Trout Road, West Drayton, Middlesex, as their exclusive U.K. agents. Dynasciences range of products include pressure transducers, thermocouple reference junctions, acoustic measuring systems, semiconductor strain gauges and temperature sensors.
The AIM Associates Cambridge Group, which includes Cambridge Consultants, the research and development company, has established itself in new headquarters at St . Ives, Huntingdonshire. The company was previously based in Bar Hill, Cambridge.
AEI Scientific Apparatus Division, Harlow, has received orders valued at over $£ 40,000$ from the U.S.S.R. for two of the new EM8 series of electren microscopes. Both instruments will be installed in Moscow, one will be used for medical and the other for geological research.
STC's Radio Products Group have been awarded a contract by Aviaexport, Moscow, for the supply and installation of two instrument landing systems.

Test Your Knowledge

Series devised by L. Ibbotson* B.Sc., A.Inst.P., M.I.E.E., M.I.E.R.E.

17. Quantum electronics

1. An atom or molecule isolated from all others will emit a photon (quantum of electromagnetic radiation):
(a) only if it is at a high temperature
(b) only if it is struck by another photon of the same frequency
(c) only as a result of one of its electrons falling to an orbital of lower energy
(d) under any circumstance in which its internal energy is reduced.
2. An isolated atom or molecule may absorb a photon by which it is struck:
(a) in all circumstances-with a probability which depends on the conditions
(b) only if the photon is at a frequency in the visible region
(c) only if the temperature is low
(d) only if the photon energy corresponds to a difference in internal energy states.
3. "Stimulated emission" occurs when an atom or molecule emits a photon as a result of:
(a) its being struck by another photon of the same frequency
(b) the application of an electric field
(c) the application of a magnetic field
(d) a sudden rise in temperature.
4. Maser or laser action can only occur if the atoms, molecules or ions concerned:
(a) are all in the lower appropriate energy state
(b) have more of their number in the lower than in the higher of the two appropriate energy states
(c) have more of their number in the higher than in the lower of the two appropriate energy states
(d) are all in the higher appropriate energy state.
5. In the ammonia maser "population inversion" is achieved:
(a) by "pumping" the gas with infra-red light
(b) by passing the gas through a non-linear electric field
(c) by raising the gas to a high temperature
(d) by a sudden adiabatic expansion.
6. The ammonia maser is not used as a microwave amplifier because:
(a) it can only operate over a very narrow band of frequencies

[^8](b) it requires a very large magnetic field to tune it
(c) it can only operate in pulses, not c.w.
(d) it can only oscillate, not amplify.
7. The material known as ruby consists of aluminium oxide with a small amount of chromium as impurity. It can be used in either a maser or a laser. Pure aluminium oxide without the chromium:
(a) would not operate in either capacity
(b) would operate as maser or laser, but much less efficiently
(c) would work in a maser but not a laser
(d) would work in a laser but not a maser.
8. The operating (centre) frequency of a travelling-wave ruby maser amplifier:
(a) is fixed
(b) can be changed by altering the cavity resonant frequency
(c) can be changed by changing the applied magnetic field
(d) can be changed by changing the applied electric field.
9. In the travelling-wave ruby maser amplifier pumping is achieved:
(a) by the application of a microwave signal at a frequency higher than the frequency to be amplified
(b) by illuminating the ruby with light from a discharge tube
(c) by passing a direct current through the ruby
(d) by inducing a standing acoustic wave in the ruby.
10. In a ruby laser pumping can be achieved using a broad-band source of light because:
(a) the chromium-ion electrons are originally pumped into a band of excited states
(b) the chromium-ion electrons are originally pumped into a metastable state
(c) the energy is first absorbed by the aluminium atoms in a non-resonant manner, then transferred to the chromium
(d) enough energy at the single pumping frequency required can be obtained from the broad-band source.
11. Many gases will exhibit laser action. Three of the following methods have been used in different cases to achieve the required
energy input-select the "odd man out":
(a) illumination of the gas by light of an appropriate frequency
(b) raising the gas to a high temperature
(c) the passage of a d.c. electric discharge through the gas
(d) the production of an r.f. discharge in the gas.
12. In the helium-neon laser the laser action occurs:
(a) in both gases
(b) in the helium only
(c) in the neon only
(d) in molecules which form between the two sorts of atoms under the influence of the electric discharge.
13. The helium-neon laser is capable of operating on at least two frequencies, one in the infra-red and the other in the (visible) red. The frequency at which a given device actually works is determined by:
(a) the temperature
(b) the amount of driving power applied
(c) the construction of the reflecting mirrors
(d) the diameter of the tube containing the gases.
14. A gallium arsenide $\mathrm{p}-\mathrm{n}$ junction diode (suitably shaped, with a pair of parallel polished faces perpendicular to the junction) will emit a coherent beam of light if it has applied:
(a) a small forward current
(b) a large forward current
(c) a small reverse voltage
(d) a large reverse voltage.
15. The light produced by a gallium arsenide injection laser results from:
(a) recombination of electrons and holes
(b) energy transitions in the tellurium atoms (donor impurity) only
(c) energy transitions in the zinc atoms (acceptor impurity) only
(d) energy transitions in both types of doping atoms.
16. The most nearly perfect monochromatic visible light is:
(a) a spectral line emitted by a low-pressure gas discharge lamp
(b) light from a gas laser
(c) light from a solid-state laser
(d) light from an injection laser.
17. The travelling-wave ruby maser must be operated at very low temperature $\left(4^{\circ} \mathrm{K}\right)$, whereas lasers will work perfectly well at room temperature (some lasers are cooled if very high pumping powers need to be used). The reason for this is:
(a) the energy levels used in the lasers are much more widely separated than those in the maser
(b) the energy levels associated with the maser action disappear at higher temperatures
(c) the maser is an amplifier, whereas the lasers are oscillators
(d) a very large amount of pump energy is dissipated in the maser crystal.

Identifying Television Transmissions

A further selection of test cards

Considerable interest has been created in the reception of Continental television stations as a result of the publication of the Rev. J. E. Scott's letter in the August issue and the selection of test and identification cards included in our last issue. A further selection of test patterns, supplied by M. Dolei of Italy, is given here together with two photographs of pictures received by a reader, Ian A. Beckett, in Buckinghamshire. He
was using a four-element wideband (channels 1-5) aerial, horizontally polarized. It was mounted on a rotatable $55-\mathrm{ft}$ telescopic mast which was extended to only 34 ft when the pictures were received.

The code letters in parentheses in the heading to each illustration correspond to those in the table listing the parameters of the various television systems given on p. 410 of last month's issue.

Hungarian test card received on a Bush TV115 receiver by Mr. Beckett.

U.S.S.R. caption card as received on a nine - year - old G.E.C. BT311 receiver modified for 625-line negative going pictures.

ICELAND (B)
The test card used by the country's few low-power transmitters.

RIKISU̇TVARPID SONVARP

Caption card used byIceland'sstations.

MONACO (E)
The same test card as employed in France plus the inscription "TeleMonte Carlo" is used by the principality's station.

POLAND (B)
No identification is given on this test card.

SWEDEN (B)
The country's Band I transmitters use this test card incorporating the name of the station.

YUGOSLAVIA(B) An easily identifiable caption card used by fugosloo enska Radio Televizija.

EIRE (A © I)
Reception of television transmissions from Eire can hardly be termed "longdistance", however, here is the test card used.

LUXEMBOURG
(F)

Identification card of the principality's station
U.S.S.R. (D)

Test card of the stations of the Soviet Union.

FINLAND (B)
Received picture of the Yleisradio rest card.

CZECHOSLO-
VAKIA (D)
The easily recognisable test card used by the Ceskoslovenska Televize.

SPAIN (B)
The initials of the Spanish television authority TeleVision Espanola appear on the testcard.

DENMARK (B)
The name of the station appears on the test card.

New Products

Low Light Level TV Camera Tube

The latest addition to the range of TV camera tubes manufactured by English Electric Valve Co. Ltd, combines the low-noise read-out of a 3 -in image isocon tube with the additional light amplification of a single-stage image intensifier. The resultant type P8012 tube will give good pictures under overcast starlight conditions. The intensifier stage, P899B, has a curved faceplate for use with a mirror optical system, though with a corrector lens fitted it can also be used with a

refractive optical system. The intensifier output screen and the 3 -in image isocon (type P887) photocathode are both fitted with fused fibre optic faceplates, which coupled together provide an efficient transfer of the intensifier output image on to the photocathode of the isocon: Both the P899B and P887 can be supplied separately if required. English Electric Valve Co. Ltd, Chelmsford, Essex.
WW323 for further details

Pocket Radiotelephone

Having no external acrial the Starphone from S.T.C. is claimed to be the smallest two-way radiotelephone produced commercially as a single

unit anywhere in the world. It provides two-way speech at up to 2 or 3 miles from a base station with an aerial 100 ft above ground level. The use of u.h.f. ensures a standard of signal penetration into buildings not generally attainable at lower frequencies, together with virtually complete freedom from interference. Where limited coverage is required, e.g. a building construction site, a base station aerial 10 ft or 20 ft above ground will be adequate. Direct communication between individual Starphone units is feasible without using a central base station, but in this case the range is much more limited and is less predictable. Transmitter power is 150 mW and receiver sensitivity $2 \mu \mathrm{~V}$. The new unit is approved by the G.P.O. for 25 kHz channel-spacing operation. Price, complete with nickel-cadmium battery, is 2125. Standard Telephones \& Cables Ltd, 190 Strand, London, W.C.2.
WW309 for further details

Epicyclic Drive

Jackson Brothers have combined their dual ratio ball drive with their adjustable torque ball drive to produce a dual ratio adjustable ball drive -No.5620/DRF. This epicyclic drive gives reduction ratios of $36: 1$ and $6: 1$ on one co-axial shaft. A continuous reduction ratio of $36: 1$ can be supplied on request. The output torque is set at 35 oz.in but the customer can easily adjust this from 20 to as much as 60 ozin simply by turning four hex head slotted screws. This makes it strong enough to take the place of a gear box in many applications. Jackson Brothers (London) Lid, Kingsway, Waddon, Croydon CR9 4DG.
WW311 for further details

Bandpass Filter Modules

A series of bandpass filters intended for use with the i.f. amplifier section of the company's integrated radio receiver circuit, type TAD100 (and other similar circuits), is being developed by Mullard. The first in the series to be available to setmakers is block filter type LP1175. Designed for use in a.m. radio receivers (see photo showing resonator in situ and others in foreground) it has a centre frequency of 470 kHz and a bandwidth, to the -3 dB points, of 5 kHz ; skirt selectivity at -30 dB is 18 kHz . The filter, which has input and output impedances of $100 \mathrm{k} \Omega$, contains two $L C$ circuits coupled by a piezoelectric resonator type 54000105 . The filter is enclosed in a metal can measuring approximately $26.5 \times$ $13 \times 15.5 \mathrm{~mm}$, and has six 2.5 mm pins that protrude from the base. It can operate at an ambient temperature of $60^{\circ} \mathrm{C}$ and thermal drift does not exceed $10 \mathrm{~Hz} /{ }^{\circ} \mathrm{C}$. The selectivity of the filter module is governed mainly by the piezoelectric resonator, which is equivalent to a capacitor in parallel with a series $L C R$ circuit. The type used in the LP1175 has a resonant frequency of 470-

kHz at which it has a Q-factor greater than 800 , a typical value being 1000 , which is far more than that of a conventional capacitor-and-coil arrangement. In addition to high Q-factors, the resonators have the advantage of needing no alignment nor screening because they produce no magnetic field. A resonator for use in bandpass filters for f.m. receivers is type 54004501 . At its resonant frequency of $10.7 \mathrm{MHz} \pm 0.5 \%$, it has a Q-factor of more than 350 . Each piezoelectric resonator consists of a disc of extremely pure and stable modified lead-zirconate held between gold-plated springs that extend to form printed-wiring tags on a $5.08 \mathrm{~mm}(0.2 \mathrm{in})$ pitch. At its resonant frequency, the disc presents a minimum impedance to an alternating voltage between the gold electrodes; at anti-resonance, the disc presents a maximum impedance. Mullard Lid, Mullard House, Torrington Place, London W.C.1.
WW318 for further details

Programmable Pulse System

The new Systron Donner 140 System generates repetition rates up to 100 MHz , pulse widths to 5 nS , and independently variable rise/fall times from 2 nS . Applications include testing of high speed integrated circuits, logic modules, cards, and components. In the 140 System, the user's programme sets the upper and lower levels of the output waveform to any values between +10 V and -10 V . Pulse amplitudes (difference between levels) from 50 mV to 5 V into a 50Ω lead are attainable. Accuracy is typically $\pm 2 \%$ for all programmed parameters, including repetition rate, delay, width, and transition times. Programming may be accomplished from punched paper tape, magnetic tape, cards, or other logic sources. All pulse parameters are controlled by BCD inputs which are compatible with DTL logic levels. System components include the model 141 Timing Unit, the model 145 Dual Timing Unit, and the model 142 Output Unit. Both timing units offer

synchronous and asynchronous gating, double pulse operation, square wave modes, and external trigger. The dual timing unit is offered for applications requiring two independently controlled pulses, both from a common clock source. It contains a single repetition rate circuit, two delay circuits and two width circuits, with two independent outputs. One model 145 may be combined with two model 142 s to provide a complete dual pulse system. Aveley Electric Ltd, Arisdale Aveque, South Ockendon, Essex, RM15 5SR.
WW310 for further details

High-impedance Data Amplifier

The Fenlow high-impedance data amplifier has been designed to meet those applications in physics, engineering, and medicine, where operational differential amplifiers are unsuitable. The gain of the AD55 is set (by a single resistor) to lie in the range from 2 to 1000. The input impedance is greater than $20,000 \mathrm{M} \Omega$ being increased by the feedback arrangement and not reduced as with

operational amplifiers. The maximum common mode voltage is $\pm 8 \mathrm{~V}$. The noise, referred to the input, is $5 \mu \mathrm{~V}$ and the drift from $10 \mu \mathrm{~V}$ to $40 \mu \mathrm{~V}$ per ${ }^{\circ} \mathrm{C}$ according to the selection on test. The input current is 2 to 20 pA , again by selection on test. The price of the amplifier is from $\{30$ to $\{60$ according to this selection. Fenlow Electronics Ltd, Whittet's Eyot, Jessamy Road, Weybridge, Surrey.
WW301 for further details

Radio Link

Pye introduce a solid-state radio link to provide radiotelephone users and in particular the Home Office with an improved method of point-to-point communication. The radio link, known as the L150, operates in the frequency band 146174 MHz and can be used for the relaying of telephone, radiotelephone and telemetry information 10 remote premises. The use of field-effect transistors in the r.f. and mixer stages gives the required very good linearity over a wide range of input signals, to provide good inter-modulation and blocking performance. Audio response characteristics are governed by a single module filter and there is a choice of $3.4 \mathrm{kHz}, 6 \mathrm{kHz}$ or 9.5 kHz . The transmitter has a power output of 7 watts (minimum) at 174 MHz with higher output at lower operating frequencies. The L150 is fre-quency-modulated and there is a choice of 25 kHz or 50 kHz channel spacing. Pye Telecommunications Lid, St. Andrew's Road, Cambridge, CB4 1DP.
WW316 for further details

Circuit Boards for I.Cs

Vero have introduced a new circuit board which permits the mounting of dual-in-line packages of any number of terminations at 0.1 in . centres as well as allowing the user to determine the number of i.cs he wishes to accommodate. Power rails are provided on both sides adjacent to the d.i.p. pads. Test point pads are also included. Plain

holes or local copper pads will take Vero terminal pins for inter-connections. Location patterns can be screen printed on the component side. The new design permits cooling by natural convection as the dual-in-line packages are mounted in the vertical plane and so allows maximum airflow between rows. These boards are available on epoxy glass or s.r.b.p. base material. Vero Electronics Lid, Industrial Estate, Chandler's Ford, Hampshire.
WW321 for further details

Two-changeover Relay

The range of ITT's PZ style relays for printed circuit boards has been augmented by a twochangeover version, the type PZ-2, shown between the four- and six-changeover types in the photograph. Overall dimensions of this miniature relay are only $29 \times 16 \times 14 \mathrm{~mm}$. The connections are for direct soldering on to printed circuit boards. The two-changeover contacts are of the twin type with a choice of silver/palladium or gold/silver contact alloy. Maximum switched power per

contact is 12 VA (1 A at 100 V a.c. or d.c.). The relay is for d.c. operation. ITT Components Group Europe, Standard Telephones and Cables Ltd, Electro-Mechanical Product Division, West Road, Harlow, Essex.
WW324 for further details

Split screen storage 'scope

The Tektronix model 564 B is really two oscilloscopes in one and both can be used at the same time. For display purposes the screen is divided horizontally into an upper and a lower section. Each of these two sections can be switched independently to operate as a conventional oscilloscope or as a storage oscilloscope. This gives four possibilities: (1) Whole screen being used as a conventional display; (2) Whole screen being used in the storage mode; (3) Upper half of screen storing information while lower half operates normally; and (4) Same as (3) with the storage and conventional areas reversed. It is impossible to describe the performance of the Y amplifier and timebase because
this depends on which of the 25 available plug-ins you decide to use. Plug-ins will provide dual and four trace facilities and can be subdivided as follows: d.c. to $14 \mathrm{GHz}, 25 \mathrm{ps}$ sampling; d.c. to $10 \mathrm{MHz}, 35 \mathrm{~ns}$; d.c. to $1 \mathrm{MHz}, 10 \mu \mathrm{~V} /$ div. differential; and 10 Hz to 36 MHz spectrum analysers: time base units go up to $0.1 \mathrm{~ns} /$ div. with a $\times 10$ magnifier. the $8 \times 10 \mathrm{~cm}$ display area split screen storage c.r.t. employs a 3.5 kV accelerating voltage and will store for 1 hour, can be erased in 0.25 s and has a writing speed of $500 \mathrm{~cm} / \mathrm{ms}$. A built-in calibration unit provides the following facilities: voltage $-4,40,400 \mathrm{mV}$, 4 and $40 \mathrm{~V} \pm 1.5 \%$ ground-to-peak square wave at $1 \mathrm{kHz} \pm 1 \%$; current: 10 mA d.c. or 10 mA ground-to-peak square wave $\pm 1.5 \%$. A rear connector allows either the lower or the upper display area to be erased remotely. An Auto erase version is also available. Tektronix U.K. Ltd, Beaverton House, Harpenden, Herts.
WW327 for further details

Dual Channel Coaxial Joint

A new addition to the Radiall range of microwave accessories is a dual channel coaxial rotary joint. Both channels have 50Ω characteristic impedance and the insertion loss for one channel is specified as low as 0.15 dB for up to 1000 kHz with a maximum v.s.w.r. of 1.15 . Effective use up to 4000 MHz is claimed with only slight deterioration of the electrical specification. The device will operate in a temperature range from $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ at a maximum turning speed of 100 r.p.m. and a specified life of 500,000 revolutions minimum. Models fitted with b.n.c. receptacles are now in production but other coaxial outlets can be fitted on request. Radiall Microwave Components Ltd, Station Approach, Grove Park Road, Chiswick, London, W.4.
WW 302 for further details

Television Camera

A transistor television camera, using a standard one-inch vidicon pick-up tube and having no external controls other than for mechanical focusing is announced by K.G.M. Vidiaids. All the circuitry necessary for the operation of the camera -model 113-including the tube, is housed in a single unit which, after initial setting-up, may be left for long periods without any adjustment being necessary. The camera uses a low wattage integral or separate mesh vidicon. The use of plugin boards and plug-in transistors greatly eases servicing, and the construction is such that inexperienced personnel can easily change a circuit board. A constant output signal for a wide range of vidicon target illumination is maintained by an automatic sensitivity circuit which can tolerate a range of $2000: 1$. The camera provides a composite video signal output of 0.7 V p-p and has a horizontal resolution in the order of 800 lines, with the vertical better than 400 lines. The standard camera can be operated from external synchronizing pulses which may be random interlace or $2: 1$ interlace. Alternatively, with the addition of a K.G.M. Vidiaids model 113/18 sync-generator and video processing board, external or internal synchronization is obtainable. This additional unit also extends the facilities of the camera to provide a composite video output with black level clamp. A simple change converts the camera to line and field drive operation with composite or non-composite video output. The camera operates from a $100-125 \mathrm{~V}$ or $200-250 \mathrm{~V}$ a.c. power source at 17 VA , and connections at the rear of the unit provide for operation from a -16 V d.c. supply. Prices for the camera, without the lens and vidicon tube, range from $\{250$ for the standard unit to $\{312.15 .0 \mathrm{~d}$.

for a unit fitted with a synchronizing generator and video processing board, optical focus driving motor and the additional facility of operation from line and field drive. K.G.M. Vidiaids Ltd, Clock Tower Road, Isleworth, Middlesex.
WW 317 for further details

Surge Indicating Meter

The John Howard Industrial Electronics surge indicating meter is believed to be the first of its kind. By simply placing two clip leads from the meter across the supply to be monitored any harmful surges which occur on the line of microsecond duration or longer are instantly displayed on the large mirror-scale meter. The reading is automatically held for approximately 30 sec . Reset is accomplished by means of a press

button on the panel. The battery, which is a standard PP3 or equivalent, has check facilities built into the unit. Two stock models are available which are $0-200$ volts and $0-2 \mathrm{kV}$ f.s.d. Other ranges can be ordered. Price: £20. John Howard Industrial Electronics Ltd., 32 Oaks Road, Great Glen, Leicester LE8 0EG.
WW305 for further details

TV Test Signal

Generator

Tektronix announces a television test signal generator (type 141A). Designed to provide test signals for 625 -line, 50 -cycle field PAL colour TV systems its three operating modes provide colour bars, a 5 -step staircase with fixed average picture level (a.p.1.), and the same staircase with variable a.p.l. Colour bars can be produced with

the following alternatives: 75% or 100% amplitude; 75% or 100% white reference; and 0% or 25% setup. The ability to select these various parameters of the colour bar signal affords output of three colour-bar signal arrangements used as standards in various countries using the PAL system-E.B.U. bars, B.B.C. 95% bars and 100% bars. A PAL pulse output is selectable, either a 1-V squarewave of a 4-V pulse, to afford locking of any PAL synchronization system at present in use to the type 141A test signal generator. The staircase signal is keyed on during a selected line of the vertical blanking interval (line 11-22 on field 1 , or line $324-335$ on field 2) and is particularly useful with a Tektronix type 520 PAL vectorscope to measure differential phase, differential gain, and luminance channel linearity. The last step (at white level) is double width for viewing with and without subcarrier to detect clipping in the white direction. Normal PAL colour burst is provided on the stair-step and colour bar signals. The complex 4 -field burst blanking sequence during vertical interval is provided and may be switched off if desired. A $1-\mathrm{MHz}$ reference signal which is frequency locked to the $4.43361876-\mathrm{MHz}$ PAL subcarrier oscillator is provided at the rear of the instrument. The type 141 A is available in either rackmount (R141A) or cabinet styles (141A) for $£ 858$ plus $f_{1} 183$ 17s duty. Tektronix U.K. Lid, Beaverion House, Harpenden, Herts.
WW319 for further details

Signal Buffer Store

Frederick Electronics Corp. announces an economical solid-state buffer store for 5-unit code teleprinter signals with a storage capacity of up to 9900 characters. It is particularly suitable for operation with ARQ automatic error correction equipment, for speed conversion purposes and, in general, for replacing mechanical perforated tape storage systems. Storage of teleprinter signals is effected by plug-in delay line modules. The stored signals keep circulating in a delay line loop at 2 MHz until it is their turn to be released to the output. A parallel output, stepped by an external pulse, or a stepped or free running start-stop serial output are available. The rate at the output can be as high as 120 characters per second. A meter on the front panel indicates how full the store is. Various outputs are available for auxiliary functions. Also provided is an input for remote clearing of the store. The model 1330 buffer store is designed for mounting in standard $19-\mathrm{in}$. cabinets. Frederick Electronics Corporation, P.O. Box 502, Frederick, Maryland 21701, U.S.A.
WW307 for further details

Timer Modules

Three basic modules are offered, by Deltic Auto mation, to provide timed delay or timed interval control and covering times of 0.1 sec to 10 minutes in four overlapping time ranges. Typical repeat timing accuracy is within 2%. Series TD and TS modules provide single pole change-over relay output switching rated up to 1 amp at 250 V a.c. and the series SD modules single make solidstate output, rated at 0.5 amp at 150 V d.c. with time delay operation. Standard supply voltages for series TD and TS modules are: $12 \mathrm{~V}, 24 \mathrm{~V}$ and $48 \mathrm{~V} \mathrm{d.c}$. , or $100 / 125 \mathrm{~V}$ and $200 / 250 \mathrm{~V}$ a.c. $(50 / 60$ Hz). For the series $\mathrm{SD}, 10-50 \mathrm{~V}$ d.c. Time setting and adjustment are carried out by means of a self locking preset potentiometer mounted on the module. Facility for the time setting to be remote controlled using an externally mounted potentiometer is also provided. The modules are said to show good stability over wide changes of ambient temperature and supply voltage fluctuation. A further range of timer modules series RDD and ROS have also been introduced, designed specifi-

cally for driving external relays, reed switches or thyristors. Connection of all types is either by permanently wired solder tags or, to provide easy interchangeability, by means of a 12 -way plug-in edge connector. Screw fixing holes are also provided so that the module may be rigidly attached to a suitable mounting face if desired. Deltic Automation Ltd, Tillys Lane, Staines, Middlesex.
WW315 for further details

Miniature Coaxial Mixers

Available from Interplanetric is a range of miniature coaxial balanced mixers; in octave bands from 0.5 to 12.4 GHz . All of these mixers exhibit a noise figure of approximately 7 dB , and are fitted with OSM connectors or solder pins. Local oscillator power requirement on all devices is 2 mW , and i.f. ranges vary to suit customer requirements. Two easily replaceable Schottky barrier diodes are used in these mixers. Interplanetric, 39-49 Cowleaze Road, Kingston upon Thames, Surrey.
WW 322 for further details

Microwave Isolator and Circulator

Two miniature, strip-line components are introduced by The Marconi Company-an isolator and a three-port circulator-which are considerably smaller and lighter than the standard designs available. Both devices cater for a very wide band of frequencies, from 7.5 to 12.5 GHz , and have the same basic design. The isolator is derived from the circulator, but with one of the three ports replaced by a miniature coaxial load. The reliability of these ruggedly made devices, combined with their light weight and small size (approx. $38 \times 13 \times 25 \mathrm{~mm}$), makes them particularly suitable for use in miniaturized equipment, such as man-pack and airborne communications systems, which have to operate in severe conditions. The isolator and the three-port circulator will form the foundation of a new range. Marconi Company Lid, Chelmsford, Essex
WW304 for further details

Wide-range Oscillator

A wide-range oscillator-the SG67A-providing sine or square wave output over the frequency range 1 Hz to 1 MHz , has been added to the signal generators available from Advance Instruments.

An 'Augat' component is its own salesman. Apply one and you'll buy another (Electrosil's repeat 0^{-d} ders prove that daily).
'Augat's' supreme reliability in use and re-use is consistent throughout a complete range of semi-conductor hardvjare.

It is unva-ying in integrated circuits.
It dis-inguishes breadboarding systems that are smal, compact and amazingly robust. And the serv ce behind 'Augat' matches the product n performance.

Electiosil, sole U.K. source, gives hot-line response to all orders. Advice on future needs can be yours promptly and personally.

Contact Electrosil direct and speak to Alan Johnston, telephone number: Sunderland 58704. Or write to
Electrosil Limited, P.O. Box 37.
Pallion. Surderland, Co. Durham.
(Telex: 53273)
or to Electros I distributors:
WEL Components Limited, 5 Love Rock Road, Readin3- Berks. Tel: Reading 40616-9.

Electrautom, 8 Clarence Road, Windsor, Berks. Tel: 64258.
SDS (Portsmouth) Limited. Hillsea Industrial Estate, Portsmouth, Hants. Tel: 62332
Illustrated: The new 24 lead dual-in-line low-profile i.c. socket accepts packages with round or flat leads, has large contoured entryholes for cosy, damage free i.c. insertion. Also ava lajle: 14, 16, and 40 jin i.c. sockets for soldering, p.c. mounting and wirewrapping. We have over 35 i.c. socket types availakle immediately.

See the 'Augat' range of components at ELECTROSIL'S STAND NO. 304 INTER/NEPCON EXHIBITION HOTEL PAETROPOLE, BRIGHTON OCTOBER 14, 15 AND 16

Electrosil have the experience

canyouspare three minutes?

That's all it will take you to read this and as long as it will take you to put any mobile radio transmitter on tunewithout demounting it.
On-site mobile transmitter re-calibration to one part in one million accuracywith the 850 in one hand and a screwdriver in the other-you've done it!

The Racal Type 850 VHF/UHF Calibrator

Unique state-of-the-art instrument embodying a major Racal innovation in mobile radiotelephone calibration. Checks and sets single and multi-channel transmitters "on frequency" accurately and rapidly.
Frequency accuracy of mobile and marine transmitters must by law be within very close limits. GPO requirements stipulate a frequency accuracy of $\pm 2.5 \mathrm{kHz}$ on the u.h.f. band. This is an accuracy of 1 part in 100,000. Inevitably frequencies drift BUT the 850 calibrator enables transmitters to be calibrated 'in situ' - no need to demount and return to the Lab.
\square PORTABLE BATTERY/MAINS \square FAST WARM-UP $\square 1$ PART IN 1 MILLION ACCURACY \square ALL SOLID STATE \square SIMPLE TO OPERATE \square HIGH STABILITY \square ELIMJNATES THE NEED FOR COSTLY TEST EQUIPMENT \square FREQUENCY COVERAGE 100 kHz to 500 MHz .

Get full information now from

R/AC/AL

RACAL INSTRUMENTS LIMITED
Bennet Road, Reading, Berkshire. Tel: Reading 85571 Telex: 84166

Noise is low. Battery operation of the SG67A provides maximum portability; it further minimizes noise due to ground loops and hum, and enables the instrument to be "floated" at potentials above ground without damage. A battery check position is provided on the front panel. For continuous laboratory operation not requiring powerline isolation, an a.c. power supply BEI may be specified as an optional extra. Both sine and square wave outputs are thermistor stabilized to within $\pm 1 \mathrm{~dB}$ at constant temperature for frequencies up to 200 kHz Output level is fully variable from 250 mV to 2.5 V r.m.s. into 600Ω by means of a fine level control and a four position 60 dB attenuator. Square wave rise time is typically 50 ns at all frequencies. Price $£ 42$. Advance Instruments, Roebuck Road, Hainault, Essex.
WW320 for further details

Radiotelephone Fixed Station

Pye Telecommunications offer a v.h.f. radio telephone fixed station, known as the F100FM, designed to meet the requirements for a 100 -watt control station in a mobile radiotelephone scheme. This export unit is available for both simplex and duplex operation on one of four bands in the frequency range 29.7 to 174 MHz . The standard unit is for single channel operation, but up to sixchannel versions are available with a choice of $12.5 \mathrm{kHz}, 20 / 25 / 30 \mathrm{kHz}$ or $40 / 50 / 60 \mathrm{kHz}$ channel spacing. The transmitter (upper unit in photo)

has a power output of 100 watts for simplex operation and of 60 watts for duplex. Silicon transistors are used throughout the equipment except in the drive and output stages of the transmitter. All components are selected for reliable operation over a wide range of temperature to make the equipment suitable for use in all climates. Both local and remote control facilities are available and these and other functions can be built into the receiver itself, thus requiring no extra rack or cabinet space. The equipment is designed for standard 19 -in rack mounting. Pye Telecommunications Ltd, St. Andrew's Road, Cambridge, CB4 1DP. WW325 for further details

Wide-band Power Splitters

Interplanetric offer a range of wide-band power splitters, series PS. These provide a power split from one input to a number of outputs or a power combination of a number of inputs to one output with low loss and high isolation. They may be used to add or subtract signals, providing a single output proportional to the sum of all inputs, or the difference between two signals with high isolation between sources. For example, two or more i.f. signals may be combined in a receiver diversity combiner circuit. These devices may be used to split input power from 2-128 ways and, are said to give good port matching, high isolation
and good amplitude, with excellent phase balance. These devices cover frequency ranges from 80 kHz to 400 MHz with a nominal impedance on all parts of 50Ω. Other impedance values are available on request. All units exhibit a v.s.w.r. of 1.2-1 at frequencies up to 100 MHz and $1.3-1$ for frequencies up to 400 MHz . Insertion loss is typically 0.5 dB . Maximum power on all units 5 watts. All units come in either pin package or connector package. Operation is possible between $-65^{\circ} \mathrm{C}$ and $+105^{\circ} \mathrm{C}$ and in strong electro-magnetic fields. All units meet military specifications 202C for vibration and shock. Interplanetric, 39-49 Cowleaze Road, Kingston upon Thames, Surrey. WW326 for further details

Photo-Thyristors

A family of photo-thyristors (light sensitive s.c.rs) from Transitron Electronic features high sensitivity, high transient immunity and wideangle sensing. Anode voltage ratings include 15 , $30,60,100$ and 200 V for light sensitivities of 1500 and 1000 lux at either 25 to $100^{\circ} \mathrm{C}$ or 25 to $125^{\circ} \mathrm{C}$. The same voltages are available for 500 lux at either $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ or $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Operating and storage temperatures are $-65^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ and other absolute maximum ratings include: continuous d.c. forward current $\left(50^{\circ} \mathrm{C}\right.$ case) 300 mA ; surge current (8 ms) 5 A ; peak gate current 250 mA ; average gate current 25 mA ; reverse gate voltage 5 V . Transitron's photothyristor range is packaged in a TO-18 can. Transitron Electronic Ltd, Gardner Road, Maidenhead, Berks.
WW312 for further details

Stylus and Turntable Cleaning Kit

The playing of only one side of an 1.p. record involves a journey for the stylus of $\frac{1}{2}$ mile, which inevitably means that the stylus picks up foreign matter during tracking. The deposits can impair the quality of reproduction, and damage the record. A stylus and turntable cleaning kit has been produced by the Bib Division of Multicore. The size B kit comprises: a 30 c.c. bottle of Bib anti-static; stylus and turntable cleaner; a cleaning brush with a suction pad; and also an absorbent, washable cleaning cloth. This is provided to wipe the brush free from dirt picked up from the stylus, and also to apply and remove the Bib cleaner to the turntable in order to render it clean and anti-static, thereby keeping it free from dust. The Bib cleaner is non-flammable. The recommended retail price for the kit is 6 s 10 d . Bib Division, Multicore Solders Lid, Hemel Hempstead, Herts.
WW313 for further details

Reed Relay Modules

An extensive and versatile series of both open and totally sealed Clareed modules for p.c.b. mounting is now available from Clare Electronics. All,models switch 10VA-200 volts d.c. max and 0.75 amp max. With a switching time of 1 millisecond they are versatile transistor interface units driven by d.t.l. or t.t.l. The standard series has an operate sensitivity of 80 mW while the sensitive range can operate with less than 35 mW . The drive to switch isolation on the open type MRMC module (shown left in photo) is tested at 500 V while the

sealed epoxy moulded module MRME (shown right) is tested at 2 kV to safeguard circuit isolation. There is also type MRMD metal cased (shown centre). Selected relay modules can have a thermal voltage of $35 \mu \mathrm{~V}$ across the open contacts. Standard contact resistance plotted against life, indicates that full resistive load (24 V d.c., 420 mA) contact resistance can be lower than $100 \mathrm{~m} \Omega$ throughout a life of 10^{7} operations. C. P. Clare Electronics Ltd, Stonefield Way, Ruislip, Middlesex.
WW303 for further details

TO-3 Cover

The Jermyn A22/2003 cover has been designed to fit snugly over the high profile range of TO-3 size semiconductors currently being marketed 10 insulate the exposed surfaces from adjacent components and other objects such as screw-

drivers, fingers etc. The use of these covers is recommended particularly where the transistor is not at earth potential. Jermyn Industries, Vestry Estate, Sevenoaks, Kent.
WW314 for further details

Signal Averaging Gate

Brookdeal Electronics have introduced a linear gate, type 415 , to sample and average repetitive information. The 415 is the latest addition to the Brookdeal " 400 " series instrumentation, specifically designed to recover low-level signals buried in noise. Brookdeal claim that the 415 is also

ideally suitable as a signal recovery phase-sensitive detector up to 30 MHz . The main section of the 415 is a sample-and-hold circuit which is given very high linearity by the application of overall negative feedback. The samples of the signal and noise are then processed by an averaging circuit whose time constant may be altered to suit individual experimental conditions. The sampling system must be triggered by an external reference voltage of +1 V into 50Ω. A Schmitt trigger incorporated in the reference channel ensures that the rise and fall times of the sampling operation are virtually independent of the rise and fall times of the reference pulse. Gate time is set by the reference pulse, minimum 10 nS .100 mV peak input gives 10 V output from $10 \mathrm{k} \Omega$. Price $\{240$ (U.K.). Brookdeal Electronics Lid, 2 Myron Place, Lewisham, London, S.E. 13.
WW308 for further details

Personalities

Harvey F. Schwarz, B.Sc., managing director of the Decca Navigator Company, is president elect of the Institution of Electronic and Radio Engineers for 1969/70 in succession to Major-General Sir Leonard Atkinson, K.B.E., president for the past two years. Mr. Schwarz, who was born in 1905 in Edwardsville, III., graduated at Washington University, St. Louis, and then joined the General Electric Company, Schenectady. In 1928 he became the assistant chief engineer of the Brunswick Radio Corporation. He was in England on business with Warner Brunswick I.id when that company was acquired by the Decca Record Company and he was made chief engineer of Brunswick Lid on its formation. When Decca Radio and Television Lid was formed in 1938 Mr. Schwarz became technical director. When his friend William O'Brien invented a c.w. hyperbolic navigational system in 1939 it was taken up by Decca. After the war the Decca Navigator Company was formed and in 1950 Mr. Schwarz became managing director.

Donald H. Randall, who is 31, has been appointed manager of the Service Divison of Pye Unicam Lid. He joined Philips Electrical Lid as a medical X-ray service engineer in 1955 and two years later joined the company's Research and Control Instrument Division. With the formation of M.E.L. in 1964 Mr . Randall became technical services manager. In July last year he became responsible for the Philips branded products as one of three technical services managers when Pye Unicam Lid was formed.

Peter Mikutta recently joined the Bonn branch of Racal-Milgo Lid, as sales manager, Federal Republic of Germany. Prior to joining the Racal Group, he was with Collins Radio in Frankfurt where he was in charge of their data systems. He has also worked for Siemens AG as a development and field engineer in Munich and Frankfurt.

Derek Ashby has joined I.yons Instruments Ltd, of Hoddesdon, Heris, as field sales manager. He was formerly with Marconi Instruments, first as a sales engineer and latterly as manager, factored pro-
ducts, and was at one time sales manager at Furzehill Laboratories. The company also announces the appointment of Bill Hooper as manager, quality assurance. Prior to spending a year with I.yons Instruments as a sales engineer, he had held senior quality control positions in the Royal Navy and with Sperry Gyroscope.
J. F. Dukes, appointed U.K. marketing manager of Racal-Milgo Lid, joined Racal in 1963 as a communications sales engineer. He became liaison engineer between Racal and the Tele-Signal Corporation and was instrumental in the establishment last year of a joint company between Racal and the Milgo Corporation of Miami. I'rior to joining Racal, Mr. Dukes, who is 34 , worked with Cable and Wireless Lid, from 1955 for four years, and from 1959 until joining Racal was with the Marconi Company as a communications sales engineer.

Ian Dewar, aged 33, has been appointed sales manager of ITT Electronic Services, Harlow, Essex. He moves from the capacitor division of ITT Components Group Europe at Paignton, Devon, where he has been in charge of the sales office. He joined the capacitor division in 1962.

Francis Hall, for the past two years chief engineer of the telecommunications division of CEDENCO (C. Denis \& Co.), has been appointed technical director. Mr. Hall, who is

F. Hall

46, was in the R.A.F. from 1938 until 1946 when he joined the Post Office as a telecommunications engineer. 1956 saw him in East Africa as assistant engineer in the East African Post and Telegraph Administration. He returned to England in 1962, subsequently joining the Telephone Manufacturing Co. as systems application engineer.

John Woods has been appointed marketing manager by Computer Technology Lid. Mr. Woods (37) joins C.T.L. from the Univac Division of Sperry Rand, where he became director of marketing (U.K.) His nine years at Univac included a spell with the company's Federal Systems Divison in the U.S.A. Previously, he had been with E.M.I. Electronics and Powers Samas.

Data Recognition Ltd. of Reading, manufacturers of optical document readers, announce the appointment of J. R. B. Cooper as managing director. Mr. Cooper was previously managing director of Mohawk Data Sciences (Great Britain) Lid and prior to that was a director of Automatic Input Systems Lid.
N. V. Nichols has joined LeeversRich Equipment Lid as sales engineer. Mr. Nichols was formerly with Radford Electronics Lid, Bristol, and the E.M.I, Group. The company also announces the appointment as general manager of Peter Richards, who recently joined the board. He has been with the company since 1959 and was latterly works manager.
W. F. Hawes, aged 48, has been appointed overseas marketing manager for Pye Telecommunications L.td. Mr Hawes was for two years commercial services manager, having previously had five years' experience in export sales as the Far East area manager.

