NirelessWorid
 SEPTEMBER $196 ิ 9$ Three Shillings

uropean television identification atter stereo perspective

Cut the operational and maintenance costs of your HF radio station right now -with STANFAST

Here's how

STANFAST Systems-the STC concept of automated h.f. radio stations-permit transmitting and receiving installation to be controlled completely by one man from a central location.
STANFAST Systems provide high speed frequency changing, automatic performance monitoring and rapid fault location affording optimum traffic handling capability and maximum revenue.

STANFAST Systems use the latest techniques in radio design, demand smaller sites and require less maintenance than hitherto. Initial capital cost is lower and return on investment is greater.

Standard Telephones and Cables Limited, Communications Division, New Southgate, London N. 11. Telephone: 01-368 1200. Telex: 261912.

OUTSIDE- the lot

On the outside, Avometers haven't changed much over the years. But inside every genuine Avometer - right across the range from pocketsize Multiminors to 0.3% Precision Avometers - you'll find the up-to-date guts of the most famous multimeters in the world. Outside - the same familiar functional case and knobs you grew up on. Inside the state-of-the-art circuitry you'd expect from the world leader. Inside and out multimeters to meet every laboratory, test and servicing requirement.

Full details and specifications in the Avo Short Form Catalogue.
Avo Limited, Avocet House, Dover, Kent;
Dover 2626; Telex 96283

Residual magnetism may endanger your tapes every time you play them: For only 60/the Ferrograph Defluxer protects them.

No professional studio would ever record without defluxing the heads and tape guides; so it is sensible that you, too, should follow this procedure at home. Once you have made a recording, or bought a pre-recorded tape, you must ensure that your sound is protected.

Electrical pulses, or magnetic materials such as are in loudspeakers nearby, can cause magnetization of the heads and guides which increases background noise and reduces highfrequency response.

Prevent any possibility of ruining your tapes. This unique

Ferrograph Defluxer is simple and quick, and can be used with practically any make of tape recorder. Once you start using it, your valuable, often irreplaceable tapes are protected against magnetization: surely it is worth just $60 /$ - protection money! Call at your Ferrograph dealer, or send this coupon with your cheque/P.O. for a Defluxer. Money back guarantee if not

Ferrograph
 A member of the Wilmos Arecaen Group

These are a few out of EEV's extensive range of triodes for industrial heating, realistically designed for day-to-day use in welding and other industrial heating equipments. Conservatively rated, EEV industrial heating triodes are designed with all EEV's extensive experience of transmitter valve manufacturing techniques behind them so that they will provide long and reliable lives. Prices are competitive and deliveries are good. For full details fill in the coupon below.

Send for full details
of EEV power triodes
for industrial heating.

Conglish Electric Valve Co Ltd
Chelmsford Essex England Telephone: 61777
Telex: 99103 Grams: Enelectico Chelmsford

People

from our

 quartz crystal
and they get it!

Look what we have to offer. SEI produce a range of quartz crystal units and filters which can be relied on to perform to specification, even under the most exacting conditions. Our standard ranges usually cover most customers requirements, but in addition a design and prototype service is available for more specific applications. The reliability, robustness and quick delivery have resulted in many repeat orders in the communications industry, including units to military specifications.
Send for our catalogue, it is free and very comprehensive.

SALFORD ELECTRICAL INSTRUMENTS LIMITED
Peel Works. Barton Lane. Eccles. Manchester M30 OHL Telephone: 061-7895081 Telex: 66711
A Member Company of G.E.C. Electrical Components Lto

Be safe...use EEV magnetrons in your marine radar

	Type	Frequency Range (MHz)	Peak Output Power (kW) (Typical Operation)	Equivalents (not complete)
Brief data on some of the many types available. The complete range covers S-B and and X-Band types from $3-80 \mathrm{~kW}$.	M5063	3025-3075	50	2J70B
	2 J 42	9345-9475	8	ME1101, CV3676. MAG3, M526
	BM1002	9415-9465	21	JP9-15B
	M513B	9345-9405	22	JP9-15, YJ1110
	M515	9380-9440	25	YJ1120
	M597	9380-9440	10	
	M598B	9380-9440	22	
	599A/B	9415-9475	3	$\begin{aligned} & \text { JP9-2.5D, } \\ & \text { JP9-2.5E, } 7028 \end{aligned}$
	M5022	9415-9475	30	YJ1121
	M5031	9345-9405	9	
	M5043	9380-9440	5.8	
	M5039	9345-9405	22.5	
M5063	M515		9A/B	M513B

Please send me full data on your range of marine magnetrons.
I am particularly interested in using a marine magnetron with the following parameters.

Frequency	Peak Output	Pulse	Pulse Repetition
Range (MHz)	Power (kW)	Length ($\mu \mathrm{s})$	Rate (p.p.s.)

NAME POSITION

COMPANY
ADDRESS

... MONOBLOC CERAMICONS

 BY ERIE ELECTRONICS> Monolithic Ceramic Capacitors that offer up to
> 100 times the capacitance-to-volume ratio of conventional components.
> Specified by performance-minded engineers wherever space is at a premium ...
> in Aerospace . . . Computers ...
> Communications ... Instrumentation.

* Volumetric efficiencies up to $380 \mu \mathrm{~F} / \mathrm{cu}$. in.
* Capacitance range, from 10 pF to over $1 \mu \mathrm{~F}$
* Tubular or rectangular types (axial or radial leads)
* Phenolic coated, glass encased and moulded types
* Unencapsulated chips for hybrid I.C.'s
* Special printed circuit types
* Up to 200 Vdc. working
* Operating temperature $-55^{\circ} \mathrm{C}$ up to $150^{\circ} \mathrm{C}$
* Erie manufacture Monoblocs in Great Britain

The technique : thin ceramic films and platinum electrodes fused into a solid layered structure.

The result : an inherently stable dielectric, resistant to the most severe environmental conditions.

Send today for the 12 page, detailed brochure.

ERIE ELECTRONICS LIMITED

Great Yarmouth, Norfolk.
Telephone : 04954911 . Telex : 97421

Choose your duplexer devices from EEV's extensive range

BS390

BS332
BS834

Brief data on some of the many types available.

Send for this booklet giving full details of the complete range of EEV duplexer devices and waveguide switches.

Product

BS824

BS802

BS452
BS458

Frequency
range
BS460
rang
(kW)

Pre TR cells	BS834	-	2000-12000	2500
	BS870	-	1240-1365	2500
TR cells	BS390	S	2925-3075	1250
	BS800	S	2840-3100	1250
	BS824*	S	2700-3100	250
	BS156	x	9000-9600	200
	BS452	x	9310-9510	100
	BS810	X	9250-9550	75
	BS850	x	9300-9500	50
TB cells	BS310	X	9375	5-200
TR limiter cells	BS814	X	9000-9700	200
	BS828	X	9325-9425	50
Solid state microwave switches	BS392	S	2925-3075	0.5
	BS460	X	8500-12000	0.5

*For protection of travelling waveguide amplifiers

English Electric Valve Co Ltd

Chelmsford Essex England Telephone: 61777 Telex: 99103 Grams: Enelectico Chelmsford

Please send me a copy of "Duplexer Devices". I am interested in a tube with the following parameters:
Frequency range
Power
Type of cell

NAME	POSITION
COMPANY	
ADDRESS	

the choice in over 50 different countries!

Teonex electronic valves and semi-conductors are supplied all the world over where quality and reliability count.

Teonex offer a comprehensive range of receiving, professional and special quality valves. Whether you require a device to Mil specifications for government work or a commercial device for replacement in a television set. Teonex products are equally suitable.

For technical specifications and price lists, please write to Teonex Limited 2a Westbourne Grove Mews London W. 11 England Cables: Tosuply London W.11.

When English Electric A.E.I. Traction Ltd. needed to build their latest thyristor control equipment for electric trains

operating in Glasgow, Landon and Con ${ }^{\alpha}$ tinental Countries; they chose Vero Modular Racks to house the components.
Soon, electronic equipment for wheelslip on trains of South African Railways and special brake equilpment on the new double-decker inter-urban cosaches for N.S.W. (Australian) Railways, will be supplied by A.E.1. using similar Vero Modular Racks and cases. This shows the versatility and adaptability of Vero systemised products with their designedin compatibility. It also provesthat when special equipment is needed, Vero prods ycts are chosen by Britain's fop equipment manufacturers.
If you would like complete details of Vero products. please write to:-

VERO ELECT'RONICS LTD.

INDUSTRIAL ESTATE
CHANDLERS FORD
HANTS. SO5 3ZR
Tel: Chandlers Ford 2921/A
Telex: 47551
BRANCHES AND AGENTS
THROUGHOUT THE WORLD

TROD

THE MESSAGE IS PERFECTLY CLEAR:T-R-I-O

Model 9R-59DE

BUILT IN MECHANICAL FILTER 8 TUBES COMMUNICATION RECEIVER

- Continuous coverage from 550 KHz to 30 MHz and direct reading dial on amateur bands.
- A mechanical filter enabling superb selectivity with ordinary IF transformers
- Frequency Range: 550 KHz to 30 MHz (4 Bands)
-Sensitivity: $2 \mu \mathrm{~V}$ for 10 dB S/N Ratio (at 10 MHz)
- Selectivity: $\pm 5 \mathrm{KHz}$ at $-60 \mathrm{~dB}(\pm 1.3 \mathrm{KHz}$ at $-6 \mathrm{~dB})$ When

Model JR-500SE

 CRYSTAL CONTROL TYPE DOUBLE CONVERSION COMMUNICATION RECEIVER- Superior stability performance is obtained by the use of a crystal controlled first local oscillator and also, a VFO type 2nd oscillator.
- Frequency Range: $3.5 \mathrm{MHz}-29.7 \mathrm{MHz}$ (7 Bands)
- Hi-Sensitivity: $1.5 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ Ratio (at 14 MHz)
- Hi.Selectivity: $\pm 2 \mathrm{KHz}$ at $-6 \mathrm{~dB} \pm 6 \mathrm{KHz}$ at -60 dB
- Dimensions: Width 13", Height 7", Depth 10",
using the Mechanical Filter.
- Dimensions: Width $15^{\prime \prime}$, Height $7^{\prime \prime}$, Depth $10^{\prime \prime}$.

Model SP-5D

- Communications Speaker which has been designed exclusively for use with the 9R-59DE.

Model HS-4

- Communications Head Phone

TO: B.H. Morris \& Co., (Radio) Ltd.
ww Send me information on TRIO COMMUNICATION RECEIVERS \& name of nearest TRIO retaller.

NAME AGE

ADORESS

TRIO KENWOOD ELECTRONICS S.A. 160 Ave, Brugmann, Bruxelles 6, Belgium
Sole Agent for the U.K. B. H. MORRIS \& CO., (RADIO) LTD. 84/88, Nelson' Street. Tower Hamlets, London E. 1. Phone: 01.7904824

Have you had your copy of "Engineering Opportunities"?
The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations, and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.

Advanced Electronic Eng. Gen. Electronic Eng. - Applied Electronics - Practical Electronics - Radar Tech. Frequency Modulation -
Transistors.
ELECTRICAL ENG.
Advanced Electrical Eng. -Gen. Electrical Eng. - Installations - Draughtsmanship - Illuminating Eng. - Refrigeration - Elem. Electrical Science - Electrical Science Electrical Supply - Mining Electrical Eng.

CIVIL ENG.

Advanced Civil Eng. - Gen. Civil Eng.—Municipal Eng.Structural Eng. - Sanitary Eng. - Road Eng. - HyEng. - Road Eng. - Wy-
draulics - Mining - Water $\xrightarrow{\text { draulics - Mining - Water }}$

RADIO ENG.
Advanced Radio - Gen. Radio Radio \& TV Servicing TV Eng. - Telecommunications - Sound Recording Automation - Practical Radio -Radio Amateurs' Exam.
MECHANICAL ENG.
Advanced Mechanical Eng, Gen. Mechanical Eng. Maintenance Eng. - Diesel Eng. - Press Tool Design Sheet Metal Work - Welding Inspection- Pattern Making -Inspection-Draughtsmanship-- Metallurgy - Production Eng.
AUTOMOBILE ENG.
Advanced Automobile Eng. Gen. Automobile Eng. - Automobile Maintenance - Repair -Automobile Diesel Mainten--Automobile Diesel Mantenance - Automobile Electrical
Equipment - Garage Management.

WE have a wide range of courses in other subjects inCLUDING CHEMICAL ENG., AERO ENG. MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.

```
Which qualificatlon would increase your earning power!
A.M.IIE.R.E., B.SC. (Eng.), A.M.S.E., your R.T.E.B., (arning A.M.I.P.E.,
A.M.I.M.I., A.R.I.B.A., A.IO.B., P., P.M.G., A.R.I.C.S.,
M.R.S.H., A.M.I.E.D., A.M.I.MUN.E., C.ENG., CITY & GUILDS,
GEN. CERT. OF EDUCATION, ETC.
BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 446A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE
```

THIS BOOK TELLS YOU

* HOW to get a better paid, more interesting job. * HOW to qualify for rapid promotion.
* HOW to put some letters after your name and become a key man . . . quickly and easily. * HOW to benefit from our free Advisory and Appointments Depts.
* HOW you can take advantage of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in ony branch of Engineering.

164 PAGES OF EXPERT

 CAREER-GUIDANCEPRACTICAL
EQUIPMENT
Basic Practical and Theoretic Courses for beginners in Radio, T.V., Elec. tronics, etc. A.M.I.'E.R.E. Gley Guilds Radio Amateurs' Exam, R.T.E.B. Certificate, P.M.G. Certifficate, Practical Radio, Radio \& Television SerVicing, Practical Elec Eronics, Electronics

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES." Send for your copy now-FREE and without obligation.

TO B.I.E.T. 446A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE.

Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

NAME
ADDRESS

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

Eimac A new generation of miniature Planar Triodes

To meet new needs of aerospace technology these miniature Planar Triodes have been developed. Their rugged ceramic-metal construction is designed for high voltage, high current operation, and features large contact areas for improved electrical paths, and a frequency stable anode.
They may be used at maximum ratings up to 3000 MHz , and can deliver 7 kW pulse or 100 W CW output, and as a pulse modulator they will handle up to 10 kV and 5 A .

For further information please contact:
EMI-Varian Ltd.
Russell House / Molesey Road Walton-on-Thames / Surrey / England Tel.: Walton-on-Thames 212 35/6

So we designed the Philips Intercom M 100 system, the first all-electronic decentralized duplex intercom on the market. The M 100 system eliminates the usual complicated central exchange with its dustproof and climatized room. Instead there's a small supply unit ($76 \times 50 \times 20 \mathrm{~cm}$) that plugs in anywhere along the cable.
This led to other spectacular improvements. The Intercom M 100 can be changed or expanded without having to rearrange the existing connections.

A single 8 pair cable runs through the premises simply install additional parallel connected sockets and plug in the new stations, each with its preset allotted number. And when moving to another office, simply transfer your own station. If you want to move the supply unit you can plug it in anywhere along the cable!
All-electronic design means that the Intercom M 100 is absolutely maintenance-free. With duplex ease of operation. And sound quality second to none - aided by the tasteful and functional rosewood cabinet.
Write for your copy of the brochure giving a full technical description of the new and unique Philips Intercom M 100 .

Electro-acoustics Division of Philips Industries. N.V. Philips' Gloeilampenfabrieken, Eindhoven, The Netherlands.

prepare now for tomprrow's world

Today there is a huge demand for technologists such as electronics, nuclear and computer systems engineers, radio and television engineers, etc. In the future, there will be even more such important positions requiring just the up-to-date, advanced technical education which C.R.E.I., the Home Study Division of McGraw-Hill Book Co., can provide.
C.R.E.I., Study Programmes are directly related to the problems of industry including the latest technological developments and advanced ideas. Students claim that the individual tuition given by the C.R.E.I. panel of experts in each specialised field is comparable in technological content with that of technical colleges.

Why C.R.E.I. Courses are best

No standard text books are used - these are often considerably out-of-date when printed. C.R.E.I. Lesson Material contains information not published elsewhere and is kept up-to-date continuously. (Over $£ 50,000$ is spent annually in revising text material.).

Step-by-step progress is assured by the concise, simply written and easily understood lessons. Each programme of study is based on the practical applications to, and specific needs of, Industry.
Take the first step to a better job now-enrol with C.R.E.I., the specialists in Technical Home Study Courses.
C.R.E.I. PROGRAMMES ARE AVAILABLE IN:

Electronic Engineering Technology * Industrial Electronics for Automation * Computer Systems Technology * Nuclear Engineering * Mathematics for Electronics Engineers * Television Engineering * Radar and Servo Engineering City and Guilds of London Institute: Subject No. 49 and Advanced Studies No. 300.

POST THIS COUPON TODAY FOR A BETTER FUTURE

To C.R.E.I. (London), Walpole House, 173-176 Sloane Street, London, S.W.1.
Please send me (for my information and entirely without obligation) full details of the Educational Programmes offered by your Institute.
My interest is City and Guilds $\square \quad$ please tick \quad General \square
NAME
ADDRESS
Correspondence Colleges
C.R.E.I. (London), Walpole House,

173-176 Sloane Street, London S.W.1. A subsidiary of McGraw-Hill Inc.

EDUCATIONAL BACKGROUND	
ELECTRONICS EXPERIENCE	WW12?

Citesulda

NEW

 Litestat
TEMPERATURE CONTROLLED SOLDERING INSTRUMENTS

- Control within $\pm 2 \frac{1}{2}^{\circ} \mathrm{C}$
- Temperature infinitely adjustable while running
- Available for all voltages

Built-in indicator lamp

- Cool, comfortable, unbreakable Nylon handle
- Range of bít sizes, Copper or Philips ironcoated

Please ask for leaflet LT. 5

LIGHT SOLDERNG DEVELOPMENTS LTD.

28 Sydenham Road, Croydon, CR9 2LL
Telephone: 01-688 8589 and 4559

TEOHNICAL TRAINING in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs--they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEW

SELF-BUILD RADIO COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meterall under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio. T.V. and Electronics.
INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept. 222, Intertext House, Stewarts Road, London, S.W. B
Please send me the ICS prospectus-free and without obligation.
(state Subject or Exam.)

NAME
ADDRESS ..

INTEGRATED CIRCUIT 5 WATT POWER AMPLIFIER


```
FEATURES
```

- Output Watts 5 Watts r.m.s., 10 Watts peak
- Staggered lead plastic package.
- High sensitivity.
- Operating Temp: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Usable power from a wide range of power 25-99: £2.2.0 supply voltages and load impedances.

- High output voltage swing 30 volts peak to $100 \mathrm{up}: £ 1.18 .0$ peak.

APPLICATIONS

Monaural \& stereo gramophones, tape recorders/players.
Intercom Systems. FM, AM \& TV receivers.
Film projectors.
Servo amplifiers, etc.

ELECTRICAL CHARACTERISTICS
Audiopoweroutput
Min Typ. continuous
(< 5% total harmonic distortion) Input voltage 12 mV $($ for $\mathrm{Po}=5 \mathrm{~W})$ Efficiency Distorting@ $1 \mathrm{kHz} 58 \%$
(5 Watts Po)
(0.5 Watts Po) 0.5%
0.5%
10 mA Quiescentcurrent Frequencyresponse $(\pm 3 \mathrm{~dB}$ at $\mathrm{Po}=2.5 \mathrm{~W})$ Outputimpedance (Determined by external components used in circuit)

RヨGTRE ELECTRINICS LTD.
275 KING STREET • HAMMERSMITH • LONDON • W. 6. - RIVerside 3143 - TELEX 24443

"Q-MAX" sheet metal punches FOR QUICK AND CLEAN HOLES

- Simple operation
- Quick, clean holes (up to 16 gauge mild steel)
- Saves time and energy
- Burr-free holes-no jagged edges
- Special heat treatment maintains keen cutting edge
- Anti-corrosive finish prevents rusting
- Used all over the world

Used by all government services-Atomic, Military, Naval, Air, G.P.O. and Ministry of Works: Radio Motor and Industrial Manufacturers, Plumbing and Sheet Metal Trades, Garages, etc.

Obtainable from Radio, Electrical and Tool Dealers
WHOLESALE \& EXPORT ENQUIRIES ONLY TO

$\left.\begin{array}{lll}D \\ 0 & \angle & \Delta \\ D\end{array}\right]$
ENGINEERING LTD

DESIGN LEADERSHIP

Backed by 25 years design leadership in Aerial Tech. nology, J. Beam continue to widen their comprehensive range of superbly engineered Telecommunication Aerials. Many new models of advanced designs have recently been introduced and fully descriptive literature is now avallable upon request.

Advisory Service \& Special Aerials
We shall be pleased to advise on any particular Aerial problem and are fully equipped to design and develop all types of VHF \& UHF arrays to meet specialised requirements. Enquiries by letter or telephone to Mr. V. Hartopp, Technical Director.
J. Beam Engineering Ltd., Rothersthorpe Crescent, Northampton

Tel. No. Northampton 62147 (STD ONO4)

test

 match

HEATHKIT SCORE

with their team of instruments

The opening pair. Heathkit DeLuxe Solid-State VVMs models IM-16 and $1 \mathrm{M}-25$, because of their excellent form and reliability, have quickly found a wide and appreciative audience. Their amazing versatility and style is always worth watching.
They are supported by the Heathkit HV and LV stabilised power supplies, models IP-17 and IP-27, which also are first class contestants in many fields throughout industry. These, backed by the excellent cover of the wide range of other Heathkit test instruments, make a team strong enough to challenge anyone.
Even when batting on a really sticky wicket. Heathkit instruments will give a good innings for your money.
Photographs, many in full colour, of all the Heathkit team of instruments as well as their performance records, can be found in our latest catalogue, which is available to all enquirers on request. Send for your copy today.

WW--029 FOR FURTHER DETAILS

M. R. SUPPLIES, LTD.,

(Established 1935)
Univeraally recognined a ruppliers of UP-TO-DATE MATERIAL, which doen the job properiy. Instant dellivery. Bathefaction anaured. Pricen nete.
PAN FLOW EXTRACTOR FANS. Undoubtedly today's greateat bargain for domertic or induririal
 only $88 / 8 / 6$ (despatch 7/6).
mmiature ruming time meters (bangamo). We have great demada for the remarkable unit and now can supply immediately from stock, $200 / 2507$. 50 c . synchronoua. Counting up to 9,999 houra, with $1 / 10$ in indicator. Only 1 ins, gquare, Fita, cyclometer dial, depth 2 ins. Way tadutrial and domestic app
to inntall. $63 j-($ des. 1/6).
SYICEPONOUS TIME 8WITCHES. (Another one of our popular specislltiee) 200/240 v. 50c. for accurate pre-net awitching operatlons. Sangamo e.25t, providing up to 3 on-oll operationg per 24 bours at any chosen timen, with day -omititing derice (use optional). Capacity $20-\mathrm{amps}$. Com.
 duty as above (less dhy-omitting). \&4/14/0 (den. 4/6). Full inatraction with each.
ELECTRIC PAM8 (Papet), for extracting or blowing. The moot exoeptlonal offer we have yet
 SEALL GELRED MOTORS. In addition to our well-known range (Lint GM.564), wo oftr small open type B.P. Unite $200 / 250$ v. A.C., 1, B, 12, 24, 60 r.p.m., approx. Sin. Iong, with lin. thaft projection emach ide and encloed gearbo
Only $89 / 6$ (des. $3 /$) Only $69 / 6$ (deen. 3\%).
MIMLATURE COOLDIG PAKB, 200/250 T. A.C. With open type Induction motor (no interierence), Overall $4 \operatorname{in}$. $\times 3$ in. $\times 24 \mathrm{in}$. Pitted 6 -biaded metad impelef. Ideal for projection lamp oooling,

 1.5 WG, $11 \times 8 \times 9$ in., outlet 3 in . 1 .., \&13/17/8 (dea. U.K. 7/6).

BTYCBRONOUS ELECTRIC CLOCE MOVEIEEFTS (me mantioned and recommended in many national journals). $200 / 250 \mathrm{r}$. 50 e: seif-starting, Fittid ipindies for hours, minuten and central hecz duat cover. $38 / 6$ (dea. 2/-). Set of three braks hands in good plain atyla. For $8 / 7 \mathrm{in}$. d L. 2/6 For $8 / 10$ dia. $3 / 8$ set.

 Any one
(den, $2 /-$).
Blall behct orinders. 200/250 v. A.C.ID.C. With two Sin. diameter whele (coarse and ane surines). Bench mount, very useful bousehold or induntriai units. $27 / 17 / 6$ (den. $8 / 0$). EXTRACTOR FAMs. Ring mounted all metal conntruction. T/E induotion motor, allent apers-

iniediate deliveri of start Centrifgel Pampe, meluding stainlem steel (most modela).
M. R. SUPPLIES, Ltd., 68 New Oxford Street, London, W.C. 1
(Telephone: 01-636 2958)

Major 3000, minor 600, comb type relays. Dependable will give you a planned delivery to match your Manufacturing schedules. Tell us what you want, and we'll see that you will get it! Contact us now and get the sort of answer you want to hear.

DEPENDABLE RELAY (CONTROLS) LTD 157 Regents Park Road, London, N.W.1. 01-722 8161

Vortexion

This is a high fidelity amplifier (.3\% intermodulation distortion) using the circuit of our 100% reliable- 100 Watt Amplifier (no failures to date) with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for $3-30 / 60 \Omega$ balanced line microphones, and a high impedance line or gram. input followed by bass and treble controls. Since the unit is completely free from the input rectification distortion of ordinary transistors, this unit gives that clean high quality that has tended to be lost with most solid state amplifiers.

THE VORTEXION 50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4 WAY MIXER USING F.E.T.s.

Size $14^{\prime \prime} \times 11 \frac{1}{2}^{\prime \prime} \times 4 \frac{1}{2}^{\prime \prime}$
Weight 201b.
$100 \mu \mathrm{~V}$ on $30 / 60$ ohm mic. input.
100 mV to 100 volts on gram/auxiliary input $100 \mathrm{~K} \Omega$.

ELECTRONIC MIXERS. Various types of mixers available. 3-channel with accuracy within 1 db Peak Programme Meter. 4-6-8-10 and 12-way mixers. Twin 2,3,4 and 5 channel stereo. Tropicalised controls. Built-in screened supplies. Balanced line mic. input. Outputs: 0.5 v at 20 K or alternative 1 mW at 600 ohms , balanced, unbalanced or floating.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of 30 $\mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output $100-120 \mathrm{v}$ or $200-240 \mathrm{v}$. Additional matching transformers for other impedances are available.

30/50 WATT AMPLIFIER. With 4 mixed inputs, and bass and treble tone controls. Can deliver 50 watts of speech and music or over 30 watts on continuous sine wave. Main amplifier has a response of 30 $\mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db} .0 .15 \%$ distortion. Outputs $4,7.5,15$ ohms and 100 volt line. Models are available with two, three or four mixed inputs for low impedance balanced line microphones, pick-up or guitar.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms -15 ohms and 100 volt line. Bass and treble controls fitted.
Models available with 1 gram and 2 low mic. inputs. 1 gram and 3 low mic. inputs or 4 low mic. inputs.
100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms and 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 v on 100 K ohms.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. The response is level 20 to $20,000 \mathrm{cps}$ within 2 db and over 30 times damping factor. At 20 watts output there is less than 0.2% intermodulation even over the microphone stage at full gain with the treble and bass controls set level. Standard model 1 -low mic. balanced input and Hi Z gram.

Get across loud and clear with AKG microphones!

AKG D-109
Dynamic

Find out more about AKG mikes from

Politechna (London) Ltd. 182-184 Campden Hill Road. London.W.8. 24 Hr, Telephone: 01-727 0711 Telex: 23894

AKG D-224

Advanced studio microphone, employing twoway cardioid principlethe latest in microphone technology - in slim, elegant form.
High-quality dynamic microphone ideal for all broadcasting and studio work. Incorporates bass work. Incorporates bass pivoted stand attachment.

Impectron now offer IFT's with the unique bobbin construction

Available in 5,7 , and 10 mm cans to meet $A M$ and $F M$ requirements, with frequency range from 100 KHz to 100 MHz . High packaging density, low cost with high reliability (reject rate 0.01). The unique construction of the bobbin enables close tolerance windings to within a quarter of a turn, and prevents shearing of wires on alignment.
These IFT's are manufactured by the world's leading RF coll speciallsts, TOKO INC. and are imported into the UK by Impectron Limited
Write for full information to B. Jordan.

IMPECTRON

are all the same to us

OUR SMALLEST ORDER
last year was for a single radio valve, value $7 / 6 \mathrm{~d}$.. urgently needed for shipboard replacement and rushed by us through the Rotherhithe tunnel to the London Docks so that they could sail with the tide.

OUR LARGEST ORDER
last year was for 28.546 valves worth nearly $£ 10.000$, all specially selected within special parameters for an electronics manufacturer whose name is a by-word in Industry. . . .

Between these extremes we supplied a massive number of valves of one sort or another-used in everything from domestic television sets to porpoise-tracking equipment; from experimental laboratory hook-ups in Technical Colleges to nuclear magnetic resonance spectrometers;

The largest single valve independant

Ferrograph Series 7- a lifetime of recording

Ferrograph Tape Recorders have been famous ever since 1949. A lifetime's experience of making fine recorders goes into every one of Ferrograph's brilliant new Series 7.

And there is a lifetime's recording in every Ferrograph instrument. Many of the earliest Ferrographs are giving perfect service today - twenty years later. You can be sure your Ferrograph will do the same for you. It will give dependable service for many, many years to come. It will keep its value. It will need the minimum of service. Spare parts will remain available for a lifetime's recording. That's how Ferrograph got its name.
Available in Mono, and in Stereo with and without end amplifiers: combining a unique range of 30 recording facilities, including:
All silicon solid-state electronics with FET input stages and wide input overload margins.
Vertical or horizontal operation.
Unit construction: The $\mathbf{3}$ individual units i.e. tape deck, power unit and amplifier complex are mounted on a single frame easily removable from cabinet for service or installation in other cabinets or racks.

3 motors (no belts). 3 tape speeds.

- Variable speed spooling control for easy indexing and editing.
Electrical deck operation allowing pre-setting for time-switch starting without need for machine to be previously powered.
Provision for instantaneous stop/start by electrical remote control.
Single lever-knob deck operation with pause position.
Independent press-to-record button for safety and to permit click-free recording and insertions. $88{ }^{* \prime}$ reel capacity.
Endless loop cassette facility.
Internal loud speakers (2)-1 each channel on stereo, 2 phased on mono.
4 digit, one-press re-set, gear-driven index counter.
2 inputs per channel with independent mixing (ability to mix 4 inputs into one channel on stereo machine).
Signal level meter for each channel operative on playback as well as record.
Tape/original switching through to output stages.
Re-record facility on stereo models for multiplay, echo effects etc, without external connections.
Meters switchable to read 100 kHz bias and erase supply with accessible preset adjustment.
Three outputs per channel i.e. (1) line outlevel respon'se. (2) line out-after tone controls.
(3) power output-8-15 ohms.

Power output 10 W per channel.
Independent tone controls giving full lift and cut to both bass and treble each channel.
Retractable carrying handle permitting carrying by one or two persons.

U.K. Retail prices from $£ 150$ incl. P.T.

Please see next page for list of Ferrograph Stockists

Listen for yourself

To know the Ferrograph Series 7 you must look at it, listen to it, for yourself. You will find it in stock at many of the best tape-recording and Hi-Fi specialists in the country, including the following:

Ferrograph stockists

London Dealers C. C. Goodwin (Sales) Lid., 7 The Broadway, Wood Green, N. 22	Cine-Equipments Led., Audio Visual Department, 9A Date End. Birmingham	Covemry Tape Recorder Services, 33 King William Sirees Crewe
Francis of Streatham, Tapy Recorder Specialists, 169-173 Streatham High Road, S.W. 16	Black burt Holdings Audio Centre, 39-4 Minctng Lare	Charlesworths of Crewe LId., 28 Highown Datington McKenna \& Brown Lid.
Hampstead High Fidelity,	B hack poel	${ }^{11}$ Bond Gave
91a Hearh Streel, N.W. 3	F. Benfell Limited. 17 Cheapslide.	
lmhofs, 112-116 New Oxford St., $\text { W.C. } l$	(Abingdon Sireet) Bolion	41-49 London Road
Largs of Holborn, 76/77 High Holborn. W.C. I	Harter \& Howart, Churchgate Bowcombe	Doncestell Tom Jaques Lid., Sound \& Electronic Enginoers. 16 Wood Sireet
Nusound, 242/4 Pertonville Road. N. 1	Tape Recorders (Bournemouth) Lid., 874 Christchurch Road	Dorchester Suttons, Hardye Arcade
Nusound, 82 High Holborn. W.C. 1	Bournemouth Forrester's. National Radio Supplies Lid.,	Ediaburgh J. B. Fulton Associates Lid.
Nusound. 228 Bishopsgate. E.C. 2	70-72 Holdenhurst Road	16 Howe St., Edinturgh 3
Nusound, 360 Kllburn High Road, N. W. 6	Avery's ${ }^{\text {St. James's Streer }}$ Lanes Radio Ltd., 11 Gardner St.	Haymarkel Corner, Edinburgh 11
Nusound. 36 Lewisham High St., S.E.13	Bristor Audio Bnstol.	Chew \& Osborse Led., 148 High Street
Nusound, 2 Marsland Station. E.IS	Park Streel Avenue. Brisol I Bristol \& West Recording Service Lud.	Farnbam Loyd of Keyworth Led., 26/28 Downing St.
The Recorder Co., 186-188 West End Lane. W. Hampstead. N.W. 6	6 Park Row. Bristol 1	Glespow MoCormack Led. 33 Bath Strees
R. E. W. (Eartsfield) Lid., 266-268 Upper Tooting Road.	Tape Recorder \& Hi-Fi Centres Lid., 82 Stokes Croff	Goodmayes Unique Radio Ledan
S.W.17	Bromley	The Facade, High Road
R. E. W. (Earisfield) Lid., 146 Charing Cross Road.	Bromley Sound, 32 Leichworth Drive	High Road
W.C. 2	Bury J. Smith \& Son (The Rock) Led, $J 84$ The Rock	Bennett \& Brown (Gravesend) Lid. 58, 60b \& 60c Wrotham Road
92 Tottenham Court Road, W. 1	Cambridge	Grimaby Lincolnshire Insarument Co .
Teletape Lid., 33 Edgware Road.	University Audio, Jd 2 Peas Hill	Hifi House, 69-71 Cartergate
Teletape Lid., 84/8s Shaftesbury Avenue, W. 1	Camertury Canterbury Hi -Fi Centre, 26 St. Dunstan's S_{t}.	Guildrord Merrow Sound Lid., 229 Epsom Road. Merrow
Abe ideen Aberdeen Radio Company. 12 Hadden Street	The Roath Radio \& Television Co. 23/27 Morgan Arcade. Cand (J CFI 24 F	P. J. Equlpments Led., 3 Onslow Strees
Aberdeen Sound Centre Lid., 25A Beimont St.	Sound Film Service: (Cinema Liaison Lid.), 27 Charles St.	High Wyeombe Hughes Photographic at Hi-Fi Specialists. 7 High Sireet
Raylec Limited, 43 Bulf Parade. High Sireer	Tape Recordet \& Hi-Fi Centres Ltd. Oxford Arcade. The Hayes	Huddersfifld Woods. The Music Shop,
Birmingham Chas. H. Young Led. 170-172 Corporation Sireet, Birmingham 4	Castle Douglas John Mitchell, 14/ King strees	New Sireet Hford Nusound, 87-100 Iford Lane
C. H. (Hi-Fidelity) Led., 167-169 Bromsgrove Sireet. Birmingham 5	Coventry Coventry Hi -Fi Centre, ${ }_{13}$ Ctity Arcade	Ketrering Paul Taylor \& Partners Ltd. I Silver Streer

L.eeds	Salisbury
Beckert Film Services Led. Audio-Visual Specialists, 46-48 The Headrow, Leeds LSI 8EL	Sutions Music Centre
	Blue Boar Row
	Sheflield
	Sheffield Sound Centre,
Vallance Audio Lab., 20 New Market St.	101 Ecelesall Road
	Solthuil
Lelcester United Film Service, 13 King Sireet	C. H. (Hi-Fidelity) Lid.,
	12 Drary Lane
	Southampton
Liverpool Beaver Radio (L'pool) Lid., 20-22 Whitechapel	Hamilton Electronics (Southampton) Led., 35 London Road
	Suttons, 42I Shiriey Road
Lowestoft	
Hughes (Lowestof) Lud. 62 London Road North	South Sblelds
	Saville's.
	Maidstone
Sloman \& Peturt,	Stufford
Pudding Lane	Tom Reekie Led., 10 Bridge Streer
Mensfield	
Syd Booth,	Stock port
$1 /$ Queen St.	W. J. \& M. Baylis Led.
	611 Gorton Road. Reddish
Maschester	
Lancs. High Fidelity Lid., 248 Wilmslow Road. Manchester 14	Stockton on Iees
	Bond \& Masob,
Middiesbrough	94 Church Road
McKenna de Brown Lid. Linthorpe Road	Stoke on Trent Wilsons Radio Led.,
Newcastle	
Clement Wain Limited Redlion Square	Sudbury The Record Shop, King Sireet
Newcastle-upon-Tyne	
Turnerz (Newcastle-upon-Tyng) Lud.e. Camera House. Pink Lane	
	Sexions (Sunderland) Ltd., Photo graphic Denlers,
	Norwich
Suttons, 16.18 Exchange Sireel	Swansea Holt, Redio, TV, H1-Fi, Audio Electronics. Picton A rcade. Oxford Street
The Audio Centre, 28-30 Pelham Streeı	
	Teddington
Peter Anson Electronics, 165 Arkwright Sireet	Daytronics Led. 119A High Sirees
Nottingham Tape Recorden Lud., I/ Burion Sireer	Traro Fords (Prop E. J. E. Vivian) 9 Pydar Sireel
Orford	
Westwoods.	Wealdstope K. J. Enterprises, $\int 7$ The Bridge
46 George Sireer.	
Oxford	
Plymouth Albert E. Ford Led., 84 Cornwall Strees	Wilmslow The Hi-Fl \& Tape Recorder Lounge, Green Lane
Portsmouth H. R. Knight Lud., $7 /$ Tangier Rood	Woting D. H. Hughes \& Sons Ltd. 29 High Street.
Remsgste Knaphll	
Tom Joyce 147 Boundary Road	Wodverhampton M. R. Warner \& Son Led. 26 ChapelAsh
Redcar McKenna \& Brown Ltd. 135 High Strec:	
	Worting
Alan Lautenson \& Co., 9 Bell Street	Bowers \& Wilkins Lid 1 Becket Buldings. Litilehampton Road

Advance make over 10

Advance oscilloscopı give a choice from th simple OS 12 whic was designed for ed cational and industri monitoring applicatio at a cost of only $£ 30$, the portable solid sta OS2000/OS2100 rans The OS2100 has a ban width of 25 MHz at maximum sensitivity $10 \mathrm{mV} / \mathrm{cm}$. The main fran accepts a choice of X \& plug-ins including most versatile swe delay unit currently ava able.
Mark the coupon for di on Advance oscill scopes and plug-ins.

OSCILLOSCOPES £30-£425

Advance is the leadir British manufacturer Pulse Generators. Mc versatile is the PG: Modular Pulse Generat= System, which can assembled from five si nal generating and pr cessing units to produ a wide variety of cor plex waveforms. Otr models include the ge eral purpose PG 56 at high power PG 55A. A for details.

PULSE GENERATORS 595-5490

Please mark this coupon for informatio, and data and post to:

reasuring \& test instruments

 enerous in specification, realistic in cost.

 enerous in specification, realistic in cost.}

Advance make a range of compact and versatile timer counters for the measurement of frequency, period, time, and phase angle.
One of the most recent additions to the range, the TC8 system, is a modular time counter which can be assembled in a wide variety of combinations to give the user an instrument precisely meeting his specification. The main frame accepts a choice of factory fitted units for a display of four to seven digits and five input modules capable of measuring frequencies of up to 500 $\mathrm{MHz}_{\mathrm{z}}$. Other new counters include the $32 \mathrm{MH}_{\mathrm{z}}$ TC9 and $15 \mathrm{MHz}_{\mathrm{z}}$ TC11 and TC12.

TIMER COUNTERS $880-\mathbf{8 8 0 0}$

The Advance digital multimeter DMM1, combines all the measurement capabilities of a conventional analogue multimeter with the undoubted advantages of a digital instrument at a cost of only $£ 175$. It gives completely nonambiguous reading of $A C$ and $D C$ voltages, currents and resistance.
The latest model, the DVM4, is a small dual slope integrating DC digital voltmeter with a 4 digit non-blink display, accurate to within 0.1% of reading. There are ten digital and analogue voltmeters made by Advance plus a range of digital panel meters. Ask for details.

DIGITAL VOLTMETERS $599-£ 1000$

-ase let me have full data sheets on following advertised instruments.

\square
-m interested as a Buyer/Engineer/Student.
lould also like
o not yet need
to see the equipment demonstrated.
me \qquad Position
npany. \qquad dress.

I would like to have information about other instruments in the Advance range.
LF Signal Generators
RF Signal Generators
Digital Panel Meters Laboratory Power Supplies Educational Electronic Instruments

For information on products from other divisions of Advance Electronics Limited, please tick the appropriate box.
Industrial Control Equipment
Printed Circuit Boards
Film Capacitors

KTruar for interrated lirguits

CHOOSE! the audio power amplifier lic. to suit your requirementa. With the Introduction of the PA248 5 WATT amplifier by General Electric, Kniver now offer you the choice of 1,2 or 5 Watte output from the tiny dual-in-ine packages, illustrated below. Thase three amplifiers require external reaistors and capacitors (for bias, feedback etc.). They DO NOT require transformers. A single supply line is required for each amplifier, thereby holding down the costs of power units. Full technical date sheete are avallable if required (see below).

PA246. 5 WATTS CONTINUOUS 10 WATT PEAK POWER INTO 16 OHMS

PA237. 2 WATTS CONTINUOUS POWER INTO 16 OHMS

This amplifier requires a typical input voltage of BmV for 120 mV with feedback) for 2 Watts continuous power output. A single power supply of between 9 and 27 Volts will provide useful power out.

PA234. 1 WATT CONTINUOUS POWER INTO 16 OHMS
This very popular amplifier offers a full one wall output for a very modest cost. It is mounted in a similar package to the PA237. illustrated above.
$1 \& 2$
in a similar package to the PA237. illustrated above. WATT 24/-
PA230. THE IDEAL PRE-AMP FOR ANY OF THE ABOVE POWER AMPLIFIERS

21/-
A low noise. low level audlo pre-amplifier, the PA230 is ideal for use with audio power amplifiers. It is mounted in a dual-in-line package similar to the PA237 but without the heat transfer tab. A minimum voltage gain of 4.000 times is featured together with an output voltage swing of 9 V pk to pk. (minimum). In closed loop applications. with a gain of 200. the distortion is typically 0.05% and the input noise voltage is $2 \mu V$

LINEAR I.C.S. FOR ALL YOUR REQUIREMENTS

MOS. LF. Pro-smolifer with 100 Gohm Gute source esislance Mullard troe TAA 320 Dodington Pair with $h_{f t}=7.000(\mathrm{~min})_{\text {and }} \mathrm{I}_{\mathrm{Y}}=60 \mathrm{MHz}(\mathrm{min})$ at $\mathrm{I} \mathrm{C}=2 \mathrm{~mA}$ G.E type 2 NS 50 B
Programmabie Unilunction Transistor G.E rpe 013 TI
Full technical data sheets are available. for all devices listed above. at $1 /-$ eac
with i.c. These date sheets may be purchased separately at $1 / 6 \mathrm{~d}$ each post free.

DIODES \& TRANSISTORS IN STOCK							
$\begin{aligned} & \text { Biodee } \\ & \text { Al19 } \end{aligned}$	3.	ACY 21	411	8C7722	4/6	2N1309	/1/
AAYII	27	${ }_{\text {acren }}$	2/10	80121	11.	2N2906	13.
4az15	3/3	ACr39	11.	B184	7/6	2N2924	4/4
8ar38	3.1	acha_{0}	3/1/	Bry50	5.	2N2925	5/3
DA47	2.	ACY41	$1 / 4$	BFY51	4/6	2N2928	3.
0 091	1/3	ACY4	N-	Bry 5	W-	2N3053	4
Da202	2.	Asr28	0	BSY95A	211	2N3055	19\%
IN34A	4	ASY27	1	Tis44	1/1	2N3702	3/8
INB0	4.	Ascza	67	TISAS	2/6	2N3703	1/3
1N64	4	A5729	\%-	Tis50	3/	2N3704	318
iN82A	81	86107	3/3	2N698		2N3705	3/4
IN87A	46	86108	1.	2NB97	W.	2N3707	4.
1 N 914	2.	BC109	$1 / 3$	2N706	3/3	2N3708	2/6
1544	1/4	BC182L	$3 / 2$	2N1132	10%	2N3819	-
15134	$6 / 3$	BC183L	2.5	2N1302	$3 / 11$	2N3820	141
15840	1 /-	BC1841	$3 / 2$	2N1303	$3 / 11$	2N4058	41
Trumicrors		BC212L	311	2 N 1304	5.	2N4059	3/5
açi?	8/1	8C213L	$3 / 1$	2N1305	5		
ACY18	4/5	BC214	4.	2N1308	*/5		
${ }_{\text {a }} \mathrm{CH}_{18}$	5/3	вcy\%	1/4	2N1307	*		
ACY20	4/8	8 CV 71	10/4	2N1308	9/8		

 Post ond peating $1 / 8$ per ortes. Oversest orders welcome-carriage of cont
32.
30. 른感 N F

forlijhlis or arealals

Manufacturers of the famous 'Tubewrights' range of standard towers and masts at heights of from 20 ft . to 164 ft .
SPECIAL TOWERS designed for greater heights, out-of-the-ordinary head loads, unusual wind conditions.
Specials, or standards when appropriate, for every purpose-stack supports. beacons, observation, micro-wave links and radar

- Foundation \& erection service
- Wide variety of headframes and crossarms
- All work to British Standard Specifications
- Highly qualified design team

E Customer-tailored, on-the-dot deliveries

Write now for general leaflet.

Unifab Structures Limited

Gale Road,
Kirkby Industrial Estate, Liverpool.
Telephone: 051-546 3401

Pye Telecommunications is the world's largest exporter of radiotelephone equipment. Pye Radiotelephones are used all over the world to ensure instant contact. Pye research development and quality control really do keep in touch with tomorrow.

rely on

 the vital contact

CHASSIS and CASES

Type N

CASES

Type N has a removable bottom, Type U removable bottom or back, Type W removable front, Type Y all-screwed construction, Type Z removable back and front.

	FOUR-SIDED 16 SWG ALUMINIUM				
Size	Price	Base	Size	Price	Base
$6 \times 4 \times 2{ }^{\prime \prime}$	6/3	2/11	$10 \times 8 \times 2 \frac{1}{\prime \prime}^{\prime \prime}$	12/-	5/6
$7 \times 4 \times 1 \frac{11}{}{ }^{\prime \prime}$	6/-	3/2	$12 \times 7 \times 22^{\prime \prime}$	12/-	5/11
$7 \times 5 \times 2{ }^{\prime \prime}$	7/6	3/5	$12 \times 9 \times 2 \frac{11}{}$	13/9	7/.
$8 \times 4 \times 2$ "	7/-	3/4	$13 \times 8 \times 22^{\prime \prime}$	$13 / 9$	6/11
$8 \frac{1}{2} \times 5 \frac{1}{2} \times 2^{\prime \prime}$	8/-	3/9	$14 \times 7 \times 3$ "'	14/6	6/6
$9 \times 7 \times 2^{\prime \prime}$	9/3	4/10	$14 \times 10 \times 2 \frac{1}{2}^{\prime \prime}$	16\%	8/7
$10 \times 4 \times 2 \frac{1}{2}^{\prime \prime}$	91.	3/9	$15 \times 10 \times 2 \frac{1}{21}^{\prime \prime}$	16/6	$9 / 1$
$12 \times 4 \times 2 \frac{1}{2}{ }^{10}$	10/-	4/3	$17 \times 10 \times 3^{2 \prime}$	19/6	10/1
$12 \times 5 \times 3^{\prime \prime}$	12/-	4/9			

TO FIT OUR CASES

Size	Price	Base	Size	Price	Bas
$7 \times 5 \times 1{ }^{3}{ }^{\prime \prime}$	$7 /$	3/9	$12 \times 63 \times 2$ "	10/9	5/1
$7 \times 51 \times 2^{3}$	7/9	3/9	$14 \times 81 \times 2^{\prime \prime}$	13/6	7/1
$11 \times 6 \frac{3}{4} \times 1 \frac{1}{2 \prime \prime}$	10\%	5/6	$153^{3} \times 93 \times 2 \frac{1}{2}^{\prime \prime}$	17/-	$9 / 6$
$11 \times 63 \times 2$ "	10\%	5/6	$17 \frac{1}{4} \times 93 \times 2 \frac{1}{2 \prime}^{\prime \prime}$	18/6	10/6

WITH BASES

Size	Price	Size	Price
$5 \times 4 \times 21^{\prime \prime}$	9/3	$34 \times 34 \times 24^{\prime \prime}$	6/6
$4 \times 21 \times 11^{\prime \prime}$	6/-	$3 \times 2 \times 1$ "	5/6
$3 \frac{1}{2} \times 3 \frac{1}{2} \times 2{ }^{\prime \prime}$	7/3	$6 \frac{3}{8} \times 2 \frac{11}{16} \times 1+\frac{5}{6}$	8/3

Plus post \& packing.
PANELS: Any size up to 3 ft . at 6/-sq. ft. 16 s.w.g. (18 s.w.g. 5/3). Plus post and packing.

H. L. SMITH \& CO. LTD.

Electronic Components - Audio Equipment 2871289 EDGWARE ROAD, LONDON, W. 2 Tel: 01-723 5891
We shall be pleased to quote for all your component requirements.

in our Budget combination storage unit!

Think what you could put in it!

Storage. Lots of it. for a thousand things you stock: replacement parts: light bulbs cameras: anything up to $7^{\prime \prime} \times 8^{\prime \prime} \times 107^{\prime \prime}$ Safety drawer-stops as 'standard' Smooth quide runners throout. All in a compact 3 ft 6 in . high. 2 ft 11 in . wide, 1 ft deep area. Ready assembled, in stove enamelled green or grey. With 18 handy 6 large, 8 king-sized drawers At $£ 175 \mathrm{~s}$. worth every penny! See the
 rest of the N. C. Brown range!

모몸 N.C. BRONN LTD.
 Et pacesetters in storage equipment

Send your FREE BROCH- NAME
URE \square or Send \square (how ADDRESS
many) Budget Storage
Units@ $£ 175 \mathrm{~s}$. in green Dept. Ww Eagle Steelworks. Heywood. Lance. Tel: 69018
 WW-042 FOR FURTHER DETAILS

Cuteralat
 PHILIPS

 LONG-LIFE BITS CUT COSTS

Chisel

Screwdriver

Conical

These new bits are electrolytically iron-coated over their whole length. giving tremendously increased life and freedom from seizure. Real savings in initial cost and maintenance of copper bits can be achieved by using Philips bits.

Now available in the shapes illustrated for all seven LITESOLD models (also fit similar $\frac{1}{8}{ }^{\prime \prime} \cdot \frac{3}{16}^{\prime \prime}$ and $\frac{1}{4}^{\prime \prime}$ bit types).

Send for further details:-

LIGHT SOLDERING DEVELOPMENTS LTD.,
28 Sydenham Road, Croydon CR9 2LL
Telephone: 01-688 8589 \& 4559

ELEKTROMODUL

國區䀎OMOUL
Hungarian Trading Company for Electrotechnical Components

If you ever wondered what 'going all the way' in stereo meant, you know it now.

It means separate amplifier-tuner components like Sansui's 60 watt AU-555 stereo control amplifier and TU-555 AM/FM Multiplex stereo tuner.

Between them, it means a THD figure of less than 0.5%. A wide power bandwidth from 20 to 30,000 Hz . A hum and noise figure of better than 100 dB (IHF). It means the latest FET circuitry for an FM sensitivity figure of $2.5 \mu \mathrm{~V} \pm 3 \mathrm{~dB}(\mathrm{IHF})$ and bet-
ter than 45 dB selectivity
And it means such versatile features;as independent pre- and mairr amplifier sections, a 4-position speaker selector, four outputs and seven inputs, and unique rounded tuning dials for both AM and FM bands.

If you've ever thought of going all the way in stereo, we urge you to see the Sansui $A U / T U$ series of professional audio components soon at your nearest authorized dealer.

TU-777 AM/FM Multiplex 3 Sereo Tuner. FET circuitry. Sensitivity: $1.8 \mu \mathrm{~V}$ $\pm 3 \mathrm{~dB}$ (IHF). Selectivity: better than 50 dB . S / N ratio: better than 65 dB . AU-222 Solid State Stereo Control Amplifier. 46 watts. Power Bandwidth: 20 to $20,000 \mathrm{~Hz}$. THD: less than 0.8%.

sansul

England: TECHNICAL CERAMICS LTD. Thornhill, Southampton Hampshire Tel: Southampton 45166 / Ireland: RADIO CENTRE 122A, St. Stephen's Green, Dublin 2/West Germany: COMPO HI-FI G.M.B.H. 6 Frankfurt am Main, Reuterweg 65 / Switzerland \& Liechtenstein: EGLI, FISCHER \& CO. LTD. ZURICH 8022 Zurich, Gothardstr. 6, Claridenhof / France: HENRI COTTE \& CIE. 77, Rue l.-R. Thorelle, 77, 92-Bourg-la-Relne / Luxembourg: MICHAEL. SHEN, EUROTEX 15, Rue Glesener / Italy: ELECTRONICA LOMBARDA S.P.A. Via Montebello 27, 20121 Milano / Austria: THE VIENNA HIGH FIDELITY \& STEREO CO. 1070 Wien, Bur ggasse 114 / Belgium: MATELECTRIC 199, Boulevard Leopold II Laan, 199, Bruxelles 8 / Netherlands: TEMPOFOON BRITISH IMPORT COMPANY N.V. Tilburg, Kapitein Hatterasstrat 8 , Postbus 540 / South Africa: GLENS (PTY) LTD. P.O. Box 6406 Johannesburg / Southern Yemen: 8HICAJEE COWASJEE LTD. Steamer Point, Aden / SANSUI ELECTRIC Postbus 540 ., LTD. FRANKFURT OFFICE SChlllerstrasse 31, 6 Frankfurt am Main, West Germany / SANSUI ELECTRIC CO., LTD. 14-1, 2-chome, Izumi, Suginami-ku. Tokyo, Japan

BuIlleios ceramics

for the ELECTRONIC INDUSTRY
(and Electrical Appliance Manufacture)

Frequelex-for high-frequency insulation.

Refractories for high-temperature insulation.

Bullers porcelain for general insulation purposes.

Meticulous care in manufacture, high quality material, with particular attention applied to dimensional precision and accuracy, explain the efficiency and ease of assembly when using Bullers die pressed products.

Write today for detalled perticulars.

BULLERS LIMITED

Milton, Stoke-on-Trent, Staffs.
Phone: Stoke-on-Trent 54321 (5 lines)
Telegrams \& Cables: Bullers, Stoke-on-Trent

Gramophone

 Record Maintenance and Stylus Cleaning Kit Designed for use on NEW records or records in new condition which are to be played with pick-ups requiring very low tracking pressures. The 30,000 finely pointed tips of the $\mathrm{Hi}-\mathrm{Fi}$ Parastat Brush positively oxplore every detail in the record groove to provide the high degree of record cleanliness necessary when using ultra lightweight pick-ups tracking at 2 grammes or

-PARASTAT' ${ }^{\text {Pogd }}$ Manual Madel

Mk.IIA less. The cover pad in the lid of the case is provided for the purpose of cleaning and activating the brush which when enclosed within the case is kept at the correct level of humidity required to control all static at the working surface. Perfectly clean records must be played with a perfectly clean stylus and an integral part of the kit is the new Watts Stylus Cleaner which provides a safe and efficient method of cleaning the stylus.
Supplied complete with instructions, 1 oz. New Formula dispenser, Distilled Water dispenser, spare pad cover and ribbons. Price $42 / 6$ plus $1 / 3$ P.T.
Replacements: 1 oz. New Formula dispenser 4/6 Distilled Water Dispenser 4/-Pad Cover and Ribbons1/9.

A dual purpose record maintenance device. Keeps new records in perfect condition. Restores fidelity to older discs. Complete with 1 oz. New Formula dispenser and instructions. Price 45/-
Replacements: Pad Covers $2 /$ - each. Brush 12/6. Sponge Cover Pad 1/-. 1 oz. New Formula Dispenser 4/6. HUMID MOP. Recommended for use in conjunction with the Manual Parastat and Preener. Cleans and conditions the bristles and velvet pads. Ensures correct degree of humidity at the time of use. Complete with spare sponges and instructions. Price $4 / 6$. Replacements: Set of Sponges 2/6. 'PARASTATIK' -DISC PREENER

(Patent No. 982599)

Keeps new records like new. Expiessiy designed for use with records which have not had previous antistatic treatment. Complete with instructions. Price 6/9. Replacements: Packet of 4 wicks 2/-.

All obtainable from your

local specialist or direct:

Automatic Record Cleaner. Easily fitted to any transcription type turntable. Provides a simple and effective method of removing static and dust while the record is being played. Surface noise and record and stylus wear is reduced. resulting in cleaner reproduction. Complete with $\frac{1}{2}$ oz. New Formula Dispenser and instructions. Price $18 / 9$ plus 4/5 P.T. Replacements: Nylon Bristle and Plush Pad 1/9. \ddagger oz. New Formula Dispenser 2/6.
A GUJDE TO THE BETTER CARE OF L.P. AND STEREO RECORDS

completely evised. 48 pages, fully illustrated. providing all necessary information on Record

2/6 Post Free. Please send (Post Free U.K. and Commonwealth)
Disc Preeners@6/9..................Fi Parastats@42/6 plus 1/3 P.T. I Dust Bugs@18/9 plus 4/5 P.T. Manual Parastats @ 45/-
48 page Booklets @ 2/6.............Stylus Cleaners @ $5 /$-plus $1 / 3$ P.T. 1 Replacement Parts:
I enclose cheque/P.O. value $\mathbb{E} \quad$............... (Do not send postage stamps)
Name
Address
I

FOR QUALITY, RELIABILITY AND WORLD-WIDE AVAILABILITY, RELY ON HALL ELECTRIC'S SPEED, INTELLIGENCE AND REPUTATION

VALVES FOR:

Radio and Television Manufacturers.
Radio and Television Service Departments.
Radio Relay Companies.
Audio Equipment.
Electronic Equipment.
Instrumentation.
Computers.
Marine Radar.
Communication Equipment.
Research and Development.
Government Departments.
Aircraft Military and Civil.
Ministry of Aviation Approved Inspection.
Air Registration Board Approved
Inspection.

coating unit

This is the latest addition to the General Engineering range of Vacuum Coaters. It's the EC19, manually or automatically operated, which can be supplied with a comprehensive range of accessories; electron beam evaporation unit, quartz crystal mass and rate monitor, substrate heaters and work holders to suit all applications.

Further details from
VACUUM PRODUCTS DIVISION
General Engineering Co.
(Radcliffe) Ltd.
STATION WORKS, BURY ROAD.
RADCLIFFE, MANCHESTER.
Telephone: 061-723 3271 \& 3041 Telex: 66200 Generalad Mchr.

KEITH MONKS (AUDIO) LTD.
 Proudly Present

 MELODIUM MICROPHONES

 MELODIUM MICROPHONES}

\star Moving Coil Microphones

\star Large Range of Accessories
\star Factory Replacements available
\star Microphones built of Steel

* Ribbon Microphones
\star Made in Paris

54 ROUNTON ROAD. CHURCH CROOKHAM, NR. ALDERSHOT, HANTS. Tel. FLEET (02514) 3566.

WAYNE KERR Slide-rule LCR Bridge

NEWEST Bridge in the Wayne Kerr range.
SLIDE-RULE accuracy, direct reading in LCR values, tolerance and phase angle.
RAPID location of correct range, adjustable sensitivity with automatic increase near balance.

ALTERNATIVE frequencies: 1 kHz for most measurements, twice line frequency for power-pack components.

2, 3 \& 4 TERMINALS for isolated or wired components, tests using long leads, accurate measurement of low impedance.

RANGES
L 10 nanohenrys - 16 kilohenrys
C 10 femtofarads - 16 millifarads
R 100 micro-ohms - 160 megohms
ACCURACY
1%
FREQUENCY
1 kHz or $100 / 120 \mathrm{~Hz}$
PHASE ANGLE
0-45 degrees
TOLERANCE
-15% to $+15 \%$

Elliott on-line computers are Europe's No. 1-and British to the memory core!

Elliott on-line computers are fast, reliable-available in quantity. Not through a sales office of a foreignbased company-but from a complete on-line computer design, manufacturing and servicing complex right here in Britain!
We've been making on-line computers longer than anybody. We graduated via instrumentation and control engineering-not punched cards or business equipment. For ten years, our 900 series computers have been used in every Elliott Automation computer-controlled system. This applications experience comes free with every computer.
Tested and proved under rigorous military conditions-Elliott 900 series computers have sold in hundreds throughout industry. Thiey are compact, versatile, compatible, expandable, competitive-ranging from 12 to 18 bits and 8 K to 131 K words of core store.
For more information on prices, specifications, applications, deliveries-write, phone ... or just call.

OUOPTOELIETRONICS from PROPPS nunn
 New Science Projects combine fascination of Optics with Electronics.
 INFRA-RED TRANSMITTERS \& RECEIVERS

Unique devices in a brand new electronic field that can be exploited in a wide range of applications. Minlaturized construction and solid state circuit design is combined with outstanding modulation and switching capabilities to provide infinite possibili burglar alarms, batch counters, level detectors, etc., etc.

INFRA-RED PHOTO RECEIVER - MSP3
Ultra senstive detector/amplifier for inlra-red (Gallium Arsenide) or visible light optical links reception. Spectral response 9500 A . Robust, cylindrical package is coaxial with incident light to tacilitate optical alignment and heat sinking.

85/- post teo
MAX RATINGS
Total dissipation fin free air, Temb $=25^{\circ} \mathrm{C}$.) $\quad . \quad 100 \mathrm{~mW}$. Derating Factor......... $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Output Current Intensity....... 100 mA , Voltage.........25V. Operating Temperature.........from
Supplied complete with suitable lenses, full Technical Date and Application Sheets.

GALLIUM ARSENIDE LIGHT SOURCE-MGA 100
Flamentless, intra-red emitter in a robust, sealed cylinder coaxial with beam to facititate opric al lignment and heat sinking.
 post tree
max ratings
Forward current if max." D.C. .400 mA . forward peak current If m
x. ($p k$)... Power dissipation …...600mW. Derating factor for Tamb greater than $25^{\circ} \mathrm{C}$. Reverse voltage $V_{\text {R }}$ max 1.0 V

When mounted on an aluminium heat $\sin k 1 \mathrm{in} . x \frac{1}{4}$ in. $x \frac{1}{\frac{1}{i n}}$
Supplied complete with suitable lenses, full Technical Data and Application Sheets including Line of Sight Speech Link.

MICRO-MINIATURE INFRA-RED DETECTOR-31F2 Silicon NPN photo-diode of passivated planar construction, suitable for punched card readers. counters, film sound track, etc. \qquad

Infra-red devices (except 31 F2) are supplied complete with suitable lenses, technicaldata and typical application information.

PHOTOCONDUCTIVE CELLS

CADMIUM SULPHIDE CELLS (Cds)

Nexpensive light sensitive resistors which require oniy simple circuitry to work as ight triggering units in a wide range of devices. such as: lashing or breakdown conscious - use with A.C. or D.C. Spectral response covers whole visible light range.
 MKY251
 3.000 ohms. Maximum voltaga 200 A.C. or D.C. Maximum current MKY101-C
Epoxy sealed. In. dlam. x il in. thick. Resistance at 100 Lux -50010 2.000 ohms. Maximum voltage 150 A.C. or D.C. Maximum current MKY71
Glass sealed with M.E.S. base; Glass envelope $\frac{\pi}{50}$ in. diam.. overall length 1 in . Resistance at 100 Lux -50 Kohms to $150 \mathrm{Kolwms}$. voltage 150 A.C. or D.C. Maximum current 75 mW . $8 / 6$ post free

CADMIUM SELENIDE CELLS (Cdse)
These have a higher dark resistance in a given period than Cadmium Sulphide Cells, indicating much faster response. Suitable for all Cds applications plus applications in chopper, electronic musical instruments, computer and other sophisticated circuitry. Time response shown in megohms is dark resistance measured 10 secs. after 400 Lux light intensity is intercepted.

MKB5H
Hermerically metal sealed. $\frac{d}{} \mathrm{in}$. diam. $x \frac{d}{d}$ in. thick. Time response 100 megohms. Resistance at 1,000 Lux- 1 Kohm to 10 Kohms . Resistance at 10 Lux - 50 Kohms to 1 megohm. Maximum voltage 16/6 post firee MKB12H
Hermetically metal sealed \mathbb{i} in, diam, x in. thick. Time response 100 megohms. Resistance at 1,000 Lux - 100 ohms to $1,000 \mathrm{ohms}$. Resistance at 10 Lux -1 Kohm to 10 Kohms. Maximum voltage

16/6 post free

PHOTOGENERATIVE CELLS

Selenium cells in which light energy is converted into electricity directly measurable on microammeter or used with amplifier as light trigger for alarm and counting covers visible tight range.

Type 1 - $1 \frac{1}{3} \times 1 \frac{3}{1} \mathrm{in}$. Output 1 mA at 0.6 volts at 1.000 5/-post free Type $2-28 \times 18 \mathrm{~mm}$. Output $500 \mu \mathrm{~A}$ at 0.6 volts at
$3 / 6$ post free Type 3-100 550 mm . Output 4 mA at 0.6 volt at 1.000 Lux

FIBRE OPTICS

Highly flexible light guides that transmit light to inaccessible places as essily as alectricity is conducted by copper wires. Fibre optics make it possible to control. miniaturize, split, reflect or transfer light from one source to many places at once and to operate photo devices. Iogic circults, or illuminate in ways never before pos* hundreds of experiments or serious applications in a fascinating new science.

RANK TAYLOR-HOBSON ENGINEERS KITS

All the baslc components needed to demonstrate new ways to use light in serious applications with glass flbre optics consisting of thousands of tibres tightly bundled in a flexible sheath with
ferruled, optically polished ends. Kit includes 12. ferruled, optically polished ends. Kit includes 12, 18. and 24 inch standard light guides in $1.5,3$ and 6 mm widths. 24 inch twin exit guide with $2 \times 1 \mathrm{~mm}$. outputs. Non-random liaht source. Supplied complate with card wallets containing technical data and illustrated applications.
£16
LOW-COST CROFON FLEXIBLE LIGHT GUIDE
Newly developed plastic light transmitting media made by Du Pont and consisting of 64 special plastic fibres, each .010 in . diam. and bundled together in a rough, flexible sheath. Can be used for many serious projects and mexpensive prototype work. Ends can be ground flat, dyed or capped with Epoxy resin. Temp. range - 40^{*} to $176^{\circ} \mathrm{F}$, No loss of light through bending. 12-page date and pplications booklet supplied.

Minimum order -2 ft.
8/6
per foot post trae

Other advanced Solid-State devices

RCA INTEGRATED CIRCUIT - CA3020
Complete Audio or Servo Amplifier in one tiny package!

RCA TRIAC - CA40432
Suitable for light dimming and motor control eircuits
Gate-controlled, full-wave. A.C. sillicon switch with integral
or conducts instantly by applying reverse polarity wital trigger that blocks peration up io 250 volts: polying reverse polarity voltage. Şcitable for A.C. diam. x 年 in. high. Complete with heat sink, data and applications

information.

45/-post free

XCELITE

Precision made hand tools for the professional

PLIERS
69CG Radio - TV Plier
70 CG Flat Nose Pliers
72CG Chain Nose Plier ${ }_{71} \mathrm{CG}$ Round Nose Pliers

73CG Tip Cutting Pliers IACG Diagonal Close Cutting Pliers A complete range of miniature lightweight pliers specially designed for holding, bending, shaping and cutting of fine wires in electronic, Radio/T.V., electrical and jewellery work. Precision made for the expert with miniatures in mind. Cushion grip handle, coil spring openers.

SEIZERS

$32 \mathrm{H} 5^{\prime \prime}$ Staight Nose Junior 5^{*} Seizer
42 H 6 Straight Nose Seizer 33H 5"Curved Nose Junior 5 " Seizer 43H 6" Curved Nose Seizer
Box joint construction, two position snap on lock. Precision machined from perfectly tempered stainless steel.
Holds like surgical clamp and acts as heat sink.
Straight or curved nose, in 5 " and 6 " sizes.
Distributed by:
Special Products Distributors Limited 81 Piccadilly London.W.1.
Tel: 01-629 9556 Cables: SPECIPROD London W.1. Full details on request. Made in U.S.A.

WW-055 FOR FURTHER DETALLS

Dept. WPU3, BOWELL'S LANE, FELTHAM, MIDDLESEX, ENGLAND Telephone: 01-890 4837

Photo-Cine

 FAIRS OCTOBER 16-22Hear and compare the world's finest sound producing equipment for the home. The top loudspeakers, amplifiers, tape-recorders, pick-ups, tapes and accessories have been brought together under one roof to give you a superb Festival of Sound and Sight. Both newcomer and expert . . . everyone who takes pleasure in using and listening to Hi-Fi equipment of the Highest Standard must visit this International Audio Fair.

Lovers of music of all types, if they are true to their enthusiasm, can hear for themselves, how exactly and faithfully their favourite passage can be played back to them.

Admission 4/-
OLYMPIA
10 a.m.-9 p.m.

5Compact, fully transistorised units for direct operation from mains

WW-058 FOR FURTHER DETALLS

TRANSFORMERS
 COILS

CHOKES
LARGE OR SMALL QUANTITIES

SPECIALISTS IN
FINE WIRE WINDINGS
miniature transformers
reLay and instrument coils, etc.
Vacuum impregnation to approved standards
ELECTRO-WINDS LTD.
CONTRACTORS TO G.P.O.. A.W.R.E., L.E.B., B.B.C., ETC.
123 PARCHMORE ROAD, THORNTON HEATH, SURREY
01-6532261 CR4.8LZ EST. 1933
WW-059 FOR FURTHER DETAILS
A.C. SOLENOID TYPE SBM

Continuous Rating

 $3_{\frac{3}{4} / b \text {, at } 1} 1$ in Instantaneous up to 16 lb .

Fitted with stainless steel guides-6 times the life. Larger and smaller sizes available-also transformers to 8 kVA 3-phase.

KNAPPS LANE, CLAY HILL. BRISTOL 5. TELEPHONE 65-7228/9

WW-060 FOR FURTHER DETAILS
X-MOD $723 A$ - argital volimile

Goodmans The Greatest NameThe Greatest Range in High Fidelity

Forty years of experience in the Audio Industry are at your service at Goodmans.

Whether you prefer to build your own loudspeaker enclosure, to have it made for you, or whether you want a loudspeaker system complete -
Goodmans is the name to look for.
High Fidelity Loudspeakers from $8^{\prime \prime}$ to $15^{\prime \prime}$, Treble and Mid-range units, crossovers and other components to go with them on the one hand,
or complete systems from the famous mini Maxim to the studio - quality 25 watts Magnum-K on the other.

See what a choice is yours - send for your free copy of the 28 page Goodmans High Fidelity Manual which comes complete with cabinet drawings and interesting articles about Stereo and High Fidelity, and includes full details on Goodmans High Fidelity Amplifiers and Radio Tuners - or call in at your Goodmans dealer.

Please send me a free copy of the

 Goodmans High Fidelity Manual
Name

Address
wws

0

Goodmans Loudspeakers Ltd Axiom Works, Wembley, Middx. Telephone: 01-902 1200

Nicrophonones for every purpose

Other models and a full range of stands, reflectors, windshields and accessories available

All microphones are manufactured in a special section of our works, under strictly controlled conditions with stringent test and inspection at every stage.
Each and every microphone is individually tested both aurally and on Bruel \& Kjoer visual and graphic recording test equipment for conformity to a prescribed performance.

B.D.2. COMBINED TURNTABLE AND PICK-UP ASSEMBLY. QUALITY PERFORMANCE AT A REALISTIC PRICE

Featuring:-

* Belt drive turntable with S.A.U.2. arm operated by hydraulic lift and with lowering device.
* $33 \frac{1}{3}$ and 45 r.p.m.
* Virtually silent.
* Anti-vibration springs
* Available as chassis only or on teak plinth.

Prices and full details from:
A.R. SUGDEN \& CO. (Engineers) Ltd. MARKET STREET, BRIGHOUSE, HD6 IDX. YORKSHIRE

TEL 2142.

It's easy. You simply pocket the small receiver of a Philips Radio Paging System. Designed to give reliable cover over a large area, the system ensures immediate selective contact with up to 810 people.

Groups or individuals can be alerted, and where necessary the call can be followed by spoken instructions. Where an individual is absent from duty this is indicated by his receiver being held in a storage unit.

The control panel is fully electronic and so completely reliable. It contains a microphone; two rows of ten push buttons for selecting the different receivers; one call push button; one push button for switching on the microphone; two or three push buttons for a group call. The transmitter
conforms with all statutory regulations and the aerial can be mounted on a pole or wall.

To sum up: Philips Radio Pmups Paging System features: - contact with up to 90 -individuals (RP90) or 810 (RP810) . extensive coverage - loud calling signal regardless of distance. .call signal can be followed by spoken messages - group calls (RP 90 two groups with up to 20 members each, RP 810 three groups with up to 36 members each) - control panel indication of absentees.
For full details of the RP 90 and RP 810 Radio Paging Systems please write to:

Electro-acoustics Division of Philips Industries, N.V. Philips' Gloeilampenfabrieken. Eindhoven - the Netherlands.

Tandberg Series 11 the Professional's Portable

A $3 M$ wild life recording wianer K. Briggs
The pilot tone model 11-1P, for the professional and industrial user, is the finest truly portable tape recorder available in this country at the present time. Its specification, performance, and design make it the perfect professional's portable. Ask about the Tandberg 11-1P and 11-1.
Compare our Performance - then Compare our Price!

JOHN SMITH LTD.
209 SPON LANE - WEST BROMWICH - STAFFS. TEL. 021-553 2516 (3 LINES) WOODS LANE CRADLEY HEATH • WARLEY - WORCS. TEL. CR 69283 (3 LINES)

WW-068 FOR FURTHER DETAILS

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1

Worlipanous seme VARRABLE VOLAGE CONTROLS

VARIABLE TRANSFORMERS

\author{

* Output 0.260 V
}
- Input 230V 50/60CPS
* Shrouded for Bench or Panel mounting Inset shows latest pattern Brush gear ensuring smooth continuous adjustment.
£5. $10 \begin{aligned} & 1 \mathrm{amp} £ 5.10 ; 2.5 \mathrm{amp} £ 6.15: 5 \mathrm{amp} £ 9.15: 8 \mathrm{amp} £ 14.10: 10 \mathrm{amp} £ 18.10 \text { : } \\ & 12 \mathrm{amp} £ 21: 20 \mathrm{amp} £ 37\end{aligned}$

CONSTANT VOLTAGE TRANSFORMER.
Maintain spoton test gear readings with Autometic Mains stabilizer Specification:
Output 24QV

- Accuracy $\pm 1 \%$
- Inpur 190-260V
- Capacity 250 watrs
- Corrected wave
£12.10 cs P $20 /$

20 AMP LT SUPPLY UNIT
 * Input 240 V
 * Output 20 amps at 24 V fully adjustable
 * Sizs $16^{\prime \prime}$ \& $12^{\prime \prime}$ - $20^{\prime \prime}$ high *Weigh 50 los.
 £35.10

SOLID STATE VARIABLE CONTROL

- Outpui 25-240V
- Input 240 V 50 CPS
* 5 amp 10 amp models
- Completely sealed

5 amp model f 8.7 .6
10 amp model $£ 13.15$

SS-1

* 10 amp C/O push button

Panel Mounting: Buttons in 4 colours 4/8 each per 1.000

IMMEDIATE DESPATOH
 FULL SPARES AND SERVICE AVAILABLE

PROCESS TIMERS-MICROSWICHES

* synchronous moter \& clutch
* 10 millon operations

Instimianeous 8 Timed
out 3 AMP contacts

* Reppat Accuridey $\pm \frac{1}{2}$

Dial ranges $0-10$ secs up to 0.28 hrs. May also be used as impuise stan
f11 approz.

