WirelessWorld

:M. tuner using integrated circnits Felecting an audio amplifier

TYPE 545B OSCILLOSCOPE

0 (3)
SERIAL 101737

1 MIL mechanically interlocked pair, operating A releases B 2 P33 plug-in version of P.O. 3000, at least 30 m operations 3600 compact version of P.O. 3000,
up to 10A contacts

OUTSIDE• the lot
INSIDE ${ }^{\circ}$
On the outside, Avometers haven't changed much over the years. But inside every genuine Avometer - right across the range from pocketsize Multiminors to 0.3% Precision Avometers - you'll find the up-to-date guts of the most famous multimeters in the world. Outside - the same familiar functional case and knobs you grew up on. Inside the state-of-the-art circuitry you'd expect from the world leader. Inside and out multimeters to meet every laboratory, test and servicing requirement.

Avo Limited, Avocet House, Dover, Kent;
Dover 2626; Telex 96283

Point to Point Broadcasting Radio Relay Ground to Air Navigational Aids Business Radio

Design

Site layouts
Aerial System Design

Aerials

LF ' T ' and ' L ' Aerials, Mast Radiators, HF Dipoles, Quadrants, Rhombics, Log Periodics, Vertical Incidence Arrays, Conicals, Biconicals VHF \& UHF Yagis, Helices, Ground Planes, Colinears, Whips, Marine Aerials,
Television Arrays to 100 kW e.r.p MICROWAVE Passive Reflectors, Dishes $3^{\prime \prime}$ to 60 ft . dia.

Supporting Structures

Self-supporting Towers, Tubular and Lattice Masts, Telescopic Masts

Accessories

Coaxial and open wire Feeders, Filters, Aerial Switches, Lead-in panels, Earth Systems. Air-cooled Transmitter Loads. Termination Networks

Installation

World Wide Service

C\&S Antennas provide a complete aerial service LF to Microwave r

EEV glass and ceramic hydrogen thyratrons are extensively used to provide more precise and efficient high speed switching. Here are some of the reasons why:
1 Their short anode delay time of between 20 and 120 nanoseconds depending on triggering method
2 Low jitter generally of 1 to 2 nanoseconds but down to less than $\frac{1}{2}$ nanosecond depending on heater supply.
3 The negligible change in anode delay timetypically only 10 nanoseconds over a long period of use.
4 A high peak inverse voltage capability of 20 kV immediately following pulse.
5 The low trigger power required.
6 The wide operating voltage range of $1 \mathrm{kV}-120 \mathrm{kV}$ with four tubes.
7 The ability to control anode delay time and rise time of current, using reservoir.
8 The wide reservoir range for maintenance of gas pressure typically 4.5 V to 5.7 V .
The standard range plus EEV's ability to meet special requirements means that virtually any high speed switching application can be met Here are a few:
Radar modulators with a system output power of $10 \mathrm{~kW}-10 \mathrm{MW}$.
Medical linear accelerators with RF accelerating powers up to 15 MW .
Particle linear accelerators with RF accelerating powers up to 50MW. They may also be used in first-stage particle beam choppers. Particle beam benders where a network of stored energy needs to be discharged into a deflection coil or other device somewhere on the accelerating ring.
Spark chambers
For pulsing light shutters such as Kerr or Pockel cells.
Electronic crowbars and energy diverters

> EEV thyratronsfor better high speed switching

Type	Peak power output max (MW)	Heating Factor (V.A.p.p.s.)	Peak forward voltage max (kV)	Peak anode current \max (A)	Mean anode current max (A)
C×1154	50.0	30×10^{9}	40	2500	3.0
CX1157	3.5	7×10^{9}	20	350	0.35
C×1168	100.0	70×10^{9}	80	2500	2.5
C×1171	150	70×10^{9}	120	2500	2.5
CX1174	120	60×10^{9}	40	6000	6.0
CX1175	200	140×10^{9}	80	5000	6.0
CX1180	12.5	9×10^{9}	25	1000	1.25

Send for full details of the complete range of EEV thyratrons.

English Electric Valve Co Ltd

Chelmsford Essex England Telephone: 61777 Telex: 99103 Grams: Enelectico Chelmsford

Brief data on some of the ceramic types available.

Please send me full data on your complete range of glass and ceramic hydrogen thyratrons
NAME \quad POSITION

COMPANY

ADDRESS
Peak power output
Peak forward voltage

Peak anode current

Heathlit Sthe power game

It isn't a game any more - the time has come when the public should be told exactly who is behind the idea that high-quality test instruments can be within the reach of everyone. Heathkit can remain in the shadows no longer - it is time for some plain talking. In Heathkit construction manuals that is exactly what you get instructions clear enough to enable anyone to build their own equipment, thereby cutting costs by up to 50%.

Heathkit's expert technical staff will provide the answers to any queries you may have regarding any of the models to be found in the 1969 catalogue.

DAYSTROM LTD., Gloucester GL2 2 EE England
Tel.Glos. 29451. Telex 43216.

 levels $5,7,10,25$ and 40 kW into the aerial. Their reliability is established, their operating efficiency is good and their design provides a high degree of operational flexibility. A 40 kW tube can, for example, be operated at the same efficiency at any power level between 20 kW and 40 kW . When operated at 40 kW the tube needs only 135 kW d.c. input.

Send for full details of the complete range of EEV amplifier klystrons.

English Electric Valve Co Ltd
Chelmsford Essex England Telephone: 61777 Telex: 99103 Grams: Enelectico Chelmsford

Please send me full details of your range of UHF TV amplifier klystrons.
I am interested in a klystron with the following parameters:
Frequency Range
Bandwidth

mhtien electrical radio co. LTD.

Type	Dimensions		Flux Density Gauss	Pole Dia. In.	Total Flux Maxwells	Imp. ohms	Handling Capacity Watts	Bass Res. c / s	Frequency Response c / s	Weight		Price ${ }^{*}$
	Depth	Dia.								lb .	02.	
HF. 816	4.218	8*	16,000	1.0	63,000	U	6	63	50-15 K	4	8	£8.15.0
HF. 1012	$4{ }^{3}{ }^{\prime \prime}$	10"	12.000	1.0	47.400	u	10	35	30-14 K	4	4	£6.8.0
HF. 1016	420"	10"	16.000	1.0	63.000	U	10	35	30-15 K	5	13	£10.4.2
HF. 1016 Major	$5 \%^{\prime \prime}$	10"	16.000	1.0	63.000	15	10	39	30-16 K	6	0	£13.1.11
HF. 1214	$6 \frac{11}{}$	12"	14.000	1.5	106.000	15	15	39	25-14 K	9	10	£14.0.7
HF. 1216	$7{ }^{1 *}$	12 "	16.000	1.5	121.140	15	15	37	20-16 K	13	0	£21.10.3
T. 816	A4"	$8{ }^{\prime \prime}$	16.000	1.0	63.000	15	15	-	1500-17 K	4	8	¢8.5.9
P2.585	H^{\prime}	21/ ${ }^{\prime \prime}$	8.500	0.375	6.400	3	0.3	330	250-9 K	-	3	£1.10.6

- Includes 10\% P.T. surcharge

SEE US ON STAND C116 LONDON ELECTRONIC COMPONENTS SHOW

Whiteley Stentorian Speakers incorporate 40 years of development in acoustic technology. Their frequency response is exceptionally wide, and their overall performance outstanding. Few speakers can equal, and none can excel the superb reproduction of the high fidelity speakers in the Whiteley Stentorian range.

WHITELEY ELECTRICAL RADIO CO. LTD.
MANSFIELD • NOTTS • ENGLAND
Telephone: Mansfield 24762
LONDON OFFICE: 109 KINGSWAY, W.C.2. Telephone: 01-405 3074

Be safe...use EEV magnetrons in your marine radar

	Type	Frequency Range (MHz)	Peak Output Power (kW) (Typical Operation)	Equivalents (not complete)
Brief data on some of the many types available. The complete range covers S-B and and X-Band types from $3-80 \mathrm{~kW}$.	M5063	3025-3075	50	2J70B
	2 J 42	9345-9475	8	ME1 101, CV3676. MAG3, M526
	BM1002	9415-9465	21	JP9-15B
	M513B	9345-9405	22	JP9-15, YJ1110
	M515	9380-9440	25	YJ1120
	M597	9380-9440	10	
	M598B	9380-9440	22	
	599A/B	9415-9475	3	JP9-2.5D, JP9-2.5E, 7028
	M5022	9415-9475	30	YJ1121
	M5031	9345-9405	9	
	M5043	9380-9440	5.8	
	M5039	9345-9405	22.5	
M5063	M515	M5	A/B	M513B

English Electric Valve Co Ltd Chelmsford Essex England Telephone: 61777 Telex : 99103 Grams: Enelectico Chelmsford of EEV marine magnetrons.

Please send me full data on your range of marine magnetrons.
I am particularly interested in using a marine magnetron with the following parameters.

Frequency Range (MHz)	Peak Output Power (kW)	Pulse Length ($\mu \mathrm{s})$	Pulse Repetition Rate (p.p.s.)
NAME			
POMPATION			

NOW...

Guarantee your audience's listening comfort

Our Automatic Loudness Controller delivers the sound that's right for every ear. Automatically eliminates excessive loudness. Unconditionally guaranteed!

No doubt about it. Other devices can control volume and modulation levels. That's what they're for.

But only one instrument can analyze and automatically control loudness levels.

Ours.

Reason? We designed it "from human ears". At CBS laboratories, we tested every conceivable sound sensation: Frequency content. Peak factors. Ballistic response.

Combinations of complex signals. All the characteristics that affect even the most sensitive ear.

Result? An instrument so "humanly" perceptive it automatically keeps loudness levels under control. And does it inaudibly. Keeps your audience in their chairs . . . listening comfortably. No constant jumping up and down to flip the dial. They enjoy continuous listening pleasure.

Why not let your audience hear you at your best? Install this remarkable instrument in your studio. You will believe your ears. It's guaranteed. Unconditionally.

For further information, write:

Choose your duplexer devices from EEV's extensive range

Brief data on some of the many types available.

*For protection of travelling waveguide amplifiers

English Electric Valve Co Ltd
Chelmsford Essex England Telephone : 61777 Telex: 99103 Grams: Enelectico Chelmsford

Please send me a copy of "Duplexer Devices". I am interested in a tube with the following parameters:
Frequency range Power

Type of cell

> NAME POSITION

COMPANY
ADDRESS

For all the other desirable fealures
write or telephone:-

AMPLIVOX COMMUNICATIONS LIMITED

BERESFORD AVENUE WEMBLEY. MIDDLESEX

MY MTAL STATISTIES ARE $1-181^{\mu 17} \mathrm{x} 55^{17} \times 1-213^{\# 11}$ 250N 10AMPA_C. SINGLE PDLE SNAP-IN FIXING

1109

1100

1100/1109

1100 twins

1110

Being a snappy little 1100 rocker who is getting around fast, I am often asked about my family. Now, having managed to persuade them to have their photograph taken with me, I have much pleasure in introducing them.

1109 -often seen around with me, is a most illuminating little pilot light with a variety of colour lenses. At times we are very close and can often be seen working together very harmoniously on a wide range of appliances and equipment.

The 1100 twins are going to be very popular and you can expect to see them on many companies' panels soon.

1110, the fat one, is double pole and the clever member of the family, he can operate two circuits at a time.

Like to know more about us? Give us a ring at 01-574 2442, we would certainly like to meet yOU some time. P.S. I have just been awarded my BS. 3955 approval certificate.
ARROW

From Claude Lyons-leaders in voltage control for over 30 years - an extensive new range of variable transformers employing the latest design techniques and providing unit ratings from 0.5 to 40 amperes.
The Regulac ${ }^{(1)}$ range of hundreds of models includes ganged assemblies for parallel and three-phase operation, dual-output, portable and oil-immersed models plus many high-frequency and special types, for manual operation or with motor drive.

Claude

Rapid delivery from Southern or Northern works. Send now for comprehensive new catalogue and rating guide to Publicity Department, Hoddesdon.
(8) Registered Trade Mark of Claude Lyons Limited
 CLAUDE LYONS

we've done it simply by clejerly des gning a new D.I.P. Board which allows rounting of dual- n -line packajes to be positioned vert cally to permit maximum natural convection-no b ower required.

Cither features nc ude :-
a Suitable for due -in-line packages with any number of terminations $\mathbf{6 t} 0 . \mathbf{1}^{\prime} \times \mathbf{0 . 3}$ or $0.1^{\prime \prime} \times 0.6^{\prime \prime}$ cen=res.

- Power rails provided on both sides adjacent to D.I.P. pads
- Test point pacs.
- Plain holes or local copper pads available to take Vero terminal p ns to facilitate inter-connections.
- Location pattern screen printed on component side.
- Available on Epociy glass or S.R.B.P. base material.
l.: you would like so now more abcut this revalLTonary D.I.P. Board olease wite to:

VERO ELECTRONICS LTD

IndUSTRIAL ESTATE CHANDLERS FJRD HANTS. SO5 3ZR
$T \pm$ Chandlers Ford 2321/7
Telex: $\mathbf{2 7 5 5 4}$
banches and agents
throug iout

Effective elimination of RF interference emanating from ancillary electrical equipment is paramount
in a world extensively reliant upon its telecommunications services.

Erie offer a range of subminiature RF interference filters, providing up to 80 dB of attenuation
from 10 kHz to 10 GHz and beyond.
Used the world over by engineering designers of electrical systems for aircraft, spacecraft, ships, submarines, land vehicles, and static installations.

Although a fraction the size of conventional filters, you still get full size performance :

* $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.
* Coaxial and multi-section designs.
* 50-1500 V.d.c. Wkg.
* Hermetic sealing on many styles.
* Ferrite/Toroidal/Ceramic \& Monolithic Fabrication.

Write or phone Erie with your interference problems-we'll eliminate them. Filter Technical Brochure available.

ERIE ELECTRONICS LIMITED

Great Yarmouth, Norfolk
Telephone:0493-4911Telex:97421

Whether your products are individually assembled or on a flow line, missing components spell loss of time, delayed deliveries - and maybe tied-up capital. When it comes to meters, there's no excuse. Anders carry the largest stocks of meters in the U.K. Standard meters are off-the-shelf and on their way to you within 24 hours of your order. Nonstandard instruments take very little longer. Anders have a fast moving production team of well-equipped specialists in assembly, calibration, and even hand-lettering of dials.
In fact the only things missing from the Anders' service are excuses: we take care to see that we don't have to make them. So when it comes to meters, come to Anders. N.B. The variety of meters in our new catalogue is a revelation - and now we've got extensive new centralised premises for a better-than-ever service. Manufacture and distribution of electrical measuring instruments and electronic equipment. The largest stocks in the U.K. for off-the-shelf delivery. Prompt supply of non-standard instruments and ancillaries. Sole U.K. distribution

Please write to us and we will post to you your own personal copy of this new manual.

OurLGbidese doesiticothings byhalves.

Solartron give you the only fully-automatic LCR bridge with direct read-out to five figures.

No half answers, then knob twiddling or button pressing to get the other half.

We're offering you versatility, as well as speed.

Automatic ranging covers 18 measurement ranges.

The short reading time applies to all ranges.

You have manual over-ride for componentmatching, to 0.01%.

3 terminals are provided for in-situ measurement.

There's a comprehensive electrical interface for systems use.

And repetitive sample and high speed track mode.

You can use this bridge for direct measurement of $\operatorname{Tan} \delta$.

And full accuracy is maintained with adverse power factor.

That's a hell of a job for one LCR bridge to have to do.

But there's still more.
We'll tell you about it if you drop us a line.

So far we've only told you the half.

The Solartron Electronic Group Ltd Farnborough Hampshire England Telephone 44433

FOR QUALITY, RELIABILITY AND WORLD-WIDE AVAILABILITY, RELY ON HALL ELECTRIC'S SPEED, INTELLIGENCE AND REPUTATION

VALVES FOR:

Radio and Television Manufacturers.
Radlo and Television Service Departments. Radio Relay Companies.
Audio Equipment.
Electronic Equipment. Instrumentation.
Computers.
Märine Radar.
Communication Equipment. Research and Development. Government Departments. Aircraft Military and Civil.
Ministry of Avjation Approved Inspection.
Air Registration Board Approved Inspection.

You have a choice of two Solartron's DVM's in the medium price range

On the one hand, the LM 1426 Accuracy $0.01 \% \pm 1$ digit. Five digits, reading up to 11,000 full scale. Resolution to 10 microvolts. A further 2.5 microvolts with an additional $\times 4$ range.

On the other, you have the LM 1420. Reading up to 2,300 full scale Internal Weston cell calibration.
$5,000 \mathrm{M} \Omega$ imput resistance and 150 dB noise rejection.

Now which is the best one?
Both.
We've already delivered over 7,000 of the 1420 . For price performance it's unbeatable. It's the chosen instrument in many laboratories

But Solartron also recognise the need for a slightly higher degree of accuracy, on occasion, and designed

Which one you choose depends on the type of work you want it for.

Perhaps it'd be as well to send for both our data sheets. Especially if you're in two minds.

GOLAFIRON

A Schlumberger Company
A force to reckon with the 5 -digit LM 1426 to meet that need.

Your Atlantic Bridge to the

 greatest names in the U.S.electronics, electrical, engineering, chemical and plastics industriesWhen you need components, instruments, equipment fast - you need Milo. Over 8 million dollars worth of stock from over 100 major manufacturers at direct factory prices; ten years of success in international distribution and a staff of specialists to speed your order, means that you forget the problems.
A private telex line between Milo, Reading, and Milo New York
gives you prices, stock availability, delivery terms for one or a million components - in minutes.
Every detail of the shipping process, including import and export licences, customs declarations and export packaging is taken care of. Bulk purchasing and shipping guarantee to save you time, trouble and money.

All these US manufactured products from MILO stock

BATTERIES	\|FUSES
Burgess	Bussman
Eveready	Littelfuse
Mallory R.C.A.	
	HARDWARE
CAPACITORS	Astrodyne Augat
Aerovox	Birnbach
Arco-Elmenco	Circuit Structure Labs
Centralab	Electrovert
Cornell-Dubilier	G. C. Electronics
Corning Glass	Grayhill
Erie	I.E.R.C.
General Instrument	JAN Hardware
Hammarlund	Mueller
J.F.D.	Pomona
E. F. Johnson	Raytheon
Mallory	Herman Smith
Nytronics	Vector
Ohmite	Wakefield
Plastic Capacitors	Walsco
Sangamo	
Sprague	
Texas Instruments	INTEGRATED
Vitramon	CIRCUITS
	$\begin{aligned} & \text { G.E. } \\ & \text { I.T.T. } \end{aligned}$
CHEMICALS	R.C.A.
Electronic Chemicals	Stewart Warner
G. C. Electronics	Sylvania
Krylon	Texas Instruments
Quietrole	Transitron
Walsco	
COILS-CHOKES	IRONS-
	SOLDERING
Delevan	American Beauty
Hammarlund	Endeco
Illumitronic	Hexacon
E. F. Johnson	Oryx
Merit	Precision
J. W. Miller	Ungar
National	Wall
Nytronics	Weller
Ohmite	
Stancor	KNOBS
CONNECTORS	Birnbach G. C. Electronics
Amphenol	Kurz-Kasch
Cinch-Jones	National
Gremar	Raytheon
Kings	Herman Smith
Waltham	
	LAMPS
FILTERS	Dialight
Cornell-Dubilier	Chicago Miniature
Erie	G.E.
Sprague	Sylvania

METAL CHASSIS -RACKS	RELAYS
	Amperite
Bud	Bourns
California Chassis	Guardian
L. M. B. Heeger	Hart Advance
Par-Metal	Kurman
Premier	Line Electric
	Magnacraft
METERS	Ohmite
HickokR.C.A.	
Simpson	
Triblett	RESISTORS
	Aerovox
MICROPHONES	Clarostat
Astatic	Continental-Wirt
Electro-Voice	Corning Glass
R.C.A.	Dale Electronics
Shure	Daven
Turner	I.R.C.
	Mailory
P A SYSTEMS	Dhmite-Allen Bradley
P.A. SYSTEMS	R.C.L.
Bogen	Sprague
Fanon Electronic	Stackpole
Round Hill	Texas Instruments
Associates	Ward Leonard
Talk-A.Phone	
PILOT LIGHTS	RHEOSTATS
Dialight	Clarostat
Drake	Hardwick Hindle
E. F. Johnson	(Memcor)
Signal Indicator	Mallory
Sylvania	Ohmite
	Ward Leonard.
PLUGS	
Amphenol	
Cannon	SEMI-
Cinch-Jones	CONDUCTORS
Mallory	
Herman Smith	Anterican
Superior	Amperex
Switchcraft	Bendix
	Centralab
POTENTIOMETERS	Continental Devices
	Delco
	Erie
Borg	G.E.
Bourns	General Instrument
Centralab	Honeywell
Clarostat	I.T.T.
Dale	International Rectifier
I. A C	R.C.A.
Mallory	Sarkes Tarzian
Dhmite	Solitron/Honeywell Sylvania
	Texas Instruments
PROBES	Transitron
Eico	JAN \& MIL Units
R.C.A.	Stewart Warner

SOCKETS	TOOLS
Amphenol	Boker
Augat	Dymo
Cinch-Jones	G.C. Electronics
Eby	Greenlee
E. F. Johnson	Hunter
	Kraeuter
	Micro Flame
SOLDER	Miller
Alpha Metals	MKS Data
Ersin Multicore	Vaco
Kester	Walsco
Kester	Xcelite
	TRANSFORMERS
SWITCHES	Chicago
Alco	Freed
Arrow-Hart \& Hegeman	Merit
Birnbach	Dhmite
Carling	Raytheon
Centralab	Sola
Continental-Wirt	Stancor
Daven	Staco
Grayhill	Thordarson
J.B.T.	Triad
Mallory	United Transformer Co.
Dak	TUBES
Dhmite	
Herman Smith	Amperex
Switchcraft	Amperite
Unimax	Eimac (Eitel McCullough)
	Electrons. Inc.
TAPE	G.E.
Audio	General Electronics Mullard
Dymo (marking tape)	National Electronics
Minnesota Mining (3M)	National Union
R.C.A.	R.C.A.
	Raytheon
	Sylvania
TERMINALS	Tung-Sol
Amphenol	JAN \& MIL Tubes
Birnbach	TUBING
Cinch-Jones	Alpha
Eby	Birnbach
General Components	Daburn
Goe Engineering	Helitube
Lynn Vaco	Illumitronic
Waldom	VIBRATORS
TEST EQUIPMENT	Cornell-Dubilier Mallory
B \& K Instruments	WIRE \& CABLE
Cornell-Dubilier	Alpha
Eico	Amphenol
Hickok	Belden
J.B.T.	Birnbach
R.C.A.	Daburn
Simpson	Milo/Carolina
Sprague	Milo/Kapton \ddagger
Triplett	\ddagger Dupont Trade Mark

IILO ELECTRONICS (UK) LTD.,

16 Kings Road, Reading, RG1 3AA, Berks.
Tel: 0734582151 Telex: 84554

Before we sell you a Shure microphone we try to ruin it

juss to make sure that you never will

Microphones have to be rugged. Think of the punishment they take. That's why Shure Safety Communications Microphones get a tremendous going over before we dream of selling them.

We drop them. We vibrate them. We fry them. We freeze them. We steam them in Turkish baths. We drag them behind fast moving cars. We subject them to all kinds of torture. Sand. Rain. Infra-red. Ultra-violet. Acids. Alcohol. Salt spray. Wind. Electrostatic fields. High altitude

and still they work

This savage testing, backed by stringent quality control, ensures that every Shure communications microphone will give you reliable performance. And will go on doing so even under conditions where other microphones would pack up. Always use Shure, the microphones that never fail to get the message through.

Communications

Controlled magnetic hand
microphone providing a clear, crisp. highly intelligible voice response. Rugged and dependable. ideal for outdoor-indoor P.A.。 and communications.
Frequency response 200 to $4,000 \mathrm{cps}$ High impedance. High output. Model 414.
Amateur Radio
Provides optimum radio
communications performance from single sideband transmitters as well as AM and FM units. Response cuts of sharply below 300 cps and above $3,000 \mathrm{cps}$ ensuring maximum speech intelligibility and audio punch to cut through noise and interference.

For full details of Shure microphones, SEND IN THIS COUPON TODAY

To : Shure Electronics Ltd., 84 Blackfriars Road, London SE1. Tel: 01-928 3424
I'd like to know more about Shure Microphones for
Communications \square Professional Recording \square Amateur Radio Professfonal Entertainers \square

Please send me the facts :
NAME
ADDRESS \qquad
\qquad
\qquad

ство Cartridge recorders from the world wide Plessey organisation meet the exacting demands of the broadcasting industry and other professional users-

CT80P Replay Model
Desk top or recessed desk mounting

CT80R Record/Replay Model
Desk top or recessed desk mounting

Made to the world's highest professional standards, the CT80 range of endless-loop cartridge recorders offer the user peak performance and long term reliability. Radio and TV programming is simplified with the versatile CT80! Here are some of the important features:
Precision engineered models are available for continuous, heavy duty Replay or Record/Replay applications \square Loading standard NAB type A, B or C endless-loop cartridges is a split-second, one hand operation \square The unique capstan motor, actuating solenoid and puck wheel assembly, as illustrated, gives instant start with direct tape drive \square The CT80 Series is constructed in interchangeable, modular form to allow fast changeover of assemblies for maintenance purposes \square Individual plug-in epoxy circuit boards are fully silicon solid state with telecommunication grade components \square Complete head assemblies and motor/transport assemblies are available, pre-aligned and ready for use \square All operating, cueing and remote control facilities meet the needs of the professional user for simple, efficient and thoroughly reliable operation \square Further information is available now by contacting us or your local Plessey office direct.

CT80R Record/Replay Model Standard 19" Rack mounting

PLESSEY

Model 9R-59DE

BUILT IN MECHANICAL FILTER

8 TUBES COMMUNICATION RECEIVER

- Continuous coverage from 550 KHz to 30 MHz and direct reading dial on amateur bands.
- A mechanical filter enabling superb selectivity with ordinary IF transformers.
- Frequency Range: 550 KHz to 30 MHz (4 Bands)
- Sensitivity: $2 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ Ratio (at 10 MHz)
- Selectivity: $\pm 5 \mathrm{KHz}$ at $-60 \mathrm{~dB}(\pm 1.3 \mathrm{KHz}$ at $-6 \mathrm{~dB})$ When
using the Mechanical Filter.
- Dimensions: Width 15", Height 7", Depth $10^{\prime \prime}$

Model SP-5D

- Communications Speaker which has been designed exclusively for use with the 9R-59DE.

Model HS-4

-Communications Head Phone

Model JR-500SE

 CRYSTAL CONTROL TYPE DOUBLE CONVERSION COMMUNICATION RECEIVER- Superfor stability performance is obtained by the use of a crystal controlled first local oscillator and also, a VFO type 2 nd oscillator.
- Frequéncy Range: $3.5 \mathrm{MHz}-29.7 \mathrm{MHz}$ (7 Bands)
- Hi-Sensitivity: $1.5{ }_{\mu} \mathrm{V}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ Ratio (at 14 MHz)
* Hi-Selectivity: $\pm 2 \mathrm{kHz}$ at $-6 \mathrm{~dB} \pm 6 \mathrm{kHz}$ at -60 dB
- Dimensions: Width $13^{\prime \prime}$, Height $7^{\prime \prime}$, Depth $10^{\prime \prime}$.

TO: B.H. Morris \& Co., (Radio) Ltd.
ww Send me information on TRIO COMMUNICATION RECEIVERS \& name of nearest TRIO retailer.

NAME: AGE:

ADDRESS

TRIO KENWOOD ELECTRONICS S.A. 160 Ave., Brugmann, Bruxelles 6, Belgium
Sole Agent for the U.K. B. H. MORRIS \& CO., (RADIO) LTD. 84/88, Nelson Street. Tower Hamlets, London E. 1, Phone: $01-7904824$.

6 industrial giants, 89 large manufacturers, 392 smaller manufacturers, all three Armed Services, most government departments including 10 Ministries, 23 public corporations, 43 educational authorities and Universities and countless radio and television retailers in 1,162 cities, towns
 and villages in 38 counties.

PINNACLE ELECTRONICS LIMITED AChILLES STREET • NEW CROSS 'LONDON S.E. 14
Telephone: All departments-01-692 7285 Direct orders-01-692 7714

WW-031 FOR FURTHER DETAILS

AUDIO \& DESIGN "HYPERTONE" LOUDSPEAKER

« Titanium Hyperbolic Radiating Element provides the highest standard of definition ever achieved.

* Beryllium Copper Suspension provides low distortion bass.
* Massive 6 lb . Ceramic Magnet for easier Power handling.
» Modular approach allows flexibility of design.
* Enthusiasts please note, the HYPERTONE reproduces everything.
* Frequency Response : Total integrated power within $4 \mathrm{db}-25 \mathrm{c} / \mathrm{s}$ to $22 \mathrm{Kc} / \mathrm{s}$.
\star Impedance at $400 \mathrm{c} / \mathrm{s}, 8$ ohms or 15 ohms.
\star Power handling 15 watts R.M.S.

HYPERTONE

Suggested Retail Price £18.15.0

Write for further details and nearest Stockist:-

 54 ROUNTON ROAD. KEITH MONKS (AUDIO) LTD. MERCURY CONTACT PICK-UP ARMS, MICROPHONES, FLOOR STANDS and BOOM ARMS

Complete precision soldering kit

This kit-in a rigid plastic "tool-box" - contains everything you need for precision soldering.

- Model CN 15 watts miniature iron, fitted $\frac{3}{16}{ }^{\prime \prime}$ bit.
- Interchangeable spare bit, $\frac{5}{32}$ ".
- Interchangeable spare bit, $\frac{3}{32}$ ".
- Reel of resin-cored solder
- Felt cleaning pad
- Stand for soldering iron
- Space for stowage of lead and plug
PLUS 36-page booklet on "How-to-Solder"-a mine of information for amateur and professional.

From Electrical and Radio Shops or direct from 4,6 Antex.
 dering . . . fingertip control . . . bits that do not stick to shafts . . . bits that slide over elements . . . sharp heat at the tip ... reliable elements . . . spares always available... in Europe, Africa, Asia, America . . . ANTEX soldering irons are used by experts and amateurs alike: they have found out the advantages of Antex . . . you can, too . . . buy one in a shop or direct from us . . . or ask for our catalogue first.

Model CN 240/2 15 watts- 240 volts
Fitted with nickel plated bit $\left(\frac{3^{\prime \prime}}{32}\right)$ and in handy transparent pack. From Electrical and Radio Shops, or send cash to Antex.

PRECISION MINIATURE SOLDERING IRONS Made in England

Antex. Mayflower House, Plymouth, Devon
Telephone Plymouth 67377/8. TELEX 45296
(Giro No. 258 1000)
CN 15 watts. Ideal for miniature and micro miniature soldering. 18 interchangeable spare bits available from $.040^{\prime \prime}(1 \mathrm{~mm})$ up to $\frac{3^{\prime \prime}}{16}$. For 240 . 220, 110,50 or 24 volts.
From Electrical and Radio Shops or direct from Antex.

E 20 watts. Firted with $1 / 4^{*}$ bit. Interchangeable sparé blts $3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}$. $3 / 6^{5}$. For $240,220,110$ or 24 volts. 35/-

ES 25 watts. Fitted with $1 / 8^{\prime \prime}$ bit. Interchangeable bits $3 / 32^{\prime \prime}$, 3) $16^{\prime \prime}$ and 1/4". Ideal for high speed production lines. For $240,220,110,24$ or 12 volts. 35/-.

F 40 watts. Fitted $5 / 16^{\prime \prime}$ bir.
Interchangeable blts $1 / 4^{\circ}, 3 / 1.16^{\circ}, 1 / 8^{\circ}, 3 / 32^{\circ}$ Very high temperature iron. Avallable for $240,220,110,24$ or 20 volts. 42/6. Spare bits and elements for all models and voltages immediately avallable from stock.

Please send me the Antex colour catalogue
Please send me the following irons
Quantity Model Bit Size Volts Price

Celestion PA

Loudspeakers for all Public Address Systems

Re-entrant Horns

These Horns are capable of delivering a highly concentrated beam of sound over long distances. They are recommended for recreation centres, noisy factories and workshops and all indoor and outdoor locations where a high noise level has to be overcome

Driver Units

Pressure type units are available with or without tapped 100 V line trans-
 formers. The following 'built-in' features are on all models - High Sensitivity, Weatherproof. Phase Equalising Throat and Self-centring Diaphragm Assembly

Re-entrant
Loudspeakers

Rola Celestion re-entrant loudspeakers are designed for use wherever conditions demand com pactness, toughness, high efficiency and unfailing service. They are rainproof and built to withstand prolonged exposure to vibration and adverse conditions.

Loudspeaker

 in Glass FibreThe Celestion Glass Fibre Loudspeaker is a compact robust and watertight unit, precision built for use on open boat decks, docks, chemical plants, plating shops, etc, where protection from the weather or corrosive atmosphere is vital

Rola Celestion Ltd. THAMES DITTON, SURREY TELEPHONE 01-398 3402 TELEX 266135

How do we intend to sell cynical old you our public address equipment?

By offering you the three things you really want.

1. Low Price (like column speakers from

 ع17.6.4.)2. Durability (we back our muscles with a two-year guarantee.)
3. Quality specifications (Check ours).

The Radon Public Address Range is wide and growing. It consists of amplifiers, speakers and microphone equipment. We show the M50/6 sixchannel amplifier. Specifications below.

output: 50 watts r.m.s. (max. 64 watts)
Output impedance and voltage: 15 .
ohms (other taps avallable), 156 ohms C.T. giving $50-0-50$ volts or 100 volts.

Harmonic distortion: Approx 1% at full
power. Frequency response: plus or minus $2 \mathrm{~dB} 20 \mathrm{c} / \mathrm{s}(\mathrm{Hz})$ to $35 \mathrm{Kc} / \mathrm{s}(\mathrm{KHz})$. Weight 381 b Models available: M50/4, M50/6, M50/8 (suffix refers to channels)

In addition. Ithe $\mathrm{M} / 100, \mathrm{M} / 250 \mathrm{M} / 500$ and $M / 1000$ are built 10 order. The suffix number refers to the wattage and preamplifying facilities are available as required

Radon / A growing name in amplifiers, wall speakers, sound columns, complete audio and hi-fi equipment, tuners \& industrial electronics.

[^0]
Name

Address

Pye Telecommunications is the world's largest exporter of radiotelephone equipment. Pye Radiotelephones are used all over the world to ensure instant contact. Pye research development and quality control really do keep in touch with tomorrow.

rely on

the vital contact

Elliott on-line computers are Europe's No. 1-and British to the memory core !
Elliott on-line computers are fast, reliable-available in quantity. Not through a sales office of a foreignbased company-but from a complete on-line computer design, manufacturing and servicing complex right here in Britain!
We've been making on-line computers longer than anybody. We graduated via instrumentation and control engineering-not punched cards or business equipment. For ten years, our 900 series computers have been used in every Elliott Automation computer-controlled system. This applications experience comes free with every computer.
Tested and proved under rigorous military conditions-Elliott 900 series computers have sold in hundreds throughout industry. They are compact, versatile, compatible, expandable, competitive-ranging from 12 to 18 bits and 32 K to 131 K words of core store.
For more information on prices, specifications, applications, deliveries-write, phone... or just call.

Mobile Computing Division
Elstree Way • Boreham Wood • Herts • England
Tel: 01-953 2030 'Member of G.E.C. - Marconi Electronics Limited'

Already in use in eighteen countries, the Dolby system is making master recordings which will withstand the test of time.

The system provides a full 10 dB reduction of print-through and a 10-15 dB reduction of hiss. These improvements, of breakthrough magnitude, are valid at any time-even after years of tape storage. This is why record companies with an eye to the future are now adopting this new revolutionary recording technique.

> A301 features: Easy, plug-in installation solid state circuitry . modular, printed circuit construction . high rellability, hands-off operation. Performance parameters such as disfortion, frequency response, transient response, and noise level meet highest quality professional standards.
> New
> A301 price: $£ 560$ f.o.b. London $\$ 1495$ f.o.b. New York

346 Clapham Road London S.W. 9 01-720 1111 . Cables: Dolbylabs London

333 Avenue of the Amerlcas • New York • N.Y. 10014 (212) 243-2525. Cables: Dolbylabs New York

FLOATLESS LIQUID LEVEL CONTROL

MICRO SWITCHES IMMEDIATE DESPATCH

STP Sub-Mini Process Timer SYNCHRONOUS MOTOR \& CLUTCH
Matchbox size frontal area. Automatic re-set.

*PLUG-IN OCTAL *BASE *instantanedus AND TImED DUT 2 AMP CONTACTS
*RANGES:
10 SECS. TO 36 MINS
approx. $\mathbf{f 5} \mathbf{5 . 0} 0$ each.
sYs MINI-TIMER

$\star 10$ MILLIONOPERATIONS \star SYNCHRONOUS MOTOR \& CLUTCH

* Instantaneous \& Timed out 3 AMP contacts.
\star Repeat Accuracy $\pm \frac{1}{2} \%$. 10 secs to 28 Hrs . May also be used as impulse start and automatic reset.
£11.0.0 approx. dependent on quantity.

TEMPERATURE CONTROLLER TYPE THP - Thermistor operated octal base plug in rr
Temperature ranges up to $280^{\circ} \mathrm{C}$
Hepeat Accuracy $\mathbf{3}$ amp
Complete with Thermistor
Approximately 615 dependent on quantity

10 AMP. C/O
MICROSWITCH
VV-1A
$\times 15 / 10$ AMPS. c/o
$\star 100,000$ ops.
ONLYeach per 1,000 $2 /-\quad$ Single Throw $1 / 6$ each

$\star 5 \mathrm{amp}$. OUTPUT CONTROL CONTACTS \star Solid State

* Octal Base plug-in

The most compact unit available, measures only $2 \frac{1}{2}^{\circ} \times 2 \frac{1}{}^{-1} \times 3^{*}$.

Approx. £4.0.0.

dependent on quantity.
SINGLE AND TREBLE STAINLESS ELECTRODES AVAILABLE.

NEW
Solid State Process
Timer type TDS latest circuit provides prolongeo accuracy - ix repeat accuracy

- octal base plug-n
- circuit contains built-in voltage STABILISER
- contacts: Timed our 5 amp c/0 Instamtaneous 0.15 amp normally open. 30 sec and 60 sec Linear dials. 110 and 240 VAC operated. Approximately

PROXIMITY SWITCH

* For Batching, Conveyors, Machine Tool Control, Packaging, Sorting, etc. \star Senses ferrous objects. * Needs no mechanical force or pressure to operate. * Solid state sensing head includes constant voltage circuit. \star Mains operated.
approx. 12.10 .0 dependent on quantity. OTHER INDUCTIVE AND CAPACITY TYPES AVAILABLE

* 1 Million OPS. 5 amp. c/o Sub-minia. ture Micro-switch. 2/6 each per 1,000

LINEIT SWITCH

 WL 10 FNJ * 10 AMP 2 CIRCUIT $\star 5$ INCH FLEXIBLE ACTUATOR as illustrated as LOW AS $53 / 9$ EACH. FIVE OTHER STANDARD types available

Suitable for
CONVEYOR SYSTEMS GRANULES PACKING MACHINERY POWDERS PRESS GUARDS

SLB CAPACITY PROXIMITY SWITCH

Senses any object : PACKETS BOTTLES CARTONS BOXES CANS
empty or full, ferrous and non-ferrous materials.

STAINLESS PROBE

remote from 240v AC Power Pack which incorporates own 5 amp relay.

Approximately $\mathbf{6 2 0 . 0 . 0}$ complete dependent on quantity.

Approx. 4/-each per 1000 Light force wire operated Micro-switch. Designed for even more economical coin operation mechanism.
U.L. APPROVED (Appr. No. 32667)

100,000 PRODUCTS IN STOCK! WHY WAIT?

Faithful Reproduction

with the

Grampian TC12 loudspeaker

The Grampian TC12 loudspeaker is a high quality twin cone unit at a reasonable price. The loudspeaker is built of high quality materials to a rigid specification and is eminently suitable for good quality sound reproduction. Let us send you full details or better still go and hear one at your local dealers now.

Design for suitable cabinet available.

Grampian manufacture high grade microphones, parabolic reflectors, windshields and accessories, also mixers and amplifies.

Grampian sound Equipment
integrity that you hear
Send for leaflet giving full details
CRAMPIAN REPRODUCERS LTD
Hanworth Trading Estate, Feltham, Middlesex
Tel: 01 - $8949141 / 3$ Cables REAMP. FELTHAM
WW-042 FOR FURTHER DETALS

CLEAR PLASTIC METERS Easy to read meters available in five basic sizes Model MR.38P. 1 21/32" square Model MR.45P. 2" square Model MR.52P. 2\%" square Model MR.65P. $3^{3^{\prime \prime}} \times 3^{1 / \prime}$ Model MR.85P. $4 \frac{3^{\prime \prime}}{} \times 4 \frac{1}{4}$

BAKELITE PANEL METERS Model MR. 65 3|'" square DELIVERY

Over 200 ranges available ex-stockother ranges to order -special quantity discounts.

Send for leaflet and price list to Sole U.K. Distributors.

LIMITED
4. LISLE STREET, LONDON, W.C.2.

Telephone: 01-4372723

WW-043 FOR FURTHER DETAILS

SERCEL

PROGRAMMABLE D. C. STANDARDS
Models 5500 \& 5501

D.C. voltage and current STANDARDS 109999 read-out, $1^{\prime \prime}$ high digits
2 voltage ranges: 10.9999 V \& 1.09999 V resolution $100 \mu \vee \& 10 \mu \vee$
2 current ranges: 10.9999 mA \& 1.09999 mA resolution $100 \mathrm{~mA} \& 10 \mathrm{~mA}$
STABILITY: voltage $0.005 \%+30 \mu \mathrm{~V}$
(1 year) current $0.008 \%+50 n A$
TEMPERATURE $<4 p p m+3 \mu V$ per ${ }^{\circ} \mathrm{C}$
CO-EFFICIENT $:<8 p p m+3 n A$ per ${ }^{\circ} \mathrm{C}$
Programming: Manual or Remote (BCD)
Response Time: within 10 milliseconds

BRITEC LIMITED

17 Charing Cross Road, London W.C.2. Tel: 01-930 3070

Telex 915854

prepare now for tomprow's

Today there is a huge demand for technologists such as electronics, nuclear and computer systems engineers. radio and television engineers, etc. In the future, there will be even more such important positions requiring just the up-to-date, advanced technical education which C.R.E.I., the Home Study Division of McGraw-Hill Book Co., can provide.
C.R.E.I., Study Programmes are directly related to the probiems of industry including the latest technological developments and advanced ideas. Students claim that the individual tuition given by the C.R.E.I. panel of experts in each specialised field is comparable in technological content with that of technical colleges.

Why C.R.E.I. Courses are best

No standard text books are used - these are often considerably out-of-date when printed. C.R.E.I. Lesson Material contains information not published elsewhere and is kept up-to-date continuously. (Over $£ 50,000$ is spent annually in revising text material.)

Step-by-step progress is assured by the concise, simply written and easily understood lessons.
Each programme of study is based on the practical applications to, and specific needs of, Industry.

Take the first step to a better job now-enrol with C.R.E.I., the specialists in Technical Home Study Courses.
C.R.E.I. PROGRAMMES ARE AVAILABLE IN:

Electronic Engineering Technology * Industrial Electronics for Automation * Computer Systems
Technology * Nuclear Engineering * Mathematics for Electronics Engineers * Television
Engineering * Radar and Servo Engineering
City and Guilds of London Institute: Subject No. 49 and Advanced Studies No. 300.

POST THIS COUPON TODAY FOR A BETTER FUTURE
To C.R.E.I. (London), Walpole House, 173-176 Sloane Street, London, S.W.1.
Please send me (for my information and entirely without obligation) full details of the Educational Programmes offered by your Institute.
My interest is City and Guilds \square please tick \quad General \square
NAME
ADDRESS

EDUCATIONAL BACKGROUND
ELECTRONICS EXPERIENCE

- $==$ TO AMBITIOUS ENGINEERS

Have you sent for your copy? ENGINEERING OPPORTUNITIES is a highly informative 132 -page guide to the best paid engineering posts. It tells you how you can quickly prepare at home for a recognised engineering qualification and outlines a wonderful range of modern Home Study Courses in all branches of Engineering. This unique book also gives full details of the Practical Radio \& Electronics Courses, administered by our Specialist Electronics Training Divisionexplains the benefits of our Appointments Dept. and shows you how to qualify for five years' promotion in one year.

SATISFACTION OR REFUND OF FEE

Whatever your age or experience, you cannot afford to miss reading this famous book. If you are earning less than $£ 30$ a week, send for your copy of "ENGINEERING OPPORTUNI TIES" today-FREE.

PRACTICAL EQUIPMENT
 Basic Practical and Theoretic Courses for beginners in A.M.I.E.R.E. City \& Guilds
 Radio Amateur's Exam.
 R.T.E.B. Certificate
 P.M.G. Certlicate Practical Radio
 Radio Television Servicing
 Practical Electronics Automation

INCLUDING TOOLS!

The specialist Electronics Division of B.I.E.T. NOW offers you a real lab. oratory training at home with practical equipment. Ask for details.

POST COUPON NOW!

Please send me your FREE 132-page "ENGINEERING OPPORTUNITIES"
(Write if you prefer not to cut page)

NAME
ADDRESS

(Dept. 303B), Aldermaston Court, Aldermaston, Berkshire

WHICH IS YOUR PET SUBJECT?

Radio
Television
Electronics
Electrical
Mechanical Civil
Production
Automobile Aeronautical Plastics Building Draughtsmanship B.Sc.

City \& Guilds
Gen. Cert. of Education etc., etc.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

WW-046 FOR FURTHER DETAILS

Suppliers of Elliott, Cambridge and Pye instruments

LEDON INSTRUMENTS LTD

76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8 Tel.: 01-692 2689

Why pay for more sophistication than you can use?

The majority of users of electronic test equipment require accuracy within a band of measurements that is common to many operators. The Dymar System of test inscruments covers this need ideally. We have avoided the temptation to include more sophistication than the market wants. This means that your budget will stretch further yet cover your project development, research or quality control. Plus features are:-
(1) all instruments are energised by a master meter unit.
(2) the extreme flexibility of a proved plug-in system and
(3) the money-saving aspect.

Our explicit Short Form Catalogie will give you a run-down on our 700 Series - just complete the coupon or just pin it to your letterhead.

DTMAR
 DYMAR ELECTRONICS LIMITED Colonial Way Radlett Road Watford Herts.
 Telephone: $21297 / 8 / 9$.

Please send me a copy of your Short Form Instrument Catalogue.

NAME
POSITION
COMPANY
ADDRESS

Advance make over 10r

Advance oscilloscopes give a choice from the simple OS 12 which was designed for educational and industrial monitoring applications at a cost of only $£ 30$, to the portable solid state OS2000/OS2100 range. The OS2100 has a bandwidth of 25 MHz at a maximum sensitivity of $10 \mathrm{mV} / \mathrm{cm}$. The main frame accepts a choice of $X \& Y$ plug-ins including the most versatile sweep delay unit currently available.
Mark the coupon for data on Advance oscilloscopes and plug-ins.

OSCILLOSCOPES £30-£425

Advance is the leading British manufacturer of Pulse Generators. Most versatile is the PG 52 Modular Pulse Generator System, which can be assembled from five signal generating and processing units to produce a wide variety of complex waveforms. Other models include the general purpose PG 56 and high power PG 55A. Ask for details.

PULSE GENERATORS 895-£490

Please mark this coupon for information and data and post to:

neasuring \& test instruments jenerous in specification, realistic in cost.

Advance make a range of compact and versatile timer counters for the measurement of frequency, period, time, and phase angle.
One of the most recent additions to the range, the TC8 system, is a modular time counter which can be assembled in a wide variety of combinations to give the user an instrument precisely meeting his specificațion. The main frame accepts a choice of factory fitted units for a display of four to seven digits and five input modules capable of measuring frequencies of up to 500 $\mathrm{MHz}_{\mathrm{z}}$. Other new counters include the $32 \mathrm{MH}_{2}$ TC9 and $15 \mathrm{MHz}_{z}$ TC11 and TC12.

TIMER GOUNTERS ©80-8800

The Advance digital multimeter DMM1, combines all the measurement capabilities of a conventional analogue multimeter with the undoubted advantages of a digital instrument at a cost of only $£ 175$. It gives completely nonambiguous reading of $A C$ and $D C$ voltages, currents and resistance.
The latest model, the DVM4, is a small dual slope integrating DC digital voltmeter with a 4 digit non-blink display, accurate to within 0.1% of reading.
There are ten digital and analogue voltmeters made by Advance plus a range of digital panel meters. Ask for details.

DICITAL VOLTMETERS \&99-81000

Please let me have full data sheets on the following advertised instruments.

I am interested as a Buyer/Engineer/Student.
I should also like do not yet need to see the equipment demonstrated.
Name.
Position
Sompany
4ddress. \qquad

I would like to have information about other instruments in the Advance range.
LF Signal Generators
RF Signal Generators
Digital Panel Meters
Laboratory Power Supplies
Educational Electronic Instruments
For information on products from other divisions of Advance Electronics Limited, please tick the appropriate box.
Industrial Control Equipment Printed Circuit Boards
Film Capacitors

Get across loud and clear with AKG microphones!

STRONGHOLD steel shelving that adjusts every inchof itsheight!

Immensely strong-completely adjustable, every inch. Delivered free, mainland, with spanner provided for erection in minutes. Buy it by the bay! (cash with order)
$73^{\prime \prime}$ high $\times 34^{\prime \prime}$ wide $\times 12^{\prime \prime}$
deep unit with six shelves in
heavy-gauge steel, stove
enamelled grey or green
£3.15s.-Brand newl See the
rest of the N. C. Brown rangel

토룡 N.C. BROWNLTD.
pacesetters in storage equipment
Send your FREE BRO.
ChURE Free bro
(how many) bays \square steel shelving $(\bar{a} E 3.15 \mathrm{~s}$ steel shelving © £3.15s. in green $\square \square$ grey (tick Address

Dept.WW Eagle Steelworks, Heywood, Lancs. Tel: 69018. London: 25-27 Newton St.. W.C. 2. Tel: 01 -405 7931

WW-053 FOR FURTHER DETALLS

Dependable can solve it! Price or delivery are better through Dependable. Dependable relays are produced to G.P.O. and Government specifications.

MICRO-SWITCH • TRANSISTORISED • HEAVY-DUTY A/C LATCHING . 'SPECIALS' MADE TO YOUR OWN DRAWINGS
No order is too small or too large for Dependable; the only thing we worry about is you, the customer. Send for a free quotation now and compare our prices - our delivery. Prototypes within seven days.

DEPENDABLE RELAY (CONTROLS) LTD.
157 REGENTS PARK ROAO LONDON N.W.1. 01-722 8161

The widest ranging and most comprehensive valve catalogue available from any independent supplier.

PINNACLE ELECTRONICS LTD achilles Street - mew Cross - LONDON S.E. 14
Telephone: All Departments-01-692 7285 Direct orders-01-692 7714

Thinking Panel Meters Think Fairchilid

Panel mounting digital meters making good products better

Fairchild instrumentation provides a comprehersive line of digital panel meters with Models 7020, 7030 and 7040. These are compact, low cost, quality, panel mounting units designed for easy access and use in system and OEM applications. All offer non-blinking digital display that is accurate, fast, and simple, utilizing the reliable Dual Slope integration technique,
The 7020 is a single range, single polarity, digital meter with th ree readout tubes and an overrange digit (1), eccuracy of $\pm 0 \cdot 1 \%, 1 \mathrm{mV}$ resolution over the standard 1.500 V F.S. range, and operates at 3 readings per second.
The 7030 and 7040 both offer the advantages of dual polarity and optional ratio capability in the same compact aluminium casting as the 7020. The 7030 is a three digit meter with overrange digit: acsuracy of $\pm 0 \cdot 1 \%$, reads at a speed of 6 readings per second. Faster reading speeds are available on special order. The 7040 provides four digits with overrange, increased accuracy at $\pm 0.05 \%$ at a speed of 6 readings per second.

The big name distributor for instruments, components.

semiconductors.

GDS (Sa esi Limited.
Michaelras House.
Salt Hill.
Bath Road.
Slough, Bucks.
Tel: SIlcugh 30211
Telex 34314 CHAMCOM GDS SLOUGH

TECHNICAL TRAINING by ICS IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the | C S-trained man. Let IC S train YOU for a well-paid post in this expanding field.
IC S courses offer the keen, ambitious man the opportunity to aequire, quickly and easily, the specialized training so essential to success.
Diploma courses in Radio/TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for:

* C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.
* C. \& G. ELEGTRONIC SERVICING.
* R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO amateur's EXAMINATION.
- P.M.G. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO COURSES
Learn as you bulld. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, signal generator, multi-test meter, and valve volt meterall under expert guidance. Transistor Portable available as separate course.
POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of I C S courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION
OF BRITISH CORRESPONDENCE COLLEGES.

* Operating small 400 Hz
* motors from 50 Hz Mains.
* Operating 60 Hz tape recorders, cine cameras, etc., from 50 Hz Mains.
* Replay 50 Hz sound and film recordings from 60 Hz supply.
For sound effects recordings.
ype FCA230/100V. Input V
Type FCB230/200V. Input Volts 200/250 AC
Output $115 / 250200 \mathrm{~W}$. E52.0.0. Send for leaflet:
SVALRADIO LTD., Dept. WF2, BROWELL'S LANE, FELTHAM, MIDDLESEX Tel: 01-890 4242 \& 3837

Static FEATURES

* Noiseless
* Compact

Frequency Stability better
Output Frequency 60 Hz or 50 Hz .
(40 to 10000 Hz to order.)

Will change 50 Hz to 60 Hz or any other frequency. Primarlly intended for operating and testing 50 Hz equipment from non-standard frequencies or for operating and testing 60 Hz equipment from a 50 Hz supply. The range comprises 100w and 200w units working from any input voltage and providing almost any output voltage required. The conversion principle is static and noiseless in operation. Special units to provide 400 to 10000 Hz for
\qquad 'VVV

$$
5+2
$$

\qquad v2
WW- 058 FOR FURTHER DETAILS

H.E MANPACKS

RACAL RANGE

 BROADENSThe RACAL manpack family is being constantly expanded to meet customer demand for manpack, vehical, maritime and static operation. The latest addition is the TRA. 922 'COMCAL' which offers 20 watts p.e.p. with 49 crystal-controlled channels. A wide range of ancillaries, common to the whole RACAL range, offers a choice of audio equipment, power units and antennas.

Theres much more to a PHILIPS microphone
 than meets the ear

It's the sound quality that really counts although impeccable appearance is certainly an asset. In fact, every aspect of microphone manufacture is covered by the makers of ten million of themPhilips. What's more, Philips make an unrivalled range of compatible equipment-amplifiers, loudspeakers, tape-recorders, record players and much more-for complete sound systems. All backed up by the finest service organisation in the country. Please ask for full information.

PYE TVT LIMITED
PHILIPS SOUND DIVISION
Addlestone Road, Weybridge, Surrey
Telephone : Weybridge 45511
Telex 262319

 HIGH POWER FLOAT BATTERY
 CHARGERS WITH AUTOMATIC CURRENT LIMITING
 \star Will charge batteries and feed external DC loads such as telemetry, logic, instrumentation, data processing.
 - Wide range of units, up to 400 V . and 1000 amp .
 * Sealed space for accumulators provided.
 * Will act as DC emergency power supply.
 \star Prevents overcharging.
 * Accumulator life prolonged.
 * Float or boost charging.
 - Ideally suitable for use with

 Typical Transireg with accumulator space.

First, measure it - on the Rank Studio Flutter Meter. The Type 1740 measures accurately the degree of Wow and Flutter on sound recorders' and reproducers.

For more information write to:

- $\begin{aligned} & \text { RANK } \\ & \text { STUDIO }\end{aligned}$

EQUIPMENT
Woodger Road, Shepherds Bush, London, W. 12. Tel. 01-743 2050

No tetrodes with higher linearity

In the power tetrode field we're defining the state of the art by demonstrating intermodulation distortion better than any other known tubes. In 1966 we introduced the 4CX1500B, a 1.5 kW tetrode with the highest linearity then known: better than - 40 dB 3rd order IM distortion. Since then we produced the 4 CX 600 J , a 600 watt tube with - 45 dB 3rd order IM products - without feedback - and later a 5 kW tetrode with the same figure. Now the latest tetrode in our program, a 15 kW tube, exhibits - 40 dB 3 rd order IM products. We can show IM distortion improvements from 10 to 20 dB in a practical quiescent plate current range.
Other tetrodes now under development will deliver up to 40 kW with linearity as high as - 45 dB IMD, according to preliminary data. Such performance advances are part of a long range program employing computer-assisted design studies to optimize internal tube geometry - all part of our plan to insure you get state of the art products every time you buy from Eimac.

For further information please contact:
Varian Associates Ltd.
Russell House / Molesey Road
Walton-on-Thames / Surrey / England
Tel.: Walton-on-Thames 28766

Exploring the Hewlett-Packar. Universe of Electronic Instrumentation

... it keeps expanding to reveal new solutions to your measuring problems.

1 Multi-function pulse generator
 2 A bestselling voltmeter
 3 X-Y recorders
 4 What ICs can do to counter prices
 5 Free book on power supplies

2 the man who thinks we are the voltmeter specialists

He is the chap who repairs automobile ignition systems in Karachi, or works on a radio production line in Copenhagen, or checks out household appliances in Kansas City. To him. Hewlett-Packard are the people who make the finest analogue voltmeters money can buy-accurate, versatile, reliable and sturdy. And our computers, multi-channel analyzers and 2000 other instruments? He's never heard of them.

> 1 How many generators did it take to produce these?

[^1]ur reputation with him rests on instruments like the 427A, an all-solid-state multifunction meter. It measures $A C$ over ten ranges, $D C$ over nine, and resistance over seven.
The $A C$ voltage range extends from 10 mV to 300 Vrms full scale ($10 \mathrm{~Hz}-1 \mathrm{MHz}$). $D C$ voltage range: 100 mV to 1000 V full scale. Accuracy for both ranges is $\pm 2 \%$. Resistance, from 10Q to 10 MQ is measured with $\pm 5 \%$ accuracy (mid-scale). Designed for broad laboratory, production line and service department application. indoors and out the 427A operates off battery or loptional) mains. hp 427A
and weight of our new counters were reduced and reliability was increased. Readout storage and zero blanking became possible.

ho $5321 \mathrm{~A} .5 \mathrm{~Hz}-10 \mathrm{MHz}$ counter with power line time base. Ideal for totalizing and measuring frequency and simple time intervals. Input sensitivity: 100 mV . Gate times: 0.1 and 1.0 sec. If you want $B C D$ output. 5 -digit readout. 0.01 and 10 sec gate times, and crystal time base, choose the hp 5321 B at f 354 excl duty. hp 5216A is a high-performance counter. It measures multiple period average. frequency ratio, multiple ratio, frequency and time interval. Input sensitivity: 10 mV . Frequency range: $3 \mathrm{~Hz}-12.5 \mathrm{MHz}$. 7-digit readout. Feature for feature, the

However exacting your recording needs. the 7004A and 7034A can cooe. Merely price of $£ 449$ excl. duty, will strike you as improbably low. Ask for data sheets and "hp Counter Selection Guide".
X-T plots... somerhing hitherto impossible. Yet plug-in versatility is only the beginning.
Consider their high dynamic performance Input range is continuously variable from $0.5 \mathrm{mV} / \mathrm{in}$. to $25 \mathrm{~V} / \mathrm{in}$. $10.25 \mathrm{mV} / \mathrm{cm}$ to $12.5 \mathrm{~V} / \mathrm{cm}$). Acceleration is better than $1200 \mathrm{in} / \mathrm{sec}^{2}$ ($3000 \mathrm{~cm} / \mathrm{sec}^{2}$) and slewing speed is $30 \mathrm{in} / \mathrm{sec} .(75 \mathrm{~cm} / \mathrm{sec})$.
Common electronics are located in the frame to eliminate circuitry duplications and reduce the cost of the plug-ins.
Plug-ins now available include dc coupler. dc amplifier, null detector, dc offset, filter. time base, and dc attenuator. With the new scanner plug-in, you can plot two dependent variables vs. one independent variable.
7004A (11" $\times 17^{\circ \prime}$) chart size
f 641 excluding duty
7034A (81/2" $\times 11^{\prime \prime}$) chart size $£ 548$ excluding duty
Your ho fie!d engineer can assist you in selecting the plug-ins best suited to your work. Why not give him a call?

5 Easiest way to pick the right DC power supply from among 113 models

Order this free book, and hp and your postman will do the rest.

4 Lucrative application for ICs: scaling down price of your next counter

21A 4.5. 6 digit readouts available
not only prices were affected when grated circuits were added. Both size

When you make as many power supplies as we do-113 models as we go to pressyou run into a problem. namely how to match each customer's requirements against all those power supplies.
The solution was to write a handbook and a catalogue about our power supplies. knock the two into one volumie, and cross-index it according to (1) model number. (2) type of instrument and output. and (3) electrical specifications.
Motivated by enlightend self-interest. we are here offering you the resulting
82 page book free of charge.
We strongly suspect you'll want to take up our offer. The more so since power supplies are no longer the "battery substitutes" they used to be. What with solid state reliability and remote control versatility, hp power supplies are today ready to play a vital part also in your applications.
Your free copy of "1969 DC Power
Supplies, Catalogue and Handbook," is waiting at your nearest hp office.
Just tell them to mail it

\title{

Introducing the SOLDERING IRON

Regd. Design No. $913799 . \quad$ Patent No. 1055352
FINISH: RED ANODISED ALUMINIUM Scale: $\frac{1}{2}$ Size
Aperture normally supplied .5 inch. Available .625 inch.
Manufactured by:

16 Rosebery Crescent, Woking, Surrey, England. Telephone WOKING 3592

STANGARD

STANGARD

STAND

STAND

THE STANGARD . . . designed for the electronic industry or wherever small soldering irons are in use.
Enables both element and bit to be completely shielded.
The interior section, being anodised black, has a "heat sink" effect and the red anodised canopy prevents personal contact with a hot iron by accident.
THE STANGARD . . . designed so that the soldering iron is easily withdrawable and in a position for direct application to the work. The bit cleaner is placed for ready use and a specially chosen material around a hard wood block makes for easy replacement.

Accurate and direct measurement of speed without coupling to moving

 parts
FRAHM

ResonantReedTACHOMETERS

for hand use or permanent mounting.
Ranges and combinations of ranges from 900 to 100,000 r.p.m.
Descriptive literaturé on FRAHM Tachometers and Frequency Meters is freely available from the Sole U:K. distributors:

ANDERS METER SERVICE

anders electronics lto. 48/56 bayham place, bayham street LONOON NW1 TEL: 01-387 9092.

TELEPRINTERS • PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUPMENT

Codes: Int. No. 2 Mercury/Pegasus, Elliot 803, Binery and speclal parpose Codes.

2-5-6-7-8-TRACK AND MULTIWIRE EQUIPMENT

telegraph automation ano computer peripheral accessories datel modem terminals, teleprinter switchboaros

Picture Telegraph, Desk-Fax. Morse Equipment; Pen Recorders; Switchboards; Converters and Stabilised Rectifiers; Tape Holders, Pullers and Fast winders; Governed, Sychronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass filters; Teleprinter, Morse, Teledeltos Paper, Tape and Ribbons; Polarised and specialised relays and Bases; Terminals V.F. and F.M. Equipment; Telephone Carriers and Repeaters; Equipment; Line Transformers and Equipment; Line Transformers and Noise Suppressors; Racks and Con-
soles; Plugs, Sockets, Key, Push, Miniature and other Switches; Cords, Wires, Cables and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.
W. BATEY \& COMPANY

Gaiety Works, Akeman Street, Tring, Herts.
Tel.: Trlng 3476 (3 lines) Cables: RAHNO TRING STO: 044282 TELEX 82362

LEVELL
 PORTABLE INSTRUMENTS

R. C. OSCILLATORS

With DIGITAL or ANALOGUE

frequency calibration

TYPE	TG66A	TG66B	TGI50	TGI50M	TGI50D	TGI50DM
FREQUENCY	0.2 Hz to 1.22 MHz .		1.5 Hz to 150 kHz			
ACCURACY	$\begin{aligned} & \pm 0.02 \mathrm{~Hz} \text { below } 6 \mathrm{~Hz} \\ & \pm 0.3 \% \text { from } 6 \mathrm{~Hz} \text { to } 100 \mathrm{kHz} \\ & \pm 1 \% \text { from } 100 \mathrm{kHz} \text { to } 300 \mathrm{kHz} \\ & \pm 3 \% \text { above } 300 \mathrm{kHz} \end{aligned}$		$\pm 3 \% \pm 0.15 \mathrm{~Hz}$			
DISTORTION	$<0.15 \%$ from 15 Hz to 15 kHz $<0.5 \%$ at 1.5 Hz and 150 kHz		$\begin{aligned} & <0.1 \% \text { at I } \mathrm{kHz},<0.3 \% \text { from } 50 \mathrm{~Hz} \text { to } 15 \mathrm{kHz}, \\ & <1.5 \% \text { below } 50 \mathrm{~Hz} \text { and above } 15 \mathrm{kHz} \text {. } \end{aligned}$			
SINE WAVE OUTPUT	Source voltage variable from $30 \mu \mathrm{~V}$ to 5 V . Output impedance 600Ω at all settings.		Source voltage variable from $250 \mu \vee$ to 2.5 V . Output impedance $<250 \Omega$ above $250 \mathrm{mV}, 600 \Omega$ below 250 mV . Less than 1% variation of amplitude throughout frequency range.			
SQUARE WAYE OUTPUT	None		None		Variable up to 2.5 V peak. Rise time 1% of period $+0.2 \mu \mathrm{~S}$.	
OUTPUT METER	Expanded voltage scales and -2 dB to +4 dB . Scale length $3.5^{\prime \prime}$		None	$\begin{aligned} & 0 \text { to } 2.5 \mathrm{~V} \\ & \text { and }-10 \mathrm{~dB} \\ & \text { to }+10 \mathrm{~dB} \end{aligned}$	None	$\begin{aligned} & 0 \text { to } 2.5 \mathrm{~V} \\ & \text { and }-10 \mathrm{~dB} \\ & \text { to }+10 \mathrm{~dB} \end{aligned}$
POWER SUPPLY	4 type PP9 batteries, life 400 hours, or, A.C. Mains when: selected by batteries repanel control placed by Power Unit		2 type PP9 batteries, life 400 hours, or, A.C. Mains when batteries are replaced by Levell Power Unit.			
SIZE	$7^{\prime \prime} \times 10 \frac{1}{4 \prime} \times 7^{\prime \prime}$ Weight 12 lb .		$10^{\prime \prime}$ high $\times 6^{\prime \prime}$ wide $\times 4^{\prime \prime}$ deep. Weight 6 lb .			
PRICES	$¢ 150$	¢120	$¢ 32$	≤ 42	$¢ 35$	445
+ Mains Power Unit + Leather Case	included	615	$¢ 710 \quad 0$			
	65	65	± 4100			

LEVELL ELECTBONICS LTD., Park Road, High Barnet, Herts. Phone $01-4495028$

Chetesulad

NEW

Litestat

TEMPERATURE CONTROLLED SOLDERING INSTRUMENTS

- Control within $\pm 2 \frac{1}{2}^{\circ} \mathrm{C}$
- Temperature infinitely adjustable while running
- Available for all voltages
- Built-in indicator lamp
- Cool, comfortable, unbreakable Nylon handle
- Range of bit sizes, Copper or Philips ironcoated

Please ask for leaflet LT. 5

LIGHT SOLDERNG DEVELOPMENTS LTD.

28 Sydenham Road, Croydon, CR9 2LL Telephone: 01-688 8589 and 4559

METER PROBLEMS?

A very wide range of modern design instruments is available for 10/14 days' delivery.

Full Information from:
HARRIS ELECTRONICS (London) 138 aravs inn road, w.c. $1 \quad$ Phone: 01/837/7937

WW-071 FOR FURTHER DETAILS

SPECIALIST SWITCHES are again giving the fastest switch service in the world

FROM THEIR NEW AND LARGER PREMISES IN CHARD, SOMERSET

Specialist Switches make Rotary and Lever switches, types H, DH, HC, and LO, to specification. There is one limitation (standard 2 in. long spindles), but this is not important when you are getting the fastest switch service in the world.

Delivery of 1-20 switches: 24 hours.
Up to 50 or so: 72 hours.
If you want around 250 or so: 7-10 days.
Please note our address:
SPECIALIST SWITCHES P.O. Box 3,

CHARD, SOMERSET
Write for design charts and prices or TELEPHONE-CHARD 3439

Switch to the biggest single switching source in Britain!

sealed contact reed relay TYPE EETNPT. Nc. A.

Whatever yout switching needs, Associated Automation can supply them-

YOU Want PARTS URGENTLY
 -almost immediately!

So what do you do?

You reach for the 'phone and dial ONO 239 8072, if it is anything made by the United-Carr Group. You will be surprised how soon you'll get what you want.
Your immediate needs are our business
We exist to supply the small user quickly with standard parts made by these Companies and carry large stocks of their fasteners and clips and a wide range of Radio, Electronic and Electrical components. We're geared to speedy handling and dispatch.
But you will need our latest
catalogue For quick and accurate ordering you should keep our comprehensive catalogue by you. This useful reference book gives full details of the wide range of parts we stock-nearly everything of the kind that you are likely to require.
Even though not ordering anything immediately, you should write now for this useful publication and so be ready to handle rush jobs whenever they arise.

United-Carr Supplies Ltd.,
Frederick Road, Stapleford, Nottingham.
Sandiacre 8072 STD ONO 2398072

Latest release in the range of LM Microphones is the most sophisticated design yet. The robust, metal construction with its good back-to-front discrimination is ideal for speech reinforcement systems and recordings.

Recommended retail price from $\mathbf{£ 1 2}$ including built-in cable and quick release stand adaptor, depending on impedances.
For details of the LM300 and other superb microphones in the LM range, please ring of write to.
London Microphone Company Ltd
182-4 Campden Hill Road, London, W.8. Telephone: 01-727 0711 (24 hour answering service) Telex 23894

WW- 075 FOR FURTHER DETALLS

5 S.N.s.
 Radio Microphones Under £100!

This is the Type Mk III system used in Universities, Churches, Schools and in Television and Film Studios. A reliable system at a reasonable price.

We also manufacture P.A. Amplifiers, Loudspeakers, Tuners, etc. for full details please contact ...
J.V.H. ROBINS, Marketing Director,
S.N.S. Communications Ltd.,

851 Ringwood Road,
Bournemouth.
Phone: Northbourne 4845.
A member of The Firth Cleveland Group

Datum
 Standard INSTRUMENT CASES

The DATUM range offers a wide variety of standard styles and sizes, and, apart from those illustrated, includes
larger cases to accept 19" panelmounted equipment.

ALL DATUM cases are engineered in modern styling and competitively priced.

* See the complete range of cases, racks and accessories on Stand H 436 at the London Electronic Components Show. OLYMPIA, May 20th-May 23rd.

DF CASES
DF 126: Overall Size:
$12 \frac{7}{6} \times 6 \frac{5}{16}$ (at back) $\times 8 \frac{29}{32}$ ins.
Other widths $16 \frac{1}{4}, 19 \frac{1}{4}, 24 \frac{1}{4}$ ins
DA CASES
DA 3U126: Overall Size: $12 \frac{5}{8} \times 6 \frac{7}{6} \times 7 \frac{3}{32}$ ins. Also $16 \frac{5}{8} \times 8 \frac{5}{8} \times 9 \frac{3}{32}$ ins.

DJ CASES

. (base) Other sizes: $11 \times 7 \times 7 \frac{1}{2}$ ins; $14 \times 8 \times 8 \frac{1}{2}$ ins; $17 \times 9 \times 9 \frac{1}{2}$ ins.

DINKICASES

DD 464 (horizontal): Overall Size: $6 \times 4 \times 4 \frac{1}{2}$ ins Other sizes: $8 \times 5 \times 5 \frac{1}{2}$ ins; $10 \times 6 \times 6 \frac{1}{2}$ ins; $12 \times 7 \times 7 \frac{1}{2}$ ins.
Also available as DU 644 (vertical).

DIECAST. BOXES

Available in 6 sizes from $4 \frac{3}{4} \times 3 \frac{3}{4} \times 1_{\frac{1}{6}}$ to $10_{4}^{\frac{3}{4}} \times 6 \frac{3}{4} \times 6 \frac{1}{6}$ ins.

ORADIONIC

RADIO \& ELECTRONIC CONSTRUCTION SYSTEM

Simple versatile exciting to use

A No. 4 SET and 6-TRANSISTOR SUPERHET

Clear, simple and rugged this unique system can build almost any electronic circuit. It is used by two thousand academic and industrial teaching establishments throughout the U.K. and by hundreds on the Continent and world-wide. Selected by the Council of Industrial design for all British Design Centres.

RADIO SETS NOS. 1 to 4.

Provide a continuous course from simple diode detector through audio amplifiers to 6-transistor Superhet.
ELECTRONICS SET: (4 STUDENTS)
For practical study. demonstration or experiment over a wide range of the basic electronic circuits.

THEORETICAL CIRCUIT
E/106 V.l.F. OSCILLATOR FOR METER OEMONSTRATION OF A.C. PRINCIPALS

RADIO SETS	No. 1	$£ 7$	10	0
	No. 2	$£ 9$	0	0
	No. 3	$£ 13$	10	0
	No. 4	$£ 18$	10	0
Electronics	Set	$£ 19$	7	0

POST FREE

Electronics Set £19 7 0

FULL DETAILS FROM
RADIONIC PRODUCTS LTD., (wws1)
ST. LAWRENCE HOUSE, 29/31 BROAD ST., BRISTOL BS1 2HF

Telephone: 027225351

"Q-MAX" sheet metal punches

FOR QUICK AND CLEAN HOLES

30 SIZES: ROUND:

$\frac{3^{\prime \prime}}{8}$ to $3^{\prime \prime}$

SQUARE:
$\frac{111^{\prime \prime}}{16}$ and $1^{\prime \prime}$
RECTANGULAR:
$\frac{211^{\prime \prime}}{}{ }^{11^{\prime \prime}}{ }^{\prime \prime}$

Full list on application

- Simple operation

- Quick, clean holes (up to $\mathbf{1 6}$ gauge mild steel)
- Saves time and energy
- Burr-free holes-no jagged edges
- Special heat treatment maintains keen cutting edge
- Anti-corrosive finish prevents rusting
- Used all over the world

Obtainable from Radio, Electrical and Tool Dealers, Wholesale and Export Enquiries to:-

WW-079 FOR FURTHER DETAILS

Cuterata

 LONG-LIFE BITS CUT COSTS

Chisel

Screwdriver

Conical

These new bits are electrolytically iron-coated over their whole length. giving tremendously increased life and freedom from seizure. Real savings in initial cost and maintenance of copper bits can be achieved by using Philips bits.

Now available in the shapes illustrated for all seven LITESOLD models (also fit similar $\frac{1}{8}{ }^{\prime \prime}, \frac{3}{16}{ }^{\prime \prime}$ and $\frac{1^{\prime \prime}}{4}$ bit types).

Send for further details:-

LIGHT SOLDERING DEVELOPMENTS LTD.,
28 Sydenham Road, Croydon CR9 2LL
Telephone: 01.6888589 \& 4559

Build a CCTV system matched toyourneeds

These Ampexvideotaperecordersall useone:inch format

Ampex do more than produce the finest quality closed circuit television (CCTV) videotape recorders. They give you flexibility too. All share the Ampex one-inch helical scan recording format which is rapidly becoming the World Standard. All are switchable to play back European or American standard tapes.
Use the VR-7803 or the VR-7003 as 'master units'use the VR-5103 to augment your system or as the

VR-5103 Videotape Recorder. Basic Price: $£ 856$ (Above) the basic low cost recorder in the range \square offers a better picture than any other in its price range \square needs minimum operator training \square its tapes play back on VR-7003, VR-7803 and vice-versa $\square 5$-minute forward and reverse spooling \square remote control facilities for play, record and stop \square high-quality audio response \square built-in amplifier and speaker \square weight only 65 lbs .
basis of your first low-cost installation. This is unique flexibility-means you can build up your own appli-cation-matched system of Ampex videotape recorders. You get maximum benefit from Ampex professional broadcasting techniques, and ease of operation over a vast range of 'instant-replay' uses. Think. Couldn't there be a place for Ampex in your professional life?

VR-7003 Videotape Recorder. Basic Price: $£ \mathbf{E}, 440$ This recorder (below) out-performs more costly equipment \square minimal operator training \square interchangeable with other Ampex CCTV recorders \square high-quality audio response \square built-in amplifier and speaker \square audio can be added after picture has been recorded \square second audio channel for cue purposes is optional extra \square slow-motion -2 to 20 fields per sec is also optional.

Video Tape Recommended for all Ampex CCTV recorders-high quality I-inch I-mil polyester base (Ampex 16 I series) $3,000 \mathrm{ft}$ for I hour on $94^{3^{\prime \prime}}$ reel.

Burlleros ceramics

for the ELECTRONIC INDUSTRY (and Electrical Appliance Manufacture)

Frequelex-for high-frequency insulation.

Refractories for high-temperature insulation.

Bullers porcelain for general insulation purposes.

Meticulous care in manufacture, high quality material, with particular attention applied to dimensional precision and accuracy, explain the efficiency and ease of assembly when using Bullers die pressed products.

Write today for detalled particulars.

BULLERS LIMITED

Milton, Stoke-on-Trent, Staffs.
Phone: Stoke-on-Trent 5432! (5 lines)
Telegrams \& Cables: Bullers, Stoke-on-Trent

6 mm tubular midget
flange $56 / 8$ cap
over-ali length 14.5 mm .

It is one of the many Vitality Instrument and Indicator Lamps that are made in an unusually large number of types, ratings and sizes. It may be just what you need for an existing or new project. If not, another from the hundreds of types and ratings detailed in the Vitality Catalogue may well be.

* Many a product owes its success to the intelligent addition of an indicator light.

VITALITY BULBS

VITALITY BULBS LTD MINIATURE AND SUB-MINIATURE LAMP SPECIALISTS BEETONS WAY, BURY ST.EDMUNDS. SUFFOLK. TEL. BURY 2071. S.T.D. 02842071

WW-0 083 FOR FURTHER DETAILS

Your guide to the world of semiconductors

Circuit designers have a complete guide to the complex world of semiconductors in Motorola's range of technical publications. Robust, indexed. illustrated and authoritative. Motorola publications. Indispensable reading for all circuit designers.

Zener Diode Handbook........................... 18s. Od.
Semiconductor Power Circuits Handbook
£1. 2s. Od.
Silicon Rectifier Handbook.................... 18s. Od.
Switching Transistor Handbook£1. 2s. Od.
Data Manual-1968 edition
\& Supplements
£2. 15s. 0d.
Integrated Circuits Design Principles
\& Fabrication
£5. 16s. 0 d.
Analysis \& Design of Integrated Circuits $£ 6.11 \mathrm{~s}$. Od.
Fundamentals of Integrated Circuits....£4.10s. Od.
Integrated Circuit Data Manual.........£2. 15s. Od.
Prices include postage.

All obtainable from
THE MODERN BOOK CO.
19-21 Praed Street, London, W.2.

controlled soldering starts with an Enthoven preform

New free booklet describes the complete range of Enthoven Solder products. preforms among them. Ask now for your copy of 'Soldering with Enthoven'.

The right amount of solder, in the right place, every time. The right alloy to suit the surfaces to be joined. The right flux for effective wetting. The right heat-source. Enthoven know about this kind of thing, will give advice, supply preforms-cored or solid. Controlled soldering means economical soldering. Soldering with Enthoven preforms saves solder, time and wastage. Cuts costs. Produces a stronger, cleaner job. Enthoven supply washers, rings, shims and strips in a wide variety of alloys, cored and solid, and design to meet special requirements.