The electronic research and industrial activities of Electric \& Musical Industries Ltd have been formed into one unit termed Electronics and Industrial Operations. J. M. Kuipers (EMI board director) has been appointed chief executive and P. A. Allaway (EMI board director, and previously managing director of EMI Electronics Lid) has been appointed chairman of EMI Electronics Lid. Air Vice Marshal W. E. Oulton is appointed director, publicity \& sales promotion. The Unit has been divided into four divisions each under its own manag-. ing director: Television Equipment, P. A. D. Duffell; Systems \& Weapons, D. J. George; Radar \& Equipment, F. H. Panter; and Electron Tube \& Microelectronics J. Sharpe.

Michael K. Woy, who joined Bryans L.td in 1963 as sales engineer, has become sales manager in succession to L. Crowhurst who has left the company. Mr. Woy served for eleven years in the Royal Navy in communications and a further eight years in industry.

Dr. Robert C. G. Williams, O.B.E., chief engineer of Philips Electronic and Associated Industries Ltd, has been elected president of the Institution of Electrical and Electronics Engineers for 1969/70 in succession to Sir Harold Bishop, C.B.E. Dr. Williams, who was elected chairman of the Council of I.E.E.T.E. in 1967, has been with Philips since 1947.

Electrotech Instruments, a division of Coutant Electronics, announce the appoiniment of Roy S. Bibby as a senior sales engineer. Prior to joining Electrotech Instruments, Mr. Bibby was with Advance Industrial Electronics from 1963 as an area sales engineer.

John Woodley, aged 32 years, has been appointed senior sales engineer in the Power Supply Division of Coutant Electronics Lid of Reading. He served his apprenticeship with G.E.C., and joined the company in 1959 as a group test development engineer. He was later seconded to Rolls-Royce \& Associates. From 1968 until joining Coutant Electronics, he was with Wayne Kerr Co. Lid.

OBITUARY

Henry Franklin Smith, editor of Wireless World from 1941 until his retirement in 1957, died on August 25th aged 77. Known affectionately in the radio and electronics industry as "High Frequency" he joined the staff of $W . W$. in 1925. Born in New Zealand and educated in Switzerland he joined the Marconi Company as an installation engineer in 1911 and installed the first direction finders in India. When broadcasting started he went into the domestic radio industry which he left to join W W. \mathbf{W}. When replying to the many tributes from leaders in industry at the time of his retirement he used the phrase "a journal is essentially a team and any success we have achieved is mainly due to the very capable team which I have had the privilege of leading". Those who were members of that team know the value of such a mentor.

Professor Frederick Joseph

 Hyde, D.Sc., F.I.E.R.E., died recently as a result of an accident in the swimming pool at the Royal Military College of Science, Shrivenham, where he had been professor of electrical and electronic engineering for the past year. Professor Hyde, who was 45, graduated at Birmingham University in 1943. After service in the R.A.F he returned to the University in 1947 and took his masters' degree. He was awarded a doctorate in 1963. In 1949 Dr. Hyde joined the staff of the Radio Research Station at Slough. In 1958 he left to become a lecturer in the Department of Electronic Engineering and School of Engineering Science at the University College of N . Wales at Bangor, where he became professor of physical electronics in 1965.
World of Amateur Radio

Amateurs under new P. \& T. Ministry

Responsibility for the issue and control of British amateur radio and model control licences passes on October 1st to the new Ministry of Posts and Telecommunications. All licences issued after this date are expected to be in a slightly different form, but the clauses will remain unchanged, and licences already in force will not need to be replaced. So after almost 65 years-the first British licences "to use Wireless Telegraphy for experimental purposes" were issued in 1905 -the control of amateur licences will no longer rest with the Post Office. From October 1st, all correspondence in respect of amateur and model control licences should be addressed to: Ministry of Posts and Telecommunications, Telecommunications and Radio Regulatory Department, Radio Regulatory Division, Amateur and Special Licensing Branch, Waterloo Bridge House, Waterloo Road, London S.E.1.*

- What an opportunity for a coded address!-ED.

V.H.F. and moon-bounce records

A recent A.R.R.L. listing of $v . h . f$. two-way records shows that currently all band records other than for 50 MHz are claimed by American amateurs, although Peter Blair, G3LTF, of Chelmsford, is credited with two of the special "moon bounce" records. The present records are given as: $50 \mathrm{MHz}, 12,000$ miles, LU3EX and JA6FR (1956); 144 and 220 MHz , 2540 miles, W6NLZ and KH6UK (1957 and 1959); $420 \mathrm{MHz}, 1150$ miles, W 5 LUU and WA4KFW (1965); $1215 \mathrm{MHz}^{2} 400$ miles, W6DQJ and K6AXN (1959); 2300MHz, 225 miles, W2BVU and K1DRB (1968); 3300 $\mathrm{MHz}, 190$ miles, W6IFE and W6VIX (1956); $5650 \mathrm{MHz}, 179$ miles, WA6KKK and WB6JZY (1966); 10GHz, 265 miles, W7JIP and W7LHL (1960); $21 G H z, 27$ miles, W2UKL and WA2VWI (1964); above $30 \mathrm{GHz}, 2.3$ miles, W6FUV and W6ICJ (1969). Two-way earth-moon-earth records are: $144 \mathrm{MHz}, 11,055$ miles, SM7BAE and ZLIAZR (1969); 420$\mathrm{MHz}, 5730$ miles, W'A6LET and G3LTF (1965); $1215 \mathrm{MHz}, 5492$ miles, WB6IOM and G3LTF (1969). First moon-bounce reception reports on 2.3 GHz amateur signals show that transmissions from W3GKP, Maryland, have been heard at W 4 HHK near

Memphis. The transmitter had an output power of 275 watts and a 28-ft dish aerial. Reception was achieved on an $18-\mathrm{ft}$ dish aerial using a parametric amplifier with a 9.6 GHz klystron pump. The stations hope to establish two-way contact soon.

Beginner's Licence-future uncertain

Considerable interest is still being shown in the "beginner's licence" announced in March 1968 by the then P.M.G., Mr. Edward Short. Most informed amateurs, however, are convinced that the original proposals are unlikely to be implemented by the new Ministry, although it is possible that some alternative scheme may eventually be introduced. The 1968 statement ran into considerable opposition, not least because the announcement was made by the P.M.G. without the customary full consultation between the Post Office and the Radio Society of Great Britain. Many amateurs, while they would welcome a carefully thought out scheme to encourage genuinely interested newcomers, fear that a beginner's licence could easily act as a further disincentive to enthusiasts who would otherwise persevere in obtaining full facilities, resulting in fewer applications for the traditional forms of licence. Such a trend has already become apparent since the Class B (v.h.f./telephony only) licences were extended to include 144 MHz ; these licences require applicants to pass the Radio Amateurs' Examination, but not a morse test.

Australian 1970 bi-centenary

Next year is an important year for Australia, since it was in 1770 that Captain Cook first landed there. It will also mark the diamond jubilee of the Wireless Institute of Australia, formed in 1909-10, and believed to be the oldest radio society in the world. Among the special activities, it has been announced that Australian amateurs will be able to use the prefix "AX" instead of "VK". The Australian Tourist Commission is to make available 100,000 special QSL cards. The W.I.A. is to issue a "Captain Cook Bi-Centenary Award"; the qualification, for amateurs outside Australia, will be to work 50 stations using the AX prefix. To claim the award, QSL cards need not be sent but full details of the contacts listed and a certificate signed by two other amateurs who have seen the
\log entries. Address is "Cook Award", Awards Manager, W.I.A., PO Box 67, East Melbourne, Victoria, Australia 3002.

Cheshire Homes amateurs

A new fund CHARN (Cheshire Homes Amateur Radio Network Fund) has been launched with the object of equipping Cheshire Homes with communications receivers suitable for amateur operation. At present, of the 57 Homes, three have licensed amateur stations, and four (soon to be joined by a fifth) have receivers, partly as a result of a recent Memorial Fund to the late Douglas Clague, G2BSA. The launching of the Fund coincides with the 21 st anniversary of the Cheshire Foundation. Donations to CHARN should be sent to W. M. Clarke, G3VUC, Fillace Park, Horrabridge, Yelverton, Devon (to minimise charges on the Fund, acknowledgements will be sent only on request).

Amateur Radio Show

The International Radio Engineering and Communications Exhibition-the formal title of what is more usually known as the R.S.G.B. Amateur Radio Show-opens this year on Wednesday, October 1st, until Saturday, October 4th (daily 10 a.m. to 9 p.m.) at the Royal Horticultural Society's New Hall, Greycoat Street, London S.W.1.

In Brief: A two-day convention in Cambridge on July 25 th-26th, 1970 , is being arranged in connection with the 21 st anniversary of the British Amateur Television Club . . . Scottish Mobile Rally on October 5th at Beach Ballroom, Aberdeen . . . Peterborough Mobile Rally on October 12 th at Walton County School, Mountsteven Avenue ... Anglian Mobile Rally on October 26th at Suffolk Show Ground, Ipswich . . . The F.C.C. has turned down requests from American Citizen Band operators for additional frequencies including portions of the $28-\mathrm{MHz}$ amateur band . . . Ken Smith, G3JIX (82 Granville Road, London E.17) is trying to re-establish the Wanstead and Woodford Radio Society

Stewart Perry, W1BB is appealing to American amateurs to leave the segment 1825 to 1830 kHz free for amateurs outside the United States during periods of "Top Band" long-distance operation ... A new morse code course on twelve 6.5-in gramophone records has been prepared recently by Alfred Mueller, DL1FL, and is available from the German Amateur Radio Society: DARC, 10 Beselerallee, D-23 Kiel, German Federal Republic (price 25 DM plus postage). . . . The International Amateur Radio Club, which operates the station 4U1ITU at the headquarters of the International Telecommunication Union, Geneva, reports that during 1968 the station was operated by 95 operators representing 31 countries ... Interest in the collection and restoration of early radio equipment has been growing recently, and one of the local societies now hunting for old crystal sets, bright-emitter valves, horn loudspeakers and the like is the Peterborough Radio and Scientific Society. (Hon. secretary is Douglas Byrne, G3KPO, Jersey House, Eye, Peterborough.)

Pat Hawker, G3VA

October Meetings

'ichets are required for some meetings: readers are advised, therefore, , communicate with the society concerned

LONDON

2nd. S.E.R.T.-"High fidelity reproduction of music in large churches" by D. M. Chave at 19.30 at St. Martin in the Fields, Trafalgar Sq., W.C.2.

6th. I.E.E.T.E.-"Training of technician engineers" by F. Metcalfe at 18.00 at the I.E.E., Savoy PI., W.C.2.

7th. I.E.E.-Discussion on "Frequency synthesis" at 17.30 at Savoy P1., W.C.2.
8th. I.E.E.-Discussion on "The new rules 127 (tor H.N.C. and H.N.D. in electrical and electronic engineering)"' at 17.30 at Savoy P1., W.C. 2.
8th. I.E.R.E.-"Image intensifiers for night vision and their application to television at low light levels" by D. G. Taylor at 18.00 at 9 Bedford Sq., W.C. 1 .
8th. Soc. Environmental Engrs.-"An absolute method of piezo electric accelerometer calibration" by H. Gregory at 18.00 at Imperial College, Mech. Eng. Dept., Exhibition Rd., S.W. 7.
9th. I.E.E.-"Electrical manufacture, today and tomorrow" presidential address by D. Edmundson at 17.30 at Savoy Pl., W'C. 2 .

9th. I.E.R.E./I.E.E.-"Physiology for engineers" at 18.00 at St. Bartholomew's Hospital Medical College, E.C. 1.
9th. R.T.S.-"Test methods for television receivers that employ micro-circuits" by B. J. Rogers at 19.00 at the I.T.A., 70 Brompion Rd., S.W. 3.

14th. I.E.E.-"The human necessity for automation" by P. L. Taylor (chairman, Control \& Automation Division) at 17.30 at Savoy PI., W.C.2.

14th. Radar \& Electronics Assoc.-"Microwave radio stations-aerial systems and propagation problems" by H. Cole at 19.00 at the Northern Polytechnic, Holloway Rd., N. 7 .

15th. I.E.E.-"Radio and weather" by Dr. J. A. Saxton (chairman Electronics Division) at 17.30 at Savoy Pl., W.C.2.

16th. R.T.S.-Symposium on "Diversity \& integration-a study of educational TV in Glasgow"' at 17.00 at the I.T.A., 70 Brompton Rd., S.W'. 3.

16th. I.E.E.-"The links between education and training"' by E. K. L. Lewis at 17.30 at Savoy P1., W.C.2.

16th. I.E.R.E.-"A review of Soviet Space Programmes" by Sqdn. Ldr. R. C Iravis at 18.00 at the London School of Hygiene and Tropical Medicine, Keppel St, W.C.1.

17th. Brit. Acoustical Soc.-Symposium on "Underwater acoustic propagation" at 11.00 at the Institution of Mechanical Engineers, I Birdcage Walk, S.W.1.

20th. "I.E.E--"Submerged repeater systems-past, present and future" by F. Scowen at 17.30 at Savoy PI., W.C.2.

21 st. I.E.E.-Discussion on "Multilayer printed circuits and their allied active processes" at 17.30 at Savoy PI., W.C. 2.

22nd. I.E.R.E-Presidential address of Harvey F. Schwarz at 19.00 at the London School of Hygiene and Tropical Medicine, Keppel St., W.C.1.

23rd. I.E.E./Inst. Meas. Control-Discussion on "Mechanical design of electromechanical components" at 17.30 at Savoy IP1., W.C.2.

27th. I.E.E. "A basis for a mathematical theory of direction-defining radio beacons" by C. W. Earp at 17.30 at Savoy Pl., W.C.2

27th. I.E.E. Inst. Meas. Control-"The application of digital computers to aircraft navigation and control" by Dr. G. E. Roberts at 17.30 at Savoy PI., W.C.2
28th. I.E.E./I.E.R.E.-. Colloquium on "Constructional practice for computer equipment" at 17.30 at Savoy PI., W.C.2
28th. I.E.E.-Discussion on "Recent advances in solid-state infra-red detectors" at 17.30 at Savoy Pl., W.C. 2.
29th. I.E.R.E./I.E.E.-Discussion on "The Haslegrave Report on technician courses and examinations" at 18.00 at the London School of Hygiene and Tropical Medicine, Keppel St., W.C. 1.
30th. R.T.S.-" "International aspects of television broadcasting" by E. L. E. Pawley at 19.00 at the I.T.A., 70 Brompion Rd., S.IW. 3.

CARDIFF

10th. S.E.R.T--"The IVC colour video tape recorder" by R. A. Calaz at 19.30 at the IJandaff Technical College, Western Ave.

CHATHAM

30th. I.E.R.E.-"Electronics in the ship-to-shore interface on the Kent coast" by L. Cdr. R. B. Richardson and J. E. Rees at 19.00 at the Medway College of Technology.

CHELMSFORD

6th. I.E.R.E./I.E.E.-"The trend of future world communication" by Prof. E. C. Cherry at 18.30 at the Lion and Lamb Hotel, Duke Street.

DONCASTER

16th. I.E.E.T.E.-"Mechanised teaching methods in education" by K. Holling at 19.00 at the Technical College, Waterdale.

LLANDAFF

9th. R.T.S.-"The field store converter" by E. R. Rout at 19.00 at the B.B.C.

READING

291h. I.E.E./I.E.R.E.-"Computer aided design of closed-loop systems" by P. Atkinson, R. L. Davey and V. S. Dalvi at 19.30 at the J. J. Thomson Laboratory, The University.

LATE SEPTEMBER MEETINGS

LONDON

25th. R.T.S.-"Colour television receiver development-Phase 2"' by J. W. Bussell,
R. Gray and S. C. Jones at 19.00 at the I.T.A., 70 Brompton Rd., S.w. 3 .

29th. I.E.E.T.E.-"Education and qualifications for technician engineers and technicians' by Dr H. L. Haslegrave at 18.00 at the I.E.E., Savoy PI., W.C.2.

LOUGHBOROUGH

25th. I.E.E.T.E.-"The developing role of the technician engineer" by Dr. R. C. G. Williams at 19.30 at the Technical College.

Conferences and Exhibitions

Further details are obtainable from the addresses in parentheses

LONDON

Oct. 1-4
R. Horticultural New Hall
R.S.G.B. Radio Engineering \& Communications Show
(P. A. Thorogood, 35 Gibbs Green, Edgware, Middlx)

Oct. 7 \& 8
St. Ermin's Hotel
Ultrasonics for Industry Conference
(Ultrasonics Conference and Exhibition, Dorset House, Stamford Street, London S.E.1)
Oct. 16-22
Audio Fair
(C. Rex Hassan, 42 Manchester St., London W.1)

Oct. 30 \& 31 Inst. Mechanical Engineers
Numerically Controlled Machines Conference
(I.Mech.E., 1 Birdcage Walk, London S.W.1)

BRIGHTON

Oct. 14-16
Hotel Metropole
INTER/NEPCON '69
(INTER/NEPCON '69, 21 Victoria Rd., Surbiton, Surrey)

NEWCASTLE-ON-TYNE

Oct. 28-30
Exhibition Centre

Northern Engineering Exhibition

(Engineering Industries Association, 15 Walker Terrace, Prince
Consort Rd., Gateshead-on-Tyne 8)

OVERSEAS

Oct. 6-8
Toronto
Electronics Conference
(Dr. Rudi de Buda, International Electronics Conference, 1819
Yonge St., Toronto 7, Canada)
Oct. 7-12
Ljubljana
Modern Electronics Exhibition
(Gospodarsko razstavisce, Liubljana, Titova No.50, Yugoslavia)
Oct. 7-16
Utrecht

Het Instrument

(Cooperatieve Vereniging "Het Instrument" u.a., Sparrenlaan 2, Soest, Netherlands)
Oct. $9 \& 10$ Montreal
Engineering Management Conference
(I.E.E.E., 345 E. 47th St., New York, N.Y.10017)

Oct. 15-17
W'aterloo, Ont.
Switching and Automata Theory Symposium
(Prof. J. A. Brzozowski, Dept. of Applied Analysis and Computer
Science, University of Waterloo, Ontario, Canada)
Oct. 18-26
Genoa
International Communications Fair
(Fiera di Genova, Casella Postale 1834, 16100 Genova, Italy)
Oct. 26-30
Anaheim, Cal.
Mathematics and Computer Aided Design
(J. F. Traub, Computing Science Research Center, Bell Telephone

Lab., Murray Hill, New Jersey 07974)
Oct. 27-29
Washington
Electronics and Aerospace Systems Convention
(H. P. Gates, EASCON '69, P.O. Box 2347, Falls Church,

Virginia 22042)

Answers to ${ }^{6}$ Test Your Knowledge" ${ }^{\prime} 17$ Questions on page 487

1. (d) The change of energy may be due to an electron changing to an orbital of lower energy, a change in electron-spin alignment or a change in molecular configuration (it is assumed that the atom(s) is not radioactive; nuclear disintegrations are not considered).
2. (d) For this reason gases, in which the atoms can be regarded as isolated from each other except when they collide, exhibit "resonant absorption".
3. (a) The emitted photon is in phase with, and travels in the same direction as, the stimulating photon.
4. (c) This is known as a "population inversion"; it can never occur naturally (in thermodynamic equilibrium) however high the temperature.
5. (b) The two energy levels concerned are associated with different molecular configurations; a non-linear electric field has a different effect on molecules in the two configurations.
6. (a) The ammonia maser cannot be tuned; it can only operate over a band of frequencies 10 kHz wide at a nominal frequency of 24 GHz .
7. (a) Electrons associated with the chromium ions make the transitions which cause both the maser and laser actions. The energy levels concerned in the two cases are, of course, quite different.
8. (c) The two energy levels associated with the emission depend on different electron-spin alignments with an applied magnetic field. The energies of the two levels change if the field strength is changed. Note that the ruby is mounted in a slow-wave structure, not a resonant cavity, and there is no applied electric field.
9. (a) The pumping signal raises the electrons to a higher energy level from which they quickly fall into the desired upper level (which is metastable).
10. (a) Chromium-ion electrons are pumped into energy bands associated with the normal ruby absorption in the green and blue, from which they quickly fall into a metastable level, the upper level for the laser action.
11. (b) Population inversion cannot be achieved directly or indirectly by the application of heat.
12. (c) Helium atoms raised to excited states by the applied discharge transfer their energy to neon atoms with which they collide. This causes a population inversion between various levels in the neon.
13. (c) In the initial build-up of oscillations the gain in traversing the gas must be greater than the loss at reflection. Mirrors are used which reflect energy efficiently at the desired frequency but not at the other.
14. (b) Laser action occurs when the current exceeds a certain threshold value.
15. (a).
16. (b) It is the very high Q of the optical cavity used in the gas laser which gives the light its very high degree of coherence.
17. (a) The upper energy level associated with the maser action has significant occupancy at room temperature. From this we infer that at room temperature a great deal of random emission will take place, thus introducing noise and making population inversion difficult. The upper energy levels associated with laser action, on the other hand, all have negligible occupancy

BULGIN DESK-TO-DOOR SIGNAL KITS

FOR COMPLETE OFFICE CONTROL

For harassed Executives who find continual interruption disturbing their activities this Systent will prove invaluable.
Three messages, ENTER, ENGAGED. WAIT, can be indicated immediately to each caller, or shown continuously if complete privacy is required. The caller presses the button on the Door Unit which activates the buzzer in the office. the occupant simply operates the appropriate lever on the Desk Switch to illuminate the desired message. It also assists Staff who have instant and clear indication of the occupants availability.

THOUSANDS ARE NOW IN DAILY USE GIVING SATISFACTION TO DIRECTORS AND CHIEF EXECUTIVES OF GOVERNMENT AND MUNICIPAL AUTHORITIES AND LEADING COMPANIES IN ALL PARTS OF THE WORLD.
STANDARD COLOURS: WHITE, WALNUT or GREY MAINS OPERATED £6-15-0. BATTERY OPERATED E5-19-6.
FOR DETAILS OF THE COMPLETE KIT SEND FOR BROCHURE 1519/C

A. F. BULGIN \& CO. LTD., BY-PASS ROAD, BARKING, ESSEX MANUFACTURERS OF PRECISION ELECTRONIC \& ELECTRICAL COMPONENTS TELEPHONE: 01-594 5588 (12 LINES) Private Branch Exchange

Literature Received

For further information on any item include the appropriate $W W$ number on the reader reply card

SEMICONDUCTORS

We have received the following information from Ferranti Lid, Gem Mill, Chadderton, Oldham, Lancs.

35. Micro-E transistors, thermal ratings and mounting techniques WW401
36. A photo darlington pair
37. A low-power high-efficiency output stage using ZT3866 transis-
tors
38. A low-Q bandpass amplifier design using ZT3866 transistors WW403
39. A v.h.f. ring divider
Ferranti Semiconductor catalogue June '69
E-Line transistor applications

The latest catalogue of LST Electronic Components Litd, 7, Copifold Rd, Brentwood, Essex, is now available. It lists a wide range of semiconductor and passive components

WW408
A 60-A logic triac is the subject of bulletin EN-2538 from International Rectifier, Hurst Green, Oxted, Surrey

WW409
E.C.S. (Windsor) Ltd, Thames Ave, Windsor, Berks, include a large selection of semiconductors and other components (including a.f. amplifier kits) in their latest catalogue

WW410
"National semiconductor op amp guide" is a leaflet available from Athena Semiconductor Marketing Co. Ltd, 140 High St, Egham, Surrey WW411

PASSIVE COMPONENTS

Two new leaflets available from Electrosil Lid, P.O. Box 37, Pallion, Sunderland, Co. Durham, are:

Micro-R, dual-in-line resistor module
WW412
Dual-in-line pick-a-back connector
WW413
The Aug/Nov 1969 Radiospares catalogue is now available from Radiospares, P.O. Box 427, 13-17 Epworth SI, London E.C.2.

WW414
The catalogue of Associated Automation Lid, 70 Dudden Hill Lane, London N.W.10, lists a variety of reed, mercury and conventional relays

WW4 15
Precision rotating components are described in a catalogue from Muirhead Lid, Beckenham, Kent. Included are synchros, resolvers, tachos, motors etc.
Engineering bulletin ATB published by Sprague and available from W.E.L. Components L.d, 5 Loverock Rd, Reading, Berks, describes polarized aluminium electrolytic capacitors

WW417
A leaflet from the Dynalco Corp., 4107 N.E. 6th Ave, Ft. Lauderdale, Florida 33308, describes relay tachometers

WW418

EQUIPMENT

An all-semiconductor 19 -inch PAL colour video monitor (RHE19) is the subject of a leaflet from the Marconi Co. Lid, Chelmsford

WW419
Microspot cathode ray tubes and coils, electronic display equipment, industrial valves and photon devices are briefly described in an abridged catalogue from the Electronic Display Department of Ferranti Lid, Gem Mill, Chadderton, Oldham, Lancs.

A booklet on the current range of Unicam spectrophotometers is available from Pye Unicam I.rd, York St, Cambridge CB1 2PX

WW421

The first member of the CC. 1200 series of cassette recorders (for analogue and digital data) made by the Avionics Division of A. \& M. Fell Ltd, F.G.A. Works, Denton, Newhaven is described in a leaflet available on application

WW422

Application Note 93 "Statistical Analysis of Waveforms \& Digital TimerWaveform Measurements" is a comprehensive 60 page survey of measurements that can be made with Hewlett-Packard multichannel analysers. Copies art available from Hewlett-Packard Ltd, 224 Bath Road, Slough, Bucks. WW423

GENERAL INFORMATION

Two new publications from the British Standards Institution, British Standards House, 2 Park St, London, WIY 4AA are:-

BS 9002, Qualified parts list for electronic parts of assessed quality, price 10 s . BS 9070, Specification for fixed capacitors of assessed quality: generic data \& methods of test, price 30 s .

A course to be held at Hendon College of Technology, The Burroughs, Hendon, London, N.W.4, on computer programming (Fortran) is described in a leaflet.

H. F. Predictions-October

> Median standard MUF $=-=-=$ Optimum traffic trequency .$--\quad$ Lowest usable H F

The prediction curves show the median standard MUF, optimum traffic frequency and lowest usable frequency (LUF) for reception in this country. Unlike the standard MUF, the LUF is closely dependent upon such factors as transmitter power, aerials, and type of modulation. The LUF curves shown are those drawn by Cable \& Wireless Ltd, for commercial telegraphy and assume the use of transmitter power of several kilowatts and rhombic aerials.

The effects of sporadic-E ionization are becoming less significant as winter conditions set in, and this month it is unlikely that sporadic-E will permit operation above the MUF. Day-to-day variations in height and density of the ionospheric layers give a standard deviation of 12 to 20% of the MUF shown on the charts. Greatest variance occurs at equinox periods during sunspot maximum as at present.

ideal for development.. cheaper for production

PVC coated materials $=$ No outside paint to be scratched, PVC easy to clean, surface is scuff resistant.

PVC/aluminium for front and back panels PVC/steel for sides, top and bottom
3 heights of case, 4 widths, 2 depths

Low cost
Modern design

Good delivery
\qquad
$=$ Rigidity, low cost and ease of assembly.
$=24$ cases with screws on top and 24 cases with screws on side, that's 48 cases.
$=$ Prices include chassis.
$=$ Metal work on front and back and chassis is made easier by aluminium, with PVC steel cladding for strength.
$=$ Believed to be the first off the shelf range of all PVC coated material cases.
Easy ordering by code $=$ Return of post service
letter
Economy of size, $24=70$ cubic inches to 2200 cubic inches sizes, 48 shapes

Genuine modular design
Stainless steel
screws used
throughout
6 chassis sizes and many chassis positions on $\frac{1}{2}$ " centres

For other West Hyde products please see previous advertisements

X		Y z		cost 1 off	5 off	10 off	P. \& P.
A	4.5	3	6.5	29/6	29/-	28/9	3/-
8	4.5	7	6.5	36/6	35/6	34/6	4/6
C	4.5	10	6.5	46/6	45/6	44/6	4/6
D	9	3	6.5	46/6	45/6	44/6	4/6
E	9	7	6.5	49/6	48/6	47/6	4/6
F	9	10	6.5	58/6	57/6	56/6	4/6
G	. 13	3	6.5	49/6	48/6	47/6	4/6
H-	13	7	6.5	58/6	57/6	56/6	4/6
1	13	10	6.5	69/6	68/6	67/6	6/-
J	18	3	6.5	58/6	57/6	56/6	4/6
K	18	7.	6.5	79/6	77/6	76/6	6/-
L	18	10	6.5	106/-	104/-	103/-	6/-
M	4.5	3	13	36/6	35/6	34/6	4/6
N	4.5	7	13	49/6	48/6	47/6	4/6
O	4.5	10	13	69/6	68/6	67/6	6/-
P	9	3	13	49/6	48/6	47/6	4/6
0	9	- 7	13	69/6	68/6	67/6	6/-
R	9	10	13	79/6	77/6	76/6	6/-
S	13	3	13	58/6	57/6	56/6	6/-
T	13	7	13	79/6	77/6	76/6	6/-
U	13	10	13	99/6	98/-	97/-	7/6
v	18	3	13	79/6	77/6	76/6	6/-
W	18	7	13	106/-	104/-	103/-	7/6
X	18	10	13	129/6	127/6	126/-	7/6
		sin inc			-stock. Re	of post	

LOW COST-FROM 29/6d. TO 129/6d. Laminated PVC Aluminium and PVC Steel.
Printed circuit chassis will fit into H, I, K, L, T, U, W, X.

WEST HYDEDEVELOPMENTS LTD. 30 HIGH STREET NORTHWOOD MIDDX. Telephone: Northwood 24941

the world's most advanced high fidelity amplifier

The Sinclair IC-10 is the World's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, which has an output power of 10 Watts, is a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick. This tiny chip contains 13 transistors (including two power types), 2 diodes, 1 zenor diode and 18 resistors, all of which are formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. Monolithic I.C's. were originally developed for use in computer and space applications where their extraordinary toughness and reliability were even more important than their minute size. These same advantages make them ideal for linear applications such as audio amplifiers, but hitherto they have been confined to low power applications. The IC-10 thus represents a very exciting advance. Not only is it far more rugged and reliable than any previous amplifier, it also has considerable performance
advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.
The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of the usual tone and volume controls and a battery or mains power supply. However, the IC-10 is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout) etc. The photographic masks required for producing monolithic I.C's. are expensive but once made, the circuits can be produced with complete uniformity and at very low cost. So we are able to sell the IC-10 at a price far below that of the components for a conventional amplifier of comparable power. At the same time, we give a 5 year guarantee on each IC-10 knowing that every unit will work as perfectly as the original and do so for a lifetime.

10 WATT MOMOUTMME MNTERRATED CHRECITM AMPIFIER

Specifications

Power Output
Frequency response Load impedance
Power gain
Supply voltage
Size
Sensitivity
Input impedance

Total harmonic distortion Less than 1% at full output.
10 Watts peak, 5 Watts R.M.S. continuous.
5 Hz to $100 \mathrm{~Hz}+1 \mathrm{~dB}$. 3 to 15 ohms.
$110 \mathrm{~dB}(100,000,000,000$ times $)$ total. 8 to 18 volts. $1 \times 0.4 \times 0.2$ inches. 5 mV .
Adjustable externally up to
2.5 M ohms for above sensitivity.

- Circuit Description

The circuit diagram of the IC-10 is shown on the right. The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. The output stage operates in class $A B$ with closely controlled quiescent current which is independent of temperature. A high level of overall negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages. Thus battery operation is eminently satisfactory.

Construction

The monolithic I.C. chip is bonded onto a gold plated area on the heat sink bar which runs through the package. Wires are then welded between the I.C. and the tops of the pins which are also gold plated in this region. Finally the complete assembly is encapsulated in solid plastic which completely protects the circuit. The final device is so rugged that it can be dropped thirty feet on to concrete without any effect on performance. The circuit will also work perfectly at all temperatures from well below zero to above the boiling point of water.

Photograph shows the IC. 10 magnified abou 1.200 times. Below i shown the 13 transisto circuit of the Sinclair IC-10.

Applications

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity uses. These include public address, loud-hailers. use in cars, inter-com., stabilised power supplies, electronic organs, oscillators, volt meters, tape recorders, solar cell amplifier, radio receivers. The transistors in the IC-10 have cut off frequencies greater than 500 MHz so the pre-amp section can be used as an R.F. or I.F. amplifier making it possible to build complete radio receivers without any additional transistors.

Z 30

0.02\% DISTORTION AT FULL POWER OPERATES IDEALLY FROM 8 TO 35 VOLTS

SIZE $3 \frac{1}{2} \times 2 \frac{1}{4} \times \frac{1}{2}$ ins.
FREQUENCY RESPONSE FROM 20 Hz TO 30 kHz

USE IT FOR HIGH FIDELITY MUSIC INSTRUMENTS, ECONOMY RECORD PLAYER, P.A., INTERCOM, ETC.

Built, tested and guaranteed, with 2.30 manual

89'6

AT THE INTERNATIONAL AUDIO \& PHOTO-CINE FAIRS OLYMPIA, OCT. 16-22 STAND 95 • SECTION C

THE WORLD'S LOWEST DISTORTION HIGH FIDELITY AMPLIFIER

For four years, the Sinclair $Z .12$ dominated the constructor world, being the best selling unit of its kind this side of the Atlantic. Excellent as it was, the new Sinclair $\mathbf{Z .} 30$ is still better. Half the size of the Z.12, it has more than twice the power, very much greater gain and a level of distortion 50 times lower. This incredible figure results from using over 60 dB of negative feedback with a constant current load to the driver stage obtained by incorporating a two-transistor circuit in place of the more usual boot-strapping. 9 silicon epitaxial planar transistors are used to provide enormous power (up to 25 watts RMS continuous sine wave (50 watts peak)). The circuitry of this marvellous amplifier allows it to be operated from any voltage from 8 to 35 to perfection. At all output levels, distortion is only 0.02%. This puts true laboratory standards into the hands of every user of a 2.30 . Two $\mathbf{Z . 3 0}$ s and a new Stereo Sixty will make a stereo assembly of such perfection that it could not be bettered in its class no matter how much you spent. But the Z. has an enormous variety of applications, particularly where quality, precision and reliability are essential. Yet this brilliant new Sinclair design costs not a penny more than its famous predecessor.

- Input Sensitivity-250 mV into 100 Kohms
- Signal to noise ratio-better than 70dB unweighted
- Class AB output
- Power requirements 8 - 35 volts from batteries or PZ.5

GUARANTEE
Should you not be completely satisfied with your purchase when you receive it from us, return the goods without delay and your money will be refunded in full, including cost of relurn postage, at once and without question. Full service faclities are avallable to all Sinclair customers

SINCLAIR RADIONICS LIMITED 22 NEWMARKET ROAD, CAMBRIDGE Telephone: 022352731

This attractive and completely new unit is intended for use with two new $\mathbf{Z . 3 0}$ amplifiers to provide the finest possible standards of stereo reproduction. Four press buttons and four rotary controls are used to provide on-off, three input selectors and Volume, Bass cut/boost, Treble cut/boost and Stereo balance. The on-off button also switches the power amplifiers. The front panel in brushed aluminium is flush mounted to the cabinet front, it being necessary only to drill holes to accommodate the controls. Rear adjustable brackets hold the chassis tight to the cabinet. The very latest ganged rotary controls are used to afford compactness and extra long working life free from noise.
The Stereo-60 may also be used with 2 IC-10's or any other high performance amplifiers.
Frequency range: Radio \& Aux. $20-25,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$ Pick-up corrected to within $\pm 1 \mathrm{~dB}$ for R.I.A.A.
inputs:
Overload factor
Distortion:
Signal to noise ratio : Controls:

Slze: Finish:
equalisation.
Radio, pick-up (magnetic, ceramic or crystal), Auxiliary,
$>20 \mathrm{~dB}$ per channel on all inputs.
0.03\%.

Better than 70dB unweighted.
Press buttons for on-off, P.U., radio and aux. Treble +15 dB to -15 dB at 10 kHz . Bass +15 dB to -15 dB at 100 Hz . Volume. Stereo Balance.
$81^{\prime \prime} \times 1 \frac{1}{2}^{*} \times 4^{\prime \prime}$ from front to back, plus knobs.
Brushed aluminium with black titling, knobs and press buttons.

PZ. 5 POWER SUPPLY UNIT

A new heavy duty mains power supply unit designed specially to drive two Z.30s and a Stereo Sixty. New compact design.
For AC Mains, $200-240 \mathrm{~V} / 50 \mathrm{~Hz}$. $£ 4.19 .6$

AT THE INTERNATIONAL AUDIO \& PHOTO-CINE FAIRS

OLYMPIA, OCT. 16-22 STAND 95•SECTION C

APEAK SOUND

present PA. 25-15

A NEW 25 WATT POWER AMPLIFIER MODULE

Unsurpassed for power and quality

25
WATTS
RMS
INTO
15Ω

Abstract

Based on a design by Reg Williamson and described in Hi-Fi News for their Twin Twenty Mk. II, this designerapproved power amplifier module is for the specialist seeking the very finest possible standards of audio reproduction. It has a conservatively rated output of 26.6 watts R.M.S. into 15 ohms and withal, is exceptionally compact and robust. The sub-miniature output transistors are housed between the underside of the baseboard and outer shield which serves also as heat sink. The power bandwidth is 20 to 20.000 Hz at less than 0.25% distortion at 20 watts. Total distortion at 1 KHz for full power of 26.6 watts into 15 ohms never exceeds 0.05%. The PA. 25-15 incorporates the very latest semiconductor devices' in a fully complementary Class \mathbf{B} configuration. Details of the required power supply unit available very shortly.

A superb specification
Output at 1 KHz into 15 ohms- 26.6 watts R.M.S. Acceptable to speakers from 8 to 15 ohms Frequency response at 1 watt20 Hz to $120 \mathrm{KHz}(-3 \mathrm{~dB})$ Power bandwidth for -1 dB at 20 wat tess than 0.25% distortion- 20 Hz to 20 KHz imput sensit vity for 26.6 watts output- 500 mV into 500 K ohms Signal to
f11.15.0 (add $2 / 6$ p.p.p if
ordered difect) noise ratio better than -80 AB Power requlrements -68 volts DC.

PEAK SOUND ES.10-15 BAXANDALLSPEAKER
as described in "Wireless World'

This is a true high-fidelity speaker which. within its range, is equal to some of today's finest instruments. With a 10 watt R.M.S. Ioad capacity, frequency response from 60 to 14.000 $\mathrm{Hz}(10 \mathrm{~Hz}-10 \mathrm{KHz} \pm 3 \mathrm{~dB})$ and 15Ω impedance. this Baxandall triumph is supplied exactly to the designers' approval. The Peak Sound Kit is supplied complete and ready for immediate assembly, and includes Afrormosia teak finished cabinet size $18^{\prime \prime} \times 12^{\prime \prime} \times 10^{\prime \prime}$. This is the speaker that Mi-Fi News described as Rolls-Royce'

Equaliser assembly 36/- (p.p. 1/6): Speaker Unit 42/9 + 10/2 P.T. (p.p. 5/-): Cabine Assembly $\mathbf{5} 6.3 .6+12 / 8 \mathrm{P} . \mathrm{T}$. (carr. 8/6)
f10.2.3

+ E1.2.9 x-over for woofer if required 22/6(p.p.3/6).
(carr. 12/6)

OTHER PEAK SOUND PRODUCTS

PA.12-15 medium power 12 watt power amplifier module£5.19.6 (p.p. 2/6). Power unit PU. 45 for same. " Cir - Klt^{2} adhesive copper strip for circult building. SCU. 400 high fidelity pre-amp/tone control unit.

From your usual dealer or direct in case of difficulty. Trade enquiries invited.

It is a 5 mm tubular L.E.S. E5/8 cap. overall length 15 mm Just one of the many Vitality 1nstrument and Indicator Lamps, made in an unusually large number of types, ratings and sizes. It may be just what you need for an existing or new project. If not, another from the hundreds of types and ratings detailed in Vitality Catalogue 69 may well be.

* Many a product owes its success to the intelligent addition of an indicator light

VITALITY BULBS

VITALITY BULBS LTD., MINIATURE AND SUB-MINIATURE LAMP SPECIALISTS BEETONS WAY, BURY ST. EDMUNDS. SUFFOLK. TEL: 02842071.

AT LAST!
 THE WELBROOK
 A NEW STEREO AMPLIFIER (Patent applied for)
 DESIGNED BY IAN M. SHAW AND
 DESCRIBED IN THE JUNE 1969 ISSUE OF "WIRELESS WORLD"

ALSO AVAILABLE:
Amplifier P.C.B. Modules as used in the above amplifier, built and tested.
MONO AMP. 103 £8

A brilliant development. Produces quality hitherto unattainable at such a price.
The unique circuit eliminates distortion rise at low levels. For only

$£ 48$

Completely enclosed panel mounting, Teak Cabinet $\mathbf{f 4}$ extra.

DETAILED ILLUSTRATED LITERATURE AVAILABLE ON REQUEST.
Trade enquiries invited

WELBROIK

 ENGINEERING \& ELECTRONICS LTD.
BROOKS STREET, STOCKPORT, CHESHIRE, SK1 3HT. 061-480 4268.