SYMCHRONDUS MOTOR \& CLUTCH Matchbox size froital area Automatic re set

- plug-in octal base
- instantanedus and timed out 2 AMP CONTACTS
- RANGES: 10 SECS To 36 MINs approx. $\mathbf{f} 5$

"actual size"
- 1 MILLION OPS.

5 Amp a/o Sub-minhature Micro-swinch
$2 / 6$ each per 1.000

S5G

TIMER

- Light forca wirs operated Micro-switch
- Designed for ever more economical coin operation mechanism
spprox 4/- asch par $\mathbf{1 , 0 0 0 ̂}$

CC5-R MICRO SWITCH

PROXIMITY SWITCHES, LIMIT SWITCHES AND LIQUID LEVEL CONTROLS MANUFACTURERS AND IMPORTERS FOR MINISTRY OF DEFENCE, G.P.O.

OMRON PRECISION CONTROLS
DIVISION OF IMO PRECISION CONTROLS LTD.
(Dept. WW9) 313 EDGWARE ROAD, LONDON, W2. TEL: 01-723 2231

A Technical Knockout

Titles are hard to win at Morganite: But we have a Champion in the Type 81E Cermet Trimming Potentiometer.
After several rounds with our Quality Control personnel. the Champion emerged unscathed. Unfortunately,
the other contender could not stay the distance. He survived an examination of tiny component parts at 500 times life size (that's like spotting blemishes on a 60 ft . matchstick) but he suffered a technical
K.O. during the final rounds
of electrical tests
The Champion took them in his stride and now challenges all comers.
If you have an application for a 0.5 w single turn trimming potentiometer. (Bantam Weight) back a proven title holder - it pays!

MORGANITE RESISTORS LIMITED

Bede Industríal Estate, Jarrow, County Durham.
Telephone: Jarrow 897771 Telex: 53353
MMorgan

The Goldring caress... we call it transduction seduction

Smooth, breathing, open and graceful that's the sound of Goldring True Transduction. The ability of a cartridge to track properly at low forces is only the first stage of design, and from that point Goldring engineers continued development through to achieve their True Transduction. A micro-element of tubular permeable material lies in a 'Free-Field' generated from a fixed source away from the removable
stylus assembly. It is as light as the cantilever itself - no massy magnets or coils to move! This design approach provides a texture of sound transparency previously associated with direct-coupled pickups. Excessive de-coupling techniques are rendered unnecessary and tight coupling is employed to ensure that every motion of the sensing element is identical to that of the stylus - at all frequencies.

Full technical details of these new era cartridges from
Desk HF, Goldring Manufacturing Co. (Great Britain) Ltd.,
486-488 High Road, Leytonstone, London, E. 1 r,
or from your nearest dealer.

WW-074 FOR FURTHER DETAILS

Our model PPA1K power supply will provide 1 kW of AC power at any frequency within the range 40 Hz to 10 kHz
A large selection of units from stock over the range 120 W to 160 kW

- low distortion high frequency stability - continuously variable output voltage
- single-phase or three-phase

LTV Ling Altec Limited
Baldock Road, Royston, Herts, England
Telephone: Royston 2424. Telex: 81174

Some notes on Bridge Measurement by WAYNE KERR

Number 2 Two, Three and Four Terminals

The first issue of these notes described the basic principle of the Transformer Ratio Arm Bridge, and it was shown that high impedance components such as small capacitors can be accurately measured at the end of very long lengths of screened cable with this type of bridge network, the balance point being unaffected by the capacitance of the connecting cables. Figure 1 illustrates this arrangement, which is often referred to as a 'three terminal' measurement having a third terminal used as a guard which can isolate the effect of electric fields and unwanted leakage currents between primary terminals. It is customary, when drawing the circuit configuration of a transformer, to label the common tapping point as 'neutral' and it should be remembered that for most practical purposes the terms 'neutral' and 'guard' are interchangeable for transformer ratio arm bridges.

The bridge network can be arranged so that either of the measurement terminals or the neutral can be connected to earth. This gives a degree of flexibility which cannot be achieved with other types of A.C. bridge as these depend on a fixed earth point to reduce the effects of stray capacitances. Furthermore, it can be seen from Figure I that the bridge can measure balanced and unbalanced impedances with the neutral connection either earthed or floating.

A typical application of a three terminal measurement is illustrated in Figure 2. It is required to measure component A mounted on a circuit board without disturbing the connections to other components. The use of the neutral connection in this instance places the impedances represented by components B and C in shunt with the cable capacitances and, as we have already shown, these are incapable of affecting the point at which the bridge balances.

Component A can therefore be directly measured by this type of "in situ" measurement, and an effective isolation occurs of this component from \mathbf{B} and \mathbf{C}.

A most interesting use of the transformer ratio arm bridge is the measurement of very low impedances, and in this case four terminals are used.

Figure 2
With conventional two-terminal bridges difficulties arise in the connection of the low impedance to the bridge. Variations occur due to terminals and clips introducing finite contact impedances in series with the component which cause substantial errors.

The general arrangement for a four terminal measurement, common to both AC and DC, is illustrated in Figure 3.
' A ' represents a constant current with a series resistance so high that small variations caused by the terminals I and 2 are insignificant to (i) the current flowing through the unknown. The potential developed across the unknown is measured by ' V ', a voltmeter having an internal impedance high enough to disregard the series contact resistance of terminals 3 and 4. If these conditions are met, the true value of the unknown is measured by V / i.

Figure 3

The transformer ratio arm bridge is readily adaptable to this arrangement in the case of AC measurement. Figure 4 shows the modification necessary to create a four-terminal facility suitable for measuring impedances below 10 ohms.

Figure 4
If a resistor A with a value of some thousands of ohms is inserted in series with the unknown impedance, which in this case returns to the neutral winding of the transformer, a current flows which is substantially independent of the contact resistances, which are small compared to the value of resistor A,

Resistor B similarly isolates the right hand pair of contact resistances from the second transformer network, and it can be shown that the standard impedance (Zs) will balance the T network which is formed on the unknown side of the bridge in the following manner:

$$
\mathrm{Zu}=\frac{\mathrm{R}_{\mathrm{A}} \mathrm{R}_{\mathrm{B}}}{\mathrm{ZS}_{\mathrm{S}}}
$$

If the unknown impedance is a pure resistance and the bridge standard is calibrated in conductance, the bridge will now indicate the resistance directly if the values of RA and RB_{B} are multiplied by the conductance reading. In a similar fashion, a pure inductance will balance against a standard capacitance because of the reciprocal nature of the formula.

To summarise, the transformer ratio arm bridge enables three-terminal impedance measurements to be made, from a few ohms to many thousands of megohms. These measurements may be at any phase angle or in any quadrant of the complex plane and, if required may be carried out at the end of very long lengths of cable.

By using four-terminal measurements this impedance range can be extended to virtually a short circuit. Important applications of this technique include the evaluation of relay and switch contacts and the measurement of residual inductance and resistance in all types of electrical connections.

The most advanced microwave devices are here.

Schottky Barrier Diodes

*Ga As Mixers *Ga As Detectors *LID, Reversible Ceramic Oscillators
*Ga As Gunn Diodes *Si Ávalanche (Impatt) Diodes
*Welded Ceramic S3
Backward Diodes
*Ge Planar Detectors *LID, Coaxial
Microwave Transistors
*Si 1 watt Power amplifiers *Si Low. Noise, $5 d$ B receiver
Tuning Varactor Diodes
*Si VHF \& HF plastic. High 0 *Si Hermetic, Wide Capacitance Range
Varactor Multiplier Diodes
*160 G.4Z, Si welded Ceramic
P-I-N Diodes *Switches
*Limiters *Modulators *Stick. Coaxial. Epoxy and Pill
Point Contact Diodes
*Mixers *Detectors *Coaxial, Single Ended Ceramic

Microwave Integrated Circuits

*Microstrip SUB-SYSTEMS incorporating microwave semiconductors

SENIEDNDUBTORS Write for your copy of abridged catalogue to:
AEI Semiconductors Lid. Carholme Road, Lincoln

New Technical Titles from Newnes-Butterworth HI-FI AND TAPE RECORDER HANDBOOK

by Gordon J. King, Assoc.I.E.R.E., M.R.T.S.
This is a revised and very much expanded version of The Practical Hi-Fi Handbook, and is now the most up-to-date book in its field. The technical aspects of hi-fi are dealt with, the main subjects being hi-fi principles and equipment; disc recording; tape recording; stereo sound reproduction from records, tapes and radio; and video recording.
1969304 pages 204 illustrations £2

PRACTICAL INTEGRATED CIRCUITS:

Constructional Projects in Microelectronics for the Amateur Experimenter
by A. J. McEvoy, M.Sc. and L. McNamara, B.Sc.
Following a theoretical introduction to integrated circuits, this book shows how to construct ten practical radio and electronic dèvices using integrated cirdcuits (microcircuits) complete with circuit diagrams, layouts and easy to follow instructions. The last chapter provides a list of the microcircuits available from different manufacturers and details of sources of supply.
1969144 pages 44 illustrations 18 s .
73 circuit diagrams

Butferworth - Iliffe-Newnes

88 Kingsway, London WC2
Send for leaflets on tape recording and micro-electronics titles.
 places? And you're held up for meters? Like an 0-5mA calibrated in pulsfrekvens? Or a jonkammarström meter specially calibrated from 10^{-10} to 10^{-4} द Or a straightforward (but impossible to locatel 100 mA moving-coil job reading simply $0-35 \mathrm{KH} / \mathrm{MLH} 2$ Relax. No problem at all. Anders are legending most types of meters in all sorts of tanguages every day of the week-and as often as not calibrating them specially into the bargain. Hand lettering specialists are standing by for the one or two off. Fast, accurate techniques are here for the quantity orders. Ring us. You't find we are as fast at this sort of thing as we are at supplying standard meters off the shelf.... and, as you know lor should knowl, that's fast.
N.B. The variety of meters in our new catalogue is a revelation-and now we've got extensive new centralised premises for a better-than-ever service.

Manufacture and distribution of electrical measuring instruments and electronic equipment. The largest stocks in the U.K. for off-the-shelf delivery. Prompt supply of non-standard instruments and ancillaries. Sole U.K. distribution of FRAHM vibrating reed frequency meters and tachometers.

ANDERS METER SERVICE

The D51 is a new, low cost, dual-beam oscilloscope incorporating all current requirements for a modern easy to use general purpose oscilloscope. Of strong construction and equipped with simple controls, the D51 can be readily operated by non-technical personnel and is an ideal oscilloscope to satisfy the requirements of A-level syllabuses and the needs of Technical Colleges.

Look at the feature:

* True Dual-Beam
* Large display area $6 \times 10 \mathrm{~cm}$
* Wide Bandwidth (DC-6MHz
channel 1, DC-3MHz channel 2)
* $10 \mathrm{mV} / \mathrm{cm}$ Sensitivity (DC-2 MHz)
* Exceptionally Bright Trace
* Small Size - Lightweight

At only f93.0.0. this oscilloscope must be seen to be believed.
Send for full details NOW ! ! !

Telequipment <<>

Fifty-ninth year of publication
I.P.C. Electrical-Electronic Press I.td Managing Director: Kenneth Tett Editorial Director: George H. Mansell Advertisement Director: George Fowkes Dorset House, Stamford Street, London, SE1

This month's cover. A Perspex model of a three-dimensional radar scanner developed by R.R.E. (see p. 422) illuminated by ultra violet light.

September 1969
Volume 75 Number 1407

Contents

Labyrinths of Whitehall

Moon Mission Radio-Electronics
Magnetic Holographic Store
Active Filters-2 by F. E. 7. Girling E E. F. Good
Books Received
Circuit Ideas
Long Distance Television Reception
News of the Month
Earth station at Goonhilly
. . . . and at Bahrain
Two more scientific satellites for ESRO
Letters to the Editor
Letter from America
Wireless World Logic Display Aid-5
Three-dimensional Radar
Towards True Stereophony by "Toneburst"
Techniques on Acoustical Holography by D. Holt \&o f. R. Coldrick
Announcements
Operational Amplifiers-8 by G. B. Clayton
Personalities
World of Amateur Radio
Amateur Communications Receiver-3 by D. R. Bowman
Test Your Knowledge questions \& answers devised by L. Ibbotson
New Products
Literature Received
Conferences \& Exhibitions
H. F. Predictions

Real \& Imaginary by "Vector"

PUBLISHED MONTHLY (3rd Monday of preceding month). Telephone: 01-928 3333 (70 lines). Telegrams/Telex. Wiworld Iliffepres 25137 London. Cables: "Ethaworld, London, S.E.1." Annual Subscriptions: Home; \mathbb{L} 15s Od. Overseas; 1 year $\AA_{2} 15 \mathrm{~s}$ Od. Canada and U.S.A.; $\$ 6.75 ; 3$ years $£^{7} 0 \mathrm{~s} 0 \mathrm{~d}$. Canada and U.S.A.; $\$ 17.50$ Second-Class mail privileges authorised at New York N.Y. Subscribers are requested to notify a change of address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 201, Lynton House, Walsall Road, 22b. Telephone: 021-356 4838. BRISTOL: 20 Victoria Square, Clifton, 8. Telephone: 027233873. GLASGOW: 2-3 Clairmont Gardens, C.3. Telephone: 041-332 3792. MANCHESTER: 260, Deansgate, 3. Telephone: 061-834 4412. NEW YORK OFFICE U.S.A.: 300 East 42nd Street, New York 10017. Telephone: 867-3900.

The price is special, too!

Not quite, but the only rectangular $3^{\prime \prime}$ tube on the market...

Another example of Thorn-AEl's renowned production engineering techniques - a top-quality oscilloscope tube at a minimum price.
The Brimar D7-200GH is the only rectangular tube available in the 3 inch size. The tube has a relatively flat screen and employs a mono-accelerator for reduced power requirements. With an overall length of only 18 cm , it provides a $5 \mathrm{~cm} \times 4 \mathrm{~cm}$ display of waveforms or TV pictures.
Features include electrostatic deffection and focusing. Good geometry is ensured by specially developed production control techniques. Small spot size and focus uniformity over the entire screen give good resolution at all points of the useful screen area. High-deflection sensitivities permit the use of inexpensive transistor circuits.

Applications include:

alpha-numerical readout devices, waveform monitors, data processing equipment, voltage and power output indicators. educational equipment, etc.-
and of course, popularly-priced oscilloscopes.

$V_{\text {al }}+\mathrm{a} 3+\mathrm{a} 4$	800	1200	V
$\mathrm{~V}_{\mathrm{a} 2}$	50 to 150	75 to 225	V
$\mathrm{~V}_{\mathrm{g}}$ (for cut-off) -20 to -40	-30 to -60	V	

thorn ThorntAEl Radio Valves \& Tubes Limited
7 Soho Sqụare, London, W1V 6DN Telephone 01-4375233

Labyrinths of Whitehall

Editor-in-chief:

W. T. COCKING, F.I.E.E.

Editor:

H. W. BARNARD

Technical Editor:
T. E. IVALL

Assistant Editors:
B. S. CRANK
J. H. WEADEN

Editorial Assistant
J. GREENBANK, B.A.

Drawing Office:

H. J. COOKE

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
J. R. EYTON J ONES
R. PARSONS (Classified Advertisement Manager) Telephone: 01-928 3333 Ext. 538

Have we too many masters? This question must have come into the minds of those of our readers who have had occasion to consider to which Government Department some industrial-governmental question should be addressed.

The industry's "sponsoring department" is, of course, the Ministry of Technology but what does this term mean? One dictionary definition of sponsor is "one who binds himself to answer for another and is responsible for his default". The Minister may well answer for the industry in Government circles but one wonders what his Department's response would be if creditors of a defaulting company or group applied for restitution!

As the co-ordinating authority within the Government for our sector of industry the Minister seeks the advice of a large number of committees and advisory bodies, among them the National Electronics Council, set up in 1964 as the National Electronics Kesearch Council, under the chairmanship of Lord Mountbatten. Its aims are briefly "For the sole purpose of benefiting the public, to enquire into and encourage the use of electronics calculated to lead to the improvement of national life in all its aspects; to provide assistance, advice and information to the Minister of Technology on the use of electronics; to consider the requirements and priorities of research; . . . and to advance education in the field of electronics". In the published reports of its quarterly meetings this 36 -man Council of some of the top men in Government Departments, education, research and industry, "has before it" papers on a variety of subjects (from recruitment in industry to social implications of electronic equipment) but, like so many similar bodies, one sees little evidence of any specific action taken.

Then, of course, we have the Board of Trade, which although custodians of all the vital statistics for our economic survival-the Board's monthly import-export figures are a masterpiece of statistical jugglery-is not concerned specifically with economics. This is the province of the National Economic Development Office ("Neddy") one of whose offspring, the Economic Development Committee for the Electronics Industry (little "Neddy"), is concerned exclusively with our industry. Its reports, however, make sad reading for it would appear that its prime object is to collect, collate and issue facts on the industry's immediate past economic situation and to estimase its future prospects. But, can its prognostications make any difference to the final result which depends on the efforts of the companies within the industry and not the noddings of Neddy?

One of the labyrinths of Whitehall leads to a door marked P.M.G. (soon to be changed to Mintelecom?). As Minister of Posts and Telecommunications he will have even greater power over the telecoms industry. Under its new powers the Post Office will be able to manufacture its own equipment, and as the major purchaser of equipment can dictate its own terms.

If, of course, one's question is concerned with research then we might be redirected out of Whitehall to any one of several centres: Royal Radar Establishment, Malvern; Royal Aircraft Establishment, Farnborough (which has a large electronics and radio section); National Physical Laboratory, Teddington; Radio and Space Research Station, Slough; Signals Research \& Development Establishment,
0 Christchurch; etc, etc. The titles of these establishments are very different, but in many areas of research they are not.

What we need is a plain man's guide to the labyrinths of Whitehall-who is responsible for what. The rejoinder from Whitehall will doubtless be "physician heal thyself" for our own industry is bedevilled by committees, councils, consortia and conferences, but that is another story.

Moon Mission Radio-electronics

Tele-command, -metry, -vision and -communications

The Apollo 11 mission to the moon demanded the most extensive and complicated collection of radio and electronic systems ever applied to a single project. It certainly could not have taken place without the use of these techniques. Human pilots would have been quite unable to perform successfully all the critical manoeuvres, such as going into and out of orbit, and landing on and taking off from the moon, because they would not have received all the information necessary for navigation and flight control, and because human brains would have been quite incapable of processing and acting on this information with the necessary speed and accuracy. About nine-tenths of the radio-electronics was in fact concerned with automatic control of the mission-through telemetry, telecommand and high-speed computer processing of data-and the human communication via voice and television, though spectacular, was a relatively small part. The following can be no more than an outline of the systems that were operating in this immense feat of technology.

Ground network. Because of the rotation of the earth, it was necessary, in order to maintain contact with the spacecraft, to set up a circummondial network of radio transmitting and
receiving stations, all linked to the Mission Control Centre at Houston, Texas. There were 17 ground stations, four ship stations and a number of aircraft stations. During the first phase of the flight, when the spacecraft was orbiting the earth, contact was maintained through a group of stations with 30 ft dish aerials (Merritt Island, Grand Bahama Island, Bermuda, Canary Islands, Carnarvon |Australial, Hawaii, Guavmas [Mexico], Corpus Christi [Texas] and two tracking ships). When the spacecraft reached 10,000 miles from earth these stations were joined by three others, with 85 ft , higher-gain aerials, situated about 120° apart at Madrid, Goldstone (California) and Canberra.

Spacecraft data received by these stations were relayed through the N.A.S.A. communications network of landline, submarine cables, communications satellites and conventional radio links to Mission Control at Houston. There the data were fed into computers to produce visual display information, such as spacecraft position on a map, and other information needed for transmitting flight control commands to the spacecraft. When the spacecraft separated into two parts - the command and service module and the lunar module-the network had to continue to provide telecommunication and telemetry between both of these craft and earth. For this purpose two aerials were

Aerials for various purposes on the command and service module (left) and the lunar module (right).

used at each of the 85 ft -aerial stations, one for each module.
The N.A.S.A. communications network, with its main switching centre at Goddard Space Flight Centre, Greenbelt, Maryland, U.S.A., was similar to that shown in the map in our report on the Apollo-8 mission (February, 1969, issue, p.73).

Spacecraft flight control. During the early phases of the flight, that is until just after leaving earth orbit, all control was carried out by the instrument unit, which was a 3 ft high, 22 ft diameter cylinder mounted on top of Saturn-5's third stage. The instrument unit consisted of six main systems - structural, thermal control, guidance and control, measuring and telemetry, radio equipment, and power supply and control equipment.

A path-adaptive guidance system was employed. During the ascent through the atmosphere no automatic corrections were carried out for fear, in trying to compensate for high-altitude, high-velocity, air streams, that damage to the vehicle would result. After clearing the atmosphere the control of the vehicle's trajectory was handed over from the programmed control to the automatic inertial guidance systems.

Once out of earth orbit the Saturn rocket's third stage was jettisoned and control was passed to the command and service module. Again an inertial guidance system was employed coupled to a digital computer.

The lunar module itself was completely self-contained as far as navigation and guidance were concerned, having its own inertial navigation and computing facilities which were known as p.g.n.s. (primary guidance and navigation system) with a standby system, a.g.s. (abort guidance system), for use in emergency. Normally both systems are intended 10 run in parallel, with the a.g.s. operating in an "open ended" mode providing information for cross checking the p.g.n.s.

The p.g.ף.s. was an optically assisted inertial navigator. In systems such as these the inertial navigator may give the present position as point X , while sightings made on stars, using a sextant coupled to the navigation computer, may give a position Y . The difference between X and Y is a direct measure of inaccuracies within the inertial system. The computer uses this difference to calculate angular correction signals in three dimensions which are used to correct the position of the inertial platform. In this way the inertial navigator becomes more and more accurate as time progresses.

We understand from TRW Incorporated that initially checking of the lunar module a.g.s. was done using a milk float as the test vehicle while driving round the streets of Houston!

Radar systems on the lunar module consisted of the rendezvous radar, which had a range of from 80 ft to 400 nautical miles, and the landing radar, which was a doppler system, that fed the guidance computer with altitude and velocity information during the lunar landing.

Other systems that were used on the lunar module were the c.e.s. (control electronics section) which was responsible for controlling lunar module altitude by operating small thrusters through the p.g.n.s., and a system called Ordeal (orbital rate drive for Apollo and Lunar module) which displayed the local vertical on the flight director system during circular earth and lunar orbits.

Television. The television transmissions from the Apollo 11 mission originated from two cameras both made by Westinghouse (see photo) - a colour camera (left) aboard the command module, and a black-and-white camera (right) in the lunar module. The colour camera was a single-tube (secondary electron conduction), field sequential type using a 600 r.p.m. rotating colour filter wheel with six red, green and blue sections, and produced video signals on the American 525-line

The two television cameras used on the mission: left, the colour camera carried in the command module to televise activities in flight; right, the black-and-white camera carried in the lunar module and used to televise scenes on the surface of the moon.
standard-though conversion was necessary on the ground to obtain the required 30 pictures $/$ second. It had a zoom lens for wide-angle or close-up views, and a 3 -inch c.r.t. monitor which could be mounted either on the camera or in the command module. The black-and-white camera, which, of course, was used on the moon's surface, was a slow-scan type with a scanning rate of 10 fields per second, 320 lines per picture (alternatively, 咅 fields/second, 1,280 lines/picture). Designed for a scene luminance range of 0.024 (near darkness) to 42,000 $\mathrm{cd} / \mathrm{m}^{2}$, it had a resolution of 500 television lines and a bandwidth of 2 Hz to 500 kHz . The pick-up tube was a secondary electron conduction type. The camera consumed 6.5 watts at 28 volts d.c. and weighed (on earth) 7.251 b . Two lenses were provided, a wide-angle type for close-ups and large areas and one designed for viewing moon surface features and activities in the near field of view with sunlight illumination. These could be changed by means of a bayonet lens mount on the camera body.

The lunar module had to be restricted to monochrome transmissions because there was insufficient electrical power available in the craft to meet the greater power requirements of colour television on top of the demands of the high-priority data transmissions. Signals were radiated by a $2-\mathrm{GHz}$ (S-band) 20 -watt transmitter and a helical aerial giving a 3 -degree beam width.

On the ground the television transmissions, as well as all other signals, were picked up by 210 -ft parabolic dish aerials at Goldstone, California, and Parkes, Australia, and by $85-\mathrm{ft}$ dishes at Goldstone, Madrid and Canberra. The Parkes aerial is, in fact, a radio telescope operated by the Australian National Radio Astronomy Observatory, and it was this that was used to receive directly the lunar module television transmissions from the moon's surface. From Parkes the signals, after conversion to the U.S. television standard, were sent by microwave link to Sydney and thence via the Intelsat III communications satellite above the Pacific Ocean to the Mission Control Centre at Houston, Texas. From there they were distributed to world television networks.

Spacecraft Communications. The telecommunications system of Apollo 11 provided radio contact between the command module and lunar module when separated, between each of these modules and earth, between the spacecraft and the astronauts, and between the astronauts themselves. Types of information involved were: voice, television, p.c.m. telemetry, and command, tracking and ranging data. Voice com-
munication between the spacecraft and ground was by S-band transmitter-receivers; between the command module and the lunar module it was by v.h.f./a.m. transmitter-receivers.

The various aerials used for all this are shown on the diagram. A particularly important one was a high-gain steerable S-band aerial on the command and service module for communication with the ground. It consisted of four 31-inch diameter parabolic dishes mounted on a folding boom at the aft end of the spacecraft. Until required for use the boom was nested along the length of the craft, then was swung out at right-angles to the longitudinal axis as shown. Signals from the ground could be tracked either manually or automatically by the aerial's steering system. On the lunar module there were one 26 -inch, S-band, steerable dish aerial, two further S-band aerials and two v.h.f. aerials for voice communications. In addition the lunar module carried a rendezyous radar aerial, and its descent stage (not shown) had a landing radar aerial.

Telemetry system. The pulse code modulation telemetry system accounted for more than half of the electronic components required for the complete command module's communication and data network. The system was capable of receiving analogue and digital data from spacecraft sensors, sampling it at selected rates, and converting it to a serial p.c.m. form. It processed 365 high-level $0-5 \mathrm{~V}$ analogue inputs at a rate of one to 200 samples per second and 304 parallel digital inputs plus one serial 40 -bit word. The system was built to a reliability criterion which allowed the loss of not more than five analogue channels and eight digital bits. The equipment employed two types of internal redundancy. Four resistors two in series and two in parallel - performed the function of one resistor. There was also a duplicate circuit arrangement known as "block redundancy" which included automatic switchover to a standby circuit in the event of primary circuit failure.

The lunar module p.c.m. telemetry and timing system accepted four types of data input signals: high-level and low-level analogue, and parallel and serial digital. Each parallel digital input contained a group of eight bits. The serial digital input was a return-to-zero signal, 40 bits per word in length, with a rate of 50 words per second. The high-level analogue signals were unipolar, $0-5 \mathrm{~V}$ full scale, while the low-level analogue inputs were differential from zero to 40 mV full scale.

The sampling rate of each channel was between one and 200 samples per second depending upon importance. An internal timing source with an accuracy of two parts per million for 136 hours served as a standby to the normal external timing source which was a caesium atomic clock. System bit-rate was 51.2 kbs with an inherent capability of up to 64 kbs and an accuracy of 1.5% peak.

The transducers on board the lunar module were interfaced to the telemetry equipment by a signal-conditioning electronics assembly, which contained a variety of precision signal-conditioning modules including buffer amplifiers, a.c./d.c. converters, low-level amplifiers, thermo-couple reference junctions and the like.

Many people consider that the huge amount of money spent so far on the American space programme could have been put to better use. This may be so, however before reaching any conclusion all the side benefits, or so called spin-off, should be taken into account. Apart from the obvious advances that have been made in the electronics industry as a result of the programme, and this means all those industries that employ electronics, considerable steps forward have been made in farming, meteorology, medicine and, believe it or not, fishing; as orbiting satellites can pinpoint the position of large shoals with ease.

Magnetic Holographic Store

An optical data store which can be erased and re-used repeatedly has been made possible by combining the new principle of holography with the old principle of magnetization. Normally, of course, information stored holographically on photographic film (see August issue, p.369), cannot be erased because the photosensitive material undergoes a permanent chemical change when exposed to light. The new type of store replaces the photographic film by a magnetic film. It was invented by RCA, who say that it could make possible an optical erasable memory capable of storing 100 million bits on a magnetic film one inch square. Writing time would be 10 nanoseconds and erasing time 20 microseconds.

The storage medium is an extremely thin film of manganese bismuth-a single-crystal layer 2 micro-inches thick-deposited on a base of mica. This film is subjected to a strong magnetic field that forces all its magnetic atoms to line up with their north poles in one direction and their south poles in the other. Light from a pulsed laser is split into two beams, one going directly to the film and the other going first to the information bit pattern to be recorded and then to the film. At those points where the two beams interfere additively the heat from the laser beams warms the magnetic material sufficiently (the Curie point) to allow its magnetic atoms to realign themselves so that the north poles of those in the heated portions now point in the same direction as the south poles in the unheated portions. Where the two beams interfere subtractively nothing happens at all.

Thus, a magnetic pattern is formed in the film corresponding to the interference pattern created by the converging laser beams-in fact a magnetic hologram is produced. This hologram can be read out in two ways: either by transmitting a laser beam through it and using the Faraday effect, or by reflecting the beam from it and using the Kerr effect. It can be erased by electrically pulsing a coil which subjects the film to a strong magnetic field and forces the magnetic atoms to line up, as at first, with all north poles in one direction and all south poles in the other direction.

RCA say that the speed and ease of making and erasing magnetic holograms, coupled with the fact that their resolution (2,000 lines per millimetre), far surpasses that of ordinary photographic materials, makes the process extremely attractive for achieving an optical computer memory. Also, there is no indication that the process causes any thermal decay or other type of fatigue in the material. Apparently, the write-erase cycle can be repeated indefinitely, and, because of the inherent redundancy of holographic storage, dust or minor imperfections in the magnetic film do not seriously affect the hologram readout.

The magnetic holograms were made using a Q-switched ruby laser with a 200 -microjoule, 10 -nanosecond pulse, and were read out with a continuous wave, helium neon laser. RCA say that they can also be made and read out with infra-red lasers.

Active Filters

2. Basic theory: 1st and 2nd order responses

by F. E. J. Girling* and E. F. Good*

Since any transfer function can be resolved into a product of ist and 2ndorder factors, a knowledge of the characteristics of such factors is fundamental.

The basic ist-order responses are the simple lag (low-pass), and the simple lead (high-pass). Responses of either type may be characterised by a single parameter, the time constant (or its reciprocal, the corner frequency ω_{c}).
The basic 2 nd-order responses are the quadratic lag (low-pass), "tunedcircuit" response (band-pass), and the quadratic lead (high-pass). These are characterised by corner frequency, or undamped resonant frequency, and Q factor. 2nd-order notch response, a combination of low-pass and high-pass response, is also considered; and lowpass to band-pass transformation.

Throughout responses are presented first in transfer-function form, i.e. as a function of p, and are derived by analysis of passive $C R, L R$, and $L C R$ networks.

For the three elements R, L, C, the relationships between instantaneous voltage and current may be expressed:-

$$
\begin{align*}
& v=i s \tag{1}\\
& v=L \frac{d i}{d t} \tag{2}\\
& v=\frac{1}{C} \int i \cdot d t, \text { or } i=C \frac{d v}{d t} \tag{3}
\end{align*}
$$

From equn. (I) the ratio of voltage to current is obtained as $v / i=R$, Ohm's law. Similar expressions can be obtained from equns. (2) and (3) by substituting a more convenient symbol to represent the operation of differentiation with respect to time, $d / d t$. Our habit is to write p. So we write \dagger t We adhere to the convention of using capital V and I where functions of time rather than instantaneous values are meant.

$$
\begin{equation*}
V / I=p L \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
V / I=1 / p C \tag{5}
\end{equation*}
$$

The operator p is analogous to the operator $j(\omega$ used in steady-state (sine-wave)

[^0]analysis; and $p L$ and $1 / p C$ are called the operational impedances of L and C, by analogy to $j \omega L$ and $I / j \omega C$, the steady-state impedances.

ist-order filters, low-pass

The most elementary low-pass $C R$ filter is the simple-lag network, Fig. I. By inspection the voltage transfer ratio, $V_{\text {out }} / V_{\text {in }}$, may be written down in transfer-function form (i.e. as a function of p) as
$F(p)=\frac{V_{\text {out }}}{V_{i n}}=\frac{\frac{1}{p C}}{\frac{1}{p C}+R}=\frac{1}{1+p C R}$
For the corresponding circuit using inductance, Fig. 2,
$F(p)=\frac{V_{\text {out }}}{V_{i n}}=\frac{R}{R+p L}=\frac{1}{1+p L / R}$
Now both $C R$ and L / R have the dimensions of time. It is reasonable, therefore, to write for both networks

$$
\begin{equation*}
F(p)=\frac{V_{\text {out }}}{V_{i n}}=\frac{1}{1+p T} \tag{8}
\end{equation*}
$$

which shows that in considering the performance of the networks as filters our concern is with the time constant and not with whether it is realised by a $C R$ product or by an L / R quotient.
The frequency-response function corresponding to equn. (8) is obtained by substituting $j \omega$ for p, i.e.

$$
\begin{equation*}
F(\omega)=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{1+j \omega T} \tag{9}
\end{equation*}
$$

This gives both gain and phase information for sine-wave inputs. The gain or amplitude is the modulus, obtained by taking the square root of the sum of the squares of the real and imaginary parts,

$$
\begin{equation*}
\left|\frac{V_{\text {out }}}{V_{\text {in }}}\right|=\frac{1}{\left(1+\omega^{2} T^{2}\right)^{t}} \tag{10}
\end{equation*}
$$

The principal characteristics of this function are shown in Fig. 3.

At $\omega=0, V_{\text {out }}=V_{i n}$, i.e. the lowfrequency asymptote is horizontal passing through the point $(0,1)$. At high frequencies where $\omega \gg I / T$, the magnitude $\simeq I / \omega T$, i.e. it approaches a high-frequency asymptote which falls at a rate of $6 \mathrm{~dB} /$ octave. The two

Fig. 1. Ist-order CR low-pass filter, or simple-lag network.

Fig. 2. 1st-order LR low-pass filter, or simple-lag network.

Fig. 3. Amplitude, or gain, characteristic of Ist-order l-p filter (lower scale), and ist-order h-p filter (upper scale).

Fig. 4. Phase response of Ist-order filters: $l-p$ (left-hand scale); h-p (right-hand scale).
asymptotes intersect at a frequency given by putting $\omega T=\mathrm{I}$, and the frequency so found $\omega_{c}(=\mathbf{I} / T)$ is usually the most convenient definition of the position of the curve on the frequency axis and is often referred to as the corner frequency.

The tangent of the phase angle ϕ is given by the ratio of the imaginary and real parts of equn. (9), i.e.

$$
\begin{equation*}
\phi=-\arctan (\omega T) \tag{11}
\end{equation*}
$$

the minus sign representing a lagging phase. The corresponding curve plotted in the conventional way with a linear phaseangle scale and a logarithmic frequency scale is shown in Fig. 4, and it can be seen that the curve has symmetry about the corner frequency, $\omega_{c}=1 / T$, already mentioned.

Low -pass to high-pass transformation

The transfer functions of the simple-lead networks shown in Fig. 5 can be set down by inspection as

$$
\frac{R}{\frac{1}{p C}+R}=\frac{p C R}{1+p C R}
$$

and

$$
\frac{p L}{R+p L}=\frac{\frac{p L}{R}}{1+\frac{p L}{R}}
$$

respectively. If T is then substituted for $C R$ or L / R, as before, the result for both is

$$
\begin{equation*}
F(p)=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{p T}{1+p T} \tag{12}
\end{equation*}
$$

This can be written

$$
\frac{1}{1+1 / p T}
$$

in which form we have an example of a rule which applies generally-namely that a low-pass transfer function can be trans-

Fig. 5. Ist-order high-pass filters or simple-lead networks.

Fig. 6. 2nd-order LCR series network connected as $l-p$ filter.
formed into the corresponding high-pass transfer function by substituting $I / p T$ for $p T$.

For the frequency-response functions the equivalent transformation is obtained by substituting $\mathrm{I} / j \omega T$ for $j \omega T$, and this in turn means that in the amplitude or gain functions $(\omega T)^{2}$ is replaced by $I /(\omega T)^{2}$. Thus for the normalised 1-p amplituderesponse curve of Fig. 3, the corresponding $\mathrm{h}-\mathrm{p}$ response is the mirror image of the 1-p curve obtained by reflection in the vertical line passing through $\omega T=1$; for on a logarithmic frequency scale a given increment represents multiplication by a certain factor if the movement is to the right and division by that factor if the movement is to the left. Alternatively the drawing of a new curve can be avoided altogether by relabelling the horizontal axis $1 / \omega T$ instead of ωT.
The transfer function $p T /(\mathbf{r}+p T)$ is identical to a simple lag, $1 /(\mathbf{I}+p T)$, multiplied by a differentiation, $p T$. The phase curve for a simple lead is, therefore, the same shape as the curve for a simple lag, but the phase angle is everywhere advanced by 90° with respect to that for the simple lag. This is shown in the double
vertical scales applied to the sing "universal" phase curve of Fig. 4.

2nd-order LCR networks, series connection

I. Low-pass

The elements of the network shown Fig. 6 are, as before, labelled with the operational impedances. Since they a connected in series the same current flov through each, and the network behaves as potential divider.
Therefore

$$
\begin{align*}
\frac{V_{\text {out }}}{V_{\text {in }}} & =\frac{\frac{1}{p C}}{\frac{1}{p C}+R+p L} \\
& =\frac{1}{1+p C R+p^{2} L C}
\end{align*}
$$

This equation may be written in terms . two time constants,

$$
\begin{align*}
& T_{1} & =C R \\
\text { and } & T_{2} & =L / R \\
\text { as } & \frac{V_{\text {out }}}{V_{i n}} & =\frac{1}{1+p T_{1}+p^{2} T_{1} T_{2}}
\end{align*}
$$

or alternatively as

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{1+\frac{1}{q} p T+p^{2} T^{2}}
$$

where

$$
T=\left(T_{1} T_{2}\right)^{2}
$$

and $\quad \frac{1}{q}=\left(\frac{T_{1}}{T_{2}}\right)^{i}$
i.e. where $T / q=T_{1}$ and $T q=T_{2}$.

If we look back to equns. (13) and (14) w see that $T=\sqrt{ }(L C)$, i.e. $T=1 / \omega_{c}$ wher ω_{c} is the undamped resonant frequency c the circuit in radians/second; and the

Fig. 7. Amplitude and phase curves, znd-order. (a) low-pass, lower frequency scale; high-pass, upper frequency scale. (b) low-pass, left-hand scale; high-pass, right-hand scale. The curves may also be used for 2 nd-order band-pass, reading Ω for ω. (c) 2 nd-order low-pass, response
to step. to step.
$q=\omega_{c} L / R$, i.e. q is equal to the conventional Q factor of the circuit. The present authors use a lower-case q in the transfer functions of low-pass (and high-pass) filters, as this leads to a convenient notation for a bandpass filter derived by transformation from a low-pass filter. The parameter q retains a meaning as a shape factor, although not a Q factor of the band-pass filter.

The frequency response is given by

$$
\begin{equation*}
F(\omega)=\frac{V_{\text {out }}}{V_{i n}}=\frac{1}{1+\frac{j \omega T}{q}-\omega^{2} T^{2}} \tag{20}
\end{equation*}
$$

from which we obtain expressions for amplitude and phase:

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{\left\{1+\left(\frac{1}{q^{2}}-2\right)(\omega T)^{2}+(\omega T)^{4}\right\}^{\frac{1}{3}}} \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\tan \phi=-\frac{\omega T / q}{1-\omega^{2} T^{2}} \tag{22}
\end{equation*}
$$

The nature of these expressions is shown by the families of normalised curves given in Figs. 7(a) and (b). In these curves we have in effect set $T=\mathrm{I}$, and are left with the single parameter q, which appears as the height of each curve of Fig. 7(a) at $\omega T=1$. It will be noted that the point of maximum amplitude is always to the low-frequency side of $\omega T=1$, and that the height of the maximum is greater than q. But as q increases the height at the maximum becomes more nearly equal to q, and the frequency of the maximum moves closer to $\omega T=1$. Where accuracy on these points is required the expressions given in Fig. 8 may be of help.

All the curves of Fig. 7(a) approximate at high frequency to a common asymptote, $V_{\text {out }} / V_{\text {in }}=1 / \omega^{2} T^{2} \quad$ (12dB/octave slope), which cuts the unit-gain level (the lowfrequency asymprote) at $\omega T=1$. For any such family it is therefore reasonable, as for a simple lag (or Ist-order l-p network), to call $\omega_{c}(=\mathrm{I} / T)$ the corner frequency. This frequency may also be identified in Fig. 7(b) as the frequency at which all the curves show a phase angle of 90° lagging.

In most of the work that follows ω_{c} or T will be used as the definition of the position of a 2nd-order frequency-response curve on the frequency axis, and q will be used as the definition of the shape of the curve. This is generally more convenient and more immediately informative than the practice of quoting the positions on the complexfrequency plane of the "poles" of the response. \ddagger The greater the value of q the more peaky is the amplitude-response curve, and the steeper the fall of the phase curve in the vicinity of $\omega T=1$. For both passive and active realisation the magnitude of q is a measure of the difficulty of obtaining a desired response.
\ddagger Or writing out a transfer function in the form

$$
\frac{B}{p^{2}+A p+B}
$$

from which one has to calculate ω_{c} as $\sqrt{ } B$ and q as

The $L C R$ series circuit may be used as a model for deriving other 2nd-order responses. If the circuit is redrawn as in Fig. 9 it is easily seen that the circuit may be thought of as having a single basic response, the current that flows in response to the exciting function $V_{i n}$, and that the voltage responses that may be observed across the several possible pairs of output terminals may be considered as derivative and related to each other by the fact that the ratio of the voltage across any element to the voltage across any other element is equal to the ratio of the two impedances. Thus

$$
\begin{align*}
& \frac{V_{R}}{V_{C}}=p C R=p T_{1}=\frac{p T}{q} \tag{23}\\
& \frac{V_{L}}{V_{R}}=\frac{p L}{R}=p T_{2}=q p T \tag{24}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{V_{L}}{V_{C}}=p^{2} L C=p^{2} T_{1} T_{2}=p^{2} T^{2} \tag{25}
\end{equation*}
$$

For frequency-response functions multiplication by $p T$ becomes multiplication by $j \omega T$; so the process of differentiation causes the amplitude response to be multiplied by ωT, and the phase response to be advanced everywhere by 90°.

2. High-pass

For the network connected as shown in Fig. Io we obtain, using either the results just noted or the rule for low-pass to highpass transformation,

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{i n}}=\frac{p^{2} T^{2}}{1+\frac{1}{q} p T+p^{2} T^{2}} \tag{26}
\end{equation*}
$$

The amplitude response, therefore, is as given by equn. (2I) but multiplied by $\omega^{2} T^{2}$, while the phase response is as given by equn. (22) but everywhere advanced by 180°. The result is a family of amplituderesponse or gain curves which is the mirror image of the low-pass family as reflected in the vertical line $\omega T=1$, and a family of phase-response curves exactly the same as in
(Continued on next page)

Fig. 8. Relative positions of some of the characteristic points on a 2nd-order low-pass amplitude/frequency response curve.

Fig. 9. Showing the voltages across each of the three elements.

Fig. 10. 2nd-order LCR series network connected as $h-p$ filter.

Fig. II. 2nd-order LCR series network connected for "tuned-circuit", or Ist-order band-pass, response.

Fig. 12. Tuned-circuit response as defined by equns. (27) and (28).

Fig. 7 (b) but all moved upwards by 180°. Alternatively we may for the amplitude curves relabel the frequency axis $\mathrm{t} / \omega T$, and for the phase curves provide a new vertical axis with markings displaced 180° with respect to those for the low-pass case.

3. Tuned-circuit, or Ist-order band-pass

When the three elements are connected as shown in Fig. II

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{i n}}=\frac{\frac{1}{q} p T}{1+\frac{1}{q} p T+p^{2} T^{2}} \tag{27}
\end{equation*}
$$

This expression differs only in the numerator from those given by equns. (17) and (26), and by applying the rules already given a family of amplitude-response curves can be obtained from the low-pass family, Fig. 7(a), by multiplying by $\omega T / q$ (for from the highpass family by multiplying by $1 / q \omega T$). The nature of the family is shown in Fig. 12. For all values of q the curves reach the unity-gain level at the resonant frequency. This is consistent with the fact that at this frequency the series combination of L and C presents zero impedance and that consequently transmission is independent of the value of R. This result is, of course, somewhat abstract, as a real coil will have series resistance. We are, however, in this article considering ideal networks in order to get at the essential features of certain basic types of response.

The phase response is everywhere advanced on the low-pass response by 90°, being $+90^{\circ}$ at $\omega=0,0^{\circ}$ at $\omega=1 / T$, -90° at $\omega=\infty$.

The amplitude curves defined by equn. (27) and shown in Fig. 12 show maximum response at the undamped natural frequency and zero response at zero and at infinite frequency, the skirts or asymprotes of each curve falling at $6 \mathrm{~dB} / \mathrm{octave}$. We shall usually give this type of response the name "tuned-circuit" response, because of the association with the response of the tuned circuits in a simple tuned amplifier. We shall, however, on occasion describe the response as "ist-order bandpass" because of an analogy with ist-order lowpass response.

The amplitude-response curves shown in Fig. 12 are described by the equation

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{\left\{1+Q^{2}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)^{2}\right\}^{t}} \tag{28}
\end{equation*}
$$

where ω_{0} is the resonant frequency in rad./second, a result easily obtained in the usual way by substituting $j \omega$ for p in equn. (27) and taking the modulus of the frequency-response function so found. $\left(\omega_{0}=I / T\right)$.

Normalising by putting $x=\omega / \omega_{0}$ (i.e., in effect, by making the centre frequency $=1$) we get

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{i n}}=\frac{1}{\left\{1+Q^{2}\left(x-\frac{1}{x}\right)^{2}\right\}} \tag{28a}
\end{equation*}
$$

Now

$$
\left(x-\frac{1}{x}\right)^{2}
$$

has the same value for any pair of values of x which are reciprocals the one of the other. Hence any curve defined by equns. (28) and (28a) has the same value at any two frequencies (ω_{1}, ω_{2}) for which

$$
\frac{\omega_{1}}{\omega_{0}}=\frac{\omega_{0}}{\omega_{2}}
$$

i.e. the curve is symmetrical about the centre frequency (ω_{0}) when plotted to a logarithmic frequency scale, Fig. 13.
If we put

$$
\Omega=\left(x-\frac{1}{x}\right) \omega_{0}
$$

so that Ω is equal to the frequency difference ($\omega_{1}-\omega_{2}$), equn. (28) may be written

$$
\begin{equation*}
\left|\frac{V_{\text {out }}}{V_{i n}}\right|=\frac{1}{\left\{1+\frac{Q^{2} \Omega^{2}}{\omega_{0}^{2}}\right\}} . \tag{29}
\end{equation*}
$$

If now this is compared with the equation for a ist-order low-pass filter, equn. (io), which may be written

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1}{\left\{1+\left(\frac{\omega}{\omega_{c}}\right)^{2}\right\}^{\}}} \tag{30}
\end{equation*}
$$

we see that the frequency-difference parameter Ω in equn. (29) corresponds to ω in equn. (30), and that $\Omega=\omega$ if $Q=\omega_{0} / \omega_{c}$.

At the -3 dB point for a 1 st-order 1-p filter $\omega=\omega_{e}$. Consequently for the corresponding two points on a tuned-circuit response curve,

$$
\begin{equation*}
\omega_{1}-\omega_{2}=\Omega=\omega_{c}=\frac{\omega_{0}}{Q} \tag{31}
\end{equation*}
$$

This frequency difference between the two -3 dB points is often called the bandwidth

Fig. 13. Showing the symmetry of "tuned-circuit" response when plotted to a logarithmic scale.

(b)

Fig. 14. Low-pass to band-pass transformation.
of the tuned circuit, and equn. (31) is, an expression of the well known relationship ${ }_{3}$ centre frequency/bandwidth $=Q$.

If we revert to relative or normalised frequencies as in Fig. 13, we have for the -3 dB points.

$$
\begin{equation*}
x-\frac{1}{x}=\frac{1}{Q} \tag{31a}
\end{equation*}
$$

i.e.

$$
x^{2}-\frac{x}{Q}-1=0
$$

Hence

$$
\begin{aligned}
x & =\frac{1}{2}\left(\frac{1}{Q} \pm \sqrt{\left.\frac{1}{Q^{2}}+4\right)}\right. \\
& =\frac{1}{2 Q} \pm \sqrt{1+\frac{1}{4 Q^{2}}}
\end{aligned}
$$

and

$$
\frac{1}{x}=x-\frac{1}{Q}=-\frac{1}{2 Q} \pm \sqrt{1+\frac{1}{4 Q^{2}}}
$$

We are not interested in negative values of $1 / x$, so we discard the minus signs before the square roots and obtain

$$
\left.\begin{array}{l}
x=\sqrt{1+\frac{1}{4 Q^{2}}}+\frac{1}{2 Q} \\
\frac{1}{x}=\sqrt{1+\frac{1}{4 Q^{2}}}-\frac{1}{2 Q} \tag{32}
\end{array}\right\}
$$

It may be noticed that the square root is the arithmetic mean of x and I / x.

Certain values of Q that crop up frequently are: \ddagger (balanced parallel- T network with conventional relative component values), $\frac{1}{3}$ (lead-lag or Wjen-bridge network with ditto), $\frac{1}{2}$ (limit for $C R$ network without feedback), I (bandwidth equals centrefrequency); and the corresponding values of x and I / x are given below.

Table $I=$ Some relative values of $-3 \mathrm{~dB}-$ frequencies

Q	x	$1 / x$
$\frac{1}{2}$	0.2361	4.2361
$\frac{1}{3}$	0.3028	3.3028
$\frac{1}{2}$	0.4142	$2: 4142$
1	0.6180	1.6180

As Q increases to high values,

$$
\sqrt{1+\frac{1}{4 Q^{2}}} \rightarrow 1
$$

and x and $1 / x$ beçome equal to $1 \pm 1 / 2 \complement$ approx.
The idea of relating a network givingsymmetrical band-pass response to ar analogous low-pass network is useful not only in the case given above, tuned-circui response/simple lag, but applies equally to networks of higher orders.

2nd-order band pass

Fig. 14(a) shows the second-order low-pas:filter we have already discussed. For a lowpass filter we may, by analogy, call zerc frequency the "centre" frequency. At thi:frequency L shows zero impedance and C
infinite impedance. For transformation into a band-pass filter this behaviour must be moved to the new centre frequency ω_{0}. To do this a suitable capacitance is placed in series with L and a suitable inductance in parallel with C as shown in Fig. 14(b). This is a fourth-order network. We shall now; however, show the close analogy between its performance and that of the low-pass filter from which it is derived, and so justify the title " 2 nd-order band-pass".

The impedance of the shunt arm,

$$
X_{1}=\frac{1}{\frac{\omega_{0}^{2} C}{p}+p C}=\frac{p}{\omega_{0}^{2} C+p^{2} C}
$$

and that of the series arm,

$$
\begin{aligned}
X_{2}=\frac{\omega_{0}{ }^{2} L}{p}+R & +p L \\
& =\frac{\omega_{0}{ }^{2} L+p R+p^{2} L}{p}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{V_{\text {out }}}{V_{\text {in }}} & =\frac{X_{1}}{X_{1}+X_{2}} \\
& =\frac{p^{2}}{\omega_{0}^{2} C+p^{2} C} \times \\
& \times \frac{p^{2}}{\omega_{0}^{2} C+p^{2} C}+\omega_{0}^{2} L+p R+p^{2} L
\end{aligned}
$$

which, by rearrangement, can be shown to be

$$
\begin{gathered}
=\frac{1}{1+\omega_{0} C R\left(\frac{p}{\omega_{0}}+\frac{\omega_{0}}{p}\right)} \quad \cdots \cdots \\
\cdots \cdots+\overline{\omega_{0}{ }^{2} L C\left(\frac{p}{\omega_{0}}+\frac{\omega_{0}}{p}\right)^{2}}
\end{gathered}
$$

Hence

$$
\begin{array}{r}
G(j \omega)=\frac{1}{1+j \omega_{0} C R\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)} \quad \cdots \cdots \\
\cdots \cdots-\overline{\omega_{0}{ }^{2} L C\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)^{2}}
\end{array}
$$

$$
\begin{align*}
=\frac{1}{1+j C R \Omega} & -L C \Omega^{2} \tag{33}\\
& =\frac{1}{1+j \frac{1}{q} \frac{\Omega}{\omega_{c}}-\left(\frac{\Omega}{\omega_{c}}\right)^{2}}
\end{align*}
$$

where (as before) Ω is the frequencydifference variable, and q is the Q factor of the low-pass filter we started with. Commarison with the corresponding expression -for the $1-p$ filter,

$$
\begin{equation*}
G(j \omega)=\frac{1}{1+j \frac{1}{p} \cdot \frac{\omega}{\omega_{r}}-\left(\frac{\omega}{\omega_{c}}\right)^{2}} \tag{34}
\end{equation*}
$$

shows that q determines the shape of the eresponse curves for the band-pass filter just as for the low-pass, Fig. I5, and in particular
determines the height of the familiar ears which appear towards the edges of the pass band as q rises above $I / \sqrt{ } 2$.

When plotting band-pass responses from an expression in the frequency difference Ω (or from the corresponding low-pass response) use may be made of the following relationships:

$$
\begin{align*}
& x=\frac{\omega_{1}}{\omega_{0}}=\sqrt{1+\frac{1}{4}\left(\frac{\Omega}{\omega_{0}}\right)^{2}}+\frac{\Omega}{2 \omega_{0}} \tag{35}\\
& \frac{1}{x}=\frac{\omega_{2}}{\omega_{0}} \quad \sqrt{1+\frac{1}{4}\left(\frac{\Omega}{\omega_{0}}\right)^{2}}-\frac{\Omega}{2 \omega_{0}} \tag{36}
\end{align*}
$$

or

$$
\begin{equation*}
x, \frac{1}{x}=\sec \left(\arctan \frac{\Omega}{2 \omega_{0}}\right) \pm \frac{\Omega}{2 \omega_{0}} \tag{37}
\end{equation*}
$$

Low-pass to band-pass transformation -general argument

An inductance presents zero impedance at zero frequency. To produce zero impedance at ω_{0} a capacitance C^{\prime} is placed in series with the inductance, with $C^{\prime}=1 / \omega_{0}{ }^{2} L=$ $T_{0}{ }^{2} / L$ (where $T_{0}=\mathrm{I} / \omega_{0}$). The impedance, which was $p L$, is now

$$
p L+\frac{L}{p T_{0}^{2}}=\left(p+\frac{1}{p T_{0}^{2}}\right) L
$$

Similarly a capacitance presents zero admittance at zero frequency, and to move the frequency of zero admittance to ω_{0} the capacitance may be tuned with a parallel inductance of value $L^{\prime}=1 / \omega_{0}{ }^{2} C=T_{0}{ }^{2} / C$. So the admittance, which was $p C$, is now

$$
p C+\frac{C}{p T_{0}^{2}}=\left(p+\frac{1}{p T_{0}^{2}}\right) C
$$

In each case the operator p is replaced by

$$
\left(p+\frac{1}{p \boldsymbol{T}_{0}^{2}}\right)
$$

which we may write P, a new operator (the replacement of p by P thus representing the operations just described).

To obtain a frequency-response function we write $j \omega$ for p, and the new operator becomes

$$
j\left(\omega-\frac{\omega_{0}^{2}}{\omega}\right)=j \omega_{0}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)
$$

which as before may be written $j \Omega$. So a reactance $j \omega L$ in the low-pass filter has become $j \Omega \Omega L$, and a susceptance $j \omega C$ has become $j \Omega C$. Now, as we have seen, Ω has the same magnitude (but opposite signs) at any two frequencies symmetrically disposed about ω_{0} on a logarithmic scale, and the difference between two such frequencies, $x \omega_{0}-\omega_{0} / x$, is equal to Ω. Consequently the combination of L and C^{\prime} in series has at the frequencies $x \omega_{0}$ and ω_{0} / x a reactance of the same magnitude as L had at the frequency ω, where $\omega=\Omega=x \omega_{0}-\omega_{0} / x$. Similarly the susceptance of the parallel combination of C and L^{\prime} at the frequencies $x \omega_{0}$ and ω_{0} / x has the same magnitude as the susceptance of C at the frequency ω. A little further thought shows that at the upper frequency the reactance and susceptance of

Fig. 15. Comparison of $2 n d$-order band-pass with corresponding znd-order low-pass responses.

Fig. 16. Showing low-pass response transformed into band-pass response.

Fig. 17. High-pass response transformed into band-stop response.
the combinations have the same sign as the reactance and susceptance of L and C respectively, and at the lower frequency the opposite sign.
Now in the frequency-response function for the original network every ω arises from a reactance of the type $j \omega L$ or a susceptance of the type $j \omega C$. Consequently the fre-quency-response function of the transformed network, $G(j \Omega)$, at the upper frequency as defined above is identical with that of the original network, $G(j \omega)$, at the frequency ω, which means that both the magnitudes and the phase angles are equal; whilst at the lower frequency as defined above (where $j \Omega=-j \omega$) the magnitudes are equal and the phase angles are numerically equal but of opposite sign. This conclusion is illustrated in Fig. I6. If the original network is a high-pass filter, the transformation produces a band-stop filter, Fig. 17. In all cases, of course, the resistances in the original network remain unaltered in the transformation.

Notch filters, 2nd order, series connection

I. Symmetrical response

If the inductance and capacitance of Fig. 9 are placed adjacent and an output taken across the pair, the voltage transfer ratio can be set down directly, either by reasoning that it is I minus the tuned-circuit voltage
transfer ratio or that it is the sum of the lowpass and high-pass voltage transfer ratios:

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{i n}}=\frac{1+p^{2} T^{2}}{1+\frac{1}{q} p T+p^{2} T^{2}} \tag{38}
\end{equation*}
$$

The frequency response of the numerator is ($1-\omega^{2} T^{2}$), which gives a zero of transmission when $\omega T=1$, i.e. at the frequency where the reactances of L and C have equal magnitude.
A convenient way of obtaining the complete amplitudes vs. frequency response is to use the relationships mentioned above,

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{i n}}=1-\frac{\frac{1}{q} p T}{1+\frac{1}{q} p T+p^{2} T^{2}} \tag{39}
\end{equation*}
$$

the result being as shown in Fig. 18(a). While for the phase response we may use the second, remembering that since the phases of the low-pass and high-pass responses are everywhere 180° apart the phase of the vector sum is equal to that of the component with the greater amplitude, namely the $1-\mathrm{p}$ component for $\omega T<\mathrm{I}$ and the h -p component for $\omega T>\mathrm{I}$, Fig. I8(b). It also follows that the amplitude response of a notch is the arithmetic difference of a lowpass response and a high-pass response of equal q. As for tuned-circuit response, the width of a symmetrical notch between -3 dB points is ω_{0} / q.

2. Asymmetrical notch response

If the inductance is split into two parts having impedances $p L$ and $(1-a) p L$, where $a<I$ as shown in Fig. 19(a), the total inductive impedance being still $p L$, the voltage transfer ratio for the new pair of output terminals may be written down as the sum of the low-pass voltage transfer ratio (for the voltage across C) plus a fraction a of the high-pass voltage transfer ratio (for the voltage acróss $a L$), i.e.

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1+a p^{2} T^{2}}{1+\frac{1}{q} p T+p^{2} T^{2}}[a<1] \tag{40}
\end{equation*}
$$

The frequency response now has a transmission zero at a frequency given by

$$
1-a \omega^{2} T^{2}=0
$$

.e. at a frequency

$$
\begin{equation*}
\omega_{\infty}=\frac{1}{T \sqrt{ } a} \tag{41}
\end{equation*}
$$

Generally the amplitude vs. frequency response has the shape shown in Fig. 19(b). If a is nearly equal to I there is only a small peak even for fairly large values of q. As we have seen, when $a=1$ (the symmetrical notch) there is no peak for any value of q.

At $\omega T=0, \quad V_{\text {out }} / V_{i n}=1$; while at $\omega T=\infty, V_{\text {out }} / V_{\text {in }}=a$ (and $a<1$). The network is, therefore, a low-pass filter; although because the response is finite at infinite frequency a network giving a response of this type is more suitable for use as part of a l-p filter than as a complete l-p filter in itself.

Fig. 18a. Symmetrical notches, normalised amplitude responses, together with tunedcircuit responses of equal Q factor.
Fig. 18b. Symmetrical notches, phase responses.
(a)

(b)

Fig. 19. 2nd-order filter giving unsymmetrical notch response (low-pass type),

$$
\frac{V_{\text {out }}}{V_{i n}}=\frac{1+a p^{2} T^{2}}{1+p T / q+p^{2} T^{2}}, a<1
$$

(a) network, (b) amplitude response.
(a)

$$
\omega T \rightarrow
$$

(b)

Fig. 20. 2nd-order unsymmetrical notch filter (high-pass type): (a) network, (b) amplitude response.

The corresponding high-pass asymmetrical notch response is given by
$G(p)=\frac{V_{\text {out }}}{V_{i n}}=\frac{a+p^{2} T^{2}}{1+\frac{1}{q} p T+p^{2} T^{2}}[a<1]$
i.e. the sum of the $h-p$ response plus a fraction of the $1-\mathrm{p}$ response. It may be considered as being derived from the previous response, equn. (40), by the substitution of $1 / p$ for p, or directly from the basic $L C R$ network modified as shown in Fig. 20 with the capacitance split into two parts. The notch occurs when $\left(a-\omega^{2} T^{2}\right)=I$, i.e. when

$$
\begin{equation*}
\omega T=\sqrt{ } a \tag{43}
\end{equation*}
$$

and so (for $a<x$) at a frequency below the undamped natural frequency ($\omega T=1$).

BooksReceived

Principles of Colour Television Systems, by C. K. G. Keed. This book deals with the basic principles involved in the coding of the colour information of a television signal and with the application of these principles to the N.T.S.C. SECAM and PAL systems of colour television. It scope has been limited by the omission of many practical details of circuitry, display tubes anc cameras, and by assuming that the reader it tamiliar with the principles of normal black and-white television systems. Some of the techni cal terms peculiar to colour transmission art defined in the glossary at the end of the book Several problems have been included in the text They are mainly of a simple arithmetical type underlining the numerical relationships involved it the transmission systems or in the basic principle behind them, and the reader is advised to worl through these problems in detail. Pp.196. Goor index. P'rice SOs. Sir Isaac Pitman \& Sons Lid Pitman House, Parker Street, Kingsway, Londot W.C. 2 .

Soldering Handbook, by B. M. Allen, is divide into three parts. For the operator, part 1 describe how to use the more common soldering method and material available. It should prove usetul t both the amateur and the industrial solderer. Par 2, for the designer and engineer, discusses how t choose the right methods and materials to solv particular soldering problems. To help in makin this choice, part 3 gives several tables of materis properties and specifications. The emphasi throughout is on practical knowledge rather tha theoretical understanding. No previous know ledge of soldering is assumed. (The author senior works chemist with Multicore Solders Lid Pp. 128. I'rice 45s hard, 21s limp. Iliffe Books Ltc 42 Russell Square, London W.C. 1 .

Circuit Ideas

Variable frequency low-pass filter

The circuit operates over the frequency range 10 kHz to $200 \mathrm{kHz} . C_{f}$ is included to reduce the 'hump' at cutoff typical of

this type of circuit. The range may be altered by fixed capacitors across C_{0} although this practice will reduce the range.
R. CARTW'RIGHT,

Muxton,
Shropshire.

Stereo Decoder Adaptor

The stereo decoder described in the January 1967 issue of Wireless World had a small
disadvantage in that the voltage gains for mono and stereo were about 0.5 and 0.25 respectively. By adding the circuit below to the decoder, unity gain for both mono and stereo is obtained.

For a stereo signal $T r_{7}$ and $T r_{8}$ are on, hence $T r_{9}$ is off and $T r_{10}$ on. The stereo signal is amplified 4.5 times by Tr_{10}, giving an overall decoder gain of about 1.1. With a mono signal $T r_{9}$ is on and $T r_{10}$ off. The signal is halved by the attenuator formed by the $56 \mathrm{k} \Omega$, $68 \mathrm{k} \Omega$ and $390 \mathrm{k} \Omega$ resistors before being amplified by $T r_{9}$.

The maximum output is greater than IV r.m.s. and distortion less than 0.1% at 1 V output. The input impedance is $50 \mathrm{k} \Omega$ and the output should look into not less than $50 \mathrm{k} \Omega$. For positive earth decoders the transistor type BC154 is suitable.
B. W. Grossmith,

SGS (United Kingdom) Ltd., Aylesbury.

Monostable relay

A positive pulse at the base of the transistor causes the voltage at the collector to fall and the relay to pull in. The normally open relay contacts close, shorting out the transistor and holding the relay in until the timing capacitor has charged fully. The relay then drops

Monostable relay.
out. If the voltage to the transistor base is a d.c. condition the relay will drop out just the same. The circuit must not be retriggered until the timing capacitor has been allowed to discharge through the bypass resistor or the subsequent pull in time will be shortened.
P. J. Burridge,

Abingdon,
Berks.

F.E.T. 'two terminal' oscillator

The circuit is basically equivalent to a twin triode cathode-coupled oscillator. By merely changing the tank circuit constants, output over a very wide frequency

F.E.T. oscillator.
range can be obtained - from less than 1 MHz up into the v.h.f. region. 30 pF is a good compromise for the feedback capacitor C.
L. F. Heller,

London $\mathbf{W}^{\prime} .4$.

OUR NEXT ISSUE

Since the days of the annual London Radio Show it has become almost a tradition for the October issue of Wireless World to include a survey of domestic radio and television receivers. This year will be no exception and in addition to surveying the trends in the receivers shown at the individual trade shows being held in London this ${ }^{\text {m month }}$ by manufacturers and agents we plan to review some of the latest sound reproducing equipment to be seen at the Audio Fair (Olympia, October 16th-22nd).

We also hope to include a review of the German National Radio \& Television Show opening in Stuttgart on August 29th.

For the audio enthusiast there will be constructional details of a 15 -watt amplifier, the main feature of which is its low cost- $\int 5$ per channel.

Long-distance Television Reception

Some European test and identification cards

The abnormal propagation conditions during the past few months have increased the interference from, and therefore the reception of, Continental television stations in the U.K. These conditions have stimulated interest in long-distance television reception and several readers have written on the subject. One letter was published last month.

There are now nearly 5,000 television transmitting stations in Europe of which about 1,000 (mainly low-power relay stations) are in Italy. The problem of identifying the actual station being received, even if the country of origin is known, is made more difficult by the fact that frequently the sound is not heard because the vision-sound carrier separation may be different from that employed in this country.

However, to facilitate the visual identification of stations we reproduce on these pages a selection of test and identification cards supplied by M. Dolci, a correspondent in Italy.

In the table below are the basic parameters of the various television systems employed throughout the world. The code letters, which are those used by the C.C.I.R., are given in parentheses beside the headings to the illustrations.

Readers interested in modifying equipment to receive Continental stations are referred to the complete list of channels, with sound and vision carrier frequencies for the various TV systems, given in the current edition of "Guide to Broadcasting Stations" available from this office price 6 s .

Code	No. of Lines	Channel width MHz	Vision band- width MHz	Sound separation (from vision)	Vision mod. sense	Sound mod.
A	405	5	3	-3.5	+	a.m.
B	625	7	5	+5.5	-	f.m.
C	625	7	5	+5.5	+	a.m.
D	625	8	6	+6.5	-	f.m.
E	819	14	10	± 11.15	+	a.m.
F	819	7	5	+5.5	+	a.m.
G	625	8	5	+5.5	-	f.m.
H	625	8	5	+5.5	-	f.m.
I	625	8	5.5	+6	-	f.m.
K	625	8	6	+6.5	-	f.m.
L	625	8	6	+6.5	+	a.m.
M	525	6	4.2	+4.5	-	f.m.
N	625	6	4.2	+4.5	-	-

The field frequency for all systems is 50 per second except system " M " in the U.S.A. and some
other countries where 60 per second is used
$\operatorname{ITALY}(\boldsymbol{B} \mathcal{E} G)$ A similar test card with the figure 2 in the centre is used for the second programme (system G).

SWITZERLAND (B)

The rest card used by the country's ri-lingual television service.

NETHERLANDS
($B \in G$)
An identification card used by the stations of the Nederlandse Televisie Stichting broadcasting the first programme.

PORTUGAL (B)
Radiotelevisao
Portuguesa's twenty or more stations use this test card.

ROUMANIA (D) Roumania has two high-power transmitzers and ten low-power all of which use this test card

W. GERMANY ($B \in G$)
This test card with the appropriate name is used by each of the broadcasting authorities.

Identification card used by Süddeutscher Rundfunk and some other organizations.

hamburs

Stations of Norddeutscher Rundfunk use this card.

MALTA (B)
The island has one main ($5-k W$) transmitter.
E. GERMANY
(B)

The basic test card of the Deutscher Fernsehfunk.

An alternative test card with the station name superimposed.

An alternative identification card used by stations of the D.F.F.

News of the Month

Earth station at Goonhilly

On 6th August the Postmaster General, the Rt. Hon. John Stonehouse, M.P., inaugurated the expanded Post Office satellitecommunications earth station at Goonhilly in Commall, and also the service via the Intelsat III satellite over the Indian Ocean. This service makes it possible to exchange direct live colour television pictures with Japan.

It is, of course, seven years since the first Goonhilly station was completed in readiness for the first experimental satellites. Later experiments with synchronous satellites culminated in Intelsat I (Early Bird) in April 1965. Since then the original aerial and equipment have been improved and a new station built, which is the one which has just become operational.

Integral with the supporting structure for the dish are cabins containing the s.h.f. transmitting and receiving equipment and the frequency changers. The whole structure of aerial and cabins is pivoted at the centre of a circular rail and carried by two bogies on the rail. The dish itself can be tilted in the vertical plane and the two movements are controlled automatically by servo systems. Tracking errors can be measured with an accuracy within 1 minute of arc.

The dish is a true paraboloid made up of rings of "petals" of stainless steel surround-
ing a central mild steel dish of 24 ft diameter. The petals are adjustable by struts, and their profiles by screwed studs behind the reflector.

The ransmitter is capable of a maximum output of 12 kW but is normally operated at $1-2 \mathrm{~kW}$. The receiver has input parametric amplifiers which are helium cooled to operate at $18{ }^{\circ} \mathrm{K}$ and produce about 40 dB gain. They are duplicated with automatic changeover. The output is passed by waveguide to the cabin where a down-converter changes the frequency to 70 MHz , and after amplification the signals are passed by cable to the main building. The input power to the first amplifier from the aerial is about 0.1 $u \mu \mathrm{~W}$.
Although only just officially inaugurated the equipment has actually been in use for some time and handled the television signals from the Investiture of the Prince of Wales as well as the recent pictures from the moon.

In the supply of the equipment, Marconi, GEC/AEI, Mullard and Husband have all played an important part, for the Post Office has now gone over to a system of ordering earth stations which places the full responsibility for design upon industry.

.... 3 and at Bahrain

A space communications station, built in Bahrain by the Marconi Company, was formally opened on July 14th by the ruler of

The Cassegrain aerial system of the new Goonhilly satellite communications station is a 90-ft dish some 350 ft above sea level, and has the advantage that when a satellite is on a nearly stationary orbit tracking can be effected by movement of the sub-reflector and without having to move the main dish.

Bahrain. To inaugurate the station, the ruler made a 3,000 -mile telephone call, via the Intelsat III satellite over the Indian Ocean and the Goonhilly I station in Cornwall, to the Duke of Edinburgh in Windsor Castle.

Cable and Wireless Ltd, for whom Marcon built the terminal, will operate as part of the global scheme which will provide telephone and data links, using principally Intelsat II and Intelsat III satellites.

The aerial employs a $90-\mathrm{ft}$ diameter com $^{-}$ puter-profiled quasi-parabolic dish incorporating a Cassegrain sub-reflector which is made of aluminium panels attached to : steel backing structure.

Two high-power amplifiers are installed, one operational and one standby. These use a travelling-wave tube which has a peak saturated r.f. power output of 12 kW and ; bandwidth of 500 MHz . They can therefore cover the entire civil satellite communicatior transmission band of 5925 MHz tc 6425 MHz .

The communications traffic is frequenc: modulated on a 70 MHz intermediate fre quency carrier by equipment installed in the main building. This i.f. signal, at a level α about 0.5 V r.m.s., is fed to the transmitte drive equipment housed in the aerial build ing. The signal is fed to a varactor diod frequency converter which changes th 70 MHz signal to the r.f. transmission fre quency in the 6 GHz band. It is then fed t the main power amplifier at a level c approximately 10 mW . Provision for corr bining additional outgoing telephony an television carriers is made at this point i the transmitter system.

Signals received at the earth station ar within the civil satellite communication bant extending from 3700 MHz to 4200 MH i Received signals are fed to a parametri amplifier which has a bandwidth of $500 \mathrm{MH}_{2}$ the amplifier being mounted in close proxir ity to the feed.

The parametric amplifier consists of thre identical gallium arsenide varactor diod stages, connected in cascade. These thre stages are mounted together with their asse ciated circuitry, inside a low-temperatur enclosure.

Each of the three stages is fed from klystron pump source through a 3 -way pa sive splitter. These klystrons and the lor noise t.w.t. following the parametric amplifiu are the only parts of the receiving syste which do not use completely solid-state con ponents. They provide 30 mW of purr power at a frequency of about 34 GHz .

After amplification, using a low-noi: t.w.t. at the receive frequency, the signal passed via a waveguide connection to the main building and into a passive splittir network with 16 outlets, thereby separatir the individual r.f. carriers. The outlets a connected to separate frequency down co verters using a balanced diode mixer with crystal-controlled local oscillator, followed ! i.f. amplification, channel capacity bandpa filtering and group delay equalization.

For telephony traffic, threshold extensi demodulators are used with a capacity of , 132, four-kHz wide, channels.

Three microwave radio links worth abo $£ 250,000$ supplied and installed by GE AEI Telecommunications L.td, connt
the telephone network of the States of the Arabian Gulf with the earth station. One 2 GHz link carries all the telephone traffic from the earth station to the international switching centre at Salmania, the other two 7 GHz links form part of the radio system that connects the Bahrain switching centre with Dubai and, through the existing network, to the other Gulf States.

International apprentice competition results

The U.K. was thoroughly trounced by Japan in the eighteenth International apprentice competition held in Brussels recently. The U.K. failed to obtain any gold medals at all, against Japan's nine, Switzerland's six, Germany's four, Spain's three and Korea's two. We did a little better on silver medals sharing the highest number, five, with Korea.

In the overall result we shared fourth -place with Holland; the Japanese winning the zompetition. The most alarming fact to come to light in studying the detailed results is -that the U.K. received no awards at all in the pasic engineering trades, and with the exception of jewellery, all our awards were in the zonstruction trades.

In the three categories associated with zlectronics the results were as follows: Indus.rial Electronics: gold-Japan, silver-Swit--zerland, bronze-Spain, honourable mentions -Germany and U.K. Radio and TV repair: -zold-Japan, silver-Italy, bronze-Korea, -oonourable mentions-Germany, Portugal end U.K. Instrument Making: gold-Japan, ;ilver-Holland, bronze-Germany.

Two more scientific satellites or ESRO

it a meeting in July, the council of the Suropean Space Research Organization aproved the adoption in the E.S.R.O. proramme of two new scientific satellites. The rst will be a cosmic ray satellite (expected to e launched in mid-1974) and the second a eostationary magnetospheric satellite mid-1975).

The cosmic ray satellite will contain a ingle, rather large and sophisticated exeriment designed to investigate the gamma ux from the universe and will be built by n international team of European laboraכries.

The geostationary satellite will contain bout ten experiments provided by Eurorean laboratories: Its main purpose will be 0 investigate particle fluxes, electric and aagnetic fields as well as electromagnetic vaves in the outer magnetosphere at about $8,000 \mathrm{~km}$.
In the meantime E.S.R.O. has four satelite launches on its books from now until 972.

Jew British Semiconductor Jroup

iEC-English Electric have announced the rrmation of GEC Semiconductors Ltd hich brings together under a single tanagement company, the semiconductor in:rests of Marconi-Elliott Microelectronics

Ltd and AEI Semiconductors Ltd. Dr J. Shields, managing director of AEI Semiconductors Ltd, will be the managing director of the new company. The two companies within the new group will continue to trade separately and will retain their existing facilities.

Design '69

Everything from television sets to food warmers and a desk computer to a sheepskin teddy bear will be exhibited at the Design Centre (Haymarket, London S.W.1) in a five-week international exhibition, Design '69, which starts on September 10th.