L_ - - Head Office and Sales Office
Dominion Buildings, South Place, London, EC2
Telephone: 01-6288030

WW-085 FOR FURTHER DETAILS

110
 SEMICONDUCTOR PROJECTS

R. M. MARSTON, technical author and design consultant

This is a book which will appeal equally to the electronics amateur and to the professional engineer. 110 different circuits are described and the operation of each one is explained in simple and precise terms. The main feature of the book is that it fulfils a long-awaited need for readable information on these devices.

CONTENTS

30 Silicon-Planar Transistor Projects
15 Field-Effect Transistor Projects
20 Uni-Junction Transistor Projects
15 Silicon Controlled-Rectifier Projects
30 Integrated-Circuit Projects
128 pages 129 illustrations
25s. net case 25 s . 10 d . by post
18s. net Student edition 18 s . 10d. by post

ILIFFE BOOKS LTD

42 RUSSELL SQUARE, LONDON, W.C.1.

M. R. SUPPLIES, LTD., (Established 1935)

Oniverally recognimed an auppllers of UP-TO-DATE MATERIAL. Whlch does the job properly. Inatant dellvery. Satisfaction ansured. Prices nett.
FAN FLOW EXTRACTOR FANS. Undoubledly today's greateat bsrgain for domeatic or laduatrial use. Por $200 / 250$ volts A.C. 7.500 cu , ft. per hour. Fandy lintalled, fitted weatherproof louvrea
 MDIATURERUMMTMA TIME
MDIATURE RUNNING TIME METERS (Sangamo). We have great demands for this remariable
 Induatrial and domestic applications to liddoute the runing thae of any electrical apparatuan, easy
to install, $83 /-$ (dea. 1/6).
SYNCERONOUS TIME SWITCHES. (Another one of our popular apeciaitiles) $200 / 240 \mathrm{v} .50 \mathrm{c}$. , for socurate pre-set switching operctions. Bangamo s. 254 , providing up to 3 on-ott operstions per puctly housed 4 in din., 3 in deep, 68/4/6 (des. $4 / 6)$. Also ssme excellent make new domestio puctiy
model, no wring and easy setting and installation. Portable with lead mnd 13 -amp plug, bame
duty duty an above (leas day yomittligg), $24 / 14 / 0$ (des. 4/6). Full futructiona wlth ench.
ELECTRIC FAN8 (Papst), for extrecting or blowing. The moit exceptional ofter we have yet
 syall aEabep orons

 Ouly 68/6 (des. 3/\%).
mDIATURE COOLSIG FAMS. 200/250 v. A.C. WHh open type Ioduction motor (no Laterference),
 Hight duty extractoro, ele., fthe only $28 / 6$ (des. 4/6).
ARS BLOWERS. Highly efficent unlts fitted induction totally enclosed motor 230/280 $\quad .50 \mathrm{C}$.

 $1.5 \mathrm{WG}, 11 \times 8 \times 9 \mathrm{in}$., outlet 3 in. 19. ., $213 / 17 / 8$ (des. U.K. $7 / 8$).
sYMCERONOUS ELECTRIC CLOCK MOVEMERTS (an mentioned and recommended in many national fournale). $200 / 250 \mathrm{~F}, 50 \mathrm{c}$. gelf-atarting. Fitted apindlea for hourt, minutes and oentral sweep econd hands, Central one-hole fixing. Dia. 24 in. Depth behtid dial only inin. With

 (des. 2/-).
SMALL BENOH ORIMDERS. $200 / 250$ r. A.C./D.C. WIth two 31h. diameter, wheels (coarse and ane surtaces). Bench mount, very useful househoid or induatrial unlts. \&7/17/6 (des. 6/). EXTRACTOR FAMS. Ring mounted all matal conutruction. T/E inductlon motor, alent operatlon, Bin. blede. 10in. may. dia., 400 CF
max. dia., 600 CFM, $£ 6 / 12 / 6$ (des. $6 / 9$)
imyediate delivery of stuart Centrifugal Pumpa, incluting atainleas atec! (most modela).
M. R. SUPPLIES, Ltd., 68 New Oxford Street, London, W.C. 1
(Telephone: 01-636 2958)

Rendar control knobs are designed for fast, precise indication. Made in a variety of styles with wings, skirts, concentric and many other features, they are supplied in a range of materials, colours and finishes (including plated) to suit all needs.

Further information available from:

WW-087 FOR FURTHER DETAILS

$£ .98$

(MTBF > 10,000 hrs. STABILITY 0.1% p.a.)
roband 1500
a compact, four range (1 mV to 1000 V) digital voltmeter, with automatic sign change and accuracy of 0.2% of reading ± 1 digit.

WELWYN TOOLS

For Inner Core
Ejection and Heated
Wirestripping
Miniature Soldering
and Electronic
Instrument Work
USE W.T.C. Wire Ejectors, LUCO Elecirically Heated Wire Strippers (see illustration), Finest Soldering Needles, Box Joint Miniature Cutters and Pliers including Tip Cuesing Pliers, Printed Circuit Crimping and Cutting Pliers, Torque Wrenches and Piercing Punches, If you require quality tools If you require quality tools
ask for Catalogue $W W / 69$. STONEHILLS HOUSE WELWYN GARDEN CITY WELWYN GARDEN 25403

WW-091 FOR FURTHER DETAILS

audio
 tone burst generator

Frequency range 1 Hz to 20 kHz
Signal starting and stopping phase can be varied $\pm 30^{\circ}$ approx.
Pedestal output +5 Volts
Synchronising pulse +5 Volts 10μ secs.
Counts On and Off 2, 4, 8, 16, 32, 64, 128 cycles Price £125.0.0

Kelly Acoustics
Romagna,
6. Bycullah Avenue.

Enfield, Middlesex
Telephone 01-363 7890

This isn't just a sensitive, wide range, high accuracy A.F. power meter...

... it's an accurate voltmeter, too.

Linear power scales from $100 \mu \mathrm{~W}$ to 25 W f.s. in 7 ranges.

- Power accuracy $\pm 2.5 \%$ of f.s. at 1 kHz .
- 2.5Ω to $20 \mathrm{k} \Omega$ load impedance in 40 steps.
- Power measurement to 20 kHz .

9 voltage ranges from 15 mV to 150 V f.s. up to 1MIE.

50W overload protection on all ranges.

- dB scales.

On accuracy, sensitivity and power range alone TF 2500 outclasses all other a.f. power meters. But it has another unique feature-a built in voltmeter facility. Ideal for use on audio amplifiers, transmitter/receivers and transmission systems, it also allows accurate signal-to-noise and noise factor measurements on low noise equipment. TF 2500 provides a d.c. output to drive a digital voltmeter or recorder. It has full environmental specification to MID 1073. Battery operation makes the instrument fully self-contained. Price $£ 285$ fo.b. U.K. Write for full details.

Member of GEC-Marconi Electronics Limited
Longacres, St. Albans, Hertfordshire. Tel: St. Albans 59292 Telex: 23350

WHERE THE GOING IS TOUGH, THE NEED FOR QUALITY VITAL governments agree on teonex valves.

Governments all over the world have chosen TEONEX Valves for vital civil and military roles requiring compliance to E.V.S. or M.I.L. standards. In spite of rising demand for these valves from government departments the world over, increased production facilities have made it possible to offer the TEONEX range (incorporating the entire range of British-produced valves or their Continental equivalents) for use outside the U.K. only.
Price list and technical specifications may be obtained from:

TEONEX LIMITED

REGD. TRADE MARK

Export Enquiries Only Please!

2a Westbourne Grove Mews, London, W.II, England
WW- 094 FOR FURTHER DETAILS

Burgess instant heat solder gun

Only the tip heats-but fast! About 7 seconds! Pre-focused lamp lights the job up. Exclusive fulllength trigger on pistol grip eases finger fatigue. Finger-tight is right for screw-in tips - no pliers needed. Kit complete with conical tip, chisel tip, 6 " extension barrel, doubleended probe, gun and solder. £4 126 . Full details and nearest stockist from:

Burgess Products Co Ltd,
Sapcote, Leicester LE9 6JW

SPEED CHECK!
 Revs per Minute or anything else per minute-

P.I. ELECTRONIC TACHOMETER

Type P.I/L with light probe
Type P.I/M with magnetic probe

* Imposes no load
* No mechanical connection required
* Ideal for inaccessible places
* Lightweight for easy movement External D.C., Battery, and Marine engine speed versions available from-

NECO ELECTRONICS

WALTON RD., EASTERN RD.
COSHAM, HANTS.
COSHAM $71711 / 5$
WW-096 FOR FURTHER DETAILS

New Modulaturs

HATFIELD INSTRUMENTS LTD., Dept. WW, Burrington Way, Plymouth, Devon. Telephone: Plymouth (0752) 72773/4. Telegrams: Sigjen Plymouth.

HATFIELD BALUN

SOUTH-EAST ASIA-for prompt service and deliveries contact HATFIELD INSTRUMENTS (NZ) LTD., P.O. Box 561, Napier, New Zealand.
WW-097 FOR FURTHER DETALLS
New, versatile Hatfield Modulators Types MD4 and MD6 have been designed using the latest Schottky barrier diodes. The superior wideband match and low noise characteristics of these components enable a very high performance to be obtained. The dlagrams below illustrate some of the typical uses for these new units, which also have applications in phase lock oops.
Write now for detailed Data Sheets.

'Snale' Printed Circuit Connectors give exceptional mechanical rigidity and are easily inserted.
Send for full details of the range.

The Big Little Integrals That Can Make Or Break Your Product.

SYi73L
Single speed (2000 rpm) For record players.
DMF54R-02 Single speed (2400 rpm) For tape racorders.
RK201R Single speed (2400 rpm) For car players.
BF1ioR Single speed (2000 rpm) With electrical governor motor. For tape recorders.
BF 200R Single speed (2200 rpm) For car recorders \& players. ZF200R Variable speed (such as 1100, 2200 and 2800 rpm$)$ With brushless \& transistor motors. For de luxe record players \& electronic calculators.
VM250日 Single speed (3600 rpm) For auto tuners.
Specification for Sankyo micro motora

TMP	Demmeors		Raver Vontage (V)	Range of Notay (v)	$\begin{aligned} & \text { Raver } \\ & \text { lorue } \\ & \text { (} \mathrm{f} \cdot \mathrm{~cm} \text {) } \end{aligned}$	Ratec Soeed (mm)	$\begin{gathered} \text { load } \\ \text { Current } \end{gathered}$$(m A)$		$\begin{gathered} \text { Life } \\ \text { (HI) } \\ \hline \end{gathered}$	Oirection of Revolution
	$(\mathrm{m} / \mathrm{m})$	$\begin{aligned} & \text { Lengh } \\ & (\mathrm{m} / \mathrm{m}) \end{aligned}$								
EYi73L	40	32.4	6	4.5-6	3	2000	80	35	600	Left
DMFP4R-02	38	34.8	6	4.5-6	9	2400	140	30	600	Ruht
(0x 201\%	47.9	48	13.2	$10 \sim 16$	30	2400	210	100	1000	Right
EFrom	38	30	4.5	35-5.7	8	2000	160	30	1500	Rient
ef 200m	3	34.1	132	155-19-16	15	2200	180	30	1500	Right
2F200	46	50	9	6 - 9	20	2200	300	45	3000	Left Right
UP6EOT	20	4.5	4.5	$4 \sim 6$	14	$\begin{aligned} & 3700 \\ & 5000 \end{aligned}$	160	60	30	Right
VM2608	25	36.5	7	$6.5 \sim 1.5$	04	3600	15	25	500	Lent Reght

Sankyo(Europe) Export und Import G.m.b.H.: 4 Düsseldorf. Bahnstraße 45-47. W. Germany. Tel: 325652/3 Telex : 8587097 Cables: SANKYORGEL DÜSSELDORF
Sankyo Soiki M1g. Co., Lid.: 17-2. Shinbashl 1 -chome, MInatoku. Tokyo 105, Japan. Tel : Tokyo 591-8371 Cables: SANYORGEL TOKYO
American Sankyo Corp.: Rm. 801-3. 95 Madison Ave., New York, N.Y. 10016.U.S.A. Tel: LE-2-8020

NEW IMPROVED SIIIE andown

Model SR2

- Now with Safe Loading Meclanism which does not recoil on release.
- Adjustable Suction Control.
- Re-positioned Release Button for better handling of tool.
Instantly removes unwanted solder from printed circuits and all other solder joints without damage to unit or component. Saves valuable time resulting in increased production.

WW-102 FOR FURTHER DETAILS

AVONCELTM40 TROLLEY

EDITIONS FOR ALL MAKES AND MODELS OF OSCILLOSCOPES

PRICE INCLUDES DRAWER: CARRYING-UNIT: POWER-BOARD AND 2 BRAKED CASTORS.

AVON COMMUNICATIONS AND ELECTRONICS LTD. 318 BOURNEMOUTH (HURN) AIRPORT. CHRISTCHURCH. HAMPSHIRE TEL. NORTHBOURNE 3774. TELEG. AVONCEL, CHRISTCHURCH

Si451 Millivoltmeter

* 20 ranges also with variable control permitting easy reading of relative frequency response

JES AUDIO INSTRUMENTATION

Illustrated the Si453 Audio Oscillator

SPECIAL FEATURES:

* very low distortion content-less than . 05%
* an output conforming to RIAA recording characteristic
* battery operation for no ripple or hum loop
* square wave output of fast rise time
also available
Si452 Distortion Measuring Unit
* low cost distortion measurement down to 01% with comprehensive facilities including L.F. cut switch, etc. £25.0.0

Tо: NOMBREX LTD
Exmouth Devon. England
Please forward leaflets of your full range to:-
NAME

Please enclose 6d. stamps

Trade and Export enquiries please attach letterhead or Trade Card.

R. F. SIGNAL GENERATOR MODEL 29
Spin Wheel Tuning $£ 1.0 .0$ extra

MODEL 29-S

- $150 \mathrm{KHz}-220 \mathrm{MHz}$ on fundamentals - Eight clear scales. Total length 40" - Smooth vernier tuning-ratio $7 \frac{1}{2}: 1$ - Spin wheel tuning-optional extra - Magnifier cursor-precision tuning - Unique electronic scale calibration - Overall accuracy, better than 1.5% - Modulation, variable depth \& frequency

PRICE £20.0.0

MODEL 29-X

- Full specification of Model 29-S

AND
Integral Crystal Calibrator providing accuracy to $\pm 0.02 \%$

Wireless World

Electronics, Television, Radio, Audio

This month's cover picture shows crossover distortion occurring in a class B output stage. The low-level high-order harmonics contained in the apparently clean sinusoid are quite audible although amounting to less than 0.1% distortion.
I.P.C. Electrical-Electronic Press Ltd Managing Director: Kenneth Tett Editorial Director: George H. Mansell Advertisement Director: George fowkes Dorset House, Stamford Street, London, SE1

Contents

AUDIO AMPLIFIER SURVEY

i The Vital Statistics of an Audio Amplifier by R. Williamson
x Audio Amplifier Data

News of the month
New training group formed
On weather forecasting and tracking turtles
Television awards
258 Wireless World Logic Display Aid-2

Quasi-complementary Output Stage Modification by I. M. Shaw

Letters to the Editor
275 Modified Treble Filter for Bailey Pre-amplifier

284 Test Your Knowledge questions © answers by L. Ibbotson
A Transistor Multiplier Circuit by A.F. Newell
Letter from America
291 New Products
296 World of Amateur Radio
Components, complaints and complacency
F.M. Tuner using Integrated Circuits by 7. G. Newnham

Conferences and Exhibitions
H.F. Predictions
W.W. Reprints

Literature Received
Wireless World Units Converter
Mono into "Stereo" by S. Davies
Circuit Ideas
Operational Amplifiers-5 by G. B. Clayton

Computer Aided Design
Personalities
Wireless World Colour Television Receiver-13

C I.P.C. Business Press Ltd, 1969
Permission in writing from the Editor must first be obrained before letterpress or illustrations are reproduced from this journal. Brief extracts or comments are allowed provided acknowledgement to the journal is given.

How we made thyristors a commercial proposition for consumer products

Three years ago a Mullard design team was given the problem of developing thyristors for motor speed control in washing machines and drills. Thyristors offered important advantages over conventional power control methods, but at that time, production was confined to relatively expensive industrial devices. The high unit cost was essentially due to specialist production techniques.

Two Requirements The Mullard team set about designing inexpensive thyristors, together with triggering devices, for use on domestic mains supplies. Two current handling capabilities were identified as being necessary to meet the range of
applications-6.5A for washing machines and other heavy current loads, and 2A for drills and lighter loads.

Within six months two consumer type thyristors, BT101 and BT 102, had been developed for 6.5 A applications, and they were soon in mass production. Now these devices, in the TO-64 studmounted metal encapsulation, are well established.

Low-cost Plastic After further design work, a new plastic device, the BT100A, was introduced to meet the lower current requirements. Plastic power device technology is highly specialised, and only intensive effort over many years has resulted in the highly automated manufacturing techniques which ensure extremely good reliability.

Computer Testing To cope with the necessary high rate of production, computer techniques were introduced to record test results and to allow automatic grading. The testing cycle was significantly shortened by the use of high-current pulses for directly heating the thyristor crystal. This is one of the best automated methods of testing breakdown voltages at the highest junction temperatures.

The result? A range of thyristors capable of meeting all the consumerappliance manufacturers' current needs,
and of improving both the efficiency of power-control and the usefulness of the units controlled. They offer consumer product manufacturers smooth, continuous and efficient power control.

Worth it ? Right from the beginning we've had everything under our control, so that we can be sure the product will give consistent service. This also enables us to relate quality with the best possible price. Something which applies across the very wide Mullard component range. Our components find applications as unexpected as Astronomy and Zoology, giving us experience in many technologies. Experience our customers now take for granted.

Mullard

components for

 consumer electronics[^2]
Components, complaints and complacency

Editor-in-chief:

W. T. COCKING, F.I.E.E.

Editor:

H. W. BARNARD

Technical Editor:

T. E. IVALL

Assistant Editors:

B. S. CRANK

J. H. WEADEN

Editorial Assistant
J. GREENBANK, B.A.

Drawing Office:
 H. J. COOKE

Production:

D. K. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
J. R. EYTON-JONES
R. PARSONS (Classified Advertisement Manager)

Telephone: 01-928 3333 Ext. 538

We are constantly receiving letters from private individuals who are finding it impossible to obtain supplies of certain components and whose pleas to manufacturers and distributors are met with stony silence. Even the small company, not in the electronics field, which requires a special component for a one-off job-and which has the advantage of a company letter heading -sometimes receives the same treatment.

One of our correspondents, who was starting a small company, claimed he was asked for two trade references and the name of his bankers, and that was only in order to receive a catalogue!

However, component supply is the result and not the cause of the problem, the whole attitude of the electronics industry towards the private experimenter and the amateur is one of non-co-operation to the point of scorn. Why is this, when many of yesteryear's major innovations in radio and electronics emanated from the results of work carried out on a kitchen table?

In those days the amateur and the professional (often one and the same person) were working on similar problems and there was a mutual respect. The technology has advanced in leaps and bounds since then and industry is staffed with people who more than likely do not have an amateur background and who have no appreciation of the problems and frustrations that can face anyone trying to work on his own for interest, self-education or amusement.

Because of the great amount of publicity given to electronics, and the aura of mystery surrounding it in the eyes of the layman, more people are taking a practical interest. This has led to manufacturers and distributors being bombarded with letters requesting the solution to private electronic problems, many of which are nonsensical or frivolous, and others could have been answered easily if the writer had shown a little initiative or visited a good library. To answer all these queries would cost a company a great deal and what would they get in return? Perhaps an order for two or three components, the value of which may be less than the cost of the handling.
By making their components generally available on the retail market, to be bought by people who may not be qualified to use them, a company feels that it is inviting the sort of costly correspondence mentioned. The reason for the reticence in this respect can be understood.

All this has led to the present ultra-low status of the amateur in the eyes of industry and the reluctance of many concerns to accept small orders.

The industry does, however, have a responsibility to the public, even if it is only to maintain its own image, and attempts must be made to give assistance in genuine cases. Refusals because of a couldn't-care-less attitude can never be justified and small losses should be accepted at times.

Manufacturers could easily set up machinery to ensure that their products can be sold on the retail market through a distributor. Because of the difficulty in assessing the possible quantities required perhaps some sort of sale or return arrangement could be operated with the distributor. At the present time many components are completely unobtainable on the retail market.

In addition, all private individuals seriously interested in electronics should put their own house in order, and as a first step may well think of joining a club. If there is not one in the area-start one. The answer to nearly all the problems likely to trouble the experimenter could be found amongst a group of people with a common aim. Particularly difficult problems could be made club projects. Benefits could be reaped in terms of central facilities, pooled test equipment, tools and literature.

A great deal of useful work can be done by a well-run organization of this nature and the local community can benefit. For instance, club projects could aid local handicapped people, small electronic systems for local firms could be designed and constructed (power supplies, control systems, photo-electric switches etc.). Often these firms can advantageously use electronic equipment, but, because only a one-off is required, it is uneconomic to employ professionals to do the job.

The companies who supply components would, we feel sure, be more than willing to assist such organizations so long as things were done on a business-like basis. A good example of the sort of co-operation that can be achieved is to be seen in the components list for the Logic Display Aid in this issue.

F.M. Tuner using Integrated Circuits

Non-critical mono design with no i.f. and discriminator coils

by G. J. Newnham,* A.M.I.E.E.

The tuner described has been developed primarily for sound distribution systems but is also suited to home construction. For sound distribution systems reliability is of great importance since operation may be for up to 24 hours per day and service calls are expensive. This tuner has been designed to maximize reliability by eliminating the major causes of previous failure and drift in f.m. tuners. To achieve a high reliability factor in any electronic equipment the components themselves must be stable. The most unstable components in conventional f.m. tuners, apart from the valves, are the i.f. and discriminator coils. Thus, even if crystal control of the local oscillator is used, realignment will be required after a time. Now that integrated circuits with an indefinite life are available, if the i.f. and discriminator coils can be eliminated the reliability should be improved considerably.

With this philosophy in mind the design objectives aimed for were as follows:
(1) The requirement for servicing should be negligible, even after lengthy periods of continuous operation.
(2) The circuit should be non-critical such that if wired correctly it will work "first time".
(3) The assembly and alignment should require very little specialized knowledge.
(4) The circuitry should be the most up to date consistent with commercial economics.
(5) The electrical performance of the tuner should not be sacrificed in order to achieve the other objectives.

In accordance with these aims four integrated circuits are incorporated, but it is noticeable from the circuit diagram, Fig. 1, that a large number of discrete components is still necessary. This is because the i.cs are being used here as "powerful" discrete components and were not specifically designed as f.m. tuner circuits. The next step in the advance of integration, as production becomes cheaper and more efficient, will be an i.c. with a more specific system function, i.e. multiple functions per chip or package. There are signs of this already but such i.cs will still *Marconi-Elliott Microelectronics Lid.

Fig. 1. Circuit diagram of the f.m. tuner

require some discrete components to enable them to have a useful function. After this, or even alongside it, will come total integration of a complete electronic system such as an f.m. tuner, but it will be some time before it is a commercial practicality, even though the technical ability is available now.

The basis of the present design is a low frequency i.f. amplifier centred on 160 kHz , using three Marconi-Elliott E3016 monolithic dual differential amplifiers, followed by a pulse rate discriminator. This principle has been used in previous designs published in Wireless World ${ }^{1,2,3}$ and enables the conventional i.f. and discriminator coils to be dispensed with. The front end employs a Marconi-Elliott 316-04 cascode amplifier as a mixer with built-in oscillator, and has a broad tuned input circuit. Automatic frequency control is applied to the oscillator to ensure and maintain accurate tuning, allowing reliable push-button programme selection. This is all that is really required on v.h.f. and, as with crystal control, the human error involved every time the received station is changed is also eliminated. No r.f. amplifier stage is used.

Front end

The front end of a v.h.f. tuner is often the cause of poor performance owing to critical layout and adjustment; however, the rather unconventional approach used here has been found very uncritical and stable. The 316-04 i.c. (Fig. 1) is a multi-chip circuit providing useful power gains to frequencies in excess of 200 MHz and as such is being used well within its limits in this application. The lower transistor of the cascode pair in $I C_{1}$ is used as a grounded-collector Clapp oscillator at the fundamental frequency, 160 kHz away from the wanted signal. Owing to the nature of the a.f.c. characteristics the oscillator is always on the low side, but with a.f.c. off, the signal can be tuned in equally well either side. This oscillator configuration is basically stable because the already small transistor junction capacitances are not effectively magnified by voltage gain in the circuit and are therefore easily swamped by the tuned circuit capacitance. Crystal control can be used but crystals are expensive and would have to be specially made for each desired station. Measurements show that without the a.f.c. diode this oscillator moved less than 100 kHz at 100 MHz , when its supply voltage was increased from 10 to 20 volts. This shift is too small to lose a station which is correctly tuned in at 20 volts. A convenient point to monitor the oscillator output, if a valve voltmeter or sufficiently fast oscilloscope is available, is at pin 6 of $I C_{1}$ as it is at relatively low impedance. Approximately 80 mV should be measured at 90 MHz at this pin.

Fundamental as distinct from harmonic mixing was chosen as it gave the best and most consistent conversion gain of 16 dB at 100 MHz . Assuming that correctly set-up switched preset tuning is used, as is advocated with this design, no interference is experienced by adjacent tuners tuned to the same or different programmes.

The upper transistor of the i.c. acts as a mixer, being supplied at pin 1 with a signal from the broad tuned input circuit and local oscillator injection via the internal bias chain. Capacitor C_{13} on pin 3 serves both to ground the collector of the oscillator and to decouple the emitter circuit of the mixer at the i.f. frequency; its value affects the lower 3 dB point of the i.f. bandwidth. A 75 -ohm coaxial feeder is matched to the mixer by L_{1}, resonated by C_{1} and the input capacitance at pin 1 . The coupling capacitor C_{8} serves also to decouple the base of the mixer, which would otherwise tend to pick up strong low frequency interference. Capacitor C_{14} serves to cut the residual mixing products other than the difference frequency desired, and is used also to tailor the i.f. upper frequency limit. An input signal as high as 10 CmV does not
affect operation of the mixer, but protection against voltage transients on the aerial is no less necessary than with any other transistor input stage. As can be seen from the layout (Fig. 3), station selection is achieved with four preset trimmer capacitors selected with a printed circuit mounted push-button switch.

I.F. section

The i.f. section of the tuner amplifies signals centred on 160 kHz and has the advantage that its bandwidth can be defined by $R C$

Fig. 2. Circuit of the type E3016 i.c. used in the i.f. section of the tuner
Fig. 3. Component layout on the printed circuit board supplied by General Avionic Associates Ltd.

networks rather than by $L C$ tuned circuits. A further advantage is that a pulse rate discriminator ${ }^{4,5}$ cạn be used which provides a useful output voltage of excellent linearity without the necessity for alignment. An additional feature of this discriminator is that a direct voltage is available for a.f.c. purposes. A disadvantage of this system is that two tuning points occur per station, although only one is apparent with a.f.c. on. This makes it difficult to search for weak stations among strong ones, but where preset tuning is used this is of no consequence. Another disadvantage is interv modulation whistles, easily produced if the bandwidth is not tailored sharply enough and aggravated if the transfer characteristic does not produce symmetrical limiting. This design ensures a sharp cut-off by using three isolated $R C$ networks, and a symmetrical limiting characteristic is ensured by using a differential amplifier (Fig. 2) for each stage. The use of differential amplifiers also eases the supply decoupling problem, which is important with an overall i.f. gain, including the interface stage $T r_{2}$ of some 110 dB . Impedances in the i.f. chain are low, minimizing the likelihood of instability and spurious pick-up. As shown on the circuit diagram (Fig. 1) each i.c. is decoupled by a capacitor adjacent to the package.

The emitter follower stage $T r_{1}$ is necessary in order to maintain the conversion gain of the mixer, which would otherwise be reduced when working into the low input impedance of the i.f. amplifier. The resistors R_{5} and R_{6} provide a d.c. negative feedback path over the three E3016 stages. Capacitors C_{20} and C_{21} prevent a.c. feedback except at very low frequencies and hence, together with C_{17}, contribute to the low frequency cut-off of the i.f. response. The high frequency cut-off is determined by the $R C$ networks $R_{1} / C_{14}, R_{10} / C_{22}$ and R_{9} / C_{25}.

A symmetrically limited waveform of approximately 0.8 V peak to peak appears at pin 10 on $I C_{4}$ and to drive the discriminator this is increased to 5 V peak-to-peak by the interface stage Tr_{2}. The d.c. working point of this stage can be adjusted with $R V_{1}$ to suppress noise when a signal is not being received (see "Alignment procedure" section). It was not found convenient to plot the overall i.f. response because the amplification is such as to cause limiting on noise. However, on an oscilloscope frequencies from

Fig. 4. Completed prototype of the f.m. tuner

20 kHz to 350 kHz were observable as a c.w. signal was tuned through (with a.f.c. off).

Discriminator

The discriminator is a conventional pulse rate type ${ }^{6}$, the operation of which has been fully discussed in earlier issues of Wireless World, but its function basically is to produce a d.c. voltage output (across C_{31}) proportional to the frequency of the input signal. With suitable component values it can do this very linearly over wide frequency ranges and it has a certain amount of inherent de-emphasis. It is very important that the circuit be loaded correctly with a high impedance, otherwise reduced output and frequency-response distortion will result. For this reason and also to ensure that any length of screened lead may be used on the output without degrading the frequency response, an emitterfollower buffer stage has been included. In conjunction with C_{32}, C_{33}, R_{13} and R_{21} this serves also as a low-pass filter to further attenuate residual 160 kHz i.f. output without attenuating frequencies up to 50 kHz by more than 1 dB .

The a.f.c. voltage is applied to the variable capacitance diode D_{1} via R_{15} and R_{18}, the capacitor C_{19} ensuring closed-loop stability. The effectiveness of the a.f.c. can be increased or decreased by respectively decreasing or increasing these resistors, but care must be taken not to load the discriminator or make C_{19} too small. One effect of the latter can be to reduce bass response. The effect of the a.f.c. switch in the off position is to supply a fixed bias to the diode of the same value as it would receive from the discriminator when correctly tuned, thus simplifying setting up.

Construction

The double-sided printed-circuit board as illustrated (Fig. 4) together with all the necessary components are available, by mail order only, from General Avionic Associates Ltd, 9 Wimpole Street, London, W.1. The complete kit including i.cs and instructions costs $£^{9} 196 \mathrm{~d}$ and is perhaps the most straightforward form of construction for the amateur. Before mounting any components make certain that all the holes have been drilled, and insert the eyelets where indicated to join the two sides of the circuit board. If eyelets are not used it can be difficult to solder both sides, particularly with the i.c. leads. If all the components as listed are mounted with careful respect for polarity where capacitors, diodes, transistors and i.cs are concerned, and earth points are soldered both sides of the board, no trouble should be experienced. The board can be mounted such that the push buttons are accessible through a front panel. Use of an earthed metal cabinet is recommended and, if hum troubles are experienced, better supply smoothing may be required.

With some arrangements of the final system (tuner, p.s.u., amp., etc.) 50 Hz hum was experienced and traced to the a.f.c. line. This trouble was entirely eliminated by using in place of R_{18} an r.f.c. $(0.6 \mu \mathrm{H})$ consisting of 20 turns of 26 s.w.g. enam. wire close wound on a $10 \mathrm{M} \Omega \frac{1}{2} \mathrm{~W}$ resistor body. Also C_{19} was increased to $1 \mu \mathrm{~F}$. These modifications had the additional effect of increasing the low frequency response and appeared to seduce interference from electrical apparatus in close proximity to the tuner.

For those who wish to make their own layout there should be few problems as long as an 'earth plane' form of construction is used. This is very important, and ensures that different parts of the circuit that require to be earthed are earthed through the lowest common impedance possible. A convenient method of achieving this form of construction is to use a plain piece of singleplated printed-circuit board. Then, having decided on the component layout, drill holes where the component leads should go, arranging that the components sit on the same side as the copper. hoard with a continuous copper sheet on one side.

COMPONENTS LIST

Capacitors

1.5k	carbon film		dW	5\%
100Ω
8.2k
330Ω,
10Ω,	.
1k	..	.	-	',
2.2k	,
15k'
47k	:	.,	..	.
180k	.,	.	.	.
1.8k	..	.,	..	'
100k	.	-	\cdots	-
1.2k	.,	.,	$\frac{1}{2} \mathrm{~W}$.
180S	"	.,	$\frac{1}{2}$ W	.
$4.7 \mathrm{k} \Omega$	"	..	JW	'
150Ω	..	.	$\frac{1}{2} W$.
$5 \mathrm{k} \Omega$	preset			

4.5-20pF ceramic trimmers 10pF polystyrene 1,500 pF polystyrane
$0.1 \mu \mathrm{~F}$ matallized polyester
47pF polystyrene
22pF polystyrene
390pF polystyrene
$80 \mu \mathrm{~F}$ electrolytic. 16 V
$1 \mu \mathrm{~F}$ electrolytic, 6.4 V
3.300 pF polystyrene
$100 \mu \mathrm{~F}$ electrolytic. 6 V
100 pF polystyrene
1000 pF polystyrene
220pF polystyrene
120 pF polystyrene
$6.4 \mu \mathrm{~F}$ electrolytic. 6.4 V

4 turns 16 s.w.g. tinned copper 0.4 in dia. 0.5 in long tapped 3 turns from earth.
3 turns 16 s.w.g. tinned copper 0.4 in dia. 0.3 in long.

Integrated circuits

316-04 cascode amplifier. Marconi-Elliott Microelectronics. (Avaflent dual differential amplifier. Marconi-Elliott Microelectronics

Transistors
$T_{r_{1}}$
$\substack{r_{2}, T_{r_{1}}}$
D_{i}
Diodes
D_{1}
D_{3}
D_{3}
D_{4}
ME4103. BC107
MEO411. BCY70
BFY53, BFY50, 2N3053

BA110. S.T.C
IN916 silicon
12 V zener
6.8 V zener

Sundries

Double-sided circuit board
Push-button switch assembly. A.8. Metal Products Ltd
A.f.c. switch (not supplied in kit)

Transistor and diode mounting pads and clips
Heat sink for $\boldsymbol{T r}_{\boldsymbol{B}}$
rather than copper strips, is ideal as it saves drilling holes. Where the component leads are not required to be earthed the copper can be cleared away from these holes with a small twist drill and the leads fed through to the other side for wiring up. Wiring can be done with the leads themselves for the most part, but where cross-overs do occur an insulated wire link should be used. Where a component has one lead earthed, this can be done direct to the earth plane, no earth wiring being required. Using this system various layouts have been tried and all worked well.

Remote tuning by means of a d.c. voltage is easily achieved should it be required, but in order to obtain a sufficiently wide tuning range, some circuit modifications must be made. Fig. 5 shows the tuning voltage ($0-6 \mathrm{~V}$) applied to the a.f.c. diode from preset potentiometers remote from the board, C_{6} having been removed and L_{2} increased to 5 turns. Resistors R_{15} and R_{18} have been increased to $1 \mathrm{M} \Omega$, and if a $1 \mathrm{M} \Omega$ resistor is connected across the a.f.c. switch no trouble should be experienced when switching between stations. For maximum tuning range it is recommended that the supply to R_{3} be taken from the top of D_{4}, and a $1 \mathrm{k} \Omega$ resistor be connected from pin 6 of the 316-04 to ground. R_{20} and D_{3} are no longer required and only one trimmer capacitor is needed for setting the tuning range instead of C_{2} to C_{5}.
A voltage tuned version of the tuner designed for sound

Fig. 5. Modifications to the circuit to allow electronic tuning to be used
distribution systems can be obtained from General Avionic Associates Ltd.

Alignment procedure

No test equipment is required for alignment of the tuner but some form of monitoring is needed, either headphones direct on the output or an amplifier and loudspeaker. With the aerial disconnected adjust $R V_{1}$ for a maximum of rushing noise in the output. Assuming all is well this should occur over a small section of the track; either side of this should be silence. Set C_{1} about a quarter meshed-it can be peaked later if necessary-and connect an aerial. With a.f.c. switched off it should be possible to tune most of the f.m. band using an insulated trimming tool on any of the trimmers C_{2} to C_{5}, selected by the appropriate push button. If all of the available stations are not tunable, L_{2} can be stretched or compressed slightly to alter the coverage. To set a station, it should be approached from the low frequency end of the band, tuned for best output by ear, and then the a.f.c. can be switched on. If when the a.f.c. is switched on the station disappears or becomés distorted, the oscillator must have been set on the wrong side of the station. The best way to check that the oscillator is set correctly is as follows. Having obtained the station and applied a.f.c., take off the aerial and/or switch off the power supply and then reconnect. If the station is still there, all is correct; if not, the trimmer was set outside the a.f.c. locking range. This procedure can be repeated to set any station to any desired push-button. Four are provided, for Radio 2, Radio 3, Radio 4 and a local radio station if available. Once correctly set up the a.f.c. switch should not need to be used again.

Performance

The tuner has a sensitivity of better than $10 \mu \mathrm{~V}$ at 90 MHz for i.f. limiting. An audio output of 100 mV r.m.s. on an average programme can be expected but programme content varies greatly. Using a good aerial this degree of sensitivity has been found quite adequate in most parts of the country, but a pre-amplifier can be used in difficult areas. In the Chelmsford area of Essex, about 30 miles from the Wrotham transmitter, very good reception is obtained on a short length of wire at ground level, but for minimum pick-up of electrical interference a dipole as high as possible is recommended.

Fig. 6. A suitable power supply for the tuner. T_{1} is a Radiospares Ltd "Hygrade" filament iransformer

Current consumption is between 120 and 150 mA at 12 V which makes the tuner unsuitable for portable use on dry batteries. However, for the majority of applications mains derived supplies are available (see Fig. 6) and if the tuner is used in a car there should be no power consumption problem.

Performance on stereo

From tests made using a modified Mullard stereophonic decoder it appears that the tuner will not give an adequate performance on stereo broadcasts. The modifications to the decoder were necessary to ensure that the correct impedance and signal levels were obtained. However, channel separation at 440 Hz was only 6 dB . This result may have been due to a limitation of the decoder, which had no provision for subcarrier phase control, but a more likely reason is that the i.f. frequency of the tuner is too low and the bandwidth inadequate for stereo.

In order to eliminate the possibility of intermodulation whistles in the output caused by mixing of 160 kHz with regenerated 38 kHz and its harmonics a special filter is required to remove residual i.f. content. The amount of filtering incorporated in the tuner as it stands was found to be insufficient in this respect.

Acknowledgement. The author thanks the Managing Director of Marconi-Elliott Microelectronics for permission to publish this article.

REFERENCES.

1. "Wireless World Crystal-Controlled Transistor F.M. Tuner". Wireless World, July 1964.
2. "A Simple Transistor F.M. Tuner" by J. C. Hopkins. Wireless World, September 1965.
3. "Pulse counting F.M. Tuner" by E. D. Frost. Wireless World, December 1965.
4. "Letters to the Editor" on "The Diode Transistor Pump". Wireless World, September 1966.
5. "The Diode Transistor Pump" by D. E. O'N. Waddington. Wireless World, July 1966.
6. ibid. Fig. 5.

Conferences and Exhibitions

LONDON

June 10-20
I.M.E., Mark Lane

Marine and Shipping Conference
(Institute of Marine Engineers, 76 Mark Lane, London E.C.3) June 18-27

Interplas: Plastics Exhibition
(Iliffe Exhibitions Ltd., Dorset House, Stamford Street, London S.E.1)

EASTBOURNE

June 3-5
Congress Theatre
Microelectronics Conference
(I.E.E., Savoy Pl., London W.C.2)

MANCHESTER

June 30-July 3
U.M.I.S.T.

Computer Science \& Technology
(I.E.E., Savoy Pl., London W.C.2)

OVERSEAS

June 1-14 Chania, Crete
Growth and Characterization of Electronic Materials
(E.D. Haidemenakis, 2 rue de Furstenberg, Paris 6e)

June 9-10
Chicago
Broadcast and Television Receivers
(I.E.E.E., 345 E.47th St., New York, N.Y. 10017)

June 9-11
Communications Conference
(I.E.E.E., 345 E.47th St., New York, N.Y. 10017)

June 15-22
Paris
Navigation Congress
(Int. Assoc. of Navigation Congresses, Quartier Jordaens (Rez-deChaussee), 155 rue de la Loi, Brussels 4)
June 16-21
W'arsaw
I.F.A.C. Automatic Control Congress
(U.K. Automation Council, c/o I.E.E., Savoy Pl., London W.C.2) June 17-19 Asbury Park, N.J.
Electromagnetic compatibility Symposium
(C. Joly, Honeywell Inc., POB 54, Eatontown, New Jersey 07724)

H. F. Predictions-June

> - Median standard M UF
> $=-=-=$ Optimum traffic irequency
> $-\cdot-=$ Lowest usable HF

The graphs, which are prepared by Cable \& Wireless Lid, show median standard MUF, optimum traffic frequency and lowest usable frequency (LUF) for reception in this country.

Decreasing solar activity over the past months has lowered MUFs to a greater degree than LUFs; this reduction of usable spectrum will continue for several years with consequent increase in mutual interference problems. Summer conditions, where daytime MUFs are depressed as for Hongkong and Montreal, further aggravate this situation.

Ionospheric and magnetic disturbances have become more frequent of late and can be expected to continue with an occasional complete fade-out.

News of the Month

New training group formed

A working group on scientific and technical nanpower has been set up by the Electronic Economic Development Committee (the "litle Neddy" for electronics). One of its main asks will be to determine the future trained nanpower needs of the industry and, in doing this it will take into account the indings of earlier studies in this field.
The group will suggest to E.D.C. the nethods which they should employ to influnce the bodies responsible for training and leploying manpower.
E.D.C. say that the U.K. is spending about , $1,000 \mathrm{~m}$ a year on research (approx. 2.8 per ent of the gross national product); only smerica and Russia spend more. E.D.C. -hink that the return from this very large nvestment is very small in terms of benefit to -he community and to the electronics indus-$-r y$, and, when judged by the overall perforlance of the economy, they feel that the R \&) effort has not been adequately reflected in he country's economic growth and producivity.
With this background in mind the group ill re-appraise earlier studies of university nd industrial deployment of scientists and echnologists, with particular reference to the electronics industry.

رow-cost automation centre

nexpensive methods of automation will be emonstrated in the West country in a new entre at the Plymouth College of Technoloy. The centre was opened on April 2nd and pas the result of co-operation between the ollege and the Ministry of Technology. It rill provide specialized training and conultancy services for West Devon and Cornsall.

On weather forecasting and racking turtles

in equipment being tried for the first time in the satellite Nimbus- 3 will interrogate all tanner of strategically placed sensors on arth and transmit the total acquired data to central earth station for processing. The
system is called the Interrogation Recording and Location System (I.R.L.S.) and it works in the following manner.

Sensors, and appropriate electronics, are placed at various points on earth along the satellites orbit. These may measure temperature, pressure, water currents, salinity or anything else that can be converted into an electrical quantity. The sensors do not have to be fixed and may be installed on free floating buoys, in balloons, in aircraft, in boats, or on land. It is a feature of the I.R.L.S. to track the sensors and keep a record of their position.

At the start of each polar orbit a ground station (at Alaska or Maryland) commands the satellite to interrogate various sensors at particular times. The times are calculated to ensure that the satellite is within range of the required sensor and are based on predictions based on earlier movements of the sensors.

At the appropriate moment the satellite transmits the address code of the required sensor. The sensor acknowledges by transmit-
ung its address code and the satellite commands the sensor to transmit data on existing conditions which are then stored in the satellites' memory. Also recorded in the memory is the exact time of the interrogation and the satellite-to-sensor range for tracking purposes.

On the next pass over the main command control centre the satellite is instructed to transmit the contents of its memory. After suitable processing the data are available for distribution to users.

Apart from weather forecasting the applications of the I.R.L.S. are numerous; for instance the migratory habits of birds, sea life and animals could be studied. Sensors attached to the backs of giant sea turtles, which regularly migrate across the Atlantic from the Caribbean to Africa, would enable their exact course to be plotted.

The I.R.L.S. which has been developed by Radiation Incorporated of America, fitted to Nimbus-3, will interrogate up to 20 sensor stations in one polar orbit. Under a 3 M dollar development contract awarded to Radiation by the N.A.S.A. Goddard Space Flight Center an advanced I.R.L.S. is to be built for Nimbus-D (due for launching in 1970) which will interrogate as many as 370 sensors in a single orbit.

Television awards

The first recipient of the Gold Medal of the Royal Television Society is Douglas Birkinshaw "for his outstanding contributions to television during his service with the B.B.C. television from 1932-68". Mr. Birkinshaw, who received the medal at the Society's annual ball on May 9th, was engineer-in-charge at Alexandra Palace for the opening of the B.B.C. television service in 1936 and at the

In the background the B.B.C. advanced field store standards converter, and in the foreground members of the two teams from the B.B.C's Research and Design Departments who were responsible for developing the converter. They are (left-to-right, back row) Eric Rout, David Kitson and Robert Harvey; (front row) George Hunt, Stanley Edwardson, Robin Davies and Peter Rainger

time of his retirement a year ago was general assistant to the director of engineering.

The Society's Geoffrey Parr Award was presented by Mrs. Parr to Eric Rout, head of electronics group, B.B.C., and his team' 'for their outstanding work in the development of the advanced field-store television standards converter". The team has also received the Queen's Award to Industry for this project. The system enables 525 -line, 60 -field N.T.S.C. colour signals to be converted to European 625 -line 50 -field PAL or SECAM standards. The equipment is now in regular use by the B.B.C. The inventor of the system, Robin Davies, received the Pye travelling scholarship, worth 1000 guineas, pluş a trophy "for the most significant technical contribution during the year to the development of colour television". Mr. Davies, who is 34 , joined the B.B.C. Research Department in 1958, and transferred to the Department's Television Group in 1963. He described the converter in our January 1969 issue.

The Baird Travelling Scholarship, worth K350 and financed by Radio Rentals, was received by Chrisiopher Jeggo at present studying for a degree of philosophy at the Clarendon Laboratory, Oxford University Physics Department where he is engaged in research in non-linear optics.

The Emley Moor Saga

March 19th, 1969: Tubular steel mast (1250 ft) collapses; much speculation as 10 the economic consequences, some sources predict that Yorkshire Television will also collapse because of lost advertising revenue.

March 23rd, 1969: zip-up reduces embarrasment; Yorkshire TV once again on the air serving a reduced number of viewers thanks

The business end of the new 675-ft mast. The aerial, consisting of full-wave dipole panels, was built and erected by E.M.I. in only 20 days.

to a hurriedly installed 200 ft zip-up aerial. Coverage quickly further increased due to the rapid commissioning of a relay station in Sheffield.

March 29th, 1969: first sections of a 675 f mast supplied by Sweden arrive at Manchester Airport. March 30th, 1969; Remainder of new aerial shipped into Hull.

April 16th 1969: Y.TV. back on the air to all its viewers, "give or take a few hundred".

The precise cause of the failure of the original mast has still not been officially announced as an independent inquiry committee is still investigating.

The old mast, which was fully insured, cost about $£ 300,000$. The new mast, when it is fully equipped with u.h.f. aerials will cost something like $£ 100,000$. Studies are being carried out to determine the best ways of ensuring full u.h.f. coverage of the area.

Our comment; A darn good performance by all concerned!

Electronic page composing system

A great deal of the text in Wireless World is set on a photo-typesetter at our printers, Southwark Offset. Basically the text is translated to a digital form on a punched paper tape. This tape is fed into a computing system; which holds such details as column width, type size and other relevant information; and which produces another punch tape containing in addition to the text, control information for a photo-typesetter. The photo-typesetter responds to this tape and produces a film containing the text set to column width.

This film, together with film containing the photographs and drawings, is assembled on acetate sheets from which the printing plates for the offset press are produced using a photo-chemical process.

A system has just been devised by R.C.A. which enables the drawings as well as the text to be handled in digital form. This means that text and drawings (not photographs) can be assembled by a computing system and a film of a complete page can be produced in one go.

The text and drawings are digitized and reproduced on a high-resolution c.r.t. (1,800 lines per inch) and projected on to the film. The equipment, which is known as the Video Text $70 / 840$, will also produce a microfilm of a complete page for storage purposes. Text is set at 6,000 characters per second.

A software package that can be used with the system enables computer tapes, originally intended to be reproduced by a standard line-printer, to be produced with various sized types (4 to 96 point) with bold headings, sub-headings, capitals or small letters and with footnotes.

Integrated circuit lecture tour

This year's Mullard lecture tour, which will visit 76 centres in the U.K., deals with the use of integrated circuits in domestic ap-pliances-radio, 'TV, cameras, cars, etc., and
prophesies that each car built by 1975 will contain about 100 integrated circuits.

The Mullard lectures, intended for service technicians, have been going on now for nearly 15 years and it is expected that attendance this year will approach the quarter-of-a-million mark. The present session started in Southampton on May 5th.

As components shrink companies expand

Following their recent acquisition of the Controls and Communications group of companies, Racal Electronics Ltd, have been doing some internal re-organization. Racal Communications have been brought together with BCC L.td in a new company, RacalBCC Ltd, that will be responsible for marketing for the three group companies concerned with radio communications (Racal-BCC Ltd Racal-Mobilcal and BCC). The new company will operate from premises at Bracknell.

Airmec Instruments Lid has been amalgamated with Racal Instruments Lid to operate as the Airmec division of that company.

In order to control central services used by members of the group, and to introduce new services as they are required, a new company, Racal Group Services Lid, has been formed.

A sales office in Singapore, previously handling work for Racal Communications, has now been made into a company, Racal Electronics (Asia) Private Lid. This is an addition to other Racal companies now existing in Australia, Canada, Germany, S. Africa and U.S.A.

Space centre at Bristol

The Guided Weapons Division of the British Aircraft Corporation is building a centre at Bristol which will be used for the construction and testing of satellites and space systems. The first job to be undertaken at the new establishment is the building and testing of two Intelsat-4 communication satellites.

I.R.D. and Imperial College collaborate

With the aid of a grant from the Science Research Council of $£ 62,338$ the International Research and Development Company and the plasma physics group of the Physics Department, Imperial College, London, are embarking on a study of non-equilibrium phenomena in a steadily flowing plasma.

One of the objects of the programme is to substantially increase the effective conductivity of a flowing plasma so that a strong interaction between the moving gaseous conductor and a magnetic field can occur.

Some of this work will be done using I.R.D's continuously flowing magnetohydrodynamic plasma apparatus in which very pure helium is circulated at velocities ap-
proaching Mach 1 at temperatures up to $2,000^{\circ} \mathrm{K}$. The gas is "seeded" with a small amount of caesium vapour which partially ionizes to form an electrically conducting plasma.

Solved! or instant jargon

It can now be revealed how some manufacturers and most public relations consultants (particularly American) manage to baffle us all with page after page of high-sounding-incomprehensible-text. They use the new Honeywell "Buzzphrase generator" which will produce a suitable sentence if fed a four digit word. For instance:- 7026 gives:"Based on integral subsystem considerations a primary interrelationship between system and /or subsystem technologies maximizes the probability of project success and minimizes the cost and time required for the evolution of specifications over a given time period." Which might just as well be applied to a rabbit hutch or a computer.

Appleton memorial lecture

The Royal Society's British National Committee for Radio Science has proposed that at the triennial General Assemblies of the International Union of Radio Science an Appleton Memorial Lecture be delivered by a leading scientist working in the field of ionospheric physics. The lecture is to commemorate the work of the late Sir Edward Appleton, one of this country's foremost radio physicists and a pioneer in the field of ionospheric research, and particularly his long association with the International Union of which he was president from 1934 to 1952. The Royal Society is providing the honorarium to be awarded to the lecturer.

The first lecturer will be Professor W. I. Axford, of the University of California, distinguished for his contributions to upper

The picture shows a Marconi portable television recording unit (shown at ITEX 69) recording an industrial training film.
atmospheric physics including his wind-sheer theory of the sporadic-E layer of the ionosphere. He will deliver his lecture at the General Assembly of the Union in Ottawa in August 1969.

British companies at WESCON

Under the auspices of the Electronic Engineering Association, and within the Board of 'Trade joint venture scheme, fourteen British companies will be participating in the Western Electronics Show (WESCON) to be held at San Francisco in August. The firms are, A.E.I., AVO., B.P.L., Ekco, Ferranti, Hawker Siddeley Dynamics, Hellerman, Jermyn Industries, L.C.R. Components, M-O Valve, Racal, Rank, Redifon, and Stow Electronics.

An order for close on $£_{1} 1 \mathrm{M}$ has been received by Plessey from the Commonwealth Bureau of Meteorology for 12 type WF44 meteorological radars. The photograph shows the control panel of one of the WF44 equipments.

Announcements

"Microelectronics for the Circuit Designer" is the title of a six-day residential course to be held at the University of Surrey from September 24th to October 1st. Details are obtainable from the Course Organizer, Department of Electrical and Control Engineering, University of Surrey, Guildford, Surrey. Fee $£ 54$.
A.S.E.E. The Association of Supervising Electrical Engineers has adopted the revised title "The Association of Supervisory and Executive Engineers" and membership will no longer be restricted to electrical engineers.
The Ministry of Technology, on behalf of the Ministry of Defence, has placed an order worth almost $£ 400,000$ with the Solartron Electronic Group Lid, for an Air Electronics Trainer for the Royal Air Force.
G.E.C. Electronic Tube Co. Ltd has been formed to unite the activities of M-O Valve Co. Lid and English Electric Valve Co. Lid. Both $\mathrm{M}-\mathrm{OV}$ and E.E.V. will continue to manufacture and market under their existing trade names.
Siliconix Incorporated of California, designers and suppliers of field-effect transistors, have announced a new wholly owned British subsidiary based in South Wales. The British company, Siliconix Lid, will manufacture a similar line of products and will be responsible for marketing throughout Europe and the Commonwealth.
General Instrument Corporation of Delaware, U.S.A., has acquired Vitality Bulbs Ltd, of Bury St. Edmunds, Suffolk, manufacturers of miniature and sub-miniature electric bulbs.
The Plessey Company have acquired 49% of the equity in Electroprints Ltd, a wholly owned subsidiary of Painton \& Co. Lid. The joint company will continue as Electroprints Ltd, manufacturing flexible printed wiring for the electrical and electronics industry.
Ultra Electronics (Components) Lid have acquired Ward Brooke \& Co. Lid as part of their expansion programme. The sales office for connector, terminal and wire-wrapping products will operate from UECL/Ward Brooke Ltd, Fassetts Road, Loudwater, Bucks.
Technograph Printed Circuits Lid, of Fleet, Hants, have changed the name of the company to Technograph Lid.

Wireless World Logic Display Aid

2: Details of the digital-to-analogue converters and some general information

designed by B. S. Crank*

Last month a general outline description of the instrument was given and now the time has come to look at the individual circuits themselves. The first circuits to be studied will be the digital-to-analogue converters which produce the staircase X and Y waveforms mentioned last month.

The digital-to-analogue converters employ a current summing principle. Taking the Y dian as an example, each bistable in the counter controls a constant current generator via a buffer amplifier. The amount of current each constant current generator produces is directly related to the decimal weighting of the bistable that controls it. The counters operate in the natural binary code, which is sometimes known as the $1,2,4,8$ code. The constant current generators produce outputs of about $1,2,4$ and 8 mA .

Referring to Fig. 15, which illustrates the operating principles of the dians, it will be seen that all the constant current generators in a particular dian share a common load resistor. The voltage drop across this resistor will of course be directly proportional to the current flowing through it and as the resistor has a value of $1 \mathrm{k} \Omega$ a current of 1 mA will produce a drop of 1 V .

In Fig. 15 the action of the bistables is simulated by switches. One of the constant current generators is connected directly to the negative line and will always have a current flowing through it; this is arranged to be 2 mA . Therefore, with all the switches open the potential at the output will be 2 V below the supply line voltage i.e. 25 V .

If switches 2 and 4 are closed, as would be the case if
*Assistant Editor, Wireless World
the counter held $0110\left(=6_{10}\right)$, an additional 6 mA would flow through the load resistor, causing a voltage change at the output of 6 V . If the switches are replaced by a counter it

Fig. 15. Demonstrating the principle employed in the dians.
can be seen that the voltage output of the dian will be directly proportional to the contents of the counter and the output will alter 1V for each input pulse to the counter.

The constant current generator circuits were originally described in a Letter to the Editor, written by Peter Williams, which appeared in the September 1966 issue of Wireless World.

The complete circuit of the Y dian is shown in Fig. 16. The component reference numbers in brackets refer to the X dian, the circuit of which is identical.

The four switches of our example have been replaced by the BC107 transistors $\operatorname{Tr}_{13-16}$ which are buffer amplifiers between the bistables in the counter and the

Fig.16. The circuit diagram of the Y dian. The component references in brackets refer the X dian.

constant current generators.
The five constant current generators, each consisting of a 2N1304 and 2N1305 complementary pair, can easily be identified. The variable resistors $R V_{1-3}$ and 4-6 serve to adjust the precise current values.

Some additional circuitry; $\operatorname{Tr}{ }_{11,12,} D_{1,2}$ and R_{7}; has been incorporated and is associated with the 4 and 8 mA constant current generators. The purpose of this is to modify the output of the dian to obtain the matrix raster shown in Fig. 13 last month to separate the characters in the Truth table and Karnaugh map modes of operation.

During Venn operation the bottom end of R_{7} is connected directly to the negative line. Tr_{11} and Tr_{12} will be switched off and the dian will operate as previously described. For Truth table and Karnaugh operation the earth is removed from R_{7} with the result that both Tr_{11} and $T r_{12}$ switch on by virtue of the current that will flow from the +4.5 V line. The variable resistor $R V_{5}$ will be connected in parallel with $R V_{4}$ and $R V_{7}$ will be connected in parallel with $R V_{6}$. The effect of this will be to increase the current through 4 and 8 mA constant current generators. In other words, when switched on, the once 4 and 8 mA constant current generators will cause a voltage drop of more than 4 or 8 V across the load resistor R_{6}. The dian now follows a $10,5,2,1,1$ aw, as can be seen in Table 2.

Table 2
-Decimal
Sontents of zounter

0
1
2
3
Venn mode
Volts Volts

Volts	mode Volts
0	0
1	1
2	2
3	3
	-
4	5
5	6
6	7
7	-
	10
8	11
9	13
10	-
11	15
	16
12	18

The effect on the output waveform is shown in Fig. 17. The steps in the staircase waveform when the counter olds 4,8 or 12 are higher than the other steps. The dots on the matrix raster will be wider spaced at these points, which is what is required.

Some readers will consider that the circuit of the dian is over elaborate and may suggest that a resistive ladder zetwork and amplifier should have been used. In defence of the circuit employed one must point out that it is accu:ate, stable, provides a high level of output and, most imyortant, does not employ any difficult-to nbla'n precision somponents.

At one time during the development it was suggested hat f.e.ts should be employed as the constant current sources; however, after some thought the idea was not ised because f.e.ts would have had to be specially seleced for particular values of $I_{D S S}$.

The form of construction employed is very clearly Ilustrated in Fig. 18. The base-board material is
0.15 inch pitch Veroboard. It is recommended that the dians are built as shown, as it will be found, later on in this series, that when built to this size the dians will fit in very nicely with the mechanical layout as a whole. An idea of this can be gained from Fig. 19 which shows the single

Fig.17. How the staircase waveforms are modified in the Truth table and Karnaugh map modes of operation.

Fig. 18. Physical layout of one dian. The base material is $0.15 i n$ unclad Veroboard.

(2) Collector 2 N 1305 \& base 2 N 1304
(3) Base 2 N 1305 \& collector 2 N 1304 (4) Emitter on 2 N 1304

Fig. 19. The position of the dians on the main logic assembly.

base board which holds both dians and the whole of the logic circuit for the rest of the instrument. A photograph of a completed dian is shown in Fig. 20.

There is only one point in the construction that requires particular attention. This arises from the fact that the cans of the transistors used are common to the collector lead. In order to prevent needless short-circuits it is recommended that the transistor cans be insulated in

Fig. 20. A compleled dian. Sharp-eyed readers may notice that one of the transistors has been substituted for a different type. This was only because we ran oul of slock of the specified type.

Fig. 21. A dian lest circuit.

Hig. 22. The layoul of the circuil board sockets in the main logic unit.
some way, say with a plastic or rubber sleeve or even with a turn or two of Sellotape. It will be noticed that the buffer amplifiers, $\operatorname{Tr}_{13-16}$ and associated resistors are not included on the dian boards. These are located elsewhere and their description will be given later.

Adjusting the dians

The dians are connected as shown in Fig. 21 after turning all variable resistors to their maximum value. The 27V can be supplied from three 9V batteries in series-PP9s are ideal-and the 4.5 V can be supplied by a single battery. The switches $1,2,4$ and 8 are connected to the points in the circuit with the same numbering (the BC107 collectors) The switch that has been labelled "Venn" is connected to the bottom end of resistor R_{7}, or R_{18} in the case of the X dian. Go through the sequence of operations listed below.
(1) Open switches $1,2,4$ and 8 .
(2) Close Venn switch.

Adjust $R V_{1(8)}$ to make meter read 25 V .
Close switch 1.
Adjust $R V_{2(9)}$ to make meter read 24 V .
Open switch 1.
Close switch 2.
Adjust $R V_{3(10)}$ to make meter read 23 V .
Open switch 2.
Close switch 4.
Adjust $R V_{4(11)}$ to make meter read $21 V$.
Open switch 4.
Close switch 8.
Adjust $R V_{6(13)}$ to make meter read 17 V .
Open Venn switch.
Adjust $R V_{7(14)}$ to make meter read 15 V .
Open switch 8.
Close switch 4.
Adjust $R V_{5(12)}$ to make meter read 20 V .
This setting up procedure is completed when it has been applied to both of the dians. The effect of combinations of switches being closed can be tried to illustrate the way in which the circuit works. This is best done with the Venn switch closed.

General construction

The next job is to mount the sockets that will eventually take the various circuit boards. The sockets are screwed to a single sheet of perforated s.r.b.p. sheet (Lektrokit part no. LK-141). The positions of the sockets are given in Fig. 22 which shows the lower side of the board. Care must be taken to mount the sockets the right way round.

The boards containing the dians are attached to the edges of the main mounting board using four small metal brackets. Meccano brackets were used in the prototype. The exact positions of the dians can be seen in Fig. 19.

Buffer amplifiers

The eight transistors, $T r_{13-16}$ and $T r_{29-32}$, are mounted on a piece of 0.1 -inch pitch clad Veroboard which is called "board one". The Veroboard is cut to size using one of the integrated circuit mounting cards as a template. Care must be taken to ensure that the copper strips line-
up accurately with the contacts of the socket when the board is plugged in.

The eight transistors and the eight associated $4.7 \mathrm{k} \Omega$ resistors are mounted on the board as shown in Fig. 23. This drawing also shows the connections between socket one and the X and Y dians; these should be made at this stage.

It is possible that the settings of the variable resistors in the dians will have been upset during the assembly work. To check this and to check the operation of the buffer amplifiers wire up the circuit shown in Fig. 24 and repeat the dian setting-up procedure given earlier.

We will now proceed with a discussion of the circuit boards and the more general aspects of the integrated circuits used before going on to the logic design of the display aid next month.

Circuit boards

A word or two about the plug-in boards would not be out of order at this stage. The numbering of the board input connections is shown in Fig. 25. With the printed side of the board towards you and the input side to the right the input pins are numbered from one to 24 from bottom to top. The printed conductors are used for the power supplies. The top line, from pin 24 is always the positive line and is connected to pin 14 of each integrated circuit without exception. The lower line is always the negative supply and is connected to pin seven of every integrated circuit, again without exception. Connection to the power supply lines is made by bending the appropriate integrated circuit pins over and soldering them directly to the printed power lines. This serves to hold the integrated circuits in position and prevents them from falling off the board.

In Fig. 25 and Fig. 26 it will be seen that each integrated circuit station on the board has been referenced with a number between one and six; this referencing holds good for every board. An integrated circuit may have the circuit reference IC4/B3. This is read as integrated circuit number four on board three. In the same way P12/B4 would indicate board input socket pin number 12 of board four. Finally, P12/IC4/B3 means pin 12 of integrated circuit number four on board three. It is important to recognise the difference between an integrated circuit input pin reference number and a board input pin reference number.

Wiring the boards is a task that deserves some thought on the part of the constructor as the reliability of the finished instrument depends on it. In the prototype 22 s.w.g.tinned copper wire was used and found to be excellent for the job. The type of sleeving used depends on the preferences of the individual constructor. In the prototype 0.5 mm bore silicon rubber sleeving obtained from Radiospares was employed and was found to be pleasant to handle. Some readers may consider that the 1 mm outside bore of this sleeving is a little on the large side.

The pins on the integrated circuits are only 2.54 mm (0.1 inch) apart and can easily be bent. After one has wrapped a wire (or several) round each pin and applied the solder the clearance between pins is very much reduced. The moral is obvious-neat joints, with the minimum amount of solder consistent with a reliable connection.

The constructor is faced with the prospect of interconnecting on each board, with dozens of wires, six integrated circuits, each with 14 pins, and the 24 input pins of the wiring board. There are no "landmarks" in the form of unusually shaped resistors or capacitors to guide the way. Errors are easily made. Be warned!

The approach adopted with the prototype was to complete the inter-gate wiring first, followed by the circuit inputs and finishing with the outputs. In each case the pins to be interconnected can be identified with a small pencil

Fig. 23. Construction of board 1 containing the buffer amplifiers. The vacant space will be used for other components later on in the construction.

Fig. 24. Buffer amplifier/dian test circuil.

Fig. 25. The component side of one of the circuil boards.

Fig. 26. The circuit side of one of the component boards. This is in fact board 7 which has less wiring than most of the other boards.
mark on the board adjacent to the required pins. The best route for the wire to take, consistent with neatness, is then planned and the relevant connections made. As each connection is dealt with it is good practice to mark the fact with a tick on the circuit diagram. In this way wires should not be omitted.

Integrated circuits

The use of integrated circuits is more than justified in amateur constructional projects even if one forgets the performance advantages and works only on the cost. Each gate consists of two transistors, four diodes and three resistors. The constructor would not be able to produce a similar circuit at an equivalent price in discrete components. And of course, when using integrated circuits, one has the advantage of a guaranteed performance and small size.

The integrated circuits are from the Ferranti Micro-nor-2 family of diode-transistor logic. As discussed earlier, in the introductory article, the basic gate performs the positive logic NAND function.

The circuit of the basic gate used in Micronor-2 departs slightly from the conventional NAND circuit and is worthy of mention. A conventional d.t.l. NAND gate is shown in Fig. 27. With all the input diodes at a potential around 4V, the normal logical $1, T r_{1}$ is switched on by the current flowing through R_{1}, D_{5}, D_{6} and the base emitter junction of $T r_{1}$. The output therefore, will be at earth potential or at logical 0 . The drive to the transistor is limited by R_{1}. Thus to achieve high fan-out, that is the number of gates that can be driven from the output, over the operating temperature range the output transistor must be a high-gain device. This is not only undesirable in terms of process yield but additionally generates excess stored charge in the low fan-out condition, severely limiting operating speed.

When one of the input diodes is earthed the base emitter junction of $T r_{1}$ is effectively short circuited and the transistor switches off. The diodes D_{5} and D_{6} act as voltage level shifters to cancel out the effect of the small voltage developed across the now conducting input diode.

The circuit is modified slightly in Micronor-2 as shown in Fig. 28. Additional drive to the output transistor $T r_{2}$ is

Fig. 27.
A conventional d.t.l. NAND gate.

provided by replacing one of the original level shifting diodes by the transistor $T r_{1}$. When the output is unloaded the current flowing through R_{3} is shared equally through two essentially identical impedance paths. Half the current flows through the saturated collector emitter junction of $T r_{2}$. Under these conditions base drive to $T r_{2}$ is at a minimum resulting in low propagation delays at low fanout.

When the output is fully loaded, the flow of load current into $T r_{2}$ sets up an additional voltage drop across the saturation resistance of $T r_{2}$, providing maximum base drive.

Thus the circuit functions in a feedback manner and correctly proportions the base drive to suit the particular load current. This allows the use of a much lower gain output transistor and aids operating speed.

The basic gate has a fan-out of eight and a propagation delay of the order of 15 ns . Two different power gates are used when a fan-out of more than eight is required; one performs the NAND function and the other the AND function (described as OR in the literature). The power gates have a fan-out of 25 . Both types of gates can be supplied with or without an internal load resistor. Where no load resistor is used the gate output is intended to be connected directly to the output of another gate so that they

Fig. 29. Pin connection details of the i.cs used in the instrument. A dot in a gate denotes that it contains a load resistor.

Components list for basic instrument

The majority of the components are divided into kits for ease of ordering. The prices quoted have been specially negotiated by Wireless World and represent extremely good value for money. It is important to note that these prices apply at the time of going to press and only for complete kits.

Kit LDA/A. Integrated circuits
Price $£ 33-15-0$ Ferranti Ltd., Gem Mill, Chadderton, Oldham, Lancs.

board	IC reference number						
	1	2	3	4	5	6	
	ZN330E	-	-	-	-	-	
2	ZN324E	ZN324E	ZN324E	ZN324E	ZN322E	ZN330E	
3	ZN320E	ZN324E	ZN322E	ZN320E	ZN332E	ZN322E	
4	ZN332E	ZN320E	ZN346E	ZN324E	ZN322E	ZN346E	
5	ZN346E	ZN362E	ZN346E	ZN346E	ZN362E	ZN362E	
6	ZN330E	ZN362E	ZN346E	ZN330E	ZN362E	ZN346E	
7	ZN330E	ZN362E	ZN346E	ZN330E	ZN362E	ZN362E	
8	ZN330E	ZN362E	ZN346E	ZN330E	ZN362E	ZN346E	

Kit LDA/E. Resistors and Hardware
Price £9-10-0 Home Radio (Components) Ltd., London Rd., Mitcham, Surrey.

Lektrokit
qty.
7. P.C. Board Cardic 6
8. Gard guide (pair)
9. Edge connector

1. Chassis plate

Kit LDA/C. Miscellaneous
Price £4-10-0 G.W. Smiths (Radio) Ltd., 3 Lisle St., London, W.C.2.
qty.
2 Radio press button unit 3 button, 3 pole C/O
Terminal unit SLT4
Terminal unit SLT2
Coaxial plug L1465/FP
Coaxial socket L1465/CS
1 Transformer type MT103AT

1 Heat sink

1 Toggle switch (TS1)

All variable resistors are type VR100A except $R V_{15}$ which is type VR25.
Kit LDA/E. Resistors and Hardware
Price $£ 9-10-0$ Home Radio (Components) Ltd.,
London Rd., Mitcham, Surrey.

Resistors (fixed)

The reference number of all resistors is prefixed
R, this has been left off below for the sake of clarity. All values in ohms.

1.	4.7 k	7.	1 k	13.	4.7 k	19.	4.7 k
2.	4.7 k	8.	4.7 k	14.	2.7 k	20.	4.7 k
3.	2.7 k	9.	4.7 k	15.	1.5 k	21.	4.7 k
4.	1.5 k	10.	4.7 k	16.	1 k	22.	4.7 k
5.	1 k	11.	4.7 k	17.	1 k	23.	150
6.	1 k	12.	4.7 k	18.	1 k	24.	180

All resistors $1 / 4 \mathrm{~W}$ with the exception of R_{24} which is 2 W

Kit LDA/B. Semiconductors
Price £11-10-0 LST Electronic Components Ltd., 7 Coptfold Rd., Brentwood, Essex.

The reference numbers for all the transistors are prefixed $T r$, this has been left off below for the sake of clarity

1.	2N1305	13.	BC107	25.	2N1305
2.	2N1304	14.	BC107	26.	2N1304
3.	2N1305	15.	BC107	27.	BC107
4.	2N1304	16.	BC107	28.	BC107
5.	2N1305	17.	2N1305	29.	BC107
6.	2N1304	18.	2N1304	30.	BC107
7.	2N1305	19.	2N1305	31.	BC107
8.	2N1 304	20.	2N1304	32.	BC107
9.	2N1305	21.	2N1305	33.	BC108
10.	2N1304	22.	2N1304	34.	BF179
11.	BC107	23.	2N1305	35.	2N3404
12.	BC107	24.	2N1304	36.	2N3055

Diodes

$D z_{1-20}$	$3.3 \mathrm{~V}, 250 \mathrm{~mW}$, zener diodes
D_{1-2}	1 N 914, or anly small silicon diode
D_{3-4}	BXY10, Mullard
D_{5}	$\mathrm{SJ103}$

Kit LDA/D. Cabinet

Price £8-19-0 Bedco Ltd., Datumn Division, Colne Way Trading Estate, Watford, Herts.
Cabinet DA 3U12/6 (mushroom top) Chassis SC 3126
operate in parallel. This type of connection is called "Wired OR" and will be discussed in more detail in the section on NAND logic which follows.

It is not proposed to discuss the J -K flip-flop in any detail at all here. In the display aid the $\mathrm{J}-\mathrm{K}$ facility is not employed and the flip-flops are only used as standard toggle bistables. In the article the term bistable will be used in preference to flip-flop.

The different types of integrated circuits used, together with the pin connection details are shown in Fig. 29.

NAND logic

If two variables A and B are fed to the input of a NAND gate the output, as we saw in the section on positive and negative logic, is false when the condition $A B$ exists. This of course is the negative of the AND function.

If the two input variables are \bar{A} and \bar{B} then the output is given by $\overline{\overline{\mathrm{A}}} \overline{\mathrm{B}}$:

In other words the OR function is performed. Consider the circuit of Fig. 30. The output of gate (a) will be $\overline{\bar{A} B}$ and the output of gate (b) will be $A \bar{B}$. These will be combined in gate (c) to produce:

$$
\begin{aligned}
\mathbf{X} & =\overline{\overline{\overline{\mathrm{AB}}} \cdot \overline{\mathrm{~A} \overline{\mathrm{~B}}}} \\
& =\overline{\overline{\bar{A} \mathrm{~B}}}+\overline{\overline{\mathrm{A} \overline{\mathrm{~B}}}} \quad \text { (De Morgan's Theorem) } \\
& =\overline{\mathrm{A}} \mathbf{B}+\mathbf{A} \overline{\mathrm{B}}
\end{aligned}
$$

In general, when using NAND logic, the first stage of gating performs the AND function and the second stage gives OR. Subsequent odd stages give AND and even stages give OR.

From the earlier example gates (a) and (b), Fig. 31, will produce the functions $\mathrm{AB}+\mathrm{CD}$ and $\mathrm{EF}+\mathrm{GH}$. The expressions will be combined in gate (c) to give:

$$
\begin{aligned}
\mathbf{X} & =\overline{\overline{\mathbf{A}} \overline{\mathbf{B}}} \\
& =\overline{\overline{\mathbf{A}}}+\overline{\overline{\mathbf{B}}} \text { (De Morgan's Theorem) } \\
& =\mathrm{A}+\mathrm{B} \text { (double negatives) }
\end{aligned}
$$

$$
(A B+C D)(E F+G H)
$$

Gate (d) will merely invert this to give:

Fig. 32
Fig. 30. A typical NAND circuil.
Fig. 31. Another NAND circuit described in the lext.
Fig. 32. The wired OR connection.
In the section on integrated circuits it was stated that some of the gates were supplied without an integral load resistor so that the "wired OR" function could be performed. In the logic diagrams the presence of a load resistor in a particular gate is denoted by a dot in the circle representing the gate.

The "wired OR" connection is performed by connecting gate outputs in parallel as shown in Fig. 32. Gates without load resistors are paralleled with a gate with a load resistor. A moment's thought will show that the output of such a combination cannot be "up" until the outputs of all the gates in parallel are "up". The function performed by the circuit of Fig. 32 can be written as:

$\overline{\bar{A} \bar{B}+A B}$

Now:

$$
\begin{aligned}
\overline{\mathrm{A}} \overline{\overline{\mathrm{~B}}+\mathrm{AB}} & =\overline{\overline{\mathrm{A}} \overline{\mathrm{~B}} \cdot \overline{\mathrm{AB}} \quad \text { (De Morgan's Theorem) }} \\
& =(\overline{\bar{A}}+\overline{\bar{B}})(\overline{\mathrm{A}}+\overline{\mathrm{B}}) \text { (De Morgan's Theorem) } \\
& =(\mathrm{A}+\mathrm{B})(\overline{\mathrm{A}}+\overline{\mathrm{B}}) \text { (double negatives) } \\
& =\mathrm{A} \overline{\mathrm{~B}}+\overline{\mathrm{A}} \mathrm{~B}
\end{aligned}
$$

This is the same result that was achieved with the circuit of Fig. 30; however, one gate fewer was used. "Wired OR", therefore, can result in fewer gates being needed to perform a particular function.

An expression in AND/OR form can easily be converted into NAND form by repeated use of De Morgan's theorem:

$$
\begin{aligned}
& \text { (ABC+DEF) (GHI+JKL) }+(\mathrm{MNO}+\mathrm{PQR})
\end{aligned}
$$

$$
\begin{aligned}
& =\overline{\overline{\overline{\overline{A B C}} \overline{\overline{\mathrm{DEF}}}} \overline{\overline{\overline{\mathrm{GHI}} \overline{\mathrm{JKL}}}} \overline{\overline{\overline{\mathrm{MNO}} \overline{\mathrm{PQR}}}} . \overline{\bar{x}}} \\
& \text { which reduces to: }
\end{aligned}
$$

Next month: The logic design and construction of the counter and code converter.

Wireless World Reprints

In response to the demand for issues of Wireless World which are now out of print we have prepared reprints of several of the more popular constructional articles. This service will be particularly useful to new readers or those who, not having a regular order for Wireless World, have found that, by the time they hear that a certain issue contains something of interest to them, it is out of print. Reprints of articles of educational interest, enable instructors to have enough copies to distribute round the class, and of course when a series is involved it is much handier to have all the information together in one booklet. Readers who have already built the equipment will find the booklets useful as manuals-especially if it is intended to sell the equipment at a later date. The reprints are listed below and may be obtained from the Trade Counter, Dorset House, Stamford Street, London S.E.1. Prices include postage and packing

No. 1. High-fidelity Amplifiers by A. R. Bailey (Nov. and Dec. 1966, and May, June and Nov. 1968). This reprint is still in preparation and an announcement will be made as soon as it is available. It will contain articles on 20 - and $30-\mathrm{W}$ amplifiers; a pre-amplifier; and an article on output transistor protection plus modifications relevant correspondence.

No. 2. Stereo Decoder and Simulator by D. E. O'N. Waddington, (Jan. and Oct. 1967). Describes the construction of a stereo decoder for positive or negative power supplies and contains details of an instrument for producing a stereo multiplex signal. Price 3 s .

No. 3. Portable $\mathbf{1 - M H z}$ Frequency Standard by L. Nelson-Jones (Feb. 1968). Presents a design for a frequency standard which is phase locked to the 200 kHz Light l'rogramme transmissions. Price 3s.

No. 4. Wide-range General Purpose Signal Generator by L. Nelson-Jones (April 1968). Range 150 kHz to 120 MHz in five bands; output attenuator range 100 dB in 20 dB steps $(\pm 0.5 \mathrm{~dB})$; modulation depth 0 to 50% (can be set to within $\pm 5 \%$ of meter indication); max. output 100 mV (from 75Ω). Price 3 s .

No. 5. Low-cost High-quality Loudspeaker by P. J. Baxandall (Aug. and Sept., 1968). Can be built for a few pounds! Excellent performance above 100 Hz but is improved if used with a woofer for the low frequencies. Price 5 s .