WW-117 FOR FURTHER DETAILS

TYPE 6042 uses an F.E.T. Chopper followed by a solid state a.c. amplifier with large open scale output meter.

4 RANGES
$10-0-10 \mu \mathrm{~N}$ FD
$30-0-30 \mu$ FSD
100-0-100 N NSD
300-0-300 N N FSD
Input Resistance 14.000Ω
Noise $\quad<0.15 \mu \mathrm{~N}$ peak to peak
TYPE 6040 uses a photo chopper input,
covers from 1-0-1 $\mu \mathrm{V}$ FSD to $1-0-1 \mathrm{~V}$ FSD in 7 ranges. Input Resistance $100 \mathrm{~K} \Omega$
Output 200mV max.

Make a reliable contact with Oxley P.T.F.E. insulated 'Barb' Plugs and Sockets. Subminiature and miniature versions for chassis or printed circuit mounting. OXLEY DEVELOPMENTS COMPANY LTD. Priory Park, Ulverston, North Lancs., England.

OXLEY ${ }^{\circ} \varnothing$ Tel : Ulverston 2621. Cables: Oxley Ulverston. Telex: 6541

WW- 120 FOR FURTHER DETAILS

Who's ever heard of an electronics company offering record tokens? You can have the records of your choice, when you buy 74 N Series Integrated Circuits from WEL. No catches - no competitions, just buy the value of $\mathbf{£ 1 0}$ or over - the bigger the order the more valuable the token.
Give your order to our representative and he will give you your record token on the spot or post the order and we will send your token by return. The offer is open until December 31 st 1969.
"WEL's Fargo" for record delivery of TEXAS, FERRANTI or SPRAGUE 74N Series Integrated Circuits at manulacturers' factory prices.

audio
 tone burst generator

Frequency range 1 Hz to 20 kHz
Signal starting and stopping phase can be varied $\pm 30^{\circ}$ approx.
Pedestal output +5 Volts
Synchronising pulse +5 Volts 10μ secs.
Counts On and Off 2, 4. 8, 16, 32, 64, 128 cycles Price $£ 125.0 .0$

Kelly Acoustics

Romagna,
6. Bycullah Avenue,

Enfield, Middlesex
Telephone 01-363 7890

A SOLDER'S BEST FRIEND IS HIS GUN

From the Burgess All-electric Workshop : a light, balanced solder gun with a range of screw-in tips. The tips-and only the tips-heat up in 7 short seconds, Antithermal casing keeps the rest of
the gun cool. Note the slim
barrel-it reaches right down into
confined spaces. There are spike-like extension barrels for real 'in-deep' work. A prefocused lamp pinpoints work detail. Fail-safe soldering even for delicate work! The price of this tough, modern instrument? Just $£ 4126$ complete with two tips, a $6^{\prime \prime}$ extension barrel, a double-ended probe and solder. FREE 24-PAGE CATALOGUE! For details of the Burgess instant heat solder gun, plus other equipment in the Burgess All-Electric Workshop, write for a free copy of our informationpacked catalogue.

Burgess Products Company Limited, Electric Tools Division, Sapcote, Leicester LE9 6JW.

WW-124 FOR FURTHER DETAILS

Thank you

> Thomson Television (International) Limited, television consultants to His Highness the Ruler of Abu Dhabi, wish to thank the manufacturers and suppliers whose co-operation made possible the successful inauguration of Abu Dhabi Television within four months from the date of Thomson Television (International)'s appointment as consultants.

THOMSON TELEVISION (INTERNATIONAL) LIMITED

Thomson House, 200 Gray's Inn Road, London, W.C.I.
Cables: Thomsonews London Tel: oI-837 1234

SPECIALIST SWITCHES

are again giving the fastest switch service in the world

FROM THEIR NEW AND LARGER PREMISES IN CHARD, SOMERSET

Specialist Switches make Rotary and Lever switches, types H, DH, HC, and LO, to specification. There is one limitation (standard 2 in . long spindles), but this is not important when you are getting the fastest switch service in the world.

Delivery of 1-20 switches: 24 hours.
Up to 50 or so: 72 hours.
If you want around 250 or so: 7-10 days.
Please note our address:
SPECIALIST SWITCHES P.O. Box 3,

CHARD, SOMERSET
Write for design charts and prices or TELEPHONE—CHARD 3439

Celestion

Studio Series

Loudspeakers for

 the Perfectionist Hear the famous 'DITTONS'you've read so much about, and let your ears be the judge. See the A.B.R. proved by Strobeflash demonstration. VISIT STAND № 2
 international

AUDIO \& PルOTO-CLNE FAIRS

OLYMPIA 16-22 OCTOBER 1969

ROLA CELESTION LTD., Ferry Works, THAMES DITTON, Surrey 01-398 3402 WW-126 FOR FURTHER DETAIIS

HIGH SPEED MAGNETIC COUNTERS ($4 \times 1 \times 1$ in.) ${ }^{4}$ digit e日. P.P. 1/-. -

PYE OHMMETER TYPE 10B. 500v. test. . 3 meg. ohm20 k . meg. ohm. $200 / 250 \mathrm{v}$. A.C. Brand new instrument $\mathbf{£ 3 0}$. P.P 30/-

POT CORES TYPE LA 3. 10/- ea.
71 WAY PLUG \& SOCKET (Painton Series 159) Gold plated contacis with hood \& retaining clips. $30 /$ - pair.
50 WAY PLUG \& SOCKET (U.C.L. miniature). Gold plated contacts 20/- palr. 34 way version 15/- pair.
VALVE MILLIVOLTMETER (Marconi TF899) 0-2v. complete with R.F. probe $£ 8 / 10 /-$ op. $10 /$ -
LOGIC BOARDS with 31 ACY40s- 38 diodes etc 20/- ea. P.P. 2/6.

CO-AX RELAYS (magnelic devices) 1 change-over 12 v.w. 20/- ea.
LOGIC BOARD. Comprising 4 complete binary circuits. Can be converted into shift registers or counters 30% - ea.
Diode Logic Board. 10 inputs. 4 Outputs. 10% Connection deta supplied.

TRANSFORMERS

E.H.T. TRANSFORMER $2100-0-2100 \mathrm{v}$ v $40 \mathrm{~m} / \mathrm{a} .75 / \mathrm{C}$ P.P. ${ }^{10}$
E.H.T. TRANSFORMER (Parmeko 'Neptune') $3,000 \mathrm{v}$ 280 m.a. E12/10/0, P.P. 50/

PRECISION CAPACITANCE JIGS. Beauthully made俗 TC CRVELA TYpe 2. 9.5pf-11.5pf. E6 ea.
$1 \mathrm{~K} / \mathrm{c}-20 \mathrm{M} / \mathrm{C}$ LOCKED OSCILLATOR (SVnthesiser). Precision crystal oven. Locks osclilator at each $100 \mathrm{~K} / \mathrm{c}$. Separate locked oscillator from $0-100 \mathrm{~K} / \mathrm{C}$. £150 in excellent condition

PATTRICK \& KINNIE

81 PARK LANE •ROMFORD - ESSEX
ROMFORD 44473

KING OF THE PAKS
 SUPER PAKS
 NEW BI-PAK UNTESTED SEMICONDUCTORS

Batisfac
Pak No. ${ }_{120}$ Giane Bub-mina. General Purpose Gernanium Dlodes... U2 60 Mixed Germadium Transigors AF/ RE $\begin{array}{ll}\text { U3 } & 75 \text { Germantum Gold Bonded Dlodes sim. OA5, OA } 77\end{array}$

U7 16 silicon Rectifers Top-Hat 750 mA up to $1,000 \mathrm{~V}$.
U8 30811 . Planar Dhoden 250 mA OA/200/202
U9-20 Mixed Volts 1 watt Zener Diod
U11 30 PNP Bilicon Planar Tranulntors TO-5 sim. 2 N 1132.

U13 30 PNP-NPN Bil. Trankistors OC200 \& 281

 \begin{tabular}{ll}
\hline $\mathbf{U 1 6}$ \& 10 3-Amp Bilionn Rectifers Stud Type up to 1000 P1 \bar{V}.

\hline U17 \& 30 Germanium PN P AF Transitors TO-5 like ACY $17-22$.

\hline U17 \& 30 Germanium PNP AF Transietors TO-5 like ACY $17-22$

018 \& B6-Amp BiIl con Rectifera BYZ 13

\hline U19 Type up wo 600 PIV

\hline
\end{tabular} U19 30 Bificon NPN Tranisistors like BC108. .

 U22 101 -amp Glans Min. \&llicon Rectifiern High Volts. | U23 | 30 Madt's like MAT Beries PNP Transiators......... |
| :--- | :--- |
| U24 | 20 Germanium 1-amp Rectiflen (OJM up to 300 PIV | U25 $25300 \mathrm{Me} / \mathrm{B}$ NPN Billcon Transistors 2 N 708 , B8Y27 U28 30 Past B witching silicon Diodes like IN914 Micro-min U28 Experimentern' Asomitment of Integrated Circuits. unteste Gates, Flip-Flops, Registers, etc.. 8 Asmorted Fitces. U30 15 Plantic Bilicon Planar trans. SPY 2N 2924-2N2926 U31 20 But. Planar NPN trans. Jow' nolse Amp 2N3707. USI2 25 Zener diodes 400 mW D07 case mixed Volta, 3.18 U33 15 Plantic chse 1 amp Bliticon rectithers 1 N 4000 set USB 25 Bli. Platiar trins. PNP TO-18 2N2006.

 037,30 Bil. Alloy trans. $80-2$ PNP, OC200 28322
 U40 20 Duaitratile 6 lead TO-5 2N2160. U41 30 RF Germ. Trans. TO-1 OC45 NKTí2.

Code Nos, mentioned ubove are given an a guide to the ty
the Pak. The devices themselves are norimily unasked

Bran Seviconvicioin (DEPT. WW.)

QUALITY-TESTED PAKS
6 Matched Trama. OC4/45/81/81D .. 10/ 20 Red Spot AF Trans. PNP
16 White spot BF Trams. PNP
Silucon Rects. 3 A 100.400 P1
10 Alicon kects. 100 PIV
10 A Suicon Rects. 100 PIV
OC1 140 Trisne NPN Swityling
12 A 8 R 100 PIV 8il. Trana. 29303 PNP
 Zober Dlodeen IW 33V 3\% Tol...
High Current Trans. Ocie2 Eqvi. Eigh Current Trans. OCA2 Eqvi.
Power Transistory 1 OC28 1 OC3s
Sulicon Recte. 400 PIV 250 mA 5 sulicon Recta. 400 PIV 250
OC75 Transitnra OA202 sul. Diodea sub-min Low. Nolse Trans. NPN 2N929/30
SH. Trann. NPN VCB 100 ZT80 1 Diodes. ${ }^{0} 0 \mathrm{OC7}$ Tranaintor
81, Rects. 400 PlV 500 ma
OET884 Trans. Eqvt. GET884 Trais. Eqvi. OC4 2N708 8u. Trane. Soo Mc/s. NPN
OT31 LF Low Nolve Germ Tran
PNP
PNP IN914 sil. Diodes 75 PIV 76 mA 8 OA95 Geerm. Dloodes Sub-rpit. IN69
3 NPN Germ. Trant. NKT73 Eq ${ }_{\mathrm{O}}^{\mathrm{AC} 22}$
OC25 Power Trans. Germ
AC128 Trater Trans. GNP High O ACl27/128 Comp. palr PNP/NPN
 AFIl6 Type Trina..........
Ansorted Germ. Diodes Marked ACl20 Germ. PNP Trans.
Bilicon Rects. 100 PIV 750 AF117 Trubs.
OC81 Typ Tran
OC171 Trans,
2N2928 81. Epoxy Tr
OC71 Type Trana.
25701 sil. Trane. Texas
10 A 600 PlV 84 . Rects. 1845 R 3 BClos sli. NPN High Gain Tran
 2 1000 PIV Bil. Rect. 1.5 A RB3310 A
3 H8Y05A Sul. Trans. NPN $200 \mathrm{Mc} / \mathrm{s}$. OCz00 811. Trans. 8il. Power Recta. Byzis Si. Power Trans. NPN Loome. 2encr Diodes 3-15V Sub-min. 2N697 Epltaxial Planar Tranar Bull.

 2N2712 Su. Epoxy Mlanar HFE225 2 N 2712 gu. Epoxy Planar HFE2
BYI 100 Type BL. Rects.... Miled...

CLOSED CIRCUIT TY SYSTEMS

 These are Peto Scott Industrial TV systems the following being supplied: Vidicon, Camera Contral Unit, 8 in Vidicon, Camera Control Unit, 8inMonitor, 50 fe of Camera cable, mains Monitor, 50it of Camera cable, mains good condition fully tested in working order with all circuits. some units have Pye monitors. Price $£ 135$ plus $\mathbf{C 2}$ carr.

STUDID CAMERA

This is a Peto Scost scudio camera and comprises camera fitted 4 lense curret and Vidicon, also view finder, camera I9in monisor, camera cable etc. These are complese except for camera lenses they are not tested except for Vidicon this is tested prior to dispatch. full service manuals are supplied with units. This camera requires an external syn generator. Supplied in good condition . 405 line Syncice 685 plus $£ 3$ carr P.U. \& Waveform convertor for above camera with circs. Price 115

RADIO TELEMETER UNIT

These are a low frequency $R \times$ working on 120 Kk for use on 230 y , mains, they can easily be modified to 200Ke Radio 2, ram amp. Uses valves ECF82x3, 6BE6 2BH7, 6BA8 as 31° Spk., 2 low speed mosors, Tape Rec head with cape loop, 3 relays, 3 Rotswes, 2 solenoids, 2 mains crans., coils, cimers, knobs ect. Complece
make in good condition with circ \& mods for 200 Kc . Price $\mathbf{6 3 . 5 . 0}$, plus 7/6 carr.

TRIPOD AND BASE
Heavy dusy industrial tripod supplied complete with wheeled base and manual condition head fiesed levels. In good

E.M.I. PAN AND TILT HEAD

This is an electrically operated unit EMI type RA604 for use on 230v mains supplied complete with control box and
50 fe of cable, provision for Auto or Manual Pan. In new condition and sested Price $£ 30$ olus 11 carr

VIDED SELECTOR SWITCHES

These are a Lesdex driven remote selector switch with I pole 10 way 10 way selection of Audio circs each Video o/p as 2 sockets. These are fitted standard TV coax. sockers and all plugs are supplied, Lesdex coil I K ohm with motoring contact. Ex equip in good condition. Price $\mathbf{5 0 / - p l u s} 7 / 6$ carr.

BLOWER UNITS

These are a cwin ouclet blower unic mounced in a l9in rack cabines. Motor Hyp SOc/s 4.4 amp 2700 R.P.M. 2 phase end with condenser, blower size each overalles $\sin ^{2}$ Dia Outes 3 o $\times 3_{2} 1 n$. U.S.A.f., sood condition.

Price $\mathbb{2}$ 10s. plus 15/- carr.

A.H. SUPPLIES

 57 Main Road • SHEFFIELD S9 5HLSend SAE for list, Open Mon., Wed., Fri. and Sat.

We supply B.A. Screws, etc. in brass, steel, stainless, phosphor bronze and nylon to laboratories throughout the Commonwealth.
We can also offer early delivery for many sizes of screws, etc. with Metric Threads

Please send for List W2/69 (WW)
WALKER-SPENGER COMPONENTS LTD.
5, High Street, Kings Heath, Birmingham, 14. Telephone: 021-444 3155 (Sales) and 5278

WW-131 FOR FURTHER DETAILS

J E S AUDIO INSTRUMENTATIONs

Illustrated the Si 451 Millivoltmeter - pk-pk or RMS calibration with variable control for relative measurements. 40 calibrated ranges $£ \mathbf{£ 0 . 0 . 0}$

Si 452
£25.0.0. Distortion Measuring Unit. $15 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s}$ - $.01 \%$ J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (OWR62) 2501 BRADFORD ROAD, CLECKHEATON, YORKSHIRE

NO EXCUSES! NO DELAYS! FROM STOCK! VARIABLE VOLTAGE TRAMSFORWIERS

50 AMPS

INPUT 230 v. A.C. 50/60 OUTPUT VARIABLE $0 / 260 \mathrm{v}$. A.C. BRAND NEW. Keenest prices in the country. All Types (and spares) from to to 50 amp . available from stock. $0-260$ v. at 1 amp. $\operatorname{lS} 100$ $0-260 \mathrm{v}$. at 2.5 amps . .. 86150 $0-260$ v. at 4 amps. <900 $0-260$ v. at 5 amps..... 69 IS 0 $0-260$ v. at 8 amps. 14100 $0-260$ v. at $10 \mathrm{amps} . . . \mathrm{\&} 1810 \quad 0$ $0-260$ v. at 12 amps . $0-260$ v. at 15 amps. $0-260 \mathrm{v}$ at 20 amps. ... $\frac{1}{} 0250$ $\begin{array}{ll}0-260 \mathrm{v} \text {. at } 20 \mathrm{amps} . \text {. . } £ 37 & 0 \\ 0 \\ 0-260 \mathrm{v} \text {. at } 37.5 \mathrm{amps} . ~ & \$ 72 \\ 0 & 0\end{array}$ - 260 v. at 50 amps. . .. $c 9200$ 20 DIFFERENT TYPES AVAILABLE FOR IMMEDIATE DELIVERY

INSULATION TESTERS (NEW)

Test to I.E.E.
Spec. Rugged metal can-
struction. suitable for
for bench or for bench or
field work.
constan
speed clutch.
size L. Bin.

500 VOLTS, 500 megohms
Price $\mathbf{E} 8$ carriage paid.
1,000 VOLTS, 1,000 megohms,
£ 34 carriage paid.

5Amp.AC/DC VARIABLE VOLTAGE OUTPUT UNIT Input 230
Output $0-260$ V. A.C Output $0-260$ v. A.C
Outpur $0-240$ v. D.C Fitred large scale am meter and voltmeter Neon indicator, fully used. Strong attracrive metal case $15 \mathrm{in} . x$ 8tin. X6in. Weight 24 b. Infinitely variable. moothstepless voltage Similar in appearance to illustration below

LATEST TYPE SOLIO STATE VARIABLE CONTROLLER

 Ideal for lighting and heating ei cuits, compact panel mounting. Buil in fuse protectio nput 230 AC output $25-2$
5 mmp model 88.7 .56
10 amp model $13.5{ }^{6}$
SPEEDIVAC HIGH VOLTAGE HIGH FREQUENCY GENERATOR nput $100 / 110$ voles or $200 / 250$ voles AC/DC. Output 19KV variable. Ideal for testing insuasion, vasuum, leakage path, gas discharge lamps, neon etc. A useful ozone and HF supply, Manufacsured by Edwards High Vacuum Led
Brand new in maker's polished wooden carrying case. Offered at rraction of maker's price

SERVICE TRADING CO

Postage and Carriage thown
below are inland ont below aye
Oversasa
quotation.
lespe a cataloze do por

LIGHT SENSITIVE SWITCHES Kit and parts including ORP. 12 Cadmium
Sulphide Photocell. Relay Transistor and Circuit. Now supplied with new Siemens High Speed Relay for 6 or 12 vole oper arions. Price $25 /$, plus $2 / 6 \mathrm{P}$. \& P . ORP 12 and Circuit 10/- pos: paid.

220/240 A.C. MAINS MODEL

porates mains transformer rectifier and special relay with - LIGHT SOURCE AND PHOTO CELL MOUNTING
Precision engineered light Precision engineered ight source
with adjustable lens assembly and with adjustable lens assembly and
ventilated lamp housing to take $02=$ MBC bulb. Separate photo cell mounting assembly ORP. 12 or similar cell with optic window. Both units aresingle hole fixing. Price per pair $\mathbb{E 2 / 1 5 / 0}$ plus $3 / 6$

VAN DE GRAAF ELECTROSTATIC
GENERATOR, fitted with motor drive for 230 v. A.C. siving ${ }^{2}$ potential of approx. including accessories for carrying out including accessories for carrying out a ${ }^{2}$ mber of interesting experiments, and full
instructions. This instrument Is instructions. This instrument is
completely safe. and ideally suited for School demonstrations. Price
$E 7 / 7 /-$, plus $4 /-\mathrm{P}$. \& P. $L^{\circ} \mathrm{t}$. on req.

RADIO ALTIMETER

This precision Inserument is based on a 24 v. D.C. LOW
INERTIA INERTIA (integrating) Motor. precision pots through close
 precisionce gear.erains, includin toleracsion of tramin, including slipping clutch. Offered Iraction of manufacturer's price: $32 / 6$, plus 6% P. \& P. LATEST TYPE SELENIUM BRIDGE RECTIFIERS 30 vole 3 amp ., $11 /$, plus $2 / 6 \mathrm{P}$. \& P.

AUTO TRANSFORMERS. Step up, step down. Illo-200-220-240 $v_{\dot{p}}$. Fully shrouded. New. 300 watt P, \& P. 6/6. 1,000 wase cype $5 / 15 / \mathrm{l}$ each, P. \& P. $7 / 6$ COPPER LAMINATE PRINTED CIRCUIT
BOARD. Large sheer $15 \frac{1}{2} \times 5 \frac{1}{4} \mathrm{in} .3$ for 10% pose paid. 8OARD. Large sheet $15 \frac{1}{2} \times 5 \frac{1}{4} \mathrm{in} .3$ for 10% pose paid.
(3 minimum order). SEMI-AUTOMATIC "BUG" SUPER SPEED'
MORSE KEY MORSE KEY
speed adjustable
high destable 10 w.p.m. so as a

NEW MODEL
HIGH FREQUENCY TRANSISTORISED MORSE OSCILLATOR Adjustable tone control. Firzed wish moving coil speaker also earpiece for personal monitoring. Complete wish
morsekey. $45 /-$ plus $3 / 6 \mathrm{~d}$. p. \& p.

NICKEL CADMIUM BATTERY

 1.2 v. 35 AH. Size 8 high $\times 3 \times 1$ f. $30 /$ each, plus $4 /$ Sincered Cadmium Trpe 1.2 v. 7AH. Sizes height 3 lin.. width 2 fin. \times I tinin. Woight: approx. 13 ozs.Ex-R.A.F. Tested $12 / 6$, P. \& P. 2/6.

DRY REED SWITCHES

$2 \times$ lamp Dry Reeds (makes contacts) mounted in 870 ohm $9.18 v$ coill size
$8 / 6$ per pair Pose Paid.
8 $8 / 6$ per pair. Pose Paid. 6 of the above mentioned units (12 Reeds, 6 coils) ficted in mew 45/- each. Poit Prid. Telephone Dials (New) 14/6d. Post Paid. $2 \overline{250}$. A.C. SOLENOID Heavy duty type. Approx. 316 .
$17 / 6$ plus $2 / 6$ P. \& P. 12 v. D.C. SOLENOID approx. Ilb. pull. $10 / 6$, P. \& P
50 v. D.C. SOLENOID approx. 1 lb . pull. $10 / 6$, P, \& P. $1 / 6$.
50 Y. D . SENOID 50 V. D.C. SOLENOID

PRECISION INTERVAL TIMER

 From $0-30$ seconds (repetitive). Jewelled balanced movement. Lever re-set.Operates 230 v. A.C. 5 amp. c/o microoperates switeh. Equipment sested. $17 / 6$, plus
2/6 P. \& P

CONDENSERS

$\begin{array}{llllll}\text { New at a fraction of maker's price. } & & & \\ 2,500 \mathrm{mfd} .100 & \mathrm{v} . . . & 12 / 6 & 4,000 & \mathrm{mf} . & 25 \\ \mathrm{v} & . . . & 10 /- \\ 10,000 \mathrm{mfd} .35 & \mathrm{v} . . . & 15 / \mathrm{m} & 4,000 & \mathrm{mfd} . & 50 \\ \mathrm{v} & \ldots & 15 /-\end{array}$

Latest American. New. Plastic THYRISTOR 400 P.I.V. 8 amp . Data sheer. $19 / 6$ post paid.

MINIATURE UNISELECTOR

banks of 11 positions, plus homing bank. 40 ohm coll.
$24-36$ v. D.C. operation. Carefully removed from equipment and

UNISELECTOR SWITCHES NEW
4 BANK 25 WAY FULL WIPER
25 ohm coil, 24 v. D.C. operation.
6 BANK 25 WAY FULL WIPER
25 ohm coil, 24 V. D.C. operation.
8-BANK 25-WAY FULL
WIPER
24 v. D.C. operation, $\mathbb{1 7 / 1 2 / 6}$, plus 4/-P. \& P.

RELAYS BULK PURCHASE ENABLES US TO OFFER THE FOLLOWING NEW SIEMENS PLESSEY, EtC. MINIATURE PLUG IN RELAAYS COMPLETE WITH BASE, AT A HIGHLY COMPETITIVE PRICE			
coll	WORKING		
${ }_{280}^{080}$		contacts	PRICE $14 / 6$
700	9-18		
700 700	-	${ }^{2} \mathrm{clo}$	(1216
700	$16-24$	4 M 2 B	$12 / 6$
	${ }_{20} 20$		$12 / 6$
2500	30-50	2 clo Heavy Dut	126
9000	40-70	${ }^{2} \mathrm{Cl}$	10\%

230 VOLT AC RELAYS

230 volt AC Coll. Thr contacts, $17 / 6$ Post Paid.

contacts, $17 / 6$ Post Paid.
LONDEX four c/o 3 am
coneacts. I8/6, incl. base. Pose Paid.
MINIATURE RELAYS
30-36 v. D.C. operasion. $2 \mathrm{c} / \mathrm{O} 500$ M.A. contacts. 3.200

 Arailable in black, red, white. yellow, blue and green. New
Y $1 / /$ per doz. P. \& P. $2 /$.

SANGAMO WESTON

Dual range volemeter. $0-5$ and $0-100 \mathrm{~V}$
D.C. FSD 1 mA. In carrying case wit
A.C. AMMETERS 0-1, 0-5, $\overline{0-10}, \overline{0.15}, \overline{0-20}$ amp.F.R.
$2 \ddagger$ in. dia. Allat $21 /-$ each.
A.C. VOLTMETERS 0.25
v., 0.50 v., 0.150 v. M.I
$2 \nmid \mathrm{ln}$. Flush round all as $21 /$ each. P. a P. P. extra.

BODINE TYPE N.C. 1 GEARED MOTOR (Type 1) 71 r.p.m. torque 10 lb . in.
Reversible $1 / 70$ th h.p. 50 cycle. 38 amp .
 Type 2) 28 r.p.m. Lorque 20 lb in reversible $1 / 80 \mathrm{hh}$ h.p. 50 cycle .28 amp . The above two precision made U.S.A. motors are offered in 'as new' condition. Inpur voltage of motor $115 v$ A.C. Supplied complete with transformer for 230/240v A.C. input
Price, either type $\mathbf{2 2 . 1 7 . 6}$ plus $6 / 6 \mathrm{P}$. \& P. or less trans These motors are ideal for $\mathbf{~ P}$.
ideal for rotating aerials, drawing 230 v. GEARED MOTOR (as itlustrated) 10 R.P.M 230 V.P.A.C. non-reversible, approx.
 .716.in. Price $45 / \mathrm{o}$, plus $3 / 6 \mathrm{P} .2$
LARGE DIGIT 12 v. D.C MAGNETIC COUNTER 4 in , drum, calibrated $1-9$. Fizures Itin
high $\frac{3}{3} \mathrm{in}$. wide. Set of 1 m , 1 b , Itlo contacts operated by drum cam. The units can be used in pairs and are ideally sulted for batch or lap recording or for the many purposes wher Price 1916 P. P.

VEEDER ROOT COUNTER 230 V, A.C. 50 cycle 5 figure counter
(non resetable). $18 / 6$, P. \& P. I/6.
$0-300 \mathrm{v}$. A.C. Rect. M-Coil 14 in. T.... 23
$0-300 \mathrm{v}$ A.C. Rect. M-Coil 3 tin. Type

'AVO' MODEL 47A

Ex-Admiralty in firse class condition, complete
$\& 9 / 19 / 6$, P. \&
AVO' MODEL 48A
Ex-Admiralty in good condition with instructlons, leads plus D.C. Shunts for 120 Amp and 480 Amp. A.C. Transformer for 60 Amp. and 240 Amp. Muletiplier for 3600 volt.
Complete ousfit in fitted case. $615 / 0 / 0$, P. \& P. $10 /$.
DEMONSTRATION TRAMSFORMER STENZYL TYPE) Two removable coils are apped 2t ${ }^{\text {and }} 6$. 12, 36 voles respectively. A composite apparatus designed for class demonstration. Electro magnetic induction, jumping ring,
induction lamp, relationship between field intensity and
 ampere turns, induct
melting, are juse a few of the assible experiments. New modified model. $214 / 10 / \%$ P. \& P. 10/.
L.T. TRANSFORMERS

All primaries $220-240$ volts

Type No. 34 Sec . Taps
$10,32,34,36 \mathrm{v}$. at 5 mps.
$30,32,34,36 \mathrm{v}$. at 5 amp
$30,40,50 \mathrm{v}$, at 5 mps .
$10,17,18 \mathrm{y}$ at 10 amps .
6, 12 v . at 20 amps.
$17,18,20 \mathrm{v}$. at 20 amps.
$6,12,20 \mathrm{v}$. at 20 amps.
24 v .2 at 10 amps.
24 v. at $10 \mathrm{zmps}$. $291 / 2$ 55

SERVICE TRADING CO.
SHOWROOMS NOW OPEN AMPLE PARKING

Whear for Intenreted Birenits

PA237. 2 WATTS CONTINUOUS POWER INTO 16 OHMS

This amplifier requires a rypical input voltage of 8 mV (or 120 mV with feedback) for 2 watts continuous power output. A single power supply of between 9 and 27 Volts will provide useful power out.
 34/-

PA234. 1 WATT CONTINUOUS OUTLINE	
POWER INTO 16 OHMS	AS PA237

AS PA237
This very popular amplifier offers a full one watt output for a very modest cost. It is mounted in a similar package to the PA237. illustrated above.

PA230. THE IDEAL PRE-AMP FOR ANY OF THE ABOVE POWER AMPLIFIERS

21/-

A low noise. low level audio pre-amplifier, the PA230 is ideal for use with audio power amplifiers. It is mounted in a dual-in-line package similar to the PA237 but without the heat transfer tab. A minimum voltage gain of 4.000 times is featured together with an output voltage swing of 9 V pk 10 pk . (minimum). In closed loop applications, with a gain of 200. the distorion is iypically 0.05% and the input noise voltage is $2 \mu \mathrm{~V}$.

LINEAR I.C.S. FOR ALL YOUR REQUIREMENTS

 RCA type CA3000 OC amplifierRCA type CA3001 Video amplife
RCA type CA3001 Video ampliffer
RCA type CA3011 Wide-band amplifier
RCA type CA3011 Wide-band amplifier
RCA type CA3020 $\frac{1}{2}$ Wat Wide-band amplifier
RCArype CA3028A Differentia//cascode amp. (120MHz)
RCA type CA3029 Operational amplifier
RCA type CA3035 Uitrahlghgainamplifier
RCA type CA3035 Ulira high gain amplifier
Mullard type TAA23 Video amplifier
Mullard type TAA263 A. F. amplifier
Mullard type TAA293 General purpose amplifier
Mullard type TAA3 10 Record/playback pre-amplifier
Mullard type TAA 320 MOS L.F. amplifier
G.E. type 2N5306 Darlington pair
G.E. type D13TI Programmable UJ
G.E. type D13TI Programmable UJT

Full technical data sheets are avaliable for all the devices liated above at $1,10 / 8$ purchased with i.c. These data sheets may be purchased separaiely at $1 / 6 \mathrm{~d}$ each post free.

DIODES \& TRANSISTORS IN STOCK

Diodes											
AA119		1544	1/1	acta	a/	BC214L		2N696		2N2925	5/3
AAY11	2/6	15134	5/3	asyz6	6/2	8CY70	$5 / 4$	2N697	5.	2N2926	3.
Aa215	3/3	15940	1/.	asy27	\%	$8 \mathrm{Cr71}$	10/4	2N706	$3 / 3$	2N3053	68
BAY38	3/1	Transistorn		ASY28	6/2	BC772	4%	2N1132	10/9	2N3055	19\%
0447	2.			ASt	6	80121	, 71	2N1302	3/111	2N3702	315
$\begin{aligned} & \text { OA91 } \\ & \text { OA202 } \\ & \text { IN34A } \end{aligned}$		${ }^{\text {ACY17 }}$	4/1	ASY29		BF184		2N1303		2N3703	
		aCY18 ACYIS ACY20		BC107	3/3	gFY50	5.	2N1304		2N3704	3/9
			5/3	$\begin{aligned} & \mathrm{BC} 10 \mathrm{~B} \\ & \mathrm{BC109} \end{aligned}$	3/1.	$\begin{aligned} & \mathrm{BFY51} \\ & \mathrm{BYY52} \end{aligned}$		2N1305	8	2N37052N3707	
			4/6				5.	${ }^{2 N+306}$			3/4.
INEO	4- ACY 21		411	8C1824	1/2	BSY95A	311	2N1307	$6 / 5$	2N3708	2/5
IN64	4.	ACM22	$2 / 10$	вC1834	2/5		11	2N1308	$9 / 6$	2N3815	\%
IN82A	$9 / 6$	$\mathrm{A}^{\text {Cl3 }} 3$	18/-	BC184t	3/2	TIS49 IIS50		2 NT 309	$9 / 8$	2N3820	1819
in87a		$\begin{aligned} & \mathrm{ACP} 40 \\ & \mathrm{ACP}_{41} \end{aligned}$		$\begin{aligned} & 8 C 2121 \\ & B C 2131 \end{aligned}$	$\begin{aligned} & 3 / 9 \\ & 3 / 9 \end{aligned}$			2N2906	13. $4 / 4$	2N40582N 4059	3/5
in914								2N2974			
Send NOW for our Componens Catalogue at onty 2 - post free. This catalogue is packed with information on a host of up to the itr nute components by leading manutacturers. Included ala Integrated Carcuits. Silicon and Germanium !ransistors. Olodes, Recifiers. Resistors. Capacitors. Plugs and Sockets. etc. Please note that ali goods supplied ay us are brand new and guaranteed to fuly contorm to the manutacturei's pubished specifications OISCOUNTS: Order value ovet $\mathbf{5 5}-10$ per cent: Order value ovet $£ 10-15$ pet cent Cash with order please											

MTHOCTIOBR pracilchl Hetrinics

NEW WIDEBAND H.F. COMMUNICATIONS RECEIVER

A Significant Advance in Design. For all Engineers - Amateur and Professional
This unconventional iriple conversion design is for single sideband and double sideband reception. It incorporates advanced techniques including "up conversion" and covers the frequency range 2 MHz to 28 MHz . A built-in crystal comparator ensures accurate alignment. Optional arrangements for local oscillator and other unusual features add to the versatility of this forward-looking design.

AUDIO GENERATOR

an indispensable accessory for audio enthusiasts. Neat modern styling makes this unit a most suitable companion for the Hi-fi equipment in the lounge, or an impressive addition to the workshop test gear. It is a self-contained battery-operated instrument covering frequencies from 15 Hz to 200 kHz . with low distortion sine or square wave output through a calibrated attenuator.

FREE! CIR-KIT

for use in building one of the two modules making up the audio generator

OCTOBER ISSUE OUT NOW 3/-

PıFi RALFE 10 Chapel St London N.W.I Phone $01-7238753$

URGENT COMMUNICATION TO ALL RESEARCH ENGINEERS AND OTHERS WISHING TO STRETCH BUDGET.

WE CAN SUPPLY IN QUANTITIES STOP TRANSISTORISED
FULLY VARIABLE CURRENT LIMITING P.S.U. TYPE 4D LANGBOURNE DYNAMICS STOP
XX DC VOLTAGE RANGE HIGHLY STABILISED 3V-3OV STOP
CURRENT LIMITING FROM A FEW M'AMPS TO 3 AMPS STOP
HAS SENSING FOR REMOTE CONTROL OPERATION STOP
CONDITION NEW EX MANUFACTURERS STOP FULLY PROTECTED
AND ENCLOSED FOR BENCH USE STOP SIZE 12" DEEP x 5" x $5^{\prime \prime}$
INPUT 110/250V AC STOP CAN SHIP ANYWHERE NOW AGAINST
OFFICIAL ORDER OR C.W.O. STOP PRICE INCLUSIVE OF PP
£20 EACH STOP PLEASE INFORM FINANCE DEPT NETT SAVE £I8 FINISH

1 ADVANCE CONSTANT POTENTIAL POWER SUPPLY-TYPE DC6
Inpur 200-245 $\pm 15 \%$. Outpue 24 v. D.C. at 5 amps. Supplied brand new complete with front panel, neon indicator, fuse protected, mains input plug, etc. Normal price over 135 . We supply with guarantee for $\mathrm{E} 17 / 0 / 0$. Post/packing 15/:
A.E.I. MINIATURE UNISELECTOR SWITCHES
No waiting straight off the shelf and into your equipment the Catalogue Nos. are 2202A, 4/33A63/1; coil resistance is 250 ohms. Complete with base, and the price is $£ 4 / 19 / 6$. Limited quantity only available.

0.600 v. 0.500 mA

A.E.I. STABILISED P.S.U. R2130 Ourputs D.C. $0-600 \mathrm{v}$. Adjustable in one continuous range + Unstabilised D.C. voltage of $\mathrm{VO}+120$ ro $\mathrm{VO}+220 \mathrm{v} .+$ two independent 6.3 v . A.C., centre tapped outputs 5 amp each. Brand new. Boxed. $£ 45$.
A.E.I. HIGHLY STABILISED P.S.U. Illustrated below is the well-known R2141 transistorised variable power supply. $3-53 \mathrm{v}$. D.C. at 1 amp . These units are offered brand new. Boxed at E22/0/0 plus post/packing 20/-.

BRADLEY D.C. CALIBRATOR-TYPE 126

 This instrument is essential for the accurate calibration of meters/oscilloscopes and provides accurate voltages up to $2,500 \mathrm{v}$. D.C. For lab. use at 2 mA . Ripple 0.05%. Accuracy $\pm 0.5 \%$. Range $0-2,500 \mathrm{v}$. in 50 v . steps. Polarity positive or negative with respect to earth. Percentage deviation $\pm 5 \%$ of output voltage (calibrated control). Supplied in perfect condition at 660.
LEVELL TRANSISTOR A.C. VOLTMETERS TYPE TM2

These small portable meters will measure down to 50 microvolts to 500 v . at frequencies up to 30 KHz . Input impedance 1.8 megohms. These very popular meters have many applications in the field of electronics, may be used as voltage amplifier/microvolt indicator, etc. Powered by 9 v. battery. Offered in good condition, little used, at $£ 18 / 10 / 0$, post/packing inclusive.

POLYSKOP TYPE SWOB I. 0.5400 MHz . POLYSKOP TYPE SWOB II. $0.5-1,200 \mathrm{MHz}$. Both instruments are offered in excellent condition. Please write for further details.

DIGITAL VOLTMETERS!

Digimeter Type B.I.E. 2123 is a fully transistorised multi-range instrument possessing the following distinctive features
Electrical characteristics:
D.C. Ranges: 10 mv to 400 volts in four ranges (1,000 volts for positive voltages). Accuracy: the greater of $\pm 0.1 \%$ of \pm I digit. A.C. Ranges: 100 Mv to 250 volts RMS in three ranges.
Brand new with handbook $\mathbf{E 9 2} / 10 / 0$.

Marconi TF913 AM/FM signal generator Marconi TF894 audio tester $10 \mathrm{c} / \mathrm{s}-12 \mathrm{KHz}$ Marconi TF899 A.C. millivolemeter. Marconi TFI95 BFO range 0-40 KHz Marconi TF195 BFO range 0 - 40 KHz Marconi TFI 400 double pulse gener
Marconi TF723A crystal calibrator ${ }^{\text {Marconi TF762C UHF signal generator } 200^{\circ}-10}$
Marconi TF762C UHF
400 MHz
Marconi TF340 output power meter
Marconi TF340 output power meter
Marconi TFII 102 amplitude modulator
Marconi TF1102 amplitude modulator
Marconi TFI104 television sweep
Marconi TF675B pulse generator
Marconi TF45SE wave analyser
Marconi TF886A circuit magnification ... $£ 125$ Marcon TF329G/ circuit masication meter $\mathbf{6 7 5}$ Marconi TF1345/2 digital frequency meter
with 2 plug-ins. Range continuous to 220
MHz. As new
Price
635
615
612
E12
290
690
645
45

\& 15

Marconi As 990 A/4RF X band signal generator 2325
Marconi Type 6456 dual trace plug-in for
TF2200 oscilloscope.
Marconi TFI44G signal generator $85 \mathrm{KHz}-$
25 MHX
HIGH VOLTAGE TRANSFORMER
A.l grade. Input 240 V . tapped down to 200 v . Output $0-2,560$ and $2,820 \mathrm{v}$. at I amp. Offered at only E15. Weight 75 lb . Post/packing 25/-.

MULLARD HIGH SPEED VALVE TESTER Complete with over 500 cards in excellent condition, ready to work. Our price 245 , post/packing 25/-.