In all, 22 countries will be participating in the event and items in the electronics field to be shown are: television sets from Argentina, France, and Japan; a table top computer from Japan; and panel instruments from West Germany.

University electronics advisory unit

The department of electronics in the University of Southampton has recently received a grant from the Wolfson Foundation for the establishment of an Industrial Advisory Service.

The grant will allow the department to increase the services which it currently offers to industry. The department will undertake advisory or design work on a normal consultancy basis and will be especially concerned with the role of electronic techniques in increasing productivity by undertaking the design and building of prototype integrated circuits and other projects in the fields of lasers, opto-electronics and control.

A comprehensive integrated circuit manufacturing facility is available and this, coupled to the materials advisory and diagnostic service which the University also offers, will enable a wide variety of problems to be handled.

In particular the needs of smaller firms who may not retain a regular staff of electronic engineers, but who nevertheless are becoming increasingly dependent on electronic techniques will be catered for.

Automatic bearings on distress calls

A new, simple, and inexpensive method of taking automatic d.f. bearings on the positions of ships in distress has been developed by the Marconi International Marine Company Limited.

The system, based on the Marconi "Lodestar" automatic direction-finders, couples the automatic direction-finder to a ship's existing auto-alarm receiver when the radio officer goes off watch. If an alarm signal is received the "Lodestar" pointer swings to the bearing of the vessel in distress and locks there so that when the radio officer returns to the radio room the bearing of the distress incident can be read off immediately relative, of course, to ship's head at the time of receipt.

The coupling between the "Lodestar" and

Semiconductor portion of an active aerial defies a lightning strike. Designed for air traffic control by Rhode E Schwarz, the aerial operates between 100 and 186 MHz . The transistor amplifier is housed in a metal cylinder which is connected to a 300 mm diameter top plate via a series resonant circuit with a very low series capacitance. The top plates are supported by two metal rods which are also connected to a basket-shaped counter weight and are at earth potential. If lightning strikes the aerial, current flows via the two outer metal rods. The space around the transistor amplifier remains free from magnetic fields. If lightning strikes nearby the electronics still remain free from induced currents because the transistor circuit is really in the null arm of a balanced bridge.
the auto-alarm receiver is achieved by a small unit, incorporating a switch, a solidstate timer, and a relay, which can be supplied for less than $£ 20$. When the radio officer goes off watch, in addition to switching on his auto-alarm receiver in the normal way, he switches on the "Lodestar" and tunes it to 500 kHz and also sets the coupling unit switch to "Watchkeeping". In this mode the coupling unit relay cuts the supply to the servo motor of the "Lodestar" bearing pointer, holding it disabled unless an automatic alarm signal is received.

This signal, which activates the alarm bells in the wheelhouse and the radio officer's living quarters, is also employed to actuate the relay which restores the power to the "Lodestar" servo motor, which then drives the bearing pointer to the correct bearing of the distress signal. At the same time the solid-state timer is set in operation and this, after a lapse of two seconds, causes the relay to interrupt the power to the servo motor and thus "freeze" the bearing pointer. Even if no further signal is heard from the vessel in distress an unambiguous bearing will have been obtained. This bearing would be relative to ship's head at the time of observation. A further optional refinement can be made to interrupt the "Lodestar's" gyro repeater circuit when the system operates in
order to preserve ship's head true, and consequently a true d.f. bearing. Bearings are held fixed until the coupling unit is switched from "Watchkeeping" to "Normal", or until the auto-alarm receiver is reset.

Irish standards converter

A television stahdards converter was designed and built in only five weeks by Radio Telefis Eirann, and flown to the Space Communication Centre at Buenos Aires in the Argentine. It was used to convert American 525 -line transmissions of the Apollo-11 moon flight to the local 625- and 405 -line picture standards. The converter was commissioned by Research and Production Ltd, for Western Union International.

Laser colour television

The Central Research Laboratory of Hitachi Ltd in Japan have succeeded in using three lasers, one for each colour, to project a colour television picture onto a $4 \times 3 \mathrm{~m}$ screen. Each of the lasers has an output of 8 W .

Signals from a standard television set, or a television camera, are fed through a specially developed video amplifier which increases the signal swing to 1 kV . The amplified television signals are then impressed on the three coloured laser beams by three crystal light modulators: The modulated beams are then focused on a set of dichroic mirrors which combines them into a single beam which is relayed to a second mirror system.

The second optical section consists of a horizontal scanner with 16 mirror faces, which rotates at a constant speed of 60,000 r.p.m, and a vertical scanner with 24 mirror faces rotating at 150 r.p.m. The vertical scan mirror is tilted rapidly back and forth by a special motor, while a small synchronous motor spins the horizontal scanner.

Finally, the laser-projected yideo signals impinge on the screen and form an image which is larger and brighter than anything
which could be achieved with a cathode-ray tube.

Dr. Yamada, the man who developed the system, says, "The lasers have a very narrow spectral range and that means that with this system we have very pure red, green, and blue colour. The fluorescent materials used in ordinary television sets have a broad spectrum band and, therefore, cannot produce pure colour."

New structure for GEC-Marconi

A new management structure has been announced by the GEC-Marconi group of companies. The various companies within the group have been split into four main companies as follows: Marconi Communications Ltd under the managing directorship of T. Mayer, consisting of Marconi's Broadcasting, Radio Communications, Space Communications, Line Communications, Mercantile Marine, and Mobile Communications Divisions; GEC-AEI (Electronics) Ltd.; Eddystone Radio Ltd; and Marconi Specialized Components Division. The second main company, Marconi Radar Systems Ltd, under the managing directorship of J. W. Sutherland, consists of Marconi Radar Division, Elliott Airspace Control Division and GEC-AEI (Electronics) Ltd. Dr. B. J. O'Kane will be the managing director of the third main company, Marconi-Elliott Avionic Systems Ltd, which consists of Marconi Aeronautical and Electro-optical Systems Divisions, Elliott Flight Automation and Elliott-Automation Radar Systems. The fourth main company, GEC-Elliott Space and Weapons Systems Ltd, has A. S. Walsh and D. W. Malim as joint managing directors and consists of GEC-AEI (Electronics) Ltd and Elliott Space and Weapon Automation Ltd.

Credit for the constructor

In order that home constructors can benefit from the advantage of running an account

Showing the operating principles of the laser colour television system. At present the light
modulators employ a dipotassium phosphate crystal, it is hoped to use gallium molybdenate
when large enough crystals become available. when large enough crystals become available.

Home Radio (Components) Ltd hàve introduced a scheme which will allow orders to be accepted over the telephone from private individuals. Basically the constructor who joins the scheme places a deposit, equal to half of the maximum credit he requires, with Home Radio. Goods may then be ordered valued up to 75% of the maximum credit allowed for the first month. After this period, goods to the full credit amount can be ordered. Invoices are enclosed with each order and a statement is posted monthly. Thee cost of goods ordered is not deductible from the deposit which is held until the agreement is terminated. Orders can be placed over the telephone answering system at any time. We congratulate Home Radio on an excellent idea.

British participation at Hannover?

The first meeting of the exhibitors on the British Electronic Centre stand at the 1970 Hannover Trade Fair took place recently.

Proposals and draft plans were discussed for the stand in the new hall which is under construction by the fair authorities. The Centre has a large island site in the middle of this new hall which will be devoted entirely to electronic components.

The plans have yet to be settled in final detail and there is a limited amount of space still available for British component manufacturers on a first come, first served basis. It is significant that all the other stand spaces in the new hall have already been taken and the Centre stand offers the only opportunity for British manufacturers in this field. British electronic component firms wishing to take advantage of this opportunity should con-tact:- The Secretary, Mr. R. W. Hardisty, 31, Morden Road, Blackheath, London, S.E.3. Telephone 01-852 3467.

Microwave link to Scilly Isles

The Post Office is to establish a microwave link between the Scilly Isles and the mairland which will operate in the 6 to 7 GHz region. A new solid-state equipment, type $14000 / 300$, manufactured by the Communications and Control Group of Ferranti, is to be used for the project.

Because of the long oversea path space diversity techniques will be used for reception and a measure of frequency diversion will be employed for the protection channels. The equipment will be fully automatic with control, monitoring and fault reporting facilities.

Edwin Spreadbury Premium

The Council of the Society of Electronic and Radio Technicians has established the Edwin Spreadbury Premium which has an annual value of $£ 15$. This premium is a tribute to the work of E. A. W. Spreadbury, the first chairman of the Society, in the establishment and development of S.E.R.T. The premium is being sponsored by I.P.C. Business Press, publishers of Electrical and Electronic Trader, of which Mr. Spreadbury was editor.

Third ELECIRONIC INSTRUMENIS EXHIBIION

 Hotel Piccadilly Manchester September 23/24/25
1969

Times:

9.30am-6pm daily
except 25th close 5 pm

First ELECIRONIC INSTRUMENTS EXHIBHION Hotel Leofric Coventry September 16/17/18 1969

Times:

$9,30 \mathrm{~cm}-6 \mathrm{pm}$ dally except 18th close 5pm

Exhibiting Companies

Advance Electronics Ltd. AIM Electronics Ltd.
\star Avo Ltd
B \& K Instruments Ltd.
$\mathrm{B} \& \mathrm{~K}$ Laboratories Ltd.
Bell \& Howell Ltd.
Cossor Electronics Lid.
Dana Electronics Ltd.

Dawe Instruments Lid.
D.IS.A.

Dymar Electronics Ltd.
\star Dynamco Ltd.
Farnell Instruments Ltd.
General Radio Co. (U.K.) Lid.
Hewlett-Packard Ltd.
\star H. W. Sullivan Ltd.

Marconi Instruments Ltd.
Racal Instruments Ltd.
S.E. Laboratories (Engineering) Ltd.

Tektronix U.K. Ltd
Telequipment Ltd.
The Solartron Electric Group Ltd.
\star The Wayne Kerr Co. Ltd.
Venner Electronics Ltd.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Minimum standing :urrent in class \mathbf{A}

read the article by Mr. J. L. Linsley Hood, 1 the April issue of $W . W$. with great iterest, and the results he has achieved are ertainly excellent for so simple a design. Iowever I think he has done the cause of -lass A amplifiers a slight disservice, by the figures for minimum standing current Table 1, p. 150) which are considerably -bove the true minimum figures, a fact thich I have checked in practice.
The value of standing current required to ast enable the output to swing to the oints where one or other of the output :ansistors is bottomed depends on the esired output power and load impedance. hese factors also dictate the minimum apply voltage. These values of voltage are ${ }^{\text {supply }}=2 \sqrt{2 P_{\text {out }} \cdot R_{\text {load }}}+2 \quad V_{\text {ce.sal }}$. rom $P_{\text {out }}=V^{2} / R$ where V is the r.m.s. atput). Likewise the peak current may be
stermined $I_{p k}=\sqrt{\frac{2 P_{\text {out }} \cdot R_{\text {load }}}{R_{\text {load }}}}$
hich equals $\sqrt{\frac{2 P_{\text {out }}}{R_{\text {load }}}}$
ow the standing current need be only half iis value, since the change in load current is ue to the upper transistor cutting off and 1e lower transistor doubling its current ir vice-versa), a total change of current -hich must flow through the load of twice at originally flowing in the transistors, i.e. e standing current. Evaluating these for) watts and 8 -ohm load we get (ignoring ce.sat.) figures of 25.3 volts and 790 mA ving a total dissipation of exactly 20 watts, which is in agreement with the theory for tch a "perfect" stage (i.e. 50% efficiency). 1 practice we must add the figure of V reisat as stated by Mr. Linsley Hood. e thus get figures of 26.5 V and 790 mA . the corresponding figures for a ro-watt itput are 16.7 V at 1.29 A (3 ohm), and 3.0 V at 580 mA (15 ohm). In practice we ust also add an allowance to the current to ovide for the variation which will take ace due to temperature etc. This excess -arrent is especially necessary in the design sscribed, where the only thing having any spreciable control of the standing current the current gain of the output pair. I feel
that this point was not sufficiently emphasized, or for that matter, the fact that to use any given pair of output transistors, and obtain the correct standing current needs quite a range of the total value of $R_{1}+R_{2}$, from the values quoted of $100+$ 560 ohms (for the 8 -ohm case) for a high gain pair down to say $68+150$ ohms for $H_{f e}=40$. These lower values mean a considerable drop in loop gain, which probably accounts for much of the increased distortion, with lower gain transistors. These lower value resistors would in fact reduce the feedback by about IodB. If the circuit of Fig. 10 is used it will also be necessary to use lower values for R_{1} and R_{2} to allow for an excess current which may then be controlled, I therefore question the contention of page 152 that the circuit allows for "precise control of the series current without affecting . . the distortion characteristics". Any reduction of loop gain must increase the distortion.

I have just measured a very similar stage to that described and find that for an 8 -ohm load and ro-watt output, a supply of around the 27 volts quoted and a standing current of 850 to 900 mA is ideal.
L. Nelson-Jones,

Bournemouth,
Hants.

The author replies.

I thank Mr. Nelson-Jones for his comments. Taking his second point first, it is evident that the current gains of the output transistors (particularly $T r_{2}$) influence the standing current through the output chain. However, due to the flattening effect of operation at high junction currents and temperatures, the current variation from transistor to transistor with a given value of $R_{1}+R_{2}$ is much less than the manufacturer's quote range of $H_{F E}$ (30-200) would suggest. The tests which I made last year with limit-value devices gave a spread of $\pm 150 \mathrm{~mA}$, when the current gains of the devices were badly matched, and rather less than this with limit-value matched pairs.

It had been in my mind at the time of writing the article that the constructor of the circuit should make adjustments to the value of R_{2} (not R_{1}, which is part of the bootstrap circuit) to obtain the correct standing current, and made the comment (p. 149) that "the resistor R_{2} can be used to set the static current of the
output stages". The use of a variable resistor, in series with some suitable fixed value, would have facilitated the setting of this, and I had from time to time wished in retrospect that I had suggested this, as an alternative. Where this arrangement is adopted, however, care must be exercised in the layout of the leads to the potentiometer to avoid undesirable output-input feedback capacitances. The potentiometer should also be at the end of R_{2} nearest to R_{1}.

With regard to Mr. Nelson-Jones first point (about the correct standing current for a class A stage of this type) the calculations he shows are correct, and are substantially identical to those which I made myself in the initial stages of the design of this amplifier. However, in the particular case of a class A design of this type which cannot provide a load current which increases with demand, three further points must be considered. 1. The simple calculation of the ratio of peak-to-mean currents, as in the equations above, gives an answer which is valid only for symmetrical waveforms. Most of the waveforms in speech and music, for which such an amplifier will be used, are unsymmetrical and some allowance must be made for this.
2. The calculations assume that the load is resistive. In practise, loudspeakers present reactive loads, also their impedance may fall to lower than the nominal value.
3. The optimum performance of the output stage is given when the current swing does not take either transistor into current cutoff.

Because of these considerations, which were confirmed experimentally, I suggested a value of quiescent current which was in excess of the bare minimum "sine wave into resistive load" value, even though this involves an increase in the thermal dissipation of the system. Safety factors can always be cut down-provided that one knows the circumstances.

J. L. Linsley Hood

Class A/B amplifier

I have been most pleased to see the increased emphasis on articles of practical value in W.W. In particular many readers like myself will be delighted by the useful and straightforward articles by Mr. Linsley Hood. My own findings have been that the circuits are easy to build, economical in components, easy to adapt and give outstandingly good results.
I noticed that in a letter published in your July issue Mr. Linsley Hood suggests that an amplifier operating in class A on low power but class B on higher power would be a good answer to problems of distortion in circuits which are economical in power consumption. On the face of it this idea seems to offer many advantages, I wonder, could Mr. Linsley Hood offer a practical circuit for a class A/B amplifier as effective as his previous designs?*
Norman W. Vale,
Mickleover,
Derby.

- Mr. Linsley Hood has designed and is testing a class A/B amplifier preparatory to describing it in the journal. Ed.

Symmetry in a class B

I read I. M. Shaw's article (June issue, p. 265) with great interest, his modification being an alternative to that which I briefly described in a recent London lecture to the B.K.S.T.S. and which is shown in Fig. I.

There are many possible variations that can be played on the basic quasi-complementary output-stage theme as first conceived by Lin, and in order to be able to assess the relative virtues of these, and perhaps suggest improvements, it is necessary to acquire a detailed and vivid understanding of just what goes on in these

Fig. I. An effective modification for reducing crossover distortion.
rather subtle circuits. I have found the following approach to be particularly effective.

Referring to Fig. 1, the transistor Tr_{1} is initially regarded as an ideal infinite-outputimpedance source feeding its current into R_{1}, which is effectively connected between the points P and Q. It is thus as if a floating signal-voltage source, of internal resistance R_{1}, were connected between P and Q. Now it is of no fundamental importance which point in a circuit is taken as earth, and it is rather convenient, both for promoting an easier understanding and also for performing some initial practical experiments, to earth point Q. Indeed, a few hours spent experimenting with a set-up such as that shown in Fig. 2 will be found very instructive. The effect of finite outpur impedance in Tr_{1} (Fig. I) may be visualized in terms of a resistance shunted across the ideal transistor. This resistance then appears in the position shown in broken line in Fig. 2, and will be seen to apply shunt negative feedback. Since the effective resistance value varies with the instantaneous signal level, the negative feedback introduced is of a nasty non-linear type, and it is better to choose $T r_{1}$ for the highest possible output impedance, or even to replace $T r_{1}$ by a
suitable high-output-impedance transistor pair. The less the local feedback of the above kind, the more will be the overall feedback round the complete amplifier, and this latter type of feedback is the best for reducing distortion. The first requirement, however, is to understand the behaviour of the Fig. 2 circuit without either of these types of feedback.

In reasoning about and experimenting with circuits such as these, I would strongly advocate that voltage drive should be regarded as the initial ideal concept, the effects of finite input impedance being allowed for later. (For many years I have felt that the almost universal tendency to regard transistors as "basically currentoperated devices" has exerted a major retarding influence on progress in good transistor circuit design. Mutual conductance should, I believe, receive much greater emphasis ${ }^{1,2,3}$.)

Fig. 3 shows mutual characteristics, plotted with the aid of a Tektronix curve tracer, for the top (Darlington) pair of Fig. 2 on its own. As the point B_{1} swings up positive from below cut-off, the driver transistor has developed sufficient mutual conductance, by the time the output transistor comes on, to operate as an emitter follower with approaching unity gain. The initial curvature of the transfer characteristic for the complete pair is thus determined almost entirely by the output transistor and its $0.5-\mathrm{ohm}$ resistor alone. When the output transistor current has risen to about 50 mA , the reciprocal of its mutual conductance is about 0.5 ohm and the slope of the pair then reaches about half its final value of $2 \mathrm{~A} / \mathrm{V}$. Two pairs of this type (requiring complementary power

Fig. 2. Experimental circuit with shifted earth point. The broken-line resistor represents the effect of finite output resistance in Tr_{1} of Fig. I. The 220-ohm base resistors are to prevent parasitics; the writer's rather straggly version also required a series combination of $\mathbf{3} 3$ ohms and roop F between base and collector of the top driver tranisistor only.

Fig. 3. Characteristics for upper
(Darlington) pair of Fig. 2. Curve (a) circuit as shown; (b) R_{2} short-circuited; and (c) R_{1} omitted, R_{2} short-circuited.

Fig. 4. Characteristics for lower (conjugate) pair of Fig. 2. Curve (a) circuit as shown; (b) diode removed; (c) S closed, power diode inserted in series with R_{3} (Mr. Shaw's scheme); (d) S closed, otherwise as shown; (e) \boldsymbol{S} closed, no diode, R_{3} short circuited; and (f) as for (e) but with R_{b} removed.
transistors) would thus have an optimun quiescent current, for minimum crossove distortion, of about somA in each powe: transistor.

Fig. 4 shows characteristics for the lowe pair, or "conjugate" pair as it is sometime called. The sharp turn-on corner, when no diodes are used, arises because the firs transistor of the conjugate pair, as its bast swings negative from cut-off, develops : considerable voltage gain by the time th necessary half volt or so has been built ur across its $100-\mathrm{ohm}$ collector resistor to brinthe output transistor on. Thus the initia exponential part of the latter's mutuacharacteristic, when referred to the input o the pair, is diminished in voltage magnitud by the gain of the first stage, which is in th region of 20 . Once the second-stage mutuaconductance becomes high enough ti establish a sufficient amount of negativ feedback via the $0.5-\mathrm{hm}$ resistor to th first stage emitter, a splendidly linea characteristic, with a slope of very nearl $2 \mathrm{~A} / \mathrm{V}$, is obtained. Unity gain round thiloop requires only about 2.5 mA in th output transistor, so the overall charac teristic looks very linear down to, say
romA. If a push-pull amplifier were made with two such conjugate pairs, the correct quiescent current, giving half the full slope from each pair, would be about 2.5 mA in each power transistor.

Between B_{1} and earth we have (a) the driver emitter-base voltage, (b) the voltage across a 100 -ohm resistor shunted by a "diode" (the input of the power transistor) and (c) the voltage across the $0.5-\mathrm{ohm}$ resistor. By adding a 100 -ohm resistor shunted by a silicon junction diode in the emitter lead of the conjugate-pair driver transistor, we introduce into the path between B_{2} and earth a voltage component similar to that existing between base and emitter of the output transistor, and thus make the overall behaviour of the lower pair simulate closely that of the upper pair. An alternative solution, i.e. that due to Mr . Shaw, is to insert a power diode in series with the $0.5-\mathrm{ohm}$ resistor of the lower pairthe resistor value may, with advantage, be slightly reduced to allow for the spreading resistance of the diode.

So far we have considered the behaviour of the circuit with low-impedance voltage drive. In practice, however, R_{1} in Fig. I is not usually low enough, in relation to the driver-stage ińput impedance, to justify this assumption fully; though the high-currentgain transistors now becoming common make the approximation to voltage drive tend to be better than in the past. To allow for the effect of a finite source resistance, R_{0}, we need to know how the driver base -current varies with the base voltage in Fig. 2. In the top pair, before the output

Fig. s(a). Input characteristic for upper (Darlington) pair of Fig. 2.

Fig. 5(b). Input characteristics for lower (conjugate) pair of Fig. 2. Curve I, S closed; 2, circuit as shown; and 3, S closed, power diode in series with R_{3} (Mr. Shaw's scheme).

Fig. 6. Plots of I_{L} (vertically, roo $m A /$ large division) against V_{S} (horizontally, 0.1 V/large division). The steeper curve in each case is for $R_{S}=0$, and the less steep curve is for $R_{S}=5 k \Omega$. Zero I_{L} and V_{s} at centre of plots. Quiescent current approx. 60 mA in cll cases. (a) Fig. 2 circuit with S closed; (b) As for (a) plus R_{3} short-circuited (Mr. Shaw's Fig. I); (c) Sclosed, power diode in series with R_{3} which was reduced to about 0.35 ohm to compensate for diode spreading resistance. (Mr. Shaw's Fig. 2 scheme); and (d) Circuit as shown in Fig. 2, with slight extra imprcvernent due to inserting 10 ohms in series with top driver emitter to compensate for diode spreading resistance.
transistor comes on, the driver transistor has 100 ohms in its emitter and therefore has a high input impedance (not less than $20 k \Omega$ if $\beta=200$). In the lower pair, when no diode is used, the driver transistor, before the output transistor comes on, has only 0.5 ohm in its emitter, which is negligible. Consequently, as its base swings negative, the input current rises in a rapidly-increasing exponential manner until the output rransistor comes on and feedback to the driver emitter is established, after which it rises much more gradually. With the diode and resistor inserted in the driver emitter lead, however, the input current is caused to vary in substantially the same manner as in the Darlington pair. These effects are illustrated by the measured inputcurrent characteristics of Fig. 5, from which it will be seen that a diode and resistor in the driver emitter lead give an input-current characteristic much more like that of the Darlington pair than does a diode in series with the output transistor.

In Fig. 6 are shown transfer characteristics for the complete push-pull circuit of Fig. 2, under a variety of conditions.

In conclusion, I would like to express my opinion that even without these recent diode refinements-or earlier rather less satisfactory distortion-reducing dodgesthe better versions of 6-transistor quasicomplementary class \mathbf{B} amplifiers already have a distortion level which is subjectively quite negligible, but the use of diodes should enable similar results to be obtained with a smaller input signal level, less feedback then being required. It is perhaps worth mentioning that I have seen commercial versions of this type of circuit with overall voltage gains varying from 4 to 200 .
P. J. Baxandall,

Malvern,
Worcs.

[^1]
Letter from America

The Consumers' Electronic (Trade) Show in New York attracted an attendance of nearly 30,000 , beating last year's figure by about 5000 . The exhibits were even more elaborate and eye-catching-in spite of the absence of some of the larger manufacturers.

Interest was pretty well divided between TV, compact stereo systems and $\mathrm{Hi}-\mathrm{Fi}$ equipment. A good deal of interest was also shown in video recorders and camerasa field in which Japanese products were well in evidence. Colour television did not make the impact it did at the last two or three shows, which is understandable when one realizes that now more than 36% of all American homes have colour sets. This does not mean that colour TV development is at a standstill-far from it. For instance, the new Magnavox sets have a unique colour control circuit called TAC (Total Automatic Control) which eliminates the need for frequent colour control adjustments after the set is tuned to a station. (No more green or purple faces!) A logic circuit is used to control both gain and phase of the colour burst signal*. The need for adjustments almost every time one switched channels has been more or less accepted as one of those things-like static and man-made interference in the old days of radio. Causes are transmission phase errors, video tape differences, camera divergencies and so on. A top level committee, representing the National Association of Broadcasters, the Electronic Industries Association and others concerned, was formed some time ago to look into the problem and their report is due very soon. However, in view of the Magnavox development, the committee might well shrug its collective shoulders and pass the problem right back to the manufacturers. As a matter of fact, automatic colour control was also featured by several other manufacturers but no information was available. Most sets had some form of automatic tuning (a.f.c.) although a few still used manual fine tuning with some kind of visual indication such as vertical bars on the screen. Both RCA and Zenith announced brighter colour tubes (and both
claimed 100% brighter!) to be released later this year. Neither of these firms were at the main show but had their own exhibitions nearby.

Electrohome of Canada were demonstrating a luxury large screen TV with a novel type of electronic (varactor) tuning-the viewer changes channels by merely sliding his hand along a bar. Push-button station selection with a varactor "front end" was also used on several Panasonic models and there is no doubt that many other firms will follow suit later this year. Sylvania had a very interesting signal-seeking u.h.f. tuner employing a logic circuit and an optional r.f.operated remote control unit. The band is swept in 25 seconds, reverses at the high end and then stops at the low. Black-and-white sets are still quite popular-especially inexpensive portables. Both Sony and Panasonic had new models with built-in digital clocks (seen on many radio sets).

One of the most unusual portables is a Philco model using a new 13 in . tube which has the neck at an oblique angle to the screen \dagger, thus reducing the depth. The entire set is only $5 \frac{1}{2} \mathrm{in}$. deep and Philco (I ought to say Philco-Ford) are working on a colour version. Compact stereo record player systems were more prolific than ever and they ranged from inexpensive imports (3 to 5 watts per channel, ceramic pickup, two cheap 5 in . or 6 in . speakers in small boxes) selling for less than $\$ 60$ complete, right up to elaborate systems by Scott, Fisher, Harmon-Kardon, Benjamin (who use EMI speakers), Sherwood and many others. The Japanese were very prominent in this field as indeed they are in the whole area of $\mathrm{Hi}-\mathrm{Fi}$ and some well-designed, superbly styled amplifier-receivers were shown by Panasonic, Toshiba, Yamaha, Pioneer, JVC, Kenwood etc. American manufacturers have apparently come to the conclusion that it is impossible to compete with Japanese imports, especially in the lower price range, and so are acting on the policy of "if you can't beat 'em, join 'em." Thus firms like EV, HarmonKardon, Sherwood and Marantz are either

[^2]using Japanese components or complete units. Many Japanese speaker systems were to be seen and heard. As far as $\mathrm{Hi}-\mathrm{Fi}$ is concerned, the only area in which the Japanese appear to be lagging behind is in the production of top-quality stereo pick-ups -but I imagine it will not be for long.

In brief: Panasonic had a stereo f.m. radio built in a pair of earphones, Sonora were showing a floating radio for swimming pools-but for the ultimate in gracious living the prize must go to Nordmende for a four-screen television receiver-one colour plus three black-and-white tubes to see what's happening on the other channels! Finally, how about the Japanese extension speaker complete with 14 small metal tubes called "The worlds most beautifulsounding speaker, frequency resonant to sweeten the highs, lower the lows, truly a pipe dream". What could I add to that?

More news about neural hearing: it is now well over a year since I reported this development (March 1968) pioneered by a small firm called Intelectron and since then much progress has been made. Neural hearing is a method of using a modulated r.f. signal to activate the neryes direct, by-passing the ears entirely. A generator is coupled to the head by electrodes, so the head becomes in effect the dielectric of a capacitor. The signal is detected by the nerves themselves and by the cochlea in a complex manner involving the modulation of a d.c. barrier potential induced in the tissues. The system can be used for hearing aids or it can actually improve hearing by a process of "electrostimulation". Here is how it works: the carrier signal (40 to 100 kHz) is brought to resonance and is modulated by an audio signal that sweeps from 100 Hz to 20 kHz and back with a fourminute cycling rate and each discrete audio frequency is cycled from 0 to 100% modulation at a one-second rate. These signals are recorded on tape and applied to the patient by the transdermal electrodes which can be bare metal or metal covered with insulation material. Patients (up to 100 a week at present), read or carry on other activities during treatment-usually for an hour a day. Power used is around 3 to 5 mW at 2 volts or less.

Progress has been made with hearing aids too and several models will be marketed next year. One of these is a microminiature device built in a pair of spectacles with the transdermal contacts in the spectacle arms. Yet another version (shades of James Bond), is built in a tooth!

It is obvious that there will be many other uses for neural hearing systems, communication under high ambient noise levels, paging, and possibly for $\mathrm{Hi}-\mathrm{Fi}$ listening. Distortion should be very low (no cones or diaphragms to contend with!) but there is a snag. The human head has an essentially non-linear impedance so receivers would have to be individually matched for optimum results. Frequency response is claimed to be from below 30 Hz to over 20 kHz . The only demonstration I have heard up to now has been with speech, which was very good. I hope to have an opportunity of hearing music later this yearbut not with the tooth receiver!
G. W. Tillett

Wireless World Logic Display Aid 5 : Completing the basic instrument

designed by B. S. Crank*

Last month the Boolean expressions for forming the output variables were derived and the appropriate circuits were given. The time has now come to describe the testing of these circuits.

Testing the output variable circuits

Plug all the boards which have just been constructed into their sockets in the main logic unit. Switch on. Connect the amplifier probe to $\mathrm{P} 18 / \mathrm{B} 6$; the circle representing Venn A should appear on the screen in the position shown in Fig. 58. Connect the probe to P18/B7; the circle representing Venn B should appear as per Fig. 59. To complete the Venn tests connect the probe to $\mathrm{P} 18 / \mathrm{B} 8$; the circle representing Venn C should appear as per Fig. 60.

To check the Truth table variables proceed as follows: connect the probe to $\mathrm{P} 13 / \mathrm{B} 4$ and the dots within the shaded area labelled A in Fig. 14 should appear on the screen. Connect the probe to P14/B4 and the dots within the shaded area labelled B in Fig. 14 should appear on the screen. Next connect the probe to P12/B4 and the dots which should show this time are in the area labelled C or $\overline{\mathrm{C}}$ in Fig. 14.

If at any time during the above tests the desired result is not obtained trace back through the circuit with the probe in the manner previously described in order to trace the fault.

Combining the output variables

All the output variables have to be routed to the output variable terminals on the front panel under the control of the signals V; K and T so that the video circuits and the variable circuits are operating in the same mode.

The circuits for achieving this are shown in Figs 66

Fig. 65. Circuit employed with Fig. 66.
and 65. It can be seen that the control signals are AND gated with the output variables and that each output variable and its complement are available for feeding to the front panel.

The wiring of this circuit is straightforward except for the input to P19/B2 which is from a second pole on

Fig. 66. Circuit which allows the control signals to select the correct output variables
the switch used to select C or \bar{C} in the truth table mode. Connection details are given in Fig. 67.

These circuits can now be built and the appropriate inter-board connections made. Temporarily mount 9 terminals on a plece of board and label them A, B, C, D, $\overline{\mathrm{A}}, \overline{\mathrm{B}}, \overline{\mathrm{C}}, \overline{\mathrm{D}}$ and Z and connect them to the points indicated belnw:
A. P18/B4
A. P20/B2
B. P19/B4
B. P2 1 /B2
C. P20/B4
C. P22/B2
D. $\mathrm{P} 6 / \mathrm{B} 4$
D. P5/B4
Z. P4/B8

Finally connect the amplifier probe to $\mathrm{P} 23 / \mathrm{B} 5$.

Testing the complete main logic assembly

These tests are similar to the ones just carried out except that now the variable producing. circuits and the character generation circuits are tested together. Once the unit has passed these tests the reader can rest assured that all the circuits built so far are functioning correctiy.

All the interconnections referred to in the tests are carried out on the board containing the nine terminals.

Connect A to Z: select Venn-the circle for Venn A should appear on the screen; select Karnaugh-1s should appear in the map in the area representing A, the rest of the map should contain 0 s ; select Truth table-the area representing A in the result column should contain 1 s , the result column should contain 0s.

Connect \bar{A} to Z , go through the series of tests mentioned above; this time the areas representing \bar{A} will either be visible or will contain is as appropriate. Repeat for B and \bar{B}, and C and \bar{C}. In the Truth table tests for C or $\overline{\bar{C}}$ do not forget to take into account the position of the $\mathrm{C} / \overline{\mathrm{C}}$ switch. For D and $\overline{\mathrm{D}}$ it is only necessary to carry out the tests in the Karnaugh mode.

Video amplifier and flyback suppression

With the circuits as they stand readers will have noticed, with some oscilloscopes, that some of the dots on the screen are distorted and that flyback lines appear. These faults are cleared, as are problems of uneven brightness mentioned earlier, by using a simple gated video amplifier which is built alongside the buffer amplifiers on board one.

The flyback lines are caused by the response time of the dians and by the propagation delay across the bistables in the counter and across the various gating networks. All the various signal paths are of different lengths and contain different combinations of elements so that the signals arrive at their destinations at different times. In order to allow time for this settling down the

Fig. 67. Wiring of the Truth table column C control switch

Fig, 68. The video amplifier

Fig. 69. The monostable which provides the gating pulses for the video amplifier

Fig. 70. Practical detalls of the video amplifier and monostable circuits

Fig. 71. The power supply

(below) Fig. 72. Under chassis view of the complete instrument. On the left, through the cutout in the chassis, the underside of the main logic assembly can be seen. On the right is a board containing the small components of the power supply.
(above) Fig. 73. Rear chassis view of the prototype. The extra board mounted on the rear of the main logic unit contains the parts for one of the modifications to be described later in the series. The board on the right, behind the mains transformer, is also associated with a modification.

video amplifier is switched on and off by pulses from a monostable multivibrator which is in turn triggered by the clock multivibrator. The timing and connections are such that the video amplifier is switched off during the time that the circuits are in a state of transition.

The video amplifier circuit is shown in Fig. 68 and the monostable multivibrator in Fig. 69. It is regretted, but the two resistors and two capacitors used in this circuit were omitted from the components list. The circuit can now be built on board 1 as shown in Fig. 70. The connection from the output of the monostable to the gating input of the video amplifier is taken by a flying lead over the top of the boards as there is not a spare pin on board 2. When this work is complete recheck the functioning of the instrument. A "cleaner" display should have been achieved.

Power supplies

The power supplies circuit (Fig. 71) is fairly conventional. The requirements are 60 V at a few $\mathrm{mA}, 27 \mathrm{~V}$ at 30 mA and 4.5 V at 1 A , all positive with respect to the OV line.

The 60 V is derived from a simple half-wave rectifier and an $R C$ smoothing circuit.

The 28V supply also employs half-wave rectification and is stabilized using the Beckman Instruments' thickfilm voltage regulator.

A potential divider between the 28 V line and earth
provides a reference voltage for the simple series regulator used to obtain the 4.5 supply. The main current carrying transistor, Tr_{36}, is mounted on the heat sink specified in the components list.

In order to obtain the correct voltages the tappings on the mains transformer are used "back-to-front" as indicated on the circuit diagram, i.e. the 50 V tapping is connected to the 0 V line.

In the prototype the capacitor C_{8} was made up from two smaller capacitors to fit the available space and the heat sink with Tr_{36} was mounted on the rear outside wall of the cabinet.

It is not proposed to give a wire by wire connection diagram of the power supply as this is fairly straight forward. The majority of the components are mounted on a piece of Lektrokit board fitted below the chassis on the left-hand side of Fig. 72. The large components, the transformer and C_{8}, are mounted above chassis and can be clearly seen in Fig. 73.

Before connecting the power supply to the logic unit perform the following checks. Connect dummy load resistors between the supply lines on 0 V . For the 60 V line the resistor should be about 3.3 k , for the 27 V about 1 k and for the 4.5 V line about 10Ω at 3 W .

Switch on the power supply and check that the 27 V line is 27 V . Adjust $R V_{15}$ to give exactly 4.5 V and check that the 60 V line is roughly right.

Fig. 74. Front view of the completed prototype, presented as a guide only

Fig. 75. Front panel components to main chassis connection diagram

The power supply may now be connected to the logic unit and the whole assembly checked for correct operation.

Tidying things up

The logic unit and the power supply can now be mounted on the chassis in the positions shown in Fig. 72 and 73. The board attached to the main logic unit facing you and the board mounted on the far side of the mains transformer in Fig. 73 are only required if the more advanced versions of the instrument are to be built. These extra circuits will be described later. The X, Y and Z outputs
can be connected to coaxial sockets mounted on the rear of the chassis.

All that now remains to be done is to mount and connect the front panel switches. However, this must be delayed until it is decided which version of the instrument is to be built.

Finishing the basic instrument

It is stressed that these instructions are to be followed only by the readers who do not wish to build one of the more advanced versions. Next month's article will be devoted to describing the various modifications that can be carried out.

The photograph of Fig. 74 will give readers some idea as far as front panel layout is concerned. In the basic version being described only one row of push-buttons, one card socket and ten push-terminal units will need to be mounted on the front panel. Care must of course be taken to ensure that components projecting behind the front do not foul anything that is mounted to the chassis.

Fig. 75 gives details of how the front panel components are wired. It may be found helpful to swop the red and black covers of the terminal units so that red represents the true variable and black the complement.

Next month: the various modifications that will extend the usefulness of the instrument will be discussed and a complete system diagram of the basic instrument will be given.

Three dimensional radar

The front cover picture shows a perspex scale model, illuminated by ultra-violet light, of the aerial system associated with a three-dimensional radar which is now in service with the Royal Air Force. The radar was developed by A.E.I. Ltd. (now GEC/AEI Electronics Ltd), in collaboration with the Royal Radar Establishment, Malvern, as a sensor for use in air-surveillance and air traffic control. The term "three-dimensional" implies that the information output includes the height as well as the plan-position of radar targets within the coverage. The version represented in the model was based upon an experimental radar which is still in use at R.R.E. for study and development of radar techniques. Both the model and the experimental radar were on view at the R.R.E. Open Days in June.

The radar operates in the S-band (approx. 3 GHz) and employs the stacked-beam principle; that is, the angular coverage in the elevation plane is built up from a series of individual overlapping beams rather than from a single shaped beam. The resulting angular resolution provides some degree of discrimination against interfering signals, such as echoes from ground features and from rain, and permits a rough division of the coverage into different levels of air space by means of the height-layering facility. Continuous height-finding on all targets within the coverage is another feature which follows from the stacked-beam form.

During the design phase there was an extensive study, by means of scale models mounted in a wind tunnel, of the wind forces which would be exerted upon the overall system. One outcome was the addition of wings to the structure backing the paraboloidal reflector, in order to give a more uniform angular variation of the torque required to turn the aerial at the nominal rate of 4 r.p.m.

Marconi LINCOMPEX...

Marconi radio terminal equipment

Marconi, foremost in the design of radio terminal equipment, have added to their already comprehensive range-Lincompex-the means of compensating for the variable characteristics of h.f propagation.

Lincompex

Developed from the original British Post Office design to give a service on $h . f$ radio telephone circuits comparable with high-quality, long-distance cakle. Improved service, fewer 'repeats' and greatly increased service hours make Lincompex the key to direct 'subscriber to subscriber' contact on long distance h.f circuits.

...the most advanced system available

- SMALL SIZE: Only one 7 in . shelf per channel.
- LOW COST: Introduction of new techniques has considerably reduced capital cost.
- RIGID STABILITY: Expertly engineered circuitry, inclucing microcircuits, gives the high degree of stability and linearity required for successful operation.

Marconi LINCOMPEX is designed for association with Marconi H5510 series of Terminal Equipments and built to maintain for years its designed performance.

Marconi Telecommunications Systems

The new SM111 dual-channel Oscilloscope. It's not the smallest scope sold, but, thanks to an SE breakthrough, gives you a full $10 \times 8 \mathrm{~cm}$. display, easily the highest screen-to-instrument ratio ever achieved in the world. The specification is of a good laboratory scope -18 MHz bandwidth, 20 mV sensitivity - increased in X 10 mode to

2 mV on both channels, d.c. trigger facility and a dc coupled X-amplifier. It's portable, a.c. or d.c. powered, the rugged performance is guaranteed in all environments. It's a star-studded SE Production, on general release NOW. We bet it costs much less than you think. Write or ring today for full details or for an immediate demonstration.

Towards True Stereophony

 A practical headphone system

 A practical headphone system}

by "Toneburst"

When a stereophonic programme is heard over loudspeakers the listener may experience a strange detachment which does not trouble him in monophonic reproduction. It seems very likely that this detachment is due to a contradiction in perception between certain unambiguous spatial clues given to the imagination and the poorly defined overall ambience recreated. (By ambience is meant here a complex of relatively low level sounds, largely reverberant, which are precisely located in three dimensions and which give 'life' to a concert hall performance.)

In a 'normal' living room sound reflection often becomes troublesome at a dynamic level lower than that required to develop a good spatial image. At low levels the ambient sounds are below the threshold of hearing or are absorbed by soft furnishings. Under these conditions complex choral and orchestral passages can become very cloudy at whatever dynamic level they are reproduced.

Two-and-a-half-dimensiohal sound

There is a notion abroad that good stereophony is something to do with the horizontal distribution of sounds. The image is described in terms of 'width', with 'depth' rather as an afterthought. There is no aesthetic merit in being able to point to the position of orchestral soloists-more often than not this is impossible in the concert hall if you close your eyes.

The difference between this so-called stereo, which we are encouraged to accept as a standard of fidelity, and true stereo iś, to use a visual analogy, the difference between the Cinerama picture screen and the live theatre as appreciated from a seat in the stalls.

Simply feeding 'stereophonic' signals from radio or records to ordinary two-channel (binaural) headphones will not provide stereophonic sound. What you get by doing this can readily be simulated in everyday life by sticking a short length of pipe into each ear.

Is there any real hope then for those of us who delight in a sense of occasion? How can we get a true stereophonic image?

The problem posed can be rationalized as follows:
Instead of attempting to recreate the whole sound scene in space and then allowing the hearing mechanism to make the best of it, we must somehow produce two signals which, when fed separately, one to each ear, are understood by the brain as a three-dimensional sound scene external to the listener.

Towards a solution

Fig. 1 is a graph first published by Weiner ${ }^{\text {d }}$. The curves show the differences in dynamic level between signals reaching the left and right ears from a sound source positioned at an angle of 45° to the left of the listener.

It will be noticed that though the sound intensity is the same (0 dB) for both ears at 200 Hz , at 3 kHz the level is up by 5 dB for the left ear and down by 10 dB for the right ear. Assuming that both ears are the same (!) an identical graph will be

Fig.1. Graph of level differences for a sound source located at 45° to the left of the listener.
obtained, matatis mutandis, for a speaker placed at 45° to the right of the listener.

These data were obtained by averaging a range of subjective responses-often widely different. Therefore as an average statement they are weakened insofar as error in subjective judgment is compounded with differences in human hearing. However, assuming that the human head has an average ear-to-ear width of 8 inches, thus giving an extra path length of $5 \frac{1}{3}$ inches to the ear farthest from the speaker, a calculated time delay of 0.4 ms is arrived at. Using these data and the fact that stereophony does not appear to depend upon time delays for frequencies above 1 kHz , but rather on relative intensities, Bauer ${ }^{2}$ used the C.B.S. Laboratories analogue computer to develop an electrical circuit for use with headphones, which simulates the cross-feed and delays ideally produced by stereophonic speaker systems. The form of the circuit which we can usefully discuss is shown in Fig. 2.

The same left and right signals which would normally be fed to two loudspeakers placed ideally at 45° to left and right of the listener are fed into the inputs of the circuit. After considerable attenuation the two signals meet each other in a π-network. The chokes cross feed the signals between the two channels and introduce delays for frequencies up to about 1 kHz . The capacitor-bypassed $50-\Omega 2$ resistors in series with the phones result in atteriuation that decreases with increasing frequencies. The circuit response follows Weiner's graph quite closely.

However, considering the points made earlier about the nature of Weiner's data before he averaged his results, it might be thought possible to bring some of the component values of Bauer's circuit more in line with what the shops sell. The simplicity of the circuit encoutages experimenting-tampering if you like-and Fig. 3 shows the writer's set-up.

Notes on the practical system

The use of $120-\Omega$ series resistors before the cross-feed network

Fig.2. Bauer's original network.
results in some loss of cross-feed below 200 Hz , but this is inaudible. On some occasions it might be desirable to control the image position, so a balance-control has been included across the outputs. The volume controls across the inputs can be replaced by fixed resistors if the amplifier controls are to be used. (It might be more convenient to leave the main amplifier

Fig.3. Experimental network.
controls alone, if they are normally set up for loudspeaker reproduction.) Needless to say, the amplifier is not required to supply much power but its stability must be good to tolerate the light loading.

Although the image with the experimental set-up is dramatically real-almost to the point of being a waking dream-some listeners have noticed a wide and near image slip from the front to the back, as though by some acoustic mirror trick. This is an aural illusion which compares with certain geometrical optical illusions. Simply reminding oneself where the image should be cures the complaint.

Dynamic levels far higher than tolerable for mono listening are gratefully accepted as stereophonic fuel.

The best effect will of course be obtained with earphones with a flat frequency response. The comfortable phones selling at moderate prices in many shops are not too good in this respect-rapid tremolo effects may be experienced at high dynamic levels. Best of all would be phones with the sound duct coaxial with the meatus of the outer ear.

The layout of the system is uncritical and may be set up inside or outside the main amplifier as deemed convenient.

REFERENCES

1. Francis M. Weiner, "On the Diffraction of a Progressive Sound Wave by the Human Head", f. Acoust. Soc. Am., Vol. 19, pp. 143-146 (1947).
2. B. B. Bauer, "Stereophonic Earphones and Binaural Loudspeakers", J. Audio Eng. Soc., Vol. 9, No. 2, April 1961.

Wireless World Reprints

When we recently announced that reprints of several of the more popular constructional articles were to be issued, the booklet (No.1) containing the 20 -watt and 30 -watt amplifiers designed by Dr. A. R. Bailey was not then available. This has now been prepared and will be on sale within the next month.

For the sake of new readers or those who missed the original announcement we reproduce the full list of Wireless World reprints obtainable from the Trade Counter, Dorset House, Stamford Street, London S.E.1. Prices include postage and packing.

The next reprint in the series will, it is hoped, be that covering the Wireless World Colour Television Receiver, but a further announcement will be made when this is ready.

No. 1. High-fidelity Amplifiers by A. R. Bailey (Nov. and Dec. 1966, and May, June and Nov. 1968). Contains articles on 20 - and $30-\mathrm{W}$ amplifiers; a pre-amplifier; and on output transistor protection plus modifications and relevant correspondence. Price 5 s .

No. 2. Stereo Decoder and Simulator by D. E. O'N. Waddington, (Jan. and Oct. 1967). Describes the construction of a stereo decoder for positive or negative power supplies and contains details of an instrument for producing a stereo muluplex signal. Price 3s.

No. 3. Portable 1-MHz Frequency Standard by L. Nelson-Jones (Feb. 1968). Presents a design for a frequency standard which is phase locked to the 200 kHz Light Programme transmissions. Price 3s.

No. 4. Wide-range General Purpose Signal Generator by L. Nelson-Jones (April 1968). Range 150 kHz to 120 MHz in five bands; output attenuator range 100 dB in 20 dB steps ($\pm 0.5 \mathrm{~dB}$); modulation depth 0 to 50% (can be set to within $\pm 5 \%$ of meter indication); max. output 100 mV (from 75Ω). Price 3s.

No. 5. Low-cost High-quality Loudspeaker by P. J. Baxandall (Aug. and Sept., 1968). Can be built for a few pounds! Excellent performance above 100 Hz but is improved if used with a woofer for the low frequencies. Price 5 s .

No. 6. Wireless World Crosshatch and Dot Generator (Sept. 1968). A pocket sized instrument using digital integrated circuits. Price 3s.

In addition, the following reprints from earlier issues are still available:
Wireless World Oscilloscope: Main frame, X amplifier, E.H.T. unit (March, June, July and August 1963), price 5s; No. 1 (audio) Y amplifier (April 1963), price 2 s 6 d ; No. 1 (audio) Timebase Unit (May 1963), price 2s 6d; Calibration-Alternative E.H.T. Unit (Feb. and Oct. 1964), price 2s 6d; and Wide-band Amplifier (March and April 1964), price 2s 6d.
Wireless World Audio Signal Generator (Nov. and Dec. 1963). Price 3s.
Wireless World Crystal-controlled F.M. Tuner (July 1964). Pulse counting type not suitable for stereo. Price 3s.

Transistor High-quality Audio Amplifier by J. Dinsdale, (Jan and Feb. 1965 Very popular 10W design. Price 5 s .

Wireless World Computer (Aug. to Dec. 1967). Eight-bit digital machine for instructional purposes. Price 10s.

Techniques of Acoustical Holography

 An outline of the principles and possible applicationsby D. Holt* and J. R. Coldrick*

The problem of seeing clearly in an optically opaque medium is currently being tackled by such methods as X-rays and underwater sonar. However, these methods are not entirely satisfactory because turbulence and turbidity in the medium can cause image degradation, and small density variations may not be detected. There are reasons to believe that the answer to this problem may be provided by a new rechnique, known as acoustical holography, first reported about two years ago ${ }^{1}$.

Sound waves have been used for imaging for many years. Pulse-echo (sonar) systems have been employed at sea to detect underwater objects, although their reliability for identification is generally recognized to be limited.

Direct image-forming systems have also been used. In these methods an acoustical lens or mirror forms an acoustical image which may be transformed into a visual image. However, both the depth of field and the angular field of view are limited and the resolution is limited by geometrical aberrations as well as by the turbulence and turbidity of the medium.

All of the above limitations may be overcome by acoustical holography which, in addition, possesses the advantages that optical holography has over conventional optical imaging systems, such as the possibility of forming three-dimensional images.

There has been considerable investigation in several laboratories during the past two years, but there still remains a number of basic problems to be solved before the technique of acoustical holography can find very extensive applications. If these problems can be overcome, applications can be expected in medical diagnosis (e.g. visualisation of tumours), underwater exploration and mapping, engineering inspection, and ultrasonic microscopy.

Principles of holography

One of the oldest principles in optics is the use of a lens to form an image of an object. However, in 1948 Gabor ${ }^{2}$ announced a process for producing images without the use of lenses. This new process exploits all the optical information given by an object, in a three-dimensional way, and has been given the name holography, from the Greek holos, meaning 'the whole'. The idea was originally conceived by Gabor as a means of improving electron microscope pictures, and although he was able to demonstrate the principle, it was the availability of the coherent laser source of light about twelve years later that first enabled the technique to be put into practice. Holography is a twostage process involving the production of an intermediate record of the object-the hologram-from which an image can be reconstructed.

The optical holographic process is illustrated in Fig. 1. At the construction stage, shown in Fig. 1(a), a parallel beam of coherent laser light partially illuminates the mirror M and the

[^3]

Fig. 1. The holographic process: (a) making the hologram; (b) reconstructing the three-dimensional image.
object O . The object scatters diffusely and some of the scattered light reaches the photographic plate P where it interferes with the reference beam reflected from M. The photographic record of the interference pattern constitutes the hologram. If now, a transparency made from this photographic record is illuminated by the coherent reference beam, the image of the original object is reconstructed as shown in Fig. 1(b). The reconstructed image is three dimensional and exhibits parallax and perspective effects, etc.

If two acoustic wavefronts are caused to interfere and the resultant sound field pattern is recorded, the recording is an acoustical hologram. If this acoustic interference pattern is converted into an optical one and then placed in a laser beam, a reconstruction can be obtained. Thus an optical image of an object can be obtained from a recording of how the object diffracts sound waves. Due to the fact that the wavelength of the laser light is much less than the wavelength of the sound, the reconstructed optical image will be very small. In order to view the image full size, the acoustical hologram would have to be first demagnified in the ratio of optical wavelength to acoustic wavelength before the hologram is placed in the laser
beam. However, since in practice this would result in a reduced hologram of about 0.1 mm square, the reconstructed image would be extremely faint. For this reason, a compromise is usually made and the hologram is reduced to about 5 mm square; the reconstruction can then be viewed through either a low power microscope or an eyepiece.
Although acoustical holography is analogous to optical holography, it poses quite different problems during investigation. Progress in optical holography was hampered for years because, before the laser, coherent light sources were not available. Recording the holograms was simply a matter of using a high resolution photographic plate. In acoustical holography however, most sound sources are coherent, but the difficulty has been in recording the interference pattern since there is no acoustical equivalent of the photographic plate.

Recording acoustical holograms

The most commonly used method of recording acoustical holograms is by X-Y scanning a single receiver or pick-up over the hologram plane, converting the received signal into a lamp brightness modulation, and recording the brightness variations on film by means of a camera and time exposure. A typical holographic recording process is illustrated in. Fig. 2. It will be

Fig. 2. Typical acoustical holograph recording process.
noted that in this case two sound sources are used, rather than a single source as in the optical case of Fig. 1(a). The reference beam in optical holography may be generated by reflecting light from a plane mirror, but in açoustical holography a separate source may be used because two sources driven from the same electrical source must be coherent.

The sound wave from the reference and the sound diffracted by the object form an interference pattern at the water surface. The interference pattern or hologram is recorded by a piezoelectric crystal which converts the sound intensity into an electrical signal which is then amplified, detected and used to modulate the brightness of a lamp. As the pick-up scans the water surface in a raster, the lamp brightness modulations are recorded on film. The electronic system is very simple in
principle, but there are troubles. The first difficulty is to distinguish between the true acoustic signal and the unwanted electrical pick-up in the receiver leads. Careful screening of leads, of course, is essential, but a differential amplifier with a high common-mode rejection ratio was used to reduce unwanted signal to a minimum. A linear integrated circuit used in a differential amplifier configuration with a differential gain of about 100 has been used successfully as a first signal amplifier. This is followed by a simple diode detector and an $R C$ smoothing network which produces a low frequency signal which after further amplification modulates a lamp. Two types of lamp have been used; a small tungsten filament lamp, and later a Ferranti gallium-phosphide junction diode (type XP50) which emits green light. It soon became evident that the tungsten lamp was introducing temporal delays which were shown up in the holograms as small displacements of the fringes. The response of this type of lamp is insufficiently fast even at the slowest scanning speeds. A current drive rather than a voltage drive is required for a gallium-phosphide lamp, and with this provision satisfactory holograms were produced. The intensity of a GaP diode is much lower than a tungsten lamp, and hence a faster photographic film for recording was necessary. The hologram of Fig. 3 was recorded on type 57 Polaroid

Fig. 3. Hologram (left) and reconstructed image of a letter \mathcal{F}.
Land film, the time taken to complete the raster scan being 30 m . The object in this case was a letter J, cut out of thin aluminium sheet. The stroke width of the J was 20 mm , which corresponds to only 13 wavelengths at the frequency of 1 MHz used throughout these experiments. The hologram was reduced in size to about 5 mm square $_{3}$ and placed in the optical system shown in Fig. 4. The reconstructed letter J may be seen to the left of the bright area. The pattern to the right of the bright area is the out-of-focus conjugate image.

Fig. 4. Optical system for reconstructing a three-dimensional image.

Acoustical holograms have been produçed by techniques other than mechanical scanning, for example Mueller and Sheridan ${ }^{1}$ used intense sound sources which caused rippling of the water surface. The water surface was then photographed, the photograph was reduced in size, and a transparency made from the reduced photograph was placed in a laser beam for viewing the reconstruction. A different method, demonstrated by Marom et al. ${ }^{3}$, used an ultrasound camera as a sound field detector. This device is similar in principle to a vidicon except that the photoconductor is replaced by a piezoelectric material.

The mechanical scanning frame

The mechanical scanning frame used to produce the holograms is shown in Fig. 5. The carriage is moved in the \mathbf{X} direction by means of a pulley and belt system, and in the Y direction by

Fig. 5. Mechanical scanning frame used to produce holograms.
means of screw threads. The speed in the X direction is variable from $10 \mathrm{~mm} / \mathrm{s}$ to $100 \mathrm{~mm} / \mathrm{s}$, and in the Y direction, a full traverse takes between 15 m and 30 m . Great care must be taken to minimize all vibrations. The hologram plane should be flat to within $1 / 8(0.2 \mathrm{~mm}$ at 1 MHz in water), and vibration amplitudes should be less than $1 / 8$. Fig. 5 also shows the water tank and sound absorbing material at the base of the tank. The GaP diode may be seen just above the transducer mounted on the slide. An alternative method of recording the hologram is to brightness modulate a c.r.o. and slowly build up a raster. The difficulty here is that the spot on the c.r.t. must be accurately slaved to the position of the transducer within the frame. This method has been used by Metherell et al. ${ }^{4}$

Electronic reference techniques

A unique feature of acoustical holography results from the fact that linear acoustic detectors are available. All light detectors are of the square-law type. Indeed it is the main contribution of holography that it makes possible the recording of phase information of an optical field. Linear acoustic detectors, on the other hand, allow independent manipulation of the amplitude and phase information of the acoustic field, and hence, the feasibility of recording each type of information separately if so desired, or the use of an electronic reference beam. The best acoustical holograms produced so far have all been made with a reference beam, the system being illustrated in Fig. 6. The sound is detected as before and amplified, but in

Fig. 6. System using a reference beam from an oscillator.
this case is summed with a signal direct from the oscillator. Since the sound is coherent with the electrical signal producing it, the signal direct from the oscillator acts as a plane wavefront and a hologram is produced. The signal from the summer is rectified and displayed in the normal way.

The use of a plane reference wave enables some of the classic interference experiments to be carried out. A iypical example is the Newton's rings pattern of Fig. 7. Here interference of the

Fig. 7. Newton's rings.
spherical wavefront from the acoustic source and the electrical reference signal was recorded by the scanning frame as the characteristic pattern. Placing an object between the sound

Fig. 8. Holograms and reconstructed images of hardboard F and aluminium \mathcal{f}
source and the water surface produces modulation of the Newton's rings as illustrated in Fig. 8.

If these holograms are placed in a laser beam for viewing (after first being reduced in size), the reconstructions shown may be found. The edge of the letter J may also be seen in the reconstruction. The letter F was made from hardboard. Note that the cutout appears bright, whilst the object appears dark, and that there is more optical noise in the J image, since the aluminium is a better sound reflector than hardboard and therefore introduces noise into the hologram. Another feature is that irregularities in the cutouts are recognizable in the reconstruction, for example the top edge of the F is not straight. The depth of the irregularity is about 1 mm , therefore the resolution of the reconstruction is about one wavelength. This, then, is a fundamental limitation of an acoustical holographic viewing system, that the resolution is limited to an acoustic wavelength, which may be several millimetres.

Problems remaining

One of the basic problems is that most objects have surfaces which appear smooth to acoustic waves, and are therefore perfect reflectors. If the surface irregularities are smaller than an acoustic wavelength, a spherical object appears as a point 'highlight' whilst a cylindrical object appears as a line 'highlight'. Acoustical images may appear to be quite different from optical images and require interpretation. A further problem which is hindering the progress of research is that efficient acoustical to optical image converters are not available.

If these problems and others, including the achievement of a real-time or near real-time reconstruction, can be overcome, acoustical holography may establish itself, not only as another technique of visualization, but as the only technique that will provide a solution to certain problems in medical diagnosis, geology, oceanography, and engineering inspection.

Acknowledgement

The authors acknowledge useful discussions with Dr. B. M. Watrasiewicz.

REFERENCES

1. "Sound Holograms and Optical Reconstruction", by R. K. Mueller and N. K. Sheridon, Applied Physics Letters, 9, p.328, Nov. 1966.
2. "A New Microscopic Principle", by D. Gabor, Nature, 161, p.777, 1948.
3. "Ultrasound Holography by Electronic Scanning of a Piezo-electric crystal", by E. Marom et al., Applied Physics Letters, 12, p.26, Jan. 1968.
4. "Simulated Reference in a Coarsely Sampled Acoustical Hologram", by A. F. Metherell and H. M. A. El-Sum, Applied Physics Letters, 11, p.20, July 1967.

Announcements

Seventeen organizations, including the I.E.E., I.E.R.E., I.E.E.E., I.E.E.T.E. and S.E.R.T., are sponsoring a symposium on management and economics in the electronics industry to be held from the 17 th to 20 th March next year. One of the sessions will deal with personnel and training and include subjects such as "educating the electronics engineer", and "the role of the electronics technician engineer and technician". The secretariat is at the I.E.E., Savoy Place, London, W.C.2.

Datafair 71 will be the fourth conference on computers and computing of the series initiated and organized by the British Computer Society. It is to be held at Nottingham University from 29th March to 2nd April 1971.
A one-day symposium on multilayers has been organized jointly by the U.K. Branch of the International Society for Hybrid Microelectronics and the Ministry of Technology. It will be held on September 17th at the I.E.E., Savoy Place, London W.C.2. Registration forms (fee £4) and further information can be obtained from D. I. Gaffee (U.K. secretary), 36 Essendene Road, Caterham, Surrey.
The 3rd conference on Magnetic Recording organized by the Hungarian Optical, Acoustical and Filmtechnical Society will be held from August 11th to 15th, 1970, in Budapest.

European Microwave Conference. The first of what is planned to be a series of biennial conferences on microwave technology (alternating with the well-established MOGA conference on microwave and optical generation and amplification) is being held at the I.E.E. from September 8th to 12 th. It is co-sponsored by the I.E.E., I.E.R.E. and I.E.E.E.

The next International Broadcasting Convention, sponsored by the Electronic Engineering Association and several professional institutions, will be held at Grosvenor House, London, from 7th to 11 th September, 1970.
The conference on trunk telecommunication by guided waves which was to be held at the I.E.E. from 15th to 17 th September 1969 has been postponed until late September or early October 1970.

Wee have been notified by the following establishments that they are holding Radio Amateurs' Examination Courses during the coming session: Wembley Evening Institute, Copland School, High Road, Wembley, Middx; Gascoigne Recreation Centre, Gascoigne School, Morley Road, Barking, Essex; Mexborough Schofield Technical College, Park Road, Mexborough, Yorks; Brentford Centre for Adult Education, Brentford Secondary Girls' School, Clifden Road, Brentford, Middx; Adult Education Institute, Hereford Centre, Ely Road, Grimsby, Lincs; and Ainsty Institute for Further Education, Knaresborough Centre, Stockwell Road, Knaresborough, Yorks. Some of these will also be holding Morse classes.

A radio and television evening course covering theory and some practical work, will be held at Stonebridge Evening Institute, Brentfield Road, London N.W. 10 , beginning in September.

The headquarters of the Association of Supervisory and Executive Engineers has transferred from 26 Bloomsbury Square, London W'C.1, to Wix Hill House, West Horsley, near Guildford, Surrey (Tel: Clandon $383 / 6$).

General Microwave Corporation, Long Island, New York, have appointed MI-Sanders as sole U.K. and Eire distributors for their range of products which include thin film power meters, microwave power monitors, an automatic solid-state noise figure meter and noise generators.

Athena Semiconductor Marketing Co. Ltd., 140 High Street, Egham, Surrey, have been appointed representatives of National Semiconductor Corporation, of Santa Clara, California, U.S.A.

Cosmocord Lid, Eleanor Cross Road, Waltham Cross, Herts, have been appointed sole U.K. agents for a range of magnetic pickup cartridges manufactured by the Empire Scientific Corporation of New York.

Rediffusion Industrial Services Ltd., Astronaut House, Hounslow Road, Feltham, Middlesex, have been appointed agents in the U.K. and Ireland for the International Video Corporation, manufacturers of colour television and colour television cameras.

All relay design, manufacturing and sales activities of Clare Elliott Lid., Elliott Brothers (London) Ltd and Elliott Automation (Relay Division) now operate under the name of Associated Automation Ltd, a member of the GEC group of companies.
Thermionic Products (Electronics) Ltd, now a member of the Racal Group, have changed the name of the company to Racal-Thermionic Lid, Hythe, Nr. Southampton, Hants.
Elstone Electronics Ltd have changed the name of the company to Farnell-Tandberg Ltd, Hereford House, Vicar Lane, Leeds 2.
A new company, Integrated Photomatrix Ltd, of The Grove Trading Estate, Dorchester, has been set up to provide a service in the area of opto-electronic components and instrumentation.
H H Electronic of 147 High Street, Harston, Cambridge, have moved to Industrial Site, Cambridge Road, Milton, Cambridge CB4 4AZ (Tel: Cambridge 63070).

Fairchild Semiconductor Ltd have opened European headquarters at 62 Wiesbaden, Aarstrasse 1, Postfach 2740, West Germany. Marketing Offices are now established in England, France, Germany and Italy.
Muirhead are to supply sixteen facsimile communications units for weather picture recording in the Soviet Union. The contract is worth over $£ 55,000$.
A $£ 1 \mathrm{M}$ order for the extension of South Korea's broadcasting service has been received by Pye TVT Lid. Under the contracts the company will provide studios, transmitters, and ancillary equipment for three new television companies.

Plessey Electronics Group has received an order from the British Aircraft Corporation for lightweight i.f.f. transponder equipments to be installed in BAC 167 aircraft for the Singapore Government.

Operational Amplifiers

8. Selection of a practical amplifier

by G. B. Clayton,* B.Sc., A.Inst.P.

In previous articles the principles underlying some of the many possible applications of op. amps have been dealt with. In order to implement a particular application, further consideration must be given to the performance of real amplifiers, as distinct from that of ideal amplifiers. The meanings of the principal parameters used to specify an amplifier's performance have already been discussed. From a knowledge of these parameters the designer must select the most suitable amplifier for an intended application. Selection of an amplifier to fulfil operational requirements is straightforward for some aspects of a design, but in other aspects the relationship between the published characteristic and the performance of the amplifier to be expected in a specific circuit is less obvious. In what follows we will consider some of the factors which must be borne in mind when selecting an amplifier to perform a specific task.

Output voltage and current capability. This must be adequate for the proposed application. It must be remembered that the amplifier output current is supplied to both the external load and to any feedback path that might be connected to the amplifier output. Remember also that it is always possible to increase the output current capability of an amplifier by the addition of a booster amplifier.

Open-loop voltage gain, Avol. The exact value of the open-loop gain of an amplifier will normally not be of great significance since when used with negative feedback the operating gain is the closedloop gain, and this is determined by the feedback components. In such cases the value of $A_{V O L}$ will control the value of the loop gain ($\beta A_{V O L}$) and hence the gain error and other aspects of closed loop performance which are dependent on loop gain (see first article February). Manufacturers normally specify a guaranteed minimum value of $A_{V O L}$ for an amplifier of a particular type, and an amplifier should be chosen so that this minimum value is sufficient to ensure adequate loop gain in the particular application. A greater loop gain resulting
from the use of an amplifier with Avol in excess of the minimum will do no harm.

Drift performance. Several factors contribute to the drift of practical amplifiers Drift may be caused by changes in supply voltages. Amplifiers also show a long term drift with time due to component ageing, but drift with temperature is normally the dominant drift source and in many applications represents the largest single source of

Fig. 1. Simplified equivalent circuit for real amplifier.
error. The drift performance of amplifiers is normally specified in terms of the temperature coefficients of bias current and input offset voltage and current. These parameters must be related to the drift errors to which they will give rise in a particular circuit configuration if one is to assess the suitability for use of a particular amplifier type.
The significance of input voltage offset ($V_{i o}$), input bias current (I_{b}) and input offset current ($I_{i o}$) was considered briefly in

It is assumed that $R_{8} \ll R_{1}$. If this is not the case then R_{1} should be replaced by ($\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{g}}$) in the equations

The feedback fraction

$$
\beta^{\prime}=\frac{\frac{\mathbf{R}_{\mathbf{1}}\left(\mathbf{R}_{1 n}+\mathbf{R}_{\mathbf{a}}\right)}{\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{I n}}+\mathbf{R}_{\mathbf{z}}}}{\mathbf{R}_{\mathbf{z}}+\frac{\mathbf{R}_{\mathbf{1}}\left(\mathbf{R}_{1 n}+\mathbf{R}_{\mathbf{z}}\right)}{\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\text {in }}+\mathbf{R}_{\mathbf{z}}}} \cdot \frac{\mathbf{R}_{1 n}}{\mathbf{R}_{1 n}+\mathbf{R}_{\mathbf{z}}}
$$

With equal impedances connected to input terminals.

$$
\mathbf{R}_{\mathbf{a}}=\frac{\mathbf{R}_{\mathbf{1}} \mathbf{R}_{\mathbf{z}}}{\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{z}}}
$$

the input error becomes

$$
\mathrm{V}_{10} \frac{\mathrm{R}_{\mathbf{g}}+\mathrm{R}_{1}}{\mathrm{R}_{\mathbf{z}}}+\mathrm{I}_{10} \mathrm{R}_{1} \quad\left(\mathrm{I}_{10}=\mathrm{I}_{\mathrm{b}}^{-}-\mathrm{I}_{\mathrm{b}}^{+}\right)
$$

With the non-inverting input terminal earthed, $\mathbf{R}_{\mathbf{a}}=0$,
the input error term becomes

$$
V_{10} \frac{\mathbf{R}_{8}+\mathbf{K}_{1}}{\mathbf{R}_{8}}+I_{6}^{-} \mathbf{R}_{1}
$$

Fig. 2. Errors for inverting configuration.

It is assumed that $\mathbf{R}_{\mathrm{s}} \ll \mathrm{R}_{\mathrm{cm}}$. Common mode error voltage

$$
\mathrm{e}_{\mathrm{ecm}}=\frac{\mathrm{e}^{+}}{\text {c.m.r.r. }}
$$

The feedback fraction

$$
\beta^{\prime}=\frac{\frac{\mathbf{R}_{1}\left(\mathbf{R}_{\mathrm{a}}+\mathbf{R}_{i n}+\mathbf{R}_{\mathrm{s}}\right)}{\mathbf{R}_{1}+\mathbf{R}_{\mathrm{a}}+\mathbf{R}_{1 n}+\mathbf{R}_{\mathrm{s}}}}{\mathbf{R}_{2}+\frac{\mathbf{R}_{1}\left(\mathbf{R}_{\mathrm{a}}+\mathbf{R}_{i n}+\mathbf{R}_{\mathrm{g}}\right)}{\mathbf{R}_{1}+\mathbf{R}_{\mathrm{a}}+\mathbf{R}_{i n}+\mathbf{R}_{\mathrm{s}}}} \cdot \frac{\mathbf{R}_{1 n}}{\left(\mathbf{R}_{\mathrm{a}}+\mathbf{R}_{i n}+\mathbf{R}_{\mathrm{g}}\right)}
$$

With equal impedances connected to the two input terminals, i.e. with

$$
\mathbf{R}_{\mathrm{a}}=\mathbf{R}_{\mathrm{B}}-\frac{\mathbf{K}_{1} \mathbf{R}_{2}}{\mathbf{R}_{1}+\mathbf{R}_{2}}
$$

the input error term becomes $\mathrm{e}_{\mathrm{ccm}}+\mathrm{V}_{\mathrm{iO}}+\mathrm{I}_{\mathrm{io}} \mathrm{R}_{\mathrm{s}}$.

Fig. 3. Errors for non-inverting configuration.
the first article of this series. We must now consider the way in which these parameters affect the performance of a practical amplifier used in a particular feedback configuration. An ideal amplifier with its differential input terminals both connected to earth would give zero output voltage; the real amplifier under these conditions gives some non-zero output voltage or offset. It is convenient to refer this offset voltage to the amplifier input and to consider the output offset voltage of a real amplifier in terms of an ideal amplifier with a voltage generator of magnitude equal to the input offset voltage of the real amplifier connected to its input terminals. In a similar manner the effects of input bias currents may be represented in terms of current generators and an equivalent circuit representing the electrical behaviour of the real amplifier may be set up.
A simplified equivalent circuit for a real amplifier is shown in Fig. I. The circuit introduces further departures of the real from the ideal ($Z_{i n}, Z_{c m}, Z_{0}$) which are normally specified for an amplifier and have not previously been mentioned in these articles. $Z_{i n}$ represents the differential input im pedance defined as the impedance between the two input terminals. In addition to this impedance between the amplifier input terminals there is also an
effective impedance from each input to earth or power supply common which is called common-mode input impedance. The parallel sum of the impedances from each input to earth is sometimes specified as the common-mode input impedance

$$
Z_{c m}=\frac{Z_{c m}^{+} Z_{c m}^{-}}{Z_{c m}^{+}+Z_{c m}^{-}}
$$

in other cases $Z_{c m}^{+}$and $Z_{\text {em }}^{-}$are specified separately. $Z_{c m}$ is normally some ten to a hundred times greater than $Z_{i n}$. The impedances are largely resistive. Reactive components may normally be represented by shunt capacitance of a few picofarads. In most applications, as we shall see, the impedances do not have a dominant roll in determining closed loop performance. Z_{0} is the open-loop output impedance. This can vary from a few ohms to as much as several thousand ohms with the majority of solid state amplifiers having an output impedance in the range 100 to 500 ohms. The effect of the open-loop output impedance is to form a voltage divider with the effective amplifier load (external load plus feedback components) thus attenuating the open loop gain. Manufacturers normally specify open loop gain at a rated load, thus effectively allowing for the existence of Z_{0}. Open loop gain will, however, vary
slightly with change in amplifier load because of non-zero output impedance.
The equivalent circuit may ba used to compute errors in a particular application, and this has been carried out for the inverting amplifier configuration in Fig. 2 and for the non-inverting configuration in Fig. 3. Results only are quoted, but the details of the derivations are included in the appendices.

The equations of Figs 2 and 3 illustrate the effects of departures from the ideal on the closed-loop performance of an amplifier. We may use them to compute the temperature drift to be expected with a particular amplifier type. They also provide help in deciding which circuit configuration is most advantageous for a particular application.

Before one can decide whether or not the drift performance of an amplifier is adequate for a particular application one needs to know a value for the allowable drift error. This is related to the magnitude of the input signal and the accuracy with which it is desired to manipulate this signal. For example if it is required to amplify a d.c. signal of O.I V with an accuracy of 0.1% then the allowable drift in the input error is 100 microvolts. This assumes that other sources of error such as gain error factor and loading error have already been allowed for. An amplifier should be chosen so that the drift in the input error over the expected range in operating temperature is less than the allowable drift error. The input offset error can, of course, be reduced to zero at a particular temperature by the application of an offset signal using an offset balance control (see later) and the temperature drift to be expected can be obtained by substitution of the specified temperature coefficients of the offsets in the input error term. Thus in the case of the inverting configuration with the non-inverting input terminal earthed the drift in the input error for a temperature ΔT is

$$
\Delta T\left(\frac{d V_{i o}}{d T} \cdot \frac{R_{2}+R_{1}}{R_{2}}+\frac{d I_{b}^{-}}{d T} R_{1}\right)
$$

If the amplifier is used with equal impedances connected to its two input terminals the drift term becomes

$$
\Delta T\left(\frac{d V_{i o}}{d T} \cdot \frac{R_{2}+R_{1}}{R_{2}}+\frac{d l_{i o}}{d T} R_{1}\right)
$$

which illustrates the value of this technique in reducing drift due to the temperature dependence of bias currents. The temperature drift for the non-inverting configuration is obtained in the same way by substituting the appropriate offset temperature coefficients in the input error term. Common-mode input error $e_{\text {ecm }}$ is proportional to the input signal and can be allowed for by adjustment of closed-loop gain (see first article).