No. 6. Wireless World Crosshatch and Dot Generator (Sept. 1968). A pocket sized instrument using digital integrated circuits. Price 3 s .

In addition, the following reprints from earlier issues are still available:
Wireless World Oscilloscope: Main frame, X amplifier, E.H.T. unit (March June, July and August 1963), price 5 s ; No. 1. (audio) Y amplifier (Apri 1963), price 2s 6d; No. 1. (audio) Timebase Unit (May 1963), price 2s 6 d Calibration-Alternative E.H.T. Unit (Feb. and Oct. 1964), price 2s 6d; anc Wide-band Amplifier (April 1964), price 2s 6d.

Wireless World Audio Signal Generator (Nov. and Dec. 1963). Price 3s.
Wireless World Crystal-controlled F.M. Tuner (July 1964). Pulse counting type not suitable for stereo. Price 3 s .

Transistor High-quality Audio Amplifier by J. Dinsdale, (Jan and Feb. 19t Very popular 10W design. Price 5 s .

Wireless World Computer (Aug. to Dec. 1967). Eight-bit digital machine for instructional purposes. Price 10 s .

Quasi-complementary Output Stage

Modification

A single diode used to overcome distortion at low listening levels

by I. M. Shaw*

The quasi-complementary output stage (Fig. 1) has differing input impedances for its upper and lower halves. This is because there are two emitter-base junctions in series in the upper half, but only one in the lower half. In the configuration of Fig. 2 it can be seen that the lower has an input impedance consisting of one emitter-base junction and one forwardbiased diode in series, which in practice should approximate to two emitter-base diodes in series. Thus it should be possible to construct a low distortion transformer-less output stage using one pair of low-current complementary transistors and one pair of identical output transistors.

An amplifier with an output stage similar to that in Fig. 1 was constructed, and the distortion levels measured down to 2 mW output at quiescent currents of $7 \mathrm{~mA}, 20 \mathrm{~mA}$ and 80 mA . The distortion was measured using a wave analyser (Marconi TF2330) and a low distortion generator (Marconi TR2100/ 1M1).

The results of the measurements are given in Fig. 3. From these it can be seen that at the normal quiescent current for

- Wellbrook Engineering Electronics Lid

Fig. 1. Typical quasi-complementary output stage.

class B operation (20 mA) the total harmonic distortion rises to approximately 1% at 15 mW output from 0.1% at full output. This distortion is clearly well above the accepted limit for highquality reproduction and it can be seen to reduce as the quiescent current is increased towards class A conditions.

An amplifier was constructed with Fig. 2 as a basis, the complete circuit of which is given in Fig. 4. This second amplifier, which had the same amount of negative feedback as the previous amplifier, gave the results indicated in Fig. 5 at 20 mA quiescent current.

Fig. 3. Distortion characteristics of conventional amplifier with $7 \mathrm{~mA}, 20 \mathrm{~mA}$, and 80 mA quiescent current.

Fig. 4. Complete circuit diagram of modified power amplifier.

The amplifier was operated from a simple unstabilized power supply (Fig. 6), and the d.c. level at the output was set below half of the supply voltage so that the output voltage at full output would not be clipped due to the ripple-limited positive rail.

It can be seen from Fig. 5 that the distortion level does not rise, down to a measured output of $100 \mu \mathrm{~W}$, thus showing that the extra diode has equalized the input impedances giving a fourth and cheap alternative output stage for true high-quality reproduction.

The amplifier has successfully driven a Quad electrostatic loudspeaker without any instability and tests were carried out with the latter and with the simulated circuit (Fig. 7) which is the salient part as regards high frequency instability.

Above 15 W output the supply rails clip the output voltage giving rise to a large increase in the harmonic distortion levels, but up to this point the distortion level is extremely low.

Literature Received

CATAlOGUES

Connector Catalogue. The Electronics Division of Greenpar Engineering Lid., Station Works, Harlow, Essex, have produced a large catalogue devoted to various types of coaxial, twin-axial, and tri-axial connectors. In all variations on eight basic patterns are described and performance data given. WW 400 for further details.
"SGS Linear Microcircuits" is a catalogue published by Quarndon Electronics (Semiconductors) Litd, Slack Lane, Derby, which gives brief technical data, prices and application notes for a range of SGS devices

Fig. 6. Simple power supply used with amplifier.

Fig. 7. Test circuit equivalent to Quad electrostatic speaker.

Fig. S. Distortion characteristics of modified amplifier at 20 mA quiescent current.
including operational amplifiers, current sources, comparators, A / D and D / A converters. WW 401 for further details.
"Lemosa Cable Connector Catalogue" gives details of a range of multicontact, coaxial, tri-axial, bulkhead and thermocouple connectors which have a spring locking action. The catalogue contains an offer whereby you send them a cable and they will send you a connector to suit it. Lemosa Lid, Box 306, Shoreham-by-Sea, Sussex. WW 402 for further details.
"He-Ne Lasers". The Ferranti range of d.c. excited Helium-Neon lasers are described in this publication which is available from Ferranti Led, Laser Sales, Dunsinane Avenue, Dundee, DD2 3PN. WW 403 for further details
"CO CO_{2} Lasers', also from Ferranti, are described in a leaflet available from the above address. WW 404 for further details.
"Catalogue of Used Scientific Equipment" includes second-hand vacuum equipment, laboratory instruments, etc., available from V. N. Barrett anc Co. Lud, 1 Mayo Rd, Croydon, CRO 2QP. WW 405 for further details.

Supplement No. 3 to the 1TT (S.T.C.) Electronic Services component: catalogue has been published and lists the International Rectifier range 0. semiconductors. ITT Electronic Services, Edinburgh Way, Harlow, Essex WW 406 for further details.
"ISEP-ITT Standard Equipment Practice" is an 80-page booklet, avail able from the above address, which shows how numerous cabinets ans equipment racking systems can be made up from ISEP. WW 407 for furthe details.

GENERAL INFORMATION

"Consumer Electronics" is the title of a new quarterly magazine fron Mullard. It covers radio and television and the use of electronics in othe appliances: electric blankets, washing machines, toys, watches, etc C.I.H./C.M.S. Dept., Mullard Ltd, Mullard House, Torrington Place, Lon don W.C.1. WW 408 for further information.

BS 4421:1969, "Digital input/output interface for data collection systems" is a development of a system devised by the National Physical Laboratory t enable their measuring and data processing devices to be easily set-up an connected for any particular application. Copies are available from BSI Sale Branch, 101 / 113 Pentonville Road, London N.1, price 12s.
"Export Markets for Electronics-E.F.T.A." is a 57 -page booklet whic has been produced by the Economic Development Committee for th Electronics Industry. It contains a great deal of interesting statistic: information covering the market for electronic products and scientifi instruments in E.F.T.A. countries. The Library, National Economic De velopment Office, $21 / 24$ Millbank, London S.W.1. WW 409 for furthe details.
Choice of careers booklet No. 66-"Radio and Television Servicing" ha been produced by the Department of Employment and Productivity. It available from H. M. Stationery Office, price 1 s 9 d .
"Become an Apprentice Technician with NATCS", is the title of pamphlet produced by the Board of Trade for the National Air Traff Control Service's Technician Apprenticeship Scheme. It can be obtained frol T. H. Mallett, Board of Trade (Civil Aviation Dept) Room 705, The Adelph John Adam Si, London, W.C.2.

In last month's Literature Received we inadvertently gave the address the advertising agents for Vitality Bulbs. Requests for information should ? sent to:-Beetons Way, Bury St. Edmunds, Suffolk.

Wireless World

Units Converter

An aid to radio and electronics calculations

Available to readers of this issue (see coupon below) is a "slide rule" units converter specially designed by Wireless World's technical staff as an aid to calculation in radio and electronics work. Produced for us by the slide-rule manufacturers Blundell Harling Ltd, the instrument has 20 conversion scales, and other data, clearly engraved in rigid p.v.c., a plastic noted for its good mechanical stability and hard wearing quality. The scales are sufficiently expanded to give the degree of reading accuracy normally needed in each case (typically 0.5% of full scale), but the converter is small enough ($7 \frac{1}{2}$ in long, 3 in wide) to be carried in a jacket pocket. The laws and limits of the scales have been decided on the basis of practical experience in various calculations. At the price of 12 s 6 d the converter is substantially cheaper than it would be if sold retail. In fact there is no equivalent instrument available on the market.
The converter provides the following facilities:
Wavelength/frequency. Two pairs of $\log _{10}$ scales, one pair ranging from 10 m to $10,000 \mathrm{~m}$, the other from 1 cm to 10 m .
-Frequency/angular frequency. Linear scales for conversion bet ween cycles per second (f) and radians per second $(\omega=2 \pi f)$. Range for f: 1.0 to 10.0 .
?eak/r.m.s. values (voltage, current, power) of a sinusoidal signal. Linear scales, peak values ranging from 1.0 to 14.14 .
Musical pitch/frequency. Linear/ $\log _{2}$ scales giving frequencies (in Hz) of notes in the equally tempered chromatic scale. Range: twooctaves above middle C.

Loudness, phons/sones. Linear/ $/ \log _{2}$ scales relating loudness level (phons) to auditory impression of loudness (sones). Range: 20.0 to 120.0 phons.

Power ratio/decibels. Two pairs of $\log _{10} /$ linear scales: one pair, expanded scales, ranging from 0 to 10 dB ; the other pair, compressed scales, ranging from 10 to 100 dB .
Percentage/decibels ($\log _{10} /$ linear scales). Can be used, for example, to convert harmonic distortion between a percentage and dB below a fundamental; or to convert between voltage or pressure ratios (expressed as \%) and dB . Range: 0.03% to 100%.
Frequency (Hz)/period(s) relationship of a periodic signal. Two pairs of $\log _{10}$ scales: one pair, compressed, ranging from 1 Hz to 100 GHz ; the other pair, expanded, with f ranging from 1.0 to 10 .

Magnetic field strength, oersted to ampere/ metre (SI unit) conversion. Two pairs of scales: one, $\log _{10}$, ranging from 1 milli-oersted to 10,000 oersteds; the other, linear, ranging from 1.0 to 10.0 oersteds.
Heat sink size for semiconductors. Scales giving area of $\frac{1}{8}$-inch aluminium sheet needed to secure the temperature/power dissipation ratio (${ }^{\circ} \mathrm{C} / \mathrm{W}$) permitted by the semiconductor. Range: 2 in to 12 in side of square.
Gas pressure conversion between torr (mm mercury) and $\mathrm{N} / \mathrm{m}^{2}$ for low pressure or evacuation work. $\log _{10}$ scales. Range: $5 \times$ 10^{-8} to 2×10^{-1} torr.
Inches/millimetres. Linear scales; range 0 to 12in.
Feet/metres. Linear scales; range 0 to 50 ft . Sq.inches/sq.centimetres. $\log _{10}$ scales, range 1.0 to $100.0 \mathrm{in}^{2}$.
Temperature, ${ }^{\circ} \mathbf{F} /{ }^{\circ} \mathbf{C}$. Linear scales, range $-20^{\circ} \mathrm{F}$ to $+320^{\circ} \mathrm{F}$.
Ounces/grammes. Linear scales, range 0 to $80 z$.
Pounds/kilogrammes. Log $_{10}$ scales, range 1.0 to 100.01 b .

Tabulated "easy" conversion factors, all powers of 10 (or nearly); for dynes/newtons; $\mathrm{dyn} / \mathrm{cm}^{2}$ to $\mathrm{mN} / \mathrm{m}^{2}$; angstroms/microns; gauss/tesla; ft candles/lux; joules/ergs.
L and C values, resonance and reactance.
Table of widely used frequencies with the L and C (preferred) values required for resonance. Also the corresponding reactances (Ω) and $L C$ products ($\mu \mathrm{H}-\mathrm{pF}$).
Waveband names. $\log _{10}$ edge scales of the electromagnetic spectrum, marked in wavelength and giving waveband names. Range $10 \mu \mathrm{~m}$ to $100,000 \mathrm{~m}$.

The units converter in use. The conversion scales are engraved on the slider and are read through a víndow carrying a "cursor" line.

ORDER COUPON FOR ONE UNITS CONVERTER

Please fill in both parts of the coupon in block capitals (one will be used as a label) and send with 12 s 6 d (cheque, postal order, money order or reply coupons to Wireless World, Dorset House, Stamford Street. London, S.E.1. England. Please allow 21 days for receipt of converter.

Nireless World Units Converter
Vame
tddress

Postal Label

Wireless World Units Converter
Name
Address

Mono into "Stereo"

Techniques being used to make pseudo-stereo gramophone records from mono masters

by Sean Davies*

The first half of 1969 has seen the virtual disappearance of new classical records in mono form, although light and popular issues will probably continue in mono and stereo for some time. This process will produce a climate in which the classical record buyer refuses anything which does not bear the magic word 'stereo'. Unfortunately many performances of great aesthetic value were recorded in mono only, so we have the increasingly familiar mono record processed into a stereo reissue-welcomed by some, despised by others.

Let us be clear on one point: given a complex single channel signal it is not possible to derive therefrom two separate signals bearing the correct temporal and spatial relationships characteristic of true stereo information. What is possible is a lessening of the point-source effect of a mono signal-in essence not too difficult, but there is one rather large fly in the ointment: for the present (and immediate future) the sales office demands that the record should be playable on mono apparatus without loss of quality. This rules out some of the methods of obtaining a spread of information, e.g. if a mono signal is fed equally to two loudspeakers the sound appears central, but if a portion of the signal is injected in antiphase the image will be spread. However, if the two signals are now combined, the anti-nhase relationship will prevent a satisfactory mono summation. In practice, a limited amount of phase difference is introduced in parts, usually confined to selected bands of frequen${ }^{*}$ General Recording Services
cies, and the result is checked by comparing the mono and stereo results on an A-B basis.

Two other means of separation are frequency division and selective reverberation. In its simplest form frequency division consists of feeding low frequencies to one and high to the other: this has the disadvantage that the harmonics of an instrument such as the cello appear on the opposite side from the fundamentals, while the player may seem to be dashing from loudspeaker to loudspeaker according to the note being played. Nevertheless, selected bands of frequencies may be divided as long as care is used. Reverberation can be added so that the ambience appears to come from an area other than the direct source point. Two possible methods are: (i) The mono signal is fed to a common drive unit on the echo device (chamber or plate), while two separate pick-up units give an apparently random mixture of return signals, which may be filtered before remixing with the direct signal. (ii) Two separate echo systems may be used, fed from different portions of the mono spectrum, the outputs being cross mixed, or a portion of the output of one being fed to the other in order to spread the effect.

It will be appreciated that any system of division is likely to suit one passage of music more than another, so in order to ensure the optimum conditions at any instant there must be an engineer with good reflexes and a complex control system following the score. An alternative system showing good promise allows the programme content to
control the division systems. For instance, two filter networks may have their active elements controlled by a voltage (derived from the mono programme) serving also to determine the relative reverberation and phase conditions. A subsequent cross-mixing of low frequencies ensures that the bass remains in position (often central) and assists good conditions for playback tracking. A further advantage of this system is that the active elements in the two channels may be balanced relative to one another so that at no instant is any part of the mono signal totally excluded from the outputs.

Actual figures for frequency spectra and levels used in division vary from disc to disc and from one company to another, but some general patterns may be noted. Brass instruments may be separated by a peak boost of some $6-10 \mathrm{~dB}$ at 5 to 6 kHz (which of ten improves the quality of the brass sound), although if strings are present this may not be possible as it lends a distinct edge to the violins. A very good concert hall ambience is obtained by setting the echo device (if adjustable) to a reverberation time of 3.5 seconds and delaying its input signal by a feu milliseconds in order that the first echo shall not arrive too soon and destroy the overall effect.

The space below has been left to avoid reader removing text when cutting out the coupon on the previous page for the Units Converter.
th quality and reliability of Electrosil glass-tin-oxid. resistors in instruments, telephone exchanges, computers, automation, missiles and, in fact, in every type of electronic equipment. Over and over again glass-tin-oxide proves its superiority. For example, recent independent tests by a major equipment manufacturer showed that Electrosil 100 p.p.m. C5 resistors gave a more consistent performance on load and temperature stability than metal film resistors by six competing suppliers.

Electrosil resistors owe their reliability to the unique glass-tin-oxide construction. Consistently high quality is assured by a most thorough programme of Quality
our plant).
Inexpensive components initially, Electrosil oxide resistors work on for decades saving you maaintenance and replacement costs. (Therein lies their irresistibility).

Electrosil Ltd., P.O. Box §7, Pallion, Sunderland, Co. Durham. Tel. Sunderland 71481 . Telex 53273.

Electrosil have the experience имMired

The one that keeps on resisting is the one you can't resist

Anyway, that's what more and more people are telling us

20 good reasons why STAR UHF Mobile Radiotelephone is the best radiotelephone in the world
\star Elegantly styled.
\star Designed for safe use in vehicles.
\star Excellent range and penetration of built-up areas.
\star Crystal-clear speech quality.
\star Noise cancelling microphone.
\star No ignition noise.
\star Very low battery drain.
\star Simple installation and removal.
, Anti-theft catch.
\star High reliability.
\star Meets world-wide specifications.
$\star 25 \mathrm{kHz}$ and 50 kHz channel spacing.
\star Printed UFH transmitter circuitry.
\star Transmission line coupling of power transistors.
\star Solid-state antenna change-over switching.
\star Helical tuning coils in receiver.

* Quartz crystal filter.
* Quartz crystal discriminator.
\star Integrated circuits.
\star Fully solid-state.

STC Mobile Radiotelephones Ltd., New Southgate, London N.11. Telephone: 01-368 1200. Telex: 261912.

Circuit Ideas

Schmitt trigger with "zero" backlash

 To the conventional Schmitt circuit (Tr_{1} and $T r_{2}$) is added a level shifter $T r_{3}$, and an electronic switch Tr_{4}. The circuit has two table states. When the input signal is

Schmitt trigger with "zero" backlash.
above the upper trip-point $T r_{1}$ is on, $T r_{2}$, $T r_{3}$, and $T r_{4}$ off and R is in circuit. When the input signal is below the lower trip-point $T r_{1}$ is off, $T r_{2}, T r_{3}$ and $T r_{4}$ on and R shorted. Lowering the value of R will reduce backlash to zero. It is possible to go below zero "backlash" and cause the circuit to oscillate.
A. E. Crump,

Broadstone,
Dorset

Linear scale power
 meter

A usually undesirable property of semiconductor diodes - curvature of the I / E characteristic at low forward voltages - is exploited in this circuit. The curvature approximates a square law for most diodes so that $I_{\text {diode }} \propto E^{2}$ while for power in a resistive circuit, $P \propto I^{2}$ or E^{2}. Thus if a suitable fraction of the voltage across the load is used to feed a diode and meter then:

Meter indication $\propto I_{\text {diode }} \propto E \mathcal{Z} \propto P$ i.e. the meter scale will be linear.

Type OA85 diodes were chosen as their characteristics closely follow a square law up to $1.3-1.4 \mathrm{~V}$.

The circuit illustrated has $30,20,10$ and 5 watt full-scale ranges at an impedance of 15 ohms, but by changing the input resistors

$R_{1,2,3,4}$, it may be adapted for other impedances and powers, provided that no more than 1.4 V is applied to the bridge input. K. D. James,

Fiji Broadcasting Commission.

A non-blocking limiting amplifier

The need arose for a simple capacitancecoupled amplifier to amplify small signals (about 1 mV) without blocking after receiving a train of large signals (a few volts).

In the circuit shown, the zener diode conducts when the signal tries to turn the transistor off. The transistor remains conducting until

the current from the signal source exceeds a value of about $\left(V_{C C}-V\right\rangle / R_{C}$; the transistor is then cut off. Diode D prevents the negative part of the signal waveform being passed on to the next stage through the zener diode.

Two such amplifier stages together were used in a design for a microwave Doppler radar speed meter.

F. Hibberd,

The University College,
Dar es Salaam,
Tanzania.

Synchronized oscilloscope timebase generator

This unit gives a perfectly linear saw-tooth output that can be varied over the frequency range 1 Hz to 150 kHz . The synchronization circuit incorporated has an input impedance of $1 \mathrm{M} \Omega$ and is easily locked to low-level ' Y ' amplifier signals. A beamblanking output pulse is also available. Tr_{3} is connected 'upside-down' in the bistable to eliminate leakage problems. Linear charging of the tuning capacitor, C_{T}, is achieved by using $T r_{1}$ as a constant current source. Frequency is altered by $R_{V_{1}}$ and the different ranges obtained by altering the value of C_{T} as follows:
\(\left.\begin{array}{rr}Frequency range \& C_{T}

1 \mathrm{~Hz}-15 \mathrm{~Hz} \& 20 \mu \mathrm{~F}

10 \mathrm{~Hz}-150 \mathrm{~Hz} \& 2 \mu \mathrm{~F}

100 \mathrm{~Hz}-1.5 \mathrm{kHz} \& 0.2 \mu \mathrm{~F}

1 \mathrm{kHz}-15 \mathrm{kHz} \& 0.02 \mu \mathrm{~F}

10 \mathrm{kHz}-150 \mathrm{kHz} \& 0.002 \mu \mathrm{~F}\end{array}\right\}\) mylar | reversible |
| :--- |
| tantalum |

R M MARSTON London E. 7.

Operational Amplifiers

5. Applications

by G. B. Clayton,* B.Sc., A.Inst.P.

Bridge Amplifiers

In instrumentation systems using resistive transducers the transducers are normally included in the arms of a balanced bridge. Changes in the physical variable to which the transducer is sensitive cause an unbalance in the bridge, the extent of the unbalance being used to measure the change in the physical variable. Thermistor bridges for temperature measurement and bridges using resistive strain gauges are examples of such systems. Op. amps. are well suited for application in such balanced bridge circuits.
The most suitable configuration depends upon the particular application. Here are some of the points that have to be considered in choosing a particular circuit: earthed or floating bridge voltage supply; earthed or floating unknown resistor; output voltage linearly related to changes in the unknown resistor for both large and small changes; sensitivity of the arrangement dependent on the bridge impedance level (this will determine whether or not the circuit is affected by temperature changes affecting all the arms).
Bridge supply earthed (no amplification).

But

$$
\mathbf{e}_{\mathbf{A}}=\mathrm{e}_{\mathbf{B}}
$$

Substitution and rear rangement gives

$$
e_{0}=\left[\frac{R_{4}-\frac{R_{2}}{R_{1}} R_{3}}{R_{4}+R_{3}}\right] E
$$

Features. The circuit is basically an application of the adder subtracior amplifier previously discussed. It may be used in two ways.
(a) Make $R_{1}=R_{0}$, and $R_{2}=R_{x}=R_{0}(1+\boldsymbol{x})$ the unknown; make $R_{3}=R_{4}=R$. Substituting these values in the expression for the output voltage gives $e_{n}=\alpha . E$. Used in this way the circuit gives an output voltage which is linearly dependent upon ($R_{x}-R_{o}$), the difference between the unknown and standard. This linearity is maintained even for large deviations. The output is independent of bridge impedance levels. The circuit does not provide amplification and the measurement of small resistance changes may necessitate the addition of another amplifier to increase sensitivity. The unknown resistor is floating. (b) If it is required to earth one end of the unknown and to perhaps drive quite large currents through it then we put it in another arm of the bridge. Make $R_{3}=R_{R}$. $R_{1}=R_{x}=R_{0}(1+\alpha)$ and $R_{1}=R_{2}=R_{\text {. }}$. Used in this way the amplifier does not need to carry the current passing through R_{o} and R_{y} and it is practicable to use large currents. The output voltage is now $e_{0}=(\alpha /[2+x]) E$. The output is now linear only for small deviations in the unknown ($\alpha \ll 2$). In both arrangements the maximum common-mode voltage for the particular op. amp. in use must not be exceeded.

Amplification with Bridge Supply Floating.

The feedback circuit forces the amplifier to develop a voltage at the point A which is equal and opposite to the unbalance voltage developed across the bridge. The bridge unbalance voltage is

$$
\frac{E}{2}-\frac{E}{R_{0}+R_{0}(1+\alpha)} R_{0}=E \frac{\alpha}{4\left(1+\frac{\alpha}{2}\right)}
$$

The voltage developed at A by e_{0} is

$$
e_{0} \frac{R_{1}}{R_{1}+R_{2}}
$$

Equating and rearranging gives.

$$
e_{0}=\left\{1+\frac{R_{2}}{R_{1}}\right\} \frac{E}{4}\left(\frac{\alpha}{\left(1+\frac{\alpha}{2}\right)}\right.
$$

Features. The circuit is basically al adaptation of the inverting amplifier and a such has no common-mode voltage limita tions. The output does not depend o bridge impedance levels; it is linear for sma deviations in the unknown $\left(\begin{array}{l}\alpha \\ 2\end{array}<1\right)$. Th bridge unbalance voltage is amplified b ($1+R_{2} / R_{1}$). The necessity for a floatin bridge supply may sometimes be a di: advantage.

Amplification with Earthed
or Floating Supply.

Feedback maintains the opposing corners of the bridge at equal potential; the amplifier output voltage establishes the differential current needed to balance the bridge. Using a single supply with the lower end of the bridge earthed:
Summing currents at A

$$
\frac{E_{5}-e_{A}}{R_{0}}-\frac{e_{A}}{R_{0}}+\frac{e_{0}-e_{A}}{R}=0
$$

Summing currents at B

$$
\frac{E_{5}-e_{B}}{R_{0}}-\frac{e_{B}}{R_{0}(1+\alpha)}-\frac{e_{B}}{R}=0
$$

Equating $\mathrm{e}_{\mathrm{A}}=\mathrm{e}_{\mathrm{B}}$ and rearranging gives

$$
e_{0}=\frac{R}{R_{0}} E_{9} \alpha \frac{1}{(1+\alpha)\left(1+\frac{R_{0}}{R}\right)+1}
$$

Features. This circuit may be used with a earthed bridge supply but the sensitivity dependent on bridge impedance levels.
linear output is obtained for small deviations ($\alpha \ll 1$). The amplifier type used should be insensitive to the possibly quite large common-mode voltage level at the input.

Solar Cell Amplifier.

Features. In the circuit shown the polarity of the output voltage is dependent on the relative intensity of the light falling on the two cells. Circuits of this type are useful in measuring small deflections of a beam of light.

Photodiode Amplifier

A photodiode is essentially a reverse biased p-n junction, the reverse leakage current through the junction being dependent on the illumination falling on the junction. In use the diodes are connected in series with a high value resistor, but the input resistance of a

general purpose op. amp. is normally not high enough to allow it to be connected directly to this circuit. A transistor capable of operating at low currents and acting as an emitter follower can be used to increase the input resistance. A balanced input stage is used to reduce temperature drift. The gain of the amplifier is set by the choice of R_{2} / R_{1}.

Light Level Detector

A variation of the photodiode amplifier employing positive feedback can be arranged so that when the light intensity falling on the cell reaches some fixed level the amplifier output switches between saturation states. With no light falling on the photodiode the phase inverting terminal of the op. amp. is positive with respect to its other input terminal and the amplifier is in negative saturation. Light falling on the cell causes the potential of the phase-inverting terminal to fall, and when the amplifier comes out of saturation positive feedback applied via R_{1} and R_{2} causes a regenerative switching action which drives the amplifier to positive

saturation. If the light intensity is reduced a regenerative action returns the amplifier to its negative saturation value. The circuit exhibits hysteresis.

A.C. Amplifiers

Op. amps. are basically high-gain d.c. amplifiers, but they are equally suitable for applications not requiring a d.c. response. In such cases d.c. blocking capacitors are used in the signal path, and it is often possible to operate the amplifiers with a single power supply and a split zener biasing or resistive network divider technique, thus reducing the requirement for separate positive and negative supplies.

Phase Inverting A.C. Amplifier.

The basic inverter amplifier with capacitor C in series with the input. The gain of the amplifier is R_{2} / R_{1} with the low frequency 3 dB fall in gain occuring at a frequency $1 /\left(2 \pi C R_{1}\right)$. The upper frequency limit of the amplifier will be dependent on the loop gain and the compensated open-loop frequency response (see March article). The input resistance is R_{1}.

Non Inverting A.C. Amplifier.

Basically the follower with gain with the addition of blocking capacitors and the d.c. bias path R_{3}. The gain of the amplifier is $\left(1+R_{2} / R_{1}\right)$ with low frequency 3 dB frequency determined by the shorter of the two time constants $C_{1} R_{1}, C_{2} R_{3}$. The input resistance is R_{3}.

High Input Impedance A.C. Amplifier.

The non-inverting amplifier, being a voltage follower, is intrinsically capable of providing a high input impedance, but this is reduced in the simple follower by the d.c. biasing path R_{3}. In this circuit positive feedback is applied from the output via $R_{2} C_{1}$ and R_{1} to the lower end of R_{3}. This results in a large effective input impedance. The technique of raising the apparent value of an impedance by driving its low potential end with a voltage in phase with, and almost as large as, the voltage at its high potential end is known as 'bootstrapping'. The gain of the amplifier is $1+R_{2} / R_{1}$ and the effective input impedance is increased by a factor equal to the loop gain; e.g. if the closed-loop gain is, say, 20 and the open-loop gain of the amplifier is 4,000 , the effective value of R_{s} is increased 200 times.

Frequency Selective Amplifier

This is a bandpass amplifier employing a twin-T filter. The circuit uses the inverting feedback configuration, and in order to develop a specific frequency response characteristic the feedback path is made to

Choose C_{1} so that $C_{1} R_{1}>C R$

$$
\text { Peak gain } \bumpeq \frac{R_{2}}{R_{1}}
$$

Input impedance $\bumpeq \mathrm{R}_{1}$
include a frequency selective network-a twin-T network in this case. The twin-T is a rejection filter and has a high impedance at its characteristic frequency; the feedback is thus a minimum and the gain of the amplifier a maximum at this frequency.

Letters to the Editor

The Editor does not necessarily endorse opinions expressed by his correspondents

Base-connections of f.e.ts

It has come to my notice that various suppliers of field effect transistors are publishing misleading information in their catalogues regarding the arrangement of the lead connections of these devices. The compilers of these catalogues have assumed that the manufacturers have followed the logical arrangement of: collector $=$ drain; base $=$ gate; and emitter $=$ source.

Unfortunately this is not so-even particular makes vary. The following examples from the Motorola range illustrate the point:

Several colleagues and I have spent many hours attempting to get MPF 102s to function-following the connections given in the retailer's catalogue, only to find that this information was wrong and that the devices had probably "gone down the drain"!

If nothing can be done by the makers to identify the leads, either on the device or in the packet, would you please give this letter the widest publicity as we feel sure that other users are also being misled.
T. N. Lloyd (G3SL),

Hounslow,
Middx.

Labelling components

I should like to back up Mr. Short's suggestion that Wireless World adopts, what he calls the Continental practice of abbreviating component values in circuit diagrams, but I should also like to point out the inconsequence in mentioning only the resistors and omitting the capacitors (and the coils for that matter).

It seems obvious that the safety in reading resistance values, which is certainly gained by the adoption of the "Continental" practice of replacing the decimal point by the multiplier abbreviation, has even more bearing on the labelling of capacitors.

Surely, it necessitates the further
adoption of a couple of multiplier abbreviations to which many British and American engineers seem somehow adverse, namely " m " for 10^{-3} and more important " n " for 10^{-9}. It seems to me that the ease gained in reading and pronunciation justifies the necessary effort to get used to it. Here are a few examples:
for $0.0016 \mu \mathrm{~F}$ write $\ln 6$,
for $0.027 \mu \mathrm{~F}$ write 27 n ,
for $0.68 \mu \mathrm{~F}$ write 680 n ,
for $1000 \mu \mathrm{~F}$ write 10 m .
Exactly the same applies to the coils, these also often having values of fractions of the unit. Mogens P. Muller,
Copenhagen,
Denmark.

Improper oscillations in transistors

D. B. Pitt describes "improper" oscillations on page 20 of the January, 1969 issue. Relaxationtype signals are obtained with an n-p-n planar silicon transistor in a simple $R C$ circuit.

Some years ago, I carried on similar experiments with $\mathrm{p}-\mathrm{n}-\mathrm{p}$ germanium transistors. See Fig. 1, which has two unusual features: (a) the base is not connected (b) the output is a sine wave-about 0.5 V at 7 kHz !

As R_{2} is decreased to raise the current, an oscilloscope across R_{1} or the transistor will indicate a sinusoid at approximately 0.4 to 0.6 mA . If the current is increased further, the sine wave will disappear. Not all transistors tested gave this unusual result. I used 2N112 and CK 768 (Raytheon) transistors. My experiments were described in RadioElectronics, August, 1959.

More recently, I found that various n-p-n silicon types seem to generate saw-tooth or pulse signals, and at much lower currents. I used Fig. 1 with reversed polarity. In all cases,

Fig. 1
the voltage across the transistor tends to remain at a peak value as R_{2} is varied. For a 2 N112 this is approximately 20 volts, so a $22 \frac{1}{2}$ volt battery may be used. For a 2 N 2501 , it is about 26 volts, and for a 2 N 2712 it is about 48 volts.
I. Queen,

Radio-Electronics,
New York,
U.S.A.

Do manufacturers really want to sell?

I am currently an undergraduate in electrical engineering and a radio amateur. One day, after graduation, I will perhaps be required to obtain some component or assembly in quantity for my employer. Because of my past experience I know even now to whom I shall turn. The odd thing is -almost all such places I can think of are American.

Example: A casual request for some information on a component resulted in the whole catalogue, plus reply-paid cards should I need more information on any thing else, being sent to my home address. I was not once asked if I were in business. The company was American.

An even more modest request for pamphlet, to an English firm resulted ir my being told that this prized documentwas not really available to the genera public, however, a special case would be made if I were prepared to pay 6 d plus postage.

These are not one-off examples, nor am I prejudiced (yet) but the facts are where public relations are concerned the Americans are our tutors and we are unwilling pupils.

Okay, so you can't supply the British Isles with firelighters-but you don't have to. All you have to do is generate goodwill, not only to your immediate market but also to the public at large.

Subsidies and tariff controls are like penicillin, one can become immune and trade protection is then lost, and it is ther too late to "get your finger out" because somebody will have cut off your hand.
L. Kennedy,

Southport,
Lancs.
'Vector' makes several points in his March article about 'Jim Bandstop', but at least Jim was able to start his business and doubtless Jim himself would agree wholeheartedly about the structuring of companies. Now as far as the structure of his own company was concerned, he at least had some choice. What is, however, quite intolerable is the degree of external interference from such people, for instance, as Vector mentions, the Inland Revenue.

Even these people, and all the other multitudinous Government agents, have at least the defence that they have no vested interest in the success of the business. Quite incomprehensible from any point of view is the attitude taken by the component suppliers in whose interests it surely must be that any business thrives.

May I relate my own experiences in starting a small business in my spare time, as most businesses start.

I have dealt direct with several manufacturers or agents, sometimes for single orders in the $£ 50-£ 60$ region and have had no suggestion of any difficulty in opening an account, with no preliminaries such as giving references. All bills have been paid within two weeks of receipt.

Not so happy however have been my dealings with the component wholesalers. Radiospares flatly refused to allow me to open an account unless I had a Registered Office open at least six hours a day,

Finally, I forwarded a 'cut-out coupon' from one of your advertisements for C.E.S. applying for a catalogue, and received in reply a duplicated letter, unsigned, asking me to give two trade references and the name of my bankers, so that, if my premises are correctly rated, I may receive a catalogue. What they would require if I wished to open an account, I hate to think!

As I mentioned earlier, my business is at present only part time. It does not seem to have occurred to any of these companies that I also have control of ordering thousands of pounds worth of goods for the company I am employed by.
J. C. TAYLOR,

Heywood,
Lancs.

Negative feedback and hum

Whilst I must congratulate Mr. G. W. Short on his extremely ingenious circuit for reducing hum in class B single-ended push-pull outpui amplifiers (March issue), I suggest it is better to attack the problem at its root. This particular amplifier (Fig. 1) produces hum on its

Fig. 1. G. W. Shori's original amplifier

Fig. 2. Amplifier re-designed for common positive earth line

Fig. 3. Negative earth amplifier
output because the negative rail is used as the input "earth", and the positive rail as the output "earth". Since the liberal negative feedback ensures that there is negligible ripple on the output terminal, with respect to the negative rail, it follows that virtually the whole of the supply voltage ripple appears between the output terminal and the positive terminal. Fortunately it is very easy to redesign this amplifier so that the same rail is used for both input and output earth (positive), thus eliminating this problem (Fig. 2). If a negative earth amplifier is required, it is necessary merely to "invert" the circuit, using the same transistors in different positions (Fig. 3). D. Austin,

Birmingham, 24.
The author replies:
The most elegant solution to the hum problem is certainly to use a circuit which doesn't have it. One of my purposes in writing about my experiences with a particular amplifier circuit was to warn others of the problem, so that they could take avoiding action. When one gets down to actual cases, however, the solution may not be quite as simple as Mr . Austin's circuits suggest. For one thing, it is quite likely that the amplifier will be used with a pre-amp in a 'negative earth' configuration, in which case his Fig. 2 will be a non-starter. For another, it may not be permissible to swap $T r_{1}$ and $T r_{2}$ around to make possible Fig. 3. My own amplifier used a low-level p-n-p planar transistor type 2 N 4058 in the input stage and a medium power n-p-n planar type BFY51 as driver. Swapping these types around is not possible, because the 2N4058 won't handle the current needed in the driver stage, while the low gain of the BFY 51 makes it unattractive as an input transistor. This may seem a mere quibble, but when one looks for a p-n-p driver equivalent to the BFY 51 one discovers that it is expensive. If an extra smoothing capacitor can be obtained cheaply (they are much easier to find on the 'surplus' market than good p-n-p silicon driver transistors) then the 'swinging diode' smoothing circuit may be the most economical solution after all.

There is a further snag about Mr. Austin's circuits. This is that they may be found to exhibit an unexpectedly high hum level! Inspection of Figs. 1 and 2 shows that they both offer an entry point for ripple from the supply line. This is the emitter of the driver transistor, which goes straight to the unearthed side of the supply in each case.

Some readers have enquired about diode types for the smoothing circuit. Any silicon rectifier which will handle the current will serve. The reverse-voltage rating is of no importance. Selenium rectifiers will also work:
they start to conduct at about the same forward voltage but may have a greater forward drop at full current. A selenium bridge can be connected so as to be equivalent to two diodes in series.
G. W. SHORT

High-quality TV sound

With regard to the comments in the April issue about high-quality television sound, I would agree entirely with Mr. Dinsdale about the position of the sound source.

Due to space considerations, anyone watching my set has to sit between it and the hi-fi speaker I use for the sound, thus the sound comes from behind the viewer. Everyone who has watched it has been quite amazed at the way the sound seems to come from the screen when actually watching it.

As regards extracting a high-quality sound signal, I simply earth all my equipment to the neutral side of the mains and take the sound from the output of the post detector stage as one would do with an ordinary radio. This is not as dangerous as it might appear since all the mains plugs are three pin and thus cannot be plugged in the wrong way round.

The quality of the sound thus obtained, when fed through a normal domestic hi-fi system can be surprisingly good. Although not as good as that of the Band II f.m. transmissions, it compares very favourably with that of the monitors used at the B.B.C. and I.T.A. transmitting stations I have visited.

On tape recordings made in this manner it is just possible to hear the 405 - and 625 -line scan whistles, but they are not normally noticeable.

I have tried this method of sound extraction with two sets and found in both cases that mains hum could be troublesome due to the slight voltage drop in the TV mains feeder. The cure for this is to connect the TV chassis direct to the hi-fi amplifier's earrh. Also, a significant improvement in treble response was obtained on removing the sound interference limiters on both sets.
B. Pollard (aged 18), Sheffield 10.

Groove jumping on records

On both sides of the Atlantic one reads that a gramophone record has a "jumping groove", although what presumably is meant is that the cartridge needle jumps. The more important question is whether it is correct to speak at all of a "jumping" needle. Does the needle actually jump-that is, more correctly, is it thrown by the one groove wall over the opposite groove wall?-or does the groove wall, over which the needle is said to "jump", in fact pass under the needle? Or, again, is it sometimes the one, sometimes the other, and sometimes both occurring simultaneously? When I say that the groove wall passes under the needle-to me, the more likely cause of a needle missing one spiral of a groove-I mean that the one groove wall can undergo so violent an excursion that the groove moves out from under the needle, whichinertia and insufficient compliance hold more or less rooted to its original position.

It would seem that where the skating force is exactly neutralized, a needle should miss a spiral as often in the one direction as in the other, the only determining factor being (assuming that the needle, suspension, and damping material have exactly symmetrical characteristics in all directions of movement) whether the excursion causing the needle to miss moves towards or away from the centre of the disc. In the past, of course, owing to the skating force, it was usually the next groove inwards that came to be occupied by the needle.

Can any reader support or demolish my speculations?
Ronald Klett,

Loerrach,

W. Germany.

Folded exponential horn loudspeaker

I was delighted to read the abstract of J. Jecklin's article in February's Wireless World.

I do not feel, however, that Mr. Jecklin's high frequency arrangements represent the most satisfactory system. The power handling capacity of two Axiom 80s is far in excess of any domestic requirement and suitable arrangements give satisfactory distribution of sound from a single speaker.

My suggestion is to fit the high-frequency driver into a simple horn, mounted so as to reflect the sound off the corner of the room, or, if the ceiling be low, the ceiling. The horn loading restricts the movement of the cone ensuring negligible out-of-phase sound output from the rear of the cone. With Mr. Jecklin's arrangement this out-of-phase signal could be reflected off the walls to produce irregular response.

A further improvement, which I have made to my own speakers, is to cross over from the Lowther speaker at 4 kHz into a Decca-Kelly ribbon DK30 using the crossover details of which are given in Fig. 1 and the scheme of connection in Fig. 2. The crossover provides a transformer function increasing the drive to
the ribbon to bring its apparent sensitivity into line with the rest of the system. The ribbon unit is readily mounted on the outside of the horn of the mid-range speaker and similarly aimed so that its output too is reflected and dispersed. The Kelly acoustic lens should not be used in this arrangement.

The inclusion of the ribbon unit is well worthwhile as transient performance is improved and the smooth response minimizes listener fatigue, and background noise. For really noisy programme material the ribbons may be switched off-a filter far more effective than that in the amplifier.
Since Mr. Jecklin wrote his original article development has taken place in electrostatic mid-range speakers and readers should bear them in mind as a possible advantageous replacement for the p.m. unit. Mr. Peter Belt (Duode Ltd, Leeds) is marketing electrostatic speakers in which the matching transformer is replaced with advantage by a valve amplifier which also makes up for the lack of sensitivity of the electrostatic speaker. I have, however, found it necessary to retain the ribbon but to feed the h.f. range into the electrostatic panels and to feed the ribbon using the crossover as a high-pass filtertransformer only (see Fig. 3).

With the suggested arrangements the 16 ohm resistor can come out of Mr. Jecklin's crossover and the efficiency of the system rises to circa 40%. This now gives rise to important considerations concerning the amplifier, a matter of milliwatts making a very pleasant sound level in a small room. The sizeable sum of money spent on the speaker can now be recouped on the amplifier.

The appended 2×2 watt circuit (Fig. 4) provides the audibly faultless quality and unconditional stability found only in the best professional studio amplifiers. Heat dissipation of 70 W is no greater than a large valve table radio and cost should not exceed $£ 8$. It has not been found possible to reduce the heat dissipation without degrading the sound but suggestions are very welcome as users of insensitive speakers would like to build more
powerful versions that are not at the same time central heating systems.

Readers having no constructional facilities might consult Mr. C. Telfer, Caverton, Kelso, Roxburghshire, Scotland, who specializes in horn speaker construction.
I. G. Abelson,

London N. 14.

Fig. 1. Crossover circuit supplied by Stanley Kelly. Cores: Mullard FX 1007 (E) and FX 1107 (I). Spacer 0.036 in.

Fig. 2

Fig. 3

Fig. 4 One channel and power supply for 2 -watt amplifier. RFC $_{1}=$ Radiospares 1 A television suppressor choke; RFC $_{2}$ $=2 \mathrm{~A}$ version.

Modified Treble Filter for Bailey Pre-amplifier

In the pre-amplifier described by the author in the December 1966 edition of Wireless World, the presence of the treble filter affected the performance of the tone control in that the full boost and cut ranges were not available. In addition, ferritecored inductors of high " Q " value gave unwanted ringing in the circuit.

These defects have only recently become clear, and a modified filter circuit has been designed to overcome them. This is shown in Fig. 1. The cut-off frequency of the filter is now dependent on only one capacitor, in that the cut-off frequency can be varied from 4 to 11 kHz merely by changing the value of the output terminating capacitor. The values given in Fig. 1 represent the limiting values of common usage, capacitor values between these limits giving intermediate values of cut-off frequency.

The inductor is damped by the series resistor to such an extent that variations in inductor " Q " have little effect on the performance. Equally with the filter in the "out" position it is now removed completely from circuit and does not affect the amount of treble boost available. The overall transient response of the filter is quite satisfactory as can be seen from the square-wave response photograph shown in Figs. 3 and 4.

Fig. 1. Modified treble-filter circuit.

Fig. 2. Performance of modified circuit.

Fig. 3. Response to 1 kHz square-wave with $40,000 \mathrm{pF}$ capacitor

Fig. 4. As Fig. 3 but with 10,000 pF terminating capacitor

The inductor size was maintained identical to that in the original circuit so that modification entails a minimum expense.
A.R.B.

Books Received

Solid State Electronics by G. Fournet, edited by S. Chomet. This book, translated from the French, investigates the laws governing the motion of electrons in a crystalline medium. It falls into four parts. The first part is a thorough treatment of quantum theory, from first principles, which should be followed without difficulty by anyone with no more than a grounding in the ideas of quantum physics. The second part deals more specifically with the theory of electrons in metals. The third and longest section deals with semiconductors, and with the detailed theory of the working of diodes and transistors. The last section is a discussion of magnetic phenomena including ferro- and anti-ferro-magnetism, and ferri-magnetism. Typical numerical examples are worked out to show what magnitudes may be expected in practice. Pp.308. Prices 70s hard-back and 38s limp. Iliffe Books Ltd., 42 Russell Square, London W.C.1.

Management of Research Development and Design in Industry by T. S. McLeod. The author is Company Technical Co-ordinator with the Plessey Company and responsible for the inauguration and control of much of their research. The creed of this book is that expenditure on research and development is wasted without planning and control and that the design process itself must be properly managed. Guidance is given in setting up objectives for industrial research. Details of budgeting, staffing and day-to-day control are described in practical terms. The book ends with four detailed case studies of research, development and design management in action. Pp.260. Price $\{3$. Gower Press L.td., 13 Bloomsbury Square, London W.C.1.

Computer Aided Design

A short interpretation

Computers have been used in engineering design ever since they became available to engineers, which has been for about twenty years. Why, then, all the excitement about this apparently new subject called "Computer Aided Design" (or "CAD" as it has become known, perhaps because it is not the gentleman's way of doing things)? It could be, of course, that those responsible for organizing conferences and publishing books and journals-the professional communica-tors-have only recently discovered what has been going on. Another reason may be that what started in a fragmentary way twenty years ago has only now gathered sufficient body to become autarkic. Yet another explanation could be that computers have suddenly become human, in the sense that the engineer can now conduct a "conversation" with them with the aid of verbal or graphical peripheral equipment.
The c.a.d. conference at Southampton Un -

> I.E.E.
provided a good opportunity to see what is being done in electronics design (the conference was concerned with computer aided design of almost anything, but electrical and electronic producis were predominant). There seem to be three main areas of application: (1) circuit analysis and synthesisusing computing techniques to find the circuit values necessary to uchieve optimum or specified performance or production yield; (2) physical layout-achieving the optimum spatial arrangements of circuit elements and connections in printed circuits, i.c. and I.s.i. devices, thin or thick film sub-assemblies, or conventional electronic equipment; (3) system design by simulation or testing-using the computer as a model on which to try out a likely system before construction, or to test a system already built.
In almost all c.a.d. projects the computer used is a digital machine. Analogue computers although particularly well adapted to certain jobs, such as system simulation in "real time", are restricted in range of ability because each piece of their hardware can perform only one specific operation (e.g. adding, multiplying, integrating).

What is perhaps rather mystifying is how a machine for handling numbers can deal with spatial and topological information, as in printed-circuit layouts or electronic circuit configurations. With spatial patterns the principle is simple: any point in space can be specified numerically in terms of Cartesian or polar co-ordinates within some arbitrary frame of reference; thus numerical descrip-
tions of points, lines, areas and volumes are possible. With electronic circuit topology the transformation is usually done by the use of nodes-that is, all the common connection points, or nodes, in a circuit are labelled with code numbers, then the position of each component in the circuit is specified by the code numbers of the nodes to which it is connected. This process, of course, can also be applied to the nodes of equivalent-circuit "models" of single devices such as the transistor. Branches (the paths containing components between nodes) are also used and similarly numbered.

By such techniques the computer can be made to do what the engineer normally does with diagrams and drawings in the design process, repeatedly recording and modifying. With straightforward calculations, e.g. using Ohm's or Kirchhoff's laws in circuits, the computer does essentially the same as the engineer with his slide rule-but more of it. Correct or optimum design is a matter of trying a succession of different arrangements in a systematic manner that approaches the desired result by degrees-very tedious and perhaps impractical for an unaided engineer to do exhaustively. Mathematically, however, it is an iterative, convergent process and therefore very suitable for handling by a mathematical machine such as a digital computer, which is ideal for repeating a given calculation with different sets of numerical values. For example, a typical electronics design process might call for calculating the steady-state response of a circuit at numerous frequencies for every possible value of every component in the circuit.

The following short descriptions of papers from the Southampton conference give some idea of current activity in c.a.d. as applied to electronic engineering.

Circuit analysis and synthesis. Computer

 programme to solve the currents and voltages in a transistor-resistor network under steady applied voltage conditions (A. M. MacSwan). Determining circuit element nominal values and maximum allowable tolerances to achieve responses within specified constraints (G. J. Herskowitz, M. A. Murray-Lasso). A general d.c. analysis programme for non-linear circuits: allows the user to take the model provided or build up his own model (H. M. Davison). Worst-case a.c. analysis using signal-flow graphs (G. W. Zobrist). Specifying a circuit with the aid of an alpha/numeric/graphical display: the requirements of a given circuitanalysis programme are automatically met as the engineer is guided in a sequence of actions by instructions from the computer itself (J. A. Weaver). Obtaining optimum yield in production: finding the set of nominal component parameters, with given probability density functions, that gives the maximum number of satisfactory circuits (F. Jensen). Taking account of non-idealities of active devices in circuit analysis and applying corrections (J. I. Sewell, C. Nightingale).

Physical layout. Computer programming language for specifying layouts for i.c. masks: takes advantage of redundancies arising from parallel sides of shapes, repeated shapes in one circuit, patterns common to a range of circuits (J. Wood, et. al.). Programmes for designing layouts of circuit modules in large equipments (computers) to achieve minimum functions of the wiring, e.g. minimum total length of wire (J. Houghton). Trial layouts of thin-film microcircuits: programme deals with component dimensions, placement and interconnections and displays result on a digital incremental plotter (W. J. Cullyer et. al.). Programme using graphical display to allow intervention by the designer for semi-automatic design of printed circuit boards: placement of packages and arrangement of interconnections (D. F. A. Leevers). C.r.I. display and pat-tern-generating computer programme as an aid to designing i.c. masks: when a design is completed dimensional information is stored on magnetic tape to control a mask cutting machine (J. Atiyah). Programmes for automatic design of 1.s.i. two-layer interconnection patterns (P. E. Radley).

System design by simulation. Programme for simulating a digital processor of a doppler radar system (J. H. Blythe et. al.). "Conversational" programme for simulating logic sub-systems on a time-sharing computer: circuit description, input and required output are fed in as data and can be modified at will while the programme is running (J. S. Reynolds). Logic simulation programme capable of being expanded and modified according to experience with practical examples: includes TTL74 and DTL900 series of i.cs (P. C. Gorton, S. P. O'Byrne). Testing logic networks by simulation: system being developed is designed to reduce computing costs (A. A. Kaposi).
 man to the assembly line! Electrosil quality is the same however small the resistor.

If you've appreciated the virtues of tin-oxide resistors in the past you only lose one thing with the C3 - size. It takes years of experience to cut down a resistor to this size a d maintain the stability.
reliability and consistent quality for which Electrosil is noted.

C3 is not only a m ni resistor -0.160° long and $0.066^{\prime \prime}$ diameter but it can dissipate a full $\frac{1}{8} \mathrm{~W}$ at $70^{\circ} \mathrm{C}$ with well below 1% change in value over 2000 hours.
5% selection tolerance, the C 3 is supplied with a T.C of 100 or 200 p.p.m.

Write now for full technical data on the smallest glass-tin-oxide resistor in the world!
ELECTROSIL LIMITED P.O. Box 37, Pallion, Sunderiand, Co. Durham, Telephone Sunderland 71481. Telex 53273

Electrosil

have the experience

Likeus to place a small deposit on your nextorder?

No trouble at all. We already plate millions of Carr Fastener components every week. Gold, silver, copper, chrome, zinc, tin, nickel, cadmium: we plate with them all, electrolytically and with great precision. You'll have to go a long way to find anyone plating parts with greater expertise! For electronic edge connector contacts, for instance, we have developed techniques of selective plating with gold on the metal strip before forming. This deposit is graded from a minimum

give long-life protection, up to 5 microns thick at points subject to wear
Because we do all the metal preparation and plating in our own factories we control the quality and the time it takes. Neither we, nor ultimately you, are at the mercy of external suppliers, for vague, ever-extending delivery dates.
Plating is only one of the processes we use in producing over twenty five million fasteners, connectors and related components per week. We also solder, rivet and bond parts together. Or encapsulate them in compression or injection mouldings.
All along the line our components and parts are subject to batch testing for characteristics such as : dimensions, plating thickness, insertion force, electrical potential etc, etc. Precision components such as edge connectors for the GPO even require 100% testing, which could
be very time-consuming - except for the fact that our development boys have devised a little machine that does the necessary test
completely automatically. In fact, we'd have a bit of trouble turning out over 25,000,000 parts a week if our development people hadn't invented quite a few machines (many
of them patented) to streamline production. To recap: we form the parts, plate them, then go on and complete any processing necessary to make the part into a finished component ready to drop into your assembly-line.

Carr Fastener Company Limited,
Stapleford, Nottingham
Telephone: Sandiacre 266I
G7

Personalities

Group Captain E. Fennessy, C.B.E., is the new chairman of the National Industrial Space Committee set up by the Society of British Aerospace Companies, the Electronic Engineering Assoc., and the Telecommunication Engineering \& Manufacturing Assoc. Grp. Capi. Fennessy is managing director of Plessey Electronics Group which he joined in 1965 after 20 years with the Decca organization, latterly as managing director of Decca Radar Lid. The N.I.S.C. is responsible for co-rdinating the views of this country's industries involved in space-vehicles and associated control and communications systems.

Douglas H. Bolton, M.B.E., who is 48 and joined Newmark Instruments Lid $3 \frac{1}{7}$ years ago as chief project engineer, is appointed manager of the company's Control Engineering Division. He was with Elliott Automation as a technical manager for eight years on de velopment of aircraft /missile control systems prior to which he was from 1956 to 1958 chief systems engineer with Sanders Roe Lid on "Black Knight" rocket development. During World War II, from 1939 to 1946, Mr. Bolton served in the Army and for $2 \downarrow$ years was a senior lecturer on radar and electronic control equipment at a R.E.M.E. Technical School. After the war he served as a civilian technical officer in the War Department and in 1951 was appointed an M.B.E. for his

D. H. Bolton
work on operational performance of radar and control equipment used for the air defence of Great Britain.
K. H. Kreuchen, O.B.E., D.Phil., F.Inst.P., appointed managing director of the newly formed EMI-Varian Lid., Hayes, Middlesex, studied physics, chemistry and mathematics at the universities of Kiel and Heidelberg. He started his career as a physicist at what is now the Max Planck Institute at Heidelberg. Five years later he joined the Development Laboratory of the Tube Factory of Siemens and Halske at Berlin-Siemenstadi. After the war, he was asked to come to England where he worked first on a government contract with S.T.C. In 1948 Dr. Kreuchen joined the staff of the Research Laboratories of EMI Limited, and specialized in research and development work on high-power velocity-modulated tubes, particularly klystrons. He has latterly been general manager of the Power Tube Division of EMI Electronics Lid.

Walter Marshall, B.Sc., Ph.D., who is 37, is appointed by the U.K. Atomic Energy Authority director of the Research Group (which includes the Culham Laboratory as well as Harwell). He will continue to be director of the Atomic Energy Research Establishment, Harwell. Dr. Marshall took his B.Sc. in mathematical physics at Birmingham in 1952, and his Ph.D. in 1954. He joined the Atomic Energy Research Establishment at Harwell in that year and from 1957 to 1959 spent two years in the United States at Berkeley and Harvard before returning to Harwell. In 1960 he was appointed head of the Theoretical Physics Division at Harwell, and in 1964 was made a member of the research group management board. In March 1966, Dr. Marshall was appointed deputy director of the A.E.R.E., Harwell, and a year later received the additional appointment of deputy director of the Research Group. He has been director of A.E.R.E., Harwell, since April 1968.

Michael Wadely, D.F.H., M.I.E.E., who has been development manager of Newmark Instruments since November 1966, has become chief engineer of the Control Engineering Division. He was with G.E.C. (Electronics) Lid, at their Applied Electronics Laboratory, Stanmore, as a project leader for 10 years. For the last three years with G.E.C. he was manufacturing manager of the Stanmore and Hemel Hempstead facilities. Mr. Wadely was educated at Brighton College and at Faraday House Electrical Engineering College, London.

M. Wadely

The new managing director of Veeder-Root Lid., the counter and pump computer manufacturers of New Addington, Croydon, is Lawrence Dilger, B.Sc., M.I.E.E. He succeeds B. E. Harry who is returning to the U.S.A. to take up the position of vice-president international with the parent company in Hartford, Connecticut. Mr. Dilger has been with Veeder-Root for five years, having joined them as technical manager from Honeywell Controls. The company has also announced the appointment of \mathbf{E}. S. Ashford, M.I.E.E., as technical manager. Mr. Ashford joined the company ten years ago as chief designer from E.M.I. Electronics Ltd. In his new capacity he will be responsible for $\mathrm{R} \& \mathrm{D}$ and design at New Addington.
R. W. Merrick, who has completed 41 years with Wright \& Weaire Ltd and the Ferrograph Company Lid, of which he was a founder in 1949, is retiring from active participation in the commercial affairs of Ferrograph, bur continues as a member of the board. He will continue to serve as an executive director of the Ferrograph subsidiary, Rendar Ltd. S. G. Griffiths has been appointed director of commercial affairs in succession to Mr. Merrick. Mr. Griffiths has been on the staff of Electric and Musical Industries Lid for 23 years, during the last five of which he has held the position of sales manager with responsibility for product planning and for worldwide marketing of professional tape recorders and associated equipment.
F. H. Townsend, a Londoner who has been in N. America since 1957, has been appointed manager, Electronic Tube Division of Canadian Westinghouse Co. Lid. I'rior to joining Canadian Westinghouse, Mr. Townsend served as manager, entertainment equipment sales, for the Westinghouse Electric Corporation, Electronic Tube Division. Mr. Townsend, who is 57, started his career with Cossors in 1931 where he remained in the research department until 1938 when be joined the vacuum laboratory of Pye. From 1946 until he went to the U.S.A. Mr. Townsend was chief vacuum engineer and manager of Cathodeon.

John Lockyer, chief designer, British Radio Corporation (Thorn Group), recently retired after 22 years service with the company. He started his career as an apprentice mechanical engineer in 1925 with Western Electric, which later became International Telephone and Telegraph. In 1931 he joined the B.B.C. to work on equipment for installation in the new Broadcasting House and later transferred to the Research Department as head draughtsman. Leaving the B.B.C. in 1946, Mr. Lockyer joined the Ferguson Radio Corporation at Enfield as chief mechanical designer.

Kenneth F. Gibson, B.Sc., has been appointed managing director of Computing Devices Company Lid, London. Mr. Gibson, aged 33 and a graduate of Queen's University, Belfast, joined Computing Devices of Canada Lid., Ottawa, the London company's parent organization, seven years ago. He became supervisor of the aerophysics department in 1964; manager of space sciences division 1965; and director, research and technology marketing just over a year ago.

Christopher R. Robinson, B.Sc., M.Sc., who is 38, has become chief engineer of Computing Devices Company Lid., London, following the recent death of Adrian Duguid. Mr. Robinson took his B.Sc. in electrical engineering at Nottingham University and an M.Sc. at the University of Tennessee. He later lectured in electrical engineering at the Ohio State University before returning to England in 1960 to join Hawker Siddeley Engineering Lid. After this he was a design engineer with Bendix Electronics Lid. In 1967 Mr. Robinson joined Computing Devices of Canada Lid, Ottawa, and has there been engaged on the planning of avionics products.

Peter Iddon, who has been with Multicore Solders L.td for more than ten years, has been appointed U.K. sales manager, consequent upon the resignation of G. A. Jarvis.

Wireless World Colour Television Receiver

13. Chrominance circuit adjustments

Before dealing with the adjustment of the chrominance circuits, it is necessary to complete the description of the colourdifference amplifiers and some other matters which lack of space prevented inclusion in last month's article. The circuit of

Fig. 1. Circuit diagram of the output stages of the colour-difference video amplifiers and black-level clamps.

Fig. 1 shows the colour-difference output stages. The grids of the three pentodes are connected through the resistors R_{111}, R_{112} and R_{113} to P_{35}, P_{36} and P_{37} on the main chrominance board. These three resistors are connected directly between the three pins of the main board and the pentode grid terminals of the valveholders and are shown dotted in the circuit diagram of Part 12.

The valves used are type PCL84 triode-pentodes; the pentode sections are used as the video amplifiers and the triode sections as black-level clamps. All three stages are identical and are self-biased by cathode resistors, $R_{1179} R_{118}$ and R_{19}; the by-pass capacitors C_{68}, C_{69} and C_{70}, have values which give compensation for the effect of shunt capacitance on the anode loads.

Each pentode anode is connected to a triode anode through a capacitor and each triode anode in turn is connected directly to a grid of the colour tube. The triode anode loads are very high, $8.2 \mathrm{M} \Omega$ and the triodes are normally non-conductive. During line flyback, however, a $50-\mathrm{V}$ positive-going pulse from the line timebase is applied to each grid and makes each triode conduct. Because of the high anode load the voltage drop between anode and cathode becomes quite small, with the result that the anode potential drops to but little more than the cathode potential, which is set by the voltage divider, R_{129}, R_{130} and $R_{\text {III }}$.

Because of this the coupling capacitors between the pentode and triode anodes are brought to a fixed charge once per line. The result is thus the same as if the conventional d.c. restorers were used on a normal signal. They cannot be used here, however, because the sync pulses, which normally control a d.c. restorer, are gated out of the signal at an early stage. Control has to be effected by pulses from the timebase, therefore.

The three valveholders are carried by a small metal panel measuring $3 \frac{1}{2} \times 2$ inches. The pentode bias resistors and by-pass capacitors are connected directly between the appropriate tags of these holders and the panel.

A second panel of Veroboard measuring $3 \frac{1}{2} \times 2 \frac{1}{2}$ inches is screwed to the metal panel with an overlap of $\frac{5}{8}$ inch, and on this are mounted the other resistors and capacitors as shown in the photographs of Fig. S. Three 2 B.A. clearance holes are drilled through both panels and the composite panel is screwed to the top of the framework holding the other boards. It is convenient to tap the holes in the framework, since nuts would be rather inaccessible. Spacers are needed to stand off the board from the frame and these can conveniently be a pair of 0 B.A. full nuts.

Fig. 2 shows the interconnections between the two main boards. Notice particularly that the connection between P_{6} and P_{26} is made by a $0.0022 \mu \mathrm{~F}$ capacitor.

Coil-winding details are given in the table, and a second table gives typical no-signal voltages.

Fig. 3. Details of the delay-line mounting board are given here, viewed from the rear. This is for the original model of the Mullard delay line.

COIL WINDING DETAILS

Coil	Turns	Winding	Frequency (MHz)	$\begin{aligned} & \mathrm{Lmin}_{(\mu \mathrm{H})} \end{aligned}$	$L_{(\mu \mathrm{max}}$	$\begin{aligned} & \text { Rdc } \\ & (S) \end{aligned}$	Core
L,	60	single layer	4.43	11	29	2.35	short
L_{2}	120	scramble	-	52	133	4.6	long
L_{3}	55	single-layer	4.43	9.25	25.8	1.6	long
L_{4}	1700	scramble		17.000	70.000	90	Ferroxcube
L_{5}	250	scramble		204	475	10.2	long
L_{6}	70	scramble	4.43	15	40	2.8	long
L,	90	scramble	6	24.2	65	3.1	short
L_{4}	30	single-layer	4.43	2.8	13.1	0.85	long
L. Lio	120	scramble	4.43	57.5	139	5	short

Except for L_{4}. all coil formers are Neosid type 722/1 with cans 7100. and terminal bases 5027. The long cores are Neosid $4 \times 0.5 \times 12.7$ and the shor cores Neosid $4 \times 0.5 \times 6 / 900$. For L_{4} an Aladdin former is used of $\frac{1}{}$-inch diameter and 2 -inches long with a can $\frac{1}{2}$ inch square by 2_{k}^{3}-inch long. All coils which are scramble-wound have cheeks fitted t-inch apart. All coils are wound with No. 42 gauge wire, which can be enamel or enamel-silk covered. The core of L_{4} is Ferroxcube FX1068, wrapped with Sellotape to be an easy fit in the former

Fig. 4. This drawing shows the details of the board for the current Mullard-type DL1E delay line. With this line T_{7} is not required and R_{72} and R_{95} should be changed to 100 ohms.

Stage	Base	Emitter	Collector	Stage	Anode	Cathode
	$\begin{aligned} & 0.65 \\ & 1.05 \\ & 0.45 \\ & 0.6 \\ & 2.7 \\ & 3.5 \\ & 2.4 \\ & 4 \\ & 2.2 \\ & 5.2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0.7 0.5 0.2 2.1 2.95 2.7 4 1.6 4.6 0 0 -0.65 -0.6 -0.65	12.9 14.1 14.25 8.6 11.6 11.6 13.2 13.3 1.3 12.5 5.5 5.5 15 17.6 13.5	$\begin{aligned} & D_{1} \\ & D_{2} \\ & D_{3} \\ & D_{4} \\ & D_{3} \\ & D_{6} \\ & D_{3} \\ & D_{8} \end{aligned}$	$\begin{gathered} -10 \\ -6.1 \\ 0.7 \\ 0 \\ 0 \\ 4 \\ 0 \\ 2.4 \end{gathered}$	$\begin{gathered} 0 \\ 0.7 \\ 8 \\ 10.9 \\ 3.9 \\ 6.7 \\ 5.3 \\ 2.4 \end{gathered}$

Fig. 3 shows an under view of the board which carries the delay line and its connections. The delay line includes tuned circuits which are factory adjusted and should not be touched. There are in existence two types of line which can be distinguished with an ohmmeter. The connecting tags are in two groups of three and in the original pattern of line the outer pair of each three must be joined together, as shown in Fig. 3. An ohmmeter test between the tags of each pair before they are joined will show an open circuit. In the later model the test will show an internal connection between these tags. They must not then be joined together, but the connections shown in Fig. 4 must be adopted. This newer model, the Mullard type DL1E, has built-in auto-transformers at each end instead of plain coils. As a result, a push-pull output can be obtained directly from it and T_{7} of Part 12 should not be used with it. At the input two different impedance levels are available. The higher impedance input provides a greater output and if this should be needed it is necessary to change $R_{T_{2}}$ to 390 ohms. However, normally the lower impedance is suitable and R_{7} and R_{98} should be each 100 ohms instead of the 150 ohms needed for the earlier model.

There are a good many adjustments needed in the chrominance circuits but nothing very complicated in the way of
apparatus is needed. A signal generator and an oscilloscope will do most things. It is advisable to use an isolating mains transformer, not merely to protect oneself, but to protect the test equipment. In addition a $0.002-\mu \mathrm{F}$ capacitor should be in series with the signal generator output.

The procedure is as follows:

1. Apply the output of the signal generator between the decoder input terminal, P_{1}, and chassis.
2. Set the saturation control $R_{f 0}$ to maximum.
3. Short-circuit D_{8} (to render the colour-killer inoperative) and R_{30} (to render the local oscillator inoperative).
4. Connect the oscilloscope to the base of Tr_{10}.
5. With an input at 6 MHz tune L_{7} for minimum output.
6. With an input of 4.43 MHz tune L_{6} for maximum output.
7. Remove short-circuit from D_{8} leaving that to D_{30} in place.
8. Disconnect the inter-unit lead from P_{3}.
9. Join P_{3} to the junction of R_{48} and R_{49} and also connect it to the chassis through 0.01 F .
10. Connect the oscilloscope to the cathode of D_{1}.
11. With an input of 4.43 MHz tune L_{1} for maximum output.
12. Replace the connections altered under (8) and (9) to normal.
13. Connect the signal generator across C_{9} and the oscilloscope

across $R_{\text {\% }}$.

14. At 4.43 MHz adjust L_{9} for minimum output.
15. Connect the signal generator across C_{61} and the oscilloscope across $R_{\text {g }}$.
16. At 4.43 MHz adjust L_{10} for minimum output.
17. Disconnect the signal generator and oscilloscope.
18. Connect the oscilloscope between P_{6} and chassis.
19. Remove the short-circuit from R_{30}.
20. Adjust L_{3} for maximum output which should be about 5.4 V p-p.
21. If possible, examine the waveform and if necessary readjust L_{3} to make it more nearly sinusoidal. This will usually entail screwing in the slug a little. An output of 5 V p-p of good waveform should be obtainable.
22. Connect the oscilloscope to C_{61}.
23. Adjust L_{8} for minimum output.
24. Connect the oscilloscope to P_{6} and chassis, and take a separate lead from P_{6} to the 'external sync' terminal of the oscilloscope.
25 . Use a $1-\mu \mathrm{s}$ sweep range and carefully lock the oscilloscope to the wave. Adjust the X -shift so that the top of a half cycle is exactly on a vertical line of the oscilloscope graticule.
25. Connect the oscilloscope to the junction of R_{90} and C_{579} but leave the 'external sync' terminal still joined to P_{6}.
26. Adjust C_{5} so that the graticule line, which previously coincided with the top of a half cycle, now coincides with a zero of the sine wave. If this cannot be reached with C_{5} at maximum, add C_{56} of perhaps 20 pF . (Note. If a double-beam oscilloscope is available and it has the same phase shift in both channels, the two inputs can be connected simultaneously to P_{6} and across T_{6}. Then C_{57} can be adjusted for 90° phase angle between the two traces.)
27. Restore all connections to normal.
28. Tune in a signal and lock line and field timebases to it. With saturation at minimum adjust for a good black and white picture. Adjust the tuning from a position of poor picture detail to one which is just short of the setting at which sound-channel interference appears.
29. Connect the 'external sync' terminal of the oscilloscope to a convenient point on the line timebase (a wire within a few inches of the line output valve will usually give enough pick-up).
30. Connect the oscilloscope input to P_{1} and check that there is a colour burst on the waveform. If not, readjust the tuning, which may be critical.
31. Disconnect the lead from P_{3} and connect the oscilloscope to P_{3}.
32. Adjust the X -shift to centre the colour burst on a vertical line of the graticule.
33. Connect the oscilloscope to P_{25}.
34. The trace should be a damped sinewave of perhaps three or four noticeable cycles. Adjust L_{s} so that the first positive half cycle is centred on the vertical line of the graticule on which the colour burst was previously aligned. (Note. If a doublebeam oscilloscope is available connect it to display the burst on one trace and the damped sinewave on the other.) The amplitude of the first positive half cycle should be about 3.5 V .
35. Replace all connections to normal.
36. Set R_{19} and $R_{2 g}$ at a little below maximum.
37. Remove the link between P_{4} and P_{5}.
38. Short-circuit D_{8}.
39. Connect Model 8 Avometer on $25-\mathrm{V}$ range between chassis and the collector of Tr_{4} (i.e., P_{4}).
40. Adjust R_{ϑ} and R_{r} so that the meter reads 7 V , and so that by adjustment of R_{2} only the voltage can be varied from nearly zero to 12 V . This fixes the setting of $R_{\mathfrak{y}}$. Then set to 7 V by $R_{2 z}$
41. Turn up saturation. Horizontal colour bars should appear. Adjust for a moderate intensity of colour.
42. Adjust L_{2} for a colour lock if possible; if not for the
slowest movement of the bars.
43. Replace the link between P_{24} and P_{25}.
44. Adjust $R_{2 x}$ for a colour lock. This means that the horizontal bars will disappear and that the colour will be properly distributed over the picture. The colours, however, may be the wrong ones, but at this stage do not worry about this.
45. Adjust R_{4} so that the setting of $R_{2 z}$ for a colour lock is not too critical.
46. Remove the short-circuit from D_{8}. If the colour killer is operating correctly this should have no effect.
47. Connect the oscilloscope across $R_{ \pm 4}$. An approximate sinewave of 7.8 kHz should appear. Adjust L_{4} for the best sinewave. 49. Readjust the tuning. It will now be critical for colour. With quite small mistuning all colour should disappear, but at the proper setting not only should traces of colour appear but the reference oscillator should lock-in without any other adjustment.
48. Adjust saturation for a reasonable depth of colour. Avoid turning it up too much for this will produce colour streaking.
49. Examine the actual colours obtained. Test Card F is best for this. On this the background should be a pale blue and the girl should have a red dress with brown hair and the doll should be green. If the colours are wrong or nearly all wrong, transfer the lead to P_{24} to P_{23}, thus changing the phase of the bistable. All colours should now be substantially correct, but may not be precisely right. Thus, reds should be red, greens green, and blues blue, but some may be too vivid and others too pale, while other colours, which are a mixture of these may have considerable errors of hue.
50. The controls R_{98}, R_{106} and R_{108} have now to be adjusted to put this right. The $R-Y$ channel gain is fixed, but the relative gain of the other two is adjustable as is also the matrixing of the $\mathrm{G}-\mathrm{Y}$ channel by R_{98}. Fortunately, these controls are not very critical. Adjustments are initially best carried out on the colour bar test pattern which is usually broadcast several times a day during the trade test transmissions. There is little that can be said about these adjustments beyond saying that they are done a little at a time until all colours look right.
53 . Since the delay line has not yet been brought into use the receiver is operating in the simple PAL mode. Under conditions of good reception it should give a good colour picture which at normal viewing distance may satisfy many people. Its main defect will be that in close viewing (how close depends on individual eyesight) alternate lines in a large area of colour may be of slightly different shades and the lines appear to move vertically. This is because in simple PAL the integration of successive lines is performed by the eye, and the eye cannot do this when it is too near the picture.
54 . With the receiver tuned to a signal so that the reference oscillator remains locked, connect up the delay line. Disconnect the lead to P_{12} and disconnect the lead from P_{6}. Connect P_{6} to P_{12} through $10 \mathrm{k} \Omega$.
51. Disconnect the links P_{29} to P_{30} and P_{31} to P_{32}.
52. Connect the oscilloscope to P_{31}. It will display the $4.43-\mathrm{MHz}$ output from the reference oscillator. Adjust R_{75} for a minium. If no minimum setting can be found, transfer the oscilloscope to P_{29}. If there is now a definite minimum setting for $R_{\text {r }}$, reverse the leads to one end of the delay line. There should now be a definite minimum setting with the oscilloscope connected to P_{3}.
53. Ideally the minimum output should be zero. In practice, it is not. If it is not very small indeed, however, compared with the output at P_{29}, try adding capacitance across R_{76} or R_{π}, across one there will be a phase lead and across the other a phase lag. Values of from $25-100 \mathrm{pF}$ should be tried.
54. Replace connections to normal and check on a picture. The crawling-line effect on areas of solid colour should now have disappeared. If it has not, slight readjustment of R_{7} should make it do so.

This completes the adjustments to the chrominance circuits. The list appears to be a very formidable one, but in actual fact the adjustments are not at all difficult to carry out. No serious difficulty is likely to arise unless there is some gross defect. Unfortunately, the symptoms of a fault in the colour circuits can be very different from what one is inclined superficially to expect. Thus, for example, suppose that there is some defect which renders the $\mathrm{B}-\mathrm{Y}$ channel inoperative. One's first reaction is to expect that there will be no blue in the picture, but this is quite wrong. There will be too much blue! It is important to remember that this is a colour difference channel. For a fully-saturated blue signal, the $\mathrm{B}-\mathrm{Y}$ channel carries a signal of which the Y component is supposed to cancel the Y signal applied to the cathode and leave the B signal to operate the gun. However, if there is no signal at all applied to the blue grid there is still the Y signal applied to the cathode and this will operate the blue gun to produce blue.

The quickest way of checking in such cases is, of course, to use the oscilloscope to make sure that signals are in fact being applied to each grid of the tube. However, if it is necessary to diagnose from the symptoms the waveforms of Fig. 5, Part 10 will be found very helpful.

From this it can be seen, for instance, that on a blue signal the Y signal is quite small and that the $R-Y$ and $G-Y$ signals are equal and opposite so that they cancel out to give no total signal on the red and green guns; the $B-Y$ signal is large, but its complete absence leaves the small Y signal on the blue gun.

If the $R-Y$ channel were to fail, then with the same blue signal the cancelling signal on the red grid would be absent and the Y signal on the cathode would operate the red gun when it should be inoperative. The net result would be to give the blue a magenta cast.

It is possible to adopt this procedure in diagnosing colour troubles when the signal is the colour-bar test pattern for the colours are then known ones and include pure red, green and blue. It is almost impossible to do so on a general picture
where the precise colours are unknown and where pure primary colours are fairly rare.

In the development quite a number of colour faults were found and some of them through inexperience took quite a time to trace. In the end, however, they all proved to be simple electrical faults. Some, like reversed connections to a transformer winding or to the delay line, were a little puzzling at first. One which had devastating effects on the colours was a failure in the $G-Y$ channel. This was localized quickly enough for there was full h.t. voltage on the pentode anode, indicating that it was taking no current. A further check showed it to have no g_{2} voltage and the problem then was, why? This took some time to find for the fault was a very rare one, an invisible break in a copper strip on the Veroboard! Once found, a touch with the soldering iron put matters right.

It may seem a statement of the obvious to point out that in order to obtain a colour picture one must have the proper chrominance input to the decoder, including the colour burst. This depends upon the bandwidth of the i.f. amplifier and they will not be obtained if this is insufficient.

In monochrome inadequate bandwidth does no more than reduce the horizontal definition and can pass unnoticed by the uncritical. In colour it may reduce the amplitude of the burst so much that a colour lock is difficult or impossible to obtain, but traces of colour and, in particular, horizontal colour bars, may still be evident. The chrominance signals are transmitted vestigial sideband below the sub-carrier in frequency. The higher modulation-frequency components of the chrominance signal may thus be within the i.f. pass-band even if the sub-carrier frequency itself is just outside it.

It is the normal current practice to make the $-6-\mathrm{dB}$ points of the i.f. amplifier 39.5 MHz and 35 MHz ; the burst comes at 35.17 MHz and so is attenuated only slightly less than 6 dB . As transmitted, the peak-to-peak amplitude of the burst is the same as that of a sync pulse. At the detector output of the receiver it will rarely be greater than one-half of this. It does

not take much misalignment of the i.f. amplifier to reduce the colour burst to a level which is inadequate for locking the reference oscillator properly.

Mistuning the receiver one way brings the vision carrier below 39.5 MHz , the upper modulation frequencies are cut-off, the definition becomes poor and, as the colour burst is cut-off, there is no colour. Mistuning the other way brings the vision carrier above 39.5 MHz , the upper modulation-frequency response is improved but a strong interference pattern from the sound channel occurs.