MARCONI VHF FM TELEPHONE

 TRANSMITTERComplete with matching receiver these items are offered brand new with control unit and speaker. Ideal for marine use. Write for further details.
Advance Counter Timer TCIA £75
Advance Counter Timer TCIA
Dawe Stroboflash. Calibrated in RPM to
12,000. Excellent condition.. $£ 30$

RF ATTENUATORS-ADVANCE TYPE A 38
These attenuators are contained in a screened cast case and are suitable for the audio to VHF range up to $300 \mathrm{Mc} / \mathrm{s}$. Input level 0.5 wates max. Impedance 75 ohms. Arrenuation 80 dB in steps of 20 dB . Weight 9 oz. Panel mounting. List price 610. Special offer price 85/- post paid.

SPECIAL EQUIPMENT COOLING BLOWERS

Manufactured by Woods of Colchester. Totallyenclosed eype with good airflow makes these blowers suitable for cooling T / X valves and equipment. For 115 v. A.C. operation. Supplied new and boxed. Price $60 /=$, post/packing $5 /-$.

PORTABLE NON-SPILLABLE 12 VOLT 4 AMP/HOUR LEAD ACID BATTERIES These are a very modern type battery fully sealed but not dry charged. They are terminated with screw terminals. Brand new and guaranteed, with full instructions. The size is about the same as the Perdio portable TV type batteries and you the Perdio portable TV type batteries and you
know how much they were. Our price is $45 /$ if you are still guessing, the size is roughly 4 in. If you are still guessing, t.
square. Post/packing $2 / 6$.

EDDYSTONE DIE-CAST BOXES

Contains sensitive amplifier originally intended for amplification of P.E. cells. C/W input socket, amplification of P.E. cells. (mains) amplifier, fully fuse signal lamp P.S.U. (mains) amplifier, fully
eransistorised. Brand new $32 / 6$. Post/packing 2/6.

BECKMAN HELIPOTS

Type A 30 K ohms. Ten Turn \ddagger spindles supplied. New, boxed. Price only $47 / 6$ each.

BURNDEPT RF PLUGS

These difficult-so-obtain plugs, suitable for the Londex aerial c/o relay and many other types of equipment, are offered new, ex. equipment at $4 / 6$ each. Post/packing 6d.

AT LAST-Surplus to Requirements Pairs of 4×250 series valve-bases. The bases are of the forced-air type, heavily silver plated. Insulation is P.T.F.E. Supplied as new, fitted to base plate. Price 69/6 per pair. Post/packing 3/6.

SIGNAL GENERATORS

Marconi CT 218. Marconi TF 867A.
We stock a wide range of R.F. Signal Generator. Let us know your requirements.

DIRECT CURRENT AMPLIFIER

Contains "Brown Convertor", for continuous balance system and associated circuit. Complete less valves (5). Brand new. 50/-. Post/packing 4/6.

ENOLANDS LEADING COMPONENT \& EOUIRWENT GENTLES SOLID STATE-HIGH FIDELITY AUDIO EQUIPMENT
 Mono or Stereo Audio, Equipment deviloped from Dinsdale Mk.II-each unit or system will compare favourably with other professional equipment selling at much higher prices.
 COMPLETE SYSTEMS FROM
 £15.5.0
 THE FINEST VALUE IN HIGH FIDELITYCHOOSE A SYSTEM TO SUIT YOUR NEEDS AND SAVE POUNDS

 All units available separately.
 SEND FOR FREE BROCHURE (No. 21) TODAY/ DEMONSTRATIONS DAILY AT '3O3' ED WARE ROAD

 INTEGRATED TRANSISTOR AMPLIFIERS MAGE 12 WATTS STEREO MAGE 12 WATTS STEREO Wo ate pleased to otter two new doligns with the choice of either mono or uereo ©utem: These BRITISH OESIGNED UNITS favour the use e in mo many ways-
 MAT MONO OO R THE STEREO YB. 10.0 POST PACKING $5 /-$
 f8.10.0
 mab
 $\mathrm{£} 16.10 .0{ }^{\text {OPTIONAL MAINS UNIT }}$

 Acclaimed by everyone
 The MAYFAIR

 THE MAYFAIR BROCHURE 9
 brochure 9
 includes 165 ctansistiors. printed circuits panel, special Poly sprung and depth of touch adjusted keyboard. attractive
 The GROSVENOR
 vapparately Including the Os Console at f 65.18 .0 .
 teeny available or 'GRO
 THE GROSVENOR KITS FROM E220 BROCHURE 98
 PRACTICAL ELECTRONICS - ELECTRONIC ORGAN KIT
 ORGAN COMPONENTS: COMPLETE RANGE IN STOCK. 19 AND 61 NOTE KEYBOARDS - 2 TO 5 AMP GOLOCONTACTS COILS ANN CHOKES. REVERBERATION SPRINGS ANOUNITS STOP TABS AND ASSEMBLIES. PEDAL BOARDS. RHODIUM AND GOLD CLIO WIRE, ALSO PAINTED CIRCUITS ETC. COMPLETE RANGES FOR TRANSISTORISED ORGANS. ASK FOR NEW PRICE LISTS WITH DETAILS. LEAFLET GB
 \qquad

HI-FI equipment to suit EVZRYPOCKZI

VISIT OUR NEW HI-FI CENTRE at 309 EDGWARE ROAD
AND SAVE UP TO E. 40 ON SEPARATE UNITS OR THE SYSTEM OF YOUR CHOICE for all leading makes
AMPLIFIERS
TUNERS
DECKS
SPEAKERS
MICROPHONES
TEST EQUIPMENT HEADPHONES
CARTRIDGES, etc.
All with

Terrific Savings
It will PAY YOU
COMPLETE SYSTEMS from £46 -Saves $\mathbf{£ 1 2 . 1 0 . 0 \text { ! }}$
to pay us a VISITI
Send for new 8 -pegaillustroted Hi-Fi list $16 / 17$.

Fully Illustrated CATALOCUE

 The most COMPREHENSIVE-CONCISE-CLEAR COMPONENTS CATALOGUEComplete with 10/- worth discount vouchers FREE WITH EVERY COPY

* 32 pages of transistors and semi-conductor devices, valves and crystals.
* 210 pages of components and equipment
* 70 pages of microphones, decks and. $\mathrm{Hi}-\mathrm{Fi}$

6,500 ITEMS

 320 BIG PAGES303. Edgware Road, London, W.2. Mail Order Dept. all types of Components, Organ Dept. (01) 723-100s/9 309 Edgware Road, London, W.2. High Fidelity Sales, P.A. and Test Equipment, Record Decks (01) 123-0303

| CURRENT RANGE OF BRAND | NEW L.T. | |
| :---: | :---: | :---: | :---: | :---: |
| TRANSFORMERS. | FULLY | SHROUDED |
| (| | |

*Completely enclosed in beautifully finished metal case fitted with two 2 -pln American sockets, neon indicator, on/off switch, and carrying handle.

Sameson's

9 \& 10 CHAPEL ST., LONDON, N.W.I 01-723-7851

01-262-5125

Abstract

HIGH GRADE POTTED CHOKES BY FAMOUS MAKERS. NEW. GUARANTEED $20 \mathrm{H} .200 \mathrm{~m} / \mathrm{a} .30 / \mathrm{F}$. P. \& P. $7 / 6.20 \mathrm{H} .180 \mathrm{~m} / \mathrm{a} .27 / 6$. P. \& P. $7 / 6.15 \mathrm{H} .18 \mathrm{~m} / \mathrm{a}, 25 / \mathrm{c}$ P. \& P. $7 / 6.12 \mathrm{H} .200 \mathrm{~m} / \mathrm{a} 23 \mathrm{l}$. P \& P. \& P. $3 / 6.15 \mathrm{H} .75 \mathrm{~m} / \mathrm{a}$. $12 / 6 . \mathrm{C}$. \& \& P. $3 / 6.5 \mathrm{H}, 100 \mathrm{~m} / \mathrm{a}$. $6 / 6$. P. \& P. $2 / 0.0 .75 \mathrm{H} .450 \mathrm{~m} / \mathrm{z}$. $15 / 0$. P. \& P. 4/6.

PARMEKO NEPTUNE SERIES EHT TRANSFORMERS Pri Tapped $200-250 \mathrm{v}$. See. $3 \mathrm{kV} 58 \mathrm{~m} / \mathrm{z}$. 4 v . $1 / 1 \mathrm{~A} .10 \mathrm{kV}$ GRESHAM POTTED TRANSFORMERS Pri Tapped 200-250v. Sec. $475-0-475 \mathrm{v} .160 \mathrm{~m} / \mathrm{a} .215-0.215 \mathrm{v}$. $50 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v} .8 .2 \mathrm{~A} .6 .3 \mathrm{v}, 5 \mathrm{~A} .6 .3 \mathrm{v}, 0.75 \mathrm{~A} .5 \mathrm{v}, 3 \mathrm{~A} .85 /-$.

 P. \& P. 10/Pri Tapped 200-250v. 5ec. $415-0-415 \mathrm{v}, 160 \mathrm{~m} / \mathrm{a}, 165 \mathrm{v}$. 155 m / a. $6.3 \mathrm{v} .3 \mathrm{~A} .6 .3 \mathrm{v} .1 .6 \mathrm{~A} .6 .3 \mathrm{v} .1 .6 \mathrm{~A} .5 \mathrm{v} .2 .8 \mathrm{~A} .75 / \mathrm{H}$
 $6.3 \mathrm{v}, 1 \mathrm{~A} .6 .3 \mathrm{v}, 0.5 \mathrm{~A}$. $17 / 6$. P. \& P P, $4 / 6$.
Pri Tapped
$200-250 \mathrm{v}$ Pri Tapped $200-250 v$. Sec. $27-0-27 v .0 .3$ A. 28-27-26-0.26-
27.3
0.3 P. \& P 16 A. 6.3v, A. $6.3 \mathrm{v}, 0.3 \mathrm{~A}, 6.3 \mathrm{v}, 0.6 \mathrm{~A} .30 /$. Pri Tapped 200-250v. Sec, $350-0-350 \mathrm{v}$. $25 \mathrm{~m} / \mathrm{z}$. 6.3 v . I A. 15/-, P, \& P, 4-.
Pri Tapped $205-245 \mathrm{v}$. Sec. $300 \mathrm{v}, 37 \mathrm{~m} / \mathrm{a}$. twice. 4 v . 1 A . 4 v .
 Pri Tapped $200-250 \mathrm{v}$. Sec. Tapped $370-390-410 \mathrm{v} .6 \mathrm{~m} / \mathrm{a}$.
$10 /$.. P. \& P. $3 / \mathrm{m}$ $10 /-$ P. \& P. $3 /$
Pri Tapped
17/6. P. \& P. 5/-. Pri Tapped Sec. 125 v . $265 \mathrm{~m} /$ a. twice. 35/-. P. \& P. 5/-. Pri Tapped $200-250 \mathrm{v}$. 5 ec. 130 v . $185 \mathrm{~m} / \mathrm{a}$. twice. 200 v .350 m / a. twice. $57 / 6$. P. \& P. $8 / 6 \mathrm{v}$.
Pri Tapped $200-240 \mathrm{v}$. Sec. 130 v . $450 \mathrm{~m} / \mathrm{a}$. three times. 79/6. P. \& P. 10/6.

Pri Tapped $200-240 \mathrm{v}$, Sec. $400 \mathrm{v}, 290 \mathrm{~m} / \mathrm{a} .75 / \mathrm{F}$. P. \& P. 1016. Pri Tapped 200-250v. Sec. $45 \mathrm{v} .25 \mathrm{~m} / \mathrm{a}$. Iv, 0.5 A . $12 / 6$. P. \& P. $4 / 6$

Pri Tapped 200-240v. Sec. Tapped 760-700-40-20v. $50 \mathrm{~m} / \mathrm{a}$.
ONE O
Pri 400-415-440v. Sec. 270y. 1,500 watcs. €|2/10/- Car

NEW GUARANTEED OIL-FILLED BLOCK CAPACITORS. ALL BY FAMOUS MAKERS $8 \mathrm{mid}, 2,500 \mathrm{v}$, D.C. ${ }^{w k g}, 70^{\circ} \mathrm{C} .37 / 6.5$. \& P. $7 / 6.8 \mathrm{mid}$.
 wkg. $60^{\circ} \mathrm{C}$. $10 / 6$. P. \& P. 3/6. 8 mid. 400 v. D.C. wkg. $60^{\circ} \mathrm{C}$ 7/6. P. \& P. $3 / 6.4$ mid. 400 V . D.C. wkg. $70^{\circ} \mathrm{C}$ sub chassis miz. 6/6. P. \& P. $3 / .2$ mid. $1,500 \mathrm{v}$. D.C. wkg. $70^{\circ} \mathrm{C}$. $10 / 6$. P. \& P $3 / 6.2 \mathrm{mfd} .1 .000 \mathrm{v}$. D. C. wkg. $70^{\circ} \mathrm{C} .6 / 6 . \mathrm{P} . \&$ P. $2 / 6.0 .5 \mathrm{mfd}$. $60^{\circ} \mathrm{c}$, B/6. P. \& P, $3 / 6 . \mathrm{B}$ mid, 250 v , wkg. $71^{\circ} \mathrm{C}$, $4 / 4, \mathrm{P}, \& \mathrm{P} .2 / \mathrm{F}$.
 ${ }^{2}$ mid. wkg. $70^{\circ} \mathrm{C}$. $0.1 \mathrm{~m}^{\mathrm{m} / \mathrm{d} .} 7.500 \mathrm{v}$. D.C. wkg. $70^{\circ} \mathrm{C}$. 15%. P. \& P. 3/6. 0.1 mid. $5,000 \mathrm{v}$. D.C. wkg. $70^{\circ} \mathrm{C}$. 7/6. P. \& P. $1 / 6$ 0.01 mfd .8 kV . D.C. wkg. $70^{\circ} \mathrm{C}$, tubular. $3 / 9$. P. \& P. $1 / 6$. AMERICAN TYPES
8 mid. 600v. wkg. 7/6. P. \& P. 3/6. 8 mid. 1.000 v . wkg. $12 / 6$. P. \& P. 3/6. 4 mid. 600 v , tubular S.H. fixing. 6/6. P. \& P. 2/6. 60 Af A.C. WKG. BLOCK CAPACITORS
$60 \mathrm{mid} .275 \mathrm{v} . \mathrm{Wkg} .45 / \mathrm{F}$. P. \& P. $7 / 6.25 \mathrm{mid} .300 \mathrm{v} . \mathrm{wkg}$. $25 / 0$ P. \& P. $5 / .25 \mathrm{mfd} .275 \mathrm{v}$ wkg. $22 / 6 . \mathrm{P}$ \& P. $5 /-18 \mathrm{mld}$. $300 \mathrm{v}, \mathrm{wkg} .17 / 6 . \mathrm{P}, \& \mathrm{P}, 3 / 6.12 \mathrm{~m} / \mathrm{d} .400 \mathrm{v}, \mathrm{wkg} .15 /-\mathrm{P} . \& \mathrm{P}$ $5 / .7 .19$ mid. 400% wkg. 3 ph Delca connection. $45 /$ a
A.E.I. LIGHTING CAPACITORS

12 mfd .250 v. A.C. wkg. $5 /-$. P. \& P. $2 / 6.13 \mathrm{mfd} .250 \mathrm{v}, ~ \mathrm{~A} . \mathrm{C}$. wkg. 2.85 mf . $440 \mathrm{v}, \mathrm{wkg}$, cubular. $5 / \mathrm{F}$. P. \& P. $2 /-$. 20 kVA max. 10 kV P.K. (A.C. + D.C.). $27 / 6$. P. $\mathrm{B}_{\mathrm{m}} \mathrm{P} . \mathrm{max}^{2}$ HIVOTRONIC LTD. 40 mid. 3kY. Rapid discharge capacitors. Size $12 \times 9 \times 7$ in. $75 /=$. Carr. 12-6. discharge
SMITHS SYNCHRONOUS MOTORS
A.C. 200-240v. 4 r.p.m. 3in. dia. Langth of spindle zin. 22/6. P. AMERICAN SYNCHRONOUS MOTORS A.C. $230 \mathrm{v}, 50$ cycles, 6 r.p.h. 2 tin. dia. cog spindle. $12 / 6$. P. \& P. $2 / 6$.
A.C. 240 v . 50 cyeles, 40 r.p.m. 24 in . dia. Length of spindle tin. 12/6. P. \& P. 2/6.
HIGH CAPACITY TUBULAR ELECTROLYTICS $25.000 \mathrm{mfd} .12 \mathrm{v} . \mathrm{wkg} .12 / 6$. P. \& \& P. 2/-, $3,500 \mathrm{mfd}$. 55 v . Wkg 1,250 mid. 180v. wkg. 8/6. P. \& P. $2 /=1$

AMERTCAN WILLARD, miniature accumulators 6v, T-2A.A. size $\mathbf{i} \times 1 / \times 4 \mathrm{in}$. wt. $402.7 / 6+1 / 6$. SCOYCH MAGNETIC TAPE, TYpe 3M 459. $\frac{1}{2}$ in. 3,600 feet. Suitable for video. Brand new in maker's sealed cartons. List Price $\mathbf{E} 18 / 10 / \mathrm{l}$. Our Price $\mathbf{6 J / 1 9 / 6}$. P. \& P. $5 /$-.

WESTERSTRAND

CLOCKWORK TIMERS

5 witch contacts, 15 amps., 250 volts A.C. Control knob can be set A.tween 30 sees. and 6 mins.
Brand new $17 / 6$. P. \& P. $2 / 6$.

HRO RECEIVER. Model 5T. This is a famous American High Frequency superhet, suitable for CW, and MCW, reception crystal filter, with phasing control. AVC and, signal strength meter. Freq. range $50 \mathrm{ke} / \mathrm{s}$. $1030 \mathrm{mc} / \mathrm{s}$.,
with set of nine coils. Complete HRO 5 T SET. (Receiver, Coils and Power with set of nine coils. Compl
COMMAND RECEIVERS; Model $6-9 \mathrm{Mc} / \mathrm{s}$., as new, price $£ 5 / 10 /$ each, post $5 /$.
COMMAND TRANSMITTERS, BC-458: 5.3-7 Mc/s., approx. 25 W output, directly calibrated. Valves 2×1625 PA; 1×1626 osc.; 1×1629 Tuning Indicator; Crystal $6,200 \mathrm{Kc} / \mathrm{s}$. New condition- $83 / 10 /$ e each, $10 /-$
(Conversion as per "Surplus Radio Conversion Manual, Vol. No. 2," by R. C. Evenson and O. R. Beach.)

AIRCRAFT RECEIVER ARR. 2: Valve line-up $7 \times 9001 ; 3 \times 6$ AK5; and $1 \times 12 \mathrm{~A} 6$. Switch tuned $234-258 \mathrm{Mc} / \mathrm{s}$. Rec. only $£ 3 \mathrm{each}, 7 / 6$ post; or Rec. $1 \times 12 A 6$. Switch tuned $234-258 \mathrm{Mc} / \mathrm{s}$. Rec. only $£ 3$ each, $7 / 6$
with 24 v. power unit and mounting tray $£ 3 / 10 /-$ each, $10 /-$ post.
RECEIVERS: Type BC-348, operates from 24 v D.C., freq. range 200-500 $\mathrm{Kc} / \mathrm{s}, 1.5-18 \mathrm{Mc} / \mathrm{s}$. (New) £35.0.0 each; (second hand) $£ 20.0 .0$ each, good condition, carr. 15/- both types.
MARCONI RECEIVER 1475 type $88: 1.5-20 \mathrm{Mc} / \mathrm{s}$, second-hand condition £10.0.0 each. New condition £25.0.0 each, carr. $15 / \mathrm{m}$.
RACAL EQUIPMENT: RA. 17 Outer Metal case for receiver available, as new, £10 each, carr. £1. Frequency Meter type SA20: £35 each, carr. ع1. type MA. 168: £35 each, post $10 /-$. Receiver Converter SA.80: $25 \mathrm{Mc} / \mathrm{s}-$ $160 \mathrm{Mc} / \mathrm{s}$, 840 each, carr. £1.

ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C. @ 1.8 amps, $400 \mathrm{c} / \mathrm{s} 3$ phase, $\mathrm{x} 6 / 10 / \mathrm{e}$ each, $8 /-$ post. 24 v D.C. input, 175 v D.C. @ 40 mA output, 25 /- each, post $2 /-$
CONDENSERS: $150 \mathrm{mfd}, 300$ v A.C., $87 / 10 /-$ each, carr. $15 / \mathrm{C} .40 \mathrm{mfd}, 440 \mathrm{v}$ A.C. wkg., $\mathbf{L} 5$ each, $10 /-$ post. $30 \mathrm{mid}, 600 \mathrm{v}$ wkg. D.C., $\mathbf{8} 3 / 10-$ each, post $10 /-$. $15 \mathrm{mfd}, 330 \mathrm{v}$ A.C. wkg., $15 /-$ each, post $5 /-.10 \mathrm{mfd}, 1000 \mathrm{v}, 12 / 6$ each, post $2 / 6$. $10 \mathrm{mfd}, 600 \mathrm{v}, 8 / 6 \mathrm{each}$, post $5 /-.8 \mathrm{mfd}, 1200 \mathrm{v}, 12 / 6$ each, post $3 /-.8 \mathrm{mfd}, 600 \mathrm{v}$, $8 / 6$ each, post $2 / 6.4 \mathrm{mfd}, 300 \mathrm{v}$ wkg. E 3 cach , post $7 / 6.2 \mathrm{mfd}, 3000 \mathrm{v}$ w kg ., $\mathbf{£ 2}$ each, post 7/6. $0.25 \mathrm{mfd}, 32,000 \mathrm{v}, \mathrm{e} 710 /-$ each, carr. $15 /-0.25 \mathrm{mid}, 2 \mathrm{Kv}, 4 /-$ each, $1 / 6$ post. 0.01 mfd. M1CA 2.5 Ky . Price $£ 1$ for 5. Post 2/6. Capacitor:
avo multirange No. 1 Electronic TEST SET: $£ 25$ each, carr. $£ 1$. OSCILLOSCOPE Type $13 \mathrm{~A}, 100 / 250 \mathrm{v}$. A.C. Time base $2 \mathrm{c} / \mathrm{s}-750 \mathrm{Kc} / \mathrm{s}$. Bandwidth up to $5 \mathrm{Mc} / \mathrm{s}$. Calibration markers $100 \mathrm{Kc} / \mathrm{s}$. and $1 \mathrm{Mc} / \mathrm{s}$. Double Beam tube. Reliable general purpose scope, $£ 22 / 10 /$ each, $30 /$ - carr.
COSSOR 1049 Mk 111, c45 each 301
RELAYS: GPO Type 600 , 10 relays @ 300 ohms with 2 M and 10 relays @ 50 ohms with 1 M ., $\mathrm{L}^{2} 2$ each, $6 /$ - post
12 Small American Relays, mixed types £2, post 4/-
Many types of American Relays available, i.e., Sigma; Allied Controls; Leach; etc. Prices and further details on request 6 d .

GEARED MOTORS: 24 v . D.C., current 150 mA , output 1 r.p.m., $30 /$ - each, 4/- post. Assembly unit with Letcherbar Tuning Mechanism and potentiometer, 3 r.p.m., 22 cach, 5/- post.
Actuator Type SR-43: 28 v. D.C. 2,000 r.p.m., output 26 watts, 5 inch screw thrust, reversible, torque approx. 25 lbs., rating intermittent, price £3 screw thrust,
each, post $5 /$.

SYNCHROS: and other special purpose motors available. British and American ex stock. List available 6d.

TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price 25/-, post 5/-.
AUTOMATIC PILOT UNIT Mk. 2. This complex unit of diodes and valves, relays, magnetic clutches, motors and plug-in amplifiers, with many other items, relays, magnetic curnes,
price $£ 7 / 10 /-$,

FOR EXPORT ONLY: B.44 Trans-ceiver Mk. III. Crystal control, $60-$ $95 \mathrm{Mc} / \mathrm{s}$. AMERICAN EQUIPMENT: BC-640 Transmitter, 100-156 Mc / s., 50 watt output. For 110 or 230 v. operation. ARC 27 trans-ceivers, 28 V. D.C. input. Also have associated equipment. BC-375 Transmitter. BC-778 Dinghy transmitter. SCR-522 trans-ceiver. Power supply, PP893/ GRC 32A, Filter D.C. Power Supply F-170/GRC 32A: Cabinet Electrical CY 1288/GRC 32A; Antenna Box Base and Cables CY 728/GRC; Mast Ercction Kits, 186/GRC; Ditectional Antenna CRD. $6 ;$ Comparator Unit, Control Units, 260/GRD. Test Set URM.44, complete with Signal Generator TS.622/U.

SOLENOID UNIT: 230 v . A.C. input, 2 pole, 15 amp contacts, $\mathrm{E} 2 / 10 /-$ each post $6 /$-.
CONTROL PANEL: 230 v. A.C., 24 v. D.C. © 2 amps., $£ 2 / 10 /-$ each, carr. $12 / 6$. AUTO TRANSFORMER: 230-115 v.; 1,000 w. £5 each, carr. 12/6. 230-115 v.; 300 VA , $£ 3$ each, carr. $10 /-$.
OHMITE VARIABLE RESISTOR: 5 ohms, $5 \frac{1}{2} \mathrm{amps}$; or 2.6 olims at 4 amps . Price (cither type) \&2 each, $4 / 6$ post each.
POWER SUPPLY UNIT PN-12B: 230 v. A.C. input, 395-0-395 v. output @ 300 mA . Complete with two $\times 9 \mathrm{H}$ chokes and 10 mfd . oil filled capacitors. Mounted in 19in. pancl, $\mathrm{\varepsilon} 6 / 10 /-$ each, $£ 1$ carr.
TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$'s; complete with filament transformer 230 v . A.C. Mounted in 19 in . panel, $\mathrm{E} 4 / 10 /-$ each, $15 / \mathrm{c}$ carr.

POWER UNIT: 110 v . or 230 v . input switched; 28 v . @ 45 amps . D.C. output. Wt. approx. 100 lbs ., £17/10/- each, $30 /$-carr. SMOOTHING UNITS suitable for above $\& 7 / 10 /-$ each, 15/- carr.
DE-ICER CONTROLLER MK. III: Contains 10 relays D.P. changeover heavy duty contacts, 1 relay $4 \mathrm{P}, \mathrm{C} / \mathrm{O}$. (235 ohrns coil). Stud switch 30 -way relay operated, one five-way ditto, D.C. timing motor with Chronometric governor 20-30 v ,, 12 r.p.m.; geared to two 30 -way stud switches and two Ledex solenoids, 1 delay
relay etc., sealed in steel case ($4 \times 5 \times 7$ ins.) $£ 3$ each, post $7 / 6$.
MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves, microphone and modulator transformers etc. $\mathbf{\text { ¢7/10/- each, } 1 5 / - \text { carr. }}$

ADVANCE TEST EQUIPMENT: VM78 A.C. Millivoltmeter (transistorised) ADV each; TTIS Transistor Tester (CT472) £37/10/- each; VM77C Valve Voltmeter 840 each. Carr. 10/- exira per item.

NIFE BATTERIES: 4 v. 160 amps , new, in cases, $£ 20$ each, $£ 1$ 10/-carr
FUEL INDICATOR Type 113R: 24 v . complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in a 3 in. diameter case. Price 30/- each, postage 5/-.
UNISELECTORS (ex equipment): 5 Bank, 50 Way, 75 ohm Coil, alternate wipe, £2/5/- each, post 4/-.
FREQUENCY METERS: BC-221, meter only 530 each, BC-221 complete with stabilised power supply $£ 35$ each, carr. $15 /-$ LM13,
carr. 15 . TS
L carr. $15 /-$ TS.175/U, $£ 75$ each, carr. $£ 1$. TS $323 / \mathrm{UR}, 20-450 \mathrm{Mc} / \mathrm{s}$, $£ 75$ each, carr.
$15 /-\mathrm{FR}-67 / \mathrm{U}:$ This instrument is direct reading and the results are presented directly in digital form. Counting rate : 20-100,000 events per sec. Time Base Crystal Freq.: $100 \mathrm{Kc} / \mathrm{s}$. per sec. Power supply: $115 \mathrm{v} ., 50 / 60 \mathrm{c} / \mathrm{s}$., $\mathbf{£} 100$ each, carr. £1.
CT. 49 ABSORPTION AUDIO FREQUENCY METER: freq. range $450 \mathrm{c} / \mathrm{s}-$ $22 \mathrm{Kc} / \mathrm{s}$, directly calibrated. Power supply 1.5 v - -22 v . D.C. £12/10/- each, carr. 15/-.
CATHODE RAY TUBE UNIT: With 3in. tube, colour green, medium persistence complete with nu-metal screen, $£ 3 / 10 /$ - each, post $7 / 6$.
APNI ALTIMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s}$., complete with all valves 28 v. D.C. 3 relays, 11 valves, price f. 3 each, carr. 10/-.

TEST EQUIPMENT

MARCONI		Distortion Facto VHF Bridge De Heterodyne Freq Valve Millivoltm VHF Admittanc Audio Tester Universal Bridg Circuit Magnific Valve Voltmeer Valve Voltmeter UHF Signal Ge Deviation Test Deviation Test (CT.44) A.F. A	Meter illator ector uency eter. Bridge ation M \qquad Meter Meter sorption	Meter ter \because \cdots wat		£85 each £75 each £75 each £85 each £35 each C85 each £55 each £75 each £45 each $2 / 10 /-$ each $8 / 10-$ each £65 each £35 each £65 each £20 each £20 each
FIRZ Hil.	$\begin{aligned} & \text { V. } 200 \\ & \mathrm{B.810} \end{aligned}$	Sensitive Valve Incremental Ind	Voltmet uctance	Bridge	.	$\begin{aligned} & \mathbf{8 3 5} \text { each } \\ & \mathbf{8 7 5} \text { each } \end{aligned}$
SOLATRON	$\begin{aligned} & \text { CD-513 } \\ & \text { CD-513-2 } \\ & \text { AW }^{-553} \end{aligned}$	Oscilloscope Oscilloscope Power Amplifier		\because		c45 each 10% each £30 each
AIRMEC	Type 701	ignal Generator	.	-		¢50 each
POLARAD	$\begin{aligned} & \text { Type MS } \\ & 950-2400 \end{aligned}$	$\begin{aligned} & \text { G-1 } \\ & \mathbf{M c} / \mathrm{sicrowave} \\ & . \end{aligned}$	Signal	Gen		8100 each
PHILLIPS	Type GM-	-6008 Valve Voltm	er. .			¢35 each
DAWE	Type 402C	Megohm Meter	.	-	.	¢12 each

CANADIAN C52 TRANS/REC.: Freq. $1.75-16 \mathrm{Mc} / \mathrm{s}$ on 3 bands. R.T., M.C.W. and C.W. Grystal calibrator etc., power input 12 V . D.C., new cond. complete ser $£ 50$. Used condition working order $£ 25$. Carr. on both types $£ 2 / 10 /$ Used power units in working order $£ 2 / 5 /-$. Carr $10 /$..
AVOMETERS: Model 47A, £10 each, 10/- post. Excellent secondhand cond. (meters only).
DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, each

TELESCOPIC ANTENNA: In 4 sections, adjustable to any height up to 20 ft . Closed measures 6 ft . Diameter 2 in . tapering to 1 in . $\mathbf{~} 5$ each $+10 /-\mathrm{carr}$. Or $\mathbf{\varepsilon} 9$ for two $+\Sigma 1$ carr. (brand new condition).

COAXIAI. TESTEQUIPMENT: COAXWITCH-Mnftrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type "N", female connectors fitted to receive UG-21/U series plugs. New in ctins., £6/10/- each,
post $7 / 6$. CO-AXIAL SWITCH-Mnftrs. Transco Products Inc., Type M1460-22, 2 pole, 2 throw. (New) $\mathbf{x} / 10 / \mathrm{e}$ each, $4 / 6$ post. 1 pole, 4 throw, Type M1460-4. (New) $86 / 10 /-$ each, $4 / 6$ post.
PRD Electronic Inc. Equipment: FREQUENCY METER: Type 587-A, $0.250-1.0 \mathrm{KMC} / \mathrm{SEC}$. (New) 85 each, post $12 / 6$. FIXED ATTENUATOR: Type $130 \mathrm{c}, 2.0-10.0 \mathrm{KMC/SEC}$. (New) E 5 each, post 4/-. FIXED ATTENU-
ATOR: Type $1157 \mathrm{~S}-1$, (new) $\mathbf{\&} 6$ each. oost $5 /-$.

R．S．T．Valve mail order co．

BLACKWOOD HALL，16A WELLFIELD ROAD

STREATHAM，S．W． 16

F．A．L．＇PHASE 50’

Public Address Amplifier

FUTURISTIC AIDS LTD．， 103 Henconner Lane，Leeds 13

2lkW FAN HEATER
Three postlion suiteching to sult
changes in the weanther. Bwitch up

 Adjustable thernoshit meth as suto
control nd mafty cutout. Complete

FLUORESCENT CONTROL KITS

\longrightarrow REED SWITCHES
Glann encaned, awltches operated by external magnet gold welded contuctu. We can now ofrer 3 typen: dinneter. Will
 Sti-doxen. 2 in, long $\times 3 / 1 / 6$ in. dlameter. This will breat currente of ap to 1 A, voltages up to 230 volts. Price $2 /$ each. Fant prat type, zin. long, juat over $1 / 1 \mathrm{kinh}$. thlek, approximately bin. Wide. The Atandard Type flatitened out. so that
it ean be aited linto menaller apace or a larger quantity may

 Aranll ceramic magnets to
$1 / 3$ each. $12 /$-dozen.
60 r.p.m. Geared Motor. Tha 60 p.p.m. Geared Motor. Thla la a powerful unit, diven by a
malins motor of similar type to, but rither lurger than the malna motor of similar type to, but rather lurger than the
average Tape Deck or Record Player motor The gear

 $50-0-50$ micro amps. Thin io a weaton Meter encloned inclear Perspex case for futh mounting. Dial ifize approximately
2 fin . wide. The scale ts not engraved but ha $2 j \mathrm{ln}$. Wide. The scale in not engrived but haf a red part in
the centre and a green part to the left of centre. Scale could the centre and a green part to the left of centre. Bcale could
be cleaned off and re-written to suit your particular reyuirementb. Regular price probwbly over 25 each, our price
$29 / 6$ each. 29/6 each. a unit plate vilh speed velector and pick-up. The turnuable
 Hitted with the famous "Btudio cartridge. Price 68/6.
Pont and linn. 6/6.
 multing teatconditiont BAat $300 \mathrm{k} / \mathrm{c}$. Brikelltecase. $18 / 6$ ench.
85 Watt Tubular Element. Vory well made wnit. The 85 Watt Tabular Elomant. Very well made with. The
elemeat is wound on a porcelatin former then encased in a
brasa mains voltage. Price $5 /=$ each or $54 /$ per doz. Press to Make Switch, Double pole, 5 A contact or enn be
 Preventa lights belug left on. 15 A contacts, 250 volt whorking
Made by Arrow. $3 / 6$ each. $38 /-$ per dozen Male by Arrow. $3 / 6$ each. $36 /-$ per dozen.
buse, Operated by politer knob (bot anpplled). $2 /$ each
 to operate small Inthe, drlling machlne, washing machine, etc. Its speed le 1,450 r.p.m. Msule for nornal 50 cycle,
 Buralar Alarm Kit. Protect your home and family by
frightentug away the intruder. With our elrouft a maina frightentug away the int ruder. Whith our circuit a maing
operinted bell ringa loudly dircetly the door or window in

FLEX BARGAINS

Screened 3 Core Fles. Fach core 14/0076 Copper PVC inaulated and coloured, the 3 coree inid whether and metal
bralded overall. Price $£ 3.15 .0$ per 100 yd. coll bralded overall. Price $£ 3.15 .0$ per 100 yds. coll
cores, protected by tough rubber sheath, then black cotton braided with white tracer. A normal domentic flex an fitted
to 3 kW fres. Regular price $3 / 8$ per yd. 50 yd. coll $\varepsilon 4.10 .0$. or cut $t \mathrm{y}$ your lenurth $2 / 6$ per yard.
10 A 3 Core Non-kink Plex. An above but cores are 28/0076 10A 3 Core Non-kink Fiex. An above but cores are 28/0076
Copper. Normal price $2 / 6$ per yd. 100 yd. coll $\mathbf{E 7 . 1 0 . 0}$. of cut to your lensth $1 / 9$ yd.
BA 2 Core Flex, As above, but 2 cores each $23 / 0076$ an used for Vacuum Cleaners. Electric Blankels, etc. 39/6 100 gd. coll.

3-CORE WATERPROOF FLEX

6A, 23/0076 circular PVC coverets as fitted to electric drills and mont portable appllances. Ideal extension lead. Regular
price $1 / 6$ per yand, our price $78 / 6$ for 100 yard coll. Pout $6 / 6$. Elliot Sealed Contset Reed Relay. Three circults cloaed by
3 voll or 100 ma . $8 / \mathrm{B}$ each. Slim Tubular Microphone. Por hand holding or frontal suapeasion-ever awitch-high impedance with lead and
plupa for casnette tape recorder but suitable for most amps.
18/6.

500 Ma Moring Coil Meter. 2 nn . fush mounting round mete ex-Goverament but unused and perlect. 1\%/6.

Thermal Cutont. A rininature device $\frac{g}{\mathrm{l}} \mathrm{m}$. din, on one serey Bre slarm. Boldering iron awitch-ont, etc.. etc. 15 A contact open rith mamo-rudiant or conducted heat. $1 / 6$ ench.
$15 /-$ doz. 85.0 .0100 . (0)
$5,000 \mathrm{mfd}, 12$ volt Condenser. Tubular nize 3in. $\times 1 \mathrm{in}$. die

You will be amazed at the fulinens of repronluc
tion nad at the aulded quabinies your recorla or tuner will
 power of 6 watz R.M.s. oplit over het two chanpels. The smplifier la ideal for une with norma controls-also Ewitchling for Mono to Stereo, tuner or pick up. Other controls include "irebl

BUY TIME SLOT METERS
If you blre out equipment such as TV gets by the hour then these slot

HORSTMANN 'TIME \& SET' SWITCH Aarm Amp 8 witch). Just the thing if you wint to come home to switch on time of your electric fres, etc., np to 14 hours from setting time or you can use the switch to give a boost on period
 STRIBUTION PANELS Just what you geed for work bench or lab. $4 \times 13 \mathrm{amp}$
 pluga. Bupplied complete with 8 feet of heavy cable and 1
s.lvertised at 45 . Our price $39 / 6$. plus $3 / 6$ pont and insurance.

ELECTRIC TIME SWITCH
Madeby Smithstheseare ACmainsoperated, NOTCLOCK WORK Ideal for mounting on rack or sheif or can be bulle into box with 13 A socket. 2 completely idjumable time pertodn per 24 hours,
5 A changeover contacta will awithet circuit on or off during these periods. $59 / 6$, poat and lng, $4 / 6$. Addlitional time contact 10/- pair.

SELECTOR DRIVE
At each impulse the electro magnet rutchets the toothed drive whe round one notch $-s$ atich water la coupled to this and the contacts ar such that it is on for 10 pulsen and off for $13-a n$ auxiliary contact
awitches on and ofloce every 25 pulses. New and unused 25)

ATLAS SLIMLINE FLUORESCENTS-

THE TWENTYLITE

A Fluorescent lighting unit mate by the famoun Allat company. With auper allent
polyenter filled choke and rado polyenter fllled choke and radlo mup.
pressed atarter. The tulie aprigan in and
out and the out snd the whole unit is beautiully
made and finiahed whlle enumet unde and finithed whlle enamel. Amaz.
frigly economilal. If left on all the time

DREAMLAND CLOCK SWITCH
The wonderful DREAMLAND inaina operated check awitch will antomatically awithe your thanket on and off each evening and you will alwiyl have a warm bed. It's Iuminoun; you can alwayy see the time and it's a really beautiful unit. An idealgitt. Canalso control tape recorder, radio, lamp, etc. up to 500w, $39 / 6$ plus $3 / 6$ post and fan.

WATT AMPLIFIER \& PRE-AMP bead Gi but equally suitable for microphone or pick up Larited quantity 39/6. Full clrcult diag. also mhow:
tape controle $5 /-$. ape cortrone 5

VARYLITE

 plastlc box with coatrol knob e3.19.6.

HI FI BARGAIN
FULI FI 12 IRCH LOUDSPEAKER. This is undoubtedly one of the flnent londspeakers that we have ever offered, produced by on
of the country's most famous makera. It hae a dle-cat metal frane and la atrongly recommended for HI-Fi load and Rhythro Guitar and publte address.
Flux Density $11 . n 00$ gause- Total Flus 44,000 Mixwells-Power
Handling is watcs. M. Handling 15 watt. R. M. 8 . - Cone Moulded thbre-Freq. Feaponee

 $7 / 6 \mathrm{p}$. A p. Don't minat th
18 in . 100 wnit $£ 24.10 .0$

Where postage is not stated then orders
over $£ 3$ are post free. Bolow $£ 3$ add $2 / 9$. Semi-conductors add $1 /$ post. Over $£ 11$
oost free. S.A.E, with enquiries plest

ELECTRONICS (CROYDON) LTD
Dept. WW, 266 London Road, Croydon CRO-2TH Also 102/3 Tamworth Road, Croydon

Mechanical and Crystal filters

Filters, Mechanical and Crystal for communications and broadcast applications are available in a wide series of centre frequencies and passbands.