The equations enable a choice of the most suitable configuration in terms of allowable drift and closed-loop input impedance. The closed-loop input impedance of the inverter is R_{1} but amplifier bias current flowing through R_{1} adds to the input error. There is thus a conflict between the requirement for a high input impedance and a low offset
error. The non-inverting configuration, where other factors allow its use, generally makes a better choice for high inputimpedance, wide-bandwidth circuits. The high closed-loop input impedance possible with this configuration arises from the way in which the feedback is applied. The input signal is opposed by the signal feedback, and the open-loop input impedance of the amplifier $Z_{i n}$ is effectively multiplied by the loop gain. With large loop gains the upper limit of closed-loop input impedance is effectively the common-mode input impedance $Z_{c m}$. The input drift error is always less with the non-inverting configuration; this follows obviously from the fact that the bias current I_{b} flows through the series combination $R_{s}+R_{1}$ in the case of the inverter but only through R_{8} in the case of the non-inverter. The high input impedance of the non-inverter is obtained without the use of large values for R_{1} and R_{2}. Relatively low values for these components reduce the effects of stray capacitance and allow a wider bandwidth with this configuration. However, as we have seen in previous articles ${ }_{\gamma}$ it is not possible to use the non-inverting configuration for functions such as integration and summation. There are also problems associated with common-mode limitations and errors.

Amplifier open-loop input impedance

 $\left(Z_{i n}\right)$. The equations of Figs 2 and 3 show that the value of the feedback fraction is dependent on the value of the amplifier open-loop input impedance. If $R_{i n}>R_{1}$ the finite value of $R_{\text {in }}$ has a negligible effect and$$
\beta^{\prime} \simeq \beta=\frac{R_{1}}{R_{1}+R_{2}}
$$

For values of R_{1} comparable to $R_{i n}, \beta^{\prime}$ and the loop gain $\left(\beta^{\prime} A\right)$ are reduced. This does not have a direct effect on closed-loop gain except in so far as it results in a larger error factor. It does, however, cause a degradation in closed-loop performance through its effect on the closed-loop properties such as output impedance, distortion and bandwidth, which are dependent on the magnitude of the loop gain. This means that as a general rule R_{1} should be given some value less than the open-loop input impedance of the amplifier in use.

Frequency response characteristics

 are a further consideration in the selection of an amplifier for a particular application. Many applications are concerned mainly with d.c. and frequencies within the audio range, and in such cases almost any amplifier will be satisfactory from the standpoint of frequency response, which will not then be a significant factor in amplifier selection. However, in wide bandwidth and transient applications frequency response, slewing rate and maximum frequency for full output signal are all of importance in amplifier selection. The significance of these parameters was considered in the second article of this series.
APPENDICES

1. Errors in inverting configuraxion

$$
I_{i}=I_{f}+I^{\prime}+I_{b}^{-} \quad . \quad \text { eq. (a) }
$$

Where $\quad I_{i}=\frac{e_{s}-\left(V_{i 0}+e_{\epsilon}+e_{+}\right)}{R_{1}}$,

$$
I^{\prime}=\frac{e_{\ell}}{R_{\mathbf{i} n}}
$$

and

$$
I_{f}=\frac{V_{10}+e_{\epsilon}+e_{+}-e_{0}}{R_{2}}
$$

$$
\text { (Assuming } R_{1} \gg R_{\mathrm{B}} \text {) }
$$

But

$$
\begin{aligned}
& e_{+}=-I^{\prime \prime} R_{a}=-\left(I_{b}^{+}-I^{\prime}\right) R_{a}, e_{e}=-\frac{e_{0}}{A v O L} \quad \text { and substitution } \\
& I^{\prime}=-\frac{e_{0}}{A_{V O L} R_{i n}}, I_{i}=\frac{e_{s}+\frac{e_{0}}{A_{V O L}}+I_{b}^{+} R_{a}-V_{i 0}+\frac{e_{o} R_{a}}{A_{V O L} R_{i n}}}{R_{1}} \\
& I_{f}=\frac{V_{i 0}-\frac{e_{0}}{A_{V O L}}-I_{b}^{+} R_{a}-\frac{e_{0}}{A_{V O L} R_{i n}} R_{a}-e_{0}}{R_{2}}
\end{aligned}
$$

Substitution in eq. (a) and rearrangement gives

$$
\begin{aligned}
-e_{0}\left[\frac{1}{A_{V O L}} \frac{R_{2}}{R_{1}}+\frac{1}{A_{V O L} R_{i n}} \frac{R_{2}}{R_{1}} R_{a}\right. & \left.+\frac{1}{A}+\frac{1}{A_{V O L} R_{i n}} R_{a}+1+\frac{1}{A_{V O L}} \frac{R_{2}}{R_{i n}}\right] \\
& =e_{s} \frac{R_{2}}{R_{1}}-V_{i o}\left(\frac{R_{2}}{R_{1}}+1\right)-I_{b}^{-} R_{2}+I_{b}^{+}\left(\frac{R_{2}}{R_{1}} R_{a}+R_{a}\right)
\end{aligned}
$$

Introducing the feedback factor β^{\prime} and rearrangement gives the expression included in Fig. 2.

2. Errors in non-inverting configuration

It is assumed that $R_{c m} \geqslant R_{8}$ so that $R_{c m}$ will have negligible effect on the errors and it is omitted from the equivalent circuit. Common-mode errors are represented by the equivalent input error voltage

$$
e_{\epsilon c m}=\frac{e^{+}}{\text {c.m.r.r. }}
$$

$$
\begin{equation*}
e_{s}-I_{i} R_{s}+e_{\varepsilon c m}-e_{\varepsilon}+V_{i o}-\left(I^{\ell}-I_{b}^{-}\right) R_{a}-\left(I_{o}+I^{\mu}-I_{b}^{-}\right) R_{\mathbf{1}}=0 \tag{b}
\end{equation*}
$$

But

$$
e_{e}=\frac{e_{0}}{A_{V O L}}, I^{\prime}=\frac{e_{\epsilon}}{R_{i n}}=\frac{e_{o}}{A_{V O L} R_{i n}}, I_{i}=I_{b}^{+}+I^{\prime}=I_{b}^{+}+\frac{e_{o}}{A_{V O L} R_{i n}}
$$

Also

$$
\left(I_{0}+I^{\prime}-I_{b}^{-}\right) R_{1}+I_{0} R_{2}=e_{0}
$$

$$
I_{o}=\frac{e_{o}-\left(I^{\prime}-I_{b}^{-}\right) R_{1}}{R_{1}+R_{2}}
$$

Substitution in eq. (b) gives

$$
\begin{aligned}
& e_{s}-\left(I_{b}^{+}+\frac{e_{0}}{A_{V O L} R_{i n}}\right) R_{s}+e_{\epsilon c m}-\frac{e_{0}}{A_{V O L}}+V_{i o}-\left(\frac{e_{0}}{A_{\nabla O L} R_{i n}}-I_{b}^{-}\right) R_{a} \\
&-\left[\frac{e_{0}-\left(\frac{e_{0}}{A_{V O L} R_{i n}}-I_{b}^{-}\right) R_{1}}{R_{1}+R_{2}}+\frac{e_{0}}{A_{V O L} R_{i n}}-I_{b}^{-}\right] R_{1}=0
\end{aligned}
$$

Introducing the feedback factor β^{\prime} and rearrangement gives the expression included in Fig. 3.

Personalities

Arthur A. Robinson, M.A., Ph.D., M.I.E.E., director of the University of London Computer Centre since 1968, is to succeed Professor G. Black as director of the National Computing Centre of the Ministry of Technology. Dr. Robinson graduated from Cambridge in 1945 and in 1949 obtained his Ph.D. at Manchester in computer circuits. From 1950 until 1962 he worked as a senior development engineer on computers and computer circuitry at Ferranti, Manchester, where he was associated with the design and development of the Mercury and Atlas computers and was latterly the project leader of the Ferranti Atlas team. In 1962 he joined the University of London Atlas Computing Service (Computers (Bloomsbury) Ltd) as manager where he remained until 1968, becoming its first general manager and a director.

Brian Lawrence has become gencral manager of Philbrick Nexus Research in Britain, in succession to Martyn Culverhouse who has been appointed western regional sales manager for the Philbrick Nexus Research Division of Teledyne Inc. at Dedham, Massachusetts, the parent company. Mr. Lawrence was previously a partner in James Lawrence Associates, the Philbrick Nexus distributors for the north of England and Scotland. Prior to that, he had been with Sydney S. Bird \& Sons Ltd., Taylor Controls Ltd.,

B. Lavorence

M. Culverhouse
and Cossor Radar \& Electronics. Mr. Culverhouse, after service in the Royal Navy, worked with Decca Navigator, mostly in West Africa, and with Racal Communications before launching the U.K. operation for Philbrick Nexus Research in 1967.
D. L. Davies has joined RacalMilgo Ltd, of Reading, as managing director. To do so he resigned from S.T.C. where he was group general manager of the Transmission and Data Systems Group. He was at one time managing director of G.E.C. Computers and Automation Ltd prior to which he spent ten years with Solartron, latterly as systems director. Mr. Davies succeeds E. B. Stuttard who has relinquished the post for health reasons. The company, which is jointly owned by Racal Electronics Ltd of Bracknell and Milgo Electronic Corp. of Miami, was recently formed to manufacture high-speed data communications equipment.

Bernard Skinner has joined Millbank Electronics, of Hartield, East Sussex, as technical sales representative responsible for the company's range of audio equipment and the SINUS range of industrial loudspeakers. After war-time service in the Merchant Navy Mr. Skinner went into the retail audio trade and since 1961 has been with Fi-Cord International.

The B.B.C. announces the appointment of J. Duncan MacEwan, B.Sc., M.I.E.E., M.I.E.R.E., to the new post of chief engineer, regions. He will be responsible for establishing and specifying operational improvements and for co-ordinating engineering developments in the B.B.C. regions. Since November 1968 Mr . MacEwan has been seconded from his post as head of engineering, Northern Ireland, to be the engineering member of the B.B.C. Policy Study Group. This was set up to provide the board of management with the information needed for the formulation of plans for the future shape of network radio and of television and radio in the regions. These plans were recently published under the title "Broadcasting in the Seventies". Mr. MacEwan joined the Corporation in 1947 in Glasgow. He was appointed a senior lecturer at the B.B.C. Engineering Training Centre, Evesham, in 1956 and engineer-incharge, television, in Birmingham in 1960. He had been head of engineering in Northern Ireland since August 1961.

Recently announced appointments to the academic staff of the Department of Electrical and Electronic Engineering, Heriot-Watt University include B. Salvage, B.Sc., Ph.D., F.I.E.E., lecturer in the department of electrical and electronic engineering at Queen Mary College, University of London, to be senior lecturer; A. McC. Close, B.Sc., design/development engineer, Ferranti Ltd, Edinburgh, to be lecturer; and G. T. Russell, B.Sc., Ph.D., senior design engineer, Thorn Automation, Rugeley, Staffs, to be lecturer.

John Ayres, FiI.E.E., managing director of Standard Telephones \& Cables I.td since the end of 1968 , has been appointed a vice-president of ITT Europe Inc and ITT Industries Inc. Mr. Ayres, who is 62, joined S.T.C. in 1966 as executive director of the Transmission Group at Basildon, Essex. He served his engineering apprenticeship with G.E.C. in Coventry, joined the Brush Electrical Company in 1945 and became director and general manager of Simms Motor Units in 1954. He has been with G.E.C. (Telecommunications) Ltd as managing director, since 1963.
E.D. McConnell is returning from the United States, where he has been technical manager in the W'estinghouse Research and Development Center, Pittsburg, for the past six years, to become manager of the Broadcast Division of Rank Precision Industries Ltd. Mr. McConnell, who is 51 , will be based at Leicester, where he will be responsible for technical aspects of Taylor Hobson lenses and special optics. He was at one time head of the television department at Rank Cintel.

Eddie Davies has joined Eurotherm I.td, as applications enginecring manager at their Worthing factory. A graduate of Imperial College, Mr. Davies received postgraduate training at A.E.I. Ltd, and was an industrial systems section leader concerned with applications of digital and analogue control systems to industrial drives.

David Collins has joined the staff of Abbey Electronics \& Automation Ltd, as sales executive responsible to the board for the marketing of their new range of electronic weighers and graders. Mr. Collins was at one time a sales engineer for D . Robinson \& Co. Ltd, and, more recently, was with the Electronic Controls Company.

Michael Campbell, B.Tech., has joined Transitron Electronic Ltd as manager of integrated circuit assembly and testing at their Maidenhead, Berks., plant. Mr. Campbell was previously with MarconiElliott Microelectronics Ltd, Glenrothes.

OBITUARY

Frederick Sherbrook Barton, C.B.E., M.A., B.Sc., F.I.E.E., who was director of radio engineering in the British Air Commission in Washington throughout the major part of the 1939-45 war and was later principal director of electronics research and development in the Ministry of Supply, died in June. After service in the Navy and Air Force in the first world war he returned to Cambridge University. On completing his studies he joined the Radio Dept. of the Royal Aircraft Establishment in 1922. He became head of the department in 1934. Among the posts he held, in addition to those already mentioned, was that of defence supply adviser to the High Commissioner, Ottawa, from which he retired in 1960 . He had since served on the boards of several companies and was for some time secretary of the U.K.-Eire section of the I.E.E.E.

William Dubilier, who in 1912 formed what is now the Dubilier Condenser Company, died at the age of 81 at Palm Beach,Florida on July 25th. One of the early wireless pioneers he is best known for his invention of the mica capacitor, although he made many contributions to radio technology.

Harry Roberts, co-founder of Roberts' Radio in 1931, died in June at the age of 59 . He was chairman of the company, which throughout has specialized in the manufacture of quality portable radio receivers, and he had been closely associated with the work of B.R.E.M.A.

QUAD) g_{0} (s a single chamel bo Watt amplifiev designed for Broadcast, Recording and other applications in the Audio industry, completely proof against misuse and giving the highest quality of reproduction.

INPUTS - 0.5 Vrms unbalanced with provision for an optional plug-in transformer for bridging 600 ohms lines.
OUTPUTS - isolated providing 50 watts into almost any impedance from 4 to 200 ohms.
DIMENSIONS $-12 \frac{34^{\prime \prime}}{} \times 6 \frac{1^{\prime \prime}}{} \times 4 \frac{1}{2}{ }^{\prime \prime}$
Complete the coupon and post today.

	Please send me full details of the QUAD 50 Amplifier
	NAME
	POSITION.
	COMPANY
	ADDRESS...
	(block capitals)
	ACOUSTICAL MANUFACTURING CO. LTD., HUNTINGDON. Telephone: Huntingdon (0480) 2561/2

STC

STAR performer

20 good reasons why STAR UHF Mobile Radiotelephone is the best radiotelephone in the world

\star Elegantly styled.

* Designed for safe use in vehicles.
\star Excellent range and penetration of built-up areas.
\star Crystal-clear speech quality.
* Noise cancelling microphone.
\star No ignition noise.
\star Very low battery drain.
\star Simple installation and removal.
* Anti-theft catch.
\star High reliability.
\star Meets world-wide specifications.
$\star 25 \mathrm{kHz}$ and 50 kHz channel spacing.
\star Printed UFH transmitter circuitry.
* Transmission line coupling of power transistors.
\star Solid-state antenna change-over switching.
\star Helical tuning coils in receiver.
\star Quartz crystal filter.
* Quartz crystal discriminator.
\star Integrated circuits.
\star Fully solid-state.

STC Mobile Radiotelephones Ltd., New Southgate, London N.11. Telephone: 01-368 1200. Telex: 261912.

en years of British adio-teleprinting

he British Amateur Radio Teleprinter roup recently marked the tenth anniverary of its formation in the summer of 1959. lthough some overseas amateurs had been sing radio-teleprinter systems for some zars before this, it is largely to the credit of .A.R.T.G. that this type of operation has ocome firmly established-if still only as a unority interest-in the U.K. Much of the arly enthusiasm was generated by such adio-teleprinter stalwarts as Dr. Arthur ee, G2UK, Bill Brennan, G3CQE, and rthur Owen, G2FUD, who encouraged ritish amateurs to search through scrap ards and surplus stores to find long-disarded teleprinter units, including battered reed 3 X and 7B printers or odd finds of orenz, Siemens and Teletype units. Today, number of amateurs have acquired more odern machines, The Teleprinter group can ill claim this sector of amateur radio as ne of the fields which calls for individual fort, expertise and a do-it-yourself -pproach. Landmarks in the B.A.R.T.G. istory include many demonstrations at the nnual Amateur Radio Exhibitions and the rst publication in the U.K. of an amateur R.T.T.Y.* Manual" in 1961.

The different band rates in use in various suntries have been largely catered for by ing dual-speed governors. Early fre-rency-shift was usually 850 Hz but 170 Hz now also becoming established. Present cretary of B.A.R.T.G. is Dennis Goacher, 3LLZ, 51 Norman Road, Swindon, 'iltshire.
The Canadian Amateur Radio Teletype roup has announced a "DX Sweepstake" take place from October 4th to 6th. ecial format \log sheets (to allow processing results by computer) available from .A.R.T.G., 85 Fifeshire, Willowdale 430 , ntario, Canada (s.a.e.).

mple or complex?

complaint sometimes heard in amateur cles is the increasing complexity and ofessionalism of stations; although fortutely it remains true that excellent results n still be achieved with quite modest transtters and aerials. A look through recent ges of my log book underlines the wide
variation in powers and aerials in current use on the 14 MHz c.w. band. While many American West Coast stations-the traditional home of "Californian kilowatts"-run their full legal power input of 1 kW , achieving effective radiated powers of up to about 10 kW by using multi-element Yagi or cubical quad beams, it is possible to note excellent signals from station WBKHYM of Los Angeles using only 10 watts. Plenty of loud signals have been coming in also from stations using simple vertical aerials, dipoles or even the now relatively rare, but once very popular, "zepp" aerials. K2INP/VE1 in Nova Scotia is one of quite a number of stations putting out excellent signals from indoor h.f. aerials. On the other hand, HA5DI in Budapest has a dipole 150 ft high, and an unusually ambitious array is that of K6UYC near Los Angeles with a $14-\mathrm{MHz}$ six-element Yagi beam at a height of 135 ft . But topping the height/effort league in recent weeks must be the enthusiasts at $5 Z 4 \mathrm{RS} / \mathrm{A}$ operating $14,000 \mathrm{ft}$ up on Mount Kenya. Typically, American input on this band and mode is around 300 watts with a beam aerial; European stations still average under 100 watts, with various forms of dipoles and vertical "ground plane" aerials in a substantial majority.

Increasing interest in n.b.f.m.

The number of British amateurs using nar-row-band frequency-modulation, particularly on 70 and 144 MHz but also on 28 MHz , is rising steadily. The main attraction of this mode of operation, apart from transmitter simplicity, is the lower susceptibility of television receivers to interference from stations using n.b.f.m. compared with a.m. or s.s.b. Further support for this belief in greater immunity to television and/or broadcast interference is provided by a recent B.B.C. Research Report (No 1969/9 "The susceptibility of portable Band II f.m. receivers to interference by services operating in adjacent frequency bands" by C. R. G. Read). This report suggests that typical portable broadcast receivers used near base or mobile transmitters may tolerate a 10 to 20 dB higher level of local signal than for a.m. transmitters. One of the significant mechanisms by which loud a.m. signals can cause interference to a broadcast receiver is by "pulling" the local oscillator of the set. It was also noted that the receiver front ends
could easily be driven into non-linearity by signals many MHz away from the frequency to which they are tuned-many amateurs suspect that a similar situation arises with television receivers. The B.B.C. report suggests that dealers should make it clear to customers buying portable Band II receivers that some sets may not be satisfactory when operated in close proximity to an unwanted transmitter; it also advocates that receivers of good selectivity should be available to the public.

Contests

The R.S.G.B. has announced that, by an extremely narrow margin, Guildford and District Radio Society has been adjudged winners of the 1969 National Field Day. Guildford scored 2375 points with Cannock Chase society only ten points behind. The Bristol Trophy goes to Durham City Amateur Radio Society; the Scottish Trophy to Glasgow City. Forthcoming contests include v.h.f. national field day, September 6th-7th; 3.5 MHz field day, September 14th; and 144 MHz contest, September 21st.

In Brief: A.R.R.L. plan to introduce a new five-band "Worked All States" award on the lines of the recent five-band DXCC. . . . South Birmingham Radio Society have announced a new "Worked All Birmingham Postal Districts Award"-details from R. A. Brice, 53 Leycroft Avenue, Tile Cross, Birmingham 33 (s.a.e.). . . The Sheffield University beacon transmitter, GB3SU, on 70.695 MHS has a new omni-directional aerial 120 feet above ground. Reports are welcome, particularly from distances exceeding 100 miles, and should be sent to Tony Whitaker, G3RKL, Department of Electronic and Electrical Engineering, The University, Mappin Street, Sheffield S1 3 JD. . . . Lothians Radio Society will operate a demonstration station, GB3EIF, at HeriotWatt University, Mountbatten Building, Grassmarket, Edinburgh 1, from September 1st to 12 th during the Edinburgh International Festival-there will also be an exhibition of members' equipment and a demonstration of closed-circuit television. . . A mobile rally is being held on September 28th at Magdalen Lower Village Hall near Harlow (details from B. G. King, G8CHC, 36 Upper Park, Little Parndon, Harlow, Essex). . . . Some Polish amateurs are now using the special prefix $3 \mathrm{Z1}$ to $3 Z 9$ to commemorate the 25 th anniversary of the country's Liberation-this prefix will remain in use until July 1970. ... A group of German amateurs in Munich are experimenting with a 144 MHz translator which will be carried to heights of about 30 km by a balloon permitting contacts between stations up to 1000 km from the translator. . . A.R.R.L. headquarters station, W1AW, is to begin a beacon service on one or more v.h.f. bands. . . . Transatlantic auroral reception of B.B.C. Channel 1 television transmissions have been reported by American and Canadian amateurs. . . GB3WRA is to be operated at the Wycombe Show, High Wycombe, on September 6th-visiting amateurs especially welcome.

Pat Haw'

Amateur Communications Receiver

3: Final circuit details and alignment procedure

by D. R. Bowman, A.M. Inst. E., G3LUB

Until the advent of the field effect transistor the overload performance of transistor r.f. and mixer stages has been shown to be much inferior to similar systems using valves. The single gate f.e.t. does have a drawback when used as an r.f. amplifier because superior cross-modulation performance is not maintained when reverse a.g.c. is applied. This is because at reduced drain currents the forward transfer characteristic deviates from a square law.

If two f.e.ts are connected in cascode reverse a.g.c. can be applied to the common gate stage. Circuits such as this have a very wide dynamic range which increases as the gain of the device is reduced. The application of a.g.c. causes very little detuning of the r.f. circuits.

The 3 Ni 40 consists of two metal-oxide transistors connected in cascode. The local oscillator drive is fed to one of the gates giving good isolation between signal and oscillator. The local oscillator drive power required is only of the order of $10 \mu \mathrm{~W}$.

The particular circuitry used to apply a.g.c. to the r.f. amplifier (Fig. 21) has a marked effect on the final front end large signal performance. The best overall performance requires reverse a.g.c. to be applied to gate two while partial forward a.g.c. is supplied to gate one. The simplest method of producing forward a.g.c. for gate one to include an r.f. bypassed resistor in the source circuit. This produces auto-biasing when the gate one return resistor is referred to the base of the 100Ω auto-bias resistor in exactly the same way as a valve auto-biasing system.
If the potential of gate two is varied over a range relative to the source of +2 V to -IV then the overall r.f. gain will be controlled over at least 40 dB . The a.g.c. line of the i.f. amplifier varies over a range of +5.5 to +0.5 volts. In order to make the r.f. stage a.g.c. requirements compatible with the i.f. it is necessary to refer the r.f. stage to a $2-\mathrm{V}$ rail and not earth. This allows the a.g.c. rail at IV to appear as -IV relative to the r.f. stage source electrode. The diodes D_{1} and D_{2} protect the circuit from stray r.f. fields which may be encountered when the receiver is used with a transmitter.

The mixer

The dual gate f.e.t. has a definite advantage over single gate devices when serving as a mixer. The single gate mixer depends upon non-linearity which occurs when drain current is small. This process is akin to the valve bottom bend mixer.

From Fig. 9 it can be seen that the conversion gain of the mixer is directly related to the local oscillator drive voltage. The diagram also shows that the spurious signals generated within the mixer are highly dependent upon oscillator drive voltage. As gain is of secondary importance to the reduction of unwanted signals the level of oscillator drive to the mixer is set to around 0.5 V . The d.c. stability of the bias applied to gate two is very important and the potential divider is referred to the source electrode and not the earth line for this reason.
H.F. crystal filters tend to exhibit spurious responses and in order to eliminate these a 9 MHz i.f. transformer is used to couple
the mixer to the filter (Fig. 21).
The manufacturer suggests that the filter's input and outpt circuits should be brought into resonance with 30 pF paralle connected trimmers. In practice it was found that fixed 22p capacitors are adequate.

It is essential that the input of the filter is screened from thoutput. The filter has an out-of-band rejection in excess of 8 od and it is essential that the h.t. supply decoupling is perfect. Whe the receiver is complete it is quite simple to disconnect the inpt lead and earth the exposed filter terminal. If the stop band adequate the input from a signal generator should be attenuated t at least 8 odB .
This is the most exacting section of the receiver as it is essenti that the local oscillator waveform be as free from unwante components as possible. The synthesizer consists of a number sub-units which will be dealt with in turn.

Local oscillator synthesizer The v.f.o.

The variable frequency oscillator (Fig. 22) consists of a bas Colpitt's circuit with a very large C to L ratio. The large value of tends to smother any variation of capacitance in the transisto The stability of the completed receiver is almost entirely dete mined by this circuit and for this reason great care should k exercised during its physical construction.

The author has found that the most linear dial calibration obtained if a straight line variable capacitor is used. The particultype recommended is a Polar or Jackson 6-75 pF double ball-ra variable which, with careful adjustment to the outside vanes, c be made to track over the 500 kHz required. The linearity further improved if only the first 140 degrees of rotation is use This is because the straight line capacitance law does not ho. when the capacitor blades are well out of mesh.

The coil, which has an iron, not ferrite, core, should be wourwith great care. The frequency drift with temperature is almc entirely determined by the changes in inductance of the coil. It fairly simple to temperature compensate using negative temperatu coefficient ceramic capacitors connected in parallel. The temper ture induced drift characteristics will differ from v.f.o. to v.f.o. : the diagram includes only an approximate value for these cap acitors.

The only unwanted component that was measurable in the ous put of the v.f.o. isolation amplifier of the prototype was the secorharmonic which was greater than -50 dB below the require signal.

This waveform is fed, via a wideband coupler ($5-5.5 \mathrm{MHz}$), the synthesizer mixer. This filter has the effect of reducing thit v.f.o. harmonic content still further. From the check voltage tab it will be seen that the v.f.o. transistor has a rather large decouple collector resistor. This helps to restrict the output waveform wit a corresponding reduction in harmonic content. If the circurefuses to oscillate this resistor can be reduced.

H.F. crystal oscillator

The circuit used (Fig. 23) is reliable with new crystals, however the alignment instructions must be followed carefully as the circuit is really only a locked oscillator which will in certain circumstances oscillate at a frequency unrelated to the crystal frequency. The overtone frequency is determined by the collector resonant circuit which helps to reduce the unwanted harmonic outputs.

Frequency synthesizer mixer and S meter

The circuit shown in Fig. 23 is a balanced mixer using two junction f.e.ts. One disadvantage of this system is that the mixer has to be operated as a straight v.f.o. amplifier on the 20 and 80 metre bands. The gain can be expected to differ considerably from amplifier to mixer mode. If the steady state mixer drain current is increased from pinch-off it will be seen that the mixer gain decreases as the amplifier gain increases. This effect has been used to equalize the mixer and amplifier gains.

The S meter circuit (Fig. 24) is straightforward. Potentiometer $R V_{1}$ controls the sensitivity whilst $R V_{2}$ the meter zero. The two should be adjusted alternately until the S meter reads S 9 with a

Fig. 22. The v.f.o. iection of the local uscillator synthesizer.

Fig. 23. The h.f. crystal scillator and mixer ection of the local scillator synthesizer.
$256 \mu \mathrm{~V}$ signal at the aerial input socket. The author chose to use the convention of 6 dB per $\mathrm{S}_{\text {point. Si being }} \mu \mathrm{V} ; \mathrm{S}_{2}, 2 \mu \mathrm{~V} ; \mathrm{S}_{3}$, $4 \mu \mathrm{~V}$; etc. The range of the S meter should be $\mathrm{Si}-\mathrm{S} 9+60 \mathrm{~dB}$.

Fig. 26 shows the various sections of the prototype which have been described in this issue.

Power supply

The receiver's power requirements are as follows: +12 V unstabilized at $75 \mathrm{~mA},+9 \mathrm{~V}$ stabilized at 50 mA , and +5.6 V stabilized at 8 mA .

The +12 V rail is required to power the audio amplifier and although it is not necessary for it to be d.c. stabilized it must have good dynamic regulation. The 9 V supply (Fig. 25) is derived from a 9 V zener stabilized line driven from a separate fullwave rectifier.

Alignment procedure

The following test equipment is required. A valve voltmeter or a f.e.t. voltmeter with an r.f. probe, and a signal generator or some other source of frequency calibrated r.f.

The d.c. conditions of all circuits should be checked first. The readings noted in the tables are those measured on the author's receiver and should be taken as a guide only. If the constructor's measurements are within $\pm 10 \%$ of the figures given, then all can be assumed to be well.

The signal generator should be adjusted to supply about 100 mV at a frequency of 9 MHz and should be coupled via an $0.01 \mu \mathrm{~F}$ capacitor to the i.f. amplifier's input terminals. The a.g.c. line should be temporarily disabled and fed from a variable potentiometer rather than the a.g.c. transistor. To do this a potentiometer around $25 \mathrm{k} \Omega$ should be connected between the 9 V supply and earth with the wiper taken to the a.g.c. line which should be disconnected from the collector of Tr_{7}.

The transformer cores of each stage should be adjusted for maximum output while progressively decreasing the i.f. gain by adjusting the potentiometer in the direction of earth. The alignment should progress through the i.f. amplifier from front to back. It will be necessary to reduce the signal generator output as this alignment proceeds.

Reconnect the a.g.c. line and monitor the a.g.c. voltage. As the signal generator output is varied the a.g.c. line voltage should swing from +2 V to $+5 \frac{1}{2} \mathrm{~V}$. The a.g.c. characteristic can now be studied. For an input signal reduction of 50 dB below 200 mV the output should change 3 dB . For a further input signal reduction of 30 dB the total output audio change will be less than IodB.

Now the i.f. amplifier detector, crystal b.f.o. and audio amplifier can be coupled up together. With the signal generator adjusted to supply an output of 9 MHz a c.w. whistle should be heard issuing from the loudspeaker.

The v.f.o. and amplifier comes next. The r.f. present on the collector of Tr_{2} will be a function of the position of the tuning slug of L_{2} and therefore is at this stage likely to have a different value to that noted in the tables. If this circuit should fail to oscillate, it may help to reduce the value of R_{3}.

Fig. 24. The S metre circuit.

If a general coverage receiver is available the frequency at whict the v.f.o. oscillates should be measured. With careful adjustment to the iron dust core of L_{1} and trimmer C_{2} the v.f.o. output signa should cover the range of $5 \cdot 0$ to about 5.6 MHz . It will be notec that a range of 5.0 to 5.5 MHz is the required range. The over-laf rookHz being left unused as the oscillator exhibits an increasingly non-linear characteristic as the variable capacitor nears its minimumcapacitance.

For the following adjustments the receiver tuning should be se to one end of the range where the v.f.o. frequency is 54 MHz . Tc set up the wideband coupler C_{13} should be completely unmeshec (minimum capacitance) and with the diode probe and the valvi voltmeter cohnected across L_{3}, the cores of L_{2} and L_{3} should b_{1} adjusted for a maximum indication. Bring C_{13} about half-way intı mesh and as the v.f.o. is tuned a double output response should b_{1} evident similar to the curve shown in Fig. 4 (July issue). If thi response is unobtainable check that L_{2} and L_{3} are not in clos proximity to each other or alternatively, screen them from each other.

The next move is to check the d.c. state of the synthesizer mixe consisting of $T r_{2}$ and $T r_{3}$. Set $R V_{1}$ to the centre of its travel. A this stage only coil L_{7} need be in situ in the mixer drain circuits With very great care, noting first to discharge the diode probe t earth, measure the 5.25 MHz output of the mixer stage whic should be switched to either the 20 or the 80 m range. The core o L_{7} should be adjusted for maximum output indication. Make sur that the valve voltmeter is securely earthed to the receiver chassi prior to making the actual measurements.
Set the receiver range to the 20 -metre band without tunin slugs in either L_{3} or L_{11}.
The signal generator should be adjusted to deliver about 0.1 at a frequency of 14.25 MHz to the receiver's r.f. input socket. A the receiver mixer is being driven with the amplified 5.25 MH v.f.o. signal a whistle can be heard from the loudspeaker as th v.f.o. tuning is swept across 5.25 MHz . Having found the signa the front end pretuning control C_{11} and C_{12} should be peakec At this stage the v.f.o. calibration can be finally set. The v.f.f pre-mixer $5 \cdot 25-\mathrm{MHz}$ coil L_{7} should be peaked for maximur receiver gain. The receiver should work on 80 meters if thbandswitch is changed appropriately.

Switch to 40 metres and, with the signal generator adjusted $7 \cdot 25 \mathrm{MHz}$, the receiver tuning should be scanned until a signal ! about the dial centre is found. The tuning should be adjuste down in frequency to about 7.05 MHz where the core of th synthesizer mixer L_{6} should be adjusted for maximum receive gain. Now reduce the signal input to the receiver until the meter reading is about half-scale. While watching the S mett reading adjust the C_{11}, C_{12} and C_{17} front end tuning for maximux indication. It may be necessary to reposition C_{17} across the gat tuning capacitor.

Next set-up the i.f. filters as follows: Set the signal generator t ${ }_{9} \mathrm{MHz}$ and with maximum output adjust the core of L_{1} and C_{2} for minimum S meter reading. It is now only necessary to adjust th

Tig. 26. Various sections of the completed receiver; top left from top to bottom - Local oscillator synthesizer, receiver mixer and r.f. stage; oftom left - h.f. crystal oscillator; top right - v.f.o. amplifier, and h.f. oscillator crystals; bottom: right - underside of power supply.
alance of the symthesizer mixer. As the spurious response of the zcond section of 10 metres happens to be 42 MHz (the sound hannel of BBC I television in the South of England)it is wise to set te balance for this range.
Select the $28 \cdot 5-29 \mathrm{MHz}$ range and adjust the synthesizer mixer atput coil L_{10} for maximum receiver sensitivity. Next adjust the ont end tuning C_{11} and C_{12} whilst an iron dust core is first tried L_{6} and in L_{θ} \&lways adjusting for maximum S meter deflection. may be that no core will be required. It is sometimes of help have a brass coil core made of a small piece of oB.A. brass bolt =ith a slot in the end. The brass core will reduce the coil inductace and if it is 工ound to improve things do not leave it in use; -sert an iron dust core into the other coil instead.
Set the signal generator to about 42 MHz until the spurious
response is heard. If a signal generator is not available then the BBC I signal from a TV aerial could be used for this adjustment. The mixer should be balanced by adjusting $R V_{1}$ and C_{7} for a minimum response. In practise it will be found necessary to make this adjustment a number of times, occasionally returning to re-adjust L_{10}. Although the mixer balance can be optimized for only one frequency, it will hold quite well over all the ranges.
The author strongly advises the constructor to resonate the mixer output coils in the way stated and not by using an r.f. probe to measure the output. It is quite easy to adjust for one of the many unwanted mizer or harmonic products present in the drain circuit. The remaining ranges should now be algned using a similar rechnique to that already described. The appropriate mizer output coils should be adjusted for maximum sensitivity when the tuning
is set to the centre of the required band, $(7.05,14.25,2 r .2,28.25$, 28.75 and 29.25 MHz).

It is now only necessary to set the two sideband crystal frequencies to about 20 dB down either side of the i.f. crystal filter's characteristic. Set the signal generator to produce a known appropriate S meter reading, and increase the output power of the signal generator by 20 dB . Now tune the receiver until the S meter returns to the same reading. At this setting the appropriate trim capacitor either T_{1} or T_{2} should be adjusted until the audio zero beats change sidebands. Repeat for the other crystal.

The b.f.o. switch upper/lower sideband will be reversed on certain ranges. This can be overcome by noting on the front panel that on 20 and 80 m the sideband is reversed.

On 80 metres it may be necessary to equalise the value of parallel capacitance appearing across L_{3} and L_{11}. A small trimmer (2-10pF) should be tried alternately across C_{5} and C_{15}. If after careful adjustment in either position an increase in sensitivity is noted on the S metre then permanently connect the trimmer.

COMPONENTS LIST

all capacitors (five) $1000 \mu \mathrm{~F} 25 \mathrm{~V}$ working
$D_{5-4} . . \quad$ BY100, FST $1 / 2$, Rec 50 A , Rec 52 or any 50 p.i.v. 250 mA rectiflers.
$D_{1} \quad . \quad 5.6 \mathrm{~V}, 0.25 \mathrm{~W}$, Zener. OAZ242, OAZ202.
$D_{1} \quad . \quad 9.9 \mathrm{~V}, 1 \mathrm{~W}, \mathrm{Zener}$. SZ91A, OAZ291.
$T_{1} \quad$. \quad Standard mains primary transformer with $9-0-9 \mathrm{~V}$ secondary at 0.5 A . Available from Haversons Surplus Co., Ltd, 170 High St, Merton, London S.W. 19.
$\begin{array}{ll}F_{1} & . \\ F_{3} & 500 \mathrm{~mA} \text { fuse. } \\ & \text {. } 1 \mathrm{~A} \text { fuse. }\end{array}$

voltage checks

Conditions: r.f. and l.f. gain controls at maximum unless otherwise stated. Al measurements taken with respect to chassis.
Equlpment: d.c. readings taken with a Heathkit (Daystrom Ltd) valve voltmete type $V-7 A u$. All r.f. readings made using a diode probe.
r.f. amplifier

Junction $R_{3} / R_{4} \ldots \quad \ldots \quad 2 \cdot 5-2 \cdot 8 \mathrm{~V}$ wiper $R V_{1} \ldots \quad \ldots \quad 1 \cdot 6-5 \cdot 41$ both measurements depend upon signal strength and the position of the l.f. gal control.

receiver mixer junction $R_{b} / R_{B} .$. $\because \quad R_{1} / R_{11}$			$\begin{array}{r} 0.56 \mathrm{~V} \\ 8.0 \mathrm{~V} \end{array}$	gate junct		R_{1}		.	\cdots	1.0 8.8
overtone oscillator										
Junction $R_{1} / R_{3} \ldots$.	$1.5 V^{\circ}$ $8.8 V^{\circ}$	emitt						0.74 1.01
$\because{ }^{\prime \prime} / R_{4} \ddot{Y}_{2}$			$8 \cdot 8 \mathrm{~V}^{\circ}$	switc						1.01
switch $S_{1(f)}$ to X^{2}		.	$1.1 \mathrm{~V} \dagger$	"		"				1.23

- set to " 15 m "band with 25 MHz crystal out of circuit."
+ r.f. output voltage measured at the junction of C_{1} / C_{2} using dlode probe.

- dépends on matching of $\ddot{T r}_{1}$ and Tr_{3}.
† r.f. voltage.

peak to peak a.f. voltage measured with an oscilloscope with the a.f. gain cor at max.

Corrections: The following errors have occured in this ser The noise formula should have read: $e^{2} 4 \mathrm{KTBR}$ Volts. T makes $e=0.006 \mu \mathrm{~V}$, not $0.023 \mu \mathrm{~V}$ as was stated, however argument which followed was not affected. No starting va was given for R_{8} in the a.f. amplifier. The value should be 68

Test Your Knowledge

Series devised by L. Ibbotson,* b.Sc., A.Inst.P., M.I.E.E., M.I.E.R.E.

16. Elementary circuit theory

1. The network shown in Fig. 1 has an alternating voltage applied between terminals 1 and 2. The waveform of the (steady-state) current which flows in each component will be the same as that of the applied voltage:
(a) whatever the waveform of the applied voltage
(b) only if the mean value of the appliedvoltage waveform is zero
(c) only if the applied-voltage waveform is symmetrical about the time axis (zero volts)
(d) only if the applied-voltage waveform is sinusoidal.

2. A sinusoidal potential of 5 volts r.m.s., requency 40 Hz , is applied between terninals 1 and 2 of the circuit shown in 7ig. 2. The reactance of a $1 \mu \mathrm{~F}$ capacitor at his frequency is $4 \mathrm{k} \Omega$. The current which -lows will have r.m.s. value:
(a) 1 mA (b) $5 / 7 \mathrm{~mA}$
(c) $7 / 5 \mathrm{~mA}$
(d) $5 / 3 \mathrm{~mA}$.

. The power factor of the circuit of Fig. 2 then driven as specified in question 2 is:
(a) unity
(b) $3 / 5$
(c) $4 / 5$
(d) $3 / 4$.
3. The circuit of Fig. 2 is again driven as pecified in question 2. If both voltages tre referred to the common line, the voltage tppearing at terminal 3 :
(a) is in phase with the applied voltage
(b) is in phase-quadrature with the applied voltage
(c) leads the applied voltage (by less than 90°)
(d) lags the applied voltage (by less than 90°).

[^4]5. The input impedance between terminals 1 and 2 of the network of Fig. 1, at a frequency above the resonant frequency of the tuned circuit:
(a) has a positive argument
(b) has a negative argument
(c) has zero argument
(d) has $\pi / 2$ argument.
6. A sinusoidal voltage generator is connected between terminals 1 and 2 of the circuit of Fig. 2. Its frequency is initially 1 kHz and is increased, while its voltage remains constant. The voltage between terminals 3 and 4:
(a) remains constant
(b) falls at the rate of 3 dB per octave
(c) increases at the rate of 3 dB per octave
(d) falls at the rate of 6 dB per octave.
7. A sinusoidal potential of r.m.s. value 10 volts is applied between terminals 1 and 2 of the circuit shown in Fig. 3 at a frequency ($159 \mathrm{~Hz} \mathrm{)} \mathrm{at} \mathrm{which} \mathrm{the} \mathrm{reactance} \mathrm{of} \mathrm{a}$ $1 \mu \mathrm{~F}$ capacitor is $1 \mathrm{k} \Omega$. The voltage appearing between terminals 3 and 4 (the normal convention for comparing phases between input and output being adopted) is approximately:
(a) 5 volts r.m.s.; leading by 45°
(b) 5 volts r.m.s.; lagging by 45°
(c) 7 volts r.m.s.; leading by 45°
(d) 7 volts r.m.s.; lagging by 45°

Fig. 3
8. The (complex) input admittance between terminals 1 and 2 of the circuit shown in Fig. 3 at any frequency:
(a) has a positive real part and a positive imaginary part
(b) has a positive real part and a negative imaginary part
(c) has a negative real part and a positive imaginary part
(d) has a negative real part and a negative imaginary part.
9. A two-terminal network is connected between terminals 3 and 4 of the circuit shown in Fig. 3. A sinusoidal generator
applies a voltage $V \sin \omega t$ between terminals 1 and 2 and drives a current I sin $(\omega t+2)$. The two-terminal network must:
(a) have a purely capacitive input impedance
(b) consist only of resistors and inductors
(c) contain a source of electrical energy
(d) be non-linear.
10. A sinusoidal constant-current signal generator of variable frequency is connected between terminals 1 and 2 of the circuit shown in Fig. 4. As the frequency of the signal generator is varied the power which it delivers to the circuit:
(a) is constant
(b) is greatest at the frequency at which the reactances of the inductor and capacitor are equal in magnitude
(c) is least at the frequency at which the reactances of the inductor and capacitor are equal in magnitude
(d) is zero at all frequencies.

Fig. 4
11. A sinusoidal potential of r.m.s. value 1 volt is applied between terminals 1 and 2 of the circuit shown in Fig. 4. The frequency is such that the magnitudes of the reactances of the inductor and capacitor are equal (angular frequency 1000 radians per second). If R is 10 ohms the voltage appearing between terminals 3 and 4 will be:
(a) $1 / 10$ volt
(b) 1 volt
(c) 10 volts
(d) 100 volts.
12. A battery is connected between terminals 1 and 2 of the circuit of Fig. 4 so as to charge the capacitor. The battery is removed and terminals 1 and 2 are shorted together. A sinusoidal voltage (of decreasing amplitude) will appear between terminals 3 and 4:
(a) under all circumstances
(b) under no circumstances
(c) provided R is less than a critical value
(d) provided R is greater than a critical value.
13. A battery is connected between terminals 1 and 2 of the circuit of Fig. 1. When the current is steady the battery is disconnected, whereupon an alternating potential appears between terminals 3 and 4 . If now terminals 1 and 2 are shorted together the frequency of the oscillation:
(a) will be unaffected
(b) will fall
(c) will rise
(d) will become zero.
14. A square-wave generator of very high internal impedance, having a frequency of approximately 53 Hz , is applied between terminals 1 and 2 of each of the circuits shown in Figs 1, 2, 3 and 4. In one case the voltage appearing between terminals 3 and 4 is virtually sinusoidal. It is the circuit of:
(a) Fig. 1
(b) Fig. 2
(c) Fig. 3
(d) Fig. 4

New Products

Soldering Iron Stand

The Litegard bench stand from Litesold is especially designed to hold safely a hot soldering iron, and to present the handle to the user in the attitude in which it is normally held. Both the element and bit are shielded for complete protection. The stand may be mounted on horizontal or vertical surfaces. Designed particularly for use with the Litesold range of soldering instruments up to 35 watts, the Litegard is nevertheless suitable for most other types. The aperture is 0.5 in wide and is specially shaped to avoid damage 10 the

iron and to facilitate insertion. The interior of the stand is ventilated and is fitted with a black-anodised heat shield. These features ensure that the soldering iron is maintained at its normal operating temperature and that the external parts of the stand remain cool. Construction of the Litegard is of anodised aluminium throughout, and a conveniently placed and easily renewable bit cleaning pad is provided just below the aperture. Price 25s. Light Soldering Developments Lid, 28 Sydenham Road, Croydon CR9 2LL.
WW306 for further details

Peak Programme Meter

Elcom have produced a new AE series peak programme meter-a compact self contained instrument designed to measure programme signal levels in balanced or unbalanced 600 -ohm circuits, without affecting the signal levels in the circuit. The amplifying and detecting circuits are mounted on a printed circuit board which fits onto the back of the meter. The instrument can therefore be mounted on almost any panel without special mount arrangements other than the usual clearance holes for the meter body and fixing screws. Connection to the instrument is by way of a 10 -way gold plated connector attached to the printed circuit card. The high speed moving coil meter is an Ernest Turner Model 643. Other types of meter in the Ernest Turner range can be
supplied to order. Three meter scales are available: types A, B and E. These differ in the labelling of the scale. All three scales are calibrated in 4 dB steps with white figures on a matt black background. Provision is made for the connection of an external 'slugging' capacitor and up to four slave meters. Elcom (Northampton) Lid, Ross Road, Weedon Road Industrial Estate, Northampion NN5 5AD.
WW309 for further details

I.C. Stereo Amplifier

An integrated circuit stereo amplifier for use with gramophone turntable decks is announced by Britmac Electronics. The amplifier is capable of delivering a total power of 18 W peak into two 8 -ohm speakers at 1 kHz . An input signal of 250 mV is required to achicve this output power: input impedance is $2 \mathrm{M} \Omega$. The frequency response is flat to within 3 dB from 30 Hz to 20 kHz . A full range of balance, volume-or gain-and both bass and treble tone controls is provided, ganged where appropriate. Each of the tone controls provides a range of adjustment of from -12 to +12 dB relative to the gain curve of the amplifier itself. Distortion, noise and mains ripple are all low. At an output power level of 9.33 W r.m.s. total, total harmonic distortion is 0.4% and the noise level is -75 dB measured with a source impedance of $1 M \Omega$. Ripple rejection at the outfut terminals with respect to the d.c. supply point

is 30 dB . A printed circuit board only $152 \times$ 140 mm ($6 \times 5.5 \mathrm{in}$.) in size supports all the components of the amplifier, controls, power supply rectifier and smoothing circuit. A.C. at 16 V is required. Britmac Electrical Company Lid, Electronics Division, Shelley Road, Preston, Lanćs.
WW327 for further details

Double Resistors

Dubilier are now offering two $\frac{1}{4}$ watt resistors moulded into a single body measuring $9 \mathrm{~mm} \times$ $5 \mathrm{~mm} \times 3.5 \mathrm{~mm}$ (DUO-BT). Designed for digital
circuits and other applications where many resistances of equal value are required, considerable savings can be achieved by this highly compact design. Resistance values are in the E12 series between 10Ω and $22 \mathrm{M} \Omega$. Resistive tolerance 10%. The rupture voltage between the elements is $>4.5 \mathrm{kV}$, insulation resistance between elements 1011Ω and capacitance between elements approximately 1.5 pF . The Dubilier Condenser Co. (1925) Ltd., Ducon Works, Victoria Road, North Acton, London, W. 3.
WW308 for further details

Transmitter/Receiver Units

Park Air Electronics have developed ground to air transmitter/receiver units for use in airports. Two transmitter models with output powers of 25 W or 50 W are available, which may be paired with receiver units which use dual gate f.e.t. r.f. and mixer devices, and integrated circuit i.fs. Channelling at either 50 or 25 kHz is available. The a.g.c. characteristic is $\pm 2 \mathrm{~dB}$ from 0 to 100 dB

input levels. The units may be operated either locally, with or without extended control; or remotely controlled without switching. Illustrated is the 125 ZA 50 W output unit with receiver and remote control panel fitted to the same cabinet The equipment panels fit standard 483 mm (19 inch) racks, if required. Park Air Electronics Lid, Red Lion Square, Stamford, Lincs.
WW301 for further details

Opto-electronic Devices

The MRD 210 and MRD 250 subminiature photo detectors, and the MRD 310 phototransistor, from Motorola, are available in customdesigned arrays or matrices as well as in disctete form. The MRD 210 is a photo detector designed for use in card and tape readers, pattern and character recognition, analogue-to-digital converters (shaft encoders), or any application requiring sensitivity to light, stable characteristics and high density mounting. Minimum collectoremitter radiation sensitivity is $0.05 \mathrm{~mA} / \mathrm{mW} / \mathrm{cm}^{2}$, with a typical value near $0.15 \mathrm{~mA} / \mathrm{mW} / \mathrm{cm}^{2}$. The detector is sensitive to the visible and infrared spectrum. Guaranteed maximum rise time is 2.5μ sec , while maximum fall time is $4.0 \mu \mathrm{sec}$. The MRD 250 is similar to the MRD 210, but is in a slightly longer package. Sensitivity is $0.1 \mathrm{~mA} / \mathrm{mW}$, cm^{2} minimum. The MRD 310 phototransistor is contained in a case similar to the popular TO18 package for ease of handling and mounting. It is suitable for use in counters, sorters, industrial inspection, processing and control, alarm systems, switching and logic circuits, and analogue circuits requiring linear characteristics over a wide operating range. The MRD 310 has a minimum collector-emitter radiation sensitivity of $0.2 \mathrm{~ms} /$

The way we make resistors is únique. To an extremely tough optical glass "heart" we fuse, molecule for mclecule, an oxide film. At great heat. The result is an extra, diamondlike hardness and towzhness that defies deterioration under the most adverse conditions . . . long after humidity, for example, has eroded the less robust types of film resistor. Electrosil resistors are virtually unaffected by thermal and mechanical shock, too. That's why they are specified more than
ever today for the electronics industry, where high reliabi ity is paramount.

Electrosil Limited, P.O. Box 37, Pallion, Sunderland, Co. Durham. Telephone: Sunderland 71481. Telex: 53273.

Electrosil
have the experience

Electrosil resistors are forever

Oras near forever

AபDIロ FROM GARDNERS

Exceptionally wide band microphone and audio line matching transformers

FREQUENCY RANGE
100 K.ohm models $\pm 1 \mathrm{~dB} 30 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$. All other models $\pm 0.5 \mathrm{~dB} 30 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$.
MAXIMUM AUDIO LEVEL $+12 \mathrm{dBm}(16 \mathrm{~mW})$
INPUT IMPEDANCE maintained to within $\pm 10 \%(\pm 20 \% \mathrm{j})$ at all frequencies within the range $50 \mathrm{c} / \mathrm{s}$ to $8 \mathrm{kc} / \mathrm{s}$ (to $5 \mathrm{kc} / \mathrm{s}$ only for 100 K .ohm models).
MAGNETICALLY SCREENED
-50 dB reduction in hum pick up.

For professional recording and broadcast transmission equipment, these Octal-based plug-in transformers have a frequency response extending well beyond the audio range. The design achieves dynamic performance with minimum distortion at all levels

Type No.	Input Z Ohms	Pin Nos. \dagger	Output Z Ohms	Pin Nos.	Sec./Pri. Turns Ratio	Applications
MU. 7521	3.75/15*	1-3, 2-4	600 (C.T.)	6-7-8	$6 \cdot 32: 1 / 12 \cdot 64: 1$	Low Z. Mic/Line
MU. 7522	3.75/15*	1-3, 2-4	100K.	6-8	82:1/164:1	Low Z. Mic/Grid
MU. 7523	75/300*	1-3, 2-4	600 (C.T.)	6-7-8	1-41:1/2.82:1	Line/Line
MU. 7524	150/600*	1-3, 2-4	600 (C.T.)	6-7-8	1:1/2:1	Mixing: Bal./Unbal.
MU. 7525	600 (C.T.)	6-7-8	300/1 2 K *	1-3, 2-4	$1+1: 1 \cdot 41$ (C.T.)	Mixing: Hybrid \ddagger
MU. 7526	600 (C.T.)	6-7-8	2.5k/10k.*	1-3, 2-4	2.04:1/4.08:1	Line/Grid
MU. 7527	150/600*	1-3, 2-4	100K.	6-8	13:1/26:1	Line/Grid
MU. 7528	7.5/30*	1-3, 2-4	600 (C.T.)	6-7-8	4.47:1/8.94:1	Low Z. Mic./Line
MU. 7529	50/200*	1-3, 2-4	600 (C.T.)	6-7-8	1-73:1/3.46:1	Mic. or Line/Line
MU. 7530	10K. (C.T.)	6-7-8	10K.	$1-4$	1 (C.T.) :1	600 Line Bridging
MU. 7532	7.5/30*	1-3, 2-4	100K.	6-8	58:1/116:1	Low Z. Mic./Grid
MU. 7534	50/200*	1-3, 2-4	100K.	6-8	22-4:1/44-8:1	Mic. or Line/Grid

Type MU. 7525 may be used in "Hybrid" circuits, as shown, to establish 2 to 4 wire operation in telephony. Accurate balancing of the windings enable guaranteed rejection of better than - 55 dB from $50 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$. Up to - $75 d B$ may be expected for normal rejection levels.

$\mathrm{mW} / \mathrm{cm}^{3}$; however, a connection is provided to the base for added control or improvement of sensitivity. The spectral response and rise and fall times are similar to those of the MRD 210 and MRD 250. Motorola Semiconductors Lid, York House, Empire Way, Wembley, Middlesex. WW324 for further details

I.C. Test Jig

A miniature jig for concurrent multipoint testing of 14 pin d.i.p. (TO 116) integrated circuit packages is available from W.E.L. Components. Having very small overhang dimensions it can be used in very high density i.c. assemblies with no disturbance to circuits adjoining the unit under test. Spring loaded clips hold the test jig firmly in place and have thin grip claws to engage with low

-profile mounted units. Gold plated beryllium upper contacts are used to minimize contact resistance which is normally less than 5 milliohms. The unit is moulded Kemetal with Delrin spring claws. The unit is also supplied without clips for mounting in multiples on p.c. boards when production printed circuit assemblies require multi function check and test. The price is 20 s each for 100 or more. W.E.L. Components Ltd, 5 Loverock Road, Reading, Berks.
WW323 for further details

Lightweight Heatsinks

- -ermyn have added to their range of heatsinks five -lifferent versions of lightweight printed circuit soard mounted semiconductor coolers. These leatsinks are manufactured from aluminium extrusion and special consideration has been given .o the radiating area and low weight of the finshed products. Three devices are ready punched o accommodate the TO66 size semiconductor and other types are available undrilled but, in all cases, the products are black anodized to

ensure maximum cooling by radiation. The A25-2014 and A25-2016 are both drilled to aczommodate one device and the A25-2017 is drilled to accommodate two TO66 devices. Jermyn InJustries, Vestry Estate, Sevenoaks, Kent. -WW320 for further details

Tape-head Cleaning Kit

Bib Division of Muiticore introduces a compact tape-head maintenance kit. The kit includes a 30 c.c. bottle of anti-static, non-flammable cleaner, 2 each applicator and polisher tools for applying the cleaner or alcohol for removal of oxide and dirt from the tape heads and all parts of the tape path. 10 double-ended cotton wool tipped sticks are included which may be used for the same purpose for recorders to which easy access cannot be achieved with the Bib tools. They are used also for removing oxide from baseplates of recorders, scraps of tape, etc. An absorbent cloth is provided for cleaning the soiled tools and sticks and the exterior of tape recorders. All these components are contained in a plastic wallet. The recommended retail price is 9 s 9 d , including 1 s 11 d purchase tax. Multicore Solders Lid, Hemel Hempstead, Herts.
WW314 for further details

Incremental Capacitor with 1 pF Swing

A precision air spaced incremental laboratory capacitor box is now available from J. J. Lloyd Instruments with two ranges calibrated to an accuracy of plus or minus 1%.

The instrument is primarily intended for applications requiring a very small but precisely known change in capacitance, and should be of particular use for applications involving the design of precision filters and other applications involving the measurement of small capacitance change by substitution methods.

The capacitor is fitted with a slow motion drive and a 6 in . diameter dial engraved with two directly calibrated scales. The first scale is marked 0 to 1 pF or plus or minus 0.5 pF , and the second 0 to 10 pF or plus or minus 5 pF . Each scale is sub-divided into one hundred divisions and the residual capacitance at mid-scale is clearly shown. The incremental ranges are $\pm 0.5 \mathrm{pF}$ and $\pm 5 \mathrm{pF}$.

Accuracy of calibration at $20^{\circ} \mathrm{C}$ is $\pm 1 \%$. The maximum d.c. working voltage is 500 V , and the maximum recommended frequency is 10 MHz . J. J. Lloyd Instruments Ltd, Brook Avenue, W'arsash, Southampton SO3 6HP.

WW317 for further details

D.V.M. with Long-term Accuracy

The model 4500 digital voltmeter from Dana is said to have the best long-term stability of any instrument in its price range. This dual-slope d.v.m. is a four-digit instrument with fifth-digit $20^{\circ} \%$ over-range. The high accuracy ($\pm 0.01 \%$ of reading $\pm 0.01 \%$ of full scale for $\pm 5^{\circ} \mathrm{C}$ over three months) is combined with 75 dB at 50 Hz normal-mode rejection and 110 dB common-mode rejection, to provide noise protection from any source. The exceptional noise rejection is achieved by using integrating techniques in conjunction with wideband active filters. The model has push-button operation and autoranging and autopolarity for all functions

except ratio, and so can be used even by inexperienced operators. The basic five d.c. measuring ranges are from 100 ml to $1,000 \mathrm{~V}$ r.m.s., but these can easily be expanded with plug-in circuit boards to give four a.c. and five resistance ranges. A.B.C.D output is available to order; analogue output and d.c./d.c. ratio measuring are included as standard. The Dana 4500 is available for bench use or rack mounting. The two forms are shown in the photograph. Dana Electronics Lid, Bilton W'ay, Dallow Road, Luton, Beds.
WW319 for further details

Sine-squared Pulse and Bar Generators

Two new sine-squared pulse and bar generators are announced by Marconi Instruments. Sinesquared pulse and bar generator TF 2905/4 is for use on 405 line monochrome and 625 line monochrome and colour systems, providing a comprehensive test signal to the most recent recommendations of the European Broadcasting Union and C.C.I.R. A version for 525 line monochrome and colour systems, TF $2905 / 5$, is also available. This instrument can be used with a vertical interval test signal inserter to insert the waveform on to the correct line of the field. The comprehensive test signal produced by this instrument permits the checking of a number of parameters simultaneously, It generates bar, sine-squared pulse and staircase or sawtooth waveforms, and produces T, $2 \mathrm{~T}, 10 \mathrm{~T}$ and 20 I pulses. It may be triggered internally from the crystal oscillator or externally from a television studio system, and costs $£ 752$ f.o.b. L'.K. Type TF 2905/8 is for use on 625 line monochrome and colour systems; a version, TF 2905/9, is available for 525 line monochrome and colour systems. The instrument provides $5 \mathrm{~T}, 10 \mathrm{~T}$ and 20 T pulses, plus a negative T or 2 T pulse in the bar. The test waveforms can be produced either on a train of internally generated line sync pulses or as a composite television waveform, by feeding mixed synchronising and blanking pulses into the generator from external sources. Oscilloscope triggering pulses are available from a "trigger" socket on the front panel. The price of the TF $2905 / 8$ series is f775 f.o.b. U.K. Marconi Instruments Lid, St. Albans, Herts.
WW315 for further details

Video Distribution Amplifier

A completely self-contained video distribution amplifier, providing five independent 75 ohms signal outputs from one input, is announced by K.G.M. Vidiaids. At a cost of only $£ 4210 \mathrm{~s}$, the new Model 520 amplifier is suitable for the distribution of colour, monochrome or any other types of video signals. Overcoming the inconvenience of looping an input signal to widely spaced monitors, the Model 520 has an added advantage, in that moving or even removing an individual monitor will not affect the signal to other monitors which may be in use. With a bandwidth extending above 8 MHz , the amplifier will not

introduce any detectable distortion to a standard video signal. Crosstalk at frequencies up to 4.43 MHz is better than -40 dB . The amplifier is extremely easy to use, the only control being a mains switch. All other controls have been eliminated. Built in a rugged case, the unit is suitable for wall or floor mounting. Without the case, it can also be rack mounted for use in large installations. K.G.M. Vidiaids Lid, Clock Tower Road, Isleworth, Middlesex.
WW326 for further details

Industrial Video Monitor

Type " 1100 " monitor from Beulah is a fully transistorized unit employing an 11 in direct viewing tube with metal-backed screen and reinforced envelope. The monitor, operating on a

625 -line scanning system with a bandwidth of 5 MHz , is claimed to have high definition. Construction is rugged. Negligible heat is dissipated so the monitor may be stacked or fitted in enclosures without special ventilation. All operational controls are on the front panel. Beulah Electronics Lid, 126 Hamilton Road, West Norwood, London S.E. 27
WW328 for further details

Solderless Breadboards

S.D.C. have extended their range of modular solderless breadboarding systems to include two new DeCs specifically designed to accommodate integrated circuits as well as modern short-lead

discrete components and having 208 contact points per DeC. The μ-DeCs, primarily for integrated circuits, can accommodate two 16 -lead dual-in-line stations or four 10 -lead TO-5 stations. The new T-DeCs, primarily for discrete components, can also accommodate one diil. station or two TO-5 stations. The DeCs are formed from glass-filled nylon enabling temperature cycling tests to be carried out and contacts are either of heavy gauge phosphor bronze in natural finish or gold plate over nickel. The new DeCs may be interlocked to give a stable area of breadboard of any desired size and each DeC has slots to accommodate two control panels. S.D.C. Products (Electronics) Lid, 34 Arkwright, Astmoor Industrial Estate, Runcorn, Cheshire.
WW338 for further details

V.H.F. Power Transistor

A new n-p-n silicon planar r.f. power transistor, type BLY53A, designed for use primarily in the 450 to 470 MHz band is now available from Mul-

lard; it is intended for use in the f.m. transmitters of mobile radiotelephones. Under normal operating conditions with a supply voltage of 13.8 V and a drive of 2 W , the BLY53A gives an output of 7W into a matched load. The BLY53A can withstand the worst aerial load conditions with a supply voltage of up to 16.5 V . The transistor is encapsulated in a silicon resin, and has a capstan outline. Its ambient temperature operating range extends from -30 to $+70^{\circ} \mathrm{C}$. An application note (TP1101) describing the use of the BLY53A in mobile radiotelephone transmitters is available on request on company headed notepaper. Industrial Electronics Division, Mullard Ltd, Mullard House, Torrington Place, London W'C.1.
WW332 for further details

Solid-state Microwave Link

The Communication \& Control Group of Ferranti have added a new microwave radio link to their type 14,000 series. The equipment is a solid-state 300 -channel telephony and /or data link, suitable for long-haul trunk routes. Designated type $14,000 / 300$, the new equipment comes in a variety of packages to suit the situation and environment of the link. The whole of the 5.9 to 7.9 GHz band can be covered; and typical transmitter output is 23 dBm from an all-solid-state source, upconverter and 70 MHz modulator. The receiver is also all-solid-state. The equipment can be used in fully demodulating or non-demodulating modes. The system gives full C.C.I.R. quality; typically 40 dB dynamic range to counter fading, linearity to better than 1% and equalization to better than 2 ns over the bandwidth required for 300 channels. Automatic switching, control and supervisory facilities are available to provide for

complex links having, for example, space or diversity frequency, 'hot standby' etc., as well a! for simple, low-cost installations. Automatic fault-reporting is a standard feature. Communication \& Control Group, Ferranti Ltd Silverknowes, Edinburgh 4.
WW318 for further details

Varactor Diode

Microwave Associates have available a snafvaractor diode, the MA4-B300, providing a guar anteed minimum output of 8 W at 2 GHz , in : times-five multiplier circuit. Input power of 30 W

is required to drive the multiplier. This is the firs of a series with minimum breakdown voltage 0 100 V and capacitance units of $6-8 \mathrm{pF}$. Maximun thermal resistance is $7^{\circ} \mathrm{C} / \mathrm{W}$. The MA4-B300 i intended for use in high power frequency multi plier circuits, harmonic generators, signa sources, and other signal processing applications Microwave Associates Ltd, Cradock Road, Luton Beds.
W W336 for further details

Insulating Pillars and Spacers

Manufacturers and users of electrical and elec tronic equipment often have a requirement fo insulated pillars for use as spacers, stand-offs and terminal points. The usual ceramic pillars, be sides having a limited range of application, ar notoriously brittle. Industrial Instruments hav produced a new range of nylon moulded insulat ing pillars known as Transipillars. The compan say these are extremely robust, will resist stresse strains, shock and vibration and can be used it many different ways; also that they can be con sidered to be unbreakable if subjected to norm: use. The range comprises four diameters (fror $\frac{1}{\frac{1}{2}} \mathrm{in}$. to $\frac{5}{8} \mathrm{in}$.) of varying lengths ($\frac{1}{2} \mathrm{in}$. to 2 in .) an three combinations of stud/insert fitting ar

available, the fourth variation being a spacer, with a clearance hole. Transipillars of the stud/insert type can also be screwed into each other, thus forming extension pieces of any desired length. Prices are from $£ 7$ 10s per 100 pieces. Industrial Instruments Ltd, Stanley Road, Bromley, Kent.
WW330 for further details

'Lock-in'’ Amplifier

Aim Electronics announce a simple and inexpensive "lock-in" amplifier (coherent detection system based on a phase sensitive detector). It is claimed to be capable of all the functions of an advanced lock-in amplifier but with slightly reduced specification. The unit will accept input signals as low as $10 \mu \mathrm{~V}$ and can handle amplitudes of up to 1 volt without distortion. Overload-free operation over a frequency range of one octave is possible. The frequency of operation can be specified by the user up tc 50 kHz . An internal frequency reference may be used to tune the signal channel to the required frequency. Alternatively the frequency channel will accept any periodic input waveform between $50 \Omega \mathrm{~V}$ and 30 V peak as a reference signal. The reference phase is

adjustable through 360°. The phase sensitive detector has three preselected time constants for optimum smoothing of the detected signals and will supply up to ± 10 volts d.c. output into a $1 \mathrm{k} \Omega$ load. A zero-set control allows ± 5 volts d.c. zero adjustmerit so that output offsets may be Used in conjunction with output recording instruments. The unit is designed to fit into the Aim modular system. Its price is $£ 176$ and, used in conjunction with the Aim Cas 11 and power supply PSU 101, gives a comprehensive system for the recovery of signals buried in noise for as little as $£ 266$. Aim Electronics, Cambridge.
WW329 for further details

Digital Read-out Meter

The Digital Avometer type DA112 is little larger than a traditional Avometer. Full multimeter facilities are available with an overall capability on d.c. voltage of $100 \mu \mathrm{~V}$ to 1500 V and an accuracy of 0.1% of reading $\pm 0.1 \%$ of full range value. On a.c. voltage the basic accuracy is 0.2% of reading $\pm 0.2 \%$ of full range with operation up to 100 kHz . The input impedance on the 10 V
range is greater than $1000 \mathrm{M} \Omega$ and readily accessible controls enable immediate reference to be made to the internal calibration facilities. When mains supplies are not available the instrument may be operated from an internal re-chargeable cell which allows approximately three hours con-

tinuous operation. The meter may also be operated from a 12 V car battery. The measured value is presented on a $3 \frac{1}{2}$ digit display with automatic decimal point and over-range indication. A print-out socket (parallel BCD 1248 code) is available as an optional extra. Avo Lid, Avocet House, Dover, Kent.
WW335 for further details

Printed Circuit Connector

Oxley Developments are producing an addition to their range of printed circuit connector pins, the type $050 / \mathrm{KP} / \mathrm{H}$ for insertion in holes of 0.050 in . diameter (1.3 mm). This component, available gold plated or spin-tinned, combines three features eliminating fixing by soldering or riveting. (1) It is tapered for ease of assembly into inaccurate holes. (2) It is splined to inhibit rotation and chipping of the board: (3) It is barbed in order to ensure good grip in both copper clad and unclad laminates. Oxley Developments Co. Ltd, Priory Park, Ulverston, North Lancs.
WW325 for further details

Non-reciprocal Ferrite Junction

A tiny v.h.f./u.h.f. non-reciprocal junction which can operate as a circulator, isolator or phaseshifter (the mode of operation being determined by the external circuitry connected to it) is introduced by Marconi. Only half an inch in diameter and half an inch high, it can easily be mounted on a printed circuit board. It is compatible in size with typical circuit elements currently in use in

printed circuit and micro-strip work and is magnetically screened to minimize the effects of stray external fields. Its rugged construction enables it to operate in severe environmental conditions. Three types are available. Type F1024-04 has a range of $200-400 \mathrm{MHz}, \mathrm{F} 1024-05$ a range of $250-500 \mathrm{MHz}$, and F1024-06 a range of $300-$ 600 MHz . Instantaneous bandwidth is 3% typical for 20 dB isolation. Insertion loss is less than 1 dB . Power handling capacity is 10W'. The Marconi Co. Lid, Chelmsford, Essex.
WW333 for further details

Spectrum Analyser

A solid state spectrum analyser, type 150, available from Samwell and Hutton is intended particularly for the detection and measurement of spurious and interfering signals in the range 25 to 140 MHz , for setting and analysing telephone/television link modulators, and measurement of the sideband spectra of v.h.f. transmissions. The range $25-140 \mathrm{MHz}$ is covered by a single tuning control. Measurements can be made in the range $85-200 \mathrm{MHz}$ using the image frequency. The equipment requires a mains supply of $200-260 \mathrm{~V} 50 \mathrm{~Hz}$. The instrument can be supplied for standard 19 in rack mounting (panel height $8 \frac{3}{3} \mathrm{in}$.) or fitted in a case for bench use. Samwell \& Hutton Lid, Delta Works, 54 Goodmayes Avenue, Ilford, Essex.
WW337 for further details

Miniature Relay for PCBs

A new member to the ITT family of relays for printed circuit boards is the Type PZ-6-a 6changeover version of the well-known PZ style.

The 6-changeover contacts are twin type with a choice of silver/palladium or gold/silver surface. Maximum switched power per contact is 12VA (1 A at 100 V a.c. or d.c.). The relay is for d.c. operation with 1 or 2 coils. Dimensions of the PZ-6 are $30 \times 34 \times 20 \mathrm{~mm}$. The connections are for direct soldering on to printed circuit boards. ITT Components Group Europe, Standard Telephones and Cables Lid., Electro-Mechanical Product Division, West Road, Hariow, Essex.
WW313 for further details

100 MHz Oscilloscope

The comprehensive features of the TF 2210 from Marconi Instruments include $50 \mathrm{mV} / \mathrm{cm}$ sensitivity from d.c. to $100 \mathrm{MHz}, 5 \mathrm{mV} / \mathrm{cm}$ from d.c. to 75 MHz or $500 \mu \mathrm{~V} / \mathrm{cn}$ at reduced bandwidth; dual trace with internal triggering from either of two identical Y channels; comprehensive delayed sweep facilities; bright c.r.t. with internal graticule; active probe supplies for each channel; and a calibrator for voltage and current probes. Its $3.5 n s$ rise time permits the display of high-speed waveforms, while its low drift, excellent triggering and bright trace remove the need for special operating skill. Having two identical timebase generators, it can be used for detailed examination of virtually any part of any waveform. The waveform can be displayed on a fast delayed sweep or a slow delaying sweep or both together on separate traces. The dual-timebase facility can be

combined with the dual trace Y input system to view each of two incoming waveforms at two sweep speeds, giving a display comprising four separate traces. Marconi Instruments Lid, St. Albans, Herts.
WW302 for further details

D.C. Voltage Transformer

This new ConTech unit provides an isolated d.c. signal voltage proportional to its applied d.c. input voltage. It requires no external excitation and its input range is infinitely variable from 0-50 to 0-650 volts d.c. by means of an external series

resistance. Thus only one basic unit need be stocked to cover a variety of applications. The output is $0-10 \mathrm{~V}$ at 10 mA and the input impedance is typically $1.25 \mathrm{k} \Omega$. It is intended for use where an isolated d.c. signal voltage is required for measurement or control, in particular for applications such as thyristor drives and motor control. The unit is fully resin encapsulated and measures $44 \times 51 \times 63 \mathrm{~mm}$. Control Technology Lid, Meeching Road, Newhaven, Sussex.
WW334 for further details

Channel Search Facility

Pye Telecommunications has introduced a new dual channel search facility for its Westminster range of remote mounted radiotelephones. This allows automatic simultaneous monitoring of two radiotelephone channels, enabling a radiotelephone user to monitor a channel which may be allocated to priority or emergency calls in addition to operating any other channel selected by the
channel switch. Dual channel search equipment, designed for use with the Westminster FM mobile radiotelephone, is housed in a compact unit which also includes the normal radiotelephone controls. One of the two channels monitored is that allocated to position "l" on the channel selector switch: the other channel monitored is that selected on the channel selector switch by the operator. With the "search" button pressed the equipment provides continuous sampling of the two channels alternately, each for a period of approximately one second, the receiver locking on to which ever channel first becomes operational. A lock button allows the operator to lock the equipment indefinitely on the channel in use, regardless of the channel switch position. To reset the equipment for dual channel monitoring, a button marked "search" is pressed. A manual override facility is also provided. A special version of the dual

channel search unit can be provided for use with receivers covering widely spaced blocks of channels. Pye Telecommunications Lid., St. Andrew's Road, Cambridge, CB4 1DP.
WW310 for further details

Tuning Diodes for U.H.F.