It might be thought that a bandwidth at 6 dB of 4.5 MHz is rather small when the transmitted bandwidth is 5.5 MHz . In practice, however, the results are good. It is not impossible to obtain a 5.5 MHz bandwidth but it is very difficult to do so and obtain the drop in response of at least 30 dB on a further 0.5 MHz change of frequency, which is necessary for soundchannel rejection. A bandwidth of 5 MHz is more practicable but even then the cut-off needed for proper sound-channel rejection is hard to obtain.

Transient response

In television it is not so much the frequency response which is important as the transient response, and what is really required is a very short rise time without overshoot. A flat frequency response with a sharp cut-off, which is inevitable if the bandwidth is large, may give short rise time, but it inevitably produces overshoot. It is desirable for the response to fall off gradually towards and beyond the edge of the passband and so the edge is usually taken as the $6-\mathrm{dB}$ point.

The nearer this point is to the sound channel the more likely it is that objectionable overshoot will occur and the more difficult it is to secure adequate rejection of the sound channel.

There are two matters involved in deciding just where to place the cut-off point. One is performance and the other is cost. Current practice places it at 35 MHz and this is certainly the lowest practicable bandwidth and it is cheapest. To place it at 34 MHz would certainly greatly increase the cost of the i.f. amplifier and might make it too difficult to adjust and keep in adjustment. A limit at 34.5 MHz is certainly practicable but it is still a moot point as to whether it is desirable. The basic definition would certainly be improved; there would probably be more overshoot but it is not thought that this would be serious. However, the increased amplitude of the chrominance components around 4.43 MHz would certainly increase colour patterning effects and the net result might well be worse.

So much work has been involved in the development of this equipment that it has not been possible to explore all of the finer points of design. As a result we do not know just what is the optimum bandwidth when little regard is paid to cost. We have no doubt that for a monochrome transmission it should be at least 5 MHz but we are very doubtful whether with a colour transmission the increase of patterning would not more than offset the improvement in definition.

It is a very fortunate circumstance that colour improves the apparent definition and this in spite of the fact that the colour signals themselves are transmitted in a very narrow bandwidth and the true definition is produced by a monochrome signal, the Y signal. The reason is, of course, that the change between adjacent objects in the picture is not merely one of light and shade, as in monochrome, but of colour as well. This becomes obvious when it is remembered that two objects which are adjacent and of different colours are readily distinguished in a colour picture even when they are of precisely the same luminance, whereas in monochrome reproduction they could not then be distinguished at all whatever the bandwidth

In conclusion, we should mention that there has been a change in the A.B. Metal Products tuner. It is basically the same as the earlier model referred to in Part 7, but it no longer

The decoder section opened out and showing the PAL delay line.
has the printed-circuit board shown in Fig. 2, Part 8. Certain resistors are now mounted internally and have different values; also the case is now connected to the negative of the supply instead of being isolated from it.

In the i.f. board R_{32} must be changed to $590 \Omega(120 \Omega+$ 470Ω) and $R_{33}=0$. On the tuner itself $R^{\prime \prime}$ between the positive and negative supply terminals remains unchanged at $2.2 \mathrm{k} \Omega$. The other resistor $\left(R^{1}=470 \Omega\right)$ is now fitted internally and has the value of $1 \mathrm{k} \Omega$.

The chassis of the tuner will be at -20 V to all other chassis in the equipment and must be appropriately insulated. The aerial feeder can be connected as before through $0.001-\mu \mathrm{F}$ capacitors shunted by $1-\mathrm{M} \Omega$ resistors. The outer of the cable connecting the tuner to the i.f. board, however, must not be connected directly to the tuner case, but through $0.001 \mu \mathrm{~F}$. The coupling capacitor C^{1}, Fig. 2, Part 8, is still required and can be connected to the tuner case.

There is no longer an emitter connection of the mixer externally accessible to which a signal generator can be connected for alignment. The cover of the tuner is easily removable, however, by bending up two metal tags, one at each end of the cover. The mixer is at the shaft end and the emitter is joined to a $1-\mathrm{k} \Omega$ resistor shunted by 150 pF and is reasonably accessible.

This article concludes the series on the Wireless World colour television receiver. It is intended to reprint the whole series in booklet form and an announcement will be made when supplies are available.

Test Your Knowledge

Series devised by L. Ibbotson,* B.Sc., A.Inst.P., M.I.E.E., M.I.E.R.E.

13. Frequency Modulation

1. A sinusoidal carrier has an unmodulated frequency of 90 MHz . A particular modulating signal causes the carrier frequency to vary between 89.99 and 90.01 MHz 1000 times per second. If the amplitude of the modulating signal is doubled
(a) the carrier frequency will still vary between 89.99 and 90.01 MHz 1000 times per second
(b) The carrier frequency will vary between 89.99 and 90.01 Mhz 2000 times per second
(c) the carrier frequency will vary between 89.98 and $90.02 \mathrm{MHz} \quad 1000$ times per second
(d) the carrier frequency will vary between 89.98 and 90.02 MHz 2000 times $/ \mathrm{sec}$.
2. A sinusoidal carrier is frequently modulated in turn by two signals of the same amplitude, one having a frequency of 100 Hz , the other 1000 Hz . The amplitude of the phase variation of the carrier is
(a) zero in both cases
(b) the same for both signals
(c) larger for the lower frequency signal
(d) larger for the higher frequency signal.
3. A frequency modulated transmitter is radiating a modulated carrier, the modulation index being 2 radians. The amplitude of the modulating signal is doubled. As a result the total power radiated
(a) remains unchanged
(b) is doubled
(c) increases by 50%
(d) increases by a factor of $\sqrt{ } 2$.
4. The amplitude of the carrier frequency component of the spectrum of a frequency modulated carrier is always
(a) the same as the amplitude of the unmodulated carrier
(b) less than the amplitude of the unmodulated carrier
(c) greater than the amplitude of the unmodulated carrier
(d) zero.
5. The spectrum of a carrier, frequency modulated with wide deviation by a single sinusoid, contains many side-frequency components. The number of components with significant amplitudes (assuming maximum deviation) is (a) the same whatever the modulating frequency

[^3](b) smaller the higher the modulating frequency
(c) larger the higher the modulating frequency
(d) greatest when the modulating frequency is equal to the square root of the deviation.
6. The carrier frequency of a f.m. signal may be increased either by multiplication or heterodyning. The result is
(a) no change in the frequency deviation in either case
(b) an increase in the frequency deviation in both cases
(c) an increase in the frequency deviation when multiplication is used; no increase when heterodyning is used
(d) an increase in the frequency deviation when heterodyning is used; no increase when multiplication is used.
7. The Armstrong method of generating a f.m. signal is based upon the generation of a pair of amplitude modulation sidebands (using a balanced mixer) and the subsequent addition of a carrier frequency signal lagging by $/ 2$ radians on the phase which the a.m. carrier would have had. The basic signal so produced is effectively
(a) frequency modulated with a wide frequency deviation
(b) f.m. with a narrow frequency deviation
(c) phase modulated with a large phase deviation
(d) phase modulated with a small phase deviation.
8. It is possible for a f.m. radio set to receive two transmissions within the bandwidth of its r.f. stage and, provided the amplitude of the unmodulated carrier of the stronger is at least twice that of the weaker, only respond to the stronger signal with negligible interference from the weaker. This effect can only occur if
(a) the maximum modulation index of the stronger signal is at least several radians at the highest modulating frequency
(b) the modulation index of the weaker signal is not greater than 0.5 radian at the lowest modulating frequency
(c) the two carriers are not closer together than the sum of the highest modulating frequencies of both
(d) the r.f. tuned circuit cuts off most of one sideband of the undesired signal.
9. The B.B.C. f.m. broadcasting system uses a maximum frequency deviation of 75 kHz and transmits an audio bandwidth of 15 kHz . The
i.f. bandwidth of a receiver should be at least
(a) 30 kHz
(b) 90 kHz
(c) 105 kHz
(d) 180 kHz .
10. If the i.f. bandwidth of a f.m. receiver is much narrower than it should be the main effect is
(a) removal of the higher audio frequencies from the output signal
(b) non-linear distortion in the output signal
(c) a large increase in the noise output from the receiver
(d) a reduction in the interference rejection effect.
11. Communications f.m. systems generally use a much narrower r.f. bandwidth than that required by the B.B.C. broadcast system; restriction of the a.f. bandwidth allows a much smaller maximum frequency deviation to be used. In addition to allowing more channels in a given frequency band, the result is that for a given transmitter power
(a) the service range is increased
(b) the output signal to noise ratio is improved
(c) the interference between stations broadcasting on adjacent channels is reduced
(d) the receiver i.f. gain required is less.
12. Many f.m. receivers have a stage at the end of the i.f. amplifier which "limits" the amplitude of the signal by cutting off the top and bottom of the waveform (those which do not have this stage use a demodulating circuit which incorporates limiting action). The purpose of limiting is
(a) to prevent the demodulator from being overloaded
(b) to provide a simple a.g.c. action
(c) to remove amplitude variations due to noise
(d) to improve the demodulator action by supplying it with a square waveform.
13. If we represent the signal presented to the demodulator in a f.m. receiver as:
$V \sin \left[w_{d}+(t)\right]$, the demodulator must produce an output voltage which is
(a) directly proportional to $\phi(t)$
(b) inversely proportional to $\alpha(t)$
(c) directly proportional to $d \phi(t) / d t$
(d) inversely proportional to $d o(t) / d t$
14. Following the demodulator in a receiver for the B.B.C. f.m. broadcasts is a circuit which consists of a resistor and capacitor arranged as a potential divider, the output being taken across the capacitor. The time constant of this circuit is specified as $50 \mu \mathrm{~s}$. Its purpose is
(a) to correct for frequency distortion which all f.m. demodulators introduce into the audio signal
(b) to correct for frequency distortion deliberately introduced into the audio signal at the transmitter
(c) to attenuate the higher audio frequencies because the receiver output stages cannot handle them
(d) to filter out any remaining carrierfrequency component in the output signal.
Answers and comments, page 295.

A Transistor Multiplier Circuit

A multiplier circuit and how it may be employed for modulation, mixing, detecting, a.g.c. and a.a.c. A circuit for a high-performance audio signal generator is described.

by A. F. Newell, M.I.E.R.E.

Many electronic circuits are basically nultipliers; some examples are detectors, requency changers, modulators, square aw voltmeters and analogue computer nultipliers. The physical realization of the nultiplication function can take many forms anging from a simple non-linear element uch as a diode, to the fairly complex :ircuits used in analogue computers. In ome circuits there is only one pair of input erminals, and the output consists of many :omponents besides the product of the nputs. While in other circuits separate erminals are available for each input, and he output is the product of the two inputs.
In this article a circuit will be described in which separate terminals are available for he inputs, and in which the output can be ither :

$$
k_{1} A+k_{2} A B
$$

re:

$k A B$

there A and B are the two inputs and the k s re constants which depend on circuit alues. Several examples will be given to -how how the circuit may be used to 'erform different functions.

3asic circuir

he basic circuit, Fig. I, consists of a longailed pair, the emitter current of which is upplied by a simple amplifier.
The linearity of the multiplier will of ourse be determined by the linearity of the

two amplifiers. The linearity of $T r_{3}$ is determined mainly by the ratio of the constant resistor R_{3}, and the varying emitter resistance of the transistor, which is approximately:

$$
r_{e}=25 / I_{E}\left(I_{E} \text { in } \mathrm{mA}\right)
$$

Now:

$$
I_{E}=V_{E} / R_{3}
$$

therefore:

$$
R_{3} / r_{e}=V_{E} / 25 \text { with } V_{E} \text { in } \mathrm{mV}
$$

This shows that if V_{E} is large compared with 25 mV then the total emitter resistance is nearly constant, and the linearity is good. But at low emitter current where V_{E} becomes comparable with 25 mV the linearity becomes poor. In practice this means that if the input V_{2} is a.c. then it is possible to restrict the signal to the linear part of the amplifier characteristic. But if the input is d.c., additional circuitry will be required to linearize the characteristic.

To determine the linearity of the longtailed pair, a simplifying assumption will be made. This is that the relationship between the base-emitter voltage and emitter current of the two transistors is given by the diode equation:

$$
I=I_{o}[\exp (q V / K T)-1\}
$$

This is a good approximation provided that $r_{b} / h_{f e}$ is small, which is usually the case for a transistor with a high gain working at

Fig. 2. The test circuit employed.
(Right) Fig. 3. Characteristics of the longtailed pair.
currents of a few milliamperes or less.
It is easy to select transistors which most nearly satisfy this requirement by using the circuit of Fig. 2. If the relationship holds, then, when the emitter current is switched by a factor of ten, the change in $V_{B R}$ should be the same whether the switch is from $10 \mu \mathrm{~A}$ to $100 \mu \mathrm{~A}$, or from $100 \mu \mathrm{~A}$ to 1 mA .
Assuming that:

$$
I_{E}=I_{E B S}[\exp \cdot(q V / K T)-1]
$$

then:

$$
\begin{aligned}
V_{B E} & =(K T / q) \log _{e}\left(I_{E} / I_{E B S}\right) \ldots \\
V_{1} & =V_{B E_{1}}-V_{B E_{2}} \text { for } I_{E} \gg I_{E B S}
\end{aligned}
$$

and :

$$
=0.025 \log _{e}\left(I_{E_{1}} / I_{E_{2}}\right)
$$

From this equation the curve of $I_{E_{1}}$ and $I_{E_{8}}$ against V_{1} can be drawn (Fig. 3). It can be seen that between ± 10 and $\pm 15 \mathrm{mV}$ the relationship has good linearity, but beyond these points it is increasingly non-linear.
It is now possible to see how the circuit acts as a multiplier. From Fig. 3 the relationship between $I_{E_{1}}$ and the total emitter current I_{E} over the linear part of the curve is:

$$
I_{E_{1}}=\frac{I_{E}}{2}\left(1+\frac{V_{1}}{V_{1} \max }\right)
$$

where $V_{1_{\text {max }}}$ is the voltage for $I_{E_{1}}=I_{E}$.

Now $V_{1 \text { max }}=50 \mathrm{mV}=1 / 20$ of a volt which makes:

$$
\begin{align*}
I_{E_{1}} & =\frac{I_{E}}{2}\left(1+20 V_{1}\right) \\
& =\frac{I_{E}}{2}+10 V_{1} I_{E} \tag{1}
\end{align*}
$$

similarly:

$$
\begin{equation*}
I_{E_{2}}=\frac{I_{E}}{2}-10 V_{1} I_{E} \tag{2}
\end{equation*}
$$

and:

$$
\begin{equation*}
I_{E_{1}}-I_{E_{2}}=20 V_{1} I_{E} \tag{3}
\end{equation*}
$$

but:

$$
\begin{align*}
I_{E} & \approx \frac{V_{2}}{R_{3}} \\
\therefore \quad I_{E_{1}} & \approx \frac{V_{2}}{2 R_{3}}+\frac{10 V_{1} V_{2}}{R_{3}} . \tag{4}\\
I_{E_{2}} & \approx \frac{V_{2}}{2 R_{3}}-\frac{10 V_{1} V_{2}}{R_{3}} . \tag{5}\\
I_{E_{1}-I_{E_{2}}} & \approx 20 \frac{V_{1} V_{2}}{R_{3}} \tag{6}
\end{align*}
$$

If the output is taken across R_{1} :

$$
\begin{equation*}
V_{\text {out }} \approx \frac{R_{1}}{2 R_{3}} V_{2}+\frac{10 R_{1}}{R_{3}} V_{1} V_{2} \tag{7}
\end{equation*}
$$

If the output is taken across R_{2} :

$$
\begin{equation*}
V_{\text {out }} \approx \frac{R_{2}}{2 R_{3}} V_{2}-\frac{10 R_{2}}{R_{3}} V_{1} V_{2} \tag{8}
\end{equation*}
$$

If the output is taken between the collectors, assuming that $R_{1}=R_{2}$, then:

$$
\begin{equation*}
V_{o u t} \approx \frac{20 R_{1}}{R_{3}} V_{1} V_{2} \tag{9}
\end{equation*}
$$

The graph of Fig. 3 was checked experimentally (at $I_{E_{1}}+I_{E_{2}}=1 \mathrm{~mA}$) with transistors selected using the circuit of Fig. 2, and confirmed within the limits of measurement accuracy.

Temperature dependence

Equations I to 9 and Fig. 3 are based on the assumption that $K T=25 \mathrm{mV}$ which is correct for $17^{\circ} \mathrm{C}\left(=290^{\circ} \mathrm{K}\right)$. The temperature coefficient of V_{1} in the region of $17^{\circ} \mathrm{C}$ is $1 / 290=0.00345$. In some circuits it may be desirable to compensate for this by using a resistance between the bases, which has a similar temperature coefficient.

Zero drift due to differential power dissipation

If the long-tailed pair is unbalanced (as will happen, for example, if the input is d.c.) then there will be a difference in power dissipation between the two transistors which will result in unequal junction temperatures.

To minimize this effect the thermal resistance between the transistors, and the dissipation in them, should be as small as possible.

For a given mean dissipation, the differential dissipation can be minimized by designing the circuit so that the mean collector to emitter voltage is equal to the mean voltage across the collector resistor. In this case an unbalance in collector currents will reduce the dissipation in both transistors by the same amount.

Frequency dependence

The linearity of Fig. 3 for V, between about $\pm 15 \mathrm{mV}$ depends on the $h_{f e}$ of the transistor being so large that the base resistance (internal and external) can be neglected. The cut off frequency of $h_{f e}$ is approximately $f_{1} / h_{f e}$, and at frequencies above this distortion may become apparent. Also the impedance presented by the long-tailed pair at the base terminals will decrease and cease to be resistive at frequencies of the order of $f_{1} / h_{f e}$ and above. However with high frequency transistors the circuit should be usable up to several MHz .

Modulation

Amplitude modulation is a process whereby the amplitude of a carrier is made to vary in
accordance with the modulating signal.
Consider the case of a carrier ($V_{c} \sin \omega_{c} t$) applied between the bases of $T r_{1}$ and $T r_{2}$ in Fig. I, and a modulating signal:

$$
\left(V_{d c}+V_{m} \sin \omega_{m} t\right)
$$

applied to the base of $T r_{3}$: then from, equation (7):

$$
\begin{align*}
& V_{3}=\frac{R_{1} V_{d c}}{2 R_{3}}+\frac{R_{1} V_{m}}{2 R_{3}} \sin \omega_{m} t+ \\
& \quad+\frac{10 R_{1} V_{d c} V_{c}}{R_{3}} \sin \omega_{c} t+ \\
& \quad+\frac{10 R_{1} V_{m} V_{c}}{R_{3}} \sin \omega_{m} t \sin \omega_{c} t \\
& =\frac{R_{1} V_{d c}}{2 R_{3}}+\frac{R_{1} V_{m}}{2 R_{3}} \sin \omega_{m} t+ \\
& +\frac{10 R_{1} V_{d c} V_{c}}{R_{3}} \sin \omega_{c} t+\frac{5 R_{1} V_{m} V_{c}}{R_{3}} \times \\
& \times\left[\cos \left(\omega_{r}-\omega_{m}\right) t-\cos \left(\omega_{c}+\omega_{m}\right) t\right] \tag{10}
\end{align*}
$$

The output V_{3} thus consists of a d.c. component, a component at modulation frequency, the carrier and the upper and lower sidebands. A simple $C R$ coupling can be used to eliminate the d.c. and modulation-frequency components, provided that there is a sufficient difference between carrier and modulation frequency.

The output V_{4} is the same as V_{3} except that the polarity of the carrier and the sidebands is reversed. V_{5} which is the difference between V_{3} and V_{4} is therefore:

$$
\begin{aligned}
V_{5} & =\frac{20 R_{1} V_{d c} V_{c}}{R_{3}} \sin \omega_{c} t+\frac{10 R_{1} V_{m} V_{c}}{R_{3}} \times \\
& \times\left[\cos \left(\omega_{c}-\omega_{m}\right) t-\cos \left(\omega_{c} t+\omega_{m}\right) t\right]
\end{aligned}
$$

i.e. just the carrier and the two sidebands.

It is sometimes necessary to suppress the carrier leaving only the two sidebands, one of which may then be filtered out to give single-sideband transmission. A method of achieving carrier suppression is shown

Fig. 4. Modulator with suppression of carrier and modulation frequencies.

Fig. 5. Circuit to give up to 100% modulation.

Fig. 6. Output of Fig. 5 versus modulating waveform.

Fig. 7. Square law voltmeter.
schematically in Fig. 4. Provided that the collector current of Tr_{8} is the same as the d.c. component of Tr_{3} current, then the carrier frequency component due to $T r_{1}$ and $T r_{2}$ is cancelled by that of $T r_{1}$ and $T r_{3}$. The sideband components appear only in the output of Tr_{1} and $T r_{2}$ and are therefore not cancelled. By having a small unbalance in d.c. currents in $T r_{3}$ and $T r_{\text {f }}$ it is possible to leave a small component of carrier frequency, which may sometimes be required.

The curve of Fig. 3 shows that good linearity is obtained up to about $\pm 15 \mathrm{mV}$, and the carrier input should be restricted to this value if the following circuits are simple amplifiers. However if the amplifiers are tuned so that harmonics will be rejected, a larger input is permissible.

As stated earlier the linearity of a simple amplifier, such as Tr_{3} in Fig. 1, is quite good provided that the maximum input signal does not cause the emitter current to approach zero. This means that it is suitable for modulation depths up to, say, 80%. But if good linearity is required with modulation depths of near 100% then a circuit such as Fig. 5 should be used. A current feedback pair, Tr_{3} and $T r_{4}$, is used in place of $T r_{3}$ in Fig. 1. The current amplification of the circuit is quite accurately given by $\left(R_{3}+R_{4}\right) / R_{3}$, provided that the actual gain is not too large.

The biasing network of $T r_{1}$ and $T r_{2}$ is arranged so that the preset resistor R_{11} can be used to balance the long-tailed pair. The carrier voltage developed across the bases of $T r_{1}$ and $T r_{2}$ is

$$
\left(R_{i}+R_{8}\right) /\left(R_{6}+R_{7}+R_{8}\right)
$$

times the input. The value of $R_{7}+R_{B}$ should be small if the assumption of an exponential relationship between the baseemitter voltage and the emitter currents is to be a good approximation.

A circuit was constructed using the values

Fig. 8. An analogue multiplier.
shown in Fig. 5, and with BCIO7 transistors. Fig. 6 shows the output gaveform (between the collectors) with nearly 100% modulation, and with the modulation waveform applied to the X input, to check linearity.

Detectors and mixers

The use of the multiplier circuit as a detector or mixer is similar to its use as a modulator, and therefore need not be considered at length.

By applying the signal to one input and an oscillation of carrier frequency to the other, the circuit can be used as a synchrodyne, homodyne or single-sideband detector.

Square law voltmeter

Multiplier circuits can be used to give the square, cube or higher power of an input. A practical application would be an a.c. voltmeter with an indication proportional to the square of the input. Such a voltmeter is useful because it indicates the true r.m.s. value regardless of waveform; also a doubling of the reading corresponds to a change of 3 dB .

Fig. 7 shows one form of circuit. It has the advantage of simplicity; but since the long-tailed pair operates with a standing current, and the f.s.d. of the meter can only be a fraction of this, there may be difficulty in maintaining a stable zero. Also unless the meter is very sensitive, it may have a comparatively small ratio of (peak)/(r.m.s.) before distortion occurs. A high ratio is desirable if the voltmeter is used to measure noise, or other "peaky" waveforms.

Since the main drawback of the circuit of Fig. 7 is due to the standing current, a better alternative would be to effectively rectify the input to give the modulus. In this case no standing current is required.

Analogue multiplier, reciprocal and divider circuits

With analogue circuits it is usually desirable that all inputs should be referred to the same zero level. Fig. 8 shows how this may be done, in the case of the multiplier circuit. The diodes D_{1} and D_{2} compensate for the base-emitter voltages of the transistors Tr_{3} and $T r_{3}$, so that with the input voltages at zero the emitter current of Tr_{4} is zero and the emitter current of Tr_{6} is that required to balance the long-tailed pair. The use of current feedback pairs ensures good linearity.

The linearity of the analogue multiplier circuit is determined almost entirely by the characteristic of the long-tailed pair (see Fig. 3). The two input amplifiers use considerable amounts of negative feedback and are thus very linear.
With the circuit values shown in Fig. 8, the maximum departure from linearity was about 3% (corresponding to $V_{1}=15 \mathrm{mV}$). It would be possible to improve on this by restricting V_{1} to a lower value. Another method, using feedback is shown schematically in Fig. 9. An additional long-tailed pair is used to provide negative feedback. The characteristics of the long-tailed pairs are the same, so that the non-linearity caused by the feedback tends to cancel the nonlinearity of the multiplier.

288

The quotient A / B may be obtained by multiplying together A and $1 / B$. A circuit for obtaining an output proportional to the reciprocal of an input is shown at the left of Fig. 10, this together with the multiplier circuit at the right of the figure forms a divider circuit.

The recciprocal circuit consists of a multiplier circuit, ${T r_{1,2,3} \text { and } 8 \text {, a feedback }}^{\text {a }}$ amplifier, $T r_{4}$ and ${ }_{5}$, and constant current sources Tr_{6} and 7 . The tendency of the constant current source $T r_{7}$ to unbalance the collector voltages of Tr_{1} and Tr_{2} will be compensated by the feedback circuit; this will result in the collector voltages being nearly in balance, and a voltage between the bases to give:

$$
I_{c_{2}}-I_{c_{1}}=I_{c_{7}}
$$

It has already been shown (Fig. 3) that, over the range of about $\pm 15 \mathrm{mV}$, the voltage between the bases is related to the collector currents by the expression:

$$
\frac{I_{c_{1}}-I_{c_{2}}}{I_{c_{1}}+I_{c_{2}}} \propto V_{1}
$$

But $I_{e_{1}}-I_{c_{2}}$ in Fig. 10 is a constant and $I_{e_{1}}+I_{c_{2}}$ is proportional to the input, therefore V_{1} is proportional to the reciprocal of the input.

The characteristics of Fig. 3 show that as the divisor input in Fig. 10 is reduced the voltage V_{1} will depart from the relationship above, and the more the input is reduced the greater will be the discrepancy. However this non-linearity is exactly that required to cancel the non-linearity of the multiplier $T r_{9}$ and $T r_{10}$. So the permissible minimum value of divisor input is fixed by limiting in $T r_{8}$ and $T r_{10}$ rather than by non-linearity in V_{1}. It is of course not possible to obtain useful results with the divisor input near zero, as the reciprocal of zero is infinity.

The relationship between divisor input
and V_{o} was checked for inputs between I and 10 V (at intervals of 1 V), it was not possible to detect any departure from the relationship $V_{0} \propto 1 / V_{i n}$. The input was then reduced to 0.4 V , the departure from the correct relationship was then about 1%. At an input of 0.2 V the discrepancy was about 2%, no further reduction in input was possible because of limiting in Tr_{9}, Tr_{10}.

Automatic amplitude control and automatic gain control

The controls a.a.c. and a.g.c. are virtually the same thing; in both cases the gain of an amplifier is controlled. In a.a.c. the amplifier is part of an oscillator. The gain is controlled so that the amplifier is linear and a constant amplitude output is obtained, without the distortion that would result from limiting on a nonlinear part of the characteristic. On the other hand a.g.c. is used to keep the output of an amplifier approximately constant for a changing input, or to make the output change in proportion to the logarithm of the input.

Fig. II shows schematically how a.a.c. and constant output a.g.c. may be achieved. For low inputs where V_{0} is less than $V_{d} T r_{2}$ is cut off, and the full gain is available. When the rectified voltage across C_{2} approaches V_{d} current starts to flow in $T r_{2}$ thus reducing the gain in proportion to the reduction of current in Tr_{1}.

By eliminating the delay voltage (connecting the anode of D_{2} to the base of $T r_{1}$) and compensating for the diode voltages, the output can be made approximately proportional to the logarithm of the input.

Wien network signal generator with

 a.a.c.With $R C$ oscillators some form of amplitude control is virtually essential as the effective

Fig. 9. Adding negative feedback to the multiplier circuit.
maximum phase shift of 90° in the modulating frequency and a single time constant smoothing circuit will cause a maximum shift of another 90°. But these shifts will occur at zero gain, so that it would seem that squegging would be avoided. However at high frequencies there are stray impedances, which are not shown in the circuit diagram, and these may provide sufficient extra phase shift to cause the 180°, unity gain condition to be met.

One way of curing the squegging is to switch to a low value of C_{4} on the highest
range. This will still give good smoothing of the oscillator frequency, but the phase shift of the possible modulating frequencies will be sufficiently low to prevent squegging.

The circuit of Fig. I2 has been kept simple, as its purpose is to show how the multiplier can be used to provide automatic amplitude control. However additional facilities may easily be provided. For example, by placing a resistor in the collector circuit of Tr_{4} a constant amplitude output may be obtained, which may be used to synchronize an oscilloscope or feed a
frequency meter. A square wave may be obtained by feeding a limiter or trigger circuit from the collector of $T r_{6}$, as a constant load at this point will not affect the amplitude stability. An antiphase output may be obtained by feeding a currentfeedback pair from the emitter of T_{7}

Reference

1. W. A. Edson "Intermittent Behaviour in Oscillators", Bell System Technical Fournal, Vol. 24, No. 1, Jan. 1945.

Fig. 10. An analogue divider circuit.

Fig. II. Automatic gain control.

Fig. 13. Amplifier to reduce effect of rectifier ripple in Fig. rI.

Fig. 12. Wien network signal generator with a.a.c.

Letter from America

When commenting on last year's I.E.E.E. Show in New York I questioned whether the handful of British exhibitors was really representative of Britain's electronics capability. This year (Mar. 24-27) there were 31 British exhibitors-a big improvement.

As usual the Show spread over four floors in the Coliseum Building although the total floor space was 4% down on the 1968 Show. More important was the absence of some of the larger firms like Raytheon, Philco and the semiconductor companies. The number of exhibitors was 720 minus 1 (which I will explain later). Probably the most significant development (at least I thought so) was the enormous increase in automated test systems. As Abraham Bluestone, sales manager of Teradyne, put it "While the number of leads on a device has grown linearly, the number of tests has grown exponentiallv. The diode, first semiconductor, has two leads and requires about four tests. The transistor with its three leads requires about nine or ten tests. After transistors, the industry started making i.cs and now large arrays with many, many leads and the number of tests that have to be performed have grown enormously. A human operator could not perform them all quickly and efficiently."

Automated i.c. test systems were shown by many companies. The Microdyne automatic i.c. tester is quite compact measuring some 19 in by 20 in deep and only 7 in high. When the instrument is set up the operator merely inserts the i.c. devices and watches pass or reject lamps. A third lamp gives an indication if proper connections are not being made. This go-no-go instrument will test d.t.l., h.n.i.1., m.e.c.l., r.t.1. and t.t.l. logic, gates, flip-flops, binary counters, etc. Programming is performed by a plug-in matrix card and it is stated that
upwards of 5,000 devices can be tested in a day. The Model 1000 test system made by AAI is much more complex featuring computer operation with built-in analogue-todigital convertor, testing with a.c., d.c., pulse, r.f. and thermal conditions. It can test all kinds of microcircuits, thin or thick film devices, analogue, linear and non-linear logic devices. Provision is made for a data logging option which allows the operator to arrange test results under programme control and \log them on a teletypewriter. Modular construction is used and the test rate is quoted as 180 double limit tests per second. Another tape-programmed i.c. tester is Aviens Model 2400 which comes in the form of a fairly large console. All tests and measurements are on Mylar tape 82 -bits wide and it is claimed that 3000 i.cs can be tested per day. Performance can be tested, measured, displayed and recorded under a wide range of conditions. Failures can be analysed in detail and data logging can be made of each measurement or switched to record failures only.

General Radio had an automatic capacitor bridge which selects range, balances capacitance and loss simultaneously, generates coded digital output data and displays the measured values on illuminated indicators -all in half a second or so! This is Model 1680 and the useful range is 1 pF to $1000 \mu \mathrm{~F}$. Accuracy is quoted as 0.1% and the 1680 can also measure parallel conductance from 1 nanomho to 1 mho.

How about the other test equipmentoscilloscopes, generators, meters-and the computers? Well, it would probably take more than one complete issue of Wireless World to do justice to the vast array of equipment displayed so I will mention just a few of those I found interesting. For exam-

ple, Wavetek had several unusual instruments on show-all well styled with an eye to function. Model 141 is a voltage controlled generator which can provide sine, square or triangular waveforms from 0.5 Hz to 5 MHz . External frequency control is possible over a $1000-1$ range and there is an audio sweep option to cover the range from 20 Hz to 20 kHz . Overall accuracy is very high and the output is 10 volts peak-topeak into 50 ohms. Model 710 is a Dialomatic Herzmeter and this instrument measures frequency from 5 Hz to 100 MHz with an accuracy of 0.1%. It combines the resolution of a digital device with differential voltmeter circuitry and crystal control. Exact Electronics were showing what they claimed to be the smallest multiple waveform generator on the market. This was Model 100 and it measures just under $7 \frac{1}{2}$ in by 3 in by $8 \frac{1}{2}$ in and has a continuously variable frequency range from 0.001 Hz to 3 MHz . It features a choice of nine different waveforms and is very moderately priced at $\$ 445$ ((145). I liked the new Krohn-Hite variable bandpass filter unit which has independently controlled low and high cut-off frequencies.
Telephone facsimile transmitters have been available for some time and there is now a wide choice of equipment. Among those shown was the Dex I made by Graphic Sciences. It is an attractively styled machine and it can transmit photographs, letters, documents, etc., up to 11 in by 8 in via any telephone. Transmission time is six minutes. No electrical connection is made to the telephone lines-coupling is purely acoustical. I was quite impressed with the clarity and definition obtained with the Dex I (88 lines per inch). Printing is non-contact and no chemicals are used.
CSI had an 'Acoustic Data Coupler' which is another device for use with a telephone. This one is intended for computer links and only frequencies in the $1-2 \mathrm{kHz}$ range are used.

Colour TV cameras and equipment were well in evidence. Sony were demonstrating a two-tube camera which employs what is called a 'Colour dissector optical system' to separate luminance and chrominance components. Also being demonstrated were TV sets using the controversial 'Trinitron' tube which has three beams and a single gun with a common eleciron lens system. A pair of electron 'prisms' give colour convergence. Also shown were Trinitron systems combined with an 'Aperture Grille' which is said to give twice the brightness of conventional sha-dow-mask tubes. I understand Panosonic were showing their new flat television receiver, which uses an electroluminescent image display system, but unfortunately I missed this exhibit.

One stand that did intrigue me had the splendid title of "The Orient International (USA) Inc.". This turned out to be a tailor's business and here two cheerful Chinese gentlemen could be seen busily measuring up diffident but smiling engineers for Hong Kong suits! I understand the stand had to close down the next day as the organizers had misunderstood the precise business of Orient International (USA) Inc.; hence my reference earlier to 720 minus 1 stands! I only hope they made enough to pay the expenses!
G. W. Tillett

New Products

Uni-junction Transistor

A low-voltage device for pulse triggering voltage and current sensing circuits, tuning circuits, flipflops and pulse timers has been announced by Motorola. It is a silicon uni-junction transistor type 2N5431 which is constructed by the surface-passivated, diffused annular process giving high uniformity and improved characteristics. Peak point current is only $0.4 \mu \mathrm{~A}$ at a $V_{B 2 B 1}$ of 25 V and $4 \mu \mathrm{~A}$ at 4 V , critical parameters in long-time-delay, low leakage circuits. The very low emitter leakage current of 10 nA is claimed by the makers to be 100 times better than cube-alloy uni-junctions. Maximum emitter voltage is 30 V , maximum emitter current 50 mA r.m.s., power dissipation 300 mW , and maximum emitter saturation voltage 3 V . The 2 N 5431 is hermetically sealed in a TO-18 case. Motorola Semiconductors Lid., York House, Wemuley, Middlesex.
WW 328 for further details

Double-beam Oscilloscope with Signal-delay

Philips PM3231, marketed by Pye Unicam, is a double-beam oscilloscope employing signal-delay lines on both inputs. It is a d.c. to 15 MHz generalpurpose instrument but is specially suitable for the pulse measurements required when checking lowand medium-speed computers and desk calculators. The vertical amplifier's sensitivities are adjustable from $10 \mathrm{mV} / \mathrm{div}$ using $1: 2: 5$-sequence switches with continuous adjustment between settings by vernier controls. Sensitivity can be extended to $1 \mathrm{mV} / \mathrm{div}$ via a $\times 10$ switch but on this setting the bandwidth is reduced to 5 MHz . Measurement accuracy on all ranges is 3%. The inputs are protected against overloads up to 500 V d.c., and d.c. drift is $0.5 \mathrm{div} / 24$ hours. Triggering can be either automatic or continuously variable level triggering. Sweep speeds cover $0.2 \mu \mathrm{~s} /$ div to

$0.5 \mathrm{~s} /$ div with continuous adjustment of selting Sweep can be expanded up to five times. The input selector switch features a "0" position which earths the Y amplifier input enabling the d.c. reference level to be found without disconnecting the probe. Pye Unicam Lid., York Street, Cambridge.
WW 313 for further details

Coaxial Attenuator Kit

A versatile attenuator kit available in both 75 and 50Ω impedance has been introduced by Greenpar Engineering of Harlow. The kit comprises seven attenuators of $1,2,3,6,10,14$ and 20 dB . These are made with " T " rod and disc networks designed to accept Greenpar inter-series adaptors allowing the user to fit

the required coaxial interfaces. A male and female series " N " interface is supplied with the kit and when this is used in conjunction with the attenuators the specification is as follows: Frequency range d.c. to 4 GHz ; resistance tolerance $\pm 1 \%$ or 0.1 dB (whichever is least); v.s.w.r. less than 1.05 at 1 GHz (1.2 at 4 GHz); maximum power $1 W$ continuous. Price of the $50-\Omega$ version (GE83500) or the $75-\Omega$ version (GE83700) is $£ 48.3 \mathrm{~s}(\mathbb{4 8 . 1 5)}$. Greenpar Engineering Lid., Station Works, Harlow, Essex.
WW 338 for further details

Aero-band Monitor

A crystal-controlled monitor, model 60SS, for a.m. 25 or 50 kHz channelling on frequencies between 118 and 156 MHz is announced by Park Air Electronics. Six-channel capability is provided with dual-gate f.e.ts for r.f. amplifier and mixer circuits, and linear i.cs for the i.f. amplifier. Each circuit function occupies a separate printed circuit sub-assembly, interconnected by plug and socket. Single-frequency conversion is employed and the i.f. is the standard 10.7 MHz . Sensitivity at 130 MHz is $2 \mu \mathrm{~V}$ for 2 W audio output power, and signal-to-noise ratio with $2 \mu \mathrm{~V}$ input is $>15 \mathrm{~dB}$. Rejection at 50 kHz (adjacent channel) is -80 dB . Suitable 3rd overtone crystals are supplied with the equipment, each crystal being individually trimmed to frequency. Frequency stability is 0.003% in the temperature range -10° to $+50^{\circ} \mathrm{C}$.

Details of a.g.c. performance state that for a change of input from $2 \mu N$ to 200 mV it will produce a change of output not greater than 3 dB with reference to 1 W . Operation is from a.c. mains $100-115 \mathrm{~V}$ and $200-250 \mathrm{~V}$. Size is $407 \times 305 \times$ 178 mm . A number of optional extras are available including interchangeable block filters for changing channel spacing. Park Air Electronics Ltd., Red Lion Square, Stamford, Lincs.
WW 315 for further details

Conductive Tapes

Two new pressure-sensitive tapes introduced by the 3 M Company are claimed to provide low-cost shielding against electromagnetic and r.f. interference. These two additions to the range of Scotch electrical tapes are type X-1181, a copper foilbacked tape and type X-1170, which is aluminium foil-backed. Both employ an electrically conductive adhesive which allows the tapes to be, what the makers call "three-dimensionally conductive", with no corrosive reaction between the adhesive and the material to which the tape is applied. Conductivity and adhesion is said to remain good in conditions of high ambient temperature and humidity. 3M Company, Wigmore Street, London W. 1 .

WW 318 for further details

Switch without Contact Bounce

A push-type switch incorporating a t.t.l. flip-flop was shown at the recent Paris components exhibition by SECME. The switch, which provides a true and a complementary output, has two modes of operation: asynchronous or synchronous. In the asynchronous mode the equipment operates when the button is pushed and released. In the synchronous mode the equipment switches on at the first clock pulse after the button is pressed and switches off on the clock pulse following the button's release. Société d'Etudes et de Construction de Matériel Electronique, 13 bis, rue des Envierges, Boite Postale 26, Paris 20e.
WW 335 for further details

S.S.B. Communications Receiver

Model LSR8-B by Labgear is a single sideband a.m./c.w. receiver which provides instant sideband selection on eight crystal-controlled channels within the $2-20 \mathrm{MHz}$ band. Normally operated from a $100-240 \mathrm{~V}$ a.c. mains supply, the receiver can be powered from a 12 V battery; the changeover from mains to battery in the event of mains

failure is automatic. Any aerial with a 75 Stransmission line may be employed with the receiver or a long wire in conjunction with an aerial tuning unir. A socket is provided for the connection of headphones or an external loudspeaker. When this facility is in use the internal loudspeaker is muted. A second socket terminated at 600Ω allows an a.f. signal to be fed to external equipment such as an amplifier or teleprinter. Price $\ell 190$. Labgear Lid, Cromwell Road, Cambridge.
WW 301 for further details

Portable Colour V.T.R.

A portable colour video tape recorder developed by the Victor Company of Japan will be available for export later this year. In the U.S.A. it will cost $\$ 2000$. The technique employed is called d.f.c (direct and f.m. combined) system and, although the recorder is designed to accept N.T.S.C. colour signals, the system can be applied to any broadcasting standards. When recording, the video signal is divided into two bands of low and high frequencies. The l.f. component is frequency modulated and the f.m. signal is then combined with the h.f. component and recorded on the tape. On playback, the f.m. signal is demodulated and added to the h.f. component to reproduce the original signal. By adopting this method the makers

claim to make the bandwidth 50% wider than a normal v.t.r. Tape width is 12.7 mm and its length 915 m . Speed is $240 \mathrm{~mm} / \mathrm{s}$. Two video heads are used and horizontal resolution is 350 lines for black and white; 250 lines for colour. The recorder measures $480 \times 480 \times 250 \mathrm{~mm}$ and weighs 25 kg . Victor Company of Japan Ltd., 12,3-chome, Moriyacho, Kanagawa-ku, Yokohama, 221, Japan.
WW 332 for further details

Transducer Scanners

Low-level transducer scanner modules designed specifically for data logging and alarm scanning applications have been announced by IDM Electronics, of Reading. Costing from $\mathcal{\beta 2 5}$, three

models in the range are 25 -, 50 -, and 100 -channel units each with three alternative rates of scanning provided by an internal clock. Flexibility of design allows the connection of different types of equipment. Use with an existing digital voltmeter provides multi-channel measurement and the addition of a printer will give complete data logging facilities. A visual indication of the channel being sampled is provided by neon number tubes and a b.c.d. output is supplied for printout purposes. Internally generated thermal e.m.fs are less than $1 \mu \mathrm{~V}$ in normal operating conditions. All of the modules are self-contained and mainsoperated. The 25 - and 50 -channel units are 133 mm high and 241 mm wide; the 100 -channel unit is 482 mm wide. IDM Electronics Ltd., Arkwright Road, Berkshire, RG2 0LH.
WW 311 for further details

Solid-state Relays

Solid-state relays that can operate at frequencies up to several hundred MHz using photon coupling are announced by Mullard. They can be used in a range of applications varying from simple on/off switches to r.f. modulators and demodulators. Complete electrical isolation exists between input and output stages thus allowing the devices to be used as coupling elements between circuits at different voltage levels but still allowing the transfer of d.c. signals. Each relay comprises a gallium arsenide diode and photo-transistor or photo-diode inside the same encapsulation. When a forward current flows through the gallium arsenide diode, it emits infrared radiation that applies a bias to the other diode or transistor so that current in the g.a. diode controls the conducting state of the output diode. Unlike mechanical relays, the output is proportional to the input making the photorelays suitable for use as noiseless automatic or manual volume controls. The transfer ratio (input current to output current) is typically 10:1. Rise and fall times for the output current are 1 ns. The two semiconductors in a relay are linked only by the infrared radiation: the voltage breakdown rating can be as high as 20 kV between input and output stages. Mullard Ltd., Torrington Place, London W.C.1.
WW 303 for further details

P.C. Edge Connectors

Connectors for printed circuit boards with contacts pitched at 3.96 mm are announced by Ultra Electronics. The type of construction enables any length of connector to be specified by the circuit designer within the range 5-62 contacts per side, and the contacts can be single-sided or doublesided as required. Phosphor-bronze contacts are gold-plated and set in diallyl-phthalate mouldings which are claimed to provide high physical and dielectric strength. High conductivity is obtained at low contact pressure. The new series, type 5124, is offered with a full range of ancillaries including nylon or metal mounting clips, terminations for solder and solderless connections and polarizing and reference keys. Ultra Electronics (Components) Ltd., 419 Bridport Road, Greenford, Middlesex.
WW 307 for further details

Advance Timebase Module

A sweep delay plug-in for their OS2000 and OS2100 oscilloscopes has been introduced by Advance Electronics. When used with either of these normal sweep, variable delay sweep or gated delay sweep modes of operation can be selected. Twin timebases and special triggering characteristics are featured. Timebase A has 19 calibrated sweep speeds from $200 \mathrm{~ms} / \mathrm{cm}$ to $0 . \mu \mathrm{s} / \mathrm{cm}$ and a continuously variable $3: 1$ fine control which provides the sweep for normal and "A intensified by B" modes of operation. It is also used together with

a 10 -turn calibrated potentiometer to provide the delay of $0.2 \mu \mathrm{~s}$ to 2 s . Timebase B , with 18 calibrated sweep speeds from $100 \mathrm{~ms} / \mathrm{cm}$ to $0.2 \mu \mathrm{~s} / \mathrm{cm}$ provides the sweep in the delay mode. The gate and ramp waveforms from timebases A and B are available at sockets on the front panel. A $\times 5$ magnifier expands the sweep length to effectively five screen diameters and provides a maximum sweep speed of $40 \mathrm{~ns} / \mathrm{cm}$. Advance Electronics Ltd., Roebuck Road, Hainault, Essex.
WW 327 for further details

Fibre-Optic Vidicon

E.E.V. has introduced a new vidicon camera tube with a fibre-optic faceplate. Essentially the same as the EEV type P831 ruggedized vidicon, which has separate mesh construction, magnetic deflection and focusing; the P831F has a 25 mm diameter faceplate constructed from 9 -micron diameter fibres. When used with a 7735B type photosurface and 10.8lux illumination on the faceplate, a signal current of at least $0.15 \mu \mathrm{~A}$ is

attainable with the target voltage set to produce $0.02 \mu \mathrm{~A}$ dark current. This new fibre-optic vidicon is ideal for applications involving coupling to other devices having fibre-optic window outputs, such as image intensifiers. By using fibre-optic windows on both devices and coupling them together in direct optical contact, the optical efficiency can be improved by as much as 50 times compared with a normal lens system. Finglish Electric Valve Co. Ltd., Chelmsford, Essex.
WW 319 for further details

Lightweight Accelerometers

Miniature piezo-electric accelerometers for vibration and shock measurements have been introduced by Environmental Equipments Lid. Measuring 11 mm in diameter and 9.5 mm high the accelerometers weigh 4.5 g and have a charge sensitivity of $3.5 \mathrm{pC} / \mathrm{g}$. The two basic types in the
range are designed for adhesive mounting, or fixing by means of an integral mounting stud. All models in the range have a flat response from 0.05 Hz to 12 kHz , a resonant frequency of 60 kHz , and an operating temperature range of -75° to $+250^{\circ} \mathrm{C}$. These devices are constructed from either stainless steel or titanium and the use of adhesives is avoided in the crystal assembly to prevent problems at high temperature. Environmental Equipments Ltd., Denton Road, Wokingham, Berkshire.
WW 337 for further details

Power Supply for Valve Circuits

While most solid-state power supplies described in these columns are designed to power semiconductor circuits, Hewlett-Packard has brought out a new power supply unit which, although in itself is solid-state, its purpose is to power valve circuits. The new unit, model 712 C , provides a variable output 0 to +500 V d.c., 200 mA max.; a fixed output of -300 V d.c., 50 mA max.; a variable bias output of 0 to -150 V d.c., 5 mA max.; and a heater supply output of 6.3 V a.c. centre-tapped,

10A max. The output voltage changes less than $0.1 \%+5 \mathrm{mV}$ with a change from no load to full load and the transient recovery time is such that the output returns to within 25 mV of the selected voltage within 50μ s of the step change from no load to full load or vice versa. Dimensions: $16 \times$ $42 \times 33 \mathrm{~mm}$. Weight: 10 kg . Price: $\{240$. HewlettPackard Ltd., 224 Bath Road, Slough, Bucks.
WW 322 for further details

Variable Filter

Barr \& Stroud variable filter consists of two similar active low-pass/high-pass sections which can be used separately and together to give highpass, low-pass, band-pass and band-stop facilities. The low-pass range is in five decades from $0-100 \mathrm{kHz}$ with lowest cut-off at 0.1 Hz . The highpass range is in five decades from $0.1 \mathrm{~Hz}-500 \mathrm{kHz}$ with highest cut-off at 100 kHz . In all modes the pass-band insertion loss of each filter is low and the stop-band attenuation is at least $36 \mathrm{~dB} /$ octave. Critical damping can be switched in for pulse and step waveforms. A narrow band amplifier mode can be selected with a voltage gain of 20 dB . The input impedance is nominally $1 \mathrm{M} \Omega$ in parallel with 30 pF capacitance while the output impedance

is approximately 5Ω The case measures $320 \times$ $225 \times 245 \mathrm{~mm}$. Barr \& Stroud Limited, Kinnaird House, 1 Pall Mall East, London S.W.1. WW 329 for further details

I.C. Memory System

A family of $500-600 \mathrm{~ns}$ core memories with all the electronic functions performed by integrated circuits is announced by Honeywell. The new ICM-500 system is designed for use as main or

auxiliary memory within standard or custom digital systems. It has a 600 ns full cycle-time and an access time under 300 ns . Capacities range from 4,096 to 32,768 words. The i.c. replaces a number of discrete transformers and transistors and it performs both current switching and logic functions in the system. In a typical 8,192-word capacity memory of 24 -bit words, 112 flat-packs perform the functions formerly requiring 2,000 discrete components. Honeywell Ltd., Great West Road, Brentford, Middlesex.
WW 309 for further details

Hall Probe Magnetometer

Model D11 magnetometer by Scientifica \& Cook Electronics is a self-contained instrument with internal cells supplying the power requirements. It has four ranges of $0.1,0.3,1$ and 3 tesla full scale with manual selection by front panel switch. The same switches also provide battery check and polarity reversal. Additional controls are for "zero" and "calibration" with a coaxial socket output for

recorder operation. Supplied with the magnetometer is a calibration magnet and two Hall probes; one for transverse field and the other for axial field measurement. Accuracy is quoted as $\pm 2 \%$. The unit measures $229 \times 152 \times 127 \mathrm{~mm}$ and weighs 1.95 kg . Price 198. Scientifica \& Cook Electronics Ltd., 40-48 High Street, Acton, London W. 3.
WW 314 for further details

Temperature Controllers

A new range of temperature controllers by SK Instruments combines in one mode the features of three-term control (proportional, reset and rate control) without complications. These controllers employ a form of non-linear proportional mode control which the makers describe as deviation dependent sensitivity or d.d.s. In operation, the correction force derived from deviation is linearly proportional for small values but at the limits of deviation the control loop is de-sensitized logarithmically. This results in a narrow proportional band operating around the control point which,
at large deviations, operates smoothly to an almost infinite proportional band. This overcomes several disadvantages inherent with proportional control. Series-nine controllers are available for operation with resistance thermometers and with thermocouples with integral cold junction compensation. Common mode a.c. rejection is up to 250 V , and series mode up to 50 mA . Operation is from 240 V $50-60 \mathrm{~Hz}$ single phase supply with optional ratings of 8,12 or 24 A . The front panel measures $92 \times$ 92 mm and it contains a scale with a calibration accuracy within 1%. SK Instruments Ltd., Greenhey Place, Gillibrands, Skelmersdale, Lancashire.
WW 325 for further details

Double-beam Storage Oscilloscope

Featuring double-beam storage facilities the Telequipment oscilloscope, model D53S, costs f495. It offers a choice of three display modes: as a normal oscilloscope; as a long-persistence instrument with a continuously variable persistence of

more than a minute; and as a storage oscilloscope capable of storing traces for periods of up to ten minutes. Variable sweep delay is also provided and a choice of plug-in Y amplifiers is available. Display area is $6 \times 10 \mathrm{~cm}$ and 22 calibrated sweep speeds range from 5 s to $0.5 \mu \mathrm{~s} / \mathrm{cm}$. Telequipment Ltd., 313 Chase Road, Southgate, London N. 14. WW 336 for further details

Compact D.C. Supply

A power supply measuring only $38 \times 76 \times 50 \mathrm{~mm}$ can provide up to four output rails with a total capability of 30 V at up to 40 mA . It is Adretta's model P1015, initially developed as a stabilized d.c. source to drive this company's tuning fork oscillator/tuning units and now marketed as a product in its own right. Operation can be from $100-125 \mathrm{~V}$ or $200-250 \mathrm{~V} 50-60 \mathrm{~Hz}$ mains supplies without adjustment. Up to four outputs can be provided in series if required, provided that the sum of the output voltages should not exceed 30 V and the current 40 mA . The zero volt connection may be earthed or isolated as required and a second screen may be connected to minimize spurious noise when an isolated supply is required. Prices range from $£ 816 s(\{8.80)$ to $£ 12$ according to quantity. Adretta Letd., Station Approach, Fleet, Hampshire.
WW 302 for further details

Character-generating C.R.T.

 A 30 mm electostatic character-generating monoscope for use in data display units, in which a c.r.t. is used to provide input and output information for a computer, or for displaying remotely printed information initiated on a typewriter keyboard, is announced by E.M.I. Designated Printicon Tube 9788, it provides up to 64 charac-ters in an 8×8 array. The number and style of symbols can be changed to meet users' requirements. Principal feature is all-electrostatic operation giving fast access to any character. E.M.I, Electronics Ltd., Hayes, Middlesex.

WW 308 fier further details

Low Output, High Input Impedance Potentiometer

The limitations of precision potentiometers when circuit designers require low output impedance and high input impedance are met by a new potentiometer introduced by Computer Instruments Corp. which incorporates a solid-state isolation circuit. The low output impedance means that low-impedance devices such as meters and sensitive relays requiring high current levels can be directly driven. Any load from infinity to $1 \mathrm{k} \Omega$, fixed or variable in magnitude up to 30 mA , can be driven by a standard unit. Wiper current is virtually eliminated providing improved noise performance and, with the need for impedance matching removed, the potentiometer can be treated as a simple shaft-to-voltage converter. Standard model 202-30 is available with terminal resistance of $10 \mathrm{k} \Omega$ or $25 \mathrm{k} \Omega$ and maximum output impedance of 0.5Ω. Electrical function angle is 350°. The applied voltage can be from 10 to 30 V d.c. (polarity must be observed) and the permitted power dissipation at $25^{\circ} \mathrm{C}$ is 2 W . Computer Controls Lid., 19 Buckingham Street, London W.C. 2 .

WW 333 for further details

Transmitter Analyser

A transmitter output analyser, model TG2400 by Green E.C.E. Ltd., features an oscilloscope which displays directly the r.f. modulation envelope at any frequency up to 500 MHz . Absorption load units of 50Ω and 75Ω contained in the analyser can handle up to 1 kW mean r.f. power at any frequency between 2 and 500 MHz . The absorption load units are connected to a wattmeter with full scale ranges of $10,30,100,300$ and 1000 W mean, and an accuracy of 5%. Indicators of v.s.w.r. are

included. Single- and two-tone signals are provided for driving the microphone input of a.m. and s.s.b. transmitters. Price \int_{290}. Green Electronic and Communication Equipment Lid., 79-91 Braemar Road, London N. 15.
WW 304 for further details

Shock Accelerometer

A transducer for use in very high g shock applications has been announced by Kistler Instruments. It is the quartz shock accelerometer type 805A which has a resonant frequency of 60 kHz and is suitable for the measurement of shock accelerations up to $100,000 \mathrm{~g}$. Deviation is only 5% at 12 kHz and the low lower frequency limit allows measurements of long duration shocks to be made. A tri-axial accelerometer (see illustration) comprises three shock accelerometers mounted on a special adaptor with which accelerations up

to $20,000 \mathrm{~g}$ in three axes can be measured. Kistler Instruments Ltd., The Ridges, 2 Clockhouse Road, Farnborough, Hampshire
WW 323 for further details

I.C. Test Clip

A device comprising a spring-loaded test clip and a "contact comb" has been introduced by Guest Electronics for testing dual-in-line integrated circuits. The comb can be attached to 14 - or 16 -lead packages where it functions as an attachment

guide and prevents the short-circuiting of adjacent leads. The test probe can then be clipped to the comb. The makers claim that this solves oscilloscope probe attachment problems and facilitates testing. Gold-plated contacts are employed and the capacitance effects on h.f. transitions are quoted as negligible. Price $\mathbb{L}^{2} 10 \mathrm{~s}(\mathbb{2} .50)$ each with reductions for quantity. Guest Electronics I.t., Nicholas House, Brigstock Road, Thornton Heath, Surrey, CR 4 7JA.
WW 317 for further details

Power Frequency Changers

Although the primary purpose of power frequency changers by Valradio is to allow operation of $50-\mathrm{Hz}$ equipment from non-standard frequencies, or for operating $60-\mathrm{Hz}$ equipment from a $50-\mathrm{Hz}$ supply, the range comprises $100-\mathrm{W}$ and $200-\mathrm{W}$

units working from any input voltage and providing a variety of output voltages. The conversion principle is static and noiseless in operation. Frequency stability is claimed to be better than $\pm 1 \%$. The two types available are FCA230/100W at $\quad 32.6 \mathrm{~s} .9 \mathrm{~d}$. ($\{32.34$) and FCB230/200W at $\{52$. Special units providing $400-1000 \mathrm{~Hz}$ for testing marine and aircraft equipment can be supplied to order. Valradio Ltd., Browell's Lane, Feltham, Middx.
WW 331 for further details

Short-circuit Detector

Rapid location of short-circuits in telephone and signalling cables, distribution wires and power cables is the claim made for the Swiss-made ITT short-circuit detector now available in the U.K. from ITT Electronic Services, of Harlow. The instrument also enables particular cables to be identified from among others, concealed wiring to be traced and the run of cable pairs to be followed even through concrete to a depth of 300 mm . Two separate units are employed: one comprising a probe, amplifier and headphones and the other an oscillator unit generating a fixed frequency at about 1.4 kHz . The short-circuited cable is first energized by the oscillator, then the probe is moved along the cable. Initially a tone is heard in the headphones which falls to a minimum when the short-circuit is reached. Price is $\{2517 \mathrm{~s}$ 6d $\left(\left\{25.87 \frac{1}{2}\right)\right.$ for the detector and $\AA 1212 \mathrm{~s}(\Omega 12.60)$ for the oscillator. ITT Electronic Services, Edinburgh Way, Harlow, Essex.
WW 316 for further details

Pulse Generator

A general purpose pulse generator, type TF2010, has been introduced by Marconi Instruments. It provides positive and negative outputs, single or double pulse. Double pulse outputs are delivered from 2.5 Hz to .2 MHz and single pulse outputs up to 2.5 MHz . Features include continuously variable amplitude up to 20 V , variable pulse width from 100 ns to 10 ms , and 10 ns rise time. Internal or external triggering may be used; the internal trigger frequency is adjustable over the range 2.5 Hz to 2.5 MHz . External triggering can be

achieved by the application of a sine, square or pulse waveform. In addition to the main output waveform, a positive or negative "pre-pulse" is delivered from a separate socket. Dimensions of the instrument are $100 \times 360 \times 270 \mathrm{~mm}$ deep. Price: $£ 135$. Marconi Instruments Ltd., St. Albans, Hertfordshire.
WW 326 for further details

Magnetic Memory

Utilizing a miniature reed switch and designed for printed circuit mounting, a compact memory element announced by F. R. Electronics is suitable for applications such as the retention of information in the event of power failure, or the replacement of conventional relays in portable equipment. Designated type RSC68, the memory is small ($35.6 \times 17.8 \times 16.5 \mathrm{~mm}$) and has good vibration and shock characteristics. Price is about $\Omega 110 \mathrm{~s}(\Omega 1.50)$. F. R. Electronics, Wimborne, Dorset.
WW 321 for further details

Answers to "Test Your Knowledge'"-13

Questions on page 284

1. (c). The amplitude of the modulating signal determines the frequency deviation of the carrier, the frequency of the modulating signal determines the number of cycles of variation of the carrier frequency per second.
2. (c). Mathematical analysis show's that if a carrier $A \sin \omega_{\rho} \ell$ has its frequency varied by a signal of the form $\cos \omega_{m} t$ so that the frequency deviation (maximum frequency excursion) is $d f$, then the modulated carrier can be written $A \sin \left(\omega \ell+\frac{\Delta f}{f} \sin \omega_{m} t\right)$.
3. (a). The mean power output of a frequency modulated transmitter is constant whatever the modulation.
4. (b). It must be so since the mean power output is unchanged.
5. (b). The number of components with significant amplitude decreases as the modulating frequency increases, but the frequency separation between components increases so that the total bandwidth required to include all significant side frequencies is about the same for all modulation frequencies.
6. (c). A combination of the two is used in transmitters where it is most convenient to generate f.m. of small deviation at a low carrier frequency and then increase the carrier output and the deviation to those required at the output.
7. (d). In phase modulation the modulation index (or phase deviation) is independent of modulating frequency; in frequency modulation it is inversely proportional. Hence in the Armstrong system the modulating signal is first passed through a network which produces attenuation proportional to frequency before it is applied to the balanced mixer. This method cannot produce a phase deviation greater than about $\frac{1}{4}$ radian without introducing significant distortion.
8. (a). The weaker signal modulates the phase of the stronger signal (amplitude variations are removed by the receiver limiting action). The phase variation of the stronger signal due to this cause cannot exceed 0.46 radian, whatever the carrier frequency or modulation index of the weaker signal.
9. (d). The "rule of thumb" for wide frequency deviation systems is that a range of frequencies equal to the maximum deviation plus maximum audio frequency on either side of the carrier must be passed.
10. (b). For a sinusoidal modulating signal the carrier phase at the output of the i.f. amplifier will not vary sinusoidally.
11. (a). Provided that limiting still occurs in the receiver the extent of the service range is determined by the distance from the transmitter at which the unmodulated carrier amplitude is about twice the mean noise amplitude. With a narrower bandwidth system the mean noise amplitude will be smaller.
12. (c). a.g.c. is usually incorporated as well
13. (c). For a sinusoidal modulating signal
$\varphi(t)=\frac{d f}{f} \sin \omega_{m^{t},} \Delta f$ being proportional to the modulating signal amplitude.
Hence $\left.\frac{d \phi(t)}{d t}=2 \pi\right\lrcorner f \cos \omega_{m}$.
14. (b). Since with f.m. the noise suppression is least at the highest audio frequencies, components of the input signal at these frequencies are deliberately "preemphasised" at the transmitter. The circuit referred to is the "de-mphasising" circuit.

BULGIN PRECISION ELECTRONIC COMPONENTS

AS SHOWN AT THE 1969 R.E.C.M.F
LONDON ELECTRONIC COMPONENT SHOW

+ K. 515 Knob
Latest addition to the new range of D.P.C.O Moulded Switches. Semi-rotary operation 2 A. 250 V. A.C. N.I. rating

List No. SM. 277/2

A Moulded body toggle operated D.P.C.O. 8 contact switch for double switch for double pole alternative circuit switching. Replacing the popular laminated body type $S .277$ to which it has dimensional conformity but improved performance.

Switched legend indicator unit with D.P.C.O switch rated 2 A .250 V . A.C. and holders accepting L.E.S. lamps. Legending to order

Knob dial and escutcheon assembly. dial legending is only visible through window in escutcheor and is carried out to customers re quirements. Whole unit is colle fixing to $\frac{1}{}^{\prime \prime}$ dia shafts

Two, three pole side entry jack plugs The 'third 'Ring contact between the 'Sleeve" and 'Tip' can serve as a guard-ring or as a third pole, or 'Sleeve can carry screening continuity of 2 pole + screen cable. The design matches that of our popular model P.535-6. P. 538 Gold

Further addition to the D.P.C.O. Moulded Switch range. Key operated rated at 2 A .250 V A.C. N.I.

Unique seven pole +earth shrouded connector with positive polarity keying. 6A. 250 V . A.C. rating and safety conscious design. To prearranged orders special pin and socket arrangements can be supplied

List No. P. 550.
A. F. BULGIN \& CO. LTD., BYE-PASS ROAD, BARKING, ESSEX. MANUFACTURERS OF PRECISION ELECTRONIC \& ELECTRICAL COMPONENTS TELEPHONE: 01-594 5588 (12 LINES) Private Branch Exchange.

World of Amateur Radio

Direct-conversion "Homodyne" Receivers

Increasing interest is being shown by amateurs in the development of relatively low-cost receivers in which the incoming signal is heterodyned directly, by means of a balanced linear detector, to audio frequency. This form of "straight" receiver was described, in a valve version, by James White, (W2WBI) of Princeton, N.J., in QST, May 1961, but has attracted more attention since it was revived, using transistors, by the Dutch amateur K. Spaargaren (PA0KSB) in Electron (Jan. 1967) and by R.S.G.B. Bulletin. An interesting design, in which the linear derector comprises four hot-carrier (Schottky) diodes using wideband ferrite toroid transformers, has also attracted considerable attention.

The basic requirements for such direct conversion or simple synchrodyne receivers are a well-balanced linear detector, a stable variable-frequency-oscillator on the signal frequency, an audio filter and a high-gain, low-noise a.f. amplifier. The oscillator can also form the basis of a simple transceiver. For the reception of broadcast or other a.m. transmissions, the oscillator requires to be phaselocked to the incoming signal as in the Tucker synchrodyne, but this refinement is unnecessary for the reception of s.s.b. or c.w. signals, for which the current receivers are generally intended. Provided that the detector is linear and accurately balanced, selectivity can effectively be determined by the characteristics of the audio filter without incurring cross-modulation or blocking. The use of hotcarrier diodes or beam deflection valves (types 7360 or 6 JH 8 etc) can result in excellent noise figures without requiring any r.f. stage. An inherent problem-unless a more complex phasing type detector were used-is the presence of the audio "image" which can be eliminated by the i.f. selectivity of singlesignal superheterodyne receivers. Nevertheless, good audio selectivity can minimize this disadvantage. Several simple receivers of this general type, using either semiconductors or valves, are known to have been built by British amateurs, with generally satisfactory results.

Ionospheric "Openings" on 50 MHz

Despite the earlier belief that Solar Cycle 20 was already on the decline, 50 MHz conditions this year appear better than at any other time during the current sunspot cycle. M. Waters, G3JVL, of Portsmouth, heard the south-west

African station, ZS3B, at very good strength for $1 \frac{1}{2}$ hours from 13.50 G.M.T. on April 4th, almost certainly due to \mathbf{F} 2 layer ionospheric propagation. Don Hayter, G3JHM, of Worthing, similarly recieved the 40 -watt Rhodesian beacon station ZE1AZC from 16.30 to 17.15 G.M.T. on April 14th, with signals peaking RST99. One suggestion, being mooted in amateur circles, is that Solar Cycle 20 may be following precedents in having two main peaks, spaced roughly one year apart, and offering the prospect that higher maximum usable frequencies may occur this year, than those of 1968.

"Top Band" DX

The current world "wanderings" of Gus Browning, W4BPD, have brought several new countries briefly on to "Top Band" (1.8 MHz). His expedition to Rodriguez, in conjunction with VQ8CC, however, resulted in only one two-way contact being made on this band; this was with the British station G3XAQ. Gus Browning's 1.8 MHz operation as ZD3A produced no two-way contacts, though his signals were heard in the U.K., and he heard veteran top-bander, Stewart Perry, W1BB. Incidentally, Stewart Perry recently achieved his DXCC (100 confirmed countries) on this band following a contact with HK0TU, Malpelo Islands-despite trouble, during the contact, with his coaxial feeder. He later lifted his total worked to 104 countries with a contact with VP2KK, the St. Kitts' expedition.

Chordal Hop Theories Gaining Support

 There is a growing feeling among some British amateurs that throughout the h.f. and v.h.f. spectrum (and possibly also at m.f.) long distances are often covered by means of "chordal hop" and related modes not requiring intermediate ground reflection points. The chordal hop theory, now attracting increasing attention in professional research and communications, was originally put forward by Hans Albrecht, following the careful measurements made by him and a large number of other Australian amateurs in the early 1950 s , on $3.5,7$ and 14 MHz signals received in Australia from amateurs in West Europe. Albrecht subsequently returned to Europe and suggested the name "chordal hop" to explain his idea that signals could be reflected more than once from ionospheric layers without returning to earth each time. Theapparent absence of intermediate ground reflection points is now also recognized as occurring during transequatorial (TE) propagation, which was first investigated as a result of amateur long-distance openings on 50 MHz , at times when this band should have been well above the maximum usable frequency. Such mechanisms have more recently been suggested by M. Hall of the Radio and Space Research Station, Ditton Park, Slough, as playing a significant role in v.h.f. propagation. Possibly as a result of ionosperic tilts and/or "whispering gallery" layer entrapment, it now seems likely that many of the amateur DX contacts, previously thought to be due to conventional multi-hop F2 propagation, are in fact made without intermediate ground reflection, accounting for the low path losses and high m.u.f. often observed. More precise knowledge of such propagation modes could have considerable importance for radio communication and broadcasting.

National Field Day

The R.S.G.B. National Field Day, with all participating stations operated from tents by amateur radio clubs and R.S.G.B. groups, is being held this year over the period 17.00 G.M.T. June 7th to 17.00 G.M.T. June 8th. For many years, this event-first held in June 1933-has been the most keenly contested of all British portable events, and involves the largest number of operators. At the first event, 34 stations were operated by 18 groups; last year, when Cannock Chase Amateur Radio Society gained the coveted shield, some 150 stations were entered by about 100 groups and clubs. Contacts, on c.w., can be on any three bands from 1.8 to 28 MHz .

Other June Events

A mobile rally organized by the Amateur Radio Mobile Society is being held on June 1st at the Shuttleworth Aircraft Museum, Biggleswade.

The Bristol R.S.G.B. Group, assisted by the Bristol Amateur Radio Club, are organizing for June 29th the Longleat Mobile Rally at Longleat Park, near Warminster.

A Midlands VHF/UHF Convention and Dinner-including a lecture on "a new approach to vhf/uhf receiver design" is being held at Wolverhampton on June 14th (details from P. G. Wright, 20 James Road, Kidderminster, Worcester, enclosing foolscap stamped addressed envelope).

In Brief: A new beacon station, GB3SU, operating on 70.695 MHz is located at the University of Sheffield . . . Latest F.C.C. figures put the number of amateur operators in the United States at 256,546 , down very slightly on a year ago . . A.R.R.L. reports its full membership down 1% to 80,012 with worldwide membership given as 97,678 . . Membership of the International Amateur Radio Union, following the admission of societies representing Mauritius and Surinam, now stands at $80 \ldots$ U.S. amateurs, as a result of changes in the Bell System telephone regulations, can now legitimately operate "phone patches" connecting overseas stations to telephone subscribers.

Pat Hawker, g3ya

AMPLIFIER SUPPLEMENT

The Vital Statistics of an Audio Amplifier

by R. Williamson

A definition of the term "high fidelity" would be a logical opening to a discussion on high-quality amplifiers (yes, I'm sufficiently old fashioned to prefer high quality to the imported term-but high fidelity, or "hi-fi", is here to stay and I have no intention of starting a revolution to change it back again). A precise definition is quite impossible, since there is no clearly defined boundary at which "low fidelity" (sic) ends and high fidelity begins.*

In the final analysis, a purely subjective judgement by the listener will decide one way or the other and so long as the human element is involved in assessing reproduced sound quality, the boundaries will continue to remain blurred. I much regret that in recent years there has been no real progress towards a more precise definition. Anyone may slap a label "high fidelity" on an amplifier despite a frequency response which, if reproduced graphically, would look something like the hind leg of an arthritic donkey.

The amplifier is the "heart" of any sound reproducing system and I intend to discuss its vital statistics, to examine the facilities one expects to find and finally, to draw attention to typical and particularly interesting design features.

Distortion level and distortion figures

At the head of my list of vital statistics for good sound quality is the degree of non-linear distortion up to the maximum rated output. By non-linear distortion I mean any spurious harmonic and intermodulation products in the amplified signal. For these to be negligible the dynamic input/output transfer characteristic should be linear within clearly defined limits up to maximum output at all frequencies within the accepted audible range.

In the U.S.A. intermodulation products are often quoted and although some authorities might justifiably attach equal or even greater weight to this information, the practice of quoting i.m. products is not usual in the U.K.

It is here that it might be worthwhile examining a very thorny problem-that of evaluating the figures quoted. Just prior to the transistor amplifier era, valve designs had reached a very high standard, and at levels up to the rated power generated harmonics were at a very low level, and usually of a low order. The magical figure was a total harmonic distortion (t.h.d.) of below 0.1% and one could literally assume that with the best on the market, the amplifier was the strongest link in the reproducing chain. Almost, one might say-and here I cannot resist quoting my favourite advertising blurb-a "straight wire with gain".

When the change to transistors began, and using the germanium devices available at that time, designers were to some extent obliged to take advantage of the high efficiency possible with them. Not only were the early circuits virtually "transistorized" valve amplifiers, but class B output stages came back, *Does "fidelity" need qualifying? Fidelity or infidelity!-ED.
too, sometimes with driver transformers which had long since disappeared from the valve amplifier scene! Small wonder, then, that soon there were complaints that not only was the sound "different" to the best valve amplifiers, but that in most cases it was very much inferior.

However, the rapid development of semiconductor technology began to yield its own circuit techniques, and, following the concept of complementary symmetry and the publication of the well-known circuit by H. C. Lin in 1956, \dagger transistor amplifiers began to improve. But the so-called "transistor" sound persisted and it began to be appreciated that it was primarily due to minute amounts of crossover distortion arising from the inherent asymmetry of a quasi-complementary output stage operating in the class B mode. A new generation of designers and listeners were re-discovering that there are two kinds of harmonic distortion; the even harmonic (nice) sort and the odd harmonic (nasty) sort; furthermore, the nasty sort could be extremely objectionable when caused by even minute discontinuities in the transfer characteristic at the transition point and consisted of very high order odd harmonics. It had been well understood for some time that these high order harmonics can provoke a degree of discomfort and have an unpleasant aural effect out of all proportion to their actual level in ratio to the fundamental, even though as low as the long accepted 0.1%. At least one manufacturer has suggested that this type of distortion must be as low as 0.003% if the "transistor" sound is to be eliminated.

Frequency response

An audio amplifier is required to handle the audible spectrum from say 20 Hz to 20 kHz . Wait! Before the "let's entertain the bats as well" fraternity rush for their pens and paper, let me make a plea for sweet reason in this. We are, after all, considering high quality sound reproduction in the home and there isn't the slightest doubt that for you and me, the programme sources that are available are going to have bandwidths that are very much less than this for most of the time. Limits to the bandwidth are being imposed all along the chain to the listener's loudspeaker, and wasn't it Capt. P. P. Eckersley who wisely remarked, apropos audio bandwidth that "the wider you open the window, the more the dirt flies in!'?

Fortunately, in the present state of the art of amplifier design, an acceptable bandwidth at normal power levels presents no problem and our specification can easily be met within $\pm 1 \mathrm{~dB}$ and with no more than 3 dB loss at an octave above and below the prescribed limits.

Power bandwidth

Rather more important is power bandwidth; the amplifier must be able to handle comfortably this frequency range at or near full power without measurable degradation of the signal. This + H.C.Lin, "Quasi-Complementary Transistor Amplifier," Electronics, Sept. 1956.
requirement is not quite so stringent at the extreme high end of the passband, and in a practical amplifier it would be acceptable for the power bandwidth to fall above 15 kHz . A typical specification will indicate the limits of power bandwidth at -3 dB points. Again, with modern design techniques, this modest requirement should be met without difficulty and in a typical product, the -3 dB points will be well beyond these limits-although some early germanium designs might fall short of these standards.

Transients

The ability of an amplifier to handle without degradation wavefronts with a fast rise time is referred to as its "transient" response and will be related to the upper limits of its frequency response and inherent stability. The rise time of a modern transistor design is likely to be very much faster than that occurring in the waveforms of programme sources accessible to the domestic user.

Damping factor

For good frequency response and transient handling ability the speaker system must be well damped electrically. Movement of the cone of a moving-coil loudspeaker is restricted by its suspension stiffness and resistance, by air loading and electromechanical damping. While it could be argued that with a modern 'infinite baffle' speaker the inherent damping of the system is already very high and that further electromechanical damping would be superfluous, I would suggest that it is still of importance because of the large number of speaker systems that do not fall neatly into this category.

Typically, in a modern feedback amplifier, the source impedance will be a fraction of an ohm and substantially resistive. The damping factor is usually derived by dividing the actual source Z into the nominal load Z. Values of quoted damping factor vary from 20 to 150 , although there is little point in deliberately aiming for values as high as this, since the speakers own resistance has to be taken into account and is effectively in series. In fact, there are good grounds for suggesting that a damping factor of not less than 15 is adequate for all practical purposes. Nevertheless, one must deplore the increasing practice of actually adding quite large amounts of passive resistance in series with the speaker circuit on some recent commercial designs, ostensibly to limit the current in the output stage when low-impedance speaker systems are used. One such model recently reviewed had a measured source Z of nearly 5 ohms at the 4 - ohm speaker terminals. The measured frequency response was markedly degraded.

Power rating

It is perfectly true that a mere one watt of power into an efficient speaker will generate a very healthy noise and probably more than enough for most domestic users. However, commercial speakers seem to get less and less sensitive as designers trade efficiency for quality. It is a purely personal view that to take this into account, and yet to preserve at all times the capacity of the system to handle the maximum possible dynamic range, the power rating should not be less than 10 watts per channel in a stereo system.

And this is, I feel, an opportune moment to discuss the highly deplorable bandying about of figures that seems to be the current advertising practice when referring to power handling ability. Almost any subterfuge goes, it seems, if that highly important figure in watts can be inflated. We have peak watts, music power and I.H.F. rating to mention but three popular methods of enchancing the power, and no doubt these ratings would carry some validity if everyone fully understood what they meant; unhappily, the vast majority of the lay public haven't the faintest idea what they mean.

I have one such advertisement before me at this moment and
by virtue of what it omits to say it is quite misleading. The product is variously described as a 12 -watt amplifier, with 24 watts peak power, 15 watts music power and 30 watts peak (music?) power. We are also furnished with the information that power requirements can be met by using batteries if so desired.

This juggling with figures can only but utterly confuse the less knowledgeable reader, who is likely to purchase the product, attempt to use it with an inefficient 15 -ohm loudspeaker and a $6-V$ battery supply and then wonder why it sounds like his younger sister's transistor portable with its honest 500 mW power rating. One can only hope that recent legislation will offer some means of regulating this sort of advertising.

I would suggest that a straightforward measurement of the power dissipated in a specified load under continuous sine wave input and taken at the onset of symmetrical clipping, has the merit of being the least equivocal method of assessing power rating.

Input sensitivity

The sensitivity of each of the inputs provided on an amplifier is usually expressed as the r.m.s volts "in" for maximum power "out"; but the manner of expressing sensitivity in this way can be a little misleading, as indeed can be the method of quoting the signal-to-noise ratio.