For further information contact
IMPECTRON LTD., 23-31, King Street, London, W.3. Telephone: 01-992 5388. Type 289 Frame Side Stop/ $6 \mathrm{C} 15 / 6$ each, Trpe 2954 C non-lock/6C lock 20/- each.和 $012 S^{\text {EST. }} 1921$ P.O. TYPE 3000 AND 600 BuILT TO YOUR SPECIFICATION Contacts up to 8 changeover \star Quick delivery \star keen prices

 $.02 \mathrm{mid} 10 \mathrm{KV} 10 / \mathrm{e} ..0252 .5 \mathrm{KV} 5 / 0.05 \mathrm{mid} .5 \mathrm{KV} 9 /-0.1 \mathrm{mid} 4 \mathrm{KV} 9 / .6 \mathrm{KV} 17 / 6.0 .5 \mathrm{mid}$ LEDEX ROTARY SOLENOIDS AND CIRCUIT SELECTORS, size $5 S$. 4 pole 11 Way and off $110 /$. 24 pole 11 Way and off $210 /-.54$ pole On/OF $150 /-$.
GEARED REYERSIBLE MOTORS by Crouzer Led. I r.p.m. or 3 r.p.m. 24 voles
 PORTABLE VOLTMETERS, $0 / 250$ moving iron AC/DC 6° scale in case 150/- each
JACK PLUGS. 2 point screw on cover, $2 / 6$, post $1 / .0$ PO 201 on headphone cord.
TOTALLYENCLOSED RACKS type TE byIMHOF 6 fr $\times 19^{\circ}$ new unused.
 HIGH SPEED COUNTERS. $31^{\circ} \times 1^{\circ} .10$ counts Der second with 4 figures. The following D.C. voleages are available: $6 v ., 12 \mathrm{v}$. 24 v ., 50 v . or 100 v . $35 / \mathrm{-} \mathrm{each}$. VEEDER ROOT MAGNETIC COUNTERS with zero reset 800 counts per minuse, counting to 999.999 . Cuses, regulated by a 4 -position switch and sliding resistance 170%,
 $5^{\prime \prime} \times 4^{-} \times 11^{\circ}$ five single Unizs each displaying 11 messages in letters, symbols and
MOTORS. th.p. $230 / 250$ volts $1425 \mathrm{r} . \mathrm{p} . \mathrm{m}$. , shaft $\|^{\prime \prime} \times 1^{\prime \prime}$, resilient mounting, B0/- each. EOUIPMENT WIRE TO2, 70076.110048 PVC COVERED 100 . 200 YO.
REELSIN ONE COLOUR OR BI COLOURS BO: PER IOO YDS. POST 6%
L. WILKINSON (CROYDON LTD. LONGLEY HOUSE LONGLEY RD. CROYDON SURREY
Phone: THO 013b Grams: wilco cnoroon

TRANSFORMERS

coils

Chokes
LARGE OR SMALL QUANTITIES
TRADE ENQUIRIES WELCOMED
SPECIALISTS IN
FINE WIRE WINDINGS
MINIATURE TRANSFORMERS
RELAY AND INSTRUMENT COILS, ETC.
Vacuum impregnation to approved standards

ELECTRO-WINDS LTD.

CONTRACTORS TO G.P.O., A.W.R.E., L.E.B., B.B.C., ETC.
123 PARCHMORE ROAD, THORNTON HEATH, SURREY 01.6532261

CR4.8LZ
EST. 1933
WW-127 FOR FURTHER DETAILS

ADMIRALTY B. 40 RECEIVERS High ADMIRALTY B. 40 RECEIERS Hish

SONOTRONIC PORTA
OSCILLOSCOPES

Malin. 10.0
1

R209 Mk. II COMMUNICATION RECEIVER
 11 ralve high
grade coma grade com.
munication
recelver auit.
and

 tion. Incorporon
ated prection
verule
drive.

TYPE I3A DOUBLE BEAM
OSCILLOSCOPES BARGAIN

An ervellent general purpose
D/B osellosocope. T.B. 2 ope-
 Sensitivity 33 Mv/om. Oper ating voltage 0/110/200/250 A.C. Supplled in excellen.
worklog conditlon. $£ 22 / 10 /$. Or complete with all acces enfles, probe, leads,
\&25. Carriage $30 /$,

MARCONI CTH

 TF956 AF ABSORPTION WATTMETER$\mathrm{a} / \mathrm{watt} \mathrm{t}^{20}$
e20. Carr. $20 /$
SOLARTRON CD. 1016
Double beam. D.C. To ${ }^{\text {S Mc/s. }}$. Excellent condlCLASS D. WAVEMETERS

CLASS D WAVEMETERS No. 2
 operallon, Complete with chllbratlon charts.
Excellent condulion $112 / 10 / 0$. Carr. $30 /$-. EDDYSTONE V.H.F. RECEIVERS 770R. $19-185$ Mc/s. $£ 150$.
Both types in excellent condition.

TO.3 PORTABLE OSCILLOSCOPE. 3° TUBE

 enesitivity. PF . P p/CM.

 $10 \mathrm{cps}-300$ KHZ. 8 Ka
chronization.
Internal/ex
 $140 \times 215 \times 330 \mathrm{MM}$. Werght 15 Htlbe . $220 / 240 \mathrm{~V}$. SOLARTRON MONITOR OSCILLOSCOPE TYPE 101 An extremely high quality osclllozope with thene

COMMNR-30 4 BAND Covering $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Incorporates BFO Built-in speaker and phone jack. Metal cabinet Operation $220 / 240$ v. A.C. Supplied brand new,
guaranteed with instructions. 13 gns. Carr. $7 / 6$.

LAFAYETTE SOLID STATE HA600

 ECEIVER5 BAND AM/CW/SSB AMATEOR AND SEORT WAVE.

SPECIAL BONUS TRIO BPDD Matching Bpeaker Mate and TRIO HS4 Communl-

 OFFER! catch every JR. 50 oseHAMMARLUND SP600JX COMMUNICATION RECEIVER High qualley proteasional dual converaion communication
recelvers avaluble once aksin in thio country at reasonable price. Frequency ranqe $540 \mathrm{Kc} / 4.54$ Niv/e in

 Orgered in excellent condition fully tested and checked.
Eloo each. Pew onily.

RCA COMMUNICATIONS RECEIVERS AR88D
Antest release by minitary Brand NEW in original casen

 ratimble selectivity, etc. Price 887.10 .0 . Carr. 82 .

LAFAYETTE PF-60 SOLID STATE VHF completely now HM RECEIVER

Type MR.38P. $121 / 32 \mathrm{in}$. square front

$27 / 6$
$27 / 6$
$27 / 6$
$27 / 8$
$27 / 6$
$27 / 6$
$27 / 8$
2718
2718
2718
8718
382
$42 / 8$
pull range of other sizes in stock-bend sae for leaflet
LAFAYETTE STEREO AMPLIFIER MODEL STEREO 10

Completels tranalistorised 8 waten per channel I.H.F. music
power. Inputa for gram and tuner. Beparate volunie control
 size. Dig periormance atereo amplifer ilient for limhted pace
axatems

fll.19.6

POWER RHEOSTATS

High quallty ceramic conatruction. Windings emhedded in vitreous enamel Heayy duty brush wiper. Continuoun rating. Wide range avit
8ingle hole fixing. tin. dia. shats. Bulk quantities a valiable.

Spare movements for Model 8 or 9 . (PItted with
Model 9 scale) or basis for any multimeter. $\begin{array}{lll}69 / 6 & \text { P. } \& \text { P. } 3 / 6\end{array}$

COSSOR 1049 DOUBLE BEAM OSCILLOSCOPES D.C. coupled. Band width $1 \mathrm{Kc} / \mathrm{a}$. Perfect order

AM/FM SIGNAL GENERATORS

Oncluator
No. 2.
No. 2. A high
Quality preeslon
liatrument niade
linatrument nusde
by Alrmec. Fre-
$20.80 \mathrm{Mc} / \mathrm{A} . \mathrm{AMM}$
CW/FM. Incor-
porste日 prectslon
dial. lovel meter, prechion attennator $1 \mu \mathrm{~V}-100 \mathrm{Mv}$. Operation from 12 volt D.C. or $0 / 110 / 200 / 250 \mathrm{v}$.
A.C. Size $12 \times 8 \$ \times 9 \mathrm{~m}$. Supplled in brand naw condition complete w.

GEARED MAINS MOTORS
Paraluk type 8D19 $230 / 280$ v. A.C. Reveralimo
30 r.p.m. 40 to. .no. Complete Fith eapmactor.
TE-IGA TRANSISTORISED
SIGNAL GENERATOR

FIELD TELEPHONES TYPE L. Genorator ring ing metal casea. Operate on 2 l.5 s. batteriees (not metal case
supplifel.)
Carr. 10)-.
TRANSISTORISED L.C.R. A.C MEASURING

 Operated from 9 volte. $100 \mu \mathrm{~A}$. Meter indication.

Attractlve 2 tone metal case. Bize $71^{*} \times 5^{*} \times 2^{*}$ | Attractlv |
| :--- |
| $\mathbf{~} 20 . \mathrm{P}$. |

AUTO TRANSFORMERS

G. W. SMITH

\& Co. (Radio) Ltd.
also see opposite page

SUPER-BARGAIN STOCKTAKING SALE!!

Use form below for your order. CONDENSERS MUSTI BE ORDERED BY STOCK NUMBER ONLY. If any sale item is 'sold-out' when order received we shall substitute items of equal value. ELECTROLYTIC CAPACITORS

RESISTORS. 5\% EXCELLENT QUALITY. 7/6d. per 100 or 2/- per dozen

13 ohms	560 ohms	3.3 kohm	10 kohm
22 ohms	750 ohms	3.6 kohm	16 kohm
36 ohms	1 kohm	4.3 kohm	18 kohm
47 ohms	1.5 kohm	4.7 kohm	22 kohm
91 ohms	1.8 kohm	5.6 kohm	24 kohm
220 ohms	2.2 kohm	6.8 kohm	27 kohm
470 ohms	2.4 k ohm	7.5 kohm	30 k ohm

or our selection (mixed) 6/6d. per 100 .

39 k ohm
43 k ohm 39 kohm
43 k ohm
47 k ohm
51 kohm
62 kohm
75 kohm

91 k ohm 191 k ohm 130 k ohm 360 k ohm
430 k ohm 430 k ohm 560 k ohm 620 k ohm
 8.2 meg ohm 9.1 meg ohm

10/- per 100. 3/-per dozen.
SILVER MICA/CERAMIC/POLYSTYRENE CONDENSERS
Available in following values. Tick those required

2 pf	5 pf	12 pf
3.0 pf	25 pf	

2 pf	5 pf
3.9 pf	6 pf
4 pf	8 pf
4.7 pf	10 pf

12 pf
15 pf
18 pf
22 pf
25 pf
27 pf
30 pf
39 pf

50 pf
58 pf
62 pf
72 pf 80 pf
82 pf
100 pf
125 pf

135 pf	180 pf	250 pf
140 pf	190 pf	330 pf
158 pf	200 pf	420 pf
170 pf	240 pf	600 pf

680 pf	$1,000 \mathrm{pf}$	$2,500 \mathrm{pf}$
800 pf	$1,100 \mathrm{pf}$	$2,700 \mathrm{pf}$
820 pf	$\mathbf{1 , 5 0 0} \mathrm{pf}$	$3,000 \mathrm{pf}$
900 pf	$\mathbf{2 , 2 0 0} \mathrm{pf}$	$6,200 \mathrm{pf}$
Total:		

COMPARE THESE PRICES!!

MULLARD POLYESTER CONDENSERS

50% discount lots of 100 per type.
TRANSISTOR BARGAIN! THEY CANT GET ANY CHEAPER!!!!! P.N.P. Audio. Untested, unmarked. MAINLY OBEE $\quad 10 /-$ per 100 POWER OUTPUT (Similar OC35) ALL TESTED . 4/-each 22 dozen SILICON PLANAR TRANSISTORS. ALL TESTED. NO LEAKS OR SHORTS. Gain of 20/50 6d. each, 50/100 9d. each, 100/200 1/- each
Transistors similar to OCP 71 (Light sensitive) $2 /-$ each.
THYRISTORS. 400 volt BTY $797 / 6 \mathrm{~d}$. each. SCR 51 (10 amp) £1 each.
RECTIFIERS. Latest type. All marked. 800 volt peak, 1 amp mean curren type $1 N 406$. $2 / 6 \mathrm{each}, 24 /$-dozen 2/6 each, 24 - dozen, $£ 7 / 10 /-100$. BYZ 13 or 19 (6 amp) $2 / 6$ each, 24 -dozen £ $7 / 10 /-100$.

RECORDING TAPE GIVE-AWAY
ALL BRITISH MADE, BEST QUALITY. $5^{\circ} 600^{\circ} 7 / 3 \mathrm{~d} .58^{\prime \prime} 900^{\circ} 9 /-$ $7,1,200^{\circ} 12 /-, 3^{\prime \prime}$ 'odd-ends'-may be standard, long or double play-but minimum $150^{\prime}-2 / 3 \mathrm{~d}$
MAINS DROPPER TYPE RESISTORS. Hundreds of types from 7 ohm upwards. 1 watt to 50 watts. A large percentage of these are Multi-tapped droppers for radio/relevision. Owing to the huge variety these can only be offered "assorted". 10/-per dozen.
GIANT SELENIUM SOLAR CELLS. Last few to clear at half price! Circular, 67 mm . diameter $5 /-$ each. $50 \mathrm{~mm} . \times 37 \mathrm{~mm} .3$ for $10 / \mathrm{m}$.

GANGED STEREO POTS. $250 \mathrm{~K} 2 / 6 \mathrm{~d}$. each.
SKELETON PRESETS. Mixed. 6/- dozen.
VOLUME CONTROLS. 1 meg. 1 meg, with D.P. switch. 2/- each.
TELEVISION REMOTE CONTROLS. Philips. Contain 11' 7-way cable, 1 double pot., 5 resistors, two condensers, 10/- each. (Cost £3/3/-.) THIN CONNECTING WIRE. 10 yds $1 /-, 100 \mathrm{yds} 7 / 6 \mathrm{~d} ., 1,000 \mathrm{yds}$ 50/-. CO-AXIAL CABLE. Black. 6d. yard, $£ 150 \mathrm{yds}$ CRYSTAL MIKES. $10 /$ each.

RECORD PLAYER CARTRIDGES

ACOS GP67/2 15/- (Mono) GP94/1 30/-(Stereo, ceramic) ACOS GP91/3 20/- (Compatible) ACOS GP93/1 with diamond needle 32/6d. ACOS GP93/1 25/- (Stereo) ACOS GP94/1 with diamond needle 37/6d.

TRANSISTORISED FLUORESCENT LIGHTS. 12 VOLT
8 watt $12^{\prime \prime}$ tube, Reflector type $59 / 6 \quad 15$ watt 18 tube, Batten type 79/6
TRANSISTORISED SIGNAL INJECTOR KIT 10/-
TRANSISTORISED SIGNAI. TRACER KIT 10/. TRANSISTORISED REV. COUNTER (CAR) 10/-VERO-BOARD

VERO-BOARD						
$21^{\prime \prime} \times 1^{\prime \prime} \times .15 \ldots$		1/3	$17^{\circ} \times 31^{\prime \prime} \times .15$.	.	$4 / 8$
$33^{\prime \prime} \times 21^{\prime \prime} \times .15$.	3/3	$31 \times 2 \frac{1}{1} \times 1$.	.	.	$4 / 2$
$3 i^{\prime \prime} \times 3 i^{\prime \prime} \times .15$.	3/11	$31^{\prime \prime} \times 31^{\prime \prime} \times 1$	\ldots	\cdots	48
$5^{\prime \prime} \times 22^{\prime \prime} \times .15$.	3/11	$5{ }^{\prime \prime} \times 21^{\prime \prime} \times 1$.	$4 / 7$ $5 / 6$
$5^{\prime \prime} \times 39^{\circ} \times .15$	\cdots	5/6	$5^{\prime \prime} \times 31^{\prime \prime} \times .1$.	.	5/6
$17^{\prime \prime} \times 2 \frac{10}{\prime \prime}^{\prime \prime} \times .15$		11/-				

Spot Face Cutter 7/6d. Pin Insert Tool 9/6d. Terminal Pirs 3/6d. for 36. Spot Face Cutter and $52 t^{\prime \prime} \times 1^{\prime \prime}$ boards $9 / 9 \mathrm{~d}$.

These prices cannot be repeated. Order now. Don't forget to add your name and address!

RADIO \& TV COMPONENTS (Acton) LTD 21a High Street, Acton, London, W.3.
also 323 Edgware Road, London, W.2.
Goods not dispatched outside U.K. Terms C.W.O. All enquiries S.A.E.

SPECIFICATION
Sensitivies for 10 watt output at 1 KHz into 3 ohms. Tape Head: 3 mV (at 31 i.p.s.). Mag. P.U. 2 mV . Cer. P.U.: 80 mV . Tuner: 100 mV . Aux. 100 mV . Tape/Rec. Output: Equalisation for each input is correct to within $\pm 2 \mathrm{~dB}$ (R.A.A.A.) from 20 Hz to 20 KHz . Tone Control Range: Bass
 teak finishe 81 $\frac{1}{2}$ GNS. Buill and p. \& p.

She iscowent INTEGRATED HIGH FIDELITY TRANSISTDR STEREO AMPLIFIER 13 $\frac{1}{2}$ GNS. $+7 / 6$ p. \& p. SIZE: $12 \frac{1}{\prime \prime} \times 6^{-} \times 2 f^{\prime}$ in teak-finished case specification
OUTPUT: 10 watts par channel into 3 to 4 ohms speakers (20 watis) monoral.
INPUT: 6-poshition rotary selector switch 13 pos. mono and 3 pos. stereo). P.U. Tuner. Tape and Tape Rec. out Sensitivities: All inputs 100 mv into 1.8 M ohm
TONE
BASS. 15dB lift and 25 dB cut diss and treble controls. TREBLE 13dB lift and cut (at 15 KHz) VOLUME CONTROLS: Separate (or
nel. AC MAINS INPUT: $\mathbf{2 0 0} \cdot \mathbf{2 4 0 v} \mathbf{5 0} \mathbf{5 0} \mathbf{6 0} \mathrm{Hz}$ magnenic pick ups. Sultable for cartridges with minimum output of $4 \mathrm{mV} / \mathrm{cm} / \mathrm{sec}$ equalised to magnelic pick ups. Suitable for cartid
Impedance 47 k .15 g s plus $7 / 6 \mathrm{p} . \& \mathrm{p}$.

OUTPUT: 10 watts into a 3 ohms speaker INPUTS: (1) for mike (10 m.v.). Input (2) for gram. radio (250 TRANSISTORS: 4 slicone and three

THE DORSET
(600mW Output) £5.5.0
plus $7 / 6$ p. \& P.
Circuit 2/6. FREE WITH PARTS MAINS POWER PACK KIT 9/6 extra.

THE RELIANT MK.II Solid State
General Purpose Amplifier
in teak-finished case
$6 \frac{1}{2}$ GNS.
$7 / 6$ p. \& p

MAINS InPut: 220/250 volts
SIZE: 104 $\times 44^{\prime \prime} \times 2 \frac{1}{2}$
MIKE TO SUIT (CRYSTAL): $12 / 6 \mathrm{~d}$. $1 / 6 \mathrm{~d}$. p. \& P

Mk. $1{ }^{5}$ tgns. $+7 / 6$ d. p. \& . less Teak-finished case.

ELEGANT SEVEN
MK. III
(350 mW Output) f4.9.6
plus $7 / 6 \mathrm{p}$.
Circuil 2/6. FREE WITH PARTS
MAINS PO

7-transistor fully turnble M.W.-L.W. superthet portable Set of parts. Complete with all components. including ready etched and drilled printed circuit board-back printed for toolproof construction

MOTEK

3 spers 2 track Tape Deck complete with heads, takes 7 in, spool incorporating 3 motors. A.C. malns. 240 volts. listed at

Our Price f9.19.6

X101 10w. SOLID-STATE HI-FI AMP With Integral Pre-amp. Speciticalions: Powee Ouppu1 linto 3 ohms speater) ohms i0.33 micran nat rated output: : 1 mV into 3 KK
 Responss: Minus 3 dB points 20 Hz and 40 KHz
 69/6 pius 276 p. 8 .

 101 mi now

50 WATT AMPLIFIER

AC MAINS $200-250 \mathrm{v}$
27 gns.
olus 20\%p. \& p.
 Sons 0.35: At rated output 1.5\% Revencr
uding trexistors end canaciouta 1. Volu

-

An extremely reliable general purpose valve Amplifierwith six electronically mixed inputs. Suhable for use with mics. guitars. gram. tuner. organ. otc. Separate bass and

SPECIAL OFFER

Complete stereo systems comprising BALFOUR 4 spefd aut player with stereo head 2 OUO speaker systems size $12 \times 6 \frac{1}{3}$
$5 \frac{1}{4}$. Plinth fless cover) and the DUETTO stereo amplifie. 54. Plinth fle

G. G. AUDIO SWITCH

A simple way to switch between two sets of speakers or stereo headphones.

A "must" for almost every installation. Finished in teak and available from all leading Hi-Fi dealers at only f4.17.6.

Sole U.K. Distributors
HOWLAND-WEST LTD
2 Peat Eno. Suuth Hill Park. London. .N.W. 3

STEREO OFFSB!

As Britain's Largest Specialists our
tremendous purchasing power enables us to offer you the famous makesGarrard, Goldring, Rogers. Decca, Arena, Phllips. Wharfedale, etc., etc.at unbelievably low prices. We offer over 30 Hi -Fi Stereo Systems utilising these famous makes and showing substantial savings off our normal list prices.
A Nusound Stereo System represents the finest value for money available today. Even system is complete with all leads. plugs. erc.
Carrying full manufacturer's guarantee and backed bV 1 Nus Illustrated literature and technical data sent by return of post (Dept. WW/OT)

24 OXFORD ST., LONDON, W. 1 Tel: 01-580 4638, 4639, 5755

4STATION INTERCOM

Solve your communication problems with this new 4-8tation Transistor Intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to Subs and Subs to Master. Operates on one 9 v . battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hospital, Shop, etc., for instant inter-departmental contacts. Complete with 3 connecting wires, each 66 ft . and other accessories. Nothing else to buy. P. \& P. 7/6 in U.K.

Same as 4-Station Intercom for two-way instant conversation from MASTER to SUB and SUB to MASTER. Ideal as Baby Alarm and Door Phone. Complete with 66 ft . connecting wire. Battery 2/6. P. \& P. 4/6.

7-STATION INTERCOM

(I MASTER \& 6 SUB-STATIONS) in strong metal cabinets. Fully transistorised. $3 \frac{1}{2}$ in. Speakers.
Call on Master identified by tone and Pilot lamp. Ideally suitable for Office, Hotel, Hospital and Factory. Price $27 \mathrm{gns} . \mathrm{P}^{2} \&$ P. $14 / 6$ in U.K.

Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Pcrtable Transistor TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A hard of hearing persons. On/off switch. Volume Control. Operates on one 9 . battery which lasts for months. Ready to Battery. P. \& P. 3/6 in U.K. Add Full price refunded if returned in 7 days. WEST LONDON DIRECT SUPPLIES (W.W.), 169 Kensington High Street, London, W. 8

PACKS OF YOUR OWN CHOICE UP TO the value of 10/- WITH ORDERS OVER C_{4}

TRY OUR X PACKS FOR UNEQUALLED VALUE

XA PAK

Germanium PNP type transistors, equivalents to a large part of the OC range, i.e. 44, 45, 71, 72, 81 , etc.

PRICE 15 PER 1000
POST \& PACKING 4/6 U.K.

x P PAK

Silicon TO-18 CAN type transistors NPN/PNP mixed lots; with equivalents to OC200-1, 2N706a, BSY27/29, 85Y95A.

PRICE E4.5 PER 500
PRICE E8 PER 1000
POST \& PACKING $2 / 6$ U.K.
XC PAK
Silicon diodes miniature glass types, finished black with: polarity marked, equivalents so OA200, OA202, BAY3I-39 and DKIO, ete.

```
                PRICE E4.10 PER 1000
```

POST \& PACKING $2 / 6$ U.K
ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF 75\% OR MORE GOOD SEMICONDUCTORS. FREE PACKS SUSPENDED WITH THESE ORDERS. ORDERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK.

$\begin{array}{ll} \text { NEW } \\ 82 & 4 \end{array}$	STED \& GUARANTEED photo cells. sun batteries inc. BOOK OF INSTRUCTIONS	1/-
2	AD161-AD162 NPN/PNP TRANS. COMP. OUTPUT PAIR	\%
4	IN4007 SIL REC. DIODES 1000 PIV 1 AMP. MINIATURE	/-
88110	reed SWITCHES MIXED TYPES LARGE \& SMALL	10/-
в89 2	5 SP5 LIGHT SENSITIVE CELLS LIGHT RES. 400Ω DARK 1 M Ω	10/-
в91 8	NKT163/164 PNP GERM. TO - -5 EQUIVALENT TO OC44. OC45	10/-
B92 4	NPN SIL. TRANS. AO6 $=$ BS $\times 20$. 2 N 2369.500 MHz .360 mW	10/-
5	GET113 TRANS. EQUIV. TO ACY17.21 PNP GERM.	10/-
899200	CAPACITORS ELECTROLYTICS. PAPER. SILVER MICA, ETC. POSTAGE ON THIS PAK 2/6.	10/-
8965	2N3136 PNP SIL. TRANS. TO- 18 HPE 100-300 IC. 600 mA . 200 MHz	10/-
89810	XB112 \& XB102 EQUIV. TO AC126 AC156. OC81/2, OC71/2. NKT271. ETC.	10/-
250	MIXED RESISTORS POST \& PACKING 2/	

Return of the unbeatable P. 1 Pak. Now greater value than ever

Full of Short Lead Semiconductors \& Electronic Components. approx. 170. We guarantee at least 30 really high quality factory marked Transistors PNP \& NPN. and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.

> Please ask for Pak P.1. Only 10/-

2/-P \& P on this Pak.
Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any 0-1 mA meter into a perfectly linear and accurate re counter for any car.

FREE CATALOGUE AND LISTS for: -

ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add $1 /$ - post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

MULLARD DATA BOOK

SEMICONDUCTOR \& VALVE DATA \& E QUIVALENTS 3/6 POSTAGE 6d EACH

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

ELECTRONIC BROKERS

DIGITAL MAGNETIC DATA STORAGE DECK-Seven Track record replay heads These machines origivally ex-computors, multi-track reconding
units or data storage. Record and Playback Heads encaned in one common unit. Head resiatance 40 ohms and 7 ohms,
Freq. Respomse approx. 30 c.p.s. $30 \mathrm{Kc} / \mathrm{s}$ with a good reaponse to $50 \mathrm{Kc} / \mathrm{s}$. Finished in hrumbaluminiurn and matt-black. Coprtan motor speed 1,500 r.p.Im 48 v.
c/w VACUUM ABSEMBLY. £
SEVEN TRACK Record replay heads-ex SEVEN TRACK Record replay heads-ex
computor, complete with guldes, little uned. $£ 12.10 .0$ UNISERVO M
TAPE UNIT

rean-write bead. One track contains sprocket pulee, on containg purity (Check-bith) contain data any alx bit code can be used to record on and an be read from the tape Data can be read in either beckward or forward direc
thon. The unit contains clreuit for recelving and storing
instruction mignals. Recording density 250 charactera pe inch. Tape apeed 100 in . per dition.

CREED TAPE PUNCH MODEL 25. 7 HOLE A multiwlre tape punch designed for general application
Invoiving the convermion of parallel wire electrical impulse inth) puached paper tape it

WELMEC 7 HOLE NON PARITY TAPE LOW SPEED 7 HOLE TAPE PUNCH. 60 characters per sec, by well-known manufacturer.
FERRANTI HIGH SPEED 5 HOLE CHARACTERS per pecond reader. £19.10.0
4K 24 BITS CORE STORE type MM 104t. complete with all read, write electronice and all aidrem decoding

PROGRAMME BOARDS BY SEALECTRO
These bospds are hakleally a mult liating of a X.Y Miatrix with two contact decks in the Z Plane rumning
at 90 degreep to each other. Contact in made by either, fhorting or plugsing in pinn. Ideal for prototype work, etc Board. available la 16×162 plane
$£ 4.5 .0 .24 \times 602$ plane $£ 12.10 .0$ £4.5.0. 24×602 plane $\mathbf{~ E 1 2 . 1 0 . 0 ~}$
Plas avallable $1 / 3$ each.

MEMORY PLANES
Perrite core memory planes with wired Ferrite cores. Used for building
your own computor or an an interesthag exhibit in the demonatration of a computer. Mounted on plastic of matrices $40 \times 25 \times 4$ cores each ne Individually addreswable and divided into 2 halves with indeppendent
sense and inhibte wire. $£ 8.10 .0$.

AMPEX FR300
Tapo deck in Rree-standing 6 it aut transformer for driving capstail motors. E79-10.0.

EMI BTRI Tape Recorder fully over
hauled $£ 175$

DECODER 4 DIGIT READOUT
Can be used In conatructing fre
quency counter or Digital Voltmeter Consint: of 4 tratisiftorised cardis each conthining 10 NOR gates. Circuith
supplied with Decoder. $£ 25$.

MINIATURE MOVING COIL RELAY $\$ 115$ By Rangitmo Weston, nult able for D.C. clrcult. A hin
senaitivity relay more sen
sitive in senaitivity relay more sen-
sitive than the electro-
magnetic type sing Cos
 Reniatance
Micro-Amp. Sint.
44.10. Our price $20 /-$

VACTRIC 144.WAY HIGH SPEED

 MINIATURE SAMPLING SWITCHES, consisting of 24 begmenta ha nix bank. 8000 samples per seocond can oe ontainedfrom these switches. Idenlly autable for data logging sppllisation. Low thherent noise and contact resintance peruitting high speed sampling of the most difficult tranducers. Pul
digitial counting. Brand new. 825.

BRAND NEW S.E. LABORATORIES TRANSDUCER
complete
Frequency D.C.- \quad do C.P.B.
Available in the following ranget

DIFFERENTIAL PRESSURE TRANS
DUCERS by gifam Lud. O.B. Type H 33 Range $\pm 900 \mathrm{MB}$
Our price $£ 19.10 .0$.
Resistance 942 ohm

HOLLERITH 80 COLUMN CARD VERIFIER By ICT. Type No. H
Good conition 895 .

"V" SCAN DIGITAL SHAFT ENCODER BY Counta 524288 th 1024 revolutions of share in V geanis. Brand new in maker's originul vealed tins. List price $\mathbb{R} 75$ appros. Our price £22.10

PHOTOMULTIPLIER VMPII/44 (CV 2317) by 20th Century Electronics

UNICAM RECORDER SP 20 Series
 rom $0-10 \mathrm{mV}$ O.C. Suitable for use with Apectro $\begin{array}{ll}\text { photometer and } & \text { other laboratory instruments. } \\ \text { Char sped } 0.5 \\ 0.5 \\ 8.4 \mathrm{~cm} / \mathrm{min} \text {. Llnearity } \pm 0.25 \%\end{array}$ rully transistorised. Chart width 200 mm. Inpu impedance 10 K ohms nax. Avaliable 8.P. 20 Plitis
Linear. A.P. 21 Flat Bed. B.P. 22 Línear/Lag. Linear. A.P.
$£ 135$ each.

FOUR CHANNEL HIGH SPEED PEN RECORDER

By Kelvin Hughes, with four channei ampliffer, giving a frequency range of $0.100 \mathrm{c} / \mathrm{s}$. carrying in its poles four stlifty suapended moving coil unit., each writh a styluan arm attached. The
stifness of the coll unit suapension erablea the stinmeas of the coll unit shapension enabies the
inatrument wo withatand the elfects of vibration and acceleration. senaltivky $\pm 3 \mathrm{3V}$ input for fuli
seate deflection of $\pm 7.5 \mathrm{~mm}$. Malns operated. seale deflection of $\pm 7.5 \mathrm{~mm}$. Malns operated.
si chart speedn: $0.5: 1: 2: 4 ; 8 ;$ and $10 \mathrm{~cm} / \mathrm{sec}$. Excellent condition. $£ 149 / 10 / 0$. N.B. Two channel version avaiduble, giviug \pm

POTENTIOMETRIC 6 POINT STRIP CHART RECORDER For use with thermocouplers, pyrometers and
 chart width; pen speed 8 secs. Accuricy Tropicalined. Including toola and spares Listed at over $£ 2000$. Our price $£ 79.10 .0$
Almo twallable 0.100mW F.8.D. $£ 89.10 .0$

NEW PORTABLE RECORDING AMMETER

Specification. Type: Movlug Coll, D.C. Range: Length: 127 mm . Cbart Speeds: 20. 60.180 , 600 , 1800 and 5400 mm /br. Precision: 1.5%. Shunts:
75 mu (latersal). Operating Temperature: +8
 245 mm , Weikht: 5.3 kk . Complete with: 10 chart rolls. gears. inks. pipette, acsle template and component case. List price $\mathbb{E} 65$, Our price $£ 35$.

TYPE 67008 EVERSHED BRIDGE MEGGER 500 volts. Insulation 0.100 Meg . Bridg $0.01 \cdot 999$

ORTABLE AC/DC PEN RECORDER a most verkatile pen recorder. Producen a trace on a 6 in. lharar Limiling contpachart. Two apeeds 1 in ing and the current when lt exceed the high andfor low 00 ohms; 0-1MA A.C. Meter Resitance 1800 a
$0 \mathrm{H}_{2} ;-10$ to +5 dB tato 600 a Impedance source. Chart apeed: it in. and 6 in. hr . Chart
cidth; 3$\}$ in. curvi-inear. Power supply: 230 V 50 Hz driving 8ynchronous Motor.
Price: $£ 49.10 .0$. Postage and packing \&1 5s. Od.

SINGLE PEN RECORDER BY RECORD ELECTRICAL
 CHus.). 3 in. chart, Rensitwity 500 micro ampa.
Coil res. 1. 53 k . Fully interchangeable gears
avallable to make a ulde range of chart gpeeds. avalable (250r. Rize: $8 \times 11 \times 6$ ln Brand new complete with chart and Ink. List over 8100 .
Our price $£ 49.10 .0$.

MOTORS

E.M.I. Proleasiona Audio Tape Recorder Model BTR . . This wan the type of equipment uned by the £125.

HYSTERESIS REVERSIBLE MOTOR Incorporating two colle. Fach coll when energised
ill produce opposile rotation of output shaft ill produce opposite rotation of output shash 240 V 50 Hz.
$30 /-$ each.

HIGH TORQUE INDUCTION
MOTOR. sooz/inch. Avaliable in the following speede only 240 V 30 Hz \& r.p.m..
120 V 50 Hz 20 r.p.m. $30 /-$ each.
 arting torque enable relative high inertla loads to
driven up to $60 \mathrm{z} / \mathrm{in}$. Avaliable in the following

 $1 / 300$ r.p.m., $1 / 20 \mathrm{r} . \mathrm{p}$. $25 /$ - esch.

HYSTERESIS CLUTCH MOTOR with litegral clutch allowing the motor to drop
out of engagement with the gear train, thereby facilitating ensy resetting when used to timers or In conjunction with a light ppring. 6 ox. Worque at
1 r.p.m. $240 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$. La left. R \quad right. $15 \mathrm{r} . \mathrm{p} . \mathrm{m}$.
 2. HIGH PRECISION MAINS MOTOR

LOW COST ELECTRONIC AND SCIENTIFIC EQUIPMENT AND COMPONENTS

Spectication. Range: $0.01-111 \mathrm{Meg}$ in 0.01
Megobm divisions. Accuracy: 0.05% Maximum power rating: 0.1 Wccuracy: 0.05%. Maximum finiahed stove enamel.
List price 280 . Our price
£28/10/-.

SET OF MEASURING

Specineation Type: Moving Coll D.O. Ranges:
$0-75 \mathrm{mV}, 0-3 \mathrm{~V}, 3-15-150 \mathrm{~V}, 3-150-450 \mathrm{~V}, 0.3-0.75 \mathrm{~A}$,

 Case: Btove enamelled metal.
Last price e 30 . Our price E12/19/6.

PORTABLE MULTIRANGE

 0.120 mA, D.C. 1.2 s 12, amps D.C. $0.8 \cdot 3$ \&
$6.30 \mathrm{~mA}, \mathrm{~A} . \mathrm{C} .24-120 \mathrm{~mA}$, A.C. $0.24-12 \mathrm{~A} . \mathrm{A} . \mathrm{C}$
 1,200 " $6,000 \mathrm{~V}$. A.C. $3-333$ ohme, $0.3-30$ K Khms. $0.03-3$ megohms D.C. Resintance $-12 \mathrm{ta}_{\mathrm{t}}+78$ D.C.: 20,000 ohma/voit. Input Rekistance A.C. 2.000 ohmp/volt. Temperture Rapge: - 10 to +50 deg. C. Dlmeanions: $255 \times 215 \times 170 \mathrm{mmm}$
Weight: 8 kg . gupplled $\mathbf{w i t h} 2$ voltage dividers Weight: 8 kg . 8 upplled with 2 voluage divider
H.V. leads, spare rectilers, $1.5 \& 22.5 \mathrm{~V}$ battery.
Lhat price $£ 25$, Our price $£ 12 / 19 / 6$.

ILLUSTRATED

Res.
R.S.C. SUPER

BRAND NEW	SEMICONDUCTORS GUARANTEED
	\& COMPONENTS

P. \& P. 1'6 per ordar. OVERSEAS MIN. 10^{\prime} -

SPECIAL OFFER

(Limited to last Saturday in October)

To encourage personnel callers we are happy to offer a discount of 5% to all our customers on Saturdays only. We are happy to quote forquantity supplies to manufacturers etc,

SPEED CHECK! Rouss poer minuteor amphing
P.I. ELECTRONIC TACHOMETER

Type P.I/L with light probe
Type P. $1 / \mathrm{M}$ with magnetic probe

* Imposes no load
* No mechanical connection required
* Ideal for inaccessible places
* Lightweight for easy movement External D.C., Battery, and Marine engine speed versions available from-

NECO ELECTRONICS (EUROPE) LTD.,

WALTON RD.. EASTERN RD..
COSHAM. HANTS.
LONDON OFFICE: NORTH ST. CLAPHAM. LONDON, S.W. 4 TEL: 01-622 0141/3 \& 3211/5
WW-136 FOR FURTHER DETAILS
Buy your valves from us. It will cost you less

"PUCKA ENTERPRISES"

Electronic Valves \& Equipment Co.

> 207b Belsize Road, London, N.W. 6

Phone 01-328 6123
Business hours: $\mathbf{9 . 0 0}$ to $\mathbf{6 . 3 0}$
Please send S.A.E. for Price List
Buy your valves from us. It will cost you less WW-138 FOR FURTHER DETAILS

POWER AMPLIFIERS

 USED BY THE PROFESSIONALSH/H ELECTRONIC

Industrial Site, Cambridge Road, Milton, Cambridge, CB4 4AZ

Tel. Cambridge 63070
WW-137 FOR FURTHER DETAILS

Crosswire Electronics Ltd.

Staple House
51-52 Chancery Lane, London, W.C. 2
Telephone: 01-2428545
*
ERRATA
FAIRCHILD Circuit Applications File Price should read 7/6d.
See our advertisement on page 88

NEW PRICES ON NEW COMPONENTS

RESISTORS
bonding.

Dimensions (mm.): Body: | WW; 8×2.8 |
| :--- |
| W: |
| D | Leads: 35 .

10% ranges: 10 Ohms to 10 Megohms (E12 Renard Serles).

		each	10 off	25 off	100 off
tw	10\%	2d.	1/6	3/3	10/4
IW	5\%	2!d.	1/9	3/8	$11 / 8$
+ W	10\%	21 d.	1/9	3/8	$11 / 7$
+W	5\%	3 d .	2/-	4/-	12/10

CAPACITORS
Subminiature Polyester film, Modular for P.C. mounting. Hard epoxy resin encapsulation. Radial leads.
$\pm 10 \%$ tolerance. 100 Volt working.
Prices- Der Capacitance value ($\mu \mathrm{F}$)
$0.001 .0 \cdot 00$, $0.005,0.01 .0 .02 \ldots$ each. 0.05
0.1
$\begin{array}{lllllllll}0.2 & \cdots & \cdots & \cdots & 1 / 2 & 10 /- & 20 / 10 & 68 / 6\end{array}$
Polystyrene film. Tubular. Axial leads. Unencapsulated $\pm 5 \%$ or $\pm 1 \mathrm{pf}$ tolerance. 160 Volt Working.
10.12, 15, 18.22, 27.33, 39. 47, each 56. 68, 82. 100. 120. 180. 220. $270,330.300$
470, 560, 880, 820, 1.000. 1.500 2.200, 3.300, 4.700, 5,600 $6.800,8.200 .10 .000 .15,000$ 22.000

POTENTIOMETERS (Carbo 9d
Superior grade enclosed controls. Low rotational noise. Body dia., 1in. Spindle, $2 \mathrm{in} . x i \mathrm{in}$, Tolerance, 20%.
Logarithmic: 5 K to 2 M . (t W at $40^{\circ} \mathrm{C}$)
$\begin{array}{llll}\text { Logarithmic: } 5 \mathrm{~K} \\ \text { Prices per ohmic value } & 2 \mathrm{M} \text {. } \\ \text { each } & 10 \text { off } & 25 \text { off } & 100 \text { off }\end{array}$
GANGED STEREO POTENTIOMETERS (Carbon)
W at $70^{\circ} \mathrm{C}$. Long Spindle.
Iokarithmic and Linear: $5 k+5 k$ to $1 \mathrm{M}+1 \mathrm{M}$.
Prices ner ohmic value
each
$8 /-$
10 off
25 off
$162 / 6$
100 off
SKELETON PRE-SET POTENTIOMETERS (Carbon)
Hugh quality pre-sets suitable for printed circuit boards of $0 \cdot 1 \mathrm{ln}$. P.C.M. 100 ohms to 5 Megohms (Linear only). Miniature: $0.3 W$ at $70^{\circ} \mathrm{C}, \pm 20 \%$ below iM, $\pm 30 \%$ above 1 M . Horizontal ($0.7 \mathrm{in}+0.4 \mathrm{in}$. P.C.M.) or Vertical ($0.4 \mathrm{in} . \times 0-2 \mathrm{in}$, P.C.M.). Subminiature: $0 \cdot 1 \mathrm{~W}$ at $70^{\circ} \mathrm{C} . \pm 20 \%$ below $2.5 \mathrm{M}, \pm 30 \%$ above.