Frequency control (either remote or programmed) of u.h.f. circuits is made possible by a new series of high- Q tuning diodes from Motorola. Designated 1 N5461 A, B, C to 1 N5476 A, B, C these diodes operate over a 30 -volt range and are available with a nominal capacitance tolerance of 2 per cent (suffix ' C '). This high uniformity is essential where stage-to-stage tracking in tuning is required or where minimum circuit-to-circuit alignment is a consideration. For less stringent uniformity requirements 5 and 10 per cent (' B ' and ' A ' suffixes respectively) units are also available. The nominal capacitance range of the series is 6.8 to 100 pF over sixteen devices, nominal capacitance being measured at 4 V reverse bias. Minimum Q at 4 V reverse bias and 50 MHz is 600 for the $1 \mathrm{~N} 5461 \mathrm{~A}(6.8 \mathrm{pF})$ and 200 for the 1N5476A (100 pF). Minimum tuning ratio (capacitance at $2 \mathrm{~V} /$ capacitance at 30 V) is 2.7 for the 1 N 5461 and 2.9 for the 1 N 5476 A . The abruptjunction dice is of epitaxial structure, passivated, and packaged in DO-7 glass with the Motorola RamRod construction. Motorola Semiconductors Ltd., York House, Empire Way, Wembley, Middlesex.
WW312 for further details

Hydrogen Thyratron

The type FX2513 hydrogen-filled triode thyratron for pulse operation, recently introduced by English Electric, is specially designed to modulate magnetrons of the 25 kW X-band type used in 25 kW airborne weather radars. Whilst the FX 2513

is a direct electrical equivalent to the $\mathrm{KU82} / 7583$, capable of handling peak pulse currents up to 35 A at a peak forward anode voltage of up to 8 KV , advance production techniques and the inclusion of an internally connected hydrogen reservoir give a much improved life expectancy. Warranty is for 1000 hours operation. English Electric Valve Co. Lid., Chelmsford, Essex.
WW307 for further details

Sine Wave Oscillator

The 3120 sine wave generator from Dynamco is a source of pure sine waves (less than 0.005% distortion), for the calibration of precision a.c. instruments with r.m.s., mean or other characteristics. It also enables direct measurement of the distortion introduced by an amplifier or other system unit well beyond previous practical limits. Its good short term amplitude stability (better than 0.005%) makes it suitable for a.c. Iransfer systems and calibration rigs in standards laboratories. The frequency range is 10 Hz to 109 kHz , frequency accuracy is 1% from 10 Hz to 10 kHz , and 2% from 10 kHz to 109 kHz . The frequency temperature coefficient is typically 100 p.p.m. (0.01%) per C°. The output level is 5 V maximum. A 0 to 60 dB attenuator with fine adjustment gives control of output amplitude. The direct output is always available. The output impedance is 10Ω through $40 \mu \mathrm{~F}$ into a 600Ω attenuator. The load must not be less than 600Ω or greater than 2000 pF . Operation is from a.c. at $100-125 \mathrm{~V} \pm 7 \%$ and $200-250 \mathrm{~V} \pm 7 \%$ at 45 to 400 Hz . Dynamco Ltd, Dynamco House, Hanworth Lane, Chertsey, Surrey.
WW 303 for further details

R.F. Power Supply

Elliott Instruments announce their new laboratory transmitter type E.110. This equipment is

intended as a source of radio frequency power in the laboratory. The output is continuously variable from 0 to 500 watts continuous sine wave power. It operates in the band from 100 kHz to 30 MHz , with a standard output impedance of 75 ohms. The frequency can either be crystalcontrolled, or set by a variable frequency oscillator. The equipment has been designed to be very reliable and flexible, and it is contained in a cabinet mounted on castors for ease of movement. Elliott Instruments Lid, Station Industrial Estate, South Woodham Ferrers, Chelmsford, Essex.
WW331 for further details

Literature Received

For further information on any item include the appropriate $W W$ number on the reader reply card

ACTIVE DEvICES

Semiconductor Quick Reference Data (does not include integrated circuits) A.E.I. Semiconductors Ltd, Carholme Rd., Lincoln

WW401
Integrated circuit literature listed below available from Ferranti Ltd, Gem Mill, Chadderton, Lancs.

Micronor-5, military range, data WW402
Micronor-5, industrial range, data WW403
Integrated circuit price list WW404
WW404
Short-form catalogue SWT-110B lisis i.cs and thick-film hybrid circuits and ransistors. Sprague Electric (UK) Ltd, Trident House, Station Rd., Hayes, Middlesex

WW405
Jata received from Athena Semiconductor Marketing Co. Ltd, 140 High St., Egham, Surrey, on National Semiconductor devices as below:

Mullard Ltd, Mullard House, Torrington Place, London, W.C.1, have issued he following 1969/70 industrial components reference guides:

Semiconductors
WW409

'IN diodes (series 5082-3000) are the subject of a leaflet from Hewlett'ackard, Bath Rd, Slough, Bucks

WW411

?ASSIVE COMPONENTS

Mechanical multiplex switches (MS 10000 series) are the subject of a leaflet rom A \& M Fell (Manufacturing) L.td, F.G.A. Works, Denton, Newhaven, ;ussex

WW412
A selection chart for magnetic pickups can be obtained from Airpax Electronics, Jambridge, Maryland, U.S.A.

WW413
Zlectro-mechanical switching components are described in a catalogue from *R Electronics, Wimborne, Dorset

WW414
"Mullard industrial passive components" is the title of a catalogue received rom Mullard Ltd, Torrington Place, London, W.C. 1 WW415 he following publications are available from Sprague Electric (UK) Ltd, "rident House, Station Rd, Hayes, Middlesex.
8410, Heavy duty power line filters WW416
3703A, Hermetically sealed ielled-electrode sintered-anode Tantalex capacitors

WW4 17
102, Radial-lead polycarbonate capacitors WW418
6170, Ceramic chip capacitors WW419
-ilass-tin-oxide resistor wallchart, available from Electrosil Lid, Pallion, underland, Co. Durham

WW420
Houlded track potentiometer leaflet can be obtained from Davall Electronics id, Rothersthorpe Avenue, Northampton, NN4 9jL

WW421

-IICROWAVE

Instruments and components for microwaves" is a catalogue available om Sivers Lab U.K. Office, 9 Forgefield, Westerham Rd, Biggin Hill, ent

WW422
Concise catalogue of microwave equipment" has been produced by Larconi Instruments Ltd, Sanders Division, Gunnels Wood Rd, Stevenage, -lerrs.

WW423

-IARDWARE

1icrometer actuated micro-manipulators, positioners and probers are escribed in a leaflet from Research Instruments Led, Ace Works, :umberland Avenue, London, N.W. 10

WW424
"Ceramics for telecommunication engineering, high-frequency insulators" is the title of a leaflet available from Köbányai Porcelángyár, Budapest, X., Tárna utca 4

WW425
A printed circuit lacquer is described in a leaflet from Electrolube Ltd Oxford Avenue, Slough, Bucks.

WW426
"I.C.M. plastics for industry" is the title of a booklet available from Insulating Components and Materials Ltd, Wellhead Lane, Perry Bar, Birmingham 22B

WW427
Plastic fasteners (Spire fasteners, self-threading nuts, insets and rivets) are detailed in a catalogue FCF 3039 from Firth Cleveland L.td, Stornoway House, Cleveland Row, St. James's, London, S.W. 1

WW428

CIRCUITRY

Four books have been published by Tektronix and are available in this country from Tektronix U.K. Ltd, Beaverton Hse., Station Approach, Harpenden, Herts., at 10s each. The titles are:

Television waveform processing circuits.
Sweep generator circuits.
Measurement concepts; semiconductor devices.
Digital concepts.
"Differential operational amplifiers" briefly covers the theory and practice of these devices. Available from Fenlow Electronics Ltd, Whittet's Eyot, Weybridge, Surrey

WW429
"High-fidelity audio designs" gives thirteen Ferranti audio designs with constructional information. Available from WEL Components Ltd, 5 Loverock Rd, Reading, Berks., price 5 s.
An integrated light-to-frequency converter is described in a leaflet from Photain Controls Ltd, Randalls Rd, Leatherhead, Surrey

WW430

EQUIPMENTS

Transducer meters of various kinds are the subject of a leaflet from Sangamo Controls Ltd, North Banstead, Bognor Regis, Sussex . . WW431
The following two leaflets are available from Telemechanics Ltd, 24 London Rd, Camberley, Surrey.

Temperature measurement and thermometer equipmentWW432
Telemax chart recorders
WW433
New equipment is described in literature from Lennard Developments
Ltd, 497 Green Lanes, London, N. 13
Wow and flutter meter 102B
-WW434
Wow and flutter meter 104
WW435
Wave analyser $\left(1-330 \mathrm{H}_{\mathrm{z}}\right) 301$
WW436

GENERAL INFORMATION

Two new publications are available from the British Standards Institution, 2 Park Street, London W1Y 4AA.

3939: Section 21. Graphical symbols. Pure logic and functional symbols, price 12s.
4462: 1969 Guide for the preparation of technical sales literature for measuring instruments and process control equipment, price 6 s .
Maps showing the estimated coverage, region by region, of the first phase of the U.K. independent television u.h.f. colour transmitter network have been published by the I.T.A., 70 Brompton Rd, London, S.W.3.

Set of separate maps
WW437
Book of maps
WW438
Technical service note TS/IS/6 "Chloro and chlorofluoro hydrocarbon solvents; their effects on polymeric materials" is available from I.C.I. Lid, Thames House North, Millbank, London S.W. 1

WW439

COURSES

The following 12 courses, which are to be held at Northern Polytechnic, Holloway Rd, London N.7, are described in pamphlets.
Electronic engineering- 1 .
Electronic engineering- 2 .
Intro. control engineering.
Network analysis.
Transistor circuit design.
Medical techs electronics.
I.C. logic systems.

Colour television.
Laplace transforms.
Digital computers.
I.C. applications.

Audio engineering.

We have received the $1969 / 70$ prospectuses from the science and engineering departments of the following establishments: Norwood Technical College, Knights Hill, London S.E.27, and Twickenham College of Technology, Egerton Rd, Twickenham, Middlesex.

The "Bulletin of special courses in higher technology, management studies and commerce" (Autumn term) for London and the Home Counties is available from the Regional Advisory Council for Technological Education, Tavistock House South, Tavistock Square, London W.C.1. Price 10s.

Conferences and Exhibitions

Further details are obtainable from the addresses in parentheses

LONDON

Sept. 2-6

Grosvenor House
Educational \& Training Technology
(I.E.E., Savoy PI., London W.C.2)

Sept. 8-12
Savoy Place
Microwave Conference
(I.E.E., Savoy Pl., London W.C.2)

Sept. 15-19
Electronics for Civil Aviation
(Electronic Engineering Assoc., Berkeley Sq. House, Berkeley Sq., London W.1)
Sept. 22-23
Face to Face with Metrication
(B.S.I., 2 Park St., London WIY 4AA)

BELFAST

Sept. 9-12
Queen's University
Nonlinear Optics
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

BRIGHTON
Festival Hall

Sept. 7-12
University of Sussex
Atomic Collision Phenomena in Solids
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

Sept. 24-26
University of Sussex
Nuclear Structure \& Elementary Particle Physics
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

CAMBRIDGE

Sept. 8-12
St. John's College
Man-machine Systems
(D. Whitfield, Applied Psychology Dept., University of Aston, Birmingham 4)

COVENTRY

Sept. 16-18
Hotel Leofric

Electronic Instruments Show

(Industrial Exhibitions Lid., 9 Argyll St., London W.1)

DURHAM

Sept. 16-18
The University
Applications of Dynamic Modelling
(I.E.E., Savoy Pl., London W.C.2)

EXETER

Sept. 3-10
The University

British Association Meeting

Brit Assoc. for the Advancement of Science, 3 Sanctuary Bldgs., 20 Gt. Smith St., London S.W.1)
Sept. 16-19
The University
Solid State Devices
(I.P.P.S., 47 Belgrave Sq., London S.W.1)

LOUGHBOROUGH

Sept. 23-25
University of Technology
Industrial Ultrasonics Conference
(I.E.R.E., 8-9 Bedford Sq., London W.C.1)

MANCHESTER

Sept. 23-25
Hotel Piccadilly
Electronic Instruments Show
(Industrial Exhibitions Ltd., 9 Argyll St., London W.1)

Sept. 29-Oct. 3

Belle Vue

NOTTINGHAM

Sept. 17-19
The University
High Magnetic Fields and their Applications
(I.P.P.S., 47 Beigrave Sq., London S.W.1)

OVERSEAS

Aug. 30-Sept. 8

Paris
International Radio \& Television Show
(Fed. Nat. des Ind. Electroniques, 16 rue de Presles, Paris 15 e)
Sept. 6-11
Milan
Italian Radio \& Television Show
(Assoc. Nazionale Industrie Elettrotechniche ed Elettroniche, Via Donizetti 30, Milan)
Sept. 6-11
Milan
Electronic Components, Instruments \& Accesories Show
(Secretariat, 20122 Milan, Via Luciano Manara 1)
Sept. 10-12
Clayton, Mo.
Microelectronics Symposium
(I.E.E.E., 345 E. 47 th St., New York, N.Y.10017)

(Industrial \& Scientific Conference Management, 222 W. Adams St.,
Chicago, Ill. 60606)
Sept. 19-28
Amsterdam
Firato-Festival of Sound \& Vision
(RAI Gebouw N.V., Europaplein 8, Amsterdam)

H. F. Predictions-September

$$
\begin{aligned}
& \text { - Median standard MUF } \\
& - \text {---- Optimum traffic frequency } \\
& \text {-.- Lowest usable HF }
\end{aligned}
$$

Seasonal change is evident as a slight increase in peak MUFs. This is sustained during daylight on all the routes except Hong Kong which develops a continuously varying MUF. Day-to-day MUFs are assumed to be normally distributed about that shown, the optimum traffic frequency being the value exceeded on 90% of the days. This is of interest to the regular communicator whilst a curve displaced by the same linear amount above the MUF would be of interest to amateurs and listeners as the MUF exceeded on 10% of the days. It is not possible to predict, however, which actual three days these will be.

LUFs depend very much on e.r.p., those shown were drawn by Cable and Wireless Lid for reception in this country of point-to-point telegraph using several kilowatts of power and rhombic aerials.

Answers to ${ }^{6}$ Test Your Knowledge" - 16

Questions on page 439

1. (d) This, together with the fact that any repetitive waveform can be built up from sinusoids (Fourier's theorem), is why the sinusoidal waveform is regarded as so fundamental.
2. (a) The total (complex) impedance is ($3000+j 4000$) ohms and thus has a modulus $\sqrt{3000^{2}+4000^{2}}=5000$ ohms. Hence the current is $5 / 5000 \mathrm{amps}=1 \mathrm{~mA}$. This result, and the solutions to many of the other questions, can readily be verified by drawing a phasor diagram. 3. (b) The power factor is that by which the r.mes. volt-amps must be multiplied to give the power dissipated (in the resistor).
3. (d) The current which flows is common to both components and leads the applied voltage by less than 90°. Since the voltage across the capacitor lags the current by 90° it must also lag the applied voltage.
4. (b) At a frequency above resonance the capacitor takes a greater current than the inductor. Hence the tuned circuit has a negative reactance so that the argument of the total impedance is negative.
5. (d) The ratio of voltage out to voltage in will easily be shown to be $1 /(j \omega C R+1)$. Since here $C R=3.10^{3}$ at frequencies of 1 kHz and above $\omega C R>1$ so that he output voltage is inversely proportional to frequency.
6. (c) This result is significant in determining the lower 3 dB point in $R-C$ coupled amplifiers.
7. (a) Any capacitive circuit (current leading) has an admittance with a positive imaginary part. The real apart of the input impedance or admittance of a purely passive circuit can never be negative.
8. (c) The current leads the voltage by 2 radians i.e. -114°, hence the input impedance has a negative real parr. -This means that the network delivers power to the -enerator and thus must contain a source of electrical inergy. The network could be an active device with a legative resistance characteristic.
-10. (a) Only the resistor dissipates power so the amount is the same at all frequencies since the current is the same.
9. (d) The voltage across the capacitor of a seriesesonant circuit at its resonant frequency is Q times the applied voltage. Q here $\left(\omega_{0} L / R\right)$ is 100 .
10. (c) The circuit will only "ring" if R is less than $-\sqrt{L C}$ i.e. if Q (using $\omega_{0}=1 / \sqrt{L C}$) is greater than $\frac{1}{2}$.
11. (b) Assuming that the inductor has very small losses he initial oscillation will be at a frequency of $1 / 2 \pi \sqrt{L C}$ n this case 159 Hz . With the given resistor in parallel the frequency drops to 138 Hz . Again the criterion s the value of Q at the nominal resonant frequency; - f it is less than $\frac{1}{2}$ the circuit will not resonate, if it is ;reater than about 5 the ringing frequency is effectively $12 \pi \sqrt{\text { LC. } Q} Q$ here is 1 .
12. (a) The square-wave generator is effectively a onstant-current generator. The Fourier analysis of a quare wave indicates that there are components at all add harmonics. Since the tuned circuit resonates at pproximately 159 Hz it will develop a large potential i this frequency, very small poientials at all the ther component frequencies.

QUICK DELIVERY of BULGIN COMPONENTS OUR OBJECT AND AIM

Customers all over the world pay tribute to the service they receive from "The House of Bulgin". Although we list such a large variety of components, stocks are held in keeping with past demand, for immediate delivery. In the case of popular products, we can often supply several thousand units from stock, a facility not always obtained from other manufacturers.
Delivery from stock of all items shown below.

OUR 15 MAIN DISTRIBUTORS ALSO HOLD EXCELLENT STOCK

[^5]
Real and Imaginary

by "Vector"

On banging the big drum

Do not press me to reveal the circumstances which necessitated me visiting the editorial sanctum sanctorum recently. As I think I have said before, the summons to attend is invariably reserved for the transgressor.

In the event the castigation was unexpectedly mild, a circumstance for which I found I had the German radio industry to thank. For it appeared that the editor had but lately returned from a sojourn as a guest of that institution and the aura of good living had not wholly departed.

The object of the exercise, it seemed, was that he should receive a verbal preview of the forthcoming Radio and TV Show at Stuttgart. This is the kind of occasion when Teutonic thoroughness comes to the fore and I must say that every stop appears to have been pulled out. On the evening of arrival a visit to Guttenberg castle was laid on. Dinner at the castle (said the Editor, absently swallowing two indigestion tablets) was in the best German traditions, going on for a good three hours. The evening wound up with a torchlight procession around the castle battlements, accompanied by the baron, his lady and their retinue dressed in period costume, then back to a first class hotel for what was left of the night.

The next morning, a well-managed Press Conference which, I gather, did not (unlike some functions of this character) consist of manufacturers' sales managers hogging the floor with blatant plugs for their companies' products. After lunch, at which the press men were joined by representatives of the industry and the Bundespost, a tour of the exhibition site on a miniature railway which runs around the grounds, and so to the airport and home. In short, said the Editor, graciously presenting me with a duty-free cigar, everything, including the air fare, was on the house and the standard of entertainment left absolutely nothing to be desired I pondered on this last but did not presume to ask to amplify. I did, on reaching the anteroom, ask the Editor's ravishing secretary whether she had been on the junket but she said no, she hadn't and added bitterly that there was one law for Sir and another for the poor.

Now, this little shindig, which gathered in nearly fifty editors or their representatives from all over Europe, was not done for peanuts. Question the value of it if you will, but the organisers obviously thought it was worth it, and with some justification in
that the West Germany Radio show is to be increased in status from a 'national' to an 'international' exhibition when it is held in Berlin in 1971.

Ballyhoo? Of course it's ballyhoo, but we have to accept that modern radio and electronics industries are geared to it. All over Europe, large-scale radio and electronics exhibitions will be promoted during the coming months and all presented with similar brashness. Why is it that we are the only major European country which does not have a public radio and television show in which the majority (if not all) of the manufacturers, the broadcasting authorities and the Post Office participate?

You will be quick to point out that we did have such a show as an annual event and this died on its feet several years ago. But old-timers tell us that the pre-war radio shows were a rave, so what caused rigor mortis to set in?

Before we try to answer that, let's consider the viewpoint of those who would hold that it is the fault of the faceless 'They' of Whitehall and Westminster. The Government (they say) should come across with the generous financial backing that apparently the electronics industries get in other countries. Why doesn't it do a bit of breadcasting upon the waters by forking out the odd few millions for an exhibition site for which we would not have to apologize to overseas visitors?

Why not, indeed! It's tempting to make a whipping-boy out of the Government but let's have fair do's. Has the domestic electronics industry done anything to inspire Government confidence in its ability to sell overseas? The latest export figures of 2.5% of television receiver output and 8% of sound and car radio output tell their own story.

The unpalatable truth is that the domestic electronics industry has seldom passed up an opportunity to foul its own nest. It has consistently refused to recognize that markets exist outside the confines of the British Isles. It raped the concept of the f.m. service by sacrificing one of its biggest selling points -high-quality reproduction-to considerations of penny-pinching design. The industry has saddled itself with a dual-standards requirement in design of TV receivers and is at present inexpertly holding the colour television baby.

When the home market began to show unmistakable signs of saturation the British
industry, instead of looking overseas, took the easy way out. Retrenchment and "rationalization" became the orders of the day and these found practical expression in the form of mergers. This was the biggest disaster of all. Hitherto, the design teams of each individual firm had made every effort to go one better than their rivals, with Radiolympia as the proving ground where the dealers and, to some extent the public, could make their choice. But with the advent of the merger -mania, individual design ceased (so wasteful of effort, said the economists). As a result, the stands on the main avenues, while retaining their old-established names, exhibited receivers which were individual only in cabinet designs: inside the boxes lurked a common design of chassis. The whole point of an annual exhibition was thereby lost and so Radiolympia languished and died.

With such a dismal record to consider, no government (whatever its political hue) is going to back an international exhibition, for, far from attracuing overseas buyers, it would encourage foreign firms to encroach on the home market. No punter, however sanguine, is going to back a horse which has no legs to stand on.

The capital goods side of the electronics industry, on the other hand, is in a much stronger position to press the Government for a worthy exhibition site, because it has a commendable export record already. Such a claim, allied to the needs of other British industries with a solid stake in exports, would be much more difficult to ignore. The U.K. needs an impressive shop window and needs it badly.

A touch of the moon

Whether you subscribe to the belief that the fantastic sums of money poured into the Apollo project could have been spent to better purpose or whether you feel that it was all worth while, there can surely be no two schools of thought about the courage of the space travellers.

From the purely electronics standpoint the exercise was a vindication of the startling claims for reliability made on behalf of microcircuits. (On second thoughts, one should qualify that by amending the sentence to well-made microcircuits.)

One point which so far hasn't been divulged (it may have been by the time this gets into print) is the degree of vacuum experienced in outer space and on the moon's surface. If it is as great as is generally believed then a thermionic device would presumably no longer have to be contained in a glass or metal envelope-a feature which could be pretty useful in designing high-power transmitters for use on the moon. Power supply problems might be solved by the use of mammoth photo emissive cells which again should operate very happily in the natural vacuum. There isn't space for me to consider the possibilities which stem from this freedom from the constraints of the evacuated envelope but I'll leave it to your imagination.

Racaland BCC have ioined forres

This now makes Racal-BCC a dominant force in H.F. and V.H.F. Military Communications Equipment.

When two internationally-acknowledged experts in military communications combine-you've a force to be reckoned with. Both have established world reputations in manpacks, and their combined expertise has produced coverage of the H.F. and V.H.F. bands. From 1 -watt 6 -channel, 8 lb personal sets to 20 -watt fully synthesized equipments, and all equally suitable for manpack, shipborne, vehicle or other applications anywhere in the world. Whether YOUR force slogs it out with the infantry, or rides in armoured vehicles, Racal-3CC equipment will keep you in constant touch - it's the widest choice 4 available from the strongest force in forward communications. Don't forget-manpacks are only a part of their business, they also supply a complete range of radio telecommunication equipment for military, shipborne, P.T.T. and commercial use - worldwide. But if you're thinking manpacks - you SHOULD be thinking RACAL-BCC!

the world's most advanced high-fidelity amplifier

Abstract

This remarkable amplifier has been in production for some months, end now that we have caught up with the backlog of orders, we can supply the IC-10 promptly. We wish to apologise for delays in reaching full production, which were due to circumstances beyohd our control. We hope that now you can purchase the IC-10 without difficulty, you will enjoy to the full the great possibillties this unique Sinclair device offers.

The Sinclair IC-10 is the World's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, which has an output power of 10 Watts, is a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick. This tiny chip contains 13 transistors (including two power types), 2 diodes, 1 zenor diode and 18 resistors, all of which are formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins.
Monolithic I.C's. were originally developed for use in computer and space applications where their extraordinary toughness and reliability were even more important than their minute size. These same advantages make them ideal for linear applications such as audio amplifiers, but hitherto they have been confined to low power applications. The IC-10 thus represents a very exciting advance. Not only is it far more rugged and reliable than any previous amplifier, it also has considerable performance
advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output fransistors and the bias diodes and very low level of distortion.
The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of the usual tone and volume controls and a battery or mains power supply. However, the IC-10 is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout) etc. The photographic masks required for producing monolithic I.C's. are expensive but once made, the circuits can be produced with complete uniformity and at very low cost. So we are able to sell the IC-10 at a price far below that of the components for a conventional amplifier of comparable power. At the same time, we give a 5 year unconditional guarantee on each IC-10 knowing that every unit will work as perfectly as the original and do so for a lifetime.

IOWATT MOMOUTMNC NMTETRRNED Cincoir AMPIFIER

Specifications

Power Output	10 Watts peak, 5 Watts R.M.S. continuous.
Frequency response	nse $\quad 5 \mathrm{~Hz}$ to $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$.
Total harmonic distortion	distortion Less than 1% at full output.
Load impedance	3 to 15 ohms.
Power gain 110dB	110 dB ($100,000,000,000$ times) total.
Supply voltage	8 to 18 volts.
Size	$1 \times 0.4 \times 0.2$ inches.
Sensitivity	5 mV .
Input impedance	djustable externally up to

Circuit Description

The circuit diagram of the IC-10 is snown on the right. The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. The output stage operates in class $A B$ with closely controlled quiescent current which is independent of temperature. A high level of overall negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages. Thus battery operation is eminently satisfactory.

Construction

The monolithic I.C. chip is bonded onto a gold plated area on the heat sink bar which runs through the package. Wires are then welded between the I.C. and the tops of the pins which are also gold plated in this region. Finally the complete assembly is encapsulated in solid plastic which completely protects the circuit. The final device is so rugged that it can be dropped thirty feet on to concrete without any effect on performance. The circuit will also work perfectly at all temperatures from well below zero to above the boiling point of water.

Applications

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity usos. Those include public address, loud-hailers, use in cars, inter-com., stabilised power supplies, electronic organs, oscillators, The translsiors in the IC-10 have cut off frequencles greter action can be usad as a P or F . saction can be used as an R.F. or I.F. amplifier making it possible to bulld complate radio receivers
without any additionat thansistors.

SINCLAIR GUARANTEE

Should you not be completely satisfied with your purchase when you receive it from us, your money question. Full service fecilites once and withoul puestion. Fullservice facilitles available to all

SINCLAIR

The complete $1 \mathrm{C}-10$ with the menuel and 5 year guarantee costs jus?

ORDER FORM BRINGS PROMPT DELIVERY SENT TO YOU POST PAID

ELEGTROVILUE

RAPID MAIL DRDER SERVICE
ALL GOODS ERAND NEW - ATTRACTIVE DISCOUNTS NO SURPLUS OR SECONDS

AMPLIFIER KITS

30 WATT (designed by Dr. A. R. Bailey)
Published May 1968 W.W., modified Nov. 1968 W.W
FULL KIT for main amplifier E9/9/6 (iess power supply). Transistors only for main amplifier $\mathbf{6 7} / 9 / 6$. PC board supplied free with above kits. Heat sinks for output transistors $8 / 6$ extra.
POWER SUPPLY kit, unregulated, Nov. 1969 circuit E4/14/0. Regulated version, GOV 1.6A or 0.8 A currene limiting, re-enerant characteristic: does not need re-set button $\mathbf{1 8 / 1 0 / 0}$. Transformer only: $0-25-45-50 \mathrm{~V} 2 A, 58 /-$ 12 WATT Peak Sound P.W. Double 12.
COMPLETE STEREO KIT including cabinet, but less panel and other metal-work $\mathbb{2} 3 / 0 / 0$ nee. Available in separate packages as follows:

MAIN AMPLIFIER KIT € $3 / 19 / 6$ per channel, net. Accessories $19 /-$ mono, 36/-stereo.
PRE-AMPLIFIER KIT $\mathbb{C I / 7 / 0}$ per channel, net. Accessories $13 / 6$ mono. 27/3 stereo.

TONE CONTROL KIT $19 / 0$ per channel, net. Accessories $8 / 9$ mono. 22/6 stereo.
POWER SUPPLY KIT $£ 4 / 10 /=$ mono or stereo, net.
CABINET KIT $42 / 12 / 6$ net.
Metalwork available separately from other sources, details on request.
$8+8$ WATT STEREO ONLY
PEAK SOUNDSA $9+8$ KIT. Sensitivity 50 mV into $1 M \Omega$, output into 5Ω. Complete with cabinet and power supply. Kit complete $€ 16 / 10 / 0$ net. Buile, tested $\mathbf{E 2 1}$ net

BARGAINS IN BRAND NEW ELECTRONIC COMPONENTS

ULTRA LOW-NOISE RESISTORS (under $0.1 \mu \mathrm{~V} / \mathrm{V}$) Electrosil TR5: Metal oxide, 2% colerance, range 10Ω co IM Ω. All values in $E 24$ series available. IW rating. $1-2410 \mathrm{~d}$. each; $25-999 \mathrm{~d}$, each; 100 up 8 d . each. (Ohmic values may be mixed to obtain quantity price.)

POTENTIOMETERS, carbon track, long plastic spindles: Single gang linear 220Ω to $2 \cdot 2 \mathrm{M} \Omega 2 / 6$ each. Log $4 \cdot 7 \mathrm{~K} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega 2 / 6$ each. Dual gang stereo-matched lin or log lOK to $1 \mathrm{M} \Omega 8 / 6$ each.
Stereo balance log/anci-log $10 \mathrm{~K}, 47 \mathrm{~K}, \mathrm{IM} \Omega$ only $8 / 6$ each.
All cypes available with $\frac{1}{2}$ A D.P. switeh $2 / 3$ extra.

TRANSISTORS,

2N3794
$2 N 4286$
$2 N 4289$
$2 N 4291$
Cheapest FET:
$2 N 5163$
40361
40362
AD149
AD161
ADI62)
BR107
BC108
BC109
BC125
BC126
BC148
BC149
BCI
$2 / 11$
$2 / 11$
$2 / 11$
$2 / 11$
$5 /-$
$12 / 6$
$16 / 9$
$17 / 6$
$14 / 9$
$p r$.
$3 / 6$
$3 /-$
$3 / 6$
$12 / 9$
$12 / 9$
$3 / 3$
$4 / 3$
$2 / 3$

LARGE CAPACITORS, high ripple current types
2000 F $25 \mathrm{~V} 7 /-2000 \mu \mathrm{FF} 50 \mathrm{~V} 9 / 3,5000 \mu \mathrm{~F} 25 \mathrm{~V} 10 / 3 ; 5000 \mu \mathrm{~F} 50 \mathrm{~V} 17 / 6$.
S-Dec $30 / 6 ; 2=\mathrm{DeC}$ De istore $69 / 6 ; 4 \mathrm{DeC} 119 / 6$.

* DISCOUNTS (on all but NET items)
10% for total order value of $\mathbf{E} \mathbf{3}$ or over
15% for total order value of $\mathbf{£ 1 0}$ or over.

+ POSTAGE AND PACKING

on orders up to $£ 1$ add $1 /$-, over, post free in U.K.
Overseas orders welcomed: carriage charged at cost

CATALOGUE

Gives further details of above items and a wealth of information on semiconductor characteristics, etc., 1/6 post free

ELECTROVALUE

(Dept. WW9), 28 ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM ${ }_{r}$ SURREY $^{\prime}$

Tel: Egham 5533

OPERATIONAL AMPLIFIERS BRITISH MADE

IMMEDIATE DELIVERY

new pence each
(70/- EACH)

Open loop galn @ D.C.	20,000 typ
Offset current temp. coefficient	$1.5 \mathrm{nA} /{ }^{\circ} \mathrm{C}$
Offset voltage temp. coefficient	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Input impedance	$25 \mathrm{M} \Omega$
Max frequency for full output	25 kHz

DPS-25 MINIATURE POWER SUPPLY NOW AVAILABLE

WW-094 FOR FURTHER DETALLS

EDDYSTONE

 COMMUNICATION RECEIVERSFROM £59-10-0 covering 10KHZ-870M HZ
ILLUSTRATED LEFT-830/7 HIGH GRADE G.P. HF/MF RECEIVER COV. GRADE G.P. HF/MF RECEIVER COVERING $300 \times H Z-30 M H Z$ IN 9 RANGES.
DOUBLE CONVERSION FROM 1.5 DOUBLE CONVERSION FROM 1.5
MHZ. PANORAMIC UNIT FOR VISUAL DISPLAY.

J E S AUDIO INSTRUMENTATION

Illustrated the Si452 Distortion Measuring Unit -low cost distortion measurement down to .01\% £25.0.0

Si45 1

 £30.0.0Comprehensive Millivoltmeter 350μ Volts 20 ránges

Si453
£35.0.0
scillator
sine-square-RIAA
J. E. SUGDEN \& CO., LTD. Tel. Cleckheaton (OWR62) 2501 BRADFORD ROAD, CLECKHEATON, YORKSHIRE.

$£ .98$

(MTBF > 10,000 hrs. STABILITY 0.1\% p.a.)

roband 1500

a compact, four range (1 mV to 1000 V) digital voltmeter, with automatic sign change and accuracy of 0.2% of reading ± 1 digit.

SEMICONDUCTORS

BRAND NEW FULLY GUARANTEED

DIODES

461		-			$8 / 6$			NKT216	7/6
IN914		2 C 374 5/6	2 N 3011515					NKT2	
IN916	116	${ }_{2} \mathrm{C} 381$ 4/6	$2 N 3053$ 6/6	403	$12 / 6$	BF182		NK	
IN4007	$1 / 6$	2N696 5/-	2 N3054 1216	40361	$12 / 6$	BF184	7/6	262	6
SO10			2 N 3055 15-	40362	146	BF19	$6 / 6$	NKT264	6
15021		2N706 216	2 N 31336 -	40370	8/6	BFX 12	5/6	NKT272	
15021		2N706A 216	2N3134 $10 / 6$	40467	16/6	BFX13	$5 / 6$		
15025		2N708 4/-	2N3135 6/-	40468	$16 / 6$	BFX29	$12 / 6$	NKT281	
15113	3/-	2 N753 5/6	2N3136 6/-	AC107	6/-	BFX30		NKT4	
15120	216	N914 3/6	2N3390 10/6	${ }_{\text {A Cl }}$	4/-	BFX43			5/6
15121	2/6	2N916 3/6	2N3391 7/6	${ }_{\text {ACl }}{ }^{\text {A }}$	3/-	BFX44	$8 / 6$	NKT405	216
15130	216	N929 5/6	2N3391A 6/-	ACl76	5/6	BFX84	$8 / 1$	NKT603	6/6
15132	216	2N930 $61 / 6$	${ }_{2}$ N3392 $6 / 6$	${ }_{\text {ACl }}$	12/-	${ }_{\text {BF }}{ }^{\text {BF }} 85$	10/-	NKT613	6.6
15131	$3 /-$	N987 1016	2N3393 6/6	ACl88	12/-	BFX86	8 -	NKT674F	5/-
AA119	2/-	N1131 8/6	2N3394 5/6	ACYI7	-	BFX8	10/-	NKT677	-
AAZ13	2/-	2N1132 8/6	2N3402 8/6	ACYİ	5/-	BFX88	5/-	NKT713	5/6
AAZ15	$2 / 6$	2N1302 4/6	2N3403 \%/-	ACYI9	5/-	BFY17	/6	NKT736	6/6
AAZ17	216	N1303 4/6	2N3404 12/6	ACY20	5/-	BFY18	$4 / 6$	NKT78	
BA100	21-	N1304 5/6	2N3405 $12 / 6$	${ }^{\text {ACr }}$ A ${ }^{\text {a }}$	5 -	BFY	$4 / 6$	NK	
BA 102	4/\%	2N1305 5/6	2N3414 6/6	ACY222	4/-	BFY 20	12/6		6/-
BA	$1 / 6$	2NI306 616	2N3415 $7 / 6$	ACY28	4/-	BFY 21	$8 / 6$		
BAXI3	$2 /$	2N1307 6/6	2N3416 7/6	ACY40	4/-	Y24	$9 /-$		6-
BA	216	2N1308 8/-	2N3417 9/6	ADI40	8/-	BFY25	5/-		
BA	$3 / 6$	2N1309 8/-	2N3570 12/6	ADI49	$8 /-$	BFY26	4/-		6/-
BA	$1 / 6$	2N1420 716	2N3572 12/6	ADI61	$7 / 6$	BFY	101-		
BAY38	$2 / 6$.	2N1507 7/6	2 N360S $\quad 3 / 6$	ADI	$7 / 6$	BFY	101-		8/6
BY	$4 / 8$	2N1527 716	2N3606 5/6	AFII4	5/-	BFY36	4/-		
BY103	4/6	2 N1605 9/6	2N3607 4/6	AFll 16	$5 /$	BFY 37	5/-		0/6
BY122	$7 / 6$	2N1613 6/6	2N3662 11/6	AFl17	5/-	BFY41	101-		$15 / 6$
$8 Y 124$	$3 /-$	2N1711 6/6	2N3663 12/6	AFII8	$12 / 6$	BFY43	13/6		
BY	516	2 N 18898 8/-	2N3702 4/-	AFl24	$5 /$	BFY 50	$4 / 6$		19
BY	$91-$	2 N 1893 8/-	2N3703 4/6	AFI 25	5/-	BFY51	$4 / 6$	NKT801	
BY	716	2N2147 17/6	2N3704 5/6	AF126	5/-	BFY 52	416		22
	616	2N2148 $12 / 6$	2N3705 4/6	AF127	5/-	BFYS 3	5/6	,	
BY	518	2N2160 14/6	2 N 3706 4/-	AF181	8/6	BFY56A	11/-		18
FS	4/6	2N2193 5/8	$2 N 3707$ 4/-	AF186	11/-	BFY75	61-	O21	
FST3	6/-	2N2193A 5/6	2N3708 4/-	F239	716	BFY76	6/-		18
OAS	$2 / 6$	2N2194A 4/6	2N3709 4/-	11	$5 / 6$	BFYT7	1/6	NKT80213	
	2/-	2N2217 6/-	2N3710 4/-	F212	6/6	BFY90	12/6		18/6
O	21-	2N2218 6/-	2N3711 4/-	ASY26	5/6	BS $\times 19$	$5 / 6$		
	1/6	2 N 2219 6/-	2N3721 716	ASY27	8/6	BS $\times 20$	5/6		
OA73	21-	2N2220 5/-	2N3819 9/-	ASY28	$5 / 6$	BS $\times 21$	$8 / 6$		
OA79	$1 / 9$	$2 \mathrm{~N} 22215 /-$	2 N 3820 20/-	ASY29	$4 / 6$	BS $\times 76$	$4 / 6$		18
OAB1	$1 / 6$	2N2222 5/-	2 N 3823 21/6	ASZ20	$7 / 6$	BS $\times 77$	6/6		
OAB5	$1 / 6$	2N2287 21/6	2N 3900 10/6	ASZ21	$4 / 6$	B5 $\times 78$	$6 / 6$		
OA90	$1 / 6$	2N2297 6/-	A	AUY10	20/-	BSY26			816
OA91	$1 / 6$	2N2302 12/6	11/6		3/6				$81-$
OA9	1/6	$2 \mathrm{~N} 230313 / 6$	2 N 39011916	BCl0	3/6	BSY	41 -		8/6
	2/-	2 N 2368 8/6	$2 \mathrm{~N} 390381 /$		316	BSY	4		
OA200	$2 /-$	2 N 2369716	$2 \mathrm{~N} 3904 \quad 8 / 6$		616	BSY	$4 / 6$		6
OA202	2/-	2N2369A $51-$	2 N 390586	BC118	$6 / 6$	BSY	$4 / 6$	OC41	
		2 N	8		1316				
PO		2N2483 5/6	2N4059		13.6		10,6		
TA		$\begin{array}{ll}\text { 2N2484 } & 5 / 6\end{array}$	2 N 4060 5/-		$13 / 6$	BSY			
		2N2539 4/6	2N4061		5 -	BI6PI	3,6	硣	
N3055		2N2540 4/6	2N4062 5/6	8 Cl	5/-	D16P2	$12 / 6$	OC	
		2N2613 719	2N4244 8/6	BC169	316	O16P3	$131-$	8	
		2N2614 7/6	2N4284 $3 / 6$	BC212L	5/.	D16P4	13/6	OC8IOM	3/
- $00+$		2N2645 $61-$	2N4285 $\quad 3 / 6$	B	7/6	GET113	4	C83	$4 / 6$
)		416	GETI		¢C139	
IR		2N2711 816	$\begin{array}{lll}2 N+287 & 3 / 6 \\ 2 N 4291 & 3 / 6\end{array}$	BCY	16	G		${ }^{\circ} \mathrm{Cl} 40$	\%
		2N2712 8/6	2N4292 316	8CY34	$5 / 6$	GET	4/6		
7		2N2713 9/-	2N4433 6-	BCY38	$5 / 6$	MATIOO	61	OC200	
-9	27/6	2N2714 91-	2 N 4434 81-	B	616	MATIO1	61-	OC201	$5 / 6$
0-24	23/-	2N2904 8/-	2N5305 10/6	BCY40	$7 / 6$	Matizo	6/-	OC202	8/6
5-49	21/-	2N2904A 81-	2N5306 11/-	BCY42	5/-	MATI21	61	OCP71	8/6
0-99	201-	2N2905 81-	25102616	B	-	MJ480	2016	ORP12	$8 / 6$
$00+$	18	2N2905A 81-	03 6/6	BC	716	M 48	$27 / 6$		10
		29068 8/-	04	-	5	MJ490	$22 / 6$	ORP6I	10
RESIS		2N2906A 81-	3N128 1816	BCY7	$9 / 6$	MJ491	29/6	P346A	5/8
\%		2N2907 81-	3N140 $21 / 6$	BCY72	-	MPFI02	$8 / 6$	TIS34A	17/6
watt.		2N2923 4/-	3 N141 $19 / 6$	BDI21	1916	MPFI03	7/6	Tis 43	8/6
\% w.	6 d.	2N2924 416	3 N 1421616	BD124	121	MPF	7/6	IS	
		2N2925	$3 \mathrm{~N} 14319 / 6$	BF1 15	$4 / 6$	MPF105	$8 /-$	2TX300	4
		2N2926:	40152 24/-		1016	MPS 3638	,		
1/6.		Green 3/-	402501616	67	$8 / 6$	10013	8/6	2T×302	5/-
2/*.		Yellow 2/9	40251			T2		-303	5/-

INTEGRATED CIRCUITS			
CA3005 30/- CA3028B 301-			
CA3011	20/-	CA3035	351-
CA3012	25\%	-CA3036	201-
CA3013	30/-	- CA3039	251-
CA3014	30/-	CA3041	32/6
CA3018	25--	CA3042	32/6
CA3019	25/-	CA3043	351-
CA3020	$27 / 6$	CA3044	32/6
CA3021	42/6	CA3045	$32 / 6$
CA3022	351-	CA3046	25/-
CA3023	$32 / 6$	CA3051	251-
CA3026	27/6		
CA3028A	25		
DATA AND APPLICATION SHEETS			
FOR RC	DEV	2/- PER	TYPE

FAIRCHILD I.CP
$\begin{array}{ll}\text { L914 } & 11 /- \text { Buffer } \\ \text { 1923 } & \text { 14/- JKall Gate } \\ \text { L9F Flip }\end{array}$
GENERAL ELECTRIC I.C'E
PA230 Low Level Amplifier $\begin{array}{llll}\text { PA237 } & \text { Audio Amplifier } & \text { Watt Audio Amplifier } & \text { 26/6 } \\ \text { 45/- } \\ \text { PATA } & \\ \text { SHEETS 6d. EACH TYPE }\end{array}$ MULLARD I.C's
TAA263 18/6 Linear AF Amplifier TAA241 $47 / 6$ M.O.S. Pre Amplifier THY
PIV
1A
3A
5A
7A
25A
Also
400
$9 / 6$
$10 / 6$
$12 / 6$
$19 / 6$
$37 / 6$

MOTOROLA I.C's
MCT24P Quad 2 Input Gates $19 / 6$ $\begin{array}{llll}\text { MC724P } & \text { Quad } 2 \text { Input Gates } & 19 / 6 \\ \text { MC789p } & \text { Hex Inverter } & \text {. } & 19 / 6 \\ \text { MC790p } & \text { Dual JK Flip Flops } & 32 / 6\end{array}$ MC799G Dual Buffer

POST \& PACKING I/Gd. PER ORDER (OVERSEA EXTRA)
A. MARSHALL \& SON (LONDON) LTD. $01-4520161 / 2 / 3$

ILIFFE BOOKS

COLOUR TELEVISION

VOL. I: PRINCIPLES AND PRACTICE

P. S. CARNT, B.Sc.(Eng.), A.C.G.I., C.Eng., F.I.E.E., Leader of Colour T.V. Group Laboratories, R.C.A. Ltd., Zurich, and G. B. TOWNSEND, Ph.D., B.Sc., F.Inst.P., A.K.C., A.M.I.B.M., C.Eng., F.I.E.E., Head of Engineering Research, Thames Television Lid.

A working knowledge of black and white television is assumed, and while the treatment is largely non-mathematical, the more advanced mathematics are given in the appendices. Most aspects of transmission and reception are discussed, though the emphasis is on the latter. For the service engineer, chapters on fault-finding have been added which illustrate the practical approach. Block diagrams and full circuits are included.

CONTENTS

Colour Measurements. Colour Picture Tubes. Cameras and Film Scanners. Transmitter Coding. Specification in N.T.S.C. Systems. Transmitter Coding Circuits. Introduction to Cofour Receiver Design. Colour Receiver Amplifiers. Colour Receiver Decoding Circuits. Colour Receiver Reference Frequency Generators. Operation of the Shadow Mask Tube. Colour Receiver Test Equipment and Performance Measurements. Receiver Installation. Colour Receiver Fault Finding. Monochrome Reception on N.T.S.C. Signals. Shortcomings of N.T.S.C. Systems. Appendices.

487 pp. 233 illustrations. 16 pp. plates -8 in colour.
85 s . net, 86 s . 8 d . by post.

ILIFFE BOOKS LTD.

42 RUSSELL SQUARE, LONDON, W.C. 1

AVONCELTM40 TROLLEY

EDITIONS FOR ALL MAKES AND MODELS OF OSCILLOSCOPES

£25
 EACH
 PLUS $£ 1$
 carriage

PRICE INCLUDES DRAWER; CARRYING-UNIT POWER-BDARD AND 2 BRAKED CASTORS.

AVON COMMUNICATIONS AND ELECTRONICS LTD.
318 BOURNEMOUTH (HURN) AIRPORT. CHRISTCHURCH. HAMPSHIRE TEL. NORTHBOURNE 3774. TELEG. AVONCEL. CHRISTCHURCH

WW- 100 FOR FURTHER DETAILS

"-THERMOSTAIC SOLDERIG ROONS

Two new and unique thermostatic soldering irons with closely controlled bit temperatures to suit all types of soldering. WG thermostatically controlled soldering irons cannot overheat enabling high wattage elements to be used and making soldering infinitely more efficient than ever before. Inexpensively priced these irons represent a major advance in heat controlled soldering.

MODEL WG50. For use on very small to medium size electronic circuits. Power rating 50 watts. Voltages available 12 v ., 24 v ., $100 / 120 \mathrm{v}$., $210 / 250 \mathrm{v}$. Five bit sizes from $\frac{1}{16}$ " to $\frac{1^{\prime \prime}}{4}$.

59/6

PLEASE FILL IN THE COUPON FOR * FREE FLOG LIST No. 4
$\star \underset{\text { EXAMPLES! }}{\text { A FEW }}$

* Quantity DISCOUNTS!
\star GUARANTEED NEW GOODS

TRANSISTOR RADIOS. Large 11 waveband AM/FM Radios many refinements, limited number. Recommended list price over £60 Many Others Listed from only 49'-!
AMPLIFIERS. 10 watt high quality. Type AC 106 Transistorised. Base and Treble Controls. Complete with built in Mains Power Pack. Many Others Listed from only 49/-!
AM/FM STEREO TUNER AMPLIFIERS with Stereo Multiplex. 10 watts output. Full length S.M. scale. "Rosewood" case. Recommended list price over $£ 40$. Absolutely complete in sealed makers mended ist price over $£ 40$. Absolutely complete in sealed makers. 25 GNS. LOUDSPEAKERS. Bookshelf size in Heavy Veneered "Rosewood" Teak or Mahogany. Infinite Baffle Cases with most attractive Ty gan Fronts. Size $1^{\prime \prime} \times 8^{\prime \prime} \times 6^{\prime \prime}$. High compliance "Piston"" wide frequency. 8 ohms Drive Unit (8 watts USÁ). Most excellent reproduction for the price. Ideally matched for the above excellent reprod

AND 100's MORE !!!
$9 \frac{1}{2}$ GNS.

\star Power Packs

\star Cartridges

* Record Player Decks
\star Tape Recorders
\star Stereo Headsets
\star Valves
* Tools
- Tuners
\star Ampilifiers
\star Transformers
\star Transislors
\star Polentiometers
* Cabinels
\star Aerials
* S̄peakers
\star Test Equipment
\star Etc., Elc.

* LONDON-10 Tottenham Court Road Tel: MUS 2639 * PORTSMOUTH-350-352 FrattonRoad Tel: 22034 \star BRIGHTON-Devonia

ANNUAL STOCKTAKING

including
"FLOG LIST" ITEMS
NOW ON AT ALL BRANCHES
CALLERS - ENQUIRIES
WELCOMED WITHOUT OBLIGATION

* SOUTHAMPTON-72 East Street Tel: 25851 * BRIGHTON-6 Queens Road Tel: 23975

FETOIt

\star TAPES \star

We offer you fully tensilised polyester/ mylar and P.V.C. tapes of identical quality hi-fi, wide range recording characteristics as top grade eapes. Quality control manufacture. They are truly worth a fow more coppers than acetate, sub-standard, jointed or cheap imports. TRY ONE AND PROVE IT HOURSELF.

GAREX ELECTRONICS

MAIL ORDER CHINNOR, OXON

NEW ITEMS

TW Phase II SSB Transverters 28 to $144 \mathrm{MHz} \mathbf{£ 6 9 .}$ TW Phase II Matching Power Unit $£ 34$.
Garex Twomobile Transmitter, Complete. 6BH6-6BH6-QQV03-10-QQV03-10. 6 or $12 v$ heaters, inc. AE relay Transistor mod. and relay switched audio output. Mod. compressor. OC200-NKT223-NKT223a-NKT223a-NKT404pp NKT404. Transistor PSU. Ready working, inc. press to talk mike and crystal. Built into two units $7 \frac{3}{2} \times 6 \times 4 \frac{1}{2}$ in. $12 v$ dc input. £35 inc. carriage UK. Delivery 21 days. 4 -metre version also available.
Transmitter ready working for 2 metres 6BH6-6BH6-QQV03-10-QQV03-20a or 6-40a, inc. AE relay. 6 or 12 v heaters. Fitted into a diecast box $9 \mathrm{in}, \times 6 \mathrm{in}$., overall height 6 in . less case, mod. PSU and crystal. 8 MHz . Less output valve, £12.10. £14.104-metre version also available. Postage 4/6. Our normal range of kits and ready built units, now includes modulators. Available mostly ex-stock.

Orders and delivèries for Birmingham area can be collected from Garex Wholesale Ltd., 1189 Bristol Road South, Birmingham 31. 021-475 6453.

OUR GUARANTEE IS YOUR SATISFACTION SPECIAL EXPORT SERVICE.

Callers welcome, please telephone G3MMJ ex ZS6QP Kingston Blount 476 OTH45-476
Northern area agents: Derwent Radio, Scarborough, Yorks. Scarborough 63982

are widely used as standards in many industries because:-

1) They are accurate ($t 0 \pm 0.3 \%$ or $\pm 0.1 \%$ as specified)
2) They are not voltage or temperature sensitive, within wide limits
3) They are unaffected by waveform errors, load, power factor or phase shift
4) They will operate on A.C., pulsating or interrupted D.C., and superimposed circuits
5) They need only low input power
6) They are compact and self-contained
7) They are rugged and dependable

FRAHM Vibrating Reed Frequency Meters are available in minlature switchboard and portable forms, in ranges from 10 to 1700 cps . Descriptive literature on these meters, and on FRAHM Resonant Reed Tachometers, freely available from the sole U.K. distributors:-

ANDERS METER SERVICE
 ANDERS ELECTRONICS LTD. 48/56 BAYHAM PLACE, BAYHAM STREET LONDON NWI TEL: 01-3879092.

YOU WANT PARTS URGENTLY
 -almost immediately!

So what do you do?

You reach for the 'phone and dial ONO 239 8072, if it is anything made by the United-Carr Group. You will be surprised how soon you'll get what you want.

Your immediate needs are our business
We exist to supply the small user quickly with standard parts made by these Companies and carry large stocks of their fasteners and clips and a wide range of Radio, Electronic and Electrical components. We're geared to speedy handling and dispatch.

But you will need our latest catalogue

For quick and accurate ordering you should keep our comprehensive catalogue by you. This useful reference book gives full details of the wide range of parts we stock-nearly everything of the kind that you are likely to require. Even though not ordering anything immediately, you should write now for this useful publication and so be ready to handle rush jobs whenever they arise.

[^6]

Radio Microphones Under £100!

This is the Type Mk III system used in Universities, Churches, Schools and in Television and Film Studios. A reliable system at a reasonable price.

We also manufacture P. A. Amplifiers, Loudspeakers, Tuners, etc. for full details please contact
J.V.H. ROBINS, Marketing Director,
S.N.S. Communications Ltd.

851 Ringwood Road,
Bournemouth.
Phone: Northbourne 4845.
A member of The Firth Cleveland Group.

WW-108 FOR FURTHER DETAILS

FOR

- SERVOS
- SYNCHROS
- SIMULATORS

FOR LEAFLET \& IMMEDIATE QUOTATION CONTACT:-

TYPICAL 500va FREQUENCY CHANGER

INDUSTRIRL
INSTRUMENTS
LIMITED
STANLEY RD.. BROMLEY, KENT
Tef: 01-460921 Trenappact Fuctory
POWSWOOD MOUSTRUL ESTATE THEAKLEN DRME. St leomaros on Sea, sussex Tol Hastings 734

LONDON microphones

Quality sound-at low cost

The London Microphone range offers you quality microphones, good characteristics-and good looks, too, at remarkably little cost. Made in Britain.

NEW to the range: LM300 dynamic cardioid microphone incorporating top-quality movingcoil capsule. Gives maximum front-to-back ratio styling, robency range of $50-15,000 \mathrm{~Hz}$. Elegan
M Low imp. Dual imp.

LM LM 200 S $11100 \quad$ £12 100 $\begin{array}{llll}£ 5 & 19 & 6 & £ 615 \quad 0\end{array}$ $\begin{array}{llllll}£ 5 & 19 & 6 & £ 6 & 15 & 0 \\ £ 4 & 19 & 6 & £ 5 & 15 & 0\end{array}$ $\begin{array}{llll}£ 3 & 3 & 0 & £ 318\end{array}$
Home or overseas trade enquiries welcome. Wrise or ring for details LONDON MICROPHONE CO. LTD.
182/4 Campden Hill Road, London, W.8.
Tel: 01-727 0711. 24 Hr. Answering Service. Telex 23894
WW-110 FOR FURTHER DETAILS

WW-111 FOR FURTHER DETAILS

a unique and indispensable guide to prominent people in the electrical industry 1968-1969 electrical WHO'S WHO

Recognised as the standard guide to leading men and women in the electrical and electronics industries, the ELECTRICAL WHO'S WHO now contains some 8,500 biographies. Over 1,000 new names are included so that, taking into account those who have died or who have left the industries, the number of entries has increased by 250. Inclusion
To add to the value of the directory wo have again produced an index to the personnel of companies, boards, associations, etc., compiled from lists provided by the organisations themselves.
$9^{n} \times 6^{\prime \prime} 567 \mathrm{pp} 65 \mathrm{~s}$. net 69s. 6d. by post Published for ELECTRICAL REVIEW by
ILIFFE BOOKS LTD 42 Russell Square, London, WC1

a complete	 \qquad The Duerto is a good qualivy ampllifer, atrimatively strved and finished. II ghes supert specificatio
 Stereo Amplifier SPECIFICATION:- OUTPUT: 10 watts per channol into 3 to 4 ohms speakers (20 watrs) monoral. INPUT: 6 -position rotary selector switch 13 pas mono snd 3 pos. stereo). P. U.. Tuner. Tape end Tape Rec. out. Sensitivities: All inputs 100 mV into 1.8 M ohm. FREQUENCY RESPONSE: $40 \mathrm{~Hz}-20 \mathrm{KHz}+2 \mathrm{~dB}$. FREQUENCY RESPONSE: 40 Hz -20 $\mathrm{KHz} \pm 2 \mathrm{ds}$. TONE CONTROLS: Separate bass and treble controls. TREBLE 13 dB lift and out lat 15 KHz \| BASS 15 dB lift and 25 dB cur lat 60 Hzl . VOLUME CONTHOLS: Separate for each channel. AC MAINS INPUT: $200-240 \mathrm{v} .50-60 \mathrm{~Hz}$ Viscount Mark 11 for use with magnetic pick ups specification as above. Fully 日qualised for magnetic plck ups. Suitable for carridges with minimum output of $4 \mathrm{mV} / \mathrm{cm} / \mathrm{sec}$. at 1 kc . Input Impedence 47 k . 15 gise plus $7 / 6$ p\& p.	SPECIAL OFFER! Complete stereo systems comprising BALFOUR 4 speed auto player with stereo head 2 duo speaker systems size $12^{\prime \prime} \times 6 \frac{3}{1 "}^{4} \times 5 \frac{3}{n}^{n}$ Plintie (less cover) and the DUETTO stereo amplifier. All above items 19 GNS. plus 20/-
	N 50 WATT AMPLIFIER
THE DORSET (600mW Outp	
7.tran fistor fully tunabe M.W -L.W. superhei portablewith baby alarm facillty. Set of parts. The latest modulized and pre-alignment techniques makes this simpte to build MAINS POWER PACK KIT: $9 / 6$ extra. Price $£ 5.5$.0 plus $7 / 6$ р. \& p. Circuit $2 / 6$. FREE WITH PARTS	
The ELEGANT SEVEN MK. III 7-transistor fulty tunable M.W.-L.W. portable. Set of parts Complete with all components. Including ready for foolproot constructio MAINS POWER PACK KIT: 9/6 extra.	
Price $£ 4.9 .6$ plus $7 / 6 \rho$. \& p. Circuit 2/6. FREE WITH PARTS	
X101 10w. SOLID-STATE HI-FI AMP WITH INTEGRAL PRE-AMP. Specifications: Power Output (into 3 ohms speaker) 10 watts. Senslitivity (for rated output): 1 mV imto 3 K ohms (0.33 microal Senslitivity (for rated output): 1 mV imo 3 K ohms (0 (0. 33 microamp) 1.5\%. Frequency Response: Minus 3 dB points 20 Hz and 40 KHz CONTROL ASSEMBLY: (Including resistors and capacitors). 1. Volume: Price 5/..2. Treble: for use with the $\times 101$. POWER SUPPLIES FOR $\times 101:$ P101 M (mono) $35 /=$ p. \& P . $4 / 6$: P101 (stereo) $42 / 6 \mathrm{p}$. \& $\mathrm{p} .4 / 6$.	
	MOTEK 3 Speed 2 track Tape Deck complete with heads. takes 7in. spool, Our Price $\mathbf{£ 9 . 1 9 . 6}$ plus $10 /$ - p. \& p.
	dispathed outide $0 . . \mathrm{T}$.
RADIO \& TV COMPONENTS (ACTON) LIMITED 21a High Street, Acton, London, W.3. and also at 323 Edgware Road, London, W.2.	

6 mm tubular midgot flange S6/8 cap over-all length 14.5 mm .

It is one of the many Vitality Instrument and Indicator Lamps that are made in an unusually large number of types, ratings and sizes. It may be just what you need for an existing or new project. If not, another from the hundreds of types and ratings detailed in the Vitality Catalogue may well be.
*Many a product owes its success to the intelligent addition of an indicator light.

VITALITY BULBS

VITALITY BULBS LTO MINIATURE AND SUB-MINIATURE LAMP SPECIALISTS BEETONS WAY, BURY ST EDMUNOS, SUFFOLK. TEL. BURY 2071, S.T.D. 02842071

WW-113 FOR FURTHER DETAILS

[^7]WW-115 FOR FURTHER DETAILS

CALAN TRACE SHIFTER C5OID
\star A TRACE (9,600 mILIIMETRES LONG ON A 5 INCH TUBE!)

* A THREE OIMENSIONAL OISPLAY!
\star VERTICAL COMPARISON OF SUCCESSIVE SCANS!
Add these facilities to your oscilloscope. They will help you to examine the functional waveforms of heart or combustion engine or for that matter any other long waveform phenomena.
Price $\mathbf{£ 7 8}$ Export and Agency Enquiries Invited.
Calan Electronics Limited,
6 Croft Street, Dalkeith, Scotland Tel. 031-663-2344
WW-114 FOR FURTHER DETAILS

SENSATIONAL STEREO OFFERS!

 As Britain's Largest Speclalists our tremendous purchasing power enables us to offer you the famous makes Garrard, Goldring, Rogers, Decca. Arena, Philips. Wharfedale, etc.. etc.at unbelievably low prices. We offer over 30 Hi -Fi Stereo Systems utilising these famous makes and showing substantial savings off our normal list prices.
 A Nusound Stereo System represems the finest value for money available today. Every system is complete with all leads. plugs. etc. Carrying full manufacturer's guarantee and Illustrated literature and technical data sent by return of post (Dept. WW/ST).
 24 OXFORD ST., LONDON, W. 1
 Tel: 01-5804638,4639,5755
 60 yards from Tottenham Court Road Tube-Open 6 days a week

These examples from the Hatfield range of RF Power Transformers, which includes 100 W .500 W . 1 kW and 3 kW types, all available on short delivery, are weatherproof, capable of being pressurised where required and completely resistant to corrosion. A wide range of impedance ratings is also available. These Hatfield units are specified for HF communications systems by Redifon Limited, International Aeradio Limited and Airtech Limited among others, and current users include Government Departments at home and overseas, the BBC, USAF, BP Trading Limited, DSIR, the Plessey Company Limited, the Marconi Company Limited, etc. The range is comprehensive and is backed by many years experience in the design and manufacture of RF Power Transformers and incorporate the newest developments for high efficiency and low insertion loss

Suppliers of Elliott, Cambridge and Pye instruments

LEDON INSTRUMENTS LTD

76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.: 01-692 2689
E.I.D. \& G.P.O. APPROVED

CONTRACTOR TO H.M. GOVI.

SPECIALIST SWITCHES are again giving the fastest switch service in the world

FROM THEIR NEW AND LARGER PREMISES IN CHARD, SOMERSET

Specialist Switches make Rotary and Lever switches, types H, DH, HC, and LO, to specification. There is one limitation (standard 2 in. long spindles), but this is not important when you are getting the fastest switch service in the world.

Delivery of 1-20 switches: 24 hours.
Up to 50 or so: 72 hours.
If you want around 250 or so: 7-10 days.

Please note our address:
 SPECIALIST SWITCHES p.O. Box 3 ,
 CHARD, SOMERSET

Write for design charts and prices or TELEPHONE-CHARD 3439

WW-120 FOR FURTHER DETAILS

NO EXCUSES! NO DELAYS! FROM STOCK! tailable voltage thansforiwens
 INPUT 230 v. A.C. $50 / 60$ BRAND NEW. Keenest prices in the country. All Types (and spares) from $\frac{1}{\frac{1}{2}}$ to 50 amp . available from stock. $0-260 \mathrm{v}$. at 'I amp. $£ 510 \quad 0$ $0-260 \mathrm{v}$. at $2.5 \mathrm{amps} . .$. \&6 150 $\begin{array}{llrrr}0-260 \mathrm{v} \text {. at } 4 \mathrm{amps} . \\ 0-260 \mathrm{v} \text {. at } 5 \mathrm{amps} . & \text { \&9 } & 0 & 0 \\ 0 & \text { \&9 } & 15 & 0\end{array}$ $0-260 \mathrm{v}$. at $5 \mathrm{amps} . . .$. \&9 $15 \quad 0$ $\begin{array}{ll}0-260 \mathrm{v} \text {. at } 10 \mathrm{amps} . . . & £ 1810 \\ 0-260 \mathrm{v} \text {. at } 12 \mathrm{amps} . . . & £ 210 \\ 0 & 0\end{array}$ $0-260 \mathrm{v}$. at $15 \mathrm{amps} \varepsilon 25 \quad 0 \quad 0$ 50 AMPS
 SPEEDIVAC
 high voltage high frequency generator
 Input $100 / 110$ voles or $200 / 250$ volts AC/DC. Outpur 19 KV variable. Ideal for testing insulation, vacuum, leakage path, gas discharge lamps, neon etc. A useful ozone and HF supply. Manufactured by Edwards High Vacuum Led. Brand new in maker's polished wooden carrying maker's polished wooden carrying case Offered at fraction of maker's price. $£ 10.0 .0$ plus $7 / 6 \mathrm{~d}$. p. \& p.
 5Amp.AC/DC VARIABLE VOLTAGE OUTPUT UNIT Inpur 230 v. A.C. Outpur $0-260$ v. A.C. Fitted large scale D.C. Fitted large scale am- meter and voltmeter Neon indicator, fully fused. Strong ateractive metal case 15 in . x $8 \neq \mathrm{in}$. $\times 6$ in. Weighe 24 Ib. Infinitely variable, smooth stepless voltage variation over range. Similar in appearance

PORTABLE VARIABLE VOLTAGE TRANSFORMER Input 230 v. A.C. Output variable 0-260 v. A.C. at 1.5 amp. Fitted in case. Complete with voltmeter, pilot lamp, fuse. switch, carrying handle. 89/5/-. P. \& C. 10/-. Also 2.5 amp as above. \& $11 / 7 / 6$. P, \& C. $10 /=$ adyance volstat

SERVICE TRADING COMPANY

SERVICE TRADING CO

Pontage and Carriage sto
below are inland only. F Over seas
quotation. please ansis

Kit and parts including ORP. 12 Cadmium Sulphide Photocell. Relay Transistor and Circuit. Now supplied with new Slemens High Speed Relay for 6 or 12 volt operORP 12 and Circuit $10 /=$ post paid. 220/240 A.C. MAINS MODEL
 incorporakes mains eransformer rectifier and special circuit $47 / 6$, plus $3 / 6$ P. \& P. $-\frac{1}{\text { SOHT }}$ AND PHOTO CELL MOUNTING Precision engineered light sourse $02=$ ventllated lamp housing to take MBC bulb. Separate photo cell mouncing assembly for ORP. 12 or similar cell with optie window. Both units
are single hole fixing. Price per pair $E 2 / 15 / 0$ plus $3 / 6$ are single hole fixing. Price per pair $\mathbb{2} / 15 / 0$ plus $3 / 6$
P. \& P. VAN DE GRAAF ELECTROSTATIC GENERATOR, firted with motor drive for 230 V. A.C. Siving a potential of approx.
50,000 volts. Supplied absolutely complete including accessories for carrying ous number of interesting experiments, and full instructions. This instrument is completely safe, and ideally suited for School demonstrations. Price $\mathbf{4 7 / 7 / \%}$, plus 4/- P. \& P. L't. on req

RADIO ALTIMETER

precision pots through close
precisance gear-trains, including slipping cluech Offere at fraction of manufacturer's price $32 / 6$ clurch. Offered LATEST TYPE SELENIUM BRIDGE RECTIFIERS 30 volt 3 amp., $11 /$-, plus $2 / 6$ P. \& P.
30 volt 5 amp ., $16 /$, plus $2 / 6$ P. \& P.

- NICKEL CADMIUM BATTERY

Sintered Cadmium Type 1.2 V . 7 AH . Size: height lin., width 2 in. X I $\frac{1}{6 i n}$. Weight: approx. 13 ozs Ex-R.A.F. Tested 12/6. P. \& P. 2/6.

DRY REED SWITCHES

$2 \times$ lamp Dry Reeds (makes contacts) mounted in 870 ohm 9.18 r coil. Size $3 i n . \times 34 i n . \times \frac{1}{3} i n$. New. Price 8/6 per pair. Post Paid.
6 of the above mentioned units (12 Reeds, 6 coils) fitted in metal box. Size 4 in . $\times 3 \frac{3 i n}{} \mathrm{in}$. $\times 1 \frac{1}{2} \mathrm{in}$. Mig. by Elliozt Bros. New $45 /$-each. Post Paid. Telephone Dials (New) 14/6d, Post Paid. $2 \overline{230 / 250}$ V. A.C. SOLENOID Heavy duty type. Approx. 31 b
$17 / 6$ plus $2 / 6 \mathrm{P}$. \& P.
$12 / 24$ S D . SOLD 17/6 plus $2 / 6$ P. \& POL NOID
Approx. 8 oz. push, $8 / 6$ plus $1 / 6$ P. \& P
 Approx. 8 oz. push, $8 / 6$ plus $1 / 6$ P. \& P.
 AUTO TRANSFORMERS. Step up, step down. $110-200-220-240 \mathrm{~V}$. Fully shrouded. New. 300 wate type E3/10/- each. P. \& P. 4/6. 500 wate type $44 / 12 / 6$ each.
P. \& P. 6/6. 1,000 watt zype $4 / 15 /-$ each, P. \& P. 7/6.
LEVER MICRO SWITCH Brand new lever operated micro switch.
20 amp. A.C. Price $4 / 6$ each plus $1 / 6$ P. \& P. 5 for $\& 1$ post paid.
COPPER LAMINATE PRINTED CIRCUIT BOARD. Large she
(3 minimum order).

NEW MODEL

HIGH FREQUENCY TRANSISTORISED MORSE OSCILLATOR Adjustable tone control. Fitted with moving coll speaker, also earpiece for personal monitoring. Complete with morse key. 45/-plus 3/6d. p. \& p.

34R SILICON SOLAR CELL

$4 \times .5$ vole unit series con nected, output up to $2 v$ at $20 ~ m A . ~ i n ~ s u n l i g h e, ~$ 30 times the efficiency o Earth Sacellites, 45/.. P. \& $\frac{\text { P. } .1 / 6 d .}{\substack{\text { selenium. } \\ \text { CONDENS }}}$
$\begin{array}{lllllll}\text { New at a fraction of maker's price. } \\ 2,500 \text { mid. } 100 & \mathrm{v} \ldots . & 12 / 6 & 4.000 & \text { mid. } & 25 & \mathrm{v} . . . \\ 10 / \\ 10,000 \mathrm{mid} . & 35 & \mathrm{v} \ldots . & 15 / \mathrm{m} & 4.000 & \text { mid. } & 50 \\ \mathrm{v} \ldots & 15 /\end{array}$.000 mid. 50

220/240v. A.C. COOLING UNIT powerful motor. All metal construetion. Continuously rated. Individually tested. Offered at fraction of maker's. ${ }^{0} y$
 Enamel, heavy dury brush assembly derigned for continuous dury. AVAILABLE FROM
STOCK IN THE FOLLOWING II VALUES: 100 WATT 10 hm 10a. 5 ohm 4.7a. 10 ohm 3a 100 WATT I ohm 10a., 5 ohm 4.7a., 10 ohm 3a.. 7 a, , $500 \mathrm{ohm} 45 \mathrm{a} ., 1,000$ ohm 280 mA ., $1,500 \mathrm{ohm}$ 230 mA ., 2,500 ohm 2a. Dlameter 3tin. Shaft length tin. dia. hin., 27/6. P. \& P. 1/6.
50 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 /$ 2,500 ohm, 21/2, P. \& P. 1/6.
25 WATT $10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ ohm, $14 / 6,{ }^{\circ}$ P. \& P. $1 / 6$.
Black Silver Skirted knob calibrated in Nos. 1-9. I $\frac{1}{2}$
in. dia. brass bush. Ideal for above Rheostats, $3 / 6$ each.
f. dia. brass bush. Ideal for a bove Rheostats, 3/6 each.

sirizispritisivit

* THREE EASY TO BUILD KITS USING XENON WHITE \& \% LIGHT FLASH TUBES. SOLID STATE TIMING + + \# TERNAL TRIGGERING. 230-250v. A.C. OPERATION. - invaluable for the study of movement and checking and photographic fields, also in the entertainment
business. It is used a great deal in the motor industry dexice. IM MENTERS "ECONOMY" KIT 18036 Flash per sec. All eleceronic componenes
including Veroboard $\$$. C. R. Unljunction Xenon Tube + instruetions 65.5 .0 plus S/-
NEW INDUSTRIAL KIT Ideally suitable for schools, laboratories etc. Roller 1-80 fops Price 9 Rne $7 / 6$
HY-LYGHTSTROBE This strobe has been designed and produced
response so wide public demand for use in lar
res rooms, halls and the photographic field. It has 4 zimes tube for longer life expectancy, printed circuir for easy

 PARVALUXTYPE SD19230/250VOLT AC REVERSIBLE GEARED MOTORS 30 r.p.m. 40 lb . ins. Position of different angles. Mounted on substantial cast aluminium base. Exequipment. Tested and In firstclass running order. A really powerful motor offered at 2 a . fraction of maker's price. $6 \mathrm{gns}$. P. \& P. 10

BODINE TYPE N.C. 1 GEARED MOTOR (Type I) 71 r.p.m. corque 10 lb . in.
Reversible $1 / 70 \mathrm{ch}$ h. $50 \mathrm{cycle}$.38 mp . Reversible $1 / 70$ th h.p. 50 cycle. 38 amp.
(Type 2) 28 r.p.m. torque 20 ib in reversible $1 / 80$ ih h.p. 50 cycle . 28 amp. The above two precision made U.S.A. motors are offered in 'as new' condition. Inpue voltage of motor $115 v$ A.C. Supplied complete with transformer for 230/240v A.C. input
Price, either cype $\mathbb{E 2} 17.6$ plus 6/6 P. \& P. or less trans former $£ 2.2 .6$ plus $4 / 6 \mathrm{~d}$. P. \& P.
These motors are ideal for rotating aerials, drawing
10 RPM GEARED MOTOR
230 volz. A.C. 10 r.p.m. non-reversible,

A.C. CONTACTOR

2 make and 2 break (or $2 \mathrm{c} / \mathrm{o}$) 15 amp . contacts. $230 / 240$ v. A.C. operation.

Latest American. New. Plastic THYRISTOR 400 P.I.V. 8 amp . Data sheet. $19 / 6$ post paid.

SEALED RELAY

230 volt AC Coil. Three $1 / 05$ amp.

contacts, $17 / 1 /$ Post 2 Pid.
Londex four c/o 3 amp contacts.
18/6. incl. base. Post Paid.

.

MINIATURE UNISELECTOR 3 banks of 11 positions, plus $24-36 \mathrm{v}$. D.C. operation. Carefully removed from equipment and emoved rom equipment and

UNISELECTOR SWITCHES NEW -
4 BANK 25 WAY FULL WIPER
25 ohm coil, 24 V. D.C.
8-BANK 25-WAY FULL
WIPER
4 V. D.C. operation, t7/12/6, Plus 4/-P. a $-\infty-$

SANGAMO WESTON
Dual range voltmeter. $0-5$ and $0-100 \mathrm{~V}$. D.C. FSD I mA. In carrying case with
tests prods and leads. $\mathbf{3 2 / 6 . ~ P . ~ \& ~ P . ~} 3 / 6$.
A.C. AMMETERS $0-1, \overline{0-5}, \overline{0-10}, \overline{0-1 S}, \overline{0-20}$ amp. F.R. A.c. dia. All at $21 /$ each.

2 in. dia. All at $21 /$ each.
A.C. VOLTMETERS $0-25$ v., $0-50$ v., $0-150$ v. M.I 2 in . Flush round all at $21 /-$ each. P. \& P. extra. $29 /$ $\begin{array}{ll}0-300 \text { v. A.C. Recr. M-Coll } 24 \text { in. } \\ 0-300 \text { v. A.C. Recr. M-Coll } 3 \text { tin. Type W23 } & \text { 29/- } \\ \text { 55/ }\end{array}$

PRECISION INTERYAL TIMER From $0-30$ seconds (repetitive). Jewelled
balanced movement. Lever re-set. balanced Operates 230 V. A.C. 5 amp. c/o micro-
switch. Brand New $17 / 6$ plus $2 / 6$ P. \& P.

'AVO' MODEL 47A

Ex-Admiralcy in firse class condition, complete with inseructions, leads and
'AVO' MODEL 48A
 Ex-Admiralty in good condition with instructions, leads pormer for 60 Amp . and 240 Amp . Multiplier for 3600 volt. Complere ourfir in fired case. \&15/0/0, P. \& P. 10/.

DEMONSTRATION TRANSFORMER

 (STENZYL TYPE) Two removable coils are apped at $0,110,220$ volts,and 6 . 12,36 volts respectively. A composite appar atus designed for class demon. stration. Elecero magnetic induction, jumping ring induction lamp, relationship between field intensity and mpere turns, induction
 melting, are just a fow of the possible experiments. New modified model. $614 / 10 /-$ P. \& P. $10 /-$
L.T. TRANSFORMERS

All primarles $220-240$ volss.

Yppe No. 34 Sec . Taps

$30,32,34,36 \mathrm{v}$. at 5 mmp
$30,40,50 \mathrm{v}$. at $5 \mathrm{mps} .$.
$10.17,18 \quad$ v. at 10 amps
$17,18,20 \mathrm{v}$. at 20 mms
$6,12,20 \mathrm{r}$. at 20 amps .
$24 \mathrm{v}, 2 \mathrm{t} ~$
$4,6 \mathrm{zmps}, . .17$.