Take, for example, a 10 -watt amplifier with a pickup input typically rated at 2 mV for maximum output. What will not be obvious to the uninitiated is that a 20 -watt amplifier with the same sensitivity and s / n ratio is actually twice as sensitive as, and has a s / n ratio 3 dB better than, the 10 -watt model. The reason for the increase in sensitivity is probably quite clear (the 20 -watt model will need only 1 mV to produce the same volume of sound from the same speaker as the lower powered amplifier) but the apparent improvement in s / n ratio might not be quite so obvious. Since the noise generated in an amplifier usually originates in the earlier low-level stages, it follows that for the 20 -watt amplifier to produce 10 watts for a $2-\mathrm{mV}$ input, the volume control will have to be adjusted to reduce the signal level by 3 dB ; and, of course, the generated noise is also attenuated by the same amount.

Stability

The final requirement one expects of a well-designed amplifier is that it should be unconditionally stable, bearing in mind the complex load conditions presented by some modern speakers, such as those with multiple drive units and crossover networks.

In a feedback amplifier the loop gain must be tailored so that it falls below unity at frequencies where the phase shift reaches 180°. Whilst with silicon planar transistors the unrestricted passband could extend well into the megahertz region, such a range is neither necessary nor desirable.

Such an amplifier could be unduly sensitive to small reactive components in the load and even if not going into sustained oscillation, the performance could be severely degraded if the amplifier were provoked into "ringing" by steep transients in the signal.

'Facilities'

What facilities does one expect to find in a modern high-fidelity amplifier? While it is idealistically the aim of amplifier designers as well as the manufacturers of pickups and loudspeakers for their product to have a linear frequency response over the audible range, somewhere in the programme chain, something or somebody will let the side down and there will be introduced some imperfection that will mar the quality of the sound that emerges from the loudspeaker.

Nevertheless, the facilities we have now come to expect as a

Vortexion

This is a high fidelity amplifier（．3\％ intermodulation distortion）using the circuit of our 100% reliable－ 100 Watt Amplifier（no failures to date） with its elaborate protection against short and overload，etc．To this is allied our latest development of F．E．T． Mixer amplifier，again fully protected against overload and completely free from radio breakthrough．The mixer is arranged for $3-30 / 60 \Omega$ balanced line microphones，and a high im－ pedance line or gram．input followed by bass and treble controls．Since the unit is completely free from the input rectification distortion of ordinary transistors，this unit gives that clean high quality that has tended to be lost with most solid state amplifiers．

THE VORTEXION 50／70 WATT ALL SILICON AM PLIFIER WITH BUILT－IN 4 WAY MIXER USING F．E．T．s．

Size $14^{\prime \prime} \times 11^{\frac{1}{2}}{ }^{\prime \prime} \times 4 \frac{1}{2}^{\prime \prime}$
Weight 20 lb ．
$100 \mu \mathrm{~V}$ on $30 / 60$ ohm mic．input．
100 mV to 100 volts on gram／auxiliary
input $100 \mathrm{~K} \Omega$ ．

ELECTRONIC MIXERS．Various types of mixers available．3－channel with accuracy within 1 db Peak Programme Meter．4－6－8－10 and 12 －way mixers．Twin 2，3，4 and 5 channel stereo．Tropicalised controls． Built－in screened supplies．Balanced line mic．input．Outputs： 0.5 v at 20 K or alternative 1 mW at 600 ohms ， balanced，unbalanced or floating．

200 WATT AMPLIFIER．Can deliver its full audio power at any frequency in the range of 30 $\mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db}$ ．Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$ ．Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave．Input 1 mW 600 ohms．Output $100-120 \mathrm{v}$ or $200-240 \mathrm{v}$ ．Additional matching transformers for other impedances are available．

30／50 WATT AMPLIFIER．With 4 mixed inputs，and bass and treble tone controls．Can deliver 50 watts of speech and music or over 30 watts on continuous sine wave．Main amplifier has a response of 30 $\mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{db} .0 .15 \%$ distortion．Outputs $4,7.5,15$ ohms and 100 volt line．Models are available with two， three or four mixed inputs for low impedance balanced line microphones，pick－up or guitar．

CP50 AMPLIFIER．An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation， charging its own battery and automatically going to battery if mains fail．Protected inputs，and overload and short circuit protected outputs for 8 ohms－ 15 ohms and 100 volt line．Bass and treble controls fitted．
Models available with 1 gram and 2 low mic．inputs． 1 gram and 3 low mic．inputs or 4 low mic．inputs．
100 WATT ALL SILICON AMPLIFIER．A high quality amplifier with 8 ohms－ 15 ohms and 100 volt line output for A．C．Mains．Protection is given for short and open circuit output over driving and over temperature．Input 0.4 v on 100 K ohms．

20／30 WATT MIXER AMPLIFIER．High fidelity all silicon model with F．E．T．input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits．The response is level 20 to $20,000 \mathrm{cps}$ within 2 db and over 30 times damping factor．At 20 watts output there is less than 0.2% inter－ modulation even over the microphone stage at full gain with the treble and bass controls set level．Standard model 1－low mic．balanced input and Hi Z gram．

A new look at the middle power range.

The middle power range, roughly that between 40 and 70 watts, has long been neglected by stereo manufacturers in the race to build receivers for the higher power - and price ranges.
It hasn't been neglected by Sansui, however.
Working on the assumption that the middle power range is the most practi-
cal for the average home, Sansui engineers have developed two of the highest performing solid state receivers ever to enter this field.
Rated at 70 and 46 watts respectively, the new Sansui 800 and 350 bring large receiver performance and refinements within the reach of everyone.
Both incorporate the latest FET circuitry for new standards in FM sensitivity and selectivity. Both offer wider dynamic ranges, lower distortion and higher channel separation figures.

Each incorporates a newly developed noise canceler and is capable of handling up to two speaker systems simultaneously. And each features the functional black window design.

For a new look at the middle - or any - power range, see your nearest Sansui dealer soon.

Sanswi

permanent feature of a typical high-fidelity amplifier have fallen into a set pattern, and I propose to take each in turn, to describe its function and illustrate with extracts from the circuits of currently available commercial amplifiers.

The amplifier stages

Probably the most important stage is the so-called "front end", the point at which the often minute signal from the programme source is amplified to a level which raises it well above the inherent noise of the system. It also carries out one other important function, that of equalizing the signal from the gramophone pickup.

To all intents and purposes, the signal on a modern LP disc is recorded at constant amplitude and with a velocity proportional to frequency. So when the system includes a velocity sensitive pickup, and this means the majority in use today (moving magnet, moving coil and variable reluctance dominating the field) the voltable at its output terminals will be proportional to the frequency on the disc.

The shape of this voltage curve has long been determined to an international standard, and the input stage has to introduce an inverse of this curve within close tolerance. A particular two-transistor circuit has become popular with designers-the d.c. feedback pair which I believe can be accredited to J. Somerset Murray (British Patents 80927 and 83245). Originally developed with germanium transistors to give tight d.c. "sit" points under conditions of varying temperature and using transistors with a wide production "spread" it has passed into use with modern silicon planar types. The input stage of the Heathkit TSA-12 is typical of the many variants of this type of circuit, and not only compensates for the replay curve but provides for a sensible amount of overall gain (Fig. 1).

That the input stage should contribute negligible noise to the signal is a basic requirement generally appreciated, and to this end it is common practice for the first transistor to be run at less than 0.5 mA . The second transistor is normally run at a higher $I_{c e}$ and a figure of $1-2 \mathrm{~mA}$ is again typical. The collector load is chosen to take into account the shunting of the feedback network and a low-noise working condition is here of rather secondary importance. Suffice to say, that in respect of s / n ratio, most modern designs are satisfactory, and on the most sensitive input a -65 dB figure or better should be attainable, even using modern low-output magnetic cartridges.

Since it is in overload capability that there is some variation in the standards achieved, let's examine the problem and see what is involved. Consider a typical magnetic pickup with a sensitivity of $1 \mathrm{mV} / \mathrm{cm} / \mathrm{sec}$, which will generate from the average LP disc a signal in the region of 5 mV . Allowing for the dynamic range possible on a modern recording, one must cater for peak velocities of up to $20 \mathrm{~cm} / \mathrm{sec}$ and this means the peak terminal voltage from the pickup may reach 20 mV . With a midband overall gain for our "front end" of, say, 150, the peak signal level at the collector of the second stage will be up to 3 V . The designer has to ensure that the input stage is able to handle signal levels of this magnitude without distortion, at all frequencies over the audible band and it has come to be accepted that such an input stage must be able to handle not less than +20 dB over the rated input level and preferably very much more.

An alternative to the simple two-transistor pair, and representative of a sophisticated design philosophy, is that adopted by Radford in their SCA30. Here (Fig.2) an additional buffer stage in the common collector mode has been added to the conventional pair as an impedance conversion device. This offers certain advantages, in that the second common emitter stage can now be tailored for the maximum possible gain, having now been relieved of the loading of the feedback network, and can operate at low $I_{c e}$.

Cambridge Audio bring a highly individual approach to the problems of input stage overload. They have abandoned the
traditional concept of a feedback equalizing pair at the input, and substituted instead a straightforward linear amplifying stage with overall variable parallel feedback-the variable element being the volume control. By using a "virtual earth" amplifier in this way, a number of virtues are claimed, including a better than +60 dB overload factor and a s / n ratio that is independent of the source Z (Fig.3). The function of equalization is delegated to a later stage.

Inputs that are already at a suitably high level and equalized (such as from a tuner) are usually selected by switching, and are injected across the volume control. An alternative is to convert the front end from an equalizing stage to one of fixed linear gain, and feed the high level signal in at the same point via a passive, sometimes variable, attenuator.

On many imported models, and on some British designs conceived with an eye on the healthy export market, the volume control is sometimes replaced by, or can by switching be converted to, the controversial loudness control. This feature is guaranteed to arouse passionate feelings whenever discussed by the true apostles of the hi-fi religion, as readers will be well

Fig. 1. Input stage of the Heathkit TSA-12.

Fig. 2. Input stage of Radford SCA-30.

Fig. 3. Input stage of Cambridge Audio P40 and P8O.
aware from Letters to the Editor published some months ago. The principles on which the action of the loudness control is based, is that the ear becomes disproportionately less sensitive to low frequencies and, to a lesser degree, high frequencies as the loudness (volume) of the sound source diminishes.

Unfortunately, its staunchest protagonists refuse to recognize the simple fact that it just doesn't always make a low-level sound more natural; for example one has only to listen to the reproduced male voice while manipulating a loudness control.

On the other hand, there is another side of the argument that should be recognized. Hi-fi is no longer the cult of the few but big business, and its products are subject to the dictates of consumer demand and market research. If evidence derived from such sources indicates that the consumer regards some form of loudness control as a desirable feature, then who are our experts and, even more important, British manufacturers to wrinkle a fastidious nose and ignore the demand? Audio amplifiers are going to be used in the home for background music, and the loudness control takes the effort out of making a pleasant noise at low volume level. Foreign competitors are aware of this, and laugh at our conservative attitudes all the way to the bank. . . . If it helps to sell the product, then put the loudness control in, so long as it can be switched out by the pure at heart; and above all, spare us the scientific evidence of its desirability. Fig. 4 shows the loudness control in the Sansui AU-777 and is typical.
Une expects the well-dressed amplifier to have tone controls, of course. These permit some adjustment to the treble and bass ends of the spectrum relative to a midband point-which may be anywhere from 500 Hz to 1 kHz . The degree of variation is usually up to $\pm 15 \mathrm{~dB}$ at 15 kHz and of a similar amount at 40 Hz . There are, basically, two modes in which these controls operate. Broadly speaking they are related to whether the designer has opted for passive equalization or the adjustment of reactive elements in a feedback network. The feedback

Fig. 4. Sansui loudness control circuit.

Fig. 5. Tone control stage of Leak 'Stereo 30 Plus'.
type, especially that due to Baxandall, appears to enjoy the greatest popularity and that used in the Leak "Stereo 30 Plus" is a well tailored version (Fig. 5).

Whilst tone controls have a maximum slope that does not exceed 6 dB /octave, it is frequently desirable, one might say almost essential, to have low-pass filter facilities that operate at a far greater rate than this and particularly at the high end of the spectrum. Objectionable noises and harmonic and intermodulation products are likely to appear in an imperfect signal above, say, 5 kHz , and it is useful to be able to attenuate these rapidly. The rate of slope for these steep cut filters should not be less than $-12 \mathrm{~dB} /$ octave and to achieve these higher attenuation rates, designers either adopt a two-section $R C$ network or in a more sophisticated approach, will use bridged-T networks in a feedback configuration. Curiously enough, designers seem to fight shy of using combinations of L and C, although Leak have included a basic half section in their "Stereo 30 Plus" with one switched turnover frequency at 6 kHz . Quad, on the other hand, have gone in for a full-blooded version, very comprehensive, with three switched turnover points at 5,7 and 10 kHz (by means of a tapped inductor) and the facility of being able to vary the slope on a calibrated control up to a maximum of 25 dB /octave.

It is regrettable that many amplifier manufacturers seem to regard a really effective low-pass filter as less than essential.

At the low end of the spectrum a high-pass filter is either permanently included or switchable, to limit the response below 20 or 30 Hz in order to attenuate mechanical noise or "rumble" produced by the record turntable.

Paradoxically, inexpensive amplifiers which might be complemented in a budget system by a turntable of comparable cost, invariably omit this feature and response is likely to be unrestricted down to subsonic levels.
The power amplifier: Both at home and abroad, a small number of manufacturers eschew completely the principle of complementary working, possibly because originally, suitable high-voltage complementary pairs of driver transistors were somewhat thin on the ground and carried a price tag that reflected their scarcity. This inhibiting factor applied equally to n-p-n types in the germanium era and later, with silicons, p-n-p's were in short supply and somewhat costly. Rogers, for example, have opted for a driver transformer in both their Ravensbourne and Ravensbrooke. By employing a carefully designed quadrifilar wound component, it is claimed that most of the inherent disadvantages usually associated with transformer drive have been overcome. Incidentally, without exception in my experience, output transformers have disappeared entirely and designers have opted for the series push-pull transformerless output stage, irrespective of the method of phase inversion adopted. But broadly speaking, the quasi-complementary class B transformerless circuit is highly favoured.

However, right from the introduction of the first transistor amplifier, there began to be complaints (and sometimes, even approval) of the so-called "transistor sound", and discounting some of the highly subjective reasons advanced one can justifiably argue now that the main cause can usually be attributed to the inherent asymmetry of the Lin-type quasicomplementary configuration. The principal "cure" has been, so far, to rely upon the high overall negative feedback that has come to be regarded as almost mandatory with this type of amplifier. During a recent evaluation of a very expensive amplifier there was, at low listening levels, some crossover distortion audible. Yet the reproduced sine wave at approximately the same level, 200 mW , showed not the slightest sign of this defect and the sum of the distortion products when measured on a distortion factor meter hardly reached our hitherto acceptable figure of 0.1%.

We are faced, then, with the problem of how to equate the subjective effects with the degree of aural "objectionable-ness" that this form of distortion provokes, and to express it in

QUAD 50 is a single channel 50 Watt amplifier designed for Broadcast, Recording and other applications in the Audio industry, completely proof against misuse and giving the highest quality of reproduction.

INPUTS - 0.5 Vrms unbalanced with provision for an optional plug-in transformer for bridging 600 ohms lines.
OUTPUTS - isolated providing 50 watts into almost any impedance from 4 to 200 ohms.
DIMENSIONS $-12 \frac{3 \frac{3}{4}^{\prime \prime}}{} \times 6 \frac{1^{\prime \prime}}{} \times 4 \frac{1}{2}{ }^{\prime \prime}$
Complete the coupon and post today.

Please send me full details of the QUAD 50 Amplifier

NAME
POSITION
COMPANY
ADDRESS
(BLOCK CAPITALS)
ACOUSTICAL MANUFACTURING CO. LTD.,
HUNTINGDON. Telephone: Huntingdon (0480) 2561/2

NATO, RN, NASA, BBC, use Uher tape-recording equipment...

4000 REPORT SERIES

Three different models of the Uher 'Report' are now available.
4000 Report - L Specification. 2 Tracks conforming to international standards. Tape reels diam. $-5^{\prime \prime}$. Tape speeds (ips) $\frac{18}{16}, 1 \frac{7}{8}, 3 \frac{3}{4}, 7 \frac{1}{2}$. Frequency range (cps) 40-4, 500/40-10,000 and 40-16,000/40-20,000. Dynamic volume range (db) 40 at $\frac{18}{18} \mathrm{ips}, 46$ at $1 \frac{7}{8} \mathrm{ips}, 50$ at $3 \frac{3}{8} \mathrm{ips}, 52 \mathrm{at}$ $7 \frac{1}{2}$ ips. Wow and flutter ($\max \pm \%$) 0.2 at $7 \frac{1}{2}$ ips. Recording mono. Half-track. Playback mono half-track. Power output one watt.
Monitoring via headphones or speaker. VU meter + three digit tape counter. Tape stop-start remote control, collectorless motor controlled by 8 transistors. Power supply from $6 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V}$ car battery, from rechargeable accumulator or 5 type L.P. U2 batteries or mains unit. 17 transistors. Inputs : Microphone :$\cdot 1 \mathrm{mv}$ at 200 ohms. Radio :- 2 mv at 47 K ohms. Pick up :-30mv at 1 megohm. Weight 6 lbs (approx). $125 \mathrm{gns} .+10 \%$ tax surcharge.
4200 Report Stereo Affording all the advantages of the successful 4000 Report-L in size, style and specifications-plus stereo. 152 gns.
$+10 \%$ tax surcharge.
4400 Report Stereo Again with all the advantages of the 4000 Report-L -plus stereo and maximum economy of tape on four tracks without deterioration of reproduction quality. $152 \mathrm{gns} .+10 \%$ tax surcharge.

ROYAL DE LUXE STEREO

Horizontal or vertical operation. Optimal hi-fi quality. Four track operation (convertible to two track). 2×10 watts power output. Straight through amplifier operation. Built-in dia pilot for automatic slide projection. Switchable A-B monitoring. Mixing and echo facilities. Multi-play Syncro-play and physiological volume control. Four speeds-to mention some of its facilities. 238 gns. $+10 \%$ tax surcharge.

...so does John Harding.

Engineer by trade, music-lover and stereo enthusiast by inclination.

He knows that Uher is chosen to record signals from space. To help train the Royal Navy in weapons systems.
To capture the sounds of history being made.

He knows that Uher equipment is best for his own purposes as well.

Tough yet sensitive, compact yet versatile, it gives him the finest sound reproduction he could wish for.

The first happy gurgling of his first-born child, the racket of a machine under test, the full grandeur of a symphony orchestra-John Harding has them all taped.

Taped by Uher because he
doesn't reckon he can do any better than that.

Professionals pick Uher equipment as the tools of their trade.

But they're equally available, equally accurate, equally satisfactory, for the discerning amateur. There's a Uher tape-recorder to meet your requirements.

미롤
DISTRIBUTED IN THE U.K. BY BOSCH
quantitative terms. Fortunately, this is a problem that may be esolved by the adoption of techniques in transistor circuitry hat will eliminate once again this particularly objectionable lefect. The obvious line of attack is to try to overcome the inherent asymmetry of the orthodox quasi-complementary class B output stage, although there has developed a strong "back to zlass A" movement as exemplified by the two commercial models produced by the Richard Allan company.

While one cannot deny that a good class A design will eliminate crossover distortion completely, in my view this is design by expediency and metaphorically speaking, simply sweeping the difficulties under the carpet of the R and D department. The many disadvantages of class A working in a transistor amplifier, its low efficiency for example, far outweigh the short-term advantage of freedom from just one aberration in the performance of an audio amplifier.

I emphasize short-term, because already, there is evidence that designers with a more imaginative approach are developing ways to eliminate the asymmetry of the class B stage, the use of complementary "triples" as adopted in the Quad 303 being well to the fore in sophisticated elegance (Fig. 6).

Aside from the technique developed by Quad, the orthodox remedy is likely to be the adoption of full complementary working following the increasing availability of pairs of $n-p-n / p-$ n-p silicon power transistors and whilst they are still not too plentiful, the Radford SCA30 employs this technique. Models P40 and P80 from Cambridge Audio also use a complementary pair of silicon transistors in the output stage with the added refinement of constant current drive. It is claimed that this technique reduces even further the effects of any asymmetry that remains in the complementary output'stage.

While the increasing use of silicon devices improved the robustness of high-quality amplifiers under a wide range of expected working conditions, it is an inescapable fact that transistors have not yet the inherent resistance to short-term overload of valves and most leading manufacturers might, in an unguarded moment, admit to some unhappy experiences following an initial attempt to introduce a transistor model.

Possibly the most important problem that designers have had to contend with, is that of "second breakdown" in transistors and principally those of the large chip area power types. This is not just simple voltage breakdown, but a thermally and electrically regenerative process initiated by certain levels of voltage and current being coincident for finite lengths of time, and is produced in the output stage of an audio amplifier by undesirable reactive load conditions. Transistor manufacturers have not been slow to develop chip construction techniques to minimize the possibility of second breakdown, but the problem is still very much with the amplifier designer and some measures of circuit protection are now regarded as essential.

Protection on a short-term basis can only be achieved by comparatively fast operating electronic circuitry. Broadly speaking, the techniques being adopted fall into two categories. First, the latching-type overload trip whereby the power supply to the output stage is cut instantly under conditions of overload and has to be reset manually. This is employed in some Japanese designs, such as the Sony TA1120 and the Sansui AU777.

Most British and European designers, on the other hand, tend to favour non-latching protection and incorporate limiting circuitry into the amplifier and/or the power supply, again employing sensing techniques either with diodes as simple voltage operated switches as in the Quad 303 or as in the Radford SCA 30 which uses transistors to monitor the emitter current of each output transistor.
Power supplies. In the low and medium price ranges, the designer has usually to be content with a straightforward silicon diode bridge rectifier, plus a single electrolytic smoothing capacitor. At the other end of the cost spectrum, we have the complex thyristor regulated system of the Radford which
even includes a separate zener regulated supply for the pre-amplifier stages (Fig. 7). Power supplies of such sophistication go a long way towards rendering unnecessary any need for the advertising dept. to manipulate the power rating figures. Amplifiers of this calibre are clearly in the "professional" class and invariably carry a price tag to match.

It is safe, at least, to assume that circuit techniques will continue the process of refinement, with the increasing use of integrated circuits and correspondingly fewer discrete components, especially in the small signal stages. Whilst it is an open secret that at least one familiar name in the amplifier field is seriously considering the advantages of an integrated power amplifier and loudspeaker combination, market trends indicate that "separates" in the traditional form of tuner plus preamplifier, plus power amplifier are falling out of public favour. Preamp. and power amp. combined, in one unit, are dominating the market and eventually, the stereo receiver-all three in one-will be the favoured choice, as indeed they already are in the U.S.A. and on the Continent.

Fig. 6. Output section of Quad 303 power amplifier.

Fig. 7. One half of the power supply in the Radford SCA-30.
pzdoy Kjue [noijued st
Sis

$$
\begin{aligned}
& \bar{y} \\
& \stackrel{y}{\circ} \\
& \hline
\end{aligned}
$$

$$
\stackrel{\circ}{\stackrel{y}{3}}
$$

Evex

$$
\begin{aligned}
& \bar{x} \\
& \text { à } \\
& \underset{x}{x} \\
& \underset{y}{n}
\end{aligned}
$$

Bex

Amplifier Data
 Audio

This table of data has been drawn up by Wireless World from manufacturers＇reader should be able to draw some useful conclusions．It is particularly hoped This table of data has been drawn up by Wireless World from manufacturers＇
information to illustrate，by example，the particular facts and figures referred to in Mr．Williamson＇s survey article．On examining the details given，the

 $\underset{\sim}{\approx}$
『

 Recommended

 Scparate bass and treble
Confrols
tor each channol

$\underset{\substack{\text { Steree } \\ \text { able }}}{ }{ }^{-}$

 $\begin{array}{r}\because \\ \text { ging } \\ \hline\end{array}$ $\stackrel{0}{\circ}$ $\stackrel{n}{\tilde{\sigma}}$

$42 \times 24 \times 5$$42 \times 24 \times 5$
$47 \times 25 \times 17$

$$
\begin{gathered}
\stackrel{\rightharpoonup}{x} \\
\infty \\
\times \\
\times
\end{gathered}
$$ Magnetic Cerramic High level Outpuu

$\underset{x}{008}$为

\％	

 i
\square ンップント

888888.8

 z そํํํ そoํoํoํo the midst of a bewildering variety

Model	stereo transistor	$\begin{aligned} & \text { ecommended } \\ & \text { speaker } \\ & \text { (} 1 \text {) } \end{aligned}$	$\begin{aligned} & \text { Maximumn r.m.s. } \\ & \text { po wer/channel } \\ & \text { into recommended } \\ & \text { load }(W) \text {. } \end{aligned}$	${ }_{\text {dactor }}$	maximum output power（\％）	$\begin{gathered} \text { T.H.D. at at } \\ \text { output }(\%) \end{gathered}$
T1500\％	${ }_{5}$ T	4	${ }_{8}^{8}$	${ }_{30}^{30}$		
	s T					
T2500\％	${ }_{5}{ }^{\text {s }}$		15	40		
${ }_{T}^{1250000}$	${ }_{5}^{5}$ T		15 15	40	0.6	
Armstrong Audio Led．，Wariters Road，London，N． 7						
${ }_{126}{ }^{25}$ \}						＜0．5
126）	5 T	4－16	$25(8 \Omega)$	10	＜ 0.5	＜0．5

0.5
iniọ ion
ヘัロロ
8童 ，
 \qquad

Model

$$
1
$$

richardson

announce the forthcoming release of their SCP 2-SIA 100 units.

The SCP 2 is similar in appearance to the SCP 1, but has plug in circuit boards and an overload factor up to +36 dB . Distortion at $+30 d B$ is less than 0.1%.

The SIA 100 solid state stereo integrated amplifier will give 40 watts r.m.s. into 8 ohms.

- RADFORD

STEREO CONTRO AMPLIFIER SCA 30

The SCA 30 is a transistor amplifier of advanced design providing a listening performance equal to the finest valve amplifier. The measured performance is superior to any valve amplifier.
Almost all transistor amplifiers have a characteristic "hard" sound due to the use of quasi-complementary output circuits using similar output transistors and complementary symmetry drive transistors. The differing drive condit:ons of the output transistors produces a dissimilar transfer characteristic in each half of the output stage, resulting in a particularly objectionable audible "crossover" distortion. This distortion can be reduced to a negligible amount theoretically by the use of feedback. Unfortunately, the distortion products are not in harmonic relationship and the audible distortion cannot be compared on a percentage basis with simple harmonic distortion as produced by good valve amplifiers.

The SCA 30 uses a true complementary symmetry output circuit using balanced npn and pnp transistors completely eliminating "crossover" distortion with its attendant listening fatigue.

The amplifier is completely stable on any input waveform and any output load and will deliver full power from 15 Hz to 80 kHz . It is proof against damage by any output load from open circuit to short circuit and load characteristics of any phase angle. Its protection is automatic without the need for replacing fuses or re-setting a cutout.

Its high sensitivity and signal/noise ratio make it ideal for use with low output high quality cartridges such as the ADC 10E, etc.

One of the weaknesses of conventional transistor integrated amplifiers and preamplifiers is the very low input signal handling capacity to transients. This has been overcome in the SCA 30 by the use of 40 Volt transistors of exceptionally low noise factor in a feedback triple circuit in the preamplifier. The 1.5 mV disc input will accept more than 100 mV before overloading!

FM TUNER FMT 3

The FMT 3 is a transistor tuner with high sensitivity and performance of matching, presentation with the SCA 30 amplifier. It is available as a standard model FMT 3M (Mono) or FMT 3.S (Stereo).

An illustrated leaflet describing the SCA 30 and its matching tuner FMT 3, together with other Radford Audio products is available on request from the address below. A leaflet describing Radford Loudspeakers is also available.

Radford equipment and loudspeakers are available through accredited dealers only who have an undertaking to give after sales service, consequently goods are not available from discount houses.

Radford equipment and loudspeakers are NOT MASS PRODUCED. Every item is crafted to the highest possible standard of performance. Radford purchasers have usually had more than one $\mathrm{Hi}-\mathrm{Fi}$ set. Save yourself considerable time and money by listening to RADFORD in your first demonstration.
P.O. BOX. LONDON. WIA. 2BN.

Tel. 01636 0031/3

J. Richardson Electronics Ltd, 57, Jamestown Road, London, N.W.1. 01-267 0723

AT LAST! THE WELBROOK

A NEW STEREO AMPLIFIER (Patent applied for) DESIGNED BY IAN M. SHAW AND DESCRIBED IN THIS ISSUE

ALSO AVAILABLE:
Amplifier P.C.B. Modules as used in the above amplifier. built and tested.
MONO AMP. $103 \mathbf{£ 8}$

A brilliant development. Produces quality hitherto unattainable at such a price.
The unique circuit eliminates distortion rise at low levels. For only
£48
Completely enclosed panel mounting, Teak Cabinet $\mathbf{£ 4}$ extra.

DETAILED ILLUSTRATED LITERATURE available on request.
Trade enquiries invited

WELBRD日K ENGINEERING \& ELECTRONICS LTD.

BROOKS STREET, STOCKPORT, CHESHIRE, SK1 3HT. 061-480 4268.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Model \& Mono or stereo \& Valve or transistor \& \begin{tabular}{l}
Recommended speaker impedance \\
(\(\Omega)\)
\end{tabular} \& Maximum r.m.s. power/channel into recommended load (W) \& \[
\begin{gathered}
\text { Damping } \\
\text { factor }
\end{gathered}
\] \& T.H.D. at maximum output power (\%) \& \[
\begin{aligned}
\& \text { T.H.D. 2t } \\
\& \text { ionw } \\
\& \text { output (\%) }
\end{aligned}
\] \& Power bandwidth \(\left(\begin{array}{l}(\pm 3 \mathrm{~dB}) \\ (\mathrm{Hz}-\mathrm{kHz})\end{array}\right.\) \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& 25 (41) \& 45 (88) \& \& \& \(20-30\) \\
\hline AUフิ77 \& S \& T \& 4 to 16 \& 25 (168) \& 24 (88) \& < 0.5 \& - \& 20-50 \\
\hline 250 \& s \& \(v\) \& 8 or 16 \& 10 (168) \& \& 1.5 \& \& 35-15 \\
\hline 350 \& s \& \(T\) \& 4 to 16 \& 18 (89) \& 34 (88) \& \(<1.0\) \& \& 30-20 \\
\hline 400 \& 5 \& T \& 4 to 16 \& 20 (88) \& 24 (8) \& \(<1.0\) \& \& 20-50 \\
\hline 2000 \& 5 \& \(T\) \& 42016 \& 32 (898) \& 24 (89) \& < 0.8 \& - \& 20.40 \\
\hline 3000A \& \({ }_{5}\) \& T \& 4 to 32 \& 48 (8) \& is (812) \& < 0.8 \& \& 20.40 \\
\hline 5000 \& 5 \& \(T\) \& 4 to 16 \& 55 (80) \& 50 (89) \& <0.8 \& \& 15-30 \\
\hline \& 5 \& \(T\) \& 4 to 16 \& 22 (8S) \& 60 (89) \& \(<0.8\) \& \& 2040 \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
Sanyo Service and Sales, Marubeni-lida House, 164 Clapham Park Road, London, S.W. 4 \\
DC434 \(\$\) T 8 is
\end{tabular}} \\
\hline \[
\begin{aligned}
\& \text { DC534 } \\
\& \text { DC60 }
\end{aligned}
\] \& \[
\begin{aligned}
\& 5 \\
\& 5
\end{aligned}
\] \& \[
T
\] \& \[
\begin{aligned}
\& 8 \\
\& 8
\end{aligned}
\] \& \[
\begin{aligned}
\& 10 \\
\& 20
\end{aligned}
\] \& \[
\begin{aligned}
\& 10 \\
\& 10
\end{aligned}
\] \& \[
\begin{aligned}
\& 5 \\
\& 1
\end{aligned}
\] \& \[
1
\] \& \(50-11\)
309 \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
Sony (U.K.) Letd., Ascot Road, Bedfont, Feltham, Middx. \\

\end{tabular}} \\
\hline TAli20 \& 5 \& T \& 8 \& 50 \& \(>70\) \& \(<0.1\) \& \(<0.03\) \& 10-100 \\
\hline STR6050FW \& 5 \& \(T\) \& 8 \& 30 \& \(>40\) \& < 0.2 \& \& 30-50 \\
\hline STR6060fW \& 5 \& T \& 8 \& 45 \& \(>70\) \& <0.2 \& <0.08 \& 20.60 \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
Solvsuper 1070 M Hybrid \\
Tandberg (Elstone Electronics Litd., Templar Street, North Court, Leeds \(\mathbf{2)}\)
\end{tabular}} \\
\hline Sglvsuper 1071 \& 5 \& Hybrid \& 4 \& 6 \& \& - \& - \& 30-16 \\
\hline Sglvsuper 1072 \& 5 \& Hybrid \& 4 \& 6 \& - \& - \& \& 30.16 \\
\hline Huldra 9 \& 5 \& Hybrid \& 4 \& 15 \& \& \& 二 \& 30.16 \\
\hline \multicolumn{9}{|l|}{Telefunken (A.E.G. (Great Britain) Led., 27 Chancery Lane, London, W.C.2.) -} \\
\hline Allegro 101 \& \& \& \& \& \& - \& \& \\
\hline Rondo \& 5 \& T \& 4 \& 4 \& \& \& \& \\
\hline Concertino 101 \& 15 \& T \& 4 \& 10 \& \& \(\leqslant 1\) \& - \& 2020 \\
\hline \(\checkmark 201\) \& 5 \& T \& 4 \& 25 \& \& \(\leqslant 1\) \& \& (\({ }_{17}^{17.58}\) \\
\hline V250 Hi Fi \& s \& \(T\) \& 4 \& 35 \& 30 \& 0.5 \& - \& \(10-20\) \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{Trio (B. H. Morris \& Co. (Radio) Ltd., 84-88 Nelson Street, London, E.1)}} \\
\hline \& \& \& \& \& \& \& \& \\
\hline Trio Supreme I \& 1 S \& T \& 8 \& \[
\begin{aligned}
\& 33 \text { (low) } \\
\& 23 \text { (mid) }
\end{aligned}
\] \& 40 \& \& \& 20-50 \\
\hline Trio TK-250T \& s \& T \& 8 \& 15

20 \& \& \& \&

\hline Trio TK+150T \& s \& T \& 8 \& 13 \& 20 \& 0.5 \& - \& 20-60

\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{| Tripletone Manufacturing Co. Led., 241a The Broadway, Wimbledon, London, S.W. 19 |
| :--- |
| $8+8$ S T is 8 , 20 |}}

\hline \& \& \& \& \& \& \& <0.2 \& 30-20

\hline \& \& \& \& \& \& \& \& 30-20

\hline \multicolumn{9}{|l|}{Yortexion Led., $257 / 263$ The Broadway, Wimbledon, London, S.W.19}

\hline 120/200 wate \& M \& \& 70/100S or 200Ω \& 200 (100) \& $20+$ \& 0.1 \& <0.1 \& $20-40$

\hline 100 Watt \& M \& T \& 100Ω line \& 100 \& \& \& \&

\hline 30/50 watt \& M \& v \& $4,7.5,15 \Omega$ or 100 volt line \& 50 \& $20+$ \& 0.15 \& <0.1 \& 20-50

\hline 5.50 watt \& M \& v \& 15Ω and 100 \& 50 \& 20 \& - \& - \& -

\hline 50/70 wate \& M \& $T \quad \mathrm{~B}$ \& Bal. 100 vole \& 70 (100 vols line) \& $20+$ \& \& <0.1 \& 30-20

\hline CP50 \& M \& \& ine 7.5-15 Ω and loov line \& 50 \& 10 \& (i.m.d.) \& < 0.1 \& 25-20

\hline 20/30 watt Mixer/amplifier \& M \& T \& 7.5 and 158 \& 30 \& $30+$ \& < 0.1 \& <0.15 \& $$
\begin{aligned}
& 20-20 \\
& (\pm 1 \mathrm{~d} B)
\end{aligned}
$$

\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{}}

\hline \& \& \& \& is (8R) \& 30 \& 0.1 \& <0.1 \& 30-20

\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{}}

\hline \& \& \& \& \& \& \& \&

\hline \multicolumn{9}{|l|}{| Wye Electronics Ltd., Queen Street North, Whittington Moor, Chesterfield |
| :--- |
| |}

\hline
\end{tabular}

Power: 50W into 8 Ohm loads. Distortion: less than 0.1% at 40 W into 8 Ohms. Frequency Response: $10-50,000 \mathrm{~Hz} \pm$ only 1 dB . The result is sheer uncompromising sound. Everything that the most critical audiophile could wish for. We make only one minor reservation...

with the
 Lux SQI220, we cannot promise you will hear a feather drop

Please send further details and address of my nearest stockist SHRIRO (U.K.) LTD., 8 Bush Lane, Cannon Street, London, E.C.4.

NAME \qquad
ADDRESS

\qquad
A superb, all-silicon transistor, stereophonic, integrated amplifier from the manufacturers who supply the Japanese Broadcasting Network. Its performance completely justifies such a background.
\qquad

Armstrong the high fidelity sound

A STEREO

 TUNER-AMPLIFIER for the BUDGET SYSTEM

127 STEREO TUNER-AMPLIFIER $\mathbf{£ 4 3 - 1 3 - 9}$
 OPTIONAL CASE As illustrated
 € $3-17-0$

If you want high fidelity in the highest class don't buy the 127 Tuner-Amplifier ; it isn't meant for you. But if you want a good quality system that is a great deal better than the average radiogram, and your power requirements, as well as your budget, are of modest proportions, then this is meant for you.
The 10 watts power output, 5 from each channel, won't fill a hall, but it is more than adequate for most domestic purposes. The AM-FM Tuner incorporated is doubly attractive because, as well as covering the medium waveband, it has a performance on FM which is good enough to give excellent results on stereo radio once you add the optional M5 stereo radio decoder.
There are of course the usual facilities; pickup and tape inputs, tape recording outputs, bass and treble tone controls.
As we said at the outset, if you are after top-class hi-fi you don't want the 127, what you want is the Armstrong series 400 or series 500 models.
For details and technical specifications of all models, plus list of stockists, post coupon or write, mentioning óWW69.

ARMSTRONG AUDIO LTD., WARLTERS ROAD N. 7 Telephone 01-607 3213
name
\qquad
\qquad

Hil－Fl audio

 AND TAPE

 AND TAPE
 RECORDER

LONDON AREA

Intes？

コンショ．
Stockist for all the leading makes of Hi－Fi Audio Equipment

33 TOTTENHAM CT．RD．．W． 1
 01－636 2805
 207 EDGWARE ROAD W． 2
 132／3 FLEET STREET，E．C． 4
 Hi－Fi Centres
 42－43 TOTTENHAM CT．RD．，W．
 118 EDGWARE ROAD，W． 2

E．C．
Stern Redio Tud．
Your leading City Audio and Hi－Fi Specialists
109 Fleet Street，London，E．C． 4 Tel．：01－353 5812

North
HI－FI MAIL ORDER SPECIALISTS
C．C．GOODWIN（SALES）LTD． 7 THE BROADWAY
WOOD GREEN，LONDON，N． 22 TEL：BOWES PK．0077／8
All leading makes in stock

FOR ALL LEADING AUDIO EQUIPMENT Clamiten Raciorda y Mall sorvico hampstead HIGH FIDELITY Has Hoenh strace
Hempriand N．W． 3. Tolt Hampatead onn

South East

G．A．ELECTRIC

81 Portland Road South Norwood 01－654 3200
Hi－Fi and Public Address Equipment Rogers and other leading makes

South West
TAPE RECORDER HI－FI CENTRE －（SHEEN）LTD
SPECIALISTS IN TAPE RECORDERS ACCESSOAES YOUR CENTRE FOR FRIENOLY HELP，SALES AND －SERVICE
3 \＆ 4 Station parade．
SHEEN LANE，SHEEN，Opposite Mortake Station，S．R LONDON，S．W． 14

Closed Wednesdays

West

THE AUDIO SCIENTIFIC CENTAE Make your Audio purchase an investment．Sound advice in all sound matters，realistically simulating home listening 6 conditions at Britain＇s unique Audio studio．Shop open 6 full days a week（Thursdays until 7 p．m．） ADVICE IS FREE，COME AND TALK TO US （Two minutes from Tottenham Ct ．Rd．Tube Station 29 TOTTENHAM COURT ROAD．LONDON Tel．O1－580 5015

BEDFORDSHIRE Luton

COVENTRY RADIO LTD．

ESTABLUSHED 40 YEARS（1925）
See and hear the best and latest in Hi－Fi equipment，at our Luton showrooms and demonstration room．
Send for information on your requirements $189 / 191$ Dunstable Road，Luton Telephone：LUTON 28201

CHESHIRE Stockport

AUDIO CENTRE

We stock the full range of．Mi－Fi Tape Recorders and special Transistor Radios
Fairbotham and Co．Ltd． 58／62 Lr．Hillgate，Stockport Tel： 4872
full service facilities
ESSEX Ilford

UNIQUE RADIO LTD．

HI－FI \＆PUBLIC ADDRESS
6 THE FACADE，HIGH ROAD GOODMAYES，ESSEX
SEVEN KINGS 5908277

Loughton

SOUND SUPPLIES

（Loughton）CO．LTD．
Specialists in HI－FI Equipment FISHER，B \＆O，ROGERS，LEAK，TRUVOX ARMSTRONG，etc．
12 Smart＇s Lane，Loughton，Essex TEL．01－508 2715

Romford

We Give the Finest Hi－Fi Service in the Area
 Romford Sound \＆Vision Service Ltd． 78a BRENTWOOD ROAD ROMFORD
 TEL．ROMFORD 41644 OR COME AND SEE

GLAMORGANSHIRE Cardiff
J．GOUGH \＆CO．LTD． DESIGNERS OF THE FAMOUS GOUGH LOUDSPEAKERS
THE LARGEST STOCKIST OF HI－FI EQUIPMENT AND FOR DEMON－ STRATION IN SOUTH WALES 148－1．54 NORTH ROAD，CARDIFF Telephone： 28473
GLOUCESTERSHIRE Bristol BRISTOL \＆WEST
RECORDING SERVICE LTD．
6．PARK ROW，BRISTOL， 1.
ALL LEADING MAKES OF HI－FI \＆AUDIO EQUIPMENT TAPE RECORDING AND SERVICING SPECIALISTS IN TAPE TO DISC SERVICE PHONE：BRISTOL 20763

HERTFORDSHIRE Baldock／Letchworth／Hitchin

K．M．V．Crump Ltd．

Hitchin 2354
Baldock 3196 Letchworth 4803

KENT Gravesend

GRAVESEND HI－FI CENTRE

BENNETT \＆BROWN ${ }_{1925}^{\text {Est }}$ GOB WROTHAM RD．，GRAVESEND．3245－3060 Also 2 milton Road
Visit our Hi－fi Showroom and Demonstration Room． All leading makes stocked，including Tandberg，Arm－ strong，Leak，Quad，B \＆O，Rogers，Trufox．Ferro－ graph，GKD，Record Housing，Goldring，Thorens， KEF，Goodmans，Hacker，Grundig，etc．

LANCASHIRE Bolton

HARKER \＆HOWARTH （Music）Ltd．of BOLTON
For all leading makes of Hi－Fi Equipment
Goodwin St．，Folds Rd．，Bolton also 32 Churchgate．Tel．26623／4

Liverpool
LIVERPOOL＇S LEADING Hi－Fi specialists

Beaver Badic

OF WHITECHAPEL ROYal 9898
Manchester
RARE RECORDS LTD．
STOCKISTS－LEAK，ARMSTRONG，B \＆O GARRARD，HACKER，ETC．
36 JOHN DALTON STREET MANCHESTER 2
TEL：061－832 7344／5

Lancs．High Fidelity Ltd．

248 WILMSLOW ROAD

MANCHESTER 14

opposite Portland Hotel
LEADING STOCKISTS OF ALL MAKES

IN MANCHESTER
GODLEYS
2．10 Shudehill，Manchester Tel：BLAckfriars 9432 （5 lines）

Southport

Hi－Fi in West Lancashire WAYFARERS RADIO LTD

18－20 BURTON ARCADE，LORD ST． SOUTHPORT

Tel． 4070

St．Helens

HAROLD STOTT LTD．
18 westifid Street，St．Helens
Agents for leading makes of Tape Recorder，etc． Equipment Planned and Supplied，
Telephone ．．ST．HELENS 26791 or 23105

DEALERS AROUND THE BRITISH ISLES

OXFORDSHIRE Oxford

SCOTLAND Edinburgh

ST	
Ampliger. EM.T.Tunen. PYupp,	

Glasgow

SURREY Guildford

MERROW SOUND LTD. Specialists in Mi-Fi \& Tape Recording Fully equipped for comparative demonsfrations. Leading Agents for: 8 \& 0 and TAND日ERG. Open 9.30 a.m. to 5.30 p.m. dally Incl. Sats.
Early closing Wed. 1 p.m.
EASY PARKING 229 Epsom Road, Merrow, Gulldford. Tel: Guildford 64171
GUILDFORD

SURREY
Kingston
KINGSTON LPON THANES
For ARMSTRONG - LEAK • QUAD - GOODMANS WHARFEDALE - ROGERS - FERROGRAPH GARRARD
Cabinats by RECORD HOUSNG - DESIGN
FURNITURE
SURBITON PARK RADIO LTD 48 -50 Surbiton Road,
Kingston upon Thames KIN 5549

SUSSEX Brighton

Worth

WARWICKSHIRE Birmingham
GRIFFIN RADIO LTD. $021.6921359 \quad 021.6430867$
94 Bristol Street • Birmingham 5

* Complete advisory facilifies for all makes of equipment.
* Full range of Classical and Light Music LPs.

Coventry
ELECTRONIC SERVICES HI-FI SPECIALISTS 33 CITY ARCADE COVENTRY TEL: 24632
WORCESTERSHIRE Worcester
HIGH-FIDELITY SPECIALISTS
JOHNSSNNS SOUND SERVICE
43 Friar Street, Worcester
Worcester 25740

Halifax

HALIFAX

Tape Recorder Centre (Halifax) audio consultants-fre adice with pleasure

30 KING CROSS STREET
Telephone: Halifax 042266832
LEADING HI-FI STOCKISTS

ILIFFE BOOKS

THETAPE RECORDER

This book has been specially written in clear, simple, non-technical language for the rapidly growing band of enthusiasts for whom the tape recorder is as indispensable as a radio, a record player or a camera. It shows how the best possible results can be obtained from a recorder, whether it is used for pleasure or education purposes.
In this second edition a chapter on cassette recorders has been added explaining the principles and the advantages of this system for the user who above all wants "simplicity of operation." Because of its practical approach, this book, by an author with many years of experience in all branches of sound recording, will be easily understood even by those new to the subject, and will assist all those reading it to improve the standard of their recording.

172 pp., illustrated, 188. net, 19s. by post.

2 bignower Supplies inone small box

. . . that's the S. 1 twin stabilised power supply from Linstead. Two completely independent supplies with enormous meters and completely protected for over load and short circuit. Design is attractive clear, easy to operate, yet stands up to the knocks should the occasion arise.

Here is a brief specification but write to us and we will send your our illustrated leaflet giving full details. Silicon transistors throughout - 0 to 20 v in one volt steps continuous control calibrated $0 \cdot 101 \mathrm{v}$ - Current ranges 0 to $100 \mathrm{~mA}, 0$ to 5 A .

S1 TWIN STABILISED POWER SUPPLY £45.

LINSTEAD ELECTRONICS

35, Newington Green, London, N. 16 Telephone: 01-254 4825

WW-124 FOR FURTHER DETAILS

THANSFORMEES

DESIGNED TO CUSTOMER'S OWN SPECIFICATIONS FOR ALL APPLICATIONS UP TO 100 KVA. "C" CORE, PULSE, 3 PHASE, TOROIDS, HIGH TEMPERATURE, ETC.
Samples from our standard production ranges:-
*Mains
$350-0.350 \mathrm{~V} .60 \mathrm{~mA}, 6.3 \mathrm{~V} .2 \mathrm{~A}$ \& s. d.
$500 \mathrm{~V}, 300 \mathrm{~mA}, 6.3 \mathrm{~V}, 4 \mathrm{~A}, 6.3 \mathrm{~V} .1 \mathrm{~A}$.
$500-0-500 \mathrm{~V} .0 .25 \mathrm{~A}$., 6.3 V .4 Act ., $6.3 \mathrm{~V} .3 \mathrm{Act} ., 5 \mathrm{~V} .3 \mathrm{~A}$.
$525-0.525 \mathrm{~V} .0 .5 \mathrm{~A}$., 6.3 V ., 6 Acc., 6.3 V .6 Acc., 5 V .6 A .
*Low Voltage
30-0-30V. 4A. 2190
28 V . $1 \mathrm{~A}, 28 \mathrm{~V} .1 \mathrm{~A},, 28 \mathrm{~V} .1 \mathrm{~A}, 28 \mathrm{~V}$. $1 \mathrm{~A}, 30 \mathrm{~V}, 250 \mathrm{~mA}$.
4150

- Primaries 10-a-200-220-240V.

20W Transistor Amplifier (W.W. Nov. 1966)
Driver I 46
Mains
L.P. Filter. Chassis Mounting
$\begin{array}{llll}\therefore & \cdots & 16 & 6 \\ \cdots & \cdots & 12 & 6 \\ \cdots & & 15 & 6\end{array}$

70V \& 100V Line Matching

Fitted with terminal panel, taps at $0.5,2,4$ and 8 W . into 15 ohms
Flying leads, taps at 4, 1, 1, 2 and 4 W . into 3 ohms... $6 / 9$ each in 100 Lots

Prices inclusive of postoge and packing, each.
For small quantities, cash with order, please.

See our range of Products at the
INTERNATIONAL LONDON ELECTRONIC COMPONENT SHOW
STAND F258 HOWELLS RADIO LIMITED
CARLTON ST., MANCHESTER; M14 4GT 061-226 3411
WW-I25 FOR FURTKER DETAILS

SOLID STATE POWER CONVERSION

R. GILFILLAN AND CO. LTD. SOUTHDOWN VIEW ROAD

NEW 48" FOLDING MACHINES SHEET METAL bench model by parker

48×18 gauge capacicy................ $640 \quad 0 \quad 0$ $36^{\circ} \times 18$ gauge capacity................. 627 10 0 $24^{*} \times 16$ gauge capacity............

Forms channels and angles down to 45 degrees which can be flattened to give safe edge. Depth of fold according to helght of bench.

One year's guarantee. Money back if not satisfied. Send for details:
A. B. PARKER

FOLDING MACHINE WORKS UPPER GEORGE STREET, HECKMONDWIKE, YORKS.
Telephone 3997

MINIATURE WAFER SWITCHES

2 pole, 2 way-d pole, 2 way=- ple, 3 way -2 pole. 6 way -1 pole, 12 way. All at $3 / 8$ each, 36/- dozen, your mesortruent.

WATERPROOF HEATINGELEMENT26 varde length 70W. Self-rexulatinglemperature control. 10/- post free.

AC FAN Bmall but very powertul maine motor with 61 ln blades. Ideal for cooling equipment or as extrac or. sllent but very efficient. 17/B, post 4/6. Mounts from back or front with 4 BA screw

ORILL CONTROLLER Electronically changes speed frotn approximately 10 revs.
to max mum, Full power at all Kpeeds by finger-tip control Kit includes all parts, csee
overything and full intruc-
tions 18/6, plus $2 / 6$ post lunans $19 / 6$, plus $2 / 6$ post and
Lisurance. Or a anulable mado up
29/6. Plue $2 / 6$ post.

QUAD RECORDING TAPE Quadruple tape on 3 in . apool giving 600 ff . Of the fines mesamge tapes and portable equipment. Reqular price $30 /$ per spool. Our price $7 / 6$ plus $2 / 9$ p. \& p. or 3 for $28 / 6$ port peld.
You never need buy another battery for your transistor radio hattery stack together wlith a matps operated charger which you mount on tha back of your set. The maing thex unplug oo the set remains completely portable. Offered for leas tha TIMED SWITCH
For keoplog an electrical elreult closed for a Lime period of awitching winhing rachines, but equally suitable for any appliance lamp, of heater up to 13 arop. Bpecial malp price 9/6 port free if ordered with other lightweight items totaling
ES. Otherwise add $2 / 9$ post and inaurabe.

MINIATURE RELAY
American make- 630 ohm coil $20-30$
2 pole change over $4 / 6$ each, $48 /-$ doz.
INDICATOR LAMP
Panel mounting. consinte of neon lamp in red Plastic lens with reastor in leads for wating operutions. $2 / 6$ each 24/- dozen.

ELECTRIC TIME SWITCH
Made by Smlths thene are AC nuains opernted, NOT CLOCK WORK deal tor mounting on rack or ahelf or can be built into box with 13A socket. 2 completely adjustablo ume periods per 24 hours perlods.
$10 / \mathrm{pa}$.

MOTORISED CAM SWITCH

Mate by the famoun meter company Chamberlain and Hookham, thene geared to alve one rachet action per minute on a wheel with bet teeth thus seared to give one rmchet action per mutnute on a wheel with bo teeth thus
in complete revolution of the cam takes place in one hour. The cam operates 1 owiches (6 clangeover and 2 on/ofr thus $\$ 80$ circuit changes per hour are rosalble). Contacts, rated at 15 ampe have been set for certain ewitch
yombinations but can, no doubt, be altered to sult a apecial job. Also other wilch wafers or devices can be nttuched to the shaft which eitends ap

THIS MONTH'S SNIP

	G.e.c. I3A SOCKETS Opportuntty to re-equip your house or work shop, or it a contractor, to atock up for future jobs. We offer bakelthe 13A socketa. for flumh or surface mounting made by the bannous G.E.C. company and listed B/6 each. you can have a box of 12. Poat and ina. 4/6. (Grone or more carr. free.)

 3.0 V b 500 mA size $14 \times 18 \mathrm{im}$. dis. Teally powerful will deliver 1 amp for
 MACHINE
Battery operated and with all mecesmorlem. Rualty satantic offer a Britioh thade \&31 outht for only 84.19.8. brimaty designed ior apeed and efficiency or easy loedine -all natmal functions-aceeseorles
 M188 TH18 UNREPEATABLE OFFER-GEND
TODAY 24.19 .6 pluy $7 / 6$ port and inurance

MAINS MOTOR
Precislon made-an used in record for extractor fans, blower, heater, ete. New and perfect. Balp at $9 / 8$. Postag 3/. for firat one then 1/. for each on
ordered. 12 and over port free.

Thin has a sensor rtacted a 15 A suilech by a 1 sin tubing of control raplllary 20deg. F. to 150der.F. ts sultable to control soll coating and liquid heating or portable venaels as the senortable verale as the thenmostat could also be uned to sound a bell or other alarm when crittcal temp. to reached in stack or heap sublect to other means not controllable by the sitich. Made by the umous Teddington Co., we offer thete al 12/6 each.

TANGENTIAL HEATER UNIT

Whater is comma but act roday and may. This beate unit to the ver latest type, most
officient and quiet running. I blower heatert corting f15 and more. Wo havo a fer ondy Units complete, wired ready to fit into cases, i.e. motor mpelier, 3 kW . heater awlithing 1,2 and 3 kW , and with ane or cablatt. Only need onfoff switch. 58/8. Postage nasurance 6/6. Don't miss thio.

SPRING COIL LEADS
at fited to telephonen, 4 cort

Where postage is not stated then ordert over 63 are poss free. Below $\{3$ add $2 / 9$.
Semi-eonducsors add $1 / \cdot$ poss. Over $6 i$ Semi-conducsors add $1 /$ - poss, Over $\& 1$

TRANSFORMERS COILS CHOKES

LARGE OR SMALL QUANTITIES

SPECIALISTS IN
FINE WIRE WINDINGS
MINIATURE TRANSFORMERS
RELAY AND INSTRUMENT COILS, ETC.
VACUUM IMPREGNATION TO APPROVED STANDARDS

ELECTRO-WINDS LTD.

CONTRACTORS TO G.P.O., A.W.R.E., L.E.B., B.B.C., ETC. 123 PARCHMORE ROAD, THORNTON HEATH, SURREY 01-653 2261

WW-129 FOR FURTHER DETAILS

We supply B.A. Screws, etc. in brass, steel, stainless, phosphor bronze and nylon to laboratories throughout the Commonwealth
We can also offer early delivery for many sizes of screws, etc. with Metric Threads

Please send for List W2/69 (WW)
WALKER-SPENCER COMPONENTS LTD.
5, High Street, Kings Heath, Birmingham, 14.
Telephone: 021-444 3155 (Sales) and 5278
WW-130 FOR FURTHER DETALLS

Solve your communication problems with this new 4-Station Transistor Intercom system (1 master and 3 subs), in de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to Subs and Subs to Master. Operates on one 9 v . battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hospital, Shop, etc., for instant inter-departmental contacts. Complete with 3 connecting wires, each 66ft. and other accessories. Nothing else to buy. P. \& P. 7/6 in U.K.

Same as 4-Station Intercom for two-way instant con versation from MASTER to SUB and SUB to MASTER Ideal as Baby Alarm and Door Phone. Complete with 66ft. connecting wire. Battery 2/6. P. \& P. 4/6.

7-STATION INTERCOM

((MASTER \& 6 SUB-STATIONS) in strong metal cabinets. Fully transistorised. $3 \frac{1}{2} \mathrm{in}$. Speakers. Call on Master identified by tone and Pilot lamp. Ideally suitable for Office, Hotel, Hospital and Factory
suice 27 gns. P. \& P. $14 / 6$ in U.K.

59/6

Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Lux Partable Transistor TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A holding the handset. A useful office aid. A
must for every telephone user. Useful for must for every telephone user. Useful for
hard of hearing persons. On/off switch. hard of hearing persons. On/off switch. Volume Control. Operates on one 9 V.
battery which lasts for months. Ready to perate. P. \& P. $3 / 6$ in U.K. Add $2 / 6$ for Battery.
Full price refunded if returned in 7 days.
WEST LONDON DIRECT SUPPLIES (W.W.), 169 Kensington High Street, London, W. 8

Contil Cases

Contil cases are mass-produced to give lowest prices yet. In 21 -gauge steel. Finished hammer blue, with 18 -gauge front panel supplied with easy-to-strip protective covering for easy marking out. For ease of ordering Contil cases are described by their dimensions, i.e. 755 is $7 \times 5 \times 5$. Individually packed, including feet and screws.

R.E.C.M.F. Exhibition

Readers of Wire. less World visiting stand No. G. 340 will be presented with a free model Contil instrument case.

CASE PRICES (All supplied with protective cooted steel pane/s)

Nos. denote size in inches	1	5	10	25	50	100	200
755	$43 / 6$	$41 / 6$	$40 / 6$	$39 / 6$	$38 / 6$	$36 /-$	$35 /-$
$867 / 975$	$45 / 6$	$44 /-$	$43 / 6$	$41 / 6$	$40 / 6$	$38 / 6$	$37 /-$
1277 white or black panel	$49 / 6$	$47 /-$	$46 /-$	$45 /-$	$43 / 6$	$43 /-$	$41 / 6$
1277 unpainted	$40 / 6$	$39 / 6$	$38 / 6$	$36 /-$	$35 /-$	$32 / 6$	$31 / 6$
1277 nylon-coated	$82 / 6$	$79 /-$	$77 / 6$	$76 /-$	$73 / 6$	$73 / 6$	$73 / 6$
16127	$96 / 6$	$94 / 6$	$92 / 6$	$91 / 6$	$89 / 6$	$88 /-$	$86 /-$
161275	$129 /-$	$127 /-$	$125 /-$	$124 /-$	$122 /-$	$119 /-$	$116 /-$
191010	$130 / 6$	$127 / 6$	$125 /-$	$123 /-$	$122 /-$	$121 /-$	$119 /-$
1910100	$185 / 6$	$182 / 6$	$180 /-$	$178 /-$	$176 /-$	$173 / 6$	$173 / 6$

Kit of five cases Cll 19 s . Od. including postage and packing extra, normally $\mathrm{Cl} 4 \mathrm{12s}$. Od.

ACCESSORIES

Flexible insulated rest prods, colour red or fine steel cllips at the tip opened by button on top. High speed resetting councer Including bezel and socket with speed of
over 40 operacions per over 40 operacions per
second $165 /$-. Plug in ocsal relay, 24 vales, with two changeovers $17 / 6$.

P 9

REED SWITCH The West Hyde reed switch works up to 2,000 operations per second with a life of up to
$50,000,000,000$ tions when used in the tions when used in the The hermetically sealed switch is protected in a brass rube and moulded into a polypropylene block giving accurate placing of the contents in relation to the mounting serews. 30^{*} nominal leads fitted. Used for Rev. Counters. flowmeters, burglar alarms,
under and over speed under and over speed 10 at $10 / 6$ each. 100 as 9/- each.
with or withour alphanumeric caps.

 SUB. MINIA. TURE NEONS

The smallest yet, type "Q". Overall diameter 옹", body.$^{\text {² }}$, resistor mounced externally, medium intensity. Minimum quantity 10 at $3 / 10$ each, 100 at $3 / 4$ each, 500 at $3 / 2$ cach.

PIDAM (Plug-in Digiral and Analogue Modules) perform all the usual logic functions, but, unlike other units, can be plugged in, using their B9A bases and cion. To help learning, the module covers are easily removable for circuit examination and sets of components are available.
The 22 modules have an enormous range of use, from a single MONO for a tachometer, to over 300 units in a computer interface; nevertheless, their greatest asset is extreme simplicity. Design time is cut and elaborate World" could with PIDAM build up a low cost World could with PIDA GNEW modules send for

PIDAM PLUG-IN MODULES - PRICES
 NEW

Prices range per module from 10/- so 28/- and all necessary accessories are supplied. A complete
starting kit is only 2119 s . Od. (normally $\mathbf{2 4} 6 \mathrm{~s}$. Od.).

PIDAM

 BROCHURE Send for this complete explanatory booklet showing detailed examples and circuit diagrams of all moand circuits given. and circuits given include voice.operated switch. operated switch.
alarms. flashers. tachomerer timers, batch

"A" board shown plugged into "M" 20-way connector with "S" board supports. Note: Power supply rails at right
angles to signal pails. angles to signal rails. "A" A "
boards $8 / 6$ each. 20 -way "M" connectar 9/-. "S" support 3/pair. Less for quantitles.

CONTIL LOW COST PRINTED CIRCUIT BOARDS

Standard eransistor	1	10	50
board "A"	$9 / 9$	$9 /-$	$8 / 6$

 $\begin{array}{lll}1 / 6 & 7 /- & 6 / 6 \\ 9 / 6 & 9 / \overrightarrow{1} & 8 /- \\ 6 /- & 5 / 6 & 5 /-\end{array}$ Printed chassis kit: including case, normally C 148 s .6 d .
for only $\mathrm{Cl\mid} 19 \mathrm{~s} .6 \mathrm{~d}$. for only Cl 1 l s. 6 d .
$\begin{array}{lllll}\text { We also stock Veroboard as below } & 1 & 20 & 100 \\ 17 / 7 & 15 / 9 & 15 /-\end{array}$ $\begin{array}{lllll}.2 \text { Pitch. } 18^{\circ} \times 44^{\circ} & 17 / 7 & 15 / 9 & 15 / \vec{\prime} \\ .15 \text { Plich, } 17 \%^{\circ} \times 3 \%^{\circ} & 14 / 2 & 12 / 8 & 12 / 1\end{array}$

TRANSFORMERS

West Hyde have three transformers for transistorised equipment. TRA which provides low voltages at 2 Amps. and high voltages at number fubes TRB neons or number tubes. TRB which provides 2 Amps. and TRC, a volcages on TRA, TRB are 6,10 voltages on TRA, TRB are 6,10 ,
$15,18,30$ which can of course 15. 18, 30 which can of course
be connected to give $3,4,5,6$. $8,9,10,12,15,18,24$ and 30 with 12-0-12 and 15-0-15.
 The I Amp. erans-
former gives 6,10, 18 voltage outputs. The TRA also gives $150-80-0.80 .150$. TRA at $57 / 6$ each. TRB as 47/- each TRC at $35 / 6$ each.

WEST HYDEDEVELOPMENTS LTD. 30 HIGH STREET NORTHWOOD MIDIX.
Telephone: Northwood 24941

BHPAK Bumant giskmimu MONEY BACK

KING OF THE PAKS SUPER Paks
 Unequalled Value and Quality
 BI-PAK NEW-UNTESTED SEMICONDUCTORS

Sat is
120 Glass Sub-min. General Purpose Germ 75 Germanium Gold Bonded Diodes sim. 40 Germanium Iransistors like 40 Silicon Planar Transistors NPN sim. BSY05A, 2N 700 16 Silicon Rectifiers Top-Hat 550 m 4 up to 1000 V ... 50 Sil. Planar Diodes 250 mA . OA/200/202 20 Mixed Volts 1 Watt Zener Diodes 12 Silicon Rectifiers EPOXY $131126 / 127$
sim. 2×1132

30 PNP-NPN Sil. Transistors OC200 \& $2 S 104$

150 Mixed Silicon and Germanium Diodes 30 NPN Silicon Planar Transistors TO. $5 \mathrm{sim} .2 \mathbb{1 0 0 7} 10$. 10 3-Amp Silicon Rectifiers Stud Type up to 1000 PIV 10 30 Germanium PNP AF Transistors TO-5 like ACY 17-22 $\quad 10$ 86 Amp Silicon Rectifiers BYZ13 Type up to 000 PIV 10 30 Silicon NPN Transistors like BC108

INTEGRATED CIRCUITS BI-PAK MONOLITHU (10 lead T0-5) BP305A.

NOR OATE, g/B each
BP316A. Dual 2-Input
NOR gate (expandable)
8/8 each.
ment, 11/6 esch. ele B P3azai. LDual 3-Input ol gate, $8 / 6$ each
BI-PAK MONOLITHIC AMPLIFIER8
(TO-5 8 lead) BP709C, Operationa
Hifler. 15/- each. BPjolic, Operational amp
lifter (with Zener out lifter (with Zener out
put), $12 / 6$ each.
BP7020, 0 perational amp liffler (with direct
put), 12/8 ench. BPut), $12 / 8$ ench BP32, $18 /$ each. hand wmp. 14/- each.
Bpilite Oenera/ purpose Bpilioc. Oeneral purpooe
inaplifier (TO.E 8 Iead)
(voltage or current amp. 12/6 esch. OTHER MONOLITHIC DEVICES
\qquad This device
This device is n monolithic threshold detector acte nombine trigget circult for control ling a triac, It io dealkned
oo pulae the aate of
thyrintor to pulae the gate of a
thyrintor at the point o
zero supply vollage, and
ving therefore eliminate radto
irequency interference requencs interference
when used with reastive
Tond
suitch 10 - each suitch 10 - each.
silicon Pianar, mono lithle integrated eircuit characteristics. but with uD
nanode gate and a built-in anode gnte and a built-in
\because Zeuer" divde between Gate and cathodt. Ful
data and application cir
cut ase

$$
\begin{aligned}
& \text { FAIRCHILD (U.S.A.) } \\
& \text { RTUL MICROLOGIC }
\end{aligned}
$$ INTEGRATED CIRCUIT Epoxy case T8-5 lead

temp. range $15^{\circ} \mathrm{C}$. Ln $55^{\circ} \mathrm{C}$.
U

 Comp complete data and circult
for the Palrehild I.C: available in booklet
priced $1 / 6$.
\qquad lifier, 70/-each.
TAA263. Linear AF ampli fier, $18 / 8$ each. TaA293, General purpo CA3020 RCA (U.S.A.
LINEAR INTEGRATE LIEAR CIRCUITS

Aud 3 0

 \begin{tabular}{l|}$10 /-$

$10 /$

$10 /-$

10.
\end{tabular}

LINEAR INTEGRATED CIRCUITS

G.E. TYPE PAI37 2 WATT AUDIO AMPLIFIER

This amplifier is capable of delivering 2 Warss power ourput to a it ohm load, the sransfer $8: b$ is used. A single supply line of 98027 volts is required. External resistors and capacitors are used for bias, feedback and frequency response control. No transformers are required
G.E. TYPE PAIIS I WATT A UDIO AMPLIFIER

Delivers I Watt continuous power into 22 ohm load, alio compatible with 8 and 16 ohm G.E. TYPE PAZ30 LOW LEYEL AMPLIFIER $21 /$. ACA TYPE CA3020 WATT WIDE-BAND POWER AMPLIFIER 32/RCA TYPE CA3035 ULTRA HIGH GAIN AMPLIFIER
3 amplifiers in I can, use separately or sogether. Overall voltage gain zypically 129 dB

MULLARD TYPE TAA26] A.F. AMPLIFIER 15/9
MULLARD TYPE TAABIOLOW NOISE AUDIO PRE-AMPLIFIER 32-
G.E. TYPE 2NS306 DARLINGTON PAIR
$11 / 6$
d low
drive medium speed switching. $h>E=7,000 \mathrm{~min}$. \& $\mathrm{fT}=60 \mathrm{MHz}$ at $\mathrm{Ic}=2 \mathrm{~mA}$
MULLARD TYPE TAA 320 M.O.S. L.F. PRE.AMPLIFIER
13/5
Ulera high input resistance. Consists of M.O.S.T. input stage followed by a bi-pol
G.E. TYPEDIJTI PROGRAMMABLE UNIJUNCTIONTRANSISTOR

For timers, relakation oscillators eic. \boldsymbol{n}, RBM, Ip, IV are programmable by means of two

All the above are available with dara sheels at 11
may be purchased separasely at $1 / 6$ each, pose free.

PROFESSIONAL COMPONENTS AT REALISTIC PRICESI
Send NOW for our brand new Components Catalogue, at only $2 /-$ pose free. This catalogue is packed with information on a host of Up-to-the-minute components by
leading manufacturers. Included are Integrated Circuits, Silicon and Germanium
Transistors. Diodes. Rectifiers. Resispors. Transistors, Diodes. Rectifiers, Resistors, Capacizors, Plugs and Sockets, etc.
Please note that all goods supplied by us are brand new and guaranteed to fully conform ${ }^{\text {RO }}$ manufacturer's Published specifications.
OISCOUNTS: (Cash orders) Order walue over $£ 5-10$ per cent; Order value over $£ 10$--
Pose and packing $1 / 6$ per order

KINVER ELECTRONICS LTD.
STONE LANE, KINVER, STOURBRIDGE, WORCS.
\qquad

LONDON microphones

Quality sound-at low cost

The London Microphone range offers you quality microphones, good characteristics-and good looks, too, at remarkably little cost. Made in Britain.

NEW to the range: L.M300 dynamic cardioid microphone incorporating top-quality moving-
coil capsule. Gives maximum front-to-back ratio coil capsule. Gives maximurn front-to-back ratio styling, robust metal case, natural anodised finish.
LM 300 (Cardioid) $\quad \begin{aligned} & \text { Low imp. } \\ & \text { \& } 11 \\ & 10 \%\end{aligned} \quad \begin{aligned} & \text { Dual imp. } \\ & \mathrm{E} 1210 \%\end{aligned}$

Home or overseas trade enquiries welcome. Write or ring for details LONDON MICROPHONE CO. LTD.
182/4 Campden Hill Road, London, W.8.
Tel: 01-727 0711. 24 Hr. Answering Service, Telex 23894

WW-132 FOR FURTHER DETAILS

TRICKETT, 70 Park Road, Congresbury, Bristol
OSCILLOSCOPES: DOUBLE BEAM ERSKINE TYPE 13. £20 en., carr. £1. indicator Unt TYPE E6: Ideal barf hor
TAYLOR WINDSOR VALVE TESTER 8/H. \&20. Cerr. IN^{2}

HOUR METERS: MINIATURE BY SANGAMO WESTON. $380 / 450 \mathrm{~V} .50 \mathrm{~Hz} .0-9999.9$. 25/-
SMITES: Bins. round. $200 \cdot 250 \mathrm{Y}, 30 \mathrm{~Hz}$. £2. All ex-equip.
ELECTROTHERMAL PRECLSTORS. 0.1% W.W., s.a.e. Ior list. $2 /-\mathrm{em}$. $10 /$ doz. 8 mid. 6 V
 elect. 9 d , ea.. $7 / 6$ dox. 100 mfi . hV . mantelum, $1 / 3$ e. 3 V .
CASTANETS. $140 \mathrm{mfld}, 30 \mathrm{~V}$; $50 \mathrm{mfd} .70 \mathrm{~V} . ; 100 \mathrm{mfd}$. 36 V .: $10 \mathrm{mid} .30 \mathrm{~V} .1 /-\mathrm{ea}$.

G.E.C. UNISELECTORS. NEW AND BOXED. 4 bank, 24 way, 24 V . D.C. $27 / 6$ ea
yC METERS. $0-100$ microsmps $£ 1$ eas. 0.10 milliamph, 0.5 milliampa $12 / 6 \mathrm{ea}, \mathrm{All} 3.6 \mathrm{ins}$, round. $250-0.250$ microampe. 2.sins. round. £1 ea
CBROME HANDLES. All sizes. $4 /-$ Lo $7 / 8 \mathrm{pr}$. Brand new.
GERMANIUM. Xtals G.E.C., CG $63 \mathrm{H}, 5 /$ doz. RECTILINEAR PRESET POTS. 10 K . and 30 K FULL UNCONDITIONAL MONEY BACK GUARANTEE S.A.E. FOR LISTS OF OTHER COMPONENTS AND UNITS

LATEST SURGE SUPPRESSED

 10 AMP SOLID STATE VOLTAGE CONTROL- Motor spesed control capacity start and shaded pole.
* Tungston and quartaiodine lamp dimming ddeally suited for studio and theatre lighting

* Fitted or remote potentiometer control * Panel mounting * Case Isolated from circuir inpur 240 V. A.C. 50 cps. Output 0.240 v Overall size $4 \times 2 \times 2 \mathrm{in}$ in $\quad £ 17-\mathbf{1 0 - 0}$ р. \&P. $3 / 6$
2.5 Amp. £6 150
1 Amp. £5 100
8 Amp. £14 100
12 Amp. £21 00 C. \& P. Extra

5 Amp. £9 150 10 Amp. £18100 20 Amp. £37 00

CONSTANT VOLTAGE TRANSFORMER (AUTOMATIC MAINS STABILISER) Ensure that your test gear readings are accurate * No moving párs. No maintenan
attention
attention
$-\quad 2$ models

- 2 models availabtewalts. Output accuracy: 240% $\mathrm{AC}+1 \%$
input 240 v 50 CPS 20\% Fitted signal lamp and switch Size: 10 ins $\times 6$ ins $\times 4$ ins High weight: 21 lbs £12-10-0

SYNCHRONOUS MOTOR CAM TIMERS \# Quicker deliveries * Up 1012 adjustable cams \# Designed for
conthuous operation * 10 amp c/o microswitches fitied 25 AMP or screw terminals.
Special cams and programming to customers' requirements Quotation sent promplty.

36 ft AERIAL MASTS
 LATEST PATTERN

 NEW TUBULAR MAST Check these vital points:* Made from $61 \frac{1}{2}$ dia. Sheradized steel sections, for durablity and strength. * Exira strong locating base.
- Top cap with firted pullev and halyard. * 2 sets (a) Rotproof Guve
ring Stakes
${ }_{\text {ovir }}$ £15-0-0 ${ }_{\text {ex worts }}$
Carr. 20/-Returnsble wooden case 40

30 AMP L.T. SUPPLY UNIT
Up to 24 VDC with imooth stepless verlation

* Instanianeous overload cut-out * Large ammeter and voltmeter * Continuously rated *Ounput waveform sultable * Robust steel case- 2 tone grev hammer finish

f55-0-0 C\&P 40/. (G B INLAND)

5 AMP. A.C. \& D.C. VARIABLE SUPPLY UNIT Specification: Output: 0.260 V.A.C. 0.240 V.D.C. * Smooth stepless voltage variation from O-Max. \# Current
consistent throughout the controlled range * Ammer and consistent throughout the controlled range. \# Ammeter and
voltmeter titted, and Neon indicator * Fully fused toper and output. Strong steel case with carrying hendle and rubber feet. 11 in. 7 in. 14 in high MADE IN ENGLAND

20 AMP HEAVY DUTY L.T. SUPPLY UNIT

Output: 12 \& 24v. D.C. adj. up to 20 AMPS CONTINUOUS Fully Fused. Fitted ammeter and neon indicator. Input: 220/230/240v. A.C. 50 cycles Size: $1^{\prime \prime} \times 12^{\prime \prime} \times 20^{\prime \prime}$ high. Weight: 50 lbs . Heavy gauge steel cabinet. Grey Hammer finish Supplied by us to UKAEA. Min. of Def. \& G.P.O.
ONLY £32-10-0
Current Manufacture

(Dept. W.W.) 313 Edgware Road, London, W.2. Tel: 01-723 2231

	 	Por rall Induatrim applicat Carrluge and Inaurance $10 /$-.	
 		MINIATURE MOVING COIL SPEAKERS 8/86 ponat free. Four for $15 /$-poen tree	 IIIT MILL GTREET, MARSB LANE, LEEDS

BUILD YOURSELF A OUALITY TRANSISTOR RADIO!

RACAL RA-I7
First ministry release of these world famous communication receivers. Frequency range $500 \mathrm{Kc} / \mathrm{s},-30 \mathrm{Mc} / \mathrm{s}$. Available in excellent condition fully tested and guaranteed. $\quad £ 1500_{40 / \%}^{\text {Carr. }}$

CLASS D. WAVEMETERS	
	A crystal controlled hetero dyne frequency meter cover
- C $^{-1}$	ing 1.7.8 Mc/s. Operation ${ }^{\text {an }}$
	Arailub
-	condition es. 19.8
	87.19.8 Cars 7

CLASS D WAVEMETERS NO. 2
 operation. Complete with eallbration chars.
Excellemt enndition $£ 12 / 10 / 0$. Cart. $30 /$ /.

MARCONI CTAA TF956 AF ABSORPTION WATTMETER

2 20 . Casr, 201 \qquad

BEAT AT 50%. $0-30 \mathrm{Kc/m}$ Output $\delta \mathrm{K}$ or 500 ohme. $200 / 250$
A.C. Ofiered in exeedjent condition. $212 / 20 /$ AVOMETERS
Supplled in excellent condition fully tested and checked. Complete with prodi, tions.
Model 47A
e9/19/B P. \& P. 7/6

SOLARTRON CD. 1016 Double beam. D.C. To S Mc/a. Excellent condi.
tlon. £55emeh. Carr. 20j. AM/FM SIGNAL GENERATORS
 Onchater Test
No. 2, A hlah
qualt qualty precision
instrument made for the Mlnintry
by Alrme. Fre*
quency coverake quency corerage
$20-80 \mathrm{Mc} / \mathrm{An}$ asil
$\mathrm{CW} / \mathrm{FM}$. Incor: cw/FM. Incor-
porates precinion

 eondition complete with all conaectors, fully
teatel, 245 . Carr. 20%.
GEARED MAINS MOTORS Paralux type 8D19 $230 / 250$. A.C. Reveruible.
30 r.p.m. 00 Ib. Ins. Complete with capacitor.
Excellent condition. $89 / 6$. Carr. 10/.
AMERICAN RECORDING TAPES

UNR- 304 BAND
COMMUNICATION RECEIVER Covering $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Incorporates BFO Bullt-in speaker and phone jack. Metal cabinet Operation $220 / 240$ v. A.C. Supplied brand new,
guaranteed with instructions. 13 gns. Carr. $7 / 6$.

TRIO JRSOOSE 10-80 METRE AMATEUR COMMUNICATION RECEIVER IN STOCK EG9

HAMMARLUND SP600JX

 COMMUNICATION RECEIVERHigh quality profesional dual converaion communication
recelvers avalisble once again in this country at
 watt output into fino ohms. Input 10/230 F. A.C. 20 valve
circuit incorporating: Xtal fiter, B.F.O., A.N. L. Xtal
calbrator
 $\mathbf{\Sigma 1 0 0}$ each. Pew only.