DUXFORD ELECTRONICS 97/97A MILL ROAD, CAMBRIDGE

Telephone: CAMBRIDCE (0223) 63687

(Visit us at our new Mail Order, Wholesale and Retail Premises) Minimum Order Value 5/- C.W.O. Post and Packing 1/6

7MK

and - resily first class pracision multimater at a worthwhima aving in cost. Tha Impact resistent tatelita cabinats ana supalied with the

MODEL 200

 wensistor circwit measurnments. SPECIFICATION:

OCV :O-0.6-8.30-120.800-1, 200V ot 20NOPV
ACV: 0-6.30-120.600. 1.200V at IONO
OC Current: $0.0 .00 .6 .60-800 \mathrm{~mA}$

Docibels-2010 63dB

LASKY'S KIT PRICE 85/

$170 D=5025 \begin{aligned} & 50,000 \text { O.P.V. FEATURING } \\ & 57 \text { MEASUREMENT RANGES }\end{aligned}$

A highty retiable bastrument using an enfirely new cango selection mechanism which permits the use of a really large meter in a more compect catiner. The range sslected is cleath indicatod on the ectual meter face facilioting instant identification without tuting your eves trom the meles. High speed rality ising saliection knob: also teatures polaniny teversal swith shielded matar SPECIFICATION SPECIFICATION:
 - ACV: 0.3.10-50.250.1.000V al $2.5 \mathrm{FWPFV} 0 \cdot 1.5 \cdot 5 \cdot 25 \cdot 125-500 \mathrm{~V}$ at 5 NOPPV OC $\mu \mathrm{A}: 0 .-25 \mu \mathrm{~A}$ at $125 \mathrm{~mA}: 0.50 \mu \mathrm{~A}$ at 250 mA

- OC Amps $0.5 \mathrm{~A}=1125 \mathrm{mV} ; 0.10 \mathrm{~A}$ a1 250 mV .

Rosisisnce 0 -10 Wonms $113.65,650.6 .5 \mathrm{~K}$ and $65 \mathrm{~K} / \mathrm{omm}^{2}$

- Decibels: -20 to +81.50 B in 10 runges.

Operates on two 1.5 V iU. 7 type batteries). Black bakalite cabinet, sire $5 \mathrm{f} \times$ 时
2 tian. Strong rasiliont plastic handle. Complete with test leaos.

TTC Model C-1051

POCKET MULTIMETER, READY-BUILT A colk-indiany new design 20.000 O.P. pocker mulumeter with mirfol scale and movemem. Colout coded scails Single positive dick-in rectussed selection smitch for all rengas Ohms reto adiustment Range space. a.e volits: $0-6 \cdot 30-300-1.200 \mathrm{~V}$
 0.60 K -6megs oc tunem. $0.60 \mathrm{HK}-300 \mathrm{ma}$ Decibuls. $208810+178$

 rest leads and barten.

RF SIGNAL GENERATOR

Model TE-20

A high-quality fectory-tasted and calbiated ar Sipnal Generater oflaring a full
trequency range covet of 120 KHz in 6 bands plus one harmonic band Oual highlow Rf output reminals provided and sebarate varibbie Autio outpur
 Powet "an" pilot light firted Brief specifications: Frequency rango 18 fund amentad bandsl. A 120.320 KHz B. $320-1.000 \mathrm{KHz} \mathrm{C} \quad 1.3 .4 \mathrm{MHz} 0.32 .11 \mathrm{MHz} \cdot$ E 11.38MHz fo. $36-130 \mathrm{MHz}$ Harmonic band 72.260 MHz Fregusncy secursey $\pm 2 \%$ Output-RF (hight 100 mV max. RF Howl $100, \mathrm{y}$ max. Audio output 400 Hz 8V pporar ladiustable. Powet iequirements $105 / 240 \mathrm{~V}$. $50 / 80 \mathrm{~Hz}$ AC Vave line up 128 H 7 A . 6 AR5 und selenium rectifier. Strong metal cass
finished ingreycrackle Completa with hestionds and instruction book

LASKY'S PRICE £12.10.0

TTC MODEL C-1000

 $0-10.50 .250 .1 .000 \mathrm{~V}$ a 1 KO PV . ACN anges: $0-10.50 .250$ LOOV at IKNO.P.V OC current: $0.1-100 \mathrm{~mA}$ Resissance: 0.150 Nohms 13.000 ohms centre scalel. Sectiels: -10 te $+22 d 8$ Operates on one penlight cell Two colour buth/green case
 ${ }_{{ }_{\text {PRICE }}}^{\text {LASKY'S }} 39 / 6$

AVAILABLE NOW! THE IC-403

integrated cirguit
AMPLIFIER MDDULE
Ongitally developed for computer and spaca progectsthese tivy modules-siai onfy $25 \times 10 \times 5$ mithmetres-
represent the most smating break through in circuin represent the most amaring breanthrough in circuin
design since the introduction of the transistor. The
 ic- 403 is an integmed power and pre am
s complete audi

 CIRCUT APPLICATIONS. FREE INSTRUCTIDN DATA LEAFLET ON REOUEST. JUST SENG SA.E

ENCAPSULATED
 SOLID STATE MODULES

8 camplately new speciel function cirtuil moduises. Sese of each madule ontr 2$\} \times 1$ dx in Ready tor immediate usp- iunt connett to powet source lusually 9 V bank. impul and output. Encapsuisuled modules are shockproof and almast indestructiois. Comp. with tull in. Post $1 / 8$ each.

-1311 Phono Pioramp Moduto-men. oula
mp 100 k gain 2 2af B. RIAA compensation

E-1 1312 Tape
compensation

$1050 \mathrm{ke} / \mathrm{l}$.

29/6

$\begin{array}{lll}6 \mathrm{~V} \text { power supphy. } & 25 /=\end{array}$
GET YOUR LASKY'S AUDIO-TRONICS PICTORIAL

Send $1 /$ - tor post onky and inclusion on our regular mating list

HI-FI, AUDIO AND TAPE RECORDER DEALERS AROUND THE BRITISH ISLES

BEDFORDSHIRE Luton

COVENTRY RADIO LTD.

ESTABLISHED 40 YEARS (1925)
See and hear the best and latest in Hi-Fi equipment at our Luton showrooms and demonstration room.
Send for information on your requirements $189 / 191$ Dunstable Road, Luton Telephone: LUTON 28201

CHESHIRE Stockport

AUDIO CENTRE

We stock the full range of $\mathrm{Mi}-\mathrm{Fl}$ Tape Rocorders and special Transistor Radios
Fairbotham and Co. Ltd. 58/62 Lr. Hillgate, Stockport Tel: 480.4872
full service facilities

ESSEX

 LoughtonSOUND SUPPLIES (Loughton) CO. LTD. TEL: 01-508-2715
HI-FI Showroom BROOKLANDS PARADE,
309 HIGH ROAD, LOUGHTON
Spares and Repairs
12 SMART'S LANE, LOUGHTON, ESSEX.

Romford

We Give the Finest Hi-Fi Service in the Area
Romford Sound \& Vision Service Ltd. 78a BRENTWOOD ROAD ROMFORD
TEL. ROMFORD 41644 OR COME AND SEE
HAMPSHIRE Southampton

KENT Gravesend
GRAVESEND HI-FI CENTRE BENNETT \& BROWN ${ }_{1925}^{\mathrm{E}_{15}}$ 608 WROTHAM RD., GRAVESEND. 3245-3060 Also 2 milton Road
Visit our Hi-Fi Showroom and Demonstration Room. All leading makes stocked, including Tandberg, Arr.-
strong, Leak, Ouad, B \&, Rogers Trufo
 graph, GKD, Record housing Goidring, Thorens,
KEF, Goodmans, Hacker, Grundig, ece.
LANCASHIRE Bury

J.SMITH \& SON

HI-FI EQUIPMENT - STEREOGRAMS TAPE RECORDERS - 2 SHOWROOMS Armstrong, Ferrograph, Revox, Truvox, Uher, Armstrong, Ferrograph, Revox, Truvox, Uher, Comparator Dems - Closed all Tuesday

Specialists in' SOUND' for 36 years
184 THE ROCK, BURY. TE/: 124
Manchester
IN MANCHESTER
GODLEYS
2-10 Shudehill, Manchester Tel: 0618349432 (5 lines)

Liverpool

LIVERPOOL'S LEADING Hi-Fi specialists

Beaver Radio

OF WHITECHAPEL ROYal 9898 LONDON AREA
E.C.

Stern Radio Ltd.

Your leading City Audio and Hi-Fi Specialists
109 Fleet Street, London, E.C. 4 Tel.: 01-353 5812

North
HI-FI MAIL ORDER SPECIALISTS
C. C. GOODWIN (SALES) LTD. 7 THE BROADWAY
WOOD GREEN, LONDON, N. 22 TEL: BOWES PK. 007718
All leading makes in stock
South East

ELECTRIC

81 Portland Road South Norwood 01-654 3200
Hi-Fi and Public Address Equipment Rogers and other leading makes

THE AUOIO \& SIENTIFIC CENTRE
Make your Audio purchase an investment. Sound advice
in all sound matters, realiselically simulating home listening conditions at Britain's unique Audio Studio. Shop open 6 full days a week (Thursdays until 7 D.m.)
ADVICE IS FREE, COME AND TALK TO US ADVICE IS FREE, COME AND TALK TO US UNITED TECHNICAL SUPPLIES LIMITED 29 TOTTENHAM COURT ROAD, LONDON, W.I.

Established 1910

H. L. SMITH \& CO. LTD.

Comprehensive stock of equipment by all leading makers 287-9 EDGWARE ROAD LONDON, W.2. Tel. 01-723 5891

MIDDLESEX Hounslow
MUSICREET
HI-FI CENTRE 63 HIGH STREET HOUNSLOW • MIDDLESEX Tel: HOUnslow 4640

OXFORDSHIRE Oxford

HIGH	FIDELITY IN	OXFORD
	HORNS	
Telephone: Oxford 55360		
Informat	ion - Demonstration -	- Installation

SURREY Farnham

* Slocklsts of ail good H1-Fl apparatus.
* Comparatlve demonstrations.
* We offer a real after sales service.

Eastest of terms.

* No Darkling probiems.

Lloyd \& Keyworth Lid.
THE RECORD SHOP
26-27 DOWNING STREET, FARNHAM SURREY Telephone: Farmham 5534
SURREY AND HAMPSHIRE'S HI-FI SPECIALISTS

SURREY Guildford

> MERROW SOUND LTD.
> Specialists in Hi-Fi \& Tape Recording Fully equipped for comparative demonstrations Leading Agents Early closin Wed 1 P. Mo pim. EASY PARKIS Early closing wed. 1 p.m.
> GUUILDFORD

WARWICKSHIRE Birmingham

GRIFFIN RADIO LTD.

021-692 $1359 \quad 021-6430867$
94 Bristol Street - Birmingham 5

* Complete advivory facilities for all makes of equipment.
* Full range of Classical and Light Music LPs.

Coventry
ELECTRONIC SERVICES
HI-FI SPECIALISTS
33 CITY ARCADE
COVENTRY
TEL: 24632
WORCESTERSHIRE Worcester
HIGH-FIDELITY SPECIALISTS JOHNSONS SOUND SERVICE 43 Friar Street, Worcester Worcester 25740

YORKSHIRE Doncaster

THE MUSIC CENTRE
Thursdays 9.12 .30
Open weekdays 9-6.
Fridays $9-8$. (October to March.)
Comparotor Demonstrations
Large Selectlon of Leading Makes
52, Hallgate, Doncaster
Tel: $3160 \& 3161$
Opposite the Odeon

SCOTLAND Edinburgh

EDINBURGH'S	Hi-Fi Corner
HI-FI SPECIALIST	1 HaddIngton Place edinburgh.
Amplifers, F.M. Tuners, P/Ups,	Phone WAV 7901
Speakers, etc. Demonstrations	W. G. Graham,

VALVES

ELECTRONIC ANTENNA CHANGEOVER SWITCH
Automatically transfers antenna for $T X$ to RX and vice versa withour the
use of relay or any moving part. Operates from 3.5 mes to 28 mes. No loss use of retay or any moving part. Operates from 3.5 mcs to 28 mes. No loss
of transmitting power and provides gain of 26 Db in receiving sensitivity, of eransmitting power and provides gain of 26 Ob in receiving sensitivity,
with bull-in power supply unit for $220 / 250 \mathrm{~V}$ AC. Our own manufacture. full description and price upon request.

MARCONI TEST EQUIPMENT

SIGNAL GENERATOR TYPE TF 937 (CT 218). Frequency range:- 35 $\mathrm{kHz}-30 \mathrm{mHz}$. 50 ft . Frequency scale.
200 kHz to 2 MHz . Buils-in Cryscal calibrator Sinewave A.M. V.F.M. OutAM/FM SIGNAL GENERATOR TYPE TF 995/a/3/5 (No. 18, CT402). Military version of TF 995 Series, with
addisional increased ousput for 1 .F. Measuremenss. Frequency:-1.5-220 MHz . New. complere wish all leads,
adaptors etc. © 150 . Carriage $30 / \mathrm{l}$. VTVM TYPE TF 958 (No. 3, CT 208). Ranges:-AC $0-1500 \mathrm{v}$ with multiplier. DC $100-0.100 \mathrm{v}$ in 5 ranges. Frequency: $20 \mathrm{~Hz}-100 \mathrm{MHz}$. 695. Carriage 18/-

NOISE GENERATOR TYPE TF $987 / 1$. Frequency range:- 100 kHz -
200 MHz . Noise factor calibration:-a- 30 in four ranges. directly catibrated.
Impedance 71 ohm. $£ 40$. Carriage $30 /$.

IMPEDANCE BRIDGE TYPE TF 936 (No. 5). Measures L \& C at 80 Hz , C:IUuF-I00uF. R:0.1ohms 100 mohms . AC Bridge volts monitored and variable. Automatic detector sensisivity control. El105. Carriage $30 /$.
DISTORTION FACTOR METER DISTORTION FACTOR METER
TYPE TF I42E. Frequency range: $100-8,000 \mathrm{~Hz}$ in four ranges. Distortion range: 0.05 so 50%. Input impedance variable. Sensitivity 1 mW . $\& 42.10 .0$. Carriage 20 GENERATOR TYPE TF 675 F . Reperion frequency. 50 Hz to 50 kHz . Pulse duration: 0.15 to 1000 sec; buils in 0.1 and 0.5μ sec delay lines. E40.10.0. Carrlage $^{20 / \%}$ SIGNAL GENERATOR TF 801/A. SIGNAL GENERATOR TF 80I/A.
$10.300 \mathrm{Mc} / \mathrm{s}$. in 4 bands. Insernal as 400 c / s. $1 \mathrm{kc} / \mathrm{s}$. External $50 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$. Output 0.100 db below 200 mV from
75 ohms source. $£ 85$. DITTO but $801 / \mathrm{A} / 1$ with additional high level 801/A/I with additional high level
ourpur. E89. Both P. \& P. 20/- inand instruction manual.

HEWLETT-PACKARD TEST EQUIPMENT

MODEL $524 B$ ELECTRONIC MODEL 400D VALVE MILLIVOLT. COUNTER. Without plug in unit this instrument will measure irequencies
from $10 \mathrm{c} / \mathrm{s}$ so $10.1 \mathrm{mc} / \mathrm{s}$ and periods of from $0-10 \mathrm{ke} / \mathrm{s}$ Frequencies are read in rom $0-10 \mathrm{kc} / \mathrm{s}$. Frequencies are read in ally positioned, and time is read in seconds. milliseconds or microseconds again with the decimal point automaticplaces, first six on neon lamp decades. last two on meters. Self check facility from internal $100 \mathrm{ke} / \mathrm{s}$ and $10 \mathrm{me} / \mathrm{s}$ frequency standards. Fult details and METER. Voltage range: I mV to 300 v F.S.D. in 12 ranges. Frequency range: and $1 S_{p F}$. Accuracy 2\%. 638.10.0. Carriage 12 /.

MODEL 430 C MICROWAVE POWER METER. Power range: 0.1 to 10 mW F.S.D. in live ranges, also calibrased in DBM from - 20 to +10 . Frequency range: 10 MHz to ' R ' Band, depending on Bolometer maune. E58.10.0. Carriage $30 /-$.

SOLATRON EQUIPMENT

VF 252 VALVE VOLTMETER. OSCILLOSCOPE TYPE CD 643.2 Voltage range: 1.5 mV to 15 F F.S.D. Laboratory type screen dia. Sin., band in nine ranges. $10: 1$ attenuator width $\mathrm{DC} 12 \mathrm{mc} / \mathrm{s}$. Rise cime approx.
input; accuracy 1%. Frequency range: $30 \mu \mathrm{secs}$, sensitivicy approx. $100 \mathrm{~cm} / \mathrm{s}$ input; accuracy 10 kHz . Input impedance: $-65 \mathrm{v} / \mathrm{cm}$. with $\times 1$, $\times 10$, $\times 100$
10 Hz to 100 kren . Greaser than SOMn with 20 pF . Full multipliers and fine expansion coneral. specification upon request. 633.10.0. Controlled bright up, Z modulation.
Cli30. Carriage 40/-. Carriage 15/-.
GAUMONT KALEE (RANK STUDIO) MODEL 1740 WOW \& FLUTTER
METER. EIO5. Carriage 7/6.
BOONTON SIGNAL GENERATOR TS 497/B/URR, $2-400 \mathrm{MHz} .695$.
TS $418 \mathrm{~B} / \mathrm{U}$ SIGNAL GENERATOR, $400-1000 \mathrm{MHz}$ E 105 . Carr. $30 /-$

TRANSISTORS, ZENER DIODES etc.

OA5 2/6	OAZZ23 to	$0 \mathrm{CR2}{ }^{5 /-}$	$\mathrm{AC128}^{6 / 6}$	CRS1/10 5/-	MPF10211/-
OAlO 3/-	OAzz25101-	Oc821) ${ }^{\text {3/- }}$	$\mathrm{AC178}^{7 / 6}$	CRS1/20 9/6	MPF103 8/6
OAFO 2/-	$0 \mathrm{Cl16}$ 15/-	$0^{0} 883$ 4/6	ACY28 4/-	CRS1/30	MPF104
OA71 2/-	00^{28} 10-	OC8s3 3/-	AD1 10 13/-	10	10
OA79 1/9	0 C 25 7/6	0С136 6/8	AD149 18/-	CRS1/35	MPF105
OA81 1/6	00868 5-7	OC140 9/6	AFl7 - ${ }^{\text {d- }}$	11/6	10/6
OA200 1/9	OC28 12/6	OC170 51-	AFlis 10/-	CRS $1 / 4$	Z Range
OA202 $2 /-$	00^{29} 15]-	0 cili 81-	AF124 $7 / 6$	12/6	Zener diodes
OA210 $7 / 6$	0 C 3510 j -	$0 \mathrm{Cl172}$ 7/6	AF127 8/-	CR83/05 B/-	$3 / 6 \mathrm{em}$.
OA211 9/6	OC38 8/6	OC200 7/6	AP139 10/-	CR83/20	Z2A range
OAZ20011/-	OC44 4/-	$1 \mathrm{~N}^{1} 1{ }^{3 / 6}$	AFl78 $12 / 6$		7/8 ca.
OAzzol $10 /$ -	OC45 2/6	IN21B 5/-	AFY19 28/6	CRs3/30	2as rango
OAZz202 mo	$0 \mathrm{C71}$ 2/6	IN20 12/-	AsY26 ${ }^{5 / 6}$	11/8	5/-ea.
OAZ206 8/6	0c72 $4 / 8$	IN 43 4/-	AsY28 $8 / 6$	CRS25/025	range
Oanzev7 8/6	$0 \mathrm{c73}$ 11-	IN70 4/-	BC107 $3 / 6$		5/- ca.
OAZ2u8 to	OC75 8/-	2N1306 6/6	BFY51 4/6	CR83140	3 range
OAz2l	0 C 76 5/-	2N1307 8/6	BFY52 $4 / 6$	12/6	7/8 ea.
	OC81 4/-	${ }^{23303} 101-$	B8Y27 8/-	OET103 4/-	
	OC81D 3/-	AC126 8/8	$\mathrm{BYZ13}^{5 /-}$	GET115 9/-	
	OC81DM3/-	AC127 7/6	BYZ16 18/-	aetlib 8/	

Abstract

TELEMETRY STATION We are able so offer, one only, Telemetry Station of very recent American manufacsure. Comprising Helical Antenna, oscilloscope eceiver and associated unics, supply for the entire installation Interested clients with a knowledze of this type of equipment are invited to phone or write for fursher parsiculars.

PRECISION VHF FREQUENCY METER TYPE 183. 20-300 Mc's with accuracy 0.03% and $300-1.000 \mathrm{Mc} / \mathrm{s}$ with accuracy 0.3%. Addisional band on harmonics $5.0-6.25 \mathrm{Mc} / \mathrm{s}$ with acuracy + - 2×10^{-6} incorporating calibrating quartz
$10^{-3} / 20 / 220 \mathrm{v}$. A.C. main

PYE EQUIPMENT

4 CHANNEL H.F. TRANS

 MITTER RECEIVER STATION Comprising PTC 941 Cryscal-con sivisy I mierovole for W . Sensi t all írequencies at 100 b © N and PTC 93160 W Transmitter for RT CW and MCW operation with push-button control for selectio of any one of four pre-set channels. full details and specification onPYE RANGER F.M. MOBILE RADIO TELEPHONE. Trans RADIO TELEPHONE. Trans mitter output 7.10W: double or negative earth. Full detils and pecfication on request. $\& 45.0 .0$ spectrication on request. 245.0.0.
Carriage $30 /=$:
BOONTON " a " METER TYPE 160 A . Frequency range $50 \mathrm{kc} / \mathrm{s}$ so $50 \mathrm{mc} / \mathrm{s}$. "Q " range 0.250 with multipler of 2.5 . Main tuning capacitor
$30-500$ pF with separate $\pm 3 \mathrm{pF}$ inter-$30-500$ pr with separate ± 3 pF inter
 FOR EXPORT ONLY 53 TRANSMITTERS. All spares avallable. COLLINS TCS. Complete WIRELESS SETS. Complete staliations and spare parts. P.S.U TRANSMITTERS ET 4336. Com plete installations and all spares BC GIOE \& I TRANSMITTERS Complete installations and all
spares. No. 19 WIRELESS SETS. spares. No. 19 WIRELESS SETS.
H.P. SETS and all spares R. 210 R.P. SETS and all spares R.2lo accessories.

VOLUME METER (VU). $\quad 20-a+3$ UU, $3 \ddagger \mathrm{in}$. square flash $\in 10$, pose paid BETTA GAMMA Probe type L314. Without connector $\mathbf{E 2}$.10.0.
DC MOVING COIL METERS SOuA $2 \frac{1}{2 n}$. Sq. panel. 32/6. 200uA $2 \frac{1}{2}$. $22 / 6$. $100 \mathrm{~mA} 2 \frac{1}{2} \mathrm{in}$. rd. panel. $19 / \mathrm{m}$. $25 \mathrm{amp} .3 / \mathrm{in}$. rd. proj. 27/6. 100 v .4 in rd. panel. 25/-. FULL LIST OF OUR VERY LARGE STOCK OF METERS ON REQUEST.
29/4IFT. AERIALS each consisting of ten 3f., fin. dia. tubular screw-in with adaptor to fie the 7 in rod, insuwith adaptor to fit the 7in. rod, insu
lated base, stay plate and stay assemblies pegs, reamer, hammer, etc. Absolutely brand new and complete ready to erect, in canvas bag. 63/9/6. P. \& P. $10 / 6$. HARNESS "A" \& " B " conerol units, junction boxes, headphones, microphones, etc.
FIELD TELEPHONE TYPE "F". Housed in porzable wooden cases. Excellent for communication in and ousdoors for up to 10 miles. Pair including batceries, fully cested. E6.10.0. Carriage
$10 /=$.

To:-COLOMOR ELECTRONICS 170 Goldhawk Rd., London, W. 12

Please send me your full list of Test Equipment Meters
Valves Name..

ELEGTROVALUE

RAPID MAIL ORIER SERVICE

ALL GOODS BRAND NEW - ATTRACTIVE DISCOUNTS NO SURPLUS OR SECONDS

AMPLIFIER KITS

30 WÄTT (designed by Dr. A. R. Bailey)
Published May 1968 W.W., modified Nov. 1968 W.W.
FULL KIT for main amplifier $\mathbf{6 9 / 9 / 6}$ (less power supply). Transistors only for main amplifier 67/9/6. PC board supplied free with above kits. Heat sinks for output transistors $8 / 6$ extra.
POWER SUPPLY kit, unregulated, Nov. '1969 cirevit 4//4/0. Regulated version, 60V 1.6A or 0.8 A , current limiting, re-entrant, characteristic: does not need re-set button 68/10/0. Transformer only: $0-25-45-50 \mathrm{~V} 2 \mathrm{~A}, 58 /$.
12 WATT Peak Sound P.W. Double 12.
COMPLETE STEREO KIT including cabinet, but less panel and other metal-work 23/0/0 net. Available in separate packages as follows:

MAIN AMPLIFIER KIT € $3 / 19 / 6$ per channel, net. Accessories $19 /$ mono, 36/- stereo.
PRE-AMPLIFIER KIT $\{1 / 7 / 0$ per channel, net. Accessories $13 / 6$ mono, 27/3 stereo.

TONE CONTROL KIT $19 / 0$ peir channel, net. Accessories $8 / 9$ mono, 22/6 stereo.
POWER SUPPLY KIT $\mathbf{4 4 / 1 0 \%}$ mono or stereo, net
CABINET KIT $\mathbf{1 2 / 1 2 / 6}$ net.
Metolwork available separately from ather sources, details on request.
$8+8$ WATT STEREO ONLY
PEAK SOUND SA $8+8$ KIT. Sensitivity 50 mV into $1 M \Omega$, output into 5Ω. Complete with cabinet and power supply. Kit complete $E 16 / 10 / 0$ net. Built tested 21 nec.

BARGAINS IN BRAND NEW ELECTRONIC COMPONENTS

ULTRA LOW-NOISE RESISTORS (under $0.1 \mu \mathrm{~V} / \mathrm{N}$) Electrosil TR5 Wrating. $i-24$ lod. be mixed to obtain quantity price.)
POTENTIOMETERS, carbon track, long plastic spindles:
Single gang linear 220Ω to $2.2 \mathrm{M} \Omega 2 / 6$ each. Log $4.7 \mathrm{~K} \Omega$ to $2.2 \mathrm{M} \Omega 2 / 6$ each. Dual gang stereo-matched IIn or log 10 K to $1 \mathrm{M} \Omega 8 / 6$ each. Stereo balance $\log /$ anti-log $10 K, 47 \mathrm{~K}, \mathrm{IM} \Omega$ only
All types available with $\}$ A D.P. switeh $2!3$ extra.

TRANSISTORS,

LARGE CAPACITORS, high ripple eurrent types:
$2000 \mu \mathrm{~F} 25 \mathrm{~V} 7 /-; 2000 \mu \mathrm{~F} 50 \mathrm{~V} 9 / 3,5000 \mu \mathrm{~F} 25 \mathrm{~V} 10 / 3 ; 5000 \mu \mathrm{~F} 50 \mathrm{~V} 17 / 6$.
S-Dec 30/6: 2-DeC DeCstore 69/6; 4DeC 119/6.
\& DISCOUNTS (on all but NET items)
10% for total order value of $\mathbf{\Sigma 3}$ or over.
15% for total order value of $\mathbf{\Sigma} 10$ or over.

t POSTAGE AND PACKING

on orders up to $£ 1$ add $1 /-$, over, post free in U.K.
Overseas orders welcomed: carriage charged at cost.
CATALOGUE
Gives further details of above items and a wealth of information on semiconductor characteristics, etc., 1/6 post free.

ELECTROVALUE

(Dept. WW9), 28 ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY

Tel: Egham 5533

NEW FROM Kロதك

First ever self energising electrostatic stereophones

ESP-6 3 octaves of sound beyond the limits of ordinary headphones : Virtually distortion-free giving cleaner, wider range response than the best loudspeaker system. £45 ESP- 8 having 21 octaves more than cona.11 10 audible octaves, $15-15,000 \mathrm{~Hz} \pm 2 \mathrm{db}, 10-19.000 \mathrm{~Hz} \pm 5 \mathrm{db}$.

PRO-4A Professional Headset. Engineered to meet more rigid and rugged requirements. Shock-and shatter-proof. Adjustable spring steel headband. fruid filed cushHonsgive more efncientsound-seal. High-quality drivers ior unusually movable cushions. Equipped for boom mike. £23.0.0.

K-6 The new standard model incorporating the famous features developed over the last 11 years, since KOSS introduced the vry foam flled ear cushions form an effective seal to make possible the wide frequency response of this model. £12.10.0

Send for free literature of these and other models
TAPE-MUSIC DISTRIBUTORS LTD.
11 Redvers Road, London, N. 22 Tel: 01-888 0152

TA amo senvies lio

MONOLITHIC INTEGRATED CIRCUITS

R.C.A. CA3005 T05 case Wide Band R.F. Amplifier. 300 mW dissipation. $100 \mathrm{mc} / \mathrm{s}$ Bandwldth. 6 volts peration, A pplications, Balanced mixer, self modulator. 27/R.C.A. CA3012 T05 case wide Band Amplifier 150 mW dissipation. A $20 \mathrm{mc} / \mathrm{s}$ bandwidth. ${ }^{6} \mathbf{~ v o l t s ~ o p e r a t i o n . ~ A p p l i c a t i o n s : ~ F M ~ a n d ~}$
Amplifiers. 82020 T05. case Audio Amplifler. Audio power output 550 mW . 3 to 9 volts operation. Applications: Audio amplifiers, preamplifiers, Instrument amplifiers, etc. 30/-
R.C.A. 3036 TOS case Audio Pre-amplifier and amplifer. $19 /-$. Suitable for use as stereo pre
G.E. PA222 Dual four-ln-line package, Audio Amplifler with max. output of 1 watt. $15 \mathrm{mc} / \mathrm{s}$ bandwith. 25 volts operation. Sultable for high
G.E. PA234 Dusi four-in-line package. Audio Ampliffer with max. output of 1 watt. $100 \mathrm{kc} / \mathrm{s}$ bandwith. 9 to 25 volts operation. Suitable record players, dictating equipment, tape recorders, etc.
$27 / 6$. G.E. PA237 Dual four-In-line package. Audio Amplifter "ith max. output of 2 watts. 100kc/a record players, tape recorders, TV and FM ampll. flers, etc. 40/.
MOTOROLA MC1709CG TO99 case. Operational Amplifier. Total dissipation 680 mW . 18 volts peratlon. 40/-.

DATA SHEET SUPPLIED WITH THE ABOVE DEVICES

SEMICONDUCTORS

oUR NEW CATALOGUE GIVES PRICEs. SPECIFICATION \& REPJACEMENT GUIDE FOR OVER 300 TYPES OF TRANSISTORS. DIODES, ETC.
 50 ohms with multipller settings of $0.111 \cdot 100-1000$, providing

[^9]DIGITAL VOLT-OHMMETER BK $2-8$

Electro-mechanieal Instrument with sequential energization of electro-magnetic relays. Projection system display. Automatic range and polarity selection.
Coltage measurement range
Accuracy: 0.01 to $1,000 \mathrm{~V}$. D.C. only.

Input resistance: $\pm .2 \% \pm 1$ digit
Resistance measurement range.
Accuracy: $\quad 100$ ohms to $1999 \mathrm{k} / \mathrm{ohms}$ Tine of neasuring cycle: $3^{ \pm}$seconds ± 1 digit Sampling:

Power supplies:
Hand-operated, local or remote
$115 \mathrm{~V} . / 230 \mathrm{~V}$. mains

PRICE - 1128 . 0 . 0

 萢 																
 мopo																
 \%\%\%\%																
 \qquad 																
偲 																
ㄷㅈㅈㅈㅈㅈㅈㅈㅈㅈㅈㅈㅈㅂㅕㅗ 																

Head Office:

44a WESTBOURNE GROVE, LONDON, W. 2

Tel.: PARK 5641/2/3
 Cables: ZAERO LONDON
 Retail branch (personal callers only)
 85 TOTTENHAM COURT RD.

LONDON W.2. Tel:LANgham 8403

WE WANT TO BUY:

723A/B; 2K25; 4C35-50/-paid subject to test. Please offer us your special valves and tubes ease ofier us your sp
A.R.B. Approved for inspection and
release of electronic valves, tubes,
OUR NEW 1969/1970 CATALOGUE IS NOW READY
PLEASE SEND QUARTO S.A.E. FOR YOUR FREE COPY

APPOINTMENTS VACANT

DISPLAYED SITUATIONS VACANT AND WANTED: $£ 6$ per single col. inch. LINE advertisements (run-on): 7/- per line (approx. 1 words), minimum two lines. Where an advertisement includes a box number (count as 2 words) there is an additional charge of $1 /-$. SERIES DISCOUNT: 15% is allowed on orders for twelve monthly insertions provided a contract is placed in advance.
BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, \mathbf{c} / o Wireless World, Dorset House, Stamford Street, London, S.B.1.
No responsibility accepted for errors.

```
Advertisements aceepted up to OCTOBER 10 for the NOVEMBER issue, subject to space belng available.
```


FIELD TECHNICIAN AVIATION EQUIPMENT

An additional technician is required at our Sunbury-onThames laboratory to service and maintain airborne radar, DME, transponder and navigation equipment.
The position requires a broad range of electronic experience and will probably suit an ex serviceman who has worked as an air or ground radar fitter.
Applicants must be prepared to travel both in the U.K. and overseas. Initial training will be given at Sunbury.

Please apply in confidence to Mr. R. G. Hancock, Personnel Officer, RCA Limited, Sunbury-on-Thames, Middx. Telephone Sunbury 85511.

Telecommunications Technical Officers BOARD OF TRADE CIVIL AVIATION DEPARTMENT

[^10]
University of Birmingham

Department of Physics

Electronics Technician

required for an interesting post in nuclear research involving maintenance and the building of prototype equipment. Relevant electronics experience or qualifications required.
Salary grade according to age and experience in the range $£ 773-\{1,311$.
Apply for application form to Assistant Secretary (Personnel), Personnel Office, University of Birmingham, P.O. Box 363, Birmingham 15, quoting reference $113 / \mathrm{T} / 128$, or telephone $021-472$ 1301, extension 434.

C.I. DATA CENTRE LIMITED

SYSTEMS ANALYSTCUSTOMER LIAISON

We are looking for an energetic young man with a degree or equivalent in Mathematics or Physics, to join our well established scientific computer bureau in Aldershot.

The job will be to look after a range of customers' accounts, interpreting their data processing needs in terms of our computer and specialised equipment and checking that work is dispatched on time and to customers' specifications.

The work is extremely varied and requires an alert mind together with a desire to give customer satisfaction. There is a particular requirement for the radio contracts which we hold, previous experience in this field would be extremely useful.
Rewards for the right man may include a salary of $£ 1,800-£ 2,000$ per annum with the private use of a business car.
Applications in writing please to: The General Manager, C.I. Data Centre Limited, Wellington House, Station Road, Aldershot, Hants.

Maintenance Jngineers

You can do better for yourself in computers

ICL, Britain's biggest computer manufacturer, needs service engineers in London, the Home Counties, Manchester and Oxford. The jobkeeping customer installations at peak effi-ciency-demands dedication and offers special rewards. A thorough training in computers will be given.
Career development: In the UK alone there are now well over 1000 ICL computer installations, and every week the number increases. Overseas there are ICL installations in 70 countries. So the
scope for Field Service Engineers is enormous.
Qualifications: You should:

- Be aged 21-35
- Have City and Guilds Electronics Technicians' certificates or HNC Electronics or equivalent
- Have experience in electronics (perhaps in HM Forces)
- Actively want responsibility, and the chance to get on.

Write : giving brief details of your career and quoting Reference WW/970/C to A. E. Turner, International Computers Limited, 85-91 Upper Richmond Road, Putney, London, S.W. 15.

The Computer Industry

London Weekend Television

Applications are invited from suitably experienced staff for the following A.C.T.T. graded positions with London Weekend Television.

SENIOR ENGINEERS ENGINEERS ASSISTANT ENGINEERS and TECHNICAL ASSISTANTS

These are required to supplement present staff based at our colour studios at Wembley and will later be transferred to our new studio complex on the South Bank.
Several years' experience of broadcast engineering will be required of applicants for the more senior posts.
The possession of a formal technical qualification will be an advantage.
Apply to:
The Personnel Manager, London Weekend Television Limited Wembley Park Drive, Wembley, Middlesex

Hith lipemiliztruics

ELECTRONIC TECHNICIANS

are required to work on calibration, fault-finding and testing of tele. communications measuring instruments. The work is varied and will enable technicians with experience of r.f. circuits to broaden their knowledge of the latest techniques employed in the electronics and telecommunications industries by bringing them into contact with a wide range of the most advanced measuring instruments embracing all frequencies up to u.h.f.

Entrants may be graded as Testers, Test Technicians or Senior Test Technicians according to experience and qualifications. Our expanding production programme geared to our recognised export achievement provides security of employment combined with good prospects of advancement, not only within these grades, but into other technical and supervisory posts within the Company.

Salaries are attractive and conditions excellent. A Pension Scheme includes substantial life assurance cover provided by the Company. Assistance with removal may also be given in appropriate cases. Please apply in writing, giving brief details including age, experience and salary to

The Recruitment Manager, Marconi Instruments Ltd.
 Longacres, St. Albans, Herts.

REDIFFUSION

COLOUR TELEVISION FAULTFINDERS \& TESTERS

We have a number of vacancies in our Production Test Departments for experienced faultfinders and testers.
Knowledge of transistor circuitry and experience with Colour Receivers together with R.T.E.B. Final Certificate or equivalent qualifications required.
These will be staff appointments with all the expected benefits.
Applications to:

Works Manager,
Rediffusion Vision Service Ltd., Fullers Way South, Chessington, Surrey (near Ace of Spades).

Phone: 01-397 541I

EQUIPMENT TECHNICIAN

required by the GOVERNMENT OF ZAMBIA Ministry of Power, Transport and Works, on contract for one tour of 36 months in the first instance. Commencing salary according to experience in the scale Kwacha 2292 (EStg.1337) rising to Kwacha 3216 (EStg.1876) a year, plus an Inducement Allowance of EStg.506EStg.615. A Direct Payment of EStg.233-EStg.291 is also payable direct to the officer's bank in the U.K. Gratuity 25% of total salary drawn. Both Gratuity and Direct Payment are normally TAX FREE. Free passages. Accommodation at moderate rental. Education allowances. Liberal leave on full salary or terminal payment in lieu. Contribưtory pension scheme available in certain circumstances.

Candidates, preferably between 26 to 45 years of age, should have had not less than 10 years training and experience with a recognised telecommunications administration. They should have had a sound technical education in telecommunicatlons and possess relevant City and Guilds or equivalent certificates. Officers may be stationed anywhere in Zambla, and must be prepared to travel on duty, perform shift work and perform paid overtime as required.

The duties include installation in one or more of the branches of telecommunications engineering listed below and giving technical appreciation to Zambians in field training.
(i) Maintenance of carrier trunk and telegraph transmission systems.
(ii) (a) Maintenance of medium powered H.F. radio transmitters and receivers.
(b) Maintenance of V.H.F. and microwave radio links.
(iii) Dual maintenance of minor exchange systems and external distribution networks. Apply to

CROWN AGENTS,
'M' Division, 4 Millbank, London, S.W.I, for application form and further particular stating name, age, brief details of qualifications and experience and quoting reference number M2Z/62916WF.