T. SS MTG ELECTRONIC
 components It 5 ? 10 a

TELEPRINTERS •PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUIPMENT

Codes: Int. No. 2 Mercury/Pegasus, Eliot 803, Binery and special purpose Codes.

2-5-6-7-8- TRACK AND MULTIWIRE EQUIPMENT

TELEGRAPH AUTOMATION ANO COMPUTER PERIPHERAL ACCESSORIES DATEL MODEM TERMINALS, TELEPRINTER SWITCHBOARDS

Picture Telegraph, Desk-Fax. Morse Equipment; Pen Recorders; Switchboards; Converters and Stabilised Rectifiers; Tape Holders, Pullers and Fast winders; Governed, Sychronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass filters; Teleprinter, Morse, Teledeltos Paper, Tape and Ribbons; Polarised and specialised relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment; Line Transformers and Noise Suppressors; Racks and Consoles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Wires, Cables and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.

W. BATEY \& COMPANY

Gaiety Works, Akeman Street, Tring, Herts.
Tel.: Tring 3476 (3 lines) Cables: RAHNO TRING STD: 044282 TELEX 82362

THANSFOHMERS

DESIGNED TO CUSTOMER'S OWN SPECIFICATIONS FOR ALL APPLICATIONS UP TO 100 KVA. "C"' CORE, PULSE, 3 PHASE, TOROIDS, HIGH TEMPERATURE, ETC.

Somples from our stondard production ranges:-
*Mains E ed.
350-0-350V. $60 \mathrm{~mA} ., 6.3 \mathrm{~V} .2 \mathrm{~A}$. 220
$500 \mathrm{~V}, 300 \mathrm{~mA}, 6,3 \mathrm{~V}, 4 \mathrm{~A}, 6,3 \mathrm{~V}, 1 \mathrm{~A} . \ldots \ldots . \quad \quad 3199$
$500-0-500 \mathrm{~V} .0 .25 \mathrm{~A}, 6.3 \mathrm{~V} .4$ Act., 6.3 V .3 Act., 5V. 3A. 4199
$525-0-525 \mathrm{~V} .0 .5 \mathrm{~A} ., 6.3 \mathrm{~V} ., 6$ Act., 6.3 V .6 Act., 5V. 6A. 5136
*Low Voltage
30-0-30V. 4A. 2190
28 V . IA., 28 V . IA., 28 V . IA., 28V. IA., 30 V .250 mA 2150 *Primaries $10-0-200-220-240 \mathrm{~V}$.

20W Transistor Amplifier (W.W. Nov. 1966)
Driver I 46
Mains I 16 6
L.P. Filter, Chassis Mounting 12
L.P. Filter, Printed Circuit Mounting 156

70V \& 100V Line Matching
Fitted with terminal panel, taps at 0.5, 2, 4 and 8 W . into 15 ohms
$9 /$ each in 100 Lots $7 / 3$ each in 100 Lots

Prices inclusive of postage and packing, each. or small quantities, cash with order, please.

HOWELLS RADIO LIMITED
CARLTON ST., MANCHESTER, M14 4GT 061-226 3411

BRAND NEW and in original cases-A.C. mains input. 110 V or 250 V . Freq. in 6 bands $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$. Output impedance $2.5-600$ ohms. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control, R.F. \& A.F. variable controls. Price $\mathbf{8 8 7 / 1 0 / -}$ each, carr. $£ 2$.
Same model as above in secondhand cond. (guaranteed working order), from $£ 45$ to $£ 60$, carr. $£ 2$.
*SET OF VALVES: new, $\mathbf{8 3 / 1 0 / - \text { a set, post 7/6; SPEAKERS: }}$ new, £3 each, post 10/- *HEADPHONES: new, £1/5/- a pair, 600 ohms impedance. Post 5/-
AR88 SPARES. Antenna Coils L 5 and 6 and L 7 and 8. Oscillator coil L55. Price 10/- each, post 2/6. RF Coils 13 \& 14; $17 \& 18 ; 23$ \& 24 ; and 27 and 28. Price $12 / 6$ each. $2 / 6$ post. By-pass Capacitor K.98034-1, $3 \times 0.05 \mathrm{mfd}$. and M. 980344 , $3 \times 0.01 \mathrm{mfd}$, 3 for $10 /-$, post $2 / 6$. Trimmers $95534-502$, $2-20$ p.f. Box of $3,10 /-$, post $2 / 6$. Block Condenser, $3 \times 4 \mathrm{mfd} ., 600 \mathrm{v}$., £2 each, 4/- post. Output transformers 901566 -501 27/6 each, 4/- post.

- Available with Receiver only

Stores, please telophone for appointment.

MARCONI SIGNAL GENERATORS

TYPE TF-I44G

Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $+1-1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms $100 \mathrm{mV}-1$ volt52.5 ohms. Internal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}$. Consumption approx. 40 watts. Measurements: $191 \times 12 t \times 10 \mathrm{in}$. The above come complete with Mains Leads, Dummy Aerial with screened lead, and plugs. As New, in Manufacturer's cases, £40 each. Carr. 30/-. DISCOUNT OF 10% FOR SCHOOLS, TECHNICAL COLLEGES, etc.

Abstract

HRO RECEIVER. Model 5T. This is a famous American High Frequency superhet, suitable for CW, and MCW, reception crystal filter, with phasing control. AVC and signal strength meter. Freq. range $50 \mathrm{kc} / \mathrm{s}$. to $30 \mathrm{mc} / \mathrm{s}$., with set of nine coils. Complete HRO 5 T SET (Receiver, Coils and Power Unit) for $\mathbf{£ 3 0}$, plus $30 /-$ carr. COMMAND RECEIVERS; Model $6-9 \mathrm{Mc} / \mathrm{s}$., as new, price $£ 5 / 10 /-\mathrm{each}$, post $5 /=$ COMMAND TRANSMITTERS, BC-458: 5.3-7 Mc/s., approx. 25W output, directly calibrated. Valves 2×1625 PA; 1×1626 osc.; 1×1629 Tuning Indicator; Crystal $6,200 \mathrm{Kc} / \mathrm{s}$. New condition- $83 / 10 /=$ each, $10 /-$ post. (Conversion as per "Surplus Radio Conversion Manual, Vol. No. 2," by R. C. Evenson and O. R. Beach.) R. C. Evenson and O. R. Beach.)

AIRCRAFT RECEIVER ARR. 2: Valve line-up $7 \times 9001 ; 3 \times 6$ KK5; and $1 \times 12 \mathrm{~A} 6$. Switch tuned $234-258 \mathrm{Mc} / \mathrm{s}$. Rec. only E 3 each , $7 / 6$ post; or Rec. with 24 v . power unit and mounting tray $\mathrm{\varepsilon} / 10 / \mathrm{l}$ each, $10 / \mathrm{f}$ post. RECEIVERS: Type BC-348, operates from 24 v D.C., freq. range 200-500 $\mathrm{Kc} / \mathrm{s}, 1.5-18 \mathrm{Mc} / \mathrm{s}$. (New) £35.0.0 each ; (second hand) $£ 20.0 .0 \mathrm{each}$, good condition, carr. 15/- both types. MARCONI RECEIVER 1475 type $88 ; 1.5-20 \mathrm{Mc} / \mathrm{s}$, second-hand condition £10.0.0 each. New condition £25.0.0 each, carr. 15/-. RACAL EQUIPMENT: RA. 17 Outer Metal case for receiver available, as new, £10 each, carr. £1. Frequency Meter type SA20: £35 each, carr. £1. Frequency Counter type SA21: $\mathbf{6 5}$ each, carr, $30 /-$. Diversity Switching Unit $160 \mathrm{Mc} / \mathrm{s}$, 840 each, carr. E 1 .

KOTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C. @ 1.8 amps , $400 \mathrm{c} / \mathrm{s} 3$ phase, $\mathbf{~} 6 / 10 /-$ each, $8 /-$ post. 24 v D.C. input, 175 v.D.C. @ 40 mA output, $25 /-$ each, post $2 /-$.
CONDENSERS: $150 \mathrm{mfd}, 300$ v A.C., $£ 7 / 10 /=$ each, carr. $15 /-.40 \mathrm{mfd}, 440 \mathrm{v}$
 $15 \mathrm{mfd}, 330 \mathrm{v}$ A.C. Wkg., $15 / . \mathrm{each}$, post $5 / \%, 10 \mathrm{mfd}, 1000 \mathrm{v}, 12 / 6 \mathrm{each}$, post $2 / 6$. $10 \mathrm{mfd}, 600 \mathrm{v}, 8 / 6$ each, post $5 /-.8 \mathrm{mfd}, 1200 \mathrm{v}, 12 / 6$ each, post $3 /-8 \mathrm{mfd}, 600 \mathrm{v}$, $8 / 6$ each, post $2 / 6.4 \mathrm{mfd}, 3000 \mathrm{v}$ wkg., 23 each, post $7 / 6$. $2 \mathrm{mfd}, 3000 \mathrm{v} \mathbf{w k g}$, £2 each, post $7 / 6.0 .25 \mathrm{mfd}, 32,000 \mathrm{v}, \$ 7 / 10 /-$ each, carr. $15 /-0.25 \mathrm{mfd}, 2 \mathrm{Kv}$, $4 / \mathrm{l}$ each, $1 / 6$ post. 0.01 mfd . MICA 2.5 Kv . Price £1 for 5. Post 2/6. Capacitor $0.125 \mathrm{mid}, 27,000 \mathrm{v}$ wkg. $\mathbf{2} 3.15 .0$ each, $10 /=$ post.
AVO MULTIRANGE No. 1 ELECTRONIC TEST SET: $£ 25$ each, carr. £1. OSCILLOSCOPE Type 13A, $100 / 250$ v. A.C. Time base $2 \mathrm{c} / \mathrm{s} .-750 \mathrm{Kc} / \mathrm{s}$. Bandwidth up to $5 \mathrm{Mc} / \mathrm{s}$. Calibration markers $100 \mathrm{Kc} / \mathrm{s}$. and $1 \mathrm{Mc} / \mathrm{s}$. Double Beam tube. Reliable general purpose scope, $£ 22 / 10 /$ each, $30 /$ - carr.
COSSAR 1035 OSCILLOSCOPE, £30 each
COSSAR 1049 Mk .111 , £45 each, $30 /-\mathrm{carr}$.
RELAYS: GPO Type 600, 10 relays @ 300 ohms with 2 M and 10 relays @ 50 ohms with 1 M ., $£ 2$ each, $6 /-$ post.
12 Small American Relays, mixed types £2, post 4/-,
Many types of American Relays available, i.e., Sigma; Allied Controls; Leach;
etc. Prices and further details on request 6 d .
CALIBRATION TACHOMETER Mk. II: Maxwell Bridge Type 6C/869, £25 each, £2 carr.
ROTAX VARIAC \& METER UNIT: Type 5G. 3281. Reading 0-40 v., 0-40 mA and 0.5 amps. , all on 275 deg . scales, $£ 30$ each, $£ 2$ carr.
HEWLETT PACKARD TYPE 400C: 115 v .230 v . input $50 / 60 \mathrm{c} / \mathrm{s}$. Freq. range $20 \mathrm{c} / \mathrm{s}-2 \mathrm{Mc} / \mathrm{s}$. Voltage range: $1 \mathrm{mV}-300 \mathrm{v}$. in 12 ranges. Input impedance 10 megohms. Designed for rack mounting, 230 each, carr. 15/=.
TCS MODULATION TRANSFORMERS, 20 watts, pr. 6,000 C.T., sec. 6,000 ohms. Price $25 /-$, post $5 /$.
AUTOMATIC PILOT UNIT Mk. 2. This complex unit of diodes and valves, relays, magnetic clutches, motors and plug-in amplifiers, with many other items, price $£ 7 / 10 /-$, El carriage.

FOR EXPORT ONLY: B.44 Trans-ceiver Mk. III. Crystal control, 60$95 \mathrm{Mc} / \mathrm{s}$. AMERICAN EQUIPMENT: BC-640 Transmitter, 100-156 Mc / s., 50 watt output. For 110 or 230 v . operation. ARC 27 trans-ceivers, 28 v. D.C. input. Also have associated equipment. BC-375 Transmitter,
BC- 778 Dinghy transmitter. SCR-522 trans-ceiver. Power supply, PP893/ BC-778 Dinghy transmitter. SCR-522 trans-ceiver. Power supply, PP893/
GRC 32A Filter D.C. Power Supply F-170/GRC 32A: Cabinet Electrical GRC 32A; Filter D.C. Power Supply F-170/GRC 32A: Cabinet Electrical
CY $1288 /$ GRC 32A; Antenna Box Base and Cables CY 728/GRC; Mast CY 1288/GRC 32A; Antenna Box Base and Cables CY 728/GRC; Mast
Erection Kits, $1186 /$ GRC; Directional Antenna CRD.6; Comparator Unit, Erection Kits, $1186 /$ GRC; Directional Antenna CRD.6; Comparator Unit,
CM.23; Directional Control CRD.6, 567/CRD and 568/CRD; Azimuth Control Units, 260/CRD. Test Set URM.44, complete with Signal Gencrator TS.622/U.

VARIABLE POWER UNIT: complete with Zenith variac $0-230$ v. 9 amps.; 2 in. scale meter reading $0-250 \mathrm{v}$. Unit is mounted in 19 in . rack, $£ 16 / 10 /-\mathrm{each}$

SOLENOID UNIT: 230 v. A.C. input, 2 pole, 15 amp contacts, $£ 2 / 10 /-$ each post 6/-.
CONTROL PANEL. 230 v. A.C., 24 v. D.C. @ $2 \mathrm{amps} .$, £2/10/-each, carr. $12 / 6$. AUTO TRANSFORMER: 230-115 v.; 1,000 W. L5 each, carr. 12/6. 230-115 v.; 300 VA , £ 3 each, carr. $10 /-$.
OHMITE VARIABLE RESISTOR: 5 ohms, 51 amps; or 2.6 ohms at 4 amps . Price (either type) $£ 2$ each, $4 / 6$ post each.
POWER SUPPLY UNIT PN-12B: 230 v. A.C. input, 395-0-395 v. output (a) 300 mA . Complete with two $\times 9 \mathrm{H}$ chokes and 10 mfd . oil filled capacitors. Mounted in 19 in . panel, £6/10/-each, £1 carr.
TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$'s; complete with TX DRIVER UNIT: Freq. $100-156 \mathrm{Mc} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24 \mathrm{~s}$; complete with

POWER UNIT: 110 v. or 230 v . input switched; 28 v. @ 45 amps . D.C. output. Wt. approx, 100 lbs ., £17/10/- each, $30 /$ - carr. SMOOTHING UNITS suitable for above £7/10/- cach, 15/-carr.
DE-ICER CONTROLLER MK. III: Contains 10 relays D.P. changeover heavy duty contacts, 1 relay $4 \mathrm{P}, \mathrm{C} / \mathrm{O}$. (235 ohms coil). Stud switch 30 -way relay operated, one five-way ditto, D.C. timing motor with Chronometric governor 20-30 v., 12 r.p.m.; geared to two 30 -way stud switches and two Ledex solenoids, 1 delay
relay etc., sealed in steel case ($4 \times 5 \times 7$ ins.) E 3 each, post $7 / 6$.

MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves, microphone and modulator transformers etc. $\mathbf{~ 5 7 / 1 0 / - \text { each, } 1 5 / \text { - carr. }}$

ADVANCE TEST EQUIPMENT: VM78A.C. Millivoltmeter (transistorised)
£55 each; TT1S Transistor Tester (CT472) $37 / 10$ each. Carr. $10 /=$ extra £55 each; TT1S Transistor Tester (CT472) $£ 37 / 10$ each. Carr. 10/=: extra per item.

NIFE BATTERIES: 4 v. 160 amps , new, in cases, $\mathbf{~} 20$ each, $£ 110 /$-carr.
FUEL INDICATOR Type 113R: 24 v . complete with 2 magnetic counters $0-999$, with locking and reset controls mounted in a 3 in . diameter casc. Price 30/- each, postage $5 /$ -
UNISELECTORS (cx equipment): 5 Bank, 50 Way, 75 ohm Coil, alternate wipe, £2/5/- each, post 4/-.
FREQUENCY METERS: BC-221, meter only $\mathbf{2 3 0}$ each, BC-221 complete with stabilised power supply £35 each, carr. $15 /-$. LM13, $125-20,000 \mathrm{Kc} / \mathrm{s}$, $£ 25$ each, carr. 15/-. TS. $175 / \mathrm{U}, 875$ each, carr. £1. TS $323 / \mathrm{UR}, \mathbf{2 0 - 4 5 0 \mathrm { Mc } / \mathrm { s } \text { , } 8 7 5 \text { each, carr } .}$ 15/-. FR-67/U: This instrument is direct reading and the results are presented Freq.: $100 \mathrm{Kc} / \mathrm{s}$. per sec. Power supply: $115 \mathrm{v} ., 50 / 60 \mathrm{c} / \mathrm{s}$., £ 100 each , carr. £1.

CT. 49 ABSORPTION AUDIO FREQUENCY METER: freq. range $450 \mathrm{c} / \mathrm{s}-$ $22 \mathrm{Kc} / \mathrm{s}$., directly calibrated. Power supply 1.5 v.-22 v. D.C. $£ 12 / 10 /-$ each, carr. 15/=.

CATHODE RAY TUBE UNIT: With 3 in . tube, colour green, medium persistence complete with nu-metal screen, £3/10/- each, post 7/6.

APNI ALTIMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s}$., complete with all valves 28 v. D.C. 3 relays, 11 valves, price $\mathbf{\&} 3$ each, carr, $10 / \mathrm{l}$.

> GEARED MOTORS : 24 v. D.C., current 150 mA , output 1 r.p.m., $30 /$ each, $4 /-$ post. Assembly unit with Letcherbar Tuning Mechanism and potentiometer, 3 r.p.m., £2 each, $5 /-$ post.
> Actuator Type SR-43: 28 v. D.C. 2,000 r.p.m., output 26 watts, 5 inch screw thrust, reversible, torque approx. $25 \mathrm{lbs} .$, rating intermittent, price £3 each, post $5 /$.
> SYNCHROS: and other special purpose motors available. British and American ex stock. List available 6d.

MARCONI NOISE GENERATOR TF-987/1; Used to determine noise factor of a.m. and f.m. receivers. Designed for 230 v . a.c. operation. In used condition, £20 cach, carr. £1.
MARCONI TF-956 (CT.44) AUDIO FREQUENCY ABSORPTION WATTMETER; Large clear 6 in. scale. 1 microW. to 6W. £25 each. Carr. 15/.. MARCONI DIVERSITY RECEIVERS; Consisting of $2 \times C R .150$'s and associated equipment. £175 each. Carr. £5.
MARCONI DEVIATION TEST SET TF-934: Freq. $2.5-100 \mathrm{Mc} / \mathrm{s}$. Can be extended to $500 \mathrm{Mc} / \mathrm{s}$. Deviation range $0-5,0-25$ and $0-65 \mathrm{Kc} / \mathrm{s}$. £35 each, carr. £ 1
CANADIAN C52 TRANS/REC.: Freq. $1.75-16 \mathrm{Mc} / \mathrm{s}$ on 3 bands. R.T., M.C.W. and C.W. Crystal calibrator etc., power input 12V. D.C., new cond., complete set £50. Used condition working order £25. Carr. on both types $£ 2 / 10 /-$ Transmitter only $27 / 10 /-($ rew only Carr,
Used power units in working order $£ 2 / 5 /=$. Cars $10 /-$.

AVOMETERS: Model 47A, 10 each, 10/- post. Excellent secondhand cond. (meters only).

DECADE RESISTOR SWITCH: 0.1 ohm per step. 10 positions. 3 Gang, cach 0.9 ohms. Tolerance $\pm 1 \%$ e3 each, 5/-post. 90 ohms per step. 10 positions, total value 900 ohms. 3 Gang. Tolerance $\pm 1 \% £ 3 / 10 /-$ each, $5 /-$ post.

TELESCOPIC ANTENNA: In 4 sections, adjustable to any height up to 20 ft . Closed measures 6 ft . Diameter 2 in . tapering to 1 in . $£ 5$ each $+10 /-$ carr. Or $\mathbf{8} 9$ for two $+\& 1$ carr. (brand new condition).

COAXIAL TEST EQUIPMENT: COAXWITCH-Mnftrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type " N "' female connectors fitted to receive UG-21/U series plugs. New in ctns., £6/10/- each,
post $7 / 6$. CO-AXIAL SWITCH-Mnftrs. Transco Products Inc., Type M1460-22, 2 pole, 2 throw. (New) $£ 6 / 10 /-$ each, $4 / 6$ post. 1 pole, 4 throw, Type M1460-4. (New) £6/10/- each, $4 / 6$ post.
TERMALINE RESISTOR UNITS: type 82A/U 500W, 5000 W , freq. 0-3.3 KMC Max VSWR 1.2 Type "N" female connectors, etc. Brand new, £30 each, carr. 15/-.

PRD Electronlc Inc. Equlpment: FREQUENCY METER: Type 587-A, $0.250-1.0 \mathrm{KMC} / \mathrm{SEC}$. (New) £75 each, post 12/6. FIXED ATTENUATOR: Type 130c, $2.0-10.0 \mathrm{KMC/SEC}$. (New) K 5 each, post $4 / \mathrm{-}$. FIXED ATTENU-
ATOR: Type $1157 \mathrm{~S}-1$, (new) \& each, post $5 /-$.

ORGAN BUILDERS!

SILICON N.P.N. TRANSISTORS SUITABLE FOR FREQUENCY DIVIDER CIRCUITS 1/6d. each or $£^{5}$ per 100 .

Latest list of transistor stock. All brand-new and to manufacturers specifications.							
NKT11	9/3	NKT401	18/-	BFX84	6/6	2N2219	10/9
NKT12	7/3	NKT402	19/3	BFX85	$8 /$	2N2219A	12/6
NKT72	5/-	NKT403	16/-	BFX86	6/6	2N2220	7/3
NKT73	5/-	NKT404	13/3	BFX87	8/-	2 N 2221	8/6
NKT124	$8 / 6$	NKT405	14/9	BFX88	7/3	2N2221A	10/-
NKT125	5/9	NKT406	13/3	BFY50	51/	2N2222	10/9
NKT126	5/-	NKT420	40/=	BFY51	4/6	2N2222A	12/6
NKT135	5/-	NKT451	13/3	BFY52	$5 /$	2N2297	9/3
NKT137	$6 / 6$	NKT452	12/6	BFY53	4/6	2N2368	4/6
NKT210	$5 / 8$	NKT453	8/-	BFY90	29/6	2N2369	4/6
NKT211	5/-	NKT603F	6/6	BSX19	4/6	2N2369A	5/-
NKT212	5/-	NKT613F	7/3	BSX20	4/6	2 N 2483	8/6
NKT213	$6 / 6$	NKT674F	51	BSX60	16/6	2 N 2484	10/9
NKT214	4/6	NKT677F	4/6	BSX61	10/-	2N2220A	10/9
NKT215	5/-	NKT713	5/-	BSY95A	3/9	2 N 2904	10/9
NKT216	10/-	NKT717	8/-	2N696	5/-	2N2904A	12/-
NKT217	10/9	NKT734	5/-	2N697	5/-	2N2905	15/6
NKT219	5/-	NKT736	6/6	2N706	3/-	2N2905A	18/-
NKT223	5/9	NKT773	4/6	2N706A	$3 /-$	2N2906	12/6
NKT224	$4 / 6$	NKT781	5/-	2N708	4/6	2N2906A	13/3
NKT225	4/6	NKT10419	5/-	2N709	11/6	2N2907	14/-
NKT229	5/-	NKT10519	5/9	2N914	5/-	2N2907A	20/9
NKT237	$7 / 3$	NKT10339	6/6	2N918	11/6	2N3053	5/9
NKT238	4/6	NKT10439	7/3	2N929	7/3	2N3055	20/9
NKT239	5/-	NKT12329	11/6	2N930	8/-	2G345	4/-
NKT240	4/6	NKT12429	14/-	2N1131	8/6	2 G 371	4/-
NKT241	5/-	NKT13329	5/-	2N1132	101-	2G378	O
NKT242	3/-	NKT13429	5/-	2N1302	4/6	OC22	10/-
NKT243	14/-	NKT35219	22/3	2N1303	4/6	OC204	6/-
NKT244	3/-	NKT16229	11/6	2N1304	5/-	OC44	$6 /$
NKT245	$3 / 9$	NKT20329	12/6	2N1305	5/-	OC45	6\%
NKT261	$3 / 9$	NKT20339	8/6	2N1306	6/6	ASZ17	10/-
NKT262	3/9	BC107	4/6	2N1307	6/6	Quantity	
NKT264	3/9	BC108	3/-	2N1308	$8 / 6$		
NKT271	3/9	BC109	4/6	2N1309	8/6		
NKT272	3/9	BCY55	701-	2N1613	5/9	25/49	
NKT274	$3 / 9$	BCY70	$5 /-$	2N1711	6/6	50/99	10\%
NKT275	3/9	BCY71	$9 / 3$	2N1893	12/6	100/299	. 15\%
NKT281	5/-	BCY72	4/6	2N2217	$7 / 3$ $15 / 6$	300/999	. 20\%
NKT302	16/6	BDY20	22/3	2N2217A	15/6	1,000	25\%
NKT304	13/3	BFX29	11/6	$2 N 2218$	8/6	1 on	
NKT351	11/6	BFX30	13/3	2N2218A	10/-		

Unmarked transistors (tested) simplar to.
$2 N 7531 / 6$, BSY28 $1 / 6$, BSY65 1/6, OC44 $1 / 6$, OC71 $1 /=$ OC72 $1 /-$
LIGHT SENSITVE TRANSITORS (sImiar to ORP12

GIANT-SIZE SELENIUM SOLAR CELLS-PRODUCE UP TO 6 ma AT 0.6 VOLTS FROM DAYLIGHTI
67 mm . diameter $10 /-$ each, 50 mm . $\times 37 \mathrm{~mm}$. 2 for $10 / \mathrm{m}$.
MULLARD POLYESTER CAPACITORS FAR BELOW COST PRICE1 $\begin{array}{lllll}0.001 \mu \mathrm{~F} & 400 \mathrm{~V} & \cdots & . . & 3 \mathrm{~d} . \\ 0.0015 \mu \mathrm{~F} & 0.15 \mu \mathrm{~V} & 160 \mathrm{~V}\end{array}$
$0.018 \mu \mathrm{~F} 40 \mathrm{~V} \quad . \quad 3 \mathrm{~V} \quad 0.22 \mu \mathrm{~F}$
$0.0022 \mu \mathrm{~F} 400 \mathrm{~V} \quad . .3 \mathrm{C}$ 3 $1 \mu \mathrm{~F} \quad 125 \mathrm{~V}$
$0.0022 \mu \mathrm{~F} 400 \mathrm{~V}$
3d.
RECORD PLAYER CARTRIDGES. COMPLETE WITH NEEDLES. GP 67/2 Mono 15/-, GP 91/3 Compatible \&1, GP 93/1 Crystal Stereo 25/GP 94/1 Ceramic 25/-.

TRANSISTORISED SIGNAL INJECTOR KIT 10/-, SIGNAL TRACER KIT 10/-, CAR REV. COUNTER KIT 10/-.

VEROBOARD

Tool 9/6 Terminal Pins 3/6-36 17 in. $\times 24$ in. 0.15 matrix
Spot Face Cutter $7 / 6$ Pin Insert Tool 9/6 Terminal Pins 3/6-36.
Special Offer! Spot Face Cutter and 52% in. $\times 1$ in. boards, $9 / 9$ only!
PAPER CONDENSERS, Mixed bags $0.001 \mu \mathrm{~F}$ to $0.5 \mu \mathrm{~F}, 12 / 6$ per 100 . SILVER-MICA, Ceramic, Polystyrene Condensers. Well assorted. Mixed er 10
RESISTORS. Mixed types and values, \ddagger to 1 watt. $6 / 6$ per $100,55 /-$ per Transistors. Mixed, unmarked, mainly O.K. $7 / 6$ for 50

12 VOLT TRANSISTORISED FLUORESCENT LIGHTS. HALF NORMAL PRICE! 8 watt 12 in. tube. Reflector type £2/19/6. 15 watt 18 in Batten type $93 / 19 / 6$
18 in. Batten type ${ }^{\text {S3/19/6. }}$. 1 OR CARAVAN HOLIDAYS! A BRIGHT LIGHT FOR VERY LITTLE CURRENT!

ELECTROLYIIC CONDENSERS

$0.25 \mu \mathrm{~F}$	3 volt	$4 \mu \mathrm{~F}$	12 volt	$25 \mu \mathrm{~F}$	6 volt	$320 \mu \mathrm{~F} \quad 10$ volt
$1 \mu \mathrm{~F}$	6 volt	$4 \mu \mathrm{~F}$	25 volt	$25 \mu \mathrm{~F}$	12 voit	$400 \mu \mathrm{~F} \quad 6.4$ volt
$1 \mu \mathrm{~F}$	20 volt	$5 \mu \mathrm{~F}$	6 volt	$25 \mu \mathrm{~F}$	25 volt	
$1.25 \mu \mathrm{~F}$	16 volt	$6 \mu \mathrm{~F}$	6 volt	$30 \mu \mathrm{~F}$	6 volt	
$2 \mu \mathrm{~F}$	3 volt	$8 \mu \mathrm{~F}$	3 volt	$30 \mu \mathrm{~F}$	10 volt	
$2 \mu \mathrm{~F}$	350 volt	$8{ }^{1 / 2}$	12 volt	$50 \mu \mathrm{~F}$	6 volt	All at 1/- each.
$2 \cdot 5 \mu \mathrm{~F}$	16 volt	$8 \mu \mathrm{~F}$	50 volt	$64 \mu \mathrm{~F}$	2.5 volt	
$3 \mu \mathrm{~F}$	25 volt	1012F	6 volt	$64 \mu \mathrm{~F}$	9 volt	20 assorted
$3 \cdot 2 \mu \mathrm{~F}$	64 volt	$10 \mu \mathrm{~F}$	25 volt	$100 \mu \mathrm{~F}$	9 volt	ur selection)
$4 \mu \mathrm{~F}$	4 volt	20, 2 F	6 volt	$320 \mu \mathrm{~F}$	4 volt	10/•

Orders by post to:

G. F. MILWARD

DRAYTON BASSETT, NEAR TAMWORTH. STAFFS.
Please include suitable amount to cover post and packing. Minimum 2/-. Stamped addressed envelope must accompany any enquiries.
For customers in Birmingham area goods may be obtained from Rock Exchanges, 231 Alum Rock Road, Birmingham 8.

DIFFERENTIAL DC AMPLIFIERS

 for use with dc energised transducers
in
card modular cased form

Extremely versatile high performance dc amplifiers with choice of output stage to drive a wide range of indicating, recording and control devices. Also Bridge Supplies and Bridge Balance Units.

CM E Electronic Laboratories Ltd. Oakham Court, PRESTON PRI3XP Telephone Preston 57560

WW- 126 FOR FURTHER DETAILS

audio tone burst generator

Frequency range 1 Hz to 20 kHz
Signal starting and stopping phase can be varied $\pm 30^{\circ}$ approx.
Pedestal output +5 Volts
Synchronising pulse +5 Volts 10μ secs.
Counts On and Off 2, 4, 8, 16, 32, 64, 128 cycles
Price $£ 125.0 .0$

Kelly Acoustics
Romagna.
6, Bycullah Avenue.
Enfield. Middlesex
Telephone 01-363 7890

Rendar control knobs are designed for fast, precise indication. Made in a variety of styles with wings, skirts, concentric and many other features, they are supplied in a range of materials, colours and finishes (including plated) to suit all needs.

Further information available from:

INSTRUMENTS LTD BURGESS HILL, SUSSEX, ENGLAND TELEPHONES: BURGESS HILL 2642-4 CABLES: RENDAR, BURGESS HILL
WW- 130 FOR FURTHER DETAILS

Ballistics
Computers by Westinghouse. Nine servo amplifiers with associated motors. Brand new in sealed containers. £95, delivered.

punches, headers, verifiers and teleprinters at realistic prices to educationists. mobile Showroom calls on request.

Automatic Numbering Machine by Western Union. Four Uniselectors and 30 neons. Ideal amateur computer. Application leaflet. $£ 12.10$ s. post free.

Celestion PA

Loudspeakers for

 all Public Address Systems

Re-entrant Horns

These Horns are capable of delivering a highly concentrated beam of sound over long distances. They are recommended for recreation centres, noisy factories and workshops and all indoor and outdoor locations where a high noise level has to be overcome.

Driver Units

Pressure type units are available with or without tapped 100 V line transformers. The following 'built-in' features are on all models - High Sensitivity, Weatherproof, Phase Equalising Throat and Self-centring Diaphragm Assembly.

Re-entrant
Loudspeakers

Rola Celestion re-entrant loudspeakers are designed for use wherever conditions demand compactness, toughness, high efficiency and unfailing service. They are rainproof and built to withstand prolonged exposure to vibration and adverse conditions.

Loudspeaker in Glass Fibre
 The Celestion Glass Fibre Loudspeaker is a compact robust and watertight unit, precision built for use on open boat decks, docks. chemical plants, plating shops, etc, where protection from the weather or corrosive atmosphere is vital.

CAPACITORS tion. Radiar leads.
$\pm 10 \%$ tolerance. 100 Volt working.
Prices-ler Capacitance value ($\mu \mathbf{F}$)

	each	10 off	25 off	100 off
0.001. $0 \cdot 002.0 \cdot 005.0 \cdot 01,0.02$	${ }_{6} d$.	4/3	8/4	30/-
0.05	8 d .	6/-	$12 / 6$	41/8
$0 \cdot 1$	10d.	7/1	15/6	51/-
0.2	1/2	10/-	20/10	68/6
Polystyrene film. Tubular, Axia 160 Volt Working.	leads.	Unencapsulated	\% or	erance.
Prices-per Capacitance value (以u				
10, 12, 15, 18, 22, 27, 33, 39, 47.	each	10 off	25 off	100 off
$56,68,82,100,120,180,220$. 270, 330. 390	$5 d$.	3/7	7/9	24/-
$470,580,680,820,1,000,1,500$	6d.	4/-	8/8	26/8
2,200, 3,300, 4,700, 5,600	7d.	5/-	10/10	33/4
8,800, 8,200, 10,000, 15,000	8d.	6/-	13/-	40/-
22.000	9 d .	6/9	18/-	45/4

POTENTIOMETERS (Carbon)
Superior grade encloeed controls. Low rotational noise. Body dia., 1in. Spludle, Iin. \times inn. Tolerance. 20%. $10^{\circ} \mathrm{O}$
linerr: 1K 202 M . 1 W at $40^{\circ} \mathrm{Cl}$

GANGED STEREO POTENTIOMETERS (Carbon) + W at $70^{\circ} \mathrm{C}$. Long Spindie.
Iogarithmic and Linear: $5 k+5 k$ to $1 \mathrm{M}+1 \mathrm{M}$.
$\begin{array}{lllll}\text { Prices per ohmic value } & \text { each } & 10 \text { off } & 25 \mathrm{off} & 100 \mathrm{off} \\ & 8 /- & 70 /- & 162 / 6 & 575 /-\end{array}$
SKELETON PRE-SET POTENTIOMETERS (Carbon) 5 Megohms (Linear only). Miniature: 0.3 W at $70^{\circ} \mathrm{C} . \pm 20 \%$ below $\mid \mathrm{M} . \pm 30 \%$ above $\frac{1}{2} \mathrm{M}$ Horizontal $(0.7 \mathrm{in}+0.4 \mathrm{in}$. P.C.M.) or Vertical ($0.4 \mathrm{in} . \times 0.2 \mathrm{in}$. P.C.M.). Subminiature $0 \cdot 1 \mathrm{~W}$ at $70^{\circ} \mathrm{C} . \pm 20 \%$ below $2 \cdot 5 \mathrm{M} . \pm 30 \%$ above.

POLYESTER CAPACITORS (Mullard)
$3 /-$
9 d
Tubular $10 \%, 160 \mathrm{~V}: 0.01,0 \cdot 015,0 \cdot 022 \mu \mathrm{~F}, 7 \mathrm{~d}, 0 \cdot 033.0 .047 \mu \mathrm{FF}, 8 \mathrm{~d} .0 \cdot 068,0 \cdot 1 \mu \mathrm{~F}, 9 \mathrm{~d}$, $400 \mathrm{~V}: 1,000,1,500,2,00,0.33 \mu \mathrm{~F}, 1 / 3.0 \cdot 47 \mu \mathrm{~F}, 1 / 6.0 \cdot 68 \mu \mathrm{~F}, 2 / 3.1 \mu \mathrm{~F}, 2 / 8$. $0.033 \mu \mathrm{~F}, 8 \mathrm{~d}, 0.047 \mu \mathrm{~F}, 0 \mathrm{~d} 0.088,0.1 \mu \mathrm{~F}, 6 \mathrm{~d} .0 .800 \mathrm{pF}, 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d}$
 2/-. 0C70, OC72, 2/3. AC107, OC75, OC170 0 ACY10, ACY21, 3/3. OC140, 4/3, OC200, 5/-. OC139, 5/3. OC25, 7/-. OC85, 8/-. OC28, OC28, 8/3.
SILICON RECTIFIERS $(0-5 A)$: 170 P.I.V., 2/9. 400 P.I.V.. 3/-. 800 P.I.V.. $3 / 3$. 1.250 P.I.V.. 3/9. 1.500 P.I.V.. 4/-. (6A): 200 P.I.V.. 3/-., 400 P.I.V., 4/-. 600 P.I.V., PRINTED CIRCUIT BOARD (Vero)

SEND S.A.E. FOR 1969 CATALOGUE

DUXFORD ELECTRONICS 97/97A MILL ROAD, CAMBRIDGE

Telephome : CAMBRIDGE (0223) 63687 (Visit us at our new Mail Order, Wholesale and Retail Premises) MINIMUM ORDER VALUE 5/- C.W.O. Post and Packing 1/6
CURRENT RANGE OF BRAND NEW L.T.
TRANSFORMERS. FULLY SHROUDED (*excepted) TERMINAL BLOCK CONNEC-

TIONS. ALI	PRIMARIES	220/240	
No. SEC. TAPS	AMPS	PRICE	CARR.
IB $\because \cdot 25-33-40.50$	10	$6{ }_{6} 19$	816
IC $\because .: 25-33-40-50$	6	55198	876
$10 .$.	3	${ }^{3} 126$	$7 / 6$
2A... 4-16-24-32	12	610.	$7 / 6$
$28 .$.	8	44176	$7 / 6$
$2 \mathrm{C} .$. 4-16-24-32	4	6350	$61-$
2D.. 4-16-24-32	2	1226	5/-
3A*.. ${ }^{\text {25-30-35 }}$	40	614176	15/-
38*.. ${ }^{25-30-35}$	20	4976	$9 / 6$
$3 C^{\text {a }}$.. 25-30-35	10	C6 10.	$7 / 6$
3D .. 25-30-35	5	63150	6/6
3E .. ${ }^{\text {25-30-35 }}$	2	42150	6/6
$4 A^{*} . .112-20-24$	30	411150	10\%-
$48 . .12-20-24$	20	47100	$8 / 6$
$4 C^{\text {a }}$.. 12-20-24	10	44150	$7 / 6$
4D .. 12-20-24	5	4350	6/6
5A .. 3-12-18	30	E6 150	7/6
$58 .$.	20	26100	$7 / 6$
5C .. 3-12-18	10	63176	6/6
5D .. 3-12-18	5	12126	6/6
6A .. 48-56-60	2	4350	5/6
68 .. 48-56-60	1	6276	5/6
$7 A^{\bullet} \cdot . .6$ 6-12	50	E) 76	$9 / 6$
$78 .$.	20	25100	716
$7 C^{\text {. }}$ 6-12	10	6310.	6/6
$70 . .6$ 6-12	5	42100	5/6
84... 12-24	1	¢1, ${ }^{1}$	5/6
$9 \mathrm{~A} . .17-32$	8	65126	5/6
10A*. 9-15	2	8150	5/6
IIA.. 6.3	15	6250	5/6
12A.. 30-25-0-25-30	2	63	5/6

Note: By using the intermediate tapa many
Example: No. 1. 7-8-10-15-17-25-33-40-50V.
5. 3-6-9-12-15-18V.

AUTO TRANSFORMERS

240 v .1110 v . or 100 v . Completaly Shrouded fitted with Two-pin American Sockets or terminal blocks. Please stato which type required.

Type	Wotts	Approx. Weight	Price		Corr.
1	80	2116	$E 117$	6	4

-Completely enclosed in beautifully finished metal case on/off switch, and carrying handle.

9 : 10 CHAPEL ST., LONDON, N.W.I
01-723-7851
01-262-5125

AMERICAN HIGHLY STABILISED POWER SUPPLY UNIT

Regulation between $7-15$ volts D.C. at 20 amps. Fitted 0-30 D.C. ammeter, 0-15 D.C. volemeter and overload protection switch. Built to a very high specification. Bench or rack mounting. Size $19 \times 8 \times 17$ ins. A.C. input 110 v . 50 cycles. Ex equipment but guaranteed in perfect condition. Maker's price in excess of $£ 200$. Our price $\mathbf{2 5}$. Carr. 30/240/1 10 volt, 400 wates, Mains Transformer available if required. $\mathbf{E 3}$ extra.

SPECIAL OFFER OF L.T. TRANSFORMERS Pri 110-120v.-200-240v. Sec. tapped 12, 18, 24, 30 v. 8a. Table top connections. Fully tropicalised. 75/-. Carr, 7/6. As above 5 mp rating. 5\%/6. Carr. 6/-. Supplied brand new manufactured for the Phoenix Telephone Co.

Pri capped 200-250v. Sec. 46v. Very conservatively rated at 29 amps. Size $11 \times 7 \times 7$ ins. Weight 75 Ibs. approx. Manu fectured by Partridge. £12.19.6. Carr. 15/-.

Pri tapped $110 \mathrm{v} .220-250 \mathrm{v}$. Sec. 55v. 24a., 14v. 10a., 60v. 2 n All windings very conservatively rated. Tropically finished. Terminal connections. Size $9 \times 71 \times 7 \mathrm{ins}$. Weight 651bs. £10.19.6. Carr. 15/\%.

SPECIAL OFFER OF A.E.R.E. TRANSFORMERS Manufactured by famous makers. Offered at a fraction of List Pricas, all Primaries tapped 200-240v. Table Top con= nects "C" core cype. No. I sec. $600 \mathrm{v} .220 \mathrm{~m} / \mathrm{s} .52 / 6$ carr. $7 / 6$. No. 2 Sec Tapped $630-650 \mathrm{v} .150 \mathrm{~m} / \mathrm{a} 52 / 6 \mathrm{carr}$. 7/6. No. 3 Sec 125v. $265 \mathrm{~m} / \mathrm{m}$ Twice 35/-, P. \& P. 5/\%.
No. 4 Sec Tapped 760-700, 40.20v. $50 \mathrm{~m} / \mathrm{a} 27 / 6$, P. \& P. $4 / 6$ No. 5 Sec Tapped 500-450-0-450-500v. $215 \mathrm{~m} / \mathrm{a} 55 /-\mathrm{P}$. \& P. $8 / 6$ No. 6 Sec $450-350-350-450 \mathrm{v}$. $100 \mathrm{~m} / \mathrm{a} 27 / 6$, P. \& P. $4 / 6$ No. 7 Sec Tapped $370-390-410 \mathrm{v} .6 \mathrm{~m} / \mathrm{s} 12 / 6$, P. \& P. 3/6 No. 8 Sec Tapped $300-0-300 \mathrm{v} .66 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v}$. 4z. $17 / 6$ P. \& P. 5/ No. 9 Sec Tapped 27-0-27v. 0.3a Twice 6.3v. 1a. 6.3v. 0.3a. 6.3v. 0.6a. 27/6 P. 1 P. P. $/ 6$

No. 10 Sec $45 \mathrm{v} .90 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v}$. 1 a .6 .3 v . 0.5 a . $17 / \mathrm{s}, \mathrm{P} .8 \mathrm{P} .3 / 6$ No. II Sec 400v. $25 \mathrm{~m} / \mathrm{s} .25 \mathrm{v} .25 \mathrm{~m} / \mathrm{a} 15 / \mathrm{m}, \mathrm{P} .8 \mathrm{P} .3 / 6$ No. 125 ec 208v. I.1a. 136v. 0.14a. 65/-, Carr. $10 / \mathrm{F}$

2,000 "C" Core, Potted Type HT Transformers and Chokes by famous manufacturers in stock, callers only. FRACTION OF MAKER'S PRICE.

ONE ONLY ZENITH L.T. TRANSFORMER Pri 230v. Sec 10 voles 170 amps Twice. Conservatively rated 63 Ex Warehouse.

DIGITAL HOUR METERS 6 figs inc. $1 / 10$ chs, $1 / 100$ chs 40 v . A.C. but complete with operation. All in plastic case. operation. At in plastic case. tion as now 45/\%. P. . P. 5/-

TRANSFORMERS, VARIABLE TRANSFORMERS, CHOKES, CAPACITORS, L.T. SUPPLY UNITS. Sand 6d. stamp for latest 12 -page Price List.

HIGH VOLTRONIC LTD.
RAPID DISCHARGE CAPACITORS
$40 \mathrm{MFD}, 3,000$ v. D.C. Wkg. size. $12 \times 8 \times 6+\mathrm{ins}$. $\mathbf{E 7 . 1 0 . 0}$ Carr. 20/-.

LONDEX PLUG-IN RELAYS

Sealed type, 28 v. D.C. Three heavy duty silver contacts. Size $2 \times 2 \times 1 \mathrm{in}$. Complote with base $/ / 6$ P. \& P, $2 /$-.

TRICKETT, 70 Park Road, Congresbury, Bristol

Scheels 13% off. Geods over 103. P/P iree except where shown.

 Motor tranoport; power unit: Thmar $8 / \mathrm{Bi}$ Value over ce00-our prioe e85.
 clean; Brariy raed. 200 .
Type 2: 14 V.D.C. 1-1A. TyR 8: 20 V.D.C. 1-1A. Type it: 24 V.D.C. 1.1A. Typo B: 12 V.D.0 Typ 2: 14 V.D.C. 1.1A. Typ 8: 20 V.D.C. 1.1A. TyF A: 24 V.D.C. 1.1A. Type 5: 12 V.D.C. ReLars; LOMDE PLUG If LOE 4 C. With bees 4 p. C/OVRR 28 V.D.C. and 240 V.A.C. $5 /-$ ea

 $39 \mathrm{pf} . \mathrm{B} \% \mathrm{med} 220 \mathrm{pf} .2 \%$.
VALVE; EX EQUUPMEMT AT 1/6 an. T0 CLEAR Ba.E. YOR LITT.
 Tarkinge 8/- ca.
 bettery chargera, Trenelotor matos eupplien ete. $8 / 8 \mathrm{p} . \mathrm{p} .2 / \%$.

FULL UTOOMDITIOTAL ROIET BACE GUALAMTE

WW-133 FOR FURTHER DETALIS

Solve your communication problems with this new 4-station Transistor Inforcom system (1 mastor and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Mastor to 8 ubs and subs to Mastor. Operates on one 9 v . battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hospital, Shop, etc., for instant inter-departmental contacts. Complete with 3 connecting wires, each 66 ft . and other accessories. Nothing else to buy. P. \& P. 7/6 in U.K.

Same as 4-Station Intercom for two-way instant conversation from MASTER to SUB and SUB to MASTER. Ideal as Baby Alarm and Door Phone. Complete with 66 ft . connecting wire. Battery 2/6. P. \& P. $4 / 6$.

7-8TATION INTERCOM

(I MASTER \& 6 SUB-STATIONS) in strong metal cabinets. Fully transistorised. 3ilin. Speakers. Call on Master identified by tone and Pilot lamp. Ideally suitable for Office, Hotel, Hospital and Factory. Price 27 Ens. P. \& P. $14 / 6$ in U.K.

Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Pcrtable Transistor TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/off switch. Volume Control. Operates on one $9 \mathbf{v}$. battery which lasts for months. Ready to battery which lasts for months. Ready to
operate. P. \& P. 3/6 in U.K. Add $2 / 6$ for operate.
Battery.
Full price refunded if returned in 7 days.
WEST LONDON DIRECT SUPPLIES (W.W.), 169 Kensington High Street, London, W. 8

R.S.T. Valve mail order co.

BLACKWOOD HALL, 16A WELLFIELD ROAD

STREATHAM, S.W. 16

Abstract

Listen-Look and Measure with LOEWE-OPTA

The En-Coder you must have for

- Servicing purposes. checking of stereo-radio receivers and alignment of stereo-decoders.
- For demonstration of FM-stereo-receivers with, in accordance to the pilot-tone-system, standardized Multiplex-signal.
- All-transistor technique secures instantaneous readiness for operation.

Remarkably Low Trade Price:
£102.10.0

Write for further details to:

HIGHGATE ACOUSTICS

184-188 Great Portland Street, London, W1 01 -636 2901/4

WW-135 FOR FURTHER DETALS

SOLDERING HANDBOOK

B. M. ALLEN,

Senior Works Chemist, Multicore Solders Ltd.
The latest and most comprehensive book on the subject, covering both practical and theoretical methods of soldering in the electronics and allied industries. All types of solder and solder chemicals áre described for both hand-soldering and for the automatic soldering machines used for printed circuits. The book supplies some of the basic knowledge required for writing industrial training programmes. It is divided into three parts under the headings: Making a Joint-Choosing Methods and Materials-Reference Tables.
For both the amateur and the industrial solderer.
128pp. 100 illustrations
45s. net case 47 s . by post
21 s. net student edition 23s. by post
Published in association with Multicore Solders Ltd.

ILIFFE BOOKS LTD

42 RUSSELL SQUARE, LONDON, W.C. 1
 capacitor; crystal microphone; test probes; electrode; additional connectin

LASKY'S PRICE £7.2.6 ${ }_{3 / 6}^{\substack{\text { Poss }}}$

THE WORLD'S SMALLEST 6 TRANSISTOR TWO WAVEBAND RADIO RECEIVER

* Made to highest Russian Space Age standards. * Super sensitive-fully tunable over Medlum and Long Waves.
* Built-in aerial-automatic volume adjustment. ¿ Ample volume from clear-tone personai earplece.
\times Size only $111 / 16 \times 13 / 16 \times 5 / 16 \mathrm{in} .-$ welghs less than 1 oz.
Complete with earpiece, battery AND attractive presentation/pocket carrying case in
LASKY'S PRICE 39/6 POST Exira batt. 3/6

GET YOUR LASKY'S AUDIO-TRONIGS PICTORIAL

1) $5 \begin{aligned} & 16 \text { colour pages in large } 16 \times 11 \mathrm{in} \text {, format packed with } \\ & 1,000 \text { 's of items from our vast slocks. Hi-Fi Radio, Elec- }\end{aligned}$
$11-\begin{aligned} & \text { 1,000's of items from our vast stocks. } \mathrm{Hi} \text { - } \\ & \text { tronics. Test equipment, Components, etc. }\end{aligned}$
Send 1/- for post only and inclusion on our regutar maling Iist (5/-overseas)

Branches

207 EDGWARE ROAD. LONDON, W. 2
Tel.: 01-723 3271
33 TOTTENHAM CT. RD., LONDON. W. 1
Tel.: 01-636 2605 Open all day, $9 \mathrm{a} . \mathrm{m}-6 \mathrm{p} . \mathrm{m}$, Monday to Saturday 152/3 FLEET STREET, LONDON. E.C. 4

Tel.: 01-353 2833
Open all day Thus sday, earty closing 1 p.m. Saturday
High Fidelity Audio Centres
$42-45$ TOTTENHAM CT. RDD. LONDON. W. 1 Tel.: $01-5802573$ Open all day. 9 a.m. $-6 \mathrm{p} . \mathrm{m}$. Monday to Sarurday
118 EDGWARE ROAD, LONDON, W. 2 Tel.: 01-723 9789 Open all day Saturday, eariv closing 1 p.m. Thursday
ALL MAIL ORDERS AND CORRESPONDENCE TO: 3-15 CAVELL ST., LONDON, E. 1 Tel.: 01-790 4821

Withthe E . Linsteadhave skimpedon justone thing

Therrice

and that's all. The G2 signal generator is a precision instrument of very high quality similar to others costing many pounds more. Its front panel is both attractive in design and clear and simple to read. Here's a brief specification but write to us and we will send you our illustrated leaflet giving full details.
10 Hz to $100 \mathrm{kHz} \pm 2 \% \pm 1 \mathrm{~Hz}$ - Total scale length $40^{*}-0.6 \mathrm{v}$ r.m.s. SINE WAVE with Iow distortion - 0.9 v peak 1 , peak SQUARE WAVE with no droop and rise time of $\frac{1}{2} \mu$. sec. over full frequency range. $0-1$ watt into 3 ohms, 50 Hz to 20 kHz . Step attenuator on output $1 \& 2$ giving $\times 1, \times 1, \times .01, \times .001$.

G. 2 SIGNAL GENERATOR $£ 26$

LINSTEAD ELECTRONICS

35. Newington Green, London, N 16 Telephone: 01-254 4825

ENGLATOS LEADLUG COMPOUEVT \& EOUDRTEWT GENTRES

SOLID STATE-HIGH FIDELITY AUDIO EQUIPMENT
Mono or Stereo Audio, Equipment developed from Dinsdale Mk. II-each unit or system will compare favourably with other professional equipment selling at much higher prices.
COMPLETE SYSTEMS
FROM
£15.5.0
the finest value in high fidelityCHOOSE A SYSTEM TO SUIT YOUR NEEDS AND SAVE POUNDS

All units available separately.
SEND FOR FREE BROCHURE (No. 21) TODAY। DEMONSTRATIONS DAILY AT '303' EDGWARE ROAD

INTEGRATED TRANSISTOR AMPLIFIERS MABS 12 WATTS STEREO
We are plassed to offer two new dasigns with the
choicc of either mono or Choic: of bither Mono or stereo aystems These BRITISH
DESIGNED UNITS favour the user in mo many waveDESIGNED UNITS tavour the user in 20 many ware-
with Fantastic power and quality with far grater adaptubility, with freadom for battery or mains operation.

MA7 MONO OR THE STEREO MA66
£8.10.0 POST PACKING 5/-
EITHER MODEL $\quad \mathbf{E 1 6 . 1 0 . 0}$ OPTIONAL MAINS UNIT
mustrated heafiets 12 and 14 FREE On request

ELECTRONIC ORGANS $\begin{gathered}\text { Kivs } \\ \text { ANO Comple muld yourself } \\ \text { UNITS }\end{gathered}$ Acclaimed by everyone The MAYFAIR

THE WAYFAIR 99 GNS BROCHURE 9
fully poplyptomic, that is full cords con be played over the entire keyboard. Supplied as a kit of paris which

The GROSVENOR
is dosigned for the more ambinous musician and has a much wider range

A complete detailed and illustiated construction minus is provided with
circuits end full parts fist All thems may be purchased separatelv. All
patels eupplied dere fully guaranteod. Full ather sales service and edvice
feety
Once buill she MAYFAIR' or GR GRt.
Cll in-
PRACTICAL ELECTRONICS - ELECTRONIC ORGAN KIT
OA GAN COMPONENTS: COMPLETE RANGE IN STOCK - 49 ANO 61 NOTE KEYBDAROS - 2 TO AMP GOLD CONTACTS COILS ANO CHOKES. HEVEFBERATION SPRIMGS ANO UNITS. STOP TABS ANO ASSEMELIIS. PEOAL BOAROS RHHOLUM ANO GOLD CLAD WIRE. ALSO PRIMTEO CIRCUITS ETC COMPLIETE RAMGES FOR TRANSISTOAISEO ORGANS. ASK FOR NEW
PRICE LISTS WITH OETAILS. LEAFLET SE

The Oatector Unil consintit essentially of a highly sensitue	graviner fire DETECTOR UNIT
931 A pholo electitic cell 6 Combin.	
sotery it ertenal wiring is openar short eircsited. Encopsulated	
in arsin which tully ins ulters	
The	
	SIZE $4 \times 3 \times 2 \frac{1}{i n}$.

NEW-MALLORY LONG LIFE MERCURY BATTERIES 50% OFF LIST PRICES

\section*{| - hmit |
| :--- |
| size 2° at at die. |}

OUR PRICE 10/- each
These cells are deal for sny
sooplitation where SMALL SIZE
HIGH CAPACITY and LONG
LIFE are equirted
OUANTITIES AVAI

SCOOPI STAAR RECORD PLAYER Deck. Plavs $33,45.78$ records, 9 volt
operated. With mono cartididoe. Brand
new, As ill new. As illustrated. $59 / 6$ Dost $3 / 6$.
MULLARD 1 MULLARD 1 WATT
AMPLIFIER
9 VOIt. 5 AMPLIFIEA
9 volt. 5
transis tor uni

volume control. Output to 3 ohms. Ideal for use with
Slaar record Deck. 45% Dost $3 /-$. Sond for leaflet 2.
GARRARD
RECORD
DECKS
BRAND

NEW

THE GROSVENOR BROCHURE 9B
$\mathrm{s} \quad \mathrm{d}$
80
 3000 LM MONOS Stereo 95

TRANSISTORS SEMICONDUCTORS
COMPLETELY NEW 1969 LIST OF 1000 types. Send for your FREE COPY TODAY. (list 36)
S.C.R.'s from 5/

Field Effect Transistors from 7/6 Power Transistors from 5/-
$\begin{array}{rrrr}9 & 16 & 6 \\ 9 & 19 & 8 \\ 13 & 0 & 0 \\ 19 & 0 & 0 \\ 11 & 19 & 6 \\ 14 & 14 & 0 \\ 29 & 0 & 0 \\ 35 & 0 & 0 \\ 12 & 12 & 0 \\ 5 & 19 & 6 \\ 9 & 19 & 6 \\ 12 & 12 & 0 \\ 15 & 5 & 0 \\ 28 & 10 & 0\end{array}$ Diodes and Rectifiers from 1/6

SP25 Mk II	9196
AT60 Mk 11	1300
AP75	1900
SL55	11196
SL65	14140
SL75	2900
SL95	3500
A 70 Mk II	12120
B.S.R. UA25 Mono	5196
MA65	9196
MA70	12120
MA75	1550
401 Gerrard	28100

Fully Flustrated CATALOGUE

COMPLETELY NEW 9th EDITION (1969)
The most COMPREHENSIVE-
CONCISE-CLEAR COMPONENTS
CATALOGUE
Complete with 10/-worth discount vouchers FREE WITH EVERY COPY

* 32 pages of transistors and semi-conductor devices, valves and crystals.
* 210 pages of components and equipment.
* 70 pages of microphones, decks and Hi-Fi equipment.

6,500 ITEMS 320 BIG PAGES

QUALITY COMPONENTS AND EQUIPMENT

NEW RANGES FOR THE AMATEUR AND PROFESSIONAL USER

* 50,000 OHMS PER VOLT MULTIMETER
 leads and instrictiont.
AFI 05 Price 88.10 .0 p.p. $2 / 6$

* SINE/SQUARE WAVE AUDIO GENERATOR

Provides audio output on 4 bands.
Sine wave $20 \mathrm{c} / \mathrm{s}$ ro $200 \mathrm{kc} / \mathrm{s}$, output
up to
 2% Output impednce 1 kIR . Sapiable oupputamplizude control. TE22
Price
E16.10.0.

* Deluxe sine-souare wave rc audic generator

* 20,000 OHMS PER VOLT MULTIMETER

Model 200 H
(Leather case, Price 15\% pp.2/\%)

* portable oscilloscope Features Jin clear view tube, easy
to use contros and sood subility
ump

enwitivity. 9 V
width $1.5 \mathrm{p} / \mathrm{CM}$. Band
000 KHz . Input

 h.C. Supp

TO3 Price 135 p.p. $10 /$

Switch Switched DC
Stabllised Out-
puts UP TO puts UP TO 1 AMP.
$3-6-9 \& 12$ VOLS. Indicator lamp.
for each voltage. Fully fused
mains operated.
Negliglbteripple. Negliglbte ripple.
Regulation 1%. SE101A Price $£ 8150$

* FIELD STRENGTH METER

* TRANSISTOR POWER AMPLIFIERS
 12 wate $12-16$ ohm 100 mV Input 40 volts
supply. Model MPA $12 / 15 \mathrm{ES.5} \mathrm{P}$. I3/-
25 watt $8-16$ ohm 180 mV Input $50 / 60$ volt supply. Model MPA 25 C7. 10 P.p. $1 / 6$ Power Supplies 2440 vole $90-60$ vole $97 / 6$ p.p. $3 / 6$
Model PA7. 7 watt Amplifier 3 ohms. $1 / 6$.

> 5 Ranges $1-250 \mathrm{mc} / \mathrm{s}$. Fitted $200 \mu \mathrm{~A}$ meter. Earphone output. Calbrated tuning scales.
FL3OHA Price 72/6 pp.2/Also non-calibrated type peaking F / \mathbf{S}
meter. \quad FSI Price $45 / \% \quad$ pp. $2 / 6$

POCKET DOSIMETER Small size Radiation. Detector with
bright easy to read scale. Fitted Mockes Clip. Range 0-50r. Brand new, quantity available.

* SIGNAL INJECTOR -

-

and
Batery
operated.
vHF. Simple to
Out
 SE2508 Price 3s/-p.p. 1/6 *MATCHING SIGNAL tRACER
SE 500

* EXPERIMENTER'S MODULE

Terrific offer of brand new STC cime dees. electronic units. Adiustable \mathbf{s} operated. Supplied complete with sugested uses a circuits.
STC Module Price 35/- p.p. 2/6

MEC,

BORG PRECISION PRESETS
Complete Range in stock of these Precision W/W Presets.
PRICE 10/-EACH
Well below usual Prices-seo Catalogue for Types in Stock

Catalogue

 320 PagesFREE to all schools, colleges, educational ests. Also for Industry. Write in on
official paper for your fres copy. Transistors Huge quantities instock for Indus. Write for Indus Wrial Price List Includes all Types includes all Types of semicon

PRICES

Prices for many
British made and British made and Imported Items have been re-ducod-See Latest Catalogue.

Suppliers of quality components and equipment for over 25 years
AUDIO
HIGH FIDELIT
Complete range in
stock to suit all HI-FI and Public Address requirements See racing

COMPONENTS

 UK's largest supplier of components. EvErything YOU NEED
 SE28 8 uik in Tweeters and Volume Controls
KOSS. KOT27 18.0
KO. 16.10 .0 PRO-4A ..
O3. 0.0
 pro-4
 Mono Switched $8 / 16$ ohme and $4 K$
Storeo Hoadphone Ampllfinars Inputs for PU/Tuner, Aitrery Mod Eagle hato Hizh Quatier Shure $5 \mathrm{~A}_{\mathrm{i}}^{\mathrm{i}} \mathrm{E}$.

* CHASSIS PUNCH KIT
* all items offered are brand new stock - always in stock *

COMPUTER MULTI-CORE CABLE
 12. $14 / 0076$ copper corea, each one insulated by coloured

 Pild together and P.YC covered overall making a cable fust under I in. dia. but quite pliable. Price $7 / 6$ per ft . Any screened 3 Core FLEX BARGAINSinsulated Core Flex. Wach core 14/0076 Copper P.V.C. braifed overall. Price Lis. 15 per 100 yde. coll. corres, protected by tough rubber sheath, then black cotton braided with white tracer. A normal domeatic flex as fitted or cut to your length $2 / 6$ per yd.
10 Amp 3 Core Non-tin
 ${ }_{6}$ or cut to your length $1 / 8$ per yard.
8 Amp 2 Core Flex. Aa above, but 2 cores each $23 / 0076$ as
used for Vacuums Cleaners, Electric Blankets, eto., $38 / 6$ 100 yd. coil. at $1 / 6 \mathrm{yd}$. Our price 100 yd , coil $£ 3.19 .6$. Pont and ins. $6 / 6$.

15A FOOT SWITCH Sultable for gewing Machine
Motor, Drilling Machine or th fact are to be left free. Rated at 13 aıpps, 250 volts. Price 82/6.

3 DIGIT COUNTER

Por Tape Reconder or other application.
re-gettable by depressing button. Price $8 / 6$.

TRANSDUCER

Made by Acon, reference No. 1.D.1001. For conjurng vilon with "G". Meter. Regular price 25 . Our price 49/6. Brand new and
unused.

ISOLATION SWITCH 20 Amp D.P. 250 Volts. Ideal to control
Water Heater or any other appliance. Neon 48/- per dozen.

12 VOLT SOLENOID
Por energizing Reed 8 witches, etc., mize
approx. 1fin. long by 1/lin. diameter. Eole approx. 1 fin . long by $1 / \mathrm{in}$. diameter.
through Bolenolu approx. $z \mathrm{in}$. $8 / 6$ each

THE FULL-FI
STEREO SIX
The ampllfier sensation of the year reproduce. Bult into metal cabinet elegantily atyled and teak finlabed to blead power of 6 watts B, ing, this amplifier uses an integrated solld atate clrcuit with an output plekupa and tuners, it bas a double wound masina tringormer and ganged volume and tone controls -also switching for Mono to stereo, tuner or pick-up. Other controle include "treble
uit and cut." "balance" and separate maina on/oil awitch. Price is 29.9 , plus $7 / 6$ post \&
 DISTRIBUTION PANELS Just what you need for work bench or lab. 4×13 amp
 plugs. Supplied complete with 6 feet of heavy cabie and

ELECTRIC CLOCK WITH 25 AMP. SWITCH Made by Bmich's these units are as fitted to many top quality cooker to control the oven. The clock is mains driven sud frequency con trolled so it is extremely accurste. The two arnall diala enshle switch
on and oft times to be scurately set. Ideal for swithing on tape recorders. Offered at only a fraction of the regular price-new and unused only 3
 SOLDER GU N
Cust for every busy man, gives aimost instant heat also illurninatea
$100 \mathrm{watt} 220 / 240 \mathrm{v}, 38 / 6$ (saves you over $30 / \mathrm{f}$) port snd ins, $4 / 6$.
 HORSTMANN 'TIME \& SET' SWITCH (A 15 Amp Bwitch). Just the thing is you want to corme home to
warm house without it conting you a formane. You can delay th switch on time of your electric fres, etc., up to 14 hours from setting time or you can use the switch to give a boost on perlod price prohably around c3. Ejpechal snly price 29/6. Post and
OEAC RECHARGEABLE BATTERIES
w... $500 \mathrm{~mA} / \mathrm{hr}$. size 2 fin . $\times 1 \mathrm{pma}$. tian. Really powerful, will deliver 1 amp for hou
 nector and fixing bruckets.
$39 / 6$ plus $6 / 6$ pont and ins.

MAINS TRANSISTOR POWER PACK Denigned to operate tranision sets and amplifiers. AdJuatworking). Tukes the place of any of the following batteries: PP1, PP3, PP4, PP6, PP7, PF9, and othern. Kit comprises condensern and iustructions. Real snip at only $18 / 8$, plus 3/6 postage

REED SWITCH
Sultable for dozens of diferent applications, such as burglar alarms, conveyor-bele witching. These are simply glassencased switches which can be operated by a pasaing permanent magnet coll. A apecial buy enablen ue to offer
these at $2 / 6$ each, or $24 /=$ dozen. Suhable magnet are 1/- each.
THERMOSTAT WITH PROBE

This han a sensor attached to a $15 A$ wlich by a 1 tim. length of tiexible capilling
tubing-control range 20 deg .F. to 150 deg r. P . so it is guituble to control noil
heating and inquid heating enpecially when in buckete
or portable vessels an the sengor can be raised out and
lowered into the vensel. Thin thermontat could also be used to sound a bell or other alarm When critical temp. is reached in atack or heap aubject to other means not controllsble by the awith. Made by
tamous Teddington Co., we offer these at 12/6 each. SPRING COIL LEADS

Where postage is not stated then orders
over $£ 3$ are post free. Below $\mathbb{\&} 3$ add $2 / 9$.
over 63 are post íret. Below 23 add $2 / 9$.
Semi-conduczors add $1 /$ post. Over Cl

ELECTRONICS (CROYDON) LTD
Dept. Ww, 266 London Road, Croydon CRO-2TH Also $102 / 3$ Tamworth Road, Croydon

WAREHOUSE CLEARANCE SALE EVERYTHING MUST GO

mimiturised transigtorised b.f.i. UNits. This small fully tranaitorimed tunable Bro enables any set to receive CW or 88 B reception. Compact ningle hole fis ing. Full fitting TRANGFORMER BALE. Type A. Mains $200 / 250$ 50 c/a inpmt. Output 5, 8. and 24 v . at 3 amp. Price $7 / 6$ p.ip. $2 / 6$. Two for $15 /$ - poit free. Four for $25 /-$ posit free. sis for $301 /$ post free.
 post tree. Type C $32 / 6$ post free.
RHEOSTAT DIMMER UNITS. Will control ap to 50 , at 3 ampras. Compract netal care. Ideal lor lab work. Only 15/-p.p. 2/6. T wo tor $30 /$ - post free
HIGE QUALITY TANNOY MIKES (HEAVY DUTY), Idemi for IFT TRANSFORMER SETS. Comprising double tuned 1at and 2nd. 3rd IF single tuned. Only $12 / 6$ per set of three post iree.
PRINTED CTRCUIT SUPERFET CRASSIS. With circuit diagram. Ideal for TOP BAND uses standard componente. Price $17 / 8$ pont fre
PRECISION PANNEL METERS. Brand new and hosed and fully guaranteed. With fistag nuta
 tank aerials. Pully interlocking copper plated rode. One foot sections. Ideal for car or scooter aerials. Make excellent di-poles. sir sections 4/8. p.p. 1/6. 12 sections 10/-post free. MATCHING MAINS P.S.U. for R1132 and 1392 receivers. Only $£ 2.10 \mathrm{~s}$. each., carr. 10/. Abeolutely brand new in makeri' cartons.
TELEPHONE SPARES, 600 TYPE RELAYB. Only $3 / 6$ each p.p. $1 /-$. Ten for 81 poti free. P.p. 1/6. Four for $£ 1$ post free. ETANDABD DEBK TELEPHONES WITH DIAL Not new but working. Only $17 / 6$ emeh, p. P. $5 /$-. Two for $39 / 6$ post free. Four for $75 /-$ post free.
STABILISED POWER SUPPLY UNITS. Brand new nalta. Famonn manufactare. Input m a. plus 6 and 12 volt DC at \& amps. siurdy standard rack mounting cabinet. Price only e8. 18n. Gu. Carr. and tnsur. 10/6.
19 SET CONTROL bOXES. Brand new and bozed. 10/- p.p. 2/6. Two for El 1 post free. 2f" MOVING COIL SPEAKERS 3 ohms. Brand new. ODly $4 / 11$ P.p. $1 / 1$. Two for $10 /$ - pont free.
30 mfd. 250\%. WIRE ENDED TUB ELECTROLYTIC CAPB. \&1 per doz. post free. 10 mfd 15 v .

OOVT, SURPLUS WIRELESS EQUIPMENT HANDBOOK, Given Circult, detell ind infor GOVT. SURPLUS WIRELESS EQUIPMENT HANDBOOK. Given Clircult deta
tion on most Brtioh and American Wireleas equipment. Price $35 /-$ pout free.
HEAVY DUTY PETROL GENERATOR CEARGING SETS. Chmrgea 6, 12, 24. 36v. hattery

Dept w.w
(7) Ming shleviric lio

38 Bridge End,
Meadow Lane, Leeds 1

 lured by Murphy. tured by Murphy,
Coversge in 5 band:
G50 $650 \mathrm{Kch} .80 \mathrm{Mc} / \mathrm{C}$. I.F. $\mathbf{b 0 0} / \mathrm{Kc/s}$ corporatea 2 R. and 3 I.F. otages.
bandpens.
tiler, nowe limiter, crys.
tontrilled
 Bulthin speaker,
output for phones.
Operation $\mathrm{Operation} 160 / 230$ volt A.C. 8ize $191 \times 131 \times 16 \mathrm{in}$. Weight
1141 b . Oltered ln good worklag condition.
 Kola. £17/10\% Carr. 30

SONOTRONIC PORTABLE OSCILLOSCOPES
Ex-govt. scope, gepersl purpose. 3in. CRT. Mais. operated. Fully teated and checked
218.0.0. Capr. $7 / 6$. R209 MK. II COMMUNICATION RECEIVER
 11 Falve bigh
grade comp
munjoesjon municetion
receiver sult.
sble for troplMc/s. use $1 \cdot 20$ beDde. AM/
$C W / P M$ opers tlon. 1ncorpor-
stea procision vernier drive, B.F.O. Aerial trimmer, Internal apeazer and excellent condition, tully
terted and checked. TYPE I3A DOUBLE BEAM

An excellent general purpose $750 \mathrm{Ke} / \mathrm{s}$. Bandwidth 6.5 Mc/e Senitivity $33 \mathrm{Mv} / \mathrm{cm}$. Oper ening volusge 0/110/200/250 v A.C. Supplited in excelicat worting condition, $282 / 10 /$ working condinon.
Or complete with all accesOr complete with all acces-
sorics, probe, lesds, IId, etc. £25. Cartinge 301 .

MARCONI CT4
TF956 AF ABSORPTION WATTMETER
a/watt to 6 watt e20. Carr.
SOLARTRON CD. 1016.
OSCILLOSCOPE
Double beam. D.C. To 8 Mc/s. Excellent condi.
CLASS D. WAVEMETERS

CLASS D WAVEMETERS NO. 2 Crybial controlled, $1.2 \cdot 19 \mathrm{Mc} / \mathrm{s}$. Mains or 12 v . D.C.
operation. Complete woth allisatlon opertion. Complete whth calibration charta.
Excellent conditlon $212 / 10 / 0$. Carr. $30 /-$. EDOYSTONE Y.H.F. RECEIVERS 770R. 19.165 Me/s. Ll 150 .
Both types in excelient condition,

LELANO MODEL 27 BEAT FREQUENCY OSCILLATORS

 $0.20 \mathrm{Ke} / \mathrm{l}$. Output 5 K or 500 ohms. $200 / 250 \mathrm{~V}$ A.C. Otered in excellent condtion. $812 / 10 /-1$Carrige bo/.

SOLARTRON CD. 7115.2 Double Beartu D.C. to Double Beamm
£8.5. Carr. 50
TO- 2 PORTABLE

TO-3 PORTABLE OSCILLOSCOPE. 3 TUBE

 2 meg 0.25 PF, $X \operatorname{smp}$
sensitivity, $9 v$
P- $/ C M$
 20 PPF . Time base. B mangee
 Chronizetion. Internal/ex
ternal. Illuminated acale.
Weight 1616 be . $220 / 240 \mathrm{~V}$. $140 \times 215 \times 330 \mathrm{MM}$. Weight $151 \mathrm{be} .220 / 240 \mathrm{~V}$
4.C. gapplled brand new with handbook L.C. gappled brand mew with handbo
E35/m. Carr. $10 /$. SOLARTRON MONITOR
OSCILLOSCOPE TYPE IOI An ertremely bigh quality oscilloscope with thme base of $10 \mu / \mathrm{sec}$. to $20 \mathrm{~mm} / \mathrm{sec}$. Internal Y Amplitier.
Beparate mains power supply, $200 / 250 \mathrm{~V}$. Supplied

COMMNR-30 ATBAND
Covering $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Incorporates BFO . Built-in speaker and phone jack. Metal cabinet guaranteed with instructions. 13 gris . Carr. $7 / 6$

TRIO COMMUNICATION RECEIVER MODEL 9R-59DE 4 band recelver covering $300 \mathrm{Kc} / \mathrm{e}$ to $30 \mathrm{Mo/a}$, continuoue and elvetical 7 didpread on $10-18,20,40$ and 80 metren.
8 ralve plun $7 / 8$ ohm output and phose
jeck. gBB-CW ANL Variable BFO 8 meter. jack. B8B-CW ANL Varisble BPO 8 m meter. \%. A.C. maine. Beautifully dengigine controls. $115 / 2500$ With instruction manum and bervice data R42.10.0. Carriage paid Trio Communication Type Eeadphonee.
Normaly $\mathrm{E5.10.6} \mathrm{} .\mathrm{Our} \mathrm{price} \mathbf{8 3 . 1 5 . 0}$ if purchased with obove recelver.

TRIO JR-500SE 10-80 metre AMATEUR RECEIVER
Coveri all the amate ur buads in 7 separate ranges between
9.5 and 28.7 me/a. 7 valves, 2 tranuletorn and 5 diodes plu crystals: outpot 8 and 500 ohm and 5.000 ohm phone
 double gear dial drive wilh direct reading down to 1 kHz .
Remote control socket for connection to transmititer. dyding. Bize $7 \times 13 \times 10 / 2 \mathrm{in}$. with fintructlon manasl and

ervice data. $£ 69.100$. Carr. Padid.

OFFER!