POWER RHEOSTATS

High quallty ceramic construction. Windings embedded in vitreous ename)
Heary duty brush wiper. Continuous ratlag. Wide range svallable ex-stock
 S0 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1000 / 2500$ or 3000 ohns. 21/- P. A P. P. $/ 6$.
100 WATT. $1 / 5 / 10 / 28 / 30 / 100 / 250 / 500 / 1000$ or 2500 ohms. R/8. P. is P. $1 / 6$.

19 trasimators, 8 dioden, IAF munie power 30 watis
at 8 ohma. Rea. $30-20,000 \pm 2 \mathrm{~dB}$ at 1 W . Distoro
 S. 16 ohmes. Beparate L and R volume controls.
Treble and kasn controle. Stereo phone fack.

MARCONI TEST EQUIPMENT Ex-Military Reconditioned.
TT 1440 Standard Sigal Generatorn, $88 \mathrm{Kc} / \mathrm{s} \cdot 25 \mathrm{Mc} / \mathrm{s}$. $£ .5$.
 £80. Carr. 30/: TF 142 E Diatortion Factor Meter, ELO . Carr. 20/. All above offered in excellent condition, fully tcated and
TF 1100 Valve Voltmeter. Brand New. $£ 50$. Tr 1100 Valve Voltmeter, Brand New, £50.
TF 1267 Tranamikion Ten Set Brand New,
TF 1371 Wido Band Millivolf Meter, Brand 'New, $£ 50$

MULTIMETERS for GUERY purpose!

	3in. 225it. L.P. Acetate	$3 / 6$
Flrst grade	$3 \mathrm{Jin}$. 600tt. T.P. Mylar . .	10/-
qualty	Sin. 600ft. Std. plantic. .	8/8
American	6ita, 900ft. L. P. Acetate	101-
taper.	$5 \mathrm{ln}, 1.200 \mathrm{th}$. D.P. Mglar	
Brand new	Bfin. 1.200ft. L.P. wectate	22/6
and	Sing. 1.200ft L.P. Mylar	18/
guarniteed.	Sfin. 1.800ft. D.P. Mylar	22/6
Discounts for	ofin. 2.400tt. T.P, Mylar	$39 / 6$
atitie	$7 \mathrm{mn} .1,200 \mathrm{ft}$. Std. acetate	
	7in. 1.8001t. lo.P. acetate	15/-
Poatage 2/-.	7in. 1.8noft. L. P. Mylar	$20 /$
Over 83 post	-7in. 2,400ft. D.P. Mgiar	25/-
paid.	7 in .3 .600 ft . T.P. Myiar	45/-

SINCLAIR EQUIPMENT

212. 12 watt amplifiter 88/6.

PZ4. Power nupply Unit 89/6.
STEREO 25 . Pre-amplitier $£ 8 / 19 / 6$.
Q.14 Bpenkere $£ 7 / 28 / 6$.
Micromatic Radio Kit
48/6. Buitt $58 / 6$

ALI. POST PAND. SPECLAL OPFER
2 Z12 ampu. PZ4 Power Rupply. Bteren 25
 35 whtt Integrated Amplifer. \&20.
Belt-powered FM Tuner, $£ 25$. Carr. 5 . ECHO HS-606 STEREO
HEADPHONES Wonderfully cotnfortable. Lightvinyl hendhand, ott.
cable and stereo
jack pluk. $25-17,000$
 сра.. 8 日 $\mathrm{imp} .87 / 8$.
P. \& P. 2/6.

NOW OPEN IN EDGWARE RD.

311 Edaware Rosd tully tock now open a 311 Edgware Rosd, tully stocked with all
Bi-Pi. Communication and Tent Equibmient. Call into yout neareat hop Rnduwary id. for
 ${ }^{282}$

Corponents.

LAFAYETTE 57 Ranke Super
 rens $25 \mu \mathrm{~A}-10$ Amp. Ohms

$+812 / 10$

PROFESSIONAL 20,000
 $1 / 10 /$
iUnA
Decitbei 020 k . 200 k . 2 megolam MODEL TE-90 50,000 0.5.V. Mirror seale oreriond protec

MODEL TE-80. 20,0000 $01101501100 / 50011.000$

MODEL TE-70. 30,000 0

 MODEL TE-12. 20.000 O.P.V. $0 / 0.6 / 6 / 30 / 120 / 600 / 1,200 /$
$3,000 / 6,400$ ए. D.C. $0 / 6 / 30 / 120 /$

 £5/19/6. P. $\&$ P. 3/6.

AUTO TRANSFORMERS

$0 / 113 / 2300$. Re R P up of ofegp down. Fully throuded.

 ${ }_{8100}^{130} \mathbf{W}$ W. 32/6. P. \& \& P. 3

E22 SINE SOUARE WAVE
AUDIO GENERATORS Outpa to $30 \mathrm{ke} / \mathrm{o}$ Out put inpedance
B.000 $\begin{array}{ll}8.000 & \text { obrne. } \\ 250\end{array}$ 230 .. A.C. opera-
tion. Supplied brand
 teed with himetrue
tion mannual

HEADS

 18/6 pair.

Record/replis. High imp
Erae. Low itap.

TE-65 VALVE VOLTMETER

High quality
vith 28 rangea.
0.1
 Retintance up to 1,00 megohms.
$220 / 240 \mathrm{v}$. 220/240V. A.C. operstion.
Complete with probe and

42/B.

TEIII dechae resistance attenuator

TE-20D RF SIGNAL GENERATOR

G. W. SMITH \& Co. (Radio) Ltd.
also seg opposite page

GARRARD

am

LAFAYETTE PF-60 SOLID S
ATE VHF A completely new traneinerne rectit Mc/a. Fully tumeabie or eryshal controlled (not supplied) Gor Axed frequency operition. Incorporater IN INTE-

Variable Voltage Thandirandifi

 High yuality coustruction. Input 930 v. 50 - 60 cyrles.Output full variable trou $0-260$ volts. Bulk yuantities avallable.

12v. i) C int trimmer. intermal apeaker and excellemt conditlon. fully
tested and checked. TRANSISTORISEO L.C.R. A.C MEASURING
 2\%. C. InPFI
 Attractive ${ }^{\text {a }}$ voler. $100 \mu \mathrm{~A}$. Meter indication. ADVANCE TEST EQUIPMENT Brand bew and boxed in original apaled cartons.
VM. 78 . VALVE VOLTMETER. R.P. fueanure-
 VM. R8. A.C. MILLIVOLT METER M. Price 872. VM. 79 . UHP Mrequency $1 \mathrm{c} / \mathrm{BLL} 11 \mathrm{Mc/f}$. Price $£ 55$. A.C. range $10 \mathrm{Mt}-3 \mathrm{~V}$ D. current range $0.01 / \mathrm{A}$ O.3 Ma. Resiatance 1 obm - 10 megohme. 9125 .
H1B. AUDIO SIGNAL GENERATOR. $15 \mathrm{c} / \mathrm{B}$. $00 \mathrm{Ke} / \mathrm{s}$, sine or sinure wave. Price $£ 30$ Kc/e. Price f3o. except thted with output meter $£ 35$.
TTIS. TRANSISTOR TESTER. $\frac{\text { Carrlage } 10 / \text {-peritem. }}{\text { SOLARTRON MONITOR }}$

SOLARTRON MONITOR
OSCILLOSCOPE TYPE IOI As extremely bigh quatily oucliloscope with time
 in excellent condition with, cables. probe, etc.. as
received 1 rom Ministry. $£ 8 / 19 / 6$. Carr. $30 / \%$

Type MR.38P, $121 / 32 i n$. square fronts.

Type MR.45P.

$50 \mathrm{ma} A$
1 ma
5 ma
10 mA
50 mA
100 m

TyIE MR.52P.
$50 \mu \mathrm{~A}$.
50.50 H
$100 \mu \mathrm{~A}$

BAKELITE PANEL METERS

Whandich

 -2025 St/C Mono steren E8.17.8
89.19 .6 -8L63
Ap73 401
4253 214.14.
819.0 .0
28.7 235, 0.0 WB 4 Rmen 23/19/8. Peropex cover 23/10/0. - Epecial offp binge and cover avaluble for these moxjels at e4.13.0. Cart

TRANSISTOR FM TUNER
 TUNER
ONLY
$8 \tan . x \operatorname{tin} . x$ 2 ith. $3 \mathrm{I} . \mathrm{F}$. slagen
Double tuaned dion
criminator crimplnator. anmple
output to feerl mest output to freell most
aimplificra. Operate on 9 volt buttery. Coverage $8 \mathrm{~B}-\mathrm{I}$ I $108 \mathrm{Mc} / \mathrm{s}$. Realy
bullit rebly for use. frantautic value for noney Prx adaprors oor

TE-IGA TRANSISTORISED SIGNAL GENERATOR

${ }^{5}$ MHZ MHZ . An Inexperusive
inatrument for the bandy instrument for the bandy
man. Operates on $9 v$.
batters. Wide eany read scale. 800 KHZ modulation. $68^{\circ} \times 88^{\circ}$
$\times 31^{\circ}$. Complete with
Inntructions and lemile. £7/10/6. Р/P $4 /$-.

Lasky's Radio Limited Dept. WW, 3-15 Cayell Street, Tower Hamletsinwndiout

Wilkinsons ${ }_{\text {issil }}^{108 i}$

 for RELAYS P.0.0. TYPE 3000 bunt ro roui spectification

KEY SWITCHES

3 POSITION Type 212 2C lock/ 2 C lock 12/6. Type 1984 C lock/ 4 C lock 17/6.
Type 2902 C non/hock 6 C lock $17 /$-. Type 2954 C non/lock 8 C lock $20 /$ -

LEDEX ROTARY SOLENOIDS AND CIRCUIT SELECTORS, size 58 4 pole 11 way and off $110 /=13$ pole 11 way and off 170/-. 24 pole 11 way and off TERMINAL BLOCKS ONE HOLE FIXING way $5 \mathrm{C} / 430$ or 3 way $5 \mathrm{C} / 432$ 50/- per 100 or $\mathbf{t 2 0}$ per 1000. AIR BLOWERS AIR BLOWERS. $200 / 250$ volt A.C. cylindrical $7^{\circ} \times 7^{\prime \prime}$ suitable for tntake or HIGH SPEED COUNTERS. $3 \%^{\circ} \times 1^{\circ} .10$ counts per second with 4 figures. The following D.C. voltages are avallable: $6 v .12 v .24 v .50 v$. or $100 v .35 /-$ each. VEEDER ROOT MAGNETIC COUNTERS with zero reset 800 counts per
minute, counting to $999,999,110$ volts or 125 volts A.C. or 110 volts D.C. $65 /-$ each. post 3/-:
CONNECTING WIRE, 1/024, 7/0076 or 14/0048 PVC covered in various colours. 64 ner 1,000 yds,. joat $6 /$.
MINIATURE SILVER ZINC ACCUMULATOR. 1.5 volt 1.5 ampere siza $2^{\prime \prime} \times 1.13^{\prime \prime} \times 0.63^{\circ}$. Only 11 ozs. Cuantitles avallable $12 / 6$ each, $120 /-$ doz.. port $1 / 6$. RESISTORS EX STOCK IN GUANTITY WIRE WOUND MIGH
STABILITY CARBON, ETC., BESTGMAKS AT LOWEST POSSIBLE L. WILKINSON (CROYDON) LTD. LONGIEY HOUSE LONGLEY RD. CROYDON SURREY Phone: THO 0236 Grams: wilco CROYDON

ELEGTROVILUE
 SPECIALIST SUPPLIERS OF TRANSISTORS IN TYPES TO SUIT ALMOST ALL NEEDS
 - HIGHLY COMPETTITIVE PRICES
 - wIDE RANGE OF COMPonents
 - BAILEY AMPLIFIER PARTS—KIT—BUILT
 - POWER SUPPLY KIT
 - PEAK SOUND PRODUCTS AS ADVERTISED
 EVERYTHING BRAND NEW AND TO THE ADVERTISED SPECIFICATION

1969 CATALOGUE now ready. Send $1 / 6$ for your copy. COMPONENT DISCOUNTS. 10% on total order over $£ 3.0 .0$ 15% on rotal order over $£ 10.0 .0$. unless stated otherwise. POSTAGEAND PACKING on orders up to fI , add I / m; over, pose free in U.K.
OVERSEAS ORDERS WELCOMED. Carriage charged at cose.

ELECTRDVALUE

FULLY TESTED AND MARKED			
AC107	3/-	OC170	3/-
AC126	2/4	OC171	4:-
AC127	$2 / 4$	OC200	3/6
AC128	2/4	OC201	7/-
AC176	5/-	2G301	2/6
ACYI7	3/-	$2 \mathrm{G303}$	2/6
AFl\|4	4/-	2N711	10/-
AFIIS	3/6	$2 \mathrm{~N} 1302-3$	4/-
AFll6	$3 / 6$	2 Nl 304.5	5/-
AFlil	316	2 N 1306.7	6/-
ASY66	21.	2N1308.9	8/-
AF186	10/	2N3844A	5/-
AFI39	10/-	Power	
BFY50	4/-	Transistors	
BSY25	7/6	OC20	10/-
BSY26	3/-	OC23	10\%
BSY27	3/-	OC25	8/-
BSY28	3/-	OC26	5/-
BSY29	3/-	OC28	7/6
BSY95A	3/-	OC35	5/-
OC41	2/6	25034	10.
OC44	1/11	AD149	10/-
$0 \mathrm{OC4}$	1/9	2N2287	20/-
OC71	2/6	2N3055	15/.
OC72	2/6	Diodes	
$0 \mathrm{C73}$	3/6	AAY42	2/-
OC81	2/6	OA95	2/-
OC8ID	$2 / 6$	OA70	$1 / 9$
0 O 83	4/-	OA79	1/9
OCl39	2/6	OA81	1/9
OCI40	3/6	IN914	1/6

PACKS OF YOUR OWN CHOICE UP TO THE VALUE OF 10/- WITH ORDERS OVER IS

TRY OUR X PACKS FOR UNEQUALLED VALUE

XA PAK

Germanium PNP sypetransistors, equivalents to a large part of the OC range, i.e. 44, 45, 71, 72 Bl, etc

PRICE $\angle 5$ PER 1000

x PAK

Silicon TO-18 CAN type transistors NPN/PNP mixed lots; with equivalents so OC200-1, 2N706a, BSY27/29, BSY95A.

PRICE E5.5.0 PER 500
PRICE \&10 PER 1000
POST \& PACKING $2 / 6$ U.K.

XC PAK

Silicon diodes miniazure elass types, finished black with polarity marked, equivalents to OA200 OA202, BAY31-39 and DKIO, etc

PRICE ES PER 1000
POST \& PACKING 2/6 U.K
ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF 75% OR MORE GOOD SEMICONDUCTORS. FREE PACKS SUSPENDED WITH THESE ORDERS. ORDERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK.

\section*{TRANSISTORS ONLY 1/- EACH
 SILICON • PLANAR
 All these types available
 | 2N929 | 2N706 | 2S131 | 2S103 | 2N696 | 2N1613 | 2S733 | BFY10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2S501 | 2N706A | 2S512 | 2S104 | 2N697 | 2NI71I | 2N726 | 2S731 |
 NN26-2S731}

All tested and guaranteed for gain and leakage-unmarked
Manufacturers' fall outs from the new PRE-PAK range.

NEW TESTED \& GUARANTEED PAKS
$\begin{array}{ll}824 & \text { PHOTO CELLS. SUN BATERIES. } \\ \text { INC. BOOK OF INSTRUCTIONS } & 10 /-\end{array}$
$\begin{array}{ll}\text { B77 } 2 & \text { AD161-AD162 NPN/PNP TRANS. } \\ \text { COMP. OUTPUT PAIR }\end{array} 10 /-$
B79 41000 PIV 1 AMP. MINIATURE $10 /-$
$88110 \begin{aligned} & \text { REED SWITCHES COMP. } \\ & \text { WITH COILS \& MAGNETS } \\ & \text { W }\end{aligned}$
88524 INTEGRATED CIRCUITS ON PANELS $10 /$
$\begin{array}{ll}8892 \text { SP5 LIGHT SENSITIVE CELLS } \\ \text { LIGHT RES. } 400 \Omega \text { DARK } 1 \mathrm{M} \Omega & 10 /-\end{array}$
8904 LATEST TYPE REED SWITCHES $10 /$ -
B91 8 NKT163/164 PNP GERM. TO -5 EQUIVALENT TO OC44. OC45 $10 /-$
NPN SIL. TRANS. AO6 $=8 \mathrm{~S} \times 20 \mathrm{O} \quad 10 /-$
2 N 2369.500 MHz .360 mW GET113 TRANS. EQUIV. TO
B93 5 ACY17-21 PNP GERM.
NPN SIL PLANAR EPITAXIAL TRANS. CS4 SIMULAR TO
B94 6 BSY38 OR BCIOB 10/-10/-

B94 6 BSY38 OR BC108
B96 $5 \quad \mathrm{HFE} 100.300 \mathrm{IC} 600 \mathrm{~mA} .200 \mathrm{MHz} \quad 10 /$. XB112 \& XB102 EQUIV. TO AC126 AC156. OC81/2. OC71/2. NKT271 10/-

Return of the unbeatable P. 1 Pak. Now greater value than ever

Full of Short Lead Semiconductors \& Electronic Components, approx. 170. We guarantee at least 30 really high quality factory marked Transistors PNP \& NPN, and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.

Please ask for Pak P.1. Only 10/-
2/- P \& P on this Pak.
Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any 0-1mA meter into a perfectly linear and accurate re
counter for any car.
State 4 or 6 cylinder. 5 RACh

FREE CATALOGUE AND LISTS
for: -
ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 10\%- CASH WITH ORDER PLEASE. Add $1 /$ - post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL

THERE IS ONLY ONE BI-PRE-PAK LTD BEWARE OF IMITATIONS

FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

SPEAKER SYSTEM $(20 \times 10 \times 10 \mathrm{in}$). Made to spec. from $\frac{2}{4} \mathrm{in}$. board. Finished in black leathercloth. $13 \times 8 \mathrm{in}$. speaker with iwin iweeters complete with cross-over.
$50 \mathrm{c} / \mathrm{s}-20 \mathrm{k} / \mathrm{c}$. $£ 7.10$. P.P. $10 /-$
PHOTOMULTIPLIERS 6262 and 6262b. E15ea.
RELAYS H.D. 2 pole 3 way 10 amp. contacts. $12 \mathrm{v} . \mathrm{w} .7 / 6$ ea. LIGHTWEIGHT RELAYS (with dust-proof covers)

HIGHSPEED MAGNETIC COUNTERS ($4 \times 1 \times 1$ in.) 4 digit. 6/12v. 24/48v. (state which), 6/6 ea. P.P. 1/-.

PYE OHMMETER TYPE 10B. 500 v . test. . 3 meg. ohm20 k. meg. ohm. 200/250v. A.C. Brand new instrument $£ 30$. P.P. 30/

POT CORES TYPE LA 3. 10/- ea.
71 Way plug \& SOCKET (Painton Series 159). Gold plated contacts with hood \& retaining clips. 30/- palr.

50 WAY PLUG \& SOCKET (U.C.L. miniatute). Gold plated contacts 20/- pair. 34 way version 15/- pair.
VALVE MILLIVOLTMETER (Marconi TF899). 0-2v. complete with R.F. probe $\mathbf{E 8 / 1 0 / - p p . 1 0 / - ~}$
LOGICBOARDS with 31 ACY40s- 38 diodes etc. 20/- ea. P.P. 2/6.

CO-AX. RELAYS (magnetic devices) 1 change-over 12 v.w. 20/- ea.
SOLARTRON PULSE GENERATORS (OPS 100C) $50 \mathrm{c} / \mathrm{s}-1 \mathrm{~m} / \mathrm{c}$. $£ 60$ each. Carriage $50 /$ -
WOBBULATORS TYPE 210 (Metrix) $0.220 \mathrm{M} / \mathrm{C}$. Sweep width $1 / 2 / 5 / 10 / 20 \mathrm{~m} / \mathrm{c}$. £40. Carrlage 30/-.

TRANSFORMERS

H.T. TRANSFORMER (Parmeko 'Neptune') Prim. 200/ 250v. Sec. $350-0-350 \mathrm{v} .150 \mathrm{~m} . \mathrm{a} .6 .3 \mathrm{v}$. @ $1 / 2 / 6 \mathrm{amp}$ 35/-. P.P. $5 /=$. Matching Choke $10 \mathrm{~h} 180 \mathrm{~m} . \mathrm{a} .12 / 6$
E.H.T. TRANSFORMER (Parmeko 'Neptune') $3,000 \mathrm{v}$ 280 m.a. §12/10/0. P.P. 50/-
L.T. TRANSFORMERS Prim. 200/250v. Sec. $0-1 / 0-$
$3 / 0-9 / 0-27 v .30$ amp. E7.10. 15 amp . E5, P.P. $15 / \mathrm{-}$. L.T. TRANSFORMER Prim. 200/250v. Sec. $0 / 25 / 35 v$ 30 amp £ 7.10 . P.P. $20 /$ -
STEP-DOWN TRANSFORMERS Prim. 200/250v. Sec. 115 V . 1.25 amps , 25/- ea. P.P. 5/.
 3.5 a mp models $20 /-: 5 \mathrm{mp}$ model $\mathbf{2 5} /=$. P.P. $5 / 6$.
L.T. TRANSFORMERS Pilm. 240v. Sec. 14v, 1 amp 10/ea. P.P. $2 / 6$.
ELECTRIC SLOTMETERS (1/-) 25 amp . L.R. 240 v . A.C. 85/- ea. PIP.
240v A.C. 20/. ea P.

COPPER LAMINATE PRINTED CIRCUIT BOARD ($8 \frac{1}{2} \times 5 \frac{1}{2} \times \frac{1}{16} \ln$.) , $2 / 6$ sheet, 5 for 10/-.
Also $11 \times 9 \mathrm{in}$., 4/-ea., 3 for 10/-

BULK COMPONENT OFFERS

100 Capacitors (latest types) 50 pF to $.5 \mu \mathrm{~F}$. 250 Resistors it and $\frac{1}{4}$ watt.
250 Resistors $\frac{1}{2}$ and 1 watt.
150 HI-Stab Resistors, $\frac{1}{2}, \frac{1}{2}$ and 1 watt.
25 Vitseous W/W Resistors, 5\%.
12 Precision Reslstors . 1% (several standards included).
12 Precision Capacitors 1 and 2% (several standards included).

ANY ITEM (minlature and standard sizes)
ANY ITEM 12/6. ANY 5 ITEMS 50/-.

TELEPHONE DIALS (New) 20/- ea. Amplified TELEPHONE HANDSET Amplified TELEPH
(706) 27/6. P.P. $2 / 6$.
EXTENSION TELEPHONE (TYPE 706) Black or 2 tone Grey. 65/-. P.P. 5/-.
UNISELECTORS (Brand new) 25-way 75 ohm. 8 bank $\frac{1}{2}$ wipe 65/-. 10 bank $\frac{1}{2}$ wipe $75 /$-.

REED RELAYS 4 make 9/12v. (1,000 ohm.) 12/6 ea. 2 make 7/6 ea. 1 make 5/- ea. Reed Switches (1 $1 \frac{1}{4}$ in.) $2 /-$ ea. §1 per doz.

CONTINUOUS LEVEL MONITORS (Burndept BE307) complete with Sensing Probe. $£ 25$.
Transistorlsed PROXIMITY SWITCHES (Burndept BE315) sensing speed 120 per min. ©16.
LEVEL CONTROLLER (Burndept BE305). £8.
LIGHT SWITCH. COUNTER. (Burndept BE290) 750 Interruption per min. comprises: Light Source, Sensing Head. Control Unit. £15. S.A.E. Literature.

PATTRICK \& KINNIE

81 PARK LANE•ROMFORD•ESSEX
ROMFORD 44473

LATEST RELEASE OF

RCA COMMUNICATION RECEIVERS AR88

BRAND NEW and in original cases-A.C. mains input. 110V or 250 V . Freq. in 6 bands $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$. Output impedance 2.5-600 ohms. Complete with crystal filter, noise limiter, B.F.O., H.F. tone control, R.F. \& A.F. variable controls. Price £87/10/each, carr. $£ 2$.
Same model as above in secondhand cond. (guaranteed working order), from $£ 45$ to $£ 60$, cart. $£ 2$.
*SET OF VALVES : new, $\mathbf{£ 3 / 1 0 / - \text { a set, post } 7 / 6 \text { ; SPEAKERS : }}$ new, $£ 3$ each, post $10 / \mathrm{F}$. \#HEADPHONES: new, £1/5/- a pair, 600 ohms impedance. Post 5/-.
AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L55. Price 10/- each, post 2/6. RF Coils 13 \& 14; $17 \& 18 ; 23 \& 24$; and 27 and 28. Price $12 / 6$ each. $2 / 6$ post. By-pass Capacitor K.98034-1, $3 \times 0.05 \mathrm{mfd}$. and M.980344, $3 \times 0.1 \mathrm{mfd}$., 3 for $10 /-$, post $2 / 6$. Trimmers $95534-502,2-20$ p.f. Box of $3,10 / \mathrm{m}$, post $2 / 6$. Block Condenser, $3 \times 4 \mathrm{mfd}$., 600 v ., £2 each, 4/- post. Output transformers $901666-501$ 27/6 each,
4/- post.
S.A.E. for all enquiries. If wishing to call at Stores, please telephone for appointment.

MARCONI SIGNAL GENERATORS

TYPE TF-I44G

Freq. $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental $:+1-1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microvolt to 1 volt. Output Impedance: 1 microvolt to 100 millivolts, 10 ohms $100 \mathrm{mV}-1$ volt52.5 ohms. Internal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}$. Consumption approx. 40 watts. Measurements: 19$\} \times 124 \times 10 \mathrm{in}$. The above come complete with Mains Leads, Dummy Aerial with screened lead, and plugs. As New, in Manufacturer's cases, $£ 40$ each. Carr. 30/-. DISCOUNT OF 10% FOR SCHOOLS, TECHNICAL COLLEGES, etc.

HRO RECEIVER. Model 5 T . This is a famous American High Frequency superhet, suitable for CW, and MCW, reception crystal filter, with phasing control. AVC and signal strength meter. Freq. range $50 \mathrm{kc} / \mathrm{ss}$. to $30 \mathrm{mc} / \mathrm{s}$., with set of nine coils. Complete HRO 5T SET (Receiver, Coils and Power Unit) for $£ 30$, plus $30 /$-carr.
COMMAND RECEIVERS; Model $6-9 \mathrm{Mc} / \mathrm{s}$., as new, price $\mathrm{E} 5 / 10 /$ each, post 5/-,

COMMAND TRANSMITTERS, BC-458: 5.3-7 Mc/s., approx. 25 W output, directly calibrated. Valves 2×1625 PA; 1×1626 osc.; 1×1629 Tuning Indicator; Crystal $6,200 \mathrm{Kc} / \mathrm{s}$. New condition- $£ 3 / 10 /-$ each, $10 /-$ post.
(Conversion as per "Surplus Radio Conversion Manual, Vol. No. 2," by R. C. Evenson and O. R. Beach.)

AIRCRAFT RECEIVER ARR. 2: Valve line-up $7 \times 9001 ; 3 \times 6$ AK5; and $1 \times 12 \mathrm{~A} 6$. Switch tured $234-258 \mathrm{Mc} / \mathrm{s}$. Rec. only E 3 each, $7 / 6$ post; or Rec. with 24 v . power unit and mounting tray $£ 3 / 10 /=$ each, $10 /$ - post.

ROTARY CONVERTERS: Type 8a, 24 v D.C., 115 v A.C. @ 1.8 mmps , $400 \mathrm{c} / \mathrm{s} 3$ phase, $26 / 10 /-$ each, $8 /-$ post. 24 v D.C. input, 175 v D.C. (3) 40 mA output, $25 /-$ each, post $2 /$ -
CONDENSERS: $150 \mathrm{mfd}, 300$ v A.C., $87 / 10 /-$ each, carr. $15 /-40 \mathrm{mfd}, 440 \mathrm{v}$ A.C. wkg., $£ 5$ each, $10 /-$ post. $30 \mathrm{mfd}, 600 \mathrm{v}$ wkg. D.C., $£ 3 / 10 /$ each post $10 /-$ $15 \mathrm{mfd}, 330$ v A.C. wkg., $15 /-$ each, post $5 /=10 \mathrm{mfd}, 1000 \mathrm{v}, 12 / 6$ each, post $2 / 6$. $10 \mathrm{mfd}, 600 \mathrm{v}, 8 / 6$ each, post $5 /-.8 \mathrm{mfd}, 1200 \mathrm{v}, 12 / 6$ each, post $3 /-.8 \mathrm{mfd}, 600 \mathrm{v}$ $8 / 6$ each, post $2 / 6.4 \mathrm{mfd}, 3000 \mathrm{v}$ wkg. E 3 each, post $7 / 6.2 \mathrm{mfd}, 3000 \mathrm{v}$ wkg., E 2 each, post $7 / 6$. $0.25 \mathrm{mfd}, 32,000 . \mathrm{v}, \mathrm{8} 7 / 10 /-$ each, carr. $15 /-0.25 \mathrm{mfd}, 2 \mathrm{Kv}, 4 / \mathrm{-}$ each, $1 / 6$ post. 0.01 mfd . MICA 2.5 KV . Price $£ 1$ for 5. Post 2/6. Capacitor: $0.125 \mathrm{mfd}, 27,000 \mathrm{v} \mathbf{w k g}$. $\mathbf{~} 3.15 .0$ each, $10 /-$ post.
Avo mULTIRANGE No. I ELECTRONIC TEST SET: $£ 25$ each, carr. £1. OSCILLOSCOPE Type 13A, 100/250 v. A.C. Time base $2 \mathrm{c} / \mathrm{s} .-750 \mathrm{Kc} / \mathrm{s}$. Bandwidth up to $5 \mathrm{Mc} / \mathrm{s}$. Calibration markers $100 \mathrm{Kc} / \mathrm{s}$. and $1 \mathrm{Mc} / \mathrm{s}$. Double Beam tube. Reliable reneral purpose scope, $£ 22 / 10 /$ - each, $30 /$ carr.
COSSAR 1035 OSCILLOSCOPE, $£ 30$ each, $30 /$ - carr.
RELAYS: GPO Type 600,10 relays (a) 300 ohms with 2 M and 10 relays (a) 50 ohms with 1 M ., $\mathrm{E2} 2$ each, $6 /-$ post.
12 Small American Relays, mixed types $£ 2$, post 4/-
CALIBRATION TACHOMETER Mk. II: Maxwell Bridge Type 6C/869, £25 each, $£ 2$ carr.
ROTAX VARIAC \& METER UNTT: Type 5G. 3281. Reading 0-40 v., 0-40 mA and 0.5 amps ., all on 275 deg. scales, $£ 30$ each, $£ 2$ carr.
HEWLETT PACKARD TYPE 400C: $115 \mathrm{v} \cdot 230 \mathrm{v}$. input $50 / 60 \mathrm{c} / \mathrm{s}$. Freq. range $20 \mathrm{c} / \mathrm{s}-2 \mathrm{Mc} / \mathrm{s}$. Voltage range: 1 mV - 300 v . in 12 ranges. Input impedance 10 megohms. Designed for rack mounting, $£ 30$ each, carr. 15/\%.
TCS MODULATION TRANSFORMERS, 20 watis, pr. 6,000 C.T., sec. 6,000 ohms. Price $25 /-$, post $5 /$.
AUTOMATIC PILOT UNIT Mk. 2. This complex unit of diodes and valves, relays, magnetic clutches, motors and plug-in amplifiers, with many other items, price $87 / 10 /-$, 11 carriage.

FOR EXPORT ONLY: B. 44 Trans-ceiver Mk. III. Crystal control, $60-$ $95 \mathrm{Mc} / \mathrm{s}$. AMERICAN EQUIPMENT: BC-640 Transmitter, $100-156$ Mc / s., 50 watt output. For 110 or 230 v . operation. ARC 27 trans-ceivers, 28 V. D.C. input. Also have associated equipment. BC-375 Transmitter. BC-778 Dinghy transmitter. SCR-522 trans-ceiver. Power supply, PP893 GRC 32A ; Fltcr D.C. Power Supply F-170 G Cables CY 728/GRC; Mast
 CM.23; Directional Conirol CRD.6, 567/CRD and 568/CRD; Azimuth Control Units, $260 / \mathrm{CRD}$. Test Set URM.44, complete with Signal Generator TS.622/U.

VARIABLE POWER UNIT: complete with Zenith variac 0-230 v., 9 amps.; 2 tin. scale meter reading $0-250 \mathrm{v}$. Unit is mounted in 19 in . rack, $£ 16 / 10 /-$ each, 30/-carr.
SOLENOID UNIT: 230 v . A.C. input, 2 pole, 15 amp contacts, $\mathbf{£ 2 / 1 0 / - ~ e a c h ~}$
CONTROL PANEL: 230 v . A.C., 24 v. D.C. @ 2 amps., $£ 2 / 10 /-$ cach, carr, $12 / 6$.
AUTO TRANSFORMER: 230-115 v.; 1,000 w. £5 each, carr. 12/6. 230-115 v.; 300VA, $\& 3$ each, carr. 10%.
OHMITE VARIABLE RESISTOR: 5 ohms , $5 \| \mathrm{amps}$; or 2.6 ohms at 4 amps . Price (either type) $£ 2$ each, $4 / 6$ post each.
POWER SUPPLY UNIT PN-12B: 230 v. A.C. input, 395-0-395 v. output @ 300 mA . Complete with two $\times 9 \mathrm{H}$ chokes and 10 mfd . oil filled capacitors. Mounted in 19in. panel, $\mathbf{1 6 / 1 0 / - \text { each, } £ 1 \text { carr. }}$
TX DRIVER UNIT: Freq. $100-156 \mathrm{Me} / \mathrm{s}$. Valves $3 \times 3 \mathrm{C} 24$'s; complete with filament transformer 230 v . A.C. Mounted in 19in. panel, $£ 4 / 10 / \mathrm{m}$ each, $15 / \mathrm{c}$ carr.
POWER UNIT: 110 v . or 230 v . input switthed; 28 v . 45 amps. D.C. output. Wt. approx. 100 lbs ., $£ 17 / 10 /-$ each, $30 /$ carr. SMOOTHING UNITS suitable for above $£ 7 / 10 /-$ each, $15 /-$ carr.
DE-ICER CONTROLLER MK. III: Contains 10 relays D.P. changeover heavy duty contacts, 1 relay $4 \mathrm{P}, \mathrm{C} / \mathrm{O}$. (235 ohms coil). Stud switch 30 -way relay operated, one five-way ditto, D.C. timing motor with Chronometric governor $20-30 \mathrm{v}$. ,

MODULATOR UNIT: 50 watt, part of BC-640, complete with 2×811 valves, microphone and modulator transformers etc. $£ 7 / 10 /-$ each, $15 /$ carr.

ADVANCE TEST EQUIPMENT: VM76 Valve Voltmeter, 788 each; VM78 A.C. Millivoltmeter (transistorised) $£ 55$ each; VM79 UHF Millivoltmeter (transistorised) £125 each; J1B Audio Signal Generator $£ 30$ each; TT1S Transistor Tester (CT472) $£ 37 / 10$ each. 10 per cent Discount for schools, colleges, etc. on the above items. Carr. 10/-, extra per item.

INDICATOR UNIT TYPE CRT.26: complete with CV1526 Cathode Ray Tube (3EG1). ($3 \times$ CV138; $3 \times$ CV $329 ; 1 \times$ CV858; $2 \times$ CV261; $6 \times$ Crystals). Complete with brilliance and focus controls. Sultable for converting Into a small oscilloscope ($10 \times 8 \times 6$ in., wt. 15 lb .) 85 each. Post $10 /-$.
NIFE BATTERIES: 6 v. 75 mps ., new, in cases, $£ 15$ each, £1 cart.; 4 v. 160 amps, new, in cases, $£ 20$ each, $£ 110 /-$ carr. L.R. 7 Cells, only 1.2 v .75 mmps. new, $\mathbf{x} 3$ each, $12 /$ - carr. The above batteries are low resistance designed to give a heavy surge for starting and can be stored for long periods without any effect to their performance.
FUEL INDICATOR Type 113R: 24 v . complete with 2 magnetic counters $0-9999$, with locking and reset controls mounted in a 3 in . diameter case. Price
$30 /-$ each, postage $5 /-$.
UNISELECTORS (ex equipment): 5 Bank, 50 Way, 75 ohm Coil, alternate wipe, £2/5/- each, post 4/-

FREQUENCY METERS: BC-221, meter only ©30 each, BC-221 complete with stabilised power supply $£ 35$ each, carr. $15 /$. LM13, $125-20,000 \mathrm{Kc} / \mathrm{s}$, $£ 25$ each, carr. 15/- TS.175/U, 75 each, carr. $£ 1$. TS $323 /$ UR, $20-450 \mathrm{Mc} / \mathrm{s}$, 875 each, cart directly in digital form. Counting rate : $20-100,000$ events per sec. Time Base Crysta Freq.: $100 \mathrm{Kc} / \mathrm{s}$. per sec. Power supply: $115 \mathrm{v} ., 50 / 60 \mathrm{c} / \mathrm{s}$., $£ 100$ each, carr. $£ 1$

CT. 49 ABSORPTION AUDIO FREQUENCY METER: freq. range $450 \mathrm{c} / \mathrm{s}$ $22 \mathrm{Kc} / \mathrm{s}$., directly calibrated. Power supply 1.5 v.-22 v. D.C. $£ 12 / 10 /-$ each, carr. 15/-.
CATHODE RAY TUBE UNIT: With 3in. tube, colour green, medium persistence complete with nu-metal screen, $£ 3 / 10 /$-each, post $7 / 6$.
APNI ALTIMETER TRANS./REC., suitable for conversion $420 \mathrm{Mc} / \mathrm{s}$., complete with all valves 28 v. D.C. 3 relays, 11 valves, price $£ 3$ each, carr. $10 /$-.

GEARED MOTORS: 24 v. D.C., current 150 mA , output 1 r.p.m., 30/- each 4/- post. Assembly unit with Letcherbar Tuning Mechanism and potentiometer, 3 r.p.m., $£ 2$ each, $5 /-$ post.
Actuator Type SR-43: 28 v. D.C. 2,000 r.p.m., output 26 watts, 5 inch screw thrust, reversible, torque approx. 25 lbs., rating intermittent, price $\mathbf{£ 3}$ each, post 5/\%.
SYNCHROS: and other special purpose motors available. British and American ex stock. List available 6d.

MARCONI NOISE GENERATOR TF-987/1; Used to determine noise factor of a.m. and f.m. receivers. Designed for 230 v. a.c. operation. In used condition, £ 20 each, carr. £1.

MARCONI TF-956 (CT.44) AUDIO FREQUENCY ABSORPTION WATTMETER; Large clear 6 in. scale. 1 microw. to 6 W . 225 each. Carr. 15/-. MARCONI DIVERSITY RECEIVERS; Consisting of $2 \times$ CR. 150's and associated equipment. \&175 each. Carr. £5.

MARCONI DEVIATION TEST SET TF-934: Freq. $2.5-100 \mathrm{Mc} / \mathrm{s}$. Can be extended to $500 \mathrm{Mc} / \mathrm{s}$. Deviation range $0-5,0-25$ and $0-65 \mathrm{Kc} / \mathrm{s}$. $£ 35$ each, carr. \&1

CANADIAN C52 TRANS/REC.: Freq. $1.75-16 \mathrm{Mc} / \mathrm{s}$ on 3 bands. R.T., M.C.W. and C.W. Crystal calibrator etc., power input 12 V . D.C., new cond., complete set $£ 50$. Used condition working order $£ 25$. Carr. on both types $£ 2 / 10 /-$ Transmitter only $£ 7 / 10 /-$ (few only) Carr. $15 / \%$. Power Unit for Rec., new $£ 3 / 5 /$-. Used power units in wirking order $£ 2 / 5 /-$. Carr 10/-.
AVOMETERS: Model 47A, 110 each, $10 /$ post. Model 7, $12 / 10 /$ - each, $10 /-$ post. Excellent secondhand cond. (Meters only-batteries and leads extra, at cost.)
DECADE RESISTOR SWITCH: 0.1 ohm per Rep. 10 positions. 3 Gang, each 0.9 ohms. Tolcrance $\pm 1 \% £ 3$ cach, $5 /-$ post.
total value 900 ohms per step. 10 positions, 3 Gang. Tolerance $\pm 1 \% \quad £ 3 / 10 /-$ each, $5 /-$ post.

TELESCOPIC ANTENNA: In 4 sections, adiustable to any height up to 20 ft . Closed measures 6 ft . Diameter 2 in . tapering to 1 in . $£ 5$ each $+10 /-$ carr. Or £9 for two $+£ 1$ carr. (brand new condition).

COAXIAL TEST EQUIPMENT: COAXWITCH-Mnftrs. Bird Electronic Corp. Model 72RS; two-circuit reversing switch, 75 ohms, type "N" female connectors fitted to receive UG-21/U series plugs. New in ctns., \mathbf{E} / $/ \mathbf{1 0} /-$ each,
 Type M1460-4. (New) £6/io/- each, 4/6 post.
TERMALINE RESISTOR UNITS: type 82A/U, 5000 W , freq. 0-3.3 KMC Max VSWR 1.2 Type "N" female connectors, etc. Brand new, \&30 each, carr. 15/=.
PRD Electronic Inc. Equipment: STANDING WAVE DETECTOR: Type 219, $100-1,000 \mathrm{Mc} / \mathrm{s}$. (New) E65 each, post 12/6. FREQUENCY METER: Type 587-A, $0.250-1.0 \mathrm{KMC} / \mathrm{SEC}$. New) E75 each, pose 12/6. FIXED ATTENUATOR. Type $130 \mathrm{c}, 2.0-10.0 \mathrm{KMC/SEC}$. (New) \& 25 each,
post 4/-. FIXED ATTENUATOR: Type $1157 \mathrm{~S}-1$, (new) 66 each, post $5 /-$.

ALL GOODS OFFERED WHILST STOCKS LAST IN "AS IS" CONDITION UNLESS OTHERWISE STATED

a complete stereo system for 28 gns

The new Duo general-purpose 2-way system is beautifully finlshed in polished teak veneer. with matching whalr grille. It is ideal for wall or shelf mounting either upright or horizontally
SPECIFICATION:
Impedance 10 ohms. If incorporates Goodmans high flux $6^{\prime \prime} \times 4^{\prime \prime}$ and $2 子^{\prime \prime}$ tweeter. Teak finish $12^{\prime \prime} \times 61^{\prime \prime} \times 51^{\prime \prime} .4$ guineas each. $7 / 6 \mathrm{~d}$. p \& p.
Garrard Changes from $£ 7,19.6 \mathrm{~d}$. p \& p 7/6d. Cover and Teak finlsh Plinth $£ 4.15 .0 \mathrm{~d}$. 7/6d. p \& p.
THE DUETTO Integrated Transistor Stepeo Amplifier 9 GNS.
The Duetto is a good-looking quality amplifier, attractively styled and finished. It glves superb reproduction previously associated whith amplifiers costing far more.
SPECIFICATION:-
R.M.S. power output: 3 warts per channel imo 10 ohms speakers.

INPUT SENSITIVITY: Sultable for medium or high ourput crystal cartridges and tuners. Cross. talk better than 30 Ma at $1 \mathrm{Kc} / \mathrm{c}$
CONTROLS: 4 -position selector switch 12 pos. mono \& 2 pos. stereol dual ganged volume
TONE CONTROL: Treble lift and cuf. Separate on/off switch. A preset balance control.

THE RELIANT Solid State General Purpose Amplifier
SPECIFICATION:-
OUTPUT: 10 watts into a 3 ohms speaker.
INPUTS: (1) for mike ($10 \mathrm{~m} . \mathrm{v}$.). Input (2) for gram. radio (250 m.v.) individual bass and treble control.
TRANSISTORS: 4 silicone and three germanium.
MAINS INPUT: $220 / 250$ volis.
SIZE: $10 \frac{1}{1}^{\prime \prime} \times 4 \frac{t^{\prime \prime}}{} \times 2 \frac{1}{2}$
PRICE: $6 \frac{1}{4}$ guineas in teak finished case. Less teak case $5 \frac{1}{\frac{1}{2}}$ guineas. $7 / 6 \mathrm{~d}$. p \& p MIKE TO SUIT (CRYSTAL): $12 / 6 d+1 / 6 d$. p \& p.
$8^{\prime \prime} \times 5^{\prime \prime}$ speaker $14 / 6 d+3 / p B_{1} p$. $8^{\prime \prime} \times 5^{\prime \prime}$ speaker $14 / 6 \mathrm{~d}+3 /-\mathrm{p}$ \& p^{+}.

THE VISCOUNT \qquad

Stereo Amplifier

$13 \frac{1}{2}$ GNS.
SPECIFICATION:-
integrated High Fidelity Transistor

OUTPUT: 100 watts per channel into 3 to 4 ohms speakers (20 watts monaural).
INPUT: E-position rotary selector switch 13 pos. mono and 3 pos. stereo). P.U.. Tuner. Tape and Tape Rec. Sensitivities: All Inputs 100 mV into 1.8 M ohm.
FREQUENCY RESPONSE: $40 \mathrm{~Hz}-20 \mathrm{KHz}+2 \mathrm{db}$
TONE CONTROLS: Separate bass and treble controls. TRE8LE 13 db litt and cut at 15 KHz . BASS 15 db litt and 25 db cut at 60 Hz .
VOLUME CONTROLS: Separate for each channel.
AC MAINS INPUT: 200-240v. $50 \cdot 60 \mathrm{~Hz}$.

RADIO \& TV COMPONENTS (ACTON) LTD. 21A High Street, Acton, London, W.3.

APEAK SOUND

present
PA. 25-15

A NEW
25 WATT
POWER
AMPLIFIER MODULE

Unsurpassed for power and quality

Based on a design by Reg Williamson and described in Hi-Fi News for their Twin Twenty Mk. II. this designerapproved power amplifier module is for the specialist seeking the very finest possible standards of audio reproduction. It has a conservatively rated output of 26.6 watts R.M.S. into 15 ohms and withal. is exceptionally compact and robust. The sub-miniature output transistors are housed between the underside of the baseboard and outer shield which serves also as heat sink. The power bandwidth is 20 to 20.000 Hz at less than 0.25% distortion at 20 watts. Total distortion at 1 KHz for full power of 26.6 watts into 15 ohms never exceeds 0.05%. The PA. 25-15 incorporates the very latest semiconductor devices in a fully complementary Class B configuration. Details of the required power supply unit available very shortly.

A superb specification

Output at 1 KHz into 15 ohms- 26.6 watts R.M. S. Acceptable to speakers from 8 to 15 ohms . Frequency response at 1 wattat less than 0.25% distortion- 20 Hz to 20 KHz 鿖 imput sensitivity for 26.6 watts output- 500 mV into 500 K ohms - Signal to £11.15.0
ladd $2 / 6$ p.p. if noise ratio betterthan -80 d 8 - Power requirements -68 volis $D C$.

PEAK SOUND ES.10-15
BAXANDALLSPEAKER
as described in 'Wireless World'

This is a true high-fidelity speaker which. within its range. is equal to some of todays finest instruments. With a 10 watt R.M.S. Ioad capacity. frequency response from 60 to 14.000 $\mathrm{Hz}(10 \mathrm{~Hz} \cdot 10 \mathrm{KHz} \pm 3 \mathrm{~dB})$ and 15Ω impedance. this Baxandall triumph is supplied exactly to the this Baxandall triumph is supplied exactly to the
designers' approval. The Peak Sound Kit is supplied complete and ready for immediate assembly. and includes Afrormosia teak finished cabinet size $18^{\prime \prime} \times 12^{\prime \prime} \times 10^{\prime \prime}$. This is the speaker that Hi-Fi News described as 'Rolls-Royce".

Equaliser assembly 36/- (p.p. 1/6): Speaker Unit $42 / 9+10 / 2$ P.T. (p.p. $5 /-$): Cabinet Assembly $\mathbf{E} 6.3 .6+12 / 8$ P.T. (carr. $8 / 6$) x-over for woofer ifrequired $22 / 6$ (p.p. 3/6).

OTHER PEAK SOUND PRODUCTS

PA.12-15 medium power 12 watt power amplifier module£5.19.6 (р.p. 2/6). Power unit PU, 45 for same. "Cir-Kit" adhesive copper strip for circuit building. SCU. 400 high fidelity pre-amp/tone control unit.
From your usual dealer or direct in case of difficulty. Trade enquiries invited.
PEAK SOUND (HARROW) LTD.
32 ST. JUDE'S ROAO, ENGLEFIELD GREEN, EGHAM, SURREY.
Telephone: Egham 5316

R．S．T．valve mail order co．

BLACKWOOD HALL，16A WELLFIELD ROAD
STREATHAM，S．W． 16

 ひも రひ
 CV 42 CV 11 CV 13
 CV152 CV152 CV215 CV23
 | CV 23 |
| :--- |
| CV 2 n |
| CV |
| Cl |
 $\mathrm{CV}+103$ CV 4004 $\mathrm{CV}+405$ CV 4000
 CV 4005 CV 4007 CV
 CV4 4015 CV 4024
 CV4025 CV 4031
 CV 4031 CV 4033
 CV4044 CV4045 CY4048
 CV4043 CV 404 R

 DAFP9
 DCCD
 DET1 DET2 DET2
 DET2 ${ }_{110 /-}{ }^{110 /-}$
 DET DET DF

Tel． 01.76901991649

All overseas enquiries \＆orders please address to：
COLOMOR（ELECTRONICS）LTD．
170 Goldhawk Rd．，London，W．I2．
Tel．01－743 0899

BRŪEL \＆KJAER

The following three instruments are supplied with all leads，accessories， spares and comprehensive

B \＆KREQUENCY ANALYZER TYPE 2105．47－12，000 C／s in eight ranges directly read on large iluminated scale． Selectivity variable in five db
Accuracy betcer than 1% ． $\mathbf{C 2 2 5}$ ．

B \＆LEVEL RECORDER TYPE 2304．A high speed recording instru－ ment designed for the measurement of reverberation time，noise level and and loudspeakers． 6325.
SOLATRON OSCILLOSCOPE TYPE CD 642．2．Laboratory type screen dia．Sin．，band wideh DC 12 sensitiviey approx． $100 \mathrm{~cm} / \mathrm{s}-65 \mathrm{v} . / \mathrm{cm}$ ． with $\times 1$ ，$\times 10, \times 100$ multipliers and
fine expansion control．Consrolled fine expansion control．Cllo．Carriage brig
$40 /-$
SOLATRON OSCILLOSCOPE TYPE 7115．2．Frequency range UD to The time base circuit gives switch speeds from $3 \mathrm{~cm} \mu / \mathrm{secs}$ ．to $0.3 \mathrm{~cm} / \mathrm{s}$ wion of up to $\times 10$ is also incorporated． Planastron circuit in the time base pro－ vides further delay rariable μ / secs ．to $10 \mathrm{~m} / \mathrm{seconds}$ ．The double beam display is obrained by a beam beam．alternate switch or choter swisching．E85．Carriage 30／－．
BOONTON STANDARD SIGNAL
GENERATOR MODEL TS497． （Milicary version of civil model 80．） 400 and $1,000 \mathrm{c} / \mathrm{s}$ and external modula tion．Provision for pulse modulation Piston eype attenuator $0.1 \mu-100 \mathrm{mV}$ separate meter for modulation level and carrier evel．Precision With inseruction
117 A A．C．input．With $117 v$ A．C．input．With
MARCONI SIGNAL GENERA TOR TYPE TF $144 \mathrm{G} .85 \mathrm{kc} / \mathrm{s} .-25 \mathrm{Mc} / \mathrm{s}$ Excellent laboratory cested condicion， with all necessary accessories with struction manual， 645 ．P． P ． $15 /$－ MARCONI SIGNAL GENERA $\begin{array}{ll}\text { TOR TF } 80 \mathrm{l} / \mathrm{A} . ~ & 10-300 \mathrm{Mc} / \mathrm{s} \text { ．in } 4 \\ \text { bands．Internal at } 400 \mathrm{c} / \mathrm{s} \text { ．} & \mathrm{kc} / \mathrm{s} \text { ．}\end{array}$ bands．Internal at $400 \mathrm{c} / \mathrm{s}$ ．C kc / s
External $50 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$ ．Outpu $0-100 \mathrm{db}$ below 200 mV from 75 ohm source．E85．DITTO but 801／A1／with additional high level output． $\mathbf{P} 8$ ．Both nectors，plugs，and instrucsion manual BROADBENT MICROWAVE SIGNAL GENERATOR TYPE 903. Frequency range $6,800-11,000 \mathrm{mc} / \mathrm{s}$ cis and x multiplyer delay $3-300$ U／sec．Wideh 05 to $10 \mathrm{U} / \mathrm{sec}$ ．Input for external syncronisation and modu－ lation．Ourput delayed and undelayed syncronised directly calibrated attenu ator．685．Carraige 30／
DAWE VALVE VOLT METER TYPE 613B．Range 0．03v to 300v in nine ranges．Frequency 20 c／s
me / s ．tin．rectangular meter． 250 v A． C $50 \mathrm{c} / \mathrm{s}$ fil $/ 10 / \mathrm{F}$ ．Carriage $30 / \mathrm{*}$ ．
SOLATRON LABORATORYREG． ULATED POWER UNIT MODEL SRS 151 A．Variable voltage positive （metered）．Negative output $0-170$ consinuously variable．Fixed negative output 170 v ．Up to 0.5 amps．Two
separate 6.3 v and 5 amp outpurs．Volts separate 6.3 v and 5 mmp outpuss．Volts mA meter switch．H．T．Safety cut－out．
$200 / 250 \mathrm{v}$ ．A．C． $50 \mathrm{c} / \mathrm{s}$ ．E45．Carriage $30 /$. MARCONI VIDEO OSCILLATOR TF 885A．Sine wave output $25 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{Mc} / \mathrm{s}$ in 2 bands， 5 quare wave output $50 \mathrm{c} / \mathrm{s}$ to $150 \mathrm{c} / \mathrm{s}$ in 2 bands．Freq．accur $\frac{ \pm}{20} / 250$ v．A．C．655．（Ditto but 25／12 mc / s in 3 bands／885A／1）．©85．Carriag

AIRMEC FREQUENCY STAND． ARD METER TYPE 761．Ioc， 100 c
lokg，lookc．JMc． 880 ，Carriage 30 ／

PRECISION VHF FREQUENCY METER TYPE 183． $20-300 \mathrm{Mc} / \mathrm{s}$ with accuracy 0.03% and $300-1.000 \mathrm{Mc} / \mathrm{s}$ with accuracy 0.3% Additional band curacy $+-2 \times 10-4$ Incorporating calibrating quarez $100 \mathrm{ke} / \mathrm{s}+-5 x$ 10 －b $120 / 220$ v．A．C．mains． $\mathbf{8} 5$. Carriage 22.
POLARAD UHF SIGNAL GENERATOR．Frequency $950 \mathrm{mc} / \mathrm{s}$ $2.400 \mathrm{mc} / \mathrm{s}$ in one range．Attenuator 0.1 $\mathrm{mV}-200 \mathrm{mV}$ ．Sync．selector internal
square wave，sin．，positive and negative square wave，sin．，positive and negative $30-420 \mathrm{c} / \mathrm{s}$ Pulse delay $25-350 \mathrm{u} / \mathrm{sec}$ Pulse width 5 microsec（incorporating square wave switch）．Modulation： square wave switch）．wave，external positive and negasive．Cllo．Carriage $30 /$ ．
As above but frequency $3,830-11,050$ mc / s ，counter read out，pulse delay XI ， $\times 10$ and $\times 100$ at 2.20 microsecs．Pulse
rate $\times 10, \times 100, \times 1.000$ at $1.10 \mathrm{c} / \mathrm{s}$ rate XIO，X100，
E 165 ．Carriage 30

COSSOR OSCILLOSCOPE TYPE 1049．E45，Carriage 30／－
Fuller descriptions of the following 5
SOLATRON STORAGE OSCIL－ LOSCOPE TYPE QD 910.
SIGNAL GENERATOR TYPE 62 COMPLETE WITH P．S．U． MICROWAVE SPECTRUM ANA． LYZER TYPE SA IS MANUFAC

DAWE STORAGE OSCILLO． SCOPE TOGETHER WITH TRACE SHIFTER
＂S＂BAND SIGNAL GENERATOR No． 16 MADE BY SPERRY．7．9－11 ma（2727－3797 mcs．）．Power output Modulation：A unmodulated CW ．B square wave modulated by internal free running modulator with PRF variable from 400 c to the．C Square wave modulated by internal modulator triggered by external source either sine or square．20－100v．sine or $20-100 \mathrm{v}$ ．p．t p． 685 ．P．\＆P．30／－
BOONTON＂a＇METER TYPE 160A．Frequency range $50 \mathrm{ke} / \mathrm{s}$ to $50 \mathrm{mc} / \mathrm{s} . " \mathrm{Q}$＂range 0.250 with mul． siplier of 2.5 ．Main tuning capacitor
$30-500 \mathrm{pF}$ wish separate $\pm 3 \mathrm{pF}$ inter－ polating capacitor．Power suppl 220／250vAC．©75．Carriage 30／－．
AVO VALVE TESTER MODEL 3. Measu－ement of murual conductance $0-100 \mathrm{~mA} / \mathrm{V}$ in four ranges．Screen Fllament $0 / 126 \mathrm{v}$ ．Insulation $0 / 10 \mathrm{~m}$ ohms．Rectifying valves and signal diodes can be cested under load con－ ditions，short circuiting of electrodes and carhode insulation can also be measured．Carriage 30／－．
NAGARD OSCILLOSCOPE TYPE DE 103．©85．Carriage 10／－．
PORTABLE SONTRANIC OSCIL． E22 los．Carriage 30%

HEWLETT．PACKARD MODEL

$524 B$ ELECTRONIC COUNTER． without plug in unit chis instrument
will measure frequencies from $10 \mathrm{c} / \mathrm{s}$ to will measure frequencies from $10 \mathrm{c} / \mathrm{s}$ to Frequencies are read in kc / s with the decimal point automatically positioned， and time is read in seconds，milliseconds or microseconds again with the decimal point automatically positioned．Registra－ tion is in eight places．first six on neon lamp decades，last two on meters．Self check facility from internal $100 \mathrm{kc} / \mathrm{s}$ and $10 \mathrm{me} / \mathrm{sirequency} \mathrm{standards}$. and price on request．Plsg is an optional excra．E22／10／．Carriage $15 /$ ．
RF WATT METER PMI6．Frequency $0.2 .500 \mathrm{mc} / \mathrm{s}$ ， 3 ranges $0.150,0-600$ ， $0.1,500 \mathrm{w}$ ．Impedance 51.5 ohms．＂N

P．C．RADIO LTD． 170 GOLDHAWK ROAD，W． 12

"S" METER FOR H.R.O. RECEIVERS. Brand new, $62 / 10 /$.. Carriage paid U.K. SUB.MINIATURE "PPENNY SIZE' METERS. lin. round, flush ring nut mounted MOVING IRON METERS
15 VAC $2 \frac{i n}{}$. round panel
500 VAC $2 \frac{1}{i n}$. round clip fix
$50 \mathrm{amp} 2 \frac{1}{2} \mathrm{in}$. round panel
D.C. MOVING COIL METERS
$300 \mathrm{~mA} 2 \frac{1}{2}$ in. square pane! $20-20 \mathrm{~mA} 2 \mathrm{in}$. Round panel. $30-0-30 \mathrm{~mA} 2 \frac{1}{2} \mathrm{in}$. round panel 70-150v 2 in. square, black dialluminous hand and figures
200 u A. 2 in . round panel, sealed calibro- 30 $200 \mu \mathrm{~A}$. $2 \frac{\mathrm{in} \text {. round panel }, ~}{2}$ ImA. 2 inin. round panel
1 mA .2 in . round panel sealed
5 mA .2 in . round clip-fix panel or proj.
$10-0-10 \mathrm{~mA} .2$ in. round panel

- 30 mA . 2in. round pane

75 mA . 2 in. plug in
100 mA . Itin, proj.
100 mA . I $\frac{\mathrm{in} \text {. round panel }}{}$
$100 \mathrm{~mA} .2 \frac{1}{2} \mathrm{in}$, round panel
$500 \mathrm{~mA} .2 \frac{1}{2} \mathrm{in}$. round panel.
2 amp . 2 in . round panel
25 mmp . 3 in . round prol.
01.5 V \& $0-150 \mathrm{~V} 3$ termi

100 V 4 in. square panel
50 VDC 4 in round panel
$150-0-1500 \mathrm{~mA}$. 3 3 in , round pane
1.5 KV with res. 2 in . round pane
R.F. METERS
$120 \mathrm{~mA} .2 \frac{1}{4}$ in, round panel

nong
the valve with
auarantee

33 A
$\mathbf{3 5 L A O}$
35 W
${ }_{950}$

SPARES FOR AR.88D. RECEIVERS. Ask for your needs from our huge SMALL 28V MOTORS. $150 / 200 \mathrm{~mA}$ pprox. 4,000 r.p.m. Ideal for small lans, running models, miniature drills, grinders, etc. 12/. P. \& P. 2/-
MECHANICAL TIMED DELAY RELAYS. Coil resistance 150 ohms, delay within range of few seconds. 17/-, P. \& P. 3/-

HIGH SPEED ULTRA SENSITIVE PLUG IN RELAYS with ewo 12/-. P. \& P. 2
UNIVERSAL GALVANOMETER

FOR EXPORT ONLY

Installation Kits for Cll/R2lo Sets 53 TRANSMITTER made up $10^{\text {" }}$ " as COLLINS TCS. Complete installations and spare parts.
POWER SUPPLY UNITS FOR C42 \& C4S. $12 v$ and $24 v$.
RECEIVERS R 210 .
R.C.A. TRANSMITTER TYPE ET Cryst. mule. and speech ampl. Fully tested and guaranceed. All spares available
BC 610 E \& BC 6101 TRANS. MITliers. Complete with speech amplifier BC 6/4E. Aerial zuning Unit BC 939 , exciter units, tank coils, ect.
Fully tested and guaranceed. All spares avaliable.

No. 19 HIGH POWER SETS. By introducing RF Amplifier the output
increased to 25 watts. Complete instalations supplied.

P. C. RADIO LTD. 170 GOLDHAWK RD., W. 12 $01-7434946$

ALLTEST \& COMMUNICATION EQUIP. Laboratories by fuliy qualified Electronic

COLOMOR (ELectronics)
170 Goldhawk Rd., London, W. 12

CURRENT RANGE OF BRAND NEW L.T. TRANSFORMERS. FULLY SHROUDED (*excepted) TERMINAL BLOCK CONNECTIONS. ALL PRIMARIES $220 / 240 \mathrm{v}$.

No.	SEC. TAPS	AMPS	PRICE		Carr.
	25-33-40-50.	15		0	$10 / 6$
18	25-33-40-50....	10	26 19	6	8/6
1 C	25-33-40-50....	6	¢5 19	6	8/6
	25-33-40-50.	3	6312	6	716
2A	4-16-24-32	12	E6 10	0	$7 / 6$
2 B	4-16-24-32		8417	6	716
2 C	4-16-24-32	4	63	0	6/-
20	4-16-24-32	2	62	6	5/-
	25-30.35	40	61417	6	15/-
3 B *.	25-30-35	20	497	6	$9 / 6$
3 C	25-30-35	10	¢6 10	0	7/6
3D	25-30-35	5		0	6/6
3 E	25-30-35	2	6215	0	6/6
4***	12-20-24	30	4115	0	101-
4 B	12-20-24	20		0	8/6
	12-20-24	10		0	716
40	12-20-24	5		0	6/6
5 5	3-12-18	30	¢8 15	0	716
58	3-12-18	20		0	716
5 C	3-12-18	10		6	616
5D	3-12-18	5	6212	6	$6 / 6$
6A	48-56-60			0	5/6
6B	48-56-60	1	62	6	$5 / 6$
$7{ }^{\text {®* }}$	6-12	50	c9 7	6	916
78	6-12	20		0	716
7 C	6-12	10	${ }^{3} 10$	0	6/6
7 D	6-12	5		0	5/6
8 A	12-24	1	c1 9	¢	5/6
9 A	17.32	8	6512	6	5/6
10A*	9-15	2	C	0	$5 / 6$
114.	$6 \cdot 3$	15	C2 5	0	5/6
	30-25-0.2				

Note: By using the intermediate taps many other voltages can be obtained.
Example: No. 1. 7-8-10-15-17-25-33-40-50V
2. 4-8-12-16-20-24-32V.

AUTO TRANSFORMERS
240v.-110v. or 100v. Completely Shrouded fitted with Two-pin American Sockets or terminal blocks. Please state which type required.
Type Watts Approx, Weight

Type	Watts	pprox. Weight	Price	
1	80	215	$(1) 17$	6
2	150	4 lb	627	6
3	300	$6 \frac{1}{2} \mathrm{lb}$	637	6
4	500	$8 \frac{1}{25}$	4415	0
5	1000	15 lb	6612	6
6*	1750	25 lb	81310	0
7*	2250	30 lb	21610	0

- Completely enclosed in beausifully finished metal case fitted with two 2-pin American sockets, neon indicator, on/off switeh, and carrying handle.

9 \& 10 CHAPEL ST., LONDON, N.W.I
01-723-7851
01-262-5125
AMERICAN HIGHLY STABILISED POWER SUPPLY UNIT

Regulation between $7-15$ voles D.C. at 20 amps. Fitted 0-30 D.C. ammeter, 0-15 D.C. voltmeter and overload protection switch. Buile to a very high specificacion. Bench or
rack mounting. Size $19 \times 8 \times 17$ ins. A.C. input 110 v . 50 cycles. Ex equipment but guaranteed in perfect condition. Maker's price in excess of $\mathbf{E 2 0 0}$. Our price E25. Carr. 30/: $240 / 110$ vole, 400 watts. Mains Transformer available if required. 63 exera.

EX COMPUTER LOW VOLTAGE STABILISED POWER SUPPLY UNITS
6 voles 8 amps $100 \quad 20$ voles 15 amps $£ 26$

Open chassis. Re-conditioned and guaranteed perfect. Choke/capacity transistorised smoothing. Ripple better than $3000: 1$. Incorporates printed circuit S.C.R. Board for overload protection and overload switch with manual re-set button. Insulation of high standard. Designed for $120 / 130$ volts. A.C. Operation, but transin list price.
DIMENSIONS: $6 \mathrm{in} . \times 6 \mathrm{in}$. square and between 10 in and 20 in . long according to type. All $12 / 6$ carriage.

DIGITAL HOUR METERS 6 figs inc. $1 / 10$ ths, $1 / 100$ ths 40 v . A.C. but complete with
transformer for 240 v . A.C. operation. All in plastic case. Size $6 \frac{1}{2} \times 6 \frac{1}{2} \times 3 \mathrm{in}$. Condi-
tion as new $45 /-$. P\&P $5 /=$.

COMPUTER EXTRACTOR FANS

29
Manufactured by Papst. A.C. $220-240$ volts $2800 \mathrm{r} . \mathrm{p} . \mathrm{m}$. 100 cf .m. with fibre glass filter Ex equipment. Guaranteed in perfect condidition. Size $28 \times 5 \times 5$ ins. $59 / 6$. Carr $8 / 6$

FANS ONLY
Mounted on metal plate. Size $13 \times 5 \times 3 \mathrm{in} .45 / \mathrm{m}$, Carr, 5/m. MAGNETIC DEVICES SOLENOIDS

80 v . O.C. Approx. $\frac{1 \mathrm{in} \text {. pull. Size } 1 \frac{1}{x} \times}{x}$ $1 \frac{1}{2} \times$ Vins. 5 s .0 O.
70.6 d . P. \& P. $1 / 6$.

ELECTRO METHODS 2•3v. A.C. CONTACTORS 1 Heavy Dury Change-over Contact
MAGNETIC DEVICES 6v. D.C. CONTACTORS
1 C.O. I H/D Make contacts. size
$2 \times 11 \times$ lins. 7 s. $6 \mathrm{~d} . \mathrm{P} . \& \mathrm{P} .2 / \mathrm{c}$

MICRO SWITCHES
Burgess Type CRK2-524. Lever operated. Make or break (3 tags). Three for 12 s . 6 d .

SELENIUM F.W. BRIDGE RECTIFIERS
Max. A.C. input $36 v .$. D.C. 8 amps 29/6. P. \& P. 3/6. Max. $15 /-$. P. \& P. 2/-. $2 \frac{1}{2}$ amps, $9 / 6$. P, \& P. $2 /$. Supplied new and guaranteed. Nos to be confused with surplus cypes. SMOOTHING CHOKES
Haddon totally enclosed 12 H conservatively rated at $180 \mathrm{M} / \mathrm{A}$ 17/6. P.P. 5/. $10 \mathrm{H} 120 \mathrm{M} / \mathrm{A}$. . $2 / 6$. P.P. 4/6. send 6 d . stamp for our latest price list.

NO EXCUSES! NO DELAYS! FROM STOCK! tailable voltage thansforwizis

50 AMPS

 FOR IMMEDIATE DELIVERY.

Souble Wound Variable

Transformers

Fully isolated, low tension Secondary winding ${ }^{\text {Innut }} 2300^{\circ}$ A.C.
OUTPUT
CONTINUOUSLY VARIABLE O-36 v.A.C.
$0-36 \mathrm{v}$. at 5 amp . $£ 9.12 .6-$ p. \& p. 8/6

These fully shrouded Transfor-
mers, designed
mers, desizned to our specifications, are ideally suited for Educa. tions, are ideally suited for Educa:
tional, Ind ustrial and Laboratory
unee.

SPEEDIVAC
high voltage
high frequency
GENERATOR
Inpue $100 / 110$ volts or $200 / 250$ volts AC/DC. Output 19 KV variable Ideal for sesting insulasion, vacuum, leakage path, gas discharge lamps, neon etc. A useful ozone and HF supply. Manufactured by Edwards High Vacuum Led. Brand new in maker's polished wooden carrying case Offered at 'fraction of maker's price. $\in 10.0 .0$ plus $7 / 6 \mathrm{~d}$. p. p .

5Amp.AC/DC VARIABLE VOLTAGE OUTPUT UNIT $\begin{array}{ll}\text { npur } 230 \\ \text { Output } 0-250 & \text { v. A.C. }\end{array}$ Outpue 0-240 v. D.C. Fitced large scale ammeter and volemeter. fused. Strong actrace cused. Strong actrac cive metal case ISin. \times
8itin. $\times 6$ in. Weighe 24 b. Infinitely variable, mooth stepless voltage ariation over range. Similar in appearance o illustration below.

CONSTANT VOLTAGE TRANSFORMER

LATEST TYPE SOLID STATE variable controller

36 velt 30 amp. A.C. or D.C. Variable L.T. Supply Unit
 CONTINUOUSLY
VARIABLE 0.36 v.

SERVICE TRADING CO

KIGHT SENSITIVE SWITCHES Kit and parts including ORP. 12 Cadmium
Sulphide Photocell. Relay Translsor and Sulphide Photocell. Relay Transisior and High Speed Relay for 6 or 12 vols operasions. Price $25 /$ /- plus $2 / 6 \mathrm{P}$. \& P.
ORP 12 and Circuit $10 /$ - post paid.

220/240 A.C. MAINS MODEL incorporates mains transformer rectifier and special LIGHT SOURCE AND PHOTO CELL MOUNTING
Precision engineered lighe Precision engineered lighe source
with adjustable lens assembly and
vencilated

此 ventilated lamp housing to take
 MBC bulb. Separate photo cell mounting assembly for
ORP. 12 or similar cell with optic window. Both units are single hole fixing. Price per pair $\kappa 2 / 15 / 0$ plus $3 / 6$

VAN DE GRAAF ELECTROSTATIC GENERATOR, fitced with motor drive for 230 v. A.C. giving a potential of approx.
50,000 volts. Supplied absolutely complete including accessories for carrying out a number of interesting experiments, and full instructions. This instrument is completely safe, and ideally suited
for School demonstrations. Price K $7 / 7 /=$, plus $4 /-$ P. \& P. L't.

200/250 v. AC HORSTMAN 20AMP TIME SWITCH 2 en/off every 24 hrs . at any pre-set time
Fitted in metal case 36 hr . spring reserve Used but fully cested. Fraction of maker"s
 price. 83.19 .6 plus $4 / 60$. post and
Available with solar dial on request.
 LATEST TYPE SELENIUM BRIDGE RECTIFIERS 30 volt 3 amp., $11 /$, plus $2 / 6 \mathrm{P} . \& \mathrm{P}$.
30 volt $5 \mathrm{amp}, 16 / \mathrm{p}$, plus $2 / 6 \mathrm{P}$ \& P .

- NICKEL CADMIUM BA
- - NICKEL CADMIUM BATTERY Sintered Cadmium Type I. 2 v. 7 AH. Size: height
3 inin., width $2 \mathrm{lin} . \times$ I $1 /$ in. Weight: approx. 13 oxs. 3lin., width 2 ilin. $x / 1 / 10 i n$. Weigh
Ex-R.A.F. Tested $12 / 6$. P. \& P. 2/6.

DRY REED SWITCHES

$2 \times$ lamp Dry Reeds (makes contacts) mounted in 870 ohm $9-18 \mathrm{v}$ coil. Size 3 in . $\times 3 \frac{1}{\mathrm{i}} \mathrm{in} . \times \frac{1}{2} \mathrm{in}$. New. Price $8 / 6$ per pair. Post Paid.
6 of the above mentioned
6 of the above mentioned units (12 Reeds, 6 colls) fitted in
metal box. Size 4 in . $\times 3 \mathrm{3} \mathrm{in}$. $\times 11 \mathrm{in}$. Mig. by Elliott Bros. metal box. Size $4 \mathrm{in}, \times 3 \mathrm{lin}, \times 1 \mathrm{in}$. Mig. by Elliott Bros.
New $45 /-$ each. Pose Paid. Telephone Dials (Now) 14'6d. Post Paid. SOLAR OIL-FILLED CONDENSER. T 240 mfd. for 230 V.A.C. 600 volu D.C.
Overall size $14 \mathrm{in} . \times$ in. $\times 5$ in. plus feet. Overall size 14 in . $\times 9$ in. $\times 5 \mathrm{jin}$. plus feet.
Weight 16 lb . Guaranteed perfect. Manufacturer's packing. Price $£ 7 / 10 /=$. Carriage $15 /-$.
AUTO TRANSFORMERS. Seep up. step down. $110-200-220-240$. Fully shrouded.
eype $61 / 10 /$ each. P. \& P. $4 / 6.500$ wat sype $£ 1 / 10 /-$ each. P. \& P. $4 / 6.500$ watt eype $44 / 12 / 6$ each,
P. \& P. $6 / 6$. 1.000 wate eype $£ 5 / 15 /-$ each, P. \& P. $7 / 6$. - LEVER MICRO SWITCH Brand new lever operated micro switch.
20 amp. A.C. Price $4 / 6$ each plus $1 / 6$ P. \& P.
5 for $\& 1$ posi paid. - MOVING COIL HEADPHONE Soft rubber ear-pieces with M/C Mike firted 5 -way plug as on No. 19 set. New, in maker's packing, $16 / 6$,

220/240v. A.C. COOLING UNIT

100 WATT POWER RHEOSTATS (NEW) Enamel, heavy duty brush assembly designed for continuous duty. AVAILABLE FRIOM STOCK IN THE FOLLOWING II VALUES: 2am 2a., 50 ohm l.4a., 100 ohm la., 250 ohm $7 \mathrm{a}, 500 \mathrm{ohm} 45 \mathrm{a}$, 1,000 ohm 280 mA ., $1,500 \mathrm{ohm}$ 230 mA . $2,500 \mathrm{ohm}$ 2a. Diameter 3 tin . Shaft length lin. dia. $/ 5$ in., $27 / 6$. P. \& P. $1 / 6$.
50 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 /$ 2.500 ohm, $21 /$ W. P. \& P. 1/6. ohm, 14/6, P, \& P, I/6.
Black Silver Skirted knob calibrated in Nos. 1-9. I $\frac{1}{2}$
in. dia. brass bush. Ideal for above Rheostats, $3 / 6$ each.

Bromersiniesprate

 powerful mocor offered ${ }^{\text {at }}{ }^{2}$. . \& P. 10
BODINE TYPE N.C. 1 GEARED MOTOR
(Type I) 71 r.p.m. corque 10 Ib , in
Reversible $1 / 70$ th h.p. 50 cycle. 38 amp (Type 2) 28 r.p.m. corque 20 lb . in

 The above two precision made U.S.A. motors are offered in 'as new' condition. Inpur voltage of motor
115 v A.C. Supplied complete $115 v$ A.C. Supplied complete with eransformer for
$230 / 240 v$ A.C. input 230/240v A.C. input Price, either cype $£ 2.17 .6$ plus $6 / 6$ P. \& P. or less eranslormer $£ 2.2 .6$ plus $4 / 6 \mathrm{~d}$. P. \& P.
These motors are ideal for rotating aerials, drawing curtains, display stands, vending machines etc.
$230 / 250$
A.C. SOLENOIO $230 / 250$ A.C. SOLENOID
Heavy dury type. Approx. 31 b . pull. Heavy dury type. Approx. 31b. PL
$17 / 6$ plus $2 / 6$ \& \& P.
12/24 v. D.C. SOLENOIO
Approx. 8 oz. push, $8 / 6$ plus $1 / 6$ P. \& P

A.C. CONTACTOR

A.C. CONTACTOR
 contacts. $230 / 240$ ®. A.C. Brand new. $22 / 6$ olus $1 / /$ P. \& P.

C̄T $\overline{82}$ NOISE $\overline{G E N E R A T O R}$

munication and VHF receivers. Self con tained audio output meter and mains

power supply. Mc / s Frequency range
100Kc/s $80 ~$

43 ohm or ${ }^{2} 5$ ohm imped

Postage and Carriake shown

Latest American. New. Plastic THYRISTOR 400 P.I.V. 8 amp. Dala sheet. $19 / 6$ pose paid.
COPPER LAMINATE PRINTED CIRCUIT BOARD. Large sheet $15 \frac{1}{2} \times 5 \frac{1}{3}$. 3 for $10 /=$ post paid. (3 minimum order).

MINIATURE UNISELECTOR

3 banks of 11 positions, plus homing bank. 40 ohm coil. 24-36v.D.C. operation. Carefully
removed from equipment and

UNISELECTOR SWITCHES NEW 4 BANK 25 WAY 25 ohm coil, 24 V. D.C.
$\mathbf{8 5} / 17 / 6$, plus $2 / 6$. P. \& P

8-BANK 25-WAY FULL WIPER

 24 v. D.C. operation, ©7/12/6. Plus 4/- P. \& P.| RELAYS
 BULK PURCHASE ENABLES US TO OFFER THE FOLLOWING NEW SIEMENS PLESSEY, ete. MINIATURE PLUG IN RELAYS COMPLETE WITH BASE, AT A FRACTION OF MAKER'S PRICE | | | |
| :---: | :---: | :---: | :---: |
| COIL | WORKING
 VOLTAGE | CONTACTS | |
| $\stackrel{\Omega}{280}$ | $6-12$ | $\begin{aligned} & \text { CON } \\ & 2 \mathrm{c} / \mathrm{o} \end{aligned}$ | $\begin{aligned} & \text { PRICE } \\ & 14 / 2 \end{aligned}$ |
| 280 | 9-18 | $4 \mathrm{c} / \mathrm{o}$ | 15/6 |
| 700 | $12-24$ | $2 \mathrm{c} / \mathrm{o}$ | 12/6 |
| 700 | 16-24 | $4 \mathrm{c} / \mathrm{O}$ | 15/6 |
| 700 | 16-24 | 4M 2B | 12/6 |
| 1250 | 20-40 | 2 c/o Heavy Duty | 12/6 |
| 2500 | 30-50 | 2 c/o Heavy Duty | $12 / 6$ |
| 5800 | 50-70 | $4 \mathrm{c} / \mathrm{O}$ | 101- |
| 9000 | 40-70 | $2 \mathrm{co}$ | 10\% |

INSULATED TERMINALS
Available in black, red, white,
yllow, blue and green. New
$1 T / \%$ per doz. P. \& P. $2,-\infty$

SANGAMO WESTON

Dual range volmmeter. $0-5$ and $0-100 \mathrm{v}$.