APPOINTMENTS

Opportunities with Redifion in Radio Communications

Experienced Test Engineers are invited to write to Redifon with regard to vacancies in our Test Department at Wandsworth.
The Company is engaged in the design and manufacture of a wide range of radio communications and allied equipment from military pack-set to broadcast transmitter, including communications receivers, M.F. beacons, teleprinter terminals, complete radio office installations for the Merchant Marine and mobile H.F.S.S.B. Stations. Our Test Engineers have sound technical knowledge coupled with good practical experience in the alignment and test of H.F. and V.H.F. Communications equipment. The work is varied and interesting and offers excellent opportunity to broaden experience in semiconductors, S.S.B. and Frequency synthesis.

Limited vacancies also exist for engineers experienced in Test gear maintenance.
Please write in the first instance to: The Personnel Officer REDIFON LTD..
Broomhill Road, Wandsworth, SW18.

REDIFON ${ }^{*}$

A Member Company of the Rediffusion Organisation. Suppliers of Radio Communications equipment to Home, Commonwealth, and forelgn governments. Contractors to B.B.C., G.P.O., Crown Agents, Cable and Wireless, leading shipping companies of the world, etc.

ANTARCTIC EXPEDITION

 requiresWIRELESS OPERATORS/MECHANICS

1st or 2nd Class PMG Certificate with current morse speed of 20 WPM. Servicing experience essential and knowledge of teleprinters desirable. Salary from £938 according to qualifications and experience, with all living and messing free.

For further details apply to:
BRITISH ANTARCTIC SURVEY
30 Gillingham Street •London • S.W. 1

The National Air Traffic Control Service, a Department of the Board of Trade, needs Radio Technicians to install and maintain the very latest electronic aids at Civil Airports such as Heathrow. Gatwick and Stansted. Air Traffic Control Centres. Radar Stations and specialist establishments.
This is responsible demanding work (for which you will get familiarisation training) involving communications, computers, radar and data extraction, automatic landing systems and closed-circuit television. It offers excellent prospects with ample opportunities to study for higher qualifications in this fast-expanding field.

If you are 19 or over, with practical experience in at least one of the main branches of telecommunications. fill in the coupon now.

Starting salary is $£ 915$ (at 19) to $£ 1.189$ (at 25 or over) scale maximum $£ 1.372$ (higher rates at Heathrow), and some posts attract shift-duty payments. From January 1970 these rates will be increased to E985, E1.295, £1.500 respectively. The annual leave allowance is good and there is a non-contributory pension scheme for established staff.

Complete this coupon for full details and application form
To: A.J. Edwards, C. Eng.. M.I.E.E., M.I.E.R.E., Room 705, The Adelphi, John Adam Straet. London WC2, marking your envelope "Recruitment

Name

Address.

WW/O1
Not applicable to residents outside the United Kingdom
National Air Traffic Control Service

PLANNING ENGINEERS

International Aeradio Limited has doubled its turnover in the last 5 years to its present level of £ 7 million and with a dynamic expansion programme in operation is expected to exceed a turnover of $£ 19$ million within 10 years. The company is worldwide with over 3.500 employees engaged in the fields of communications, aviation services, engineering and printing, and now wishes to appoint two Senior Engineers who will be based at its new Offices outside Southall.

AIRPORT COMMUNICATIONS SYSTEMS

This position involves the planning of Aiport Communications Systems, including Radio Navigational Aids, AFTN. Aeromobile Services and the internal communications appropriate to modern aiports.
Applicants for this new appointment should preferably have specialised knowledge in one or more of the fields below. A qualification leading to membership of the I.E.E. or I.E.R.E. would be an advantage.
\star CW Radio Navigational Aids such as ILS. VOR, etc.

* Airfield Radars. Surveillance, Precision Approach. SSR. etc.
* Point to Point HF Communications.
* HF and VHF Air-Ground Communications.
* Modern Information Display Systems.
* Public Address and Intercommunications Systems.

DATA TRANSMISSION SYSTEMS

Located in the Systems Planning Department. this position will involve the planning of national and international data transmission systems. These can either be self contained networks or systems allied to computers.
We require an engineer with a broad knowledge of communications systems and practical experience of the problems associated with the transmission of data at low, medium and high speeds. He should possess specialised knowledge in two or more of the following fields:

* Data modems and intemational standards for modulation and interface parameters.
* Commissioning. equalising and subsequent quality control of long distance circuits handling data.
* Distribution of high speed data from computers to video display terminals.
* Low speed data switching systems handling telegraph signals, including polling systems.
* The use of G.P.O. datel services and the problems of demarcation between G.P.O. and lessee's equipment.
* Operation of long distance leased circuits carrying data with particular reference to reliability of different sections of route.
It is unlikely that the successful applicant will be less than 30 years old. He should preferably have membership of a professional institution or qualification leading to such membership.
Career prospects for these positions are extremely good and starting salaries will be negotiated in the range $£ 1,800$ to $£ 2,100$. There is an excellent contributory pension and life insurance scheme and holiday airfares can also be obtained at nominal cost to most parts of the world after a year's service.

Application for these appointments should be addressed to THE GENERAL MANAGER PERSONNEL

IALinternational aeradio limited aERADIO hDUSE hayES RDAD SOUTHALL MIODLESEX

EEETRONIE ENGMEERS

Service Engineers required for Offices, throughout the United Kingdom, of well-known Company manufacturing Electronic Desk Calculating Machines. Applicants should possess a sound knowledge of basic Electronics with experience in Electronics, Radar, Radio and T.V. or similar field. Position is permanent and pensionable. Comprehensive training on full pay will be given to successful applicants. Please send full details of experience to the Service Manager, Sumlock Comptometer Ltd., 102/108 Clerkenwell Road, London, E.C.1.

UNIVERSITY OF BIRMINGHAM

Department of Anatomy

TECHNICIAN

required to assist in the design and construction of electronic apparatus for neurological research, also to participate in routine experimental procedures involving animals and man. Some knowledge of linear and digital circuit techniques required, but no previous experience in the medical sciences is necessary. Applicants should have obtained or be studying for H.N.C. or an equivalent qualification in electronic engineering or physics.
Salary: £773-£1077 p.a.
Apply Assistant Secretary (Personnel), Personnel Office, University of Birmingham, P.O. Box 363, Birmingham 15, or telephone 021-472-1301, extension 434, quoting reference $401 / \mathrm{T} / 139$.

2493

UNIVERSITY OF ST. ANDREWS Department of Chemistry

Applications are invited from candidates with an Ordinary Degree, H.N.C or equivawith an Ordinary Degree, $\begin{aligned} & \text { lent qualification in Electronics for the }\end{aligned}$ position of TECHNICAL OFFICER in the position of TECHNICAL OFFICER applicant will be expected to assist in the servicing of spectrometers and in the development of electronic equipment. The new chemistry building is equipped with Mass Spectrometers (MS-902 and MS-10), N.M.R. Spectrometers (HA100 and R-IO) and a Decsa E.S.R. Spectrometer in addition to I.R. and U.V. Spectrometers.
Salary in the range: $\{1,090-\{1,465$; grant cowards removal; pension scheme.

Applications with the name of a referee should be sent before 31 st October, 1969 , to the Deputy Secretary, University of St. Andrews, College Gate, St. Andrews, from whom further particulars may be obtained. 2476

TRINITY HOUSE, LONDON

The General Lighthouse Authority for England and Wales requires a

MODEL SHOP MECHANIC
in the Evaluation, Test and Development Section of the Engineer-inChief's Department at Tower Hill, E.C.3, to assist in the wiring and setting up of experimental electrical/electronic equipment.
Further details and application forms from The Secretary, Trinity House, Tower Hill, London, E.C.3. 82

the experts in sound engineering. PYE TVT

Senior Commissioning Engineers

COLOUR TV TRANSMITTING EQUIPMENT-HOME \& OVERSEAS

Due to rapid expansion, additional vacancies have arisen in our team of Electronic Engineers with specific experience of TV broadcasting or other transmitting equipment.
Applicants will be of H.N.C. standard and possess the essential knowledge and ability to complete their varied tasks without close supervision. These are positions of great interest with opportunity to travel.
An excellent salary and travelling
expenses will be paid. holiday
commitments will be honoured

Apply with brief employment details to Personnel Officer:
PYE TVT LIMITED
Coldhams Lane, Cambridge.
Telephone: Cambridge (0223) 45115

conimuter cingincering

NCR requires additional ELECTRONIC, ELECTRO MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.

Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.

Starting salary will be in the range of $£ 900 / £ 1,250$ per annum, plus bonus. Shift allowances are payable. after training, where applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.
Excellent holiday; pension and sick pay arrangements. Please write for Application Form to Assistant Personnel Officer NCR, 1,000 North Circular Road, London, NW2
quoting publication and month of issue

Plan your future with

SCIENCE RESEARCH COUNCIL RADIO AND SPACE RESEARCH STATION

MALE EXPERIMENTAL and ASSISTANT EXPERIMENTAL OFFICERS are required for service at SINGAPORE and at STANLEY. FALKLAND ISLANDS to operate and main: tain radio telemetry equipment for the reception of data from satellites. Married staff are accommodated rent-free in wellfurnished bungalows or houses; hostels are available for single personnel.

The cour of duty is for up to 3 years duration in Stanley but is likely to be for a shorter period in Singapore. Shift work may be required at either station. Staff may be considered for permanent appointment to ROnsidered for permanent appointment to

QUALIFICATIONS

Over age 22, University degree, H.N.C. or equivalent.
Under age 22, five G.C.E. passes, including two in Science or Mathematical subjects at ' A ' level (or equivalent).

SALARY

£683 per annum rising to $\mathbb{£ 8 7 2 \text { at age } 2 1}$ years, $\{1,208$ at age 26 years or over, to a maximum of $\mathbb{E 1 , 4 5 4 \text { for A.E.O. and } \text { El,590 }}$ per annum rising to a maximum of $£ 2,006$ for E.O. To these scales will be added a \&125 p.a. allowance. Overseas allowance and shift allowance will be payable in addition to salary.

Apply: The Secretary, Radio and Space Research Station, Ditton Park, Slough, Bucks. Telephone Slough 244II.

2475

Assistant Signals Officer

METEOROLOGICAL OFFICE Ministry of Defence (Air Force Department)

Electronic Engineer (man or woman, aged at least 23) for a post of Assistant Signals Officer at the Meteorological Office Headquarters in Bracknell, Berks. DUTIES relate to the planning, provision and installation of meteorological landline and radio telecommunication systems embracing transmission by both low/medium/high speed data and analogue/digital facsimile, and including facilities for reception from satellites. A particular objective will be to automate the U.K. system making optimum use of computers.
QUALIFICATIONS: Either (a) Corporate Membership of the Institution of Electrical Engineers, the Institution of Electronic and Radio Engineers or the Royal Aeronautical Society, or exemption from their examinations, or (b) 1st or 2nd class honours degree in Electrical Engineering, Physics or Applied Physics, together with at least 2 years' training and experience in Telecommunications or Electronic Engineering. Wide knowledge of telecommunications and aptitude for planning essential. Some experience of planning for automation in telecommunications an advantage.
SALARY (national): $£ 1,144-£ 2,174$ ($£ 1,325-£ 2,300$ from 1.1.70). Starting salary may be above minimum. Non-contributory pension.
WRITE to Civil Service Commission, Savile Row, London, W1X 2AA, or TELEPHONE 01-734 6010 Ext. 229 (after 5.30 p.m. 01-734 6464 "Ansafone" Service), for application form, quoting S/7249/69. Closing date 10th October, 1969.

Electronic Technicians

Ampex Quality Control Department now has vacancies for technicians to be responsible for fault finding and testing a wide range of Professional Audio and C.C.T.V. Magnetic Recording Equipment. Experience gained in the electronic industry, radio or television servicing, would be an advantage or a qualification of O.N.C. standard. Excellent
salary, three weeks annual holiday, canteen, life assurance, pension and sickness benefit schemes in operation. Please write or telephone the Personnel Officer, Ampex Electronics Limited, Acre Road, Reading 84411.

AMPEX

AIR FORGE DEPARTMENT RADIO TECHNICIANS

Starting pay according to age, up to $\{1,189$ p.a. (at age 25) rising to $\{1,500$ p.a. with prospects of promotion.

Vacancies at RAF Sealand, Near Chester
RAF Henlow, Bedfordshire
and RAF Carlisle, Cumberland
Interesting and vital work on RAF radar and radio equipment.
Minimum qualification, 3 years' training and practical experience in radio engineering.
5-day week-good holidays-help with further studies-opportunities for pensionable employment.
Write for further details to:
Ministry of Defence, CE3h (Air),
Sentinel House,
Southampton Row,
London, W.C.I.
Applicants must be UK residents.

Telecommunications Technical Officers metropolitan police office

3 posts for men or women, normally aged at least 23, in the Lines and Radio Sections of the Telecommunications Branch at New Scotland Yard. and Denmark Hill.
DUTIES: in the Lines Section include provision, development and maintenance of line communications and associated equipment, and are essentially of a co-ordinating and planning nature: and in the Radio Section involve laboratory developmient of equipment in the fields of radio telephony and radio telegraphy, and cover V.H.F., U.H.F., infra red and analagous systems.
QUALIFICATIONS: O.N.C. in Engineering (including a pass in Electrical Engineering A), or City and Guilds Intermediate Certificate in Telecommunications Engineering (old syllabus, i.e. subject No. 50) plus Radio II, or Intermediate Telecommunications Technicians' Certificate (new syllabus, i.e. subject No. 49) plus Certificates in Mathematics B, Telecommunications Principles B, and Radio and Line Transmission B, or equivalent standard of technical education. Appropriate experience essential.
SALARY (Inner London): $£ 1,303$ (at age 23)-£1,543 (at 28 or over on entry); scale maximum $£ 1,726$. Scale will become $£ 1,400-£ 1,860$ on 1.1.70. Promotion prospects. Non-contributory pension.
WRITE to Civil Service Commission, Savile Row, London, W1X 2AA, or telephone 01-734 6010, Ext. 229 (after 5.30 p.m. 01-734 6464 "Ansafone" service), for application form, quoting S/7169/69. Closing date 2nd October, 1969.

UNIVERSITY COLLEGE, DUBLIN COLLEGE LECTURER in ELECTRONIC ENGINEERING

Applications are invited for the above post. Candidates should have a degree in Electrical/ Electronic Engineering with induserial or research experience in some branch of Electronic Engineering, preferably in the field of microwaves. Experience of teaching would be an additional qualification.
The salary scale attaching to the post is $\mathbf{~} 2.006 \times \mathbf{£} 66$ to $\mathbf{\$ 2 . 7 9 8}$ with provision for entry above the minimum. Non-coneributory pension and family allowances are additional to salary.

Applications (three copies) should state qualifications and experience together with the names of three referees and should reach the undersigned, from whom further particulars may be obtained, not later than 16th October, 1969.
J. P. MacHALE,

Secretary and Bursar

University of Birmingham
 Department of Anatomy
 Applications are invited for the post of
 Technical Officer for Research \& Development in Electronics

A variety of instrumentation techniques are employed in the Department, including, in addition to conventional biomedical electronic apparatus, closedcircuit television, data processing, and radiotelemetry. Applicants will be responsible for the running of a wellequipped laboratory and will be encouraged to develop original solutions to the measurement problems which arise. Technical assistance will be provided with academic staff available for consultation. Candidates should have a degree or equivalent qualification in Electronic Engineering or Physics.
Salary $£ 1,380-$ \&2,045.
Applications should be sent to the Assistant Secretary (Personnel), Personnel Office, University of Birmingham, Birmingham 15, or telephone 021-472 1301, Ext. 434, quoting reference 401/TO/126.

SERVICE ENGINEER
 for TELEVISION and AUDIO

We have a vacancy for a first class engineer. well experienced and with Colour training. Applicants should also be competent to service DC coupled transistorised audio amplifiers and other high quality audio equipment. A neat appearance and businesslike manner are essential as it will be necessary to meet clients in high class homes.
This is a good opportunity to join a busy, progressive family firm located in an exceptionally pleasant area, and we offer a first class salary and good opportunities. A 2 bedroom flat now being built will be available on completion. Suitable applicants available on completion. Suitable applicants
may be given the use of a car next year. may be given the use of a car next year.
Please apply by lecter in own hand-writing stating age, size of family, qualifications and salary required, to

MERROW SOUND LTD.

229 Epsom Road, Guildford, Surrey

RADIO TECHNICIAN

A vacancy has arisen for a RADIO TECHNICIAN engaged on work related to an extensive V.H.F. mobile radio telephone system.
The duties involve the repair and maintenance of mobile equipment as a central workshop. Supervision of Contractor's staff, concerned in the installation and the commissioning of base station control systems operating over microwave radio links, is also a requirement of the post. There is, also, scope for advancement to microwave and U.H.F. scanning systems.

Several years experience on narrow band V.H.F. transreceiving equipment required, and should preferably hold an Ordinary National Certificate or City \& Guild Intermediate in telecommunications. Possession of a current driving licence is also necessary.
Salary will be within the range of $£ 1,070$ to $£ 1,295$ per annum.
Please apply in writing quoting reference No. A846 to the Senior Personnel Officer (Headquarters) West Midlands Gas Board, 5 Wharf Lane, Solihull

2482

SENIOR SCIENTIFIC ASSISTANT

 (ELECTRONICS)For Edinburgh School of Agriculture for duties including servicing of laboratory electronic and electrical equipment, construction of instrument modules and laboratory demonstrations. Qualifications to H.N.C. or C. \& G. F.T.C. level plus relevant practical experience. Salary on scale $£ 1,260-£ 1,638$. Contributory superannuation.
Further particulars and application form from Secretary, The Edinburgh School of Agriculture, West Mains Road, Edinburgh, EH9 3JG.

2474

TEST GEAR SERVICES for DESICN DEVELOPMENT REPAIR CALIBRATION

 of all types of electronic equipment 40c Queen Street, Hitchin, Herts. Tel: Hitchln 52461 2410
senior acoustics engineer

c. $£ 2,750$

To join the team responsible for designing and developing the next generation of high quality loud speakers and dependent systems manufactured by Rank Wharfedale and H. J. Leak for the international Hi-Fi market; he will also be concerned with improving the quality and performance of the existing range of equipment
Candidates. preferably aged about 30 and qualified to H.N.D. standard. must have relevant experience of designing for manufacture electro-acoustic equipment such as loud speakers. microphones and gramophone pick-ups.
Location-Near Bradford. Contributory pension: assistance with removal expenses will be given where appropriate.

Please write, giving brief details and quoting Ref. MA7503, to:-

Deputy Executive Appointments Adviser, The Rank Organisation Limited, Millbank Tower, Millbank,
London, S.W.1.

ESThe Rank Organisation
Holders of The Queen's Award to Industry for 3 successive years.

2525

MAINTENANCE CRAFTSMEN
 (INSTRUMENTS)

are required at
TRAWSFYNYDD NUCLEAR POWER STATION
by the
CENTRAL ELECTRICITY GENERATING BOARD
Vacancies have arisen in the Instrument Maintenance Department at Trawsfynydd for Maintenance Craftsmen on Shift or Staggered Day Worklng. Applicants should have good training and experience in electronic equipment servicing and should be able after a suitable induction period to work on a wide range of nucleonic equipment with minimum supervision.
Weekly rate of pay is $£ 25.19$. 10 d . for a forty-hour week, five-cycle shift continuous cover, or $£ 23.17$. IId. for a forty-hour seven-day stagger week. Conditions of employment will be in accordance with the National Joint Industrial Council Agreements for the Electricity Supply Industry. The Post is permanent and good sick, holiday and voluntary superannuation schemes are in operation.
The Station is situated about ten miles from the coast on the fringe of the Snowdonia National Park and is within easy reach of the delightful beaches of the area. A council house may be avallable to the successful candidate.
Applicants should write to
The Station Superintendent, Trawsfynydd Nuclear Power Station,
Trawsfynydd, Merioneth,
giving details of age, education, training and experience.

E日G Ity

TRAINEE ASSISTANT FILM RECORDISTS FILM OPERATIONS DEPARTMENT

BBC requires Trainee Assistant Film Recordists in London. Age limit 18-28. After technical and operational training those selected will work on sound transfer and dubbing recording duties, based in London. Later, they may be deployed on mobile recording work requiring extensive travel and must be able to drive or learn to drive a car. G.C.E. standard of education, knowledge of basic electronics and tape recording and a real interest in modern film sound production essential.
Salary whilst training $£ 1,050$ p.a., rising to $£ 1,560$ when fully qualified.
Write for application form (enclosing addressed foolscap envelope and quoting reference 69.G.855.W.W.) to Head of Appointments Department, BBC, Broadcasting House, London WIA IAA by September 22nd.

2483

INTERTEL COLOUR TELEVISION REQUIRES ENGINEERS

IN THEIR VIDEO TAPE DEPARTMENT

Applicants should have a good working knowledge of Colour Video Tape recording and be prepared to travel extensively throughout Europe if required

Applications to:
Head of Technical Operations
INTERTEL COLOUR TELEVISION LTD. Wycombe Road, Wembley, Middlesex

Not later than September 30th, 1969

UNITED PRESS INTERNATIONAL

requires an ELECTRONICS ENGINEER for the position of

CHIEF EUROPEAN TELEPHOTO ENGINEER

He must have a sound theoretical training in Radio-Electronics and practical experience in this field. A knowledge of phototelegraphy, landline, and shortwave radio working is required; knowledge of European languages preferable.
Good salary and permanent position offered to the man with the necessary qualifications prepared to accept responsibility for the planning, design, construction and implementation of equipment.

Applications to Mr. D. H. Till,

UNITED PRESS INTERNATIONAL,
8 Bouverie Street, London, E.C. 4

SENIOR SERVICE ENGINEER

To supervise Regional Service Department based in Manchester. Experience public address equipment essential. Vehicle allowance or vehicle provided. Wrilegiving full details previounexperienceandsalaryto SERVICE MANAGER, MAGNETA (B.Y.C.) LTO.

PARSONS GREEN LANE, LONOON S.W. 6

2481

ENTHUSIASTS

have you considered a career in Technical Authorship? If you have sound experience in electronics or communications and ability to write clear concise English we would train you.
Home Counties and the Midlands and salaries range from $£ 1.600$ to f1,900 p.a. depending on experience. Box W.W. 5056

2332

ELECTRONIC TECHNICIAN

Do you enjoy playing around with electronic gadgets?

Here's your chance to make a career of your hobby. We offer you interesting and varied work in the field of electronic instrumentation. This small but expanding department is concerned with the design and application of electronic circuits required for the testing of diesel engines and their fuel injection system
Staff conditions are good and include sickness and contributory pension and life assurance schemes, restaurant facilities. In the first instance applicants should write in confidence giving only brief personal details to:-

The Personnel Manager SIMMS MOTOR UNITS LTD.
Oak Lane, East Finchley, N. 2 Tel: 01-346 2692

2504

UNIVERSITY OF STIRLING TECHNICAL OFFICER (ELECTRONICS)

Applications are invited from electronic engineers qualified to H.N.C. level or equivalent with the ability to assist in the design and development of a wide range of prototype electronic equipment.
Applicants must be able to show proven ability in a particular field of analogue or digital circuit design and a willingness to enter new fields of development. This post provides a carcer of unusually wide interest with congenial working conditions and surroundings in a new and expanding University.
Salary scale $£ 1,385-£ 1,578$ (in special cases up to $£ 1,828$) per annum. Placing according to age, qualifications and experience, Pension scheme in operation.
Further particulars from the Deputy Secretary (W.W.), University of Stirling, Stirling to whom applications with names and addresses of two referees should be sent by 13 October, 1969.

1969

SITUATIONS VACANT

A FULL-TIME technical experienced salesman reprevious expertence, salary required to-The Manager, Henry's Radio. Lid., 303 Edgware Rd., London. W. 2 .

A UDIO ENGINEERS required for new company in A. S.W. London, to work on broadcast quality sound consoles, etc. Duttes: circuit development, detall design. Commissloning, installation field service and customer Write to: Hellos Electronics Limited, 95 Railway Road Teddington, Middlesex.

EXPERIMENTAL OFFICER required by Biophysics development of electronic equipment (including highgain amplifiers, osclloscopes and digital equitment) Minimum qualificatlon HNC. Salary in range $£ 1.470$ £2,045 plus $£ 60$ London allowance. FSSU. Application Unlversity College London, Gower Street, w.C.1. [2488

LIVERPOOL CLINIC, 1 Myrtle Sireet, Liverpool, 7. PHYSICS TECHNICIAN GRADE II in the Department of Nuclear Medicine. Person appolnted will be required to maintain nucleonic and electronic equipment and would be expected to assist in the design and bullding of new equipment and modification of existing apparatus. Duties are principally in the Liverpool region. Possession of Higher National Certificate or equivalent is desirable. Whitley Council conditions of Service. Salary scale $£ 1,313$ rising to $£ 1.671$ per
annum. Application forms obtainable annum. Application forms obtainable from Personnel Section, Clatterbridge Hospital, Bebington, Wirral.
Cheshire.

MAN required in small factory situated in N. London to assist with the production of precision for an energetic and versatile young mant. Write in conflence to the Director, Lionmount \& Co. Ltd., Bellevue Road, New Southgate, London, N.11, giving detalls of experience, qualifications and salary required.

MARINE RADIo ENGINEER, fully conversant with nstallations and service, Wilots, Radar. Sounders, etc., London. Salary in region of £1,350 p.a. Start immediw.1. -Telesonic Ltd., 92 Tottenham Court Rd., London. W.1. $01-8368177$.
[2390

We have vacancies for Four Experienced Test Applicants are preferred who have Experience of Fault Applicants are preterred who have Experience of Fault Equipment. Excellent opporturitles and UHF Moblle to Expansion Programme. Please apply to Personnel Manager, Pye Telecommunications Ltd., Cambridze Works, Halg Road, Cambrldge. Tel. Cambrldge 51351,
Extn. 327.

SITUATIONS WANTED

8 ELECTRONICS ENGINEERS seek overseas positions. Engineer, c/o I.A.L., Box 144, Bahrain. Arabtan Gulf.

> EKCO
> 9 Band Explorer Car Radio. World-wide reception. Positive or negative earth changing system. 1 M.W. $185-570$ meters. 8 S.W. bands ($90,60,49,41,31,25,19$ \& 16 meters). Original price $£ 35$. Our price 21 Gns. P. \& P. $7 / 6$
> VANTONE 4 Station Intercom Sets. Ideal for oftices, stores etc. 9v. battery operation. Complete with accessories. Our price £6.19.6. P. \& P. 716
> HOMER SUN LITE Transistor Telephone Amplifier. 9v. battery operation. Com. plete with accessories. 55/-. P. \& P. 9/-
> VENUS ELECTRONICS

657 FULHAM ROAD, LONDON, S.W. 6
Tel. 01-736 6037 or 01-7367077
2500

WEST HAM COLLEGE OF TECHNOLOGY

(Constituent College of the Proposed NORTH EAST LONDON POLYTECHNIC)

Department of Electrical Engineering SPECIALIST EVENING LECTURES 1969/70

Medical Electronics Microwave Engineering
Linear Network and System Analysis
Network Synthesis and Filter Design
Elementary Power Systems Analysis
Stability, Economics and Protection of Power Systems
High Frequency Engineering
Integrated-Circuit Application Theory
Introduction to Combinational Logic
Sequential Logic Design
Mast of these courses commence in early October
Further information may be obtained from the Registrar, West Ham College of Technology, Romford Road, Stratford, London, E. 15
(Telephone: 01-534 4545 Ext. 559)
247

RADIO \& TELEVISION SERVICING RADAR THEORY \& MAINTENANCE

This private College provides efficient theoretical and practical training in the above subiects. One-year day courses are available for beginners and shortened courses for men who have had previous training.
Write for details to: The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.5. Tel.: 01-373 8721.

Abstract

ARTICLESIFOR SALE $B^{\text {BO2 KITS }}$ and T.V. SERVICE SPARES. Sultable for Colour: Leading British Makers dual $405 / 625$ sIX position push button transistorlsed tuners $i 5 \mathrm{ss}$. Od., 405/625 transistorised sound \& vision IF panels $£ 2$ 25s. Od. Incl. circults and data, P/P 4/6. Baste dual purpose $405 / 625$ transistorised tuners incl. clicuit purpose ${ }^{405 / 625}$ transistorised tumers incl. circuit. $£ 2$ 10s. Od., P / P i/6. UHF list avallable on request. UHF tuners, PYE/EKCO incl. valves 55/-, P/P 4/6. EKCO/FERRANTI 4 position push bution type. Incl. Galves, leads, knobs $\& 5$ 103. Od., P / P 4/6, SOBELL/ GEC UHF tuner kit incl. valves. right angle slow motion drive assy, leads, fitings, knobs, instructions $\mathbf{2 5} 18 \mathrm{~s}$. 6 d . P / P 4/6. FERGUSON 4 position push button transistorised UHF tuners incl. leads de knobs amplifier plus $405 / 625$ switch assy incl. clircult 25/-, P/P 4/6. New VHF tuners, Cyldon C 20/-, Ekco 283/ 330 range $25 /-$, Pye CTM 13 ch . Incremental $25 / \approx$, P/P colls. Fireball tuners, used good cond. $30 /-$, Push button tuners ROD 612/619 type used good cond. 30/-, P/P 4/6. LOPTs, Bcan colls, Frame output transcormers, Malns droppers etc., a vallade for most popular makes. TV signal boosters transistorised PYE/ Labgear B1/B3, or UHF battery operated $75 /-$. UHF mains operated ${ }^{\text {Enquiries invited, COD despatch avallable. MANOR }}$ SUPPLIES, 64 GOLDERS MANOR DRIVE, LONDON N.W.11. CALLERS 589B, HIGH ROAD, N. FINCHLEY. N. 12 (near ORANVILLE RD.). Tel. 01-445 9118. [60 $B^{\text {RAND NEW MINIATURE ELECTROLYTICS with }}$ $30,40,50,100,200$ mids. 8s. per dozen, postage 1s. per order.-The C.R. Supply Co., 127 Chesterfeld Rd. Sheffeld S8.

BUILD IT in a DEWBOX quality plastics cabinet. B 2 in. \times ik in. x any length. D.E.W. Ltd. (W) Ringwood Rd., FERNDOWN, Dorset. S.A.E. for leaflet.
Write now-Right now.

COSSOR Scope 1049 Mk . 3a, £26: AVO. 1 Electrontc W M/Meter, \&19: Advance Signal Gen. D1, £ 7. Box W.W.406, Wireless World

COSSOR 2100 B.B. Scope D.C.- 5 MHz , £55. Offers for SP600JX
 Cardin 753743.
HOW to Use Ex-Govt. Lenses and prisms. Booklets ENGLISH, $469{ }^{\circ}$ RAYLEIGH RD., HUTTON. BRENT WOOD, ESSEX.
OCILloscopes, Test Gear, Valves, Tranststors Components, Veroboard, Bargain clearance, Eist,
S.a.e. Ransome, 4 Draycott Road, Southmoor, AbIngdon,
Berks.

SOLARTRON 'scones, reconditloned AVO's, recelvers D components, etc. Send 9d. stamps or p.o. for detalls.
D.F. Electr-vision, \& Huntington Close. Cranbrook,

UFO DETECTOR CIRCUITS, data, 10s. (refundable) Paraphysical Laboratory (UFO Observatory).
[396
Downton, Wilts.

WIRELESS WORLD 1950 to 1965 , also 1943 to 1949 WW400 Wireless World.
$4 \mu^{F}$ PAPER CAPACITORS, 12,500 volts WKG [403

BUSINESS OPPORTUNITIES

CONTRACTS SOUGHT
 Electronic agency based East Anglia for service and installation of all types of equipment

Box No. W.W. 2501

> TEST EQUIPMENT - SURPLUS ANDSECONDHAND
> De to closure of electronic laboratory-Test EquipOscilloscopes, Digital Voltmeters, Osculators. Power Supplies, etc. Offers invited; list on request. Minerv Laboratories (Instruments) Lid., Factory B.16, Trefores Industrial Estate Nr. Pontypridd, Glam
> SIGNAL generators, oscilloscopes, output meters, wave Noltmeters, irequency meters, multi-range meters etc., etc., in stock- - R, T. \& I. Electronics, Ltd., Ash

RECEIVERS AND AMPLIFIERSH
SURPLUS AND SECONDHAND
$H^{R O}$ Rx5s, etc., AR88, CR100, BRT400, G209, S640, Ashville Old Hall, Ashvllie Rd., London, E.11. Ley. 4986.

NEW GRAM AND SOUND EQUIPMENT

CONSULT first our 76 -page illustrated equipment Catalogue on Hi-F! (6/Gi). Advisory service, generous Association, 18 Blenhelm Road, London. W. 4. Association,
$01-9951661$.
GLASGOW.-Recorders bought, sold, exchanged: cameras, etc. exchanged for recorders or vice-
versa.-Vlctor Morris, 343 Argyle
St., Olasgow, C.

TAPE RECORDINE ETC
 FF quallty, durabllity matter, consult Britain's oldest transfer service. Quality records from your sultable tapes. (Excellent tax-free fund ralsers for schools, tapes. (Excellent tax-iree fund ralsers for schools, Grand. Sound News, 18 Blenhelm Road, London, W.4. [28 01-995 1661.
 $[28$ disc
 TAPE to disc transfer, using latest leedback disc

VALVES

Valve cartons by return at keen pr!ces; send $1 /-1$ and samples and list.-J. \& A. Boxmakers, 75 a
for all for all samples and list.-J. \& A. Boxmakers,
Godwin St., Bradford, 1.
$[10$

FORHIRE

FOR hire CCTV equipment including cameras, | monltors, video tape recorders and tape-any period. |
| :--- |
| -Detalls from Zoom Television. Amersham 5001. |
| 75 |

WANTED, all types of communlcations recelvers and test equipment.-Detalls to R. T. \& I. Electrontcs, Ltd., Ash
don, E.11. Ley. 4986.
WANTED: SPECTRUM ANALYSER. American war Wurplus might suit. Hatfeld Instruments Lid. Burrington way, Plymouth. Tel. 72773. Telex 25592 . 2491 WANTED, televisions, tape recorders, radiograms, Hich new valves, transistors, etc.-Stan Wuletts, 37
West Bromwlch, Stafis. Tel. Wes. 0186. [72

VALVES WANTED

We buy new valves, transistors and clean mew comquotation by return.-Walton's Wuantilies. all detalls, Quotation by return.-Waiton

$\mathrm{B}^{\text {ECOME "Techatcally Quallfed" In your spare time }}$

 $B_{\text {guama }}^{\text {gechaically Qualined in your spare time. }}$ In radio. TV, servicing and maintenance. R.T.E.B. City \& Gullds, etc., highly informative 120 -page Gulde-free.-ChambersHolborn, London, E.C.1.
CITY \& GUILDS (Electrical etc.) on "Satistactia CITY \& OUULDS (Electrical, etc.), on "Satisfaction For details of modern courses in all branches of elecFrical englneering, electrontcs, radio, T. V., automation, etc.; send for 132 -page handbook-free.-B.I.E.T $\mathrm{R}_{\text {ADIO officers }}$ see the world. Sea-golng and shore Grants avallable. Day and boarding students. Stamp for prospectus. WIreless College, Colwyn Bay. 【80 - ECHNICAL TRAINING IN Rado, TV and Electrontcs home-study world-famous ICS. For detalls of proven home-study courses write: ICS, Dept.
House, Stewarts Road. London. S.W.8.
TV and radio A.M.I.E.R.E., City \& Gullds, R.T.E.B certs., etc., on sattsfaction or refund of fee terms thousands of passes; for full detalls of exams and home branches of radio. TV, electronics. etc., write for 132 page handbook-iree; please state subject.-British Instltute of Engineering Technology (Dept. 150K),
Adermaston Court. Aldermaston, Berks.
TUITION
ENGINEERS.-A Technical Certincate or qualinca-
Etion will bring you securtty and much better pay. Elem. and adv. private postal courses for C.Eng.,
A.M.I.E.R.E., A.M.S.E. (Mech. \& Elec.). City \& Qullds. A.M.I.M.I. A.E. A.I.O.B., and G.C.E.E. Exams. Diploma courses in all branches of Engineering-
Mech., Elec., Auto, Electronics, Radto, Computers Draughts, Bullding, etc.-For full detalls write for FREE 132-page guide: Brttish Institute of EngineerIng Technology (Dept. 151K). Aldermaston Court.
Aldermaston. Berks. K INGSTON-UPON-HULL Educatlon Committee F.R.I.C. Radar Maintenance certificate.-Information from College of Technology, Queen's Gardens, Kingston-upon-
Hull.
[18

BOOKS,INSTRUCTIONS,ETC.

MANUALS. circuits of all British ex-w.D. 1939-4B Wireless equipment and instruments from original
R.E.M.E. Instructons; s.a.e. for llst, over 70 types
 Surrey, CR4-8PZ. [68

unversity college london OEPARTMENT OF MECHANICAL ENGINEERING ELECTRONICS WORKSHOP

requires person to set up and run a small stores

 for electronic equipment and components, and (according to experience) to carry out maintenance on a wide range of equipment. Design and construction work would alsofor a suitably experienced applicant. with more Electronics technicians or those with more
general experience and a strong interest in electronics work will be considered Technician or senior technician according to age, experience and qualifications, salary range
£ 68 to $£ 1,436$. Opportunities for further study, £868 to $£ 1,436$. Opportu
prospects of promotion.
Application forms from Personnel Officer (Technical Staft ED/1), University College,

ALL GOODS GUARANTEED

CONVERTOR/BATTERY CHARGER. InDut 240 v $50 \mathrm{c} / \mathrm{s}$, output 12 V 5 amp DC. Input 12 V DC, output 240 V AC. 170 watt max. With fuse and indicator lamps. Size $9 \ddagger \times 10 \times 41 \mathrm{ln}$. Weight 19 lb , An extremely compart unit
 As above-fully zerviceable - perfect interior but soiled exterior cases, $\mathbf{\ell 3}$. P. \& P. $15 /-$ extra.
Synchronous chonper AEI Lype CK4. AB new $22 / 6$
ea. Top connector $2 / 6$ ea. CARPENTERS polarised en. Top connector $2 / 6$ ea. CARPENTERS polariserd relays. Single pole c/o 20 ohm and 65 ohm coils. As AMPHENOLL Blue 24 way ribboned plug and gocket. gold plated. Ex. ei. but nilnt. $17 / 6$ a pr. MIniature Belling Co.ar double plug and socket ex.
eq. An new, $5 / 6: 9$ palir pluk and socket holder. 2/6 ea.

G.M. TUBES. Brand new. G24/G38/G60 at 27/6 ea PHOTOMULTIPLIERS. 6097B at 65 er. EMI 6097X at $68 / 10 \%$ ea
SOLARTRON stab. P.U. type A851B 300 v 50 mA , TRANSISTOR 300 v 100 mA , E6. P. dc. P. 10% extra $40 \mathrm{c} / \mathrm{B}$ to $5 \mathrm{kc} / \mathrm{B}, 5$ OSCILLATOR. Varlable frequency DC innut. Slze $1 i^{5} \times 11 \times 1$ th. Not encapsulated. Brand new. Bored. II/6 ea.
TIMER UNIT, conslsting standard mains input transformer $200 / 240 \mathrm{v} 50 \mathrm{c} / \mathrm{s}$; ontput 18 v 4 aing (conervative): GEC bridze rectiffer; detachable accurate 1
2×12 sec timer subchassis with transistor sic ty 500 ohm relay heavy duty contacts 2 make: lamps. fuse, switch, etc.. ete. In case. size $10 \times 10 \times 5$ in. Ideal battery charker. one second timer, transistor power supply, etc.
Tested and suaranteed working. $£ 2 / 15 /=$ ea. P. \& P. $15 /$,,$~$ OSCILLOSCOPES
 £32/10/=i 1049, E22/10/-; 1049 Mk. \%, E30: CT52, E15; All scopes carefuily serviced and in excellent condition. Carriage 30/- extra.
ADVANCE Slanal generator type D.1. $2 \mathrm{mc} / \mathrm{s}$ to $190 \mathrm{me} / \mathrm{s}$. Sine and square nod. With orisinal charts.
Excellent condition. $\& 12 / 10 /-, P$. \& P. \&1.
Omron/Schrack octal belaserl plug in relays. 2 pole c/o $5 \mathrm{~A}, 230 \mathrm{v}$ and 6 y . State which. Brand new. Boxed. G.F.C. 4 nole c/o $6 / 12 \mathrm{v}$ oneration 180 ohma. Platinum contacts, Brand new. Boxed. I4/6 ea.
MIn. VARLEY type VP4. 4 sole c/o 430 ohm or 15 M/ohm. Brand new $6 / 6$ ea. 4 sole c/o 430 ohm or 15 $\$.000$ serles. 500 ohms 2 pole c/o and 2 make. As new condition. $4 / 6$
2.000 ohm . 4 pole c/o and 1 make 1 break

3 break 1 make and 3 make heavy duty
2 make 2 break, \& make heavy duty
All nt $4 / 6$ ea. As new condition.
8.T.C. sealed 2 pole c/o 48 v only. Complete with luse,

Btandard pots. Brand new. 22K: 50 K : 250 K : 500 K ; 1 mes: 2.5 meg. All at $1 / 9$ tach.
INSTRUMENT POTENTIOMETERS. 3^{*} Oolverng. $5,25,50,100$ ohins: $2.5,25 \mathrm{~K}$. All at T / e ea
HIGH RESOLUTION Potentiometer. 100 K or 25 K . ALMA precision resistors. 100 K .
ALMA precision resistors. 100 K ; 400 K and 998 K
$0.1 \%, 5 / 6$ each. DUBILIER F
DUBILIER Electrolstic Capactors. 32 mfd 35 Cv EL84 YALYES.
La NEL SWI. EX. er. Tested. 7/m pair
PANEL SWITCHES. All high quality. SP, 1/- ea.
DP, 2/- es.; DP $2 w, 3 / 6$ ea. COURTENAY TIMER
Variable mark space ratio. Input Accurate 12 v AC or Dec timer. duty relay contacts to switch external equipment, ea flashing lights. Chassis mounting. Size $6 \times 31 \times 3 \mathrm{in}$. Tested with circuit diamram. $22 / 6$ ea.
TRANSISTORISED stahlliser unit. Hish quality Input 24 r raw DC. output 20 v smoothed, and 12 v CRT. Modern replacentent for the VCR138A. Blue trace With PDA avallable, 27/6 ea. Bame, 3/6 ea. to 60 r.p.m. Brand new. $50 /-$ es. P. \& P. $7 / 6$ ea. Mullard OC 35.s. 4/: ea.
Photocells, equivalent OCP 71. 2/6 ea
L.H.T. Condensers. 7.5 kV working. $0.1 \mathrm{mfd}, 5 / 6$ ea.:
 0.25 mfd , $10 / 6$ ea.