RCA COMMUNICATIONS RECEIVERS AR88D
Lateat release by minlatry BRAND NEW in original casel
$110 \cdot 250 \mathrm{w}$. A. O. operalon. Frequency in 6 Bands. $3: 3 \mathrm{Kc} / \mathrm{s}$ $32 \mathrm{Mc} / \mathrm{s}$ continuous. Output mpedanee 2.5 .600 ohms Invorporating cryatal fither, nolse limiter, variable
variable selectuvy, etc. Price $£ 87.10 .0$. Cart. $£ 2$.

LAFAYETTE PF-60 SOLID S

Acompletely new transistorined recelver coverlng 152-17 Mc/a. Pully tuneable or crystal controlled (not supplied) GRATED CIRCUITS. Built-in speaker and Muminated dial. Squeleh and volume controls. Tape recorder output. 750 aeriai laput. Headphone jack. Operation 280
12 v . D.C. Neg. earth.
$\$ 37 / 10 /$.

$121 / 3$

square fronts

PULL RANGE OF OTHER SIZES IN BTOCE -SEND SAE FOR LEAFLE

LAFAYETTE STEREO AMPLIFIER MODEL STEREO 10

Completely transistorised 5 witts per channel I.R.F. muml power. Inpute for gram and tuner. Beparate volurne control and variable tone control
aize, big periormance stereo amplifier ideal for litmited apace
 f11.19.6

POWER RHEOSTATS

High quallty ceramic conatructlon. Windlage embedded in vitreous enamel. Heary duty brueh wiper. Continuoin rating. Whde range avaly
Blaple hole fixing, tin. dia. shath. Bulk quantiles svallable. 25 FAT. $10 / 28 / 50 / 100 / 250 / 500 / 1000 / 1500 / 2500$ or 5000 obrna. 14/6. P. \& P. $1 / 6$.

Bpare movements for Model 8 or 9 . (Fitted with $\begin{array}{cc}\text { Brand New and Boxed } \\ \text { B8/6 } & \text { P. } \mathbf{P} .3 / 6\end{array}$

TE-65 VALVE VOLTMETER

High quality instrumen With 28 ranges. A.C. volle $1.5-1.500$
Resistance
up to
1,000 Resitiance up
megotms. A.C. operation
$220 / 240 \mathrm{v}$. Compleve with probe and
instructions El7/10/0. \mathbf{P} Instructions $\mathrm{El} / \mathrm{F} / 20 / 0$. P
\& P. $6 /$. Additious Proben avall
able: R.F, 35/- H.V able:
42/6.

COSSOR IOA9 DOUBLE BEAM D.C. coupled. Band width $1 \mathrm{Kc} / \mathrm{s}$. Perfect order AM/FM SIGNAL GENERATORS
 Oncllator Teat
No. 2.
atigh qualty precision inatrument mude
for the Minlotry
by Armec. Freby Airmec. Fre-
quensy coverage
$20.80 \mathrm{Me} / \mathrm{A}$. AM/ CW/FM. Incor. porates precial
dial, level meter, prectalon attenuator $1 / \mathrm{V} .100 \mathrm{M}$
Operation froma 12 volt D.C. or $0 / 110 / 200 / 250$ A.C. size 12 I 81 I 91 m . Supplied In brand new condition complete with all connectora, tully
tested, \&45. Catr, 20%. GEARED MAINS MOTORS Paralux type 8D19 $230 / 250$ v. A.C. Reversalble
30 r.p.m. 40 Hb . Tins. Complete with capactor Excellent condition. $99 / 6$. Carr. 101
TE-IGA TRANSISTORISED
SIGNAL GENERATOR

5 Ranges $400 \mathrm{KHZ}-30$ MHZ. An inexpensalvo
Inatrument for thie handyInstrument for the hand
man. Operatee on
gy man. Operter on
battery. Wide eaay to read acale. 800 KHZ
 x 3f. Complete with
instructions and leads
e7ing/8 P / P a E7198/6.
FIELD TELEPHONES TYPE L. Generstor rliging

TRANSISTORISED L.C.R. A.C MEASURING

1110MFD. 6 Ranges
$\mathbf{2} \%$. TURNS RATIO $1: 1 / 1000-1: 11100$.
 Atrackive 2 tone

AUTO TRANSFORMERS
5/230v, step zip or step down. Fully shrouded

G. W. SMITH

\& Co. (Radio) Ltd.
also see opposite page

[^8] AUDIO GENERATORS
 20 cpa to $30 \mathrm{ke} / \mathrm{a}$.
Output Impedance 5.000 ohms, 2001 250 r. A.C. opera-
tion. supplied brand tion. Supplied bratad
new sad gursn
teed with latruct new sad guarsn-
teed wilh Inatruc-
tlon manual and lend m, $£ 16.10 .0$.
Carr. $7 / 6$.

LAFAYETTE TE-46 RESISTANCE

 ohtils. Also checke
Impedatice turis ratio Inaulation.
200/250 A.C.
Brad New, $\mathbf{2 1 7 . 1 0}$ Brand New,
Carr. $7 / 6$.

MARCONI TF. 142 E DISTORTION FACTOR METERSS

GIGAL GENERATOR Accurate wide range sig-
nal generalir covering
120 $\begin{array}{ll}120 \mathrm{Kc} / \mathrm{s}^{2}-500 \mathrm{Mc} / \mathrm{s} \text { on } \\ 8 & \text { bandl. Directy call }\end{array}$ brated. Varimble RF:
athenuator, audlo ousput athenuator, nudlo output.
X tal sucket for calfira 3 tal sucket for callibra.
Hon. $220 / 2+0 \mathrm{~V}$. A.C
Brand new Brand new with intruc-
lions. E15. Carr. 7/6. Lions. $£ 15$. Carr. $7 / 6$.
size $140 \times 15 \times 17 \mathrm{~mm}$. ADVANCE TEST EQUIPMENT Brand new and boxed in original maaled cartona.
VM.78. VALVE VOLTMETER. R.F. ruensuremeate in exces of 10 Mc M and D.C. measure.
ments up to 1000 w. with necurncy of $\pm 2^{\circ} \%$. D.C. V RMs. Resistance 0.02 -500 M. Price E72. VM.79. URF MILLIVOLT METER. Tranaistorised. A.C. Mange 10 Mv- 3 V.D.C. current range $0.01 /$ AH1B. AUDDIO SIGNAL GENERATOR. 15 c/b-
 Kc/s. Price
J2B. A Dio
IIGN except fitted with output meter $£ 35$. ${ }^{\text {an }}$ per JIB
TTLS. TRANSISTOR TESTER.

GARRARD

 Carriage/insurance 7/6 ex 8 8.95 235. 0.0

WB4 Banes $23 / 19 / 6$.
Perspex cover ${ }^{2} 3 / 10 / 0$. - 8 pecial olfer base and cover avallable for these
models at 44.15 .0 . Carr. 5/.

Full range of Garrard acceneoriea arallable

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER

19 tranaistors, 8 diosdea, 1 HF mualc power 30 watta
nt 8 ohma. Rek. $30-20,000 \pm 2 \mathrm{~dB}$ at 1 w . Distor at 8 ohms. Ren. $30-20,000 \pm^{2}$ dB at 1 . Distor
tion 1% or les. 1 aputs 3 mV and 250 mV . Output 3. 16 ohms. Beparate L and R volurne controls
Treble and bass controls. Btereo phone jack Treble and bass controls. Btereo phone Jack.

 Brand new, puranteed and carrlage paid

High quality construction. Input $230 \mathrm{v} 50-$.60 cycles
Output full variable from $0-260$ volts. Bulk quantities available
amp. - $55 / 10 /-$ - 2.5 amp - $\mathrm{E} 6 / 15 /-; 5 \mathrm{amp}$ - $\mathrm{E9/15}$
$8 \mathrm{amp} .-\mathrm{E14/10/=;10ainp.-£18/10/=;12amp.-£21;20amp.-837}$

MULTIMETERS for EVERY purpose/

MODEL TE-90 50,000 O.P.V Mirror scale overload protec
tion. $0 / 3 / 12 / 60 / 300 / 600 / 1.200$ D.C. $0 / 6 / 30 / 120 / 300 / 1,200$. ${ }_{16 \mathrm{~K} / 160 \mathrm{~K} / 1.6 / 18} \mathrm{MEG}$ D.C. $-20-+63 \mathrm{dt}$. $£ 7 / 10 / 0$.

MODEL

MODEL TE-12. 20,000 O.P. $3,000 / 6,000$ v. D.C. $0 / 61301120$
$600 / 1.200$ צ. A.C $0 / 6011 \mathrm{Al}$

MODEL PT-34. 1.00 $500 / 1,000 \mathrm{~V}$.a.e. mad d.c. o/100 K Ω 39/6 LaFAyETTE S7 Range Supe

Preamplitier Power Supply, Brere or with two $Q .14$ speaker 2000 SYSTEM ع37 35 witt Integrated AInplltler, E2S
self-powered PM Tuner, \&25. Cart. 5 --.
ECHO HS-606 STEREO
ECHO HS-606 STEREO
HEADPHONES

TRANSISTORISED	
TWO.WAY	
TELEPHONE	
INTERCOM	
Operative over amazingly long	
distancea. Separate call andpress to talk buttons.2 -wire	
connection. 1000's of appli-	
cat lons. Beaulifuliy Anishedin ebony. Buppiled oomplete	
with batterlen and wall bracketa.	
26/19/6 pair. P. \& P. $3 / 6$.	

RADIDMASTS - can

offer you a tower for almost any purpose.
Not only for VHF, UHF or SHF radio systems, but for floodlighting. CCTV - or anything which requires a lot of height in a little space.

RADIDMASTS - not

only design; manufacture and erect all sorts of towers - we can plan a complete station or scheme for you
We also make the cheapest professional up-to120 -foot mast in the World-at 38/- per foot including fitting your aerials.

RADIOMASTS - nold stocks of most common aerial systems, cables and connectors. What we haven't got we can quickly get for you
Our installations can help practically anyone to do almost anything. Tell us if you think we can HELP YOU. Our girl June will note your enquiry and it will be actioned within 24 HOURS

 king of the paks SUPER PAKS BI-PAK NEW-UNTESTED

Sexisaction GUARANTEED in Every Pak or money back
PAK NO PAK

120 Glass Sub-min. General Purpose Germanium Diodes 10 $\begin{array}{llllll}\text { U2 } & 60 \text { Mixed Germanium Transistors AF/RF } \ldots \ldots \ldots & \ldots \ldots & 10 / \\ \text { U3 } & 75 & \text { Germanium Gold Bonded Diodes sim. OA5, OA47 } & 10 \%\end{array}$ $\begin{array}{ll}U 4 & 40 \\ U 5 & 60\end{array}$ 50 ermanium Transistors lik
U6 40 Silicon Planar Transistors NPN sim. BSY05A, 2N706 10
Ü7 16 Silicon Rectifiers Top-Hat 750 mht up to $1000 \mathrm{~V} \ldots . .10 /$
U8 50 Sil. Planar Diodes 250 mA 0.A/200/202 10
1920 Mixed Volts 1 Watt Zener Diodes $10 /$

U11 30 PÑP Sllicon Planar Transistors TO.5 sim. 2N1132 . . 10
U12 12 Silicon Rectifiers EPOXY BY126/127
U13 30 PNP-NPN Sil. Transistors OC200 \& $2 S 104$
U14 150 Mixed Silicon and Germanium Diodes 10
U15 30 NPN Silicon Planar Transistors TO-5 sim. 2N007 10/U16 10 3-Amp Silicon Rectifiers Stud Type up to 1000 PIV $10 /-$ U17
U18 U10 $\quad 30$ Silicon NPN Transistors like BC108

U20 121.5 Amp Silicon Rectifiers Top 1 lat up to 1000 PIV.. 10 U21 30 A.F. Germanium alloy Transistors 2G300 Series \& 0C71 10/U22 10 1-Amp Glass Min. Silicon Rectifiers. High Volts .. 10/| U23 | 30 Madt's like MAT Series PNP Transistors $\ldots \ldots . . .$. |
| :--- | :--- |
| U24 | 20 Gernanium 1-Amp Rectifiers GJM up to 300 PIV. . |
| 10 | | $\begin{array}{ll}\text { U24 } & 20 \text { Germanium 1-Amp Rectifiers GJM up to } 300 \text { PIV } \\ \text { U25 } & 25300 \mathrm{Mc} / \mathrm{s} \text { NPN Silicon Transistors 2N708, BSY27 }\end{array}$ 40 Fast Switching Silicon Diodes like 1N014 Micro-min $\quad 10 /-$ U28 Experimenters' Assortment of Integrated Circuits, untested. Gates, Flip-Elops, Registers, etc. 8 Assorted 20 U29 101 Amp SCR's TO-5 can up to 600 PIVCRS1/25-600 ... 20 U30 15 Plastic Silicon Planar trans. NPN 2N2924-2N2926.. 10/U31 20 Silicon Planar NPN trans. low noise $2 N 3707$ U32 25 2ener diodes 400 mW DO-7 case mined Vits. 3.18 10/-$033-15$ Zener diodes 400 mW DO-7 case mined Vits. $3 \cdot 18$ 10/Code Nos. mentioned above are given as a guide to the type of device in the Pak. The devices themselves are normally unmarked

QUALITY-TESTED PAKS
Matched Trane. OCA4/45/81/81D 20 Red spot AF Trane. PNP 6 White Spot RF Trans. PNP 6 Siticon Rectu. 3 A 100-400 PIV
2 10 A Silicon Rects. 100 PIV
2 OCl 140 Trane. NPN 8 witching
1 12 A BCE 100 PIV .
3 Sil. Trann. $28303 . \mathrm{PNP}$
4 Zener Dlodea 250 mW
3 -12V
3 200 Mc/osil. Trans. NPN BSY20/27
3 Zeaer Diodes IW 33v 5\% Tol.
4 Eigh Current Trans. OC42 Eque.
2 Power Tranastara 1 OC26 1 OC3
5 slicon Hects. 400 PIV 250 mA
4 OC75 Transistors
1 Power Trana. Oc20 100 V
10 OA202 S

${ }_{1}^{2}$ gil. Trisul. NPN VCB 100 ZT 86
8 OA 81 Diodes.
40072 Transistor
4 Bil. Reclan 400 PIV 500 mA
5 GET884 Trane. Eqvi. OCA
5 GETB83 Trans. Eqvi. OCA5
2 2N708 24.
2 2N708 8u. Trans. 300 ach/s. NPN
3 GT31 LF Low Nolse Germ Tra
6 PNP 1 IN14 8u. Dloden 75 PIV 7smA.
8 OAPS Germ. Diodea Sub-min. INE9.
${ }_{2}$ AC130 0 O.... 2 Pr..........
2 OC25 Power Trans. Germ
AC128 Trane. PNP High Gain
AC127/128 Comp. pair PNP/
${ }_{3}$ AN1307 PNP 8 wife paing Tran/NPN
7 Cab2H Germ. Dhodes Eqvi. OA71
${ }^{8}$ A P118 Type Trans.
1 ACl20 Oerm. PNP Trans.
4 slicon Rects. 100 PIV 750mA
3
AP1
AF117 Trans.
OC81 Type Tran
2N2926 BL. Epoxy Tran
OC71 Type Trans.
28701841 . Trans. Texas
12 Volt Zenera 400 mW
10 A 600 PIV 811 Rects. 1845 B
bClos bu. NPN High Gain Trans. 2 2N910 NPN Bil. Trana. VCBio 1000 PIV Bil. Rect. 1.5 A Res3310 AF

84. Power Recta. BYZ13 TK201A.
Zener Dioden 3-15v But.......
2N1132 PNP Epitayial PLunar sil 4 Germ. Power Trane. Eqvi
2 su. Trana. 200 Mc/a 60 Vcb ZTs3/ai. 1 Tunnel Dlode AEY11 $1050 \mathrm{Mc} / \mathrm{a}$
2 2N2712 BL. Epozy Planar HFE225 2 2N2712 Bu. Epory
8 BY 100 Type su. Recta.
85 su. and Ger
marked, New

INTEGRATED CIRCUITS BI-PAK MONOLTTEIC DIOITAL CLRCUIT8 - P305s lead TO-b ${ }^{\text {BP305A. }}$ g-Input AND BP314A. 7 -Input NOR gate, $0 / 6$ ench. BP315A. Dual 3-Input BP316A. DATE. $8 / 6$ emath. NOR gate (expandable). g/6 each. ment. $11 / 6$ each
 gate, $9 / 6$ esch.
BI-PAK MONOLTTEIO AMPLIFIERS
(TO-5 8 lead)
\qquad Hiter, $1.5 /-$ ench. BPiolc, Operational amplifler (with Zeat
BP702C, Operational ampBY7
uner (put), $12 / 6$ each.
BP501. Wlde band ampl BP501, Whde band ampli-
BPer, 18/- esch. BP521, Logarithinio wid band amp., 14 / each. Bresioc, General parpose
muplfter (T0-5
8 lead). maplifier (TO-5 8 lead).
(voltage or curfent amp.). $12 / 6$ each.
OTHER MONOLTHEC
DEVICES
P 424, Zero voltage
8/6 each. Vhage switch, This device is a monolithic I.C. that acts a combined trigger circuit for controlling s triac. It is designed thyristor at the point of zero supply voltage, sad therefore eliminste radio
frequency Interference frequency laterference
when used with reaistive loadt.
DI3D1 Rilicon Unllateral switch $10 /$ - eanch.
A Bilicon Planar, mono-
1ithic integrated, Athic integrated circult
having ingristor electrical characteristles. but with an anode gate and a bullt-in "Zener" diode between
gate and cathode. Fuil gate and cathode.
data and application circutts available on request. FAIRCHILD (O.S.A.) INTEGRATED CRRCUITS integrated checuits Epoxy case
temp. range $15^{\circ} \mathrm{C}$. to
$55^{\circ} \mathrm{C}$. ULolt, Buner. $10 / 6$ enoh. UL.914, Dual twooinput vile, $10 / 8$ each. each. Complete dista and circuits for the Pairchild I.C.'s avallabie in
priced $1 / 8$.

MOLLAED I.O TAA243, Operatonal ampuifier, 70 - anch. TaAz63, Linear AF ampli-
fier, $18 / 8$ each. TARE, $18 / 8$ esch. General ampliter, 21- oach. CA3020 RCA (O.S.A.) LINEAR INTEGRAT Audio Power Ampliner, $30 /$ - each.
owing to the printed matter often re: quired by customera connection with the I.C.'
therinaelven we ank you help ua io the coot of
reproducing this therature by addlug 9a. towarda same. This is only neces-
sary when a nurnber of salf $\begin{aligned} & \text { diferent } \\ & \text { required. }\end{aligned}$

Brad Sevicolvideridis (DEPT. WW)

500 Chesham House
150 Regent Street London, W. 1

EI-PRE-PAK LIMITED

TRY OUR X PACKS FOR UNEQUALLED VALUE

XA PAK
Germanium PNP typetransistors, equivalents to a large part of the OC range, i.e. 44, 45, 71, 72,
81, etc.
PRICE $\angle S$ PER 1000
POST \& PACKING 4/6 U.K.

KB PAK

Silican TO-18 CAN type transistors NPN/PNP mixed lots, with equivalents to OC200 I, 2N706a, BSY27/29, BSY95A.

PRICE £4.5 PER 500
PRICE E8 PER 1000
POST \& PACKING 2/6 U.K.

XC PAK

Silicon diodes miniature glass types, finished black with polarity marked, equivalents to OA200, OA202, BAY31-39 and DKIO, etc.

PRICE E4-10 PER 1000
POST \& PACKING 2/6 U.K.
ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF 75\% OR MORE GOOD SEMICONDUCTORS. FREE PACKS SUSPENDED WITH THESE ORDERS. ORDERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK.

$\begin{aligned} & \text { NEW } \\ & 82 \quad 4 \end{aligned}$	STED \& GUARANTEED PHOTO CELLS. SUN BATTERIES. INC. BOOK OF INSTRUCTIONS	$1 /-$
877	AD161-AD162 NPN/PNP TRANS. COMP. OUTPUT PAIR	/-
879	IN4007 SIL REC DIODES 1000 PIV 1 AMP. MINIATURE	10/-
88110	REED SWITCHES MIXED TYPES LARGE \& SMALL	10/-
889	5 SP5 LIGHT SENSITIVÉ CELLS LIGHT RES. 400 ת 2 DARK $1 \mathrm{M} \Omega$	10/-
8	NKT163/164 PNP GERM. TO -5 EOUIVALENT TO OC44, OC45	10/-
8924	NPN SIL TRANS. AO6=BSX20 2 N 2369.500 MHz .360 mW	10/-
${ }_{893} 5$	GET 113 TRANS. EQUIV. TO ACY17-21 PNP GERM.	10-
в99 200	CAPACITORS. ELECTROLYTICS. PAPER. SILVER MICA. ETC. POSTAGE ON THIS PAK $2 / 6$	10/-
в96 5	2N3136 PNP SIL. TRANS. TO- 18 HPE $100-300$ Ic. 600 mA . 200 MHz	10\%
в98 10	XB112 \& XB102 EQUIV. TO AC126 AC156, OC81/2. OC71/2. NKT271. ETC.	10/-
250	MIXED RESISTORS POST \& PACKING $2 /$	

Return of the unbeatable P. 1 Pak. Now greater value than ever

Full of Short Lead Semiconductors \& Electronic Components, approx. 170. We guarantee at least 30 really high quality factory marked Transistors PNP \& NPN, and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.

Please ask for Pak P.1. Only 10/-2/- P \& P on this Pak.

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a perfectly linear and accurate rev counter for any car.

20/-each

FREE CATALOGUE AND LISTS for: -

ZENER DIODES

 TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHARTMINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add 1/- post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL

MULLARD DATA BOOK
SEMICONDUCTOR \& VALVE DATA \& E QUIVALENTS

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

sルリ名

MODEL 2000 PLINTH SYSTEM

Mounts SME precision pick－up arms with leading turntables．A basic unit and range of motor boards in teak，walnut，or rosewood．Spring suspension hinged acrylic lid with stainless－steel trim．Write for details to：

ALSO AVAILABLE：
Amplifier P．C．B．Modules as used in the above amplifier， built and tested．
MONO AMP． 103 £ 8

A brilliant development．Produces quality hitherto unattainable at such a price．
The unique circuit eliminates distortion rise at low levels．For only

£48

Completely enclosed panel mounting， Teak Cabinet $£ 4$ extra

DETAILED ILLUSTRATED LITERATURE AVAILABLE ON REQUEST．
Trade enquiries invited

ALL GOODS GUARANTEED

CONVERTOR/BATTERY CHARGER. Input $240 \vee$

 $50 \mathrm{c} / \mathrm{s}$. Output 12v 5 amp DC. Lmput 12 V DC, output 240 v AC. 170 watt max. With fuse and indlcator lamps. Size$91 \times 10 \times 4$. Weight 191 b . An extremely compact unit $9 \frac{1}{} \times 10 \times 4$ in. Weight 191 b . An extremely compact unit that will give many years rellable service. Supplied with
plug and leal. Only $\& 4 / 10 /-\mathbf{P}$. \& \mathbf{P}. 15/-extra. As above-fulls serviceable-perfect interlor but soiled As a terior casea, $£ 3$. P. \&\& P. 15/- extra.
$\begin{aligned} & \text { Synchronous chopper AEI type CK4. As new } 22 / 6 \\ & \text { ea, Top connector } 2 / 6 \text { eR. CARPENTERS polarised }\end{aligned}$
relays. Single pole c/o 20 ohm and 65 ohm colls. As
new. complete with base. $14 /-\mathrm{es}$.
AMPHENOL. Blue 24 way ribboned plug and
Bocket. gold plated. Ex. eq, but mint. 22/6 a br
eq. as new. 7/-: 3-pair plug and socket holder. 3/- ea
T.M.C. Precision Capacitors. Plastlc. 1 mfd 250 v
DC working 0.1% at $45^{\circ} \mathrm{C}$. As new 83 .
G.M. TUBES. Brand new, G24/G38/G60 at $27 / 6$ ea G53/1. brass cased. 66 ea.
PHOTOMULTIPLIERS. 5* Mullard 54AVP \& EMI 6099 at $\mathrm{E} 4 / 10 /=$ ea. 2° EMI 6097 X at $\mathrm{E8} / 10 /=$ ea.
SOLARTRON Rtab. P.U. type As516 300 v Somad TRANSISTOR OSCILLATOR. Variable frequency $40 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{kc} / 8.5$ volt sulure wave o/b. for 6 to 12 y new, Boxed. $11 / 6$ ea.
TIMER UNIT, consistlig standard mains input servative): GEC bridse rectifier; detachable accurat 1 sec timer subchassis with transistor STC type T82 $2 \times 12 A U 7$; one 500 ohm relay heavy duty contacts 2 nuake: lampa, fuse, switch, etc.. etc. In case. Slze
$10 \times 10 \times 5$ in. Ideal bathery charger one second timer $10 \times 10 \times 5 i n$. Ideai battery charger. one becond timer.
tranaistor power supply. etc.
Teated and guaranteed working, c2/15/. ea, P. \& P. P. 15/-

OSCILLOSCOPES

Coseor DB 1035, $120 ; 1035 \mathrm{Mk}, 2,625 ; 1035$ Mk, 3 HARTLEY 13A. Now only $117 / 10$
All soopes carefully serviced and in excellent condition Carriage so/- extra
AMPLIFIERS. Compact unlt by Parmeko-rated 17 watts. capable of double. $2 . \mathrm{KTB6/2B254M}$; ECC81 or transformer input. Size $14 \frac{\times 81 \times 8 \text { in. bleh. Standari }}{2}$ mains input. Fully tested. $\mathbf{8 8} / 10 /$., including carriage.
Omron/Schrack octal helars hat plug
Omron/Schrack octal hared plug-in relays. 2 pole c/o 5 A .230 v and 6v. State which. Brand new. Boxed. C.E.C. ${ }^{4}$ pole c/o 6/12V operation 180 ohms. Platinum contacts. Brand new. Hoxed. $14 / 6$ ea.
3.000 geries. 500 ohms 2 zole c/o and 2 make. As new
2.000 ohm .

3 break 1 make and 3 make heavy duty
2 make 2 break, 4 make heavy duty.
Ali at $4 / 6$ ea. As new condition.
8.T.C. sealed 2 pole c/o 48 v only. Complete with base. Standard pots. Brand new. 22 K : 50 K ; 250 K ; 500 K : INSTRUMENT POTENTIOMETERS. 3° Colverns. $5,10.25,50,100.500$ ohms; 1, 2\%6, 10, 25, 100K. All at 10: 25. ${ }^{2}$.
HIGH RESOLUTION Potentiometer. 100 K or 25 K . 80 turns. Complete with knob. $6 / 6$ each.
ALMA precision resistors. 100 K : 400 K and 998 K /6 esch.
EL84 VALVES. Ex, eq. Tested. 7/-pair,
PANEL SWITCHES. All high quality. SP. I/e ea.; DP, 2/e ea.; DP $2 \mathrm{w}, 3 / 6 \mathrm{es}$.
COURTENAY TIMER unit. Accurate 1 sec timer. Variable mark space ratio. Input $12 v$ AC or DC. Heavy duty relay contacts to switch external equipment. eq. flashing ILghts, Chassis mounting. Size $6 \times 3 i \times 9 i n$. Tested
with circuit diagram, $22 / 6$ ea.
CRT. Modern replacement for the VCR138A. Blue trace
with PDA avaliable. $27 / 6$ ea, Base, $3 / 6$ es. with PDA svaliable. $27 / 6$ ea, Base, $3 / 6$ ea.
Geared Motons. $240 \mathrm{v} 50 \mathrm{c} / \mathrm{s}$ synchronous. Geared down to 60 r.p.m. Brand new. 50/- ea. P. of P/ ${ }^{7 / 6}$ ea.
Pair Mullard OC29s on finned heat sink. 116 es.
Photocells, equivalent OCP $71,2 / 6$ ea.
E. H.T. Condensers. 7.5 kV working, $0.1 \mathrm{mfd} .5 / 6 \mathrm{ea}$
P.H.T.Condensers. 7.5 kV working. $0.1 \mathrm{mfd} .5 / 6 \mathrm{ea}$. 0.25 mfd. $8 / 6$ ea.
Brand new. 515 V working. $2 \mathrm{mfd}, 22 / 6$ ea.; 0.25 mfd . 10/6 ea.
VISCONOL E.H.T. Condensers. Brand new, 0.002 15IV. 0/6 Ea.: $0000 a$ 20IN. 16/ ea.
PLESSEY plugs and sockets. Cleaned, ex. eq. Mark 4 ' B plug or socket, $4 / 6 \mathrm{ea}$. 18 . and 24 -way, $8 /=$ eit.
TRANSISTOR Stabilised Power Unit. 48v, 4 amp.
Manufactured by E.M.I. Open chasis. Brand new. Migheactured quality. Size $101 \times 5\} \times 6\} \ln$. hish. 66 ea.
AMERICAN TX tuning units. TU7B $4.5-6.2 \mathrm{Mc} / \mathrm{s}$.
TU8B $6.2-7.7 \mathrm{mc} / \mathrm{B}$. Only 62 each. Carriage $7 / 6$ extrit. VALVE VOLTMETERS, Marconi TFP99, $67 / 10 /-, ~$
carriage $10 /-:$ TF428B, $63 / 15 /-$ carriage $10 /-:$ Aimmec 784, 68, carriage 15/-.

Cash with order
FOR CALLERS Always
FOR CALLERS. Always a large quantity of components, transformers
etc., at "Chiltmead" prices. Callers weleome 9 a.m. to 10 p.m. any day.

CHILTMEAD LTD.

22 SUN STREET - READING - BERKS,
Off Cumberland Road (Cemetery Junction)
Tel. No. Reading 65916 (9 a.m. to $10 \mathrm{p} . \mathrm{m}$.

OSMABET LTD.

WE MAKE TRANBFORMERE AMONGBT OTHER THINGS AUTO TRANSFORMERS, $0.110-200 \cdot 220.240$ マ. A.c. up or down,
 MAINS ISOLATION TRANSFORMERS. Iaput $200-240$ r. a.c.,

 630 г. 45 Ma. 6.3 w. 1.5 E .. $25 /-$
INSTRUMEMT TRAMSFORMERS. Prim 200/250 $\mathbf{~ F}$. a.c. OMT $4 / 1$ tapped sec. $50-20-30-40-60 \quad \mathrm{r}$. giving $5-10-15-20-25 \cdot 30-30.35-40-55-60$,
 $10-20-30-0-50,50-80-80-100-110$ F. 101
heater transformers. Prim $200 / 2.20$ vis.c. 6.3 v. 1.5 n.

12 E .150 /
MIDGET MAINS TRANSPORMERS. FW rectifcation. sive

COLOUR TELEVISton. WW. as specifled, choke Ll 60/-: OUTPUT TRANSFORMERS. Mullard $5 / 10 .{ }^{\mathrm{LL}} \mathrm{L} .67 / 6$: 7 watt
 matching transtormer, 3, 7.. , 15 ohmm up or down to 10 watt,
11/6. 50 watt P.P. Tran PA/K TB8, 3.7.5.15 ohme 135/CHOKES. Inductance $10 \mathrm{H} .65 \mathrm{Ma}, 18 /-; 85 \mathrm{Ma}, 15 /-; 150 \mathrm{Ma}$ $21 /-$; Aying leadance clamp conneruction.

Carriaje entra all tranuformera from 3/6
S. $4 . E$. for frameformer lists.
BATEERY ELIMINATORS. PP9 200/250 v. A.c., 9 v. d.c. 150 FLUORESCENT LGHTING LT, Ioput. 6. 12.24 v . d.c. range. fithings, invertern, B.A.E. lista,
BULX TAPE ERASER, 200/250 v. A.C. immediate and complete erasure of any size apool, sultable for
42/6. P. \& P. 3/- B.A.E. Leaffet.
 LOUDSPEAKERS. Ex equipment perect
 Carringe extru on all orders.
B.A.E. ALL ENQUIRIEG PLEABE. MAIL ORDER ONI.Y.

46 KENILWORTH ROAD, EDGWARE, MIDDLESEX Tel: 01-9589314

WW-146 FOR FURTHER DETAILS

110 SEMICONDUCTOR PROJECTS FOR THE HOME CONSTRUCTOR

by R. M. Marston
25/-
Postage I/-
TRANSISTOR ELECTRONIC ORGANS FOR THE AMATEUR by Alna Douglas. 20/-. Postage $1 /$
THE APPLICATION OF LINEAR MICROCIRCUITS VOL. I by S.G.S. 30/-. Postage $1 / 6$
VHF-UHF MANUAL by G. R. Jessop. $21 /$.. Postage $1 / 6$.
COLOUR TELEVISION PAL SYSTEM by G. N. Patchett. 40/-. Postage I/-. PRINCIPLES OF TRANSISTOR CIRCUITS by S. W. Amos. 25/-. Postage 1/-.
PULSE, DIGITAL AND SWITCH. ING WAVEFORMS by Jacob Millman. 86/-. Postage 4/-.
SOLUTION OF PROBLEMS IN ELECTRONICS AND TELECOM MUNICATIONS by C. 5 . Henson. 38/-. Postage 2 /-
SCR MANUAL by General Electric Company. 25/.. Postage 2/.
THE INTEGRATED CIRCUIT DATA BOOK by Motorola 50/Postage $4 / 6$.

CATALOGUE $2 /-$

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
19-21 PRAED STREET,
LONDON, W. 2
Phone PADdington 4185
Closed Sat. I D.m.
WW-147 FOR FURTHER DETAILS

slidewire WHEATSTONE BRIDGE
£15.15.0

Batters Powered Portable Renintance Bridge. Range 0.5 to cuearuling range of 0.05 to 50,000 ohma. Accuracy uldde 3 rangeg- 0.5% approx. PRICE...... ency 15 in 0

TRIACS TYPE 40432

The triad The hriac will control up to isto wattin at 240 V mains ire-
quency. Suppled complete with meat sint applicathon uheeta for motor control and dimmer circuits applicathob
$37 / 6$ each.

UNIJUNCTION TRANSISTORS 2N2646
Power digaijation sormW R.M.s. Base.to-Hase voltage 35V max. Peak emtler current $2 \cdot 0 \mathrm{~A}$. Suitable for triggering
of thy ristors. $12 / 8$.

INTEGRATEO CIRCUITS
R.C.A.: OA 3005 Wide Band Amplifier ($100 \mathrm{me} / \mathrm{m}$). Applica than: RF Amplitier, thalunced mixer, product detector or
Bell-oncillating mizer R.C.A. CA 3012 Wide Band Amplifer ($20 \mathrm{mc} / \mathrm{s}$). Applica tions: IF Amplifier for VHF/FM Recelvers
R.C.A.CA $\$ 020$ General Purpone Audio Amplifler of 550 mW output R.C.A. Ca 3036 Buffer Ampliser conalating of two Darilucion
pairs. Applications: Atermo. preamplifiern, low noine emilter ollower differential Amplinern and operational amplifer drivers .E. PA222 1.2 watt Audio Amplifier .E. PAR2:4 1 watt Auclio Amplither MOTOROLA MC-1709Co Operstional Amplife MULLARD TAA223 Threentage direct coupled Amplifar. Amplifter. olar randeror amplliter atage
All the sbove are nupplied complete with daan

WHEN ORDERING BY POST PLEASE ADD $2 / 6$ IN \subset FOR HANDLING AND POSTAGE.

NO C.O.D. ORDERS ACCEPTED
ALL MAIL ORDERS MUST BE SENT TO HEAD OFFICE AND NOT TO RETAIL SHOP

Westinghouse epoxy encapsulated wire IN5399, ENDED MINIATURE RECTIFIERS diwneter 140 in . Overall length (wich leads) $2 \cdot 31 \mathrm{~min}$. $4 / 6$.

NEW TRANSISTORS ADDED TO

O	8/-	11/6	6Ft 35/-												PL36 10\%	UAF41	
0	$8 / 6$	6ALs 3/-	6F50 8\%-												PL81 9/-	UAFt2	
		6АM5 5/-	6P6GB 6/6									=				UBC+1 UBCA1	
0	15%	M6 4/-	${ }^{677}$ 8/-											MRL4	L84 $8 / 6$	UBF80	8
OD3	$8 / 6$ $6 /$		$\begin{array}{ll}\text { 6F11 } & 6 /- \\ 6 \mathrm{Fl3} & 8 / 8\end{array}$	C	ARAN	-				\cdots			,		Pismo 13/6	UBF89	
1 A 50	5)-	BAQS 81-	6 Fl 14											MSPEN/T	-09 30	UCw	
1A7GT	$7 / 6$	6AQ6 101-	${ }_{615}$												L8M3	UCC84	
AD4	15/=	OAR5 6/-	+18 7/6											MT17 80	PM84 8/:	UCC85	
1 BaO	7	6arb	P18 7/6	10 Fl 18/-	-	0 Ca 25	18 24/-	AC/VP215/-	L93		EP8S			NRP1 86	PY31 5/.	UCP	
lcsa	5	${ }_{6488}^{6 / 6}$		10 FPG 10/:	-20P5	90CV 25	5781 11/-	$\mathrm{AC}_{2} / \mathrm{HL}$, $9 /$	DL94 8/8	$\mathrm{ECOC33}^{101}$ 10,	EF86			$\mathrm{NBP2}^{\text {ORP12 }} 88$	PY32 10/	UCR	
INS	31				${ }_{250}^{250}{ }^{250} 12 /-$	95 Al 8/8	576312	AFX 203	6		EFP1		$2{ }^{27 / 6}$	arPl2 ORP60 8		UCH	
$\begin{aligned} & \text { INSO } \\ & \text { iRS } \end{aligned}$	$8 / 0$ 80	$\begin{aligned} & 6 A 870 \\ & \text { 6ATB } \\ & \text { 4 } \end{aligned}$	$\begin{array}{ll} 6125 \\ 6128 & 14 / \% \\ 6 \end{array}$	101. $101110 /$	${ }^{25 C U 6} 12 /-$	${ }_{150 \mathrm{B3}}^{150 \mathrm{l}}$ 11/-	5798 280/-	ARP12 ${ }^{90}$	${ }^{\text {DLPG }}$	ECC70 17/-	EP92	816	138	ORP81 51	PY81 5/6	UCH2	
185		TA	60H8 11/	10P13 $20 /-$	- 25L6GT 816	154 CA 10/.	3814A 12/-	ARP38	D1819 $27 /$	ECCO1 8/-	EF93			ORP902/9	PY82	UCL21	101-
18		97	60 K 6	10P1 18/-	- 25840	2628	$5840 \quad 20$	17	M70	$\mathrm{BCOCs}_{2} 5$	EF94		$1+8$	ORP9322/	PY83	UCLİ2	
1824	$6 / 6$	22	60 W	10Y $27 / 6$	- ${ }_{2}^{2525}$	${ }_{304 \mathrm{TH}}^{280 \%}$	${ }_{5842} 60$	AW6 $7 / 8$	DY88 6/-	ECC83 ${ }^{5 / 6}$	EPP^{4}		Oc10/481/	${ }_{\text {PABCS }} 716$	PY88 718	UCL8	$11 /$
185		$\operatorname{GAUG}^{22 / 6}$	$\begin{aligned} & 6 \mathrm{~J} 4 \\ & 6 \mathrm{JSO} \end{aligned}$	$\begin{aligned} & 1103 \\ & 1105 \\ & 7 / \end{aligned}$	- 2526	304TH	5847 8879 60 8	$\mathrm{AZ1}_{\text {A } 212}$	$\begin{array}{ll}\text { PY87 } & 8 / 6 \\ \text { YY802 } \\ 9 \%\end{array}$	$\begin{array}{ll}\text { ECCA } & 5 / 6 \\ \text { ECC85 } & 5 /-\end{array}$	$\begin{aligned} & \text { EFP66 } \\ & \text { EFP97 } \end{aligned}$	10/6	OCl $0 / 4 \mathrm{BL}$ 5/-	$\begin{array}{ll} \text { PC8 } & 11 \\ \text { PC900 } & 8 \end{array}$	PY ${ }^{\text {PY }} 301$ 14:-		101
174	$4 /$	6au8 10\%	6 J	$11 \mathrm{E3}$ 85/-	27M1	307 A 10\%	38ab 40	AZ31 9	35L 52/6	ECC88 $71 / 8$	Et183	6/-	Oc10a 25/-	PCC84 6	PY801	UF43	10\%
104		6 6V6 516	637	$12 \mathrm{AB5}$ 9/-	- 28D7	3104	6060	AZ41	800C 20\%	ECC89 11/-	EF1	$8 / 6$	actob 35/-	PCCAS	PZ30 7/-	UF80	710
11		6awball-	6 K 60	${ }^{12 A B 7} 81$.	30 A 5	311 A	6064	Az50 10	80CF $27 / 6$	ECC91 3/8	EP804	20.	10R/L	PCCA9 9/8	QQV03-20A	UP85	
1×2		BAX4atb	6 F	12ACS 7\%	30 Cl 8/6	3130	6073	Cla 90	80 F	ECC18910	EP814	13/.		PrCi 8910	105/:	UFP9	
172		8/-	${ }_{6}^{6 K 88}$	12AD6 $6 /{ }^{\text {b/ }}$	- $30 \mathrm{Cl15}$ 14\%-	${ }^{3284} 35$	6074	CsJa 115	801, 17%	ECC80414/:	riH9		(actod 50/-	PCCR05 18/-	-6.40 ${ }^{\text {a }}$	Ulat	11/-
${ }_{2}^{2 A} 3$		12/6		12AEC $7 / 6$		329430	6080 8146	CBL1 15		ECC80714/:	EK32 F:K90	6/6	(C) $12 / 4 \mathrm{~B}$	PCCH0612/=	105/:	$\begin{aligned} & \text { ULEA } \\ & \text { UMA } \end{aligned}$	1
$\begin{aligned} & 2 \mathrm{~A} 40 \\ & 2 \mathrm{C} 26 \end{aligned}$	35%	$\begin{aligned} & 12 / 8 \\ & 6 A \times 7 \\ & \hline 10 /- \end{aligned}$	$\begin{aligned} & \text { KK25 } 15 /- \\ & 6 \mathrm{LbGT} \\ & 8 / 6 \end{aligned}$			$\begin{array}{ll} 715 \mathrm{~A} & 40 \\ 715 \mathrm{~B} & 70 \end{array}$	$\begin{array}{ll}8146 \\ 8146 \mathrm{~B} & 27 \\ 47\end{array}$	$\mathrm{CBRL31}^{\text {CCE }} 15$		FePP 8/8 ECPR2 18	E1.2	$4 / 6$	$\begin{gathered} 52 /-1 \\ 12 / 6 \end{gathered}$	$14 / 8$	Q81202 10\%	UMr0	
C	10/	6830 15/-	0L7 8/-	12AT6 4/6	30 FLL	7180 80	6350	CLA 15	88 C 23/-	ECP83 14/-	HL33		GN4 30-	CF80 6/6	q81203 10	UM84	
2	140/-	${ }_{6887}^{681}$	${ }_{6}^{6 \mathrm{LL}} 8{ }^{\text {8/\% }}$	12AT7	$30 \mathrm{PL12}$	80490	${ }^{6360}$	CL/33 15	нисC 12/6	ECFP8 118	EL338	28	ON10 120\%	PCFP82 ${ }^{\text {P/3 }}$	QU37 27%	UUS	
20	401		$\begin{aligned} & 6119 \\ & 61.19 \end{aligned}$	l2aU7 $\begin{aligned} & \text { lig } \\ & \text { lid }\end{aligned}$	$30 \mathrm{FLI3} 8$			Y	8	-8043	EL42	$8 /$	D7100\%			UU	
2 C	12/-	6Ba7 $15 /-$	6N7GT 6/6	12av7 8/-	30FL14	${ }_{812}{ }^{817}$	6883 615	DAP40 10	${ }_{\text {E920 }}$	ECH35 11.	EL	$9 /$	asion 50%	CF87	5-259/.	UYIN	-
${ }_{2} \mathrm{CLS} 2$	$12 /$	"BE0 4/6	${ }^{6 P 1}$ 21/-	12AW6 20/-	- $14 / 6$						EL		O810E 55/-	CF800 14	Y3-125A	UY11	-
${ }_{2 \mathrm{CW}}^{2 \mathrm{CD}_{4}}$		6BP5 15%	${ }^{6125} 5131 /-$	12AX7 5/6	301146						ELA4	418	O810H 40\%	CFP01 9/-	160	UY21	9/6
2 b 21	3/			12AY7 13/6	${ }_{30 \mathrm{LI}}^{3}$								Q812D 65/-	CF802	230	UY41	
${ }_{2}^{2 \mathrm{EP22}}$		${ }^{\text {6BJ6 }}$ 81\%	6R		- ${ }_{30 \mathrm{Pl} 12}^{15}$,		atel30T	PCPGOE12	2001	\%	
	$27 / 6$	6 BK 420 -	$6847{ }^{7 /}$	12BA7	$30 \mathrm{P19}$ 14/-	AX	ND IMP	T	-10		Elo	8/6	15	PCFmos	300	VU11	
3A3	11/-	${ }^{9}$	$2 \cdot$	12BE6	L1	RE	RCED	- INTR	DUCE A	-	ELI	2		14/6	10 17/6		13
U0			108178	12 BY 710		HAR	GE OF	d. PER	HILLING.	THIS	EI	121	Gz\%	13	RG1-240A	VU1	
3AU0	60	68N6 7/6	.6817 7-	12CUC 15/-	-30PL14				E ADDED	-	ELat	10/-	C23\% 9/6	PCLeo 15/-	35	W76	
$3121 \mathrm{~A}$		Q6 12/	68K7								EL8		0733 13/8	PCLS 1	3Da 12	W107	
3E29	60/	6BR7 16/-	68N70T5/6	12K76T 7 \%	- $3585121-$								Gzat 10\%	CLAS	P61		10
3Q4	7/6	${ }^{68 R 8} 12 / 6$	6897 7/0	12K80T 8/-	- 3505 6/6							16	H8Cs0 $4 / 6$	PCL84	TD03-10	$\times 76$	
384	8/-	${ }^{6888}$ 25\% ${ }^{\text {25/- }}$		$12 \mathrm{C7GT}$ 8/-	- 35D3 12/-						EM35	8/-	HBCDI	PCL85	100	XB1	15
3 V	8/-			$\begin{aligned} & 128 \mathrm{C7} \\ & 128 \mathrm{~F} \end{aligned}$	- ${ }^{381}$ L6GT/8/*	${ }^{813} 8185 /$	12/8		8\%	H8t $5 / 3$	EM80						
6832	80/-	6 BX 4 4/8	$6 \mathrm{U8}$ 8/6	128*7 9/-	35z3 101.		6939 40	DAF92 $8 / 8$	E180F 17/6	ECH83 8/-	EM84		HK90	PCL800	TP2620 7/8	XCi2T	
TH	8/-	6B78 6/-	6v6GT 8/-	12897 6/-	- 35\%40		7025	Dapses	E1820093/-	PCH84	EM87	10\%	H123 6/		TTIS 85	xCl	
号	\%-	${ }^{6827} 10 /$ -	6×1 4/8	$128 \mathrm{H7} 4 / 6$	$83826 T$	837 15/-	7199 15/-	DCPO	E180F 22\%	ECL80 8/6	EN32	$301-$	FL33DD8/-	PCLR01 15/-	TT21 45/-	XC15T	
$5{ }^{5} 40$	$5 / 6$	80, 516	${ }_{6 \times 507}^{810}$	128N7 4/6	3 307 $8 / 6$	845 200\%	75.51 301-	DET22	E2880C 30/-	ECL81 7/6	EN91	8/0	HL41 5\%	PDS00 301-	TZ40 70/-	23	17\%
50	71	$\begin{array}{ll}6 \mathrm{C5O} & 5 / 6 \\ 6 \mathrm{C9} & 17 / 3\end{array}$	$11 / 6$	128170	${ }_{50 \mathrm{AS}}^{35 \mathrm{ZSGT}}$ - 61.	${ }_{8781}^{864}$	7581 10/-	100	Ex10F 57/6	${ }_{\text {ECLR }}{ }^{\text {E }}$ (1/8	${ }_{\text {EY51 }}^{\text {EY }}$	816	HLA2DD8/-	PEN ${ }^{\text {PEA }}$ ($7 / 6$	U18/20 $12 /-$	XN3	22/-
5 V 4 G	$7 / 6$	${ }_{8 \mathrm{CB}}^{6}$		128N79T ${ }^{7 / 6}$	12.	${ }^{8724} 1$	$\begin{array}{ll} 7581 & 22 / 8 \\ 7588 & 22 / 8 \end{array}$		$\begin{aligned} & \text { AAS2 } 85 / 0 \\ & \text { A76 } \\ & 8 / 6\end{aligned}$	${ }_{\text {ECLISA }}$ 10/-	EY80		$\begin{array}{ll}\text { HL92 } \\ \text { HL9 } & \text { 10/- }\end{array}$			Y61	$8 /$
	518	$6 \mathrm{Ca7}$ 81/	$7 \mathrm{B6}$ 11/-	7/6	$350 \mathrm{L6GT} 8 / 6$	927 501-	75914 20/-	DET24	EABC80 $81-$	ECLAS $10 / 6$	EY8s	10\%	HLI3300	258	U25 14/6	Y65	5/0
0	$8 \%^{\circ}$	${ }_{6}^{6 C H 6} 11 /$	87	12807716	53KUU 13/6	931A 65/-	$7895 \quad 22 / 6$		EAF42 9/-	ECL 86	EY84	,	10\%	EN45DD	U26 14/6	Z30	8%
6/3012	14/-	${ }^{\text {BCLW }}$ - $12 / \%$			3 b8C0 451-	1805 7/8			EAPSO1		EY				${ }^{331} 83{ }^{8 /-}$	2 209	55\%
ABC	5	6CY ${ }^{7 /}$	7N7 $17 / 6$	$12 \mathrm{X} \mathrm{l}^{7 / 6}$	8 $75 \mathrm{Bl} 18 / 8$	5544 120/-	9003 9\%	DH101 9/-	EbC33 8\%-	EP37A	EY88		KT:4817	PEN883 9\%-	U76 41-		8/-
AB_{4}	$8 / 6$	6CY7 11-	797	1487 15/0	- ${ }^{75 \mathrm{Cl}}$	5545 150/*	A2134 10/-	DK32 7/8	EbCA1 9/6	${ }_{\text {EPP39 }}$	EY91		KT41 7/6	PEN3848\%	U81 10\%		
$\mathrm{AABT}^{\text {a }}$	$4 /$.	ODC8 13/6	787 12,	$19 \mathrm{AOs} 7 / 6$	$8{ }^{80}$ \% $/-$	55514 300/-	A2298 19/-	DK40 10/-	EBC81 8/-	EFP40 9/-	EZ40	818	KTAS 20/-	PEN 453 DD	U191 14\%	271	/6
6 AC7	4/-		87 28/6	19F23 12/6	${ }^{8}{ }^{8381} 512 / 8$	${ }^{55672} 810$	AC/HLİD/	DK91		EF41 11/6	EZ41		KT83 8/-	PENDD ${ }^{\text {10/\% }}$		Z729	81/.
bags	8	6D84 15/-	724 7/6	1906 25\%	- 85al 7/6	3651 71-		DK96 7/6	EBF89 8/-		E781		KT71 7/6	1020 10\%	U301 11/6	z800U	-
6 AG7	18	6DTA 8/-	98W6 7\%	20 CV 62/6	$8{ }^{85 A 3} 716$	5654 71-	AC/HL/	DLi6 $2.51-$	EBLI 12/-		E7.00	4	T88 29	PP86 10/-	U403 81-	28010	0\%
8AH6	10/*	8at 8/-	C2 10/-	D1 8/\%	- 90ag 46/-	5670 10/-	DDD 10\%	DL68 13/-	BRL21 11/-		PG17	80/-	${ }^{\text {LP2 }}$ 2 $71=$	PFL200 13	U80	2803	18/6
				20P3		115'-	/7E181-	20,	C80	$\begin{array}{ll}\text { EFP83 } & 4 / 6 \\ \text { EF83 }\end{array}$	W $4 / 5$	12-	27	$814 / 0$	6	200T	13/-

Head Office:

44a WESTBOURNE GROVE, LONDON, W. 2

WE WANT TO BUY:

723A/B; 2K25; 4C35-50/- paid subject to tes Please offer is your special valves and cubes
pection and
release of electronic valves, tubes

Please send foolscap s.a.e. for full list of valves, tubes and semicondüctors

ME NT

Senior

 Commissioning EngineersCOLOUR TV TRANSMITTING
EQUIPMENT-HOME \& OVERSEAS

Due to rapid expansion. additional vacancies have arisen in our team of Electronic Engineers with specific experience of TV broadcasting or other transmitting equipment.
Applicants will be of H.N.C. standard and possess the essential knowledge and ability to complete their varied tasks without close supervision. These are positions of great interest with opportunity to travel.
An excellent salary and travelling expenses will be paid, holiday commitments will be honoured

Whether you are a ham wanting a small job done or a project engineer with a large communication system to manage. Let us help to get your aerials off the ground.

CAMBRIDGE TOWERS LIMITED

Suppliers and erectors of self-supporting towers. guide masks and roof mounted structures. Installers of antenna systems. radar, microwave, U.H.F.N.H.F., H.F.

DISPLAYED SITUATIONS VACANT AND WANTED: £6 per single col. inch
LINE advertisements (run-on); 7/. per line (approx. 7 words), minimum two lines.
Where an advertisement includes a box number (count as 2 words) there is an additional charge of $1 /-$.
SERIES DISCOUNT: 15% is allowed on orders for twelve monthly insertions provided contract
is placed in advance
BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, c/o
Wireless World, Dorset House, Stamf
No responsibility accepted for errors.

UNIVERSITY OF BIRMINGHAM
 University Television Service

Vacancy for a CHIEF TECHNICIAN or SENIOR TECHNICIAN. Candidates should have had wide experience in the electronics/ television fields and preferably practical experience of broadcast television equipment and procedures. Initial grading will depend on the age, experience and qualifications of the successful candidate.

Salary: Chief Technician $£ 1,385$ to $£ 1,578$, higher in special cases. Senior Technician $\mathrm{£} 1,056$ to $£ 1,311$. Plus shift allowance as appropriate.

Applications to Personnel Adviser, University of Birmingham, P.O. Box 363, Birmingham 15, quoting reference $113 / \mathrm{CT} / 693$.

CENTRAL MIDDLESEX GROUP HOSPITAL management committee

NEW POST-ULTRA-SONIC TECHNICIAN

This is the first post of its kind and will attract a man with a strongly developed interest in electronics who wishes to consider the application of ultra-sonics to medical examinations. The successful applicant will be required to work on his own initiative, be capable of handling patients and prove able to conduct ultra-sonic examinations single-handed on occasions. He will also be required to develop, under supervision, new electronic apparatus. The salary scale is $£ 916$ f1172 plus f90 pa London Weighting $\mathrm{£1,972}$, plus f 90 p.a. London Weighting. Possession of a car is essential and a car user allowance will be payable. Further details and application forms available from: Group Secretary, Central Middlesex Hospital, Park Royal, London, N.W. 10 .

2382

UNIVERSITY OF SOUTHAMPTON DEPARTMENT OF ELECTRONICS

An

EXPERIMENTAL OFFICER

experienced in digital techniques is required co take charge of the day-to-day running of a number of Research and Teaching Projects linked to a Honeywell 516 computer. Familiarity with a computer or similar system is essential. There is real opportunity to make a positive contribution to the scientific work. Ample career prospects exist. Applicants should be graduates or hold associate membership of a relevant professional insticurion Salary scale fl 240 E2,045 plus F.S.S.U.

Applications giving a brief curriculum vitae and the names of two referees should be sent to the Deputy Secretary, University of Southampton, Highfield. Southampton. SO9 SNH, quoting ref: W.W.

Advertisements accepted Advertisements accepted
up to SEPTEMBER 5 for the Opto SEPTEMBER 5 for the

$\rightarrow-\frac{n}{4} \rightarrow$
 GOVERNMENT OF ZAMBIA
 MINISTRY OF INFORMATION, BROADCASTING AND TOURISM

SENIOR MAINTENANCE ENGINEER

A.M. TRANSMITTERS RC 237/132/05

To design short and medium wave transmitting aerials, together with the associated matching networks for transmitters up to 120KW and to be responsible for the satisfactory operation and maintenance of all transmitters including Staff Supervision. Contract 30 to 36 months. Candidates age 25-55 years, minimum qualifications as follows: (1) City and Guilds Telecommunication Technician's Certificate or acceptable equivalent (preference will be given to candidates with a higher qualification). (2) Eight years experience on a broadcasting transmitter station including the installation and maintenance of short and medium wave transmitters of low. medium and high power. Additional experience of Television and F.M. transmitters installation and maintenance an advantage. Basic salary Kwachas 3,948 or 4,056 ($£ 2.303$ or $£ 2.366$ p.a.) plus inducement allowance $£ 433$ or $£ 452$ p.a. both subject to local income tax. In addition a tax free supplement payable direct by the British govemment of $£ 291$ p.a. Terminal gratuity of 25% on basic salary and inducement allowance.

3 TELEVISION ENGINEERS

(1) MAINTENANCE ENGINEER

TELEVISION STUDIOS RC 237/132/03
To maintain without supervision all types of technical equipment including telecine apparatus. cameras, etc., associated with a small T.V. Studio. Candidates, age 25-50 years, should have either (1) City and Guilds Telecommunication Technician's Certificate or an acceptable equivalent plus a minimum of 5 years' practical experience in T.V. Studios, or, (2) City and Guilds Intermediate Telecommunication Certificate or acceptable equivalent plus a minimum of 7 years' practical experience. In addition, experience in detailed operation and maintenance of helical scan video tape recorders an advantage.

(2) MAINTENANCE ENGINEER

SOUND STUDIOS RC 237/132/04
To install and maintain all types of studio equipment required for Master Control Rooms. Continuity and Recording Suites. Candidates age 25-50 years should have either (1) City and Guilds Telecommunications Technician's Certificate or acceptable equivalent plus a minimum of 5 years practical experience in broadcasting sound studios. or, (2) City and Guild Intermediate Telecommunication Certificate or acceptable equivalent plus a maximum of 7 years practical experience in broadcasting sound studios. In addition, experience in the detailed operation and maintenance of a wide range of sound. recording equipment an advantage.

(3) MAINTENANCE ENGINEER

A.M. TRANSMITTERS RC 237/132/02

To install and undertake the complete maintenance of sound broadcasting short and medium wave transmitters of low. medium and high... power. including line programme input equipment. Instruction of junior technicians in practical maintenance. Candidates age $25-50$ years should have either (1) City and Guilds Telecommunications Technician's Certificate or acceptable equivalent plus a minimum of 5 years' practical experience on a broadcasting A.M. transmitter station, or, (2) City and Guilds Intermediate Telecommunication Certificate or acceptable equivalent plus a minimum of 7 years' practical experience on a broadcasting A.M. transmitter station. In addition extra experience of T.V. and F.M. transmitter installation and maintenance an advantage.

MAINTENANCE ENGINEERING POSTS

One tour 30-36 months. Basic salary Kwachas 3,300 to 3.840 ($£ 1,925$ to $£ 2,240$ p.a.) plus inducement allowance of $£ 403$ to $£ 583$ p.a., both subject to local tax. In addition a tax free supplement payable direct by the British Government of $£ 268$ or $£ 291$ p.a. according to basic salary. Terminal gratuity 25% on basic salary and inducement allowance.

Candidates who should be citizens of the United Kingdom should apply quoting RC 237/132/02, 03, 04 or 05, giving full name, age, qualifications and experience to:-

The Appointments Officer,
Ministry of Overseas Development,
Room 301, Eland House, Stag Place, London, S.W.1.

cominuiter cugincering

NCR requires additional ELECTRONIC, ELECTRO MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.

Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.

Starting salary will be in the range of $£ 900 / £ 1.250$ per annum, plus bonus. Shift allowances are payable, after training, where applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.

Excellent holiday, pension and sick pay arrangements. Please write for Application Form to Assistant Personnel Officer
NCR, 1,000 North Circular Road,
London, NW2
quoting publication and month of issue.
Plan your future with

Bic-maremiliedranics

Electrical Testers Electrical Inspectors

Elliott Flight Automation, Rochester, Kent, have the following vacancies for experienced personnel.

ELECTRICAL TESTERS

Capable of carrying out functional tests on complete equipment and sub-assemblies, making adjustments or calibrating, reporting faults and diagnosing their causes.

ELECTRICAL INSPECTORS

Able to read drawings and circuit diagrams and be capable of inspecting airborne equipment to ministry specifications.

Interested persons should apply by completing the form below.

ELIIOTT FIGGTI AUTOMATION

To: P. Webb, Personnel Officer, Elliott Flight Automation, Airport Works, Rochester, Kent.
Name
Address

AIRWORK (OVERSEAS) LIMITED

We have a continuing requirement for experienced men who are leaving the Service or who have had the appropriate training in industry. In return for a good salary and annual bonus (both of which can qualify for income tax concessions) we ask our staff to work overseas for a year or so. The period spent abroad is broken by generous holidays with free air passages.

Accommodation, laundry and a very high standard of catering are supplied by the Company without charge. This enables many of our overseas staff to save a considerable sum during their period of service abroad.

Our immediate requirement includes the following vacancies :-

```
CHIEF TECHNICIAN AIRCRAFT
(Ref. CTA)
and
SECTION LEADER AIRFRAME/ENGINE
(Ref. SLA/E)
SECTION LEADER RADIO
(Ref. SL/R)
SECTION LEADER INSTRUMENT/
ELECTRICAL
(Ref. SL/IE)
TECHNICIAN RADIO/RADAR
(Ref. TR/R)
GENERAL FITTERS
(Ref. GF)
Ideal candidates will be ex-RAF Senior N.C.O. Aircraft Fitters with at least two years' experience on Lightning airframes and Avon Mk 300 series engines.
SECTION LEADER AIRFRAME/ENGINE
(Ref. SLA/E)
```

SECTION LEADER RADIO (Ref. SL/R)

SECTION LEADER INSTRUMENT/ ELECTRICAL
(Ref. SL/IE)
TECHNICIAN RADIO/RADAR
(Ref. TR/R)
GENERAL FITTERS
(Ref. GF)

Suitable for an ex-RAF Senior N.C.O. Electronic Fitter with at least two years' experience on Lightning aircraft.

We are looking for an ex-RAF Senior N.C.O. qualified in Instruments and Electrics, and experienced on Lightning aircraft.

Experience is required in the servicing and calibration of Airfield Aids, GCA equipment and TACAN.

Experience must include the servicing of airfield ground equipment, LOX equipment and in gas production methods.

We are also interested in applications from junior technicians in any of the above trades, including Armament Fitters who have experience in first and second line servicing on Lightning aircraft.

Please write, quoting where appropriate the reference number, to:
THE PERSONNEL MANAGER AIRWORK (OVERSEAS) LIMITED BURLINGTON ARCADE BOURNEMOUTH . HANTS
require
ASSISTANT ENGINEERS AND TECHNICAL ASSISTANTS
for the operation and maintenance of television equipment at their SOUTHAMPTON studios. The successful applicants would be required to live in the Southampton area and would be employed on shift duty.

The company are expanding and have occupied a new studio cenfre fully equipped for colour television.
An Ordinary National Certificate in Electrical Engineering or equivalent is a necessary qualification together with normal colour vision.

Rates of pay:
Assistant Enginears
A.C.T.T. Grade 'E'
£1,729 p.a.

Technical Assistants £1,415 p.a.

Canteen facilities and excellent pension
Widow's pension
Life assurance and accident insurance schemes are in operation.
Please apply, in writing, to the
Personnel Officer,
Southern Television Limited,
Northam, Southampton, S09 4Y0

Computlcket Limited

30 FINSBURY SQUARE, EC2
Member company of Intemational Publishing Corporation

CHAILENGING OPPORTUNITIES in

 CANADARadio and Electronic Technicians with a desire to see more of the world can find rich rewards by joining Canadian Marconi Company. Technicians are required for maintenance duties on Northern installations.
Successful applicants will enjoy minimum salaries of $\$ 7.600$ plus first-class prospects for rapid advancement and further substantial rises during the first year. There are also genuine opportunities for promotion to supervisory grades with salary ranges of over $\$ 13.500$ per annum.
Food and accommodation is provided free for the employee (no family accommodation). in addition to heavy duty clothing Assistance with air passage is available.
A chance of a lifetime is offered to accrue substantial savings.

CAN YOU QUALIFY?

Formal training and experience in maintenance of communications type equipment is required with special emphasis on:

Microwave
Tropospheric Scatter
Communications Systems
Telephone and Carrier (Multiplex)

If you have three or more years' experience in installation or maintenance on this type of equipment together with recognized qualifications, i.e. City and Guilds, Higher National or equivalent, the answer is Yes! Interviews will be held in London in the near future. Please send brief career details, quoting WW2988J, to Mr. D. S. Howell, Canadian Marconi Company, P.O. Box 540, Station "O", Montreal 379, Quebec, Canada.

CANADIAN MARCONI COMPANY

NEW INCREASED RATES OF PAY

 FOR
AIR FORCE DEPARTMENT

RADIO technicians

Starting pay according to age, up to $£ \mathbf{£ 1 8 9}$ p.a. (at age 25) rising to $£ 1,500$ p.a. with prospects of promotion.

Vacancies at RAF Sealand, Near Chester RAF Henlow, Bedfordshire and RAF Carlisle, Cumberland Interesting and vital work on RAF radar and radio equipment.

Minimum qualification, 3 years' training and practical experience in radio engineering.

5 day week-good holidays-help with further studies-opportunities for pensionable employment.

Write for further details to:-
MINISTRY OF DEFENCE
CE3h(Air) • SENTINEL HOUSE • SOUTHAMPTON ROW • LONDON W.C. 1

Applicants must be UK residents.

Cib-umemilertroiles

CIRCUIT DESIGN ENGINEERS FOR COLOUR TELEVISION

STUDIO EQUIPMENT

The Broadcasting Division of the Marconi Company is a major manufacturer and exporter of capital television and sound broadcasting equipment, over sixty per cent of its products going to 102 countries.
In order to maintain our position in a competitive market, where there is a continuing emphasis on new and improved designs, we wish to strengthen our existing teams with several engineers of graduate standard, having at least five years' experience, to engage in development work that would embrace cameras and ancillaries for a comprehensive studio system. Experience of television equipment is desirable, but engineers with expertise in an allied discipline, using similar circuit techniques would also be considered.

Member of GEC-Marconi Electronics Limited

It is desirable that candidates have a full knowledge of 'state of art' design practice to equip them for the programmes envisaged.
Salaries will be competitive, and commensurate with the abilities required for these attractive and rewarding positions.
The posts are based near Chelmsford in Essex. Assistance with relocation expenses will be given in appropriate cases.

Marconi

Applications giving a summary of experience, age, qualifications and salary, quoting reference WW/BRO/ 16 to Mr L. J. Suggitt, Personnel Officer, Central Personnel Services, The Marconi Company Limited, Marconi House, New Street, Chelmsford, Essex.

Govenmmemt ofi $\mathbb{Z} A M B I A$
 DEPARTMENT OF CIVIL AVIATION REQUIRES

RADIO ENGINEERS

Salary in scale up to $£ 2782$. Tour of 36 months offered Generous leave on full salary - 25% End-of-Tour gratuity

Commencing salary according to experience in scale Kwacha 2736 (£Stg. 1596) rising to Kwacha 3216 (£Stg. 1876) a year, plus an Inducement Allowance of $£$ Stg. 568 - $£$ Stg. 615. A Direct Payment of $£ \mathrm{Stg} .268-£ \operatorname{Stg}$. 29 I is also payable direct to an officer's U.K. bank account. Both gratuity and direct payment are normally TAX FREE. Free passages. Quarters at low rental. Children's education allowances. Generous leave on full salary or terminal payment in lieu. Pension scheme available under certain circumstances.

Candidates must be under 55 years of age and should possess 8 years relevant experience following :
(i) an apprenticeship of 5 years, or
(ii) possession of a Service Trade Certificate, or
(iii) possession of an A.W.O.A. or I.C.A.O. certificate of competency or its equivalent.
In addition, candidates must have a sound knowledge of the theoretical principles of, and experience in, the maintenance of at least FOUR of the following groups of Communications, CMA Navigational and Surveillance Systems.
I. Medium powered H.F. Transmitters and associated Receivers:
Frequency Shift Keying, S.S.B. and D.S.B. Equipment, Medium Frequency Non-Directional Radio Beacons.
2. Low and High powered V.H.F., A.M. Equipment.
3. V.H.F. Omni range : Automatic VHF Direction Finders. Distance Measuring Equipment.
4. Instrument Landing System.
5. Radar X and S Band Terminal and P.P.i. Talk Down Equipment.
6. Audio and Remote Control Equipment; Public Address Equipment ; Airport Magnetic Tape Recorders; Inter Office Communication; Underground Control Cables; Impulse and D.C. Switching Systems.
7. Teleprinter Telegraphy (torn tape) and associated Page Printers; Tape Recorders (autoheads); Printing Reperforators and Associated Switching Equipment.
Duties include the maintenance, overhaul and installation of ground terminal radio communication equipment and navigational aids at Airports and Flight Information Centre.

Possession of a valid driving licence will be an advantage
Apply to CROWN AGENTS, ' M ' Division, 4 Millbank, London, S.W.I, for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference No. M2Z/690315/WF.

Are you in electronics?

Is your work Design-Development-Commissioning or Maintenance?

- Do you feel your experience is too narrow and you have no opportunity to broaden it?
- Would you like to get experience of all the various activities involved in Designing and Producing Computer Equipment?
If your answers are 'yes' you can do this by working with the appropriate specialists.
ICL can offer you really challenging and rewarding opportunities in Quality Assurance. Our Engineers, who have a major role to play in ICL's future, are involved in a wide variety of activities on the whole range of Computer equipment. At the moment there are opportunities in the following areas:

Evaluating Prototype Equipment

We are looking for Engineers who can bring their experience and theoretical knowledge to bear on the evaluation and approval of Computer designs.

You will realise that brainpower and commonsense are required to prepare for evaluation and to interpret the results. In addition. discipline and accuracy are required to supervise the evaluations.

Successful applicants for these positions will probably hold an H.N.C. a degree or equivalent and have previous experience of evaluation or failure analysis techniques.

Component and Technique Evaluation

To assure the reliability of new Computers the Quality Assurance Laboratory is involved in an increasing number of tests and evaluations covering electronic components. circuit packages, assembly and connection techniques, stabilized power supplies. etc.
You may not have considered yourself to be a Reliability Engineer, but if you have HNC, a degree or an equivalent qualifica. tion. together with some experience with electronic equipment. you could find this challenging and rewarding work. Ref. 615

Studying and Developing quality control and inspection methods

We are looking for Quality Engineers who can contribute to the creation of new Quality Control methods and techniques in Test and Inspection. The methods when developed will be introduced for use on future Computer equipment.
The Engineers will also be collaborating with the Quality Control Engineers in the adaptation of existing techniques to New Products. If you have a sound Quality Control or Quality Assurance background, with perhaps ONC/HNC, then these positions will enable you to broaden your experience. Ref. 614

Handling Reliability Statistics

In ICL we place great importance in studying the way our Computers perform in customers offices. The information gained gives us extremely valuable data on the reliability of components and assembly techniques, which enable us to make future generation computers even more reliable.
The scope of this work is expanding and we currently have a vacancy for an Engineer-who will probably have HNC and some general knowledge of compuiers-to guide and supervise the analysis of data being received.

Ref. 616

Location: Stevenage and Letchworth. Herts-Less than an hour, by road or rail, from London. We will also give you every assistance to obtain accommodation.
Write : quoting the appropriate reference number to C. W. Squires. International Computers Limited, Cavendish Road. Stevenage. Herts.
Phone: Stevenage 3361 during normal working hours and ask for ext. 208.

TEST ENGINEER

required by small but expanding Company engaged on the design and manufacture of radio communication equipment.

Applicants s. כuld have experience in production testing of H.F. transmitters and/or receivers and be generally familiar with the test equipment and procedures used in this field. The position offers interesting work and attractive salary.

Please apply in writing to:
WESTMINSTER CHASSIS CO. LTD., Creek Road, East Molesey, Surrey.

2388

ELECTRONICS TECHNICIANS

SENIOR and JUNIOR TECHNICAL STAFF required for Electronics Undergraduate teaching laboratories. Interesting development and project work as well as running of laboratories. Day release facilities. Salaries: Senior Technician $\mathbb{K 1 , I S I -} \mathbb{C l}, 486$ p.a.; Technician $\mathbf{1 8 6 8 -} \mathbf{£ 1}, 252$ p.a.: Junior Technician £377- 7770 pia. depending upon age, experience and qualifications.
Further details and application forms from the Laboratory Superintendent, Department of Electronics, Chelsea College of Science and Technology, Manresa Road, London S.W. 3.

SENIOR

 LABORATORY TECHNICIAN
Abstract

A SENIOR ASSISTANT with a good understanding of electronics is needed to join a small team providing physics support to the Isotope Production Unit at Harwell. The team is mainly concerned with making accurate measurements of a wide variety of radiation sources and with the development and maintenance of the necessary measurement system. The post is tenable at Harwell.

QUALIFICATIONS \& EXPERIENCE:-

The minimum age for appointment is 27 and the minimum qualifications necessary are four ' O ' levels including English Language and Mathematics or a Science subject. Electronics experience is essential and experience in the measurement of radiation sources would be advantageous.
SALARY: $£ 1,350$ rising to $£ 1,755$
APPLY TO: The Personnel Officer

THE RADIOCHEMICAL CENTRE Amersham

THE LARGEST EXPORTERS OF VHF/UHF RADIO TELEPHONE EQUIPMENT INTHE WORLD RADIO SYSTEMS PLANNING

移 are you good—and gifted?Our sales of Radio Systems, both at home and abroad, are expanding at such a rate that we need additional SYSTEMS PLANNING and DESIGN ENGINEERS to meet future commitments.
The work involves detailed planning and, the subsequent engineering of VHF and UHF communications systems. Candidates should have some experience in switching logic as applied to signalling and audio routing as well as knowledge of VHF/UHF equipment and associated propagation problems. While academic qualifications are desirable we are more interested in finding men with the necessary design "flair".

Based in Cambridge, our Systems Engineers nonetheless have opportunities to travel, both in the U.K. and overseas. and represent the Company on Engineering matters at customer level.

Salaries are more than competitive, conditions conducive to creative work and career opportunities wide open to men with management talent.
If. you are interested please send brief details to: Mr. R. D. Crabtree, (Ref. WW)
Personnel Manager.
Pye Telecommunications Limited.
Newmarket Road
CAMBRIDGE CB5 8PD

Work as a RADIO TECHNICIAN attached to Scotland Yard

You'd be based at the Metropolitan Police Wireless Station, Thornton Heath. Your job would be to maintain the portable VHF 2 -way radios, tape recorders, radio transmitters and other electronic equipment, which the Metropolitan Police must use to do their work efficiently.

We require a technical qualification such as the City \& Guilds Intermediate (telecommunications) or equivalent.

Salary scale: $£ 1,082$ (age 21), rising by increases to $£ 1,447$. Promotion to Telecommunication Technical Officer will bring you more.

For full details of this worthwhile and unusual job, write to: Metropolitan Police, Room 733 (RT), New Scotland Yard, Broadway, London, S.W.1.

SHIFT INSTRUMENT CRAFTSMEN

required at
BRADWELL POWER STATION
This post offers excellent opportunity for mechanics to broaden their experience. Applicants with experience of industrial instruments, electronic or
telecommunications equipment will be considered.
Housing may be available to successful applicants.
Gross weekly rate $£ 26.5 .10$ for a 40 hour 5 day week on shift working, plus service increments after 2 and 3 years' service.
Good conditions and holidays, with sick pay and optional superannuation schemes: canteen and Sports and Social Club facilities.
Applications, giving age, details of experience, etc., should be sent to the Station Superintendent, Bradwell Power Station, Bradwell-on-Sea, Southminster, Essex quoting Vacancy No. 5504/69.

AGRICULTURAL RESEARCH COUNCIL

Unit of Invertebrate Chemical

 PhysiologyApplications are invited for the post, described below, in the newly formed Unit of Invertebrate Chemical Physiology under the Hon. Directorship of Professor A. W. Johnson, F.R.S., of the University of Sussex. The appointment would however be to the Sub-Unit which is under the direction of Dr. J. E. Treherne and is situated at the University of Cambridge.

Electronics Technician

(Assistant Experimental Officer) required to work with a group carrying out research on biophysics and electrophysiology in the University of Cambridge.
Qualifications. A.E.O., age 22 and over -pass degree, H.N.C. or equivalent: under 22, G.C.E. in 5 subjects including 2 at advanced level.

SALARY SCALE: Assistant Experimental Officer $£ 683$ (at age 18) to $£ 1,208$ (maximum starting salary at age 26 or over) to $£ 1,454$.