A.C. AMMETERS $0-1,0-5,0-10,0-15,0-20$
 2 in. Flush round all at $21 /-$ each. P. \& P. extra.
C- 300 v. A.C. Rect. M-Coil $2 \mathrm{fin} .29 /-~$

'AVO' METER MODEL 7

Supplied fully checked and cested on

 all ranges and in excellent condition Complete with batteries andPrice $t 13 / 10 /=$. P. \& P. $7 / 6 \mathrm{~d}$.
Avo (Regrea not sold separately)
 'AVO' MODEL 47A
Ex-Admiraley in first class condition. complece with 'AVO' MODEL 48A
Ex-Admiraley in good condition with instructions, leads, plus D.C. Shunes for 120 Amp and 480 Amp. A.C. TransComplete outfir in fitted case. $\& 15 / 0 / 0$, P. \& P. IO/-
Comer
DEMONSTRATION TRANSFORMER (STENZYL TYPE)
 ampere turns, induction modified model. $614 / 10 / \mathrm{F}$

L.T. TRANSFORMERS

All primaries $220-240$ voles.

Type No. Sec. Taps	Price	Carr.
$30,32,34,36 \mathrm{v}$. at 5 amps .	C4 5	6/-
$30.40,50 \mathrm{v}$. at 5 amps .	C6	6/6
$10,17.18 \mathrm{v}_{\text {, at }} 10 \mathrm{mmps}$.	C4 10	4/6
46.12 v . at 20 amps .	C5 17	6/6
5 17, 18, 20 v. at 20 amps.	C6 12	6/6
6 6, 12, $20 \mathrm{v}, 2 \mathrm{zt} 20 \mathrm{mmps}$.	665	7/6
24 v . as 10 amps .	6415	O 5/6
$4,6,24,32 \mathrm{v}$. at 12 amps .	C6 10	6/6

SOLID STATE-HIGH FIDELITY

 AUDIO EOUIPMENTMono or Stereo Audio, Equipment devel.
oped from Dinsdale Mk. II-each unit or oped from Dinsdale Mk. Il-each unit or
system will compare favourably with other professional equipment selling at much higher prices.
COMPLETE SYSTEMS FROM
£15.5.0
THE FINEST VALUE IN HIGH FIOELITYCHOOSE A SYSTEM TO SUIT YOUR NEEDS AND SAVE POUNDS

MAT MONO OR THE STEREO
£8.10.0 POST PACKING 5/

All units available separately.
SEND FOR FREE BROCHURE (No. 21) TODAY! DEMONSTRATIONS DAILY AT '3Q3'EDGWARE ROAD

INTEGRATED TRANSISTOR AMPLIFIERS hat ${ }^{\text {Wa }} 12$ WATTS STEREO
 DESIGNED UNITS favour the user in so many wavswitaptability, with freedom for battery or mains operation. adaptability, with freedom for batterv or mains operation.

MA66
$\mathbf{£ 1 6 . 1 0 . 0}{ }_{\text {PST2 }}^{\text {OPTIONAL MAINS }}$
Illustrated leaflets 12 and 14 FREE on request.
 Acclaimed by everyone The MAYFAIR

THE MAYFAIR 99 GNS
BROCHURE 9

The GROSVENOR

palts subplied, he tully guarmieed hull arter sales service did davice
years of enjovable entertain
inment
PRACTICAL ELECTRONICS - ELECTRONIC ORGAN KIT
areable 80 supply Paris as describeco in this serles Derabls on reques
ORGAN COMPONENTS: COMPLETE RANGEIN STOCK SAANO 61 NOTE KEVBOAROS 2105 AMPGOLD CONTACTS COILS ANO CHONES REVE BGE RAIION SPRINGS AND UMITS. SITP TABS ANO ASSEMBLIES. PEDAL BOAROS. RHODIUN AND GOLO CLAO WIRE. AISO PRINTEO CIRCUITS ETC COMPLITE RAMGIS FOA TRANSISIORISEI ORGANS. ASKFDA NEW
PRICE LISTS WITH OETAILS LEAFLET 9B ALL ENOUIRIES TO ORGAN DEPT. MR ELVINS

JHE GROSVENOR
KITS FROM
BROCHURE 98

PORTABLE GEIGER COUNTERS	(20)
	VhF FM SUPERHET TUNER MKII SANOWIOTM P PRINTEO CIRCUIT CONSTRUCTION \qquad \qquad \qquad \qquad \qquad PARTS TOTAL COST E6.19.6 DECODEA E5.19.6. (CABINET 20/ EXTRA) ASK FOR LEAFLET 3
	MANUFACTURERS-DISTRIBUTORS We poblin ouaviry stm. Conouctor TO OETAIN YOUR COPY WRITE TO US Headed Notepapm plense) refuesing our SEMI We purchase medium 10 large quantities of Transistors and Devices excess to Manulacturers and Distributors requlrements. Write or phone 723.0401 exin. 4.

HIFF equipment to suit EVEKYPOGKII

VISIT OUR NEW HI-FI CENTRE at 309 EDGWARE ROAD
and Save up to 255 ON SEPaRATE UNITS OR THE SYSTEM OF YOUR CHOICE for al/ leading makes
AMPLIFIERS
TUNERS
DECKS

SPEAKERS
MICROPHONES
TEST EQUIPMENT HEADPHONES
CARTRIDGES, etc.
All with

Terrific Savings
to pay us a VISIT
COMPLETE SYSTEMS from $\mathbf{£ 4 6 - S a v e s ~} \mathbf{£ 1 2 . 1 0 . 0}$
to pay us a VISIT! Send tor new 8 -page illustrated $\mathrm{Hi}-\mathrm{Fl}$ list $16 / 17$

303 Edgware Rosa, London, W.2. Mail Order Dept.
all types of Components, Organ Dept. (i1) 723-100s/s
309 Edgware Road, London, W.2. High Fidelity
Sales, P.A. and Test Equipment, Record Decks(01) 723 enes

ELECTRONIC BROKERE

BRAND NEW
LABORATORY TEST EQUIPMENT AT LESS THAN HALF PRICE:

8peclicatlon. Range: 0.01-11.10 Megolim in 111,0 Megohm divalons. Accuracy: 0.00%. Maximum power rating: 0.iw per List price 260 . Our price $£ 22 / 10 /$ -

PORTABLE WHEATSTONE
 1. 0.05 to 5 ohms, 2. 0.5 to 50 ohms. 3. 3 to 500
 meter scale: $10-0 \cdot 10$. Cabe: Moulded plastic, Temperature; $+1010+35$ deg. O . Operating Hunidity : Up to 80% R.H. Dimerisione: $200 \times$

SET OF MEASURING INSTRUMENTS

specifacation Type: Moring Coil D.C. Ranges $0-75 \mathrm{mV}, 0-3 \mathrm{~V}, 3.15-150 \mathrm{~V}, 3.150-450 \mathrm{~V}, 0.3-0.75 \mathrm{~A}$ $1.5-7.5 \mathrm{~A} .18-30 \mathrm{~A}$. Bcale Lenirth: 82mu. Accuracy:
1.0% \&hunts: 1. $0.3-0.75$ amps. 2. 1.5.7.5 amps. 3. $10-30$ ampa. Case: Moulded plantic. Carrying Case: stove ennmelled metal.
List price 830 . Our price $£ 18 / 18 / 6$.
illustrated LEAFLETS
AVAILABLE

Specitication, Range: $0.00002 \mathrm{uF}-\mathrm{luF}$ in Range: $40 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s}$ for all decades except $\mathrm{X} 1=40 \mathrm{c} / \mathrm{s} \cdot 5 \mathrm{Ke} / \mathrm{m}$. Case: Hammer finithed Lutat price 260 . Our price $£ 22 / 10 /$ -

- A Special price of f (6 is oftered it the Burh Value Rezirtance Boz, Decade Capacitise Box, Mutual Inductance Box, Mutual Inductance
Coil.

PORTABLE MULTIRANGE

 $2.4212 .56 \cdot 30,60.300,120-600$. $240 \cdot 1.200$ E
$1.200 \cdot 6.000$ V. A.C. 3.333 ohmat, $0.3 \cdot 30$ Kohms. $1.200 \cdot 6,000$ V. A.C. 3.333 ohma, $0.3 \cdot 30$ Kohms,
$0.03-3$ megohma D.C. Redirtance -12 to +78 $0.03-3$ megohma D.C. Regirance - 12 Relitance
Declbels. Frequency: 50 eps. Input Res D.C.: 20.000 ohma/voit. Input Renistance A.C.
2.000 ohmn/volt. Temperature Range: -10 to +50 deg. C. Dimeasions: $255 \times 215 \times 170 \mathrm{~mm}$ Weight: 8 kg . Bupplied with 2 voltage dividera.
$\mathrm{H} . \mathrm{V}$. leade. eppure rectillers, 1.5 \& 82.5 V . hathery.
Lhst price 225 . Our price $£ 12 / 19 / 6$.

Specitication. Type: Moving Coll, D.C. Range: Lopeth: 127 mpn . Chart Speeds: 20 , $60,180,600$ 1800 and $5400 \mathrm{~mm} / \mathrm{hr}$. Prechion: 1.5%. Shunts 75 mV (Internal). Operatine Temperature: +F
to $+60^{\circ} \mathrm{C}$. Dimensions: $180 \mathrm{~h} \times 163 \mathrm{w}$ 245 mm . Weight: 5.5 kg . Complete with: 10 chart rolls, gears, inks, plpette, scale template and component cane. List price \&65. Our price £35. thustrated leafets available.

SOLA CONSTANT VOLT

SOLA CONSTANT VOLT $210-250 \cdot 600$ watte. $£ 25$.

EMI. BTRI Tape Reconder. Fully overhanled Cossur 1035. Overhauled

2175 es2.10.0 £25.0.0
Cossor 1035 м Callers only

LIMEAR

THYRISTER CONTROLLED LIGHT DIMMER 600 w . module. Idealls muite able for photollood or speed
controller etc. Will
intount
controller, etc. Will thount
lnto etandard socket boxes.
Our price 48/8

GIANT PURCHASE:
 of test equipment from a number of well known MANUFACTURERS' LABORATORIES DUE TO RE-EQUIPMENT. SEND FOR COMPREHENSIVE LIST oscilliscopes, oscilloscope Cameras, power supplies TRANSISTOR TESTERS, RESISTANCE BRIDGES, VERNIER POTENTIOMETERS, GALVANOMETERS, OSCILLATORS AND METERS, ctc.

FIFTEEN TURN 5400° ROTATION
 £6.10m
£6.10s.
 FIVE TURN 1800° ROTATION
1.5太Colvera.CLR 2605 . . . 40/ SINE COSINE Colvern 8601.
Colvern 9501 CLR $10604-$ Can

10K $10 \mathbf{K}$ с........ $\varepsilon 12.10$. PRECISION BECKMAN 40 TURN 14,400 ROTATION
rirewound Precision Potentiometer. EE 107A

B
 LOW COST ELECTRONIC AND SCIENTIFIC EQUPPMENT AND COMPONENTS

HYSTERESIS CLUTCH MOTOR with lategral clutch allowing the motor to drop
out of engagement with the gear train, thereby facilitating eary remetting when used in tlmers or

TORQUEMOTOR 225 BY ELLIOTT Origthally denigned to opernte hydraulic valves or temperature, altitude and vibration. The torque-
motor lo practically unaffected by vibration of sudden shook, l.e. consists of a moviag ifon rotor with atravel of 7 degrees either side of centre.
MIN TORQUU\& (gin-cma) 500 at zero at 6 degree. 70 gmin cun. Totai hyaterea
current $45 \mathrm{~m} / \mathrm{A}$ e9.10.0.
FERRANTI HIGH SPEED 5 HOLE 20 CHARACTERS per mecund reader. £19.10.0.

MEMORY PLANES

Perrite core memory planee with wired feerrice cores. interenting exhibit in the demonatration of a com-
putor. Mounted on plastic rasterial. frame $5^{-} \times 8^{\circ}$ Consisting of matrigea

SINGLE PEN RECORDER
BY RECORD ELECTRICAL

(Thus.). 3 in. chart, senaitivity 800 micro nmps.
 complete with chart
Our price $\$ 49.10 .0$.
TRANSITROL 2 POSITION INDICATING TEMPERATURE CONTROLLER
ETHER
TYPE 990

Completely trannis-
direct deflecting
unite for Indicating
accurately over a wide controlling temperature signal can be converted linio D.C. Beneitivity 10 ohmi per M.V. Minimum F.S.D. 8 M.V. Cold unction compenastion. theramocouple reak
protection. Coppe compenation. Calbrated scale
leagth, $6.5 \mathrm{in}, 0-800$ dearees centigrade meevracy
 Mailes supply $100-200$ v. Control switching aud
Thermocouple connections all at hack of case. Thermocouple connectionk all at hack of case.
Our price $£ 22$. 10.0. List price C 49 . New condition.

DIGITAL MAGNETIC DATA STORAGE DECK Seven track record replay heads These machnes originally ex-computers,
but lend ddeally for une sa nudio stereo mulli.track recorling units or data nomare.
Recorl and Play back H ead ences asd in
 the operator to monitor instantly while
reourling croostalk belween tracks abso-

 captan motor and $2 w 0$ varible-speed
rewind motors. Electro proumatlic capetan

 All deek furchon push buttons sre lllumin-
ated and are brumht our to separate
multicere leade

BRAND NEW S.E. LABORATORIES TRANSDUCER ATrpluaerfae Dinodulutur

 Lint price $\varepsilon 70+$ 0-2000 p.e. PHOTOMUITIPLIER VMPIIA的 (CV 2317) by 20th Century Electronic Caihodesensiltvity $40 \mu \mathrm{~A} / \mathrm{L}$. Operating volts for 10

PROGRAMME BOARDS BY
SEALECTRO. These buards are batcally
 X.Y Matrix with two contact decke in the Z Plane
runnirig at 90 degreen to euch other. Contact is made by elther, shorting or plugging in plas. Ideal for
prototype work, etc. Boards avallable in 16×16 2 plane £8.5.0. 24×002 plane $£ 12 \cdot 10.0$. Plns available $1 / 3$ each.

ADVANCE TRANSISTORISED DC
STABILISED POWER UNITS
STABILISED POWER UNITS

"Y" SCAN DIGITAL SHAFT ENCODER BY MOORE REED TYPE 18 DV-19-EP $118 \quad 3$ diacts. \&ixe 18.

SPEECH INVERTER MI.7I8I-A
The R.C. A. speech laverter is a device lateaded for une in radio telephone Inotaliatlons where privacy in a prime conslderation.
The equipmeat when used to condunction with the R.C.A. M1.7182 Hybrid Transormers enablee parallel twowny con. verastione on a slogle telephone pair lino at each herminal of the
communcations syatem. What inversion, apech fed loto the transmitting thverter circuit will feed the radio tranamitter with
 they pasn through a receiving laverter circult at the other end
of the communication channel. (Used onal under Licence in U.K. of the communicat
HYBRID UNIT MI-7I82 The Fiprid Unit it designed tor une with the Speech Inverter where single pali of telephone wire whose electrical characteristica are ensentially conatant. When the Hybrid Unth is proper iy connected and balanced to the iline, highathen
output circuit and the tranamitter laput clrcuit. $£ 10.10 .0$.

EYERSHED BRIDGE megger 250 wott, 50 meg. Insubation teater	VACTRIC I44-WAY HIGH SPEED SWITCHES, consiating of 24 negmente to olx bank. 8000 samplen per second can be obtatned rom these awitchea. Ideally suitable for data Lect rentatance penmittiag high apeed samplitag of the most difficuit tranmiucers. Pulae generator for difital counting. Brand new. 225.
	DIFFERENTIAL PRESSURETRANS- DUCERS by Blfam Lw. G.B. Type H33 Range $\pm 900 \mathrm{MB}$ Resistance 942 ohms. Our Price £19.10.0
selector wwitch for insulation, reslatance and v:arlety measurementa. 299.10.0. 500 volt $0-100$ meg. with tarles Loop. £69.10.0.	HOLLERITH SO COLUMN CARD VERIFIER. Complete with Veriner by ICT, Type No. H1 122/2489. Good condition £95.

ORGAN BUILDERS!

SILICON N.P.N. TRANSISTORS SUITABLE FOR FREQUENCY DIVIDER CIRCUITS $1 / 6 \mathrm{~d}$. each or $£ 5$ per 100 .

Latest list of transistor stock. All brand-new and to manufacturers specifications.							
NKT11	9/3	NKT401	18/-	BFX84	6/6	2N2219	10/9
NKT12	7/3	NKT402	19/3	BFX85	8/-	2N2219A	12/6
NKT72	5/-	NKT403	16/-	BFX86	6/6	2N2220	7/3
NKT73	5/-	NKT404	13/3	BFX87	8/-	2N2221	8/6
NKT124	8/6	NKT405	14/9	BFX88	7/3	2N2221A	10\%
NKT125	5/9	NKT406	13/3	BFY50	5/-	2N2222	10/9
NKT126	5/-	NKT420	40/-	BFY51	4/6	2N2222A	12/6
NKT135	5/-	NKT451	13/3	BFY52	5/-	2N2297	9/3
NKT137	6/6	NKT452	12/6	BFY53	4/6	2N2368	4/6
NKT210	5/9	NKT453	8/-	BFY90	29/6	2N2369	4/6
NKT211	5/-	NK T603F	6/6	BSX19	4/6	2N2369A	5/-
NKT212	5/-	NKT613F	7/3	BSX20	4/6	2N2483	8/6
NKT213	6/6	NKT674F	5/-	BSX60	16/6	2N2484	$10 / 9$
NKT214	4/6	NKT677F	4/6	BSX61	10/-	2N2220A	10/9
NKT215	5/-	NKT713	5/-	BSY95A	3/9	2N2904	10/9
NKT216	10/-	NKT717	8/-	2N696	5/-	2N2904A	12/-
NKT217	10/9	NKT734	5/-	2N697	5/-	2N2905	15/6
NKT219	5/-	NKT736	6/6	2N706	3/-	2N2905A	18/-
NKT223	$5 / 9$	NKT773	4/6	2N706A	3/-	2N2906	12/6
NKT224	4/6	NKT781	5/-	2N708	4/6	2N2906A	13/3
NKT225	4/6	NKT10419	51	2N709	11/6	2N2907	14/-
NKT229	5/-	NKT10519	5/8	2N914	5/-	2N2907A	$20 / 9$
NKT237	7/3	NKT10339	6/6	2N918	11/6	2N3053	5/9
NKT238	4/6	NKT10439	7/3	2N929	7/3	2N3055	$20 / 9$
NKT239	5/-	NKT12329	11/6	2N930	8/-	2G345	4/-
NKT240	4/6	NKT12429	14/-	2N1131	8/6	2G371	/
NKT241	5/-	NKT13329	5/-	2N1132	10/-	2G378	4/-
NKT242	3/-	NKT13429	5/-	2N1302	4/6	OC22	10/-
NKT243	14/-	NKT35219	22/3	2N1303	4/6	OC204	6/-
NKT244	3/-	NKT16229	11/6	2N1304	5/-	OC44	6/-
NKT245	3/8	NKT20329	12/6	2N1305	5/-	OC45	6/-
NKT261	3/9	NKT20339	8/6	2N1306	$6 / 6$	ASZ17	10
NKT262	3/8	BC107	4/6	2N1307	$6 / 6$		
NKT264	3/9	BC108	3/-	2N1308	$8 / 6$	Quantity	
NKT 271	3/9	BC109	4/6	2N1309	8/6	Discount:	
NKT272	3/9	BCY55	70/-	2N1613	$5 / 9$	$\begin{array}{llr} 25 / 49 & \text { 2. } & 5 \% \\ 50 / 99 & \cdots & 10 \% \\ 100 / 299 & \cdots & 15 \% \\ 300 / 999 & . & 20 \% \\ 1,000 & . & 25 \% \end{array}$	
NKT274	3/9	BCY70	$5 /=$	2N1711	6/6		
NKT275	3/9	BCY71	9/3	2N1893	12/6		
NKT281	5/-	BCY72	4/6	2N2217	7/3		
NKT302	16/6	BDY20	22/3	2N2217A	15/6		
NKT304	13/3	BFX29	11/6	2N2218	8/6		
NKT351	11/6	BFX30	13/3	2N2218A	10/-	all one	pe.

Unmarked transistors (tested) similar to
2N753 1/6, BSY28 1/6, BSY65 1/6, OC44 1/6, OC711/1/, OC72 1/-.
ORP12 CADMIUM SULPHIDE LIGHT-SENSITIVE RESISTORS 9/- each.

GLANT-SIZE SELENIUM SOLAR CELLS-PRODUCE UP TO 67 mm diameter $10 /=$ each $50 \mathrm{~mm} \times 37 \mathrm{~mm}$

MULLARD POL.YESTER CAPACITORS FAR BELOW COST PRICE $01001 \mu \mathrm{~F} 400 \mathrm{~V}$ $0] 0015 \mu \mathrm{~F} 400 \mathrm{~V}$
$0.0018 \mu \mathrm{~F}$
400 V $0.0018 \mu \mathrm{~F} 400 \mathrm{~V}$ 3d. $\quad 0.15 \mu \mathrm{~F} \quad 160 \mathrm{~V}$ $0.01 \mu \mathrm{~F} \quad 400 \mathrm{~V}$ $\begin{array}{lll}3 \mathrm{~d} . & 0.22 \mu \mathrm{~F} & 160 \mathrm{~V} \\ \text { 3d. } & 0.27 \mu \mathrm{~F} & 160 \mathrm{~V} \\ \text { 3d. } & 1 \mu \mathrm{~F} & 125 \mathrm{~V}\end{array}$ 3d.

RECORD PLAYER CARTRIDGES. COMPLETE WITH NEEDLES. GP $67 / 2$ Mono $15 /-$, GP $91 / 3$ Compatible $£ 1$, GP $93 / 1$ Crystal Stereo $25 / \mathrm{m}$, GP 94/1 Ceramic 25/-.

TRANSISTORISED SIGNAL INJECTOR KIT 10/-, SIGNAL TRACER KIT $10 / \mathrm{s}$, CAR REV. COUNTER KIT $10 / \mathrm{l}$.

VEROBOARD

2 t in. $\times 1$ in. 0.15 matrix	1/3	$17 \mathrm{in} . \times 3 \%$ in. 0.15 matrix	$14 / 8$
3 l in. $\times 21$ in. 0.15 matrix	3/3	$31 \mathrm{in} . \times 2 \mathrm{in}$ in. 0.1 matrix	$4 / 2$
31 in. $\times 3 i$ in. 0.15 matrix	3/11	31 in. $\times 3 \%$ in. 0.1 matrix	4/9
$5 \mathrm{in} . \times 2 \frac{1}{2}$ in. 0.15 matrix	$3 / 11$	5 in. $\times 2 \frac{1}{2}$ in. 0.1 matrix	$4 / 7$
$5 \mathrm{in} . \times 3 \mathrm{i}$ in. 0.15 matrix	5/6	$5 \mathrm{in} . \times 3 i \mathrm{in} .0 .1$ matrix	5/6
17 in. $\times 24$ in. 0.15 matrix	11		

17 in. Xat Cutter $7 / 6$ Pin Insert Tool $9 / 6$ Terminal Pins 3/6-36.
Spot Face
Special Offer! Spot Face Cutter and $524 \mathrm{in}. \times 1 \mathrm{in}$. boards, $9 / 9$ only!
PAPER CONDENSERS, Mixed bags $0.001 \mu \mathrm{~F}$ to $0.5 \mu \mathrm{~F}, 12 / 6$ per 100 . SILVER-MICA, Ceramic, Polystyrene Condensers. Well assorted. Mixed types and values, $10 /=$ per 100 .
RESISTORS. Mixed types
1,000 . Wire-wound resistors. 1 watt to 10 wat 1 wats. $6 / 6$ per $100,55 /-$ per Transistors. Mixed, unmarked, mainly O.K. $7 / 6$ for 50 .

12 VOLT TRANSISTORISED FLUORESCENT LIGHTS. HALP NORMAI. PRICE! 8 watt 12 in. tube. Reffector type $£ 2 / 19 / 6$, 15 watt IDEAL FOR CAMPING OR CARAVAN HOLIDAYS! A BRIGHT LIGHT FOR VERY LITTLE CURRENT

ELECTROLYTIC		CONDENSERS			6 volt	$\begin{aligned} & 320 \mu \mathrm{~F} \\ & 400 \mu \mathrm{~F} \end{aligned}$	10 volt
$0.25 \mu \mathrm{~F}$	3 volt	$4 \mu \mathrm{~F}$	12 volt	$25 \mu \mathrm{~F}$			
$1 \mu \mathrm{~F}$	6 volt	$4 \mu \mathrm{~F}$	25 volt	$25 \mu \mathrm{~F}$	12 volt		6.4 voit
$1 \mu \mathrm{~F}$	20 volt	$5 \mu \mathrm{~F}$	6 voit	$25 \mu \mathrm{~F}$	25 volt		
$1 \cdot 25 \mu \mathrm{~F}$	16 volt	$6 \mu \mathrm{~F}$	6 volt	$30 \mu \mathrm{~F}$	6 volt		
$2 \mu \mathrm{~F}$	3 volt	$8 \mu \mathrm{~F}$	3 volt	$30 \mu \mathrm{~F}$	10 volt		
$2 \mu \mathrm{~F}$	350 volt	$8 \mu \mathrm{~F}$	12 volt	$50 \mu \mathrm{~F}$	6 volt	All at	1/- each.
$2 \cdot 5 \mu \mathrm{~F}$	16 volt	$8 \mu \mathrm{~F}$	50 volt	$64 \mu \mathrm{~F}$	2.5 volt		
$3 \mu \mathrm{~F}$	25 volt	$10 \mu \mathrm{~F}$	6 volt	$64 \mu \mathrm{~F}$	9 volt	20	sorted
$3 \cdot 2 u \mathrm{~F}$	64 volt	$10 \mu \mathrm{~F}$	25 volt	$100 \mu \mathrm{~F}$	9 volt	(our	lection)
$4 \mu \mathrm{~F}$	4 volt	$20 \mu \mathrm{~F}$	6 volt	$320 \mu \mathrm{~F}$	4 volt		0/-

Orders by post to

G. F. MILWARD

ORAYTON BASSETT, NEAR TAMWORTH. STAFFS

Please include suitable amount to cover post and packing. Minimum 2/-. Stamped addressed envelope must accompany any enquiries.
For customers in Birmingham area goods may be obtained from Rock Exchanges, 231 Alum Rock Road, Birmingham 8.

GAREX ELECTRONICS
 CHINNOR, OXON
 Tel: Kingston Blount 476

KITS

MAIL ORDER
Complete 2 metre transmitter. 68H6. 6BH6, QQVO3-10, QQVO3.10: Motered. 6 or 12 volt heater. Buils inso case 6 in. $X 5$ in. $\times 6$ in.
C 1918 6d., inc. 3 par set of valves and 8 MHz crystal. Delivery 21 days. Less P.S.U., and Mar.
Q QV03. 10.2 metre TRANSMITTER KIT
$6 \mathrm{BH} 6-6 \mathrm{BH} 6-\mathrm{OQVO}-10-\mathrm{QQV} 30-10.6$ or 12 volt heaters. Inc. Valves $A E$ relay 6 or
Delivery 7 days. 4 metre version as above. Delivery 21 days. 2 metre transmite kit. 68 H 6 - 6 BH 6 QQVOJ-10-QQO3-20a. 6 or 12
 Chassis Crystal (日MHy), Modulator or PSU. Dellivery 7 days. Postage $4 / 6$ © 12186 Or less spare see of valves: 69186 d . 4 metre version at above: 21 days delivery.
 under chassis, 2 chokes. Bridge rectifier (solid state) complete plug in $\begin{array}{ll}\text { unie. C's \& circuit. } \\ \text { As above bur with Valve Rectifier } & \text { Postage } 10 / 6 \\ \text { Postage } 10 / 6\end{array}$
MOBILE SOLID STATE MODULATOR KITS
Skeleton Q日 V03-10/OC35-NKT404 Transistor. Mod. kit. Transformers
and P.P. Out put eransistors, inc. heat sinks and circuit Postage $3 / 6$ and P.P. Output transistors, inc. heat sinks and circuit $\begin{aligned} & \text { Postage } 3 / 6 \\ & \text { Transiormers only }\end{aligned}$ Postage $3 / 6$ Transformers only
OQOJ-20a as above.
Pransformers only.
De Luxe 12 vole input. 15 wates outpue. Pre-tested wired Pastage dipped
printed circuit boards. OC700a and OAB1 limiter. NKT 224 emitser
driver. Push PuII NKT404/OC35 output. Compleze with eransformer
driver. Push Pull
(includes P.A. Winding) to mazch QOVV.3-20a. Inc. tallored mike, press to
talk $300-3500$ Hz. Average wiring sime 20 minutes. Less chassis. talk $300-3500 \mathrm{~Hz}$. Average wiring time 20 minutes. Less chassis. $6 / 6 \quad 17$
 on pre-tested wired and dipped. printed circuit board. NKT404/OC35
driver. P.P. NKT404/OC35 output. Including transformer to suit QQV0320a. IIc. tailored mike $300-3500 \mathrm{~Hz}$. Less chassis.
O O $03-10$ modulator and audio amplifier dual purpose kit, relay swase $6 / 6$
swhed OC200 mod. compressor. NKT223 emitser follower. NK'T223a TK mod. amp and RX audio amp. NKT223s emitter follower. NKT404 Tx and Rx driver. P.P. NKT404 Mod. and Audio output. Complete with transformers.
Pre-tested wired and dipped primted circuit board. Inc. tallored mike, re-tested wired and dipped printed circuit board. Inc. Callored mike,
press to talk. $300-3500 \mathrm{~Hz}$. Less Chassis. Buite with selected radlotelephone components. All kits include instruc-
tions and circuits. Negative or positive earsh. Delivery ex stock unless tions and circuit
MOBILE SOLID STATE PSU KITS
POPULAR
MEAYYXUTY
DE LUE DUAL
$\begin{array}{lr}\text { EAYY DUTY } & \text { Postage } 6 / 6 \\ \text { Postage } 6 / 6 \\ \text { Postage } 6 / 6\end{array}$
Based on ready built units less chassis. All companents, Toroidal trans-
, relays and circuir supplied.
SATISFACTION GUARANTEED OTHERWISE MONEY REFUNDED
Export enquiries invited G3MMJ ex ZS6OP
Northern Aests: Derwent Radio, Scarborough, Yorkshire. Tel. Sca 63982

AMATRONIX LTD (WW) TRANB18T

 $\begin{array}{lllllll}\text { AD161/162 } & 15 /- & \text { BFY51 } & 4 /- & 2 N 3055 & 16 / 6 \\ \text { AF239 } & 10 /- & 1844 & 1 / 4 & 2 N 3707 & 4 / 3 \\ \text { B-5000 } & 11 / 3 & 18557 & 3 /- & 2 N 3794 & 2 / 10 \\ \text { BD121 } & 18 /- & \text { MC140 } & 4 /- & 2 N 3983 & 5 / 8 \\ \text { BC107B } & 2 / 8 & 8 F 115 & 2 / 10 & 2 N 4058 & 4 / 7 \\ \text { BC168B } & 2 /- & \text { T1818 } & 7 /- & 2 N 4285 & 2 / 10 \\ \text { BC168C } & 2 /- & \text { Ti860M } & 4 / 8 & 2 N 4289 & 2 / 10 \\ \text { BC169C } & 2 / 3 & \text { Ti861M } & 4 / 11 & 2 N 4291 & 2 / 10 \\ \text { BF178 } & 9 /- & \text { 2N706 } & 2 / 7 & 2 N 4292 & 2 / 10 \\ \text { BF225 } & 4 /- & \text { 2N2926a } & 2 / 6 & 28 B 187 & 2 /-\end{array}$ NOTES. Our AD161/2 are comp. natched prs. with hFF $=80$ min. at $1 \mathrm{C}=500 \mathrm{~mA}$. SF115 is epoxy BF115; 2N3794 = mini 3704; $2 N 4201=$ mini 3702 ; 2N4289 is hi-gain 81 pnp; 2N4285 is hi-reverse VEB SI pnp substltute for Ge types; 18557 is 800 p.l.V. 500 mA TV rect.; MCl 40 is 3 W nph Si MOSFET8 MOSFET8 . hi-slope, low cross mod., N-chan, deplotion, 40468A, inproved 40468 ,
 $7.5 \mathrm{~mA} / \mathrm{V}$ typ. at $100 \mathrm{MHz}, 7 / 6$. MEM554C, ruggedised $3 N 140$ dual-gate; $12 \mathrm{~mA} / \mathrm{V}$ typ.
$\mathrm{NF} 3.5 d \mathrm{~B}$ typ. at 200 MHz . Sím. Mulard BFS28. Only $15 / 5$
On
INTEGRATED CIRCUITB-PA234, new dual-in-line 1 W audlo amp, with data, 24/-, CA3020, TO-5 push-puli amp., usable to 6MHz, $28 /-$ TAB101, transistor quad for ring noduiator, 21 /-; TAA263, 3-stage low level a.f. anp., 16/8.
AMPLIFIER PACKAQE8-COmponcnt kits for efficient transformerless class B power amps. Low standby current, reversible polarity, simple cir$a \times 2$, no adjust ments
12/6: AX3 9 V , in 10-20 ohnis, other loads usable, input, 22/6; $A \times 424 \mathrm{~V}$, 5 W olims, 80 mV in 20 K 15 ohins, mput 100 mV in 40 K . Operable 18 V with 12 mA standby current and $2-3 \mathrm{~W}$ output. Uses ADI61/2 output pair with sillcon low-level stages. Still only $30 /-$
MINI MAINS TRANSFORMERS- 1 " $\times 1$ " $\times 11{ }^{\prime \prime}$ Osmor MTg, $9-0-9 V 80 \mathrm{~mA}, 11 / \mathrm{BUY}$ NOW BEFORE PRICE RISESI Eagle MTG, 6-0.6V, $100 \mathrm{~mA}, 13 / 6 ;$ MT12, $12.0-12 \mathrm{~V}, 50 \mathrm{~mA}, 13 / 6$. A comprehensive data sheet giving regulation curves for all these transforners with push-pull, $5-80 \mathrm{~V}$ supplied free with orders. Tiny Se bridge $5-80 \mathrm{~s}$ supplied fre
suits all these, $3 / 6$. guits all these, $3 / 6$.
Mail order only. Cash with order. List od.. free with orders. U.K. post free on orders over 10/-. 396 Selsdon Road, South Croydon, Surrey, CR2 ODE

HANDBOOK OF TRANSISTORS, SEMICONDUCTORS, INSTRUMENTS AND MICROELECTRONICS

In this time-saving, up-to-date handbook you get not only practical, applicable information, but also full coverage of back ground material and technical nomenclature. by Harry E. Thomas
150/-
Postage FREE
RADIO AMATEUR'S HANDBOOK 1969 by A.R.R.L. 45/-. Postage 4/-.
SEMICONDUCTOR POWER CIRCUITS HANDBOOK by Motorola. 20/Postage I/-
PRINCIPLES OF COLOUR TELEVISION SYSTEMS by C. R. G. Reed. 50/-. Postage $1 / \mathrm{l}$.
MICROWAVE SEMICONDUCTOR DEVICES AND THEIR CIRCUIT APPLICATIONS edited by H. A. Watson. 210/-, Postage FREE.
FET PRINCIPLES, EXPERIMENTS AND PROJECTS by Edward M. Noll. 40/-. Postage $1 /$-.
PRINCIPLES OF PALCOLOUR TELEVISION by H. V. Sims. 21/Postage 1/-.
TRANSISTOR POCKET BOOK by R. G. Hibberd. 25/-. Postage I/-.

INTEGRATED CIRCUIT DATA 8OOK by Motorola. 50/-. Postage $1 /$. CATALOGUE 2/-
THE MODERN BOOK CO.
BRITAIN'S LARGEST STOCKIST of British and American Technical Books 19-2I PRAED STREET, LONDON, W. 2
Phone PADdington 4185 Closed Sat. 1 p.m.

BAILEY 3OW AMPLIFIER

All parts are now available for the 60 -volt single supply rail version of this unit. We have also designed a new. Printed Cïrcuit intended for edge connector mounting. This has the component locations marked and is roller tinned for ease of assembly. Size is also
smaller at 4 if . by 2 itin. Price in SRBP material $11 / 6 \mathrm{~d}$. In Fibreglass i4/bd. Original Radford design. SkBp 12/-. Fibreglass $16 /-$. This does not have component ocations marked.

BAILEY 20W AMPLIFIER

All parts in stock for this Amplifier including specially designed Printed Circuit Boards for preamp and power amp. Mains Transformer for mono or stereo with bifilar wound secoridary and special 218 V primary for use with CZ6 Thermistor, 35/6d., post Trifilar wound Driver Transformer, 22/6d., post 1/Miniature Choke for treble filter, $10 / 6 d .$, post 6 d .C. Board Pre-Amp 15/-., post 9d. Power Amp. 12/6d. post 9d.
Reprint of " Wireless World " articles, $5 / \$ \mathrm{~d}$. post free.

DINSDALE IOW AMPLIFIER

All parts still available for this design including our new power amp. P.C. Board with power transistors and heat sinks mounted directly to P.C. All parts Reprint of articles $5 / 6 \mathrm{~d}$., post free.

LINSLEY HOOD CLASS A AMPLIFIER
Parts how aveilable for this unit including special mats Parts now avelatised Metalwork and all power supply

PLEASE SEND S.A.E. FOR ALL LISTS.

HART ELECTRONICS,

321 Great Western St., Manchester 14
The firm for "quality".

Parsonal callers welcome, but please note we are closed all day Saturday.

NEW PRICES ON NEW COMPONENTS

RESISTORS bonding.
Dimensions (mm.): Body: iw: 8×2.8 Leads: 3 J
10% ranges; 10 Ohms to 10 Megohms (E12 Renard Series). 5% ranges; 4.7 Ohms to 1 Megohm (E24 Renard Series). Prlces-Der Ohmic value.

		each	10 off	25 off	100 off
$\frac{1}{2} W$	10%	$2 d$.	$1 / 6$	$3 / 3$	$10 / 4$
$i W$	5%	$21 d$.	$1 / 9$	$3 / 8$	$1 / 8$
$1 W$	10%	$21 d$.	$1 / 9$	$3 / 8$	117
iW	5%	$3 d$.	$2 /-$	$4 /-$	$12 / 10$
CAPACITORS					

CAPACITORS
Subminiature Polyester film, Modular for P.C. mounting, Hard epoxy resin encapsulation. Radial leads.
$\pm 10 \%$ tolerance. 100 Volt worklug.
Prices-per Capacitance value ($\mu \mathrm{F}$)
$0 \cdot 001,0 \cdot 002,0.005,0 \cdot 01,0 \cdot 02$
0.05
0.1
$\begin{array}{lllllllll}0.1 & \cdots & \cdots & \cdots & \cdots & 10 d & 7 / 2 & 15 / 6 & 51 /- \\ 0 \% & \cdots & \cdots & \cdots & \cdots & 1 / 2 & 10 /- & 20 / 10 & 68 / 6 \\ 0.5 & \cdots & \cdots & 17 / 6 & 37 / 6 & 125 /-\end{array}$
Polystyrene film. Tubular, Axial leads. Unencansulated $\pm 5 \%$ or ± 1 pf tolerance. 160 Vott Working.
Prices-per Capacitance value ($\mu \mu \mathrm{F}$)
$10.12 .15 .18 .22,27,33,39,47$, each 10 off 25 off 100 off 58, 68, 82, 100, 120, 180, 220. 270. 330. 300

470, $580,680,820,1,000,1.500$ $2.200,3,300,4.700,5.600$
$6,800,8.200,10,000,15,000 \ldots 8$
22.000
POTENTIOMETERS (Carbon) 5d.

POTENTIOMETERS (Carbon) Low rotational noive Body din lin Sulad superior grade ence 20%.
$2 \mathrm{in} . \times 1 \mathrm{in}$. Tolerance, 20%.
Linear: 1 K to 2 M , 1 W . $40^{\circ} \mathrm{C}$. Lokarithmic: 5 K to 2M. (1 W at 4

| Prices per ohmic value | each | 10 off | 25 off | 100 off |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | $2 /-$ | $16 / 8$ | $37 / 6$ | $133 / 4$ | GANGED STEREO POTENTIOMETERS (Carbon) dW at 70° C. Long Spindle. Losarithmic and Linear : $5 \mathrm{k}+5 \mathrm{k}$ to $1 \mathrm{M}+1 \mathrm{M}$. Prices per ohmic value $\quad 10$ off $\quad 25$ off $\quad 100$ off

SKELETON PRE-SET POTENTIOMETERS (Carbon) High quallty pre-sets suitable for printed circult boards of $0 \cdot 1 \mathrm{in}$. P.C.M. 100 ohms to Horizontal $(0.7 \mathrm{in}+0.4 \mathrm{in}$. P.C.M.) or Vertical ($0.4 \mathrm{in} . \times 0 \cdot 2 \mathrm{in}$. P.C.M.). Subminiature: $0.1 W^{\text {at }} \mathbf{7 0}{ }^{\circ} \mathrm{C} . \pm 20 \%$ below $2 \cdot 5 \mathrm{M} . \pm 30 \%$ above.

Prices-per ohmic valueMiniature (0.3W)				each	$\begin{gathered} 10 \text { off } \\ 8 / 9 \end{gathered}$		$\begin{aligned} & 25 \text { off } \\ & 18 / 9 \end{aligned}$		$\begin{gathered} 100 \text { oft } \\ 66 / 8 \end{gathered}$
				1/-					
Subministure (0.1 W)				10 d.	7/1		$14 / 7$		46/8
ELECTROLYTIC CAPACITORS (Mullard.) - 10% to $+50 \%$. Subminiature (all values in $\mu \mathrm{F}$)									
4V .	,	-. 8		32	64	125		250	400
8.4 V	\cdots	. 64		25	50	100		200	320
10 V	.	. 4		18	32	64		125	200
18 V	.	- 2.5		10	20	40		80	125
25 V	\cdots	- 1.8		6.4	12.5	25		50	80
40 V	.	. 1		4	8	16		32	50
64 V	.	.. 0.64		2.5	5	10		20	32
Price	.	- 1/4		1/3	1/2	1/-		1/1	1/2
Small (all values $\ln \mu \mathrm{F}$)									
4 V	\cdots	..	800		1.250		2.000		3.200
8.4 V	.	.	640		1.000		1.800		2.500
10 V	.	\cdots	400		840		1,000		1.600
18 V	\cdots	\cdots	250		400		640		1.000
25 V	.	.	160		250		400		840
40 V	-.		100		180		250		400
64 V			64		100		160		250
Price	.	\cdots	$1 / 6$		2/-		2/6		3/-

POLYESTER CAPACITORS (Mullard)
.9d.

 $0.033 \mu \mathrm{~F}, 8 \mathrm{~d}, 0.047 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .068,0.1 \mu \mathrm{~F}, 11 \mathrm{~d} .0 .15 \mu \mathrm{~F}, \mathrm{I} / 2.0 .22 \mu \mathrm{~F}, \mathrm{I} / 6.0 .33 \mu \mathrm{~F}$, 2/3. $0.47 \mu \mathrm{~F}, 2 / 8$
SEMICONDUCTORS: OA5, OA81, I/9. OC44, OC45, OC71, 0C81, OC81D, OC82D. 2/-, OC70, OC72, 2/3. AC107, OC75, OC170, OC171, 2/6. AF115, AF116, AF117. ACY19. ACY21, 3/3. OC140, 4/3. OC200, 5/-. OC139, 5/3. OC25, 7/-. OCS5, 8/-. OC23, OC28, $8 / 3$.
SILICON RECTIFIERS (0.SA): 170 P.I.V., 2/9. 400 P.I.V., 3/-. 800 P.I.V., 3/3. 1,250 P.I.V., 3/9. 1.500 P.I.V.. 4/-. (6A): 200 P.I.V., 3/-. 400 P.I.V., 4/-. 600 P.L.V., PRINTED CIRCUIT BOARD (Vero).

 SEND S.A.E, FOR 1969 CATALOGUE

DUXFORD ELECTRONICS (PE) 97/97A MILL ROAD, CAMBRIDGE

Telephome : CAMBRIDGE (0223) 63687

(Visit us at our new Mail Order, Wholesale and Retail Premisen) MINIMUM ORDER VALUE 5/-
C.W.O. Post and Packing 1/6

DIOTRAN

SALES P.0. Box 5 WARE. HERTS TEL. WARE 3442

Nowhere in the world, as far as we
know. can you buy retail semicon know. can you buy retail semicon-
ductors cheaper than from us. We will also buy We are very tiarge purchasers of yoursuurplus stock
manufacturers surplus stocks, and -Send us your manufacturers' surplus stocks, and -Send can fulfil any requirements at com-
petitive prices. S.A.E. for full lists.
$\left\lvert\, \begin{aligned} & \text { THYRISTORS (S.C.R'A) } \\ & \text { TESTED, BRANO NEW }\end{aligned}\right.$ ANDCOOED:
TO-5 CASE
TO-5 CAS
Type No.
2Ni595.

OVER 3 MILLION SILICON ALLOY \& GERM. TRANSISTORS AVAILABLE FOR IMMEDIATE DELIVERY. MANUFACTURERS END OF PRODUCTION SURPLUS.

TRANSISTORS

 Type and Construction A 1 Germ. A.F. NPN TO-1

57, A5Y86
157, ASY86
381
25, ASY 54 25. ASY54
2G301-3
G417 Qtey Qty. Qty. Qty.
Price Price Price price
 13.10
1

1.10 | 5615 |
| :--- |
| 613 |
| 63 |
| 0 |
| 14. | $\$ 15$

63
63
64.10
64.10
15
62.10
67.10
67.10

67.10 | | 625 |
| :--- | :--- |
| | 65 |
| 65 | |
| 67.10 | |
| | 67.10 |
| 0 | 64 |
| 10 | 64 |
| 10 | 12. |
| 10 | 12 | CY30-34

E2
ideal
2
 TO-18 METAL CAN SILICON
PLANAR TRANSISTORS. VERY
HIGH QUALITY 99\% good. TYPC
2NTOG BSY27 2 N706 BSY27 67.10 per
612.10 per 1,000 pieces. HIGH OUALITY SILICON TURE DO-7 Glass Type, suitable
replacerments, for OA200, OA202,
BAY 38 , ISI 30 , $15940,200,000$, at E4 Der 1,000 pieces. GUARAN
TEED 80% GOOD.
FULLY TESTED DEVICES AND

GERM. PNP AND NPN TRANSISTORS

AC125	ACY22	ACY36	NKT677	OC81
AC126	ACY27	NKT141	NKT713	OC82
AC127	ACY28	NKT142	NKT73	$2 G 301$
AC128	ACY29	NKT212	OC44	$2 G 302$
AC130	ACY30	NKT213	OC4S	$2 G 303$
ACY19	ACY31	NKT214	OC71	$2 G 308$
ACY20	ACY34	NKT215	OC72	$2 G 371$

FULLY TESTED OEVICES ANO
QUALITYGUARANTEED SURPLUS
TO REQUIREMENTS
OA202 Silicon Dir
150 PIV 250 mA Qty. Price 230 per 1,000 pieces
OAP 12 Cadmium Sulphide Cell.
$1-244 \%$ each; $25-999 / \%$ each; $100-9996 /$ each:
1,000 Up $5 / 6$ each. Made in Holland.
BY 100 SLI. RECT:S 800 PIV 550 mA
1-49 2/6 each; $50-992 / 3$ each; $100-999$ 2/- each;
1,000 up 1/10 each. Fully Coded. Ist Qly.

Sub-Min. Plastic I Amp Sil. Rect.	
Type No	IV
IN400\|	
IN4002	100.. 1/6
in 4003	200 : ${ }^{\text {\% }}$ 2/.
in4004	400 .. 2/9
IN4005	600 .. 3/3
IN4006	$800 . .3$ 3/9
IN 4007	1,000. . 4/9

TRANSISTOR EQVT. BOOK

2.500 cross references of transistors-British, European, American and Japanese. A must for every eransistor user.
Exclusively diseribued by DIOTRAN SALES. IS/-EACH.

Vast mixed lot of subminiature glass dlodes. Com-
prising of Silicon, Gorm, Point Contact and Gold Lowest of Low Price.
$\mathbf{1 , 0 0 0}$ pieces $\mathbf{6 3 . 0 , 0}$. 5,000 pieces $£ 13.10 .0$. 10,000 pieces $£ 23$. OVERSEAS QUOTATIONS BY RETURN SHIP. MENTS TOANYWHEREINTHEWORLDATCOST

WE ARE BREAKING UP COMPUTERS

COMPUTER PANELS (as shown) $2 \ln$. $\times 4 \ln$. 10 for $10 /=\frac{+}{+}$ $1 / 6 \mathrm{p} . \&$ p. Guaranteed min. 35 $1 / 6 \mathrm{p} . \& \mathrm{p}$. Guaranteed min. 35 transistors; 25 for $£ 1$ p. \& $\mathrm{p} .3 / 6$ transistors; 25 for $\& 1$ D. \&t $\mathrm{p} .3 / 6$ min. 85 transigtors; 100 for $65 /-$ p. \& p. 6/6. min. 350 transistors: .000 for $£ 30$ + carr.
 SPECIAL OFFER: 500 TO18 transistors $4 / 6$ p. \& p.

POWER TRANSISTORS BIIm. to 2N174 ex. eqpt. 4 for 10\%.

Above on Finned Heat Sink. fl for $4+5 /-$ p. \& p. PANELS with 2 power transistors sim. to OC28 on each board + components. 2 boards ($4 \times$ OC28) 10/=, p. \& p. 2/-.
TRIMMERPOTS on $2^{\circ} \times 4^{\circ}$ bds. + other com. ponents. $100 \Omega, 500 \Omega, 15 \mathrm{~K}, 20 \mathrm{~K}$. Please stato requirements. 5 for $10 \%+2 /-$ b. \& p.
OVERLOAD CUT OUTS. Panel mounting in the following values 5/- each: 2, 3, 4, 7, 10 amp
TRANSISTOR COOLERS TOS. $7 / 6$ doz. MINIATURE GLASS NEONS. $12 / 6$ doz. 150 PIV. 10 min. DIODE BRIDGE RECTIFIERS On FINNED HEAT SINK. $12 /-+2 /-\mathrm{p} . \mathrm{d}$ p. ea.
Above at 150 PIV. 20 ampa. fl ea. $+3 / 6 \mathrm{p} . \& \mathrm{p}$. LONG ARM TOGGLE SWITCHES, ex. eqpt. SPST $13 / 6$ doz. DPST $15 /$. doz. P. \& p . ani typea 2/- doz.
New Mixed DISC CERAMIC CAPACITORS.
150 for $10 \%+1 / 6 \mathrm{p}$. d p .
LARGE CAPACITY ELECTROLYTICS
4tin. 2 in. diam. Screw terminals.
All at $6 /-$ each $+1 / 6$ each D. \& D.
$\begin{array}{ll}4.000 \mathrm{mF} & 72 \mathrm{~V} \text { d.c. } w \mathrm{~kg} . \\ 6.600 \mathrm{mF} & 45 \mathrm{~V} \text { d.c. } w \mathrm{~kg} .\end{array}$
$\begin{array}{ll}10.000 \mathrm{mF} & 25 \mathrm{~V} \text { d.c. } w \mathrm{~kg} . \\ 16.000 \mathrm{mF} & 25 \mathrm{~V} \text { d.c. } w \mathrm{~kg} .\end{array}$

AN EVEN BETTTER BUY AT 35/-
EXTRACTOR/BLOWER FANS (PAPST) 100 C.F.M. $41 \times 41 \times 2 \ln$.
2800 R.P.M. $200 / 250$ volt A.C. $35 /-$ each. P. \& D. $5 / 6$.

KEYTRONICS, 52 Earls Court Road,

SLIDEWIRE WHEATSTONE BRIDGE
£ 15.15 .0

Hattery Powered Portable Reaintance Bridge. Range 0.5 to 50 ohms with multiplier settings of $0.1 \cdot 1 \cdot 100-1000$, providing

TRIACS TYPE 40432

Gated bl-directional silionn Thytintors with integral trigger. The trac will control up to 1440 wathe at 240 V matna frenppltation yheeth for motor coutrol and dimmer circuits
$37 / 6$ each.

UNIJUNCTION TRANSISTORS 2N2646

 Power dianipation 300 mW R.m.s. Bane-to- Hase voltage 35 V max. Peak ernitter current 2.0A. Suitable for triggeringof thyriswrs. $12 / 8$.

SEMICONDUCTORS

The following leaflets are avuilnble free of charge TRANSISTORS AND INTEGRATEI) CIRCUITS with full specifications and prices of over 200 types
POWER RFCTIFIERS AND ZENER DIODES

MULTIMETERS TYPE IO8-1T
24 -range precimion portable meler. 5,0000 o.p. - . D. D.C. Voita 2.5-10-50-250-500-25010. W. A.C. Voltm: $10-50-100-250-500-2500$ V

TYPE MFIG

b.C. Vollage range 0-0.5-10-50.250-500
A.C. Voltage range $0-10-50-250-500 \mathrm{~V}$.

 Accuracy $\pm 2.5 \%$ for D.C. and $\pm 4 \%$ Ror A.C.

WHEN ORDERING BY POST PLEASE ADD $2 / 6$ IN \angle FOR HANDLING AND POSTAGE.

NO C.O.D. ORDERS ACCEPTED
ALL MAIL ORDERS MUST BE SENT TO HEAD OFFICE AND NOT TO RETAIL SHOP.

TWO NEW OSCILLOSCOPES FROM RUSSIA

Head Office:
44a WESTBOURNE GROVE, LONDON, W. 2
Tel.: PARK 5641/2/3
Cables: ZAERO LONDON
Retail branch (personal callers only) 85 TOTTENHAM COURT RD., LONDON W.2. Tel: LANgham 8403

WE WANT TO BUY:

723A/B; 2K25; 4C35-50/-paid subject to test Please offer us your special valves and tubes
surplus to requirements.
A.R.B. Approved for inspection and
release of electronic valves, tubes,

Please send foolscap s.a.e. for full list of valves, tubes and semiconductors

Here's money-making repair data for over 1000 POPULLAR MODELS
 from 1969 right back to 1965 RADIO \& TV SERVICING
 This big RADIO \& TV SERVICING repair library

 will help you speed up your repair work and increase your earnings. Packed with circuits, repair data and vital information it covers all the popular 1965-'69 TVs. Radios, Radiograms, Car Radios, Record Players and Tape Recorders-including the latest data on COLOUR TV. Written by a team of Research Engineers. Radio \& TV Servicing will speed up your repair work year after year. Examine this latest edition at home FREE FOR A WEEK.
COLOUR TV

All aspects of Colour TV are covered-from installation to static convergence. The vital information in the colour section makes this repair library invaluable to the service Engineer.

TVs • RADIOS • RADIOGRAMS RECORD PLAYERS • CAR RADIOS TAPE RECORDERS

SERVICING DATA ON ALL THESE MAKES:
Aiwa, Alba, Baird, Beogram. Beolit, B.R.C.. Bush, Carousel, Cossor, Dansette. Decca, Defiant, Dynaport. Dynatron, Eddystone. Ekco, Elizabethan, Ever Ready, Ferguson, Ferranti. Fldelity, G.E.C.. Grundlg, H.M.V., Kolster-Brandés. Hitachi, Invicta, McMichael. Marconiphone, Masteradio. Motorola, Murphy, National, Newmatic. Pam, Perdio,
Peto-Scotr, Philips. Portadyne, Peto-Scott. Philips. Portadyne. Pye, Radiomobile. R.G.D., Regentone, Roberts' Radio, Sanyo. Sharp, Smith's Radiomobile, Sobel, S.T.C.. Sony, Standard, Stella, Stereosound. Teletron, Thorn, Trans Arena. Ulitra. Van Der Molen, World Radio.
Send no money -just post coupon below-there's no obligation to buy.

Sent to you by post on 7 DAYS

FREE TRIAL

COMPONENT LAYOUT DIAGRAMS,
tables \& waveform graphs
JUST OUT!
New 12 th Edition of
Electrical Engineer's
REFERENCE

CONDENSERS. 8 mfd .600 v . Brand New. Cornell Dubilier Paper Condensers, $4 \mathrm{in} \times 3 \mathrm{i} \mathrm{in}$. \times 1% in. with fixing clips. 7/6 ea. P. \& P. 2/-.

SLYDLOK FUSES 15 amp., $1 / 6$ ea., 15/- per doz.
HEADPHONES. 5 amp. $1 / 3$ ea. 13/- Doz. P. \& P. ca. 12 2/\%. DLR5 Bal. Armaturc, 9/6. P. \& P. 3/-. M/Coil with ear muffs and wired M / C mic., 12/6. P. \& P. 3/-. No. 10 Assembly M/Coil with $M /$ Coil Mic., 12/6. P. \& P. 3/-.

SMALL MOTORS. $12-24$ v. D.C., reversible, with gears attached, $10 /=$ ea.; with blower attachment, $10 /-$ ea.; each item post $2 / 6$.

TRANSMITTER. BC 625, part of T/R. SCR522. For spares only. Chassis only. Complete with valves except 832 s and Relay. $21 /-$ ea. Carr. $4 /-.832$ valves
$7 / 6$ ea. P. \& P. $2 /-$ ea. valve, used. 7/6 ea. P. \& P. 2/- ea. valve, used.

SIEMENS HIGH SPEED RELAYS. Type H69D, $500+500$ ohms, 5/- ca. Type H96E, $1,700+1,700$ ohms, $7 / 6$ ea. Carr. $1 /$.
"TELE L." TYPE FIELD TELEPHONES. These telephones are fitted in strong steel case complete with Hand Gen. for calling each station. Supplied in new condition and tested. 50/- per pr. Carr. 7/6.

MORSE KEYS. No. 8 assembly complete with leads, terminals and cover, 6/6 ea. Carr. 2/6.

VIBRATORS. 12 v. 4 pin MALLORY TYPE 6634 C . $6 /$ - ea. 12 v. 7 pin Plessey Type 128 R 7 .
$7 / 6$ ea. Carr. $1 / 6$.

ELECTRO MAGNETIC COUNTERS. Register up to 9999 , coil res. 300n. 5/- ea. Carr. 1/-. not re-setable. Ex-equipment. Open type.

LIGHTWEIGHT HEADSET (part of "88" W. Set Equipt.) complete with Boom mic., carbon made to highest Ministry Spec. Moving coil carpieces. Our price 20/-ea. Carr. 3/.. Also Super Lightweight hand set, 10/- ea. Carr. 2/-.

200 AMP. 24 v. D.C. GENERATORS. Type P3 ex-Air Ministry, £9 ea. Carr. £l.

Generators. Type 02. 3,000 watts, 30 v. D.C. £6 ea. Carr. 15/-.

Rotary Convertors. Type 8. D.C. Input 24 v., A.C. Output $115 \mathrm{v} .400 \mathrm{c} / \mathrm{s}, 3$ phase, 1.8 amps . ¢5 ea. Carr. £1.

Invertors. Type 201A (5UB6300). D.C. 25/28 v. r.p.m. 8,000, A.C. $115 \mathrm{v} .1600 \mathrm{c} / \mathrm{s}$, single phase. r.p.m. 8,000 , A.C. $115 \mathrm{~V} .1600 \mathrm{c} / \mathrm{s}$, single phase.
£ 10 ca . Carr. incl. AH abovir.
CONDENSERS. $1 \mathrm{mfd} 1,500 \mathrm{v}$. Sprague, paper. 9d. ea., $7 / 6$ doz. I $500 \mathrm{v} .5 / 6$ doz. postage on 12 of ea. item 2/-.

HEAVY DUTY TERMINALS. Ex-equipt. Black
only, will take spade terminals and wander plug. 1/6 pr., 15/- doz. pairs. P. \& P. 1/6 ca. doz.

FATIGUE METERS. 24 v. D.C. Consisting of $6 \times$ H96D Relays. $500 \times 500 \Omega .6 \times 300 \Omega$ Electro Mag. counters, etc. £2/10/- ea. Carr. 6/-.

AMERICAN AUTOPULSE 24 จ. PUMPS for mounting between carb, and main fuel tanks as auxiliary pump. New
Size $7 \mathrm{in} \times 2 \frac{1}{\mathrm{i}} \mathrm{in}$.
$\times 2 \mathrm{t}$
in

Telephone Hand Generators. No. 26 A.N. In wooden case. 7/6 ea. P. \& P. 4/6.
S.T.C. MINIATURE SEALED RELAYS, TYPE 4184 G D, $700 \Omega 24 \mathrm{v}$. (will work efficiently on 12 v .
D.C.) (ex-equipment). $2 \mathrm{C} / \mathrm{overs}$. $7 / 6$. P. \& P. $1 /$. 6 or more post paid.

SMALL D.C. MOTORS. $2 \mathrm{in} \times 1 \frac{1 \mathrm{in} .}{} \times 1 \mathrm{in}$. shaft. Ideal' for model makers, etc. $10 / 6$ ea.

Tel. BIRKENHEAD 6067 Terms Cash with Order.

CLASSIFIED ADVERTISEMENTS

DISPLAYED SITUATIONS VACANT AND WANTED: $£ 6$ per single col, inch
LINE advertisements (run-on); 7/- per line (approx 7 words), minimum two lines.
Where an advertisement inc!udes a box number (count as 2 words) there is an additional charge of $1 / \mathrm{p}$ SERIES DISCOUNT: 15% is allowed on orders for tweive monthly insertions provided a contract is placed in advance
BOX NUMBERS: Replies should be addressed to the Bnx number in the advertisement, c / o Wireless World, Dorset House, Stamford Street, London, S.E.I.
No responsibility accepted for errors.

BBC ENGINEERING DIVISION (CODING OFFICE, COMPUTER PROJECTS) requires an

ASSISTANT (Technical)

for work on the classification and standardisation of components and the preparation and maintenance of stores inventories involving the use of computer based procedures. A good knowledge of the principal forms and characteristics of electronic components and materials is essential, together with the ability to correlate data and to work logically and accurately. An interest in computer applications is necessary and a suitable qualification in electrical engineering is desirable. The post is based in London.
Commencing salary $£ 1,400$ p.a. to f 1.550 p.a. in a scale having a maximum of $£ 1,775$ p.a. (includes London Weighting). Write for application form to Engineering Recruitment Officer, BBC, Broadcasting House, London W1A 1AA, quoting reference No. 69.E. 2097 W.W.

TELECOMMUNICATIONS TECHNICAL OFFICERS

METROPOLITAN POLICE OFFICE

THREE POSTS for men or women, riormally aged at least 23 , in the Lines Section of the Telecommunications Branch at New Scotland Yard.
DUTIES include provision, development and maintenance of line communications and associated equipment, and are essentially of a co-ordinating and planning nature.
QUALIFICATIONS: O.N.C. in Engineering (including a pass in Electrical Engineering A), or City and Guilds Intermediate Certificate in Telecommunications Engineering (old syllabus, i.e. subject No. 50) plus Radio II, or Intermediate Telecommunications Technicians' Certificate (new syllabus, i.e. subject No. 49) plus Certificates in Mathematics B, Telecommunications Principles B, and Radio and Line Transmission B, or equivalent standard of technical education. At least 5 years' appropriate experience essential. SALARY (Inner London): $£ 1,244$ (at age 23)- $\{1,472$ (at 28 or over on entry); scale maximum $\mathbf{~} 1,646$. Promotion prospects. Non-contributory pension.
WRITE to Civil Service Commission, Savile Row, London, WIX 2AA, or telephone $01-7346010$, Ext. 229 (after 5.30 p.m. $01-7346464$ "Ansafone" service), for application form, quoting S/7169/69. Closing date 28th May 1969.

Your Chance to Run a New Field Workshop

Honeywell's new computer field workshop is a beckoning new venture. Full of expansion potential and unlimited opportunities for someone to apply and develop new ideas. It could be you . . . if you can meet these needs:-
WE NEED an Engineer to organise and run this new field workshop which will be concerned with the repair of Computer Sub Assemblies, both Electronic and Mechanical. He will be based at our Greenford, Middlesex office.
YOU NEED to be in the 20 to 35 age bracket, have previous experience in electronic repair work, a good knowledge of transistor circuits, particularly flip flops and stabilised power supplies, plus the ability to construct any special equipment necessary under the guidance of a Senior Engineer. Some experience of typewriter or teleprinter type mechanics would be an advantage.
This out of the ordinary job will interest applicants from the Radio and TV industry or ambitious engineers who have Laboratory Technician experience.
For further information please phone John Chatterton at 01-568 9191 ext. 738 or Brian Burge on ext. 635. Or you can write to Honeywell Ltd., EDP Field Service, Great West Road, Brentford, Middlesex.

V.H.F. TELEVISION RELAY \& COMMUNAL AERIAL SYSTEMS

 the following vacancies:

I. A SENIOR ENGINEER

to have control of all aspects of systems design, planning, estimating, installation and commissioning.

II. ENGINEERS

capable of undertaking either:
(a) System planning and estimating.
(b) control of installation work.
or (c) test and commissioning duties.
Candidates for these appointments must have a good background of practical experience in this field of work, and an up-to-date knowledge of techniques and equipment.
Applications, which will be treated in strict confidence, should be sent to:

BRITISH/RELAY

The General Manager,
Special Services Division, British Relay House,
41, Streatham High Road, S.W. 16

Chib-Mravemilisethonics

ELECTRONIC TECHNICIANS

are required to work on calibration, fault-finding and testing of telecommunications measuring instruments. The work is varied and will enable technicians with experience of r.f. circuits to broaden their knowledge of the latest techniques employed in the electronics and telecommunications industries by bringing them into contact with a wide range of the most advanced measuring instruments embracing all frequencies up to u.h.f.

Entrants may be graded as Testers, Test Technicians or Senior Test Technicians according to experience and qualifications. Our expanding production programme geared to our recognised export achievement provides security of employment combined with good prospects of advancement, not only within these grades, but into other technical and supervisory posts within the Company.

Salaries are attractive and conditions excellent. A•Pension Scheme includes substantial life assurance cover provided by the Company. Assistance with removal may also be given in appropriate cases. Please apply in writing, giving brief details including age, experience and salary to:

The Recruitment Manager,
 Marconi Instruments Ltd.

mi Longacres, St. Albans, Herts.

Member of GEC-Marconi Electronics Limited

THE GENERAL POST OFFICE has vacancies for RADIO OPERATORS II

at its

COAST RADIO STATIONS
Applications are invited from men between
21 and 35 years of age who must hold either the Postmaster General's First or Second Class Certificate of Competence in Radiotelegraphy or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

The posts which will be temporary in the first instance, carry a salary scale of $£ 765-£ 1,129$, depending on age at entry, but successful applicants will be eligible to enter the open competitive selection for permanent appointment to be held in the late summer of 1969.

Applicants should write to: The Inspector of Wireless Telegraphy, Union House, St. Martin's-le-Grand, London, E.C.I, or telephone 01-432 5628 for further information.

2163

COUNTY BOROUGH OF LUTON

 Telecommunications TechnicianApplications are invited for the post of TELECOMMUNICATIONS TECHNICIAN in the Borough Architect's Department for servicing ground-to-air equipment at Luton servicing ground-to-air equipment at Luton Airport. Applicants experienced in the servicing of Decca 424 Radar, Marconi
$A D 210 C$ Direction Finder, Mufax facsimile AD 2IOC Direction Finder, Mufax facsimile
reproduction equipment and I.L.S. equipreproduction equipment and I.L.S. equip-
ment and holders of the appropriate H.N.C. certificates preferred.

Duties will involve shift working. Commencing salary within Technician Grades 4/5/6 ($(1,055-f 1,715$ per annum) according 4/5/6 ($C 1,055-21,715$ per annum) according
to qualifications and experience. Housing to qualifications and experience. Housing
accommodation considered. Reasonable reaccommodation consid
moval expenses paid.

Forms of application may be obrained from the Chief Executive Officer and Town Clerk. Town Hall, Luton, Beds., to whom completed applications should be returned as soon as possible.

The 5 GeV Electron Synchrotron NINA situated at Daresbury Laboratory in north-west Cheshire, is being used for research into high energy physics by university and resident groups.
This is a complex facility and work here offers a challenging opportunity for men interested in devising and developing new devices and techniques in many cases in completely new fields. A

TECHNICAL OFFICER

is required to join the Group responsible for the development ans operation of the Synchrotron. He should be prepared to undertake development work on various projects and carry out this work with a high degree of personal responsibility. He should also be prepared to spend some of his time (at present 50%) as a member of the operating crew on a three shift basis.
Applicants should be at least 26 years of age and must have served a recognised engineering apprenticeship or have had comparable training. They must also possess an O.N.C. or equivalent in Electrical Engineering or Applied Physics and have experience in electro-mechanical and electrical work. Some electronic and high vacuum work would be an advantage.
Starting salary will be assessed according to age, qualifications and experience on the scale $£ 1,347-£ 1,565$ (this scale is under review). A shift allowance (at present $14 \frac{1}{2} \%$ of salary) is paid in addition to salary.
Write for application form quoting reference $\mathrm{DL} / 298 / \mathrm{M}$ to:

Personnel Officer, Science Research Council, Daresbury Nuclear Physics Laboratory, Daresbury, Nr. Warrington.

STAR

Mobile Radiotelephone expansion

Only four months after its introduction to world markets the new Star mobile radiotelephone equipment has received orders in 25 important export countries.

The outstanding success of this advanced radiotelephone equipment is creating new career opportunities in home and export marketing for Area Sales Managers.
Experience in sales or service of mobile radiotelephones or communications equipment is desirable.

These positions are a first-class opportunity for marketing men with drive and imagination and offer excellent possibilities for high earnings and advancement.

Please write giving details of your experience to:

Personnel Manager-42200.
STC Mobile Radiotelephones Ltd., Oakleigh Road, New Southgate

Londan, N 11

BROADCASTING ENGINEERS

required by
INTERTEL
in Vision Control and Video Tape. Colour experience desirable. Applicants should be prepared to travel extensively throughout Europe if required. Applications, giving details of qualifications, age and experience should be addressed to:

Head of Technical Operations INTERTEL (VTR STUDIOS) LTD. WYCOMBE ROAD, WEMBLEY, MIDDLESEX

The current expansion programme of our Flight Simulator Division entails the consolidation of a newly-formed Standards policy. We need a

STANDARDS ENGINEER

Applicants should be qualified Engineers with a minimum qualification of H.N.C. a degree is preferred. They should have had a minimum of twelve months experience in an established Standards Organisation. The primary task will be to co-ordinate a Standards Policy within the Division and to liaise with other Standards Engineers within the Redifon group of Companies. He will also act as Secretary to the Standards Committee. Also a:

COMPONENTS ENGINEER

Qualifications to H.N.C. standard are preferred. A good knowledge of Component Technology and the market is essential. He will liaise with the Standards Engineer and with Design Engineers to provide an advisory service in the selection of electronic components in use throughout the Division. He will also advise and co-ordinate in the testing and evaluation of components when this is necessary.

These positions will carry excellent salaries, high job interest, good working conditions.

A contributory pension scheme coupled with free life assurance is in operation also a sick pay scheme.
Applications should be made, quoting reference DEV2, to:
H. C. Hall, Personnel Manager, REDIFON LIMITED
FLIGHT SIMULATOR DIVISION . Gatwick Road, Crawley, Sussex Tel: Crawley 28811

[^4]
HACKER RADIO DEVELOPMENT GROUP

designing Radio Receivers, Record Players, Radiogramophones and High Fidelity Equipment of the highest quality, invites applications for additional staff.

ASSISTANT RADIO ENGINEER Circuit Design ASSISTANT AUDIO ENGINEER Circuit Design DESIGNER DRAUGHTSMAN

Good salary, prospects and working conditions. Pension Scheme. Apply, stating qualifications to:

Technical Director,
Hacker Radio Limited,
Norreys Drive, Cox Green, Maidenhead, Berkshire.

NORTH THAMES GAS

TECHNICAL ASSISTANTS

 to the COMMUNICATIONS OFFICERat Fulham SW6

In the general field on line telecommunications.

The ability to plan and negotiate high grade networks for speech, telemetry and data transmission is required together with a thorough knowledge of the associated G.P.O. terminal equipment.

A general knowledge of P.A.B.X.,P.M.B.X. and subscribers' apparatus is desirable.
The salary will be in the range of $£ 1,375$ to £1,725 per annum.
Radio. To assist in the planning of systems which will include fixed to mobile, short range hand held and fixed to fixed working. The ability to prepare specifications for complete schemes and supervise contracts is required.
A minimum of five years experience is visualised.
The salary will be in the range of $£ 1,375$ to $£ 1,835$ per annum.

Both vacancies are based on Fulham, but applicants should be prepared to travel throughout the Board's area and a car allowance will be paid in appropriate cases.
Applications, giving fullest details, should be sent to:
The Appointments Officer
North Thames Gas
30 Kensington Church Street, London W. 8 quoting reference WW/4419

SALES MANAGER

required by High Fidelity equipment manufacturer. Commercial experience and ability to work on own initiative essential. Knowledge of Hi -fi and experience of customer liaison desirable. Apply, stating age, experience and salary required to:
ROGERS DEVELOPMENTS (Electronics) Limited, 4/14 Barmeston Road, Catiord, S.E.6. Telephone: 01-698 7424/4340. 2162

T.V. ENGINEERS

RADIO RENTALS have a vacancy for a top grade Engineer in the TWICKENHAM area. 5-day week, good salary, commission and car allowance or vehicle supplied. Colour training will be arranged.

Apply to:
Branch Manager, Radio Rentals, 21 King Street, TWICKENHAM.

BATH EDOCATIONAL TELEVISION SERVICE OPERATIONAL AND MAINTENANCE ENGINEER

Applications are invited from suitably qualified and experienced candidates for a post as Operational and Maintenance Engineer with the B.E.T.S. Duties will include the operation, testing and maintenance of a comprehensive range of video and audio equipment at the Studio centre in Bath.
Further information and forms of application can be obtained from: The Secretary, Bath Educational Television Service, Northgate House, Bath, BAI 5AL.

2171

RADIO TECHNICIANS

Vacancies to be filled by October, 1969
A number of suitably qualified candidates are required for unestablished posts, leading to permanent and pensionable employment (in Cheltenham and other parts of the UK, including London). There are also opportunities for service abroad.

Applicants must be 19 or over and be familiar with the use of Test Gear, and have familiar with the use of Test Gear, and have
had practical Radio/Electronic workshop experience. Preference will be given to such candidates who can also offer "O" Level GCE passes in English Language, Marhs and/or Physics, or hold the City and Guilds Telecommunications Technician Intermediate Certificate or equivalent technical qualificacions. A knowledge of electro-mechanical equipment will be an advantage.
Pay according to age, e.g. at 19- $\mathbf{2 8 6 9}$; at 25-fl, 130 (highest age pay on entry) rising by four annual incremenes to $\{1,304$.

Prospects of promorion to grades in salary range $\{1,217-\{2,038$. There are a few posts range $\{1,217-£ 2,038$. Th
carrying higher salaries.
Annual Leave allowance of 3 weeks 3 days rising to 4 weeks 2 days. Normal Civil Service sick leave regulations apply.

Application forms available from:
Recruitment Officer (RT 3),
Government Communications Headquarters.
Oakley, Priors Road.
CHELTENHAM, Glos, GL52 5 AJ.

TEST ENGINEERS

Engineers are required for final test of solid state R / F prototype and pre-production equipment operating at U.H.F. and microwave frequencies.

These positions would be ideally suitable to ex-service radio/radar personnel, television service engineers, etc., with experience of transistorised circuitry.

- The Company offers first-class holiday. sick payment and welfare facilities. including an excellent group pension and insurance scheme. The two modern establishments are located at Bushey and Hemel Hempstead. Herts., within easy access of the M. 1 .

Apply in writing,
quoting reference WWRM2 to:
Personnel Officer,
Ether Engineering Ltd.,
Park Avenue, Bushey, Herts.

Engine ving [fd]

PRODUCTION TEST ENGINEERING

Due to our successful Research and Design work many exciting new projects are entering a production phase and we require Engineers and Technicians to participate in this work.
Minimum qualifications required are a basic understanding of Transistor circuitry enabling testing to specification to be carried out on our Data Processing and Servo Control Systems, etc.

Electrical Engineering Certificates an advantage, but not essential if experience in a similar activity can be offered.

Apply:

Personnel Officer
RECORDING DESIGNS LTD.
Blackwater Station Estate
Blackwater, Camberley, Surrey
Telephone Camberley 24622

SENIOR FIELD ENGINEER

Required for Computer and Data Processing Peripheral units, to operate from London, there are excellent prospects for a man with good electro-mechanical practice who can show initiative and can write clear factual reports. A car and operating expenses and good salary are offered to the right man.

DRAUGHTSMANCHECKER

Required for electro-mechanical work. Promotion prospects are good for a man with proved ability and initiative.

AUDIO EQUIPMENT DEVELOPMENT ENGINEER

Required for work connected with Public Address, sound recording and reproducing and Cinema Projection Equipment. Applicants must have a good experience of Technical Audio work.

> Apply in writing to
> The Chief Engineer, Westrex Co. Ltd.,

152, Coles Green Road, London, N.W.2.
or telephone
01-4525401 Extension 12.

A DIVISION OF LITTON INDUSTRIES

POST
 SERVICES

Our POST DESIGN SERVICES SECTION at Wandsworth has a vacancy for a man with a basic theoretical and practical knowledge of radio. He would also need the ability to prepare written technical leaflets from laboratory information and a knowledge of M.O.T. Post Design procedure would be an advantage.
Applications in writing please to:-
The Personnel Officer, REDIFON LIMITED.
Broomhill Road, Wandsworth, London, S.W.18.
REDIFON:
A Member Company of the Rediffusion Organisation

Radiomobile CAR RADIO DeSGIGERS

Do you:-

Have a Degree or HND/HNC in electronics? Have experience in radio receiver design, not necessarily car radio?
Like the idea of working with a dynamic design team and seeing your project through to production?
Have ideas for using microcircuits?
IF YOUR ANSWER TO MOST OF THESE QUESTIONS IS YES

WHY NOT TELEPHONE ME, Peter Wilding
(Engineering Manager) on 01-452 0171-
(Reverse charges of course).
On any weekday
or send me your career details-
We need people like you-and will pay well for the right men-or women

COMMISSIONING ENGINEERS OR TECHNICIANS
Experienced in servicing or testing digital equipment. Training on Equipments given where necessary.

PROTOTYPE WIREMEN

Experienced on electronic rack wiring, but desiring more varied work.

These vacancies are in a team commissioning an advanced system of machine tools on line to a computer. They involve installation, test, evaluation and maintainance of machine tools and automatic conveyors.

Please write for Company brochure and application form to Mr. K. Oxenham, Head Office Personnel Officer,

TECHNICAL AUTHORS

A Technical Publications Contractor has vacancies in their Home Counties offices and on site for personnel to be engaged in the preparation of manuals for a wide range of electronic and alfied equipment to Ministry and Commercial require ments. Appllcation arelevant experience. Box No 5052.

ELECTRONIC SERVICE ENGINEERS

required by OLYMPIA BUSINESS MACHINES for their London workshops to work on a range of electronic calculators. A good salary and working conditions are offered.