VISCONOL E.H.T. Condensers. Brand new. 0.002 15 kV . $8 / 6$ ea. : 0.0005 condensera. B
PLESSEY plugs and sockets. Cleaned. ex. eq. Mark $4^{\circ} \mathrm{s}$ plug or socket, $4 / 6$ ea. 18 . and 24 .way, $8 /$-ea.
Extended ranke pluss and mockets avallable.
TRANSISTOR Stabilised Power Unit. 48v. 4 amp. Manufactured by E.M.I. Owen chussis. Brand new. AMERICAN TX tuning units. TU7B $4.5-6.2 \mathrm{Mc} / \mathrm{s}$. VALVE VOLTMETERS. Marconi TFgeg

FOR CALLERS. Always Cash with order.
POLARAD SPECTRUM ANALYSER. 5° display. 3 pluk in tuning units. $20 \mathrm{mc} / \mathrm{g}$ to $44,000 \mathrm{mc} / \mathrm{s}$. Superb condition. Write or phone for details.
ATTENUATORS. STC push-button 0/100 Dbs in

19in. Rack Mounting CABINETS. Oft. bigh, 2 ft. deep. Side and rear doors. Fully tapped; comulete Carriage at cost.
SOLARTRON Storage Osclliosonpe type QD910.
SPECIAL OFFER
V.H.F. Receiver, type 715 by BOC. Complete
tested and working tested and working (less crygtal). 12v DC input. Supplied with conversion data. Only $\mathbf{~} 3 / 10 / \mathrm{m}$. P. \& P. 7/6 ea.

LABORATORY OSCILLOSCOPE, Solartron CD
643. 5 in . tube. DC. $12 \mathrm{Mc} / \mathrm{A}$. Rise time 30 M Micro/s. with expansion 20 M Micro $/ \mathrm{k} / \mathrm{cm}$. Flne conditlon. NOW with exps.
only 680.

SOLARTRON EQUIPMENT
D.B. Osclloscope. Type CD 7118.2 , 655 .

Laboratory Ampliner. Type A WR31A. $15 \mathrm{c} / \mathrm{s}$ to 350
$\mathrm{lcc} / \mathrm{B}$. 40 . Stablliged P.U. Type SRs $152 . ~(12 / 10 \%$.
MIC-O-VAC type 22 (CT54) Volts; Current; Ohms.
DC to $200 \mathrm{mc} / \mathrm{s}$ with probe, leads ete. As new $\mathbf{c a . 1 0 . 0}$
CINTEL Microeecond Counter Chronometer. 6 dimit. Start-stod terminals. In fine condition $£ 20$. Carr. 26/: CINTEL Transigtorized Nucleonic Scalers with new condition. E45 each. Carr. $15 /-$.
AIRMEC Counter type 865 . 6 decades: brich vertical dleplay: sate faclitities. Very good condition. M35. Carr. 25/ Transistorized Analogue to Dlgltal Convertor Model LI 281 . As new. 35 each. Carr. 15/-*
SUNVIC DC Choper Ampliner Superb conilltion. E22/10/- each. Carr. 20/.
ELLIOTT Dynamometer Model 5800/. Accuracy
fid. Perfect condition. $\mathbf{\Sigma 1 7 / 1 0 / - \text { each. P. \& P. 15/ }}$ Speclal dlscount to Univeraities, Schools, etc.
MARCONI Frequency Meter TF 1028/1. 250 to $500 \mathrm{Mc} / \mathrm{s} .0 / 250$ Micro amp Meter. In original boxes MAOIOCP. \& P P ${ }^{7 / 6}$ each.
MARCONI RF Power Meter type 1152. 0/25 Watts Mxcelent condition. \&10. P. \& P. ${ }^{7 / 6}$. type TP956 (CT44). Large 6° gcale. 1 nicro watt to 6 watt Excellent condition. $£ 15$. P. \& P P P 10/-
BC221 Frequency Meter. BC221 Frequency Meter. $\{17$
P.U. ©22.10.0. Carriage $15 /:$ METERS
ELLIOTT $25-0-25$ milero amp. Scale size $41 \times 21 \mathrm{in}$ Scaled 100-0.100. © $3 / 10 /-$ eas.
TAYLOR 100.00 .100 micro amp. Scale size $4 \times 2 \mathrm{in}$. Internal lamp scaled $8-0$ - $0+. ~ \kappa 2 / 10 /-$ ea. E.H.T. Electrostatc. Erneat Turner, etc. $0 / 750 \mathrm{v}$. 12 ea $0 / 5 \mathrm{kV}$. $\mathrm{C} 3 / 10 /-$ each. $0 / 75 \mathrm{kV}$. $4 / 5 /$ ea.
GRIFFEN $\&$ GEORGE
GRIFFEN \& GEORGE. 3in. round. In sloped open enderl case with terms. AC 50 c/s. 3 ty pes avallable

TRANSFORMERS. All standard inpute.
smp and 12 y i amp. Sep. windings, $18 / 6$ ea
18 v 6 amp and 12 v i amp. Sep. windings, is/6 ea
18 VV 12 ampe at 43 ea.
 21/- eas. ex., $[3 / 10 /-$ ea. $350-0-35075 \mathrm{~mA}$, $5 \mathrm{v} 2 \mathrm{amps} \times 2$
Gardners $6.3 \mathrm{v} 2 \mathrm{~A}: 6.3 \mathrm{v} 1.5 \mathrm{~A}: 6.3 \mathrm{v} 0.1 \mathrm{~A}$. Size $3 \times 1 \frac{1}{2} \times 4 \mathrm{i}$ in As new. 14/- es
Gardners 4y 30 anps. Brand new. C 1.10 .0 tncl. postage. gardners. Potter. Mulif 63° combine to give 48 v at amps or 8 . 3 at 45A. With $350 \cdot 0 \cdot 350$ at 50 mA . As Parineko/Gardners. Potted. $475 \cdot 60-0-60-475$ at 180 mA meparate winding 215.0215 at $45 \mathrm{~mA}: 6.3 \mathrm{v} 5 \mathrm{~A}: 6.3 \mathrm{v}$ 0.75A: 5v 3A. As new. ©3 ea. \quad Gardners $400 \cdot 350-0-350-400$ at $250 \mathrm{MA} ; 0 / 4 / 6 \cdot 3 \mathrm{v} 4$ anip \times Gardmers $400-350 \cdot 0-350-400$ at 250MA; 0/4/6-3v 4 anip
$2 ; 0 / 4 / 6-32$ amp: $0 / 4 / 53.5 \mathrm{~A}$. In orimal boxes. C4/io/lnc. poet. Gardiners $8 k V 10 \mathrm{MA}$. As new. $\mathrm{C3}$ incl. postage.
Gardiners 2 kV 10MA and 4 volts $\times 2$. C4/10/- ea Incl. lostafe.
Parmeko 6.3v at 2 amp $\times 4.22 / 6$ ea
Parmeko 65 v 1 amp. Separate 0.18 .24 v at $0.5 \mathrm{amp} .30 /$-ea ard/Parm/Part. $450 \cdot 400-0-400-450$. $180 \mathrm{MA} .2 \times 6.3 \mathrm{y}$ 63 each.
CHOKES. $5 \mathrm{H}: 10 \mathrm{H}: 15 \mathrm{H}$: up to $120 \mathrm{~mA}, 8 / 6$ ea. large quantity LT, HT, EHT transformers. Your requirements, please.
PULSE AMPLIFIER. Type 1430A. Head nmp Atc. $20 \mathrm{c} / \mathrm{s}$ to $3 \mathrm{Mc} / \mathrm{s}$. 625 . Cartiage 30 /
MAINS REGULATION UNITS. BPT REGA-$+/-1 \%$. In fine condition. 620 ea . Cirriage out 10 anups As above but 2 ampm out. $67 / 10 \%$ Carriage $30 / \%$ BRANDENBURG E.H.T. Power Supply. Adjustable $i \mathrm{KV} .2 .5 \mathrm{KV} 10 \mathrm{~mA}$. Stablited, 191 n . rack mounting. Fine condition. 625 , Carriage $30 / \circ$. rack mounting. Oscilloscope DELAY LINE, COAXIAL. Can be fitted In mont scopes to improve trig., etc., in i yard lensth

Post paid over 10/-
components, transformers, chokes, yall
etc., at "Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day. chokes, valves, capacitors, odd units,

CHILTMEAD LTD.

22 SUN STREET • READING • BERKS,
Off Cumberland Road (Cemetery Junction) Tel. No. Reading 65916 (9 a.m. to $10 \mathrm{p} . \mathrm{m}$.)

BAILEY 30W AMPLIFIER

All parts are now available for the 60 -volt single supply rail version of this unit. We have also deslened a new Printed Circult intended for edge connector and is roller tinned for ease of assembly. Size is also smaller at 4 tin. by $2 t$ in. Price in SRBP material $11 / 6 \mathrm{~d}$. In Fibreglass $14 / 6 d$. Original Radford design. SRBP $12 /-$. Fibreglass $16 / \%$. This does not have component locations marked.

BAILEY 2OW AMPLIFIER

All parts in stock for this Amplifier ineluding specially derigned Printed Circuit Boards for preamp and power amp. Mains Transformer for mono or stereo primary for use with CZ6 Thermistor, $35 / 6 \mathrm{~d}$., post primary.
Trifilar wound Driver Transformer, 22/6d., post $1 /$ Miniature Choke for treble filter, $10 / 6 \mathrm{~d} .$, post $6 d$ post 9d. Pre-Amp 15/-., post 9d. Power Amp. 12/6d.
post 9
Reprint of "Wireless World " articles, 5/6d. post free.

DINSDALE IOW AMPLIFIER

All parts still avallable for this design ineluding our new power amp. P.C. Board with power transistors for stereo cost approximately flt P.C. All part Reprint of articles $5 / 6 \mathrm{~d}$, posi

LINSLEY HOOD CLASS A AMPLIFIER
Parts now available for this unit Including special matt black anodised Metalwork and all power supply PLEASE SEND S.A.E. FOR ALL LISTS.

HART ELECTRONICS,

32I Great Western St., Manchester 14
The firm for "quality".
Personal callers welcome, but please note we are closed all day Saturday.

TECHNICAL TRAINING by ICS IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING
 First-class opportunities in Radio and Electronics await the IC S trained man. Let

 ICS train YOU for a well-paid post in this expanding field.IC S courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training, so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for: - C. 8 g. TELECOMMUNICATIONTECHNICIANS' CERTS

- C. \& G. ELECTRONIC SERVICING.
- R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEURS' EXAMINATION.
- P.M.g.CERTIFICATES IN RADIOTELEGRAPHY

Examination Students Coached until Successful
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable, signal generator, multi-meter and valve volt meter- all under expert guidance.
POST THIS COUPON TODAY and find out how I C S can help YOU in your career. Full details of I C S courses in Radio. Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

INTERNATIONAL
 CORRESPONDENCE

SCHOOLS

A WHOLE WORLD OF KNOWLEDGE AWAITS YOU!

International Correspondence Schools
(Dept. 230), Intertext House. Stewarts Road London, S.W. 8.

NAME

Block Capitals Please

ADDRESS

10/69
WW-143 FOR FURTHER DETALLS

DIOTRAN

 SALESPA. BOX
WARE.HERTS TEL. WARE 3442

 million aliready Sold out to the Trade
70,000 only left as our Ridleulous Price oi 6i, per 100 panels
plus carriage $\% / \mathrm{s}$

Wo will also buy Vour surplus stock lists. Nst

OVER 3 MILLION SILICON ALLOY \& GERM. TRANSISTORS AVAILABLE FOR IMMEDIATE DELIVERY. MANUFACTURERS END OF PRODUCTION SURPLUS.

TRANSISTORS Type and Construction					
A M Germ A F NPN T0.1				,	
A 2 Germ. A.F. PNP T0-5 $=$ ACY17-21, NK					
A 3 Germ. A.F. PNP T0-1 =ACI28,					
A 4 Germ. R.F. PNP T0.1 $=0$ O44-4S					
A 5 Germ . R.F. PNP ${ }^{\text {a }}$ (0.5					
A 7 Assorted Germ. A.F.-R.F. PNP mixed cans. g e					
A \% Germ. A.F. SO-2 PNP ${ }^{\text {A S }}$					
Alo Sil. Alloy PNP 50-2 $=2 \$ 321.325,0 \mathrm{C} 200-20$					
Al to A7 Guaranteed 80% Good usable Transistors ide experimental use. A日 to AlO are all perfect devices, factory tested, no open or					
I/- TESTED TRANSISTORS I/-					
each ONEPRICE ONLYPNP. NPN. each SILICON PLANAR I/- EACH					
$\begin{array}{llll}8 C 108 & 2 N 696 & 2 N 1132 & 2 N 2220 \\ 8 C 109 & 2 N 697 & 2 N 1613 & 2 N 370\end{array}$					
BFY50 2N706 2N1711 2N3711 TiS					
BFY51 2N708 2N294 2S102 2N2906					
$\begin{array}{llll}\text { BFX86 } & 2 N 930 & 2 N 2924 & 25104 \\ \text { BFX } 88 & 2 N 1131 & 2 N 2926 & 25732\end{array}$					
From Manufacturers' Over-runs-					
GERM. PNP AND NPN TRANSISTORS TESTED, UNMARKED SIM. TO:--1/6 EACH					
$\begin{array}{llllll}\text { AC125 } & \text { ACY22 } & \text { ACY36 } & \text { NKT677 } & \text { OC81 } \\ \text { ACl26 } & \text { ACY27 } & \text { NKT141 } & \text { NKT713 } & \text { OC82 }\end{array}$					
AC128 ACY29 NKT212 OC44 2G302					
$\begin{array}{llllll}\text { ACC130 } & \text { ACY30 } & \text { NKT213 } & \text { OC45 } & \text { 2G303 }\end{array}$					
ACY21	ACY35	NKT271	OC75	2G374	

THYRISTORS (S.C.R'E)
TESTED, BRAND NEW
ANDCOOD: TESTED, BRA
ANDCOD
TO-S CASE

BAILEY 30 WATT AMPLIFIER

10 Transistors as specified \& 1 Pcb \quad £6.10.0 20 Transistors as specified \& 2 Pcb \quad £ 12.10 .0
 f6. 10.0 R1-R27 \& Pot $12 / 6 \quad$ Cl-C6 (Mullard) $8 / 6$ Mullard C431 $2500 \mathrm{mFd} / 64 \mathrm{vw}$ and clip Finned solid Ali Heatsinks $4 \times 4 \frac{1}{2}$ in., each International Bridge Rects. 200 p.i.v.1. 8 A Transformer 230/40/50, E.S., 45 V @ 2 2 FREE voleage/current chart with all orders.

LINSLEY HOOD CLASS A AMP

Set of Resistors 6/\% Set of Capacitors 22/6 Matehed pair M1480 (HI gain for 8 ohm Matched pair MJ481 (Hi gain) for 15 ohm 52.6 2N3906 7/ 2N697/2N1613 6/6 MPF1038,6 Pair of Heatsinks as 3 pecified for mono Lektrokit Pinboard $4 \times 4 \frac{1}{1}$ in, with pins Hunts KA1 12BT capacitors 2500 mFd 50 vw Hunts $250 \mathrm{mFd} / 50 \mathrm{vw} 3 /$. Hunts $500 \mathrm{mFd} / 50 \mathrm{vw} 5 / 9$ Mulla $1250 \mathrm{mFd} / 40 \mathrm{w} 9 /$ Low gin MJ480 $16 / 6$ Postage $1 /$ - below $\mathbb{E} 1$. Delivery by Return Pose. A.I FACTORS, 12 BLAKE ROAD, STAPLEFORO, NOTTS.

WANTED-

Redundant or Surplus stocks of Transformer materials (Laminations, C. cores, Copper wire, etc.), P.V.C. Wires and Cables, Bakelite sheet, etc., etc.

Good prices paid
J. BLACK

44 Green Lane, Hendon, N.W.
Tel. 01-203 1855 and 3033

DEIMOS 4 tio

TAPE RECORDERS FOR RESEARCH, INDUSTRY AND PROFESSIONAL AUDIO
single and multichonnel
8 CORWELLLANE, HILLINGDON, MDX. Hayes 3561

LOW PRICE TRANSISTORS

2N $51 / 2$ Rllicon NPN PlaNar. Brand encapmulated devices with quality specificutions
BVero $>25 \mathrm{~V}$. hrwa $=100-500$ at $10=10 \mathrm{~mA}$ $\mathrm{ft}=120$ MFR. luss $<100 \mathrm{nA}$. Prot $=200 \mathrm{~mW}$. Price each: $5 \quad 1 / 10.251 / 7,1001 / 5$.
derices.
P. RUSH, 13 PARK ROAD, LONDON, N.W. 4

ELECTRONICS COMPONENTS

Guest-Resistors, Capacitors, etc.
Newmarket-Transistors, Amplifiers, etc., in stock, from official distributors
C.S.P.K. (Electronics) Limited

Hookstone Park, Harrogate. Harrogate 86258

AMERICAN
 test and communications equipment
 * General Catalogue an/104 $1 / 6$ *
 manuals offered for most U.S. equipments
 SUTTON ELECTRONICS
 Salthouse, Nr. Holt, Norfolk. Cley 289

WW-14H FOR FURTHER DETAII.S

WE BUY

any type of radio, television, and electronic equipment, components, meters, plugs and sockets, valves and transistors, cables, electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields \& Mayco Disposals, 21 Lodge Lane, London, N. 12

RING 4452713

4450749
9587624

GEARED MOTORS

Microswitches, Timers, Meters. Potentiometers, Capacitors, all new od. stamp for catalogue.
F. HOLFORD \& CO.

6 IMPERIAL SQUARE, CHELTENHAM

WE PURCHASE

COMPUTERS TAPE READERS AND ANY
SCIENTIFIC TEST EOUIPMENT, PLUGS SCIENTIFIC TEST EQUIPMENT, PLUGS
AND SOCKETS, MOTORS. TRANSISTORS, RESISTORS, CAPACITORS, POTENTIO. METERS, RELAYS TRANSFORMERS, ETC.
ELECTRONIC BROKERS LTD. 49 Pancras Road, London, N.W.1. 01-837 7781

DAMAGED METER?

Have it repaired by Glaser
Foduce overheadi by having your damaged Electrical Meanuring Instruments repaired by L. Glaser of Co. Ledi. Wo rpecielise in the ropair of all typeas and mates of IMSTRUMENT Vommetera, Amoltiern, MicroMommeters, Multirange Tost Recording Instruments, Leak Detectors, Temp. Controllars, all
types Bridges \& Insulation Testers, otc.
As contrectors to various Government Department the Industry. For prompt estimate and speedy delivery send defective instruments by registered poat, or write to Dept. W.W.

GLASER INSTRUMENTS 1-3 Berry Streot, London, E.C. 1
Tel.: 01-253 5481-2

EXCLUSIVE OFFER

 AMPEX MODEL FR-100 A DATA TAPE RECORDER-REPRODUCERSCOMPLETELY FITTED IN ont. TOTALLY EHCLORED CABLIETS with rooordiag and roprodnelay Amplitiors,
 *POWER IMPUT 105/1257 48 to $500 \mathrm{a} / \mathrm{e}$.

Puld detaile on apoliention.
FREE

* 10 feet high triangular Lattico Mact geetionn,

 * 450 in:en Preciaton Rand Pans Pithers........ 2810 * 7 trask I" tape head ascomblive with rollors.. e30 0 * 1" Mow Mapmetlo Rooording Tap made by es 10 1° Used thto "Hocteb" Braed 4800 ft. \star M.E. 11 R.F. Watmeters ap to $500 \mathrm{~m} / 00$. \star T.D.M. M. Bets send/reoeive in embinote. . . 24
248
10

* 8 Truck Date Hish Apeed Tape Readers - Meson Illumiasied Drawing Tables $50^{\circ} \times 36^{\circ}$ \star Araphenol Connector Aswombling Machised * Stelma Tolegraph Distortion Moultore \star Str. Motorola encloved Cablaets 18°
-T8-497/URE sisual Generators $2 / 400 \mathrm{~m} / \mathrm{cs}$ \star Ja Airoratt Joyatiok Hendles with * Barah Trens/Reopivers and Aoricls.... \star tigme 12000 ohm. DPDT Bealed Eolaye. *Frele Airgori "Weather Man" Mats 810 $\star 76$ toot high Lattioe Triancular Wind ap eq... \# Uaiselectors 10 bank 25 way ex. new...... 2115
 4 Avo aner mom太 Tolegraph Codo-Deoode Machlam 2710
$e 1710$ Carriage extre at cont on all above.
All roode are ex-Gorerament atores.
We have a larre quantity of "bits and pleces" Wo cannot lat-bleate tend the your requirements
P. HARRIS

ORGANFORD - DORSET BHIG GER
WEsTBOURIE 65051

aurarz

ECONOMICAL! ACCURATE! RELIABLE!

THE QUARTZ CRY'STAL CO. LTD.
Q.C.C. Works. Wellington Crascent. New Malden. Surrey ($01-9420334 \& 2988)$ WW-14S FOR FURTHER DETALLS

PRINTED CIRCUITS

Small quantities are not expensive,
Let us quote you for any quantity.
OFRECT $\begin{gathered}\text { ELECTRONIC SYSTEMS LTD. } \\ \text { Hookstone Park, Harrogate }\end{gathered}$ Hookstone Park.
Marrogate 86258 Telex 57962

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLES screened and unscreened from 2 way to 25 way.
Large selection of stranded single p.v.c. covered Wire $7 / 0048,7 / 0076,14 / 0076$ etc. P.T.F.E. covered Wire, and Silicon rubber covered wire, etc.

J. Black

44 GREEN LANE, HENDON, N.W. 4 Tel: 01-203 1855. 01-203 3033

FOR YOUR
SYNCHRO \& SERVO REQUIREMENTS:
SERVO \& ELECTRONIC SALES LTD.
43 HIGHST.,ORPINGTON,KENT. Tel: 31066, 33976
Also at CROYDON. Tel: O1-688 1512 and LYDD, KENT. Tel: LYDD 252

LOMVON CENTEAS RADLO STOBEE

WLRELESS SET Ko. 38 A.F.V. Freq, range 7.3 to 9.0 Mela. Work-

 MODERN DESK PRONES, red, green, blue or topaz, 2 tone grey or black. with laternal bell and handret with 0.1 dia.
£4/10/- P.P. 7/6.
10-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bake-
lite rat with lunction bos baidset. Thoroughly overitauled. lite case with junction bor handset. Thoroughly overiauled, 20-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bakedite case with Junction boz. Thoroughly overhauled. Ouaran-
ted. eprione coiled Hand Set Leads. 3 core, 5/6. P.P. 1/*. ELECTRICITY SLOT METER ($1 /-$ in ulot) for A.C. malin. Fixed $10 \mathrm{~A} .80 / \mathrm{H}, 15 \mathrm{~A} .90 /-20 \mathrm{~A} .100 / \mathrm{e}$ P. P. 7/B. Other ampersges available. Reconditloned as new, 2 yeari muarantee.
QUARTERLY ELECTRIC OHECK METERS. Reconditioned A4 new. 200/250 v. 10 A. 48/8; $15 \mathrm{~A} .52 / 6 ; 20 \mathrm{~A} .57 / 6$. Other S-BANK UNISELECTOR SWITCHES
8-BANK UNISELECTOR SWITCHES. 25
wiplag $£ 2 / 15 /-; 8$ bank half wipe $£ 2 / 15 /-; 8$ bank baif wlpe miplag e2/l $5 /-8$ bank halt.
25 contacts $47 / 6$. P.P. $3 / 6$.
FINAL END SELECTORS. Relays, various callers, also 19
23 LISIE ST. (GEER 238) LONOON W.C. 2
Closed Thursday 1 p.m. Open all day Saturday

ADJUSTABLE HOLE \& WASHER CUTTERS

The right tool for trepanning holes " $^{\prime \prime}$ - $12 \frac{1}{2}{ }^{\prime \prime}$ in diameter

In our range of 17 Models

Write for illustrated brochure of our full range with straight or Morse taper 1.4 or Bitstock shank
AKURATE ENGINEERING CO. LTD. Cross Lane, Hornsey, London, N. 8 TEL. 01.3482670

WW-146 FOR FURTHER DETAILS
VA CUUNM-
OVENS, PUMPS, PLANT, GAUGES, FURNACES,
ETC. GENERAL SCIENTIFIC EQUIPMENT
EX.STOCK, RECORDERS, PYROMETERS, OVENS,
R. F. HEATERS. FREE CATALOGUE.
V. N. BARRETT \& CO. LTD.
I MAYO ROAD, CROYDON,
CRO 2QP. OI-684 $9917-8-9$

OVENS, PUMPS, PLANT, GAUGES, FURNACES,

 X STOCK RECOR R. F. HEATERS. FREE CATALOGUE. N. BARRETT \& CO. LTD
MAYO ROAD, CROYDO
CRO 2 QP. $01-684$ 9917-8-9

LAWSON IBRANB NEW TELEVISIDN TUIBES

12* Types 84.10 .0 14^{*} Types E 4.19 .0 17° Types $\mathrm{E5.19.0}$ $19{ }^{*}$ Types $\mathrm{E6.19.0}$ 21 Types E7.15.0 23° Types E9.10.0 19° Panorama $\mathbf{E 8 . 1 0 . 0}$ $23^{\prime \prime}$ Panorama Ell. 10.0 19* Twin Panel E9.17.6 23° Twin Panel $£ 12.10 .0$

Carriage and insurance $12^{\circ}-19^{\prime \prime}-1216$ $21=-23^{\prime \prime}-1510$

The continually increasing demand for subes of the very highest performance and reliability is now being met by the new Lawson "Century 99 " range of C.R.T.S. "Century 99" are absoluzely brand new rubes throughouz manufactured by Britain's largest C.R.T. manufacturers. They are suaranteed to give absolutely superb performance with needle sharp definition screens of the very latest type giving maximum Contrast and Light outpur; together wish high reliability and very long life.
"Century 99" are a complete range of tubes in all sizes for all British sers manufactured 1947-1968. Complete fitting instructions are supplied with every tube.
2 YEARS FULL REPLACEMENT GUARANTEE
WW-149 FOR FURTHER DETAILS

LAWSON TUBES

18 CHURCHDOWN ROAD MALVERN, WORCS Tel. MAL 2100

A REVOLUTIONARY NEW PROOUCT cuts out plugs

It's the Newest, Safest and Quickest way to connect Electrical Equipment to the mains
No plugs-no sockets-no risk of bate wires. To connect anything elactrical. from an oscilloscope to an electric drith. slmply open the fusa housing. depress the keys, insert the wires and close the housing. A nean light on the front of the Keynector glows to indicate proper connection. Multi-arrallal connections can be made up 10. 13 amps. Keys are colour coded and lettered LEN tor quick identification. The Kaynector casing is in twotone plastic and measures $5 \mathrm{in} \times 3 \mathrm{in} \times 1$ in. issued by Num
E.B. INSTRUMENTS
division of Electronic brookers lto.
49-53 Pancras Road. London: N.W.1. Telephone: 01-937 7781
WW-147 FOR FURTHER DETAILS

PRINTED CIRCUITS
electronic equipment manufacturers Large and small quantities. Full design and Prototype Service, Assemblies at Reasonable Prices. G.P.O. Approved Let us solve your problems
K. J. BENTLEY \& PARTNERS 18 Greenacres road. OLDham Tel: 061-6240939
WW-148 FOR FURTHER DFTAII.S

for electronic components-by return

Learn at home... First Class Radio and TV Courses

After brief, intensely interesting studyundertaken at home in your spare timeYOU can secure a recognised qualification or extend your knowledge of Radio and TV. Let us show you how. free Guide
The New Free Guide contains 120 pages of information of the greatest importance to both the amateur and the man employed in the radio industry. Chambers College provides first-rate postal courses for Radio Amateurs' Exam., R.T.E.B. Servicing Cert., C. \& C. Telecoms., A.M.I.E.R.E. Guide also gives details of range of certificate courses in Radio/TV Servicing, Electronics and other branches of engineering, together with particulars of our remarkable terms of
"Satisfaction or Refund of Fee"
Write now for your copy of this valuable publication. It may well prove to be the turning point in your career.
Founded 1885 - Over 150,000 successes

CHAMBERS COLLEGE

(Incorp. National Inst. or Engineering)
(Dept. 806F), 148 Holborn, London, E.C.I.
WW-151 FOR FURTHER DETAILS

BAKER "SUPERB" 20 WATT
I2in. LOUDSPEAKER BRITISH MADE THROUGHOUT Suitable for all Hi-Fi systems. Provides rich clear sound recreating the musical spectrum virtually flat $\pm 5 \mathrm{~dB}, 20-17,000$ cps. Latest double cone with massive ferroba ceramic mauss. Bass resonance $22-26 \mathrm{cps}$ Plastic Cone Surround Coils available 8 or 15 ohms.
Price fl5 Post Free
EMI TAPE MOTORS (200-240v. A.C.) Clock wise I, 360 R.P.M. off load Heavy duty 4 pole 100 mA . size $3+\times 21^{\frac{1}{6}} \times 2$ in. diameter. BARGAIN $17 / 6$ Post

the instant bulk tape
ERASER AND RECORDING HEAD DEMAGNETISER
200/250 A.C. $42 / 6$ Post
EXTENSION SPEAKER
mart plastic cabinet speaker with 20 ort ead for transistor radio, intercom, mains Size: 7 tin. $x 5$ in. $x 3$ in. $30 /=1$ Post RETURN OF POST OESPATCH - CALLERS WELCOM HI-FI STOCKISTS - SALES - SERVICE - SPARES RADIO COMPONENT SPECIALISTS 337 WHITEHORSE ROAO. CROYOON. TeI: 01-684 1665

Thanks to a bulk purchase we can offer

BRAND NEW

P.V.C. POLYESTER \& MYLAR RECORDING TAPES

Manufactured by the world-famous reputable British tape firm, our tapes are boxed in polythene and have ficted leaders, cte. Their qualicy is as good as any other on the market, in no way are the eapes faulty and are not to be confused with imported, used or sub-standard tapes. 24-hour despatch service.

Should goods not meet with full approval, purchase price and postage will be refunded.
S.P. $\left\{\begin{array}{llllll}3 \mathrm{in} . & 160 \mathrm{fe} . & 2 /- & 5 \mathrm{in} . & 600 \mathrm{fe} . & 6 / \% \\ 5 \mathrm{lin} . & 900 \mathrm{fe} . & 8 / \mathrm{l} & 7 \mathrm{in} . & 1,200 \mathrm{fe} . & 9 / \%\end{array}\right.$ L.P. $\{3 \mathrm{in} .225 \mathrm{ft} .2 / 6 \mathrm{Sin} .500 \mathrm{ft}$. $8 / 6$.i. 12001 D.P. $\left\{\begin{array}{llll}3 / \mathrm{in}, \\ 5 / \mathrm{in} .1,800 \mathrm{ft} . & 16 / \% & 7 \mathrm{in} . & 2,400 \mathrm{ft} . \\ 20 \%\end{array}\right.$

Postage on all orders $1 / 6$
COMPACT TAPE CASETTES AT HALF PRICE
60, 90 , and 120 minutes playing time, in original plastic library boxes.

STARMAN TAPES

28 LINKSCROFT AVENUE ASHFORD, MIDDX.

Ashford 53020

WW-152 FOR FURTHER DETAILS

There's only one big show in the year which comprehensively covers everything new in Hi-fi and photography. This is it. If these things are part of your leisure, make sure it is too.
AUDIO STUDIOS
Hear and examine new equipment from all over the world. Loudspeakers, microphones, V.H.F. radios, tapes, tape recorders, cassettes, styli, pick-up arms, turntables, tuners, amplifiers and accessories of all kinds. Demo's by the manufacturers themselves.

PHOTOGRAPHIC STANDS
See the very latest cine projectors, cine cameras, sound synchronising units, still cameras, exposure meters, processing equipment, films, flashguns, and all ancillaries. Displays of photographs, slide shows, films, practical demonstrations and lectures.

SOMETHING FOR EVERYBODY AT THIS GREAT TWO.IN. ONE EVENT. TAKE THE WHOLE FAMILY. A SPECIAL NURSERY CORNER WILL LOOK AFTER YOUNGSTERS.

16-22 OCTOBER OLYMPIA LONDON
10 a.m. to 9 p.m. daily (except Sunday) Adults 4/. Children 2 .

NEW LOW COST

 LENS

Oscilloscope Camera-Type p

Setting a new standard combining lower purchase and operating costs with superior performance, the Telford Type P meets requirements where smaller or standard oscilloscopes are employed.
SIMPLE OPERATION-ATTRACTIVE APPEARANCE -LIGHTWEIGHT-ECONOMY SIZE POLAROID FILM TYPE 20

High-quality Dallmeyer F4.5 2.4" $(61 \mathrm{~mm})$ lens provides a reproduction of trace and graticule with good linearity. The object/image ratio is $1: 0.7$ (nom).

SHUTTER SPEEDS

Three modes of operation are provided, including fixed exposure $1 / 25 \mathrm{sec}$. (nom.). time and brief

ADAPTERS

Comprehensive range of adapters are available to fit most popular oscilloscopes.

4 Wadsworth Road, Greenford, Middlesex. Telephone: 01-998 1011
the davall photo optical company of the bentima group

INDEX TO ADVERTISERS
 Appointments Vacant Advertisements appear on pages 120-130

 or a fixed to or as part of any publication or advertioing, Uterary or pictorial matter whatseever.

CLEARWAY to lower

 production costs withADCOLA

Precision Tools

For increased efficiency find out more about our extensive range of ADCOLA Soldering Equipment-and we provide:

* THREE DAY REPAIR SERVICE \star INTERCHANGEABLE BITS—STOCK ITEMS \star SPECIAL TEMPERATURES AVAILABLE AT NO EXTRA COST.
ADCOLA TOOLS have been designed in cooperation with industry and developed to serve a wide range of applications. There is an ADCOLA Tool to meet your specific requirement. Find out more about our extensive range of efficient, robust soldering equipment.
No. 107. GENERAL ASSEMBLY TYPE

Fill in the coupon to get your copy of our latest brochure:

ADCOLA PRODUCTS LTD
Adcola House • Gauden Road • London • SW4
Tel. 01-622 0291/3 Grams: Soljoint, London SW4

Please rush me a copy of your latest brochure:
name
COMPANY
ADDRESS

XTRUSOL

 High Purity Extruded Solderprovides the most economical soldering. Its high purity and freedom from oxides, sulphides and other undesirable elements result in the following advantages:

- Less dross on initial melting.
- More soldered joints per pound of solder purchased.
- Less reject joints.
- Improved wetting of electronic components \& printed circuit boards.
- More uniform results

All Extrusol is completely protected by plastic film packaging from the moment of manufacture until it is used. Available in bars and pellets. Can be released under AID authority and supplied to USA QQ-S-571d.

PC. 2 MULTICORE

 TARNISH REMOVER removes tarnishes and inorganic residues as the second half of a precleaning process before soldering. It leaves the copper unaffected.
PC. 90 MULTICORE
 PEELOFF SOLDER RESIST

is a temporary solder resist which can be peeled off with tweezers after soldering, leaving the original clean surface. It can be used for masking gold plated edge connections and holes 10 which heat sensitive or other components must be added later.

PC. 41 MULTICORE

 ANTI-OXIDANT SOLDER COVER which forms a liquid cover on the solder bath either side of the solder wave, largely preventing the formation of dross.
PC. 80 MULTICORE

 SOLVENT CLEANER removes organic contaminants such as grease, perspiration and residues of organic solutions from prior processes, as a precleaning process before soldering. It is also very efficient in removing rosin-based flux residues after solderingPC. 10 A MULTICORE ACTIVATED

SURFACE

PRESERVATIVE is a pre-soldering coating for preserving the clean surfaces established by the PC. 80 Multicore Solvent Cleaner and PC. 2 Multicore Tarnish Remover. PC.10A does not need to be removed before soldering and in fact contributes to the efficiency of the soldering process. PC. 10A should be used whenever there is a delay between cleaning and soldering.

Gallon Containers All lituid chemicals and fluxes suppliad in 1 gallon polythene carrying handle.

Aerosols

PC. $21 \mathrm{~A}, \mathrm{PC} .25$ and PC .52 available in 16 oz
aero sol sprays.

SEVEN STANDARD
MULTICORE LIOUID FLUXES
are now available, five of which are new :PC. 21 A Multicore NonCorrosive Liquid Flux is normally recommended for wave, dip, brush, spray and roller flux application methods. PC. 25 Multicore Rosin Foam Flux is designed for foam fluxing and exhibits an unusually stable foam with a fine bubble size.

PC. 52 MULTICORE PROTECTIVE COATING is a lacquer which should be applied after soldering for protecting printed circuits from deterioration or failure in service. It can easily be soldered through if modifications or repairs are necessary at a later date.

A typical Printed Circuit Soldering Process might contain some or all of these stages:

Multicore Solders Ltd., Hemel Hempstead, Herts. Phone: Hemel Hempstead 3636. Telex: 82363.

[^0]: * Prices indicated are recommended retail prices.

 B \& O quality accessories are obtainable from B \& O dealers :
 Send for further details to the Accessory Department.
 Bang \& Olufsen U.K. Limited,
 Eastbrook Road, Gloucester.
 Telephone: 0452 21591.

[^1]: St. John's Works, Tylers Green, High Wycombe, Bucks.
 Telephone No.: Tyiers Green 322 \& 654 Telex $83621 \& 83625$

[^2]: E.T.E.I. LTD.

 CHILTERN WORKS TOTTERIDGE AVENUE HIGH WYCOMBE, BUCKS

[^3]: AUSTRALIA, Racal Electronics Pry, Lid. CANADA, Racal (Canada) Lid. SOUTH AFRICA, Racal Electronics South Africa (Piy) Lid. USA, Racal Communications Inc. FEDERAL REPUBLIC OF GERMANY, Racal Electronics Lid. SINGAPORE, Racal Electronics (Asia) Private Lid.

[^4]: *"Colour Receiver Integrated Circuir", Wiveless World, August 1968, p. 263.

[^5]: *Royal Radar Establishment.

[^6]: * Assistanl editor Wireless World.

[^7]: * The Marconi Company Limited

[^8]: - West Ham College of Technology, London, E. 15

[^9]: TRIACS TYPE 40432 Gated b-directional 8illoon Thytiscors with integral titgger. The trino will control up to 1440 wate st 240 V mains fre quency. Supplied complete with heat sink, data aheet and appllcation sheets for motor control and dimmer circuito
 $37 / 8$ each. 37/8 each.

[^10]: Posts for work on radar, data processing, navigational aids, communication, closed circuit television systems etc., at civil airports and other stations in the United Kingdom. The duties are challenging, demanding a responsible attitude and good judgement. Many involve the will and ability to keep abreast of the most up-to-date techniques. Staff suggestions are encouraged and can lead to financial awards. There is good scope for enthusiastic officers having initiative, who are willing to pull their weight and to work harmoniously with others, or on their own, as the occasion demands. QUALIFICATIONS: O.N.C. in Engineering (including a pass in Electrical Engineering A), or City and Guilds Intermediate Certificate in Telecommunications Engineering (old syllabus i.e. subject No. 50) plus Radio II, or Intermediate Telecommunications Technicians' Certificate (new syllabus i.e. subject No. 49) plus Certificates in Mathematics B, Telecommunications Principles B, and Radio and Line Transmission B; or equivalent standard of technical education. Appropriate experience essential.
 STARTING SALARY (national): from $£ 1.086$ (at age 21) to $£ 1,178$ (at 23) to $£ 1,418$ (at 28 or over), scale maximum $\mathrm{f1}, 601$ (somewhat higher in London). Scale will become $£ 1,155-\mathrm{f} 1,735$ on 1.1.70. Promotion prospects. Non-contributory pension. WRITE to Civil Service Commission, Savile Row, London, WIX 2AA, or telephone 01-734 6010, ext. 229 (after 5.30 p.m 01-734 6464 "Ansafone" service), for application form, quoting $S / 207$. Closing date 3rd October, 1969.