Applications including details of previous experience and names of two referees should be sent to:
Dr. J. E. Treherne,
A.R.C. Unit of Invertebrate

Chemistry and Physiology,
Department of Zoology,
Downing Street,
Cambridge.

Television Broadcasting

The Independent Television Authority Engineering Information Service is expanding its service to both the trade and the general public. To do this we now require the following staff who will be involved with the organisation of exhibitions and meetings concerned with Colour Television and assisting in the field survey work throughout the U.K.

INFORMATION OFFICER £1,485-£2,365

Candidates should have a good knowledge of Television theory plus wide experience of television broadcasting techniques. Public speaking and writing ability are also essential. (Ref. no.ww/6104/1198)
INFORMATION ASSISTANT £1,090-£1,790
Candidates should have good technical ability and experience of the radio and television trades, and be able to drive large exhibition vehicles.
(Ref. no. ww/6105/1199)
Starting salaries will be in the ranges indicated depending on experience and qualifications, plus fringe benefits. Both posts will be based in London but will involve travel to all parts of the country.
Please write or telephone for an Application Form, quoting the appropriate reference, to:

The Personnel Officer INDEPENDENT TELEVISION AUTHORITY 70 Brompton Road London SW3
01-584 7011 Ext. 482.

ELECTRONIC ENGINEERS

Service Engineers required for Offices, throughout the United Kingdom, of well-known Company manufacturing Electronic Desk Calculating Machines. Applicants should possess a sound knowledge of basic Electronics with experience in Electronics, Radar, Radio and T.V. or similar field. Position is permanent and pensionable. Comprehensive training on full pay will be given to successful applicants. Please send full details of experience to the Service Manager, Sumlock Comptometer Ltd., 102/108 Clerkenwell Road, London, E.C.1.

MINISTRY OF TRANSPORT

Electrical Engineering

Assistants

There are vacancies for Electrical Engineering Assistants (Grades 11 and III) in the Traffic Engineering Division of the Ministry of Transport, St. Christopher House, Southwark Street, London, S.E.I.

DUTIES To assist Professional Engineers engaged on the design and provision of signal and surveiltance systems $\begin{gathered}\text { expanding project offering challenging opportuni- }\end{gathered}$ ties in the fields of computing, data acquisition and transmission, and in optical, magnetic and radar detection systems.
QUALIFICATIONS AND EXPERIENCE It is essential that candidates should have some knowledge in Candidates should hold technical qualifications in appropriate subjects (Ordinary National tions in appropriate subjects (Ordinary National
Certificate or equivalent). Candidates for Grade II posts should preferably hold higher qualifications.
SALARY Grade II $£ 1.543$ on entry rising by four annual increments to a maximum of $£ 1,771$. 28 or over) to $£ 1,54\}$.

Good working conditions. Five-day week. Annual paid holiday allowance of 18 working addition to the 111 and 22 days for Grade 11 days).

Applicants aged 21 or over may apply. Application forms can be obtained from Establishment Stafing St St Christopher House, Southwark Transport, St. Christopher House, Southwark Sireet, S.E.I.

RADIO AND INSTRUMENTATION

 ENGINEERSRequired for WEST AFRICAN PROJECTS C.O.D.E.C.O.

62 STEPHYNS CHAMBERS - BANK COURT MARLOWES • MEMEL HEMPSTEAD - HERTS

Gif-Marcoulitatronics

ELECTRONIC TECHNICIANS

Marconi can offer you

Attractive salary. Annual salary reviews Good working conditions. 37-hour working week Non-tied housing in a new town in certain circumstances

At Basildon we have a number of vacancies for technical test staff to work on advanced aeronautical electronic systems, maintenance and building of test equipment and other major projects. These positions will be of particular interest to men with experience of transmitters, receivers, aerials, closed circuit T.V. or digital systems.

Marconi Bise

Please telephone or write for an application form to: Mr. R. McLachlan, Personnel Officer, The Personnel Dept, The Marconi Company Limited, Christopher Martin Road, Basildon, Essex. Phone : Basildon 22822.

Govermment of ZAMBIA

Department of Meteorology, Ministry of Power, Transport and Works require

On contract for one tour of 36 months in the first instance. Commencing salary according to experience in scale K wacha 2736 (£Stg. 1596) rising to Kwacha 3216 ($\mathcal{L S t g} .1876$) a year, plus an Inducement Allowance of $£$ Stg. 568-£Stg. 6i5. A Direct Payment of $£$ Stg. 268-£Stg. 291 is also payable direct to the officer's bank in the U.K. Gratuity 25% of total salary drawn. Both Gratuity and Direct Payment are normally TAX FREE. Free passages. Accommodation at moderate rental. Education allowances. Liberal leave on full salary or terminal payment in lieu. Contributory pension scheme available in certain circumstances.
Candidates, preferably between 22-35, must have served a five year apprenticeship in radio and radar engineering, or, possess a Service Trade Certificate or a City and Guilds Intermediate Certificate in Telecommunications or its equivalent.

Preference will be given to candidates with experience of H.F. R/T transmitters, radio facsimile and radio-sonde and S and X-band radar equipment.
Duties include the repair and maintenance of all radar sets and communications equipment for which he is responsible and the care and maintenance of appropriate spares and stores. The officer may be required to assist in installation work.

Apply to CROWN AGENTS, 'M' Division, 4 Millbank, London, S.W.I, for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference number $\mathrm{M}_{2} \mathrm{Z}$ / 690222/WF.

COMMISSIONING ENGINEERS

The Systems Installation Department at PYE TELECOMMUNICATIONS has vacancies for COMMISSIONING ENGINEERS whose duties will cover the checking of major VHF/UHF/microwave systems in the works and their installation and commissioning in the field. The work involves travel both within the U.K. and anywhere in the world.
Proven experience of large or medium sized systems is required: H.N.C. (or higher) is desirable but not essential provided appropriate technical standards can be shown.

We are also looking for ASSISTANT COMMISSIONING ENGINEERS to whom we would offer training. and the opportunities for development. For these posts experience in testing and fault finding on current VHF/UHF equipment and/or microwave systems is required together with O.N.C. or equivalent standard.

This is a chance to join a Company whose growth plans are truly exciting and where prospects of advancement are excellent. For the right people who show the potential to grow with us, we will pay top starting salaries and offer a full range of fringe benefits together with relocation expenses.

Apply giving brief details to:
Mr. R. D. Crabtree, Personnel Manager, Dept. WWCEZ

PYE TELECOMMUNICATIONS LTD.
Newmarket Road, CAMBRIDGE CB5 8PD.

2460

TEKTRONIX OSCILLOSCOPES

FIELD SALES ENGINEERS

Tektronix require experienced electronics engineers to operate in the Midlands and South East England areas.

The pasts demand technical competence to at least HNC standard; an extensive training period is envisaged for successful applicants to provide detailed knowledge of products and marketing policies. Age is not critical, but an engineer in the $25-35$ years age group is most likely to have the right combination of experience, ability and initiative.

A Salary scale commencing at $£ 1,600$ plus generous profit share ensures earnings of at least $£ 2,000$ p.a. after training, with considerable opportunities for advancement; a company car is provided and various other benefits such as non-contributory life assurance and superannuation schemes indicate that this is a progressive position having attractive possibilities.

Please apply to:-Keith Retallick (ref. 13). Sales Manager. Tektronix U.K. Ltd., P.O. Box 69, Harpenden, Herts.

There is scope, variety and responsibility as a RADIO TECHINICIAN in Air Traffic Control

Join the National Air Traffic Control Service, a Department of the Board of Trade, as a Radio Technician and you have the prospect of a steadily developing career in a demanding and ever-expanding field.
Entrance qualifications: you should be 19 or over, with practical experience in at least one of the main branches of telecommunications.

Once appointed and given familiarisation training, you will be doing varied and vital work on some of the world's most advanced equipment including computers, radar and data extraction, automatic landing systems and closed-circuit television. Work is based on Civil Airports such as Heathrow, Gatwick and Stansted, Air Traffic Control Centres, Radar Stations and other specialist establishments.

Starting salary is $£ 915$ (at 19) to $£ 1.189$ (at 25 or over): scale maximum $£ 1,372$ (higher rates at Heathrow), and some posts attract shift-duty payments. From January 1970 these rates will be increased to $£ 985, £ 1,295, £ 1,500$ respectively. Every opportunity and assistance is given to study for higher qualifications. The annual leave allowance is good and there is a non-contributory pension scheme for established staff.

NORWICH CITY COLLEGE

Department of Electrical Engineering

The Department of Electrical Engineering of the Norwich City College offers students who have studied Physics and Mathematics at Advanced level in the G.C.E. and passed in one subject, a modern sandwich course for the Higher National Diploma in Electrical and Electronic Engineering. Subjects studied include Computation, Statistics, Economics and Law, Electronics, Control, Telecommunications, Power and Machine. Well balanced and interesting industrial training with pay will be arranged as required. The course is approved for major grant awards by Local Authorities. Accommodation will be arranged by the College if desired.
Enquiries about the course starting in September 1969 should be made to:
E. JONES, b.Sc., Ph.D., C.Eng., M.I.e.e.

Head of Department of Electrical Engineering
Norwich City College
Ipswich Road
Norwich
Norfolk NOR 67D

I.E.R.E.

Because of expanding activities an additional
EDITORIAL ASSISTANT
is required to work on the technical publications of the Institution of Electronic and Radio Engineers. Sound knowledge of physics, electronics and mathematics and good command of English are necessary, plus eye for detail. Previous editorial experience will for useful but is not essential Salary 1200 upwards.
Write to: The Editor, Institution of, Electronic and Radio Engineers, 9 Bedford Square, London, W.C.I.

TEST GEAR SERVICES

of all types of electronic equipment 40c Queen Street, Hitchin, Herts.
Tel: Hitchin 52461

COURSES

UNIVERSITY OF BRADFORD

Post-experience course thyristor control and electrical SYSTEMS

22nd September to 3rd October, 1969
WEEK 1-Solid State Devices and thelr application to Thyristor Firing Circults.

This part of the course is designed to prepare those with minimal experience of solid state devices and their circult function for Week 2.
WEEK 2-The Thyristor-properties and applications. Applicants may register for the second week only or for both weeks. Course fee: 50 gns . Week 2-25 gns. Application forms and further details from the Registrar, University of Bradiord, Bradford 7.

TE
 CIVILSERVICE

RADIO AND ELECTRONIC ENGINEERS
 Board of Trade (Civil Aviation)

Qualified engineers required as Assistant Signals Officers in the field of Civil Aviation for the provision and installation of advanced electronic equipment-including the latest type of radar, telecommunications, navigational aids, etc.
Qualifications: Degree with 1st or 2nd class honours in Electrical Engineering or Physics, or have passed all examinations for M.I.E.E., A.M.I.E.R.E. or A.F.R.Ae.S.
Age: 23 and normally under 35 on 31 st December, 1969 (extension for H.M. Forces or Overseas Civil Service).
Starting Salary (Inner London) in the range £1212 to £2190, depending on qualifications and experience. Salary at present under review. Pensionable appointments. Good prospects of promotion.

Application Forms are obtainable by writing to the Civil Service Commission, Savile Row, London, WIX 2AA, or by telephoning 01-734 6010, ext. 229 (after 5.30 p.m. 01-734 6464 "Ansafone" service). Please quote S/85/ASO.

2395

BP TELECOMMUNICATIONS -LIBYA

British Petroleum has vacancies for a Telecommunications ENGINEER and TECHNICIAN to work on the installation, maintenance and supervision of a modern oil company communications network. This is a bachelor posting only, but with generous home leave allowance every 2 months. The equipment comprises, HF/SB radio telephone/teleprinter links with Autospec error correcting, marine coast station with MF/HF/VHF installations, small PABX telephone exchanges, etc.
Candidates aged under 40 should have a minimum of H.N.C. for the ENGINEER post and City and Guilds Telecommunications 4th year standard or equivalent for the TECHNICIAN'S post together with some years' practical experience. Please apply quoting reference R 10361 to P. J. Montanjees, External Recruitment, The British Petroleum Company Limited, Britannic House, Moor Lane, London, E.C.2.

REDIFFUSION TELEVISION RECEIVER DESIGN AND DEVELOPMENT

Engineering appointments are to be made in our new and well-equipped Engineering Laboratories conveniently situated South-West of London, near to Kingston-upon-Thames. These opportunities are created by the expansion of our activities and applications are invited from engineers, either experienced, or wishing to gain experience, in television receiver design and development.
These positions will be particularly attractive to engineers intent on taking on a high degree of responsibility and establishing themselves in key positions in the Company. For the more senior posts, H.N.C. or equivalent is required.
Salaries will recognise ability and experience and assistance with rehousing will be given. Applications should state brief details of experience, qualifications and age, and will be treated in strict confidence.

Mr. G. BERZINS
Rediffusion Vision Limited, Fullers Way South, Chessington, Surrey
Tel: 01-397-54II
2400

SITUATIONS VACANT

$\mathbf{A}^{\text {ircraft radio engineers and Mechanics with }}$ Ans: $\operatorname{spechfic}$ workshop experlence in one of the followins: VHF/HF, ILS/VOR. ADF or WEATHER RADAR. Pension Scheme. ${ }^{3}$ weeks holiday per year. Apply;
MANAONG DIRECTOR. AIr Transport (Charter) MANAGING Director, Air Transport (Chatien)
(C.I.) Ltd., WIllow Road. Colnbrook, Bucks. Tel.
Colinbrook 265t.

A
PULL-TTME technical experienced salesman reprevious expertence, salary writu giving details of age. previous experience, saliary required to- Radio. Ltd., 303 Edgware Rd.. London, w.
[67,

CLARKE \& Smith manufacturing co., ltD. Mave vacancles for Audlo Electronics and Smali Mechanism Design Engineers to work on language
laboratory systems, tape copying machines and eleclaboratory systems, tape copying machines and electronic equipment for education projects. Appicants (who should have qualifcations equivalent to H.N.C. standards) should apply to: Mr. T. H. Jutian, Clarke Wallington, Surrey. Tel.: 01-669 44i1. Melbourne
$E^{\text {LECTRONICS TECHNICIAN }}$ required for Language Ink Laboratory in West End. Must be capable of workance of the Language Laboratory Equipment. There is a pleasant working atmosphere and good salary. For interview phone 5804085

Maintenance engineer required by the cenMitral office of information for their Radio Dtviston. Essential qualifications are a thorough knowledge of mains and battery operated professional tape Nagra recorders) and anclllary studio equipment. ability to construct all kinds of audio amplifiers, equalisers and relay circuits, and experience in tault finding in electro-mechanical equipment. Knowledge of G.P.O. Mine plant would be an advantage. Salary Et,325 to $\mathrm{E}_{1}, 700$ p.a. Please send postcard for appllof Employment and Productivity. Professtonal and Executive Register, Atlantic House, Farringdon Street. London. E.C.1, closing date for completed application forms 29 August, 1969.
[2408
Marine radio engineer, fully conversant with M Yacht RT/DF, Auto Pllots, Radar, Sounders, etc., instalations and service. Wiling to live in or near
London. Saiary in region of $£ 1.350$ pa. Start immediondy. Saiary in region of $\& 1.330$ p.a. Start immedt W.1. 01-636 8177.

Medical research council. junior techon cell membranes in Division of Physlology and Pharmacology. Applicants should preferably have had experience in an electrophysiological laboratory and have a science degrec or tts equivalent; a suitably quallfied candidate with two " A " levels whil be considered. Initial salary according to age and experience make early application quoting our reterence WW9 to: The Personnel Ominer, National Institute For medica Research, M111 Hill, London, N.w.7. $[2407$

Qalified maintenance engineer and Trainee Qe Maintenance Engineers required for Recording Studio in W.11.-Telephone for interview 01-229 ${ }_{[2391}^{1229}$

TV retail business of the highest standing Quires PERSONAL ASSISTANT W. London, Owner reence. Good position and prospects for keen and capable ${ }_{2396}$ wireless world. details of expertence. Box w.w. -
$W^{\text {E }}$ have Vacancies for Fout Expertenced Test EngIneers in our Production Test DeDartment. Applicants are preferred who have Experience of Fault Finding and Testing of Moblle VHF and UHF Moblle Equipment. Excellent Opportunitles for promotion due Manaker, Pye Telecommunicatons Lita Personnel Works. Halg Road, Cambridge. Tel. Cambridge 51351. Extn. 327.

ARTICLES, FOR SALE

$\mathbf{B}^{\text {BC2 KITS }}$ and T.V. BERVICE SPARES. Sultable for Colour: Leading British Makers dual $405 / 625$ six position push button transistorised tuners $£ 5$ 5s. Od. 405/623 transistorised sound \& viston IF panels ${ }_{2} 21 \mathrm{ss}$. Od. incl. circults and data, P/P 4/6. Basic dual purpose $405 / 623$ transistorised iuners limel. circuit
 EKCO/FERRANTI 4 position push bution type incl valves, leads, knobs \& 5 los. Od., P / P P/6, SOBELL/ GEC UHF tuner kit incl. valves, right angle slow motion drive assy. leads, Attings, knobs, instructions
 button transistorised UHF tuners incl. leads \& knobs put chassis incl. elrcult $42 / 6, P / P \quad 4 / 6$. Ultra $625 \quad 1 F$ ampliner plus $405 / 625$ switch assy incl. elrcult $25 /$ P/P 4/6. New VHF tuners, Cyldon C $20 /$ /. Ekco 283/ 330 range $25 /-$, Pye CTM 13 ch . Incremental $25 /=, \mathbf{P} / \mathrm{P}$ 1/6. Many others available incl. large selection channel colls. Fireball tunerg, used good cond. 30/-, Push P/P 4/6. LOPTs, Scan colls, used good cond. 30/-. formers. Malns droppers etc., avalladle for most popular makes. TV signal boosters transistorised PYE/ Labsear Bi/B3, or UHF battery operated $75 / \ldots$. UHF mains operated 97/6, UBF masthead 85/- posi free. SUPPLIES, 64 GOLDERS MANOR DRIVE, MANOR N.W.11. CALLERS $589 \mathrm{~B}_{\mathrm{E}}$ HIOH ROAD, N. FINCHLEY, N. 12 (near Granville RD.). Tel, $01-445$ 9118. 160

REDIFFUSION

COLOUR TELEVISION FAULTFINDERS \& TESTERS

We have a number of vacancies in our Production Test Departments for experienced faultfinders and testers.
Knowledge of transistor circuitry and experience with Colour Receivers together with R.T.E.B. Final Certificate or equivalent qualifications required.
These will be staff appointments with all the expected benefits.
Applications to:
Works Manager, Rediffusion Vision Service Ltd., Fullers Way South, Chessington, Surrey (near Ace of Spades). Phone: Ol-397 54II

ERB-Wervenidiertionics

ELECTRONIC TECHNICIANS

are required to work on calibration, fault-finding and testing of telecommunications measuring instruments. The work is varied and will enable technicians with experience of r.f. circuits to broaden their knowledge of the latest techniques employed in the electronics and telecommunications industries by bringing them into contact with a wide range of the most advanced measuring instruments embracing all frequencies up to u.h.f.

Entrants may be graded as Testers, Test Technicians or Senior Test Technicians according to experience and qualifications. Our expanding production programme geared to our recognised export achievement provides security of employment combined with good prospects of advancement, not only within these grades, but into other technical and supervisory posts within the Company.

Salaries are attractive and conditions excellent. A Pension Scheme includes substantial life assurance cover provided by the Company. Assistance with removal may also be given in appropriate cases. Please apply in writing, giving brief details including age, experience and salary to

The Recruitment Manager,
Marconi Instruments Ltd.
Longacres, St. Albans, Herts.

Member of GEC-Marconi Electronics Limited
$\mathbf{B}_{\text {long }}^{\text {RAND NEW Mintature }} 15 / 16$ volts, $0.5,1,2,5,6,8,10,15,20$, B long wires, $15 / 16$ volts, $0.5,1,2,5,6,8,10,15,20$,
 per order.-T.
B_{2} UiLD IT in a DEWBOX quality plastics cablnet. Ringwood Rd. FERNDOWN, Dorset. S.A.E. for leafet Write now-Right now

COSSOR CC 40 Internatlonal Marine Band V.H.F. Ctransmitter recelvers. 10 channels fitted with 5 channels transmit and receive, $6-8-10-16-26$; Simplex and Duplex, 230 V . a.c. power supply, In working order (G.P.O. approved, 50 khz channelling). ${ }^{\text {E }} 125$ each. ${ }_{1,600} \mathrm{khz}-3,800 \mathrm{khz}$ transmitter recelvers suitable export or Irish Free State. 1 brand new $£ 250$. I shop.

For sale. Leak f.m. Trough Line Tuner. Perfect $\mathrm{F}_{\text {condtion. }}$ 15. Letchworth 4079 . [398
H^{OW} to Use Ex-Govt. Lenses and prisms. Booklets. ENGLISH, 469 RAYLEIGH RD., HUTTON, BRENT: WOOD, ESSEX.

INTEGRATED CIRCuITs at lowest price GE Type I PA234 1 Watt Audio Amplifier $17 / 6 \mathrm{~d}$. each inc. data, Newest OE Sllicon NPN planar transistor 2N5172. Epoxy for economy Passlvated for rellablility. 25 Volt 200 mW hie 100 min . $1 / 9 \mathrm{~d}$. each. C.W.O. P. \& P. P. $1 /-\mathrm{d}$. penhall, Warrington, Lancs. Mail Order Only. [399

Transformers. Outputs up to 1 KVA. Quotations Avallable ex Stock. LEDEX ROTARY SOLENOIDS. 12 V DC. 50 Avallable. UNIMAX MICRO SWITCHES. Prices on application. MAGNATROL (Farnborough) LIMITED, 28 Alexandra Road. Farnborough, Hants. Tel. 42590.

TV PICTURE TUBES. New or re-gunned. 2 -year 1 full replacement guarantee. RADIO \& TV VALVES, 6 months guarantee. Price 11 Ists on applicaandra Road, Farnborough, Hants. Tel. 42590 . ${ }_{\text {then }}$ [392

UFO DETECTOR CIRCUITS, data, 105 , (refundable). Paraphysical Laboratory (UFO Observatory).

WIRELESS WORLD 1950 to 1965, also 1943 to 1949 WW400 Wireless missing, any reasonable offer.-Box

BUSINESS OPPORTUNITIES

A London retail television and Electrical A Business of the highest standing requir es Executive Directior. Eventual complete take-over of business enThis is an exceptional opportunity to acquire a sound prontable business established over 40 years. Principals only should write in confidence, stating age and details of background and experience, indicating amoun of capital available. Box W.W. 2397 Wircless World.

TEST EQUIPMENT - SURPLUS ANDSECONDHAND

SIGNAL generators, oscllloscopes, output meters, wave voltmeters, frequency meters, multi-range meters, ville Old Hall, Ashille Rd., London, E.11. Ley. 4986.

RECEIVERS AND AMPLIFIERS -
 SURPLUS AND SECONOHAND

$H^{R O}$ Rxss, etc., AR88, CR100, BRT400, G209, S640, Ashylle. Old. In stock.-R. T. \& I. Electronics, Litd. 4986.

NEW GRAM AND SOUND EQUIPMENT

CONSULT first our 76 -page thustrated equipment catalogue on HI-FI (6/6), Advisory service, generous terms to members. Membership $7 / 6$ p.a. - Audio Supply Association,
$01-995$
1661.
$\mathbf{G}^{\text {LASGOW.-Recorders bought, sold, exchanged; }}$ versa.-Victor Morris, 343 Argyle St., Glasgow, C. 2

TAPE RECORDING ETC

F quallty, durablity matter, consult Britaln's oidest Itransfer service. Quality records from your suitable tapts. (Excellent tax-free fund ralsers for schools, chutches.) Modern studio faclitiles with Steinway Grand. Bound News, 18 Blenheim Road, London. W.4. 01 -995 1661 .

Tape to disc transfer, using latest feedback dise Cutters; EPs from $22 /-$; 8.a.e. leaflet.-Deroy

communications technicians Air Force Department

The Air Force Department now has two levels of entry for men as Telecommunication Technical Officers. Both involve work on the installation, calibration, repair, maintenance and inspection of airborne and ground radio and radar equipments at R.A.F. stations in the United Kingdom. Opportunities for overseas service.

Age: At least 25 for Grade II. At least 21 for Grade III.

Starting salary: (National) Grade II $£ 1,601$ which rises with yearly increases to $£ 1,853$ ($£ 1,975$ after 1.1.70.)
Grade III. According to age, e.g. $£ 1,086$ at $21, £ 1,178$ at $23, £ 1,418$ at 28 or over. Rises to $£ 1,601$ ($£ 1,735$ after 1.1.70.)
Promotion can take you to posts carrying at least $£ 2,825$.
Working conditions: 5 day working week. Over 3 weeks annual holiday from the start. This rises to 6 weeks. Non-contributory pension.

Qualifications: City \& Guilds Technical Intermediate (No. 49) plus Certificates in Mathematics B, Telecommunications Principles B and Radar and Line Transmission B, or O.N.C. or equivalent in appropriate subjects.* Grade // candidates must also have had experience of supervising staff engaged on radio, radar, or other electronic work, or other experience fitting them for the higher grade.
*Fuller details of acceptable qualifications supplied on request.
Write to: Civil Service Commission, Savile Row, London W1X 2AA; or telephone 01-734 6010, Ext. 229 (after 5.30 p.m. 01-734 6464 "Ansafone" service) for application form, quoting S/7225/B. Closing date 9th September 1969.

Communications D \& D

Intensive fundamental research programmes are now almost complete and as the emphasis shifts to design and development we wish to make contact with q Jalified engineers to translate the results into practical hardware.
The application of microelectronics techniques at Plessey is only one reason for exploring the job potential with us.
If you are qualified and interested in communication systems send brief details, in confidence quoting reference $1 L F / 837 / E$, to the Manager, Technical Staff Recruitment, The Plessey Company Limited, Ilford, Essex.
RADIO SYSTEMS DIVISION

Whany

RADIO \& TELEVISION SERVICING RADAR THEORY \& MAINTENANCE

This private College provides efficient theoretical and practical training in the above subiects. One-year day courses are available for beginners and shortened courses for men who have had previous training.
Write for details to: The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.5. Tcl,: O1-373 8721.
VALVES
Valve cartons by return at keen prices; send $1 /-$ for all samples and list.-J. \& A. Boxmakers. 75 a Godwin 8t., Bradiord, 1

FOR HIRE

FOR hire CCTV equipment including cameras, -Detalls from Zoom Television, Amersham 5001
[75

VALVES WANTED

We buy new valves, transistors and clean new comquotation by return.-Walton's Wuantitles. all details, worcester St., Wolverhampton.

SERVICE \& REPAIRS

ELECTRONICS: Freelance Technical Author avallable, W.C. 1 .

YOU MAKE IT, let us install and maintain it. South of Ireland.-Box No. WW395 Wireless World

CAPACITY AVAILABLE

A IRTRONICS, Lid., for coll winding, assembly and A wiring of electronlc equipment. transistorised sub unit sheet metal work.-3a Walerand Rd, Loadon,

CLECTRONIC and Electrical Manufacturo and East Missemblands Prototypes and short production runs. Last Midiands Instrument Co. Lid., Summergangs

METALWORE, all types cabtnets, chassis, racks, for smail muling and capstan work up to 1 ava bar. PHILPOTT's METALWORKS, Ltd., Chapman St., Loughborough.

Plastic Injection Moulding Speciallists in short runs Pup to 1 oz. Low tooling costs.- \mathbf{K}.T. Plastics Ltd., Dept.
$01-845$
2824. ${ }^{23}$ Hunters Hill South Ruislip. Middx.

ENGINEER Telemetry \& Electronic Systems

Regard yourself as something of an expert in telemetry systems and solid state logic circuits? You do? Goodthen you're bound to be interested in the current expansion of our already extensive network of UHF Transmitters to provide nation-wide colour television.
You would be involved in the preparation of specifications for automatic control equipment and remote control and supervisory equipment for use at unattended transmitting stations. PLUS appraising tenders, progressing contracts and carrying out acceptance tests and commissioning of equipment.
Sounds good? It is good I You'll get administrative and practical engineering experience in the forefront of this field. But we need the right man.
No messing about with interviews just yet. Have a chat with one of our Engineers first: make a reverse charge call to our Knightsbridge, London Headquarters (where you would be based when not travelling)-telephone 01-584 7011 and ask for extension 245.
Alternatively write for an application form quoting ref. WW/1135/6313, to:

The Personnel Officer. INDEPENDENT TELEVISION AUTHORITY. 70 Brompton Road London S.W. 3.

FOURTH ASSISTANT ENGINEER

(Telecommunications)

There is a vacancy in the South Lancashire Area for a Fourth Assistant Engineer to work in the pelecommunications field. A large supervisory control and indication system is being installed and the engineer appointed will be required to assist in the installation, commissioning and maintenance of this equipment. perhaps in the first instance in other adjacent Areas of the Board where similar systems are being installed. Ultimately the engineer appointed will have opportunities to work on private automatic telephones, V.H.F. mobile radio, and other telecommunication equipment within the Area
Applicants will be expected in the first place to have a good basic knowledge and background of electronics and

EIECTRONIC SERVICE ENGINEERS

The Installation and Maintenance Division of E.M.I. Electronics urgently requires engineers with drive and real ability to work when necessary on their own initiative and assist with the divisions rapidly expanding work programme.
The successful candidates will be engaged to work in one of the following areas:-

* Servicing and calibration of a wide range of electrical instruments
* Installation and Maintenance of automation, numerical, digital and multiplex systems.
Applicants should have had several years' experience of the maintenance of electronic equipment. and these vacancies would appeal to engineers with industrial experience or a services background. Some travelling will be necessary for certain positions. also other telecommunication equipment. They should

Excellent commencing salaries and staff benefits. have obtained a technical education to City \& Guilds Final Certificate, or to ONC or HNC level in Electrical Engineering.
Salary within the range $£ 1.345 / £ 1.715$ per annum plus

Applications
giving concise career and personal details to:-
M. L. WATERS - GROUP PERSONNEL DEPT
E.M.I. LTD BLYTH ROAD HAYES MIDDX

WW/8/69

- TECHNICAL TRAINING

B
$B^{\text {ECOME }}$ "Technically Quallded" in your spare time B guaranteed diploma and exam. home-study courses In radio. ©uids. eecc., highly informative 120 -page Clty
Guide-free-Chambers
College (Dept. Holborm, London, E.C.1.
CITY \&z OUILDS (Electrical, etc.), on "Satisfaction Cor Refund of Fee" terms. Thousands of passes. Frical engineering, electrontcs, radio, T.V., automation etc.: send for 132 -page handbook-free.-B.I.E.T (Dept. 152K), Addermaston Court. Aldermaston, Berks

R ADIO omcers see the world. Sea-golng and shore Rappointments. Trainee vacancies in Sept, and Jan. Grants avalable. Wireless College, Colwyn Bay. [80
TECHNICAL TRAINING IN Rado, TV and Electronics 1 through world-famous ICS, For detalls of proven home-study courses write: ICS, Dept. 443, Intertext

TV and radio A.M.I.E.R.E., City \& Gullds, R.T.E.B. 1 certs., etc., on satisfaction or refund of fee terms; thousands of passes; for full detalis of exams and home training courses (including practical equipment) in all branches of radio. TV, electronics, etc., write for $132-$ page handbook-free; please state subject.-British Aldermaston Court, Aldermaston, Berks.

TUITION

CNGINEERS,-A Technical Certlicate or quallficaCion will bring you security and much better pay. Elem. and adv. private postal courses for C.Eng. G.M.I.E.R.E.A. A.M.S.E. (Mech. \& Elec.), City Diploma A.M.I.M.I.: A.I.O.B.1 and O.C.E. Exams. Mech., Elec., Auto, Electronics, Radio. Computers Mech.; Elec., Auto, Electronics, Radio, Computers,
Draurhts, Bullding, etc.-For full detalls wirte for Draughts, Bullding, etc.-For full detalls wirte for Ing Technology (Dept. 151K). Aldermaston Court Aldermaston. Berks.
KINGSTON-UPON-HULL Education Committee 1. College of Technology. Principal: E. Jones, M.Sc. F.R.I.C. Radar Maintenance certificate.-Information from College of Technology, Queen's Gardens, Kingston-upon-
[18 Hull.

Central Electricity Generating Board
South Western Region
Fawley Power Station

INSTRUMENT MECHANICS

Applications are invited for the above posts in the Instrument Maintenance Department at the new 2,000 megawatt oil-fired power station under construction at Fawley, near Southampton, Hants.

Applicants should be able to demonstrate an aptitude for the maintenance of either electromechanical equipment such as teleprinters and paper tape devices or industrial electronic equipment including closed circuit television.

To complete the necessary training, the successful applicants will be required to attend courses both on site and at manufacturers' training establishments. They will then carry out commlssioning and malntenance of this equipment on a work stagger rota together with other mechanics to cover seven days (40 hours) per week.
N.J.I.C. conditions of service apply; the salary, computed on a weekly basis, will be E 22 ls . 6 d . Service increments of 7 s . 8 d . per week are payable after the completion of two and three years' satisfactory service. Conditions of service are good including sickness, holiday and superannuation schemes.

Financial asslstance towards house purchase may be available in appropriate cases.
Applications in writing must state age, education and experience and should be forwarded to the Station Superintendent, Fawley Power Station, Fawley, Southampton, Hants. (quoting Vacancy Notice No. 563/69), as soon as posslble.

DAMAGED METER?

Have it repaired by Glaser
Rednce overheads by having your damaged Electrical Measuring Instruments repaired by L. Glaser \& Co. Ltd. We specialise in the repair of all types and makes of
INSTRUMENT Voltmeters, Ammeters, MicroIHSTRUMENT ammeters, Multirange Test ammeters, Multirange Test
Meters, Electrical Thermometers, Recording Instruments, Leak Detectors, Temp. Controllers, all types Bridges \& Insulation
Testers, etc.
As contractors to various Government Departments the Industry. For prompt estimate and speedy delivery send defective instruments by reeistered post or write to Dept. W.W.:-

GLASER INSTRUMENTS 1-3 Berry Street, London, E.C. 1 Tel.: 01-253 5481-2

Grampian

for good
SOUND EQUIPMENT
GRAMPIAN REPROOUCERS LTD Hanworth Trading Estate, Feltham, Middlesex

VACUUM

OVENS, PUMPS, PLANT, GAUGES, FURNACES, ETC., GENERAL SCIENTIFIC EQUIPMENT EX-STOCK, RECORDERS, PYROMETERS, OVENS, R. F. heaters. free catalogue.
V. N. BARRETT \& CO. LTD. I MAYO ROAD, CROYDON, CRO 2QP. 01-684 9917-8-9

WANTED

Redundant or Surplus stocks of Transformer Electronic Components C. cores, Copper wire, etc.), P.V.C. Wires and Cables, Bakelite sheet, etc., etc. Good prices paid J. BLACK

44 Green Lane, Hendon, N.W. Tel. 01-203 1855 and 3033

PRINTED CIRCUITS
Small quantities are not expensive, we have full artwork and assembly facilities.

Let us quote you for any quantity.
OFRECT Ebecrfonic syitus lop Hookstone Park, Harrogate Harrogate 86258 Telex 57962

This useful handbook gives detailed information and circuit diagrams for British and American Government surplus Receivers. Transmitters and Test equipment. etc.. also contained are some suggested modification details and improvements for the equipment. Incorporated in this revised edition is a surplus/commercial cross reference valve and transistor guide. This book is invaluable to Radio Clubs. Universities and Laboratories. Latest edítion priced at 45/- per volume plus 5/- p \& p. Only obtainable from us. Individual circuits and information available on request and S.A.E.

GILTEXT LTD.,
24, Stansfield Chambers, St. George Street, LEEDS 1.

ELECTRONICS COMPONENTS

Guest-Resistors, Capacitors, etc Newmarket-Transistors, Amplifiers, etc., in stock, from official distributors.
G.S.P.K. (Electronics) Limited Hookstone Park, Harrogate. Harrogate 86258

R \& R RADIO
51 Burnley Road, Rawtenstall Rossendale, Lancs Tel.: Rossendale 3152
VALVES BOXED, TESTED \& GUARANTEED

EBF80	3/-	PCC84	3/-	PY82	3/-
EBF89	3/6	PCF80	3/-	U191	$4 / 6$
ECC82	3/-	PCF82	3/6	U301	$4 / 6$
ECL80	3/-	PCL82	4/-	6 F23	5/-
EF80	1/6	PCL83	4/-	IOP14	3/-
EF85	3/-	PCL84	5/-	20P5	3/-
EFI83	3/6	PL36	5/-	30F5	$2 / 6$
EFI84	3/6	PL81	4/-	30 LI 15	5/-
EY86	4/-	PL83	4/-	30 P 12	$4 / 6$
EL41	5/-	PY33	5/-	30 C 15	5\%
EZ40	4/6	PY81	$3 / 6$	30 PL 13	5/6
EBC41	4/6	PY800	3/6	30 PL 14	5/6
PO	10	$\begin{aligned} & \text { ALVE } 9 \\ & \mathbf{S} \text { SIX } \mathrm{P} \end{aligned}$	STW	six	

FANTASTIC

 SPEAKER BARGAINwatts speakas with buils.in heavy cone. 10 15 ohms. 12 -month guarantee
2 for 66/. (P. \& 1, 6/9) 35/-
NEW RELEASE HI-FI COLUMN SPEAKER CABINET
 grey cloth font mensules $24^{\prime \prime} \times 13^{\prime \prime} \times 10^{-}$with iweeter nole above (Cart. 10.) With 12 speaker $69 / 6$ ELECTRAMA 1 George St. Hailsham. Sussex

GEARED MOTORS

Microswitches, Timers, Meters, Potentiometers, Capacitors, all new 6d. stamp for catalogue.
F. HOLFORD G CO.

6 IMPERIAL SQUARE, CHELTENHAM

FOR YOUR . . .

SYNCHRO \& SERVO

 REQUIREMENTS!SERVO \& ELECTRONIC SALES LTD.
43 HIGHST.,ORPINGTON,KENT. Tel:31066,33976
Also at CROYDON. Tel: 01.6881512
and LYDD, KENT. TeI: LYDD 252

NEONS. PRINTED CIRCUIT BOARDS. INSTRUMENT CASES. MOULDED REED SWITCHES and PIDAM logic ex-stock. For details see August and October 1969 issues, advertisements. For further details use reader issues, advertisements. For further details use reader on mailing list will receive these automatically. WEST HYDE DEVELOPMENTS LIMITED, 30 HIGH STREET, NORTHWOOD, MIDDX
 Telephone: Northwood 24941

WE PURCHASE

COMPUTERS TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGS AND SOCKETS, MOTORS, TRANSISTORS, RESISTORS, CAPACITORS, POTENTIO. METERS, RELAYS TRANSFORMERS, ETC. ELECTRONIC BROKERS LTD. 49 pancras Road, London, N.W.1. 01-837 7781

NEW LOW COST
 LENS

Oscilloscope Camera-Type p

Setting a new standard combining lower purchase and operating costs with superior performance, the Telford Type P meets requirements where smaller or standard oscilloscopes are employed.
SIMPLE OPERATION-ATTRACTIVE APPEARANCE -LIGHTWEIGHT-ECONOMY SIZE POLAROID FILM TYPE 20

High-quality Dallmeyer F4.5 2.4" $(61 \mathrm{~mm}$) lens provides a reproduction of trace and graticule with good linearity. The object/image ratio is $1: 0.7$ (nom).

SHUTTER SPEEDS

Three modes of operation are provided. including fixed exposure $1 / 25 \mathrm{sec}$ (nom.). time and brief.

ADAPTERS
Comprehensive range of adapters are available to fit most popular oscilloscopes.

4 Wadsworth Road, Greenford, Middlesex. Telephone: 01-998 1011 the Davall photo optical company of the bentima group

TECHNICAL TRAINING by IC S IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the IC S trained man. Let I C S train YOU for a well-paid post in this expanding field.
I C S courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training, so essential to success. Diploma courses in Radio/ TV Engineering and Servicing. Electronics, Computers, etc. Expert coaching for: - C. \& G.TELECOMMUNICATION TECHNICIANS' CERTS.

- C. \& G. ELECTRONIC SERVICING.
- R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEURS' EXAMINATION.
* P.M.G. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5-valve receiver, transistor portable, signal generator, multi-meter and valve volt meter-all under expert guidance.
POST THIS COUPON TODAY and find out how I C S can help YOU in your career. Full details of IC S courses in Radio. Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

Schools

A WHOLE WORLD OF KNOWLEDGE AWAITS YOU!

WW-149 FOR FURTHER DETAILS

OVER 3 MILLION SILICON ALLOY \& GERM. TRANSISTORS AVAILABLE FOR IMMEDIATE DELIVERY. MANUFACTURERS END OF PRODUCTION SURPLUS.

I/- TESTED TRANSISTORS 1/each ONEPRICEONLYPNP.NPN. each				
	2N697	${ }_{2} \mathrm{Ni}_{1613}$	${ }_{2} \mathrm{~N} 3707$	2 N
	2 N 706	2 N 17		
	2N708 2N929	2N2904	25102 25103	2N2906
	$2 \mathrm{N930}$	2N2924	25104	
Un¢ M	Manurac	ver-run		
GERM. PNP AND NPN TRANSISTORS TESTED, UNMARKED SIM. TO:-1/6 EACH				
$\begin{array}{llllll}\text { AC125 } & \text { ACY22 } & \text { ACY36 } \\ \text { ACl26 } & \text { ACY27 } & \text { NKT141 } & \text { NKT6T } & \text { NKT13 } & \text { OC81 } \\ \text { OCB2 }\end{array}$				
${ }^{\text {ACl }} 127$ ACY28 ${ }^{\text {ACl }}$				
ACY19				
ACY21	${ }_{\text {ACY }}$	NKT271	\bigcirc	2 G 374

TRANSISTOR EQVT. BOOK 2.500 cross references of transistors-Britlsh, European, American and Japanese. A must for every eransistor user Exclusively disterlbuted by DIOTRAN SALES. 15/- EACH Post and Packing costs are continually rising. Please add $1 /$ towards same. CASH WITH ORDER PLEASE. OUWARs same. CASTATIONS FOR ANY DEVICE LISTED BY RETURN.

CAPACITY 15 pf to $111 \mu \mathrm{~F}$
RESISTANCE 0.1Ω to $100 \mathrm{~K} \Omega$
INDUCTANCE 1 mH to 10 H
VOLTAGE DIVIDERS and
WHEATSTONE BRIDGES
LIONMOUNT \& CO. LTD.
BELLEVUE ROAD, NEW SOUTHGATE, LONDON, N.II, ENGLAND Tel: Enterprise 7047

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLES screened and unscreened from 2 way to 25 way.
Large selection of stranded single p.v.c. covered Wire 7/0048, 7/0076, 14/0076 etc. P.T.F.E. covered Wire, and Silicon rubber covered wire, etc

J. Black

44 GREEN LANE, HENDON, N.W. 4 Tel: 01-203 1855. 01-203 3033

GODLEYS

SHUDEHILL, MANCHESTER 4
Telephone: BLAckfriars 9432
Agents for Ampex, Akai, Ferrograph, Tandberg, Bryan, Brenell, B. \& O, Vortexlon, Truvox, Sony, Leak, Quad, Armstrong, Clarke \& Smith, Lowther, Fisher, Goodmans, Wharfedale, Garrard, Goldring, Dual, Decca, Record Housing, Fitrobe, G.K.D., etc.
Any combination of leading amplifiers and speakers demonstrated without the slightest obligation

WE BUY

any type of radio, television, and electronic equipment, components, meters, plugs and sockets, valves and transistors, cables, electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields \& Mayco Disposals, 21 Lodge Lane, London, N. 12

RING 4452713
4450749
9587624
 Deaigned for Ei.Fi reproduction of
records. A.C. majna operation. reconds. A.C. madna operation.
Ready built on plated beavy gaige metal chassio. qize 7 in. $w . x$. x in.
d. x tin. h. Incopportes ECCB3. ELbsi, EzB0 Falven Heary duty, double wound maing tramslormer
and out put transformer matched tor
3 ohm speaker. Beparate volume mange tone controls giving bans and treble ilf and cut. Negative Tange tone controls giving bans ahd treble lift and cut. Negative leadn extended for remote mounung of controls. The Ha34 has
been specially decigned for us and our quantity order enables us been specially designed for us and our quantity order enables us
to offer them complete with knolso. valves. otc., wired and teated for only e4/15/=. P. \& P. 6/.

10/14 WATT HI-FI AMPLIFIER KIT A ot yluhly finlabed mon-
sural amplifer sural amplifer with an
output of 14 watte frotn ${ }_{2}$ Outpul of 14 walts frotn super reproduction of both music sad andeect.
with mealigible hum. With Dealigible hum.
Beparate inpute for miko and grant allow records
and snnouncements to and announcements to
follow each other. Pull ohlow each other. Pully
shrouded section wound ontput tranmormer to match $3-150$ mpeaker
 atne controle and eeparste bass and treble controle of giving good Iift and cut. Valve line-up: 2 ELSA4. EOCB3, EFPB and EZ80 rectifer. Bimple inatruction booklet $1 / 6$ (Free with
parts). All parts iold separstels. ONLY $£ 7 / 8 / 6$. P. \& P. B/6. Ahoo avallable redy built and teated complete.
input mocketa. $\mathrm{E} / 5 / \mathrm{P}$. \& P. $8 / \mathrm{B}_{\text {. }}$.
HARVERSON SURPLUS CO. LTD.
170 HIGH STREET, MERTON, LONDON, S.W. 19 Telephone: 01.540 3985 S.A.E. all enquiries.

Open all day Saturday (Wednesday 1 p.m.) PLEASE NOTE: P. \& P. CHARGES QUOTED APPLY TO U.K.
OMLI. P. o P. ON OVERSEAS ORDERS CEARGED EXTRA.

SURPLUS HANDBOOKS

 19 net Circuit and Notes1155 net Clrcuit and Notes G.R.O. Technical Instructions 38 nee Technibal Instructions ${ }^{68} 8$ get Work ting Instructions A8 sel Technical Inasuuction
BC. 221 W.2vemetrer Clana D Tech. 1nit. 18 eet Circult and Notes
BC. 1000 (31 eet) Clreut BC. 1000 (31 ert) Curcen and Noted
CR. 100 (B2 28 Clrcuit and Notes CR. 1007 B. 28 Circuil and Not
R. AR. 88 D Inmernction Man ${ }_{6} 2$ net Chrcult and Notes
 $\mathrm{BC}, 34 \mathrm{SJ}, \mathrm{BC}, 348$ (Е. M. P.). BC. $624, \mathrm{CR} .300$, BC. 312 . BC. 342 5 2. ${ }^{2}$ ent sender sind heceiver circuith $7 / 8$ potit free.
 S.A.E. with all en quirice pleane.
Poatabe ratea apply to U.K. only.

INSTRUCTIONAL HANDBOOK SUPPLIES Dept. W.W. Talbot House, 28 Talbot Gardens, LEEDS 8

WW-151 FOR FURTHER DETALLS

THE ONLY
COMPREHENSIVE
RANGE OF RECORD MAINTENANCE EQUIPMENT IN THE WORLD!

Send P.O. $2 / 6$ for 48 page booklet providing all necessary information on Record Care.

CECIL E. WATTS LIMITED
Darby House
Sunbury-on-Thames, Middx

BAILEY 30W AMPLIFIER

All parts are now available for the 60 -volt single supply rail version of this unit. We have also designed mounting. This has the component edge connector and is roller tinned for ease of assembly. Size is also smaller at $4 \frac{1}{i n}$. by 2 zin . Price in SRBP material II/6d I2 Fibreglass 14/6d. Orlginal Radford design. 5RB locations marked.

BAILEY 20W AMPLIFIER
All parts in stock for this Amplifier including specially designed Printed Circuit Boards for preamp and power amp. Mains Transformer for mono or stereo primary for use with CZ6 Thermistor, 35/6d., post 5/-.
Trifiar wound Driver Transformer, 22/6d., post $1 /$. Miniature Choke for treble filter, $10 / 6 \mathrm{~d}$., post 6 d P.C. Board Pre-Amp 15/-, post 9d. Power Amp. 12/6d., Reprint of "Wireless World " articles, S/6d. post free

DINSDALE IOW AMPLIFIER

All parts still available for this design including our new power amp. P.C. Board with power eransistors and heat sinks mounted directly to P.C. All parts for stereo cost approximately $\mathbf{6 2 4}$.

LINSLEY HOOD CLASS A AMPLIFIER

Parts now available for this unit including special matt black anodis.

PLEASE SEND S.A.E. FOR ALL LISTS

HART ELECTRONICS,

321 Great Western St., Manchester 14
The firm for "quality".

Personal callers welcome, but please note we are closed all day Saturday.

EXCLUSIVE OFFER

AMPEX
modit pr:100 A DATA TAPE RECORDER-REPRODUCERS

COMPLETELY FITTED IN 6 Ht . TOTALLY ENCLOSED CABINETS with recordiag and reprodueing Amplitiors, $\hat{C}_{15^{\circ}, 30^{\circ}}$ and 60° per secoud. LINTERCEANGEABLE

* \mathfrak{r}° TAPE 5 TRACKS.
 \star DCEF
SYSTEMS. $\star D C$ to 30,000 ojcles. * UP TO 10,000 Pule Rate. \star DRIFT FREE WITHIN 1% 。 \star SERVO CONTROL to 0.75 *track timmina $5 \mu / \mathrm{l}$. \star Accuracy 10° per week. \&ELECTRONICS IN
MODULES FRONT ACCESS
 to all parts.
\star POWER INPUT 105, 1250 48 to 500 a/o.
\star Made tn U.S.A. these fine unite coat the American Governmeat 89,000 each betore devaluation.

Pull detalls on application.

40-page lith of overFREE- available-keepone by jou.

$\star 10$ teet hifr triangular Lattice Mast Seetions
 \star Univerial Demultiplezers........................ $£ 1250$ -LC. Tentera with plug boards................ £85 0 \star R.C.A. OP-8 Brondeant Amplifiers. * MeElroy Tape Pullen $\begin{array}{ll}\text { £8 } & 10 \\ \text { £ } 4 & 10\end{array}$ \star Tinsley Phase-splitios Poteatiometers tE.M.1. WM-3 Mensuring Oscilloncopes £75 0 \star Marcoad TP-1055 Noise Measuring Sets. 83210 * 54 inch dia. Meteorolorical Belloons. $\varepsilon 1500$ * Mierometar Wavemeters General Electrio 110 900/1530 and 1530/4000 Wi/cl.......act £22 0 * 455 kives Precision Band Pan Fiters......... 2310 * 7 tralk 1^{\prime} tape head assembilian with zollera. . £30 0 * ${ }^{\text {P }}$ E.M.I. Mannetio Recording Tape made by * 1^{-}Used ditto "Scoteb" Brand 4800 Ht . £5 10
 \star T.D.M.S. Betu rend/receive in cabinets...... $£ 80 \quad 0$

* Colling 500 w. Redio Tolephone Trams-
loput new
太 8 Track Data Hirb speed Tape Readeri P. ס. \mathbf{R}. Man 0 \star Amphenol Connector Assembling Machines 2810 - Stelma Telarip Ditorion Ma - 5th. Motorola enclosed Cabiveth 19 9°. £35 0
 - T8-497/UER Signal Gearratori $2 / 400 \mathrm{~m} / \mathrm{ca}$ £85 0
 *Sarah Trana/Roceivera and Aeriala \&3 0 *Sirmar 12000 ohm. DPDT Sealed Relays.... E1 0 *75 foot high Lattice Triangulap Wind uD Uniselectora 10 bank 25 way ex. new....... 285 ©Precision Mains Filter Uaila new........... £1 10 * Marconi HR. 22 SSB Receivers $2 / 32 \mathrm{~m} / \mathrm{cs} . .$. .. £75 0 *Avo Geiser Connters new......................... £7 \star Tolegrapb Code-Decode Machinen $£ 1710$

We have e larke quantity of "bla and Diecel" We cennot liat-please rend un your reguirementa
we cen probabig belp-all enquirics anrwered.

P. HARRIS

ORGANFORD - DORSET BHIG GER
westbourne bsosi

(2)
 Wrthe for illustrated Brochure \& Price List

THE QUARTZ CRYSTAL CO. LTD.
a.c.C. Works. Wellington Crescent. New Malden. Surrev (01-9420334 \& 2988)

WW-152 FOR FURTHER DETAILS

ADJUSTABLE HOLE \& WASHER CUTTERS

The right tool for trepanning holes I"- $12 \frac{1}{2}^{\prime \prime}$ in diameter

In our range of 17 Models

Write for illustrated brochure of our full range with straight or Morse taper 1.4 or Bitstock shank

All models available from stock
AK URATE ENGINEERING CO. LTD. Cross Lane, Hornsey, London, N. 8

TEL. O1-348 2670
WW-154 FOR FURTHER DETAILS

TRANSISTOR ELECTRONIC ORGANS

FOR THE AMATEUR NEW ED. by DOUGLAS 20/a P. \& P. I/6

Radio Communication Handbook by R.S.G.B 631-. P. \& P. $4 / 6$.
F.E.T. Principles, Experiments, and Project: by Noll. 40/-. P. \& P. $2 /$.
110 , Semiconductor Projects for the Home Constructor, by Marston. 18/-. P. \& P. 1/3. vhf-UHF Manual, by Jessop, R.S.G.B. 21/P. \& P. 1/9.

Amateur Radio Techniques, by R.S.G.B. 12/6 P. \& P. 1/6.

Principles of Transistor Circuits, new edition by AMOS $25 /$-. P. \& P. 1/6.
Beginners Guide to Transistors, by Reddihough, 15/.. P. \& P. 1/3.
Industrial Transistor Circuits, by Lytel, 24/P. \& P. $1 / 6$.

UNIVERSAL BOOK CO.
12 LITTLE NEWPORT ST., LONDON, W.C. 2 (Leicester Square Tube Station)

WW-153 FOR FURTHER DETAILS

BAILEY 30 WATT AMPLIFIER

10 Transistors as specified \& 1 Pcb
66.10 .0 20 Transistors as specified \& 2 Pcb $\quad € 12.10 .0$ R1-R27 \& Por $12 / 6 \quad \mathrm{Cl}-\mathrm{Cb}$ (Mullard) $8 / 6$ Finned solld Ali Heatsinks $4 \times 4 \frac{1}{2}$ in., ea International Bridge Rects. 200 p.l.v./l.8A Transformer 230/40/50, E.S., 45v @ 2A Photostats of May \& Nov. " 68 articles FREE voleage/current chart wish all orders

LINSLEY HOOD CLASS A AMP

Set of Resistors $\mathbf{6} / \mathrm{F}$
Set of Capacitors 22
Matched pair M1480 (Hi gain) for 8 ohm Matched pair MJ481 (Hi gain) for $15 \mathrm{ohm} \quad 5216$ 2N3906 T/ 2N697/2N1613 6/6 MPFIO3 $8 / 6$ Pair of Heatsinks as specified for mono Pair of Heatsinks as s pecified for mono Hunts KAl12BT capacitors $2500 \mathrm{mFd} / 50 \mathrm{vw}$ Hunts KA128 capacicors Hunce $500 \mathrm{mF} \quad 12 / 6$ d/40vw 9/. Postage 1/- below \&1. Delivery by Recurn Pos A.IFACTORS, 72 BLAKE ROAD, STAPLEFORD, NOTTS.

WW-155 FOR FURTHER DETAILS

LAWSDN BRAND NEW TELEVISION TUBES

12" Types 44.10 .0
14^{*} Types $\mathbf{6 4 . 1 9 . 0}$
$17^{\prime \prime}$ Types 65.19 .0
19" Types $\mathbf{6 . 1 9 . 0}$
21^{10} Types 87.15 .0
23^{*} Types $\mathbf{6 9 . 1 0 . 0}$
$19^{\prime \prime}$ Panorama E8.10.0 23^{*} Panorama \& 11.10 .0 19" Twin Panel £9.17.6 $23^{\prime \prime}$ Twin Panel $£ 12.10 .0$

Corriage and insurance $12^{\prime \prime}-19^{\prime \prime}-1216$ $21 "-23^{\prime \prime}-15 / 0$

The continually increasing demand for tubes of the very highest performance and reliability is now being met by the nero Lawson "Century 99 " range of C.R.T.s. "Century 99 " are absolutely brand ners subes throughout manufactured by Britain's largest C.R.T. manufacturers. They are guaranteed to give absolutely superb performance with needle sharp definition screens of the very latest type giving maximum Contrast and Light ourput; together with high reliability and very long life.
"Century 99 " are a complete range of tubes in all sizes for all British sets manufactured 1947-1968. Complete fitting instructions are supplied with every tube.
2 Years full replacement guarantee WW-156 FOR FURTHER DETAILS

LAWSON TUBES
18 GHURCHDOWN ROAD MALVERN, WORCS. Tel. MAL 2100

TELEPHONE: LEEDS 622131
HENRY ELECTRIC LEEDS

EDDYSTONE ECIO battery (or mains) operated. $50 \mathrm{ke} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$ for CW, SSB or AM. Mobile or hxed communications. Rugged, compact and light. E59.10.0. Carriage paid

TRIO 9R-59DE. General coverage $550 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$. Amateur frequencies bandspread on separace calibrated dial. Elegane. Greas value, outstanding performer. $\mathbf{£ 4 2 . 1 0 . 0 \text { . Carriage pald }}$ Both these receivers andiale and

TIO
LEARNING MORSE? Transistor code oscillators incorporates speaker and earphone. Key terminals and pitch control. Very smart. ©4.9.0. inc. P \& P.
DURAL MASTS 28ft. 2 in . diameter, brighe finish. Steel strength, feather light. In two sections including jointing sleeve, base plate and guy clamps Only $\mathbf{6} 12.15,0$. Carriage paid.
EVERYTHING FOR AMATEUR AND COMMERCIAL COMMUNICATIOS

HENRY ELECTRIC LTD.
60 HARROGATE ROAD, LEEDS, LS7 4LA

PRINTED CIRCUITS Electronic eauipment manufactuafers Large and small quantities. Full design and Prototype Service, Assemblies at Reasonable Prices. G.P.O. Approved Let us solve your problems K. J. BENTLEY \& PARTNERS 18 GREENACRES ROAD. OLDHAM Tel: 061-6240939

WW- 157 FOR FURTHER DETAILS

symbol of quality
trade only for electronic components-by return

Learn at home First Class Radio and TV Courses

After brief, intensely interesting studyundertaken at home in your spare timeYOU can secure a recognised qualification or extend your knowledge of Radio and TV. Let us show you how. FREE GUIDE
The New Free Guide contains 120 pages of information of the greatest importance to both the amateur and the man employed in the radio industry. Chambers College provides first-rate postal courses for Radio Amateurs' Exam., R.T.E.B. Servicing Cert., C. \& C. Telecoms., A.M.I.E.R.E. Guide also gives details of range of certificate courses in Radio/TV Servicing, Electronics and other branches of engineering, together with particulars of our remarkable terms of
"Satisfaction or Refund of Fee"
Write now for your copy of this valuable publication. It may well prove to be the turning point in your career.
Founded 1885 -Over 150,000 successes

CHAMBERS COLLEGE

(Incorp. National Inst. of Engineering) (Dept. 806F), I48. Holborn, London, E.C.I.

WW-158 FOR FURTHER DETAILS

BAKER "SUPERB' 20 WATT I2in. LOUDSPEAKER BRITISH MADE THROUGHOUT Suitable for all Hi-Fi Systems. Provides rich clear sound virtualiy flat musical spectrum
$\pm 5 \mathrm{~dB}, 20-17,000$ eps. Letest double cone with massive "Ferroba" ceramic magnet. Flux density 16,500 gauss. Bass resonance $\mathbf{2 2 - 2 6} \mathrm{cps}$. gaus.
Plastic Cone Surround. Colls a vailable 8 or 15 ohms.
Price £15 Post Free

EMI TAPE MOTORS (200-240v. A.C.) Clockwise I,360 R.P.M. off load Heavy duty 4 pole 100 mA . Spindle It x a $\frac{1}{2} \mathrm{ln}$. diameter. sise 3t $\times 2 t \times 2 t \mathrm{in}$. $\begin{array}{ll}\text { BARGAIN } \\ \text { PRICE } & 17 / 6 \\ 2 / 6\end{array}$

TRANSISTOR AMPLIFIER

 WITH LOUDSPEAKER A solf-coneained portablemini p.a. system. Many unes-Partios, Baby Alarm, Intercom, Tolephone or
Record player Amplifier Record Pleyer Amplifier,
Ateractive rexine covered cabinet sixe $12 \times 9 \times 4$ in., with powerful 7×4 in. One wate power amplifier. Uses PP9 bateory. Brand
 full maker's guarante.

THE INSTANT BULK TAPE ERASER AND RECORDING HEAD DEMAGNETISER
$\begin{array}{ll}\text { Leaflet S.A.E. } & 42 / 6 \\ & \begin{array}{l}\text { Post } \\ 2 / 6\end{array}\end{array}$
EXTENSION SPEAKER
Smart plastic cabinet speaker with 20 ft . lead for transistor radio, intercom, mains
 RETURN DF POST DESPATCH - CALLERS WEICOME HI-FI STDCKISTS - SALES - SERVICE - SPARES
RADIO COMPONENT SPECIALISTS 337 WHITEHDRSE RDAD, CRDYODN. Tel: 01-684 1865

Thanks to a bulk purchase we can offer
BRAND NEW
P.V.C. POLYESTER \& MYLAR RECORDING TAPES
Manufactured by she world-famous repueable British cape firm, our tapes are boxed in polythene and have fited leaders, etc. Thair qualiey is as cood as any other on the market, In no way are the tapes faulty and are not to be connfused with Imported, used or sub-standard tapes. 24-hour despatch service.
Should soods not meet with full approval, purchase price and postage will be refunded.
S.P. $\left\{\begin{array}{lllll}3 \mathrm{in} . & 160 \mathrm{f} . & 2 /- & 5 i n & 600 \mathrm{ft} . \\ 5 \mathrm{tin} & 900 \mathrm{f} & \mathrm{B} /- & 7 \mathrm{in} & 200 \mathrm{f} .\end{array}\right.$
L. P. $\left\{\begin{array}{llll}3 \mathrm{in} . & 225 \mathrm{ft} & 2 / 6 & 5 \mathrm{in} . \\ 5 \mathrm{in}, & 500 \mathrm{ft} . & 1 / 6\end{array}\right.$
D.P. $\left\{\begin{array}{llll}3 \mathrm{in} . & 350 \mathrm{ft} . & 4 / 6 & \mathrm{Sin} . \\ 5 & 1,200 \mathrm{ft} . & 12 /=\end{array}\right.$

Postage on all orders $1 / 6$
COMPACT TAPE CASETTES AT HALF PRICE
60,90, and 120 minutes playing time, in original MClastic library boxes.

STARMAN TAPES

28 LINKSCROFT AVENUE ASHFORD, MIDDX.

Ashford 53020

B. H. Morris \& Co.

We require two engineers (probably aged 30-40 and preferably having had manufacturer service department experience) to service a wide range of radio and high fidelity equipment. communications receivers and transceivers. These vacancies will be of interest only to those currently in the $£ 1.500$ p.a. bracket with adequate experience in the above fields.

Write or telephone the Service Manager, B. H. Morris \& Co. (Radio) Limited, 84-88 Nelson Street, London, E. 1. Tel: 01-790 4824

100 WATT SOLID STATE AMPLIFIER

The Type SSP2 is fully protected against input and output overload conditions. Unconditional stability with extremely low self generated noilse. COMPARE THE SPECIFICATION and price with any other SIMILAR AMPLIFIER ON THE
 MARKET.

SPECIFICATION

Output
Total Harmonic Distortion Frequency range
Signal-to-noise Ratio (Unweighted) Input Sensitivity Operating voltage Power Consumption Ambient temperature range Weight
Size

100 watts R.M.S. into 4 ohms Less than 1\% 20 Hz to 20K. Hz with 1 dB
-86 dB below 100 watts
250 N.V. into 10 K . ohms
$220-250 \mathrm{v}$. or $105-120 \mathrm{v} .50 .60 \mathrm{cycles}$ 150 V.A. at maximum output
-10 to $+62^{\circ} \mathrm{C}$.
17 lbs
$12^{\prime \prime}$ long $\times 4^{\prime \prime}$ deep $\times 6 \frac{1}{2}{ }^{\prime \prime}$ high

Positive or negative 32 volts at 100 M.A. unsmoothed feed is available via terminal strip. Should SSP2 amplifier be driven con. tinuously in short circuit output condition, an output fuse is fitted for complete protection.

INIDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 106-122

	Pagr
Al Factors.	126
Acoustical Mig. Co. Lid.	65
Adcola Products Ltd..	Cover iii
Advance Electronics Lid.	28, 29
AEI Semiconductors Ltd.	56
Akurate Eng. Co., Lid.	126
Ancom Ltd..	72
Anders Electronics, Ltd.	57, 76
A.N.T.E.X., Lid..	61
A.P.T. Electronics.	22
Audio Fair.	45
Audix, B. B., Ltd.	19
Avo Ltd.	- 1
Avon Communications \& Electronics,	74
Barrett, V. N.	123
Barnet Factors, Lid.	101
Batey, W., \& Co..	86
Bentley Acoustical Corporation Ltd.	106
Bentley, K. J.	126
B.I.E.T.	13
Bi-Pak Semiconductors	100
Bi-Pre-Pak, Ltd.	102
Black, J.	123, 124
Bradmatic Led.	127
Britec, Ltd.	46
Brown, N. C., Lid.	32
Bulgin, A. F., \& Co., Ltd.	Edit. 447
Bullers Ltd.	38
Butterworths	56
Calan Electronics Ltd.	80
Chambers College	127
Chiltmead Ltd.	104
Computer Training Products	89
Cosh \& Hammond Ltd.	72
C.R.E.I. (London)	17
Daystrom, Ltd..	21
Dependable Relays, Lid.	22
Diotran, Lid. .	124
Drake Transformers Lid.	33
Duxford Electronics	90
Electronic Brokers	85, 123
Electronics (Croydon), Lid.	96
Electrosil, Led. .	67
Electrovalue	72
Electro-Winds, Ltd.	46
Elektromodul	35
Elliott Automations Lid.	42, 43
Elstone Electronics Lid.	. 50
English Electric Valve Co., Lid	3, 5, 7, 9
Erie Electronics, Letd.	$\cdots 6$
Farnell Instruments, Ltd...	46
Ferrograph, The, Co. Lid.	2, 26, 27
Fylde Electronic Laboratories.	88
Gardners Transformers, Ltd.	68
Garage Gifts, Ltd.	123
Garex, Ltd.....	. 76
Gencral Eng. Co. Led..	40
Gilfillan, R., \& Co., Ltd.	91
Giltext, Ltd...	123
Glaser, L., \& Co., Ltd.	123
Globe, Scientific, Lid. .	96
Godleys, Ltd.	124
Goldring Manufacturing Co. Ltd.	54
Goodmans Industries Ltd. .	47
Grampian Reproducers, Lid.	48, 123
Greenwood, W., (London), Ltd	. .75, 77
G.S.P.K. Electronics Lid.,	123

	Pagb	Page
Hall Electric, Ltd.	39	Q Max (Electronics), Lid..................... . 20
Harris Electronics (London) Lid.	50	Quality Electronics, Lid...................... 80
Harris, P.	125	Quartz Crystal Co. Lid. 126
Hart Electronics.	. 125	
Harversons Surplus Co., Lid...	125	Racal Instruments, Lid.. 69
Hatfield Instruments, Ltd.	80	Radiomasts Lid. 100
Henry Electronic.	126	Radio \& TV Components, Ltd. 79
Henrys Radio, Ltd. .	94, 95	Radio Components Specialists................. . 127
Henson	124	Radiospares, Lid. 126
Highgate Acoustics.	92	Rastra Electronics Ltd. 19
Holford, F., Co., Ltd.	123	Rendar Instruments . 89
Howells Radio, Ltd..	. 86	Roband Electronics Ltd........................ 73
		Rola Celection Led. 89
		R.R. Radio. 123
1.C.S., Ltd.	18, 124	R.S.C. Hi-Fi Centres, Lid..................... . 81
Iliffe Books..	74, 78, 92	R.S.T. Valves. 92
I.M.O. (Electronics), Led.	52	
Impectron Lid.	24	
Industrial Exhibitions	62	Salford Elec. Inst. Co. Ltd.
Industrial Instruments, Ltd.	78	Samsons (Electronics), Lid..................... 91
Instructional Handbook Supplies.	125	Sansui Electric Co. Ltd....................... 36
International Rectifier Co. Ltd.	. 14	S.E. Laboratories (Eng.) Lid.................... 64
		Service Trading Co........................ 82, 83
		Servo \& Electronic Sales, Ltd.. 123
J. Beam Engineering Ltd.	20	Sinclair Radionics, Ltd................... 37, 70, 71
		S.M.E. Ltd. 103
		Smith, G. W., (Radio), Ltd. 98, 99
Kelly Acoustics Led.	88	Smith, H. L., Co. Ltd. 32
Keytronics	78	Smith, J., Lrd. 50
Kinver Electronics, Lid.	30	S.N.S. Communications Lid................... 78
		Special Products Lid.......................... 45
		Specialist Switches, Led. 82
Lasky's Radio, Ltd.	93	Starman Tapes............................... 127
Lawson Tubes.	126	S.T.C. Communications. Cover ii
Ledon Instruments, Lid.	82	S.T.C. (Star).
Levell Electronics, Ltd.	8	Sugden, A. R., \& Co. (Engineers) Lid........... . 48
Light Soldering Developments, Ltd	18, 32	Sugden, J. E...
Linstead Electronics Lid..	. 93	Super Electronics, Ltd.
Lionmount \& Co., Ltd.	124	
Lloyd, J. J., Instruments Led.	51	Technical Trading. 76
London Microphone, Lid.	78	Telequipment Ltd. 58
L.S.T. Components.	84	Tektronix Ltd. 34
LTV Ling Altec Ltd.	. 54	Telford Products Led........................... . . 123
		Teonex, Lid................................ 10
		Thorn A.E.I. (Radio Valve \& Tubes), Lid....... . 60
Marconi (Communications) Ltd.	. 63	Trickett.................................... . . 91
Marshall, A., \& Son (London), Lid.	74	Trio Corporation............................ 12
Mills, W.	. 86,87	Trio Instruments Ltd......................... 48
Milward, G. F.	88	
Modern Book Co..	104	Unifab Structures Lid........................... 30
Monks, K., Audio, Lid...	40	United-Carr Supplies, Lid.
Morganite Resistors Lid..	53	Universal Book Co............................ 126
M.R. Supplies, Ltd.	22	
Multicore Solders Lid..	Cover iv	
		Valradio, Ltd. 45,54
		Varian, A.G................................. 15
Norsk A/S Philips.	16	Vitality Bulbs, Ltd..
Nusound.	80	Vero Electronics Lid........................ . 11, 56
		Vortexion, Ltd...
Ofrect Electronic Systems, Ltd.	123	Wetts, Cecil E., Lid. 38, 125
Omron, Ltd. .	52	Wayne Kerr, The, Co. Ltd.................. 41, 55
Osmabet, Ltd.	104	Wellbrook Eng. \& Electronics. 103
		Webber, R. A., Ltd. 46
		West Hyde Developments, Lid................. 123
Patrick \& Kinnie	90	West London Direct Supplies.
P.C. Radio, Led.	.- 97	Wilkinsons, L., (Croydon), Ltd.
Philips N.V........	49	
Pinnacle Electronics, Lid. 25	Yukan 126
Politechna (London) Led..	24	
Proops Bros. Lid. .	. 44	
Pye Telecommunications, L.d..	31	Z. \& 1. Aero Services, Lid. 10 ,

For increased efficiency find out more about our extensive range of ADCOLA Soldering Equipment-and we provide:
\star THREE DAY REPAIR SERVICE \star INTERCHANGEABLE BITS-STOCK ITEMS * SPECIAL TEMPERATURES AVAILABLE AT NO EXTRA COST.
ADCOLA TOOLS have been designed in cooperation with industry and developed to serve a wide range of applications. There is an ADCOLA Tool to meet your specific requirement. Find out more about our extensive range of efficient, robust soldering equipment.

No. 107. GENERAL ASSEMBLY TYPE

Fill in the coupon to get your copy of our latest brochure:

ADCOLA PRODUCTS LTD

Adcola House • Gauden Road • London • SW4
Tel. 01-6220291/3 Grams: Soljoint, London SW4

Please rush me a copy of your latest brochure:
name
COMPANY
ADDRESS
WW

In addition to Ersin Multicore 5 Core Solder we make these products to help industry and laboratories

THE MULTICORE SYSTEM FOR AUTOMATIC SOLDERING OF PRINTED CIRCUITS

Mass-soldering is no longer an art of trial and error. A new Multicore system incorporating a complete process of new Multicore Soldering Chemicals, Liquid Fluxes and EXTRUSOL high purity solder has transformed it to a logical science, providing overall the most economical and reliable mass-soldering production.
Multicore Solders Ltd., have considerable experience of the techniques required for mass-soldering printed circuit boards.

When mass-soldering considerable precautions are important in such a process to ensure that components, printed circuit boards and solder all meet a common high standard of cleanliness and solderability before the assembly reaches the automatic flux and soldering stations.

Ask for the Technical Bulletins on the new range of Multicore Soldering Chemicals and fluxes, together with Technical Bulletin 1169, which reviews the latest techniques for mass-soldering printed circuits. It also describes how and why these new Multicore products should be used in mass-soldering processes.

Mark 2 solderability test machine

Incorporates many new features, including semi-automatic electrical timing, proportional temperature control, remote controlled specimen
 lowering system and a temperature meter calibrated to an accuracy of 0.25% full scale deflection at the test temperature.
The machine can reduce production costs by instantly checking the solderability of components with wire terminations.
It complies with B.S.I. and proposed M. of D. and International Solderability Test Specifications.

solder tape, rings, preforms, washers, discs, and pellets
Made in a wide range of solid or cored alloys. Tape, rings and pellets are the most economical to use.

: 10 accessories can be supplied in bulk packings at very competitive prices

automatic opening wire stripper and cutter, model 6

Fitted with automatic opening spring for quick repetitive flex and cable stripping. Screw adjusts stripper for usual wire sizes. Easv grip plastic covered handles and handle-locking ring.

recording tape splicer

model 20
Precision made. chrome plated complete with razor cutter. Provides quick and accupate tape editing. Standard model for $\frac{1}{4}$ " tape. NEW $\frac{1}{2}^{\prime \prime}$ type is avalable for computer and video tape.Model21

instrument cleaner

Anti-static. Specially formulated for cleaning delicate instrument panels, plastic, chrome. glass and printed surfaces. Antiseptic, nonfaces. Antiseptic, non-
toxic, non-flammable, does not smear. Used and recommended by leading electronic manufacturers.
In 1 -gallon and 5 -gallon containers and 4 fl . 02. bottles.
tape head maintenance kit size E

Cleans tape heads and all parts of the tape path of magnetic tape
decks. Applicator and Polisher Tools and Sticks are available separately.

[^9]
[^0]: * Royal Radar Establishment.

[^1]: 1. "Transistor Mutual Conductance", Editorial in Electronic Technolog,v, Vol. 38, No. 3 (March 1961).
 2. "Low-Distortion Amplifiers", P. J. Baxandall, 7. Brit. Sound Recording Assn., Vol. 6, No. II, pp. 246-256. (Nov. 1961).
 3. "The Bipolar Transistor as a Voltage-operated Device", E. A. Faulkner, J.I.E.R.E.(Brit.), Vol. 37, No. 5, pp. 303-305 (May 1969).
[^2]: \dagger In 1953 Philips produced, experimentally, a bent-neck tube. (W.W., Jan. 1954, p. 12).-ED.

[^3]: * British Aircraft Corporation Lad, Bristol

[^4]: West Ham College of Technology, London, E. 15.

[^5]: A. F. BULGIN \& CO. LTD., BY-PASS ROAD, BARKING, ESSEX manufacturers of precision electronic \& electrical components TELEPHONE: 01-594 5588 (12 LINES) Private Branch Exchange

[^6]: United-Carr Supplies Ltd.,
 Frederick Road, Stapleford, Nottingham. Sandiacre 8072 STD ONO 2398072

[^7]: SOLE IMPORTERS IN U.K
 QUALIT ELEGTRONICS ITD.
 47-49 HIGH STREET, KINGSTON-UPON - THAMES, SURREY. Tel: 01-546 4585
 PLEASE WRITE FOR IL

[^8]: PEAK SOUND PRODUCTS
 Full range of Ampliflers, kite, speakers in thok.
 TE22 SINE SQUARE WAVE

[^9]: Wüulticore solders LTD., hemel hempstead, herts. Telephone : hemel hempstead 3636 TELEX 82363