Also required: Young Men with strong interest in electronics but without complete experience will be trained. Courses are available through this company. Day release for selected trainees. Please apply in writing to:
D. H. Smith,

Olympia Business Machines
Company Ltd.
299a Edgware Road, London, W. 2

TECHNICIAN

Applications are invited for the post of technician to maintain computer systems, to construct computer hardware, and to assist in the general running of a small electronics laboratory.

Suitable qualifications are experience in electronic equipment, construction and maintenance of electro-mechanical devices and an interest in the subject generally.

Salary range £847-£1,400. Superannuation scheme.
Apply in first instance by letter, stating briefly personal details and relevant experience, to Mr. J. A. Payton, Centre for Computing and Automation, Imperial College, London, S.W.7.

2201

CHIEF SOUND RECORDIST

required by the CENTRAL OFFICE OF INFORMATION for its Radio Division which is responsible for the production and fast transmission of radio programmes on magnetic tape and disc or by circuit for use by broadcasting stations overseas. Programmes vary from brief interviews to half an hour in length and total output is about 50 hours per week, in some 30 languages.
The Chief Sound Recordist will have control of a staff of maintenance engineers and sound recordists and will be responsible for all sound recording operations. His duties will include the management of recording studios and copying channels, and the servicing of static and portable equipment. He will supervise recording by outside contractors and liaise closely with the GPO about and line facilities to overseas territories. He will be responsible for the planning, design and installation of such new facilities as may be required by the development of the service and by technical advances in the medium. Salary $£ 1,850-£ 2,355$ per annum.
Please send postcard for application form to Manager (PE/A/185/EW). Department of Employment and Productivity, Professional and Executive Register, Atlantic House, Farringdon Street, London, E.C.4. Closing date for completed
2207 application forms 4 June 1969

Tradesmen and Technicians

Applications are invited from competent men who are attracted by the opportunity to work overseas for a year or two (with generous leave and free air passages), earn an attractive salary and qualify for tax concessions.

Our immediate vacancies are as follows :-

FITTERS INSTRUMENT
(Ref. FTI)

FITTERS

WIRELESS
(AIR)
(Ref. FTW/A)

FITTERS RADAR (AIR)
(Ref. FTR/A)

FITTERS
RADIO/RADAR
(Ref. FTR/R)

FITTERS
ELECTRICAL
(GROUND)
(Ref. FTE/G)

LABORATORY TECHNICIAN
(Ref. LTN)

Suitable applicants would be ex-RAF or civilian trained fitters with Flight Instrumentation experience in 1st and 2nd line servicing associated with Lightning and Jet Provost aircraft

Suitable applicants would be ex-RAF or RN trained fitters with 1st and 2nd line servicing experience of Airborne communication equipment, P7R 175, ARC 52, TACAN and IFF.MK 10.

Suitable applicants would be ex-RAF or RN trained fitters with 1st and 2nd line servicing experience of Airborne Radar equipment, AI 23B, TACAN and IFF.MK 10.

Suitable applicants would be ex-RAF or RN trained fitters who have received a formal course on TACAN, IFF, VHF/UHF and PTR 175 and are experienced at 1st and 2nd line servicing level.

Suitable applicants would be ex-RAF or RN trained fitters with experience of servicing and maintaining Airfield ground servicing vehicles and equipment.

Suitable applicants would be ex-Service or civilian trained technicians who are familiar with the use of electronic, radio and radar test equipment. They would be required to assist Electronic Instructors in the laboratory.

Please apply, quoting the appropriate reference, to :

THE PERSONNEL MANAGER AIRWORK (OVERSEAS) LIMITED BURLINGTON ARCADE BOURNEMOUTH . HANTS

ELECTRONIC ENGINEERS

Service Engineers required for Offices, throughout the United Kingdom, of well-known Company manufacturing Electronic Desk Calculating Machines. Applicants should possess a sound knowledge of basic Electronics with experience in Electronics, Radar, Radio and T.V. or similar field. Position is permanent and pensionable. Comprehensive training on full pay will be given to successful applicants. Please send full details of experience to the Service Manager, Sumlock Comptometer Ltd., 102/108 Clerkenwell Road, London, E.C.1.

ITT Marine

MARINE RADIO ENGINEER

Due to our expanding business in the South Wales area, we urgently require an additional engineer to work from our Cardiff Depot on service and installation of marine radio and associated equipment.

Candidates must be ex-Merchant Navy Radio Officers with a minimum of three years"sea-service and preferably previous experience of installation and maintenance of equipment.

Apply to Head Office Personnel Manager, giving brief details of qualifications and experience.
International Marine Radio Co. Ltd., 1 Peall Road, Croydon, Surrey, CR9 3AX.

NORWICH CITY COLLEGE DEPARTMENT OF

ELECTRICAL ENGINEERING

The Department of Electrical Engineering of the Norwich City College offers students who have studied Physics and Mathematics at Advanced level in the G.C.E. and passed in one subject, a modern sandwich course for the Higher National Diploma in Electrical and Electronic Engineering. Subjects studied include Computation, Statistics, Economics and Law, Electronics, Control, Telecommunications, Power and Machines. Well balanced and interesting industrial training with pay will be arranged as required. The course is approved for major grant awards by Local Authorities.

Accommodation will be arranged by the College if desired.

Enquiries about the course starting in September 1969 should be made to:
E. Jones, B.Sc., Ph.D., C.Eng., M.I.E.E. Head of Department of Electrical Engineering,
Norwich City College,
Ipswich Road, Norwich, Norfolk. NOR 670.

Computer Engineering

NCR requires additional ELECTRONIC, ELECTRO-MECHANICAL ENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.
Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level, City and Guilds or radio/radar experience in the Forces.
Starting salary will be in the range of £900/ $£ 1150$ per annum, plus bonus. Shift allowances are payable, after training, where applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.
Excellent holiday, pension and sick pay arrangements. Please write for Application Form to Assistant Personnel Officer NCR, 1,000 North Circular Road, London, N.W.2, quoting publication and month of issue.

Electronic Technicians

Ampex Quality Control Department now has vacancies for electronics technicians. Successful applicants will be responsible for fault finding and testing a complete range of sophisticated magnetic recording equipment.

Experience gained in the electronic industry or radio or television servicing would be an advantage or a qualification of O.N.C. standard.

Attractive salary based on qualifications and experience will be paid and the company operates an excellent range of Life Assurance and Pension Schemes, etc.

Please write or telephone for application form to the Personnel Officer, Ampex Electronics Limited, Acre Road, Reading, (Tel.: Reading 84411).

AMPEX

MAINTENANCE ENGINEER

(Salary up to $£ 1600$)

The rapidly expanding Echo and Post Limited, a member of the progressive Thomson Organisation, has a vacancy for an engineer to maintain the equipment in the Teleprinter and Type Setting departments.

Applicants should preferably have served an apprenticeship with a light engineering company, and have had experience in the maintenance of Teleprinters and Printer equipment. A working knowledge of electronics would be an advantage.

The many attractive features of employment include: $37 \frac{1}{2}$ hour week. 3 week holiday, Contributory Pension Scheme, subsidised canteen and pleasant working contions in the most modern newspaper office in Britain.

Apply in writing giving brief details of age and experience to:
Production Manager,
Echo and Post Ltd,

Mark Road,

Hemel Hempstead,

Herts,

or
Telephone Hemel Hempstead 2211 extension 340

Looking for a change?
 TECHNICAL AUTHORS

We are one of the world's leading designiers and manufacturers of flight simulators. We are looking for authors with a sound knowledge of electronics and who preferably have some knowledge of-basic digital computer operation. They will produce operating and maintenance manuals. They must be able to write literature in a clear and concise style. Formal qualifications are desirable but not essential. Our product is a highly sophisticated one and incorporates both analogue and digital computers. Simulation is based on novel applications of known techniques. Authors have ample opportunity to employ a measure of creative expression. This work is definitely not of a monotonous. routine nature.
Conditions of employment are good and include a contributory pension scheme coupled with free life assurance. There is a paid sick scheme and other benefits.
Please apply in writing, giving brief details of career quoting ref. WW/469.
Apply to: H. C. Hall,
Personnel Manager, REDIFON LIMITED, FLIGHT SIMULATOR DIVISION, Gatwick Road, Crawley, Sussex. Telephone: Crawley 28811. REDIFON:
A Member Company of the Rediffusion Organisation

GOVERNMENT OIF ZAMBIA

Department of Civil Aviation requires

 RADIO ENGINEERS

 RADIO ENGINEERS}

Salary in scale up to $\mathbf{E 2 7 8 2}$. Tour of 36 months offered.
Generous leave on full salary.
25\% End-of-Tour Gratuity.

Commencing salary according to experience in scale K wacha 2736 (£Stg.1596) rising to Kwacha 3216 ((Stg.1876) a year, plus an inducement Nllowance of ESig. 568 - LSig. 615 . A Direct Payment of $£ \operatorname{Stg} .268$ - CStg. 291 is also payable direct to an officer's U.K. Jank account. Both gratuity and direct payment are normally TAN FREE. Free passages. Quarters at low rental. Cliildren's education allowances. Gencrous leave on full salary or terminal payment in lieu. Pension scheme available under certain circumstances.

Candidates must be under 55 years of age and should possess 8 years relevant experience following:-
i) an apprenticeship of 5 years, or
ii) possession of a Service ryade Certificate, or
iii) possession of an A.W.O.A. or I.C.A.O. certificate of competency or its equivalent.
In addition, candidates must have a sound knowledge of the theoretical principles of and experience in the maintenance of at least FOUR of the following groups of Communications, CM, Navigational and Surveillance Systems.

1. Medium powered H.F. Transmitters and associated Receivers;
Frequency Shift Keying, S.S.B. and D.S.B. Equipment,

Medium Frequency Non-Directional Radio Beacons.
2. Low and High powered V.H.F., I.M. Equipment.
3. V.H.F. Omni range: Automatic VHF Direction Finders. Distance Measuring Equipinent.
4. Instrument Landing System.
5. Radar X and S Band Terminal and P.P.i Talk Down Rquipment.
6. Audio and Remote Control Equipment; Public Address Equiprnent; Airport Magnetic Tape Recorders; Inter Office Communication; Underground Control Cables; Impulse and D.C. Switching Systems.
7. Teleprinter Telegraphy (torn tape) and associated Page Printers; Pape Recorders (autoheads); Printing Reperforators and Associated Switching Equipment.
Duties include the maintenance, overhaul and installation of ground terminal radio communication equipment and navigational aids at Airports and Flight Information Centre.

Possession of a valid driving licence will be an advantage.
Apply to CROWN AGENTS, M. Division, 4 Millbank, London, S.W.I., for application form and further particulars, stating name, age, brief details of qualifications and experience and quoting reference $M_{2} Z / 690315 / \mathrm{W}$ F

OXLEY ${ }^{\circ} \oplus$ TEChNICIAN

Hrogressive Electronic Component Manufacturers, situated in the Lake District, require a Techniciah to work in close conjunction with Electronics Engineers and Physicists, in the development, and subsequent production, of precision glass components.

The successful applicant should be capable of working on his own initiative. A knowledge of Laboratory workshop practise and basic physics would be advantageous.
Assistance given in finding local accommodation.
Applications, stating age, experience etc., to be sent to:
The Personnel Manager,
Oxley Developments Company Limited,
Priory Park, Ulverston, North Lancashire.

A CAREER IN ELECTRONICS WITH THE AIR FORCE DEPARTMENT
VaCANCIES AT RAF SEALAND, NEAR CHESTER
RAF HENLDW, BEDFDROSHIRE
AND RAF CARLISLE, CUMBERLAND
INTERESTING AND VITAL WORK ON RAF RADAR AND RADIO EQUIPMENT FOR:
RADIO TECHNICIANS
MINIMUM QUALIFICATION, 3 YEARS' TRAINING AND PRACTICAL EXPERIENCE IN RADIO ENGINEERING.
STARTING PAY ACCORDING TO AGE. UP TO $£ 1,130$ p.a. (AT AGE 25) RISING TO £1,304 p.a. WITH PROSPECTS OF PROMOTION.
5-DAY WEEK-GOOD HOLIDAYS—HELP WITH FURTHER STUDIES—OPPORTUNITIES FOR PENSIONABLE EMPLOYMENT.
WRITE FOR FURTHER DETAILS TO:
MINISTRY OF DEFENCE CE3h(AIR),
SENTINEL HOUSE, SOUTHAMPTON ROW, LONDON W.C. 1 APPLICANTS MUST BE UK RESIDENTS 2208

REDIFFUSION

COLOUR TELEVISION FAULTFINDERS \& TESTERS

We have a number of vacancies in our Production Test Departments for experienced faultfinders and testers.
Knowledge of transistor circuitry and experience with Colour Receivers together with R.T.E.B. Final Certificate or equivalent qualifications required.
These will be staff appointments with all the expected benefits.
Applications to:

Works Manager,
Rediffusion Vision Service Ltd., Fullers Way South,
Chessington, Surrey (near Ace of Spades).
Phone: 0l-397 54II

A FULL-TIME technical experienced salesman re A quired for retall sales: write giving detalls of age, Henry's Radio, Ltd., 303 Edgware Rd., London, W.2

FLECTRICAL \& GENERAL DEVELOPMENT LIMITED, of Wimbledon, S.W.19, require engineers for testing Public Address Equipment. Phone
(01) 9470222 .

EXPERIENCED ENGINEER required for repair and E caibration of electronlc test equipment.-Apply A. J. Whittemore (Aeradio) Lid... Blestin Hill Aero-
drone, Kent. Tel.: Biggin Hill 2211 .

CXPERIENCED TV Engineer required. Permanen Euposition, good salary, Transport avallable if required. This is an addition to staff to cope with expand ing TV service. REM RADIO, ${ }^{79}$ Charch Road, Ashford.
Tel. Ashord 5336 (Middlesex).
$R^{E D I F O N}$ LTD. require fully ELECTRONICS INSPECTORS ENGINEERS and salaries. We would partic 1 arly weicome enquiries from ex-Servicn personnel or personne? about to leave the Services. Please krite glving full detalls toThe Personnel Manager, Radifon Ltd., Broomhll! Road,
Wandsworth, S.W.18.

UNIVERSITY OF SHEFFIELD. CHIEF ELEC TRONICS TECHNICIAN required in Departmen of Chemlstry to take charge of electronics workshop concerned with development and construction of new electronic equipment for use in research and teachin range of elect:onic instruments and equipment. Considerabie experience necessary. Paper qualfications in appropriate fleld desirable. Salary £ 1,294-£ 1,475 per annin. Suparanniation. Write to the Bursar (Ref
B.211) The Undversity. Shefleld S10 2TN.

We have vacancies for Foar Experienced Tes Appicants Eneers in oar Production Test Department Appicants are preferred who have Experience of Faul
Finding and Testing of Moblle VHF and UHF Mobll Equipment. Exce:lent Opportunities for promotion du to Expansion Programme. Please apply to Personne Manager, Pye Telecommunications Ltd., Cambridge Works. Hai3 Road, Cambridge. Tel. Cambridge 51351 Extn. 327

WEST London Aero Club invite "A" and "B" Whicensed enzineers with capltal and/or neces native propositions may be Rado Workshop. Alter detalls to-White Waltham Aiffeld, near Maldenhead Berks.

ARTICLESTFOR SALE
A MPMETERS. 6 ln . Dial Flish Type. A.C. or D.C. A 15,30 or 50 amp. New \& Boxed. Ex-Gov. $45 /-$ ea HUTTON, BRENTWOOD, ESSEX. RAYLEIGK RD.
$\mathbf{B}^{\text {BC2 KITS and T.V. SERVICE SPARES. Suitable for }}$ Colour: Leading British Makers dual 405/625 slx position push button transistorised tuners \& 5 5s. Cd., $405 / 625$ transistorised sound \& vision IF panels
$£ 215 \mathrm{~s}$. Od. incl. circuits and data. $\mathrm{P} / \mathrm{P} 4 / 6$. Basic dual £2 2 ss . Od. ncl . circuits and data, P/P 4/6. Basic dual
purpose $405 / 625$ transistorised tuners incl. circuit
 UHF tuners. PYE/EKCO incl. Valves $55 /-$, P/P $4 / 6$. EKCO/FERRANTI 4 position push button type, incl vaives, leads, knobs £5 10 s . Od.. P / P. $4 / 6$, SOBELL motion drive assy, leads, fittings, knobs, instructions \&5 18s. 6d., P/P 4/6. FERJUSON 4 position push button transistorised UHF tiners incl. leads \& knobs put chassis incl. circult $42 / 6, ~ P / P \quad 4 / 6$. Ultra 625 IF amplifier pilis $405 / 625$ switch assy lacl. circult $25 /-$ P/P 4/6. Nzw VHF tuners, Cyldon C 20/-, Ekco 2E3/ 330 range $25 /$-, Pye CTM 13 ch . Incremental $25 /-, \mathrm{P} / \mathrm{P}$ 4/6. Many others availabie insl. large selection channel col!s Flrebali tuners, used good cond, 30/-. Pusl) P/P 4/6. LOPTs, Scan colls. Frame output transformers. Mains droppers etc., avallable for most popu ar makes. TV sisna! boosters transistorised PYE/ Labsear B1/B3, or UHF battery operated $75 /-$. UHF mains operated 97/6, UHF masthead $85 /-$ posit free. Enqurles invited, COD despatch avallable. MANOR N.W.11. CALLERS 589B HIGH ROAD. N. FINCHLEY, N. 12 (nzar GRANVILLE RD.). Tel. 01-445 9118 . [60

PRAND NEW MINIATURE ELECTROLYTICS with 3 long wires, 15 volt $.5,1,2,5,6,8,10,15,20,30$, 0. 50. 100,200 mics., $7 / 6$ per dozen postage $1 /-$. The C.R. Supply Co., 127 Chesterfield Rd., Sheffield S8. ${ }^{370}$

BUILD IT in a DEWBOX quallty plastics cabinet. Bing^{2} In. $x{ }^{2 \frac{1}{2}} \ln$. x any length. D.E.W. Ltd. (W), Write now-Right now.

NEW MOTOR GENERATORS. 12 volt input. 240 v . C 6 outpat. $200 \mathrm{w}, \mathrm{E}^{3} 17 \mathrm{~s}$. 6 d . H. duty Twin 400 w , E 6 10s, od. C. patd. C.O.D. $3 / 6$ ext. 8. O'Brien,
[358

THE IDEAL PANEL Mounting Meter Mowement for S.D Sensitive Test Meter, etc. 200 Micro Amp only 39/6. P. $\& 2$ P. Free. Limited number only. Walton's Wireless Stores. 55A Worcester Street. Wolverhampton,
Stafls.

STAVELEY-SMITH CONTROLS LIMITED SERVICE ENGINEERS

Vacancies exist for both Marine and Industrial Electronic Service Engineers in the London area.

The Marine Engineer will be required to service Radio, Radar, and Navigational Aids on shipping in the docks and other locations in the South East.

The Industrial Engineer will be required to service and install a very wide range of equipment in Printing, Hospitals and handling industries. He must be willing to travel around from his base as work demands.

Applicants must be either ex-seagoing personnel and/or experienced Industrial Service Engineers, resident near London preferably Essex for the the Marine Engineer and West or North for the Industrial.

All applicants must hold clean driving licence and be willing to travel.

All positions are Staff, with contributory Superannuation.

Apply in writing, stating experience to:68 Grosvenor Street, MANCHESTER, 1 , or phone London 01-592 0252, Mr. Walton. 2211

H. C. D. Research Limited require ENGINEERS

who are interested in Linear Semiconductor Techniques for
CRYSTAL OSCILLATORS
R.F. POWER AMPLIFIERS AUDIO \& VIDEO MODULATORS TRANSMITTERS
Excellent working conditions in modern factory and laboratory.

APPLY: J. H. R. Manners, Chief Engineer, H.C.D. Research Limited,

RADIO \& TELEVISION SERVICING RADAR THEORY \& MAINTENANCE

This private College provides efficient theoretical and practical training in the above subiects. One-year day courses are available for beginners and shortened
courses for men who have had previous training.
Write for details to: The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.5. Tel.: 01-373 8721 .

BOURNEMOUTH COLLEGE OF TECHNOLOGY FULL-TIME COURSE

university of London external honours degree in electrical engineering
G.C.E. 'A' level entry or O.N.C.(Eng.) or O.N.D.(Eng.) entry

Next session's course commences September, 1969. Details from The Principal, Room E7, College of Technology, Lansdowne, Bournemouth BH1 3JJ. Tel: 20844 APPROVED LODGINGS ARRANGED early application is desirable

NEWCASTLE UPON TMNE POLYTECHNIC (Designate)

RUTHERFORD COLLEGE OF TECHNOLOGY

B.Sc. ELECTRICAL AND ELECTRONIC ENGINEERING (Honours and Ordinary)
B.Sc. PHYSICAL ELECTRONICS (Honours and Ordinary) M.Sc. ADVANCED EXPERIMENTAL PHYSICS

Further details of these and other courses and of residential accommodation available, may be obtained from Administrative Officer, Rutherford College of Technology, Ellison Place, Newcastle upon Tyne, NEI 8ST quoting WW 693

TRANSISTOR ELECTRONIC ENGINEERS

NEWMARKET are expanding their applications laboratory which deals with device evaluation, customer circuit problems, micro circuit design, etc.

There are now, interesting openings for qualified and unqualified engineers who have some experience in transistors.

WRITE or TELEPHONE, in confidence, and give Mr. Towers, Marketing Manager, details of your age, qualifications and experience.

AT NEWMARKET TRANSISTORS LTD. EXNING ROAD, NEWMARKET, SUFFOLK. TEL. NEWMARKET 3381 or

On Stand E201 at the R.E.C.M.F. Exhibition, Olympia.

CLOSED CIRCUIT TELEVISION EQUIPMENT, We Chave a quantity of industrial and broadcast television equipment for dlsposal at reduced price. Write tor list.-J. D. Jackson Electronics, Eggleston Works,
Lombard Street. Newark. Tel.: 5718.

CONNOISSEUR Mono Disc Cutter 331-45-78 rpm. Cariable Groove cut Heated Stylus. Complete with Swarfe removal vacuum motor. £ 550 . John King (Films) Ltd., East St., Brighton $1 . \quad$ [2188
How to Use Ex-Govt. Lenses and prisms. Booklets. 1 Nos, ${ }^{1}$ \& 2 2, at $2 / 6$ ea. List Free for S.A.E. H. W. ENGLISH, 469 RAYLEIGH RD., HUTTON. BRENT,

TNTEGRATED CIRCUITS at lowest rate GT Type ach including data. P. \& P. C.W.O. JEF ELEC. TRONICS, 12 York Drive, Grappenhall, Warrington Lancs. Mall Order only.
L ARGE SCREEN colour T.V. projectors, Cintel Model condition but require assembly Spare CRT inputs. Good condition but reauire assembly, Spare CRT's. Offers as

NUT DRIVERS in 22 sizes B.A. A/F \& N.M. Send S.A.E, FOR LISTS to Bargain Spot, 268 London Rd., Croydon.
[368
Research oscilliscope. D.C. to 50 Mcs . Rise R Time 7 Nano seconds, Normal Sweep 2 seconds to 5 Nano seconds. Sensitivity 25 mililivolts/em, 0.1 micro seconds delay sweep. Strobe sweep. Square and triangular wave outputs. 100
condition. Mcs, marker, Single shot. New
Quarter of
list price. West. 2 Lordship Lane, Letchworth, Herts (Letchworth 4536). [2173

SILICON planar transitors, 100% tested and full spec. supplied with orders. NPN types for organ projects, te. 25 for 2 . PNP types sim. to 2N3702 and gerW.W. 2191 Wireless World ior $£ 1$. Post free. Box No

TESTED TRANSISTORS, ACY28/OC81 6d. each. K 30 for $10 /-$, post $1 /$-,-Bell, 59 Fairfield Drive. Monkseaton, Northumberland.
UFO DETECTOR CIRCUITS, data, 10s. (refundable) Paraphysical Laboratory (UFO Observatory),
[369

F.E.T. PRE-AMP

Impedance matching module: Z in $2 M$. Z out $<\mathrm{IK} .25 \mathrm{~Hz}-200 \mathrm{kHz} \pm I \mathrm{~dB}$. Dis: tortion $<0.2 \%$ at 500 mv into $3 \mathrm{~K}, 25 /-$ each ($45 /$ - pair) post free (U.K.), c.w.o. W. T. MORRIS, I Birch Drive, Shawbury, Shrewsbury.

BRING AND BUY SALE

A bring and buy sale will be held in H.M.S. MERCURY, near Petersfield, Hants, on SATURDAY I4eh JUNE.
Amateurs wishing to dispose of unwanted items of equipment or components are invited to bring them along.
Talk in stations will be actived on $2,4,80$ and 160 metres (g 3 BZU) from 1100 BST and sale will commence at approx. 1430 BST.
Members of the Royal Naval Amateur Radio Society who will be attending are invited to inform the Secretary as soon as possible. 2195

EDUCATIONAL COMPUTERS

For all materials connected with the educational use of the computer. Advisory department staffed by qualified science and mathematics ceachers, free to educationists and amateurs. Digital computers. analogue computers and peripherals bought and sold. Realistic prices.

COMPUTER TRAINING PRODUCTS
Lordship Lane, Letctiworth. Letchworth 4536

TEST EQUTPMENT
 AND SECONDHAND

SIGNAL generators, oscllloscopes, output meters, wave S voltmeters, frequency meters, multi-range meters, etc. etc., in stock,-R. T. \& I. Electronics, Ltd.: Ashville Oid Hall, Ashwlle Rd., London, E.11. Ley. 4986.

FECEIVERS AND AMPLIFIERS SURPLUS AND SECONDHAND

CDDYSTONE Communlcations Recelver 840 C A.C.

EDDYSTONE S770R Rx. $19-165 \mathrm{Mc} / \mathrm{s} .4$ yrs. old. TEL. BLACKPOOL 64680 (AFTER 6 p.m.)

HRO Rx5s, etc. AR88, CR100, BRT400, G209, S640, $\mathrm{H}_{\text {etc., etc., In stock.-R. T. \& I. Electronics, Ltd. }}$ Ashville Old Hall. Ashville Rd. London, E.11. Ley.
4986.

Marconi

Can offer you
NON-TIED HOUSING IN A NEW TOWN ATTRACTIVE SALARY ANNUAL SALARY REVIEWS GOOD WORKING CONDITIONS 37-HOUR WORKING WEEK

At Basildon we have a number of vacancies for technical test staff to work on advanced aeronautical electronic systems, maintenance and building of test equipment and other major projects. These positions will be of particular interest to men with experience of transmitters, receivers, aerials, closed circuit T.V. or digital systems.

Please telephone or write for an application form to:-

Mrs. B. Bridgen, Personnel Officer, The Personnel Dept., The Marconi Company Limited, Christopher Martin Road, Basildon, Essex.

Phone: Basildon 22822.

NEW GRAM AND SOUND

 EQUIPMENTCONSULT first oar 70 -page Hustrated equipment Catalogue on Hi-F1 (5/6). Advisory service, generous terms to members. Membership $7 / 6$ p.a.-Audlo Supply
Assoclation.
Blenhelm Assoclatlon. 18 Blenhelm Ruad. London, W. 4.
01-995 1661. GLASOOW--Recorders bought, sold, exchanged; $\mathrm{G}_{\text {cameras, }}^{\text {Ltc., exchanged for recorders or vice- }}$
\qquad

TAPE RECORDING ETC.

IF qualty, durability matter, consult Britain's oldest transfer service, Quality records from your sultabie
(Excellent tax-free fund ralsers for schools, tapes. (Excellent tax-iree fund ratsers for sentis,
churches.
Modern studio faclities with Stelnway Grand. Sound News, 18 Blenhelm Road. London, W.4.
$01-9951661$.
[28
$\boldsymbol{T}_{\text {cutcers: }}^{\text {APE }}$ dise transier, using latist feedback disc High Bank, Hawk St., Carnforth, Lancs.

VALVES

Valve cartons by return at keen prices; send $1 /-$ for all samples and Ifst.-J. \& A. Boxmakers, $75 a$
Godwin St., Bradford, 1. FOR HIEE
GOR hire ccTV equipment insluding cameras,
monitors, video tape recorders and tape-any perlod.
-Detalls from Zoom Television, Amersham 5001.
[75

ARTICLES WANTED:

$\mathbf{B}^{\mathrm{BC} 2}$ Televisions urgently required or convertible 10 models, large or small quantities. Rother Rentals, | 10 Wellqatz. Rotherham, Yorkshire. Telephone Rother- |
| :--- |
| ham 4375 |
| [356 |

Wanted, all types of commanications receivers Electronics, Ltd., Ashville Old Hall, Ashvile Rd., LonElectronics, Ltd., Ashville Old Hall, Ashvule Rd., Lon-
don. E.11. Ley. 4986 . $W^{\text {anted }}$, televisions, tape recorders, radiograms, High St., West Bromulch, Staffs. Tel. Wes, 0186. 37
$W^{\text {anted: Back nimbers of wireless world, prefer- }}$ Wireless world. up to Oztober 1941. Box W.W. 2192

VALVES WANTED

$\mathbf{W}^{\text {E buy new valves, translstors and clean new com- }}$ ponents, large or small, quantites. all detalls.
quotation oy return.-Walton's Wireless
 Wanted Scrap Valves type TY5-500, TY6-800,

SERVICE \& REPAIRS

O YOUR STAFF, but not on your payroll; commisrequirements. Box W.W. 347 Wireless World

CAPACITY AVAILABLE

A IRTRONICS, Ltd., for coll winding, assembly and A wiring of electronic equipment, translstorised subunlt sheet metal work.-3a Walerand Rd., London
S.E.13. Tel. 01-852 1706. A SSEMBLY and wiring of electronic equipment forms, etc. A.I.D. standards.-Dardon Electrics,
Coventry. Tel.:
[373 ELECTRONIC and Electrical Manufacture and East MIdlands Instrument Co. Ltd. Summergangs Lane, Galnsboroush, Lincs. Tel. 3260. Summergangs
FULL or Partial Manufacturing or Assembly Capacity 9 Mallow Street. Jondon, E.C. 1 Units.-J. D. R. Ltd.
EACTORY has capacity for wiring, assembly, P.C. E Boards. etc., in W.1. Excellent standard of work.
Tel. $437-157 \varepsilon$ [363 M ETALwork, all types cablnets, chassls, racks, or smali milling and capstan work up to 11 n bar. PHILPOTT'S METALWORKS, Lid., Chapman St., Loughborough.
We have immediate capacity for wiring and assemb:y - Reselec, 33 Snow electrical and electronic equipment. Wycombe, Bucks.

[^5]CITY \& GUILDS (Eyectrical, etc.), on "Satlsfaction Cor Refund of Fee" terms. Thousands of passes. For details of modern courses in all branches of elecetc.; send for 132 -page handbook-pree.-B.I.E.T. (Dept. 152K), Aldermaston Court, Aldermaston, Berks.
P.M.G. Certificates, and Cley \& Gullds Examinatlons. Also many non-examination courses in Radio, IV and Electronics. Study at home with world tamoas ICS Write for free prospectus to ICS. Dept. 443, Intertext

R ADIO officers see the world. Sea-golng and shore Rappolntments. Tralnee vacancies in Sept. and Jan. Grants avallable. Day and boarding students. Stamp
for prospectus. Wireless College, Colpya Bay.
[80
$T V$ and radio A.M.I.E.R.E., City \& Guilds. R.T.E.B.; 1 certs., etc., on sathsfaction or refund of fee terms; thousands of passes; for full detalls of exams and home branches of radio. TV, electronics, etc. . write for 132 page handbook-free; please state subject.-British Institute of Engineering Technology (Dept. 150K).
Aldermaston Court, Aldermaston, Berks.

TUITION

ENGINEERS.-A Technical Certificate or quallifiaCtion will bring you security and much better pay. Elem, and adv. private postal courses for C.Eng. A.MII,E.R.E.. A.M.S.E. (Mech. \& Elec.). Clty \& Diploma courses in all branches of EngineeringMech., Elec., Auto. Electronics. Radlo. Computers, Draughts, Bullding, etc.-For full detalls write for ng Technology (Dept. 151K), Aldermaston Court Aldermaston, Berks.
KINGSTON-UPON-HULL Education Committee. K College of Technology. Principal: E. Jones, M.Sc. FULL-TIME courses for P.M.G. certificates and the Radar Maintenance certificate.-Information from College of Technology, Queen's Gardens, Kingston upon
Hull. Hull.
SERVICE ENGINEERS - up-date your technical knowledre of Radio TV \& Electronles thro
home-study proven
courses. Detalls from ICS, Dept. 442 , Intertext House, London. SW11.

BOOKS, INSTRUCTIONS, ETC.

MANOALS. circults of all British ex-w.D. 1939-45 .E.M.E. Instructions; s.a.e. for list, over 70 types. W. H. Bailey Surrey, CR4-8PZ

AMPLIFIER MODEL HA34
Dealgned for $\mathrm{Hi}-\mathrm{Fi}$ reproduction of
recorde． recorde．A．C．matins operation．
 d． K t $t \mathrm{in}$ ．h．Incorporatea ECC83，
ELAA．EZ80 valve．Heary duty，
double wound naling tranatormer ELas．Ez80 ralves．Heary duty，
double wound maine tranatormer
and output transforner tuatched for 3 ohm speaker，separate banche treble
aud volume controla．Negative feed－ back line．Output 4$\}$ matts．Front panel can be detsched and
leads extended for remote mounting of contion．The HA34 has been specially designed for us and our quantity order enables us
to offer them complete with knobe，valves，etc．s wired and teated for only e4／5／－P．AP．B／＊AMPLIFIER EIT Blimilar in appearance to HA 34 above but employs entirely
dinferept different and midyan
$79 / 6$ P．\＆P． $6 / \mathrm{F}$

HAVERSON SURPLUS CO．LTD．
170 HIGH STREET，MERTON，LONDON，S．W． 19 Telephone： 01.5403985 S．A．E．all enquirios
Open all day Saturday（Wednesday 1 p．m．） PLEASE NOTE：P．\＆P．CHARGES QUOTED APPLY TO U．K．
ONLY．P．\＆P．ON OVERSEAS ORDERS CHARGED EXTRA．

唯过PRINTED CIRCUITS
altion equipment manufactureas Large and small quantities Full design and Prototype Service and Assemblies at Reasonable Prices Let us solve your problems
K．J．bentley \＆PARTNERS 18 GREENACRES ROAD．OLDHAM Tel：061－6240939

WW－ 140 FOR FURTHER DETARS

TRANSFORMER LAMINATIONS enor－
mous range in Radiometal．Mumetal and H．C．R．，also＂C＂\＆＂E＂cores．Case and Frame assemblies．
MULTICORE CABLES screened and unscreened from 2 way to 25 way．
Large selection of stranded single p．v．c． covered Wire $7 / 0048,7 / 0076,14 / 0076$ etc．
P．T．F．E．covered Wire，and Silicon rubber covered wire，etc．

J．Black

44 GREEN LANE，HENDON，N．W． 4 Jel：08－203 1855．08－203 3033

BAILEY 30 WATT AMPLIFIER

An audibly unbeatable kit as supplied by us to Industry and Govt．Send for free details， 10 Transistors as specified \＆Pcb E6． 10.0 20 Transistors as specified \＆ 2 Pcb \＆ 12.10 .0 R1：R27 \＆Por $11 / 6$ CI－C6（Mullard）9／6 Mullard Capacitors $1250 \mathrm{mFd} / 40 \mathrm{vw} 8 /-$ each Finned solid Ali Heatsinks $4 \times 4 i \mathrm{in}, 12 / 6$ each Int．Rect．Bridge Rects 200P．I．V．／1．8A $25 /-$ Transformer 230／40／50，E．S．，45v＠2A 47／6 Photostats of May and Nov，articles $8 / 6$ set
Linsley Hood Amp－Send for List
A． 1 FACTORS． 72 BLAKE RD．．STAPLEFORD．NOTTS．

DAMEGED METER？

Have it repaired by Glaser
Reduce overheads by having your damaged Electrical Momsuring Inatruments repaired by L．Giaser \＆Co．Ltd． We specialise in the repair of all types and makes of
 Voltmeters，
ammeters， ammeters，Multirange Test
Meters，Electrical Thermometers， Meters， 1 Recording Intruments，Leak
Detectors，Temp．Controllers，all Detectors，Temp．Controners，
typest Bridges \＆Insulation
Testers，etc．
REPAIRS Testers，etc．
As contractors to various Government Departments we are the leading Electrical Instrument Repairers in send delective instruments by registered post，or write to Dept．W．W．：－

GLASER INSTRUMENTS 1－3 Berry Street，London，E．C． 1
Tel．：Clerkenwell $5481-2$

WE BUY

any type of radio，television，and electronic equipment，components，meters，plugs and sockets，valves and transistors，cables， electrical appliances，copper wire，screws， nuts，etc．The larger the quantity the better．We pay Prompt Cash．

Broadfields \＆Mayco Disposals， 21 Lodge Lane，London，N． 12

RING 4452713
4450749
9587624

ALL GOODS GUARANTEED

CONVERTOR／BATTERY CHARGER．Input $240 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$ ．output， 12 v .5 amp D．C．Input 12 v ．
D．C．output 240 v ．A．C． 170 Watt max．With fuse and indicator lamps．Size $9 \frac{1}{2} \times 10 \times 4 \frac{1}{\mathrm{i}} \times \mathrm{in}$ ．Weight 19 lb ， An extremely compact unis that will give many years reliable service，supplied with plug and lead．Only \＆4／10／－．P．\＆P． $15 /$ exera．
As above－fully serviceable－perfect interior but soiled exterior cases，C3．P．\＆P．15／0 extra．
OISTRIBUT゙ED WIDE BAND AMPLIFIERS Various cypes，e．g．E．M．I．type $701.20 \mathrm{mc} / \mathrm{s}$ ，to
$240 \mathrm{mc} / \mathrm{s}$ ．Ideal low noise TV，FM amp． $\mathbf{4 5} / \mathrm{io} /-$ ．

DEKATRON COUNTER tubes type GCIOB G．M．TUBES．Brand New．G24／G38／G60 at 35／－ ezch．G53／1 at 28 each
SOLARTRON stab．P．U．type AS5 $16300 \mathrm{y}$.50 mA ．， TRANSISTOR OSCILLATOR．Variable frequency $40 \mathrm{c} / \mathrm{s}$ ，to $5 \mathrm{ke} / \mathrm{s}$ ． 5 vole square wave of p ，for 6 to 12 v O．C．inpur．Size $1 \frac{1}{1} \times 1 \frac{1}{8} \times 11 \mathrm{in}$ ．Not encapsulated． Brand new．Boxed． $11 / 6$ each．
VENER encapsulated＂flip－flop＂type TS．2A．Com－ piete with base $21 /$ or 4 for $\mathbf{6 3 / 1 5 / -}$ ．
MULLARD pot cores type LAI，8／6 ea．（brand new boxed）．
TIMER UNIT consisting of standard mains input transformer $200 / 240$ v． 50 cycle；output 18 V． 4 amp
（conservative）：GEC bridge rectifier detachable accu （conservative）；GEC bridge rectifier；detachable accu－
rate I sec．timer sub－chassis with transistor STC type rate 1 sec．cimer sub－chassis with eransistor STC type
TS2， 2×12 AU7；one 500 ohm relay heayy duty con tacts 2 make；lamps，fuse，switch etc．，etc．，In case size $10 \times 10 \times$ Sin．Ideal for battery charger，one second timer，eransistor power supply，etc
Tested and guaranteed working，$£ 2 / 15 /$－each．P．P．I5／－． FAST NEUTRON MONITORS（Burndept type 1262B）．Complete with new set of Mallory cells and carrying harness． 110 only．P．\＆P． $10 / \mathrm{F}$

OSCILLOSCOPES
Cossor OB 1035， $\mathbf{6 2 0}$ ； 1035 Mk ．II， $\mathbf{2 2 5}$ ； 1035 Mk .3 £32／10／－；1049，$£ 30 ; 1049 \mathrm{Mk}, 3$ ． $\mathrm{C35}$ ．CTS2，$\& 18 / 10 /-$ HARTLEY 13A．Now only ¢18．EMI cype WM2，\＆40 All scopes carefully serviced and in excellent condi
tion．Carriaze $30 /$ extra． AMPLIFIERS．Compact unit by Parmeko－rated 17 SU4，matching to 15 ohms．High impedance or trans： former input．Standard mains input．Size $14 \frac{1}{\frac{1}{2}} \times 8 \frac{1}{2} \times 8 \frac{1}{2}$ high．Fully tested． $88 / 10 /$－including carriage．
AIRMEC Valve millivoltmeter 784 ． 6 in．rectangular AIRMEC Valve millivoltmeter 784．6in．rectangular 200 micro amp．meter calibrated－ 10 db to +10 db and $0-10 \mathrm{mv}$ ．；range $-40 \mathrm{db} / \mathrm{x} ;-20 \mathrm{db} / \times 10 ; 0 \mathrm{db} / \times 100$ 68．Carriage 15／－－
CT49 AUDIO FREQUENCY METER fre．range $450 \mathrm{c} / \mathrm{s}$ ．to $22 \mathrm{kc} / \mathrm{s}$ ．directly calibrated．Power supply ． $5-22$ v．D．C．$£ 6 / 10 /$
SOLARTROM EQUIPMENT
D．B．Oscilloscope，type C．O7115．2，$£ 55$.
S．B．Oscilloscope，type CDS 13 ，$£ 35$ ．
Pulse Generator，type OPS 100 c ．，$£ 25$.
Stabilised P．U．eype SRS 151
Stabilised P．U．，type SRS 151． 215.
PLESSEY PLUGS SOCKETS MK．IV． 2way Brand New $10 / 6 \mathrm{pr}$ ．Cleaned ex－eq．T／6 pr 4 way Brand New $10 / 6 \mathrm{pr}$ ．Cleaned ex－eq． $7 / 6 \mathrm{pr}$
6 way Brand New $12 / 6 \mathrm{pr}$ ．Cleaned ex－eq． $7 / 6 \mathrm{pr}$ 6 way Brand New $12 / 6 \mathrm{pr}$ ．Cleaned ex－eq． $7 / 6 \mathrm{pr}$ ．
12 way
Cleaned ex－eq． $11 /-\mathrm{pr}$ ． Coax．Brand New $7 / 6$ pr．Cleaned ex－eq． $5 /-\mathrm{pr}$ ． RELAYS
3,000 Series $5 \mathrm{k} / \mathrm{ohms}, 2$ pole make H．D．contacts， $2 / 6$ each．
S．T．C．sealed 2 pole co． 48 V ．only．Complete with base $4 / 6$ each． Standard Pots．Brand
Transistor，2s005，NKT403／452 at 6／8 each．All brand new stock，
COURTENAY TIMER unit．Accurate I sec．timer variable mark space ratio．Input I2V AC or DC Heavy duty relay contacts so switch external equip－ ment e．8．flashing lights．Chassis mounting size CRT－modern replacement for the VCRIJ8A．Blue trace with PDA available， $27 / 6$ each．Bases $3 / 6$ each． TI6 HT $80-6 / 6 \mathrm{ea}$ ．T 36 EHT $80-6 / 6 \mathrm{ca}$ ．T36 EHT 240

TRANSFORMERS．All 200／250 inputs 18 v． 6 amp and 12 v ． 1 amp．Separate windings $18 / 6$ each． 18 v ． 12 amps at 63 each．
TRANSFORMERS． $3 \mathrm{kV}, 4.5 \mathrm{~mA} .4 \mathrm{~V} .0 .5 \mathrm{amp} \times 2$ ， V．I． 1 amp．Brand new， $\mathbf{6} 5$ each．Ex eq．$£ 3 / 10 /-$ each． $350-0-35080 \mathrm{~mA}, 5 \mathrm{~V} .2$ amps $\times 2,21 / \mathrm{meach} .6 .3 \mathrm{~V}$ ． at 2 amps $\times 2,10 / 6$ each． $350 \cdot 0-350$ at 1 amp．Standard
input．$E 3 / 10 /-$ each． input． $\mathrm{E} 3 / 10 /-$ each．
CHOKES． 5 H．， 10
H．， 15 H ．up to $120 \mathrm{~mA} ., 8 / 6$ each．Large quantity L＇T，HT，EHT transformers． Your requirempnts please． METROSILS．Ideal pulse suppression， $2 /$－each
E．H．T．CONDENSERS． 7.5 kV ．working． 0.1 mfd ， ／6 each； 0.25 mid $8 / 6$ each．
BrandNew 5 kv working $2 \mathrm{mfd} 22 / 6 \mathrm{ea} ; 0.25 \mathrm{mfd} 10 / 6 \mathrm{ea}$ ． VISCONOL EHT Condensers．Brand New． $0.0158 \mathrm{Kv} 6 / 6$ each． $0.00215 \mathrm{Kv} 8 / 6 \mathrm{ea} .0 .012 \mathrm{Kv} 5 / \mathrm{em}$ ．
$0.000525 \mathrm{Kv} 16 / \mathrm{ea}$ ． $0.000525 \mathrm{Kv} 16 /-\mathrm{ea}$ ．
Cash with order．
Cash with order．Pose paid over $10 /$ ．
FOR CALLERS．Always a large FOR CALLERS．Always a large quantity of com－
ponents， $\mathrm{transformers}, \mathrm{chokes}, \mathrm{valves}, \mathrm{eapacitors}$, odd units，etc．at＇Chiltmead＇prices．Callers welcome

CHILTMEAD LTD．

Off Cumberland Road（Cemetery Junction） Tel．No．Reading 65916 （9 a．m．so $10 \mathrm{p} . \mathrm{m}$ ．）

SWANCO PRODUCTSLTD.

asmap AMATEUR RADIO SPECIALISTS new equipment

Sommerkamp F-Serien Equipmen

FR-dx-500 doublecovverwlos superhet $160-10$ metres FL-dx-500 B8 B/AM/CW tranmmitter. 240 ,

Swan Line Equipment

Swan 230-XC Power supply s.e.
Eddyatone Radio Ltd.
Eddyntone EA12 Aramteur band recelver 160-10

Eddyntone EC10 transietorised
Eddystone EB3s ahortwave i F.M. Tecelver
Trio Communications Equipment
Trio TS-500 AsB Tranceiver with a.c. PBU \& with
 $\begin{array}{rrr}231 & 0 & 0 \\ 42 & 0 & 0 \\ 69 & 10 & 0\end{array}$
Trio 9R59DE Communications recelver
Trio JR500SB Amateur Band Recelver $80-10$ thetre
Lafayette Receivers:
Lalayette HAs00 Amateur Band Recelver 80-6 metres $\mathbf{\text { mafingetse }} \mathbf{H} 600$ solid atate recelver
Hallicrather Equipment:
SX 130 Communications Pecelver
8X122 Communications recelve:
SX146 Amateur hand recelver.
ET46 888 trankmitt
SX146 recedver)
Moneley Electronica (Besms):
TA-33Jr. Tri-band three-element beam
TA-31Jr. Tri-hand dipole
V-31. . Triphand
TP-3Jr. Wire trap dipole
Park Air Electronica:
2-Metre Tranamitter (complete with Mic. etc.)
Karer Airoratt, short, tedlun, and bag wave recelver $\mathbf{\$ k y}$ Bundit Aircriatt recelver
Coneorde Aircraft recelver
8wanco/CSE Eqnipment
2-A10 Tranmilter
Type 2 A.T.M.A. Aerial
G-WHIP Anterana:
O-Whip Mobile Antenna Range. Light welghtdenign. Helical wound. Buperior performance. 8.A.E. HusLrated Brochare and Price

Codar Radio Company

CR. 70 A recelver ..
PR.30 preselector
PR.30X(PR. $30 \times$ (FIth PBU) R. Q .10 I (with P8U)
C. 40 Control Unit CR. $45 \times$ Beceiver. $\begin{array}{ccc}\xi & \% & d \\ 5 & 0 & 0 \\ 5 & 19 & 8 \\ 7 & 19 & 8 \\ 8 & 5 & 0 \\ 8 & 17 & 8 \\ 9 & 15 & 0 \\ 9 & 15 & 0\end{array}$

Partrige Electronics: Joyatick Btandard Joystioz Deluxe
Type 3 Tuner Type 3 A Tuner Type 4RF Tuner

Echelford Commanicatio B1/44 Metre Tx. M1/44 Metre Tz | 4 |
| :--- |
| 30 |
| 30 |
| 40 |
| r |CR.45RB recelver ATS transmitter

250 volt PQU 12/Ms P8U.. 12.RC Control Bhare Microphonas $\begin{array}{ll}\text { d. } & \text { Bhure 201 } \\ 0 & \text { ghure 202 } \\ 0 & \text { ghur }\end{array}$ 8hure 444, Shure 401A
Shure 275 SK Hnison Electrical Serv Moblle Antenna. Pull Range of KW Equipment avallable to order. Full Range of Heathit Equipment avilable to order. SECOND-HAND EQULPMENT
Many thems in ntack, including: Eddystone EC10, 827. AR88D, AR88LF, HRO, R209, 8R550, 9R59, DX $40 \mathrm{C}, \mathrm{VFO}+10$, dE100U, LG300, Laso, Panda Cub, KW Vauguari, lafagette startilte, eto. Yous enquiries, please. Full serrice
Serviced, etc.

SWANCO PRODUCTSLTD.

Dept. W 247 Humber Avenue COVENTRY

Telephone: Hours: Mon. Tues., Wed., Fri., Sat., Coventry 22714

Thurs. $9 \mathrm{a} . \mathrm{m}$. to 12 noon 8000 | 42 | 15 |
| :--- | :--- |
| 23 | |
| 23 | 10 |
| 17 | 0 |

BEST PRICES•BEST PRICES

CONNECTORS

most manufacturers' surplus Stocks are sold to
UNITED ELECTRONICS
We pay the highest prices Contact
Mr . Astor or Mr. Kahn
UNITED ELECTRONICS LTD

$12 / 14$ Whitield St. Lendon, $w .1$
Tel: 01.580
$4532.01-580$

BEST PRICES • BEST PRICES

ELECTRAMA

FANTASTIC SPEAKER BARGAIN

 buth-in iwentet, 15 ohms (P. \& L. $4 / 992$ lor $66 /=39 / 6$
Posti $8 / 9$.
 HI-FI HORN 10 watts Add this 16 ohms unit to your
existing speaker system create real live sound! (onty
 MULTIMETER HI-FI PICK-UP Your reproduetion is only as good
as your piek-up dur diamond tuent
over unit assurts qualify repro duction of sound. Mano 1Ep. ar

$$
\begin{aligned}
& \text { sife } 28 /-/ \\
& \text { gov. AC/D }
\end{aligned}
$$ for checking faults in household 10 car electrics. Giteed ip household and

39/6 Send for catelogue price 6 d

ELECTRAMA
Dept. WW75. 1 George St.. Hallsham. Sussex
WW-141 FOR FURTHER DETAILS

This useful handbook gives detailed information and circuit diagrams for British and American Government surplus Receivers. Transmitters and Test equipment. etc.. also contained are some suggested modification details and improvements for the equipment. Incorporat ed in this revised edition is a surplus/commercial cross reference valve and transistor guide. This book is invaluable to Radio Clubs. Universities and Laboratories. Latest edition priced at 45/- per volume plus 5/- p \& p. Only obtainable from us. Individual circuits and information available on request and S.A.E.

GILTEXT LTD.,
24. Stansfield Chambers, St. George Streer LEEDS 1.

WW-142 FOR FURTHER DETAILS

EXCLUSIVE OFFERS

LATEST TYPE, HIGHEST QUALITY 78 INCHES HIGH x 30 INCH DEEP TOTALLY ENCLOSED 19 INCH RACK MOUNTING
DOUBLE SIDED CABINETS
having the following unique features

\rightarrow Donble ilided the cabineti rack parel both addes. that is back and front drilled and tappod all the way down every Itu. for thit purpor

FFited "Ingiantit" (World Patento) fully adjustable Tack Danel mont
both vertically and horizontally thenere allow the recemsed it denired -lor instance. if the panels are jecting compoo nentr and it is desired to enclote
\star All edzen and corners rounded.
شAll fmerior Attings, tropicalised and rust proofed and passivated.

- Bailt-in Cable Dacts-removable.
\rightarrow Ventlated and insect prooted tobs.
- Detachable side panels.
* Full length instantiy detechsble doors atted eapasuolette bolte svailable it ordered with cablaets.
*Made in Californite, U.S.A., cont the American Govera ment £ 107 betore devaluation

OUR PRICE £26 100

(Full lenrth doore $£ 5$ each extra)
You do not require doorn if you are koing to mo

Computer Tape Recorder Reproduoers of hisheat quality, aiz speeds, in 8 ft. Cabinets-full details and prioe on request
P. HARRIS

ORGANFORD - DORSET

BEST PRICES• BEST PRICES•BEST PRICES•BEST PRICES

SELL CASH

THE LARGEST AND BEST BUYERS IN THE COUNTRY UNITED ELECTRONICS LTD

* Best Prices * Immediate Spot Offers * Fast Collection We buy
PLUGS AND SOCKETS-MOTORS-TRANSISTORS-VALVES-RESISTORS-CAPACITORS POTENTIOMETERS - METERS - RELAYS - TRANSFORMERS - TEST EQUIPMENT - ETC. Any quantities considered. Send lists of goods available. DON'T DELAY - contact Mr. Astor or Mr. Kahn-

UNITED ELECTRONICS LTD 12-14 WHITFIELD ST., LONDON. W.I. Tel: $01-5804532.01-580$ 1116. 01.636 5151. Telex: 27931

BEST PRICES•BEST PRICES• BEST PRICES•BEST PRICES

LAWSON BRAND NEW TELEVISION TUBES

Complete fitting instructions are supplied with every tube.
12^{*} Types 64.10 .0
14^{*} Types 64.19 .0
$17{ }^{\prime \prime}$ Types E5.19.0
19^{*} Types E 6.19 .0
21^{-}Types 67.15 .0
23° Types $\mathbf{2 9 . 1} 10.0$
19^{*} Panorama E8.10.0
23* Panorama El 1.10 .0
19" Twin Panel $£ 9.17 .6$ $23^{\prime \prime}$ Twin Panel $\mathbb{1} 12.10 .0$ Carriage and insurance 12/-

The continually increasing demand for tubes of the very highest performance and reliability is nows being met by the new Lawson "Century 99" range of C.R.T.s.
"Century 99" are absolutely brand new tubes throughout manufactured by Britain's largest C.R.T. mamufacturers. They are guaranteed to give absolutely superb performance with needle sharp definition screens of the very latest type giving maximum Contrast and Light output; together with high reliability and very long life.
"Century 99" are a complete range of tubes in all sizes for all British sers manufactured 1947-1968.

2 years full replacement guarantee
WW-143 FOR FURTHER DETAILS

LAWSON TUBES

18 ChURCHDOWN ROAD MALVERN, WORCS. Tel. MAL 2100

DEIMOS

TAPE RECORDERS FOR RESEARCH, INDUSTRY AND PROFESSIONAL AUDIO sinele and multichannel 8 CORWELL LANE, HILLINGDON, MDX. Hares 3 sel

AMERICAN

test and communications equipment * GENERAL CATALOGUE AN/103 $\%$ * manuals offered for most U.S. equipments

SUTTON ELECTRONICS

Salthouse, Nr. Hott, Norfolk. Cley 289
WW-145 FOR FURTHER DETAILS

GEARED MOTORS

Microswitches, Timers Meters, Potentiometers, Capacitors, all new 6d. stamp for catalogue
F. HOLFORD \& CO.

6 IMPERIAL SQUARE, CHELTENHAM

Aguide
to the
belter care
of LP and
Stereo
Records Records
$=$

THE ONLY COMPREHENSIVE RANGE OF RECORD MAINTENANCE EQUIPMENT IN THE WORLD!

Send P.O. 2/6 for 48 page booklet providing all necessary information on Record Care.

CECIL E. WATTS LIMITED Darby House
Sunbury-on-Thames, Middx.

TRAIN TODAY FOR TOMORROW

Start training TODAY for one of the many first-class posts open to technically qualified men in the Radio and Electronics industry. ICS provide specialized training courses in all branches of Radio, Television and Elec-tronics-one of these courses will help YOU to get a higher paid job. Why not fill in the coupon below and find out how?
Courses include:

- RADIO/TV ENG. \& SERVICING

AUDIO FREQUENCY
CLOSED CIRCUIT TV
ELECTRONICS—many new courses
ELECTRONIC MAINTENANCE
INSTRUMENTATION AND
SERVOMECHANISMS

- COMPUTERS

PRACTICAL RADIO (with kits)

- PROGRAMMED COURSE ON ELECTRONIC FUNDAMENTALS
Guaranteed Coaching for:
C. \& G. Telecom. Techns' Certs.
C. \& G. Electronic Servicing
R.T.E.B. Radio/TV Servicing Cert.

Radio Amateur's Examination
P.M.G. Certs. in Radiotelegraphy

General Certificate of Education

INTERNATIONAL CORRESPONDENCE SCHOOLS Oept. 230, Intertext House, Stewarts Rd., London, S.W. 8. Please send FREE book on
Name
Address.
. 6.69

WW-144 FOR FURTHER DETAILS

GODLEYS

SHUDEHILL, MANCHESTER 4
Telephone: BLAckfriars 9432
Agents for Ampex, Akai, Ferrograph, Tandberg, Bryan, Brenell, B. \& O, Vortexion, Truvox, Sony, Leak. Quad, Armstrong, Clarke \& Smith, Lowther, Fisher, Goodmans, Wharfedale, Garrard, Goldring. Dual, Decca, Record Housing, Fitrobe, G.K.D., ete. Any combination of leading amplifiers and speakers demonstrated without the slightest obligation

WW-148 FOR FURTHER DETAILS

Thanks to a bulk purchase we can offer

BRAND NEW

P.V.C. POLYESTER \& MYLAR RECORDING TAPES

Manufactured by the worldafamous reputable British tape firm, our tapes are boxed in polythene and have fitted leaders, etc. Their quality is as good as any other on the market, in no way are the tapes faulty and are not to be confused with imported, used or sub-standard tapes. 24-hour despatch service.

Should goods not meet with full approval, purchase price and postage will be refunded.

D.P. $\left\{\begin{array}{llllll}3 \mathrm{in} . & 350 \mathrm{ft} . & 4 / 6 & 5 \mathrm{in}, & 1,200 \mathrm{ft} & 12 /- \\ 5 \neq \mathrm{in}, & 1,800 \mathrm{ft} . & 16 /- & 7 \mathrm{in}, & 2,400 \mathrm{ft} & 20 /=\end{array}\right.$

Postage on all orders $1 / 6$
COMPACT TAPE CASETTES AT HALF PRICE
60,90 , and 120 minutes playing time, in original
plastic 1 ll brary boxes.
MC $609 /$ each. MC $9012 / 6$ each. MC $12018 / 3$ each.

STARMAN TAPES

> 28 LINKSCROFT AVENUE ASHFORD, MIDDX.

Ashford 53020

BAKER 'SUPERB' I2in. LOUDSPEAKER BRITISH MADE THROUGHOUT Suitable for all Hi-Fi Systems. Provides rich clear sound virtually flat $45 \mathrm{~dB}, 20-17,000$ cps. Latest double cone with massive "Ferroba" ceramic magnet. Flux density 16.500 gauss. Bass resonance 22-26cps. 20 watts British rating. Voic Price \& 15 Post Free

EXTENSION SPEAKER
Smart plastic cabinet speaker with $20 f t$.
lead for transistor radio, intercom, mains radio, tape recorder, etc. $30 /-\begin{aligned} & \text { Post } \\ & 2 / 6\end{aligned}$
Size: 7 tin. $x 5$ tin. $x 3$ in.
RETURN OF POST DESPATCH - CALLERS WELCOME HI-FI STOCKISTS - SALES - SERVICE - SPARES
RADIO COMPONENT SPECIALISTS 337 WHITEHORSE ROAD. CROYDON. Tel: 01-684 i665

INTEGRATED CIRCUIT DEVICES FROM GENERAL ELECTRIC, U.S.A.

All new and perfect-NOT REJECTS
PA237 $\begin{aligned} & 2 \text { watt audio amplifiter. Smaller than a } \\ & \text { shilling. Response } 25 / 20,000 \mathrm{ch}\end{aligned} \quad$ 44/0
2N5305,
Silicon Monolithic Darlington Amplifiers suitable for pre-amps requiring low-level, hish gain, low noise. The Lighe Detector Planar Silicon photoso control the sensitivity and zain. Packaged in clear Epoxy encapsulant and accepts light from a very narrow Transistors 2N2926 Orange spot or Green spot 20/6 Data sheers on all of the above $1 /$ - each.
EDE'S STUDIOS, 274 Haydons Road, Wimbledon, S.W.19. Telephone: 01-542 5327

WANTED-

Redundant or Surplus stocks of Transformer materials (Laminations, C. cores, Copper wite, etc.), Electronic Components (Transistors. Diodes, etc.), P.V.C. Wires and Cables, Bakelite sheet, etc., etc Good prices paid J, BLACK
44 Green Lane, Hendon, N.W. 4 Tel. 01 - 203 1855 and 3033

PRINTED CIRCUITS

Small quantities are not expensive, we have full artwork and assembly facilities.

Let us quote you for any quantity.
HoLETRONIC SYSTEMS LTD. Harrogate 86258
Telex 57962

FOR YOUR..
 SYNCHRO \& SERVO REQUIREMENTS!

SERVO \& ELECTRONIC SALES LTD. 43 HIGH ST.,ORPINGTON, KENT. Tel: 31066, 33976 Also at CROYDON. Tel: 01-688 1512

New from ILIFFE-
 PRINCIPLES OF PAL colour television

H. V. SIMS, C.Eng., M.I.E.E., F.I.E.R.E.

This book discusses the principles concerning the transmission of colour as well as reception and particularly the effects due to non-linearity and its correction. Other aspects covered are the failure of constant luminance, differential phase distortion and the production of Hanover bars. The book covers City and Guilds 300 Series (Television Broadcasting).

154pp. 59 illustrations.
35s. net case 36 s . 2 d . by post.
21s. net student edition 22s. 2d, by post.

ILIFFE BOOKS LTD
42 RUSSELL SQUARE, LONDON, W.C. 1

OSMABET LTD.

WE MAKE TRANGFORMERB AMONGBT OTHER THINGB AUTO TRANSPORMERS. 0-110-200-220-240 v. a.c. up or down.
 $500 \mathrm{w} .127 / 8 ; 600 \mathrm{w} .135 / \mathrm{o} \cdot 1,000 \mathrm{w} .210 / \mathrm{F}, 1,500 \mathrm{~m} .340 / \mathrm{o}$; $2.000 \mathrm{~m} .450 / ; 3.000 \mathrm{~W} .570 /-4.000 \mathrm{~m} .700 \%$.
MAINS ISOLATION TRANSFORMERS. Input $200-240$ F. A.c.,
$1: 1 \mathrm{ratlo}, 50 \mathrm{w} .80 /=; 100 \mathrm{w} .80 /-; 200 \mathrm{w} .150 / ; 500 \mathrm{w} .300 /-3$. MAINS TRANSFORMERS. Prim 200-240 v. a.c.; TX1 $125-0$ - 425 r.

 INSTRUMENT TRANSFORMERS. PrIm 200/250 ₹. A. ©., OMT/I,

 $40-0-40,50-10-50$ v. н.с., 1 smp. $60 /-$.
HEATER TRANSFORMERS. Prim 200/250 v. a.c. 6.a 1.5 a. $10 / 6 ; 3 \mathrm{a} .18 / 8 ; 6 \mathrm{~m}, \mathrm{ct} .30 /-12 \mathrm{v}, 1.6 \mathrm{a} .18 / \mathrm{j} ; 3 \mathrm{n}, 30 / ; 6 \mathrm{~m}$ $58 / 6 ; 24$ v. 1.5 a.ct. 27/6; 3 a. $58 /-; 5$ A. 75/-; 8 a. 110/• MIDGET MAINS TRANSFORMERS. FW Fectincation, size
 COLOUR TELEVISION. WW, as apecified, chake LI, 60/:transformer T1 57/6; tield output transformer 60/--
OUTPUT TRANSFORMERS. Mullard $5 / 10$. UL. 67/6; stereo 7 watt UL, $56 /-; 3$ watt $30 /-;$ PP tra., 11 K 21/-; 30 watt PP
(KT66 etc.) 3.15 ohmm. $75 /-$ Multl ratio $7 / 10$ watt, $30 /-$;atandard

CHOKES. Inductance $10 \mathrm{H} .68 \mathrm{Ma}, 12 /-; 85 \mathrm{Ma}, 15 /-; 150 \mathrm{Ma}$, Citriage extrads all tranatorners irom $3 / 6$ minimum.
BATTERY ELIMINATORS. PP9 200/250 Fi, a.c., 9 v. d.c. 150

FLUORESCENT Liahting LT, Input, 6, 12, 24 v. d.c. range FLUORESCENT LIABTING LT,
fitinge, inverters, S.A.E. Hets.
BULE TAPE ERASER, 200/230 5. a.c. Immediate and complete crasure of any aizo apool, sulable for tape head deunguetization. 200. of PAKERS, Complete range, immum make, 35 watt, $£ 7$ 25 watt. £5; 15 watt, 25 etc. etc.P. \& P. $8 /$ - each. 11 uatrated lists.

g.a.e. All enguirieg please. mail order only.

46 KENILWORTH ROAD, EDGWARE, MIDDLESEX Tel: 01-9589314

ADJUSTABLE HOLE \& WASHER CUTTERS The right tool for trepanning holes I"- $12 \frac{1}{2}^{\prime \prime}$ in diameter In our Adjustable hole and washer cutters 18\% Tungsten High Speed Tool bits

Write for illustrated brochure of our full range with straight or Morse taper 1-4 or Bitstock shank.

AKURATE ENGINEERING CO. LTD. Cross Lane, Hornsey, London, N. 8 TEL. 01 -348 2670

INOON GENTRA Rado storise

MODERN DESK PHONES. Red, green. blue or topaz, ${ }^{2}$ tone
gres or black, with Internal befl and hatulect with $0-\frac{1}{4}$ dia. \&A/10/-. P.P. 7/B
10-WAY PRESS-BUTTON INTER-COM TELEPRONES In BakeIthe chae with function box handset. Thorougbly overhauled OO-wAY PRESS BTTOM IVT Lite way PRESS-BOTTON iNTER-COM TELEPHONES in Bake
lith junet teed. E7/15/-per Unit.
TELEPHONE COILED HAND SET LEADS, 3 core, 5/6. P.P. 1/ELECTRICITY SLOT METER (1/- In slot) tor A.C. malns. Fixed tariff to your requirementa. Suitable for hotels, etc. $200 / 250$ v. $10 \mathrm{~A} .80 /-13 \mathrm{~A} .90 /-20 \mathrm{~A} .100 /-\mathrm{P} . \mathrm{P} .7 / 6$. Other
nvalisble. Reconditloned as new. 2 yenri'guarantee. QUARTERLY ELECTRIC CHECK METERS. Reconditioned as new. 200/250 M. 10 A. 42/6;15 A. 52/6; 20 A. 57/6. Other amperagen available. 2 years guarantee. P.P. $\overline{5} /$ -

 WIRELESS SET No 98 AF
 Inciudes power nupply 8ib.-and apare valves nidd vilbrator also tathk aerial with base. $£ 7$ per prir or $£ 3100$ single. P.P.25/-.
FINAL EMD FINAL END SELECTORS. Relay,
23 ISLE ST. (GER 2969) LONDON W.C. 2 Closed Thursday 1 p.m. Open all day Saturday

The RADIO AMATEURS HANDBOOK 45/-

1969 ED. by A.R.R.L. Postage 4/6

Radio Communication Handbook by R.S.G.B. 63/-. P. \& P. 4/6
F.E.T. Principles, Experiments and Projects by Noll. 40 - P. \& P. 21
49 Easy Transistor Projects by Brown. 16/P. \& P. 1/3.

Practical Power Supply Circuits, both valve and eranslstors, by Shields. 24/.. P. \& P. 1/4.
Basic Theory and Application of Transistors, new ed., by U.S. Army. 14/6. P. \& P. $1 / 6$.
Designers' Guide to British Transistors by Dasigners
Kampel. 25/-. P. \& P. $1 / 6$.
Practical Oscilloscope Handbook by Turner. $5 /=$. P. \& P. 1/6
Silicon-Controlled Rectifiers by Lytel. 21/-
Audio Amplifiers, new ed., by Davies. 10/6.
UNIVERSAL BOOK CO.
12 LIITLE NEWPORT ST., LONDON, W.C. 2
(Leisester Square Tube Station)
WW-152 FOR FURTHER DETAILS

WW-151 FOR FURTHER DETAILS

INIDEX TO ADVEIRTISERS
 Appointments Vacant Advertisements appear on pages 111-123

A1 Factors	$\begin{gathered} \text { Page } \\ 124 \end{gathered}$	Grampian Reproducers, Lid	
Acoustical Mfg. Co.,	vii	Greenwood, W. (London), Lid.	
Adcola Products Lid	Cover iii		
Advance Electronics, Ltd	40, 41	Hall Electric, Ltd.	18
Akurate Eng. Co., Lid	128	Harris Electronics (London), Ltd.	52
Amatronix. Led.	107	Harris, P.	133
Ampex G.B., Lıd	57	Hart Electronics	107
Amplivox, Lid.	10	Harversons Surplus Co., Lid	124
A nders Electronics,	15, 50	Hatfield Instruments, Lid	72
A.N.T.E.X., Lid	27	Henrys Radio, Lid	102, 103
A.P.T. Electronics	26	Hewlett-Packard, Lid	48,49
Armstrong Audio Lid.	x V	Holford, F., Co., Lid.	126
Arrow Electric Switches, Lid	11	Honeywell Controls, Lid	70
Associated Automation, Ltd	53	Howells Radio, Lid.	82
Associated Electronic Engincers, Ltd.	xii	Howland-West.	58
Audix, B. B., Lid.	32		
	1	I.C.S., Lid.	44,126
Avon Communications \& Electronics,	74	lliffe Books	68, 127
		1.M.O. (Electronics), Lid.	87
		Industrial Instruments, Lid.	46
Barnet Factors,	36 50	Instructional Handbook Supplies.	127
Bedco, Lid.	55		33
Bentley Acoustical Corporation Lid.	88	Jackson Bros, (London)	33
Bentley, K. J.	124	Kelly Acoustics Lid	70
B.I.E.T.	38		
Bi-Pak Semiconductors	86	Keytronics.	
Bi-Pre-Pak, Lid	93	Kinver Electronics, Lid	
Black, J.	124, 127	Kinver Electronics, Lid	
Bosch, Lid.	viii	Lasky's Radio Lid	
Britec, Ltd.	36	Lawson Tubes.....	
Brown, N. C., Lid.........	$1{ }^{42}$	Ledon Instruments, Lid.	
B.S. Radio \& Electrical Stores	110	Levell Electronics, Lid..	51
Buckingham Press, Lid Bulgin, A. F., \& Co., Lid	Edit. 295	Light Soldering Developments, L	52,56
	E.. 58	Linstead Electronics, Lid.	
Burgess Products Co., Lid.	72	London Central Radio Stor	128
	8	L.S.T. Components.....	
Carr Fastener Co. Lid.	82	Lyons, Claude, Lid.	
Cooper, R. G. Co., Lid.	50		
C.R.E.I. (London)	37	Marconi (Instruments), Ltd.	71
C. \& S. Antennas. Lid	2	Marshall, A., \& Son (London),	106
		Mayco Products, Ltd...	124
Daystrom, Ltd.	4	Mills, W.	94,95
Dependable Relays,	42	Milward, G. F	106
Diemos, Lid.	126	Milo International	20, 21
Diotran, Lid.	108	Modern Book Co.	107
Dolby Laboratories, Lid	32	Monks, K., Audio, Lid	26
Duxford Electronics	108	Motoroala Semiconductors, Lid	58
Dymar Electronics, Lid.	39	M.R. Supplies, L.td	68
Edis Studios, Lid.	127	Mulard, Lid........ 59, 60,61	5, 66, 78
Elcom \& Co., Lid	46	Multic	
Electronic Brokers	104, 105	W. H. Myal, Lid	74
Electronics (Croydon), Lid	84		
Electrosil, Lid.	79,81		34
Electrovalue.	92	Newmarket Transisiors	74
Electro-Winds, L.td.	84		
Elliolt Automations Lid	30, 31		
English Electric Valve Co., Ltd	3, 5, 7, 9	Orrect Electronic Systems, Lid.	
Enthoven Solders. Lid.	67		127
Erie Electronics, Li	14	Oxley Developments, Lid.	72
Gardners Transformers, Lid.	16		
Garage Gifts, Lid.	125	Parker, A. B..	82
G.O.S. (Sales), Lid.	44	Patrick \& Kinnie	94
Garex, Lid.	107	P.C. Radio, Lid	98,99
Gilfillan R. \& Co., Lid.	82	Peaksound (Harrow), Ltd.	96
Giltext, Lid.	125	Pembridge College, The	69
Glaser, L., \& Co., Lit	124	Pinnacle Electronics, Lid	25, 43
Globe, Scientific, Lid.	88	Plessey Pacific, Lid.	23
Godleys, Lid.	127	Politechna (London), Lid.	42

A1 Factors
Adcola Products Lid.
Advance Electronics, Ltd
Amatronix, Lid.
Amplivox, Lid. .
Anders Electronics, Lid
A.P.T.E.X., Lid

Armstrong Audio Lid
Arrow Electric Switches, Lid
Associated Electronic Engineers, Lid
Audix, B. B.. Lid.
Avon Communications \& Electronics, Lid
Barrett, V. N
atey, w \& Co
Bedco, Ltd
Rentey Acoustical Corporation Lid
Bentle.
Bi-Pak Semiconduciors
Bi-Pre-Pak, Lid
Bosch Lt
Bitec, Lid.
Lid
Buckingham Press, Lid
Bugin, A. F., \& Co., Lid.
Burgess Producis Co., Lid
C.B.S. Laboratories, Lid

Cooper R G Co Lid.
C.R.E.I. (London)

Daystrom, Ltd
Diemos, Lid.
Diotran, Lid.
Dolby Laboratories, Lid
Dymar Electronics,
Edis Studios, Lid.
Electronic Brokers
Electronics (Croydon), Lid
Electrosil, Lid
Electrovalue.
Elliot! Automations Lid
English Electric Valve Co., Ltd
Erie Electronics, Lid

Garage Gifts, Lid.
G.O.S. (Sales), Lid

Garex, Lid.
Giltext, Lid.
Globe, Scientific, Lid
Godleys, Lid.Pye Telecommu

Pye TVET T
Q Max (Electronics), Lid.
Quality Electronics, Lid
Quartz Crystal Co., Lid.
Racal Instruments, Lid.
Radford Electronics. Lid. .
Radio \& TV Components, Ltd
Radio Components Specialists
Radio Exchange Co.
Radionic Products, Ltd
Radiospares, Ltd.
Radon Industrial Services, Lid
Rank Audio Visuals, Lid.
Render Instruments.
Richardson, J. Electronics Lid
Roband Electronics, Ltd.
Rola Celestion, Lid. . Hi-Fi Centres, Lid.
R.S.C. Valves.

Samsons (Electronics), Lid.
Sankyo Seiki Mfg. Co., Lid.
Sansui Elecric Co., Lid...
Service Trading Co.
Servo \& Electronic
Shriro U.K., Lid.
Shriro U.K., Lid.
Shure Electronics, Lid...
S.M.E., Ltd.

Snaith, G. W. (Radio). Lid.
S.Nith, G. W. (Radio), Lid.

Specialist Switches, Lid
Starman Tapes............
Sugden, J. E
Super Electronics, Lid.
Sutton Electronics, Lid.
Swanco, Lid.
Teonex Ltd .
Tinsley, H., \& Co., Lid
Trickett.
United-Carr Supplies, Lid.
Inited Electronics.
Universal Book Co.................................... 125, 126
Valradio, Lid
Vero Electronics, Litu
Vitality Bulbs, Ltd.
Walker-Spencer Components
Watts, Cecil E., Lid
Webber, R. A., Lid
Wel Components, Lid
Welwyn Tool Co
West Hyde Developments, Lid.
West London Direct Supplies.
Whiteley Elec. Radio Co.. Ltd.
Wilkinsons, L. (Croydon), Lid.
Yukan.
Z. \& I. Aero Services, Lid. .
 LONDON, S.W. 4 Tel. 01-622 0291/3
Telegrams: SOLJOINT LONDON S.W. 4
WW-002 FOR FURTHER DETAILS

TO MANUFACTURERS OF SOLDERED JOINTS

Contains 5 cores of non-corrosive high speed Ersin flux. Removes surface oxides and prevents their formation during soldering Complies with B.S. 219, 441, DTD 599A. B.S.3252, U.S. Spec. QO-S-571d.

Savbit alloy contains a small percentage of copper and thus prolongs the life of copper soldering iron bits 10 times. Liquidus melting temperature is $215^{\circ} \mathrm{C}-419^{\circ} \mathrm{F}$. Ministry approved under ref. DTD/900/4535

Solder Tape, Rings, Preforms and Washers, Cored or Solid, are available in a wide range of specifications.

FXTRUSOTI

EXTRUSOL is a new concept in solder for solder machines, baths and pots used in the electronics industry.

EXTRUSOL is a very high purity solder which is also substantially free of oxides, sulphides and other undesirable elements.
The percentages of impurities in EXTRUSOL are considerably lower than those quoted in national or company specifications, thus providing a solder more suitable for use in the electronics industry.

EXTRUSOL can be
released under AID authority and conforms with USA QO-S-571d

ADVANTAGES OF EXTRUSOL

1. Less dross on initial melting
2. More soldered joints per pound of solder purchased
3. Less reject joints
4. Improved wetting of electronic components and printed circuit boards
5. More uniform results

ALL EXTRUSOL IS COMPLETELY PROTECTED BY PLASTIC FILM FROM THE MOMENT OF MANUFACTURE UNTIL IT IS USED

A section of a typical cast solder bar. Note the surface dross and general contamination.

A section of an EXTRUSOL bar with the plastic coating removed show ing no dross or
contamination.

EXTRUSOL is supplied in $1-\mathrm{lb}$. and 2-Ib. Trapezium Bars and Pellets in different alloys with strictly controlled tin contents to suit the appropriate soldering machines, baths and pots. Bars are available for automatic solder feed.

> Ask for full details on solders, fluxes, soldering chemicals, on your company's notepaper.

[^0]: Our Public Address brochure glves the facts.
 If's a useful thing to have around.
 TO: The Radon Industrial Electronics Co. Ltd.,
 Brooklands Trading Estate, Worthing, Sussex. Tel، Worthing 1063
 Please send me a brochures

[^1]: The hp 8005 produces wave forms single-handedly. It is both function generator and pulse generator. And, with appropriate gating signals, a word generator as well. We call it a multi-function pulse generator, the idea being that a single, sensibly priced instrument should be able to do the job of a whole battery of specialized pulse generators
 Hence the wide ranges of repetition ranges, pulse widths and pulse delays-all combined with DC offset for both positive and negative output channels (they are available simultaneous(y). In the double pulse mode. you can even simulate a 20 MHz repetition rate. Variable rise and fall times extend from 10 ns to 2 s . Add the passibility of combining both output channels in the output terminal while DC offset remains available. Add simultaneous and seperate gating, asynchronous as well as synchronous.
 And the result? Three generators-pulse.
 function and ward-in one
 hp 8005A: f 417 excluding duty WW--064 FOR FURTHER DETAIL.S

[^2]: Mullard Limited
 Consumer Electronics Division
 Mullard House Torrington Place London WC1

[^3]: *W'est Ham College of Technology, London, E. 15.

[^4]: A Member Company of the Rediffusion Organisation

[^5]: TECHNIOAL TRAINING
 B guaranteed diploma and exam. home-study courses in radio. TV. servicing and maintenance. R.T.E.B., City \& Guilids, etc., highly informative 120 -page Gulde-iree,-Chambers College (Dept. 837 K), $\quad 148$
 Holborn, London, E.C.1.

